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We consider the situation in which digital data is to be reliably trans-
mitted over a discrete, memoryless channel (DMC) that is subjected to a
wire -tap at the receiver. We assume that the wire -tapper views the channel
output via a second DMC. Encoding by the transmitter and decoding by the
receiver are permitted. However, the code books used in these operations are
assumed to be known by the wire -tapper. The designer attempts to build
the encoder -decoder in such a way as to maximize the transmission rate R,
and the equivocation d of the data as seen. by the wire -tapper. In this paper,
we find the trade-off curve between R and d, assuming essentially perfect
("error -free") transmission. In particular, if d is equal to HS, the entropy
of the data source, then we consider that the transmission is accomplished
in perfect secrecy. Our results imply that there exists a C8 > 0, such
that reliable transmission at rates up to C8 is possible in approximately
perfect secrecy.

I. INTRODUCTION

In this paper we study a (perhaps noisy) communication system
that is being wire -tapped via a second noisy channel. Our object is to
encode the data in such a way that the wire-tapper's level of confusion
will be as high as possible. To fix ideas, consider first the simple special
case depicted in Fig. 1 (in which the main communication system is
noiseless). The source emits a data sequence SI, 82, , which consists
of independent copies of the binary random variable S, where
Pr {S = 0 } = Pr {8 = 1 = 1. The encoder examines the first K
source bits SK = (S1, , SK) and encodes SK into a binary N vector
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Fig. 1-Wire-tap channel (special case).

XN = (X1, , XN). XN in turn is transmitted perfectly to the decoder
via the noiseless channel and is transformed into a binary data stream
SK = (SI, , SK) for delivery to the destination. The "error proba-
bility" is defined as

=1 Pr { Sk .

K k=1
(1)

The entire process is repeated on successive blocks of K source bits.
The transmission rate is K/N bits per transmitted channel symbol.

The wire -tapper observes XN through a (memory -
less) binary symmetric channel (Bsc) with crossover probability
po(0 < po :5- 1). The corresponding output at the wire -tap is ZN
= (Z1, , ZN), so that for x, z = 0, 1 (1 < n < N),

Pr {Z. = zIX. = x} = (1 - 130)3x,. -F po(1 - Ox..).

We take the equivocation
1

(46,= H SK I ZN) (2)

as a measure of the degree to which the wire -tapper is confused. The
logarithms in H are, as are all logarithms in this paper, taken to the
base 2. The system designer would like to have P. close to zero, with
K/N and A as large as possible.

Consider the following schemes :

(i) Set K = N = 1, and let X1 = S1. This results in P. = 0,
K/N = 1, and A = H(Xi I Zi) = h(po), where

h(X) = - X log X - (1 - X) log (1 - X), 0 < X < 1,

(take 0 log 0 = 0).
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Pr {S1 = 01ZN = z} =Pr

(ii) Set K = 1, and let N be arbitrary. Let Co be the subset of
binary N space, {0, 1} N, consisting of those N vectors with even parity
(i.e., an even number of l's). Let CI C {0, 1 N be the subset of vectors
with odd parity. The encoder works as follows. When Si = i, (i = 0, 1),
the encoder output X -v is a randomly chosen vector in C. Thus, the
encoder is a channel with transition probability

Pr {XN = xISI = =

for i = 0, 1. Clearly, the decoder can recover Si from XN perfectly, so
that Pe = 0. We now turn to the wire -tapper who observes ZN, the
output of the Bsc corresponding to the input XN. Let z E {0, 1} N be
a vector of, say, even parity. Then

Pr {Si = 01ZN = z} = Pr the BSC makes an
even number of errors

) _o pa)N-i = + 1(1 - 2po)N.
J=o

j CVPII

The last equality can be verified by applying the binomial formula to

Then

12-(N-1) x E C
0

ci,

[(1 - po) xpo].v = N - po)N-5( ±x)i.
i=o

2 E (N. ) RR1 - p.) -v -j = (1 - pa 1-po)v + (1 - po - 1 po)N
j even .1

= 1 + (1 - 2po)N
(S. P. Lloyd). Similarly, for z E {0, 1} N of odd parity,

the BSC makes an
odd number of errors

1 - 1(1 - 2po)N.
Therefore, for all z E { 0, 1}N,

H (SlIZN = z) - 2po)N],
so that

A = H(S1 1 ZN) = 1/E1 - 1(1 - 2po)N]

-4 1 = H(Si), as N co .

Thus, as N -*00 , the equivocation at the wire -tap approaches the
unconditional source entropy, so that communication is accomplished
in perfect secrecy. The "catch" is that, as N -> co , the transmission
rate K/ N = 1/N -+ 0.
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A central question to which this paper is addressed is whether or
not it is possible to transmit at a rate bounded away from zero, and
yet achieve approximately perfect secrecy, i.e., hi H (Si) . Before
giving the answer to this question, we shall describe the more general
problem that is addressed in the sequel.

Refer to Fig. 2. The source is discrete and memoryless with entropy
Hs. The "main channel" and the "wire -tap channel" are discrete
memoryless channels with transition probabilities QM( I  ) and
Qw( I .), respectively. The source and the transition probabilities Qm
and Qw are given and fixed. The encoder, as in the above example, is a
channel with the K vector SK as input and the N vector XN as output.
The vector AN is in turn the input to the main channel. The main
channel output and the wire -tap channel input is YN. The wire -tap
channel output is ZN. The decoder associates a K vector SK with YN,
and the error probability Pe is given by (1). The equivocation A is
given by (2), and the transmission rate is KHs/N source bits per
channel input symbol. Roughly speaking, a pair (R, d) is achievable
if it is possible to find an encoder -decoder with arbitrarily small Pe,
and KHs/N about R, and A about d (with perhaps N and K very
large). Our main problem is the characterization of the family of
achievable (R, d) pairs, and such a characterization is given in Theorem
2. It turns out (Theorem 3) that, in nearly every case, there exists a
"secrecy capacity," C. > 0, such that (C8, Hs) is achievable [while,
for R > C8, (R, Hs) is not achievable]. Thus, it is possible to reliably
transmit information at the positive rate C. in essentially perfect
secrecy.

For the special case of our introductory example (Hs = 1, QM
corresponding to a noiseless channel and Qw to a Bsc), the conclusion
of Theorem 2 specializes to the assertion that (R, d) is achievable if
and only if 0 R 1, 0 < d < 1, and Rd < h(po). Note that scheme
(i) suggested above for this special case asserts that R = 1, d = h(po)

SK

SOURCE ENCODER
XN MAIN CHANNEL

QM

YN SK
DECODER

WIRE -TAP CHANNEL
Qw

ZN

Fig. 2-Wire-tap channel (general case).
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is achievable. From Theorem 2, this value of d = h (N) is the maxi-
mum achievable d, if R = 1. Scheme (ii) above asserts that R = 0,
d = 1 is achievable, but this is distinctly suboptimal since from
Theorem 2, R = 1, (po), d = 1 is achievable. Thus, reliable trans-
mission at a rate h (po) is possible with perfect secrecy, and C, = h (po).

An outline of the remainder of this paper now follows. In Section
II, we give a formal statement of the problem and state the main
results (Theorems 2 and 3). In Section III we give a proof of Theorem
2 for the special case discussed above (main channel noiseless, wire-tap
channel a Bsc). In Section IV, we prove the converse half of Theorem 2,
and in Section V the direct half of that theorem.

II. FORMAL STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

In this section we give a precise statement of the problem that we
stated informally in Section I. We then summarize our results.

First, a word about notation. Let CU. be an arbitrary finite set. Denote
its cardinality by 1911 I. Consider 91N, the set of N vectors with com-
ponents in 91. The members of cii.N will be written as

uN = (u1, 2l2, " , UN),

where subscripted letters denote the components and boldface super -
scripted letters denote vectors. A similar convention applies to random
vectors and random variables, which are denoted by upper-case letters.
When the dimension N of a vector is clear from the context, we omit
the superscript.

For random variables X, Y, Z, etc., the notation H(X), H(XIY),
I (X ; Y), I (X ; Y I Z), etc., denotes the standard information quantities
as defined in Gallager.' The logarithms in these quantities are, as are
all logarithms in this paper, taken to the base 2. Finally, for n = 3, 4,
5, , we say that the sequence of random variables { Xi 1 7=1 is a
"Markov chain" if (X1, X2, , Xj_i) and (X;+1, , X .) are condi-
tionally independent, given X;(1 < j < ii). We make repeated use of
the fact that, if X1, X2, X3 is a Markov chain, then

H (X3I X 1, X2) = H (X3I X2). (4)

At this point we call attention to Appendix A, in which the data-
processing theorem and Fano's inequality are given in several forms.

We now turn to the description of the communication system. We
assume that the system designer is given a source and two channels
that are defined as follows.

(i) The source is defined by the sequence { Sk r, where the Sk are
independent, identically distributed random variables that take
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values in the finite set 8. We assume that the probability law that
defines the { Sk } is known. Let the entropy H(Sk) = Hs. In Appendix
C we show how to extend the results of this paper to arbitrary station-
ary finite alphabet ergodic sources.

(ii) The main channel is a discrete memoryless channel with finite
input alphabet X, finite output alphabet J, and transition probability
Qm(yix), x E X, y E cy. Since the channel is memoryless, the transi-
tion probability for N vectors is

(217)(y1x) = II Qm(yn I x.).
n=1

(5)

Denote the channel capacity of the main channel by CM.
(iii) The wire -tap channel is also a discrete memoryless channel

with input alphabet 'y, finite output alphabet b, and transition
probability Qw (z ly), y E 9J, z E b. The cascade of the main channel
and the wire -tap channel is another memoryless channel with transition
probability

Qmw(z1x) = E (201y)Qm(ylx). (6)
YEW

Occasionally, when there is no ambiguity, we use the transition proba-
bility of a channel to denote the channel itself. Let Cm w be the capacity
of channel Qmw.

With the source statistics and channels QM and Qw given, the
designer must specify an encoder and a decoder, defined as follows.

(iv) The encoder with parameters (K, N) is another channel with
input alphabet 8", output alphabet XN, and transition proba-
bility q$ (x 1 s) , s E 8K, x E xN. When the K source variables
Sic = (S1, , SK) are the input to the encoder, the output is the
random vector XN. Let YN and ZN be the output of channels QT and
Oa, respectively, when the input is XN. The equivocation of the
source at the output of the wire -tap channel (corresponding to a
particular encoder) is

1
A

A
= itc- H(sKizN). (7)

We take A as our criterion of the wire-tapper's confusion. From the
system designer's point of view, it is, of course, desirable to make A
large.

(v) The decoder is a mapping

ID: r _48". (8a)

Let S = (S 1, , SK ) = ID(Y). Corresponding to a given encoder and

1360 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



decoder, the error -rate is

NP = 1 E Pr 18k Ski .

K k=1 (8b)

We refer to the above as an encoder -decoder (K, N, A, Pe).' The
applicability of the above to the system in Fig. 2 should be obvious.

Next, we say that the pair (R, d) (where R, d > 0) is achievable if,
for all E > 0, there exists an encoder -decoder (N, K, A, Pe) for which

(H sK)
N = (9a)

A >>= d - E, (9b)

P, < E. (9c)

Our problem 18 to characterize the set a of achievable (R, d) pairs.
Let us remark here that it follows immediately from the definition
that 61. is a closed subset of the first quadrant of the (R, d) plane.
Before stating our characterization of ea, we digress to discuss a certain
information -theoretic quantity that plays a crucial role in our solution.

Consider the channels QM, Qw, and QMW defined above. Let px (x),
x C 92, be a probability mass function and let X be the random
variable defined by

Pr I X = x 1 = px (x), x E Oc.

Let Y, Z be the outputs of channels QM and QMW, respectively, when
X is the input. For R > 0, let (P(R) be the set of px such that
/(X; Y) > R. Of course, 6)(R) is empty for R > CM, the capacity of
channel QM. Finally, for 0 < R < CM, define

r(R) LI sup I(X; YI Z). (10)
P x EP(R)

We remark here that, for any distribution px on 9C, the corresponding
X, Y, Z forms Markov chain, so that the definition of mutual infor-
mation and (4) yield

/(X; Y 1Z) = H(XIZ) - H(X f Y, Z)
= H(XIZ) - H(XIY) = I(X; Y) - I(X;Z). (11)

Thus, we can wite (10) as

r(R) = suoll) I (X ; Y I Z) = sup [I(X; Y) - /(X; Z)]. (12)
Px E (R) P x EeP (1?)

 This should be tread as "... an encoder -decoder with parameters (K, N, A, P.)."
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As an example, suppose that 9C = = = {0, 1 } . Let QM be a
noiseless (binary) channel, and let Qw be a binary symmetric channel
(Bsc) with crossover probability po. Then for arbitrary px,

/(X; Y) - /(X; Z) = H(X) - [H(Z) -H (ZIX)]
= h(po) H(X) - H(Z) < h(po),

where h() is defined in (3). The inequality follows from the well-
known fact (see, for example, Ref. 2) that the entropy of the output
of a BSC, i.e., H(Z), is not less than the entropy of the input, H(X).
Further, H (X) = H (Z) if and only if px (0) = px (1) = 1. Since this
distribution belongs to iP(R), for all R, 0 < R < CM = 1, we conclude
that, in this case,

r(R) = h(po), 0< R s CM. (13)

In Appendix B, we establish the following lemma concerning r(R).

Lemma 1: The quantity 1'(R), 0 < R < CM, satisfies the following:

(i) The "supremum" in the definition of r[(10) or (12)] is, in fact,
a maximum-i.e., for each R, there exists a px E P(R) such
that I (X ; Y I Z) = r (R).
r (R) is a concave function of R.
r (R) is nonincreasing in R.

(iv) r (R) is continuous in R.
(v) CM > r(R) > CM -C mw, where CM and C mw are the capaci-

ties of channels QM and QMW, respectively.

We can now state our main result, the proof of which is given in the
remaining sections.

Theorem 2: The set G, as defined above, is equal to t, where

CR {(R,d): 0 < R < CM, 0 < d 5. Hs, Rd 5 Hsr(R)). (14)

Remarks:

(1) A sketch of a typical region al is given in Fig. 3. In the above ex-
ample (QM noiseless and Qw a Bsc), 11(R) = h(po), a constant, so that
the curve Rd = H sr (R) is a hyperbola. Observe that in this case
the region a is not convex. This is in contrast to the up -to -now essen-
tially universal situation in multiple -user Shannon theory problems,
where the solution is nearly always a convex region. Whether or not
r(R)/R is always convex, as it appears in Fig. 3, is an open question.

(2) The points in (R for which R = CM correspond to data rates of
about the capacity of QM. This is clearly the maximum rate at which
reliable transmission over QM is possible. An equivocation at the
wire -tap of about Hsr (Cm)/Cm is achievable at this rate. An increase
in equivocation requires a reduction of transmission rate.
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(3) The points in TR for which d = Hs are of considerable interest.
These correspond to an equivocation for the wire -tapper of about
Hs-i.e., perfect secrecy. A transmission rate of

Cs = max R
(R, 1-1.5)01

is therefore achievable in perfect secrecy. We call C8 the "secrecy
capacity" of the channel pair (QM, Qw). The following theorem
clarifies this remark.

Theorem 3: If CM > CMW, there exists a unique solution C8 of

C8 = r(c.). (15)

Further, C8 satisfies

0 < Cm -C mw < r (C m) <C8 <CM, (16)

and C8 is the maximum R such that (R, Hs) E (R.

Proof: Define G(R) = r(R) - R, 0 < R < CM. From Lemma 1 (v),

G(CM) = (Cm) - CM < 0,
and

G(0) = r(o) > cm - C mw > 0.
Since by Lemma 1, (iii) and (iv), G (R) is continuous and strictly
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decreasing in R, a unique C. E (0, CM] exists such that G(C8)
= 11(C.) - C. = 0. This is the unique solution to (15). Inequality
(16) follows from C. E (0, CM] and Lemma 1, (iii) and (v). Finally,
from (15) and (16) we have (C8, Hs) E = at. Also, if (R1, Hs) E
then Hsi?' < lisr(Ri) so that G(R1) > 0. Since G(R) is strictly
decreasing in R, we conclude that R1 < C8. Thus, C. is the maximum
of those R for which (R1, Hs) E 61, completing the proof.

(4) It is clear that the source statistics enter into the solution only
via the source entropy Hs. We also remind the reader that the fairly
simple extension of Theorems 2 and 3 to a stationary, ergodic source
is given in Appendix C.

(5) If we define Pew, the "wire-tapper's" error probability, as the
error rate at a decoder built by the wire -tapper [defined analogously
to (8)], then it follows from Fano's inequality (see Appendix A) that

A 5 h(Pete) ± Pew log 18 I.

Thus, a large value of the equivocation O implies a large value of
Pew (which the system designer will find desirable).

III. PROOF OF THEOREM 2 FOR A SPECIAL CASE

In this section we prove Theorem 2 for the very special case dis-
cussed in Section I. All alphabets 8, EC, cy, 2i are equal to {0, 1}. The
source {8k } satisfies Pr { Sk = 0} = Pr { Sk = 1 } = 1. Channel QM is
noiseless, i.e., Qm(y1x) = (5x,,; and channel Qw is a BSC with crossover
probability po (0 < po 1), i.e.,

Qw(z I Y) = (1 - po)6,,,z po(1 - oyz). (17)

We show here that (R, d) is achievable if and only if

R < Cm = 1, d < Hs = 1, Rd < h(p0). (18)

Since, for this case, 11(R) = h(p0), this result is a special case of the
as -yet -unproven Theorem 2. We begin with the converse ("only if")
part of the result. Let SK, XN, ZN correspond to an encoder -decoder
(N, K, 0, P8) (note that YN = XN) . Then, making repeated use of
the identity H (U, V) = H (U) H (V I U), we can write (dropping
the superscript on vectors)

KO = H (SK IZN) = H(S, Z) - H(Z)
= H(S, X, Z) - H(X I S, Z) - H(Z)
= H(Z I X, S) H(X, S) - H(X I S, Z) - H(Z)
(a)
= H(Z I X) + H(S I X) + H(X) - H(X I S, Z) - H(Z)
(b)
= Nh(po) H(SIX)I X) ± [H(X) - H(Z)] - H(X I S, Z). (19)

These steps are justified as follows.
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(a) From the fact that (S, X, Z) is a Markov chain and (4), so that
H(ZIX, S) = H(ZIX).

(b) Since X, Z are the input and output, respectively, of a BSC,
H (ZIX) = Nh(po), regardless of the distribution for X.

Now from Fano's inequality [use ineq. (78) with V = X], we have
H (SIX) < Kh(Pe). Further, the entropy of the output of a BSC > the
entropy of the input [this follows from Mrs. Gerber's lemma (Ref. 2,
Theorem 1)], so that H (X) -H (Z) < 0. Finally, H(X I S, Z) > 0.
Thus, (19) yields for any encoder -decoder (K, N, A, Pe),

or

KL < Nh(po) Kh(Pe),

KT Co - h(Pe)1 h(p0). (20)

Now suppose that (R, d) is achievable. It follows from the ordinary
converse to the coding theorem (Ref. 1, Th. 4.3.4, p. 81) that
R < CM = 1. Further, since A Hs = 1, we conclude that d < 1.
Finally, if we apply (20) to an encoder -decoder (N, K, A, Pe) that
satisfies (9) with e > 0 arbitrary, we have

(R - e)[(d - e) - h()] 5 h(po).
Letting  --> 0 yields Rd < h(p0). Thus, we have established the
converse of Theorem 2, i.e., that an achievable (R, d) must satisfy (18).

We begin the proof of the direct half of Theorem 2 with a digression
about group codes for the Bsc. Let G C {0, 1}N be a group code (i.e.,
a parity check code) as defined for example in Ref. 1, Chapter 6, or
Ref. 3, Chapter 4. The group code G has M = 2N/ G I cosets. Denote
the cosets by Co = G, C1, C2, , Cm-i. Of course, the cosets are
disjoint and

M-1
U = to, liN.
i=0

Let X be the word error probability when group code G (or for any of
the cosets) is used on a BSC with crossover probability po, with maxi-
mum -likelihood (minimum distance) decoding. Thus, for each coset
Ci, 0 < i 5 M - 1, there exists a decoder mapping Di: {0, 1 IN --> C1,
such that if X x is the input to a BSC with crossover probability po, and
Z x is the corresponding output, then for all x E Ci, 0 <= i < M - 1,

Pr {Di(ZN) X XNIXN = x} = X.

Thus, regardless of the probability distribution for XN,

Pr {WV') X Xx E Ci} = X.
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Letting 0(x) = i, for x E C2, 0 < i < M - 1, we have, from Fano's
inequality [use ineq. (76) with U = XN, V = ZN, U = Di(ZN)],

H (XN I ZN, = i) < h (X) + X log I Ci I .

Therefore, for any X distribution (which induces a distribution of 4'),

H (XN I ZN, h (X) + A log I G I . (21)

We conclude this digression by stating as a lemma the well-known
result of Elias that there exists a group code for transmitting reliably
over a Bsc at any rate up to capacity. A proof of this result can be
found in Ref. 1, Section 6.2.

Lemma 4: Let el > 0, r < 1 - h(po) be arbitrary. Then, provided N is
sufficiently large, there exists a group code G of block length N with
I G I 2Nr, such that, on the BSC with crossover probability po, the error

probability A < el.
We now prove the direct half of Theorem 2 for our special case by

showing that any (R, d), where R is rational, which satisfies

Rd = h(p0), (22a)

0 < d < 1, (22b)

0 < t < 1 (22c)

is achievable. Thus, for (R, d) satisfying (22), and arbitrary e > 0,
we must show the existence of an encoder -decoder (N, K, A, Pe) that
satisfies (9). We now proceed to this task.

Let K, N satisfy
K

R.
N

(23)

Let G be a binary group code with block length N and with I G

= 2(N -K). Thus, G has M = 2K cosets {Ce-o. We can assume that
the set SK = {0, 1 }K is the set of integers {0, 1, , M - 1}. We
construct the encoder such that when the source vector SK = i,* the
encoder output XN is a randomly chosen member of coset C;-i.e.,

Pr { XN = x S = i} =
1 1= =

!GI
0,

for x E Ci,

S Er C1,

0 M - 1. Since SK is uniformly distributed on {0, 1, , M - 1},
XN is uniformly distributed on OCN = {0, 1 }N. Thus, in particular,

H(XN) = H(ZN) = N, (24)

This is an abuse of notation. A more precise statement is that SK is a binary
representation of i.
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where, as always, ZN is the output of the wire -tap channel when XX
is the input. Also let us observe here that the quantity Ik(XN), defined
in the above digression, is identical to SK. Thus, (21) yields

H(XN1ZN, SK) h(X) X(N - K), (25)

where X is the error probability for the group code G.
We now turn to the decoder. Letting D (y) = i, when y E Ci, we

conclude (since the channel QM is noiseless) that

Pe = 0. (26)

Since (23) and (26) imply (9a) and (9c), it remains to show that a G
exists such that the resulting encoder -decoder will satisfy (9b).

We now invoke (19), which is valid for any encoder -decoder.
Substituting (24) and (25) into (19), and invoking (26), which implies
H(SI X) = 0, we obtain

N
A (TC)")

h

K(X) X (k

Now, from (22a) and (23), we have

1

h(p o)- 1 (po) = = d,

and from (23),

Thus, (27) yields

N
K R

(X) (A >= d - [h + X
1-K

1)

01.

(27)

(28)

Finally, since from (23) and (22a) we have

G = 2N-K =< 2N R-h (pc)) /di,

we can invoke Lemma 4 with r = 1 - h(po)/d <1 - h(po) [from
(22b)] to assert the existence of a group code G with X sufficiently
small to make the term in brackets in (28) < E. Then A > d - E,
which is (9b). This completes the proof of the direct half.

IV. CONVERSE THEOREM

In this section, we establish the converse theorem that the family
of achievable rates 61 is contained in Ta as defined in (14). Suppose that
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(R, d) E a. That R CM follows from the ordinary converse to the
coding theorem (Ref. 1, Theorem 4.3.4, p. 81). That d < Hs follows
from

1
A = -K H(SK ZN) :5_ H(SK) = Hs.

Thus, it remains to show that Rd < Hsr(R). We do this via a lemma,
the proof of which is given at the conclusion of this section.

Lemma 5: Let SK, XN , Y N Z`. correspond to an encoder -decoder
(N, K, A, Pe) . Then

1 N
(i) -Kr CA - (P LC- y -1(Xn; Y .1 Z , Yn-1), (29a)

N
(ii) -K Ell - 6(1 -

1
E /(X.  Y. I Yn-1), (29b)

n=1 '

where
(Pe) = h (P Pe log IS I , (29c)

and where the n = 1 term in the summations of (29a, b) is given the
obvious interpretation-i.e., that I (Xi; Y 11 Z1, Y°) = /(X1 ; Yi I Z1), etc.

Now for n = 2, 3, , N, any y E (gn-i, set

an(y) = /(X ; Yn I Yn-1 = y). (30a)

Also let
ai = /(Xl; Y1). (30b)

It follows from the definition of 6'(R) in Section II that the distribution
/31, defined by

pi(x) °. Pr {Xi = x C

belongs to 6P(a1). Similarly, for 2 < n S N, with y E (Yn-1 fixed, define

pn,,(x) b- Pr {Xn = xi yn-1 = X E

Then pn,, E (P[a. (y)]. Thus, from (10) and the fact that channels
(21,,N) and QW are memoryless,

r(al) > I(Xi; 1711Z1), (31a)

and for 2 < n < N, y G cyn-1,

rEan(y)1 /(Xn Yn I Zn, yn-1 = y). (31b)

It follows that the right member of (29a) is (giving the n = 1 term
the obvious interpretation)
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N Y1Z, Yn-1)

N= N yxn_, Pr Y"--i = yll(X; y I zn, yn_i

(a) 1 E E Pr {Yn-i = 3T) (y)] (32)

(b) [ 1 Pr yn-i = yla(37)]

(C) ( 1= r E I(X.YIY"-'))
V 77

(d) Kr N Hs - b(Pe))

Step (a) follows from (31), step (b) from the concavity of r [Lemma
1 (ii)], step (c) from the definition of a., and step (d) from (29b) and
the monotonicity of r [Lemma 1 (iii)]. Applying (29a) to (32) yields

Corollary 6: For any encoder -decoder (N, K, A, Pe),

[A - 3(Pe)] < r [ N-K Hs - 6(Pe) ] (33)

We now show that, if (R, d) E a, then Rd < H sr (R). Let
(R, E 61, and let e > 0 be arbitrary. Apply Corollary 6 to the
encoder -decoder (N, K, A, Pc) that satisfies (9). Inequalities (33) and
(9) yield

(R - e)[(d - e) - ge)] C H sr[(R - e) - 6(e)]. (34)

Letting e 0 and invoking the continuity of r [Lemma 1 (iv)] yield
Rd H sr (R), completing the proof of the converse. It remains to
prove Lemma 5.

Proof of Lemma 5:

(i) Let SK, X. YN, ZN correspond to an encoder -decoder (N, K, 0, PO
First observe that
1

H(sK ZN, YN) k H(sK YN)

(a)

h(Pe) + Pe log (181 - 1) = S(Pe). (35)

Inequality (a) follows from Fano's inequality [use (78) with V = YN].
Next, using the definition of A (7) and (35), write

KO = H(SKIZN) < H(SK I ZN) -H (SK I ZN, YN) KS(Pe)
= I (SK ;YNIZN) KS (Pe)

I (XI ; YN I KS (P e). (36)
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The last inequality in (36) follows from the data-processing theorem,
since given ZN = z, (YN, XN, S") is a Markov chain (Appendix A).
Transposing the KS (Pe) term in (36) and continuing:

K[E - S (Pe) < /(XN ; YN I ZN)

= H (XN IzN) - H (XN IzN, YN)
(a)
= H(XN ZN) - H(XN YN)

= I(XN ; YN) i(xN ZN)

= MYN) - H(ZN) H (ZN I XN) - 1-1(YN I XN)
(b) N= E Emynorn-1) - H(znIzn--9

H(Z,, I Xn) - H(YniXn)]
(c) N

E EH( Yn I Yn-i) H(Zn Zn-1, Yn-1)
n=1

II (ZnIX.) - H(YniXn)]
(d) N

= E [1-1(17IY"-') - H(ZnlYn-1) H(ZnIX.,Yn-')
n=1

H(Yn I Xn, Yn-1)]
N

= [I(Xn, Yn I Y71-1) - i(Xn; Zn Yn-91
n=1

N
= [H(XIZ, Yn-1) -H (X nj Y, Yn-1n

n=1

(e) N

= E Yn-1) - H(X.IY.,Zn, Yn-1)]
n=1

N
= /(Xn; YI Zn, (37)

The steps in (37) that require explanation are:

(a) that follows from the fact that XN, YN, ZN is a Markov chain
and (4);

(b) that follows from the standard identity

H(IIN) = H(UniUn-1),

and the fact that channels Q117) and Qirw are memoryless;
(c) that follows from the fact that conditioning decreases entropy;
(d) that follows on applying (4) to the Markov chains (Zn-1, Yn-1,

Zn), (Yn-1, X, Y, Z);
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(e) that follows from the fact that, given Yn-1, (Xn, Y,,, Z ) is a
Markov chain.

Since (37) is (29a), we have established part (i) of Lemma 5.

(ii) With SK, XN, YN, ZN, as in part (i) write

H(SK) = I(SK; YN) H(SK YN)

/(XN; YN) KS(Pe) , (38)

where the inequality follows from the data-processing theorem (since
xN, is a Markov chain) and from Fano's inequality as in (35).

Since H(SK) = KHs, (38) yields

K[Hs - O(Pe) ] I (XN ; YN)

(a) N
= E [1-1(YIYn-1) - H(YIX.)]

(b) N
= E [HO I -H(YIX,Y11-9j

n=1

N
= i(Xn ; Y. Y"--').

n---1

(39)

Step (a) follows on application of H(YN) = En H( Yn I Yn-i), and the
memorylessness of channel Qr), and step (b) from the fact that
Y" -I, X , Y is a Markov chain. Inequality (39) is (29b), so that the
proof of Lemma 5 is complete.

V. DIRECT HALF OF THEOREM 2

In this section we establish the direct (existence) part of Theorem 2,
that is, a C R. The first step is to establish two lemmas that are
valid for any encoder -decoder as defined in Section II.

