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High-speed pulse amplitude modulated (pam} data transmission
over telephone channels ts only possible when adaptive equalization
is used to mitigate the linear distortion found on the (initially un-
known} channel. At the beginning of the equalization procedure, the
tap weights are adjusted to minimize the intersymbol interference
between pulses. The “stochastic gradient” algorithm is an iterative
procedure commonly used for setting the coefficients in these and
other adaptive filters, but a proper understanding of the convergence
has never been obtained. It has been common analytical practice to
invoke an assumption stating that a certain sequence of random
vectors which direct the “hunting” of the equalizer are statistically
independent. Everyone acknowledges this assumption to be far from
true, just as everyone agrees that the final predictions made using it
are in excellent agreement with experiments and simulations. We
take the resolution of this question as our main problem. When one
begins to analyze the performance of the algorithm, one sees that the
average mean-square error after the nth iteration requires knowing,
as an intermediate step, the mathematical expectation of the product
of a sequence of statistically dependent matrices. We transform the
latter problem to a space of sufficiently high dimension where the
required average may be obtained from a canonical equation ¥ n
= of(a)¥» + F. Here A(a) is a square matrix, depending on the
“step-size” « of the original algorithm, and ¥'» and ¥ are vectors.
The mean-square error is calculable from the solution ¥, ’

Information about the solution of our equation is obtained by doing
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matrix perturbation theory on (o) for small values of a. We show
that the first two terms of the perturbation solution contatn, among
their terms, the terms of the independence theory. Since the parameter
o needs to be small even for independence theory to converge, agree-
ment with an exact theory and experiment is obtained if, in some
sense, the additional terms which appear in the perturbation solution
may be disregarded. This will usually be the case.

I. INTRODUCTION

Adaptive equalization of telephone channels in order to facilitate
high-speed data transmission has been successful ever since its intro-
duction by Lucky in the 1960s. This technique uses a linear filter
{configured as a tapped delay line} to ramove the harmful effects of
the linear channel distortion. At the start of the equalization procedure,
a set of parameters, the tap weights, are adjusted so that the final
setting of these taps minimizes the intersymbol interference between
pulses in the data train. Many theoretical studies have been made
concerning steady-state equalization after the optimum tap weights
have been achieved; little analysis has been done concerning the
convergence of the equalizer tap weights to their final settings. Even
in the best published study on this problem {Ungerboeck, Ref. 1), it is
necessary to invoke an assumption stating that a sequence of random
vectors which direct the operation of the equalizer are statistically
independent.} This independence assumption will be explained more
fully later; for the moment, we only indicate that it is not even
approximately true. In fact, given the nth vector of the sequence, all
but one component of the next vector will be exactly known. Yet if
this assumption is made, surprising agreement with actual performance
is obtained.' Clearly, because of its importance, this situation begs for
clarification. Hopefully, what we learn in equalization can be used for
other applications where similar adaptive algorithms are used. In
particular, the areas of linear prediction and adaptive array processing,
both electromagnetic and sonar, come to mind. We concentrate our
presentation .on equalization, however, for here the author is sure of
the detaiis.

We shall take as our performance criterion the expected value of the
mean-square distortion, although the average error vector is also
considered as a simpler problem. In particular, then, we are not
concerned with the fluctuations which might ocecur in:actual use.

‘ We are here concerned with convergence in random data, not with a known specially
designed sequence. In usual startup operation, the data symbols are also assumed
known, either by using a known sequence or by assuming that-sufficiently accurate
estimates are available.
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Typically, the sample paths are close to the mean (see Ref. 1). In a
nutshell, our contribution to this problem consists of two parts. We
first establish a time-independent difference equation which governs
the average in question. This step is accomplished in a space of much
higher dimension than one would initially assume. Second, examining
the solution of this equation in a perturbation sense (the small “step-
size” of the algorithm being the essential perturbation parameter), we
find the leading terms contain the independence theory solution.

Before delving into the abstract problem, we devote Section II to
describing some more conventional aspects of data transmission and
equalization and Section III to discussing the behavior of the mean-
square error if the independence assumption is made.

Il. DATA TRANSMISSION AND EQUALIZATION

For our own convenience, we confine the discussion to binary
baseband transmission and neglect the effects of additive noise.

The equalizer, and in fact the entire detection procedure, operates
on the samples of the baseband received signal r(t), where

rit} =Y am+xh(t — mT).

If 1/7 is the sampling rate, 1/T the symbol rate, a, the data symbols
(iid, = 1 with equal probability) and k() the overall system impulse
response, then these samples aref

rinT’) = ¥ amxh{nT’ —mT) n=012.... (1)
For a synchronous equalizer, 7" = T and for a fractionally spaced
equalizer, typically 7" = T/2. If the coefficients of the equalizer are
denoted byc;,i=1, ---, N (c; being also the ith component of a vector
¢) and the sequence of output samples of the equalizer are y,, then
N
Yo=Y er[{s = 1)T" + nT] n=0,12.... (2)
sa=]
We call attention to the fact that, even when T’ # T, the equalizer
samples are only of interest at muitiples of the signaling interval T,
and the notation of (2) takes this into account. We define a sequence
(in time) of vectors X" such that the sth component of vector X" is

§s=12.--,N
XM =rl(s— DT + nT] 3
n=0’1'2’...’

+ We call the bit which “goes with” the mth pulse @...x (instead of the usaal a.) for
later convenience.
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and thus
Vo= X" A4)

The implementation of (2) to (4) is shown in Fig. 1.

Later, when we consider an adaptive equalizer, the taps will vary
with time and ¢" will be used for the sequence of tap-weight vectors.
Ideally we would like (at least when n is large enough} the sequence of
equalizer outputs to be the sequence of data symbols, except, perhaps,
for a shift. For a finite equalizer (i.e., N finite) this ideal is not
achievable, and instead the available taps are adjusted to minimize
the average square error Ee;, where

€= ¥n — Au+K (5)

and E denotes the mathematical expectation with respect to the data
symbols {a,). If one introduces the N X N channel autocorrelation
matrixt (which is positive definite),

A = Exinlx(n)T, (6)
and the vector,
v = Ea,.xX", (7

beth of which do not depend on the time index n, then, for fixed taps
¢, the mean-squared error & is given by

% = E(¥0 — Qi) = ¢TAe — 2eTv + 1. (8

Equation (8) shows & to be a convex quadratic function of e. Any
optimum choice of ¢, say, ¢*, satisfies

Ac* =v (9)

which has a unique solution if A™' exists. We denote thé minimum of
# by &*.

It will make little difference physically, and it will be a great
convenience mathematically, if we pretend that the impulse response
h{t) used in (1) has finite duration. Thus, assume

hity=0 if |&|> HT.

Let N; and N; be-the largest integers such that
N\T = HT (104)
(N-1)T'— N.T=—-HT. {10b)

Further, choose the integer K in (1) to be N, and set M = N, + N, +
1, and let a8 be an M-dimensional vector whose ith component is

T The superscript T always denotes transpose,
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k=0,1,2,...

a, lOUTPUT)

Fig. 1—Adaptive transversal equalizer, ¥ = 5.

a™ = @iy, i =1, ---, M. Then using (3) and (1) we have
X" = Ba*, (11)

where in {11) B is an N X M matrix having elements

1=i=< N,
By=h[(i— DT + (Ny + 1 = /)T], 12)
1=j=<M.

It follows from (10b) that M = Nif 7" = Tand M > (N + 1}/2if T’
= T/2.

The structure of the matrix B is illustrated below for the special
case 7' =T, N=3, M=1

h hy ho h.y h 0O 0
B o 0 hz h] hn h_l h_z 0 =
0 0 h: b he h: ho

This structure means that X* has the same shifting property as a*".

Thus, for example, in time sequence,

HRIHRNHE
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Since

Ea™aWT =] (13)
it follows from (6), (11}, and (13) that
A= EX"X"®WT = BRT, (14)

For the special case T' = T, h(nT} = 60, then M = N, A = [, and

Qn
X" =a”=| ° : (15)

Qnyn—1

We now begin to describe the stochastic gradient algorithm used for
equalizer convergence. But first we describe a different problem, the
deterministic gradient algorithm, which is a method for finding the
minimum on the surface ¥, where

¥ =cTAe = 2¢"v + L (16)

This provides some heuristics for writing down the stochastic algo-
rithm, but should not be confused with it. We take pains to point out
some differences as we proceed, since many people substitute discus-
sion of this algorithm for the actual one.

Taking the gradient of (16) gives

V¥ = 2[Ac — v]. an

Hence, if we were searching for a minimum of the function (16) by
taking steps in the gradient direction, we would write the following
equation for our position ¢ at the nth stage

el = ¢ — A(Ae™ — v), (18)

A being a step-size param‘etef. Equation (18) coupled with (6) and (7)
motivates the actual stochastic gradient algorithm used, namely,

oW+l = et — a[x(nl(x(n]Tc(nl) — an+KX‘n)] (19)
=c" — ae. X", (20}

e, being the scalar error (5}, and a the step-sizet. Thus in N-dimen-
sional tap space we move in directions X", where X" is [see (4}] the
vector of values stored in the equalizer at time nT. Clearly, the allowed

It is, of course, meaningless to speak of the "size” of a unless one fixes the size or
scaling of the terms which multiply it in (20). We shall take the scaling of the latter so
that, in the binary case, the matrix A [see (6)] has largest eigenvalue unity.
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set of directions along which we “step” is, as (15) will testify, quite
random and cannot be thought of as being gradient directions. Nev-
ertheless, tradition dominates, and (19) and (20} are still referred to as
a stochastic gradient algorithm.

For our purposes, (19) may be rewritten slightly by introducing the
error vector

(01]

e =™ —g*, (21)

Subtracting ¢* from both sides of (19) allows us to write
e = (I — aX" X" — a(e* TX™ — aug)X ™ (22)

Note the quantity ¢**X" — a,,x is the instantaneous error if the
optimum taps were used. This is normally quite small and would be
zero if perfect equalization were possible.

In terms of the €, the mean-square error is

g::n) = ¥F* 4 €(ra)’I‘Aﬂtm & 4 g:tn) . (23)

In (23) the symbol €%’ has been introduced for the excess mean-square
error over &*,

In (22) and (23), €™ is random, and in fact depends on the entire
sequence of data symbols since the adaptation began. Our measure of
the progress of the algorithm will be E&’ ‘™ the average of the error at
time n over all data sequences.

Il. THE INDEPENDENCE THEORY

In this section we describe “independence theory,” an approximation
used to mathematically treat the stochastic gradient algorithm de-
scribed by (22). Use of the approximation allows one (as we shall see)
to determine bounds on the step-size & which will ensure stability and
allows calculations to be made on convergence rates.

Independence theory treats the stochastic algorithm by assuming
that the sequence X" are statistically independent vectors. Since,
from (22), €™ depends only on the sequence X', ... , X" (assuming
we start with X'”), we conclude €™ and X" are independent. For an
example as to how this is applied, we look at the average error vector
Ee™. We have, from (22), (6), (7), and (9),

Ee™*" = (I — aA)Ee"™, (24)

If, for comparison, we introduce the error vector ¢, — ¢* for the

deterministic theory and call it d*” so no confusion can arise, we would
have, subtracting ¢* from both sides of (18),

d"+" = (] — A4)d™. (25)
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There is no question of an average in (25); d™ is the error. In (24),
E€™ can be zero although the norm of €™ can be quite large.

To emphasize the difference further, let us return to the simple
miodel (15) which describes an undistorted channel, for which perfect
equalization is possible. Only the initial setting of the taps is wrong.
For this case, we have [note A = I in (23)] using (22) and the
independence assumption

E€1n+1)7'€(n+1) = G(N)T(I _ axnx(ﬂ)T)(I — a,x(n)x(nﬂ‘)eln)

= (1 — 2a + o*N)e" e, (26)
Thus the error decays to zero as
(1 - 20+ a®N)"&?, {27)
which is optimized if & = 1/N to give
(1 — %) &, (28)

Note how convergence is slowed as the number of taps N of the
problem increases. By contrast, if A = I in {25), choosing A = 1 gives
convergence in one step, independent of dimension.

The convergence range of (24) for A = I'is 0 < a < 2, while for (27)
it is 0 < & < 2/N. In practice, N ranges from about 7 to 64 and thus o
is, by the requirement of convergence of the mean-square error, kept

quite small.
In order to examine independence theory further, it will be conven-
ient to discuss the (positive definite) error matrix

R(n] = EE(ME(”)T. (29)
All the information we wish about EZ, the averagé excess mean-
square error, is contained in (29). Thus, from (23)
Eggr;) = Ee"TAe = 2 (a)'_j(Eetn)G(n)T)ﬁ

¥

= tr AR™. (30)

Similarly, the average norm E || €™ || * = tr R,

Our procedure for writing an equation for the time evolution of B*
is simply to write the definition of R*"*" using (29), substitute (22) for
€"*! and do the average using the independence assumption. Various
cross terms arise, and the computations naturally fall into three-steps:

Step I:
E[I — aX"WXWT)ePe T[] — oX "X T
= R"™ — a[AR" 4+ R"™A] + *E[XWXWTR™WX WX WT) (31)
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Appendix A discusses the evaluation of the last term. For simplicity,
we approximate the exact evaluation by &°A tr AR'™. When A = I, we
have tr{o?A tr AR'™] = o’ NZ?, so in general this term plays the role
of the o®N term in (26).

