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We study the numerical solution of a nonlinear, partial -differential
equation that describes charge transport in a model of a charge -coupled
device (ccD). This model differs from previous models in that field -aiding
of the transfer is taken into account. Although a derivation of the transport
equation is given, the main emphasis in the paper is on the numerical
techniques involved, and no actual numbers are presented. Actual numerical
results based on the techniques developed here can be found in several
recent design studies. The equation, which is parabolic, has one space
dimension and one time dimension. Galerkin's method, with standard
chapeau functions, is used to discretize in space. This results in a very
stiff system of nonlinear, ordinary, differential equations. To solve these
equations, we use a first -order backward Euler scheme coupled with
extrapolation. A number of alternative schemes were tried and found to be
inadequate.

I. INTRODUCTION

In this paper, we study the numerical solution of a nonlinear, partial -
differential equation that describes charge transport in a model of a
charge -coupled device (ccD). The emphasis is on the numerical tech-
niques involved, although a derivation of the equation is given. The
reader is referred to other papers where the solutions are used in device
theory and design." We briefly summarize the physical background
of the equation first.
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A knowledge of the dynamics of charge transfer in a CCD is, of
course, central to a complete understanding of its operation. A calcu-
lation of the motion of charge in a CCD, starting from the coupled,
nonlinear Poisson and charge -conservation equations and taking into
account the full geometry of the device, has so far proved impossible.
However, Strain and Schryer3 and, independently, Kim and Lenz -
linger' developed and studied an approximate, one-dimensional model
of charge transfer in a CCD. The original analysis considered motion
owing only to diffusion and the mutual repulsion of the charge carriers.
Field -aided transfer was ignored. Since these original studies, a number
of other authors have studied the effects of field-aiding.5-8 In Refs.
5, 6, and 8, as in the original papers,3,4 an infinite sink for the charge
at one end of a cell is assumed. The assumption of an infinite sink
rules out charge "bunching," which in certain situations is an im-
portant effect (for an example of this, see Ref. 1, Fig. 8). In Ref. 7,
the assumption of an infinite sink is not made. In this paper, we
extend the original workm to include field -aiding and more realistic
boundary conditions. Our model can describe both surfaces ceps and
buried -channel° cops (Beeps). We do not include the effects of surface
traps, since the main application' was to BCCDs. We feel the numerical
scheme described here has advantages over that used in Ref. 7, where
essentially the same model as ours was used to study surface ceps,
with the effect of traps included. Calculations using our methods
show that BCCDs, which can be fabricated with present technology,
should be extraordinarily fast and efficient and have reasonable
charge -carrying capabilities. Transfer times of 1.8 ns are predicted for
a two-phase device having 10 -Am -wide electrodes.' Slower but similar
results are obtained for surface devices.

Strain and Schryer3 solved, by the method of finite differences, a
transport equation quite similar to the one we study here. However,
their method of solution proved inadequate when applied to our
equation. It is possible to obtain solutions of the transport equation
as follows. We use Galerkin's method" with standard chapeau func-
tions in space. We treat the time behavior by polynomial extrapolation
to the limit of the results of a first -order, fully implicit (nonlinear),
finite difference scheme. Although the equation only roughly models
the true physical situation, an accurate knowledge of the solution as
it varies over many orders of magnitude is necessary if it is to be of
any use. This requirement makes the numerical solution of the equa-
tion difficult. Many other schemes were tried, and the above method
is the only one we found that could solve the problem.

The equation of charge transport is derived in Section II, although
some more complex details are given in Appendix A. The technique
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for numerically solving the equation of charge motion is given in
Section III, with some details in Appendix B. Questions of existence
and accuracy are discussed in Section IV, along with the use of poly-
nomial extrapolation. An outline of the theory of extrapolation is
given in Appendix C. The method by which initial solutions are
obtained is the subject of Section V. Finally, in Section VI we discuss
several other schemes by which we tried to solve the equation of
charge motion and which failed.

II. DERIVATION OF THE TRANSPORT EQUATION

We refer the reader to the literature for a discussion of the principles
of operation of either surface ccDs9 or BccDs.10 Basically, however, both
are devices that move packets of charge from under one electrode to
under another electrode by suitably changing the voltage on the
electrodes.

As in Ref. 3, we assume that the charge can be described by a charge
density q(x, t). Here, x is the distance under the plates (see Fig. 1)
and t is the time. Then, as we show in Appendix A, the component of
the electric field along the direction of motion of the charge, which is
due to the mutual repulsion of the charge, is

El = - Sqs. (1)

The elastance S is assumed to be a constant independent of x and t.
In all that follows, we use subscripts to denote differentiation; thus,
q. = aq(x,t)/ax, etc. Equation (1) holds for both surface and buried
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Fig. 1-Schematic of a CCD showing relation to device of x-coordinate in transport
equation.
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channel devices, although the values of S are different in each case.
Expressions for S are given in Appendix A in terms of the physical
parameters of the devices.

Let co(x, t) be the given driving potential due to the voltages applied
to the electrodes. For a surface CCD, (p is the electric potential at the
oxide semiconductor interface, while, for a BCCD, so is the potential at
the potential minimum of the buried channel. In most applications,
we have approximated so by the potential in the CCD in the absence of
any mobile charge.12,13

The total field along the direction of motion is

Ex = - Sq. - cox. (2)

The current density is9

J (x, t) = DIE. - Dqx, (3)

where D is the diffusion constant and /I is the mobility, which we also
assume to be constant. If we substitute (2) into (3) and make use of
the Einstein relation D = (kT /e)11 = .2µ, then

J(x, 0 = - /Ca + Sq)qx + Dpil
If we substitute (4) into the charge -conservation equation,u

qt + J. = 0,

we get the desired transport equation,

qt = ALE(a + Sq)q. + "xi'

(4)

(5)

(6)

The appropriate solution of (6) satisfies an arbitrarily given initial
distribution of charge q(x, 0) and the boundary conditions J(0, t)
= J (L, t) = 0. The boundary conditions state that there is no charge
flow into or out of the device at either end. L is the length of the device.

It is convenient to write (6) in terms of dimensionless quantities,
as in Ref. 3. Let

7 = t/ (Wino), y = x/ L, w = Sq/vo, 43 = (p / vo, 0 = a/vo, (7)

where vo is a reference voltage. Then (6) becomes

tv, = [(w + #)wy + w(13:a. (8)

As it turns out, there seems to be no natural voltage unit in the
problem (Ref. 3), so we typically pick vo = 1 volt.

Physically, the quantity of interest is the total charge present
between any two points 0 yi < y2 < 1. This suggests that, instead
of w(y, r), we consider

Y

Q(y) r) = f w(E) 7)C1E (9)
0
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If we integrate eq. (8) with respect to y from 0 to y and make use of
the boundary condition J(0, t) = 0, we get

Qr = (Qv + 0)Q. + Qyck (10)

Since the right-hand side of (10) is just proportional to J(y, 7), we
see that QT(1, 7) = 0. From this last remark and (9), it follows that
the correct boundary conditions on Q (y, T) are

Q(0, r) = 0, Q(1, 7-) = QT = const. (11)

The appropriate initial condition is determined from w(y, 0) by
setting T = 0 in (9). The transport problem we wish to solve is,
thus, eq. (10), subject to boundary conditions (11) and given initial
conditions. This is a much simpler problem than attempting to solve
(8) for the charge density.

III. SOLUTION OF THE TRANSPORT EQUATION

We simplify the notation slightly by setting

4,(y, r) = cl)y(Y, (12)

and note that (10) can be written

1

aay
fiQyy - 2- - (Q0 4,2 - (2y + Q, = 0. (13)

If we multiply both sides of (13) by a continuous, piece -wise differ-
entiable function f(y) which satisfies f(0) = f(1) = 0, integrate the
result from 0 to 1, and integrate the terms containing second deriva-
tives by parts, we obtain (letting f' = df/dy)

{ + 1(%)21/' (Y) + C- 025 + Qrlf(Y)14 = 0. (14)

Equation (14) is the starting point for the application of Galerkin's
method, because any twice -differentiable function Q(y, 7) that
satisfies (14) for all continuous, piece -wise differentiable f(y) satisfying
f(0) = f(1) = 0 must also be a solution of (13).

We now discretize in space by introducing a net { yi, Y2) yN}

on [0, 1] and a set of standard chapeau functions fi(y), 1 j < N,
as pictured in Fig. 2 and defined in Appendix B. In all that follows, the

fi

Y1 = Y2 Y3

f4

Y4

Fig. 2-Discretization of the space interval and the corresponding chapeau functions.
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net {yl, , yN } is assumed to be given and fixed. In terms of the
basic chapeau functions, we define approximations to the solution and
external field :

N-1
Q(y, = E Qi(r)fi(Y) + (24N(y),

j=2
(15)

N
= (16)

Note that Q(y, T) has been constructed to satisfy the boundary
conditions, 0(0, T) = 0, 0(1, r) = QT. The functions Q;(7) are yet
to be determined, but we require that they satisfy the initial conditions

Qa(0) = 0). (17)

Because of (17), Q(y, 7) satisfies the correct initial conditions at the
mesh points : 0(y 0) = Q(ya, 0). We define 0;(7) = tfr(y;, 7), so that
kyi, 7) = 11,(Y5, 7).

To determine the N - 2 functions Q;(7), we require that Q(y, T)
satisfy (14) for each of the N - 2 choices of f(y), f(y) = fi(y),
2 < j S N - 1, with 0(y, r) replaced by 113(y, 7). This yields a system
of N - 2 first -order, nonlinear, ordinary differential equations for
the Q;(r). This technique has a robust history and has been applied,
not only to many problems of the same type as (13), but to other
types of problems as well. The idea is quite simple : Let the approxi-
mate solution be a linear combination of the functions 2 5 j 5 N- 1
and then make the left-hand side of (13) orthogonal to each of these
functions. In geometrical terms, this means making the left-hand side
of (13) orthogonal to the span of f2, , fN_i, denoted by (12, ,

in £2[0, 1] in the usual inner product : (f, g) = fo1 f(y)g(y)dy. Then,
crudely speaking, as more points y; are chosen, (f2, , IN -1) spans
more of ce2[0, 1] and the left-hand side of (13) must go to zero as
N 00 , so long as it remains orthogonal to (f2, , IN -1).

If we carry out the substitution of (15) and (16) into (14), with
f(y) = fi(y), 2 5 i N - 1, the N - 2 equations result:

JJJokilok
N -1 N-11

QiQk JO f;ficridY jE2 OAT) fifidY

= - f 01 at.102dY QT (0 Li f;iNdY

f k .61rfidY)] (18)
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In (18) Q;(7) = dg;/dr. The values of the integrals appearing in
(18) are listed in Appendix B. If we define hi = yi - 2 < i < N,
and substitute into (18) the values of the integrals, we get

2(hi hi+1)01 hi+10i+1)/6
 Qi-1[-13/hi 200/6] QiD(1/hi 1/hi+1)

+ Pi+i - ai,N-1QT/(hN)23

- (C+1 + 200/6] + 1 (Qi - Qi-02/hi - (Qi+1 - (202/0+11
Si .N-1[0/ (2h2N) QT(g/hN + ON -1/3 + 116/6)], (19)

where N-1 is the Kronecker delta function. These equations hold for
2 1 if we let Q1(7) = QN(7) = 0. The nonlinear ordinary
differential -equation initial -value problem given by (17) and (19)
represents the spatial discretization of (13) and must now be solved
for the UT), 2 < j < N - 1.

We use a fully implicit finite difference scheme in time (backward
Euler). Let

Q7 = Qi(nAT) (20)

for some choice of Ar > 0. We then let C(nAr) be approximated by
(Q7+1 - Q;')/A7 and set Qi = Q7+1, = t,G+1 in (19). On rearranging,
we obtain the fully implicit, first -order, finite -difference scheme for
solving (19) in time :

rit, -FIQ7+1 + A (Q7-fq Qr-Fil)2

- - Q7+1)2 = R7+1, (21)

where

= - 13/hi + (44±11 24/74-')/6 + hi/ (6AT), (22a)

T72+I = (3 (1/hi + 1 /hi -I-1) (4411 11/7±W 6 + (hi + hi+i)/ (3AT)
(hN)2, (22b)

T'iz3+1 = - 0/ hi+i - (4/71±11 + 207+1)/6 + hi+ 1/ (66,7),

Ai = 1/(21ti),

R7+1 = bi ,N-1[0/ (2h2N) QT (13/11,N OW 3 + 4/§"/6)]
(hi(27-1 + 2 (hi + hi+1)Q7 hi+1Q7+1)/(6A7). (22e)

Equations (21) hold for 2 < i < N - 1, n = 0, 1, 2, , with the
assumption that (27 = Q'jv = 0, n = 0, 1, 2, and with the initial
conditions Q1 = Q(y 0), 2 5 i < N - 1.

We now find the solution of the nonlinear system of eqs. (21) for
fixed n by an iterative Newton method. We drop the superscript n
denoting the time step, and for fixed n denote by Qi(m), 2 < i < N - 1,
the mth iterate of the solution of (21). To obtain Qi(m + 1) from Qi(m),

(22c)

(22d)
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we set Qi(m + 1) = Qi(m) ri(m), substitute this into (21), and
linearize the resulting equations for the ri(m) :

Til - 2A ai (m) - Qi-i (m) ri-1 (m)
 { Ti3 - 2Ai_F1[Qi+i(m) - Qi(m) ] }ri±i(m)
+ {Ti2 2A4N1(m) - Qi_i(m)]

2Ai±iNi-Fi(m) - Qi(m)]Iri(m)
= Ri - Tia(m) TisQi±i(m)

AiNi(m) - Qi-i(m)12 - - Qi(m)121. (23)

These equations hold for 2 < i < N - 1 with r1 = rN = 0. This is a
tridiagonal system of linear equations. Reference 15 contains a concise
analysis and very efficient method of solution for such a system of
tridiagonal equations.

In practice, the initial estimate of the solution Q7+1 to (21) is taken
to be (27 from the previous time step. So, if it is chosen sufficiently
small, the Newton sequence generated by (23) should converge and
do so quickly.

What we have described so far is a method for discretizing (9) and
(10) in space and time, giving the nonlinear system of eqs. (21), and
we have proposed an iterative scheme, given in (23), for solving (21)
at each time step. In the next section, we study the feasibility and
accuracy of the method.

IV. EXISTENCE AND ACCURACY

We shall show that iteration (23) can be carried out as long as the
following conditions are satisfied:

0 (22 Q3 QT, n = 0, 1, 2, , (24)

sup 10(Y, r) I

2/3
2 i N. (25)

[yi_i,yi] x co, co
,

These conditions are sufficient to ensure the existence of a solution of
eqs. (23) for each n. We have not proved it, but in practice they also
seem to be necessary. These conditions do not show that the iteration
(23) must converge, merely that it is well defined. In fact, if the initial
estimate of the solution of (21) is too far off, then in practice the
Newton sequence given by (23) may well not converge, and it is
necessary to choose OT smaller so that Q7 provides a better estimate of
Q7+1.

The monotonicity condition (24) on Q7 is merely a necessary conse-
quence of the definition (9) of Q7, since w(E, r) >= 0 by definition. The
mesh restriction (25), however, is apparently new and fundamental.
In practice, if (25) is violated, even at only one point and by a "small"
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amount, the solution produced, if any, is highly erratic and non -
monotone, and may even be negative.

We now prove that conditions (24) and (25) imply that the matrix
of eqs. (23) is strictly diagonally dominant." From this, we can con-
clude that the matrix has an inverse," so the equations have a solution.
From (22a) to (22c) and (25), we see that

Til T i2 T i3 = (hi + hi+1)/(20r) > 0, (26)

and
Tie L. (hi + hi+1)/(3Ar) > 0;

Til 5 hi/(6Ar), T i3 C hi+1/(6Ar).

Because of the monotonicity property (24) and the fact that Tie > 0,
it is easy to show that

ATi = Ti2-I Till - Ti3I >0 (28)

implies the diagonal dominance of (23) :

T i2 + 2A ai (m) - 2A1+02i+i (m) - Qi(m)ii
> I Tii - 2A ai (m) - Qi--i (in)

± T - 2A 411(2 i+1(M) i(M)1I (29)

To show that (28) is true, we consider the four possible sign combina-
tions of Til and T i3 and use (26) and (27) :

(i) T11 > 0, > 0.

ATi = Ti2 To. - Ti3 = (hi + hi+i) / (26,7)
- 2(T11 T i3) (hi + hi+i) / (66,7) > 0.

(ii) Til > 0, T i3 < 0.

ATi = Tie - Til Ti3 = (hi + hi+i)/(2Ar)

(iii) Til < 0, Ti3 > 0.

ATi = Ti2 T - Ti3 = (hi + hi+i)I (26,r)

(27)

hi hi+12T
' 2Ar >0

hi- 2T i3 > O.
2Ar 6Ar

(iv) Til < 0, T i3 < 0.
ATi = Ti2 + 1 T i3 = (hi + hi+1)/(20r) > 0.

This completes the proof of the diagonal dominance of (23).
We now discuss the accuracy of the spatial and time discretizations.

It is well known (see Ref. 11) that the Galerkin procedure, using
chapeau functions, is accurate to 0(h2), where h = maxihi and 0(h2)/h2
represents roughly an upper bound on Q (y, r) over [0, 1] X [0, )
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We shall not go into the proof of such results here. Rather, a heuristic
but useful analysis of the error is presented. The 0(10) accuracy, ba-
sically, comes from the fact that replacing Q(y, r) by its interpolant,

N-1
E Q(Yi, 7)fi(Y) + QTfN(Y),
i=i

results in such a 0 (h2) error by using Taylor's theorem on each of the
intervals [yi, yi+1], i = 1, , N - 1. A similar statement can be
made about Cy, r) and its interpolant. For the sake of clarity, assume
that the mesh is uniform with hi = h, i = 2, , N. Then standard
finite difference arguments show that (18) is a spatial finite difference
approximation to a function Q*(y, 7-) obeying

Q: = Q:,,(0 + Q;) - #Q: + 0(h2), (30)

where 0 involves terms of the form Q* and its higher -order derivatives,
anz+n/aymorn. Then, intuitively speaking, since Q(y, r) solves (30) to
within 0(h2) and Q*(y, 0) - Q(y, 0) = 0(h2), we must have Q*(y, r)
- Q(y, r) = 0(h2).

Even though (30) is based on the assumption that the spatial mesh
is uniform, it shows clearly that the hi must be small in any region
where any of the derivatives (am+n/aymarn)Qyy are large. Physically,
such regions are precisely those regions where the field 0(y, r) is large.
This makes restriction (25) quite reasonable, since (25) requires a
smaller spatial mesh where the field 4 is large. In fact, we can estimate
the number of points N,, required by (25), using a variable mesh, in a
potential rise of v volts : (25) requires that & change by no more than
213 '-.-' 1/20 (at room temperature) over any mesh interval. Then, for
example, a potential rise of 5 volts will have '._'100 points yi modeling
it. So (25) itself forces a fairly accurate representation of 11/ and hence,
indirectly, of Q.

However, the time mesh is another matter altogether. The time
difference scheme is only first -order accurate and the local time
behavior of Q near large values of # is rather bad. Thus, application
of (21) to (23) alone to solve the problem gives rather poor results.
For this reason, we have used polynomial extrapolation to the limit of
the results of the first -order scheme (23). A brief discussion of the
extrapolation process is given in Appendix C. Ironically, polynomial
extrapolation was used because rational extrapolation converged so
quickly to the solution that it led to very large OT choices (see Ref. 17
for the A 7' monitoring mechanism) which, in turn, led to iteration (23)
not converging or taking a very long time doing it. So, even though
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polynomial extrapolation is "slower" than rational, it is "better" for
our purpose here.

V. CALCULATION OF (4(y, .0)

In most cases of interest, the initial condition for (10) is chosen
as an equilibrium solution Q(y, 00) corresponding to a time -inde-
pendent potential (13(y). It is convenient in these cases to solve for the
corresponding w(y, 00) = w(y) and then integrate to get Q(y, 00).

Setting w1 = 0 in (8) yields 0 = [(w + (3)wy + w(1)],,, which, when
integrated twice from 0 to y with the aid of the boundary condition
J(0, 00) = 0, yields

F (w) = w ln -w +4)(y) = 0 (31)
Co

for some constant Co. Let yo be any point in [0, 1] such that w(y0) > 0.
Then

Co = w(yo) exp
(13(Yo) w(yo) ). (32)

Thus, given 43(y) and a single value of w(yo) > 0, the entire equi-
librium distribution w(y) is determined. Note that w(y) > 0 whenever
013(y) is finite.

To find w(y) from (31) we use Newton's method. An initial guess at
the solution w(0) (y) > 0 is made. The solution is then iterated, the
(n + 1)th iterate being related to the nth by

w(n)(Y) )1 (33)
1 (y) f3 {1 -n ( Co

{1 + w(n )(y)

Since F' (w) = 1 +(3/w > 0 and F" (w) = - 1310 < 0, we see that
F (w) is a concave, monotone -increasing function for w > 0. Thus, the
Newton sequence generated by (33) will converge to the solution (31)
no matter what initial w 0)(y) > 0 is chosen.

Once the w(yi), yi in the Galerkin net lyi, , yN) are found using
(33), Q(yi) may be found by the trapezoidal rule for integration. This
is consistent with the representation of Q by the chapeau functions, 0,
since the trapezoidal rule is exact for chapeau functions.

VI. ATTEMPTS THAT FAILED

The first attempt at solving (10) was via the finite difference scheme
of Ref. 3. It was impractical because the spatial mesh restriction (25)
appeared there, also, forcing the spatial mesh to be very small in some
regions, although it could be quite large in others. Since any non -
uniformity of mesh size in a central finite difference scheme leads to
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only first -order accuracy, we were then left with a very fine mesh over
the entire interval [0, 1]. This required tens of thousands of points in
the spatial mesh, far too many to be practical.

After going to Galerkin's method in space, which has second -order
accuracy even with a nonuniform mesh, the solution of (19) posed
another problem : It is an extremely "stiff" system of ordinary differ-
ential equations, with the coefficients A; ranging typically from 104
to 101°. This is a reflection of the locally quick time and spatial changes
in Q(y, r) whentli is large, this fact being transmitted to the hi by (25).
For this reason, any attempt to linearize (19) between time steps for a
finite difference scheme in time led to failure-the solution is nowhere
near linear over reasonable time intervals when & is large. The symptom
of this problem, in practice, was that the AT required in the polynomial
or rational extrapolation process for these linearized schemes was
extraordinarily small, requiring in one case more than 1010 time steps
to cope with a single 5 -volt potential swing.

Once a nonlinear approach to the solution of (19) was recognized
as probably the only route left, the most obvious "accurate" scheme
to use is a fully nonlinear Crank -Nicholson solution of (19). A small
digression on this scheme in a simple case is useful here. For the linear
system of ordinary differential equations,

u' = Au, (34)

where u is a vector and A a matrix, the Crank -Nicholson approximation
to the true solution, u = eruo, is

u(nir) (I + lAAT)4(I - 1A.60-)-nuo

This is based on the approximation"

eA°7 (I + T) (I - (35)

Letting u(nAr) = (u?,  , u'ig)T, this corresponds to the standard
finite difference formulation of the Crank -Nicholson scheme :

(24+' - 4)/AT = i(Aun+' Aun)i, 1 < j 5 N.

A nonlinear generalization of the above scheme for (19) would have
an error of the form C(.60-)2; however, C is very large. This is most
easily seen by considering (35) for real A Ar very large (positive or
negative). That relation then states that eAAT - 1, which is an
exceedingly bad approximation. For a "stiff" system, (34) [or (19)],
one that has a wide spread in its eigenvalues for A, the above reasoning
indicates that the Crank -Nicholson scheme would give very poor
results unless Or is very small. In practice, as before, the symptom of
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this problem was very small A T choices by the extrapolation routines-
the same problem that would have required 1010 time steps in a linear
scheme would have required "only" 108 with Crank -Nicholson. (In
this matter, see also Ref. 19.)

In all, more than 12 different schemes were programmed and tested
on this problem, (9) and (10), with the result that only the one de-
scribed in Sections II to V is effective for the wide range of distri-
butions required to model both surface and buried -channel cons.
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APPENDIX A

In this appendix, we derive eq. (1), the fundamental equation of
the Strain-Schryer model, for the case of a BCCD. We choose coordinates
as shown in Fig. 3 ; the x-axis is parallel to the oxide -semiconductor
interface and the z-axis is directed into the semiconductor. The
potential in the oxide is ,p0(x, z) and the potential in the semiconductor
is coi(x, z). The permittivity of the oxide is eoz, that of the semi-
conductor Es and the thickness of the oxide is S.

In the special case where all the properties of the BCCD are inde-
pendent of x, the potential in the presence of the inserted charge q
has been calculated by Kent2° and Schryer." They showed that the
value of the potential at its minimum in the buried channel is approxi-
mately a linear function of the charge q, sal = S0q V0, for all values

450, fox

S

x

41, es

z

Fig. 3-Coordinate system involved in calculating the potential of a line charge.
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of q in the operating range of the device. The elastance So and Vo are
independent of q but depend on the oxide thickness S and the semi-
conductor doping, and Vo also depends strongly on the electrode
potential.

