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This year the United States is celebrating the bicentennial of its
years of change, crises, and invention. At the beginning

of the nation's second century, in March 1876, the "speaking tele-
phone" was invented. With it began 100 years of research and develop-
ment in telecommunications-a technology whose influence on the
growth of the nation and, indeed, of all western nations, has been
profound. The continual improvement and expansion of telecom-
munications has depended on the depth and diversity of technical
research and development. And, if research and development is to
encompass all the economic and physical requirements of a growing
telecommunications system, it must be founded upon an active ex-
change of ideas.

Inventiveness in any organization engaged in research and develop-
ment can be ascribed not only to individual intelligence, but also to
the participation of its members in the exchange of ideas-among its
own people and throughout the scientific community. Indeed, it is
apparent that the process of exchange is an active element in the de-
velopment of ideas. For example, it is recorded that Alexander Graham
Bell's invention sprang from a mistranslation of a German text. Bell
had the impression from Helmholz's book Sensations of Tone that the
author had telegraphed vowel sounds over a wire. Although Bell later
discovered the mistake, the idea led him to a study of electricity.

In this anniversary article, we note that timely, open publication of
advances in telephony has a history as old as the telephone itself.
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For example, Bell dated his invention February 14, 1876, found it
would carry voice on March 10, and described the instrument in his
paper "Researches in Telephony," which he read on May 10 at a
meeting of the American Academy of Arts and Sciences. The paper
was subsequently printed in Volume XII of the Academy's Proceedings.
(We found Bell's original paper so refreshing as an expression of his
thought and technique that we have reprinted it as the first article
in this issue.)

Similar in function to professional journals and magazines, pro-
fessional societies like the Academy are created to be forums for the
exchange of scientific and technical information. As electrical engineer-
ing was emerging in the late 19th century as a discipline with an in-
creasing volume of specific knowledge, the American Institute of
Electrical Engineers was formed. (Bell was a cofounder and was
elected president in 1892.) Discussions at professional society meetings
included philosophical and operational topics as well as technical
matters. For example, the practical viewpoint of today's systems
engineering is clearly identifiable in "Telephone Engineering," J. J.
Carty's paper in the 1906 Transactions of the AIEE. A year later
General Carty became AT&T's Chief Engineer.

In 1876, Sir William Thompson-later Lord Kelvin-observed the
operation of the telephone at one of Professor Bell's lectures and re-
ported the discovery to a meeting of the British Association. In 1877,
Bell went to England and demonstrated his instruments at a meeting
of the same association. The idea caught on so rapidly that only ten
years later there were 200,000 telephones in operation in England.
Today, even before the new technology of lightwave communications
has become commercially feasible for telephone signal transmission,
the scientific community throughout the world is keeping pace with
the most recent developments in the United States through Bell
System publications and Bell System patents.

The founders of the telephone industry early established the policy
of open publication that has remained a characteristic of the industry.
This policy has been based on the protection of proprietary information
afforded by the patent systems of the United States and other countries,
and often the publication of new technology is to be found in issued
patents. This policy of early publication and patenting is frequently
a direct stimulus to invention. As a case in point, the rapid evolution
of the telephone transmitter in 1877 and 1878 can be traced in the
series of inventions by Edison, Hughes, Blake, Berliner, De Jongh,
Mix and Genest, and Hunnings.

In the first thirty years of telecommunications development, Bell
System workers depended upon such established professional publica-
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tions as Science Magazine, The Proceedings of the American Academy
of Arts and Sciences, the Philosophical Magazine, and Silliman's
Journal. But in 1912, the Bell System started the first of a series of
company publications with the first issue of the Western Electric News,
which combined news of employee activities with articles on new
research techniques and technical developments.

A decade later, in 1922, the need for a specialized medium of ex-
change among scientists and engineers in telecommunications, and
specifically between the research and development areas in the Bell
System and those in industry, academia, and government, was
affirmed in the Foreword to the first issue of The Bell System Technical
Journal: "A casual examination of recent technical literature dealing
with electrical communication would show articles which touch upon
almost every branch of human activity, which we designate as science.
. . . With this intense and growing interest in the proper application
of scientific methods to the solution of the problems of electrical
communication, it is natural that a widespread desire should have
arisen for a technical journal to collect, print, . . . and make readily
available the more important articles relating to the field of the com-
munication engineer. These articles are now appearing in some fifteen
or twenty periodicals scattered throughout the world. . . . The need
already felt for such a journal will grow keener as new developments
extend the scope of the art and the specialization of its engineers of
necessity increases."

While The Bell System Technical Journal became the primary voice
of Bell System research and development, several other technically
dedicated publications were started : The Bell Laboratories Record was
established in 1925 and at the present time provides functionally
descriptive articles on the discoveries and developments at Bell
Laboratories. The Bell Telephone Quarterly (1922-1940), established
as a medium of information exchange among the telephone companies,
was superseded by The Bell Telephone Magazine in 1941; and The
Western Electric Engineer (begun in 1957) contains articles by Western
Electric engineers on all phases of engineering in the manufacture of
telecommunications equipment. Parallel with the establishment of
these source publications, significant technical papers were published
in the Western Electric Reprint series, begun in 1919, which evolved into
The Bell Telephone System Technical Publications (Monographs), pub-
lished until 1967. On the management side of the business, The Bell
Journal of Economics was begun in 1970 with the object of encouraging
scholarly interest and thought in the application of economics, to the
study of regulation, firm and market organization, and the study of
interdisciplinary issues in law and economics.
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Other telecommunications companies also responded to the need
for technical information exchange. Publication of Electrical Commun-
ication was begun in 1922 by the International Western Electric Com-
pany and has been continued since 1925 by the International Tele-
phone and Telegraph Corporation. Now published by General
Telephone and Electronics, the GTE Automatic Electric Technical
Journal was begun in 1913 as Automatic Telephone. Ericsson Technics
was begun in 1933 by the Swedish firm Telefonaktiebolaget L M
Ericsson, and the Philips Telecommunication Review was established in
1934 by the Philips' Telecommunicatie Industrie B. V., Netherlands.

One of the oldest continuing journals in the field is Tele. Published
by the Central Administration of Swedish Telecommunications, Tele's
origins can be traced back to 1895. Telephony, one of the leading
U. S. commercial publications in the field, was started in 1901 and
was followed by Telephone Engineer in 1909 (now Telephone Engineer
and Management).

With technical and scientific specialization have come journals to
embrace each new field, e.g., optics, acoustics, materials, computers,
circuit theory, etc. We find that, in the last decade, almost 19,000
papers by Bell System authors were published in these specialized
journals and magazines, nationally and internationally.

This fundamental requisite for free exchange of information, which
has been evident since the inception of telecommunications, will be
equally necessary in the future if the industry is to maintain its
scientific, technical, and, in the final analysis, functional integrity.
The Bell System through its own publications and contributions to
professional societies and technical journals remains dedicated to this
principle.
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On October 18, 1892, only sixteen years after the invention of his "speaking tele-
phone," Alexander Graham Bell in New York talks to William H. Hubbard in Chicago
at the inauguration of the New York -Chicago telephone line.
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REPRINT

PROCEEDINGS
OF THE

AMERICAN ACADEMY
OF

ARTS AND SCIENCES.

VOL. XII.

PAPERS READ BEFORE THE ACADEMY.

I.

RESEARCHES IN TELEPHONY.

BY A. GRAHAM BELL.
Presented May 10, 1876, by the Corresponding Secretary.

1. It has long been known that an electro-magnet gives forth a
decided sound when it is suddenly magnetized or demagnetized.
When the circuit upon which it is placed is rapidly made and broken,
a succession of explosive noises proceeds from the magnet. These
sounds produce upon the ear the effect of a musical note, when the
current is interrupted a sufficient number of times per second. The
discovery of "Galvanic Music," by Page,* in 1837, led inquirers in dif-
ferent parts of the world almost simultaneously to enter into the field of
telephonic research; and the acoustical effects produced by magnetiza-
tion were carefully studied by Marrian,t Beatson,$ Gassiot, § De la Rive,

* C. G. Page. "The Production of Galvanic Music," Silliman's Journ., 1837,
XXXII., p. 396; Silliman's Journ., July, 1837, p. 354; Silliman's Journ., 1838,
XXXIII., p. 118; Bibl. Univ. (new series), 1839, II., p. 398.

t J. P. Marrian. Phil. Mag., XXV., p. 382; Inst., 1845, p. 20; Arch. de 1'Electr.,
V., p. 195.

$ W. Beatson. Arch. de l'Electr., V., p. 197; Arch. de Sc. Phys. et Nat. (2d series),
II., p. 113.

§ Gassiot. See "Treatise on Electricity," by De la Rive, I., p. 300.
11 De la Rive. Treatise on Electricity, I., p. 300; Phil. Mag., XXXV., p. 422; Arch.

de l'Electr. V., p. 200; Inst., 1846, p. 83; Comptes Rendus, XX., p. 1287; Comp.
Rend., XXII., p. 432; Pogg. Ann., LXXVI., p. 637; Ann. de Chim. et de Phys.,
XXVI., p. 15.
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Matteucci,* Guillemin,t Wertheim,t Wartmann,§ Janniar, II Joule,¶
Laborde,** Legat,tt Reis, Poggendorff,§§ Du Monce1,11II Delezenne,
and others.***

2. In the autumn of 1874, I discovered that the sounds emitted by
an electro-magnet under the influence of a discontinuous current of
electricity are not due wholly to sudden changes in the magnetic con-
dition of the iron core (as heretofore supposed), bui, that a portion of
the effect results from vibrations in the insulated copper -wires compos-
ing the coils. An electro-magnet was arranged upon circuit with an in-
strument for interrupting the current,-the rheotome being placed
in a distant room, so as to avoid interference with the experiment.
Upon applying the ear to the magnet, a musical note was clearly per-
ceived, and the sound persisted after the iron core had been removed.
It was then much feebler in intensity, but was otherwise unchanged,
-the curious crackling noise accompanying the sound being well
marked.

The effect may probably be explained by the attraction of the coils
of the wire for one another during the passage of the galvanic current,
and the sudden cessation of such attraction when the current is inter-
rupted. When a spiral of fine wire is made to dip into a cup of mer-
cury, so as thereby to close a galvanic circuit, it is well known that
the spiral coils up and shortens. Fergusonfff constructed a rheotome
upon this principle. The shortening of the spiral lifted the end of the

* Matteucci. Inst., 1845, p. 315; Arch. de 1'Electr., V., 389.
t Guillemin. Comp. Rend., XXII., p. 264; Inst., 1846, p. 30; Arch. d. Sc. Phys.

(2d series), I., p. 191.
$ G. Wertheim. Comp. Rend., XXII., pp. 336, 544; Inst., 1846, pp. 65, 100; Pogg.

Ann., LXVIII, p. 140; Comp. Rend., XXVI., p. 505; Inst., 1848, p. 142; Ann. de
Chim. et de Phys., XXIII., p. 302; Arch. d. Sc. Phys. et Nat., VIII., p. 206; Pogg.
Ann., LXXVII., p. 43; Berl. Ber., IV., p. 121.

§ Elie Wartmann. Comp. Rend., XXII., p. 544; Phil. Mag. (3d series), XXVIII.,
p. 544; Arch. d. Sc. Phys. et Nat. (2d series), I., p. 419; Inst., 1846, p. 290;
Monatscher. d. Berl. Akad., 1846, p. 111.

II Janniar. Comp. Rend., XXIII., p. 319; Inst., 1846, p. 269; Arch. d. Sc. Phys. et
Nat. (2d series), II., p. 394.

¶ J. P. Joule. Phil. Mag., XXV., pp. 76, 225; Berl. Ber., III., p. 489.
** Laborde. Comp. Rend., L., p. 692; Cosmos, XVII., p. 514.
tt Legat. Brix. Z. S., IX., p. 125.
tt Reis. "Telephonie." Polytechnic Journ., CLXVIII., p. 185; Bottger's Notizbl.,

1863, No. 6.
§§ J. C. Poggendorff. Pogg. Ann., XCVIII., p. 192; Berliner Monatsber., 1856,

p. 133; Cosmos, IX., p. 49 ; Berl. Ber., XII., p. 241; Pogg. Ann., LXXXVII., p. 139.
!HI Du Moncel. Exposé, II., p. 125; also, III., p. 83.

Delezenne. "Sound produced by Magnetization," Bibl. Univ. (new series), 1841,
XVI., x. 406.

*** See London Journ., XXXII., p. 402, Polytechnic Journ., CX., p. 16; Cosmos,
IV., p. 43; Glosener-Traite general, &c., p. 350; Dove, Repert., VI., p. 58; Pogg.
Ann., XLIII., p. 411; Berl. Ber., I., p. 144; Arch. d. Sc. Phys. et Nat., XVI., p. 406;
Kuhn's Encyclopedia der Physik, pp. 1014-1021.

ttt Ferguson. Proceedings of Royal Scottish Soc. of Arts, April 9, 1866; Paper on
"A New Current Interrupter."
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wire out of the mercury, thus opening the circuit, and the weight of
the wire sufficed to bring the end down again,-so that the spiral was
thrown into continuous vibration. I conceive that a somewhat similar
motion is occasioned in a helix of wire by the passage of a discontinu-
ous current, although further research has convinced me that other
causes also conspire to produce the effect noted above. The extra
currents occasioned by the induction of the voltaic current upon itself
in the coils of the helix no doubt play an important part in the pro-
duction of the sound, as very curious audible effects are produced by
electrical impulses of high tension. It is probable, too, that a molecular
vibration is occasioned in the conducting wire, as sounds are emitted
by many substances when a discontinuous current is passed through
them. Very distinct sounds proceed from straight pieces of iron,
steel, retort -carbon, and plumbago. I believe that I have also obtained
audible effects from thin platinum and German -silver wires, and from
mercury contained in a narrow groove about four feet long. In these
cases, however, the sounds were so faint and outside noises so loud that
the experiments require verification. Well -marked sounds proceed
from conductors of all kinds when formed into spirals or helices. I
find that De la Rive had noticed the production of sound from iron
and steel during the passage of an intermittent current, although he
failed to obtain audible results from other substances. In order that
such effects should be observed, extreme quietness is necessary. The
rheotome itself is a great source of annoyance, as it always produces
a sound of similar pitch to the one which it is desired to hear. It
is absolutely requisite that it should be placed out of earshot of the
observer, and at such a distance as to exclude the possibility of sounds
being mechanically conducted along the wire.

3. Very striking audible effects can be produced upon a short circuit
by means of two Grove elements. I had a helix of insulated copper -wire
(No. 23) constructed, having a resistance of about twelve ohms. It
was placed in circuit with a rheotome which interrupted the current
one hundred times per second. Upon placing the helix to my ear I
could hear the unison of the note produced by the rheotome. The
intensity of the sound was much increased by placing a wrought -iron
nail inside the helix. In both these cases, a crackling effect accompa-
nied the sound. When the nail was held in the fingers so that no
portion of it touched the helix, the crackling effect disappeared, and a
pure musical note resulted.

When the nail was placed inside the helix, between two cylindrical
pieces of iron, a loud sound resulted that could be heard all over a large
room. The nail seemed to vibrate bodily, striking the cylindrical pieces
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of metal alternately, and the iron cylinders themselves were violently
agitated.

4. Loud sounds are emitted by pieces of iron and steel when sub-
jected to the attraction of an electro-magnet which is placed in cir-
cuit with a rheotome. Under such circumstances, the armatures of
Morse -sounders and Relays produce sonorous effects. I have suc-
ceeded in rendering the sounds audible to large audiences by inter-
posing a tense membrane between the electro-magnet and its armature.
The armature in this case consisted of a piece of clockspring glued
to the membrane. This form of apparatus I have found invaluable
in all my experiments. The instrument was connected with a parlor
organ, the reeds of which were so arranged as to open and close the
circuit during their vibration. When the organ was played the music
was loudly reproduced by the telephonic receiver in a distant room.
When chords were played upon the organ, the various notes composing
the chords were emitted simultaneously by the armature of the receiver.

5. The simultaneous production of musical notes of different pitch
by the electric current, was foreseen by me as early as 1870, and
demonstrated during the year 1873. Elisha Gray,* of Chicago, and
Paul La Cour,f of Copenhagen, lay claim to the same discovery.
The fact that sounds of different pitch can be simultaneously produced
upon any part of a telegraphic circuit is of great practical importance;
for the duration of a musical note can be made to signify the dot or
dash of the Morse alphabet, and thus a number of telegraphic mes-
sages may be sent simultaneously over the same wire without confusion
by making signals of a definite pitch for each message.

6. If the armature of an electro-magnet has a definite rate of oscil-
lation of its own, it is thrown bodily into vibration when the interrup-
tions of the current are timed to its movements. For instance, present
an electro-magnet to the strings of a piano. It will be found that the
string which is in unison with the rheotome included in the circuit
will be thrown into vibration by the attraction of the magnet.

Helmholtz,t in his experiments upon the synthesis of vowel sounds
caused continuous vibration in tuning -forks which were used as the
armatures of electro-magnets. One of the forks was employed as a
rheotome. Platinum wires attached to the prongs dipped into mercury.

The intermittent current occasioned by the vibration of the fork
traversed a circuit containing a number of electro-magnets between
the poles of which were placed tuning -forks whose normal rates of
vibration were multiples of that of the transmitting fork. All the

* Elisha Gray. Eng. Pat. Spec., No. 974. See "Engineer," March 26, 1875.
f Paul la Cour. Telegraphic Journal, Nov. 1, 1875.
$ Helmholtz. Die Lehre von dem Tonempfindungen.
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forks were kept in continuous vibration by the passage of the inter-
rupted current. By re -enforcing the tones of the forks in different
degrees by means of resonators, Helmholtz succeeded in reproducing
artificially certain vowel sounds.

I have caused intense vibration in a steel strip, one extremity of
which was firmly clamped to the pole of a U-shaped electro-magnet, the
free end overhanging the other pole. The amplitude of the vibration
was greatest when the coil was removed from the leg of the magnet to
which the armature was attached.

7. All the effects noted above result from rapid interruptions of a
voltaic current, but sounds may be produced electrically in many other
ways.

The Canon Gottoin de Coma,* in 1785, observed that noises were
emitted by iron rods placed in the open air during certain electrical
conditions of the atmosphere; Beatsont produced a sound from an
iron wire by the discharge of a Leyden jar; Gores obtained loud
musical notes from mercury, accompanied by singularly beautiful cris-
pations of the surface during the course of experiments in electrolysis;
and Pages produced musical tones from Trevelyan's bars by the action
of the galvanic current.

8. When an intermittent current is passed through the thick wires
of a Ruhmkorff's coil, very curious audible effects are produced by the
currents induced in the secondary wires. A rheotome was placed in
circuit with the thick wires of a Ruhmkorff's coil, and the fine wires
were connected with two strips of brass (A and B), insulated from one
another by means of a sheet of paper. Upon placing the ear against
one of the strips of brass, a sound was perceived like that described
above as proceeding from an empty helix of wire during the passage of
an intermittent voltaic current. A similar sound, only much more
intense, was emitted by a tin -foil condenser when connected with the
fine wires of the coil.

One of the strips of brass, A (mentioned above), was held closely
against the ear. A loud sound came from A whenever the slip B was
touched with the other hand. It is doubtful in all these cases whether
the sounds proceeded from the metals or from the imperfect conductors
interposed between them. Further experiments seem to favor the
latter supposition. The strips of brass A and B were held one in each
hand. The induced currents occasioned a muscular tremor in the
fingers. Upon placing my forefinger to my ear a loud crackling noise

* See "Treatise on Electricity," by De la Rive, I., p. 800.
t Ibid.
t Gore. Proceedings of Royal Society, XII., p. 217.
§ Page. "Vibration of Trevelyan's bars by the galvanic current." Silliman's Journal,

1850, IX., pp. 105-108.
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was audible, seemingly proceeding from the finger itself. A friend
who was present placed my finger to his ear, but heard nothing. I
requested him to hold the strips A and B himself. He was then dis-
tinctly conscious of a noise (which I was unable to perceive) proceed-
ing from his finger. In these cases a portion of the induced currents
passed through the head of the observer when he placed his ear against
his own finger; and it is possible that the sound was occasioned by a
vibration of the surfaces of the ear and finger in contact.

