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A procedure is described that is used to engineer traffic networks for
more than one hour of point-to-point load data. The procedure differs
significantly from existing methods, which are based upon the concept
of "economic load on the last trunk" (ECCS). (When the peak -load
hours on most routes coincide, however, the procedure reduces to the
ECCS method.) This "multihour" procedure has been implemented
in a computer program used in design studies of three end offices in the
Los Angeles local network. For the cases examined, the multihour
technique produced networks whose costs averaged approximately 7
percent below those achieved with the presently used single -hour
methods. Thus, the multihour technique appears to promise consid-
erable cost benefits in future network designs.

I. INTRODUCTION

In this paper, we describe a procedure used to engineer networks for
more than one hour of point-to-point traffic data. Specifically, for a given
routing structure, set of switching and transmission costs, and point-
to-point offered load between each pair of offices for each of several
hours, this method produces a (nearly) least -cost network that satisfies
the constraint that the blocking probabilities on all final groups be below
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a predetermined value (the "grade of service") for all hours. This mul-
tihour procedure is a major departure from currently used single -hour
methods based upon the concept of "economic load on the last trunk"'
(ECCS). The new technique reduces to the ECCS method, however,
when the peak -load hours on most routes coincide. After computer
programs are written and operating practices are developed, this new
procedure should become suitable for routine field use.

The underlying theoretical basis for multihour engineering was de-
veloped by Rapp.2 Rather than attempting to construct an optimal so-
lution, however, Rapp proposed an alternative approximate technique.
Our aim is to get an exact solution. Although we do not fully achieve this
aim, we obtain significant improvement in network performance relative
to a single -hour approach.

A computer program that implements the multihour procedure was
used to study three end offices located in the Los Angeles area. For the
cases examined, where a significant amount of noncoincidence of
peak -load hours existed, the multihour method produced network cost
savings averaging 7 percent over the single -hour methods currently
employed. In addition, in each case, a very sizable reduction of tandem
switching load was achieved.

II. SINGLE -BUSY -HOUR ENGINEERING

Before discussing the multihour technique, let us first review the
considerations involved in engineering for a single hour. Figure 1 depicts
a single high -usage group, the direct route, overflowing to an alternate
route. (For now, we make the simplifying assumption that the alternate
route consists only of a single trunk group. We later consider more re-
alistic alternate -route configurations.) The cost per trunk of the direct
route is CD, and the cost per trunk of the alternate route is CA (which
is assumed to include the cost of tandem switching). The offered load
in the hour being considered is a. The problem is to determine the value
of n, the number of trunks in the high -usage group, so that the total cost
is minimized; however, the minimization of cost is subject to the con -
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Fig. 1-High-usage trunk group overflowing to alternate route.
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Fig. 2-Single-hour trunk -group sizing.

straint that the blocking probability on the alternate route is below a
predetermined value.

The total cost is equal to the cost of trunks on the direct route plus the
cost of trunks on the alternate route. To simplify matters, it can be as-
sumed that the alternate -route cost is composed of a fixed component
(the cost of carrying the "background" alternate -route load) plus a
variable component (the cost of carrying the overflow) whose magnitude
is proportional to the amount of overflow traffic.* Since the cost required

of n, we may
neglect this component and write the cost to be minimized as

COST = CA-
aB(n,a) + CDn. (1)

Here, y is the marginal capacity of the alternate route, and B(n,a) is the
Erlang-B blocking probability. The marginal capacity is the amount of
additional traffic that it is assumed can be offered to the alternate route,
at fixed blocking, for the addition of one trunk. Thus, aB(n,a) is the load
overflowing to the alternate route, 1/-y aB(n,a) is the assumed number
of additional alternate -route trunks required to carry this overflow, and
CAly aB(n,a) is the cost of these additional trunks. CDn is, of course,
the cost of trunks on the direct route. These two components of cost and
their sum are shown as a function of n in Fig. 2. The total cost is seen to
be a U-shaped curve having a minimum at the point indicated. This point
is determined by the condition that the rate of change of COST with
respect to n be equal to zero:

* This assumption is not quite true, particularly when the peakedness of the overflow
traffic is taken into account. Nevertheless, in most cases of interest, the assumption yields
a configuration whose cost differs negligibly from the optimal plan.
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-dn COST = 0.

From eq. (1), this implies

(2)

- -d [aB(n,a)] = (3)
do CR

where CR = CA/CD is the cost ratio, as discussed in Ref. 1. The quantity
on the left-hand side of eq. (3), the rate of change of overflow with respect
to the number of trunks on the high -usage group, is very nearly equal
to the "load on the last trunk." * The quantity on the right-hand side
of eq. (3) is the "economic" load on the last trunk, or ECCS (CCS is 100
call seconds per hour). Thus, the minimum cost is achieved by sizing the
high -usage group such that its load on the last trunk is equal to its
"economic" value, 7/CR.

In this discussion, it is assumed that the network is designed to carry
only a single hour's load. In practice, of course, the load on the high -usage
group, as well as the background load on the alternate route, varies from
hour to hour. The question arises as to which of the hours of loads should
be used to engineer the group.

It is clear that it would be uneconomical to engineer a high -usage group
for its individual group busy hour if this hour does not coincide with the
busy hour of the alternate route; the alternate route has spare capacity
in off -hours. A moment's reflection reveals that the appropriate hour
for which to size the group is the alternate -route's busy hour; only in this
hour does the cost of carrying the overflow traffic from the high -usage
group need to be considered.

This fact has long been recognized by traffic engineers.1 The method
of choosing the engineering hour which was adopted, consequently, in-
volved the concept of the "cluster busy hour." A "cluster" is defined as
a set of high -usage trunk groups originating at the same office and
overflowing to a common alternate -route leg, together with the alter-
nate -route leg itself. The cluster busy hour is defined as that time -con-
sistent hour for which the total load offered to the cluster (specifically,
the sum of the carried loads on all high -usage groups in the cluster, plus
the offered load on the alternate -route leg) is maximum. It was assumed
that the alternate -route busy hour would be the same as the cluster busy
hour, and thus the adopted engineering practice was to size every high -
usage group for its cluster -busy -hour load.

The difficulties that can arise with this method, however, are illus-
trated by the example in Fig. 3. In the figure, we show a simple network

* "Load on the last trunk" is defined to be a[B(n-1,a)-B(n,a)] if the group has n
trunks.
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cluster consisting of two one-way outgoing high -usage groups, A and B,
overflowing to a common alternate route, F. The cost ratio is assumed
to be 2, and the marginal capacity of the alternate route is assumed to
be 28 CCS. Since a total of 1100 CCS is offered to the cluster in Hour 1
and 1000 CCS is offered in Hour 2, the cluster busy hour is Hour 1. For
the Hour -1 loads the ECCS method yields a network consisting of 10 and
26 trunks on high -usage groups A and B, respectively. It is seen, however,
that this network has a high overflow from group A during Hour 2. This
high overflow occurs because the group is engineered for only 300 CCS,
while in Hour 2 the offered load is 600 CCS. As a consequence, the total
load on the alternate route is greater during Hour 2, contradicting the
original assumption that the alternate route was busier in Hour 1. To
guarantee a given grade of service in both hours, it is necessary to add
trunks to the alternate route for its load in Hour 2.* Under the as-
sumption that the number of extra alternate -route trunks required to
carry this load is nF = 276/7 = 9.8, we find the total cost of the network
to be $55.60.t

Figure 3 also shows the network derived on the basis of the Hour -2
loads. For this network, due to high overflow from group B during Hour
1, the final -group busy hour is Hour 1, again contradicting the initial
assumption. The total cost of this network is $59.40.

The third network in Fig. 3 was derived using the multihour technique.
As can be seen, this network nearly equalizes the load on the alternate
route in the two hours. (In general, the multihour technique tends to
equalize the hourly loads on the alternate route or routes.) The cost of
this network is $46.80, substantially less than either single -hour net-
work.

This example illustrates some of the problems inherent in single -hour
engineering methods and the potential improvement obtainable with
the multihour technique. We describe this technique in detail in Section
III.

III. MULTIHOUR ENGINEERING

Figure 4 again shows a single high -usage group overflowing to an al-
ternate route, where the trunk costs CD and CA are defined as before.
The loads a1 and a2 are offered to the high -usage group in Hours 1 and
2, respectively. Also shown in the figure are the background loads in

* In practice, the servicing up of the alternate route might take place after the engineered
network was in operation, when the service degradation in the side hour was actually ob-
served.

The use of an assumed marginal capacity for the alternate route, while reasonable for
the purpose of sizing high -usage groups, is actually inappropriate for determining trunk
requirements on the alternate route. Our aim here, however, is merely to obtain a rough
indication of alternate -route cost for comparative purposes.
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Fig. 3-Comparison of engineering methods in the presence of noncoincidence.

Hours 1 and 2, A1 and A2, offered to the alternate route. The background
loads are the total loads offered to the alternate route, not including the
overflow from the high -usage group under consideration.

In sizing the high -usage group, we attempt to minimize total cost. We
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Fig. 4-High-usage group with offered load for two hours.
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must recognize, however, that since the grade of service must be guar-
anteed for both hours, the cost of the alternate route depends upon the
greater of its total offered loads in Hours 1 and 2. The cost is thus given
by the formula*

COST = CA Max
Al

+ a 1B(n'al)1 + CDn. (4){A2
+ a2B(n,a2)1

The total load on the alternate route during Hour 1 is equal to the
background load A1 plus the overflow from the high -usage group,
a1l3(n,a1). The total load during Hour 2, similarly, is A2 + a 2B (n,a2).
The controlling load for the alternate route is the greater of these. The
total cost equals the maximum alternate -route load times CA/"y plus the
cost of the high -usage group CDn.f

The term "multihour engineering" denotes the process of designing
a network by searching along the cost curve of eq. (4) foreach group-or
actually, the more general cost curve of eq. (5) discussed below-to de-
termine the minimum -cost point. The optimal number of high -usage
trunks in each group determined by the use of this technique varies
depending upon the loads and costs. Figure 5 shows two different cases
that can arise.

In Case I, the plot of cost curves shows that the Hour -1 load on the
alternate route dominates the Hour -2 load for all n. In this case, there-
fore, the maximization operator of eq. (4) always selects Hour 1, as
suggested by the shading of this cost curve in the figure. Thus, in Case
I, the multihour method reduces exactly to the single -hour method by
using the Hour -1 load. This example illustrates the case discussed above,
where the use of the cluster -busy -hour concept yields the correct solu-
tion. Note that the correct solution is confirmed if the actual alternate -
route busy hour, determined by examining the load offered after engi-
neering, is the same as that originally assumed.

Case II in Fig. 5 illustrates a different type of behavior. In this example,
the background load on the alternate route is greater in Hour 2, and the
offered load on the high -usage group is greater in Hour 1. Thus, for n
small there is heavy overflow during Hour 1, and this causes the total
alternate -route load to be greater in Hour 1. For n large, however, the
overflow is small, so that the alternate -route load is greater in Hour 2
due to the background component. The costs of carrying the alternate-

* This formula, in the more general form of eq. (5), was first given by Rapp (Ref. 2).
The equation again is not strictly correct since the cost of the alternate route is not

proportional to its offered load. However, we shall not use eq. (4) to evaluate the absolute
cost, but only to determine its relative minimum with respect ton. For this purpose, the
equation yields accurate results.
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Fig. 5-Multihour trunk -group sizing for the network in Fig. 4.

route loads in Hours 1 and 2 are drawn in the figure and are seen to in-
tersect. To the left of the intersection point, the cost of the alternate route
is determined by the Hour -1 load, and to the right, the cost is determined
by the Hour -2 load. The maximization operator selects these portions
of the curves; this is suggested by the shading in the diagram. The total
cost is the sum of the alternate -route cost and the straight-line direct -
route cost and is represented by the solid -line curve on the top of the
diagram. The curve shows a minimum at the point n = no and has a
discontinuous derivative at this point. The calculation of no for this
example, then, differs radically from the calculation in our previous
examples. Whereas before, the minimum -cost design was determined
by requiring the load on the last trunk to be equal to a prescribed value,
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here no is determined to be that value of n which equalizes the loads on
the alternate route in the two hours.

It is instructive to observe what would happen if a single -hour method
were used in this example. If Hour 1 were chosen as the engineering base
hour, the resulting high -usage group size would be n1, shown in the di-
agram. Note that if n1 trunks were installed, the alternate route would
actually be busier in Hour 2 than in Hour 1, contrary to what was as-
sumed. The total cost of the network after adding trunks to the alternate
route to handle the Hour -2 load would be higher than at the optimum
point no. Similarly, if Hour 2 were the selected engineering base hour,
the resulting group size would be n2. The alternate route would actually
be busier in Hour 1, and again the total cost would be higher than opti-
mum.

Up to this point we have, for simplification, been treating the case
where the alternate route has consisted simply of a single trunk group.
Actually, of course, the alternate -route configuration is more compli-
cated. Figure 6 shows one possible arrangement where the alternate route
consists of a final group, a tandem switch, and a tandem -completing
group. The background loads for the two hours are F1 and F2 for the
final, S1 and S2 for the tandem switch, and T1 and T2 for the tandem-

completing group. The cost per trunk of the final group is CF and the
cost per trunk of the tandem -completing group is CT. We assume that
the switching cost is proportional to the load and is equal to Cs per CCS
switched. The cost of each component of the alternate route again is
determined by the maximum traffic offered to it. Thus, the engineering
of the high -usage group requires three separate busy -hour comparisons.

S2

S_Si\ TANDEM SWITCH

FINAL GROUP

F 2--0.

ORIGINATING
OFFICE

HIGH -USAGE I
GROUP a,

Cp

Ti

/ TANDEM -COMPLETING
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Fig. 6-Typical alternate -route configuration.
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The total cost is given by the formula

COST = CF Max
IrF + aiB(n,a1)) + Cs Max

{Si + aiB(n,a1)1

'Y 2 + a2B(n,a2) 1S2 + a2B(n,a2)J

CT IT C 1 113 (n,a1)}+ -Max + CDn, (5)
7 2 4- a2B(n,a2)

which is explained exactly like eq. (4).
Figure 7 shows one possible example of the behavior of the cost curves

as a function of n. In this example, the cost curves of the final group
during Hours 1 and 2 intersect at a certain point. The switch cost curves
also intersect, but at a different point. The tandem -completing cost is
completely dominated by the Hour -1 load in this example. The sum of
these three costs, plus the straight-line direct -route cost, yields the total
cost curve shown at the bottom of the figure. In this example, the opti-
mum design requires equalization of the switch loads in Hours 1 and 2.
Of course, depending on the loads and costs, the minimum -cost point
could instead have required equalizing of the final loads or of the tan-
dem -completing loads. Alternatively, the minimum -cost network might
not correspond to any of these "breakpoints" of the curve, but could lie
on a smooth portion as in the single -hour case discussed previously.*

It is important to observe that even in the case where the optimum
solution does not correspond to a breakpoint, the engineering does not
necessarily reduce to the single -hour ECCS method. To use the single -
hour ECCS method, we first compute the "effective alternate -route cost
per trunk" as CA = CF 7C5 + CT. Then, using a single hour's load, we
determine n such that the load on the last trunk during that hour is equal
to 7 divided by the cost ratio, CA/CD. To see how the multihour method
differs from this, let us assume that the final group is dominated by its
Hour-i load, the switch is dominated by its Hour -j load, and the tan-
dem -completing group is dominated by its Hour -k load. (We make this
assumption to avoid having to worry about breakpoints in the cost curve.)
Then, it follows from the differentiation of eq. (5) that the optimum value
of n satisfies the equation

CF M
CTL(ai) + Csaj) +- L(ak) = CD,
7

(6)

* Rather than attempting an exact minimization of eq. (5) in the manner we have de-
scribed, Rapp adopted an approximate approach. He introduced the fictitious load, U, as
a function of the parameters al, a2, A1, A2, and then used it in the single-hour formula
of eq. (3) to produce a trunk -group size.2
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Fig. 7-Multihour trunk -group sizing for the network in Fig. 6.

where am (m = i,j,k) is the load offered to the high -usage group during
Hour m and L(a,n) is the load on the last trunk during that hour.* [This
notation omits explicit indication that L(a,n) is a function of n.] If i =
j = k, so that all components of the alternate route are busy at the same
time, then L(ai) = L(af) = L(ah) E L(a), and we can factor out this
quantity. The equation becomes, in this case,

* More precisely, L(a,) = -(d/dn)la,B(n,an,)].
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L(a) - y ,

(CA/CD)
(7)

where CA = CF 7CS + CT. This is precisely the ECCS formula. [See
eq. (3)].

Thus we see, as expected, that the single -hour ECCS method is opti-
mum only when all components of the alternate route have the same
busy -hour (or when the high -usage load is the same in all hours). If this
is not the case, then it is invalid to lump the various components into one
alternate -route cost and to choose only a single hour's load for engi-
neering the high -usage group. Equation (6) shows that, in general, the
optimal sizing of the group involves the load on the last trunk in each
of the three hours that are significant to the alternate route.

An example is given in Fig. 8 which illustrates the difference between
multihour and single -hour engineering in the case where the busy hours
of the alternate -route legs do not depend upon the high -usage group size.
In the example, a single high -usage group with offered loads of 300 CCS
in the daytime and 200 CCS in the evening overflows to a final group with
a known daytime busy hour and then to a tandem -completing group with
a known evening busy hour. (The tandem is neglected for simplicity.)
Since the busy hours of the alternate -route legs are fixed, eq. (6) gives
the multihour solution for this example. The equation yields a trunk
requirement of 11. Single -hour engineering produces a trunk require-
ment of 13 for the daytime load and 9 for the evening load. It can be seen
in the figure that the multihour network cost is significantly lower than
both single -hour networks in this example. Note that daytime engi-
neering over -sizes the high -usage group due to an overestimate of the
tandem -completing cost, while evening engineering undersizes the group
due to an underestimate of the final cost.

IV. THE SIGNIFICANT -HOURS ALGORITHM

An alternative procedure for engineering networks for more than one
hour of traffic data, called the "significant -hours" method, has recently
come into use in the Bell System. In this section, we describe this algo-
rithm as applied to a two -level local network, and compare it to the
multihour method discussed above.

The significant -hours algorithm was devised to overcome shortcom-
ings of the cluster -busy -hour ECCS approach caused by the fact that
the various legs of the alternate -route path have busy hours different
from that of the originating cluster. These shortcomings can be explained
by considering the network in Fig. 9. In the cluster -busy -hour approach,
the originating cluster -busy hour of each office is used for sizing all the
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Fig. 8-Comparison of engineering methods for fixed alternate -route busy hours.

originating groups in each office. Thus, group A -Z is sized for its A -office
cluster -busy -hour load, group B -Z for its B -office cluster -busy -hour load,
and group C -Z for its C -office cluster -busy -hour load. If offices A,B, and
C are business -dominated offices, the groups A -Z, B -Z, and C -Z would
be sized for their daytime business loads. If office Z is a residence -
dominated office, however, the loads on these groups may peak in the
evening. Since the groups are sized for their smaller daytime loads, they
would overflow heavily in the evening, and all this overflow would be
offered to the tandem -completing group T -Z. This effect has been ob-
served in actual networks; in some cases, extremely high loads occur on
certain tandem -completing groups, requiring great quantities of trunks
and switching termination equipment. The problem is clearly caused
by the exclusive attention to the originating portion of the alternate -
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Fig. 9-Example of network.

route path and the total neglect of the terminating portion.
The significant -hours method solves this problem by giving equal

treatment to both parts of the alternate -route path. For group A -Z, two
significant hours are considered: the A -office originating cluster busy
hour (defined above) and the Z -office terminating cluster busy hour
(defined as that hour for which the total traffic terminating at office Z
is maximum). Of these, the one for which the A -Z load is larger is chosen
as the "control hour" for group A -Z. The group is then engineered for
this load. By engineering the high -usage group for the larger of its sig-
nificant loads, enough trunks are installed to eliminate the possibility
of extremely heavy overflow in the busy hour of the tandem -completing
leg.

There still remain two problems with this method, however. The first
is the fact that the actual busy hours of the final and tandem -completing
groups of the engineered network are not necessarily the same as those
that the significant -hour calculation predicts.* The second problem is
that even if the significant hours are the right ones, in the sense that the
alternate -route busy hours after engineering agree with the original as-
sumptions, this method will over -engineer the group unless either (i)
the significant hours are all the same, or (ii) the offered loads on the
high -usage group are the same in these hours.

* It should be emphasized that using observed final -group and tandem -completing -
group busy hours, instead of the originating and terminating cluster busy hours, does not
get around this problem. The observed busy hours depend on the previous network con-
figuration. The point is that if a significant amount of noncoincidence of traffic loads exists,
the busy hours of the newly engineered network will not agree with those assumed in the
engineering, no matter how the hours are selected.

14 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



V. MULTIHOUR ENGINEERING OF A NETWORK

In the discussion of the theory of multihour engineering surrounding
eqs. (4) and (5), we considered only the sizing of a single high -usage trunk
group in isolation. The background loads on the alternate route were
given and assumed fixed. In a network, however, these background loads
consist partly of overflows from other high -usage groups-groups which
themselves have to be sized during the engineering process. For a net-
work consisting of more than one group, therefore, the use of eq. (5) alone
is insufficient, since it does not account for the interdependence between
the high -usage groups that arises through their mutual effect on the
background loads.