Step 2:

Ea[I — ax(n)xtan]th}Xm)T(ct Tx(n) — an+K)- (32)
This is considered further in Appendix A and, for reasons given there,

is approximated by zero.
Step 3: As discussed in Appendix A,

Ea2(ct7‘x(n) = an+K)X(nhx(n)T(c*TX(n) = an+K) ~ a2g*A. (33)
Putting together these three steps, we have the following accurate
approximation from independence theory:

R™! = R™ — o[ AR™ + R™A] + o®A tr AR{™ + o*&*A.  (34)

Note that the last term prevents R*" = 0 from being a solution. Thus,
R"™ is prevented from going to zero by the small forcing term. Thus,
in particular, €™ only approaches zero but then executes small fluc-
tuations about zero.

Since (34) is an approximation, we prove in Appendix B that the
positive definite character of R™ is preserved in (34).

We now introduce a more useful form of {34) when the mean-square
error is of primary interest. Since A is hermitian, let U be the unitary
transformation which diagonalizes A,

U'AU = D, {35)
where we call the elements of the diagonal matrix D, by d.. Further, let
U*RWL = T, (36)

In general, 7% is not diagonal, but set T = £’ Further, note

N
&3 =tr AR™ = tr DT™ = z dit{". 37
It follows from (34), (35), and (36) that

T = T — o[ DT™ + T™'D] + oD tr DT + o*&*D. (38)

Noting from (37) that the mean-square error depends only on the
t{”, we are motivated to look at the diagonal terms of {38). Happily,
they decouple from the off-diagonal terms and we have

¢l = ¢ — 2adit!™ + &°d; ¥ ditf + o*&* d,. {39)
f=1

=
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If we introduce vectors t™ and d in the obvious way, (39) itself can be
rewritten in matrix notation as

t = Mt™ + o%8™d, (40)
where the N X N matrix M has elements
M, = (1 — 2ad;)8;; + o’dd;. (41)

From (41) we note M is real and symmetric and thus has real eigen-
values.

The solutions to (40) will be stable if and only if the matrix M has
all eigenvalues A; such that —1 = A, = 1. Let g be an eigenvector of M
with eigenvalue A. Then

Mg =g (42)
reads
& — 2adigi + (Y dig)di = Mg,
7
or
2 d;
g =—a’(} L v (43)

£: denoting the components of g.

In (41) we see that, whenever d; = 0, there is a A = 1 for all a. The
eigenvector has g; = 1 and g, = 0, j # {. These eigenvalues do not
change with a and are not of interest here. Set d; = d; if d; # 0. Then
we are concerned with

My = (1 — 20d)8; + a*did, (44)

in a space of appropriately reduced dimension N. For a small enough,
the eigenvalues are approximately 1 — 2ad; < 1 (a > 0, of course). Now
increase a until possibly one of the eigenvalues becomes +1. What is
the critical value of a? Since all elements of (44) are strictly positive
{(except at most N values of &), the magnitude of the largest eigenvalue
may be taken to be associated with a positive eigenvalue.? Thus, in
(43) [reinterpreted to match (44}], set A = 1, multiply by ;, and sum
on {. We then obtain

2

2
crit = - g 4
Xorit Sd-Sd (45)
Thus, indépendence theory predicts a stable algorithm if
2 2
l<a<a=—=
**Td Na’ (46)

d being the average eigenvalue of the channel correlation matrix A.
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The excess error &2’ after adaptation may be derived from (39)
using (37). We get

d.
E,,pi';” = q&* L N 7
ey d 7
The above discussion should provide the reader with an idea of what
we hope to justify and why. The independence assumption, if it leads
to valid results, provides a very workable theory for gaining insights
about, and doing calculations on, the convergence procedure.

IV. AN EXACT DESCRIPTION

In this section, we put forth an exact description of how, in principle,
the average mean-square error may be obtained. We begin, however,
with the average error vector E€'™, a simpler quantity, but one which
requires essentially the same treatment. The exact dynamics of €™ is
given in (22), and the independence theory for E€™ is given by (24).

For simplicity, we rename the terms in (22)

(I — aXPX™T)e™ = P, e {48)
and
—a(e’TX"™ — a,, X" = £, (49)
so (22) reads
M) = P 4 fim) (50)

which, by iteration starting with a fixed error vector €, has the
solution

€ = ] Pie® + ¥ ( )f“’+f"". (51)
|=.u+1

i=0 #=0
Note in (51) the matrices P; do not commute so that a product [[ P:

means in the order P, -+ Py P,.
We proceed to examine {51) in more detail. We remark first that, by
their very definition, P, and f'” depend on the data variables {a.,, @.+1,
., Gnem—1) [see (11), (15), (48), (45)], and thus €"*" depends on the
entire sequence {a;} ', If we formally average (51) making use of

the stationarity of the basic Bernoulli sequence {a:}, we have
Bt = (E l'[ P.-)e“” + E (E H P'_f(ol), (52)
=0 s=1 i=1

the expectation being taken over all binary variables which enter (52),
namely, @, @y, -+ - , Gaem—1. The first term of (52) represents the decay
of the initial error to zero (the transient); the second term is the forced
response, causing a small but nonzero steady state error as n — oo,
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We have not been able to work with (52) directly, and at this point
our analysis takes a crucial turn. We average (51) again, only this time
we do not average over all the binary variables which enter but only
over the sequence o, @1, - -+ , @.. Call this conditioned average E..

Then

n n—1 n
E. e = ( E. T Pl-)e“” +3 ( E. [] B f"‘*) + E.f7.  (53)
=0 =0 Fm=y4]

Now, however, (53) is not one vector equation but 2M-1 of them, since
it is valid for any sequence of values of {@n+1, <<+, @Gnenr—1}; these
variables appear in (53) for arbitrary values. This the set of values
just mentioned form a “super-index” which we may collectively call oJ,
oJ taking 2¥~! values. For example, we might choose to call (for M =
3) the values {+1, +1} tobe J=1, {+1,—1} tobe J =2, {1, +1} to
be J = 3, and {—1, —1} to be J = 4. For the moment, however, the
precise mapping from the (M — 1) binary variables to the integer Jis

unimportant.
We also want to consider the matrix

P, =1—- aX"WxX"7 (54)
not as a N X N matrix, but as one consisting of 2*~! x 2"~ blocks of

N X N matrices so that it may act in (563) as a transition matrix

hetween vector blocks.
Thus in (54) P, is determined by X", i.e., from (1), by

Qn

Qn+1

X®"=B| | . (55)

LQneM-1

Hence the “super-index” o corresponding to the vector result of an
operation by P, would be the last M — 1 components of a'™, namely
(@ne1, @nszs * -+ 5 Buam—1). On the other hand, P, acts on a quantity
determined by

[+ 0]
an

X-"=p| "' ; (56)

Qnsm—2

that is, something with vector index J' = (@n, *- -, @n+m-2). Thus if we
call

I — oXWX"WT = K(oJ, J'), (67)
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K(J, J') can only act between index pairs (o, J'), which are “shift-
compatible.” Thus if

Jer (81, -+, Sm1)
J e (ty, e, tn1), (58)

where the s; and ¢; are binary variables, then
K(J,J')=0 unless s;=tu, i=1... , M-2 (59)

On the other hand, if {J, J') are shifi-compatible, this is enough to
determine the appropriate X**. Thus with (58), {59),

x"=B| |, (60)

and we use (57) to define the appropriate K(J, J'). Having, in the
manner thus described, achieved the block structure (57), we define
the N x 2! dimensional square matrix

KL1D K(L2) - K2
A(a)=% : : .6
K@, 1)

There are, in fact, in any row of (61) only two nonvanishing blocks.
Summing over the row thus corresponds, because of the factor of %z in
front, to averaging over the first component a, of A"

We write any N vector which is further labeled by our block index
J [v(dJ), say] as an N x 2 vector V

v(1)
v(2)
v=1| : (62)

v(zM—])

To tie this all together, it is now easy to convince oneself that, if we
let V.1 correspond to E.€"*'" as in (62) and, similarly, let F correspond
to E.f", then, by making use of the stationarity of the averages which
appear, (53} represents the solution of the equation

Vn+l = A(a)vn + F (63)
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with initial condition
Vo=| | =[] (64)

In (64), the notation [v] has been introduced to represent an n-vector
“stacked” 2%~ times.

The solution to (63) and (64) contains all the information we want.
In fact, once V. is known we, by definition, know E,_,€"(JJ), where
we have modified the notation slightly to make explicit the dependence
on J © (@nr1, + -+, Bnem-1). To regain €', we simply average:

2M—I

€™ = E[En 1™ ()] = @1-_—1 z En (). (65)
]

The average in (65) can be put in another form if we introdice the
matrixf

ey
(-
I

1 .
Py =55 ] | : (66)

I 1 171...
having each N X N block equal to the identity matrix. Then

[é] = PV, (67)

We may already note that P; is an orthogonal projection operator (P}
= Py, PT = P,) and (67) thus states that [€™'] is a projection of V, into
an appropriate subspace. Further, note that

[Ef™]=[0]=PF (68)
and thus F belongs to the orthogonal subspace.

The formal solution of {63} (including the final projection) is
1

P\V,=P, A" (a)[e"] + P, E A'(a)F (69)
=0
having the limit
PV.=P[I—-A(a)]'F. (70)

‘t We hope a warning that the symbol P, is being used for different things in (66) and
(48) will eliminate confusion.
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Both (69) and (70) can be computed using the spectral decomposition
for functions of a matrix A. If 4 has all its eigenvalues A; of index one,
that is, if its eigenvectors U, span the space (all Jordan blocks one-
dimensional) and if W, are corresponding eigenvectors of A”, chosen
so that

WiU; = 8, (71)
then for (almost) any function A(-),

h(4) =¥ RAJUWT. (72)

Roughly, A( -} is restricted so that &{A;} is defined. A similar but more
complicated theorem holds if the U; do not span the space. If a # 0, it
may be reasonable to assume that the U: do indeed span the space,
but for & = 0 they do not.

We may already note that asymptotic stability of the full-fledged
algorithm is guaranteed if all eigenvalues of 4 (a) are less than unity in
magnitude. In fact, only those eigenvalues which are associated with
a U; such that PU; # 0 need have magnitude less than unity.

In general, because of the very large dimension (N2 #-1) encountered
in practical use, the above theory would be more useful if workable
approximations could be found. We present one such approach in
Section VI which is based on a perturbation approach for-small step-
size a. Before doing that, we retreat a bit to demonstrate how the
mean-square error may be brought into essentially the same form just
developed for the average error vector,

We again find it more convenient to discuss the error matrix R*"
defined in (29). We substitute (50) directly into (29) and perform our
trick of taking the average E. (which involves averaging only over ao,

@y, ¢, @n leaving @a+1, ++* , Gneu- fixed) to obtain
{n+1 1 {n}) 1 tnigtm) T
E.R" ’=§ZP,1(E,,_1R )P,,+§Zf i

+ % 5 (o Bnr™ ) + £ E, 1™ 7P,). (73)

In (73), Y., refers to summing over a. = +1. Note that in (73} the
sequence of quantities E,_;e"” may be regarded as known {(or calcula-
ble) since they are the N dimensional subvectors which make up the
N x 2¥' dimensional solution V. to (63) and (64).

We will rewrite (73), but first we need some notation. If R is any N
x N matrix, we may make an N? dimensional vector out of it by
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writing the quantity

(R, |
RJZ

R~
R
Ry

grRy=1 |- (74)
Ry

RN]

Ry |

We call £(R) the vector made out of R.

In this trivial sense, we use £( - ) as an operator. We use this to turn
some of the terms in (73) into vectors, Introducing the “J/-index” for
emphasis (it is, of course, implicit when we use E,) we define

w () = ¢{[E. RV V(D) (75a)
() = {[E£7 7] (75b)
g(V,, J) = {{ELVIT + E P + Ef7%€"7P,].  (75¢)
Next we note that if A, R, and B are N X N matrices, then
£(ARB) = C{(R), (76)

where C is an N? X N? matrix. In fact, C is the direct product A ® BT
where A ® B (not A ® BT} is given by

auB aizB --- awnB
anB anB +-. awB
A®B=| : (77

amB aNZB Lo GNNB
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In the notation (75) and (77), (73) may be rewritten as
1
wiN(g) = 3 Y P, @P.wI ) + g(Va, ). (78)

In (78) J' is the compatible pair of indices that are allowed with J. As
in (63), we form NZ x 2¥7! dimensional vectors W,, G, and G(V,)
from w™(J), g(J), and g( V., J), respectively. And finally, using the
definition of K(JJ, J') in (57) to (60) we write

K(1,D®K(,1) K(1,2)®K(1,2) -.-

Bla) = % : (79)
K@M @K@ 1) -.-
The collection of equations (78) reads
W.n = Bla) W, + G(V,). (80)
Equation (80) with (63), (64), and the initial condition
g(e(me(mT)
g(eﬂetﬂ)T)
W, = (81a)
£(E"e'“”T)

provide an exact description of the error matrix.
To simplify matters, we replace (80) by the approximate version

Wn+l - B(“)Wn =+ Gr (Blb)

where G, as already defined, is formed from (75b) as G(V,,} was formed
from (76c). When more is understood about the solutions of our
equations, we see that the replacement of (80) by (81b) is not a serious
matter.f

Again, we are not interested so much in W, as the projected version

[&(R™)] = P\W,. (82}

In (82) the bracket notation is the same as (64) except that £{{R™) is a
vector of dimension N? instead of N. Also, in (32) P; has the same
meaning as in (66) except that the identity matrices are all in N?
dimensions instead of N.

t In most situations, G(V,) is small compared to the initial error and the associated
transient. The main effect of the forcing term is to give a nonzerc error as n — «. But
V, — 0, and G{V.,} reduces to G.
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In summary, we thus see that both eq. {63) for V,, which represents
E, €™, and (81b) for W,, which represents En_,R", have the form

Voarr = A @)W, + F, (83)
with
7o=19l, (84)
and the quantity of interest being
PV, (85)

for the appropriate dimension and projection %.

