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The optical fiber drawing process is considered in its totality-from
source to forming zone to draw -down region and take-up end-as a prob-
lem in fluid dynamics. Fiber drawing of most glasses is dominated by
viscous stresses, surface tension effects, and quenching rates. This con-
trasts with the drawing of textile fibers, where other fluid properties and
non -Newtonian effects can play important roles. Preliminary time -in-
variant "base flow" models are developed for glass drawing, using the one-
dimensional, small -slope approximation of extensional flow. First -order
sensitivities of these base flows to changes in operating conditions are
examined via a stability analysis. Two important instability mechanisms,
denoted as the tensile and capillary modes of dynamic fiber response, are
discussed. Several follow-on objectives arising from this study are described.

I. INTRODUCTION

Stringent tolerances set on optical fibers used in communication
systems have generated a need for understanding the fluid dynamics
of the fiber drawing process. The responses of this process to various
disturbances, especially those resulting in perturbations of the fiber
diameter, are of interest.

For steady-state drawing, one seeks analytic models that interrelate
the draw -down ratio, draw force, flow rate, and some characteristic
temperature. Such models serve two purposes : they predict the effects
of changes in the operating parameters and can therefore be used in
the control of industrial drawing processes ; they also provide a "base
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state" for the theoretical study of dynamic responses. Such responses
could be due to a variety of physical disturbances; for example,
mechanical vibrations, thermal transients, ambient gas flow, and even
acoustic noise. All of these disturbances may produce variations in the
diameter of the finished fiber.

In studying the perturbations of liquid fibers, our philosophy departs
somewhat from the more traditional one of stability analysis in textile
engineering. Textile fiber studies, in general, strive to avoid fiber
rupture and gross distortions of the thread line. (See, for example,
Refs. 1 through 9.) In cases where continuous drawing of textile fibers
is impossible, much emphasis is placed on the prediction and control
of thread length, i.e., the filament lengths attainable between spon-
taneous ruptures.

The drawing of optical fibers takes filament continuity for granted.
However, the ultimate optical application is sensitive to small diame-
tral perturbations, far from rupture. 'Moreover, optical fibers are
usually drawn at higher viscosities and draw forces than textile fibers.
Starting from a much higher melt temperature, the subsequent viscos-
ity increase due to quenching of the glass is much more severe than in
polymers. Also, in its molten state glass is more nearly Newtonian than
most polymers.

Our purpose, then, is to model the mechanisms by which perturba-
tions arise in the glass -drawing process and are frozen into the finished
fibers. Based on this understanding, we hope to control fiber dimensions
within the tolerances imposed by optical considerations (e.g. Ref. 10).

The fluid dynamics of fiber forming involve a source flow, also re-
ferred to as the forming zone, and a draw -down region. The forming
zone is usually characterized by a rapidly contracting flow issuing
from the bottom of a preform, or pulled from an orifice at the bottom
of a crucible (Fig. la). In drawing from preforms, we may distinguish
between a very sharply contracting configuration (Fig. lb), commonly
encountered with laser heating, and a more gradual contraction that
results from furnace heating (Fig. 1c). We include in Fig. ld the case
of an overheated preform, where the forming zone consists essentially
of a liquid drop from which the filament is drawn. The different
forming -zone configurations shown in Fig. 1 can imply fundamental
differences in the flow field, as far as the steady-state and potential
instabilities are concerned. For example, there is some evidence'' to
suggest that the overheated preform, Fig. ld, is capable of self -sus-
tained oscillations at critical draw speeds, whereas, at noncritical
speeds, the liquid reservoir in the pendant drop tends to absorb per-
turbations coming from the take-up end.

The forming zone makes a continuous transition to the draw -down
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Fig. 1-Fiber-drawing methods.

region, where an essential part of the fiber contraction occurs. Typical
draw -down ratios, defined as terminal velocity/source velocity, in this
region run between 10 and 100. Most fiber stability studies place major
emphasis on the draw -down region, because of its physical importance
and mathematical tractability. However, the role of incipient perturba-
tions in the forming zone cannot be ignored. The essential need for
modeling this part of the flow field, if only by numerical simulations,
is obvious. For completeness, we also recognize that a very small
amount of fiber deformation occurs beyond the draw -down region; but
this falls within the visco-elastic rather than the fluid -dynamic regime.

Much of the empirical evidence in textile and glass -fiber drawing'
suggests that fluid dynamics in the draw -down region is governed by
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the so-called Trouton viscosity, a measure of the ability of fluid
filaments to sustain tensile stress as a function of elongational strain
rate. Indeed, if fiber breakage occurs in the draw -down region, it
exhibits the neck -down and cohesive separation reminiscent of tensile
test specimens. Much of the early modeling by Ziabicki12." and sub-
sequent efforts by Pearson,'." Kase," and others are based on this
notion, and for this reason we refer to these analyses as "tensile"
models.

In parallel, and possibly quite independent of the tensile mechanism,
local flow conditions may exist where surface -tension -driven phe-
nomena play a significant role. Such "capillary" responses could occur
at the hot tip of the forming zone, where the viscosity is still quite low
and the filament begins to take shape. Capillary models of filament
response go back to Rayleigh's classical work,'5," with subsequent
extensions and experimental corroboration by, for example, Taylor,'
Tomotika,l'18 and Weber.'"

The present paper serves several purposes : (i) it generates pre-
liminary base -flow models for the draw -down region, using the one-
dimensional, small -slope approximation of elongational flow; (ii) it
makes a preliminary assessment of sensitivities, through differences in
base flow, to changes in operating conditions, such as take-up speed
and quenching profile ; (iii) it presents the tensile and capillary models
of dynamic fiber response as fundamentally distinct mechanisms; it
explores their applicability to different parts of the draw process by
suitable modifications and extensions of existing theories; (iv) it pro-
jects several follow-on efforts aimed at unified models of the steady
and perturbed drawing process, viz. more realistic base -flow models,
including heat transfer and two -dimensionality at the start of the
draw -down region, and transient -response models, which account for
these refinements in the base flow together with possible interactions
between capillary and tensile mechanisms.

II. REVIEW OF EARLIER WORK

In this section, we discuss some of the literature on tensile and
capillary stability analyses of liquid filaments. Table I relates several
key publications and identifies their underlying assumptions and
physical models.

The first comprehensive study of tensile fiber models was undertaken
by Ziabicki et al.1-4,12,13,20 Motivated by the textile engineers' interest
in potential instabilities and fracture mechanisms, the authors reviewed
existing phenomenological evidence on filament "spinning." They

* This traditional terminology, which suggests twisting a fibrous material into
strands, will be avoided henceforth as inappropriate to the drawing of liquid filaments.
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Table 1 - Overview of tensile and capillary fiber models

Tensile models,
physical features
discussed.

Viscosity = 3 µ, inertia,
surface tension,
quenching, finite
draw -down.

Viscosity = 3 g,
stability analyses.

Viscosity = 3 µ,
stability experiments.

Pertinent literature Refs. 1-4, 12, 13, 20:
analysis and experi-
mental corroboration
of relevant physical
factors in base state
and some dynamic
perturbations.

Refs. 5, 14: dynamic
analysis of attenuat-
ing fibers, including
the effects of viscos-
ity perturbations and
different base states.

Refs. 6, 7, 21, 22, 25:
experiments corrob-
orating cyclic and
transient responses of
tensile fiber models.

Capillary models,
physical features
investigated.

Newtonian viscosity
and surface tension.

Inertia and surface
tension.

Newtonian viscosity,
inertia, and surface
tension.

Pertinent literature Ref. 18: cylindrical
filaments neglecting
inertia.

Refs. 17, 18: adaptation
to contracting flows
and quenching effects.

Refs. 16, 19: theory of
inviscid capillary
fluid cylinders.

Refs. 16, 17, 18, 19:
complete theories of
capillary jets. Modifi-
cation for quenching
effects given here.

Note: Numerous authors have conducted experiments over the years to dem-
onstrate instabilities of capillary jets and filaments under isothermal, i.e.,
constant viscosity, conditions.

also cite experimental evidence that when a filament is formed, say
in the wake of a free -falling viscous drop, either a tensile ("cohesive")
fracture or capillary separation may sever the flow.

In Ref. 12, a suitable tensile theory is developed for the prediction of
finite filament lengths, assuming the cross-sectional distribution of
longitudinal velocities to be uniform and the steady-state flow to con-
tract with small slope. Reference 20 accomplishes the same for capillary
effects by an adaptation of Rayleigh's classical theory (as we have
done independently for our own purposes). Ziabicki's subsequent
publications include a thorough evaluation of experimental results,
corroborating his predictions of filament lengths.'

Ziabicki's comprehensive effort was followed by a series of papers
by Pearson and others, aimed predominantly at tensile stability models.
Starting from the simplest possible representation" --an isothermal
filament under constant viscous tension-progressively more elaborate
results were achieved by adding fiber quenching, inertia, surface
tension, and gravity. A physical interpretation of this work, however,
is difficult since the explicit features of diametral perturbation profiles
along the fiber, their time dependence, and their sensitivity to proper-
ties of the base state seem poorly understood. We will return to this in
Section VII. Ziabicki's tensile flow models and the draw -resonances

* Like other Western readers, the author has been somewhat late in fully recogniz-
ing the significance of Ziabicki's work, much of which was initially recorded in Polish
journals. Note, however, Ref. 4 for a more recent, comprehensive account.
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predicted by Pearson et al. were corroborated by several experimen-
ters. We cite the work of Kase"," and Donnelly and Weinberger" as
examples in this area.

As mentioned earlier, the study of surface -tension -driven perturba-
tions contributes another, as yet separate, view of fiber stability which
goes back to Rayleigh's classical work as presented in Refs. 15 and 16.
Rayleigh himself studied several simplified cases : (i) constant viscosity
plus surface tension (no inertia), (ii) inertia plus surface tension (no
viscosity), and (iii) constant viscosity plus inertia plus surface tension.
Each analysis yields an exact solution of the hydrodynamic perturba-
tion equations for an incompressible liquid contained by a cylindrical
boundary with surface tension. Simplifying assumptions are made only
in solving the characteristic equations.

Weber19 showed that exact solutions of the characteristic equation
differ little from Rayleigh's approximation. He also considered the
effect of aerodynamic drag on the perturbed filament. Tomotika"."
extended Rayleigh's model to allow for an ambient viscous fluid that
surrounds the filament and is subjected to a steady elongational flow.

For our own purposes, we need to modify Rayleigh's and Tomotika's
work to reflect not only contraction in the base flow but also the viscos-
ity buildup due to quenching. These are essential features of such
"capillary" models of fiber drawing and are therefore listed explicitly
in Table I. A display of diametral response profiles along the fiber and
their dependence on wavelength and base -flow properties is given for
comparison with tensile stability models.

III. FUNDAMENTAL EQUATIONS AND THE ASSUMPTION OF
ONE-DIMENSIONAL FLOW

Let z = axial coordinate
r = radial coordinate
v = axial velocity component
u = radial velocity component
p = fluid density, assumed constant
0- = surface tension,
i.i = Newtonian viscosity, a function of temperature.

In the cylindrical coordinate system (r, z), the Eulerian equations of
mass and momentum conservation read :

vz ± ur ± lir = 0 (1)

or, 1 a r 1
p[ut + uur + vur] = -Or + -r Tr +

az
- To (2)
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prvt + uvr vv ] = ar. +arr. +1
az ar r Trz) (3)

where Tr, Ts, Try denote stress components. In all other instances, the
subscripts r, z, t denote partial derivatives.

The constitutive relations for an incompressible Newtonian fluid are

aVTs = -p a;

aUTr = -p 211
ar

re = -p 212

( aV aU

where p is the pressure. It is one of the dependent variables, along
with u, v, and the free surface configuration r = a(z, 0. Equations (1)
to (3) have the following boundary conditions:

At z = 0 :
v(r, 0, t) = vo(r, t)
u(r, 0, t) = uo(r, t)

a(0, = ao(t).

At z = L, the take-up position

v(r, L, t) = vL(r, t).

At r = a(z, t): the kinematic condition

as , as= u- -
az at

(4)

together with tangential and normal surface -stress conditions, which
we do not reproduce in detail at this point. (See Appendix A.) Once a
solution of this boundary value problem has been found, the draw
force at any cross-section follows from

a

P(z, t) = 2a701[1 + Oa/ az)91 + 27r I rrilr. (8)
0

In particular, AP (t) = P(L, t) - P(0, t) and, to the extent that the
solution for Ty contains At, p, a, the expression for AP depends on these
fluid properties.

The complete set of governing equations for the fiber drawing
process includes an energy equation from which the temperature dis-
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tribution T(r, z, t) in the draw -down region is determined. This, in
turn, yields ,u as function of position and time. Strictly speaking,
therefore, the heat -transfer equation is coupled to the fluid -dynamic
equations. However, since we give it a separate, detailed treatment
elsewhere, we uncouple it from this preliminary discussion and in-
troduce ii(r, z), for nonisothermal draw -down, as a function presumed
obtainable from some heat transfer model.

The general axisymmetric, free -surface flow problem posed by (1) to
(7) is a formidable one. However, for the purposes of an engineering
analysis and to gain some basic insight, much headway can be made
by taking advantage of the fact that I az 1 = 0(e) << 1 and I u/v I

= 0 (e) << 1 throughout the draw -down region. This "small slope"
assumption expresses the obvious fact that fluid flow in fiber drawing
is essentially one-dimensional. The consequences of this kinematic
feature are developed in Appendix A, taking advantage of the fact that
we are dealing with low -Reynolds -number flow away from regions of
strong relaxation in velocity profile. Specifically, we find :

(i) vr ----- 0, i.e., "plug" flow throughout the draw -down region.
(ii) Tr: cc e(rz, T re)r/a

(iii) u cc evr/a
(iv) Tr = re, uniform over the cross-section
(v) Ts = - a-/a + 3Avg, over the cross-section,

where 3 Ai is the so-called "Trouton" viscosity for extensional
flow in a liquid filament.

These features of one-dimensional flow in the draw -down region sug-
gest that mass and momentum conservation may be expressed con-
veniently in terms of cross-sectional fluxes and stress integrals. Equa-
tions of this kind may be obtained formally by integrating over the
fiber cross-section: eq. (1) for volume conservation and eq. (3) for the
axial momentum balance. Alternatively, we may derive these equations
directly by taking a segment, of length dz, from the tapered axisym-
metric filament as control volume. We obtain for volume conservation

(a2v)z + (a2)e = 0 (9)

and for axial momentum conservation
p(a2v2). + p(a2v), - 3(a2o.). - eras = 0. (10)

For an eventual comparison with the early work of Pearson et al.,
we also record (10) after the terms in p and a have been dropped. We
have the simplified momentum equation

a2,uv, = M(t), (11)
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where M is an arbitrary time function. This equation merely states
that the draw force is uniform along the fiber and varies only with t.

For later reference, the time -independent (i.e., steady-state) versions

of (9) and (10) yield
a2v = const. = Q (12)

and
C = 3a212v. - pQv -I- ag, (13)

where C is a constant of integration, viz. the cross-sectional draw force

reduced by the momentum flux.

IV. STEADY-STATE SOLUTIONS FOR THE DRAWING PROCESS

In this section, we consider solutions of the time-independent
equations (12) and (13). These constitute steady-state representa-
tions of the drawing process which are of interest for two reasons. First,
they model the steady drawing operation and yield some insight into
its controlling parameters, i.e., the dependence of draw force and
draw -down profile on the draw -down ratio, the viscosity profile, fluid

inertia, and surface tension. Second, they provide reference states on
which to build dynamic response models for fiber -stability studies. In
this context, such solutions are often referred to as base flow models.

It is well-known in fluid -dynamic stability theory that detailed
features of the underlying base flow can be quite important to the
predicted dynamic response. Hence, it is necessary that we examine
several base -flow solutions of the drawing process for the physical

features they represent.
Starting from (13), one observes that the first term on the right-hand

side represents the viscous stress effect, the second fluid inertia, and
the third a contribution from surface tension. We assume the following
fiber dimensions and fluid properties at the start of draw -down:

v = 10 cm/s
a = 10-2 cm
v. = 100/s (e.g., Av = 100 cm/s, over Az = 1 cm)

p = 2.5 gm/cm'
a = 200 dyn/cm
µ = 100 poise for soda lime glass

= 1000 poise for fused silica.

Note that the temperature at the interface between forming and draw -

down zone is very dependent on as yet unknown fluid-dynamic and
heat -transfer conditions in the forming zone. Therefore, the assumed
values for µ are rather tenuous. 100 poise probably represents a mini -
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mum for soda lime glass, as might be expected in fiber drawing from
crucibles.

Given these data, the order -of -magnitude relations between terms
in (13) are:

Viscosity Viscous stress Inertia
A (poise) 3A4a2v' (dyn) pQv (dyn)

Surface Tension
era (dyn)

Soda lime glass 100 3 2.5 X 10-2 2
Fused silica 1000 30 2.5 X 10-2 2

Thus, inertia effects amount to barely 1 percent of the viscous term
under the most favorable circumstances, while surface tension can be
important when A is near its minimum. However, physical evidence
suggests rapid quenching of glass fibers in the draw -down region.
Hence, inertia and surface tension effects soon become negligible as the
temperature drops by several hundred degrees over the first few milli-
meters of the draw -down region, causing /A to grow by several orders
of magnitude (see, for example, Ref. 23).

Disregarding, for a moment, the quenching effect that actually
occurs in the draw -down region, we briefly consider an isothermal base
state for two reasons. First, it permits an understanding of secondary
physical effects such as inertia and surface tension, without being
obscured by viscosity changes. Second, in later dynamic response
studies, the isothermal base state serves as a basis of comparison for
the stabilizing effect of the quenching that does occur.

Letting the fluid properties in (13) be independent of z, we consider
flow conditions such that inertia and surface -tension effects can be
viewed as perturbations in relation to the viscous stress. Eliminating
the radius a from (12) and (13) and nondimensionalizing according to

( )= v/vo, = z/L, ( ), =a at. ,

we find
- D* = -We*4 Re1,2, (14)

where vo = v at z = 0, L = length of draw -down region, and D = LC/
3a.,54.40, the nondimensionalized equivalent of C in (13). The inertia
and the surface -tension terms are characterized by a Reynolds number
Re = voLp/31.ioand a Weber number, We = crL/3a0voilo. The elementary
solution for (14) with We = Re = 0 is

Iv o) = etinE

where we have used the boundary conditions

= 1 at r = o
=E at r = 1

and E = vavo is the so-called "draw -down ratio." Note that D = lnE.
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Corrections to this simple base -state solution for small We and Re
can be found by perturbation methods. A first -order approximation
for We <<D and Re <<D is found by substituting (15) into the r.h.s.
of (14):

Alf (1) = exp {/nEi'
2We ,- e-(Irt.E.12)1*

lnE
1) + _Re (et -1.E _ 1)]. (16)
'

Resubstituting this into the right side of (14) for a second iteration,
terms such as exp[erinE], were approximated by power series prior to
quadrature with respect to Then,

r Re We lnE (We + Vie)=
2lnE ' lnE - 2 ' /nE

2Re 4We (4We + I -Re) Z-]}, (17)
lnE ' InE ' InE ' -

where the expression for 3C[a, b, c, d, is recorded in Appendix B.
Numerical results from (17) are best presented in terms of the non -
dimensional radius a/ao = X. According to (12)

X = (18)

This has been plotted in Figs. 2 and 3 for a range of values in We and
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Fig. 2-Perturbation solutions for base -flow profiles with increasing surface tension ;
E= 10, Re = 0.
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Re. These results show a tendency for filament contraction to be de-
layed with increasing surface tension and fluid inertia, a familiar phe-
nomenon from more accurate base -flow models obtained by numerical
methods."

Now let us return to the more realistic case of variable viscosity. We
denote it ,u on (0, where the second factor represents only the dimension-
less dependence on with n(0) = 1. Then (14) becomes

no' - = - We Rex1/2. (19)

Using an inverse approach, we can, for example, assume Re X 0,
We = D = 0 (where D = lnE is no longer true) and = erinE, as in
(15). This yields

Re erinE77 = lnE
(20)

and constitutes an inertia -dominated base flow. Experimental data
suggest that something like an exponential viscosity buildup along the
draw -down region is a fair representation of quenching effects. Note
that for this base -flow model,

e-(in.E/2).r, (21)

which has the disadvantage that x -> 0 for >> 1. To provide a finite
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asymptotic value for x, we may assume a draw -down profile of the
form x = fe-at g with f g = 1, 0 < f, g < 1, and solve for 4/

from (18) and n from (19).
We summarize the three elementary base -flow models obtained so

far with the notation lnE/2 = a:

Unquenched base flow; Re = We = 0:

x = e-ar, = Oat, n = 1. (22)

Quenched base flow; Re 0; We = 0;

0 for r -+ co :

(23)
X = e-at, = e2at, = ear.

Quenched base flow; Re 0; We = 0;

X finite for r --) oo :

X = (fe-at g), = 1/ (fe-ar g)2, n = eat/(fa-at g). (24)

In addition to the inertia -dominated base flows (23) and (24), we can
show that

-1X = fe-at g,
1

= (1 - 2 e-at) = ear (25)

is a solution of the approximate fluid -dynamic and heat -transfer equa-
tions, for small a, if we let Re = We = 0 and assume

1,00(1--T/T0),

where To is the initial temperature and 3 >> 1. This represents a
quenched base flow that is not inertia -dominated, in keeping with some
of the perturbation equations discussed later on. Note that for each of
these base -flow models aa/az = 0 (aao/L). Since a = 0 (1) but ao/L << 1,

this means that I aa/az I << 1 and confirms the basic assumption pro-
viding for one-dimensional flow, as discussed in Section III. Note also
that the viscosity profiles in models (23), (24), and (25), which reflect
a cooling process along the fiber, are connected with the draw -down
profile through the parameter a. This parameter is indicative of the
quenching rate in n, and also controls x', the slope of the draw -down
profile.

The draw -force follows from any of these solutions by the obvious
relation, in dimensional form,

P = 7a2Tz 2a7-cr = irao. (26)

If we neglect a and substitute one of the base flows, we find that P
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depends on ao, vo, plo as well as the draw -down ratio and the quench-
ing rate a; all of which could be expected on physical grounds.

Clearly, we could refine upon the viscosity profiles to be used in
simple base -flow models. Since some experimental temperature profiles
tend to show an exponential decay and the viscosity temperature
relation for many glasses is of the form n ti eiGIT, we might consider
functions of the form

n = r s exp(e2ar).

However, such elaborations result in a loss of mathematical simplicity
and usually lead to equations for 4/ that require numerical integration.
At that point, it seems more appropriate to solve the coupled heat-
transfer/flow problem by numerical means. This has been done and is
documented elsewhere.24

V. PERTURBATION. EQUATIONS FOR TENSILE STABILITY MODELS

In this section, we develop the first -order perturbation equations
necessary for a linear stability analysis of tensile fiber models. Let the
first -order solution of (9), (10), and (11) be denoted

a = a(z)[1 + d(z,
= v(z)D. f.)(z, (27)

= P(Z)[i D(Z, 0],

where a (z), v(z), and v(z) represent radius, velocity, and kinematic
viscosity for a suitable base state, in dimensional form for the time
being, and a, 1), D are dimensionless first -order perturbations of these
quantities.

Substituting (27) into (9), the first -order variation of the continuity
equation reads

1
az + T)

1+ Oz = 0. (28)

Similarly, (10) without the surface -tension term becomes

vf + t2± 2v 1 2v z 2v0. ± 0, (
P v 3v 3v v 3v)

2v- vvz 2v
2 i + a' 2v -v! -

,
- I v3vd v

= -v- (vvvz )1
v (29)

v

and from (11), the momentum equation without inertia terms,

)d2d + + + -vz =o(t
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where we have used a2vv, = Po = const. from (11) and d(t) is a per-
turbation of M(t). Since the examples in later sections use the base
states of Section IV, it is convenient to nondimensionalize the space
and time variables as

= 3
voat

= T
L

(31)

and use the notation

d(
da

) )' d(
dT

)= ( and )' (32)

The specific versions of (28), (29), and (30) now develop as follows.

With the base states (22) or (23), eq. (28) becomes

a' de -23 = 0. (33)

Neglecting inertia in the momentum equation, (22) and (30), for the
unquenched inertialess base state, yields

t -1-1/ = ca(r), (34)

where so is an arbitrary function of T. On the other hand, the momen-
tum equation (29), using the quenched inertia-dominated base state
(23) leads to

t" - 4f) - 4de-2b - 2te-2° = -2P' - 40. (35)

Turning now to the inertialess, quenched base state (25), we revert to
(28) and (30) as basic equations, but reserve the substitution of v and

v. from (25) for a later time.
For some of the examples treated in later sections, it is convenient

to eliminate I) from (34) and (35) by means of (33) and similarly from
(28) and (30) for base state (25). The resulting equations for d are
recorded in Appendix C for later reference.

Conversely, the boundary conditions for some problems demand an
equation in D. This is the case with steady-state responses to changes
in the takeup velocity, which we treat in the next section. If (27) is
used in (12) and we let Q = Q(1 + 4), the first -order variation of that
equation yields

+ t = 4. (36)

Next, consider (13), where we neglect surface tension and perturba-
tions in v. As noted before, the constant C may be interpreted as a
force parameter, carried from the forming zone to the draw -down
region. Taking the first variation of (13), letting C = C(1 + 6), and
eliminating a by means of (36),

v C , v v
Oz -

3v 3Q
v = - 4 (3v

,- (37)
v

-r-
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Nondimensionalizing the base -flow variables in this equation according
to Section IV, we have

Re* v = k (Re*- - -xlIt.-r
n n

,

where

(38)

LC6k -
3agvoilo

Equation (38) is designed to yield changes in the steady-state velocity
profile, 0, as a function of 4 and k, which are perturbations of the volume
flux and force parameter of the base flow.

In summary, this section has developed first -order perturbation
equations based on the continuity and momentum equations of
Section III. The perturbation equations were given in terms of d or 0
as needed for the steady-state and dynamic -response studies to be
pursued in Sections VI and VII.

VI. PERTURBATIONS OF THE BASE FLOW

In this section, we use the time -independent versions of perturbation
equations derived in Section V to display changes in several base -flow
solutions due to shifts in such steady-state parameters as the boundary
values and the viscosity profile along the fiber. Since these parameters
are often accessible to control in real fiber -drawing processes, their
effects on the steady flow are of operational interest. Obviously such
effects could be determined by differencing neighboring base -flow solu-
tions in the control -parameters space; however, exhibiting the changes
(analytically) as first -order perturbations can yield useful insight for
the design of feedback controls.

We start by examining the response of steady state (24) to a change
OL in take-up speed. Substituting the appropriate base -flow expressions
for xi, and n into (38), one has

-3 3- Re -x = ke-3x ± (Re - 2f) -x (39)

where

a= ( ), = a()
ab

s= fe-3 g

and a factor of 1/a has been absorbed in Re and k. The boundary con-
dition for (39) is

We find
vi = OL at 5 = = a. (40)

X2 2f= Vx-Reif - 2( 1k f) \ Re
- - 1) 4 (41)+ /
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with
L 2f kXL

V = [74 + (1 - Re)) o]
yRett +

+ (2 + Re/ f),

where XL = X(zL). Given (41), the corresponding changes in fiber
radius d follow from (36).

Additional features of interest with (41) are v at z = 0 and perturba-
tions of the draw force at either end. Thus,

Do = (0) = V 2(1 1) (R 1)12
(42)

(Re *

For the draw force,

which yields

From this,

and

P = P (1 + 13) = 371-1242vZ,

e2st;

VRe k
13° = 4 -F 2f 2(1 f)

PL = 4 VRe xERe/f
2 (1

kX.1

f)2

the changes in draw force, as function of DL, 4, and k.
The solution (41) is of little more than conceptual value as long as 4

and k are unknown. Recall from (38) that these parameters represent
perturbations in the integration constants of the base -flow solution for
the draw -down region : 4, a change in the volume flux, and k, a change
in the force parameter of the momentum equation. Such changes must,
in general, be expected to enter from the forming zone when the steady
state is altered due to L.

Fortunately, 4 = 0 for drawing from a preform that is fed at a
constant rate. However, the exit flow from a crucible (Fig. la) does
not provide such a simple condition. If operating at a low head in the
reservoir, we would expect the entrance flow into the orifice to be
affected by changes in the take-up speed. In neither case does there
exist an obvious condition for the force parameter k [i.e., é and C, see
eq. (38)].

A theory of the forming zone should be able to relate Do and 250 on
the one hand with 4 and k on the other. Given such relations, these
would combine with (42) and (43) to determine 4 and k in terms of
OL, and hence 0, 4, 13 as functions of Di,. Depending on the different
situations depicted in Fig. 1, the relations of Do, Po vs 4, k in the forming
zone could vary considerably. In some cases, an understanding of the
complex fluid -dynamic and heat -transfer processes of the forming

(43)

(44)
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zone (see Fig. id) would seem essential for a satisfactory representation
of speed -diameter -force relations at the take-up end.

In the remainder of this section, we examine the sensitivity of steady-
state flow in the draw -down region to changes in the viscosity profile.
Such changes can be viewed as consequences of perturbations in the
heat -transfer mechanism. Our primary purpose is to determine re-
sponse amplitudes for 4, the perturbation in draw -down profile, as
functions of Po, an amplitude parameter of the viscosity perturbation.
Once again we encounter the problem of assuming reasonable boundary
conditions at z = 0 without a dynamic model of the forming zone.

We consider two different cases : the draw -down response without
inertia effects imposed on the unquenched, inertialess base state (22),
and the response with inertia effects imposed on the quenched, inertia -
dominated base state (23). In particular, we shall be working with
eqs. (76) and (77) after deletion of the time derivatives.

In both cases, we consider a viscosity perturbation of the form

P = Pobe-78, (45a)

which represents a distribution of arbitrary amplitude and spread,
determined by Do and 7, respectively. A family of such functions is
displayed in Fig. 4 for 1 S y < 6. Note that for a given value of -y

v 1- _
DOmax 'Ye '

(45b)

the peak viscosity perturbation, normalized w.r.t. Po.
Let us consider various boundary conditions that may be applicable

to solutions of this problem. If we assume that the fiber is drawn from
a preform with constant feed and take-up conditions, an obvious
boundary condition is

ti(h) = 0. (46a)

In view of 4 = 0, it seems reasonable to assume that the forming zone
will respond with p (o) = 0. 0'(0) can be eliminated from these two
conditions to yield

a' (0)
a' (0) 4(0) = 0. (46b)

a(0)

If three boundary conditions are needed, we take

4(0) = 0, (46c)

and then, according to (46b), also d' (0) = 0. Finally, for a fourth con-
dition, let

d'(2fL) = 0, (46d)

which implies that p(21L) = 0, i.e., no perturbation of the draw force
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Fig. 4-Profiles of the viscosity perturbation, y/v,, = $e la.

1.400

occurs at the take-up end. Conditions (46) will be invoked as necessary
with increasing order of the perturbation equations.

We start by considering the inertialess perturbation eq. (77). We
have

a= - Do
e -( 1 20)

'Y

(47)

Results from (47) have been plotted in Fig. 5 to represent the effect
of viscosity perturbations on the unquenched base state. Note the non -
monotonic evolution of these curves with increasing 7.

Next, we examine the corresponding results, including effects of fluid
inertia. Integrating (76) after deletion of the time derivatives, the
quenched inertia -dominated base state (23) leads to

a"'+ 2d" - 4d' - 8d = 0" + 40' + 40 + C. (48)

C is a constant of integration.
Substituting (45) into (48), we obtain

DOd(z) =
(-y + 2) (b -I- +1 2 ) e-76

Bie" + (B2 + Baa)e-" + B4. (49)
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Fig. 5-Draw-down response to the viscosity perturbations of Fig. 4, without
fluid inertia, for unquenched base flow.

Figure 6 shows (49), the effect of viscosity perturbations on the
quenched, inertia -dominated base state, over the range 1 5 -y S 6.
Note that the presence of quenching significantly alters the evolution
of response curves in Fig. 6, which becomes monotonic with y. Typical
amplitudes in this case are about one-half to one-third as large as for
the unquenched base flow (Fig. 5).

The main inference to be drawn from a comparison of Figs. 5 and 6
is that typical peak amplitudes for 4/D0 are reduced significantly due
to fluid inertia and quenching.

By way of specific example, we consider results for y = 3.5:

1.200 1.400

Maximum for viscosity perturbation (Fig. 4) = 0.110

Maximum for response without inertia on
unquenched base state (Fig. 5) 4/00 = 0.018

Maximum for response with inertia on
quenched base state (Fig. 6) 4/Do = 0.005

The latter case, which represents the more realistic model, also predicts
the lower response amplitudes. Thus, for example, a 10 -percent de-
parture from the nominal viscosity profile would cause only a 0.5 -
percent departure from the draw -down profile.
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In summary, the first -order results given in this section yield a
qualitative indication of base flow responses to time -invariant changes
of the boundary conditions and of the viscosity profile. As stated in
Section IV, a more satisfactory treatment of viscosity effects may be
achieved by numerical integration of the base -flow equations, which
introduce heat -transfer perturbations through the energy equation.
However, the question of realistic interface conditions between the
drawn -down region and forming zone remains open until the latter is
included in our model.

VII. THE DYNAMIC RESPONSE OF TENSILE FIBER MODELS

We turn now to the dynamic response of tensile fiber models for the
unquenched and quenched base flows; i.e., we address solutions of the
equations in Appendix C, including the time-dependent terms. Un-
fortunately, the formulation allowing for fluid inertia, eq. (76), does
not lend itself to a simple solution. We therefore seek what preliminary
insight can be gained from solutions obtainable with (77) and (78),
i.e., by neglecting inertia in the perturbation equations.

Starting with (77), which represents perturbations of the un-
quenched base flow, the operator on the left -hand -side suggests a gen-
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Fig. 7-Tensile fiber model : frequency response of surface perturbation at 3z, = 2
for base state [eq. (22)].

eral solution of traveling waveform

= + (50)
and

=
J

f(z + ie-")da CT), (51)

where (1)(T) is an arbitrary time function. This solution may be used
to represent radial excitations at the source or take-up end or to satisfy
boundary conditions in the presence of a particular solution. In the
former case, where d(0, T) = sin (AT, we reconstruct a solution by
Pearson and Matovitch" of the form

d(3, T) = A1(3) sin cur + A 2(a) cos WT

with the terminal response amplitude

A (co, 2/L) = [A1(0), L) M(co, L)ii

(52)

(53)

This is normalized with respect to do, the amplitude of radial perturba-
tions at 3 = 0, and plotted, for later comparison, in Fig. 7 as a function
of w, for Ili, = 2. It shows a series of response peaks presumably due to
the absence of quenching from the base state (22), used in (77).

These response peaks are commonly referred to in the literature as
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"draw resonances." The author takes exception to this term since it
implies the existence of natural frequencies contingent on the inter-
action of system inertia and some restoring force, neither of which is
obvious in the present model. Nevertheless, experimental evidence con-
firms the occurrence of highly amplified responses near some of the
"critical" frequencies predicted by Pearson's model. Typical radial
perturbation profiles for a' (3, 7-) are shown in Fig. 8 for w = 100, at
T = 0, the start of a period, and T = 0.25, its quarter-point. They
illustrate the spatial amplification of surface perturbations occurring

along the draw path.
Since the direct physical realization of radial perturbations at

0 may be difficult, we now examine the effect of viscosity perturba-
tions that are convected along the fiber as a consequence of fluctuations
in the heat source; i.e.,

= g (T e-23) .

Substitution into (77) yields the inhomogeneous equation

+ eh (Tio ) = (7. +

(54i

(55)

where the dot is also used to designate differentiation with respect to

40
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Fig. 8a-Surface perturbation for base state [eq. (22)] with co = 100, = 2,
at T = 0.
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Fig. 8b-4 at T = 0.25.

the compound space-time argument. If we substitute
= h(7 le-2b)e-23,

this leads to h = -id; hence, the particular solution
= =

1.6 1.8 2.0

(56)

This suggests that any space-time history of viscosity changes given
in the form (54) translates into changes of fiber radius by the factor
-1. It is a traveling -wave type of response only in the sense that it is
convected with the moving fluid.*

To take a specific example, consider a periodic viscosity perturba-
tion, as would be caused by misalignment of the rotating laser beam
used in heating the preform,

0 = sin co(r + 77), (57)

The negative sign may appear surprising at first. One notes, however, from the
continuity equation (33) written as

(6-22'a/or + a/a b)(1. =
that a of the form g(r + le -28) leads to t"/ = 0. This means that such a form of radial
perturbation can travel with the flowing fiber without perturbing the local velocity.
Further, if a constant draw force is to be maintained, the expression

P / p = ra2vvi

shows that, with v' unperturbed, an increase in v requires a decrease in a of half this
magnitude.
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where 77 = le -23, yielding the particular solution

= - sin wr COS w, - 2 COS WT sin W7). (58)

The boundary conditions to be satisfied with the help of (51) are then

0(0, = 0, Oa L, 7-) = 0,
a(0, r) = sin co (r

In this case, the perturbations are driven only by the variations in
viscosity.