The optimal sizing of a network consisting of N high -usage trunk
groups in fact requires the minimization of a cost function of N dimen-
sions, instead of the one-dimensional cost function of eq. (5). An analysis
of this optimal approach has been carried out by W. B. Elsner of Bell
Laboratories3. All of our initial network results, however, including those
described in the remainder of the present paper, were obtained using
a simple iterative approach. These initial results allowed us to demon-
strate the feasibility of multihour engineering and to quantify the order
of magnitude of the associated cost savings. These preliminary findings
justified the effort by Elsner to develop the exact algorithm.

We begin the iterative process by choosing initial sizes for every trunk
group in the network.* This allows us to compute overflows from each
high -usage group and thus to determine the total background loads
which are offered to all alternate -route groups. We then size each high -
usage group in turn by minimizing its one-dimensional cost function.
The background loads used in each case consist of the first -routed loads
plus the overflow from all other high -usage groups, that is, all high -usage
groups except the overflow from the group being sized. After sizing every
group once, the background loads that appear on the alternate -route
groups differ from what they are at the beginning and, hence, the engi-
neering procedure is iterated, each pass consisting of the resizing of every
high -usage group. This process continues until the iteration conver-
ges.

An essential aspect of this procedure is the fact that the background
loads are updated immediately after the sizing of each group and before
the sizing of the next group in sequence. The background loads play a
very important part in the process of multihour engineering and it is
necessary that the computed background loads be accurate if the proper
sizing is to take place. If the updating is not done promptly, the back-

* In obtaining the results that follow, we initialized each group to be numerically equal
to the largest load on the group measured in erlangs.
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ground loads used in sizing will differ from their true values, and
misengineering of the network will result. If the updating is delayed to
the end of each complete pass, for example (as was done in our first at-
tempt), the iteration could even fail to converge.

When the iteration does converge, the resulting network has the
property that, if all other groups are held fixed, each individual group
is sized to minimize cost. It is possible, however, that at convergence
network cost could be further reduced by changing the sizes of two or
more trunk groups simultaneously. This simple iterative approach also
has the property that the solution to which it converges is not unique;
depending upon the initial trunk values assumed, and the order in which
the groups are sized, the solution network can vary. Both of these un-
desirable properties of the iterative method are overcome with Elsner's
approach.3

VI. COMPUTER PROGRAM AND RESULTS

A computer program incorporating the above iterative multihour
procedure was written to design a network with the routing structure
shown in Fig. 10. In this network, a single end office has a number of
one-way outgoing high -usage trunk groups connected to other end of-
fices. All high -usage groups overflow to a common final group and traffic
reaches its terminating office via a one-way tandem -completing
group.

The program was run using the load data from three California end
offices: Gardena, Compton, and Melrose. In each case, two hours of loads
were employed. Hour 1 was a morning busy hour dominated by business
traffic, and Hour 2 was an evening busy hour dominated by residential
traffic. In the absence of actual trunk and switching cost data, the trunk
cost of every group was assumed identical, equal to $1000 per trunk, and

TANDEM

..."

--.-- .00.
........ ............ ,,..

.....-- ..-** -------........ .......... .0.

Ce.......s...."..
..... .........

END OFFICE

CONNECTING
END OFFICES

Fig. 10-Network configuration for multihour engineering program.
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the switching cost was assumed to be $62 per CCS (which yields a real-
istic average switching -to -trunk -cost ratio). Both the switch and the
tandem -completing groups were assumed to have zero background load.
(This implies that the switch loads are identical to the final loads and
that the tandem -completing busy hours are the same as their corre-
sponding high -usage group's busy hours.)

Table I contains detailed results obtained for the Gardena office. The
table shows the two hourly offered loads for each high -usage trunk group;
it also shows the number of trunks and the resulting hourly overflows
for the cluster -busy -hour network and the multihour network.

From the totals at the bottom of the table, it can be seen that the total
cluster load in Hour 1 is 6712 CCS while the total cluster load in Hour
2 is 5154 CCS; clearly, Hour 1 is the cluster busy hour. On the other hand,
for the network engineered for the cluster busy hour, the total overflow
(i.e., the load offered to the final group) is 975 CCS in Hour 2 and only
502 CCS in Hour 1. Here we see again the phenomenon of the final busy
hour differing from the cluster busy hour.

The reason for the high side -hour overflow can be seen by looking at
the Hour -1 and Hour -2 overflow columns. The overflows in Hour 1 are
quite uniform over all trunk groups; the trunk sizes are "matched" to
the Hour -1 loads. In Hour 2, however, there is a great mismatch. A few
trunk groups have very large overflows, the rest have virtually none.
Three groups alone (14, 18, and 20), in fact, account for almost 60 percent
of the total overflow in this hour. As can be seen, the pattern of overflow
in the multihour network is more nearly balanced between the two hours;
the total overflows in Hours 1 and 2 are nearly equal in this network.

Table II compares the main characteristics of the busy -hour and
multihour networks for Gardena. The numbers of final trunks shown
are sufficient to guarantee a blocking probability of 0.01 for both hours.
For the busy -hour network, for example, the final must be sized for the
Hour -2 load since that load is larger. The total cost shown is the sum of
the costs of the high -usage groups, final group, tandem switching, and
tandem -completing groups. (The tandem -completing cost is an ap-
proximation based upon the use of marginal capacity to determine the
trunk requirement for each group.)

With this simple model, the total cost of the multihour network is
approximately 7 percent less than the cost of the single -hour network.
Also significant is the fact that the switching cost is reduced 26 percent
by using the multihour technique. Table III shows cost comparisons of
all three of the networks studied. As can be seen, total network costs for
the three cases decrease in the range of 5 to 11 percent and tandem -
switching costs decrease in the range of 17 to 26 percent with the use of
the multihour technique. (Trunk costs of $1000 and switching costs of
$62/CCS were assumed in each case.)
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Table I - Gardena network results

Offered Load Cluster -Busy -Hour

Trunk (CCS) Engineering Multihour Engineering

Group Hour -1 Hour -2 Hour -1 Hour -2
Overflow Overflow Overflow Overflow

Hour 1 Hour 2 Trunks (CCS) (CCS) Trunks (CCS) (CCS)

1 60 140 3 10 62 4 4 42
2 119 9 6 8 0 3 45 0
3 82 20 4 10 0 4 10 0
4 305 76 12 20 0 6 126 1

5 30 0 2 5 0 0 30 0
6 59 7 3 9 0 1 37 1

7 102 56 5 10 1 4 19 3
8 256 161 11 13 1 8 47 8

9 366 230 15 15 0 12 46 4
10 469 310 18 20 1 18 20 1

11 115 115 5 15 15 5 15 15
12 144 34 7 9 0 7 9 0
13 206 335 9 13 80 10 7 61
14 310 650 13 13 233 16 3 154
15 284 319 12 13 25 12 14 25
16 93 152 4 15 50 5 7 33
17 17 24 1 5 10 1 5 10
18 74 325 4 8 200 6 1 143
19 102 158 5 10 37 5 10 37
20 137 322 6 14 141 8 3 92

21 222 247 9 18 28 10 11 18
22 252 390 11 12 78 12 7 59
23 445 194 17 21 0 17 21 0
24 176 86 8 11 0 8 11 0
25 83 29 4 11 0 4 11 0
26 98 21 5 9 0 5 9 0
27 158 74 7 13 0 7 13 0
28 124 36 6 10 0 6 10 0
29 54 25 3 7 1 3 7 1

30 38 1 2 8 0 2 8 0

31 31 17 2 5 1 2 5 1

32 140 46 6 15 0 6 15 0
33 96 30 5 8 0 5 8 0
34 122 62 6 9 0 6 9 0
35 163 57 7 15 0 7 15 0
36 163 72 7 15 0 7 15 0
37 296 238 12 17 5 12 17 5

38 33 28 2 6 4 2 6 4

39 240 3 10 16 0 10 16 0
40 136 7 6 14 0 6 14 0

41 54 4 3 7 0 3 7 0
42 52 35 3 7 2 3 7 2

43 206 9 9 13 0 9 13 0

Totals 6712 5154 295 502 975 287 713 720
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Table II - Main characteristics of busy -hour and multihour
networks for Gardena

Network
Characteristics

Cluster
Busy -Hour Multihour
Engineering Engineering

High -usage trunks 295 287
Final trunks 37 29
Switching cost $60,450 $44,640
Total cost $437,106 $405,315

Table Ill - Cost comparisons for three networks

Network Total Costs ($1000) Tandem Switching Costs ($1000)

Office Busy -Hour Multihour % Decrease Busy -Hour Multihour % Decrease

Gardena 437 405 7 60.4 44.7 26
Compton 493 441 11 87.9 64.7 26
Melrose 303 288 5 45.2 37.6 17

VII. CONTINUING WORK

In this paper, we have described the basic theory of multihour engi-
neering and have demonstrated, in a few simple networks, the potential
savings it can bring about. A number of questions require answers for
this technique to achieve acceptability for use in the field. These ques-
tions include the following: the "hours" of data used for engineering may
occur in different seasons of the year as well as different times of the day.
How many hours should be included in the engineering of a network and
how should these hours be determined? How is multihour engineering
to be accomplished in a large-scale network with more than two levels
in the hierarchy? How is trunk administration to be carried out in a
multihour environment? What changes are required for two-way trunk
groups? These questions and others have been the subject of intensive
study at Bell Laboratories, and the answers will be reported on in future
papers.

VIII. CONCLUSIONS

Multihour engineering is a technique that can provide significant
benefits in the design of alternate -route traffic networks. In a comput-
erized engineering environment, especially since automated data -col-
lection methods make it possible to collect larger amounts of (and more
accurate) traffic data, this technique should prove to be a realistic and
preferable alternative to the older single -hour techniques.
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Design of Quantizers for Real -Time Hadamard-
Transform Coding of Pictures
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A methodology is developed to obtain subjectively optimum quan-
tizers for Hadamard-transformed still pictures. To exploit the per-
ceptual redundancies that depend upon the local properties of the
picture, a small block (2 X 2 X 2, horizontal -vertical -temporal) is used.
A series of subjective tests was carried out to determine the visibility
of impairment in the reconstructed picture when noise, which simu-
lated the quantization noise, was added to the Hadamard coefficients
in the transform domain (H -noise). A design procedure for quantizers
was developed using these visibility functions. These quantizers min-
imize the "mean -square subjective distortion" (MMSSD) due to quan-
tization noise. The resulting picture quality and entropy were com-
pared with that of Max -type quantizers which minimize the "mean -
square error" (MMSE). This comparison indicates that the MMSSD
quantizers based on subjective visibility of the quantization noise are
less companded than the MMSE quantizers. Also for the same number
of quantization levels, pictures coded with MMSSD quantizers have
better quality and less entropy than the pictures coded with minimum
mean -square quantizers.

I. INTRODUCTION

A methodology is developed in this paper to establish fidelity criteria
that characterize human observers' perception of noisy transform -coded
pictures and to obtain optimum quantizers for the transform coefficients
based on these fidelity criteria. The perceptual effects of impairments
introduced in the transform domain are, in general, quite different from
the impairments introduced in the picture domain. Our experiments,
which are performed with the Hadamard transform of a stationary
picture, determine the visibility of impairments in the reconstructed
picture when noise (H -noise), which simulates the quantization noise,
is added to a Hadamard coefficient. Functions that give the appropriate
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subjective weighting of the quantization noise as a function of the
quantity to be quantized are derived from these experiments. These
functions, called visibility functions, are used in a systematic way to
design quantizers for PCM and DPCM coding of the transform coeffi-
cients. These quantizers are compared with minimum mean -square error
(MMSE) quantizers, both in terms of picture quality and bit rates.

1.1 Relationship to previous work

Considerable attention has been paid to the transform domain in the
recent work on picture coding.' -14 Transform domain processing has
several potential advantages. It produces less correlated (but not nec-
essarily independent) coefficients. It redistributes the image energy so
that a large amount of energy is packed in a few of the coefficients.
Moreover, on inverse transformation at the receiver, both noise from
quantization of coefficients and the channel errors get distributed over
the block in a manner given by the inverse transform of a particular
coefficient.

A number of different transforms have been investigated; among them
are: Karhunen-Loeve, Fourier, Hadamard, Haar, cosine, and slant
transform. There have been several attempts5,15,16 to compare the various
transforms and to find their relative merits for coding of pictures. Almost
all of these comparisons have been with respect to the following three
criteria: (i) the correlation between the coefficients, (ii) the mean -square
approximation error caused by setting some of the coefficients to zero,
and (iii) the computational complexity in obtaining transform coeffi-
cients from picture elements (pels) and vice versa. Perceptual factors
and the dependence of the picture quality on the particular transform
and the block size have not received the attention they deserve.

The irreversible processing of the transform coefficients, which de-
termines the trade-off between picture quality and bit rate, has been
performed in a number of ways; for example, (i) zonal sampling or
masking, which drops some predetermined higher -order coefficients;
(ii) threshold sampling, which drops those coefficients whose values are
below a predetermined threshold (a certain amount of addressing in-
formation must be sent in using this technique); (iii) quantization of the
coefficients-both amplitude (PCM) and differential amplitude (DPCM)
quantization9,14 have been considered. Most of the work on quantization
of the coefficients has centered around minimization of mean -square
error as a criterion in designing the quantization characteristics. Several
assumptions on the probability of the coefficients have been made, in-
cluding the familiar gaussian case,15 to carry out this minimization.
Exploitation of the psycho -visual properties of the viewer and the op-
timization of the quantizers for the best subjective quality of the picture
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has often been mentioned in the literature; however, no systematic
methods are available for achieving these.

Our work on obtaining the quantization characteristics may be com-
pared with that reported by Landau and Slepianl and Tasto and Wintz.4
For this reason, we give a brief review of their reports. In both only a
single frame of picture data is used despite the fact that the quantization
noise is more visible when a sequence of frames of the same scene is
coded.

Landau and Slepian considered both Karhunen-Loeve and Hadamard
basis vectors for the linear transformation and found that the
Karhunen-Loeve transformation required solution of an almost de-
generate eigenvalue problem. They then used Hadamard transformation
with a 4 X 4 block. The number of quantization levels given to each of
the first ten coefficients was approximately proportional to the variance
of that coefficient, and the last six coefficients (H11 to H16) were dropped.
The first coefficient was quantized by a 64 -level uniform quantizer.
Coefficients H., through H10 were quantized with quantizers having a
companding characteristic given by a function of the form y = k-VX.

Two arguments led Landau and Slepian to this quantization strategy.
Firstly, since the variances of the lower coefficients are in general larger,
coding them more accurately reduced the mean -square error. Secondly,
the higher coefficients tend to be large in the busy regions of the pictures,
where the viewers have more tolerance to amplitude errors. Thus, they
used in an empirical way the consideration of a characteristic of the
viewer as well as the statistics in the design of quantizers. They carried
out over 100 experiments in which the decision levels and the repre-
sentative levels of the quantizers were changed. However, since the
number of choices is so large, their search could not be exhaustive and,
therefore, their quantizers are the best only among those that they in-
vestigated.

Tasto and Wintz proposed an encoder using a 6 X 6 adaptive
Karhunen-Loeve transform whose coefficients are quantized by what
the authors call a "subjectively" optimized system of quantizers. This
is done by first starting with a quantizer that minimizes the mean -square
quantization error and then changing it by a trial -and -error procedure
to obtain the "best" picture quality in the authors' judgment. The "best"
is again from among those encountered in the trial -and -error procedure.
They also conducted subjective rating experiments to compare the
performance of the minimum mean -square quantizers with the "best"
quantizers.

1.2 Basic objectives and approach

Our basic objectives are to obtain fidelity criteria in the transform
domain which incorporate psycho -visual properties, and to develop
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systematic methods for the optimum design of coders based on these
fidelity criteria. As mentioned above, perceptual properties of the human
viewer have not been given sufficient importance in the transform -coding
literature and, consequently, good models do not exist to explain the
subjective effects of the quantization errors in the coefficients when the
coefficients are inverse transformed to obtain the picture element
(pel).

In the pel domain, some efforts17-19 have been made to measure
properties of human vision in psychophysical experiments and then
utilize these to design coders. It is not easy to extend or utilize these
techniques for the transform domain where we deal with blocks of pels
instead of one pel at a time. Imperfect reproduction of coefficients of the
block distributes distortion over the entire block upon inverse trans-
formation.

To take advantage of both the perceptual and statistical properties,
some of the factors one has to study are:

(i) Spread of the quantization error by inverse transformation.
(ii) Visibility of the quantization error in different coefficients.

(iii) Statistical decorrelation.
(iv) Probability distributions of the coefficients.

In this paper, we do not attempt to solve this general problem but
restrict ourselves to nonadaptive coding of stationary pictures using a
2 X 2 X 2 (horizontal -vertical -temporal) Hadamard transform. Although
a temporal structure of the block is not relevant for still pictures, it will
be used in the next phase of our work which will treat coding of a se-
quence of pictures. The Hadamard transformation has been chosen for
its simplicity in implementation. The objective in choosing a small block
is to exploit the perceptual redundancies which depend on local prop-
erties of the picture. The small block ensures that the quantization noise
can be placed in parts of the picture where it is least visible. However,
it does result in some loss of coding efficiency on statistical grounds. To
compensate at least partially for this, we also discuss the differential
coding of the first transform coefficient H1.

In Fig. 1 the definition of the Hadamard coefficients for the block size
2 X 2 X 2 is given. H1 is the sum of the element brightnesses within the
block. H2 is the sum of the line differences within the block. H3 is the
planar difference. H4 is the sum of the element differences within the
block. It may be noted that for stationary pictures, H5, H6, H7, and H8
are all zero; further, any noise added to the first four coefficients gets
repeated in the reconstructed signal at half the frame rate due to the
block structure. As mentioned earlier, in coding frames of a single picture
scene, the "nonmoving" noise patterns are, in general, less annoying than
the moving noise patterns normally encountered in a television system
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Fig. 1-Definition of Hadamard coefficients. The pel positions are A, B, C, D, E, F, G,
H. The Hadamard coefficients are H1, H2, H3, 114, 115, H6, H7, 118.

and, for this reason, a system was built to give a more realistic repre-
sentation of television coding impairment. This system is described in
Section II.

Our method for determining the visibility functions of the noise in I/2,
H3, and H4 consists of the following. We add H -noise (which simulates
the quantization noise) to a coefficient whenever its magnitude exceeds
a threshold. This is done because each of these coefficients consists of
difference quantities of pels and, therefore, may be expected to mask
the noise as some function of their amplitude. For the DPCM coding of
HI, we add H -noise whenever the magnitude of the difference of H1 from
its previous block value is higher than a threshold. Again, this difference
of Hi can be taken as a measure of signal busyness. The effect of this
H -noise impairment on the picture is then compared by the subject in
an A -B test with simple additive white noise impairment of the picture.
This method of judging pictures is similar to the one used by Candy and
Bosworth.2° The experimental method is discussed in detail in Section
II.

1.3 Summary of results

The visibility functions for the following conditions have been mea-
sured: H2 -noise as a function of 1H2 1 ; H3 -noise as a function 11131; H4 -
noise as a function of 1H41; and Hi -noise as a function of (OH11, where

is the adjacent block difference in the horizontal direction.
The study of these visibility functions indicates that 113 is the least
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important coefficient and can be dropped entirely with little impairment.
PCM quantizers with minimum mean -square subjective distortion
(MMSSD) have been designed for H2 and H4 coefficients, and an MMSSD
DPCM quantizer has been designed for H1 using the corresponding vis-
ibility functions as the fidelity criteria. These quantizers have been
implemented and have been compared in subjective tests with the cor-
responding quantizers optimized with respect to the minimum mean -
square error criteria. Details of this approach and the results are given
in the subsequent sections.

II. EXPERIMENTAL SYSTEM

The experimental system described in this section has been designed
with considerable flexibility as a vehicle for future research. The system
has real-time capabilities for adaptive and nonadaptive Hadamard
transform coding of a 2 X 2 X 2 block of pels.

2.1 System block diagram

A block diagram of the experimental system is shown in Fig. 2. The
video signal is generated by a vidicon camera scanned with 271 lines
interlaced 2:1. The video signal has a bandwidth of 1 MHz and is sampled
at the Nyquist rate. Each picture sample is PCM encoded with amplitude
accuracy of 8 bits per pel.

A frame memory is incorporated in the system to accommodate the
transform block. Alternate frames of the digitized pictures, say the odd
frames, are stored in the frame memory via data select switch 1. Memory
1 consists of two line delays and four small delays for linking the data
from the present and previous frames. It ensures, during even frames,
simultaneous presentation of all the elements from the two frames that
comprise the data block to the Hadamard transform logic. It may be
noted that the system is designed for spatially overlapped block pro-
cessing. The output corresponding to nonoverlapping blocks is selected
by memory 2 for decoding and experimentation. The spatially overlap-
ping blocks are suitable for the study of various kinds of predictive en-
coders. This facility is also very useful for a flicker -free display of the
Hadamard coefficients on a television screen.

The Hadamard transform circuit is a serial and parallel combination
of adders and subtracters to implement the canonic forms shown in Fig.
1. In the processor circuit, the magnitudes of all the coefficients are
rounded off to the eight most significant bits, which are used for further
processing. This rounding off does not produce any visible impairment
on inverse transformation. Capabilities exist in the processor circuit to
insert eight independent quantizers, one for each coefficient.

