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Closed-form expressions are obtained for the impulse response of
graded-index fibers whose velative permittivity 1s a homogencous function
of the two transverse coordinates x, y, and for the impulse width in graded-
index fibers whose profile departs slightly, but otherwise arbitrarity, from
a square law. The mmhomogeneous dispersion of the material is laken into
account. Pulse broadening can be reduced by a factor of 12 from the value
obtained for square-law fibers. Simple expressions are found for the
acceptance of highly oversized Jibers.

I. INTRODUCTION

Light-emitting diedes supply their optical power in a time and space
incoherent form. The line width is typically of the order of 200 A,
and the radiation is approximately lambertian with an emissive ares
of the order of 30 X 50 gm. Time and space incoherent optical pulses
cun be transmitted by oversized optical fibers. However, optical pulses
propugating io such fibers tend to broaden as they truvel. This is in
part due to the nonzero line width of the source and the dispersion
(% /dw?) of the fiber material. The other cause of pulse broadening
s associnted with the fuet that the time of flight of a pulse along a
ray depends on the ray trajectory. Pulses traveling along uxial rays
usually go faster than pulses traveling along rays of lurge amplitude.
Because both types of rays are excited by spatially incoherent sources,
the difference in uxinl group velocity causes o broadening of the input
pulse. In the main text of this paper, we assume that the carrier is
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monochromatic and that the spatial distribution of the rays is time-
invariant. This is the case, for instance, when the source is an injection
laser that oscillates simultaneously on many transverse modes. The
difference in frequency between these various transverse modes can
usually be neglected.

It was first pointed out by RKompfner' that pulse broadening in
step-index fibers could be drastically reduced by introducing ray
equalizers at various locations along the fiber. The role of ray equalizers
is to exchange fast and slow rays. A possible implementation of this
ides is shown in Fig. 1 together with the caleulated impulse response
for uncorrected and corrected step-index fibers.? Becuuse natural
mode mixing appears to be very small in the most recently made
optical fibers, ray converters may be practical. They have not been
experimented with, however, and we shall therefore restrict ourselves
to uniform, uncorrected fibers.

Important results concerning the broadening of spatially incoherent
optical pulses in graded-index fibers have already been reported. In
Refs. 3 to 8, the difference in group velocity between the various
modes that can propagate in step-index and graded-index fibers has
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Fig. 1—Ray converter that minimizes pulse broadening in step-index fibers. {(a)
Anpular spread of a step-index fiber. (b) Optical arrangement with confocal lenses.
The first and last lenses are unconventional. {¢) Calculated impulse response for
uncorrected (P{t) = 1 within the pulse] and corrected step-index fibers (from Ref. 2).
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been evaluated. The impulse response is obtained by adding the con-
tribution of each mode, under the assumption that all modes are
equully excited by the source. The ealculation of the group velocities
ean he simplified with the help of the W.I\.B. approximation (see,
in particular, Ref. 4).

Let us now deseribe an alternative ray-opties method. The time of
flight of & pulse along a ray is first evaluated according to the laws of
geometrical optics. A ray ean be defined by the point %, y where it
intersects the input plane of the fiber (plane z = 0), and by the
transverse components, k., k, of the wave vector k. k is, by definition,
directed along the ray and lias magnitude (27/Xo)n, where A denotes
the free-space wavelength and » the refractive index of the fiber
material, usually a funetion of & and y. Thus, the time of flight of a
pulse (at o fixed earrier frequency) is, in general, a function of the
four parameters z, y, kg, k,. These four parameters ean be considered
the components of a four-vector p, in the so-called phase space. The
impulse response is subsequently obtained by assuming that the
density of rays is equal to (27) ?in the phase space. In other words, we
assume that the mumber of rays whose points of intersection with
the input plane are between x,  + dx and y, ¥ + dy, and whose
direction is defined by values of k., &, between k., k. + dk. and &,
by, + dk,, is equal to drdy dk.dk,/(2x)%. The total power transmitted
is the acceptance (or number of modes) of the fiber. This is the power
transmitted for a source of luminanee unity (see, for example, Ref. 10).

The approach used in Refs. 11 to 13 is bused on the conventional
ruy equations. We have shown in Refs. 14 and 15 that it brings a
considerable simplification to write the ray equations in the Hamil-
tonian form. The relationship between the ray-opties method and the
W.K.B. method becomes more obvious with the Hamiltonian form.
It can be shown that the W.1L.B. method and the ray-optics method
are essentially identical.'t

An important difference, however, should be noted. In the W.K.B.
method, modes whose axinl wave number k. is less than the free wave
number &, in the surrounding medium (or eladding) are assumed to
leak out so rapidly that they can be ignored. On that basis, the accep-
tance of a step-index round fiber with radius e, for example, is found
to be

Nt = (R — k}a¥/2 = VY/2.

The radintion loss of leaky mades ean be small in the case of highly
oversized fibers, however, as was pointed out by Snyder.'® The ray-
optics condition is distinetly different: Only those rays are ignored
whose tangential component of the wave vector at the core-cladding
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interface [ (k2 + k3}!, where k, denotes the azimuthal wave number]
is less than the free wave number k£, in the surrounding medium.
According to ray optics, the aceeptance of a step-index fiber is N* = V2
instead of V¥2/2. The influence of the slightly leaky rays on the im-
pulse response of fibers hus not been observed. This is perhaps because
high-order modes are more sensitive to irregularities than low-order
modes. Slightly leaky rays may become important when highly over-
sized fibers of good quality are fabricated. This is even more so for
graded-index {e.g., near-square-law) fibers, because the field decays
exponentially beyond the caustic line, which bounds the ray
trajectories.

In most previous works, the effect of inhomogeneous dispersion* on
quasi-monochromatic pulse broadening was neglected. Thie effect,
however, was taken into aceount for square-law and linear-law graded-
index fibers in Appendix B of Ref. 14, and by Gambling and Matsuhara®
for eireularly symmetric modes in square-law fibers perturbed by an
r! term. The result for arbitrary small deviations from square-law was
given by Arnaud in Ref. 15. Olshansky and Ieek® first pointed out
that inhomogeneous dispersion is of great practical importance, at
least for fibers doped with Ti0. Dispersion for the promising GeO.
doped fibers is not known at the time of this writing. The variation of
the loss of that material as a function of doping is likewise unknown.
If we consider further that the sourees used in pulse broadening experi-
ments are not fully characterized in terms of their distribution in
phase spaece, it appears that a precise comparison between theory and
experiment is difficult at the moment. We shall therefore restrict our-
selves to the theoretical evaluation of pulse broadening.

Il. GENERAL RESULTS

The derivations of the general results given in this section appear in
Appendix A. They follow in a straightforward manner from the Hamil-
ton equations for pulse trajectories in space-time.

Fibers are most often characterized by a refractive-index profile:
n(z, ¥, w). However, the quantity that enters directly in the expressions
for pulse broadening is the square of the wave number 2 (z, y, w)
= (27/ho)?n2(x, ¥, w}, where Ay denotes the wavelength in free space.
We shall therefore deal directly with £*{z, ¥, ).

Let z(z), y(z) denote a ray trajectory. Assuming that the fiber is
time-invariant and uniform and that the material is isotropic, we ob-

* Inhomogeneous dispersion refers to the spatial variations of the ratio of the local
phase to group veloeities in the material. This parameter should not be confused with
the parameter dik/dw’, usually refered to as “matertal dispersion.” The latter is
important only for broadband earriers.
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tain from the ray equations the following differential equation (sec
Appendix A):

AR(X + Y)/dat = k2 — k3 + Xokt/aX + Yaky/aY, (1)

where we have set, for convenience, X = x{(z), ¥ = »2(z). The quantity
k. in (1) denotes the axial (z} eomponent of the wave vector k and
is a constant of motion. In other words, &, remains the same along
any given ray. In a wave theory, &, corresponds to the propagation
constant of a mode {sometimes denoted 8). Note that, in spite of the
fact that we are using the language of wave opties, the theory given
in this paper i1s based strietly on ray opties, except when we impose
the condition &, > k, to make contact with previous results.

It follows from the space-time ray equations that the ratio of the
time of flight of o pulse along a ray to the corresponding time on axis
is (see Appendix A)

(= (ko/k:) (k% )/ (dkE/duw?), (21)

where ko = k(0, 0, ). The sign { ) denotes an avernge over a ray
period. For any function a(r, ¥, «), we have defined

(ate, yy o)) = 27 [ " alz (@), y(2), wldz, (2b)

where z(z2), y(z) denotes a particular ray trajectory and Z the ray
period. If the ray trajectory is not periodie, (a) should be understood
as the limit of the right-hand side of {2b) when Z — =. In the special
case where the inhomogeneous dispersion of the material can be
neglected, k is proportional to w and, consequently, 94%/3w® = k2/w®.
Thus, (2a) reduces to

L= (kY (ko). (2¢)

Finally, if the source of rays has a distribution f(p) in the phase
space p = |z, ¥, ks, k,], the response of the fiber to an input P’'({) is
{see Appendix A)

PO = [P te) 1@ T () ). 3)

The quantity 7(p) is the transmission of a ray (usually I' < 1), and
{dp) = dedy dkdk,. In the speelal ease of a uniform lambertian source
of luminanee unity, we have f{p) = 1/(2x)% For simplicity, we ean
assume that T{p) is unity when the point x, y is within the core eross
seetion and the components k., k, of p are within some area to be
defined later for specific examples and zero outside that ares. All the
subsequent results follow from (1), (2}, and (3).
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il. IMPULSE RESPONSE WHEN k(x, y) — k2 IS A HOMOGENEOUS
FUNCTION OF x AND ¥
Let the differential equation (1) be averaged over a ray period.
The lefi-hand side of (1) vanishes because d{X -} ¥)/dz assumes the
same values at the ends of the integration interval. (In this integra-
tion, k. can be considered a constant.) Thus, we have

(k* — k2 + Xok/0X + Yok¥/aY) = 0. (4)

Let us further assume that A (X, ¥) = k2(X, ¥) — k3 isa homogeneous
function of degree ¢ in X = 22 and ¥ = 32 This meuns that, for any ,

AAX, AY) = (X, Y). (5)
If we differentinte {5) with respect to A and set A = 1, we obtain
Xoh/aX + Yah/aY = «h(X, ¥). (6)
Thus, going back to £*{z, ¥, w),
Xak/aX + Yak*/aY = w(k* — k2). )]

In that case, a simple and general expression for the relative delay
in the nbsence of material dispersion is readily obtained from {(2¢),
(4), and (7),

L= [{ko/ko) + klko/k2) ]/ (1 + «). (8

The relative delay ¢ is plotted in Fig. 2 as a funetion of k,/ky with «
as a parameter. This result is applieable, for example, to the index
profile

k(x, y) = k§ — alz| — Blyl, ©))

where o and 8 denote constants. In that example, x = 3. Note that
the fiber described by (9) is not circularly symmetric, even if & = 8.
Examples of circularly symmetrie fibers that satisfy (5) will be given
in the uext section.

In almost any z-invariant focusing system, any initial distribution
eventually reaches a steady state. This steady state in general differs
from the initial distribution. A lambertian distribution f = constant,
however, remaing [ambertian because it is a (trivial) solution of the
Liouville equation (see Appendix A). Note that the distribution fin
(3) represents a ray (or pulse) density. If the medium introduces a
nonuniform attenuation on the rays, the power density T'(p)f{p) in
phase space needs to be distinguished from the distribution f.

A fiber is usually surrounded by a homogeneous material, called
the cladding, with wave number k,. For fibers that are not highly
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Fig. 2—Relative time of Hight in a fiber where ¥*(z, ¥} — & is a homogeneous
function of degree « in z and ¥ [k = (0, 0)]. For most fibers, k./k, is close to unity.

overmoded, the transmission law

T(.’I}, Yy kz: kv) =

1 i k.
k, (10)

> k.
0 if sk
is often acceptable. Equation (10) says that rays whose axial wave
number is less than the free wave number in the surrounding medium
are leaking sufficiently rapidly te be ignored. The distribution f of
the lambertian source is set equal to 1/(2)? so that the luminance is
unity. In that case, the total power transmitted is the acceptance of
the fiber. The relative time of flight is, within the present assumptions,
solely a function of &,. The upper and lower bounds on k; are k(z, y)
and k, respectively. It remains to express the volume element
dk.dk,dxdy in {3) as a function of dk., dr, dy. For given r, y, a constant
value of k, corresponds to a circle of radius squared k*(z, y) — k3 in
the k., &, space because k2 + k2 = i*(z, ) — k% Thus,

di:odk, = xdk2. (11)

Let us evaluate the aceeptance of the fiber. The light acceptance of
any optical system is, as we have seen, the volume in phase space of
the accepted rays divided by (2#)% It is also equal to the effective
number of modes that the system ean transmit. If we integrate P(f)
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fromt = —ow to! = + e in (3), the integral over P’ in the integrand
is unity, and we obtain

Nt = (1/4x) ff k2 (x, y) — k¥ ])dady, (12)

where we have used (10} and (11). Thus, 4rA2 is the volume enclosed
by the profile: k*{x, y). For a step-index fiber of any shape with cross-
section area A, for example, we have from (12)

Nt = (A/4x) (k2 — k2). (13)

This expression should be multiplied by 2 to take into aceount the
two states of polarization.
The pulse transformation in (3) becomes, using (11),

P() = (1/47) f dudy ﬁ T P — eIk (14)

Let the input pulse P’(¢) be a symbolic é function {(e.g., a rectangular
pulse of width At and height At in the limit A¢ — 0). The output
pulse in {14) becomes

P = (1/4x)\dk2/dt|Ak.), k. > k., (15)

where |dk}/dt| denotes the absolute value of dki/dt and A (k.) denotes
the cross-section area that satisfies k{x, y) > k,. k. can be expressed
as a function of the delay ¢ by inverting the relation £(k.) given earlier.
We obtain, from (8),

dk2/dt = 2(1 + kL1 — («/k:)], (16)
where

ki = kofko = (1 + /2 = [[(1 + «)/2]* — &} amn

If x > 1, there is only one value of &, between k, = k,/ko and 1, for
any k.. If
k< w <, (18)

there are two values of k; that need be considercd. Their contributions
to P should be added. If x < k72, there is aguin only one relevant value
of k..
Let us consider a8 an example o (noneircularly symmetric) square-
law medium
kz, y) = ki(l — Q2 — Q5y?), (19)

where Q,, 2, denote arbitrary constants. 27/Q, and 2x/£,, for small
x, 4, are the periods of ray oscillation in the zz and yz planes, respec-
tively. The area A (k.) defined earlier is the interior of an ellipse

A(’C,) = 7"(1 - k;z)/gzﬂu. (20)
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The impulse response is obtained from (15) and (16} with « = I,
and (20},
(B @), ko> k. \
P = 0, k<k, @D

where, from (17), ki = ¢ — (2 — 1)%. Because, in most fibers, k. re-
mains elose to kg, the variation of k; can be neglected, and the pulse
response is almost rectangular.

Tor a step-index fiber, the area A is the area of the core eross sec-
tion, and ¢ = ko/k.. Thus, the impulse response of a step-index fiber
with cross-seetion area A is simply

Pty = k34 /28, 1 <t < kofk, (22)
Because, in most fibers, { remains elose to unity, the pulse respense is

almost rectangular.? The pulse width, however, is considerably larger
than for square-law fibers, us we shall see in more detail later.

IV. CIRCULARLY SYMMETRIC FIBERS WITH kK — ki A POWER
OF THE RADIUS

Let the wave-number profile be of the form
(R, o) = k(o) — kiR, (23)

where R = X + ¥ = r? denotes the squure of the radius. The relative
time of flight is, substituting (23) in (2a),

= (ko/k:) {0k 0w )/ (dki/dw?)
= (ko/k:}(1 — &Du(R%)), (24)
where we have defined
o« = k/k; (25)
D, = Rk dw®) /57 (dkp/ de?). (26)

D, is a dispersion factor equal to unity in the absence of dispersion.
Thus, we need to evaluate {B*). It is interesting that we can do that
without solving the ray equations. The quantity {(R+) is, of eourse,
independent of dispersion, so we may omit the w arguments.

For cireularly symmetric fibers, (1} ean be written

VAR /d2t = d(k*R)/dR — k3. (27)
Averaging (27) over u ray period, we obtain
ki = (d{k*R)/dR). (28)
We have also, directly from (23),
(k%) = ki — BX(R) (29a)
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and, from (28) and (23),

(k2) = (k2 4 «kB)/ (1 + «). (29D)
Equating the two expressions (29a) and (29b) for {k?), we obtain
(B = (1 —-k5/0 + «), (30)

where k. = k,/ko. Thus, substituting (R*) from (30) into (24), the
relative time of flight is

t= k7 — Dk — kD/ (L4 K. @31)

In applications, we need k. as a function of {. Solving (31) for &, and
setting D, = D,/(1 + «), we obtain

k. = (t/2D) = [(t/2D)* + 1 — D JE (32)
By differentiating (32}, we further obtain
dk?/dt = 2k [D; — (1 — D) /kS2T (33)

To obtain explicitly the impulse response in (15}, we need the area
A(k.) defined by k. < k(R). For k(R) in (23), this area is

Ak:) = wR(E) = =[(1 — &5/ e T (34)

If & were kept a constant as the parameter « varies, the core radius a,
defined by k(a) = k., would vary. Thus, it is preferable to express
as a function of the core radius a. We have

e = (1 — k2M/a?, (35)

where k. = k,/ko. The impulse response is finally obtained from (15),
(33), (34}, and (35);

P(t) = (kda®/2pkL(1 — K2/ (1 — kD J/[D. — (1 — DYk, 7*]. (36)

The possibly doubled value k, is expressed as a function of ¢ by (32).
Thus, a closed-form expression has been obtained for the impulse
response of a fiber with k2 — k2 a power of r, that takes inhomogeneous
dispersion into account.

In the absence of dispersion, we have D, = 1/(1 + &}, and (36)
reduces to

P(t) = (k§o®/Dk[(1 — £/ — EDTQ + o)/(1 — «k,7%).  (37)

As indicated in the previous section, there are in general two values
of k, that contribute to P. Note that the shape of the impulse response
does not depend on the core radius a.

The impulse response P (i) in (37} is shown in Figs. 3 and 4 for
various values of the parameter «. These curves are essentially the
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Fig. 4—Continuation of Fig. 3 for larger values of «.
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same as those shown in Ref. 4. Figures 3 and 4, however, are much
more detailed. We have assumed that k,/k.=0.9, that is, An/n =109,
a rather large value. For « = 1 (square-law fiber), the pulse width 7
is 0.0054. For example, if n = 1.45 and the fiber length is 1 km, the
pulse wiadth is 26 ns. For « = 0.9, however, the corresponding pulse
width is only 7 ns. We find, in agrecement with Ref. 4, that the mini-
mum pulse width oecurs when « = k,. For o step-index fiber (x — o),
the pulse width would be as large as 630 ns. Note the following detailed
features on the eurves in Figs. 3 and 4. For (0.9)2 < « < 1, the re-
sponse starts from infinity because of the minimum in the ¢(k,) curve.
For « = 0.85, P drops suddenly for ¢ &= 0.998. This is because, at that
time, the smaller of the two &, becomes less than 0.9, and is rejected.
For « = (.95, the response crosses the { = 1 axis.

Figure 4 is applicable to larger values of «. We note that, for a
very large » (step-index fiber), the response is almost rectangular. The
slow deeay in power shown in Fig. 4 would be almost negligible for
small An/n.

The effect of inhomogeneous dispersion is shown in Fig. 5. The
parameter « is kept equal to 0.9 (this is the optimum value in the
absence of inhomogeneous dispersion}, but D, is made to vary in the

30
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20 1 -
4 105
w
@
2 D=1075
a
= N
o 0.975
0 i 0.950
0 \ &
0.990 0.995 1.000 1.005 1.010

t

Fig. 5—Impulse response for a fiber with &2(r} = &2 -+ £2{r?)°® for various values
of the parameter D that expresses the inhomogeneous dispersion of the material.
D =1 corresponds to the absence of dispersion. D # 1 merely introduces a shift
in the optimum value of «.

1180 THE BELL SYSTEM TECHNICAL JCURNAL, SEPTEMBER 1975



neighborhood of unity. These curves have a striking resemblance to
those in Fig. 3. This means that the effect of inhomogeneous dispersion
merely consists in shifting the optimum value of «. The impulse re-
sponse remains essentially the sume, at least for « &2 1.

The total pulse power is the acceptance of the fiber, a function of «.
The acceptance is, in the present cuse,

Nt = f T PO@ = @) fn " [KR) — I1dR

= (WLGE — ke — Ka*(@®)/ (x + 1} ]
= [x/4(« + 110 — Fa®. (38)

The coefficient in the last expression in (38) is 1 for step-index fibers

(k > o) and 1 for square-law fibers. The acceptance given in (38)
should be multiplied by 2 to account for the two states of polarization.
The same rule applies to all the expressions given in this paper. It is
more difficult to obtain the ray-optics acceptance of fibers. The result
is derived in Appendix B.

In the next section, we consider fibers whose profile departs slightly,
but otherwise arbitrarily, from a square law.

V. NEAR-SQUARE-LAW FIBERS

Let us rewrite the differential equation (1} for circularly symmetric
fibers

3R/ d2t = d(k*R)/dR — k. (39
Ior square-law fibers
k(R) = Ik — MR, (40)
the solution of (39) 1s
R(z) = Ro + (R} — B/kD} cos (20z/k)), (11)
where
Ro = 3( — B/ = 3(1 — k2)/@ (42)

and @ = ki/ky. We have introduced in (41} the axial component of the
angular momentum {(or Bouguer invariant)

I. = xk, — yk., {43}
which is the second constant of motion. Let us set
0= (/bR ), (44)

where R denotes the maximum radius squared. Note that, for merid-
ional rays, 8 = 0 and, for helical ruys, § = 1, Equation (11) can be
written in the convenient form

R=3Ry(l 4+ 8 + 1Ry(1 — 8) cos (292/3{;). (45)
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For later use let us evaluate (f~), the averuge of B" over a ray
period. Using the binomial expansion and the result

{eos™) = mI2—m (m/2)1]? {46)
for m even and 0 for m odd, we obtain

n (_1+ 0)"_"‘(1 — g)m

(Br) = nl2"Ri 2 Sutn — my[m/B)IF (A"
In particular,

{R*) = R, (36 + 28 + 3)/8 {48a)

{R*Y = R}(1 + 8)(58* — 28 + 5)/16 (4Shb)

(R*) = R},(356* 4+ 206" + 186° + 200 + 35)/128. (48¢)

Let us now show that a closed-form expression can be obtained for
the times of flight in fibers whose permittivity profiles depart slightly
from a square law. Inhomogeneous dispersion is taken into acecount.
Let the profile be of the form

N
E*(R) = ki — EiR + X EkEZR~ (49)
We assume that ¢, ,R™ ", n = 2, is of the order e << 1, where ¢, = k3/kZ.
Substituting (49) in (2a), we obtain (with Q = ¢ = ki/kd)

= kN1 — DRY + 3 eDu(R*), (50)

rie=l
where we have defined inhomogeneous dispersion factors
D, = (kEdk2/dw?)/ (k2dk3/dw?). (31)
The D, are unity in the absence of inhomogeneous dispersion. Because
the perturbation is smull, {R”) in the sum (50) can be replaced by
the expression (47} applicable to square-law fibers. This approximation
is not permissible, however, for the term (K) in (50) because this term

is not small. We need an exuet expression for {R). We proceed as in
the previous section. We first observe that, for £* in (49),

N
d(k*R)/dR = 2k* — Ij + X (n — L)kER". (52)
nm2

Integrating {39} over a ray period, the left-hand side vanishes and,
using (52), we obtain an expression for {k*} that does not involve

(R)
) = 32+ R + 1 5 (1 — wkR). 53)

nuzd
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We also have, directly from (44),

k) =k — EX(R) + f: ki(R™). (54)

n=2

Thus, by comparing (53} and (54),

KGR) = 36 ~ k) + 3 3 (2 + DER™) (35)

Substituting this expression for (R) in (50), we obtain the relative
time of flight for cireularly symmetric near-square-law fibers

L= k1 — 31— DD+ 5 [Da — 3(n+ DD:Jen(BS)]. (56)

n=2

Alternatively, ¢ can be expressed in terms of the azimuthal and radial
mode numbers. The result is given in Appendix C.
In the absence of inhomogenecus dispersion, (56) reduces to

L= MTRE 41+ é (1 — e (R ] (57)

Limiting ourselves to an 1 correction to the square-law profile,
e = ¢ = ---=0, and setting e = ¢, (57} becomes, using (48),

=3[l — a1 + D2 — pu(l + 0) — epu(BF + 20 + 3)/8]

14 A2 — 39 + (4 — 200 + (2 — 3987/16 + (k)
par = PR,y (58)

o

The first two terms in (38) give sufficient accuracy when pa < 0.01,
that is, when the total relative change in refractive index An/n =2 0./2
is less than 0.005 (p, = ?a?).

The total pulse width 7 is the maximum variation of {for0 < ¢ <1
and 0 < p < p.. For the square-law fiber [¢ = 0 in (58)], we obtain

r = pif2 (ray optics). (59)

Tt should be noted that, in defining 7 in (59), we have specified that
the muximaum radius of the ray be less than a for any 8. This condition
is different from the condition used earlier that k. be larger than k..
The ray-optics condition gy < p. is applicable to highly oversized
fibers.

If we now consider the expression in (58) with a correction term in
1, we find that ¢ = 1 for meridional rays (¢ = 0) when e = % in
agreement with Ref. 17, where it is shown that all the rays have
exactly the same optical length when %2(z) = [cosh (z) [ ?*~21 — =z*
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+(3)z* + - .. We also find that { = 1 for helical rays (# = 1) when
e2 = 1, in agreement with Ref. 3, where it is shown that helical rays
have exactly the same optieal length when k2(r) = (1 + )12
—r2 4+ 4 ..., By cousidering all rays whose maximum radius is
less than a, we find that the minimum - is obtained for e = 0.91. In
that case, = = 0.046p. The improvement compared with square-law
media is therefore as large as 11. If we had imposed instead the wave-
optics condition k, > k,, the vertical scale in Fig. 6 would be divided
by (1 + 6)%. For & = 0, for example, the wave-opties pulse width is
p%/8 instead of pZ/2 as in (59). With the wave-optics limit, the opti-
mum value of e turns out to be % instead of 0.91. The improvement
over the square-law ease is only 4, instead of 11.

Let us now consider the effect of ¢ terms. Figure 7 shows the varia-
tion of the pulse width 7, defined as the maximum variation of ¢ for
any 0 < 8§ < land any 0 < py < 0.002, as a function of ¢, for various
values of e;. The effect of e; is essentially to shift the optimum value
of €; to lower values. The reduction in pulse width is rather modest.
Nevertheless, a small improvement is obtained, compared to the case

05

04— Ry 00

o.zL

2
M

{t—1)/R

Ol b7 Am=005 _

"o 0.1 02 0.3 0.4 05 08 0.7 0.8 0.8 1.0

0=l am
Fig. 6—Variation of the normalized time of flight for a fiber with £2(r) = &% — K3
+ex (ki/kE)rt in the absence of material dispersion for various values of the parameter

e. 8 = O corresponds to meridional rays and ¢ = 1 1o helical rays. e has been
redefined to be dimensionless.
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Tig. 7—Variation of the width of the impulse respouse with e for various values
of e for a fiber with &2(r) = k% — k2 + e(K/B7 + e B8/ ke

where ¢ = 0 when

ko %kr(ry = 1 — p 4 0.615p* 4 70p%, p. = 0.002

p = W, (60)

We give only the result when the departures from a square-law
profile are not circularly symmetric. The free wave number in the fiber
is now in the form

N n
B2 (z, y, @) = k() — Fi(@B + X 2 k()XY (61)
n=1 =0
where, us before, X = 2%, ¥ = ¢, B = z* + y* = % The ratio, ¢, of
the time of flight along a ray to the corresponding time on-axis is found
to be

N "
=kl — 30— EHD+ 2 ?Zu [(Dn: — 3(n 4+ 1)D1]
=] {=
Xenr{XY H},  (62)

where ¢,; = k%/k% and D, is defined as D, in (51) with k, replaced
by k... Let us assume that it is permissible to use the sinusoidal rays
of the square-law medium to evaluate the quantity (X'Y"!). Because
the average over one cycle of the product of powers of sinusoidal fune-
tions is known, the relative delay { can he written in closed form.
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Let the ray trajectory be written
z(z) = xocos (uz + ¢.) (63a)
y(2} = yocos (az + ¢,). (63b)

The coefficient « does not enter in the final result and is henceforth
omitted. We evaluate

(XY vty = (ggp(n=D))
= 2555”7 ([eos (z + ¢} Jleos z + ) D). (64)

It ean be shown that!®

(Coos (= + 6.0 FLe0s (: + 6T
el (20D ) () Yeos [25(6. — 6]

i1\ —1{— &8
+ (zszn:zz)) (2;)} , (65)

(z) E (a+‘b)’b’ (66)

Thus, given a ray trajectory, defined by the parameters z,, v, ¢
and ¢, (or, equivalently, by the values of z, ¥, k., and &, at the input
of the fiber), we can evaluate in closed form the quantity (X‘¥Y=1)
that enters in formula (62) for the relative time of flight, from (64) to
(66).

The above caleulation is incomplete for the following reasons. When
the power law n2(r) of a fiber departs from the exact square law, pro-
jected ray trajectories in the (zy) transverse plane are precessing
ellipses.* That is, the principal axes of the near-elliptical trajectories
slowly rotate as a function of z. This precession 1s unimportant for
circularly symmetric fibers. For noncireularly symmetric fibers, how-
ever, the ellipse precession introduces an averaging effect. Further-
more, the noncireularly symmetric components of n2(r, ¢} change the
eccentricity of the precessing ellipse. The axial component k. of the
wave vector remains a constant, but the axial eomponent I, of the
angular momentum varies. Finally, in real fibers, slow (adiabatic)
changes of the refractive index law along the fiber axis are likely to
oceur that must be taken into account. The twists of the fiber axis
must also be taken into account. Thus, a realistic assessment of the
effect of small nonecircularly symmetric departures of the index law

where

*It is well known in mechanics that the only r** potentials (potential U ~ n?)
that give closed trajectories are the harmonic potential U7 (r) ~ n*(r) = 1 — +* and
the Newton potential I/ (r) ~ ni(r) = 1/r.
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from square law on pulse broadening requires a deeper and more
intricate analysis than the one given in the present section. However,
the result in (62) and (65) can be used as a basis for more complete
analyses.