An appropriate form for f is

f 7) = f i cos (4(7 n) - f2 sin co(T n) (60)

so that

(59)

ad (a, r) = i(fi cos WT /2 sin cor)Ni3:42
- (fl sin WT 12 cos WT)ESij::(72 Cb(r), (61)

where
.12 cos w

= dw

.
[SiI(2 =/2

sin w
dw

and f i, 12 are integration constants. After determining cla (7), f i, and
12 to satisfy (59), once again a solution of the form (52) is obtained,
where A1 and A2 are recorded in Appendix D. It is interesting to note
that A (w, aid) for this case, if normalized in terms of Po and plotted as
in Fig. 7 shows exactly the same response spectrum, but with half the
amplitudes. Moreover, the profiles of radial perturbations along the
fiber for this case strongly resemble the ones obtained for radial excita-
tion at a = 0 (Fig. 8).

The sharp response peaks given by the above solutions at certain
frequencies reflect the absence of quenching in the base flow (22). In
search of some allowance for quenching effects, we consider two ad hoc

modifications of the tensile fiber model: the base flow (25), which
includes moderate quenching together with moderate draw -down, and

base flow (23), which represents quenched, inertia -dominated, exponen-
tial draw -down.

Using eq. (78), which is based on (25), a solution of this perturbation
equation is developed in Appendix D for the case of cyclic perturba-
tions in the starting radius d(0, 7-) = sin WT. The resulting expression
for a q*, r) is recorded in (88). It turns out that the term e--Yr sin WT
exceeds all other contributions to the dynamic response by several
orders of magnitude for all values of w and 7 of interest. Thus, the
perturbation in the fiber radius is merely a shift in the exponential
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draw -down profile of the base state, whose spatial variation is inde-
pendent of w and characterized by y, the quenching parameter of the
base -flow viscosity profile v = voet. This perturbation oscillates in
time with constant phase along the entire draw path. Typical profiles
of 4 are shown in Fig. 9, again for T = 0, the start of a period, and
T = 0.25, its quarter -point. A contribution from the nonexponential
components in 4 (-, 7-) is only seen at T = 0, the zero -crossing of its
sin CO T term. These profiles show none of the spatial amplification evi-
dent in Fig. 8, which confirms, at least qualitatively, the attenuating
effect of the quenching process. Unfortunately, a limiting comparison
between the two models is not possible as the quenching effect is made
to vanish, since that also requires a vanishing of the draw -down in base
state (25).

If the quenched, inertia -dominated base flow (23) is employed in
the inertialess perturbation equation (30), the resulting model is indeed
subject to criticism as logically inconsistent. However, as a plausibility
argument, we might suggest that inclusion of inertia in the base flow
would at least give a qualitative indication of changes to be expected
from a more complete allowance for inertia effects. The formal exercise,
starting from (23) and (30), closely resembles the derivation of (79).
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Fig. 9a-Surface perturbation for base state [eq. (25)] with g = 0.75, w = 20,
y= 2, at T = 0.
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The resulting frequency response functions evolve quite clearly from
curves such as Fig. 7 with considerable smoothing of peaks and valleys.
This suppression of the response peaks, due to quenching, certainly
agrees with experimental evidence.

The main point to be made in this preliminary assessment of tensile
fiber models is that their frequency response curves and surface per-
turbation profiles bear little resemblance to the perturbations caused by
surface tension, which we discuss in the next section. To generate
more realistic response predictions for tensile fiber models, including
inertia effects and heat transfer, we will have to resort to numerical
means.

VIII. THE DYNAMIC RESPONSE OF CAPILLARY FIBER MODELS

We next inquire under what circumstances the well-known phe-
nomena of surface -tension -driven perturbations on liquid filaments
apply in the fiber -drawing problem. Indeed, there may be limited
portions of the draw path, presumably near the hot tip of the forming
zone, where the viscosity drops low enough for surface tension to be-
come significant. At least for low -melting glasses, such as soda lime,
this is a possibility, as born out by the comparison of essential terms in
the base -flow equations of Section IV. We shall characterize this type
of fluid -dynamic behavior as capillary fiber models. As we shall see,
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their spatial response profiles under harmonic radial excitation are
totally different from those of tensile fiber models. By all indications,
these two kinds of filament response are fundamentally distinct phe-
nomena. The ultimate question is to what extent they coexist and
interact in a real fiber -drawing process.

Rayleigh's classical theory of capillary jets is our point of depar-
ture."." It shows that the growth rate of "varicose" perturbations
(axisymmetric harmonic surface modulations) is given by

m=
2/.1a[le2 + 1 -

k2 - 1)

where

(62)

in = real, the rate of growth
a = fiber radius
X = wavelength of the perturbation
k = 271-a/X

/0 and /1 = modified Bessel functions.

The denominator of (62) turns out to be negative for all k..
If this capillary response model is locally applied to a base -flow model

such as (24), assuming that base -state parameters change negligibly
over the wavelength X, we may use it to construct the dynamic re-
sponse along a contracting fiber. Then the evolution of a small surface
disturbance may be synthesized using the stepwise relation between
displacement amplitudes at successive instants of time

un+1 = un an+1 ryzAt)
n

where

(63)

U. and U.+, = peak amplitudes of sinusoidal surface perturbations
at to and t.+1, respectively

a.+1 = stepwise scale factor due to fiber draw -down
an

= m at center of wavelength
= t.+1 - t..

Our response simulation convects the end points of a given perturba-
tive wavelength at their respective speeds, while computing local fiber

* Note that (62) results from a simplification of the characteristic equation,
neglecting inertia effects, which in turn precludes initial conditions on perturbative
velocities. However, it can be shown that the quantitative effect of this approximation
on m is trivial (Ref. 19).
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Fig. 10-Response histories for different values of a.

properties from the base model (24). We use the notation :

x = a/ao
CI = U/Uo,

and

AF = v/vo

a = aao,

g = (s + q)/2a0,

71 = AL/µo

Xo = Xo/ao,
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where s, q, are end points of the perturbative wavelength. The non-
dimensionalized surface tension is assumed to vary as

a = aoe;4;;,

allowing for possible changes along the fiber (small values of j approxi-
mate a linear dependence).

Figure 10 shows a set of response histories in terms of log [0/x] for
g = 0.1, Xo = 100, ao= 0.25, = 0, no = 300, and 0.0008 S a

0.0016, illustrating the build-up to different asymptotic levels as a
function of a.

Figure 11 shows typical profiles of surface perturbations along the
fiber for Xo = 15.7, which corresponds to a frequency of 200 Hz. As
expected, the varicose response consists of sinusoids whose wavelength
is progressively stretched due to fiber draw -down and whose amplitudes
are modulated according to a response history such as given in Fig. 10.
Note that this behavior differs drastically from the tensile fiber re-
sponse of Figs. 8 and 9, which are also driven by radial harmonic
excitation at the origin.

Figure 12 displays asymptotic response amplitudes for a range of
initial wave numbers 271-/X0 and several values of g, the terminal radius
in units of ao for the base flow. For fixed g and ii, the response has a
maximum in the neighborhood of X0 = 50. The low responses at short
wavelengths are due to vanishing of the Rayleigh instability as iq, -) 27
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while for large 4 hence large 2-0, the perturbations encounter a rapid
viscosity build-up along the fiber. Contrast these response curves with
the ones for tensile models, and a fundamental difference is again
apparent.

The influence of the terminal radius g, is illustrated in Fig. 13. As
expected with a in the denominator of (62), increased draw -down
(decreasing g) will enhance terminal perturbations. The second curve
on that figure indicates the effect of 5, the growth rate of surface
tension. Finally Fig. 14 shows the decrease in response with initial
viscosity, no and the increase with rising values of 6-0, the initial surface
tension.

Since the above simulation averages fiber properties over a perturba-
tive wavelength and does not ensure continuity of perturbative surface
velocities between time steps, it seemed appropriate to corroborate it
by a slightly different model, due to Tomotika,"," which is also germane
to our situation. In Tomotika's study, filament contraction is effected
by a surrounding medium subjected to extensional shear flow, as in
some of Taylor's experiments.' This apparent difference in base flow
and the need to let ambient viscosity approach zero for our purposes
seems to limit the applicability of Tomotika's model to the fiber -
drawing problem. However, as we shall see, it agrees quite well with
our adaptation of Rayleigh's theory.

OPTICAL FIBER DRAWING 1041



8

37
to

(0
0
-J

8

7

6

5

4

3

2

i

0

0.1 0.2

ii
0.3 0.4 0.5 0.6

1

NOTE: STANDARD CASE IS

-&= 0.001

)70 = 100

g = 0.1

13= 0

iio = 0.25

no = 300

UNLESS VARIED AS SHOWN

--- LOG [U/X].. VS a

LOG 11.//X1 .... VS g "--

1 I I I I I I I I I I

0.10 0.15

g

Fig. 13-Amplification factor vs g and ja

0.20

Tomotika finds the following asymptotic expression for interface
perturbations as a function of several model parameters:

log [(//x]. = inlet j'io 7/.(k)dk, (64)
0

where

E = ratio of filament to ambient viscosity
k = 27ra/X = local wave number of the perturbation
er = nondimensionalized surface tension

igie) = a kernel that is detailed in the references.
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The behavior of this expression is illustrated in Fig. 15 by plotting
it against leo for various values of . These plots show that, in the
absence of quenching, the stabilizing effect of ambient shear flow
diminishes steadily with ambient viscosity while the maximum response
shifts to higher frequencies. This behavior is altered significantly if
exponential changes of filament viscosity and surface tension are in-
troduced to represent quenching effects, similar to our modification of
Rayleigh's analysis. Equation (64) then changes to
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Fig. 15-Amplification factor vs rco for E -, co (Tomotika's model with constant
viscosity and surface tension).

where

- RI- ) 1 - gr
and gi (k) is another kernel detailed in the references. Plots of this
expression in Fig. 16 show good agreement with Fig. 12 for large E
(and g = 0.1). Plots of (65) for t = 106 and various values of the
terminal base flow radius are given in Fig. 17. They show the same
response of U/x]. for g 0 as Fig. 13.

In summary, these results indicate that the two capillary models of
quenched fiber responses, obtained by modifying Rayleigh's and
Tomotika's analyses, are essentially equivalent. Note again that none
of the response curves, such as Fig. 17, bear any resemblance to those
of tensile fiber models.

An additional piece of insight into capillary response mechanisms
comes from Weber's work." He reproduces Rayleigh's analysis by a
somewhat different approach and obtains an exact equation for in, as
well as a simplified expression that agrees with (62). Weber shows that
the small errors in (62) are essentially due to the neglect of radial
components of the flow field. He demonstrates this conclusively by
rederiving (62) from a one-dimensional representation (recorded in
Appendix E) which captures all salient features of the capillary re -
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Fig. 17-Amplification factor vs Teo for er = 0.001, t = 106, and 0.005 5 g 5 0.20
(modification of Tomotika's analysis for quenched base state).
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Fig. 18-Comparison of capillary and tensile instabilities.

sponse mechanism. Thus, multidimensionality is not the criterion that
distinguishes capillary from tensile response models. The fundamental
difference seems rather to lie in the energy source from which the
perturbations are fed : surface tension in one case and axial stress in
the other.

Figure 18 attempts to emphasize this distinction in a pictorial
fashion : (1) In the capillary model, surface tension, by overcoming
viscous stresses, tends to accumulate fluid from both directions into
periodic "beads," ultimately pinching off individual droplets as the
minimum energy configuration. A multiplicity of such separations can
occur independently of each other, and the essential physical mecha-
nism is equally as valid for stationary, uniform filaments as it is for
contracting base flows. (ii) In the tensile model, on the other hand,
the "worst" among random localized constrictions, due to surface
perturbations, causes a tensile stress concentration which further
reduces the cross-sectional area and results in a single, "run -away"
tensile separation. This is the familiar necking of any tensile test
specimen. The tensile stress associated with draw -down in the base
flow is an essential prerequisite for this mechanism. Surface tension
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will indeed contribute to tensile resistance in the necked down section,
but it does not fundamentally alter the separation process.

Thus, the capillary mechanism is a contest between surface tension
and viscosity, independent of filament draw -down, whereas in the
tensile mechanism the viscous stresses, jointly with surface tension,
attempt to resist the draw force.

IX. SUMMARY AND CONCLUSIONS

Several important observations result from the discussions in the
preceding sections.

(i) Optical fiber drawing differs from textile fiber "spinning" in
several essential ways. The flow of glass in the forming zone
and draw -down region is dominated by viscous stresses.
Inertia and surface tension play secondary roles. (They be-
come noticeable only for the lower -melting glasses and then
only in limited portions of the flow field.) This contrasts with
polymer fiber forming, where, in some instances, viscosities can
be quite low and other effects may be of comparable importance.
Moreover, glass fibers are quenched over a wider range of tem-
peratures than polymer fibers. This, together with the extreme
temperature -dependence of glass viscosities, causes viscosity
profiles along the draw path to rise much more abruptly than in
textile fibers. Finally, and perhaps most importantly, molten
glass can be considered very nearly Newtonian, which is not
true for most polymers. Given the above physical features and
the small -slope assumption of gradual draw -down, we can
justify one-dimensional base states as useful representations of
steady flow in the draw -down region.

(ii) Given a base -flow model, its sensitivity to changes in operating
conditions, such as the take-up speed and temperature profile,
can be estimated by first -order perturbations. It turns out that
the draw -down profile is relatively insensitive to significant
viscosity changes, assuming that interface conditions between
the draw -down region and forming zone have been modeled
correctly. For nontrivial forming zones, e.g., Fig. la, b, or d, it
is difficult to make reasonable assumptions for these conditions.
Since we lack a complete understanding of the forming zone,
but expect its flow field to change with perturbations in the
draw -down region, our results must be considered tentative.

(iii) Fundamental differences exist between the tensile and capillary
models of dynamic fiber response. The tensile mechanism seems
to prevail in most of the draw -down region. For low -melting
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glasses, we conjecture that the capillary model may apply in
the short and very hot transition between forming zone and
draw -down region, where surface tension can sustain perturba-
tions that subsequently propagate by the tensile mechanism.
The interactions of these two phenomena and their relation to
dynamic responses in the forming zone itself are presently not
understood. In the following we amplify each of these points to
some extent.

The base -flow models we supplied in Section IV are admittedly
qualitative. A heat -transfer analysis was circumvented in this pre-
liminary study by assuming exponential viscosity profiles, suggested
by qualitative experimental evidence. Exact solutions of the coupled
one-dimensional momentum and heat -transfer equations are now being
carried out to allow for different kinds of heating in the forming zone
and various cooling mechanisms in the draw -down region. The resulting
simulation will be able to provide more detailed operational trade-offs
between steady drawing parameters. It will also assess the limited in-
fluence of fluid inertia, surface tension, and gravity. Finally, this
modeling effort presents a natural opportunity for experimental cor-
roboration by suitably instrumented steady-state runs, using laser
and/or furnace -heated preforms or crucibles.

As an extension of one-dimensional base -flow models, radial -heat -
transfer mechanisms should be simulated, leading to nonuniform cross-
sectional viscosity distributions at the start of the draw -down region.
These viscosity distributions must be input to a perturbation model of
axisymmetric free surface flow which generates the nonplanar velocity
profiles expected in the transition between forming zone and draw -
down region. Ultimately, the detailed flow fields of forming zones such
as Fig. lb and d may have to be simulated by discretization techniques.
If properly combined, these efforts may, hopefully, result in a unified
base -flow model that properly allows for interactions between the
draw -down region and forming zone in representing steady-state re-
sponses to changes in the control parameters of the draw process.

Finally, as mentioned before, it appears that vastly different fre-
quency response curves and longitudinal profiles of surface perturba-
tions characterize tensile and capillary dynamic responses as fundamen-
tally distinct physical mechanisms. (Note the intuitive distinctions
given at the end of Section VIII.) They do not seem derivable, in proper
relation, from some universal fiber stability analysis. The question is
then, what must be done to develop them into parts of a realistic and
unified dynamic response model.

Since analytic solutions for tensile responses of nontrivial base flows
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in the draw -down region are not possible, numerical solutions by modal
analysis or space-time integration are being attempted. This is ex-
pected to shed further light on the anti -intuitive response profiles ob-
tained from the "inertialess" perturbation equations. Similarly, the
capillary model applied so far to an elementary base flow may be im-
plemented, by numerical means, for conditions representative of the
transition between forming zone and draw -down region. Combining
these extensions of the tensile and capillary response models, it may
be possible to relate dynamic records of thermal or mechanical surface
perturbations coming out of the forming zone to diameter variations in
the finished fiber.
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APPENDIX A

Implications of the Small -Slope Approximation

We briefly sketch the consequences of the small -slope approximation,
I az I << 1 and I u/v I << 1, as they evolve from (1), (2), (3), and (4) by

scaling arguments. Let

V = VOify U = ?LOP; A = MOM P = Pot)

a = aox, r = (tot, z = Lit, and t = L- T.
vo

Then the small -slope assumption amounts to

I ' I = ° ( ) = "< 1 -V 0 L

Substitution of (66) into (4) yields

µovo [ _ poL 270r]
L /leo

Ti =

Tr =

. IL OV 0 _= T.
.Li

Alovo[_poL 2 .uovo
-

L Aovo
--LTr

Aovo [ poL E]._, atiovo _
re = 7, L Teitovo

T" =111°77[IFE + ecd 'T Tr"

(66)

(67)

where poL/movo = 0(1) and will be omitted henceforth. Substituting

OPTICAL FIBER DRAWING 1049



(66) and (67) into (3),

pvoL RFT
(AoL) +

L voao

1 1= (-L 2nal,Or + EtnOl't + 2q01.
Considering the case pv0L/Ao = Re << 1,

0 = 0( -t 27/4,01. + -1 [En ('E + evr) ]E.

Hence,
(Eng't) = 0.

If no constraint is to be imposed on n, we have

1FE = 0
and

Now, from (1),

Trs = µL0 VitiOr = °EE(Ts, Tr) Ten

AFr
µ0I/so/E) = 0voao

and because of (68)

Then,

and

(68)

cot = co/E = (69)

fr = Tg= -
frog = 7/01'11

Ts = 2n4fr.

(70a)

(70b)

L is determined from the normal stress condition at the fiber surface
t = X. In dimensional form,

(aa - a22 - 1)Tr + air. - 2a.rr. -
a(1 aDi

(71)

Substituting (66) and (70) into (71) and dropping terms of 0(?) and
higher, as well as as., one finds

a- -L =
X-

7141 (72)

for all values of where tr = crlihlovoao. With this result, fi from (70a)
becomes

Ts = -
x-

3714/1., (73)

where 3n constitutes the "Trouton" viscosity. (The additional ?Or
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term, augmenting 2nAl/r in (70), originated in Tr of (71). This, in turn,
is due to (pE of (67), the cross-sectional contraction that necessarily ac-
companies the extensional flow of fiber drawing.) We also note from
(72) and (70) that

(1 + n`Ft)E = rre= Tel= 0, (74)

which agrees with the radial equilibrium equation if (66), (68), and
(70) are used in (2) and we let Re << 1.

The tangential surface stress condition at t = X reads

a. (r, - rz) + (1 + a2z) rt. = 0 (75)

and, if rendered dimensionless, has leading terms of 0 () ; hence, it will
be ignored. For completeness, we also note that the kinematic boundary
condition (7), rendered dimensionless and time -invariant, yields

2X1 -

x '

which is the time -invariant continuity equation (9).

APPENDIX B

Second -Order Perturbation Term for the Base -Flow Solution [Eq. (17)]

3C[a, +d+
C+ -2 (1 + d) + L4c3

6 24

lni ER1
d d;)(aerinE_ 2be- nE/2)t)

bz

+ (1 + d) (4(12 e2t1nE 2abeinE12)t e-nE)

e3r1nE a23b 93 (31nE121

- lnE [(a - 2b) (1 d

+ 2ab - (1 + + + +

E+c 1(1 + d) [aF (1nE, + bF (- i2-
a2 lnE ±b2 ,

 -F (21nE, + abF lnE,
2 k 2 ' 2

lnE \-11
E22- [aG(lnE, + bG (-

2 '
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where

and
F(7, 0 =

7
[ - 7)e7t +

G(7, =
7 py

[(i-2 + -21 + -2-9 ) e' - .

APPENDIX C

Differential Equations for First -Order Dynamic Perturbations in the Radius, A

Using (33) to eliminate v from the first -order variations of the
momentum equations, we obtain from (35), which reflects the
quenched, inertia -dominated base state (23) with inertia effects in the
perturbation equation,
d" +da"e-26 24"' - 44"e-221 - 24'ile-4a + 84-e-46

- 44" - 84' = 40' + 40" + o". (76)

From (34), the inertialess momentum equation, and the unquenched,
inertialess base state (22), we obtain

a" + dae-23 = 0'. (77)

Note in (76) and (77) that ( )' = a( )/aa and ( ) = a ( )/ar,
where h = az/ L and 7 = avot/ L. Finally, from (28) and (30), the
inertialess momentum equation with the quenched inertialess base
state (25), we can find

k ± aT) (4, + ad)e-= 2- 0/'
where = v/vo as in (25), = z / L and 7 = tvo/L. In this case,
( = a( )/at.

(78)

APPENDIX D

Detailed Results for Forced Dynamic Responses of the Tensile Fiber Model

The detailed expressions for Al and A2 resulting from (58) and (61)
are

Al = [cos]w(,2 + 4e ((1.131-+1°D X [(-B1 sin co/2 + B2 cos co/2)

X ECi3:0. - (B1 cos co/2 + B2 sin w/2) X DS7:13.31

1 . / (1 -
A2 =

2 Ism1'?2 4(132 133)
X [(BI cos w/2 -I- B2 sin co/2)

X [Cli]://3. + (-B1 sin w/2 + B2 cos w/2) X Vili/MI
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where E = e2bL and

B1 = [Ci + Si + cos
2 e

TV 2
w/2e
w/2

(79)

B2
CO[Si Ci= - - ± sin1/2.

Recall that 3 = az/L.

We now parallel the development of Section VII for the quenched
base flow (25). Equation (78) with 0 -.-- 0 suggests a solution of the form

cr, r) = Re

where

1
fo Jot exPEce(r - i")3 exPEico (7- - ow

.

+ (Do exp(i., - ar) I ,

Jot'
de

E = Jo W*) '
fo = 11 + if2, (Do = 4)1 + 42. (80)

Explicitly,

where
64, r) = A1 sin COT + A2 cos 0)7,

A1(/') =
J

r
eaw-r) (ii sin w - f2 cos wE)dr' - che-ar,

0

Aa) = 1 r
each-oul cos 0.,t + 12 sin cot)dr' + 430-ar,

o

describing the t' -dependent phase and amplitude of the response. Note
that r = z/L and r = tvo/L, whereas in (79) 3 = at' and r = avot/L.

We use the same boundary conditions as in developing (52). For
cyclic radial perturbations at t = 0,

4(0, 7) = sin COT, (82)

together with the velocity conditions

0(0, 7) .------ 0 0(1, 7) = 0.

An expression for 0 is obtained by eliminating 0' from (28) and (30)

2 2v
i',

v'
= - d' + -T 6,' - 24 ± 2G(7),

v
(83)

where G(T) is an arbitrary time function and the differentiation symbols
mean ( ). = a( )/dr, ( )' = a( )/al-. Substituting (81) into (83)
we find

D(;', 7-) = VI sin cor + V2 cos COT
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with

2
V1(J) - ,co t- ea (r -t) (fi cos cot + f2 sin (40dr

Ili o

- 2 fr eaw-t) (fl sin wE - /2 cos cot)dt-'
o

liP+ 2e-ar [(
11

a + 1)
4)2

-%il 431]

+-24 (11 sin cot - /2

V2(r) = 2co

J sin
.,

wE - f2 cos 04)dr
IP o

cos cot) + 2G1

- 2 rt ea (r-r)(fi cos wE + f2 sin cot)dr
0

-2e-at[4)2+(a+ 1) (1)]
21,1/

+ --F (A cos wE + f2 sin (.4) + 2G2. (84)
lk

Ultimately, (82) leads to

431 = 0, 432= -1
11 = (B1C1 + B2C2)/(Bi + BD

+
1,1,0

--; (a + /2 wEo wEo)

12 = (f1132 - C2)/B1

G2 = - --, (CO + 11 cos wEo + f2 sin 6),
00

where

B1 = -w-, H(1) - K(1) ± Il, cos cuEl - 1
4,1 01

B2 = -
ii

K(1) - H(1) -I- 1 sin wEi

C1 = --'', - 1--1, 6-ci
01

C2 = U a ± 1) e -a -,770; - 1.

The subscripts 0, 1 denote evaluation at r = 0, 1 respectively, and the
quantities H, K are defined as

(85)

H(r) = i r
east' -t) sin wEdri

0

K (t
r

) = 1 ea (r -r) cos wtdr.
o
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With this notation, we ultimately get

CI', 7) = Efi1-1(1) - f21( (0 -I- e -at] sin COT
+ EfiK (0 + f2H(c)3 cos wr. (88)

APPENDIX E

Weber's Derivation of the Capillary Stability Equation

This appendix gives a simplified derivation of the stability equation
for the capillary fiber model based on assumptions that are quite
equivalent to those made for the one-dimensional tensile model. In
fact, the rationale used here closely parallels that of Section III.

The analysis proceeds in terms of equilibrium and continuity equa-
tions, which we write in dimensional form for the entire filament cross-
section. The perturbed surface radius becomes a + 6 and a given cross-
sectional element is displaced by vdt along the fiber over the time
increment dl. The radius of this element now becomes

a asa + 6 + at dt + a-zvdt. (89)

Since the last term is of higher order, it will be neglected.
The constitutive relations are as in (4) and the derivation of an ex-

pression for r: is quite similar to Appendix A. The main difference arises
in the radial stress boundary condition, where, in distinction from the
treatment of (72), the longitudinal curvature term cannot be neglected
for varicose perturbations. Then the r.h.s. of (72) becomes

and, instead of (74),
u ( -(612 + a")

Ts = o ( ila + a " ) + 3µv'.

The continuity equation yields

2 i5

a

(90)

(91)

(92)

Now, combining (9) and (10),

'Is = 0 + pvv', (93)

where the last term was apparently overlooked by Weber but seems to
have little effect on the resulting stability equation.

Substituting (91) and (92) into (93) and assuming surface perturba-
tions of the form 6 = 6*en" cos kz/ a, leads to the stability equation

(3µ)- am2 + m k2 = (1 _ -rep-rep?.2.
2pa3

(94)
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The unstable root, of interest here, is

m = - (31')/? [ (1.
2pa3 (1 /?)k2 +

(4µ)a4 11 (95)
2pa2 4p2a4
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An Injection -Molded Plastic Connector for
Splicing Optical Cables

By A. H. CHERIN and P. J. RICH
(Manuscript received February 24, 1976)

An injection -molded plastic splice connector for splicing optical cables
has been fabricated and evaluated. Five optical cables containing 90-µm
OD graded -index fibers with 55 -Am core diameters were spliced, yielding
an average splice loss of 0.20 dB for the 425 splice joints measured.
Fifty percent of the losses measured were less than 0.1 dB and 95 percent
of the splice joints had losses less than 0.8 dB.

Assembly methods for splicing optical cables using this connector and
a multiribbon optical -fiber cutting tool capable of cutting 144 fibers simul-
taneously are also described.

I. INTRODUCTION

The feasibility of splicing groups of optical fibers in a laboratory
environment has been demonstrated by a number of investigators.' -5
The next phase in the development of optical -fiber splicing is to pro-
duce splice connectors, based on the concepts that have shown labora-
tory feasibility that are adaptable to field use. A field -adaptable
splicing technique will require that telephone crafts people be able to
splice groups of optical fibers in a routine fashion, with relatively
simple tools, in a hostile field environment.

In this paper, an injection -molded splice connector fabricated using
a mold designed to optimize reproduction of mold dimensions is
described and evaluated. Assembly methods for splicing optical cables
using this connector and a multiribbon optical -fiber cutting tool
capable of cutting 144 fibers simultaneously are also described.

II. DESCRIPTION OF SPLICE CONNECTOR AND PRECISION -MOLDING
TECHNIQUES

A precision metal mold was used to fabricate a 12 -ribbon, multi -
groove substrate with prealigning slots. The molded plastic substrate
which forms the base for the optical cable splice connector is shown
in Fig. 1. It consists of twelve sections. Each section has a prealignment
slot and a set of twelve fiber -alignment grooves spaced 90 Am apart.
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Fig. 1-Precision-molded substrate for 12 X 12 optical -fiber splice connector.

The splice is made by properly seating a precut set of ribbons into
grooves and sliding them together to form a butt joint. A coverplate
is attached to the substrate and matching material is injected through
a slot in the coverplate to complete the splice. The completed splice
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Fig. 2-Histogram of spacing between the internal grooves of metal master.
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Fig. 3-Histogram of spacing between the internal grooves of molded polycarbonate
substrate.

3.7

connector can join two optical cables, each consisting of twelve ribbons
that house twelve 90 -gm OD fibers.

The transverse alignment of the fibers in the grooves of the connector
is a critical parameter in attaining low -loss splices. Tight tolerances
were placed on the center -to -center spacing between the grooves. The
design tolerance for the center -to -center spacing was 3.55 ± 0.05 mils.
Less stringent tolerances were placed on the depth of the grooves.

The metal master was measured in an optical toolmakers micro-
scope to determine how well it was machined. Figure 2 is a histogram
showing the spacing between the internal grooves. The average groove
width was 3.51 mils. Using the metal master in a screw -injection
molding machine, a number of polycarbonate substrates were fabri-
cated under different molding conditions. Samples were randomly
selected from a batch that was molded to replicate the master as
closely as possible. Figure 3 is a histogram showing the spacing between
the internal grooves of the molded polycarbonate substrate. The
average groove width was 3.49 mils compared with 3.51 mils obtained
for the metal master.

Figure 4 is a derived cumulative distribution function of Figs. 2
and 3 showing a comparison of the groove -width dimensions for the
master and plastic part. A very small amount of shrinkage, less than
0.1 mil, appears to have occurred in the plastic substrates. Measure-
ment repeatability in obtaining this data with the toolmakers micro-
scope was ±0.05 mil.
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III. SPLICE CONNECTOR ASSEMBLY TECHNIQUE

The splicing of optical cables requires the integration of a number
of operations including stripping of the cable sheath, ribbon prepara-
tion, removal of the plastic coatings from the fibers, fiber -end prepara-
tion, and, finally, the assembly and protection of the splice connector
itself. Approximately 1 hour and 45 minutes is required to splice two
optical cables consisting of 12 ribbons (each containing 12 fibers)
together with the molded connector. Using current techniques, the
majority of this time (about 1 hour) is spent stripping the ribbons
and assembling them in the fiber organizers. Fiber -end preparation
using the multiribbon cutting tool described in the Appendix requires
about 15 minutes to prepare both ends of the cable. After the 144
fibers have been cut, the organizer is removed from the cutting tool
and clamped to a micropositioner stage in preparation for insertion
into the substrate of the splice connector. As shown in Fig. 5, tapered
prealignment combs allow the ribbons to be lowered into the prealign-
ment slots and grooves of the substrate. A mechanical wiper is attached
to each organizer and is used to massage the fibers to assure that they
are seated properly in their grooves. After the wiping process is com-
pleted, epoxy is used to permanently fix the wipers in place. The splice
is closed by means of an assembly that enables the coverplate to be
tacked in place with extra -fast -setting epoxy. An epoxy index -matching
material is then injected through the slot in the coverplate to com-
plete the splice. To assemble the connector itself requires only 30
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20 - ///
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Fig. 4-Cumulative distribution function of groove widths.

1060 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



COVERPLATE

TAPERED
PREALIGNMENT
COMB

MECHANICAL
WIPERS

Fig. 5-Splice with coverplate epoxied in place showing expanded view of one
ribbon joint.

minutes. Since splicing is a parallel operation, all twelve ribbons are
spliced simultaneously.

IV. EVALUATION OF SPLICE CONNECTOR

Using Corning Glass Works graded -profile 90 -Am OD fibers with
55 -am core diameters, adhesive sandwich ribbons' were made and
formed into short prototype cables for the splicing studies. Following
the procedures outlined in the previous section, five different cable
splices were assembled and measured. Included in the statistics quoted
were all ribbon -to -ribbon splices with twelve fibers present at the
splice joint. When fiber breakage occurred, ribbon -to -ribbon splices
with less than twelve fibers present were included in the statistics if
proper alignment was maintained. Figures 6 and 7 show, for the 425
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Fig. 6 -Histogram of total splice loss data.

splice joints measured, the histogram and derived cumulative distri-
bution function of the total splice loss data taken. The average splice
loss was 0.20 dB with a standard deviation of 0.32 dB. Fifty percent
of the total losses measured were less than 0.1 dB and 95 percent of the
splice joints had losses less than 0.8 dB. Five additional outliers, not
shown in the histogram but included in the statistics, had losses of
1.60, 1.64, 1.79, 2.03, and 2.66 dB. Four of these high -loss splices
occurred in one of the cable splices.

100

90

80

70

60

50 -

40

30 -

20

10

I I I I I I 1 I 1 I I I I 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1 5

SPLICE LOSS IN dB

Fig. 7 -Derived cumulative distribution of total splice loss data.
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To determine the loss in a splice joint, an input beam with a numeri-
cal aperture approximately equal to that of the fiber was used and the
input and output power to the splice joint was measured. This tech-
nique for measuring the loss in a splice joint has been described in
detail in a previous paper.' The detector used in this study consisted
of a United Detector Technology PIN long -line photodiode housed in
a special glycerin -immersed fixture built to accommodate a ribbon
organizer. To maintain accuracy in the splice loss measurements when
measuring large groups of fibers (144 fibers in a linear array), it is
necessary to establish accurate positioning of individual fibers on the
surface of the detector. Variations in the sensitivity, as a function of
position on the active surface of a large area detector, can cause errors
in the measurements which are greater than 0.1 dB.

V. REQUIRED IMPROVEMENTS AND DISCUSSION

To maintain a high splice yield with this method of parallel splicing
of large groups of optical fibers, 12 contiguous fibers must be present.
If fibers are broken in the ribbons during ribbon stripping, fiber
organizing, or end -preparation processes, gross misalignment ( >10 -Am
transverse misalignment) can occur at the splice joint. The small
alignment grooves shown in Fig. 8 do not provide adequate guidance
unless the 12 contiguous fibers are present to force partial alignment
of the fibers in the connector.

-100a-LOCT-

CURRENT DESIGN

ALTERNATE DESIGNS

Fig. 8-Alternate groove depths.
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Typically, two fibers per cable end are broken in the ribbon stripping,
cleaning, and organizing processes. The fiber -end preparation process
yields about 99.7 percent efficiency. Thus, three to five ribbons within
the group of twenty-four ribbons being spliced in a connector have
less than twelve surviving fibers and have the potential for being badly
misaligned.

The development of automated ribbon -stripping techniques and
better fiber -handling methods will improve the yield of this process.
It is very probable, however, that some fibers will break. To prevent
high splice losses in an entire ribbon, if breakage occurs, requires a
redesign of the molded connector. Increasing the alignment groove
depth as shown in the connector designs of Fig. 8 will tend to provide
guidance for individual fibers independent of the ribbon structure.
When guidance of this type is achieved, the breaking of an individual
fiber will not affect the alignment of the remaining fibers in a ribbon,
and splicing performance will be greatly improved.

APPENDIX

A Multiribbon Optical -Fiber Cutting Tool

The production of low -loss splices between optical fibers or the
splicing of groups of optical fibers in the form of fiber ribbons and
cables requires a reliable and convenient method of fiber -end prepa-
ration. Two basic techniques of end preparation have been developed
and are described in the literature. The first, a conventional grinding
and polishing technique, has been used by Miller' and Cherini in the
splicing of optical -fiber cables and ribbons. This technique of end
preparation could be utilized in a controlled environment to prepare
the ends of factory -installed cable connectors.3 The second method of
fiber -end preparation requires the controlled fracturing or breaking of
fibers as developed by Gloge et al.7 A simple cutting tool for preparing
the ends of individual fiber ribbons has been used by Chinn ock et a1.4
and Cherin and Rich1,2 with excellent results. A properly engineered
tool of this type seems well -adapted for use under field conditions.

In this Appendix, we briefly describe the design of a cutting tool
that, operating on the principle described by Gloge et al.,7 is capable
of cutting 12 fiber ribbons (144 fibers) simultaneously. The cutting
tool has been designed to be compatible with the injection -molded
splice connector described in this paper.

A.1 Cuffing tool and ribbon organizer

The fiber -cutting tool, shown in Fig. 9, consists of four basic parts.

(i) A precision diamond -tip -stylus scoring assembly used to create
a crack or origin of fracture on the outer surface of the fibers.
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Fig. 9-Fiber ribbon cutting tool.

(ii) A polished curved surface over which sets of fiber ribbons are
securely clamped. When the fiber ribbons are stressed over this
surface, the stress distribution necessary to form flat hackle -
free ends on the fibers is created.

(iii) Clamps to secure the fiber ribbons during the scoring and
stress -application portions of the cutting process.

(iv) A precision screw, which displaces a clamp and causes the
application of a longitudinal stress within the fibers.

A ribbon organizer is used to hold 12 ribbons in the form of a linear
array. The organizer is clamped to the cutting tool and holds the
fibers securely in place during the cutting process. After the 144 fibers
have been cut, the organizer is removed from the cutting tool and is
ready for insertion into the cable -repair splicing fixture.