Lemma 7: Let SK, XN, YN, ZN correspond to an arbitrary encoder -decoder
(N, K, A, Ps). Then

KA H (SK I ZN) = H (SK) + I (XN ; ZN ISK) - I (XN ; ZN). (40)

Proof: By repeatedly using the identity H(U, = H (U) H (V I U),
we obtain (we have omitted superscripts)

KA = H(SIZ) = H(S, Z) - H(Z)
= H(S, Z, X) - H(XIS, Z) - H(Z)
= H(ZIX, S) H(X, S) - H(X I S, Z) - H(Z)
= H(ZIX, S) H(S) [H(XIS) - H(XIS, Z)] - H(Z)
= H(S) /(X; Z I S) - EH (Z) - H(Z X, S)]. (41)
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Now, since S, X, Z is a Markov chain, H(Z !X, S) = H(Z I X) [by
(4)]. Thus, the term in brackets in the right member of (41) is /(X ; Z),
completing the proof.

We now give some preliminaries for the second of the two lemmas.
For the remainder of this section we take the finite set DC to be
11, 2,  , A I. Let X* be a random variable that takes values in OC
with probability distribution

Pr {X* = i} = p*x(i), 1 5 i 5. A.

Let Y* and Z* be the output of channels QM, and Qmw, respectively,
when X* is the input. As always, Qmw is the cascade of QM and Qw,
so that X*, Y*, Z* is a Markov chain. Next, for 1 < i < A, and
x E ocN define

A# (i, x) = card {n: xn = i}
= number of occurrences of the symbol i in the

N -vector x. (42)

For N = 1, 2, , define the set of "typical" X sequences as the set

T* = T*(N) = Ix E 9C`':

where

# (i, x) *

N P x (1) 5 5.1,,r,1-i5A},
(43a)

ON N.N -I. (43b)

Let us remark in passing that the random N -vector X*N consisting of
N independent copies of X* satisfies E# (i,X*N) = Np*x(i), and
Var [# (1, X*N)] = N 734X (i)[1 - P*Ic (i) ], for 1 5 i 5. A. Thus, by
Chebyshev's inequality

Pr { X*N scr T*(N)} _-5 i Pr { 1# (i, X*) - NP*x(i)1 > NON)
i=1

< Var [# (i, X*)]/N2a2, = 0( -,1 ) -4 0, (44)
i=i AIN

as N ->oo .
We can now state the second of our lemmas. We give the proof at

the conclusion of this section.

Lemma 8: Let XN, ZN correspond to an arbitrary encoder and let X*, Z*,
T* correspond to an arbitrary p*x as above. Then

1 /(XN; ZN) -6 /(X*, Z*) + (log A) Pr {XN EE T*(N)} + fi(N),

where fi.(N) .- 0, as N -- 00 .
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Lemma 8 implies that, if the encoder is such that with high proba-
bility XN E T*, then (1/N)/(Xx ; V) cannot be much more than
/(X*, Z*).

Lemmas 7 and 8 hold for any encoder -decoder. Our next step is to
describe a certain ad -hoc encoder -decoder and deduce several of its
properties. We then show that when the parameters of the ad -hoc
scheme are properly chosen, the direct half of Theorem 2 will follow
easily.

We begin the discussion of the ad -hoc scheme by reviewing some
facts about source coding. With the source given as in Section II,
for K = 1, 2, , there exists a ("source encoder") mapping F E:
3K 11, 2, , MI , where

M = 2KHS(1-1-6K), (45)

and Sic = K. Let Fp: {1, 2, , M.} 3K be a ("source decoder")
mapping, and let

= Pr {Fp oFE(SK) # SK}

be the resulting error probability. It is very well known that there
exists (for each K) a pair (FE, FD) such that, as K -> 00 ,

pgo = Pr {FD(W) Sic} 0, (46a)

where
W = FE(SK). (46b)

We will design our system to transmit W using an (FE, FD) that
satisfies (46).

We now turn to our ad -hoc system. (Refer to Fig. 4.) The source
output is the vector SK, and the output of the source decoder is
W = FE(SK). Let

g Pr 1W = FE(SK) = 1, 1 <i <M. (47)

SK
SOURCE

SOURCE
W=FEIS) CHANNEL

ENCODER
x" CHANNEL

0:1
yN

110. S2tglk

CHANNEL(NT

ZN

Fig. 4-Ad-hoc encoder -decoder.

w-or SOURCE
DECODER

SK .F04)
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Next, let M1 = M2M be a multiple of M to be specified later. Let

be a subset of 9CN. Clearly, {x,} can be viewed as a channel code for
channel Qjg) or channel Qin. The channel encoder and decoder in
Fig. 4 work as follows. The channel encoder and decoder each contains
a partition of lx,1 Ml into M subcodes Cl, C2, , Cm, each with
cardinality M2. Assume that

Ci Ix(i_om,+1., , ximj, 1 i M. (48)

When the random variable W = i, then the channel encoder output
XN is a (uniformly) randomly chosen member of the subcode Ci. Thus,
for1

and

1
Pr {XN = x(i_um2+il W = = M. '

Pr {XN = = -5
1112

(49a)

(49b)

Now the set { x,}r can be thought of as a channel code for channel
QW) with prior probability distribution on the code words given by
(49b). A decoder for the code is a mapping G: (Wr knilr and the
(word) error probability is

X = Pr {G(YN) XN , (50)

where YN is the output of Q1`), when the input XN has distribution
given by (49b). We assume that the channel decoder in Fig. 4 has
stored the mapping G. When the channel output is y E TN, the channel
decoder computes G(y). When G(y) E Ci, the channel decoder output
is i, 1 =< i < M. Letting TIT be the output of the channel decoder,
we have

Pr { W # W} X.

The final step in the system of Fig. 4 is the emission by the source
decoder of SK = FD(W), where FD: {1, 2, , MI ---*SK is chosen so
that (46) holds. We have

Pr IS= = Pr { S = FD (IV) }

Pr iS = FD(W); W =

Thus,

Pe Pr {S g} <Pr IS FD(W))
+ Pr { W T7V} < P + X. (51)
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Next, let us observe that each of the subcodes Ci can be considered
a code for channel Qin, with M2 code words and uniform prior distri-
bution on the code words. Let Xi be the resulting (word) error proba-
bility for code Ci (1 M) with an optimal decoder, and let

X = E qiXi.
1=1

We now establish

(52)

Lemma 9: For the ad -hoc encoder -decoder defined above

I (XN ; ZN ISK) log M2 - Eh (X) + X log M2].

Proof: Let SK be such that TV = FE(SK) = i. Then the channel
input XN given W = i has distribution given by (49a), i.e., XN is a
randomly chosen member of Ci. Since Xi is the error probability for
code Ci used on channel 1121,, Fano's inequality [use (76) with U = XN,
V = ZN, U = the decoded version of ZN when code Ci is used] yields

H (XN I ZN, W = i) < h(Xi) Xi log M2,

and, since H(XN I W = i) = log M2, we have

I(XN; ZN W = i) log M2 - h (Xi) - Xi log M2.

Averaging over i using the weighting fqii , and using the concavity
of h(), we have

/ (XN ; ZN I W) >= log M2 - [11, (X) + X log M2]. (53)

Finally, since S, W, X, Z is a Markov chain, (4) yields

I(XN; ZNI TV) = H(ZI TV) - H(Z I XW)
= H (Z1 TV, S) - H(Z I X)
= H(Z f TV, S) -H (Z IX, S)

H (Z I S) -H (Z I X, S) = I (XN ; ZN IS) . (54)

Inequalities (53) and (54) imply Lemma 9.
We are now ready to combine the above lemmas as :

Corollary 10: Let p*x be an arbitrary probability distribution on X, and
let rx(N), X*, Y*, Z* be as defined above (corresponding to p*x). Assume
that SK, XN, YN , ZN correspond to the above ad -hoc encoder -decoder with
parameters N, K, M, M 1, M2, X, X. Let Pe and A correspond to this
ad -hoc scheme. Then

Pe PT + X (55a)
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and

XKA KHs + -1 log M2 - / (X*, Z*)
log M2h(X)

Ki -N N N N

- (log A) Pr { XN Er rc(N)} - fi(N), (55b)

where fi(N) -- 0 as N -> co .

Proof: Inequality (55a) is the same as (51). Inequality (55b) is ob-
tained by substituting the results of Lemmas 8 and 9 into (40) and
using H(SK) = KH s.

Finally, we are ready to prove the direct half of Theorem 2. We do
this by showing that any pair (R, d), which satisfies

Rd = Hsr(R),
0 < R _. CM,

0 - d < Hs,

(56a)

(56b)

(56c)

is achievable. Thus, for (R, d) satisfying (56) and for arbitrary e > 0,
we show that our ad -hoc scheme with appropriately chosen parameters
satisfies (9). To begin with, choose K, N to satisfy

K R
N - Hs.

(Assume that R/Hs is rational.) Note that (57) implies (9a). Also, let
p*x be a distribution on OC that belongs to (P(R) and achieves r(R)-
that is,

(57)

/(X*; Y*) R,

I (X* ; Y*) -I (X* ; Z*) = I (X* ; Y*I Z*) = 1' (R), (58)

where X*, Y*, Z* correspond to p*x. We now assume that an encoder -
decoder is constructed according to the above ad -hoc scheme with
the parameter*

1?
M1 = exp2 IN [I (X* ; Y*) -

2H s
1

j} '
(59)

where X*, Y* correspond to the above choice of p*x. With this choice
of M1, and with M given by (45), we have

M2 = Y
M 1

N
K K

N-

eRsl 1
= exp2 IN [/(X*; Y*) - -Hs - H sax - 2H .

(60)
f

Note that, from (57),

' Assume that the right member of (59) is an integer. If not, a trivial modification
of the sequel is necessary.
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N
K

N
K ERlog M2 = I (X*; Y*) - N Hs - Hssic 2H s

(a) eR= I (X*; Y*) -R - RSK -
2H s

,,= I (X* ; Y*) (Rd/ Hs)
/Laic

ER

(d/Hs) 2H s
(b)

ELC. I (X* ; Y*) - r (R) - RSK
2HRs

= I (X*; Y*) - I (X*; Y*IZ*) - RSK

(a) ER= I (X*; Z*) - RSK
2H s

ER

2H s

(61)

Step (a) follows from (57), step (b) from (56a) and (56c), and step (c)
from the fact that X*, Y*, Z* is a Markov chain-see (11).

Let us now apply Corollary 10 to the ad -hoc scheme with the above
choice of M1, M2, and with the above choice of p*x. Inequality (55a)
remains

Pa P4!° + X,

and substituting (60) into (55b) yields

(RA)/ H s > I (X*; Y*) - I (X*; Z*) - f2(N)
= r(R) - f2(N),

where

ER h(X) X log M2
/2 (N) = RSK+2H s

(62)

(63a)

+ (log A) Pr {XN EE T*(N)} fi(N). (63b)

Now observe f2(N) and X depend on the choice of the set {xn,

The following lemma asserts the existence of a {x,} such that these
quantities are small. Its proof is given at the end of this section.

Lemma 11: With p*x and MI, M2 as given above, there exists for arbitrary
N a set

such that
Pr {XN Er T*(N)},

X,

where f3(N) 0, as N -> 00 .

f3 (N), (64)
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Now let the set {x,}r1 in the ad -hoc scheme be chosen to satisfy
(64). Then, from (62) and (64) [using the fact that n") 0, as
K (46)1 we can choose N (and K = NR/Hs) sufficiently large
so that

Pe ey

this is (9c). It remains to establish (9b). But from (64) with N suffi-
ciently large, we can make

h(X) X log M2 eR
RSA + (log A) Pr { XN T* (N) } 2H

fi(N) - s

Then (63) and (56a) yield

A
H sr (R)

R
e = d - e,

which is (9b). Thus, (R, d) is achievable and the proof of the direct half
of Theorem 2, i.e., CR c (R. is complete. It remains to prove Lemmas-
11 and 8.

Proof of Lemma 11: We begin with some notation. For x E OCN let

j1, x Er T* (N),
0, otherwise.

Also for a given set {x.}r, let X(m)(3C1, , xmi) be the error proba-
bility that results when { x,} is used as a channel code for channel
QM with prior probabilities (49b) when code word xm is transmitted
and when maximum liklihood decoding is used. Thus,

(65)

M iM2
E qi

X = X(m) (Xi, , XM1).
i =1 m=(i-1)M2-1-1 IEL 2

Further, with Xi defined as above as the error probability for code
Ci on 0,,a, write Xi = Xmw (x(i-1)m2+1, , xim,) = Xmw(Ci), so that
the dependence of Xi on Ci is explicit. We have

x = E qiXi = 2 qixmw(ci)
i=1

Finally, define

4)(xi, , xmi) -'1! Pr {XN Er Vx(N)} + X + X
m im 2

= E E SLA, (x,) X(m)(x1, , xm2)]
j=1 m= (i-1)M2+1 DI 2

M
qiXMw(Ci). (66)

Now suppose that the set ( x,)r is chosen at random, with each xo,
chosen independently from OCN, with probability distribution AI? (x)
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= p;,(x). We establish the lemma by showing that Eci. < F 3(N).
Now observe that, from (59), (1/N) log M1 is bounded below /(X*, Y*).
Also from (61), (1/N) log /V/2 is bound below /(X*; Z*). It follows
from the standard random channel -coding theorem (see, for example,
Ref. 1, Theorem 5.6.2) that EX('"), EXMW f4(N) --÷ 0, as N - 0 .
Further, Ei2 = Pr {X* EE T*x(N)} < f 5(N) -> 0, by (44). Thus, Et.
-5 2f4(N) f5(N) f3(N) 0. Hence the lemma.

Proof of Lemma 8: Here too we begin with some notation. Let p be a
probability distribution on x, and let g (p) be the mutual information
between the input and output of channel Qmw when the input has
distribution p. It is known (Ref. 1, Theorem 4.4.2) that g (p) is a
concave function of p. Let 1.1(x) be as in (65), and write (for any
encoder -decoder)

N
1

I (XN ; ZN) = -N
1

PEN- '' A (XN) ; ZN]

1 1
=

N
- IPCN ; ZN -NI A(XN)] ± IDL(XN); ZN]

'
=

iv
-, E Pr {A(XN) = j}/(XN; ZN (

µ (XN) = j)
=0

Now

Pr {12,(XN) = 1} /EXN; ZN j µ (XN) = 1]

and

1
-N ICI(XN) ; ZN]. (67)

(log A) Pr { cN Er T* (N)} , (68)

N /D2(xN); zArl <
--N- H[µ(XN)] < -A-r- (69)

One term remains in (67). Using the memoryless property of channel
QM V (Ref. 1, Theorem 4.2.1), we have

1 Ni(xN; ziv µ = E /(x ; =

N N= g(p) < g (N p) , (70a)

where p. is the probability distribution for X. given µ = 0, i.e.,
for 1 <i <A,

p.(i) = E oz,i Pr PCN = x XN E T*1. (70b)
:Er*

The last inequality in (70a) follows from the concavity of g. From
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(70b),

N
/(X* ; Z*) g(N). (73)

73(i) kr- ir1p7,(i) = x;* Pr {XN = xIX E T*} ("Il'ix) (71)

The definition of T* (43) and eq. (71) yields

p(i) - px (i) I < aN 0, as N -> 00 .

Since .q (p) is a continuous function of p, we have

.q (75) - g (p*x)r g (N) 0, as N c . (72)

Substituting (72) into (70a), we obtain

1
Pr {1.1 = 0} /(XN; ZN I /.1 = 0) 5 g(p*x) g(N)

Finally, setting fi(N) = (1/N) + g(N), and substituting (68), (69),
and (73) into (67) we have Lemma 8.

VI. ACKNOWLEDGMENTS

I would like to acknowledge helpful discussions with my colleagues
D. Slepian, H. S. Witsenhausen, and C. Mallows that contributed
to this paper. In particular, the problem was originally formulated
in collaboration with Mr. Witsenhausen, and the coding scheme
described above for the special case (main channel noiseless, wire -tap
channel a Bsc) is based on an idea of Mr. Mallows. I also wish to
thank M. Hellman of Stanford University, whose recent paper'
stimulated this research. Furthermore, the pioneering work of C. E.
Shannon' on relating information theoretic ideas to cryptography
should be noted.

APPENDIX A

The Data -Processing Theorem and Fano's Inequality

Let U, V, U be discrete random variables that form a Markov
chain. Then the data-processing theorem can be stated as

H(U1V) < H(Ul 0), (74a)

or equivalently
I(U; V) I(U; U). (74b)

Inequality (74a) follows on writing

(a) (b

H (U IV) = H (U IV , U)
)

H (U I U),

where step (a) follows from (4), and (b) from the fact that conditioning
decreases entropy [Ref. 1, eq. (2.3.13)].
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Next, let U, V, U be a Markov chain as above, but now assume
that U, U take values in cli..(1%.I 5 00). Let

X = Pr I U 01. (75)

Fano's inequality is

H(UI V) 5 h(X) + X log (NI - 1) < h(X) + X log Ical. (76)

To verify (76), define the random variable

0, u = q,4)(u, = u u,

and then write

H(UI(
a)

V) 5 H(UI U) < H(U, 4'I
= H (4)1 (I) H (U1 CI , 43)

< H(4)) + H(UICI,4))
= H (4)) + Pr {c13 = 0}H(UI 0,43 = 0)

+ Pr Id) = 111-1(U10,613 = 1)
(b)
= h(X) + (1 - X)0 XH(UI 0, 013 = 1)
(c)
5 h(X) + Xlog ( I - 1) < h(X) + Xlog I cl.t. I ,

which is (76). Step (a) is (74a), and step (b) follows from the fact
that, given 4) = 0, then U = U, so that H (U I U, 4) = 0) = 0, and
step (c) from the fact that, given 40 = 1, U takes one of the I cu I - 1
values in excluding U.

A variation of Fano's inequality is the following. Let SK, V, ScA

be a Markov chain where the coordinates of SK and SK take the
values in the set S. Let

Pek = Pr {Sk Sk} (77a)

and
1 K

PeP = E Pek-
k=1

We will show that Fano's inequality implies

(77b)

ii(sK I v) 5 h(Pe) ± Pe log (181 -1) ° a(Pe). (78)

To verify (78), write
1 (a) 1 N

H SA' IV)
K

E1kH(SIV)
=

(to

Ic
1

E1
(c)

o(Pek) 5 o(P.),E1
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which is (78). Step (a) is a standard inequality, step (b) follows on
applying (76) to the Markov chain Sk, V, Sk, and step (c) from the
concavity of (5(  ).

APPENDIX B

Proof of Lemma 1

(i) With no loss of generality, let 9C = 1, 2, , Al. Any
probability distribution px can be thought of as an A -vector
p = (p1, P2, , pA). Since / (X ; Y) is a continuous function of px,
the set (P (R) is a compact subset of Euclidean A -space. Since /(X; Y I Z)
is also a continuous function of px, we conclude that /(X ; Y I Z) has
a maximum on 0)(R). This is part (i).

(ii) Let 0 R1, R2 < Cm, and 0 < 0 1. We must show that

r[oR1 + (1 - o)R2] > or(R1) + (1 - o)r(R2). (79)

For i = 1, 2, let pi E 6(Ri) achieve r(Ro. In other words, letting
Xi, Yi, Zi correspond to pi, i = 1, 2, then

/(Xi, Y1) Ri, I(Xi, YilZi) = 11(Ri). (80)

Now let the random variable X be defined as in Fig. 5. For i = 1, 2, the
box labeled "pi" generates the random variable Xi that has probability
distribution "pi." The switch takes upper position ("position 1")
with probability 0 and the lower position ("position 2") with proba-
bility 1 - 0. Let V denote the switch position. In the figure, V = 1.
Assume that V, X1, X2 are independent. As indicated in the figure,
X = Xi, when V = i, i= 1, 2. Now

(a)
I(X; Y) = H(Y) - H(YIX) = H(Y) - H(YIX, V)

H(YIV) - H(YIX, V) = I(X; YIV)
= 0I(X ; Y IV = 1) + (1 - 0)I(X; Y I V = 2)
= 0/(Xi; Y1) + (1 - 0)/(X2; Y2)

(b)
OR1 + (1 - 0)112.

QM Qw

Fig. 5-Defining the random variable X.
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Step (a) follows from the fact that V, X, Y is a Markov chain and
(4). Step (b) follows from (80). Inequality (81) implies that the
distribution defining X belongs to CPIORI + (1 - 0)R21. Thus, from
the definition of r,

+ - e)R2i I(X; Y1Z). (82)

Continuing (82) and paralleling (81), we have

r[oR, + (1 - 0)R2] H(171Z) - H(171XZ)
= H(171Z) - H(YIXZV)

H(YIZIT) - H(YIXZV)
= I(X; = 0/(X; 171Z, V = 1)

+ (1 - B)I(X; 17 Z, V = 2)
= 0/(X1; Zi) + (1 - 0)/(X2 ; V2 Z2)

Or (R1) + (1 - o)r(R2),

which is (79). This is part (ii).
(iii) This part follows immediately from the definition of r(R)

(10), since 6°' (R) is a nonincreasing set.
(iv) Since r(R) is concave on [0, Cu], and nonincreasing, it must

be continuous for 0 R < CM. Thus, we need only verify the con-
tinuity of r(R) at R = CM. Let p be a probability distribution on SC
viewed as a vector in Euclidean A -space, as in the proof of part (i).
Let g (p) and g (p) be the values of /(X; Y) and /(X; Y Z), respec-
tively, which correspond to p. J (p) and g (p) are- continuous functions
of p.

Now let 1R., -N° be a monotone increasing sequence such that
R; --> Cm, and Ri Cr. We must show that, as j co ,

r(k)---> r (CA. (83)

Now from the monotonicity of I' (R), 1-1(k) exists and

lim r(k) (84)

It remains to verify the reverse of ineq. (84). Let {pi} r satisfy

g(P.i) RJ, (1)i) = (85)

for 1 <= I < so. Since the set of probability A -vectors is compact,
there exists a probability distribution p* on SC such that for some
subsequence 1pfkl:=1

lim Pjk = p*.
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It follows from the continuity of g (), and (85) that g (p*) > Cm, so
that p* E CP(Cm). Therefore, from the continuity of g (), and (85),
we have

(a)

lim 11(R;) = lirn r (RA) = lim g (Pik) = g (p*) < r (cm), (86)
j -.0c

where step (a) follows from p*E(P(CM). Inequalities (84) and (86)
yield (83) and part (iv).

(v) From (12),

r(R) = sup [/(X; Y) - /(X; 2)1
PxeY (R)

sup /(X; Y) < CM,
PxEW (R)

which is the first inequality in part (v). Also, using (12),

I' (Cm) = sup [/(X; Y) - /(X; Z)]
px es) (cm)

sup [/(X; Y) - CMW] = Cm - CMW (87)
Px E(V) (CM)

Since r(R) is nonincreasing, (87) yields I' (R) > r(cm) > cm - CMW,
completing the proof of part (v).

APPENDIX C

Source with Memory

In this appendix, we show how to modify our definitions and re-
sults for a source with memory. We will take the source output
sequence iSk to be a stationary, ergodic sequence (where Sk takes
values in 8) with entropy (as defined in Ref. 1, Section 3.5) of Hs. As
in Section II, we continue to assume that 181 < 00, and that the
source statistics are known.

The channels QM and Qw remain as in Section II, as does the defini-
tion of an encoder -decoder with parameters N and K. The definition
of Pe also remains unchanged, but a new definition for A is necessary.
To see this, let us suppose that the source was binary, i.e., 8 = {0, 1},
with entropy Hs, and with H (Si) > Hs. Suppose also that the channel
QM is a noiseless binary channel, and that Qw has zero capacity. A
possible encoder -decoder has K = N = 1 and takes X1 = Si. Such
a scheme has Pe = 0, but with A as defined in (7) given by
A = H(81) > HS. Using (9), this would lead us to accept the pair
[Hs, H(81)] as achievable, which would not be reasonable. Accord-
ingly, we give a new definition of A.

Let SK, ZN correspond to an encoder with parameters K, N as
defined in Section H. Let SK (j), ZN(j), j = 1, 2, , v, correspond to
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the v successive repetitions of the encoding process. Then define the
equivocation at the wire -tap as

A = lim -1
Te II [SI( (1) SK (V) Z N (1) y y ZN (01-.0 V

. 1
= 11M H (SKPIZN v).

.n.v

With A as defined by (88), we define the sets a and 5i. as in Section II.
We claim that Theorem 2 remains valid.

The proof of the converse -half of Theorem 2 given in Section IV
goes over to the case where the source has memory with only trivial
changes. Further, the results in Section V are all valid exactly for the
source with memory. They yield that, if (R, d) satisfies (56), then we
can for E > 0 arbitrary find an encoder -decoder with parameters N,
K, and P. which satisfies

(88)

KH s R -N E'
(89a)

Pe (89b)
1

H (SKIZN) > d - E. (89c)

Further, we can do this for arbitrarily large K. We show below that
there exists a function f(K), K = 1, 2, , such that for any code
with parameters K, N

-IL

1V 1A = urn H (SK ZN v) K H (SK I ZN) - f (K), (90)
-- co

where f (K) = 0, and f (K) depends only on the source statistics.
Combining (90) with (89c), we have

A d - E - f (K).

Since f (K) 0, we conclude that (R, d) is achievable. This is the
direct half of Theorem 2. It remains to verify (90).

First, imagine that the encoder -decoder begins operation infinitely
far in the past. Let [S (j), Z (i) ] be the (SK, ZK) corresponding to the
jth encoding operation, - 00 < j < 00. Thus, SKY = (Si, SKY)

= [S(1), - , S(v)3 and ZK.' = [Z(1), , Z (01, v = 1, 2, . Let
Z* = E , Z(-1), Z(0), Z(+1), ] Of course,

H(SKYIZ\") >= H(SKYI Z*). (91)
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Further,

H(SK'IZ*) = //[S(1), , S(v)

(a) v

= H[S(i)

Z*]

Z*, S( j+1), - , S(v)]

(b)
= E H[S(1) IZ*, S(2), , S(j)]

J-1

(a)
vH[S(1) 1Z*, S(2), , S(v)] vH[S(1) I Z*, S'], (92)

where S' [S (2), S(3),  ]. Step (a) is a standard identity, step (b)
follows from the stationarity of the sequence { Ski and the memoryless-
ness of the channel QMW, and step (c) follows from the fact that
conditioning decreases entropy. Now, let

S = Sc = S (1), = [S (2), S(3),  ],
Z = ZN = Z(1), = E-  , z(-1), z(0), Z(-1-2),  ].

Thus, (91) and (92) become

1
Iry H(SKPIZN9 k-H(slz, Z', S')

1= -K [H(SZ 1 VS) - H(Z Z'S')]

1
= .17 EMS IZ'S') H(Z SZ'S') - //(Z I Z'S')]

(a)

= EMS1s1) + H(z S) - H(Z I Z'S/)]

1
-K [H(SIS') H (Z IS) - H (Z)i- (93)

Step (a) follows from the fact that Z', S', S and (S', Z'), S, Z are
Markov chains, and (4). Now

1 1 KRH(SIS, ) = 17,El H (S k S', ASk+1, , ASK)

K= - E Hs = Hs. (94)
k--1

Also,
1 H(S) - HsIi f (K) 0, as K cc . (95)
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Substituting (95) and (94) into (93), we have

K1v K
1

H(SKY Zxy) - [H(S) H(Z S) - H(Z)] - f(K)

1

= k 11(s z) - f(K),

which is (90).
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We report on optimum direct detection of digital data signals that are
transmitted over optical fibers. Direct detection is provided by a photo-

detector whose output current is modeled as a noisy filtered Poisson stream
of pulses. In this model, the time -varying pulse arrival rate is proportional
to a linearly distorted version of the modulating signal. We show how the
photodetector output is processed to derive the minimum probability -of -
error receiver. Special attention is given to certain practical limiting cases.

When the average energy in the response of the photodetector to an indi-
vidual photon is small compared to the additive thermal noise, the optimum
detector is shown to be linear except for the use of precomputed bias terms.
At the other extreme are the photomultiplier and the avalanche photodiode
where the average energy in the response of the photodetector to a single
photon is large compared with the additive noise. In this situation, we show
that the optimum detector estimates the photon arrival times and then uses
these estimates in a weighted counter. In both limiting cases, the detectors
are specialized to one-shot M-ary and synchronous multilevel pulse -
amplitude modulated (PAM) signals with intersymbol interference. For
PAM signaling, we demonstrate that finite system memory allows applica-
tion of dynamic programming to provide a detector implementation whose
computational complexity does not increase with time.

I. INTRODUCTION

In recent years much attention has been focused on communication
over optical channels.'.2 Most early work was concerned with the
physics of the electromagnetic transmission phenomena associated
with various optical media and with the devices needed to change
electrical signals to optical ones, and vice versa. In this paper, we are
concerned with the optimum (maximum likelihood) reception of digital
data transmitted over the fiber-optic channel. Our work was motivated
by the many invaluable discussions we have had with S. D. Personick
on this subject.
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We shall not dwell on the quantum mechanical limitations imposed
on the measurements of signals in the optical frequency range. Instead,
we adopt a practical approach and assume at the outset that direct
detection is used to convert optical energy to an electrical signal. This
is accomplished by using a photodetector prior to any signal processing.
Thus, we study a classical optical reception problem with the under-
standing that the photodetector output can be examined in every
detail so as to extract all relevant information.

In a fiber-optic communication system, information is conveyed by
modulating the intensity of a light source, such as a light -emitting
diode. This is manifested in a photon stream whose arrival times form
a Poisson process with a time -varying intensity function. The photo -
detector output current can then be modeled as a noisy filtered
Poisson process whose intensity function is the sum of a dispersed
version of the modulating wave and a background dark current. Thus,
the central problem in communication systems employing a fiber-
optic medium is the detection of the intensity function. Bar -David'
and Gagliardi and Karp.' have considered the optimal reception prob-
lem in the absence of dispersion (intersymbol interference) and addi-
tive thermal noise, while Personick5-7 and Messerschmitt8.9 have con-
sidered linear suboptimum receivers to combat these deleterious effects.