For the subjective experiments, the processor circuit permits two
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modes of operation controlled by the A/B switch. The details of the
subsystem are shown in Fig. 3. The A/B switch is under the control of
the subject. In the A mode, unimpaired coefficients are fed to the in-
verse -transform circuit. This provides the original picture in the re-
constructed signal domain. In the B mode, a controlled amount of
pseudo -random noise is added to one of the coefficients only when the
magnitude of a control signal (which is the coefficient itself in this di-
agram) exceeds some reference threshold. This noise, which we call the
H -noise, is generated at the sample rate by an 8 -bit pseudo-random
generator having a period of 215 words and which is not synchronized
with the line or the frame rate of the picture. An amplitude limiter
controls the magnitude of the noise to the level set by the experimenter.
The sign bit for the noise word is obtained from the output of a white
noise source, and has equal probability of being a "0" or a "1".

Since the addition of pseudo -random noise results in doubling of the
maximum amplitude of the noisy coefficient, the sum of the coefficient
and noise, and the other coefficients, are divided by 2 prior to inverse
transformation to prevent overload.

The inverse transformation network is similar to the transformation
network and is used to reconstruct simultaneously all of the pels of the
block.

It may be recalled that the alternate frames (odd frames) of the input
are stored in the frame memory via data select switch 1. The recon-

H 1

DIGITAL
NOISE 01.

AMPLITUDE
LIMITER

NOISE

GENERATOR

REFERENCE MAX. NOISE LEVEL
THRESHOLD REFERENCE

THRESHOLD 1

COMPARATOR

MAGNITUDE
ZERO

-
H8

ZERO

A/B SWITCH
CONTROL

INVERSE
TRANSFORM

0.

Fig. 3-Noise adding circuits. Coefficients are divided by 2 to prevent overload in the
inverse transform function after noise addition.
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Fig. 4-Original picture used for subjective tests.

structed pels corresponding to the even frames are stored in the proper
time slots in the frame memory by data select switch 1. Thus, the frame
memory contains both processed and unprocessed data and is utilized
fully. Data select switch 2 ensures that the reconstructed pels corre-
sponding to the even frames that are stored in the frame memory are fed
to the digital -to -analog converter in the proper time sequence.

The original picture used for the subjective tests is shown in Fig. 4.
The scanned and filtered version (by a 1 -MHz Picturephone® filter) is
shown in Fig. 5a. Figure 6 shows the picture of the coefficients using
overlapping blocks. Figure 6a shows coefficient HI, which is essentially
a "block -low -pass -filtered" version of the picture and preserves much
of the picture information. On the other hand, Figs. 6b (H2 coefficient),
6c (H3 coefficient), and 6d (H4 coefficient) show a variety of edge in-
formation.

2.2 Experimental details

The experimental setup for determining a visibility function is shown
in the simplified block diagram in Fig. 7. The experimenter adds H -noise
to a selected coefficient whenever the absolute value of the coefficient
exceeds a threshold. The amount of noise and the threshold are varied.
This is presented as condition B to the subject. Condition A is the un-
impaired picture plus white noise. By turning an attenuator knob, the
subject can control the amount of white noise added to the unimpaired
picture. He can switch between conditions A and B by the A/B switch
provided. An experiment consists of the subject changing the attenuator
until he finds the pictures in the switch positions A and B to be subjec-
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(a)

(c) (d)

Fig. 5-Filtered test picture and H -noise added pictures. (a) Filtered test picture (1 -MHz
Picturephone® filter). (b) Picture with noise added to H1. (c) Picture with noise added
to H2. (d) Picture with noise added to H4.

tively equivalent. The subject can switch between A and B conditions
as often as he likes and can look at the test conditions as long as he likes.
When he arrives at the subjective equivalence, he gives the attenuator
reading to the experimenters on an intercom. He is then given the next
test condition. In one sitting, a subject makes 28 judgments of which the
first four are considered as training. The remaining 24 are recorded as
data. The experiment is also characterized by the following:

(i) The picture has 271 lines, interlaced 2:1 at 30 frames per second.
(ii) The visible portion of the picture is about 13 cm X 12 cm.

(iii) High light brightness is 74 foot -lamberts.
(iv) Low light brightness is 4 foot -lamberts.
(v) Room illumination is 57 foot-candles.

The scan lines of the Conrac monitor were broadened to correspond to
the Picturephone display tube. Subjects were seated at a distance of
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(a)

(c)

(b)

(d)

Fig. 6-Pictures of coefficients. (a) Picture of Hi coefficient (with no output filter). (b)
Picture of H2 coefficient (with output filter). (c) Picture of Ha coefficient (with output
filter). (d) Picture of H4 coefficient (with output filter).

about 80 cm from the monitor. All of the six subjects used had experience
in judging coded television pictures.

III. TEST DATA AND ANALYSIS

Results of a typical subjective test are shown in Fig. 8. In this case, the
absolute value of H4 was compared to a threshold and the noise (H -noise)
was added to H4. In this figure, H4 -noise is plotted in dB on the X-axis
and the "equivalent white noise" is plotted on the Y-axis. Each datapoint
is an average of the readings obtained from six subjects. Under the as-
sumption that the equivalent white noise ( Vw) is proportional to the
H -noise ( VH), the results for each threshold should fall on a 45 -degree
straight line. The lines drawn in Fig. 8 are the best unity -slope straight
lines obtained by the least square fitting to the datapoints. Figures 9 and
10 show similar data for H2, and H1, respectively. In the case of H1, I AH11
is compared to a threshold. Notice that in each case the quantity that
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Fig. 8-Plot of "equivalent white noise" vs H4 noise for different thresholds on 1H41.

-20 -15 -10

is compared to a threshold is a measure of busyness of the picture in a
local area. The locations in the picture where noise is added and its ap-
pearance are dependent upon the quantity that is compared to a
threshold and the coefficient to which the noise is added.

The pictures with H -noise impairments are shown in Fig. 5. The H -
noise added in each of the three pictures has a peak value of 100 units*
(signal range is 0 to 255 units). In Fig. 5c, noise is added to H2 in all blocks
which have 1H21 more than five units, whereas in Fig. 5d, noise is added
to all blocks in which 1H4 1 is more than five units. While H2 is the line
difference, Fig. 5c has noise whenever an edge has a sufficiently large
component along the horizontal direction, whereas Fig. 5d has noise
whenever an edge has a sufficiently large component along the vertical
direction. Also notice the difference in the appearance of the noise.
H2 -noise is much more noticeable than H4 -noise. Figure 5b shows noise

* This is much more than the noise used for any test condition, but has been used to
demonstrate the effects in a photograph.
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Fig. 9-Plot of "equivalent white noise" vs H2 noise for different thresholds on 1H21.

-30
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Fig. 10-Plot of "equivalent white noise" vs H1 noise for different thresholds on

izIHII.
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of 100 units added to H1 whenever 16.1/11 is more than 10 units. Here
again, noise gets added to all blocks having horizontal interblock edges.
Also the pattern generated by H1 noise is much more objectionable than
the pattern generated either by H2 -noise or H4 -noise.

The relationship of proportionality between the equivalent white noise
and the H -noise for a threshold z is written in the form:

Vu, = F(z)17 H, (1)

where z can take on the value of 1H,1, 1H31, 11/41, or 1AH 11. The constant
of proportionality F(z) is the equivalent white noise power when a unit
H -noise is added to the particular coefficient for all blocks of the picture,
where the magnitude of the corresponding coefficient (161111 in the case
of H 1) is greater than or equal to the threshold z. We next assume the
additivity of the equivalent white noise power with respect to the coef-
ficient value; i.e., if the equivalent white noise power when a unit of
H -noise is added to H2 and T1 5. 1H21 < T2i311.1, and the equivalent
white noise power when a unit of H -noise is added to H2 and T2 :511121
< T3 (T 1 < T2 < T3) is V w2, then the equivalent white noise power when
a unit of H -noise is added to H2 and T1 - 5 1112 < T3 is (11,1 + 17,2)

1

Under this assumption, F(z) can be written as an elemental sum of the
equivalent white noise powers. Thus,

co

F(z) = f f(x)dx, (2)
Z

where f(z) is called the visibility function.
Using this procedure, visibility functions were computed. They are

shown in Fig. 11. Notice that we have assumed that the occurrences of
positive and negative coefficients (AH1, H2, H3, H4) are similar, and the
noise visibility does not depend upon the sign of the coefficient. This
results in the visibility functions being symmetrical about zero. The value
of the visibility function shows the relative importance of the various
transform coefficients. The larger the value, the more important is the
coefficient. In general, the visibility functions decrease as a function of
their arguments. This is a combined effect of several factors, such as (i)
the decrease in the number of blocks having large coefficient values
(iAllii in the case of H1), (ii) the dependence of the perception of noise
on the magnitudes of the coefficients (which correspond to the sharpness
of the boundary in the pel domain), and (iii) the contextual importance
of the specific regions of the picture.

Psycho -visual techniques which measure the detectability of per-
turbations in the neighborhood of edges,18,21-23 and the just noticeable
differences in the amplitudes of edges have been widely applied to DPCM
coding. Since these deal with over -simplified stimuli and surround and
are almost always detection experiments, their use in picture coding may
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not always result in better coders. In any case, these techniques cannot
be easily applied in the transform domain because we are not dealing
with the single pels but with blocks comprising pels from more than a
single line and frame. Also, the perturbations must be introduced in the
transform coefficient, whereas the annoyance to the perturbations must
be judged in the pel domain.

Our approach, which obtains the visibility functions as outlined above,
has the following limitations:

(i) Since the visibility functions are tied to the picture content, they
admittedly vary from picture to picture, especially if the picture content
is changed significantly. They also depend upon the class of viewers and
the viewing conditions. Thus, any optimization based on the visibility
functions is strictly applicable to a restricted situation. This is under -

100.0

10.0

1.0

0.1
0 10 20 30 40

LEVELS (0.255)

50 60 70 75

Fig. 11-Plot of visibility functions. Notation H,, H1 indicates noise added to Hi, when
H1 is thresholded. The H1 threshold level is shown on the X-axis.
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standable since the human perception does indeed vary with the picture
content, the viewing conditions, and the particular viewer. We demon-
strate in Section IV that the results we obtained using these visibility
functions are not overly sensitive to the picture content and are rea-
sonable for a class of pictures rather than a particular picture.

(ii) The simulation of the quantization noise by the H -noise is fairly
accurate for H2, H3, and H4. However, in the case of H1, DPCM tech-
niques are used to code AH1. The changes in the appearance of noise as
a function of threshold are not completely reflected in the measurements;
i.e., while the noise that is added to H1 does look like granular noise at
low thresholds, it does not look like slope overload at high thresholds.
Also, at high thresholds, the noise is added to fewer blocks in the picture
and the appearance of such an impaired picture is different from the
appearance of a white noise impaired picture. Therefore, in some cases
subjective equivalence is hard to achieve.

(iii) It would be better if the perceptual, statistical, and contextual
effects were explicit in the visibility function and could be controlled
separately. Unfortunately, such is not the case.

(iv) It is seen from eq. (2) that the process of obtaining the visibility
function involves differentiation of the data, which is known to introduce
some noise. By adding H -noise to a coefficient when the quantity to be
compared to a threshold is within a small range of values, it is possible
to avoid this differentiation.

IV. RESULTS

In this section, we present certain conclusions drawn from the visibility
functions and then describe their application to the design of quantizers
for the coefficients. Visibility functions shown in Fig. 11 clearly show
the relative importance of various coefficients. H1 is the most important,
H2 is the next, followed by H4, and H3 is the least important. The visi-
bility of H noise depends upon the patterns associated with a particular
coefficient. These patterns depend upon the inverse transform and are
shown in Fig. 12 for H2, H3, and H4, respectively. In each case, noise of
a given amount is added to one of the coefficients, and the background
is assumed to be flat. The higher the spatial frequency of the pattern,
the lower the visibility of the noise. Thus, H2 noise is more visible than
H4 noise because the interlace gives the H2 noise pattern lower spatial
frequency than the H4 noise pattern.

4.1 Visibility of Hi noise

An experiment was performed to utilize the well-known property of
the human eye that the brightness discrimination decreases as the
brightness level increases, called Weber's law in the psycho -visual lit-
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(a) (b)

(c) (d)

Fig. 12-Pictures of noise patterns for coefficients. (a) Picture of noise added to H1 on
a flat background. (b) Picture of noise added to H2 on a flat background. (c) Picture of
noise added to H: on a flat background. (d) Picture of noise added to H4 on a flat back-
ground.

erature24-26 (see Ref. 27 for a recent application of Weber's law for pic-

ture coding in the pel domain).
In this experiment, noise was added to H1 as a function of H1, since

H1 corresponds to the average brightness in the block. The results of this
subjective experiment showed large variations from observer to observer.

When the data for the observers was averaged, there was no significant
variation in the visibility of noise as a function of H1. This could be due
to the following: (i) If the gamma of the display tube used was not unity,
it would have partially compensated for Weber's law effects. (ii) We were
working with the head and shoulders view of a person. In general, for such

a picture, the highlights are on the forehead or the cheek of the person.
These regions are contextually very important causing the visibility of
noise to be high. (iii) The picture we used was such that the low -light
areas had more spatial detail than the highlight areas; thus, the latter
two effects may have compensated for the Weber's law.

38 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



Measurements of the gamma of the monitor indicate that the visibility
function in this case cannot be fully explained on the basis of the com-
pensation of Weber's law by the gamma of the display tube. It seems that
at least for this class of pictures, namely the head and shoulders view of
a person, the advantage that could be gained by the utilization of Weber's
law is compensated for by the other effects.

4.2 "Frozen" vs "unfrozen" noise visibility

It may be recalled that the experiment on visibility was done using
a block size of 2 X 2 X 2. In this case, any noise added to the first four
coefficients remained unchanged for two frames. The noise in the coef-
ficients in this case may be called the "frozen" noise because it remains
unchanged for two frame periods. An experiment was performed to de-
termine the visibility functions for H4 coefficient for a block size of 2 X
2 (horizontal -vertical). Since all the experiments have been carried out
with a stationary picture, the only difference between the experiment
with the block size of 2 X 2 and a block size of 2 X 2 X 2 is the coefficient
noise. For the block size of 2 X 2, the coefficient noise changes from frame
to frame and is called "unfrozen" noise. Figure 13 shows the visibility
functions for H4 with "frozen" and "unfrozen" noises. Although the
visibility functions of "unfrozen" noise are generally a little lower than
that of "frozen" noise, due to lower temporal frequency, the differences
are small.

In Section III, it was mentioned that the visibility functions can be
used as fidelity criteria for the design of quantizers. We describe below
how these results are used to design quantizers.

4.3 PCM coding of H2, H3, and H4

It is assumed that little interaction exists between the Hadamard
coefficients, so that the quantization transfer characteristics for the
coefficients can be obtained independent of each other. It is recalled from
Fig. 11 that H3 was the least important coefficient and, therefore, it was
decided to drop the transmission of H3 altogether.

Minimum mean -square error quantizers are obtained by minimizing
the mean -squared quantization error. If N is the number of levels, and
PHk () is the histogram for IHkI, then we minimize the distortion D given
by

D = xj+1(111k1 )Yj 2 PHk (IHk I)d(IHkI ),
j=1 Xi

k = 2,3,4, (3)

with respect to PCji, j = 2, . . N and Y./ I, j = 1, . . ., N. This gives us the
well-known Max quantizer.28 MMSE quantizers are obtained by
weighting the quantization error according to the frequency of its oc-
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Fig. 13-Visibility function for "frozen" and "unfrozen" H4 noise.

70

currence. Minimum mean -square subjective distortion quantizers, on
the other hand, weight the quantization error according to its subjective
visibility. This can be achieved by substituting fH(-) for PH(.) in the
expression for the distortion. The term /140 is the visibility function
for the coefficient Hk. Standard programming techniques were used to
minimize the distortion D in both cases.

The histograms for I AHil , I H21, I H3I , and 11/41 are shown in Fig. 14.
In general, these decrease faster than the visibility functions. This is
exemplified in Fig. 15 in which the histogram and the visibility function
for AH1 are plotted with the same scale on the X-axis. We shall see later
that this fact results in larger companding of the MMSE quantizers than
the MMSSD quantizers and, consequently, poor reproduction of busy
areas of a picture.

Typical quantizer characteristics are shown in Fig. 16. The MMSE
quantizer is more companded than the MMSD quantizer. Note also that
the dynamic range of the MMSE quantizer is smaller. The performance

40 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1977



0.5

0.05

0.005

0.0005
0 10 20 30 40 50 60

LEVEL (0.255) --..
70 80 90 100

Fig. 14-Histograms of coefficients. All the histograms are assumed to be symmetric
about zero.

of these two types of quantizers (MMSSD and MMSE) was compared in
an A -B test with different numbers of levels. Figure 17 shows the results
of such a test for the coefficient H4. In this test, MMSE quantizers with
levels 5 to 8 were compared in terms of picture quality with MMSSD
quantizers with levels 3 to 9 using a random pairing by six skilled
subjects. The numbers in the table indicate the percentage of observers
who preferred the MMSSD quantizers over the MMSE quantizers. The
picture coded with the 5 -level MMSSD quantizers was preferred by 100
percent of the subjects over the 6 -level MMSE quantizer. Figure 18 shows
similar comparisons for the quantization of H2. Here again, for the same
number of levels, the picture quality using the MMSSD quantizers is al-
ways better than using MMSE quantizers. Moreover, picture quality using
the 6 -level MMSSD quantizer and 7 -level MMSE quantizer is equivalent.
Figures 19 and 20 show the entropy of the quantized output using both
the MMSSD and the MMSE quantizers having levels 3 to 8 for H4 and H2y
respectively. In the case of H4, the difference between the entropies of
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Fig. 15-Comparison of probability density (P) and visibility (V) for H1 noise.

70 80 90 100

the output of the MMSE and the MMSSD quantizer for the same number
of levels is about 0.2 bit. Since the picture quality with the 7 -level visi-
bility quantizer was better than with the 8 -level MMSE quantizer, the
gain by the use of the MMSSD quantizer is of the order of 0.5 to 0.6 bit
for the transmission of H4. Similar remarks can be made about the
quantization of H2.

MMSSD QUANTIZER (8 LEVELS)

-68 -38 -16 -4 4 16 38 68

-255 -54 -53 -28 -27 -11 -10 -1 0 10 11 27 28 53 54 255

MMSE QUANTIZER (8 LEVELS)

-46 -25 -10 -2 2 10 25 46

-255 -34 -33 -18 -17 -7 -6 -1 0 6 7 17 18 33 34 255

Fig. 16-Typical (MMSSD and MMSE) quantizer characteristics for H4 coefficient.
Notation z implies that all input levels between x and y (including x,y) are represented
as z. x y
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Fig. 17-Comparison of picture quality of MMSSD and MMSE quantizers of different
levels for H4.

4.4 Coding of H1

Unlike the H2, H3, and H4 coefficients, the H1 coefficient is not a
difference signal. It represents the average brightness within the block
and thus carries the low -frequency information which should be coded
relatively precisely. Uniform PCM coding of H1 requires 7 to 8 bits for
good picture quality. As mentioned before, efforts to compand the PCM
quantizer by using the Weber's law effect were not very successful.
Therefore, it was decided to DPCM encode H1. Since the block size used
is small, there is substantial correlation between the H1 values of adja-
cent blocks. This was exploited by using a DPCM coding of H1 with ho-
rizontally adjacent blocks for prediction. The quantizers for such a DPCM
coder are obtained from the visibility function of H1 under the control
of AI N in a manner similar to the above by minimizing the mean -
square subjective distortion due to the quantization noise. The resulting
quantizer scales are companded due to the monotonic decrease of the
visibility function with respect to .H1, as shown in Fig. 11. Quantizer
scales have also been obtained by minimizing the mean -square quanti-
zation error.* As noted before, MMSE quantizer scales are more com-
panded and have less dynamic range compared to the MMSSD quantized
scales. Using these two types of scales, experiments have been performed

* Although the visibility function and the histograms are obtained from the difference
signal I 1I,AH and the quantity that is quantized is the differential signal (i.e., the difference
between the present H1 and the coded value of H1 from the previous block), it is expected
that the quantizer characteristics will not change appreciably by using difference instead '

of the differential signal in eq. (3).
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Fig. 18-Comparison of picture quality of MMSSD and MMSE quantizers of different
levels for H2.
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NUMBER OF LEVELS --
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Fig. 19-Plots of entropy of outputs of MMSSD and MMSE quantizers of different levels
for H4.
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Fig. 20-Plots of entropy of outputs of MMSSD and MMSE quantizers of different levels
for H2.

to compare the picture quality for the same number of levels. The results
of such a comparison are shown in Fig. 21. It is seen that, for the same
number of levels, all the subjects preferred the picture coded with the
MMSSD quantizers over the picture coded with MMSE quantizers.
Moreover, picture quality using a 24 -level MMSSD quantizer is equivalent
to the picture quality using a 30 -level MMSE quantizer. Entropies of the
quantized signal with MMSSD and MMSE quantizers of different levels
are shown in Fig. 22. Here again, visibility quantizers perform better than
MMSE quantizers by about 0.35 bit per block for the same number of
levels. Picture quality using a 24 -level MMSSD quantizer can be produced
by an MMSE quantizer with an increase in entropy of 0.6 bit per block.
It is worth noting tht, due to the DPCM coding of H1, the bits required
for H1 could be almost halved. However, H1 still remains more important
than H2 and H4 and requires more bits for satisfactory transmission.