V. THE CASE a =0

The equalization problem is uninteresting when the step-size is
taken to be zero, i.e., nothing happens. However, since we soon intend
to do a perturbation analysis about « = ¢ we must be familiar with our
formalism when « = 0. This is not trivial, and we devote this section
to it.

To display matrices explicitly, we need a labeling procedure. We let
the “super-index” J run from 0 to (2" — 1).f The J value which
labels (@i, ---, au-1){a; = x1) is gotten as follows: Change +1 to 0,
and —1 to 1, obtaining then binary representation of JJ. Thus, for M
=3,J=0,1,2 3 correspond respectively to {+, +), (+—), (—+), and
(—, —). With this labeling we have

1 1 i
1 1
01 0 01 0
01 01
L[ oot 001
#10) == | 001 001 ®I=T®L (86)
2 -
000 --- 1 00 .- 1
(000 --- 1 00 .- 1

Let S be vector space of dimension N or N? accordingly as #7, in
(83) refers to V, or W,. Then in (86) I refers to the identity in S.

The matrix .&/{a) has the same structure as (86), with each identity
being replaced by the appropriate I — aXX” or (I — aXX7) ® (I —

aXXT).

1+ This labeling is for descriptive convenience here. We hope the reader is forgiving if
we laterlet J=1,2, ..., 2" We will be explicit about the convention when it matters.
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Table |—Zero eigenvalue
structure of I"

# Blocks of
Index This Index

| I T
O e O DI -
00 e DD =

|
o

2= 3)

—(M-2)=2 2"
2M—-‘i

_X K =XERX

The matrix I" in (86) is basic to our study and we now concentrate
on it; it has dimension 27!, Clearly, the all-ones vector is an eigenvec-
tor of I' having eigenvalue one. The reader may convince himself that
I™-! is proportional to the matrix consisting of all ones, which has
(2M~' — 1) eigenvectors perpendicular to the all-ones vector. These
eigenvectors are associated with eigenvalue zero. Using the fact that
the eigenvalues of a power of a matrix are the powers of the eigenval-
ues, we conclude that I has one unity eigenvalue and (2*~' — 1) zero
ones. The zero eigenvalues are not of index one however (index, recall,
is the dimension of the Jordan block). Table I summarizes the structure
of the zero eigenvalues of I".

While it is not crucial for the sequel, we also give the eigenvectors
and generalized eigenvectors of I". These are the columns, albeit
permuted, of Hadamard matrices H, constructed according to H; = 1,

H, H,
Hp, = = HL. (87)

H, —H,

Rows and columns of H, are labeled from 0 to n — 1. Our claim is that
the columns of H(2¥ — 1) are the (unnormalized) generalized eigen-
vectors of . Recall that a sequence of vectors x,, / =1, ..., k forms
a chain of generalized eigenvectors corresponding to a k-dimensional
Jordan block when

X=X I=1,-.---,k—1
I'X: = AX,.

Clearly, the last 2% ? columns of H satisfy I'X, = 0 and these are the
only ones. If ¢, is the kth column, 2¥2 + 1 < k < 2¥7', then the chain
that ends with it is, in reverse order,t

1 For (88) to hold, it is essential that the first column be labeled co. Also, of course,
the cs of this section is different from ex in Section II where it signified equalizer taps.
No confusion should arise.
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{cs, Cry2y Chiay =* +}. (88)

These notions may be verified for

1 1 11 1 1 1 17
1-1 1-1 1-1 1-1
1 1-1-1 1 1-1-1
1-1-1 1 1-1-1 1

Hy (89}

i

1 1 1-1-1-1-1
-1 1-1-1 1-1 1
1-1-1-1-1 1 1
~1-1 1-1 1 1-1

Lot T e B ]

The chains are (4, 2, 1), (5), (6, 3), (7). If we rearrange the columns of
H; to give

Hs = (o, €5, €1, 6, €3, C4, 2, 1), (90)
then
1 ]
0
0
1. B 01
3 HITH,; = 00 : (91)
010
001
000

From the direct product structure in (86) we conclude that if ®; are
a complete o.n. set for S, then the generalized eigenvectors of (0} are

@@, (92)

2"

¢ being the columns of the Hadamard matrix just described. In
particular, #(0) has N (or N?) unity eigenvalues of index one, having
eigenvectors

D;
D;
1 »
U= = ; (93)

the remaining eigenvalues are zero. The projection operator onto the
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space spanned by the eigenvectors having A = 1 is, using (93),

Y UUT =2, (94)

where 2, has already been introduced in (66), I being the identity of

S. Since &, = 2T, the projection is orthogonal. We call the projection

onto the “zero eigenvalue subspace” of &/ (0) by %% and P = I — 2.
Thus, when we solve (83), we really desire, according to (85}, not 7,

but £,%",, its projection onto the unity eigenvalue subspace of #(0).
A standard spectral representation of #(0) is

A(0) = P, + Do, (95)

where 24~ = 0. This defines (for us) Zo. It may be shown that #,2,
= 0.

We remark here that our basic equalization problem is unchanged
if any infinite sample sequence of data values {a,} is replaced by their
negatives. This follows from the quadratic nature (in the a,) of the
algorithm (19). As a consequence, we have

EI e 8, -, 8n1) =B (o =8, -+ 1, =8n1)  (96)

and similarly for w"*'(/}. We have not exploited this symmetry, but if
we had, the dimension of &/{a) could be reduced by a factor of 2. & (0)
would then, in particular, have a different form, but would have many
of the same properties discussed here.

Finally, we take this opportunity to get some notational problems
out of the way. We introduce a convenient way of labeling matrices C
with block structure as in (86). Label rows by p, p = 1,2, -- -, 2% ' and
likewise columns by ». If we write

p={—-ln+k 1=jj=<2¥!
v=(—-1n+! 1=k 1=<N(or N}
n = N (or N?), 97

then the pair (i, j) specifies which block we are concerned with, while
the pair (%, }) are the usual matrix indices for the N X N (or N* X N?)
matrix in that block. Thus, for example, in (77),

(A ® B),, = a;bu. (98)
Likewise, in {92) the vector ¢ @ ® has components
{c @ D), = ¢; Ds. (99)

The orthonormal basis for § where the kth basis vector has a one in
the kth position and zeros elsewhere is denoted by {e:}.
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vi. THE PERTURBATION THEORY

We begin the next stage of analysis by writing our matrices in a new
basis. Consider the orthogonal transformation matrix U which brings
2£(0) to Jordan form, namely, the matrix U whose columns are of the
form

I

zM—l

C; ® €y (100)

where ¢; are columns of the Hadamard matrix of appropriate dimen-
sion, and ey are the basis vectors of S. In (100), ¢ and % range over all
possible values. The columns of U are assumed to be arranged so that
the result on .##(0) comes out “nice.” We will not bother to be too
explicit, except to say that the first N{or N*) columns of U are

co®er k=1 ..., NN {101)

p‘2M—l
Thent

Ul (@)U = [‘3 ;] = o (a). (102)

In (102), B is an N X N matrix, v is N X (27" — N) matrix, etc. If «
= 0, (102) takes the form

I o

[0 j}’ (103)

_# being a Jordan block exemplified by (91), i.e., “nice.” Note that g
=0if { = M—-1.

In general, when a # 0, all blocks in (103) have added terms which
are linear in a, or linear and quadratic, depending on whether (61) or
(79) applies.i

We shall be especially concerned with the matrix 8, for it is here
that the germ of independence theory appears. To calculate it, we
want

ﬁkr=|: C Cu®ek] o (a) [ - c9®e;:|. (104)
e

VoMl
Calling the (m, r) element of the (i, j) block of .&(a) by Y%@4., (104)

becomes

+ Henceforth, we denote transformed quantities by a tilde.
_ 1 The reader should note that the simple equations (27} and (28) suggest that the
linear and quadratic a-terms are of equal importance for ranges of a of interest.
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1 &
Bu= o 2 (co)ilerkm G, (co)(€4)n. (105)
i
Now &%, = 0 whenever I';; in (86) is. Thus, for fixed mn there are only
2™ possible 8%, which are nonzero. Denote the sum over these as
Y nonzero. Then (105) becomes, using (€4x)m = Sam, (Co)i = 1
1 g
B = o Yy & (108)
Equation (106) gives S as the average of the {k, [) elements of all oM
blocks in .#/(a) which are not @ priori zero. This, however, is nothing
but

E(I — oXX") =1 - oA, (107)

precisely the matrix which enters in the independence theory! Like-
wise, if o (a) = Ba)

EI-aXX")® I - aXX") (108)

is the matrix by which we would solve independence theory had we
rewritten (31) giving R"™ its vector form rather than its matrix form.

What do vectors look like with our new o.n. basis? If %" is a column
vector of numbers in the original basis, then in the new basis the
numbers are /7% Let ¥ be considered as blocks of N(N?) vectors
&% the kth component of each is ®:. Then the inner product of a
particular row of U with #7, namely,

Z (c; X e ),,V,,

I

is a generic term of U” v which evaluates to

J% ’2 (Ci) D (109}

Thus the first N(N?) components (the first blocks) is simply v2*~'
times the average of the blocks of %", In other words,

o

i)
— M1 [ ] I (110
0

P

The right member of (110) is, of course, written in a notation compat-
ible with (102). Likewise, a vector with zero average transforms to a
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vector which may be written

]
VoMl [ :l ) {111)
i}

Thus the initial condition for (63) or (80) is of type (110) unlike the
driving texm for (63), which is of type (111). The driving term for (80)
has both types.

Finally, we note that the projéction operator onto the unity eigen-
space of & (0) is

I 0
P = (112)
0 0
while
0 0
Py = 3 (113)
0 I
It will also be convenient to write
I
U=V = — b (110b)
,I‘2M—1 y"

Putting together the pieces just described in this section, the contrast
between the mathematics of the exact theory and independence theory
is as follows. The former problem is the following: solve for x, where

Xnt+1 B v Xn [i1]
= + ; (114)
Yn+1 Y 8 y n ‘I’
where x, is given, yo = 0. The latter problem is: Solve for x. where

Xnv1 = %, + @, {115)

%o is given. Note if » and y in (114) were zero, the solution to the two
problems would be identical. Since » and y vanish when « = 0, we may
hope a perturbation approach will be useful for small «. More specifi-
cally, we treat

g-1 v
| 8-
as a perturbation of (103), the matrix A(a) when a = 0.
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We begin by considering the eigenvalue problem for .« (a). When a
= 0, the eigenvalues of f are unity while these of & are zero, and these
eigenvalues vary continuously as « is increased. Consider solving for
the large eigenvalues. In general, we have to solve

Bx + vy= Ax

(116)
¥x + 8y = Ay,

where A is one of these eigenvalues, presumed close to one. Since the
eigenvalues of § will be presumed smaller than A, (A — 8)"* exists and
we conclude from the second equation of (116) that

y=A-8yx

Substituting this into the first equation yields

[B+v

Consistent with the perturbation spirit, we replace the A (on the left)
by 1 and & by its value when a = 0, namely, _# [see (103}].
Thus the large A’s are {approximately) solutions to

1
N3 yj|x = Ax. (117)

1
|:B+v1_fy:|x=Ax (118)
and the corresponding eigenvector to & (a) is, approximately,t
x
1 . (119)
-7

Using these approximations and applying the spectral decomposition
discussed in (72) to evaluate &/ "(), it is now straightforward to show
that the desired solution to (114) is, at least if we neglect the small
eigenvalues.

Xn=S ’:B+vﬁy:| Xo

+"§0 [B-HJﬁY} [q)+ ”Iijq']' (120)

t With the present representation, the perturbation theory has been painless. More
formal and ncllore thorough approaches to perturbation theory of matrices may be found
in Refs. 2 and 3.
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From (120) we conclude

}!I_I:I:Xn"‘[l—ﬁ—v lf}'f}']][(ll'+vlr f (121)

In fact, the steady-state error can also be computed exactly from (114)
as

¥]. (122)

1
1-6
Within the spirit of our approximations, (122) is consistent with (121).
The neglect of the small eigenvalues is justified by the fact that their
contribution will damp out quickly, and also that they operate in a
subspace approximately orthogonal to the one we are interested in.
Thus 1n (119) the “second half” of the large eigenvector is small
because of the y factor. The corresponding form for the “small”
eigenvectors would have the first portion small.