A.2 Cuffing experience

To date 52 cable ends have been prepared using the cutting tool.
The nominal cable consisted of 12 ribbons each containing 12 fibers.
Planar ends have been made on 99.67 percent of all the fibers that
have been cut, 7328 out of 7352 (a few of the ribbons had less than
12 fibers within them). Typical fiber ends that were prepared using
the tool are shown in Fig. 10. The total cutting efficiency of the tool
was determined by the number of fibers surviving the entire process
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(a)

(b)

Fig. 10 (a)-Optical ribbon with prepared fiber ends. (b) Typical fiber end.

of clamping, scoring, and tensioning. A total of 7283 fibers success-
fully survived the entire process, yielding a cutting efficiency of
99.06 percent.
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A rationale is advanced for digitally coding speech signals in terms of

sub -bands of the total spectrum. The approach provides a means for
controlling and reducing quantizing noise in the coding. Each sub -band

is quantized with an accuracy (bit allocation) based upon perceptual
criteria. As a result, the quality of the coded signal is improved over that

obtained from a single full -band coding of the total spectrum. In one
implementation, the individual sub -bands are low-pass translated before

coding. In another, "integer -band" sampling is employed to alias the

signal in an advantageous way before coding. Other possibilities extend

to complex demodulation of the sub -bands, and to representing the sub-band

signals in terms of envelopes and phase-derivatives. In all techniques,
adaptive quantization is used for the coding, and a parsimonious allocation
of bits is made across the bands. Computer simulations are made to
demonstrate the signal qualities obtained for codings at 16 and 9.6 kb/s.

I. DIVISION OF SPEECH SPECTRUM INTO SUB -BANDS

For digital transmission a signal must be sampled and quantized.
Quantization is a nonlinear operation and produces distortion products
that are typically broad in spectrum. Because of the characteristics of

the speech spectrum, quantizing distortion is not equally detectable
at all frequencies. Coding the signal in narrower sub -bands offers one
possibility for controlling the distribution of quantizing noise across
the signal spectrum and, hence, for realizing an improvement in

signal quality. In earlier work, splitting of the spectrum by high-pass
and low-pass filtering has been used advantageously for video and

speech transmission.1.2
A question, then, is what design of sub -bands makes sense for

speech coding? A choice based upon perceptual criteria is suggested,

namely, band -partitioning such that each sub -band contributes
equally to the so-called articulation index (AO.' The AI concept is
based upon a nonuniform division of the frequency scale for the speech

spectrum. Twenty nonuniform contiguous bands are derived in which
each elemental band contributes 5 percent to the total AI.
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Appealing to this notion, one partitioning of the frequency range
200 to 3200 Hz into four "equal -contribution" bands is given below
and shown in Fig. 1.

Sub -band
Number

Frequency Range
(Hz)

1 200-700
2 700-1310
3 1310-2020
4 2020-3200

Each sub -band in its original analog form contributes 20 percent to AI.
The total AI, therefore, is 80 percent, which corresponds to a word
intelligibility of approximately 93 percent.4

R. LOW-PASS TRANSLATION OF SUB -BANDS

A straightforward approach to processing the sub -bands is to make
a low-pass translation before coding. This facilitates sampling -rate
reduction and realizes any benefits which might accrue from coding
the low-pass signal.

The low-pass translation can be accomplished in a variety of ways.
One method is shown in Fig. 2. The input speech signal is filtered with
a bandpass filter of width Wn for the nth band. W1, is the lower edge
of the band and Wen is the upper edge of the band. The resulting
signal sn(t) is modulated by a cosine wave, cos (Went), and filtered

0

-10

-20

-30

-40
0

1 2 3 4

1 I I I 1

2

FREQUENCY IN kHz
3 4

Fig. 1-Partitioning of the speech spectrum into four contiguous bands that con-
tribute equally to articulation index. The frequency range is 200 to 3200 Hz.
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Fig. 2-Sequence of operations for low-pass translation of speech sub-bands,
adaptive PCM encoding, transmission, decoding, and band restoration.

by a low-pass filter h n(t) with bandwidth (0 - W.). This filter is
necessary to remove the unwanted signal images above 2W1,,, as
shown in Fig. 2. The resulting signal r,, (t) corresponds to the low-pass
translated version of .s.(t) and can be expressed in the form:

rn(t) = rs.(t) cos (Wint)]*hn(t). (1)

Notice, in this instance, that a constraint is implied by the convolution,
namely, that the passband width W. < 2W1,,, or that W2n 3W1..
Practically this poses no problem.*

The signal rn(t) is sampled at rate 2W,,. If it is already in digital
form, the sampling rate is decimated (reduced) to the rate 2W.. This
signal is digitally encoded and multiplexed with encoded signals from
other channels as shown in Fig. 3. At the receiver the data is demulti-

* For example, this constraint requires that W be increased slightly, from 200 to
233 Hz, for n = 1 in Fig. 1.
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Fig. 3-Four-band encoder using low-pass translation and APCM encoding in each
band.

plexed into separate channels, decoded, and interpolated to give the
estimate 7'n(t) for the nth channel. Reconstruction of the detected
signal is simply done by the reverse band translation. That is, it is
modulated by cos (Went) and bandpass filtered to the original pass-
band, as shown in Fig. 2. The sub -band signal n(t) is then summed
with the other bands to give the full -band signal :§(t).

An alternate implementation of the low-pass translation method,
which avoids the above -mentioned restriction on W,, follows from a
modification of the complex demodulation process. In this approach,
s(t) is complex modulated by eiwne[con = (Win W2n)/2 = center
frequency of band n] and filtered by a low-pass filter (t) with band-
width (0 - W./2). The resulting complex signal an(t) jbn(t),

an(t) = [s(t) cos c nt]*1-1,;(t)

bn(t) = Es(t) sin wntN,:(t)

(2a)

(2b)

corresponds exactly to the output of the phase vocoder.5 The conjugate
of this signal an(t) - jbn(t) corresponds to a modulation of s(t) by

. If the complex signal an(t) jbn(t) is complex modulated by
e-1(wn/2)' and its conjugate complex modulated by e1(Wn12)t, the two
resulting complex signals correspond to the negative and positive
frequency components of the low-pass translated signal r.(t), as shown
in Fig. 4. The sum of these two signals gives a real signal corresponding
to the desired low-pass translated signal rn(t) ; i.e.,

r.(t) = [an(t) + jbn(t)le-1(whi2)= + [an(t) - jbn(t)]e+1(w.12)t, (3)
Or

r n(t) = 2 [a.(t) cos ( t) + bn(t) sin (.1-FV t)] (4)

For reconstruction, it can be shown that an(t) and bn(t) can be re-
covered from the low-pass translated signal r.(t) by the following
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relations
an(t) = Er 7,(t) cos (W 4/2)]*h,;(t)

b.(t) = Ern(t) sin (W.t/2)]*h,;(t).

(5a)

(5b)

Equations (4) and (5) suggest a method of implementation of the
low-pass translation and reconstruction with a phase vocoder. For a
digital implementation of the low-pass translation, this approach is

particularly appealing. For example, at the sampling rate f. = 2W ./2r,
the sequences corresponding to cos (W .t/2) and sin (W .t/2) are 1, 0,

-1, 0, 1, , and 0, 1, 0, -1, 0,  , respectively. Therefore, an effi-

cient way to generate r n(t) is to sample an and b. (or decimate if they
are in digital form) to one half of this sampling rate (i.e., W./2r) and
form r n(t) by interleaving samples of an and b. (with appropriate
sign changes). A similar approach can be used in the reconstruction
process by recognizing that alternate samples of r n(t) cos (W .t/2) and
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2
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Fig. 4-Frequency-domain interpretation of complex demodulation method for
low-pass translation.
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rn(t) sin (W .t/2) (at sampling rate 2W ./27r) are zero valued. Thus,
the two input sequences to the interpolators (which can be sampled
at half of this rate or W./27r) can be generated by selecting alternate
samples of NW (with appropriate sign changes).

A further modification on this approach can be made by noting
that, since adaptive coding is used to encode rn(t), the sign changes
in the construction and separation of r ,i(t) are not necessary. That is,
an alternate sequence rn" (t) can be generated by interleaving samples
of an and bn without sign changes. This sequence can be encoded and
decoded and inputs to the interpolators can be formed from alternate
samples of i',:(t) (without sign changes). Figure 5 shows an implemen-
tation of this method. The signal s(t) is modulated by cos cont and
sin w nt, where co. is the center frequency of band n. These signals are
filtered with low-pass filters h'(t) with bandwidth (0 - W.12). The
outputs are decimated (if they are in digital form) or sampled (if
analog) at a sampling rate W.. The low-pass translated signal rn"(t)
is obtained (at sampling rate 2W.) by interleaving samples of an and

r,;(t) is encoded, transmitted, and decoded as in Fig. 3. On recon-
struction an and bn are recovered by selecting alternate samples of
f.'(t). These signals are then interpolated, filtered, modulated, and

s(t)

(t)

LPF
Fir; (t)

ar,

LPF
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SIN Cont

INTER-
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INTER-
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DECI-
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2

r'n(t)

SIN (-tint

Fig. 5-Implementation of complex demodulation for low-pass translation with
interleaving of samples of an and bn.
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summed as shown in Fig. 5 to give the reconstructed sub -band signal
.§.(t).

For digital implementation h,: can be realized with a digital filter.
Decimation, or sampling -rate reduction by an integer factor M, can be
achieved by retaining only one out of every M samples of the output
of the filter. The filter is necessary to avoid aliasing. Interpolation by
an integer factor M is accomplished by increasing the sampling rate
by filling in M - 1 zero -valued samples between each pair of input
samples. The filter h,: then removes the unwanted harmonic images of
the base -band signal and smooths (i.e., interpolates) these samples to
appropriate values of the base -band waveform. Efficient methods for
implementing digital decimators and interpolators are discussed in
Ref. (6).

III. ENCODING OF THE SUB -BAND SIGNALS

Digital encoding of the low-pass translated signal rn(t) is best
accomplished using adaptive-PCM (APCM).7'8 APCM encoding is preferred
over adaptive -differential PCM (ADPCM) methods in this case due to the
low sample -to -sample correlation of the low -pass -translated, Nyquist-
rated, sampled signals.

For computer simulations, APCM coders based on a one -word step -
size memory were used according to methods proposed by Jayant,
Flanagan, and Cummiskey.7-9 Step -size adaption is achieved accord-
ing to the relation

A, = Ar-1 X M, (6)

where Or is the quantizer step -size used for the rth sample and Ar_i is
the step -size of the (r - 1)th sample. M is a multiplication factor
whose value depends on the quantizer level at the (r - 1)th sample.
For example, in a two-bit quantizer, two magnitude levels and the
sign can be represented. If the smaller magnitude level is used at
time r - 1, M is chosen to have a value M = M1 < 1, and if the larger
magnitude level is chosen, M = M2 > 1 is used. For a three -bit
quantizer, four magnitude levels and the sign can be represented. In
this case, there are four choices for M. Through simulations, appro-
priate values of M for a two-bit quantizer were found to be M1 = 0.845
and M2 = 1.96. For a three -bit quantizer, they are MI = 0.845,
M2 = 1.0, M3 = 1.0, and M4 = 1.4. Note that the three -bit quantizer
does not change its step -size at time r unless the largest or smallest
quantizer level is encountered at time r - 1. The above values of M
are in approximate agreement with values proposed by Jayant7 for
full -band APCM encoding.

DIGITALLY CODED SPEECH 1075



-10

-20

-30

-40
0 2

FREQUENCY IN kHz
3 4

Fig. 6-Partitioning of the speech spectrum into four noncontiguous bands to
achieve reduced bit -rate coding.

IV. SUB -BAND CODING FOR TRANSMISSION AT DATA RATES

The transmission bit rate of the sub -band coder can be reduced into
the range of conventional data speeds by further limiting the sub -
bands in width and tolerating some spectral gaps as shown in Fig. 6.
Carried to excess, the noncontiguous bands produce a reverberant
quality in the signal, such as one gets from comb filtering. In moder-
ation, however, some highly useful compromises can be achieved
between transmission bit rate and quality. The coded bands still
cover a respectable range of the speech spectrum, and provide a
quality considerably better than coding a single full -band signal.

V. INTEGER -BAND SAMPLING AND HARDWARE CONSIDERATIONS

Another attractive alternate implementation of these ideas is to use
"integer -band" sampling to code a signal that is aliased in an advan-
tageous way. The technique is illustrated in Fig. 7.

The signal sub -bands sn(t) are chosen to have a lower cutoff fre-
quency of nif. and an upper cutoff frequency of (m 1)f., where m
is an integer and f is the bandwidth of the nth band. This bandpassed
signal is sampled at 2f, to produce the sampled spectrum shown in
Fig. 7 (for in = 2). The received signal is recovered by decoding and
bandpassing to the original signal band. Typically, values of m from
1 to 3 are most useful for coder applications with lower bands using
values of m = 1 and upper bands using in = 2 or m = 3. This integer -
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band sampling technique achieves the theoretical maximum efficiency
in sampling.°

A very attractive advantage of the integer -band sampling approach
is that it does not require the use of modulators. A slight disadvantage
is that the above restrictions prevent the choice of bands strictly on
the basis of equal contribution to Al. However, little loss in performance
is observed if this equal contribution to Al condition is only approxi-
mate (within a factor of 2). This implementation was used for per-
ceptual comparisons, which will be discussed later.

This approach is especially attractive for implementing the bandpass
filters as charge -coupled -device (ccD) transversal filters. The analog
to discrete -time conversion is inherently accomplished by the CCD
filter with little or no analog prefiltering or post filtering required for
the prevention of aliasing. The initial signal sampling can be con-
veniently high, say 15 kHz, to realize the CCD filter, and the filter
output can be decimated to the 2f. rate for coding. After transmission
and decoding, the 2f. rate can be interpolated to the 15 -kHz rate for
the final bandpass filtering, again by the analog CCD filter.

Another advantage of CCD filters (and also digital filters) is that
the filter cutoff frequencies are inherently normalized to the initial
sampling frequency. Therefore, the sampling frequency and, conse-
quently, the bit rate of the coder, can be varied over a limited range by

s(t)
BP

rr, (t)

DIGITAL CHANNEL

ENCODER

mf TO (m + )f
SAMPLE
AT 2f

I I I

-4f

f
-3f -2f -1f 0 1f

-4f -2f 0

-4f -2f 0

-3f -2f 0

DIGITAL
DECODER

(t)

2f 3f 4f

2f 4f

2f

bIN.J

4f

2f 3f

BP
(t)

mf TO (m + 1)f

AMPLITUDE SPECTRA

BP: mf TO (m + 1)f
(m = 2)

SAMPLE AT 2f

SAMPLED SIGNAL

DESAMPLED SIGNAL

Fig. 7-Integer-band sampling technique for digital encoding of speech sub -bands.
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Table I - Frequencies and sampling rates for the 16-kb/s coder

Sub -band
No .

con

Center(Hz Freq
)

r4 (t)
gSRateamp(sn-')li

Decimation
(From 10 kHz)

Quantization
(Bits)

1

2
3
4

448
967

1591
2482

1250
1429
1667
2500

16
14
12

8

3
3
2
2

varying the master clock frequency. This cannot be achieved with
analog filters.

Present technology is able to provide four 100 -tap CCD transversal
filters on a single integrated -circuit chip or one 200 -tap filter on a
chip with all necessary drivers and control logic.

VI. COMPUTER SIMULATIONS OF SUB -BAND ENCODERS

The sub -band coder has been implemented by computer simulation
for transmission bit rates of approximately 16 kb/s and 9.6 kb/s. The
complex demodulation approach in Fig. 5 was used for low-pass
translation of the bands. An initial sampling rate of 10 kHz was
employed in both cases.

The 16-kb/s coder was implemented with the band center frequencies
and sub -band sampling rates shown in Table I. Bandwidths are equal
to one half of the sampling rates and correspond to those shown in
Fig. 1. Three -bit coders were used in the two lower bands, and two-bit
coders were used for the upper bands. The filters were 125 -tap FIR
filters. As can be observed in Fig. 1, the filters overlap in their transi-
tion bands and give an overall flat frequency response from 200 Hz
to 3100 Hz.

The 9.6-kb/s coder was implemented with the bands given in Table
II and illustrated in Fig. 6. In this case gaps were allowed between
bands. Larger filter orders, 175 -tap (FIR), were used to reduce transition
bands and conserve bandwidth. Only the lower band used a three -bit
coder. Upper bands used 2 -bit coders.

Table II - Frequencies and sampling rates for the 9.6-kb/s coder

Sub -band co.
Freq Sampling Decimation Quantization

No. Center
(Hz) Rate (s-') (From 10 kHz) (Bits)

1 448 800 25 3
2 967 952 21 2
3 1591 1111 18 2
4 2482 1538 13 2
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Illustrations of the signal coded for 16 kb/s and 9.6 kb/s by the
above -band -translation technique are given by the spectrograms of
Figs. 8 and 9, respectively. In each figure, the upper spectrogram
corresponds to the original sentence. The middle spectrogram corre-
sponds to the signal played through the filters, decimators, and interpo-
lators-but without coders. The bottom spectrogram illustrates the
sub -band encoded speech at the designated bit rate.

Other simulations have also been made for encoding the signals
an(t) and bn(t) directly and also for encoding the magnitude and phase
derivative (as in the phase vocoder). Similar quality results were found
in these simulations.

VII. SUBJECTIVE COMPARISONS WITH OTHER ENCODING METHODS

Informal listening tests were made to compare the quality of the
sub -band coder simulations with that of full -band encoding. For the
16-kb/s coder, comparisons were made with 2- and 3 -bit ADPCM. For
the 9.6-kb/s coder, comparisons were made with adaptive delta
modulation (ADM) (i.e., 1 -bit ADPCM). Results for the 16-kb/s coder
comparisons are given in Table III.

Twelve listeners were asked to compare pairs of sentences for signal
quality and indicate which was better. Two speakers were used in the
experiments and sentence pairs were played in a randomly selected
order. Each listener made a total of 16 comparisons in each of the
experiments.

In comparing 16-kb/s sub -band encoding to 16-kb/s (2 bits/sample)
ADPCM, listeners rated the sub -band encoded sentence as having higher
quality in 94 percent of the sentence pairs. When the bit rate of the
ADPCM coder was increased to 24 kb/s (3 bits/sample), they rated the
sub -band encoded sentence as having higher quality in 34 percent
of the sentence pairs. Experiment I demonstrates that the quality of
the 16-kb/s sub -band coder is clearly preferred over that of ADPCM

at the same bit rate. In Experiment II listeners exhibited much
greater indecision, indicating that the quality of the 16-kb/s sub -band
coder is close to that of 24-kb/s ADPCM, but that preference leans
slightly in favor of the ADPCM.

Also included in Table III are signal -to -quantizing -noise ratios
(s/n) measured on the speech signals, averaged for the two speakers
for each of the coding methods. s/n data is not found to be a reliable
indicator of listener preference. This observation is not surprising
and has been previously recognized in the speech coding literature."

A second series of listening experiments compared 9.6-kb/s sub -band
coding with ADM. The sub -band encoder in this case is implemented
with the integer -band method described earlier. The ADM coder is a

DIGITALLY CODED SPEECH 1079



3 2

P
il

;
ii0

00
01 lo

40
0

s, [E
tl

w
Y

lY
i

JI
N

N
W

ar
S

0
0.

2
0.

4
0.

5
0.

8

A
L 

M
O

D
 U

L
A

T
O

R
T

E
S

T

-
S

iC
I

1 1.
0

1.
2

T
IM

E
 IN

 S
E

C
O

N
D

S

1 1.
4

1.
6

1 7.
8

1 2.
0

O
R

IG
IN

A
L

U
N

C
IL

LA
N

T
I Z

E
D

9.
6 

kb
/s

Fi
g.

 8
-S

ou
nd

 s
pe

ct
ro

gr
am

s 
co

m
pa

ri
ng

 o
ri

gi
na

l, 
un

qu
an

tiz
ed

 s
pe

ec
h 

ou
tp

ut
 a

nd
 th

e 
16

-k
b/

s 
ou

tp
ut

 f
ro

m
 th

e 
su

b 
-b

an
d 

co
de

r.



T
H

IS
 IS

A
D

IG
IT

 A
L 

M
O

D
3 2 1 0

I'
a

11
1

)-
2

U 21
1

LL

0

0

11
1%

,

LI
L

A
T

 O
R

I
I

I
I

I
I

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

T
IM

E
 IN

 S
E

C
O

N
D

S

T
E

S
T

I

1.
4

1.
6

1.
8

2.
0

O
R

IG
IN

A
L

U
N

Q
U

A
N

T
IZ

E
D

16
 k

b/
s

Fi
g.

 9
-S

ou
nd

 s
pe

ct
ro

gr
am

s 
co

m
pa

ri
ng

 o
ri

gi
na

l, 
un

qu
an

tiz
ed

 s
pe

ec
h 

ou
tp

ut
 a

nd
 th

e 
9.

6-
kb

/s
 o

ut
pu

t f
ro

m
 th

e 
su

b 
-b

an
d 

co
de

r.



Table III - Comparison of 16-kb/s sub -band coder with ADPCM

Experiment 1: 16-kb/s Sub -band vs 16-kb/s ADPCM

16-kb/s Sub -band
16-kb/s ADPCM (2 Bits)

Listener
Preference (%)

S/N
(dB)

94
6

11.1
10.9

Experiment 2: 16-kb/s Sub -band vs 24-kb/s ADPCM

16-kb/s Sub -band
24-kb/s ADPCM

Listener
Preference (%)

34
66

S/N
(dB)

11.1
14.5

forward step -size transmitting coder shown by Jayantu to have
improved performance over conventional ADM. Table IV shows the
results of these experiments. Three different bit rates, 10.3, 12.9, and
17.2 kb/s, were used for the ADM coder. In the first two experiments,
the 9.6-kb/s sub -band coder was clearly preferred. In the third experi-
ment, there was greater indecision with preference leaning slightly in
favor of the sub -band coder. Note that this is true despite the opposite
ordering of the s/n values! In other words, the perceptual palatability
is not well reflected in the s/ns as has been observed previously.8

Table IV - Comparison of 9.6-kb/s sub -band coder with ADM

Experiment 1: 9.6-kb/s Sub -band vs 10.2-kb/s ADM

9.6-kb/s Sub -band
10.3-kb/s ADM

Listener
Preference (%)

96
4

S/N
(dB)

9.9
8.2

Experiment 2: 9.6-kb/s Sub band vs 12.9-kb/s ADM

9.6-kb/s Sub -band
12.9-kb/s ADM

Listener
Preference (%)

82
18

S/N
(dB)

9.9
9.7

Experiment 3 : 9.6-kb/s Sub band vs 17.2-kb/s ADM

9.6-kb/s Sub -band
17.2-kb/s ADM

Listener
Preference (%)

61
39

S/N
(dB)

9.9
11
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Fig. 10-(a) Relative comparison of quality of 16-kb/s sub -band coding against
ADPCM coding (based on listener preference) for different ADPCM coder bit rates.
(b) Relative comparison of quality of 9.6-kb/s sub -band coding against ADM coding
for different ADM coder bit rates.

Figure 10 summarizes the results of the listener preference tests in
Tables III and IV. Listener preference is plotted against the ADPCM
and ADM coder bit rates. The crossover points of the curves in the two
comparisons determine the point at which the two types of coders
have approximately equal subjective quality. In the first comparison,
the quality of the 16-kb/s sub -band coder is seen to be comparable
to that of 22-kb/s ADPCM; i.e., it has a 6-kb/s advantage over the
ADPCM coder. In the second comparison, the 9.6-kb/s coder has a
subjective quality that is comparable to the 19-kb/s ADM and, there-
fore, has a 9.4-kb/s advantage over ADM.
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It is clear from the listener preference tests that the sub -band
coding technique is considerably better in quality than full -band
ADPCM or ADM coding methods. We have carried this coding down to
7.2 kb/s and find that the quality is only slightly poorer than that at
9.6 kb/s. We have also pressed the coding rate down to 4.8 kb/s and
find that the quality becomes considerably poorer owing to the in-
creased band limiting and gaps between bands.

VIII. CONCLUSION

We have described a method for digitally coding speech in sub -bands
of the total signal spectrum. Partitioning into sub -bands has several
distinct advantages. Bit allocations for quantization of each band can
be made on a perceptually palatable basis. Quantization products in a
given band are confined to that band and do not "spill over" into
adjacent frequency ranges. Selection of sub -band widths can also be
made according to perceptual criteria, namely, for equal contributions
to AI (and hence to signal intelligibility). As a result, the sub -band
coding produces a quality signal that is better than a single full -band
coding at the same total bit rate. The price paid is the band -filtering
and the individual coding.

"Integer -band" sampling is demonstrated to be an economical
and effective method for implementing the sub -band coder. Emerging
technologies in device fabrication (such as ccDs) suggest economical
implementations of the band filtering in terms of analog transversal
filters.

The sub -band coder, implemented by integer band sampling, is

demonstrated for speech transmission at rates of 16, 9.6, and 7.2
kb/s. The latter two transmission rates push down into the data
range and are attractive for "voice -coordination" over data channels.

Informal perceptual experiments demonstrate that the signal
quality of speech coded at 9.6 kb/s by the sub -band method is approxi-
mately equivalent to a 19-kb/s coding of the full -band signal. For a
given transmission bit rate, therefore, the sub -band technique provides
a significant improvement in signal quality. Or alternatively, for a
given signal quality, the sub -band system can provide the transmission
at a significantly reduced bit rate.
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Subjective quality ratings of PCM coded speech were obtained with the
aims of (i) determining the effects of certain coder parameters and their
interactions on speech quality, (ii) finding objective measures for predicting
perceived distortions, and (iii) providing guidelines for optimizing coder
design. Coders with various combinations of four clipping levels, seven
step sizes, four bandwidths, and three logarithmic companding laws were
simulated. The coders were rated for quality on a 10 -point scale by 48
listeners who heard male and female speech processed by the coders.

The ratings depended strongly on clipping level and step size, but only
weakly on bandwidth. None of the coder parameters interacted strongly
with another. Clipping noise power grossly overestimated the extent of
perceived overload distortion; instead, clipping percentage is proposed as
a much more realistic predictor. Signal -to -granular -noise ratio was a
good predictor of perceived granular noise. For a given bit rate, the coder
'with the highest quality rating was 'not the coder with minimum total
clipping and granular noise power, contrary to traditional wisdom.

I. INTRODUCTION

"How does it sound?" This is a fundamental but elusive question
for the engineer designing or evaluating a system for transmitting,
recording, or processing speech signals. If the system is analog, the
engineer has as a guide a substantial body of information about the
interrelated effects on speech quality of such factors as attenuation,
noise, linear and nonlinear distortion, echo, and cross -talk.' With
respect to digital systems, however, the subjective effects of charac-
teristic distortions have been documented to a much smaller extent
and, as a consequence, the quality of an existing system and the
merits of proposed designs are much harder to predict.

One approach to the evaluat on of digital systems is to relate a
digital signal distortion to one of the analog distortions, and to define
digital speech quality as the subjective correlate of the equivalent
analog distortion.2 Although expedient and reasonably accurate for
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certain individual distortions, the value of this approach seems quite
limited in the important situations where several distortions occur
simultaneously.

While the engineering literature contains many reports of subjective
tests of digitally coded speech, most of the tests were undertaken to
provide performance data on the overall distortions produced by
specific coders. Among the exceptions to this approach and more
aligned with the spirit of our work are the experiments reported by
Donaldson and Chan,' O'Neal and Stroh,4 and Yan and Donaldson' in
which individual sources of distortion were identified and the manner
of their interaction investigated. In these studies, the effects of band-
width, predictor network, number of bits per sample and transmission
error rate in PCM (pulse code modulation) and differential PCM systems
were studied. Another design variable, quantizer overload point, was
held fixed although Ref. 5 ends with the suggestion, "A careful study
of the dependence of subjective quality on . . . [overload point] . . .

seems necessary." Our experiment contains a thorough study of the
role of this parameter in PCM.

II. AN OVERVIEW OF THE EXPERIMENT

We used a digital computer to process speech with 208 different
PCM coding schemes whose characteristics span an important range
of bandwidths, number of bits per sample, overload levels, and com-
pression characteristics. Our aims included the study of : (1) the in-
fluence on speech quality of the above design parameters, (ii) objective
measurements that are good predictors of speech quality, and (iii)
optimum combinations of code parameters.

In the experiment, 48 listeners used a 10 -point opinion scale to
provide quality ratings of speech processed by each of the coders.
The speech material consisted of 10 sentences, each spoken by two
females and two males. Our principal conclusions from the analyses
of the data are :

(i) Overload level and quantizing step size were primary deter-
miners of listeners' ratings. Bandwidth was, by comparison, a
secondary determiner of speech quality.

(ii) The traditional objective measurement, overall signal-to-noise
ratio, was not a useful predictor of speech quality. On the other
hand, the percent of samples clipped, P and the signal-to-noise
ratio, Q of the granular quantizing noise were useful and
independent predictors of speech quality. A simple linear
equation

R = aP + bQ + c,
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Fig. 1-Block diagram of major steps in the experiment.
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where a, b, and c are empirically derived constants, was a
good predictor of the quality rating R.

(iii) For a fixed number of bits per sample, the coder with the
highest quality rating was not the coder with the highest
signal-to-noise ratio.

The experiment involved three major steps, as shown in Fig. 1.

The first step was to compile a source speech library consisting of high -
quality recordings of sentences. The second step was to simulate a
variety of coders and noise processes on a computer. The final step was
to process the source speech with the simulated coders and noise
processes in accordance with an overall experimental design and to
obtain subjective quality ratings from listeners.

III. SOURCE -SPEECH LIBRARY

Digital recordings were made of the ten phonetically balanced
sentences listed in Table I as spoken by two females and two males.
The talkers were seated in a sound -proof booth and spoke into a Sony
ECM 22p microphone. The amplified microphone signal was low-pass
filtered at 9.6 kHz, sampled 24,000 times per second, uniformly
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quantized to 12 bits per sample, and written onto digital tape. Each
sample was represented by an integer between -2047 and +2048. For
each talker, the quantizer step size was adjusted manually to use the
full quantizer range without clipping. Once a step size was established
for a talker, the same step size was used for all ten sentences. This
procedure approximately equalized the peak power level of the four
talkers over all sentences. The source -speech library thus consisted of
digital recordings of 40 sentences containing all the speech sounds
spoken by four talkers and approximately equalized for peak power
over talkers.

IV. SIMULATION OF CODERS AND NOISE PROCESSES

A PCM system contains a low-pass presampling filter of bandwidth
W, a sampler that generates 2W equally spaced signal samples per
second, a quantizer operating independently on each sample, and a
low-pass desampling filter of bandwidth W which generates a con-
tinuous waveform from the quantized sequence. In the experiment,
each of these components presampling filter, quantizer, desampling
filter-was simulated on a DDP-224 digital computer. Within the
computer, "analog speech" appeared in the 24,000-samples/second,
12-bits/sample format of the recording scheme, while sampled and
quantized speech appeared with fewer bits and fewer samples.

4.1 Bandlimiting and sampling

The four sampling rates used in the experiment were all integer
submultiples of 24 kilosamples/second : 12, 8, 6, and 4.8 kilosamples/
second and the nominal cutoff frequencies of the associated low-pass
filters were 6, 4, 3, and 2.4 kHz, respectively. The filters, all realized
as finite impulse -response digital filters with integer coefficients, were
designed to meet the requirements listed in Table II, which conform to

Table I - The ten sentences spoken by each of four talkers *

1. A lathe is a big tool.
2. Grab every dish of sugar.
3. An icy wind raked the beach.
4. Her father failed many tests.
5. Joe brought a young girl.
6. The chairman cast three votes.
7. The boy was mute about his task.
8. Beige woodwork never clashes.
9. Both teams started from zero.

10. My cap is off for the judge.

* Each is a simple declarative sentence that can be spoken in approximately two
seconds. The list includes all the phonemes of English in initial, final, and intervocalic
position.
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Table II - Bandlimiting filter specifications

Sampling rate (kilosamples/s) 12 8 6 4.8
Nominal cutoff W kHz (Attenuation at

least 15 dB at f = W) 6 4 3 2.4
Passband edge attenuation within

±0.125 dB 4.5 3 2.25 1.8
Stopband edge attenuation at least 30 dB 7.125 4.75 3.562 2.85

Filter order 21 33 41 51

Oversampling ratio 2 3 4 5

the requirements imposed on channel banks of digital multiplex

systems.

4.2 Interpolation

The digital interpolating filter simulates the desampling filter of a
PCM coder. The latter transforms a sampled signal to a continuous
waveform. In the computer, "continuous waveforms" appear as
samples occurring at the rate of 24,000 per second; to produce them,
an interpolating filter inserts 1, 2, 3, or 4 new samples between each
pair of PCM samples, depending on whether the sampling rate of the
simulated coder is 12, 8, 6, or 4.8 kHz, respectively.

OUTPUT

-A A
INPUT

Fig. 2-Input/output diagram of a quantizer.
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While, in practice, specifications of desampling filters are often
identical to those of presampling filters, we found for our purposes
that a 30 -dB stopband attenuation was insufficient at certain fre-
quencies. Some speech sounds, particularly nasals, with strong low -
frequency components produced audible output tones in the vicinity of
the sampling frequency in desampling. For example, the spectrum of
sound with considerable energy around 200 Hz has images at 5800 Hz
and 6200 Hz when sampled 6000 times per second. Even attenuated
40 dB, these images produced an audible "whistle," which was very
distracting to listeners. In the design of interpolating filters, therefore,
we specified an attenuation of at least 65 dB near the sampling
frequency.

4.3 Quantization

A quantizer is defined by an input/output diagram such as Fig. 2.
To study the subjective effects of quantization, it is appropriate to
formulate this operation as a sequence of four processes as in Fig. 3:
clipping, compression, uniform quantization, and expansion.

Clipping is an inherent part of the quantizing operation. Figure 2

CLIPPING COMPRESSION

x -A
I

A -

Y

-A

I

A
x

Y

Y

4.........

UNIFORM
QUANTIZING

v

i
,

z

EXPANSION

v

q

v

q

Fig. 3-Four processes included in quantization.
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shows that the largest magnitude that can be represented by the
quantizer is A. All samples greater than A result in the same output,
as do all samples less than -A. Hence, the quantizer operates as a
device that first clips the input and then represents with finite reso-
lution all signal samples in the range -A to A.

Compression and expansion (each the inverse of the other) are
nonlinear transformations of the uniform quantizer's analog input
samples and quantized output samples, respectively. Current trends
in communication technology favor the use of segment -compression
characteristics, which are piecewise linear approximations to loga-
rithmic input/output relationships. In the experiment, we simulated
segmented p ,-law quantizers* in which the length of each linear segment
is double, and the slope one-half, that of the previous segment.' The
compression curve in Fig. 3 contains five segments. There are three seg-
ments for positive inputs and three for negative inputs, with the inner-
most positive and negative segments colinear. In the input/output
characteristic, the quantization step size is constant over a segment and
double that of the previous segment. Hence, high-level samples are
quantized more coarsely than low-level samples.

In practice, the number of positive (or negative) segments is a
power of 2 so that the total number of distinct segments can be written
as 2(°+1) - 1. In the experiment, we studied quantizers with c = 0
(uniform quantization), c = 2, and c = 3, which are 1, 7, and 15
segment quantizers with parameter K = 0, 15, and 255, respectively.

We describe the uniform quantizer in Fig. 3 by its step size S which
is equal to the minimum step size of the nonuniform quantizer of Fig. 2.

The entire quantizer is now defined by three parameters : the over-
load level A, the companding number Ai, and the step size S. For
engineering purposes, the most important quantizer parameter is the
number of bits per sample B. Table III shows the dependence of B
on A, and S over the range of parameters appearing in the experi-
ment. While, in engineering studies, quantizers are usually specified by

B, and S or by B, and A, the design and analysis of experiments
such as this one are greatly facilitated by viewing au, A, and S as the
independent variables of a quantizer. The advantages of this point of
view derive from the fact that quality varies monotonically with both
A and S. The relationship of quality to B is considerably more com-
plicated (see Section VIII) and is more readily derived as a combination
of two relatively simple functions than measured directly.

Because the source speech appears in the computer encoded in

* The compressor characteristics are piecewise linear approximations to
z = sgn (y) [log (1 + A ly I) ]/log (1 + A
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Table III - Number of bits as a function of step size
and clipping level

Step size

1

2
4
8

16
32
64

128
256
512

1024
2048

2048

= 0
Clipping level

1024 512 256 128 64 32

12*
11*
10*

9*
8*
7*
6*
5
4
3
2
1

11 10
10 9

9 8
8 7
7 6
6 5
5 4
4 3
3 2
2 1

1

9*
8*
7*
6*
5*
4*
3*
2
1

8*
7*
6*
5*
4*
3*
2*
1

7*
6*
5*
4*
3*
2*
1*

6
5
4
3
2
1

= 15
Clipping level

1920 960 480 240 120 60 30

1 10* 9 8 7* 6* 5* 4
2 9* 8 7 6* 5* 4* 3
4 8* 7 6 5* 4* 3*

Step size 8
16

7*
6*

6 5
5 4

4*
3*

3*

32 5* 4 3
64 4* 3

128 3

= 255
Clipping level

2040 1020 510 255

1 7* 6 5 4*

Step size 2
4

6*
5*

5 4
4

8 4*

* Indicates quantizers used in experiment.

steps of 1 from - 2047 to 2048, A cannot exceed 2048 and S cannot
be less than 1. Hence, for each c, there is an upper limit on the number
of bits per sample that can be simulated. The limit is 12 bits for c = 0,
10 bits for c = 2, and 7 bits for c = 3. Conversely, there is a lower
limit on B because there must be at least one output level for each
positive segment and one for each negative segment in the compression
curve. This implies that the c = 2 quantizer must have at least 3
bits/sample and the c = 3 quantizer at least 4 bits.

