
THE BELL SYSTEM

TECHNICAL JOURNAL
DEVOTED TO THE SCIENTIFIC AND ENGINEERING

ASPECTS OF ELECTRICAL COMMUNICATION

Volume 55 December 1976 Number 10

Copyright 1976, American Telephone and Telegraph Company. Printed in U.S.A.

Steady -State Losses of Optical Fibers
and Fiber Resonators

By D. MARCUSE
(Manuscript received May 24, 1976)

We study the steady-state loss of a fiber with random, nearest -neighbor
coupling and compare it with the mode with the lowest loss of a cavity
formed from a section of the same type of fiber. We find that the loss of
the cavity is not identical with the loss of the steady-state distribution of
the fiber with random coupling. In fact, fiber and fiber resonator behave
very differently if the fiber mode of highest order is made very lossy. The
loss of the steady-state distribution of the fiber with random, nearest -
neighbor coupling approaches a weighted average of the losses of its in-
dividual modes plus a contribution from the coupling coefficient that couples
the highest -order mode to its neighbors. The cavity loss, on the other hand,
becomes independent of the coupling coefficients and of the loss of the
highest -order mode, provided this loss becomes much higher than the coupl-
ing strength. This behavior leads us to conclude that the loss of the cavity is
a weighted average of the losses of all those modes whose coupling strength
exceeds their (individual, uncoupled) loss coefficients. Two resonator modes
with propagation constants 01 and $2 remain uncoupled unless they satisfy
the condition 131 - 132 = 27n/ L, where n is an integer and L is twice the
length of the resonator.

I. INTRODUCTION

We consider a multimode optical fiber with random imperfections.
It is well-known that any type of imperfection built into a fiber causes
coupling among its guided modes.1-3 In a long fiber, the distribution
of average power versus mode label approaches a steady state that
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can be described by a steady-state loss coefficient and a unique distri-
bution function.'

Now assume that we take a section of this fiber, place reflectors
at either end, and observe the steady-state power distribution of this
cavity. Without giving the matter much thought, we might expect
the steady-state power distribution of the resonator to be identical
to the steady-state power distribution of the long fiber. However, this
is not the case. Mode coupling in a resonator has a very different
effect on the steady-state power distribution and its loss coefficient
than coupling in a long fiber. The reason for this difference in behavior
is the fact that the wave traveling back and forth in the resonator
experiences a periodic structure whose Fourier transform has a line
spectrum. In a resonator of length L/2, two modes with propagation
constants #1 and #2 are effectively coupled only if they satisfy the
condition ,31 - /32 = an-n/L, where n is an integer. The losses and
steady-state power distribution of the long fiber and the corresponding
fiber resonator are very different. It is the purpose of this paper to
clarify these differences.

We dramatize the difference of the fiber and the resonator by con-
sidering a fiber supporting only two guided modes. Furthermore, we
assume that one of the two modes is relatively very lossy (in the
absence of coupling), while the other mode has either no loss at all or
very much lower loss. In a long fiber, the loss of the steady-state
power distribution turns out to be the sum of the loss coefficient of
the (uncoupled) low -loss mode plus the power -coupling coefficient of
the two modes. This result is intuitively pleasing. It says that there
are two independent loss mechanisms that reinforce each other
additively-the loss of the first mode (in the absence of coupling to its
high -loss companion) and the coupling of the low -loss mode to the
high -loss mode. Since the high -loss mode carries practically no power,
coupling of power to this mode appears directly as a loss coefficient.

Naively, it should be expected that the same behavior occurs in the
fiber cavity. However, this is not true. In the resonator, the loss of
the resonant field distribution is identical to the loss of the low -loss
mode alone. Coupling between the two modes has no influence on the
loss of the resonator, provided that the loss of the second mode is very
high compared to the coupling coefficient. It is hard to understand
this situation intuitively. In the periodic structure (the resonator),
the field apparently manages to shape itself in such a way that it
avoids carrying power in those regions that provide high loss. Since
the structure is periodic, the field passes over the same region again
and again, adjusting itself to the unfavorable loss situation. In the
long fiber with random coupling, no such adjustment is possible. The
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field does not have the chance to establish a normal mode and is
confronted with a new, random -coupling situation in each section of
the fiber. In this case, coupling to the high -loss mode simply subtracts
power from the low -loss mode that is irretrievably lost.

The results presented in this paper are needed for the discussion of
scattering losses in a fiber laser that is the subject of Ref. 4.

II. TWO -MODE CASE

For a fiber supporting only two modes, the problem can be solved
easily. We describe each mode by its amplitude coefficient al and a2.
The interaction of the two modes is described by the familiar coupled -
wave equations' (self -coupling coefficients only modify the real parts
of the propagation constants and are therefore omitted),

dal
dz = K12a2 (1)

da2
dz = -7:72a2

Knai. (2)

The complex propagation constants 71,2 contain the loss coefficients
«1,2 of each mode in the absence of coupling,

= f3 - la. n = 1, 2. (3)

The coupling coefficients obey the symmetry relations

K21 = -K12. (4)

It is convenient to express the z -dependence of K12 explicitly (k is
real),

1(12 = ikf(z). (5)

To first -order perturbation theory, it is only the Fourier com-
ponent of f (z) at the spatial frequency 0 = Q1 - /32 that contributes
to coupling between the modes.' This allows us to write (1) and (2) as

dal
dz
-= -i-yal ikba2e-i(01-02) (6)

da2
dz-= -7:72a2 ikbalejoi-o2).

We have assumed that

f(z) = E 2b, cos 0,z,
v=1

27
ivy =

L
- v

(7)

(8)

with real values of by, and have included in (6) and (7) only the terms
in (8) that contribute to mode coupling, dropping the index on by.
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We introduce new variables A1 and A2 by the definitions

a1(z) = A i(z)e-ii(th-tioz
and

a2(z) = A2(z)eii621-432).,

and obtain, by substitution into (6) and (7),

dAl = -iblAi + icA2
dz

and

with

and

dA2 = -i(52A2 + icAl,
dz

On = i(131 + 132) - ian

c = kb.

n= 1,2

Equations (11) and (12) represent two modes coupled by a constant -
coupling coefficient. These equations are not exact representations
of the starting equations (1) and (2), but they are good approxi-
mations. Comparison has been made of the results of this theory
with the result of an exact theory of a two -mode model using a straight
fiber with discrete offsets alternating periodically in opposite directions.
The exact theory agrees with the approximation presented here, pro-
vided that the differential loss of the modes is small,

L4 , (15)

and that the following condition holds to an accuracy on the order of

lai -«21:
2r

n/1 - 1 L32 = - , (16)

with n indicating an integer. If (16) cannot be satisfied for any integer
n, the two modes remain effectively uncoupled. Our derivation makes
it clear that the coupling process is periodic with a period

L = n 2r (17)

A periodic structure of this type can be used to represent a resonant
cavity. It is only necessary to envision the field traveling back and
forth in the resonator; when we unfold the resonator of length L/2,
the periodic structure results.

We now consider the normal modes of the coupled -equation system
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(11) and (12) by asking for solutions of the type

An = Bne- (in) (01-1-02)ze-etz n = 1, 2, (18)

with constant coefficients B1 and B2. Substitution of (18) into (11)
and (12) results in the equation system

(0- - «OBI + icB2 = 0 (19)
and

icB1 + (a - a2)B2 = 0. (20)

The requirement that the determinant of the equation system (19)
and (20) must vanish leads to the determination of the two eigenvalues,

and
a (I) 1- ..._ 1 ( ai + a2) 1..11- y N a2 - al)2 - 4c2 (21)

a (2) = Eal + a2) + 14(a2 - al)2 - 4c2. (22)

The amplitude coefficients can be expressed as
,r(k) - ",

Br) = i - --1
c

Bit) k = 1, 2. (23)

The actual field amplitudes may now be expressed as a superposition
of the two normal modes of the coupled system. Only the normal mode
with the lower loss survives for z --+ 00 so that the steady-state loss of
the resonator is given by the eigenvalue (21).

It is interesting to distinguish two cases. For strong coupling,
c >> I a2 - al 1 , we have, from (21),

Re (.(1)) = Eal + a2) (24)

For weak coupling, c << 1a2 - an I , we have, instead,

0-(1) frz.1 al +
C2

a2 - al
(25)

Next we consider the long fiber with two randomly coupled modes.
It is possible to derive the solution for this case directly from the
coupled wave equations (1) and (2). However, the same result is
obtained from the corresponding coupled power equations8'7'8
(P n = (la,,12)),

dP 1 = -2(2(1P 1 + h(P2 - P1) (26)
dz

and
dP2 = -2a2P2 + h(P1 -P 2) 
dz

The power coupling coefficient is'

h = 1t2 (I F (0) 12), (28)

(27)
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with the Fourier transform of f(z) defined as3

F(0) = foL f(z)eiszdz (L. (29)

The coefficient b is defined by (8) and (14) and L is the length of the
periodic structure or twice the length of the resonator. According to
(14), (28), and (29), the coupling coefficients c and h are thus related as

h = c2L. (30)

A steady-state solution for the long fiber with random coupling is
again obtained with the help of the trial solution,

p. = ne-2pz.

We find, from (26) and (27),

pa> = 1(al h) - J(a2 - air + 1.0
and

(31)

(32)

P(2) = + a3 h) - «1)2 + h2. (33)

The smaller eigenvalue is the steady-state loss coefficient.' In the case
of strong coupling, h>> I a2 - ail, we have, from (32),

-
p (1)

(a2
4h

«02
(al + «2) (34)

while we obtain, in the case of weak coupling, h << I a2 - aii,

h2pa) .7,, + 1.11
4(a2 - al)

(35)

The power coefficients are related in the following way :

h - 2p(i) + 2a,
Q2 - Ql (36)

h

III. DISCUSSION OF THE TWO -MODE CASE

We are now ready to compare the steady-state losses of the long
fiber and the fiber resonator. In case of strong coupling, we have
approximately

cro) = i (al + a2)
for the resonator and

(37a)

P(1) = -}(al + «2) (37b)

for the long fiber. Strong coupling ties the two modes together so
effectively that the steady-state losses are equal to the average losses
of the uncoupled modes in either case. From (21) and (23), we find
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B2 = B1 and from (36) Q2 = Q1 if the coupling coefficients are very
much larger than the loss coefficients. We thus see that both modes
carry equal amounts of power in the strong coupling case. There is no
difference in loss behavior between the resonator and long fiber if the
coupling is strong.

The situation changes for weak coupling. From (25), we have in the
limit c2/a2 -4 0 for the resonator

c") = al,

while (35) yields for the long fiber

P(1) = al + ih.

(38)

(39)

In the resonator, coupling to a relatively lossy mode has no effect on
the loss of the steady-state field distribution. The solution of the
exactly solvable model shows that this is true even if (15) and (16)
are not satisfied. The resonator loss becomes equal to the loss of the
low -loss mode as though coupling were absent. In the fiber with random
coupling, (39) shows that the steady-state loss is equal to the sum of
the inherent loss of the low -loss mode plus half the power coupling
coefficient. Coupling to the high -loss mode thus expresses itself directly
as a loss factor. The power ratios of the two modes are also of interest.
From (23), (25), and (30), we find for the weak coupling (or high -loss)
resonator case

B2I2 4
(40)4(a2 - al) (a2 - ai)LB1

For the randomly coupled fiber we obtain, from (35) and (36),

Q2__ (41)
Qi 4(a2 - al)

IV. THE MULTIMODE CASE

We have seen in the section on the two -mode case that we may
consider coupled wave equations with constant coupling coefficients
if we suitably redefine the mode amplitudes. In addition, we shall
assume that only modes that are nearest neighbors are coupled in the
resonator or long fiber. This assumption is justified by the observation
that the Fourier components of the coupling function f(z) tend to
drop off very rapidly with increasing spatial frequencies so that
coupling of modes that are not nearest neighbors (such coupling is
caused by Fourier components with higher spatial frequencies) is

much weaker than nearest -neighbor coupling. In addition only modes
satisfying (16) are coupled to each other. Consider the coupled equa-
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tion system,

dA, Aiv A r, A

= -17,ri, -r- K,,,,-izi,-1 + n.,,,±1.11,4.1 v = 1, 2, , N. (42)
dz

We have shown for the two -mode case that we may assume the real
parts of all ,y,s are identical,

Ty = # - lap. (43)

A normal mode solution of (42) is obtained with the help of the trial
solution,

A, = B,e-oze-°Z. (44)

Substitution of (44) into (42) results in a homogeneous algebraic
equation system whose determinant must vanish. For N = 6, the
determinantal equation assumes the form

al -a -K1 0 0 0 0
K1 a2 - a -K2 0 0 0

0
0

K2
0

a3 -a
K3

-K3
«4 -a

0
-K4

0

0
= 0. (45)

0 0 0 K4 a5 - a -K5
0 0 0 0 K5 126 -a

For strong coupling with K,>> a, ; v, ii = 1, 2,  , 5 but a6 >> a, and
a8 >> K,,, the smallest real root of this equation may be approxi-
mated by

ailf3KI + a2KIKI + oe5MKR + KUC§Kg/(a6 - al)a - (46)
K3KI + KlKi + MI

.

We have assumed that the guided mode of highest order, v = 6 in
this case, is coupled very strongly to the radiation modes so that its
loss coefficient is much larger than that of all the other guided modes
and also larger than the coupling coefficients among the guided modes.
This assumption is usually made in the analysis of fibers with many
coupled guided modes.3 For the special case K1 = K2 =  K5

= const., (46) simplifies to

K2
a = t(ai + a3 + as) + 3(a6 - al)

For weak coupling, K, << am, we have the approximation

a = a, ± K21

a2 - al

(47)

(48)

Here we assumed that al < a2 <  a6, in this case, (48) represents
the smallest solution of (45).
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The corresponding coupled power equations may be expressed in
the form

dP, = - (2a, + h,_1 hOP, 141:),1-1.dz

The trial solution
=

leads to the algebraic equation system

(2a, + h,_1 h, - 2a)(2, - hy-1(2,-1 - hvQ,4-1 = 0. (51)

The eigenvalue a is obtained as the solution of a determinantal equa-
tion which, for six modes, assumes the form

(49)

(50)

-ht 0 0 0 0
-hi (2a2-f-hs-Fhi-2a) -ht 0 0 0

0

0
(2as-Fh3-1-112-2a) 0 0

0 -ha (2a4-Fhal-hs-2a) -ha 0
=0. (52)

0 0 0 -ha (2aa-Fhai-h4-2a) -ha
0 0 0 0 -ha (2aa-Fha- 2a)

For strong coupling (in the sense used in the cavity case), we obtain
the following approximation from (52) in the special case h, = h
= const.,

1 h h2a= (5a1 4a2 3a3 2a4 a5' .g) 60a6
(53)

For weak coupling we find

= al + 2h1. (54)

V. DISCUSSION OF THE MULTIMODE CASE

If we consider that the losses a, are caused by random coupling
between guided modes and radiation modes, we may assume the
following dependence9m on the mode label v :

= «0,2. (55)

If the Fourier amplitudes b, in (8) were independent of the spatial
frequency, we would have3

K, = K1 v2 and h, = hlv4. (56)

However, the assumption of nearest -neighbor coupling becomes
questionable in this case. It is natural to consider the case

= K1 = const. and h, = h1 = const., (57)

and in our discussion of numerical examples we also include the case
of decreasing coupling strength between neighboring modes of higher
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order,
K1 hi

Ky = and hy = -
I, v2

(58)

Numerical solutions of the eigenvalue equations (45) and (52) were
obtained by computer. The relation between the coupling coefficients

K, and h, is given by (30) :
h, = LK!, (59)

but for the purpose of comparing the long fiber with the fiber resonator
it seems more realistic to choose instead

K1 = 1h1, (60)

because this choice yields the same ratios of coupling coefficients to
attenuation coefficient for mode 1 and mode 2 according to (45)

and (52).
Table I lists numerical values of the lowest eigenvalues of (45)

and (52). It was found that, for strong coupling with K, = const.,
the lowest eigenvalue of (45) is of the form

a = a,. ± iai. (61)

The imaginary part of this expression is simply a correction to the
propagation constant of the normal mode solution, while the real part
has the meaning of the loss of the normal mode of the cavity. However,
since the solutions of the cavity loss coefficients are not real, our
approximate solution (46) does not apply because the approximation
(46) yields the smallest real eigenvalue of (45).

Table I shows that (with two exceptions) the cavity losses are
generally lower than the losses of the corresponding fiber with random
coupling. This fact is in agreement with the two -mode case. Further-
more, the numbers in the table show that an increase of the loss of
mode 6 increases the steady-state loss of the fiber with random mode
coupling while it decreases the loss of the fiber cavity. This behavior
is in qualitative agreement with approximate formulas (47) and (53).
In addition to the exact solutions of eigenvalue equations (45) and
(52), Table I also contains entries for the approximate solutions
obtained from one of the appropriate formulas (46), (47), (48), (53),
or (54). In comparing the approximate and exact solutions for the
cavity, we must remember that approximations (46) and (47) do not
necessarily yield the eigenvalue with the lowest numerical value.

In fact, only for the case K, = K1 v2 and for small values of
K, = K1 << ce,, do the approximations apply to the solution with the
lowest loss. However, comparison of the exact and approximate values

in Table I makes it apparent that the approximation provides a
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Table I - Loss values of the cavity mode with lowest loss and
steady-state loss of the corresponding fiber with random

coupling. Exact solutions of eigenvalue equations (45)
and (52) are compared with approximate solutions

h, K.

K1,2

hi/v Ki/v

hi

h1

K

K1

hi

hi .

hi

Ki

K1

K1

hi K1

XK1

10-6

10-6

10-7

10-6

jo-6

10-1

10-3

10-2

026

as

Exact Approximate

Cavity Fiber Cavity Fiber

al67
as107

4.481 X 10-5
1.923 X 10-6

8.626 X 10-6
1.022 X 10-5 1.95 X 10-6

a6103 3.223 X 10-6 3.129 X 10-6 1.77 X 10-5

«5103 1.003 X 10-5 1.097 X 10-6 1.00 X 10-6 1.10 X 10-6

cull), 1.361 X 10-6 1.758 X 10-6 1.00 X 10-6 2.00 X 10-6

a167
a5106

6.383 X 10-6
6.415 X 10-6

4.321 X 10-6
9.322 X 10-6 1.17 X 10-5 7.67 X 10-5

a6106 1.015 X 10-5 1.347 X 10-6 1.17 X 10-6 1.37 X 10-6

a6106 1.017 X 10-5 8.681 X 10-5 1.17 X 10-5 7.37 X 10-5

a6106
«5107

1.050 X 10-5
2.931 X 10-4

8.159 X 10-4
7.112 X 10-4

1.30 X 10-5 6.73 X 10-4

Note: a, = aiv2, al = 10-6/X, K1 = MI, and v 0 6.

reasonable order -of -magnitude estimate of the loss values of the cavity
modes and gives at least an upper bound to the exact values.

The approximate solutions for the fiber case with randomly coupled
modes do apply to the solution with the lowest loss. Comparison of
the exact and approximate values in Table I show that the approxi-
mations (53) and (54) are not very precise but again may be regarded
as order -of -magnitude estimates.

Table II shows the complete solution of the eigenvalue equation
(45) for the fiber cavity for a typical case : K, = K1 = 10-4/X, al
= 10-6/X, a, = «iv', «6 = «5103. As in all cases with K, = K1 >> otA,

Table II -Complete solution of eigenvalue equation of the fiber
cavity (45) for a particular case and comparison of the

exact solution to approximation (47)

a aPP,

1 1.018 X 10-6 1.726 X 10-4
2 1.018 X 10-6 -1.726 X 10-4
3 1.162 X 10-6 1.001 X 10-4
4 1.162 X 10-6 -1.001 X 10-4
5 1.180 X 10-6 0.0 1.180 X 10-6
6 2.500 X 10-2 0.0

Note: K, = K1 = 10-4/A, a, = aiv2, ai = 10-3/X, and a6 = a6103 = 2.5 X 10-3.
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1 2

p

Fig. 1-Normalized power versus mode number distribution for the case of a
fiber with random coupling (solid line) and the lowest loss mode of the fiber cavity
(dotted line). K, = Kip', h, = hiv4, K1 = 0.5h1 = 10-5/X, a, = aiv2 with al = 10-6/X,
a6 = 1000a5.

µ < 6, there are two sets of complex, conjugate solutions and two
single, real solutions. Approximation (47) yields the smallest of the
real solutions to a remarkable accuracy.

It is interesting to compare the distribution of power versus mode
number for the cavity and fiber cases. Figure 1 (and all subsequent
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figures) shows the normalized power P, as a function of the mode
label v. For Fig. 1 we used K = K1,2 for the fiber cavity and h = 1110
for the fiber with random -mode coupling with K1 = h1/2 = 10-5/X.
This and all the other figures were computed with a = 10-60/X, for

= 1, 2, , 5. In Fig. 1 we assumed «6 = «5103. Even though the
coupling strength is increasing for nearest neighbors with increasing
mode number, mode 1 carries by far the most power. Of course, we
have only plotted the power distribution for the mode with the lowest
loss. In the cavity case, there are solutions with the maximum power
in any one of the six modes. The coupled power problem of the fiber
with random coupling also has six different solutions. However, only
the solutions with the lowest loss value have physical significance' as
the steady-state power distribution. This solution is shown in Fig. 1
and the subsequent figures.

Figure 2 was drawn for almost the same condition as Fig. 1, except
that we used the law a,, = al v2 for all six values of P. This has the
consequence that the loss of the mode of highest order, v = 6, is now
much lower than in Fig. 1 so that more power is carried by the higher -
order modes.

0.6

0.5

0.4

0.3

0.2

0.1

2 3 4

Fig. 2-Same as Fig. 1 but with a6 = «162.

5 6

STEADY-STATE LOSSES OF OPTICAL FIBERS 1457



0.6

0.5

0.4

0.1

Aa, = v210-6

/FIBER Kv = K /v

h, = hi /v2
CAVITY

a6 = 1000cr5

Ki = hi /2 = 10-5A

Fig. 3-Same as Fig. 1 but with K, = Ki/v.

Figure 3 applies to the case K, = K1/ v, h, = hi/ v2, with K1 = h1/2
= 10-5/X. Contrary to the cases in Figs. 1 and 2, the coupling strength
is now decreasing with increasing mode number. It is interesting to
observe that the cavity as well as the fiber with random coupling
now carries more power in modes 2 and 3. The cavity solution with
the least loss now has higher loss than in the case in Fig. 1 (see Table
I). The loss of the steady-state power distribution of the fiber is,
however, reduced compared to the case in Fig. 1 (again see Table I).