In the general case, the Strain-Schryer model assumes that the
field in the x -direction in the channel can be approximated by the sum
of two terms. The first term is obtained from the above expression for
col by assuming q a function of x and differentiating,

.E.1 = - So .. (36)
x

The second term takes into account the field at x resulting from the
charge at other points x' in the channel. Because of the metallic elec-
trodes, the charge at x' will induce image charges that will tend to
shield the field at x. For this purpose, we first calculate the potential
of a unit line charge located at x = 0, z = n > S in the semiconductor.
The plane z = 0 is assumed to be a perfect conductor at zero potential,
and the oxide and semiconductor are assumed uniform. We can write
down a solution of Laplace's equation in the form

r 00 sinh lalz
vo(x, z; n) = j r(a)

1 a 1

eic'zcla, 0 -. z < 5, (37)

1vi(x, z; n) = 4e, "xli ( x z n) + s(a)e-lai (.-s) ei.da,

5 < z < 00 , (38)

where

4/(x, z; n) = in { ,x2 + (z - 77)2} - In { x2 + (z + n)2}. (39)

The function NY (x, z; n) has the correct singular behavior at x = 0,
z = n and is harmonic everywhere else in -00 < x < 00 , 5 S z < 00.

The boundary condition goo(x, 0; n) = 0 is satisfied, and the unknown
functions r(a) and s(a) must be chosen so that the boundary conditions

a (p
soo(x, 5; 71) = co1(x, 5; n), eo.

aco-o (x' 5; n) = e8 azi (x, 5; n) (40)
az

are satisfied. It is straightforward to show that
.

`I' (x, 5; 77) = - 2 L e-nlal sinh 'alb .

ax"."la l et' (41)

az
(x, 5; n) = - 2 L. e--71.1 cosh la I Seiaxda. (42)

If we substitute (37), (38), (41), and (42) into (40), and Fourier -

680 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



transform with respect to x, we obtain two linear equations for r(a)
and s(a). The solution of these two equations yields

r(a) = -1 e-(v-"al{(fox
7 e.)ela" (0. - 8)e-iala (43)

sinh 'alb j 1
(44)s(a)

ri e"lal27re.

On substituting (43) and (44) into (37) and (38), we obtain the
desired result. If we expand r(a) and s(a) in powers of e-lai 6, the
Fourier integrals can be evaluated, and we can express the potential
as the potential resulting from an infinite array of image charges. Since
this result is not needed, we do not give it here.

In the buried -channel case, we need the potential resulting from a
two-dimensional charge distribution. Let the density of this distribu-
tion be p(E, n). Then q(x) = f p ( x , n)dn is the charge appearing in
eq. (36). Since the potential resulting from the image charges induced
by a line charge at (, n) in the semiconductor is (p(x - E, z; n), we
can now write down the second term of the field in the channel as

Ex2 = f fail (x - z; n)P(Ey n)dEdn

From (38) and (39),

ace%

8-(x- z n)

1 r x- (x -
27re8 L (x - )2 + (z - n)2 (x - 02 + (z n)2

(45)

f00 as(a)e-tat (z-ueia (z-uda. (46)

Since (mpdax)(x - E, z; n) is singular at E = x, n = z, the main
contribution to the integral in (45) occurs at this point. We expand
p(t, n) in a Taylor series about x, keep only the linear terms in the
expansion, and extend the limits of the integral from -co to co .

Since (8 1/8x) - E, z; n) is an odd function of x - E, the term
involving p(x, 77) vanishes. A straightforward calculation shows that
the remaining term is

1 a

f
1 - aq(z + n - IZ - n1) p(X, n)dn - 6 (-e- -. (47)

28 ax ax

The first integral can be transformed by the mean value theorem :
f (z n - lz - )p(x, n)dn = (z - I z - fil)q(x), where fi is a
point in the interval of integration. In many cases, it is reasonable to
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l/EB± ( ) aq.

replace the factor z + - I z - I by a constant 2/, independent of z.
For such cases, we have

E x2 =
eox Es ax

If we combine (36) and (48) we obtain (1), where

S = So + (1 - a)/8 +

(48)

(49)

Here So must be obtained from a one-dimensional charge -insertion
calculation,"' and 1 must be estimated from the above formulas.

It should be noted that, if we let p(t, n) = p(t)D(n - a) in the
previous derivation, where D (x) is the Dirac delta function, and set
y = (5, we should get the result of Ref. 3 for a surface device. However,
in this case, (47) yields 6/eox for the correction term, while in Ref. 3
the correction term is 26/(e, 0.) [eq. (4)]. This is because, in Ref. 3,
in the expansion of the field in terms of image charges, only the first
image was taken into account.

APPENDIX B

In this appendix, we list several results concerning the chapeau
functions li(y):

li(y) = 0, 0 < y 6 yi-1,
= (y Ya-i

= (Yi+i Y)/hi+i, Yi 5 y < Yi+i,
=0, y).+1 y 1, (50)

where h; = y; -
We list here a number of elementary integrals that are needed in

obtaining eqs. (19) from eqs. (18).

Jo
(fi)2dy = 1/h1 + 1/h,+1, (51)

= - 1/111+1, (52)

(f;)2cly = (h54.1 h;) / 3, (53)

fib+ idY = h1+1/6,

UNY = (11.0-2 -

(02.6+14 =
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(54)

(55)

(56)



U;)2f;-idY = - (11))-2

fl (.fi)2iflY = 0,

= -

fo = k,

f i)211+14 = 1)

i j
J i1.1-1-1E+laY =

In all these expressions, f; = dfddy.

APPENDIX C

(57)

(58)

(59)

(60)

(61)

(62)

In this appendix, we give a brief description of the extrapolation
method for solving eqs. (19) in time. We used a linearized, backward
Euler method for solving (19) in time. It is first -order accurate. That
is, by using a time step of At to go from to to t1 = to + mAt, the result-
ing error at ti is 0(At). See either Ref. 22 or Ref. 23 for the proof of
such results.

However, much much more is known about these methods. In fact,
Stetter24 has shown, in a very general setting, that processes such as
the above backward Euler technique give rise to expansions of the
form

T(At) = T(0) + (63)
i-1

where, for our problem, T (At) is the value of the vector (QT, , 7,

which is the value of our approximate solution at t1 = to + mist, and
the t; are vectors that depend only upon to and t1. Thus, as

= (t1 - to)/m goes to zero or, equivalently, as m goes to infinity,
T(At) not only converges, with error 0(At), to the true solution at ti,
namely, T(0), but each component of T(6,0 looks more and more like a
polynomial in At. The process of extrapolation consists of simply
computing several values, T(At), T(At/2), , T(At/p), and then
passing a polynomial of degree p - 1 through these data points
corresponding to each component. The value of these interpolating
polynomials at the origin is the solution T(0), plus terms of order
(At) P. Here p is called the level of extrapolation.
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By using polynomial extrapolation to the limit of the result of the
first -order scheme (21), we generate a process that has an error of
0[(At)P] when p levels of extrapolation are used. This extrapolation
process is very well described in Ref. 25, and its application to the
numerical solution of ordinary differential equations is also very well
described in Ref. 17. It must be stressed that the underlying process,
Gragg's modified midpoint rule, which Bulirsch and Stoer extrapolate
in Ref. 17, is not the one we are proposing to extrapolate here. That
rule is second -order accurate and is actually unstable if the equations
being solved are stiff. The first -order, linearized, backward Euler
method we use here is highly stable under extrapolation, even for very
stiff systems like (19). So Ref. 17 should be read with an eye to using
extrapolation in solving ordinary differential equations and not to
those peculiarities that Bulirsch and Stoer introduce to take special
advantage of the nice properties of Gragg's modified midpoint rule.
The same technique we have used here to solve (13) was used in Ref. 26
to solve a similar system. It is of interest that, for both these problems,
polynomial extrapolation was found to be 15 to 20 percent faster than
rational extrapolation. This is in contrast to the finding in Ref. 17
that rational extrapolating is usually the faster of the two, at least
when extrapolating Gragg's modified midpoint rule.
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A double -insulator structure consisting of 500 A of vapor -deposited
A1203 and 1000 A of thermally grown Si02 is used as the gate dielectric
in a beam -lead -compatible, p -channel, MOSFET, silicon -integrated -circuit
technology. The A1203 layer, in addition to serving as a sodium barrier
and thereby providing a self-passivated technology, results in a positive
flatband voltage shift when compared to an Si02 structure. The mechanism
for this flatband voltage shift is the subject of this paper.

The major experimental results obtained are (i) a negative charge
exists near the A1203/ SiO2 interface, its magnitude being independent of
the A1203 thickness but inversely proportional to the Si02 thickness,
(ii) the magnitude of the Si02/ Si interface charge is inversely propor-
tional to the Si02 thickness, and (iii) a potential jump of about 1.25 volts in
Hatband voltage is associated with the addition of the A1203 layer.

A physical model is proposed which assumes the existence of a constant
voltage drop across the Si02 layer during the A1203 deposition and a
corresponding charge buildup at the Si02/ A1203 interface.

I. INTRODUCTION

The threshold voltage of an insulated -gate, field-effect transistor is
directly dependent upon the properties of the gate insulator. A double -
dielectric gate structure consisting of nominally 500 A of vapor -
deposited A1203 and 1000 A of thermally grown Si02 is the basis of a
beam -lead -compatible, p -channel, MOSFET, silicon -integrated -circuit
technology.1-3 The A1203 layer serves two functions. First, it is a
diffusion barrier for light ions, such as sodium, and thus provides a
self-passivated technology. Second, the A1203 layer shifts the threshold
voltage of the AIOS transistor in the positive direction (due to a flat -
band voltage shift). For example, for a (100) oriented, n -type, 10 -
ohm -cm, silicon substrate, a flatband voltage of 0.0 volt is obtained
with the dual -dielectric structure and a titanium metal gate, charac-
teristic of the beam -lead metallization system, whereas with just an
Si02 structure the flatband voltage is -0.8 volt. The more positive

687



flatband voltage capability provided by the A1203 layer implies that
MOSFET integrated circuits can be fabricated which have low power -
dissipation properties and which are more easily interfaced with bipolar
circuits.

Many techniques have been used for the deposition of A1203 films
intended for application in an integrated -circuit technology. All of
our considerations are restricted to A1203 films deposited at 900°C
from an A1C13 source, the technique reported by Tung and Caffrey.'
A brief review is given in Ref. 4 of the other A1203 deposition techniques
that have been reported and the electrical characteristics of the films
obtained.

The electrical properties of the A1203/Si02, dual -dielectric, gate
insulator are quantitatively described in this paper; and, in particular,
the mechanisms are delineated which cause the positive shift in fiat -
band voltage. The experimental approach was to do a parametric
study of the flatband voltage of the dual -dielectric mos structure,
the two parameters of interest being the thicknesses of the A1203
and Si02 layers.

Two major conclusions were obtained from the parametric study.
First, a net negative charge exists near the A1203/Si02 interface, and
the magnitude of the charge is independent of A1203 thickness over the
range studied, but inversely proportional to Si02 thickness. Second,
the magnitude of the normal interface charge associated with the
Si02/Si interface has a component that is inversely proportional to
Si02 thickness.

A model explaining the origin of the negative charge at the A1203/
Si02 interface was developed, based on the assumption that the elec-
trical conductivity of A1203 at high temperatures ( > 300°C) is much
greater than that of Si02. As a result, during the high -temperature
deposition of A1203, an electric field exists in the Si02 due to the
Si/A1203 contact potential difference, and the negative charge at the
A1203/Si02 interface terminates this field.

Recently, Aboaf, Kerr, and Bassous also reported the existence of a
negative charge at the A1203/Si02 interface with the magnitude of the
charge being independent of the A1203 thickness and inversely propor-
tional to the Si02 thickness.4 This is consistent with the insulator
interface charge origin model we proposed' and implies that this model
has general applicability in dual -dielectric structures, since they used
three A1203 deposition techniques, all different from the technique
used to obtain the A1203 films studied in this paper.

The organization of the paper is as follows. A simple flatband theory
for dielectric structures is presented in Section II and space -charge
formation in insulators is discussed in Section III. A theoretical
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discussion of the A1203/Si02 structure is given in Section IV and the
experimental results are presented in Section V. A summary is given
in Section VI.

II. FLATBAND CALCULATIONS

The flatband voltage of an NIOS structure is defined as that voltage
which must be applied to the metal electrode to produce a zero space
charge or flatband condition in the semiconductor, and it is determined
by the net charge density existing in the insulator system and the
various interfacial barrier energies. To calculate the flatband voltage,
the voltage across the insulators under flatband conditions is calcu-
lated from the net charge density using Gauss' law, and to this is
added the voltage contributed by the various barrier energies.

Consider the band diagrams of the metal/Si02/Si and metal/A1203/
Si02/Si systems shown in Figs. 1 and 2, respectively. The various
barrier energies for these systems are defined in the figures. We shall
assume that at the Si02/Si interface in both structures there is an
interface charge layer Q88. The net charge density in the bulk of the
Si02 is assumed to be zero and the charge density in the A1203 is
denoted by pA (x). Using S.I. to denote the single -insulator system and
D.I. the double -insulator system, it follows that the voltages across
the insulators, Vi, due to the charge densities can be written as :

Vi(S.I.) = (0 / )71v88, e02, - 02

AVi(D.I.)= Q[IoxA]- - p (x')dx'
TA-F To= dx

Eox EA Toz EA

(1)

T TA 0.TA -
pA(x)dx, (2)[ or +rTo.

Eox EA

T°z+TA T +
EA

where (Eox, EA), (T., TA) = the dielectric constants and thicknesses
of the Si02 and A1203, respectively. In particular, ,,,z = 3.9 ; EA = 9.0.

The applied voltage difference between the metal and the semi-
conductor, the flatband voltage V FB, for both structures can be
written as :

V FB(S.I.) = (Q88/0x)T oz (4m,ox Of) (3)

VFB(D.I.) = - Vi(D.I.) (0.,A 95ii - cks - (1)/) (4)

The insulator -insulator barrier ckii is assumed to be positive if it is as
shown in Fig. 2.

Consider the contact potential terms in eqs. (3) and (4). If we let
W and x with the appropriate subscripts denote the vacuum work
functions and electron affinities, respectively, of the various materials,
and, if we assume that the energy band matching between two different
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Fig. 1-(a) Cross-sectional view of the metal/Si02/Si capacitor structure. (b)
Band diagram associated with the structure. (c) Plot of assumed charge density
present in the structure.
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materials is determined entirely by the difference in vacuum work
functions, that is,

(I) 7 71 , 0 X = Wm . - - . X 0 X and OB = X8 - Xox) (5a)

then

(Wm-(X8--Of
= W,n - x, - of, (5b)

4).,A ± ckii - cloB - Of = (Wm - xA) + (xA - x.) - (X. - x.) -411f
= W,n - x, - of, (6)

Or

(thn,ox -- OB -- Of -- (km,A HI- 41ii -- OB -- Of == Wm -- Xs -- Of. (7)

Note that under this assumption, the contact potential terms are
independent of the electron affinities of the insulators and dependent
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Fig. 2-(a) Cross-sectional view of the metal/A1203/Si02/Si capacitor structure.
(b) Band diagram associated with the structure. (c) Plot of assumed charge density
present in the structure.
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only on the difference between the metal and semiconductor work
functions. Thus, if the work -function assumption is valid, an xtos
system involving a given metal and a semiconductor will have a
constant flatband voltage after correction for Q88 independent of the
number or nature of the insulators, unless space charge exists in the
insulators. In other words, if the assumption is valid, a measured
VFB that changes when the insulators are changed implies space
charge exists in the insulators.

III. SPACE -CHARGE FORMATION IN INSULATORS

In the previous section, the flatband voltage of a dual -dielectric
os structure was calculated assuming a given distribution of space

charge. The purpose of this section is to discuss one possible model
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for the origin and spatial location of space charge in insulators, namely,
the one we feel represents the most likely explanation for much of the
space charge in the Si02/A1203 system. In this discussion, we first
summarize the proposal for space -charge formation suggested by
Simmons for a metal -insulator -metal (MIM) system.6 Then this model
is extended and applied to double -insulator systems, in particular those
using Si02 and A1203.

Suppose we form the MIM system shown in Fig. 3a at sufficiently
low temperatures that no charge transport occurs within the insulator
and no charge exchange occurs between the insulator and the metallic
contacts in a time period comparable to the experimental observation
time. In this case, no space charge can form in the insulator because
thermal equilibrium will not exist and the potential versus position
will look as shown in Fig. 3b, where the insulator is represented essen-
tially as a wideband insulator with conduction and valence band
edges. Now assume that the system is heated to a sufficiently high
temperature that charge transport can occur within the insulator and
charge exchange can occur between the insulator and the metallic
contacts in a time period that is short compared to experimental
observation. In this case, thermal equilibrium will be established and
there will be two extreme possibilities between which the system will
equilibrate : either the characteristic length corresponding to a space -
charge region at thermal equilibrium in the insulator, the electrostatic
screening, or Debye length will be large compared to the insulator
thickness, and the potential versus position will be virtually identical
to that shown in Fig. 3b; or the Debye length in the insulator will be
small compared to the insulator thickness, and such space -charge
regions as shown in Fig. 3c will form near the two metal interfaces.
In the latter alternative, a well-defined "Fermi level" will exist in the
bulk of the insulator, as shown in Figure 3c, which will coincide in
energy with the Fermi level in the metallic contacts in much the same
way that Fermi levels coincide in a conventional Schottky barrier on a
semiconductor. Clearly an MIM system in which the Debye length is
short compared to the insulator thickness at any given time will
always lie somewhere between the extremes indicated in Figs. 3b and
3c, depending on thermal history, so that in such an insulator, space -
charge regions will always exist in the vicinity of the metallic contacts.
The magnitude of the charge will depend on the difference in the work
function of the metal and the insulator and on the degree of thermal
equilibrium which has been established.

In the above discussion, it has been assumed that there is no net
voltage difference across the MIM structure. Very similar arguments
can be presented for the case where a finite voltage exists between
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Fig. 3-(a) Cross-sectional view of a metal/insulator/metal capacitor structure.
(b) Band diagram of the sturcture if the insulator Debye length is assumed to be
much greater than the thickness of the insulator. (c) Band diagram of the structure
if the insulator Debye length is assumed to be smaller than the thickness of the
insulator.

the two metal contacts; the voltage is either applied or is due to
differences in the two involved metal/insulator potential barrier
heights. Assuming an insulator which forms space -charge regions
that are narrow compared to the insulator thickness, the initial
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potential diagram is shown dotted in Fig. 4a and the final steady-state
situation is shown as the solid lines. The only electric field required in
the bulk of the insulator under steady-state conditions is the ohmic
field associated with any current injected from the electrodes, typically
a negligible field.

Now suppose that the voltage is reduced as shown at t = 0 in Fig.
4b. Initially, the same space -charge that exists under applied voltage

METAL INSULATOR

(a)

= t,

METAL

.cti -ct2

Fig. 4-(a) Band diagram of a metal/insulator/metal structure, whose insulator
Debye length is less than the insulator thickness, depicting the immediate and
equilibrium band structure in response to the application of an external voltage. (b)
Band diagram of the same structure depicting the time response of the bands after
the applied voltage is reduced to zero.
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will remain. After a time /1 at elevated temperature, there will be a
redistribution of charge as shown, the total amount of charge remaining
fixed. Finally, if the temperature is further raised or after an additional
time t2, carriers will be injected from one or both electrodes to bring
the system to the equilibrium of Fig. 3c.

The above argument for space -charge formation in insulators is an
especially powerful one because it invokes well-known concepts. It
simply applies the concepts of steady state, thermal equilibrium, and
Fermi level to insulators and shows that the important features of
space -charge layers in insulators can be described in terms of only one
parameter, the work function or Fermi level position in the insulator
at thermal equilibrium. (A more detailed discussion is available in
the work of Simmons.6) With this as a starting point, it is possible to
discuss a wide variety of charging phenomena in insulating thin films
in an intuitively understandable way ; and it should provide a basis
for more quantitative analyses of a number of such effects. In the
following section, the concepts discussed here are applied to the
silicon/Si02/A1203/metal structure with emphasis on the space -charge
region that builds up near the insulator/insulator interface during
deposition of the A1203.

IV. THE Si02/A120. SYSTEM MODEL

The concepts section can -

layer structure shown in Fig. 2 in which the first layer is Si02 and the
second is A1203. Previous experimental results have indicated that the
density of trap levels in thermally grown Si02 is sufficiently low that the
Debye length should be much larger than the typical Si02 film thickness
of a few thousand Angstroms.' This supports the assumption made
previously that no finite charge density exists in the bulk of the Si02
film. On the other hand, the trap density in deposited A1203 films has
been found to be much larger so that it is reasonable to assume that
the Debye length is small compared to the A1203 film thicknesses that
we will consider.8-1° The A1203 films of interest are deposited at 900°C.
The double -insulator system is assumed to be at an elevated tempera-
ture during the deposition for a sufficient length of time that thermal
equilibrium will be established, and under these conditions, the poten-
tial diagram versus position will be like that shown in Fig. 5. Since the
Fermi level in the silicon must coincide with that in the A1203 at
thermal equilibrium, a contact potential difference will exist that will
result in (i) an electric field in the Si02, (ii) a space -charge region in
the Si at the Si/Si02 interface, (iii) a space -charge region in the A1203
at the Si02/A1203 interface, and (iv) zero electric field in the bulk of
the A1203 film. In addition, depending on the A1203 surface boundary
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Fig. 5-Band diagram of the A1203/Si02/Si system in equilibrium at high tem-
perature.

conditions, a space -charge region may exist near the outer A1203
surface.

The important parameter in the Si02/A1203 system is the total
potential difference Vc that must build up to align the Fermi levels
in the silicon and the A1203. This potential difference will be made up
of a potential Vco across the Si02 and the drops in potential due to the
band -bending regions in the silicon near the Si/Si02 interface and in the
A1203 near the Si02/A1203 interface, 6,17.8 and IVA, respectively (see
Fig. 5). That is,

Vc = Vco V. + OVA, (8a)

where the system equilibrium condition is given by

(EG/2) Vc - (kit: - = 0. (8b)

If it is assumed that the work function argument applies to the
Si02/A1203 system, then

Vc = x; - x; - (EG/2), (9)

where xiti is the A1203 electron affinity at the deposition temperature;
OA is the energy separation between the A1203 conduction band and
the Fermi level in the bulk ; x; is the silicon electron affinity ; and the
EG/2 term represents the assumption that the silicon is intrinsic at the
elevated temperature of interest.
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Since the electric field in the Si02 is determined directly by the
potential drop Voo and the oxide thickness Tox, the net charge present
in the narrow space -charge region at the A1203/Si02 interface is
given by

Qii = (E0./Tor){Vc - AV. - AVA}. (10)

Over a wide range of Si02 thickness, OV8 and OVA will be negligible
compared to V,. For example, even assuming that Vco corresponds to
an electric field in the Si02 of 106 volts/cm, A V, is less than 0.1 volt at
900°C. Thus, eq. (10) can be approximated by

Qii = (0./Tox)Vo ti fox/Toz{XA + - X; - (EG/2)}. (11)

From eqs. (10) and (11), several interesting properties of Qii are
apparent. First, its magnitude is relatively independent of the quality
and reproducibility of the A1203 provided only that OA + )(4.' is repro-
ducible and OVA is negligible. The band -bending OVA may vary
markedly from sample to sample depending on the trap density, but as
long as the space -charge region is relatively narrow so that OVA is small
compared to V,, this variation will have no significant effect. Second,
the magnitude of Qii varies inversely with the Si02 thickness Tox and
is independent of A1203 thickness TA. This effect provides a straight-
forward and unique prediction of the model that can easily be tested
experimentally.

If the system is now cooled to room temperature, the conductivity
of the A1203 will be reduced to the point where the space -charge
regions will not move or change under application of an electric field
for long periods of time, and these regions will be effectively frozen in.
We must consider the two possible space -charge regions in the A1203,
one at the A1203/Si02 interface, and the other at the outer surface.
The contributions Vii and V., respectively, of these charge layers to
the Hatband voltage is given by (see eq. 2)

f+
To.TA + TA - xi , TA-Qii (12)V ii = - - - kiz)

ro. EA EA

and
rox-FTA Toz + TA - x]V. = - p.(x)dx, (13)

Lo. EA

where pii(x) and pm(x) are the net charge densities at the Si02/A1203
and A1203/metal interfaces, respectively. In the limit where pii(x) is
located in a plane at the interface, an effective interface charge density
Qii is defined by eq. (12). The term V. is a constant independent

* This can be shown from an integration of Poisson's equation and using the fact
that at 900°C the intrinsic charge density in the silicon is approximately 1019 cm -9.
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of T. and TA if pm(x) is a function only of the distance (T. + TA - x)
between the charge and the metal. Combining (2), (11), (12), and (13)
gives for the flatband voltage of the double -insulator structure

VFB(D.I.) = (chm,A + -cb8)+Vm

- Q88 [-T ox + -TA]
fox EA

- ve eoxTA (14)
EA ox

and, for completeness, the flatband voltage of the single insulator
[eq. (3)] is

thVFB(S.I.) = (s, nt,ox r8) - Q.8

T02,
ox

where 4). = +

V. EXPERIMENTAL RESULTS

(15)

5.1 Preliminary remarks

Dual -dielectric iris capacitor structures with various insulator
thicknesses were fabricated on n- and p -type silicon substrates with
resistivities of approximately 10 ohm -cm. For the n -type substrates
both (100) and (111) orientations were investigated. The Si02 was
thermally grown at 1100°C using oxygen bubbled through 80°C water
as the ambient. The A1203 was vapor deposited on the Si02 at 900°C
from an A1C13 source. The details of the A1203 deposition process are
given in Ref. 1. The insulator thicknesses, T. and TA, were varied by
varying the growth and deposition times of the Si02 and the A1203,
respectively.