VI. CONCLUSION

From a rather straightforward application of the Hamilton ray
equations, we have obtained closed-form expressions for the pulse
width in graded-index fibers when #*(x, ¥) — 4% is a homogeneous
function of z and y, and for fibers whose profile departs slightly, but
otherwise arbitrarily, from a square law. Inhomogeneous dispersion
was taken into account. The expressions obtained are exact. The small
angle (or weakly guiding) approximation need not be made. We have
also given simple expressions for the wave oplics and ray opties
acceptance of weakly guiding graded-index fibers.

The algebraic results given should prove more accurate and require
much less computer time than the straightforward numerical integra-
tion of time along ray trajectories. We have carried the perturbation
only to first order in the small parameter e. To obtain more accurate
results, up to order ¢, we need a more accurate expression of the ray
trajectory. This expression can be obtained, for example, by the
method of strained coordinates.” These more accurate expressions are
probably not needed, however, in most practical cases.
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APPENDIX A
The Hamiiton Equations of Ray Optics

The Hamiltonian form of the ray equations are well known in
mechanics and wave dynamies,® and they have also been used fre-
quently in opties (e.g., Refs. 14, 15, 17, 21, and 22). However, their
simplieity and power is not always appreeiated. The physical difficulty
is that it is not always recognized that ray momenta and wave vectors
(or photon momenta) are identical concepts. On the other hand, ray
momenta (proportional to the wave vectors) need be ecarefully dis-
tinguished from mass-carrying momenta (proportional to the group
velocities).2 On the mathematical side, we need distinguish a funetion
such as k.(z, ¥} and the value k., assumed by that function. We must
also be aware that da/dz denotes a total derivative, that is, in the
present context, the variation of the quantity a along some given ray.
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If @ is a known function of z and ¥, and z = z(2), ¥y = y(2) dencte a
known ray trajectory, then da/dz = (da/dx) (dx/dz) + (3a/dy) (dy/dz)
can be evaluated explicitly as a funetion of z. Here again, an arbitrary
peint in space x, ¥ should not be confused with a specific ray trajec-
tory £ = z(2), v = y(2). Unfortunately, it is not possible to go into
more details here. An excellent reference is Lighthill’s paper.® A eom-
parison between the W.K.B. method and the Hamilton equations is
given in Ref. 14.

Let X = (x, v, 2, icf)} denote 0 point in space-time (f is time) and
X = (k. k), k., 1w/c) denote the four-wave vector, with « the angular
frequency. An arbitrary medium is characterized by a function of K
and X that we denote

HEK, X) = 0. (67)

The Hamilton equations for light pulses X{o), K{(o) are
dX/de = dH/dK (B8a)
dK/de = —3dH /X, (68h)

where ¢ denotes an arbitrary parameter.

Equations (68a) and (68b) can be considered the basic postulates
of geometrical optics. From a wave-optics point of view, {68a) follows
from the requirement that the wave lengths and periods of the waves
that constitute a wave packet be the same in the direction of a ray.
Equation {(68b) follows from (67}, (68a), and the fact that K is the
gradient of an eikonal function. Thus, in wave optics, the Hamilton
equations {(68) are derived from first principles and need not be
postulated.

Let £ denote a point in phase space (k. k,, w, z, y, {} at the input
plane, and ¥ a point in phase space at the output plane. The optical
system maps the input phase space into the output phase spice, that is,

£ = §(¥). (69)

Tt follows from (67) and (68) that the Jacobian of the transformation
(69) is unity, a result often used in photometry. Equivalently, we can
say that the determinant of paraxial ray matriees is unity or that the
ray density in phase space is a eonstant of motion (Liouville theorem).
These three statements are obviously equivalent, provided the rays
are not reflected.

A souree of light that is time and space incoherent is described by
a distribution S () in phase space. Each small volume in phase space
can he pictured as an optical pulse, provided the dimensions of the
volume are larger than unity. More precisely, this picture requires
that AwAt > 1, Ak, Az > 1, and Ak,Ay > 1. The detailed structure
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of the pulse is ignored in ray optics. Only the motion of the center is
considered.

The transmission T, of an optieal pulse through the optical system
is & presumably known function of £ that we denote as

Tl - T1(£) (70)

For lossy optical systems, T, < 1. Because the Jacobian of the trans-
formation ¥ — ¥’ is unity, the output distribution is simply

8(g) = S(HT(Y). ()

The power emitted by the source and the power that cun be collected
at the output of the optical system are obtained by integrating S
(or S8’} over all variables, except { (or t'). Thus,

P

[ s®wo (720)
Py = [ s@a), (72b)

where { = (k;, k,, w, %, y) and ¢’ is similarly defined. The terms {d{)
and (dt’) denote elementary volumes in { and {’ spaces, respectively.
The response of the detector could be described by a function D(E').
TFor simplicity, we do not take the detector response into considera-
tion. All subsequent results follow in a rather straightforward manner
from the above results, through a succession of approximations.

Let us assume that the properties of the fiber do not vary with time.
This means that the Hamiltonian in (67}, the transmission T, the
mapping ¥ — ¥, and the pulse delay do not depend on time. In
particular,

to=t 4 (0. (73)
Sources that are t-separable, on the other hand, have the property that
8(8) = POF(Y). (74)

That is, the distribution in Z-space does not vary with time. Ior a hot
tungsten wire whose temperature varies with time, the spatial phase-
space distribution is almost lambertian at all times, but the frequency
spectrum {approximately given by the Plank law of radiation) varies
with time. Thus, (74} is not applicable to that source. For consistency
with (72), we assume that F({} is normalized to unity.

For most sources, we can further assume that

F({y = 2(0) /(D) (75}
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where p = (., k,, 7, y) denotes a point in spatial phasesspace. That
is, we assume that the spatial distribution does not depend on what
part of the frequency spectrum we are considering. Both @ and f are
assumed normalized to unity. This ensures that F is normalized to
unity. When the spectral width of the source is small (e.g., less than
1 percent, as i3 the ease for light-emitting diodes) and the fiber material
absorption does not exhibit sharp resonances in that band, we can
assume that

T8} = Tow)T(p) (76)
t() = to(w) -+ t(p). (77)

For definiteness, we assume that the maximum value of 7w} is

unity, and we define {p(w) as the delay experienced by axial pulses.

We evaluate in the main text ¢(p}/t at a fixed angular frequency.
The pulse response is obtained from (71) to (77),

and

Py = fP[t' — to{w) — t(p) ]2 (w) To(w) f(p) T (p) (dp)dw
= f PUIY — to(w)]0 () Tolew) o, (78)

where

Py = [ P — 01 ®)T @) (dp). 79

In writing (78) we have used the fact that the Jacobian of the trans-
formation ¥ — ¥ is unity and that dw = dw’. The pulse response is
the convolution of the pulse response in (79), which we may call the
quasi-monochromatic pulse response, and the spectral width of the
source. In most cases, Ty (w) is a constant. For injection lasers, the quasi-
monochromatic pulse response is the most important contribution.

In what follows, we assume that the fiber is uniform and long com-
pared with the period of ray oscillation and therefore approximately
z-invariant. Let the Hamiltonian in (67) be written

H=Fk — kb by, w, z, y) = 0. (80)
The Hamilton equations (68) are
dz/dz = —0k,/0k, (81a)
dy/dz = —ok./ok, (81b)
di/dz = ok./duw (8lc)
dic,/dz = ok,/oz (81d)
dky/dz = dk,/dy. (81e)
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Let us assume further that the medium is isotropie, that is,

K= B z,y) — Kk — k2. (82)
Thus, (81a) to (81e) are
dr/dz = ky/k. (83a)
dy/de = k,/k. {83h)
dt/dz = (ak?/dw)/2k, (83c)
dk./dz = {98k*/ax)/2k. {83d)
dk,/dz = (8k%/ay)/2k.. (83e)

According to (83c), the time of flight of a pulse along a ray for a period
(period = Z) is obtained by integrating (dk*/dw)/2k. from 2z = 0 to
2= Z. If k(o) = k(w, 0, 0) denotes the wave number on axis, the
time of flight of a pulse along the 2 axis is similarly obtained by inte-
grating (8k3/dw)/2kq. Thus, the ratio of the time of flight of a pulse
along o ray to the corresponding time on axis is

b= (ko/k:)(0k*/ du?)/ (dlid/det), (84)

where { ) denotes an average over a ray period. If the trajectory is not
periodie, { ) is understood as a limit for 2 — «. When k is proportional
to w, (84) reduces to

t = (k%}/kok-. (85)

Let us now observe that, from (83a), (83b), (83d), and (83e),
2N X + Y)/det = k* — k2 + Xak*/oX + Yak*/aY, (86)

where X = 22, ¥ = 32 This is easily verified by carrying out the differ-
entiations. Equations (86), (84), and (79) (with a slightly different
notation) are those used in the maln text.

APPENDIX B
Acceptance of Highly Oversized Fibers

The acceptance, or effective number of modes transmitted by the
optical system, is the volume of the accepted rays in phase space
divided by (2r)2. We have said earlier that, if the fiber is very long,
all leaky rays are eliminated and the acceptance is simply the volume
enclosed by the profile k2(z, y) divided by 4x. If the fiber is highly
oversized, however, many leaky rays (k. < k,) are not significantly
attenuated.’® We need then consider the ray-optics condition that the
tangential (rather than axial) component of the wave vector be larger
than k, at the core-cladding interface. The ray-optics acceptance is
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now evaluated for circularly symmetric fibers. We specify that
B+ > E at 7 = a, (87a)

where %k, denotes the azimuthal wave number at the interface. We

also have the condition
k2> 0, (87b)

which is not implied by (87a). In this appendix, we restrict ourselves
to small differences in refraetive index, in which case condition (87h)
can be ignored. Because of the conservation of [. (the axial component
of the angular momentum), we have

rky = ak, (88)

for a ray with 2 = r, y = 0, k., ky, at the input plane, that can reach
the interface » = a. Thus, condition (87a) is

B (r) — k2 — k2 + (2/ad)kE > K. (89)

Equation (89) defines an area in the k., &, plane bounded by an ellipse.
We have to make sure, however, that rays outside that area do in
fact reach the interface. This is not necessarily the case. The maxi-
mum ray radius i, is defined implicitly by

B2 4 (1 — »2/vipkd = B2(r) — E*(rar), (90)

where 7 is the largest real number that satisfies (90). (The initial
radius r is considered a constant in the present discussion.) Equation
{90) shows that the k;, k, that ecorrespond to 73 are contained in an
ellipse with semi-axes squared k%, = K2(r) — k*(ryy) and k%, = [k2(n)
—k2(rar) 1/ (1 — 22/4%,), respectively. If %*(r) is never increasing, we
are sure that k;p keeps increasing as ry increases from r to a. We do
not have any such assurance for ke, however. When ri reaches a,
there may be acceptable values of k., &, that are located outside the
ellipse defined above. For each profile, we need therefore verify that
ki, (ra) never exceeds ki {a). We easily verify that this is the ease for
square-law fibers, beeause

o = k?(r.?u — /(1 — "2/7‘121!) = kiry (91)

increases with ry for any ».
Thus, for square-law fibers at least, we can proceed with the caleu-
lation of the area of the ellipse defined by (89}. This area is

wlk2(r) — K21 — r2/a?)~h (92)

Substituting this result in the general expression for the acceptance
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factor, we obtain
M= @) [T e — BIA - /ey ©3)
0

This expression simplifies if we introduee the variable v = (1 — r*/a®)t.
Equation (93) becomes

N? = (a2/2) fﬂ Ry — K2 (94)

Thus, the ray-opties acceptance of most circularly symmetric fibers is
half the area enclosed by the curve k*(u)a®. I'or a step-index fiber, we
obtain from (94}

N = (ki — kDa?/2 (step-index, ray optics). {95)

This is twice the wave-opties aceeptance. Thus, for step-index fibers,
the slightly leaky rays carry half the power. Our result agrees with
that in Ref. 16 for weakly guiding fibers. For a square-law fiber, with
E{a) = k., we obtain

N2 = (ki — k¥a?/6 (square-law, ray optics). (96)

In square-law fibers, 25 percent of the total power is carried by slightly
leaky rays.*

APPENDIX C

Impulse response width of near-square law fibers

When the source distribution is lambertian, all propagating modes
are equally excited. It is convenient in that case to express the relative
time of flight ¢ for near-square-law fibers given in (56) as a funetion of
the mode numbers {azimuthal number: y =--- — 2, —-10 12 .-
and radial number: e« = 0, 1, 2 - - .} rather than %, and I.. This can be
done by quantizing the ray trajectories. [If the W.K.B. method is
used, it is essential to first remove the singularity of the Helmholtz
equation at r = 0. This is achieved by changing the independent
variable from r to log (+).] One easily finds that the axial component
of the ray angular momentum I, is equal to u. Furthermore, we can
use for k, the well-known expression applicable to square-law media.
The result (56) is written below as a funetion of «, g, for the reader’s
convenience. We have

o, u) = (1 — B) (1 _ 1BD, + izF,Nv), (97)

* This is in agreement with a recent result by D. N. Payne.
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where
B = 29KV*/K,

g=2ax+ [u| +1; |g| =abs val (&)
Fy= 279Dy = §(x + DK,/ (KoKY?)
Ny= @ 3 (20 — mILn/2) T — /gl T (98)

The parameters K, = k2, vy =0,1 ... and D,, vy = 1,2 --- are ob-
tained from the square of the wave number: K(R) = k2(R) = (w/c)?
n?(R) of the fiber ag a function of B = r?, measured at the nominal
wavelength A, and at a slightly different wavelength, A, expanded in
power series of E as follows

K(E) = Ko — KhiR + Ko +- - (o) (99)
K'(R) = Ko — KiR + KGR* +- -+ (M),

The D., are obtained from (99)
D, = KoK, — K,)/K,(K; — K). {100)

If we can neglect the power in the leaky modes, the mode numbers
a, u are restricted by the condition k. > %,, that is,

B <1 — K.,JKors 24n/n, (101)

where K, = k% is the square of the cladding wave number. The root-
mean-square impulse response width is defined as

¢ = 5,000[{2) — (0]} ns/km, (102)

where { } denotes an average taken over all the modes permitted by
{101). Thus, it is a straightforward matter to evaluate from our ex-
pression in (56) the root-mean-square width of the impulse response of
any circularly symmetric near-square law fiber, provided the wave-
number profile can be measured with sufficient accuracy at two
wavelengths.
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Effects of Environmental Nuclear
Radiation on Optical Fibers

By J. SHAH
{Manuscript received March 11, 1975}

A comparison of the available date on environmental radiation and
on the radiation damage in fibers and glasses under controlled laboratory
condittons leads wus to the conclusion that long-ferm exposure o gamma rays
and neutrons in the cnvironment does not pose a sertous problem for the
oplical fibers.

Resistance of optical fibers to damage from long-term exposure to
environmental nuelear radiation is an important factor to be considered
when planning a communication system using these fibers. In this
report, we first summarize the nature and intensity of the natural
environmental radiation to which the fibers will be exposed, and then
discuss the availuble duta on radiation damage in optical fibers and
glasses under controlled laboratory conditions. A comparison of these
data leads us to eonclude that long-term exposure to gamma rays and
peutrons in the natural environment does not pose a serious problem
for the optieal fibers.

. NATURAL ENVIRONMENTAL RADIATION

The total background radiation at sea level is divided approximately
equally between extraterrestrial and terrestrial components.! The
extraterrestrial component results from the secondary radiations in-
duced by cosmic rays, solar radiation, and Van Allen belt radiation.
The terrestrial component is due to the radiation from naturally oceur-
ring radionuelides in the earth. Gamma rays (y rays) and neutrons {n)
are important constituents of this radiation® and we will eoncentrate
on them for the purposes of this report.

1.1 Gamma rays
A number of meustirements of the intensity of the environmental
rudiation as o function of location, altitude, and latitude have been
made. According to Hollaender,* the worldwide average exposure is
approximately 0.5 R/yvear (R stands for roentgen, a unit of exposure
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dose. A brief discussion of units relevant to this report is given in the
appendix). More recent studies (e.g., Ref. 4) indicate that values
range from 0.1 to 0.2 rad/year in normal regions (rad is a unit of
absorbed dose—see the appendix). An average value of 0.13 rad/year
appears to be generally acceptable® for normal regions.” However, for
the purposes of our diseussion of radiation damage, we will deliberately
overestimate the y-ray dose and assume a value of 0.5 rad/year.

1.2 Neutrons

Hess et al® have measured the extraterrestrial neutron flux as a
function of neutron energy and found that the total neutron flux
LSo™ ¢ (E)dE] at sea level is &z 1.5 X 10° n/cm*-year.! Measurements
by Herbst®? indicate that the additional neutron flux from terrestrial
sources is 5 10° n/em®year in cpen air. However, in tunnels or above
rocks containing a high density of radioactive nuclides, or in regions
with high radioactivity, Herbst obtained a flux of up to 4 X 107
n/em?year. For the purposes of estimating neutron-induced damage,
we will assume a rather high value of 1 X 108 n/em?-year to provide
us with an extra margin of safety.

Il. RADIATION DAMAGE IN FIBERS AND GLASSES
2.1 Gamma rays

The v rays interact with glasses prineipally by forcing the electrons
to leave their normal pesitions and move through the glass network.
The primary consequence of this is an increase in the absorption
coefficient in the wuv-visible-near-ik range. A detailed study of
vy-induced damage in fibers has been made by G. H. Sigel and co-
workers® at the Naval Research Laboratory. They find that the
vy-induced change in the refractive index is small (<10?) at doses as
high as 10° rads. They also find that the y-induced losses in optical
fibers depend strongly on the fiber composition and vary from 10—
dB/km-rad for bulk Suprasil 8Si0; to 5 dB/km-rad for Corning fiber
No. 5010 at 8000 A. Thus, pure fused silica is extremely resistant to
radiation, while the Corning 5010 is guite susceptible to it.

A 20-year exposure to natural environmental v radiation {assumed
to be 0.5 rad/year) would lead to an increase of 50 dB/km for Corning

" There are regions with exceptionally high level of natural background radistion.
In some special areas such as Kerala in India or the S8anto Spirito province in Brazil,
values of up to 14 R/year have been reported (Ref. 2). Certain regions of the Black
Forest {(Germany) have shown dose rates up to 1.8 R/year. However, these regions
are rare and will not concern us in this report.

T Later reports (see Ref. 7) indicate that the values reported by Hess et al may
be too high by a factor of 2 to 4.
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5010 fiber. However, even in this case, the normal bleaching of the
damage® would probably reduce the total {20-year) loss to <15dB/km.
Although this number appears large, it is only a small fraction of the
loss of 1000 dB/km present in the Corning 5010 fiber before exposure
to any radiation. Furthermore, this is the worst case reported by
Sigel et al.® The y-induced losses are generally smaller in fibers with
smaller initial losses.” For example, the Corning low-loss fiber (type B),
having germanium-doped silica core and pure silica cladding, has an
initial loss of 10 dB/km and a y-induced loss of 0.01 dB/km-rad be-
tween 8000 A and 12,000 A (1.2 um). Thus, even if we neglect bleach-
ing, the y-induced loss in 20 years would amount to enly 0.1 dB/km.
Since fibers with small initial losses are precisely the ones that will be
used in communication systems, it seems reasonable to conclude that
long-term exposure to environmental vy radiation will not seriously
affect the fiber performance.

2.2 Neutrons

Neutrons interact principally with the nuclel rather than electrons
in solids. Neutron radiation, therefore, results not only in increased
absorption losses but also in structural changes that lead to changes in
density, refractive index, rotary power, birefringence, thermal con-
ductivity ete. Since small differences in refractive indices of the core
and the cladding are essential to fiber performance, we will pay par-
ticular attention to refractive index changes as well as to inerensed
losses caused by n-irradiation.

To our knowledge, the only study of n-induced losses in optical
fibers is by Maurer et al.”® They irradiated high-silica-glass multimode
fiber waveguides with 14-MeV neutrons, using doses of as high as
1.4 % 107 n/em® They concluded that the n-induced loss varies
roughly linearly with the total dose and is less than 1.5 X 107"
(dB/km)/(n/em?) in the 8000-A to 12,000-A region. This number,
which is obtained from the figure given by Maurer et al,”® is in fact an
overestimate of n-induced damage, because we have disregarded the
fact that the n-irrndiated samples also received a simultanecus dose
22 1000 rads of v radiation. However, even if we assume this to be the
true value, a 20-year exposure to environmental n-irradiation (2 X 10°
n/cm?) would inerease the loss by only about 3 X 10-2 dB/km. It
should be emphasized that this extrapolation is only approximately
valid because neutrons in the environment have a wide range of
energies (from 0.01 eV to 10% eV), whereas the neutrons in the con-

* While there is no evidence that the correlation between low radiation damage
and low initial losses is universally valid, such a correlation definitely exists in Lhe
presently available data.
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trolled experiment were monoenergetic (14 MeV). However, even
after a thirfyfold increase, the n-induced losses would still be less than
1 dB/km. Therefore, it seems reasonable to conclude that absorption
losses induced by long-term exposure to environmental n-radiation
will not seriously affect fiber performance.

Neutron-induced changes in the refractive index of the fibers can
be a potential source of problems. We know of no measurements on
fibers which can shed light on this problem. However, an extensive
literature exists on the effects of n-irradiation on various forms of
silica and other commonly used glasses {a good summary is given in
Ref. 11). The refractive index of vitreous silica changes by 0.67 percent
under a flux of 2 X 10® n/cm? of thermal {<0.1 V) neutrons.’? From
the measurement, by Primak,”* we deduce that the rate of increase of
the refractive index of vitreous silica is approximately 5 X 10-% per
{n/cm?) for doses less than 1 X 10" n/em2 This suggests that the
changes in refruetive index induced by environmental neutrons
{2 X 10°* n/em? in twenty years) will be less than 1 X 10712, o truly
negligible effect when we consider the faet that the difference in the
refractive index of the core and the cladding is typically larger than
103,

No data are available on the n-induced changes in refractive indices
of other glasses. However, density changes have been investigated
for many glasses.!! For vitreous siliea,'? the density increases approxi-
mately linearly (10~ percent per n/em?) up to 2.5 X 10® n/em? and
then saturates. Other glusses (except borosilicate glusses) are also
quite resistant to neutrons and show very few changes up to about
107-10!¢ n/em?.* The borosilicate glasses are more susceptible because
boron, like other light elements, has high neutron ecross section. How-
ever, even these glasses show damage only when flux levels exceed
10% n/em?,” which is some five orders of magnitude larger than the
accumulated {20 years) flux of &~ 2 X 10° n/ecm? encountered in the
environment,.

lll, CONCLUSIONS

We have summarized the available data on environmental nuclear
radiation and also the data on radiation damage in glasses under con-
trolled laboratory conditions. Unfortunately, the laboratory experi-
ments were not performed with the exact y ray or neutron energy
distributions that one encounters in environmental radiation. It is
difficult, therefore, to make accurate predictions about the radiation
damage in fibers caused by environmental radiation. However, we

* See Table 6.12 in Ref. 10.
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have muade sume approximate estimates from which it is rensonable
to conclude that damage induced by environmentul y or neutron
radiation should not pose any serious problems to optical fibers so fur
as their optieal loss or refractive index are concerned. More recent
experimental works by Evans and Sigel® and Mattern et al.™ do not
affect this conclusion.

Some generul eomments seem to be appropriate in conclusion. Pure
fused silica seemis to be extremely resistant to radiation damage. It is
also useful to remember that the addition of small amounts (0.1 to
0.2 percent) of Cerium® ' makes most glasses more resistant to radia-
tion. We have not discussed damage by « particles, but it is appro-
priate to mention here that « particles have very short ranges in air
as well us in most other materials. Therefore, it seems unlikely that &
particles will pose any problems for the optical fibers if the fibers ure
enclosed in a conduit. Finally, the background luminescence induced
by environmental ionizing radiation has been eonsidered by Cohen
and Lanzerotti’® and found to be not signifieant for fiber optic com-
munications systems.
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APPENDIX
Units of Dosimelry

The most useful units in the study of radiation damage in solids
are the partiele or photon fluxes us o funetion of their energy. Thus,
¢ (#)dl, expressing the number of particles/em’-sec in the energy
range E to E + dE, completely speeifies the incident radiation field.
However, many speeial units are frequently used in specifying the
rudintion. Roentgen () is o unit of exposure dose used for X rays
and ¥ rays and is defined us follows. Roentgen is that exposure of X
or vy radintion which gives a dose of 87.7 ergs/g to air.

A speciul unit of ubsorbed dose is ealled u “rad.” One rad = 100
ergs/g.

Unlike the roentgen, the rad is independent of the hrradiated ma-
terial. This means that a given beam of radiation acting for the same
time will deliver different doses, expressed in rads, aceording to whether
it is absorbed in air, tissue, or other materials. The rad in Section I
refers to air as the reference material. The rad as used here is indirectly
2 measure of the radiation field rather than the absorbed dose in the
sample because it refers te energy absorbed by air rather than the
sample under study. Under these conditions, rad and reentgen are
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numerically equal within about 20 percent and can be used
interchangeably.

In the weork reported by Sigel et al.,? 8i is used as the reference
absorbing material. The differences in using air or 8i as the reference
material are small (less than a factor of two) and are inconsequential
for the purposes of this report.

The conversion between rad and n/em? and photons/cm? as a fune-
tion of energy are given by H. Stern.!® (See also the report by J.
Moteff.?”) For example, for 1 MeV v-ray photons, 1 rad =2 2 X 10°
photons/em?. For 1 MeV neutrons, 1 rad &2 2.6 X 10% n/em? For
¥ rays with energy ¥ between 0.07 and 2 MeV, 1 rad (air) &2 2 X 108/ F
photen/em?. Conversion factors at other energies may be obtained
from the above references. See also the American Institute of Physies
Handboolc *#
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Loose Tube Splices for Optical Fibers

By C. M. MILLER
{Manuscript received March 14, 1975)

A technique for splicing oplical fibers has been developed that uses a
self-aliyning square cross-seelion tube, with inner dimensions slightly
larger than the oplical fiber. A total loss of 0.98 dB was oblained for eight
splices connected in series using a graded-index fiber with a 68-um core
diameter. The splices were made one at @ time without the use of micro-
scopes or micremanipulators; however, the fabrication process could be
mechanized and extended to groups of fibers. A holding fixlure could be
added {0 adapt ihis technigue lo a connect-disconnect type splice. The
size of the splice 1s presently 0.012 in. square, making it suitable for use
within cables. Measurement set refinements thal were needed {o measure
individual splice losses as low as 0.05 dB inelude an vmproved defector
aned means for betler control of launching conditions.

I. INTRODUCTION

The basie requirements for low-loss splices are () securate align-
ment, (i) good fiber ends, and {(7i7) aceurate diameter control. Trans-
verse alignment aceurney of approximately +0.1-fiber-core radius
(tvpieally, £0.0001 in.) is required to achieve » splice loss of 0.1 dB.
Good fiber ends may be produeed by seoring and breaking,! grinding
and polishing, or dise sawing. Accurate fiber diameter eontrol is also
needed ; however, significant progress is being made in this aren. Of
these three requivements, aceurate transverse alignment muay be the
most diffieult problem to solve, especially when the field environment
and variability of ernftsmen’s skill are considered.

Single-fiber splicing has been accomplished by Bishee* und Dyaott
et al® using heat fusion. Someda?® suggested using embossed plastic to
obtain transverse alignment. This paper describes a splicing technigque
that uses a loose-fitling, square, cross-section tube to align the fibers.
The splices procduced are small, exhibit very low losses, and are simple
and inexpensive.

Previously, snug-fitting sleeves have been suggested,” but three
problems are usually encountered.
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If the glass sleeve is to support the fiber with the required
alignment aecuracy, it must be less than typically 0.0001 in.
larger than the fiber. Both fiber and sleeve must be highly cireu-
lar, and the fiber diameter must be controlled to at least the
same tolerances. These tolerance requirements have discouraged
efforts to use a snug tube as an alignment mechanism.

Given a snug tube of the proper dimensions, the initial insertion
of a fiber into that tube is difficult. Pinnow?® has described a
method of flaring the inner diameter of capillary tubes, which
reduces the initial insertion diffieulty.

Contaminants that are scraped off the inside wall of snug-
fitting sleeves during fiber insertion are trapped between the
fiber ends where the effect of contamination is worst.

‘‘loose’-fitting square-tube splice described below reduces these

difficulties substantially and appears to have potential application in
several places in a fiber-optic communication system.

ll. SPLICE CONFIGURATION AND ASSEMBLY

The

loose-tube splice combines the alignment accuracy obtainable

by using a groove for alignment* with the small size and simplicity of
glass sleeves.® The fiber ends are biased to one corner of the square
cross section by bending the fiber outside the tube. Figure 1 is o
pietorial layout of the square tube with two fiber ends in position

within
radius

the tube. The tube has nearly flat interior walls and a small
in the interior corners, as shown in the cross section in Fig. 2.

One corner of the square is used as a groove for aligning the fibers.

1218

Fig. 1—Splice configuration.
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Fig. 2—8quare tube cross section.

Epoxy is forced into the square tube prior to insertion of the fibers
and serves several useful functions.

() The epoxy serves as an adhesive after curing to hold the splice
together.
(#7} The epoxy also serves as an index-matching material with good
glass-wetting characteristics.
{#77) Contamination on the fiber ends is washed away by the flow
of epoxy around the fiber ends during insertion of the fibers.

Assembly of u splice involves inserting two fibers with good ends
approximately halfway into each end of a square cross-section tube
filled with uncured epoxy. No particular orientation of the square-
tube cross section is required. The fibers are placed on a flat surface
and bent in a curved pattern. This causes forces to be generated that
rotate the tube so that a diagonal of the square cross section is in the
sume plane as the bent fibers. The tube is therefore self-aligned and
the fibers binsed to one corner by action of the fiber stiffness. After
the bends are made, the fibers are tuped to a flut surface in the bent
configuration and the fibers pushed into the tube until they touch each
other. Figure 3 is a cross-section photograph of a splice showing a
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Fig. 3—3plice cross section showing position of fiber in vicinity of joint,

fiber in a corner of the square tube. Figure 4 is 2 magnified view of one
splice, and a longitudinal section is shown in Fig. 5. In spite of the
small angle between the fiber ends eaused by one end not being broken

Fig. 4—Single loose tube aplice, with tube approximately 0.5-inch long and 0.012-
inch wide.
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TUBE OUTER WALL

Fig. 5—Lengitudinal section, 250X.

perpendicular to the fiber axis, the splice loss for the spliee in Fig. 5
wus only 0.07 dB.