The remaining Figs. 4 through 7 describe the case of constant
coupling, K, = K1 with different values of K1 and a6. We see that
for very weak coupling most power resides in the modes with the
lowest loss, v = 1. As the coupling strength is increased, more power
is carried in higher -order modes. If we did not insist on making the
last mode (v = 6) very lossy, there would be equal power in all the
modes of the fiber with random coupling. It is interesting to observe
that there is a saturation effect ; comparison of Figs. 6 and 7 shows that
the power distribution remains unchanged for a further increase of
the coupling strength. Another interesting phenomenon is the different
shape of the power distribution for the cavity mode with the lowest
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loss and the steady-state power distribution in the fiber with random
coupling. Naively, one may have expected that the steady-state power
distribution of the fiber would also apply to the cavity case. Figures 5
through 7 show that this is not the case. In spite of the fact that the
cavity carries more power in the higher -order modes, Table I shows
that the cavity losses are generally lower than the fiber losses. The
cavity loss becomes high only when the highest -order mode has
relatively low loss.

a.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 4-Same as Fig. 1 but with K. = K1, h, = h1, K1 = 0.5h1 = 10-6/X.
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0.6

0.5

0.4

a, 0.3

0.2

0.1

1 2 3 4 5 6

V

Fig. 5-Same as Fig. 4 but with K1 = 0.51z" = 10-6/X. These curves are practically
independent of the loss value of ag; the curves for a6 = 36a1 and a6 = 1000a5 are
indistinguishable on the scale of this figure.

VI. CONCLUSIONS

We have compared the losses and power distribution of a fiber
with random coupling and of a cavity made of a section of the same
fiber. We have shown that these two systems behave quite differently.
While the losses of the fiber increase with an increase of the loss of the
highest -order mode, the cavity losses decrease as the loss of the highest -
order mode approaches infinity. This behavior has been studied with
the help of exact numerical solutions of the eigenvalue equations of
these systems for six modes and is also apparent from approximate
solutions.

We may generalize our results for the fiber cavity as follows. We
have seen that the losses of the solution with the lowest eigenvalue
are higher than the loss of the lowest -order (uncoupled) mode. The
approximate formula (46) or (47) shows that the cavity loss is an
average of the losses of the individual, uncoupled modes. However,
the last mode, v = 6 in our examples, did not participate in this
average since its loss far exceeded the coupling strength. This behavior
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leads us to conclude that the cavity losses are the average of the mode
losses of all those modes whose (uncoupled) loss values are less than
the coupling strength of neighboring modes. Modes whose losses
exceed the coupling strength do not contribute appreciably to the
cavity loss.

We have also indicated that two modes are coupled only if their
propagation constants satisfy relation (16). The likelihood that this
happens increases with increasing resonator length. In very short
resonators, most modes remain effectively uncoupled just because
they fail to satisfy condition (16). In long resonators, more modes
have a chance to satisfy the additional coupling condition (16), but
even here effective coupling ceases for modes whose losses exceed the
coupling strength.
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We present an approximate theory of loss coefficients for modes of step -
index fibers with various types of distortions and for fibers with lossy
claddings. The fiber irregularities are assumed to be sinusoidal and random
variations of the core -cladding interface. Formulas for the loss coefficients
are presented and plotted for different values of the compound mode number
M. For fiber lasers, we plot the loss coefficients as functions of the mirror
tilt angles.

We consider as an example a Nd-Y AG fiber laser with refractive index
n1 = 1.8 and a core radius of a = 40 Am operating at a wavelength of
X = 1.06 Am. For this example, we find that radiation losses are caused
by Fourier components of fiber irregularities in the spatial wavelength
range between 0.4 and 1.3 Am. Intrinsic losses may be as low as 2« = 10--3
cm-'. It is thus desirable to limit scattering losses to values below 10-3
cm-'. This requirement imposes tolerance restrictions of 0.01 ALM on the
permissible core radius fluctuations. For core radius fluctuations of this
order of magnitude, mirror tilts should not exceed approximately 5 degrees.
Cladding losses are not critical, but their influence on laser losses depends
on the refractive index ratio of the core and cladding materials. Tolerable
cladding losses may range from 10 to 300 cm -1.

I. INTRODUCTION

A cavity laser consists of an active medium that provides the re-
quired gain and a (usually open) external cavity furnishing the feed-
back for laser operation. A fiber laser also has gain and feedback, but
instead of using the resonant modes of an open cavity it employs an
optical fiber for guiding the radiation back and forth between the
set of mirrors forming the cavity.1.2 A fiber laser thus might be much
narrower than a cavity laser since it need not allow space for the
diffraction -limited beam to spread out in transverse direction. The
width of the fiber laser is limited only by the loss of the fiber waveguide,
which increases with decreasing fiber diameter.
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In this paper we calculate the mode losses of step -index fibers and
use them to estimate the losses of fiber lasers. The losses are caused
by scattering from the rough fiber wall and by the presence of a lossy
cladding. Figure 1 shows a schematic of the fiber laser. We assume
that plane mirrors are placed at the end of the fiber that also contains
the gain mechanism for the laser. Figure la shows a fiber laser with
plane mirrors positioned exactly perpendicular to the fiber axis,
whereas Fig. lb shows a laser with slightly tilted mirrors so that the
wave inside the fiber, indicated schematically by a light ray, interacts
more strongly with the fiber wall. For simplicity, we assume that the
mirrors and the medium inside the fiber do not cause scattering and
that only the fiber walls are slightly rough. We also assume that the
fiber is surrounded by a lossy cladding that causes power loss via the
evanescent field tail of the guided wave penetrating into the cladding.
However, we consider these various loss mechanisms separately, one
at a time.

It is important to realize that wall roughness or other geometrical
imperfections of the fiber geometry or inhomogeneities in the fiber
material do not necessarily cause resonator losses. The electromagnetic
field inside the cavity adjusts itself to any geometry and forms a
normal mode. This normal mode of the cavity can be described as a
superposition of coupled modes of the perfect waveguide. Henceforth,
we shall refer to modes of the perfect structure as ideal modes or as
perfect modes. The fiber imperfections provide the mechanism that

MIRROR

CLADDING n2

all

44

2a
I

CORE
ni

-L

(a)
n2

-....1

-..0

CLADDING n2

MIRROR

e

CORE

e

n1

(b)

Fig. 1-Schematic of the fiber laser with (a) perpendicular mirrors and (b) tilted
mirrors.
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couples the perfect modes together. Coupling among the guided modes
does not introduce losses by itself. However, the perfect modes of the
fiber suffer losses individually (in the absence of coupling). These
losses are either caused by dissipative mechanisms in the fiber core or
in its cladding, or they may be caused by fiber imperfections on a scale
different from those that couple the guided modes. We may assume
that imperfections with Fourier components of high spatial frequencies
couple each ideal fiber mode to the radiation field outside the fiber
and act as a loss mechanism. In addition, there will probably be im-
perfections with large amplitudes but with low spatial frequencies
that couple the ideal modes to each other.

In a companion paper' we discuss the influence of mode coupling
on the losses of the normal modes of the fiber cavity. We found that
coupling among these modes increases the cavity losses compared to
the losses of the lowest -order ideal fiber mode because neighboring
modes with higher losses take part in the superposition field that
forms the cavity mode. We also found that strongly coupled modes
result in a normal mode of the cavity whose loss is an average of the
losses of the participating coupled modes. However, not all the ideal
modes of the fiber take part in forming the normal mode of the fiber
cavity. Modes whose individual losses (radiation losses as well as
dissipation losses) are relatively higher than the coupling strength to
neighboring guided modes do not take part in the loss -averaging
process. Since the losses of the ideal fiber modes tend to increase
in proportion to the square of their (compound) mode number, modes
of high order are, of necessity, much lossier than modes of low order.
On the other hand, it is expected that the coupling strength of neigh-
boring guided modes decreases with mode number. Consequently,
only modes with relatively low mode numbers participate in forming
the normal modes of the cavity.

This theoretical expectation is confirmed by observation of laser
radiation.2 In fibers supporting a very large number of guided modes,
only the modes of low order are excited as laser modes. Laser modes
are identical with the normal modes of the resonant fiber cavity. It
is thus clear that the loss of the normal mode of the laser (or fiber
cavity) is an average value of the losses of the ideal modes that take
part in forming the normal mode of the cavity. If only a very few
fiber modes are taking part in forming the lasing mode, the loss (in
the absence of pumping) of this cavity mode is simply the average
loss of the few fiber modes that are effectively coupled to each other.
In the presence of coupling among the guided modes, the loss of the
resulting laser mode is thus somewhat higher than the loss coefficient
of the fiber mode of lowest order, but mode coupling, even if strong
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for the lowest -order fiber mode and its neighbor, does not increase the
loss of the laser mode dramatically. The example studied in Ref. 3
suggests that the loss of the laser mode may be at most an order of
magnitude higher than the loss of the fiber mode of lowest order. We
found, furthermore, that two modes with propagation constants 131
and /32 can couple effectively only if the relation )31 - ,32 = 2n7r/L
holds to an accuracy on the order of I al - a2 I , where a indicates the
loss coefficient, n is an integer, and L/2 is the resonator length.

So far, we have assumed that the mirrors at the end of the fiber
resonator are perfectly perpendicular to the fiber axis. Mirror tilt
can be taken into account in the following way. Consider a light ray
that propagates parallel to the fiber axis and strikes the tilted mirror
of the resonator. After reflection, the ray impinges on the fiber wall
at an angle that is twice the angle of the mirror tilt. Because scattering
losses are proportional to the square of the angle between the incident
ray and the fiber wall, it is clear that this ray, which originally traveled
parallel to the fiber axis, suffers relatively high scattering loss. On the
other hand, a ray that strikes the tilted mirror at normal incidence
will strike the fiber wall at the mirror tilt angle shown in Fig. lb.
Such a ray suffers less scattering loss. In fact, it would appear that
the mirror tilt angle is the minimum angle at which rays passing back
and forth through the cavity may strike the fiber wall. It is not
obvious that there should be a ray path that closes on itself and still
impinges at the tilted mirror at normal incidence. But the normal
mode of a resonator has the tendency to minimize its losses. It will
thus be composed of rays that make the lowest possible angle with
the rough fiber walls. Consequently, we shall assume that the field
in the resonator strikes the fiber wall at the mirror tilt angle. Instead
of computing mode losses, we use the scattering losses of waves im-
pinging on the rough dielectric interface at the mirror tilt angle to cal-
culate the loss of a cavity with tilted mirrors. If both mirrors are tilted
differently, the larger of the two angles should be used.

We limit our discussion to fibers whose diameter is much larger
than the wavelength of the radiation inside the fiber core. This assump-
tion permits us to use a pseudo -plane -wave analysis. For simplicity,
it is furthermore assumed that the refractive index difference between
core and cladding material is so slight that reflectivity differences
caused by polarization can be ignored; TE and TM modes thus have
the same losses. When we violate this assumption in some of our ex-
amples, it should be remembered that our loss values apply to TE

polarization.
Several types of wall roughness will be considered. The simplest

imperfection is a sinusoidal variation of the fiber radius. A more com-
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plicated wall distortion preserves the circular shape of the fiber but
allows the diameter to vary randomly as a function of the longitudinal
z coordinate. Finally, we consider a type of wall roughness that assumes
that the Fourier spectrum of the wall distortion function is constant
over all spatial frequencies of interest and that variations occur in
both dimensions on the fiber surface with certain short correlation
lengths. Scattering losses are expressed as functions of the amplitudes
of the sinusoidal distortion or the variance and correlation lengths of
the random distortion functions. Mode losses in the fiber and losses
in the fiber cavity with tilted mirrors are considered for the case of

scattering losses and the case of losses introduced by the lossy cladding.
We find that cladding losses do not have a large influence on the

wave loss in the fiber core, but scattering losses can be very serious if
the amplitude of the wall roughness approaches the wavelength of
the radiation.

Spherically curved mirrors could reduce the losses of fiber lasers
with larger diameter if they reduce the field intensity at the fiber wall.
However, this loss reduction would work only for perfectly straight
fibers with perpendicular mirrors and very large radii. Our estimates
of fiber losses associated with tilted plane mirrors are equally valid
for fiber cavities with tilted curved mirrors if the tilt angle is large
enough. For straight fibers with perpendicular but curved mirrors,

limit. It should also be
clear that mirror tilt can be translated into an abrupt tilt of the fiber

axis.
The analysis presented in this paper was performed to provide

insight into the tolerance requirements of Nd-YAG fiber lasers.2 Our
numerical examples are thus geared to the parameters of this laser.
The intrinsic losses of the fiber laser are on the order of 10-3 cm-' so
that additional losses caused by fiber irregularities or a lossy cladding
should remain below this value.

Exact loss formulas may be expressed in terms of Bessel functions

so that their numerical evaluation becomes tedious. For this reason,
we are here deriving simplified formulas that allow reasonable order -
of -magnitude estimates to be readily calculated with the help of a
simple pocket calculator. Such handy approximations are often more
useful than the formidable exact formulas and serve the purpose of

providing insight into the relevant variables of the problem. All our
loss formulas are immediately applicable to optical fibers that support
many modes. Their application to the fiber laser is straightforward if
we can be sure that there is no additional fiber irregularity with low
spatial frequency coupling the guided modes among each other.
However, even if mode coupling exists, it is known from theoretical3
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and experimental2 evidence that only modes of very low order par-
ticipate in the lasing process. This information allows us to use the
fiber loss results for the laser if we keep in mind that the loss predic-
tion of the fiber mode of lowest order may somewhat underestimate
the laser losses. For this reason, we base our discussion of laser losses
on the mode with compound mode number M = 5. This loss estimate
for the laser may, in fact, be pessimistic, but it provides the correct
order of magnitude of the loss coefficient that may be used to derive
tolerance requirements for the fiber laser.

II. PLANE WAVE SCATTERING AT A PLANE INTERFACE

We base our loss analysis on the results of plane wave scattering at
the rough planar interface between two dielectric media, as sketched
in Fig. 2. Our analysis uses the theory of coupled modes. In this anal-
ysis, the incident plane wave is coupled to the continuum of modes of
a medium that is divided into two half -spaces with a plane interface.
The coupled mode theory is described in Ref. 4.

To first -order perturbation theory, the scattered power is com-
puted as follows. First, we determine the amplitudes c1(a., ay) of the
continuum modes that are excited by the incident plane wave inter-
acting with the rough interface

Ci (az, crv) =
i 412 La

dy i Ki.if(y, z)dz, (1)
1-(412) 0

where the continuous variables az and ay label the continuum modes,
K,, is the coupling coefficient between incident wave and continuum
modes, and /3i and IL, are the propagation constants (z components of
the propagation vectors) of incident and scattered (continuum) waves.

SCATTERED RAY
n2

ni

SCATTERED
RAY

INCIDENT RAY REFLECTED RAY

INTERFACE

/

Fig. 2-Plane wave scattering at a plane, rough interface between two dielectric
media with refractive indices ni and ny. The y axis is directed perpendicular to the
plane of the figure.
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It is assumed that the rough surface with distortion function f(y, z)
extends only over an area LyLz in the y and z directions while the
remainder of the infinite interface is perfectly flat. The coupling co-
efficient is defined as4

K" = w!° (n? - ni)E8L.ayi*Eil".
1P

(2)

In this formula, w designates the angular frequency of the light waves,
0 is the dielectric permittivity, E2 is the electric vector of the incident
and specularly reflected and transmitted waves of the perfect interface,
while indicates the electric field vector of the continuum mode.
Label j designates the different types of continuum modes whose field
expressions are given in the appendix and P in (2) is a power nor-
malizing factor. The scattered power can now be calculated with the
help of the formula4

P SC =PEffiCi(Crr) tTy) 12dorxday. (3)

The summation extends over the different types of continuum modes,
while the integration over the area S in the space az, av extends only
over propagating continuum modes.

With the help of the mode fields listed in the appendix, we derive
the following expressions for the scattered power. For a sinusoidal
corrugation of the surface

we find
f(y, z) = b sin Oz,

b2szok (n2 - nDL,Ly
P a c = i (ni sin (/)1 ± n2 sin 02)

Here b is the amplitude of the sinusoidal deflection, Sz is the z com-
ponent of the Poynting vector of the incident plane wave, and x
and Oi are, respectively, the x and z components of the propagation
vector of the incident plane wave in the medium with index n1 whose
magnitude is nik. For sinusoidal corrugation, the scattered plane
waves are emitted in definite directions whose angles are defined by4

(4)

in medium 1 and by

0= -cos ch = nik

0= -cos ci52 -
n2k

(5)

(6)

(7)

in medium 2.
Next we list the scattering formula for scattering from a random

corrugation. There is no variation of the surface in the y direction,
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but the variation in the z direction with variance e is random with a
correlation length D z that is much shorter than the wavelength of
light. The total amount of scattered power from an area LyL z is

P ic = n-41 L2LZSzDZa2K2k (n? - 4)G'
ni
n2

with

(8)

ni
,i(nU

2
nl) - 1 - (ni/n3) arcsin (n2/ni)

G1 ( ) -
n2 7r[ (n4/4) - 1]

0.7162 (n2/ni) - 0.6830 (n2/ni)2 0.4312(n2/ni)3. (9)

The polynomial was obtained as an empirical approximation of this
function. Each component of the Fourier decomposition of the rough
surface gives rise to two plane waves, one emitted into medium 1 and
the other into medium 2. The directions of the two waves are related
by Snell's law. If the angle (measured with respect to the surface) of
the wave in medium 1, with the larger refractive index n1, becomes so
small that the angle of the wave in medium 2 becomes imaginary, no
wave can escape into medium 2; but there is still a wave emitted into
medium 1. Equation (8) contains the large -angle contributions from
waves emitted into both media. However, at small scattering angles
where the wave in medium 2 disappears, the scattered wave in medium
1 corresponds to a guided mode in a situation where medium 1 is the
core of a fiber. Power scattered into guided mode directions is not lost,
but becomes part of the "new" normal mode that establishes itself
in the distorted fiber and is not included in (8).

Finally, we list the expression for the total scattered power when
the interface is rough in y and z dimensions. The correlation length
(much shorter than the wavelength) of the distortion in y direction
is Dy,

Pay = -4 L,L,D,Dzii2Soc2k2(94 - 4)G2( n
ni
-2 )

7
(10)

In the previous two cases, radiation was escaping only in the x, z plane.
In the case of a truly random surface distortion, radiation escapes
isotropically in all directions. When we apply our present results to
the case of fiber scattering, we want to distinguish between two types
of radiation. Any ray direction not associated with a guided mode
belongs to either a refracting or a tunneling leaky wave. Refracting
leaky waves leave the fiber core because they impinge on the fiber
boundary at an angle that cannot be contained inside the fiber by
total internal reflection. Tunneling leaky waves consist of rays that
should be trapped inside the fiber core by means of total internal
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reflection.5,6 However, tunneling leaky waves lose power by a mech-
anism that causes energy to tunnel through an evanescent wave
region outside the fiber core to an external caustic from which they
can escape. Refracting leaky rays are very lossy and can be considered
radiative power. Tunneling leaky rays may have very low losses in
fibers with large core diameters and may well be part of the "new"
normal mode of the fiber cavity. It is thus desirable to be able to dis-
tinguish between power scattering into these two types of leaky rays.
This distinction is made in the factor G2(ni/n2) appearing in (10). We
write

G2 = G2r G2 t. (11)

Gtr incorporates only loss to refracting leaky rays, that is, rays scat-
tered in those directions that, in a fiber, correspond to refracting leaky
waves. G2, incorporates the contribution from those scattering direc-
tions that, in a fiber, would correspond to tunneling leaky rays. Both
expressions could be represented in closed form but, since the closed
form formulas would be too unwieldy, we prefer to list them in the
form of integrals :

1

v(1 - 2v/2/v2 - [1 - (n3/4]
G2, (14-) =

n2 Li- (nvnl) (ni/npv Av2 - [1 - (4/41 v

re::" 0.2666(n2/ni) - 0.05359(n2/n1)2 + 0.3990 (n2/n1)3 (12)

and

Get =
1

/11 - (nUnD
n2

San 1[1 - (nUn1)1
- v

X /712/7102 V4V - (n3/74)
[2v + 1 - 3 (4/41c/v (13a)

G2 rf.'/' 0.1364 (n2/ni) + 0.7926 (n2/n1)2 - 0.2592 (n2/711).3 (13b)

The polynomials are again empirical approximations. The functions

GI, G2r) and G2 = Gtr G2/ are plotted in Fig. 3. As a matter of
curiosity, we note that, disregarding the differences between functions

G1 and G2, (8) and (10) become identical if we set the correlations
length in the y direction equal to

Xo (14)= =n1.

Of course, this is a purely formal relationship, since (10) does not
apply for a correlation length on the order of the wavelength.

III. LOSS DUE TO POWER DISSIPATION IN MEDIUM 2

In preparation for computing the fiber losses caused by a lossy jacket,
we consider the plane wave reflection problem shown in Fig. 2 when
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Fig. 3-The functions G1, G2, and G27 defined by (9) and (11) through (13) plotted
versus ni/n2.

n1 is lossless and the interface is perfectly plane, but medium 2 is lossy.
The reflection coefficient for total internal reflection from the plane
interface is expressed by the formula'

+ 77r - (15)K- i7 '
with

K = 1in?Ic2 - #2, (16)
and

7 = Al#2, - 4k2. (17)
Using

n2 = n2r in2i (18)

and the amplitude loss coefficient for plane wave propagation in
medium 2,

a2 = n2ik, (19)

we obtain from (15), (17), and (18)

4a2n2,4cR = r 2 1
(n? - n2)11G2

(20)

We have assumed that n2i << n2,. and used 'y2 = (n? 4.)k2, an ap-
proximation that holds for incident waves whose angle (with respect
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to the interface) is far below the critical angle. When we apply our
results to optical fibers, this assumption means that we limit ourselves
to modes far from cutoff. The amount of dissipated power in an area
LLz is now

Pd = LyLzSz(1 - R). (21)

Sz is the x component of the Poynting vector. We use the relation
S. = (K/f3i)Sz and obtain, from (20) and (21),

2 (2a2)n2L,LzSzK2
Pd = (22)

ni(ni - n2)fic3

The real part of the refractive index has again been replaced by the
symbol n2, and we used the approximation f3 =

IV. APPLICATION TO MULTIMODE FIBERS

The guided -mode field in optical fibers can be approximated as4

Ey = AJ,(Kr) cos vie-'P=.

The power density flowing in the z direction is thus given by

1 P
ra2

Sz =
2
- -cos2v4,

(23)

(24)

where P is the total power carried by the guided mode. Since the
fiber radius is a, we obtain the power density P /(rce). The factor I
appearing in (24) accounts for the fact that half the total power is
carried by a wave traveling toward the core boundary while the other
half travels away from the boundary after reflection. The factor
cos2 v4 follows in an obvious manner from (23). Averaging over the
entire circumference of the fiber, we obtain

1 P2
:3z

4 ira
= - - (25)

The mode losses are now obtained from the plane wave formulas of
the last two sections by identifying Lb = 27,-a, replacing Sz with
Sz of (25) and using the formula (for heat losses, P8, is replaced by Pd)

P8C2a = LT, (26)

We can thus immediately compile the following list of power -loss
coefficients for the various fiber loss mechanisms.