The deposition of the A1203 duplicated exactly the procedure used
for fabricating integrated circuits. As such, a layer of Si02 was also
deposited on top of the A1203, which in the fabrication of integrated
circuits is used as an etch mask for defining patterns in the A1203
film. For our samples, this layer of Si02 was chemically stripped prior
to any measurements or any further processing.

One feature that may be important in this study is the method of
formation of the metal electrodes. Depending on the deposition
technique used, the samples may be heated for a sufficient time during
the metal deposition to form a space -charge region at the A1203/metal
interface. However, if this induced space charge is reproducible and
constant from sample to sample and is spatially constrained to a region
very near the interface, it will only influence the flatband voltage via
the constant voltage term Vm in (14). Experimentally, we shall
attempt to assure the reproducibility of this possible space -charge
effect by measuring the mis structures at room temperature with a
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mercury electrode." Several samples were also investigated with
thermally evaporated titanium -aluminum electrodes.

Initially, we attempted to vary the A1203 thickness by etching in
discrete steps rather than by varying the deposition time. This ap-
proach was abandoned because of nonuniform etching of the A1203.
In Fig. 6, scanning electron micrographs are given of the surface of
the A1203 as deposited and after etching a portion of the layer. Micro-
scopic thickness variations ( ± 500 A) are evident after etching. Since
these variations lead to significant errors in the flatband voltage
measurements, the A1203 thickness was varied only by varying the
growth time.

Experimental data for each sample investigated were obtained by
means of high -frequency capacitance -voltage (C-V) analysis.12 Such
measurements, obtained using either the mercury probe electrode or
thermally evaporated titanium -aluminum thin-film electrodes, enable
one to obtain accurate measurements of the insulator thickness and

AS DEPOSITED

TA ki1750 A

12 MIN ETCH-BACK
TA 7.-', 500 A

5 MIN ETCH-BACK
TA ,...- 1250 A

17 MIN ETCH:BACK

TA ::. 0 A

Fig. 6-SEM photographs depicting the increasing roughness of the A1203 surface
as it is etched back using phosphoric acid.
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the associated flatband voltage. Each data point reported is the average
flatband voltage calculated from at least three measurements per-
formed on each sample. The typical spread in measurements is 0.10 volt.
When measurements are performed on the double -insulator (A1203/
Si02) structure, a measurement of VFB(D.I.) [eq. (14)] is obtained.
The normalized accumulation capacitance Cace (farads/cm2), which
is a measure of the insulator thicknesses, is given by

C aec (D.I.) = [ - , TAT'-r -
e

TA (16)

When the A1203 is completely etched off and C- V analysis is con-
ducted on the remaining single insulator (Si02), then measurements
of V FB(S.I.) [see eq. (15) ] are obtained. The normalized accumulation
capacitance in this case yields a measurement of T. since

cacc (s = (17)

By combining eqs. (16) and (17), accurate measurements of both TA
and T. are obtained.

It is possible to obtain independent quantitative values for Q.8 for
each sample studied after the A1203 is etched off if the constant term
(0, - 08) in eq. (14) is known. Measurement of (0,,oz - 0,0 can be
accomplished by Si02 etch -back experiments in which VFB(S.I.) is
measured as the Si02 layer is successively thinned by etching in a
dilute hydrofluoric acid solution. Typical data obtained with a mercury
probe on four different samples are shown in Fig. 7. As expected, there
is a linear relationship between V FB(S.I.) and T. and an extrapolation
of this relationship back to T. = 0 indicates that 0.67 volt is the
appropriate value of (O.,. - O.) for n -type, 10 -ohm -cm Si and a
mercury electrode. This value is in excellent agreement with previously
determined values." The experiment also provides independent
verification of the assumption that there is negligible space charge
in the bulk of the Si02.

Based upon the value of Q for each sample, it is possible to charac-
terize the flatband voltage shift due to the A1203. Correcting for the
Q88 term and, additionally, subtracting the constant term (th, - 08)
from eq. (14), a corrected differential flatband voltage V FB can be
defined as :

T.
+

TA 1TTFB = VFB(D.I.)(Sbm,ox Os) ± Q.. [
e eA

= (4)m'A Olno9x) ± V ()(TA)
c 71021

+ V
'n*

(18)
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Fig. 7-Plot of the Hg/Si02/Si flatband voltage for four wafers as a function of
the Si02 thickness. Data obtained from Si02 etch -back experiments on 10 -ohm -cm,
n -type, (100), Si substrates.

5.2 Results pertaining to Chi

Experimental values of VFB(D.I.) for the dual -insulator structure
are plotted in Fig. 8 as a function of the A1203 thickness TA for a Si02
thickness of ti 1200 A on n -type, (100) substrates. These results were
obtained with a mercury electrode. Although there is considerable
scatter in the data, it is clear that VFB(D.I.) increases monotonically
with increasing A1203 thickness which is in agreement with eq. (14) if
the sign of V, is such that a net negative charge exists at the Si02/A1203
interface. The experimental uncertainties in the VFB measurements
are estimated to be ±0.05 volt. Correcting this data for Q and sub-
tracting (th ,ox - 08) the results are replotted in Fig. 9. This refine-
ment technique leads to a considerable reduction in the scatter in the
data and demonstrates that OVFB is a linear function of the A1203
thickness TA, as predicted by eq. (18). The linear relationship also
provides striking evidence that Qii, the negative charge at the A1203/
Si02 interface, is constant from sample to sample for A1203 thicknesses
in the range of 500 A to 2500 A if the Si02 thickness is held constant.
This is in agreement with the postulated model and provides experi-
mental verification of the assumption that the Debye length in A1203
is small compared to the A1203 thickness. Given that the Debye length
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Fig. 8-Plot of the Hg/A1203/Si02/Si flatband voltage as a function of the A1203
thickness for a constant Si02 thickness (Toz = 1200 A) on n -type, (100), Si substrates.

is small compared to 500 A at 900°C, estimates of OVA assuming
charge densities in excess of 1018 cm -3 indicate that OVA will be less
than 0.1 volt and, thus, negligible as previously assumed.

The data presented so far proves that Qii is negative and a constant
for fixed Si02 thickness independent of A1203 thickness. Another
prediction of our model is that Qii is inversely proportional to the Si02

2.0

1.8

C/)

-J
0

Z 1.6

>t*

1.4

1.2

n -TYPE <100 >Si
10S1 -cm

Hg PROBE

TOX=1200A

0 5 10 15 20

Alt 03 THICKNESS TA (102 A)

Fig. 9-Plot of the corrected differential flatband voltage as a function of the A1203
thickness for a constant Si02 thickness (Toz = 1200 A) on n -type, (100), Si substrates.
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Fig. 10-Plot of the corrected differential flatband voltage as a function of the
A120, thickness for various values of Si02 thickness on n -type, (100), Si substrates.

25 30

thickness [eq. (11)]. That this is indeed the case is shown by the data
presented in Figs. 10 and 11, which were obtained with a mercury
probe and are for (100), n -type, silicon substrates. In Fig. 10, .6, VFB is

2 3 4 5 6

RATIO (TA/Tox)

7 8 9 10

Fig. 11-Plot of the corrected differential flatband voltage as a function of the ratio
of A120, thickness to Si02 thickness on n -type, (100), Si substrates.
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Fig. 12-Plot of the corrected differential flatband voltage as a function of the
ratio of A1203 thickness to Si02 thickness on n -type, (111), Si substrates.

plotted versus A1203 thickness for three different Si02 thicknesses. In
each case, a linear relationship between OVFB and A1203 thickness is
obtained, and the increased slope obtained with smaller Si02 thick-
nesses indicates that Qii does increase as the Si02 thickness is decreased.
The data of Fig. 10 are replotted in Fig. 11 as a function of TA/T.,
the ratio of A1203 thickness to Si02 thickness. As expected from eq.
(18), the OVFB versus TA/Tox relationship is accurately represented
by a straight line over the TA/Tox range investigated (0.5 to 8),
indicating that Qii is inversely proportional to the Si02 thickness. The
slope of the straight line in Fig. 11 corresponds to a V, value of 0.88
volt.* This value for V, was obtained in all the measurements on (100)
substrates within ±0.1 volt.

Similar measurements were also performed with (111) oriented,
n -type substrates. The larger values of Q., inherent in the (111)
orientation meant that the Q8,, correction factor was much larger and,
hence, the accuracy of the results was somewhat poorer. Results for
(111) samples are given in Fig. 12, where AVFB is plotted as a function
of the TA/T. ratio. Again these data were obtained with a mercury
probe. The straight line shown in Fig. 12 is a best fit to the data if
the slope of the line is restricted to correspond to a V, value of 0.88 volt.
Considering the possible errors due to the Q correction, the straight-
line fit of the data in Fig. 12 is good enough to conclude that the
value of Qii is independent of the substrate orientation for the two
orientations investigated, (100) and (111), and in complete agreement
with the predictions of our model.

* For 1000 1 of SiO2, a V, value of 0.88 volt corresponds to a Qii value of 1.9 X 1011
charges/cm2.
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5.3 Results pertaining to Q,.

All of the experimental results presented so far have focused on
Qii, the charge at the A1203/Si02 interface. Some interesting facets
of Q8,,, the charge at the Si02/Si interface, were also discovered during
our study and are discussed in the following. As mentioned previously,
a value of Q88 was determined for all samples by measuring the flatband
voltage VFB(S.I.) of the single -insulator structure after removing the
A1203 and then calculating (288 using the (4),,x - &) value for the Hg/
Si02/Si system as determined in Fig. 7. A plot of VFB(S.I.) versus
T., the Si02 thickness, for n -type, (100) substrates is given in Fig. 13.
Previous results published in the literature have shown that for single -
insulator (Si02/Si) structures, Q88 is independent of the Si02 thickness."
If this were the case for our structures, we would expect to find a
linear relationship between VFB(S.I.) and T. with an intercept on the
VFB (S.I.) axis equal to (46, m - 4)8) = 0.67 volt. The results given
in Fig. 13 indicate that this is not the case. Although the data could
be interpreted as being consistent with a linear relationship, they are
definitely not consistent with an intercept equal to 0.67 volt. The results
are more consistent with the supposition that, to first order, VFB(S.I.)
is independent of T..

A more detailed study of Q88 was pursued by preparing samples of
various Si02 thicknesses (n -type, Si, (100)) and measuring VFB(S.I.)
for each sample. Approximately 500 A of A1203 was then deposited

0.8

0.6

0.4

0.2

0

0 4 8 12 16

Si 02 THICKNESS Tax (102 A)

Fig. 13-Plot of the Hg probe single -insulator flatband voltage after A1203 deposi-
tion and etch -off as a function of SiO2 thickness for n -type, (100), Si substrates.

20 24 28
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on all samples, the A1203 was removed by etching, and VFB(S.I.) was
remeasured. Finally, for each of the samples, the Si02 was etched
back in steps, and VFB(S.I.) was determined as a function of Si02
thickness. The results are given in Fig. 14.

Prior to A1203 deposition, the results are consistent with the samples
having a constant value of Q independent of Toy, that is, a linear
relationship exists between VFB(S.I.) and Toy with an intercept equal
to 0.67 volt. However, after A1203 deposition, VFB(S.I.) is seen to be
essentially independent of Toy. Furthermore, if the Si02 is now etched
back, a linear relationship between VFB(S.I.) and Si02 thickness is
obtained with an intercept equal to 0.67 volt. In Fig. 14, results of the
etch -back study are given for only one representative sample, since the
results obtained on the other samples were similar.

The conclusion which follows from the results given in Fig. 14
is that before the deposition of the A1203, Q88 is independent of Toy,
whereas after deposition, the value of Q is changed, the amount of
change depending upon Toy, the Si02 thickness. This effect is further
illustrated by the results given in Fig. 15, where Q after A1203 deposi-
tion and etch -off is plotted versus 1/Toy for both (100) and (111),
n -type substrates. For both orientations, the data are seen to fall
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-0.8

WWI 0
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BEFORE A1.203 DEPOSITION
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AND ETCH-OFF
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20 24 28

Fig. 14-Plot of the single -insulator flatband voltage before and after A1203
deposition and after final Si02 etch -back, indicating the change in Q induced by the
A1203 deposition on n -type, (100), Si substrates.
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Fig. 15-Plot of Q., after A120, deposition as a function of the Si02 thickness for
n -type, (100) and (111), Si substrates.

along a straight line consistent with the equation

Q88 = (V00010Z) ± Q880. (19)

The slopes of the two lines in Fig. 15 were taken to be equal to each
other (vo = 0.38 volt), and it is observed that an excellent fit to the
two sets of data is obtained with the one vc, value. The background
charge densities, Q880, or equivalently the values of Q88 for large values
of Toz are approximately 1.0 X 1011 and 1.0 X 10" charges/cm2 for
(111) and (100) orientations, respectively. For the (100) orientation,
Q880 is negligible.

The results presented so far have established that for the double -
insulator structure, both Qii and Q.8 depend on Tox and that these
dependencies can be written as :

Qaa Qaao = oxVo/T

where V, 0.88 volt and vo 0.38 volt. Thus, the single -insulator
Hatband voltage after A1203 deposition can be written as

Qii = 0.Vc/To.
(20)

V FB(S.I.) = (thm,ox Oa) vo (Toz/ eoz)Qaao) (21)

DOUBLE -INSULATOR MOS 707



{3.33 at 350°C

which is consistent with the after -deposition results presented in
Fig. 14. Considering Q880 as a fundamental property of the Si02/Si
interface, which is not affected by the A1203 deposition, it follows that
the contribution to the single -insulator flatband voltage, 5VFB, induced
by the portion of Q88 that is influenced by the A1203 deposition is

5VFB = vo. (22)

The voltage drop across the Si02 during the deposition of the A1203
is V,,, and if this is considered as a stress voltage applied to the Si02/Si
interface, then

Ve(stress)/3VFB = a = 2.3. (23)

It is interesting to note that this result is in good agreement with
previously published results relating stress voltage to saturated
flatband voltage shift for Si02/Si structures. Specifically, in Ref. 15
it was observed that the ratio of stress voltage to saturated flatband
voltage shift was given by :

a = 2.38 at 450°C.
(24)

One implication of the relationship given in eq. 20 for Q86 is that for
(100) substrates, where Q680 is negligible, the flatband voltage of a
double -insulator structure will be insensitive to a Si02 thickness
variation. Thus, in MOSFET integrated circuits with a (100) substrate,
where a thick SiO2 layer is used to inhibit parasitic inversion, the
contribution of the Q88 term to the parasitic inversion voltage will be
independent of Si02 thickness.

5.4 Results pertaining to p -type substrates

The substrate conductivity type does not appear directly in the
model that has been proposed for the magnitude and origin of Qii, and
all of the results presented so far have been for n -type substrates. Since
the silicon substrate will be intrinsic at 900°C, the deposition tempera-
ture of the A1203, the voltage drop across the oxide Vc will be the same
for both n -type and p -type substrates and, thus, Qii at 900°C should
also be independent of the conductivity type of the substrate. If,
during the cool down after A1203 deposition, Qii is frozen in at a tem-
perature at which the silicon is still intrinsic, then the value of Qii
measured at room temperature should not depend on whether the
substrate is n -type or p -type. Results obtained with (100), p -type
substrates are presented below.

A plot for p -type substrates similar to that of Fig. 11 (for n -type
substrates) is given in Fig. 16, where OV FB is plotted as a function of
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Fig. 16-Plot of the corrected differential flatband voltage as a function of the ratio
of A1203 thickness to SiO2 thickness on p -type, (100), Si substrates. The solid line is
taken from Fig. 11.
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TA/Tax. The solid line corresponds to the linear fit of the data of
Fig. 11. Although there is general agreement between the results for
the n -type substrate (solid line) and this experimental data, the large
amount of scatter in the data must be recognized. Figure 17 is a plot
of the single -insulator flatband voltage for the p -type substrates after
the A1203 etch -off. The (Om, - ckg) value was obtained by etch -back
experiments, as outlined previously. Here again, a large amount of
scatter in the data is evident.

The variations in the above sets of data are not random scatter,
but are due to some mechanism unique to the p -type substrates. In
Fig. 18, the single -insulator flatband voltage VFB(S.I.) is plotted as a
function of TA for n -type samples after A1203 etch -off, and it is clear
that no dependence on TA or T. is evident. In Fig. 19, similar data
are plotted for the p -type samples and it is evident that in this case
there is a dependence on TA, but again, no dependence on T.. For
both cases, the conclusions regarding T. are obtained from the points
in Figs. 18 and 19, which explicitly denote points of constant Tox.
Although a detailed explanation of this effect cannot be given, it
is felt that this effect is due to the fact that boron -doped p -type
wafers were used in the experiment. It is known that boron will greatly
out -diffuse from a silicon substrate into an Si02 layer in the presence
of a high -temperature, hydrogen -containing ambient.",17 Additionally,
the introduction of this impurity into the Si02 may enhance its conduc-
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Fig. 19-Plot of the single -insulator flatband voltage after A1203 deposition and
etch -off as a function of the A1203 thickness for p -type, (100), Si substrates.

tivity at high temperature. The net result will be a drop in the effective
stress voltage V, across the Si02 layer as a function of A1203 deposition
times and a lowering of the Q,, and Q,8 term.

This hypothesis is consistent with the following data. In Fig. 20,
distributions of the potential drop vo due to the induced Qss term (see
eqs. 19 and 20) are plotted for both the n -type and p -type (100)
samples. It is observed that

(i) Lower voltage drops for p -type samples occur than observed
for the n -type samples (the lower values are correlated to the
thicker A1203 deposition).

(ii) No zero (or negative) voltage drops occur.
(iii) The upper range of vo for the p -type samples (the lowest Si02

conductivity region), are bounded by the vo values observed
for the n -type samples.

One final point can also be made to support the hypothesis. It is
possible to calculate Q,, values from the experimental data (via eqs.
10 and 18) if an intercept voltage value (i.e., TA = 0) is assumed; and
from the experimental data for n -type samples, an intercept value of

In all experiments, the A1203 deposition rate was a constant (75 A/min.).
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Fig. 20-Distribution plot of the single -insulator flatband voltage observed on
n -type and p -type, (100), Si substrates after A1203 deposition and etch -off.

1.25 volts was obtained. Additionally, Q88 values for each sample may be
calculated. If the above hypothesis concerning a lowering of V, is
correct, then the ratio of Q,, and Q88 (given in eqs. 20 and 23) should
be independent of the absolute magnitude of V,, for (100) substrates
in which Q880 is negligible. That is,

Q88 = OZVoiToy = foitlVc/Toz
and (25)

QiiNsa = a.

Figure 21 is a plot of Q,, vs Q88 for both the n -type and p -type samples.
It is noted that a linear relationship exists for both sets of data with a
the same for both (a 2.5). The several data points that deviate
from the linear relation are associated with very small Q and Qii
values, and the deviation is most likely due to small errors in flatband
voltage measurements.

5.5 Results pertaining to observed potential jumps

Extrapolating the linear relationships in Figs. 9, 11, and 12 to
TA = 0 gives a value :

(0.,A - V. 1.25 volts. (26)
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While the experiments cannot determine the relative contributions of
Vm and Acp to the intercept value, it is worth pointing out the conse-
quences of the two limiting possibilities. First, if V, is zero, then AO
is non -zero and equal to 1.25 volts. This implies that the work function
model for barrier heights must be incorrect (otherwise = 0). The
second limiting possibility is that Acp = 0 and Vm is non -zero. In this
case, there must be a 1.25 -volt band -bending effect at the outer A1203
interface. Although we have not been able to perform an experiment
that unequivocally separates the contributions of AO and V, to the
intercept value, it is worthwhile to consider some additional items
of relevant experimental information.

First, it was stated previously that all samples are fabricated with a
deposited Si02 layer on top of the A1203 layer. An etch -back experi-
ment was conducted on the deposited Si02 (using n -type Si, (100),
Toz = 600 A, TA = 500 A) and the flatband voltage was measured as a
function of the equivalent Si02 thickness Teq:

Teq = Toy + (eoz/ EA)T A + T S102) (27)

where Ts 10, equals the deposited Si02 thickness. The results of this
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Fig. 21-Plot of Qii, the charge at the A1203/Si02 interface, versus Q,,, the charge
at the Si02/Si interface, for both n -type and p -type, (100), Si substrates.
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experiment are plotted in Fig. 22. It is evident from the linearity of the
Hatband voltage that no significant charge density is present in the
bulk of this deposited Si02. It is interesting to note that a positive
potential jump of 1.22 volts in the flatband voltage is associated with
the outer A1203/Si02 deposited interface (using the Hg metal electrode).
This value is close to the 1.25 -volt potential jump associated with the
inner A1203/Si02 (thermal) interface.

It is straightforward to show that the potential jump observed in
Fig. 22 is given by

PJ = (0.,A (1)ii - (28)

if it is assumed that there is no change in the charge distribution in the
A1203 film when the deposited Si02 is completely removed, and that
the barrier height of metal-to-deposited-Si02 is the same as the barrier
height of metal-to-thermal-Si02. With these assumptions, the con-
clusion follows that V, 0 and AO 1.25 volts.

Second, measurements were also made with titanium -aluminum
evaporated electrodes. The double -insulator flatband voltage for this
metallization system is plotted in Fig. 23 as a function of the A1203
thickness TA for a constant Si02 thickness 71,,x1,- 1200 A (n -type Si,
(100)). It is evident that the scatter in the data is much greater than
that found for the Hg metallization. Attempts to refine the data proved
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Fig. 22-Plot of the triple -insulator flatband voltage, obtained by means of an
etch -back experiment, as a function of the equivalent insulator thickness.
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fruitless due to the additional scatter observed in the single -insulator
(Si02) flatband voltages (see Fig. 24).

Some general comments these
data. The scatter in the double -insulator flatband voltage (Fig. 23)
decreases with descreasing A1203 thickness, indicating that an un-
controlled charging effect must take place in the A1203 during the
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Fig. 24-Distribution plot of the titanium -gate single -insulator flatband voltage
after A1203 etch -off as observed on the samples reported in Fig. 23.

DOUBLE -INSULATOR MOS 715



metal deposition. Extrapolating to TA = 0 implies

0.40 V [VFB(D.I.) TA -0] 0.60 volt. (29)

The distribution in the single -insulator flatband voltage VFB(S.I.) can
be characterized by (see Fig. 24)

Average VFB(S.I.) = - 0.48 volt
Standard Deviation VFB(S.I.) = 0.10 volt.

Thus, a positive potential jump of 0.98 ± 0.14 volt can be associated
with the addition of the A1203 layer. This value is in reasonable agree-
ment with the previous potential shift results found for the Hg metalli-
zation system.

Third, in Ref. 4, the authors find on a VFB(D.I.) versus TA plot for
various T. values an intercept value of -0.80 volt at TA = 0. This
result, obtained on 2 -ohm -cm, p -type, (100), Si substrates, is inter-
preted by the authors to be the expected metal -to -silicon work function
difference when using aluminum electrodes, a conclusion that may not
be valid since Q88 measurements after A1203 deposition were not
reported. We shall now show that the results in Ref. 4 are in excellent
agreement with our results by taking the results we have obtained
with a Hg electrode and converting them to the results we would have
obtained if we had used an Al electrode.

To explicitly denote the use of a Hg electrode, eq. (26) is rewritten as

(4141g, A + ox) V. = 1.25 V

and from our measurements on p -type material

ox (fis = 0.08 V.

(30)

(31)

The difference in barrier heights between Hg and Al on the type of
A1203 studied in this paper has been reported by Nigh18 and is given by

0111g, A - 0.41, A = 1.7 V. (32)

Combining eqs. (30), (31), and (32) yields

(4)A1, A + iii - Os) + V. = - 0.37 V. (33)

The intercept value for TA = 0 predicted by (14) is given by

Intercept (TA = 0) = (4)A1, A ± CI) Os) + Vm
(288T

fox

Using the values vo = 0.38 volt and (2880 = 0 for (100) material in eq.
(20), and combining eqs. (20), (33), and (34) yields

Intercept (TA = 0) - 0.75 V.
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Thus, our corresponding intercept value for Al electrodes is almost
identical to that reported in Ref. 4, and it strongly implies that the
electrical properties of the different A1203/Si02 films which determine
the flatband voltage in MOS structures are identical. More specifically,
it indicates that the Q,8 dependence on T. reported in this paper is
also true for the structures studied in Ref. 4, and that the value of
Ack Vm in both cases is the same.

VI. SUMMARY AND DISCUSSION

By varying the thicknesses of both insulators in a silicon/Si02/
A1203/mercury mos structure and accurately measuring changes in
flatband voltage, we have established that a net negative space charge
exists near the Si02/A1203 interface, which is spatially constrained to a
region much less than 500 A thick. The magnitude of this negative
charge varies inversely with Si02 thickness and is the same for both
(100) and (111) oriented n -type and p -type silicon substrates. These
results are consistent with a model for space -charge formation based
on work by Simmons on metal -insulator -metal structures.' At the
elevated temperature (900°C) of A1203 deposition, the A1203 is a
good enough conductor that thermal equilibrium is established.
Since the electrostatic screening or Debye length in A1203 at this
temperature is small compared to the A1203 thickness of interest, the
bulk of the A1203 is at zero electric field, and a Fermi level can be
defined that must align with the Fermi level in the silicon substrate.
This requires that a fixed "contact potential", experimentally found
to be 0.88 volt, must exist across the Si02 at 900°C. The electric field
associated with this potential generates a net negative space -charge
layer near the Si02/A1203 interface. When the structure is cooled to
room temperature, the conductivity of the A1203 reduces to a negligible
value and the space charge is frozen in. The net negative charge can
thus be considered to be the charge on the Si02 capacitance associated
with the constant 0.88 volt contact potential.