After a pilot experiment, we decided to vary S in octave steps.
Table III shows for each companding law the values of S, A, and B
that can be simulated by our procedure. An asterisk indicates a
quantizer used in the experiment. The first column of each matrix
contains quantizers with no clipping. We omitted quantizers in the
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second and third column because the pilot study suggested that the
deterioration in quality associated with the transition from the first
to the fourth column was approximately the same as the deteriorations
in the transition from fourth to fifth, and fifth to sixth columns.

4.4 Noise processes

In addition to speech degraded by the PCM coding process, the ex-
periment included speech distorted by two types of additive noise.
There were four levels of simulated white gaussian noise added to
speech samples; the noise levels were chosen to provide signal-to-noise
ratios around 30, 20, 10, and 0 dB. It was felt that gaussian noise is
similar in character to the granular quantizing noise of a uniform
quantizer (c = 0).

In addition, we included four levels of speech -dependent noise.' To
each sample x,, was added ±px., where p is the noise -to -signal ratio
and the + or - sign is determined by a simulated coin -toss. Thus,
the noise magnitude added to each sample is proportional to the
magnitude of the sample. This type of distortion is similar in character
to the quantizing noise of a companded quantizer in which the noise
magnitude increases in a probabilistic sense with signal magnitude.
The four speech -dependent noise levels provide the signal-to-noise
ratios 30, 20, 10, and 0 dB, where s/n = 20 log (lip) dB.

V. SUBJECTIVE EVALUATION OF TRANSMITTED SPEECH

After all simulations were completed, the source speech was pro-
cessed by the coders and noise processes and the processed speech
written onto digital tape to form a transmitted speech library, as
shown in Fig. 1. When the library was complete, the transmitted
speech was converted from digital to analog and recorded onto audio
tape for subjective evaluation.

Four analog tapes were prepared, each containing one example of
each of the 240 experimental conditions : (52 coders + 8 noise con-
ditions) X 4 bandwidths. The assignment of talkers to conditions
followed a latin square design in a bandwidth by tape -number matrix.
Thus, for a given coder or noise condition, a different talker was
associated with each of the bandwidths on a single tape. Over the four
tapes all 16 talker -bandwidth combinations appeared with each coder
and noise condition. For a given bandwidth, each sentence occurred
6 times and each talker 15 times over the 60 noise and coder conditions.

The 240 conditions on each tape were presented in random order
to 48 students at a local university, who listened to the stimuli on
TDH-39 earphones. Twelve subjects judged the stimuli of each tape.
They were asked to "rate each sentence on a scale of 1 to 10 according
to its acceptability as a communication link, using 1 to represent the
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least acceptable, 10 the most acceptable, and the other numbers
between 1 and 10 for intermediate ratings." Before the test began, 20
representative conditions were presented to familiarize the listeners
with the range of speech quality.

VI. OBJECTIVE MEASURES OF SPEECH QUALITY

Because signal-to-noise ratio (s/n) is the most frequently cited
measure of speech quality, the relationship of s/n to subjective
appraisal of processed speech is a matter of substantial interest in an
experiment such as ours. A very strong inference of our data is that a
single s/n statistic-the ratio of the power in the original speech to
the power in the difference between processed speech and original
speech-is a poor predictor of subjective quality. Instead, we find
that the effects of clipping and granular quantization must be con-
sidered separately if we are to arrive at a correct prediction of per-
ceived quality. Therefore, we define two noise components : NC, the
clipping noise, defined as y - x in Fig. 3, and the granular quantizing
noise NG, defined as q - y. The total quantizing noise is

NQ = q -x = NC + NG.

To facilitate measurement of these and other quantities for each
quantizer, we produced a digital data tape which, for each utterance
passed through each presampling filter, recorded the number of times

amplitude (from - 2047 to 2048) occurred. We
used this tape to calculate the power in each filtered utterance, the
mean square values of NG, NC, and NQ for each quantizer, and addi-
tionally, the percentage of samples clipped by each quantizer. This
last statistic, P, proved a better correlate of listener opinions than the
mean square value of NC.

VII. RESULTS

7.1 Overview of data analyses

Statistical procedures were applied to evaluate the relative influence
of each of the experimental variables on the listeners' ratings. Analyses
of variance showed that two variables, clipping level A and step size S,
were the major sources of variability influencing the ratings. Multiple
regression procedures provided linear estimates of ratings as functions
of two objective distortion measures, one related to A, the other to S.

7.2 Determiners of speech quality

7.2.1 Listeners and tapes

An analysis of variance was computed to study the variability of
the ratings of the 12 listeners who judged a single tape, and the vari-
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ability among the four listener groups, each of which judged a different
tape. The analysis showed that the listeners within each group were
not significantly different in their ratings and that the ratings among
the four groups of listeners were not significantly different. In each
case, the F ratios were less than 1.0. Therefore, the mean of the
listeners' ratings for each condition was used for all further analyses.

7.2.2 Coder parameters

A second analysis of variance was computed, using the means of
the listeners' ratings, to study the effects of the experimental variables.
In this analysis, the differences in the ratings due to step size, clipping,
and companding were statistically significant, as expected, and in
combination accounted for 84 percent of the total variance. While the
variability in the ratings due to the different talkers, the different
bandwidths, and their interaction were all statistically significant, each
of these effects accounted for only 2 to 3 percent of the total variance.

7.2.3 Talkers

Figure 4 shows the mean rating across clipping and step size as a
function of bandwidth for each talker at the three companding values

7

5-6
.5/

p = 0

a' 28 CODERS

2.4

6

4

iT
24

3 4

1

....t.- ""
....' 00(:), .1.m. ,C)... ....''''''''''

p= 15
19 CODERS

1

6 2.4 3 4 6

BANDWIDTH IN kHz

p = 255
5 CODERS

3 4

BANDWIDTH IN kHz

X -X MALE 1
MALE 2

FEMALE 1

0---O FEMALE 2

Fig. 4-Mean rating across clipping level and step size as a function of bandwidth
for each talker and each companding law.
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Table IV - Mean ratings across talkers and listeners

Companding AL = 0 µ = 15 At = 255

Clipping Level 2048 256 128 64 1920 240 120 60 2040 255

1 9.2 8.8 7.0 4.7 9.1 7.6 6.9 4.7 9.2 5.0
2 9.2 8.5 6.3 4.4 9.1 7.4 5.3 3.4 7.8

6 kHz 4 9.1 8.3 6.1 4.1 8.3 6.2 5.2 3.3 6.5
Band- Step size 8 8.1 7.1 5.8 4.0 8.7 4.8 3.8 4.6
width 16 8.1 6.3 4.8 3.8 7.6 3.9

32 6.3 5.1 4.0 2.4 5.9
64 5.0 3.8 3.2 1.3 4.3

1 9.0 7.6 6.3 3.6 8.7 7.2 5.3 3.8 7.7 4.8
2 8.3 7.6 6.4 4.2 8.6 6.7 4.7 3.8 7.3

4 kHz 4 8.3 6.8 5.7 4.2 8.2 6.3 5.1 3.2 6.0
Band- Step size 8 7.2 6.2 4.9 4.3 7.5 5.3 3.7 5.2
width 16 6.7 5.7 4.7 3.6 6.9 3.9

32 5.9 4.8 3.6 2.5 5.6
64 5.3 3.6 3.1 1.2 4.7

1 7.9 6.7 5.3 3.9 8.1 6.4 5.1 3.6 8.2 4.5
2 7.9 6.6 5.2 3.7 8.7 6.2 4.3 3.4 6.9

3 kHz 4 7.2 6.4 4.5 4.1 7.8 6.3 4.4 2.7 5.7
Band- Step size 8 6.6 5.6 5.3 3.3 6.6 4.6 3.3 5.0
width 16 5.8 4.9 4.4 2.7 5.7 4.1

32 4.7 3.9 3.6 2.1 4.5
64 3.8 2.9 2.6 1.3 3.6

1 9.4 7.7 6.0 4.7 8.9 8.0 5.5 3.9 8.4 4.6
2 9.1 6.9 6.2 4.4 8.4 7.2 5.1 4.0 7.5

2.4 kHz 4 8.2 7.3 6.1 4.3 8.1 6.1 4.1 3.3 6.0
Band- Step size 8 8.0 6.7 5.6 4.2 8.1 5.7 3.5 5.2
width 16 7.1 5.7 5.1 3.2 6.7 4.3

32 5.6 4.5 4.2 3.0 5.8
64 4.9 4.4 2.8 1.3 5.0

= 0, 15, 255. Although there was some evidence that the coded
speech of female talkers was rated somewhat lower than that of male
talkers, the major source of the statistically significant differences
among the talkers and the talker -bandwidth interaction was the
consistently lower ratings assigned to one female voice. The mean
power of her speech was approximately 3 dB greater than that of the
other three talkers and the standard deviation of the power about 0.2
dB less, making her speech more sensitive to clipping and filtering.
Since the effect of the talkers was minimal, the mean rating across
talkers was used for further analyses, thus reducing the variability
in the data to that due to the influence of only the physical variables
of the coders. The mean ratings across talkers and listeners are shown
in Table IV.
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7.2.4 Bandwidth

Figure 4 also shows the effect of the four different bandwidths on the
ratings. Although the ratings tended to decrease as the bandwidth
narrowed, the differences between 6, 4, and 3 kHz were very small.
Indeed, the source of the significant differences due to bandwidth was
the much lower ratings that resulted from reducing the bandwidth from
3 to 2.4 kHz. The ratings pertaining to three of the talkers contained
no significant interactions between bandwidth and the other coder
design variables. Only in the data for the female talker with the low
ratings were these interactions statistically significant. The most
salient of these interactions was between bandwidth and clipping.

7.2.5 Clipping, step size, and companding

Figure 5 shows the mean rating across listeners, talkers, and band-
width at each step size as a function of clipping level, A, for each of
the three companding conditions. The horizontal axes show A de-
creasing (i.e., the amount of clipping increasing) from left to right.
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Fig. 5-Mean rating across listeners, talkers, and bandwidth at each step size as
a function of clipping level for each companding law.
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Fig. 6-Mean rating across listeners, talkers, and bandwidth at each clipping level
as a function of step size for each companding law.

For each step size S the mean rating decreases as the amount of
clipping increases. With µ = 0 or ,u = 15, an octave decrease in A
results in a relatively small decline in rating when A > 256 and a
relatively large decrease when A < 256. The data for A = 255, though
limited, suggest that relative to the other compression laws, ratings
are more sensitive to small amounts of clipping (A > 256).

Figure 6 shows the same data points plotted as a function of step
size at each clipping level. While, for each A, the ratings are inversely
related to S, equal incremental differences in S tend to result in larger
differences in the ratings as S increases. That is, the curves generally
have a steeper slope when S > 8 for A = 0, and S > 4 for A = 15.
The steeper slope of the curve for A = 255 suggests that quality may
be influenced by an interaction between A and S. An analysis of the
ratings of unclipped speech with S = 1, 2, 4, and 8 confirms this
observation. While the ratings for A = 0 and µ = 15 were not signifi-
cantly different, those at /.4 = 255 were significantly different from
the ratings for the other two companding laws.

7.3 Prediction of quality ratings

7.3.1 Signal-to-noise ratio

Figure 7 is a scatter plot of average rating vs measured s/n for the
28 uniform quantizers and the 4 white-gaussian-noise processes. Here,
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s/n is the usual engineering measure : the ratio of signal power to
mean -square difference between quantizer input and output (x - q
in Fig. 3). The s/n coordinate of a point in Fig. 7 is the average of the
16 s/n's of the individual utterances (4 bandwidths by 4 talkers)
processed by a coder or noise condition. The most important feature
of Fig. 7 is the horizontal clustering of the seven points associated with
a given value of A, when A -. 256. In all of these quantizers, the
clipping noise, NC, substantially dominates the granular noise, NG, in
the total noise, NC + NO. This dominance implies that s/n is virtually
independent of S with A 5 256, while, by contrast, perceived dis-
tortion depends strongly on 5, as evidenced by the vertical spread of
the points pertaining to each A. Clearly, in the presence of clipping,
s/n is a poor guide to ratings of speech quality : coders with the same
s/n elicit widely divergent ratings.

7.3.2 Noise references

In Fig. 7, ratings and s/n are well correlated for one set of coders:
those with no clipping, A = 2048. Here, the relationship of rating to
s/n is similar to that observed for the gaussian noise processes. Figure
7 suggests, therefore, that for uniform quantizing, white gaussian noise
is a good noise reference when there is no clipping; it is a poor noise
reference when clipping is significant.
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Fig. 8-Mean ratings of unclipped speech for each companding law and the added
noise conditions as a function of the total s/n.

Because the amount of granular distortion produced by a coder
with companding depends on signal amplitude, one may suppose that
speech -dependent noise would provide a better noise reference than
white gaussian noise for companded coders.2,7 Figure 8 lends support
to this conjecture by showing, for all of the coders with no clipping and
all of the noise processes, the relationship of average rating to s/n.
For ,a = 255, the relationship is similar to that observed with speech -
dependent noise; for A = 0, it is similar to that observed with white
gaussian noise. il = 15 is an intermediate case.

7.3.3 Regression analysis
Because total s/n proved a poor correlate of listener ratings, we

turned to multiple regression procedures to find an objective predictor
of the ratings. The analyses of variance indicated that the ratings were
primarily influenced by S and A, which have nearly independent
effects. Consequently, we used as independent variables of the
regression one distortion measure related to S and one related to A.
Appropriate measures proved to be Q, the granular s/n (ratio of signal
power to power in NG) measured in dB, and P, the clipping proba-
bility (the proportion of speech samples > A), expressed as a
percentage.

* In the analyses of the linear conditions, S accounted for 35 percent of the total
variance, A for 45 percent, and the interaction of S and A for only 1 percent.
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The regression was computed at each companding level with the
original values for each talker at each bandwidth included as repeated
observations. For example, each of the 28 coders with µ = 0 was
represented by 16 measurements (4 talkers X 4 bandwidths). Table V
lists the coefficients obtained by the regression procedure at each
companding level and also by combining the three companding levels.
While the values of the coefficients change with the correlations and
the rms values of the residuals do not change radically. The regression
procedure was applied to the data for the coders with µ = 255 for
completeness, but the computation was based on information for only
five coders at the smaller step sizes and only one clipping condition.
When the ratings of the three companding laws were also included as
repeated observations, the ratings predicted by appropriate weighting
of only the Q and P correlate highly with the obtained ratings.

VIII. DISCUSSION

8.1 Effects of design variables

Among the PCM design variables, system bandwidth W had the
smallest effect on the ratings, a finding consistent with that of O'Neal
and Stroh' who state that "over the range of 2.4-4.3 kHz changes in
the bandwidth W of the speech signal are inconsequential in terms of
the resultant user ratings." (To describe our data, we would substitute
"of minor importance" for "inconsequential.") In considering the
practical application of this conclusion, a caveat is necessary. In a
recent experiment, Goodman, Goodman, and Chen8 found that band -
limiting, although less important than clipping and quantizing in
determining listener ratings, had a very strong effect on consonant
intelligibility. This suggests that the impact of band -limiting on the
quality of communication may be more substantial than the results of
rating tests imply.

The significance of the dependence of ratings on the quantizer
variables, (compression law), S (step size), and A (clipping level),

Table V - Coefficients obtained by regression level
(A = aP + bQ + c)

a b c
Corre-
lations

RMS
Residual

= 0 -0.08 0.09 3.87 0.87 1.005
A = 15 -0.11 0.11 3.09 0.87 0.957
A = 255 -0.27 0.16 2.96 0.84 0.825
Combined -0.10 0.09 3.99 0.85 1.038

P = Percent clipped.
Q = s/n granular quantizing noise.
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will be more apparent if we return to the usual engineering description
of a quantizer which includes the number of bits per sample, B, as an
independent variable. Thus, in Fig. 9, we have plotted the same points
that appear in Fig. 5, but in this case, we have drawn lines showing
contours of constant B rather than constant S. Here we see the effect
on subjective ratings of the well-known compromise between clipping
and quantizing in coder design. At the left of each curve, we have
the quantizers that cause little or no overload but have high step sizes
and, therefore, substantial granular quantizing noise. At the right,
clipping distortion predominates over granular noise.

Figure 10 demonstrates the effect of companding on ratings by
displaying on the same graph rating vs clipping level curves for 5 -bit
and 6 -bit encoders with µ = 0 and /.1. = 15. For a given clipping
level, even this small amount of companding (practical values of 12

are 100 and 255) produces substantially higher ratings than those
given the uniform quantizer. The companding advantage is well known
and accounts for the presence of compandors in all PCM transmission
systems. In terms of statistical signal theory, we may explain the
advantage by saying that a nonuniform quantizer provides a better
match to the probability distribution of speech amplitudes than a
uniform quantizer. A perceptual explanation is that the low-level
portions of a speech signal carry the most information. With A and B

10

6 BITS

6 - 5 - -X-- -

4-

0

0--0 p = 0
X- --X p = 15

2048 1024 512 256 128 64

CLIPPING LEVEL

Fig. 10-Mean rating as a function of clipping level for 5 and 6 bits at p = 0
and A = 15, demonstrating the effect of companding.
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given, a nonuniform quantizer codes low -amplitude samples with a
smaller step size (and, therefore, lower NG) than the corresponding
uniform quantizer.

8.2 Objective measures of distortion

Figure 11 shows, for coders with uniform quantizers, total s/n as a
function of A. There are striking differences between these curves and
Fig. 9. The most important differences are in the locations of the
maximum points on corresponding curves and the substantially
steeper slopes to the right of the maxima in Fig. 11. Both of these
differences reflect the fact that NC increases very rapidly from zero as
the clipping level decreases from A = 2048, while, by contrast, listener
opinions are relatively insensitive to clipping until A < 512.

The disparity between Figs. 9 and 11 suggests that even with B
constant, s/n, the usual engineering measure of quantizer quality,
is a poor guide to subjective ratings, mainly because the mean -square
clipping is a poor predictor of listener ratings. A more useful measure
of clipping distortion is clipping probability, which we have measured
as the percentage of samples clipped in an utterance. P varies with A
in the manner shown in Fig. 12. Observe that, like the ratings, P
changes slowly as A decreases from 2048 and that it is most sensitive
to changes in A when A < 512. These similarities account for the
accuracy of the regression formulas in Table V, which have as in -
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Fig. 11-Total s/n as a function of clipping level at a constant number of bits.
Circles indicate the maximum s/n at each bit rate.
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dependent variables P and the signal-to-noise ratio Q of the granular
quantizing noise NG. These formulas, based on the notion of two
perceptually distinct distortions, are more useful predictors of subjec-
tive quality than is total s/n, which is based on the fallacious assump-
tion that listeners attend only to the difference between quantizer
input and output with no regard to the components of this difference.

8.3 Optimum quantizers

Given a companding law and a fixed number of bits per sample,
there is an optimum quantizer with overload point A* that provides
the best mixture of clipping distortion and granular noise. For
A < A*, clipping is the predominant type of distortion; for A > A*
granular noise predominates. A circle in Fig. 9 indicates the subjec-
tively optimum overload point for a given bit rate. As the number of
bits per sample increases, so does A*. In high -resolution quantizers,
it is possible to have low granular noise and very little clipping simul-
taneously. Notice that the optimum points in Fig. 9 are all one or
two octaves to the right of the corresponding points in Fig. 11. The
experiment demonstrates that listeners are more tolerant of clipping
than s/n measurements suggest. In addition, the curves in Fig. 9 are
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considerably broader than those in Fig. 11, which indicates that
listeners are relatively insensitive to changes in A in the region of A*.

This observation relates directly to the quantizer dynamic range
problem. While in the experiment we have held the speech power
fixed and varied A, we would have obtained the same distortions by
holding A fixed and changing the speech signal level. It follows that
the horizontal axes that we have labeled "clipping level" can, for a
single quantizer, be renamed "speech level," which increases from
left to right. Figure 11 shows that a uniform quantizer has near -
optimum signal-to-noise performance for only a narrow range of
speech levels. By contrast, we see in Fig. 9 that listeners give nearly
optimum ratings over a much wider range of input powers.

IX. CONCLUSIONS

Our results lead to several general observations regarding the subjec-
tive evaluation of speech degraded by digital coding. First, our data
indicate that when the degraded speech includes certain types of
digital signal distortions, such as peak clipping, then total s/n is a
poor objective indicator of subjective speech quality. For the coders
we studied, a simple linear combination of two objective measures
was a good predictor of the subjective quality of speech with quantizing
and clipping distortions; however, we do not know of any single
objective measure which would be a good composite indicator of
subjective speech quality for all types and combinations of digital
signal distortions. Second, because some types of digital signal distor-
tions seem to be perceptually distinct, it seems unlikely that the
subjective quality of digital speech can be evaluated by reference to a
single type of analog or digital signal distortion, such as speech -
dependent noise. And third, because coders are optimized by trading
off different types of distortions, it follows that the important cases to
study are those where distortions occur in combination rather than
singly. This implies that knowing the relationships between subjective
speech quality and various types of reference -signal distortions
occurring singly-be they digital or analog-may be of limited value
for predicting the subjective quality of coded speech if most practical
coders produce speech degraded by combinations of distortions. These
observations should be kept in mind by designers who must struggle
with the problem of how various parameters of their coders affect the
subjective quality of the speech.
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Rain -Rate Distributions and
Extreme -Value Statistics

By S. H. LIN

(Manuscript received March 17, 1976)

An extension of a method of Chen and Lahlumi for estimating the
distributions of high rain rates is described. Through application of the
statistical theory of extremes to available yearly maximum rain -rate data,
a reasonably accurate distribution is obtained. The calculated results
agree well with previously obtained 20 -year data. Application of this
method to Weather Bureau Rainfall Intensity -Duration -Frequency Curves
has yielded 50 -year distributions of 5 -minute rain rates for 36 locations
in the western United States; others can be similarly obtained. Such
long-term rain -rate distributions are valuable for microwave radio -path
engineering, especially in the western United States where shorter -term
data sources are inadequate.

I. INTRODUCTION

References 2 and 3 describe a procedure for obtaining long-term
(> 20 years) distributions of 5 -minute rain rates from data published
by the National Climatic Center.' Such distributions have been ob-
tained for 202 locations in the eastern and midwestern United States
and applied to path engineering of 11-GHz radio links.

However, the excessive short duration rainfall data4 on which these
distributions are based contain only rainfalls that exceed an excessive
rainfall threshold defined by the National Climatic Center.2,3 For
example, the threshold is 75 mm/hr for 5 -minute intervals. In low
rain -rate areas, such as Oregon and Washington, almost all rainfalls
do not exceed the threshold and, hence, are not included in the excessive
short -duration rainfall data. For example, at Spokane, Washington,
the 5 -minute rain rate exceeded the 75 mm/hr threshold only once in
the 20 -year period from 1953 to 1972. This data source, therefore, is
an unsatisfactory basis for radio -path engineering in such areas. On
the other hand, processing other longer -term data-say 50 years-is
tedious and costly. This has motivated the search for an alternative
method. Fortunately, the statistical behavior of the extremes of a

1111



random variable has been extensively investigated.5-m This paper de-
scribes a method for obtaining distributions of high rain rates by
applying this theory to the yearly maximum rain -rate data published
by the National Climatic Center.

In an unpublished work, Chen and Labium' have applied the
theoretical distribution of yearly maximum 5 -minute rain rates and
an empirical extrapolation to obtain the rain -rate distribution in the
range of interest to radio -path engineering. In this paper, we extend
Chen and Lahlum's method by incorporating the theoretical distri-
butions of yearly kth largest 5 -minute rain rates for k ranging from 1
to 12. The application of the higher -order statistics of extremes elimi-
nates the need for empirical extrapolation.

In this paper, a 5 -minute rain rate corresponds to the average value
of the randomly varying rain rate in a 5 -minute interval and is calcu-
lated as OH/T, where Ali is the 5 -minute accumulated depth of rainfall
and T = 1/12 hour = 5 minutes. For illustration, only the statistics of
5 -minute rain rates are discussed in this report. The method is also
applicable to other integration times.

CC

<
- 102
L1J

<
FU)
CL 6
(n W
LU 0,
F- <
Du,
Z a
2w
L(0 .<1 101

CC

LIJ III
03 I -2Q
D cr
z zw -a
< cc
cc
w 10°
<

10-i
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

5-MINUTE RAIN RATE IN MM/HR

Fig. 1-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method (dashed line) with 20- and 22 -year data (solid lines) for Newark,
New Jersey. The difference between the 20- and 22 -year data also indicates the
instability of high rain -rate statistics.
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Fig. 2-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method (dashed line) with 20- and 22 -year data (solid lines) for Wilmington,
North Carolina. The difference between the 20- and 22 -year data also indicates the
instability of high rain -rate statistics.

II. THE STATISTICS OF EXTREMES

Let R be the randomly varying 5 -minute rain rate and Rk be the
kth largest 5 -minute rain rate in a given year. In other words, R1 is
the yearly maximum 5 -minute rain rate, R2 is the yearly second largest
5 -minute rain rate, etc. The value of Rk varies from year to year, and
the probability distribution of Rk is the subject of the statistics of the
kth extreme.

Many sets of rain -rate data" -15 indicate that rain -rate distributions
in the moderate and low rain -rate region can be closely approximated
by the lognormal distribution. In the tail region, the time bases are
usually insufficient to yield stable results for testing the lognormal
hypothesis. Figures 1 and 2 show instability at extreme values occurring
in 20 -year time bases. We will assume that the rain -rate distributions
are lognormal and proceed to show that the calculated distributions of
extreme rain rates agree well with the data as displayed in Figs. 1
through 9.

Let
x = In R, (1)
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Fig. 3-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method (dashed lines) with the 20 -year data (solid line) at La Guardia
Airport, New York, New York.

and
Xk = In Rk. (2)

The lognormal hypothesis for R is equivalent to the statement that x
is (approximately) normal. The distribution of the kth extreme, xk,
as derived by Cramer8 is

where

k-1 e-Ny
P(Xk -?,, X) = 1 - e -e -V E

N=o A 11 '

y = a(X - U)

(3)'

(4)

and is called the reduced variate. In this expression, a and U are scale
and location parameters, respectively, and are related to the sample
mean and sample standard deviation of x1. Notice that the distribution,
P(xk L- X), for any k, is completely determined by the two parameters
a and U. These two parameters can be calculated from the measured

* The cumulative distribution function (3) is obtained by integrating the prob-
ability -density function derived by Cramer in Ref. 8.
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yearly maximum rain -rate data. Let

Ri(j), j = 1, 2, 3, , M (5)

be the measured yearly maximum 5 -minute rain rate in M years of
measurements. For example, R1(7) represents the yearly maximum
5 -minute rain rate observed in the seventh year of an M year experi-
ment. Let

xi(i) = In [Ri(j)] (6)

be the yearly maximum value of x in the jth year. From the measured
data of xi(j), j = 1, 2, 3, , M, we can obtain an approximate
distribution of x1. The parameters a and U can be estimated by fitting
the theoretical P(xl > X) to the measured data. Gumbel6 has shown
that a least -square fit of P(x1 X) to the data leads to the following
formulas for calculating a and U:
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Fig. 4-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method. (dashed line) with 20 -year data (solid line) for Pittsburgh, Pennsyl-
vania, and Chicago, Illinois.
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and

where

is the sample mean of x1,

zU = 21 -
'

M1tl E X1( j)
j =1

-" 1

j= 1
x5

Art
= E EX' ( Di%

Crx = 4X -4

is the sample standard deviation of xi,

Z(j) = -ln (-1n 3+. 1)

Z =
M = 1

if zu,
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5 -MINUTE RAIN RATE IN MM/HR

Fig. 5-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method (dashed line) with 20 -year data (solid line) for Harrisburg, Pennsyl-
vania, and New Orleans, Louisiana.
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Fig. 6-Comparison of 20 -year rain -rate distribution calculated by extreme
statistics method (dashed line) with 20 -year data (solid line) for Lynchburg, Virginia.

and

- m .

Z2 =
1

El [Z (j)]2, (14)

22.
(15)

Thus, we have all the necessary formulas for calculating P(xk > x).
To obtain the rain -rate distribution, we substitute (2) into (3) to yield

k-1 e-Ny
P(Rk r) = 1 - e -e -v EN-0 N.

where

(16)

y = «[(ln r) - U]. (17)

Therefore, the time that Rk will exceed the threshold r, on long-term
average, is

T (Rk > r) = r X P(Rk r)
k-1 e-Ny=TX 1 - e -e -Y E (18)

N -o N. ,

where T = 5 minutes is the rain -gauge integration time. Furthermore,
in any given year, Rk and R, will never occur in the same 5 -minute
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Fig. 7-Comparison of 49 -year (1903-1951) distribution of 5 -minute rain rates
calculated by extreme statistics method with measured 20 -year (1953-1972) data at
La Guardia Airport, New York, New York.

interval if k s 1. This means T(Rk > r) for various order k can be
summed to yield an approximation to the original rain -rate distribution
in the extremal region; i.e.,

s
T(R _..-_ r) --,_ E T(R, .- r) (19)

k-1

for high rain rates.
The only input required for the calculation is the yearly maximum

5 -minute rain rates,

Ri(j), j = 1, 2, 3, , M,

which can be obtained from National Climatic Center publications.'

III. COMPARISON OF CALCULATED AND MEASURED RESULTS

Figures 1 through 6 display the comparison of the distributions of
high rain rates calculated via statistics of extremes from the data for
eight locations. The number of years M is 20 (from 1953 to 1972). In
these figures, the solid lines represent the data obtained by the method

1118 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



described in Refs. 2 and 3, whereas the dashed lines are the distribution
calculated by the theory of extremes.

In Fig. 3, the value of S in eq. (19) is varied from 1 to 12. For S = 1,
T(Ri >= r) is the distribution of yearly maximum 5 -minute rain rate
and is approximately equal to T(R r) only in the extremal region
(beyond 160 mm/hr). As r decreases, T (RI > r) deviates significantly
from T (R r), limiting at the 5 -minute -per -year level as r approaches
zero. The basis for this saturation is that there is only one yearly
maximum 5 -minute rain rate (with 5 -minute duration by definition)
in any given year. It is obvious that the yearly maximum 5 -minute
rain rate can exceed any threshold by no more than 5 minutes per
year. Similarly, for S = 2, T(Ri > 7.) plus T (R2 r) is limited to a
10 -minute -per -year level as r approaches zero. However, Fig. 3 shows
that the applicable range of approximation (19) increases rapidly
with S.

For engineering terrestrial radio paths, we are interested in the
range of rain -rate distributions below 50 minutes per year, because a
single radio hop outage exceeding 50 minutes per year is considered
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rates calculated by extreme statistics method with measured 20 -year (1953-1972)
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undesirable. Figure 3 shows that using S = 12 in eq. (19) includes
the range of interest to terrestrial radio -path engineering.

Figures 1 to 6 show similar close agreement between the calculated
results and the data.

The advantage of using the extreme statistics method is its sim-
plicity; i.e., it is much easier to obtain the extreme -statistics results
from the set of 20 maximum yearly rain rates than to obtain the other
displayed results which require analyzing all heavy rainfalls in each
year.

IV. FIFTY-YEAR DISTRIBUTIONS OBTAINED FROM RAINFALL
INTENSITY -DURATION -FREQUENCY CURVES

Rainfall intensity -duration -frequency curves published by the
Weather Bureau" were obtained from approximately 50 years (1900-
1950) of rain -rate data processed in accordance with the statistical
theory for distribution of yearly maximum rain rate by the Gumbel
method.' In other words, these curves represent P(R1 > r), where R,
is the yearly maximum rain rate. The return period Q(R, ._.- r), which
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is the reciprocal of P(R1 > r), is labeled on each curve; i.e.,

Q(R1 > r) = p(R11 years. (20)

These curves cover the range -of -return period from 2 to 100 years and
rain -gauge integration time T (i.e., the duration) from 5 minutes to
24 hours. We considered only the 5 -minute rain -rate statistics in
this report.

Since these curves represent P(R1 ?_ r), the two parameters a and
U in eq. (17) can be estimated by fitting the theoretical P(R1 .- r)
to two points on the intensity -duration -frequency curves. Once a and
U are obtained, we can calculate a distribution of high rain rates by
eqs. (18) and (19). However, one adjustment is needed in this process.
Gumbel6 has shown that as the number of years M approaches infinity,
2 and cr, in eqs. (13) and (15) approach the following asymptotic values

lim 2 = 7 = Euler's Constant
M-. co _'.., 0.5772 (21)

r
lim cr. = - (22)Ai- -Nig

The corresponding asymptotic forms for a and U are

and

lira a = a. =
M 4-6- az '

r

lim U= U. = Xi - '-'
M-.. a.

(23)

(24)

The rainfall intensity -duration -frequency curves were obtained using
the asymptotic values, ao, and U., even though the number of years
M are 50 or less. Such approximations introduce slight errors and can
be corrected by the following relationships among a., U., a, and U:

116
a = aw  az  -r (25)

U= U.+ 1 r 2 7 1
a., 1.7 az -4 J

(26)

To relate theoretical P(R1 _-_. r) with the intensity -duration -frequency
data, we combine eq. (16) and (20) to give

where

Q(R1 -_.> r) = 1

1 e -e -Y )

y = acc[(ln r) - U.].

(27)

(28)
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The two parameters, ac and U., can be determined by equating (27)
to two sets of data, say (ra, Qa) and (rb, Qb), read from the intensity -
duration -frequency curves. It is easily shown that the relationships are

Aa - Ab
(29)ate, = ln ra - In rb '

and
Aa ln rb -A b In raU (30)

Aa - A.b '

where

Aa = -ln Qa (31)[ln Qa - 1]'
and

Ab = -ln Qb (32)[ln Qb- 1 ]

By substituting ace and U. into (25) and (26), we obtain a and U for
the 50 -year data. Substituting a and U into (18) and (19) gives the
50 -year distribution of 5 -minute rain rates.

The time bases (i.e., M) in the intensity -duration -frequency curves
are mostly 50 years or less. However, several locations have time bases
much shorter than 50 years. For example, the time bases are 18, 16,
and 17 years for Mt. Tamalpais, California; Tonopah, Nevada; and
Yakima, Washington, respectively. Due to this limitation, we have
chosen Qa = 2 years and Qb = 10 years for calculations of a and U.
Since Qa and Qb are fixed, we then need only three numbers : M, ra,
and rb for each location, read from the intensity -duration -frequency
curves to calculate the rain -rate distribution.

For example, for New York City, the three numbers are:

M = 49 years (1903-1951)
ra = 4.4 inches/hr = 111.8 mm/hr
rb = 6.5 inches/hr = 165 mm/hr.

Substituting ra and rb into eqs. (29) and (30) yields

ace = 4.828
U. = 4.64.

Substituting M into eqs. (12) through (15) and aco and U. into (25)
and (26) gives

a = 4.363
U = 4.63.

The 49 -year (1903-1951) distribution of 5 -minute rain rate calculated
from this a, U pair for New York City is very close to the 20 -year
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(1953-1972) data, as shown in Fig. 7. Figure 8 shows similar close
agreement between 50 -year and 20 -year distributions in Pittsburgh,
Pennsylvania.

However, Fig. 9 shows an appreciable difference between 36 -year
and 20 -year distributions for Chicago, Illinois. This appreciable
difference, the irregular shape of the 20 -year distribution in Fig. 9 and
the instability noted in Figs. 1 and 2 indicate that a 20 -year time base
with a single rain -gauge measurement may not be sufficient to guaran-
tee a stable distribution for extremely high rain rates. If more stable
results are required, the 20- and 50 -year data may be combined to give
a 70 -year distribution.

The calculated curves (dashed lines) in Figs. 1 through 6 are based
on 20 -year data from 1953 to 1972 in Ref. 4, whereas the calculated
curves (dash -dot lines) in Figs. 7 through 9 are based on approximately
50 years of data in Ref. 16.

V. CONCLUSION

A method has been described for calculating the distribution of high
rain rates by applying the statistical theory of extremes to the available
yearly maximum 5 -minute rain -rate data. Figures 1 through 9 show
that the calculated distributions agree closely with the data in the
heavy -rain region of interest to radio -path engineering. The virtue of
this method is that only yearly maximum rain -rate data are required
to generate satisfactory results for radio -path engineering. The rainfall
intensity -duration -frequency curves" provide approximately 50 years
(1900-1950) of such data for 203 locations in the United States.
Furthermore, a new publication on "Maximum Short -Duration Pre-
cipitation,"" for approximately 300 U. S. locations issued annually by
the National Climatic Center since 1973, provides additional yearly
maximum rain -rate data. Therefore, long-term ( 50 years) distri-
butions of high rain rates for 203 U. S. locations can easily be obtained
by this method.
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Distinguishing Stable Probability Measures
Part I: Discrete Time

By B. W. STUCK
(Manuscript received April 1, 1976)

A sequence of N, independent, identically distributed, random variables
is observed from one of two stable distributions with known parameters.
The likelihood -ratio test for discriminating between these two distributions
is found explicitly and performance limitations are determined.