We take (120) and (121) as our approximate solution. The terms

[-B-v—s 1T @+

1 1 »
y—— vy and y——¥ (123)

are higher order terms in the perturbation, and neglecting them we
obtaint

I "io B (124)
= . L3} 125)
Xw = m s (

exactly what independence theory would predict.
To examine further the key expression

B+ (126)

1
I-¢7
some more concrete expression for the »y type terms is needed. For
example, consider an initial error matrix Ro. Then

= E[I — aX. XT)RJI — o X. XT]. (127)
This must correspond to 8 and so, as we already know,
B=E[l - aXX[]1®[I - aX:X]]. (128)

In general, then (neglecting the forcing terms), independence theory

+ Noting that (A + €" = A" for n = 0{1/¢) but not for n — o, we expect the
approxiration to break down after a while. This may very well happen only after the
taps have, for practical purposes, converged to the desired solution.
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can be written (letting P, = I — aX,X7)

RrH-l = EP]R;;P]. (129)
If we consider two iterations
Ry = E(I — aXoXT[I — aXi XTIR{I— a X XTI - «Xe X7], (130)

this corresponds, on squaring the matrix in (102), to 8% + »y. Thus »y
correspends to

E[P.P,R.P.\P; — P.P\R,P\FP.], (131)
where P, is simply a notation denoting that it (P,) is to be treated

independently of P;. The matrix R, is not statistical. The proper way
to write (131) ist

vy = E[(P, ® P;)(P, ® P1) — #*]. (132)

In general, it can be shown

M-2 M
1

y= 3 v#y=Y [EP,QP)P,QP)— 5] (133)
I e j =0 =2

14

Using (133) in (126) provides us with the next correction to the
eigenvalues by way of (118),
Furthermore, (133) suggests a simplified “dynamics” for R,, namely,

M—1

Ry =EPR.P L+ E Y [PsPRasP\P1.,
5=1
- P.P\R, .P.\P.]. (134)

A general discussion of these correction terms seems out of the
question. In fact, the expectations are not trivial to do. Instead, we
resort again to the simple model of (15), where A = I, and&% = tr R,,,
and set N = 3. For this case, we have been able to do the expectations
and compute the eigenvalues of 8 and 8 + »[1/(I — _#)ly. The
eigenvalues results are given in Table II. Certainly, in this case the
perturbation philosophy seems well justified.

VIl. CONCLUSIONS

We conclude (as explained above) that a perturbation analysis
suggests that the difference between independence theory and one
which takes into account the correlations between the “gradient”

T Using (A @ B)(C @ D) = AC ® BD, other forms are, of ¢ourse, possible.
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Table Ii—A comparison of
the eigenvalues of 8 and
its perturbation for a
special situation

1
+v
B e Sur Rl

0.667 0.674
0.555 0.543
0.555 0.655
0.555 0.555
0.333 0.337
0.333 0.333
0.333 0.333
0.333 0.333
0.333 0.333

directions is slight. Our early worry was that the shifting property

Xt Xy
X3 X3

-1 (135)
Xn Xn+i

in going from one gradient direction to the next could cause trouble
with independence theory. Any notion that this particular dependerice
must result in mathematics completely foreign to that of independence
theory has been shown to be false. Independence theory is.an inherent
part of the exact description.

The situation in (135) does, however, have the rigorous property
that the “new” component (x,+1) is independent of the others. For real
problems, this situation may well be violated in certain cases of severe
intersymbol interference. Examining the N =1 case leads us to propose
the following criterion to measure this dependence. Namely, if, in the
synchronous case, the received pulse A(¢) [see (1)1 is normalized so
that ¥ A+ = 1, then we might expect

= @ 2
E ( E h[h[+.) <« 1
y=] \f=m—c

to be a good measure of independence for the new component.

Our effort has been a long and tedious one, and our attempts to pull
insights from complicated equations have sometimes been nonrigorous
and no doubt occasionally colored by the previous experimental results
and simulation results of others.! Thus, while the ultimate justification
of independence theory must remain empirical, we hope that our
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efforts at least make mathematically plausible the successes of inde-
pendence theory.

Finally, it is a pleasure to say that the present work has bénefited
from discussions with J. Salz, L. A. Shepp, N. J. A. Sloane, and H. S.
Witsenhausen.

APPENDIX A
Evaluation of Some Averages

For the purposes of this appendix, we drop the superscript in (11),
labeling things as if n = 1. For application to (31) we consider the
average

EXXTRXXT (136)

for an arbitrary N X N matrix R. Here (11) holds, and we are averaging
over the binary variables in a. Expanding (136} using {11) we have to
do the key average

Eaa"Qaa™ = EC, (137
where @ = BTRB. Thus from (137),
(EC); = E?: (aa”)x Qu(aa™);
N3

=EY aia.ara,Qu. (138)
ki

Using the fact that for independent binary variables

Ea;araia; = 818y + 8,bn; + 8,8, — 28,840, (139)
we obtain, upon using (139) in (138)
(EC); = Qi + & + (tr )8, — 266, (140)
In matrix notation, (140) becomes
EC=Q+ Q" + (tr @} — 2 diag @, (141)

with the definition
{diag @):; = (Qu)6;. (142)

Note that if the a; were unit-variance Gaussian, the last term in (141)
(diag @) would not arise. It will be dropped because it is small in usual
cases. Finally, multiplying (141) on the left by B and on the right by
BT we recover (136), obtaining (since @ is symmetric now)

EXXTRXXT =2 ARA + {tr RA)A — 2B(diag B'"RB)B”. (143)
Now we recall that all terms in (143) are multiplied by a®. We would
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neglect them all unless one can be large. In fact, (tr RA)A can be N
times larger and hence this is the only term we need keep.
We move on to consider (32), rewritten as

—Ea(I — axxTele Txx" — @neaXT]. (144)

The term linear in « in (144} vanishes as a correspondence of {6), (7),
and {9), One of the o’ terms is

2’EXXTec’ XX, (145)

Evaluating (145) using (143), we check to see if the dominant term can
be large. It is given by

Atrec TA=A(e"AcY). (148)

If we introduce the (M — 1) vector u, having all zeros except a one in
the (1 + <J) place, then

Gig=u-a=1"a, (147)

and the other a® term is proportional to

’EXX7euTaX” = o’ EB[aa” (BTeu")aa” | BT. (148)
Evaluating (148) using (138) and (141), we get
A{e"Bu). (149)

However, using (7) we readily verify Bu = v, and a final use of (9)
shows that the two dominant a® terms (146) and (149) cancel. The
other terms are truly o terms (as opposed to a’N) and are neglected,
leading us to replace {32) by zero.

We have introduced enough tricks now so that the reader may easily
reproduce (33).

APPENDIX B
Definiteness of Solution to {34)

We give here an explicit demonstration that the solution to (34)
retains its positive definite character. By induction on #, it is sufficient
to show that R"*" is positive definite (= 0) if R™' is.

We make repeated use that R = 0 if R is hermitian and ¢"R¢ = 0 for
any vector ¢.

We recall A = 0 (and therefore hermitian) and hence R"*" is
hermitian.

Rewrite the right member of (34) as

(I - aA)R(I — aA) + o’ [Atr AR — ARA] + o*%*A.  (150)

Each term in (150) is positive definite; the only nonobvious one is the
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second. However, it may be rewritten as

VA [tr VA R VA — VA R VA] VA, (151}

since tr AB = tr BA. The matrix VA R VA is, of course, positive
definite. Now observe that if B = ( then tr B — B = (. This concludes
the proof.

REFERENCES

1. G. Ungerboeck, “Theory on the Speed of Convergence in Adaptive Equalizers for
Digital Communication,” IBM J. Res. Develop., 16, No. 6 {(November 1972}, pp.
546-555.

2. Peter Lancaster, Theory of Matrices, New York: Academic Press, 1969. The Perron-
Frobenius theorem used immediately before (45) of the text is given in this
reference as the corollary on p. 286.

3. T. Kato, Perturbation Theory for Linear Operators, New York: Springer-Verlag,
1976. See Chapter 2 for matrices.

INDEPENDENCE THEORY OF EQUALIZER CONVERGENCE 993






Copyright © 1979 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 58, No. 5, May-June 1979
Printed in U.S.A.

Transmission Properties of Various Styles of
Printed Wiring Boards
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This paper presents some experimental results concerning the pulse
transmission properties of fine line printed conductors (e.g., width =
8 mils, spaces = 9 mils) on various styles of circuit packs (cps). The
pulse transmission praoperties include the characteristic impedance,
the propagation delay, the rise time, the bandwidth, and the intra-
layer and interlayer pulse crosstalk. A simplified theoretical model
is presented which leads directly to some basic crosstalk equations.
Theoretical results are developed to extend the application of the
experimental crosstalk results to arbitrary pulse signals, periodic
signals, and random signals. Also, theoretical scaling laws are
developed to extend the crosstalk resuits to conductor spaces in the
range of 7 to 40 mils. The crosstalk results are very important, since
they tend to limit the packaging density of printed conductors on the
cP styles by limiting the coupled length and spacing of parallel
conductors. The results can be incorporated into computer-aided
designs which can analyze routed cPs to detect potential crosstalk
problems before the cP routing is finalized for manufacture. Other
applications include cP selection, crosstalk estimation, electrical
characterization of cps and backplanes, estimation of conductor
capacitance and inductance, and effects of various dielectrics. The
results are applicable to general styles of printed wiring boards. In
barticular, they apply directly to all styles of cPs in the BELLPAC™
apparatus housing—a modular packaging system for packaging elec-
tronic equipment in the Bell System.

I. INTRODUCTION

In the physical design of large electronic systems, the interconnec-
tion of the integrated circuits and other components at the circuit pack
or printed wiring-board level constitutes a basic and relatively expen-
sive level of interconnection. In addition to supplying power and
ground, the circuit pack (cP) provides the conductor paths for the
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Table I—Description of the circuit pack styles

Circuit
Pack
Style Description
Wire wrap Wire wrap board for breadboarding
Extender board 6 layer MLB, 2 pad layers, 2 signal layers, power (P) and ground
($) on inside, dedicated ground conductor between every
pair of signal conductors
Double-sided Double-sided, epoxy PWB
(epoxy)
Double-gided Double-sided, metal core, PWB
{metal)
Bonded board Flexz bonded to epoxy coated steel
(LAMPAC)T
41, mLB (EXT P/G) 4 layer MLB, 2 signal layers, P and G on outside
6L mLB (EXT P/G) 6 layer MLB, 4 signal layers, P and G on outside
6L MmLB (INT P/G) 6 layer MLB, 2 pad layers, 2 signal layers, P and G on inside
6L mLB (INT P/G, 6 layer MLB, 4 signal layers, P and G on inside
surface routing) .
8L MLB (InT P/G) 8 layer MLB, 2 pad layers, 4 signal layers, P and G on inside

1 This particular bonded board is also known as LAMPAC.

transmission of pulses and other types of signals between the inte-
grated circuits, other components, and the cp connector.

The basic pulse transmission properties, such as characteristic
impedance, propagation. delay, rise time, bandwidth, and crosstalk
depend a great deal on the cP configuration or style. Since the costs
associated with the various cP styles differ significantly, it is very
important to develop cp styles which are suitable electrically and
which are relatively inexpensive.

For the past few years, a Bell System packaging effort' (BELLPAC*
packaging system) has been under way to develop a modular packaging
system for packaging electronic equipment. This effort makes use of a
suitable connector (963) and a number of cp styles that have common
features suitable for computer-aided design.

The purpose of this paper is to present some basic transmission
properties of various styles of cps which include those in the
BELLPAC hardware family. The transmission properties are very
important, since they help to determine which cp style is most appro-
priate for a given application.

A listing of the cp styles along with a short description of each is
presented in Table I. Copper conductors are used on all the cp styles.
The dielectric material for most ¢Ps is a composite of epoxy and glass
fibers. The composite structure has a relative dielectric constant
{effective) of about 4.2. Except for the extender board, all the cp styles
have the common:features shown in Fig. 1,

* Trademark of Western Electric.
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Fig. 1 —Some common features applying to all circuit pack styles except the extender
board. The plated-through holes are on either 100-mil or 200-mil centers. The spaces
between the rows of plated-through holes are denoted as 100-mil or 200-mil channels.

The extender board is a very special design. Its primary function is
to extend any cp beyond the apparatus housing so that both sides of
the cp are accessible for debugging or test purposes. Thus, the extender
board is basically an “extension cord” for a cp.

To determine the basic transmission properties of the various cps,
appropriate test boards were designed for each style of cp listed in
Table 1. Except for the double-sided (metal) board, all test boards were
fabricated at the Western Electric printed-circuit manufacturing plant
at Richmond, Virginia. The double-sided metal board was manufac-
tured at the Western Electric plant in Kearny, New Jersey. The test
routing consisted of either 8 + 2 mil conductors with nominal 9-mil
spaces or 12 = 3 mil conductors with nominal 13-mil spaces. The 8-mil
conductors were on 17-mil centers, and the 12-mil conductors were on
25-mil centers. In general, the length of the conductor paths was about
1 foot.