Sinusoidal radius variation of amplitude b:

b2K2(n? -2a = (27)
2an1 (n1 sin g61 nz sin 02)

The angles eh and ch2 are defined by (6) and (7).
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Random radius variation with correlation length D z and variance e2:

ni2a = -2
a

Dze2K2k(n? - n3)G1 ( n-2) (28)
ni

Random surface variation with correlation length Do (formerly
called Dv) in the 95 direction and D z in the z direction and variance Q2:

ni2a = _2 D ,D za.2K2k2(n? - n3)G . (29)
ira n2

Functions G1, G2, and G2,. are plotted in Fig. 3. Whether G2 or Gtr
is to be used depends on the length and size of the fiber. If tunneling
leaky modes are only slightly attenuated in the length of fiber under
consideration and can be regarded as guided modes, we must use
Gtr; if tunneling leaky waves are very lossy, G2 must be used; in inter-
mediate cases, an average value may be appropriate. For a discussion
of the losses of tunneling leaky waves, see Refs. 5 and 6. Finally, we
list the power loss coefficient for a multimode fiber with lossy cladding
(but lossless core) with cladding power -loss coefficients 2a2:

(2a2)n2K22a = nia (n? - ik3

It remains to specify the values of K that must be inserted into formulas
(27) through (30). In fibers supporting only one or very few guided
modes, K would have to be obtained as the solution of the eigenvalue
equation. However, our formulas hold only for large fibers supporting
many modes that are mostly far from cutoff. In this case, it is possible
to approximate K as4

rK = - - -1).
2a

(30)

(31)

The compound mode number M is a combination of the azimuthal
mode number v and the radial mode number µ,

M= v+2µ = 2, 3, 4,  . (32)

If we are interested in the losses of a fiber cavity with tilted mirrors,
Fig. lb suggests that we use the expression

K = nik sin 0. (33)

In this case, the field impinges on the fiber wall not at the natural
mode angle applicable for perfectly straight fibers but at a larger angle
0 that is imposed by the gross deformation of the fiber or mirror

Eq. (31) holds for small values of v. For large v, we must replace (Ka)' -4 (P - P2
[see Ref. 4, p. 90, eq. (2.5-6)] and obtain U as the solution of J,(U) = 0.
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geometry. For fiber lasers, it seems reasonable to associate 0 with the
mirror tilt angle. For fibers with abrupt tilts, 0 would be the fiber tilt
angle.

Our derivation of formulas for the fiber loss coefficients was based
on the properties of plane wave interaction with a plane interface.
It is thus clear that our equations are only approximately valid. In
particular, they do not incorporate interference effects between
directly scattered rays and rays that leave the fiber after repeated
reflections inside the fiber core. Such effects are particularly pro-
nounced for scattering from purely sinusoidal core radius variations
because, in this case, the radiation leaves at a definite angle and may
be enhanced or reduced by interference effects.8 Our equations give
an average over the maxima and minima of the loss fluctuations as a
function of scattering angle. The formulas for scattering from random
surface effects or heat losses in the cladding are more reliable because
diffuse scattering causes radiation to escape in all directions and inter-
ference effects tend to cancel out and are unimportant in the case of
power dissipation in the cladding. The formulas derived here are handy
order -of -magnitude approximations of the precise expressions con-
taining Bessel functions.4'8

V. DISCUSSION AND NUMERICAL RESULTS

In this section, we present loss coefficients in graphic form. We
begin with a fiber with sinusoidal core radius variations of amplitude b
and spatial frequency a Scattering losses occur only if the radiation
can escape into the cladding. The spatial frequency range that results
in scattering losses is thus obtained from (7) as

(n1 - n2)k < fl < (ni n2)k, (34)

where we have assumed that f3 n1k. If we introduce the length of
the spatial period as A = 2.7r/O, we obtain from (34) and k = 27r/Xo

Xo No> A >ni - n2 ni ± n2
(35)

These formulas apply, of course, also to the spatial frequency range
that contributes to random scattering, discussed below.

Figure 4 shows curves plotted from (27). On the horizontal axis, we
have plotted the normalized spatial frequency ilinik and also the
scattering angle 4)2 at which the radiation escapes into medium 2.
Beyond Wnik = 1, the curves form the mirror image of the section
shown in the figure and were consequently omitted. Figure 4 was
computed for YAG with n1 = 1.8 and n2 = 1. The parameter of the
curves in Fig. 4 is the compound mode number M defined by (32).
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Fig. 4-Normalized scattering loss coefficient for a cavity with perpendicular
mirrors (relative to the fiber axis) and sinusoidal core radius variation of amplitude
b and spatial frequency O. M is the compound mode number. For this set of curves,
ni = 1.8, n2 = 1.0.

To obtain a feeling for the magnitude of the normalized loss coefficient
and for the tolerance requirements, we assume that the fiber reso-
nator has an inherent loss of 2« = 10-3 cm-' and a core radius of
a = 40 ,um. Scattering loss begins to be of concern if its magnitude
equals the already existing cavity losses. Allowing for the possibility
that a few fiber modes of low order are tightly coupled by some fiber
deformation of large amplitude but with a spatial frequency below
range (34), we use an average value of 2«a3/b2 = 10. If we are willing
to tolerate a loss of 2« = 10-3 cm -1 for a = 40 Am, we find as the
maximum permissible ripple amplitude the value b = 2.5 X 10-2 Am.

Figure 5 shows curves that are similar to Fig. 4 except that we have
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assumed that the YAG fiber now carries a cladding with refractive
index nz = 1.5. It is apparent that the cladding causes a reduction of
the scattering loss by roughly a factor of 2 so that we can now tolerate
a ripple amplitude that is larger by V.

Figure 6 still describes a cavity with a fiber with sinusoidal core
radius variation, but in this case we have assumed that the mirrors
are tilted by an angle 0. The tilt of the mirrors causes the field inside
the cavity to impinge on the fiber wall at an angle that is roughly equal
to the tilt angle. It is interesting to consider the intrinsic mode angle
to obtain a feeling for the severity of tilt angles introduced externally.

102

101

0 20° 30° 40° 50° 60° 70° 80° 90°

0.2 0.4 0.6 0.8 1

Stir) k

Fig. 5-Same as Fig. 4 but with n2 = 1.5.
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0

Fig. 6-Normalized scattering loss coefficient for a cavity with tilted mirrors, tilt
angle 0, and sinusoidal core radius variation of amplitude b and spatial frequency 12
(n1 = 1.8 and 4)2 = 45 degrees).

By equating (31) and (33), we find for the mode angle

Om = arcsin ( 7(1/1 1) ) (36)
2nika

For a = 40 Am, Xo = 1.06 Am, and n1 = 1.8, we find Om = 0.32
degree for the fiber mode of lowest order, with M = 2 and OM = 2
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degrees for M = 10. We have assumed that mirror tilt can be con-
trolled fairly accurately and extended our curves only to B = 7
degrees. It is now more natural to normalize the loss coefficient as
2aa(Xo/b)2. At a tilt angle of 0 = 5 degrees, we may expect for n1/n2
= 1.8 the normalized loss 2aa(Xo/b)2 = 0.25 according to Fig. 6.

With 2« = 10-3 cm -1, a = 40 Am and Xo = 1.06 Am, we find the ripple
amplitude b = 4.2 X 10-3 µm, which is a more stringent tolerance
requirement than the value found for straight mirrors.

Next we consider a cavity with a fiber with randomly varying core
radius. The case of a cavity with perpendicular mirrors is plotted from
(28) and (9) in Fig. 7. It is assumed that the rms amplitude of the
random core radius variation is a and that the correlation length Dz
is much shorter than the wavelength of light. If the cavity loss is an
average value of fiber mode losses corresponding to M = 5 in Fig. 7,
we have 2«a3Xo/Dza2 = 200. With a = 40 Am and 2a = 10-3 cm -1,
we obtain Dza2 = 3.4 X 10-5 earn'. For want of more information, we
assume that a = Dz, so that we have Dz = a = 3.2 X 10-2 Am. This

103

102

101
2 4 6 8 10 12 14 16

M

Fig. 7-Normalized scattering loss coefficient for a cavity with perpendicular
mirrors and random core radius variations with variance a2 and correlation length
Ds. M is the compound mode number, n1 = 1.8.
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1° 2° 3° 4' 5° 6° 7°

Fig. 8-Normalized scattering loss coefficient for a cavity with tilted mirrors,
tilt angle 0, and random core radius variation for ni = 1.8.

value is quite comparable to the value b = 2.5 ym that we found in the
case of a sinusoidal core radius variation.

Figure 8 gives the normalized scattering loss for a cavity with
random core radius variation for the case of tilted mirrors. For n2 = 1
and 0 = 5 degrees, we find from Fig. 8 2aaX8/Der2 = 4. With a = 40
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Am, we obtain a loss of 2a = 10-3 cm -1 for D2e2 = 1.2 X 10-6 Am' or
De = Cr = 1.1 X 10-2 Am.

Figures 9 and 10 pertain to fibers with random core -cladding interface
perturbations. Figure 9 describes a fiber cavity with perpendicular
mirrors. At M = 5 we find, from Fig. 9, 2aa34/D4,Dze2 = 600. With
the usual values for loss, core radius, and light wavelength, we have
D4,D,e2 = 1.2 X 10-' pm' or DI, = D, = e = 5.9 X 10-2 Am. If
we let the two correlation lengths equal the rms variation of the inter-
face, we find that the tolerance requirements are a little less stringent
for a totally random surface compared to a surface that maintains its
circular cross section and only allows the radius to vary along z.

Figure 10 shows the normalized loss coefficient for random core -
cladding interface perturbations (in two dimensions) for a cavity
with tilted mirrors. For a mirror tilt of 0 = 5 degrees, we obtain from
Fig. 10 approximately 2aaXt/DsDze2 = 12. With a = 40 Am, a loss
of 2a = 10-2 cm-' is obtained for ai,Di-2 = 4.2 X 10-71.1m4 or Do = De
= a = 2.5 X 10-2 Am.

10

102

////////
//

//
////

//
/

2 4 6

M

8 10 12

Fig. 9-Normalized scattering loss coefficient for a cavity with perpendicular
mirrors and random core -cladding interface perturbations with correlation length
Do in azimuthal direction, D. in z direction, and variance 52. The solid lines apply to a
fiber whose tunneling leaky waves may be regarded as lossless guided waves; the
dotted lines belong to the case in which tunneling leaky waves are so lossy that they
cannot be regarded as guided waves. M is the compound mode number, n, = 1.8.
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The remaining figures, 11 and 12, describe the normalized loss
coefficient for a geometrically perfect fiber core surrounded by a
lossy cladding. The power loss coefficient of a plane wave traveling
in the material of the cladding is 2a2. Figure 11 gives the mode losses
of the fiber as a function of the normalized frequency parameter

10'

100

1° 2°

V = -27a (nl-- 44.
Xo

3° 4° 5° 6°

(37)

7°

Fig. 10-Similar to Fig. 9 except that the cavity in this case has tilted mirrors with
tilt angle O.
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V

Fig. 11-Absorption loss coefficient of a fiber with lossy cladding (cladding loss
coefficient a2). This set of curves applies to the case of a cavity with perpendicular
mirrors. The normalized frequency V is defined by (37).

For Xo = 1.06 Aim, a = 40 Am, n1 = 1.8, and n.2 = 1, we obtain
V = 355 from (37). For M = 5, we obtain from Fig. 11 approxi-
mately niai/n2a2 = 10-6. The mode losses are thus much less than
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the cladding losses. For 2« = 10-3 cm -1 and ni/n2 = 1.8, we could
tolerate a cladding loss of 2a2 = 1.8 X 103 cm -1. If we use n2 = 1.5,
we have V = 236 leading to nia/n2a2 = 4 X 10-6 at M = 5. With
ni/n2 = 1.2, we can now tolerate 2a2 = 300 cm -1.

Figure 12 applies to a cavity with tilted mirrors and lossy jacket.

10-6

10-8

1° 2° 3° 4° 5° 6° 7°

0

Fig. 12-Absorption loss coefficient of a fiber with lossy cladding (loss coefficient
a2). These curves apply to the case of a cavity with tilted mirrors, tilt angle 8.

1484 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976



Table I - Results of numerical evaluations of cladding losses.
The cladding loss, 2a2, gives rise to a mode loss

of 2a = 10-3 cm -1

V n i/n2

2«,

M = 5, 0 = 0 0 = 5°

355
236

1.8
1.2

1.8 X 103 cm -1
300

56 cm -1
10.4

For 0 = 5 degrees and V = 355, we find aXg(nin2a2a2) = 7 X 10-s.
With n1 = 1.8, n2 = 1, a = 40 Am, and 2« = 10-3 cm', we can tol-
erate 2a2 = 56 cm -1. If V = 236 and n2 = 1.5, we can tolerate 2a2
= 10.4 cm -1. These results are summarized in Table I.

VI. CONCLUSIONS

We have studied the losses of fibers and fiber resonators that are
caused by perturbations of the core -cladding interface and by absorp-
tion losses of the cladding material. Formulas for the loss coefficient
were derived by using plane wave techniques, and representative ex-
amples were displayed in the form of normalized curves. The theory
presented here is not precise, and its application to practical cases is
hampered by lack of knowledge of coupling among the guided modes.
We have seen in a previous paper3 that mode coupling tends to increase
the cavity losses above the minimum value of the fiber mode of lowest
order. However, the loss increase due to mode coupling results only
in an average loss of a few of the lower -order modes that are coupled
particularly tightly. We have thus concentrated on an average loss
corresponding to mode M = 5 when we considered explicit loss values.
Our results are useful to gain insight into the order of magnitude of
fiber tolerances that must be maintained and into the amount of
cladding losses that can be tolerated. We found that the tolerances of
core -cladding interface perturbations are on the order of 0.01 Am,
while cladding losses can be allowed to be as high as 10 cm' in the
worst case of a cavity with mirrors tilted by 5 degrees, or as high as
300 cm --1 in the case of a cavity with perfectly perpendicular mirrors.
Mirror losses were lumped in with the "background losses" of the
cavity, which were assumed to be 2« = 10-3 cm -1 in all the numerical
examples we have considered. All curves independent of mirror tilt
can be used to obtain the losses of optical fibers because they show
plots of fiber mode losses without being tied to an application to fiber
resonators.
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APPENDIX

For the calculation of scattering losses of a plane wave impinging
on an irregular dielectric interface, we need to know the radiation
modes of a space consisting of two dielectric media with refractive
indices n1 and n2 separated by a plane interface. There are several
types of such radiation modes. In each case, we list only the EE and
HZ components of their electric and magnetic fields, since all other
field components follow from these longitudinal components by differ-
entiation.9 The time dependence of the modes is understood to be of
the form

eiwt. (38)

We place our coordinate system so that the interface between the
media with n1 and n2 lies in the y -z plane. We assume that ni > n2
and let the medium with index n2 be in the half space x > 0.

There are radiation modes whose fields decay exponentially in
positive x direction for x > 0. These modes can be grouped further
into modes with Ex = 0 and H z = 0.

(i) Evanescent modes with E. = 0:

8z = ille-Axe-i(gyv+fiz)

3C. = i OAA -A xe-i(cw-fliz)
for x > 0

le
coA ory

= A1 (cos a zx - z
A- sin 0-xx) 6-iolni+sz)

for x < 0.
ae. = i 1-ar A sin a - -A cos azx

ax
e-i("Y+Pg)I

COAL OC y

(39)

(40)

The parameters entering these equations are related by

nR2 = 62 + o + 132 (41)

and
nik2 = -46,2 Qy (42)

The fields are normalized with respect to a delta function,

I(8z34 - 83CDdxdy = Pgcr - a'z)go- y - cr;), (43)

so that we obtain for the amplitude coefficient

2a2colloaki/PA? - .ev213032 + ,
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with V defined by (37) and 110 indicating the magnetic permeability
of vacuum.

(ii) Evanescent modes with Ht = 0:

8z = Ate-Are-i(gull+fiz)
nFlea for x 0 (45)

ac. = 2 II Ate-Axe-'(°"+(h)
444100,6,

o -z

8z = A2 (Cos crxx sin oxx) e-i(.vy+sz)
ni A for x < (46)0.

Jez = i
nik2cry

A2 cos axx - - sin crzx e-i(gY 11+0z)
n1 A

coil OA n2 az

Equations (41) and (42) still apply, and the amplitude coefficient is

2wilon?oi A2 P
Ai (47),r2k2(nloi nu k2) 032 ± 01)

These first two types of modes are valid only in a limited range of
(Ty and cry that is determined by the requirement that A, defined by
(42), must be a positive real quantity.

(iii) Full standing wave modes with Er = 0:

8z = A3;(cos pzx R; sin pxx)e-ic,yy-Fozi

= OPx A (sin - R; for x 0 (48)
3; pxx cos pxx)e-i(cryy+pz)

coil coy

Sz = A33 (cos a- xx 121. R; sin a xx) e-i(avii-Esz)
az

aez = 13g A3j -121 R
for x < 0. (49)

sin a xx cos o-zx e-i(avY-02)
oa y ax

Equation (41) applies in this case, too, but (42) is replaced by

Ak2 = Pi + 01 + /32. (50)

The coefficient R; is arbitrary, but it is convenient to choose two values
R1 and R2 so that the two resulting modes become mutually orthogonal.
We choose for convenience

R1 = 0
and

R2 = 00.

The corresponding amplitude coefficients are

2oxol,(4/2 oP

and

AL -
7r2gax P.)(132 cr:)

R2Al2
7

444.410P

13Px(.. Px) 032 + oD

(51)

(52)

(53)

(54)
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(iv) Full standing wave modes with HZ = 0:

= A4i(cos pxx + sin pxx)e-i(oviii-oz)
,n2

= i (")"',11-2 A 4j (sin pzx - Si cos pzx)e-i(tivY+oz)
for x 0. (55)

P sP

= A4, (COS CrxX + i sin apx)e-i(gia+ft.)
z

2eocryni ni ax- i A 4; (sin azx - -S cos o-xx)
xfi ni pz

for x < 0. (56)

Equations (41) and (50) determine the relations among the compo-
nents of the propagation constant. The ranges of ax and ay are limited
to the regions where px is real and positive. This remark applies also
to case (iii).

Two sets of mutually orthogonal modes result if we choose

and

The amplitude coefficients are

and

Si = 0

52 = GO 

2p za!ilt11'Ail -
ir2k(nk. 74.) (32 + ay)

2nlarpor3P
51Al2 = 1-271,31c (nio- + nip z) 02 +

eo is the permittivity of vacuum.
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Novel Technique for Measuring the Index
Profile of Optical Fibers
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A novel technique for measuring the refractive index profile of optical
fibers is demonstrated, which offers substantial advantages over alternative
methods. The method consists of illuminating a small area of the fiber core
and measuring the total transmitted power. The transmission of leaky
modes is accounted for in the manner reported previously by other authors.
The index profiles of germanium -doped fibers obtained by this technique are
compared to interferometric measurements. The resolution is shown to be
limited by wave optics effects to about X0(4nAgE)-', where A = An/n.
The distortion of the index profile as the wavelength varies and wave -
optics effects are investigated.

I. INTRODUCTION

The accurate measurement of index profiles at various wavelengths
may help design multimode fibers whose transmission capacity would
go well beyond what has been presently achieved. Indeed, numerical
calculations and theoretical analyses1,2 show that there exist index pro-
files (usually not power -law profiles), which, for quasi -monochromatic
sources, provide transmission capacities of about 1.6/02 Mb/s X km,
where A = An/n. Measured transmission capacities are about 10 times
smaller. To determine the optimum profiles, it is indispensable to know
the variation of dn/ dX (where X° is the operating wavelength) as a
function of n for the class of materials considered with an accuracy
of about 1 percent. The required variation of dn/ dX,, as a function of
n can be obtained, in principle, from measurements on bulk samples
(e.g., Ref. 3). We question, however, whether measurements on bulk
samples are applicable to the fiber material with sufficient accuracy.
For that reason and also because the fabrication and measurement of
bulk samples is time-consuming, the direct measurement of index
profiles at various wavelengths is highly desirable. Once the optimum
profile applicable to the class of materials considered has been deter-
mined, we measure the departures of the profile n(r) of the fabricated
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fiber from optimum. Very small deviations may degrade considerably
the transmission capacity.

An interesting experimental technique for measuring circularly
symmetric index profiles has been proposed by Gloge and Marcatili.4
The index profile is obtained by measuring with a pin hole the radial
distribution of intensity in fibers excited by Lambertian (e.g., thermal)
sources. In a series of careful measurements, Sladen, Payne, and
Adams' have shown that good agreement can be obtained between
the intensity in the fiber core and the index profile obtained by inter-
ferometry provided the non -zero transmission of the leaky modes is
accounted for. If this correction is made, the fiber samples need not be
larger than about 1 meter, and may be as small as 1 cm.

The technique that we describe in the present paper, which we
call the transmission technique, is related to the near -field technique
discussed above, but it differs from it in many significant ways. Arnaud'
has shown that, if we illuminate a small area of the fiber core (perhaps
of the order of (X at x, y, the total transmitted power is, for sufficiently
long fibers, proportional to n2 (x, y) - 74, where n(x, y) denotes the
refractive index at x, y, and ne, the cladding index. The proof is
straightforward : The rays radiated from the illuminated area have an
almost uniform distribution in the plane kz,ky, where kz,k, denote the
transverse components of the wave vector k. Because of the relation
ki + k: k! = 0(x, y) = (co/ (x, y), which holds between the
rectangular components of k, and because only rays whose kz is larger
than k, are transmitted without loss, the power transmitted through
long fibers is proportional to

kx + k: = k2 (x, y) - ks = index profile (1)

(see Fig. 1). The rays in the dotted area in Fig. lb leak away if the
fiber is sufficiently long. Otherwise their contribution to the total
transmitted power needs to be subtracted in the manner reported in
Ref. 5. If the spot size is less than X0, we may use as a source either a
(coherent) laser or a (spatially incoherent) LED. If, however, the spot
size is significantly larger than X0, it is essential to use near-Lambertian
sources such as LEDS. Indeed, coherent beams of large cross section
would excite predominantly paraxial rays. This would require intro-
ducing additional correction factors.

In the present paper, we discuss the principles and limitations of
the method, and we present experimental results. The transmission
method gives results that are, in principle, identical to the near -field
measurements described in Ref. 5. The main advantage of the trans-
mission method, compared with alternative methods, including the
near -field technique, is that it is extremely easy to implement. The
results are highly reproducible to better than one part in 1000.
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(a)

ky

T = 0 /0..Ar

0 < T < 1

(b)

Fig. 1-(a) In the transmission method, the microscope objective illuminates a
small area of the fiber end of the order of X. (b) The intensity is assumed uniform in
the kz, k space. For long fibers, only the rays in the shaded area are transmitted.
For short fibers, the rays in the dotted area may also be transmitted (leaky rays).
T denotes the power transmission.

II. EXPERIMENTAL CONDITIONS

To implement the proposed technique, all we need is an ordinary
microscope, a high -radiance LED (or a laser), and a detector. The
numerical aperture (NA) of the microscope objective should be at
least twice as large as that of the fiber. One end of the fiber is properly
broken or polished and centered approximately under the microscope
objective at focus. When the microscope eyepiece is replaced by a LED,
a small spot of infrared radiation illuminates the fiber end. As we have
indicated in the introduction, the power detected at the other end of
the fiber is proportional to n2 (x, y) - n2e, where n (x, y) denotes the
index at the point x, y of the fiber where the light is focused, and n,
the cladding index. To obtain the index profile, we may scan either the
fiber, with a total motion of about 100 Am, or the source, with a total
motion of about 3 mm. The arrangement shown in Fig. 2 incorporates
a beam splitter (1) to allow the fiber to be observed during scanning.
(A second beam splitter, which combines the light from two LEDs, is
shown in Fig. 2. It is used only for dispersion measurements.) Some
infrared LEDs radiate red light with sufficient intensity for direct visual
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Fig. 2-Experimental setup of the transmission technique. The fiber is scanned
mechanically and its motion is recorded with a gauge. Two LEDs are used for disper-
sion measurement.

observation. For LEDS at longer wavelengths, an image converter is
necessary. Note that the focal length of microscope objectives may be
slightly different for the red light and for the infrared light. In the
arrangement in Fig. 2, it is convenient to have the distance between
the LED source and the microscope objective equal to the distance
between the focal plane of the eyepiece and the microscope objective.
This avoids the need for refocusing when the objective is changed
from low to high magnification. To obtain good resolution, it is de-
sirable that the LED act as a point source; that is, that the apparent
size of the LED, demagnified by the microscope objective, be smaller
than the diffraction -limited spot ',-:.1X0/NA, defined by the numerical
aperture of the microscope objective. An apparent emissive diameter
of 25 Am (before demagnification) is adequate. The experimental set-
up is shown in Fig. 3. The LED source (not visible) is supported by the
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xyz microscope stage at the left. The angular orientation of the fiber
under the microscope objective can be varied. Figure 3 shows the
differential micrometer that drives the fiber and the gauge that mea-
sures its displacement with respect to the microscope objective.

