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Closed -form expressions are obtained for the impulse response of
graded -index fibers whose relative permittivity is a homogeneous function
of the two transverse coordinates x, y, and for the impulse width in graded -
index fibers whose profile departs slightly, but otherwise arbitrarily, from
a square law. The inhomogeneous dispersion of the material is taken into
account. Pulse broadening can be reduced by a factor of 12 from the value
obtained for square -law fibers. Simple expressions are found for the
acceptance of highly oversized fibers.

I. INTRODUCTION

Light -emitting diodes supply their optical power in a time and space
incoherent form. The line width is typically of the order of 200 A,
and the radiation is approximately lambertian with an emissive area
of the order of 50 X 50 Am. Time and space incoherent optical pulses
can be transmitted by oversized optical fibers. However, optical pulses
propagating in such fibers tend to broaden as they travel. This is in
part due to the nonzero line width of the source and the dispersion
(d2k / dc02) of the fiber material. The other cause of pulse broadening
is associated with the fact that the time of flight of a pulse along a
ray depends on the ray trajectory. Pulses traveling along axial rays
usually go faster than pulses traveling along rays of large amplitude.
Because both types of rays are excited by spatially incoherent sources,
the difference in axial group velocity causes a broadening of the input
pulse. In the main text of this paper, we assume that the carrier is
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monochromatic and that the spatial distribution of the rays is time -
invariant. This is the case, for instance, when the source is an injection
laser that oscillates simultaneously on many transverse modes. The
difference in frequency between these various transverse modes can
usually be neglected.

It was first pointed out by Kompfneri that pulse broadening in
step -index fibers could be drastically reduced by introducing ray
equalizers at various locations along the fiber. The role of ray equalizers
is to exchange fast and slow rays. A possible implementation of this
idea is shown in Fig. 1 together with the calculated impulse response
for uncorrected and corrected step -index fibers.' Because natural
mode mixing appears to be very small in the most recently made
optical fibers, ray converters may be practical. They have not been
experimented with, however, and we shall therefore restrict ourselves
to uniform, uncorrected fibers.

Important results concerning the broadening of spatially incoherent
optical pulses in graded -index fibers have already been reported. In
Refs. 3 to 9, the difference in group velocity between the various
modes that can propagate in step -index and graded -index fibers has
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Fig. 1-Ray converter that minimizes pulse broadening in step -index fibers. (a)
Angular spread of a step -index fiber. (b) Optical arrangement with confocal lenses.
The first and last lenses are unconventional. (c) Calculated impulse response for
uncorrected [P (t) = 1 within the pulse] and corrected step -index fibers (from Ref. 2).
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been evaluated. The impulse response is obtained by adding the con-
tribution of each mode, under the assumption that all modes are
equally excited by the source. The calculation of the group velocities
can be simplified with the help of the W.K.B. approximation (see,
in particular, Ref. 4).

Let us now describe an alternative ray -optics method. The time of
flight of a pulse along a ray is first evaluated according to the laws of
geometrical optics. A ray can be defined by the point x, y where it
intersects the input plane of the fiber (plane z = 0), and by the
transverse components, kx, ky of the wave vector k. k is, by definition,
directed along the ray and has magnitude (2ir/Xo)n, where Xo denotes
the free -space wavelength and n the refractive index of the fiber
material, usually a function of x and y. Thus, the time of flight of a
pulse (at a fixed carrier frequency) is, in general, a function of the
four parameters x, y, kx, ky. These four parameters can be considered
the components of a four -vector p, in the so-called phase space. The
impulse response is subsequently obtained by assuming that the
density of rays is equal to (27r)-2 inthe phase space. In other words, we
assume that the number of rays whose points of intersection with
the input plane are between x, x dx and y, y dy, and whose
direction is defined by values of kx, ky between kx, kx dkx and ky,
ky dky, is equal to dxdy dkxdk/ (2702. The total power transmitted

(or number of modes) of the fiber. This is the power
transmitted for a source of luminance unity (see, for example, Ref. 10).

The approach used in Refs. 11 to 13 is based on the conventional
ray equations. We have shown in Refs. 14 and 15 that it brings a
considerable simplification to write the ray equations in the Hamil-
tonian form. The relationship between the ray -optics method and the
W.K.B. method becomes more obvious with the Hamiltonian form.
It can be shown that the W.K.B. method and the ray -optics method
are essentially identical."

An important difference, however, should be noted. In the W.K.B.
method, modes whose axial wave number kz is less than the free wave
number k8 in the surrounding medium (or cladding) are assumed to
leak out so rapidly that they can be ignored. On that basis, the accep-
tance of a step -index round fiber with radius a, for example, is found
to be

N2 = (k2 - ki)a2/2 = V2/2.

The radiation loss of leaky modes can be small in the case of highly
oversized fibers, however, as was pointed out by Snyder." The ray -
optics condition is distinctly different : Only those rays are ignored
whose tangential component of the wave vector at the core -cladding
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interface [(k2z k2)4, where k, denotes the azimuthal wave number]
is less than the free wave number k8 in the surrounding medium.
According to ray optics, the acceptance of a step -index fiber is N2 = V2
instead of V2/2. The influence of the slightly leaky rays on the im-
pulse response of fibers has not been observed. This is perhaps because
high -order modes are more sensitive to irregularities than low -order
modes. Slightly leaky rays may become important when highly over-
sized fibers of good quality are fabricated. This is even more so for
graded -index (e.g., near -square -law) fibers, because the field decays
exponentially beyond the caustic line, which bounds the ray
trajectories.

In most previous works, the effect of inhomogeneous dispersion* on
quasi -monochromatic pulse broadening was neglected. This effect,
however, was taken into account for square -law and linear -law graded -
index fibers in Appendix B of Ref. 14, and by Gambling and Matsuhara9
for circularly symmetric modes in square -law fibers perturbed by an

term. The result for arbitrary small deviations from square -law was
given by Arnaud in Ref. 15. Olshansky and Keck9 first pointed out
that inhomogeneous dispersion is of great practical importance, at
least for fibers doped with Ti02. Dispersion for the promising Ge02
doped fibers is not known at the time of this writing. The variation of
the loss of that material as a function of doping is likewise unknown.
If we consider further that the sources used in pulse broadening experi-
ments are not fully characterized in terms of their distribution in
phase space, it appears that a precise comparison between theory and
experiment is difficult at the moment. We shall therefore restrict our-
selves to the theoretical evaluation of pulse broadening.

II. GENERAL RESULTS

The derivations of the general results given in this section appear in
Appendix A. They follow in a straightforward manner from the Hamil-
ton equations for pulse trajectories in space-time.

Fibers are most often characterized by a refractive -index profile :
n(x, y, co). However, the quantity that enters directly in the expressions
for pulse broadening is the square of the wave number k2(x, y, w)

(27/ Xo)2n2 (x, y, w), where Xo denotes the wavelength in free space.
We shall therefore deal directly with k2(x, y, w).

Let x(z), y(z) denote a ray trajectory. Assuming that the fiber is
time -invariant and uniform and that the material is isotropic, we ob-

* Inhomogeneous dispersion refers to the spatial variations of the ratio of the local
phase to group velocities in the material. This parameter should not be confused with
the parameter (121c/d(42, usually refered to as "material dispersion." The latter is
important only for broadband carriers.
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tain from the ray equations the following differential equation (see
Appendix A):

-I-kid 2 (X + Y) / dz2 = k2 - xakvax + Yak2/ 43Y, (1)

where we have set, for convenience, X = x2 (z), y = y2 (z). ) The quantity
kz in (1) denotes the axial (z) component of the wave vector k and
is a constant of motion. In other words, kz remains the same along
any given ray. In a wave theory, kz corresponds to the propagation
constant of a mode (sometimes denoted /3). Note that, in spite of the
fact that we are using the language of wave optics, the theory given
in this paper is based strictly on ray optics, except when we impose
the condition k, > k8 to make contact with previous results.

It follows from the space-time ray equations that the ratio of the
time of flight of a pulse along a ray to the corresponding time on axis
is (see Appendix A)

t = (ko/kz)(ak2/aw2)1 (dkg/dco2), (2a)

where ko = k (0, 0, 0.). The sign ( ) denotes an average over a ray
period. For any function a(x, y, w), we have defined

(a(x, y, w)) = Z-1 f a[x(z), y(z), w]dz, (2b)
0

where x(z), y(z) denotes a particular ray trajectory and Z the ray
period. If the ray trajectory is not periodic, (a) should be understood
as the limit of the right-hand side of (2b) when Z 00 . In the special
case where the inhomogeneous dispersion of the material can be
neglected, k is proportional tow and, consequently, alc2/aco2 = k2/w2.
Thus, (2a) reduces to

t = (k2)/ (2c)

Finally, if the source of rays has a distribution f(p) in the phase
space p = lx, y, kx, kyl, the response of the fiber to an input P' (t) is
(see Appendix A)

P (t) = f 1'' [t - t (P) ] (P) T (P) ((IP). (3)

The quantity T(p) is the transmission of a ray (usually T < 1), and
(dp) dxdy dkzdky. In the special case of a uniform lambertian source
of luminance unity, we have f(p) = 1/ (2702. For simplicity, we can
assume that T(p) is unity when the point x, y is within the core cross
section and the components kx, ky of p are within some area to be
defined later for specific examples and zero outside that area. All the
subsequent results follow from (1), (2), and (3).
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III. IMPULSE RESPONSE WHEN k2(x, y) in IS A HOMOGENEOUS
FUNCTION OF x AND y

Let the differential equation (1) be averaged over a ray period.
The left-hand side of (1) vanishes because d (X + Y)/dz assumes the
same values at the ends of the integration interval. (In this integra-
tion, kz can be considered a constant.) Thus, we have

(k2 - xak2/ax + Yak2/aY) = 0. (4)

Let us further assume that h(X, Y) = k2(X, Y) - kg is a homogeneous
function of degree K in X = x2 and Y = y2. This means that, for any A,

h(XX, AY) = Y).

If we differentiate (5) with respect to A and set A = 1, we obtain

xah/ax + vah/aY = Kh(X, Y).

Thus, going back to k2(x, y, w),

xak2/ax + Yak2/aY = K(k2 - kg).

(5)

(6)

(7)

In that case, a simple and general expression for the relative delay
in the absence of material dispersion is readily obtained from (2c),
(4), and (7),

t = [(kz/k0) K(ko/kz)]/ (1 + K). (8)

The relative delay t is plotted in Fig. 2 as a function of kz/ko with K
as a parameter. This result is applicable, for example, to the index
profile

k2(x, y) = kg -.Ix' -0.1y1, (9)

where a and 13 denote constants. In that example, K = 1. Note that
the fiber described by (9) is not circularly symmetric, even if a = 13.

Examples of circularly symmetric fibers that satisfy (5) will be given
in the next section.

In almost any z -invariant focusing system, any initial distribution
eventually reaches a steady state. This steady state in general differs
from the initial distribution. A lambertian distribution f = constant,
however, remains lambertian because it is a (trivial) solution of the
Liouville equation (see Appendix A). Note that the distribution f in
(3) represents a ray (or pulse) density. If the medium introduces a
nonuniform attenuation on the rays, the power density T(p)f(p) in
phase space needs to be distinguished from the distribution f.

A fiber is usually surrounded by a homogeneous material, called
the cladding, with wave number k3. For fibers that are not highly
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Fig. 2-Relative time of flight in a fiber where k2(x, y) -14 is a homogeneous
function of degree K in x and y [ko = k(0, 0)]. For most fibers, kdko is close to unity.

overmoded, the transmission law

T(x, y, kz, kw) = (10)
0 if k, ka

is often acceptable. Equation (10) says that rays whose axial wave
number is less than the free wave number in the surrounding medium
are leaking sufficiently rapidly to be ignored. The distribution f of
the lambertian source is set equal to 1/ (27r)2 so that the luminance is
unity. In that case, the total power transmitted is the acceptance of
the fiber. The relative time of flight is, within the present assumptions,
solely a function of kz. The upper and lower bounds on kz are k(x, y)
and kz, respectively. It remains to express the volume element
dkzdki,dxdy in (3) as a function of dkz, dx, dy. For given x, y, a constant
value of kz corresponds to a circle of radius squared k2(x, y) - k in
the kx, kw space because Id + kv = k2(x, y) - ki. Thus,

dkzdkw = rdici. (11)

Let us evaluate the acceptance of the fiber. The light acceptance of
any optical system is, as we have seen, the volume in phase space of
the accepted rays divided by (27r)2. It is also equal to the effective
number of modes that the system can transmit. If we integrate P (t)
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from t = - 00 to t = 00 in (3), the integral over P' in the integrand
is unity, and we obtain

N2 = (1/47r) f f [k2 (x, y) - klidxdy, (12)

where we have used (10) and (11). Thus, 471-N2 is the volume enclosed
by the profile : k2(x, y). For a step -index fiber of any shape with cross-
section area A, for example, we have from (12)

N2 = (A/47r) (k2 - (13)

This expression should be multiplied by 2 to take into account the
two states of polarization.

The pulse transformation in (3) becomes, using (11),
k2o.,

P(t) = (1/47r) f dxdy f - t(kz)]dki. (14)

Let the input pulse P'(t) be a symbolic S function (e.g., a rectangular
pulse of width At and height At-i in the limit At 0). The output
pulse in (14) becomes

P(t) = (1/47r) I dlci/dtIA(kz), kz > kz, (15)

where dki/dt1 denotes the absolute value of dkVdt and A (k2) denotes
the cross-section area that satisfies k(x, y) > k2. k2 can be expressed
as a function of the delay t by inverting the relation t(k2) given earlier.
We obtain, from (8),

dk;2/dt = 2(1 + - (K/kit) 1, (16)

where
k; = kz/ko = (1 + K)t/2 ± 1[(1 K)t/2]2 - Kji. (17)

If K > 1, there is only one value of k; between k; = ks/ko and 1, for
any k;. If

lc? < K < 1, (18)

there are two values of k; that need be considered. Their contributions
to P should be added. If K < k', there is again only one relevant value
of C.

Let us consider as an example a (noncircularly symmetric) square -
law medium

k2(x, y) = 4(1 - 2eX2 - Sgs2), (19)

where C2y denote arbitrary constants. 27r/Oz and 27r/1y, for small
x, y, are the periods of ray oscillation in the xz and yz planes, respec-
tively. The area A (ks) defined earlier is the interior of an ellipse

A (ks) = 7 (1 - k?)/12z1y. (20)
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The impulse response is obtained from (15) and (16) with K = 1,
and (20),

k8V/ (S2zQy)
0

kz > k8
kz ka,

where, from (17), k; = t - (t2 - 1)t. Because, in most fibers, kz re-
mains close to ko, the variation of k; can be neglected, and the pulse
response is almost rectangular.

For a step -index fiber, the area A is the area of the core cross sec-
tion, and t = ko/k.. Thus, the impulse response of a step -index fiber
with cross-section area A is simply

P(t) = k4A/270, 1 < t < kolks.

(21)

(22)

Because, in most fibers, t remains close to unity, the pulse response is
almost rectangular.2 The pulse width, however, is considerably larger
than for square -law fibers, as we shall see in more detail later.

IV. CIRCULARLY SYMMETRIC FIBERS WITH le -id A POWER
OF THE RADIUS

Let the wave -number profile be of the form

k2 (R, w) = kg (co) - k,!((.0)RK, (23)

where R = X + Y = r2 denotes the square of the radius. The relative
(23) in (2a),

t = (ko/k2)(8k2/ aco2)/ (dal dco2)
= (ko/kz)(1 - es1),(RN)), (24)

where we have defined

kg (25)

D,, = kg(dId/do.)2)/ V;:(dkg/dco2). (26)

D, is a dispersion factor equal to unity in the absence of dispersion.
Thus, we need to evaluate (IP). It is interesting that we can do that
without solving the ray equations. The quantity (RK ) is, of course,
independent of dispersion, so we may omit the w arguments.

For circularly symmetric fibers, (1) can be written

ik2.d2R/dz2 = d(k2R)/dR - kZ. (27)

Averaging (27) over a ray period, we obtain

ki = (d(k2R)/dR). (28)

We have also, directly from (23),

(k2) = kg - e(RK) (29a)
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and, from (28) and (23),

(k2) = (1c2z + Kkg)/(1 + K). (29b)

Equating the two expressions (29a) and (29b) for (k2), we obtain

ez(RK) = (1 - k;2) / (1 + K), (30)

where k; .- kz/ko. Thus, substituting (RK) from (30) into (24), the
relative time of flight is

t = k2-1 - Dz(k;-' - k;)/ (1 + K). (31)

In applications, we need k; as a function of t. Solving (31) for k; and
setting D: ---- Dg/ (1 + K), we obtain

k ', = (t/2D:) ± [(t/2D,:)2 + 1 - D: -1]i. (32)

By differentiating (32), we further obtain

dk22 / dt = 2k1D: - (1 - D:)/k;2]-'. (33)

To obtain explicitly the impulse response in (15), we need the area
A (k z) defined by kz < k (R). For k (R) in (23), this area is

A (k z) = r R (k z) = r[(1 - C2) / Gil I x (34)

If ex were kept a constant as the parameter K varies, the core radius a,
defined by k (a) = k,,, would vary. Thus, it is preferable to express ez
as a function of the core radius a. We have

eysc = (1 C2)1/x/a2, (35)

where k; = kz/ko. The impulse response is finally obtained from (15),
(33), (34), and (35) ;

P(t) = (kga2 / 2)k;[(1 - k;2) / (1 - k;2)]' 1 g / [D: - (1 - D:)k2-2]. (36)

The possibly doubled value k; is expressed as a function of t by (32).
Thus, a closed -form expression has been obtained for the impulse
response of a fiber with k2 - kg a power of r, that takes inhomogeneous
dispersion into account.

In the absence of dispersion, we have D : = 1/ (1 + K), and (36)
reduces to

P(t) --= (kga2 / 2)k;[(1 - k;2) / (1 - ki)]' 1 K (1 + K) / (1 - Kk2-2) . (37)

As indicated in the previous section, there are in general two values
of k; that contribute to P. Note that the shape of the impulse response
does not depend on the core radius a.

The impulse response P(t) in (37) is shown in Figs. 3 and 4 for
various values of the parameter K. These curves are essentially the
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same as those shown in Ref. 4. Figures 3 and 4, however, are much
more detailed. We have assumed that 1c8/k0 = 0.9, that is, An/n =10%,
a rather large value. For K = 1 (square -law fiber), the pulse width T

is 0.0054. For example, if n = 1.45 and the fiber length is 1 km, the
pulse width is 26 ns. For K = 0.9, however, the corresponding pulse
width is only 7 ns. We find, in agreement with Ref. 4, that the mini-
mum pulse width occurs when K = kis. For a step -index fiber (K CO),

the pulse width would be as large as 630 ns. Note the following detailed
features on the curves in Figs. 3 and 4. For (0.9)2 < K < 1, the re-
sponse starts from infinity because of the minimum in the t(kz) curve.
For K = 0.85, P drops suddenly for t 0.998. This is because, at that
time, the smaller of the two kiz becomes less than 0.9, and is rejected.
For K = 0.95, the response crosses the t = 1 axis.

Figure 4 is applicable to larger values of K. We note that, for a
very large K (step -index fiber), the response is almost rectangular. The
slow decay in power shown in Fig. 4 would be almost negligible for
small An/n.

The effect of inhomogeneous dispersion is shown in Fig. 5. The
parameter K is kept equal to 0.9 (this is the optimum value in the
absence of inhomogeneous dispersion), but D. is made to vary in the
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Fig. 5-Impulse response for a fiber with k2 (r) = kg + kl(r2)" for various values
of the parameter D that expresses the inhomogeneous dispersion of the material.
D = 1 corresponds to the absence of dispersion. D 1 merely introduces a shift
in the optimum value of K.
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neighborhood of unity. These curves have a striking resemblance to
those in Fig. 3. This means that the effect of inhomogeneous dispersion
merely consists in shifting the optimum value of K. The impulse re-
sponse remains essentially the same, at least for K 1.

The total pulse power is the acceptance of the fiber, a function of K.
The acceptance is, in the present case,

N2 = P(t)clta= (1) [k2(R) - ki]dR
o

= ()[(kg - - Ida2(a2)i/ (K + 1)]
= [K/4 (K + 1)] (kg. - g)a2. (38)

The coefficient in the last expression in (38) is I for step -index fibers
(K -*00) and 8 for square -law fibers. The acceptance given in (38)
should be multiplied by 2 to account for the two states of polarization.
The same rule applies to all the expressions given in this paper. It is
more difficult to obtain the ray -optics acceptance of fibers. The result
is derived in Appendix B.

In the next section, we consider fibers whose profile departs slightly,
but otherwise arbitrarily, from a square law.

V. NEAR -SQUARE -LAW FIBERS

Let us rewrite the differential equation (1) for circularly symmetric
fibers

lidd2R/dz2 = d(k2R)/dR - (39)

For square -law fibers
k2(R) = ko - km, (40)

the solution of (39) is

R(z) = Ro (Rg - Wki)i cos (20z/C),
where

(41)

Ro = z (kg - (1 - 1c;2)/02 (42)

and Si = ki/ko. We have introduced in (41) the axial component of the
angular momentum (or Bouguer invariant)

/z = xky - ykx, (43)

which is the second constant of motion. Let us set

(1z/k1R 102, (44)

where Rm denotes the maximum radius squared. Note that, for merid-
ional rays, 0 = 0 and, for helical rays, 0 = 1. Equation (41) can be
written in the convenient form

R = + + -Mir(1 - 0) cos (20z/k;) (45)
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For later use let us evaluate (Rn), the average of Rn over a ray
period. Using the binomial expansion and the result

(cosm) = m!2-na[(m/2)!]-2 (46)

for m even and 0 for m odd, we obtain

(1 + 9)-- (1 -= n !2 -nn E (47)
m =o, 2'n (n - in) !E (m/2) !]2

In particular,

(R2) = (302 + 20 + 3)/S (48a)

(R3) = RL(1 + 9) (502 - 20 + 5)/16 (48b)

(R4) = Mr (3504 + 2003 -I- 1802 ± 200 + 35)/128. (48c)

Let us now show that a closed -form expression can be obtained for
the times of flight in fibers whose permittivity profiles depart slightly
from a square law. Inhomogeneous dispersion is taken into account.
Let the profile be of the form

N
(R) = kg - E kV? n. (49)

n=2

We assume that ERn-1, n > 2, is of the order E << 1, where e = id/kg.
Substituting (49) in (2a), we obtain (with SP = fi = kl/kg)

N
t = k;-1 -D (R) ED (R")) (50)

n=2

where we have defined inhomogeneous dispersion factors

D = (kgdkg/ dc02) / (k,idkg/ clw2). (51)

The D are unity in the absence of inhomogeneous dispersion. Because
the perturbation is small, (R") in the sum (50) can be replaced by
the expression (47) applicable to square -law fibers. This approximation
is not permissible, however, for the term (R) in (50) because this term
is not small. We need an exact expression for (R). We proceed as in
the previous section. We first observe that, for k2 in (49),

d(k2R)/ dR = 2k2 - k8 (n, - 1)k72,Rn. (52)
n=2

Integrating (39) over a ray period, the left-hand side vanishes and,
using (52), we obtain an expression for (k2) that does not involve
(R)

N

(k2) = 14) + z (1 - n)k,i(Rn). (53)
n=2
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We also have, directly from (44),
N

(k2) = kg - km) + Ig(Rn).
n=2

(54)

Thus, by comparing (53) and (54),
N

la (R) = - k2z) + 1 E (n 1)4,(Rn). (55)
n

Substituting this expression for (R) in (50), we obtain the relative
time of flight for circularly symmetric near -square -law fibers

t = - 1(1 - C2)D1 i2 [D, - + 1)D1]en(R")}. (56)

Alternatively, t can be expressed in terms of the azimuthal and radial
mode numbers. The result is given in Appendix C.

In the absence of inhomogeneous dispersion, (56) reduces to

N

t = lez-lEk? + 1 : - en(lin)]
n=2

(57)

Limiting ourselves to an r4 correction to the square -law profile,
3 = e4 =  =0, and setting E2 = E, (57) becomes, using (48),

t = 1[1 - pm (1 + 0]-1E2 - p Af(1 + 0) - ep m(302 + 20 + 3)/8]
1 + PM[(2 - 3E) + (4 - 200 + (2 - 3009/16 + 0(4)

Pm = ErRm. (58)

The first two terms in (58) give sufficient accuracy when pm < 0.01,
that is, when the total relative change in refractive index sn/n pa/2
is less than 0.005 (p. Va2).

The total pulse width T is the maximum variation of t for 0 < 0 < 1
and 0 < p < pa. For the square -law fiber [E = 0 in (58)], we obtain

r = pV2 (ray optics). (59)

It should be noted that, in defining r in (59), we have specified that
the maximum radius of the ray be less than a for any 0. This condition
is different from the condition used earlier that kz be larger than
The ray -optics condition pm < pa is applicable to highly oversized
fibers.

If we now consider the expression in (58) with a correction term in
r4, we find that t = 1 for meridional rays (0 = 0) when 2 = s in
agreement with Ref. 17, where it is shown that all the rays have
exactly the same optical length when k2(x) = [cosh (x)]-2 ti 1 - x2
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+ (De + . We also find that t = 1 for helical rays (0 = 1) when
2 = 1, in agreement with Ref. 3, where it is shown that helical rays
have exactly the same optical length when V (r) = (1 -I- 71-1 1

- r2 r4 + . By considering all rays whose maximum radius is
less than a, we find that the minimum T is obtained for e2 = 0.91. In
that case, T = 0.0464 The improvement compared with square -law
media is therefore as large as 11. If we had imposed instead the wave -
optics condition kZ > k the vertical scale in Fig. 6 would be divided
by (1 + 0)2. For E2 = 0, for example, the wave -optics pulse width is
pa2/8 instead of pa2/2 as in (59). With the wave -optics limit, the opti-
mum value of E2 turns out to be I instead of 0.91. The improvement
over the square -law case is only 4, instead of 11.

Let us now consider the effect of r6 terms. Figure 7 shows the varia-
tion of the pulse width T, defined as the maximum variation of t for
any 0 < 0 < 1 and any 0 < pm < 0.002, as a function of e2 for various
values of E3. The effect of E3 is essentially to shift the optimum value
of E2 to lower values. The reduction in pulse width is rather modest.
Nevertheless, a small improvement is obtained, compared to the case

Csa 2
cc

0.5

0.4

0.3

0.2

0.1

-0.1

Rm 0.01

ez = 0

1.4

-02
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

-m (2z/Rm)

Fig. 6-Variation of the normalized time of flight for a fiber with le (r) = ko - kir2
-I- 2 (1cf/ kDr4 in the absence of material dispersion for various values of the parameter
62. 0 = 0 corresponds to meridional rays and 0 = 1 to helical rays. e2 has been
redefined to be dimensionless.
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Fig. 7-Variation of the width of the impulse response with 2 for various values
of E3 for a fiber with k2(r) = 14, - k?r2 2(kfl 4)74 + e3(14/kg)r6.

where E3 = 0 when

kj,-2k2(r) - p 0.615p2 =
p = U2r2.

(60)

We give only the result when the departures from a square -law
profile are not circularly symmetric. The free wave number in the fiber
is now in the form

N n

k2 (X, y, w) = 44) - ki(w)R E E kl(w).2017n-1, (61)
n=4. 1=0

where, as before, X = x2, Y EE y2, R EE x2 _F y2 EE r2. The ratio, t, of

the time of flight along a ray to the corresponding time on -axis is found
to be

N n

t = k2-111 - 2(1 -10D, + E E [D,1 - + 1)D1]
n=4 1=0

X e/(X/Yn-')I, (62)

where enl = idt/k8 and Dn1 is defined as Dn in (51) with kn replaced
by k n1. Let us assume that it is permissible to use the sinusoidal rays
of the square -law medium to evaluate the quantity (X /Y.-/). Because
the average over one cycle of the product of powers of sinusoidal func-
tions is known, the relative delay t can be written in closed form.
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Let the ray trajectory be written

x(z) = xo cos (az + (I)x) (63a)

y(z) = yo cos (az + cb). (63b)

The coefficient a does not enter in the final result and is henceforth
omitted. We evaluate

(xtyn-1) 0(x2ty2(.-)
= x01yrn-l) ([Cos (z + ox)in 00i2(n-i)rcos (z >. (64)

It can be shown that"

([cos (z (1).)]21Ecos (by)i2(n-1))

=2-2n
j ( 2 (n - /) ( 2/ )

cos Ps (O. - dhin
4-1 - 1 - s) - s

/2(n - 1)1 121\1
n-/ Jkijf' (65)

where
a\ a!

kV- (a - b)!b! (66)

Thus, given a ray trajectory, defined by the parameters xo, Yo,

and 4 (or, equivalently, by the values of x, y, kz, and ky at the input
of the fiber), we can evaluate in closed form the quantity (X' Yn-1)
that enters in formula (62) for the relative time of flight, from (64) to
(66).

The above calculation is incomplete for the following reasons. When
the power law n2(r) of a fiber departs from the exact square law, pro-
jected ray trajectories in the (xy) transverse plane are precessing
ellipses.* That is, the principal axes of the near -elliptical trajectories
slowly rotate as a function of z. This precession is unimportant for
circularly symmetric fibers. For noncircularly symmetric fibers, how-
ever, the ellipse precession introduces an averaging effect. Further-
more, the noncircularly symmetric components of n2 (r, (p) change the
eccentricity of the precessing ellipse. The axial component kz of the
wave vector remains a constant, but the axial component lz of the
angular momentum varies. Finally, in real fibers, slow (adiabatic)
changes of the refractive index law along the fiber axis are likely to
occur that must be taken into account. The twists of the fiber axis
must also be taken into account. Thus, a realistic assessment of the
effect of small noncircularly symmetric departures of the index law

* It is well known in mechanics that the only r2* potentials (potential U n2)
that give closed trajectories are the harmonic potential U (r) r., 712 (r) = 1 - r' and
the Newton potential U(r) ti 71.2(r) = 1/r.
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from square law on pulse broadening requires a deeper and more
intricate analysis than the one given in the present section. However,
the result in (62) and (65) can be used as a basis for more complete
analyses.