When the two distributions differ only in location, the likelihood -ratio
test is sensitive to whether the distribution is nongaussian stable
(0 < a < 2) when nonlinear soft limiting of large deviations is used, or
gaussian stable (a = 2) when linear processing is used.

When the two distributions differ only in scale, the likelihood -ratio
test is sensitive to whether 0 < a < 2 when nonlinear soft limiting of
large deviations is used, or gaussian (a = 2) when a chi -squared test
is used.

The analysis of the two remaining cases, distinguishing between one of
two characteristic indices, and between one of two skewness parameters,
parallels the analysis of distinguishing between one of two scale parameters
and is only touched upon briefly.

I. INTRODUCTION

The problem of classifying a series of observations as coming from
one of two or more possible classes or hypotheses has received a great
deal of attention in the statistical and engineering literature. In many
physical situations, a variety of disturbances corrupt the observations;
rather than model each disturbance separately, it is often argued on
physical grounds that the disturbances add and are independent, and
the central limit theorem is invoked to model this sum using a gaussian
distribution. This approach is adequate as long as the sum is not
dominated by one or a few of the summands; if one or a few of the
summands does dominate the sum, the disturbances can possibly be
modeled as a stable distribution, one member of a family of probability
distributions which includes the gaussian, by invoking a frequently
overlooked generalization of the central limit theorem.
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The gaussian distribution has enjoyed great popularity in hypothesis
testing because it is analytically tractable and because it is the only
stable distribution with finite variance. Although it may be argued
that mathematical models with infinite variance are physically in-
appropriate, this view conveniently overlooks the fact that the gaussian
distribution is unbounded, which is also a physically inappropriate
mathematical model. The gaussian model may adequately model dis-
turbances over a narrow range of amplitudes; an infinite -variance,
stable -distribution model may adequately model disturbances over a
larger range of amplitudes. Both distributions may be physically in-
appropriate mathematical models, but the infinite -variance distribu-
tion may, in this sense, be the better model. This paper examines
several stable -distribution hypothesis -testing problems.

The primary motivation for this work on stable probability measures
is drawn from a recent statistical analysis' of noise on various telephone
lines. This analysis indicated telephone noise may be adequately
modeled (on the lines examined) by a sum of sinusoids at various
frequencies plus a purely nondeterministic random process that is well
characterized by a stable distribution (either gaussian or nongaussian
stable). Since only a small number of lines were examined, this analysis
is preliminary, awaiting other independent investigations.*

Indirect motivation for this work is drawn from detecting electro-
magnetic signals at frequencies of 100 kHz or less. Noise at these
frequencies is claimed to be nongaussian; unfortunately, adequate sta-
tistical evidence to substantiate this claim is lacking, with one
exception.'

A final source of motivation is found in financial problems. Over the
last decade, a large body of statistical evidence has been amassed which
indicates that the differences of logarithms of successive equally spaced
prices of common stocks can be adequately modeled using stable
distributions.3. 4

H. OUTLINE OF DISCUSSION

A sequence of N random variables is observed; for simplicity, it is
assumed they are independent and identically distributed-drawn
from one of two stable distributions with known parameters (charac-
teristic index 0 < ai 5 2, skewness parameter -1 < /3' 1, scale
parameter yJ > 0, location parameter - 00 < Si < co ; j = 0, 1),I It

Applications of this work to removing telephone noise will be presented elsewhere
t These results were first presented at the Eighth Annual Princeton Conference on

Information Sciences and Systems, March 28-29, 1974, p. 405, and at the 1975
Johns Hopkins Conference on Information Sciences and Systems, April 2-4, 1975,
pp. 49-51.

* Both subscripts and superscripts will be used to denote the stable -distribution
parameters under hypothesis 1-1;(j = 0, 1) ; these parameters will be discussed more
fully in Section III.
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is well known that the likelihood -ratio test is a decision rule that is
optimum with respect to either a Neyman-Pearson or Bayes criterion.5
Here, the likelihood ratio is found explicitly and performance limita-
tions of the test are determined. The extension of these results from
two to M stable distributions is well known and will not be dealt with
here.'

The (log) likelihood decision rule, because of the independence as-
sumption, takes the following simple form :

N H,
A' = E /(ri) < L'

1=1 Ho

/(ri) = In P (ri
P (r 1 ; a°, i)°, 7°,

where {ri} i are the N observed random variables, drawn from a dis-
tribution with probability density p(x; ai, [3j, 71, SO, and L' is a thresh-
old. Since 1 (ri) can be rewritten as the sum of four functions,

l(r i) = In Pfri; al) IP 71, S')

P (r i; a0, 01 , 71, 6') ± In P i; a°, 0', 71, 81)

p (r ao, /3°, 71, 89

In p (ri (30, 71' 61) + In p(ri
(0,

P (ri; a°, 00, 7°, 81) p (ri; 01°

go, 70, 61)

7°

each of which tests for only one different parameter, this suggests
studying each of these four situations separately.

Two special cases are examined in detail: when the distributions
differ only in location and when they differ only in scale. The proba-
bilities of error of the first and second kind are found for three analyti-
cally tractable cases (gaussian, Cauchy, and Pearson V) by calculating
the characteristic function of the log likelihood probability measure
induced under each hypothesis; the general case is apparently analyti-
cally intractable, and quite expensive to tackle numerically at present.
Exponentially sharp upper and lower bounds on both types of prob-
abilities of error, and also the total probability of error, can be simply
derived from the Laplace transform of the log likelihood probability
measure induced under each hypothesis. These bounds are found
analytically in three cases, and relatively inexpensive numerical results
are presented for selected other cases.

When the two distributions differ only in location, the likelihood -
ratio test is shown to be extremely sensitive to whether the distribution
is nongaussian stable (0 < a < 2), when nonlinear soft limiting of
large deviations is employed, or gaussian (a = 2), when linear process-
ing is used. When the distribution is nongaussian stable, performance
is found analytically to be quite sensitive to whether a linear (sub -
optimum) or likelihood (optimum) decision rule is used : the total
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probability of error for the linear test behaves asymptotically (N >> 1)
as 0(AN'-a), while the total probability of error for the likelihood -ratio
test is upper bounded by exp( -BN C), where (A, B > 0, C) de-
pend on parameters of the two distributions and are independent of N.
(For related work that complements the results in our discussion, see
the list of references and particularly Refs. 6, 7, and 8.)

When the two distributions differ only in scale, the likelihood -ratio
test is extremely sensitive to whether the distribution is nongaussian
stable when nonlinear soft limiting of large deviations is used, or
gaussian when a chi -squared test is used. Performance for nongaussian
stable distributions is extremely sensitive to whether a suboptimum
(chi -squared) or optimum (likelihood -ratio) test is used : the total
probability of error for the chi -squared test behaves asymptotically
(N >> 1) as 0 (FN-(a12-1)), while the total probability of error for the
likelihood -ratio test is upper bounded by exp ( - GN H), where
(F, G > 0, H) depend on parameters of the two distributions and are
independent of N.

The analysis of the two remaining cases, distinguishing between one
of two characteristic indices and between one of two skewness parame-
ters, closely parallels the analysis that distinguishes between two scale
factors and is only touched upon here.

The continuous time analogs of these discrete -time problems are
studied, where a sample function from one of two stable, stationary,
independent -increment processes is observed for a finite time interval
in the second part of this work. In contrast with this work, the analysis
is simpler, and it is possible to obtain many results analytically in
closed form.

Section III deals with various mathematical preliminaries. A brief,
selective, tutorial overview of the central limit theorem, infinitely
divisible distributions, and independent -increment processes is pre-
sented to place this work in perspective (as well as to fix notation). No
attempt is made to be exhaustive in the discussion.

The length of the discussion is due to the many special sets of
parameter values that must be taken into account to be thorough. The
main reason for this completeness is to adequately cover all cases where
uncertainty is modeled using a distribution arising from a central -
limit -theorem type of argument. The main contribution here is the
results per se, many of which are presented here for the first time, which
unfortunately often involve either tedious algebraic manipulation or
machine calculations. It is hoped this will not obscure the surprising
(at first glance) nature of the results : the quite singular behavior of
both the log -likelihood -ratio test and (perhaps more importantly) its
performance, for the gaussian vs nongaussian stable distribution, in
distinguishing either location or scale. The generalization of these two
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results to a wide class of infinitely divisible distributions (which
include the family of stable distributions) is immediate, and is sketched
at the end of Section IV.

III. MATHEMATICAL PRELIMINARIES

The reader is assumed to be familiar with the fundamentals of
measure theory and probability theory, as found in standard
references.9-"

Underlying the discussion to follow are :

(i) The notion of a probability space : a triple 10, A, Pl, where
St is the set of elementary events, A is a a -algebra of Borel
measurable subsets of S2, and P is a probability measure on A.

(ii) The definition of a stochastic process x (t, w) defined on a
parameter set E (henceforth called time), with t E E, w E
which is a function mapping the direct product E X SZ into the
real line, and the associated probability measure induced by
x (t, w).

(iii) The measure theoretic concept of absolute continuity of one
measure with respect to another, and the measure theoretic
Lebesgue decomposition theorem.

3.1 infinitely divisible distributions and independent -increment processes

In this section, various properties of infinitely divisible distributions
and independent -increment processes are briefly reviewed. The inter-
ested reader is referred to the literature for much more information."-"

This tutorial section serves several purposes :

(i) It gathers together for convenient reference all material on
stable distributions to be used in Part II.

(ii) It fixes notation.
(iii) It emphasizes the central role played by stable distributions

in understanding both the central limit theorem and the Levy
decomposition of the infinitely divisible distributions.

(iv) Finally, it alerts the reader to the rich structure and variety
of infinitely divisible distributions, in general, and stable
distributions, in particular, in the hope that they will find
greater use in modeling uncertainty.

The characteristic function of a (first -order) probability distribution
P(x) is defined as

(v) =
J

eivielP(x) = E(ei.z) a.s.

Upper case P() will denote a probability distribution, while lower case p()
will denote the associated probability density function; all probability distributions
examined here in any detail are absolutely continuous with respect to Lebesgue
measure.
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It can be shown that two probability distributions are identical if and
only if their characteristic functions are identical (Ref. 14, page 28) ;
thus, there is a one-to-one correspondence between characteristic func-
tions and probability distribution functions. A random variable is
said to be infinitely divisible if, for every natural number n, the random
variable can be represented as the sum of n independent identically
distributed (i.i.d.) random variables, or equivalently if its charac-
teristic function can be written as

Cy (v)= [Cy (v, n) ]n n = 1, 2, ,

where C'z is the characteristic function of some probability distribution
which may depend on n. Two well-known examples of infinitely
divisible random variables are the gaussian [taking values on
(- co , )] and the Poisson (taking values at nonnegative integer
multiples of h):

Gaussian : Cx (v) = ei"
47ro-2

exp - (x - m)2/2o-2I dx

= exp (imv - 10.2v2)

Poisson:
xke-x

(v) = E rovhy, exp [X (eivh 1)].
k=0 k!

De Finetti conjectured that any infinitely divisible distribution could
be written as the convolution of a gaussian and a generalization the
Poisson; the resulting characteristic function can be written as

In Cz(v) = imv - la2v2 (eivu - 1)dF (u),

where the measure F (u) specifies at what points the Poisson variable
takes on nontrivial values. However, this conjecture was shown to
hold only for a subset of the infinitely divisible distributions by Levy;
if one desires a canonical form of the characteristic function of an
infinitely divisible distribution, then the following remarkable theorem
can be proved (Ref. 13, page 76).

Theorem (Levy): Any infinitely divisible characteristic function can be
uniquely written in the canonical form

0--

In Cz(v) = iov - 10.2v2 r (e iv u - 1
1 + dv_(u)

ivu

+ f (eivu - 1
J 0-F \ 1 +

ivuu2) dv±(u),

where S is a location parameter (- co < S < 00), 62 > 0 is the variance
of the gaussian component, and (v_, v+) are called the Levy measure of the
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generalized Poisson distribution. The conditions the Levy measure must
satisfy are (i) v_ and v+ are nondecreasing on the intervals (- 0 , 0) and
(0, 00), respectively, (ii) v_(- 00) = v+(00) = 0, and (iii) for every
finite  > 0,

o -

J -e
u2dv_(u) < 00

Le+
u2dv+(u) < 00.

Some examples now follow :

Example 1 (Poisson) : S = ivhX/ (1 + h2), 0-2 = 0, v_ = 0, - 00 < u < 0

{-X 0 < u < h
v+ =

0 h. -.5-u<00'
In Cz(v) = X(eivh - 1).

Example 2 (Cauchy): 0-2 = 0, b = 0,

cv_ = rjui
-c

-00 < u < 0

0 < u < 00 ;
v+ = iru

In Cx (v) = jay - civl.

Example 8 (Gamma): 0-2 = 0, v_ = 0, -00 < u < 0

e-qu
= pJ 1+ u2 du < 00

dv+(u) = pe-qud(ln u);

Cz(v) = (1 -
P /

Most of the attention here will be focused on one particular class of
infinitely divisible distributions, the stable distributions.

Definition: A probability distribution is said to be stable if, for all
al > 0, a2 > 0, b1, b2, there exist constants a > 0, b such that

P(alx bi)*P(a2x b2) = P(ax b),

where * denotes convolution. In other words, stable distributions are
closed under the action of the group of linear affine transformations on
the real line.

An important reason for examining stable distributions is found in
the central limit theorem (Ref. 13, page 162; Ref. 15, page 168) :

Theorem: P (x) is a limiting distribution for a sum of suitably scaled and
translated, independent, identically distributed, random variables if and
only if P (x) is stable.
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In many practical problems, a large number of independent dis-
turbances add and introduce uncertainty in a measurement. To
analyze the effects of uncertainty, it is often convenient to replace this
sum by its limiting distribution, which must be a stable distribution.
The reader is referred to the bibliography for references on exactly
what conditions govern the limiting distribution being gaussian vs
nongaussian stable (Ref. 12, pages 171-190; Ref. 15, pages 165-169).

Stable distributions are infinitely divisible; the associated Levy
measures can be shown to be v_ (u) = c_ I u I -a, v+(u) = - c+u-a
(Ref. 13, pages 164-168; Ref. 14, pages 128-133). Requirement (i)
that the measure be nondecreasing leads to a > 0, while the final
requirement (iii) forces a < 2. Substituting this into the canonical
representation of the characteristic function of an infinitely divisible
distribution and explicitly evaluating the integral over the Levy
measure results in the following theorem :

Theorem (Ref. 13, page 164; Ref. 14, page 136): The characteristic func-
tion of a stable distribution can be expressed as

7Ivia [1 ± II)I tan (2/J + 2:5v a 1,
v

In E(eixv) =
-7 Iv![1+_v 2 ,

v! 7in 17v1] a = 1,

where 0 < For
0 < a < 1,13 = c_ - c+/c_ c+; for 1 < a < 2,13 = c+ - c_/ c+ c_.

Note that for a = 2, the characteristic function, as a complex -valued
function of v, is C°3, but for 1 < a < 2, it is only Ci, and for 0 < a < 1
is only C.

For fixed (3 ((3 0), the characteristic function is discontinuous (as
a function of a) in the neighborhood of a = 1. One approach to this
problem is to rewrite the characteristic function (a 1) as

In E(eisv) = -71v I a [1 + i13.-7)1 tan ( 7Ira

ra+ iv (3 + 70 tan 7 - 70 tan 7

= iyfi'v tan Tra [1 -

+ iv (a + 70 tan 2) 

If a new parameter 5' + 7i3 tan (ira/2) is defined, then for )3 fixed

ralim tan -2 [1 - M a-1] = 21n IVI.
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By inspection, this form of the characteristic function is not discon-
tinuous in the neighborhood of a = 1.

Since the characteristic function is in L1( - oo , 00), all stable dis-
tributions are absolutely continuous with respect to Lebesgue measure,
and have analytic probability density functions. Four parameters com-
pletely specify a stable distribution :

(i) a, the characteristic index of the stable distribution P (X ; a, 13) is
associated with the asymptotic behavior of P (X ; a, (3). For
-1 < 0 < 1, 0 < a < 2,

lim 1X1 aP ( - X) = k_ > 0, lim Xa[1. - P(X)] = k+ > 0.x-.

For 0 = -1 (a similar argument holds for (3 = +1), Lipschutz" and
Ibragimov and Linnik (Ref. 17, pages 62 to 66)* have shown that for
1 < a < 2,

P(X) = 0{k(a)1X1a/2(1-a) exp[-c(a) 1 X 1 al'il as X -p -co
lim Xa[l -P (X)] = k+ > 0,
x

while for 0 < a < 1,

P(X) = 0{k(a)Xa/2(1-a) expE-c(a)X-ail-al as X ,j, 0+
lim X a[l -P (X)] = k+ > 0,
X

where k (a), c(a) are constants which depend only on a. For the asym-
metric Cauchy probability density function, it can be shown (Ref. 17,
pages 57 to 60) that

p (X ; a = 1,

13 = -1) = 0 [exp (4I X 1 - 77 exp (rj.X1 /2))] X -* - oo

lim p(X ; a = 1, (3= - 1)X2 = k+ > 0.

(ii) (3 characterizes skewness of the distribution : if 0 = 0 the dis-
tribution is symmetric about x = S. Otherwise,

1 -P (X ; a, 13) -P (- X ; a, (3)
limx-.. 1 -P (X ; a , )3) + p( -x; a, 0)

lim
P( -X; a, (3) 1+ 0

x-.1 - P(X ; a, (3) - 1 -0
For 1 < a < 2, the distribution is skewed to the left for -1 0 < 0,
since P (a) < 1 -P (6), with the degree of skewness increasing as (3

* Note typographical errors in eqs. (2.4.30) and Theorem (2.4.7), of Ref. 17.
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decreases. It suffices to consider varying 13 over one half its range be-
cause from the characteristic function it follows that the probability
density p(x) obeys the relation

p(x; a, 0,7, 5 = 0) = p( -x; a, -0,-y, 5 = 0) .

(iii) 'y(or c A Tiia) is a measure of the dispersion or spread of the
distribution.

(iv) S is a location parameter, and for 1 < a -. 2, 5 is the mean.
Only three analytic closed -form expressions for stable probability

density functions are known at present :

Gaussian (a = 2, -1 < i3 < 1) :

p (x) = exp
iiiire [ ( x 02] -00 <x < 00;

Cauchy (a = 1, j3 = 0) :

p(x) = :[(x - 02 + c27-1j - co < x < co ;

Pearson V (a = 4, (3 = -1):

1 1 x - 6)-1
exp [

c 1

p (x) = { c -,N k c 2(x - 5)
0

x __. 6

x < 5

and its conjugate density

p(x; a = 4, 0 = 1,7,5 = 0) = p( -x; a = 4, 0 = -1,7,5 = 0).
Series expansions are known for the remaining stable density functions
(Ref. 14, pages 138-148) :

p(x; a, [3, 7 = 1, 6 = 0)

(-1)kr (-ka ± I)
kir

= - E1 k!
x1,_,

.sin .1; (0 - a) 1 < a 2,
7 k=

p(x, a, )3, 7 = 1, 5 = 0)
1 (-1)kr(ka + 1) ,.. , . kr
7

= E0,
k!

2.,--..-. sin (0 __. a) 0 <a < 1,E1

p(x; a, 13., 7 = 1, 5 = 0)
1 c° ( )k xk

[
tk I sin (1 + (3)t I e-(213/7) t In tdti* a = 1,= - E k! o

where
tan (Or/2) = 13 tan (2-a/2), and x > 0.

' For asymptotic expansions for a = 1, see Ref. 17, Theorem 2.4.3 and Ref. 18.
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The reader can check that the series for a = 2 reduces to the series for
the gaussian, and the series for 0 < a < 1 and 101 = 1 are zero on a
half line (cf. Pearson V). For (0 < a < 1, -1 < < 1) and
(1 :5_ a < 2, -1 1), stable probability densities have support
on ( - co, co ). The series expansion for the density for 0 < a < 1 can
be used as an asymptotic expansion for the density for 1 < a < 2 for
1#1 1. It can be shown from the characteristic function directly that
all stable distributions are unimodal (Ref. 13, pages 158 to 161; Ref.
17, pages 66 to 76).

Figure 1 is a plot of various stable probability density functions for
fixed a (1 < a < 2) and several 13; for a near two, it is quite difficult to
distinguish symmetric = 0) and asymmetric stable distributions.
Figure 2 shows that around the mode, all stable distributions appear
roughly gaussian, for 1 < a < 2 (note the logarithmic scale).

For a in the neighborhood of two, the gaussian and nongaussian
stable distributions are virtually identical around their mode, and it is
only in the tails of these distributions that the differences are pro-
nounced. One crude measure of the point at which the gaussian and
nongaussian stable distributions diverge is the point at which the first
term in the asymptotic series (a < 2) equals the gaussian density :
for a = 1.90, 1.95, 1.99, this occurs at 3.342, 3.635, 4.158 gaussian
standard deviations, respectively.

One reason stable distributions have attracted little attention in the
mathematical modeling of uncertainty is found in the theorem from
Ref. 14, page 169: A stable distribution with characteristic index a has
all absolute moments of order p, 0 < p < a < 2: E(IxIP) < co. Con-
versely, E(Ix1P) does not exist, i.e., it diverges, for p > a, a < 2.

This suggests (albeit heuristically) that stable distributions may find
application in modeling uncertainty when, as the number of observa-
tions increases, for 0 < a < 1, both the sample mean and sample
variance "wander erratically," being dominated by one or a few ob-
servations, while for 1 < a < 2, the sample mean stabilizes but the
sample variance does not [cf. Refs. 1, 2, 3, 4].

The generalization of these ideas from discrete time sequences of
independent, identically distributed, random variables drawn from an
infinitely divisible distribution to continuous time sample functions
of an independent increment process is clear. The characteristic func-
tional of a stationary independent increment process can be uniquely
written as

In E[e0ir(e)-x(8)]]
o- ivu

u2

)
= (t -s)[ibv - 10-2v2 + 1-. (eivu - 1 1 + dv_(u)

+
f 0°

Jo+ k

(eivu -
1
+ \

+`u2 'i
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Fig. 1-Stable probability density functions [a = 1. 1 (0.2)1.7, /3 = -0.75(0.25)0.0];

scale factor c = 1.0; location parameter 3 = 0.0.
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for 0 < s < t < T. The parameters 3, 0.2, and (v_, v+) have been aenneu
already. In words, any independent increment process can be decom-
posed into

(i) A singular piece, called the drift, specified by b.
0.4

0.3 -

>7 0.2
a

0.1

0

0.4

0.3

5( 0.2a

0.1

0
-15 -10 -5 0

X

Fig. 1-(continued)
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Fig. 2-Stable probability density functions (semilogarithmic) [a = 1.1(0.4)1.9,
ft = -0.5(0.5)0.5]; scale factor c = 1.0; location parameter a = 0.0.
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(ii) A gaussian component, a component with continuous sample
paths that have unbounded variation with probability one
(w.p.1), specified by 0-2.

(iii) A generalization of the Poisson process called a jump process,
2
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Fig. 2-(continued)
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with sample paths that are constant except for simple jump
discontinuities at random times with random amplitudes,
specified by the Levy measure (v_, v+).

A (separable) pure jump process, a stationary independent increment
process with no gaussian component, has sample functions that are of
bounded variations with probability one if and only if

0-
I u dv_(u) +

0+
uclv+(u) < co .

An example of an independent increment process with bounded varia-
tion (w.p.1) is a stable independent increment process (0 < a < 1)
while stable independent increment processes (1 < a 2) have un-
bounded variation (w.p.1). The intuitive meaning of the Levy measure
is that first proposed by De Finetti : the Levy measure specifies the
density of the amplitudes of the jumps of the Poisson process, provided
the process sample paths are of bounded variation (w.p.1).

By allowing ö, a2, and (v_, v+) to depend upon time, a time -varying
generalization of infinitely divisible distributions or nonstationary in-
dependent increment processes is obtained. By examining nonanticipa-
tive functionals of either a discrete time sequence of i.i.d. random
variables drawn from an infinitely divisible distribution, or a con-
tinuous time independent increment process, a wide variety of Markov
processes are derived. Thus, the generalizations of the results presented
here to many other situations may sometimes be immediate. The
richness of this class of random processes suggests these results may
find wide application.

Historically, the mathematical study of independent increment
processes concentrated first on the gaussian case, then on the stable
case, and finally on the general case. To date, most of the engineering
literature has concentrated on the gaussian case or the purely Poisson
case, with the notable exception of Frost." It is hoped this work will
suggest promising avenues of constructive research by studying the
stable case, as well as shedding light on some of the quirks of the
gaussian case.

IV. DISCRETE TIME DETECTION OF TRANSLATES OF STABLE MEASURES

One of two sequences of independent, identically distributed (i.i.d.),
stable, random variables is observed, under one of two hypotheses
(Ho, HO

H1 rk = s' nk

Ho rk = 8° ± nk
The variation of a function f (t), 0 < t < T, is defined as sup EiN-731 I f (44.1) - f(ti)

where the supremum is over all possible partitions of the interval [0, T]: 0 = to < t,
<  <tN = T .

1 N.
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The observed or received sequence is denoted { ra, while Ink 1;.' is a
sequence of i.i.d. stable random variables with known parameters
(a, f3, y, b = 0) ; both s' and so are known. The a priori probability of
Hi is denoted 75 (j = 0, 1). (The extension of allowing s', e to depend
on k is immediate and is not dealt with here.)

The measures induced by I rklf under Ho and H1 are clearly not
mutually orthogonal. Two cases occur : for (0 < a < 1, -1 < < 1)
and (1 5 a < 2, -1 1), the stable measures have support on
the whole real line, and hence are equivalent. For (0 < a < 1, = 1
or - 1), the stable measures have support on a half line, and hence one
measure is absolutely continuous with respect to the other but not
vice versa : the supports of the two measures overlap except for the
interval [s°, s'). In either case, since the measures are not mutually
orthogonal, the decision rule, which as is well known minimizes both a
Bayes criterion as well as a Neyman-Pearson criterion, is the likeli-
hood -ratio test.' The goal is to find the exact form of this test, and
characterize its performance.* Performance here means calculating the
probability that H1 is chosen given that Ho is true, and the probability
that Ho is chosen given that H1 is true; these are called probabilities
of error of the first and second kind, and are denoted P10 and P01,
respectively. A quantity which is also of interest is the total probability
of error, defined as (roPio riPoi) -1-- PE -

4.1 The likelihood -ratio test

The structure of the optimum detector is handled in two separate
cases. First, when (0 < a < 1, -1 < 13 < 1) or (1 a < 2,
-1 1), the likelihood ratio is always strictly positive and finite,
and is

N (ri $i) Hi
A = A(r1, , rN) = L

i=1 pn(ri - s°) Ho

where pn(  ) is the probability density of nk. An equivalent test is to
compute the log likelihood ratio,

N Hi
A' = ln A = E 1 (ri) ln L = L' ,

i =1 Ho

where

l(ri) = In Pn(ri 81)
p n (ri - '

and this can be explicitly calculated using the series expansions de-
scribed earlier. Before doing so, it is worthwhile to examine two

 A discussion of the power of this test (or any other test) is deliberately omitted.

PROBABILITY MEASURES-I 1141



analytically tractable cases :

Gaussian (a = 2, -1 < ,8 < 1):

pn(x) = 1 e -z2/

AriTrc

1

2 "
.. 1(r1) = - r(ri - s92 - (ri - 80)2j

4c

-00 <x < 00;

1
2=- ri(si - s°) -

4c2
(s, 2 + (s°)2];

81 - N
=1nA= 2c2 j=iri - (4ciN [(392 (50)2j

Hi
'in L = L-

Ho

The log likelihood test can be implemented using only linear process-
ing. The rule has the interpretation of comparing an energy -like
quantity, the received signal suitably translated and squared, with a
threshold. Equivalently, the test defines a hyperplane in RN, and de-
pending upon which side of the hyperplane (r1, , rN) lies, H1 or Ho
is chosen. All of this is well known (see Ref. 5, pages 94-97 and 163-
173).

Cauchy (a = 1, = 0) :

pn(x) = - (x2 + c2)-1 00 < x < 00 ;

1(ri) = In
(ri - 80)2 + C2.

(ri - 892 + c2'

".* A' = E In
(ri - 80)2 + c2 S!,

In
i =1 (ri - 81)2 + 0 L = L'.

Unlike the gaussian case, the Cauchy log likelihood detector operates
nonlinearly on the observation. A straightforward Taylor series ex-
pansion of the log likelihood about ri = a (s' + .0) shows that for small
perturbations about this point the log likelihood is linear in the perturb-
ing quantity. On the other hand, for large excursions in any one
observation,

- si
>> 1,

ri - s°1
>> 1,

this one term in the sum behaves as 0 (rr') or, in other words, very
large excursions in the received signal are essentially (but not entirely)
discarded; this type of behavior will be called soft limiting. Only for
N = 1 does this test reduce to finding a hyperplane and determining on
which side of the hyperplane the observation lies in order to choose
I/1 or Ho.
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The cases (0 < a < 1, -1 < )3 < 1) and (1 < a _. 2, -1 < # < 1),
can now be examined ; it is a straightforward exercise to substitute into
the log likelihood the series expansions for stable probability density
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Si = +10
sO = 0
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r

Fig. 3-Representative log likelihood functions (81 = +10, s° = 0) (a fixed, 9
varying); scale factor c = 1.0; location parameter 6=0.
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Fig. 3-(continued)
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functions. Figures 3 and 4 show various representative log likelihood
ratios [1(r1)] for (1 < a < 2, -1 < 0 < 1) with a fixed a and /3
varying; Fig. 5 shows the same log likelihood ratios as in Fig. 4 with
/3 fixed and a varying. Similar results hold in the remaining cases
(0 < a < 1, -1 < 0 < 1).

Three points are emphasized here. First, the structure of the optimum
(log likelihood) detector is very sensitive to whether the underlying
distribution is gaussian or nongaussian stable ; this is not surprising,
because small perturbations away from a = 2 result in a singular
perturbation in the probability density function.* Second, when the
observation is in a neighborhood of 1(s° + s'), an identical Taylor series
argument, as used in the Cauchy example, is applicable, and small
perturbations about this midway point result in linear perturbations
about the corresponding log likelihood point. Third, when large
excursions occur,

ri - 01
>> 1,

c

ri - Si
>> 1,

c

the (log) likelihood for this term behaves as 0 (rr i), which follows from
asymptotic expansions.

* However, stable distributions in the neighborhood of a = 2 are all close with
respect to the topology induced by any reasonable metric, e.g., Prokhorov's metric.
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The first two points in the preceding discussion hold for (1 a < 2,
131 = 1). The third point must be slightly modified (assume now

13 = -1, since a similar argument follows immediately for ti = 1) :
l(ri) ri 0(rT9 for ri > 0, but for ri < 0, l(ri) r,-, O(- I ri I

1/a-1) (cf.

gaussian case) (1 < a < 2), while for ri < 0, a = 1,

l(ri) --, 0[-exP(ir 1 rii /2)]
It remains to consider { nk } i, a sequence of i.i.d. stable random

variables with (0 < a < 1, 101 = 1). Assume from here on fl = -1,
sl > O. The likelihood ratio is thus zero or strictly positive and finite,
and the log likelihood is either minus infinity or finite. First, consider
the Pearson V distribution as an example :

Pearson V (a = 1, 0 = -1):

1 I 1-4 x 0
pn(x) = 1Nr \ c

xPE- c/2x1

0 x < 0;

{
i 1

2 L r i - sl ri - s°
1 ]

ri ..-. 8' > s°
.' . l(ri) = - 2 r 1 - s°

3 In C. i - sl)
si > ri .-__ s° ;

.*. A' =
i

[ - ln (
.= HoL'ri-s°
N 3 ri - sl )

2 L r i - s' ri - s
c r 1 1 Hi

for all i,
A' = -co (choose Ho) if sl > r s°

for some i,

ri > 8' > 8°
1 <i <N,

1 i N .

If all the received signal samples are greater than s', the optimum
test is to compute the log likelihood and compare it with a threshold to
choose H1 or Ho. Note that for (ri - s')/c >> 1, l(ri) decays asymptot-
ically as 0(rri), and thus large deviations are weighted lightly. For
ri > s', (ri - s') < c3 l (7.1) e.,, (r1 - 81\) If one or more observations
fall in the interval Do, s'), the optimum rule is to choose Ho.

The remaining cases (0 < a < 1 and = -1) can be treated in an
identical manner, using the series expansion for the densities. The im-
portant points are (i) the optimum detector is fundamentally non-
linear; for (r - / c >> 1, l(r1) decays as 0(r11), (ii) if any observa-
tion falls in the interval [s°, s'), the optimum strategy is to choose Ho,

for ri > 8', ri - c, l(r 1) O[ (ri - sl)-011-a)1.

4.2 Performance limitations

To complete the solution of the problem, the probabilities of error
of the first and second kind must be calculated. This appears to be
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quite difficult in the general case of an arbitrary stable distribution
and bounds are developed in Section 4.3. In this section the per-
formance of the optimum (log likelihood) detector is found explicitly
for the three analytically tractable stable distributions to illustrate the
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Fig. 4-Representative log likelihood functions (s' = +10, e = -10) (a fixed,
varying) ; scale factor c = 1.0; location parameter b = 0.0.
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Fig. 4-(continued)

10 20 30

problems that must be addressed in the general case. The approach
adopted is to calculate the characteristic function of the log likelihood
probability measure induced under either H1 or Ho.

Gaussian (a = 2, -1 5 $ -. 1)
Section 4.1 showed that the log likelihood ratio is

N
A' = - E [fri - 892 - (r - 5921

4C2 i =1

and since the log likelihood is a sum of i.i.d. random variables, its
characteristic function can be found by using elementary Fourier tech-
niques. The results are :

_
In E(eivA' 1 H1) =

N
'(814c2

80)2
' [iv - v2]

In E(eivAl I Ho) =
(N ,s1 _

4c2

80)2
/ [ iv - v2].

Using the Fourier inversion lemma, the density of the log likelihood
under either hypothesis can be found in closed form to be

p(A' I Hi) =
1

exp[- (A' - b;)2 / 4c'2] -co < A' < 00
AlT17-rc'

j= 0, 1,

PROBABILITY MEASURES-I 1147



10

8

6

4

2

0

-2

-4

-6

-8

-10

15

10

5

0

-5

-10

CHARACTERISTIC INDEX a
SKEWNESS PARAMETER 13 = 0.0

a = 1.9-
---- a = 1.5

- ----- a = 1.1

/7
4/\\.

% h- \ i0 it

%v

I

/

I

H1: r=s1+n
Ho: r = sO + n

si = 10

sO = -10

I

CHARACTERISTIC INDEX a
SKEWNESS PARAMETER a = 0.5

a = 1.9

---- a = 1.5
---- a= 1.1

....\ // HI: r=s1+n

\ \ I Ho: r = sO + n

- I I\ s 1 = 10

\ / so ... -10\

I 1 1

-30 -20 -10 0

r

10 20 30

Fig. 5-Representative log likelihood functions (s' = +10, so = -10) (a varying,
0 fixed).
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where
N Is' - s°1

6; = -6° =4cz (s'
392, e

2c

The probabilities of an error of the first and second kind are

Pio = Pr [choose Hi I Ho true] = p (A' I Ho)dA'

= erfc
L' of;

) 2 {1 (11C1-;b(;)

exp 2-c/311] IF" 11;3 o';)21}-
L 2' ( 2c' / j

P0, = Pr [choose Ho I Hi true] = 1 - erfc C b;)

- 2
1 j +C Lc, ' 3;) exp [ \ 2c'

- 3; /)2j
1 Ar,

iFi 11; - 3; )21}
L 2' \ 2c' / j

where erfc () is the complementary error function (Ref. 20, eq. 7.1.2)
and 1F1 is a hypergeometric function (Ref. 20, eq. 7.1.21; see also
Slater, Ref. 21).

Cauchy (a = 1, = 0)*

It was noted previously that the log likelihood ratio can be written as

N
A' = In

(ri _ 80)2 ± c2
E (ri - s')2 c2

The characteristic function for the log likelihood can be found just as
for the gaussian case:

E(eivel I H

=
expL .(iv E In "

N (r, - s.)2 c2 cdrihrN

j = 1 (r; - c2 (7. - 81)2 c2

- HN

oo [(r,- 80)2 + c2livE(ri s')2 + c21-iv-1 dr;
= 1 -o3

f[(x0)2C2]iv[(xA)2c2]-iv-1dx N

where
A = - s°), x = r2 - 1(s1 s°).

*The following analysis was suggested to the author by S. 0. Rice; any errors in
the development here are the responsibility of the author alone.
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It now helps to realize

(x ± A)2 + c2 = (x2 + 46,2 + c2) (1 ± +2 A° 2x C2)

so that the characteristic function can be written as

E(eivA'11-11) = E f° (1 +
--c.,

=
CO 03 00

E E
-co 7n=0 n=0

iv

x2 4. 46,2 ± c2 1 X2 + 6,2 + c2
246,:c2Ax

(7r) e ± 462 + e2iN
c dx

i
Cm/-

ivn
) k

- 1\ I
x2 +A

26a2
+ c2 )

Vi -En

k
1N.1C\ dx

k 7 j k 1 X2 + A2 + C2 .