Section II reviews the communication theoretic model of the fiber-
optic channel. Section III presents two simple examples that are
intended to focus on certain system essentials and to illustrate some
fundamental ideas involved in subsequent work. Section IV develops
a general representation for the likelihood functional. Sections V and
VI consider reception when the energy in the response of the photo -
detector to an individual photon is much smaller than the thermal
noise, while Sections VII and VIII consider the complementary situa-
tion of large average energy per pulse -to -thermal noise.

II. A REVIEW OF THE MATHEMATICAL MODEL

In the past few years, a pragmatic communication theoretic model
for data transmission over the fiber-optic channel has evolved. The
papers by Personick5-7.'° contain an up-to-date account of this model
as well as provide more complete references on the physical aspects of
fiber-optic communication. For the purpose of this investigation, it
will suffice to think of the optical modulation process as providing a
proportionate variation in the rate of photon arrivals at the photo -
detector. This device, of which there are several types, is a transducer
that converts optical to electrical signals. The photodetector output
current is illustrated in Fig. 1, and can be described as the sum of a
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r\..f,-0. r\i"-a..
PHOTON STREAM
(INTENSITY X(t))

PHOTO-
DETECTOR

filtered Poisson process

THERMAL
NOISE n(t)

Fig. 1-Photodetection.

,(,)
i(o= E gkw(t - tk)

k...1

NOISY RECORD

(1)

and white gaussian noise, n(t), with spectral density No. The photon
arrival times t1, t2, are a family of independent, identically dis-
tributed, random variables, as are the positive gains gi, g2, . More-
over, these two families of random variables are independent of each
other. The pulse w (t) is square -integrable and is the convolution of
two pulse shapes. The first pulse is the response of the photodetector
circuitry to the generation of a single charge -carrier (i.e., an electron
or a hole), while the second pulse is included for mathematical ex-
pediency so as to whiten the noise at the photodetector output./ We
distinguish between two types of photodetectors, those that provide
avalanche gain and those that do not. In the latter category is the
photodiode that operates with g i = 1, i = 1, , v and results in a
pulse energy -to -noise ratio f le (t)dt/ N 0, which is typically -20 dB.
In other words, the response of the photodetector to an individual
photon is masked by the additive background noise. This is in contrast
to the photomultiplier and the avalanche photodiode where the gains
possess a (discrete) probability distribution whose mean, g, can be
rather large and whose variance is a power ( 1) of the mean." For
these devices, the average pulse energy -to -noise ratio Of w2 (t)dt / N o
can be on the order of 20 dB.

The stochastic process v (0, which is the number of pulses generated
at the photodetector output in the interval (0, t), is a Poisson process
with intensity X (t), and therefore

) iNPr [v (t) = N] = exp f -A(t))
[AN ! '

(2)

t Note that the inclusion of a reversible operation, such as a whitening filter, does
not affect the performance of an optimum detector.
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where

A (t) = f t

X(ti)dt' .

0

(3)

Moreover, each photon arrival time tk possesses the probability density

p (tk) -
X (tk) (4)

f X (e)dt"

where the integral is over the observation time.t
In the digital fiber-optic communication system under discussion

here, the positive intensity function X (t) is the information -bearing
signal and is the average rate of electrons produced by the photodetec-
tor. The manner in which X (t) is manifest in the received optical signal
(the photodetector input) is through the relation

X (t) = lorP(t) + Xo, (5)

where (P (t) is the received optical power, k is a constant conversion
factor, and X0 is the average dark, or ambient, current in "counts"
per second.1 Thus, information is transmitted by modulating the
optical power and must be recovered by processing the noisy photo -
detector output, I (t) + n(t). As a result of transmitting the optical
signal through the fiber -guide medium, the intensity function at the
photodetector output will be the sum of a linearly distorted version of
the transmitter intensity and the dark current. In the sequel, X (t) will
be understood to mean the intensity function at the receiver.

Statistical averages of I (t) are found by elementary calculations.
For example,

and

EEI (01 = E (g) .11 X(r)w(t - r)dr

0-10) = E (g2) X(r)w2 (t - r)dr,

(6)

(7)

where E (g) and E (g2) are the average and average square of the
avalanche gain g. Higher moments can also be readily evaluated.

A linear channel model with additive "noise" is suggested by (6)
and (7). In such a model, the desired signal is taken to be the average
value of I (t), namely X (t) passed through a filter with impulse response
E[g]w(t). One component of the added noise can be thought of as the
signal dependent process I (t) - EU (t)3, which has mean zero and

t Note that the arrival times are not assumed to be ordered.
t In free -space optical communication systems, X (t) must be regarded as having a

noisy component.

1392 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



variance given by (7). In addition to this noise, the gaussian noise
must also be included before processing. While this linear model is
a convenient approximation in some situations,5-" for purposes of this
investigation we work with the process I(t) directly.

Now that all the physical parameters have been defined, the optimum
detection problem can be stated as follows :

Given that the intensity function can assume one of M equi-
probable positive functions X.(t), 0 ..t_T,m=1,,M, the
task of the detector is to decide which one of the M intensities has
been transmitted after processing I (t) plus gaussian noise for I"
seconds. Of particular interest is the synchronous pulse -amplitude
modulated (PAM) signal

X (t) = akf - kT) Xo,
k

where each data bit, ak, assumes the value 0 or 1, 1/T is the data
rate in bits/s, and f (t) is a positive time -dispersed pulse.

The subject of our investigation is summarized by the question:
How should the photodetector output, I (0 n(t), be processed so
as to minimize the probability of error?

III. A MOTIVATING SIMPLIFIED DISCRETE MODEL-TWO EXAMPLES

To preview, in an elementary way, some ideas that are more fully
developed in the sequel and also to serve as a motivation to the reader,
we present a simplified version of the model discussed in the last
section.

In a simplified theoretical model, the time index t is assumed to take
on the discrete set of values t1, t2,  , t,r, where t; = jA. Thus, instead
of writing

v(t)
I(t) = E gkw(t - tk)

kal

for the photodetector response to a photon stream, we write

J
NJ) = gkqkw(t; - tk) j = 1, 2, J. (8)

In the above expression, qk } i can be regarded as an independent
Bernoulli sequence with probabilitiest

Pr {qk, = 1} = Xk and Pr qk = 0} = 1 - Xk,

t For convenience, we have taken i =1, and so we have written Xk and 1 -Xk
instead of 40 and 1 -XkA.
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where we have in mind that 0 < Xk << 1. Thus, qk = 1 (or 0) represents
the arrival (or nonarrival) of a photon at time tk. We make the further
simplifying assumption that w(t; - tk) = Abik (A a positive constant),
where OA is the Kronecker delta and is nonzero only when j = k.
This corresponds to assuming that the pulses w (t) and w(t - A) do
not overlap. Within this simplified framework, the received time -
discrete signal is of the form

1(4) = gmA, j = 1, 2, , J. (9)

We recall that { X (r) , is the intensity function associated with the m.th
hypothesis. The particular intensity which is active is, of course,
unknown at the receiver beyond the knowledge of the finite set from
which it was chosen. The last ingredient of our model is to include the
fact that the observation NJ) is noisy and is given by

y(ti) = g + (10)

where the noise samples are assumed to be gaussian, independent, and
zero -mean and have variance No. In relation to the more accurate
model of the previous section, can be thought of as the standard
deviation corresponding to Ai, n(t)dt. As is well known, the optimum
detector computes the likelihood (the a posteriori probability density
of the received signal conditioned on each hypothesis-in this case,
the intensity) and selects the maximum. In statistical parlance, this
is a standard multihypothesis testing problem. We now develop the
form of the likelihood for two different assumptions on the nature of
generation of secondary electrons :

(i) No avalanche gain (g1 1).

(ii) Discrete avalanche gain (gi takes on values 1, 2,  , G, with
probabilities P1, P2, , PG)

In each case, we first obtain the likelihood for one observation. Owing
to the nonoverlapping assumption on the pulses and the independent
noise samples, the likelihood for J independent observations is given
as a product. Our goal is to obtain a simple representation for the
effectivet likelihood Lon) (Xi, X2, , X,; yl, y2, , y.f), where the
superscript m denotes which intensity is assumed active. Given the
received samples yi, , yj, the maximum likelihood (optimum)
receiver selects the index m* that maximizes Lon) and declares that
intensity X(m*) is present. We shall find that, if No is small, then the

t "Effective" refers to the fact that constants common to all hypotheses are
dropped.
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likelihood assumes an especially simple form. Specifically, in the high
signal-to-noise ratio case, the likelihood is of the form

L(m)OJTry 11 (xr)4i(1 - X (In) )
.i==1

where q; = 1 if yi > y7, (and zero otherwise). The quantity yT is a
threshold value that we shall derive for each example. Alternatively,
the log -likelihood is expressible as the weighted counter

J
4; log A(m) + [(1 - qi) log (1 - xr)], (12)t

where 4, is an estimated photon arrival process. In the complementary
case of small signal-to-noise ratio (No the detector is of the
matched -filter or correlator type. The effective likelihood in this
case is

J
L(m)ti c E Xry; - b(m),

jet

(13)

where c is a constant and b(m) is a hypothesis -sensitive bias term. We
now turn to the specific examples.

(i) The Photodiode (No Avalanche Gain)
The single observation yi is defined as

yi = with probability 1 -
and (14)

y; = A + n1, with probability X.

We temporarily drop the subscripts dealing with time (j) and hy-
pothesis (m) while investigating this single observation. The likelihood
is the mixture probability density

Ay A' 1 1
p(y) = (27N0)-4exp 2Y;0 }[ (1 X) ± X exp NoJ

(15)

Noticing the hypothesis (A) insensitivity of the first term, the effective
likelihood becomes

L(y) = (1 - X) + X exp Ay A'
No 2No

(16)

A simple calculation shows that the two terms in (16) are equal when

t The reader familiar with Ref. 3 might expect an additional -A term in (12).
Owing to the simplified Bernoulli model employed above, this is not the case. How-
ever, the more refined analysis in the sequel will include this term.
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Y = yr, where
A No (1 X)

YT = y + -A- log (17)

For small No, yT ',-:-.1 A/2 and the graph of L(y) converges to the solid
line shown in Fig. 2. So, for No/A2I log X I small, the effective likelihood
can be approximated as

- X ' y ..5. YT

L (Y) = {1AATI,)

(18)
x exp -{ - I '

y > YT.
2A2No j

The sense of the approximation is expressed by the following easily
proven statement : For each S > 0, one can find an No > 0 so that

Pr 111(y) - 1L (y)
> SI = 0. (19)

To simplify the likelihood, note that exp I (Ay/No) - (A2/2N 0)) and
yr are hypothesis -insensitive and can be deleted from the effective
likelihood, and since we are assuming that X is extremely small, 1 - X
can be treated as 1. The effective likelihood is then simply

L(m) = [X(1")]4i, (20)

where 4; = 1 if y; > yT and zero otherwise. Because of the indepen-
dence of the noise samples and the nonoverlapping property of the

----------- .----. r........

1

A
2

Y

Fig. 2-Convergence of graph of L(y) to the asymptotic form (No ---) 0).
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log

log X(j2)

log A(1
Ml

j =1

2
j=1

LM

Fig. 3-Threshold-based weighted counter.

pulses, the likelihood for J observations is the product

MAX

L(m) = 11 Dr (21)

which yields the weighted counter

J
log L(m) = E q; log xr) (22)

shown in Fig. 3. The receiver selects the index that maximizes (22) and
declares that the corresponding intensity was transmitted.

In the complementary case of low signal-to-noise ratio (No -*cc ),
we expand the likelihood function in a Taylor series and retain the
dominating terms. This step must be done with care, since the nu-
merator of the exponent has variance No, while No also appears in the
denominator. By normalizing the exponent, it is seen that the variance
of the exponent is proportional to 1/No ; thus, the exponent will be
small and a series expansion is useful. Keeping the first two terms in
such an expansion of (16) gives

L(y ;) = 1 - X; (Ay) - A2 )
'

(23)
No 2No

and the likelihood for J observations becomest the digital correlator

We have used the fact that Xi/No[A 7E- (A2/2)] << 1, and with ei << 1 that
HO ei) 1 + ei.
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(matched -filter)

A
'

24tAy,_ A2 \-L AY/ ._ 2\
( )

i=1 L No 2N0 J=1
( 2

which is shown in Fig. 4.

(ii) The Photomultiplier or Avalanche Photodiode (Discrete Avalanche)

Again, we start with the single observation case but now, because
of the avalanche mechanism, a single primary gives rise to 1 or 2 or

 , G secondaries with probabilities pl, P2, , PG, respectively
(E7pi = 1). So the measurement y is modified as

y=

The likelihood is the

n, with probability 1 -
A + n, with probability Xpi

GA + n, with probability Xpa

mixture density

(25)

(y) = (1- A) y2
(y - lA)2

(26)
P exp

2irAro 2No j
,XP1

/=1 271 -No 2No

Factoring out hypothesis -insensitive terms, the effective likelihood
becomes

X E pi expL(y) = (1 - X) ±
1 =1

lAy l2A2 (27)- - -
No 2No

As No -* 0, we notice that L(y) (1 - A) for y < A/2. When
y > A/2, let IA denote the number A, 2A, , or GA that is closest

MAX

X(M) , cm)
T ^1

Fig. 4-Elementary version of digital correlator.
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to y. Then the series appearing in (27) will be dominated by one term,
and the likelihood becomes

L(y) pi X exp 1AY 1-2A2 as No 0.
No 2N01

Proceeding as in the previous example, we consider both No and X
small and drop hypothesis -insensitive terms from the approximate
likelihood to obtain

L(y) = (28)

where 6, = 1 when y > A/2 and zero otherwise.t Moreover, note that
the threshold is the same as in the nonavalanche case. This is because
the detector is only interested in ascertaining whether or not a photon
has arrived and need not estimate the magnitude of the avalanche gain.
Again, for J measurements, the corresponding log -likelihood expression
is simply the weighted counter

J
log L = E q; log Xi. (29)

)=1

As No -4 00 , we again expand the likelihood (27) in a Taylor series to
obtain

- ri lA 12A1
1=1 L N.y

1
(30)

which, for J measurements, becomes

lAu 12A 2log L(m) = E - E p 1[1. -
i=1 1=1 No 2No 11.

(31)

The above is again interpreted as a correlator where X(r) is correlated
with Ayi/No  Ei=1 /pi = (Ayi/No)E[g].

IV. THE MAXIMUM LIKELIHOOD DETECTOR

Here, we begin to answer the question posed at the end of Section
II by presenting a derivation of the likelihood function associated
with the received signal. The likelihood function is the probability
measure of the photodetector output, given that a particular intensity
is active. It is well known12 that, when one of M equally likely signals
X,n(t) is transmitted, the optimum (minimum probability error)
detector computes the M values of the likelihood function evaluated
at the received waveform and declares that the jth signal was sent,
where the jth likelihood function is the largest.

t As expected when No 0, the avalanche gain provides no essential benefit. A
more interesting asymptotic evaluation and one that is more akin to reality is obtained
by parameterizing the gain distribution such that E[g]/No 00 .
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We denote the received signal by

y (t) = I .(t) n (t) , 0< t
where /. (1) is the information -carrying, filtered, Poisson process

in,(0 = E g kw(t - 10,
k=1

(32)

(33)

and where the index m [corresponding to X, (1)] is hidden in the
statistics of { tk } and v (t). These statistics are described by (2) to (4)
with X (t) replaced by X.(t).

The task of the optimum receiver is thus to process the photodetector
output y (t) for r seconds and then decide which intensity function
X.(t), m = 1, 2, , M is in effect. As we have mentioned earlier,
the random variables { gk } represent the avalanche gains, and the pulse
shape w(t) is so far arbitrary with the only requirement being finite
energy. Although in actual practice the noise at the output of the
photodetector is not white, it can be whitened by a filter before addi-
tional processing and the effect of this filter will be manifest in the
shape of w(t).

The conditional likelihood function [when im (t) is fixed] has the
standard form"

1 f
1

L.CY1/.1 = exp No 0

- (t)y (t)dt -
2N0 f or

(t)dt} (34)

The desired likelihood is the expectation of (34) with respect to /,n(t)
for fixed m, i.e.,

Lm(y) = E {L,[y I /,]j. (35)

Once the intensity Xm (t) is specified, the above expectation is taken
with respect to the number of arrivals, the arrival times, and the
avalanche gain values. The detailed evaluation of this expectation and
the interpretation of the resulting structures, in terms of implementable
physical operations on y(1), is our objective. The exact structure is
sufficiently complex that many judicious approximations will have to
be made to glean the essential nature of the operations.

We remark that a representation of (35) in terms of an estimator-
correlator structure has recently been treated in the literature."."-"
The optimum detector has been shown to be a correlation detector
and the deterministic signal in the classical correlator is replaced by its
least -squares estimate. This is a reformulation of the detection problem
in terms of an estimation problem. Proponents of this method have
taken the viewpoint that various suboptimum detectors are suggested
by this formulation. A typical approach might be to replace the least -

1400 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



squares estimate by the linear least -squares estimate or some other
approximation, and to approximate the resulting stochastic integral
by conventional integrals. While this might be reasonable, it does not
indicate the direction of the approximation. We prefer an approach
that, to be sure, has many approximations and makes use of estimates
in place of the true quantities, but that can be explicitly related to the
optimum detector under the asymptotic conditions of large and small
signal-to-noise ratio.

Toward this end, we proceed by writing (35) in more detail. Neglect-
ing edge effects on the integrals and assuming that the observation
time T' is much larger than the effective duration of a single pulse w (t) ,

we can express the inner product and the square term indicated in
(34) as

or

where

I (t)y (t)dt =1g kP (t k) ,

k=

The square term is written as

J.
7.

P(4) = f
7.

W(t tk)y(t)dt.
0

I,,(t)dt = gkgift(tk - ta),
k,j=1

(36)

(37)

where R (t) = fir I v (Ow (t - 7-) d r is defined as the pulse correlation
function.

Substituting (36) and (37) into (35), we obtain

1 y 1Lm(y) = EI exp
No k=1

yk
2No k l gkg

P(t ) - - E
k

(t t .)} (38)
j=

Employing the vector notation gy = g2,
(t1, t2, , ty) gives the expression

, g ,,) and tr =

1 1L,(y) = E NoE1t,,,,,, [exp gkP(tk) 2N g kg JR(tk - ti)}] ,
k

(39)

and after performing the indicated expectations we obtain a detailed
representation of the likelihood function

Lm(y) = exp [-Am ] 1 E fT dt Xm(tk) p (g k)
n=0 n gn 0 k=1 k=1

X exp -Noi
g k k 2N 0

1 i4,1
gkg ilt(tk tj) (40)

k= - kj=1L

where p(gi) is the (discrete) probability density function of the ava-
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lanche gains and where it is understood that, when n = 0, the summand
is taken to be unity.

To more easily interpret and/or mechanize the likelihood calcula-
tions, it will be convenient in some applications to assume that the
photon arrivals can only occur at discrete instants of time { jA } , where
A is some fixed (small) interval and j = 0, 1, 2, , J. The integer J
will be defined as the closest integer to VA. This assumption is easily
accommodated in (40) by replacing fdt with a multidimensional
sum Etn over the lattice { tk = jA : k = 1, 2, , n; j = 0, 1, , ,

and by replacing X (tk = jA) with the probability that'. jA - A/2
tk < jA ± 0/2. The likelihood function under this set of assump-

tions then becomesLmco 1 J
(y) = exp C- xmcrn E -nt

t E0 k= 1
E i-1x(tk) P (g

n=0 = g.

X exp No
{--

0
[E gkP(tk) EE1 gkg,R(tk - WI (41)

k k,m

1

which will be referred to as the (time) discrete likelihood function.
The two infinite functional series, (40) and (41), are not of much

use as they stand. However, under a variety of physically realistic
situations and by making suitable physical approximations as well
as asymptotic expansions, we shall be able to deduce from these repre-
sentations real-time implementable signal -processing algorithms.

By suitably normalizing the likelihood functions, (40) and (41),
1/N0 can be replaced by the (pulse) signal-to-noise ratio. This param-
eter «2 will play a central role in our subsequent treatment, and its
relative size will dictate our particular approach. The normalization
entails replacing R (t) by R (t) / R (0), P (tk) by P(tk)/R (0)g, and the
random variables gk by gk/0, where 0 = Egk; consequently,

«2 =
gni (0)

No

and may be viewed as an average pulse signal-to-noise ratio. As we
have discussed in the preceding section, in some applications this
parameter is small, while in others it is large. Thus, our investigations
in the sequel will focus on these two ranges. Additionally, different
treatments of the likelihood ratio are also required, depending upon
the presence or absence of avalanche gain.

It is instructive to give a still different representation for the like-
lihood, which will be found useful in the sequel. Towards this end, we
introduce a zero -mean, stationary gaussian process x (t) with correlation

t This probability is given by
ija-FA /2

LA-A/2
X(t)dt X(jA).A.
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function,
E[x (t)x (t T)] = R(T),

and can then write (39) in the form

L, (y) = Et,,g,,, [exp {a2 g kP {lk} E. exp -i« g kx(tk)}] ,

(42)

where we have used the elementary identity for gaussian processes

exp -a/2 E gkgiR(tk - ti)} = Ez exp lis E gkx(tk)}k,j=1 k=1

Since, over the observation interval, (42) is absolutely integrable,
the expectation with respect to x and the other random variables may
be interchanged. By noting that

Et,g,p exp E g kx (tk)} = exp (-Am)
k=1

exp E f p(g)Xm(t) exp Eiax(t)lcit} , (43)
gn

we can write (42) in the form

Lm (y) = exp ( -A m)Ex exp (E f p(g)X.(t)
g 0

)X exp [a2gi(t) iag (1)]clt.13 } (44)

In particular, in the absence of avalanche gain, i.e., p(g) = 3(g - 1)
(44) assumes the compact form

L,(y) = exp (- Am) Ex {exp f X.(t) exp [a2P (t) iax(t)]dt)}
0

(45)

It may appear that the introduction of the process x(t) did not
simplify matters, since the explicit evaluation of the expectations
again leads to an infinite functional series without adding insight into
the nature of the processor. We shall nevertheless find this representa-
tion useful. As will be seen, when suitable approximations are made and
asymptotic behaviors explored, a great deal of insight can be gained
from the alternative representations for the likelihoodt (40), (44), and
(45), as well as the discrete likelihood (41).

t By normalizing the exponent, i.e., introducing a2, we should actually use new
symbols to denote gm/g and R/R(0). To avoid introducing extra notation, we retain
the symbols gm and R(0), but we realize that, whenever a2 is present, these variables
have been normalized.
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V. SMALL SIGNAL-TO-NOISE RATIO (a2 -> 0)

Here we consider the physical situation corresponding to small s/n
(a2 0). This occurs when a photodiode is used for direct detection.
In this application, the response to an individual photon is masked by
the background noise, and we do not expect the receiver to make
explicit use of the information supplied by an individual pulse. Rather,
the aggregate effect will be important. This is in contrast to the
"counting" receivers (for large «2), where individual counts contribute
explicitly to the final decision. Since the avalanche gains are unity in
this application, the likelihood function takes the form of (45). Two
signaling situations of interest are examined next.

5.1 M-ary signaling

Since «2 << 1 (typically, a = -20 dB), our approach will be to
expand (45) in a power series in a2 and retain the first two terms./
Consider the following Taylor series approximation to the argument of
the exponent in (45). Again dropping the index m, let

t(ce, x) = exp f X(t) exp [«2P (t)

eA

i«x(t)]cit}

e(0, x)«
a2

t"(0, x) 2- . (46)

Evaluating the derivatives, the asymptotic likelihood function becomes
a2 r

Lm(y)E x [1 + a f X,(t)x (t)dt + -2
0

2X,(t) 3 (t)dt
0

rod-
Jo Jo 2 0

Xm (4) Xm (t2)x (ti)x (t2)dtidt2) - «2
(t)x2 (t)dt] (47)

Recalling that the exponent has been normalized such that Ex = 0,
Ex2 = 1, and Ex (ti)x (t2) = R (ti - t2), we get, after performing the
averages,

Lm(y) 1 I- a2 [ X, (OP (t)dt

1

fob- JX"I m
(ii)X (tOR (ti - i2)dtidt2 -

2-

f Xm(t)dt] (48)
Jo 0

Or

Lm(y) = log Lm(y) f X,(t)P (t)dt
0

1f fr X.(tOX.(ta (ti - t2)Citidt2 - lAm. (49)
0

The detector involves linear operations on the filtered received signal
P (t), addition of constants, and a maximization. As shown in Fig 5,

I Of course, the same answer would be obtained by working with (40).
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0 0
+Am

(m = 1,2,- , M)

Fig. 5-Correlator filter for M-ary signaling.

a realization of the receiver is obtained by first passing the incoming
signal, y (t), through a filter with impulse response w( -t)/R(0) to pro-
duce P (t). This signal is then passed through a bank of M filters with
impulse responses X,(7' - t), m = 1, 2, , M and sampled at
t = v.. This is the first term in (49). The other two terms are precom-
putable biases. The detector then chooses the index m*, which achieves
the max L,(y), and the corresponding X.. (t) is declared to be the

transmitted intensity.
There is a pleasing interpretation of this receiver which is reminiscent

of the "linear" model discussed in Section II. If one were to consider
the detection problem when the signal I (t), given by (1), is replaced
by its average E[I (0] = I (t), given by (6), then the optimum detec-
tor in gaussian noise would base its decision on the likelihood function

1 /7"
= y(t)I(t)dt -

2
- (t)]2dt.

o

Substituting (6) into (50) gives

2 f dt y (t) f w (T - t)X(r)dr

117'
2 J for for w(t - ti)X(tOw(t - t2)X(t2)dtidt2}dt

(50)

= X(r)P (r)dr - r X(h)X(t2)R(ti - t2)dtidt2. (51)f f 0
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Note that (51) differs from (49) only by the bias term Am, the prob-
ability that no photons have arrived at the photodetector. We con-
clude, therefore, that the optimum detector structure in the case of
small a2 is thus "matched" to the average signal.

5.2 Optimum detection of PAM signals via the Viterbi algorithm

We will now develop the optimum receiver structure (still for small
a2) when the intensity is a pulse -amplitude modulated (PAM) signals

alt) = E anf (t - nT), 0 t (52)

where each a can assume the binary values 0 or 1, f (t) is a positive -
valued pulse that incorporates the distortion of the optical medium,
1/T is the symbol rate, and T. > kT. Note that in writing (52) we
have dropped the subscript m which we have used to identify the trans-
mitted signal (intensity), since for PAM signaling it is generally more
convenient to think of the receiver as finding that sequence { a.} which
maximizes the likelihood. Substituting (52) in (49) and emphasizing
that the likelihood function is now to be regarded as a function of a
particular data sequence (which uniquely corresponds to a specific
intensity) gives

where

1 ti

(al, a2, , ak) a z_ n Lo Ls a nam3C
n = 1 2 n = 1

(53)

z = f [P(t) I]f(t - nT)dt (54)

is the response at time nT of a filter matched to f (t) when the input
is P (t) - I-, and the correlation -type function 3C is defined by

3C n_, = f r dr Ur dt f (t - nT)w (t - 7))
o o

= 10

X
Uf (t' - mT)w(t' - 7))

0

U (r - nT)U (r -m T)dt

=
fU(T) U[T - (n - m)T]dt, (55)

0

t Note that we have neglected the dark current Xo. This obviously does not alter
the final results. Also, the results can, in a straightforward manner, be extended to
the multilevel case.
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with

U (T - nT) = f f (II - nT)w(T - t1)dt1,
0

and the observation time T. is taken to be extremely large (r >> T).
The receiver structure indicated by (53) to (55) is similar to the

maximum likelihood (ML) receiver for detecting a PAM signal distorted
by a noisy linear channel." The received signal is first passed through
the matched filter w(-t), and then (minus the bias term 1) matched
to f (-0. The result is sampled at the synchronous instants nT. This
produces the set of sufficient statistics (z.), from which the hypothesis-
insensitive bias term E act,,,3C._, is subtracted to produce the
likelihood function.

The method by which the likelihood (53) is sequentially maximized
in real time has become known as the Viterbi algorithm (vA), as a
result of its application to the analogous problem of ML detection of
linearly distorted PAM data signals.

The VA is a dynamic programming algorithm that uses the "finite
memory" of 3C,,, i.e., the fact that there will always be a k such that,
for all practical purposes,

3C = 0, I n I > ic. (56)

Because of (56), it is easy to see that the likelihood, (53), can be written
in the recursive form

k
L(al, a2, , ak) = L(al, a2, , ak_i) akzk - Zak E (57)

m=k-ic

By introducing the sequence of state vectors { an}, where

on = (an_a_i), , an), n = 1, 2, , k,

the likelihood can be written in the form

L(ffi, , En) = L(uj,  , h(zk ; 0k).

(58)

(59)

As is well known, the maximization of the function L (al,  , ak) with
respect to its arguments is amenable to solution via dynamic program-
ming since (59) is satisfied. Since this is the case, the optimum receiver
now assumes the structure shown in Fig. 6.

In summary, it has been shown that the ML receiver for the limiting
case of small s/n has a structure that is asymptotically approximated
by the receiver designed to detect a known signal in gaussian noise
(with the inclusion of certain precomputed bias terms). We remark at
this point that the application of the Viterbi algorithm is, of course,
only productive when intersymbol interference is the dominant im-
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1/2 .,T iatk gki Kk_ki

1 1

A

Fig. 6-Optimum detector (large noise) for PAM signaling.

pairment. In the context of the above discussion, this will be manifested
in the values of 3Cn for n 0. These values depend on the data rate
relative to the channel dispersion. As in data transmission over voice -
band channels, other methods of processing such as linear and decision
feedback equalization should provide good results so long as the inter -
symbol interference is not inordinately large. It is clear from (53)
that when the distortion is small enough so that the quadratic term
can be neglected, the optimization of the likelihood with respect to
the data symbols can be carried out on a term -by -term or bit -by -bit
basis. In other words, passing zn through a slicer provides optimum
detection. As the distortion becomes more severe, the quadratic term
appearing in (53) must be retained. The linear receivers reported by
Personick5-7 and Messerschmitt8'9 can be obtained from (53) by
differentiating this expression with respect to the data symbols and
then quantizing the result to the legitimate transmitted data levels.
As the distortion increases still further, it becomes necessary to maxi-
mize (53), as it stands, via the Viterbi algorithm. Selecting one of these
detectors in any given situation requires an evaluation of the error
probability to quantify the effect of distortion on the system per-
formance.