The advantages of the proposed technique compared to the more
conventional near -field technique are many :

(i) In the near -field method, the source is required to be Lam-
bertian and uniform over the full cross section of the fiber core.
As pointed out in Ref. 5, this condition is in fact difficult to

Fig. 3-Photograph of the experimental setup. The LED (not seen) is supported by
the xyz stage on the left.
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achieve with LEDS. The authors in Ref. 5 thus found it necessary
to use thermal sources instead of LEDs. Thermal sources (e.g.,
tungsten wires) provide poor signal-to-noise ratios when the
spectral width is restricted by narrowband interference filters.
In the transmission method, we require the NA of the micro-
scope objective to be significantly larger than that of the fiber
(at least for coherent sources), but the requirement concerning
the spatial uniformity of the source is relaxed. In some sense,
the requirement of spatial uniformity is transferred from the
source, where it is difficult to achieve, to the detector, where
the condition is easily met.

(ii) The optics are much simplified. Only a single microscope
objective is needed instead of (typically) three. Thus, the
signal-to-noise ratio is improved.

(iii) Near -field measurements provide the shape of the index
profile, but not the absolute value of An (r) = n (r) - nc, where
n0 denotes the cladding index. In the transmission method, we
can calibrate An by measuring the intensity radiated axially
by the microscope objective. This calibration technique will
be discussed in more detail in the next section.

(iv) The transmission method can be combined with the Fresnel-
reflection technique (for a recent report of the Fresnel-reflection
technique, see Ref. 7). To implement this modification, we
replace the microscope eyepiece in Fig. 2 with a detector.

An important drawback that applies to both the transmission and
near -field methods is encountered when the fiber exhibits a low -index
region near the cladding. In that case, some modes (besides the so-
called weakly leaky modes) are leaking very slowly, and the inter-
pretation of the measurements becomes ambiguous. The resolution
offered by these methods may be marginal when the fiber profile
exhibits very fast fluctuations. Note also that, for noncircularly
symmetric profiles, the correction factors for leaky rays have not
been worked out. If the deviation from perfect circular symmetry is
small, however, the correction factor given in Ref. 5 may be used.

III. INCIDENT BEAM PATTERN AND INDEX CALIBRATION

To make precise measurements, the radiation from the microscope
objective should approximately obey Lambert's law, at least for angles
a to the axis that are less than I. To verify that this law is approxi-
mately obeyed, we translate the detector in front of the microscope
objective at some distance d >> X. from the focal point. Ideally, the
variation of the detected power as a function of the distance r from
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Fig. 4-The curve shown is the desired radiation pattern from the microscope
objective. It is sufficient if this law be obeyed from r/d = 0 to the value correspond-
ing to the A of the fiber (e.g., r/d < 0.3 if A = 0.02). The experimental points were
measured using a Leitz UD 20, NA = 0.57 microscope objective.

axis should be*

P (r) = cos4 a = (1 + r2/d2)-2. (2)

The desired variation of P with r in (2) is shown in Fig. 4. The maxi-
mum value of r/d corresponding to a particular A is given by

r/d = (NA-' - 1)-1 (3a)

NA = (3b)

The values of r/d are shown in Fig. 4 for typical values of A and
no = 1.45.

Let us now consider the problem of calibrating An. This is done by
measuring the intensity radiated axially by the microscope objective.

This result can be obtained by inverting eq. (5.246) of Ref. 6 and noticing that
when the radiation is uniformly dense in the k, kw plane (the transverse components
of the wave vector), it remains uniformly dense after refraction at any plane interface
perpendicular to the z axis. To show that, set in eq. (4.167) of Ref. 6 : dkr/clz = dky/dz
= 0 (Descartes -Snell law) and find that f (ki, ky, x, z) = g(kr,kw)h(x, z) is a solution
of the Liouville equation for any differentiable functions g and h. Thus, if f is inde-
pendent of kr and ky at z = 0, as we have assumed (Lambert's law), it remains inde-
pendent at kr, kw after any number of refractions.
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Let the power detected in front of the microscope objective be denoted
Pc and the power transmitted through the fiber for near -axial excitation
be denoted P. If the detector radius is denoted p and its distance from
the microscope objective focal point is d, the NA = no 20 of the fiber
is given by

where
NA = (p/d)4P/17Pc) (4)

n = [4no/ (no + 1)212 (5)

accounts for the Fresnel reflection at both ends of the fiber. This ex-
pression for n is not rigorous, but it is sufficiently accurate for our
application. With sufficient accuracy, we can set n. = 1.45. Then,
n = 0.93. Convenient values for d and p are d = 10 mm and p = 1 mm,
respectively. We thus obtain from (4) and (5)

NA = 0.1044WF. (6a)

A = 0.00255(P/Pc). (6b)

It is, of course, necessary to have good breaks at both ends of the
fiber. We have assumed that the fiber loss is negligible; this is the
case for most fibers if the length is 1 m or less.*

A more conventional technique for evaluating A consists of measur-
ing the far -field pattern when the fiber is illuminated on or near axis.
We have

A = z (NA/n0)2, (7)

where NA denotes the sinus of the maximum radiation angle in air,
defined typically at the -3 dB point from maximum intensity.

The core radius, a, of the fiber is best obtained by observing the
fiber tip with a microscope. From the values of A, a, and X,, the
V -number is calculated according to

V = (2ira/Xo)NA. (8)

IV. CORRECTION FOR LEAKY RAYS

If the fiber is not very long, the leaky modes excited by the source
are not completely attenuated. They can be accounted for in the
manner described in Ref. 5. Specifically, the index profile n2(r) - is
obtained by dividing the detected power P(r) by the correction factor

With some high NA objectives (NA 0.8), spurious peaks are observed in the
far -field pattern due to diffraction effects, even with LED sources. Thus, the calibra-
tion of A should be made with lower NA objectives, e.g., NA =z% 0.5. These spurious
peaks do not appear to affect the profile measurements, but they prevented us from
making a precise comparison between the two techniques described here for mea-
suring A.
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Fig. 5-Correction factor for leaky rays.6 The X parameter is defined in the main
text as X = V-1 loge (L /a) where V denotes the V -number of the fiber, L, the fiber
length, and a, the core radius. The measured power should be divided by C. These
curves are applicable to near -square -law fibers.

C(r) given in Fig. 5.5 In this figure, the parameter X is defined as

X = V-' loge (L/a), (9)

where L denotes the fiber length, and V the fiber V -number defined
in (8).

Note that the correction is negligible near the fiber axis, but may
be as large as 30 percent at r 0.8a for typical fiber lengths. Strictly
speaking, the correction factor depends on the profile of the fiber.
The curves in Fig. 5 are applicable to near square -law profiles. How-
ever, the correction factor turns out not to be very sensitive to the
exact profile. Thus, for most high -transmission capacity fibers, the
square -law -profile correction factor may be sufficiently accurate. If
greater accuracy is required, we may use an iteration procedure.
Because this procedure is rather involved, it will not be discussed here.

V. REFRACTIVE -INDEX PROFILE MEASUREMENTS

The measurement technique described in previous sections has been
applied to graded -index fibers. Let us first make a few general com-
ments concerning the experimental technique and the results. The
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results obtained are highly reproducible to better than one part in
1000 even after a few hours if the fiber tip is protected by a glass
plate and an index -matching fluid. The axial index dip characteristic
of germanium- (or phosphor -oxide-) doped fibers is very useful to define
the fiber center and achieve optimum focusing.

5.1 Comparison with near -field and interferometric measurements

Near -field measurements5 were made on a graded -index fiber. The
setup is shown schematically in Fig. 6a. A Burrus-type high -radiance
LED with an apparent emissive diameter of 50 aum is imaged with unity
magnification on the end of the fiber under test with a pair of micro-
scope objectives (20 X , NA = 0.4). The other end of the fiber is

imaged with a microscope objective (40 X , NA = 0.65) on a scanned
small -area detector. The magnification, measured with a reticle, is
equal to 54. Focusing is adjusted to make the details of the index
profile as sharp as possible. The variation of detected power as a
function of the transverse displacement of the detector is shown in

DETECTOR

0-
LED

L = 720 m
X0=0.79 pm

-20 -15 -10 -5 0

n2(r)-nl, ARBITRARY UNITS

10 15 20

r IN pm

(b)

Fig. 6-Near-field measurement on a germanium -doped, graded -index fiber.
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Fig. 7-Interferometric profile of the fiber in Fig. 6, Xo = 0.55 Atm. NA = 0.21,
A = 0.0107.8

Fig. 6b for a fiber length L = 720 m. For such long lengths, the
leaky -ray correction is small. Because of evaporation of germanium
during the collapse of the preform, the material on axis is probably
almost pure silica. The observed reduction of An is, at most, I. This
discrepancy reflects the inherent limitation in resolution of near -field
and transmission techniques. We attribute small oscillations on each
sides of the central dip to wave -optics effects. They are qualitatively
similar to the ones calculated for a dielectric slab in Appendix A.
The slow modulation reflects the presence of diffused steps. The
interferometric measurements is shown in Fig. 7.
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Fig. 8-Profile of the fiber in Figs. 6 and 7 obtained with the transmission tech-
nique. Uncorrected : solid line. Corrected for leaky rays : dashed line. Interferometric
measurements from Fig. 7: dots. The measured A at Ao = 0.79 tim is 0.0104.

The index profile obtained with our transmission technique is
shown in Fig. 8. The A of the fiber was measured from the far -field
pattern, as described in Section III. We measured A = 0.0104, in good
agreement with the value obtained by interferometry. From a core
radius a = 24 pm, we calculate from (8) a V -number : V = 40. The
fiber length is 1.6 m. Thus, the X -parameter in (9) is X = 0.28. The
corrected profile, obtained by dividing the measured power by the
correction factor C in Fig. 5, is shown as a dashed line in Fig. 8. The
result of interferometric measurements is shown by dots for com-
parison. Aside from the depth of the central dip, a significant difference
between the dashed curve (corrected transmission profile) and the
dots (interferometric measurement). Such a discrepancy may be in
part attributed to the lack of perfect circular symmetry of the fiber.

5.2 Measurement of the lack of circular symmetry

The (uncorrected) transmission profile of germanium -doped fiber
was measured in two perpendicular azimuthal directions, labeled 0°
and 90°, respectively. These two profiles are shown in Fig. 9 as solid
lines and dashed lines, respectively. The measured A and NA param-
eters are given in the figure caption. We conjecture that, for the
small deviations from circular symmetry exhibited by the fiber in-
vestigated, the correction factor in Fig. 5 is applicable.
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Fig. 9-Uncorrected profile of a germanium -doped, graded -index fiber in two azi-
muthal planes (0° and 90°). The measured NA is 0.202, A = 0.00974, L = 1.6 m.

5.3 Measurement of a double -hump profile fiber

An attempt was made by MacChesney9 to suppress the central
index dip of germanium -doped fibers by increasing the amount of
germanium halides during the final stage of fabrication of the preform.
The profile of a fiber of that type was measured by interferometry8
and by our transmission technique. Both techniques clearly show that
there is a large peak of index near the center of the fiber. However,
the transmission technique shows that the dip in the center did not
disappear (hence, the name "double -hump" given to the profile of
that fiber). This central dip is not seen on the interferogram. The
combination of a peak and a dip is unlikely to improve the fiber
transmission. A much better compensation of the central dip will be
reported later in this paper.

5.4 Measurement of noncircularly symmetric profiles

The theoretical result in (1) shows that the transmission technique
is applicable, in principle, to noncircularly symmetric profiles, as well
as to circularly symmetric profiles. A preform that accidentally
collapsed flat" has been pulled at our request into a fiber and mea-
sured. The uncorrected profiles are shown in Fig. 10. Because the
correction for the leaky rays has not been made, the curves in Fig. 10
are only indicative of the index profile.
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Fig. 10-Profile of a fiber with near -elliptical core (uncorrected).

5.5 Profile distortion

One of the most interesting and intriguing questions is whether
index profiles get significantly distorted as the wavelength varies
(independently of possible changes of scale). Fleming's measurements
on bulk samples of germanium -doped silica' clearly indicate that pro-
files get distorted significantly as the wavelength varies. This effect,
however, has not been observed before on fibers. We report here
preliminary measurements of profile distortion. The necessary for-
mulas are relegated to Appendix B.

Figure 11 shows the profiles measured with the transmission method
at two wavelengths : X0 = 0.79 pm and X0 = 0.9 Am, on a germanium -
doped, graded -index, large NA fiber. Note first that the resolution
(indicated by the depth of the central dip) is slightly poorer at the
longer wavelength. When the scanning is made slightly off -center to
avoid the central dip and the two profiles are normalized to unity on
axis, the differences between the two profiles are found to be extremely
small yet significant. To exhibit this difference with good accuracy,
we have combined the light from the two LEDB with beam splitter
in Fig. 2 number 2. Square pulses are applied to the LEDs. The
positive parts of the pulses drive one LED and the negative parts drive
the other. The levels are adjusted to have equal detected powers on
the fiber axis, and therefore, zero signal on the lock -in amplifier. The
difference between the two normalized profiles is plotted in Fig. 12
(curve b). More precisely, we have plotted in Fig. 12 the "profile
distortion" d ..

X0an/aX0, where n -.- N/2,6, and N -.- 1 - n2/4, as a
function of r/a. The accuracy of this curve is difficult to ascertain at

-CORE

b

-25 25 50
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X = 0.076
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Fig. 11-Profile of a germanium -doped, graded -index fiber at two wavelengths (a) :
Xo = 0.79 Am, (b) Xo = 0.9 Am, (c) Xo = 0.79, scanning slightly off -center (obtained
with the transmission technique and an objective NA = 0.85).

the moment. Part of the observed change of the shape of the index
profile may be attributed to the dependence of the leaky -ray correction
factor on wavelength.

The variation of d as a function of r/a can also be calculated from
Fleming's measurements on bulk samples, as explained in detail in
Appendix B. The result of this calculation is shown in Fig. 12 (curve a).
There is no close agreement between curve a and curve c. However,
they are comparable in magnitude. Thus, measurement of very slight
changes of profile with wavelength, such as are shown in Fig. 12, are of
great practical importance.

VI. CONCLUSION AND PROPOSALS FOR FUTURE WORK

We have proposed and demonstrated a novel technique for mea-
surement of the index profile of multimode fibers. Conceptually, this
technique is related to the near -field technique previously demon-
strated by Sladen et al.5 (near -field technique). From a practical
point of view, however, our technique is quite different, since it does
not require Lambertian sources. In particular, lasers can be used. We
have found that the measured profiles are highly reproducible, to
better than one part in 1000 over periods of hours. Index profile
measurements can be obtained in a few minutes including fiber -end
preparation. The agreement between our technique and interferomet-
ric measurements leaves something to be desired. The discrepancy,
however, may be attributed to the lack of perfect circular symmetry
of the fibers investigated. Theoretical considerations show that the res-
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Fig. 12-Profile distortion. Curve (a) is calculated from Fleming's measurements
on bulk samples as reported in Ref. 3 (Fig. 1, curve labeled X = 0.9 Am). Curve (b)
is the difference between the normalized profiles at Xo = 0.79 and 0.9 Am. Curve (c)
is the same as curve (b) corrected for the leaky rays.

olution is about X/4 20. For a typical value A P,-', 0.015, this resolu-
tion is about the free -space wavelength X,, ,-'1 1 ,um. This appears to be
sufficient for most practical purposes.

Comparison of depths of central -index dips suggests that the trans-
mission technique (and the near -field technique as well) provides
better resolution than interferometric techniques. We have pre-
sented preliminary evidence for the distortion of the index profile as
the wavelength varies (profile distortion), an effect that was inferred
previously only from measurements on bulk samples. Theories that
neglect profile distortion may be in considerable error.

We shall now make a few suggestions for improvement of the
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measurement technique. Oil -immersed microscope objectives would
be useful to prevent interference effects between the objective and the
fiber tip when monochromatic laser sources are used. The processing
of the experimental data can be considerably improved if the lock -in
amplifier and the gauge have digital readouts. The correction factor
C, given approximately in Fig. 5, should be recalculated and supplied
in digital form. A better approach would consist of calculating C from
the apparent measured profile and iterating. These iterations, pre-
sumably, can be effected with modest computing time. Noncircularly
symmetric profiles can be corrected, in principle, but the correction
problem has not been solved yet. Finally, we attempt to deconvolve
the wave -optics effects (discussed in Appendix A) that are most
conspicuous in regions where the index varies rapidly. The possibility
of performing this deconvolution is intriguing, but the analytical
problem remains, to our knowledge, unresolved. The case of fibers
with an index barrier between the core and the cladding requires
further analysis.

Among all the index -profile measurement techniques that have been
proposed so far, the transmission technique that we have described
here appears to be the easiest to implement and the most reliable.
Improvement in data processing should make the results quite accurate
in most cases.

APPENDIX A

Wave Optics Effects

The result (given in the main text) that the intensity distribution
in the cross section of long multimode fibers is proportional to
k2(x, y) - ki, where k(x, y) = (w/c)n(x, y) denotes the core wave
number and k, = (w/c)n, the cladding wave number, is based on ray
optics (wKB approximation) and on the assumption that rays whose
axial wave number (k2) is less than k8 are radiating away and do not
contribute to the total intensity. Because the number of trapped modes
carried by real fibers is finite, the intensity distribution does not follow
the fine details of the index profile. This is because the optical field
cannot vary in transverse directions faster than (sin k. ..x) where
kx. = (co/c)n0V2A denotes the maximum value of the transverse
wave number, no the index on axis, and O An/n. According to the
above formula, the smallest distance between nodes and peaks of the
irradiance in the fiber core is

Ax Xo/ (4n0 20). (10)

Equation (10) provides an estimate of the resolution afforded by the
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method. For example, if X0 = 1µm, n, = 1.45, and A = 0.01, the reso-
lution is, according to (10), Ax 1.25 Am.

To get a more precise estimate of the error at discontinuities of the
index profile, let us consider, as a model, an oversized dielectric slab.
When the origin of the x axis is taken at one of the slab boundaries,
the normalized field of H -modes of order m is (see, for example, Ref.
6 with a slight change of notation)

1 sin (YmX - arcsin Y.), X < 0,
E,(x) =

1
(11)

where

X >= 0,exp (- - 11,X),

= (m 1) (r/2) V-i (12)

and X, V are normalized distances and frequencies

X = icAlEx (13a)

V = (13b)

For trapped modes, we require

Y. < 1. (14)

When the fiber is excited by a Lambertian source, the intensity I (x)
in the slab cross section is obtained by adding the intensities, Eg,(x),
of all the trapped modes. Because the slab is highly oversized, we can
replace the summation over m by an integral. We obtain

2 for/2 sin2 (sin OX - 0) cos Od0 X 0

7/2
sine 0 exp (- 2 cos OX) cos Ode, X > 0.

Jo

For X -+ - 00 and X -* + 00 , we have as expected, I = 1 and I = 0.
At the discontinuity (X = 0), an elementary integration of (15) gives
I = 4. The intensity profile defined in (15) is shown in Fig. 13. We
notice an overshoot of the irradiance equal to 14 percent. This over-
shoot is somewhat similar to the Gibbs effect encountered with Fourier
series. If we keep the slab thickness a constant but increase the optical
frequency, the region where the irradiance departs significantly from
the ray -optics value becomes narrower and narrower. The amplitude
of the overshoot, however, remains the same. The curve in Fig. 13
provides understanding of the limitation in resolution of the method
discussed in the main text. This limitation is caused by wave -optics
effects that have been ignored in eq. (1).
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Fig. 13-Wave-optics effect in highly multimoded slab (a). The curve in (b)
exhibits the departure from ray optics. Note the overshoot of 14 percent, which is
independent of wavelength.

APPENDIX B

Profile Distortion

In this Appendix we derive formulas relating to the change of shape
of the index profile of a fiber as the wavelength varies (independently
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of a possible change of scale). These formulas relate the distortions
measured directly on the fiber to measurements on bulk samples.

Let us assume that we have normalized the profiles to unity at r = 0.
The ordinate of the curve is 1 - n, where n = N/20, N (r) 1

- n2(r)/94, and 2i = 1 - n!. From the normalized profiles at two
closely spaced wavelengths, we evaluate the profile distortion d (r)

d (r) = xon/axo. (16a)

This may be written as

d = c-i[xo(aP/axo+P(X/C)(aciax), (16b)

where P (r, Xo) is the normalized (but uncorrected) Siber transmission,
C (r, X) the leaky -ray correction factor, and X is the parameter
defined in (9).

C and the differential correction term (x/c)(ac/ax) can be
obtained from Fig. 5.

Let us now consider the curve S (n) where S = -X on an / aX  that
can be obtained from measurements on bulk samples. From the value
of A and the cladding index no, we calculate the index on axis no. It
is not difficult to show [e.g., from eq. (14) of Ref. 11] that the dis-
tortion parameter d defined in (16) is related to the dispersion param-
eter S defined above by

d(0) = CD./A(n!, So)]Cs(n) - os(1)J,
where we have defined

(17)

Do = 1 - (Xo/no) (ono/ 8Xo),
and

(18)

S (n) -S (n (19)

is considered a function of n. In particular, s (1) = S(nc) - S(no). It
is clear, from its definition and from (17), that

d(0) = d (1) = 0. (20)
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Multimode Optical Fibers

By L. G. COHEN, H. W. ASTLE, and I. P. KAMINOW
(Manuscript received May 24, 1976)

A newly developed technique for directly measuring fiber dispersion
in the frequency domain as a function of wavelength is described. Spec-
trally filtered white light from a xenon arc lamp is sinusoidally modulated
in the range 0 to 1 GHz by an electrooptic modulator and injected into
a fiber. The procedure is to vary the modulation frequency and measure
the corresponding sideband output power with a photomultiplier and
spectrum analyzer. Ratio measurements between the test fiber and a short
reference fiber give the baseband frequency response. A number of ger-
manium- and boron -doped fibers have been examined. The least dispersive
borosilicate graded -index fiber has a 1 dB bandwidth of 1 GHz, after 1.07
km of propagation at X = 908 nm. The width broadens gradually with
increasing wavelengths up to X = 1100 nm.