Only even powers of (m + n) contribute to the integral. This observa-
tion can be combined with the definition of the beta function (Ref. 20,
eq. 6.2.1.) to show that

00 CO

E (e"A' 1H 1) = [ V c2 E E
46,2 + C2 m=0 n=0 Cm/\-Zn

v -
1)

r2(ni+n+1)N( 4A2 ym+n)I2 (-1)" 2
02 + c2 7r l' (m + n ± 1)

Substituting (m + n) = 21, and using the identity (Ref. 20, eq. 6.1.18)

r (1 ± -i) 2-G
r (20 - 41r (l) '

results in the final form of the log likelihood characteristic function
assuming H1 is true,

(E(ei.A' I H1)
C2 5 -se'

= [- \Ic2 ± A2 (r.°
(A/2)2

0  02 + c2
y

The term

2F1
(-iv)2i (_

(l!)2
21) iv + 1; iv

r(-iv + 21)( -iV)21 = r (-iv)

N
- 2/ + 1 ; -1)]

is standard notation for Pochhammer's symbol (Ref. 20, eq. 6.1.22).
A similar expression results for the characteristic function of the log
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likelihood, assuming the other hypothesis is true :

,_.3 (1 + iv)21
E(eivAilHo) = L-

0
\IC2 + A2 IL1=0 (l!)2

((A/2)2 y 2F1( - 2/, iv; -iv - 2/ ; - 1) ]N6,2 ± c2

Since these series converge for all v ( - co < v < co ), as well as for all
(finite) values of A and c, the Fourier inversion lemma guarantees that
a unique inverse to these transforms exists, and thus in principle the
density of the log likelihood under either hypothesis is known and the
probabilities of error of the first and second kind can be calculated.
Numerical results are presented in a later section that were arrived at
in exactly this manner.

Several additional observations can be made. For N = 1 the log
likelihood is a random variable whose distribution has compact support
on the interval

Ain.4A2 + c2 -A '
81 +

In
41,6,2 + c2 ± A

4A2 ±c2 + A 2 - 1102 ± c2 _. A

and thus the support of the log likelihood distribution for any finite
number of samples, say N, is on the closed interval

4A2 + c2 _ A I 81 + 80 \ 4 A2 ± c2 + A
N In , A' N k ) S N In ,y A2 + c2 + A yA2 + 0 .._

Since the log likelihood distribution has compact support, it is well
known (Ref. 22, p. 121) that its Fourier transform has support on the
entire real axis. The second observation concerns the asymptotic
(v >> 1) behavior of the characteristic function of the log likelihood.
Since the saddle points of the log likelihood characteristic function
are at ±46,2 + c2, stationary phase arguments23 show that asymptot-
ically (v >> 1) :

E(eivA' IH 1) = [ fce exp ( iv In ((xx ±-. 0))22 -4*- c2c2) ( 7: ) (x - Z2 ± C2]

r....,

i
c2

(O2
(A2 + °) '

1 exp ( iv In 4, )A2+ C2 + A + i II"
1,1A2 + c2 ..._ A 4

+ exp (iv In 4,
c2 /°2 + c2 -A - i -74 ) 1 + 0 ( -vi ) r ,

-VW ± + A % j

so that asymptotically the characteristic function decays as I v ---N12. A
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similar result holds for the log likelihood characteristic function as-
suming Ho is true.

An alternate approach is to calculate the Mellin transform of the
likelihood probability density (for N = 1), then raise it to the Nth
power and find the inverse transform; this was investigated without
success. A direct approach, convolving the probability density of the
log likelihood with itself N times, was also attempted ; the resulting
integrals were intractable.

Pearson V (a = 1, 13 = -1)
Assuming H1 is true, the characteristic function of the log likelihood is

E (eivli I H1)
. . N

= fa, f exp 1 iv E [ - -3 ln (r i - al0 )
at I 2 ri - go

c( 1 1 \1 INI 1 (7 -1 - 8' li
2 ( r1 - s' r; - s° Jj ;=1 di; c

= II exp [ -N

j=1 it'

c
 exp ( 2(r; - 8') )dri 1

3
-2 iv ln. (r; - s1\ ivc i 1 1

s° )]r;-s° 2 k r; - s r; -
1 i

c 5; k

7.5

c

- al
exp ( c

2(r5 - c)) dril
1

= 1 Lc° exp [ - -3- iv ln ( xx 1.1 a° ) j2vc (x 1 _if* )]
1 i x- A ) -4 _ i c N,

cAri; \ c / '' k 2(x - A) ) dx}

where A = Rs' - s°), x = r; - i (s' + e). All attempts to simplify
this expression were unsuccessful. Stationary phase arguments show
that asymptotically (v >> 1)

E (eiv A' I H 1) ,-,, {[jr- k2 exp ( ivk3 ± i
4
-7 ) ] ± 0 ( ) I N ,

k iv v

where (k1, k2, k3) are complicated functions of (c, A).
An attempt was made to find E(eivA' Ho), assuming no observation

occurred in the interval (s0, s9; this approach encountered the same
problems as finding E(eiv" I Hi), and was unsuccessful.

It is worth noting that the log likelihood has only one maximum on
the interval (s1, 00 ), for E(eivA' I II j)(j = 0, 1), and hence only one
stationary point enters into the stationary phase asymptotic expression
for E(eivA' 1 I- I i) . It can be shown this behavior is typical of any asym-
metric ( IP I = 1) stable distribution. In contrast, the log likelihood has
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two maxima for any stable distribution ( -1 < < 1), and hence two
stationary points (cf. Cauchy).

Neither the use of transforms (instead of Fourier transforms)
nor convolving the log likelihood density with itself N times made the
problem any more tractable.

In the case of an arbitrary stable distribution, it appears quite
difficult to find the density of the log likelihood by calculating the
characteristic function of the log likelihood probability measure in-
duced under either H1 or Ho, because only series expansions are known
at present for stable probability density functions (except for the three
cases covered here). Even resorting to numerical approximation tech-
niques poses some quite difficult problems : for 0 < a < 2, -1 5 $ 5 1
(as for the Cauchy and Pearson V distributions) the log likelihood
characteristic function has its support on the entire axis, and oscillates
and decays asymptotically as 0[(eivw0/15)N] from stationary phase
arguments. * To accurately approximate numerically the probabilities
of error of the first and second kind from the log likelihood characteristic
function, the characteristic function must be approximated and stored
at a great many frequencies, and the total cost (especially due to
storage) can be quite high. Furthermore, one would like to carry out
calculations for many different values of (a, 13, 7, 6). The storage cost
plus the large number of parameter variations often desired can make
this program quite expensive at present.

4.3 Analytic performance bounds

Because of analytical and numerical problems encountered in ex-
plicitly calculating the probabilities of errors of the first and second
kind, as well as the total probability of error, bounds on these quantities
were investigated.

Let P1 and Po be probability measures defined on the same measure
space (SI, A). For 0 < q < 1, define

h, (Pi, Po) = (dPir (dP1-9

where µ is any measure defined on (12, A) such that /.1 >> Pi, µ >> Po.
(An example of such a µ isµ = Po + P1.) This definition of h, is seen
by inspection to be independent of A. Define

H,(131, Po) = fodh.2(Pi, Po)

* Different contours of integration (e.g., path of steepest descent) were investigated
without success.
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as the Kakutani inner product of Po with P1 (Ref. 24) ; the classical
Hellinger integral is a special case of the Kakutani inner product, and
is defined as Hi (Pi, Po). It is known that

0 < Hq(PI, Po) < 1,

with HQ = 1 iff P1 = Po a.e. The Kakutani inner product can be
thought of intuitively as the amount of "colinearity" or "overlap" of
two probability measures, with the larger the Kakutani inner product,
the larger the "overlap." A number of useful properties of the Kakutani
inner product are summarized in the following easily proven lemma24,25 :

Lemma: (1) Po and P1 are mutually orthogonal (denoted Po 1 P1),
<=> Hq(PO, P1) = 0 <=> hq(P0, P1) = 0

(2) If 0 < q < 1, 1-1, (Po, P1) is continuous in q. Four cases
determine the behavior of II ,(P 0, P1) at q = 0, 1:

(2a) If Po and P1 are equivalent, then II a(P 0, P1) is continuous
at q = 0 and q = 1.

(2b) If Po is absolutely continuous with respect to P1 but not vice
versa, then I - Ig(P 0, P1) is continuous at q = 1 but not at
q = 0.

(2c) If P1 is absolutely continuous with respect to Po but not vice
versa, then H q(P 0, P1) is continuous at q = 0 but not at
q = 1.

(2d) If Po and P1 are neither mutually orthogonal nor equivalent,
then .1 - I.,,(P 0, P1) is discontinuous at q = 0, q = 1.

(3) H q(P 0, P1) and its logarithm are convex functions, 0 < q
< 1. The convexity is strict if (dP i/dP 0)(x) is not constant

for all x E supp(P o) n supp(Po

It is instructive to rewrite Hg(Po, P1) in two different ways to ex-
plicitly show the relationship between the log likelihood functional and
the Kakutani inner product :

(i) H,(Po, Pi) = 1 exp {gin (dPi/dP0)}dPcs

= E { exp [q In (dPi/dPo)] I Ho I ,

(ii) H q(P o, P1) = f exp { (q - 1) In (dPi/dPo) 1 dPI

= E { exP [(q - 1) In (dPi/dPo)] i Hi i

(i) and (ii) are the Laplace transforms of the log likelihood probability
density (also called the moment generating function of A), evaluated
at q and (q - 1), and assuming Ho and H1 are true, respectively. It is
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196-197). Using Holder's inequality, it is straightforward to show that
the logarithm of H, and, hence, H, itself, are convex functions of q,
0 < q < 1.

Chernoff" was apparently first to use Hq(Po, P1) (where Po <<
P1 Lebesgue measure) to upper bound the probabilities of
error of the first and second kind, and his work has found widespread
application in the engineering and statistical literature (see also, Ref.
14, pages 517-520 and the references therein).

In the notation used here, Chernoff showed

P01 5 inf Hq(Po, PI)e-qv
o<q

P10 < inf Hq(Po,
q<1

where L' is the threshold in the log likelihood ratio test.
Chernoff's original ideas have been generalized in several directions.

Kraft" obtained upper and lower bounds on the total probability of
error. For some choice of L' (see also Ref. 28) :

min (ro, 701-11 (Po, P1) < PE < (7ori)11/4(Po, P1).

Hellman and Raviv" have also worked on this problem. Shannon,
Gallager, and Berlekamp" obtained lower bounds on the probabilities
of error of the first and second kind in terms of the logarithm of
Hq(Po, P1), and the first and second derivatives of the logarithm.

Here the Kakutani inner product plays two key roles, providing a
check on whether or not singular or perfect detection is possible
[if Hq(Po, P1) = 0], as well as giving exponentially sharp bounds on
the performance of the log likelihood ratio test if detection is not singu-
lar. Since the Kakutani inner product need only be calculated at a
small number of values of q to accurately numerically approximate
upper and lower bounds on error probabilities, unlike calculating the
probabilities of error of the first and second kind from the log likelihood
characteristic function, this approach may be useful as a practical
design tool because it is relatively inexpensive.

The following observations are strightforward exercises :

(i) When a sequence of N i.i.d. random variables is observed,
Hq(Po, P1) = e-AN, where A is independent of N, depending
solely on Po, P1, and q.

(ii) When Po and P1 are absolutely continuous with respect to
Lebesgue measure, and the corresponding densities are unimodal
translates of one another, then for fixed q, the larger the separa-
tion the smaller the inner product Hq(Po, P1).
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The Kakutani inner product Hq(Po, P1) can be explicitly calculated
for the three analytic cases discussed earlier:

Gaussian (a = 2, -1 < # < 1) :

p.(x) = 1/44rc exp( -x2/4c2) -00 < x < 00

1-1,(P0, P1) = eNA(q), (q)  In
J

pg(x - si)pV1(x - s°)dx
-00

,u(q) = - q(1 - q) (s' - s92/4c2;

Cauchy (a = 1, # = 0) :

P.(x) =c (x2 + C2)-1 - 00 < x < 00

H ,(P 0, P1) = [
co

73,1(x - si)p;,-a(x - s9dx]N
-oo

pg(x - - s°)dx =
C2VC2 [ ,i2,6,/2)2 1

(1 -. q)2; 2F1(q, -2j; q - 2j ; -1),
(302

where A = (s' - 39/2.
From tables (Ref. 30, 263.00) for elliptic integrals:

P1)
its' - V

r R 2c ) + 1] cn-i[ 1,R- +1]
NAl

2cAO2

where cn-i( , ) is an inverse Jacobian elliptic function.

Pearson V (a = 2, # = -1):

1 x
e-c12x x > 0

Pn(x) = clarr
0 x < 0

H q(P P1) = [ pg(X - Sl)g-q (X - S9C1X]
-co

The integral could not be expressed in any other analytic form. Since
P1 is absolutely continuous with respect to Po, but not vice versa,
Hq(Po, P1) is continuous for q E (0, 1], and is discontinuous at q = 0.
Apparently only in the gaussian case does the Kakutani inner product
or the Hellinger integral reduce to a simple form, and for general stable
distributions the problem appears to be analytically intractable at
present. Thus, it seemed worthwhile to investigate numerical methods
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for approximating the desired integrals. Again it seems important to
emphasize that an accurate approximation of the log likelihood prob-
ability density Laplace transform under H1 or Ho is needed at only a
small number of choices of q, so the calculations can be quite inexpen-
sive. In the previous section, the log likelihood characteristic function
had to be approximated at a great many frequencies, and the resulting
computation effort and storage made that program relatively more
expensive.

4.4 Numerical approximation of performance bounds

At present, three approaches have been investigated for calculating
stable probability density functions. The first involves summing power
series and asymptotic series," the second involves quadrature of an
integral representation of the density," and the third uses a discrete
fast Fourier transform of the characteristic function (Ref. 33, pages
35-42 ; and Ref. 34).

The approach used here was a combination of the first and third
methods. The stable probability density function was approximated
over its central region via a discrete fast Fourier transform, while
asymptotic expansions were used outside this region. This approach
avoids the difficulty of knowing how to merge the power series and
asymptotic series (see Ref. 31).

The Kakutani inner product was broken into two integrals. The first
integral was approximated by a fixed step size Romberg integration

1.0

0.1

0.01

0.001

H = f ,Vplx  s1) - sc1) dx

PIx) - Plx; a, p = o)

I I

a = 2

0.01 0.1 1.0 10.0

a = 0.5

a = 0.7

a = 0.9

a = 1.1

a=1.3

a=1.5

a=13

a = 1.9

100.0 1000.0

(51.50)
c

Fig. 6--Hellinger integral vs (s' - s°)/c [a = 0.5(0.2)1.9, 13 = 0].
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0.0001
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100

a = 1.90

= 1.91

-- a = 1.92

-a = 1.93
--a= 1.94
tea= 1.95

= 1.96

a = 1.97

`a = 1.98

Fig. 7-Hellinger integral vs (s' - s°)/c [a = 1.90(0.01)2.00, )3 = 0].

300

routine" using the discrete fast Fourier transform approximation to the
density (typically, 4096 points were used). The second integral was
approximated by a variable step size Romberg integration algorithm
using the asymptotic expansion for the density.

While this approach is adequate for finite mean stable distributions
(1 < a 2), and with care works for 0.5 < a 1, it is inadequate for
0 < a < 0.5, because the expense is too great at present. The reason
is that for 0 < a < 1, a great many evenly spaced points must be used
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to adequately approximate the characteristic function in the neighbor-
hood of the origin (where its derivative is unbounded), as well as at
other frequencies, and the expense of storing these values (to carry out
the discrete fast Fourier transform) is prohibitive. One possible ap-
proach around this problem is to simply use only the series expansion
(see Ref. 33).

All results presented here were calculated on a Honeywell 6070
computer using double -precision arithmetic (14 significant figures) ; the
estimated relative error in all cases was less than a tenth of one percent.

Figure 6 shows the Hellinger integral for various parameters
[a = 0.5 (0.2)1.9, $ = 0] as a function of [(s' - s°)/c], for N = 1.
This figure suggests an interesting conjecture, that the Hellinger
integral is smaller the closer the characteristic index a is to two, all
other factors being the same. No proof of this is known, at present.

Figure 7 depicts results of numerically calculating the Hellinger inte-
gral for various characteristic indices close to two [a = 1.90 (0.01)1.99,
(3 = 0], for N = 1. The singular nature of the gaussian distribution
(a = 2) is quite evident when compared with that of a = 1.99 or
a = 1.98.

Figure 8 shows µ(q) vs q for fixed [(s' - s°)/c]. j Again, the closer the
index is to two, the smaller the inner product.

Figure 9 presents Ai (q) vs q for various choices of [(s1 - 0)/c], and
fixed characteristic index a and skewness parameter )3; the larger
(sl - s°)/c, the smaller 1/,(Po, P1).

4.5 Comparison of the performance of the log likelihood decision rule
(a = 1.95) with a linear decision rule

It is interesting to compare the performance of the log likelihood
decision rule with a linear decision rule, when the observations are
drawn from a nongaussian stable distribution with characteristic index
near two. To be explicit, it is assumed the observations are i.i.d. stable
random variables (a = 1.95, 13 = 0), with iro = ri = i and sl = -
= S chosen for simplicity. The linear decision rule is simply

N H1

E 0.
i=i Ho

This sum is a stable random variable, with parameters (a = 1.95
= 0, N7, N si), assuming Hi( j = 0, 1) is true. The total probability

of error is equal to the probability of either an error of the first or
second kind,

PE = P10 = P01,

and can be computed from the series described earlier, or from pub -
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Fig. 8-Logarithm of Kakutani inner product H, vs q [a = 1.1(0.4)1.9, # = 0]
[(s' - 8°)/c = 10].

lished tables." This is plotted in Fig. 10 as a function of [(s1 - s°)/c]
for various N. The same figure includes plots of the Hellinger integral
upper bound on the total probability of error using the log likelihood
decision rule. The figure makes it quite clear that the log likelihood
decision rule, for many cases of interest, has a much much smaller
probability of error than the linear decision rule.

1160 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



Asymptotically, the total probability of error for the linear detection
strategy behaves as

PE r''i ° a (1%1711a]a)
... PE", 0E(S/c)-aNi-a],

-10.0

-5.0

-2.0

-1.0

-0.5

-0.2

-0.1

-0.05

-0.02

7 = Ca;

CHARACTERISTIC INDEX a= 1.90
SKEWNESS PARAMETER t3 = 0.0

-0 01 I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q

1.0

Fig. 9-Logarithm of Kakutani inner product H, vs q [ (s' - 30)/c = 1, 2, 10, 100]
(a = 1.90, 13 = 0).
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Fig. 10-Linear processing probability of error and Hellinger integral upper bound
on nonlinear processing probability of error vs (81 - s°)/c (a = 1.95, = 0).

while the probability of error for the log likelihood detection strategy
asymptotically behaves at

P& = o(e-AN),
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where A = A (a, #, 7, S) > 0, independent of N. This simple asymp-
totic analysis suggests that the log likelihood decision rule has a much
smaller probability of error than the linear decision rule, for large N,
which is borne out in Fig. 10.

4.6 Comparison of the upper and lower bounds and PE

It remains to compare the bounds on total probability of error, and
probabilities of errors of the first and second kind, with the actual
quantities. None of the bounds employed here are tight, because the
upper and lower bounds have different exponents. This program is quite
difficult, and has only been carried out analytically for the gaussian
case, and numerically for the Cauchy case. The remaining cases can
be handled numerically following Shannon et al." For simplicity, from
this point on it is assumed that ro = ri = 1, 81. = _.so = S.

Gaussian (a = 2, -1 5 $ 5 1)

Earlier it was shown that

PE = P10 = PO1 =1&l ( 2Ncs )

This can be upper and lower bounded tightly by (see Ref. 20, eq.
7.1.13)

where
KLe-Ne2/ 4e2 < PE < ICC-141821442,

KL
1./ 4/Trs 1N822 + 8)-1.7_i
2 k c \ i c

1 ( -a 8 NINs2 16 11Ku = -2. -c + + 7 .--

Since both KL and K. behave as 0 (N-i), PE ,..., e-Ne214e2-0[LN(N)] where

K. and KL introduce factors of log (N) in the exponent. The Hellinger
integral bounds are 27

1 exp ( -N s2) < PE < 1 exp ( - N--82)
2c2 2 4c2

By inspection, the exponent in the upper bound agrees with the tight
lower and upper bound exponent [to within a factor of LN (N)]. The
Chernoff upper bounds" on Pio, Poi are

Poi S exp[-Nq2(s/c)2]

or P10 5 exp[-N(1 - q)2(s/c)2],

and for q = 1 these exponents agree with the tight upper and lower

for some q E [0, 1]
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bound exponents to within a factor on LN (N). The lower bounds" are

Poi > 4 expE-Nq2(s/c)2 - q(s/c)-a-V]
for some q E [0, 1]

or P10 > 4 exp[-N(1 - q)2 (8 / c)2 - (1 - q) (8 / c)-NT-Af],

and for N sufficiently large, the upper and lower bound exponents
are identical within a factor of 0 (N-i).

Cauchy (a = 1, /3 = 0)

The real and imaginary parts of the characteristic function of the
Cauchy log likelihood were calculated numerically at 513 evenly
spaced frequencies starting at v = 0 from a direct numerical quadrature
of the (complex) integral

(x + 8)2 + c2 c dx
(v) = exp (x - 8)2 c2

(x - 8)2
c2'

V = IcAv, k = 0,  , 512

using an adaptive, step -size, Romberg, numerical integration algorithm,
with an estimated error of 10-10 (all arithmetic was performed in
double precision). One representative characteristic function is plotted
in Fig. 11. The stationary -phase asymptotic expression was used for
frequencies outside of this range. The resulting approximation to the
characteristic function was multiplied by itself N times, and a numeri-
cal approximation of the inverse transform of this resulting characteris-
tic function was calculated, using a fixed, step -size, Romberg algorithm
for the first 513 frequencies; an adaptive, step -size, Romberg algorithm
was used for the tail of the inverse transform. The final results are felt
to be accurate to three significant figures. The results are plotted in
Fig. 12, along with the Hellinger integral upper bound. Clearly, the
Hellinger integral upper bound is quite conservative ; it is straight-
forward to check that the Hellinger integral (squared) lower bound is
too optimistic, from the curves in Fig. 12.

4.7 Generalizations

The extensions of the results in this section (as well as the following
section) to a much wider class of infinitely divisible distributions is
immediate. Here these extensions are sketched. Elementary arguments
(Ref. 15, page 540) show that if the Lthry measure of an infinitely
divisible distribution behaves asymptotically as a power, i.e., v(X, 00 )
ti 0(X -p), v( - 00, -X) 0 (X- q), then Pr [x > X] 0(X -p),
Pr [x < - X] r., 0 (X -q), where p, q > 0. Given a sequence of i.i.d.
random variables drawn from such a distribution with one of two
location parameters, it is straightforward to check that results analo-
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gous to those in this section hold : (i) l(ri) r- OK% (ii) the probability
of an error of the first and second kind, using a log likelihood ratio test,
is upper bounded by exp ( -AN), (iii) using a simple linear test to
discriminate between hypotheses, i.e., adding up the observations and
comparing the sum with a threshold, results in the probability of an
error of the first or second kind behaving as 0(NL'-P), 0(NL'-q), and
choosing L' directly proportional to N (as in the gaussian case) gives
P01, P10 ^., 0(N'-P), 0(Ni-G), which is much worse than the perform-
ance of the log likelihood test in this asymptotic sense.

V. DISCRETE TIME DETECTION OF STABLE MEASURES WITH
DIFFERENT SCALES

In this section, one approach is studied for hypothesis testing of
different scale parameters; since the ideas are quite similar to that just
developed, the treatment is much shorter.

One of two sequences of i.i.d. stable random variables is observed
(under one of two hypotheses, Ho and Hi) :

H1 rk = s'nk
Ho rk = Onk

The observed or received sequence is denoted { nk } iv, where the {nk}i
are i.i.d. stable random variables with known parameters (a, /3, -y = 1,
5 = 0) ; both s' and e are known. The a priori probability of H; is ir;
(j = 0, 1). The measures induced by 1 na under Ho and H1 are
equivalent for (0 < a .. 2, -1 ._-_ 13 ... 1) ; it remains to find the
optimum decision rule, the log likelihood ratio, and characterize its
performance.

1.k ... N.

5.1 Likelihood ratio test

Before discussing the general case, the three special analytically
tractable cases are treated.

Gaussian (a = 2, -1 < 0 -_ 1) :

Pn(x) = 1___ e--.214

11477r

1(ri) = In Pn(ri/s1)/si = In -so) sop n(riisO / 81

N
. A' = E l(ri) = N In ( 4

1=1 s

-co <x < co;

_ 1.r2, [ ( )2 ( 1 )2]

7 1 V I 1 \21
1=1

N Hi

- L 2si ) - 2.s° ) j. E r2i .
L'.

H

The test involves squaring the observations and comparing with a
threshold; this test is the well-known chi -squared test (see Ref. 5,
pages 163-173).
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Cauchy (a = 1, = 0) :

P.(x) =
1
-7 (x2 + 1)-1 < x <

. 1(ri) = In
(nisi) is'

= In
so

r
(sor

(ri/80)/so ( 81) rin (8,2
N

.'. A' = AT In - E=3. ln
±±(1)22

it(0H>1 L'

For Iril <<s°, s', Taylor series arguments show l(ri) behaves as it just
as in the gaussian case. However, unlike the gaussian case, where /(ri)
behaves asymptotically ( I ri I >> 81, s°) as 0 (71), here l(ri) In (s1/s°)
+ 0 (r ; again, large excursions are soft limited, or essentially
discarded.

Pearson V (a = Z, $ = -1):

1
-ixx-,{

0

x > 0

x <0;

.'. /(ri) = In
pn(ri/si
pn(ri/s9ve/80

1{- In ( 5) _ ,1 Es, - 801 (ri > 0) ;

0 (ri < 0)
1 HI

... A'= - N- In ( .s -°l
`

- ) _
2
_ (si _ so) E (r) <L'.

2 s i = 1 Ho

Again, large deviations in ri are soft limited or weighted lightly, since
asymptotically (ri>> sl, s°)1(ri) behaves as 0 (ri 1).

The remaining cases can be treated in identical manner using the
power series and asymptotic series expansions for the stable probability
density function. For (0 < a < 2, -1 < /3 < 1; a 0 1), the important
points are : (i) for ri << s°, *91, the ith term (/3 0 0) in the log likeli-
hood behaves as ri, unlike in the gaussian case, while for # = 0,
l (ri) ti ri, (ii) for I ri I >> s°, s1, soft limiting of large deviations is used,
and the log likelihood's ith term behaves as a In (s1/so) + 0( 1r il-a).
Figures 13 and 14 show representative log likelihood ratios for fixed a
and varying 0, and fixed 13 with a varying, respectively, computed from
power series and asymptotic series.3'

The final case (0 < a < 2, # = 1, or # = -1) must be handled
with a little more care. Only the case = -1 is discussed, since the
other follows immediately. For (1 < a < 2), the first point made above
is still valid, while the second point is valid only for ri > 0, ri >> e, I.
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For r= < 0, I ri I >> s°, s', l(ri) behaves as a In (81/80) + 0( _ ri 1/1-.),
i.e., decreasing with I ri I. For (0 < a < 1), for ri > 0, ri << s°, s', the
ith term in the log likelihood behaves as 0(ri-(1/1-a)). Finally, for a = 1,
l(ri) = 01 - exp[ (r / 2) IriI]) as ri - .

5.2 Performance limitations

The general problem of finding PE, Poi, and P10 for arbitrary stable
distributions is still open, both analytically and numerically (because
of expense). The three special analytic cases are treated here, to point
out the problems that must be overcome in the general case, if one
attempts to find the log likelihood probability density by transform
methods.
Gaussian (a = 2, -1 1) : assuming hypothesis H j = 0, 1)
true, the Fourier transform of the log likelihood probability density is

E (e iv"' I Ho) = ) {1 ± iv R
0

- 1

These Fourier transforms can be inverted:

P (x I H,) = (sir( (892
x(N12)-1-

s0)2

exp( (8,2(s_9200)2 X) /r (N/2)

P (x I H0) = ( (sir(8-92(sor )N/2 x(N/2)-1

(e)2
 exp (sir _ (s°)2s)/r(N/2)

-N/2

E(eivA' =
81 1 - - - 1SO

ivN sl 2

0

0 ivN

x=A'-Nln( Si

,o
p(xiH,)= P(x 'Ho) =0 x = A' -N ln <0.

si

Finally, the probabilities of errors of the first and second kind are :

N2 ( L'Usi)(2s0-)2 (s92] r

 iFi r 2 ; 1 + ; 111 (s9(2s0T2 (91)2] )/r (N/2)

2 ( LT(892 - (.392] y/2oi - N (892

C2T; N2 LT(0)(28,72 (892] )/r (N /2)

L' > N In (e/s1)
Pio = 1, Poi = 0 L' < N In (e/si).
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Fig. 13-Representative log likelihood functions (a fixed, i3 varying).
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Fig. 13- (continued)

Cauchy (a = 1, = 0) : the log likelihood characteristic function under
H1 is

E (eivA' I H =
r

1

s1 sl
j_. [x2 (s0)21ivEx2 (81)21-iv-ldx

cc

IN

= 1 (sl /s0) \s0 ) iv -4-'2F' iv + 1, -1- ; 1 ; -1 +
2 N

where sl > s° was assumed. Stationary phase arguments show that the
characteristic function decays asymptotically as 0( I v I --N12). Again, the
Fourier inversion lemma guarantees that the problem of finding Poi
is solved. A similar analysis holds assuming Ho is true.

An alternate approach is to compute the Mellin transform of the
likelihood probability density function; the results are

E(Aa-i I Hi) = ( -s-1-6 )8 2F, s -1 1 (110
2 N

_ ) 2 , ,1
SD s
si

1 2 N
E(11'-1 II 0) = {(--5  2F 1[8 - 1, ; 1; -1 + (

8

Unfortunately, it is not clear how to invert this transform to find Poi
and Pio.
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A third approach is to convolve the probability density of the log
likelihood with itself N times; for N = 2, the convolution involves
elliptic integrals; successive convolutions are quite formidable. This was
not investigated further.

Pearson V (a = 1, 0 = -1): the log likelihood characteristic function
is (assuming now s° > s')

E(eivA111-11) = I (81)"(s9-"/ [1 - iv (5 -1)N12

E(eivAi IH 0) = {(si)iv(e)-iv / [1 - iv (1 -
The log likelihood probability density is

N
P (A' ill i) = 0,

81 \N12
x(N12)-is-00-.11.1)./r

(s_ _ 81 2

i° ) j

81\11 N12 .

x = A' -
so

p(A'IH0) = ( x(N12)-1,-(80_848,/ , (N____)
2

P (A' I H1)
N

= P (A' I Ho) = 0 A' < In (si/s°).

N-2 In (sYs°) > 0

The probabilities of errors of the first and second kind are

2 i L'(s° - s') \NI2 ( N .N L' (si -e)\ irtN\
P10 = 1

N k si ) 1 1 k 2 ' 2 ' 8' )/ k 2 )
NL' > -2 In (sye)

2 ( L'(s° - 81) )" 1F, (127. ; A; + 1; 11(8180- 8°) )Poi N
s°

/r (-)=

Pio = 1, P01 = 0 L' < -2 in (sYs°).

Again, the general problem is still open analytically, because closed -
form expressions for stable probability density function are unknown
at present (except for the three cases covered here). The general
problem is expensive to tackle numerically at present, because of the
expense of both calculating and storing the characteristic function of
the log likelihood probability density, and because of the expense of
repeating these calculations for many different parameter choices.
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5.3 Analytic performance bounds

Apparently only in the three special cases does the Kakutani inner
product reduce to simple expressions. These results are recorded here,
while Section 5.4 discusses numerical approximations of these integrals
for various cases of interest.

Gaussian (a = 2, -1 .. 13 -.C. 1) :

pn(x) = -1 e-x214
1Wr

-00 < x < 00

Lupo, Po = 1 f E4Pn Nig [iPn (-11' dxrco s si so

H,(Po, po = (e) -0(s.)_0. -0N
((Q')2

1
(80
- )2q)-N/2.

Hi(Po, Pi) = [
2 Si
1 (10. +

so)sl
] N12

Cauchy (a = 1, 0 = 0):

pn(x) =
1
7r- (x2 + 1)-i

li,(Po, PO =

where

-00 <x < co

Ifl[Pn(;)]q[-sloP.(-st)rq
[ ;

\;
)]q [ 810

(s° )]1-4 dx
(8)2

= ( 7,81' )q 2Fi (I, q; 1; -1 ± t-8,*).

The Hellinger integral can be evaluated from the tables in Ref. 30
263.00:

Hi (Po, PO = [-1- cn-1 ( -1, i(s1 - 89 )2 rr 24:sfsi

Pearson V (a = I, $ = 1):
1

P.(x) = -{112r
x-;e-ix x Z 0

0 x < 0;
(s1) q (891- q \Ar12

Hq WO, P,) = LI + (1 - q)s° )

21/WW \N12
Hi (PO, P,) = G± 50 )
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5.4 Numerical approximation of performance bounds

The methods and checks employed were identical with those used
in the detection of location for accurately calculating the inner product
of the two stable probability measures.

Figure 15 shows i2(q) vs q for fixed (81 / so) and [a = 1.1 (0.4) 1.9,
= 0]. This raises the conjecture that the closer the characteristic

index is to 2, the smaller the Kakutani inner product.
Figure 16 shows 1.1(q) vs q for fixed (a, /3) and various values of

(sYs°): the smaller the (s1 / so) , the smaller the H,(Po, P1).
Figure 17 shows Ili(Po, P1) for various (a, $) as a function of

(st/s9 ; note that the case a = 2 does not appear to be singular here.

5.5 Comparison of performance of log likelihood decision rule
with a chi -squared test

How does the performance of the log likelihood test compare with
that of a chi -squared test, in particular for characteristic index a near 2?

The chi -squared test involves

N H1

E ri L'.
i=1 Ho

The distribution of any one of the ri can be found from the series
described earlier :

1

= 2s7VT.,Pn[x =
T;i; a, $, (s')a, 3 = 0]

0

ri > 0

ri < 0.

The discussion now follows from that in Section 4.6, but is not as
detailed. Using elementary arguments (Ref. 15, pages 268-272), it can
be shown that if 0 < a < 2, -1 < /3 < 1, then

Pr ( > L'IH) 0(NIP-(.12)).
i=1

If L' is set at a threshold which is a fraction of N, then

pE ^-1 0(N1-(a12));

i.e., the probability of error grows with N, the number of observations.
For comparison, the upper bounds on P01, P10, and PE for log likelihood
detection all behave as 0(e -4N), where A depends on (a, 13, s', and e).
Thus, the log likelihood test is asymptotically far superior to the chi -
squared by the above argument.
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00 al 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 15-Logarithm of Kakutani inner product II vs q = 1.1(0.4)1.9, = 0]
(eve) = 16.

VI. DISTINGUISHING STABLE PROBABILITY MEASURES WITH DIFFERENT
CHARACTERISTIC INDICES AND SKEWNESS PARAMETERS

For completeness, this section touches on the form the log likelihood
test takes for discriminating between stable distributions with different
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characteristic indices and with different skewness parameters. Per-
formance of this test will not be covered here; much of the earlier
discussion on performance is applicable here. A table in the Ap-
pendix summarizes the behavior of /(ri) both asymptotically and for

HI: r= sin
Ho: r = On

SO = 1

a= 1.90, f3 = 0.0

q

Fig. 16-Logarithm of Kakutani inner product HQ vs q [(a = 1.90, # = 0),
(80/81) = 1, 4, 8, 16].
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1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

,1 11 1 x- p(-x ) p (73)dx

p(x) = p(x; a, 3 = 0)

= 1

= 1/2, 1/4, 1/8, 1/16

a = 0.70

a = 0.90

a = 1.10

a= 1.30

a = 1.50

a = 1.90

a= 1.95

a = 2.00
1.0 2.0 5.0

(SC) st)

10,0 20.0

Fig. 17-Hellinger integral vs (s'/s°) [a = 0.7 (0.2)1.90, j3 ---- 0].

ri I << 1, and includes both the results in the Sections 5.4 and 5.5 as
well as the results of this section.

One of two sequences of i.i.d. stable random variables with known
parameters is observed. In Section 6.1, the parameters are (a', (3, y = 1,

= 0), where 0 < a° < 2; in Section 6.2, the parameters are
(a, i3i, 7 = 1, 6 = 0), where -1 < 13° < 13' < 1 (recall j = 0, 1). The
special case (a = 1, 1131 = 1) is covered in the table in the Appendix
but not in the discussion here.