VI. PERFORMANCE ANALYSIS OF THE OPTIMUM DETECTOR FOR BINARY
ONE-SHOT SIGNALING

6.1 An upper bound on the error rate (a simple example)

Having a description of the optimum detector structure for a2 0,

it is interesting to inquire how well it performs in certain signaling
situations. Unfortunately, the M-ary mode of operation is extremely
difficult to analyze, and even the general binary case poses insur-
mountable mathematical difficulties. We have, however, been able to
analyze several special cases of interest that provide insight as to the
effect of various system parameters on performance.

In the binary signaling case, information is conveyed by sending
either intensity X1(t) or X2(t) with equal probability. From (51), the
ML detector has the realization shown in Fig. 7. The detector, in this
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T

=1/21f (X2(t) -A1 (t) dt f Alt -V) (Al (t)A1(t') -X2 (t)X2M Idt dt'l

Fig. 7-Optimum detector for binary signaling (a2 0).

situation, computes the statistic

=
J

[WO - X2 (01P (t)dt - f [WO X2(tndt
0 2 0

1

2 fr .17?(t - 7-)Di(t)X1(7) - X2(0X2(r)]dtdr, (60)

and ea is then compared to zero. When /4 > 0, it is decided that WO
was sent, and when A < 0, X2(t) is chosen. In (60), the indicated
quantities are normalized such that

1 -
P (t) = R(0)

f
coy

(r)w(t - T)clr

and r? = R / R(0).
The probability of error is

Pe = 2 Pr DA 4: 0 I y = I1(t) n(t), 0
+113r Cu < 01Y(t) = I2(t) n(t), 0 t < rj, (61)

where

I1(t) = E w(t - tn) with E[v] = fo Xi WA,

and where

I2(t) = w(t - t) with E[v] = foe X2 (t)dE.

It turns out that the evaluation of (61) is not mathematically tractable
when X1 and X2 are arbitrary positive time functions. Even reasonable
bounds on (61) are difficult to calculate in general. However, for con-
stant intensities, exponentially tight upper bounds can be obtained.
While the restriction to constant intensities might appear severe, it
is shown in the appendix that in the absence of both dark current
and gaussian noise the optimum choice of signals will have one intensity
equal to zero while the other is arbitrary and need only satisfy a power
constraint. Here we wish to illustrate a bounding approach for one
special case where the upper bound can be obtained in closed form. We
analyze the error rate for a system slightly modified from that depicted
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Fig. 8-Optimal detector for a2 small and Xi = 0 and A, = A.

in Fig. 8 for Al = 0 and A2 = X. The modification will involve adjusting
the threshold/ so that our upper estimate of the probability of error
when Al is sent is equal to the estimate of probability of an error in
the complementary situation.

In the binary system under consideration, the information symbol
1 is encoded into the intensity function A1(t) = A, 0 t < r and the
information symbol 0 into the intensity A2 (t) = 0, 0 <= t S 9'. Notice
that the dark current is assumed to be zero. The detector structure we
wish to analyze is depicted in Fig. 9. Here, the information -bearing
Poisson process is passed through a matched filter w(- t)/R (0), then
integrated, and the result compared with a threshold set at F. If µ
(refer to the block diagram) exceeds F, the symbol 1 is chosen and if

F, the symbol 0 is chosen. Our chief interest in this example is to
exhibit the interplay between the various parameters in this extremely

but informative situation.
As seen in the diagram,

A= pi R (t)dt
o

n(r)w(t - r)dtdr (62)
o

or, equivalently, the test statistic may be written as

= ± no, (63)

which is compared to a threshold. Note that 1.10 is just a scaled version
of 1.4, and no is a zero -mean gaussian random variable with

R(t - r)dtdr
E{nS} = No ° °

2 A cr2-
(64)

[ R (Odd

Observe that, in this situation, the receiver is just a counter since the
test statistic represents the total number of photon counts observed
in the entire observation interval plus an added gaussian random
variable.

t By the threshold, we mean the bias terms appearing in (60), i.e., the last two
terms.
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Fig. 9-Detector for a2 small and Xi = 0, X2 = X with threshold modified so error
probabilities are equal.

The integer random variable if is Poisson -distributed with

E[v] = X r when 1 is sent (H1)
and (65)

E[v] = 0 when 0 is sent (H0),

where H0 and H1 are symbols distinguishing the two situations. The
probability of error is then explicitly given by

Pe = 1 Pr DI > F1 H0] + 1 Pr DI =- FIHO, (66)

where we have made the assumption that Os and is are transmitted
with equal probability.

Since (66) cannot be expressed in closed form, we seek an expo-
nentially tight upper bound. Applying the Chernoff bounding tech-
nique, we notice that the error rate under the null hypothesis, H0, can

this hypothesis v = 0.
Applying the bound yields

Po = Pr DI > F1 Ho] exp
{- P

2(72 1
(67)

The second term in (66) can likewise be upper bounded since the
moment generating function of v under H1 is known. This procedure
gives

02e
P1 = Pr DI $_ F I HI] < exp {OF + 1 /11,1H1( -0),

where

0 > 0, (68)

ilfyilli(e) = Elev°1H1) = exp Dr(e° - 1)]
for 0 >= 0. The bound (68) then becomes

p1 exp {OF + FT+ xve-8_1)}, 0 > 0, (69)

and it is optimized by finding a 0* such that

cr20
E(0*, F) = min {OF + -2 + X7 -(e--9 - 1)1 (70)

0>o
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To make the upper bounds on P1 and P2 equal, we select an F = Fo
such that

FgE(0*, F0) =
2---a2

This, then, yields the final upper bound on the error rate

P. .- exp (-FS/20-2). (71)

By differentiating (70), we see that for a positive solution to exist it is
required that 0 < F < X 7. Unfortunately, such a solution cannot be
obtained in closed form. However, lower bounding 1 - e-ii by 0 - 02/2,
which in turn upper bounds (69), we find that

and consequently

0* =
x F
+>0, (72)

al XT.

0 *2

Pi exp -o*(xr - F) + (xr + 0.2)} (73)

where 0* has been chosen to provide the tightest bound.
Having 0*, the threshold F0 is obtained from

Fs _pkr -F02
a2 XT ± 0-2

Solving this quadratic equation and selecting the only reasonable root
for Fo give

F0 = _ 0-2 + 4(74 + 0.2x2'. (74)

Substituting (74) into (72), the bound on the error rate finally becomes

P . < exp [ - K
--- { A/1 ± C - 112],- (75)

where K = AT' and C = 0-2/If =
Average Noise Power

Average Shot Noise Power
It is instructive to express the bound (75) in the following alterna-

tive form

where

pe < e-pfcc),

1 K2
P = 2 K ± cr2

=
Average (signal)2

Average Total Noise Power

(76)

and where f (c) = D. 4_ c - %/c2 + c]2.

As can be checked, f (c) is a monotonically decreasing function of c,

1412 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



and has the properties
lim f (c) = 1
coo

lim f (c) = 4.

Thus, Pe :5- e-Pf(c) -4 e-P, as c 0.

This is the situation that prevails when the shot noise dominates.
On the other hand,

Pe < e- p14 as C --) co

which is the situation when the gaussian noise dominates.

6.2 Implications of the error bound

The first observation concerning (75) is that, as C 0, Pe
exp -K/2} . This can be achieved by making o2 0. This implies

that either the gaussian noise is zero or that the number of counts is
very large. However, in the absence of gaussian noise (as well as dark
current), it is clear that the only way to make an error is when there
are not any counts (v = 0) under H1. The chance that v = 0 under
H1 is just exp -K . In the absence of gaussian noise, this is clearly
the very best performance one can hope for. Notice that the upper
bound predicts an outcome which is 3 -dB poorer than this ideal. The
factor of 2 in the exponent of (75) is attributed to our bounding tech-
nique. What, in fact, happens as 0'2 0 is that 0* increases, and that
the lower bound 0 - 02/2 becomes loose, the upshot being the factor
of 2 in the exponent. To see that this factor of 2 is indeed a quirk of the
parabolic approximation to the exponential, consider the exponent in
(69) as 0-2 -* 0. It is clear that the optimum threshold and 0 are, re-
spectively, zero and infinity, which when substituted in (69) does
indeed give e-xT (K = xr).

Another aspect of the bound, however, is that ideal performance
can be achieved with this detector structure (which is optimum for
0-2 -*CC, the large gaussian noise situation) when the noise vanishes
(a2 -) 0). This suggests that for the case of constant intensities the
linear threshold detector is robust, i.e., it performs well over the entire
range of o2 (or a2).

We now use the error bound to determine the number of counts
required, for reasonable operating physical parameters, to achieve a
desired error rate. Note that, from (64), after a simplifying calcula-
tion on the double integral, we obtain

Q2 = o

2 (rA - tR(t)dt) =
2N 0

A2 A
0tR (t)dt

R (t)dt
(77)
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where

A = f R (t)dt.

Introducing the pulse stretch factor,

S =
fat (t)dt/ f r

R(t)dt < r, (78)
0 o

into (78) and recalling that a2 = R (0)/No yields explicitly

2 - 2 1 - r R (0)Sa - (79)
a2 r A

where 0 < r = S/T < 1. What, then, can be said about the choice
of the parameter r? Can it be selected at will? Within a good approxi-
mation, SR(0)/Ar- 1. Clearly, the best choice of r appears to be
unity, since r = 1 reduces the noise variance to zero. Recall, however,
that, when the mathematical model was initially introduced, it was
tacitly assumed that the observation interval was much larger than
the width of the pulses emanating from the photodetector so that edge
effects could be neglected. This alone would restrict the range of r to
be no more than, say, 0.1, which would indicate that r does not appear
to be an independent parameter. With r = 0.1, we may conclude from
(79) that the effective gaussian variance of the scaled system is roughly

0-2 = 20/a2. (80)

Returning now to (75), we see that ideal performance is achieved
when

0.2

C K-<<1
'

and when (80) is substituted in the above, we arrive at the condition
that

20
Ka2<<

1 Ka2 >> 20. (81)

As an example, let a2 = 1/400, which, according to S. Personick,t is
a reasonable number for this parameter. This implies that K >> 8000
is required to achieve ideal performance (i.e., the error rate in this
range approaches zero like e-K). On the other hand, suppose it is
desired that Pe 10-9. This would imply that

7- { (20/Ka2) + 1 - 420/Ka2} 2 '' 20.

t Private communication.
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For instance, a2 ti 1/400 implies that K is on the order of 1200. The
above discussion quantifies the facts that to achieve good performance
the total number of counts must be large or, if the background gaussian
noise is small then fewer counts are needed to provide satisfactory
performance.

6.3 Some conclusions concerning optimum detection for constant intensities

Note that the linear receiver, which is optimum when a2 -> 0, seems
to be robust-at least for binary systems signaling with constant
intensities. The optimum detector in the small s/n case (a2 -> 0) yields
a decision variable based on the total number of observed counts as
evidenced from (63). Of course, for the error probability bound to be
tight, the average number of counts, K, must be large enough that
c2/K << 1. On the other hand, we saw that the optimum detector
structure in the case of large s/n (a2 -> 00) combined with narrow pulsest
(r << 1) is also a counter. The only difference is that the counts in the
a2 -> 0 detector are linearly corrupted by gaussian noise, while the
counts in the a2 -> 00 detector are determined by quantizing the in-
coming signal to the nearest integer in the presence of the added
gaussian noise. The latter operation is, of course, nonlinear. Never-
theless, when the added noise is small (a2 -> 00), the two operations
are approximately equivalent, thus explaining the robustness of the
linear receiver and the results of our theory.

VII. LARGE SIGNAL-TO-NOISE RATIO (a2 --> 00) AND NARROW PULSES

When a photomultiplier or avalanche photodiode is used to provide
direct detection, the parameter a2 is much larger than unity. In this
application, the response of the photodetector to a single electron or
hole is much larger than the background gaussian noise. In this situa-
tion, intuition dictates that the detector make use of the "estimated"
arrival times of the individual photons. Here we discuss a special case
that will bring out the essential structure of the optimum detector.
The situation examined is when there is no avalanche gain and the
individual pulses w (t) are time -limited to an interval much smaller
than the observation interval. The more general situation is treated
in Section VIII.

The approach taken in this section is to use the gaussian process
formulation (45) and attempt to approximate the indicated expecta-
tion with respect to the x (t) process. For this approach to be productive,
we must assume that R (t) has effective duration A. We may then

I This was demonstrated in the examples of Section III and is reestablished in
Section VII.
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approximate the integral appearing in (45) by a discrete sum, i.e.,

J: dt exp EaP (t) iax (t)1X,n(t) A E exp (a2P; + lax i)X,( j A), (82)
,=1

where P.; = P(j0) and x; = x(ji).
The implication of (82) can be viewed in several ways. Of course,

as A -> 0 and J irrespective of the correlation function R(t),
the discrete sum is an excellent approximation to the integral. But
sampling the integrand at the rate 1/A does not necessarily guarantee
that the sum is a good approximation to the integral. Yet to derive
any utility from representation (45), we must sample at a rate 1/A
so that the sequence of random variables { xi} can be regarded as
identically and independently distributed. Unfortunately, this is the
only case for which we can compute the indicated averages in a useful
form. What then do we mean by (82)? To make sense of this repre-
sentation, we must reinterpret the distribution of the arrival times,
{t}. Evidently, the reason we have an integral representation instead
of a sum is because we have assumed that the arrival times obey a
continuous distribution. However, if we assume at the outset that
the arrival times { to } can occur only at a set of discrete points { tn = nA ,
then (45) will contain a sum instead of an integral. This procedure is

equivalent to that used to obtain (41) as the discrete version of (40).
Hence, a rigorous interpretation of (45) is that the Poisson arrival
times can only occur at the discrete instants of time { j A} , j = 0, 1, 2,

. If we now assume that the quantization of the arrival times to
units of i is such that R (A) ti 0, then the set of random variables
{x1}.;=1 are mutually independent. Exploring this line of reasoning,
(45) can be written as

eAL(y) = jj Ez[exp {AX; exp (a2P; iax ;) 1, (83)
i=1

where X; = X( j0), and we have suppressed the index in denoting the
particular hypothesis being tested.

Expanding (83) in a power series and carrying out the indicated
expectation give

J X n2
e °L (y) = 1( E

",)71

exp {a2 (nP; - -2- ) ) (84)J==0
We are now in a position to exploit the assumed large value of a2.

In other words, we are interested in determining the behavior of (84)
as «2 -*co . Towards this goal, consider the sum

An(X..)n n2/2]}.Si = E exp (85)
n=0 n:
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This series is in the form

$, exp (a2yn),
0

(86)

where O. and 7n have the obvious identifications.
Let be the largest of the T. and t3i be the corresponding value of

13,z. Then (86) becomes

exp (0/2-7i) l E an exp Ece2(7n - 1) , (87)
n =0 g,

where each 7 - is negative. Since (86) converges absolutely, the
infinite sum can be rearranged in such a way that the exponents are
decreasing; thus, the rearranged sum is recognized to be a Dirichlet
series" in the parameter «2. From the elementary properties of such
series, we deduce that, except for the n = j term, the summation por-
tion of (87) converges to zero as «2 -+00. So, as a2 -*00, (87) behaves
like

Si exp (a21i). (88)

Now returning to the series in (85), we let ni denote the strictly
nonnegative integer attaining

n2max a2nP - a2 ,

TIE [0,1,2, 2
(89)

i.e., ni = [P], where [P] denotes the nonnegative integer nearest to P.
The corresponding coefficient becomes

Ani()i)ni
(90)ni!

Thus, as «2 co,

L(y) = log L(y) = -A + log

X ni (Xi) exp [a2(niPi - n2i/2)])} (91)
J=1 np

Discarding the hypothesis -insensitive terms, (91) can be rewritten
in the form

Lm (y) - -Am + E n; log Xr), (92)

where we recall that ni = 0 whenever P; < 1. Note that (92) is
similar to the detector described by (56) ; however, the different
statistical model (Bernoulli as opposed to Poisson occurrences)
accounts for the bias term -Am appearing in (92).

The detector structure exhibited in (92) has a simple interpretation
and is similar to that depicted in Fig. 3. As shown in Fig. 10, the in-
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Fig. 10-Weighted counter with quantizer.

coming signal y (t), having been filtered by w(-t)/R(0), is sampled
every A seconds. This is followed by quantizing the samples, Ph to the
nearest positive integer (including zero whenever P; < 1). The
quantized samples are multiplied by the locally stored numbers log x7")
and the results summed. The sum is added to Am to form the decision
statistic. Since the added gaussian noise is assumed to be small and the
pulse w (t) is assumed to be narrow, most of the time the nearest integer
at any time t; = jA will be either 1 or 0, depending on whether
Pa> z or P; < I, i.e., whether the receiver determines a pulse is
present or absent. Consequently, the optimum detector structure may
be viewed as a weighted counter, where the decision as to which in-
tensity was transmitted is based on selecting the largest of the weighted
pulse counts.

We recognize that from an implementation point of view even this
seemingly simple structure may pose practical difficulties. The indi-
cated sampling may be difficult to carry out at this high frequency.
While this is indicated mathematically, in practice the peaks of the
signal at the photodetector output could be used to approximate the
photon arrival times and, hence, the interrogation times.

VIII. MAXIMUM LIKELIHOOD RECEIVER FOR LARGE SIGNAL-TO-NOISE
RATIO (a2+ 00)

This section extends the results of the last section by indicating a
general approach to the extremely complex problem of performing
optimum detection when the pulses w(t) are not restricted in width or
shape and when avalanche gain is provided. In the presence of ava-
lanche gain, the average signal-to-noise ratio, a2, is large. This implies
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that the photon arrival times can be accurately estimated, and these
estimates can then be used to aid the detector in making accurate
decisions. One objective of this section is to indicate how the optimum
detector estimates the arrival times. Heuristically, the receiver at-
tempts to "whiten" or peak up the pulse w(t). The presence of gaussian
noise, however small, prevents pulse whitening via linear filtering.
The nonlinear manner in which the receiver estimates the arrival
times is of independent interest and will be presented in the sequel.

We begin with the most general form of the likelihood function (40).
While the infinite functional series appearing in (40) is quite intimidat-
ing, it has already been shown to reduce to physically interpretable
receivers in the following special cases : (i) small signal-to-noise ratio
(a2 -> 0) and (ii) large signal-to-noise ratio (a2 ->00) combined with
an extremely small decorrelation time* for R(t).

Since large a2 is a practical operating condition (photomultiplier
and the avalanche photodiode), we are motivated to examine the
salient features of the optimal processor under these circumstances.
We also specialize our development to the PAM -Poisson intensity, or
data signal,

N
Xm(t) = Xo E a,r) f (t - nT), 0 < t S r,

n

where f (t) is a known pulse shape determined by the distortion (inter -
symbol interference) in the optical fiber and Xo is again the ambient or
"dark" current. Here, the optimum receiver maximizes the likelihood
function with respect to the data sequence { arl,',1=0. As it stands, the
likelihood (40) is similar* in form to the Volterra kernel description of
a general time -varying nonlinear functional. However, such generality
seems to preclude any practical value, and furthermore reveals little
of the receiver's essence. To obtain a good approximation to the struc-
ture of the receiver when a2 ---- , it will again be necessary to dis-
cretize the photon arrival times.

8.1 The asymptotic (a -4 00) likelihood function

In this section, the basic idea is to asymptotically evaluate the
multidimensional sums or integrals. Note that, when a2 moo , the
2n -fold integrals appearing in the likelihood become increasingly sensi-
tive to the value of the exponent, and in the limit the integral is corn-

* Note that, as R(t) OM, the gaussian noise becomes transparent to the receiver
(since the integrated received signal would be discontinuous whenever an impulse
arrived). The receiver then assumes the form of a counter.

The difference is that, in our application, the input P (t) is exponentiated rather
than appearing directly.
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pletely determined by the coordinates that maximize the exponent.
This statement is made precise by the multidimensional version of
Laplace's theorem" which, apart from certain hypothesis -insensitive
terms, gives for each n

lim dt n p (gi) lin X (tj)
a-. co 0 g. 5=1 5=1

X exp log [ g,nP(t,) -n-1
m,k=1
E g,gkR(t,n -tk)]} p(0)X(4)

=1 =1

X exp ice2
1

gmP (t,,) -2 =.; gdi:R - t:) ] , (93)t
m =

where { ti, t:, , t:} and { A A , g:} maximize the exponent,

E g ,nP (t,n) --nE gnakR (tm - t k) ,
m 2 ,n,k-1

under the constraint that 0 < ti < = 1, 2, , n. The determina-
tion of the extremizing sets appears very difficult. For example, without
avalanche gain (i.e., gm = 1) and n = 1, it is clear that et is taken at
the point where the observable P (t) is a maximum. For example,
when n = 2 the exponent becomes

P(t1) P(t2) - R(t1 - t2),

and the choice of ti and t2 is not apparent. The values of CI; and t*2 tend

to be near the peaks of P (t) , but this is not always the case.* The best
choice of t1 and t2 will, of course, depend on the interaction of the
random process P(t) and the correlation function R (t) . The problem
of finding the set of points WI is in some sense equivalent to whitening
or peaking up the pulse w(t) in a nonlinear manner to minimize the
noise enhancement concomitant with such an operation. Putting
aside for the moment the difficulty of determining { t:, , t,1} and

I gt , g*1 , we can use these values to rewrite the right-hand side of
(93) as

1

p (0)X (tD] exp [a2
m 1gmP

(4,) - Ek
=1

g,4R (4, -4)]
= = 2 m,

E

'Yn exp [a213 n ( r)], (94)

t It has been assumed that there is only one set of variables t = (ti,  , tn) and
g = (g,, , gn), which maximize the exponent. If there are several such t* and g*,
then the right-hand side of (93) would consist of a sum of these terms. We do not
pursue this approach, since the resulting structure is hopelessly complicated and
appears to be impractical.

This would be the case whenever P(t) has equivalued maxima spaced at least a
decorrelation time apart.
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where we have indicated the dependence of both the coefficient and
the exponent on the observation interval T. Using (94) in (46) gives
the Dirichlet series2'

eAL E 7(r) exp [c63. ].n-o
(95)

As a -400, it is well known that the Dirichlet series is dominated by the
term with the largest exponent, i.e.,

lim eiL ti 7 (2") exp 101213 nI , (96)
a -'

where f3* is the largest exponent.t It is evident that n* is an estimate
of the number of (Poisson) events occurring in the interval T and
that ti, , C, are estimates of these occurrence times, while gi, , g:
are estimates of the avalanche gains. This is not surprising since, as

00, the vanishingly small noise implies that these estimates will
be quite accurate. Hence, the receiver is intimately related to the
situation considered by Bar -David,' where the Poisson events can be
observed directly. The distinction is that estimated arrival times and
avalanche gains are used rather than their true values. It is important
to realize that specific estimators have been obtained for the random
parameters. As we show in the sequel, the simultaneous estimation and
detection described above can be recursively implemented via dy-
namic programming.

Since neither the exponent in (94) nor the jr=lp (g*,) term is hy-
pothesis -sensitive, the relevant portion of the likelihood function is

*

L ^' e-A-y*(N) = e- A II X (rj),
j=.1

(97)

where is the number of time points that maximize the exponent of
(92) (which, of course, depends on r) and 417, are the values of
these time points. Note that, once the exponent is jointly optimized
with respect to t and g, the estimate of the avalanche gain is not
utilized further. This is so because the avalanche gain is a property
of the photodetector and conveys no information concerning the
intensity function. The asymptotic (a --400) likelihood given by (97)
is exactly Bar -David's' likelihood formula, with the true arrival

t If the signal-to-noise ratio is not large enough so that this is not an accurate
approximation, then one could designate n* as the second largest exponent, thereby
developing the more accurate series

14 exp( -A )7.* exp (1 + -yn* exp(fin.)

-re exP03.*)
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times replaced by estimated arrival times. Note that the log-likelihood

..
Lm = -Am(r) + E log X (n)(4) (98)

i-i

is again a weighted counter, and is similar to (98) derived in Section
VII [where the pulses w (t) were assumed to be narrow].

Two shortcomings are associated with the above approach, one is

computational and the other involves a question of mathematical
rigor. The first point is that implicit in the expression for the likeli-

hood (97) is the ability to solve the formidable mathematical problem,

max i g,nP(t,n) - 71 EnE grngkR (tn, - tk)} , (99)
g,,,t,., and n m...1 2 m,k =1

ost.,r,i=1,2,  ,n

in real time. We are not aware of optimization techniques capable of
this accomplishment. The second point involves the invocation of the
large a2 assumption in a sequence of operations. Recall that this assump-
tion was used to derive (93) and then used again to obtain (96).
While the validity of the preceding operations can perhaps be demon-
strated (under suitable conditions), the intractable nature of (99)
forces us to slightly reformulate our problem.

8.2 The optimum detector when the photon arrival times are discrete

To proceed further and obtain a physically realizable, as well as
meaningful, detector, we discretize the photon arrival times. Adopting
this approach, the photon arrival times are now constrained to occur
at the discrete instants jA, (j = 0, 1, 2,  , J, where J = VA).
This gives rise to the discrete likelihood function (41), and eq. (98)
then involves only sums rather than integrals. This modified expres-
sion contains a 2n + 1 dimensional sum, which is recognized as a
bona fide Dirichlet series. Thus, we have avoided the mathematical
question concerning the validity of an asymptotic expansion by intro-
ducing a mild relaxation of the physical set-up.

Applying the asymptotic condition to the 2n + 1 variable summa-
tion again produces the expressions (94) to (99) where it is recog-
nized that the variables { ti} are now constrained to lie on the
lattice, i.e., ti = j,4, where ji = 1, 2, , J. We now show that, using
this discrete framework, the exponent appearing in (94) can be re-
written in a form readily amenable to maximization. Note that the
variables 4, 4, - , 1,1 may be thought of either as specifying a single
point in n -dimensional space or as specifying n points on the interval
(0, r). This latter viewpoint turns out to be more useful.
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We choose the time quantization A so that the probability of more
than one photon arrival occurring in a time interval of size A is vanish-
ingly smallt under each hypothesis Xm (t). In this framework, the set
of time points d} specifies n points in the interval (0, T), and the
exponent can be rewritten as

"E gmP(4,) - E E gmgkR(tm - tk)
m-1 2 mdc=1

1
= gmq,,,P(mA) - 0- E E gmg kmkR(m - kA), (100)ntl m,k---1

where 0 < t,, < JA and where qm is 0 or 1. A value of qm = 1 implies
that the time point in A is "active" in the sums appearing in (100),
while qm = 0 implies that it is not. If one chooses A to provide a
coarser quantization of the time axis, as might be required by practical
restrictions on the sampling rate, then it is necessary to allow qn, to
assume more (integer) values than 0 and 1. To see why this must be
the case, recall the physical meanings of the time points . It is then
realistic to expect that more than one photon will have arrived in a A
interval and consequently some t*, = t; (for i j). The increased range
of qm is necessary to accommodate this situation. Realizing that no
restriction is implied, for reasons of simplicity we assume in the sequel
that A is chosen small enough so that qm = 0 or 1. At this point, it is
clear that the product gmqm is inseparable in the optimization of (100).
Note that, once the optimum values of qm and gm are determined, only
the value of qn, plays a further role in the detection procedure. With this
in mind, we let Om = qmgm, where 13, will range over the allowable
values of gm as well as zero. For convenience, we call this discrete set
B. In the context of this new notation, the optimization problem posed
in (99) becomes

1 "max E )3mPonA) - E E Omi3kR(m0 - LA), (101)
Pi.. ,ft., m-1

IEB

where it is important to realize that the maximization with respect to
n., appearing in (99), has been removed in (101) by eliminating the
restriction that only a predetermined number of qn's be nonzero. It is
also apparent that the exponent is of the required recursive form so
that the exponent can be maximized via the Viterbi algorithm. With

t This probability is 1 -e a - Ne-x X2.

t The 01 are estimates of the pulse arrival times.
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this in mind, the likelihood function can now be written as

J
L e-A II x (102)

j=1

and the log -likelihood again assumes the weighted -counter form

L = -f X(t)dt q; log [X( 3'4)], (103)
0 5=1

which is similar to the detector described by (92) but without the
restriction on the correlation function R(t), i.e., R(t) need not be con-
fined to an interval A. The result embodied in (92) for nonoverlapping
pulses can be easily derived from (101) by setting R (mA - c
= The exponent then becomes Ef=i[fikP(IcA) - 213fl, which is
optimized, over the integer values of i3k, by choosing fik to be the
quantized version of P (LA).

The structure of the optimum detector (103) is shown in Fig. 11,
and is of the estimator -detector type. The arrival time indicators
fq If =1 (as well as the avalanche gains) are determined by applying
the Viterbi algorithm to the exponent. Once these values are available,
the likelihood is computed for each hypothesis X ( in) (t) and the maximum
is selected.

8.3 Optimum detection of PAM intensities

The above methodology is now applied to the optimum detection of
a digital (PAM) data signal. The 2N+1 intensity functions in this situa-
tion are given by

N
X (t) = x0 + E angt - nT),

n=0
0 t r,

where the effect of optical channel distortion (intersymbol inter-
ference) is included in f (t).

To optimally detect these signals, it is convenient to rewrite the
original likelihood expression so that time is directly expressed in
units of A. Bringing out this dependence, the likelihood function then
becomes

Lj exp - JA

= 1

[X ( j 4i)]q
0

where the index J designates time in units of A. Note that the expo-
nent (101) is already expressed in this form.