VI. CONCLUSION

From a rather straightforward application of the Hamilton ray
equations, we have obtained closed -form expressions for the pulse
width in graded -index fibers when k2(x, y) - kg is a homogeneous
function of x and y, and for fibers whose profile departs slightly, but
otherwise arbitrarily, from a square law. Inhomogeneous dispersion
was taken into account. The expressions obtained are exact. The small
angle (or weakly guiding) approximation need not be made. We have
also given simple expressions for the wave optics and ray optics
acceptance of weakly guiding graded -index fibers.

The algebraic results given should prove more accurate and require
much less computer time than the straightforward numerical integra-
tion of time along ray trajectories. We have carried the perturbation
only to first order in the small parameter E. To obtain more accurate
results, up to order E2, we need a more accurate expression of the ray
trajectory. This expression can be obtained, for example, by the
method of strained coordinates.19 These more accurate expressions are
probably not needed, however, in most practical cases.
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APPENDIX A

The Hamilton Equations of Ray Optics

The Hamiltonian form of the ray equations are well known in
mechanics and wave dynamics," and they have also been used fre-
quently in optics (e.g., Refs. 14, 15, 17, 21, and 22). However, their
simplicity and power is not always appreciated. The physical difficulty
is that it is not always recognized that ray momenta and wave vectors
(or photon momenta) are identical concepts. On the other hand, ray
momenta (proportional to the wave vectors) need be carefully dis-
tinguished from mass -carrying momenta (proportional to the group
velocities)." On the mathematical side, we need distinguish a function
such as kz(x, y) and the value kz assumed by that function. We must
also be aware that da/dz denotes a total derivative, that is, in the
present context, the variation of the quantity a along some given ray.
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If a is a known function of x and y, and x = x(z), y = y(z) denote a
known ray trajectory, then da/dz = (aa/ax) (dx/dz) (aa/ ay)(dy/dz)
can be evaluated explicitly as a function of z. Here again, an arbitrary
point in space x, y should not be confused with a specific ray trajec-
tory x = x(z), y = y(z). Unfortunately, it is not possible to go into
more details here. An excellent reference is Lighthill's paper.2° A com-
parison between the W.K.B. method and the Hamilton equations is
given in Ref. 14.

Let X = (x, y, z, ict) denote a point in space-time (t is time) and
K = (k2, ky, kz, ico/c) denote the four -wave vector, with w the angular
frequency. An arbitrary medium is characterized by a function of K
and X that we denote

H(K, X) = 0. (67)

The Hamilton equations for light pulses X (0), K (a) are

dX/dcr = awaK (68a)

dK/dcr = -aH/ aX, (68b)

where a denotes an arbitrary parameter.
Equations (68a) and (68b) can be considered the basic postulates

of geometrical optics. From a wave -optics point of view, (68a) follows
from the requirement that the wave lengths and periods of the waves

packet be the same in the direction of a ray.
Equation (68b) follows from (67), (68a), and the fact that K is the
gradient of an eikonal function. Thus, in wave optics, the Hamilton
equations (68) are derived from first principles and need not be
postulated.

Let E denote a point in phase space (kz, ku, w, x, y, t) at the input
plane, and t' a point in phase space at the output plane. The optical
system maps the input phase space into the output phase space, that is,

E = t(') (69)

It follows from (67) and (68) that the Jacobian of the transformation
(69) is unity, a result often used in photometry. Equivalently, we can
say that the determinant of paraxial ray matrices is unity or that the
ray density in phase space is a constant of motion (Liouville theorem).
These three statements are obviously equivalent, provided the rays
are not reflected.

A source of light that is time and space incoherent is described by
a distribution S(E) in phase space. Each small volume in phase space
can be pictured as an optical pulse, provided the dimensions of the
volume are larger than unity. More precisely, this picture requires
that AwAt >> 1, Akzzlx >> 1, and AlcyAy >> 1. The detailed structure

1198 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975



of the pulse is ignored in ray optics. Only the motion of the center is
considered.

The transmission T1 of an optical pulse through the optical system
is a presumably known function of t that we denote as

T1 = T 1(0. (70)

For lossy optical systems, T1 < 1. Because the Jacobian of the trans-
formation t t' is unity, the output distribution is simply

Si( V) = S(t)Ti(t). (71)

The power emitted by the source and the power that can be collected
at the output of the optical system are obtained by integrating S
(or S') over all variables, except / (or 1'). Thus,

P (t) = f S (t) (A)

P' (1') = f S' (t')(dO,

(72a)

(72b)

where C = (ki, k,,, w, x, y) and .' is similarly defined. The terms (dC)
and (d1') denote elementary volumes in C and 1' spaces, respectively.
The response of the detector could be described by a function D (t' ) .
For simplicity, we do not take the detector response into considera-
tion. All subsequent results follow in a rather straightforward manner
from the above results, through a succession of approximations.

Let us assume that the properties of the fiber do not vary with time.
This means that the Hamiltonian in (67), the transmission T1, the
mapping t t', and the pulse delay do not depend on time. In
particular,

t' = t WO. (73)

Sources that are 1 -separable, on the other hand, have the property that

S(t) = P(t)F(C). (74)

That is, the distribution in c -space does not vary with time. For a hot
tungsten wire whose temperature varies with time, the spatial phase -
space distribution is almost lambertian at all times, but the frequency
spectrum (approximately given by the Plank law of radiation) varies
with time. Thus, (74) is not applicable to that source. For consistency
with (72), we assume that F (C) is normalized to unity.

For most sources, we can further assume that

Fa) = 2(co)f(P), (75)
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where p = (kx, ky, x, y) denotes a point in spatial phase -space. That
is, we assume that the spatial distribution does not depend on what
part of the frequency spectrum we are considering. Both Sl and f are
assumed normalized to unity. This ensures that F is normalized to
unity. When the spectral width of the source is small (e.g., less than
1 percent, as is the case for light -emitting diodes) and the fiber material
absorption does not exhibit sharp resonances in that band, we can
assume that

and
T1(() = To(w)T(p)

ti a) = to (o) t(p).

(76)

(77)

For definiteness, we assume that the maximum value of To(w) is
unity, and we define to (w) as the delay experienced by axial pulses.
We evaluate in the main text t(p)/to at a fixed angular frequency.

The pulse response is obtained from (71) to (77),

P' (t') = f P[t' - to (w) - t(p)P(w)T 0(w) f(p)T (p)(dp)dw

= f P"[t' - to(w)1O(w)To(co)dco, (78)

P,, (t") = P[t" - t(p)]f(p)T (p)(dp). (79)

In writing (78) we have used the fact that the Jacobian of the trans-
formation k --> ' is unity and that dw = dw'. The pulse response is
the convolution of the pulse response in (79), which we may call the
quasi -monochromatic pulse response, and the spectral width of the
source. In most cases, To (co) is a constant. For injection lasers, the quasi -
monochromatic pulse response is the most important contribution.

In what follows, we assume that the fiber is uniform and long com-
pared with the period of ray oscillation and therefore approximately
z -invariant. Let the Hamiltonian in (67) be written

where

H = kz -kz(kx,ky, x, y) = 0. (80)

The Hamilton equations (68) are

dx/dz = -akwakx (81a)

dy/dz = -akz/aky (81b)

dt/dz = akz/ Ow (81c)

dkz/dz = akz/ax (81d)

dky/dz = akz/ay. (81e)
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Let us assume further that the medium is isotropic, that is,

k2z = k2(0), x, y) - ki - ky.

Thus, (81a) to (81e) are

(82)

dx/dz = kz/kz (83a)

dy/dz = ky/kz (83b)

dt/dz = (ak2/ ao.))/2kz (83c)

dkz/dz = (8k2/ ax)/2kz (83d)

dky/dz = ay) / 2k z. (83e)

According to (83c), the time of flight of a pulse along a ray for a period
(period = Z) is obtained by integrating (ak2/a0.))/2kz from z = 0 to
z = Z. If ko(w) = k (0.), 0, 0) denotes the wave number on axis, the
time of flight of a pulse along the z axis is similarly obtained by inte-
grating WV aw)/2ko. Thus, the ratio of the time of flight of a pulse
along a ray to the corresponding time on axis is

t = (ko/ko(ak2/aw2)/ (dal dog) , (84)

where ( ) denotes an average over a ray period. If the trajectory is not
periodic, ( ) is understood as a limit for z 00 . When k is proportional
to w, (84) reduces to

t = (k2)/kokz. (85)

Let us now observe that, from (83a), (83b), (83d), and (83e),

2kid2(X Y)/dz2 = k2 - lc! xak2/ax + YakvaY, (86)

where X = x2, Y = y2. This is easily verified by carrying out the differ-
entiations. Equations (86), (84), and (79) (with a slightly different
notation) are those used in the main text.

APPENDIX B

Acceptance of Highly Oversized Fibers

The acceptance, or effective number of modes transmitted by the
optical system, is the volume of the accepted rays in phase space
divided by (2402. We have said earlier that, if the fiber is very long,
all leaky rays are eliminated and the acceptance is simply the volume
enclosed by the profile k2(x, y) divided by 47. If the fiber is highly
oversized, however, many leaky rays (k2 < k8) are not significantly
attenuated." We need then consider the ray -optics condition that the
tangential (rather than axial) component of the wave vector be larger
than k8 at the core -cladding interface. The ray -optics acceptance is
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now evaluated for circularly symmetric fibers. We specify that

k2 > lei, at r = a, (87a)

where k, denotes the azimuthal wave number at the interface. We
also have the condition

ki > 0, (87b)

which is not implied by (87a). In this appendix, we restrict ourselves
to small differences in refractive index, in which case condition (87b)
can be ignored. Because of the conservation of lz (the axial component
of the angular momentum), we have

rky = (88)

for a ray with x = r, y = 0, kx, ky, at the input plane, that can reach
the interface r = a. Thus, condition (87a) is

k2(r) - Ic2 - kt2, (r2/a2)14 > ks. (89)

Equation (89) defines an area in the kx, ky plane bounded by an ellipse.
We have to make sure, however, that rays outside that area do in
fact reach the interface. This is not necessarily the case. The maxi-
mum ray radius rM is defined implicitly by

(1 - r2/rL)k: = k2 (r) - k2 (7.m), (90)

where rM is the largest real number that satisfies (90). (The initial
radius r is considered a constant in the present discussion.) Equation
(90) shows that the kx, kw that correspond to rm are contained in an
ellipse with semi -axes squared k20 = k2(r) - k2(rm) and 14,0 = [k2 (r)
-k2(r m)J/ (1 - r2/11), respectively. If k2(r) is never increasing, we
are sure that kx0 keeps increasing as rM increases from r to a. We do
not have any such assurance for ko, however. When rM reaches a,
there may be acceptable values of kx, kw that are located outside the
ellipse defined above. For each profile, we need therefore verify that
14,o(rM) never exceeds k20(a). We easily verify that this is the case for
square -law fibers, because

ki2,0 = /a(r M - r2)/ (1 - r2/rir) = kflif (91)

increases with rm for any r.
Thus, for square -law fibers at least, we can proceed with the calcu-

lation of the area of the ellipse defined by (89). This area is

,[k2(2.) - kij (1 - 7.2/a2)-1. (92)

Substituting this result in the general expression for the acceptance
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factor, we obtain

N2 = (1)
as

[k2(r) - les](1 - r2/a2)-1c/r2. (93)f
This expression simplifies if we introduce the variable u = (1 - r2/a2)1.
Equation (93) becomes

N2 = (a2/2) [k2 (u) - id]du. (94)f
Thus, the ray -optics acceptance of most circularly symmetric fibers is
half the area enclosed by the curve k2(u)a2. For a step -index fiber, we
obtain from (94)

N2 = - ki)a2/2 (step -index, ray optics). (95)

This is twice the wave -optics acceptance. Thus, for step -index fibers,
the slightly leaky rays carry half the power. Our result agrees with
that in Ref. 16 for weakly guiding fibers. For a square -law fiber, with
k(a) = k we obtain

N2 = (kg - ki)a2/6 (square -law, ray optics). (96)

In square -law fibers, 25 percent of the total power is carried by slightly
leaky rays.'

APPENDIX C

Impulse response width of near -square law fibers

When the source distribution is lambertian, all propagating modes
are equally excited. It is convenient in that case to express the relative
time of flight I for near -square -law fibers given in (56) as a function of
the mode numbers (azimuthal number : 1.4 =  -2, -1, 0, 1, 2
and radial number : a = 0, 1, 2  ) rather than kz and lz. This can be
done by quantizing the ray trajectories. [If the W.K.B. method is
used, it is essential to first remove the singularity of the Helmholtz
equation at r = 0. This is achieved by changing the independent
variable from r to log (r) .] One easily finds that the axial component
of the ray angular momentum 1, is equal to A. Furthermore, we can
use for kz the well-known expression applicable to square-law media.
The result (56) is written below as a function of a, for the reader's
convenience. We have

t(a, = (1 - (11. - F7NI) (97)
= 2

This is in agreement with a recent result by D. N. Payne.
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where

B = 2gK1/2/K0
g 2« + IAI + 1; I

I = abs. val. (A)
F7 = 7!2-7[D7 - + 1)D1]K7/ (KoK1/2)

N7 (2g)7 I 27.(7 - m) ![(m/2)!]2}-1[1 - (l2/g)2]"0.
m=0,2

(98)

The parameters K.,, = k.1,, y = 0, 1 and D7, y = 1, 2 are ob-
tained from the square of the wave number : K(R) - 2=k (R) = (w/ c)2

n2(R) of the fiber as a function of R = r2, measured at the nominal
wavelength X0 and at a slightly different wavelength, X,;, expanded in
power series of R as follows

K(R) = Ko - K1R K2R2 + (X0) (99)
K'(R) = Ko - _KR K2R2 + (X,;).

The D7 are obtained from (99)

D7 = Ko(K; - K7)/K7(KO - Ko) (100)

If we can neglect the power in the leaky modes, the mode numbers
«, 1.4 are restricted by the condition kz > k8, that is,

B < 1 - 2An/n, (101)

where K. = ki is the square of the cladding wave number. The root -
mean -square impulse response width is defined as

= 5,000[(t2) - (t)2]i ns/km, (102)

where ( ) denotes an average taken over all the modes permitted by
(101). Thus, it is a straightforward matter to evaluate from our ex-
pression in (56) the root -mean -square width of the impulse response of
any circularly symmetric near -square law fiber, provided the wave -
number profile can be measured with sufficient accuracy at two
wavelengths.
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Effects of Environmental Nuclear
Radiation on Optical Fibers
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A comparison of the available data on environmental radiation and
on the radiation damage in fibers and glasses under controlled laboratory
conditions leads us to the conclusion that long-term exposure to gamma rays
and neutrons in the environment does not pose a serious problem for the
optical fibers.

Resistance of optical fibers to damage from long-term exposure to
environmental nuclear radiation is an important factor to be considered
when planning a communication system using these fibers. In this
report, we first summarize the nature and intensity of the natural
environmental radiation to which the fibers will be exposed, and then
discuss the available data on radiation damage in optical fibers and
glasses under controlled laboratory conditions. A comparison of these
data leads us to conclude that long-term exposure to gamma rays and
neutrons in the natural environment does not pose a serious problem
for the optical fibers.

I. NATURAL ENVIRONMENTAL RADIATION

The total background radiation at sea level is divided approximately
equally between extraterrestrial and terrestrial components.' The
extraterrestrial component results from the secondary radiations in-
duced by cosmic rays, solar radiation, and Van Allen belt radiation.
The terrestrial component is due to the radiation from naturally occur-
ring radionuclides in the earth. Gamma rays (7 rays) and neutrons (n)
are important constituents of this radiation and we will concentrate
on them for the purposes of this report.

1.1 Gamma rays

A number of measurements of the intensity of the environmental
radiation as a function of location, altitude, and latitude have been
made. According to Hollaender,3 the worldwide average exposure is
approximately 0.5 R/year (R stands for roentgen, a unit of exposure
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dose. A brief discussion of units relevant to this report is given in the
appendix). More recent studies (e.g., Ref. 4) indicate that values
range from 0.1 to 0.2 rad/year in normal regions (rad is a unit of
absorbed dose-see the appendix). An average value of 0.13 rad/year
appears to be generally acceptable' for normal regions.* However, for
the purposes of our discussion of radiation damage, we will deliberately
overestimate the y -ray dose and assume a value of 0.5 rad/year.

1.2 Neutrons

Hess et alb have measured the extraterrestrial neutron flux as a
function of neutron energy and found that the total neutron flux
[ io' (I)(E)dE] at sea level is ',-:, 1.5 X 106 n/cm2-year.t Measurements
by Herbst' indicate that the additional neutron flux from terrestrial
sources is <106 n/cm2-year in open air. However, in tunnels or above
rocks containing a high density of radioactive nuclides, or in regions
with high radioactivity, Herbst obtained a flux of up to 4 X 107
n/cm2-year. For the purposes of estimating neutron -induced damage,
we will assume a rather high value of 1 X 108 n/cm2-year to provide
us with an extra margin of safety.

II. RADIATION DAMAGE IN FIBERS AND GLASSES

2.1 Gamma rays

They rays interact with glasses principally by forcing the electrons
to leave their normal positions and move through the glass network.
The primary consequence of this is an increase in the absorption
coefficient in the vv -visible -near -m range. A detailed study of
7 -induced damage in fibers has been made by G. H. Sigel and co-
workers' at the Naval Research Laboratory. They find that the
7 -induced change in the refractive index is small ( <10-9 at doses as
high as 109 rads. They also find that the 7 -induced losses in optical
fibers depend strongly on the fiber composition and vary from 10-i
dB/km-rad for bulk Suprasil Si02 to 5 dB/km-rad for Corning fiber
No. 5010 at 8000 A. Thus, pure fused silica is extremely resistant to
radiation, while the Corning 5010 is quite susceptible to it.

A 20 -year exposure to natural environmental -y radiation (assumed
to be 0.5 rad/year) would lead to an increase of 50 dB/km for Corning

' There are regions with exceptionally high level of natural background radiation.
In some special areas such as Kerala in India or the Santo Spirito province in Brazil,
values of up to 14 R/year have been reported (Ref. 2). Certain regions of the Black
Forest (Germany) have shown dose rates up to 1.8 R/year. However, these regions
are rare and will not concern us in this report.

t Later reports (see Ref. 7) indicate that the values reported by Hess et al may
be too high by a factor of 2 to 4.
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5010 fiber. However, even in this case, the normal bleaching of the
damage' would probably reduce the total (20 -year) loss to <15 dB/km.
Although this number appears large, it is only a small fraction of the
loss of 1000 dB/km present in the Corning 5010 fiber before exposure
to any radiation. Furthermore, this is the worst case reported by
Sigel et al.9 The 7 -induced losses are generally smaller in fibers with
smaller initial losses.' For example, the Corning low -loss fiber (type B),
having germanium -doped silica core and pure silica cladding, has an
initial loss of 10 dB/km and a 7 -induced loss of 0.01 dB/km-rad be-
tween 8000 A and 12,000 A (1.2 ym). Thus, even if we neglect bleach-
ing, the 7 -induced loss in 20 years would amount to only 0.1 dB/km.
Since fibers with small initial losses are precisely the ones that will be
used in communication systems, it seems reasonable to conclude that
long-term exposure to environmental 7 radiation will not seriously
affect the fiber performance.

2.2 Neutrons

Neutrons interact principally with the nuclei rather than electrons
in solids. Neutron radiation, therefore, results not only in increased
absorption losses but also in structural changes that lead to changes in
density, refractive index, rotary power, birefringence, thermal con-
ductivity etc. Since small differences in refractive indices of the core
and the cladding are essential to fiber performance, we will pay par-
ticular attention to refractive index changes as well as to increased
losses caused by n -irradiation.

To our knowledge, the only study of n -induced losses in optical
fibers is by Maurer et al." They irradiated high -silica -glass multimode
fiber waveguides with 14-MeV neutrons, using doses of as high as
1.4 X 1012 n/cm2. They concluded that the n -induced loss varies
roughly linearly with the total dose and is less than 1.5 X 10-11
(dB/km)/ (n/cm2) in the 8000-A to 12,000-A region. This number,
which is obtained from the figure given by Maurer et al," is in fact an
overestimate of n -induced damage, because we have disregarded the
fact that the n -irradiated samples also received a simultaneous dose

1000 rads of y radiation. However, even if we assume this to be the
true value, a 20 -year exposure to environmental n -irradiation (2 X 109
n/cm2) would increase the loss by only about 3 X 10-2 dB/km. It
should be emphasized that this extrapolation is only approximately
valid because neutrons in the environment have a wide range of
energies (from 0.01 eV to 1010 eV), whereas the neutrons in the con -

While there is no evidence that the correlation between low radiation damage
and low initial losses is universally valid, such a correlation definitely exists in the
presently available data.
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trolled experiment were monoenergetic (14 MeV). However, even
after a thirtyfold increase, the n -induced losses would still be less than
1 dB/km. Therefore, it seems reasonable to conclude that absorption
losses induced by long-term exposure to environmental n -radiation
will not seriously affect fiber performance.

Neutron -induced changes in the refractive index of the fibers can
be a potential source of problems. We know of no measurements on
fibers which can shed light on this problem. However, an extensive
literature exists on the effects of n -irradiation on various forms of
silica and other commonly used glasses (a good summary is given in
Ref. 11). The refractive index of vitreous silica changes by 0.67 percent
under a flux of 2 X 1020 n/cm2 of thermal ( <0.1 eV) neutrons." From
the measurement by Primak,12 we deduce that the rate of increase of
the refractive index of vitreous silica is approximately 5 X 10-22 per
(n/cm2) for doses less than 1 X 10" n/cm2. This suggests that the
changes in refractive index induced by environmental neutrons
(2 X 109 n/cm2 in twenty years) will be less than 1 X 10-12, a truly
negligible effect when we consider the fact that the difference in the
refractive index of the core and the cladding is typically larger than
10-a.

No data are available on the n -induced changes in refractive indices
of other glasses. However, density changes have been investigated
for many glasses." For vitreous silica," the density increases approxi-
mately linearly (10-" percent per n/cm2) up to 2.5 X 10" n/cm2 and
then saturates. Other glasses (except borosilicate glasses) are also
quite resistant to neutrons and show very few changes up to about
1017-10" n/cm2.* The borosilicate glasses are more susceptible because
boron, like other light elements, has high neutron cross section. How-
ever, even these glasses show damage only when flux levels exceed
1014 n/cng,' which is some five orders of magnitude larger than the
accumulated (20 years) flux of 2 X 109 n/cm2 encountered in the
environment.

III. CONCLUSIONS

We have summarized the available data on environmental nuclear
radiation and also the data on radiation damage in glasses under con-
trolled laboratory conditions. Unfortunately, the laboratory experi-
ments were not performed with the exact 7 ray or neutron energy
distributions that one encounters in environmental radiation. It is
difficult, therefore, to make accurate predictions about the radiation
damage in fibers caused by environmental radiation. However, we

* See Table 6.12 in Ref. 10.
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have made some approximate estimates from which it is reasonable
to conclude that damage induced by environmental y or neutron
radiation should not pose any serious problems to optical fibers so far
as their optical loss or refractive index are concerned. More recent
experimental works by Evans and Sigel" and Mattern et al." do not
affect this conclusion.

Some general comments seem to be appropriate in conclusion. Pure
fused silica seems to be extremely resistant to radiation damage. It is
also useful to remember that the addition of small amounts (0.1 to
0.2 percent) of Cerium9." makes most glasses more resistant to radia-
tion. We have not discussed damage by a particles, but it is appro-
priate to mention here that a particles have very short ranges in air
as well as in most other materials. Therefore, it seems unlikely that a
particles will pose any problems for the optical fibers if the fibers are
enclosed in a conduit. Finally, the background luminescence induced
by environmental ionizing radiation has been considered by Cohen
and Lanzerotti" and found to be not significant for fiber optic com-
munications systems.
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APPENDIX

Units of Dosimetry

The most useful units in the study of radiation damage in solids
are the particle or photon fluxes as a function of their energy. Thus,
0(E)dE, expressing the number of particles/cm2-sec in the energy
range E to E dE, completely specifies the incident radiation field.
However, many special units are frequently used in specifying the
radiation. Roentgen (R) is a unit of exposure dose used for X rays
and 7 rays and is defined as follows. Roentgen is that exposure of X
or 7 radiation which gives a dose of 87.7 ergs/g to air.

A special unit of absorbed dose is called a "rad." One rad = 100
ergs/g.

Unlike the roentgen, the rad is independent of the irradiated ma-
terial. This means that a given beam of radiation acting for the same
time will deliver different doses, expressed in rads, according to whether
it is absorbed in air, tissue, or other materials. The rad in Section I
refers to air as the reference material. The rad as used here is indirectly
a measure of the radiation field rather than the absorbed dose in the
sample because it refers to energy absorbed by air rather than the
sample under study. Under these conditions, rad and roentgen are
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numerically equal within about 20 percent and can be used
interchangeably.

In the work reported by Sigel et al.,9 Si is used as the reference
absorbing material. The differences in using air or Si as the reference
material are small (less than a factor of two) and are inconsequential
for the purposes of this report.

The conversion between rad and n/cm2 and photons/cm' as a func-
tion of energy are given by H. Stern." (See also the report by J.
Moteff.") For example, for 1 MeV 7 -ray photons, 1 rad 2 X 109
photons/cm'. For 1 MeV neutrons, 1 rad 2.6 X 108 n/cm2. For
-y rays with energy E between 0.07 and 2 MeV, 1 rad (air) 2 X 109/E
photon/cm2. Conversion factors at other energies may be obtained
from the above references. See also the American Institute of Physics
Handbook."
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Loose Tube Splices for Optical Fibers

By C. M. MILLER

(Manuscript received March 14, 1975)

A technique for splicing optical fibers has been developed that uses a
self -aligning square cross-section tube, with inner dimensions slightly
larger than the optical fiber. A total loss of 0.58 dB was obtained for eight
splices connected in series using a graded -index fiber with a 68-1Am core
diameter. The splices were made one at a time without the use of micro-
scopes or micromanipulators; however, the fabrication process could be

mechanized and extended to groups of fibers. A holding fixture could be
added to adapt this technique to a connect -disconnect type splice. The
size of the splice is presently 0.012 in. square, making it suitable for use
within cables. Measurement set refinements that were needed to measure
individual splice losses as low as 0.05 dB include an improved detector
and means for better control of launching conditions.

I. INTRODUCTION

The basic requirements for low -loss splices are (i) accurate align-
ment, (ii) good fiber ends, and (iii) accurate diameter control. Trans-
verse alignment accuracy of approximately ±0.1 -fiber -core radius
(typically, ±0.0001 in.) is required to achieve a splice loss of 0.1 dB.
Good fiber ends may be produced by scoring and breaking,' grinding
and polishing, or disc sawing. Accurate fiber diameter control is also
needed; however, significant progress is being made in this area. Of
these three requirements, accurate transverse alignment may be the
most difficult problem to solve, especially when the field environment
and variability of craftsmen's skill are considered.

Single -fiber splicing has been accomplished by Bisbee"- and Dyott
et al3 using heat fusion. Someda4 suggested using embossed plastic to
obtain transverse alignment. This paper describes a splicing technique
that uses a loose -fitting, square, cross-section tube to align the fibers.
The splices produced are small, exhibit very low losses, and are simple
and inexpensive.

Previously, snug -fitting sleeves have been suggested,3 but three
problems are usually encountered.
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(i) If the glass sleeve is to support the fiber with the required
alignment accuracy, it must be less than typically 0.0001 in.
larger than the fiber. Both fiber and sleeve must be highly circu-
lar, and the fiber diameter must be controlled to at least the
same tolerances. These tolerance requirements have discouraged
efforts to use a snug tube as an alignment mechanism.

(ii) Given a snug tube of the proper dimensions, the initial insertion
of a fiber into that tube is difficult. Pinnow5 has described a
method of flaring the inner diameter of capillary tubes, which
reduces the initial insertion difficulty.

(iii) Contaminants that are scraped off the inside wall of snug -
fitting sleeves during fiber insertion are trapped between the
fiber ends where the effect of contamination is worst.

The "loose" -fitting square -tube splice described below reduces these
difficulties substantially and appears to have potential application in
several places in a fiber-optic communication system.

II. SPLICE CONFIGURATION AND ASSEMBLY

The loose -tube splice combines the alignment accuracy obtainable
by using a groove for alignment' with the small size and simplicity of
glass sleeves.' The fiber ends are biased to one corner of the square
cross section by bending the fiber outside the tube. Figure 1 is a
pictorial layout of the square tube with two fiber ends in position
within the tube. The tube has nearly flat interior walls and a small
radius in the interior corners, as shown in the cross section in Fig. 2.
One corner of the square is used as a groove for aligning the fibers.

Fig. 1-Splice configuration.
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Fig. 2-Square tube cross section.

Epoxy is forced into the square tube price to insertion of the fibers
and serves several useful functions.

(i) The epoxy serves as an adhesive after curing to hold the splice
together.

(ii) The epoxy also serves as an index -matching material with good
glass -wetting characteristics.

(iii) Contamination on the fiber ends is washed away by the flow
of epoxy around the fiber ends during insertion of the fibers.

Assembly of a splice involves inserting two fibers with good ends
approximately halfway into each end of a square cross-section tube
filled with uncured epoxy. No particular orientation of the square -
tube cross section is required. The fibers are placed on a flat surface
and bent in a curved pattern. This causes forces to be generated that
rotate the tube so that a diagonal of the square cross section is in the
same plane as the bent fibers. The tube is therefore self -aligned and
the fibers biased to one corner by action of the fiber stiffness. After
the bends are made, the fibers are taped to a flat surface in the bent
configuration and the fibers pushed into the tube until they touch each
other. Figure 3 is a cross-section photograph of a splice showing a
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Fig. 3-Splice cross section showing position of fiber in vicinity of joint.

fiber in a corner of the square tube. Figure 4 is a magnified view of one
splice, and a longitudinal section is shown in Fig. 5. In spite of the
small angle between the fiber ends caused by one end not being broken

Fig. 4-Single loose tube splice, with tube approximately 0.5 -inch long and 0.012 -
inch wide.
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TUBE INNER WALL

TUBE OUTER WALL

Fig. 5-Longitudinal section, 250X.

perpendicular to the fiber axis, the splice loss for the splice in Fig. 5
was only 0.07 dB.