QUANTIZER DESIGN 45



MMSSD QUANTIZERS

20 22

Number of Levels

24 26 28 30 32

cn

w
N,z<
D
°w
Cl)n

2

-
E,
o
..
4-,

m
g
Z

26

28

30

32

50

17

17

0

100

100

50

50

100

100

50

67

100

83

67

67

100

100

50

67

100

100

100

100

100

100

100

100

Fig. 21-Comparison of picture quality of mrAss]) and MMSE quantizers of different
levels for DPCM coding of H1.

4.5 Combined quantization of all coefficients

Combined quantization of all the coefficients requires investigation
of the optimal number of quantizer levels to be given to each one of them.
In the case of gaussian random vectors using Karhunen-Loeve trans-
formation and mean -square error criterion, optimal bit allocation for
the various transform coefficients is well known.29,3° However, in our
case, none of these assumptions are strictly valid. In fact, our assumption
that the optimum quantizer characteristics for different coefficients can
be obtained independently is not strictly true and, for this reason, we
tried to evaluate the picture quality by quantizing all the coefficients.
By trial and error, a near -perfect picture was produced by using 36, 13,
and 7 quantization levels for AH1, H2, and H4 respectively, and by
dropping H3. This resulted in a total entropy of about 2.17 bits per pel.
In single -frame photographic reproduction, no difference could be ob-
served between the coded picture and the low -resolution original shown
in Fig. 5a. Several other "head and shoulders" type of pictures were coded
using the same combination of levels. Although, in each case the picture
appeared to have a reasonable quality, the visibility of the quantization
and the resulting picture quality varied slightly. This implies that the
quantizers we obtained by optimizing the visibility of the quantization
noise for one particular picture were not overly sensitive to variation in
picture content.

V. CONCLUSIONS

A systematic method for quantizing Hadamard coefficients has been
given. This method gives the best quantizers in a subjective and proba-
bilistic sense. We have compared the resulting quantizers with MMSE
quantizers and found the MMSSD quantizers to be better both in terms
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for DPCM coding of H1.

of the subjective picture quality and entropy. We do not imply that there
are no better quantizer than the MMSSD quantizer, since by taking many
other factors into consideration, one could come up with a better
quantizer. We do find that the minimum visibility quantizers are opti-
mum with respect to our model and the approach used for weighting the
quantization noise.

Investigations are in progress for adaptive and predictive coding of
the coefficients; our findings will be reported in a future paper.31
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Design criteria to minimize modal dispersion have been found for
a broad class of practical, multimode, circular -symmetric, isotropic,
optical fibers having any numerical aperture and any profile dispersion
(which is a function of the derivative of the index with respect to the
wavelength). The impulse -response width of these fibers, the rms width
of the impulse response, the optimum profiles to minimize those widths,
and the sensitivity to profile departures from ideal are found to be
surprisingly simple closed -form generalizations of previous results that
are mostly applicable to fibers with small numerical aperture and
constant profile dispersion. The minimum impulse -response width of
the optimized fiber is a function only of its numerical aperture and
consequently is independent of the index profile and of the profile
dispersion.

I. INTRODUCTION

Circular -symmetric, multimode, optical fibers intended for large
communication capacity must have low modal dispersion and this is
achievable by the quasi -complete equalization of the group velocities
of all modes' (or rays). This equalization depends critically both on the
refractive -index profile and on the profile dispersion of the fiber. The
profile dispersion is defined in Section II, but here it is enough to know
that it is related to the derivative of the index with respect to the wave-
length.

To understand better the objectives of this paper, let us first review
some recent evolution of thoughts linking the index profile and the
profile dispersion of a fiber to the pulse broadening caused by modal
dispersion.
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Gloge and Marcatili2 showed that if the numerical aperture (NA) of
the fiber is arbitrary but the profile dispersion is negligible, there is a
family of fibers-for which the dielectric constant profiles decrease ra-
dially according to power laws-that is important for two reasons. The
first reason is that the family encompasses a wide variety of easy -to -make
fibers (step -index, quasi -parabolic, etc.) possessing the unique property
that the group velocity of each mode is a function only of its propagation
constant; this drastically simplifies the analysis. The second and more
important point is that for an almost parabolic power law of the dielectric
profile, a fiber with small NA has the very narrow impulse response
needed for high-speed communication.

Olshansky and Keck:3 extended these results in a very important way
by showing that if the profile dispersion is constant across the core,
narrow impulse response is achievable in small NA fibers by a simple
modification of the exponent of the dielectric -constant profile's power
law.

In many cases, though, the two requirements-smallness of NA and
constancy of profile dispersion-are not satisfied. For example, to in-
crease the coupling efficiency to incoherent sources and to decrease
microbending losses,4 fibers with large NAs5 are being made. They are
heavily doped and, particularly if the doping element is boron, the profile
dispersion may not be a constant8,7 as a function of the radius. Similar
lack of constancy may occur in fibers that are doped with several mate-
rials for the purpose of improving optical or mechanical properties.8
Arnaud and Flemming9"° have calculated the impulse response for these
fibers, treating the variable portions of the profile dispersion as a per-
turbation. Using a numerical method Arnaud" has also calculated the
pulse spreading in a multimode planar fiber with arbitrary index profile
and profile dispersion.

In this paper, we extend the previous results by finding, within the
WKB approximation, a surprisingly simple closed -form description of
the modal dispersion in a broad class of circular -symmetric isotropic
fibers which have arbitrarily large NA and arbitrary profile disper-
sion.

The gist of our paper is in Sections II and III. In Section II, the profiles
of the fibers belonging to the group are defined and their impulse -re-
sponse widths are calculated. In Section III, the optimum index profile
required to minimize the impulse -response width is determined together
with the sensitivity of this response to departures of the index from
optimum. The rms of the impulse response is the subject of Section IV.
In Section V, some approximate results about the influence of index
profiles on the minimization of the rms width of the impulse response
are derived and conclusions are drawn in Section VI.
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II. FIBER PROFILE AND WIDTH OF ITS IMPULSE RESPONSE

We start by looking for the dielectric -constant profile of a circular
symmetric isotropic fiber such that, as in Ref. 2, the group velocity of
each mode is only a function of its propagation constant. In the process,
we will also find the width of the impulse response of that fiber.

The initial point is a WKB approximation2 that relates the propagation
constant MX) of a mode characterized by the radial and azimuthal wave
numbers µ and v to the free -space propagation constant k = 27r/X, the
refractive index n (r, A) of the fiber and the radial coordinate r, via the
integral

where

1 dr
=

7r ri r

13(r, A) (k2n2 02)7.2 - v2

(1)

(2)

and r1 and r2 are two neighboring turning points that make the radical
zero and between which most of the field of the mode is concentrated.
It is useful to redefine

n2= -F) (3)

)32 = k 272 (1-B), (4)

where n1 is the index on axis and the profile function F(r, A) is zero on
axis, is an arbitrary function of r and A within the core (r a), and is
26,(X), a function only of A in the cladding (r a- a). Similarly, the mode
parameter B varies between zero for the lowest -order mode and 26,(X)
for the modes whose phase velocities coincide with that of a plane wave
in the cladding.* With these definitions, the radical (2) becomes

p = N/(knir)2(B - F) - v2. (5)

The group velocity of a mode (or ray) is introduced by taking the de-
rivative of both sides of (1) with respect to the free -space wavelength
A,

5r2 ( n1 X dBB 1- ----) -F (1 -12)1-71 dr = 0, (6)
, 2N1 B dX/ \ 2/ p

where

N1
X dni)

= n (1 -
dX

(7)

* Similar but not identical profile function and mode parameter have been introduced
previously in the literature.12
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is the group index on axis and

n1 A aF
Ni F 3X

is a generalized version of the profile dispersion parameter introduced
in Ref. 12.

The derivative dB/dX in (6) can be expressed in terms of the group
delay t of the mode by taking square roots and derivatives on both sides
of (4). The result is

di3 t n1 A dB- - N/1 -B +
dkni T 2N1 V1 -B dX

(8)

(9)

in which T, the flight time on axis, that is, the delay of a plane wave in
a medium of group index N1 and length L, is related to the velocity of
the light in free space c via

T
LN1

(10)

The substitution of dB1dX from (9) into (6) yields the integral

1 -B -t-F (1-11))1L.dr =O. (11)
T 2 p

This integral was solved in Refs. (2) and (3) by assuming p constant and
F = 2A(rIci)", a power law, with a an arbitrary constant. To lift these
restrictions and still solve (11) exactly, the following self-evident ex-
pression is introduced:

r2 ap

ar

This integral becomes less
ap/ar is performed with the

dr = p(r2, A) -

obvious and very
help of (5), yielding

raFi

A) = 0. (12)

useful when the derivative

drrp (13)B -F - tar
Combining (13) with (11), we arrive at a general expression

Fr

1- B-T
Cr, (1_12\

Jr] \ 2/ p
(14)

B r2 r aF\ Fre
k 2F p
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that like (11), relates the group delay t of a mode characterized by its
mode parameter B (or propagation constant (3), and its azimuthal mode
number v (hidden in p) to the profile function F and profile dispersion
p. This expression is valid for any circular -symmetric fiber with isotropic
dielectric and, in general, still cannot be solved exactly. However, if a
particular family of fibers is considered that satisfies the condition

r aF
1+

2F ar
- D(A), (15)

1 - 12
2

D being an arbitrary function of A, the seemingly formidable right-hand
side of (14) is reduced to 1/D and the group delay of the mode charac-
terized by the mode parameter B is

B

1 - D
t = T

.N. /1 -B
(16)

These last two equations are the basic results of the paper. Equation
(16) says that t, the group delay of a mode (or ray) is only a function of
the mode parameter B and the dispersion parameter D. More important,
the group delay is independent of the mode number (which means that
modes with the same propagation constant have the same delay), it is
independent of the profile function F, and it is independent of the profile
dispersion p. Equation (16) is used in the following sections to study the
impulse response of the fiber.

On the other hand, eq. (15) is the recipe for the design of the fiber
whose time response is given by (16). It can be solved in several ways
depending on the control that the fiber designer has over F and its de-
rivatives with respect to X. The least demands on these functions occur
if the fiber is designed to operate at one wavelength only. Then, in (15),
D becomes a constant, p is only a function of r, and the partial derivative
of F is reduced to an ordinary one. Without introducing new symbols
for D, F, and p, the simplified design formula is

r dF
' + 2F dr

- D.
1 -Pi

(17)

This equation in turn can be solved in two ways. One way consists in
prescribing the profile function F to satisfy, perhaps, requirements
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different from modal dispersion. Then, the profile dispersion p must
be tailored to satisfy (17).

For example, assume the dielectric profile depicted in Fig. la. The
profile function is

F=

where

and the inequalities

2z

(r al-) for 0 < r < ao
al

26, (-T2 for ao < r < a,
\at

a 1 a2/(a -a )
ao = a 9

a

al < a

al > a2 > 0

guarantee that the profile looks indeed like that in Fig. la.
Substituting (18) in (17) and assuming for the dispersion parameter

D a value Do that optimizes in some sense the impulse response of the
fiber, the required profile dispersion turns out to be

2 -
2 +D al

for r < ao

P=
2

2 a2

o

for ao < r < a
o

(18)

(19)

(20)

(21)

and is shown in Fig. lb.
This is an interesting example not only because it clearly illustrates

the power of the theory even to design optimized fibers in which the
profile function and dispersion are discontinuous, but also because it
may be of practical interest. For example, by using an index -increasing
dopant for r < ao and an index -decreasing dopant for r > ao the NA of
the fiber can be increased, keeping at the same time its optimum modal
dispersion.

In the other way of solving (17), the profile dispersion p as a function
F is assumed to be known, from experiment, and the index profile must
be found from the integration of (17) that yields

dF
r = a exp (22)f. [2 _ D(2 - p)]F

This result will be used in a more general way later, but if for the time
being we prescribe p to be a constant Po, the profile function results:
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where

2-(2 + .2)/D

2-(2 + ai VD°

ARBITRARY

(a)

I 0r
a0

(b)

Fig. 1-(a) Dielectric profile (solid line). (b) Profile dispersion.

F = 2A (L. "),
a

(23)

a = D(2 - Po) - 2. (24)

This last equation establishes the relation between the dispersion pa-
rameter D of the fiber introduced in this paper and the a value so widely
used in the literature2,3 for fibers with constant profile dispersion Po.
It follows from (17) that only if p is a constant, is the profile function F
a power law (23).
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The two solutions described require only the control over the profile
function F and its first derivative with respect to X. But suppose that
the fiber designer has also control over the second derivative. Then, to
increase the range of wavelengths over which the fiber operates with low
modal dispersion, he could demand, for example, that at a wavelength
not only

D = Do

but also, as proposed by Kaminow and Presby,13

dD _
c/ X - m.

This requires the simultaneous satisfaction of (17) and

a aF)
ax F ar - -Do

ap
a),

(25)

(26)

derived from (15) and (25). It is this last equation that implies the control
over the second derivative of F with respect to X.

It can easily be extrapolated that control over higher derivatives
permits even further demands on D. In fact, if all the higher derivatives
were controllable, D(A) could be chosen arbitrarily and the profile F
would be the solution of the linear partial differential equation of first
order (15) subject to the conditions of being zero at r = 0 and 20(X) at
r = a; the result is well known14 from a mathematical point of view, but
of limited importance from a practical point of view.

III. MINIMIZATION OF THE IMPULSE -RESPONSE WIDTH AND ITS
SENSITIVITY TO ERRORS IN THE PROFILE

The impulse -response width is determined from (16) by finding the
difference between flight times of the slowest and the fastest modes (or
rays) for any given value of the dispersion parameter D. It is simple to
find that the minimum time spread, Tmin, between those modes occurs
if D is chosen

Do = 1 + V1 - 2A. (27)

In fact, the modes characterized by B = 0 and B = 26, are the slowest and
arrive at the end of the fiber at

tmax = T, (28)

while the modes characterized by B = 1 - N/1 - 26, are the fastest and
arrive at
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train = T1+ 1/1-2A
2(1 - 2A)"

(29)

The time spread between them is the minimum impulse -response
width

Tann = tmax train = T
[1 - (1 - 20)1/4]2

1 + - 2A

Therefore, fibers with the same A have the same minimum impulse -
response width rmin, independently of their index profiles and profile
dispersions, provided that they satisfy the design equation (17) with D
substituted by the optimum value Do (27).

If

A« 1,

(27) and (30) become

Do 2 -A
2

Train = T = 0.61 A2 As/km
8

(30)

(31)

(32)

for N1 = 1.46.
To find the sensitivity of the impulse -response width to departures

of the index profile from optimum, we calculate the ratio TiTmja between
the response width T for

where

D = (1 + 8)D°, (33)

<< 1

and the minimum response width Tmin occurring for D = Do. After some
straightforward calculations,

T
= - 81,51 (1 + - 20)2 11 + (1 -2601/122 (34)

rnin A

and for

= (1 2161}2.
Tmin A

(35)

It is known that the impulse -response width is indeed very sensitive to
the choice of profile and more so for smaller A. If (5, the fractional de-
parture of D from its optimum value, is equal to A, then the pulse width
is nine times larger than Tmin

The main results in the last two sections have been extended by Ar-
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naud to optimize modal dispersion in fibers with noncircularly symmetric
profiles.15

IV. THE RMS OF THE IMPULSE RESPONSE

From the point of view of the maximum information -carrying capacity
of a fiber, more significant than the impulse response width is its rms
width 6,16 since 1/4a is the repetition rate at which pulses can be trans-
mitted with a reasonable loss penalty at the receiving end.1

Let us calculate first the impulse response W(t) and then its rms width
Q assuming that:

(i) The energy of the infinitely narrow impulse fed at one end of the
fiber is equipartitioned among all modes.

(ii) All modes attenuate equally.
(iii) The number of modes is so large that the discrete pulses arriving

at the receiving end can be replaced by a continuum.

The impulse response, then, is the rate of change of the number of
modes reaching the end of the fiber,

W(t) = (-1
"max

dt
t)dv, (36)

o

and its rms width is, by definition,

.1Joy W(ti)W(t2)(ti - t2)2dtidt2
o- = (37)

Jo
W(t1)W(t2)dtidt2

To calculate W(t), the value of /2 given in (1) is substituted in (36) and
the integration along v is carried through yielding

W(t) = -d
dt

r

4

B (B - F)rdr. (38)

The integral measures the energy arriving at the end of the fiber as a
function of time and, since each contribution must be positive, the largest
value that F can reach is B. Therefore, the upper limit rB is the value of
r that makes

F(r, A) = B(X). (39)

The explicit value of rB depends on the choice of fiber design. If the
profile function F is prescribed, then rB is obtained by solving (39). If,
on the other hand, the profile dispersion is prescribed, then

20 dF
rB = a exp (40)

[2 - D(2 - p)]F
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follows from (22).
Now the derivative with respect to time in (38) is carried out. The

derivative of the integral is equal to the integral of the derivative since
the terms that should contain the integrand times the derivatives of the
limits are zero. Consequently,

(knlrB)2 dB
W(t) = (41)

8 dt

The reader interested in the explicit impulse response must substitute
B in this expression with its time -dependent value obtained from
(16).

Replacing W(t) in (37) and also substituting the explicit value of t
from (16), the rms width of the impulse response results in

r2-1 /1 - x/D 1 - ylD 2r
2r 2 1/2

T -V1 -x 1 - y)
r 2-1

r xrydxdy

Jo

where x and y are dummy variables and rx and ry are given by (40) once
B is substituted either by x or by y. It is easy to recognize in (42) that if
A << 1 and D = 2, the parenthesis is of the order of 02 and a- is propor-
tional to A2T.

Unlike the simple impulse -response width, the rms width a and the
optimum value of D that minimizes it are dependent on the profile dis-
persion p and the profile function F. In general, the exact value of a- and
its minimizations must be found numerically, but we push the analysis
a little further in the next section where some simplifying assumptions
are made.

(42)

V. APPROXIMATE RESULTS FOR RMS WIDTH OF THE IMPULSE
RESPONSE, ITS MINIMIZATION, AND ITS SENSITIVITY TO PROFILE
ERRORS

Within the family of fibers described in the previous sections there
is a large group of particular importance that encompasses many of the
available fibers today. This group has small NA and its profile dispersion
is almost constant with respect to r. To introduce these properties, we
assume

A << 1, (43)

then the profile dispersion is expanded in power series of the profile
function F,

F
p= E

s=0 20
(44)
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and since F is a function of r, the near invariance of p with r implies

F
PS

(-26, <<
1.

5.1 Profile function

(45)

Carrying this simplifying assumption to (22) by keeping only first
powers of P, (s> 0), the profile function results:

where

F = 20 f1 + [1 - r-Yal 1, (46)
ai as=1 s L \ai

a = D(2 - Po) -2 (47)

and D is still an arbitrary number.
If the profile dispersion is constant, the summation in (46) disappears;

then, and only then, will the profile function follow a pure power law.

5.2 Minimization of the rms width of the impulse response and Its sensitivity
to profile errors

We want to find Amin, the minimum rms width of the impulse response
possible, and D 1, the optimum dispersion parameter for which an,in is
achieved. The optimum profile is obtained by substituting D with D1
in (46). We are interested also in finding the sensitivity of o- to small er-
rors in the profile.

To achieve these purposes o-2 is expanded in a power series about D1,
and only the first three terms are kept,

dor2 (D - D1)2 d2o-2
62 = + (D -dD +

2 dD2
(48)

The derivatives are to be taken at D = Di. Since by definition cr2 passes

through a minimum of D = Di, the equation

do -2
= 0 at D = Di

dD
(49)

serves to determine the optimum dispersion parameter DI.
From (42), (48), and (49), we obtain with the help of (43) and (45)
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where

and

D 1 = 2 [1 -A 1 + 2H
(1 + Ed (50)

2 1 + 4H

(1 + H)112

6`n `n=
T(H)2 (51)

(1 + 3H)(1 + 4H)(1 + 5H)112

iD - Di 1 + 4H) 2
(1 + 3H)(1 + 5H), (52)

Amin k DOR 1 + 2H/

°° + s + 6)H2 + 8H + 2
= 2 E P, (53)

s=1 a(s + 2)H + 112 - H211[(s + 3)H + 1]2 -

H = 1 - Po. (54)

The optimum value of the dispersion parameter DI is close to 2. The
profile function that maximizes the information -carrying capacity of
the fiber is obtained by substituting D with D1 in (46). The dispersion -
profile terms of order higher than zero appear in (50) only in the sum-
mation E and are multiplied by A. Therefore, their contribution is small
indeed and is neglected in (51) and (52). It is kept in (50) because, as will
be seen later, small errors in the profile affect substantially the value of
a. For E = 0, the substitution of (50) in (47) yields the same optimum
a of Ref. 3.