An experimental approach was necessary for this study because
detailed theoretical models which include all cp styles of interest
become very complicated, and they are not now very useful for
determining many basic pulse transmission properties. The experimen-
tal methods used to determine the transmission properties of the test
boards are described in the next section.
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Il. DESCRIPTION OF THE EXPERIMENTAL METHODS
2.1 Puise transmission properties

Each cP style containing the test routing was probed with a Hewlett
Packard time domain reflectometer {TDR) system consisting of a 1815A
sampling plug-in, an 1817A sampling head, and an 1106B tunnel diode
pulse generator. The TDR system was used to apply a fast rising step
signal into each cP and display the reflected waveform on a sampling
oscilloscope. In general, the conductor path on the cP was open-
circuited and was free of any parallel branches.

For purposes of detailed analysis, a photograph was taken of each
TDR display of interest. The general form of the TDR display is pre-
sented in Fig. 2. By analyzing the TDR display of the reflected wave-
form, one can determine the basic pulse transmission properties of the
various CP styles. The particular cP properties of interest are the
characteristic impedance, Z;, the propagation delay, T4, the 80-percent
rise time, T, and the bandwidth, B. All these cP properties can be
determined by analyzing each TDR display as indicated in Fig. 2. The
80-percent rise time, 7T}, on the TDR display is a result of the input step
signal traversing the cP twice, as is characteristic of a reflection
method. The one-way rise time is faster by a factor of approximately
1/+/2. By applying this factor to the usual relationship between band-
width and rise time, we have

035 | 1
T./J2 2T
Reference 2 presents some additional discussion concerning the TDR

method along with some detailed results concerning the theoretical
TDR display for an ideal cp.

(1)

END OF PIN
INPUT TO
CIRCUIT ™~
PACK %, ASYMPTOTE = (1—p, %)
0.8 (1-p;y ==
| ~--B0% RISE TIME'
] I
REFLECTION [ z :
‘COEFFICIENT : C— e :
| 54 4= % "\
N [ ) 1 Z1+Zat: ~— OPEN CIRCUIT
coaxcaste, % 1 TT 777 h
Z, =500 | ot —— = — 2Ty - -~
'
i
END OF CABLE / —= TIME

Fig. 2—The general form of the TDR display.
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2.2 Pulse crosstalk properties

The pulse crosstalk properties of the cPs were determined experi-
mentally by using the method described in Refs. 3, 4, and 5. Briefly,
the method consists of applying a fast pulse (rise time ~ 2 ns) to a
driven conductor and monitoring the resultant waveform at the near-
end or far-end of some idle conductor of interest. In all cases, the
crosstalk results apply when all conductors are properly terminated
with matched loads. The corresponding results for other loads can
yield higher values of crosstalk which can be estimated from the results
for matched loads by determining the reflections and using superpo-
gition. Thus, the crosstalk results for the matched loads are basic
properties of the cP styles. The crosstalk results are very important
since they limit the packaging density of printed conductors on the
CPs by limiting the coupled length and spacing of parallel conductors.

We now summarize all the experimental results presented in the
appendix to this paper.

. SUMMARY OF THE EXPERIMENTAL RESULTS

Table II presents a summary of the pulse transmission properties of
all the cps considered in this paper. More detailed properties for each
of the cP styles are presented in the appendix, as stated in the last
column of Table II.

The propagation delay per foot, the rise time, and the bandwidth
include the effects of the 963 connector plus fanout (see Fig. 1).
However, an earlier study® has shown that the 963 connector plus
fanout limits all the cp styles to applications having one-way signal
rise times (= 1/v2 of the TDR rise time values) no faster than about
2.0 ns (bandwidths < 175 MHz). This 2.0-ns limit was determined by
considering the crosstalk levels and impedance mismatch associated
with the 963 connector plus fanout. This lower limit on signal rise time
is sufficient to include most applications in the Bell System.

The pulse crosstalk results were measured as a percentage of the
signal step in the driven conductor. The crosstalk results apply when
the printed conductors are terminated with matched loads.

The interlayer crosstalk can be decreased to negligible values by
simply using orthogonal routing on adjacent layers. This technique is
now widely used during the routing of the conductors. Therefore,
intralayer crosstalk is usually more of a concern than is interlayer
crosstalk.

The attenuation of the conductors has not been thoroughly inves-
tigated, but some preliminary results have shown that signal attenua-
tion is about 0.4 dB/ft at 250 MHz.
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Fig. 3—A simplified model of crosstalk for a pair of lossless, uniformly, and loosely
coupled conductors terminated with matched loads. Z,, v, and I. denote characteristic
impedance, propagation velocity, and coupled length, respectively. (a) Capacitive
crosstalk, V., resulting from the mutual capacitance per unit length, Cn. (b) Inductive
crosstalk, V., resulting from the mutual inductance per unit length, Ln.

Table II shows that the cp styles in the BELLPAC family of cps*
provide a wide variety of pulse transmission properties that can satisfy
the cP needs of most presentday Bell System projects. Many current
projects (e.g., AMARC, PDT2A, pLAID, Triport, Ess Ring and Tone, DIF)
make use of the double-sided (epoxy) style. In fact, this is the most
common cP style. The double-sided metal cP is used in customer
equipment and is now under consideration for power supply applica-
tions. The 4L MLB and 6L MLB (EXT P/G) were used in some switching
applications such as the PROCON project. The higher capability MLBs,
the 6L MLBs (INT P/G with and without surface routing), were used in
the 1A ESS processor, and are expected to find use in projects such as
the 3B Ess processor -and DIF.

IV. THEORETICAL CROSSTALK RESULTS
4.1 Derivation of basic crosstalk equalions

Consider the simplified model of crosstalk presented in Fig. 3. The
capacitive crosstalk voltage denoted by V. in Fig. 3a is a suitable
approximation when the conductors are loosely coupled. A more

* At the present time, the bonded board (LAMPAC) and the 8L MLB (INT P/G) are nof
metnbers of the BELLPAC family of cp's.
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accurate expression for V. is obtained by applying circuit theory to the
elemental circuit in Fig. 3a. The result is that V. satisfies

dV. Ve _laV(t— (x/v))

@ Tz "2 ot @

or

IJ' AV — (x/V) g, 3
{

V=< =

When the conductors are loosely coupled, C.. is relatively small, and
€q. (3) yields the approximation given in Fig. 3a, since

x/v)

e
e #C3V(E— (x/v) . ZiCm 3V(t— (x/v})

ZCn
dé 2 ot

)
2 Jop ZCn &

The loose coupling approximation not only allows the simplification
of V. but also allows one to neglect the interaction of the idle conductor
on the driven conductor. When this interaction is considered along
with conductor losses, the analysis hecomes extremely difficult (see,
for example, Refs. 7 and 8).

Using this simplified model, the total near-end (backward) crosstalk
waveform, V,.(¢), and the total far-end (forward) crosstalk waveform,
V%(t), can be expressed as two independent differential equations:

(4)

L av(t — (2x/v))
ane(t) = (ZICm Z) dx‘ —at_ (5)
1 _ Ln dV(t — (i./v))
By integrating the variable x over the coupled length [, we have that
L.\ [“aV(t— (2x/v))
Vie(t) = (210 Z;) j = dx (N
= Kn[V(t) — V(¢ — 2Tp)], (8)
where
Tp = % = propagation delay over the coupled length
Lm
K = -
frert]
Similarly,
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L. dVvit - TD)
Vel(t) = 2 (ZIC - —ZT) f ——dt—'— (9}

dVit — Tp)
dt ’

L.,
K (ZIC — —*ZI—)

Equations (8) and (10) agree with the earlier results presented in Refs.
3, 4,9, 10, 11, and 12. These references also contain some useful
discussions of crosstalk associated with printed wiring interconnec-
tions.

Notice that, if Z,C, = (Ln/Z)}, K. = 0 and Vg(t) = 0. This result
forms the basis of the design of directional couplers and occurs quite
naturally whenever the conductors are surrounded by a homogeneous
medium. See Ref. 13 for a discussion of this interesting point. However,
for all the ¢Ps considered in this paper, it turns out that V() # 0.

The simplified model presented in Fig. 3 can be generalized to
include the case when the driven conductor has characteristic imped-
ance Z, and propagation velocity v, while the idle conductor has
characteristic impedance Z; and propagation velocity v.. For this case,

(b) and (6) become:
aV(t -z - i)
t4 | 2]

= Kl (10)

where

1 Lo
ane(t) = E (ZZCm + Z_j) dx at (11)
aV[t Y
1 L U 0

By integrating the variable x over the coupled length ., we have

Lm w2
Veell) = (ch + 7') (01 n Uz)
s
1 L 231 £2)
Vel =5 (Zsz )( )
2 Uz —
Vit—— Vie——]);. (14)
[ 4]
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Equations (13) and (14) agree with the results given in Ref. 11, and
they reduce to (8) and (10) when Z> = Z, and v; = va = v.

The corresponding results for the case when the driven conductor
has Z, v; and the idle conductor has Z,, v; can be obtained from eqs.
{13} and (14) merely by interchanging Z, and Z; and also v; and v;. In
this manner, one can determine the following general result:

Vn?(tl Z2’ U2) = er(t: ZZ, vﬂ) — EZ_
Vaelt, Z, v1) Vielt, Zy, v1)  Z7

(15)

where
Veelt, Z;, ) = near-end crosstalk waveform when the idle con-
ductor has Z,, v,
and
Vielt, Zi, v} = far-end crosstalk waveform when the idle conduc-
tor has Z,, v..
Notice that eq. (15) is independent of time and the propagation
velocities. Also, it can be shown that (15) satisfies reciprocity.

In cP design, one usually attempts to make the characteristic imped-
ance constant throughout the cP or Z; = Z,. However, if Z;, # Z, (as it
can be when dealing with interlayer crosstalk), then eq. (15) shows
that both near-end and far-end crosstalk are reduced when the con-
ductor having the lower characteristic impedance is taken as the idle
conductor.

Although egs. (13) and (14) are more general, experimental work has
shown that eqs. (8) and {10} or, more generally, eqs. (13) and (14) with
v = vy = v are sufficient for characterizing the crosstalk on all the cp
styles of interest in this paper. Also, in order to help simplify the tables
in the appendix, we shall only report on the average interlaye¥ crosstalk
associated with a given conductor pair. This appears to be sufficient,
since interlayer crosstalk is usually of less concern than intralayer
crosstalk.

The results based on the simplified model given in Fig. 3 turn out to
be good approximations for printed wiring boards when the value of
K. is less than about 25 percent. However, even when K. is somewhat
greater than 25 percent, the results based on the simplified model can
still be applied, although they become less accurate in this region.

On all styles of cps, we have found experimentally that max | V() |
< max V,.(f) for all signals and coupled lengths of interest* in this
paper. Thus, by controlling V..(£), one also controls Vi(t). Accordingly,
we have directed our experimental work toward estimating the mag-
nitude of the near-end crosstalk and only provide experimental bounds
on the intralayer far-end crosstalk for all the cp styles.

* Because of connector limitations, the signal rise times of interest are 2 ns or more
(i.e., a signal bandwidth of 175 MHz or less). The coupled lengths of interest are all less
than 18 inches.
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4.2 Crosstaik resuiting from a pulse signal

Let V(t) represent a ramp type of pulse signal given by:

Vit
2t o=t=T
Vi) = { T #
{16)
Vo, t> Tk

When V, > 0, V() represents a rising step signal having a 100 percent
rise time of Tx. This type of signal is convenient for characterizing the
crosstalk resulting from the leading edge of a pulse signal.

In practice, the total near-end crosstalk, NEXT, is usually defined as
the fraction of the pulse drive signal that appears at the near-end of
the idle conductor. Thus, for the pulse signal, eq. (8) yields:

Kne, 2TD > TR
max Velt) _

NEXT = ————— (17)
Vo K,,.,(z,‘:",""), 2Tp < Th.
R

When 27Tp > Tr, the near-end waveform, V,.(¢), is a trapezoidal pulse
and when 2Tp =< Tk, this waveform is a triangular pulse.

Equation (17) shows that the value of K., represents the maximum
value of near-end pulse crosstalk. In the appendix, the experimental
values of K. and 1/v = Tp/l. for all cPs of interest in this paper are
tabulated in Tables A and B of Figs. 4 through 13. By using these
tabulated values and eq. (17), one can readily estimate the NEXT for an
arbitrary pulse-like signal on any cP style.

As discussed in Section 4.1, only the average values of K.. for
interlayer, near-end crosstalk are tabulated. To estimate the two
individual values of K. for interlayer, near-end crosstalk, it can be
shown that each K. value must be multiplied by vZ,/Z: and
VZ:/Z,. The values of Z,, Z,, the characteristic impedances of the
conductors, are also tabulated in the appendix.

The corresponding result for the total far-end crosstalk, FEXT, can
be obtained from eq. (10):

max | Ve(t)] | Ke| &
Vo Te

In this case, the far-end crosstalk waveform, Ve(t), is a rectangular
pulse.

For all the cp styles, we have determined experimentally that | Ky |
= 0.09 ns/ft for intralayer crosstalk. We shall see that this result can
be used to bound intralayer FEXT on all the cps.

{18)

FEXT =

4.3 Crosstalk resulting from a periodic signal
If V(¢) represents a periodic signal of period T = 1/f,, then
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Vit)= 3 ane™, (19)

where
1 T/2
o = —] V{t)e ™ dt
T —T/2
and
we = n27f,.