6.1 Distinguishing different characteristic indices

For -1 < 13 < 1, the measures Po and PI are equivalent, so the log
likelihood ratio is always finite. The log likelihood test is

H1
A' = E /(ri) < L',

i =1 Ho

where

/(ri) = In pn(ri; a', )3, = 1, 6 = 0)
pn(ri; a°, /3, y = 1, a =
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Two cases arise: symmetric (,3 = 0) and asymmetric ($ X 0, -1 < fi
< 1) stable distributions. For the symmetric case, the distributions
are symmetric about their unique mode, and thus /(ri) r-, I 71 I for

ri I << 1. For the asymmetric case, the modes no longer coincide, and
1(ri) ri for I ri I << 1. Recall that for 1 < a < 2, for fixed skewness
$ (f3 < 0) the mode decreases as a decreases; for 0 < a < 1, the op-
posite is true. Thus, l(r 1) is the difference of two unimodal functions
and, in general, should have two points of zero slope. For I ri I > 1,
1(ri) = 0( -In I ri I), so large deviations are weighted quite strongly.
Note the log likelihood distribution has its support on whole line, un-
like the two previous sections, except for (0 < ao < 1 5 al 5 2,
I/31 = 1).

For $ = -1, and 1 < a° < a1 < 2, the measures Po and P1 are
equivalent, and the above discussion follows immediately with one
exception: for ri >> 1, 1(ri) = 0( -ln ri), while for 17.11 >> 1, ri < 0,
l(ri) = 0( 1 ri 1 ao/ao-1).

For /3 = -1, 0 < < a1 < 1, the measures Po and Pi are equiva-
lent. For ri > 0, I ri I << 1, l(r 1) eico/1-ao, while for r>>
/(ri) = 0( -ln ri).

Finally, for $3 = -1, 0 < a° < 1 < a' < 2, the measures Po and
Pi are neither equivalent nor mutually orthogonal. For ri >> 1,
l(ri) = 0( -In ri), while for ri < 0, l(r 1) = 00 . For ri > 0, ri << 1,
/(ri) = 0 (4"/"°-').

6.2 Distinguishing different skewness parameters

For -1 < 13° < $1 < 1, the measures Po and Pi are equivalent, so
the log likelihood ratio is finite. The discussion follows that of Section
6.1 exactly, with the difference that if ri >> 1, /(ri) = In (Rigto)

0(ria), while if I rd > 1, ri < 0, 1(ri) = In (LI/L0) + 0( I ri
For -1 = /3° < < 1, 1 5 a < 2, the measures Po and P1 are

equivalent. For I ri I >> 1, ri < 0, l(r 1) = 0( I rd aia-1), while for ri >> 1,
l(ri) = In (RI/R() 0(r= a).

For -1 = fi° < 13' < 1, 0 < a < 1, the measures Po and Pi are
neither equivalent nor mutually orthogonal. For ri >> 1, l(ri)
= In (Ri/Ro) 0(rr"), while for 0 < ri << 1, /(ri) = 0(71/a-'). For
0 > ri, l(ri) = 00 .
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* See the Appendix for definition of constants R5, 1,5(j = 0, 1).
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APPENDIX

Asymptotic Behavior of Log Likelihood Ratio
A.1 Location (3)

1(x) = In P(x; (r' 13,1 7' ',',) Bo < si

X -) - co
p(x; a, py 7, ON

X -- + co
a = 2 0(x) 0(x)

0 < a < 2, -1 < 0 < 1 0(x-') 0(x-1)

1 < a < 2, /3 = -1 0(x-9 0(- lx11ia-9
a = 1, 0 = -1 0(x-i) 2-80( _ e(T/2)1 11)

x->-1-00 xiBi
0 < a < 1, /3 = -1 0(x-') 0( - (x - oi)a/2-1).

A.2 Scale (c)

i(x) In P(x; a, 0, 7'1 = ei, 3 = 0) co < Ci
P(x; a, $, To = co, 3 = 0)

x -4 + co x --), -co

a = 2 0(x2) 0 (x2)

0 < a < 2, -1 < 0 < 1* a In (C1/co) + 0(x -a) a In (c1/co) + 0(lx I')
1 < a < 2, $ = -1 a In (el/co) ± 0 (x-") 0( - ix I a/* -1)
a = 1, $ = -1 a In (c1/co) + 0(x -a) 0( -e(42)izicil)

x-4 +00 X I, 0

0 < a < 1, /3 = -1 a In (ci/co) ± 0(x -a) 0( -xa/a-').

A.3 Characteristic index (a)

/(x) In P(x ; al' $' 7 = 1' B = 0) 0 < ao < al 5 2

x -), -CO

=
p(x; ao, f 3, 7 = 1, 3 = 0) '

x -> + CO

0 < ao < al = 2, -1 < 0 < 1 0( - x2) 0 ( - x2)

0 < ao < ai < 2, -1 < 0 < 1 0(-In x) 0(-1n I x I)
1 < ao < al = 2,$ = -1 0( - x2) 0( ix 1 aorao-l)

1 < ao < al. < 2,13 = -1 0( - In x) 0( 1x 1 cc:0/(0)-0

1 = ao < al = 203 = -1 0( -x2) 0 (e ort2)1 .0

1 = ao < ai < 2, # = -1 0( -In x)
x -4 + co

0 (corm Ix')

x I, 0

0 < ao < 1 < ai < 2, # = -1 0( -In x) 0(xadao-l)

0 < ao < al. = 1, 0 = -1 0 ( - ln x) 0 (xa"--1)
0 < ao < al. < 1, 0 = -1 0( -In x) 0(xa"-1).

 This excludes the Cauchy (a = 1, 0 = 0), which was examined in the text as a
special case.
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A.4 Skewness 03)

1(x) In P(x; a, 01, = 1, 3 = 0)
-1 5_ /30 < 131 1

X - 00

=
P(x; f3o, = 1,b = 0)

x + co

0 < a < 2, -1 < 130 < /31 < 1 In (R1/R0) 0(x-a) 111 (L1/L0)
0(IXI-a)

1 < a < 2, -1 = $o < /31 < 1 In (R1/R0) 0(x-a) 0(1x I ala-1)
a = 1, -1 = 130 < )31 < 1 In (R1/R0) 0(X-c) 0(e(7/2)1s1)

1 <a <2, -1 = 130, 1 =Q1 0( -xc"--1) 0(IXIala-1)
a = 1, -1 = 130, 1 = Q1 0(-00)1.1)

-> + co

0(6(7/2)ixi)

x 0

0 < a < 1, -1 = /30 < /31 < 1 In (R1/R0) + 0 (x- a) 0(xala-1)

= sin ; (0, - a), tan (re2/2) = 13; tan (ra/2)
j = 0, 1

Li = sin ; (Oa - a), tan (r02/2) = -At; tan (7a/2).
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Distinguishing Stable Probability Measures
Part II: Continuous Time

By B. W. STUCK
(Manuscript received April 1, 1976)

A sample function from one of two stable, stationary, independent -
increment processes is observed for a finite time interval. For differing
location, characteristic index, skewness, or scale, the probabilities measures
induced by the process under either hypothesis are found to be mutually
orthogonal. By suitably modifying the Levy measure associated with each
probability measure, continuous -time tests for differing characteristic
indices, skewness, or scale parameters can be posed as nonsingular detec-
tion problems; distinguishing location remains a singular detection
problem. For the nonsingular problems, the likelihood functional is
found explicitly, and performance limitations are determined. As an
alternative approach, the observed sample function is sampled at discrete
time instants over a finite time interval, and the performance of log likeli-
hood test is studied as a function of sample spacing with a fixed, total
number of observations.

I. INTRODUCTION

In this paper, the work begun in Part P on discrete -time hypothesis
testing of stable probability measures is extended to continuous time.
In contrast to the earlier work, analytic closed -form expressions are
found for both the log likelihood functional and Chernoff-type upper
and lower bounds on various error probabilities for the log likelihood
test. As in Part I, the singular role played by the gaussian probability
measure within the family of stable probability measures is em-
phasized, both in terms of the form of the log likelihood functional and
the expressions for Chernoff-type bounds on error probabilities. The
earlier work dealt with observing N samples from a stable process
with one of two sets of parameters at time instants At apart; here, we
fix the observation interval at duration T, and allow the number of
observations to become infinite while the spacing between samples
shrinks to zero (N -+ 00, At --+ 0, such that N  At = T).

Section II briefly reviews some properties of independent -increment
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processes and infinitely divisible distributions that were touched on in
Part I. Section III draws on this tutorial material by considering an
elementary hypothesis -testing problem for discriminating between two
Poisson distributions with differing parameters.' Section IV briefly
reviews some work by Newman2.3 and Newman and the author4'5 on
calculating log likelihood functionals and Chernoff-type bounds on
error probabilities for the path -space probability measures induced by
independent -increment processes. These results are used in Section V
to show if one or more of the parameters of the two stable -probability
measures (0 < a < 2) differs, then the two path -space measures are
mutually orthogonal. Section VI develops one remedy to this so-called
singular detection by modifying the Levy measure of the two distribu-
tions to account for the real physical limitation that the process can
only be observed to within an accuracy intrinsic in all measurement
apparatus. Section VII considers a different but related issue, where
the observed sample function is sampled at discrete time instants over
a finite time interval, and the performance of the log likelihood test is
studied as the sample spacing shrinks to zero ; this allows one to trade
off the sample spacing, or the rate at which samples are observed, for
the total duration of the observation interval, or the total number
of samples.t

The results developed here are novel in that one can immediately
ascertain explicit bounds on the performance of the likelihood ratio
test, while it is not clear how to do this after reading the literature
(e.g., see Refs. 6 through 10). The method of proof here relies on
probabilistic semigroup tools or on the explicit nature of the sample
paths of an independent -increment process, and this appears to be
novel when contrasted with such approaches as those referenced above.

II. MATHEMATICAL PRELIMINARIES

Let r; (t) (j = 0, 1) be a scalar real -valued random process, with
right continuous sample paths with left-hand limits everywhere de-
fined. More explicitly, let r; (t) be the sum of a deterministic drift
process, bit, and N independent Poisson processes (labeled by k,
15k 5N), where each Poisson process has rate Xik and hops of
height kik. In words, rj(t) has simple jump discontinuities of heights
kik, 1 S k 5 N, at random times. The characteristic functional of

The results in Sections III through VI were first announced in Proceedings of
the 13th Annual Allerton Conference, University of Illinois, Champaign -Urbana,
Illinois, October 1-3, 1975, pp. 234-239.

t The results in Section VII were first announced in Proceedings of the 1976 Johns
Hopkins Conference on Information Sciences and Systems, Baltimore, Maryland,
March 30 -April 2, 1976, pp. 151-154.

See Ref. 1, Section 3.1 and its list of references for much more information.
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r; (t) is easily seen to be (t > s),

1

N
(t - s) ivbi +ELeiv[ri(1)-ri(8)]] = exp E xik(ei.hik - 1)

k =1

If we now pass to the limit of an infinite sum of Poisson processes,
then the jump amplitudes {hid take on a continuum of values, and
the characteristic functional becomes (t > s)

E[eiv[raci)--tiwij = exp (t - s) [iv6i + (eiru - 1)dvi(u1 di1.0.
where v is called the Levy measure associated with the path -
space measure of r1, and generalizes the rate parameter set Rik } ;

(t - s) AGA dvi(u) is the expected number of jumps of r; whose
amplitude falls in the set A, in a time interval of duration (t - s).
Levy and Khinchin showed the following remarkable generalization
of this heuristic development:

Theorem (Ref. 11, p. 76) : Let r; (t) be an Rn valued random process
with independent increments. Then

1

E(exp {ivTR[rj(t) - ri(s)])) = exp (t - s) I
ivTlibi - 4.-vTRsjv

ivTRu
(exp (ivrRu) - 1

J uo. i+uTRu) dvi(u)]} ,

where Si E Rn S is an n X n positive semidefinite matrix, and

uTRu
dvi(u) < 00.

In words, any independent increment is the sum of three independent
processes: (i) a purely deterministic drift process, completely specified
by Si, (ii) a purely nondeterministic gaussian process with zero drift
and almost surely continuous sample paths, specified by Si, and
(iii) a purely nondeterministic jump process with zero drift, a
sum of independent Poisson processes with different rates and jump
amplitudes, specified by v2.

Historically, the mathematical study of independent increment
processes concentrated first on the purely gaussian case (v.; = 0) ; then
on the purely stable case (Si = 0, dvi = di.c(0)dr/ra-", 0 < a < 2,
where AL is a positive measure on the unit sphere in Rn and [r, 0] are
polar coordinates in Rn) ; and lastly on the general case, building on
the insight gained in the first two cases.12 A second reason for wishing
to study the gaussian and stable (0 < a < 2) probability measures is
that they arise naturally from studying limiting distributions of
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suitably scaled and translated sums of independent, identically distrib-
uted, random variables in the central limit theorem, and have found
application in modeling noise in communication channels such as
telephone lines." These two reasons, as well as others, provide the
major impetus for the study to follow. The richness of the structure
of independent increment processes suggests they may find more and
more application in model building as their properties become more
widely known.

III. DISTINGUISHING POISSON PROCESSES

In this section, r; (t) (j = 0, 1) is observed on the interval [0, T),
and is the sum of a purely deterministic drift process (specified by of)
and a purely nondeterministic Poisson process (specified by rate X; and
jump amplitude h1). What is the log likelihood functional, and what
is its performance?

First, suppose the Poisson process has the same jump amplitude
under either hypothesis, but the drifts differ. Then it is straightforward
to show that the two probability measures Po and Pi, associated with
r; under hypothesis H are mutually orthogonal, so (i) observing r
over any finite interval, the log likelihood functional takes on the
value + 03 if H1 is true, -00 if Ho is true, and (ii) the probability of
incorrectly choosing one hypothesis when the other is true is zero.
The reason for this is clear on physical grounds : the Poisson component
has constant sample functions with simple jump discontinuities at
random times, while the drift process is continuous with constant
slope. Thus, ignoring the jumps in the observation process, the slope
of the continuous part of the sample path is 45i, and to discriminate
between the two hypotheses is now trivial. From this point on, there-
fore, it is assumed (51 = bo and, without loss of generality, set
5; = 0 (j = 0, 1).

What if the Poisson processes have different jump amplitudes? As
soon as one or more jumps occur, it is possible to discriminate per-
fectly between the two processes, since the size of the jump h1 is
associated with hypotheses Hi. To avoid this indeterminancy, it is
assumed from this point on h1 = ho = 1. Thus, Po and Pi, the
probability measures associated with H1, are mutually absolutely
continuous.

Lemma 1: Let ri be as just defined. Let

[ri k 1 T\
n

ri(-kT)], 0 ._lc..n-1;j=0,1

denote the conditional probability of ri at time [(k + 1) , given r1

1186 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



at time (k/n) T. Then [r;(0) = 0 a.s. ; j = 0, 1],

dPi n-1 p;
(i) A = In (r) = iim E In -, (r).

k =0 0

(ii) I q(- 1 0, P1) = lira P;)]n.
cc,

Proof: The proof follows from standard limit theorems (Ref. 7, Lemma
1.1), Q.E.D.

We now explicitly evaluate the limits in Lemma 1:

Proposition 2: Given the conditions of Lemma 1,

(i) A=1 T I- (Xi - X0) [ln (TX') (t - tk) dt
0

=
rT [- (Xi - X0)Cit ln TX10 drd,
0

where N r is the a.s. finite number of time instants { tk } where
re changes state.

1-1,(Po, P1) = exp - T[gX1 + (1 - q)Xo - x'14 -q]).

Proof:

(i) Given 7.1 at time (k/n) T, it will remain in that state in the next
(T/n) with probability 1 - X;Thz, o(T/n), and

will increase by one with probability Xj(T/n) o(T/n). The
desired result now follows Lemma 1.

(ii) If ri changes its state in the next time interval of duration
(T/n), then

11,(Po , = -n-T o(T/n)

while if 7.5 stays in its present state in the next (T/n) time
units, then

P;) = 1 --Tn Eqxi + (1 - q)Xo] + o(T /n).

I -1,(P,;, PI) = exp [ --Tn (qX1 + (1 - Oxo - xVkl-q)]

+ o(T /n),
1-1,(P0, P1) = exp - TDX1 + (1 - q)Xo -

where the last step follows from Lemma 1.
Q.E.D.

Recall from Part I that a crude bound on the total probability of
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error PE for a log likelihood ratio test is provided by

i min (Ti, 7-0)111 :5. PE -. 714717Troil*,

where 7r; is the a priori probability hypothesis that j is true. Here,

H4 = exp [ -T (j; - -6-0)2 /2]

and hence for fixed T, one would like to have the difference in the
square roots of the rates as large as possible.

To gain further insight into 1-1g(Po, P1), we rewrite it as the ex-
pectation of a third Poisson process. Let x,(t) be a Poisson process
with rate XfArg, hops of height +1, and x,(0) = 0 a.s. (intuitively,
the probability measure P, associated with x, has support on the
common support of Po and P1).

Proposition 3:
T

Hq(P0,P1) =
J

dP, exp -.1.0 D[x,(t)]dt}

= Ez0 (exp { - LT DEx,(t)ldt1) ,

D(x4) = qX1 ± (1 - q)Xo - WI'.
Proof: The proof follows from the definition of D, 13,, and X0.

Q.E.D.

To the best of our knowledge, this result is new, and will be generalized
in the following section and elsewhere.4"b Its significance lies in the
fact that there exists a large body of results in both the mathematics
and physics literature for studying properties of expectations of
multiplicative functionals of random processes, so called Feynman-Kac
functionals; now we can immediately draw on this body of knowledge.

IV. DISTINGUISHING INDEPENDENT INCREMENT PROCESSES

In this section, the results of Section III are extended to arbitrary
independent increment processes. Here, 7., E Rn is observed over
[0, T), and has one of two sets of parameters Oh Si, vi) (j = 0, 1). As
before, define for 0 < q < 1,

dh,(Po, P1) = (ccdPiily (dµdi0)1- dA, P1, Po << µ

HQ (Po, P1) = f dhq (Po, P1),

where H, is the Kakutani product associated with Po, Pi. Next, it is
useful to define a nonnegative measure jq(vo, vi) [the generalization of
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the point measure at +1 with mass qXi + (1 - q)Xo - MA6' in
Section III],

djq(vo, Pi) = qdvi + (1 - q)dvo - dhq(vo, v1),

Jq(vo, vi) = clio(vo,

and J, is nonnegative and may be infinite, since vo or Pi or both may
not be finite measures. If J, <co , it is convenient to define

a; = o - to 1 + uTRudv1(12)1

u
aq = gOi + (1 - 050 - 1 + uTRudh(vo, vi).

Finally, if Si = So = S, and J, Goo, a third independent increment
process x(t) is defined with parameters [aq, 5, hq(vo,

Theorem 4: For Po and P1 not to be mutually orthogonal, it is necessary
and sufficient for the following three conditions to hold:

(i) Jq(vo, Pi) <cc'
(ii) Si = So = S 0

(iii) aq E range (S).

If these three conditions are satisfied, then

(a) A(rt) =
J

[.1* In - (u)dure -dvi
o uoo d po fuoo

(dvi - dvo)dti

+ aq S-1Er - JT 1(60 al)

where dun assigns a point mass at time instants where re - r1_ =
i.e., where rs hops with amplitude u, and js is the jump process com-
ponent of rs.

(b) P1) = exp [ - TJq(vo, Pi) -2 q(1 - q)(57,RS-13,i

Proof (sketched)* : The proof is broken into two parts, one part dealing
with the jump process, the other with the gaussian process (including
drift). The part dealing with the gaussian component is classical,' and
yields conditions (ii) and (iii), above. The main method employed
in showing condition (i) for the jump -process component is to ap-
proximate the jump process by a sum of independent Poisson processes
with different rates and jump amplitudes. As more and more Poisson
processes are included in this sum, it can be shown that the approxi-

From a detailed proof in Ref. 5.
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mation converges weakly to the actual jump process. The Kakutani
inner product of the probability measures of the approximations is
simply the product of the Kakutani inner product associated with
Poisson processes of the same jump amplitude (but possibly different
rates) ; again, the delicate part of the proof is to show this approxi-
mation converges to the actual Kakutani inner product of the path -
space probability measures of the two independent increment processes.

The program is to use this theorem in the remainder of this paper
to exhibit the log likelihood functional and ascertain bounds on its
performance in hypothesis testing for stable processes. Skorokhod7-9
has obtained conditions (ii) and (iii) in Theorem 2, and instead of

condition (i) obtained two conditions which must hold :

(g - 1)dvo <co and (g - 1)2dvo < Go

where g = (dvddvo); it is easy to show these two requirements are
equivalent to Ji(v 0, < co . Hence, these conditions appear simpler
than those of Skorokhod. Moreover, it is obvious how to use J, to
determine performance limitations, while it is not obvious at first
glance how to apply Skorokhod's work. Also, the method of proof is
different and may be easier to follow.

Finally, it is instructive to rewrite He as a Feynman-Kac type of

functional of
Proposition 5: Let x, be a stationary independent increment process
with parameters (6,, S, h,) as defined previously. Then,

T

Hq(130, P1) [exp - f D(x.a)dt)
o

T

= f d1), exp [ -f D(xe)dtl,
where

D(xq) = q(1 - q)oPS-113,/2 Loodje.

Proof: The proof follows immediately from the definitions of D, xe, Pe.
Q.E.D.

Again, note that

D (xi) = -2 [(8TR/2)S-1(.5/2) + f
oo

(Tn._ dici11 ) 2 did , 1/1, Po <<
d,u

can be immediately used to provide a crude upper and lower bound on
the total probability of error. As in the Poisson case, one desires the
differences in the square roots of the Levy measures (suitably defined)
as large as possible, for good performance.
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V. DISTINGUISHING STABLE PROCESSES

Let xi(t) (j = 0, 1) be a scalar real -valued representation of a stable
(0 < a < 2), stationary, independent increment process, t E [0, T),
with characteristic functional [x; (0) = 0 a.s. ; j = 0, 11*

E(eivzi(1)) = exp it Po + (et"' - 1
1 + u2

v.; (u) =
Yj = cL I u I -ai u <0

= - c4_u-ai u > 0.

Following Section IV, it is clear that J,,(vo, pi) diverges (to 00 ),

from simply substituting in the explicit form for pi and carrying out
the calculations. Hence, Po and P1 are mutually orthogonal if one or
more of the parameters differ, the log likelihood functional is either
+ 00 or -00 on hypothesis one or zero, respectively, and the prob-
ability of incorrectly choosing one hypothesis when the other is true
is zero.

Since J,(vo, pi) diverges because v2 diverges as I u I -p 0, this suggests
that being able to observe the process perfectly, down to jumps of
vanishingly small amplitudes, may be the mathematical reason for
singular detection; but therein lies the flaw : it may well be physically
impossible (the mathematical model is inadequate) to achieve this.
Frost° apparently first popularized this idea in the engineering litera-
ture; here we reach the same conclusions by entirely different methods.
Sections VI and VII deal with two distinct methods for overcoming
these flaws in the mathematical model.

ivu cfri(u)]

VI. DISTINGUISHING PSEUDO -STABLE PROCESSES

Let xi(t) (j = 0, 1) be a scalar real -valued representation of a
stationary independent increment process just as in Section V, except
that the Levy measure is now written as

u < -L
X'(u) -L < u < 0

vi(u) = 14(u) 0 < u < R
-c!f_u-ai R < u,

where

and

Cr U

.1 -1, 1 + u2
dXL (u) < 00 , fof

1 + u2
dX!i_ (u) < 00 ,

(5; = 15; - dvi(u).
u#0 1 u2

The case a = 2 is well known" and, for brevity, is not included here.
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XL, X.if are absolutely continuous with respect to Lebesgue measure,
and vi is nondecreasing on ( - 00, 0 -), nonincreasing on (0+, 00).
The limit, as both R and L approach zero, of a sequence of such pro-
cesses can be shown to converge weakly to a stable process, and hence
these processes are christened pseudo stable processes. Here L and R
quantify that the fact that no negative jumps can be observed with
amplitude less than L, no positive jumps can be observed with ampli-
tude less than R. Both the properties of the sample functions and the
one-dimensional distributions are radically different here from stable
processes: (i) pseudo -stable process sample functions are of bounded
variation w.p.1, with only finitely many nonzero jumps in any finite
time interval; stable process sample functions are of either unbounded
(1 < a < 2) or bounded (0 < a < 1) variation w.p.1, with the set
of time instants at which nonzero jumps occur being dense in any
finite time interval, and (ii) the set of one-dimensional distributions
of pseudo -stable processes is clearly not closed under convolution,
which was the defining property of stable distributions, but the
asymptotic tail behavior is the same, since

Pr [xi(t = 1) > x] 0 ( dPi(U))

Pr [xi(t = 1) < -x] 0 (.1 3 CiPi (IL) )
-00

For this special case, it is straightforward to show that Jq(vo, v1) < 00
and hence condition (i) of Theorem 2 is satisfied. However, 15, is not
in general in the range of S( = 0), and again singular detection is
possible. The reason is clear on physical grounds (cf. Section III, the
Poisson case) : the slope of the sample paths of x; (t) is 15:1, ignoring the
jump discontinuities, and hence it is trivial to discriminate between
two pseudo -stable processes with different drifts. Two approaches are
available: either let S be nonzero, which we do not pursue here because
this seems ad hoc, having introduced L, R, already, or make the drifts
match, Si = Bo, which we assume from this point on.

The log likelihood functional is thus

A(re)re) = dt[ f
-L

In (dpildvo)drt +1 In (dvdc/Po)drej

fT
dt[f-11 (-dvi dvo) dvi dvo)

0

where, for simplicity, it was assumed

= L-ai, =
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As expected, the form of the log likelihood functional is quite sensitive
to whether a = 2 or 0 < a < 2 (e.g., see Refs. 7-10 for a = 2).

To obtain upper and lower bounds on the probabilities of an error
of the first or second kind, and on the total probability of error, the
Kakutani inner product HQ must be calculated. Assuming Al = cLLai,
X!F = -4R-«1, the result is

Hq(Po, P1) = exp [ - TJq( Po, vi)],
4(,0, vi) = q(cLL-al c 4.R- al) + (1 - q)(ctL-ao c°±1? -a°)

(aoct)i-q(cticl-)q L -gar- (1-q) .0
qai + (1 - q)ao

(ceoc°4-)1-7 (ale+) q

qai + (1 - q)ao
T

H q(P P1) = E z. exp [ - D (xOdd} ,

D (x,) = Jq.

In summary, discriminating between Wiener processes (a = 2) with
different variances leads to singular detection, while if the variances
are identical then the detection problem is nonsingular.6-1° Discriminat-
ing between stable processes (0 < a < 2) with one or more different
parameters leads to singular detection. If the Levy measure is modified
to be a finite measure, then if the drifts differ, singular detection occurs,
while if the drifts are identical, then the detection problem is
nonsingular.

VII. DISTINGUISHING SAMPLED STABLE PROCESSES

The previous sections show that it is quite easy to find examples of
continuous time singular -detection problems. In this section, it is
assumed that N samples of a stable process with one of two sets of
parameters are observed, and we wish to study the effect of choosing
the sample spacing and the total length of the observation interval
on the Kakutani inner product Hq; the goal is to make Hq as small
as possible.

Attention is confined solely to scalar processes from this point on.
The distribution of xi[(k 1)At] - xi (kAt) is given by P; (it ; Si, vi).
The Kakutani inner product of the new two discrete time distri-
butions is

Thlt
H ,(T , At) = [ f (dPI/Mq(dP0/44)1-qd/il

For At 1 0 or T co , with (T / At) = N fixed in both cases, fixed,
that Hq can approach one, some number between zero and one [say
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e-kN where k = k(di, ao, Si, So, v1, vo)], or zero. It is obvious that
if the two continuous time independent increment process path -space
measures are not mutually orthogonal, then the only approach to
reducing H, is to fix At and increase T. However, if the two con-
tinuous time independent increment processes have mutually orthog-
onal path -space measures, then it is possible to reduce H, by decreas-
ing At with (T/ At) fixed. To state the result, a lemma is needed:
Lemma 6. If it is an infinitely divisible probability measure, with
v(u) 0(lul-a) as luj 0, 0< a< 2, then

lexp (ivx)c/Ai(x) = exp [-8 'via+ D(v)], 0 < a < 2,

where if

then

-
uoo 1 ±

dv(u) = 0,

Lim D(v)/Iv I = 0, 0 < a 5 2;
vr-eo

otherwise,

D(v) = ivo D' (v), Lim D'(v)/Ivi a = 0, 1 5 a 5 2.
v

Proof: The proof follows from properties of v, and is found in Ref. 5.
Q.E.D.

The main result can now be stated:

Proposition 7: For 0 < q < 1, with a zero -drift gaussian component
(a = 2) present in either x1, or xo, or both, if (T/At) is fixed

Lim HQ (T, At) =
o t40

(a) 1 iff Si = So > O.
(b) Exp (-kN) iff Si 0 So, SI > 0, and So > 0,

k = In Eq(So/Si)'-2 ± (1 - 4)(S1/So)gi4
(c) 0 iff Si 0 0 = So or Si = 0 0 So.

If a zero -drift nongaussian stable (0 < a < 2) component is present
in either r1 or r0, then

Lim H,(T, At) =
At40

(d) 1 iff al = ao, S1 = So.
(e) Exp (-kN) iff al = ao, Si 0 So, S1 > 01, So > 0.
(f) 0 iff al ao.
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Proof: The proof follows from scaling arguments, and is found in
Ref. 5.

Q.E.D.

If a gaussian component is present in both processes, then decreasing
the sampling interval has no effect on decreasing HQ, and T must be
increased to decrease H,. However, if no gaussian component is present
in one or the other of the processes, or if a1 ao, then it is possible to
decrease H, by decreasing At with (T/ At) fixed.

Analogous results for T oo with (T/ At) fixed are presented in
Ref. 5, as well as some results on the rate at which H, approaches its
limiting value.

Related work on nonuniformly sampling a continuous time inde-
pendent increment process with one of two drift parameters is available
in the literature." A typical result is that sampling two stable processes
with identical characteristic index, skewness, and scale, but differing
drifts, is a singular detection problem if

(4+1 - ti)2[1-(1/a)1
j,()

diverges, where ttij are the sampling epochs,

(4+1 - ti) = T.
J-0

Thus, spacing the samples apart by ti+1 - ti cc j- 'n (m > 1) results in
singular detection, but (4+1 - ti) cc e- " (m > 0) may not.
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Four of the Bell System digital transmission systems, T1 Outstate,
T2, 3A-RDS (radio system at T3 rate), and T.4.111, have violation monitor
and removers (VMRR) located at the receiving -end maintenance offices.
Among other things, they monitor the lines, remove violations in the pulse
transmission code, and generate alarms to initiate maintenance actions.
This paper investigates the alarm statistics of the four types of VMR under
the assumption that the information bits are statistically independent. It is
found that all the VMR8 have very sharp alarm thresholds. The results
of the T4M VMR are presented in detail. Curves are given to show the
various statistics obtained.

I. INTRODUCTION

Digital transmission systems serving large numbers of message
channels should be continuously monitored to check the quality of
service. This can be achieved by putting monitors at maintenance
offices along the digital transmission route. An ideal monitor should
provide the exact number of errors made in transmission. Since line
errors cannot be directly measured in service, alternative criteria have
to be used for performance monitoring. For instance, bipolar codingl
can be employed so that the monitor can detect line errors from the
violations of the coding sequence, and parity bits can be inserted into
the transmitted digital stream so that the monitor can detect line
errors if the received parity bits differ from those calculated from the
received signal. The monitor generates alarms to initiate maintenance
actions when the detected violation rates are greater than a prede-
termined threshold.

In some cases the digital stream has a periodic, identifiable pulse
sequence called "frame format" to which the monitor must synchronize
before it can detect violations. The monitor is said to be in -frame when
it recognizes the location of the frame -pulse sequence. High line -error
rates may alter the frame pulses such that they are unrecognizable by
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the monitor, which is then said to be out -of -frame. The in -frame
condition is necessary to identify the various signal components that
are multiplexed to form the digital stream. The monitor removes all
violations detected so that violations do not propagate beyond the
maintenance office ; hence, the name "violation monitor and remover"
(vMR) was designated. Removal of a violation is not an attempt to
correct the line error. It is perfomed to guarantee that the VMR output
is violation -free so that if an alarm condition exists, it will not propa-
gate to the next maintenance office. The VMR performs other functions
as well. If it is out -of -frame, a pseudorandom signal with proper frame
format will replace the received digital stream at the VMR output in
order to prevent alarm propagation.

Four of the Bell System digital transmission systems, T1 Outstate,
T2, 3A-RDS (radio system at T3 rate), and T4M have vmits located
at the receiving -end maintenance offices. The T1 Outstate system uses
bipolar coding. The T2 system utilizes B6ZS1 (bipolar with six zeros
extraction) coding. Both the 3A-RDS and the T4M systems employ
added parity bits for performance monitoring. The VMR for each system
has its own alarm rules. The durations of time for alarm generation
and alarm release at various error rates are important system param-
eters. This paper investigates the alarm statistics of the four types of

VMR under the assumption that the information bits are statistically
independent; i.e., each bit is a Bernoulli trial. The derivations for the
T4M vMR2 are presented in detail in Section II. Those related to the
other vMRs are discussed in Appendix A. Section III discusses some
of the results obtained and their significance in digital transmission

systems.

II. THE T4M VMR

2.1 Alarm strategy

The T4M digital transmission line2 has a transmission rate of 274
megabits per second (Alb/s) with the information transmitted in a
binary format. Its frame format' contains 196 bits of which 192 are
information bits and 4 are housekeeping bits. One of the latter is a
parity bit used to check the 192 information bits. The alarm strategy
of the VMR at low -parity violation rates is implemented in the following
manner. The first single parity violation that is observed triggers a
100 -ms timer and a counter. If the counter accumulates more than 31
parity violations before the 100 -ms measuring timer times out, a
3 -ms waiting timer is immediately triggered. At the end of 3 ms,
another 100 -ms timer is triggered and the counter starts counting
again. During this second 100 -ms period, if the counter overflows; i.e.,
it accumulates more than 31 violations, a VMR alarm is generated
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immediately. The 3 -ms waiting timer is employed so that a short
burst of errors will not cause an alarm. Since the transmission rate is
274 Mb/s and violation is checked once every 196 bits, the alarm
threshold violation rate is set at

31 X 196 = 0.222 X 10-3.
2.74 X 108 X 0.1

It will be shown in the next section that this violation rate corresponds
to an error rate of approximately 1.1 X 10-8.

To avoid oscillatory alarms near the threshold violation rate,
hysteresis is designed into the VMR alarm system. A 1 -second release
timer is used to measure the violation rate when the VMR is in the
alarm state. The release timer is free -running and is not synchronized
to the VMR alarm. The alarm is released only after a full duration of
the release timer is passed and the 31 -violation counter does not
overflow. Thus, whenever an alarm is generated, it will last at least 1
second. This produces a release -error -rate threshold of about 1.1 X 10-7.

When the VMR is out -of -frame for 0.5 ms, a pseudorandom signal
with the proper frame format is switched in to provide a violation -free
output. As soon as the VMR is back in -frame, the violation counter is
reset and starts counting until the 1 -second free -running release timer
times out. If the counter does not overflow, the pseudorandom signal
is then switched out. Thus, after a failure is restored, it takes anywhere
from 0 to 1 second to switch out the pseudorandom signal.

2.2 Bit error rate versus parity violation rate

Since the digital transmission line performance objective is usually
set in terms of the bit error rate, which cannot be directly measured
in service, it is desirable to establish the relationship between the
parity -violation rate and the bit -error rate. Let / be the number of
information bits contained in each parity check. Then,

P parity violation} = PI odd number of bit errors in / bits}
 P { the parity bit is correct

P { even number of bit errors in / bits}
 P the parity bit is in error } . (1)

In what follows all random variables are in boldface type. Let the
bit -error rate and the parity -violation rate be represented by e and v,
respectively. For each realization of e, (1) can be written as

v = (1 - bi) (1 - e) the, (2)

where bi denotes the probability of having an even number of bit
errors in / information bits. This event occurs if a correct first bit is
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followed by an even number of bit errors or if an incorrect first bit is
followed by an odd number of bit errors. Therefore, for / 1,

bi = (1 - e)b1_1 + (1 - b 1_1), b 0 = 1. (3)

Define the generating function'

B (S) = NS' - 1 < S < 1.

Multiplying (3) by S' and adding over / = 1, 2,  , we obtain

B (S) - 1 = (1 - e)SB (S) 8(1 - S)-' - eSB (S)
or

B (S) = 11(1 - [1 - (1 - 2e) S]-') .

Expanding into geometric series, we get

bi =
1 + (1 - 201

2

which is equivalent but preferable to

b = (10 ) (1 -
2

+ (1) (1 - e)t--2 +....

Substituting (7) into (2)

v = 1 - (12 -201X (1e) 1 -I- (12 - 2e)t
X E. (8)

Equation (8) establishes the relationship between the parity -violation
rate and the bit -error rate. When /E << 1, it is easy to see that

v (/ 1)e. (9)

In the T4M frame format, / = 192. Therefore,

v 193e. (10)

Equation (10) is intuitively obvious because only errors occurring in
the 192 information bits and the parity bit are counted by the VMR.

Since a parity check is made every 196 bits, let E' = v/196, E' can be
considered as the measurable bit -error rate. It differs from e by about
1.5 percent when (10) holds.