Consider now amin, the minimum rms width of the impulse response.
From (51), we might be tempted to conclude that H = 1 - Po should be
made small to decrease amin. However, the number of modes of the guide
derived from (38) with the help of (46) is

/knia \ 2 OH
\ 2 1 + H

(55)

Therefore, if the number of modes of the fiber is to be kept constant, o -min
can be decreased by making

(1 + H)512

(1 + 3H)(1 + 4H)(1 + 5H)112

small and this is achieved by choosing H large, not small.
The following table contains the minimum rms per unit length of fiber,

Amin/L, and the concomitant pulse repetition rate L/4o.min for different
values of H as derived from (58), assuming N1 = 1.46.
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H amin/L

µs/km

PRR -
4amin

Mb  km/s

1 0.14-12 1.79/.12
2 0.16A2 1.56/.12
cc, 0.18.12 1.38/A2

For H > 1, the pulse repetition rate is fairly insensitive to the value of
H. For H =1 and A = 0.01, the pulse repetition rate is -18 Gb/km/s. This
information -carrying capacity is only 33 percent smaller than that of the
"ideal profile" reported by Cook.17

Let us turn now to the sensitivity of the rms width to errors in profile
(52). Again, for H > 1, this result is insensitive to the value of H; in-

deed

o-

+ 66.7 (D D1)2
Di

("min V
A

for H = 1

1 + 60
CD-D1)2

for H=a.
(56)

For H = 1 and (D -D 1)1Di, the fractional departure of D with respect
to the optimum D1 equal to A, the rms width a is about 8.4 times wider
than ("min. As in the case of the pulse width, the rms width is very sensi-
tive to profile errors.

A fiber designed to minimize the rms width (D = D1) has only 30
percent more information -carrying capacity than a fiber with the same
A designed to minimize the impulse -response width (D = D0).

VI. CONCLUSIONS

For a vast class of circular -symmetric fibers made of isotropic di-
electrics, simple and fundamental design criteria that minimize the
impulse -response width due to modal dispersion at one wavelength have
been found. This minimum width (30) is only a function of the NA and
the time of flight along the axis. Therefore, if properly designed, a fiber
with arbitrary profile dispersion has the same minimum impulse -re-
sponse width as another fiber with the same NA and no profile dispersion.
Their information -carrying capacity is about 1.4/A2 Mb  km/s. The fiber
engineer has a substantial freedom of choice to reach that optimum
design: the profile dispersion may be arbitrarily chosen but then the
index profile is uniquely determined by (22); or symmetrically, the index
profile may be arbitrarily chosen and then the profile dispersion must
satisfy (17). Only if the profile dispersion is a constant does the optimum
dielectric profile that minimizes the impulse response follow a power
law.
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The profile dispersion entails the first derivative of the index with
respect to the wavelength. If the second derivative can be controlled, then
the minimization of the impulse -response width can be achieved at two
neighboring wavelengths. This broadbanding of the fiber response can
be expanded even further if higher derivatives are under control.

The width of the impulse response is very sensitive to errors in the
fiber design. A fractional error of A in the dispersion parameter of the
fiber makes the response about nine times wider than the minimum as
seen from (35).

Only a marginal increase of about 25 percent in the information -

carrying capacity of the fiber is achieved if the rms width of the impulse
response is minimized instead of minimizing the impulse -response
width.
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An Experimental Optical -Fiber Link for Low -Bit -
Rate Applications

By W. M. MUSKA
(Manuscript received July 15, 1976)

The design, construction, and performance of a practical optical link
with interface circuits for coding and decoding 1.5-Mb/s, bipolar, digital
signals are described. The optical devices used are light -emitting diodes
and PIN photodiodes. A feedback or "transimpedance" preamplifier
that incorporates a silicon junction -field-effect transistor is used in
the receiver, which has a sensitivity of -57.2 dBm average optical power
for a 10-9 bit -error -rate. The receiver demonstrates an optical power
dynamic range of about 28 dB without requiring automatic gain
control. Timing recovery is accomplished by a simple, conventional
technique.

I. INTRODUCTION

Experimental repeaters for regenerating digital signals from a few
Mb/s to a few hundred Mb/s for optical -fiber transmission have been
reported.' -7 In this paper, we report the results of an experiment in which
a practical optical repeater of simple design and high performance with
interface circuits for coding and decoding 1.5-Mb/s bipolar signals was
constructed and evaluated. Such a low bit rate, bipolar, digital format
(Ds' ) is presently used in telephone systems for the transmission of
multiplexed, digitally encoded voice signals over copper twisted pairs.
The optical system was designed to be transparent to the bipolar format
of these electrical signals. It utilizes a directly modulated light -emit-
ting -diode (LED) source and a PIN photodiode, incorporates a simple
timing recovery circuit, and demonstrates receiver sensitivity that ap-
proaches theory.

The bipolar format consists of "zeros" and 50 -percent duty cycle al-
ternating positive and negatives "ones"; it, therefore, has three levels
with a zero dc component. A straightforward scheme to translate the
bipolar format to a unipolar format without increasing the bit rate might
involve simple full -wave rectification. However, this is unacceptable in

OPTICAL -FIBER LINK 65



practice because violation of the bipolar format is used in system
maintenance functions as an indication of system performance.

If the bipolar signal is transmitted as a three -level optical signal rather
than a binary signal at the bipolar bit rate, 3 dB more average optical
power would be required at the receiver detector for a given error -rate
(assuming a thermal -noise dominated receiver). Implementing the
three -level system would be more difficult, due to the nonlinearity of
the LED. The three -level system also requires separate regenerators in
the receiver for +1 and -1 pulse regeneration. If the bipolar signal is
coded in a two -bit -for -one -bit manner (twice the bit rate), the receiver
sensitivity would suffer a degradation of about 4.5 dB (PIN photodiode
with FET amplifier input device)8 compared to a binary format system
at the bipolar bit rate. Although this system is about 1.5 dB less sensitive
than the three -level system, repeater circuitry is simplified since the
effects of LED nonlinearity are not important and only one pulse re-
generator is required.

More efficient coding schemes are possible (e.g., 3 -bit for 2-bit)9 that
allow the bipolar information to be transmitted at less than twice the
information bit rate; however, the circuitry required to implement these
schemes is substantially more complicated.

The simple coding format9J° used in our experiment is shown in Fig.
1. A positive one is coded into two consecutive 3-Mb/s ones (non -re-
turn -to -zero in this case) within a coding frame, a zero is coded as a one
followed by a zero within a coding frame (this assignment is arbitrary;
it could be 0, 1, instead), and a -1 is coded as two consecutive zeros. This
coding format maintains desirable features of the bipolar signal, such
as dc balance and substantial redundancy for error correction or moni-
toring. In addition, the code allows a receiver that is ac -coupled to have
a constant threshold level at zero volts for a large range in received power
level without automatic gain control. The pulse -transition density of the
coded signal is very high, thus allowing a timing -recovery circuit in the
receiver that is less critical than those encountered in more conventional
binary systems.

The optical system is designed around an LED light source and a PIN
photodiode. These devices are expected to be less expensive and require
less control circuitry than lasers or avalanche detectors.

II. DESCRIPTION

A unidirectional optical -fiber link is shown in Fig. 2. The coder -
transmitter converts the 1.5-Mb/s incoming bipolar signal into a 3-Mb/s
unipolar optical signal for transmission via optical fibers. At the receiving
terminal, the optical signal is regenerated and decoded back to the
1:5-Mb/s bipolar format. Depending upon the distance between termi-
nals, one or more line repeaters may be needed. A line repeater might
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1
1

1 1

1 1

1

Fig. 1-Coding format.

include the receiver and driver shown in Fig. 2. and a simple regenerator
since there is no need to decode or encode the unipolar signal.

2.1 Coder -transmitter

The circuits between the incoming electrical bipolar signal and the
optical fiber consist of a bipolar-to-unipolar converter, a driver for the
LED, and the LED. The bipolar signal is coupled to the converter by a
transformer with a center -tapped secondary. Each half of the secondary
is half -wave rectified; one rectifier generates a pulse when a "plus -one"
appears at the input and the other generates a pulse when a "minus -one"
appears at the input.

These outputs are then encoded into the 3-Mb/s format by TTL cir-
cuitry realized in two dual -in -line packages. The encoding process re-
quires a clock signal, which is obtained from a timing -recovery circuit
similar to that used in conventional digital repeaters.11

The digital output voltage of the converter is converted into 220-mA
peak current pulses, which directly modulate the Burrus-type, diffused
junction LED. A non -return -to -zero format is used since these LEDs are
basically peak -power limited and the tolerable repeater span increases
with average power when fiber -delay distortion is negligible.8 The
bandwidth of these devices is more than adequate for this bit rate.
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Fig. 2-Electronics of the optical -fiber link.

2.2 Receiver -decoder

DG,

The receiver and decoder -regenerator converts the unipolar signal
on the optical fiber to a bipolar electrical signal. The input fiber is cou-
pled to a PIN photodiode, which converts the optical pulses to electrical
pulses which are then amplified sufficiently to be processed. The sen-
sitivity of the receiver is determined by the thermal and shot noise
generated in the "front-end" amplifier and the quantum efficiency and
shot noise of the PIN photodiode. It has been shown that the total noise
of the amplifier and diode may be referred to the input of the amplifier
as a shunt current generator.12 In the receiver described, the dominant
source of noise is the silicon junction -field-effect transistor (Si JFET)
input device since the leakage -current shot noise for most PIN photo -
diodes with active -area diameters less than 1.25 mm is small enough to
be neglected. The mean -square current of the effective input noise
current generator has been shown to be12
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where

k = Boltzmann's constant
T = absolute temperature
fb = bit rate = 3 MHz

gm = transconductance of the FET %-=', 5 mA/V
CT = Cdiode Cstray Cin FET = 8 pF
Rr = parallel equivalent resistance at the input to the FET

(diode bias return, FET bias, etc.)
r 0.7 for typical Si JFETs.

The parameters /0 and /2 are weighting factors, which are determined
by optical input and amplifier output pulse shapes;12 in this case the
input pulse is NRZ and rectangular and the output pulse NRZ and raised

cosine; therefore,

/0 = 0.55

/2 = 0.085.

If the amplifier input device is an FET, it is possible to choose a value
for Rr, such that the term associated with /0 is negligible compared to
the term associated with /,, in which case an FET should be chosen to
maximize //CT.

The above analysis is for a non -feedback amplifier, which has an input
time constant much larger than the signal period, 1/fb. In the present
work, a "transimpedance" or feedback amplifier is used. Here, the output

voltage is

where

Afl
As +

= photodiode signal current
Zf = feedback impedance = 1/(1/R1 + iCOC f)
C1 = total shunting capacitance across 111
R1 = feedback resistance
A = open -loop amplifier voltage gain

= Zi/(Zi + Z1)
Zin = total impedance at the input of the open -loop

amplifier
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It can be shown that the feedback resistor /if plays the same role as Rr
in relation to noise.

Since, in this case, Cf is about (1/80)Ct, the time constant RICE is 1/80
that of RrCt in the non -feedback design, and the signal is integrated over
far fewer signal periods. There must be sufficient linear gain before pulse
shape restoration, so that the amplifier following equalization does not
affect the signal-to-noise ratio. In the case of the non -feedback amplifier,
the integrated peak output voltage excursion may be many times that
for a single pulse, in which case the optical power dynamic range of the
amplifier is limited. The transimpedance amplifier, on the other hand,
does not experience this problem, thus allowing a substantially greater
dynamic range.

Following the pulse equalizer, the signal is further amplified by an
amplifier that is linear at very low input power levels but acts as a sym-
metrical limiter at higher received optical power levels without degrading
the performance. This feature eliminates the need for an automatic gain
control.

The signal is bandlimited by a third -order Butterworth filter to reduce
high -frequency, out -of -band noise, and then threshold detected by a
zero -crossing detector.

Due to the coding format, the dc component of the received electrical
signal voltage is always one-half the peak, thus the proper threshold level
at the threshold detector is always zero when ac coupling is used at the
input of the threshold detector.

The signal at the output of the zero -crossing detector, which has been
quantized into two discrete voltage levels, has timing -jitter due to the
presence of noise. This jitter is removed, as shown in Fig. 3, by sampling
the signal at times which are determined by a 1.5 -MHz, low -noise clock
signal, which is recovered from the received signal by a high -Q, paral-
lel -resonant circuit. This circuit is sustained in oscillation by 3.3 -mi-
crosecond pulses, which are generated by a monostable multivibrator
whenever a zero -one transition occurs in the received signal (Fig. 3,
waveforms A -C). Since a zero -one sequence in the encoded signal only
occurs at the beginning of a coding frame, the clock is synchronized with
the frames. The 3-Mb/s received signal is demultiplexed into two 1.5-
Mb/s signals by two sample and store circuits, one of which samples the
first bit in a coding frame on positive -going clock transistions (Fig. 3,
waveform D), and the other samples the second bit in a frame on nega-
tive -going clock transistions (Fig. 3, waveform E). These two 1.5-Mb/s
signals are then reconstituted into the original DS1 (1.5-Mb/s, 50 -percent
duty -cycle, bipolar) signal by comparing the states of the two demulti-
plexed signals at the end of each coding frame (Fig. 3, waveform F). Pulse
regeneration and decoding to bipolar is accomplished with TTL circuits
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Fig. 3-Decoding process.

consisting of 3 D -type flip-flops, 3-2 input NAND gates, and an inverter.
The output of the decoder is coupled to a twisted pair line.

III. SYSTEM PERFORMANCE

3.1 Evaluation procedure

To evaluate the system error performance, dynamic range, and timing
jitter, the coder -transmitter and the receiver -decoder were physically
separated and optically coupled through an air path into which the re-
quired amount of attenuation was placed. The two sections were then
packaged in a plug-in module of dimensions, 1% inches X 81/, inches X
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9 inches, and optically coupled via an optical -fiber path into which a
controlled amount of attenuation was placed. No degradation in per-
formance was observed.

3.2 Error performance

The theoretical average optical power required for a given error
probability is12

where

byp = _ Qnt 1/2,
ne

P = average optical power required to produce an error
probability of Pe

.h. = Planck's constant
v = optical frequency
n = photodiode quantum efficiency
e = electron charge
Q = -V2 erfc-1 (2P,)

Pe = probability of error.

The photodiode used in the error probability measurements had a
quantum efficiency of about 65 percent.

The theoretical and experimental error probability curves are pre-
sented in Fig. 4. The 0.5 -dB discrepancy is due to noise contributions
of amplifier stages following the FET input stage and measurement er-
rors. The data point at the 1.4 X 10-9 rate was obtained by counting the
errors that occurred in 12 time periods of 109 time slots each (,-,5 min.).
During one of these periods, a burst of 30 errors occurred due to elec-
tromagnetic interference and the data obtained during this period were
omitted.

The curves in Fig. 4 indicate the error probability at the coded 3-Mb/s
rate, the error probability at the 1.5-Mb/s rate would be about a factor
of two higher (some error correction takes place in the decoder); however,
this increase could be compensated for with about a 0.2 dB increase in
optical power.

3.3 Dynamic range

Optical power dynamic range is described as

Pd (dB) = Pmax (dB) - Pmin (dB),

where
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Fig. 4-Experimental and theoretical error vs. received average optical power.

Prna, = maximum received optical power level before nonlinear
effects degrade performance.

Pmin = optical power required to maintain a 10-9 error
probability.

The optical power dynamic range for the receiver described here is about
28 dB.

3.4 Timing litter

The phase jitter in the decoded pulse stream was observed to be about
10 degrees RMS at a received optical power level of about -57.8 dBm.

3.5 Waveforms

The oscilloscope pictures in Fig. 5(a-e) show waveforms at several
points in the system at various input power levels. The "eye diagram"
in Fig. 5(a) is taken at the output of the "front-end" amplifier and il-

lustrates the signal integration due to the capacitance across the feedback
resistor. Fig. 5(b) and (c) were taken at the input to the filter, Fig. 5(b)
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(a)

(c)

(b)

(d)

(e)
Fig. 5-Receiver waveforms (voltages: 0.1 X actual value)

was taken at a received optical power level of -47 dBm, and Fig. 5(c) was
taken at an optical power level of -28 dBm when the second amplifier
acts as a limiter.

Figure 5(d) demonstrates the "eye," after filtering, at a -57.2 dBm
optical power level. The waveforms from top to bottom in Fig. 5(e) are:
the bipolar signal at the input to the coder -transmitter, the 3-Mb/s re-
ceived signal at the output of the filter, and the regenerated and decoded
bipolar signal.

Power consumption

Total power consumption for the transmitter and receiver was about
1.75 watts.
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IV. SUMMARY

A practical optical -fiber link of simple design for faithful transmission
of 1.5-Mb/s bipolar, digital signals has been built and tested. High per-
formance is achieved through the use of a transimpedance preamplifier
that affords receiver sensitivity that approaches the theoretical limits
imposed by commercially available silicon junction -field-effect tran-
sistors.
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Propagation of High -Frequency Elastic Surface
Waves Along Cylinders With Various Cross -

Sectional Shapes

By J. A. MORRISON, J. B. SEERY, and L. 0. WILSON

(Manuscript received March 24, 1976)

Elastic surface waves, or Rayleigh waves, are disturbances that travel
over the stress -free surface of an elastic solid, and whose amplitudes
decay rapidly with depth into the solid. Earlier mathematical results
are used to study numerically the properties of these waves on specific
cylindrical objects that might be used as acoustic topographic wave -
guides. The lowest -order mode is investigated for cylinders with strictly
nonconstant curvature. Mode confinement and its dependence on such
things as cylinder shape and the value of the frequency parameter are
studied. Phase and group velocities are also computed. Mode behavior
is studied in the transition region between the case of cross-sectional
boundary curves of nonconstant (and not "almost" constant) curvature,
for which the modes are localized, and the case of constant curvature,
for which they are not localized. Some higher -order modes are inves-
tigated for the rounded wedge.

I. INTRODUCTION

Elastic surface waves, or Rayleigh waves, are disturbances that travel
over the stress -free surface of an elastic solid, and whose amplitudes
decay rapidly with depth into the solid. In a series of earlier papers,' -3

we developed and applied some mathematical techniques to describe
the propagation of high -frequency elastic surface waves along cylinders
of general cross section. Our intent was to learn more about the prop-
erties of such waves traveling down cylindrical objects that might be used
as acoustic topographic waveguides. In this paper, we use our earlier
mathematical results to study numerically the properties of elastic
surface waves on certain specific cylindrical objects of interest. We treat
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cylinders roughly corresponding to an elliptical bore, an elliptical rod,
a wedge with a rounded tip, and a flat plane with a rounded ridge on it.
The elastic medium is assumed to be homogeneous and isotropic.

The earlier papers discussed two approximate high -frequency de-
scriptions of the surface -wave behavior: an asymptotic approximation
and one which we termed a surface -wave approximation. The analysis
involved a scalar wave equation, a vector wave equation, and rather
complicated boundary conditions. Since the analysis was cumbersome,
a simpler scalar "model problem" was first investigated by Morrison.1
The techniques he developed had counterparts in the full elastic prob-
lem, which was treated by Wilson and Morrison2 in the high -frequency
asymptotic approximation, designated by A (as depicted in Fig. 1). The
lowest -order surface -wave mode was investigated in almost as much
detail as that for the scalar problem, but because of the algebraic com-
plexities, the higher -order modes were less completely analyzed.

For the scalar problem,1 Morrison had also obtained a surface -wave
approximation describing the high -frequency behavior of the surface -
wave modes. He then derived the analogous approximate equations for
the high -frequency behavior of the elastic surface -wave modes.3 Unlike

FULL THEORY
OF ELASTICITY/ \

A. HIGH -FREQUENCY
ASYMPTOTIC

APPROXIMATION

A.0 LOWEST ORDER
S0(f)

( (30 1 , 8p2 , 892

A.1 NEXT ORDER
S1 (17)

8p3, 8g3

B. HIGH -FREQUENCY
SURFACE -WAVE
APPROXIMATION

B. 0 LOWEST ORDER
Sym. (S), Antisym. (A)

Ho(11),WpL .WgL

OpL.8gL

B. 1 REFINED
Sym. (S), Antisym. (A)

H(71), wpri  wgR

8pR  8gR

Fig. 1-High-frequency approximation chart.
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the asymptotic approximation, A in Fig. 1, the surface -wave approxi-
mation, designated by B in Fig. 1, was capable of describing the mode
behavior at high frequencies in the transition region between the case
of cross-sectional boundary curves of nonconstant (and not "almost"
constant) curvature, for which the modes are localized, and the case of
constant curvature, for which they are not localized. (The asymptotic
approximations had required boundary curves with strictly nonconstant
curvature.) Also, this description gave a more complete analysis of the
higher -order modes.

In Section II, we exhibit the cross-sectional boundary curvature
functions used in our numerical investigations and explain why we chose
those specific functions.

Section III is devoted to a numerical treatment of the high -frequency
asymptotic results. The lowest -order mode is investigated for cylinders
with strictly nonconstant curvature. We learn about the phenomenon
of mode confinement, and its dependence upon such things as the shape
of the cylinder and the value of the high -frequency parameter x used
in the asymptotic expansions, A in Fig. 1. We also compute the phase
and group velocities.

In Section IV we make a similar investigation using the surface -wave
approximation, B in Fig. 1. When possible, the results are compared with
the asymptotic results. Particular attention is paid to the mode behavior
in the transition region described earlier, and to the behavior of
higher -order modes. We also compare our results with exact theoretical
results for the circular bore.4

In Section V, we summarize our findings.