It is important to emphasize that a simultaneous or two-tier real-
time sequential optimization procedure is required to extract the ML
estimate of the data sequence, { a,, }4',=c,. The exponent is first maximized

1424 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

(104)



y (t) VA ESTIMATE
OF DISCRETE

PHOTON ARRIVAL
TIME

inX")1101

In A(2) (IA)

I
j= 1

Fig. 11-Estimator detector type of weighted counter.

with respect to the {f3i}.1=0, and the corresponding qs values are then
used to maximize (104) with respect to the data symbols. The optimiza-
tion of the exponent is identical to that occurring in ML data sequence
estimation in the presence of intersymbol interference." The maximiza-
tion of the exponent will, at random intervals,/ produce optimum
values of fizil , say, 40, 41, , 4k. At this instant, the optimization of
the likelihood Lk can then proceed using this new information. At
some later instant, 4k÷1, 4k -f-2, , 4k -Fn will become available and
attention again shifts to maximizing the likelihood Lk+n. As we shall
show, the dynamic programming algorithm which maximizes the
coefficient (103) is quite different from the conventional Viterbi
algorithm. In fact, the application of dynamic programming to the
iterative maximization of this function illustrates the more general
principle that dynamic programming is applicable to the iterative
real-time NIL sequence estimation of digital data that has undergone
a wide variety of nonlinear distortion. The only requirements are
that (i) the likelihood possesses the mathematical property of addi-
tivity and (ii) the nonlinearity is of finite memory so that the notion
of a "state" is meaningful. In this application, both these requirements
are satisfied.

To apply dynamic programming to the optimization problem ex-
hibited in (103), we need only show that the likelihood satisfy a par-

t Owing to the merge aspect of the Viterbi algorithm.
The two main virtues of dynamic programming are that (i) it is essentially a

real-time processing scheme (although there is random signal -processing delay) and
(ii) the number of computations is linearly proportional to time (n), as opposed to
a straightforward evaluation that requires an exponentially growing number of
computations.
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ticular recursive form. To put the likelihood in this recursive form, we
define the state vector

S; = (a;_i,,..., a;) j = f, f +1, , J, (105)

where f is the memory (in units of A) of the dispersed pulse f(t), i.e.,

f(nA) = 0, n > f, (106)

and where 77 is the closest integer to fAIT.
As the optimum {4;} time instants emerge from the Viterbi al-

gorithm in a random manner (owing to the merge mechanism), they
are classified according to which time segment (0, NT) they belong.
Once optimum time instants begin appearing that are active in the
(N 1)T time segment, those optimum q's which are in the NT time
segment are available to maximize the coefficient or, equivalently, the
likelihood.

By substituting the PAM signal into (104), the log -likelihood has
the form

LJ = - E E q; log (Xo amf(j.6, - mT)), (107)
n=0 j=0 m =0

where J is now interpreted as the index of the latestt merge in the
Viterbi algorithm associated with the time interval (0, NT) and

Fin= f f(t - nT)dt. (108)

It is important to keep in mind the fact that, once the decisions
(41, 42, , 4,) are available, the iterative procedure for maximizing
the likelihood proceeds in units of T. The log -likelihood can be put in
the required form by letting D = T/ and writing the likelihood as

LN = - EN

-1
anFn

ND-D
E gilog (x0+ EN

-1
amf(jA - mDA))

n =0 j=0 m=N-j-f/D
ND

aNF N E qf log (Xo aif (jA - mDA))
j=ND-D+1 j- f/D

(109)

It is crucial to realize that the last term in (109) only involves
; therefore, with the state vector defined by (105),

(109) can be written as

LN = LN-1 + h(qN; S N)) (110)

where
qN = (VD -D +1,  ,qND) (111)

t In other words, the next segment of optimum qn's will penetrate beyond the time
instant NT.

1426 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



w ( - t )

R (0)

i A
VA ESTIMATE
OF PHOTON
ARRIVALS

Qi
VA ESTIMATE

OF PAM
SYMBOLS

A

an

Fig. 12-Two-tier dynamic programming algorithm.

It is well known that, through the use of the recursion (110), dynamic
programming may be applied to the maximization of LN.

The resulting receiver is depicted in Fig. 12, and is a two-tier dy-
namic programming algorithm that simultaneously iterates the ex-
ponent and the coefficient to obtain a sequential (or real-time) maxi-
mum likelihood sequence estimate of the transmitted sequence { an} .

While the above detector requires sampling at a rate that could pre-
clude practical implementation, we remark that, in the large a2 en-
vironment, a peak detector could be used to estimate the photon
arrival times. These estimated arrival times would then be used in
a dynamic programming algorithm to mitigate the effect of inter -
symbol interference.

IX. DISCUSSION

The communication -theoretic model for the fiber-optic communica-
tion system has proven to be quite useful. Using this model, the opti-
mum (maximum -likelihood) receiver was exhibited under a wide va-
riety of physical circumstances for M-ary and digital PAM signaling.
Whether or not the energy in the response of the photodetector to an
individual photon is large or small compared to the background
gaussian noise, the detector structure turned out to be a weighted
counter. The details of how the weighting is carried out have been
shown to be complex in some cases. Further investigation into system
performance is needed before assessing whether or not such complexity
is warranted in any particular application. For values of pulse energy-
to -noise ratio (a2) much less than unity, the structure of the optimum
detector can be simply instrumented in terms of analog operations on
the photodetector output. On the other hand, when a2 >> 1, and with
or without avalanche gain, we have been unable to realize the optimum
detector without first sampling the photo -detector output many times
per symbol interval. This procedure may impose practical limitations
on the implementation. Since the digital operations are required solely
to estimate the photon arrival times, it has been pointed out that
certain suboptimum operations (such as peak detection) may be used
to estimate these instants. The power of maximum likelihood process-
ing can still be used to mitigate the effect of intersymbol interference.

From a communications and information theoretic point of view,
there remain many important and, as yet untouched, problems asso-
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ciated with the fiber-optic channel. Sharp bounds on the performance
of the various detectors are extremely difficult to obtain, and very
little can be said at this time. Also, questions concerned with capacity,
reliability, and complexity need be addressed.
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APPENDIX

Optimum Binary intensities in the Absence of Gaussian Noise

In this appendix, we determine the optimum binary intensities
WO and X2(t) in the absence of gaussian noise. We proceed initially
by neglecting the dark current. Of course, the optimum intensities
must satisfy an energy constraints

J.
r

Dki(t) + X2(I) ]dt = P. (112)

Consider the performance of a system that uses the equiprobable
intensities

A1(t) =

o . t _-. T. (113)

X2(t) = 0

The only way an error can be made under (113) is when X1(t) is trans-
mitted and no photons arrive; the probability of this event is

Pr = le-P. (114)

Consider now the performance of a system that uses the arbitrary
and equiprobable intensities WO and X2(t). The probability of error
for this system is

Prr = 1P1 T 1P2, (115)

where P1 and P2 denote the conditional error probabilities given that
X1(t) and X2(t) are active. Let

r
Ai = i X1(t)dt, i = 1, 2, (116)

o

t Since the intensity is proportional to the transmitted optical energy, the con-
straint is on the average energy.
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and let Al be greater than A2. It is clear that, when Al is transmitted,
the optimum detector must make an error when there are no photon
arrivals. These observations provide the following sequence of lower
bounds

and since Al -I- A2 = P we have

= P1.

(117)

(118)

It is thus established that the intensities described by (113) minimize
the probability of error and therefore are optimum. It is also clear that
any system that has one of the intensities equal to zero, and the other
arbitrary (and satisfying the power constraint), will perform equally
as well as (113).

The effect of dark current on the probability of error can be made
arbitrarily small by choosing X2 (t) = 0 and picking X1(t) so that the set
of points where WO is nonzero is sufficiently small.
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We evaluate the crosstalk between adjacent cores in an optical fiber that
results from electromagnetic coupling. Means of reducing it are discussed.
We find that a 0.5 -µm -thick layer of silver can, in principle, reduce the
crosstalk from -20 to -130 dB without significant increase of the loss.
These theoretical results are obtained for two identical single -mode dielectric
slabs. In reality, the slabs are not rigorously identical. Longitudinal fluc-
tuations of slab thickness reduce the crosstalk by at least 40 dB. The slab
spacing can accordingly be reduced from, typically, 11 to 6 Am for a
constant crosstalk. If the slabs are made dissimilar with a relative differ-
ence in thickness of 10 percent, the spacing can be reduced further, to
approximately 1.5 times the slab thickness. For example, a 15 -ton spacing
is required between single -mode dissimilar slabs if the nominal slab thick-
ness is 10µm, provided scattering can be neglected.

I. INTRODUCTION

In multichannel communication systems, crosstalk between chan-
nels is a problem that must be considered. Typically, the crosstalk
should be less than - 20 dB. This means that, if an optical power of
1 mW is fed into one optical guide of a cable, no more than 10 1.1W
should be transferred into the other guides. Let us assume a typical
link length of 10 km. The crosstalk measured over a 1 -km -long fiber
should be less than -40 dB if the power transfer is proportional to
the square of the fiber length, less than -30 dB if the power transfer
is proportional to the fiber length, and less than - 20 dB if the power
transfer is independent of the fiber length. As we shall see, the first
power law is applicable to identical uniform fibers, the second to
nominally identical irregular fibers, and the third to uniform dissimilar
fibers.

In optical fibers, the field decays exponentially in the cladding.
Therefore, a modest increase in spacing between adjacent fibers is
usually sufficient to reduce the optical coupling to tolerable values.
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Yet, in some cases, one needs to minimize the cross section of the cable
and the spacing between adjacent fibers. Let us briefly discuss a few
relevant applications. The need for minimizing the distance between
single -mode cores in a fiber does not arise in communication systems
presently envisioned for the following reasons : The fiber diameter is
required to be large (e.g., larger than about 50 Am) so that the fiber
is able to sustain mechanical tensions. Thus, quite a few cores can be
accommodated within the fiber diameter with sufficient spacing.
Furthermore, the capacity of single -mode fibers is so large there is
little incentive to introduce more than one core in the same cladding.
The problem of coupling between single -mode fibers (or between fibers
carrying few modes) does arise, however, when one tries to increase the
image -transmission capacity of a fiber bundle up to the diffraction
limit, each core carrying one bit of image information. Crosstalk
(image blurring) is minimized if adjacent cores are made dissimilar.
However, geometrical irregularities may restore a large coupling be-
tween closely spaced cores. (This, incidentally, raises the possibility
that measurement of the coupling between dissimilar, closely spaced
cores gives useful information on the spectral density of the core
irregularities.) The problem of coupling between single -mode dielectric
waveguides also arises in integrated optics and in biology in the study
of the optical behavior of the retina. The results that we present are
general. They are therefore applicable, in principle, to multimode, as
well as to single -mode, fibers. However, in practical multimode fibers,
slow longitudinal variations of the core dimensions make the propaga-
tion constants of the modes of one core sweep randomly through the
propagation constants of the modes of the other core. Thus, an aver-
aging takes place that cannot be ignored. The problem of coupling
between highly multimoded cores will be only briefly discussed.

The shielding method discussed in this paper consists of the intro-
duction of a layer of metal, typically silver, between the adjacent
optical waveguides. A reservation is in order : In some communication
systems, metallic layers may be undesirable because they detract from
the all -dielectric -cable properties. Shielding between adjacent fibers
can be provided alternatively by low -refractive -index plastics such as
Teflon® FEP (n ti 1.32) that cause the optical field to decay faster
than in the cladding material. The reduction in coupling, however, is
much smaller than that provided by metals. Plastic materials can be
made very lossy by impregnating them with dyes. High losses, how-
ever, are much less effective than small refractive indices in reducing
evanescent wave coupling. Therefore, we shall consider mainly
metallic layers. The practicality of metallic shields remains an open
question.
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In the first part of this article series,' a general and simple expression
of the coupling between two lossy open waveguides was derived. Our
formulation requires that only the normalized fields of the individual
waveguides along a contour be known. In the present paper, we eval-
uate in detail the crosstalk between two parallel slabs caused by the
electromagnetic coupling and means of reducing it. The crosstalk
between two optical slabs has been evaluated by Marcuse,2 although,
in Marcuse's work, the slabs are assumed identical. In reality, un-
avoidable fluctuations in the slab dimensions reduce the crosstalk, as
we shall see, by more than 40 dB. Marcuse has also evaluated the reduc-
tion of crosstalk provided by a layer of absorbing material located
between the slabs. He found that the waveguide loss increases to in-
tolerably high values before any significant reduction in coupling can
be obtained. We find that, if the intermediate layer is metallic, the
coupling can be drastically reduced without any significant increase
of the waveguide loss. This discrepancy results from the fact that, for
metallic layers, the permittivity is negative. For very dissimilar media,
the first -order perturbation used by Marcuse is not applicable. In the
present paper, we assume that the perturbation caused by the inter-
mediate layer on the propagation is small, but we do not assume that
the field in that intermediate layer is close to the field that would
exist in the absence of the layer.

In Section II, we evaluate the crosstalk between optical waveguides
when the axial wave numbers (or propagation constants) of the iso-
lated guides fluctuate along the system axis. In Section III, we eval-
uate the spacing between slabs corresponding to a given crosstalk. In
Section IV, the transmission is evaluated of a metallic layer under
evanescent wave excitation and the crosstalk reduction. In Section V,
we evaluate the loss that results from the introduction of a metallic
layer near a slab waveguide. In Section VI, a simple approximate
formula is given for the coupling between oversized round fibers. It
is compared to exact results. Finally, brief comments are made in
Section VI concerning the applicability of quasi -ray optics techniques
in evaluating the coupling between irregular oversized fibers and the
effect of bending. A few general results that do not seem available in
convenient form in the literature are derived in the appendices.

II. FAST COUPLING

Solution of the coupled -mode equations when the axial wave num-
bers of the isolated guides are constant, or vary linearly with z, is
recalled in Appendix A. In the present section, only the results are
given.
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Let us first assume that the coupling c between the two guides and
the axial wave numbers kl, k2, of the isolated guides is constant
(independent of z). Let a power unity be fed into guide 1 at z = 0 and
the other guide, guide 2, be unexcited. The power in guide 2 grows, at
first, according to the law (see Appendix A)

P2(z) = (cz)2. (1)

This result is valid only as long as Az << 1, where we have defined

A --== ([(ki - k2)2/4] c2}1. (2)

For example, a -20 -dB crosstalk (P2 = 0.01) over a 1 -km length
of cable is obtained, according to (1), if c = 10-4 m-'. Condition
Az << 1 is, for identical guides, z << 10 km. However, if (k1 - IGO/
(k1 k2) = 10-i, law (1) is applicable only if z << 1 mm, a dras-
tically different condition. In Section III, the distance between the
guides that corresponds to this particular coupling is evaluated.

Now let k1 - k2 vary linearly with z. The coupling c remains a
constant. We write

ki(z) = ko az, k2(z) = ko - az, (3)

where ko and a denote constants. At large I z I , the coupling is insig-
nificant because of the large value of k1 - k2. The coupling becomes
important only near the origin, z = 0, where near -synchronism is
achieved. Let a power unity be fed into guide 1, at large negative z.
The power transferred to guide 2 at large positive z is exactly (see
Appendix A)

P2 = 1 - exp rc2/«). (4)

We are interested in the case where the k's are crossing very rapidly.
Thus, let us assume that a is large and that, consequently, irc2/a is
small. In that approximation,

P2 = irc2/a << 1. (5)

In most practical systems, k1 - k2 oscillates as a function of z. A sig-
nificant amount of coupling between two guides takes place only near
the crossing points. To develop an understanding of the effects of
longitudinal variations of the difference of the axial wave numbers
ki(z) and k2(z), we model the difference in wave numbers as a simple
sinusoid, i.e.,

(k1 - k2) = a sin ((2z), (6)

where S denotes the peak deviation of (k1 - k2)/2 and 27r/S2 the period
of oscillation. It seems reasonable to assume that the phases of the
signals picked up by fiber 2 at the successive crossing points are un-
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correlated and that, consequently, the powers add up. This inco-
herency is a consequence of the fluctuations of the phase of the optical
field between successive crossing points. According to (6), the slope
a introduced in (3) is

a = SQ. (7)

The number of crossing points over a length z is Slz/r. Thus, the power
collected by guide 2 over length z is

P2 = (2Z/70 (7rC2)/ (M) = ez/b. (8)

Note that P2 is independent of a P2 is proportional to c2, as was the
case in the absence of fluctuations, but it varies linearly with z rather
than being proportional to z2. Let us compare P2 in (8) and P2 in (1).
The ratio of these two collected powers is

P2 (uniform fibers)
oz. (9)P2 (nonuniform fibers)

It seems reasonable to assume that, over a length of 1 km (z = 109
gm), the relative variations of the axial wave number are larger than
10-4: 6/ k > 10-4. For the single -mode slab considered in the next
section, this number corresponds to a fluctuation of the slab thickness
of 0.01 Am. Because k is of the order of 2r Am -1, the reduction in cou-
pling owing to the lack of identity between the two slabs is, in that case,
of the order of 50 dB. The results obtained are therefore much too con-
servative if we assume that the optical guides are identical in evaluat-
ing the crosstalk.

III. EVALUATION OF COUPLING BETWEEN TWO SLABS

Let us consider two identical dielectric slabs having thickness 2d
and material free wave number k. The free wave number in the medium
between the slabs (cladding) is denoted k s, and the spacing between the
slabs is denoted 2D. (See Fig. 1. The intermediate layer is to be ignored
for the moment.) The expression for the coupling c between the fun-
damental H waves is well known (see, for example, Ref. 1) :

c = KR exp ( -2KD), (10)

K= (1C1 - kDi (11a)

R = (kzd)-4[1 ± (1 / Kd)]-T1 - (K2d2 / F2)] (11b)

F2 - ki)d2. (11c)

k z denotes the axial wave number of the isolated slabs (previously
denoted k1 and k2 for the two waveguides). If we require that only one
H mode propagate (for simplicity, we shall ignore the E waves), the

where
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Fig. 1-Coupled dielectric slabs with thickness 2d and free wave number k. The
cladding medium has free wave number k.. Crosstalk can be reduced by introducing
a metallic layer with free wave number km (almost purely imaginary) and thickness
2dm.

maximum value of F is r/2. The theory of dielectric slabs shows that,
for that value of F, Kd = 1.28. Thus, the coupling is

c = (0.24/k&) exp (-2.56D/d), (12)

where we have made the approximation kz k in the first term. Thus,
for a constant relative spacing D/d, the coupling between two single -
mode slabs varies as the inverse of the square of their thickness.

Let us evaluate c for the numerical values

2d = 1.32 Am, k = 2r X 1.45 Arn-i, k8 = 2r X 1.4 1.im-1. (13)

Thus,
F = 7/2, kzd kd = 8.88. (14)

If we substitute these results in (11b) and (12), we obtain

R = 0.021, c(in m-1) = 4 X 104 exp (-3.88D), (15)

where D is in Am. If the slabs are identical, - 20 -dB crosstalk in 1 km
is obtained, as we have seen in Section II, when c = 10-4 m-1. This
corresponds, according to (15), to a spacing

2D = 11 Alm. (16)

If the slabs have some irregularities, with S/k = 10-4 (corresponding
to a variation of slab thickness of 0.01 i.cm), -20 -dB crosstalk is ob-
tained when c = 0.25 m-'. This coupling corresponds to a smaller
spacing : 2D = 6.2 Am. If the slab thickness is chosen equal to 10.5
Am, keeping F = 7/2 (An/n = 5 X 10-4), the spacing required for
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identical slabs and -20 -dB crosstalk over a 1 -km length is 2D = 66
Am, a rather large spacing.

If the two slabs are uniform but are made deliberately dissimilar,
a lower crosstalk is obtained. The relative difference o/k in axial wave
numbers is approximately 0.5 (Ad/d)/(kd)2, where Mid is the relative
difference in thickness of the two slabs (F = r/2). For example, if
one slab has a thickness 2d equal to 1.32 Am and the other has a thick-
ness equal to 1.2 Am, the relative difference in kz is : 5/k = 0.65 X 10-3.
The maximum relative power that can be transferred from one slab
to the other is, according to eq. (39), equal to (c/A)2, where A 5.

Thus, a - 20 -dB crosstalk corresponds, for the above value of 5, to a
coupling c = 5/10 = 580 m-i. The slab spacing 2D corresponding to
that coupling is given by (15). We obtain 2D = 2.2 Am. More generally,
we find that D 1.5d for any d, if F is kept equal to r/2 and Mid
= 0.1. Thus, a considerable reduction in spacing is tolerable, in prin-
ciple, if the slabs are made dissimilar. However, fast fluctuations
along the z-axis of the slab dimensions with a period of the order of
it/8 100 Aim would reestablish synchronism between the two slabs.
Fluctuations that are too small in amplitude to deteriorate the prop-
agation under normal conditions (e.g., no significant coupling to the
radiation modes) may nevertheless introduce a large crosstalk when
the slabs are very close to each other. Thus, the result obtained above,
that the spacing between slabs can be reduced to 1.5 X (2d) if the
fibers are made dissimilar, may not hold true in practical conditions.

IV. TRANSMISSION THROUGH A METALLIC LAYER UNDER
EVANESCENT WAVE EXCITATION

The results in Section II show that the crosstalk power P2 is pro-
portional to the square of the coupling c. We have shown in Ref. 1
that, for identical slabs and a symmetrical configuration, the coupling
c is proportional to the square of the normalized field halfway between
the two slabs. Thus, ,the crosstalk is proportional to the fourth power
of the normalized field halfway between the two slabs. If we introduce
a metallic layer of thickness 2d,, symmetrically centered between the
two slabs as shown in Fig. 1, the crosstalk is reduced in proportion to
the fourth power of the field in the middle of the metallic layer. This
field reduction, denoted t (for transmission), is evaluated in the present
section.

Let us consider an evanescent wave with axial wave number kz> k8,
where k8 denotes the free wave number in the medium. This wave
decays in the x direction according to

E(x) = Eoexp (-Kx),
K c>,-1 (ki ki)i.

(17)

(18)
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Let us now introduce a metallic layer with complex wave number
kmr and thickness 2d,. The ratio t of the field in the

middle of the layer to the field at the same point in the absence of the
layer is derived in Appendix B. Provided the layer is sufficiently thick
or, more precisely, that

where

we have

Real (Kmdm) >> 1,

(k2, -

t = [4socm/ (lc + K.)2] exp [(K - Km)dm].

(19)

(20)

(21)

At a free -space wavelength Xo = 1µm, ko = 27 aum-i, the wave number
of silver is almost purely imaginary,3

km -= (kmr ik,)2 = (0.2k o i5ko)2 = -985 + 79i (in ilm-2), (22)

and, for a typical glass, assumed lossless (n8 = 1.4),

k28 = nsko = (1.4k0)2 = 77.4 ,um -2. (23)

With the value of K2 - ki = 3.76 Am -2 in (14), and 14, les in (22)
and (23), we obtain Km = 32 - 1.3i, and, from (21), a power trans-
mission

T = tt* = 0.062 exp (-60d,), (24)

where dm is in Am, provided

dm >> 0.03 Aim. (25)

Because the crosstalk power P2 is proportional to the square of the
power transmission T, the introduction of a layer of silver of thickness
2dm between the two slabs reduces the crosstalk in dB by

20 logio (T) = 520d (26)

where d, is in ,um. For example, if the layer thickness is 2dm = 0.5 mm,
the crosstalk is reduced by 130 dB. This reduction is independent of
the initial value of the crosstalk, within the approximations made.
Thus, a 0.5 -Am -thick layer of silver is sufficient to ensure a complete
isolation of adjacent fibers, at a wavelength Xo = 1µm.

Surface polaritons can be guided near the dielectric (lei > 0) and
metallic (k1 < 0) interface. However, the losses of such modes are
extremely high over a distance of 1 km. The cladding modes are also
strongly attenuated, and it seems that they can be safely ignored. For
comparison, let us consider, in place of the metallic layer, a low -index
plastic material of the Teflon type, with a refractive index n = 1.32.
We now have km = 69 Am -2 and Km = 3.47 Am-'. We obtain a cross -
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talk reduction equal to 26dm in dB, where dm is in Am. Thus, a 50 -dB
reduction in crosstalk requires a 4 -gm -thick layer of low -index plastic
material.

V. LOSS INTRODUCED BY A METALLIC LAYER

We are now concerned with the fact that, because the refractive
index of a metal is not purely imaginary, the presence of the metallic
layer may increase significantly the loss of the modes guided by the
fibers. This loss depends critically on the distance between the metallic
layer and the fibers and, therefore, on the distance between the two
fibers. The loss suffered by the fiber is influenced by the complex re-
flection of the metallic layer for evanescent waves. This reflection,
strictly speaking, depends on the thickness of the metallic layer. Exact
expressions are given in Appendix B. However, in all our numerical
examples, the thickness of the metallic layer is so large that it can be
assumed infinite. In that case, the reflection r reduces to

r = (K - Km)/ (K + Km), (27)

where K and Km are defined in (18) and (20), respectively. Because the
imaginary part Kmi of Km is much smaller than the real part Kmr, the
imaginary part ri of r is approximately

ri 2Kfcmi/KL. (28)

If we use for kz, k3, and km the numerical values in (14), (23), and (22),
respectively, we find ri = 0.005.

To obtain the loss suffered by the slab, we use the perturbation
formula derived in Appendix C. The variation of kz is assumed to be
small. The variation of the field near the perturbing object, however,
is not assumed small. In the present case, kz is real before perturbation.
The introduction of the metallic layer causes kz to acquire a small
imaginary part, kzi. The imaginary part kzi of kz is the fiber loss, in
neper/unit length. There is also a small variation of the real part of
kz. This variation, however, is of no interest to us. We have (see
Appendix C)

kzi = rocR exp (-21cD.), (29)

where R is the slab parameter defined in (12a) and Dm the distance
between the slab and the metallic layer. The imaginary part ri of the
metallic layer reflectivity is given in (28).

For the numerical values used earlier in (14) and (15), we obtain
from (29)

cedBikm = 8.7 X 103k z, = 2.6 X 106 X exp ( -3.88Dm), (30)
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Fig. 2-Reduction in crosstalk and increase in fiber loss resulting from the intro-
duction of a silver layer of thickness 2dm (free -space wavelength = 1µm). The dielec-
tric slabs have a normalized frequency F - kDid = 7/2. Their spacing is kept
equal to 11 Am. The loss varies with dm only because of the change in the slab -layer
spacing. In the absence of metallic layer, crosstalk is -20 dB/km.

where Dm is in Am. For Dm = D - dm = 5.25 Am, the loss introduced
by the metallic layer, given in (30), is only

= 0.017 dB/km. (31)

This loss is quite negligible compared with the other losses (absorption
because of impurity or scattering losses) suffered by the wave. How-
ever, because 2 depends critically on Dm, this loss may not be negligible
in all practical cases. The reduction of the crosstalk and the increase
of loss caused by a silver layer of thickness 2d, are shown in Fig. 2 for
the dielectric slabs considered earlier, as functions of 2dm. Note that,
if we assume for simplicity that the thickness of the metallic layer is
negligible compared with the slab spacing (2d, << 2D), the (dimen-
sionless) ratio of kzi (loss) and c is, approximately,

kzi/c = 2(k,/kli)K2d. (32)

Thus, the best metal, from the point of view of propagation, is the
one whose k ,,,/ 14, is the smallest.

VI. ROUND FIBERS

The general coupling formula in Ref. 1 is applicable, in principle,
to round fibers. Round fibers are more often encountered in practice
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than are slabs. The geometry is shown in Fig. 3. The fibers are assumed
identical, with radius a and spacing 2D. The results are given only for
the scalar fundamental field i ti HE11 of oversized fibers
(k2 - ki)la >> 1]. In that approximation, the normalized field is
easily found to be (see Part II of Ref. 1)

(y) = uo(riklaF)-i exp (-Fy2/2a2), (33)

where uo P.,-) 2.4 is the first zero of the Bessel function of order zero.
The y axis is tangent to the rod considered, as shown in Fig. 3. The
Fourier transform of 4/(y) is

vA, (k y) = (27,)-1r11/(y) exp (-ikOdy

= exp (-14,a2/2F). (34)

Because the spectral component ifi(lc) varies approximately as
exp (-sx) as a function of x, where s - F / a , the

K

EXACT

---- APPROXIMATE

D/a

2D

--r = a

F = 2

.-r = a

Fig. 3-Variation of the coupling between two dielectric rods of radii a as a func-
tion of their spacing (2D). The dimensions and free wave numbers are shown. The
parameter K is defined as ca(1 - kl/k2)-i, and c is the coupling. The plain lines are
from Snyder exact theory,' and the dashed lines from the theory in Ref. 1, applied
to large normalized frequencies F.
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coupling is

c =
f+.0

s(Icy)g(ky)iiii(ky)dk,

= (ughri)k-T-1a-2 exp (- 2FD/a).

In place of c, we can use a normalized coupling K defined by

K = ca[1 - (g/k2)]-1.

(35a)

(35b)

In the general expression for c in (34), 11.2 and 1,t1 represent the spectral
components of the field of the two fibers along the y-axis at x = 0.

The normalized coupling K is plotted in Fig. 3 (dashed lines) as a
function of the ratio D/a of the fiber spacing (2D) to fiber diameter
(2a). In that figure, the parameter is the normalized frequency F. For
comparison, an exact result obtained by Snyder' is shown as a plain
line. The agreement is very good for F > 4.

The advantage of the method used in this section is that it is ap-
plicable when the two fibers are separated by a metallic layer. In that
case, one need only introduce inside the integral sign in the first ex-
pression in (34) a term T(ky), where T denotes the power transmission
of the metallic layer, defined in (24). T now depends slightly on k,
because, in the expressions given earlier for T, the axial wave number
k z should be replaced by (lc! + k:)4. The effect of the dependence of T
on ky is small, however, and the value obtained earlier for T for slabs
is approximately applicable to round fibers as well.

VII. MULTIMODED IRREGULAR FIBERS

We shall make only qualitative comments. In the preceding calcula-
tions, we have considered the coupling between one mode of one core
and one mode of another adjacent core. If the cores can carry many
modes and have dimensions that fluctuate as a function of z, with such
an amplitude that the variations in axial wave numbers exceed the
spacing (in axial wave numbers) between adjacent modes, some averag-
ing takes place. The situation becomes comparable, at least over some
distance, to that of a slab radiating power into a semi -infinite dielectric,
a situation discussed in detail in Part II of this series of papers.'