Figure 1 plots the parity violation rate versus the bit error rate
based on (8) with / = 192, assuming the VMR stays in frame. We see
that for bit -error rates below 10-3, there is almost a one-to-one corre-
spondence between a bit error and a parity violation. Above 10-3,
the VMR may go out of frame.
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10-7 10-6 10-6 10-4 10-3 10-2

BIT ERROR RATE

Fig. 1-Parity-violation rate vs bit -error rate.

In this paper, only low -parity -violation rates are being studied.
Thus, e will be used in place of e' for simplicity.

2.3 Statistics of the alarm Interval

Let y represent the transmission rate, N the number of independent
violations incurred, and T the time spent to count the violations. By
the Bernoulli trial assumption,

P{N = n I T = t, E = = CYnt En(1 - e)71-n. (11)

In this paper, only conditional distributions are discussed in most
cases. For simplicity, conditions such as e = e, N = n, and T = t are
not expressed explicitly when they are understood.

Since 7t is large, by De iVloivre-Laplace limit theorem, a normal
approximation to the binomial distribution is applicable.

P{N n} ,cz-di 1 -(1) n
te \

47te(1 - (12)
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Fig. 2-Probability of counter overflow vs bit -error rate and time.
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1
4)(x) = e-g2i2dt (13)

--00 1127

is the cumulative normal distribution. Let
/.1 = PIN n1, (14)

µ is the probability of counter overflow given an error rate and a fixed
timer. Figure 2 shows, on a probability scale, this probability as a
function of the bit -error rate for to = 100 ms. The same curve with a
different ordinate also shows the probability as a function of time for
e = 10-6. It can be seen that when the error rate varies from e0/2
to 2e0, the probability of counter overflow varies from 0.0001 to 0.9999.
Thus, the threshold is very "hard."

Let M be the random variable such that the VMR alarm is generated
at the Mth measuring period. Each period is 100 ms if the counter
does not overflow. It is desirable, then, to determine the probability

m = 0, 1, 2, , that the VMR will generate an alarm at the mth
measuring period, given T = t and C = e. If 1 represents the event
that during a measuring interval the counter overflows and 0 repre-
sents the opposite, the m periods must be of the form

X X X  X 0 1 1,

m-3
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where the sequence of m - 3 Xs does not have any 1 1 pair within it.
Hence,

p,,, = P{M = m} (15)

= P f 1 1 does not occur in a sequence of length m - 31  p {011}

m-3
= (1 - pi) (1 - A)A2. (16)

By definition, pi, = pi = 0, p2 = A2, and p3 = (1

qn, = P IM > ml

= 1 - it Pi,
i-o

then

-µ)µ2. Denote

(17)

P. = q.-3(1 - A1)142. (18)

Define the generating functions as

P(S) = :± pkSk -1 _._. S 5 1 (19)

Q(S) = £ qkSk -1 < S <
k=1)

1. (20)

Then,
(1 - S)Q(S) = 1 - P(S), (21)

as can be seen by comparing the coefficients of any Sk terms on each
side. From (19), (18), and (20)

P(S) = A252 ± (1 - A)A2S3Q(S). (22)

Equations (21) and (22) give

µ2S2 (1 - AS)
P(S) = 1 -S ± p2(1 - AL)S3 (23)

From (23), the statistics of M can be derived. For instance, the mean
and the variance are

E{M} = tmpm

=lim P'(S)
s -1

(24)
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Var { M } = lim [P" (S) + P' (S) - P'2 (S)]
8 -.1

(1 - A) (1 + 31, + 122)-
4

A
(25)

Higher -order statistics of M can be similarly obtained. At the threshold
error rate, 0, Ai = i, EMI = 6. Thus, the expected alarm time is
approximately 600 ms. The threshold variance is 22, which is quite
large.

Two standard methods are available to evaluate the probability
coefficients p,, m = 1, 2, . The first one is

li 13(m) (S) m = 0, 1, 2,,,, = m ,
3-4) m.

The second one is through partial fraction expansion of (23). Both
methods require extremely tedious derivations. A simple alternative
is presented in Appendix B which first expands the denominator of
(23) as follows

1 _ i cis;1 -S + (1 -µ)µ283 i-o

with
Co = CI = C2 = 1,

and
Ci = Ci-i - (1 - IA)A2Ci-a

From (19), (23), (26), and (27)

Pm = µ2C,,,2 - maC,,,-8

(26)

i 3. (27)

m z 3. (28)

Equations (27) and (28) provide an attractive way to evaluate the
probability coefficients p,n's. What is more, Pm can be obtained without
first calculating pm_i, P,,,-2, etc. It is interesting to note that for any
error rate,

732 = A'

P3 = P4 = (1 - 12)122

Pm > P mi-i m 4.

Thus, the probability that the VMR will generate an alarm during the
second measuring period is always the largest, regardless of the error
rate. The probability decreases monotonically at later measuring
periods.
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The cumulative distribution function of M is

F m(m) = P [AI 5 m}

= E Pk.
kvl

Since the duration of each measuring period is not greater than
to = 100 ms, the length of the timer,

P [VMR has generated an alarm in mto ms } Pk.
k..4)

This equation can be used to plot the lower bound of the alarm prob-
ability as a function of time.

2.4 Distribution of violation measuring time

The distribution of the measuring time T, assuming N = n and
e = e, is considered next. If we let Y be the number of error bits prior
to the nth error, then Y has the negative binomial distribution

=iyn-
1

1) en(1 - e)v.
n

The time elapsed for the nth error to occur,

YT = n

has the probability -density function (PDF)

-P{T = t} =
(14 1)

- 1 en (1 - (29)
n

Equation (29) is the distribution of the discrete violation measuring
time T given that N = n and e = e. The T4M VMR has the additional
condition T < to = 100 ms; i.e., each measuring period is no greater
than 100 ms. Let this censored random variable be denoted by T.
It is now desirable to find the distribution of Tc, given that N = n,
e = e, and Tc to. Unfortunately, this task is difficult to perform in
the discrete sample space. However, since each information bit is
3.65 ns long while the Te of interest is in milliseconds, the discrete
censored random variable can be considered continuous for ease of
calculation. From the Poisson theorem, (11) can be approximated by
the Poisson distribution

e-y.geeon
P{N = n) =

n!
(30)
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Let Yi, i = 1, 2, , n represent the time from the (i - 1)th error
to the ith error, then its PDF is given by

fy,(t) = 7e=.e-7".

Through the use of the characteristic functions, it is easy to see that
the sum

T = i Yi
i-i

has the gamma distribution

0 < 00.J(n-= (7)n to-le-eye5 t 00.
1)!

By successive integration by parts, it can be shown that
(eytOk

.1: fT(t). = e-
k---0 k.t

the censored random variables T, has the PDF

h(t) + gt - to)e-e-reonti frYtOk
k=o k!fTc(t) =

t 5 to
(31)

0 t > to,
where gt - to) is the delta function. Its characteristic function T (w) is

To(w) = (e7)" (1 1e-(.-a.) to 11 (ty (co) kt,,

(er 3.6))n k...0
(evtO

k± e-(e7-ica)to E , , .

k -o k!

The mean nte is given by
dT c(co) n 1 n k(eyto)n-k

w-0
=

eY

e-cylo 7
7 kl-'=1

(32)=
fit` itho (n --k)!

The variance cr can be evaluated similarly. The first term on the
right of (32) is the mean value of T. The second term is present be-
cause of the additional restriction T < to. At the alarm -error -rate

threshold, i to ,-:-.,' 97 ms, n/7 = 100 ms, the contribution of the second
term is about 3 ms.

2.5 Distribution of the alarm time

Let To represent the time it takes the VMR to generate an alarm at
a given error rate. It is desired to find the PDF of To. Let Ti, i = 1,
2,  , M, represent the time from the (i - 1)th to the ith measuring
interval, neglecting the 3 -ms waiting time. The PDF of Ti is given in
(31). The alarm time is then

M

To = E Ti.
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Note that To is the sum of a random number of random variables."
Through the use of conditional probability, since M and Ti's are
independent, the PDF of the random sum has a compound distribution

/Tow = L..r Nir(t),
m

where pm is given in (28) and Ame) (t) is the m -fold convolution of
fre(t) with itself. The characteristic function of To is

To(w) = PmET.(co)]m (33)
m 0

The right side of (33) is the Taylor expansion of P(S) obtained in
(23) with S replaced by T0(w). Thus,

To(w) = PET c(co)] (34)

The mean and the variance of To are

1+µ
to = 2 go

(35)
2 1 + µ 2(1 (1 + 3/2 /22) 2

Crto =
122 µ44

ate r 7110

where 77 to is given in (32). Equation (35) is used to plot Fig. 3 which
shows the mean alarm time versus the error rate. It can be seen that
the mean alarm time decreases very fast as the error rate increases.
The total alarm probability after time I is

P To 5 11 = rot fTo(t)dt

= p, (t)dt.
m=,o o

(36)

2.6 Waiting time distribution

In the above analyses, the 3 -ms waiting intervals have not been
taken into account. The waiting timer is triggered after each counter
overflow. The distribution of the waiting periods is studied next. Let
W be the number of times the waiting timer is triggered before a VMR
alarm is generated, assuming that M = m. The last three measuring
periods before a VMR alarm should be 011 [notations are defined
before (15)] and the waiting timer is definitely triggered once. Let

Al = the event that 11 does not occur in 1 measuring intervals.

This event occurs if the counter does not overflow in the first measuring
interval, followed by the event /11_1, or the counter overflows in the
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first interval but not the second interval, followed by the event A 1-2.

Let
az = P{A1},

then
at = 12(1 -µ)a1-2 + (1 - µ)cti_i 1 z 2. (37)

The generating function A (S) is defined as

A(S) = ± aiSi -1 5 S 5 1.
z-0

Multiplying (37) by Si and summing from 1 = 2 to infinity,

ia1S1 = 12(1 - A)52 t a1_221-2 + (1 - At)AS i ai_181-i. (38)
12 1.-.2 1-2

Since al) = a1 = 1, (38) can be written as

A(S) -S - 1 = /.4(1 - p.)S2A(S) + (1 - 1A)S[A(S) - 1],
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then
1 + AS

A (8) = 1 - (1 -AO - /.4(1 -µ)S2

Therefore, each PM 11,1 _>_. 2, can be obtained by the method indicated
in Appendix B. Let X be the number of times the waiting timer is
triggered in 1 measuring periods, given that the event A1 is true, then

/IX = j PIiAil = Ad
(39)

Let P {  10 } denote the conditional probability assuming the counter
does not overflow in the first measuring interval, and P { -11, 0} denote
the conditional probability assuming the counter overflows in the first
but not the second interval. The numerator of (39) can be written as

P{X = j, A1} = /IX = j, A/I1}P{1} + P{X = j, Aii01P101
= AP{X = j, AIM + (1 - 12)P{X = j, Ai10}. (40)

However,

PPE = j, AIM = P{X = 3., A0,1111111)
+ PIX = j,Aill, 01P{011}

= 0 + (1 - /.4)/3{ X = j- 1,A1_2} (41)

P{ X = j, AilO} = P{X = j,24.1_1}. (42)

Insert (41) and (42) into (40) , then,

P{ X = j, Ail = AL(1 - µ)PIX = j - 1, A1-21
+ (1 - p)PIX = j, ili_d. (43)

pi.i = PIX = j, Al}.

Equation (43) can be written as

pm = A(1 -µ)P5-1.1_2 + (1 - 11)735.1 -1 -

Following the derivation of (38), we obtain

Let

L t P.i.1s1s2 = A(i. - A)s153 f f pi -1,1_281-',Y22
j...1 1-2 j-1 1..2

+ (1 -µ)S2 f tp; ,i_iSiS12-1. (44)
j-1 1.2

Define the bivariate generating function A (Si, S2) as

A (Si, 82) = t i Pi3S1S12.
j-0 1-0
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Since
/3;3 = 0 j > /, j = 1, 2,
Po3 = (1 -µ)1 / = 0, 1, 2,
p1.2 = Ai,

eq. (44) can be reduced to

A (Si, 82) (11_ F1S1S2 = AL(1 - m)S1S3A(Si, 82)

+ (1 - µ)82 [A 80
1

1 - (1 - AL)S2]

Therefore,
1 + PS182

A (81, 82) = 1 - (1 .... /02 - A (1 -µ)S182

An iterative expression similar to that given in Appendix B can be
obtained for the evaluation of pi,z, and, hence, Pi X = ji A i 1 according
to (39). Note that PIX = jlild = 0 for j > 1/2 ± 1.

An example is given below. When e = El), Ai = 1, it was shown in
(24) that on the average six measuring periods are required for the
VMR to generate an alarm. During the last three periods (011), the
waiting timer is triggered once. It is desirable to find the distribution
of X in the first three periods. From (37) and (45),

Plild = 1 - 2g2 + A3
P03 = (1 - ;0'
p13 = 3;41 - ;4)2
p23 = A2(1 - ii)
P.8 = 0

El XIA3) = it i X PPE = ilA8}

= µ(1 - PM - A)
1 - 2112 ± IA3

At the threshold, u = 1,

(45)

EPLIA31 = 1.

Thus, in the first three measuring intervals, the waiting timer is
expected to be triggered once. In the last three intervals (011), the
waiting timer is definitely triggered once. Hence, if the alarm occurs
at the sixth measuring interval, then

EINVIM = 6) = 2. (46)

Equation (46) says when e =  0, the waiting timer shall be, on the
average, triggered twice before an alarm is generated.
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2.7 Statistics of alarm release and oscillation

To avoid oscillatory alarms near the error threshold, a release timer
with duration d > to is used to measure the violation rate when the
VMR is in the alarm condition. The alarm is released only after the release
timer times out and the counter does not overflow. Let v be the prob-
ability of counter overflow during the measuring period d. From (12)

n- -yde 1.v 1 -
Af7c/e(1 - e) I

Let K represent the number of measuring periods before the VMR
stops alarming; i.e., the VMR will release the alarm at the (K + 1)th
period. Then,

hk = P{K = k}
= (1 - P)vk k = 0, 1, 2, . (47)

Thus, K is governed by a geometric distribution with generating
function

H (s) = 1- vvs (48)

The distribution of the alarm -release time D (assuming the error
rate remains constant) will be derived first. Let Di represent the time
from the (i - 1)th to the ith counter overflow during the alarm state.
The distribution of Di is given by (29) and its generating function is

eSii7Di(s) = (49)1 - (1 - e)S"
The alarm -release time is again given by a random sum

k

D = Di + d, (50)
iso

where by definition, Do = 0. Since K and the Di's are independent,
the generating function of D is

ao ES1/7 \kn
D(s) = Sd hk

k=0 (1 - (1 - 08'17
= SdH[D;(S)]. (51)

The PDF of D is the compound distribution

fp(x) = E hi -y 7(2. -d) 1- 1) Ekn (1 ___ 07(x-d)-kn.
k=1 kn

The mean and the variance of D are

= 1 -
V

2

1 -

(52)

X -n + d (53)
ey

X 2 1

n
V

+2 X 1 - E) (54)
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Fig. 4-Average first -oscillation time vs duration of release timer.

The first oscillation time T., i.e., the time it takes for an alarming
VMR to release and then generate another alarm, assuming the error
rate remains constant, is

T. = D ± To.

Its PDF is simply the convolution

fr0(t) = fD (0* fro (t).

The mean and the variance of T. are

nia = lid + nio
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Equation (56) is employed to plot Fig. 4 which shows the expected
first oscillation time versus the duration of the release timer d with
the error rate as the parameter. When e = 10-6, if d = 330 ms, alarm
oscillation is expected to occur once in 187 years; if d = 1 second,
alarm oscillation is extremely unlikely to occur.

The time from an initial alarm state to the ith alarm oscillation is
i X To, whose distribution can be easily obtained from that of To.

2.8 Pseudorandom signal switching statistics

As described in 2.1, after the pseudorandom signal is switched in,
if the VMR is back in -frame, immediately the violation counter is reset
and starts counting again until the free -running release timer of
duration d times out. Since the in -frame condition can occur anytime
within the interval 0 to d, the time spent to count the violations is
uniformly distributed between 0 and d. When the release timer times
out, the number of violations counted is a mixture distribution ob-
tained through randomization' of the parameter t in (30)

1

dtPf N = nit = el =fod
e-ye

nt(!7e0nX-d

1 et)'
-yed i=o

(58)

The PDF Me) of the error rate E is usually unknown. If f,(e) is given
or can be estimated empirically, (58) can be randomized by f.(e).

PIN = n} = fo PIN = n I = el f.(e)de, (59)

where the upper integration limit is determined by the domain of e.
From (59), the probability PIN < n} that the counter does not
overflow, i.e., the pseudorandom signal will be switched out, can be
evaluated.

2.9 Generalizations

All the above derivations are general enough so that if one requires
the counter to overflow consecutively more than twice (with the
waiting timer triggered each time the counter overflows) before an
alarm is generated, the results can be easily extended. For example,
if the VMR generates an alarm after k consecutive counter overflows,
then (24) becomes

EIM1 1-µk
(1 -
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and the probability coefficients are

Pm

k

Pk+1

Pm

=0 m = 0, 1, , k - 1
= uk

= Pk+2 = "  = P2k = (1 - 1.1)1.1k

>p.+1 m 2k + 1

III. DISCUSSION

As discussed in the introduction, one of the main functions of the
VMR is to generate alarms when it detects that the line performance is
below a predetermined objective. However, the digital line performance
objective is usually set in terms of a threshold bit -error rate which
cannot be directly measured in service. Equation (8) establishes the
relationship between the bit -error rate and the parity -violation rate
for a digital line employing parity -checking digits. Figure 1 shows
that for the parity -check structure used in the T4A1 system and for
bit -error rates below 10-3, there is almost a one-to-one correspondence
between a bit error and a parity violation. This implies that the parity -
checking scheme is effective in determining digital transmission line
performance.

When the T4.1I VAIR parity violations exceed a specified threshold
in two consecutive measuring intervals, an alarm is generated. This is
normally followed by an automatic transfer of the failed line to a spare
line if the latter is available. In general, each spare line will protect
several service lines to reduce system cost. Thus, a so-called "hard"
alarm threshold, which clearly distinguishes between error rates slightly
above and below the threshold, is desirable because it is unlikely to
cause an alarm at error rates below the threshold. In this case, the
spare line will be available to protect more serious failures on other
service lines. It also takes less time for a VAIR with a hard threshold to
generate alarms when the error rates are above the threshold. Equation
(14) gives the probability of the parity -violation counter overflow as
a function of the error rate and the duration of the measuring interval.
Figure 2 is a plot of (14) and exhibits the desirable hard threshold
characteristics. As the error rate varies from 0.6 X 10-6 to 2 X 10-6,
the probability of counter overflow changes from 0.0001 to 0.999.

When a catastrophic failure occurs on a line, its VAIR should generate
an alarm as soon as possible so that an automatic transfer to a spare
line can take place without trunk disconnection. When an error rate
just above the threshold is detected, little harm will be done if the
VAIR takes longer to announce an alarm. Equation (35) obtains the
mean alarm time as a function of the error rate. From Fig. 3 it can be
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seen that the mean alarm time of the T4M VMR reduces very fast
with increasing error rates. Note that if an error rate of 0.7 X 10-6
(slightly below the threshold) persists for hours, eventually an alarm
will be generated because the alarm threshold is not infinitely hard.

The amount of hysteresis required in releasing an alarm is an
important part of VMR design. The release timer should be long enough
so that oscillation between alarm request and alarm release is unlikely
to occur. It should also be short enough so that alarms are not un-
necessarily prolonged. Equation (56) gives the expected oscillation
time as a sum of the mean alarm time and the mean release time,
both of which are functions of the error rate and the length of the
release timer. Figure 4 shows that when the duration of the release
timer is greater than three times that of the parity -violation measuring
interval, alarm oscillation is not likely to occur at any constant error
rates. This is due to the fact that the mean alarm time is large for
error rates below the alarm threshold while the mean release time is
long for error rates above the alarm threshold.

APPENDIX A

The T1 Outstate (1.544 Mb/s) VMR counts 16 bipolar violations
(violations occurring within a 0.3 -ms interval are counted only once)
in 85 ms to generate an alarm. The T2 (6.312 Mb/s) VMR generates a
low -error alarm if it counts 32 bipolar violations in 5 seconds (violations
occurring within a 3.2 -his interval are counted only once). Since the
error rates of interest are near the threshold, it can be assumed that
no two violations occur "close" to each other. The 3A-RDS (44.736
Mb/s) VMR generates an alarm if it counts 31 parity violations in 2
seconds. These alarm rules are simpler than that for the T4M VMR,
hence, the alarm statistics of these VMRs are also easier to derive. For
the VMR of each system, a probability of counter overflow i can be
derived as in (14). This probability is also the probability of alarm.
The three alarm rules have identical mathematical models ; hence,
no separate discussions are necessary.

Let M represent the number of elapsed measuring periods before
the VMR generates an alarm; i.e., the VMR will generate an alarm at
the (M 1)th period. Then,

Pm=P{M= in}
= (1 - i4)"` m = 0, 1, 2, .

M is governed by a geometric distribution. Most other statistics dis-

cussed in Section II can be derived similarly.
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Because of the simplicity of the geometric distribution, given a
probability of alarm p, the number of elapsed periods k before the
probability p is reached can be obtained explicitly,

P Pm
m=0

k

= 2 - m
m=0

= 1 - (1 - A)k+i.
Therefore,

/n(1 - p)
k 1.- /n(1 - A)

In each of the first k measuring intervals, the counter will not overflow
when the measuring timer times out. Thus, the total alarm probability
as a function of elapsed time can be plotted easily as opposed to
evaluating (36) for the T4M VMR.

APPENDIX B

This appendix derives an iterative expression to calculate the prob-
ability coefficients pi's discussed in Section 2.3. Specifically, given that

and

P(S) = piSi
i-0

aiSi
P(S) i=on

(60)

(61)
1 + E biSi

i=1

it is desired to obtain the pi's in terms of the ai's and the bi's. Let the
denominator of (61) be expanded as follows

= E cisi.
1 + biSi i=°

i = 0

Ci, i = 0, , n - 1, can be determined through long division or by
comparing the coefficients of the Si's in

1 = (1
+

bisi)( cis)
For i > n,

Ci = E bkCi_k.
k-i
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Therefore

P (S) = E co.,* X CiSi. (62)
J-0 i=o

Compare (60) and (62), pi, i = 0, 1, , m - 1 can be determined
easily. For i z m

m

pi = E ahCi_h
/1-0

= E ah - E b kC i-h-ki
h k=1

m n
= - E E ahb kC i-h-k

h=0 k =1

pi can be calculated by computer without knowing Pi -2, etc.
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Abstracts of Papers by Bell System Authors
Published in Other Journals

CHEMISTRY

The Anodic Behavior of Gold in Sulfuric Acid Solutions Effect of Chloride and
Electrode Potential. R. P. Frankenthal and D. E. Thompson, J. Electrochem. Soc.,
1e3 (June 1976), pp. 799-804. Gold corrosion in the passive and transpassive
potential regions is affected by Cl-. Soluble Au(III) and Au(OH)3 film are the
reaction products. Chloride promotes dissolution and restricts film formation.
Mechanism of 02 -evolution is different on a filmed than on a film -free surface.

Brillouin Scattering from Polymer Films. G. D. Patterson, J. Polym. Sci., Part A-2,
Polym. Phys., 14 (1976), pp. 143-149. Many polymers cannot be prepared as
clear amorphous blocks suitable for classical light -scattering studies. However, most
linear polymers can be prepared as films which are somewhat transparent. With the
advent of high -contrast multipass interferometers, these films can now be studied
by Brillouin scattering. This work demonstrates the wide range of polymeric ma-
terials that can now be studied by Brillouin spectroscopy.

Direct Measurement of Spontaneous Predissociation Using Coaxial Laser -Molecular
Beams. R. M. Lum and K. B. McAfee, Jr., J. Chem. Phys., 63, No. 11 (December
1975), pp. 5029-5033. A laser -molecular beam technique has been devised to
enable direct observation of radiationless transitions of isolated single molecular
states. Spontaneous predissociation, detected as a modulation of the molecular beam,
has been observed in Br2 at laser wavelengths which produce selective excitation of
the individual Br2 isotopic species.

Neutron Scattering Study at High Pressure of the Structural Phase Transition in
Paratellurite. D. B. McWhan, R. J. Birgeneau, W. A. Bonner, H. Taub,' and J. D.
Axe,' J. of Phys. C. Lett, 8 (1975), pp. L81 -L85. The dispersion relation for the
transverse acoustic phonon mode propagating along (110) polarized along (110) in
Te02 has been measured at P = 1 atm, Po ( 9.0 kbar), and 2P0 where Po is the
tetragonal -to -orthorhombic structural transition pressure. Measurements of the order
parameter are consistent with a mean field theory of a pressure induced elastic
instability. 'Brookhaven National Laboratory.

COMPUTING

Integrated Injection Logic : A Bipolar LSI Technique. R. A. Pedersen, Computer, 9,
No. 2 (February 1976), pp. 24-29. Integrated Injection Logic (I2L) is a novel
bipolar circuit design approach to achieve high -density large-scale integration. As
the basic logic unit, it uses multicollector npn transistors which are powered from
merged multicollector lateral pnp transistors. 12L can be fabricated with standard
buried collector technology and is therefore compatible with conventional bipolar
circuitry-digital or linear-on the same silicon chip.

ELECTRICAL AND ELECTRONIC ENGINEERING

Behavior of Tandem Buffers with Geometric Input and Markovian Output. J. Hsu
and P. J. Burke, IEEE Trans. Commun., COM-2.4 (March 1976), pp. 358-361. A
discrete -time system of infinite -capacity buffers in tandem is studied. Input to the
first buffer is geometric and the output for all but the last buffer (which can be
arbitrary) is Markovian. The analysis shows that, in equilibrium, each buffer can be
analyzed separately and independently.

Chemisorption and Schottky Barrier Formation of Ga on Si (111)7 X 7. G. Margari-
tondo, S. B. Christman, and J. E. Rowe, J. Vacuum Sci. Technol., 13 (January -
February 1976), pp. 329-332. The chemisorption of gallium atoms on Si (111)7 X 7
was studied using photoemission, electron -energy -loss, LEED and Auger spectros-
copy. Most of the states formed at the metal -semiconductor interface are due to the
first 1-2 metal monolayers and need a microscopic -atomic bonding or surface -band -
structure theoretical description.
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A Comparison of Chemical Etches for Revealing (100) Silicon Crystal Defects.
D. G. Schimmel, J. Electrochem. Soc., 123, No. 5 (May 1976), pp. 734-741. Etch
pit results of the Sirtl, Dash, Secco, and an experimental etch are compared for
(100) silicon wafers after various device processing steps. Factors influencing etch -
pit formation on silicon surfaces are discussed. A recommendation is given for the
etch formation with the best etch -pit development.

Fabrication and Performance of Offset -Mask Charge -Coupled Devices. A.M.
Mohsen and T. F. Retajczyk, Jr., IEEE J. Solid State Circuits, SC -11 (February
1976), pp. 180-188. The use of the offset -mask technique to fabricate two-phase
and uniphase charge -coupled device (CCD) electrode structures is described. A
new two-phase electrode structure with polysilicon-electrodes and self -aligned gates
for the peripheral circuits has been developed. The polysilicon offset -mask electrode
structure is very attractive for charge -coupled memories. Compared to other two-
polysilicon level CCD structures, it has a higher packing density, is more tolerant
to intralevel shorts, and does not require large numbers of small contact windows
to connect the gate electrodes to the phase bus lines.

High Repetition -Rate and Quasi-CW Operation of a Waveguide CO2 TE Laser.
P. W. Smith, C. R. Adams, P. J. Maloney, and 0. R. Wood II, Opt. Commun., 16,
No. 1 (January 1976), pp. 50-53. We report operation of a waveguide CO2 TES
laser at excitation pulse repetition frequencies as high as 40 kHz. Quasi -continuous
laser output was obtained yielding an average output power of 1.5 W from an active
volume of 0.1 cc. Details of laser construction and excitation circuitry are given.

Hydrogen Embrittlement of Electroless Copper Deposits. Y. Okinaka and S.
Nakahara, J. Electrochem. Soc., 123 (1976), pp. 475-478. Electroless copper
deposits were investigated for ductility, impurity content, void distribution, and
fracture surface morphology. It is concluded that the brittleness of electroless copper
deposits is due to the internal hydrogen embrittlement rather than the incorporation
of cuprous oxide or morphological effects.

Multicomponent Photopolymer Systems for Volume Phase Holograms and Grating
Devices. W. J. Tomlinson, E. A. Chandross, H. P. Weber, and G. D. Aumiller,
Appl. Opt., 15, No. 2 (February 1976), pp. 534-541. Novel photopolymer
systems for the fabrication of high -resolution volume phase holograms and gratings
devices are reported. We use a mixture of components chosen to have differing
reactivities and polarizabilities. The image -forming exposure results, ultimately, in a
modulated chemical composition. Peak -to -peak refractive index differentials of up
to 1.5 percent were achieved.

Multipoint Private Line Access Delays Under Several Interstation Disciplines.
C. D. Pack and B. A. Whitaker, IEEE Trans. Commun., COM-24 (March 1976),
pp. 339-348. Performance objectives for some types of computer -communications
networks are stated in terms of access -delay statistics which measure the grade of
service experienced by stations bidding for access to a multipoint private line (MPL).
Using simulation and some analysis, we examine the access delay statistics for an
MPL under each of four service disciplines.

Observations on the Influence of Processing Steps on the Magnetic Hysteresis
Parameters of a Co/Fe/Nb Alloy. M. R. Pinnel, IEEE Trans. Magn., MAG-12
(May 1976), pp. 236-243. The variation of both magnetic and mechanical
properties and microstructure of a Co/Fe/Nb alloy (Nibcolloy) with changes in
processing has been characterized. Results indicate the use of a softening anneal
prior to the final aging anneal can alter magnetic properties. A nonstabihty of
coercivity to subsequent brief elevated temperature exposures of around 1000°C
was also observed.

Profile Parameters of Implanted -Diffused Arsenic Layers in Silicon. R. B. Fair and
J. C. C. Tsai, J. Electrochem. Soc., 123 (April 1976), pp. 583-586. Equations
have been derived that describe the important variables that are required to charac-
terize the diffusion of As -implanted layers for the surface doping concentration range
Gro > 1 X 10" cm-,. In addition, data obtained from differential conductivity
profile measurements and SIMS profile measurements have been used to obtain
experimental parameters for these equations.
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Qualitative Observations on the Diffusion of Copper and Gold Through a Nickel
Barrier. M. R. Pinnel and J. E. Bennett, Met. Trans., 7A (May 1976), pp. 629-635.
The interdiffusion behavior in planar -layered couples of Cu/Ni/Au at temperatures
between 150 and 750°C have been characterized. Results demonstrate that the
nickel barrier layer retards but does not block the transport of copper to the gold
surface. Possible mechanisms for the anomalous buildup of copper at the gold/nickel
interface and gold at the copper/nickel interface are discussed.

Signaling and Switching As We Enter the Second Century. J. S. Ryan, Telecommun.
J., 43, No. 111 (March 1976), pp. 206-219. During the first century of the tele-
phone, switching evolved from the 21 -line New Haven switchboard to the 104,000 -
trunk No. 4 ESS, and signaling from voice alerting to CCIS. This centennial issue
article traces the history and reviews the status of signaling and switching as we
enter the second century.

A Study of Deep Levels in GaAs by Capacitance Spectroscopy. D. V. Lang and R. A.
Logan, J. Electron. Mater., 4, No. 5 (1975), pp. 1053-1066. We show how the
DLTS capacitance spectroscopy technique can be used to detect small amounts of
deep -level impurities in GaAs p -n junctions. The DLTS spectra associated with Cu,
Fe, Cr, 0, and two unidentified, but commonly occurring, deep levels in GaAs are
shown. The LPE distribution coefficients are obtained for Cu, Fe, and Cr. The
carrier capture cross sections for six levels are measured and give evidence for capture
by multiphonon emission.

MATERIALS SCIENCE

Detection of Catalytic Oscillations by Differential Thermal Analysis. P. K. Gallagher
and D. W. Johnson, Jr., Thermochim. Acta, 15 (May 1976), pp. 238-240. Oscil-
lations in DTA curves associated with the oxidation of CO using Pt containing
catalysts were observed. This offers a relatively quick and simple technique for
studying instabilities that arise from the interaction of the catalytic mechanism
and the exothermic nature of the reaction.

Kinetics of Formation of LiFe02 from 2Li2COaFe20a Mixture. P. K. Gallagher
and D. W. Johnson, Jr., J. Amer. Ceram. Soc., 69 (March -April 1976), pp. 171-172.
Mixtures of 2Li2C0aFe20. were found to form LiFeO2 at <600°C. Excess Li2COs
did not react until higher temperatures. Isothermal and dynamic kinetic studies gave
an activation energy of 42-50 kcal/mole. A model involving the rapid surface diffusion
of Li2C08 is proposed.

Diffusion Kinetics of Au Through Pt Films About 2000 and 6000 A Thick Studied
with Auger Spectrscopy. C. C. Chang and G. Quintana, Thin Solid Films, 31
(1976), pp. 265-273. Pt -Au couples with 2000 A and 6000 A Pt films were
heat treated between 250° and 350°C in 1 atm N2. Au was found to diffuse initially
through Pt films <6000 A by grain boundary migration and more than 10" atoms
cm -2 of Au crossed the Pt when the bulk of the Pt contained little Au (<1 at.%).
For 2250 A Pt on Au, the time for half -saturation of the Pt surface with Au was
1(0.5) = 1.2 X 10-7 X exp (0.96 eV/kT) min.

Domain Wall Image Contrast in the SEM. D. C. Joy, H. J. Ieamy, S. D. Ferris,
D. E. Newberry,' and H. Yakowitz,' Appl. Phys. Lett., 28 (April 15, 1976), pp.
466-468. Contrast from domain walls in materials with cubic magnetic anisotropy
has been observed in scanning electron microscope images. This contrast, which is
visible in both the backscattered and absorbed current images, arises from the
interaction of the convergent incident electron beam with the domains on either side
of the wall. National Bureau of Standards.

Ultranarrow, Forbidden, Singlet -Triplet Anticrossings in H2. T. A. Miller and R. S.
Freund, J. Chem. Phys., 63 (1975), pp. 256-263. Forbidden singlet -triplet
anticrossings have been observed between different Zeeman sublevels of the i (3d) 311g,
V = 1, N = 6 and W(?) v = 1, N = 4 states of H2. The anticrossings are
quite sharp and hence allow accurate determinations of the states' zero field separa-
tion, linear and quadratic Zeeman parameters, coupling perturbation, and radiative
lifetimes.
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PHYSICS

The Determination of Energy -Level Shifts Which Accompany Chemisorption.
Homer D. Hagstrum, Surface dci., 54 (1976), pp. 197-209. This paper discusses
the ionization limit with respect to which the electronic energy levels of an adsorbed
complex on a solid surface should be referenced, and how this limit is defined and
measured. This leads to a reasonable procedure for determining energy -level shifts,
at least for simple systems.

The Linear Electric Field Effect for Low Spin Ferric Heme Compounds. W. B.
Mims and J. Peisach*, J. Chem. Phys., 64, No. 3 (February 1, 1976), pp. 1074-1091.
Measurements were made on the linear electric field induced g shifts for a series of
low -spin ferric heme compounds by the electron spin echo method on noncrystalline
samples at liquid helium temperatures. Some of these samples consisted of proteins
and protein derivatives; others were made from heme reacted with small ligand
molecules. Analytic expressions relating the observed changes in spin echo amplitude
to certain of the g2 -shift coefficients Bi; were derived. Results suggest the presence
of extensive back bonding between the Fe3+ ion and the axial ligands of the heme
complex. Results also suggest that myoglobin hydroxide is characterized by a crystal
field which is exceptionally low for the S = (1/2) ferric heme group of compounds.

Departments of Pharmacology and Molecular Biology, Albert Einstein College
of Medicine of Yeshiva University.

Elastic Constants of bcc 'He. D. S. Greywall, Phys. Rev. B (Nucl. Phys.), 13 (Feb-
ruary 1976), pp. 1056-1068. Longitudinal and transverse sound velocities were
measured in single crystals of bcc 'He with known orientation at 21.00 cm3/mole
and at 1.612 K. The temperature dependence of sound velocities along an isochore
and along the melting curve was measured for several samples. No premelting effects
were observed. The ratios of bcc 'He to 4He elastic moduli at the same molar volume
are considerably larger than the classical ratio of unity but in excellent agreement
with the quantum -mechanical calculations of Homer. Existing calorimetric data
are compared with the present determination of the Debye temperature.

Isotope Abundances in Interstellar Molecular Clouds. P. G. Wannier, A. A. Penzias,
R. A. Linke, and R. W. Wilson, Astrophys. J., 204, No. 1 (February 15, 1976),
pp. 26-42. We use the J = 1 ---) J = 0 transitions of 12c160, lac180, and 1C'80
at 110 GHz to measure abundance ratios of carbon and oxygen isotopes throughout
our galaxy. The measured values of E12ci/Eiacl seem to be different than the
terrestrial values, suggesting significant galactic chemical evaluation since the birth
of the sun.
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