Ill. END PREPARATION

Guod fiber ends are necessary for the fabrication of low-loss splices.
As mentioned earlier, several techniques exist for preparing suitable
ends. A score-and-break technique' was used for end preparation on
all splices reported in this paper. A single fiber is clamped in the
apparatus shown in Fig. 6 with approximately 100-g load applied to the
fiber by a spring. The fiber rests in o groove ulong a 2-in. radius are
and 1s scored lightly with o hand-held diamond knife edge. Fiber ends
prepared by this method are nearly perfect, as shown in Fig. 7. A very
smull amount of edge ehipping ig present where the fiber was seored.

IV. SPLICE-LOSS MEASUREMENTS

After constructing just o few square-tube splices, it became evident
that the measurement set-up being used was not adequate for losses
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Fig. 6—End preparation apparatus.

Fig. 7-—Good fiber end.
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Fig. 8—Single fiber detector.

below 0.1 dB. A new detector was built, which repeated to within
+0.015 dB. Accurate positional repeatability was accomplished by
using o 0.05-in. inner-diameter capillary tube which was tapered t00.006
in. inner diameter by heating and pulling. The fiber is easy to insert in
this detector, and the positional repeatability is excellent. The solar cell
sengsor was immersed in index-matching liquid to reduce reflections,
and a microseope cover slip was used to protect the cell from damage
by the fiber being measured. A photograph of the detector is shown
in IMig. 8. At the input end of the measurement set, a vaeuum chuck
was added to ensure repeatability of launching conditions. This chuck
positions the fiber aceurately along the optieul axis of the 30X launeh-
ing objective lens and the laser. The overall repeatability of splice-
loss measurements is within +0.03 dB.

Care was taken to place the fiber in the same coiled configuration
after splicing so thut bending losses before and after splicing would
be similar. Fiber loss of approximately 0.01 dB/m was subtracted from
the total loss measurements so that losses stated are for the splices
only. All loss measurements were made at a wavelength of 0.6328 um.

Y. RESULTS

Initiallv, u fixture was used to hold the squire tube und control the
fiber bending. Although the maximum loss measured on 23 consecutive
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splices fabricated with this fixture was 0.21 dB, it was found that the
tube would align itself if allowed to rotate. Losses were lower and the
assembly of the splice, as previously mentioned, was much easier.

Eight epoxied square-tube splices fabricated in series using no
fixtures except the end-making apparatus produced a total splice loss
of 0.58 dB or 0.073 dB per splice. The splices had approximately 14 m
of fiber between each splice and on each end and were put together
in series to increase the total loss to an accurately measurable quantity.

It has been found that splices measured in series have higher losses
than when measured individually. Ten earlier splices were fabricated
in series and measured 1.37 dB. The ten-series splices were measured
separately and gave the distribution shown in Fig. 9. The average loss
per splice was 0.077 dB compared to 0.137 dB in series, or a nearly
2-to-1 inecrease for splices in series. The process of peaking up the
power through a single splice probably selects the launching conditions
and therefore the mode structure best suited to the particular imperfec-
tions of that splice. A loss measurement made in this way gives a value
that is too low. Thut is, the loss of a splice with long lengths on either
side or with other splices nearby is apt to be considerably higher than
when measured separately with short fibers on each side of the splice.
The eight-series splices mentioned earlier were not measured separately
because losses as low as 0.03 dB, which would be expected based on the
series loss, could not be accurately measured.

A slight longitudinad separation of fiber ends within the tube occurred
during epoxy cure for the 10 splices in series. Loss measured before
epoxy cure was (.60 dB and 1.37 dB after epoxy cure us stated above.
I'ibers were bent in o 90-degree arc and taped to an optical table while
the epoxy cured. This configuration applied very little, if any, foree
component to hold the fibers in place during cure. The eight-series
splices were bent through an arc of approximately 45 degrees and

5
’7 10 SPLICES
MEASURED
4 SEPARATELY
w
= 0.077 dB
u [
Zz 3
w
[: 4
x
a 2 4
[x]
(] 3
1 2
1
0
[i] 0.05 0.10 015 0.20

SPLICE LOSS IN DECISELS

Fig. 9—8plice loss histogram.
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taped to the table with a definite force applied to keep the fiber ends in
contact. Although this foree (a result of the fiber stiffness) is small, end
geparation did not oceur and n loss of 0.58 dB was measured before
and after epoxy cure.

These extremely encouraging results have stimulated thinking as to
how loose square-tube splices could be applied to other types of
splices, e.g., connect-disconnect configuration.

VI. CONNECT-DISCONNECT SPLICE FOR SINGLE FIBERS

Several configurations based on the square tube can be envisioned
for a connect-disconnect splice, that is, u splice that can be reassembled
many times and used as a eonnector. Figure 10 is a photograph of a
simple fixture that supports a single square-tube splice by the fibers
on each side of the splice. The splice itself is suspended in air. This
fixture is not intended to be a finished design, but it does produce
losses of 0.1 dB or less. The clamps are lined with a thick, soft EVA
layer that grips the fibers and holds them iu position. More practical
designs are sketched in Fig. 11. An index-matching material is neces-
sary to achieve 0.1 dB, although u liquid index-matching muterial
may be feasible.

Polymethylmethacrylate (PMMA) was suggested as an alternative
index-matching material by Pinnow.? This thermoplastic could be
drawn into a fiber and inserted into the square tube. Heat could then
be applied to melt the PMMA, the fibers inserted, and the PMMA
allowed to cool. The splice could be disassembled by again heating the
tube and removing the fibers. These connect-diseonnect splices may

Fig. 10—Quick-conneet holding fixture.
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Fig. 11—Connect-diseonnect holders for single-fiber splices.

be useful as methods for connecting sources, detectors, ard line
regenerators in a fiber-optic communication system.
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The Effect of Longitudinal Imbalance
on Crosstalk

By G. MILLER

(Manuscript received December 30, 1974)

Multipair cables are carvefully construcied to control the coupling be-
tween wire pairs lo prevent excessive crosstalk. Several lypes of coupling
maodes exist belween pairs, bul the principal effort is devoled lo controlling
the '‘metallic-to-melallic’’ coupling mode because the coupling loss in this
path ts the most tmportant in ordinary lelephonic use of the cable. Over a
half-century age, Campbell showed that crosstalk behavior of this mode
could be characlerized by measuring a stmple function ealled capacilance
unibalance. This paper shows that at voice frequencies the crosstalk charac-
leristics of the “longitudinal-to-metallic’’ mode can be predicted by
measuring a second stmilar function of the same parameters that are con-
lained in the capacitance unbalance. With the aid of these two functions,
it is shown how the longitudinal balance of terminal equipment connected
to a cable pair affects crosslalk. It is further shown that a longiludinal
balance of approzimalely 40 dB or more 1s necessary for any stalion or
terminal equipment used in the telephone network so that it will not
significantly inerease the small amounts of crosstalk tnherent in the careful
cable design. Also, a limitation is established for the maximum longitudinal
vollages al voice frequency that can be applied without noticeably increasing
crosstalk and noise in other cable pairs. This limitation 1s approximately
40 dB more restrictive than the tariff limilations for melallic voltages.

I. INTRODUCTION

A multipair cable consists of many insulated but unshielded con-
ductors within a protective conducting sheath. The individual con-
ductors are used to form circuits. In one configuration, called a metallic
circuit, two conductors are paired and form the circuit. Signals are
applied between them. This is called metallic excitation of the cireuit,
and the signal is said to propagate in the metallic mode. In another
configuration, called a longitudinal ecireuit, two conductors are paral-
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leled and these, plus the conducting cable sheath, form the circuit.
Signals are applied between the paralleled conductors and the conduet-
ing cable sheath, which is grounded. This is called longitudinal excita-
tion of the circuit, and the signal is said to propagate in the longitudinal
mode. It is also possible for one wire pair to be used for both eircuits
simultaneously and, consequently, for one wire pair to be simultan-
eously excited in the metallic and longitudinal modes of propagation.
This happens when the terminal equipment is longitudinally un-
balanced, as will be explained.

Because the conductors are not shielded and are in close proximity
to each other, electromagnetic fields generated by current flowing
through the conductors cause energy to be coupled from one circuit
to another. This is called crosstalk and is undesirable, since it may
callse noise in other circuits that can impair the performance of digital
and analog systems, or even be intelligible speech that is overheard
and leads to loss of privaecy.

Crosstalk cannot be eliminated, but several things can be done to
reduce it, that is, to increase the crosstalk loss between circuits. First,
metallic circuits are used rather than longitudinal cireuits, because it
was found by experience that the crosstalk loss between two metallic
circuits is generally greater than the loss between two longitudinal
circuits or between a longitudinal and a metallie circuit. Second, ad-
jacent conductors are paired and often twisted and are used for the
metallic eircuits because they are less susceptible to inductive noise
and the crosstalk loss between twisted pairs is generally greater than
between nontwisted pairs. Twisting reduces crosstalk by assuring that
each pair of the cable is exposed to opposing couplings by transposing
its conductors relative to the disturbing pair. Third, the terminal
equipment at both ends of a pair should be longitudinally balanced,
i.e., have impedance symmetry with respect to ground, because longi-
tudinal imbalance has the effect of producing longitudinal excitation
which consequently can increase crosstalk. Finally, the cable pairs are
also constructed to have longitudinal impedance symmetry for the
SAme reason.

Since metallic circuits are usually used, and both cables and terminal
equipment are usually constructed to be longitudinally balanced, most
crosstalk studies to date have concentrated on what is called metallic-
to-metallic crosstalk, i.e., crosstalk between balanced metallic circuits.
Much less is known analytically about the crosstalk loss between
longitudinal circuits or between a longitudinal and a metallic circuit.
For example, to explain erosstalk between balanced metallic circuits,
Campbell! assumed that all circuits within a cable were longitudinally
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symmetrieal, that the pairs were excited metallically, and that, con-
sequently, the applied metallic signal would not excite any longitudinal
voltage in the disturbing or disturbed pairs. Thus, crosstalk would be
due to cable characteristics alone. Campbeil was then able to show
that crosstallk at low or voice frequencies, where inductive coupling is
negligible, was very nearly proportional to the capacitance unbalance,
which is a function of the four interwire eapacitances between two
eable pairs, and is now used as a measure of quality of o cable with
regard to crosstalk performance.

In another study, Foschini® developed an accurate transmission
model of cable systems for eomputing crosstalk which is an extension
of Campbell’s work. He too assumed longitudinal symmetry and
showed that crosstalk eoupling losses between metallic circuits can be
predicted quite accurately from Campbell’s capacitance unbalance. Al-
though his results are valuable in the study of crosstalk for the metallic
mode of propagation, they, as well as Campbell’s results, do not con-
sider the effects of terminal imbalance on erosstalk loss.

The objectives of this paper are to extend the results of Campbell
aid Foschini by first removing the constraints of metallic eircuits,
terminal balanee, and pair symmetry; and to construct n model to
permit calculating the erosstalk loss between pairs as a funetion of
terminal balance and pair symmetry. The model is used to show why
terminal imbaluance ean greatly increase crosstalk by causing longi-
tudinal excitation of a euble pair and, consequently, why limitations
must be imposed on the longitudinal balance of terminal equipment
and on the direct upplication of longitudinal signals. These objectives
are accomplished by showing, through numerical solutions and ex-
perimental results, that longitudinal excitation ecouples energy into
adjacent wire pairs with much less loss than does metallic excitation.

The paper is divided into four seetions. First, the important results
on longitudinal balanee and longitudinal voltage restrictions are given.
Next, the model of erosstalk between two wire pairs in a cable is
analyzed using transmission line equations. This model is used to
derive a new set of crosstalk coupling coefficients that can be used to
relate the crosstalk loss between two metallic eireuits, n longitudinal
and o metallic eircuit, and two longitudinal eireuits. Third, average
values for these coupling coefficients for a typical cable are ubtained,
derived from measured characteristies. Using the coupling coefficients
the predicted inerease in crosstalk resulting from longitudinal excita-
tion is compared with direct measurements of the increase made on
another cable. Finally, restrictions on longitudinal bulance and longi-
tudinal voltages are established.
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Il. RESULTS
2.1 Requirement on l'onyitmlinal balance

For application to crosstalk performance, it is appropriate to define
a longitudinal balance* of terminal equipment as

ew(f)
ec(f)|’

where ¢z is the longitudinal voltage produced when a metallic voltage
e i8 applied at any frequency f. The subsecript ‘M — L” means the
conversion from a metallically applied voltage to a longitudinal voltage.
This paper shows that a balance of approximately 40 dB or more in
the voice frequency region is required for any terminal deviee to ensure
that the level of crosstalk that already exists in the network will not
be significantly increased. This requirement is based on measurements
of the near-end crosstalk at 1000 Hz of cable with a balanced and
unbalaneced termination. It is assumed that any metallic signal applied
to the telephone network does not exceed the power level specified in
Ref. 3. Longitudinal and metallic voltages are defined in Section 3.3.

BALy-L(f) = 20 logio

2.2 Restriction of longitudinally applied voltages

Crosstalk coupling losses decrease with increasing frequency and
hence voltage restrictions are frequency dependent. Figure 1 shows
the limitations on applied longitudinal voltages established so as to
inerease the crosstalk energy already present in the telephone network
by no more than about 1 dB.

2.3 Derivation of crosstalk coupling coefficients

Three new capacitive coupling coefficients have been derived that
can be used with a simple but reliable computation method to predict
the degradation in crosstalk performance for a particular cable when
any of its terminations are unbalanced. These coefficients are given in
Table 1. The coefficients are defined in eqs. (10) to (13), and the
interpair capacitances given in the formulas are the capacitances be-
tween the pairs shown in Fig. 2.

IIl, COUPLING BETWEEN TWO WIRE PAIRS IN A CABLE
3.1 Transmission line model

Figure 2 models two wire pairs within a cable of length I. The follow-
ing assumptions about a cable are made to construct this model:

* A second type of balance for noise immunity purposes is a separate but Important
consideration for good telephone network performance. It is defined in Section 4.2.
However, crosstalk does not enter into establishing its restrictions.
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(#) The impedance and admittance per unit length of each wire
pair, the admittances to ground per unit length, ete., are
constant.

(¥2) The conductance to ground and between wire pairs is negligible,
i.e., the adniittances are purely capacitive.

(##7) The inductive coupling between pairs is negligible at voice
frequencies.

(¢v) The impedances per unit length of all wire pairs are equal.

Let the admittances per unit length between the two circuits be ¥y,
Y.3, Y4, and Y, connected between conductors 1 and 3, 3 and 2, 2 and
4, and 4 and 1, respectively, where conductors 1-2 form one twisted
wire pair and 3-4 form the other pair. The impedances per unit length
of the four wires are Z,, Z., Zs, and Z, and the admittances of wires
to ground are Yy, Y., Yy, and ¥y, The admittances per unit length
of the wire pairs are Yy and Y3,, and the veltages and eurrents are
Iabeled in the figure.

Consider a differential section of the model of length Az. It is readily
seen that the following eight current-voltage relationships hold for
this differential section:

Vi{e + Ax) = Vi(a) — I{(z)Z,A2 (la)
Vilz + Ax) = Vilz) — [(2)Z:A2 {1b)
Val{w + az) = Vi(r) — Is(2)Z;Ax (1c)
Vilz + Ax) = Vi(z) — [(2)Z,Ax (1d)

Iz + Az) = [i(x) — {Vi(z) — Vo(2)} Y aAz
_V]_(.'B))’lgﬂ.v - {Vl(ﬂl) - V;{(.L')} Ylgﬂ.'l?
—[Vi(z) — V()] Yudx (le)

D(a + ax) = Li(a) — {Va(a) — Vi{2)) V1A
—Vn(:t:) Y29A.'B —_ {VE(J:) - Va(ﬂ,)}Y:gsﬂﬁl
—§iVa(n) — Vi(a)} Yax (1)

Ij(e + Az) = I(z) — {Va(z) — Vi(z)} YVahze
—Vila) Y80 — [ Vala) — Va(z)} Vedx
—{Vi() — Vi(@)}Yndz (1g)
I|(.lf + A.L) = Il(.'l,') —_ {V,;(:L) — V;}(:L')}Y;HAQJ
= V()Y o — {Vy(2) — Vao()} Vi
—{Vi(x) — Vi(x}} Y iz, (1h)
Dividing through by Ax, taking the lLimit as Ax approaches zeroc and

recognizing the definition of the derivative, using assumption 3, and
writing the resulting eight equations in matrix form, we obtain eq. (2).
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Fig. 1—Longitudinal signal limitations.
3.2 Transmission line equations
Ilquation (2) above can be written in matrix notation as
dVv
— = —ZI
e (3a)
dI
— = —YV 3b
dm : (3b)
where
V]_ (.’E) Zl 0 0 0 I]_ (3:)
Va(a) |’ 0 0 Z; 0]° I3(a)
V.;(.'l:) 0 0 1] Z.; I.; (3))
Table | — Average crosstalk coupling coefficients
for a multipair cable
Average
Coeflicient Magnitude | Formula
(picofarads) |
Chiraany 7.5 l Cia —Chy — Coy + Cuny
CL‘_‘JI[ 65-2 2!0[3 + Clﬂ - C!a - CZ‘.’
Cris, 64.0 2C: — Cry + Coa — Cyy}
Crat, y076.0 4{Cs + Crs + Cozs + Cua}
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are the voltage, impedance, and current matrices, respectively, and,

using assumption (iz),

[Cly + Chz —Cys —Cn —Cu ]
+013 + Cl—l
—Ch Cay + Cra —Cu —Cyy
Y - J(gj +023 + 024
—Ca —Cx Cap + Cy4 —Cyy
+Cl3 + C!:‘.
—Cue —Cay Cag + Cua
L +Cu + Ca)

is the admittanee matrix. Equations (3a) and (3b) are basic transmis-
sion line equations deseribing the veltage-current relationships be-
tween wire pairs. We will use them to calculate crosstalk coupling
between wire pairs. They are more conveniently written as a matrix
differential equation:
V
Jl7)

d V]__O z
d.l:[l B Y O

where O is a 4 X 4 null matrix. The solution of eq. (4) is straight-
forward and is discussed in Appendix A.

(4)

3.3 Crosstalk coefficients for various coupling modes

Since there is negligible inductive coupling at voice frequencies, the
insight to crosstalk coupling can be obtained from the transmission
line equations involving the admittance matrix only. Rewriting eq.
{3b) explicitly, we have

rdL/dI] Ciy + Cua —Ch —Cha —Ciu [V
+Cu + Cu
dl,/dz | =~ Cop + Ch1a —Cly —Cy V.
. +Ca + Cu
= = jJu 3
dls/dz —Cia —Ca Cig + Cus —Cu Va
+Cu + Cxn
dI|/dI —Cu —Cu *Cu C{.p + CH Vl
L L +Cu+ Cu ([ )
(5)

It is clear from eq. (5) that coupling between wire pairs 1-2 and 3-4
could not possibly occur if the four interpair capacitances Cys, Cuy,
Cu, and Cay were all zero regardless of the longitudinal imbalance at
the terminations. Furthermore, inspection of eq. (5} shows that the
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coupling between the wire pairs is some function of these four inter-
wire capacitances. This is seen by observing the contributions to df,/dx
and dI,/dx from V, and V,, and the contributions to dfs/dzr and
dl,/dz from ¥V, and V..

The insight needed to understand why longitudinal excitation and
longitudinally unbalanced terminations increase crosstalk is obtained
when eq. (5) is transformed and expressed in terms of the longitudinal
and metallic voltages and currents, rather than in terms of the con-
ductor currents and conductor-to-ground voltages. This transforma-
tion is easily made because the longitudinal and metallic voltages and
currents are linearly related to the conductor voltages and currents.
If wire pair 1-2 is now dencted as circuit one and wire pair 3-4 is
denoted as circuit two, then the metallic voltages and currents on the
two circuits are defined to be

I— 1.

Vim =V, — Vy Iim = 5 =

and
V2m= VE_' V4, Iﬂm—_‘IS;ZLI'

The longitudinal voltages and currents on the two circuits are

vV
V1L=V—I%, IlL=II+I2
and
R L

Expressed in matrix form, these eight equations become

V. 11 0 0}V
Vel |—2 1 0 0f|Vwu
V| 0 0 L 1||Vax (6)
Vs 0 0 —% 1){Vw
and
Iix 1-10 0L
I 1 10 0|6
Ll ~lo o 1 -1|5 @
It 0 0 1 1|1

Now, by using egs. (6) and (7), eq. (5) ean be expressed in terms of
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the longitudinal and metallic voltages and currents as

Iy /dx 1 -+ 0 0
digfdr 1 1 0 0
= —
dIE.\f/dI 0 0 3 —3
dlop/dx 0 01 1
rCJg+CIE —Cha —C's —Cu i1 0 0 'Vu,;-‘
+Cra+Chy
—Ch Cog+C1a —Ca — (a4 -4+ 1 00 Vi
FCaa+Clay
X N
—C];{ —CM CJ“+C:H —Cx.g 00 —% 1 VﬂM
+C1+Cx
—Cy —Cx —Cs Cig+Ca 00 3 1||Vy
L + 0+ Cog | | I
(8)
or, performing the matrix multiplications,
dll}l:/dﬂi 1 G2 Gz G4 Viar
diy/dy _ _E gn Qe2 Qu gual| | Viz (9)
dIzM/dIL' 4 1qa Qa2 Qan Qas| | Vear
dlsr/dx g g qu Qu) (Vo

where the elements of the 4 X 4 symmetric matrix Q in eq. (9} are
given in Appendix B.

Aluch ugeful information can be obtained by simple inspection of
some elements of Q. First, the derivative of the metallic current in
circuit one due to the metallic voltage in eireuit two is proportional
to g, i-e., the crosstalk coupling loss between the metallic circuits is
directly related to g,;5. Thus, the coupling between two metallic circuits,
i.e., the metallie-to-metallic coupling, is proportional to

C'_-'s.re,ui = —qu3 = (13— Cuu— Caa + Cos. (10)

This is the capacitance unbalanee term first derived by Campbell* and
used today as one measure of cable quality. Referring again to eq. (9),
we see that the derivative of the metallic current in cireuit one due
to the longitudinal veltage in circuit two is proportional to g14 and that
the derivative of the metallic current in eircuit two due to the longi-
tudinal voltage in circuit one is proportional to gi:. In other words, the
crosstalk eoupling from a longitudinal to o metallic circuit is pro-
portional to

Crpar, = —qua = 2(Cia + €y — Cag — Cyy) (11}
or

Criv, = —qa = 2(C15 — Oy + Cas — Cay). (12)

LONGITUDINAL IMBALANCE 1237



The subscript L:M; means “from the longitudinal mode in circuit
two to the metallic mode in circuit ene.” Also, we can readily see that
the derivative of longitudinal eurrent in circuit one resulting from the
longitudinal voltage in circuit two is proportional to g2.. In other words,
the crosstalk coupling between two longitudinal cireuits is proportional
to

Cror, = — 1 = 4(C13 + Cru + Cos + Cuy). (13)

Using these four coupling coefficients, it is now possible to compare
the difference in crosstalk loss between two metallic circuits, a longi-
tudinal and a metallic eireuit, and two longitudinal eircuits. This com-
parison was made for one cable and the results are discussed in the
next section.

3.4 Comparison of crosstalk using the coupling coefficients

One good feature of the four coupling coefficients given in eqs. (10)
through (13) is that they are easily measured. Hence, they provide a
simple method for comparing the difference in crosstalk between two
metallic circuits, a longitudinal and a metallic cireuit, and two longi-
tudinal circuits. To make such a comparison, it is necessary to have
data on the interwire capacitances, Cis, C14, Cas, and Cas, for real cable.
Such measurements were made in 1968 on a 22-gauge, pulp-insulated
cable manufactured by Western Electric. These measurements were
made on many different 50-pair binder groups.® The data on inter-
wire capacitances were taken for random samples out of the 1225
possible sets' of interwire pair combinations within each binder group.

Using these data, the average value of the four coupling coefficients
were caleulated and are given in Table I. These show that, on the
average, the coupling between two metallic circuits is significantly
less than the coupling between a longitudinal and a metallic circuit,
and that the coupling between two longitudinal circuits is by far the
greatest. Hence, the fundamental reason why lerminal longitudinal
imbalance tncreases crosstalk ¢s that longitudinal imbalance causes exciie-
fon of the longitudinal evrcudt.

Comparison of the values of the coupling coefficients made so far
does not provide any quantitative estimate of the amount of the
differences in crosstalk losses to be expected. Such an estimate can be
obtained by using the coupling coefficients for individual wire-pair
combinations to construct distributions of 1000-Hz near-end erosstalk

* A binder group is a unit of 12, 16, 20, 25, 50, or 100 twisted wire pairs bound
together within a cable.

For a 50-wire pair cable there are n{n — 1}/2 = 50(40)/2 = 1225 possible two-

wire pair combinations. The sample sizes ranged from 200 to 600 pair combinalions.
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loss. This was done for the metallic-to-metallic, longitudinal-to-
metallic, and longitudinal-to-longitudinal crosstalk loss distributions
by using the formula given in Ref. 4,

N, = 20 logy [LC"Z"] ,

3

where (' is the capacitance unbulance, Le., Carary,y Crgary, or Cpyry, w is
the radian frequency in Hertz, and Z, is the characteristic impedance
of 22-gauge pulp. The inductive contribution is neglected. The dis-
tributions are shown in Ifig. 3. The rms crosstalk loss corresponds to
that loss which would result in the average crosstalk power in watts.
Consequently, crosstalk power transferred between two circuits with
crosstalk loss equal to the rms value would be the average crosstalk
power. The rms values are 105.2-dB loss between metallic eireuits and
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Fig. 3—Computed 1000-Hz neur-end erosstalk based on the interwire capacitances
of 416 pair combinations of 1319 ft of 22-gauge pulp cable.
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only 83.9-dB loss between a longitudinal and a metallic circuit. Hence,
the new coefficient Cr, s, predicts that longitudinal excitation of a
wire pair in the cable measured causes 21.3 dB (105.2 — 83.9) more
average crosstalk power in a metallic circuit than metallic excitation.
Similarly, the rms loss between two longitudinal cireuits, predieted by
Cr,L,, is 49.2 dB, which is 56 dB (105.2—49.2) less than the metallic-
to-metallic loss. These results are compared in Seetion 3.6 to crosstalk
loss measurements made on another cable. In Section 3.5, these re-
sults are compared to results obtained from computer solution of the
transmission line equations (9), i.e., by simulation of the cable.

3.5 Numerical solutions

A second, more difficult method of calculating the crosstalk between
the various modes is direet solution of the transmission line equations
on a computer with an appropriate set of boundary conditions.

A computer program has been written to solve these equations that
simulates a cable of the same length and identical characteristies of
the Western FElectric cable used to obtain the coupling coefficients.
Two conditions of interest were simulated on the computer. First,
metallie excitation by a balanced 1000-Hz signal generator in series
with a 600-ohin resistance was applied to a pair, denoted the disturbing
pair, and all other pairs were terminated metallically with 600-ohm
resistors from tip to ring. Second, the same conditions applied except
one wire of the disturbing pair was grounded. This resulted in a deg-
radation of 14.5 dB in the rms value of the balanced near-end cross-
talk loss distribution.

To compare the degradation in erosstalk obtained by the two
methods, i.e., coupling coefficients versus numerical solutions, it is
necessary to note that grounding a wire connected to a signal generator
produces a longitudinal voltage that is one-half the value of the applied
metallic voltage. This follows directly from the definitions of longi-
tudinal and metallic voltages in terms of the voltage from each wire
pair conductor to ground, eq. (6) with ¥V, = 0. Hence, an approximate
6-dB adjustment must be made when using the longitudinal-to-metallic
coupling coefficients C'z,a, and Cy,ar,, which predict a 15.3-dB deg-
radation in the near-end rms crosstalk loss at 1000 Hz due to ground-
ing, as compared to 14.5 dB predicted by the numerical computation.
This good agreement suggests that the new capacitive coupling coeffi-
cients do provide a simple but reliable method of predicting the
degradation in crosstalk performance for a particular cable when its
terminations are unbalanced.
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3.6 Comparison with meastred data

In 1962, measurements of the degradation of near-end crosstalk loss
caused by grounding one conductor of the disturbing or disturbed pairs
on randomly selected pair combinations in a 7500-ft length of a 22-
gauge multipair pulp-insulated exchange grade trunk eable were made
by Bell Laboratories. This was a real working cable between Oceanside
and Vista, California. All load coils in the section under test here were
first removed and the cable ends spliced. The results of these measure-
ments are shown in Fig. 4. The results reveal, at 940 Hz,* a degradation
of about 19.4 dB in the near-end rms crosstalk loss when a ground
was applied to one wire of either the disturbing or the disturbed pairs.

Since grounding one conductor causes a longitudinal voltage excita-
tion that is one-half the metallic voltage, a 6-dB numerical adjust-
ment was made on the measurements to predict that the rims cross-
talk loss between a longitudinal and a metallic circuit is 25.4 dB worse
than the rms loss between metallic circuits. This is compared to 21.3 dB
obtained using the coupling coefficients for the cable discussed in the
previous section. This 4.1-dB difference may be due to the fact that
the two cables were not the same, each having different value parame-
ters characterizing them as well as different lengths.

When one conductor of both disturbing and disturbed pairs were
grounded, the measured rms crosstalk loss was 32.6 dB, as shown in
Fig. 4. This is the loss between the two longitudinal eircuits® and, as
can be seen, it is 61.5 dB less than this rms loss between the metallic
circuits. This measured difference compares favorably to the caleulated
difference of 56 dB as shown in Fig. 3. The 5.5-dB difference may be
due to cable differences. In conclusion, direct crosstalk measurements
on another cable substantiallv support the analytical method for
caleulating ecrosstalk using the coupling coefficients or computer
simulations.

3.7 Metallic-to-longitudinal conversion because of wire pair imbalance

So far, we have analyzed the effect of direct longitudinal exeitation
of wire pairs on crosstallk between pairs. This excitation results when
longitudinaily unbalanced terminations are used. However, now we
discuss how longitudinal exeitation can also result because of “pair
longitudinal imbalance,” which is defined as any lack of symmetry

'uEIMO Hz is close enough to 1000 Hz to permit direct comparison with caleulated
results,

T Referring to the definitions of longitudinal and metallic voltages, it is simple to
show that the coupling loss for the longitudinal-to-longitudinal mode is the same as
for both pairs grounded.
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in the wire pairs with respeet to ground or with respect to each other.
Such asymmetry can cause part of the metallic signal to be converted
to a longitudinal excitation even when there is perfect longitudinal
balance at the terminations.

To understand the causes of wire pair longitudinal imbalance,
again refer to eq. (9). Perfect pair balance is the condition that exsts
whenever a metallic signal does not excite the longitudinal modes in
either the disturbing or disturbed wire pair. This requirement can be
met if and only if

Ga1 = ez = qun = Gua = 0.