I. INTRODUCTION

Optical fiber waveguides are potentially useful for transmitting
analog signals as well as digital pulses in communication systems. The
information -carrying capacity of such a waveguide is determined by
its impulse response in the time domain or equivalently in the fre-
quency domain by the spectral transfer function, which is the Fourier
transform of the impulse response. Most of the previous studies' of
fiber dispersion have analyzed the fiber response to short laser pulses.
In these studies we are limited to wavelengths for which pulsed laser
sources are available. The frequency domain method described here
allows accurate measurements of fiber response to be made over a
wide range of wavelengths using an incoherent broadband source, such
as a xenon arc lamp.

The simplicity of the method rests on the observation2 that for an
incoherent optical carrier the fiber response behaves quasi -linearly in
power. The implication for the optical power p (t) and its transform
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P (co) is

Pc.t(co) = G (w) X P1() (1)

or
Pont = g (0 *Pin (0, (2)

where G(w) is the power transfer function of the baseband frequency
w, g(t) is the power impulse response and * denotes convolution. This
quasi -linear behavior results when fluctuations in the optical carrier
frequency are sufficiently large and rapid. Thus, the phase of an
incoherent optical source of width AX = 1 nm fluctuates on average
through one cycle in 3 X 10-12 s for X = 1000 nm, but the characteristic
time required to observe intensity modulation of the carrier at fre-
quencies less than 10 GHz is greater than 10-4° seconds. Hence, the
power -linearity approximation holds for most practical measurement
methods utilizing sources whose spectral bandwidth (AX) is greater
than 1 nm. Although (1) and (2) have been derived rigorously by
Personick,2 we present a simple physical derivation later in this paper.

Modern multimode fibers are fabricated with smoothly graded
refractive index profiles that have a maximum on the core axis and
decrease gradually with an approximately power law variation until
they merge into the cladding region. The optimal profile, at a particular
wavelength, is the one for which the group velocity variation from
ray to ray most nearly compensates for the corresponding path length
variation.' Dispersive refractive index differences between material
constituents (B203 and Si02 for borosilicate fibers; Ge02 and Si02
for germanium -doped fibers) causes modal group velocities to depend
not only on the index profile but also on the wavelength (profile
dispersion). Consequently, the exponential parameter, a, which
characterizes the optimal profile, may deviate from a = 2 and is
wavelength dependent." Recent experimental investigations have
shown that graded -index fibers can reduce intermodal dispersion by
almost two orders of magnitude from what it would be in a step
ungraded -index multimode fiber.'

This paper describes a newly developed technique for directly
measuring fiber baseband frequency response in spectrally filtered
incoherent light. The spectral test set is particularly suitable for
wavelength -dependent studies over a wide range of wavelengths
without resorting to a multitude of monochromatic mode -locked laser
sources. Instead of injecting pulses to measure a fiber's impulse response,
we inject an incoherent cw optical carrier that is intensity -modulated
by a frequency -tunable sinusoidal signal. Then, we compare the intensi-
ties of the sine wave envelopes at the input and output ends of the
fiber. Sideband power is detected by a photomultiplier and displayed
on a spectrum analyzer. The receiver dynamic range is sufficient to
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measure transmission through kilometer -long fibers with an accuracy
of ±10 percent over an electrical bandwidth of de to 1 GHz and is
equivalent to measuring 20. 0.1 ns full rims impulse response widths.
Measurement precision is better in the frequency domain than the
time domain, because the deconvolution process, for removing signal
distortion caused by the limited detector bandwidth, is simply an
arithmetic division of output by input frequency response rather than a
cumbersome deconvolution integral of pulse shapes. One shortcoming
of the present technique is that we do not measure the input to output
phase change of the sinusoidal modulation and therefore cannot
construct the impulse response directly from the power frequency
response data. However, approximate mathematical methods are
available for determining the phase from the magnitude of a transfer
function. Measurement of the phase change may also be feasible.
Nevertheless, unless the phase distortion is extreme, the information
capacity of the fiber will be indicated by the magnitude of the transfer
function.

Previous dispersion measurements in the frequency domain were
made by comparing the best spectra of longitudinal modes from a
free -running laser before and after transmission through a fiber8, by
externally modulating a laser9 or by directly modulating a light -
emitting diode (LED).'° One disadvantage of the technique described in
Ref. 8 is that the fiber frequency response can only be measured at
discrete frequencies corresponding to integral multiples, of the longi-
tudinal mode spacing of the laser (100 -MHz increments for a 1.5-m
cavity length). The other techniques were used to make frequency
response measurements only at one wavelength from dc to several
hundred MHz and had less dynamic range than our system. Personick
et al. used wide bandwidth LED light OA 40 nm at X = 900 nm) to
measure primarily material dispersion effects in a 1 -km fiber.° Our
technique uses narrow spectral width incoherent light to measure pri-
marily intermodal dispersion effects in kilometer -long fibers.

1.1 Technique and apparatus

The measuring apparatus is illustrated in Fig. 1. The xenon arc
lamp output passes through one of a set of narrowband interference
filters and is focused into a LiTaO, electrooptic intensity modulator.
The modulated beam is then refocused into either the fiber under test
or a short length (2 m) of reference fiber. The fiber output is then
detected by a sensitive broadband photomultiplier and the baseband
modulation components are displayed by a spectrum analyzer. The
component at modulating frequency w from the reference fiber is taken
as Pin (w) and the component from the test fiber as Pout(w).

The LiTa03 modulator was designed" for use with a 1.06 -Am laser
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Fig. 1-Experimental arrangement for making spectral dispersion measurements
in the frequency domain.

and has too small an aperture -to -length ratio to pass the focused
incoherent beam completely. Nevertheless, it has proved adequate
for these early measurements, while a more -suitable modulator was
being built. The LiTa03 rod is 0.25 mm by 0.25 mm by 10 mm and its
low -capacity coaxial housing allows for modulation frequencies above
1 GHz. Typically, 3 W of drive power from the rf sine wave generator
is needed to provide 40 -percent modulation. An Ehringhaus compen-
sator biases the modulator in its linear region at the operating wave-
length. The intensity transmitted by the LiTa03 crystal and compen-
sator placed between crossed polarizers is proportional to sine 172,
where r is the phase retardation of crystal and compensator, consisting
of a dc bias plus time -dependent term. Dispersion of the optical bias
over the spectral width AX of the input filter is an important considera-
tion in system performance. For LiTa03 at X = 800 nm,

XL
dr dc/dX =

2XL - (dB / dX -B /X) rA.-; -1.9 X 10-27L, (3)

where rd, is the phase retardation bias, X is the wavelength in nm,
L is the modulator length in mm, and B is the difference between
extraordinary and ordinary refractive indices. For L = 10 mm and
AX = 1.5 nm, the bias point is smeared by as much as 0.29r radians
(neglecting the smaller effect of opposite sign due to the compensator).
Thus, wavelengths at the spectral band edges will have somewhat
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different modulation indices and phases compared with the band center.
It was found that bias ranges Ord, corresponding to AA > 10 nm could
give erroneous results, for example, P(w)/P(0) > 1.

Observed fiber output power levels are on the order of 1 nanowatt.
The Varian VPW-154/2 static crossed -field photomultiplier tube*
is particularly suitable for our broadband low light level application.
Due to the crossed electric and magnetic fields formed by applied
voltages and integral magnets, detected photoelectrons travel a
cycloidal path and are multiplied by six dynodes before being collected
at the anode. These short tightly focused electron paths result in the
high 0 to 2.5-GHz detection bandwidth necessary for our measure-
ments. The tube has an InGaAsP photocathode sensitive to far
infrared wavelengths up to 1100 nm and its six dynode stages provide
3 X 105 gain. The resultant anode sensitivities yield high signal-to-
noise ratios with 10-KHz spectrum -analyzer bandwidths. Additional
problems of rf interference from the high -power rf oscillator picked
up on the spectrum analyzer were eliminated by carefully shielding
the modulator circuitry and the photomultiplier housing.

1.2 Frequency domain measurements

Input -to -output power -transfer functions have been measured from
dc to 1 GHz in a variety of germanium and boron -doped kilometer -
length fibers. Wavelength -dependent measurements were made by
filtering the white arc lamp light through a series of interference
filters whose center wavelengths ranged from X = 650 nm to X = 1100
nm. To reduce modulator errors and material dispersion effects," the
filter bandwidths were less than : 1.5 nm for 650 nm < A < 908 nm,
2.4 nm for 920 nm < A < 980 nm, and 10 nm for 1040 nm <
< 1100 nm.

The least -dispersive test fiber was a graded borosilicate fiber with
a 1.8, which had a 1 -dB bandwidth of 1 GHz after 1.07 km of
propagation at A = 908 nm. Figure 2a illustrates its sideband output
power normalized to de, P(f)/P(0), plotted versus modulating
frequency for six wavelengths in the range 650 nm < A < 1100 nm.
The frequency bandwidth increases with increasing wavelength. This
trend is clearer in Fig. 3a, which shows relative sideband power
plotted versus 14 wavelengths for a fixed modulation frequency,
f = 990 MHz. The 25 -percent increase in bandwidth in the range
650 nm < A < 1100 nm is partially due to material dispersion effects,
which decrease as the wavelength increases. Material dispersion should
cause a 1 -dB amplitude roll -off after 1 GHz for 1.5-nm source spectral

*Varian/LSE Division, Palo Alto, California.
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Fig. 2-Power transfer function amplitude vs. modulation frequency with optical
wavelength as parameter. (a) Boron -doped graded -core fiber. (b) Germanium -doped
graded -core fiber.

bandwidths centered about wavelengths between 650 nm < A < 750
nm. If the sideband amplitudes were increased by 1 dB between 650
nm < A < 750 nm to compensate for material dispersion, then the
resultant data points in Fig. 3a would be independent of wavelength
for 650 nm < A < 1100 nm.
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Figure 2b illustrates power transfer functions for a graded ger-
manium -doped fiber with a 1.9, which does not have a near -optimal
profile for minimum modal dispersion. As a result, it has a relatively
narrow 1 -dB bandwidth of 150 MHz after 0.9 km of propagation at
a wavelength of 908 nm. Material dispersion effects should bgljgibly
small here because amplitude roll -offs are much faster than Figs. 2a
and 3a. Hence, profile dispersion is responsible for the wavelength
dependence of the bandwidth broadening in this fiber. The wavelength -
dependent broadening is much greater for this germanium -doped fiber
than for the previously described boron -doped fiber. Figure 3b shows
relative sideband power plotted versus 14 wavelengths for a fixed
modulation frequency, f = 100 kHz. The bandwidth more than doubles
for 650 nm < X < 1100 nm. Comparison of curves a and b in Fig. 3
suggests that wavelength variation of profile dispersion is significantly
greater in germanium -doped fibers than in boron -doped fibers. This
observation is qualitatively consistent with recent refractive index
profile measurements by interference microscopy on thin polished fiber
samples."

1.3 Equivalence of impulse and frequency domain measurements

We can prove (1) and (2) neglecting material dispersion for the
simple case of a multimode fiber transmitting an incoherent optical
beam without mode mixing as follows. Although a general proof is
given by Personick,2 the following proof is more relevant to our
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Fig. 3-Power transfer function amplitude vs. optical wavelength with modulation
frequency as parameter. (a) Boron -doped graded -core fiber. (b) Germanium -doped
graded -core fiber.
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measurement technique. Assume an input amplitude pulse defined by

ein(t) = v(t)eiwot,

and corresponding power pulse defined by

pin (t) = I v (t) 12,

(4)

(5)

where wo(t) is the fluctuating frequency of the incoherent optical
carrier and v(t) is the envelope of a short pulse with peak at t = 0. If
the input pulse excites N modes of the fiber such that the fractional
power in the v-th mode is I cp12, then the output is

N
eout(t) = E cpv(t - T)eiwo(t-To (6)

N N
Pout(t) = E E cyc:v(t - Tov*(t - Tp)ewo(TP-7,),

p-4 ,A=.1

where Ty is the delay for v-th mode and

(7)

N
E lcy12 = 1. (8)
vmi

Now pout (t) is measured by a detector with response time T1 that is
usually comparable with the output pulse width, say T2 > 10-10 s. The
incoherent optical carrier at X 103 nm with AX 1 nm has a
frequency bandwidth Acoo = 27cAX/X2 2r X 3 X 1011 Hz that can
be regarded as arising from a random frequency modulation of the
carrier with modulation frequency co. and deviation frequency Co d
both roughly equal to Acoo. But, dwo/dt = comwd cz-,1 (Acoo)2 for an FM
signal. Then, the phase factor coo(rA - r,,) will fluctuate through a
phase range AO of at least

 = (dwo/dt) - Tv)Ti (Acoo)2(rp - Ty)Ti

(.6,04)2T1112/N radians (9)

during the characteristic measuring time T1 for an N -mode fiber. If
(rp - Tv) is the minimum delay difference between adjacent, equi-
spaced modes, then T need not be smaller than N(T, - r), a lower
bound on the output pulse width as assumed in (9). Thus, we find
 > 100r for N = 100 and T1 = T2 > 10-10 s, so that all terms in
(7) for v vanish on averaging over T. In the present experiment,
T = 10-4 s as determined by the spectrum analyzer bandwidth so that
hap >> 100r. Spatial incoherence of the input beam further reduces' the
crossterms in (7).
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The observed power is then

N

P out(t) = E lc,1210 - 7-012, (10)

and if we let 1 v (t) 12 be the unit impulse uo(t), we have the impulse
response

g(t) = jcp127,10(t - Ty). (11)
v=1

The Fourier transform of the impulse response yields

G (6)) = f g We- (It

N
= E (12)

y

where w is the frequency of the envelope of the modulated carrier and
G(w) is the complex power transfer function.

Next, consider a sinusoidally intensity -modulated incoherent carrier
incident on the fiber. This is the experimental method used here. We
wish to show it to be equivalent to the impulse response method. For
sufficiently small modulation index m, the electrooptically modulated
input to the fiber is

e;n(t) = (1 m cos cot)teiwot (13)

pin = (1 + in cos cot). (14)

Since we employ a spectrum analyzer in the measurements, we are
concerned only with the term at the fundamental frequency co in (14).
As before, the input excites N modes of the fiber and the output is

N

cout(t) = c,eiwo(1-70[1 + in cos w(t - 7-0]4

N N

(15)

Pout(t) = E E crepeiwo(rp--7.)

X [1 + m cos w(t - r,)]1[1 + in cos w(t - (16)

But we can use our earlier argument for the random carrier to eliminate
all terms for v µ in (16). If we retain only the term at the funda-
mental frequency, we obtain the observed power

Pout (t) = in E I c,12 cos co (1 - rw) = Re S 772 E
Ile-iwr,eiw1}

(17)
v=1

I v=1
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Then, with Ty = 0 for pin (t),

Pout (co) = G (co) = E I cy 128--" (18)
P in (W) v=1

as in (12), which completes the proof of equivalence for no mode
mixing. With mode mixing, Ti, becomes a continuum,' and we must
simply replace the sum in (12) and (18) by an integral over the range
of T, i.e.,

Th

G (CO = f c (r')12e-'1"jdr' = I G (co) I e-i.Toeie,
-T.

where

(19)

T = TO + y
(20)

and To is the (large) average delay, r' is the deviation from To, and

- T8 < < Tb is the range of allowed modal delay. In a similar way
for (18), we can let

Tv = TO + Tv. (21)

At present our measurements yield only I G(co) I . The phase angle
0(w) is required to obtain the impulse response g (t) from

g (t) = -1 f P° G (co)e"do.271- ,
(22)

Direct measurement a 1 -km long fiber con-
tains many modulation wavelengths. However, if we assume that the
fiber behaves like a minimum phase network, i.e., G(jw) has no zeros
in the right half of the complex plane, then we can calculate 0(w) from

I G (w) I . The average delay factor e-iwro is not a minimum phase func-
tion." However, G(co)ei4'7-0 in (18) and (19) appears to exhibit approxi-
mate minimum phase behavior in some, but not all cases. In the next
section we illustrate the approximate minimum phase behavior as ob-
tained from a comparison of the g (t) calculated from I G(w) I with the
measured g(t) for a particular fiber. A later publication will treat the
minimum phase approximation in more detail.

On the other hand, the measured g (t) is real so that G(co) may be
obtained directly from pulse measurements using (12) without any
assumptions as we also show below.

1.4 Correlation with time domain measurements

The impulse response g(t) was measured by injecting narrow im-
pulses (2o- = 0.4 ns) from a GaAs laser and observing the broadened
output. Time domain measurements were fast -Fourier -transformed to
produce the solid curves shown in Fig. 4a and b for the boron and
germanium -doped fibers described in Figs. 2 and 3. Time domain data
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for the low dispersion borosilicate fiber (inset Fig. 4) was deduced from
shuttle pulse measurements after nine trips through the fiber. Fourier-
transformed time domain results are compared in Fig. 4 with directly
measured frequency domain data points measured in incoherent light
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at the same wavelength, X = 908 nm. The qualitative agreement is
quite good and the quantitative agreement is generally within 20
percent. Dashed curves in Fig. 4a and b show gaussian approximations
to the computed solid curves given by

G(w) I R e ("'')2"3, (23)

where 20 is the full rms pulse width of the measured impulse responses,
g (t) , illustrated in the insets of Fig. 4a and b (2o- 0.19 ns/1.07 km
for the boron -doped fiber a; 2a 1.8 ns/0.9 km for the germanium -
doped fiber b. Thus, the gaussian fit to I G(w) I can give an estimate
of the pulse width 2cr without knowledge of 0 (co) .

In both cases a and b, the gaussian approximations to I G I are
accurate down to the 0.75 -amplitude point in the frequency domain.
The approximation does not fit the germanium fiber b data, when

G (co) I < 0.75, because its impulse response is asymmetric with a long
leading edge.

The usefulness of the minimum phase approximation, for inverting
frequency domain amplitude spectra back into the time domain, was
tested on data in Figs. 2b and 4b for a germanium -doped fiber. A
Hilbert transform was used to compute the minimum phase function,
0(f), from the In I G (w) I = -n (0)),14

0(f) -I n (.10)j_t2dfo(24)
Hilbert transforms are particularly easy to evaluate when the given
function, n ( f), is a piecewise-linear function consisting of a series of M
straight-line segments. In that case its second derivative consists of a
sum of impulses and the integral formulation of (24) can be replaced
by a summation."

1 Al0(i.) = - - E B (K)[(.f. - fK) in If. -
7 K=1

+ (f. + fK) In If. + f/c I J, (25)
where

B (K) = A(K 1) - A(K)

A(K) - n(fic-Fi) - n(fK)
fir+1 - fir

Figure 5a uses the data in Fig. 4b to compare : curve 1, the measured
impulse response shown in Fig. 4b, with detector distortion decon-
volved (2a = 1.81 ns), and curve 2, the time pulse obtained by taking
the Fourier transform of 1 and using its amplitude spectrum and
assumed minimum phase to compute the impulse response (2o- = 1.77
ns). Curve 3 shows the time pulse calculated from frequency measure-
ments in Fig. 4b and the corresponding piecewise linear minimum
phase function (2a = 1.89 ns). The rms pulsewidths and qualitative
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structure of the three pulses in Fig. 5a agree very well, which implies
that the minimum phase function can be used to construct a good
facsimile of the actual impulse response.

Minimum phase functions were also calculated for data in Fig. 2b
and used to construct the wavelength -dependent impulse response
shapes in Fig. 5b. The results show that the impulse response becomes
wider and more asymmetric when the signal wavelength is reduced
from X = 1100 nm (20- = 1.2 ns) to X = 650 nm (20- = 2.5 ns).

II. CONCLUSIONS

The baseband frequency response of kilometer -long graded index
fibers have been directly measured over a 0 to 1 GHz frequency range
for wavelengths extending from the visible (X = 650 nm) into the
infrared (X = 1100 nm). The accuracy of individual sideband measure-
ments is approximately 10 percent, which is equivalent to a time
resolution of 2o- = 0.15 ns (assuming a gaussian frequency roll -off
function e[-(0'')2/2] at f = 1 GHz). By contrast, full rms pulse width
measurements in the time domain would require a precision of
4(0.15)2 + (20.02 - 2o-i rr:', 0.02 ns to achieve the same resolution
from measurements deconvolved from detector -limited input pulse
widths with 2cri ti 0.4 ns.

The major advantage of the spectral technique described here is
its convenience for making wavelength -dependent measurements with
a tunable source of incoherent light.

The least -dispersive -measured fiber, with NA fr:-.1, 0.14 and graded
borosilicate core, had an 80 -percent transmission bandwidth, F (1 dB)

1 GHz/1.07 km (X = 908 nm, 0X 1.4 nm), which is approxi-
mately equivalent to a full rms pulse width 2o- = 0.2 ns/km. The fiber
bandwidth broadened by about 25 percent over the wavelength range
650 nm < X < 1100 nm. However, a significant fraction of that
increase between 650 nm < X < 820 nm can be attributed to material
dispersion effects, which are insignificant for X > 820 nm. For com-
parison, a germanium -doped fiber with NA 0.2 had a bandwidth
F (1 dB) 0.15 GHz/0.9 km (X = 908 nm, AX 1.4 nm), which is
approximately equivalent to a full rms pulse width 2a = 2 ns/km.
Fiber bandwidth broadened by about 250 percent due to profile
dispersion over the wavelength range 650 nm < X < 1100 nm. Less
than 5 percent of this wavelength dependence can be attributed to
material dispersion caused by the 1.5 nm spectral bandwidths of the
filtered incoherent signal light. The fact that germanium -doped fibers
exhibit much more profile dispersion than boron -doped fibers is in
good agreement with interference microscopy measurements on thin
fiber samples."
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The rms pulse width 20- can be estimated from the transfer function
amplitude I G MI by assuming a gaussian distribution (23). In some
cases, the shape of the pulse can be obtained by assuming a minimum
phase transfer function. This latter method was used to compute
wavelength -dependent time pulses from frequency response measure-
ments in the germanium -doped fiber described. Profile dispersion made
impulse response shapes wider and more asymmetric when the signal
wavelength was reduced from X = 1100 nm (2a = 1.2 ns) to
A = 650 nm (2a = 2.5 ns).
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Geometrical Uniformity of Plastic Coatings
on Optical Fibers
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The concentricity and uniformity of nearly concentric transparent
plastic coatings extruded onto optical fibers are determined by a sensitive,
nondestructive optical technique. The method is based on the location of
unique fringes in the backscattered light arising from a beam that is inci-
dent at right angles to the fiber's axis. Results from both uniform and dis-
torted coatings are shown, and instrumentation suitable for on-line coating
diagnosis and correction is presented.

I. INTRODUCTION

The use of plastic coatings in optical -fiber technology is multi-
faceted. The refractive index of many polymer materials is less than
that of fused silica, enabling them to be used directly as the cladding
for fused silica cores.' -3 The resulting waveguides, suitable for many
communication applications,4.5 are relatively easy to fabricate, possess
low loss and large numerical aperture, and are LED -compatible.

Plastic coatings are also applied as an overcoat to glass -clad optical
fibers. They reduce microbending loss,"'' maintain the pristine strength
of the fibers,8 and provide for abrasion and mechanical protection of
the fibers during cable -manufacturing processes. In yet other appli-
cations, coatings have been proposed as a method of decreasing cross-
talk between optical fibers9 and as a way of improving the long-term
stability of fibers in uncontrolled environments.

To be most effective in all of the above applications, the coating
must be applied uniformly and concentrically around the fiber. This
is a necessity for routine handling and splicing as well as for optimum
strength and transmission characteristics.