When two persons receive a shock from a Ruhmkorff's coil by clasp-
ing hands, each taking hold of one wire of the coil with the free hand, a
sound proceeds from the clasped hands. The effect is not produced when
the hands are moist. When either of the two touches the body of the
other a loud sound comes from the parts in contact. When the arm
of one is placed against the arm of the other, the noise produced can be
heard at a distance of several feet. In all these cases a slight shock
is experienced so long as the contact is preserved. The introduction
of a piece of paper between the parts in contact does not materially
interfere with the production of the sounds, while the unpleasant
effects of the shock are avoided.

When a powerful current is passed through the body, a musical note
can be perceived when the ear is closely applied to the arm of the
person experimented upon. The sound seems to proceed from the
muscles of the fore -arm and from the biceps muscle. The musical
note is the unison of the rheotome employed to interrupt the primary
circuit. I failed to obtain audible effects in this way when the pitch
of the rheotome was high. Elisha Gray* has also produced audible
effects by the passage of induced electricity through the human body.
A musical note is occasioned by the spark of a Ruhmkorff's coil when
the primary circuit is made and broken sufficiently rapidly. When
two rheotomes of different pitch are caused simultaneously to open and
close the primary circuit, a double tone proceeds from the spark.

9. When a voltaic battery is common to two closed circuits, the
current is divided between them. If one of the circuits is rapidly
opened and closed, a pulsatory action of the current is occasioned upon
the other.

All the audible effects resulting from the passage of an intermittent
current can also be produced, though in less degree, by means of a
pulsatory current.

10. When a permanent magnet is caused to vibrate in front of the
pole of an electro-magnet, an undulatory or oscillatory current of
electricity is induced in the coils of the electro-magnet, and sounds

* Elisha Gray. Eng. Pat. Spec., No. 2646, see "Engineer," Aug. 14, 1874.
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proceed from the armatures of other electro-magnets placed upon the
circuit. The telephonic receiver referred to above (par. 4), was con-
nected in circuit with a single -pole electro-magnet, no battery being
used. A steel tuning -fork which had been previously magnetized was
caused to vibrate in front of the pole of the electro-magnet. A musical
note similar in pitch to that produced by the tuning -fork proceeded
from the telephonic receiver in a distant room.

11. The effect was much increased when a battery was included in
the circuit. In this case, the vibration of the permanent magnet threw
the battery -current into waves. A similar effect was produced by the
vibration of an unmagnetized tuning -fork in front of the electro-mag-
net. The vibration of a soft iron armature, or of a small piece of steel
spring no larger than the pole of the electro-magnet in front of which it
was placed, sufficed to produce audible effects in the distant room.

12. Two single -pole electro-magnets, each having a resistance of
ten ohms, were arranged upon a circuit with a battery of five carbon
elements. The total resistance of the circuit, exclusive of the battery,
was about twenty-five ohms. A drum -head of gold -beater's skin,
seven centimetres in diameter, was placed in front of each electro-
magnet, and a circular piece of clock -spring, one centimetre in diame-
ter, was glued to the middle of each membrane. The telephones so
constructed were placed in different rooms. One was retained in the
experimental room, and the other taken to the basement of an ad-
joining house.

Upon singing into the telephone, the tones of the voice were re-
produced by the instrument in the distant room. When two persons
sang simultaneously into the instrument, two notes were emitted simul-
taneously by the telephone in the other house. A friend was sent
into the adjoining building to note the effect produced by articulate
speech. I placed the membrane of the telephone near my mouth, and
uttered the sentence, "Do you understand what I say?" Presently
an answer was returned through the instrument in my hand. Articu-
late words proceeded from the clock -spring attached to the membrane,
and I heard the sentence : "Yes; I understand you perfectly."

The articulation was somewhat muffled and indistinct, although in
this case it was intelligible. Familiar quotations, such as, "To be, or
not to be; that is the question." "A horse, a horse, my kingdom for
a horse." "What hath God wrought," &c., were generally understood
after a few repetitions. The effects were not sufficiently distinct to
admit of sustained conversation through the wire. Indeed, as a gen-
eral rule, the articulation was unintelligible, excepting when familiar
sentences were employed. Occasionally, however, a sentence would
come out with such startling distinctness as to render it difficult to
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believe that the speaker was not close at hand. No sound was audible
when the clock -spring was removed from the membrane.

The elementary sounds of the English language were uttered suc-
cessively into one of the telephones and the effects noted at the other.
Consonantal sounds, with the exception of L and M, were unrecog-
nizable. Vowel -sounds in most cases were distinct. Diphthongal
vowels, such as a (in ale), o (in old), i (in isle), ow (in now), oy (in
boy), oor (in poor), oor (in door), ere (in here), ere (in there), were
well marked.

Triphthongal vowels, such as ire (in fire), our (in flour), ower
(in mower), ayer (in player), were also distinct. Of the elementary
vowel -sounds, the most distinct were those which had the largest oral
apertures. Such were a (in far), aw (in law), a (in man), and e (in
men).

13. Electrical undulations can be produced directly in the voltaic
current by vibrating the conducting wire in a liquid of high resistance
included in the circuit.

The stem of a tuning -fork was connected with a wire leading to one
of the telephones described in the preceding paragraph. While the
tuning -fork was in vibration, the end of one of the prongs was dipped
into water included in the circuit. A sound proceeded from the distant
telephone. When two tuning -forks of different pitch were connected
together, and simultaneously caused to vibrate in the water, two mu-
sical notes (the unisons respectively of those produced by the forks)
were emitted simultaneously by the telephone.

A platinum wire attached to a stretched membrane, completed a
voltaic circuit by dipping into water. Upon speaking to the membrane,
articulate sounds proceeded from the telephone in the distant room.
The sounds produced by the telephone became louder when dilute sul-
phuric acid, or a saturated solution of salt, was substituted for the
water. Audible effects were also produced by the vibration of plumbago
in mercury, in a solution of bichromate of potash, in salt and water, in
dilute sulphuric acid, and in pure water.

14. Sullivan* discovered that a current of electricity is generated
by the vibration of a wire composed partly of one metal and partly of
another; and it is probable that electrical undulations were caused by
the vibration. The current was produced so long as the wire emitted
a musical note, but stopped immediately upon the cessation of the
sound.

15. Although sounds proceed from the armatures of electro-magnets
under the influence of undulatory currents of electricity, I have been

* Sullivan. "Currents of Electricity produced by the vibration of Metals." Phil.
Mag., 1845, p. 261; Arch. de l'Electr., X., p. 480.
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unable to detect any audible effects due to the electro-magnets them-
selves. An undulatory current was passed through the coils of an elec-
tro-magnet which was held closely against the ear. No sound was per-
ceived until a piece of iron or steel was presented to the pole of the
magnet. No sounds either were observed when the undulatory cur-
rent was passed through iron, steel, retort -carbon, or plumbago. In
these respects an undulatory current is curiously different from an in-
termittent one. (See par. 2.)

16. The telephonic effects described above are produced by three
distinct varieties of currents, which I term respectively intermittent,
pulsatory, and undulatory. Intermittent currents are characterized by
the alternate presence and absence of electricity upon the circuit;
Pulsatory currents result from sudden or instantaneous changes in the
intensity of a continuous current; and undulatory currents are pro-
duced by gradual changes in the intensity of a current analogous to
the changes in the density of air occasioned by simple pendulous
vibrations. The varying intensity of an undulatory current can be
represented by a sinusoidal curve, or by the resultant of several sinus-
oidal curves.

Intermittent, pulsatory, and undulatory currents may be of two
kinds,-voltaic, or induced; and these varieties may be still further
discriminated into direct and reversed currents; or those in which
the electrical impulses are all positive or negative, and those in which
they are alternately positive and negative.

Intermittent.

Pulsatory.

Undulatory.

E-4

Voltaic.

Induced.

Voltaic.

Induced.

'Voltaic.

Induced.

'Direct (See par. 1, 2, 3, 4, 5, 6).
tReversed.
"Direct.
tReversed (See par. 8).
'Direct (See par. 9).
lReversed.
'Direct.
iReversed.
rDirect (See par. 11, 12, 13, 15).
1Reversed.

Direct.
1Reversed (See par. 10).

17. In conclusion, I would say that the different kinds of currents
described above may be studied optically by means of Konig's mano-
metric capsule.* The instrument, as I have employed it, consists

* Konig. "Upon Manometric Flames," Phil. Mag., 1873, XLV., No. 297, 298.
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simply of a gas -chamber closed by a membrane to which is attached
a piece of clock -spring. When the spring is subjected to the attraction
of an electro-magnet, through the coils of which a "telephonic" current
of electricity is passed, the flame is thrown into vibration.

I find the instrument invaluable as a rheometer, for an ordinary
galvanometer is of little or no use when "telephonic" currents are to
be tested. For instance, the galvanometer needle is insensitive to the
most powerful undulatory current when the impulses are reversed, and
is only slightly deflected when they are direct. The manometric cap-
sule, on the other hand, affords a means of testing the amplitude of
the electrical undulations; that is, of deciding the difference between
the maximum and minimum intensity of the current.

288 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976



Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 55, No. 3, March 1976
Printed in U. S. A.

Cross Polarization in Reflector -Type
Beam Waveguides and Antennas
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Using the paraxial ray approximation, simple formulas for the cross
polarization introduced by curved reflectors are developed. In particular,
when the reflectors are quadric surfaces of revolution with the center ray
of the beam passing through the foci, the maximum cross -polarized field
amplitude throughout a gaussian beam, relative to the on -axis copolarized
field, is

C sin Oi,
r7

where e is the base of the natural logarithm, is the 1/e power radius of
the beam, Ki is the curvature of the reflector perpendicular to the plane of
incidence, and 6i is the angle of incidence. For such reflectors, the beam
fields are accurately represented by a superposition of just two gaussian
modes for each plane of polarization: the fundamental mode, which cor-
responds to the co -polarized gaussian beam, and a higher -order ?node, which
accounts for the cross -polarized field and the amplitude "space" taper.
Transformation of a beam through a general sequence of such reflectors is
influenced by three factors: the curved reflectors, longitudinal propagation
lengths, and rotations of the plane of incidence. The effect of each factor
is described by a 4 X 4 matrix relating the input and output gaussian
modes. Several typical beam -reflector systems are analyzed by this method.
Theoretical cross -polarization patterns are shown to be in accurate agree-
ment with measurements on a symmetrical dual -reflector system.

I. INTRODUCTION

At millimeter wavelengths, normal waveguide losses become too
large in many applications. For example, long lengths of waveguide are
required in satellite earth stations between the transceiver and the
reflector antenna focus. To reduce these losses one may use quasi -
optical beams' which employ reflectors or lenses for refocusing at
various intervals, thereby confining the beam within a geometric tube
with no (lossy) guiding walls. Long -focal -length, multiple -reflector
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antennas (e.g., Cassegrainian and Gregorian antennas) may them-
selves be thought of in the context of beam waveguides.

In another application, periodically refocussed beams of millimeter
or submillimeter wavelength electromagnetic waves might be used2 as
a means of distributing large amounts of information in cities. Such a
transmission system is referred to as Hertzian cable.

In the above beam waveguide systems, it is desirable to double the
system capacity by transmitting separate signals on each of two
orthogonal polarizations (e.g., vertical and horizontal linear polariza-
tions). In such dual -polarization systems, cross -polarization coupling
introduced by the refocusers can significantly decrease system per-
formance because of crosstalk between the different signals carried on
each of the two polarizations.

The purpose of this paper is to describe simple formulas for com-
puting the cross -polarization coupling introduced by sequences of beam
refocusers which consist of quadric reflector surfaces arranged with the
beam axis passing through their foci.

II. CROSS POLARIZATION OWING TO REFLECTOR CURVATURE

Consider a beam incident on a flat reflector, as in Fig. la. We restrict
our attention to beams with narrow angular divergence where the
paraxial ray approximation applies so that, for example, the beam
field may be described in terms of gaussian beam modes.' The paraxial
ray approximation applies roughly whenever the 3 -dB angular diver-
gence of the beam is less than one radian.

The geometrical optics law of reflection from a perfect conductor is*

er = 24 (fi 41) - ei, (1)

where gi and er are unit vectors in the direction of the incident and
reflected field polarizations, respectively, and 1 is the surface unit
normal vector. The caret " "" indicates a unit vector. If the polarization
of the incident field is a fixed linear polarization throughout the beam
and is perpendicular to the surface normal, then

er = (2)

i.e., the reflected field is also a fixed linear polarization throughout the
beam. As expected, a flat plate introduces no cross polarization.

In general, a reflector will be curved with two principal radii of
curvature,4 as shown in Fig. lb. The surface unit normal vector will no
longer be perpendicular to 'di at all points. In fact, for small displace-
ments ,Ax and Ay along the directions of maximum and minimum

*See Ref. 9, Sec. 6.11, for example.
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PLANE OF INCIDENCE
---1DEFINED BY is' AND ri)

(a)

PLANE OF
INCIDENCE

--- MINIMUM
CURVATURE, K2

MAXIMUM
CURVATURE, K1

(b)

Fig. 1-(a) Reflection of a beam from a flat plate. (b) Reflection of a beam from
a curved surface.

curvature, respectively, the unit normal vector will change by

Aft = - K2(AY)g, (3)

where Ki and K2 are the maximum and minimum curvatures, respec-
tively, and positive curvature indicates the surface bends toward the
incident radiation.

This change in the surface unit normal vector causes the term (hgi)
in eq. (1) to change from zero to

(fi  ei) = -Ki(Ax) sin K2(Ay) cos v, (4)

where v is the angle between the plane of incidence and the direction
of maximum curvature as shown in Fig. lb.

Thus, due to surface curvature, the polarization of the reflected field
varies over the surface from that resulting from a flat plate (- ei) by
an additional component 2ii (ii.gi). Part of this component represents
the change in the in -line polarization as a consequence of the change in
the reflected -ray direction, and part represents cross -polarized signal
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introduced by the surface curvature. The portion of 4 that is aligned
with the cross -polarized field (the field in the plane of incidence and
perpendicular to the reflected ray) is of magnitude sin O. Thus, the
ratio of the cross -polarized field to the incident field at a given point is

or

where

c = 2 sin 0i[-Ki(Ax) sin v + K2 (Ay) cos v] (5)

c = -2 (4) sin BiAl(Ki sin v)2 ± (K2 cos v)2 cos (4) -I- a), (6)

a = arctan ( -K2 cot v)
Ki

Ali is the displacement of the reflection point from that of the beam
center and 41 is the angular direction of that displacement relative to
the axis of maximum curvature. For a fixed displacement, /p, the
direction, 4), that gives maximum cross -polarized signal ratio, c, is

4)max = - cr.
If one assumes the incident polarization is in the plane of incidence

rather than perpendicular to the plane of incidence, the resulting cross -
polarized field is also found to be given by eqs. (5) and (6).

If the incident beam has a gaussian amplitude distribution

Ei = E0 exp 1 ()2 [1 - sin2 0i cos2 (4) - v)]} (7)
2 t2

(where t is the lie beam intensity radius), one may calculate the ratio
of the cross -polarized field relative to the in -line on -axis field (denoted
by capital C to differentiate from the lower case c, representing the
ratio of in -line and cross -polarized fields at the same point),

C = -2(Ap) sin Oi IRK' sin v)2 + (K2 cos v)2 cos (4) + a)

exp { [1 - sin2 0i cos2 (4) - v)]} (8)

For a fixed direction 4,, the radius Op at which the relative cross
polarization is maximum is

APcma. - (9)
41 - sin2 Oi cos2 (4) - v) '

with

Cmax =
2t sin 004(KI sin v)2 + (K2 cos v)2

cos (4) + a) , (10)
4 41 - sin2 Oi cos2 (4) - v)

and the direction, Ocmax, which provides the greatest cross polarization,
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is given by
[ sin2 Oi sin (v a) cos (v a)

cmax = arctan - Q. (11)
1 - sin' 0; sin2 (v a)

When the plane of incidence coincides with either of the principal
curvature planes (v = 0° or 90°), as in the case of quadric surfaces with
the beam center ray passing through the surface foci, the expression
for the maximum cross polarization of eq. (10) simplifies to

2t
K1.Cmax = - sin ui

Afi
(12)

(plane of incidence coincides with either plane of principal curvature),
where Ki is the curvature in the direction normal to the plane of
incidence. Thus, in this case, the maximum cross -polarized field is
found in a direction normal to the plane of incidence in the direction
of maximum (if v = 0°) or minimum (if v = 90°) surface curvature.

In one example, an antenna is formed from two cylindrical mirrors
such that v = 0° and Ki = 0 for both mirrors, which by eq. (12) in-
dicates that no cross polarization is generated by the mirrors, in agree-
ment with the results of Ref. 5.

Another example is the offset paraboloid launcher, shown in Fig. 2.
The maximum cross -polarization amplitude ratio was derived in Ref. 6
and found to be

10 -dB CONTOUR

0, tan (00/2)
Cmax - Afe In 10 '

BEAM CENTER RAY -

10 dB CONTOUR

(13)

- - PARABOLOIDAL
REFLECTOR

FOCAL LENGTH = F

Fig. 2-Offset paraboloid launcher.

2

\\ AXIS OF
PARABOLOID
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where Oc is the 10 -dB half angle of the gaussian beam incident from the
focus and 0 is the offset angle of the beam center ray.

The 1/e beam intensity radius E at the paraboloidal reflector is
related to the 10 -dB half angle, 0,, by

OcF sect (60/2)
E = .

lrClilij '
60 = 26i, (14)

where F is the focal length of the paraboloid. The curvature of the
paraboloid in the direction perpendicular to the plane of incidence is

cos (60/2)
Ki = (15)

2F

Using eqs. (14) and (15), it is seen that eq. (12) is in agreement with
eq. (13).

Another example is the use of cylindrical mirrors in Hertzian cable
systems. A typical refocuser mirror arrangement' is shown in Fig. 3.
The beam remains in a horizontal plane (the plane of incidence) as it
is refocused by two cylindrical mirrors both tilted so that their direc-
tion of curvature makes an angle v = 50.5 degrees with the plane of
incidence. The output beam has changed direction from the input beam
by 225 degrees. The angle of incidence at both mirrors is 33.75 degrees
and the curvatures are

1c2 = 0,

1
K 1 = 66- meters-',

and the beam radius is
= 0.212 meters.

The tilted orientation of the mirrors allows the mirrors to have equal
curvature and large aperture efficiency while maintaining sharp focus-
ing and beam symmetry.'

The maximum cross polarization for the pair of reflectors is less than
twice the maximum cross polarization from either one of the reflectors
alone. From eq. (6), a is zero, and from eq. (11)

Oc. = 10.515 degrees.

From eq. (10) the maximum cross polarization is

20 log10 (2C.) = -48.4 dB. (16)

This is indeed a small value ; however, in Hertzian cables with many
such refocusers, this cross polarization could accumulate to be a
problem.
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v = 50.5 °

Oi = 33.75°

K1 = 1METERS -1

K2 = 0

e = 0.212 METERS

Fig. 3-Typical Hertzian cable refocuser-redirector.

By using geometric optics, eqs. (1) and (7), the cross polarization
has been numerically computed for various ellipsoids and paraboloids.
The maximum cross polarization was found by a trial -and -error search
and compared with that predicted from the paraxial ray result, eq. (12).
The comparisons indicate that eq. (12) is accurate to within 0.1 dB
for 10 -dB half angles of the beam less than 45 degrees.

III. DECOMPOSITION INTO GAUSSIAN BEAM MODES

As described in the previous section, with quadric surface mirrors
and the beam center ray passing through the foci of the surfaces, the
cross -polarized field resulting from reflection of a perfectly polarized
incident gaussian beam is maximum in a direction perpendicular to the
plane of incidence and has the maximum value, relative to the in -line
polarized field on axis, given by eq. (12), at a distance E from the beam
center ray.