II. THE BOUNDARY CURVES

We wished to investigate numerically the properties of disturbances
propagating along the surfaces of various cylindrical objects. The mo-
tivation for our particular choices of cross-sectional boundary curves
came from our earlier high -frequency asymptotic results,`' which could
be applied to a cylinder with an open boundary curve whose curvature
attains its algebraic maximum at a single point, and which could also be
applied to a cylinder that has a closed boundary curve which is symmetric
and whose curvature attains its algebraic maximum at two points. We
decided to consider disturbances propagating along objects roughly
corresponding to an elliptical bore, an elliptical rod, a wedge with a
rounded tip, and a flat plane with a rounded ridge on it.

The exact forms of the chosen boundary curvature functions were
suggested by the analytical form of the displacement function obtained
in our high -frequency asymptotic results.`' The high -frequency behavior
of the disturbance can be determined in the vicinity of the cylinder
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surface. As is shown in Appendix A, the disturbance corresponding to
the zeroth -order mode, when evaluated at the surface of the cylinder,
can be expressed as

cTei(13z-wt)
u(41,n)1E=o

0)1)0)(0)

= F(n) exp [-WV/2G (0]
(b2 + - [ 1 +

C(n)

2aT 2(px)1/2

[1 - (b2 (P) "2 I + ib [1 + C(n) ]1(}). (1)
2b 2 2 (px )1/2

Here u is the displacement, f3 is the propagation constant, z measures
distance along the generators of the cylinder, w is the frequency, and t
is the time. A right-handed coordinate system is used, with unit vectors
n, t, and k in the directions of the inward normal, tangent to the cross-
sectional boundary curve, and along the generators of the cylinder, re-
spectively. Here Z = nit, where n represents distance from the surface
along the inward normal and  is a characteristic length; also n = sit,
where s is signed arc length along the boundary curve. The normalized
unit of length, corresponding to the characteristic length e, is depicted
in Figs. 2, 3, and 4 for the particular cross-sectional boundary curves
considered. The quantities b, aT, aL, and P are constants defined in
Appendix A, and bm(0) is a normalization constant. We have

x = coticT >> 1, (2)

where CT is a constant representing the transverse wave velocity of the
medium. Thus, the parameter x is proportional to the frequency w and
is assumed to be large. The functions C(n),F(n),G(n), and I(n) all involve
the curvature function K(n) = K(s); as is shown in Appendix A, C(n),
F(0), and G (n) are defined as integrals of certain functions of the cur-
vature function. It was to evaluate these integrals and the integral of the
curvature function analytically that we chose the specific curvature
functions.

The boundary curves are then given by the functions X (n) and Y(n)
defined by5

dX
= cos So K(Ddr,

dY
cTn = - sin So K(Dc

To describe an ellipse -like bore, we set

K1(n) = - 1 + 2k cos 2n, 0<k 151/2
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Fig. 2-Boundary curves corresponding to the ellipse -like bore and rod for various values
of k.
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Fig. 3-Boundary curves corresponding to the rounded wedge for various values of
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Fig. 4-Boundary curves corresponding to the ridged plane for various values of k.

while

X4

K2(77) = 1 + 2k cos 2n, 0 < k _-5 Y2 (5)

corresponds to an ellipse -like rod. Equations (4) and (5) actually describe
the same boundary curve with circumference 2ir. Notice that in both
instances 77 = 0 corresponds to a point of maximum algebraic curvature.
Also, the curvature is negative for the bore, because of our convention
that n is directed into the region. The curvature function

K3(77) = k sech277, 0 -. k < r/2 (6)

corresponds to a wedge -like object similar to a hyperbolic cylinder. Fi-
nally,

K4(77) = k [E2 - tanh277(sech2n + Erb
(1

+
V151\

) (7)

describes a rounded ridge on a plane. The value for E is found from the
condition 5 K(i)th = 0. As with the other cases, there is also a re-
striction on k. It is complicated so we do not write it here. In each case,
k is a parameter that can be varied.

The boundary curves corresponding to the curvature functions in (4)
to (7) were obtained numerically. In Fig. 2, we show the boundary curves
corresponding to the ellipse -like bore and rod for various values of k. The
unit of length is indicated in the figure. Notice that k = 0 corresponds
to a circular bore or rod. The dot represents the point n = 0 for the bore
corresponding to k = 0.1, indicating that the points of maximum cur-
vature lie on the Y1 axis. For the bore, the vectors ni and ti indicate the
directions of the normal into the region and the tangent to the curve.
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Similarly, the circle represents the point n = 0 for the rod corresponding
to k = 0.5, indicating that the points of maximum curvature lie on the
Y2 axis. Note that the axes for the rod have been rotated by 90 degrees
from those for the bore. For the rod, the vectors n2 and t2 indicate the
directions of the inward normal and the tangent to the curve. In Figs.
3 and 4, we show the boundary curves for the rounded wedge and ridged
plane, respectively, for various values of k. The unit of length is indicated,
as are the unit vectors n and t.

At high frequencies, the asymptotic result (1) does not hold in the
transition region between the case of cross-sectional boundary curves
of nonconstant (and not "almost" constant) curvature, for which the
modes are localized, and the case of constant curvature, for which they
are not localized. However, a refined surface -wave approximation
equation, to be discussed in Section IV, does give results in this transition
region.

III. ASYMPTOTIC RESULTS

In this section, we present high -frequency asymptotic results based
on evaluation of (1) for the bore, rod, wedge, and plane with a ridge. In
each case, the results are for the fundamental, or zeroth -order, mode.
The bore and the rod have closed boundary curves which are symmetric,
and for which the curvature attains its algebraic maximum at two points.
For such cylinders, the expansion (1) corresponds to two modes, the
zeroth -order symmetric one and the zeroth -order antisymmetric one,
for which the values of the propagation constant f differ by only an ex-
ponentially small amount.1'2 This expansion is about the point of max-
imum algebraic curvature at n = 0 and is valid for inl < 7r/2. There is an
analogous expansion about the point of maximum algebraic curvature
at n = 7r which is valid for

I n - 71 < 7r/2. Each expansion is not expected
to be precise in regions where the disturbance is very small and the two
modes differ. It is necessary to ensure that the disturbance is confined
to regions near points of maximum algebraic curvature so that it is indeed
small where the two modes are known to differ. From (1), (29), (33), and
(35), this can be viewed as a requirement that the frequency parameter
x be sufficiently large and that the deviation of the curvature from a
constant value not be small.

Equation (1), which is valid on the surface of the cylinder, was ob-
tained from (39) in Appendix A, which holds also near the surface. In
the derivation of the latter equation, it was necessary to assume that if
the center of curvature for a point on the cross-sectional boundary curve
lies within the region defining the cylinder, then the disturbance must
be negligible at that point. This means that for the rod, wedge, and ridged
plane, the results are applicable only if the frequency is high enough that
the disturbance is confined close to the surface of the cylinder. Mathe-
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matically, this means that each exponential term in (39) must be very
small when evaluated at the value of LI corresponding to the minimum
radius of curvature. These conditions result in an approximate lower
bound on the frequency parameter x, namely that

x > 10 K(0)/aT. (8)

The constant aT depends upon the Poisson ratio a. For values of a- be-
tween 0 and 1/2, it turns out that aT ranges between 0.56 and 0.31, re-
spectively. Most of our numerical results were obtained with a. = 0.16974,
which was taken as the Poisson ratio for fused silica.6 For this value of
a, we have aT = 0.47.

As can be seen from (1), the n and k components of thedisplacement
uri (0,n) and uk (0,n) each contain a factor [1 + 1/2C (0) (P x)-1121, whereas
the t component ut (0,n) contains a factor I (n)(P /x)112. Then, in the
lowest -order asymptotic approximation, A.0 in Fig. 1, the t component
of the displacement does not even appear. To this order, the solution is
like that for Rayleigh waves traveling on the surface of a plane infinite
half space except that it is multiplied by a factor that describes the
confinement of the disturbance due to the cylinder curvature. In the
next -order asymptotic approximation, A.1 in Fig. 1, the effect is to
multiply this solution by an additional factor and to add a t component
of displacement. Since it turns out computationally that ut is a few
percent of the size of un or uk, we shall concentrate our attention on un
and uk. Since these two components are proportional to each other, it
suffices to treat the quantities

San) = F(n) exPE-(Px)112G(n)],

S 1(n) = S 0(70[1 + I/2C (n)(Px)-1/2],

(9)

(10)

which are proportional to the n and k displacement components in the
lowest -order and next -higher -order asymptotic approximations, A.0 and
A.1, respectively, and which are normalized to unity at i = 0. We shall
mostly discuss the more accurate approximation S1(n).

Figures 5 and 6 illustrate some results obtained for the ellipse -like bore
whose cross-sectional curvature function is given by (4). Because of the
symmetries of the boundary curve, it is only necessary to consider values
of 77 between 0, which corresponds to a point of maximum algebraic
curvature, and r/2, which corresponds to a point one quarter of the way
around the curve. In both figures, we plot the first -order asymptotic
approximation S1(n) from n = 0 to a value of n less than 7r/2 for which
the disturbance is relatively small.

In Fig. 5, we show S 1(n) for several values of the frequency parameter
x. The constant k in (4) was chosen to be 0.5; the Poisson ratio was chosen
to be 0.16974, corresponding to fused silica.If we take the transverse wave
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Fig. 5 -First -order asymptotic approximation Si (n) for the bore, with k = 0.5, plotted
as a function of n for various values of the frequency parameter x and Poisson ratio a =
0.16974.

velocity for fused silica to be 3764 m/s, then for  = 3 X 10-4 m the fre-
quency corresponding to x = 40 is approximately 80 MHz. It is strikingly
apparent that the disturbance is indeed confined to a region near the
point of maximum algebraic curvature n = 0. There is, of course, similar
confinement to the region near n = 7r. Such confinement near a point of
maximum algebraic curvature shows up in a similar manner in the
computations for rods, wedges, and ridges on planes. We also see that
the confinement becomes even more pronounced as the frequency pa-
rameter x increases.
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0.7

0.6

--.- 0.5
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271/71'
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Fig. 6 -First -order asymptotic approximation S1(n) for the bore, with k = 0.5, plotted
as a function of n for frequency parameter x = 80 and various values of the Poisson ratio
u.

SURFACE -WAVE PROPAGATION 85



As the ellipse -like bore becomes more like a circular bore (k decreases),
the confinement near points of maximum algebraic curvature decreases.
This is to be expected since in the limiting case of a perfectly circular
bore, there is no such confinement at all. We do not include a figure here
to exhibit the way the confinement changes with k, as the effect will be
vividly demonstrated later in Section IV where surface waves on "al-
most" circular bores are discussed.

In Fig. 6, we fix x = 80 and k = 0.5, and show S1 (n) for various values
of the Poisson ratio ff. The confinement increases as a decreases.

These results are quite representative of all those we obtained for the
bore, rod, wedge, and plane with a ridge. Other curves for S1(n) are
qualitatively very similar. For example, in Fig. 7, we show Si(n) for a
plane with a ridge on it. In this case, the curvature function is given by
(7), with k = 3. We fixed a = 0.16974 and varied the frequency parameter
x. Because other results are so similar, we do not show any specific curves
for the rod or wedge.

We next compare the lowest -order asymptotic approximation So(n)
with the first -order asymptotic approximation S1(n). Here, some dis-
tinctions do arise in our computations for the various cylinders. In
considering the ellipse -like bore, we find that for values of the parameters
in the ranges previously discussed, the curves So(n) are hardly distin-
guishable from the curves S 1(n). This is not always the case for the rod,
wedge, and ridge on a plane. To give an example for which the first -order
correction term is significant, we show in Fig. 8 the functions and
S 1(n) corresponding to a rounded wedge, with x = 40, k = 1.0, and a =
0.16974. Similar results can be obtained for the rod and the plane with
a ridge on it when the frequency parameter x is in the lower part of the
range being considered. In all cases, the first-order correction becomes
noticeably smaller as x is increased. We expect the second -order cor-
rection to be negligible.

The normalized phase and group velocities are

CO

Wg = (CT CL13)-1Wp = ,

pc T do)

where cT is the transverse -wave velocity. From the asymptotic results,2
it is found that

1 doP (-d2P)1/2 (dP2 - 2b2Q2)w - + + + . . (12)
P b 2b 3X 2b 3X312 4b5x2

and
1 (_d2p)1/2 Q

W =--- + + . . . ,

g b 4b 3 X312 2b 3X2
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Fig. 7 -First -order asymptotic approximation Si(n) for the ridged plane, with k = 3,
plotted as a function of n for various values of the frequency parameter x and Poisson ratio

= 0.16974.

where the constants b, d0, d2, P, and Q are defined in Appendix A. In
particular, 1/b = cR/cT = wR is the normalized Rayleigh wave velocity,
and wR is the solution of equation (24) which satisfies 0 < wR < 1. Both
the phase and the group velocity asymptotically approach the Rayleigh
wave velocity and, consequently, we define the normalized differential
phase and group velocities by

by = Wp 11b, 45g = Wg 1/b. (14)

The asymptotic approximations bpi, 6p2, and bpi to by are obtained
by retaining terms through orders x-1, x-3/2, and x-2 respectively in the
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Fig. 8 -Comparison of lowest- and first -order asymptotic approximations S0(8) and
S1(8) for the rounded wedge, with k = 1.0, plotted as functions of n for frequency parameter
x = 40 and Poisson ratio a = 0.16974.
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expansion (12). Similarly, the approximations 42 and 43 to ag are ob-
tained by retaining terms through orders x-3/2 and x-2 respectively in
the expansion (13).

In Fig. 9, we show the approximations Sp2 and Spa to the normalized
differential phase velocity as a function of the frequency parameter x
for the ellipse -like bore, with k = 0.5 and a = 0.16974. We do not plot bpi,
as it can be shown to be identically equal to zero for this case. Notice that
the convergence is quite good. This is also true for the approximations
42 and 43 to the normalized differential group velocity, which are shown
in Fig. 10.

For cylinders of other cross-sectional shapes, the convergence is not
always so good, particularly for the differential group velocities. In Tables
I(a) and I(b), we show bpi, Op2, ON, and (5g2) 43) respectively, for the bore,
rod, wedge, and ridged plane; here x = 80, a = 0.16974, and k varies. The
convergence improves as x increases.

In Figs. 11 and 12, we show one additional set of approximations to
the differential phase and group velocities, respectively, as a function
of x. Here, the curves are for the wedge, with k = 1.0 and a = 0.16974.

0.8
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X

Fig. 9-Asymptotic approximations 51,2 and 6p3 to the normalized differential phase
velocity as a function of the frequency parameter x for the bore; k = 0.5 and Poisson ratio
0- = 0.16974.
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Fig. 10-Asymptotic approximations 42 and 43 to the normalized differential group
velocity as a function of the frequency parameter x for the bore; k = 0.5 and Poisson ratio

= 0.16974.

IV. SURFACE -WAVE APPROXIMATIONS

In this section, we consider two related equations that describe the
high -frequency behavior of the surface -wave modes. We call these
equations the lowest -order approximate equation and the refined ap-
proximate equation. They are subject to the same restrictions about the
disturbances being confined near the surface as are the asymptotic
equations of Section III which describe the zeroth -order mode. The
surface -wave approximations B.0 and B.1 (see Fig. 1) permit a more
complete analysis of the higher -order modes. The refined approximation
B.1 also describes the behavior of the modes in the transition region, at
high frequencies, between the case of cross-sectional boundary curves
of nonconstant (and not "almost" constant) curvature, for which the
modes are localized, and the case of constant curvature, for which they
are not localized.

In the refined surface -wave approximation3 the displacement, when
evaluated at the surface of the cylinder, can be expressed in the form
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Fig. 11-Asymptotic approximations bpi, 61,2, and bpi to the normalized differential
phase velocity as a function of the frequency parameter x for the wedge; k = 1.0 and Poisson
ratio a = 0.16974.

CT
el(flz-wt)iln=0

[(b2 + 4) - aL Hn

+ [1 - (b2 aD] (1.d1 t - ibHk), (15)
2b2 x dn

where H satisfies the refined approximate equation

2
+H lx[PK(n) - 2bv] - v2 + vSK(n) - r[K(n)]2)11 = 0. (16)H

n 2

Here the frequency parameter x is as defined in (2), K(n) is the curvature
function, n = sit as before, and P, S, and T are constants. The parameter
v is an eigenvalue, which is to be determined from a periodicity condition
in the case of a closed boundary curve, and from an appropriate condition
at infinity in the case of an open boundary curve. The propagation
constant 13 is given by

[3 = bx + v, (17)
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Fig. 12-Asymptotic approximations 5g2 and to the normalized differential group
velocity as a function of the frequency parameter x for the wedge; k = 1.0 and Poisson ratio

= 0.16974.

and the normalized phase and group velocities are

wp = (b + plx)-1, wg = (b + dv/dx)-1. (18)

In this refined approximation, correction terms3 of order 1/x could be
included in the n and k components of the surface displacement given
by (15). However, for the numerical cases considered in this paper, it
turns out that these corrections, which differ for the two components,
are of at most a few percent, so we do not write out these terms here.

The lowest -order approximation B.0 (see Fig. 1) is obtained by
omitting those terms multiplying H in (16) which are independent of
x. Having done this, we replace H by Ho in (15) and v by vo in (17) and
(18), where Ho satisfies the lowest -order approximate equation

d2H0

dn2
+ x[PK(n) - 2bvo]Ho = 0.

It was shown3 that the asymptotic approximation (1) for the surface
displacement of the zeroth -order mode may be derived from (15) and

(19)
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Table 1(a) - Asymptotic approximations to the normalized
differential phase velocity of the zeroth -order mode for
various cross-sectional shapes; frequency parameter

x = 80 and Poisson ratio a = 0.16974

Shape k -bpi X 10:3 '60 X 103 -bpi X 103

Bore

Rod

0.3 -0.718 -1.072 -1.068
0.4 -0.359 -0.767 -0.756
0.5 0 -0.457 -0.442

0.1
0.2
0.3
0.4
0.5

2.15
2.51
2.87
3.23
3.59

1.95
2.22
2.52
2.82
3.13

1.86
2.10
2.35
2.61
2.87

Wedge 0.5 0.898 0.669 0.681
1.0 1.80 1.47 1.43
1.5 2.69 2.30 2.17

Ridged 2 2.46 1.63 1.57

Plane 3 3.69 2.67 2.45
4 4.92 3.74 3.29
5 6.15 4.83 4.09

Table 1(b) - Asymptotic approximations to the normalized
differential group velocity of the zeroth -order mode for
various cross-sectional shapes; frequency parameter

x = 80 and Poisson ratio a = 0.16974

Shape k - ag2 X 104 -r5g3 X 104

Bore

Rod

Wedge

0.3
0.4
0.5

0.1
0.2
0.3
0.4
0.5

0.5
1.0
1.5

1.77
2.04
2.28

1.02
1.44
1.77
2.04
2.28

1.14
1.61
1.98

1.73
1.92
2.14

1.83
2.60
3.32
4.04
4.78

1.02
1.99
3.18

Ridged 2 4.17 4.65
Plane 3 5.11 7.14

4 5.90 10.10
5 6.60 13.60

the refined approximate equation (16). Also, the lowest -order asymptotic
approximation, in which the terms involving C(n)[2(P)()1/21-j 1 do not
appear in (1), may be derived from (19). However, in the transition region
between the cases of nonconstant (and not "almost" constant) curvature
and constant curvature, where the asymptotic results are not valid, eqs.
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(16) and (19) have to be solved numerically, in general; it was shown,3
though, that (19) may be solved analytically in the case of the curvature
function K3(n) given by (6). We will see later how the results obtained
from the numerical solution of (16) and (19) compare with the asymptotic
results A.0 and A.1 (Fig. 1) in their common region of validity.

As we will see, the lowest -order approximate eq. (19) is generally not
sufficiently accurate in the transition region, when the curvature is
"almost" constant. An exception is the case of the curvature function
K3(n) given by (6), the reason being that the curvature is small in this
case, tending to zero as k 0, so that the terms involving S and T in (16)
are small.

4.1 Circular bore

We first consider the case of a circular bore of radius e, with K (n)
-1, corresponding to k = 0 in (4). We compare our results from the
lowest -order and refined approximate equations with the exact theo-
retical results4 for the fundamental mode in a circular bore.

For the lowest -order surface mode, with K(n) a -1 in (16) and (19),
both Ho and H are constant, and the corresponding eigenvalues are

(bx +
2)

[(bx +
2
Sy - (Px + 7)1 . (20)

1/2

= =

(18), the group velocity is equal to the Rayleigh wave velocity.
The exact theoretical dispersion relation for the fundamental mode

in a circular bore was solved numerically for the normalized phase ve-
locity wp by Rosenberg, Schmidt, and Coldren6 for Poisson ratio
Q = 0.16974, corresponding to fused silica. They also calculated the
corresponding value of the normalized group velocity wg. In Table II(a),
we compare their values of wp as a function of the frequency parameter
x with those calculated from (18) and (20). We add the subscripts L and
R to wp to denote the lowest -order and refined approximate values of
the phase velocity, respectively. Similarly, in Table II(b), we compare
the exact theoretical and refined approximate values of wg. The nor-
malized value of the Rayleigh wave velocity is 1/b = 0.905727.