The coatings are applied by various methods, and techniques have
been proposed and implemented with varying degrees of success to
aid in their concentric application. In general, micropositioning and
microscopic observations are necessary to align the fiber at the start
of each application" and only by preparing and microscopically
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examining sections of the fiber after the run can the quality of the
coating be assessed. In addition to being time consuming and destruc-
tive, microscopic examination may not detect certain problems, such
as geometrical nonuniformities that can seriously impair the trans-
mission characteristics of the fiber. More importantly, real-time
information to enable the fabricator to make corrections, evaluate
various applicators or stop the process completely, is not available
as the coating is being applied.

We present here a sensitive new method for analyzing transparent
coatings on optical fibers. The technique is optical in nature being
based on the location of unique fringes in the backscattered lightw
arising from a beam that is incident at right angles to the fiber axis.
As such, it is inherently nondestructive and noncontacting. Most
importantly, it is capable of providing in -line information on coating
concentricity and uniformity as the coating is being applied.

II. MEASUREMENT THEORY

Consider the two rays of light, I and II in Fig. 1, incident upon a
coated optical fiber. Let the index of refraction and the radius of the

RAY I

a

I -4
INCIDENT
RAY II

INCIDENT 4.40. - =

I

b

EMERGENT
RAY II

"'EMERGENT
RAY I

Fig. 1-Paths of rays of minimum deviation in a coated optical fiber. The situation
is symmetric for rays incident upon the lower half of the fiber.
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coating be n2 and a, respectively. For the purposes of the current
analysis, the internal details of the fiber (indicated by the broken
circle), which can be either an unclad, step -index, or graded -index
variety, are neglected, and we let its index of refraction be n1 and its
radius be b. We also neglect multiple internal reflections.

Ray I is refracted, traverses the coating, and is then reflected at the
coating -air interface and exits making an angle of minimum deviation
ch with its incident direction given by'°

) 2 ( 729)1'icbi = 4 sin -1 [-2 (1 - - 2 sin-' [- 1 - -= (1)
n2V3 /3- 4
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Fig. 3-Location of the minimally deviated ray II, as a function of n2b/a for
ni/n2 = 1.02, 1.04, and 1.06.

A plot of (DI versus n2 is given in Fig. 2. A maximum of intensity
dependent only upon the refractive index of the coating, n2, exists at
this angle. Beyond (Di, the backscattered pattern cuts off into a low
level continuum.

Ray II, after being refracted by the coating, traverses the fiber,
emerges into the coating, and is reflected by the coating -air interface.
The ray then again enters the fiber and emerges into the coating and
from there leaves the fiber, making an angle of minimum deviation c13ii
with its incident direction. 4 is a function of several angles and of ni
and n2.1'

Plots of III determined by computer as a function of n2b/a with
n1/n2 as a parameter are shown in Fig. 3 for ni/n2 = 1.02, 1.04, and
1.06. For these calculations, n1 was held fixed at the fused -silica value
of 1.457.
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Figure 4 presents c1311 as a function of coating thickness (a - b) for
n1 = 1.457 and n2 = 1.400. It is seen that a 1-tim variation in thickness
corresponds to an approximately 0.1 -degree shift in ctn.

It is important to note that ray I does not see the fiber at all. For a
given n2, however, a critical fiber radius be (or alternatively, coating
thickness) will exist beyond which ray I will no longer exist. This
condition is given by"

be = a/n2. (2)

The disappearance of ray I is thus a very sensitive indication of a
specific coating thickness. For example, if b = 50 Am, a typical value,
ray I will not be observed if the coating (n2 = 1.4) is less than 20 -Am
thick. In general, the status of ray I is only an additional indicator,
and coating -thickness measurements are based on the location of ray
II. It is also important to note that distortions of the coating or fiber
from the ideal circularity assumed here can have a significant effect
on the location of 431 and 4311.12

III. MEASUREMENT TECHNIQUE AND RESULTS

The experimental arrangement to observe the backscattered pattern
is shown in Fig. 5." Light from a cw He-Ne laser strikes plane
mirror M1 which reflects it to oscillating mirror M2. This serves to
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Fig. 4-Value of (Dri as a function of coating thickness a - b for a concentric
and geometrically uniform fiber.
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LASER

SCREEN

(ROTATABLE)
FIBER

CAMERA

Fig. 5-Experimental arrangement to observe the backscattered patterns.

transform the approximately 1 -mm circular beam into a line 1 -mm
wide, with length determined by the amplitude of oscillation, thus
allowing for observations on an extended length of coated fiber, upon
which the light impinges after passing through a slit in the observation
screen. The fiber is held in a rotatable mount and the backscattered
light falling on the screen is photographed with a 4 X 5 framing
camera. All of the results to be presented were obtained in this manner
with stationary fibers.

A series of patterns, observed on the screen arising from a severely
nonconcentric coated fiber, is shown in Fig. 6. The patterns are ob-
tained as the fiber is rotated in 30 -degree increments. The approxi-
mately 150 -Am -diameter glass fiber, also displayed in Fig. 6, is coated
with a silicone resin which varies in thickness from a maximum of
approximately 85 Am to a minimum of 8 Alm. In this and all subsequent
results, there is a one-to-one correspondence between a region in the
backscattered pattern and a region in the approximately 65 -mm
illuminated length of fiber. The main fringes arising from rays I and
II are labeled in the 0- to 150 -degree orientations. The 0 -degree origin
of the rotational increments in this case was arbitrarily chosen to
coincide with a maximum visibility of rays I and II. The light distri-
bution exhibits large variations as the fiber is rotated due to the
nonconcentricity of the coating. For example, in the 30 -degree orien-
tation, only one of the fringes corresponding to ray I appears; at 120
degrees, only the other one appears ; and at 60 degrees both of them
are absent. In all orientations, the fringes corresponding to rays II
vary in location and in some positions in visibility. If observations of
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the backscattered pattern were made for two mutually perpendicular
orientations while such a fiber was being pulled, it would be readily
ascertained by the visual appearance of the light distribution alone
that the coating was nonconcentric and corrective measures could be
taken.

An optical fiber with a somewhat improved coating concentricity
is shown in Fig. 7 along with the resulting backscattered patterns
taken at 30 -degree increments. In this case, the silicone -resin coating

CROSS SECTION OF FIBER

SCALE: 40 JIM

60°

90°

120"

150°

180°

210

240

270

300°

330°

Fig. 6-Silicone-resin-coated fused -silica fiber with large nonconcentricity and
associated backscattered patterns.
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240°

270°

300°

330°

Fig. 7-Silicone-resin-coated fused silica fiber with coating thickness varying
from 24 JAM to 52 ism and associated backscattered patterns.

on the approximately 145 -Am -diameter fiber varies in thickness from
24 ,um to 52 gm. The fringes arising from rays I and II are labeled
in the 0- to 150 -degree orientations. The light distributions exhibit
considerably fewer variations compared with the previous fiber. Visual
observations again are sufficient to detect nonconcentricity.

The silicone -resin coating on the optical fiber shown in Fig. 8 has a
fair degree of concentricity, varying in thickness from approximately
45 Am to 65 Am. The backscattered light patterns shown in the same
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CROSS SECTION OF FIBER

SCALE: I-I 60 pm

90°

180°

270'

Fig. 8-Silicone-resin-coated fused -silica fiber with coating thickness varying from
45 Am to 65 Am and associated backscattered patterns at 90 -degree increments. As
in Figs. 6 and 7, a 6.5 -cm length of fiber is illuminated.

(a)

(b)

(c)

CROSS SECTION
OF FIBER

AT START OF
COATING RUN
SCALE:

I-I 30 pm

CROSS SECTION
OF

FIBER AFTER
ADJUSTMENT
OF COATING (d)
APPLICATOR

SCALE:
I-1 25 pm

(e)

(f)

Fig. 9-On-line use of coating analyzer to improve concentricity.
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figure were taken at 90 -degree increments and indicate their sensitivity
and ability to detect coating nonconcentricity from observations made
in two perpendicular directions.

An example of the technique in use is afforded by the results in

Fig. 9. The approximately 105 -Am -diameter glass fiber shown in Fig.
9a is a sample from the start of a silicone -resin -coating run. The
coating thickness varies from 23 Am to 36 Am. This nonconcentricity
is apparent in the two scattering patterns, Fig. 9b and c, taken at
90 -degree orientations. After adjusting the coating applicator while
observing the patterns for symmetry, as depicted by Fig. 9e and f,

the coated -fiber sample appears as in Fig. 9d. The coating thickness
now varies by less than 2µm, being about 28 Am to 30 Am thick.

The arrangement by which the real-time observations are made is
depicted in Fig. 10. The beam from a 5-mW He-Ne laser, after being
expanded in a manner similar to that of Fig. 5, strikes a beam splitter.
A portion is transmitted directly to the fiber while the remainder, after
reflections at the plane mirrors, impinges upon the fiber at right angles

PLANE

PLANE
MIRRORS

LASER

OSCILLATING

I P*.

$

MIRROR

BEAM
SPLITTER

COATED
- OPTICAL

FIBER

OBSERVATION
SCREEN B

- OBSERVATION
SCREEN A

Fig. 10-Setup to monitor coating properties in on-line situation.
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CROSS SECTION OF FIBER

SCALE: 40 pm

Fig. 11-Severely distorted plastic coating and associated backscattered-light
patterns.

to the direct beam. The backscattered patterns are visually detected
on two observation screens. Other components of the scattered light
overlap the backscattered patterns, but due to their very different
appearances, lower amplitudes and shifted locations present no
problems.

The entire setup is mounted on a plate fastened to an z-y posi-
tioner to allow real-time alignment with the fiber when necessary.
The patterns are invariant to lateral motions of the fiber within the
incident beams.'° The position of the apparatus between the coating
applicator and the take-up drum is determined by the coating state
(before or after drying or curing) to be monitored. It is readily ap-
preciated that the observation screen can be replaced or supplemented
with detectors to automate the coating analysis.

In addition to observations of nonconcentricity, the technique is
very sensitive to geometrical deformation and nonuniformities. Figure
11 shows a severely deformed silicone -resin -coated fiber along with
some of its associated backscattered patterns. Such patterns indicate
a problem and if corrective measures are not effective, the entire
process can be stopped before more time and material were wasted.

The silicone -resin coating on the fiber shown in Fig. 12a appears to
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(b)

(c)

Fig. 12-Nonuniformly applied coatings and associated backscattered patterns.
(a) and (b) Silicone resin. (c) Semitransparent polymer.

have been applied in some helical fashion. This is readily detected and
observed in the associated scattering pattern, Fig. 12b.

The backscattered pattern of Fig. 12c arising from another coated
fiber indicates a nonuniform coating. Despite the semicrystalline
structure of the coating material applied to the fiber in this case, which
renders it somewhat less transparent than silicone, the pattern is clear
and can be used to analyze the coating.

IV. CONCLUSION

A sensitive, noncontacting, and nondestructive optical technique
has been developed to evaluate the geometrical quality of plastic
coatings on optical fibers both in laboratory and on-line situations.
The method should prove valuable not only in analyzing coatings
but also in developing the coating facilities themselves.

The technique has been applied to a variety, but not all, of the
coatings currently under development. A necessary requirement for its
implementation is that the coating material should be fairly trans-
parent, a condition found satisfied by most of the plastic materials
examined.

The theory of determining coating thickness is applicable only
to the case of concentric coatings and should therefore be used with
caution in other situations.
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While visual observations have been emphasized, it would certainly
be advantageous to automatically detect and electronically process the
backscattered-light signal. This can be accomplished by known
techniques utilizing photodiode arrays or vidicon scanning.

The method presented should also be applicable to extremely thick
coatings as might be envisioned in fiber pigtail, jumper, or cabling
operations and should aid in the production of uniform coatings in
those areas as well.
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This paper describes some techniques for efficient coding of two-tone
(black and white) facsimile pictures. These techniques use the two-dimen-
sional correlation present in spatially close picture elements to change the
relative order of transmission of elements in a scan line. This ordering
increases the average length of the runs of consecutive black or white ele-
ments in the ordered line, making the data more amenable to one-dimen-
sional run -length coding. We describe several variations of the ordering
scheme, which differ in complexity and coding efficiency and evaluate
their coding efficiency. For a variety of 8-1/2 inch by 11 -inch typed docu-
ments, road maps, and circuit diagrams scanned with 200 lines/inch,
these techniques reduce the bit rate by 30 to 50 percent over and above the
one-dimensional run -length coding along a scan line; for single-spaced
typed material with 100 lines/inch, this reduction is about 25 percent.
We compare one of our techniques with a two-dimensional compression
technique recently proposed by Preuss. We show that our technique results
in an entropy about 10 to 18 percent lower than that obtainable through
Preuss' technique.

I. INTRODUCTION

Transmission and/or storage of two-tone (black and white) pictures,
such as weathermaps, printed texts, etc., have been receiving con-
siderable attention for some time. The practical importance of this
problem is evidenced by the number of facsimile communication
systems that are now available.' As the cost of electronics decreases
faster than transmission costs, it is becoming advantageous to use
sophisticated facsimile terminals to reduce transmission costs and time,
and, indeed, many of the recent facsimile communication systems have
resorted to various source encoding techniques to utilize the statistical
redundancy between the spatially close picture elements to reduce
the bit rate required for transmission? -5

The picture elements along a scan line of a facsimile picture consist
of runs of white picture elements (pels) separated by runs of black
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picture elements. Values of the spatially close picture elements are
significantly correlated. Source coding techniques, which do not reduce
the "information content" of the pictures (i.e., it is possible to con-
struct the original picture exactly without any degradation from the
coded picture) use the statistical redundancy either along a single
scan line or along many scan lines. One-dimensional run -length coding
techniques' code the runs of black or white elements along a scan line.
Development and performance of many different codes to code the
runs have been a subject of many papers.' -9 Some of these codes are
capable of performing close to the entropy of the run -length statistics.
Extensions of this basic run -length coding scheme have been made to
include line -to -line correlations."-" Two-dimensional correlations
have also been used in development of block coding" as well as blob
coding" methods.

In this paper, we describe techniques which use the two-dimensional
correlation of the picture signals. Specifically, our techniques consist
of changing the relative order of transmission of the picture elements
along a scan line in such a way as to increase the average run length
of the black and/or white elements. A reference signal is constructed
from the previously transmitted data, and the data in the present
line is ordered with respect to this reference signal. A memory is used
to store the incoming bits of new data in a manner such that the
address for storing a particular input bit is derived from the reference
signal. At the end of the ordering period, the information stored in
the memory is read out in a sequential manner and run -length coded.
The receiver decodes the run -length coded information and stores it
for a given ordering interval. The original data stream is then re-
constructed by reading out the stored data in the same order in which
it was stored at the transmitter. Our techniques can be classified into
three broad categories. In the first category, described in Section 2.1,
we order a line of picture data using the previously transmitted line
immediately above it. Thus, the elements of the previous line are
taken as the reference signal for ordering. In the second category,
described in Section 2.2, we predict an element of a line from the value
of a corresponding element from the previously transmitted line, and
order the prediction error of the present line using elements of the
previous line as the reference signal. The third category, which is
described in Section 2.3, uses several already transmitted elements both
from the present line and the previous line to define a state. We
develop a predictor as a function of the state, as one which minimizes
the prediction error conditioned on that state. We then sort the states
in terms of probability of the prediction error associated with each
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state, and order the prediction error (using the state -dependent
predictor) according to the goodness of the state. During ordering,
prediction errors corresponding to "good" (states with low probability
of prediction error) and "bad" states are arranged in a sequence in two
different parts of a memory. Contents of the memory are then read
out and run -length coded for transmission. Since prediction errors
corresponding to "good" states are mostly 0, this technique increases
the length of the 0 runs and consequently achieves bit -rate reduction.

1.1 Summary of results

Our simulations indicate that, for pictures with 200 lines/inch, the
previous -line -ordering technique reduces the entropy by about 20
percent over the entropy using one-dimensional run -length coding.
Using previous -line -element -prediction and previous -line -ordering,
this reduction is about 30 percent. State -dependent prediction and
ordering reduce the entropy by about 33 to 50 percent. This reduction
is about 25 percent for a picture with 100 lines/inch. Our results
indicate that our state -dependent predictor does not vary significantly
with pictures and, therefore, may not have to be transmitted for most
pictures. Also, most of the advantage in using ordering based on
"good -bad" state -groups is obtained by using only two state -groups.
Among the algorithms that we compare ours with, is an algorithm
recently proposed by Preuss." We show that our algorithm is about
10 to 18 percent more efficient in terms of entropy.

H. CODING ALGORITHMS

In this section, we describe each of our coding algorithms in detail
and present results of our simulations on the computer. The computer
simulations were done on pictures with 256 lines and 256 elements per
line. The resolution was either 200 lines/inch or 100 lines/inch. The
pictures we used included a drawing of a schematic, a map, and the
inside part of text material (both single- and double-spaced typing).
Sections of pictures used are shown in Fig. 1. Figures la and lb are
sections of single-spaced text with 200 lines/inch and 100 lines/inch,
respectively. Figure lc is double-spaced text with 200 lines/inch and
Figure ld is part of a circuit diagram. In addition to these, we used
a map which is a section of page 19 from Ref. 15. As a measure of
performance, we used the entropy of run -length statistics. We com-
puted the entropy of black and white runs and the average black and
white run lengths. Using these and eq. (1), we computed the entropy
in bits/pel (assuming that the number of black and white runs are
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Fig. 1-Sections of figures viewed through a television camera and converted to a
two-tone picture by a simple thresholding technique. Figures (a), (c), and (d) had 200
lines/inch and an array of 256 X 256 was used for simulation. Figure (b) was taken
at 100 lines/inch.

equal to N/2) by :
N , ,

Hiv -2 b .-y Hu, + HaH - N _N rii, ra
rw  2 rb 

2

where
H. is the entropy of the white run statistic (bits/run),
HI, is the entropy of the black run statistic (bits/run),
ru, is the average white run length (pels/run),
ra is the average black run length (pels/run),
H is the entropy in bits/pel.

(1)

2.1 Ordering present line with reference to previous line

This technique orders the present line with respect to the previous
line. Consider a memory containing 256 cells (equal to the number of
elements per line). We store in this memory elements from the present
line. Assume for the sake of explanation that the memory is arranged
along a line and memory location 1 corresponds to the left-hand
side and location 256 corresponds to the right-hand side of the memory.
If the first element of the previous line is white ( = 1), then we put
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the content of the first element of the present line on the left-hand
side of the memory. If, on the other hand, the previous line element
is black ( = 0), we put the first element of the present line on the right-
hand side of the memory. We then put the second element on the
right-hand or left-hand side of the memory depending on whether
the second element of the previous line is black or white. This process
is continued until the entire present line is ordered and the memory
is filled. The information stored in the memory is coded as runs of
black and white elements. It is easy to see that the present line can
be uniquely reconstructed from the knowledge of the run lengths of
the ordered line since the ordering information is known to the receiver.

The entropies obtained using the ordered run -length statistics are
given in Table I. This table also shows, for comparison purposes, the
entropy of the picture using the statistics of simple one-dimensional
(along a scan line) unordered run lengths. The ordered entropy of the
run lengths varies between 0.12 bit/pel to 0.24 bit/pel for 200 lines/inch
resolution pictures. The increase in coding efficiency ( = decrease in
entropy) due to ordering over plain run -length coding is of the order
of 20 to 25 percent. This increase in efficiency is decreased to 16
percent for the picture with 100 lines/inch. In Fig. 2, we show the
original picture (same as Fig. la) and its ordered version. It is interest-
ing to note that the picture elements on the left side of the ordered
picture are mostly white and those on the right side of the picture are

Table I- Entropy comparisons for different coding algorithms

Coding Technique

Entropy (bits/pel)
Picture

1 2 3 4 1 at 100
lines/in.

(1) One-dimensional run -length coding 0.30 0.16 0.21 0.23 0.38
(2) Present line ordered with reference to

previous line 0.24 0.12 0.16 0.17 0.32
(3) Finite length ordering (length = 64) 0.29 0.17

of Technique (2) (length = 128) 0.28 0.15
(4) Run -length coding of prediction error

using previous line predictor 0.25 0.13 0.15 0.16 0.35
(5) Technique (4) with ordering using

previous line 0.21 0.11 0.14 0.15 0.31
(6) Run -length coding of prediction error

using state -predictor 0.24 0.13 0.15 0.16 0.34
(7) Technique (6) with state -ordering using

2 state -groups 0.20 0.10 0.11 0.12 0.30
4 state -groups* 0.20 0.10 0.11 0.12 0.30

16 state -groups* 0.19 0.099 0.11 0.119 0.29
Technique of Preuss using 2 state -groups* 0.22 0.11 0.13 0.14 0.34

* These entropy numbers do not include extra bits required to specify number of
elements in each state -group.
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Fig. 2-(a) Picture of original. (b) Present line ordered with respect to previous line.

mostly black. If the vertical correlation between the scan lines was
perfect, there would be no scattered black and white elements; all the
white elements would be to the left and all the black elements would be
to the right. The increase of coding efficiency is intuitively obvious by
comparing both the original and the ordered pictures of Fig. 2.

2.1.1 Finite length ordering

To evaluate the effects on coding efficiency of ordering only a part
of the line, we simulated finite length ordering. This has the advantage
to some extent of localizing along the horizontal direction the effect of
transmission errors. However, vertical propagation of transmission
errors is still possible. To illustrate this scheme, consider two memories
of 128 cells each (half the number of samples/line). We then order the
elements of the present line as before for each half of the line. However,
in the first memory, we put elements corresponding to black elements
of previous line to the left side and elements corresponding to the
white elements of the previous line to the right side; whereas, for the
second memory we reverse the sides for the black and white elements,
i.e., elements of the present line corresponding to the black elements
of the previous line are put on the left side. This minimizes the effects
of "discontinuity" at the boundary of the two memories. The two
memories are now arranged back to back, and their contents are read
out sequentially and are run -length coded. The results of simulating
this scheme are shown in Table I for different sizes of the memories.
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The increase in the entropy by dividing the line into two segments is
significant. Thus, there is a considerable loss in coding efficiency due to
finite length ordering. This allows us to conclude that by ordering
two lines instead of parts of a line and arranging them back to back,
as above, there may be further improvement in coding efficiency.

2.2 Ordering present line prediction errors with reference to previous line

This coding technique is similar to the one described in Section 2.1,
except that now we order the prediction errors of the present line.
We take the predictor to be the corresponding picture element in the
previous line. We now order this prediction error as before; i.e., if the
previous line has a white element, we put the prediction error of the
present line to the left side of the memory and vice versa. As in
the previous technique, from the ordered line, it is easy to decode
uniquely the contents of the present line.

The entropy of the pictures using the run lengths of the ordered
prediction error is between 0.11 bit/pel and 0.21 bit/pel for pictures
with 200 lines/inch, as seen from Table I, and this amounts to a 30 to
35 percent decrease in entropy over simple one-dimensional run -length
coding. To calculate the advantage of ordering, we also measured the
entropy of the picture using the run -length statistics of the prediction
error with the previous line element as_ predictor. The entropy of this,
which is shown in Table I, varied between 0.13 bit/pel to 0.25 bit/pel,
for pictures with 200 lines/inch. Thus, the reduction in entropy due
to ordering was 7 to 16 percent over and above the entropy of the
prediction errors. For the picture with 100 lines/inch, ordering the
prediction errors brought the entropy down to 0.31 bit/pel, which is a
reduction of about 17 percent over the entropy of one-dimensional
run -length coding.