It is shown in Ref. 6 that this type of reflected field can be repre-
sented as the superposition of two gaussian beam modes :3

(i) Fundamental mode

E00 = (Hoot + Voog) ft.
n2- kP2z.,exp jkz - .),-a0 + ;{ [ arctan (k&

k,
) Roo ]} , (17)
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(ii) Higher -order mode

Eo, = cvoi (I cos a - g sin a) - Hoi (I sin a + g cos a)]
AT

7113

'GEL
n2 z kp2

 exp 1 - jkz - '-2t + j[ 2 arctan ( -=- ) ] 1 (18)g,kai 2Roi ,

where , is the free -space impedance, Afiro/0, and Voo, Hoo, and Vol,
Hot are the phasor coefficients of the fundamental and higher -order
gaussian beam fields for the cases when the incident electric field is in
the plane of incidence (V) and perpendicular to the plane of incidence
(H), respectively. The subscripts refer to the standard TEM 00 and
TEMoi mode notations of Ref. 8, not the "m" and "n" of Ref. 3. g
and are unit vectors normal to the beam axis in the plane of incidence
and normal to the plane of incidence, respectively ; p, a, and z are
cylindrical coordinates, with z denoting distance along the beam axis
from the beam waist.

At the beam waist, z = 0, the radius of curvature of the phase front
of the beam field, R, is infinite, and the field varies with increasing
distance, p, from the axis at a rate determined by t. For the fundamental
mode, the field is maximum on axis and decreases to 1/- of its maxi-
mum value at p = too. For the higher -order mode, the field is maxi-
mum at p = 401 and decreases to -a-fi of its maximum value at
p = poi. Away from the beam waist z 0, the beam -field amplitude
varies with p at a rate determined by t instead of -t, and the phase
front has a finite radius of curvature R. t and R are determined from
k and z by the following formulas :8

and

.11 + (24
ice

R = z [1 + (2kz)21

(19)

(20)

The choice of eq. (18) as the higher -order mode is based' on its
ability to approximate simultaneously both the cross -polarization and
the "space" taper (amplitude asymmetry from top to bottom of mirror)
properties of offset reflectors.

Both modes have a characteristic exponential attenuation with
distance from axis, exp (-p2/2E2), and a spherical wavefront near the
axis at constant z, denoted by the term, exp ( - jkp2/2R). As one passes
through a beam waist, with increasing z, the on -axis phase advances
by 7 for the fundamental mode and 21- for the higher -order mode
(relative to the plane -wave retardation, e-A2). Thus, if the cross -
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polarization field (due to the higher -order mode) is in phase with the
in -line polarization field at the beam waist, it will be in phase quadra-
ture at large distances, z >> from the beam waist.

From the results of Section II and eqs. (17) and (18), we find that,
if the higher -order mode is generated by reflection with incidence
angle, Oi, from a quadric surface with curvature, K1, perpendicular to
the plane of incidence, beam radius, E, and reflected phase front radius
of curvature R at the reflector, then

too(zr) = 431(zr) =

Roo(zr) = Roi(zr) = R,

and

(21)

(22)

Vol
H01 Ale t. = 2tic1 Sin Oi, (23)

Voo Hoo

where the reflector is at z = zr, and the beam waist is at z = 0. A
picture of a typical aperture -field decomposition into gaussian beam -
mode fields is shown in Fig. 4.

Note that, at the reflector zr, the two modes are in phase with equal
beam radii and phase -front curvatures. As one progresses along the
beam to an observation point, zo, the beam radii and phase -front

111114---T

E00

FUNDAMENTAL

'V
1

E00

FUNDAMENTAL

-41
HIGHER ORDER

(a)

fV

L

E01

HIGHER ORDER

'V
1

=

ITOT
TOTAL

ETOT

TOTAL

(b)

Fig. 4-Two-mode decomposition of aperture field (looking opposite to direction
of propagation). (a) Feed horn vertically polarized (parallel to plane of incidence).
(b) Feed horn horizontally polarized (perpendicular to plane of incidence).
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and

curvature are still equal

boo (zo) = too (zo) = .1 + ( 3 )2

(kz420)2],
[R o o (Z o) = Rol (Z o) = zo 1 +

where k and zr are given by'

and

-
41 + (k e/R)2

R
zr = 1 (R/142)2

However, at zo there is a relative phase shift between the higher -order
mode and the fundamental mode, from eqs. (17) and (18),

(24)

(25)

(26)

(27)

Ac1) = chi(zo) - 4300(zo) = arctan (k ) - arctan ( a; ) (28)

This is the relative phase shift near the beam waist mentioned above.
When the beam is focusing down towards the beam waist, R and z are
negative; when diverging away from the beam waist, R and z are
positive.

The power carried by each of the modes in terms of their mode
phasors is

P
r ... /2r 1E 12

(29)
Jo h 2n

where A is the phasor of the particular mode in question; i.e., Voo, Hoo,
Vol, or H01.

IV. MATRIX REPRESENTATION OF BEAM-WAVEGUIDE FACTORS

To keep track of the cross polarization generated by a sequence of
factors in a beam-waveguide system, it is useful to represent each
factor in terms of its transmission matrix' for the fundamental and
higher -order modes. We will consider three types of factors that
normally affect cross polarization in the reflection process : (i) the re-
flectors per se, (ii) the longitudinal propagation length, and (iii) the
rotation of plane of incidence. See Fig. 5 for an example.

If E and R are the same for all modes at the input to a series of
reflectors, they remain so throughout the system. Thus, we will assume
E and R the same for all modes in what follows. If several modes are
injected with different pairs of E and R, the response to each mode may
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Fig. 5-Factors influencing cross polarization in a reflector -type beam system.

be computed as shown herein and then superposition used to find the
total output.

As a dual -mode beam progresses along, undergoing a number of
reflections, each factor may be thought of as a reflectionless, passive,
eight -port device, as shown in Fig. 6. The coupling between the various
modes may be expressed by the matrix equation

b = Ta, (30)

SIDE a

V00

H00

Vo

H01

BEAM
WAV EGU IDE

FACTOR

b= = r

HOOb

VO 1 b

HOlb

T, T12 T13 T14

T= 121 T22 T23 T24

T3, T32 T33 T34

141 142 143 T44 /

SIDE b

Fig. 6-The beam waveguide factor as a reflectionless eight port.
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where a is a four vector whose components are the phasors of the input
modes,

a=
V004

H00a

Voles

H010,

and b is the four vector whose components are
output modes

b=

,

' V oob

H 00b

Volb
olb,H -

(31)

the phasors of the

(32)

The properties of the beam factor are described by the four-by-four
factor matrix,

' T 11 T12 T13 T14

T= T21 T22 T23 T24 (33)
T31 T32 T33 T34

s.7141 T42 T43 T44

In general, the matrix T depends on the parameters of the beam
propagating through the system. However, it is a simple matter to
compute the appropriate matrix for each beam and beam direction one
wishes to apply to the system.

4.1 Curved -reflector matrix

To express the beam modes in a form which allows the reflectors to
be oriented arbitrarily in space, the beam coordinates at the input and
output of a reflector are defined with z in the direction of propagation,
y in the plane of incidence perpendicular to z and toward the surface
normal, and x normal to z and y (thus normal to the plane of incidence)
so that (x, y, z) forms a right-handed cartesian coordinate system, as
shown in Fig. 7.

By using the cross -polarization analysis of Section II, the mode
definitions of Section III, and conservation of power, the matrix
elements applying when a fundamental mode is incident are easily
determined :

Tii = All - 72, T13 = -7)
T12 = T21 = T14 = T23 = 0,

T22 = - 41 - 72, T24 = 7, 1 (34)

where 7 is given in eq. (23) as 2tici sin O. Note that, for reflectors
concave or convex in the direction perpendicular to the plane of
incidence, 7 is positive or negative, respectively.
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Fig. 7-Reflector matrix components (fields viewed in direction opposite to propa-
gation direction). (a) Voo incident. (b) Hoo incident.

Since the complex conjugate electric field satisfies Maxwell's equa-
tions and the boundary conditions on a perfect conductor (time re-
versal symmetry), the remaining matrix elements follow readily from
the above real matrix elements of eq. (34) :

T33 = - VI. - 72, T31 = -7, T44 = Ill - 72, T42 = 73 (35)
T41 = T32 = T43 = T34 = 0.

Note that V modes (plane -of -incidence modes) do not couple to H
modes (normal -to -plane -of -incidence modes) during reflection from a
curved reflector. Thus we have

Tres =

'/1 - 72 0 -7 0

0 -1/1 - 72 0 7

-7 0 - VI. - 72 0

0 'Y 0 111 - 72,

(36)

Since the matrix only describes transmission one way, the matrix
elements are not necessarily directly related by reciprocity.
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4.2 Longitudinal -propagation matrix

As mentioned in Section II, there is a relative phase shift between
higher -order modes and their corresponding fundamental modes. In
analyzing beam propagation through a system, it is only required to
keep track of the relative mode phases to compute the overall cross -
polarization coupling. Thus, we will lump all the differential beam -
waist phase shifts, 0.:13, of eq. (28) with the higher -order modes. As a
result, the beam -factor matrix for a longitudinal -propagation length
/ is

-1 0 0 0

Tip =
0

0

1

0
0 0

e -+-j°4' 0
(37)

0 0 0 e+ ?°4'

where

Aci) = arctan Zb- Zaarctan , (38)

and za and zb are the positions, relative to the beam waist, of the input
and output, respectively.

4.3 Rotation -of -plane -of -incidence matrix

As described in Section 4.1, the beam coordinates are attached to the
plane of incidence of each reflector. Thus as one passes from one reflec-

to another, the plane of incidence may rotate, and what had been
a plane -of -incidence mode ( V mode) may become a normal -to -plane -
of -incidence mode (H mode). From Fig. 4, if one rotates the plane of
incidence clockwise by an angle $, the projections of the input modes
onto the output modes give the following beam factor matrix for rota-
tion of plane of incidence :

cos 13 - sin /3 0 0

Trot =
sin 13

0
cos 3
0

0
cos 2[3

0
-sin 2$ (39)

0 0 sin 2$ cos 2$.,

V. TYPICAL BEAM-WAVEGUIDE APPLICATIONS

In this section, we illustrate the application of the above formulas by
considering some typical beam -reflector systems.

5.1 Symmetrical dual reflector

In the symmetrical dual -reflector configuration shown in Fig. 8a,
there is no rotation of plane of incidence. The arrangement comprises
a curved reflector, followed by a longitudinal propagation length,
followed by another reflector. Thus the overall beam system matrix is
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the product of three beam -factor matrices

T = Tref 2TipTref 1, (40)

where Tref is given by eq. (36) and T1, by eq. (37). Neglecting terms
of order 72, we have

1 0 -71 + 0'1'72 0

T -72
0

+ ei"71
1

0

0
ei"

-71 + 0'1'72
0

0 -72 + e" 1l0 ejA cl)

(41)

From eq. (41), we see that to avoid conversion from a fundamental
mode input to a higher -order mode at the output,

which implies

Or

i tlKil sin Oil
t2K12 sin 042

sin Oil = t2K12 sin 0.12,

Elio.' sin Oil = - E2K12 sin 042,

A(13 = 0

.6.43 = r.

(42)

(43)

(44)

Assuming symmetry, ti = and O, = Ofz, and eq. (43) shows that
cross polarization is avoided if the two mirrors have equal concave
curvature perpendicular to the plane of incidence and are close enough,
Az << kk2, or both far enough to one side or the other of the beam
waist so that negligible "beam waist" phase shift takes place. From
eq. (44), cross polarization can also be avoided if the reflectors are on
opposite sides of the beam waist and in its far field, Az > ke, if one
reflector is concave and the other convex with equal and opposite
curvature normal to the plane of incidence.

Note, from eq. (41), if two identical reflectors are placed symmetri-
cally about the beam waist in the far field, then 71 = 72 and Acio = r
so the cross -polarization coupling is 6 dB higher than that resulting
from just one of the reflectors.

Measurements made by K. C. Kelley° on a symmetrical dual -
reflector beam-waveguide feed subsystem for a Cassegrainian antenna
provide a valuable check on this theory for the combined effect of two
of the factors, reflector curvature and longitudinal propagation
length. An analysis of his 11-GHz measurements is given in the
appendix. The reflectors had equal curvature, the beam size was nearly
the same at both curved reflectors, and the relative phase shift was ap-
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r= TREF2 rip TROT TREFi
Tr/2

O

--HORIZONTAL RAY

(C)

Fig. 8-Some typical beam waveguide applications. (a) Symmetrical dual re-
flector. (b) Asymmetrical dual reflector. (c) Right-angle dual reflector.

proximately 90 degrees between fundamental and higher -order modes.
Thus, from eq. (41), the cross -polarization coupling of the pair at the
center frequency is approximately 3 dB higher than that from a single
reflector, as confirmed by the measurements. Also, the theoretical
frequency dependence of cross -polarization coupling is in approximate
agreement with the measurements as shown in the appendix and
Fig. 13.
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5.2 Asymmetrkal dual reflector

In the asymmetrical dual reflector shown in Fig. 8b, the plane of
incidence is rotated r radians. The overall matrix is the product of
four beam factor matrices,

T = Tref 2TipTrot ?Tref 1) (45)

where, from eq. (39), since 13 =

1 0 0 0'

Trot x =
0

0

-1
0

0
1

0

0
(46)

0 0 0 1

Thus (neglecting terms of order 72),

T=
-1 0 en + 0'72) 0

0 -1 0 (71 + 0'1'70
(72 + 0'471) 0 OAS 0

0 (72 + 0'71) 0 egok

and the requirement that higher -order modes be avoided is

e-jek. = Evil sin Oil
E2K12 sin 012

(47)

(48)

Thus the conclusions stated above for the symmetrical dual -reflector
configuration with equal (or opposite) curvature on reflectors 1 and 2
apply to the asymmetrical dual -reflector system with opposite (or equal)
curvatures on reflectors 1 and 2, respectively.

Note, with closely spaced reflectors in the asymmetrical reflector
arrangement (Az 0, Oil = 0i2), a pair of equal curvature mirrors give
6 dB more cross -polarization power coupling than just one of the
mirrors, whereas oppositely curved mirrors give cancellation of cross
polarization (a well-known property of the Cassegrainian reflector
arrangement).

5.3 Right-angle dual reflector

In the right-angle dual reflector shown in Fig. 8c, the plane of
incidence is rotated by r/2 radians. From eq. (39), with 13 = r/2, the
matrix for rotation of the plane of incidence is

Trott/2 =

0 -1 0 0'
1 0 0 0

0 0 -1 0
0 0 0 -1

(49)
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and the resulting overall matrix is (neglecting terms of order 72)

0 1 -0°4'72 -71
T= -1

-ei")-yi
0

-72
71

- eJ'4,,f,

-014'72
0

(50)

72 - ej")71 0 -0"
From eq. (50), it is seen that the cross polarization introduced by the
first curved reflector cannot be cancelled by the second curved reflector
in a right-angle dual -reflector system.

5.4 Confocal beam feed for an offset Cassegrainian antenna

As mentioned in the introduction, an attractive application of beam
reflectors is as a feed for a satellite -system ground -station reflector
antenna. To show how the above theory may be applied to multiple -
reflector antennas, we consider the example of an offset Cassegrainian
Antenna fed by a beam waveguide. The offset Cassegrainian" con-
figuration provides a main reflector aperture with little or no blockage
and is shown in Fig. 9 along with a beam reflector feed path from the

ELLIPSOID
REFOCUSER'

OFFSET
LAUNCHER

IN SIDE CAB
(ELLIPSOID)

MAIN REFLECTOR
PARABOLOID

CENTER RAY OF BEAM

HYPERBOLOID
"SUBREFLECTOR

AXIS OF
MAIN PARABOLIC,/ REFLECTOR

FOCUS
OF MAIN

REFLECTOR

Fig. 9-Beam reflector feed for offset Cassegrainian antenna.
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subreflector to a focusing reflector at the elevation axis and on out the
elevation axis to an offset launcher6 in a side cab.

We assume a confocal feed -reflector arrangement as suggested by
Arnaud." Subreflector A is an hyperboloid with foci at F and B, re -
focuser B an ellipsoid with foci at A and C, and the offset launcher
reflector is an ellipsoid with foci at G and B. The advantage of this
arrangement is that the beam diameters at A and C remain constant
with frequency, as do the reflector curvatures, since the beam always
seems to originate from the fixed points G, C, B, A, or F. This assumes
the feed horn at G has constant beam width and phase center position
over the range of frequency variation.

Tracing from G through the beam reflector system, we have the
following factors : reflector C, longitudinal propagation length dBc,
plane of incidence rotation 13Bc, reflector B, longitudinal propagation
length dAB, plane of incidence rotation NAB = - r/2, reflector A, longi-
tudinal propagation length dm A, plane of incidence rotation /MA = r,
and reflector M. Thus the overall matrix

T = Tref M Trot TTIpdmATref A Trot -r/2T1pdABTref B Trot OBCTlpdBcTref C. (51)

Since the cross polarization is small and we may neglect terms of
second order (72 << 1), it is easier to add the phasor higher -order mode
coupling coefficients as one progresses through the system than to
multiply out all the matrices shown in eq. (51).

'Yvv = 7HH = - Tar + exp(jA(PmA)7A
+ sin NBC exp[j(A(1,3fA + 6,43AB + 14)Bc)37c),

Tirm = -.YHV
= eXPEAM MA + A(13 A B)I7 B - cos #Bc exp (jA(1)Bc)7ci,

(52)

(53)

where, for example, 7vB is the "normal to plane of incidence" output
higher -order mode, when unit "parallel to plane of incidence" funda-
mental mode is present at the output, and

and

ZB zcAche = arctan kac arctan
kklic)

1/B = XRKIE sin OiB,

(54)

(55)

EBC being the beam waist radius of the beam traveling from reflector C
to reflector B, zB, and zc the longitudinal positions of reflectors B and C,
respectively, relative to that beam waist, B the beam radius at reflec-
tor B, and KIB the curvature of reflector B perpendicular to the plane
of incidence.

The curvature in the plane perpendicular to the plane of incidence
for quadric surfaces of revolution, with beam center rays passing
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through the foci, may be shown to equal'

a cos Oi
K1

b2 '
(56)

where a is the major axis, b the minor axis, and 0i the angle of incidence

of the beam center ray. Using eq. (56) and neglecting diffraction
(A(DmA = 0) between the subreflector A and the main reflector M, one
finds that the cross -polarization coupling due to the Cassegrainian
combination of M and A is

sine (r/2)
7cAss = 7m + 7A = 7M sin' OiM

(57)

where r is the offset angle, relative to the main reflector axis of the
beam center ray incident on the subreflector A. Equation (57) is just
the result one would obtain from an equivalent parabola" with focal
length (e + 1)/(e - 1) times that of reflector M and with beam center
ray offset angle r.

As frequency decreases from infinity, a beam waist appears on both
sides of reflector B; however, A013AB and Ac1,Bc remain equal to 7/2.'2
Because of this phase relation, it is not possible to cancel -yB with 7c, in

(53). However, the residual of -ym IA in eq. (52) may be cancelled
by a special choice of $BC. In fact, if -yc is adjusted to equal yM +
13Bc = 7/2 will minimize the cross -polarized modes of both (52) and
(53). To maintain 13,3c = 7/2, it is necessary to rotate the offset
launcher in Fig. 9 as the antenna is rotated around the elevation axis,
just as the fundamental mode polarization at the side cab launcher
rotates with antenna elevation angle.

Thus, with AstmA = 0, 7c = 7m + 7A, and 13,3c = 7r/2, we have

7vv = 7HH = 0 (58)

and
i'YvB I = 17Bv I = 7/3.