III. END PREPARATION

Good fiber ends are necessary for the fabrication of low -loss splices.
As mentioned earlier, several techniques exist for preparing suitable
ends. A score -and -break technique' was used for end preparation on
all splices reported in this paper. A single fiber is clamped in the
apparatus shown in Fig. 6 with approximately 100-g load applied to the
fiber by a spring. The fiber rests in a groove along a 2 -in. radius arc
and is scored lightly with a hand-held diamond knife edge. Fiber ends
prepared by this method are nearly perfect, as shown in Fig. 7. A very
small amount of edge chipping is present where the fiber was scored.

IV. SPLICE -LOSS MEASUREMENTS

After constructing just a few square -tube splices, it became evident
that the measurement set-up being used was not adequate for losses
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Fig. 6-End preparation apparatus.

Fig. 7-Good fiber end.

1220 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975



Fig. 8-Single fiber detector.

below 0.1 dB. A new detector was built, which repeated to within
±0.015 dB. Accurate positional repeatability was accomplished by
using a 0.05 -in. inner -diameter capillary tube which was tapered to 0.006
in. inner diameter by heating and pulling. The fiber is easy to insert in
this detector, and the positional repeatability is excellent. The solar cell
sensor was immersed in index -matching liquid to reduce reflections,
and a microscope cover slip was used to protect the cell from damage
by the fiber being measured. A photograph of the detector is shown
in Fig. S. At the input end of the measurement set, a vacuum chuck
was added to ensure repeatability of launching conditions. This chuck
positions the fiber accurately along the optical axis of the 30X launch-
ing objective lens and the laser. The overall repeatability of splice -
loss measurements is within ±0.03 dB.

Care was taken to place the fiber in the same coiled configuration
after splicing so that bending losses before and after splicing would
be similar. Fiber loss of approximately 0.01 dB/m was subtracted from
the total loss measurements so that losses stated are for the splices
only. All loss measurements were made at a wavelength of 0.6328 Am.

V. RESULTS

Initially, a fixture was used to hold the square tube and control the
fiber bending. Although the maximum loss measured on 25 consecutive
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splices fabricated with this fixture was 0.21 dB, it was found that the
tube would align itself if allowed to rotate. Losses were lower and the
assembly of the splice, as previously mentioned, was much easier.

Eight epoxied square -tube splices fabricated in series using no
fixtures except the end -making apparatus produced a total splice loss
of 0.58 dB or 0.073 dB per splice. The splices had approximately g- m
of fiber between each splice and on each end and were put together
in series to increase the total loss to an accurately measurable quantity.

It has been found that splices measured in series have higher losses
than when measured individually. Ten earlier splices were fabricated
in series and measured 1.37 dB. The ten -series splices were measured
separately and gave the distribution shown in Fig. 9. The average loss
per splice was 0.077 dB compared to 0.137 dB in series, or a nearly
2 -to -1 increase for splices in series. The process of peaking up the
power through a single splice probably selects the launching conditions
and therefore the mode structure best suited to the particular imperfec-
tions of that splice. A loss measurement made in this way gives a value
that is too low. That is, the loss of a splice with long lengths on either
side or with other splices nearby is apt to be considerably higher than
when measured separately with short fibers on each side of the splice.
The eight -series splices mentioned earlier were not measured separately
because losses as low as 0.03 dB, which would be expected based on the
series loss, could not be accurately measured.

A slight longitudinal separation of fiber ends within the tube occurred
during epoxy cure for the 10 splices in series. Loss measured before
epoxy cure was 0.69 dB and 1.37 dB after epoxy cure as stated above.
Fibers were bent in a 90 -degree arc and taped to all optical table while
the epoxy cured. This configuration applied very little, if any, force
component to hold the fibers in place during cure. The eight -series
splices were bent through an arc of approximately 45 degrees and

5 -

4 -

3

2

0
0

4

3

10 SPLICES
MEASURED
SEPARATELY

2

= 0.077 dB

0.05 0.10 0.15

SPLICE LOSS IN DECIBELS

Fig. 9 --Splice loss histogram.
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taped to the table with a definite force applied to keep the fiber ends in
contact. Although this force (a result of the fiber stiffness) is small, end
separation did not occur and a loss of 0.58 dB was measured before
and after epoxy cure.

These extremely encouraging results have stimulated thinking as to
how loose square -tube splices could be applied to other types of
splices, e.g., connect -disconnect configuration.

VI. CONNECT -DISCONNECT SPLICE FOR SINGLE FIBERS

Several configurations based on the square tube can be envisioned
for a connect -disconnect splice, that is, a splice that can be reassembled
many times and used as a connector. Figure 10 is a photograph of a
simple fixture that supports a single square -tube splice by the fibers
on each side of the splice. The splice itself is suspended in air. This
fixture is not intended to be a finished design, but it does produce
losses of 0.1 dB or less. The clamps are lined with a thick, soft EVA
layer that grips the fibers and holds them in position. More practical
designs are sketched in Fig. 11. An index -matching material is neces-
sary to achieve 0.1 dB, although a liquid index -matching material
may be feasible.

Polymethylmethacrylate (PMMA) was suggested as an alternative
index -matching material by Pinnow.5 This thermoplastic could be
drawn into a fiber and inserted into the square tube. Heat could then
be applied to melt the PMMA, the fibers inserted, and the PMMA
allowed to cool. The splice could be disassembled by again heating the
tube and removing the fibers. These connect -disconnect splices may

Fig. 10-Quick-connect holding fixture.
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EVA GRIP-

\
SQUARE TUBE

- .OPTICAL FIBER -

Fig. 11-Connect-disconnect holders for single -fiber splices.

be useful as methods for connecting sources, detectors, and line
regenerators in a fiber-optic communication system.
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Multipair cables are carefully constructed to control the coupling be-
tween wire pairs to prevent excessive crosstalk. Several types of coupling
modes exist between pairs, but the principal effort is devoted to controlling
the "metallic -to -metallic" coupling mode because the coupling loss in this
path is the most important in ordinary telephonic use of the cable. Over a
half -century ago, Campbell showed that crosstalk behavior of this mode
could be characterized by measuring a simple function called capacitance
unbalance. This paper shows that at voice frequencies the crosstalk charac-
teristics of the "longitudinal -metallic"
measuring a second similar function of the same parameters that are con-
tained in the capacitance unbalance. With the aid of these two functions,
it is shown how the longitudinal balance of terminal equipment connected
to a cable pair affects crosstalk. It is further shown that a longitudinal
balance of approximately 40 dB or more is necessary for any station or
terminal equipment used in the telephone network so that it will not
significantly increase the small amounts of crosstalk inherent in the careful
cable design. Also, a limitation is established for the maximum longitudinal
voltages at voice frequency that can be applied without noticeably increasing
crosstalk and noise in other cable pairs. This limitation is approximately
40 dB more restrictive than the tariff limitations for metallic voltages.

I. INTRODUCTION

A multipair cable consists of many insulated but unshielded con-
ductors within a protective conducting sheath. The individual con-
ductors are used to form circuits. In one configuration, called a metallic
circuit, two conductors are paired and form the circuit. Signals are
applied between them. This is called metallic excitation of the circuit,
and the signal is said to propagate in the metallic mode. In another
configuration, called a longitudinal circuit, two conductors are paral-
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leled and these, plus the conducting cable sheath, form the circuit.
Signals are applied between the paralleled conductors and the conduct-
ing cable sheath, which is grounded. This is called longitudinal excita-
tion of the circuit, and the signal is said to propagate in the longitudinal
mode. It is also possible for one wire pair to be used for both circuits
simultaneously and, consequently, for one wire pair to be simultan-
eously excited in the metallic and longitudinal modes of propagation.
This happens when the terminal equipment is longitudinally un-
balanced, as will be explained.

Because the conductors are not shielded and are in close proximity
to each other, electromagnetic fields generated by current flowing
through the conductors cause energy to be coupled from one circuit
to another. This is called crosstalk and is undesirable, since it may
cause noise in other circuits that can impair the performance of digital
and analog systems, or even be intelligible speech that is overheard
and leads to loss of privacy.

Crosstalk cannot be eliminated, but several things can be done to
reduce it, that is, to increase the crosstalk loss between circuits. First,
metallic circuits are used rather than longitudinal circuits, because it
was found by experience that the crosstalk loss between two metallic
circuits is generally greater than the loss between two longitudinal
circuits or between a longitudinal and a metallic circuit. Second, ad-
jacent conductors are paired and often twisted and are used for the
metallic circuits because they are less susceptible to inductive noise
and the crosstalk loss between twisted pairs is generally greater than
between nontwisted pairs. Twisting reduces crosstalk by assuring that
each pair of the cable is exposed to opposing couplings by transposing
its conductors relative to the disturbing pair. Third, the terminal
equipment at both ends of a pair should be longitudinally balanced,
i.e., have impedance symmetry with respect to ground, because longi-
tudinal imbalance has the effect of producing longitudinal excitation
which consequently can increase crosstalk. Finally, the cable pairs are
also constructed to have longitudinal impedance symmetry for the
same reason.

Since metallic circuits are usually used, and both cables and terminal
equipment are usually constructed to be longitudinally balanced, most
crosstalk studies to date have concentrated on what is called metallic -
to -metallic crosstalk, i.e., crosstalk between balanced metallic circuits.
Much less is known analytically about the crosstalk loss between
longitudinal circuits or between a longitudinal and a metallic circuit.
For example, to explain crosstalk between balanced metallic circuits,
Campbell' assumed that all circuits within a cable were longitudinally
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symmetrical, that the pairs were excited metallically, and that, con-
sequently, the applied metallic signal would not excite any longitudinal
voltage in the disturbing or disturbed pairs. Thus, crosstalk would be
due to cable characteristics alone. Campbell was then able to show
that crosstalk at low or voice frequencies, where inductive coupling is
negligible, was very nearly proportional to the capacitance unbalance,
which is a function of the four interwire capacitances between two
cable pairs, and is now used as a measure of quality of a cable with
regard to crosstalk performance.

In another study, Foschini2 developed an accurate transmission
model of cable systems for computing crosstalk which is an extension
of Campbell's work. He too assumed longitudinal symmetry and
showed that crosstalk coupling losses between metallic circuits can be
predicted quite accurately from Campbell's capacitance unbalance. Al-
though his results are valuable in the study of crosstalk for the metallic
mode of propagation, they, as well as Campbell's results, do not con-
sider the effects of terminal imbalance on crosstalk loss.

The objectives of this paper are to extend the results of Campbell
and Foschini by first removing the constraints of metallic circuits,
terminal balance, and pair symmetry ; and to construct a model to
permit calculating the crosstalk loss between pairs as a function of
terminal balance and pair symmetry. The model is used to show why
terminal imbalance can greatly increase crosstalk by causing longi-
tudinal excitation of a cable pair and, consequently, why limitations
must be imposed on the longitudinal balance of terminal equipment
and on the direct application of longitudinal signals. These objectives
are accomplished by showing, through numerical solutions and ex-
perimental results, that longitudinal excitation couples energy into
adjacent wire pairs with much less loss than does metallic excitation.

The paper is divided into four sections. First, the important results
on longitudinal balance and longitudinal voltage restrictions are given.
Next, the model of crosstalk between two wire pairs in a cable is
analyzed using transmission line equations. This model is used to
derive a new set of crosstalk coupling coefficients that can be used to
relate the crosstalk loss between two metallic circuits, a longitudinal
and a metallic circuit, and two longitudinal circuits. Third, average
values for these coupling coefficients for a typical cable are obtained,
derived from measured characteristics. Using the coupling coefficients
the predicted increase in crosstalk resulting from longitudinal excita-
tion is compared with direct measurements of the increase made on
another cable. Finally, restrictions on longitudinal balance and longi-
tudinal voltages are established.

LONGITUDINAL IMBALANCE 1229



II. RESULTS

2.1 Requirement on longitudinal balance

For application to crosstalk performance, it is appropriate to define
a longitudinal balances of terminal equipment as

BALM-L(f) = 20 log10 I em(f)
eL(D

I

'

where ei, is the longitudinal voltage produced when a metallic voltage
em is applied at any frequency f. The subscript "M - L" means the
conversion from a metallically applied voltage to a longitudinal voltage.
This paper shows that a balance of approximately 40 dB or more in
the voice frequency region is required for any terminal device to ensure
that the level of crosstalk that already exists in the network will not
be significantly increased. This requirement is based on measurements
of the near -end crosstalk at 1000 Hz of cable with a balanced and
unbalanced termination. It is assumed that any metallic signal applied
to the telephone network does not exceed the power level specified in
Ref. 3. Longitudinal and metallic voltages are defined in Section 3.3.

2.2 Restriction of longitudinally applied voltages

Crosstalk coupling losses decrease with increasing frequency and
hence voltage restrictions are frequency dependent. Figure 1 shows
the limitations on applied longitudinal voltages established so as to
increase the crosstalk energy already present in the telephone network
by no more than about 1 dB.

2.3 Derivation of crosstalk coupling coefficients

Three new capacitive coupling coefficients have been derived that
can be used with a simple but reliable computation method to predict
the degradation in crosstalk performance for a particular cable when
any of its terminations are unbalanced. These coefficients are given in
Table I. The coefficients are defined in eqs. (10) to (13), and the
interpair capacitances given in the formulas are the capacitances be-
tween the pairs shown in Fig. 2.

III. COUPLING BETWEEN TWO WIRE PAIRS IN A CABLE

3.1 Transmission line model

Figure 2 models two wire pairs within a cable of length 1. The follow-
ing assumptions about a cable are made to construct this model:

 A second type of balance for noise immunity purposes is a separate but important
consideration for good telephone network performance. It is defined in Section 4.2.
However, crosstalk does not enter into establishing its restrictions.

1230 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975



(i) The impedance and admittance per unit length of each wire
pair, the admittances to ground per unit length, etc., are
constant.

(ii) The conductance to ground and between wire pairs is negligible,
i.e., the admittances are purely capacitive.

(iii) The inductive coupling between pairs is negligible at voice
frequencies.

(iv) The impedances per unit length of all wire pairs are equal.

Let the admittances per unit length between the two circuits be Y13,
Y23, Y24, and Y14 connected between conductors 1 and 3, 3 and 2, 2 and
4, and 4 and 1, respectively, where conductors 1-2 form one twisted
wire pair and 3-4 form the other pair. The impedances per unit length
of the four wires are Z1, Z2, Z3, and Z4 and the admittances of wires
to ground are Yig, Y20, Yap, and Y49. The admittances per unit length
of the wire pairs are Y12 and Y34, and the voltages and currents are
labeled in the figure.

Consider a differential section of the model of length Ax. It is readily
seen that the following eight current -voltage relationships hold for
this differential section :

V1(x Ax) = Vi(x) - /i(x)ZiAx (la)

V2(x Ax) = V2(x) - /2(x)Z2Ax (1b)

1'3(x Ax) = V3(x) - /3(x)Z3Aa; (1c)

(a; + Ax) = V4(x) - /4(x)Z40x (1d)

/1(x + Ax) = I1(x) - { Vi(x) - V2(x)} 17120x- (x) Yighix - Vi(x) - V3 (X) I YI3AX
- Vi (X) - V4(x) 17140X (le)

12(1 Ax) = /2(x) - { V2(x) - Vi(x)1 1712Ax
- V2 (X) I V2 (X) - V3 (X) / Y23461X

- V2(x) - V4(x)) Y24Ax (1f)

/3(1 + Ax) = /3(x) - V3(x) - V4(x)1 Y34 Ax
- V3 (X) Y3 oAx - V3 (X) - V2 (X) } Y23AX

- V3(x) - Vi(x) Yi3Ax (1g)

/4(x Ax) = /4(x) - V4(x) - V3(x)1 Y340x
- V4 (X) Y441X - V4 (X) - V2 (X) Y240X

-{V4(x) - Vi(x)} Yi4Ax. (1h)

Dividing through by Ax, taking the limit as Ax approaches zero and
recognizing the definition of the derivative, using assumption 3, and
writing the resulting eight equations in matrix form, we obtain eq. (2).
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3.2 Transmission line equations

Equation (2) above can be written in matrix notation as

dV
dx

ZI

dl
(Tv_ -YV,

where
VI (X) Z1 0 0 0

V= V2 (X)

V3 (X)
Z = 0

0
Z2

0
0

Z3

0

0
, I= I2(x)

13(X)
/74 (X) 0 0 0 Z4., .14(x)

Table I - Average crosstalk coupling coefficients
for a multipair cable
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Formula

C M 2Mi 7.5 C13 - C14 - C23 + C24
C L2MI 65.2 2{C13 + C14 - C23 - C24
C LiM2 64.0 2 { C12 - C14 + C23 - C24
CL2L1 9076.0 4)C11 + C14 + C23 + C24)
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are the voltage, impedance, and current matrices, respectively, and,
using assumption (ii),

+ C12
+C13 + C14

- C12 - C13 - C14

- C12 C20 + C12 - C23 - C24

Y = jw +C23 + C24
-C13 -C23 C30 + C34 -C34

+C13 + C23
- C14 - C24 Celp + C34

+C14 + C24,

is the admittance matrix. Equations (3a) and (3b) are basic transmis-
sion line equations describing the voltage -current relationships be-
tween wire pairs. We will use them to calculate crosstalk coupling
between wire pairs. They are more conveniently written as a matrix
differential equation :

crud [ill
(4)

where 0 is a 4 X 4 null matrix. The solution of eq. (4) is straight-
forward and is discussed in Appendix A.

3.3 Crosstalk coefficients for various coupling modes

Since there is negligible inductive coupling at voice frequencies, the
insight to crosstalk coupling can be obtained from the transmission
line equations involving the admittance matrix only. Rewriting eq.
(3b) explicitly, we have

Clgt + C12
+C13 + C14

-C12 -C13 -C14 vi'

dI2/dx -C12 C20 Cl2 -C23 -C24 V2

= i(A)
+C23 + C24

dla/dx -C13 - C23 Chi ± C34
±C13 + C23

-C34 v,

dIddx -C14 -C24 -C34 C40 + C34 V4
+C14 + C24

(5)

It is clear from eq. (5) that coupling between wire pairs 1-2 and 3-4
could not possibly occur if the four interpair capacitances C13, C14,
C23, and C24 were all zero regardless of the longitudinal imbalance at
the terminations. Furthermore, inspection of eq. (5) shows that the
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coupling between the wire pairs is some function of these four inter -
wire capacitances. This is seen by observing the contributions to d11/dx
and d/2/dx from V3 and V4, and the contributions to d13/dx and
d14/dx from V1 and V2.

The insight needed to understand why longitudinal excitation and
longitudinally unbalanced terminations increase crosstalk is obtained
when eq. (5) is transformed and expressed in terms of the longitudinal
and metallic voltages and currents, rather than in terms of the con-
ductor currents and conductor -to -ground voltages. This transforma-
tion is easily made because the longitudinal and metallic voltages and
currents are linearly related to the conductor voltages and currents.
If wire pair 1-2 is now denoted as circuit one and wire pair 3-4 is
denoted as circuit two, then the metallic voltages and currents on the
two circuits are defined to be

Vlm Vi V2, 1.1m
/1 - /2

= - = 2

and

V2m V3 V4, /2m
/3 - /4

= - =
2

The longitudinal voltages and currents on the two circuits are

and

V1L =
+ V2
2

V3 + V4
V 2L =

2

+

12L = /3 + /4.

Expressed in matrix form, these eight equations become

and

r V 1' 2 1 0 O.' r V 1 II

V2 1 0 0 V 1L

V3 0 0 2 1 V 2M

V4, 0 0 -4 1 V 2L

IlL 1

12M 0

I2L 0

-1 0 o'
1 0 0 /2
0 /3
0 1 1

(6)

(7)

Now, by using eqs. (6) and (7), eq. (5) can be expressed in terms of
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the longitudinal and metallic voltages and currents a

'a im/dx." 0 0'

dIlL/dx 1 1 0 0

= Jo)
dI2M/d 0 0

,dI2L/dx 0 0 1 1,

-C12 -C13 -C14 1 0 0' VIM'
-1--C13+C14

C29 +Cl2 -C23 -C24 -1- 1 0 0 VIL
+C23 +C24

X
-CI3 -C23 Call + C34 -C34 0 0 -1 1 V2M

+CI3 +C23

-C14 -C29 -C34 C411 + C34 0 0 2 1 V2L
+C14 +C24

(8)
or, performing the matrix

r di m /C1X

multiplications,

q21 q12 gr13 q14' -171.111

di dX

di 2M/dX
.1co

4
q21 q22 q23 q24

q31 q32 q33 q34

V 1L

V2.111
(9)

di 211C1X s41 q42 q.13 q44., ,V2L

where the elements of the 4 X 4 symmetric matrix Q in eq. (9) are
given in Appendix B.

Much useful information can be obtained by simple inspection of
some elements of Q. First, the derivative of the metallic current in
circuit one due to the metallic voltage in circuit two is proportional
to qn, i.e., the crosstalk coupling loss between the metallic circuits is
directly related to qn. Thus, the coupling between two metallic circuits,
i.e., the metallic -to -metallic coupling, is proportional to

Cm2m, = -q13 = C13 - C14 - C23 + C24. (10)

This is the capacitance unbalance term first derived by Campbell' and
used today as one measure of cable quality. Referring again to eq. (9),
we see that the derivative of the metallic current in circuit one due
to the longitudinal voltage in circuit two is proportional to q14 and that
the derivative of the metallic current in circuit two due to the longi-
tudinal voltage in circuit one is proportional to q32. In other words, the
crosstalk coupling from a longitudinal to a metallic circuit is pro-
portional to

CL2m1 = = 2(C13 + C14 - C23 - C24) (11)
or

CLIM2 = -q32 = 2(C13 - C11 + C23 - C2.1) (12)
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The subscript L2M1 means "from the longitudinal mode in circuit
two to the metallic mode in circuit one." Also, we can readily see that
the derivative of longitudinal current in circuit one resulting from the
longitudinal voltage in circuit two is proportional to q24. In other words,
the crosstalk coupling between two longitudinal circuits is proportional
to

CL2L1 = -q24 - 4(C13 + C14 + C23 + C24) (13)

Using these four coupling coefficients, it is now possible to compare
the difference in crosstalk loss between two metallic circuits, a longi-
tudinal and a metallic circuit, and two longitudinal circuits. This com-
parison was made for one cable and the results are discussed in the
next section.

3.4 Comparison of crosstalk using the coupling coefficients

One good feature of the four coupling coefficients given in eqs. (10)
through (13) is that they are easily measured. Hence, they provide a
simple method for comparing the difference in crosstalk between two
metallic circuits, a longitudinal and a metallic circuit, and two longi-
tudinal circuits. To make such a comparison, it is necessary to have
data on the interwire capacitances, C13, C14, C23, and C24, for real cable.
Such measurements were made in 1968 on a 22 -gauge, pulp -insulated
cable manufactured by Western Electric. These measurements were
made on many different 50 -pair binder groups.* The data on inter -
wire capacitances were taken for random samples out of the 1225
possible setst of interwire pair combinations within each binder group.

Using these data, the average value of the four coupling coefficients
were calculated and are given in Table I. These show that, on the
average, the coupling between two metallic circuits is significantly
less than the coupling between a longitudinal and a metallic circuit,
and that the coupling between two longitudinal circuits is by far the
greatest. Hence, the fundamental reason why terminal longitudinal
imbalance increases crosstalk is that longitudinal imbalance causes excita-
tion of the longitudinal circuit.

Comparison of the values of the coupling coefficients made so far
does not provide any quantitative estimate of the amount of the
differences in crosstalk losses to be expected. Such an estimate can be
obtained by using the coupling coefficients for individual wire -pair
combinations to construct distributions of 1000 -Hz near -end crosstalk

* A binder group is a unit of 12, 16, 20, 25, 50, or 100 twisted wire pairs bound
together within a cable.

For a 50 -wire pair cable there are n(n - 1)/2 = 50(49)/2 = 1225 possible two -
wire pair combinations. The sample sizes ranged from 200 to 600 pair combinations.
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loss. This was done for the metallic -to -metallic, longitudinal -to -
metallic, and longitudinal -to -longitudinal crosstalk loss distributions
by using the formula given in Ref. 4,

N1 = 20 logio
Vo C

8Zolj '

where C is the capacitance unbalance, i.e., Cm,m C L2Ar  or CL, co is
the radian frequency in Hertz, and Zo is the characteristic impedance
of 22 -gauge pulp. The inductive contribution is neglected. The dis-
tributions are shown in Fig. 3. The rms crosstalk loss corresponds to
that loss which would result in the average crosstalk power in watts.
Consequently, crosstalk power transferred between two circuits with
crosstalk loss equal to the rms value would be the average crosstalk
power. The rms values are 105.2 -dB loss between metallic circuits and
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Fig. 3-Computed 1000 -Hz near -end crosstalk based on the interwire capacitances
of 416 pair combinations of 1319 ft of 22 -gauge pulp cable.
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only 83.9 -dB loss between a longitudinal and a metallic circuit. Hence,
the new coefficient CL,M, predicts that longitudinal excitation of a
wire pair in the cable measured causes 21.3 dB (105.2 - 83.9) more
average crosstalk power in a metallic circuit than metallic excitation.
Similarly, the rms loss between two longitudinal circuits, predicted by
CL,L1, is 49.2 dB, which is 56 dB (105.2-49.2) less than the metallic -
to -metallic loss. These results are compared in Section 3.6 to crosstalk
loss measurements made on another cable. In Section 3.5, these re-
sults are compared to results obtained from computer solution of the
transmission line equations (9), i.e., by simulation of the cable.

3.5 Numerical solutions

A second, more difficult method of calculating the crosstalk between
the various modes is direct solution of the transmission line equations
on a computer with an appropriate set of boundary conditions.

A computer program has been written to solve these equations that
simulates a cable of the same length and identical characteristics of
the Western Electric cable used to obtain the coupling coefficients.
Two conditions of interest were simulated on the computer. First,
metallic excitation by a balanced 1000 -Hz signal generator in series
with a 600 -ohm resistance was applied to a pair, denoted the disturbing
pair, and all other pairs were terminated metallically with 600 -ohm
resistors from tip to ring. Second, the same conditions applied except
one wire of the disturbing pair was grounded. This resulted in a deg-
radation of 14.5 dB in the rms value of the balanced near -end cross-
talk loss distribution.

To compare the degradation in crosstalk obtained by the two
methods, i.e., coupling coefficients versus numerical solutions, it is

necessary to note that grounding a wire connected to a signal generator
produces a longitudinal voltage that is one-half the value of the applied
metallic voltage. This follows directly from the definitions of longi-
tudinal and metallic voltages in terms of the voltage from each wire
pair conductor to ground, eq. (6) with V2 = 0. Hence, an approximate
6 -dB adjustment must be made when using the longitudinal -to -metallic
coupling coefficients CL,m2 and CL,Af which predict a 15.3 -dB deg-
radation in the near -end rms crosstalk loss at 1000 Hz due to ground-
ing, as compared to 14.5 dB predicted by the numerical computation.
This good agreement suggests that the new capacitive coupling coeffi-
cients do provide a simple but reliable method of predicting the
degradation in crosstalk performance for a particular cable when its
terminations are unbalanced.
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3.6 Comparison with measured data

In 1962, measurements of the degradation of near -end crosstalk loss
caused by grounding one conductor of the disturbing or disturbed pairs
on randomly selected pair combinations in a 7500 -ft length of a 22 -
gauge multipair pulp -insulated exchange grade trunk cable were made
by Bell Laboratories. This was a real working cable between Oceanside
and Vista, California. All load coils in the section under test here were
first removed and the cable ends spliced. The results of these measure-
ments are shown in Fig. 4. The results reveal, at 940 Hz,* a degradation
of about 19.4 dB in the near -end rms crosstalk loss when a ground
was applied to one wire of either the disturbing or the disturbed pairs.

Since grounding one conductor causes a longitudinal voltage excita-
tion that is one-half the metallic voltage, a 6 -dB numerical adjust-
ment was made on the measurements to predict that the rms cross-
talk loss between a longitudinal and a metallic circuit is 25.4 dB worse
than the rms loss between metallic circuits. This is compared to 21.3 dB
obtained using the coupling coefficients for the cable discussed in the
previous section. This 4.1 -dB difference may be due to the fact that
the two cables were not the same, each having different value parame-
ters characterizing them as well as different lengths.

When one conductor of both disturbing and disturbed pairs were
grounded, the measured rms crosstalk loss was 32.6 dB, as shown in
Fig. 4. This is the loss between the two longitudinal circuitst and, as
can be seen, it is 61.5 dB less than this rms loss between the metallic
circuits. This measured difference compares favorably to the calculated
difference of 56 dB as shown in Fig. 3. The 5.5 -dB difference may be
due to cable differences. In conclusion, direct crosstalk measurements
on another cable substantially support the analytical method for
calculating crosstalk using the coupling coefficients or computer
simulations.

3.7 Metallic -to -longitudinal conversion because of wire pair imbalance

So far, we have analyzed the effect of direct longitudinal excitation
of wire pairs on crosstalk between pairs. This excitation results when
longitudinally unbalanced terminations are used. However, now we
discuss how longitudinal excitation can also result because of "pair
longitudinal imbalance," which is defined as any lack of symmetry

940 Hz is close enough to 1000 Hz to permit direct comparison with calculated
results.

t Referring to the definitions of longitudinal and metallic voltages, it is simple to
show that the coupling loss for the longitudinal -to -longitudinal mode is the same as
for both pairs grounded.
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in the wire pairs with respect to ground or with respect to each other.
Such asymmetry can cause part of the metallic signal to be converted
to a longitudinal excitation even when there is perfect longitudinal
balance at the terminations.