Notice that the lowest -order surface -wave approximation wpi, is
reasonably close to wp and that the refined surface -wave approximations
wpR and wgR are remarkably close to wp and wg, respectively. The
agreement improves as the frequency parameter x increases.

Rosenberg, Schmidt, and Coldren6 plotted normalized differential
phase and group velocities versus x. In Fig. 13, for purposes of compar-
ison, the normalized quantities (bw -1)/(b - 1) are plotted against x
for w = wpL, wpR, wp, wgR, and wg. The dots are for values corresponding
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Table II(a) - Comparison of lowest -order and refined approximate
and exact theoretical values of the normalized phase velocity of
the fundamental mode in a circular bore; frequency parameter

x has various values and Poisson ratio r = 0.16974

X Wpf., WpR WP

6 0.930315 0.938221 0.937969

8 0.924044 0.928858 0.928829
10 0.920321 0.923570 0.923583
12 0.917856 0.920199 0.920219

14 0.916104 0.917874 0.917893
16 0.914794 0.916179 0.916195
18 0.913777 0.914892 0.914905
20 0.912966 0.913882 0.913893
22 0.912303 0.913069 0.913078

Table II(b) - Comparison of refined approximate and exact
theoretical values of the normalized group velocity of the

fundamental mode in a circular bore; frequency
parameter x has various values and

Poisson ratio o = 0.16974

X WgR wg

6 0.901046 0.902112
8 0.902532 0.902825

10 0.903408 0.903522
12 0.903968 0.903962
14 0.904347 0.904390
16 0.904615 0.904644
18 0.904812 0.904873
20 0.904961 0.904967
22 0.905077 0.905134

to wp and wg. Note that the normalized values of wg do not lie precisely
on a smooth curve. The values of wg, were obtained through numerical
differentiation once the values of wp had been calculated from the exact
theoretical dispersion relation.6 We suspect that the discrepancy is due
to numerical difficulties in their computations.

4.2 Ellipse -like bore and rod

We now consider the ellipse -like bore and rod corresponding to the
curvature functions K1(n) and K2(77) given by (4) and (5). The eigenvalue
problems for the refined and lowest -order approximate equations (16)

and (19) were solved numerically. It suffices to consider the interval
0 5.. n 7r/2, because the modes are either symmetric or antisymmetric
about 77 = 0, and about 77 = r/2, so that H'(0) = 0 or 1/(0) = 0, and
H'(7r/2) = 0 or H(42) = O.
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Fig. 13-Normalized differential phase and group velocities (bw - 1)/(b - 1) as a
function of the frequency parameter x for the circular bore, with Poisson ratio a = 0.16974.
The curves correspond to the surface -wave approximations wpL, wpR, and wgR and the
dots correspond to the exact theoretical results wp and wg.

A "shooting" method was used, which involves making an initial guess
for the eigenvalue v, and numerically integrating the differential equation
for H(7) from 77 = 7r/2 ton = 0. The value of v was adjusted iteratively,
in the manner described in Appendix B, until the boundary condition
at n = 0 was satisfied with sufficient accuracy. The initial iterations were
done in single precision, and the final ones in double precision, and only
a few iterations were required to obtain the desired accuracy. The nu-
merical integrations were done from .77 = 7r/2 ton = 0, since in the as-
ymptotic region the mode decays exponentially away from n = 0, and
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integration from n = 0 toward n = 7r/2 would lead to numerical insta-
bilities in this case.

To calculate both the phase and group velocities from (18), it is nec-
essary to know the values of both v and dv/dx. Once the eigenvalue v,
and the corresponding eigenfunction H(n) had been obtained, the value
of dvIdx was obtained by quadratures, using the expression (46) derived
in Appendix B. The analogous expression for dvo/dx is given by (47).

4.2.1 Rod

We first compare the results of the numerical solution of (16) and (19)

for the rod [k = 0.3 in (5)] with the asymptotic results A.0 and A.1 for
x = 40. Here, and subsequently, the value of Poisson's ratio is taken to
be a = 0.16974. In Fig. 14, we plot the refined and lowest -order sur-
face -wave approximations H(n) and Ho(n) for the zeroth -order sym-
metric mode, normalized to unity at n = 0. The dots and circles corre-
spond to the first and lowest -order asymptotic approximations S1(n)
and San), respectively, as defined in (10) and (9). It is seen that the as-
ymptotic approximations agree quite well with the numerical solution,
except, as expected, near n = 7r/2. As the value of x increases, the
agreement becomes better near n = 7r/2, since the disturbance becomes
exponentially small there.

When the value of S1(n) is sufficiently small near n = 7r/2, the
zeroth -order mode which is antisymmetric about n = 7r/2, as well as that
mode which is symmetric about n = 7r/2, is approximated by S1(77), as
was argued in an earlier paper.2 In Fig. 15, we plot H(n) for the lowest -
order symmetric and antisymmetric modes. The dots, as before, corre-
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Fig. 14-Comparison of refined and lowest -order surface -wave approximations H(n)
and Ho(n) for the zeroth -order symmetric mode, and corresponding asymptotic approxi-
mations S1(n) (dots) and So(n) (circles) for the rod; k = 0.3, frequency parameter x = 40,
and Poisson ratio a = 0.16974.
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Fig. 15-Comparison of the refined surface -wave approximation H(n) for the lowest -
order symmetric (S) and antisymmetric (A) modes, and the first -order asymptotic ap-
proximation S 1 (n) (dots), for the rod; k = 0.3, frequency parameter x = 40, and Poisson
ratio a = 0.16974.

spond to the values of S1(n). To complete the comparison, in Table III
we compare the asymptotic values of the differential phase and group
velocities with the values obtained from (18).

Trends to notice are that the asymptotic approximations bp2 and 6g2
to the differential phase and group velocities agree roughly with the
lowest -order surface -wave approximations bpi, and bgL. The corre-
spondence between the next -order asymptotic approximations Spa and
bg:3 and the refined surface -wave approximations SpR and (5 gR is somewhat
better. The agreement is better for the differential phase velocities than
it is for the differential group velocities. In all cases, the agreement im-
proves as the frequency parameter x increases.

As before, the t component of the displacement turns out to be a few
percent of the n and k components of displacement.

Higher -order modes may be investigated also by solving the eigenvalue
problem (16) numerically.

4.2.2 Bore

The agreement between the asymptotic and the numerical results is
even better for the bore. We have already discussed the circular bore and
we now consider the transition from this to a noncircular bore for which
the asymptotic results are good, by letting k vary from 0 to 1/2 in (4). The
results of the numerical solution of the refined and lowest -order ap-
proximate equations (16) and (19) for x = 40 and a = 0.16974 are de-
picted in Figs. 16 and 17 for the lowest -order symmetric and antisym-
metric modes, respectively. The full curves give the values of H(n) (re -
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Table III - Comparison of asymptotic and approximate values of
the normalized differential phase and group velocities of the

lowest -order symmetric (S) and antisymmetric (A) modes
for the rod; k = 0.3, frequency parameter x has
various values, and Poisson ratio a = 0.16974

x

- bp X 103

api

ape
Op!, (S)

(A)

Op3
bpR (S)

(A)

- x 10:3

age
(S)
(A)

6,13

kg? (S)
(A)

40 60 80

5.745 3.830 2.873

4.745 3.286 2.519
4.783 3.3010 2.5271
4.780 3.3007 2.5271

4.089 2.9942 2.3550
4.075 2.9925 2.3555
4.066 2.9919 2.3554

40 60 80

0.500 0.2722 0.1768
0.428 0.2433 0.1611
0.442 0.2448 0.1613

1.120 0.5475 0.3317
1.188 0.5693 0.3401
1.231 0.5730 0.3406

fined approximation) and the broken curves the values of 110(n) (low-
est -order approximation); both curves are normalized to unity at n = 0
for the specified values of k.

For the symmetric mode, Fig. 16, Ho(n) E 1 and H(n) = 1 for k = 0,
which agrees with the exact result for the circular bore. As k increases,
the values of Ho(r/2) and H(zr/2) decrease, becoming exponentially small
for k = 0.5. It is seen that there is a significant difference between Ho(n)
and H(n) for intermediate values of k. The lowest- and first -order as-
ymptotic results agree very well with the numerical results obtained from
(19) and (16) for k = 0.5. In Table IV we compare the lowest -order and
refined approximations to the normalized differential phase and group
velocities. We see that bpi, and (5pR differ by only a few percent; the
agreement improves as k increases. The lowest -order approximation be,
for the normalized differential group velocity, however, is not very good,

especially for the smaller values of k.
For the antisymmetric mode, Fig. 17, Ho(n) = cos n = H(n) for k = 0,

which agrees with the exact result for the circular bore. The differences
between Ho(n) and H(n), for intermediate values of k, are not as large
as they are for the symmetric mode. It is noted that for k = 0.5, the curves
of WTI) and H(n) are barely distinguishable from the corresponding ones
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Fig. 16 -Refined and lowest -order surface -wave approximations H(n) (full curves) and
Ho(n) (broken curves) for the lowest -order symmetric mode for the bore; k has various
values, frequency parameter x = 40, and Poisson ratio (7 = 0.16974.

for the symmetric mode, as expected from the asymptotic results. The
most significant difference is that Ho(7r/2) = 0 = H(ir/2) for the an-
tisymmetric mode, whereas Ho' (r/2) = 0 = H'(7712) for the symmetric
mode. In Table V, we compare the lowest -order and refined approxi-
mations to the normalized differential phase and group velocities. As

was the case for the symmetric mode, SpL and OpR differ by a few percent
and the agreement generally improves as k increases. The lowest -order
approximation Sgi, for the normalized differential group velocity, al-
though not very good quantitatively, is qualitatively better than for the
symmetric mode.
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Fig. 17 -Refined and lowest -order surface -wave approximations H(n) (full curves) and
Ho(n) (broken curves) for the lowest -order antisymmetric mode for the bore; k has various
values, frequency parameter x = 40, and Poisson ratio a = 0.16974.
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Table IV - Comparison of lowest -order and refined
approximations to the normalized differential phase and group
velocities of the lowest -order symmetric mode for the bore; k

has various values, frequency parameter x = 40,
and Poisson ratio o = 0.16974

k apL OpR OgL 6gR

0 0.003605 0.003850 0 -0.224 X 10-3
0.01 0.003602 0.003847 -0.275 X 10-5 -0.226 X 10-3
0.02 0.003594 0.003835 -0.108 X 10-4 -0.234 X 10-3
0.03 0.003580 0.003817 -0.234 X 10-4 -0.247 X 10-3
0.04 0.003562 0.003793 -0.396 X 10-4 -0.262 X 10-3
0.05 0.003539 0.003764 -0.583 X 10-4 -0.279 X 10-3 -
0.1 0.003374 0.003560 -0.162 x 10-3 . -0.358 X 10-3
0.5 0.001232 0.001262 -0.581 X 10-3 -0.636 X 10-3

Table V - Comparison of lowest -order and refined
approximations to the normalized differential phase and group

velocities of the lowest -order antisymmetric mode for the
bore; k has various values, frequency

parameter x = 40, and Poisson
ratio a = 0.16974

OpL 6pR 6gL OgR

0 0.003839 0.004066 -0.232 X 10-3 -0.420 X 10-3
0.01 0.003802 0.004024 -0.233 X 10-3 -0.417 X 10-3
0.02 0.003764 0.003981 -0.235 X 10-3 -0.415 X 10-3
0.03 0.003725 0.003936 -0.238 X 10-3 -0.414 X 10-3
0.04 0.003684 0.003890 -0.242 X 10-3 -0.415 X 10-3
0.05 0.003642 0.003842 -0.246 X 10-3 -0.416 x 10-3
0.1 0.003419 0.003590 -0.279 X 10-3 -0.430 X 10-3
0.5 0.001232 0.001262 -0.583 X 10-3 -0.637 X 10-3

4.3 Wedge

We now turn our attention to the wedge with a rounded tip, corre-
sponding to the curvature function K3(n) given by (6). In this case, the
lowest -order approximate equation (19) may be solved analytically.3,7
The eigenfunctions are

Ho(n) « (sech n)a-F[2an, + m + 1, -m; am + 1;1(1 - tanh n)], (21)

where
am = (pxk 1/4)1/2 _ m -1/2 > 0, m = 0, . . M2

and the corresponding eigenfunctions are given by

vo = aV(2bx).
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The hypergeometric function8 in (21) terminates, and is a polynomial
of degree m in its argument. There is a finite number of modes, because
of the requirement that am > 0, which ensures that Ho(n) 0 as
I 771 . The even -order modes are symmetric about n = 0, and the
odd -order modes are antisymmetric, so it suffices to consider n 0.

According to (22), the zeroth -order mode, corresponding to m = 0,
always exists for k > 0. For m = 0, the hypergeometric function in (21)
is identically equal to 1. If Pxk < 2, in this approximation, then only the
zeroth -order mode exists. In the limiting case, k 0, corresponding to
a planar boundary; a0 0 and Ho 1, for fixed n. That is, the zeroth -
order mode tends to a Rayleigh wave on a plane infinite half space as
k 0.

The eigenvalue problem for the refined approximate equation (16),
with K(n) given by (6), was solved numerically by a shooting method
after a transformation of the independent variable had been made to
reduce the interval of integration to a finite one. The details are given
in Appendix C. For the symmetric modes, H'(0) = 0, and for the an-
tisymmetric modes, H(0) = 0. Once the eigenvalue v, and the corre-
sponding eigenfunction H(n) had been obtained, the value of dv/dx was
obtained by quadratures, using the expression (53) derived in Appendix
C. The values of v and dv/dx were used in (18) to obtain the normalized
phase and group velocities.

In Fig. 18, we plot the refined and lowest -order surface -wave ap-
proximations H(n) and Ho(n), normalized to unity at n = 0, for the
zeroth -order mode for the wedgp for k = 1, x = 40, and a = 0.16974. We
also make a comparison with the asymptotic results, A.0 and A.1 (Fig.
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Fig. 18-Comparison of refined and lowest -order surface -wave approximations H(n)
and Ho(n) for the zeroth -order mode, and corresponding asymptotic approximations S1(n)
(dots) and So(n) (circles) for the wedge; k = 1.0, frequency parameter x = 40, and Poisson
ratio v = 0.16974.
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1), the dots and circles corresponding to the first- and lowest -order as-
ymptotic approximations Si(n) and So(n), respectively, as defined by
(10) and (9). In Table VI, we compare the asymptotic values of the dif-
ferential phase and group velocities with the values obtained from (18).

The trends are similar to those we have noticed for the other cases. The
asymptotic approximations Sp2 and Sgt agree roughly with the lowest -
order surface -wave approximations SpL, and be,. The higher -order
asymptotic approximations (5p3 and 50 agree better with the refined
surface -wave approximations SpR and (5gR. The convergence is better for
the differential phase velocities than it is for the differential group ve-
locities; also, the agreement between the asymptotic and the surface -
wave approximations is better.

In Figs. 19 and 20 we plot H(n) and Ho(n) for the remaining three
modes. The odd -order, antisymmetric modes are normalized so that
H'(0) = 1 and H6(0) = 1. In Table VII, we compare the corresponding
values of the differential phase and group velocities.

Finally, we consider the transition region, between the case of non -
constant (and not "almost" constant) curvature and constant curvature
for the wedge, with x = 40 and a = 0.16974. In Fig. 21, we plot H(n) for
the zeroth -order mode for several values of k between 0.01 and 1. We
have not plotted Ho(n) in this figure, since we compared Ho(n) with H(n)
in Fig. 18 for k = 1 and found differences to be quite small for the smaller
values of k. This is because the curvature is small when k is small, tending
to zero as k 0, so that the terms involving S and r in (16) are small. In
Table VIII, we compare the lowest and refined approximations to the
differential phase and group velocities as obtained from (18). In the
transition region the agreement is good, both for the differential phase
velocity and for the differential group velocity. As k increases and the
lowest -order approximate equation becomes less accurate, discrepancies
appear.

Table VI - Comparison of asymptotic and approximate values of
the normalized differential phase and group velocities of the

zeroth -order mode for the wedge; k = 1.0, frequency
parameter x = 40, and Poisson

ratio a = 0.16974

-bp X 103 x = 40 (5g X 103 X = 40

6p1 3.591

2.678 bg2 0.457

OpL 2.778 4", 0.351

( 5,3 2.515 6g3 0.605

pR 2.521 4,11 0.614
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Fig. 19-Refined and lowest -order surface -wave approximations H(n) and Han) for
the second -order mode for the wedge; k = 1.0, frequency parameter x = 40, and Poisson
ratio r = 0.16974.

V. SUMMARY

We made numerical computations to learn about the propagation of
elastic surface waves along cylindrical objects roughly corresponding
to an elliptical bore, an elliptical rod, a wedge with a rounded tip, and
a flat plane with a rounded ridge. The cross-sectional curvature functions
describing these objects are given by eqs. (4) to (7). In earlier papers,2,3
we had derived two approximate analytical descriptions of the surface -
wave behavior: a high -frequency asymptotic approximation A, and one
that we termed a surface -wave approximation B, as depicted in Fig. 1.
Each of these approximations, in turn, was available in two forms: a
lowest -order one and a higher -order or refined one. Here, we evaluated
these approximations numerically.

We first performed a high -frequency asymptotic analysis of the dis-
turbance in the vicinity of the cylinder surface and obtained the low-
est -order, A.0, and next -higher -order, A.1, asymptotic approximations.2
We used these approximations in the form shown in eq. (1), which de-
scribes the zeroth -order mode at the surface of the cylinder. For the bore
and the rod, this equation corresponds to both the zeroth -order sym-
metric and antisymmetric modes. We also used the high-frequericY
asymptotic approximations to the phase and group velocities given by
(12) and (13). The analysis involved two restrictions: the frequency had
to be high enough that the disturbance was confined close to the surface
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Fig. 20-Refined and lowest -order surface -wave approximations H(i) and WO for
the first- and third -order modes for the wedge; k = 1.0, frequency parameter x = 40, and
Poisson ratio CI = 0.16974.

of the cylinder, and the deviation of the cross-sectional curvature from
a constant value had to be sufficiently large that the disturbance was
confined near points of maximum algebraic curvature.

We also were able to describe the mode behavior at the cylinder sur-
faces by the lowest -order, B.0, and refined, B.1, surface wave approxi-
mations (16) and (19). The phase and group velocities were given by (18).
These surface -wave approximations B were subject to the same fre-

quency restriction as were the asymptotic approximations A. In fact, the
lowest -order and next -highest -order asymptotic approximations A.0

and A.1 for the zeroth -order mode could be obtained from the lowest -
order and refined surface -wave approximations B.0 and B.1, respectively,

Table VII - Comparison of the lowest -order and refined
approximations to the normalized differential phase and

group velocities of the four modes for the wedge;
k = 1.0, frequency parameter x = 40,

and Poisson ratio r = 0.16974

m -6,, x 1.03 --Op8 X 103 -Oa X 103 -OgR X103

0 2.778 2.521 0.351 0.614
1 1.408 1.231 0.821 0.944
2 0.497 0.394 0.828 0.836
3 0.050 0.021 0.370 0.264
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Fig. 21 -Refined surface -wave approximation H(n) for the zeroth -order mode for the
wedge; various values of k, frequency parameter x = 40, and Poisson ratio a = 0.16974.

provided that the above restriction on the cross-sectional curvature was
satisfied.

The advantage of the surface -wave analysis B was that the curvature
restriction could be dropped. It was possible, with the refined surface -
wave approximation B.1 to describe the mode behavior, at high
frequencies, in the transition region between the case of cross-sectional
boundary curves of nonconstant (and not "almost" constant) curvature,
for which the modes are localized, and the case of constant curvature,
for which they are not localized. Also, the surface -wave approximations
B permitted a more complete analysis of the higher -order modes. A
disadvantage of the surface -wave approximations B was that they con -

Table VIII - Comparison of lowest -order and refined
approximations to the normalized differential phase

and group velocities of the zeroth -order mode
for the wedge; k has various values,
frequency parameter x = 40, and

Poisson ratio o = 0.16974

k -Spy X 103 pR X 103 -15 a X 104 -(5gR X 104

0.01 0.04302 0.04294 0.03381 0.03384
0.02 0.1426 0.1422 0.09537 0.09561
0.03 0.2763 0.2750 0.1635 0.1643
0.04 0.4333 0.4308 0.2324 0.2341
0.05 0.6076 0.6034 0.3003 0.3033
0.1 0.1639 0.1620 0.6116 0.6278
0.25 0.5424 0.5284 1.337 1.466
0.5 1.254 1.194 2.221 2.801
1.0 2.778 2.521 3.513 6.137
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sisted of eigenvalue equations which, in general, had to be solved nu-
merically. For the particular boundary curves chosen, the asymptotic
approximations A involved little more than numerical evaluation of some
analytical formulas, once the quadratures had been done analytically.

In general, we found numerically that the lowest- and next -higher -
order asymptotic approximations A.0 and A.1 did agree with the low-
est -order and refined surface -wave approximations B.0 and B.1, re-
spectively, in their common region of validity. This was true both of the
results for the disturbances, and for the phase and group velocities. The
agreement improved as the frequency parameter x was increased, and,
for the phase and group velocities, was better between the higher -order
and refined approximations than it was between the other two.
The asymptotic and surface -wave approximations for the disturbance
did not agree particularly well for the case of cylinders with closed
boundary curves for values of n for which the disturbance was expo-
nentially small. This was to be expected, since one expression had to
suffice for both the lowest -order symmetric and antisymmetric modes
in the asymptotic approximation A, while separate expressions were
available in the surface -wave approximation B. We also used the refined
surface -wave approximation B.1 numerically to describe disturbances
in the transition region discussed earlier, and used the lowest -order and
refined surface -wave approximations B.0 and B.1 to investigate the
higher -order modes.