Let us picture the field in slab 1 (excited at z = 0) as made up of
two plane waves. The plane wave moving toward slab 2 tunnels into
slab 2. Because of the fluctuations in axial wave numbers, the power
transferred from slab 1 to slab 2 is essentially the power carried by
that tunnelling wave; we can ignore the fact that this wave, after
tunnelling, is reflected back and forth inside slab 2 and may tunnel
back to slab 1. The power transferred from slab 1 to slab 2, then, is
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proportional to z, for small z, rather than to the square of z, as is the
case in the absence of irregularities. This picture is consistent with
that used by Cherin,5 who adds the powers transmitted by tunnelling
rays. Let us emphasize that the validity of this quasi -ray optics ap-
proach rests on the presence of large slow fluctuations of the core
dimensions. A simple calculation shows that the relative fluctuations
of the slab thickness must exceed the reciprocal of the mode number.
This condition is never met for the low -order modes, but it may be
met by the higher -order modes. Thus, the situation is rather compli-
cated and requires a deeper analysis. This quasi -ray technique should
not be confused with that of Kapany and Burke,6 where the slabs
are assumed identical and the fields of the tunnelling rays, rather
than their powers, are added. In the preceding discussion, we have
assumed that the fiber cable is essentially straight. The coupling
increases significantly if the cable is bent.' This effect makes it even
more important to provide shields between adjacent fibers.

VIII. CONCLUSION

We have shown that a drastic reduction of crosstalk between parallel
dielectric slabs can be obtained by introducing a layer of silver (thick-
ness 0.5 Aim) between adjacent slabs. The reduction, in decibels, is
proportional to the imaginary part of the refractive index of the metallic
layer and to the layer thickness. In many cases of practical importance,
the loss introduced by this metallic layer is negligible. We have also
shown that, because of unavoidable irregularities in the fiber dimen-
sions, the crosstalk is at least 40 dB below that expected for identical
fibers.
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APPENDIX A

Fast and Adiabatic Coupling

Let denote the field of a guide, such that OP is the power. When
two guides are weakly coupled, their respective fields th, 02 approxi-
mately satisfy the well-known equations5

-idtki/dz = ki(z)4/1 c#2

-ic/02/dz = k2 (z)02 oh.

For simplicity, we assume that the axial wave numbers k1, k2 of the
isolated guides are real and that the coupling c is a real constant. The
solution when k1, k2 are constant is well known. For the convenience

(36)
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of the reader, this solution is derived below. The general solution of

(36) is a superposition of normal modes

2,//1(z) = exp (ik+z) IPT exp (ik-z)
(37)

where
1G2 (z) = I/4 exp (ik+z) + exp (ik-z),

k± = (k1- k2)/2 ± A

= {[(Ici - k2)2/4] c21

(38a)

(38b)

If the initial conditions are ,h(0) = 1, 4/2(0) = 0, that is, if only
guide 1 is excited at the origin (z = 0), the field in the unexcited guide,
2, is

&2(z) (ic/k) exp [i(ki k2)z/2] sin (Az). (39)

Thus, for small z, the power in guide 2 increases as

P2(z) = (cz)2, Az << 1.

This result is independent of k1 - k2. See Fig. 4.

1.0

0.9

0.8

0.7

0 6

0.5

0.4

0.3

0.2

0.1

(40)

0 17/2 7r

cz

Fig. 4-Variation of the optical power picked up by fiber 2, where only fiber 1 is
excited at z = 0, as a function of the normalized axial distance. The axial wave
numbers of the isolated fibers are assumed to be constant but different [parameter
(k1 - k2)/2c]. Note that the behavior for small cz is independent of k1 - k2.
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(a)

(b)

Fig. 5-(a) Linear variation of the axial wave number of the isolated waveguides
as a function of the axial coordinate z. The hyperbolas represent the normal mode
wave numbers. (b) Adiabatic coupling in fiber optics. All the power from one fiber
is transferred to the other fiber if the k's vary sufficiently slowly. This principle is
applicable to multimode fibers.

Let now the axial -wave numbers k1, k2 of the isolated guides vary
linearly with z

k1(z) = ko + az, k2(z) = ko - az, (41)

where ko and a denote constants. Synchronism takes place only near
the origin, z = 0. Let us set

#1,2(z) = Ai.2(z) exp (ikaz) (42)

in (36). After differentiation and substitution, we obtain an equation
for A1,

(d2A 1/dz2) (a2z2 c2 &)A' = 0. (43a)

A similar equation holds for A 2 that we need not write down. Equation
(43a) is the equation for parabolic cylinder functions. The asymptotic
form of the solution, valid for -7/2 5 arg(z) 5 r is, for a power
unity at z = - co (see Ref. 9),

Al(z) = exp [i(a/2)z2 i(c2/2a) log (-z)], z << c/a (43b)

A i(z) = exp [i(a/2)z2 i(c2/2a) log (z) - rc2/2a], z > c/a, (43c)

as we easily verify by substituting (43b) in (43c) and neglecting terms
of order Z-2. To go from (43b) to (43c), note that log (-z)
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= iir + log (z). Note also that a change in the unit with which z is
measured affects only the amplitude of A 1, which is arbitrary.

The power in guide 2 after the interaction has taken place, that is,
for large positive z, is, according to (43c),

P2 = 1 - A lA i = 1 - exp (- rc2/«). (44)

Let us first assume that Tc2/a is very small compared with unity,
that is, the k's are crossing very rapidly. In that case, guide 1 transfers
only a small amount of power to guide 2, equal to Tc2/«. This is the
result used in the text.

When irc2/a is very large compared with unity, that is, when the
variation of k, - k2 is very slow, almost all the power from guide 1
is coupled to guide 2. This is the principle of the Cook adiabatic
coupler?) This mechanism is applicable also to multimode dielectric
waveguides. It may be used to couple two optical fibers because the
dimensions are not critical. Only slowness is required." (See Fig. 5.)

APPENDIX B

Transmission and Reflection at a Metallic Layer Under
Evanescent Wave Excitation

Let the metallic layer have a complex free wave number km = km,.

± ikmi and a thickness d,. The surrounding medium is assumed to
have a real free wave number k,. The field has the general form (see
Fig. 6)

Eo[exp (- fa) + r exp (Kx)],{x .- 0

E(x) = E- exp (-Kmx) + E± exp (Kmx) 0 ... x .- dm (45)

Eot exp (- icx) x > dm,
where

is real, and

ks

ks

(46)

(47)

Fig. 6-Transmission of a metallic layer with thickness dm and free wave number
km under evanescent wave excitation (axial wave number k, > lc.). At large negative
x, the field is assumed unperturbed by the layer.
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The axial wave number kz is assumed to be real and larger than k8.
By specifying that E and dE/dx are continuous at the boundaries,
x = 0, x = d we obtain the reflection r and the transmission t:

r = E(K/Km) - (Km/Ka2 coth (Kmdm) + (Km/K) + (K/Km)]-1 (48)

t = exp (Kdm) { cosh (K,ndm) + 1[(Km/K) + (K/Km)] sinh (K,ndm)-1. (49)

We shall now assume that the metallic layer is thick in the sense
that Real (Kmd.) > 1. These conditions are well satisfied for the
metallic layers that we consider in the main text. In that case, (48)
and (49) reduce to

= (K - K m) (K Km)(50)
t = [LIKK (K K m)2] exp [(ic - K m) d m]) (51)

respectively. Equations (50) and (51) are the results used in the text.

APPENDIX C

Loss Introduced by a Metallic Layer

Let us consider a uniform reciprocal waveguide and let a uniform
rod be introduced that perturbs the propagation of the waveguide
(Fig. 7a). We assume that the perturbing rod does not support trapped
modes or, if it does, that the axial wave numbers of these trapped
modes are sufficiently far away from that, kzo, of the waveguide. No
resonant coupling is assumed to take place.

We shall first recall a very general result. Let E+, H+ and E9, H,
denote two time -harmonic fields at the same frequency in the same
medium. If we assume that the medium is reciprocal (that is, that the
tensor permittivity is symmetrical), it readily follows from the Maxwell
equations that the divergence of the vector

J = E+ X 1-1, H+ X E, (52)

is equal to zero. Thus, the flux of J through any closed surface is equal
to zero. In what follows, an exp (-iwt) term is omitted.

Now let E+, H+ be the field propagating in the -z direction along
an open waveguide. The dependence of E+ and H+ on z is denoted :
exp (-ikzcz). Let E,, H9 be the field propagating in the +z direction
in the presence of the perturbing rod with an exp (ik zz) dependence
on z. The closed surface S is taken as the surface shown in Fig. 7a
bounded by the planes z = 0 and z = dz, the volume of the perturbing
rod being excluded. For that choice, the medium enclosed by S is the
same for both fields. We can therefore use the result stated earlier that
the flux of J through S is zero. Let us consider the various contributions
to that flux. The flux of° J through the plane z = dz differs from the

TRANSVERSE COUPLING IN FIBER OPTICS IV 1447



dC

PERTURBING ROD

-

(a)

x

- -

- - dS

dz

ks

(b)

Fig. 7-(a) Schematic for the derivation of the general perturbation formula. The
dielectric waveguide is perturbed by a small lossy rod. The closed surface S extends
to infinity where the fields considered are assumed to vanish. (b) Application to the
perturbation of H waves guided by a dielectric slab (k) by a lossy slab (km).

flux of J through the plane z = 0 only by a factor -exp [i(k: - lc,o)dz].
The difference between these fluxes is, therefore, i(k, - kzo)dz for
small dz. Because we are considering only trapped modes, the flux at
infinity is zero. The flux through the surface surrounding the perturb-
ing rod is dz times the line integral of JdC, with dC a vector perpen-
dicular to the contour surrounding the rod, pointing inward, whose
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length is the elementary arc length. Thus, we have exactly

itlkz = f JdC f J.dS, (53)
so

where
k. - k.o. (54)

So denotes the transverse plane, z = 0 minus the area enclosed by C,
and dS denotes a vector directed along the z axis whose length is the
elementary area. The derivation given above is almost identical to
that in Ref. 1 for coupled waveguides. We now assume that the per-
turbation is small. Thus, we can replace Ep, Hp by the unperturbed
field E, H propagating in the +z direction in the integral over So in
(53). This is not permissible, however, for the integral over C, in
general.

Let (52) be specialized to the H waves guided by a dielectric slab
shown in Fig. 7b. In that case, E has only one component : Ey = E(x),
Hz = (1/iwilo)(3E/ox, and Hx = -(kz/w120)E. Taking into account
Eit = Ey and HP = Hz (see Ref. 1), we obtain

Alcz = [(E8E,,/ax) - (EpaE/ax)]/(2kzf E2dx) , (55)

where we have assumed that E differs significantly from E only near
the perturbing slab. The unperturbed field is, for -Dm < x < 0,

E = exp (-Kx), (56)

and the perturbed field is that given in (45)

E, = exp (-Kx) + r exp (Kx), (57)
where

K = (lei - ki)i.

The amplitudes in (56) and (57) are so chosen that E'",: -.1E for large
negative x, e.g., x =

We first evaluate

(EaEp/ax) - (E0E/ft) = 2rK, (58)

where we have used (56) and (57). Note that the result (58) is inde-
pendent of x (for -Dm < x < 0). Substituting (58) in (55), the
imaginary part of k, is found

= exp (-2KDm), (59)

where ri denotes the imaginary part of r, evaluated in Appendix B.
We have introduced in (59) the field strength parameter

R = (kz f E2dx)-1. (60)
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In the above definition of R, the field is assumed to be unity at the
guide -cladding boundary. For a dielectric slab, the value of R is given
in (12). Equation (59) is the result used in the main text.
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Faster-Than-Nyquist Signaling
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The degradation suffered when pulses satisfying the Nyquist criterion
are used to transmit binary data in noise at supraconventional rates is
studied. Optimum processing of the received waveforms is assumed, and
attention is focused on the minimum distance between signal points as a
performance criterion. An upper bound on this distance is given as a
function of signaling speed. In particular, the pulse energy seems to be
the minimum distance up to rates of transmission 25 percent faster than
the Nyquist rate, but not beyond.

Some mathematical aspects related to the above problem are also con-
sidered. In particular, the minimum distance is rigorously shown to be
nonzero for all transmission rates. This is tantamount to showing that,
in the singular case of linear prediction, perfect prediction cannot be
approached with bounded prediction coefficients.

I. INTRODUCTION

The use of Nyquist pulses

g (t) =
sin (irt/T)

(rt/T)

to send binary (or multilevel) data without intersymbol interference
over a channel of bandwidth W = (1/2T)Hz is classic. If we assume
that one receives the pulse train

N2

u(t) = E ang(t - nT), an = ± 1, independently, (1)

in additive white gaussian noise of two-sided spectral density No/2,
then the optimum detector has a bit -error rate Pe given by

= 2 Aik

CAiroi
1451
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where

Q (x) =
4-27

e-ondy erfc -v2 ,
r fx

(3)

erfc ( ) denoting the co -error function, and E being the energy in the
pulse g (t) . In our case, E = T. Asymptotically, for large signal-to-noise
ratios, (2) becomes

1 IN° E\.
Pe E exP No

(4)

We now address the following question : Suppose that in transmitting
(1) we obtain a performance from (2) that is more than satisfactory.
Thus, we may have a Pe of 10-6 or 10-7 when 10-5 would be adequate.
To what extent can we trade this "excess performance" for speed by
replacing T by T' < T in (1), while keeping transmitted power
constant? In other words, we still use pulses

-B sin (rt 1 T)
(rt/ T) '

but send them at intervals T' < T. We call this faster-than-Nyquist
transmission and shall characterize T' by writing T' = pT, 0 < p < 1.
A particular motivation for this problem is to mathematically model,
in a simple way, what would happen if voice -band telephone channels
are "pushed" to their limits with more rapid transmission of pulses
than has been conventional.

While simple detectors that match filter and sample can still be
used for faster-than-Nyquist transmission, their performance is

suboptimum.' We are concerned here with optimum detectors. Since
exact analysis of nonlinear detectors is not presently feasible, we
choose to give our detectors the benefit of the doubt and work rather
with lower bounds to Pe. Nevertheless, interesting results can be
obtained regarding the trade-off considered here. To see why degrada-
tion in error rate is inevitable, note that (2) is the well-known matched
filter bound for antipodal pulses, each of energy E, which must bound
performance for bit detection with a sequence of (perhaps interfering)
pulses. On the other hand, as T' decreases, pulses are sent faster
and the energy E in each pulse must be decreased in direct proportion
so that the power E/T' is kept constant. This is an immediate un-
avoidable element in performance degradation, and may be regarded
as a "fair" trade-off. Another cause of degradation is the degree to
which the optimum detector can cope with the interference among
pulses, i.e., the fact that the performance will drop below that of (2).
Here, bounds other than (2) are useful, and in fact are the first item
taken up in the next section.
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II. DISCUSSION OF LOWER BOUND FOR ERROR RATE

Assuming (1) is received in white noise and an optimum detector is
used for detecting the kth bit, a lower bound on the chance of making
an error on this kth bit will now be derived. Since the data a are in-
dependent, this bound also serves for any sequence (1) starting at
71 = N; < NI, and ending at n = N2. We begin with the fact
that, for a binary hypothesis problem with equal a priori probabilities
and having p+ (x) or p_ (x) as the two probability densities of the
received signal x under the two respective hypotheses, one way2 to
write the probability of error is

P, = f min EN (x), p_(x)]dx. (6)

If we let u (t) be a particular one of the equiprobable 2N signals in
(1), N = N2 - N1, which have 1 in the kth position, then formally

1 2N
P± (X) =

2N i> Pi±(x), (7)

where pi±(x) is the density of the observations conditioned on the
entire sequence. Thus,

2N 2N

P, = 1.1 min ( E p+ (x), E pj_(x))dx
2 2N = 7=1

TZ._ _
2N

2 min EP+ (x), (x)1dx (8)

In writing (8), we have made use of the fact that the minimum of two
sums with an equal number of terms is at least as large as the sum of
the minimum of the two ith terms of each series. Of course, each series
can be arranged in any permuted order before the pair -wise minimum
is taken and, thus, the pairings i with j (i) are indicated in (8) to allow
for this permutation. Now

fmin Ep2+ (x), pi±i)(x)]dx (9)

is the probability of error with two fixed signals and has the well-known
evaluation

(10)

where

d2 (i, j) = Eiti±(x) - uL(t)]2dt (11)

is the "distance" between two sequences (1) which differ in the kth
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position. Equation (8) then reads

1 2N j (in\
Pe - E (2- 2N i 11-27--v0 /

for any set of pairings [i, j(i)]. The bound (12) is intimately related
to Forney's lower bound,' although our derivation is quite different.
Forney's bound in the present situation reads

Pe
prd dmin

YAT /o

(12)

(13)

where dmin is the minimum distance between signals (1) which differ
in the kth position, and 73,n is the probability that a sequence chosen
at random has a sequence with opposite polarity in the kth position
at distance dmin. Equation (12) can be made to yield something like
(13). Thus, in (12) discard all terms except for those pairings [i, j(i)]
such that d[i, j(i)] = do. Then (12) implies

no. of pairings (
Ar2TV0

do \.
Pe Q (14

2N
)/

The coefficient in front of the Q function corresponds to the proba-
bility coefficient in (13). Choosing do = dmin yields (13), but when
we will not be able to find dmin, eq. (14) will serve our purpose.

III. ESTIMATING THE MINIMUM DISTANCE

Clearly, in (14) we should like to find the smallest do to maximize
the lower bound, provided the coefficient is not too small. In our
problem, d is given by

dz = inf
1 PT

N;4E (at= 2irp

N
1 - 2 ateill?

1=1

2

do, (15)

where we have normalized by dividing by the pulse energy E. The
expression (15) comes from taking the Fourier transform of (11) and
manipulating the resulting expression slightly. We note particularly
that in (15) only positive values of l need be considered, since

M

eiK0 (1 E alei/e)
1=-K

100

2 M
1 - E bleu'

1=1

2

if a_K X 0. We have set b1 = a -Ka. -K if / X K and b1 = a_K if
= K.
We cannot claim to have found the minimum value of (15). How-

ever, a simple numerical effort has yielded the results for dg/4E shown
in Fig. 1, where do refers to the smallest distance we have found. We
note in particular that do is the pulse energy for p decreasing from 1
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Fig. 1-The smallest distances between signal sequences that we have found are
shown here for different values of signaling rate. Labeling a point by K indicates
that the polynomial is

K
p(z) = 1 ± (-1)izi.

j=1

to 0.8, or, in other words, for rates exceeding the Nyquist rate by
25 percent [percentage of excess = 100(1/p - 1)]. Thus, 411,14

cannot be the pulse energy for p < 0.8 for this problem. By the time
p has decreased to 0.5, dg/4E has dropped to 0.465. (G. J. Foschini
has informed the author that the use of the polynomial p (z) = 1 - z

z3 - z4 z6 - z7, z = exp (i0), results in the value 0.410 for
4/4E at p = 0.5.) Except for some points in the neighborhood of
p = 0.4, the values for do have been obtained by considering numeri-
cally the best value of K which minimizes, for not too large K,

1 Pr 2

1 + E -1)1e"° dO. (16)
2irp _,,. 1=1

These points are labeled with the appropriate value of K in Fig. 1.
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Somewhat surprisingly, the larger values of K are responsible for
decreasing do initially (K = 7 at p = 0.8), and then K gradually
becomes smaller (K = 2 at p = 0.5). The value obtained with K = 1
always was suboptimum, as was the limiting value of (16) when
K co , which is easily shown to be

rp
1 Pr- tan - (17)

2

Why were the sequences given in (16) deemed to be of interest in
the first place? The most interesting reason stems from the following
argument. If one considers the Fourier transform of a doubly infinite
pulse sequence like (1) when pulses are being sent faster than Nyquist
and when the special case of the alternating sequence an = (-1)" is
being sent, one finds that the Fourier transform consists of delta
functions spaced at all odd multiples of r/T', that is, the Fourier
transform is out -of -band, which suggests zero received energy. Ac-
tually, the doubly infinite model and its S -function Fourier transforms
are idealizations representing limiting behavior for signals consisting
of pulses extending from (- N, N) and N becoming large. We are
really concerned with limiting behavior of the energy contained in
the frequency interval (-7r/71, ,r/T), with T > T', and evidently for
the present case, if SN(Ctl) is the Fourier transform of the truncated
pulse sequence,

11111

1
SN(0.)12clw

rIT 1
h

riT
2ir rn SN(W) No) = 0. (18)

-7.1T

In spite of the above subtlety, however, sequences which are alter-
nating at least over part of their range are interesting and one might
expect difficulty distinguishing between one such sequence and its
negative.

In addition to the normalized distances given in Fig. 1, Fig. 2 plots
the numerical values of lower bounds computed from expression (14),
as well as the matched filter bound. These curves all assume constant
power. Curves with initial (p = 1) error rates with 10-6 and 10-7 are
chosen as examples in Fig. 2. In both cases, an order of magnitude of
degradation in error rate is seen for a 25 -percent increase in bit rate
(p = 0.8) using only the matched filter bound. Decreasing p further
on the 10-7 curve illustrates further degradations using (14) with an
appropriate value of K. These bounds do not show a departure from
the matched filter bound for as small a value of p as Fig. 1 would
suggest, because the coefficient 1/2K to be used in (14) swamps the
effect of the decreasing "minimum" distance. For the 10-6 curve,
this effect extends to even smaller p and no lower bound other than
the matched filter one is shown for that case.

1456 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



10- 3

10- 4

a_
cc

2
a
z

03

CC

w

0

10- 5

10-6

10- 7
1.0 0.9 0.8 0.7 0.6 0.5 0.4

Fig. 2-Lower bounds on error rate vs signaling speed for two initial (p = 1)
cases. The solid curves are both matched filter bounds. The dashed curve is based
on minimum -distance considerations and applies to the 10-7 case. All curves are
drawn for constant power.

IV. TWO MATHEMATICAL QUESTIONS

As we have already emphasized, the infimum of the right member
of (15) over all the indicated trigonometric polynomials with ±1, 0
coefficients is not displayed in Fig. 1. Figure 1 simply shows the
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smallest values we have found. Next, we want rigorously to establish
here that dl, 0 if p 0. Note that this would not be the case if
the coefficients a/ in (15) were allowed to be any real numbers. In
fact, for any nonnegative function f (0) with In f (0) E Li ( - 7r),

we have the Szego theorem' which states
N

inf f (0) 1 - E ale"
2'

do = exp 1 f In f(0)c/O. (19)
N; at real zr 1 271-J x

Expressions such as (19) occur, in particular, in linear prediction
theory.

In our case, f (0) = 0 if 101 > pr and In f(0) is not L1, but the
appropriate limit of (19) indicates zero to be the infimum, which is
the correct answer.' Thus, there is some cause to wonder if d as
defined in (15) is zero as well. We shall in fact show it is slightly more.

Theorem 1: Let )3 be any positive (finite) real number and require I ail 5 #,
= 1, 2, . Then

1 -PTinf
N; {at) 2ir -p.

1 - E ale"'
2

dO > 0, p$0. (20)

Proof: We first note that if there exists a sequence
trigonometric polynomials of the form

pn(e) = E ai(n)eim , lad < ap

1=i

such that
1 Pr

11 p(0)12d0 0 ,

then, for any G(0) e L2 - pr, pir),t
Pr Pr

G (0)p n(0)d0 G(0)d0. (23)f-Pr -P 7r

This is simply a statement of the fact that if pn(0) converges strongly
to unity, it also converges weakly to unity. Now it is easy to see from
(23) and the form of p (0) that

I dO ein°G (0)
Pr

Or, in other words, if

# < sup

J

PT

G(o)de
Ax

L
Pr

G(o)do
pr

GMEL2(-pr, pr) E
1

eiaG(0)d0
per

f-pr

(24)

(25)

t In addition to G(0) E L2(-Pw, Fr) it will sometimes be convenient to regard
G(0) E L2( --r, 7) but having support confined to (-pr, pr).
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then (22) cannot be true. In particular, if (25) holds with # > 1, then
d is strictly positive. Regarding G(0) E L2( -7r, ir) but supported
on [-pr, fn.], and calling

g(t) = f2r _7,
el"G(0)dO, (26)

g. g(n),

the right member of (25) contains the quantity

go (27)

E gnI

Clearly, we have a question concerning the sample values g at the
nonnegative integers of a function whose bandwidth is strictly less
than ir. Normalizing (27) with go = 1, (25) prompts the question:
How small can Er I g. I be? If it can be zero, then (25) would be true
for any finite )3. In fact, by Carlson's lemma,' which states that a
band -limited function having a bandwidth less than 7 is uniquely
determined by its sample values taken at integers along a half line, it
follows that if go = 1, then Er IgnI 0. But Carlson's lemma does
not say that Er I gn I cannot be made arbitrarily small under these
conditions. Lemma 1 (see below) shows that Er I g. I can be arbi-
trarily small. Thus, the right member of (25) is infinity, implying the
truth of Theorem 1.

An immediate corollary of Theorem 1 is that for the singular case
of Szego's theorem [f(0) vanishing on an interval] the infimum value
of zero cannot be approached without using unbounded coefficients.

Lemma 1: Let g(t) [not identically zero and E L2(-co, con have
Fourier transform G(0) supported on (- pr, pr) for some fixed p, 0 < p
< 1. Denote the samples of g(t) at the integers by gn [as in eq. (26)], and

fix the normalization of g(t) by setting I go I = 1. Then

inf Ign I = 0, (28)

where the infimum is taken over all g(t) having the indicated properties.

Proof : We begin with the simple, but crucial, remark that it is suffi-
cient that there be, for any p, a function h (1 ; p) E L2 , 00 ) whose
Fourier transform is supported on (- pir, pr), such that h(0, p) = 1
and such that Er I h (p) 12 can be arbitrarily small.t This is sufficient,

t We are grateful to H. J. Landau for pointing this out. Landau has also supplied
an independent proof of the above refinement to Carlson's lemma, which we give in
the appendix.
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because to make (27) large (for some fixed value of p) we would just
need to take

g (t) = h2(t, 2) (29)

for an appropriate h (t, p/2). Clearly, g (t) is band -limited to p and is
.1.2 (- 00 , co) because h(t, p /2) is bounded :

p) 1 Pri2
pal

2

h(t, j = ,..._. H (0) de .. -(pr f I H (0)12dt). (30)
Zar -pv12 - 2r -pv12

But can we really find an appropriate h (t) such that

00

ho = 1, E 11/.12 < 6, (31)

or, equivalently, can we find a real h(t), band -limited to (-pr, pr),
such that

(ho - 1)2 + hn < E? (32)

Indeed we can, and in fact the answer may be extracted from an
article by Salz6 which discusses mean -square decision feedback equali-
zation. Salz, in Section V of his paper, considered the equalization
problem for faster-than-Nyquist signaling. His minimization problem
was of the form in (32) plus an added term for the noise variance;
h(t) corresponds to the output of the equalizer when one pulse of the
form sin pert/ pert is the input. He remarks, in the last sentence on
page 1354 of his paper, that the quantity that corresponds to (32)
plus added output noise variance goes to zero as the input noise
variance decreases. Hence, if we choose h(t) to be the output pulse
of a decision -feedback equalizer whose taps have been optimized for
the case of sufficiently small input noise, then (32) will be sufficiently
small. Thus, Lemma 1 is proven.

The second question we discuss in this section is the rapidity with
which the minimum distance decreases as p approaches zero. We
develop this in Theorem 2.

Theorem 2:

lim dlin(P) = 0 for any k > 0.
Pk

(33)

Proof: The proof is a simple construction. Consider the polynomials

L

PL(z) = (1 - z21). (34)
1=0

Clearly, PL(z) has a zero of order (L 1) at z = 1, and has ±1
coefficients, with PL(0) = 1. Now, for small p, the (L 1)st order
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zero at z = 1 implies

1 Pi'f (e") I2d0 = 0 (p2L+3) (35)

for all integer L. Equation (33) follows immediately.
Short of finding dlin exactly, there are a few mathematical questions

that suggest themselves and that may be less difficult than the full
problem. Thus, Fig. 1 prompts one to ask if there is a neighborhood
of p = 1, where cgab,/4 is the pulse energy? Another question has to do
with pulse design. Given that G (0) is symmetric, positive, L2, and
supported on (-pr, pr), is G (0) = constant the best choice to maximize
the minimum distance (subject to fixed pulse energy)?
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APPENDIX

Landau's Proof

In Section IV we present another proof that

g0
2

sup
E lg. 12

n =1

where the sup is taken over all g (t) E L2(- co, 00), which are band -
limited to (-pr, pr). Our proof in the text relied on the published
results of work by Salz.6 Here we give a self-contained, but more
mathematical, proof of (36) which was developed by H. J. Landau.

Suppose (36) is not true, i.e., suppose that

Then,

= co (36)

go2
E Ig.12 T > 0 for all g(t) of BW = per. (37)

19012 k Ign12. (38)

From Carlson's lemma, go is a linear functional on the 12 sequence
gi, g2, , gk, and, from (38), this linear functional is bounded.

Therefore, by the standard Riesz representationt for bounded linear

t Not all 12 sequences gd give rise to an appropriate g(t), and hence, the linear
functional go is not defined on all of 12. Therefore, before using the Riesz theorem,
the Hahn-Banach theorem should be invoked to extend go to a bounded linear func-
tional on all of 12.

FASTER-THAN-NYQUIST SIGNALING 1461



functionals, we may write

CO

go = E E bye <
1 1

where the b,. do not depend on g (t). We now consider the function

p (z) = 1 - E bnzn,

(39)

(40)

which is analytic for I z I < 1. For any G(0) E L2(- pr, pir), we may
write, using (39),

Therefore,

f G ONO = b
Jrpm

(0)d0
P.

=
fPr (E bnein°)G(0)d0.

pa 1

(41)

lirn (1 - b,z)G (0)d0 = 0 (42)
IzI-.1f-

P."

pr

for all G(0) E L2( - pir, pr) .t By the completeness of L2, we must have
1 - b nein° = 0 a.e. on (-pir, pir). Since the radial limit of the H2
function p (z) vanishes on a set of positive measure, p (z) itself must
vanish for z < 1. (See Ref. 7, p. 373, Theorem 17.18.) However,
p (0) = 1, and, hence, we have a contradiction, denying the validity
of (37).
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Single -Integration, Adaptive Delta Modulation
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An. estimate of optimum performance is derived -for a single -integration.,
adaptive delta modulator. Several simulations of adaptive delta modulators
with single integrators have all produced signal-to-noise ratios near or
below the estimate.

The derivations presented here indicate that the performance of a single -
integration delta modulator is dependent on the correlation between adjacent
samples of the input signal and on the probability density function of its
derivative. The relationship between the probability density of the derivative
of the input signal and optimum performance, in turn, explains why
signal-to-noise ratios taken on sine waves are greater than those recorded
while processing speech signals.