To understand the causes of wire pair longitudinal imbalance,
again refer to eq. (9). Perfect pair balance is the condition that exists
whenever a metallic signal does not excite the longitudinal modes in
either the disturbing or disturbed wire pair. This requirement can be
met if and only if

q21 = q23 = Tn. = q43 = 0.

These last four conditions are satisfied if

C Ig = C2g (14a)

C3g C 4g (14b)

C14 = C23 (14c)

C13 = C24. (14d)

Equations (14a) and (14b) are necessary since, for example, if Cig
were not equal to C22, there would be a lack of longitudinal symmetry
in wire pair one even if the terminations were all perfectly balanced.
Equations (14c) and (14d) imply that equal and opposite currents are
coupled (metallic -to -metallic crosstalk) from each of the wires in the
disturbing pair to the disturbed pair preserving the pair symmetry.

In other words, if the conditions of eqs. (14) are met and all the
terminations are balanced, then all the currents are strictly confined
to the metallic circuits. This is not to say that crosstalk cannot occur.
It means that only one of the three kinds of coupling can occur, i.e.,
from metallic circuit to metallic circuit. In fact, the crosstalk will then
be proportional to Campbell's capacitance unbalance expression which
simplifies to

CM2M, = C13 + C24 C14 C23 = 2(C13 C14) (15)

Cable data reveal that the capacitances to ground for wire pairs are
nearly equal, their differences on the average being less than 2 percent
of their magnitude. The percent differences in the interwire capaci-
tances are larger (e.g., 10 percent), but they are much smaller than
the capacitances to ground. This suggests that metallic -to -longitudinal
conversion of signals due to the cable characteristics alone is small.
Computer simulation of wire pairs, using eq. (9) and assuming balanced
terminations, supports this suggestion. To put it another way, the
high quality of manufactured multipair cable used in the Bell System
ensures excellent pair longitudinal balance. The small imbalance in
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the pairs is rarely a significant factor in the contribution to longi-
tudinal voltages that degrade crosstalk. Substantial conversion to
longitudinal modes does occur when there is imbalance at the termina-
tions, as revealed by our analysis and, consequently, it is necessary to
place limits on permissible terminal longitudinal imbalance.

IV. LONGITUDINAL BALANCE REQUIREMENTS

Crosstalk energy can reach the metallic mode in the disturbed circuit,
circuit two, from an applied metallic signal in the disturbing pair,
circuit one, in three different ways.

(i) Direct coupling from a metallic signal in circuit one to a
metallic disturbance in circuit two.

(ii) Conversion of the metallic signal of circuit one to a longi-
tudinal signal in circuit one because of an unbalanced
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termination* in that circuit, then coupling of the longitudinal
signal in circuit one to a metallic disturbance in circuit two.

(iii) Conversion of the metallic signal in circuit one to a longi-
tudinal signal in circuit one because of an unbalanced termina-
tion, coupling of the longitudinal signal in circuit one to a
longitudinal signal in circuit two, and, finally, conversion of
the longitudinal signal of circuit two back to a metallic dis-
turbance in circuit two due to an unbalanced termination on
circuit two.

The crosstalk described in (i) above is independent of the imbalance
at the terminations. It is the result of the capacitance unbalance Cm,m,
between the individual wire pairs and there is little more that can
practically be done to circuits to reduce it. The important thing is to
make sure that any equipment that is connected at the terminations of the
cable does not degrade the low levels of crosstalk that currently exist by
introducing longitudinal excitations.

4.1 Longitudinal balance requirement

The data on the vulnerability of cable to longitudinal imbalance
have been obtained by measurements made on two different cables.t
Measurements on the cable in California, with the 6 -dB numerical
adjustment, revealed that longitudinal signals, on the average, cross-
talk into adjacent wire pairs with 25.4 -dB less coupling loss for that
cable than do metallic signals. The data on the Western Electric reel
of cable, used in the newly derived capacitance unbalance formulas,
showed 21.3 -dB less coupling loss for longitudinal signals.

The definition of longitudinal balance, for application to crosstalk
performance, is repeated :

BALm_L(f) = 20 logic,
em(f)
eL(f)

where e L is the longitudinal voltage produced when a metallic voltage
e,,, is applied at any frequency f. The measurements made on the
cable in California establish the more stringent longitudinal balance
requirement, and it shall therefore be assumed that rms longitudinal -
to -metallic crosstalk loss is 25 dB less than metallic -to -metallic cross-

* Conversion because of imbalance in the cable itself can be neglected, as discussed
in Section 3.7.

t Subsequent to the beginning of this investigation, measurements on the vulner-
ability of one other cable to crosstalk because of longitudinal imbalance have been
made. These measurements do not alter the conclusions reached by using the data
on the first two cables only.
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talk loss. This implies that, if a network which is sending a metallic
signal has a balance of about 25 dB, the longitudinal signal developed
because of this imbalance may contribute the same amount of cross-
talk power to nearby cable pairs as the direct metallic signal applied
to it. It is not known exactly how the two components of the crosstalk
produced by metallic and longitudinal signals will add, that is, on a
voltage basis, a power basis, or somewhere in between. However, a
longitudinal signal developed because of imbalance is likely to be
correlated to the metallic signal causing it. Hence, it will be assumed
that the signals add approximately on a voltage basis.

What is needed is a balance such that the contribution to crosstalk
power because of imbalance is small compared to the crosstalk that
exists when a metallic signal is applied. For illustrative purposes, it is
assumed that an increase of 1.0 dB is not too noticeable and is thus a
permissible contribution. In Fig. 5, which shows how two voltages
expressed in dB are added, it is seen that, in order for the power in a
signal to be increased by no more than 1.0 dB because of the presence
of a second signal, the voltage difference must be over 17 dB. Thus, a
longitudinal balance of approximately 42 dB is required (we will use
40 dB) to ensure that crosstalk is increased by no more than this
amount, due to the longitudinal -to -metallic coupling path, type (ii),
described at the beginning of Section IV.

We now show that the crosstalk resulting from the coupling path
described as type (iii) is less severe and has no bearing in determining
the balance requirement. To do this requires discussing a second
measure of balance, that known as longitudinal -to -metallic balance.

7

6

5
C7 U

O
0 - z 4>-
Ow
3 u

3

<
0 -I

"j" 2

0O
m

1

0
0 2 4 6 8 10 12 14 16 18

DIFFERENCE BETWEEN TWO VOLTAGES IN DECIBELS

Fig. 5-Sum of two voltages expressed in decibels.

20

LONGITUDINAL IMBALANCE 1245



4.2 Longitudinal -to -metallic balance

In addition to the possibility of severely degrading the crosstalk
levels already occurring in the telephone network, there is a second
important reason why high longitudinal balance at the terminations
must be maintained. This is to reduce the metallic noise resulting from
power line induction. Here, the disturbing signals are longitudinal in
nature and, to assure good performance of the user's circuit, the con-
version loss from a longitudinal noise signal on his circuit to a metallic
signal on his circuit must be large. A measure of this conversion loss,
defined as longitudinal -to -metallic balance, is :

BALL_M (f) = 20 logio eL(f)
em( f)

where eL is the applied longitudinal voltage source and em is the result-
ing metallic signal. The balance subscript "L - Ai" means a conver-
sion from an applied longitudinal signal to a metallic signal. It is im-
portant to note that the two measures of balance, BALM_L and
BALL_M, are not equal, i.e., reciprocity does not necessarily apply.
Moreover, they are not necessarily correlated.

Generally, to assure good performance, the minimum balance
BALL_M of a termination is well in excess of 40 dB over the voiceband.
Consequently, we use 40 dB as a lower bound on the BALL_M of
terminations, keeping in mind that this in no way establishes 40 dB
as the necessary performance minimum. Discussion of that topic is
outside the scope of this paper.

Using the assumed minimum bound on BALL_M = 40 dB of termi-
nations on the disturbed circuit, it is now shown that the crosstalk
coupling loss path (iii) is at least 20 dB less than the metallic -to -
metallic path and, hence, is not a factor. It is also assumed that the
balance BALm_L of the terminations on the disturbing circuit is 40 dB,
determined from the crosstalk requirement because of the coupling
path of type (ii). Now, since there is approximately 60 dB less cross-
talk loss between two longitudinal circuits than between two metallic
circuits, the difference in the losses between type (i) and type (iii)
paths is BALDA_L (disturbing circuit) - 60 dB BALL_M (disturbed
circuit), or at least 20 dB.

V. REQUIREMENTS ON LONGITUDINALLY APPLIED SIGNALS

So far, we have considered how longitudinally unbalanced termina-
tions can cause increased crosstalk, because they longitudinally excite
a wire pair. We have recognized that it is this longitudinal excitation
that is the fundamental cause of the increased crosstalk, and we have
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recommended a metallic -to -longitudinal balance, BALM_L, limit for
termination of 40 -dB minimum to restrict the amount of longitudinal
excitation produced. However, it is also possible to longitudinally ex-
cite wire pairs directly from a voltage source connected between the
tip and ring of a wire pair and the cable sheath, or ground. Such direct
excitation must also be limited, because it too causes crosstalk in a
disturbed metallic circuit in two ways :

(i) Direct coupling from the longitudinal mode in circuit one to the
metallic mode in circuit two.

(ii) Coupling of the longitudinal mode in circuit one to the longi-
tudinal mode in circuit two and conversion of energy in the
longitudinal mode of circuit two to the metallic mode in circuit
two because of an unbalanced termination in circuit two.

Since the effect of directly applying longitudinal signals is the same
as longitudinal signals arising from metallic -to -longitudinal imbalance,
and since the rms crosstalk loss for this type of signal is on the average
25 dB less than metallic signals, longitudinal voltage limits should be
40 dB more restrictive than metallic voltage limits. Figure 1 shows
the restriction on longitudinally applied voltages as a function of
frequency. It is based on the restrictions already placed on metallic
voltages determined by a previous study at Bell Laboratories* and
the 40 -dB restriction determined here.

VI. SUMMARY

The following has been accomplished in this paper:

(i) Three new capacitive coupling coefficients have been derived
that provide a simple but reliable method of predicting the
degradation in crosstalk performance for a particular cable
when its terminations are unbalanced.

(ii) It has been demonstrated that a metallic -to -longitudinal
balance requirement of 40 dB or more for any terminations
connected into network should not noticeably increase the low
levels of crosstalk that are already present.

(iii) A requirement has been established on longitudinally applied
signals that if met should not degrade crosstalk performance.
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APPENDIX A

In eq. (4), let T GO be an 8 X 1 column matrix where

T= r v(x)i
L/(x)

and let A be an 8 X 8 constant matrix (not a function of x),

Then

A0 Z
Y 0

dT(x) AT.
dx

(16)

(17)

(18)

The solution to this matrix differential equation' is known to be

T (x) = exp (- Ax) T (0).

Since the parameters that characterize the line are independent of x,
it is readily seen by solving eq. (4) that

where the far -end

CFEvF.E1

voltages and

_

currents

[0;31 0Z]l[c,VN

where

EE],

x = 1

11(0'

(19)

are

VFE = V2(l) CFE = 12(1)

V3(l) 1'3(1)

V4 (1).,

and the near -end voltages and currents are

'171(0)- '1.1(0)

VNE = V2(0) CNE = 12(0)
V3(0) 13(0)
V4 (0)., 14(0).

With the eight equations given in (19) and a knowledge of the
boundary relations at the terminations, we can characterize the model
of the system at each point in space (x) by a vector pair of voltages
V(x) and pair currents /(x).

The matrix exponential,

I r Z
exp

LY O]l}
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may be evaluated in closed form. With a closed -form representation,
the voltages and currents can be expressed in closed form and more
complex structures such as spliced cable systems can be simulated.
The way to explicitly determine the matrix exponential is to use the
fact that

[y0 0Z I

satisfies its own characteristic equation (Cayley-Hamilton Theorem5).
Then

7

exp Q = akQk.
k =0

Replacing Q by a diagonal matrix consisting of the eight eigenvalues
of Q enables us to solve for ai. However, for fairly short unspliced
cable systems we may use the first few terms in a power series, i.e.,

/2exp [- Q/1 = I - /Q Q2 - ,

where I is the identity matrix, to accurately approximate the matrix
exponential as was done for the cable in the numerical solutions section.

A.1 Boundary conditions

For any two wire pairs within a cable, four sets of current -voltage
relationships exist at the wire terminations. Referring back to Fig. 2,
we define the near end to be the subscriber side of the loop with its
termination where x = 0, and the far end, where x = 1, to be the
other termination, possibly a central office. The disturbing pair will
always be designated wire pair 1-2 with a generator of some kind at the
near end, and the disturbed pair will be designated 3-4. Suppose the
generator is two voltage sources each grounded at one end and in
series with an impedance and the remaining terminations consist each
of two complex impedances to ground shown in Fig. 2. Then we have
the eight relations at the boundaries

V1(0) = VS(1) - ZNE(1, 1).11(0) (20a)

V2(0) = VS(2) - ZNE(2, 2)/2(0) (20b)

V3(0) = -ZNE(3, 3)/3(0) (20c)

V4(0) = -ZNE(4, 4)/4(0) (20d)

V1(l) = ZFE(1, 1)1. i(1) (20e)
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V2(1) = ZFE(2, 2)12(1) (20f)

V3(l) = ZFE(3, 3)13(1) (20g)

V4(/) = ZFE(4, 4)14(/),

which may be written in matrix form as

(20h)

VNE = -ZNE CNE ± VS (21a)

VFE = ZFE CFE, (21b)

where
"ZNE(1, 1) 0 0

,
0

ZNE = 0 ZNE(2, 2) 0
0 0 ZNE (3, 3)

0
0

0 0 0 ZNE(4, 4),

- ZFE(1 ,1) 0 0 0

ZFE = 0 ZFE(2, 2) 0

0 0 ZFE(3, 3)
0
0

. 0 0 0 ZFE(4, 4),

and
VST = [V S (1) , V S(2), 0, 0].

We can solve the 16 equations (19) and (21) and determine VNE and
CNE. Now we have the model completely characterized by the vector
pair of voltages V(x) and 1(x) via the equation

CV]
j

rY 0jo [CNE]zixi1 L f

It should be pointed out that the terminations are not always simple
impedances to ground. For instance, for a second type of termination,
where an ordinary telephone set is connected to a wire pair, tip, and
ring, there is no direct conducting path to ground. If the impedance to
ground from the tip and ring is assumed to be infinite, then we cannot
write a simple impedance matrix relating the current to voltage as in
eqs. (21a) or (21b). As a result, there is a rather tedious but straight-
forward rearrangement of eqs. (19) and (21). Finally, a third type of
termination could be a central office that will also require modification
of the impedance matrix. All three of these types of terminations have
been simulated in computer programs.

* The superscript T means transpose.
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APPENDIX B

The elements of the admittance matrix in eq. (13) are given below.

qii = {C19 +
(C29

+ 4C12 + C13 + C14 + C23 + C24)
q12 =q21 = 21 (C19 - C29) (C13 + C14 C23 - C24) i

q13 = q31 = - (C13 - C14 - C23 + C24)
q14 = gra = -2(C13 + C14 - C23 - C24)
q22 = 41 (C19 C29) + (C13 + C14 + C23 + C24) )
q23 = q32 = -2(C13 - C14 + C23 - C24)
q24 = q42 = -4(C13 + C14 + C23 + C24)
q33 = IC 30 + 4C34 C13 + C14 + C23 + C24 )
1/34 = (C49

q43 = 21 (C39 C49) + (C13 - C14 + C23 - C24) )

q44 = 41 (C30 C49) (C13 + C14 + C23 + C24) )
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Wideband Amplifier Design Using Major
Multiloop Feedback Techniques

By T. J. APRILLE, JR.

(Manuscript received February 11, 1974)

Multiloop feedback has heretofore been ignored as a means of obtaining
shaped gain amplifiers. In this paper, a theoretical basis is developed for
using dual major loop feedback amplifiers to obtain shaped power gain
with input and output reflection coefficient constraints. From the theoretical
results, practical design procedures can easily be developed and one such
procedure is discussed.

The aim of this study was an alternative to the "brute force" termina-
tion technique of realizing input and output impedance matches. The
development is otherwise unique in that it uses no hybrid transformers for
beta circuit coupling or for realization of the reflection coefficient
constraints.

I. INTRODUCTION

Wideband feedback amplifier design has heretofore mainly been
accomplished by the use of single major loop feedback techniques.'-'
Major loop feedback implies that the current or voltage on the input
to the basic amplifying element is manipulated by the current or volt-
age that appears on the output of the basic amplifying element. The
design concept follows the classical feedback design procedure of
assuming a unilateral forward amplifying element of voltage gain II and
a feedback path with voltage gain 13. Existing multiloop feedback
techniques have been primarily concerned with stability considerations
of "tandem" 5 and minor multiloop2.3 feedback arrangements.

In many applications, input and output impedance matching of the
amplifier is necessary. The communications amplifier is one such
example, since it requires very low levels of signal interference due to
input or output impedance mismatch. The classical single -loop feed-
back techniques offer little help in designing for the impedance match-
ing constraint. This is due to the fact that the more loop gain in a
single -loop feedback circuit, the more extreme (zero or infinite) the
input and output impedance becomes.1-3 Two techniques that are
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used to circumnavigate this problem are "brute force" terminations
and bridge couplings.

The brute force approach obtains the impedance match by placing
a resistor in series with the input (or output) for a feedback amplifier
with zero input (or output) impedance. A parallel resistor is used for
the infinite input or output impedance case.

The use of a balanced resistor bridge is also useful in obtaining an
impedance match. This is accomplished by balancing the bridge com-
ponents with respect to the input (or output) impedance of the feed-
back amplifier. The use of a resistive bridge is limited, though, due to
the excessive resistive losses associated with such a bridge. A useful
four -port device, which exhibits the same qualities as a resistive
bridge but with much less through loss, is the hybrid transformer.'
The impedance match with this device is obtained by manipulation
of the two unused port impedances.'

Since the hybrid transformer is similar to a bridge, one of the two
unused ports can be used for the return path. This technique is
theoretically the best alternative mentioned since a property of such
a connection is that the impedance match is improved with the
amount of loop gain.' This technique has been used to advantage on
several communications amplifiers.8'9

The limitations of the above alternatives of obtaining an impedance
match become evident when other design constraints are investigated.
For example, the noise figure of an amplifier is degraded by any loss
that exists on the input to the amplifier.'" Thus, the use of brute force
or hybrid transformer coupling causes an increase in noise figure. On
the output side, a loss increases the power requirement on the last
stage of the amplifier. Even if this is no problem, the resultant in-
crease in the distortion may be. This is due to the fact that second -
order distortion power increases twice as fast as fundamental power
and third -order distortion power three times as fast." Thus, the losses
associated with the matching techniques will increase the power re-
quirement and reduce the linearity of the overall amplifier.

The use of the hybrid transformer in the Q path may also cause a
stability problem. Since the transformer introduces phase shift, due
both to the physical length and techniques of construction, their use
is limited at very high frequencies.

Investigation into alternative methods of design is therefore de-
sirable. To this end, this paper presents fundamental concepts on the
techniques of using major multiloop feedback in amplifier design. The
objective is the design of wideband-frequency-dependent gain ampli-
fiers with input and output match constraints. The design procedure
does not use hybrid transformers and attempts to minimize brute
force termination techniques.
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In Section II, the basic amplifier element is introduced. The analysis
that follows is applicable to configurations of active devices that can
be modeled by this basic amplifier. A circuit form using this basic
amplifier is then introduced. Matched impedances and gain relation-
ships are developed for this circuit form in such a way as to make the
open loop gain characteristics evident. This paves the way for an
initial design approach that is independent of the loop gain
characteristics.

In Section III, a second circuit form of shunt -series feedback using
the same basic amplifier is introduced. Matched impedances and gain
relationships are again developed. The derivations in this section
exactly parallel those of Section II.

In Section IV is given the results of the two previous sections to
demonstrate the procedure used to obtain an initial circuit design for
a practical amplifier configuration. The configuration treated is that
of a cascade of N common emitter transistor stages. It is shown that
for N odd, the results of Section II can be used, and for N even, the
results of Section III apply. One numerical example is supplied for
each case. Two appendices provide the calculations used to derive the
results in Sections II and III.

II. SHUNT TRANSADMITTANCE: SERIES TRANSIMPEDANCE FEEDBACK

Each dual -loop feedback amplifier discussed in this paper contains
three major components : two feedback networks and one amplifying
element. Each major component is assumed to be made up of any
number of passive and active elements. Characteristics of importance
for the amplifying element component are given in Fig. 1; this ab-
breviated model is designated a basic amplifier. In this figure, zx is
the input impedance and Is is a current -controlled current source. Is
is given by the product of a frequency -dependent variable k and the
current through zx.

In Fig. 2, the first multiloop feedback circuit form is given. Series
feedback voltage source aIo sums up the most important characteristic

INPUT

Fig. 1-Basic amplifier.
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Io

Is = kix

Pout Zo P.

Fig. 2-First feedback form.

of one feedback network. Shunt current source -bVs likewise is the
important characteristic of the second feedback network. Since the
series feedback voltage source is dependent upon output current, it
represents a transimpedance feedback. Similarly, the shunt current
source is dependent on the output voltage yielding a transadmittance
feedback. Source and load impedances, Zs and ZL, summarize amplifier
interaction with the driving circuitry and the loading circuitry,
respectively.

2.1 input and output impedance

Zin and Zout, the input and output impedance, are desired to be
matched to Zs and ZL, respectively. Thus, Zin and Z.nt are needed and
are given by

Z
zx ka

(1)
1 + kbZL'

zx Zs ka
Zout = kbZs

(2)

If the amplifier gain k is large, then Zin and &Lit become

ak a
Zin = (3)

bkZL bZL

ak a
Zout

bkZ s bZ,
(4)

For the matched condition, Zin = z: and Zont = Z. Using these condi-
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tions in eqs. (3) and (4) yields

Zs
a

= Zjn bZ L '

ZL
a

= Zout = bZ .

Substituting (4,)* = ZL from eq. (6) into (5) yields

which implies

a
=

b (a* / b* Vs) '

-6 )

Thus, conjugate matching yields the requirement that the ratio of
a to b (or more generally ka to kb) must be real. Given this fact, eqs.
(5) and (6) are identical, i.e.,

Z:ZL = Z,Z, = -ab (9)

The imaginary part of ZL Z: is therefore constrained by

Im {ZL} Re {Z.) - Re {ZL} Im (Z.) = 0. (10)

A necessary condition for an amplifier to be absolutely stable is that
passive." This is satisfied when the real parts of Z,

and ZL are positive. Thus, the imaginary part of Z and ZL have
the same sign, implying that if the matched load impedance is capaci-
tive (inductive), then the matched source impedance is capacitive
(inductive).

If the reflection coefficient [reflection coefficient p is defined as
(Z - (Z Zref)313,14 at the input is evaluated (assuming
Z. = a/b4,), the following is obtained:

2ab Re (ZL) b\-1.
pin = Pin°(1 Zxbri, + a

In eq. (11) pin. is the input reflection coefficient when k = 0.
Evaluating the return ratio T (Ref. 2) of the circuit in Fig. 2 with

respect to the output dependent current source gives

-2ab Re (ZL)
k.T - (12)

z.bZ*L -I- a

Return difference F (Ref. 2) is defined as 1 - 11; thus, eq. (11) can be
rewritten as

1
Pin = Pin, (13)
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Therefore, the return loss (20 log 1/1 p 1) is improved with increasing
return difference F. Since the output reflection coefficient is given by

1
Pout = Pouto F (14)

it also realizes the same improvement with increased return difference.

2.2 Gain equations

The transducer gain for the circuit in Fig. 2 can be calculated when
it is assumed that Z. = 04:

1 ITI2
152112 = (15)

labl 11 - T12

Again, T is the return ratio and is given by eq. (12).
In eq. (15), T is proportional to k. Thus, for large k, 152112 goes to

1/1abl. Therefore, eq. (15) can be rewritten as

152112 = 1821.12 III TIT12
'

2 (16)

where

1821..12 =
abl

(17)

2.3 Design procedure

In the derivations given thus far, a definite effort has been made to
separate the dependence of k. This was done for two reasons : (i) to
allow an initial design to be effected with k not a variable, and (ii)
to allow definitive statements to be easily made concerning the effects
of k. The former can easily be implemented by assuming k = co.

In this case of k = co, eqs. (8), (9), and (17) are relevant. These
equations are repeated for convenience :

\* a
bf b

Z. ZL=

1521.12 =
1 ab 1

It should be noted that eq. (8) implies that a/b is real, but a and b
can be complex. 1321.12 in eq. (17) is the maximum available gain
since it is obtained with the input and output matched.

In summary, the design procedure given below could be used when
the desired gain g and impedance matches are known.
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(i) Choose an arbitrary starting Zs and ZL such that Z,Z*L is real.
(ii) Substitute a from eq. (9) into eq. (17), yielding

g = 1821.12 =
Zsz*L I b I

Synthesize b such that

(18)

1bi = (19)
liZsZI I g I

There are no constraints upon the phase of b except those that
may result from stability considerations.

(iii) Synthesize a such that
a = bZsZ*L. (20)

(iv) The value of k is now obtained by considering the practical
active devices used to simulate the ideal amplifying element.
With k known, the return ratio T [eq. (12)] can be calculated;
this yields the obtainable impedance match and gain devia-
tion, eqs. (13), (14), and (16). If the design objectives are not
met, the previous calculations should make the necessary
changes evident, e.g., lower Zs or a higher value of k.

III. CURRENT TRANSFER SHUNT; VOLTAGE TRANSFER SERIES FEEDBACK

The last multiloop feedback circuit to be considered is shown in
Fig. 3. In this case, the series feedback voltage source is dependent
upon the output voltage and thus represents a voltage transfer feed-
back. Similarly, the shunt current source is a current transfer feedback.
The voltage source is given by a Vo and the current source by -b10,
otherwise Figs. 2 and 3 are identical.

3.1 input and output impedance

The input and output impedances, when evaluated, are given by

zi - akZL
Z - (21)1 - bk

Z. + zx - kZsb
Zout = (22)-ka

For large k, eqs. (21) and (22) become

Zir, =
b
-aZL,

Tout = -a Zs.

(23)

(24)
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I

Fig. 3-Second feedback form.

Io

Pout  Zo

The conditions of input and output matches yield

b
_a

b
a

=
b a

b rz:Zr.)
Thus,

and
(6)* = (cT1))'

Z: Z. a= = - 
ZL ZL b

7.7

(25)

(26)

(27)

Since a / b is real and the real part of Z. and ZL are nonnegative, then
eq. (27) implies that if ZS is capacitive (inductive) then ZL must be
inductive (capacitive).

Input and output reflection coefficients can be evaluated along with
the return ratio and return difference. The results are shown below
for Z. and ZL, satisfying eq. (27).

2kab Re (ZL)T - (28)
bz z aZ*,

F = 1 -T . (29)

1
Pin = Pino WI;

bz z - aZL
Pin° = 7*bz z + a.. a L

1
Pout = Pout -=° F F ; Pout, = 1.

(30)

(31)

Thus, as in the case of the first circuit form, the reflection coefficients
are improved by the return difference.
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3.2 Gain equation

When the load and source impedances satisfy eq. (27), the trans-
ducer gain for the circuit in Fig. 3 is given by

IS2112 = iS21.12 111711;12, (32)

1821,012 -
1

(33)

This is the same form as was given in eqs. (16) and (17) ; thus, the same
statements apply to the above equations concerning improvement
with feedback.

3.3 Design procedure

Initial circuit design can proceed in a manner similar to the first
case. The term k again is assumed equal to infinity ; this yields the
germane equations summarized below.

*a \ a
(26)

b.

Z: a
(27)

ZL

8 21. I2 ab
I(33)

The four design steps outlined previously apply except as follows.

(i) Choose Z, and ZL such that 4/Z L is real.
(ii) Substitute eq. (27) into (33) so that

g = 1821.1' -

Synthesize b such that

(iii) Synthesize a such that

1b1=

g I

1

a = ZL b.
Z

(34)

(35)

(36)

(iv) With k known, the return ratio is obtained from eq. (28).
Equations (30), (31), and (32) then yield the obtainable impedance
matches and gain deviation, respectively.
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IV. DESIGN EXAMPLES

Results obtained in the last two sections will now be applied to a
basic amplifier consisting of a cascade of N common emitter transistor
stages. Transistors will be assumed to be used in a frequency range
well below cutoff. The first case to be treated is for N odd.

4.1 N odd

Consider the circuit given in Fig. 4a. In this circuit, the transistor
will be modeled by the circuit given in Fig. 4b. The circuit given in
Fig. 4a will now be converted to the form given in Fig. 2. Z, and ZL
have their obvious counterparts. z, is given by the impedance from
base to ground with a10 equal to zero ; this is obtained when /0 = 0,
which can be obtained by setting al (first stage a) to zero. From the

r -I
1

1

zx

z,

L

K+1K---- - - -1/--
I

1 L_

=
(a)

ale

(b)

Fig. 4-Design example N odd.
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transistor model, this is evidently

zi = rb' ± re + ZE (37)

is given by the collector current on the Nth transistor when the base
current on the first is unity. With the cascade of N transistors, this
yields

I. = [31, , ONix; Qi = 1 - a,' k = 131, , ON. (38)

The term a is given as the value of open circuit input voltage (Z8 and
ZF removed) that exists when /0 equals unity. This is given by

a= ZE + f)ZE
r, N> 1 (39)

P2, *, ON'

a = ZE re, N = 1. (40)

For 102, , 13N1>>1ZE re 1, eq. (39) can be approximated by

a = ZE, N > 1. (41)

The last remaining parameter b can be obtained by evaluating the
y12 parameter of the network Y, yielding

Z -F1 =
(42)

Loading effects of the Y networks, i.e., Yii, Y22, can be ignored if they
are sufficiently small.