For this periodic signal, eq. (8) yields

Voelt) = K,e T (2iay sin w,Tp)e 7o), (20)

= —

If we now define near-end crosstalk, NEXT, as

2
_ | ac power of Ve..(t) s
NEXT = [ ac power of V(¢t) | ’ (21)
then
. 12
Y. | an sin w.Tp|*
NEXT = 2K,.. | = < 2Kne. (22)

Y |aal?
=1
Equation (22) shows that NEXT < 2K, for all periodic signals.
The corresponding result for FEXT, assuming ng jump discontinuities
in V(2), is

Vilt) = Kpl. Y, ictnwne™="T0 (23)
and
_ | ac power of Ve(t) 2
FEXT = [ ac power of V(t) ] (24)
v 1/2
Y | anwn|*
=|Kell | S— | . (25)
C

A=l

By using the tabulated values of K,. and 1/v = Tp/!, given in the
appendix together with eq. (22), one can estimate the NEXT resulting
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from a general periodic signal on any of the cps. Also, by using the
bound on | K. | given in Section 4.2 along with eq. (25), one can bound
the intralayer FEXT on any of the cps.

As an example of a simple periodic signal, let V() represent a
sinusoid of frequency f.. Then eqs. (22) and (25) yield

NEXT = 2K, | sin 27/, Tp | (26)
FEXT = | Kpe | L27fs. (27)

When f, = (4Tp)”', NEXT attains its maximum value of 2K.., which is
twice the maximum NEXT resulting from the pulse signal considered in
Section 4.2.

It can be shown that eqs. (26) and (27) are special cases of the more
general results presented in the classical works on sinusoidal crosstalk
presented in Refs. 14 and 15. These references also include the effects
of conductor losses. In our application, the coupled length, [, is
relatively short (L. < 18”), so that conductor losses are negligible over
a frequency range of about 250 MHz.

For small values of £, Tp(= f5l./v), eq. (26) yields

NEXT = 47K,ofoTp = 47K, %{5; {28)

In this case, eq. (28) shows that NEXT is proportional to both frequency,
fo, and coupled length . much as is FEXT.
4.4 Crosstalk resulting from a random signal

Let V{¢) represent a differentiable, stationary random signal having
zero mean and one-sided power spectral density W(f). The correlation
function, p(), of the random signal is defined by

plr) = E[V({) V(e + 7)) = J W(f) cos 2nfr df, (29)
0

where E = expectation operator.
The correlation function, p..(t}, of the crosstalk waveform at the
near-end of the idle conductor can be determined from eq. (8). Thus,

pne(‘r) = E[Vne(t) Vne(t + 'r)]
= K2[20(7) — p(r — 2Tp) — p(r + 2Tp)]. (30)
The power spectral density, We.(f), of V..(t} is given by

Waelf) = 4 J' PnelT) COS 20fT dr (31)

0

= 4K;. W(f) sin® 2xf Tp. {32)
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For this random signal case, it is reasonable to define the NEXT by

NEXT = 9"—', (33)
[ )
where
@re = rms value of V..(¢)
= rms value of V{#}.
Thus,
One pre(0)
NEXT = — = \[—— a4
o \/ £(0) )
1/2
= 2K,,e[1 - (2":")] =< 2K,.. (35)
[+

Equation (35) shows that NEXT is bounded by 2K.. for all stationary
random signals.
The corresponding results at the far end are

prel7) = E[Velt) Vielt + 7)] = —| Kpe |*L2” (1) (36)
Weel£) = [| Kee | Le(2nf)] W(F) it
and o
FEXT = % = | Kp| L. \/_—z(:]()i) (38)
= | K| lm8, (39)
where

a7, = rms value of V.(t)
B = average number of zero crossings per
second of V{#).
Thus, for all differentiable, stationary random signals FEXT is propor-
tional to the average number of zero crossings per second of V{#).

By using the tabulated values of K. and 1/v{= Tp/l.) given in the
appendix together with eq. {(35), one can estimate the NEXT resulting
from a general random signal on any of the cps. Also, by using the
bound on | K. | given in Section 4.2 along with eq. {38), one can bound
the intralayer FEXT on any of the cps,

As an example of a random signal, let

2
O h-p=rsh+l
W(f) = {40)
0, otherwise,
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where

B = bandwidth of the signal V(z)

f> = center frequency of the signal V{¢).
For this case, eqs. {29) and (35) yield

One sin 2087y 2
NEXT = - V2K, |:1 - (—m—)cos 4-rrﬁ,Tni1 . {41)

Notice that, as B — 0, eq. (41) approaches eq. {26), the corresponding
result for the sine wave case.
The result for FEXT is

FEXT = - = | K| Lw V4f% + B%/3. (42)
ag

As B — 0, this result approaches eq. (27), the corresponding result for
the sine wave case.

The theoretical developments in Sections 4.2, 4.3, and 4.4 can be
generalized to include eqgs. (13) and (14) in place of egs. (8) and (10}.
When v, = v = v, all one needs to do is replace Z:Cn by Z:C,, in K.
and Kr. The more general case, v # vs, will not be treated in this
paper, since experimental results show that the propagation velocity
is approximately constant on a given CP.

Y. SOME APPLICATIONS
5.1 Selection of a CP style

Since the costs associated with the various cP styles differ signifi-
cantly,’ it is very important to select a cp style which is both suitable
electrically and relatively inexpensive. The pulse transmission prop-
erties summarized in Table II and tabulated in more detail in the
appendix can be used to help select such a cost-effective cP for a given
application.

It is also very important that the physical designers and systems
designers using BELLPAC hardware be aware of these basic pulse
transmission properties. The P transmission properties must be com-
patible with the transmission properties of the backplane, frame wiring,
and the cp components.

5.2 Estimation of crosstalk on a given CP style

By using the theoretical results presented in Section IV together
with the appropriate K. and 1/v values given in the appendix, one can
estimate the amount of near-end crosstalk for fine line conductors
carrying a wide variety of signals on any of the cps considered in this
paper. As discussed in Section IV, far-end crosstalk is always less
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than near-end crosstalk, usually much less. Also, intralayer, far-end
crosstalk can be bounded by using the experimentally determined
constant | K. | = 0.09 ns/ft and the theoretical results presented in
Section IV.

Let us consider as an example a pair of adjacent, parallel conductors
on the inside signal layer of the 6L MLB (INT P/G, surface routing).
From Table B of Figure 12 in the appendix, we see that K,. = 0.16 for
two adjacent conductors (Y:Y:) in the 200-mil channel when the
conductor width and conductor spacing are 8 and 9 mils, respectively.
Table A of this same figure gives 1/v = 1.8 ns/ft. Thus, for a pulse
signal, eq. (17) yields

0.18, 2Tp > Tr
NEXT = “3)
- 2T,
(0.16) (—") 2Tp < Th,
Tr
where
[ . .
Tp= > = propagation delay over the coupled length (ns)
l. = coupled length (ft)
Tr = rise time of the pulse signal (ns).
Also, for the pulse signal, eq. (18) yields
FEXT =< (0.09) ke . (44)
Tr

Similarly, for a sine wave signal of frequency f,, eqs. (26) and (27)
yield

NEXT = {2)(0.16) | sin 27£,Tp| (45)
FEXT < (0.09) L.2xf,. (46)

In a very similar manner, one can also estimate the NEXT and bound
the intralayer FEXT for an arbitrary periodic or random signal by using
egs. {22), (25), {35), and (39).

By using this method, one can estimate the NEXT and bound the
FEXT for a wide variety of conductor pairs and a wide variety of signal
types on any of the cps considered in this paper.

For a required crosstalk constraint, the theoretical and experimental
crosstalk results can be used to help determine routing restrictions on
coupled length for general types of signals. Alternately, this informa-
tion can be incorporated into computer-aided designs to help deter-
mine whether a routed cP has violated a given crosstalk constraint
associated with a particular signal type. In this manner, a routed cp
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can be analyzed to detect potential crosstalk problems before the ¢p
routing is finalized for manufacture.

As a final point concerning the estimate of crosstalk, one can also
estimate intralayer NEXT for a pair of adjacent, parallel conductors
having a range of conductor spacings. It turns out that intralayer NEXT
is essentially independent of conductor width (see Ref. 4). Accordingly,
to estimate the value of K,..(S) for a pair of adjacent, parallel conduc-
tors (i.e, Y,Y3) having conductor spacing S, one can interpolate or
extrapolate the values of K. for § = 9 mils or 13 mils given in the
appendix by assuming that K..(S) is proportional to 1/S. It can be
shown that this is a satisfactory assumption when 7 mils = § = 40
mils, the region of most interest in this paper.

As an example, let us apply this method to-a pair of adjacent parallel
conductors having conductor spacing S (mils) on the inside signal layer
of the 6L. MLE (INT P/G, surface routing). For the 200-mil channel,
Table B of Fig. 12 yields the following minimum mean square error
estimate: e

K..(S) = (9)(13) [18K,(9) + 9K..(13)] _ 1479

(9% + 1318 s L (47)

This method can be applied to pairs of adjacent, parallel conductors
on any CP considered in this paper.

5.3 Electrical comparison of the CPs

The results in Table II and the appendix can be used to compare
the various cps from the electrical point of view. For example, T'able
11 shows that, of the three ¢Ps containing only two layers of metalli-
zation, namely, the double-sided epoxy, the double-sided metal, and
the bonded board, the double-sided epoxy board is inferior to the other
two. It has a relatively high characteristic impedance and higher values
of intralayer crosstaik. Recall that intralayer crosstalk is more trouble-
some than interlayer crosstalk, which can be reduced considerably by
using orthogonal routing on adjacent layers.

Also, the double-sided metal board is somewhat better electrically
than the bonded board because the impedance variations and crosstalk
are less for the metal board.

Table 11 also shows that the MLBs having an internal power and
ground plane (INT P/G} are superior electrically to those having an
external power and ground plane (ExT P/G). The MLBs having (INT
P/G) have less impedance variations and yield less intralayer crosstalk.

Notice from Table 11 that a wire-wrap cp and the double-sided
(epoxy) ¢P are both inferior to the MLB styles from the electrical point
of view. Also, the double-sided (metal) and the bonded board have
electrical properties which are comparable to all the MLBs having (INT
P/G).
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Finally, the extender board, because of its special design, is clearly
the best electrical design of all the cps considered in this paper. It has
relatively little variation in characteristic impedance and very low
crosstalk.

5.4 Estimation of the capacitance and inductance of the conductors

In certain applications of the cPs, it is important to have an estimate
of the value of C, the capacitance per unit length, and L, the inductance
per unit length for the conductors on all of the cp styles. This
information is important, for-example, when one needs to estimate the
electrical load on a driver circuit for certain ranges of frequency or rise
times. The values of C and L can be estimated from the values of
propagation delay per foot (1/v) and characteristic impedance Z; given
in the appendix for each cp style. Using these values, C and L are
given by

C= (1/v) if

Zy ft (48)
1 nh

For worst case estimates, 1/v should be increased by about 10 percent,
since the values listed in the appendix are averages over about 20
different conductor paths on each cp.

5.5 Generalization to other dielectric matérials

If eqs. (48) and (49) are used in eq. (8) to reduce K., we have

1{Cn L
K = 3 [F + —L—] (50)

Equation {50) shows that K.. is independent of the.relative dielectric
constant, & (effective). It can also be shown that the more general K,..
discussed at the end of Section 4.4 is also independent of the relative
dielectric constant. Thus, the values of K, given in the appendix apply
when the ¢Pps are fabricated with any dielectric material.

One can also show that the propagation delay per foot, 1/v, and the
far-end crosstalk coefficient | K. | are both proportional to Ve, , while
the characteristic impedance, Z,, is inversely proportional to ve,. Thus,
many of the results in this paper can be applied when the cps are
fabricated with other dielectric materials such as ceramic, Teflon, or

polyimide.

5.6 Electrical characterization of backplanes

In the physical design of large electronic systems, various styles of
printed wiring-board backplanes are often used to interconnect cps.
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These backplanes are usually very similar to some cP styles considered
in this paper. Accordingly, many results in this paper can be applied
to help electrically characterize various styles of backplanes.

Vi. SUMMARY

A Bell System packaging effort (BELLPAC packaging system) is
now under way to develop a modular packaging system for packaging
electronic equipment. This effort makes use of a suitable connector
(963) and a number of circuit pack (cp) styles (ranging from wire-wrap
cps to multilayer board cps) which have common features suitable for
computer-aided design.

This paper presents some experimental results concerning the pulse
transmission properties of fine line printed conductors (e.g., width = 8
mils, spaces = 9 mils) on various styles of cps which include those in
the BELLPAC hardware family of cPs. The pulse transmission prop-
erties include the characteristic impedance, the propagation delay, the
rise time, the bandwidth, and the intralayer and interlayer pulse
crosstalk. Theoretical scaling laws are developed to extend the appli-
cation of the experimental crosstalk results to conductor spaces in the
range of 7 to 40 mils.

A simplified theoretical model is presented which leads, directly, to
some basic crosstalk equations. Also, theoretical results are developed
to extend the application of the experimental crosstalk results to
arbitrary pulse signals, periodic signals, and random signals.

The results in this paper can be applied to the:

() Selection of a cP style for a given application.

(ii) Estimation of crosstalk on a given CP style.

(iii) Comparison of the electrical properties of the cp styles.