When the double -insulator flatband voltage is corrected for the
independently measured Si/Si02 interface charge Q and the barrier
heights of the single -insulator system, a corrected differential flatband
voltage is generated. Extrapolation of this function to zero A1203
thickness reveals a potential jump of approximately 1.25 volts when
using a mercury electrode. Similarly, a potential jump of approxi-
mately 1.0 volt is found with titanium -aluminum electrodes. The inter-
facial barrier energies that contribute to these jumps are shown not
to be derivable from a simple work function argument.

The large amount of scatter observed in the data where titanium -
aluminum electrodes are used, compared to the very consistent data
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obtained with the mercury electrode, implies that thermal evaporation
of a metal onto an A1203 film introduces significant variation in the
Hatband voltage. This effect is most probably due to a charging
phenomena that occurs during the transient heating of the sample
during evaporation.

Measurements of Q88 made on samples before and after A1203
deposition revealed that during this deposition, the value of Q was
changed. After A1203 deposition, it was found that Q could be written
as the sum of two terms. One term was a constant background charge
density that was independent of Si02 thickness and that had the
values of 1.0 X 1011 and 1.0 X 1010 charges/cm2 for (111) and (100)
oriented substrates, respectively. The other term was orientation
independent and inversely proportional to the Si02 thickness, indi-
cating that it is derivable from a constant contact potential that was
experimentally determined to be 0.38 volt. Thus, the electric field that
exists in the Si02 during the deposition of the A1203 determines not
only Qii but also a portion of Q.

The proposed charging model was also found to be correct for p -type
substrates except that an additional effect was uncovered in that the
effective contact potential decreased with increasing A1203 thickness.
This effect may be due to boron penetration of the thermal Si02 layer
and an associated increased electrical conductivity at high temperature.

According to the model presented, a contact potential exists across
the Si02 at the A1203 deposition temperature, which results in an
electric field in a direction to drive mobile positive ions away from the
Si/Si02 interface. This means that if some mechanism exists for either
removing or immobilizing these positive ions when they reach the
Si02/A1203 interface, the A1203 deposition is expected to stabilize
the Aim system against ionic drifts. Such a mechanism may indeed
be present since HC1, a by-product of the A1203 formation reaction, is
known to be an excellent sodium getter. While the importance of this
electric field in accounting for the stability of the Si02/A1203 system
is not presently clear, it seems reasonable to assume that net positive
charge at the insulator -insulator interface would make it much more
difficult to remove or immobilize positive ions in the Si02 during
second insulator deposition, since the positive ions would then tend
to drift to the Si/Si02 interface.

Since the presented model for space -charge layer formation at
insulator -insulator interfaces is relatively insensitive to the nature of
the deposited insulator, provided the assumption of thermal equi-
librium at the deposition temperature is correct, considerations
similar to those given in this paper for the Si02/A1203 system should
apply to other Si02/deposited insulator systems.
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A 1 -watt IMPATT diode amplifier has been developed for short -haul
FM radio relay applications in the 6-GHz common -carrier band. The
amplifier is used in the new TM -,2 system and as part of a retrofit package
to upgrade the performance of the existing TM -1 system. Amplification is
provided by a single silicon IMPATT diode which is used in an injection -
locked mode. A finned heat sink provides IMPATT diode cooling by
natural air convection within the radio bay. The diode is expected to have
a mean life greater than 10 years, and it can be replaced in the field without
the use of special tools or equipment. This microwave -integrated amplifier
contains the rf samplers and detectors necessary to monitor both input
and output rf power levels. The input power monitor also provides an
input to a power -supply squelch circuit that removes dc power from the
IMPATT diode if the rf input signal level becomes too low for adequate
performance. The influence of the system requirements upon the amplifier
design is described, and data on system performance are presented.

I. INTRODUCTION

The IMPATT diode has been developed to the point where several
watts of cw power can be generated reliably in the microwave fre-
quency range. This negative -resistance device used in conjunction with
a circulator comprises a reflection amplifier suitable as the power
amplifier in a microwave communications transmitter. In the present
application, the diode operates in the injection -locked oscillator mode.
It was demonstrated by Tatsuguchi, Dietrich, and Swan that such an
amplifier using a single silicon IMPATT diode could meet the basic
performance objectives of a typical short -haul radio -relay system.'
The amplifier operates with a nominal gain of 20 dB and a noise figure
of less than 52 dB. The corresponding system performance is better
than 22 dBrnc0 per hop for a 1200 -circuit message load. The amplifier's
system performance is found to be dominated by thermal noise, with
intermodulation distortion negligible. The dc-to-rf efficiency is 4

percent.
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To be useful to the system, the amplifier package also contains rf
samplers and detectors necessary to monitor the rf input and output
power levels. The input power -monitor circuit furnishes the input
information for a power -supply squelch circuit. If the input rf level
drops low enough so that the locking bandwidth of the amplifier
becomes small, the power supply is turned off, preventing the IMPATT
oscillator from free -running out of the assigned frequency range. The
dc power is automatically restored when the input rf level returns to
normal. The amplifier also contains harmonic suppression filters to
prevent radiation of spurious tones. The amplifier has standard
WR-159 waveguide input and output ports with vswRs of less than
1.07 across the band.

To be suitable for manufacture, an economical design was evolved
based on the microwave integrated -circuit techniques successfully
employed in the TH-3 system by Dietrich.2 The construction consists of
a thin-film strip -line pattern on a suspended alumina substrate, which
is mounted in a die-cast aluminum housing, connected to a coaxial
section containing the IMPATT diode, the tuning mechanism, and a
second harmonic filter. In addition, a wide range of tunability had to be
incorporated to accommodate a wide range of diode parameters, both
for initial manufacture and field replacement of the diode. Both
frequency and output power adjustments are provided. All these
features have been successfully accomplished in the amplifier designed
for manufacture.

II. AMPLIFIER DESIGN

The amplifier design is based upon the use of a single silicon IMPATT

diode used in a phase -locked oscillator mode. This mode of operation,
described below, is chosen since it permits the relatively high gain of
approximately 20 dB to be obtained stably in a single stage.

2.1 Operating point selection

The choice of an operating point for the amplifier follows the method
described by Tatsuguchi et al.' Figure 1 illustrates typical contours
of constant system thermal noise performance, in dBrncO per hop,
plotted on coordinates of amplifier output power versus amplifier
noise figure. The system performance contours shown apply to the
highest frequency message slot of one particular short -haul FM system
configuration that is operated at a 1200 -message circuit loading. The
contours assume that a +10-dBm level signal is available to drive
the amplifier. This input power level is the minimum value anticipated
in one of the systems in which this amplifier will be used. The options
open to the amplifier circuit designer are illustrated on the same figure
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Fig. 1-Contours of constant system thermal -noise performance, in dBrncO per
hop, plotted on coordinates of amplifier output power versus amplifier noise figure. A
particular amplifier's performance is indicated by the solid lines at several imi-Arr
diode de currents. Typical performance obtained on a large sample of amplifiers when
adjusted for 1 -watt output power is shown.

by the superimposed contours of IMPATT amplifier performance at
various de power levels. For a given dc power level, the operating
point is a function of the microwave circuit impedance seen by the
IMPATT device. The shape of these curves is due to the fact that an
IMPATT device becomes noisier as the rf level is increased. From such
curves, it becomes apparent that operation at the maximum possible
rf power will result in poor system performance. Optimum performance
occurs at neither maximum rf power nor minimum noise. It is instruc-
tive to note that the optimum performance, i.e., lowest dBrncO
number, occurs with the largest de power. The use of high dc powers
must be tempered by reliability considerations, which generally dictate
the use of lower powers.

For this amplifier application, the trade-off between rf output power,
FM noise, and diode reliability formed the basis of the decision to
operate at 1 -watt rf output with 24 watts of de supplied to the IMPATT
diode. At this operating point, the diode junction temperature is
expected to be approximately 200°C in convection -cooled radio bays
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operating in room ambient temperature up to 50°C. This operating
point is expected to provide a mean diode life greater than 10 years.
This reliability is the result of careful device processing combined with
low thermal impedances both within the diode package and between
the diode case and ambient air.

2.2 Oscillator mode

The IMPATT diode is operated in an injection -locked (phase -locked)
oscillator mode, shown schematically in Fig. 2. The IMPATT device and
its associated resonating circuitry terminate one port of a circulator
in a negative impedance. In the absence of an input signal, a free -
running oscillation at frequency fo occurs, which is coupled to the
output through the circulator. When an appropriate input signal is
added, the oscillation frequency locks to the input over a band of
frequencies 26J, approximately symmetrical about fa. The free -
running frequency is adjusted to the desired operating channel. Figure
2 illustrates the power and phase variations that occur across the
locking frequency band. The power levels and oscillator external
Q (Q ex) are chosen such that Af is at least 10 times the highest modu-
lating frequency. In this way, only the center linear portion of the
phase variation curve is used, and phase distortion is minimized.

Since the rf output power is fixed from other considerations (system
performance and fading margin) and the rf input power available in

OUTPUT
/ POWER

_ fo PLOCK

aex POSC

fo
FREQUENCY

Fig. 2-Simplified representation of an injection -locked oscillator.
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the systems in which the amplifier is to be used is limited, the designer
is required to provide a circuit of the lowest possible Q. For this
amplifier, a low Q circuit is provided by the use of a diode circuit
consisting of a coaxial one -quarter -wavelength transformer plus a
short section of coaxial line between the transformer and the diode
that series -tunes the IMPATT diode's capacitance. With this resonator,
the circuit Q is sufficiently low that Qex is largely determined by the
IMPATT device itself.

2.3 !WATT characteristics

The IMPATT diode used for this amplifier is an n -type silicon diode
whose junction side is bonded to a metallized diamond within a copper
and ceramic microwave pill package.' The large -signal rf charac-
teristics of the diodes are measured near 6 GHz using the method
described by Decker et al.4 The diode wafer admittance is measured on
all devices at 24 -watts dc, with an rf voltage corresponding to the
diode's operating point in the amplifier. Wafer susceptances are speci-
fied at 19.0 millimhos. Tuning is provided to accommodate a range of
diode susceptances. The wafer Q, defined as the magnitude of the ratio
of wafer susceptance to wafer conductance, has values that vary by a
factor of 2.5 to 1.

2.4 Circuit description

The requirements of practical radio -relay equipment dictate an
amplifier circuit somewhat more complex than the simple circulator,
diode, and resonator shown in Fig. 2. A more complete schematic of the
amplifier is shown in Fig. 3. The circuit contains three circulators,
of which the center circulator corresponds to the one shown in Fig. 2.
Additional circulators with one port resistively terminated are used
at both the amplifier's input and output to provide isolation from the
effects of external reflections and to provide input and output return
losses better than 30 dB.

The dc power for the IMPATT diode from the current -regulated
power supply is coupled to the oscillator port of the center circulator
through a resistor and a band -stop filter tuned to 6 GHz. The resistor
is used here to provide the high resistive impedance at low frequencies
that has been shown by Brackett to prevent spurious oscillations.'
The de power is isolated from the remaining rf circuit by a series
capacitor in the main rf circuit adjacent to the band -stop bias filter.

On the output side of the center circulator, a small sample of the
amplified output is picked off by a nondirectional coupling probe.
This sample of the rf output is detected using a point contact diode
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to provide a de current for the radio bay meter panel and alarm
functions.

On the input side of the center circulator, a sample of the input
power is taken and detected for bay panel metering and to operate a
power -supply squelch circuit. The power -supply squelch operates to
remove dc power from the IMPATT diode if the rf input to the amplifier
falls below a prescribed level. This effectively prevents free -running
oscillations by the IMPATT oscillator, whose free -running frequency is
not sufficiently stabilized to prevent interchannel interference. A
directional coupler is used for the input coupler to provide a good
match on the circulator common -arm and to provide, via its 20 -dB
directivity, discrimination against leakage of power generated by the
IMPATT diode.

A band -stop filter is used on the oscillator port of the center circu-
lator to prevent second -harmonic energy generated by the IMPATT

from interfering with the operation of the monitor circuits. A low-pass
filter is located at the amplifier's output to ensure that all harmonics
are suppressed.

III. CIRCUIT FABRICATION AND TUNING

Most of the circuit is fabricated using the microwave integrated -
circuit techniques developed for use in the TH-3 system.2 Film inte-
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grated circuits (FIcs) consisting of patterns defined photolithographi-
cally on 0.024 -inch (0.61 -mm) thick unglazed alumina are used as a
suspended -substrate strip -line transmission -line medium. The strip-
line circuitry, as well as the amplifier's waveguide input and output,
are contained in a die-cast aluminum housing, shown in the amplifier
photograph, Fig. 4. The IMPATT diode and its resonator are contained
in a short section of coaxial line that projects perpendicularly from the
housing and is topped by the large, finned heat sink used for IMPATT
diode cooling. Adjustments are provided on the coaxial section for
field tuning of frequency and power output.

3.1 Strip -line circuits

The layout of the circuitry within the die-cast housing is illustrated
in Fig. 5 and shown pictorially in Fig. 6. The ceramic substrates are
located within a narrow channel to avoid multimoding problems. The
complex substrate shape is fabricated by an automated laser -cutting

Fig. 4-Complete amplifier.
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Fig. 5-Arrangement of waveguide and strip -line circuit within die-cast housing.

technique.' The amplifier's full -height waveguide input is shown on
the right. A thin-film probe transition from the input waveguide to
the suspended -substrate strip -line couples the input signal to the first
of the three circulators. This circulator, with one port terminated in a
thin-film resistor, provides the necessary input isolation. The circulator
and termination designs follow closely those described by Dietrich,'
modified to improve the temperature stability. A directional coupler,
located between the input and center circulators, diverts approximately
10 percent of the input rf signal to the input detector diode to generate
the dc needed for bay panel metering and power -supply squelch
functions.

The remaining input signal is coupled to the oscillator port of the
center circulator. The series capacitor, which dc -isolates this port, is
realized by a narrow, meandering, interdigital gap in the thin-film
conductor. The 6-GHz band -stop bias filter is realized by a high -
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characteristic -impedance line along which, at quarter -wavelength
intervals, are placed two quarter -wavelength -long open -circuited stubs
of lower characteristic impedance. The bias circuit is completed by
a 47 -ohm power resistor that is clamped to the aluminum housing to
maximize heat transfer. Several ferrite beads are placed on the leads
of this resistor to provide additional stability against bias circuit
oscillations.

An open -circuited stub, one -half -wavelength long at 6 GHz, which
connects to the oscillator terminal through a thin-film resistor, is

used to control the circuit impedance at 3 GHz (the subharmonic of
the 6-GHz band) without adding significant loss or mismatch at 6
GHz.7 This was found to be necessary to eliminate frequency jumps
during tuning, which occur when the subharmonic impedance is too
high.

At the end of the thin-film pattern (coaxial oscillator terminal),
connection is made, using a bellows, to the center conductor of the
coaxial line through the top half of the aluminum housing.

The amplified rf signal reflected from the IMPATT diode down the
coaxial line is coupled by the center circulator to the output circulator.
A small portion of the amplified output is capacitively coupled to the
output detector circuit to provide the direct current for bay panel
metering and alarm functions. This nondirectional coupling is approxi-
mately 28 dB. The amplified signal passes through the output circu-
lator, used as an isolator, and is coupled into a reduced -height wave -
guide. Within the reduced -height waveguide, a waffle -iron filter8
having a low-pass characteristic strips the amplified signal of any
residual harmonic energy either generated by the IMPATT or contained
in the input signal. Following the waffle -iron filter, a four -step transi-
tion couples the reduced -height waveguide to standard -height WR-159
waveguide.

3.2 Coaxial circuit

A cross section of the coaxial line is shown in Fig. 7. At the bottom,
just above the bellows contact to the thin-film circuit, is located a
three -resonator, radial -line, band -stop filter' that is tuned to the
12-GHz second harmonic of the 6-GHz common -carrier band. The
filter prevents the second harmonic energy generated by the IMPATT
diode from causing anomalous monitor circuit operation. Appropriate
steps in the coaxial center conductor in the filter section provide a
good match across the 6-GHz band. The center conductor tip is
spring -loaded against the IMPATT diode, which is held centered at the
upper end of the coaxial section. A large, finned heat sink contacting
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Fig. 7-Cross section of the coaxial line section.

the back of the diode provides diode cooling and eliminates the need
for forced convection.

IMPATT tuning is accomplished by a movable quarter -wavelength
coaxial transformer and four capacitive power -adjustment screws
located radially around the coaxial line at a point nominally an eighth -
wavelength from the end of the transformer. The position of the trans-
former relative to the IMPATT diode primarily determines the frequency
of operation. The transformer is moved using a large -diameter knurled
ring, shown just below the heat sink in Fig. 4. This ring is mechanically
coupled to the transformer through two slots in the coaxial line. These
slots are completely covered by the transformer and ring to prevent
rf leakage.

The transformer section characteristic impedance is designed to
produce 1 watt at the amplifier's output port (nearly 1 dB more at the
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diode's location) with the highest Q diode and with the power adjust-
ment screws adjusted flush with the inner diameter of the coaxial
outer conductor. For all other diodes that would give greater than 1
watt with this transformer, capacitance is added using the four power -
adjustment tuning screws. When transformed through the coaxial
circuit to the diode position, the added capacitance appears as an
increase in the resistive part of the circuit impedance. Increased circuit
resistance reduces the generated power down to the 1 -watt level, where
optimum system performance occurs. This power adjustment is made
on diodes having low values of Q; the increase in circuit Q because of
the screw insertion is counterbalanced by the lower diode Q, so that
the overall external Q is not increased by this power adjustment when
compared with high Q diodes requiring little screw penetration.

3.3 Circuit tuning

The circuitry within the die-cast housing is initially tuned in the
factory with a 7 -mm precision connector located in place of the IMPATT
diode and heat sink. During the initial tuning, the transformer is not
installed and the power -adjustment screws are adjusted flush with the
coaxial -line inner surface. Tuning of all ports of the three circulators
to better than 30 -dB return loss is accomplished across the 8 -percent
common -carrier band. The three ports of the center circulator are
tuned over a slightly wider band to include the extremities of the
locking bandwidth of amplifiers operated on the end channels of the
common -carrier band.

By matching the diode port of the center circulator to achieve this
broadband high return loss, the oscillator circuit Q is essentially
determined by that of the quarter -wavelength transformer and the
short section of 50 -ohm line from the transformer to the diode. In
practice, Qex of the oscillator is determined largely by the IMPATT diode
wafer. The transformer position and power adjustment screws permit
adjustment in the field of any amplifier to 1 watt on any channel as-
signment with any diode. The IMPATT diode is replaceable in the field by
simply removing the heat sink and inserting a new diode in the coaxial
line against the spring -loaded center conductor.

The amplifier cost has been kept low by the use of thin-film inte-
gration, casting technology, and laser cutting of ceramic substrates.

IV. AMPLIFIER PERFORMANCE

Ten models were constructed in the laboratory, and information
was conveyed to the Western Electric Company, who is now produc-
ing the unit. Measurements of intermodulation distortion indicate
that the distortion products are small and that system performance
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can be accurately predicted on the basis of power output and FM
thermal noise with no correction for distortion. Performance shown
in Fig. 1 can be readily obtained using the silicon IMPATT diodes in
manufacture. A detailed evaluation has been completed of a TM -2
system in Ohio that includes eight factory -built IMPATT amplifiers.
Satisfactory operation was noted over a 10 -month test period.

V. SUMMARY

A 1 -watt, 6-GHz silicon IMPATT diode amplifier has been developed
and is being manufactured for use as the transmitter power amplifier
in short -haul radio systems. The amplifier operates with a nominal
gain of 20 dB and a noise figure of less than 52 dB. The noise contribu-
tion of the IMPATT amplifier is substantially thermal noise, with inter -
modulation distortion negligible. The dc-to-rf efficiency is 4 percent.
The amplifier includes integrated input and output rf power monitors
and harmonic suppression circuitry.

The input monitor circuit furnishes the input information for the
power -supply squelch circuit. If the input rf level drops low enough
so that the locking bandwidth becomes small, the power supply is
turned off, preventing the oscillator from free -running out of the
assigned frequency range. The de power is automatically restored when
the input level returns to normal.

The low cost and reliability of this IMPATT amplifier make it an
attractive rf output device in short -haul applications.
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Line -of -Sight Paths Over Random Terrain
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Line -of -sight paths are important as VHF radio channels. In a mobile
radio system, for example, the landscape determines the communication
possibilities in a complicated way. This paper analyzes a simple model of
rough terrain to relate statistical terrain properties to line -of -.sight paths.
The model is constructed from conical hills, all the same height, distributed
at random over the surface of a spherical earth.

The parameters of the model are the earth's radius a, the density ()-

of hills, and the grade g of the hills. Although a simpler planar model is
obtained by letting a 00 , a finite spherical earth is needed for most
questions. Assuming that a base station is located at the peak of a hill,
the most interesting line -of -sight paths are those from a typitat hilltop.
A large number of statistics of these paths are then derived, usually as
simple functions of a, cr, and g. These include properties of paths to other
peaks, to the horizon, and to random points on the ground.

I. INTRODUCTION

Very -high frequency radio propagation is often said to resemble
optical propagation. A line -of -sight path provides a good radio channel ;
a path blocked by the terrain does not. With the aid of a topographic
map, one can determine whether a path Q1if22 is a line -of -sight path.
Essentially, one must plot the ground elevation profile along the path
to see whether the ground intersects the straight line segment Q1Q2.
This calculation must include the effect of the earth's curvature.
Atmospheric refraction is also accounted for by changing the earth's
radius to a fictitious value.

Having done the calculation for one path Qi, Q2, we learn little about
other paths. The region covered by a transmitter at Qi, i.e., the set of
points Q visible from Qi, would be found by plotting ground elevation
profiles along views from Qi at every possible azimuth angle. This
region might represent the coverage of a Tv station or of a base station
in a mobile telephone system.

This paper analyzes a statistical model to give insight into the way
coverage regions depend on properties of the terrain. The parameters
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of the model are the radius a of the earth, a density a of mountains
(or hills) per unit area, and a grade (slope) g of these mountains.
Many statistical properties of terrain and paths are then derived as
functions of a, a, g. These properties are means, or in some cases
distribution functions, of the random variables that appear in the
INDEX. Line -of -sight paths from a typical mountain peak receive special
attention because a peak is the most likely site for a base station.
Although the exact formulas contain integrals with unwieldy trigono-
metric integrands, most of these formulas may be replaced by simple
expressions, to a very good approximation. The expected area visible
from a peak and the expected number of peaks visible from a random
point on the ground are more complicated quantities, leading to
integrals that are evaluated numerically.

INDEX
Altitude-eqs. (6), (7), (8), Table I, Fig. 6.
Area blocking-eqs. (12), (17) to (20), (23), Table III.

Visible-eq. (43), Table VII.
Within horizon-eq. (35).

Number of peaks visible :
From a peak-eq. (26), Table V.
From a point on the ground-eq. (37).

Range from a peak :
To furthest visible peak-eq. (31), Table V.
To horizon-eqs. (33), (34), Table VI.
To random visible peak-eqs. (25) to (29), Table IV.
To random visible point on ground-eqs. (39) to (42),

Fig. 15.
Slope-Table II.

The earth's radius a is an important parameter of the model.
Although a simpler planar model is obtained by letting a ---300, the
planar model is inadequate for most statistics of interest.

With a and a fixed, the terrain becomes rougher as g increases. As a
rule, the model predicts more long line -of -sight paths and larger
expected visible area for rougher terrains. However, in mobile radio
these long paths are more important as sources of interference than
as useful channels.

II. THE MODEL

The terrain model will use conical mountains distributed at random
in a Poisson pattern over the surface of the earth. Begin with a sphere
of radius a miles (a may be the true radius of the earth, or something
larger if atmospheric refraction effects are to be taken into account).
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Place points at random on the surface S of this sphere using a Poisson
process with density CT points per square mile. Each Poisson point will
represent a mountain peak, and so the sphere of radius a will be called
the peak sphere.

Each Poisson point P will be associated with a mountain -shaped
subset M(P) of the interior of the peak sphere. The subsets M (Pi),
M(P2), - for the various peaks will overlap. Take the union of all
the subsets M(P) to represent the earth.

The simplest shape for M(P) is the cone consisting of all rays from
P making angle <0 with the inward -pointing normal to S. This cone
has to be truncated to keep it from extending beyond the peak sphere
in the direction antipodal to P. The surface of the cone is tangent to
an inner sphere, concentric with the peak sphere and having radius
a sin O. Take M(P) to be the inner sphere plus the part of the cone
that lies between P and the inner sphere. Figure 1 shows M(P)
shaded.

With this construction, the terrain consists of conical mountains,
all having the same height and the same grade g = cot O. There may
also be flat places where the earth's surface coincides with the inner
sphere. A flat spot occurs at any point that lies further than air - 8)
radians away from all Poisson points. Flat spots are rare, except when
the parameters o, 0 are chosen to produce widely separated mountains
having very gentle slope.