As a numerical example, the value of k, ZF, and ZE are calculated
to yield an input and output reflection coefficient of 0.18 (return loss
of 15 dB) and a gain to within a factor of 1.26 (1 dB) of f2/400, f in
MHz, in the band from 80 to 140 MHz. The remaining parameters of
the transistors are ri", = 1, and re = 0.173.

Following the four -step design procedure yields

(i) Let Z. = ZL = 20, Z.Z*,, = 400.
1

(ii) g = 400 - 4001b12

Ibl = 1
=

1

f
= f, f in MHz.

If Z1 is chosen as an inductor, then

1Z11 = 27rfL = f; thus,
L = 1/27r µ1-1, and

b = 1 1

b = - (y12) =

27fLj =
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1 400(iii) a = Z.Z*Lb = 400b = 400 = j
400a = ; thus, a can be realized when

ZE ('__-/a) is a capacitor of value
1C=

27 (400)

(iv) Using eq. (12) and a ZE, the following is obtained:
= -tab Re (XL) = (-2 4(±0 1. 20)k/

zabZI + a fi
f.1:1[ .173 + f7.

-16000k -0.46e-Pk at 80 MHzT= 8000 + fj423.4 = t -0.27e-j821 at 140 MHz.

For k = 20, 11 - T1 = 1F1 at 140 MHz (the worst case point) is
given by 11 + 5.4e-i82°1 = 11.75 - j5.351 = 5.63. This reduces the
reflection coefficient by 1/5.03 = 0.18. Thus, the input and output
reflection coefficient specification is initially satisfied.

The gain deviation at 140 MHz is calculated from eq. (15) and is

17112 15.412 = 0.919.11 - T12 15.631'

This implies a gain deviation from nominal of 0.37 dB, and initially
satisfies the design requirements.

1

ZF, TT ph

Fig. 5-Numerical example N odd.
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The resulting circuit for X odd is given in Fig. 5. The actual trans-
ducer gain, input impedance, and output impedance values for this
circuit were obtained by a computer -aided design program.'5 A sum-
mary of the results is given in Fig. 6. It can be seen from this figure
that this procedure yields a practical first iteration in the design
procedure.

22

20

18

16

P-

14t -

12

COMPUTED INPUT RETURN LOSS

COMPUTED OUTPUT RETURN LOSS

DESIRED GAIN --
N.

COMPUTED GAIN

DESIRED RETURN LOSS

80 100 120

FREQUENCY IN MEGAHERTZ

Fig. G-X odd results.

140

22

20

18

16

15

14
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4.2 N even

For an even number of transistors, the circuit in Fig. 7 is used. The
transistor model of Fig. 4b is again used. The evaluation of the param-
eters of Fig. 3 follows on the same basis as in the N odd case. Using
Fig. 7, the calculations are summarized below.

zx rb + re ± ZE, (43)

ja = (31) ONix; k = - fli, , #N,

ZE re + (200Z E)/(Z E + 200)a- 200 ± ZE+ Z L$2, ' ON

ZE
200' Q;»1, i = 2, , N,

(44)

ZE << 200 (45)

b = ZF2+ 2
2

>>1ZF I 2. (46)

A numerical example is given to show the initial design steps for
obtaining a maximum input and output reflection coefficient of 0.18
and a gain to within 1.26 of p (f in MHz), from 80 to 140 MHz. The
transistor parameters are again rbi = 1 ohm and re = 0.173.

The four design steps yield

(i) Let Z. = ZL = 20, -Z2L+,= 1.

(24) g = P =
1 2

ibi = 7 iZfi
I ZF I = 2f.
Let Zp = j2f = j27fL, L in AH

L = -1
7r

(iii) a = b = .

2 = ZE = 1

327fL 200 3 f

Thus, ZE =

implies that ZE is a capacitor of value
1C = F.

27(200)
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200,11

K+1

K

L_
N

V

2S2

Fig. 7-Design example N even.

(iv) Using eq. (32),

2ab Re (ZE) 2(1/ j f) (1/jf)20T = k
bz, (1/ j f)(r;) re + 200/ jf) + 20/ jf

40 0.023e -83°'k at 80 MHzT=
200 + 21.173 jf k =

0.015e-86°jk at 140 MHz.

For k = -400, 11 -TI= IFI at 140 MHz is given by 11±6e -86°i1= 6.1.
The reflection coefficient is reduced by a factor of 1/6.1 (15.7 dB).

Gain deviation can be calculated and is equal to 0.95 (0.22 dB) ; thus,
the initial specifications are satisfied.

Figure 8 gives the resulting circuit. The results of the computer
analysis of this circuit are given in Fig. 9. Again the data show that
the approach yields good results.

It can be seen in Fig. 9 that the difference in gain is greater than the
computed 0.22 dB. This is due to the fact that a was taken as ZE/200,
rather than the term given in eq. (45). A more accurate evaluation
(denoted by the hatted variables) of a is given as

ZE r e + (200Z E)/ (Z E + 200) ZE ZE
200 + ZE 200 ZL132

ZE ZE ZE
1200 (20) (80) 200 '( ± 0.125) = 1.125a,-

where a was the numerical value previously obtained. Using eq. (33)
yields

IS21.12 = 1

1 1 1 1

lab I= I1.125ab I - 1.125 ab I = 1.125 I "21'012'
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1S2

Iz,

0.833 iel

2,r (200)
ph

0.988 ie2

ZF

tbOV
ir

Fig. 8-Numerical example N even.

25-2,

Again the unhatted quantities were the ones used in the five design
steps. The factor of 1.125 accounts for an additional 0.51 dB of the
gain difference.

In this example, the gain difference can easily be reduced by in-
creasing the /3 of the second -stage transistor. This was not done since
it was desired to keep the 1302 product at 400. Since /32 is 80, this
forces /31 to be 5 ; any high value of (32 results in unrealistic values of 01.
Nonetheless it is evident that a high 02, , /3, product is needed for
an even number of cascade stages.

V. CONCLUSIONS

In this paper, the basic characteristics of two forms of major multi -
loop feedback have been investigated. The design characteristics
treated have been input and output impedance and frequency -de-
pendent power gain. It has been shown that, with sufficient open loop
gain, the equations that describe the gain and impedance quantities
are very simple in nature. An initial circuit -design iteration can easily
be performed since many complicating variables are eliminated.

This initial circuit -design concept would be extremely useful in
a computer circuit analysis -optimization program. Well known is the
major practical limitation of optimization programs : the obtaining of
a convergent starting point. For dual -loop amplifiers, this paper offers
the designer a method of easily finding a good starting point.

Although not reported here, several frequency -shaped amplifiers
were actually built using multiloop feedback. The excellent perform -
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Fig. 9-N even results.
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22

20

18
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14

ance of these amplifiers, with respect to input and output matching
and gain shaping, has precipitated the work reported in this paper. We
anticipate that future papers will discuss more complicated active
devices, feedback network loading effects, and feedback network
synthesis.
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APPENDIX A

Shunt Transadmittance: Series Transimpedance Feedback Calculations

A.1 Calculation of Zin

Thus,

Vin = akix
=

zx

ix(z. ak) = Vin;
Vo = - kixZL.

/in = ix - bV0 = ix + kbixZL ;

Ii = (1 kbZL)ix =
(1 ± kbZL)

zx + ak Vin;

Vin zx ka
Zin= Iin = 1 kbZ L

A.2 Calculation of Z.,

Zs
aIo

ix = bV0
zx Z, zx + Z8'

kix = Io = k (bVo Zs k
Zs + zx

Io(zx + Z8 + ka) = kbZ.Zo;
Vo (zx Zs ka)

Zo = =
Io kbZ,

A.3 Input reflection coefficient calculation

Zin Z: zx + kaZin=Pin =
-

Zin + Zs 1 + kbZL b;*L'

Pin -
Zz ka a \ zx + ka a \

*k + bkz,, bzL // + kbzL bzi,/
zzbz,, + abkZL - a - abkZL
zxbZ*L, + abkZL + a + abkZL

zxbZL - a
Pin - zxbrL + a + 610 Re (ZL)]

zxbZL, - a.
Pin° = Pin' " =
Therefore,

zxbZL - a ( 2ab Re (Z L) 0-1
Pin - Zxbric, + a X 1 zxbZL + a I

aIo \.
zx + z8p

2ab Re (ZL)
= Pin, (1 + Zxbri, + a
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A.4 Return ratio calculation

Assuming the output current source I, is disconnected and replaced
by a 1 -ampere current source, T is given by the current that flows
through the disconnected current source.

Z. aIo
ix = bj o z, + Zs z8 + Z.'

= 1, Vo = - ZL,

Zs a -bZ - a a
= -bZL

T = ki, = k

z, + Zs zz
Z =

Z, z, + Zs ' bZ*L'

-bZL(a)/(bZ*L) - a
zr + (a)/ (bri)

abZL, + abri,
k

bzxZL + a

A.5 Output reflection coefficient

Zout, - Z*L + Zs + ka.
Pout Zoot + ZL' b'ut kbZ, '

-2ab Re (ZL)

a
ZL brs;

+ a

z + Zs + ka a \ z + Zs + ka a
Pout kbZ s bZ, kbZs

+ bZ.)
(z, + Zs + ak - ak (z, + Zsr + akZ: + akZ.)

Pout = kbZ.
r.

kbZsZ:

zZ: + Z.Z*,
Pout ,Z,Z: ak (Zs + Z4)

zxZs + ZBZs
pout, = Pout1 k=0 = - 1.

Z.rrs Z sr

Therefore,

ak(Z3 + Z*.) \-1 a
Pout = Pouto (1 1- *ZxZ, ZsZ: ; Zs = 1;'ZL;

k'

ak(a/bri, + a/bZL) \-1
Pout = Pouto (1 -1- z(a/bZL) + (a/b4)(a/bZL)

( kabZL + kabZ*L\-1,
= P"to zxbz*,, + a

2ab Re (ZL)
Pout = Pouto (1 -r bz,ZI + a )

A.6 Transducer gain calculation

Assume a voltage source of value V is inserted in series with the
source impedance Z3 in Fig. 2. Let Z3 = a/brL. P S will denote the
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available power from the source and Pont the real power delivered to
the load ZL.

ITT.I 2
PAS - 4 Re (Z8)

IT7.121ZL121b1.
4 Re (ZL) !al

V.Zin I zx + ka / a Zx+ ka
Vin= Zs+ Zin-

TT

81+ kbZLii kbZ*L 1-1-kbZL,)

(zx ka)bri,
a + kabZ L (zx ka)b4

(zx ka)bZ1,17, (zx ka)bri, 1
V in= a + zxbZ1 2kab Re (ZL) a + zxbZ*, 1 -T

Vin - a10 . kix 10

zx = k T

Thus,

10 =
zxk ka

TT,n 

Pont =
k 2 Re (ZL)Re (ZL) = Vin 12,
lzx ka12

Pout = 1k12 Re (ZL) lz.± ka12;b121ZL12 1.17.12

1zz ka12 ± z.b4,12 11 - T12

V8,

Therefore,

122112
102 Re (ZL)1b121ZL121178124 Re (ZL)1a1

PAS ± z.b41211 -T121V812IZL2b1
11c12Re2 (RL)1ab14 1 17112

+ z.b4121 1 - T12 lab' 1 - T12

APPENDIX B

Current Transfer Shunt: Voltage Transfer Series Feedback Calculations

B.1 Calculation of Zin

Vin aVo Vin aki.ZL
zx zx

yin
Zx = zx - akZ L'

Ii = - ± ix = (-bk 1)ix =

Z in =
Vin zx - akZL
'in = 1 - bk

- bk)
- akZ L
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B.2 Calculation of Z0.1

=
b/oZs aVo Zsb/o - aVo

Zs + zx ZS + z, Z8 + z '

kZsbIo - kaVoki = Io =
Z, z,

10(Z, Zr - kZsb) = - kayo;

lo
Zs + z - kZsb

-ka

B.3 Return ratio calculation

Z 1
ix = b10 zx + Zs aVoz, + Zs '

bZ3 + aZL Z -Za *ix =zi, +Z, zz + Z.' '
=

b L'

kb(a/b)Z, + aZ Lk 2kab Re (ZL)
Zr. + (a/b)4, - bz, + aZ,,

B.4 Input reflection coefficient calculation

zs - akZL
Pin Z in + Z8' 1" - 1 - bk '

Io = 1, Vo = -ZL;

L8 = (a/ b)Z1, (a/b) real;

z - akZL, aZLt z, - akZL a

Pi" = 1 -
)

b 1 - bk +b ZL)

bzz - abkZI, - aZL abkZL

bz, - aZL
Pin = bzz aZ*,, - abk Re (ZL)

bz, - aZL.
Pino = Pint k=0 bz, aZ*,,'

therefore,

bz, - abkZL aZ*,, -

2abk Re (ZL)\-1.
Pin = Pin, .1(

bz,

B.5 Output reflection coefficient calculation

o

=
Z ut Z*L.

Pout
Zout L'Z

foul - Zs zz - kZsb
-ka '

Z$ = (a/b)Z*L, (a/b) real;
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Pout =
(Z.+ zx -

ka
kZsb z,;)/ (Z. + - kZ.b zL)

-
Z. zx - kZ.b kaZ*1, Z. + z.

= Z. + zx - kZ.b - kaZI, Z. + zx - ka2 Re (ZL) '

Pouto = Pout! k_o = 1,

2ka Re (ZL) 2kab Re (ZL) \-1
Pout = Pouto (1 - (a/b)4+ z, - Pouto (1- arz, bzx I

B.6 Transducer gain calculation

Assume a voltage source of value V. is inserted in series with the
source impedance Z8 in Fig. 3. Let Z. = (alb)Z*,,, a/b real. 1)45 will
denote the available power from the source and Pout the real power
delivered to the load ZL.

Pas =

Via =

V.12 1 V.121b1

4 Re (Z,) 4 Re (ZL)1a1 '

V,Zin iv. zx - akZL\ /I a zx - akZ L\
Zs +Z,,, k 1 - bk I / b 1 - bk

V .(bzx - abkZL)
- abkZL bzx - abkZL'

bzx - abkZL
= v.bzx - abkZL 1Via = V

aZ*1, bzx - 2abk Re (ZL)aZ* bzx
X 1 - T '

aVo kix /0 Vin aioZL,
zx k k zx '

10 = V in/ 7c- - aZL) =
zx - akZ V'°'

zx

Ioro` Re (ZL) = 1k121Vin12 Re (ZL),
zx - akZ1,12

1k12 Re (ZL) lbzx - abkZL 12 1

lz. - akZLI2 laZ*L bzx12 11 - T12
1k121b12 Re (ZL)1V.12

Pout = ar.t, bzz1211 - T12'

Pout =

Pout -

therefore,

Pout 1k121b12 Re (ZL)Ia14 Re (ZL) 1 V.12
182112 =

PAS larz k1211 7112078121bl

1 V .12,

1 1T12

labl 11 - T
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The load carried by a queuing system under equilibrium conditions is
the average amount of server usage per unit of time. In telephony, this
parameter is often evaluated by recording the number of busy servers at
regular time intervals; these readings are then cumulated and their sum,
after division by the number of observations, is an unbiased estimate of
the carried load. The purpose of this paper is to derive exact formulas
for the computation of the variance of this measurement in systems with
arbitrary input and departure rates. The results obtained here thus apply
to a wide class of teletraffic models which includes, in particular, the delay -
and -loss systems with finite- or infinite -source inputs, exponential service
times, and arbitrary defection rates from the queue. Problems related to
computations are also considered, special attention being paid to the
reduction of both computer time and storage when the number of states is
large.

I. INTRODUCTION

Analysis of the stochastic behavior of traffic measurements is of
considerable practical relevance, as it provides means for appraising
field data as well as guidelines for selecting performance standards.
Load measurements play a central role in this effort, and determina-
tion of their accuracy is therefore of particular interest. The present
investigation yields an answer to this problem for a broad class of
teletraffic models.

Whenever statistical equilibrium prevails (and it is assumed to
throughout this paper), the load carried by a service system is the
average amount of server usage per unit of time or, equivalently, the
average number of busy servers at an arbitrary instant. In telephony,
an estimate of this parameter is often obtained by "switch -counting." 1
This statistic, which is determined by recording the number of busy
servers at regular intervals and then by taking the arithmetic mean
of these discrete observations, is an unbiased estimate of the carried
load.
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The variance of this measurement, called hereafter the switch -count
load to distinguish it from the estimate obtained by continuous observa-
tion, was first determined approximately by Palm2 and Hayward' in
the case of an infinite server group with Poisson input and exponential
holding times. This result was later extended by Bend,' who obtained
the exact variance of the switch -count load for groups of finite sizes
without waiting positions (loss systems). A further generalization to
loss systems with recurrent input and exponential service is due to
Neal and Kuczura.4 Their formal analysis stops, however, with a
derivation of the Laplace transform of the covariance function of the
underlying carried -load process. From this point on, they proceed
numerically, since explicit inversion of the transform appears to be
difficult in general.

In this paper we are concerned with derivations of exact formulas
for the variance of the switch -count load in finite systems with arbitrary
state -dependent input and departure rates. The results presented here,
therefore, fill a rather large gap, since they apply to a broad class of
teletraffic models that includes, in particular, the (finite) delay systems
with exponential holding -time distributions, arbitrary defection rates
from the queue (if one is allowed to form) and either Poisson or
quasi -random input (in the latter case, the traffic is generated by a
finite number of sources that place demands for service at the same
constant probability rate when free but that do not submit requests
while being either served or waiting).

Let N(t), the state of the system at time t, be defined as the number
of busy devices at that instant (by device, we mean here either a server
or a waiting position). Let c and d be, respectively, the number of
servers and the number of devices.

Unless stated otherwise, we make the following assumptions :

(i) When N (t) = n and 0 < n < d, the probability that a re-
quest originates during (t, t + h), Ii, > 0, is of the form Xh
+o(h), with X > 0.

(ii) The requests which are submitted when all the devices are
occupied are dismissed and, accordingly, Xd is set equal to zero.

(iii) When N(t) = n and 0 < n < c, the probability that a service
time terminates during (t, t + h) is of the form µ11 o(h),
where  > 0.

(iv) When N(t) = n > c, the probability that either a service time
terminates or a waiting request defects from the queue is of
the form µh + o(h) where µ > 0 and it < d.

(v) When a server becomes free, it is immediately reseized by one
of the waiting requests if any are present in the system at that
time.
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Let N c(t) be the number of busy servers at time I and let c A n be
the smaller of the two integers c and n. Then

N (t) if N (t) < c,
N c(t) = c ^ N (t) =

if N (t) > c,

and the switch -count load, L (T), based on n observations (scans)
made over [0, T] at times r, 2r, , nr, is, by definition, equal to

E Nc(.7T),
j=1

where T = T/n.
Let Coy [N, (ti), Arc(t2)] be the covariance between Arc (ti) and

Nc(t2). Under equilibrium conditions, this covariance depends only on
iti - 121 so that

Cov ENc(11), N,(12)] = Coy [Nc(0), N c(I 11 - 121)1

Hence, the variance of Ln (r), cast in a form that will be convenient
later, is given by the formula (Ref. 3, p. 137) :

Var L (T) = n-2 E - k I) R c(ler) ,
k --n

where

(1)

Re(kT) = Cov [Nc(0), Ne(kr)]
= Cov [Ne (0), Nc(11c1r)].

It is clear from (1) that the variance of the switch -count load is
completely determined by the covariance function R c (  ) of the carried -
load process { Arc (t), -00 < t < 00 , and therefore much of what
follows is concerned with expressing R ( ) in the most convenient form.

The covariance function can be stated at first in terms of the transi-
tion probabilities, and the resulting expression can then be reduced
by taking the structural properties of the process into account. But
alternate forms can also be obtained by making use of the fact that
the conditional expectations, E N, (t) I N (0) = m 1 , na = 0, 1, , d,

satisfy simple linear differential equations. The covariance formulas
obtained by these diverse procedures exhibit distinct features that may
be exploited in the computations. In all cases, however, R c(t) is ex-
pressed as a diagonal, positive -definite quadratic form which reveals
that R,() is completely monotonic.'

Expressions for the transition probabilities, the covariance function,
and the variance of the switch -count load are derived in Sections II,
III, and IV, respectively. The variance of load measurements based on
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continuous observations can be found in Section IV. Extensions of
the results of Sections II to IV to reversible Markov processes are also
considered. Questions of a computational nature are dealt with in
Section V, while Section VI is concerned with some asymptotic
properties (d large) of the spectrum of the underlying process.

The formulas presented here have been programmed and used to
explore the effects of parameter changes on the variance of the switch -
count load. The result of that investigation will appear in another
paper.

II. TRANSITION PROBABILITIES

In this section, we express the transition -probability matrix as a
symmetric product of vectors and matrices. As becomes apparent later,
this representation makes it possible to write the variance of the switch -
count load in a way that greatly simplifies its evaluation.

Let limn(t) be the probability of a transition from state in to state n
in time t :

p ,,,(t) = Pr [N(t) = n I N(0) = m], 117, it = 0, 1, , d.

These transition probabilities satisfy the following system of

differential equations :

d
di Pm() = - XOPm0y

d

dt Pmn = Xn-lPm,n-1 (Xn An)Pmny

Pmd = Xd-1Pm,d-1 AdPmd

Let

-X0 xo

- (X1+111)

Ad=

and

Xi

(X2-F112) X2

1 n < d,

11d-1 (Xd-1+12d-1) Xd -I

ltd -ltd

(2)

Pd(t) = Ep inn (01 ni, rt. = 0, 1,  , d,

be the transition -probability matrix. Capital and lower-case bold -face
letters are used exclusively to designate matrices and vectors, re-
spectively.
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With this notation, the system of differential equations (2) becomes

crtPd(t) = Pd(t)Ad,

so that, for k = 1, 2, ,

dk

dtk P`i (t)

t >= 0, (3)

dk-i
Pd l)  Ad, t >= O. (4)

It follows from our assumptions that if the system is in state in at
time zero EN(0) = nil then limit° p = 1 and lima 0 p..(t) = 0
for n in. Hence, with Id the identity matrix of order d 1, the
initial conditions take the following form :

Pd(0) = lim Pd(t) = Id,
IV)

and by (3) and (4) we therefore have

dk
lim Pd (t) = (5)
140 dtk

The initial conditions state that Pd (  ) is right -continuous at t = 0 and
imply that Pd( .) is continuous for all t > 0. By (3) and (4), all the de-
rivatives of Pd(  ) exist for t > 0, and by (5) they are also right -
continuous at t = 0. An application of Taylor's theorem then yields
(Ref. 6, pp. 240 ff.)

r° 1
Pd(t) = exp (At) = E M'tk t 0. (6)

k=ok!

The elements of Ad situated immediately either above or below the
diagonal are all strictly positive and so Ad can be symmetrized. In-
deed, let

with

So = and

Dd -==" diag [30, 51,  , 5d]

121A2 tIm y
A 0A1 X '71_1

ni = 1, , d,

where (i) r is a nonvanishing but otherwise arbitrary constant, (ii)

the 73,,, are the equilibrium state probabilities, and (iii) =
Without loss of generality, we can-and shall-set = p so that

= 1 and

It is easy to verify that

diag lit, ,

Sd = DcT  Ad  Dd

(7)

(8)
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is symmetric, its nonvanishing elements being

Smm

Sm,m+1

= - (X. + m = 0, 1, , d, (Xd = 0),
= Sm+1,m = (Xmihm+1) ,

M = 0, 1, , d - 1.

Hence, by (8) we have

= D d  S:120,11, k = 0, 1, 2, , (9)

and, by (6),
1 f"

Pd(t) = Dd' exp (Sat)  Dci kiJ1 = kz /7! d  Sd  lid -)t-. (10)

The representation of Ad in terms of the symmetric tridiagonal matrix
Sd entails substantial formal simplification of the final results. And it
is also particularly convenient computationally, since the determina-
tion of the characteristic values of Ad (which are needed for an exact
solution) is best carried out after symmetrization.

The matrices Ad and Sd clearly have the same characteristic values,
ro, r1, , rd. But Sd is symmetric and is therefore unitarily similar to
the diagonal matrix

Cd = diag [ro, r1, , I'd].

This means that an orthogonal matrix Bd exists such that

Sd = VdCdBd, BdBd = 13'dBd = Id, (11)

where Bid is the transpose of Bd.
But Sd is also tridiagonal, and its off -diagonal elements never vanish.

Hence, Sd is nonderogatory and its characteristic values are necessarily
distinct (Ref. 7, p. 26). The elements in the nth column of It'd are then
the components of the (uniquely defined) normalized characteristic
vector associated with the nth characteristic value r (n. = 0, 1, , d).

We now substitute (11) into (10). This yields

1Pd(t) = E (DaVdCBdDa-1)tk,
k=0

so that
Pd(t) = DdBaexp (Cdt) Bd Di'

= DdVddiag Pot, erica , erdqBd (12)

We note now that all the row sums of Ad vanish and one of the
characteristic roots, ro, say, must therefore be equal to zero. Further-
more, known extremal properties of the characteristic values can be
used to show that r1, r2,  , rd are negative. It is also readily seen that

PSI) = (Pt, Pi, , PAY

is the characteristic vector of Sd that corresponds to the vanishing
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characteristic root ro. Indeed, let ea and ()a be the (d 1) dimensional
(column) vectors whose components are all equal to 1 and 0, respec-
tively. Then, since Aa ea = oa, we have, by (8) and (7),

Dd  Sd  DV  ea = Dd  SdPP) = Od

But none of the diagonal elements of Da vanishes and the relation

DaSdpai) = Od

can hold if and only if Sa.0) = oa. Thus, pay' is the characteristic
vector associated with ro( = 0), a fact that may be of relevance in the
computations, as a comparison of pal) with DV provides an accuracy
check for the method used to determine the characteristic vectors.

In the derivation of formula (12), advantage was taken of the fact
that the transition -rate matrix Aa is symmetrizable. It is worth
noting that this relatively simple expression for Pa is a consequence of
this property, and therefore holds for all (and actually only for)
reversible Markovian processes with finite state spaces. Indeed, by
definition, the class of these processes-which includes those of the
birth -and -death type-is fully characterized by the following condi-
tions (Refs. 8 and 9) :

P 74) mn (t) = P ni) tem(0 n = 0, 1, d,

or, equivalently, by the single relation:
D;2.pd Vd.D;2.

Hence (12), written in terms of Sdy implies that

Dz2Pd = Da-lexp (Sat) Di'
= exp (Sat) D,T1)' -

and (14) is therefore satisfied.
Conversely, we show next that (14) is a sufficient condition for

(12) to hold.
Pre- and post -multiplication of (14) by Dd yield

DV  Pd  Dd = Dd 13'd (15)

Substituting the expansion of Pa as given by (6) into (15), and perform-
ing the multiplications by Dd and Da -1 under the summation sign
(which is clearly legitimate), we obtain:

E k! (D,TIkDa)tk =
k
E=0

!
- (Da  (AWDk-')tk, t 0.

=0

However, this relation cannot be satisfied unless

AdDa = DakDV,
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so that, by transposition,

(DVAdDd)' = D, 'Ad Dd.

This means that Ad is symmetrizable by pre- and post -multiplication
by DV and Dd, respectively, and (12) then follows as shown earlier.

Under the assumption that the process is reversible and that all the
states communicate with each other° (i.e., p,(t) > 0, in, n = 0, ,

d, t > 0), the characteristic roots of Ad are necessarily simple. (Note
that Ad, and hence Sd = DVAd  Dd, need no longer he tridiagonal.)
This can be proved as follows.

The matrix Sd is symmetric and can therefore be tridiagonalized by
a method from Householder (Ref. 7, pp. 152, 153, 290-293, and 343). Ac-
cording to this procedure, the tridiagonalization of Sd is achieved by
successive right and left multiplications by symmetric orthogonal
matrices, U1, U2, , Ud_i, of the form

Ur = Id - 2Wr  W

where wr is a suitably chosen d 1 dimensional (column) vector
whose first r components are zero. (All the Ur are of order (d 1)

and UT = Id, r = 1, 2, d - 1.) A direct application of the results
derived in Ref. 7, above, shows that Sd admits of the following repre-
sentation :

Sd = U1' U2 ' '  Ud-1TdUd-l  "  U2' Ul,

where Td is a symmetric tridiagonal matrix of order d 1.

Let Oi; be the elements of Td.
We are now faced with two possibilities. Either Oi,i+i = Oi+i,i 0

for i = 0, 1, , d - 1, or there is an index j( <d) such that 8i,J+1
= = 0 so that

Ti 0

Td=
0 Td-j-1

(16)

In the first instance, all the characteristic roots of Sd, and hence of
Ad, are distinct (Ref. 7, p. 26). To complete the proof, it is therefore
sufficient to show that the second contingency cannot occur when all
states communicate with each other. To this end, we proceed in-
directly. We assume that (16) is satisfied for some j < d and show
that some states then do not communicate with others.

When (16) holds for j < d, we have, for any k 0,

-Ad Dd dSk dD-1

= Dd  Ur Ud-1'
0

Td_; -J-1

Ud-1" UiDd-1. (17)
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The first row in Da is (poI, 0,  , 0) and the elements in the first
column and first row of each of the 11,.'s are zero except for their first
component, which is always equal to 1. Hence,

(1, 0, , 0)  Dd  Ul  rid-i = (ATI, 0, , 0). (18)

Similarly, since the Ur's are symmetric, we have

Ud-1  Ui  13,Ti (1, 0, ,

0)' = (PO, 0, , 0)'. (19)

Hence, by (17) to (19),

Poo(t) = (1, 0, , 0) ( tio A'jtk) (1, 0, , 0)'
"" 1

oV tk, (20)
k =0 IG

where Or is the element belonging to the first row and first column
of T.