2.3 State -dependent prediction and ordering

The technique described in this section differs from the two earlier
techniques in its use of more picture elements spatially close to the
present element. It uses these elements to define a state of the present
picture element. We develop a predictor for each state and use the
state also to order the present line. Using this technique, it is possible
to separate the process of prediction and ordering.

To illustrate the technique, consider the picture element configura-
tion shown in Fig. 3. The state of the present picture element X is
defined by elements A, B, C, and D. Thus, state Z is the four-tuple

Z = (A, B, C, D). (2)

Since each of the elements A, B, C, and D can have two possible values,
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D C B

A X

PREVIOUS LINE

PRESENT LINE

-- ELEMENT TO BE PREDICTED

Fig. 3-Configuration for state definition.

there are 16 states, which we denote by the set { Zi} , i = 1, , 16.

The development of a state -dependent predictor is our next task.
Such a development is as old as predictive coding itself."'" The
predictor is developed by the following criterion. We first compute
P (X = 'Black' I Z = Zi), the probability of the present picture element
X being Black given the state Z = Z. The predictor C(Z,) for a
given state Zi, is then,

C(Zi) = 'Black' if P (X = 'Black' j Z = Zi) > 0.5
= 'White' otherwise. (3)

It is easy to see that this predictor minimizes the probability of
making an error given that a particular state has occurred. We have
calculated the predictor for each state using several pictures. These
are shown in Table II. For most states, the predictors do not depend
upon the picture used, except for a few states that are marked with
asterisks in Table II ; thus, it is not necessary to transmit the predictors
for each different picture. We shall evaluate the effects of using the
predictors of one picture for other pictures.

Having developed the predictor, we sort the states into two groups.
The probability of correct prediction using the state -dependent
predictor is shown in Table II. We note that the probability of correct
prediction is always higher than 0.5 due to our predictor being a
minimum prediction error predictor. States which have high proba-
bility of correct prediction will be called "good" states. Our ordering
strategy depends upon the goodness of the state. Let the 16 states be
divided into two groups : one containing "good" states and one con-
taining "bad" states. Our state -dependent ordering algorithm then
works as follows : we first evaluate the prediction error for a particular
picture element in the present line by using the state -dependent
predictor. Then, if the state is a "good" state, we put the prediction
error on the left side of the memory, and if the state is "bad", we put
the prediction error on the right side of the memory. In all our simu-
lations, we used a threshold of 0.8 for the probability of prediction
error to determine the goodness of a state. Having ordered the predic-
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tion error, we then code the run lengths of the prediction error. It is
easy to see that the line of data can be uniquely constructed from the
coded run lengths of the prediction error. The entropy of run lengths
of such ordered prediction errors for different pictures is given in
Table I. For pictures with 200 lines/inch resolution, the entropy
varies between 0.10 bit/pel to 0.20 bit/pel. This represents a decrease
of between 33 percent and 49 percent over the entropy of simple
one-dimensional run -length coding. We evaluated, for comparison
purposes, the entropy of the picture using the run -length statistics
of the prediction error. This varies between 0.13 bit/pel to 0.24 bit/pel
for the pictures with 200 lines/inch. It is clear then that state -dependent
ordering allows us to decrease the entropy by about 16 to 25 percent
over and above the entropy obtained by using the prediction error
of the state -dependent predictor.

We described a scheme in which only two groups of states were used
for ordering purposes. To evaluate the effect of using more than two
groups, we divided the states into 16 groups, and ordered the pre-
diction error as before. In the case of more than two groups of
states, it is not possible to decode the original line of picture data from
coded run lengths unless extra information about the number of
elements in each state -group is specified for each line. The entropy of
the run -length statistic using more than two state -dependent groups
is shown in Table I. These figures of entropy do not include the extra
information that is required to be transmitted about the number of
elements in the group. The increase of coding efficiency by using more
than two groups is somewhat small and it would be offset completely
by the extra information mentioned. Thus, most of the decrease of
entropy due to state -dependent ordering is obtained by using only
two groups.

In all of the state -dependent coding algorithms, we have not made
an effort to optimize several of the coder parameters. Thus, for example,
when the state -groups are less than 16, we could optimize the groupings
of the states. The groupings that we used were intuitive and somewhat
ad hoc. We did vary the groupings in the case of two groups and found
that the entropies did not change significantly. It appears that optimi-
zation of groupings may not result in any significant entropy reduction.

2.3.1 Sensitivity to picture variation

Picture content affects three parameters of our state -dependent
coding algorithms : the state -dependent predictor, the entropy numbers
which depend on the statistics of the run lengths, and the definition
of "good" and "bad" (or the groupings) states. We studied the sensi-
tivity of our coding algorithms by considering the variation of predic-
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tors. The second factor mentioned could be studied by developing a
specific code based on some run -length statistics (of one of the pictures,
or some "average" picture) and then using it on all the pictures. We
did not study this aspect of sensitivity of our algorithm. As mentioned
in the previous section, we studied the variation of the entropy with
groupings and found that the variation was not too sensitive. Thus,
it appears that the groupings -information need not be computed or
transmitted for each picture.

From Table II, it is clear that for a resolution of 200 lines/inch, the
predictors are identical for all states for pictures of single-spaced
typing, double-spaced typing, and schematic. This may be a result
of our using a predictor based on the local information surrounding the
picture element. In the case of a map, however, there are two states
that have a different predictor compared to the first three pictures.
Both these states were regarded as "bad" states for the coding of the
map. We used the predictor of the first three pictures for the coding of
the map; and using two state groups, we found a 3 -percent increase
in the entropy. Also, in the case of the picture with 100 lines/inch,
there is only one state (state number 8) which had a different predictor
than the first three pictures. This was again a "bad" state. For this
picture, we found the increase in entropy of about 2 percent. This
allows us to conclude that it may not be necessary to compute and
transmit the state -dependent predictor information for each picture.

2.4 Comparison with the algorithm of Preuss

Most coding algorithms perform differently for different pictures.
To compare our results with other two-dimensional coding techniques,
we implemented a coding algorithm proposed by Preuss.7 This also
allowed us to bring out certain similarities and dissimilarities between
our algorithm and that of Preuss. Preuss has developed a state -
dependent predictor analogous to our predictor. This predictor is
shown in Table II. It is seen that his predictor differs from our predictor
for the first three pictures only for state number 13. Also, it differs
from our predictor for the first picture (100 lines/inch) for state
numbers 8 and 13. In our simulation of Preuss' scheme, we used the
predictor tuned to the particular picture rather than Preuss' predictor.
Preuss computes the prediction errors analogous to our scheme, and
then codes the run lengths between the prediction errors for each of the
state -groups separately, using a different run -length code for each
state -group. We, on the other hand, use the state -groups to order
the present line and encode the run lengths of the entire ordered line
of the prediction errors. Preuss has to specify the number of elements
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in each state -group;' for K state groups with N elements in each line,
this may amount to (K - 1) log2 N extra bits/pel. In our algorithm,
we do not need transmission of such information for K = 2. In Preuss'
scheme, the run lengths have to be terminated at the end of each
state -group for each line, but in our algorithm, a run may begin in
one state -group and extend all the way up to the end of the line,
crossing several state -groups. Despite these disadvantages, we thought
that Preuss' scheme may result in lower entropy, since his run -length
code was matched to the run -length statistics of the prediction errors
corresponding to each state -group. We simulated Preuss' scheme using
two state -groups that were the same as those used for our algorithm.
Results of this simulation are given in Table I. Entropy numbers
given for Preuss' scheme do not include the extra information required
for the number of elements in each state -group. It is seen from this
table that, compared to our scheme using two state -groups, Preuss'
scheme results in a 10- to 18 -percent increase in entropy. Thus, our
scheme appears, at least for the pictures we used, to be more efficient.

III. DISCUSSION AND SUMMARY

We have presented three different algorithms for the coding of
two-tone pictures. All three algorithms are "information" preserving,
and, therefore, it is possible to decode exactly the original picture with
no approximations. We have compared our results (only in terms of
entropy) with some standard algorithms such as : (i) one-dimensional
run -length coding, (ii) run -length coding of the prediction errors using
several different two-dimensional predictors, and (iii) a two-dimen-
sional algorithm of Preuss. We found our algorithm to be 10 to 18
percent more efficient than the algorithm of Preuss. Admittedly, this
is not a complete comparison. Other parameters, such as the number of
samples per line (we used only 256) and varying picture material, may
offset the comparisons. Also, we did not study many other aspects
important for a coding system, including the performance in the
presence of transmission channel errors.

Our technique can be extended by proper definition of the state to
the case of two-tone dithered pictures. This will be reported in a future
paper."
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* In a private communication, Preuss has shown that his scheme can be modified
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Last -Trunk -Usage Measurements in
Step -by -Step Switching Systems

By B. R. LaCAVA, W. D. MILLER, and B. YAGED

(Manuscript received July 22, 1976)

A measurement approach is described which provides the capability
of detecting traffic congestion in the graded multiples of a step-by-step
switching system. The basic idea is to measure the load carried on the
last trunk of each graded multiple and, using the techniques described,
to determine the congestion level in each grading. The method, which
requires only one lead per grading, works because Bell System grading
patterns, which differ in structure depending on size, all have a common
last -choice trunk and because the load carried on the last -choice trunk
increases as the congestion in a grading increases. The basic idea and
the interpretation of last -trunk -usage data in the presence of day-to-day
variations in the offered load for configurations with and without rotary
out -trunk switches are described in detail. Last -trunk -usage measurements
are compared with other possible traffic measurements on gradings in terms
of effectiveness in detecting various service impairments. The statistical
accuracy of load and blocking estimates from last -trunk -usage measure-
ments is also discussed. The result is a simple, effective measurement
technique with the combined advantage of rapid detection of gradings
with service problems and relative ease of implementation.

I. INTRODUCTION

Because of physical limitations, the trunks that connect the succes-
sive switching stages in a step-by-step switching system are arranged
in sets of partial -access patterns called graded multiples (also called
gradings, graded subgroups, or subgroups). The Bell System uses
standard patterns for the gradings; a representative configuration is
shown in Fig. 1. A call arriving hunts across the 10 trunks marked as
heavy lines to find an idle trunk ; if these 10 are busy, the call is
blocked with a reorder tone returned to the customer. Details of the
traffic flow through the system are given in Ref. 1. A long-standing
problem in step-by-step offices has been the difficulty in detecting
traffic congestion in the graded multiples, since detailed measurements
are not obtained.
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Fig. 1-Typical step-by-step subgroups showing limited trunk access for an
arriving call.

In this paper, a new measurement approach is described which
provides an economical and effective means for identifying specific
graded multiples with substandard blocking levels. The basic idea
is to capitalize upon the fact that, although the Bell System patterns
differ in detailed structure depending upon the number of trunks,
they all have a common last -choice trunk. Thus, the traffic perform-
ance, i.e., fraction of calls blocked, of a graded multiple can be moni-
tored by measuring the load carried on the last -choice trunk (see Fig.
1). As the congestion in a grading increases, the load carried on the
last trunk also increases. By properly interpreting the last -trunk
usage (LTu), it is possible to infer the congestion level of each grading.
Since only one connection per grading is required, the method makes
efficient use of measurement equipment. The data can be collected
by a variety of available usage -measuring equipment. Notice that the
wiring can be validated by making the last trunk busy during nonpeak
hours and checking for the correct usage measurement. Also, it is
possible to detect (and thus avoid possible data misinterpretation)
whenever subgroup performance cannot be determined due to the
last trunk having been taken out -of -service, since its usage will appear
as 36 CCS (hundred call seconds) in each hour.

Notice that this measurement approach is an application of a more
general concept wherein the traffic performance of a set of servers is
evaluated by measuring the behavior of one carefully selected element
of the set. It is possible that this general concept may have broader
applicability and should be considered in designing new measurement
techniques.

Section II provides an overview of the measurement procedure and
describes the model used to develop the last -trunk -usage procedures.
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Section III describes the additional considerations required when the
subgroups access rotary out -trunk switches (ROTS). Section IV dis-
cusses the use of LTU and other possible traffic measurements in detect-
ing congestion problems-general overloads, imbalances between
subgroups, and imbalances within subgroups. The LTU measurement
procedure does not detect equipment irregularities. Section V relates
the statistical accuracy of blocking and offered -load estimates to
inherent variations in LTU data. Finally, Section VI discusses the
application of the method.

II. OVERVIEW OF LAST -TRUNK -USAGE PROCEDURES

The LTU monitoring procedures were developed using a computer
simulation model of step-by-step (S X S) graded multiples.' The
model has the following properties : Poisson arrivals, inherent load -

5 10 15

AVERAGE LAST -TRUNK USAGE (CCS)

Fig. 2-Subgroup average blocking probability versus average last -trunk usage
for 11-, 17-, 25-, 35-, and 45 -trunk gradings with low day-to-day variation in offered
load.

20 25
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balancing, blocked calls cleared, and a negative exponential distri-
bution for holding times. Retrials are not included in the model. A
representative set of grading patterns was selected for detailed study.
For each grading, the simulation was initially used to determine the
equilibrium blocking and last -trunk usage over an appropriate range
of offered loads.

Figure 2 shows the relationship between average blocking and
average LTU for several gradings. In this paper, "average blocking"
means "average call congestion." The use of average blocking and
average LTU, rather than their equilibrium values, is appropriate since
it is assumed that the offered loads will vary on different days accord-
ing to the low day-to-day variation model ;2 measurements during a
time -consistent hour must be averaged over several days to provide
stable results (and reduce the possible impact of a single long-holding-

10 20 30

NUMBER OF TRUNKS IN GRADED MULTIPLE

40

Fig. 3-Average last -trunk usage versus the number of trunks in the graded
multiple for blocking at B.01L, B.02L, B.03L, B.05L, and B.10L.
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Fig. 4-Subgroup average overload versus average last -trunk usage for different
graded multiple configurations (non-RoTs accessing) with low day-to-day variation
in offered load.

time call). Figure 2 shows that last -trunk -usage data provide a good
indication of subgroup performance, or blocking level. The LTU-
blocking relation is somewhat dependent on the number of trunks in
the grading, but for a given number of trunks, is generally not very
sensitive to the number of accessing selectors. Because of this in-
sensitivity, selector dependence was not studied in detail. Note that
Fig. 3 uses the same data as Fig. 2, but relates average LTU and number
of trunks in the grading for fixed average blocking levels.

The difference in offered load from that required for B.01L, a
frequently used objective in S X S systems, is plotted against average
LTU in Fig. 4 for the same grading sizes as in Figs. 2 and 3. (The
notation B.XXXV means that "Erlang-B" assumptions were used,
that the blocking probability for no day-to-day variation or the
average blocking probability for results with day-to-day variation
is O.XXX, and that V indicates the amount of day-to-day variation
with V blank for no day-to-day variation and L, M, or H for low,
medium, or high day-to-day variation, respectively.) The curves in
Figs. 2 and 3 show that the subgroup overload increases in an approxi-
mately linear fashion with LTU, up to a blocking of roughly B.10L.
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Again, results are not very sensitive to the number of selectors. How-

ever, errors in offered load or subgroup overload estimates may arise
if certain service -affecting problems exist, but are unknown ; these
will be discussed in Section IV.

As mentioned, the results indicate that curves of blocking vs LTU,
constant blocking curves for LTU vs the number of trunks, and sub-
group overload vs LTU are not strongly dependent upon the number
of selectors that access the grading. Consequently, the general problem
of studying all 155 standard combinations of selectors and subgroup
trunk patterns found in the Bell System was simplified by ignoring
selector dependence and considering only the different grading con-
figurations. Note that the relationship of LTU to offered load, in

contrast to the overload in CCS, is somewhat dependent upon the
number of selectors accessing the graded multiples; this occurs because
the capacities of the gradings are dependent on the number of access-
ing selectors.'

M. EFFECTS OF ROTS ON LTU PROCEDURES

Rotary out -trunk switches (RoTs) are used in step-by-step systems
to concentrate traffic from several graded multiples, hereafter called
the access subgroups, onto a single outgoing trunk group, whose

occupancy is higher than those of the access subgroups. The model of
traffic flow in a graded multiple used in Section II is not appropriate
in the presence of ROTS for the reasons described. ROTS access sub-
groups are generally engineered at one -tenth the blocking desired for
the entire ROTS system to ensure adequate access to the outgoing
trunks. A representative local ROTS configuration is shown in Fig. 5
for in access subgroups (10 -trunk, full -access subgroups in this case)
going to n ROTS subgroups, each consisting of about 20 to 30 switches.
The trunks from the access subgroups are spread across the ROTS
subgroups according to specified patterns to distribute traffic across
the ROTS trunks and to provide access from a given selector to the
several ROTS subgroups. If the number of outgoing trunks per ROTS
subgroup is less than 21 (or 22 in toll groups), the outgoing trunks
from each ROTS subgroup may be multipled to adjacent subgroups.

In local ROTS groups, approximately 40 percent of the trunks in the
ROTS access subgroups are wired directly to the outgoing trunks,
bypassing the ROTS switches. Thus, certain outgoing trunks can be
accessed either directly from trunks in the ROTS access subgroups as
well as indirectly through a ROTS switch. If the latter occurs, the
directly linked trunk in the ROTS access subgroup is made busy to
prevent a second call from seizing the outgoing trunk. Subsequent calls
arriving at the access subgroup that find a directly linked trunk busy
will use trunks higher in the hunting order (closer to the last trunk).
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Fig. 5-Representative ROTS group configuration.

In addition, if all outgoing trunks in a ROTS subgroup are busy, all
idle ROTS switches in that subgroup are made busy. This has the
combined effect of forcing traffic higher in the access gradings and,
if such a switch is connected to the last trunk of an access subgroup,
of generating busy -back (non -call carrying) usage on that trunk. Any
call searching for an idle trunk, which progresses to the last -choice
trunk and finds the last -choice trunk busy from either type of usage,
is blocked.

Consequently, the access gradings must carry the actual offered
load plus the induced busy -back load. Since any calls that are blocked
in the ROTS system receive reorder tone from the selectors of the access
subgroups, the blocking observed on the access subgroups equals the
system blocking, even though the access subgroups are usually engi-
neered at one -tenth the desired system blocking. In addition, the
intricate access arrangement results in significant interaction between
the traffic parcels offered to the different access subgroups. The result
is that the performance of a subgroup is influenced by its own offered
load, the congestion level on the outgoing trunks, and the performance
levels of the other access subgroups.

Therefore, it was not clear whether the relationships between LTII
and blocking shown in Section II applied in the presence of ROTS.
To determine this, a computer simulation of ROTS configurations
modeled by Neal was studied.' The traffic assumptions of the graded
multiple simulation model described in Section II are applicable here.

For the different grading patterns and different ROTS configurations,
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it was found from simulation that approximately the same relation-
ships between LTU and blocking apply as when the graded multiples
do not access ROTS, giving acceptable estimates up to ten -percent
blocking. Figure 6 shows a curve which relates LTU and blocking for
non -ROTS subgroups, as well as data points from simulation studies of a
configuration with 15 access subgroups of 15 trunks each and up to
135 outgoing trunks ; the offered loads to the subgroups were equal
(or balanced). By varying the offered load and the number of outgoing
trunks, arrangements were investigated in which the access subgroups
were under -engineered, as well as situations where the outgoing trunk
group was under -provided. The data points clustered about the
non -ROTS curve, for blocking levels up to about B.10_. Significant
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differences between the data points and the curve occur above ten -
percent blocking because of interactions caused by busy -back usage.

These ROTS, non -ROTS comparisons are based upon no day-to-day
variations since substantially more computer time would be required
to study low day-to-day variations explicitly. However, the relative
comparisons still hold for low day-to-day variations, and, thus, Fig. 2
can be used to estimate the average blocking of subgroups which
access ROTS.

The same non -ROTS curve is shown in Fig. 7, but the data points
represent ROTS simulation results where the offered loads to the
subgroups are unequal (imbalanced). In this case, the data points were
more clustered about the non -ROTS curve than in Fig. 6. These effects
were. confirmed for additional ROTS configurations of 11-, 21-, 25-,
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Fig. 7-ROTS access subgroup blocking versus last -trunk usage for ROTS group
of 15 subgroups of 40/15 with 105 outgoing trunks and no day-to-day variation in
offered load-imbalanced loads in access subgroups.
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35-, and 45 -trunk subgroups with between 34 and 210 outgoing trunks,
demonstrating that the LTu-blocking relation of Section II could apply
as well to ROTS configurations under a wide variety of conditions. An
important feature is that the LTU measurement monitors the blocking
of the access subgroups, which is, in fact, equal to the blocking for the
entire configuration, the quantity of interest from a service standpoint.
The impact of the scatter in ROTS data points on blocking estimates is
discussed in Section V.

It is possible to measure the actual last -trunk call usage, excluding
busy -back usage. This procedure, examined via simulation, did not
give as good agreement to the non -Rom LTu-blocking relations for
general overloads, in that this type of overload affects the call usage
on the last trunk for a given blocking level. The majority of points
in the scatter diagram of Fig. 8 for access subgroups of 15 trunks fall
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Fig. 8-ROTS access subgroup blocking versus call usage on last trunk (excludes
busy -back usage) for Rom group of 15 subgroups of 40/15 with up to 135 outgoing
trunks and no day-to-day variation in offered load -general overloads.
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to the left of the non -ROTS relation for a 15 -trunk subgroup. There was
less disagreement for the case of load imbalances in accessing sub-
groups. Figure 9 shows that the scatter diagram for 15 -trunk sub-
groups follows the corresponding non -ROTS relation, but that the
simulation points generally fall to the left of the curve, implying a
small bias. Again, similar results were observed for both general
overloads and imbalances in simulating other ROTS configurations.

Last -trunk -busy (LTB) registers on graded subgroups are wired to
exclude made -busy counts. Thus, the results in Figs. 8 and 9 also apply
to LTB counts in the presence of ROTS, where the abscissa would be
measured in LTB registrations rather than call usage on the last trunk.
Notice that reconnecting the LTB register to include busy -back effects
complicates data interpretation, since it appears difficult to estimate
the correct mean holding time when busy -back usage occurs.
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While the average LTU-blocking relations of Figs. 2 and 3 provide
acceptable average blocking estimates for ROTS configurations, the
subgroup average overload-LTU relation of Fig. 4 does not always
apply. Not only is it difficult to accurately estimate the magnitude
of the overload, but whether the overload occurs in the access sub-
groups, the outgoing trunk group, or both is not evident. Once the
LTU procedure detects blockages, additional measurements must be
taken to determine the cause of the blockage. If the outgoing trunk
group is adequately engineered, as determined from total carried
load or all -trunks -busy measurements, the access subgroup is limiting ;
in this case, Fig. 4 can be used to estimate the subgroup overload.
If the outgoing trunk -group capacity is limiting and additional trunks
are added, additional LTU measurements should be taken to see if the
access subgroup capacity is still sufficient after augmenting the out-
going trunk group.

In summary, the basic LTU-blocking relations apply to ROTS con-
figurations, although some moderate additional estimation uncertainty
arises from the scatter shown in Figs. 6 and 7. Thus, the LTU procedure
appears to be an acceptable performance -measurement tool, even
though it alone cannot determine the source of the congestion problem.
An additional measurement on the outgoing trunks is needed to
decide what corrective action is required for a congested ROTS
configuration.