From (23) and (25) and OiB = 45°,

'YB = EB (
uAB u,I3C

+ ) tan OiB =
1 + dAB/dBc

ktA

(59)

(60)

To satisfy the condition on 7c, we may choose an incidence angle,

Oi as follows, from eq. (57),

tc

(1 1 sin' (r/2)- -) tan Oic = 7m
(lac

,

dac sin2 Oim '

* Use the method of Ref. 4, Sec. 19.8, for example.
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or
tan (V2)tan eic - (61)(dBc/dac) + 1

As a specific example to illustrate the cross polarization encountered
in practice, consider the following typical antenna dimensions :

dAB:

14 'dc
23

4
14

d '
(62)

where f is the frequency in GHz. Thus, the cross -polarization coupling
becomes

20 logio = -8 - 20 logio f dB, (63)

e.g., -34 dB at 20 GHz. The incidence angle required on the offset
launcher to cancel 7m + -yA ( = - 54.3 dB) in (52) becomes 1.6 degrees,
which is too small to be practical without blockage, thus other means
would be required to reduce ''c; for example, the launcher could itself
be an offset Cassegrainian antenna.

The cross polarization due to the ellipsoid refocuser at B can be
reduced by using an additional flat mirror in combination" as shown
in Fig. 10. With long focal lengths, the beam is essentially of constant
width through the combination, and the resultant incidence angle
allowing no beam blockage for a beam diameter D depends on the
available space h,

1
OIB = -2 arcsin (1/7 ) (64)

As a specific example, assume there is space available for D/h = 1,
whence Ol; is reduced from 45 to 19 degrees and from eq. (60) the cross
polarization is reduced 9 dB.

ELLIPSOID
REFOCUSER----

\

D 1

-D

FLAT
MIRROR

Fig. 10-Combination ellipsoid and flat to reduce °UZI.
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VI. CONCLUSIONS

By using the paraxial ray approximation, it has been possible to
develop simple formulas for the cross polarization introduced by curved
reflectors, e.g., eq. (12). The effect of curved reflectors in a beam -
reflector configuration using quadric surfaces of revolution, with the
beam center ray passing through the foci, is shown to be accurately
characterized by two gaussian modes for each of two planes of polariza-
tion. Cross polarization in a general beam -reflector arrangement de-
pends on three factors : reflector curvature, longitudinal propagation
length, and rotation of plane of incidence. Using the gaussian modes
allows one to represent the effect of the above factors by beam factor
matrices which relate the input and output fundamental and higher -
order gaussian modes. Some typical beam -reflector configurations were
analyzed using these techniques. The theory agrees well with measure-
ments on single reflectors,' on a symmetrical dual -reflector system,'°
and with numerical ray tracing computations.

There has been considerable interest in the effect of reflector curva-
ture in beam -reflector configurations. In particular, the work by
Mizusawa and Kitsuregawa'5 is worth noting. They show that the
symmetric amplitude distribution of an optical beam passing through
the foci of a pair of quadric surface -of -revolution reflectors will be
preserved if all the foci lie on a straight line and if the eccentricities of
the two reflectors are properly related. If both reflectors are ellipsoids
or both reflectors are hyperboloids, then the eccentricities must be
equal and the exit beam will be parallel to the entrance beam. If one
reflector is an ellipsoid and one reflector is an hyperboloid, then one
eccentricity must be the inverse of the other eccentricity and the
direction of the exit beam is the reflection around the line through the
foci of the direction of the entrance beam. By using eq. (12), one can
show that only in the case of equal eccentricities does the preservation
of amplitude symmetry imply zero cross polarization and then only
in the infinite frequency limit where beam waist diffraction is negligible
so the relative phase shift between fundamental and higher -order modes
is either 0 or 180 degrees.

The frequency dependence of the cross -polarization coupling in a
beam -reflector system is an important property not generally indicated
in the literature. The paraxial ray approximation for beam diffraction
used herein provides a convenient means for computing the frequency
dependence of the cross -polarization coupling which, in some cases,
can be quite strong; e.g., in eq. (63) for the reflector configuration of

Fig. 9 the cross -polarized power varies as the inverse square of the
frequency.
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APPENDIX

Comparison of the Matrix Theory With Measurements on a Beam Waveguide

The measurements described in Ref. 10 involved a beam-waveguide
feed for a Cassegrainian antenna arranged as shown in Fig. 11.
Reflectors 9a and 9c are identical ellipsoids approximately 0.76 m by
1.09 m in size with major and minor axes a = 3.656 m and b = 3.656
m/V, respectively. Reflectors 9b and 9d are flat mirrors. When one
uses the images of the flat mirrors to unfold the beam waveguide, it is
seen that a symmetrical dual -reflector type results as shown in Figs. 8a
and 12. The feed was designed to produce beam waists approximately
at planes u -u and v -v of Fig. 11 and a beam of the proper diameter and
phase curvature at the subreflector position w -w to provide a focussed
wave reflected from the subreflector toward the main reflector (not
shown) of the Cassegrainian antenna. Performance for both vertical
and horizontal polarization was measured by rotating the launching
horn (No. 8 of Fig. 11) around its axis (azimuth axis). Measurements
were made at 10.36, 11.06, and 11.76 GHz for both horn polarizations.
The phase and amplitude of the copolarized signal at the subreflector
position was measured along the intersection line of plane w -w and the
beam -bending plane (the plane of the paper in Fig. 11), and the cross -
polarized signal (at plane v -v) along a line in the beam -bending plane
and also along a line perpendicular to the beam -bending plane. The
cross -polarized signal along the line in the beam -bending plane always
remained below -40 dB relative to the on -axis copolarized signal.

To compare these measurements with theory, the launching horn is
assumed to radiate negligible cross -polarized signal and, since measure-
ments of the beam dimensions throughout the reflector system are not
available, the beam measurements at the subreflector position (plane
w -w) will be used to reconstruct the beam dimensions throughout the
beam waveguide as shown in the following equations. The theoretical
cross polarization will then be computed at plane v -v and compared
with measurements.

Since the horn did not produce a perfectly symmetrical gaussian
beam, the average (over both horn polarizations) of the measurements
at planes w -w and v -v are used in the gaussian beam analysis. From the
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Fig. 12-Unfolded beam waveguide.

REFLECTOR
9a OF FIG. 11

3.656 m

REFLECTOR
9c OF FIG. 11

measurements at plane w -w, the gaussian beam radius Ea and phase
front radius of curvature Ra at the subreflector position are given in
Table I.

Using the beam transformation formulas of Ref. 8, the beam radius,
Eb, at the beam waist b and the distance from the subreflector to the
beam waist zab are

+ (kedRa)2

Table I - Measured gaussian beam parameters at the
subreflector position

(65)

Frequency (GHz) Beam Radius (meters)
to

10.36 0.355
11.06 0.328
11.76 0.338

Phase Front Radius of
Curvature (meters)

4.177
4.623
5.027
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and
R.

Zob - 1 + (R./kED2
(66)

where k = 2.71-/X is the free -space propagation constant.
Going from beam waist b in Fig. 12 to reflector 9b at c, the trans-

formation formulas give the beam parameters on the output side of the
reflector,

and

where zb.

Zc
tc = Eb (7A2 (67)

Recut = zbc[1 (LzbE !)2], (68)

is the distance from beam waist b to reflector c in Fig. 12,

zb. = 5.797 - zab meters. (69)

The radius of curvature of the beam phase front on the input side of
reflector c is given by the thin lens formula'

Rciar 1 1 ri meters, (70)
= L 1.828 R.aat

where 1.828 is the focal length of the ellipsoidal reflectors.
The beam radius Ed at the beam waist d and the distance from

reflector c to the beam waist zed are

to (71)
Ed = 41 + (kE2c/Re1j2

and
(72)zed

- [1 + (R chlk t2.)2]

The beam radius at reflector e (9a) is
2

kk
e (73)

E '

where the distance from beam waist d to reflector e is

zde = 3.656 - za meters. (74)

From Section 5.1, the maximum cross -polarized signal at plane v -v
occurs perpendicular to the beam -bending plane at a distance to from
the axis, where to is the beam radius at plane v -v

En = Eb 1 + zbv)2
ke, '

and the distance from the beam waist b to plane v -v is

zbi, = zab - 3.969 meters.
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Fig. 13-Comparison of theoretical and measured cross -polarization signal at
plane V -V.

From eq. (41), the maximum cross -polarized signal amplitude relative
to the on -axis copolarized signal is

'Y c ei"*Yeerna. = (77)

where the mode coupling coefficient at reflector c is

ye = 2E,Kic sin Oic = , (78)

because the incidence angle Oic = 45 degrees and the curvature is
Kic = (a/b2) cos Oic (a and b are the major and minor axes of the el-
lipsoid, respectively). Similarly,

Ee

7e - 1.828
(79)

Ac13 is the relative phase shift of the higher -order mode relative to the
fundamental mode over the longitudinal propagation length between
reflectors c and e; from eq. (38),

IZ,d1 ). (80)= arctan arctan
ke,

From eq. (18), to find the cross -polarized field at any other radius p
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instead of p, = Ev, one multiplies by the factor :

C (p) = Cma. {Pi exP (1 - P2M)/2] (81)

Using eqs. (65) through (81) and the values given in Table I, the
curves shown in Fig. 13 were computed for the cross -polarized signal
power (relative to on -axis copolarized signal) as a function of distance
from the axis at plane v -v in a direction perpendicular to the beam -
bending plane for the three frequencies 10.36, 11.06, and 11.76 GHz.
Also shown are the measured values from Ref. 10. The theory is in
approximate agreement with the measurements, showing the shape of
the curve of cross -polarized signal versus off -axis distance and approxi-
mating the absolute level of the maximum cross -polarized signal. The
frequency dependence of the theoretical cross -polarized signal is also
in the same direction as the measured values.

Theoretically, the cross polarization in the beam -bending plane is
negligible, which also is in agreement with the measurements.
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Jointly Adaptive Equalization and Carrier
Recovery in Two -Dimensional Digital

Communication Systems

By D. D. FALCONER
(Manuscript received October 22, 1975)

In this paper, we describe a novel receiver structure for two -dimensional -
modulated, suppressed -carrier data signals. The receiver consists of a
passband equalizer followed by a demodulator which compensates for
frequency offset and phase jitter; the demodulator's phase angle is pro-
vided by a data -directed, carrier recovery loop, which is shown by analysis
and simulation to be capable of tracking relatively high frequency phase
jitter. A derivation of the receiver parameters is presented, based on a
gradient algorithm for jointly optimizing the equalizer tap coefficients
and the carrier phase estimate, to minimize the output mean -squared
error. System performance is related to carrier phase -tracking parameters
by analysis. Computer simulations confirm the feasibility of the receiver
structure.

I. INTRODUCTION

In recent years, a number of double-sideband suppressed -carrier
linear -modulation techniques have seen increasing application to the
efficient transmission of digital data over band -limited channels. Two-
dimensional modulation may be an appropriate designation for these
techniques, since they call for coding the transmitted data as two-
dimensional data symbols and transmitting the two components by
amplitude -modulating two quadrature carrier waves.

Phase -shift keying (psK) and quadrature amplitude modulation
(QAM, sometimes termed QAsic), illustrated in Fig. 1, are familar ex-
amples. Other two-dimensional modulation examples, characterized
by their signal constellations (discrete sets of two-dimensional data
symbols), have been extensively studied.'-'

This paper presents a unified treatment of adaptive equalization,
carrier recovery, and demodulation for two -dimensional -modulated
data communication systems. Most previous studies of QAM and PSK
systems have treated these receiver functions separately.' -8 Kobayashi
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Fig. 1-Examples of two-dimensional signal constellations. (a) 8 -phase P8K. (b)
16 -point QAM.

presented a unified receiver structure applicable to two-dimensional
modulation, based on maximum -likelihood reception.' Chang studied
a unified linear receiver structure for (one-dimensional) single-sideband
modulation systems.° A novel feature of the receiver structure pre-
sented in this paper is the placement of the carrier phase -tracking and
demodulation functions together, after adaptive passband equaliza-
tion.t In a more traditional receiver arrangement," -10 baseband
equalization follows demodulation and precedes decision -directed
phase estimation, thereby introducing a delay of many symbol in-
tervals between these two functions. The decision -directed phase esti-
mate is therefore a delayed version of the true channel phase shift
affecting the signal that is entering the demodulator. This delay
would lead to inaccurate demodulation of a signal perturbed by a time -
varying phase shift (phase jitter) introduced by some channels. The
receiver structure presented here avoids this source of inaccuracy by
placing both the demodulation and phase estimation functions after
the equalizer.

In Section II we introduce complex notation for two-dimensional
bandpass signals and for the effects of linear distortion, phase jitter,
and frequency offset. Section III introduces the receiver structure
and reviews the function of the passband equalizer. Section IV intro-
duces a mean -squared -error criterion and proposes a gradient al-
gorithm for arriving at a (nonunique) set of equalizer tap coefficients
and a carrier phase estimate to minimize it. This ideal gradient al-
gorithm is the motivation for a joint decision -directed equalizer up -

t The receiver structure and an equivalent implementation of it are depicted in
Figs. 2 and 3, respectively.
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dating and demodulation phase -tracking algorithm. It is shown that
the phase -tracking algorithm performs essentially the function of a
first -order phase -locked loop operating in discrete time. A very simple
linear analysis of the loop in Section V illustrates its phase -jitter track-
ing capability. The receiver's capabilities are further confirmed by the
results of simulations, reported in Section VI.

II. BANDPASS SIGNALS AND PHASE JITTER

We consider double-sideband, suppressed -carrier, two -dimensional -
modulated data signals specified by

s(t) = E ang(t - nT) cos 27rfct - E iing(t - nT) sin 271-fct, (1)

where fc is the carrier frequency, g(t) is a suitably chosen baseband
pulse waveform, T is the duration of a symbol interval, and the pair
(a., an) represents a discrete -valued two-dimensional data symbol.
For example, in a 16 -point QAM system, each an and an is chosen inde-
pendently from the set +1, ±3}. In a phase -modulation system
(Psic), an and an have the form a. = cos On and an = sin On, the
information being coded onto the phase On. These examples are dis-
played in Fig. 1.

It is convenient to deal only with the positive frequency content of
passband spectra. The associated time functions are complex -valued.
Thus s(t) = Re [s (t) jg(t)], where g(t) is the Hilbert transform of
s(t) and [s (t) jg(t)] possesses a Fourier transform consisting of
twice the positive frequency part of the spectrum of s(t):

s(t) j§(t) = E A ng(t - nT) exp(j27f,t), (2)

where An = an + jtic. The complex passband waveform g(t - nT)
X exp(jan-fct) is said to be analytic if its spectrum is nonzero only for
positive frequencies. In general, we shall represent real quantities by
lower-case letters and complex ones by upper-case letters.

When s(t) is passed through a noisy linear channel, the output is
expressed as

s'(t) = Re 1E AC (t - nT) exp[j(2rfct 0)]} n(t), (3a)

where C (t) is a complex baseband equivalent impulse response of the
combined transmitting filter and channel, 0 a phase shift that may be
inserted by the channel, and n(t) a realization of additive noise.

Some channels introduce a time -varying phase shift, expressed in
general as

(t) = B + 27 At + OM.
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Here 0 represents a fixed phase shift, A a fixed frequency offset, and
(t) a random or quasi -periodic waveform that is a manifestation of

phase jitter. On voiceband telephone channels, the peak magnitude
of the waveform #(t) is usually less than about 10 degrees, and its
highest frequency spectral component is typically less than 10 percent
of the data signal's bandwidth.11 If the typical rate of variation were
comparable to the symbol rate 1/T, a mathematical model for phase
jitter would be critically dependent on the linear filter transfer func-
tions preceding and following the location where the channel phase -
modulates the data signal with the phase jitter. However, the assump-
tion of small, relatively slow phase jitter permits us to sidestep this
distinction and to model the phase -jitter -perturbed received signal
conveniently as

s'(t) = Re {E A .0 (t - nT) exp[j(2rfct ± 0,01 n (t) ; (3b)

i.e., On is interpreted as the channel phase shift affecting the trans-
mission of the nth data symbol A n.

III. RECEIVER STRUCTURE

Figure 2 shows the two-dimensional receiver structure. The real -
valued received waveform s'(t) first enters a phase splitter, consisting
of parallel passband filters with impulse responses h (t) and h (t) , where
h (t) is the Hilbert transform of h (t) ; thus the complex impulse response
defined by H (t) = h (t) j h (t) is analytic. An appropriate choice for
H (t) is a filter matched to the transmitted pulse, i.e.,

H (t) = g ( - t) exp (j 2r fct). (4)

If the channel C(t) were known a priori, an optimal choice for H (t)
would be a matched filter impulse response

C(- t)* exp ( j2r f ct)

The optimality of the complex matched filter and sampler for two-
dimensional modulation is brought out in the studies of Kobayashi,9

SAMPLE
AT nT

R,

A
EXP[-i(27r fcnT + 0,)]

PASSBAND
EQUALIZER

Fig. 2-Two-dimensional receiver.

QUANTIZE R
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Ungerboeck," and Ericson and Johansson." Sampling is carried out at
the symbol rate 1/T. We assume a fixed choice of sampling phase and
will not be concerned with its optimization. The problem of deriving
the optimum sampling phase has been treated previously.14-16

The pair of outputs at time nT from the sampler r. and "in can be
expressed as a complex sample

Rn = rn + jfn,

which is of the form

Rn = AkXn-k exP[.7.(2/rfenT + Ok)] + N., (5)
k

where X. ----. X(nT) is a sample of the overall complex baseband
equivalent impulse response and Nn is a complex sample of filtered
noise.

The passband linear equalizer' with, say, 2M + 1 complex tap co-
efficients {C17,}m_m produces complex passband output samples {Q.}
which are a linear combination of sampled inputs; i.e.,

At

Qn qn + fin = E CIR.--k. (6a)
16=-M

Note that the equalizer's implementation is described either by the
above complex expression or by two expressions for the two real out-
puts, viz.,

M

qn = 2 (ckrn-k + 6 kf n -k)
km-in

M

4n = E (ckfn-k - 6krn-k),
k.. --M

where
Ck* -'-'- Ck - 36k.

Expression (6) can also be expressed in vector notation. Define

Car
C

c_M

R ( i )Rn-m
n =

Rn+M

Then
Qn = C*Rn,

where * means complex conjugate transpose.

(6b)

(6c)

(7a)

(7b)

(8)
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Ideally, the passband equalizer's sampled impulse response C;}

should be such as to yield an overall passband channel with no inter -
symbol interference; i.e.,

ideal Qn = An exp[j(2rfcnT + On)].

The information symbol A n is then recovered by demodulating Qn
to baseband and quantizing the result in accordance with the two-
dimensional signal constellation. If the demodulator has a phase esti-
mate On, the complex demodulated output is given by

Yn = yn = Q. exP[-i(27.t.cnT + an)] (9a)

or
Yn = qn cos (27r f cnT + On) + 4n sin (27rfcnT -I- On) (9b)

= -qn sin (2wf cnT + On) + qn cos (27rfcnT + On). (9c)

The ideal output at time nT is A, and the receiver error is defined by

En = Yn An (10a)

For the joint optimization of the equalizer tap coefficients and the
demodulator phase, we adopt the following mean -squared -error cri-
terion : minimize en, where

En (lEn12) (10b)

and the expectation, denoted by ( ), is over the data sequence and
noise.t

The receiver structure shown in Fig. 2 is characterized by the follow-
ing expression for the complex output sample before quantization.
From (6a) and (9a),

M
Yn = [ Ci:Rn_k] exp[- j(271-fcnT + On)].

ka-M

An alternative equivalent receiver has a "baseband" structure. De-
fine a new set of tap coefficients by

exp ( - jar f AT) (12a)

and a set of demodulated received samples by

1r = R exp (- j2irfcnT). (12b)

t The "symmetric" mean -squared -error criterion (10b) was proposed by R. D.
Gitlin and K. H. Mueller as an improvement to the "single -sided" criterion proposed
in Ref. 7.
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Then (11) can be re -expressed as

Y = [ E c*kikn_k] exp (- je). (12c)
k= -11f

The fully equivalent implementation expressed by (12c) is depicted
in Fig. 3. Note that the received samples are demodulated to baseband
using a free -running oscillator as in (12b) before equalization. However,
a second stage of demodulation following baseband equalization
remains, whose purpose is to remove the effects of channel phase varia-
tion. Again, the delay of the equalizer does not come between this
secondary demodulation and the derivation of the phase estimate On.
The equivalence of the "passband" and "baseband" receiver imple-
mentations of Figs. 2 and 3, respectively, gives the system designer
some extra flexibility.