I. INTRODUCTION

In this paper, an equation is derived for the optimum signal-to-noise
ratio (s/n) of a single -integration, adaptive delta modulator. Mean -
square quantizing noise is a mathematically tractable quantity which
appears to be a reasonably good measure of overall performance. It
was felt that an understanding of the relationships between this
quantity and the character of the input signal would be useful. The
derivations and data presented here all contribute to this end. Other
practical considerations, such as subjective evaluation,' transmission
errors,' and tandem encoding,3 have been discussed elsewhere.

Several simulations4 of single -integration, adaptive delta modulators
on a variety of speech signals have produced s/n's near or below the
performance estimate suggested in this paper. It is further suggested
that this estimate is very close to the upper bound on the performance
of such coders. The s/n formula also provides an explanation of the
disparities between s/n's taken on sine waves and those obtained
while coding speech signals.

A block diagram of a single -integration, adaptive delta modulator
is shown in Fig. 1. At the encoder, the difference between an input
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Fig. 1-Single-integration delta modulation.
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sample, xi, and the previous output sample, '4_1, is quantized to one
of two levels and coded. The code symbols, sgn (Si) through sgn (f3i-Ar)
(where N may be any positive integer) are then interrogated by the
companding logic, and the step size, is altered before the ith
sample is encoded. The quantized approximation to the difference,
Si = of sgn (Si), is added to the previous output to obtain the present
output sample.

The decoder operates in the same manner as the encoder except that
the circuit is driven from the transmission channel rather than from a
local comparator. The quantized signal at the decoder, 4, is low-pass
filtered to eliminate noise components outside the band of xi (i.e.,
frequencies greater than f Lp), and a replica of the input signal is thus
regenerated at the desampling filter.

The signal-to-noise ratios referred to in this paper were taken in
the following manner. First the noise was obtained as shown in Fig. 2
and then the ratio of input signal power to noise power was taken. The
technique used by DeJager for sine wave s/n's is described in Ref. 5.
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Fig. 2-Quantizing noise measurement.

II. EXACT S/N FORMULAS

The following equations are derived from the diagram in Fig. 1.= xi --(1)
17i = + Si. (2)

If the quantizing error is defined as

ei - xi,
then, from (1) and (2), the following relationship holds :

ei = Si - Si. (4)

(3)

From (3), it can be concluded that

= ei, (5)
and likewise that

4-1 = x1-1

Therefore, (1) may be rewritten as

Si = xi - xi_i -

The average power in the prediction error is therefore

E(Si) = E E(x?-1) E(e7-1)
- 2E(xixi_1) - 2E(xiei_1)

(6)

(7)

(8)

where the E functions are expected or average values. It is now noted
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that, for quasi -stationary signals,

and that
E (xi) = E (4_1),* (9)

E(4-1) = E (ei).* (10)

Therefore, eq. (8) may be reduced to

E OD - 2 1
E (x ix i_i) E (xiei_i) E (x i_ie i_i) ]+ E (e2i)+ (11 )

E (xi)
[

E (xi) E (xi) E (xi) E (xi)

The s/n at the quantizer is given as

E (Si) E (Si)

°IQ
=

K(Si - ai)2] E(et)

The s/n before filtering is defined as

E (x)

(12)

s/n = (13)
E(et)

Note that (11) is equal to (12) divided by (13) or that

E (Si} s/n (2

E (xi) s/n

Hence, by substituting into (11) and transposing terms, an equation
for the unfiltered s/n is obtained.

s/n = 2E1 - [E(xixi_i)]/E(xl) - [Ey (x ie JA]/ E (xi)
+ EE (x i_ie i-i)J / E (4)]*

III. ASSUMPTIONS AND APPROXIMATE FORMULAS

The variance of the prediction error is unknown because Si contains
quantizing noise [see (7)]. Therefore, Si cannot be optimally quantized.

No meaningful information can be obtained directly from eqs. (1)
through (15) without making some approximations or assumptions
about the unknown terms [s/n Q, E (xiei_i) and E(xi-oi-i)]. Several
measurements and simulations taken by the author and others before
him support the following assumptions.

(i) The optimum step size will yield the same signal-to-noise ratio
at the quantizer that can be achieved by quantizing the noise -

free part of Si (i.e., the derivative of the input signal, xi - xi_i).

s/nQ - 1

(14)

(15)

* To the extent that (9) and (10) are equations, (15) may be called an equation.
Some awkward anomalies exist with regard to eq. (15); however, none of these is
relevant to the problem.
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(ii) The quantizing noise is the same as that generated by optimum
quantization of (xi - xi_1), and therefore

E[(xi - xi_i)ei_i] = 0. (16)

Hence,

E (xiei_i) -E = 0. (17)

Given the above assumptions, (15) reduces to

- 1)
= 2 {1 - [E(xixi_i)]/E(xi) }

where s/ng, is the s/n achieved when xi - xi_1 is optimally
quantized.

(iii) Finally, in an optimum modulator the quantizing noise spec-
trum is flat. Then the ratio of overall noise to the inband noise
is equal to the ratio of half the sampling frequency to the band-
width of the input signal.

(18)

Hence, the s/n taken on the filtered signal, &Li p, is equal to the
unfiltered s/n multiplied by the ratio of half the sampling frequency
to the cutoff frequency of the filter.

s/nLp =
[s/nqop - 1] [ 2ifLP

2E1
E (xixi_i) 1 '

E(x2) j

(19)

where fR is the sampling rate and fLp is the cutoff frequency of the
desampling filter or the bandwidth of the input signal.

Equation (19) is identical to Nitadori's signal-to-noise equation'
for differential PCM. Nitadori cautions against its use in cases where the
quantization is coarse, however. In this paper, eq. (19) is derived using
somewhat different assumptions which, in fact, do appear to hold for
delta modulation.

The validity of the three assumptions given above is the main point
of this paper. When these assumptions hold, an important relationship
between the amplitude distribution of the derivative of the input signal
and s/n performance can be drawn.

IV. RELATIONSHIP BETWEEN S/N,,, AND PROBABILITY DENSITY
FUNCTION OF xi -

Paez and Glisson,7 among others, have shown that the amplitude
probability distribution of speech and its derivatives is closely ap-
proximated by the gamma distribution. Figure 3 shows that this dis-
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Fig. 3-The amplitude probability density function of (xi - xi_1) as compared
with the Laplacian and gamma distributions.

tribution closely approximates the probability distribution of
(xi - x1_1) for telephone signals used in my simulations. The dis-
tribution of (xi - xi_1), taken on the speech used in Jayant's simula-
tions, lies closer to a Laplacian distribution, however.
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Table I - Signal-to-noise ratios of two -level quantizer output

Probability Density Function s/nqop

Gamma P
3} exp (- 1510/2a)

(Y) = 1.50
A/87ra I Y I

Laplacian P(Y) = ( V2.01Y I ) 2.00wri. exp

Gaussian
exp (-y2/2u2)P(y) - 2.75

cr

Rectangular
1 A A

P(I) = A - -- < y<

P (y) = 0 - -A > y > y

4.00

Sinusoidal
y = cos 0

or
y = sin 0

P(Y) =
1

1 .. 1 5.28y
r lil - y2

Given a distribution that is symmetrical about the origin, the
quantization step is optimum when

J. (y - A)P(y)dy = 0, (20)

where y relates to (xi - x1_1). With the step set at the optimum size,
Paez and Glisson, Max,8 and others have calculated the noise power at
the output of a two -level quantizer,

E[(9 - y)2] = 2 j (y - A)2P (04

and achieved the s/n's shown in Table I.

V. COMPARISONS WITH SIMULATIONS

(21)

The correlations between adjacent samples was taken on speech
obtained using a carbon -button, telephone transducer. Similar data
were obtained by N. S. Jayant on speech recorded from a high-fidelity
transducer. Both signals were processed by Jayant's adaptive delta
modulator with a one -bit memory, where the step size is multiplied
by 1.5 if the present and previous code words, sgn (Si) and sgn (31-1),
are alike, or by 0.66 if they differ. In all the simulations, the sampling
and desampling filter cutoff frequencies are set at 3.3 kHz, except for
the telephone speech recorded at 24 kHz. In this case, the cutoff was
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reduced to 3 kHz. The telephone signals sampled at 48 kHz were also
encoded by a single -integration delta modulator designed by D. E.
Blahut.9 Blahut's encoder also performs close to the estimate [eq.
(19)], when processing telephone speech. Among the numerous coders
tested, no single -integration delta modulator was found that performs
significantly better than Blahut's or Jayant's.

In Table II, performance estimates based on eq. (19) are compared
with the s/n's obtained using Blahut's and Jayant's delta modulators.
To account for difference in probability density functions (see Fig. 3),
the estimates were made with s/n,, equal to 1.5 for telephone signals,
and 2.0 for high-fidelity signals.

The performance estimate given by eq. (19) is within 3.3 dB of the
s/n's obtained in simulations with Jayant's delta modulator. The
s/n's taken on Jayant's and Blahut's coders, while processing telephone
speech at 48 kHz and 24 kHz, are essentially equal to the estimate. In
these cases, the signal level was carefully adjusted until optimum per-
formance was obtained, then further data were taken to verify eq. (19).
(See Table III.)

The results shown in Table III lend great support to the approxima-
tions made in deriving eq. (19). The noise terms do effectively cancel,
leaving a residue that is at least an order of magnitude smaller than
the noise -free terms in the denominator of (15) (see lines 5 and 6 in
Table III). The estimates for noise rejection at the desampling filter
and for quantizer performance (s/n Q) are within 0.8 dB of the figures
obtained in the simulations.

Both coders were simulated with a 60 -dB range of step sizes, and
both were started with the step size equal to the minimum and the

Table II - Performance estimates

RateSa (kmpliHngz)

E(xixi_i) Estimate 10 logio
(s/nLp) (dB)

Delta Modulator
Performance (dB)

E(4)
Jayant's Blahut's

2.0 20 0.989 21.3 18.0 -
*1.5 24 0.957 13.7t 14.5 -
2.0 40 0.997 30.0 28.0

*1.5 48 0.9897 22.6 22.9 22.7
2.0 60 0.999 36.5 34.0 -

* Telephone speech: The acoustic -to -electronic response of the new 500 -type,
stations setsw indicates that signal components in the 100 -Hz to 3.3 -kHz band are
differentiated, and that components below 100 Hz are severely attenuated. Hence,
correlation between adjacent samples is lower for telephone speech than for high-
fidelity speech.

t At 24 -kHz sampling, hp = 3 kHz.
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Table III - Verification of eq. (19)

S/IILP

s/n

Noise rejection at the
desampling filter

10 logio(f./2/Lp)

s/n Q

Sam-
pling
Fre-

quency
(kHz)

Estimates
Coder Performance

Jayant's Blahut's

24
48

13.7 dB
22.6 dB

14.5 dB
22.9 dB 22.7 dB

24 5.92
(i.e., 7.72 dB)

5.95
(i.e., 7.75 dB)

48 24.3 24.3 26.1
(i.e., 13.9 dB) (i.e., 13.9 dB) (i.e., 14.2 dB)

24 6.0 dB 6.8 dB
48 8.7 dB 9.0 dB 8.5 dB

24 1.5 1.531
48 1.5 1.555 1.569

24 0.0422
48 0.0103 0.0103

24 0 -0.00238
48 0 -0.00112 -0.00060

predictor voltage equal to zero. As the average input signal level was
varied over a 40 -dB range, it was found that the s/n varied by 3 dB.
In either coder, it was found that when performance fell significantly
below the estimate (19), the following phenomena were observed :

(i) Quantizer performance and unfiltered s/n changed slightly
(in some cases, these parameters increased in value).

(ii) The noise terms no longer effectively canceled.
(iii) There was a dramatic reduction in noise rejection at the de -

sampling filter. It appears that when the correlation between
the difference signal, (xi - xi_1), and the noise (16) becomes
significant, more noise must shift into the passband of the
desampling filter.

Hence, the approximations used in deriving eq. (19) do appear to
describe the optimum condition.

These results have been obtained using both an HP2100A mini-
computer and an IBM 370, and therefore are repeatable. Moreover,
further validation by others using other encoders is desirable.
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VI. SINE WAVE PERFORMANCE

Another interesting check on the theory is the fact that it explains
why researchers everywhere achieve much higher s/n with sine wave
inputs than with speech signals. DeJager's formula [see eq. (22)]
indicates that the s/n taken on a sine wave at any frequency below
3 kHz is greater than the s/n that we predict or obtain for telephone
speech.

s/nDeJager = (0.04) fl
/2 fLp (22)

where f is the frequency of the input sine wave.
The amplitude probability distribution and s/n go, for a sine wave

were given in Table I. Substitution of the value in Table I into eq. (19)
yields an estimate for sine wave s/n's.

Shisine wave

4.28 ( 18
\2/LP/)

E1
E ixi-i)

2
E (A)

(23)

Equation (23), in turn, is approximately equivalent to DeJager's
formula. This relationship can be shown as follows. Let x = sin (2T ft) ;
then

E (x ix i_i)
E (xi)

or

lif

fO
[sin (27ft)]  sin (27, -ft 2rf/ f.)dt

LIU
sine (2rft)dt

E (xixi_i) - 2r f
COS )E(xi)fe

If the delay angle, (27f/ fa) , is sufficiently small, then

, (24)

(25)

2 1 - cos ( 211 )] ^' 1 - cos2 27.1 4 72 P (26)
18 fa fl

When (26) is substituted into (23), we obtain something very close
to DeJager's formula :

flShleine wave = (0.054)
PfLp

(27)

For f = 800 Hz, fr, p = 3.3 kHz, and f8 = 48 kHz, estimates of 33.5
and 34.7 dB are obtained using (22) and (27). Under these same con-
ditions, signal-to-noise readings of 26 to 27 dB were obtained in simula-
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tions of Jayant's delta modulator. Under similar conditions, DeJager'
obtained a maximum s/n of about 30 dB on a linear delta modulator.

VII. CONCLUSIONS

The optimum performance of Blahut's and Jayant's delta modulators
is very close to the estimate, (19), when processing speech signals.
Further experimentation with step -size compandors, without a change
in the prediction technique, will not produce significantly higher
signal-to-noise ratios. Equation (19) applies to a delta modulator with
a single, ideal integrator; therefore, it does not preclude improvements
through the use of fixed, higher -order networks.

In addition, it has been shown that delta modulator performance is
dependent on the amplitude probability distribution of the derivative
of the input signal. This dependence should be tested on a variety of
signals and probability density functions. The theory also implies that
a relationship exists between the amplitude distributions of differ-
ential waves at the input and optimum s/n, when higher -order net-
works are used.

Finally, I wish to call attention to the fact that the s/n performance
of a delta modulator is significantly less for telephone signals than
for low-pass filtered, high-fidelity signals, or for sine waves.
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It has been suggested that customers for videotelephone service may be
more interested in graphical information and in views of stationary objects
than in head -and -shoulder views of people engaged in conversation. For
this reason, an interframe coder simulation was constructed of a system
that transmits graphics with full seven -bit PCM resolution, but displays
scenes containing much movement with visible smearing in the moving
areas.

With the coder operating at 200 kb/ s (0.1 bit per pel for a 1 -MHz
signal), a very usable (somewhat reduced -resolution) graphics picture
can be transmitted in about one-half second, which is about as fast as the
human eye can assimilate the information. A full -resolution picture is
built up after 3 to 5 seconds but, except for high -detail scenes, it is very
difficult to tell the difference between the half -second picture and the 5 -second
picture.

Head -and -shoulder views of people engaged in low-key conversations
are transmitted with quite adequate picture quality. Moving lips appear
somewhat smeared, but it may not be enough to be objectionable if the audio
is suitably delayed. However, large area movement is very visibly smeared-
even to the point of being unrecognizable at moderate speeds. Whether or
not this feature makes the coder unusable depends upon the value the
user places on high -quality animated face-to-face conversation.

Briefly, the coder works as follows: First, the signal is temporally pre -
filtered. Then moving -area pels are sent as line -to -line differences of frame -
to -frame differences. As the buffer fills, field -to -field, pel-to-pel, and frame -
to -frame subsampling as well as adaptive quantization are brought in as
needed to reduce the data rate.

I. INTRODUCTION AND SUMMARY

The use of videotelephone for graphical information and for views
of stationary objects has profound implications in long-distance trans-
mission of video signals via frame -to -frame coding, where the required
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data rate is directly dependent on the amount of movement to be
accommodated in the scene.

If it can be shown that visible degradation of moving areas in a
television picture is not detrimental to the effectiveness of visual
communication, then a significant saving in transmission costs is
possible with frame -to -frame coding.' With these techniques, stationary
areas of pictures would be transmitted with full resolution, while
moving areas would be sent with visibly reduced resolution.

Transmission of graphics or still pictures can be accomplished in a
particularly pleasing way, subjectively speaking. A reduced -resolution,
but quite recognizable, picture appears very quickly at the receiver.
Full resolution is then built up over a period of time that depends on
the transmission channel data rate. However, for the majority of
pictures, it is difficult for an observer to tell the difference between
the full resolution picture and the earlier -appearing reduced -resolution
picture. In this regard, such a system would be much more usable for
interactive visual communication than would a facsimile or slow -
scan system operating at the same data rate where a complete picture
would not be visible for a relatively long time. Also, interframe coding
can handle small amounts of movement such as adding a few lines to a
sketch or using a pointer with stationary graphics, whereas a slow -
scan system would be very unsatisfactory.

Scenes of people engaged in conversation do not fare as well as
scenes in which there is little or no movement. Moving areas such
as a person's lips and eyes are visibly smeared and, depending on the
data rate, large -area movement is jerky because of coder overload.
Even so, a well-behaved subject can present a very decent picture
to the receiver if he or she is aware of the limitations of the medium.
However, it is this aspect of low -bit -rate interframe coding that raises
questions in most people's minds. Whether or not this feature makes
such techniques unusable depends upon the value the user places on
high-fidelity, animated, face-to-face conversation.

To move closer to the answers to some of these questions, an inter -
frame coder simulation was constructed for 1 -MHz videotelephone
signals that was designed to operate in the hundreds of kilobits per
second range (below 4 bit per picture element). Many techniques are
used to adaptively reduce the moving -area resolution (both spatial
and temporal) in proportion to the amount of motion, and to restore
full resolution to the display as quickly as possible after motion ceases.

With such a system operating at 200 kb/s (0.1 bits/pel), a recog-
nizable, somewhat reduced -resolution graphics picture is displayed at
the receiver in about one-half second. Full resolution requires 3 to 5
seconds. With head -and -shoulder views of people engaged in low-key
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conversation, moving lips appear somewhat smeared, but this may not
be enough to be objectionable if the audio is suitably delayed. How-
ever, large -area movement is very visibly smeared and jerky, even
to the point of being unrecognizable at moderate speeds.

With the system operating at 50 kb/s, a reduced -resolution graphics
picture requires about 2 seconds for transmission, while full resolution
takes 10 to 15 seconds. At 50 kb/s, face-to-face conversation loses much
of its naturalness. Lip motion can be followed only if the subject
remains otherwise absolutely still, and large area motion is portrayed
as a series of snapshots occurring at a rate of about 1 per second. It is
interesting to note, however, that, even at 50 kb/s, useful interactive
visual communication is still possible using interframe coding whereas,
with slow -scan operating at the same data rate and requiring about
10 seconds per frame for transmission, interactive communication is
severely hampered.

In the following sections, the technical aspects of the coder and the
simulation are discussed.

II. MULTIMODE CONDITIONAL REPLENISHMENT

It is well known that, in a television signal, successive frames are
very much alike. The frame -to -frame differences are negligibly small
except in areas of the picture that contain moving objects. Thus, if
frame memories are provided at the transmitter and receiver of a
video communication system, it is necessary only to transmit those
areas of each frame where the frame differences are significant. The
remaining picture elements (pels) can be repeated from the previous
frame. This technique is called conditional replenishment.2 Conditional
replenishment requires addressing the pels which are transmitted
(the changed pels or "moving -area" pels) and buffers at the trans-
mitter and receiver.

For example, in Ref. 3 a conditional replenishment coder for eight -
bit PCM videotelephone signals* is described which operates at 2 Alb/s
(one bit per pel on the average) and uses a number of techniques to
reduce the bit rate required for transmission. The pels to be trans-
mitted are addressed along the line in clusters, and their amplitudes
are sent as frame -to -frame differences. When the transmitter buffer
starts to fill, indicating active motion, only every other changed pel is
transmitted,3,4 with the unsampled pels being replaced by the average
of their neighbors. When the buffer fills completely, replenishment is
stopped for one frame period, allowing the buffer to empty before
resuming transmission.

* 30 -Hz frame rate, 271 lines, 2:1 interlace, 3 dB down at 1 MHz, 2 -MHz sampling
rate, 8-bits/sample, 210 visible samples/line.
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Other multimode conditional replenishment coders are described in
Refs. 5, 6, and 7. A variety of techniques control the rate of data
generation to prevent buffer overflow.

Other functions of conditional replenishment coders, such as the
sending of synchronizing information and the accommodation of
transmission errors, are also discussed in Refs. 1 to 7.

III. LINEAR PREDICTIVE CODING

A linear predictive coder forms a prediction of each pel to be sent
by computing a linear combination of previously transmitted pels.
The difference between the actual value and the prediction is then
quantized, coded, and transmitted. The inverse process takes place
at the receiver. The better the prediction, the smaller the entropy
of the differential signal and the bit rate required for transmission.
Figure 1 shows two successive frames with interlacing assumed (two
interlaced fields per frame). Suppose Z is a moving -area pel we wish
to transmit. Pels A, B, C, G, and H are in the field presently being
scanned ; pels D, E, F, R, S, and T are in the previous field ; and the
remaining pels are one frame period back from the present field. Pel M
is the previous frame value of Z, and if it is used as a prediction of Z,
then Z - M, the differential signal which is transmitted, is the frame
difference as discussed above.

diction of Z resulted in a relatively -low -entropy, differential signal
compared with other nonadaptive predictive coders. In this case,
the transmitted differential signal is the line -to -line difference of the
frame -difference signal (Z - M) - (B - J).

Transmitting line differences of frame differences has several other
advantages as well. Since it does not use pels along the present line

PRESENT FIELD PELS

A B C
D E F

GH

R S T

I J K

U LON V
5 P T1

PREVIOUS FRAME PELS

PREVIOUS FIELD PELS

Fig. 1-Two successive television frames, interlacing assumed (two interlaced
fields per frame). Pels Z and M are exactly one frame apart.
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....- DIFFERENTIAL SIGNAL

(Z -M) -(B -J)

7 -BIT
PCM

M+B-J=PREDICTION

B -J

QUANTIZER

LINE DELAY

S FRAME DELAY

A

TO CODER,
BUFFER,
AND
CHANNEL

r__ SWITCH0 0 CONTROLLED
Q BY SEGMENTER

M

Fig. 2-Predictive coder which transmits only the moving -area pels. The differ-
ential signal (Z-M)-(B-J) is the line -to -line difference of the frame -to -frame differ-
ence. The segmenter (not shown) determines whether or not Z is a moving -area pel.
If it is, the switch is put in the up position and Z, a new quantized value, enters the
frame memory. Otherwise, the switch is put in the down position and the previous
frame value M is recirculated. In any event, Z is the value displayed at the receiver
in the absence of transmission errors.

or pels in the previous field for its prediction, pel subsampling and field
subsampling can be employed without affecting the performance of
the predictor. Also, it has been found that relatively few quantization
levels are required to produce a good quality picture. Starting with
seven -bit PCM, 11 -level quantization* of the line difference of frame
difference is sufficient for most pictures and most speeds of move-
ment, whereas 30- to 40 -level quantization is required for the frame -
difference signal.

Figure 2 shows a single -mode conditional replenishment coder which
transmits quantized line differences of frame differences in the "moving
area." This is the predictive technique used in the coder described in
this paper. As with all conditional replenishment coders, a "segmenter"
is required to divide the picture into moving parts and stationary
parts," logic must be provided for sending addressing and synchro-
nizing information, and a buffer is needed to smooth the data rate
prior to transmission. If Z is a moving -area pel, the switch is in the
up position to allow the quantized representation Z to pass through

On a scale of 0.  127, the quantization levels are 0, +1, ±3, ±10, ±23, ±48.
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to the frame memory. If Z is a stationary -area pel, the switch is in the
down position, and the previous frame pel M is repeated. At the
receiver, the inverse process takes place, and the value Z is displayed.

To take advantage of the low entropy of the line difference of frame
difference, a variable word -length coder should be used to code the
quantized moving -area differential signal. A suitable code for 11 -level
quantization is given in Table I. The four -bit code word 0000 is
reserved for signaling the end of a cluster of significant changes.'
In a later section of this paper, nine -level quantization is discussed.
The first nine code words of Table I are suitable for nine -level
quantization.

IV. TEMPORAL FILTERING

A simple method of reducing the data rate in an interframe coder
for television pictures is to subsample in the temporal direction and
transmit only every other frame (odd field followed by even field)
which enters the coder, i.e., send frames at a rate of only 15 Hz. At
the receiver in place of each missing frame, one would display either
the previous frame or an interpolation of the previous frame and the
upcoming frame. However, when using this technique jerkiness is
visible in the displayed picture for all except the very slowest
movement.

The jerkiness is due to aliasing in the temporal -axis frequency
domain, i.e., the input signal has significant power above the half -
sampling frequency (here, 7.5 Hz). Aliasing can be reduced by filtering
the input signal to reduce as much as possible the power above 7.5 Hz
in the temporal frequency domain. Instead of jerkiness, the displayed
signal then exhibits blurring in the moving area in proportion to the
speed of movement. Many viewers find this type of distortion prefer -

Table I - Variable word -length code suitable for 11 -level
quantization with code word 0000 reserved for indicating

the end of a cluster of significant changes

Lo
+L, 01
-L, 001

+L2 0001000
-L2 0001001
+L3 0001010
-L3 0001011
+L4 0001100
-L4 0001101
+L5 0001110
-L5 0001111
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(c)
FRAME
AVERAGING
AND REPEATING

7.5

TEMPORAL FREQUENCY IN HERTZ

Fig. 3-Power transfer characteristics versus temporal frequency. (a) Light
integration by the camera alone. (b) Simple frame averaging. (c) Averaging plus
frame repeating as shown in Fig. 4.

able to jerkiness, since it is already present to some degree in all
television pictures.

Ideal low-pass filtering using a (sin x)/x impulse response filter
would require several frame memories. In this paper, we use a method
of temporal filtering employing only one frame memory, namely, the
one normally present in the interframe coder.

Some temporal filtering already takes place in a normal television
camera because of its integrating action. Figure 3a shows the power
transfer characteristic (derived in the appendix) owing to integration
of the light falling on the camera target.

Additional temporal filtering using a frame memory can be carried
out by a simple averaging of the incoming frame and the previous
frame. The power transfer characteristic of this type of filtering
(derived in the appendix) is shown in Fig. 3b. It is down by about 8
dB at 7.5 Hz.

Figure .4 shows the implementation of frame repeating plus temporal
averaging. The switch is held in the down position during alternate
input frames. Otherwise, it performs conditional replenishment under
control of the segmenter as in Fig. 2. In this case, the "previous frame"
coming out of the frame memory during conditional replenishment is
not the previous frame at all, but, as a result of the frame repeating,
it is actually the frame that was coded two frames ago. Because of
this fact, increased temporal filtering occurs. Figure 3c shows the
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FRAME
DELAY

TO
DISPLAY
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A 0 CONTROLLED

r BY ADDRESS
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Fig. 4-Implementation of predictive coding with temporal filtering and frame
repeating. (a) Transmitter. (b) Receiver. During alternate incoming frames, the
switches are held in the down position, thus recirculating the contents of the frame
memory, and no data are fed to the transmitter buffer.

power transfer characteristic of frame repeating plus temporal aver-
aging (also derived in the appendix). It falls off much faster than
curve b, and is down by about 10 dB at 7.5 Hz. However, unlike
curve b it rises again at higher frequencies.

Temporal averaging and frame repeating as shown in Fig. 4 has
been implemented, and jerkiness is difficult to detect. However,
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blurring is quite visible when the subject moves. Lip motion is also
blurred somewhat.

Temporal filtering helps to reduce the data rate in two ways. First,
as already mentioned, only every other television frame need be
transmitted. Simple frame repeating at the receiver is sufficient to
display a picture in which jerkiness is difficult to detect. Second, the
blurring of the moving area makes the signal more amenable to
predictive coding. With the blurred picture, the differential signal is
smaller on the average, thus reducing its entropy and the bit rate
required for transmission.

V. SEGMENTING, ADDRESSING, AND SYNCHRONIZING

The coder uses simple, well-known techniques for segmenting the
picture into moving and stationary areas.' Ordinary seven -bit PCM re-
quires updating of pels which have changed by 2 or more on a scale
of 0  127 to present good picture quality in slowly moving areas.
However, temporal filtering as shown in Fig. 4 amounts to halving all
the frame differences. Thus, in the coder described here, frame differ-
ences larger in magnitude than 1 on a scale of 0.  127 are detected
and labeled as significant changes. As is described later, the frame -
difference threshold is raised to 2 to reduce the data rate when buffer
overflow threatens.

Significant changes because of camera noise are dealt with as in
Ref. 3. That is, a change is ignored if the two pels on the left and the
two pels on the right have not changed significantly.

Positioning information for the transmitted pels is also sent as in
Ref. 3. The start of a cluster of significant changes is signaled by an
eight -bit address indicating its position. The end of a cluster is specified
by sending a four -bit code word which is distinguishable from the
quantizer output code words (see Table I).

Small gaps between clusters are more efficiently handled by trans-
mitting the pels therein than by ending one cluster and starting a new
one.3 This technique is called gap -bridging.

In Ref. 8, it was found that the entropy of the quantized line differ-
ence of frame -difference signal was somewhat above two bits per
moving -area pel. Since each new cluster requires twelve bits for address-
ing, the coder bridges gaps of six pels or less prior to conditional
replenishment.

Synchronizing is handled as follows. Since there are less than 256
visible pels along a line, frame sync, field sync, error detection words,
and other events which occur relatively rarely can be signaled con-
veniently using eight -bit code words that are distinguishable from
the eight -bit cluster addresses. However, line -to -line sync is not
handled as easily.
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If line sync were signaled with an eight -bit word, then, with the
re:3 8 -kHz line rate used here, 64 kb/s would be devoted to line sync.
For a coder operating at a few hundred kb/s, this is much too high a
proportion of the total bit rate.