{iv) Estimation of the capacitance and inductance of the conduc-

tors.

(v) Determination of the pulse transmission properties of the cp

styles with various dielectrics.

(vi) Electrical characterization of various styles of backplanes.

The crosstalk results are very important since they tend to limit the
packaging density of printed conductors on the P styles by limiting
the coupled length and spacing of parallel conductors.
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APPENDIX

Experimental Results
Index to pulse transmission properties

Figure No. Containing
the Pulse Transmission

Circuit Pack Style Properties
Wire wrap 4
Extender board 5
Double-sided (epoxy) 6
Double-sided (metal) 7
Bonded bosrd (LaMPAC) 8
4L MLB (EXT P/G) 9
6L mLE (EXT P/G) 10
6L MLE (INT P/G) 11
6L MLB (1INT P/G, surface routing) 12
8L MLB (INT P/(G} 13
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1
I
3l]|]|rr|ils - BOTTOM
1 . rd
1 WIRING SIDE ﬁE
t—, s = 6,120Z Cud
62 mils h_ C-STAGE i P (202 Cu}
i T d COMPONENT SIDE o 2 '

LAYUP FOR THE WIRE WRAP BOARD

TABLE A
PULSE TRANSMISSION PROPERTIES OF THE
WIRE WRAP BOARD
AWG 30 WITH MILENE INSULATION AWG 30 WITH TEFLON INSULATION
LOCATION CHARACTERISTIC LOCATION CHARACTERISTIC
OF WRAP IMPEDANCE OF WRAP IMPEDANCE
ON PIN {OHMS) UN PIN {DHMS}
ROUTING IN TOP 175 OHMS Tar 194 OHMS
200 mil
CHANNE1LS!! BOTTOM 78 BOTTOM 124
ROUTING IN TOP 158 TOP 164
100 mit
CHANNELS BOTTOM n? BOTTOM 138

® PROPAGATION DELAY = 1.4 ny/ft_ {=1/v, MILENE), 1.3 nwtt. [=1/y, TEFLON].
®80% RISE TIME ON TOR FOR 1 ft CONDUCTOR LENGTH = 2.0 ns {MILENE] 1.8 s (TEFLON}.
@ BANMDWIDTH FOA 1 ft CONGUCTOR LENGTH = 250 MHz (MILENE), 278 MHz {TEFLON).

{1) THE 200 mil CHANNEL ALS0 CONTAINS A GROUNG PLANE.

TABLE 8

Kpq = MAXIMUM NEAR-END PULSE CROSSTALK'"! FOR

WIRE WRAP BOARD

VARIOUS WIRE PAIRS DN THE

AWG 30WITH MILENE INSULATION AWG 30WITH TEFLDN INSULATION
LOCATION CROSSTALK LDCATION CROSSTALK
DF WRAP {TIGHTLY COUPLED | OF WRAP {TIGHTLY COUPLED
ONPIN PAIRS) ON PIN PAIRS)
ROUTING IN TOR 0% ToP 35%
200 mil
CHANNELS'?' | BOTTOM 16 BOTTOM bx
AOUTING IN TOP % TOP 6
100 mil
CHANNELS 80TTOM P BOTTOM 13

{1 CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE INPUT STEP.

(2) THE 200 mil CHANNEL ALSO CONTAINS A GROUND PLANE,

Fig. 4—Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for
the wire-wrap board with $63C-100 connectors.
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C-STAGE
GSTAGE |

C--STAGE
B-STAGE

PAD 2

® 202 CU CONDUCTORS S ALL DIMENSIONS IN MILS

[a) NOTATION FOR INTERLAYER CROSSTALK ON THE
EXTENDER BOARD.

) NOTATION FORINTRALAYER CROSSTALK ON THE
EXTENDER BOARD.

ELECTRICAL CHARACTERISTICS OF LARGEST {7.67 X 14,78")
EXTENDER BOARD (WITH 963C CONNECTORS)

® CHARACTERISTIC IMPEDANCE = 70 £ 5 OHMS,
® PROPAGATION DELAY = 1.B0 ns/ft.

® 80 % RISE TIME ON TDR = 1.3 ns.

@ BANDWIDTH = 385 MHz,

® MAXIMUM INTRALAYER NEXT: ¥, Y, =16%

® MAXIMUM INTERLAYER NEXT: §, S, =03 %

Fig. 5—Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for
the extender board with 963C-100 connectors.
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High Resolution, Steep Profile, Resist Patterns

8y J. M. MORAN and D. MAYDAN
{Manuscript received September 28, 1978)

High resolution and steep profile patterns have been generated in
a 2.6-um thick organic layer which conforms to the steps on a wafer
surface and is planar on its top. This thick organic layer (a photore-
sist in the present experiments) is covered with an intermediate layer
of SiO; and a top, thin layer of X-ray or photoresist. After exposure
and development of the top resist layer, the intermediate layer is
etched by CHF; reactive ion etching. The thick organic layer is then
etched by O: reactive ion etching. Submicron resolution with essen-
tially vertical walls in the thick organic material was achieved. The
technique is also applicable to photo- and electron lithography. It
reduces the need for thick resist patterns for the lithography step and,
at the same time, ensures high resolution combined with good step
coverage.

I. INTRODUCTION

One of the more difficult problems with resist pattern generation is
to achieve good linewidth control, high resolution, and good step
coverage simultaneously. Often the requirements appear to be mu-
tually exclusive; good step coverage requires thick resist; high resolu-
tion, however, is more easily obtained in thin resist. This is true for all
resists, both positive and negative,

With any resist, the ideal conditions to obtain high resolution and
good linewidth control are a flat surface and a thin resist (3000-4000
A®). The flat surface means that the resist has very little variation in
thickness and that, as a result, there will be little variation in resist
line width. However, such resist line width variations will occur when
lines traverse a step. As device wafers do have steps, thick resist (7000-
15000 A) must be applied to achieve coverage over steps.

We discuss here a method for generating high resolution, steep
profile resist patterns by first preparing a flatter surface on the wafer.’
This is done by applying a layer of thick organic material that conforms
with its lower surface to the wafer and is planar on its top. The thick
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Table |—High resolution, steep profile, resist patterns
Advantages

Planar surface for resist patterning

Excellent step coverage

Good linewidth control

Thinner resist can be used for better resolution

. Eliminates standing waves and scattering in photolithography
Reduces proximity effects in electron lithography

Minimal resist erosion during substrate etch by plasma or ions

b ol el

Disadvantage

Requires extra processing steps

4000 A PHOT!
. REACTIVE R.F, SPUTTER ETCH—CHF5 EE%%TRON, ok
— X—RAY RESIST
r

Sl bl

p THICK
VLS| SUBSTRATE SESISE

REACTIVE R.F. SPUTTER ETCH-0; 5,0,

'_u__ l ‘ l l _’-—}3 /./nlemsv
J,

( VLSi SUBSTRATE }

L ~—510;

=

i ] l ] I[ ]“ — - RESIST

{ VLS| SUBSTRATE

F;ai]g. 1—Schematic presentation of the various stepa required to define a steep resist
profile.

layer is then patterned using anintermediate magking layer'and a thin
top layer of X-ray resist. The result is that as much as 2.6 pm of
plasma-resistant organic material can be patterned with better than 1-
gm resolution and steep sidewalls comparable with those in positive
photoresist. The advantages and disadvantages of this technique are
outlined in Table L

Il. EXPERIMENT

A 2.6-ym thick layer of photoresist,* serving as the thick orgamc
layer, was spun on a silicon wafer. The intermediate layer of 0.12 pm

* HPR-204, manufactured by Hunt Chemical Co.
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of silicon dioxide was plasma-deposited at 200°C on the photoresist,
and then a 1.0-um thick layer of chlorine-based negative X-ray resist
was deposited on top of the oxide. Figure 1 is a schematic presentation
of the processing sequence.

The top layer of X-ray resist was exposed and developed to a final
thickness of 0.45 pm using an X-ray exposure tool.>* With the X-ray
resist as a mask, the Si0Q; was either plasma- or reactive-ion-etched
with a CHF; gas. The pattern was then transferred into the thick
organic (resist) layer using reactive RF sputter etching, with pure O:
gas forming the plasma and the SiO; acting as the mask. The RF power
density was 0.50 watt/cm® and the time required to etch the resist was

Fig. 2—Pattern etching into 2.6-pm thick resist layer using reactive RF sputter etching.
Trench width is 1.5 pm.

HIGH RESOLUTION, STEEP PROFILE PATTERNS 1029



20 minutes. Figure 2 shows the resultant pattern, which is 2.6 ym high
and has a trench width of 1.5 ym. The photos were taken with a
scanning electron microscope at a very steep angle to clearly show the
wall structure of the resist. Note that the walls are perpendicular and
there is very little undercut. The oxide is still on top of the organic
(resist) layer, and its thickness loss during the sputter etch was less
than 0.02 pm. .

Another method of etching the thick organic layer is with plasma
etching using a radial flow machine. This method, however, produced
patterns with some undercut and had a resist etch uniformity variation
across a 3-in. wafer of 50 percent, which, coupled with the undercut,
would give poor linewidth control.

Fig. 3—sEM photograph of texture surrounding all the etched features. The fibers of
this texture are aluminum oxide and are submicron in diameter.
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One of the more serious problems encountered with RF reactive
etching was the presence of texture after completion of the etch (see
Fig. 3). This texture,*® as determined by Auger analysis, consisted of
aluminum oxide fibers that were resistant to further plasma processing.
Their formation was due to the presence of aluminum in the active
plasma area. In fact, the presence of any metals (e.g., copper, titanium,
tantalum, etc.) also produced this texture.

Solution to the texture problem involved the construction of a
chamber having no exposed metallic surfaces. Figure 4 shows a pattern
etched under these conditions. The thick organic layer in this case is

Fig. -—Pattern sputter-etched using a system having no exposed metallic surfaces.
Etching has caused no fiber formation.
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A New Selective Fading Model: Application to
Propagation Data

By W. D. RUMMLER
{(Manuscript received September 21, 1978)

Channel transmission models for use in estimating the performance
of radio systems on line-of-sight paths at 6 GHz are explored. The
basis for this study is the simple three-ray multipath fade, which
provides a channel transfer function of the form H(w} = afl — b exp
— J(w — wo}7], where a is the scale parameter, b is a shape parameter,
7 is the delay difference in the channel, and wo is the (radian)
frequency of the fade minimum. This model is indistinguishable from
an ideal channel madel, within the accuracy of existing measure-
ments. The propagation data that confirm the model were obtained
in summer 1977 from a 26.4-mile hop near Atlanta, Georgia. The
received power at 24 sample frequencies spaced at 1.1 MHz and
centered on 6034.2 MHz was continuously monitored and recorded
during periods of anomalous behavior. The model is applied to
estimating the statistics of the channel delay difference, v. The aver-
age delay difference giving rise to significant selectivity in the channel
is between 5 and 9 ns. The distribution of delay difference is obtained
for delay differences greater than 10 ns. The channel is found to have
more than 3 dB of selectivity (difference between maximum and
minimum attenuation in band) due to delay differences greater than
20 ns for more than 70 seconds in a heavy fading month. (This is
comparable to the time the channel attenuation of a single frequency
exceeds 40 dB,) The three-path model requires further simplification
for narrowband channel application. For a channel with 30 MHz
bandwidth, a model with fixed delay of 6.3 ns provides a sufficiently
accurate representation of all observed channel conditions. The re-
sulting nonphysical model is used to statistically characterize the
condition of the fading channel. The statistics of the parameters of
the fixed delay model are almost independent and of relatively simple
form. The distribution of the shape parameter b is of the form (I =
b??. The distribution of a is lognormal. For b > 0.5, the mean and
standard deviation of —20 (log a} are 25 and 5 dB, respectively, the
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mean decreases to 15 dB for smaller values of b. The probability
density function of wo is uniform at two levels; measuring wo from the
center of the band, the magnitude of wor is five times as likely to be
less than m/2 than to be greater. A companion paper describes the
use of this model for determining the bit error rate statistics of a
digital radio system on the modeled path.

I. INTRODUCTION

Performance prediction of a digital radio system on a line-of-sight
microwave channel requires an accurate statistical model of the chan-
nel. Because different digital radio systems may have different sensi-
tivities to the various channel impairments, the model must be com-
plete to the extent that it must be capable of duplicating the amplitude
and phase (at least approximately) of all observed channel conditions.
To facilitate laboratory measurements and computer simulations for
calculating outage, the model should be realizable as a practical test
circuit and should have as few parameters as possible. Most important,
the parameters should be statistically well behaved.

Two types of models have been generally considered for line-of-sight
microwave radio channels: power series type models'™ and multipath
models.*® A power series model will require a few terms only if the
channel is a multipath medium with a small spread of delays relative
to the reciprocal bandwidth of the channel.? This implies that one
must understand the channel as a multipath medium to understand
the behavior of a power series model. Hence, we have limited our
characterization efforts to multipath models.

The basis for this study is the simple three-ray multipath fade.” If
the fading in a channel can be characterized by a simple three-path
model, the channel will (as shown in Section II) have a voltage transfer
function of the form

H(w) = a[1 — He™/ "], 1)

where the real positive parameters a and b control the scale and shape
of the fade, respectively, 7 is the delay difference in the channel, and
wo is the radian frequency of the fade minimum. The plus and minus
signs in the exponent correspond, respectively, to the channel being in
a nonminimum phase or minimum phase state. Note that, with appro-
priate choices of parameters, this model can be reduced to a two-path
model or a scaled: two-path model, etc.