These last four conditions are satisfied if

Cy, = Cyy (14a)
Ciy = Cu {14h)
Cu = Ca (14¢)
Cyy = Cay {14d)

Equations (14a) and (14b) are necessary since, for example, if Cy,
were not equal to Cy,, there would be a lack of longitudinal symmetry
in wire pair one even if the terminations were all perfectly balanced.
Equations (14¢) and (14d) imply that equal and opposite currents are
coupled (metallic-to-metallic crosstalk) from each of the wires in the
disturbing pair to the disturbed pair preserving the pair symmetry.

In other words, if the conditions of eqs. (14) are met and all the
terminations are balanced, then all the currents are strictly confined
to the metallic circuits. This is not to say that crosstalk cannot oceur.
It means that only one of the three kinds of coupling can occur, 1.e.,
from metallic circuit to metallic circuit. In fact, the erosstalk will then
be proportional to Campbell’s capacitance unbalance expression which
simplifies to

Cutgpr, = Cra+ Cas — Cry — Cag = 2(Cra — Cua). (15}

Cable data reveal that the capacitances to ground for wire pairs are
nearly equal, their differences on the average being less than 2 percent
of their magnitude. The percent differences in the interwire capaci-
tances are larger (e.g., 10 percent), but they are much smaller than
the capacitances to ground. This suggests that metallic-to-longitudinal
conversion of signals due to the eable characteristics alone is small.
Computer simulation of wire pairs, using eq. (9) and assuming balanced
terminations, supports this suggestion. To put it another way, the
high quality of manufactured multipair cable used in the Bell System
ensures excellent pair longitudinal balance. The small imbalance in
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the pairs is rarely a significant factor in the contribution to longi-
tudinal voltages that degrade crosstalk. Substantial conversion to
longitudinal modes does occur when there is imbalance at the termina-
tions, as revealed by our analysis and, consequently, it is necessary to
place limits on permissible terminal longitudinal imbalance.

IV. LONGITUDINAL BALANCE REQUIREMENTS

Crosstalk energy can reach the metallic mode in the disturbed cireuit,
cireuit two, from an applied metallic signal in the disturbing pair,
circuit one, in three different ways.

() Direct coupling from a metallic signal in circuit one to a
metallic disturbance in circuit two.

(7#) Conversion of the metallic signal of circuit one to a longi-
tudinal signal in circuit one because of an unbalanced
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termination” in that ecircuit, then coupling of the longitudinal
signal in cireuit one to a metallic disturbance in cireuit two.

(#i7) Conversion of the metallic signal in cireuit one to a longi-
tudinal signal in eircuit one because of an unbalanced termina-
tion, eoupling of the longitudinal signal in ecircuit one to a
longitudinal signal in eireuit two, and, finally, eonversion of
the longitudinal signal of eircuit two back to a metallic dis-
turbance in circuit two due to an unbalanced termination on
circuit two.

The crosstalk deseribed in (f) above is independent of the imbalance
at the terminations. It is the result of the capacitance unbalance Cy,ar,
between the individual wire pairs and there is little more that ean
praetically be done to circuits to reduce it. The important thing is lo
make sure that any equipment that s connected ai the terminaiions of the
cable does not degrade the low levels of crosstalk thal currenily exist by
introducing longitudinal excitations.

4.1 Longitudinal balance requirement

The data on the vulnerability of cable to longitudinal imbalance
have been obtained by measurements made on two different cables.’
Measurements on the cable in California, with the 6-dB numerical
adjustment, revealed that longitudinal signals, on the average, cross-
talk into adjacent wire pairs with 25.4-dB less eoupling loss for that
cable than do metallic signals. The data on the Western Eleetric reel
of eable, used in the newly derived capacitance unbalance formulas,
showed 21,3-dB less coupling loss for longitudinal signals.

The definition of longitudinal balance, for application to crosstalk
performance, is repeated:

eu(f)
er(f)|’

where ¢, is the longitudinal voltage produced when a metallic voltage
ew is applied at any frequency f. The measurements made on the
cable in California establish the more stringent longitudinal balance
requirement, and it shail therefore be assumed that rms longitudinal-
to-metallic crosstalk loss is 26 dB less than metallie-to-metallic cross-

BALM_L(f) = 20 logm

* Clonversion because of imbalanee in the cable itsell can be neglected, as discussed
in Section 3.7

t Subsequent to the beginning of this investigation, measurements on the vulner-
ability of one other cable to crosstalk beeause of longitudinal imbalance have been
mude. These measurements do not alter the conclusions reached by using the data
an the first two eables only.
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talk loss. This implies that, if a network which is sending a metallic
signal has a balance of about 25 dB, the longitudinal signal developed
because of this imbalance may contribute the same amount of cross-
talk power to nearby cable pairs as the direct metallie signal applied
to it. It is not known exactly how the two components of the erosstalk
produced by metnilic and longitudinal signals will add, that is, on a
voltage basis, a power basis, or somewhere in between. However, a
longitudinal signal developed hecause of imbalance is likely to be
correlated to the metallie signal causing it. Hence, it will be assumed
that the signals add approximately on a voltage basis.

What is needed is 4 balance such that the contribution to crosstalk
power because of imbalance is small compared to the crosstalk that
exists when a metallic signal is applied. For illustrative purposes, it is
assumed that an increase of 1.0 dB is not too noticeable and is thus a
permissible contribution. In Fig. 5, which shows how two voltages
expressed in dB are added, it is seen that, in order for the power in a
signal to be increased by no more than 1.0 dB because of the presence
of a second signal, the voltage difference must be over 17 dB. Thus, a
longitudinal balance of approximately 42 dB is required {(we will use
40 dB) to ensure that crosstalk is increased by no more than this
amount, due to the longitudinal-to-metallic coupling path, type (22,
described at the beginning of Section IV.

We now show that the erosstalk resulting from the coupling path
described as type (di7) is less severe and has no bearing in determining
the balance requirement. To do this requires discussing a second
measure of balance, that known as longitudinal-to-metallic balance.

5UM OF TWO VOLTAGES
ABOVE LARGER IN DECIBELS

0 | 1| | | | | | | |

0 2 4 G 8 10 12 14 16 18 20
DIFFERENCE BETWEEN TwO VOLTAGES (N DECIBELS

Fig. 5—um of (wo voltages expressed in deeibels.
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4.2 Longitudinal-to-metallic balance

In addition to the possibility of severely degrading the crosstalk
levels already occurring in the telephone network, there is a second
important reason why high longitudinal balance at the terminations
must be maintained. This is to reduce the metallic noise resulting from
power line induction. Here, the disturbing signals are longitudinal in
nature and, to assure good performance of the user’s circuit, the con-
version loss from a longitudinal noise signal on his cireuit to a metallic
signal on his eircuit must be large. A measure of this conversion loss,
defined as longitudinal-to-metallic balance, is:

er(f)
ex(f))’

where ¢, is the applied longitudinal voltage source and ¢, is the result-
ing metallic signal. The balance subseript ‘L — »"" means a conver-
sion from an applied longitudinal signal to a metallic signal. It is im-
portant to note that the two measures of balance, BALwm 1 and
BALyL u, are not equal, i.e., reciprocity does not necessarily apply.
Moreover, they are not necessarily correlated.

Generally, to assure good performance, the minimum balance
BALL_wm of o termination is well in excess of 40 dB over the voiceband.
Consequently, we use 40 dB as a lower bound on the BALy m of
terminations, keeping in mind that this in no way establishes 40 dB
as the necessary performance minimum. Discussion of that topic is
outside the scope of this paper.

Using the assumed minimum bound on BALy_y = 40 dB of termi-
nations on the disturbed circuit, it is now shown that the crosstalk
coupling loss path (##) is at least 20 dB less than the metallic-to-
metallic path and, hence, is not a factor. It is also assumed that the
balanee BALx_r of the terminations on the disturbing eircuit is 40 dB,
determined from the crosstalk requirement because of the coupling
path of type (¢%). Now, since there is approximately 60 dB less cross-
talk loss between two longitudinal circuits than between two metallic
circuits, the difference in the losses between type (2} and type (:%i)
paths is BALy_1 (disturbing eircuit) —60 dB + BALy_y (disturbed
circuit), or at least 20 dB.

BALL—M(f) =20 105?,'10

V. REQUIREMENTS ON LONGITUDINALLY APPLIED S1GNALS

So far, we have considered how longitudinally unbalanced termina-
tions can cause increased crosstalk, because they longitudinally excite
& wire pair. We have recognized that it is this longitudinal excitation
that is the fundamental cause of the increased erosstalk, and we have
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recommended a metallic-to-longitudinal balance, BALy_1, limit for
termination of 40-dB minimum to restrict the amount of longitudinal
excitation produced. However, it is also possible to longitudinally ex-
cite wire pairs directly from a voltage source connected between the
tip and ring of a wire pair and the cable sheath, or ground. Such direct
excitation must also be limited, because it too causes crosstalk in a
disturbed metallic circuit in two ways:

(¢) Direct coupling from the longitudinal mode in circuit one to the
metallic mode in circuit two.

(7€) Coupling of the longitudinal mode in cireuit one to the longi-
tudinal mode in circuit two and conversion of energy in the
longitudinal mode of cireuit two to the metallic mode in eircuit
two because of an unbalanced termination in circuit two.

Since the effeet of direetly applying longitudinal signals is the same
as longitudinal signals arising from metallie-to-longitudinal imbalance,
and since the rms crosstalk loss for this type of signal is on the average
25 dB less than metallie signals, longitudinal voltage limits should be
40 dI3 more restrietive than metallic voltage limits. Figure 1 shows
the restriction on longitudinally applied voltages as a function of
frequency. It is based on the restrietions already placed on metallic
voltages determined by a previous study at Bell Lahoratories® and
the 40-dB restriction determined here.

VI. SUMMARY

The following has heen accomplished in this paper:

() Three new eapacitive coupling coefficients have been derived
that provide a simple but relisble method of predicting the
degradation in erosstalk performance for a particular eable
when its terminations are unbalanced.

(#7) It has been demonstrated that a metallie-to-longitudinal
balanee requirement of 40 dB3 or more for any terminations
connected into network should not noticeably inerease the low
levels of crosstalk that are already present.

(f¢f) A requirement has been established on longitudinally applied
signals that if met should not degrade crosstalk performance.
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APPENDIX A
In eq. (4), let T'(z) be an 8 X 1 column matrix where

_[V@
S (e
and let A be an 8 X 8 constant matrix (not a function of =z},
0o Z
A= [Y 0]- (17)
Then
aT(®)
el AT (18)

The solution to this matrix differential equation® is known to be
T(z) = exp (— Ax)T(0).

Since the parameters that characterize the line are independent of z,
it is readily seen by solving eq. (4) that

VFE] _ _[o Z7,|[ VNE (19)
crE| ~ ®P|7 Y ol |lcNE)]
where the far-end voltages and currents where x = [ are
V(D I
Va(D) L)
VFE = CFE =
Vi) |’ I
V() I

and the near-end voltages and currents are

V1(0) 1,(0)

_ |70 _ [500)
VNE= |y oy 0 CNE= (1)
V() 1,(0)

With the eight equations given in (19) and a knowledge of the
boundary relations at the terminations, we can characterize the model
of the system at each point in space (z) by a vector pair of voltages
V(z) and pair currents I{x).

The matrix exponential,

exp {—[g g]z},
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may be evaluated in closed form. With a closed-form representation,
the voltages and currents ean be expressed in closed form and more
complex structures such as spliced eable svstems can be simulated.
The way to explicitly determine the matrix exponential is to use the

fact that
O Z
o=~y o

satisfies its own characteristic equation (Cayley-Hamilton Theorem?).
Then

7

exp Q = 2 Q.

k=0

Replacing Q by a diagonal matrix consisting of the eight eigenvalues
of Q enables us to solve for a,. However, for fairly short unspliced
cable systems we may use the first few terms in a power series, i.e.,

exp[~QU =T—1Q+5Q1 -,

where I is the identity matrix, to accurately approximate the matrix
exponential as was done for the cable in the numerical solutions section.

A.1 Boundary conditions

For any two wire pairs within a cable, four sets of current-voltage
relationships exist at the wire terminations. Referring back to Fig. 2,
we define the near end to be the subsecriber side of the loop with its
termination where £ = 0, and the far end, where = = I, to be the
other termination, possibly a central office. The disturbing pair will
always be designated wire pair 1-2 with a generator of some kind at the
near end, and the disturbed pair will be desighated 3—4. Suppose the
generator 18 two voltage sources each grounded at one end and in
series with an impedance and the remaining terminations consist each
of two complex impedances to ground shown in Fig. 2. Then we have
the eight relations at the boundaries

V.(0) = V8(1) — ZNE(Q, 1)1,(0) (20a)
V(0) = VS(2) — ZNE(2, 2)I(0) (20b)
Vi(0) = — ZNE(3, 3)1:(0) (20c)
Vi(0) = —ZNE(4, 4)1,(0) (20d)
Vi) = ZFEQ, 1I.(D) (20e)

LONGITUDINAL IMBALANGE 1249



Vol) = ZFE(2, 2)I,(1) (20f)
Vi) = ZFE(3, 3)I5() (20g)
Vi) = ZFE(4, £)1.(D), (20h)

which may be written in matrix form as

VNE = —ZNE CNE + VS (21a)
VFE — ZFE CFE, (21b)
where
(ZNE(L, 1) 0 0 0 |
_ 0 ZNE(2,2) 0 0
ZNE = 0 0 ZNE(3,3) 0 !
.0 0 0 ZNE(4, 4))
(ZFE(1,1) 0 0 0 1
B 0 ZFE(2,2) 0 0
Z¥E = 0 0 ZFE(3,3) 0
.o 0 0 ZFE(4,4))
and*

VST = [VS(1), V5(2), 0, 0].

We can solve the 16 equations (19) and (21) and determine VNE and
CNE. Now we have the model completely characterized by the vector
pair of voltages V(z) and I{x) via the equation

V 0 Z VNE
[1] - {‘[Y o]-’”][cm]'

It should be pointed out that the terminations are not always simple
impedances to ground. For instance, for a second type of termination,
where an ordinary telephone set is connected to a wire pair, tip, and
ring, there is no direct eonducting path to ground. If the impedance to
ground from the tip and ring is assumed to be infinite, then we cannot
write a simple impedance matrix relating the eurrent to voltage as in
eqs. (21a) or (21b). As a result, there is a rather tedious but straight-
forward rearrangement of egs. (19) and (21). Finally, a third type of
termination could be a central office that will also require modification
of the impedance matrix. All three of these types of terminations have
been simulated in computer programs.

* The superseript T' means transpose.
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APPENDIX B
The elements of the admittance matrix in eq. (13) are given below.

gu = {Cip +Cop +4C2 + Cia + Cis + Caz + Cuy
q12 = g = 2{(C1, — C2p) + (C1s + Cra — Coz — Cuy)}
gie = g = — (Crgs — Cr1is — Cag + Coy)

guu = qu = —2(Cia + C1a — Caz — Cyy)

Ja2 4;(Cla + Cﬂa) + (Cls + Cl4 + Cza + CM)]

Q23 = Qa2 = —2(Cy3 — Crs + Co3 — Czq)

gza = gz = —4(C1z + Cos + Coz + Cay)

gz = {Cag + Cip + 4Cas + Cis + Cry + Coz + Cai}
B0 = gz = 2{(Csp — Cip) + (Crs — Cpa + Co5 — Ca)}
gas = 4{{(Cyy + Cup) + (Cra + Cra + Coz + Casd}.
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Wideband Amplifier Design Using Major
Multiloop Feedback Techniques

By T. J. APRILLE, JR.
{Manuscript received February 11, 1874)

Multiloop feedback has heretofore been ignored as a means of obtaining
shaped gain amplifiers. In this paper, a theoretical basis 1is developed for
ustng dual major loop feedback amplifiers to oblain shaped power gain
with imput and output reflection coeflicient constrainis. From the theoretical
results, practical design procedures can easily be developed and one such
procedure 1s discussed.

The aim of this study was an alternalive to the “‘brule force” termina-
tion lechnique of rvealizing inpul and output impedance waiches. The
development 18 otherwise unique in that it uses no hybrid transformers for
beta circutt coupling or for realization of the reflection coefficient
ronstraints.

I. INTRODUCTION

Wideband feedback ampliflier design has heretofere mainly been
accomplished by the use of single major loop feedback techniques.i—*
Major loop feedback implies that the current or voltage on the input
to the basic amplifying element is manipulated by the current or volt-
age that appears on the output of the basic amplifying element. The
design concept follows the classical feedback design procedure of
assuming a unilateral forward amplifying element of voltage gain u and
a feedback path with voltage gain 8. Existing multiloop feedback
techniques have been primarily eoneerned with stability considerations
of “tandem” ¢ and minor multiloop?? feedback arrangements.

In many applications, input and output impedance matching of the
amplitier is neeessary. The communications amplifier is one such
example, since it requires very low levels of signal mterference due to
input or output impedance mismateh. The classical single-loop feed-
back techniques offer little help in designing for the impedance match-
ing constraint. This is due to the faet that the more loop gain in a
single-loop feedback eircuit, the more extreme (zerc or infinite) the
input and output impedance becomes.' Two techniques that are
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used to circumnavigate this problem are ‘“brute force” terminations
and bridge couplings.

The brute force approach obtains the impedance match by placing
a resistor in series with the input (or output) for a feedback amplifier
with zero input (or output} impedance. A parallel resistor is used for
the infinite input or output impedance case.

The use of a balanced resistor bridge is also useful in obtaining an
impedance mateh. This is accomplished by balancing the bridge com-
ponents with respect to the input (or output} impedance of the feed-
back amplifier. The use of a resistive bridge is limited, though, due to
the excessive resistive losses associated with such a bridge. A useful
four-port device, which exhibits the same qualities as a resistive
bridge but with much less through loss, is the hybrid transformer.*
The impedance match with this device is obtained by manipulation
of the two unused port impedances.”

Since the hybrid transformer is similar to a bridge, one of the two
unused ports can be used for the g return path. This technique is
theoretically the best alternative mentioned since a property of such
a connection is that the impedance match is improved with the
amount of loop gain.? This technique has been used to advantage on
several communications amplifiers.®?

The limitations of the above alternatives of obtaining an impedance
match become evident when other design constraints are investigated.
For example, the noise figure of an amplifier is degraded by any loss
that exists on the input to the amplifier.®® Thus, the use of brute force
or hybrid transformer coupling causes an increase in noise figure. On
the output side, a loss increases the power requirement on the last
stage of the amplifier. Even if this is no problem, the resultant in-
cregse in the distortion may be. This is due to the fact that second-
order distortion power increases twice as fast as fundamental power
and third-order distortion power three times as fast." Thus, the losses
associated with the matching techniques will increase the power re-
quirement and reduce the linearity of the overall amplifier.

The usd of the hybrid transformer in the g path may also cause a
stability problem. Since the transformer introduces phase shift, due
both to the physical length and techniques of construction, their use
is limited at very high frequencies.

Investigation into alternative methods of design is therefore de-
sirable. To this end, this paper presents fundamental concepts on the
technicues of using major multiloop feedback in amplifier design. The
objective is the design of wideband-frequency-dependent gain ampli-
fiers with input and output match constraints. The design procedure
does not use hybrid transformers and attempts to minimize brute
foree termination techniques.
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In Section I1, the hasic amplifier element is introduced. The analysis
that follows is applicable to configurations of active devices that can
be modeled by this basic amplifier. A circuit form using this basic
amplifier is then introduced. Matched impedances and gain relation-
ships are developed for this circuit form in such a way as to make the
open loop gain characteristics evident. This paves the way for an
initial design approach that is independent of the loop gain
characteristics.

In Seetion 111, a second circuit form of shunt-series feedback using
the same basic amplifier is introduced. Matched impedances and gain
relationships are again developed. The derivations in this section
exactly parallel those of Section II.

In Section IV is given the results of the two previous sections to
demonstrate the procedure used to obtain an initial eircuit design for
a practical amplifier configuration. The configuration treated is that
of a cascade of N common emitter transistor stages. It is shown that
for ¥ odd, the results of Section II ean be used, and for N even, the
results of Section III apply. One numerical example is supplied for
each case. Two appendices provide the calculations used to derive the
results in Sections II and III.

Il. SHUNT TRANSADMITTANCE: SERIES TRANSIMPEDANCE FEEDBACK

Each dual-loop feedback amplifier discussed in this paper contains
three major components: two fesdback networks and one amplifying
element. Each major component is assumed to be made up of any
number of passive and active elements. Characteristics of importance
for the amplifying element component are given in Fig. 1; this ab-
breviated model is designated a basic amplifier. In this figure, 2, is
the input impedance and I, is a current-controlled current source. I,
is given by the product of a frequency-dependent variable & and the
current through z..

In Fig. 2, the first multiloop feedback circuit form is given. Series
feedback voltage source al, sums up the most important characteristic

i¥
I!
INPYT g % l (‘ OUTPUT

Kix

20— 5

IFig. 1—Basic amplifier.

WIDEBAND AMPLIFIER DESIGN 1255



al,,

Zin. Bin

Pout - Zo Pe

TFig. 2—Tirst feedback form.

of one feedback network. Shunt current source —b4V, likewise is the
important characteristic of the second feedback network. Since the
series feedback voltage source is dependent upon ogutput current, it
represents a transimpedance feedback. Similarly, the shunt current
source is dependent on the output voltage yielding a transadmittance
feedback. Source and load impedances, £, and Z;, summarize amplifier
interaction with the driving circuitry and the loading ecircuitry,
respectively.

2.1 Input and oulpul impedance
Z:n and Z,., the input and output impedance, are desired to be

matched to Z, and Zp, respectively. Thus, Z;, and Z,u are needed and

are given by

z: + ka

S W

Bow = 2ELER, @
If the amplifier gain & is large, then Z;, and Z,,, become

Bt = o = o @

For the matehed condition, Z;, = Z;and Z,.. = Z;. Using these condi-
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tions in eqs. (3) and (4) yields

=4 = 07, (5)
2% = Zouw = l%_ : (6)

Substituting (£1)* = % from eq. (6) into (5) yields

* (1]
Zy AN (7)

a* a\* a
w=(3) =% ®)
Thus, conjugate matching yields the requirement that the ratio of

a to b (or more generally ka to kb) must be real. Given this fact, eqs.
(6) and (6) are identlcal, i.e.,
a

L= %y = 3 (9)

which implies

The imaginary part of Z, Z} is therefore constrained by
Im {Z.} Re {Z,} — Re [Z.} Im {Z,}] = 0. (10)

A necessary condition for an amplifier to be absolutely stable is that
Zi. and Z.., be passive.? This is satisfied when the real parts of Z,
and Z; are positive. Thus, the imaginary part of Z, and Z; have
the same sign, implying that if the matched load impedance is capaci-
tive (inductive), then the matched source impedance is capacitive
(inductive).

If the reflection coefficient [reflection coefficient p is defined as
(Z — Z2)/(Z + Ze) 31 at the input is evaluated (assuming
Z, = a/bZ7), the following is obtained:

. 2ab Re (Zz) ,\!
Pin = pinu(l + m—ak) 3

In eq. (11) pin, is the input reflection coefficient when & = 0.
Evaluating the return ratio T (Ref. 2) of the circuit in Fig. 2 with
respect to the output dependent current source gives

—2ab Re (Z1)
2021 + a

Return difference F (Ref. 2) is defined as 1 — 7'; thus, eq. (11) can be
rewritten as

(11)

T = k. (12)

Pin = ping I - (13)
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Therefore, the return loss (20 log 1/|p|) is improved with increasing
return difference F. Sinee the output reflection coefficient is given by

1

Pout = Pout, '1_;1‘ : (14)

it also realizes the same improvement with increased return difference.

2.2 Gain equations

The transducer gain for the circuit in Fig. 2 can be calculated when
it ia assumed that Z, = a/bZ}:

L., T

2 = —_——————
Again, T is the return ratio and is given by eq. (12).
In eq. {15), T is proportional to &. Thus, for large %, |S:i|? goes to
1/]ab|. Therefore, eq. (15) can be rewritten as
T 2
|821]2 = |Sz1m|2[‘1|jl—j?|—2, (16)
where
1
T S
lsﬂlwl \ab! (17)

2.3 Design procedure

In the derivations given thus far, a definite effort has been made to
separate the dependence of k. This was done for two reasons: (7) to
allow an initial design to be effected with % not a variable, and (4)
to allow definitive statements to be easily made concerning the effects
of k. The former can easily be implemented by assuming & = .

In this case of & = =, eqs. (8), {9), and (17) are relevant. These
equations are repeated for convenience:

(3) -3
7.7, = % (9)
|SzlmI2 = |¢1—1| (17)

It should be noted that eq. (8) implies that a/b is real, but a and &
can be complex. |S:1.|? in eq. (17) is the maximum available gain
gince it is obtained with the input and output matched.

In summary, the design procedure given below could be used when
the desired gain g and impedance matches are known.
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(@)
(i7)

(7z1)

()

Choose an arbitrary starting Z, and Z such that Z,Z} is real.
Substitute a from eq. (9) into eq. (17), vielding

1

= = —
g Satm WADE (18)
Svnthesize b such that
1
bl = - (19)
V2.4l g]

There are no constraints upon the phase of b except those that
may result from stability considerations.
Synthesize a such that

a = bZ.7;. {20)

The value of k is now obtained by considering the practical
active devices used to simulate the ideal amplifying element.
With & known, the return ratio T [eq. (12)] can be calculated ;
this yields the obtainable impedance muatch and gain devia-
tion, eqgs. (13}, (14), and (16). If the design objectives are not
met, the previous caleulations should make the necessary

changes evident, e.g., lower Z, or a higher value of .

lll. CURRENT TRANSFER SHUNT; VOLTAGE TRANSFER SERIES FEEDBACK

The last multiloop feedback circuit to be considered is shown in
Fig. 3. In this case, the series feedback voltage source is dependent
upon the output voltage and thus represents a voltage transfer feed-
back. Similarly, the shunt current source is a current transfer feedback.
The voltage source is given by aV, and the current source by —bly,

otherwise Figs. 2 and 3 are identical.

3.1 Input and output impedance

The input and output impedances, when evaluated, are given by

2y — akZL

Zjn = W ) (21)

Z. 4z, — kZb
Zom = = (22)

For large k, eqs. (21) and (22} become
Zin = 3 21, (23)
Fouy = bZ (24)
Yout a g
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Tin Ta

3 IV CD : | - CD VBT S

N
N
|
|
|
|

Zin. B = Pout. Zg Pa

Fig. 3—Second feedback form.

The conditions of input and output matches yield

Zt = Zi, = %ZL = % (Bour)* = %(3)*2* (25)
Thus,
(- )
and ,

Since a/b is real and the real part of Z, and Z; are nonnegative, then
eq. (27) implies that if Z, is capacitive (induetive) then Z, must be
inductive (capacitive).

Input and output reflection coefficients can be evaluated along with
the return ratio and return difference. The results are shown below
for Z, and Z;, satisfying eq. (27).

2kab Re (Z1)

= - 2]
T bz, + aZ, (28)
F=1-T. (29)
I b, —aZ,
Pin = Ping 'F; Ping = bZI + azi (30)
1 1
Pout = PouLoF' = F, Pouty = i, (31)

Thus, as in the case of the first circuit form, the reflection coefficients
are improved by the return difference.
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3.2 Gain equation

When the load and source impedances satisfy eq. (27), the trans-
duecer gain for the circuit in Fig. 3 is given by

T2
JS‘:1|2 = |S21m‘2 IILW’ (32)
1
Sﬂlm|2 = .a_b[ (33)

This is the same form as was given in eqs. {16) and (17} ; thus, the same
statements apply to the above equations eoncerning improvement
with feedback.

3.3 Design procedure

Initial circuit design can proceed in a manner similar to the first
case. The term k again is assumed equal to infinity; this yields the
germane equations summarized below.

*
(3 -4
Zy
7k (21)
1
|S21a|? = |_uﬂ- (33}

The four design steps outlined previously apply except as follows.

(1) Choose Z, and Zj such that Z%/Zy is real.
(i7) Substitute eq. (27) into (33) so that

1
g=[8ucl?= - (34)
_Z_’|b|2
2L
Svnthesize b such that
|
b = ——- 35
| Z‘,{ l (35)
Z: g
(¢¢) Synthesize o such that
o= Zs b. (36)
L

(=) With & known, the return ratio is obtained from eq. (28).
Equations (30), (31), and (32) then yield the obtainable impedance
matches and gain deviation, respectively.
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IV. DESIGN EXAMPLES

Results obtained in the last two sections will now be applied to a
basic amplifier consisting of a cascade of N commeon emitter transistor
stages. Transistors will be assumed to be used in a frequency range
well below cutoff. The first ease to be treated is for N odd.

4.1 N odd

Consider the circuit given in Fig. 4a. In this circuit, the transistor
will be modeled by the circuit given in Fig. 4b. The circuit given in
Fig. 4a will now be converted to the form given in Fig. 2. Z, and Z,,
have their obvious counterparts. z, is given by the impedance from
base to ground with al, equal to zero; this is obtained when Iy = 0,
which can be obtained by setting o« (first stage «) to zero. From the

Zg

(b)
Fig. 4—Design example N odd.
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transistor model, this is evidently
2o =1y 4 7.+ Zp. (37)

I, is given by the eollector current on the N'th transistor when the base
current on the first is unity. With the cascade of N transistors, this
yields
Io=8y, o, Byis;  Bi=7——; k=8, -8y (B
]. — &y
The term a is given as the value of open circuit input voltage (Z, and
Zr removed) that exists when I, equals unity. This is given by

ZE + Te

a=23+m, N>1 (39)
a=Zg+r. N =1 (40)

For |@s, -+, Bx13>|Z5 + 1./, eq. (39) can be approximated by
a=7Zs, N>I (41)

The last remaining parameter b can be obtained by evaluating the
y1» parameter of the network Y, yielding

b=—(y12)=—(%:)=zip' (42)

Loading effects of the ¥ networks, i.e., y11, ¥=2, can be ignored if they
are sufficiently small.

As a numerical example, the value of k, Z5, and Zg are calculated
to yield an input and output reflection coefficient of 0.18 (return loss
of 15 dB) and « gain to within a factor of 1.26 {1 dB) of f2/400, f in
AMHz, in the band from 80 to 140 MHz. The remaining parameters of
the transistors are r, = 1, and r, = 0.173.

Following the four-step design procedure yields

(3) Let Z, = Z. = 20, Z,Z; = 400.