Fig. 1-Construction of M (P) .
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Figure 2 is an elevation contour map for a typical random terrain.
Some unrealistic features of the model are evident. The conically
shaped mountains have circular contour lines. The peaks are distrib-
uted chaotically instead of being arranged in rows (mountain ranges).
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Fig. 2-Contour map. The symbols 8 + 6 -4 : 2 denote altitude levels ordered
from the peak sphere downward.
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Figure 3 is a plane cross section through the earth in the same model.
This figure is more interesting for the present problem because the
existence of a clear line -of -sight path between two points depends only
on the shape of such a profile. Note that the elevation curve in Fig. 3 is
composed of convex arcs (hyperbolas) that join in the valleys between
mountains. But, at least, the maxima in Fig. 3 have different heights.
Figure 4 shows random terrain as seen from one of the peaks looking
out toward the horizon. The nearest and furthest peaks shown have
ranges of 6 and 150 miles. The parameters were picked to match a
particular portion of the Alps for which a panoramic photograph was
also available. The deficiencies of the model are less evident in this
figure. The curvature of the earth makes it less obvious that all peaks
have the same height.

In real terrain, it is sometimes possible to see part of a mountain
even though the mountain's peak is obscured from view. That cannot
happen in this model, as will now be proved. Suppose that the view
of a peak P1 is blocked when the eye is at E. Then the line segment
P1E contains a blocking point B2 belonging to another mountain
M(P2). Now consider any other point P of M (Pi). P must lie on some
line segment P1I, where I belongs to the inner sphere. Figure 5 shows
the triangle E/31/. The segments EP and B2I cross at some point B
in the triangle. B belongs to the convex set M(P2) because B2 and I
belong. Then B is a point of M(P2) blocking the view of P.

By making a -*00 , one obtains a planar model of random topography.
The peak sphere S becomes a peak plane. At a point Q, the land surface
lies below the peak plane a distance

= Min Pi QII, (1)

where the minimization is over all Poisson points Pi. Replacing S by a
plane simplifies the analysis considerably but, unfortunately, it
produces a much less realistic model. If Fig. 4 has been drawn for a
planar model, every peak Pi would have been visible. Even worse,
Section VIII shows that the expected area visible from a peak would
be infinite. For that reason, the extra complication of a spherical earth
is really necessary for some questions about line -of -sight paths.

III. PARAMETER ESTIMATION

The two parameters a, g = cot 0 can be chosen to fit the model to
terrain measurements. One might estimate the density a by counting
peaks. A difficulty is that one must then decide how big a hill must be
to be counted. Surely every bump on the landscape ought not to count
as a peak. This decision is avoided by using statistical properties of
the point Q lying below a random point q on the peak sphere. The
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Fig. 5-M(P2) blocks all of M(P1) from view if it blocks P1.

altitude and slope of the terrain at Q are two useful random variables.
Both depend on the angle 7 = < POQ from Q to the nearest peak P
(see Fig. 1). Since a circular cap of angle 70 on the peak sphere has
area 2ra2(1 - cos 70), the distribution function for <POQ can be
written immediately,

Prob 6 70) = 1 - exp [ - 2ira2a(1 - cos 70)]. (2)

There is no natural sea level in the model, and so it will be con-
venient to specify the altitude at Q by giving the depth y, measured
from S down to the land. If 7 - 0, then ground level coincides
with the inner sphere, i.e.,

y = a(1 - sin 0), 7 0. (3)

For smaller angles 7,

y = a[l - sin 0/sin (y -I- 0)], 0 S 7 < air - 0, (4)

as is clear from Fig. 1. These formulas, together with the distribution
(2) for 7, determine the depth distribution,

Prob fy S a[1 - sin 0/sin (7 + 0)]}
= 1 - exp [- 2ra2cr(1 - cos -y)], 0 5 7 < - 0 (5)

Prob fy 6 a(1 - sin 0) } = 1.

Although one can easily tabulate the distribution function for y by
substituting numerical values of -y into (5), the distribution function
is easier to visualize in a limiting case. Since a is a large radius, let
a -÷ 00 in (5). As one might expect, the formulas tend toward the
depth distribution function in the planar model,

Prob fy Y} = 1 - exp [ air( Y/g)2]. (6)

In this limit, a and g enter the distribution only via a single length
parameter a-ig, which is an index of altitude variability. Thus, altitude
distribution data alone cannot be expected to supply good estimates of
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both g and cr. Some simpler statistics are the median,

Median (y) = (7-' loge 2g2/a)i
= 0.4697cr-ig,

and the moments,
E (yk) = 11(1 ik)(g2/Ta)k12.

Particularly, the mean is

g = E(y) =

and the standard deviation is

[Var (y)]i = [(7-1 - 2-2)g2/o-]4 = 0.2683a -1g.

(7)

(8)

It is also possible to obtain (6) as an exact result for a spherical
model in which the shape of the mountains is only approximately
conical. That entails a new choice of the set M(P) in Fig. 1. Define the
new shape so that the depth becomes

y = 2ga sing,(9)
where again -y is the angle to the peak. At P, M(P) comes to a point
approximating a cone of slope g. At the antipode to P, M (P) has depth
2ga; then this model requires g < Z. Now the depth distribution for all
y is again given by (5) but with the left-hand side replaced by
Prob f y < 2ga sin b . But that is (6), exactly.

For many values of g and a., the planar approximation (6) to the
depth distribution (5) is very good. For example, Table I compares
the planar approximation with some distributions having a = 3959 mi,
the earth's radius. In the table, the cones have grades g = 0.05, 0.1,
and 0.2 and the density a. is adjusted to fix the standard deviation in
(8) at 528 ft (0.1 mi). Table I gives percentiles of the distribution as

Table I - Altitude percentiles (in feet)

Spherical Model Planar

g = 0.05
= 0.0171

0.1
0.0683

0.2
0.2732 a/g2 = 6.831

0.1% -1899 -1964 -1980 -1986
1% -1378 -1421 -1432 -1436

10% -691 -712 -717 -719
25% -315 -327 -331 -332
50% 70 63 62 61
75% 402 400 399 399
90% 642 641 640 640
99% 896 896 896 896
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altitudes measured upward from a common level, corresponding to the
depth g in (7).

Figure 6 is an altitude distribution for northern New Jersey. It
was obtained from a topographic map by reading altitudes at 52
points, 10 km apart in a rectangular grid covering latitudes 40°30'
to 41° and longitudes west of 74°. The altitudes ranged from 0 to
1100 ft. Data for parts of New Jersey further south were not used; the
topography of New Jersey is too variable for both north and south
to be well represented by a single simple model. The planar model
fits the observed points well, except at low altitudes. As an alternative,
use the spherical model with a = 3959 mi. By taking g = 0.011, one
obtains a maximum depth (3) near 1100 ft, so that low altitudes can
be regarded as occurring on the inner sphere. Then a remains as a
parameter to adjust for a good fit.

The parameter g = cot 0 is the grade at mountain peaks. At the
random point Q, at angle 7 away from a peak in Fig. 1, the grade is
smaller because the normal to the conical surface makes an angle
lr - 0 - y with the vertical direction 0Q. Thus, the grade at Q is

cot (0 + 7) = (g - tan 7)/(1 + g tan 7), if 0 + 7 .5_ /r
g= 0 otherwise.
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Fig. 6-Altitude distribution for northern New Jersey. Curve is for planar model
with peak sphere at 1130 -ft altitude and [Var (y)]' = 400 ft.
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Table II - Percentiles of G/g

g = small 0.1 0.2 0.5

0% -1.0000 -1.0000 -1.0000 -1.0000
1% -0.9995 -0.9995 -0.9995 -0.9994

10% -0.9510 -0.9506 -0.9492 -0.9399
25% -0.7070 -0.7053 -0.7001 -0.6667
.50% 0 0 0 0
75% 0.7070 0.7053 0.7001 0.6667
90% 0.9510 0.9506 0.9492 0.9399
99% 0.9995 0.9995 0.9995 0.9994

100% 1.0000 1.0000 1.0000 1.0000

The grade 0 occurs on the inner sphere. This result, together with (2),
determines the distribution of the grade g'. In most cases, the grade g'
has high probability of being close to g; one should not expect this
distribution to fit observed grade data well.

At q, one might move in a random direction and ask for the slope G
along the random path through Q. The slope, which depends on the
angle yo between the path direction and the uphill direction, lies in the
range - g' <= G g'. With some simple geometry, one finds

G = g' cos (p/ (1 + g'2 sine (p)i.

By using the known distribution for g' and assuming a flat distribution
for co , one can obtain a distribution function for G. This would be the
distribution of the slopes G seen in cross sections like Fig. 3. A simple
distribution is obtained only in the planar model limit, for which
g' = g = cot 0 identically :

Prob {G < tan x} = 1 - it 1 arc cos {sin x/cos 0}.

Table II gives the slope distribution in the planar model for several
values of g. In the limit of small g, the distribution function for G/g
tends to 1 - it 1 arc cos G/g.

IV. BLOCKING REGIONS

Suppose two points Q1, Q2 are given, representing the positions of
two antennas. In general, Qi, Q2 can lie anywhere above the inner
sphere. A clear line -of -sight path exists between Q1 and Q2 as long as
the straight-line segment Q1Q2 does not intersect any of the sets
M (P i). The blocking region for Q1, Q2 is the (open) set of points P on S
such that Q1Q2 intersects M (P). The area of the blocking region enters
into the probability that a line -of -sight path Q1Q2 exists. The advantage
of the conical mountains M (P) is that blocking regions assume simple
shapes.
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The simplest blocking region is one for a pair of points Q1, Q2 both
on S. If the line (21(22 intersects the inner sphere, all M(Pi) block the
path. The blocking region then consists of the entire sphere S. If
Q1(22 misses the inner sphere, then blocking occurs at a point Q on the
path Q1Q2 if a peak Pi lies too close to Q. If the depth of Q is y, then
(4) gives the angle 7 to peaks P such that Q lies on the surface of
M(P). Then blocking occurs at Q if a circular cap of angular radius
7 contains a peak. The pole of this cap is the radial projection q of Q
onto S. The blocking region for the path (21(22 is the union of all the
blocking caps for points Q on the path. These caps are largest midway
between Qi and Q2, shrinking to points at Qi and Q2. Then the blocking
region is lens -shaped, as in Fig. 7.

Figure 7 shows two arcs K, K' which form the boundary of the
blocking region. The argument that follows shows that K, K' are
actually arcs of circles. Figure 8 is another view of the peak sphere
projected directly along the line Qi, Q2. Two planes, r and ir', can be
drawn through Qi, Q2 and tangent to the inner sphere, say at C and C'.
These planes project to lines in Fig. 8. The planes r and ir' intersect S
in two circles, centered at C and C' and both passing through Qi and
Q2. Since M(P) is the convex hull of P and the inner sphere, r is a
supporting plane of M(P) as long as P lies below r (i.e., in the half -
space containing the inner sphere). Then M(P) does not block the
path Q1Q2 if P lies below 7, or below r' . The part of S lying above
both r and r' appears shaded in Fig. 8. Suppose P belongs to the shaded
region. Project the triangle C'PC, a subset of M(P), onto the plane
of Fig. 8. The path Q1Q2 projects to a point lying inside this projected
triangle. Then Q1Q2, a chord of S, must intersect the triangle C'PC.

Fig. 7-Blocking region for two points Qi, Qs on the peak sphere.
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INNER
SPHERE

Fig. 8-Another view of the blocking region.

The point of intersection is a point of M(P), which blocks the path.
Thus, the shaded region, bounded by arcs of the circles S r) ir, S n r',
is the blocking region for Q1Q2.

The area A (Q1, Q2) of the blocking region in Fig. 7 will now be
expressed as a function of the angle 2p = Z Q10Q2. Project the centers
C, C' in Fig. 8 radially out to c, c' on S. Figure 9 is another view of S
showing c, c' as the poles of two circular caps bounded by S r) r and
S r) ir'. The angular radius of both caps is 17 - 0, as is clear from
Fig. 8. The chord Q1Q2 subtends some angle 2a = L QicQ2 at c. Using
the spherical sine law in the right triangle Qi, c, 1(Qi + Q2), one may
determine a from

sin « = sin p/cos 0. (10)

The cap with pole c has area 27a2(1 - sin 0) and the sector included
within angle 2« has area

il, = 2aa2 (1 - sin 0).

Also, the triangle Q1cQ2 has area

AT = (2a ± 2(3 - 7)a2,

where 0 = Q1Q2C1 = Q2Q1c. The sine law may be applied to triangle
Q1cQ2 to find 3

sin # = cos 0 sin 2a/sin 2p. (11)
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snir

sn7r

Fig. 9-Angles used in deriving area A of blocking region.

The difference As - AT is 1A(Q1, Q2). Thus,

A(Q1, Q2) = a2(271- - 40 - 4« sin 0), (12)

where (10), (11) give «, (3.
The blocking region is more complicated if Q1, Q2 or both are not

on S. As in Fig. 7, each point Q on Q1Q2 is blocked by peaks lying in a
circular cap of radius y given by (4) ; the blocking region is the union
of these caps. Let C, (2; be the points where the extended line Qi(22
meets S. The blocking region for Q1Q2 is a subset of the blocking
region for Q;(22. As shown in Fig. 10, the blocking region consists of
the caps for blocking at Qi and Q2 plus the part of the blocking region
for QiQ2 that lies between these caps. The centers of the two end caps
are the points qi, q2 obtained by projecting Qi, Q2 radially onto S.

The two end caps have a special role in the blocking. Normally,
Q1, Q2 are known to lie above ground, and so the two end caps are
known to contain no peaks. If the ground levels below qi, q2 are known,
then peaks Pi, P2 must exist somewhere at the appropriate angles 71,
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72 away from qi, q2. In Fig. 10, Qi, Q2 are assumed to be at ground
level; then P1, P2 lie on the boundaries of the end caps. The mountains
M (PO, M (P2) on which Ql, Q2 lie can themselves block the path Q1(22.
Thus, in Fig. 10, P2 blocks the path because it lies in the blocking
region. To compute the conditional blocking probability for the
configuration in Fig. 10, one must know both the area of the part of
the blocking region that lies outside the end caps and also angles col, 902

that limit where P1, P2 can lie to cause blocking. In the applications
that follow, it will suffice to let Qi lie at a peak Qi = P1 and let Q2 be a
point at ground level. That simplifies Fig. 10 to Fig. 11.

Let z2 = z P10q2, the angular distance along the arc 13 ig2. The depth
at Q2 determines the angle 72 of the end cap. The sides of the spherical
triangle Pig2c are now known, and so its angles ti = L q2Pic,

= L q2CP1, 7 - 'P2 = L P1g2c are determined. One finds

1 - cos (z2 - 72) g sin (z2 - 72)tan (02 - (13)g sin (z2 y2) - 1 ± cos (z2 + 72)

sin (3 = sin (p2 cos (0 + 72)/cos 0 (14)

sin ?-2 = sin co2 sin z2/cos 0. (15)

The blocking area is twice the area of the half of the blocking region
above the line P1Q2" in Fig. 11. That half can be obtained as a sum of

part is a sector of angle 7 - ca2 from the end cap ; its
area is Or - 'P2) (1 - cos 72)a2. The other part is obtained by removing

C
0

Fig. 10-Blocking region for points Q,, Q2 which are not peaks.
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Q1= P

O

Fig. 11-Blocking region for Q, = P, a peak, Q2 not a peak.

the triangle Piq2c of area ($ + t2 - (p2)a2 from a sector centered at c.
The sector has area t2(1 - sin 0)a2. These areas may be combined to
express the area of the blocking region in the form

A (Qi, Q2) = A0 + A2,

where
A2 = 2r(1 - cos 72)a2 (16)

and
A0 = (2,2 cos 72 - 2$ - 21-2 sin 0)a2. (17)

A 2 is the area of the end cap and A 0 is the area of the remainder of the
blocking region.
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Although the blocking area A (Qi, Q2) for the general situation of
Fig. 9 will not be needed, it can be obtained in the form

A (Qi, Q2) = A (Q;, Q2) + A (Qi, Q2') -A (Q;, Q2'). (18)

Note that formulas like (16) and (17) give A (Qi, Q2), A (Qi, QD while
(10), (11), and (12) give A (Q;, QD. Likewise, with a change of sub-
scripts, (13) gives (pi as well as 402.

These formulas can now be used to obtain the path probability
p(Qi, Q2), the conditional probability that a clear line -of -sight path
exists between given points Qi, Q2. When Qi, Q2 are on 8, as in Fig. 7,
P(Qi, Q2) is just the probability that the shaded region of area A (Qi, Q2)
contains no peaks. Then

P (QI, Q2) = exp [- 0-A (Qi, Q2)1 (19)

with A (Qi, Q2) given by (12).
The situation in Fig. 11 is more complicated. Qi = Pi, a peak, and

Q2 is supposed to lie on the ground. Then the cap of area A2 is known
to be empty. Two conditions must hold if the entire blocking region
is to be empty. One is that the peak P2 of the mountain on which Q2
lies causes no blocking. Since P2 is equally likely to be anywhere on
the boundary of the cap around Q2, there is probability 1 - 402/r that
P2 does not block the path. The second condition is that the remainder
of area A 0 of the blocking region is empty. Then

P(Qi, Q2) = (1 - co2/7) exp ( -0A0), (20)

where (13) and (17) give (p2 and A0. Formula (20) applies as long as
72 < 22. It is also possible to have 72 = 22. In that case, Q2 lies on the
mountain M(Pi) ; the path in question runs from the peak Qi = Pi
to Q2 along the surface of the cone M(Pi). Whether or not such a path
is to be considered blocked is a matter of definition. Here M (Pi) is
regarded as an open set so that the path is not blocked. As 72 --) 22,
one finds (002 -p 0 and A0 -- 0 so that p(Qi, Q2) -> 1, i.e., (20) con-
tinues to give the correct probability in the limit.

Another limiting situation, 72 --* 0, illustrates an important distinc-
tion between Figs. 11 and 7. In the limit A2 -- 0 and A 0 becomes the
area of a lens -shaped region, such as shown in Fig. 7. Then the ex-
ponential factor in (20) becomes the path probability (19) for the
two peaks Qi( =Pi), and lira Q2. However, (20) contains an extra
factor (1 - co2/7) which approaches 1, not 1. This disagreement
between (19) and (20) is explained as follows. From a point Q2 near a
peak P2, one can look over a 180 -degree view; the mountain M(P2)
blocks the other 180 degrees. Then the factor 1 in (20) is needed to
account for possible blocking by M(P2). But exactly at the peak
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Q2 = P2, the mountain 111(P2) no longer interferes in any direction.
Then no factor is needed in (19). The discontinuity in p(Qi, Q2) as
Q2 P2 could be avoided by assuming that the antenna location Q2
lies at some known positive height h above ground.

V. PATHS BETWEEN PEAKS

The simplest blocking regions were for paths Q1Q2 with both end
points on mountain peaks. The path probability p(Qi, Q2) in (19) can
now be used to derive some interesting properties of peak -to -peak
paths. In this section, Qi will be a given peak Pi. Q2 will be another
peak selected at random. An element of area dA (Q2) on the peak
sphere S has probability crdA (Q2) of containing a peak Q2. Then
op (Qi, Q2)dA (Q2) is the probability that the element contains a peak
Q2 which is visible from Qi.

Let d(Q1, Q2) denote great circle distance between Qi and Q2. Let
Zk(d) denote the random variable which is the sum

zk(d) = E d(Qi, P 1)k (21)

of kth powers of distances from Qi to all other visible peaks Pi lying
within distance d[d(Q1, i) 5 d]. The element dA (Q2) contributes a
term d(Q1, Q2)k to Zk(d) with probability op(Q1, Q2)dA (Q2). Thus, the
expected value of Zk(d) is

E[Zic(d)] = a H (22)kpm, Q2)dA (Q2), (22)

where the integral extends over all points Q2 in the cap d(Q1, Q2) S d.
Another random variable Zk is a sum like (21) extended over all
visible peaks, at any distance from (21. The mean E(Zk) is an integral
(22) over the entire sphere. Evaluating (22) will give the mean number

Table Ill - Blocking area A(Q1, Q2) in square miles, as given by
exact and approximate formulas (12) and (23) with

range d(Q1, Q2) = 100 miles

Grade g Exact Approximate

0.01263 7887.7 3333.1
0.02 2430.9 2104.9
0.05 857.6 842.0
0.1 423.2 421.0
0.2 210.2 210.5
0.5 84.1 84.2
1.0 42.0 42.1
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of visible peaks E(Z0) and other information about the distances to
visible peaks. That could be done numerically, using (10), (11), (12),
and (19). However, the approximation that follows simplifies the
evaluation.

The approximation is one which holds when a is so large that angles
2p between visible peaks can be considered small. The planar model
has A (Qi, Q2) = 0 and p(Qi, Q2) = 1, which is too rough to make
sense in (22). Instead, the first nonzero term in a series for A (Qi, Q2)
in powers of p will be used. Expansion of the exact formulas (10), (11),
and (12) is laborious but straightforward :

a = p(1 92)1/9 + 133(1 + 92)1/ (699 + 0(P5)
# = - p/g - (2g2 1)133 / (60) + 0(0)

A (Qi., Q2) = a2 (213)3/ (6g) + 0(p5).
= 74/(6ga) + ,

where r = 2ap is the great circle distance d(Q1, Q2).
For a simpler, more intuitive, derivation, one may find the size of

the circle about a typical point q along the path Ql, Q2 in Fig. 7. If z is
the great circle distance from Qi to q, then the ground level below q
lies at depth y satisfying

(a - y) cos (z - ir)/a = a cos ir/a
or

y = z(r - z)/(2a) + .
The radius cry of the circle about q is approximately y/g, and the
blocking area is approximately

A (Qi, Q2) = or a-ydz

= f z(r - z)dz / (2ag)

A (Q1, Q2) = r3/(6ga) + (23)

as before.
From the form of the series used in deriving (23), one may predict

that the rate of convergence is determined by the ratio p/g. Table III
shows that (23) does give a better approximation for large g than for
small. In Table III, a = 3959 mi; a large range, 100 mi, was used for
a severe test of the approximation. At grades g smaller than 0.01263,
a 100-mi path between peaks is blocked by the inner sphere. The small
p/g condition is another way of requiring that the path (21Q2 clears
the inner sphere by a safe margin.
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Now use the approximation (23) for A (Qi, Q2) in (19) to evaluate
the integral (22) for the expectation [Zk(d)] :

d/ (2a)
E[ZI, (d)] = 2lnr J (2ap)k+' exp -4a2op3/3g) 2adp

0

ETZk(d)1 = (2vcr/3)Dk+2

where

10

(dID)3
U(") /3 exp (-u) du, (24)

D = (6ag / 0-)1.

The integral in (24) may be expressed in terms of the incomplete
gamma function,

E[Zk(d)] = (2m7/3)Dk+2{ r[(k + 2)/3] - r[(k + 2)/3], (d/D)3},

or the x2 distribution function,

E[/k(d)] = (21-a/3)Dk+2q(k 2)/3]P(X21 v),

where
x2 = 2(d / D)3

and the number of degrees of freedom is

v = 2(k + 2)/3.

Although the approximation (23) becomes poor at long ranges, the
integrand is very small there. Thus, (24) can be expected to hold even
for long ranges. In particular, the expectation E(Zk), for visible peaks
of all ranges, may be approximated by letting d Go in (24) :

E(Zk) = (21-013)Dk±2q(k + 2)/3]. (25)

For the special value k = 0, (25) gives the mean number of peaks
visible from Qi:

E(Z0) = raD2r(5/3)
= 9.3645 (a2g2a)i

= 2344(g2cr)i if a = 3959 mi. (26)

Note, as predicted earlier, that the mean number of visible peaks
tends to infinity in the limit of large a (planar model). When k = 1,
(25) simplifies to

E (Zi) = 4rag. (27)

As a increases, (26) shows that the mean number of visible peaks
increases, but (27) shows that the mean sum of distances to visible
peaks remains unchanged. This indicates that visible peaks tend to
be closer for large a than for small. One way to define a range for a
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"typical" peak is to form the ratio

D1 = E(Zi)/E(Zo) = D/r(2/3)
= 0.738487D
= 1.34190 (ag/a)i. (28)

VI. RANGES BETWEEN PEAKS

One might ask for a probability distribution for the range d from
a peak P1 to a randomly chosen visible peak P # P1. The random
process for choosing a peak must be specified with care. Perhaps the
most natural process would be this. Construct a random landscape
and choose a peak P from the set of Zo visible peaks, all peaks equally
likely. Then ask for the probability that P is one of the Zo(d) peaks
within range d of P1. Given a landscape, the conditional probability
that P is within range is Zo(d)/Zo. Then the unconditioned probability
is E[Z (d) /E0]. Unfortunately, the expectation is hard to obtain [there
is also a question of giving an appropriate meaning to Zo(d)/Zo when
Zo(d) = Zo = 0].

By using a different random process, one obtains a simpler distri-
bution. Construct a trial random landscape and pick one of the peaks
P at random, this time from the set of all peaks on the entire sphere S.
P may not be visible. If not, discard that trial and construct a new
landscape. Continue constructing landscapes and choosing peaks until
the chosen point P is visible. Then ask for the probability p(d) that
P lies within range d.