Let a. and 3., m, n = 0, 1, , d, be the elements of Ad and Sd,
respectively. Under the present assumptions, amna. > 0 and
s. = (a.  a.)i, m, n = 0, 1, , d, m n. The elements in the
first r rows and columns of Sd are therefore uniquely determined by the
elements in the first r rows and columns of Ad. Similarly, the vector
depends only on the components, sm., of Sd for which either in < r - 1
and n = r - 1, , d or, by symmetry, n < r - 1 and m = r - 1,

, d (Ref. 7, pp. 290 ff). Consequently, the elements of 11 (which are
all obtained after j - 1 steps) depend only on the elements of the
first j 1 rows and columns of Ad. This implies that the transition
probability P00(1), as given by (20), is independent of the rates a,,
n > j. However, the process being Markovian, this can only be true
if Pom(t) = 0 for in > j which means (since, by assumption, ,j < d)
that state 0 does not communicate with states j +1, , d, as was to
be proved.

III. COVARIANCE FUNCTION

3.1 First version

The covariance function of the carried -load process is, by definition,

where

.1?c(t) = E (c A n)  (c A iii)pnPnIn (t) -1/11
m, n=0

d

= E (c A it)  (c A in)pn[pn.(t) - pm],
m , n

Mel ENc(0) = E (c A 11)p,,.
=0
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However, if 7 is an arbitrary constant, the covariance of the process
{Nc(t) + 7, t > 0} is also Rc. Hence, with the notation

p. = (C n) -y, n = 0, 1, -, d,

we also have

R c(t) = E - Pm].
m, n=0

Let

Pd

and

po pi pa
po p1 pa

. .

,_po pi Pd

(21)

Gd(t) = [p.(t) P.]
The matrix Pd can be obtained by letting t co in (13). Hence,

Pd = DdVddiag [1, 0, 0, , 01BdDV
and

Gd (t) = Pd (t) - Pd
= Dd  B'd diag [0, ent,

We now introduce two auxiliary row vectors:

(Po, P1, " , Pd), sd = (POPO, Pipi, papa)

Then the coefficient of erit in the linear form

Sid  Gd rd = s'dDdB'd  diag [0, ero, erde].Bd.D;ird

is the same as the coefficient of erie in (21), and we may conclude that

R e(t) = s'a  Da Bid  diag [0, en', erdt]BdDd 1.rd.

With the notation

we have
qd = Sid  Dd

so that

(Pop, , pdpt),

and qd =

Re (t) = ci'dBa  diag [0, er", , ercu]-Bdqd (22)

or, alternatively,
d

R c(t) = E bier" (23)
1=1

with b1 the ith component of the row vector cid It'd. This last expression
shows that the coefficient of erit in either (22) or (23) is necessarily
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nonnegative. Furthermore, since all the 1. i's (i = 1, , d) are nega-
tive, we also have

dk
c(-1)k -R (t) 0, t>0, k = 0, 1, ,

dtk

and lie is therefore completely monotonic over [0, 00.5
If we now set 7 = - c, the last d - c components of q, are equal

to zero, and so the determination of Rc by means of (22) necessitates
only the computation of the first c components of the characteristic
vectors. Formula (22) is therefore often well -suited to the case of delay
systems. But unless the number of waiting positions exceeds the
number of servers, greater reduction of the computations can be
achieved by means of the formulas derived below.

In the preceding derivation, the P's are independent of the arrival
and departure rates, and the formulas of this subsection therefore hold
for arbitrary, reversible, Markov processes with finite state spaces.
In contrast, the results of the next subsection are restricted to birth -
and -death processes.

3.2 Alternative forms

Multiplying the nth equation in (2) by (c n n) and then summing
with respect to n(0 n d), we obtain, after rearranging and
canceling terms,

d c-1
E(cAnr-Pin n = 2 x pmn np n 
=0 dt n=0 71=1

But

(24)

(c n Op ,,,,,(t) = EIN c(t) IN (0) = 1,
n=0

so that, by (24),
c -1

-EfIVOIN(0) = ) = E Xp, - E p , (25)
dt n = 0 n = 1

Adding and subtracting KE Ne (t)1N (0) = n } on the right-hand
side of (25), we obtain

dt
E{Nc(t)IN (0) =

where

d

= KEINc(t) Ar(0) = E P:(K)N,
= 0

M = 0, 1, , d, (26)

{(X
- µ  - Kn) if n = 0, 1, , c - 1,

p:(K) = - (Kc + AO if n = c,
- KC if n = c ± 1, , d.

(110 = 0) ,

(27)
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In the preceding formulas, K is an arbitrary real number that may
be positive, negative, or null. We see later that the covariance formulas
can occasionally be simplified by appropriate choices of K.

Taking the initial conditions,

E{ N, (0) I N(0) = = (c A M), 0 d,

into account, the solution of (26) is

BIN, (t) I N (0) =

= A ni)e" f eKo-u) [ E p:(K)p mn(u)i du
0 71 = 0

so that

cRc(t) (c nl)pmE N c(t) IN (0) = - Mcl

= Mae" - ita

(28)

+
fe"t-u) E (c in)p [ E p:(K)P (u)]. du,

0 m=0 n=0

where M c2 = EN2,(0). By means of (13), the preceding relation can
be expressed in a much more convenient form :

Rc(t) Mae" - Mcl

f0 ex(t-u) : p:(op [ E
n=0 m=0

= c2ext 1141

A m)p ,(u)] du

f0 eK0--) E p:(K)p E c(u) N(0) = n)  du. (29)
n=0

Next, substituting (28) into (29), we obtain

d

Rc(t) = M c2e" - text E (c A n)  p: (K) pn
n=0

f 4(0 f e/C(14-11)p (v)  dv  du.
0 n,m=0 0

Let R: be the Laplace transform of R c and p*n, that of p0,. The pre-
ceding relation then yields

!1RC
(S) =

c2 3/1-

S K S

1 E (C A
(.3 - K)2 n=0

n) (K)  p n

d
*+ E p:(K)  P7n(K)  P n (P11771(8)

s
n,m =o

We know, however, that p n,n(t) is of the form

d

P m(t) = pna E 7mier",
i=1
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so that
d d

Re(t) = E (c A n)  (c A ni)p E 7nmierie.
m,n=0 i=1

This implies that the only poles of R: are Ti, i = 1, , d, and that
R (t) = 0. Taking these two facts into consideration, we see

at once that (30) reduces to

R:(8) E (K) (K)  P flE 7 n mi

n, m=0 i=1 (ri - K)2 s
1-

ri'
provided K ri, i = 1, 2, , d. And referring back to the derivation
of (22), it is readily seen that

R (t) = [et (K)]t  Bid  diag [0,

where

erlt e rd t

- K)2 Bd  cf;1(K),

K Ti, i= 1, , d , (31)

[zed(K)11 = DOW  PO, , 4(0 Pn
The modifications needed when K is equal to one of the characteristic

roots are immediate. Let

diag [ao, a1, , ad]

be the diagonal matrix obtained by setting the jth diagonal element of
diag [ao, a1, , ad] equal to zero. Then if K = r; we must have, with
some as -yet -undetermined constant a and al the variance of N,(0),

Re(t) = a)eke

-k[cf;(K)]'  B'd  diag (3) [0,
pri t

- K)2 ' =
1, , d] Bd  cla(K)

But. R,(0) = 01, so that

a = - Eq:(K)31  Ba  diag c>) [0, (ri - i = 1, , (1]  B d  cf;(K).

Hence,

R (t) = o-2,e"e [4(K)T diag(i) [0, e07: Ke)", , = 1, , d

B d  Q;(10 (32)

It should be noted that (32) is valid even if K ri, i = 1, , d,
and that it should be used in the computations [rather than (31)]
whenever K is "close" to one of the characteristic roots so as to avoid
accuracy losses (see below). Since K is arbitrary, one could always
choose it so that it is not "close" to any of the characteristic roots.
But, as shown next, it is often preferable to select it in such a way as
to reduce the amount of computation, and this, in turn, may dictate
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the use of (32). As we have seen,

lic(t) = Eed(K)T 13",  diag [0, ,
erle

(rd
Bd  ed(K).- -eraKr

But, as noted previously, pd) is the characteristic vector associated
with the vanishing root (ro), so that

(p14))'13:,))/  diag [0, , en'
Kr

, (rderdg K)2] BdPal) = 0. (33)

Consequently, (31) remains valid for all [q*d(K)]' of the form

{[PO(K) + 7]  PO, , [PI(K) 7]  Pt),

where y is an arbitrary constant. [The same remark, of course, also
applies to (32).]

We are therefore always at liberty to add the same constant to all
the p*i(K)'s. Under some circumstances, this degree of freedom, together
with the one provided by the introduction of K, can be used to reduce
the dimension of B' and B: entire rows in B' and the corresponding
columns in B can be set equal to zero without affecting the computation
either of (31) or (32), or of the variance of the switch -count load. It
is relevant to note here that this reduction would be largely illusory
were it not for the fact that the normalized components of any of the
characteristic vectors can be obtained without having to compute
other components of that vector (see below).

According to the result of Section 3.1, the covariance can always be
cast in a form that involves only the first c components of the character-
istic vectors. But when the input and departure rates for 0 < n < c
are linear in n, the covariance can also be expressed in terms of the
last d - c 1 components of these vectors. Indeed, the rates are
then of the form

A = An + A',
n = ± 111 n = 0 , 1, , C - 1 ,

so that
An - = (A - ,u)n + -µ')

Hence, with K = A - /.4, and -y = - A', (27) yields

0 if n 0, 1,

{P:(X - AL) = GI - X)e - Ac + if - A'
(µ - A)c + it' - A'

,

if n = c,
if n = c 1, , d.

1,

For the random (Poisson) and the quasi -random inputs, the p's take the
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following simple form whenever the service time is exponential with
mean 1.

(i) Random input (X = a, n = 0, 1, - ):

0 if n = 0, 1, , c - 1,
-a if n = c,
 -a if n = c + 1,  , d.

(ii) Quasi -random input [N sources, X. = (N - n)X,
n = 0, 1,  , NJ :

0 if n = 0, 1, , c - 1,
An[-(1+X)]= I (c - N)X if n = c,

c+ (c - N)X if n = + 1, , d.

From the preceding developments, we see that the A's can be chosen
in such a way that the number of components of the characteristic
vectors needed to express R, is the smaller of the two integers c and
d - c + 1. In particular, in the case of loss systems, only the (c +1)st
component of each vector is needed.

The parameters K and 7 can also be chosen so that only the first
c 1 components of the characteristic vectors actually enter in the
expression of Re.. This will be the case if we set K = 11c-1 Xe_i and
ry = Ac-i)

In Ref. 3, the derivation of the covariance function for loss systems
[d = c, N (t) = N (t)] with Poisson input and exponential service
time makes use of the differential equations

dl
E { N (t) I N (0) = nz = -E { N (t) I N (0) = »11 + a[1 -

in = 0, 1, , c.

These equations appear here as that particular instance of (26) for
which K = - 1, X = a, n = 0, 1, - , c - 1, and A. = n, n = 1, . , c.

Note also that now En -o pmn(t) = 1 - pmc(t). But we stress that, in
Ref. 3, the determination of the covariance relies on known recurrence
relations between the so-called "sigma" functions (Ref. 3, pp. 129 and
143 ff.); the more general problem considered in the present paper is
not as readily amenable to such a treatment because of the greater
complexity of the expressions that would now have to be used instead
of the sigma functions. As we have seen, however, relatively simple
formulas for R, can be obtained without extensive algebraic develop-
ments as long as the underlying process is reversible.
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IV. VARIANCE OF THE SWITCH -COUNT LOAD

The variance of the switch -count load is now readily obtained.
Depending on which expression we select for Rc, we have either

(i) Var L (T)
11

= 71-2 E (n - k DR c C T)
k-=- n

= n-26Bie diag [0, E (n - I k peril/0 t, i = 1, , d]

Bd  q*,;(0, (34)

with
q = (popt,  , Pc -114-1, 0, , 0), or

(ii) Var L(T) = n -2[q: (K)]'  B'd

eiikit
diag [0,

k = -
(n. - = 1, , d]- ,

 B d CI: (K)

with K = 1, , d, or

(iii) Var L (T) = n-21 0-2c - Eq:(01'  Bd

diag(j) [0, (ri - 10-2, i = 1, , ci]Bdqd)

 E (n - I k Del ICI + n-2[1:1: (K) ]/Bid
k=-n

(35)

erilkIT
 diagu) [0, kEn (n- I , i = 1, , d]

-n
 Bd  CI: (0, (36)

where K ri for i j.
We now make use of the following identity (Ref. 3, p. 137):

1 ___ e -2n u
E (n - lk De-21klu = ncoth u csch2 u.

n= -k 2

By means of this relation, (34) to (36) can also be written as

\ 1 - enTri
Var L (T) = it -1  cidVddiag [0, coth ( -2Trif 2n

-T ri)
 csch2

2
, i = 1, , dBdqd; (34a)
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Var L (T) = n--'  [q*d(K)]'  13:,

1 1 - en Tri
 diag [0, , coth ( -Tr;

kr i - K)` 2 2n

csch2 ( 27.i )1 i = 1, , d] Bd ed(K),

K r;, I = 1, , d ; (35a)
and

Var L (T)
= n-i Ecei(K)T  13, diag(i) [0, (ri i= 1, , d]  B dCed

IcothTK ) 1 -e ""
 csch2

(-,TK )1
+ 7171  [4(01  13'd

9 2ti

 diagu) [0,
(r 1 -1 K)2{coth

(- Tr ) 1 - enrri
2 2n

 csch2 , i = 1, , d] Bd  ced(K), (36a)

where K ri for i
Let Var Lc° (T) Var L (T) be the variance of the load

measurement obtained by continuous observation of the number of
busy servers. If we replace T by T / n in (34a) to (36a) and then let n
tend to infinity while keeping T fixed, we obtain the following formulas :

Var (T) = - 1,  Cia  fi'd

 diag [0, -77-1 (1 + 1 - eriT
, i = 1, , d] Bd  qd, (34b)

Var L co (T) = -2T, [q:(K)]'  13",

[
1 ( 1 - eriT

diag 0,
ri(ri - K )

) .

1 +
Tr,

, i = 1, . , d] Bdq:(K),

K r1, i = 1, , d, (35b)

and
2

Var -T(T) = - [q:(ic)]' 13:,

 diag u) [0, (ri - K)-2, = 1, , d]

.13d  cl:(K)1 -K1 (1 +1 EC1:(K)11 .13:1

1 ( 1 - e"T
 diagu) [0, . = , dB d  q*d(K) ,

r i(r -K)21
K ri for i j. (36b)
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We note that the formula for the variance of sums of dependent
random variables makes it possible to compute the covariance between
load measurements performed over distinct time intervals. Indeed,
consider for instance a sequence of load measurements over the
intervals (0, T], (T, 2T], (2T, 3T], . Let L;ii) (T) be the switch -
count load over the ith interval (i = 0, 1,  ), ,S (t) = n2L (t), and

Cov [LP)(T), Lg)(T)]. Then

Var Sn(k-1-1)[(k + 1)T] (k Var S,, (T)
k

+ 2 E (k 1 - i)71,21T) (T)
j=.1

and

(k 1)2re)(T) = Var (k+i)[(k + 1)T] k 1 Var L(T)

k-1
-E me (T).

i=1

The preceding formulas may be used to determine the 1',?) (T) re-
currently. But the results of such computations shall be exact only if,
for some choice of the time origin, all the scanning instants are multiples
of T.

We conclude this section with the remark that the variance formulas
(34), (34a), and (34b) are valid for arbitrary reversible Markov pro-
cesses with finite state spaces.

V. NUMERICAL CONSIDERATIONS

The exact variance formulas of the preceding section are very well
suited to electronic computation and are easily programmed since,
apart from straightforward evaluations of hyperbolic functions and
simple products of matrices and vectors, they only involve the deter-
mination of characteristic values and vectors for which powerful sub-
routines are readily available. The fact that Sd is symmetric and tri-
diagonal (or reducible to tridiagonal form by an orthogonal similarity
transformation) allows us to use the subprogram TQL2, which is par-
ticularly efficient under the present circumstances (Ref. 11, pp. 227-
240). Without going into details, we mention here only that this sub-
program is based on the so-called QR-algorithm and relies on the con-
struction of a sequence of symmetric tridiagonal matrices, SP,
n = 1, 2, , unitarily similar to Sd, which converges to diag [0, r1,
r2,  , rd]. At the nth iteration Sd"' is expressed as a product of an
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orthogonal matrix QP) and a lower -triangular matrix LP :

Sp' = two  Vin).

In Ref. 11, this decomposition is carried out by the Givens' triangular-
ization in which the Qrs are expressed as products of simple plane
rotations (Ref. 7, pp. 239-240).

The (n ± 1)st iterate of Sd is then given by

sp+ = LL")  (go,

whose unitary similarity to SP) (and hence to Sd) follows from the
relation

LP)  QP) = (QP)Y  SP)  QP).

This method avoids the numerical difficulties frequently associated
with the computation of the zeros of the characteristic polynomial.

As shown in Ref. 11, p. 228,

Qr) = RP) .....Rh", (37)

where Ry) is of the form :

1

C Si
-Si C,

1

<- row i. (38)

1

According to Ref. 11, p. 231, the matrix B'd (whose columns are the
characteristic vectors of Sd) is given "almost to working accuracy" by

Qyz) QV, (39)

where n (<30) is the number of iterations needed for the (numerical)
symmetrization of Sd. Taking (37) to (39) into account, it is then
readily seen that the elements of B'd can be determined row by row
which, as we have remarked earlier, is a desirable feature in the present
context.

Computations have been carried out for systems having as many as
400 devices (and hence transition -rate matrices of order 401) to deter-
mine the numerical accuracy of the approach described in the preceding
sections. Checks were performed by comparing the value of Var L1 (T)
obtained by means of (35a) or (36a) with the corresponding 4 which
can be calculated directly and independently from the equilibrium
state probabilities. These two quantities, which are theoretically equal,
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turned out in all cases to agree to at least 10 decimal places with the
greatest difference occurring when d was largest. Hence, our procedure
indeed yields very accurate results for the type of systems that are
likely to occur in practice. But when d is large, the storage require-
ments and the amount of computations become critical. It is therefore
always important to select K and 7 in such a way as to minimize the
number of B' rows that actually enter into the computations. (It
follows from earlier remarks that this number, for proper choice of K
and 7, never exceeds the integral part of (d + 1)/2.) Further reduction
can also be achieved by excluding the states whose probabilities of

occurrences are so small that neglecting them will not materially affect
the final results. In this connection, we make the following remarks.

The variance of the switch -count load is perturbed by at most

[4(0]2 ' rc'

if pi is set equal to zero in the particular formula used to evaluate
Var L,,(T). Hence, since

Var L (T)

we always have the following upper bound for the relative error, Ei,
induced by setting p; equal to zero :

fi -5 EP;(1012 *Pi  n, = 0, 1, . .
, d.

For a given relative accuracy of Var L(T), these inequalities make it
possible to determine ahead of time whether some components of the
characteristic vectors can be "safely" eliminated from the computa-
tions. In large systems, the gains achieved by such a reduction may be
quite substantial, as either low occupation states [N (t) small] and/or
high occupation states [N(t) large] have then frequently very small
probabilities of occurrences.

Computations could be arranged to determine only those character-
istic roots that are required to reach a given degree of accuracy
[plus those needed to compute Bd  (171(0]. This is rather readily
achieved in loss systems with Poisson input and exponential service
times since, in this case, the coefficients bi of

- Tr - e"", (-rri)
coth 2n

csch2
2

in the variance formulas of Section 3.1 are then monotonically de-
creasing as I ri I increases :

b2i < b2; if Ird > Irjj, 1,1 = 1, , d.
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Fig. 1-Spectral measure of the carried load process.

But, in general, one would encounter an additional difficulty, namely,
that the Vi's do not have the monotonicity property alluded to above
and may actually fluctuate widely. This is illustrated in Fig. 1, where
the roots are assumed to be indexed in order of increasing magnitude
and the ordinates are the corresponding bi's, normalized in such a way
that maxi b = 1.

The computations should be based on (35a)-(36a) or on (35b)-(36b)
in the case of continuous measurements-as these formulas provide
us with all the flexibility needed to cut down both storage space and
computation time. When choosing between (35a) and (36a) or between
(35b) and (36b), one should keep in mind that, for K close to the
difference ri - K may not be determinable with enough precision to
allow accurate computation of Var 1_,(T). This is shown in Table I
where K = and r1 is the root of smallest positive absolute value.
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Table I - Loss system, 80 servers, Poisson input,
exponential service

Offered
Load in 1 + r, ,c2

Var Li(T)

Formula (36a) Formula (35a)Erlangs

10 1.09 X 10-13 10.000000 10.000000 0.034614
20 -9.90 X 10-" 20.000000 20.000000 0.013173
30 -1.14 X 10-n 30.000000 30.000000 20.891365
40 -3.38 X 10-a 39.999986 39.999986 39.999926

(Note that the last two columns of this table should be equal and that
errors of the same magnitude would arise if one were to use (18) of
Ref. 3.) In all our computations, we have made use of (35a) and (36a)
whenever 1K - < 10-4 for some i. This bound for 1K - ri I is both
large enough to ward off appreciable accuracy losses and small enough,
under prevailing conditions, to be satisfied by only one root.

VI. REMARKS ON INFINITE SYSTEMS

It is known that infinite systems can be regarded as limits of finite
ones," and it is therefore of practical interest to have information
concerning the spacing of the characteristic values as the dimension,
d, of these approximating systems becomes large. Indeed, as d increases,
computational difficulties may arise because of a lack of separation
between these roots. Such problems would certainly come up sooner
or later if the spectrum of A = limd,o,Ad happens to be dense over
some interval as, for instance, in the case of a single -server queue with
Poisson input, exponential service time, and unlimited waiting room
(Ref. 12, pp. 365-366). Infinite systems with well -separated roots do,
of course, also occur. As an example of this type, we mention the
systems with an infinite number of servers, Poisson input, and ex-
ponential service which often provide useful idealizations. (In this
case, as is well known, the nonvanishing characteristic roots are the
negative integers, -1, - 2, -3,  .) Other examples of systems with
discrete spectra are given in Ref. 12, where sufficient conditions for
this to occur are discussed in some details ; but in all these instances
the X. and µ both increase as nv for some 1, > 0. This condition is un-
likely to be satisfied in queuing systems; generally, in this particular
area, the arrival and the departure rates remain bounded :

0 X .1C. A < co , 0 M < 00 , n = 0, 1, . (40)

As briefly described below, these inequalities imply the existence of
definite bounds for the spectrum of A.
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Consider an infinite system, and let A be its (infinite) transition -rate
matrix. Let Ad be the matrix obtained by retaining only the elements
belonging to the first (d -I- 1) rows and columns of A and then setting
Xd equal to 0. Let rdo( = 0) > rdl > be the characteristic roots of
Ad. Then, under conditions (40) it can be shown that, for any k > 0:

(i) rdk I < A + M for d sufficiently large,

(ii) < 2(A M) for d > k.

Either of these two inequalities implies that the characteristic roots
do not remain separated as d co whenever (40) is satisfied. Under
the more stringent requirements that (40) holds and that

lim X = A, lira 1.4 =117,
n-.0co -1.0D

more precise statements can he made, namely, that, for all k's and d's,

irdid < (Nix + 1ich2

and that the spectrum of A always comprises a closed interval, viz.,

= [- - (Arii -

(In addition to S2, the spectrum of A may also include a finite number of
roots in [- - 112)2, 0].) But it turns out (as will be shown
elsewhere) that, as d increases, the characteristic roots of Ad fill
rather "evenly" ; furthermore, for practical accuracy levels, large
values of d are needed only when the length of S2 tends to be relatively
large (a circumstance corroborated by extensive computations).
Hence, within the present framework, it appears that root -spacing is
not likely to be critical except in the improbable event that extreme
precision is required.
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A carbon transmitter model is presented, the purpose of which is to serve
as a tool for computer -aided analysis of telephone set transmission
characteristics. The derivation of the model is based upon the physical
theory of the device. The parameters in the model are evaluated by com-
paring the analytically derived expressions for the device characteristics
to the measured characteristics of a typical device. Because these param-
eters are related to the physical theory, the model not only serves its de-
sired practical end, but also serves as a vehicle whereby an understanding
is obtained of the relationship between device characteristics and physical
theory.

I. INTRODUCTION

Computer -aided optimization of the transmission characteristics
of telephone sets requires that accurate models be obtained for all
transmission -related telephone set components. A carbon transmitter
model has been derived for this purpose. This model has been used
in a telephone set transmission analysis computer program, and good
agreement between computed and measured transmission charac-
teristics was obtained.

The dc V -I characteristic of the carbon transmitter is nonlinear.
This nonlinearity must be taken into account in the dc model so that,
in the transmission analysis program, the operating point of the
transmitter can be determined, as well as the operating points of any
nonlinear telephone speech network components, e.g., silicon carbide
varistors. Thus, the de model is a voltage -dependent resistance.

The ac model is similar to that of a vacuum -tube triode, consisting
of a Thevenin-equivalent resistance and voltage source. The voltage
source is dependent on the amplitude of the force acting on the carbon
granules because of the acoustic excitation of the transmitter. This
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force is in turn the output of a filter which represents the transmitter
structure itself. The input to the filter is the acoustic sound pressure.
This filter can be represented by an electrical equivalent circuit,' the
derivation of which is straightforward. However, it is the charac-
terization of the effects taking place within the carbon chamber which
is of primary interest here. The filter is represented simply by its
measured frequency response.

Values for the various parameters of the model were determined
by comparing the expressions derived analytically for the charac-
teristics of the transmitter to the measured characteristics of a typical
device. All measurements were made with the transmitter face in a
vertical plane, in a telephone handset, and in a position relative to the
artificial mouth as specified in IEEE Standard 269-1971.2 Also, the
transmitter was mechanically and acoustically conditioned prior to
the measurements. The acoustic conditioning signal was swept be-
tween 300 and 3300 Hz at a rate of six sweeps per second and fre-
quency -weighted corresponding to the average sound pressure spec-
trum of continuous speech, and had an average sound pressure level
of 94 dB (re 0.0002 dyn/cm2). The conditioning signal was applied
for 3 s.

II. DC MODEL

V -I characteristic of the carbon trans-
mitter is nonlinear. Goucher3 attributed the nonlinearity to the effect
of joule heating on the contact resistance between carbon granules.
Later, Mo1,4 disputing Goucher, attributed the nonlinearity to the

6

4

2

0 0.02 0.04 0.06 0.08

DC CURRENT IN AMPERES

Fig. 1-Direct-current V -I characteristic.
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effect of electrostatic forces between carbon granules. On this basis,
he derived an expression for the de transmitter resistance as a function
of voltage and found it to agree fairly well with measured transmitter
resistance. However, Mol's expression for the dc voltage dependence
of the resistance variation when an acoustic signal acts on the trans-
mitter agrees rather poorly with measurement. This casts doubt on
the electrostatic force theory. In fact, experimental results indicate
that the effect of electrostatic forces between carbon granules is
negligible. These experiments are described in Appendix A. On the
other hand, a more recent study of the theory of electric contacts
tends to support Goucher's theory. Holm' treats the subject of the
effect of joule heating on contact resistance extensively, and his
results will be applied to the derivation of the transmitter model.

As will be seen, the nonlinearity of the V -I characteristic cannot
be accounted for entirely by the effect of joule heating on contact
resistance. The effect of the thermal expansion of the carbon chamber
due to joule heating must also be considered. This effect is readily
demonstrated experimentally because of the relatively long time
constant involved. If the transmitter current is changed abruptly, a
slowly decaying voltage transient is observed, owing to the hysteresis
associated with the expansion of the carbon chamber. The time
constant is approximately 1 s.

A cross section of the T1 transmitter is shown in Fig. 2. The carbon
chamber consists of a movable dome electrode connected to a fixed
conical back electrode by a flexible, nonconducting chamber closure.
According to the results of Fritsch's analysis' of the thermal response
of the transmitter structure, the transient effect is due primarily to
the expansion of the dome electrode. As the dome electrode expands,
it compresses the carbon granules, lowering their resistance. Fritsch
called this effect "thermal packing." Of course, after the transient
has decayed, the transmitter can be reconditioned to unpack the
granules. However, following the reconditioning, a new thermal
equilibrium will be established so that some degree of thermal packing
will still occur. This effect, as well as the effect of joule heating on
contact resistance, must be included in the model. An understanding
of these effects is based on a consideration of the factors affecting
the resistance of a single carbon contact.

2.1 Effect of contact force on contact resistance

The contact resistance between two carbon granules is related to
the magnitude of the force pressing the granules together by the
expression :

rk = KP-7, (1)

T1 CARBON TRANSMITTER MODEL 1303



COMPLIANT
CHAMBER CLOSURE

ACOUSTIC
RESISTANCE LEAK

CLAMPING RING

BACK ELECTRODE

-- CHAMBER CAP

DOME ELECTRODE

----GRANULAR CARBON

----INSULATOR

FRAME

Fig. 2-Cross section of T1 transmitter.

where P is the contact force and K and 7 are constants. Equation (1),
which is generally valid for electric contacts, was shown by Goucher3
to be valid for carbon granules, based on direct measurement of
contact resistance and force. Later, this equation was indirectly shown
by Joscheck7 to be valid based on measurements of the bulk resistance
of carbon granules as a function of the filling height of the granules
in the measurement chamber.

In the carbon chamber in the T1 transmitter, the significant forces
acting on the carbon granules are the gravitational force resulting
from the weight of the granules themselves, the force resulting from
the thermal expansion of the dome electrode, and, when the trans-
mitter is acoustically excited, the force resulting from the acoustic
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pressure acting on the diaphragm and dome electrode. Because of the
random orientation of the contacts throughout the chamber with
respect to the directions of the applied forces, the contact force and,
hence, the contact resistance will also vary randomly. However,
because of the large number of contacts involved, the random variation
in contact resistance can be ignored. Only the larger overall gradients
in bulk resistivity will be considered.

For simplicity, an approximate chamber geometry is assumed in
which the two electrodes are concentric hemispheres. A spherical
coordinate system is defined such that the hemispherical chamber
walls lie at constant radial distances from the origin, the inner and
outer radii being designated a and b, respectively. The component of
contact force resulting from the weight of the granules themselves is
represented by Po (r, 9, c6). The component resulting from the
thermal expansion of the dome electrode, being proportional to the
power dissipated by the transmitter, is represented by (17 2 R)

Pd (r, 9, (1)) , where V and R are the transmitter de voltage and resistance,
respectively. The component resulting from the acoustic excitation
of the transmitter, being a function of time as well as of the spatial
coordinates, is represented by zP(r, 0, (1), t).