N
(@) ¢ = 300 = 200102

1 1

o -5 |z
|Z;| = f, fin MHz.
If Z, is chosen as an inductor, then
1Z;| = 2¢fL = f; thus,
L = 1/27% pH, and
pol o

2rfLj  f3
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(id1) @ = Z.Z%b = 4000 = 400 ~ = 220

Z; ~ 2«Lfj
a= %) thus, a can be realized when
Z n{~a) is a capacitor of value

1
MRl

(sv) Using eq. (12) and a &~ Zg, the following is obtained :
_9
7o —200Re (Xy), _ ( g 20 1 20)#,/

abZL + [41 f f
400 ) 400 ]
1.173 —
[( T )t
o —16000k _ [—0.46e7" at 80 MHz
8000 + fj423.4 | —0.27¢ %k at 140 MHz.

TFor k =20, |1 — T| = |F| at 140 MHz (the worst case point) is
given by |1 + 5.4e | = (1.75 — j5.35| = 5.63. This reduces the
reflection coefficient by 1/5.03 = 0.18. Thus, the input and output
reflection coefficient specification is initially satisfied,
The gain deviation at 140 MHz is calculated from eq. (15) and is
| T2 |5.4]

T—77 = 560 = 0919

This implies a gain deviation from nominal of 0.37 dB, and initially
satigfies the design requirements.

1
ZE. o uh

1A

dip, @ = 095238

0173=r,
AL
208

) o

2r) (400) uf

TFig. 5—Numerical example N odd.
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The resulting circuit for N odd is given in Fig. 5. The aetual trans-
ducer gain, input impedance, and output impedance values for this
ecircuit were obtained by a computer-aided design program.’ A sum-
mary of the results is given in Fig. 6. It can be seen from this figure
that this procedure vields u praetieal first iteration in the design
procedure.

22

—22
20—

e COMPUTED INPUT RETURN LOSS
-
Ve

— 20

18—

/COIVIPUTED OUTPUT RETURN LOSS

DESIRED GAIN — __

TRANSDUCER GAIN IN DECIBELS
|
]

RETURN LOSS 'N DECIBELS

T
™~ COMPUTED GAIN

OESIRED RETURN LOSS

= |is

] ] 1 !
20 100 120 140
FREQUENGY IN MEGAHERTZ

Fig. 6—XN odd results.
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4.2 N aven

For an even number of transistors, the circuit in Fig. 7 is used. The
transistor model of Fig. 4b is again used. The evaluation of the param-
eters of Fig. 3 follows on the same basis as in the N odd case. Using
Fig. 7, the caleulations are summarized below.

2,21y + 7. + 25 (43)
Il=Bly "')BNT:S:; k= 7.81r "'J.ij (44)
po Br et (20025)/(Z5 + 200)
200 + Ze Z1Bs, -, Bu
m‘é- B> 1 1=2 ---, N |Zp| «< 200 (45)
200’ i H t 3 » E =
2 2

A numerical example is given to show the initial design steps for
obtaining a maximum input and output reflection coefficient of 0.18
and a gain to within 1.26 of f2 (f in MHz), from 80 to 140 MHz. The
transistor parameters are again r, = 1 ohm and r, = 0.173.

The four design steps vield

(i) Let Z, = Z1 = 20,%‘; = 1.
L
@ o= =13
g BRTE
1 2
b = e = —
bl = 7= 12
|Z¢| = 2f.
let Zr = j2f = j2xfL, L in uH
_lu
T
2 Zy 1
{#1) a_bh_f_j?n-_fL_ﬁﬁ_ I
Thus, Z = 220.
if
This implies that Z is a capacitor of value

1
= 2x(200) uE.
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Fig. 7—Design example N even.

{(4v) Using eq. {32),

P 2ab Re (Z1) 5 2(1/55)(1/;51)20
bz. + aZ} (1/55)(rs + ve -+ 200/5F) + 20/ f
- 40 , — | 00236k at 80 MILa
<200 + 21.173;F ° | 0.015¢-5"3k; at 140 MHa.

Fork=—400, |1—T{=|F! at 140 MHz is given by |1-6e—%"/| =§.1.

The reflection coefficient is reduced by a factor of 1/6.1 (15.7 dB).
Gain deviation can be caleulated and is equal to 0.95 (0.22 dB) ; thus,
the initial specifications are satisfied.

Figure 8 gives the resulting circuit. The results of the computer
analysis of this cireuit are given in Fig. 9. Again the data show that
the approach yields good results.

It can be seen in Fig. 9 that the difference in gain is greater than the
computed 0.22 dB. This is due to the fact that ¢ was taken as Z /200,
rather than the term given in eq. (45). A more accurate evaluation
(denoted by the hatted variables) of a is given as

4o Ze et (00Z5)/(Zs+ 20)  Ze  Zs
300 + Zg Z.8: 200 z,_g
o Zn B

oF ) A 9 25
300 T [@0)(80) ~ )00 (1 +0.125) = 1.1250,
where a was the numerical value previously obtained. Using eq. (33)
yields
Spo Lo L _ 1 1
Pael® = T T |1125ab] 1125 ab] L 12'

|S"ln |
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I A2
2z

—— uh
T™ 27 {200

= ZF 20
d _q Uuﬁh‘ N 1

Fig. 8—Numerical example N even.

Again the unhatted quantities were the ones used in the five design
steps. The factor of 1.125 accounts for an additional 0.51 dB of the
gain difference.

In this example, the gain difference can easily be reduced by in-
creasing the 8 of the second-stage transistor. This was not done since
it was desired to keep the §,8. product at 400. Since §; iz 80, this
forees §: to be 5; any high value of 3. results in unrealistic values of 3.
Nonetheless it is evident that a high 8., - - -, 8, product is needed for
an even number of cascade stages.

V. CONCLUSIONS

In this paper, the basic charaeteristics of two forms of major multi-
loop feedback have been investigated. The design characteristies
treated have been input and output impedance and frequency-de-
pendent power gain. It has been shown that, with sufficient open loop
gain, the equations that deseribe the gain and impedance quantities
are very simple in nature. An initial circuit-design iteration can easily
be performed since many complicating variables are eliminated.

This initial eireuit-design eoncept would be extremely useful in
a computer circuit analysis-optimization program. Well known is the
major practical limitation of optimization programs: the obtaining of
a convergent starting point. For dual-lcop amplifiers, this paper offers
the designer a method of easily finding a good starting point.

Although not reported here, several frequency-shaped amplifiers
were actually built using multiloop feedback. The excellent perform-
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44

a2

40

38

TRANSDUCER GAIN IN DECIBELS

6

34

- COMPUTED INFUT RETURN LOSS
-

DESIRED GAIN __
~

COMPUTED GAIN

1
N
[N
RETURN LOSS IN DECIBELS

—20

= COMPUTED OUTPUT RETURN LOSS

s

DESIRED RETURN LDSS

80

100 120 140
FREQUENCY IN MEGAHERTZ

Fig. 9—N even results.

ance of these amplifiers, with respect to input and output matching
and gain shaping, has preeipitated the work reported in this paper. We
anticipate that future papers will discuss more complicated active
devices, feedback network loading effects, and feedback network
synthesis.
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APPENDIX A
Shunt Transadmittance: Series Transimpedance Feedback Calculations

A.1 Calculation of Z..

- Vin = ak?}z
T = —B——2%
2z
1:.(2. + ak) = Vig;
Vu = = k'bl:ZL.
Thus,
Iin = 7:: - bV[) = ?:1: + kbzzZL;
_ (1l +kbZL L,
Tin= (1 4+ kbZ. ). = -——ZI T ak Vin;

g - Yin_ 2 tka
™ e 1+ kbZL

A.2 Calculation of Z.:
Zr _ aIu :
2. + Z, 2z t+ Z,’

. - Za a'IG 1
kh#lu_k(bv"z,-}-zz)_k(Z=+Za)’
ID{Z:+Zs+ka’) =ka,Zu;

_V[]_ (zz+zs+ka)

?::“bV

do=, = kbZ, '
A.3 Input reflection coefficient calculation
_Zy — Z _ zzt ka _a
ES weny NI Ll vy 2 =375

o _{ % t ke a_ / 2. + ka a
Pin = (1 +kaL_bZL) (1 +kaL+bz},)

_ 2bZy + abkZ, — a — abkZ,
T 2 0Z% 4+ abkZy +a + abkZy’

. z2bZ, —a
Pin = 2 bZ% +a + abk[2Re (Z1)]’
o _zbd — a
Aing = lF’m| k=0 zzbZ}', + a
Therefore,
_zbli—a 2ab Re (Z1) )—‘
p’“_zzb21+ax(l+ 2.7y, + a e

_ 2ab Re (ZL) >
— (1 + k) .
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A4 Return ratio calculation

Assuming the output current source f, is disconnected and replaced
by a l-ampere current source, T is given by the current that flows
through the disconnected current source.

g Zg _ GI(] . . _
’&,—anzr‘I_Zx 2,+ZaJ I,—l, V(]— ZL,
. Z, a  —bZ.Z,—a B 19
W b g a2t 2 2= g5
. —bZL{a)/(BZL) — a abZ . + abZ:
T = = * = — K 3 ¥ ; .,
B =k T (/0050 b Zs + a
_ —2abRe (Z,;) .
T beZiLta

A.5 Oulput reflection coefficient

=Zcut_Z;_ §;+Zs+i\'a. A _ @
Pt Zom + 21 Kz, 0 TP bEY

_ z;+Z.+ka_i)/ 22+ 2ot ha | @
Pout = kbZ. vz, LbZ. vz )

_ (E;_+ Z,+ ak — ak)/ 2.4y + Z.Zy + akZ; + akZ,
Pout = kbZ, YA g
_ 2.dy + 225
Pout = 2 Ze + 2,23 + ak(Z + Z3)°
2.2y + 2.2,

Pouty = Poutj sy T 7 4 g o

Zout =

Therefore,

_ ak(Z., + Z3) )—‘_ — %
Pour = Pouty (1 + zzZ: + Z;Z: ! Z. = bZ’Z’
_ (1 n ak(a/bZ: + a/bZ 1} )71
Pout = Pouty z2.(a/bZL) + {a/bZ1)(a/bZ L)
B 2ab Re (Z.) ,\!
Pout = Pouty (1 Y 0.7 4 a k) '

A.8 Transducer gain calcufation

Assume a voltage source of value V, is inserted in series with the
source impedance Z, in Fig. 2. Let Z. = a/bZ1. P.s will denote the
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available power from the source and P,,. the real power delivered to
the load Z,.

Vol _ [ VaI*[Ze]?b]
iRe (Z) 4Re (Zo)al’

Vi [, z.+ha Z.+ ke
Vie =z 4z = (V'1 T kaL)/(bZZ it ksz)

(z. + ka)bZ}

P‘.[S —

= AT kabZs + (o + ka)ozs '
Ve = (2: + ka)bZ, .V, (2 + ka)pZy 1 v
T g 2.7 V- 2kab Re (ZL) T at zbZp 1 T
Vi—alo_ , _ki_ 1L
. Tk %
Thus,
k )
Io—mvin,
- _ |kl*Re (Z) v
Pow = lolg Re (Z1) = Te. F ka® | Vial2,
P - |k|2Re (Zz) [2: + ka|? b[*[ZL|* _[V.]?
nut lz. + ka|? a4+ 2.bZ%)2 1 —T[¥
Therefore,
|S |2= nu:_ “C | |V \24Re (ZL)’G‘
21 Pas \a+zbZL| |1 = T V.(*Z.]%b]
_ _k[?Re? (Ry)|abld _ 1 ik
T TatebZiPl — T2 Jab] 1= T
APPENDIX B

Current Transfer Shunt: Voltage Transfer Series Feedback Calculations
B.1 Calculation of Z:.
_ Vin - G'Vﬂ _ Vln + akizZL

1z & ’

2s Zr
. Vin
1z = ==y
2, — akZ;’
Liw = = blo i = (=bk + Lo = 7% 5™
Zin _ Y_‘E - B akZL

Iin 1— bk
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B.2 Calculation of Z,..
6l bI(]Zg . uVu — Z,bIa nd aVn_
Y Z e Zi¥e  Zota
kZ,bI(] — Il-aVU_
Zy4 2 !
TZ, 4+ 2z, — kZh) = — kal'y;
Vo 2.4+ z.— A'Zsb_

Znut - 'I_n = —kﬂ:

ki, = I, =

B.3 Return ratio calculation

. Zz, 1 _ - .
h_bI“z;-i-Z,_avom’ Iu— 1, Vo— —ZL,
. bZ, aZ; _
Stz T arzs LTy
T - g = P(@/VYZL + aZsk _ 2kabRe (Z1)

- z. + (a/b)Z1, bz + aZ),

B.4 Input reflecticn coefficient calculation

— an — Zg_ Zln — lem_a]gfll;

_fe.—akZdp aZy 2. —akZp  a .
”‘"‘(TW’T)/(W'*EZL)

Z, = (a/b)Z],

{a/b) real ;

_ b, — abkZ — aZ + abkZy

bz, — abkZ; + aZ) — abkZy’

o bz, — aZy
Pin = bz, + aZt — abk Re (Z1)’
bz: —aZy

Pive = P = o, 4 )

therefore,

o _ 2abk Re (Z0)\!
Pin = Ping bZJ- + azz .

B.5 Output reflection coefficienmt calculation
_ Dow — 71 Zit 2. — kZdb
Pout Z()ut‘ + ZL, —ka !
Z, = (a/b)Z},

Zout =

{a/b) real;
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—ka —ka
_Zi+ 2. — kZb + kaZj, Z.+ 2.

T Z,+2, —kZb —kaZ, Z,+ 2. — ka2 Re (Z.)'

Pout = (Zs—_"_zl_kzlb_zz)/(za +zz—kZLI?+ZL)

Pouty == Pout| pmp = 1;

(1 _ 2ka Re (Zy1) )“ _ (1 _ 2kab Re (Z1) )“1
Pouto (a/BYas +2,)  Poun aZ’ + bz,

Pout =

B.6 Transducer gain calculation

Assume a voltage souree of value V, is inserted in series with the
source impedance Z, in Fig. 3. Let Z, = (a/b)Z}, a/b real. P45 will
denote the available power from the source and P,,, the real power
delivered to the load Z ;.

L A AT T
“ " 4Re(Z,) 4Re(Z,)|al’

o ViZa. z, — akZy, / @ | 2~ akZy
V'"‘z.+zi,,‘(V' —— ) (sz+ - )

- — V:(bzz - akaL)

T aZi, — abkZy + bz, — abkZ,’

V. =y bz, — abkZ _v bz. — abkZ, 1
" *aZy + bz, — 2abk Re (Z1) ' ° aZ} + be. 1-7"
p-in"_'aVﬂ_ . _k'jz_IO Vin+aIOZL.
Tin TR g, =2 o 0 T T RN0AE,
Zx k k Zr
2z _ k .
Io = Vi, (7{:— - GZL) =4 241 — akZ, Vm,
) k|?| Vi |?
Poy = Inly Re (Z) = mRe (Z1),
P — |k|® Re (Z1) |bz, — abkZp|? 1 VAL
out |z, — akZp|? |aZy + bz.|? |1 —T|e' "7
b _ B2 Re (Z0) | V.|
YT aZL + beo|?]1 — T
therefore,
|82 |? = Pout _ |k 2|b|2 Re (Z.)|a|4 Re (Z.) | V,|*
T Pas |aZ} + bz, |1 — T|2|V,[?]b]
_ 1 T]®
lab| |1 — T2
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The load carried by & quewing system wnder equilibrium conditions s
the auverage aurount of servver usage per wnit of time. In telephony, this
paraqneler is often evalualed by recording the number of busy servers al
regular teme intervals; these readings are then cumulated and their sum,
after division by the nwmber of observations, s an unbiased estimate of
the earried load. The purpose of this paper is to dertve exacl formulas
for the compulation of the variance of this measurement in syslems with
arbitrary inpul and depariure rales. The results oblained here thus apply
lo a wide class of teletraffic models which includes, in particular, the delay-
and-loss systems with finile- or infinile-source inpuls, exponential service
times, and arbilrary defection rates from the queue. Problems related lo
compultations are also considered, special aitention being paid to the
reduction of both computer time and storage when the number of stales 1s
large.

I. INTRODUCTION

Analysis of the stochastic behavior of traffic measurements is of
considerable practical relevance, as it provides means for appraising
field data as well as guidelines for selecting performance standards.
Load measurements play a central role in this effort, and determina-
tion of their aceuracy is therefore of particular interest, The present
investigation yields an answer to this problem for a broad class of
teletraffic models.

Whenever statistical equilibrium prevails (and it is assumed to
throughout this paper), the load carried by a service system is the
average amount of server usage per unit of time or, equivalently, the
average number of busy servers at an arbitrary instant. In telephony,
an estimate of this parameter 1s often ohtained by “switech-counting.” !
This statistie, which is determined by recording the number of busy
servers at regular intervals and then by taking the arithmetic mean
of these discrete observations, is an unhiased estimate of the ecarried
load.
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The variance of this measurement, called hereafter the switch-count
load to distinguish it from the estimate obtained by continuous observa-
tion, was first determined approximately by Palm® and Hayward' in
the case of an infinite server group with Poisson input and exponential
holding times. This result was later extended by Bene§,® who obtained
the exact variance of the switch-count load for groups of finite sizes
without waiting positions (loss systems). A further generalization to
loss systems with recurrent input and exponential service is due to
Neal and Kueczura.® Their formal analysis stops, however, with a
derivation of the Laplace transform of the covariance function of the
underlying carried-load process. From this point on, they proceed
numerically, since explicit inversion of the transform appears to be
difficult in general.

In this paper we are concerned with derivations of exact formulas
for the variance of the switch-count load in finite systems with arbitrary
state-dependent input and departure rates. The results presented here,
therefore, fill a rather large gap, since they apply to a broad class of
teletraffic models that includes, in particular, the (finite) delay systems
with exponential holding-time distributions, arbitrary defection rates
from the queue (if one is allowed to form) and either Poisson or
quasi-random input (in the latter ease, the traffic is generated by a
finite number of sources that place demands for service at the same
constant probability rate when free but that do not submit requests
while being either served or waiting).

Let N (£), the state of the system at time ¢, be defined as the number
of busy devices at that instant {(by device, we mean here either a server
or a waiting position). Let ¢ and d be, respectively, the number of
servers and the number of devices.

Unless stated otherwise, we make the following assumptions:

() When N(f) = n and 0 £ n < d, the probability that a re-
quest originates during (i, { + /), & > 0, is of the form Aqh
+olh), with », > 0.

(%) The requests which are submitted when all the devices are
occupied are dismissed and, aceordingly, M, is set equal to zero.

(#5) When N (f) = n and 0 < n < ¢, the probability that a service
time terminates during (¢, { + #) is of the form g.h + o(h),
where g, > 0.

(i) When N (f) = n > ¢, the probability that either a service time
terminates or a waiting request defects from the queue is of
the form p.t + o{h} where g, > 0 and n = 4.

() When a server becomes free, it is immediately reseized by one
of the waiting requests if any are present in the system at that
time.
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Let N (1) be the number of busy servers at time { and let ¢ A n be
the smaller of the two integers ¢ and n. Then

N(@ if N(f) < ¢,
N.W=¢ca N =
¢ i N > ¢

and the switch-count load, L.(7), based on » observations (scans)
made over [0, T] at times =, 27, ---, n7, is, by definition, equal to

n Y N.(77),
=1

where 7 = T/n.

Let Cov [N.(41), N.(t»)] be the covariance between N.({;) and
N.(t:). Under equilibrium conditions, this covariance depends only on
[tr — fa| so that

Cov [No(t), Ne{ta)] = Cov [N.(0), No(|& — L]} ]

Hence, the variance of L.(), east in a form that will be convenient
later, is given by the formula (Ref. 3, p. 137):

Var Lo(T) = 02 3 (n — |k|)Ro(ke), )

k=——r

where
R (k) = Cov [N.(0), N.(k7)]
= Cov [Ne(o), Nn(lklf)]

It is clear from (1) that the variance of the switch-count load is
completely determined by the covariance function R.(-} of the carried-
load process {N,{f}), — o <! <o}, and therefore much of what
follows is concerned with expressing RE.(-) in the most convenient form.

The covariance funetion can be stated at first in terms of the transi-
tion probabilities, and the resulting expression can then be reduced
by taking the structural properties of the process into aecount. But
alternate forms ecan also be obtained by making use of the faet that
the conditional expectations, E{N. (3| N0} =m}, m =0, 1, ---, d,
satisfy simple linear differential equations. The covariance formulas
obtained by these diverse procedures exhibit distinet features that may
be exploited in the computations. In all cases, however, R.({) is ex-
pressed as a diagonal, positive-definite quadratic form which reveals
that R.(-) is completely monotonie.?

Expressions for the transition probabilities, the eovariance function,
and the variance of the switch-count load are derived in Sections II,
111, and IV, respectively. The variance of load measurements based on
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continuous observations can be found in Section IV. Extensions of
the results of Sections II to I'V to reversible Markov processes are also
considered. Questions of a ecomputational nature are dealt with in
Section V, while Section VI is concerned with some asymptotic
properties (d large) of the spectrum of the underlying process.

The formulas presented here have been programmed and used to
explore the effects of parameter changes on the variance of the switeh-
count load. The result of that investigation will appear in another

paper.

Il. TRANSITION PROBABILITIES

In this section, we express the transition-probability moatrix as a
symmetric product of vectors and matrices. As hecomes apparent later,
this representation makes it possible to write the variance of the switch-
count load in a way that greatly simplifies its evaluation.

Let paa(t) be the probability of a transition from state m to state n
in time ¢:

Pmalt) = Pr[N() = n|N(0) = m], m,n=201,--7,4d.

These transition probabilities satisly the following system of
differential equations:

2 e = A
dt Pmo HFiPmi1 0P w0,

d
apmn = BntiPm ontl + )\rr—lpm,n—l - (Au + P—ﬂ)pmn, 1 é n < d,
d
7 Pme = Ne1Pm,d1 — HdPmd- (2}
Let
—Xo Xo
Hi —0\1+J-'-1) 81
A= f2 — (hetp2) A2
Bd—1 —(hartme1) Mo
i =
and

Pu(t) = [pma(D)], mn==01 -4

be the transition-probability matrix. Capital and lower-case bold-face
letters are used exclusively to designate matrices and vectors, re-
spectively.
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With this notation, the system of differential equations (2) becomes
L) = Pu)-A, (20, (3)

8o that, fork =1, 2, - -,

a* dr
dt* Pd(t) = ikﬁ Pd(’) Adr t

1%

0. (4)

It follows from our assumptions that if the system is in state m at
time zero [N({0) = =], then limuepum() = 1 and limyg pn.(f) = 0
for n # m. Hence, with I; the identity matrix of order ¢ + 1, the
initial conditions take the following form:

P,(0) = lim P,{8) =
10
and by (3) and (4) we therefore have

lim &P = 5)
The initial conditions state that Ps{-) is right-continuous at { = 0 and
imply that P4(-) is continuous for all ¢ > 0. By (3) and (4), all the de-
rivatives of P,(-) exist for { > 0, and by (5} they are also right-
continuous at { = 0. An application of Taylor's theorem then yields
(Ref. 6, pp. 240 ff.)

P(l) = exp (Al) = g kiA,,zk, 120 (6)

The elements of A, situated immediately either above or below the
diagonal are all strictly positive and so A can be symmetrized. In-
deed, let

D, = diag (80, &1, - - -, 84

with

o H
= = o] Lt B L R =1 ---
8o i and im = (Aokl 4 )lm—l) Epn®, n 1: ’ d,

where {¢) { is a nonvanishing but otherwise arbitrary constant, (i)
the pm are the equilibrium state probabilities, and (i) & = {pd.
Without loss of generality, we can—and shall—set { = p} so that
£=1and

D;! = diag [p, 1, - - -, pil. (7

It is easy to verify that
S. = Dji'-A; D, (8)
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is symmetrie, its nonvanishing elements being

Smm = — (Am'l'.l‘m}: 7n=0’ 1’ “.’d’ (7\.1:0)1
Smomtt = Smyl.m = (?\M“M+1)5' m =0, 1’ T d— 1

Hence, by (8) we have
At =D, S:D;Y, k=012 .. (9}
and, by (6),
Pu(l) = Da-exp (Su) Dt = 3 27 (Du-SpDFY5  (10)

k=0

The representation of A4 in terms of the symmetric tridiagonal matrix
Sy entails substantial formal simplification of the final results. And it
is also partieularly convenient computationally, since the determina-
tion of the characteristic values of Aq (which are needed for an exact
solution) is best carried out after symmetrization.

The matrices Az and S, clearly have the same characteristic values,
o, T1, - - -, Ta. But Sy is symmetric and is therefore unitarily similar to
the diagonal matrix

Cqs = diag [ro, r1, - -, 7a]-
This means that an orthogonal matrix B, exists such that
S, = B,-C..B;, By, B,=B;B;=1, (11)

where Bj is the transpose of B,.

But 8, is also tridiagonal, and its off-diagonal elements never vanish.
Hence, Sq is nonderogatory and its characteristic values are necessarily
distinet (Ref. 7, p. 26). The elements in the nth column of By are then
the components of the (uniquely defined) normalized characteristic
vector associated with the nth characteristic value r.(n = 0, 1, ---, d}.

We now substitute (11) into (10}. This yields

Pu() = ¥ 1 (Da-BerCi-Ba-Di)E,
so that
Py(t) = Dy Bg-exp (Ca-t)-Bg-Dg!
= D, B; -diag [e™, en, - --, e ]-Bs-D; " (12)

We note now that all the row sums of Ay vanish and one of the
characteristic roots, ro, say, must therefore be equal to zero. Further-
more, known extremal properties of the characteristic values can be
used to show that ry, rs, - - -, 7« are negative. It is also readily seen that

pi = (pd, pl, -, PV

is the characteristic vector of 8, that corresponds to the vanishing
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characteristie root ro. Indeed, let e; and o4 be the (d 4 1) dimensional
(column) vectors whose components are all equal to 1 and 0, respec-
tively. Then, since A;-es = 04, we have, by (8) and (7),

D,;-S;:-D;le; = Dd'Sd'péh = oq.
But none of the diagonal elements of D, vanishes and the relation
Da-Sq-p = 04

can hold if and only if S;-p{’ = 04. Thus, p§¥ is the characteristic
vector associated with ro(=0), a fact that may be of relevance in the
computations, as a comparison of p{¥ with D;! provides an accuracy
check for the method used to determine the characteristic vectors.

In the derivation of formula (12), advantage was taken of the fact
that the transition-rate matrix A, is symmetrizable. It is worth
noting that this relatively simple expression for P, is a consequence of
this property, and therefore holds for all (and actually only for)
reversible Markovian processes with finite state spaces. Indeed, by
definition, the class of these processes—which includes those of the
hirth-and-death type—is fully characterized by the following condi-
tions (Refs. 8 and 9):

pmpmu{t) - p?!p"m(t)s m, n = 01 1: B d: (13)
or, equivalently, by the single relation:
D %P, = P,-D;2 (14)

Henece (12), written in terms of 8, implies that

D;72.Py; = Di'-exp (840)-Dg !
(D7'-exp (S4) DY) = P;-D;?,

and (14) is therefore satisfied.

Conversely, we show next that (14) is a sufficient condition for
(12) to hold.

Pre- and post-multiplication of (14) by D, yield

D;'-P,-Dy = Dy-P,- DL (15)

Substituting the expansion of P, as given by (6) into (15), and perform-
ing the multiplications by D, and Dg' under the summation sign
(which is clearly legitimate), we obtain:

> Lrabpar = 5 L (De(AH DY, 1z 0.

K=o k! i=ok!
However, this relation cannot be satisfied unless

D,I_I'Ad'Dd = Dd'A:i'Dd_l,
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so that, by transposition,
(D' Ay Dy’ = Dy'-As-Da

This means that A, is symmetrizable by pre- and post-multiplication
by D;! and Dy, respectively, and (12) then follows as shown earlier.

Under the assumption that the process is reversible and that all the
states communicate with each other?® (i.e., pn.(i) > 0, m,n =10, ---,
d, { > 0), the characteristic roots of A, are necessarily simple. (Note
that Ay, and hence S, = D! A, Dy, need no longer be tridiagonal.)
This can be proved as follows.

The matrix S, is symmetric and can therefore be tridiagonalized by
amethod from Householder (Ref. 7, pp. 152, 153, 290293, and 343). Ac-
cording to this procedure, the tridiagonalization of Sy is achieved by
successive right and left multiplications by symmetric orthogonal
matrices, Uy, Us, - - -, Us_sq, of the form

Ur = Ia’ - QW,-'W;,

where w, is a suitably chosen ¢ + 1 dimensional (column) vector
whose first r components are zero. (All the U, are of order (d + 1)
andU2=1;,r=1,2 ---,d — 1) A direct application of the results
derived in Ref. 7, above, shows that S; admits of the following repre-
sentation :

S;=U, Uy -+ Uy TaUaye - -Up- Ty,

where Ty is & symmetric tridiagenal matrix of order d + 1.

Let 8;; be the elements of T..

We are now faced with two possibilities. Either 8; i1 = 81,0 % 0
fori=0,1, ---, d — 1, or there is an index j(<d) such that 8; ;.
= f;41.; = 0so that

T, 0
Te = ; (16)
0 Toj

In the first instance, all the characteristic roots of 84, and hence of
Ay, are distinet (Ref. 7, p. 26). To complete the proof, it is therefore
sufficient to show that the second contingency cannot occur when all
states communicate with each other. To this end, we proceed in-
directly. We assume that (16) is satisfied for some j < d and show
that some states then do not communicate with others.

When (16) holds for 7 < d, we have, for any k 2 0,

Al = D, S;-Dg!
T 0
=Dy Uy -+ Va1 Uy --- 0Dyt (A7)
0 Ti .,
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The first row in Dgis (pg?, 0, -+, 0) and the elements in the first
column and first row of each of the U/ s are zero except for their first
eomponent, which is always equal to 1. Hence,

(1,0, ---,0-D,- Uy -+ Uy = (.’Po_i, 0, ---, 0. (18)
Similarly, since the U,’s are symmetric, we have

Usy- -+ -Ue:DFV(1,0, -+, 0) = (p§, 0, -+, 0). (19)
Hence, by (17) to (19},

mm=umfwm(i%ﬂﬂyhammy
izo k!
= Iy, o
o Lgok!%”tk’ (20)

where 8§ is the element belonging to the first row and first column
of T%,

Let @mn and Smn, m, 2 = 0, 1, - -+, d, be the elements of A; and S,,
respectively. Under the present assumptions, @m. @.m = 0 and
Smn = (@mn-@un)t, m, n=0,1, -+, d, m = n. The elements in the
first » rows and columns of 8, are therefore uniquely determined by the
elements in the first » rows and columns of A, Similarly, the vector w,
depends only on the components, Sux, of S, for which either m < » — 1
and n =r — 1, - -, d or, by symmetry, n £ r —1and m =7r — 1,
- -, d (Ref. 7, pp. 290 ff). Consequently, the elements of T4 (which are
all obtained after ; — 1 steps) depend only on the elements of the
first 7§ + 1 rows and eolumns of Ay, This implies that the transition
probability Pg(t), as given by (20}, is independent of the rates am., m,
n > j. However, the proeess being Markovian, this can only be true
if Peo(f) = 0 for s > j which means (sinee, by assumption, j < d)
that state 0 does not communicate with states 7 + 1, - -, d, as was to
be proved.