The method of line sync proposed for the coder requires slightly
more than one bit per line. With frame repeating, this amounts to
about 4 kb/s being used for line sync. The method relies on the fact
that the first pel in the first cluster of a line is usually located to the
left of the last pel of the last cluster of the previous line. In this case,
no additional information need be transmitted to tell the receiver
that a new line has begun. However, the receiver must be told if the
above situation does not apply, and it must also be told which lines
in the picture contain no clusters.

000000000000000000000000
ABCD000000000000EFGH
000000000000000000000000
000000000000000000000000
ooIJKL0000MNP00000000
000000000000000000000000
00000000000000000000QRS

Consider the field of pels shown above. Pels labeled A, B, C, ,

R, S have changed significantly and must be transmitted along with
their cluster addresses. Pels labeled o will not be transmitted. Since
the cluster ABCD is the first one in the field, the receiver need not be
told that a new line is starting. It only needs to be told the number of
lines at the beginning of the field that contains no clusters. A string
of zeros equal in number to this amount followed by a one suffices to
convey this information to the receiver. For implementation reasons
which become apparent later, this string of bits is transmitted after
the address word of cluster ABCD and before the pels A, B, C, D and
the end -cluster message are sent. Cluster EFGH is sent in the normal
manner, i.e., address, pels, and end -cluster.

Since pel I is to the left of pel H, the receiver can tell from the
address of cluster IJKL that a new line has begun. Following the
address word of cluster IJKL, the bits 001 are transmitted, indicating
that two intervening lines contained no clusters. Cluster MNP is
sent in the normal manner.

Since pel Q occurs to the right of pel P, the receiver cannot tell
from the address of cluster QRS that a new line has begun. A special
reserved address word must be transmitted to indicate a new line.
Following this, the address of cluster QRS and the bits 01 are trans-
mitted as usual. If small gaps between clusters are bridged, then the

1484 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975



above procedure should be modified somewhat. In this case, the
special reserved address word need be transmitted only if

Q -address > P -address + minimum gap size.

A system using these ideas would operate sequentially as follows :

(i) At the start of each field
(a) A field sync word is transmitted.
(b) An address register is set to maximum value.
(c) A counter is reset to zero.

(ii) The counter is incremented by 1 at the end of each line which
contains no clusters to be transmitted.

(iii) When the first cluster of a line is encountered
(a) A check is made to see if the address of the first pel exceeds

that in the address register. If it does, a special reserved
eight -bit word is transmitted which is distinguishable
from all the normal cluster address words. This should
not occur very often when movement is significant.

(b) The address of the cluster is transmitted.
(c) A string of zeros is transmitted equal in number to the

value stored in the counter. None are sent if the counter
equals zero.

(d) A one is transmitted, and the counter is reset to zero.
(iv) Normal conditional replenishment then resumes and con-

tinues until the end of the line.
(v) The address of the last pel of the last cluster of the line is

added to the minimum gap size, and the result is stored in the
address register.

(vi) Operation continues with Step (ii).

This technique was tested, and with scenes containing slow,
moderate, or rapid movement the number of special words that had
to be transmitted rarely exceeded two per field 0.5 kb/s when frame
repeating is employed). With no movement, the clusters of significant
changes resulting from noise occurred randomly, and the number of
special words was higher. But in this case the overall data rate is very
small, and thus the special words do not overload the coder.

VI. MODE CONTROL

For a given transmission bit rate, a higher overall picture quality
can be obtained if the coding is adapted to the amount of movement
in the scene. For an interframe coder, the fullness of the transmitter
buffer is the simplest and most useful measure of the amount of
movement.' -3 Imminent buffer overflow is a direct indication that
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the data rate being generated is too high and that the displayed
moving area resolution should be reduced.

The basic operating mode of the low bit -rate coder is shown in
Fig. 4, i.e., temporal filtering, frame repeating, and transmission of
line differences of frame differences in the moving area. As with
previous coders operating at higher bit rates,2.3,5-7 the moving -area
resolution is reduced by switching to a lower resolution mode if the
buffer queue length exceeds some fixed threshold. Thus, as shown in
Fig. 5, if the buffer queue length exceeds T1, then coding mode 1 is
invoked ; if it exceeds T2, then coding mode 2 is invoked ; etc. Mode 4
is frame repeating, i.e., the switch in Fig. 4 is held in the down position,
and no data are generated except synchronizing information. In this
way, buffer overflow is prevented.

When motion in the scene ceases and the size of the moving area
decreases, the buffer begins to empty, and a higher -resolution coding
mode should be used. To prevent oscillations between coding modes,
a higher -resolution mode is not invoked until the end of a field, and
then only if the buffer queue length is below T1 for modes 1 and 2
and T2 for modes 3 and 4. Thus, for example, a change from mode 1
to mode 2 is possible any time the buffer queue length exceeds T2,
but a change from mode 2 to mode 1 can occur only at the end of a
field in which the buffer queue length falls below T1.

VII. MODES USED IN THE CODER

Mode 0 is the previously mentioned basic operating mode shown
in Fig. 4. An odd field and an even field are coded as shown in Fig. 6a.
Then the next two fields are skipped ; at the receiver, the frame is
repeated by displaying the stored signal. Mode 0 is the highest resolu-
tion mode of the coder.

EMPTY FULL

0

T2 T3

2

CODING MODE

T4

3 4

Fig. 5-Switching between coding modes under control of the transmitter buffer
causes the moving area resolution to be reduced as the amount of motion in the scene
increases. Mode 0 codes with the highest resolution, mode 4 with the lowest. When
the buffer queue length exceeds Ti, mode i is invoked (except for mode 3 which is
invoked at the end of the field). At the end of the field in which the buffer queue length
falls below T1 for modes 1 and 2 or T2 for modes 3 and 4, mode i is revoked and mode
i -1 is invoked. With this strategy, oscillations between coding modes are prevented.
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UPDATE UPDATE

FIELDS 1 2

UPDATE

FIELDS 1

REPEAT REPEAT UPDATE UPDATE REPEAT...

3 4

(a) MODE 0

INTERPOLATE REPEAT

5 6 ...

INTERPOLATE UPDATE INTERPOLATE REPEAT...

2 3 4 5 6 7...

(b) MODES 1 AND 2

Fig. 6-(a) Simple frame repeating is used in mode 0. Two fields are updated, then
two fields are repeated. (b) Frame repeating and field interpolation are used in modes
1 and 2. Only one out of four fields is updated. No data are generated for the remain-
ing three fields.

Mode 1 is interpolation of even fields. In this mode, the data rate is
halved by not transmitting even -numbered fields as shown in Fig. 6b.
Instead, an interpolation between the previous odd field and the
upcoming odd fieldl° is displayed, thus reducing the vertical resolution
in the picture by a factor of two.

Field interpolation is implemented as shown in Fig. 7. If, during
input of an even field, mode 1 is invoked, then the conditional re -

LINE
DELAY

.10-410-

INTERPOLATION

+4

FIELD
-1/2 LINE

DELAY

FIELD
-1/2 LINE

DELAY

S2 DISPLAY

LINE
DELAY

FRAME DELAY
TM

Fig. 7-Implementation of field interpolation. Si is held in the down position
during input of repeated fields and interpolated fields. No data are generated for
them. One field period later, S2 is put in the up position to display interpolated fields
and in the down position to display updated and repeated fields (see Fig. 1).
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plenishment switch S1 is held in the down position for the remainder
of the field, and no updating occurs. During input of the next two
successive odd fields, switch 2 is held in the up position to display
interpolated values for the even fields. Otherwise, it is in the down
position. Display of two interpolated fields is necessary because of the
aforementioned frame repeating which would otherwise display the
invalid contents of the frame memory.

Mode 2 consists of the field interpolation of mode 1 plus 2:1 hori-
zontal subsampling,3,4 i.e., only every other moving -area pel along
a line is transmitted. The untransmitted pels are obtained from their
neighbors by interpolation. Subsampling reduces the data rate by
a factor of almost 2 over mode 1.

Mode 2 also employs coarser quantization of the line difference of
frame -difference signal and an increase of the frame -difference threshold
used by the segmenter. When mode 2 is invoked, the frame -difference
threshold is raised from 1 to 2 on a scale of 0  127, and the two
smallest nonzero levels of the quantizer are switched out of operation,
reducing the number of levels to nine. The outputs of the nine -level
quantizer are coded using the first nine code words of Table I. Coarser
quantization reduces the entropy of the differential signal, and raising
the frame -difference threshold reduces the number of pels that must
be transmitted. Together they reduce the data rate by a factor of
about 1.5, but this figure depends very much on the picture material
and on the amount of movement in the scene.

Mode 3 is frame repeating at the end of a field. When mode 3 is
invoked, all conditional replenishment is halted. The contents of the
frame memory are displayed for odd -numbered fields, and interpolated
values are displayed for even -numbered fields. But unlike the other
modes, it is invoked only at the end of a field. The purpose of this is
to avoid the picture breakup associated with the stopping of condi-
tional replenishment in the middle of a field. As the amount of motion
in the scene increases, mode 3 causes the coder to progressively operate
in 4 : 1 frame repeating, 6:1 frame repeating, or as much as is necessary

Table II - Modes of the coder with mode 0 the highest
resolution mode

Mode

0 Temporal filtering and frame repeating.
1 Mode 0 plus interpolation of even fields.
2 Mode 1 plus 2:1 horizontal subsampling, increased

frame -difference threshold, and coarser quantization.
3 Frame repeat at end of field.
4 Instantaneous frame repeat.
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to accommodate the rate of data generation. Mode 3 is revoked at the
end of the field during which the buffer queue length falls below T2
(not T1, as with modes 1 and 2).

Mode 4 is instantaneous frame repeating. It is rarely used and is
invoked only to prevent data from being lost in an uncontrolled manner
because of buffer overflow. It is revoked at the end of the field, and
normal frame repeating under mode 3 then resumes. The modes of
the coder are summarized in Table II.

VIII. CHOICE OF BUFFER QUEUE LENGTH THRESHOLDS

The objective of the coder is to operate in the mode that best
matches the data generation rate with the channel transmission rate.
Also, oscillation between modes must be avoided since it adversely
affects picture quality in some cases. Correct choice of the buffer queue
length thresholds is very important in accomplishing these objectives.
As an example, the following illustrates how the thresholds might be
chosen for a 200-kb/s channel rate.

Mode 0 is used only when there is little or no motion in the scene.
Its most important function occurs just after motion in the scene has
ceased and mode 1 (interpolation of even fields) has been revoked.
The objective is to update the even field and restore full vertical
resolution as quickly as possible. Shortly after even field update has
begun, the buffer queue length will exceed T1 and updating will cease.
Little or no data will be produced for the remainder of the field and
for the next three field periods. If during this time the buffer empties,
then transmission time will have been wasted. Thus, T1 should be
chosen large enough so that the buffer cannot empty in four field
periods (1/15 second). For 200 kb/s, T1 > 13333 bits.*

During mode 1, data are produced in only one field out of four
(see Fig. 6b). If the overall data generation rate happens to equal
the channel transmission rate, then the coder should not produce any
data if it should switch to mode 0, and it should not switch to mode 2.
In Fig. 6 at the end of field 1 coded in mode 1, the buffer queue length
will exceed T1, and thus field 2 will be interpolated, field 3 will be
repeated, and field 4 will be interpolated even if the coder drops into
mode 0. To prevent mode 2 from being switched in during a mode 1
odd -field update, T2 must be large enough to accommodate the
accumulated difference between the data generation rate and the
channel transmission rate. Somewhat more than three field periods
of channel data may have to be buffered. Thus, for 200 kb/s, T2 > T1

10000 bits.

This figure can be halved if, in mode 0, fields 4, 8, (see Fig. 6) are updated
instead of repeated.
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With mode 2, the same sort of argument applies. Switching to
adjacent modes when the data generation rate and the channel trans-
mission are well matched can be prevented by separating the thresholds
by more than three field periods of channel data. Thus, T2 and T3
should be more than 10000 bits larger than the next lower threshold.

Mode 3 (4 :1, 6 :1,  frame repeating) is invoked at the end of a
field in which the buffer queue length exceeds T3. It is revoked at the
end of a field in which the buffer queue length falls below T2. If the
buffer queue length exceeds T3 at the end of field 1 in Fig. 6b, then 4 : 1
frame repeating will occur if the buffer queue length is still above T2
at the end of field 4. This can be guaranteed by choosing T3 - T2
larger than three field periods of channel data. Thus, for 200 kb/s,
T3 > T2 ± 10000 bits. If T4 - T3 exceeds four field periods of channel
data, then normal 6 : 1 frame repeating with no picture breakup can
occur; if it exceeds eight field periods of channel data, then normal 8 : 1
frame repeating can occur; etc.

T4 also determines the transmission delay owing to buffering. If
300 ms is the maximum tolerable one-way delay,' then T4 must not
exceed 0.3 X channel rate. For 200 kb/s, T4 < 60000 bits.

Table III gives suitable buffer queue length threshold values for
200-kb/s and 50-kb/s operation. The distances (T2 - T1) and (T4 -
can be reduced somewhat without seriously affecting coder operation,
and other more complex mode control strategies can probably be
devised that do not require as much buffering. But for purposes of
assessing the possible trade-offs between picture quality and channel
bit rate, these settings are a valid compromise.

IX. DIGITAL TRANSMISSION ERRORS

It seems to be a general rule that the more the redundancy in a
stream of information is reduced, the more vital the remaining in-
formation becomes. This is especially true for a low bit -rate interframe
coder for television signals. Errors in the data which arrive at the
receiver will usually cause discrepancies in its frame memory of which
the transmitter is unaware. Thus, if no means are provided to ac -

Table III - Buffer queue length thresholds for 200 and 50 kb/s

Threshold 200-kb/s Operation 50-kb/s Operation

13400 3350
T2 24900 6230
T3 45000 11250
T4 60000 15000
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commodate for digital transmission errors, they will cause visible
picture degradations that will last forever.

Many schemes for handling errors have been suggested.1,3 A simple
method, called forced updating, is to transmit a portion of the data
as PCM. After a period of time, data in the receiver frame memory
will be corrected and visible errors will disappear. However, using
channel bit rates which are relatively low compared with PCM, the
time required for correction can be quite long. For example, if 10
percent of the channel data is devoted to PCM, then at 200 kb/s all
errors in the picture can be corrected in about 22 seconds. But with
one error in 106 bits, for example, the average time between errors
is 5 seconds. Thus, with this technique, errors are always present and,
with differential coding of the type discussed previously, highly
visible. Other error control techniques are obviously necessary.

Randomly occurring, isolated errors and occasional bursts of errors
can be dealt with fairly easily by lowering the information bit rate
and using forward -acting error correction codes. However, long bursts
of errors in the bit stream present much more of a problem. Cluster
addressing, variable word -length coding, and DPCM all serve to increase
the vulnerability of the system to digital transmission errors. A long
burst of errors would, in most instances, cause picture breakup for
many seconds, until some updating procedure could restore the
receiver frame memory to its proper state.

Although long bursts of digital transmission errors cannot easily
be corrected, they can, in most cases, be detected fairly easily. The
receiver could then switch to a frame repeat mode during that portion
of the picture for which the frame memory is known to be in error,
thus avoiding the picture breakup associated with free running
operation. With no movement in the scene, errors would not affect
picture quality. With movement, however, errors could, for example,
cause the lower half of the picture to freeze for several seconds until it
Qould be updated via PCM.

Recovery from transmission errors can be speeded up considerably
if the transmitter can be made aware of their existence and general
location by feedback from the receiver. The transmitter could then
simply zero out the offending portion of its frame memory and send a
control signal telling the receiver to do the same. The erroneous
portion of the receiver frame memory will then be updated
automatically.

Somewhat more complicated schemes can be devised that utilize
feedback of error status and retransmission of incorrectly received
data blocks. Some extra buffering is needed (the required amount
depends on the channel delay), but erroneous data will not enter the
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receiver frame memory except on rare occasions when the error
detection algorithm fails. With these techniques, periods of very
noisy transmission simply cause the transmitter buffer to fill, which
automatically invokes lower -resolution coding modes or frame repeat-
ing to match the rate of data generation with the currently available
channel capacity.

X. SIMULATION OF THE CODER

A simulation of the coder was constructed to observe what the
picture quality would be in an actual system in the absence of digital
transmission errors. By and large, the simulator performed all the
coding operations that would significantly affect picture quality ;
however, many shortcuts were taken.

Synchronization of the camera, PCM coder, and simulator was
maintained through the same 2 -MHz clock; thus, phase -locking and
stability problems were sidestepped. Peak-signal-to-rms noise ratio
of the input video signal was above 40 dB ; thus, problems of analog
transmission to the coder were not considered.

The field delays were obtained using a core memory configured as a
tapped delay line. Most of the other circuitry was TTL or mos. A
buffer was not constructed. Instead, an up -down counter and threshold
detection logic was used to implement the mode control features
previously discussed. This approach also made construction of a
variable word -length coder unnecessary, although presently available
inexpensive solid-state Roms make this a fairly easy task. The display
was obtained by incorporating the field interpolation circuitry of
Fig. 7 into the simulator. Normally, this logic is required only at the
receiver.

For scenes of people engaged in conversation, it was necessary to
delay the voice signal by about 100 ms to obtain a match with the
moving lips. Most of this delay is due to the temporal filtering discussed
previously. The remainder is due to the field delay between input and
display (see Fig. 7). In fact, a completely satisfying match between
voice and lips is not obtainable because of the blurring of moving
areas caused by the temporal filtering.

XI. CONCLUSION

In this paper, a frame -to -frame coder for videotelephone signals is
described that operates at a relatively low bit rate compared with
previous coders (200 kb/s or 0.1 bit per pel for an original signal of 1
MHz). The coder was designed on the assumption that faithful
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rendition of large moving areas in a scene is not essential for effective
interactive visual communication to take place. Whether or not this
assumption holds in the majority of situations remains to be seen,
but it is conceivable that if users are made aware of the considerable
economic saving involved, they will put up with a certain amount of
visible distortion in the display.

Graphics and scenes containing little or no movement are portrayed
without degradation. Low-key face-to-face conversations contain
detectable blurring of moving areas, but for many users this may not
be highly objectionable. However, large moving areas are very visibly
blurred, sometimes to the point of being nonrecognizable.

The one-way transmission delay of the coder is comparable to the
nominally acceptable figure of 300 ms. If the delay of the digital
transmission channel is also significant compared with this, as it would
be, for example, on an earth satellite circuit, then interactive communi-
cation will be severely hampered. Also, special measures must be taken
to deal with digital transmission errors. The data generated by the
coder are in highly sensitive form. Thus, if some of them arrive in-
correctly at the receiver, precautions must be taken to ensure that
they do not corrupt legitimate information which has already been
received.

The techniques described here apply also to higher resolution
pictures, e.g., 525 -line standard broadcast rate signals. Indeed, since
moving areas do not require any more resolution than with video -
telephone, the channel bit rate should not be very much higher either.
Graphics and scenes containing no movement would be displayed
with much higher resolution. However, the coder itself would also be
more expensive.

Much work remains to be done before it will be known if the tech-
niques described here are useful in providing an acceptable compromise
between slow -scan facsimile transmission and full rendition of scenes
containing movement. Coding for redundancy reduction will remain
practical only if costs of logic and storage fall faster than costs of
transmission. Also, the requirements of future visual communication
systems may change drastically after users begin to learn how to use
them effectively in their day-to-day lives.
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APPENDIX

Here, analytical expressions are given for the power transfer P
versus temporal frequency characteristics of Fig. 3. Let z(t) be the
light intensity falling on a point of the television camera target, x(t)
the output signal as that point is read out of the camera, and y(t)
the temporally filtered signal. T is the time between normal frames,
i.e., 1/30 second.

Fig. 3a- Camera integration only.

x (t) = 1 ft z(s)ds

1 f z (s)ds..z(s)ds -

(1)

(2)

Taking Fourier transforms,

X (co)
1

ZZ (3)- (co)e-iwTi1 (COT jwT
co) -

Pa =
X (w) 2

2=
(4)

Z (w) w27,2 (1 - cos COT).

Fig. 3b-Temporal averaging.

y(t) = lx(t) ly(t - T). (5)

Taking Fourier transforms,

Y (w) = (cd) Y (co)e-i.T (6)

Y(w)2 1
(7)

X (w) (5 (5 - 4 cos cuT)

Y (co) 2 2(1 - cos 01)
Pb = (8)

Z (w) 07'2(5 - 4 cos coT).

Fig. 3c-Temporal averaging and frame repeating.

y(t) = (t) ly(t - 2T). (9)

From (7),
1

(5 - 4 cos 2coT)

Y(w)
Z (w)

2 2(1 - cos coT)
to2T2(5 - 4 cos 2coT)
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A Novel Implementation of Digital
Phase Shifters
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A novel technique is presented for implementing a variable digital phase
shifter which is capable of realizing noninteger delays. The theory behind
the technique is based on the idea of first interpolating the signal to a high
sampling rate, then using an integer delay, and finally decimating the
signal back to the original sampling rate. Efficient methods for performing
these processes are discussed in this paper. In particular, it is shown that
the digital phase shifter can be implemented by means of a simple con-
volution at the sampling rate of the original signal.

I. INTRODUCTION

In digital systems, linear phase shift or delay of a signal waveform
by an integer multiple of the sampling period is a simple process that
can be implemented as a cascade of unit delays in the network. If,
however, it is desired to delay the signal waveform by an amount not
equal to an integer multiple of the sampling period, then the process
is considerably more difficult. In this case, the signal must be interpo-
lated to obtain new samples of its waveform at noninteger sample
times.

In this paper, we propose a novel implementation for achieving
such noninteger delays. The theory is based on the application of the
concepts of decimation and interpolation proposed by Schafer and
Rabinerl and Crochiere and Rabiner.2 It is shown that the actual
implementation of the phase shifter or interpolator can be achieved
by means of a simple convolution.

Applications in which such noninteger delays in the signal waveform
are required often occur when digital systems must interface with
analog systems. For example, in the cancellation of echoes, digital
systems are often used to generate artificial echoes by means of a
simulation of an echo model. These artificial echoes are then sub-
tracted from the original analog signal to cancel its echo. For best
cancellation, the digital simulated echo may have to be delayed by a
noninteger multiple of the sampling period.
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A second potential application occurs when multiple signals must
be processed together such as in a phased -array antenna system
(e.g., for seismic processing). In this case, the signal waveforms from
the various elements must be shifted by noninteger multiples of the
sampling period relative to each other.

A third application of noninteger delays is in pitch, synchronous
synthesis of speech.' In this case, a parametric representation of

speech is generated at a fixed sampling rate (usually 100 Hz) ; however,
the synthesis parameters are required at time instances between the
sampling intervals to avoid producing transients in the synthesized
signal. Using the variable phase shifter proposed in this paper, the
synthesis parameters can be readily interpolated to any point between
sampling intervals.

II. BASIC CONCEPTS OF THE PHASE SHIFTER

Figure 1 illustrates the basic operation of the phase shifter. To
implement a delay of 1/ D samples, where 1 and D are any integers, the
sampling rate, ft, of the input signal x(n) is first increased by an
integer factor D [by inserting D - 1 zero -valued samples between
each sample of x (n)]. The resulting signal v (n) is then filtered by a
low-pass filter h (n) (generally a linear -phase FIR filter is used here)
to remove its periodic frequency components, which are centered about

of the original The output
the filter u(n) is an interpolated version of the input signal s(n). The
signal u(n) is then delayed by / samples at the high sampling rate to
produce the signal w (n) = u(n - 1). It will be assumed that 1 satisfies
the condition.

(1)

Finally, the output y (n) is obtained by desampling or decimating
w (n), i.e., by choosing every Dth sample of w (n). The net effect is to
delay the original signal x(n) by a noninteger delay of (1/D)T where
T = 1/f,. is the sampling period at the low rate. In addition, an integer
delay is introduced in the signal due to the delay of the low-pass
filter h (n) .

The structure in Fig. 1 can be analyzed in a straightforward manner.
Let X (Ow), V (0.9, W (Ow), Y (Ow), and H (el') be the Fourier transforms
of x (n) , v (n), w (n), y (n), and h (n) respectively. Then, the relationships

x(n)

f,

1:D
v(n) LPF

h(n)
u(n) w(n)

Df, Dfr Dfr

D:1

Fig. 1-Block diagram of the phase shifter.

y(n)

f,
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between them can be given as in Refs. 1 and 2:

V (ejw) = X (eiwn), (2)

W (Ow) = H (ejw)e-iwiV (0.)), (3)

and
1 D-1

y = E w(e-0./Dow/D). (4)
' D ,o

In eq. (4), the terms in the summation for m = 1, 2, , D - 1 corre-
spond to high -frequency components of W (Ow), which are aliased into
the low -frequency band from 0 to fr/2 due to the desampling process.
We assume that the low-pass filter H (Ow) attenuates these high -
frequency components to a point where such aliasing can be considered
negligible. That is, it has a stop -band cutoff frequency of 1/2D (normal-
ized to the high sampling rate Dff) and a stop -band ripple 88 that is
sufficiently small to prevent aliasing. With these assumptions, (4)

becomes
. 1ID)

Y (ex') W (e

and with the aid of (2) and (3) it can be written as

y(ow) c2-, mei.,,D),,,,Dv(e.,,,,D)

-h-- H (emp)e- .4" ID X (Ow).

(5)

(6)

We now assume that H (Ow) is a FIR filter with exactly linear phase
and has a unit sample response duration of N samples. Then, its
delay will be (N - 1)/2 samples at the high sampling rate. If it is
desired that this delay be an integer delay at the low sampling rate,
then N must be chosen such that (N - 1)/2 is an integer multiple of D.
That is,

N - 1 = ID,
2

(7)

where I is a positive integer and

N = 2ID ± 1. (8)

If the particular application does not require that the delay of the
filter appear as an integer delay at the low sampling rate, then condition
(8) is entirely optional and need not be used.

We now impose the constraint that the passband response of
H (Ow ID) have a gain of D and be essentially flat (i.e., have very small
passband ripples). Then the filter response of H (Ow ID) over the pass -
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band is approximately [assuming (8) applies]

I- I (eloD) De-(joD)RN-1)121

(/ De -fa.

Substituting (9) into (6) gives the final desired result :

Y (ejw) e- p-jwilDX (ea') -
or in terms of z -transforms

Y (z) iv z-rz-1
X (.0 -

Thus, the structure in Fig. 1 is essentially an all -pass network [over
the passband of H(elwo)] with a fixed integer delay of I samples due
to the processing delay of the low-pass filter h(n) and a variable
noninteger delay of 1/D samples. If N does not satisfy condition (8),
then I in eqs. (10) and (11) will not be an integer. In either case, the
output, y(n), in Fig. 1 is an approximation to x(n - l/D - I).

III. IMPLEMENTATION OF THE PHASE SHIFTER

The design of the phase shifter in Fig. 1 suggests a structure which
involves two different sampling rates. In this section, we show that
the actual implementation of the phase shifter can be achieved con-
siderably easier as a straightforward convolution at the low sampling
rate.

Since the duration of h(n) is N samples and D - 1 out of every D
samples of v(n) are zero valued, the filter h(n) spans approximately
N/D nonzero samples of v (n). More precisely, because of the constraint
imposed on N in (8), h(n) spans Q nonzero samples of v (n) for the
computation of some output points and Q - 1 nonzero samples of
v(n) for the computation of other output points [Q is defined in
eq. (13)]. To avoid this implementation difficulty, it is convenient to
consider instead a new filter h' (n.) whose length N' is

N' = QD > N, (12)

where h' (n) is obtained by extending h(n) with N' -N zero -valued
coefficients. Obviously, the filter h' (n) has the same exact frequency
response and delay as h (n), but it spans exactly Q nonzero samples of
v(n) [although one nonzero sample of v (n) may be multiplied by a
zero valued coefficient of h' (n)]. Since we wish to keep N' as small
as possible, consistent with (12) we can choose Q to be

[N
D] '
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where the brackets indicate that the number is rounded to the next
largest integer.

With these assumptions, we can now relate the output y(n) in Fig. 1
to x(n) and h' (n) by the expression'

Q-1
Y(n) = E hTkp + (-1) D]x(n - k), (14)

k=0

where ED corresponds to modulo addition. By letting

g z(k) = h'[kD + (-1) D] k = 0, 1, , Q - 1, (15)

(14) then becomes
Q-1

y(n) = E g z(k)x (n - k),
k=0

(16)

which is the form of a simple convolution. Therefore, the phase shifter
can be implemented by a Q point convolution of x(n) with g z(n), where
g 1(n) is an appropriate subset of the coefficients of h' (n). To obtain a
zero incremental phase shift, we use the coefficients go(0) = h' (0),
go(1) = h' (D), , g o(Q - 1) = h'[(Q - 1)D]}. To obtain a delay
of (1/D)T (or a phase shift of (.01/D), we use the coefficients
WO) = h'[(-l) D], g = h'[D + (-1) ED D], , g z(Q - 1)
= h'[(Q - 1)D + (-1) 63. D]). If we want a variable phase shifter,
we can store all D sets of coefficients and use the appropriate set as
suggested in Fig. 2.

x(n)
Q SAMPLE BUFFER

gl In)

v(n)

SELECTOR FOR
CHOOSING DESIRED
PHASE SHIFT

Fig. 2-A practical implementation of a variable phase shifter.
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V. CONCLUSIONS

We have presented a method for designing an incremental digital
phase shifter that can shift the phase of a waveform by a noninteger
number of samples. Conceptually, the process can be thought of as a
sample rate increase, a delay, and a sample rate decrease as indicated
in Fig. 1. Practically, it can be implemented as a straightforward
convolution as shown in Fig. 2. From the discussion of the theory,
it is also clear that the design trade-offs of the phase shifter are directly
related to the characteristics of the low-pass FIR filter. That is, the
passband ripples of H(ei") determine how close the phase shifter is to
an ideal all -pass network (over the passband), and the stop -band
ripples determine the amount of distortion due to aliasing. Finally,
the cutoff frequency of the filter determines the usable frequency
range of the phase shifter.
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