To determine p(d), note that the total number of peaks on the entire
sphere has the Poisson distribution with mean 4ira2u. The argument to
follow assumes that this number is large, so that the number of peaks
actually obtained is almost always very close to its mean value. Then
the probability that P is visible is E(Z0)/(47a20-). If q[Z 0, Zo(d)] is the
joint probability for Zo and Is o(d) in each trial, then q[zo, zo(d)]zo/
(4.-a2a) is the probability that a trial has Zo visible peaks, Zo(d) within
range d, and that P is visible. The joint probability for the numbers Zo,
Zo(d) of the landscape, selected when P is visible, is qTZ0, Zo(d)]
= q[zo, zo(d)]Zo/E(Z0). The probability that P lies within range d
is obtained as a sum over Zo(d) and Zo

p(d) = E qTzo, zo(Czo(d)/zo
= E[X0 (d) ]/E (Z

p(d) = 1 - r[2/3, (d/D)9/11(2/3), (29)

the last line following from (24).
It is clear from this derivation that the second random process

tends to select random landscapes with larger Zo than the landscapes
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Table IV - Probability p(d) = CUM)/ E(U that a randomly
chosen visible peak lies within range d

d/D Probability

0.25 0.06880
0.30211 0.1
0.48595 0.25
0.5 0.26361
0.72212 0.5
0.75 0.53050
1 0.77518
1.20507 0.9
1.32182 0.95
1.5 0.98440
1.55886 0.99
1.81350 0.999
2 0.99983

of the first process. However, Zo may be expected to have a highly
peaked distribution, in which case Zo is nearly always close to E(Zo).
Then q( , -) and q' ( ,  ) are nearly the same, and (29) is also a good
approximation to the range distribution for the first random process.

Equation (29) provides numerical values for the range distribution
in Table IV.

Another random variable of interest is the range to the furthest
visible peak. Even the expectation of this maximum range is hard to
derive. However, a simpler "typical" maximum range is the range dm
such that the expected number of visible peaks with ranges d > dm is
just 1. Then dm satisfies

E(Z0) - E[Zo(d,)] = 1, (30)

and (24) shows that

u-i exp ( -u)du = 3/(470.D2).
J(d,,,ID)s

(31)

Table V - Mean number of visible peaks E(o) and range dm
such that E(10-Io(d.)) = 1/2

(rD2 a2g2a. E(Zo) dm/D

3.11 0.84 8.8 1.30
5.69 5.12 16.1 1.40

11.3 40.1 32.1 1.50
24.5 409 69.5 1.60
58.4 5528 165.6 1.70

153.6 100572 435.5 1.80
450.5 2.54 X 10' 1278 1.90

1477 8.95 X 107 4189 2.00
5447 4.49 X 10' 15448 2.10
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Table V gives numerical values of dm/D as a function of aD2
= (36a2g2(7)1. E(I0), which also depends on 0-D2 as shown by (26),
also appears in the table. Note that dm is not just a function of a single
product of powers of a, g, a; it has a more complicated form (ag/cr)1
X function (a2g2a) .

The integral in (31) is a rapidly decreasing function of dm/D. Then
the numbers in Table V would not change much if dm were redefined
with the term i in (30) replaced by any other number of the same order
of magnitude. For the same reason, dm can be expected to be a good
approximation to the mean range to the furthest peak.

VII. THE HORIZON

The approximation (23) will now be used to derive properties of
the range from a peak Pi to the horizon at a random azimuth angle.
The range to the horizon is a more interesting random variable than
the range to a random visible peak. As has been noted, it is not always
clear what to count as a peak in a real landscape. But the horizon
has no ambiguity.

Look from P1 with a fixed azimuth angle. One sees only sky at high
elevations and ground at low elevations. The horizon point is the limit-
ing point at ground level which has the highest elevation angle. The
distance z from Pi to the horizon is the range of interest here.

Figure 11 will now be used to derive the conditions under which Q2

is the horizon point, as seen from a peak P1. If Q2 is the horizon point,
the entire straight line path PiQ; in Fig. 11 must intersect the ground
only at Q2. Then the entire lens -shaped blocking region for Q; must
contain no peaks. But the depth at Q2 determines the circle on which
a peak must lie. This circle appears in Fig. 11 inside the (open) blocking
region. The only place that this peak can be now is on the boundary
of the blocking region at one of the points of tangency T, T'.

Figure 11 shows the usual situation in which the horizon point is
not on the inner sphere. There is small probability that Q2 is on the
inner sphere. In that case, q2 is at angle /r - 0 away from Pi, the
centers c, c' coincide with q2, and the blocking region is bounded by the
circle through P1 with center q2. There is no second peak on the bound-
ary of the blocking region ; Q2 lies on M(Pi).

To find the probability distribution for the horizon range, one may
first find the joint distribution for that range and the range r to the
intersection point Q. Since r is the largest range for which the corre-
sponding blocking region is empty, the probability distribution func-
tion for r is P (r) = 1 - exp [ - crA (P1, CM]. In this derivation, the
approximation (23) will be used to write

P (r) = 1 - exp [ - (r/D)3].
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Figure 12 shows Q2 lying at a range between r and r + dr, an event
of probability dP(r). Given this position for Q2, the band between the
boundaries of the blocking regions at r and r + dr contains the peak
on which the horizon point lies. The shaded part of this band is the
region in which the peak must lie so that the horizon point Q2 will
have range 22 < z. The conditional probability function for the horizon
range is just the ratio of the area of the shaded part of the band to the
total area of the band. To simplify that calculation, one may replace
the dotted line by a great circle that crosses P1P2 at right angles. That
approximation leads ultimately to the conditional distribution

Prob {horizon range r} = (z/r)2, 0 z < r. (32)

The details are omitted because the result can almost be guessed
immediately from the roughly triangular shapes of the two parts of the
shaded region.

Now the unconditional probability distribution for the horizon range
is obtainable from (32) by integrating

Prob { horizon range z

= foz dP(r) (z/r)2dP(r)

= (z/D)2c[1, (z/D)3] + 1 - exp [- (z/D)3]. (33)

Table VI gives numerical values.

r + d r

Fig. 12-Horizon at range < z.
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Table VI - Distribution function for range z to the horizon
looking from peak P1 with a random azimuth angle

z/D Probability

0.21417 0.1
0.25 0.13625
0.35618 0.25
0.5 0.42355
0.56305 0.5
0.75 0.70432
0.79977 0.75
1.0 0.88853
1.02324 0.9
1.15749 0.95
1.25 0.97109
1.40527 0.99
1.5 0.995247
1.67110 0.999

The moments of the horizon range z are easy to find. From (33), the
probability density for z is

2z
fr -VP (r) .

z

The kth moment of z is

E(zk) = 2 i00 e+1 r-2dP (r)dz
00

0 z

= [2/(k + 2)]E(r").

The last line is obtained by integrating by parts. The expectation on
the right is another integral that can be evaluated in the manner of
(24) and (25). The final result is

E(zk) = 2DkIT1 + (k / 3)j/ (k + 2). (34)

Equation (34) with k = 2 is particularly interesting. If z( (p) is the
range to the horizon when looking with azimuth 40, then the mean
area within horizon range is

E(area within horizon) = E
1 2r

2 Jo

f

= TE (e)
= -iirr (5/3)D2
= 1.41803D2. (35)

This expectation is only an upper bound on the mean area visible.
For, as is clear in Fig. 4, there are points within horizon range that are
obscured from view.
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It is interesting to compare Tables IV and VI. At any given proba-
bility level, the range to the horizon is smaller than the range to a
randomly chosen visible peak. This may be surprising at first. How-
ever, each visible peak is itself a point on the horizon. As seen in Fig. 4,
the horizon consists entirely of small line segments extending down the
sides of the mountains from the visible peaks. The line segments for
distant peaks tend to subtend smaller azimuth angles than the seg-
ments for nearby peaks. Picking an azimuth at random, one is more
likely to find the horizon point on one of the nearby visible peaks
than on one far away.

Another expectation that exhibits the same effect is the mean
azimuth angle between the horizon point and the peak of the mountain
on which the horizon point lies. The ranges z and r determine this
angle. Without belaboring the details, one can approximate this angle
by its tangent and make the further approximations by which (33)
was derived. The expected angle is found to be

E(angle) = EE(r - z)/(2ag)]
= r (4/3)D/ (6ag).

That result can be stated in a more illuminating way :

E (Z 0) E (angle) = 7,-r (4/3)r (5/3)
= (2r3-4) (2r)
= 0.40306 (2r) .

By contrast, if E(Z0) peaks were evenly distributed in azimuth with
angular separation 27r/E(Z0), one would obtain

E (Zo)E (angle) = 0.25 (27r) .

The larger factor 0.40306 again occurs because of the variability of the
angles which visible mountains subtend on the horizon.

VIII. COVERAGE AREA

The coverage set for a point P is the set of points Q such that a line -of -
sight path PQ exists. In VHF radio applications, the coverage set of P
is the set of points Q to which an antenna at P can radiate a strong
signal. This section will estimate the mean coverage area C, the expected
area of the coverage set for P = P1, a peak.

The coverage set can have a very complicated shape. Figure 13
shows one coverage set. In Fig. 13, the peaks are not in a Poisson
pattern; to simplify the drawing, the peaks were located at points of a
regular lattice. The coverage set contains the entire mountain on
which P lies plus parts of adjacent mountains. These points alone
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Fig. 13-A coverage set.

constitute a hexagon of area 4/o. In addition, the coverage set contains
many smaller isolated patches on more remote mountains. These
small patches can be so numerous that they represent most of the
coverage area.

If Fig. 13 represented the coverage set of a base station in a mobile
radio telephone system, the station would only serve the hexagon of
area 4/o. The other small patches would lie in the service areas of
other stations, and so these patches would represent places where the
given station can interfere with other stations.

As in Fig. 11, let P1 be a given peak and Q2 another point at ground
level. Suppose the distance r from P1 to Q2 is known, i.e., the angle
z = r/a in Fig. 11 is given. Let f(r) denote the probability that a
line -of -sight path P1Q2 exists. Since an element of area dA (Q2) at Q2
belongs to the coverage set of Pi with probability f(r)dA (Q2), the
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mean area covered is

C = iff (r)dA (Q2) = 27a2 f 7 f (r) sin z2dz2. (36)
0

Before attempting to evaluate f (r) and C, the integral (36) will be
given a second interpretation. Now consider Q2 at a fixed location
and count the number of peaks visible from Q2. The probability that
an element of area dA (1)1) contains a peak Pi visible from Q2 is
of(r)dA (Pi) . Then the mean number of peaks visible from Q2 is

E(visible peaks) = (riff (r)dA (P1)

= 27a2cr i f f (r) sin z2dz2

= QC. (37)

Equation (37) can be used to derive very simple bounds on C.
Clearly, more peaks are visible from a point Q2 at high altitudes than
at low. If Q2 were itself a peak, the mean number of visible peaks
would be E(Z0), given by (26). But Q2 has probability zero of being
exactly at a peak. If Q2 is at any slightly lower altitude, Q2 is on the
side of a hill which obscures 180 degrees of the view from Q2. Thus,
E(visible peaks) 6. .}E (Z0), and (37) shows

C 6 E(20)/(20-). (38)

Curiously, the right-hand side of (38) is exactly the mean area within
the horizon as given by (35). Then (38) is a bound that was obtained
in Section VII.

At the other extreme, Q2 might be on the inner sphere, where no
peak is visible. In most cases, that event will be so unlikely that it
will be safe to say that the worst reasonable possibility is that Q2 is
down in a valley near the point where three mountains meet. Here,
the three mountain peaks are visible and so one concludes C ?... 3/a.

To obtain f (r), and hence C, recall that (20) is a formula for the
path probability p(Qi, Q2), depending on the altitude y at Q2. To get
f (r) one may average p(Qi, Q2) over y (or 72). This average may be
expressed as a sum of two terms which account for the possibilities
that Q2 belongs to the same mountain M(P1) as Qi or to a different
mountain.

In Fig. 11, if 72 = Z2, then Q2 lies on the mountain M(Pi). This
event has probability exp { -270-a2(1 - cos z2)}. The path probability
p(Qi, Q2) = 1 if r 5_ (17 - 0)a. If r > (17 - 0)a, then Q2 lies on the
inner sphere, the path P1Q2 is blocked, and p(Qi, Q2) = 0.
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If 72 < z2, then Q2 lies on a different mountain M(P2). This possi-
bility contributes a second term to f(r),

./72-0

where A2 and p(Q1, Q2) are given by (16) and (20).
For r (fir - 0)a, the two terms combine into

f(r) = exp - 2vaa2(1 - cos z2)1

z2

p(Qi, Q2)d{ 1 - exp (-0-A2)},

f22

7

(1 - (P2/7
ti

[ 0.(A o A2)]crdA2, (39)
2-0

where (16) and (17) provide A2, A 0. A similar formula applies when r
is larger, but f(r) is very small at such large ranges.

One could find f (r) to any desired accuracy by evaluating the integral
in (39) numerically. Instead, (39) will be replaced by a simpler approxi-
mate formula. Since a is large, the first term of (39) is approximately
exp ( -01172) also, A2 = irx2 where x = a72. The approximations to yo
and Aci which follow are not uniformly good but are intended to apply
in situations that contribute most of the coverage area C. Except at
very short ranges r, a typical blocking region is more elongated than
that shown in Fig. 11. Figure 14 is more typical. Then c02 =r,
approximately. With that approximation, the shaded region in Fig. 14
has area AO + 1212. It consists of a triangle, of area xr, and two extra
lens -shaped pieces. The two extra pieces can fit together into one lens
of exactly the shape of the blocking region for two peaks at separation
r. Then the two extra pieces combined have area r3/(6ga), as in (23).
Now the exponent 0-(A o + A2) in (39) is approximately (r/D)3

To substitute these approximations into (39), write

Y = arr2
X = r3/(6ga) = (r/D)3 = [r(5/3)Y/E(Zo)]l

al
..........

Fig. 14-Approximation of A o and ,02.

(40)
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and then

f (r) = exp (- Y) To- exp (-X) exp -oxr - loTr2} rdr
0

f (r) = exp ( - Y) exp ( - X) { 1 - exp ( - 7-'11
exp ( -X + Y/72) (2 Yhr)

X { erf (Y4[1 + T-1]) - erf (Yihr)}. (41)

Figure 15 shows curves of f (r). The ordinate Yi = (a7r)ir was used
as a convenient normalized range. It may be interpreted as the square
root of the mean number of other peaks within range r of P1. As (40)
shows, the parameter E(E0) enters into f (r) through the variable X.
The f (r) curves for different values of E(20) lie close together at short
ranges. As the range increases, f (r) falls more sharply for small E(E0).
There is a limiting curve, as E(Z0) -*co, which is obtained from (41)
by setting X = 0. As (40) shows, X = 0 also corresponds to the limit
a -*co ; i.e., this limit represents the planar model.

1.0

0.8

0.6

0.4

0.2

0.1

0.08

0.06

0.04

0.02

0.01

0.008

0.006

2 4 6 8 10
r 7177r

20 40 60 80 100

Fig. 15-Probability f(r) that a random point at ground level is visible from a peak
r miles away.

764 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



Table VII - Mean coverage area C

E (z o) aC

25 8.3
50 12.2

100 17.3
200 23.5
400 30.6
800 38.6

1600 47.4

The approximations which led to (41) are poor when r is small.
Fortunately, the planar model is good for smaller r. The curve labeled
"exact (planar)" in Fig. 15 was obtained by a numerical integration,
using an exact equation (39) for the planar model. The planar curve
crosses the 0.5 probability level at Y1 = 2.3. Then r = 1.3a-i is the
range at which the odds of finding a clear path are even.

The behavior of f (r) for large r can be obtained by replacing the
error functions in (41) by their asymptotic expansions. The leading
terms are

f (r) ti exp ( - Y) 17-1 exp ( -X). (42)

In Fig. 14, the f (r) curve starts to depart from the limiting curve at
values of Y near E(Z0). For larger Y, the factor exp (-X) in (42)
becomes small rapidly. In the planar model, exp (- X) = 1 for all Y;
(42) then shows that f (r) 72/ Y = / (072) .

To good approximation, the integral (36) for the mean coverage
area can be replaced by

C = f f(r)d(irr2) = f(r)dY. (43)

The main contribution to C in (36) comes from the range 0 r
(fir - v)a, in which (39) holds exactly and (41) approximately.

Then (41) will be used for f (r) in (43) and, since f (r) 0 rapidly for
larger r, the range of integration has been extended to 0 < Y < 00.

Since (40) and (41) express f (r) in terms of 17 and the single param-
eter E(Z0), (43) shows that QC is a function of E(Zo) only. Table VII
gives values of this function, obtained from (41) and (43) by numerical
integration. These values also represent mean numbers of peaks
visible from a random point on the ground, as (37) showed.

In Table VII, crC appears to be a slowly increasing function of
E MO. As E (I0) -+ 00 , the model becomes planar and then f (r) ti 72/Y.
Then (43) shows crC --+00 in the planar model limit.
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Two Design Techniques for Digital
Phase Networks
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Two computer -aided algorithms for the design of all -pass digital filters
are presented. The first technique is based on a linear programming ap-
proach to solving the approximation problem posed by the minimax design
of an all -pass digital filter. A new iterative algorithm with stability con-
straints is offered for direct form design. The second technique implements
a gradient search for those quadratic factors of an all -pass transfer function
that lead to a locally optimal approximation (in the least -squares sense)
of a desired phase function. New initial guess procedures and the parame-
terization of linear -phase offset enhance the least -squares design procedure.
Examples illustrating the result of both procedures are included.

I. INTRODUCTION

The increasing availability of digital signal processors such as those
described in Refs. 1 and 2 has generated much interest in the algo-
rithmic design of digital filters. One particular class of recursive
digital filters commonly referred to as all -pass digital networks has
an important and interesting design problem associated with it. That
is, the design objective for this type of filter involves the following
transfer function

H (z--')

N
E bN,z-k

k =0_ N
E ba-k

k =0

Because of the relationship between numerator and denominator
polynomials, the number of degrees of freedom in filter design has
been reduced to N from the usual 2N. Since the magnitude function
of H (z-i) is precisely 1.0 on the unit circle, the design problem is
focused directly on the phase variation of H (z-i). The importance of
this design problem does not arise from an academic viewpoint.

There are signal processing applications in which an influential
factor in signal fidelity is the amount of phase distortion present in

767



f (t)
f*(t)

(a) (b)

Fig. 1-(a) Original pulse. (b) Phase -distorted pulse.

the medium. The effects of phase distortion in communication systems
are illustrated in Refs. 3 and 4. Apart from nonlinear phase equalization
applications, all -pass networks can be used to provide a constant
phase shift over a specified frequency band or bands. The Hilbert trans-
former commonly found in bandpass modulation systems is just one
example of this application. In constructing phased arrays in radar
and seismic research, constant phase shifters are also found to be
usefu1.5.6 Figure 1 illustrates how a constant phase offset can shape
(or distort) the impulse response of a system where At) and f* (t)
differ by a constant phase offset of 7/2. A constant phase shift of any
amount besides an odd multiple of 7/2 will produce a pulse with a
single large lobe. Equalization of this type of distortion is again
possible by all -pass networks.

Previous work' has addressed the envelope delay design problem.
In many cases, this is sufficient but, as seen above, there are applica-
tions where the phase function must be treated directly.

Our design techniques are for all -pass structures where the design
criteria stem from the phase function directly. The first technique,
described in Section II, is a new method for designing all -pass networks
using linear programming. This approach allows for fast (at least
quadratic), always convergent design of phase networks. For the
first time, stability can be treated directly in the design procedure.
The second algorithm is based on a gradient search procedure on a
least -squares criterion. The basic approach is analogous to those
described in Refs. 7 to 9. The all -pass structure reduces the number
of variables and simplifies the gradient calculations. In addition to
developing the algorithm, we provide initial guess procedures and
linear -phase offset parameters that enhance the algorithm. These
initial guess procedures are new noniterative filter designs that can
serve as excellent all -pass approximations in their own right.

II. A LINEAR PROGRAMMING APPROACH

A need for fast, reliable design of all -pass digital filters has been
shown in the previous section. Linear programming techniques have
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been found to be useful in rational function approximationsw." and
have been applied to the magnitude -only design of digital filters.'233
Here we show how the all -pass structure in digital filters can be trans-
formed into a problem that can be handled by linear programming
techniques also. As we shall see, the rational function differs from the
magnitude -only case. Most importantly, this technique allows the
question of stability to be handled directly in the design procedure.
Other techniques that consider the phase or envelope delay variation
of the digital filter (see Refs. 7 and 9 and Section III of this paper)
deal with stability with a more heuristic approach.

To develop the linear programming design method, we first recall
that the all -pass transfer function is

PH (z-i) =
Q

(z-i)z-1) - bN

b biz -1

bN_2z-2 ± ± baz-N
(la)± ±  ± -N

P (z-1) (bNzN bN -32N-1 +  + bo)
(2(z1) (bNz-N + bN_g-N+' +  + bo)

Hence, the phase function of (1) on the unit circle is

(zN
= - 20g2(z-03 I lz1=1.

Isj-1

From (2) we note that the phase variation of H (z-1)
(modulo a constant multiplier and an N sample delay
phase of Q (z-1) . Henceforth, we address the problem of
Q(z-'). The phase variation of Q (z-1) on the unit circle is

CQ(z Zia1 = tan -1

N
- E bk sin 2irkf

k=1
N
E bk cos arkf

k=0

(1b)

(2)

is equivalent
term) to the
synthesizing

tan g2 (z-i) 1.1-i = Imag [12 (e-o.f)]/Real Df2 (e-i27f)

Further,
N- E. bk sin 2irkf

R ( f)
tan da (e- i2111)] = Nk=1

E bk cos 2irkf (f)
k=0

Our design criterion is chosen to be

)min max D (f R (f n = 0, 1, 2, ,

(bki n

(3)

(4)

where D(f) is the tangent desired phase function and M is a number
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of frequency points* (>>N) chosen to ensure adequate approximation
over a subinterval of If I 5 1, namely, 0 < fo < h..  < fm < 1. We
recall that the desired phase function has been scaled down by -.1
because of the factor of -2 appearing in (2) and will have a delay of N
samples inherent in its design by the z-N factor of (lb). It is important
to note here that the norm is applied to the tangent of the desired
phase function instead of the desired phase function itself.t

If we prevent S(f) from assuming the value zero, we seek the
minimum value of A,

I D(fn)S(fn) - R(fn)l LS(fn) (5)

Using the differential correction idea of Ref. 10, we expand the right-
hand side of (5) in an iterative form :

AS(fn) AkSk(f.) + (A - Ak)Sk(f.) [S(fn) - Sk(fn)]Ok (6)

The intention is to iterate toward those values of { bil that minimize A.
The subscript k indicates the kth iteration. We then have, from (5)
and (6),

ID(f.)8(f.) R(fn) 1 - Ak8(f.) - (A - Ak)Sk(f.) -5 0,

which translates into a familiar pair of equations1°

ED(fn) Ak]S(f.) - R(fn) + (' - Ak)Sk(f.) 0 (7)

C-D(fn) + Ak]S(f.) R(fn) + (A - Ak)2k(in) z 0. (8)

Substituting the series forms for R(fn) and 8(1.), we have

N
{[D(fn) Ak] cos 271-jf. + sin arjf.} bi + - Ak)Sk(fn)

N
-D (f) AO cos 27rifn

1-1

- D(fn) Ak (9)

sin arjf} bi + (i - Ak) Sk(in)

D(f n) - Ak, (10)

where 1)0 = 1 is the normalization made. We have in (9) and (10) an
over -determined set of 2M equations in N + 1 variables. The objective
is to minimize A, one of the variables. It would seem that the condition
S(f.) > 0 would be necessary to solve (9) and (10). But the phe-

An extension into a weighted criterion can be handled, but is suppressed in this
presentation. M was chosen to be in the range 4N (N large) 5 M 5 lON (N small)
in our implementation of the algorithm.

f Therefore, the nonlinear nature of the tangent transformation may inhibit
designs in the neighborhood of
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nomenon experienced in Ref. 10 occurs here also. That is, if Sk(f n) > 0,
0 < n M, then Sk+i(f.) > 0, 0 5.. n < M, also.

Standard linear programming techniques can now be used on (9)
and (10) to iterate toward a minimum A. However, no restriction has
been made on the locations of the zeros of Q (z--1). Now there exist
sufficient conditions for stability that can be written as linear con-
straints. We have looked at two of these, e.g., a restriction that
b1, b2, , bN of (1) form a monotonic sequence" or the restriction that
the sum Eiv:-.° bk cos 2irkf > 0, WED, 11" (The formulation of the
linear programming problem gives us this condition on the subset
of [0, i] over which we are approximating.) For an example of a filter
designed using this technique and the latter constraint to assure
stability, refer to Fig. 2. Curve B is the sixth -order approximation to
Curve A (only approximated over [0.075, 0.425]).

However, the filter designer may decide that these types of con-
straints are too restrictive for his particular applications. Nonlinear
stability constraints, such as those found in Ref. 14, Chapter 3, can
be included via the cutting planes algorithm," but this may require
excessive computation times. Another suggestion involves interrupting
the standard simplex method for solving the linear programming
problem after each iteration. We may then further constrain the b
vector used in the next basic feasible solution to a choice (i.e., some
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Fig. 2-Sixth-order approximation using linear programming method.
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Fig. 3-Phase error vs bandwidth for various orders of Hilbert transformers.
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"maximum") from among those vectors that would result in a stable
filter in addition to the normal improvement of an object function.