Il. COVARIANCE FUNCTION
3.1 First version

The covariance function of the carried-load process is, by definition,

o
R@®= 3 (camnm-lcampgp..(ty —
m, n={

S (e an) (e A mpulpun(® — pul,

m, n=0

where

d
M., =EN.(0)= 3 (c A n)pa

n=>0
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However, if v is an arbitrary constant, the covariance of the process
{N.() -+ v, t = 0} is also R.. Hence, with the notation

pn=(Ci\ﬂ)+’Y, ﬂ=071r"':dr

we also have

d
Rc(t) = Z=o pnpmpn[an(t) - p?ﬂ:l (21)
Let
Po 1 " Pd
13.1 = IJ;o ‘p;1 ;D:d
Po 1 - P4
and

G4(t) = [pun(t) — Pnl
The matrix P; can be obtained by letting ¢t — <« in (13). Hence,
P, = D, -B;-diag [1,0,0, ---, 0]-B,-D;!

and )
Gy(t) = Pylf) — Py
= Dd-B;-diag [0, B”'E, g2, er‘ﬁ]'Bd'Dfl_l.

We now introduce two auxiliary row vectors:
ro = (oo p1, * -y Pady e = (popo, P1p1, * - *, Papa)-
Then the coefficient of e+ in the linear form
8;-Ga(f) 14 = sy-Dy-By-diag [0, e, -+, e ]-Ba-Di'rg
is the same as the coefficient of e"t in (21), and we may conclude that
R.(t) = s;-Dy-Bj;-diag [0, en, - -, emt]-Bs- Dyt -ra

With the notation ,
Qe = (Po‘pg, Ty ,0.319%),

we have
Q= s¢-Dy and q = Dil-rg

so that
Rc(") = q:Idela'g [01 er“r T erd‘] 'Bd'qd (22)

or, alternatively,

R.() = é blerit (23)

with b; the 1th component of the row veetor q4-By. This last expression
shows that the coefficient of e"i* in either (22) or (23) is necessarily
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nonnegative. Furthermore, sinee all the »’s (f = 1, -+, d) are nega-
tive, we also have

—lkd—thZO ¢
( )dtk B()— 1

v
=
Eoal
I
e
-

and E. is therefore completely monotonic over [0, «).b

If we now set ¥ = — ¢, the last d — ¢ components of g4 are equal
to zero, and so the determination of E. by means of (22) necessitates
only the computation of the first ¢ components of the characteristic
vectors. Formula (22) is therefore often well-suited to the case of delay
systems. But unless the number of waiting positions exceeds the
number of servers, greater reduction of the ecomputations can be
achieved by means of the formulas derived below.

In the preceding derivation, the p’s are independent of the arrival
and departure rates, and the formulas of this subsection therefore hold
for arbitrary, reversible, Markov processes with finite state spaces.
In contrast, the results of the next subsection are restricted to birth-
and-death processes.

3.2 Alternalive lorms

Multiplying the nth equation in (2) by (¢ A n) and then summing
with respect to n(0 = n = d), we obtain, after rearranging and
canceling terms,

d d c—1 <
E (C A ’.'L) " Pme = Z Au?)'m,n - z Enlmoa. (24)
n=0 dt r=0 rn=1

But
d

3 (e A npua(t) = EIN.()IN©O) = m},

n=0

so that, by (24},
d e—1 c
{EE{NCU)IN((}) =m} = goknpm — gluu})mﬂ. (25)

Adding and subtracting «E{N.(t)|N(0) = m] on the right-hand
side of {25}, we obtain

d
C%E{Nc(t)]N(O) =) = «EB{N ()| N(O) = m} + Zo on () Do,
m=20,1,  -,d, (20)

where

(An — o — kW) ifn=201,---,¢c—1, (o = 0),
pa(r) = 1 —(xc + uc) ifn=rc

— KC fn=c¢c+1, -, d 27)
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In the preceding formulas, « is an arbitrary real number that may
be positive, negative, or null. We see later that the covariance formulas
can gceasionally be simplified by appropriate choices of «.

Taking the initial conditions,

EfN(O)|N©O) =m] = (¢ A~ m), 0=m<d,
into account, the solution of (26) is

E{N:()|N(0)

m

{c A m)e -I—L‘ gr (=) [ dg K)Pmn (u)J-du (28)

[

so that

R.(0) 2:0 (¢ A MpaEIN.Q)|N©) = m} —

i

M et — ME
S e VAR [ )

m=1

il

where M., = EN2{0). By means of (13), the preceding relation can
be expressed in a much more convenient form:

Rc(t) = Mcgﬂ“ -
d
by

m=0

+ [ 5 piten |
= M e — M%)

R z Pt (IPEIN.(w) | N©) = n}-du. (29)

(e A -m)pﬂm(u)] ~duy

Next, substituting (28) into (29), we obtain

R.(f) = Mae — Mg + e ): (¢ A7) pa(k)-pu

+f exit—u) Z P;{K)'p,,[u e;(u—u)pnm(v).dv.du_
0

nm=0

Let R: be the Laplace transform of B, and ph, that of p,.. The pre-
ceding relation then yields

R:(S) ™~ SA{CZK = %ﬁi + (8 — K)z E {(’ A n) Pn("‘) Pu
+ 3 ph-sh(e) p 22 (30)

We know, however, that p..(t) is of the form

d
}Dnm(i) = Pm + ;Tnm(ent,
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so that

d
R.(6) = Z {lean)(enn)p. X yomet
=1

m,n=0

This implies that the only poles of R} are r;, £ =1, ---, d, and that
lim,., R.(t) = 0. Taking these two facts into consideration, we see
at once that (30) reduces to

R* 4 ’Yﬁm; 1
(s) = n; P (k) pm (6) P ):1 T TN
provided « £ r;, ¢ = 1, 2, - -+, d. And referring back to the derivation
of (22}, it is readily seen that

er]l erdt

R() = ()T By-ding [0, =S o K),] Ba- 43(x),
« = 8 =1, --,d, @D

where
[q;('{)]’ o [:P;(K) 'PE}): T PZ(K)PH
The modifications needed when « is equal to one of the characteristic
roots are immediate. Let
diag® [ao, ai, -+, @4 ]

be the diagonal matrix chtained by setting the jth diagonal element of
diag [ae, @1, - - -, as | equal to zero. Then if x = 7; we must have, with
some as-yet-undetermined constant @& and o2 the variance of N.(0),

R = (% + a)er
a0 Baeding [0, L i1, d] Bu-al(x).
But E.(0) = ¢, so that
a = — [}()] By diag® [0, (i — K% i = 1, -+, d]-Ba-ai(e).
Hence,
R(t) = ato 4 [qi(0] Bieding® [0, 550 i = 1, o, d]
Ba-qix). (32)

It should be noted that (32) is valid even if k 2 r;, =1, ---, d,
and that it should be used in the computations [rather than (31)]
whenever « is “close’ to one of the eharacteristic roots so as to avoid
accuracy losses (see below). Sinee « is arhitrary, one could always
choose it so that it is not “close” to any of the characteristic roots.
But, as shown next, it is often preferable to select it in such a way as
to reduce the amount of computation, and this, in turn, may dictate
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the use of (32). As we have seen,

. ) . ertt grit i
D) = " B,- e & _|.B,; )

17 (i) [qd(x)] Bd dlag [Ol (TI _ K)2 ’ ’ (Td — K)E] d qd(K)
But, as noted previously, p§? is the characteristic vector associated
with the vanishing root (o), so that

erit erdt

(psPY -By-diag [0; it a0 ] ‘Ba-pfP = 0. (33)

Consequently, (31) remains valid for all [qz(x)]’ of the form
(Cootey + v1-pd, -+, [oale) + v1-pil.

where v is an arbitrary constant. [ The same remark, of course, also
applies to {32).]

We are therefore always at liberty to add the same constant to all
the p}(x)’s. Under some circumstances, this degree of freedom, together
with the one provided by the introduction of «, can be used to reduce
the dimension of B’ and B: entire rows in B’ and the corresponding
columns in B can be set equal to zero without affecting the computation
either of (31) or {32), or of the variance of the switch-count load. It
is relevant to note here that this reduction would be largely illusory
were it not for the fact that the normalized components of any of the
characteristic vectors ean be obtained without having to compute
other components of that vector (see below).

According to the result of Section 3.1, the covariance can always be
cast in a form that involves only the first ¢ components of the character-
istic vectors. But when the input and departure rates for 0 £ n < ¢
are linear in », the covariance can also be expressed in terms of the
last @ — ¢ -~ 1 components of these vectors. Indeed, the rates are
then of the form

Ay = An - N,
un -+, n=01- ---,¢—1,

It

Mn

so that
Ao — fin = (?\ - p‘.)?l -+ ()\I —u')

Hence, withx = A — pand v = g’ — )/, (27} yields

0 fn=201 -+, ¢—1,
ph—w) = —Ne—p+u =N ifn=c¢
(6 — Ne + ' — N ifn=c+1,- - d

For the random (Poisson) and the quasi-random inputs, the p’s take the
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following gimple form whenever the service time is exponential with
mean 1.

() Random input (A, = a,n=20,1, ---):

0 fn=0,1---,¢—1,
pr(—1) =4 —a if n =g,
c—a fn=¢4+1,---,4d.

(i) Quasi-randony input [N sources, A, = (N — n)A,
n=201---,N]:

"O ifn=0,1,...__(,_1’
pl—(1+N] =1 (c— NI if n =g
Le+ (c— N fn=c4+1, -, d

From the preceding developments, we see that the p’s can be chosen
in such a way that the number of components of the characteristic
vectors needed to express K. is the smaller of the two integers r and
d — ¢ + 1, In particular, in the case of loss systems, only the (¢ +1)st
component of each vector is needed.

The parameters « and ¥ can also be chosen =o that only the first
¢ + 1 components of the characteristic vectors actually enter in the
expression of £,.. This will be the case if we set x = peq — Ae—y and
Y = (‘(,u,...l - A,.-_l).

In Ref. 3, the derivation of the covariance function for loss systems
fd =¢ N() = N{)] with Poisson input and exponential service
time makes use of the differential equations

g’t EINDINOQ) =m} = —E[NDINO) =m]| +afl — p..(8)],

m=0,1, -, ¢

These equations appear here as that particular instance of (26) for
whichsk = — Lav=e,n=01, -, c—lLandy,=n,n=1, - ¢
Note also that now Y728 pua(l) = 1 — puc(f). But we stress that, in
Rel. 3, the determination of the covariance relies on known recurrence
relations between the so-called “sigma’ functions (Ref. 3, pp. 129 and
143 (.}; the more general problem considered in the present paper is
not as readily amenable to such a treatment because of the greater
complexity of the expressions that would now have to be used instead
of the sigma funetions. As we have seen, however, relatively simple
formulns for /2, can be obtained without extensive algebraic develop-
ments a8 long as the underlving process is reversible.
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IV. VARIANCE OF THE SWITCH-COUNT LOAD

The variance of the switch-count load is now readily obtained.
Depending on which expression we select for R., we have either

(i) Var L.(T)

=w£;m—wmﬁﬂ

n‘zq;B;dlag [OJ Zn: (ﬂ — |k|)e”|k“) 1= 1: ] d]
k=—n
‘By-ga(c), (34)
with
q = (Pﬂp%: 33y Pc—lpz—lr 0,---, 0), or
(i) Var L.(T) = n*{qi(x)J-B.

-diag [O,k_i (n — !k\)%,i: 1, ---,d]

‘Ba (e}, (35)

withe #r,2=1, ---, d, or
(455) Var L.(T) = n2{o% — [qz(x)]-Ba
-diag? [0, (o —®) %0 =1, -, d]-Bu-gd)

L3 (n— |kDest®” 4 n2[gi(0)Y Bl

hx=—n

n ef,‘lkrr
. diag @ - L8 el aes
disg® [0, = (0= 6D T 507 L ,d]
-Bi-qa(x), (36)

where « #= r; for ¢ & 7.
We now make use of the following identity (Ref. 3, p. 137):

k 1 — g 2nu
Z (ﬂr— [kl)e‘””""=n-cothu*_2
n=—k

-esch? w.
By means of this relation, {34) to (36) can also be written as

1 — enrri
2n

Var L.(T) = n'-q; By diag [0, coth ( _2”") -

-cschz(_;’"),i= 1, -, d]-qud; (34a)
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Var L, (T) = n“-[qZ(n)]’-BZ,

. T, 1 — gnrTi
-dlag[ N (o {coth( ) )—— on

-csch*( _27“)} yi=1, -+, d:l-B.rq:(x).
K # i, i=1,---,d; (3ba)

and

Var L,.(T)
== [ai() T By disg®? [0, (=) i1, -, 4] Baqi(s)]

-{coth ( _2”) - L _2‘,:3"”-csch2 ( —2” )] + nt-[qa(x) ] - By

. . 1 — T 1 — egnrri
3 (i} —
diag [0, G {coth( 5 ) B

- esch? ( __.,-,"’"-‘)} yi=1, - d]-B,,-q;(x), (36a)

where « # r; for 1 = ;.

Let Var L.(T) = lim,., Var L,(T) be the variance of the load
measurement obtained by continuous chservation of the number of
busy servers. If we replace r by 7/» in (34a) to (36a) and then let »
tend to infinity while keeping T fixed, we obtain the following formulas:

Var L (T) = — T q;- By
. 1 — e .
-diag 1+ T ,i=1, -, d|-Bs-qu, (34b)
2 ’
Var Lo(T) = — 5 [0i()] B,

di 0 1 1+1—e’f =1, -, d| Ba-qi(x)
128 1 ¥ ri(r; — x)? ( Tr; =4 o a-Qatk),
K # 1 i=1,---,d, (35b)
and
Var L .(T) = T |2 — [q:,(x)]’-B,
‘diag@ [0, (ri — &)% i =1, -, d]
oo 1 1— e T\ 2 o o,
Beaw) (1457 ) - F R B
. - 1 ] . e”T § &
.dlag(,l) 0'1(,’.4- 1 +T ,‘z= 1, ...,d 'Bd'QE(K);
KTy for i # . (36b)
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We note that the formula for the variance of sums of dependent
random variables makes it possible to compute the covariance between
load measurements performed over distinct time intervals. Indeed,
consider for instance a sequence of load measurements over the
intervals (0, T, (T, 277, (2T, 3T], ---. Let L{®(T) be the switch-
eount load over the #th interval (£ = 0, 1, ---}, 8.(8) = n?L.(8}, and
¥ = Cov [LO(T), L®(T})]. Then

Var Suasnl (5 + DT = (k + 1) Var 8.(T)
$25 (6 + 1 - nTe(T)

fw=l

and

k41

. 2
(ii_ll Var L[k + 1T — — Var L. (TH

2

(1) =

k—1
- X (D).
i=1

The preceding formulas may be used to determine the I'®(T) re-
currently. But the results of such computations shall be exact only if,
for some choice of the time origin, all the scanning instants are multiples
of 7.

We conclude this section with the remark that the variance formulas
(34), (34a), and (34b) are valid for arbitrary reversible Markov pro-
cesses with finite state spaces.

V. NUMERICAL CONSIDERATIONS

The exact variance formulas of the preceding section are very well
suited to electronic computation and are easily programmed since,
apart from straightforward evaluations of hyperbolie functions and
simple products of matrices and vectors, they only involve the deter-
roination of characteristic values and vectors for which powerful sub-
routines are readily available. The fact that 8, is symmetric and tri-
diagonal (or reducible to tridiagonal form by an orthogonal similarity
transformation) allows us to use the subprogram TQLZ2, which is par-
ticularly efficient under the present circumstances (Ref. 11, pp. 227-
240). Without going into details, we mention here only that this sub-
program is based on the so-called QR-algorithm and relies on the con-
struction of a sequence of symmetric tridiagonal matrices, s,
n = 1,2, ---, unitarily similar to S, which converges to diag [0, »,
ra, -+ -, ra]. At the nth iteration S{® is expressed as a product of an
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orthogonal matrix Q4 and a lower-triangular matrix L :
8" = QM -L{".

In Ref. 11, this decomposition is carried out by the Givens’ triangular-
ization in which the Q{"'s are expressed as products of simple plane
rotations (Ref. 7, pp. 239-240).

The (n + 1)st iterate of Sy is then given by

S{ = Lin-Qg,

whose unitary similarity to S’ (and hence to 8;) follows from the
relation

Léﬂ) . Qéﬂ) = (Qéﬂ))' . Sg’!) . Qéﬂ)_

This method avoids the numerical difficulties frequently associated
with the computation of the zeros of the characteristic polynomial.
As shown in Ref. 11, p. 228,

QP = R --- ‘R, (37)
where R{¥ is of the form:
1
. 8
-8 «— row . (38)

1
1

According to Ref. 11, p. 231, the matrix B, (shose columns are the
characteristic vectors of 8;) is given “almost to working acecuracy’ by

Q- -+ QP (39)

where n (=30) is the number of iterations needed for the {(numerical)
symmetrization of 8, Taking (37) to (39) into account, it is then
readily seen that the elements of B; can be determined row by row
which, as we have remarked earlier, is a desirable feature in the present
context.

Computations have been carried out for systems having as many as
400 devices (and hence transition-rate matrices of order 401) to deter-
mine the numerical accuracy of the approach described in the preceding
sections. Checks were performed by comparing the value of Var L,(T)
obtained by means of (35a) or (36a) with the corresponding +%, which
can be calculated directly and independently from the equilibrium
state probabilities. These two quantities, which are theoretically equal,
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turned out in all cases to agree to at least 10 decimal places with the
greatest difference occurring when d was largest. Hence, our procedure
indeed yields very accurate results for the type of systems that are
likely to oceur in practice. But when d is large, the storage require-
ments and the amount of computations become critical. 1t is therefore
always important to select « and v in such a way as to minimize the
number of B’ rows that actually enter into the computations. (It
follows from earlier remarks that this number, for proper choice of «
and v, never exceeds the integral part of {d + 1}/2.) Further reduction
can also be achieved by excluding the states whose probabilities of
occurrences are so small that neglecting them will not materially affect
the final results. In this connection, we make the following remarks.

The variance of the switch-count load is perturbed by at most

Co5(x) J2- ;- o

if p, is set equal to zero in the particular formula used to evaluate
Var L, (T). Hence, since

Var L.(T) = #3/n,

we always have the following upper bound for the relative error, ¢,
induced by setting p; equal to zero:

€ = [P*J(K)]Z'pi'n: J= 0; | PR d.

For a given relative accuracy of Var L, (T), these inequalities make it
possible to determine ahead of time whether some components of the
characteristic vectors can be “safely’ eliminated from the computa-
tions. In large systems, the gains achieved by such a reduction may be
quite substantial, as either low occupation states [N (f) small] and/or
high occupation states [N (¢) large ] have then frequently very small
probabilities of occurrences.

Computations could be arranged to determine only those character-
istic roots that are required to reach a given degree of aceuracy
[plus those needed to compute Bi-qi(x)]. This is rather readily
achieved in loss systems with Poisson input and exponential service
times since, in this case, the coefficients b% of

— Ty _ 1_ — Gnrri:. 2 __T?-l,
coth ( 5 ) “on esch ( 5 )

in the variance formulas of Section 3.1 are then monotonically de-
creasing as |r;| increases:

b2 < B2 i v > |, ,j=1,---,4d
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Fig. 1—Spectral measure of the earried load process.

But, in general, one would encounter an additional difficulty, namely,
that the b%s do not have the monotonicity property alluded to above
and may actually fluctuate widely. This is illustrated in Fig. 1, where
the roots are assumed to be indexed in order of increasing magnitude
and the ordinates are the corresponding #%'s, normalized in such a way
that max; b% = 1,

The eomputations should be bused on (35a)—(364a) or on (35b)—(36b)
in the case of eontinuous measwements—as these formulas provide
us with all the flexibility needed to cut down both storage space and
computation time. When choosing between (35a) and (36a) or between
(35b) and (38b), one should keep in mind that, for « close to r;, the
difference »; — « may not be determinable with enough precision to
allow aecurate computation of Var L, (T). This is shown in Table 1
where « = — 1 and r; is the root of smallest positive absolute value.
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Table | — Loss system, 80 servers, Poisson input,
exponential service

Offered | Var L(T)

Load in 1+ e

Erlangs | Formula (36a) | Formula (35a)
10 1.09 X 1079 10.000000 10.000000 0.034614
20 -9.490 X 10N 20.000000 20000000 0.013173
30 —1.14 X 1071 30.000000 30.000000 20.891365
40 —3.38 X 10~¢ 39.999986 30.999986 39.999926

(Note that the last two columns of this table should be equal and that
errors of the same magnitude would arise if one were to use (18) of
Ref. 3.) In all our computations, we have made use of (35a) and (36a)
whenever |« — r;| < 10~ for some i. This bound for |« — ;| is both
large enough to ward off appreciable accuracy losses and small enough,
under prevailing conditions, to be satisfied by only one root.

VI. REMARKS ON INFINITE SYSTEMS

It is known that infinite systems can be regarded as limits of finite
ones,? and it is therefore of practical interest to have information
concerning the spacing of the characteristic values as the dimension,
d, of these approximating systems becomes large. Indeed, as d increases,
computational difficulties may arise because of a lack of separation
between these roots. Such problems would certainly eome up sooner
or later if the spectrum of A = limg..A. happens to be dense over
some interval ag, for instance, in the case of a single-server queue with
Poisson input, exponential service time, and unlimited waiting room
(Ref. 12, pp. 365-366). Infinite systems with well-separated roots do,
of course, also occur. As an example of this type, we mention the
systems with an infinite number of servers, Poisson input, and ex-
ponential service which often provide useful idealizations. (In this
case, as is well known, the nonvanishing characteristic roots are the
negative integers, —1, —2, —3, - - -.} Other examples of systems with
discrete spectra are given in Ref. 12, where sufficient conditions for
this to occur are discussed in some details; but in all these instanees
the A, and u, both increase as #’ for some » > 0. This condition is un-
likely to be satisfied in queuing systems; generally, in this particular
area, the arrival and the departure rates remain bounded:

O§AII§A<wI Oé#"éM<w, ﬂ‘=0,1,"‘. (40)
As briefly described below, these inequalities imply the existence of

definite bounds for the spectrum of A.
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Consider an infinite system, and let A be its (infinite) transition-rate
matrix. Let A, be the matrix obtained by retaining only the elements
belonging to the first (d + 1) rows and columns of A and then setting
Mg equal to 0. Let rq0(=0) > rq1 > --- be the characteristic roots of
A, Then, under conditions (40) it can be shown that, for any & = 0:

(%) [rae] <A+ M for d sufficiently large,
(21) |?'d.d7k| <2+ M) for d = k.

Either of these two inequalities implies that the characteristic roots
do not remain separated as d — o whenever (40) is satisfied. Under
the more stringent requirements that (40) holds and that

lim A, = 4, lim p, = M,

more precise statements can be made, namely, that, for all £’s and d's,
[rae| < (ﬁ + \U'r_f)z
and that the spectrum of A always comprises a closed interval, viz.,
2 =[—(A + VM), —(¥a — VM),
(In addition to @, the spectrum of A may also include a finite number of
roots in [—(\[K = W)z, 07].) But it turns out (as wili be shown
elsewhere) that, as d increases, the characteristic roots of A, fill @
rather “evenly’’; furthermore, for practical accuracy levels, large
values of d are needed only when the length of £ tends to be relatively
large (a circumstanece corroborated by extensive computations).
Hence, within the present framework, it appears that root-spacing is

not likely to be critical except in the improbable event that extreme
precision is required.
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T1 Carbon Transmitter Model for Use in
Computer-Aided Analysis of Telephone
Set Transmission Characteristics

By D. R. MEANS
(Manusecript received March 5, 1975)

A carbon transmitler model is presented, the purpose of which is fo serve
as a lool for computer-aided analysis of lelephone set iransmission
characteristics. The derivation of the model ts based upon the physical
theory of the device. The paramelers in the model are evaluated by com-
paring the analytically derived expressions for the device characteristics
to the measured characteristics of a typical device. Because these param-
elers are velated to the physical theory, the model not only serves ils de-
sired practical end, bul also serves as a vehicle whereby an understanding
is oblained of the relationship between device characteristics and physical
theory.

I. INTRODUCTION

Computer-aided optimization of the transmission characteristics
of telephone sets requires that accurate models be obtained for all
transmission-related telephone set components. A carbon transmitter
model has been derived for this purpose. This model has been used
in a telephone set transmission analysis computer program, and good
agreement between computed and measured transmission charac-
teristics was obtained.

The de V-1 characteristic of the carbon transmitter is nonlinear.
This nonlinearity must be taken into aceount in the de model so that,
in the transmission analysis program, the operating point of the
transmitter can be determined, as well as the operating points of any
nonlinear telephone speech network eompouents, e.g., silicon earbide
varistars. Thus, the de model is a voltage-dependent resistance.

The ac model is similar to that of a vacuum-tube triode, consisting
of a Thevenin-equivalent resistance and voltage source. The voltage
source is dependent on the amplitude of the force acting on the carbon
granules heeause of the acoustic excitation of the transmitter. This
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force is in turn the output of a filter which represents the transmitter
structure itself. The input to the filter is the acoustic sound pressure.
This filter can be represented by an electrical equivalent eircuit,! the
derivation of which is straightforward. However, it is the charac-
terization of the effects taking place within the carbon chamber which
is of primary interest here. The filter is represented simply by its
measured frequency response.

Values for the various parameters of the model were determined
by comparing the expressions derived analytically for the charac-
teristics of the transmitter to the measured characteristics of a typical
device. All measurements were made with the transmitter face in a
vertical plane, in a telephone handset, and in a position relative to the
artifieial mouth as specified in IEEE Standard 269-1971.2 Also, the
transmitter was mechanically and aecoustically conditioned prior to
the measurements. The acoustic conditioning signal was swept be-
tween 300 and 3300 Hz at a rate of six sweeps per second and fre-
quency-weighted corresponding to the average sound pressure spec-
trum of continuous speech, and had an average sound pressure level
of 94 dB (re 0.0002 dyn/cm?). The conditioning signal was applied
for 3 s.

1. PC MODEL

As shown in Fig. 1, the de V-1 characteristic of the carbon trans-
mitter is nonlinear. Goucher® attributed the nonlinearity to the effect
of joule heating on the contact resistance between carbon granules.
Later, Mol,* disputing Goucher, attributed the nonlinearity to the

DC VOLTAGE IN VOLTS

| | | 1 !
\] Q02 0.04 0.06 0.08 0.10 Q.12
DC CURRENT IN AMPERES

Fig. 1—Direct-current V-1 characteristic.
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effect of electrostatic forces between carbon granules. On this basis,
he derived an expression for the de transmitter resistance as a function
of voltage and found it to agree fairly well with measured transmitter
resistance. However, Mol’s expression for the de voltage dependence
of the resistance variation when an acoustic signal acts on the trans-
mitter agrees rather poorly with measurement. This easts doubt on
the electrostatic force theory. In fact, experimental results indicate
that the effect of electrostatic forces between carbon granules is
negligible. These experiments are described in Appendix A. On the
other hand, a more recent study of the theory of electric contacts
tends to support Goucher’s theory. Holm?® treats the subject of the
effect of joule heating on contact resistance extensively, and his
results will be applied to the derivation of the transmitter model.

As will be seen, the nonlinearity of the V-I characteristic cannot
be accounted for entirely by the effeet of jJoule heating on contact
resistance. The effect of the thermal expansion of the carbon chamber
due to joule heating must also be considered. This effect is readily
demonstrated experimentally because of the relatively long time
constant involved. If the transmitter current is changed abruptly, a
slowly decaying voltage transient is observed, owing to the hysteresis
associated with the expansion of the carbon chamber. The time
constant is approximately 1 s.

A cross section of the T1 transmitter is shown in Fig. 2. The earbon
chamber consists of a movable dome electrode eonnected to a fixed
conical back electrode by a flexible, nonconducting chamber closure.
According to the results of Fritsch’s analysis® of the thermal response
of the transmitter structure, the transient effect is due primarily to
the expansion of the dome electrode. As the dome electrode expands,
it compresses the carbon granules, lowering their resistance. Fritsch
called this effect ‘‘thermal packing.” Of course, after the transient
has decayed, the transmitter can be reconditioned to unpack the
granules. Iowever, following the recenditioning, a new thermal
equilibrium will be established so that some degree of thermal packing
will still oeccur. This effect, as well as the effect of joule heating on
contact resistance, must be included in the model. An understanding
of these effects is based on a consideration of the factors affecting
the resistance of a single carbon contact.

2.1 Effeci of contact force on contact resistance
The contact resistance between two carbon granules is related to
the magnitude of the force pressing the granules together by the

expression
Yy = KP_7, (1)
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where P is the contact force and K and v are constants. Equation (1),
which is generally valid for electric contacts, was shown by Goucher?
to be valid for carbon granules, based on direct measurement of
contact resistance and forece. Later, this equation was indirectly shown
by Joscheck” to be valid based on measurements of the bulk resistance
of carbon granules as a function of the filling height of the granules
in the measurement chamber.

In the carbon chamber in the T1 transmitter, the significant forces
acting on the carbon granules are the gravitational force resulting
from the weight of the granules themselves, the foree resulting from
the thermal expansion of the dome electrode, and, when the trans-
mitter is acoustically excited, the foree resulting from the acoustic
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pressure acting on the diaphragm and dome electrode. Because of the
random orientation of the contacts throughout the chamber with
respect to the directions of the applied forces, the contact force and,
hence, the contact resistance will also vary randomly. However,
because of the large number of eontacts involved, the random variation
in contact resistance can be ignored. Only the larger overall gradients
in bulk resistivity will be considered.

For simplicity, an approximate chamber geometry is assumed in
which the two electrodes are concentric hemispheres. A spherical
coordinate system is defined such that the hemispherical chamber
walls lie at constant radial distances from the origin, the inner and
outer radii being designated a and b, respectively. The component of
contact force resulting from the weight of the granules themselves is
represented by P,(r, 8, ¢). The component resulting from the
thermal expansion of the dome electrode, being proportional to the
power dissipated by the transmitter, is represented by (V*/R)
Pu(7, 8, ¢), where 1" and R are the transmitter de voltage and resistance,
respectively. The component resulting from the acoustic excitation
of the transmitter, being a function of time as well as of the spatial
coordinates, is represented by AP({r, 8, ¢, {).