IV. STEP-BY-STEP SERVICE -AFFECTING PROBLEMS

4.1 Overview

LTU procedures can be used to detect several service -affecting
problems, namely : general overloads, load imbalances, and out -of -
service trunks. In each case, the problem is described and how LTU
measurements are effective in detecting the problem is shown ; the
ability of carried load or last -trunk -busy measurements to detect the
problem is also discussed. First, a general understanding of the
principles used in engineering S X S subgroups is needed.

Consider a typical stage in a S XS train (Fig. 10), where the
incoming traffic load is directed to n groups of selectors. Each selector
group has access to a set of trunks on each level. In practice, the
selector grouping for different levels may not be identical. Two basic
assumptions in S X S engineering are : (i) incoming traffic is dis-
tributed equally between selector groups (i.e., L1 = L2 =  = Ln)
and (ii) each selector group offers the same proportion of the incoming
traffic to a given level j (i.e., au = a21 =  = an5). As a result, all
subgroups on a given level generally have the same number of trunks.
Based on these assumptions, we need only measure the total carried
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load on all trunks on a level (e.g., li) to estimate the carried load for
each subgroup (e.g., /1/n) and to determine the number of trunks
required to meet a stated service objective.

4.2 General overloads

A general overload occurs when all subgroups on a level have
excessive blocking, as indicated by comparing the LTU values with a
threshold determined from Fig. 2. The amount of overload on each
subgroup can be determined from Fig. 4 if the subgroups do not
access ROTS. If the subgroups access ROTS, then additional measure-
ments, such as outgoing trunk carried load or all -trunks -busy counts
on the ROTS subgroups, are required to determine if the blockage arises
in the access subgroups or the outgoing trunks.

Carried -load measurements on subgroups within a S XS train are
not commonly made because of the excessive number of measurement
leads required, but are usually made on interoffice trunks. Such load
measurements should detect a general overload in the non -ROTS case
and in the ROTS case only if the problem is insufficient outgoing trunks.
Last -trunk -busy registers, although not generally available, should
indicate overloads, assuming that the correct mean holding -time is
used and that the last trunk is in service. With ROTS, LTB counts are
limited by the effect described in Section III.
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4.3 Load Imbalances

Load imbalances arise when the incoming loads per selector vary
over a wide range (e.g., trunks from No. 4A crossbar or S X S offices)
and the trunks are not uniformly distributed across selector groups,
or trunks from different offices, which exhibit different calling patterns
to different levels, are not well distributed. In either of these cases,
the traffic offered to a level is not the same for each selector group
(e.g., aiiLi a2iL2 0  0 aniL), causing some subgroups to be
overloaded while others are underloaded. Imbalances lead to higher
blocking to selected incoming trunks as well as an increase in the
average congestion across all trunks.

Last -trunk -usage procedures effectively detect blockages arising
from load imbalances between subgroups, since the congestion level
of each subgroup is individually monitored and recorded. This results
in the specific identification of congested subgroups for corrective
action.

In some cases, particularly when the larger gradings are used,
balance within a grading may become a problem. Measuring the LTU
is also effective here. This follows both from the flatness of the B.01L
curve and from the significant spread between the curves in Fig. 3. To
illustrate, consider a 45 -trunk grading. From Fig. 3, we interpret an
average LTU of 4.5 CCS as about one -percent average blocking under
the assumption that the offered load is balanced across the individual
groups of first -choice trunks (legs) of the graded multiple. Suppose
the maximum imbalance occurs, i.e., all traffic is offered to only one
leg and the remaining receive no calls. In this case, only ten of the 45
trunks carry any traffic ; the observed average blocking would be about
2.5 percent (average LTU of 4.5 CCS on ten trunks). Thus, if the LTU
is controlled so that the indicated average blocking for a 45 -trunk
subgroup with balanced loads is about one percent, no parcel of
traffic will see more than 2.5 -percent average blocking. The difference
between this value and the average blocking estimate, smaller when
less extreme types of imbalances occur and when the subgroup has
fewer than 45 trunks, is important only when a specific group of
incoming trunks is focused on an overloaded leg. If incoming trunk
groups are spread across the legs, each group of customers would
experience about the average blocking (across legs) for the subgroup;
this average blocking is accurately estimated by the LTU procedure.
Thus, the LTU procedure provides reasonable control over imbalances
among the legs, although it cannot assure maximum equipment
utilization. However, the estimates of subgroup average overload
shown in Fig. 4 always exceed the true value in the presence of im-
balances within a, subgroup.
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Carried -load measurements are commonly obtained on interoffice
trunk groups, but are generally aggregated across all subgroups on a
level for the non -ROTS case or are obtained on the outgoing side of the
ROTS switches when ROTS are used. In both cases, these composite
carried -load measurements cannot detect imbalances, since the carried
load actually decreases as the imbalance increases. As before, LTB
registers are capable of detecting imbalances although they are not
usually available in the field.

4.4 Out -of -service trunks

Out -of -service trunks that lead to an increase in subgroup congestion
can be detected by the LTU procedure. An out -of -service trunk that
does not lead to undesirable blocking levels (if the subgroup's offered
load is sufficiently below engineered capacity so that loss of a trunk
has no service impact) would not be detected by the LTU procedure.
The shallow slope of the B.01L curve of Fig. 3 results in the average
blocking estimate being insensitive to a modest number of made -busy
trunks. Thus, the LTU procedure can detect such blockage, but not
indicate the cause of the blockage (i.e., overload, imbalance within
the subgroup, or made -busy trunks). With out -of -service trunks, the
overload estimate of Fig. 4 always exceeds the true overload. Measure-
ments of total -carried -load may not indicate a service problem caused
by out -of -service trunks, particularly if the load measurements are
aggregated across subgroups.

4.5 Equipment malfunctions

Malfunctions leading to abnormally short holding times (the
"killer trunk" phenomenon) cannot be located with the LTU procedure.

V. UNCERTAINTIES IN BLOCKING AND LOAD ESTIMATES

The uncertainty in average blocking estimates is important in
deciding when corrective action is required. The uncertainty in these
estimates arises from three effects : variations in single -hour LTU
measurements, day-to-day variations of offered load, and approxi-
mations used in the LTU procedure. Estimates of blocking and offered
load from single -hour LTU data cannot be used, because they have a
large coefficient of variation (cv) this is defined as the standard
deviation to mean ratio of a random variable and indicates the "spread"
of values of the variable about its average. Consequently, LTU data
must be averaged over several hours to provide reliable estimates. This
section shows that last -trunk -usage procedures using time -consistent
busy -hour measurements can detect moderate to severe problems with
acceptable confidence in five days whereas at least 20 days are needed
for provisioning studies.
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For low subgroup blocking (B.01_), the cv for a single -hour LTII
measurement is approximately one. The cv decreases to roughly 0.1
for subgroup blocking above B.10_. Simulation results for subgroups
with 11, 21, and 45 trunks indicate that the cv of an LTII measurement
is not strongly dependent upon grading size or pattern for Poisson
traffic with no day-to-day variations (Fig. 11). The effects of day-to-
day variation in the offered load and discrete sampling of the last -
trunk usage on estimates of blocking and load were studied using
procedures formulated by Neal and Kuczura,4 Hill and Neal,' and
Hill.' The standard deviation of the average blocking estimate for all
subgroups (with blocking near B.01L) is approximately 0.01 for LTII
values averaged over five hours (typically the same hour on five
consecutive days). Thus, if five measurements give a blocking estimate
greater than B.02L, we can be 84 -percent confident that the true
blocking is greater than B.01L. This result assumes a statistical model
where the error is normally distributed with mean zero. Hence, LTII
measurements during the busy hour enable relatively quick (i.e., five
days) detection of subgroups with moderate to severe service -affecting
problems. If five measurements give a blocking estimate less than
B.02L, but greater than B.01L, the adjustment of performance levels
to a B.01L objective should only be based on longer study intervals
(e.g., 20 days) and a demonstrated practical need for such adjustments.

Five days of data are not sufficient to accurately determine the
number of trunks required to meet a given blocking objective. With
five days of data, the standard deviation in the average offered load
estimate is about 40 CCS for a 21 -trunk subgroup; thus, we can be
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68 -percent confident that the true offered load will be within 40 CCS
of the estimated offered load, which corresponds to a possible deviation
of two to three trunks from the number required to precisely meet the
objective. The 68 -percent confidence interval can be reduced to within
one trunk by taking at least 20 days of data. It would seem that this
is the minimum number of days needed for any provisioning study.

ROTS subgroups are subject to approximately the same level of

statistical variations as non -ROTS subgroups. However, the scatter
of Fig. 6 indicates that there will be some uncertainty introduced by
using non-RoTs LTU-blocking relations for ROTS subgroups. Fortu-
nately, the effect of possible approximation bias or additional variance
is negligible when compared to the estimation error arising from other
sources (measurement variation and day-to-day variations) during a
five-day study.

VI. APPLICATIONS

6.1 Types of trunks

The preceding discussions have assumed that the graded subgroups
were either connecting intraoffice selector stages or were one-way
interoffice trunks. For two-way interoffice trunks, the LTU method
applies to all trunk groups with ROTS, since the ROTS isolate the effects
of the trunk selection method (whether from common -control or
S X S equipment) at the far end from the LTU measurement. The
LTU method is not applicable where selector subgroups directly access
(instead of going through Rom) two-way interoffice trunks, unless, at
the far end, the trunks are chosen in the same hunting order as at the
near end. For trunk groups where the procedure is not applicable, total
carried -load measurements should be used, since these are typically
small groups that are not susceptible to load imbalance problems
because they are full or nearly full -access groups.

6.2 Measurement equipment

There is a wide variety of measurement equipment available for
collecting LTU data. However, some Bell System measurement equip-
ment found in small S X S switching entities such as community dial
offices (coos) may not be ideal for LTU measurements. These electro-
mechanical recorders have a relatively small number of output registers
and are configured to report usage only on a grouped basis rather than
an individual trunk basis. Last -trunk -usage measurements, requiring
only one input lead per graded multiple, would utilize this equipment
inefficiently assuming that a sufficient number of output registers were
available. For some cases an option to record usage on individual
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trunks could be added. In general, a more viable alternative would be
to use other measurement equipment that is suitable for the collection
of LTU data.

6.3 Data collection and analysis

For each level under study at a particular selector stage, last -trunk -
usage data should be collected during the time -consistent level -
congestion busy hour; i.e., the time -consistent hour in which the total
LTU for the level (obtained by summing over all subgroups on the
level) is greatest. This hour can be determined by collecting data in
several candidate hours during a study period and then choosing the
time -consistent hour in which the total LTU for the level is greatest.
In some cases, it may be desirable to analyze LTU data outside of the
time -consistent level -congestion busy hour to detect focused overloads
which may occur in other time periods. Of course, the data should be
collected in the busy season to maximize the effectiveness of the
measurement.

For the study period, the average busy -hour LTU for each subgroup
can be calculated and used with Table I to estimate that subgroup's
average blocking. This table, related to Fig. 2, provides a summary of
the average last -trunk -usage in CCS at increasing blocking levels
(B.005L to B.10L) for bands of subgroup trunk sizes. A last trunk
that continually appears as 36 CCS is most likely to be out -of -service.

For a five-day "quick test," any subgroup which exceeds B.02L
is a candidate for corrective action. For 20 days of data, subgroups
exceeding B.01L should be considered for correction. Lower blocking
thresholds may be appropriate outside the busy season. In all cases,
additional LTU measurements should be collected after any corrective
action to ensure that the blockage is eliminated.

Table I -Average value of last -trunk usage in CCS for
different blocking levels *

Number of Trunks
Average Blocking (Percent)

in Subgroup
0.5 1 2 3 5 10

4 to 9 0.5 1.5 2.5 3.5 5.0 10.0
10 to 14 1.1 2.0 3.5 5.2 7.8 13.0
15 to 19 1.4 2.5 4.6 6.3 9.3 15.5
20 to 24 1.6 3.0 5.3 7.2 10.6 17.2
25 to 29 1.8 3.2 5.7 7.8 11.5 18.2
30 to 34 1.9 3.6 6.2 8.5 12.4 19.5
35 to 39 2.1 3.8 6.7 9.1 13.1 20.5
40 to 45 2.4 4.2 7.3 9.8 14.1 21.7

Assumes low day-to-day variations.
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6.4 Corrective action

When LTU measurements detect congestion, additional investigation
is necessary to find the cause of the blockage. Common problems, such
as general overloads and load imbalances, were discussed in Section
IV. Estimates of subgroup overload (in CCS) for a given average
last -trunk -usage may be useful in determining the degree of corrective
action for all major problems except general overloads on ROTS groups
and maintenance -associated phenomena.

VII. SUMMARY AND CONCLUSIONS

The last -trunk -usage procedures are an application of the general
concept of observing a subset of the elements of a traffic system to
estimate the performance of the entire system. The procedures are
effective because all Bell System standard gradings have a common
last -choice trunk and because the load carried on that trunk is directly
related to the traffic congestion in the subgroup. This provides a
direct measure of subgroup performance, since general overloads and
imbalances between subgroups or within subgroups, as well as possible
made -busy trunks that have significant impact upon service, cause
increases in a subgroup's LTU. In fact, the average load carried on the
last -choice trunk is directly related to the service level, and in the
range of primary interest (B.01L to B.10L) is not very dependent
upon the cause of the degradation. These results apply to both non -
ROTS and ROTS applications, although in the latter case additional
measurements are required on the outgoing trunks to completely
diagnose a problem detected by LTU measurements.

A subgroup's mean blocking is estimated from the average of the
last -trunk -usage measurements in the level busy -hour; an estimate of
at least B.02L using only five days of data indicates that the subgroup
has an average blocking greater than B.01L with 84 -percent confidence.
In addition, the cost of installing the measurement equipment and test
leads is held to a minimum since only one lead is required per sub-
group. Hence, the method has the combined advantage of rapid
detection of subgroups with service -affecting problems and ease of
implementation.
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CHEMISTRY

The Chemistry of Pd-Sn Colloid Sensitizing Processes. R. L. Cohen and R. L. Meek,
J. Colloid Interface Sci., 55 (1976), pp. 156-162. This research uses Rutherford
backscattering and Mossbauer spectroscopy to characterize the catalytic surface
produced by commercial "sensitization" processes used for electroless plating of
plastics. The active agent is shown to be a colloidal Pd-Sn alloy with a particle size
of about 20 A.

Dissociative Excitation of H2: Spectral Lineshapes and Electron Impact Cross -
Sections of the Balmer Lines. R. S. Freund, J. A. Schiavone, and D. F. Brader,* J.
Chem. Phys., 64, No. 3 (February 1, 1976), pp. 1122-1127. The Balmer lines
of H, when produced by electron impact dissociative excitation of low pressure Hy,
are much broader then the Doppler width of thermal H atoms. Excitation cross -
sections show structure as a function of energy. This helps to identify two groups of
dissociative states. * Work done while a participant in the Summer Research
Program at Bell Laboratories in 1975.

Sensitization with Palladium -Tin Colloids, I: Role of Rinse and Accelerator Steps.
R. L. Cohen, R. L. Meek, and K. W. West, Plat. Surf. Finish, 63 (1976), pp. 52-55.
In the commercial "sensitization" processes used in the manufacture of printed
wiring boards, a step called "acceleration" is normally used. We show that the purpose
of this step is to dissolve away a layer of stannic hydroxide, which otherwise coats
and passivates the catalytic sites on the surface.

Tropospheric Halocarbons : Estimates of Atmospheric Chemical Production. T. E.
Graedel and D. L. Allara, Atmos. Environ., 10 (1976), pp. 385-388. Selected
thermal and photochemical atmospheric reactions have been evaluated as potential
sources for the family of halocarbons recently detected in tropospheric air. Formation
of CH3C1 is extremely slow and that of CC14, CHC13, CH3I, CH3CC13 and the chlori-
nated ethylenes is negligible, implying that direct emission is responsible for the
presence of these compounds.

COMPUTING

A Survey of Techniques for the Display of Continuous Tone Pictures on Bilevel
Displays. J. F. Jarvis, Comput. Graph. Image Process., 5 (1976), pp. 13-40. Many
displays are basically bilevel in nature with individual display elements, all of the
same size, arranged in a rectangular array. We present a survey of processing tech-
niques for presenting continuous tone still images on such displays. Four techniques
are covered in detail while several others are covered briefly. All the techniques achieve
the subjective effect of continuous tone by properly controlling only the spatial
density of bilevel display states.

ELECTRICAL AND ELECTRONIC ENGINEERING

The Effects of Gold and Nickel Plating Thicknesses on the Strength and Reliability
of Thermocompression Bonded External Leads. N. T. Panousis and P. M. Hall,
Proc. IEEE 26th Electron. Comp. Conf. (1976), pp. 74-79. Copper leads intended
for thermocompression bonding are typically plated with Au or a combination of
Ni and Au. Optimum strength and reliability with the Ni /Au system were obtained
for a Ni thickness of 0.25 to 1.3 Am, a Au thickness minimum of 2.5 pm, and a
Au-to-Ni ratio of > 2.5. For Au -plated Cu leads, acceptable bonds were obtained
with 0.6 Aim of Au.

Transmission Electron Microscopy of Cross -Sections of Large Scale Integrated
Circuits. T. T. Sheng and C. C. Chang, IEEE Trans. Electron. Dev., ED -23 (June
1976), pp. 531-533. Accurate cross-sectional views of large scale integrated
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circuits are useful for failure analysis and process evaluation. We have successfully
prepared thin sections of finished devices cut perpendicular to the plane of the chip
and examined them using transmission electron microscopy. We describe the section-
ing procedure and show some cross-sectional views from memory cells of a CMOS
RAM with poly -Si gates and tungsten second metal.

Planar Isolated GaAs Devices Produced by Molecular Beam Epitaxy. W. C. Ballamy
and A. Y. Cho, IEEE Trans. Electron. Dev., ED -23 (1976), pp. 481-484. This
paper reports the fabrication of low parasitic capacitance planar beam leaded mixer
diodes. The material for low parasitic structure is produced by the simultaneous
deposition of single crystal and polycrystalline gallium arsenide utilizing the molecular
beam epitaxial process. Diodes measured in a double -balanced downconverter circuit
showed a conversion loss of 5.3 dB at 51.5 GHz and 8.5 dB at 103 GHz. These devices
exceed the performance of structurally identical devices fabricated on conventional
n on n+ material by about 2 dB.

GENERAL MATHEMATICS AND STATISTICS

Estimating Item and Order Information. G. Sperling and M. J. Melchner, J. Math.
Psychol. 13, No. 2 (April 1976), pp. 192-213. In a common psychological pro-
cedure, a subject is presented a sequence of items and asked to recall them in order.
His response is scored for items reported correctly in their correct positions (position
score) and for items reported correctly independently of their position (item score).
Equations are derived to estimate the effects of guessing and thereby to estimate
"true item" and "true position" scores from observed scores.

MATERIALS SCIENCE

Compound -Glass Waveguides Fabricated By a Metal Evaporation Technique.
S R. Nagel, A. D. Pearson, and A. R. Tynes, J. Amer. Chem. Soc., 59 (January
1976), pp. 47-49. Glass fiber optical waveguide preforms consisting of a po-
tassium silicate glass core and Si02 cladding were produced by a potassium metal
evaporation technique. Fibers drawn from such preforms exhibit moderately low
optical loss. The fabrication technique is described, and a representative loss spec-
trum is presented.

The Deep Blue Maxixe-Type Color Center in Beryl. K. Nassau, B. E. Prescott, and
D. L. Wood, Amer. Mineral., 61 (1976), pp. 100-107. Irradiation produces a
deep blue color center in some natural beryl. Narrow band absorption in the ordinary
ray and fading on heating or on light exposure distinguished this Maxixe-type beryl
from aquamarine. Similar, but not identical, beryl was found in 1917 in the Maxixe
mine in Brazil.

Investigations of an Electrodeposited Tin -Nickel Alloy : I. Thermal Stability by
Differential Thermal Analysis and X -Ray Diffraction. J. E. Bennett and H. G.
Tompkins, J. Electrochem. Soc., 123, No. 7 (July 1976), pp. 999-1003. Electro-
deposited equiatomic tin -nickel is a metastable phase which transforms to a mixture
of the equilibrium compounds Ni3Sn2 and Ni3Sn4. The transition temperature can
be a deciding factor for certain applications. DTA and XRD showed that on heating
the alloy decomposed exothermally over the range 350 to 380°C with a maximum
at 365°C.

Origin of Surface Defects in Fe = Co/3%V Wire. M. R. Pinnel, J. E. Bennett,
and K. M. Olsen, Wire J., 9 (April 1976), pp. 73-79. Good glass -to -metal vacuum
seals are essential to the performance of remreed contacts. Surface defects in the
magnetic wire at the seal caused problems. The source of the defects was traced to
the rod surface finish prior to wire drawing. Methods to improve the finish were
evaluated.

Ternary Phase Relations in the Vicinity of Chalcopyrite Copper Gallium Sulfide :
M. Kokta,* J. R. Carruthers, M. Grasso, H. M. Kasper, and B. Tell, J. Electron.
Mater., 5, No. 1 (1976), pp. 69-89. Some of the ternary phase relations relevant
to the growth of Cu i_zGai+./3S2 chalcopyrite crystals have been determined. Condi-
tions necessary for the growth of stoichiometric crystals which are free of cupric
sulfide precipitates and the associated green coloration are given. Such compositions
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are necessary for the generation of luminescence in this compound. * Work
performed while at Bell Laboratories. Present address : Allied Chemical Corporation,
Morristown, New Jersey.

PHYSICS

Chemisorption of Atomic Hydrogen on the Silicon (110)5 X1 Surface (Ups and Leed).
T. Sakurai, K. C. Pandey, and H. D. Hagstrum, Phys. Lett., 56A (March 22, 1976),

pp. 204-206. Chemisorption experiments show that the Si (110)5 X1 surface
when saturated with H leads to two distinct 1 X 1 phases depending on temperature
during exposure. We suggest that while both phases are characterized by the satura-
tion of surface dangling orbitals, additional hydrogen atoms chemisorbed weakly at
nontetrahedral sites are present in the room temperature phase.

Greater Surface Sensitivity of Ion Neutralization Spectroscopy with Respect to
IIV Photoemission Spectroscopy. T. Sakurai and H. D. Hagstrum, J. Vacuum Sci.
Technol., 13 (January/February 1976), p. 196. Ultraviolet photoemission
spectroscopy showed that the dangling -bond surface state disappears when the clean
surface is exposed to atomic hydrogen. Chemisorbed hydrogen produces two sharp
peaks in the surface density of states at -10 and -12 eV from the vacuum level,
in good agreement with the recent theoretical works.

Spectroscopic Observation of Very Low Energy Excitations in Glasses. P. A. Fleury
and K. B. Lyons, Phys. Rev. Lett., 36, No. 20 (May 17, 1976), pp. 1188-1191. A

new experimental technique for high resolution, very high contrast light scattering
spectroscopy has permitted the direct observation of very low energy excitations
(0-1 K) in a variety of glassy solids. These excitations may be responsible for the
anomalous specific heat, thermal conductivity, and acoustic absorption previously
observed in glasses at very low temperatures ( <1 K).
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