Using the standard formulation of the problem with no additional
constraints or techniques necessary to assure stability, we were able
to design many Hilbert transformer filters. * Figure 3 shows the relation-
ship between the maximum error (recall that the tangent of the
desired function is approximated) and a bandwidth (the filters were

FIR designs of Hilbert transformers are well documented (see Ref. 17). There,
90 -degree phase is guaranteed, and the magnitude of 1.0 is approximated.
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Fig. 4-Tenth-order Hilbert transformer.
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designed* over [f, 0.5 - f], , 0.225) for various
orders of filters N = 4, 6, 8, 10. The log of the maximum error is given
in the figure.

The minimax approximation formulated here is performed on the
tangent of the desired phase and not on the desired phase itself. For
very good approximations, however, no penalties seem apparent. We
have briefly looked at methods to design minimax phase approxima-
tions based on the algorithm we have presented here. Our conclusions
are that a two -stage design algorithm is required to iteratively locate
a proper weight function that will "prewarp" the "tangent" design
so that the weighted "tangent" design is minimax and the phase
approximation is itself equiripple.

Figure 4 illustrates the effect of the tangent transformation in this
design procedure. In this figure, we see the phase of the resultant
design (and its error function). This is a 10th order approximation to a
90 -degree phase shift over [0.05, 0.45]. While the design guarantees
a minimax solution (equiripple) to the tangent, we can see that the
resultant phase approximation is not exactly equiripple.t We have not

* Each design only required a few (e.g., 5) iterations.
t We can see from Fig. 2 that the effect that the tangent transformation has on

the error curve also depends on the values of the desired function.
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implemented an algorithm to find the minimax solution to the phase,
since, for our needs, the improvement in the phase approximation from
the method outlined here did not seem to justify the use of a modified
algorithm.

III. A GRADIENT SEARCH TECHNIQUE FOR LEAST -SQUARES DESIGN

The next design algorithm we describe involves the computation of
the gradient vector relative to the set of coefficients in a product of
quadratic factors. The transfer function of an all -pass digital filter,
expressed as a product of second -order sections, is :

M ( Ni+ aiz-1 + z2 )Hz -1) = II (11)
1 + aiz-1 + Oiz-2

The least -squares form

E = il p u 19k) - Ang H(e-i27112w(fk) (12)

will be used as a measure of the approximation error from the desired
function D(f) on the set of frequency samples { fk } f. Here, w(f)
denotes a nonnegative weighting function. A. G. Deczky has also
considered gradient techniques applied to the least -square design of
all -pass digital filters.' In that paper, the emphasis was on envelope
delay design. However, as shown in Section I, there are applications
where envelope delay approximations are not adequate. Specifically,
there are cases where phase distortion (e.g., constant phase offset)
must be eliminated with an all -pass structure.

Our design algorithm stems from familiarity with Ref. 8, which
considers magnitude -only designs. With the least -squares criterion,
the cascade second -order section form can be used. The advantage
is that coefficient accuracy problems are minimized. As an alternative
to the linear programming approach considered in Section II, this
least -squares approach also enables one to more easily control the
linear -phase offset permitted in the design. However, a disadvantage
of the least -squares approach is that stability of the designed filter
cannot be handled directly. Stability is obtained by confining the
gradient movement to within the unit circle. This constraint may
increase the likelihood of reaching an unsatisfactory local optimum. As
we see later, there are initial guess procedures that provide excellent
approximations to the desired phase function which, through the design
algorithm, increase the likelihood of reaching a satisfactory local
optimum.
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3.1 Gradient calculations

We find the entries of the gradient vector are

aE
aai - 2 P e-o(fk) - Ang H(riknw(fk) a Ang H(e-oirfk)

a«,

aE
afii = 2 [DUO- Ang H(ei2nfk)]w(fk)

a Ang H(e-i27fk)

afli

(13)

(14)

Here we define 4(f) = Ang H(e-orf) = tan -1/ (f) /R (f), where
I (f) = Imag H(e-orf) and R(f) = Real H(e-i27-0. We seek

a4(f) = R(DI:.(f) - I (f)lic:(f)a«

ao(f) = R(f)I(f) - I (f)Rkf),
at3

where prime (') denotes the partial derivative relative to the subscript.
After some algebra, we find

= 2(1 - fii)Fi(f) sin 2irf i < i < M (15)
a«,

airt. = 2Fi(f) (sin 4wf ai sin 2irf) 1 I M, (16)
ar3,

where Fi(f) = aie-) giej47/ -2.
I Finally, (13) and (14) can

be simplified for 1 < i < M to

aE = - 4(1 - E [Duo - ociknF,(fow(fk) sin 2lrfk (17)
a«,

aE = - 4 [DUO - 4.0.0iFi(f0w(fk) (sin 4irfk ai sin 2lrfk). (18)ag,

The minimization of E in (12) then proceeds with an iterative algorithm
that is based on the formula

c(n) = - en-iAn(VE)n-i, (19)

where c(n) is the coefficient vector (al, )31, a2, /32, , am, /3m) at the
nth iteration, en is the nth step size in the coefficient adjustment, A n

is a positive definite matrix at the nth step (= I in the case of the
steepest descent algorithm) and ( VE)n is the gradient vector whose
entries are given by (17), (18) at the nth iteration (we use the Fletcher -
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Powell algorithm). An initial guess procedure is required to start an
iterative algorithm such as that of (19).

3.2 Initial guess procedures for all -pass networks

Convergence to a local minimum at which the approximation to a
desired phase function is satisfactory can be made easier if a good
initial guess is provided to c (°) of (19). A desired feature of an initial
guess procedure is that it be simple in nature. After all, excessive
computation and effort should not be expected in simply starting a
complex algorithm. In this section, we consider two procedures in
which only a linear set of equations need be solved to obtain initial
values for { bk } kv=0 of (1). The value of having several initial guess
procedures is that the designer may want to exercise his algorithm
from multiple starting points to choose the best from a set of local
optima. The following initial guess procedures operate on the direct
form of H (z-') (1) which can be factored to the cascade form (11).

3.2.1 Tangent approximation by Gauss' method

From (4) in Section II we know that a desired phase function can
be approximated by considering a monotonic function of the phase,
namely the tangent. Hence,

N
E bk sin 2wkf

tan OW = - kN=i

E bk cos 27kf
k =0

(20)

is the approximating function of the tangent of half the desired phase.
If we require the estimates of the desired phase tangent [tan cpd(f)] to
be "good" at a number of frequencies, we then have the following
equations:

N N
tan Od(fo) E bk cos 2rfo -: bk sin 27kfo = r 0

kti k-1

N N
tan Od(fi) E bk cos 27rkfi -E bk sin 2rkfi = ri

k -O k=1

N N
tan ckd(fm) E bk cos 21rkf m -E bk sin arkfm = rm. (21)

k=0 kl

If frIr were all zero, then the approximation would be exact. The
objective then is to minimize E,Y=0 r? where M > N. This problem
is a least -squares minimization problem for which the solution is
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derived from solving a set of normal equations :

'(ai, al) a2)  (al, aN) (al, d)
(a2, al) (a2, a2)  (a2, aN) b2 (a2, d)

(22)

(aN, a1) (aN, aN)_, bN (aN, d)

or
Ab = e,

where

an = (tan 4d (f 0) cos 221-nfo - sin 27rnfo,
 tan Od(fi) cos 27rnfi - sin arnfi, ,

 tan Od(fm) cos 27rnfm - sin 27rnfm) n = 1, 2, , N

and

Let

d = [ - tan ch( f 0) , - tan cb ( f ,  , - tan Od(fM)]
b = (b1, b2, , bN) and e = [(al, d), , (aN, d)].

pm= max 1411 and p = (r*, r*)
05n5M M

where r* = (ro*, 7'1, , r*m), the residual values after the least -squares
approximation. If pins. - p is large (it is always positive), then a
Chebyshev approximation may be desirable.18

3.2.2 Tangent approximation in Chebyshev sense

It is well known that the minimax solution to (21) requires solving
an appropriate subsystem of N + 1 equations. Further, the minimax
solution of N 1 inconsistent equations can be effected by examining
the least -squares solution to the same set of equations and proceeding
to solve a set of N linear equations.19

For our purposes here, an effective method of obtaining an initial
guess for the iterative procedure implied by (19) is that of choosing
M = N and obtaining the minimax solution to (21). This can be done
by solving (22) for b = b2, , bN) and then evaluating (21) for
the residuals ro*, r7, , r*N. The minimax solution to (21) is then given
by the linear set of equations

Bb = a, (23)

where B = (bik), N 1 by N matrix with kik = tan cbd(ii) cos arkfi
- sin 2irkfi, CI = E[sign (ro), sign (r1), , sign (rN)J, and

N
E= = E 42/ E I 41 I.

k=0 k=0
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It may be noted that only N of N 1 equations are used in the solu-
tion of (23).

3.2.3 Discussion

It should be noted that no constraint has been made on the initial
guess procedures of A or B to ensure that the resulting digital filter
is stable. In fact, if Eiv=0 bk cos k27rf should ever change sign in If 15
or at least in the subinterval of approximation [fo, fm], then the
transition from (20) to (21) is not really valid since a division by zero
is implied. Should El`r=0 bk cos k2rf be strictly positive over If 15 I,
then stability results.' (The interesting point is that stability can
result even if the cosine series does change sign in I f I S i) . However,
the point to remember is that the resulting initial guess may be
unstable. In our experience, we have not encountered any serious
problems using these initial guess procedures.

We must further remark that the inherent N sample delay present
in these approximations [see (2)] could present a problem when
designing filters with M N sample delays. However, we feel,
intuitively, that since some delay is unavoidable, a delay of the order
of the filter will not, for most applications, be overly restrictive.

The last point to consider is that the initial guess procedure of Sec-
tions 3.2.1 and 3.2.2 obtains a direct form estimate of the digital filter
coefficients. What is really required for c0) of (19) are quadratic factors.
We remark that we make the transition from the direct form estimate
of (20) to quadratic factors by using a Bairstow quadratic factoriza-
tion routine.

3.3 Some considerations for least -squares design

Often the engineering systems requirement of a digital filter can
tolerate a linear -phase offset. While the systems engineer cannot
always adapt to an arbitrary delay, there will usually be a range of
delays permissible to him. How then can a designer incorporate these
relaxations into the design mechanism? One technique for doing this
is to add an acceptable delay to the desired function to create a new
desired function and proceed from there. By designing filters for each
of the permissible delays, one can choose from among the delays and
their associated errors to decide which filter to implement.

In Fig. 5 we can see the error function of a sixth -order filter' (B)

 We have not tested the limit of the order of filters that can be designed by this
method, but we have obtained a twentieth -order approximation (20 -sample delay)
to the desired function in this example. Quality initial guess procedures help us do
this without excessive computation times.
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Fig. 5-Error curves for initial and final sixth -order Hilbert transformer designs.

designed for a delay of six samples. The desired function is a 90 -degree
phase shifting filter with the approximation having weight 1 on
[0.08, 0.41] and 0 otherwise. Note the quality of the initial approxi-
mation (A) using the first initial guess technique outlined in Section
3.2. Of course, the disadvantage of presetting the delay is obvious;
the choice of the optimal delay from those that are acceptable is not
automatic but requires a separate design for each delay. However,
eq. (12) can be expanded to include delay as parameter A

E = E [D(fk) - Ang H (e-iwk) - A27rfk]2w(fk)
k

An optimal A can be found analytically at each step in the gradient
search and at convergence A will represent the amount of delay which,
in conjunction with the filter, produces the best design.* Of course, we
cannot expect that this delay will represent an integral number of
samples or even a delay that the designer can tolerate. Figure 6 shows
a desired function (A) (this curve is only shown where the weight of
the approximation is nonzero) and its fourth -order approximation (B),

It is possible to include a constant phase angle as parameter B similar to the A
used here. In such a case, our procedure becomes an envelope delay design technique.
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0.5

which is by solving for optimal A. Allowing for arbitrary delay, the
algorithm obtained this optimal design with a 4.1 -sample delay.

We can offer an heuristic solution to guarantee integer delays in an
automatic fashion; namely, at each step (that is, at each calculation of
A), the nearest acceptable delay* is used to replace A in the algorithm.
This, of course, plates a serious strain on optimality, although it does
permit an automatic design procedure.

As a footnote to this algorithm, we remark that there is a tendency,
when working with procedures for designing filters in the cascade
form, to use a previous optimal design of order n as the initial starting
point in the design of filters of order n + 2. In the case of magnitude -
only design, this is easily implemented since the appended second -order
section can be initialized with magnitude 1. However, in the all -pass
presentation there does not exist any second -order section that can be
added which does not distort the overall phase when using a previous
optimal design of order n to provide the initial guess for a design of
order n + 2. And so the user of this algorithm must consider the effect
of the appended second -order section if he does not want to obviate
the value of a previous design toward providing an initial guess.

' Nearest in the sense of greatest reduction of (12); "acceptable" here means
"integer."

780 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1975



REFERENCES

1. G. D. Hornbuckle and E. I. Ancona, "The LX -1 Microprocessor and Its Applica-
tions to Real Time Signal Processing," IEEE Transactions on Computers,
C-19, August 1970.

2. B. Gold, I. L. Lebow, P. G. McHugh, and C. M. Rader, "The FDP, a Fast
Programmable Signal Processor," IEEE Transactions on Computers, C-20,
January 1971.

3. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication,
New York : McGraw-Hill, 1968, pp. 190-192.

4. F. D. Sunde, Communication Systems Engineering Theory, New York: John Wiley,
1969, Chaps. 6-7, notably, pp. 244-246, pp. 229-232, and Figs. 6.4 and 6.6.

5. E. A. Robinson, Statistical Communication and Detection, New York: Hafner,
1967, pp. 325-326.

6. L. V. Blake, Antennas, New York: John Wiley, 1965, pp. 250-252.
7. A. G. Deczky, "Synthesis of Recursive Digital Filters Using the Minimum

p -Error Criterion," IEEE Trans. on Audio and Elect., October 1972.
8. K. Steiglitz, "Computer -Aided Design of Recursive Digital Filters," IEEE

Transactions on Audio and Electroacoustics, A U-18, June 1970.
9. R. E. King and G. W. Condon, "Frequency Domain Synthesis of a Class of

Optimum Recursive Digital Filters," Int. J. on Control, 1973, No. 3.
10. I. Barrodale, M. J. D. Powell, and F. D. K. Roberts, "The Differential Correction

Algorithm for Rational L. -Approximation," SIAM J. of Num. Math., 9,
September 1972.

11. H. L. Loeb, "Algorithms for Chebyshev Approximations Using the Ratios of
Linear Forms," J. Soc. of Ind. Appl. Math., September 1960.

12. F. Brophy and A. Salazar, "Synthesis of Spectrum Shaping Digital Filters of
Recursive Design," IEEE Trans. on Circuits and Systems, March 1975.

13. L. R. Rabiner, N. Y. Graham, and H. D. Helms, "Linear Programming Design
of IIR Digital Filters with Arbitrary Magnitude Function," IEEE Trans. on
Acoustics, Speech, Signal Proc., April 1974.

14. E. I. Jury, Theory and Applications of the z -transform Method, New York: John
Wiley, 1964, p. 116.

16. B. S. Gottfried and J. Weisman, Introduction to Optimization Theory, Engle-
wood Cliffs, N. J.: Prentice -Hall, 1973, p. 255.

17. L. R. Rabiner and R. W. Schafer, "On the Behavior of Minimax FIR Digital
Hilbert Transformers," B.S.T.J., 53, No. 2 (February 1974), pp. 363-390.

18. E. L. Stiefel, An Introduction to Numerical Mathematics, New York: Academic
Press, 1963, pp. 54-55.

19. E. W. Cheney, Introduction to Approximation Theory, New York: McGraw-Hill,
1966, pp. 36-41.

DIGITAL PHASE NETWORKS 781





Copyright 1975 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 54, No. 4, April 1975
Printed in U.S.A.

The Effect of Small Phase Errors Upon
Transmission Between Confocal

Apertures

By I. ANDERSON

(Manuscript received November 14, 1974)

The effect of small, periodic phase errors upon transmission between
two coaxial, circularly symmetric apertures is considered when the aperture
phase distributions are confocal and the amplitude distributions are
gaussian. The results are applicable to loss calculations in beam wave-
guide systems with imperfect lenses. When the periods of the phase errors
are less than one-half the aperture radii, the total loss is approximately
i(13i fli), where 131, (32 are the peak phase errors (in radians) on the
apertures. Phase errors with periods greater than the aperture diameters
are found to cause comparatively little transmission loss.

I. INTRODUCTION

The use of beam waveguidel systems for the transmission of informa-
tion,' or for the transmission of power,' necessitates the design of lenses
(or cylindrical reflectors') as focusing elements. In the design of these
elements, it is desirable to estimate the degradation in performance
caused by surface profile errors. Such degradation results in trans-
mission loss and, in a communications system, will contribute to
interference. Typically, the profile errors are associated with machining
operations and, for lenses with circular symmetry, these errors are
frequently circularly symmetric. The principal effect of the errors
is to impart small, circularly symmetric phase perturbations to the
field distribution adjacent to the lenses. The purpose of this paper
is to calculate the reduction in transmission, caused by phase errors of
this type, in a simple system comprising two coaxial, circular apertures
as shown in Fig. 1. The field distributions on the apertures may repre-
sent the fields in the aperture planes of two antennas or the fields on
adjacent lenses in a beam waveguide system.

In the absence of phase errors the transmission between coaxial
apertures has been extensively studied by Kay,' Borgiotti,' Heurtley,7
and others, with the principal objective of determining that aperture

783



TRANSMITTING APERTURE

Al

1-- d

RECEIVING APERTURE

A2

-.1

Fig. 1-Coaxial, circular apertures with confocal field distributions 8; OD and
g; (7g.

field distribution which maximizes the transmission. When the aperture
separation is greater than some minimum, it has been found that this
field distribution corresponds to that of the lowest order mode in an
open, confocal resonator.' The phase distribution appropriate to this
mode is obtained when the phase fronts on the apertures are confocal,
i.e., are spherical with the center of curvature at the center of the
other aperture. The appropriate amplitude distribution is well approxi-
mated' by a gaussian curve. For this (optimum) distribution, the
transmission between the apertures can attain surprisingly high values
even when the apertures are separated by many aperture diameters
(see Refs. 5, 6, and 7). Although the effect of periodic and random
phase errors upon antenna gain and side lobe level has been investi-
gated by several authors,".1' little information appears to be available
regarding transmission between two apertures when each has phase
errors. In the case of transmission between two reflector antennas,
Chu" has obtained an upper bound for the loss resulting from those
phase errors produced by displacement of the feeds from the reflector
foci. Yoneyama and Nishida" have considered transmission through
a two-dimensional, confocal beam waveguide consisting of lenses with
random phase errors. We compare their results to those of the present
study later in this paper.

In the following section the total transmission loss in a confocal
system, with small phase errors on apertures with arbitrary ampli-
tude distributions, is expressed in terms of the losses associated with
each aperture when the other is free from phase errors. In the next
section explicit expressions are derived, for two cases of practical
interest, when the phase errors are sinusoidal and when the aperture
amplitude distributions are gaussian. These expressions are then
discussed and compared with results from the literature.
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II. TRANSMISSION BETWEEN CONFOCAL APERTURES WITH
PHASE ERRORS

Consider the circular apertures A1, A2 of radius al, a2 which are
separated by a distance d > al, a2, as in Fig. 1. It is assumed that the
apertures are focused at each other such that the tangential electric
fields in the apertures, when each is transmitting in the absence of the
other, have the quadratic phase variation

kr?61(r;) = Ei(r;) exp
2d '

i= 1, 2, (1)

where the r; are radial coordinates in the apertures. In the absence of
phase errors the Ei(r;) are real. If interaction is neglected, the trans-
mission between the apertures is readily found7,12 from the results of
Hu" and Kay':

where

and

T = 1

.15 10.1

1

Fi2dridr2
0

2

F12 = El (ri)E2 (r2)J0 (nrir2)rir2

1 F rD=.n2 [../
'

I Ei(ri) 12ridri f of E2 (r2) I 2r2d72]

(2)

(3)

(4)

In these expressions the ri are normalized so that ri = r;/ai. The
Fresnel number n = ka1a2/d, with k the wave number, and Jo is the
Bessel function of order zero. In the special case when the aperture
separation is much greater than the aperture diameters, we see that
n, << 1 and that the aperture phases are uniform, i.e., 81(ri) = Ei(ri).
Substituting the small argument approximation for the Bessel function,
x << 1, Jo(x) 1, eq. (2) then reduces to the familiar Friis trans-
mission formula"

f44;T =
(Xd)2 '

The effective aperture areas A are defined by

= 27a1

11

8f(r)rdr
2

I Cr) 12rdr

n << 1. (5)

i =-- 1, 2, (6)

e.g., in the case of uniform illumination, S; (r) = 1 and A t = rai.
The far -field transmission, T in (5), is also expressible in terms of the
gains (G) of the apertures A1 and A2:

T = G,G2 C 47rd
)2 n < 1, (7)
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where
411 -AI

Gi = X2 I

i = 1, 2. (8)

Returning now to the discussion of phase errors, suppose that the
phases in the apertures depart from the ideal (confocal) distributions
by amounts 4)1(n) in Aland 4)2(r2) in A2. The transmission T12 between
the apertures in the presence of these phase errors is, from (2),

T12 = 135 1 E joi F12 exp Ej(4)1 + 02)3dridr2 2,

where the 4i(ri) are abbreviated to (ki. T12 is expressible as

T12 = To -A Ti2,

(9)

(10)

where To is the transmission in the absence of phase errors and ATI2
is the loss resulting from the phase errors. Let

Ti = To - ATi, i = 1, 2 (11)

be the transmission between the apertures when there is a phase error
on only the aperture A i. From Appendix A we then find

ATI2',-;.1 ATI ± AT2 ± R, (12)

where

A Ti = D [ h 0of

1 1

Fi2dric/r2 fo
0

Fi24idridr2

- F1240idrldr2 ] , i = 1, 2, (13)

1 .1

fi.
f
hiR = 2-U0 Jo Fi2dndr2 F 120 ichdr idr 2

1 1

Fighdridr2 Fivhdridrd (14)
Jo o f o1 o

Equation (12) states that the total loss incurred by (small) phase
errors 451(n) and 42(r2) on confocal apertures A1, A2 is approximately
equal to the sum of the losses associated with each aperture when the
other is free of phase errors together with the term R. In the next
section we evaluate the expressions for A Ti and R when the aperture
amplitude distributions are gaussian.

III. GAUSSIAN APERTURES

In the case of gaussian amplitude distributions, Ei(ri) = exp (-airy).
To simplify the analysis we assume the ai to be sufficiently large that
the upper limits in the integrals may be extended to infinity. The
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transmission To in the absence of phase errors may now be obtained
from (2), (3), and (4) by noting"

2
1 n22

xexp( -a2r2)J0(nrir2)r2dr2 - e p - -
2a2 4a2

to give

(15)

16n2aia2
To = exp ( -ai) << 1, i = 1, 2. (16)

(n2 + 4a1a2)2

Apart from differences in notation, this expression is identical to the
corresponding result obtained by Kogelnik" for the coupling of
(fundamental) gaussian modes. We find

To= 1 when n= (17)

i.e., within the approximation exp ( -ai) << 1, there are optimum
amplitude distributions that will ensure complete power transfer
between the apertures for a given n. A detailed analysis,' or numerical
integration, indicates this to be a satisfactory approximation when
ai > 2.3, i = 1, 2. For example, when ai = a2 = 2.36, the exact'
results for identical apertures are To = 0.9931, n = 5.00, and the
approximate results are To = 1.00, n = 4.72. From (6), the effective
aperture area, in of a gaussian aperture is

2.7ra2.
Aei = i = 1, 2. (18)

As expected from physical considerations Ai decreases as ai increases,
i.e., as the aperture field becomes more concentrated about the aperture
center.

In the case of transmission with circularly symmetric, periodic phase
errors, we take

Oi(ri) = 132 cos (yin), i = 1, 2,
where (19)

2rai
(3i = kai, yi=

Oi is the peak value of the error in radians (with (Si the peak profile
deviation) and 1i is the period of the error. For errors of period much
greater than the circumference of the apertures, yi << 1 and then, in
(9), 0i, i = 1, 2. It follows, therefore, that T12 = To, i.e.,
to this order of approximation, small, slowly varying, circularly
symmetric phase errors do not affect transmission between the aper-
tures. In the general case of small errors, the transmission loss T12

for gaussian apertures is found from (12) with (13) and (14) by
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substituting for the Ei(ri) and oi(ri). From Appendix B, we have

A Ti
= 017;E2D(.7;/2) - 51)(7i) 7;5)2(7W2)])

To

where

and

4ai
7i = 7% \in2 4ctia2

i = 1, 2, (20)

(21)

D(x) = exp (- x2) fo exp (r2)dr (22)

is the (tabulated) Dawson integral." The index j = when i = .