IV. OPTIMIZATION OF EQUALIZER TAP COEFFICIENTS AND
DEMODULATION PHASE

To bring out the relationships governing the optimal tap vector C
and demodulator phase On (both of which may be functions of time),
we assume that successive data symbols are uncorrelated ; i.e.,

(A 1A,) = 0 all 1, m

(A 14) = (i A 12)31.,

where aim is the Kronecker delta function. Then for future reference
we note, from expressions (5) and (7b), that cross correlation of the
data symbols with sampled phase-splitter outputs results in

(A:R.) = X exp[j(27 f cn T 0 )](1 A 12), (14)

where
X_m exp(- j27 fcM T)

X

X m exp (.7271- fcM T)

SAMPLE
AT nT

EXP [-j 2 7T fel.]

BASE -
BAND

EQUAL-
IZER

EXP (-j en]

Fig. 3-Equivalent implementation.

QUAN
TIZER

(13)

(15)
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is the complex impulse response vector of the combination of the
transmitter pulse filter and the channel, truncated to 2M -I- 1 samples.
The channel correlation matrix or A matrix is defined to be

(RR)
A = (16)

(IA12)

This is a Hermitian matrix (A* = A) whose l-mth element is

Aim = E xnx:+77,_, exp[j2irfc(/ - m) T] + in-., (17)
n

where { pi-i.} is the noise autocorrelation. Furthermore, it is positive
semidefinite. (For any vector u, u*Au = ( I u*Rn 12) .- 0.)

Using definitions (10), (11), (14), and (16), we can rewrite En in terms
of A and X, which are fundamental characteristics of the channel.

En = {Cn - A -1C expr -./(en - en)]{*
 A { Cn - A -1X exp[- AO. - On)]) + 1 - X* A -9C. (18)

Because the matrix A is positive semidefinite, en has the unique
minimum

min = 1 - X* A -1X,

which is achieved when C. and O. satisfy

C. = opt(On) = A -'3E exp[-j(en

(19)

(20)

Observe that the solution (20) is not unique; there is an infinitude
of combinations (Cn, &, - On) that yield the minimum. However, for
any specific choice of O. (including zero), there is a unique optimum
choice of C,. Indeed, this is a manifestation of the "tap -rotation"
property of the passband equalizer which was pointed out by Gitlin,
Ho, and Mazo.7 In particular, when there is no attempt to estimate
0.(e. = 0), then any amount of frequency offset Li(On = 2irnAT)
causes Cn opt to "rotate" with frequency A. However, a typical adaptive
equalizer whose tap coefficients may not be permitted to change by
more than about 1 percent from one symbol interval to the next will
not be able simultaneously to equalize the channel effectively and to
rotate 271-0 radians per symbol interval even for moderate amounts of

frequency offset. Similarly, the equalizer taps could not be expected
to track typical phase jitter components accurately.

The principal innovation reported in this paper is the joint operation
of the adaptive equalizer and a separate phase -tracking loop which
removes the major burden of tracking from the slowly adapting
equalizer. Assuming this separate phase -angle -tracking algorithm is
successful so that the phase error (On - O.) remains constant, we ob-
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serve, by writing the mean -squared error using definitions (10) and
(11) as

En =
(IA

1

12)
(1C:R. - An exp[j(27fcnT .)]12), (21)

that, if the equalizer's reference signal for the purpose of adapting its
tap coefficients is IA n expE j(27 f enT 601, the reference signal
rotates in synchronism with the frequency -offset and phase-jittered
carrier of the received signal, and hence the equalizer tap coefficients
do not have to rotate if 0 - 6 remains constant.

If the gradients of E. with respect to the real tap coefficient vectors
c and 6 are denoted respectively by Vcnen and 1C4',, and if we define
the gradient with respect to C. to be

Vcen = Vce jVzen,

then the gradient of the right-hand side of (18) can be written

Vce = 21 ACn -X exp[- j(07, - 0)]1. (22)

Then it follows from expression (18) and from the fact that A is positive
semidefinite that Vc6 = 0 is a necessary and sufficient condition for
En to attain its minimum value.* If the receiver knew X exp (On),
defined by (15), and A, defined by (16), and could calculate this
gradient during each symbol interval, then in the nth symbol interval
it could use a gradient algorithm to update its estimate of C as follows :

= Cn - VCnEny (23)

where the gradient is defined by (22). In this equation, Cn is the esti-
mate of the correct tap coefficient vector in the nth symbol interval
and 0/2 is a positive constant. For the moment, we defer consideration
of a more realistic algorithm that does not require prior knowledge of
A and X.

Let us now consider the means for providing the estimated sequence
0,,1. In general, of course, the true phase jitter angle sequence 101

is a random process. However, the reasonable assumption that it
varies slowly with n leads us to treat On as a quasi -static parameter
that must be estimated in symbol interval n from present and past
received data R} and reference information symbols IA n1.

Accordingly, the receiver will incorporate an algorithm for updating
its estimate On, based on a gradient search technique. The derivative

We assume that matrix A is nonsingular.
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of en with respect to 0 is, for a fixed value of Cn,

Vine = -2 Im C:X expE-j(On - On)] }. (24)

The estimate 0 is thus updated as

8n+1 = On - 2
QgnEn) (25)

where a/2 is a constant. In general, a should be large relative to the
equalizer's constant #, to ensure that the estimate On can closely track
a varying angle 0, thereby obviating the need for the passband
equalizer taps to follow it closely.

Suppose the angle 0 is not time -varying (0 = 0). Then the sta-
tionary points of the gradient algorithms (23) and (25) are the solu-
tions of the equations

or

and

or

Vcen = 0

AC = X exp[- j(0 - 0)], (26)

Tien = 0

Im { C*X exp[-j(0 - 0)]} = 0. (27)

It is easy to show from the Hermitian property of A that, if (26) is
true, then (27) is true. Furthermore, A is positive semidefinite and
thus expression (18) for the mean -squared error shows that the infinite
set of stationary points, defined by (26), are the only global minima.

The following question immediately arises : Starting with fixed
initial values, C0 and 00 and assuming On = 0 for all n, do the gradient
algorithms (23) and (25) jointly converge to a stationary point? Note
that by defining

0
Cn

Zn = P =
On '

0

and
VCEn

VZnen =
V ()nen

we can combine (23) and (25) by writing

Zn+1 = Zn PVZnen

0

a
2

(28)

It is shown in Ref. 17 that, if 1:3 and a are chosen small enough, the
sequence { Z converges in mean -square to a stationary point for
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which VzE = 0. As pointed out previously, the stationary points all
yield the global minimum of the mean -squared error and thus (28)
converges to yield the minimum mean -squared error. The question of
rate of convergence will be treated in a later paper.

In a practical situation, the receiver does not know a priori the
ensemble averages represented by the channel correlation matrix A
and the truncated impulse response vector X. In this situation, the
receiver can approximate the gradient search algorithm by utilizing
the gradients with respect to C and On of the actual unnormalized
squared error

1E7,1' = IC:Rn - An exp[j(2irfcnT 0,0]12

instead of its mean. The An used in this calculation is initially an ideal
reference known to the receiver, and during normal operation it is
the receiver's output decision An in the nth interval. Thus a decision -
directed stochastic approximation algorithm corresponding to (23)
and (25) is

0
12)

Cn+i = C
(IA I2)

- A:Rn exp[- 3.(27f.nT + .)])

= C (IA
I2)

Rn(Q: - 0:), (29)

where On = A exP[3.(27fAT + On)] is the "rotated" reference for
the equalizer in the nth interval, using the receiver's decision In, and

m2
0n+1 =

a
AII+ C7,17t,,A: expE- i(27rfcnT

I

= On +
IA

a12 Im (Q0:),

which can also be written as fin -H. = 0,, + a/I A n 12 IM 174:1
Expression (30) has a simple heuristic interpretation. Suppose the

equalizer has successfully removed all intersymbol interference so that
its output, neglecting noise, can be written

(2,,f,-:.; A exp[j(27 fcnT + On)].

Then we can write (30) as

0,1+1 - a sin(On - 0n). (31)

Equation (31) describes a discrete -time, first -order, phase -locked
loop. Because the tracking algorithm makes use of the receiver's
decisions, it can be termed a decision -directed tracking loop or a
decision feedback loop.5,6 As expressed in (31), the demodulator phase
0 is corrected by an amount proportional to the sine of the angular

(30)
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difference between the demodulated output Yn and the receiver's
decision A n. The maximum bandwidth of the phase jitter that can
be compensated for is a function of the constants a and /3. This will
be explored in the next section and in a subsequent paper.

The decision -directed phase -tracking principle is well-known for
application in systems that do not require adaptive equalization.5,6
Its appropriateness is further confirmed by studies of maximum -like-
lihood detection.9."

Note that there is a phase ambiguity in the receiver's decisions
inherent in suppressed -carrier systems with symmetric signal con-
stellations, using decision -directed phase tracking. For example, the
QAM signal constellation of Fig. 1 is quadrantally symmetric, and there-
fore constant 90 -degree errors in the phase of the receiver's decisions
{ A n } are undetectable. This source of ambiguity is customarily re-
moved by differentially encoding the transmitted data onto the points
of the signal constellation, so that phase differences between successive
decisions { A ,,}, rather than absolute phase values, convey information.

V. THE PHASE -TRACKING GAIN CONSTANT a: TRACKING
BANDWIDTH CONSIDERATIONS

As pointed out in Section IV, the phase -angle -tracking algorithm
is, assuming perfect equalization, basically that of a first -order phase -
lock loop with gain constant a. The actual system does not behave
quite as simply as this, however, since the passband equalizer, even
with a small gain constant /3, will also attempt to track the phase to
some extent; i.e., the difference equations (29) and (30) are coupled.
This coupling and its effect on performance will be explored in a later
paper. In this section, we ignore this effect and also the effect of im-
perfect equalization. Furthermore, in view of the difficulty in analyzing
discrete -time phase -locked systems, we make the following linearizing
approximation for the steady-state phase error : I On - On I << ir, so

that sin (On -O) Bn - 0,,. We can write (31) as the simple linear
difference equation

en+i = (1 - a)On aOn (32)

The case of sinusoidal phase jitter, 0 = Re [J exp ( jconT)], is of
interest because the phase jitter observed on telephone channels
often consists of one or more sinusoids with frequencies co/27 Hz, which
are harmonics of various power line frequencies. The response On
= Re [.1 exp ( jamT)] of the linearized phase-locked loop to On is

easily found to be given by

= F(j(4) = a
exp (j(.07') - 1 + a

(33)
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Now let us consider the effect of additive noise on the linearized
phase -tracking algorithm. Assume the complex, equalized, demodulated
output can be written

Yn = An exP[mi(en - on)] + Vn, (34)

where Vn = vn j6n is a complex gaussian random variable with
zero mean. Although in general successive noise samples at the equal-
izer output will be correlated, we assume they are uncorrelated to
simplify the results. The effect of this simplification should be minor
if the phase -tracking bandwidth is much smaller than the data band-
width or if the frequency response of the channel and of the equalizer
are both nearly flat. Thus if the signal-to-noise ratio is (1Al2)/Aro,
(vnv,) = (i5n6,) = (N0/2)(5. and (vnii,) = 0. Then eq. (31) for up-
dating 0, can be written, after using the linearizing approximation as
in (32),

On+i = (1 - CX)On
V n

aOn + a Im ) (35)

The random variable wn = Im (Vn/A n) is not gaussian unless IA n1
is constant (pure phase modulation). However, assuming the in-
formation symbols and noise are independent, the { wn} are zero -mean
and statistically independent with variance (N0/2)(1/ 1 A 12).

By the superposition principle for linear systems, the error in the
output of the phase -locked loop is given by

On - On = Re IJ[F(j0)) - 1] exp(j0mT)} vn, (36)

where the sequence { vn } satisfies

vn+i = (1 - a)v n awn,

and therefore has zero mean and steady-state variance

(2allo ( A112)

The mean -squared error in the phase estimate is thus
ep

((On
r2

n)2) = ' IF(30.1) - 112 + (4),

which from (33) and (38) is

((8n - On)2) =
1J 12 4 sing (0)T/2)

2 a2 + 4(1 - a) sin 2 (0.)T/2)

(37)

(38)

allo ( 1
2(2 - a) 1Al2

(39)
).

The residual RMS phase jitter, given by the square root of the above
expression, is plotted as a function of the coefficient a for signal -to -
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noise ratios ( I A I2)/No of 30 dB and 22 dB in Figs. 4a and 4b, respec-
tively. In each case, a 16 -point QAM constellation is assumed. The
higher the phase jitter frequency w relative to the symbol rate 1/T,
the greater the residual RMS jitter. The curves in Figs. 4a and 4b show
the case of no jitter (in which case, the residual jitter results from
noise entering the discrete time -phase -locked loop) and also the cases
of 14 -degree peak -to -peak jitter with WT/27r = 1/48 and with cog' /2ir
= 1/20. The choice of bandwidth of the decision -directed phase -track-
ing loop, determined by a, should be governed by the highest expected
phase jitter frequency. If the spectrum of the phase jitter is known, a
higher -order phase -locked loop may permit more effective phase
tracking.

For given values of RMS residual phase jitter, the error probability
can be approximated as in Ref. 1. For example, we find from Fig. 4b
that the residual RMS phase jitter is about 2.5 degrees in the 16 -point
QAM systems, for a = 0.3, when the channel has a signal-to-noise ratio
of 22 dB and 14 degrees peak -to -peak channel phase jitter with fre-
quency 1/48 that of the symbol rate. From Fig. 11 of Ref. 1, we find
that the resulting error probability is about 4 X 10-7. The same system

5

4

3

2

I I 1

0.2 0.4

(a) (b)

0.6 0.8 1.0 0 0.2 0.4

PHASE TRACKING COEFFICIENTa

0.6 0.8 1.0

Fig. 4-(a) Residual rms phase jitter for a channel with 30 -dB s/n and 14 -degree
peak -to -peak phase jitter. (b) Residual rms phase jitter for a channel with 22 -dB s/n
and 14 -degree peak -to -peak phase jitter.
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with the same value of a in the absence of phase jitter has an error
probability of about 5 X 10-8. The same system with a = 0 and no
phase jitter has an error probability of about 10-8.

VI. SIMULATION OF THE QAM RECEIVER

The receiver described in this paper with the QAM constellation of
Fig. 1 has been simulated on an IBM 370 computer, with 9600-b/s
QAM data signals transmitted over real voiceband telephone channels
as input. The simulation technique and the evaluation of this and
other high-speed modems were reported in Ref. 18. In general, over a
variety of different voiceband channels, the QAM system's performance
appeared to be superior to that of all other systems tested.

One channel used for transmission of the QAM signals consisted of a
Holmdel -to -Murray -Hill voiceband channel plus 50 -Hz, 17 -degree,
peak -to -peak sinusoidal phase jitter which was inserted by a line

t : :

.

:0: "
. .

"

** "t:t:'

:::.

Fig. 5a-Receiver output constellation a = 0.01.
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Fig. 5b-Receiver output constellation a = 0.3.

simulator. The phase jitter and other impairments contributed by the
Holmdel -to -Murray -Hill line alone were not too severe ; the worst
impairment was second -harmonic distortion, amounting to 32 dB
(fundamental to average second -order product).

An illustration of the receiver's effectiveness in tracking and remov-
ing sinusoidal jitter from the same recorded data signal is shown in
Figs. 5a and 5b, in which the unquantized complex (i.e., two-dimen-
sional) receiver outputs are plotted, g. versus yn. A indicates that
the particular set (y, Y-) occurred at least once during transmission, a

that it occurred between 4 and 10 times, a # that it occurred between
11 and 20 times, and an @ that it occurred more than 20 times. Thus,
these figures are "constellations" or coarsely -quantized two-dimen-
sional histograms of the receiver's demodulated ouput. The coordinates
of the possible transmitted information symbols ( ±1, E3 for QAM
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signals) are shown as circles. Figure 5a shows the two-dimensional
receiver output constellation for the case when the parameter a is
too small to allow the jitter to be tracked; a = 0.01. Thus, in this
case, the original 17 -degree peak -to -peak jitter appeared at the
receiver output, resulting in the banana -like shapes lying along the
circumferences of circles centered at the origin. Note that, if the only
impairment present was additive random noise, we would expect
the scatter plots to look like circles centered on the information symbol
coordinates and with radii proportional to the rms value of the noise.
Figure 5b is a constellation for the case a = 0.3, which allows the
sinusoidal jitter to be tracked and almost completely removed by the
demodulator.

VII. SUMMARY AND CONCLUSIONS

We have proposed a decision -directed demodulator phase -recovery
loop coupled with adaptive passband equalization for use in a two-
dimensional, suppressed -carrier, data communications system. Accu-
rate compensation of phase jitter and frequency offset is afforded
by placing the demodulator and a sufficiently wide bandwidth decision -
directed phase -tracking loop together following the equalizer.

The derivation of the receiver's adaptive algorithm for jointly setting
the equalizer tap coefficients and the carrier phase estimate was based
on a gradient search algorithm for minimizing an expression for the
receiver's output mean -squared error. This gradient search algorithm
was shown to converge in the absence of noise and phase jitter to a
nonunique but optimal set of tap coefficients and carrier phase -angle
estimate.

Computer simulations using real -channel received waveforms re-
ported here and in Ref. 18 confirm the feasibility of the QOM receiver
structure.

Assuming perfect passband equalization and making a simplifying
linear approximation, we analyzed the system's residual phase error
as a function of carrier tracking loop gain, signal-to-noise ratio, and
the amount and frequency of sinusoidal phase jitter. The optimum
value of the carrier -tracking -loop -gain parameter a was seen to depend
on the noise and phase -jitter parameters, although reasonable design
compromises can be made.

A forthcoming paper'g will explore the adaptation and tracking
behavior of the combined equalizer, carrier recovery system, and
demodulator in more detail.

The two-dimensional adaptive receiver structure described here can
also be extended to systems employing decision feedback equalization.
The performance of such a receiver will be reported in a later paper.
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The Field of a Line Charge Near the Tip
of a Dielectric Wedge

By J. A. LEWIS and J. McKENNA
(Manuscript received October 17, 1975)

We calculate the potential of a line charge embedded in a dielectric
medium of permittivity 2 in the presence of a dielectric wedge of per-
mittivity el. The potential is calculated with the aid of the Mellin transform,
and the answer is given as a definite integral which is then transformed
into an infinite series. We show that, for all wedge angles and all ratios
2/1, Vso is singular -at the tip of the wedge, and we give the strength of the
singularity. The results have relevance to the design of contacts on semi-
conductor devices.

I. INTRODUCTION

Lewis and Wasserstromi have calculated the strength of the field
singularity at the tip of a dielectric wedge in the configuration shown
in Fig. 1. In particular, with a wedge permittivity El greater than the
permittivity e2 of the surrounding medium and a conductor angle

= r (the "overhanging electrode"), they found that the tip field
was singular for all wedge angles a greater than 7r/2. From this analy-
sis, it was concluded that semiconductor devices with undercut edges
(a < 7/2) would be advantageous in reducing local field strength and
thus preventing breakdown.