Equation (1), therefore, hecomes

relr, 8,9, 8) = K[P,(r, 6, ¢) + (V2/R)Palr, 6, ¢)
+ AP(r, 0,6, 0T (2)

It will subsequently be seen that, for normal speech signal levels,
AP is small enough compared to the static components of contact
force that its effect on the de component of contact resistance is
negligible. Thus, the relationship between the de contact resistance
and the contact force is

7:(r, 8, ¢} = K[P,(r, 8, ¢) + (V¥/R)Pa{r, 6, ¢} 7. (3)

Although a change in dc¢ transmitter resistance is observed when
acoustic excitation is applied to the transmitter, this is judged to be
due to the effect of the acoustic excitation on the state of compactness
of the carbon granules rather than to the effect of the nonlinearity
of the contact resistance—contact force characteristic. The effect of
acoustic excitation on the state of compactness of the granules will be
discussed further.

2.2 Effect of joule heating on contact resistance

According to Holm’s analysis® of the effect of joule heating on
contact resistance, if certain assumptions regarding the temperature
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dependence of the electrical resistivity and the thermal eonduectivity
of the contact members are satisfied, then the effect of joule heating
can be accounted for by multiplying the contact resistance by the

factor
2(Ve) = [B + (1 — BY{4,/V3) tan™" (V./A) ], (4}

where V, is the contact voltage and A, and B are constants. Since
the random variation in contact voltage is of no concern in the model,
V. is considered to be the average contact voltage, which is propor-
tional to the total transmitter voltage. Then

7(V) = [B + (1 ~ BHA4/V) tan " (V/A) I, (5)

where A is also a constant.
The assumptions upon which the derivation of eq. (4} is based
are that the thermal conductivity satisfies

A = ao(l + AT, (6)
and the electrical resistivity satisfies
p = pa(l + eAT)/(1 + BAT), (M

where pg, Ay, ¢, and @ are constants, and AT is the ehange in tempera-
ture because of joule heating. Apparently, these assumptions are
valid in this case because of the excellent agreement between eq. (3),
using the values for 4 and B, listed subsequently, and the measured
data presented by Hufstutler and IKerns® for the resistivity of granular
carbon contained in a quartz test chamber having a negligible thermal
expansion coefficient. This implies that, aside from the effect of
chamber expansion, the effect of joule heating on contact resistance is
alone sufficient to account for the nonlinearity of the V-I characteristic.

Now, if eqs. (5) and (3) are combined, the expression for the dc
contact resistance becomes

ri(r, 8, ¢) = Kn(V)[P,(r, 8, ¢) + (V¥/R)Pu(r, 8, ¢} 7. (8)

2.2 Total dc resistance

If 74{r, 6, ¢) is the contact resistance and there are n contacts per
unit length, then the resistivity of the carbon granules is (v, 8, ¢}/n,
where r.(r, 8, ¢) 1s given by eq. (8). Then, for the approximate chamber
geometry which has been assumed, the total de transmitter resist-

ance is
dr

. f "lﬁ ﬁ [ sin ¢/7:(r, 6, ¢)]d¢da' (9)

The mean value theorem can be applied to perform the integrations
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with the result

R = Ry(V)[1 4 «V¥/R], (10)

where
Ro = K(b — a)/[nx*sin $P,*(#, 6, $)], (11)
a = Pd(:':J éJ 6)/Pﬂ(f-1 é: 6): (12)

and where 7, §, and ¢ are constants, being the coordinates of some
point within the chamber. Note that R, is the limiting value of B as V
approaches zero, and that «V?/R is the average ratio of the component
of contact force due to thermal expansion of the carbon chamber to
the component of contact force due to the weight of the granules
themselves. Although R is not expressed as an explicit function of V,
a solution to eq. (10) ean be obtained using iterative technigues easily
implemented on the computer. Values for the parameters Ry, , A, B,
and ¥ will be determined by fitting eq. (10) simultaneously with
equations for the transmitter ac resistance and open circuit cutput
voltage to measured data. The ac resistance and open circuit output
voltage will now be considered.

lll. SMALL-SIGNAL AC RESISTANCE

Over the range of frequencies of interest for speech transmission,
the transmitter ac impedance is purely resistive. However, as is
obvious from Fig. 3, the ac resistance is not the slope of the de V-1
characteristic except in the limit as V approaches zero. This is ex-
plained by the fact that, because of the large hysteresis effect, the
thermal expansion of the dome electrode cannot follow the ac signal,
at least not at frequencies above a few hertz. Thus, the difference
between the ac resistance, which is not affected by the thermal expan-
sion of the dome electrode, and the slope of the de V-1 characteristie,
which is affected, increases as the power dissipated by the transmitter
increases.

Because the thermal expansion of the dome electrode has no effect
on the ac resistance, the ac resistance is the slope, not of the actual
V-I characteristic, but of the V-1 curve defined by setting the term
equal to zero which accounts for the expansion of the dome electrode.
This is the curve defined by

I = V/[Ra(V)], (13)

where Rq and (V) are defined by egs. (11) and (5), respectively. Thus,
the ae resistance is given by

e = Rt (V) [ |20 = ¥ g9 |
= Ro(A%2 4 V2/(A* + BVY). (14)
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It has been assumed that the ac signal level is low enough so that
there is no significant joule heating effect due to the ac signal. This
assumption is valid for signal levels typical of speech transmission.
For higher signal levels, the ac joule heating effect will cause the ac
ag well as the de resistance to decrease, as is easily verified
experimentally.

At frequencies low enough that the period of the ae signal becomes
significant compared to the time constant associated with the thermal
response of the dome eleetrode, the transmitter ac impedance exhibits
a reactive component due to the effect of the thermal hysteresis.
Figure 4, drawn from a photograph of a storage oscilloscope trace, shows
the effect of the thermal hysteresis in the response to a sinusoidal
driving voltage at a frequency of 0.2 Hz for four different operating
points. The effect becomes greater as the de bias increases, as would
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be expected since the expansion of the dome electrode is proportional
to the power dissipated by the transmitter. An expression for the low-
frequency transmitter impedance that accounts for this effect is
derived in Appendix B. For frequencies greater than approximately
10 Hgz, the reactive component of the transmitter impedance becomes
negligible, and the expression derived in Appendix B reduces to the
expression given by eq. (14).

IV. OPEN-CIRCUIT OUTPUT VOLTAGE

When the transmitter is acoustically excited, the contact forece will
vary owing to the effect of the acoustic pressure acting on the dia-
phragm and dome electrode. The variation in the contact foree at the
point (r, 8, ¢) i8 desighated AP(r, 8, ¢,1). Then the resistance will
vary by an amount AR(!) suech that

R + AR(t} = BRm(V)[1 + «V*/R + AP(t) ™, (15)

where L
AP(t)

(i

AP(7, 0, ¢, 1)/ P, (7, 8, 8). (16)
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The transmitter voltage will change by an amount AV () where, if
the transmitter current I is held constant,

V 4+ AV(@) = ITR + ARy 1. {17)
Then
AV () = IAR()
= VAR(i)/R, (18)
which is the ac open-circuit output voltage. From eq. (15),
AR()/R = [1 + AP()/(1 + aV¥/R) " — 1, (19)
so that
AV{) = Vi[1 + AP@/(1 + «V¥/R)] — 1}. (20)

Although this is a nonlinear relationship, AP(#) will be found to be
small enough compared to 1 + aV?/R at normal speech levels so
that a linear approximation is justified. Thus,

AV(t) = — yVAP($)/(1 + aV*/R). {21)

Note that eq. (21) is —vV multiplied by the ratio of the dynamic
to the static forces acting on the carben granules.

V. EVALUATION OF MODEL PARAMETERS

The parameters Ro, @, v, A, B, and AP({) were evaluated using
an iterative optimization computer program to fit eqs. (10), (14),
and (21) simultaneously to measured dec resistance, ac resistance, and
open-circuit output voltage, respectively, the latter being measured
at a frequency of 1 kHz with a sound pressure level of 94 dB (re
0.0002 dyn/em?). The measurements were performed on a T1 trans-
mitter considered to be a typical unit. The resulting parameter values
are listed in Table I. Of course, transmitter characteristics are subject
to such factors as aging, temperature, conditioning, orientation, and
manufacturing variations. The values of the parameters in eqs. (10),
(14), and (21) will vary accordingly.

Table | — Parameter values
Parameter Value
Ry 111.0
a 0.94
¥ 0.43
A 7.12
B 6.65
AP (rms) 0.20
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Equations (10), (14), and (21), with the parameter values listed in
Table I, are plotted in Figs. 5, 8, and 7, respectively, along with
measured data points. The agreement between caleulated and measured
data is judged to be within the limits of measurement error.

V1. INPUT-QUTPUT AND FREQUENCY RESPONSE CHARACTERISTICS

To complete the model, the input-output and frequency response
characteristics of the transmitter must be specified. The input-output
characteristic is nonlinear owing to the effect of the acoustic excitation
on the compaectness of the carbon granules. As the acoustic signal
level increases, the carbon granules are agitated into a less compact
state and the mechanical impedance of the granules deereases. There-
fore, the transmitter efficiency increases as the acoustic signal level
increases, resulting in an input-output characteristic having a greater-
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than-unity slope. Because of this effect, the transmitter is able to
discriminate against distant sounds, and thereby reduce interference
resuiting from background noise. However, the weak components in a
composite signal such as speech are not discriminated against, since
the compactness of the carbon granules, which is controlled by the
strong components, is the same for all components of the signal.
Therefore, the nonlinearity of the input-output characteristic does not
affeet the ecomponents of individual speech sounds, and the eompact-
ness of the carbon granules varies only as the overall energy content
of the speech signal varies.

As discussed by Bryant,® the frequeney response of the transmitter
is related to the nonlinearity of the input-output characteristic, since
it also depends on the mechanical impedance of the carbon granules.
This implies that the frequency response depends on the nature of the
input signal. The response to a swept frequency sinusoidal signal is

1312 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975



o]
030l
o
b

2
Z o)
[543
5
5]
>
=
w
¢ oz}l
Y
o
-
=
=2
o
=
3
2 o
jur
Q
=
[ ]
i
£ o CALGULATED
o 0101
< ©  MEASURED

s

| | | | |
o 1 2 3 4 5 6

DC VOLTAGE INVOLTS

I'ig. 7—Alternating-current open-circuit output voltage characteristic at 1 kHz
for a 94-dB (re 0.0002 dyn/cm?) acoustic input level.

somewhat different from the response to a speech signal. (For further
discussion, see Ref. 9.)

For the purposes of the model, a continuous, random, speech input
signal is assumed. Accordingly, the nonlinearity of the input-output
characteristic is ignored, and the frequency response is measured as
suggested by Bryant. The response is shown in Fig. 8 plotted relative
to the 1-kHz output level. This is the response of the transmitter
structure itself to the acoustic input signal, or, in the model, the
response of the input filter. In the computer program, the filter response
was stored as a table of values at discrete values of frequency.
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Vil. CONCLUSION

A oarbon transmitter model has been presented. The physieal theory
upon which the model is based is supported by the close agreement
between the calculated characteristies of the model and the measured
characteristies of an actual deviee. Thus, it can be econecluded that the
nonlinearity of the de V-1 characteristic is due primarily to the effect
of joule heating on contact resistance and to the effect of the thermal
expansion of the dome electrode due to joule heating. The effect of
electrostatic forces is negligible. Furthermore, the difference between
the ac resistance and the slope of the de V-I characteristic is due to
the hysteresis assoeiated with the thermal expansion of the dome
electrode. Finally, the relative resistance change due to the acoustie
excitation of the transmitter decreases as the de voltage increases
due also to the effeet of the thermal expansion of the dome electrode.
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APPENDIX A

In this appendix, the question is considered of whether electrostatic
forees between carbon granules have a significant effect on transmitter
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characteristics. Two experiments, the results of which indicate that
they do not, are described. In both experiments, the transmitter
output is driven with a sinusoidal voltage, i.e., as if the transmitter
were a receiver. It is observed that, if the transmitter is driven hard
enough, an audible signal is generated. Approximately 2-V rms is
required for the signal to be audible at 1 kHz. This phenomenon could
be the result of attractive forces between carhon granules owing to
electric fields or the result of thermal expansion, presumably of the
carbon granules, since the thermal inertia of the dome electrode and
diaphragm is too large for their thermal response to follow the instan-
taneous voltage at frequencies above a few hertz. The results of the
two experiments which are now described indicate that the forces are
due to thermal expansion of the carbon granules. This effect is insigniii-
cant compared to the predominant thermal effects that are accounted
for in the model.

In the first experiment, the phase of the dome eleetrode displacement
was measured. An outward displacement, in phase with the square
of the driving voltage at frequencies far enough below resonanee so
that the mass of the system can be ighored, would indicate that the
force was due to thermal expansion, while an inward displacement
would indicate that the force was due to electric fields. The displace-
ment was measured using an optical proximity detector. A small mirror
was mounted on the dome electrode to provide a flat reflecting surface
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for the detector. This was necessary to obtain measurable detector
output, the displacement being very small. The phase of the outward
displacement relative to that of the square of the driving voltage is
plotted as a function of frequency in Fig. 9. The phase angle ap-
proaches zero at low frequencies, indicating that the force acting on
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Fig. 11—Output sound pressure—input voltage squared characteristic when trans-
mitter output is driven by sinusoidal ac voltage.
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the dome electrode is due to the thermal expansion of the carbon
granules.

Since this is the ease, the acoustic sound pressure level should be
proportional to the power dissipated by the transmitter rather than
the square of the voltage, as would be the case if the forces were due
to electric fields. (Power is not proportional to the square of the
voltage, since the resistance is a function of voltage.) This was verified
by the second experiment, the results of which are plotted in Figs. 10
and 11.

APPENDIX B

In this appendix, an expression is derived for the low-frequency
impedance of the transmitter, taking into account the effect of the
thermal expansion of the carbon chamber.

If the transmitter current is changed abruptly by an incremental
amount A, the displacement of the dome electrode due to the addi-
tional power dissipation will lag behind the change in current due to
the thermal hysteresis. According to Fritsch’s analysis,® the transient
can be expressed as an infinite sum of decaying exponentials. Thus,

AV() = (n+ 3 ki) ATu(l), (22)

where m is the slope of the de V-I characteristic and where &; and 7;
are constants. Because the initial change in voltage must he r..Af,

i ki = ree — m. (23)

§=1

In the frequeney domain,

AV(s) = [m + i Fes/(s + 1/r)]Al/s, (24)
from which
Z(s) = m + i Fis/(s + 1/73). (25)

As pointed out by Fritsch,® the infinite series solution eonverges too
slowly for practical evaluation. A practical expression for ac impedance
can be obtained by assuming a single time-constant approximation
for the transient response, Then

Z(s) = m + ks/{s + 1/7), (26)
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where 7 is the effective time constant and
k = fo — m. (27)
If eq. (27) is substituted into eq. (26), then
Z(8) & rac(s + m/ract)/ (s + 1/7). (28)
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Some Far-Field Studies of an Offset Launcher

By M. J. GANS and R. A. SEMPLAK
{Manuscript received January 24, 1975}

An offset paraboloidal veflector illuminated by a balanced feed horn
constitutes an efficient launcher for coupling microwaves into quast-
optical beams. Measurements on a launcher with low blockage show low
cross polarization. The amplitude, phase, and polarization characteristics
are predicted by two gaussian beam modes, and the resulfing formulas
are found lo agree well with measurements at 19 and 28 GHz. For example,
with increasing offset angles, the ratio of the maximum eross-polarized
signal in the radiation pattern to the on-axis co-polarized signal is o0b-
served to vary from — 44 to —37 dB, within 1 dB of the predicted variation.

1. INTRODUCTION

At millimeter wavelengths, normal waveguide losses become too
large in many applications; for example, long lengths of waveguide
are required in satellite earth stations between the transeceiver and
the reflector antenna focus. To reduce these losses, one may use quasi-
optical beams that employ reflectors or lenses for refocussing at
various intervals, thereby confining the beam within a geometric
tube with no (lossy) guiding walls. To couple the circuit components
to these beams, it is desirable to provide a beam launcher that has
quasi-gaussian amplitude over the aperture, low loss, good polarization
purity, and high return loss.

Offset reflectors provide high return loss, i.e., they are well mateched,
because the radiation field of the illuminated aperture bypasses and,
therefore, does not reenter the feed horn.! If the reflector is made large
so that the level of the feed-horn illumination at the edge of the
reflector is low, spillover and diffraction losses are small. Also, since
the feed horn does not block the aperture of the reflector, blockage
losses are negligible, and the radiation patterns are unaffected, But
cross polarization can be serious with offset reflectors, as pointed out
in Ref. 2; however, by choosing a small offset angle the eross polariza-
tion can be held to acceptable levels throughout the beam.

Here, the far-field properties of an offset paraboloidal reflector
(Fig. 1) are investigated. Section II describes the radiation charac-
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Fig. 1—Offset launcher. The 76-em (30-in,) diameter reflector is a numerically
mashined section of a paraboloid. Reflector focal length is 115.7 em and it is fed, in
this instance, by a 28.5-GHz dual-mode horn with a polarizer,

teristics of the dual-mode feed horns, the experimental setups, and
the measurements of the far-field properties of the complete launcher.
Section III provides the theoretical formulas showing that the radiation
performance of offset launchers can be well characterized in terms of
gaussian modes.

Specific applications of this type of launcher are in feeding Casse-
grainian antennas of the type discussed in Ref. 1, and in launching
and collecting beams on Hertzian cable transmission lines.?

Il. MEASUREMENTS
2.1 Dual-mode feed horns

The dual-mode feed horn designed to feed the offset launcher of
Fig. 1 is shown in Fig. 2a. The input section generates the TE;; and
TMi, modes in a circular waveguide by means of a conical step.in the
waveguide.* This section slides in the input waveguide so that the
length from the step to the horn aperture, the “drift space,” may be
adjusted to co-phase the TE;, and T1[,; modes to provide zero current
at the edge of the aperture (minimizing the side lobes and symmetrizing
the pattern). The small horn taper angle of 7.121 degrees was chosen
to prevent disturbing the TE,; and TM; modes, and to provide a
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Fig. 2—(a) Cross-sectional view of the dual-mode feed-horn design used for the
offset launcher of Fig. 1. (b) Profile of measuring range. {¢) Launcher schematic.

small aperture phaseerror [ e = (2x/7\) (D?/8L) = r/2radians] without
making the horn teo long.

The azimuth radiation patterns of 25.5-GHz dual-mode feed horns
for horizontal, vertical, and 45-degree polarizations, along with the
associated cross polarizations for each case, as measured in an anechoic
chamber, are shown in Fig, 3. Figure 3a shows the results obtained
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Fig. 3—The 28.5-GHz dual-mode feed-horn radiation patterns for the principal
and 45-degree polarizations. Included are the corresponding eross polarizations: {a)
without polarizer on dual-mode feed; (b) with polarizer on dual-mode feed.

without a polarizer on a horn. Note that the cross polarization for the
45-degree polarization condition has peaks of about —28 dB at angles
of about +8 degrees. {This behavior of dual-mode horns is predictable;
superior cross-polarization performance is obtainable from hybrid-
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Fig. 3 {continued).

mode horns.) One can also see that, even though the guarter-wave-
length aperture error (ills in the first null in the feed-horn pattern, a
shoulder appears at about —20 dB relative to the on-axis vaiue for
the case of horizontal polarization. At least 30 degrees of the feed
pattern illuminates the reflector of the launcher {resulting in ahout
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a 20-dB taper at the edge of the reflector in the principal polarization).
Thus, the cross-polarization maxima in Fig. 3a also illuminate the
reflector. However, as shown in Fig. 3b, when a grid polarizer is used
on the dual-mode feed horn, the cross polarization for the 45-degree
condition is reduced to a very acceptable —45-dB level. Also, with a
polarizer on the horn, cross polarization for polarization in the principal
planes is essentially nonexistent. Since one of the main purposes of the
experiment is to measure the cross polarization generated by the
offset reflector, as discussed in the next section, the feed horn per se
must therefore be deveid of cross-polarized components. For that
reason, the feed horn was equipped with a polarizer (patterns of Fig.
3b) for all ensuing measurements.

The dot-dash curves in Fig. 3b show that the feed-horn pattern
is well approximated down to about —20 dB by a gaussian beam
[Ceqs. (8) and (9)]. The 10-dB half angle, 8., used in the gaussian beam
approximation, is 9 degrees.

The radiation patterns for the 19-GHz dual-mode feed horn are
essentially the same as in Fig. 3. Significant cross-polarization levels
were also observed at this frequency, but, using the polarizer, the cross
polarization is reduced to a very acceptable level (< — 50 dB).

2.2 Antenna measuring range

A profile of the antenna range used for measuring the offset launcher
is shown in Fig. 2b. To determine the cross-polarization characteristics
at the range, a gently tapered pyramidal horn with a 15- by 15-em
aperture equipped with a wire grid polarizer (to eliminate any cross
polarization caused by the horn itself) was used as the source. A
standard gain horn with a similar polarizer was used as the receiver
on the antenna azimuth-elevation positioner. These measurements
show the cross polarization introduced by the range to be very small;
in the range of interest, i.e., within +3 degrees of the axial direction,
it is of the order —47 dB.

2.3 Offset launcher measurements

Figure 1 is a photograph of one of the offset reflectors, along with its
supporting structure. The reflector is illuminated by a 28.5-GHz
dual-mode feed fitted with an etched grid polarizer as discussed in
Section 2.1.

At 28.5 GHz, the far-field patterns in the principal and 45-degree
polarizations, along with the associated cross polarizations for the
offset launcher fed by a dual-mode horn with polarizer, are as:shown
in Fig. 4. Note the shoulders rather than sidelobe structure for the
co-polar patterns. Although the shoulders in the launcher pattern are
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Fig. 4—Far-ficld radiation patterns of the principal and 43-degree planes for the
offset launcher at 28.3 GHz with polarizer on horn. Theoretical (gaussian-beam)
calculations are also included.

also apparent in the feed-horn patterns (compare the vertical polari-
zation patterns of Figs. 3b and 4), this is not always the case. For
example, the launcher pattern for horizontal polarization exhibits
prominent shoulders (Fig. 4), whereas the corresponding feed-horn
pattern {Fig. 3b) does not. Furthermore, the shoulders in the launcher
patterns are at about the —24 dB level, while those in the feed-horn
pattern are at about —20 dB. Most likely, the shoulders in the launcher
patterns are due to the phase errors in the illumination which are
caused by the finite taper length of the eonieal feed horn.

OFFSET LAUNGHER 1325



At 19.04 GHz, the co-polar and eross-polarization radiation patterns
for the oflset launcher are us shown in Fig. 5. Excellent symmetry is
ohserved in the cross-polarization patterns even at this —40-dB
level. Both Figs. 4 and 5 include the theoretical curves discussed in
the next section.

One can see from the configuration of Fig. 1 that there is a
possibility of a small amount of blockage by the feed and its mount
(and subsequent cross-polarization effects) when the launcher is
scanned upward in elevation. To examine this, a set of azimuth scans
for various elevation settings was made at both 19.05 GHz and 28.5

POLARIZATION
— — HORIZONTAL VERTICAL-—

THEORETICAL
GAUSSIAN BEAM— _

THEORETICAL
CROSS
POLARIZATION

e
MEASURED ~ {'\40_
CROSS / Ny
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\
1
2

/

t 4 \

| { 7.’,1 |
4 2

4
AZIMUTH ANGLE IN ODEGREES

45° POLARIZATION—

CRO5S POLARIZATION - —_, 7
b

i
1 Ll i
4 2 o]
AZIMUTH ANGLE IN DEGREES

Tig. 5—Far-feld radiation patterns of the principal and 45-degree planes for the
offset luuncher at 19.05 GHz. Dual-mode feed is equipped with polarizer on horn.
Theoretieal {gaussian-beam) ealeulations are also included.
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GHz; the increase in cross polarization due to bloekage was [ound
to be negligible in both cases.

One may with justification raise the question as to why the cross
polarization of the offset launcher, shown in Figs. 4 and 5, evidences
values of the order of 33 dB even with a feed that has negligible cross
polarization. There is an inherent depolarization intreduced by an
offset reflection surface,® which increases if #,, the angle between the
feed uxis and the reflector axis, is increased. Figure 6 shows the experi-
mental results obtained by varving 8, between 12 and 26 degrees;
the ratio of the maximum cross-polarized sighal in the radiation
puttern to the on-uxis co-polarized signal correspondingly varies from
—44 to —37 dB at both frequencies. Note that the ordinate of Fig. 6
is the average of the peaks of cross polarization obtained from an
azimuth scan of the launcher; they should not be misinterpreted as
on-axis values which, of course, are much lower. In the following
section, we show that calculations based on gaussian-mode theory
provide good agreement with the measured data; the theoretical
result is shown by a solid curve in Fig. 6.

I. THEQRY
3.1 Cross polarization in the aperiure

An approximate method for computing the cross polarization due
to the offset angle #, conaists of applying geometric optics to compute

]
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a @ e« s « e e 1905 GHz
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_46 ] l L | | | l
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Fig. 6—Plot of cross-polarization peuks at 19.05 and 28.5 GHz introduced by the
reflector itsell as o function of offset angle, .. Data are obtained by scanning the
launcher in szimuth, Guussisn-mode theory is shown by the solid line. Incident
polarization is horizontal.
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the reflected field in the aperture from that radiated by the feed horn.
The aperture field is then decomposed into two gaussian-beam modes
to predict the far fleld of the offset launcher; this is a logical procedure
because dual-mode horns produce an illumination that is approxi-
mated by a gaussian beam (see Fig. 3b).

The geometry of the offset launcher is shown in Fig. 7a. The dual-
mode feed horn approximately provides “balanced feed'’ polarization*
with respect to the coordinates (z’, ', and 2z’) aligned with the horn
axis which is tilted at angle 8, from the reflector axis. The field radiated
by the feed horn is given by

t 1 !
E; = (§'sin ¢’ + ¢’ cos ¢') fﬂ(ii—“ . (1
where f'(#’, ¢’} is an arbitrary function of & and ¢’, and +', &, and ¢’
are the usual spherical coordinates associated with the feed (see
Fig. 7b). The caret indicates a unit vector. In eq. (1), the expressions
corresponding to “vertical’” polarization are used; identical results
are obtained for *“horizontal’”’ polarization. [“Vertical” and ‘“‘hori-
zontal”’ are used in the sense that the polarization of the field in the
aperture of an axisymmetric paraboloidal reflector coaxial with the
feed-horn axis would be vertical or horizontal when the feed-horn
polarization is us given in eq. (1).]°

The axis of the paraboloidal reflector shown in Fig. 7a is co-linear
with the % axis. An aperture field with no cross polarization would,
therefore, result if the feed illumination were given by

E; = (Fsing + éoos )/ 2%, @)
where », 8, and ¢ are the usual spherical coordinates associated with
the z, y, z coordinates of Fig. 7a, ie., the coordinates of a feed horn
whose axis is aligned with the reflector axis. Theoretically, it is passible
to hypothesize an asymmetric “balanced” feed whose axis is aligned
with the reflector axis, giving the polarization of eq. (2}, but whose
amplitude distribution is offset to illuminate the reflector as would
the amplitude distribution of a tilted symmetric “balanced” feed.
Simple means (excluding multiple reflectors, etc.) are not known for
the construction of such an asymmetric “balanced’’ feed. Therefore,
in applications, one must approximate an asymmetric ‘‘balanced”
feed horn with a tilted “balanced’ feed horn; the cross polarization
thereby introduced is calculated below.

Using geometric optics, we assert that if the polarization of a ray
incident on the reflector from the feed is rotated by a given angle
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Fig. 7—{(a) Launcher geometry. (b} Spherieal coordinates, (¢) Spherical triangle.

around the ray vector, then the polarization of the field of the corre-
sponding ray in the reflector aperture is rotated by that same angle.
By geometric optics, the intensity of the field in the aperture along a
ray is the same as the intensity of the flield incident on the reflector
from the feed at its focus. Thus, the cross polarization in the aperture
relative to the peak in-line polarization in the aperture can be com-
puted by projecting the field of a tilted “balanced’ feed horn, incident
at any point on the reflector, onto the cross-polarized asymmetric
“balanced” field at the same point and dividing by the peak in-line
field of the tilted “‘balanced’ feed horn; i.e.,

E;-[6(— cos ¢) + ésin ¢] )
E;-[dsin ¢ + ¢ cos é]|penk

(', ¢') =
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Performing the scalar products indicated in eq. (3) yields

C,¢") =sin{p — ¢ + )f’(gr , 9')

(9’ 9')

]

where r is the angle between the primed and unprimed spherical
angle coordinates shown in Fig. 7c. The angle, ¢’ — ¢ — 7, is equal
to the area, A (called spherical excess), of the spherical triangle shown
in Fig. 7c and is related to the offset angle, 6o, and the primed {(feed
horn) coordinates by the formula®

-[cos (¢ — ¢ + )f’

cos(go_ﬂ’)
A =¢ —¢— 7= 2arctan (T_gl_gjcos(%-l—g)
2

+e¢ -5 O

The feed-horn amplitude pattern, f’, is approximately uniform in
¢' and maximum on axis (as for a corrugated or a dual-mode feed
horn), and 7/, the distance from the feed to the reflector, is relatively
constant over the region in which the cross-polarized field is a signifi-
cant fraction of the peak in-line field. In this case, the cross-polarization

amplitude can be approximated by

CE, ¢) = —smAf;,(("(;g ®)

For a given ¢, the ¢’ which maximizes A and the cross polarization is
¢
¢, = aresin (tan %ﬂ tan % ) . (7)

For offset angles, o, less than or equal to 90 degrees and ¢’ less than
30 degrees, which covers the case of interest, ¢, is less than 16 degrees.
This leads us to approximate ¢, by 0 degrees, which results in a
particularly simple yet accurate formula for the peak cross-polarization
amplitude ratio, C, as will be shown. C is the ratio of the maximum
cross-polarized amplitude to the maximum in-line polarized amplitude.

For dual-mode and corrugated horns, the pattern is approximated
by a gaussian beam,’

Jg) =", (8)
where a is related to the 10-dB half-angle beamwidth, 8., by
In 10
- 26;;2 " (9)
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Approximating ¢, by 0 degrees, we have the following relation® for a
right spherical triangle (Fig. 7¢):

§in f, sin &’

A= cos By cos 0 (10)
Sinee we are interested in small &,
. ¢ sin 6,
Az Yo,
st 1+ cosé’ (11)
and eq. (6) becomes
’ = _% f p—af’? 5]
C(o', dn) TF cosgs 76 (12)

By differentiating eq. (12) to locate the angle which maximizes
C{#, ¢,), we find

B = o\f%{—l = §,/VIn 10, (13)

and
fo

#. tan 5

ve ln 10.