The term R in (14) may be evaluated approximately in two cases
of practical interest. In the first of these, the apertures are sufficiently
far apart that n << 1 so that Jo(nrir2) 1 in (3). F12 is then separable
in functions of r1 and r2 and hence, from (14), R = 0. For this case,

A Ti2 RI OT, + ST2, (23)

i.e., the total loss is approximately the sum of the losses associated
with each aperture when the other aperture is free of phase errors.
The total loss is given by (20) and (23) in which 7; simplifies to

It is noted from (7) and (11) that

ATi AG;
To Gi '

n << 1. (24)

n << 1, i = 1, 2, (25)

where G; = Gi - AG; is the gain of aperture Ai with the phase error
Hence, (20) with (24) gives the fractional reduction in gain of the

aperture Ai resulting from a (small) periodic phase error.
The second case of practical interest arises when the amplitude

distributions on the apertures are optimized in accordance with (17)
such that, in the absence of phase errors, the transmission is unity.
From Appendix C, the term R in (12) is negligible in this case provided
71, 72 >> n = 241x1cj2, i.e., the periods (1i) of the phase errors satisfy

Xd11«- and /2 -Xd
a2 al

(26)

The transmission loss, A T12, between the apertures is then the sum of
the losses associated with each aperture as given by (23). This result
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implies that the transmission through a sequence of confocal lenses,
each with small phase errors of period satisfying (26), may be obtained
by calculating the transmissions associated with each lens in the absence
of phase errors on the other lenses. Furthermore, (23) indicates that
it is not possible to compensate for such phase errors on one lens by
introducing phase variations on an adjacent lens. When (26) is satisfied,
the Dawson integrals in (20) may be replaced by the first terms of the
asymptotic expansion (44) to give

Ti ti 1#1, i = 1, 2. (27)

It is of interest to note the physical significance of the condition
(26) for the validity of the approximate forms (23) and (27). As
expected from the theory of diffraction gratings, a circularly symmetric,
periodic phase perturbation on a circular aperture generates" two
additional side lobes in the aperture radiation pattern. If the period of
the phase perturbation is 1, then the two side lobes are symmetrically
located about the main beam at an angle 0 = sin -4 (X//). Consider
now the two apertures of Fig. 1 with phase errors of period 11 in
A1 and 12 in A 2. If the apertures are sufficiently far apart the side
lobes, due to the phase error 11 in A1, will not intercept A.2 provided
sin-' (X//l) >> tan -1 (a2/ d), i.e., for small angles, 11 << Ad/a2. Similarly,
the main beam of A I will not couple energy to the side lobes of A2
provided /2 << Ad/al. The condition (26) implies, therefore, that energy
is coupled from A1 to 212 via the main beams alone.

Figure 2 shows the transmission, as a function of 7 = -yi = 72,
between two identical apertures as obtained by numerical integration
of (9) with (19), and as obtained from the approximate result (23)
with (27). The upper curve in the figure applies for a = 4, n = 8,

= 0.36 and the lower curve for a = 2.36, n = 5, /3 = 0.18. In the
absence of phase errors To = 1 for these (optimum) distributions. The
dashed lines correspond to the approximation (23) with (27). As
anticipated earlier, the transmission is essentially unaffected by phase
errors of large period, e.g., when -y < n/2, i.e., 1 > 2Ad/a. The approxi-
mate form (23) with (27) is seen to be within about 1 percent of the
exact result when -y > 2n, i.e., 1 < Ad/2a. As an illustrative example,
consider a beam waveguide system of the type described by Arnaud
and Ruscio2 with A = 3 X 10-3m, d 80m, a ti 0.5m. The parameters
of this system correspond to those of the lower curve in Fig. 2. Substi-
tution shows that small, circularly symmetric phase errors of period
1 > 2a on the lenses will cause negligible transmission loss, and that
the approximation (23) with (27) is applicable for phase errors of
period 1 < a/2.
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Fig. 2-Dependence on 7 of phase error loss.
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IV. COMPARISON WITH PREVIOUS RESULTS

To conclude this discussion on the effects of phase errors, we briefly
compare the preceding results with the work of others. An expression
for the gain (G') of an aperture with small, periodic phase errors was
given in (25). Consider the special case in which the period of the phase
error is much less than the dimensions of the effective aperture, i.e.,
1 << 112T. From (18) and (19), this implies 7 >> -s& so that the Dawson
integrals in (20) with (24) may be replaced by the large argument form
(44) to give, with (25),

G'
-G ^,-', 1 - 1)32, (28)

where G is the gain in the absence of phase errors. Since this result
depends only upon the magnitude 0 of the phase error, it is anticipated
that it may apply to random phase errors with correlation lengths
that are small compared with the dimensions of the effective aperture.
Ruze" has examined the reduction in aperture gain caused by such
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random errors and we compare (28) with his results. In the particular
case of a sinusoidal surface error of rms value e on a parabolic reflector
antenna, we have 0 = kb = 21/2kE. From (28), the gain with this small
phase error is

4e 2
exp [ - )7 (29)

This expression, derived here for a sinusoidal phase error, is identical
to that obtained by Ruze in the case of a random error. As noted in
Section I, Yoneyama and Nishida13 have examined the effect of random
phase errors on lenses in a two-dimensional, confocal, beam waveguide
system. Their approach is based on the concept of a statistical beam
mode and this leads to a description of the field distribution, and
transmission loss, in terms of an integral equation. A computer was
used to solve the integral equation by numerical iteration from the
solution in the absence of phase errors. It is interesting to find that
the conclusions of their study, of a two-dimensional system with
random errors, are similar to those obtained here for transmission
between circular apertures with periodic phase errors. In particular,
it was found that the transmission was not appreciably affected by
phase errors with large correlation lengths and that the loss for a
given error tended to a constant value for increasingly small corre-
lation lengths.

V. CONCLUSIONS

We have examined the effect of small, periodic, radial phase errors
upon transmission between two coaxial, circularly symmetric apertures
with confocal phase distributions. Two cases of practical interest have
been considered when the amplitude distributions on the apertures
are gaussian. In the first of these the apertures are widely separated
with phase errors of arbitrary period. The total loss is then the sum of
the losses associated with each aperture and is given in terms of
tabulated Dawson integrals. This result reduces to a known form
when the periods of the phase errors are sufficiently small. The second
case of interest applies to transmission through a beam waveguide
system with imperfect lenses. When the periods (li) of the phase errors
on the apertures satisfy /i < a1/2, (i = 1, 2), where (Li is the aperture
radius, the total loss resulting from phase errors is approximately

(0? + 02), where 01, 02 are the peak phase errors in radians on the
two apertures. A comparison, based on numerical integration, shows
this to be within about 1 percent of the exact result in a typical case.
Phase errors with periods i > tai (i = 1, 2) have comparatively little
effect upon transmission.
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APPENDIX A

Derivation of (12)

For small phase errors, (01 + 02) << 1 and the exponential in (9)
may be expanded to second order. Recalling that the Ei are real, i.e.,
F12 is real, we then find

7112
r"..1 f f7, [ F12[1 1(01 + 02)2]dridr2}2

+
1f 1

F12(01 02)dridr2
2

(30)
CI 0

Expanding the first bracket and noting that

1 r /{Jo1 Jo1

F12 (01 + 02)2dridr2 2 (01+ 02)4naxT0) (31)

where (01 + 02)msx is the maximum value of (4)1 + 02), we have, to
second order in cfii, 4)2,

T12 = To - OT12, (32)

where

1ATI2 fl".1, -- [ F12 dr dr2 f1 1 F12(41 + 02)2dr dr 2

Li 0 0 0 f
1

F12(01 + 02)drldr2 (33)
o o

Expanding the brackets gives (12) with (13) and (14).

APPENDIX B

Derivation of (20)

Substituting Ei(ri) = exp (-air% cki(ri) = Ni cos (-yin) (i = 1, 2)
into (13) with (3) and (4) gives, with (15),

Ti
To

= 2020-1(7i) - 2nnerin i = 1, 2,

where

(34)

/1(7i) = f exp (-nr2) cost (yir)rdr, (35)
0

/2(70 = exp (-nr2) cos (yir)rdr (36)
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to give

and
= -1 (n2 + 4a122),4a;

with j = {fl when i = {1}. Expanding cost (yir) and integrating :

1

n
//1(7i)-4 /2(27i).

Integrating by parts,

(37)

(38)

I2(71) =
1[1 - 71 f exp ( nr2) sin (yir)dr] , (39)

which is expressible" in terms of the (tabulated) Dawson integral, i.e.,

/2(71) = [1 -1.4 21( , (40)

where

D(x) = exp (-x2) exp (72)dr.
0

(41)

From (34), (38), and (40), we then obtain (20) and from (19) and (37)
we obtain (21).

APPENDIX C

Approximate Evaluation of R in (14)

We derive an approximate expression for R when y,, y2 >> n. It is
assumed that the amplitude distributions on the apertures are opti-
mized such that To = 1 with n = 21,c(x2, where al, a2 2.3. Consider
the integrals in (14) : Extending the integration limits to infinity and
substituting Ei(ri) = exp ( -airi2), i = 1, 2 gives, with (3), (4),
and (15),

[ 1
Fi2dridr2

o

1 1D =
47/4.2n2 '

Similarly, substituting 4); = fii cos (yiri) and using (15) and (40),

(42)

1 oiJo Figh
2n2

dridr2 = [1 71-2
n
71f\re2 )] (43)

Since 71 >> n., the Dawson integral may be replaced by the first two
terms of the asymptotic expansion,"

D(x) ti 1x [ 1.3. 
(2X2)m

 (2m - 1) I
x>> 1, (44)1 ± e's

01
(45)

Jo 2a27if
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Further,

2Fi2042dridr2 = $02 f exp (-airi)ri cos (71r0g(ri)dri, (46)
10 0

where

(ri) = f exp ( -«24)Jo(nrir2)r2 cos (72r2)dr2. (47)
0

Substituting the integral representation of the Bessel function

Jo(x) = -r cos (x sin 1)d0, (48)
0

interchanging orders of integration and expanding the cosine product,

where

o

4(1'1) Kr Jor
+ Ic-ondo, (49)

(0) = exp (-c2r2)r2 cos [(72 nri sin 0)r2]dr2. (50)f
From (40),

I (0) = 2-2 [1 --(72 + nri sin 0)1

T-1
2Na2

(72 + nri sin 0)1] (51)

Since 72 >> n, both Dawson integrals in (49) may be replaced by the
large argument form (44) to give

g (r1) ti /(0) - "V. (52)

Evaluating (46) by (40) and using (44),

,,.i #102Fi20102drlur r,"2
,3

JO f 1 f2

Substituting for the integrals in (14) and reducing (20) then gives

R _ 13102 8n2

ATI + AT2 r`) 13f. + 132 7172

But 1,302/(l3? gi) I Lc. 1, i.e.,

ATI + AT2 ( 7172

2n \ 2
(55)

Since 7172 >> 2n, (55) is much less than unity and so, from (12),

AT12 ATI AT2. (56)

(53)
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Toward a Group -Theoretic Proof of the
Rearrangeability Theorem for

Clos' Network

By V. E. BENE8'

(Manuscript received October 8, 1974)

Methods from group theory and combinatorics are used to prove the
(Slepian-Duguid) rearrangeability theorem for Clos' three -stage network.
The nr-permutations realizable in such a network can be represented as a
product G -1H cpG, where G, H are subgroups realized by stages and
,p is the special cross -connect field used in making frames. Thus, rearrange -
ability can be cast as Gco-'H g'G = 5,,, = symmetric group of degree nr.
Since it is an elementary theorem that a permutation group containing all
transpositions is symmetric, it is enough to show that the product Gieri.H ceG
is closed under multiplication and contains all transpositions. We prove
that closure of the product is equivalent to a property of suitable partitions:
existence of systems of common representatives. This property, formulated
by J. B. Kruskal, is a consequence of Hall's theorem on distinct representa-
tives. It is easily seen that G go-'H (pG contains all transpositions, so the
Slepian-Duguid theorem follows.

I. INTRODUCTION

In this paper we continue the exploration begun in previous work' -3
of the relationships between permutation groups and connecting
networks that are made of stages, frames, and cross -connect fields.
Our results concern a well-known theoretical result of this area, the
Slepian-Duguid theorem, which states that Clos' three -stage network
with square switches is rearrangeable, i.e., realizes any permutation.
Since the permutations realizable by a stage form a special kind of
subgroup, the theorem has been viewed in terms of group theory as a
factorization of the symmetric group Snr of degree nr into a product of
three subgroups or, alternatively, into a product of two mutually
inverse double cosets.3

We further illuminate this basic rearrangeability theorem by giving
it as nearly group -theoretic a proof as we have been able to find. This
proof starts from the known characterization' of the nr-permutations
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realizable by a Clos' three -stage network as a product G (p.-'HvG,
where G, H are subgroups realized by stages and o is a "canonical"
cross -connect field. It then shows that this product is closed under
multiplication, and that it contains all nr-transpositions, whence
immediately, by an elementary theorem, that it contains any nr-
permutation, i.e., that 8,, = G co -'H vG.

In the course of this proof we show that the basic combinatorial
backbone of the rearrangeability theorem is really the existence of
systems of common representatives (sets) for pairs of partitions.
Since, in apparent contrast, Duguid's original proof' used Hall's
theorem on systems of distinct representatives (smis) of subsets, we
have also sought to clarify just how the rearrangeability result depends
on Hall's theorem. The contrast above is apparent only because there
are standard ways of proving SCR results from SDR results. In the
present context, the two approaches are equivalent and lead to the
same results. However, the SCR formulation is closer to the group -
theoretic aspects than is Duguid's original SDR proof : it provides an
SCR property that is a consequence of Hall's theorem and is necessary
and sufficient for the product G co -'H ,pG to be closed. The property
was first formulated by J. B. Kruskal in unpublished notes about
rearrangeable networks dating from 1964.

II. SETTING AND FORMULATION

We now sketch the group -theoretic interpretation of the Slepian-
Duguid theorem in some detail, as has been done in earlier work.3
Figure 1 shows Clos' three -stage network, composed of three sym-

n x n

OUTPUTS 

G

LAST STAGE

CROSS-CONNECT
FIELD so -1// r x r /STAGE

.......,

H

MIDDLE STAGE

40

n x n

 INPUTS

G

FIRST STAGE

Fig. 1-G co -11 / 0G describes the permutations realizable by Clos' three -stage
network.
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.

cr El
Fig. 2-Getting transpositions in Gier1H ioG: terminals on different outer switches.

metrically placed stages interconnected by the "canonical" cross -
connect field go and its inverse. Each stage can realize precisely those
permutations from a certain subgroup of S, depending on the size
and number of switches in the stage. The r n X n switches of each
outer stage realize a subgroup G isomorphic to (Sn)r, viz., all those
that permute the sets f kn 1, kn + 2, , (k 1)n} , k = 0, ,

r - 1, within themselves. A similar statement holds for the center
stage, but with n and r interchanged, to define a subgroup H isomorphic
to (Sr)

Thus, if we think of the network in Fig. 1 as acting from right to
left, and if we interpret composition of permutations as left -multipli-
cation of the inner permutation by the outer, then the permutations
realizable by Clos' three -stage network with square switches are
precisely those in the complex

G co -'H (pG.

The Slepian-Duguid theorem says that this complex is exactly the
symmetric group Snr of degree nr. . We note for future reference that
all transpositions are realizable; this can be seen from Figs. 2 and 3,
in which the remaining terminals (not shown) are connected through
to "themselves," as is possible and indeed necessary to realize a
transposition.

0,0

1.411101.. -

Fig. 3-Getting transpositions in Gc0-11-1i0G: terminals on same outer switch.
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III. SYSTEMS OF DISTINCT REPRESENTATIVES

Let X be a set, and Xi,
following definition.

Definition 1: Elements x1,

, X, finite subsets

x. from X form

of X. We make the

a system of distinct
representatives (sDR) of X 1, , X i if xi E X i and xi 0 x; if i 0 j, for

j= 1,  , m.

Hall's theorem' gives a necessary and sufficient condition for the Xi
to have an SDR, thus :

Theorem 1 (Hall): Xi,  , X,n have an SDR if for k = 1, , m, the
union of any k X i has at least k elements.

This result was used by Duguid in his proof of the rearrangeability
of Clos' network with square switches. It enabled him to decompose
any permutation into a union of submaps each of which, in switching
terminology, carried exactly one terminal on each input switch onto
images that were spread over all the output switches. These submaps
could then be accommodated, one each on a middle switch.

IV. SYSTEMS OF COMMON REPRESENTATIVES

Let P = {Pi} and Q = {Qi } be partitions of a set X with IP I = IQI.

Definition 2: A subset E C X is called a system of common representa-
tives (scR) for P and Q if

1E n Pi! = 1, Pi EP
1E n Qi1 = 1, Qi E Q.

Ryser' gives an SDR argument to prove a necessary and sufficient
condition for two partitions as above to have an SCR. In the cases of
interest to us here, a sufficient condition can be given in a particularly
simple way. We make

Definition 3: Q is an (r, n) -partition if IQ! = r, and I Qi I = n for
Qi E Q. An (r, n) -partition of X is one into r sets each having n elements.

We use substantially Ryser's argument' to prove the following
special case (Theorem 2.2, p. 51, of Ref. 5) of his result :

Theorem 2: Let P, Q be (r, n) -partitions of X. Then P and Q have an SCR.

Proof: For j = 1, , r, let A, = i: Pi meets Qi} . Take any union of
k of these sets, A, I U  U AA, and observe that Q;1 U  U Qik
has precisely nk elements in it. Hence, at most r - k integers in the
range 1, - , r fail to be in some Ail, , Ai,. Thus,

lAii U  U k,
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so, by Hall's theorem, {iti } has an SDR fii , and Pi; n Qi 4,. Hence,
P and Q have an SCR.

V. ORTHOGONAL PARTITIONS

We now prove a property of partitions that will later turn out to be
equivalent to the closure of the permutations realizable by Clos'
network.

Definition 3: Partitions P, Q are orthogonal, written P 1 Q, if P, E P
and Q; E Q imply IPi n Qal = 1.

Remark: If P 1 Q, and r is a permutation, then irP 1 irQ.

The next result was first given by J. B. Kruskal.

Theorem 3: If P, R are both (r, n) -partitions, then there is an (n, r) -
partition Q orthogonal to each of P and R.

Proof: By Theorem 2, P and R have an SCR Q. Remove all elements of
Q1 from the pi and the Qi to give new (r, n - 1) -partitions P' and Q'.
Repeat to find Q2, Q3, , Qn, and then take Q = lQiI.

It is convenient to have notations for three special partitions which
arise naturally from the switching applications we are making. Clearly,
the inlets (or outlets) of the network in Fig. 1 can be partitioned
according to what last (or first) stage switch they are on. Similarly,
the "wires" of the cross -connect fields between the stages can be
partitioned according to what middle switch they impinge on. Accord-
ingly, we define the (r, n) -partition S (by "outer" switches) as

S = {Si, j = 1,  , r}, Si = {k: (j - 1)n < k 5 jn},

and the (n, r) -partition M (by "middle" switches) as

M = = 1, , n}, = {k: (j - 1)r < k 6 jr}.

It is also convenient to partition by terminal position on outer switches,
so we define the (n, r) -partition T by T = j = 1, , n} with

= fk:k = ln j for some 0 / r - 11.

The canonical cross -connect field is defined by

-> 1 ± [i n1]-1- 7-E(j - 1) mod n] j= 1, 2, , nr.

The following properties can be verified : pT = M, S 1 T. Intuitively,
co takes the /tip terminal on the ith switch into the ith terminal in the

jth switch.
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VI. CHARACTERIZATION OF REALIZABLE PERMUTATIONS

The next theorem will give a necessary and sufficient condition on a
permutation r to be realizable in Clos' network, i.e., to belong to
G co-'1 I ,pG. We start with a lemma.

Lemma: Let P be any (r, n) -partition. If there is an (n, r) -partition R
such that

P1 R1 8,
then there exists an element g E G such that

(pgP _L M.

The practical import of this result is as follows : Consider a frame of
r n X n switches followed by n r X r switches, with the canonical
cross -connect field cp in between (Fig. 4) ; then, under the hypothesis
there is a setting of the right-hand switches (i.e., the r n X n), which
has the effect of connecting each set of P to some terminal on every
switch of the left-hand stage of n r X r, i.e., it images each Ps so as to
reach every left switch (exactly once).

Proof of lemma: Let R = { Ril . Each Ri is simultaneously an SDR of P
and one for S. Thus, if we connect the terminals of R1 to the first
left-hand stage switch, we will have used up one terminal from each
P -set and also one from each switch on the right. This procedure can
be repeated with R2, R3, , R to give the result. Evidently, this set of
connections defines an element g E G such that each set of iogP is
spread over the left-hand stage switches, i.e., such that cogP 1 M.

Theorem 4: r E G yo-ili ,pG if there is an (n, r) -partition R such that

S 1 R 1 ir-18.

IMAGING OF P ONTO LEFT-HAND SWITCHES

r x r n x n

. .
..os....,

'P IS AN
( r, n I-PARTITION OF
THESE INLETS

\
N. EACH SET OF ogP IS SPREAD

OVER LEFT STAGE SWITCHES

i.0 9

Fig. 4-Import of the lemma.
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EACH SET OF kpg3-1S
IS SPREAD OVER THE
MIDDLE SWITCHES ...,

EACH SET OF sogiS
IS SPREAD OVER THE

,.., MIDDLE SWITCHES/

92

fr = 93 01 92 0 91

Fig. 5-vg IS I M 1 cog1S.

91

Proof: Let M be the partition of nr by middle switches, i.e., the (n, r) -
partition consisting of the n sets

{ jr + 1, jr + 2, , (j + 1)r } J = 0,1, , n - 1,

and note that hM = M for h E H. Suppose now that r E G,p-'119G
with 7 = g3co-'g2cogi and gi, g3 E G, and g2 E H. It can be seen from
Fig. 5 that each set of cgs 1S is spread over all the middle switches.
Similarly, each set of cogiS is spread over the middle switches. Combina-
torially, and without the help of pictures, these facts follow from
971 = M, from gS = S for g E G, and from S .1 T, and they can be
rendered as

cogiS 1 M
(pg3-15 ± M.

It follows from the observation above that g2M = M, and thus, by
the remark after Definition 3,

g2 cogiS 1 M 1 cogVS,

whence
7r8 1 g340 -1M .1. S

Or s I gnp-igvm I ir_is.

For R, we take QV co-igVM, and the necessity is proved.
For the sufficiency, we use the lemma, according to which the

hypothesis implies that there is an element gi E G such that

cogor-iS I M.

Thus, in Fig. 5, by setting up gi in the right-hand stage, we can connect,
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for each j -- 1, , n, the terminals of it 'S;, one each to a middle
switch. It remains to define gz for the middle stage by collecting those
destined for SI, Sz, , and g3 for the left-hand stage by distributing
within each of the sets Si, S2, in the left-hand stage. This is done
precisely as follows : Define g2 by switching a terminal 1 to third stage
switch j iff

1 E vgir-'85.

It follows that itr'g2cogir-18; = Si. Then define g3 by switching, within
each final switch, co-ig2vgir-li to i. Then 7 = g3 yo---'g2(pgi E G cp-1. I 1 ,pG,
as was to be proved.

VII. CLOSURE AND FACTORIZATION

Theorem 5: Gv-iH yoG is closed under multiplication if, for any two
(r, n) -partitions P, Q, there is an (n, r) -partition R such that P .1 R 1 Q.

Proof: Let P, Q be given (r, n) -partitions. If G co -1H (pG is closed, then
it is a group that contains all transpositions, and so equals Sn,.. Hence,
there exist permutations Sri and 1r2 such that

riS = P, 71-V8 = Q.

Since G qi-i. II (pG is closed, it is clear that rori belongs to it. By Theorem
3, or by inspection of Fig. 5, with it = rori, we see there is a partition
N such that

S 1 N _l. (7270-'8 ;
that is,

iriS _I_ riN 1 7VS.

For the requisite partition R, take riN, and the necessity is proved.
For the sufficiency, let 11-1, 72 E G il - I coG, and let P = iriS,

Q = irVS. Then, by the hypothesis, there is an (n, r) -partition R
such that

P _L R 1- Q ;
that is,

iriS 1 R 1 ii -VS
S _L. 1i 'R .1 (irgri)-12.

Hence, by Theorem 4, 71271-1 E G co -1H (pG, and we have proved that
G (p--'.ff y9G is closed.

Theorem 6 (Slepian-Duguid):

S, = G co -ill (pG.

Proof: Immediate from Theorems 3 and 5, since the right-hand side
contains all transpositions and is closed.
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VIII. FURTHER PROBLEMS AND COMMENTS

Since H is a group, it follows that co-i. Thp is also a group, one conju-
gate to H, and that the Slepian-Duguid theorem can be cast as a
decomposition

S., = U GrG

into disjoint double cosets, similar to the classical Frobenius7 de-
composition. It is tempting to expect some sort of connection with
Frobenius' theorem here. One can speculate, in particular, that there is
a proof of the Slepian-Duguid theorem from Frobenius', obtained by
specializing the requisite cosets to those of the form GirG with r in the
conjugate cp-iH so, and showing that only these need be considered.

In conversation, Richard Stanley has indicated that, in another
problem, also concerned with showing that a certain set of generated
permutations was all of 87,r, he had used the known result that a
primitive group containing a transposition is a symmetric group. His
remark stimulated our original approach to a "group -theoretic" proof
of the rearrangeability theorem : one easily shows that, if Gio-'11. coG is
a group, then it is a primitive group containing a transposition; the
problem then became to show that it was closed, a property that
turned out to be equivalent to Kruskal's orthogonal partitions result
(Theorem 3). Since closure was by comparison difficult to prove, and
since it became clear that Gso-1.1-1 soG contains all transpositions, the
simpler proof presented here could be used, making the original side
trip via primitive groups gratuitous. Stanley's idea, however, is still
a possible proof method for other networks that lead to less trans-
parent groups of realizable permutations.
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