Because the analysis of Ref. 1 was strictly local, based on an ex-
pansion of the potential in positive powers of the distance from the
wedge vertex, multiplied by trigonometric functions of the polar
angle, it was felt by some that the results were suspect, since they
were not based on the solution of a complete boundary value problem.
Here we lay that suspicion to rest by presenting the solution of such
a problem, namely the field due to a line charge near a dielectric wedge,
as shown in Fig. 2. The solution of this problem, previously treated by
Smythe' in a somewhat involved fashion, gives Green's function for
the composite region. Here we use the Mellin transform, obtaining an
expansion of the potential near the wedge tip in terms of the poles of
the transform. Based on this analysis, we conclude for the charge -
wedge configuration of Fig. 2 that, for arbitrary ratios e2/1, the wedge
tip field is singular for all values of the half -angle a. We show that,
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Fig. 1-Electrode, insulator, semiconductor configuration.

when the plane y = 0 is replaced by a perfectly conducting sheet, the
field singularity due to the line charge is exactly as described by Lewis
and Wasserstrom.' In general, we can conclude that, for any charge
distribution for which the resulting potential is neither purely even
nor purely odd, the field at the tip of the wedge will be singular for all
ratios 2/1 and all half -angles a.

II. THE PROBLEM

We consider the electrostatic potential due to a line charge of
strength q in the presence of a dielectric wedge, as shown in Fig. 2.
The charge lies at a distance a from the wedge tip in a dielectric
medium with permittivity 2, while the wedge, with permittivity el,
occupies the region -a < 0 < a. We shall always assume that

Fig. 2-The dielectric wedge and line charge.
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y > a, taking into account the case where the charge lies within the
dielectric wedge by interchanging El and ez, replacing a by r -a
and y by r - y where -y < a. Finally, instead of working with the
dimensional potential co (x, y) and distances (x, y), we introduce the
dimensionless potential u(r, 0) = (2/q)co(x, y), and the dimensionless
distance r = (x2 + 2y )4/a. Thus, we will calculate the dimensionless
potential due to a unit line charge at unit distance from the origin.
Although we assume no trapped surface charge on the surface of the
wedge, our analysis could be extended to cover this case also. It should
be noted that, in these units, a unit line charge located at the origin
of a homogeneous medium (Ei = E2) gives the potential

u = -1 In -1r

In the composite medium, u satisfies Laplace's equation

V2u = u r-lur r-21,108 = 0,

in the wedge 101 < a, and the inhomogeneous equation

V2u = - (270-16(r - 1)6(0 - -y),

(1)

(2)

where S is the Dirac delta function, giving the effect of the charge at
(r, 0) = (1, -y), for a < 0 < 2r - a. The problem is completed by
the requirement that u and eue be continuous across 0 = ±a.

To facilitate further calculations, we split u into the sum of an odd
function in y and an even function in y, setting

u = 1(v w),

where v and w satisfy eqs. (1) and (2), the continuity conditions, and
the boundary conditions

v(r, 0) = v(r, ir) = we(r, 0) = we(r, ir) = 0. (3)

Obviously, the pair of problems for v and w are equivalent to the
original problem for u. It should be noted, though, that v alone is the
potential due to a positive unit line charge at (1, y) and a negative
unit line charge at (1, 2r - y), in the presence of the dielectric wedge.
Alternatively, of course, it can be interpreted as the potential of the
unit line charge at (1, -y) in the presence of the wedge, when the plane
y = 0 is replaced by a perfectly conducting sheet. This corresponds to
the model of the overhanging electrode used by Lewis and Wasser-
strom.' Further, w alone is the potential due to positive unit line
charges at (1, y) and (1, 2r - y) in the presence of the wedge.

We now proceed to calculate v and w, or rather their Mellin trans-
forms, the form of eq. (2) having been chosen to facilitate the applica-
tion of the transform.
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III. THE MELLIN TRANSFORM

The Mellin transform 0 (0, s) of v(r, 0) is given by3

13(0, s) = f r8-'2)(r, 0)dr. (4)
o

If eq. (2) is multiplied by r8+1 and integrated from 0 to 0o, after several
integrations by parts there results the ordinary differential equation

1f)" + 520 = --ô(0-7),

provided that s lies in the strip cri < Re s < 0-2, where

ral-'vr .- 0, ray -4 0

(5)

(6)

for both r -- 0 and r -) 00 . These terms arise from the integration by
parts of ral-i(v + r-'74). We will determine appropriate values of o1
and 0-2 later.

First, let us dispose of the singularity by calculating 0 = Di for a
homogeneous medium for which n = 2/1 = 1. Then Di satisfies eq.
(5) in 0 < 0 < r and the boundary conditions

131(0, s) = 131(r, s) = 0.

The expression

Di = A sin s0 - 1 f 9 (3(01 - y) sin s(0 - 0')d0'
s o

satisfies the equation and the first boundary condition. A is chosen to
satisfy the secondary boundary condition. We finally obtain

sin s(7r - y) sin s0/s sin sir, 0 < 0 < 7,
01(0, s) = sin sy sin s(ir - 0)/s sin sir, 7 < 0 < r, (7)

-01(27r - 0, s), 7 < 0 < 21r.

Now in this case, vi(r, 0) is known, and v1 ,--, r for small r and v1 r., 1/r
for large r, so for (6) to be satisfied for v1 it is necessary that -1
< Re s < 1.

An analogous calculation yields iv' in the homogeneous medium, viz,

- cos s (7r - -y) sin .90/s sin sir, 0 < 0 < 7,
'thi = - cos sy cos s(r - 0)/s sin sir, 7 < 0 < r, (8)

ibi(27r - 0, r), 7 < 0 < 2r.

Again in this case, wi (r, 0) is known, w1 ' r for small r and wi ,-,, In r
for large r, so for (6) to be satisfied for w1 it is necessary that -1
< Re s <0.

We now use these expressions for the potentials due to a line charge
in a homogeneous medium to obtain the potentials in the presence of
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the wedge. Note the way 0 and 7 are interchanged in eqs. (7) and (8)
to make v, and 7.01 continuous. We choose a similar form for 0, setting

v=vl-{-B sin s(a- - a) sin sO, for 0 < < a
{sin sa sin s (r - 0), for a < 0 < ir,

thus satisfying the differential equations, the boundary conditions
at 0 = 0, 0 = 1r, and the continuity condition

D(a- , s) - 0(a+, s) = 0.

B is determined from the second continuity condition

0' (a- , s) - n0'(a-1-, s) = 0,
where

n = E2/1.
We find

B = (1 - n)D;(01, s)

sEn sin sa cos s(r - a) + cos sa sin s(7r - a)]

The transform of the odd part of the potential u is then given by

where

0(0, s) = M(0, s)/sP(s, a, ir), (9)

(s, 0, 0) sin s(r - 'Y), 0 < 0 < a

M(0, s) =
P(s, a, 0) sin s(r - 7), a < 0 < 7
IPp(s, a, 7) sin s(r - 0), < < r (10)

-M(2r - 0, s), r < < 27r,

and
P(s, a, 0) = (1 + n) sin sO - (1 - n) sin s(2a - 0). (11)

A similar calculation yields the transform of the even part of the
potential, viz,

where

7,0(0, s) = N(0, s)/sQ(s, a, r), (12)

-R (s, 0, 0) cos s (ir - 7), 0<0<a
N(0, s) = -R(s, a, 0) cos s(7r - 7), a < 0 < 7

-R(s, a, y) cos s(lf- - 0), 7 < 0 < r (13)

N (2r - 0, s), < < 27r,

and
Q(s, a, 0) = (1 ± 77) sin s0 ± (1 - n) sin s(2a - 0),
R(s, a, 0) = (1 + n) cos sir - (1 - 0) cos s(2a - 0). (14)

Next, we must invert 0(0, s), 10(0, s) to obtain v(r, 0) and w(r, 0), or
rather their forms for small r, since we are primarily interested in the
behavior of the potential near the wedge tip.
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IV. THE INVERSION INTEGRAL

If the integral (4) defining a(8, s) converges absolutely for all s in
the strip al < Res < cr2, then u(r, 0) is given by the inversion integral3

u(r, 0) = s)r-acis, (15)
Zarl c--

where the integration contour in the complex s plane is any vertical
straight line Re s = c with al < c < 02. We have already seen from
the derivation of DI and 21)1 that -1 < o2 < al < 0. An examination
of (9) to (14) shows that, while V(0, s) is regular at s = 0, 71)(0, s) has
double pole there. Further, as we shortly show, both v and a have a
countably infinite number of poles. They are all real, and the nonzero
poles are all simple. The largest of the negative poles, at s = so,
satisfies -1 < -so < 0. Since the strip al < Re s < 02 can contain
no singularities of f4(0, s), it follows that al = so, o2 = 0. Assuming so
is known, since ii(0, s) = 1[00, s) a(0, eqs. (9) to (15) provide
an explicit integral representation of the desired potential u(r, 0).
This expression for u seems much more suitable than the expression
given by Smythe2 for determining the small r behavior of u.

The integral can be evaluated by the residue theorem4 by closing
this contour with large semicircles, to the left for small r and to the
right for large r. Examination of the forms for v and fv, given by eqs.
(9) to (14), reveals that the integrand of eq. (14) vanishes so rapidly
on the semicircles that, as the semicircle radii tend to infinity, the
semicircles make no contribution to the integral around the contour.
The sum of the residues enclosed by the left semicircle thus gives the
small r behavior of u; those to the right the large r behavior. It is clear
from (11) and (14) that, if p 0 is a zero of P(s, a, 7r), then so is - p,
and, similarly, the nonzero roots of Q(s, a, 7r) come in pairs. Let p,,,
qn, n = 1, 2, denote the positive roots of P and Q, respectively.
Then it follows that, for r < 1,

1 ce M(0, pn)rPn N(0, q)rqn
u(r, 0) = - (16)

p.P(p., a, 7) q.Q(q., a, 7)

while, for r > 1,

N(0 0)
u(r, 0) = 2Q' (0,'a, 7)

In r

1 c° M(0, pn)r-Pr. N(0, qn)r-qn- ni (17)
2 n=1 PnP(Pn, a, 7r) qnket (qn, a, 7)

The poles of f) and ti) lie at the zeros of P(s, a, 7r) and Q(s, a, 7r)
except, of course, when M(s, 0) and N (s, 0) also vanish for the same
value of s. For example, v has a removable singularity at s = 0. Since
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the zeros also depend on 17, we emphasize this by writing P(s, a, ir)
and Q(s, a, 7r) as P(s, a, 7r; n) and Q(s, a, 7r; n). Then it is simple to
show that

Q(s, r; n) = nP (8, a, 7; (18)

(2(s, a, 7; n) = P(s, - a, r ; 77). (19)

If we set s = p, then P(s, a, 7 ; n) = 0 can be written

(1 n) sin pr (1 - n) sin p(lr - 2a) = 0,

which is identical to eq. (15) of Ref. 1 with 0 = ir, the case of an over-
hanging electrode. The two smallest values of p for various values of
n are then given by Fig. 11 of Ref. 1, here reproduced as Fig. 3. From
Fig. 3 and eqs. (18) and (19) we see that, if 0 < n < 1, 0 < a < r/2,
or 1 < n, r/2 < a < r, then pi > 1, qi < 1, while if 0 < n < 1,
r/2 < a < r or 1 < n, 0 < a < r/2, then pi < 1, qi > 1. In all
cases, p2 > 1, q2 > 1. If pl = min (pi, q1), we have shown that for
r < 1, Vu rPr-i and that for all angles a and ratios n, pi < 1 so the
field is always singular at the tip of the wedge. For the case of an over-
hanging electrode for which the potential is given by v alone, Vv
so we have substantiated the local analysis of Ref. 1 by the solution
of a complete boundary value problem.

2.0

1.5

1.0

0.5

7r

2

a

Fig. 3-The zeros of P(s, a, ir) for various n.
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V. REALITY AND SIMPLICITY OF POLES

One minor task remains to complete our analysis. We must show
that all the roots of P(s, a, ir) = 0 and Q(8, a, 7) = 0 are real and
simple. We write the two equations as

sin 7s = ±E sin (ir - 2a)s, (20)

where E = (1 - n) / (1 + n). We exclude the case 2a = ir, for which
the zeros are clearly real and simple. If we set s = a + ir, the real
and imaginary parts of eq. (20) become

sin iro cosh irr = ±E sin (ir - 2a)o cosh (ir - 2a)r.
cos ira sinh irr = ±E cos (7 - 2«)0. sinh (ir - 2«)T.

Divide the first by cosh 7rT, the second by sinh TT, square, and add to
obtain

E2 [sin' (r- 2a)o- cosh' (ir - 2a)r
cos2 (ir - 2cx)o-

cosh2 TT
sinh2 (ir - 2a)r = 1. (21)

sinh2 irr

With 2« r ir, it - 2« 1 < r, T 0, so that cosh' (ir - 2a)r < cosh2 irr,
sinh2 (ir - 2a)r < sinh2 TT, eq. (21) implies E2 > 1, which is impossible
since E2 S 1 for 0 < n <00. By assuming a complex zero, we arrive
at a contradiction, so all the zeros of P and Q must be real.

If s is a multiple zero of (20), it must also be a zero of one of the
equations obtained by differentiating (20),

cos 7
2«s= ±E (1 - ) cos (2a - r)s. (22)

If we square and add (21) and (22), we get

21

2
= sin' - 2a)s + (1 - -2«

E
cos' (2a - 7r). (23)

Since (1 - 2a/7r)2 < 1, (23) implies (1/E2) < 1, which is a contradic-
tion. Thus, all the zeros of P and Q must be simple.
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A Note on the Capacity of the Band -Limited
Gaussian Channel

By A. D. WYNER

(Manuscript received November 4, 1975)

In this paper we reexamine results of a previous paper' in which the
capacity of the continuous -time channel with bandwidth W, average
signal power Po, and additive gaussian noise with flat spectral density No
was shown to be approximately W In (1 + Po/ N oW) under a number of
physically consistent assumptions.

When one of the models in Ref. 1 is modified by techniques suggested
by Slepian in his 1974 Shannon Lecture,2 the channel capacity turns out
to be exactly W In (1 P 0/ N oW).

I. INTRODUCTION

In his 1974 Shannon Lecture,2 D. Slepian introduced still another
way of resolving the well-known paradoxes that arise when band -
limited signals are studied in a physical "real world" context. One
such paradox results from the fact that a mathematically band -
limited function is determined for all time by its values in an arbitrarily
small temporal interval-a highly nonphysical situation. An essential
element in Slepian's resolution of these paradoxes is the recognition
of the role of measurement accuracy in the determination of signals.
To incorporate this into his mathematical model, he introduces the
following concept. Two signals s1 (t), 82(t), - 00 < t <00 are really
indistinguishable at level  if

!Is' - 52112 (1)

where

.11 P (t)dt

is the "energy" of the function of f(t). He then says that a signal
g(t), - 00 < t < 00, is bandlimited to (-W , W) at level E if u1 (t) and
u2(t) are really indistinguishable at level e, where

U,(f) = G(f) (2a)
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and

u2(f) = {0, I fl > w.
G(f), ifl W,

Here, Ul, U2, and G are the Fourier transforms of u1, u2, and g re-
spectively, i.e.,

Ui(i) = f e-i2Tfgui(t)dt,
-..,

(2b)

etc. With band -limited functions so defined, paradoxes such as the
one mentioned above are resolved, i.e., that g(t) is band -limited to
level e > 0 does not imply its predictability.

Let us remark that the quantity e in the above definitions represents
a limit on the accuracy of the measuring instruments used to deter-
mine the frequency spectrum of a signal. Note that g(t) band -limited
to a level E does not imply that c  g(t) (c > 1) is also so band -limited,
even though g(t) and cg(t) have the same shape. Thus, Slepian's
notion of band -limited signals is distinctly different from the usual
notion which defines the bandwidth of a signal as a function of its
shape.

In this note, we take another look at a related problem-determin-
ing the capacity of the band -limited gaussian channel-in the context
of Slepian's bandwidth definition. We show that results obtained by
the present author' have a particularly elegant statement in this new
context.

II. STATEMENT OF THE PROBLEM

The definition of the continuous -time, band -limited, additive
gaussian noise channel has the following components :

(i) Specification of a set ct(T, W, Po) of allowable channel input
signals that are "approximately band -limited" to ( - W, W),
approximately time -limited to (- T/2, T/2), and with total
energy not exceeding PoT (so that the average power is .. P0).

(ii) Specification of the noise.

The channel output is
y(t) = s(t) ± z(t),

where the channel input se a(T, W, Po), and the noise z(t) is specified
by (ii).

We take W and Po to be fixed parameters. A code with parameters
(T, M, Pe) is a set of M functions called code words which belong to
a(T, W, Po), together with a decoder mapping which associates the
received signal y(t), Iti < T/2, with one of the M code words. With
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each of the M code words assumed to be a priori equally likely to be
transmitted, Pe is the probability that the decoder makes an error.

A number R > 0, is said to be permissible if for every X > 0 there is
a T = T(X) sufficiently large that there exists a code with parameters
(T, M, Pe), where

M > eRT , Pe C X.

The channel capacity C is defined as the supremum of permissible R.
Reference 1 has a detailed discussion of this problem and its
formulation.

In what follows, we shall specify a set a(T, W, Po) and also specify
the noise. The main result is a formula for C. This model is very similar
to Model 4 in Ref. 1.

(i) Let a(T, W, Po) be the set of functions s(t), -co < t < oo ,
which satisfy

(a) s(t) = 0, I tl => T/2, (3a)

(b) 11 s 112 PoT, (3b)

(c) s (1) is band -limited to ( - W, W) at level e > 0. (3c)

Thus, a(T, Wo, Po) is a set of strictly time -limited and approxi-
mately band -limited signals.

(ii) The noise function z (t), is assumed to be a sample from a gaus-
sian noise process with spectral density

j N0/2, 1 < W,
N (f) 0, Ifl w.

Let us remark at this point that although we assume in our model
that the signal is exactly time -limited to ( - T/2, T/2) and the noise
is exactly band -limited to ( - W, W), our results do not exploit these
assumptions. In fact, our results will hold if we introduce appropriate
approximations here too.

Finally, we must make the assumption that the decoder function
is not capable of distinguishing among signals that are arbitrarily
close together. Specifically, we assume that if y (t), y2(t), - T/2 < t
< T/2 are functions that are mapped by the decoder to distinct code
words, then

IT 12

J -772
[y 1(0 - y2(t)J2dt > Ei.

(4)

(5)

Inequality (5) is equivalent to requiring that the segments of yi(t)
and y2(t), I

t
I

< T/2 (on which the decoding must be done), are really
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distinguishable at level e'.* Put another way, the receiver must be
insensitive to measurement errors of energy < e'/4.

III. THE RESULT

We state our result as a theorem.

Theorem: For the model defined above,

C = W log (1 P°
NoW '

(6)

provided e' > 4e.
This result is analogous to the "2WT" theorem given by Slepian in

Ref. 2. Note that (6) holds for every E and e' provided only that e' >4e.
Thus, the result is independent of the precision with which we can
make measurements.

Proof : The theorem follows immediately from the capacity formula
(28) given for Model 4 in Ref. 1. Observe that our a(T, W, Po) is
identical to the set a4(T, W, Po), with o = e/ (PoT). (Note that no
changes in the capacity formula will result when we require the
channel input signals to have energy exactly PoT.)

Also note that the right member of ineq. (29) of Ref. 1 should be
"4vNoWT." Thus, our assumption in (5) is identical to the assumption
of (29) in Ref. 1 with v = e'/(4NoWT).

It follows that the capacity formula (28) in Ref. 1 holds; that is, for
our model

C = W log (1 + Now) + e(n, v), (7)
Po

where e(n, v) 0, as n, v -) 0, provided

Po
NoW

Since , = e/ (PoT) and v = e'/(4NoWT), both t, v -4 0 as T -+ co .
Further, (8) holds if e'/e > 4, so that (7) becomes (6) as T -300 .

(8)

REFERENCES

1. A. D. Wyner, "The Capacity of the Band -Limited Gaussian Channel," B.S.T.J.,
45 (March 1966), pp. 359-395. Also reprinted in Key Papers in the Development
of Information Theory, ed. D. Slepian, New York: IEEE Press, 1974, pp.
190-193.