We turn now to a qualitative description of the numerical results. We
first discuss the phenomenon of mode confinement and its dependence
upon such things as the shape of the cylinder and the value of the fre-
quency parameter x. We then discuss our results for the phase and group
velocities.

We found that the t component of the displacement for the lowest -
order mode was only a few percent of the size of the n and k components.
These latter two, when normalized to unity at n = 0, were either the same
as a function of n (asymptotic theory A) or differed by a few percent at
most (surface -wave theory B). It thus sufficed to consider a normalized
scalar displacement function, rather than a vector function. The com-
plete solution is essentially that for Rayleigh waves traveling on the
surface of a plane infinite half space except that it is multiplied by a
function of n, which describes the confinement of the wave due to the
cylinder curvature, or, to be more precise, the confinement due to the
deviation of the cylinder curvature function from a constant value. It
is this confinement function (the normalized scalar displacement
function) that we computed.

The wedge with a rounded tip and the plane with a ridge on it are
cylinders whose cross-sectional boundaries are each described by a
curvature function with a single algebraic maximum at n = 0. For these
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cylinders, we found that the confinement function decays rapidly with
in! away from its value of unity at i = 0. This means that the surface -
wave disturbance is confined to the vicinity of the tip of the wedge or the
ridge on the plane. In both cases, the amount of confinement decreases
as the parameter k decreases and the cylinder becomes more nearly
planar. For the ridged plane, we observed this when the curvature
function was not "almost" constant (i.e., for k not too small). For the
wedge, we also made computations for small values of k, corresponding
to the flattening out of the wedge into a plane. Here we were aided by
an analytical solution of the lowest -order surface wave approximation
B.O. It showed that, as k ---.. 0, only the zeroth -order mode exists, that it
is symmetric, and that it tends to a Rayleigh wave on a plane infinite half
space. This was confirmed by the numerical computations, both in the
lowest -order and in the refined surface -wave approximations B.0 and
B.1.

We also plotted the confinement functions for higher -order modes
on the wedge. For given values of k and the frequency parameter x, there
are finitely many surface modes. The even -order modes are symmetric
about i = 0, and the odd -order modes are antisymmetric.

The ellipse -like rod and bore have boundary curves that are symmetric
and which attain their algebraic maxima at two points, i = 0 and n = r.
We investigated only the zeroth -order modes, although higher -order
modes may also be studied numerically. The asymptotic approximation
A for the zeroth -order mode on a rod or bore actually corresponds to two
modes, a symmetric one and an antisymmetric one. These can be treated
separately with the surface -wave approximation B. For a cylinder whose
curvature is not "almost" constant, we observed confinement of the
displacement to two regions. Each cylinder cross-section has two points
of maximum algebraic curvature. They define two generators of the
cylinder. The displacement is confined in the vicinity of these genera-
tors.

We considered the transition from an ellipse -like bore with the definite
confinement properties discussed above to a circular bore (k = 0), which
exhibits no confinement at all. For small values of k, it was necessary to
use the refined surface -wave approximation B.1 rather than the low-
est -order approximation B.0 in order to describe the modes adequately.
We treated the lowest -order symmetric and antisymmetric modes. For
h = 0, the results agreed with the known analytical results for a circular
bore: the confinement function is constant for the symmetric mode and
goes like cos ii for the antisymmetric mode. As k increased, confinement
began to appear. As k approached 0.5, there was definite confinement
and the surface -wave approximate results B agreed with the asymptotic
results A, which had been obtained earlier and which were valid for
curvature functions that were not "almost" constant.
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These were the basic confinement properties that we observed when
we studied cylinders described by several different cross-sectional cur-
vature functions with a variable parameter k. We also varied the fre-
quency parameter x and found that, for any given cylinder, the con-
finement becomes more pronounced as x increases.

For most of the numerical computations we chose the Poisson ratio
to be a = 0.16974, corresponding to fused silica. A few computations were
made with other values of o; we found that the confinement increases
as a decreases.

We also calculated the phase and group velocities. In the asymptotic
approximation A, these are given by explicit asymptotic formulas. In
the surface -wave approximation B, the velocities are given in terms of
an eigenvalue and its derivative with respect to x. The eigenvalue was
determined from a periodicity condition in the case of a closed boundary
curve and from an appropriate condition at infinity in the case of an open
boundary curve. The derivative of the eigenvalue with respect to x was
expressed in terms of quadratures, which were evaluated numerically.
This avoided the difficulty of numerical differentiation with respect to
the frequency. Both the phase and group velocities tend to the Rayleigh
wave velocity as x co. We computed the differential phase and group
velocities normalized with respect to the transverse -wave velocity CT.

The trends that we generally observed were that the asymptotic ap-
proximations 81,2 and 8g2 to the differential phase and group velocities
agreed roughly with the lowest -order surface -wave approximations bpi,
and Oa. Better agreement was obtained between the next -order
asymptotic approximations 8p3 and 8g3 and the refined surface -wave
approximations OpR and OgR. The convergence and the agreement im-
prove as the frequency parameter x increases.

In the transition region between cylinders of constant curvature and
those of not "almost" constant curvature (where the parameter k is small
and the asymptotic theory is not valid), the lowest -order surface -wave
approximation B.0, as expected, was not always too good, particularly
for the differential group velocity, so it is necessary to use the refined
surface -wave approximation B.1.

Finally, we compared the surface -wave approximation results B for
the circular bore with exact theoretical results and obtained excellent
agreement.
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APPENDIX A

We summarize here the asymptotic results2 in terms of suitably nor-
malized quantities. The longitudinal and transverse velocities are given

by CI, = [(X + 2µ)/p] 1/2 and CT = p)"2, where A and µ are Lame's con-
stants. Also, the Poisson ratio is a = A[2(A + O]-1. The normalized
Rayleigh wave velocity is wR = cRicT, where wR is the root of the equa-

tion

(1 - 1/2w2R)4 = (1 -wR)[1 - (1 - 26) w2R1
2(1 - a) _I'

(24)

which satisfies 0 < wR < 1. We define the quantities

(1 - 1/2

b = 1/wR, aL = b2 - aT = (b2 - 1)112, (25)
2(1 - a)

and
aLaRb2 - aLaT)

P - > 0. (26)
b2(aL - aT)2 + 2aLai.(aL - aT)

We further define the quantities R and r by means of the equations

4(aL - aT)[b2(aL - aT) + 2aLanR -
P2(aL - aT)2 [b2(aL + aT)2

2 2a La T

- 440d+ 2P[aL(b2 aLaT) - aT(aL - aT)2]
+ [b2(4 - 3a2L) + 2aLai], (27)

and

(aL - aT)[b2(aL - aT) + 2aLer]er + R)

2= P[
a

b (a2, + - aLaT) + aLaT(2aL - 3aT)]. (28)
aLT

If n is small, the curvature function K(n) has an expansion of the
form

K (0) = do + d2n2 + d3773 + 4774 + . (29)

There is no term proportional to n in (29), because of our assumption that
the curvature attains its algebraic maximum at n = 0. It is assumed that
d2 < 0. We define the quantity

Q
11 /CL3 \ 2 3d4 (doP)2 2

+ doR. (30)
16 ci2i 4d2 2b
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Then, from the asymptotic results,2 the reciprocals of the normalized
phase and group velocities defined in (11) have the expansions

and

1
= b +

doP - (-d2P)1/2
+

Q- - +  
w 2bx 2bx312 2b X2

,

P

1
= b +

(_d2p)1/2 Q-
wg 4bx3/2 2bx2

(31)

(32)

If we expand the reciprocals of these expansions we obtain those given

in (12) and (13).
We now define the functions C(n), F(n), G (n), and /(n) occurring in

(1). In terms of the curvature function K(n), we define

and let

/(n) = [do - K(0]1/2 sgn n, (33)

L(n) - 4[do - K(0]
.

[K' (n) + 2( -d2)1/2/ (n)] (34)

The prime denotes differentiation with respect to the argument, and it
is seen from (29) that L(0) is finite. Then, we define

F(n) = exp [ 511L(Odd, G(n) = 5111(0C'. (35)
o o

Next, we let

and

M(n) = fon I (OK WC; (36)

N(77) =
n

100+ [L (OF - 00) - [L(0)]21/1 We q. (37)
o

Finally, we define

C(n) = N(n) - doRG(n) + TM(n). (38)

Then, from the asymptotic results,2 the disturbance corresponding to
the lowest -order mode can be expressed as
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cTeiGlz-um

cob"(0) 11z°'

= F(n) exp [-(Px)1/2G (01
(b2 + a+) e-arx.7 - aLe-aLxz

2aT

X r1+ C(n) _ [e-aocE - (b2 (121') e-aTx71
1/22(px) 2b2

x{(1')1/2I (n)t + ib [1 + C (71) ik}) (39)
2(PxP/2

APPENDIX B

We describe here the "shooting" method used to solve numerically
the eigenvalue problems for the refined and lowest -order approximate
equations (16) and (19) for the bore and rod, corresponding to the cur-
vature functions K 1(n) and Ko(n) given by (4) and (5). It is desirable to
shoot from n = 7r/2 ton = 0, since in the asymptotic region the mode
decays exponentially away from n = 0, and integration from n = 0 toward

= 7/2 would lead to numerical instabilities. Consequently, we let

= - n, Zi() = H(77), Z2(E) = dZi/dE. (40)

Since the eigenvalue v has to be determined, we also consider the dif-
ferential equations for

az
Z =

az2
z4(E) = .

ov
(41)

The initial conditions are taken as

Z1(0) = 1, Z2(0) = 0, or Z1(0) = 0, Z2(0) = 1, (42)

according to whether the mode is symmetric, or antisymmetric, about
= 7r/2. In either case, the remaining initial conditions are

Z3(0) = 0, Z4(0) = 0. (43)

An initial guess for the value of v was made, and the system of equations
for Zi(E), i = 1,2,3,4, was integrated from E = 0 to E = 7r/2. When a mode
symmetric about 77 = 0 was sought corresponding to Z2(7r/2) = 0, the
initial value of v was changed to v - Z9(7r/2)/Z4(r/2), since Z2(7r/2, v +

(5) cz-- Z2(7r12,v) + SoZ2/bv(7r/2,v). Analogously, if a mode antisymmetric
about n = 0 was sought, corresponding to Z1(7r/2) = 0, then the initial
value of v was changed to v - ZI(7r/2)/Z3(7r/2). The process of integrating
the system of equations was repeated, until the boundary condition at
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= 0 was satisfied with sufficient accuracy. The initial iterations were
done in single precision, and the final ones in double precision, and only
a few iterations were required to obtain the desired accuracy.

The shooting program was checked in the case of the lowest -order
approximate equation (19), since the eigenfunctions may be expressed
in terms of Mathieu functions9 when the curvature function is given by
(4) or (5). The checks were carried out for values of the parameter q =
Pxk equal to 1, 5, and 10, the eigenvalues and eigenfunctions being
checked against tabulated values.10

We now turn our attention to the calculation of dvldx, which is needed
to calculate the group velocity from (18). If we let Hx = 61//ax, then from
(16) we obtain

dIX [PK(n) - 2bv] - v2 vSK(n) - r[K(n)]21H x

d
= 1[2(bx + v) - SK (0

v] -+ [2bv -PK (Oil H(n). (44)
dx

Hence,

d HAL HxdH\ d2H

do do de

= 1[2(bx + v) - SK(n)]
dvv + [2bv -PK (n)]} 1(n)12 (45)
dx

But from the boundary conditions at n = 0 and n = 7r/2, it follows that
[H dH xldn - Hx dHldn]j12 = 0. Hence, if we integrate (45) from n = 0

to 71 = 7r/2, we obtain

dp r r/2
dx Jo

[2(b x + v) - SK(n)][11(77)]2dn

r/2
= [PK (n) - 2bv][H(n)]2dn. (46)

Analogously, from (19), it follows that

2b x ° r/2 11-10(n)Pdn = 7/2 [MO- 2bpo][Ho(n)]2dn. (47)
dx 0

The program was written so that the system of equations for ZiW, i =
1,2,3,4, was augmented in the double -precision stage of the iterations
to include the evaluation of the two quadratures in (46) or (47).

APPENDIX C

We describe here the "shooting" method, similar to that described
in Appendix B, that was used to solve numerically the eigenvalue
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problem for the refined approximate equation (16) for the wedge, cor-
responding to the curvature function K3(n) given by (6). From symmetry,
it suffices to consider the interval n 0. It is desirable to make a trans-
formation of variables that reduces this interval to a finite one, partic-
ularly since we want to integrate from 77 = 03 toward n = 0, in order to
avoid numerical instabilities in the asymptotic region. Consequently,
we introduce the new independent variable

= 1/2(1 - tanh 77), (48)

which is suggested by the form of the solution (21) of the lowest -order
approximate equation (19). This form also suggests the substitution

H(n) = (sech n)ag(r), a = (2b + v2)1/2 > 0. (49)

From (6), (16), (48), and (49), it follows that

d2g dg
r(1. - + (a + 1)(1 -2 -dr

+ [(Pr + vS)k - a(a + 1) - 47-k2M - = 0. (50)

The range of r is from 0 to 1/2, with r = 0 corresponding to 77 = c0. Exam-
ination of the behavior of the solutions of (50) for r 0, and the re-
quirement that H(n) -> 0 as n lead to the condition that g(0) be
finite. The value of g'(0) may be determined by setting r = 0 in (50).
Thus, as initial conditions, we take

g(0) = 1, g'(0) = a - (Px + IS)lel (a + 1). (51)

Since the eigenvalue v has to be determined, we also consider the dif-
ferential equation for og/ov.

Because the coefficient of d2g/dc2 in (50) vanishes at r = 0, we let

Y1 = g - 1, Y2 = dYddr - g'(0), Y3 = oYi/ov,

Y4 = Y2/OP, (52)

so that Yi (0) = 0, and Yi ft is finite at r = 0, i = 1,2,3,4. The system of
equations for Y, (r) was integrated from r = 0 to r = %, the value of v being

adjusted after each step of the iteration procedure until the condition
g'(1/2) = 0, or g(%) = 0, was satisfied with sufficient accuracy. The former
condition corresponds to a mode that is symmetric about n = 0, and the
latter to one that is antisymmetric.

It remains to discuss the calculation of dp/dx. If we integrate equation
(45) from n = 0 ton = co, with K(n) given by (6), it follows that
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du c..fo [2(bx + v) - Sk sech2 n] [H(n)]2dn

= 50 - (Pk sech2 n - 2bv)[H(n)pdn. (53)

In terms of the new variables given by (48), (49), and (52), this requires
the evaluation of the definite integrals

S.
1/2

[4M - O]a[1 + 1'1(01W,

and the calculation of

So

so
1/2

[cll. - Ola-1Y1(0[2 + Yi(D]cl?-, (54)

1/2 NiTrr(a)
[CU - Na-id?' -

411(a + 1/2)
(55)

The integral in (55) was expressed in terms of gamma functions,11 for
which a double -precision routine was available, in order to avoid a sin-
gular integrand at ?' = 0 when 0 < a < 1. The integrals in (54) were
evaluated in the double -precision stage of the iterations by augmenting
the system of equations for Y1 (D, i = 1,2,3,4.

To check the accuracy of the shooting method, the analogous system
of equations corresponding to the lowest -order approximate equation
(19) was solved numerically, and the results were checked against those
calculated from the analytical solution (21) to (23).
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and Pressures. H. Hoshino*, R. W. Schmutzlert, W. W. Warren, and F. Hensel, Phil. Mag.,
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above 1300°C at supercritical pressures. Above 1500-1600°C the conductivity isobars drop
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and R. S. Hozack J. Chem. Phys. 64, No. 12 (June 15, 1976), pp. 5073-5076. Using a
novel capillary optical reactor to shorten drastically free radical chain lengths, we have
separately identified and followed substitution and photo -addition reactions of excited2P112
and ground state 2P319 bromine atoms with propylene. Evidence for reactions of elec-
tronically excited bromine molecules (B "It() has also been obtained.

Non -bonded vs. Bonded Interactions in (Ph3P)4Ag2Br2-(Ph3P)4Ag4Br4 and its
Stereochemical Analogue [(RS)4Fe2S2]2--[(RS)4Fe4S4]2-. Boon-Keng Teo and
Joseph C. Calabrese*, J. C. S. Chem. Comm. (1976), pp. 185-186. The stereochemistry
of the metal -metal nonbonded dimer-tetramer pair (Ph3P)4Ag2Br2-(Ph3P)IAg4Br4 ex-
hibits trends resembling those of the structurally analogous metal -metal bonded pair
j(RS) iFe2S212--1(RS)4Fe4S42-, indicating that the metal atoms within each pair probably
1)ear similar gross atomic charges.
*University of Wisconsin, Madison.

ELECTRONIC AND ELECTRICAL ENGINEERING

Continuous Room -Temperature Operation of GaAs-AlGai_As Double-Het-
erostructure Lasers Prepared By Molcular-Beam Epitaxy. A. Y. Cho, R. W. Dixon,
H. C. Casey, Jr., and R. L. Hartman, Appl. Phys. Lett., 28, No. 9 (May 1, 1976), pp. 501-
503. The continuous (cw) operation at temperatures as high as 100°C of stripe -ge-
ometry GaAs -Al, Gal _,As double-heterostructure lasers fabricated by molecular-beam
epitaxial (MBE) techniques has been achieved. Improved MBE laser performance was
the result of the extensive efforts to eliminate hydrocarbon and water vapor from the
growth apparatus. For 12 -pm -wide stripe -geometry lasers with 380 -pm -long cavities, the
cw threshold currents varied between 163 and 297 mA at room temperature.

GaAs MESFET Prepared by Molecular Beam Epitaxy (MBE). A. Y. Cho and D. R.
Ch'en*, Appl. Phys. Lett., 28, No. 1 (January 1, 1976), pp. 30-31. GaAs metal -semi-
conductor field-effect transistors (MESFET) have been prepared by molecular -beam
epitaxy. At 6 GHz a noise figure of 3 dB was obtained with a corresponding gain of 10 dB.
The transconductance of the device was 28 mmhos and Fm, was approximately 35 GHz.
*Avantek, Santa Clara, California.

On Solving the Transient, Conducting Slab With Radiating and Convecting Sur-
faces. J. L. Milton and W. P. Goss*, Trans. ASME, J. Heat Transf., 97 (November 1975),
pp. 630-631. Physical reasoning has been employed to develop stability criteria for
explicit finite -difference solutions to transient conducting slabs with (nonlinear) radiating
and convecting surfaces. The "derivative method of stability analysis requires aTnew/aTi"

0 T. The "explicit method" requires that the positive (real) root of the governing quartic
polynomial be determined. Favorable comparison of the methods is reported.
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MATERIALS SCIENCE

Effect of Hydrogen on Amorphous Silicon. J. J. Hauser, Solid State Commun., 19
(1976), pp. 1049-1051. Amorphous Si films prepared by dc sputtering in hydrogen-
argon mixtures possess a high resistivity (-= 1010 a -cm) similar to that of films prepared
by the glow discharge decomposition of silane.

PHYSICS

Distribution Coefficient of P for Growth of Gal -.A1xAsi-yPy by LPE Determined
Using Auger Spectroscopy. C. C. Chang, M. B. Panish, W. R. Wagner, D. L. Rode, S.
Sumski and R. G. Sobers, J. Appl. Phys., 47 (1976), pp. 3752-3753. Auger spectroscopy
was combined with ion milling for quantitative chemical analysis and depth profiling to
measure the effective distribution coefficient of phosphorus, kp, during growth of Gai-x-
A1Asi-yPy by liquid phase epitaxy. Below y = 0.02 (with x = 0.36), and with cooling rate
of 0.1°C/min for growth, k was 290 at growth temperature of 790°C and constant down
to at least y = 0.002. This high value of kp caused depletion of P from the growth solu-
tion.

Implications of Radiative Equilibrium in Neoclassical Theory. F. R. Nash and J. P.
Gordon, Phys. Rev. A, Gen. Phys., 12, No. 6 (December 1975), pp. 2472-2486. It is
found that the description of spontaneous emission provided by the neoclassical extension
of semiclassical electrodynamics, which has been given by Jaynes and his collaborators,
is inconsistent with the well -secured laws of Boltzmann and Planck for conditions of
thermal equilibrium.

Nd:YAG Single -Crystal Fiber Laser: Room -Temperature CW Operation Using a
Single LED as an End Pump. J. Stone, C. A. Burrus, A. G. Dentai, and B. I. Miller, Appl.
Phys. Lett., 29, No. 1 (July 1,1976), pp. 37-39. CW laser action has been obtained using
as -grown single -crystal Nd:YAG fibers end -pumped by a single high -radiance LED. The
fibers were 0.5 cm long and 80 Am in diameter, and the diameter of the LED luminous area
was 85 min. The lowest cw laser threshold was observed at a diode drive current of 45
mA.
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