Equation (1), therefore, becomes

rk(r, 0, 0, t) = K[Po (1', 0, (b) ( V2/R)Pd(r, 0, 0)
+ AP (r, 0, cp, 0]-7. (2)

It will subsequently be seen that, for normal speech signal levels,
AP is small enough compared to the static components of contact
force that its effect on the de component of contact resistance is
negligible. Thus, the relationship between the de contact resistance
and the contact force is

rk(r, 0, 0) = K[Po(r, 0, 0) + (V2/R)Pd(r, 0, (b)]-7. (3)

Although a change in de transmitter resistance is observed when
acoustic excitation is applied to the transmitter, this is judged to be
due to the effect of the acoustic excitation on the state of compactness
of the carbon granules rather than to the effect of the nonlinearity
of the contact resistance -contact force characteristic. The effect of
acoustic excitation on the state of compactness of the granules will be
discussed further.

2.2 Effect of joule heating on contact resistance

According to Holm's analysis5 of the effect of joule heating on
contact resistance, if certain assumptions regarding the temperature
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dependence of the electrical resistivity and the thermal conductivity
of the contact members are satisfied, then the effect of joule heating
can be accounted for by multiplying the contact resistance by the
factor

n(Vk) = [B + (1 - B) (Ak/Vk) tan -1 (Vk/Ak)]-1, (4)

where Vk is the contact voltage and Ak and B are constants. Since
the random variation in contact voltage is of no concern in the model,
Vk is considered to be the average contact voltage, which is propor-
tional to the total transmitter voltage. Then

n(V) = [B ± (1 - B) (A/V) tan-'(V/A)]-1, (5)

where A is also a constant.
The assumptions upon which the derivation of eq. (4) is based

are that the thermal conductivity satisfies

X = X0(1 + OAT), (6)

and the electrical resistivity satisfies

p = po(1 e0T)/(1 13 AT), (7)

where po, Xo, e, and are constants, and AT is the change in tempera-
ture because of joule heating. Apparently, these assumptions are
valid in this case because of the excellent agreement between eq. (5),
using the values for A and B, listed subsequently, and the measured
data presented by Hufstutler and Kerns' for the resistivity of granular
carbon contained in a quartz test chamber having a negligible thermal
expansion coefficient. This implies that, aside from the effect of
chamber expansion, the effect of joule heating on contact resistance is
alone sufficient to account for the nonlinearity of the V -I characteristic.

Now, if eqs. (5) and (3) are combined, the expression for the dc
contact resistance becomes

rk (r, 0, = Kn(V)[Pg(r, 0, 0) (V2/R)Pd(r, 0, 02-7 (8)

2.3 Total dc resistance

If rk(r, 0, so) is the contact resistance and there are n contacts per
unit length, then the resistivity of the carbon granules is rk(r, 0, 0)/n,
where rk(r, 0, y6) is given by eq. (8). Then, for the approximate chamber
geometry which has been assumed, the total dc transmitter resist-
ance is

R= a(9)
7.2

fr firdr[n sin 4)/rk (r, 0, 0)Y/00
0

The mean value theorem can be applied to perform the integrations
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with the result

where

R = Ron (V)[1 aV2/R]-7, (10)

Ro = K(b - a)/Enr2f2 sin P07(f, 0, c)1,

Pd (r, B, 45)/Pg(f, 0, (12)

and where t, 0, and are constants, being the coordinates of some
point within the chamber. Note that Ro is the limiting value of R as V
approaches zero, and that aV2/R is the average ratio of the component
of contact force due to thermal expansion of the carbon chamber to
the component of contact force due to the weight of the granules
themselves. Although R is not expressed as an explicit function of V,
a solution to eq. (10) can be obtained using iterative techniques easily
implemented on the computer. Values for the parameters Ro, a, A, B,
and 7 will be determined by fitting eq. (10) simultaneously with
equations for the transmitter ac resistance and open circuit output
voltage to measured data. The ac resistance and open circuit output
voltage will now be considered.

III. SMALL -SIGNAL AC RESISTANCE

Over the range of frequencies of interest for speech transmission,
the transmitter ac impedance is purely resistive. However, as is

obvious from Fig. 3, the ac resistance is not the slope of the de V -I
characteristic except in the limit as V approaches zero. This is ex-
plained by the fact that, because of the large hysteresis effect, the
thermal expansion of the dome electrode cannot follow the ac signal,
at least not at frequencies above a few hertz. Thus, the difference
between the ac resistance, which is not affected by the thermal expan-
sion of the dome electrode, and the slope of the dc V -I characteristic,
which is affected, increases as the power dissipated by the transmitter
increases.

Because the thermal expansion of the dome electrode has no effect
on the ac resistance, the ac resistance is the slope, not of the actual
V -I characteristic, but of the V -I curve defined by setting the term
equal to zero which accounts for the expansion of the dome electrode.
This is the curve defined by

I = V/[Ron(V)], (13)

where Ro and 77( V) are defined by eqs. (11) and (5), respectively. Thus,
the ac resistance is given by

rac = R07/2(7)/ [n(V) - dd n(V)1

= Ro(A2 V2)/(A2 Bv2). (14)
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It has been assumed that the ac signal level is low enough so that
there is no significant joule heating effect due to the ac signal. This
assumption is valid for signal levels typical of speech transmission.
For higher signal levels, the ac joule heating effect will cause the ac
as well as the dc resistance to decrease, as is easily verified
experimentally.

At frequencies low enough that the period of the ac signal becomes
significant compared to the time constant associated with the thermal
response of the dome electrode, the transmitter ac impedance exhibits
a reactive component due to the effect of the thermal hysteresis.
Figure 4, drawn from a photograph of a storage oscilloscope trace, shows
the effect of the thermal hysteresis in the response to a sinusoidal
driving voltage at a frequency of 0.2 Hz for four different operating
points. The effect becomes greater as the de bias increases, as would
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be expected since the expansion of the dome electrode is proportional
to the power dissipated by the transmitter. An expression for the low -
frequency transmitter impedance that accounts for this effect is

derived in Appendix B. For frequencies greater than approximately
10 Hz, the reactive component of the transmitter impedance becomes
negligible, and the expression derived in Appendix B reduces to the
expression given by eq. (14).

IV. OPEN -CIRCUIT OUTPUT VOLTAGE

When the transmitter is acoustically excited, the contact force will
vary owing to the effect of the acoustic pressure acting on the dia-
phragm and dome electrode. The variation in the contact force at the
point (r, 0, 0) is designated AP (r, 0, cp, t). Then the resistance will
vary by an amount OR (t) such that

where

R AR(t) = Roq(V)[1 + «V' / R AP(t)1-7, (15)

AP (t) = AP (f, 0, cL, t)/Pg(f, 0, (T). (16)
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The transmitter voltage will change by an amount AVM where, if
the transmitter current I is held constant,

V + AVM = I[R AR(t)]. (17)

Then
AV (t) = IAR(t)

= VAR(t)/R,

which is the ac open -circuit output voltage. From eq. (15),

so that

(18)

AR(t)/R = [1 + AP(t)/(1 aV2/R)]-7 - 1, (19)

AV (t) = V 1E1 AP(t)/(1 + a V2/R)]-7 - 11. (20)

Although this is a nonlinear relationship, AP(t) will be found to be
small enough compared to 1 + a V2/R at normal speech levels so
that a linear approximation is justified. Thus,

OV (t) ti - AP(t)/(1 + aV2/R). (21)

Note that eq. (21) is -7V multiplied by the ratio of the dynamic
to the static forces acting on the carbon granules.

V. EVALUATION OF MODEL PARAMETERS

The parameters Ro, a, y, A, B, and AP(t) were evaluated using
an iterative optimization computer program to fit eqs. (10), (14),
and (21) simultaneously to measured de resistance, ac resistance, and
open -circuit output voltage, respectively, the latter being measured
at a frequency of 1 kHz with a sound pressure level of 94 dB (re
0.0002 dyn/cm2). The measurements were performed on a T1 trans-
mitter considered to be a typical unit. The resulting parameter values
are listed in Table I. Of course, transmitter characteristics are subject
to such factors as aging, temperature, conditioning, orientation, and
manufacturing variations. The values of the parameters in eqs. (10),
(14), and (21) will vary accordingly.

Table I - Parameter values

Parameter Value

Ro 111.0
a 0.94

0.43
A 7.12
B 6.65
AP (rms) 0.20
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Equations (10), (14), and (21), with the parameter values listed in
Table I, are plotted in Figs. 5, 6, and 7, respectively, along with
measured data points. The agreement between calculated and measured
data is judged to be within the limits of measurement error.

VI. INPUT-OUTPUT AND FREQUENCY RESPONSE CHARACTERISTICS

To complete the model, the input-output and frequency response
characteristics of the transmitter must be specified. The input-output
characteristic is nonlinear owing to the effect of the acoustic excitation
on the compactness of the carbon granules. As the acoustic signal
level increases, the carbon granules are agitated into a less compact
state and the mechanical impedance of the granules decreases. There-
fore, the transmitter efficiency increases as the acoustic signal level
increases, resulting in an input-output characteristic having a greater -
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than -unity slope. Because of this effect, the transmitter is able to
discriminate against distant sounds, and thereby reduce interference
resulting from background noise. However, the weak components in a
composite signal such as speech are not discriminated against, since
the compactness of the carbon granules, which is controlled by the
strong components, is the same for all components of the signal.
Therefore, the nonlinearity of the input-output characteristic does not
affect the components of individual speech sounds, and the compact-
ness of the carbon granules varies only as the overall energy content
of the speech signal varies.

As discussed by Bryant,' the frequency response of the transmitter
is related to the nonlinearity of the input-output characteristic, since
it also depends on the mechanical impedance of the carbon granules.
This implies that the frequency response depends on the nature of the
input signal. The response to a swept frequency sinusoidal signal is
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somewhat different from the response to a speech signal. (For further
discussion, see Ref. 9.)

For the purposes of the model, a continuous, random, speech input
signal is assumed. Accordingly, the nonlinearity of the input-output
characteristic is ignored, and the frequency response is measured as
suggested by Bryant. The response is shown in Fig. 8 plotted relative
to the 1 -kHz output level. This is the response of the transmitter
structure itself to the acoustic input signal, or, in the model, the
response of the input filter. In the computer program, the filter response
was stored as a table of values at discrete values of frequency.
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VII. CONCLUSION

3 4 5

A carbon transmitter model has been presented. The physical theory
upon which the model is based is supported by the close agreement
between the calculated characteristics of the model and the measured
characteristics of an actual device. Thus, it can be concluded that the
nonlinearity of the dc V -I characteristic is due primarily to the effect
of joule heating on contact resistance and to the effect of the thermal
expansion of the dome electrode due to joule heating. The effect of
electrostatic forces is negligible. Furthermore, the difference between
the ac resistance and the slope of the de V -I characteristic is due to
the hysteresis associated with the thermal expansion of the dome
electrode. Finally, the relative resistance change due to the acoustic
excitation of the transmitter decreases as the de voltage increases
due also to the effect of the thermal expansion of the dome electrode.
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APPENDIX A

In this appendix, the question is considered of whether electrostatic
forces between carbon granules have a significant effect on transmitter
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characteristics. Two experiments, the results of which indicate that
they do not, are described. In both experiments, the transmitter
output is driven with a sinusoidal voltage, i.e., as if the transmitter
were a receiver. It is observed that, if the transmitter is driven hard
enough, an audible signal is generated. Approximately 2-V rms is
required for the signal to be audible at 1 kHz. This phenomenon could
be the result of attractive forces between carbon granules owing to
electric fields or the result of thermal expansion, presumably of the
carbon granules, since the thermal inertia of the dome electrode and
diaphragm is too large for their thermal response to follow the instan-
taneous voltage at frequencies above a few hertz. The results of the
two experiments which are now described indicate that the forces are
due to thermal expansion of the carbon granules. This effect is insignifi-
cant compared to the predominant thermal effects that are accounted
for in the model.

In the first experiment, the phase of the dome electrode displacement
was measured. An outward displacement, in phase with the square
of the driving voltage at frequencies far enough below resonance so
that the mass of the system can be ignored, would indicate that the
force was due to thermal expansion, while an inward displacement
would indicate that the force was due to electric fields. The displace-
ment was measured using an optical proximity detector. A small mirror
was mounted on the dome electrode to provide a flat reflecting surface
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for the detector. This was necessary to obtain measurable detector
output, the displacement being very small. The phase of the outward
displacement relative to that of the square of the driving voltage is
plotted as a function of frequency in Fig. 9. The phase angle ap-
proaches zero at low frequencies, indicating that the force acting on
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mitter output is driven by sinusoidal ac voltage.
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the dome electrode is due to the thermal expansion of the carbon
granules.

Since this is the case, the acoustic sound pressure level should be
proportional to the power dissipated by the transmitter rather than
the square of the voltage, as would be the case if the forces were due
to electric fields. (Power is not proportional to the square of the
voltage, since the resistance is a function of voltage.) This was verified
by the second experiment, the results of which are plotted in Figs. 10
and 11.

APPENDIX B

In this appendix, an expression is derived for the low -frequency
impedance of the transmitter, taking into account the effect of the
thermal expansion of the carbon chamber.

If the transmitter current is changed abruptly by an incremental
amount a, the displacement of the dome electrode due to the addi-
tional power dissipation will lag behind the change in current due to
the thermal hysteresis. According to Fritsch's analysis,' the transient
can be expressed as an infinite sum of decaying exponentials. Thus,

V(t) = (m. k,e-tiroau(t), (22)

where m is the slope of the de V -I characteristic and where ki and Ti
are constants. Because the initial change in voltage must be racA/,

ski= - in. (23)

In the frequency domain,

V(s) = Em fi kis/(s 1/Ti)W/s, (24)

from which
CO

Z(s) = Ekis/ (s (25)

As pointed out by Fritsch,' the infinite series solution converges too
slowly for practical evaluation. A practical expression for ac impedance
can be obtained by assuming a single time -constant approximation
for the transient response. Then

Z(s) rrz", ks/ (s 1/7.), (26)
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where r is the effective time constant and

k = rac - m.

If eq. (27) is substituted into eq. (26), then

Z(s) roc(s in/racT)/ (3 + 1/7).

(27)

(28)
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Some Far -Field Studies of an Offset Launcher

By M. J. GANS and R. A. SEMPLAK
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An offset paraboloidal reflector illuminated by a balanced feed horn
constitutes an efficient launcher for coupling microwaves into quasi -
optical beams. Measurements on a launcher with low blockage show low

cross polarization. The amplitude, phase, and polarization characteristics
are predicted by two gaussian beam modes, and the resulting formulas
are found to agree well with measurements at 19 and 28 GHz. For example,
with increasing offset angles, the ratio of the maximum cross -polarized
signal in the radiation pattern to the on -axis co -polarized signal is ob-

served to vary from -44 to -37 dB, within 1 dB of the predicted variation.

I. INTRODUCTION

At millimeter wavelengths, normal waveguide losses become too
large in many applications ; for example, long lengths of waveguide
are required in satellite earth stations between the transceiver and
the reflector antenna focus. To reduce these losses, one may use quasi -
optical beams that employ reflectors or lenses for refocussing at
various intervals, thereby confining the beam within a geometric
tube with no (lossy) guiding walls. To couple the circuit components
to these beams, it is desirable to provide a beam launcher that has
quasi-gaussian amplitude over the aperture, low loss, good polarization
purity, and high return loss.

Offset reflectors provide high return loss, i.e., they are well matched,
because the radiation field of the illuminated aperture bypasses and,
therefore, does not reenter the feed horn.' If the reflector is made large
so that the level of the feed -horn illumination at the edge of the
reflector is low, spillover and diffraction losses are small. Also, since
the feed horn does not block the aperture of the reflector, blockage
losses are negligible, and the radiation patterns are unaffected. But
cross polarization can be serious with offset reflectors, as pointed out
in Ref. 2; however, by choosing a small offset angle the cross polariza-
tion can be held to acceptable levels throughout the beam.

Here, the far -field properties of an offset paraboloidal reflector
(Fig. 1) are investigated. Section II describes the radiation charac-
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Fig. 1-Offset launcher. The 76 -cm (30 -in.) diameter reflector is a numerically
machined section of a paraboloid. Reflector focal length is 115.7 cm and it is fed, in
this instance, by a 28.5-GHz dual -mode horn with a polarizes.

teristics of the dual -mode feed horns, the experimental setups, and
the measurements of the far -field properties of the complete launcher.
Section III provides the theoretical formulas showing that the radiation
performance of offset launchers can be well characterized in terms of
gaussian modes.

Specific applications of this type of launcher are in feeding Casse-
grainian antennas of the type discussed in Ref. 1, and in launching
and collecting beams on Hertzian cable transmission lines.'

II. MEASUREMENTS

2.1 Dual -mode feed horns

The dual -mode feed horn designed to feed the offset launcher of
Fig. 1 is shown in Fig. 2a. The input section generates the TE11 and
TM11 modes in a circular waveguide by means of a conical step in the
waveguide.4 This section slides in the input waveguide so that the
length from the step to the horn aperture, the "drift space," may be
adjusted to co -phase the TE11 and TM11 modes to provide zero current
at the edge of the aperture (minimizing the side lobes and symmetrizing
the pattern). The small horn taper angle of 7.121 degrees was chosen
to prevent disturbing the TE11 and TM11 modes, and to provide a
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Fig. 2-(a) Cross-sectional view of the dual -mode feed -horn design used for the
offset launcher of Fig. 1. (b) Profile of measuring range. (c) Launcher schematic.

small aperture phase error [ = (27/X) (D2 /8L) = 7r/2 radians] without
making the horn too long.

The azimuth radiation patterns of 28.5-GHz dual -mode feed horns
for horizontal, vertical, and 45 -degree polarizations, along with the
associated cross polarizations for each case, as measured in an anechoic
chamber, are shown in Fig. 3. Figure 3a shows the results obtained
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Fig. 3-The 28.5-GHz dual -mode feed -horn radiation patterns for the principal
and 45 -degree polarizations. Included are the corresponding cross polarizations: (a)
without polarizer on dual -mode feed; (b) with polarizer on dual -mode feed.

without a polarizer on a horn. Note that the cross polarization for the
45 -degree polarization condition has peaks of about - 28 dB at angles
of about ±8 degrees. (This behavior of dual -mode horns is predictable;
superior cross -polarization performance is obtainable from hybrid -
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Fig. 3 (continued).

72

mode horns.) One can also see that, even though the quarter -wave-
length aperture error fills in the first null in the feed -horn pattern, a
shoulder appears at about -20 dB relative to the on -axis value for
the case of horizontal polarization. At least 30 degrees of the feed
pattern illuminates the reflector of the launcher (resulting in about

OFFSET LAUNCHER 1323



a 20 -dB taper at the edge of the reflector in the principal polarization).
Thus, the cross -polarization maxima in Fig. 3a also illuminate the
reflector. However, as shown in Fig. 3b, when a grid polarizer is used
on the dual -mode feed horn, the cross polarization for the 45-degree
condition is reduced to a very acceptable - 45 -dB level. Also, with a
polarizer on the horn, cross polarization for polarization in the principal
planes is essentially nonexistent. Since one of the main purposes of the
experiment is to measure the cross polarization generated by the
offset reflector, as discussed in the next section, the feed horn per se
must therefore be devoid of cross -polarized components. For that
reason, the feed horn was equipped with a polarizer (patterns of Fig.

3b) for all ensuing measurements.
The dot -dash curves in Fig. 3b show that the feed -horn pattern

is well approximated down to about - 20 dB by a gaussian beam
[eqs. (8) and (9)]. The 10 -dB half angle, 0,, used in the gaussian beam
approximation, is 9 degrees.

The radiation patterns for the 19-GHz dual -mode feed horn are
essentially the same as in Fig. 3. Significant cross -polarization levels
were also observed at this frequency, but, using the polarizer, the cross
polarization is reduced to a very acceptable level ( - 50 dB).

2.2 Antenna measuring range

A profile of the antenna range used for measuring the offset launcher
is shown in Fig. 2b. To determine the cross -polarization characteristics
at the range, a gently tapered pyramidal horn with a 15- by 15 -cm
aperture equipped with a wire grid polarizer (to eliminate any cross
polarization caused by the horn itself) was used as the source. A
standard gain horn with a similar polarizer was used as the receiver
on the antenna azimuth -elevation positioner. These measurements
show the cross polarization introduced by the range to be very small;
in the range of interest, i.e., within ±3 degrees of the axial direction,
it is of the order -47 dB.

2.3 Offset launcher measurements

Figure 1 is a photograph of one of the offset reflectors, along with its
supporting structure. The reflector is illuminated by a 28.5-GHz
dual -mode feed fitted with an etched grid polarizer as discussed in
Section 2.1.

At 28.5 GHz, the far -field patterns in the principal and 45 -degree
polarizations, along with the associated cross polarizations for the
offset launcher fed by a dual -mode horn with polarizer, are as shown
in Fig. 4. Note the shoulders rather than sidelobe structure for the
co -polar patterns. Although the shoulders in the launcher pattern are
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Fig. 4-Far-field radiation patterns of the principal and 45 -degree planes for the
offset launcher at 28.5 GHz with polarizer on horn. Theoretical (gaussian-beam)
calculations are also included.

also apparent in the feed -horn patterns (compare the vertical polari-
zation patterns of Figs. 3b and 4), this is not always the case. For
example, the launcher pattern for horizontal polarization exhibits
prominent shoulders (Fig. 4), whereas the corresponding feed -horn
pattern (Fig. 3b) does not. Furthermore, the shoulders in the launcher
patterns are at about the - 24 dB level, while those in the feed -horn
pattern are at about - 20 dB. Most likely, the shoulders in the launcher
patterns are due to the phase errors in the illumination which are
caused by the finite taper length of the conical feed horn.
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At 19.04 GHz, the co -polar and cross -polarization radiation patterns
for the offset launcher are as shown in Fig. 5. Excellent symmetry is
observed in the cross -polarization patterns even at this -40 -dB
level. Both Figs. 4 and 5 include the theoretical curves discussed in
the next section.

One can see from the configuration of Fig. 1 that there is a

possibility of a small amount of blockage by the feed and its mount
(and subsequent cross -polarization effects) when the launcher is

scanned upward in elevation. To examine this, a set of azimuth scans
for various elevation settings was made at both 19.05 GHz and 28.5
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Fig. 5-Far-field radiation patterns of the principal and 45 -degree planes for the
offset launcher at 19.05 GHz. Dual -mode feed is equipped with polarizer on horn.
Theoretical (gaussian-beam) calculations are also included.
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GHz; the increase in cross polarization due to blockage was found
to be negligible in both cases.

One may with justification raise the question as to why the cross
polarization of the offset launcher, shown in Figs. 4 and 5, evidences
values of the order of 38 dB even with a feed that has negligible cross
polarization. There is an inherent depolarization introduced by an
offset reflection surface,2 which increases if OD, the angle between the
feed axis and the reflector axis, is increased. Figure 6 shows the experi-
mental results obtained by varying 00 between 12 and 26 degrees ;
the ratio of the maximum cross -polarized signal in the radiation
pattern to the on -axis co -polarized signal correspondingly varies from
-44 to -37 dB at both frequencies. Note that the ordinate of Fig. 6
is the average of the peaks of cross polarization obtained from an
azimuth scan of the launcher; they should not be misinterpreted as
on -axis values which, of course, are much lower. In the following
section, we show that calculations based on gaussian-mode theory
provide good agreement with the measured data; the theoretical
result is shown by a solid curve in Fig. 6.

III. THEORY

3.1 Cross polarization in the aperture

An approximate method for computing the cross polarization due
to the offset angle 00 consists of applying geometric optics to compute

-36

-38

-40

-42

-44

-46
12 14 16 18 20

0. IN DEGREES

22 24 26

Fig. 6-Plot of cross -polarization peaks at 19.05 and 28.5 GHz introduced by the
reflector itself as a function of offset angle, 00. Data are obtained by scanning the
launcher in azimuth. Gaussian -mode theory is shown by the solid line. Incident
polarization is horizontal.
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the reflected field in the aperture from that radiated by the feed horn.
The aperture field is then decomposed into two gaussian-beam modes
to predict the far field of the offset launcher; this is a logical procedure
because dual -mode horns produce an illumination that is approxi-
mated by a gaussian beam (see Fig. 3b).

The geometry of the offset launcher is shown in Fig. 7a. The dual -
mode feed horn approximately provides "balanced feed" polarization'
with respect to the coordinates (x', y', and z') aligned with the horn
axis which is tilted at angle Bo from the reflector axis. The field radiated
by the feed horn is given by

E1-= (O' sin 4)' gi; cos q5') f 4)') , (1)

where f' (B', 4)') is an arbitrary function of 0' and 4)', and r', B', and 4)'
are the usual spherical coordinates associated with the feed (see
Fig. 7b). The caret indicates a unit vector. In eq. (1), the expressions
corresponding to "vertical" polarization are used ; identical results
are obtained for "horizontal" polarization. ["Vertical" and "hori-
zontal" are used in the sense that the polarization of the field in the
aperture of an axisymmetric paraboloidal reflector coaxial with the
feed -horn axis would be vertical or horizontal when the feed -horn
polarization is as given in eq. (1).]'

The axis of the paraboloidal reflector shown in Fig. 7a is co -linear
with the z axis. An aperture field with no cross polarization would,
therefore, result if the feed illumination were given by

Ef = (6 sin (1) + (4 cos 0) f 4)), (2)

where r, 0, and 4) are the usual spherical coordinates associated with
the x, y, z coordinates of Fig. 7a, i.e., the coordinates of a feed horn
whose axis is aligned with the reflector axis. Theoretically, it is possible
to hypothesize an asymmetric "balanced" feed whose axis is aligned
with the reflector axis, giving the polarization of eq. (2), but whose
amplitude distribution is offset to illuminate the reflector as would
the amplitude distribution of a tilted symmetric "balanced" feed.
Simple means (excluding multiple reflectors, etc.) are not known for
the construction of such an asymmetric "balanced" feed. Therefore,
in applications, one must approximate an asymmetric "balanced"
feed horn with a tilted "balanced" feed horn; the cross polarization
thereby introduced is calculated below.

Using geometric optics, we assert that if the polarization of a ray
incident on the reflector from the feed is rotated by a given angle
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Fig. 7-(a) Launcher geometry. (b) Spherical coordinates. (c) Spherical triangle.

around the ray vector, then the polarization of the field of the corre-
sponding ray in the reflector aperture is rotated by that same angle.
By geometric optics, the intensity of the field in the aperture along a
ray is the same as the intensity of the field incident on the reflector
from the feed at its focus. Thus, the cross polarization in the aperture
relative to the peak in -line polarization in the aperture can be com-
puted by projecting the field of a tilted "balanced" feed horn, incident
at any point on the reflector, onto the cross -polarized asymmetric
"balanced" field at the same point and dividing by the peak in -line
field of the tilted "balanced" feed horn; i.e.,

Ep  re( cos 95) + (ig sin 0]C(0', ci5') =
Ep  [0 sin cp + if) cos O]irwak

(3)
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Performing the scalar products indicated in eq. (3) yields

C (0', 4/) = sin (4) - 4/ ± f (0' ,
T) ,

f' (0' , 0') [cos - + 7-)
peak ]-1'

(4)

where T is the angle between the primed and unprimed spherical
angle coordinates shown in Fig. 7c. The angle, 4/ - - T, is equal
to the area, A (called spherical excess), of the spherical triangle shown
in Fig. 7c and is related to the offset angle, 00, and the primed (feed
horn) coordinates by the formula'

A = 4)' - T = 2 arctan
co. ( .2 °' )

cost

2 )
(1)' - (5)

The feed -horn amplitude pattern, f', is approximately uniform in
4/ and maximum on axis (as for a corrugated or a dual -mode feed
horn), and r', the distance from the feed to the reflector, is relatively
constant over the region in which the cross -polarized field is a signifi-
cant fraction of the peak in -line field. In this case, the cross -polarization
amplitude can be approximated by

C (0', 4)')
f' (0- sin A -J.'

(0))
(6)

For a given 0', the cb' which maximizes A and the cross polarization is

4,.; = arcsin (tan (2-22 tan c. ) (7)

For offset angles, 00, less than or equal to 90 degrees and 0' less than
30 degrees, which covers the case of interest, Om is less than 16 degrees.
This leads us to approximate Om by 0 degrees, which results in a
particularly simple yet accurate formula for the peak cross -polarization
amplitude ratio, C, as will be shown. C is the ratio of the maximum
cross -polarized amplitude to the maximum in -line polarized amplitude.

For dual -mode and corrugated horns, the pattern is approximated
by a gaussian beam,'

f' (0') = e-a6", (8)

where a is related to the 10 -dB half -angle beamwidth, 0,, by

n
a = 1202 (9)
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Approximating On% by 0 degrees, we have the following relations for a
right spherical triangle (Fig. 7c) :

sin A = sin 00 sin 0'
1 + cos 00 cos 0'

Since we are interested in small 0',
0' sin 00

sin A = 1 + cos 00'

and eq. (6) becomes
sin 00 ,

C(0', 0,) u-
1

e-.8,2.
cos 00

(10)

(12)

By differentiating eq. (12) to locate the angle which maximizes
C(0' , 0;0, we find

and

0,, /21-761 = 0,/ (13)

-÷-

a In 10

Oc tan
00

(14)

As mentioned above, C is the ratio of the maximum cross -polarized
amplitude maximum in -line polarized amplitude. The subscript
a indicates that the ratio is of the maxima found in the reflector
aperture. If we denote by OT the half -angle of the gaussian beam
approximation to the feed -horn pattern, where the power is T dB
below that on axis, then eq. (14) becomes

00 1

OT tan -2 VeTln0
10

(15)

By comparing eq. (14) with the exact formula for gaussian beams,
eqs. (6), (7), and (8), eq. (14) is found accurate to within 0.1 dB for
all offset angles, 00, less than or equal to 90 degrees and all 10 -dB
half-beamwidth angles, 0 less than or equal to 45 degrees. The
maximum value of C in the exact formula was found by trial and error
with the aid of a calculator.