2. D. Slepian, "On Bandwidth," 1974 Shannon Lecture, presented at the Interna-
tional Symposium on Information Theory, Notre Dame, Indiana, October 21,
1974, Proceedings of the IEEE, 64, No. 3 (March 1976), pp. 292-300.

This assumption requires that the space of received signals contain "null zones"
which are not in the domain of the decoder mapping. When the received signal belongs
to a null zone, the decoder declares an error.
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A number of problems are considered relevant to understanding the

performance of optical -fiber communication systems that use pulse
transmission. The methods used are typically exact solutions or bounds,
and we concentrate on simple examples that aid our understanding.
Some of our work makes contact with previous studies, particularly by
Personick and Hubbard. The major results are:

(i) Presentation of an integral equation for the output density for single -

pulse detection with arbitrary avalanche gain
(ii) Exact solution for the probability distribution for gains in physical

avalanche diodes
(iii) Bounds on performance when intersymbol interference is present

(but no avalanche gain) which suggest that an optimum-bit de-
tector can perform, under practical conditions, only two or three

dB better than a simple integrate -and -dump filter, yielding results
still many dB from the quantum limit. Thus, in particular, little
performance gain is to be expected from equalization techniques.

I. INTRODUCTION AND OVERVIEW

A large part of traditional communication theory has been directed
to detecting and processing electrical signals transmitted over wires,
cables, or the like. While the physical realization of each of these tradi-
tional systems may have led to mathematical treatments designed to
handle problems such as linear distortion or fading, which were peculiar
to one, or even perhaps several, systems, the principal concern of all
mathematical treatments of these time -continuous channels has been
the ubiquitous additive gaussian noise. In fact, it would be fair to
say that much of the structure of the mathematical treatments used
has been dictated by the mathematical properties of this noise. In the
absence of noise, many problems would immediately degenerate, at
least theoretically, to situations of perfect detection, infinite capacity,
etc.
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The consideration of some promising optical communication systems
seems to alter the above picture. We have in mind the transmission of
information by way of light pulses propagating through an optical
fiber and subsequently detected by a photodetector that converts
electromagnetic energy in the fiber to electrical signals in a circuit.
We immediately note certain features which this problem has in common
with the traditional problems. For one thing, the fiber can delay,
attenuate, or spread the transmitted pulses. For another, the elec-
trical signal after photodetection may be corrupted by additive
gaussian noise. Yet there is another fundamental impairment. The elec-
tromagnetic signal that propagates in the fiber (which acts as a wave
guide) is, under practical considerations, of sufficiently weak intensity
that any effective detection mechanism must be based upon the
quantum nature of the electromagnetic disturbance. In other words,
detection must be based upon photon counting. Here, a new element
enters the problem-photon counting is subject to statistical fluctua-
tions. In the quantum case, a signal uncorrupted by any external
disturbance still carries with it its own "noise," as it were, which is
not additive gaussian. This new noise manifests itself in the following
way. The photon -counting process is a time -varying Poisson process
whose intensity (or rate) function X (t) varies in direct proportion to the
information -bearing pulse train, the latter being thought of in the
conventional way (except it must now always be positive). Our pur-
pose here is to explore some of the communication theory of this new
situation, paying particular attention to the use of our considerations
in proposed fiber-optic communication systems.

The general background of the material that we treat, namely,
direct detection of photons in an optical fiber, may be found in works
by PersonickL2 and Foschini et al.3 Direct detection refers to the pro-
cessing of the electrical signal at the output of a photodetector as op-
posed to, say, more esoteric detection schemes based on optimum
processing of the existing electromagnetic field, considered as a
quantum system. In the case of binary transmission, the choice be-
tween a one or a zero is, in the systems considered here, translated into
the presence or absence of a short burst of optical power (light) in the
fiber. To understand this in more detail, we shall trace the passage of
a single pulse through our mathematical model of the system (see
Fig. 1). In the case of a one being transmitted, an electrical signal (a
square pulse of duration T) turns on our "flashlight," which in this
case is a laser or light -emitting diode, and electromagnetic energy is

sent into the transmission medium (optical fiber). If a photodetector
is placed at the end of the fiber, photons will be detected due to the
electromagnetic energy present. Exactly when in time the photons
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Fig. 1-Passage of a single pulse through the optical system.

register on the detector is random and is the Poisson process spoken
of earlier. The probability of receiving a count between time t and
t + dt is given by h(t)dt, where, owing to effects in the fiber, h(t) is a
distorted and attenuated version of the transmitted pulse. The ac-
cumulation of distortion as the pulse propagates down the fiber is also
sketched in Fig. 1. In practice, a background of counts also exists.
This is called the dark current and is modeled by introducing a con-
stant additive intensity function Xo before the detector, although some
of these counts can originate in the physical detector itself. Typically,
transmitted power and transmission loss are adjusted so that on the
order of one or two hundred photons per pulse are, on the average,
detected. The dark current contributes from about 1 to 5 percent of
the counts.

To transmit a zero, we simply do not turn on the transmitting power,
and the detector only registers counts resulting from the dark current.

We have been loosely speaking of the output of the photodetector
as "counts." The actual electrical current at the output of this device
caused by a photon is a wideband pulse g  w (t) (very narrow com-
pared with T, a delta function in the limit), where g = integer -valued
random variable or g = 1, depending on whether or not an avalanche
diode is used. The electrical current at the output of the photodetector
is further distorted by gaussian noise whose effect is often lessened in
importance when an avalanche diode is used, but not for the g = 1
case. In the most literal modeling of the experimental situation, the
finite bandwidth of w (t) prevents one from assuming that the Poisson
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part of the observation is singular, i.e., can be separated out from the
background gaussian noise ; however, whenever we feel there are
insights to be gained from the separation we shall make it.

If we take into account the facts that Personick4 has shown super-
position to hold (approximately) for optical -fiber transmission and
that optical power is positive, then we may extend our single -pulse
description to a model for transmission of an entire pulse train. If we
transmit a sequence of on or off pulses, then the "received signal,"
defined as that electrical signal on which we may do processing, can
be written as

E g w(t - t) n(t), (1)

where the time points {t.} form a Poisson process having intensity
function X (t), with

X(t) = E ah(t - nT) Xo (2)
n

and
h(t) z 0 = distorted pulse

an = 0, 1 = independent, equiprobable data symbols

Xo > 0 = dark current
T = signaling interval (3)

n (t) = gaussian noise
gn = avalanche gain factors

w(t) = output pulse of photodetector.

At various stages of our discussion, we may, for interests of simplicity
or clarity, idealize or eliminate certain aspects of the full model given
by (1), (2), and (3).

The communication theorist is interested in processing the signal
(1) to estimate the an given in (2). If the distortion is not severe, one
may simply process in an intuitive way and (assuming proper syn-
chronization) count the number of photons detected in the appropriate
T -second interval. If gn = 1, this is accomplished by integrating the
output for T seconds (so-called integrate -and -dump detection). How-
ever, the simplicity of this technique demands its investigation even
when g are random. Neglecting the gaussian noise and assuming gn
are exponential random variables allow one to determine exactly the
probability distribution of the output statistic and to determine error
rates. This is done in Section II. In Section III we return to the g = 1
case to observe the effects of the random gain. In Section IV,
Personick's implicit equation for the random gains g of actual photo -
detectors is studied in detail and the exact distribution of these gains
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is found. Also, the use of Chernoff bounds for bounding the error rate
in the general situation is discussed. Section V branches out to include
a worst -case analysis of intersymbol interference [the case of appre-
ciable spreading of h(t)] using integrate -and -dump detection. A
particular example is also computed. Finally, in Section VI, we con-
sider the question of replacing the integrate -and -dump detector with
an optimum detector. We know that equalization can achieve con-
siderable improvements for voiceband telephone transmission, but
can we expect the same here? Using the lower bound on performance
which we derive for the optimum detector and applying this to the
example of Section V, we find that performance greatly surpassing that
of integrate -and -dump detection cannot be expected.

II. INTEGRATE -AND -DUMP DETECTION -AVALANCHE DETECTORS

As already mentioned in the introduction, a simple way to detect
the jth bit in (2) is to integrate the output of the photodetector over
the jth T -second interval and compare the random variable thus
obtained with a threshold F; if the output is greater than F, a one is
declared (pulse present) ; if it is less than F, a zero is declared (pulse
absent). In this section, we discuss the exact error rate for such a
situation when pulse overlap in (2) can be neglected, as well as the
additive noise. Further, the gains gn are assumed to be exponentially
distributed.

We shall need the moment -generating function (MOP) for the indi-
cated random variable, but we may as well begin by giving the MGF
for a general linear filter P(t) rather than simply an integrator. Con-
sider a Poisson point process having an arbitrary intensity function
X(1) [not necessarily of the form (2)], and let the nth count be given
nonnegative weight g, i.e., consider

E gn8(t - t), (4)

where the sequence of time points is Poisson with intensity func-
tion X (t). If (4) is linearly filtered, with P(t) being the impulse response
of the filter, then the output of the filter at time t, x (t) can be shown by
elementary calculations to have moment -generating function given by

Mx = E exp EsXJ = exp I X(r) filfg[sP(t - 7)] - 1)dr], (5)

where 1110(s) is the moment -generating function of the g, assumed
independent, and we have set x(t) = X. In particular, if P(r) = 1 for
0 < r < T and zero elsewhere, and if t = T, (5) will simplify to

Mx = exp f A[/lig (s) - 1]}, (6)
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where

A =
T

X (r)dr.
0

(7)

If the pulse w(t) in (1) (assumed of unit area) is narrow enough so
that end effects are negligible when doing the integration and if pulse
overlap in (2) is negligible, then (6) and (7) are relevant quantities to
consider in determining the error rate for integrate -and -dump detec-
tion of (1) and (2). To treat the two separate cases of a one or a zero,
we need only replace A in (6) by Ai, i = 1 or 0, where

T

Al = f h (0 + TX0
ci

A0 = TAO.

(8)

(9)

While the gaussian noise will be neglected here, let us at least note
that to include the effect of the added noise term on the integrated
output, we would multiply (6) by the moment -generating function of
the noise M.(s),

82;2)M (s) = exp ( , ( 1 0)

to obtain the MGF of the new output variable. In (10), the variance of
the noise cr2 is given by

No472 = _ T
2

for the case of the integrator with white noise of two-sided spectral
density No/2, or

I
cof (12)

in general, where N(co) denotes a general noise spectrum and P(co)
is the Fourier transform of P (t) .

In the special case where the g in (4) are continuous variables and
are exponentially distributed, i.e.,

p (g) = a exp (-ag), g > 0, (13)

we have

Mg (s) = a s < a. (14)a - s '
At this stage, it is easier to work with the characteristic function

version of (6), namely,

Cx (co) = exp { A[C, (w) - 1]}, (15)
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with C(w) denoting characteristics functions now, e.g.,

Cx(w) = E exp (icoX).

To obtain our integral equation for p(x), differentiate (15) once with
respect to w, multiply by exp (-iwx), and integrate over x to obtain

xp(x) = A f up (u)p (x - u)du, (16)

where p(x) denotes the density of the random variable X in (14), and
pc (u) denotes the density of the nonnegative gain variable g.

For the exponential gain case (13), an exact solution to (16) can be
found. Note that then the variable x has probability exp (-A of
being zero (no counts) and p(x) will thus contain a 6 function at the
origin. Introducing this explicitly by writing

p (x) = exp ( - A) S (x) exp ( -ax) f (x), (17)

we find

rx f (x) = (aAe- i)x aA fo (x - w) f (w)dw, (18)

where use has been made of (13). Differentiating (18) twice, we obtain
Bessel's equation

x2 f" + 2x f' - («A)x f = 0, (19)

where f' stands for differentiation. The appropriate solution of (19)
gives, finally, for the density p (x) of the detection statistic

p(x) = (x) xa e-ax I 1(2-icx.), (20)

/1( ) being the modified Bessel function.* The following may be useful
in connection with (20) :

I1(x)
exp (x)

ti exp (x)
5rx

x>_0 (21)

x large (22)

x small. (23)

Typically, Al is in the range of 100 to 200 for a light pulse present and

This exact result, as well as several useful approximations to it found later in this
section, were first derived by Hubbard (Ref. 5) using other techniques.
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Ao in the range of 5 to 10 for dark current only. The quantity 1/a, the
average gain, may be 100 or 200. The average number of counts for a
pulse is then Ai/a so, to within a factor of 2 or so, the decision threshold
will be around Ai/2a. Thus, virtually all the area of interest in (20)
occurs for x > 1/aAi for both i = 1 or 2, and (22) may be used and,
to excellent accuracy,

(aA)t 1
r,-:-.: ,-- , x > -(J - 4-A/a)2). -71p(x)dx

471- (x)
exp {- ux

t 2 (1/2a) aA
(24)

Equation (24) is slightly more attractive if we write instead the density
for u = &, P.(u),

exp - (u - 1flia)21
A )1 1 { 2(1/2a) J du,1pu(u)duci (- u> (25)
a -Cu -07-7r (1,rii/2a) lrai. '

showing that AIX is, over a rather wide range, gaussian with mean
Vi-C.TrX and variance 1/2a. Note A/a = EX, while variance of X is
2A/a2. Also, eq. (25) should not be confused with the central limit
theorem version of (24), which is obtained when one writes (for large
A) x = (A/a) ± e and e becomes gaussian. Since, from (21), eq. (22)
is an upper bound as well as being asymptotic, we have

p[x > F > -A]a
(26)- (-A )1(2(.4:EF - lai.),

Fa

where

Q(y) = 1 r
6-u2/2du r,

e -y212
(27)a; I/ 1,127-ry

Likewise, in the same spirit of approximation that indicates (26) to be
an excellent approximation (in addition to being an upper bound), one
may write for the lower tail

p[x < F < .4],...^' ( A )1Q('01. - ATaT). (28)
a

Even for A's differing by a factor of 100, the fourth root factor in front
of (26) and (28) is weak indeed. Thus, we may, to excellent approxima-
tion, find the best threshold by equating the arguments of the Q func-
tion for the two cases of error. This results in

1.1/11 - iiCeT" = -12.F -1.12/0. (29)

The left-hand side of (29) comes, of course, from using (28) for a pulse
present (the number of counts is then expected to exceed the threshold).
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Table I -Tabulation of error rate and threshold for an avalanche
detector with exponentially distributed gains

Ao Al. Fopt (a = 1) Pe [eq. (31)] Quantum Limit

4 100 37.20 2.09 X 10-9 1.86 X 10-44
4 200 66.28 8.88 X 10-19 ,---, 10-88
4 400 122.1 3.9 X 10-38 -, 10-176

10 100 46.58 8.03 X 10-8 1.86 X 10-"
10 200 77.91 3.61 X 10-16 --, 10-88
10 400 137.0 3.66 X 10-" ---, 10-176

Likewise, the right member of (29) comes from using (26) for only
dark current where the counts usually fall below the threshold F and
an error is made only if they exceed it. We immediately obtain from
(29)

=P-1rt
4Aai V4Aao

(30)

where, again, Ao is not to be too small, for example, Ao > 2. In the
above, we have in mind, from (8), taking Al = A1, -I- .A0 where /138 is
due to signal alone.

For future comparisons, we should inject at this point the fact that
the best detection probability one can obtain with no dark current
(or no gaussian noise) is z exp ( -AI.), often referred to as the quantum
limit.

Table I displays values of the right member of (26), for the optimum
F given by (30), i.e., it displays the quantity

CF«/}Q\ 21 VIC) (31)

evaluated for several values of Ao and A18, along with the quantum
limit. Note that only aF enters the expressions, and thus the actual
value of a plays no role in determining the probabilities for this prob-
lem. The fact should also be evident from the scaling properties of
the problem. In real applications, 1/a would be large so that the
electronic circuitry could "see" the pulses above the gaussian noise.

Table I shows (for the parameters shown) about a 7 -dB loss rela-
tive to the quantum limit, owing to the dark current, and also in part
to the random nature of the gain mechanism."

* To be perfectly clear on this point, it is really the additional (random) gain
provided by the avalanche detector that allows one to formulate the physical problem
as in (4) without gaussian noise. However, from a mathematical point of view, once
(4) is written down, the random gains are hypothesis -insensitive, and thus would be
ignored by an optimum detector.
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III. INTEGRATE -AND -DUMP DETECTION -PURE POISSON CASE

We now give a brief discussion for the g = 1 case of (4), namely,
the random variable X is Poisson,

p (X = n) -e-AAnn = 0, 1, 2,  , (32)
n!

EX = A, var X = A2. (33)

The purpose of the remarks will be to shed light on the degradation
suffered when the gn are random, as mentioned at the end of the last
section.

If X is Poisson, then the probability that X is larger than or equal
to k is

ve° eAA n eAAk A A2
= + +...

J.
(34)

nIZ k n ! k ! [1 ± k ± 1 (k + 1) (k + 2)

If, in addition, we assume (k + 1) > A, then a simple consequence of
(34) is that

(1
k+

A

1

\ ekAk
< Pr EX k > A - 1])

1 e-AAk

1 - (A/k + 1) k!

Similarly, for the lower tail we. have

(35)

A k

(1 k e-A
k

!Ak < Pr Ex 5
1k < A] < 1 - (k/ A)

e-A

k ! (36)

Thus, ignoring the weak effects of the coefficient in front, the
optimum threshold F for a problem such as the one described in Sec-
tion II is obtained by equating probabilities such as these in (35) and
(36), yielding

e- A oA = e- A IA c (37)

or, equivalently, the optimum threshold in this case is

A1 - AoF = (38)
In (A 1/A0)

Table II displays the right-hand side of (35) for k given by the
rounded -off values of (38). In particular, we see degradation ranging
from 3.5 to 4 dB compared to the quantum limits given in Table I.
Typically, then, detecting the presence or absence of a single pulse
using random amplitudes, as a linear detector might, results in a 3- to
4 -dB degradation (for the exponential case), compared with an "ideal"
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Table II - Tabulation of error rate and threshold for detection
with constant gain

no Al, Fopt, P, [eq. (35)J

4 100 30.69 1.17 X 10-12
4 200 50.87 6.49 X 10-38
4 400 86.67 2.18 X 10-82

10 100 41.70 4.21 X 10-14
10 200 65.69 9.80 X 10-32
10 400 107.7 3.78 X 10-7'

avalanche detector, which has a large gain but whose distribution is
concentrated at a delta function.

The loss due to "gain jitter" suggests a possible remedy. The
physical pulse gw(t - tn) in the detection circuits following the
avalanche diode should be clearly detectable against the background
noise if gn is sufficiently large ; in particular, if it is something like the
mean gain G. Suppose this is also true for pulse gains g z fG, f < 1.
Now suppose one processed the circuit output of the avalanche diode
by first passing it through a pulse detector that detects pulses of height
greater than fG and generates a pulse of fixed height if a pulse is
detected. The output pulses of this device have fixed gain, which is
beneficial, but, on the other hand, we have lost a fraction 0,

(39)

of light intensity. Seemingly, by a simple scheme we may have still
gained a dB or two in performance. Because of effects such as possible
overlap of two close pulses w(t) and even in the pulse shape of w(t)
itself, the merits of this proposal are hard to assess without further
study. It does appear to be an interesting possibility for a future
detailed investigation.

IV. INTEGRATE -AND -DUMP DETECTION-OTHER AVALANCHE
GAIN DISTRIBUTIONS

Personick6 has considered the physics of a class of real avalanche
detectors in considerable detail and has derived the following implicit
equation for their moment -generating function Mg (s)

= ln M
1

1

k
ln -a)M+a], (40)

" We shall drop the subscript on the MGF M, of the gain variable when we refer to
the particular M, given by (40). Also, the k in this section has nothing to do with
the k in (35) and (36).
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where we have set

M = M(s) = es.p.. (41)
n=1

The parameters k and a are related to the physical properties of these
photon detectors. Since (40) has never been explicitly solved for M(8),
we think it worthwhile to investigate the structure of M(s) implied by
(40) in more detail. In addition to yielding structural properties of
M(8), we shall find that (40) allows us to determine the p. of (41)
exactly.