As mentioned above, C is the ratio of the maximum eross-polarized
amplitude to the maximum in-line polarized amplitude. The subseript
¢ indicates that the ratio is of the maxima found in the reflector
aperture. If we denote by #r the half-angle of the gaussian beam
approximation to the feed-horn pattern, where the power is T dB
below that on axis, then eq. (14) becomes

A anfo 10
C, = — frtan 9\ ¢T Tn 10 {15)

By comparing eq. (14) with the exact formula for gaussian beams,
egs. (6), (7), and (8), eq. (14) is found accurate to within 0.1 dB for
all offset angles, #,, less than or equal to 90 degrees and all 10-dB
half-beamwidth angles, 8, less than or equal to 45 degrees. The
maximum value of € in the exact formula was found by trial and error
with the aid of a caleulator.

The above calculations give the cross polarization in the reflector
aperture; as will be shown in the next section, eq. (14) is also a good
approximation for the far field in most cases.

C. = — {14)

3.2 Two-mode approximation to the aperture field

After reflection from the offset reflector, the gaussian beam from
the horn is converted into two gaussian beam modes in the aperture:
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a fundamental mode with the in-line polarization (denoted Eco) and

a higher-order gaussian beam mode which includes the cross polariza-

tion (denoted Eyx). Depending on the polarization of the feed horn,

the polarization of the fundamental and higher-order modes vary

as shown in Fig. 8. For an arbitrary balanced feed polarization, a

superposition of the two polarization cases shown in Fig. 8 can be made.
The expressions for the gaussian beam modes are’

({7} Fundamental mode:

L rr w ; 1r 2
Eo = (Hot"”" + Voo 2 exp |— Jkz'" — p2
W00 Wwha
! 2:" kp?
+ J[arctan (ku'_wﬁu) ~ SRe ]} . (18)
{(i/} Higher-order mode:
_ " Aty ot ar) 1 st VQ—PWOI
Eq = [ Vo(2' cosa — g’ sina) — Hulf" sina + § ‘303“)[—10'2—
0t

cexp d— ikt — F o+ |2 22”)_E .
exp { gk = 4 Jl:.. arctan (kw2 2Rm (17

W ni

i+ <= =\

Eoo + Em = Eror
FUNDAMENTAL HIGHER ORDER TOTAL
(a)
— —-
- . \_/ o
— e
— TN —
Faa + € - Eyor
FUNDAMENTAL HIGHER OROER TOTAL

(b)

Fig. 8—Two-mode decomposition of aperture field (polarization looking in positive
z direction, i.e., looking at the reflector). (2) Feed horn vertically polarized. (b Feed
horn horizontally polarized.
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Ho, Voo and Hyy, Vo are the phasor coefficients for horizontally and
vertically polarized feeds. The subscripts refer to the standard TEMg,
and TEM, mode notations of Ref. 8; p, o, and 2" are evlindrieal
coordinates, with 2" denoting the distance along the beam axis from
the beam waist. At the beam waist, the radius of curvature of the
phase front, R, is infinite, and the field varies with inereasing distance,
p, from the axis at a rate determined by w. For the fundamental mode,
the field decreases to the 1/e value at p = wg. For the higher-order
mode the field is maximum at p = We/v2 and decreases to V2/e of
that value al p=wp. Away from the beam waist, 2* # 0, the field
amplitude varies with p at a rate determined by w instead of w, and
the phase front has a finite radius of curvature, E. «w and R are given

by*®
227 \2
and

R= z”[l + (’;:'2 )2] (19)

Both modes have a characteristic exponential attenuation with
distance from axis, """, and a spherical wave front near the axis at
constant 2, denoted by the term, e /*#'/2Z  Passing through a beam
waist, the on-axis phase advances by = for the fundamental mode and
27 for the higher-order mode (relative to the plane-wave retardation,
e=#*"y. Thus, if the cross polarization and the in-line polarization
are in phase at the beam waist (normally near the reflector aperture),
they will be in phase quadrature at large distances from the beam
waist (the far field). This phase quadrature relation gives rise to a
beam shift with circular polarization as deseribed in Ref. 2.

The choice of eq. (17) as the appropriate higher-order mode is based
on its ability to approximate simultaneously both the cross polariza-
tion and the “space” taper (amplitude asymmetry from top to bottom
of dish) of offset reflectors.

The in-line and cross-polarized fields in the aperture of the offset
launcher of Fig. 1 were computed exactly by means of eq. (3); the
resulting field-amplitude contours are shown in Fig. 9. In the aperture
plane, the in-line and cross-polarized fields are in phase. Thus, the
corresponding gaussian beam modes have their beam waists at the
aperture and are in phase. This implies that the total field is lingarly
polarized everywhere in the aperture, and the direction of polarization
varies in a manner determined by the ratio of the in-line and cross-
polarized fields.
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KEY: SOLID CURVES = GEQMETRIC QPTICS WITH FEED-HORN PATTERN QF eq. (8}
DASHED CURVES = GAUSSIAN — BEAM MODES
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Fig. 9—Amplitude contours for the example reflector shown in Fig. 1.

The gaussian beam fields required to match the exactly computed ap-
erture fields are found by first choosing a fundamental mode centered
on the aperture with beam waist radius wy such that it decreases
8.686 dB in power at the same radius as does the computed in-line
polarized field, both being normalized to unit amplitude on axis.

With these criteria and the approximation that 1’ is nearly constant
over the reflector,

' = ry = F sec? (%") , (20)

the parameters of the fundamental mode are determined as follows.
The radius, py,., at which the field drops to 1/e times its on-axis value
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is found in the direction e = 0. (Note that p,;.1s largerinthea = — /2
direction and smaller in the @ = #/2 direction due to the space taper
in these directions. Thus, pi/., a8 determined from the o« = 0 direction,
approximates the average p1;. over all directions.)

Woo é PLie = 2rp sin (%Hije), (21)

where, from the gaussian approximation for the feed-horn pattern,

. [ 2
= — . \)
Bie = Ojin 10 (22)

For unit amplitude on-axis, eq. {16) requires (we restriet our dis-
cussion here to the vertically polarized ease; the horizontally polarized
case yields identical expressions)

Vg = 1. (23)

The higher-order mode parameters are found from the cross-polari-
zation charncteristies. Since the cross polarization is maximum at 6y,
we have, from eq. (13),

War = 2VEro sin (165) — 2v2ro sin (

8. )
. 24
2+In 10 (24)
By comparing eqs. (24) and (21), it is seen that, for small 6o, Wo1 = Woo.
The amplitude of the higher-order gaussian beam mode is given
by the maximum cross-polarization amplitude ratio (C.). From eqs.
{14) and (17):

} 01 m (2-’))
The phase of the higher-order mode follows from the fact that at the
beam waist the in-line and eross-polarized fields are in phase.

Using eqs. (21) through (25), the gaussian beam mode approxi-
mations to the aperture fields, plotted as dashed contours in Fig. 9,
compare favorably with those obtained by geometrical optics (solid
contours).

3.3 The far fields

The parameters of the gaussian heam modes being thus determined,
it is possible to compute the in-line and eross-polarized fields at any
position in the main beam of the field radiated from the reflector.
The far field is of particular interest,

2
2 ’g , (26)
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allowing eqs. (18) and (19) to be approximated by

& -
= and R = 7" {27)

W =
Also, if the beamwidth is small,
ENEY =+ L

From eqs. (16) and (17), the in-line field is therefore given by

. P
23”, Hf — z_” (28)

2y [Vnuwm <P Voo

2
— FVZV W}, 8 (sin &) exp (— s )] (29)
Y1 B

Ey =

and the cross-polarized field by

) e s 6>
By = I VFVme T (cos a) exp (— 1,73&1) y {30)
for the “vertically’ polarized feed. We have defined
2 2
A _“
Yoo 2 e and o 2 Pt (31)

the angular heam radii in the far field.
The C; from eqgs. (14), (23), (25), (29), and (30), where the subscript,
f, indicates the far-fleld maximum cross-polarization amplitude

ratio, 18
. V(u ( Wai )2 ( Wl )2
C, = — ) =C| — 1. 32
r= Vm)\fé Woo Woo (32)

Thus, the far-field C is j(wo1/Woo)? times that in the aperture and
oceurs in the azimuth plane at an angle

N
V2wl radians. (33)

As mentioned above, for small feed beamwidths, &,

Wn = Wog, (34)

so the far-field C is approximately equal to that of the aperture, and
the peak cross-polarization lobe occurs at approximatety the —4.34-
dB level of the main beam.

A comparison of the experimental and theoretical far-field patterns
for in-line and cross-polarized fields from the offset launcher of Fig. 1
at 28.56 GHz and 19.04 GHz are shown in Figs. 4 and 5. The main
diserepanecy between theory and experiment are the shoulders on the
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sides of the experimental pattern at a level of about —24 dB not
present on the sides of the theoretical main beam. As mentioned in
Section 2.3, the shoulders are probably due to phase error in the horn
aperture which is not in the gaussian feed pattern assumed in the

theory.

3.4 Truncation effects

The effect of truneating the aperture of the launcher at various
circular contours of the fundamental mode can be computed. Let the
radius of the aperture at the truneation be ¢. Then the taper at the

truncation is
- (.20 ¢ Y. 5
T - (lﬂ 10)(W0|}) (3‘))

The radiation integrals in the ', 2"’ plane (where the cross-polarization
is largest) for the fundamental mode and higher-order mode are

[ 2r ¥
Eo, = [ﬂpdp u daVnnexp[# (L) — jkp comsine,], (36)

Woo
and
¢ 2T \Q
Eny = — f d f daV g 22
o 0 pee D " wo
2
cexp [— (—P— ) — jkp cOS @ 8In 0;] eosa cos By (37)
W
From eq. (36), the in-line polarization far-field on-axis is
2
Eun!(af = O) = WVO(}WSQI:]. — exXp (— ‘—CE“)] d (38)
Woo

The eross-polarized far-field pattern from (37) is, letting cos 8, = 1,

; 2
. JrVawh

B, = 00 1), (39)
where
ciwotl
18;) & 2v2e [ 2e2] | (thwoy sin 8,)dl, (40)
]

and J,(z) is the first-order Bessel function of the first kind. From egs.
(34) and (35), choosing the taper, T, determines I (#;). Numerically
integrating eq. (40), the peak value, Ip, of I(8;) and the location,
8y,, at which 7(6,) is maximum were determined for varipus tapers, T.
The resulting far field C, relative to that of an infinite aperture,

C I
—20 logue (é) = — 20 logio (']-—“_efc—g,‘w'z_m) y (41)
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is plotted in Fig. 10 along with the angular position, 8,,, of the peak
in the cross-polarization lobe relative to that, 8., of an infinite
aperture. Notice that the effect of truneation is to reduce the cross-
polarized signal relative to the co-polarized signal (higher C;) and to
move the cross-polarization lobes out to larger angles off-axis. Further-
more, these truncation effects depend only on the truncation taper
and are essentially independent of the offset geometry.

Figure 11 shows C; as determined from the gaussian beam formulas
for a wide range of offset reflector geometries indicating an infinite
aperture (no truncation) and the aperture truncated at a 10-dB taper.
With the infinite aperture, the C; from the gaussian beam theory are
within 0.2 dB of the cross polarization in the aperture, C, (not shown),
for all geometries on the figure. When the aperture is truncated at the
10-dB level, C; is, from Fig. 10, 2.2 dB smaller than that for the
infinite aperture, as is also seen from the dashed curve in Fig. 11.
These dashed curves agree with cross polarization obtained by nu-
merically computing® the radiation integral over the aperture field
found by geometrical optics projection of the radiation pattern of a
dual-mode feed horn.

Using eqs. (14) and (32), the maximum cross-polarization levels
as a funection of offset angle were computed for the precise geometry
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Fig. 10— Effact of aperture truneation on cross-pularization pattern.
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Fig. 11—Maximum cross-polarization amplicude ratio for a range of ofiset geornetries,

of the offset launcher of Fig. 1. The factor (wg;/we)? which converts
aperture cross polarization to far-field cross polarization is only 1.0004
(i.e., 0.008 dB). The 10-dB half angle, 8., of the feed-horn gaussian-
beam approximation {(discussed in Section 2.1) is 9 degrees. The
calculated eross polarization is compared with the measured cross
polarization as a function of offset angle in Fig. 6. The theory appears
to be in good agreement with the measurements at both frequencies.

IV. CONCLUSIONS

1t has been demonstrated that an offset launcher ean provide low
eross polarization and a low-sidelobe symmetrical beam when fed
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with a suitable horn at a small enough offset angle. Simple formulas
for the far-field performance of the launcher are derived in terms of
two gaussian modes; comparison with measurements at 19 and 28
GHz shows good agreement. The maximum cross-polarization ampli-
tude ratio is found to change little from aperture to far field. Offset
reflector geometries have also been useful for multiple-beam
applications.?!
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Upper Bound on Error Probability for Detection
With Unbounded Intersymbol Interference

By A. D. WYNER
(Manuscript received February 27, 1975}

Forney's asymptotic upper bound for per-bit error probabilily in the
detection of pulse-amplitude-modulated digital data in the presence of
additive white gaussian noise was oblained for the case where the dura-
tion of the intersymbol interference is bounded. In this paper, we show the
validily of Forney's bound under much weaker assumptions tha! allow
unbounded intersymbol interference.

I. INTRGDUCTION

We consider the situation where a data sequence ao, - -+, ay—10f £1's

is transmitted via pulse amplitude modulation as }_§5' h(t — kT)ax
and received in the presence of additive white gaussian noise with one-
sided spectral density o¢® In a recent series of papers, Forney,’
Foschini,? and Mazo? developed an asymptotic (as o2 —0) upper
bound on the error probability per data bit P,:
W0+, M
where d(h) is the minimum £. distance between distinct modulated
pulse sequences. This bound holds under the strong assumption that
the pulse A({) is supported on finite interval.

In this paper, we show that (1) is valid for a considerably wider class
of h(l). Roughly speaking, our assumptions are little more than that
h(f) is in £,(— =, =) and £.(— =, =), and that H(f), the Fourier
transform of A(¢), does not vanish on an interval. The precise conditions
on #{{) under which (1)} holds are given below. In particular, (1) is
valid when H () is a rational function.

In Section II we give a precise statement of our results, and the proof
follows in Section I1I.

P, Zexpi-—

Il. FORMAL STATEMENT OF PROBLEM AND RESULTS

In this section, we give a precise statement of the problem and the
results that were stated informally in Section 1.

We begin with some definitions. We denote N vectors by boldface
superscripted letters, and components by subscripted letters, e.g.
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u’ = (ug, - -, uy_1). When the dimension X is clear from the context,
we omit the superseript. Define the sets @x, @, @ by
Gy = juV:u;=x1,0=2 =N -1},
G-';lf-.k: {uN-'uk—__ +1:ui; :|:1).77£k|: (2)
Gre= [u¥:iup = —Lu;= =1, 7#k}.
Of course, @y = Q7 U @y, Again, when N is clear from the context,
we write @y = @, @fy = @, Qzx = Qi
Next, let f{f), ¢(f), and —= <{ <= be real-valued measurable
funetions. The inner product of f and ¢ is denoted by

o= [ e (32)
and the norm of [ is
1= s, = ([ o)

For a vector u¥ € @y, and f(i), — o < ¢ < =, a real-valued function,
let the function fi*u = s be defined by

]. (3b)

s0) = %, 7t~ kT,

where T > 0 ig a fixed parameter.

We are concerned with the following modulation scheme. Let
a¥ = (aq, ---, ay—1) € QGx denote the data to be transmitted. Assume
that all the 2% vectors in Gy are equally likely. The transmitted signal
is the function A*a®, where the pulse /(t) is a fixed function for which
hjl < =. The received signal is

ylt) = (ma®) () +2(), —w<t<, (4)

where z() is a sample from a white gaussian noise process with zero
mean and one-sided spectral density o

The decoder associates with the received signal y, a vector
D(y) = 4~ € @n. Corresponding to a given decoder function D, let
the bit error probability be

1 N-1 )
P.n(D) =+ Y. Pride # axl. (5)
E=0
Also, define the optimum error probability

Py = Piy(h, a®). = iril)f P.n(D). (6)

We are concerned here with the asymptotics of Piy(h, o), a8 o2 — 0,
i.e., a8 the signal-to-noise ratio approaches infinity. Accordingly, define

Enih) = — lirrzl ié1f o2 log Piy(h, o%), (7a)
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so that, us ¢ — 0,

Piy(h, o?) £ exp{— £ *"“‘)

[1+o(1)]}- (7h)

Next, consider a particular decoder that is of special interest here—
the maximum-likelihood decoder, denoted D,. In the present problem,
Du{y} can be taken to be that § € Gy such that for all u € @y,
u # fi,

vy — Al <llzs — fesul], (8)
where y, is the projection of y onto the subspace of L£.(— =, «)
spanned by the signals f+=u, u € @y. With probability 1, (8) will be
satisfied for some i & Q.

Now, subject to the condition that 4(#) has finite support, i.e., there
exists a {o > 0 such that

) = 0, for |t| > ta, (9)

Forney,! Foschini,? and Mazo® have shown that E{k) = d2(4)/4, where
the “‘minimum distance” d (k) is defined by

d{h) = hm inf  min  JAxa — Axv|. (10)
Vg

Thus, as ¢* — 0,

Piy(h, o%) = exp )]} (11}

Inequality (11) is established by showing that the error probability
for the maximum likelihood decoder, P.~(D4), is overbounded by the
right member of (11). This is done by writing (this is not as difficuit as
it looks)

N
Py =5 5 % 2700 Pr D) € aialy = hou + 2]
= 3T 5 2P| U (Diy) = 7] |y = heu + 2]
kucad ve Qe
1
< - 29— (N—1)
- N g uEZ(I?

Pri U iy — ful 2 llyy — Aawl]] |y = hau + 2]
v (@

2 2 W Pr U ) he(v —u))
£ ue @i ve @
z ilhx(v — )|}

2 yulh, o). (12)
Relation (12) is valid for any #(f). Subject to condition (9), it is then
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shown that, as ¢ — 0,

wnlh, of) S expy— d;:;) [1+ 01(1)]} ) (13)

where 01(1) does not depend on N. Thus, since Piy < P.y(Di), (11)
holds. Further, the o(1) term in (11) does not depend on N. An
interesting by-product of these results is that the performance indi-
cated in (11) is achievable via the decoder D,. This decoder can be
instrumented (using the Viterbi algorithm) with a complexity which
remains bounded as N — .

We now drop the assumption that 4(t) has finite support, Instead,
we assume that /(f) satisfies the following conditions:

() There exists a nonnegative £; function goll), i.e.,

| netrt <=,

such that
(B £ golt), —w<iE<o, (14)
and such that ¢o is monotone in [1].
(5i) Let
H{) = f:h(z)e—fhﬂd:, fw< f<m  (15)

be the Fourier transform of A(f). By (2), S |h(f) |dt < e, s0 that H(f)
is well defined for all f. We assume that there exists n nonnegative £,
funetion G1() which is monotone in | f|, such that

[H(N? 2 Gulf), —oo<f<eo. (16)
(#7) Let the “folded spectrum’ of 4 be

s= = |a(r+3)) osssp ap

We show in Appendix A that S(f), 0 = j £ 1/7, is finite and con-
tinuous. We assume that S(/) > 0,0 = f = 1/T. Let

m= min S{f}) >0, (18)
0%/ =21/T

where the existence of the minimum follows from the continuity of
S(f) on the compact interval [0, 1/7].

Remarks:

(1) Condition (3) is just slightly stronger than simply requiring A
tobein£;(— =, =). Condition {14) forees /i (1) to go to zero as |{| — =
in a ‘“well-behaved” manner. Condition (75) imposes a similar condition
on [H(J)|®

(2) For the very important special case where H{f) is a rational
function, i.e., H(f) = P(2x)/Q(:2xf), and P, @ are polynomials
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with fhe degree of P < degree of @, then conditions (i) and (it} are
satisted. Since H(f) has only u finite number of zeros, condition (#42)
is ns0 satisfed.

(3) Suppose that H(f) has no more than a countable number of
seros, but that S(f) = 0 for some f &€ [0, 1/7]. It is easy to see that
some arbitrarily small change in T will cause S(Jf) to be strictly
positive for all f & [0, 1/T]. Thus, condition (#%) is not especially
restrictive.

We now state our main result, the proof of which is in Section III.

Theorem 1: Let h salisfy conditions (i), (3i), and {iit) above. Then, for
all ¢ > 0, there exisis a 79 = 7vo(e) sufficiently large so that, for all
T > 70

P.n(Dr) < yxlh, (1 + %],
where
h(1), ] =,
he(f) = (19)
0, [t] > =

s the truncated version of h{t). The quaniity ro does not depend on N.
Since &, has finite support, we conclude from Theorem 1 and (13)
that, for all ¢ > 0 and r sufficiently large,

Piy(h, 6% 5 P.x(D))

@)
S eXP T 1ad 4 o [1+ 02(1)]] ) (202}
[where ¢:(1) is independent of #] so that
— _ liminf o2 log P GIUD
Eyih) = 1121_’10131' o’ log Po(h, ¢%) = a+ o (20b)
We show in Appendix B that
d{h,) — d{h), A8 T — (21}
so that letting e — 0 and 7 — = in (20b) yields
By z T 22)

We state this as
Corollary 2: Lel h satisfy conditions (¥) fto (iii) above. Then, as o* — 0,
*(h
Path, @) s exp |~ 5911+ 0,1
where 03(1) 1s tndependent of N.
We conclude this section with a1 remark concerning the relationship

of the bound of Forney et al. (11} with the result of Corollary 2. We

UNBCOUNDED INTERSYMBOL INTERFERENCE 1345



can rewrite (11) as

P:N(h, 02) = Kl(in, Je)e_dzuf)fzgz, (\‘Q
and the bound of Corollary 2 as \
Piv(h, o?) < Ka(||Aly m, g¥)e—at (Wide?, {24)

Here, we made explicit the dependence of K on the support interval
to of A(t) [see (9)], and the dependence of K on [i&]]1, the £1 norm
of h, and on m = min S(f). Both K, and K. increase in 1/d* slower
than e Wne? But K, (t, ¢?) —» o as to— o, and Ka(||All, m, ¢*) — =,
as |4l = or as m — 0. Thus, although it might seem reasonable
to assumne that all £(f) satisfy (9) for some fp, the bound of (23) depends
on that { and becomes meaningless as ty — . Similarly, although
it might be reasonable to assume for any /() that Al < e« and
m = min S(f) > 0, the bound of (24) depends on these quantities
and also becomes meaningless as |||, — « or m — 0. Therefore, both
bounds have their limitations; the new one, however, is considerably
less limited.

IIl. PROOF OF THEOREM 1
_ Let A satisfy () to (427). Let h.() be as defined in (19), and let
k(6 = k(D) — h.(D), 18,

7 — 0! :t[ é T
B = 1wy, 1t > - (25)

Then, if the data sequence is u & G, the received sequence is ¥
= h*u + 2z = h.xu 4 2, where

2=z 4 ko (26)
Following the same steps as in (12), we obtain
Po(Di) S ¢ 5 T 2
NT uga:
Pr U(i [(& hex(v — W) 2 }|lhx(v — )|}, (27)
vE G

where £ is given in (26).

We will show that, for arbitrary ¢ > 0, there exists a 7o = role, h)

(7o independent of N}, such that for » = ,, the event
{2 hee(v — ) 2 Jlher(v — )|}

LD iy — w1,

for all u € @&, v & @ . Substituting (28) into (27) yields, on com-
parison with (12),
P.w(Dy) £ ¥nlhe 2(1 + €],

which is Theorem 1. It remains to establish (28).

(28)

g{ (Z, h"’*(v - u)) =
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Relation (28) will follow immediately when we show the existence
of a ro(¢, #) such that, for + = =9 and all u, v,

[ (Theu, hes(v — w))| < %!'.h.,*(v — w2 (29)

If (29) holds, the event in the left member of (28)
f(2, hoe(v —u)) 2 F[hex(v — u)?}

={{z het(v —u)) 2 }|h (v — )2 — (rewu, hox(v — u)))

L e — ), 30)

Q{ (2 hee(v —u}) =

which is the right member of (28). Thus, it remains to establish (29).
Let w= (wy, -+, wy—1) = v —u. The entries of w are 0, £2.
Also set ¢ = 7,»u, and r = h»w. Then

IA

[Goru, hr(v = ) = (@0 = [ la@]1r@lae

L swp_le@1 1r@la 3D
—agidw —wm

IIA

Consider

f:o [r(t) |dt = f_:

o N—-1
Tl [T~ kD@ s 0 L el (32)

N1
Zo bt — ET)ws|dt
h=

where ||A||y = S |h()|dt < «, by condition ().

We obtain an upper bound on X |w.| as follows. Since we = 0, £2,
we have X |wi| = 3 X wi. Now, let H.(f) = S/ h.(t)e?"/'dt be
the Fourier transform of A.(f}, and let

sp= £_|ur+7)

n=— =
be the corresponding folded spectrum. Then, from Parseval’s theorem,

2
)

0§f§_-% (33)

Il = Whoww |t = [~ [H()121 5 waems7 2af
e
= [) 7 Sy(f)[%_:wkﬁihkw‘zdf
Hr
2 it 8.1 [T weenit g
0=<f=1/T Q
=[irfufS,(f)]§w% = [ir}fs,(f)]z [we] -2, (34)
Therefore,
S lwe| < 8P inf ST (35)
& 0=f=/T
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Combining (31), (32), and (35), we have
g, )| = sup lg@[IC inf S.(NI 3R] (36)
o <t w 0=f =i/T

Now, we show in Appendix A that
liminf[ inf 8.(H]Jzm>0, {37)

row o=f=1/T

where m = min 8(J) > 0 [see condition (iiz)]. Further, using condi-
tion (7) [particularly the monotonicity of go(f) ], we have

- N—=1 _
fg®)| = | };.k,(t—kT)uu = X |%.(t — kT)]|
= k-z..-u Ik,(t — EDli= k:u—%ﬁ;gf Rt = k7))
= T gt — kT £ T [golr +3T) + go(—7 — jT}]
kii—kT| 2T i=0
1 [ 1 =
< ?[_T gn(t)dt+?,[_1+r go()di — 0, ast—o. (38)
Combining (36), (37}, and (38), we obtain
(Q7 TH = |(E’*u1 h‘f*(v = u))l — 0
I II? Jhek(v — uf? ’

as r — . This is equivalent to (29), so that the proof of Theorem 1
is complete.
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APPENDIX A
The Folded Spectrum S(f)

We first show that S{f) as given in (17} is always finite, i.e., the
series in (17) converges for all f € [0,1/T]. From condition (i1},
uging the monotonicity of Gy,

In| 2no

> a(r+p)+ zo(r+7)

ng—no nerno

2 o) s po(3) 51, 0o

n=—no nZno

i

A

+7{°  Ga)dz—0, asme—w, (39)
T

ng—1{

so that the series in (17) converges.
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To estublish the continuity of S(f), write

sn=x [H(i+2) eonn osrsum o

|a] Zne

For arbitrary 8,0 = f < 1/T,

S
+ G, Y| + | &(ne, £+ 8. (41)

Now since h(t) © 1(— e, =), H(f) is continuous. To make the
right member of ineq. (41) =, first let nq be sufficiently large so that
the last two terms of the right member of ineq. {41} =¢/2; then
choose | 8] sufficiently small so that the first term of the right member
of inequality (41) =<¢/2. This establishes the continuity of S(f).

We next verify (37), which conecerns S,(f). Since &, isin £,(— «, c«},
H.(f) exists for all f & (— e, «). Thus, S.(f) as defined in (33) is
meaningful, though perhaps infinite on a set of measure zero. With

£(ng f) as in (39), write
afr+p) - |+ 7)|

2 B HHT(f T %)!2 - ‘H(f+—;)ﬂ — (no,f). (42)

Now let ¢ > 0 be arbitrary. From (39) we can choose ng sufficiently
large sueh that E{ne, f) £ /2, for f & [0, 1/T]. With =, so chosen,

so-soe 5 [0+ 3) ol 2] -5 o
Now let H.{f) be the Fourier transform of 7%,. Then
\H()| = |HD + HAD = [HD| + [ H D
Therefore

[H{NHI?

SN -8 = ¥

= IHr(f)|2+2IH1(f)~||g(f)\-+ |H, ()]
= [H-(D* -+ 2{h:Ahll2- 1l + 12013,
where || ||» denotes £; norm. Since ||i.]i—0, as r— =, il 7 is

sufficiently large, then

€ 1
H.(H — |HNH| =z — 3 Gne+1)° FE(— =, o). (44)

Inequalities (43) and (44) imply that, for all ¢ > 0, there exists a
7o(e) such that for all = = 74(¢),

S(NzS8—e 0SS (45)
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Thus, for 7 = 7o),

inf S, (f)z inf S(f)—e=m—e (46)

0=f =T T 0sr=yYT

Letting + — « and ¢ — 0 in (46) yields (37).

APPENDIX B

Convergence of the Minimum Distance

In this appendix, we shall verify (21), i.e.,
d(h,) > d(h), as r— o, (47)

From the definition of d(#,} (10), for arbitrary ¢ > 0, we are assured
of the existence of a w = u — v such that v, v & Gy, and

[irrw| = dih.) + e (48)
Repeating the steps in (34), we obtain

0T N-1
[ =[ So() |5 wemri7 f 2 2[inf $.(NT 5 el (49)
[} k k=0

From (37) we can choose r sufficiently large so that

iIflf S-(f) = m. (50)
Hence, for such a choice of 7,
N-1 d ,! , 2
; }w” = _[%j-el (51)
Now
d(h) < [lew)] = [hosw — Fw]] S [howwl + [Frow]
< dlhs) + e + Jhowl|. (52)
Sinece

(oew) () = XL: he(t — kT)-we,

we have, with = large enough to satisfy (51),
12|

Hi

liswl = 2 e ] = NVl 2 fwe| = [d(he) + P (53)

Combining (52) and (53) yields for r sufficiently large (and e > 0
arbitrary)

dlh) = dlh.) + ¢+ ”g};ﬂ [(d(h) + . (h4)
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Letting r — = and ¢ — 0 yields
d{h)y = lim iof d{k,). {53)

Landrd

The identical argument with A and A, reversed vields for all r > 0,
e>0,

ahy = dy + e+ Pl ray 4 o,
so that (letting r — 0, ¢ — 0)
lim sup d{h,) = d(h)}. {56)

¥+

Inequalities (55) and (56) yield (47) or (21), completing the proof.
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