The above calculations give the cross polarization in the reflector
aperture ; as will be shown in the next section, eq. (14) is also a good
approximation for the far field in most cases.

3.2 Two -mode approximation to the aperture field

After reflection from the offset reflector, the gaussian beam from
the horn is converted into two gaussian beam modes in the aperture :
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a fundamental mode with the in -line polarization (denoted E00) and
a higher -order gaussian beam mode which includes the cross polariza-
tion (denoted E01). Depending on the polarization of the feed horn,
the polarization of the fundamental and higher -order modes vary
as shown in Fig. 8. For an arbitrary balanced feed polarization, a
superposition of the two polarization cases shown in Fig. 8 can be made.

The expressions for the gaussian beam modes are'

(i) Fundamental mode :

Eoo = (Hoor
wooVoo")- exp
woo

- .7k z"
P2

2Wo0

tarctan
kwon

2z"

(ii) Higher -order mode :

kp2 11
2800

(16)

Eoi = V01(I" cos a - r sin a) - Hoi(r sin a +2/3WoicosCOs a) I
W01

t

00

 exp

11

FUNDAMENTAL

100

FUNDAMENTAL

- jkz" - 2_2_ + 2z"
71,gi 1 - arctan

101

HIGHER ORDER

(a)

HIGHER ORDER

kp2

2R01
(17)

/1

TOTAL

ETOT

TOTAL

(b)

Fig. 8-Two-mode decomposition of aperture field (polarization looking in positive
z direction, i.e., looking at the reflector). (a) Feed horn vertically polarized. (b) Feed
horn horizontally polarized.
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Hoo, Voo and 1/01, Vol are the phasor coefficients for horizontally and
vertically polarized feeds. The subscripts refer to the standard TEM00
and TEM oi mode notations of Ref. 8; p, «, and z" are cylindrical
coordinates, with z" denoting the distance along the beam axis from
the beam waist. At the beam waist, the radius of curvature of the
phase front, R, is infinite, and the field varies. with increasing distance,
p, from the axis at a rate determined by w. For the fundamental mode,
the field decreases to the 1/e value at p = woo. For the higher -order
mode the field is maximum at p = woiN2 and decreases to 4 of
that value at p = woi. Away from the beam waist, z" X 0, the field
amplitude varies with p at a rate determined by w instead of w, and
the phase front has a finite radius of curvature, R. w and R are given
by8

and

w = w \11

R = z"[1

9z" )2
kw2

kw2 \21
k 2z"

(18)

(19)

Both modes have a characteristic exponential attenuation with
distance from axis, e -P211° 2, and a spherical wave front near the axis at
constant z", denoted by the term, e-1kP212R. Passing through a beam
waist, the on -axis phase advances by 7 for the fundamental mode and
27r for the higher -order mode (relative to the plane -wave retardation,
e-jk"). Thus, if the cross polarization and the in -line polarization
are in phase at the beam waist (normally near the reflector aperture),
they will be in phase quadrature at large distances from the beam
waist (the far field). This phase quadrature relation gives rise to a
beam shift with circular polarization as described in Ref. 2.

The choice of eq. (17) as the appropriate higher -order mode is based
on its ability to approximate simultaneously both the cross polariza-
tion and the "space" taper (amplitude asymmetry from top to bottom
of dish) of offset reflectors.

The in -line and cross -polarized fields in the aperture of the offset
launcher of Fig. 1 were computed exactly by means of eq. (3) ; the
resulting field -amplitude contours are shown in Fig. 9. In the aperture
plane, the in -line and cross -polarized fields are in phase. Thus, the
corresponding gaussian beam modes have their beam waists at the
aperture and are in phase. This implies that the total field is linearly
polarized everywhere in the aperture, and the direction of polarization
varies in a manner determined by the ratio of the in -line and cross -
polarized fields.
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Fig. 9-Amplitude contours for the example reflector shown in Fig. 1.

The gaussian beam fields required to match the exactly computed ap-
erture fields are found by first choosing a fundamental mode centered
on the aperture with beam waist radius woo such that it decreases
8.686 dB in power at the same radius as does the computed in -line
polarized field, both being normalized to unit amplitude on axis.

With these criteria and the approximation that r' is nearly constant
over the reflector,

00r' r = F sec' ( -75 , (20)

the parameters of the fundamental mode are determined as follows.
The radius, Pile, at which the field drops to 1/e times its on -axis value
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is found in the direction a = 0. (Note that pile is larger in the a = -7r/2
direction and smaller in the a = 7/2 direction due to the space taper
in these directions. Thus, pile, as determined from the a = 0 direction,
approximates the average plie over all directions.)

woo Pll e = 2r0 sin (10,"/e), (21)

where, from the gaussian approximation for the feed -horn pattern,

011e = 21n10
(22)

For unit amplitude on -axis, eq. (16) requires (we restrict our dis-
cussion here to the vertically polarized case ; the horizontally polarized
case yields identical expressions)

v 0. = 1. (23)

The higher -order mode parameters are found from the cross -polari-
zation characteristics. Since the cross polarization is maximum at 0.",
we have, from eq. (13),

win = 2V2ro sin (10,,,) = 2Vro sin /
2 lr-C)71t9c

(24)

By comparing eqs. (24) and (21), it is seen that, for small 0 w01 = woo.
The amplitude of the higher -order gaussian beam mode is given

by the maximum cross -polarization amplitude ratio (Ca). From eqs.
(14) and (17) :

1701 =
In 10

000, tan -2
(25)

The phase of the higher -order mode follows from the fact that at the
beam waist the in -line and cross -polarized fields are in phase.

Using eqs. (21) through (25), the gaussian beam mode approxi-
mations to the aperture fields, plotted as dashed contours in Fig. 9,
compare favorably with those obtained by geometrical optics (solid
contours).

3.3 The far fields

The parameters of the gaussian beam modes being thus determined,
it is possible to compute the in -line and cross -polarized fields at any
position in the main beam of the field radiated from the reflector.
The far field is of particular interest,

kw'z" >> -2
'

(26)
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allowing eqs. (18) and (19) to be approximated by

9z"
w = and R = z".

hew

Also, if the beamwidth is small,

P . PAl(z,,)2 p2 = zu . of =

From eqs. (16) and (17), the in -line field is therefore given by

jkrf [V
()Argo expF. ,

1140

.11/21 (sin a) exp (- ±cf- )1
svIoi tiq0n

and the cross -polarized field by
ke-

2

f
0 :2f9

E 11217 01Woi ,
Ofoi (cos a) exp

rf w

for the "vertically polarized feed. We have defined

(27)

(28)

(29)

(30)

A 9 2
'oo , and %to °- (31)

Kwoo h7woi

the angular beam radii in the far field.
The Cf from eqs. (14), (23), (25), (29), and (30), where the subscript,

f, indicates the far -field maximum cross -polarization amplitude
ratio, is

V01 ( W01 )2 ( W01 Y
(C1 = d ,-- = C 32)

1/ oo-Ve woo woo

Thus, the far -field C is j(woi/w(,0)2 times that in the aperture and
occurs in the azimuth plane at an angle

4/01 radians.
V2 kwo1

(33)

As mentioned above, for small feed beamwidths, 0,,

w01 = woo, (34)

so the far -field C is approximately equal to that of the aperture, and
the peak cross -polarization lobe occurs at approximately the -4.34 -
dB level of the main beam.

A comparison of the experimental and theoretical far -field patterns
for in -line and cross -polarized fields from the offset launcher of Fig. 1
at 28.56 GHz and 19.04 GHz are shown in Figs. 4 and 5. The main
discrepancy between theory and experiment are the shoulders on the
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sides of the experimental pattern at a level of about -24 dB not
present on the sides of the theoretical main beam. As mentioned in
Section 2.3, the shoulders are probably due to phase error in the horn
aperture which is not in the gaussian feed pattern assumed in the
theory.

3.4 Truncation effects

The effect of truncating the aperture of the launcher at various
circular contours of the fundamental mode can be computed. Let the
radius of the aperture at the truncation be c. Then the taper at the
truncation is

T = ( In 10 )( woo )
20 c

(35)

The radiation integrals in the x", z" plane (where the cross -polarization
is largest) for the fundamental mode and higher -order mode are

E001

and

E011 =

pdp daV 00 exp C-
0

(c 2a112p
pdp f daVoi

woi

( :00 )
2

- jkp cos a sin Of], (36)

 exp [- ( -Po, - jkp cos a sin 0f cos a cos 0 f . (37)
w

2

From eq. (36), the in -line polarization far -field on -axis is

[ (-c2Eoof Of = 0) = r 1700Wg0 1 - exp 2
woo

(38)

The cross -polarized far -field pattern from (37) is, letting cos 0f 1,

OiW
EOlf

gi1(0f), (39)
tie

where
ciwol

/(0f) A 2-N,2ef i(tkw 01 sin Of)dt, (40)

and J1(x) is the first -order Bessel function of the first kind. From eqs.
(34) and (35), choosing the taper, T, determines /(0f). Numerically
integrating eq. (40), the peak value, /p, of /(0f) and the location,
Ofp, at which /(0f) is maximum were determined for various tapers, T.
The resulting far field Cf relative to that of an infinite aperture,

-20 logio - - 20 logio e_c2 v,200) (41)
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is plotted in Fig. 10 along with the angular position, Ofp, of the peak
in the cross -polarization lobe relative to that, Ofp, of an infinite
aperture. Notice that the effect of truncation is to reduce the cross -
polarized signal relative to the co -polarized signal (higher C1) and to
move the cross -polarization lobes out to larger angles off -axis. Further-
more, these truncation effects depend only on the truncation taper
and are essentially independent of the offset geometry.

Figure 11 shows Cf as determined from the gaussian beam formulas
for a wide range of offset reflector geometries indicating an infinite
aperture (no truncation) and the aperture truncated at a 10 -dB taper.
With the infinite aperture, the Cf from the gaussian beam theory are
within 0.2 dB of the cross polarization in the aperture, Ca (not shown),
for all geometries on the figure. When the aperture is truncated at the
10 -dB level, C1 is, from Fig. 10, 2.2 dB smaller than that for the
infinite aperture, as is also seen from the dashed curve in Fig. 11.
These dashed curves agree with cross polarization obtained by nu-
merically computing2 the radiation integral over the aperture field
found by geometrical optics projection of the radiation pattern of a
dual -mode feed horn.

Using eqs. (14) and (32), the maximum cross -polarization levels
as a function of offset angle were computed for the precise geometry

w
2.4 < n

I -
cc cr

\ ow
LL 0-

\ w <
- \ co

1-
.- 2.0 0\ -1z_\ z 0-OZ

IZ< Z\ N <- -1.6 EC u_
< 0..,._.... -I

*.4 0 I-,. ..... 8 °- <
.... . J, ,T.

.... 4-...'- ....... 1.2 9?..,' 0 0
".......

4.9- C)""" ...........
ClIO wY

L11I:
0- <J

,-.. - 0.8 LI- L1J
0 CC

Z LIJ
0 CC
P
V) cc- - 0.4 0 w2
cc

<
<0J w
DI--

<
I

I I I 0 Z< Z0
5 10 15 20 25 30 35 D

CC

T, TAPER AT TRUNCATION, IN dB I -

Fig. 10-Effect of aperture truncation on cross -polarization pattern.
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of the offset launcher of Fig. 1. The factor (wol/w00)2 which converts
aperture cross polarization to far -field cross polarization is only 1.0004
(i.e., 0.008 dB). The 10 -dB half angle, 0,, of the feed -horn gaussian-
beam approximation (discussed in Section 2.1) is 9 degrees. The
calculated cross polarization is compared with the measured cross
polarization as a function of offset angle in Fig. 6. The theory appears
to be in good agreement with the measurements at both frequencies.

IV. CONCLUSIONS

It has been demonstrated thAt an offset launcher can provide low
cross polarization and a low-sidelobe symmetrical beam when fed
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with a suitable horn at a small enough offset angle. Simple formulas
for the far -field performance of the launcher are derived in terms of
two gaussian modes ; comparison with measurements at 19 and 28
GHz shows good agreement. The maximum cross -polarization ampli-
tude ratio is found to change little from aperture to far field. Offset
reflector geometries have also been useful for multiple -beam
applications.9"°
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Forney's asymptotic upper bound for per -bit error probability in the
detection of pulse -amplitude -modulated digital data in the presence of
additive white gaussian noise was obtained for the case where the dura-
tion of the intersymbol interference is bounded. In this paper, we show the
validity of Forney's bound under much weaker assumptions that allow
unbounded intersymbol interference.

I. INTRODUCTION

We consider the situation where a data sequence ao, , aN_I of ±l's
is transmitted via pulse amplitude modulation as EP'10' h(t - kT)ak
and received in the presence of additive white gaussian noise with one-
sided spectral density a2. In a recent series of papers, Forney,'
Foschini,2 and Mazo3 developed an asymptotic (as a2 0) upper
bound on the error probability per data bit Pe:

1 2 (h)
Pe exp

d40.2
[1 o(1)] , (1)

where d(h) is the minimum £2 distance between distinct modulated
pulse sequences. This bound holds under the strong assumption that
the pulse h(t) is supported on finite interval.

In this paper, we show that (1) is valid for a considerably wider class
of h (t) . Roughly speaking, our assumptions are little more than that
h (t) is in 21( - , c) and 22( - co oc ), and that H(f), the Fourier
transform of h (t), does not vanish on an interval. The precise conditions
on h (t) under which (1) holds are given below. In particular, (1) is
valid when H(f) is a rational function.

In Section II we give a precise statement of our results, and the proof
follows in Section III.

II. FORMAL STATEMENT OF PROBLEM AND RESULTS

In this section, we give a precise statement of the problem and the
results that were stated informally in Section I.

We begin with some definitions. We denote N vectors by boldface
superscripted letters, and components by subscripted letters, e.g.
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uN = (uo, , uN-1). When the dimension N is clear from the context,
we omit the superscript. Define the sets aN, at,, aN,k by

aN = fuN: u; = f1,0<j<<=N-1},
= luN: = +1,uj= f1, kJ, (2)

aNk= luN :uk = -1,uj= ±i,
Of course, aN = Cqk U aN,k. Again, when N is clear from the context,
we write aN = a, a = ak , QN,k = ak

Next, let f (t), g (t), and - < t < 00 be real -valued measurable
functions. The inner product of f and g is denoted by

( f, g) = f f (t)g (t)dt, (3a)

and the norm of f is

11111 = = (E. p(odt);. (3b)

For a vector uN E aN, and f (t), - 00 < t < 00, a real -valued function,
let the function h*u = s be defined by

N-1
s(t) = E f (t - kT)uk,

k=--.

where T > 0 is a fixed parameter.
We are concerned with the following modulation scheme. Let

aN = (ao, , aN-1) E aN denote the data to be transmitted. Assume
that all the 2N vectors in aN are equally likely. The transmitted signal
is the function h*aN, where the pulse h (t) is a fixed function for which
11h11 < 00 . The received signal is

y(t) = (h*aN) (t) z (t), -00 < t < 00 , (4)

where z(t) is a sample from a white gaussian noise process with zero
mean and one-sided spectral density 0-2.

The decoder associates with the received signal y, a vector
D(y) = aN E aN. Corresponding to a given decoder function D, let
the bit error probability be

1 N -1
P e N (D) =

1V k = o
E Pr kik ad.

Also, define the optimum error probability

P:N = P:N (h 0'2). = inf PeN(D).
D

(5)

(6)

We are concerned here with the asymptotics of PeN(h, 0), as cr2 -÷ 0,
i.e., as the signal-to-noise ratio approaches infinity. Accordingly, define

EN (h) = - lim inf (72 log P:N (h, Q2),
2 -00
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so that, as a2 0,

P:N(h, 0-2) < exp EN,(h) [1 + o(1)]} (7h)

Next, consider a particular decoder that is of special interest here-
the maximum -likelihood decoder, denoted Dh. In the present problem,
Dh(y) can be taken to be that ti E CAN such that for all u E aN,
u ft,

(8)

where yi is the projection of y onto the subspace of 22(- co)

spanned by the signals h*u, u E aN. With probability 1, (8) will be
satisfied for some ft E ctiv.

Now, subject to the condition that h(t) has finite support, i.e., there
exists a to > 0 such that

h(t) = 0, for t > to, (9)

Forney,' Foschini,2 and 11Iazo3 have shown that E(h) > d2(h)/4, where
the "minimum distance" d(h) is defined by

d(h) = lim inf min Ilh*u h *v IIN-.' u,v Ea.v
V

Thus, as a2 0,

PAN (h, a2) 5_ exp - d2L12') [1+ o(1)]}.

(10)

Inequality (11) is established by showing that the error probability
for the maximum likelihood decoder, PeN(Dh), is overbounded by the
right member of (11). This is done by writing (this is not as difficult as
it looks)

1

PeN(Dh) = E 2-(N-.) Pr IDh(y) E h*u z}A k1 uE
.k

= E E Pr U {ph(Y) v} ly = h*u zi
iv uGat, vca,;

< _ E E 2 -(N -I,
k ue a:

l>r i
U i jjyi - h*uj

ve
Ilyl-h*vII}ly= it*u+z}

E E 2-I.,-I)l'ru (z, (V - u))
k uE Qk ve Cti

>= 1-1Ih*(v - u)111
A
= zi'N(h) (72) (12)

Relation (12) is valid for any h(t). Subject to condition (9), it is then
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shown that, as a' -> 0,

Q2) < exp (142(h)2 [1 01(1)]} (13)

where 01(1) does not depend on N. Thus, since P:N PeN(Dh), (11)
holds. Further, the o(1) term in (11) does not depend on N. An
interesting by-product of these results is that the performance indi-
cated in (11) is achievable via the decoder Dh. This decoder can be
instrumented (using the Viterbi algorithm) with a complexity which
remains bounded as N

We now drop the assumption that CO has finite support. Instead,
we assume that h(t) satisfies the following conditions :

(i) There exists a nonnegative 21 function g 0(0, i.e.,

j_.go(t)dt < 00,

such that
1h(t)I g o(t) , - 00 < t < 00, (14)

and such that go is monotone in I I I .

(ii) Let
H(f) = f h (t)e- "2" is dt , -00 < f < 00 (15)

be the Fourier transform of h(t). By (i), f I h.(1) I dt < 00, so that H(f)
is well defined for all f. We assume that there exists a nonnegative
function G1(f) which is monotone in I f , such that

11/M12 < G1(f), - °° < f < co (16)

(iii) Let the "folded spectrum" of h be

8(f) = n=-0.
H(f )

2 1
0 f yi (17)

We show in Appendix A that S ( f), 0 < f :5_ 1/T, is finite and con-
tinuous. We assume that S(f) > 0, 0 5_ f < 1/T. Let

m = min S(f) > 0, (18)
1:11.f 51/T

where the existence of the minimum follows from the continuity of
S(f) on the compact interval [0, 1/T].

Remarks :

(1) Condition (i) is just slightly stronger than simply requiring h
to be in 21( - 00, 00). Condition (14) forces it (t) to go to zero as I tl --)00

in a "well-behaved" manner. Condition (ii) imposes a similar condition
on IH(f)12.

(2) For the very important special case where H(f) is a rational
function, i.e., H(f) = P(i2rf)/Q(i2rf), and P, Q are polynomials
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with the degree of P < degree of Q, then conditions (i) and (ii) are
swaged. Since H ( f) has only a finite number of zeros, condition (iii)
is 00 satisfied.

(3) Suppose that H(f) has no more than a countable number of
Aeros, but that S(f) = 0 for some f E [0, 1/T]. It is easy to see that
some arbitrarily small change in T will cause S(f) to be strictly
positive for all f E [0, 1/T]. Thus, condition (iii) is not especially
restrictive.

We now state our main result, the proof of which is in Section III.

Theorem 1: Let h satisfy conditions (i), (ii), and (iii) above. Then, for
all e > 0, there exists a To = ro(e) sufficiently large so that, for all
T > TO)

PeN(Di,r) 1,1iN[h, o-2(1 c)21,

where

11(1), T,

11,(I) = 1 (19)

Lo, It! > r,
is the truncated version of h(t). The quantity To does not depend on N.

Since h, has finite support, we conclude from Theorem 1 and (13)
that, for all E > 0 and T sufficiently large,

P:N(h, cr2) C PeN(Dhr)

exp o2(1n}d2(hr)(20a)
I 4a2(1

[where 02(1) is independent of X] so that
d2 (h r)

E N(h) = - lim inf a2 log Pe(h, a2)
Gr2 -3 - 4(1 + e)2

We show in Appendix B that

d(h,) -4 d(h), as T ->

so that letting E 0 and r -) co in (20b) yields

EN(h) >= d2(h)
4

We state this as

(20b)

(21)

(22)

Corollary 2: Let h satisfy conditions (i) to (iii) above. Then, as a2 0,

PN(h, 02) 5 exp d2 4(h)2 [1 + 03(1)] ,

where 03(1) is independent of N.
We conclude this section with a remark concerning the relationship

of the bound of Forney et al. (11) with the result of Corollary 2. We
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can rewrite (11) as

P:N(h, 0.2) = K1(to, 0.2)e-d2(h)/2,2,

and the bound of Corollary 2 as

PeN(h, 0.2) K2(11h111,
02)e_d2(h),402.

Here, we made explicit the dependence of K1 on the support interval
to of h(t) [see (9)J, and the dependence of K2 on 111/111, the 21 norm

of h, and on in = min S(f). Both K1 and K2 increase in 1/0.2 slower
than ed2(h)/4°2. But K1(10, 0.2) -->00 as to -*00, and K2(11h111, m, o-2) -->

as 11h111 co or as in - 0. Thus, although it might seem reasonable
to assume that all h(t) satisfy (9) for some to, the bound of (23) depends
on that to and becomes meaningless as to -400. Similarly, although
it might be reasonable to assume for any h(t) that II h. < ao and
m = min S(f) > 0, the bound of (24) depends on these quantities
and also becomes meaningless as Ilh II, -400 or in -+ 0. Therefore, both
bounds have their limitations; the new one, however, is considerably
less limited.

III. PROOF OF THEOREM 1

Let h satisfy (i) to (iii). Let hr(t) be as defined in (19), and let
hr(t) = h(t) - h ,(G), i.e.,

r(t) =

C (z, h,*(v - u)) > (1 +2 ) lih,*(v - u)I121,

for all u E v E a7. Substituting (28) into (27) yields, on com-
parison with (12),

(25)0, III 5 r,
h(t), ItI > T.

Then, if the data sequence is u E aN, the received sequence is y
= h*u z = hr*u where

= z kr*u. (26)

Following the same steps as in (12), we obtain

Peiv(Dhr) < 1 E E 2-(N-1)
N k ue cit

Pr U h,*(v - u)) ilh,*(v - u) Iljji, (27)
vedi

where i is given in (26).
We will show that, for arbitrary t > 0, there exists a To = To(e, h)

(To independent of N), such that for T >= To, the event.

{ (i, h,*(v - u)) - u)112)
(28)

PeN(Dhi) 4,N[hr, 0.2(1 + e)21

which is Theorem 1. It remains to establish (28).
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Relation (28) will follow immediately when we show the existence
of a ro(E, h) such that, for r >_ To and all u, v,

(1/ oru, t1,* (v - u)) < %h,*(v - u)112. (29)

If (29) holds, the event in the left member of (28)

(z, 11,*(v - u)) > !`,1111,*(v - u) L21

= (z, h,* (v - u)) >= 2 1/1,*(N7 - u) - h 7.* (v - u))}

+
C{(2) h T*(Vu)) 1 E

11 (v- U)112} (30)

which is the right member of (28). Thus, it remains to establish (29).
Let w = (Wo, , = v - u. The entries of w are 0, +2.

Also set q = h r*u, and r = hocw. Then

Orr*u, h,*(v - u))1 = (q, r) f x l q (t) I - (t) I dt

Consider

(01 dt =

C- s<utp<

N -1
h ,(t - tc'k

k

11)

clt

fI h - kT)Idt

0)1] j HO dt. (31)

N -1
11111 E I wk , (32)

k

where dit111 = f h (t) dt < , by condition (i).
We obtain an upper bound on E wk as follows. Since wk = 0, +2,

we have E ick = z E id. Now, let 11 r( f) = h r(t)e""ndt he
the Fourier transform of h r(t), and let

ST(f) = E
11=-"-

H r(f n)
2 10 < f (33)

be the corresponding folded spectrum. Then, from Parseval's theorem,

II '112 = = - 121 E

fo

1/7' s (f) E wkoirkTi12df
k

> inf ,ST(f)]
S1/7'

Therefore,

1/T

10

s7(.0] E = [inf S (Di E IlCkl  2.

E wke i2irkTf 12(if

2E inf
o

(34)

(35)
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Combining (31), (32), and (35), we have

(q,r)i - s uP I g(01 inf sr(D1-' 111h11111r112. (36)
1/T

Now, we show in Appendix A that

Ern inf [ inf ASC(f)] 711 > 0, (37)
r-ce OS1 .11T

where m = min S(f) > 0 [see condition (iii)]. Further, using condi-
tion (i) [particularly the monotonicity of go(t) ], we have

N-1
10)1 = I E kr(t - kT)uk E I lir(t -

k k=0

T(i - kT)I = E Ict - kT) I

E go(t - kT) < E [MT +,in go( -7" j71)]
J -o

ET go(t)dt+1 f go(t)dt--4 0, as 00 (38)
T

Combining (36), (37), and (38), we obtain

(q, r)I _ h,* (v - u))1 0

11r112 1111,*(v - u112 '

as T 00 . This is equivalent to (29), so that the proof of Theorem 1
is complete.
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APPENDIX A
The Folded Spectrum 5(f)

We first show that S(f) as given in (17) is always finite, i.e., the
series in (17) converges for all f E [0, 1/T]. From condition (ii),

using the monotonicity of G1,
2

E(no,f) E
7,

+ 5_ E Gi(f + -T
n

In' ?no In14no

= E Gi( + )
n6-no

ao

E G1( n ± 1) E G1( ) T
J-(no-2)1Tn5-no ttno

Gi(x)dx

T Gi(x)dx- 0, as no 00, (39)
fo-1/T

so that the series in (17) converges.
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To establish the continuity of S(f), write

S(f) = E
I n!

H(f+

For arbitrary a, 0 Ls. f < 1/T,

1S(f) - S(f + 6)1
n5no
E [

2

+ (n 0, f), 0 < f < 1/T.

2

HQ + - HQ + a +
2]

+ I E(n0, + I (710, + 01.

(40)

(41)

Now since h(t) G 21(- cc , cc), H(f) is continuous. To make the
right member of ineq. (41) LC E, first let no be sufficiently large so that
the last two terms of the right member of ineq. (41) < 12; then
choose la I sufficiently small so that the first term of the right member
of inequality (41) < E/2. This establishes the continuity of S(f).

We next verify (37), which concerns ST (f). Since It, is in eel( - 00 co ),

Hr(f) exists for all f E (- cc co). Thus, ST (f)as defined in (33) is
meaningful, though perhaps infinite on a set of measure zero. With
E(nof) as in (39), write

00

ST(f) - S(f) = E
n=---

E[Inl .s_no

Hr(f +

Hi(f + -

- + 21-1)
2

n= \

HQ + 2] - (no, f). (42)

Now let E > 0 be arbitrary. From (39) we can choose no sufficiently
large such that t(no,f) 5 E/2, for f E [0, 1/T]. With no so chosen,

ST(f) - S(f) E [
inl <no

Hr(f + -174 )
2

H(J± - 2- (43)

Now let HT (f)be the Fourier transform of kr. Then

IH(DI = Ith(f) Rr(DI IM(DI IlL(DI-
Therefore

11(f)I2 IHT(DI2 211-1,(DI Ifl(DI 117,(f)12

ITh(f)12 + 21111,111111141+

where II III denotes cei norm. Since Ilk, Ili 0, as T GO, if T is
sufficiently large, then

111,(f)1 - IH(f)i
2 (2no ± 1) '

fE (- co, co). (44)

Inequalities (43) and (44) imply that, for all E > 0, there exists a
TO(E) such that for all T > TO(E),

1si.(f) s(f) - E, 0 (45)
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Thus, for T > (rof),

inf ST (f)inf 8(f) - e = m - e. (46)
51/T 05.f 1/T

Letting T co and E 0 in (46) yields (37).

APPENDIX B

Convergence of the Minimum Distance

In this appendix, we shall verify (21), i.e.,

d(hr)-> d(h), as T -4 00 . (47)

From the definition of d(hr) (10), for arbitrary E > 0, we are assured
of the existence of a w = u - v such that u, v E (iN, and

Ch r) (48)

Repeating the steps in (34), we obtain

1/T N-1
11/17*W112 = f 8,(.1) E wkei27,,Tf 12(f 2[inf Sr( f)]

kE
wk . (49)

0 0

From (37) we can choose T sufficiently large so thatinf ST (f)(50)
Hence, for such a choice of T,

N-1 2E iwki [d(hr) +
2)77.

(51)
k=0

Now

d(h) = Ilhow - kr*wIl +
LC_ d(hr) e Ifir*w II. (52)

Since
(Tiocw) (1) = E - kT)  Wk,

k

we have, with T large enough to satisfy (51),

Iwk IIJ1rII = Iwki < 1!).4rii [d(hr) e]2. (53)

Combining (52) and (53) yields for T sufficiently large (and e > 0
arbitrary)

d(h) d(hT) E [d(hr)
]2.
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Letting 7 -> x; and e 0 yields

d(h) < lim inf d(hT). (55)

The identical argument with h and h reversed yields for all 7 > 0,
E > 0,

d(hr) d(h) e +111;4 [d(h) e12,
2 in

so that (letting -T 0)

Inn sup d(h,) < d(h). (56)
Tex

Inequalities (55) and (56) yield (47) or (21), completing the proof.
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