To begin with, the gain G, given by G = Eg, is

G Eg = -ds M(s)

which, using (40), yields
1 - kG= a - k

From (43) we see that the restrictions

0 < a 1

0 k < a

are to be imposed on the parameters in (40).
When a = 1, (40) gives M = e8, the g = 1 case. When k = 0, (40)

is easily solved to give

0

(42)

(43)

ae8
M(s) = 1 - (1 a)el

(44)

k = 0. (45)

Equation (45) is the MGF of the discrete geometric distribution having
probabilities p. concentrated on the positive integers, where

a
Pn = 1 - a (1 - a)n' n = 1, 2, . (46)

It is reasonable to treat the continuous version of this density, and
that was done in Section II.

In the general case of (40), the variance may be calculated to give

- a)21
var g = [1

(1

- k (47)
1

If higher moments are desired, they can be obtained recursively from
(40). This can be done by expanding M(s) in a power series and equat-
ing like powers in s.

In view of the discussion in Section III, one might prefer the de-
tectors represented by (40) that have small variance. A simple in -

358 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976



vestigation of (47) reveals that, for any a < 1, k = 0 uniquely gives
minimum variance. Since even this minimum variance is large (equal
to the mean), it may well not be a reliable guide.

Returning to the general case represented in (40), it is evident from
the relation

M (s) = eanil _
n=1 r

that the MGF exists for all s 0. However, it does not exist for all
positive s, and, in fact, setting ds/dM = 0 yields a critical value of M
(call it Mc) given by

-M = 1a- a1
k

k

and thus a critical value s, of s given by

1s, = s(Mc) = In 1 -
k
a 1

k

- k In
k
(1'

'

(48)

(49)

beyond which M(s) does not exist. Note that, if b z 0 (and a 1),

the value of the MGF at the critical s is finite. This shows that the far -
tail behavior of the g variable has an exponential -like tail, with damp-
ing factor related to Sc, but in general there is a multiplicative factor,
e.g., an inverse power that allows the MGF to be finite at its critical
value.

If we let .3, - s = 8 > 0, Mc - M(s) = A > 0, and write

sc - s s(M) = s(M, - A) = s(Me) -A ddmsg

1 des± 46,2

2 dM!,
+ ,

Mc
(50)

we obtain, after evaluating the second derivative in (50), that

A ? [3- .fic M (51)

or, equivalently,

M M,[1 - .P Vsc - (52)

thus exhibiting a square -root singularity of M(s) in the neighborhood
of sc. This type of behavior is consistent with a far -tail fall -off of the
"density" of the g variable being given by

exp (-8,g)
const. (53)gi
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Let us now proceed to the exact solution for the pn in (41) when
M(s) is given by (40). We use instead z = exp (s) and write, with a
slight abuse of notation,

M(z) = i znpn. (54)
n=1

Equation (40) becomes, setting M = M(z) when convenient,

M
(55)z= [M(1 - a) + a]li (1-k)

In (55) it is useful to make the substitutions

M(g) = 1

a
a

F[(1 - a)aklu-k)z] (56a)-
u = (1 - a)akio-k)z (56b)

P = 1
1

k
(56c)

to obtain
F

(57)u= [1 + F] '

where F(0) = 0 and F is regarded as an implicit function of u in the
neighborhood of u = 0. Equation (57) is a canonical form for the
Lagrange inversion formula' for obtaining the coefficients c; in the
power series

F = i caui. (58)
J-1

The formula yields, for the present problem,

Or

= 1! \11
dF
d )5-1 (1 ± F)Pli

F=0

CI = 1,
j-2
II (jp-s)
8=0

.i!

(59)

= r[j/(1 - k) + 1]
ru + 1)r[kj/(1 - k) + 2]' i 2. (60)

From (54) and (56), the probabilities p; are then given by

Pi =
1 -a a

[(1 - a)akia-kgc;. (61)

For (k j) large, we have, from Stirling's asymptotic formula for the
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gamma function,

that

r(z + 1) e-zz2+412,r, (62)

1 1 1
as k j 00 .ci

AlTir jp(i - kp--1 yekia-k)); (63)

One can show that the behavior given in (63) is, via (61), in complete
agreement with (49) and (53).

Remarkably, Personick reports that McIntyre,* from special -case
calculations, has conjectured the exact form of (61).

Knowing the p; does, in principle, allow the exact calculation of the
output statistics of the integrate -and -dump filter. The integral equa-
tion (16), appropriately interpreted with sums, provides one such way.
Instead of discussing this, however, we now turn our attention to
bounding techniques. We shall make some remarks directed toward the
Chernoff bound, used by Personick6 for this type of problem.

The Chernoff bound states that, if x has MGF My (s), then the prob-
ability that x is greater than (less than) F obeys

Pr [x > F] < exp (-sF)Mx(s) for any s > 0. (64)
( <) ( <)

One makes the bound as tight as possible by minimizing the right
member of (64) over s. This, of course, assumes that Mx (s) is known or
can be obtained explicitly as a function of s. For the general class of
avalanche diodes for which Personick derives the moment -generating
function, we saw that s is given explicitly as a function of M and, in
fact, an explicit function of M vs s is difficult to obtain analytically.
Personick gets M numerically as a function of s and then proceeds to
optimize with respect to s-a rather tedious procedure. We found from
our experience that a simpler approach is to eliminate s in (64) by
using (40) and then to optimize over M. This optimization still has to
be done numerically. Nevertheless, we could generate curves very
quickly this way. We do not present these curves here, since they do
not reveal more than those which Personick has already published.

For insight concerning the accuracy of the bound for present pur-
poses, we shall apply it below to the problem of exponential gains, for
which we have exact solutions available for comparison.

The function appearing in the right member of (64) is, for the
exponential gain case,

exp (-sF) exp {A[1/(1 - s) - 1]}. (65)

In addition to the cited reference of Personick, other experimental properties of
avalanche photodiodes may be found in Webb, McIntyre, and Conradi (Ref. 8).
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Finding the optimum s is easy in this case, and (64) then yields, for
these optimum s,* sopt = 1 - ArT/7, and, consequently,

P[x > F > A] exp [ - (Aa. - Ark)2]
P[x < F < A] < exp [- (AfX -

From the asymptotic forms of (26) and (28), we see that the Chernoff
bound has given us the "right exponent."

From saddle -point considerations, this would be expected to be
true in this problem for any M9(s); however, it by no means has to be
true in general, where complex variable (saddle -point) techniques must
be resorted to in order to decide the question.

The optimum threshold for single -bit detection that would be ob-
tained by equating the two expressions in (64) (for different A's, of
course) also results in (30). Table III lists the Chernoff upper bounds
to the bit error rate, and these should be compared to the exact answers
shown in Table I. Numerically, the Chernoff bound is off by one to
two orders of magnitude in error rate due to "coefficient effects."
However, even numerically this bound is judged to perform respect-
ably. Also shown in Table III is sopt = a[1 - Ar-A7P], where the gain
(a) effect has been included. For the optimum choice of F, it turns out
that the two choices of sopt (due to two possible A's) are the negative
of each other. Hence, only the positive one is shown in Table III.

If gaussian noise
multiplies the right-hand side of (64) by the appropriate MGF, namely,
(10). Instead of finding the optimum s for this problem, one can use
the sopt that held for the problem without additive noise (any s of
appropriate sign furnishes a bound). The value 0-2 = 104 was used in
further Chernoff bound calculations for the MW(s) given in (41) and
may be found in the article by Personick.6

(66)

V. INTERSYMBOL INTERFERENCE-INTEGRATE-AND-DUMP FILTER

We turn now to the situation where X (t) is given by (2), i.e., a
train of interfering pulses instead of just one of them. Personick has
claimed that h(t) has a gaussian shape in real fibers and, hence, in
practice only a few pulses would be expected to contribute inter -
symbol interference.

It is evident that, if the filter P(t) that processes the output of the
photon detector is always positive, as, for example, for an integrate -
and -dump filter, the presence of intersymbol interference increases

* In setting the derivative equal to zero, one must choose the positive s that satisfies
s < 1, since in the real -variable techniques used here, the MGF of the exponential
does not exist for s 1.
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Table III -Tabulation of Chernoff bound (CB) for error rate,
exponential gain case. Also given are st = a[1 -

for a gain 1/a = 100, and a correction exp [sap, a-2/2]
for a = 10,000. The latter is a correction for

gaussian noise.

Ao Ai, CB [eq. (66)] s,,,, (gain = 100) 4per'exp
2

4 100 5.05 X 10-8 6.72 X 10-3 1.25
4 200 4.16 X 10-" 7.54 X 10-3 1.33
4 400 2.70 X 10-36 8.19 X 10-3 1.40

10 100 1.49 X 10-6 5.37 X 10-3 1.16
10 200 1.16 X 10-" 6.42 X 10-3 1.23
10 400 2.01 X 10-32 7.30 X 10-3 1.31

the counts observed over any interval. Therefore, if a pulse is present,
this intersymbol interference helps detection (helps keep output
greater than the threshold) while, if the pulse is absent and no -counts
is ideal, it hurts. Hence, the worst -case situation is to evaluate the
probability of a one being decoded into a zero when no other pulses
are present, while for the reverse error we assume all pulses are on.

Since we are still considering an integrator, i.e., P (t) = 1, III < r,
we are still to use (6), but now for the two worst cases given we replace
A in (6) by either

A1 = 2rXo f h(t)dt

or

A, = 2rXo + E f h(t - nT)dt.
nO0 -r

(67)

Of course, we assume Ao < Al for any reasonable operating situation.
In addition to the threshold choice, we must also contend with the
optimum choice of r, half the time width of the integration. This
latter step is easily handled numerically.

Many calculations may be done and, for the worst -case situation
described, nothing new is involved in addition to what has already
been discussed. As an illustration, we will deal explicitly with one ex-
ample. We take X o = 0, no avalanche gain (g = 1) , and

=
100

L
-

TI
(68)

where T is the pulse repetition rate. Thus, there is considerable over-
lap from neighboring pulses, but not from others. Also, f h (t)dt = 100,
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Table IV - An intersymbol interference example from Section V

T

T
F Pe Esq. (35)]

0.1 7 7.3 X 10-6
0.2 15 1.5 X 10-6
0.3 25 5.7 X 10-6
0.4 34 1.5 X 10-6
0.5 46 5.1 X 10-6

so the quantum limit for single -pulse detection may be read from
Table I.

Table IV gives the worst -case error rate for the above example,
using formulas (35) and (38) for the Poisson case. The optimum choice
of T here is 0.3, i.e., 30 per cent toward the peak of the neighboring
pulse. Also, a 20 -percent change in the value of T does not change the
error rate drastically. Note that we are not inferring that one should
be careless in the choice of T, because in calculating Table IV the
optimum threshold (F) for each T is assumed. Also, note the large
degradation with respect to the quantum limit caused by the inter -
symbol interference. For the present example, the error rate averaged
over all sequences cannot be much better than shown, because the
worst case occurs with probability /, and hence (P.)., cannot be more
than a factor of 4 better.

VI. AN INTERSYMBOL INTERFERENCE EXAMPLE AND A LOWER
BOUND ON PERFORMANCE

We present now a lower bound on performance which can be readily
evaluated for the intersymbol interference problem of the last section
[pulses given by (68)]. This lower bound is valid for optimum bit
detection and thus sets a limit on how well any detector can do in
coping with intersymbol interference. In particular, the bound sheds
light on the performance in the present situation of suboptimum
schemes such as equalization, which have found such wide application
in voiceband telephone transmission.

The derivation of the lower bound proceeds along lines used by
Mazo9 to generalize Forney's lower bound for optimum bit -by -bit
detection in the gaussian noise. Our approach is to assume that we
are optimally detecting the kth bit in a sequence of (N 1) inde-
pendent bits, i.e., sequences of the form (2) of length (N 1) are
being considered. We suppose an are binary, equiprobable, and inde-
pendent. Let pi (x I i) and po(xli) be the two probability densities of
the received signal under the hypotheses an = 1 or 0, respectively,
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and i denote conditioning on the ith, i = 1, , 2N sequence being
transmitted. Then the probability of error for the optimum detector
is (in somewhat formal notation)

1

1

2N 1 2N

Pe =
1 f dx mill [p pi (x I i), g jE=ipo(xl j)], (69)

t =

which, as in Ref. 9, can be lower -bounded by

P , --.__ -1 P , (binary i, j problem).
2N

(70)

In (70), Pe (binary i, j problem) is the probability of error which
would result for the simple binary problem of distinguishing between
sequence i (one having ak = + 1) from sequence j (one having
ak = 0). The bound (70) holds for all such (i, j) pairs. Finally, (70)
holds if the sequences of length (N + 1) are shortened to N' + 1,
with N being replaced by N' on the right side of (65).

For communication in the Poisson regime, the right member of
(70) has no known evaluation as it does for the gaussian case. What is
known about the binary problem is the optimum detector, which is
linear. The optimum filter P (t) and threshold F are known explicitly
if one is deciding between equiprobable intensity functions Xa(t) and
Xb(t). In fact, from the work of Bar -David,'°

P (t) = in Xa (t) (71)
Xb(t)

and

F = f Xa (t) -f X b (0. (72)

Thus, the set of received impulses is filtered through P (t) and the
resulting output variable X at the end of the observation interval is
compared to the threshold F, choosing Xa (t) if X > F and Xb(t) other-
wise. Assuming Xa (t) is transmitted, the moment -generating function
of X is, from (5) and (71) (recall g = 1 in this section),

M. (s) = exp [ fX0 (t)[exp { s In DI (t)/X0(t)] } - 1 ]dt]

= exp [ f [XL-8(t)X1(t) - X0(t)]dti (73)

From this MGF, one can see why the right side of (70) is not known in
general.

We now apply (73) to the intersymbol interference of the previous
section, where h(t) is given by (68). We choose N = 2, X, (t) to cor-
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respond to the pulse sequence (1, 1, 1) and X b(t) to correspond to the
pulse sequence (1, 0, 1). When applied to (70), we interpret the results
as applying to the center bit of the sequence. We have, explicitly,*

X1(t) = 1 for Iti S 1
X0(t) = It', for I ti 5 1 (74)

= Xo(t) for Iti > 1.

Since, from (71), P(t) = 0 for i tl > 1, the detection interval
t e -1, 1]. Using (74) in (73), the decision variable has MGF

M. (s) = exp [
2

2
s

1] (75)-
Remarkably enough, this is the moment -generating function of the
random variable dealt with in Section II ; in the notation of that sec-
tion, it corresponds to A = 1, a = 2. The density is given by (20),
and the threshold is, from (72) and (74), to be set equal to unity.
Putting this all together, (70) becomes

Pe
4

e-1 e-2x11(2112;)dx. (76)
x

Or, scaling (76) to reinsert the factor of 100 in front of (68),

1 /200 -2x/i(21/200x)dx. (77)
4 J100

So an excellent approximation in the right-hand side of (77) may be
evaluated via (26) to give

Pe > 4(2)1Q(V41) - frz", 5.06 X 10-10. (78)

The numerical value of (78) should be compared with Table IV for
performance with integrate -and -dump filter and Table I for the
quantum limit. Indeed, for this case our bound shows that the optimum
detector performance is still far from the quantum limit and, in fact,
is roughly only 2.2 dB (comparing powers of 10) better than the
integrate -and -dump filter.t The present problem seems to imply that
equalization,t in particular, cannot be expected to approach the
quantum limit bound for the type of distortion found in present optical
fibers. In fact, a simple integrate -and -dump receiver with properly

For the moment, we ignore the factor of 100 in (68) and also set T = 1. These
are reintroduced only in the final numerical calculations.

More precisely, the figure is 2.9 dB for strong signals.
Some references on equalization for optical communication systems are Refs. 1

and 11.

366 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976



chosen threshold compares well with a lower performance bound. The
above problem ignored many practical factors, but in fact ignoring
them focused even more on the pure intersymbol interference problem
in the Poisson regime. It would seem that effects such as dark current
and finite width of w (0 would surely make the integrate -and -dump
and the optimum detector perform even more equally, and it would
seem too much for an equalizer to compensate for gain jitter, which is a
rather nonlinear effect.

Another linear filter P (t), which performs better than the integrate -
and -dump, may be inferred from (71). This is discussed and evaluated
in the appendix for the present problem. This new linear filter has a
worst -case exponent approximately 1 dB better than the integrate -
and -dump situation.

APPENDIX

A New Filter

We have already noted that (asymptotically) the integrate -and -
dump filter performs within 2.9 dB of a lower bound on performance
for the optimum processor for our particular example. We now show
how a modified P (0 can perform within 2 dB of this bound. We
confine ourselves to the worst case again, for which, we recall, the
best integrator had P(t) = 1 for I t i < 0.3 (choosing T = 1). The worst
case with signal present was X 1(0 = 1 - It!, ItI < 1, and Xo = I t i ,

I t I
< 1, for the worst case with signal absent. Now the optimum filter

-P(t) = in 1

I t IItl
, I tl < 1, (79)

which distinguishes between these two signals, is not always positive
(it is negative for I I

> 4). Therefore, if (79) were used, there could
be no claim for a worst -case bound. However, we modify (79) and use

P(t) = In 1 -
t I

I tl

'
I ti < z (80)

instead. The filter represented by (80) is always positive, and therefore
worst -case claims still obtain. The filter (80) clearly has to outperform
our integrate -and -dump one, since the latter integrated only to
ti = 0.3, while (80) is optimum for an observation interval I t 15 0.5.

The optimum threshold for (80) is, from (72),

F = Xi(t)dt -f Xo(t)dt = 2. (81)

Using the Chernoff bound for the case when Xo(t) is sent, we have, from
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(64) and (73),

Pe ,._. exp 1 Xo(t)D8P(t) - 1] - sFI

4

= exp {2f t1-8(1 - t)edt --14- - -.21 } s > 0, (82)
o

where we have used the expression for Xo(t), the filter (80), and thresh-
old (81). If we let u = (1 - t)/t, then we may write

Jo

u8
t,- 8 (1 - t)8 dt = f

1 (1 + u)3
du'

Two integrations by parts give

(83)

ru 1 s s (s - 1) To. s-2

(i+.u)3du= 8 + 4 + 2 J1 1u+ u du, (84)

or, using (84) in (82),

P , < exp [s(s - 1) fi U8-2

1 ± U dd. (85)

Equation (85) makes it evident that the exponent in (82) will be
negative for 0 < s < 1. If we expand the 1/(1 -I- u) part of the inte-
grand in (80) in powers of (1/u) and integrate term by term, the
exponent in (85) becomes

s(s - 1) E (-1)k
k=o k + 2 - s

ce 1= s(s - 1) 7
18=0 (k + 2 - s) (k + 3 - s) (86)

k even

Convergence in (86) can be improved if we write

E = 1 E +1 E -1 E
k even all k k even k odd

and use the fact that

- 1 1

E=,(x ±n)(x + n + 1) - 1 +x
to obtain

s (s - 1) [
2(21-s) + k =

]io (k+2-s)(k+3-s)(k+4 - 8)
(87)

k even

The optimum s is easily found numerically by plotting (87); we
truncated the sum after k = 10. We find the optimum s is about 0.6,
giving a value of (87) of 0.11138. As a check on the possible accuracy
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of our use of (87), we note that our technique gives 0.10696 when
s = 1, for which the exact answer can be shown to be r/8 -
0.10730. Thus, the Chernoff bound is

Pe exp ( -0.111A0)

Ao = Xo(t)dt,
-1

while (73) yields as a lower bound something which behaves ex-
ponentially as

1 iv
2

(88)

4 -I)exp -Ao [
(

2
= exp ( -0.172A0) (89)

The exponent of (88) is 1.9 dB worse than that of (89). Concluding, we
note that (80) has a logarithm singularity at t = 0. Including dark
current in the Xi(t) will remove this, and will also decrease the im-
provement which this kind of filter provides over the integrate -and -
dump filter.
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