1t has been shown previously,” and is illustrated in Section II, that
the simple three-path fade overspecifies the channel transfer function
if the delay is less than % B; where B is the observation bandwidth.
The critical value of 7 for a 30-MHz channel is about 5.5 ns, which is
comparable to the mean delay in the channel. As a consequence, unless
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the channel response can be determined to an accuracy on the order
of 0.001 dB, a unigue set of parameters a, b, 7, and f, cannot be
determined for more than half the faded channel conditions encoun-
tered. To avoid this problem, one must suppress or fix one of the
model parameters. Section II shows that the delay, 7, 18 the only
parameter which, when fixed, produces a reasonable model.

While a model with a fixed delay may appear to be a strange choice,
it has all the required characteristics for modeling the channel transfer
function. Figure 1 shows the amplitude of the channel transfer function
of eq. (1) on a power scale and on a decibel scale for r = 6.31 ns. With
r fixed, the response minimum is shifted with respect to frequency by
varying f,. Varying a changes the overall level and & changes the
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(b} MODEL ATTENUATION IN DECIBELS

Fig. 1—Channel model function. H{w) = a[1 — b exp(— j 2 mlf — fo)7}], for 7 = 6.3 ns,
a=0156=07
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“shapeliness.” If the minimum is within the 30-MHz bandwidth of a
channel, the fixed delay model can generate notches with a wide range
of levels and notch widths. With the minimum out of band, it can
generate a wide range of combinations of levels, slopes, and curvatures
within the channel bandwidth. Section VI shows that the model
versatility, with = chosen to be 6.31 ns, is sufficient to characterize a
30-MHz channel in the 6-GHz common carrier band.

Section II provides a brief discussion of the simple three-path fade.
A comparative discussion of the relative merits of the different possible
simplifications of this model leads to the choice of the fixed delay
model.

The data used for detailed evaluation of models were obtained from
a 6-GHz experiment in Palmetto, Georgia, in June 1977. The radio
channel was equipped with a general trade 78-Mbit/s, 8-PSK digital
radio system, and the received spectrum was monitored with a set of
24 filters with bandwidths of 200 kHz spaced at a 1.1-MHz separation
across this channel. During fading activity, the received power of each
of these frequencies was measured five times each second, or once
every 2 seconds, depending on how rapidly the channel was changing;
sampled power, quantized in 1-dB steps, was recorded by the MIDAS
system.* The data base used for this study consists of approximately
25,000 scans representing 8400 seconds of fading activity; about 8700
scans were recorded during periods when the equipment was indicating
errors:. These data represent about 60 percent of the fading activity of
a heavy fading month; therefore, the derived statistics must be viewed
as provisional and subject to some modification as additional data are
processed. At the very least, the data base is sufficiently large to
indicate what can happen on the channel and to form a basis for
choosing and validating a model.

As described in Section III, the model parameters were estimated
for each scan by fitting the magnitude squared of the transfer charac-
teristic [eq. (1)] to the observed channel shape as characterized by the
power received at the sampling frequencies. Phase is subsequently
derived by assuming the channel is minimum phase. Problems are
encountered in realizing a minimum-phase solution because of quan-
tization noise and the presence of certain channel shapes caused by
large delays. The procedure for handling these difficulties is described.

The statistics of the parameters of the fixed delay model are dis-
cussed in Section IV. Equations providing an idealized description of
the statistics of the parameters of the model are also given here.

In Section V, the determination of the delay difference present in
the channel is considered. In the first subsection, it is demonstrated

R_;‘-l}dultiple Input- Data Acquisition System, constructed by G. A. Zimmerman; see
el 1.
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that, during the observed period of fading activity, the average delay
is 9 ns. A lower bound on the distribution of delay difference for large
delays is developed in the second subsection. A third subsection
provides an example of a channel scan that can best be approximated
by a three-path fade with a delay difference of 26 ns. Fades with at
least this delay and with a more moderate amount of shape (2 dB or
more) were encountered for about 60 seconds of the data base studied.
Thus, one might expect 26-ns delays to be present during about 100
seconds of a heavy fading month.

The presence of such large apparent delays raises questions as to
the accuracy with which the fixed delay model represents the channel.
These questions are addressed in Section VI where the statistics of the
errors in modeling scan fits are described. The errors are small and do
not compromise the usefulness of the model.

Results and conclusions are briefly summarized in Section VIL

. CHOICE OF MODEL

In this section, we provide a brief description of the simple three-
path model and show why it cannot be used to estimate delays when
the delay bandwidth product is less than %. In a comparative discus-
sion, we show why the fixed delay model is the only simplification of
the model that is manageable.

2.1 Simple three-path model

Consider a channel characterized by three paths or rays. The am-
plitude of the signal on each of these three paths, as seen by the
receiver, is 1, a,, and as. The second and third paths are delayed with
respect to the first by 7, and 7, seconds, respectively, where 7, > v,. We
define the simple three-path model by requiring the delay between the
first two paths to be sufficiently small, i.e.,

(w2 — wi)m K 1, (2)

where w; and w,; are the highest and lowest (radian) frequencies in the
band. The complex voltage transfer function of the channel at a
frequency w may be illustrated with a phasor diagram. Figure 2a shows
the phasor diagrams for «, and w. superimposed. By designating the
amplitude of the (vector) sum of the first two paths by «; the angle of
the sum by ¢ = wer — 7, where 7 is equal to 7, the delay difference in
the channel; and the amplitude of the third ray by ab, we obtain the
simplified diagram in Fig 2b.*

* Note that, if the third amplitude is greater than the sum of the first two, we
interchange the assignments of amplitudes @ and ab and obtain a nonminimum phase
fade.

NEW SELECTIVE FADING MODEL 1041



The simple three-path fade cannot be used for a channel modél
because the path parameters lack uniqueness. The basic difficulty is
illustrated by the two superimposed fades in Fig. 3. Note that the
amplitudes of the transfer functions of these two fades match, at

Hiw) =1427e 1971 ag gmiwry

1

H[mﬂ

wWyT =Ty

W2 Ty

(a)

T=72

ab /th_uoh abeag

Hiwg)

[y —wglr

Hlwql

Hiw] = g {1-be~ilw—tglTy
{b)

Fig. 2—Simple three-path fade. (a} Three rays shown. (b) Simplified.

Hy lwg) = Hafws) _
Ve, TR Hy oot = 2, H1—bye=iwr?)

Hzlw) = ag {1-by a~iW72)

H| Im.l = Hz[ldﬂ

Fig. 3—Two degenerate simple three-path fades with w7 = 0.
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midband and at both edges. It has been shown elsewhere’ that fades
matched in this way will be identical in band to within a few tenths of
a decibel at most, and will have almost identical envelope delay
distortion. Given noisy quantized measurements of | H{(w) | over the
band, it is impossible to distinguish between such fades unless we fix
one of the four parameters. Let us consider each of the four possibili-
ties.

2.2 Pseudo two-path fade

If one fixes the amplitude, @, at unity, the simple three-path fade
reduces to a two-path fade with independent control of the frequency
of the minimum of the response. The difficulty with this model, as
may be seen by referring to Fig. 2b, is that it can provide in-band
minima only for |H(w) | < 1 and maxima in-band only for |H(w) | > 1.
In other words, the model cannot match an in-band maximum at an
arbitrary fade level. In addition, it was found that during approximately
half the periods when the radio equipment was indicating errors, the
channel could not be well modeled with a pseudo two-path model.

2.3 Scaled two-path fade

If one fixes the phase, ¢ = wyr — 7, in the simple three-path model
at 0, the fade reduces to a scaled two-path fade. (For a two-path fade,
we require the additional condition a = 1.) This is the most physically
desirable of the reduced three-path models because it may be derived
without recourse to the three-path formalism. Unfortunately, it is
mathematically intractable, particularly when dealing with amplitude
data only. In fitting the model to a given channel shape (in the manner
described in Section III for the fixed delay model), one obtains a
function of @, b, and 7 that must be minimized to obtain the best fit.
Because of the wr term in the exponent of the model, this function has
a local minimum in every interval of 7 of length 0.17 ns, the reciprocal
of 6 GHz. Since the possible range of v extends to about 30 ns, one
may have to perform hundreds of minimizations to find the best fit to
a single channel scan. Even then this “best fit” may have no minimum
phase realization, and there is no known procedure that leads to one.

2.4 Fixed b model

If one fixes the amplitude & in the simple three-path model, the
resulting reduced model has all the mathematical difficulties of the
scaled two-path model and no satisfactory physical interpretation.

2.5 Fixed delay model

It is demonstrated in the remainder of this paper that the fixed
delay model described in Section I is useful and effective in character-
izing the channel.
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Hi. ESTIMATION PROCEDURES

This section describes how the model parameters are estimated from
the channel scans and how realizability difficulties are surmounted.

3.1 Parameter estimation

The channel data consist of a set of 25,000 scans of the ¢hannel
power spectrum. Each scan consists of a power measurement at each
of 24 frequencies at 1.1-MHz spacing across the channel. (Actually,
only 23 frequencies are used since the 19th was inoperative during this
test period). The power measurements are recorded in decibels, and
each must be referenced to the average power level of that frequency
at mid-day. With proper conversion and calibration, the basic data
characterizing a scan are a set of power ratios. We designate the power
ratio at nth frequency by Y., where

Y.=Y(w,) n=12... 24 (3)

We wish to model the channel with a voltage transfer function of
the form given in eq. (1), which we repeat here for convenience

H(w) = a[l — be*/«ok], (1)
Thus our estimate of Y, will be
Y, =} H(w.)|*=a— B Coslw, — w)r, 4
where
a = a(l + b)
B = 2a%. (5)

For convenience, we measure frequency in the units of the frequency
separation of the power measurements. Thus,

we=20f,=2m(11x10°% n=1223,...,24. {6)
If we choose

1

“NOIx 109 (7

T

then
n
nT = 27 —.
wat = 2 (8)

For the fixed delay model, we choose N = 144 which gives a model 7
of 6.31 ns. Thus, the in-band frequencies correspond to n values
between 1 and 24, and the channel transfer function given by the
model ig periodic for n modulo 144, corresponding to a frequency shift
of 144 X 1.1 x 10° = 158.4 MHz.
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The weighted mean-square error between the estimated and ob-
served power is given by

24
E Cn(Yn - Yn)2
E=" : 9)
Y G

n=]1

where the summation skips n = 19 as described above, and where C,
is a weighting applied to the measurement at frequency w.. Since the
original data, from which the ¥,'s were derived, were uniformly quan-
tized on a logarithmic scale, it is appropriate to use a weighting that is
approximately logarithmic. Hence, we use the weighting function

1
Y2

A number of different weighting functions were tested, -but the one
given by (10} is, generally, the most satisfactory.

Estimates of a, b, and f, may be obtained by minimizing the weighted
mean-square error, E. It is shown in the appendix that one may obtain
closed form estimators for a, 8, and f, by substituting eq. (4) into (9)
and minimizing E, first with respect to «, then with respect to 8 (or
vice versa), and last with respect to f,. In the resulting scheme, the
estimator of f,, the frequency of the model minimum, is a function of
data only. The estimators of a and 8 are functions of the estimated f,
and the data.*

After estimates of « and 8 have been calculated, the parameters a
and b of the model are obtained by inverting the relationships given

by eq. (5).
a u:2 1/2
=——|({=) -1 11
b=t [(ﬁ) ] an

g 1/2
a [%:| 3 (12)

It is clear from (11) and (12) that we can realize the channel shape
with the model only if & = 8. This is to be expected. Since | H(w}|* is
a power transfer function, it must be positive for all frequencies, which
is possible only if @ = 8 [see eq. (4)]. Thus, the condition a = 8 allows
us to obtain & minimum (or nonminimum) phase transfer function
whose magnitude squared is the minimum weighted mean-square error
fit to the observed power transfer response of the channel.

* For mathematical simplicity, we actually use an estimator for 8 conditioned on f,,
a, and the data.
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3.2 Application of-estimators

If the procedure described above is strictly applied to the set of
25,000 scans in the data base, one finds that about 35 percent of the
scans cannot be modeled with real values of a and &. A study of these
problem scans revealed that the estimator for f., the frequency of the
fade minimum, was biased for two types of scans. One type is a scan
with little shape, dominated by quantization noise; the other is a
selective channel shape having a steep slope across the band. Both
types of scan are illustrated in Fig. 4. The scan in Fig. 4, which is
almost flat, was fabricated to illustrate the severity of the quantization
problem. The other scan is typical of the more shapely troublésome
scans.

To obtain a good realizable fit to such channel shapes requires
degrading the quality of the fit; that is, moving the parameters away
from the values that minimize the fit error, eq. {9). Given the form of
the estimation scheme, this is easily accomplished by moving the
frequency of the fade minimum, f,,-away from its original “optimum”
value and reoptimizing the remaining parameters to obtain values. of
a and b that are optimum for the new value of f,. Figures 5 and 6
illustrate the results of such a quasi-optimization regarding /. as a free
parameter. They show the fit error E and the values of @ and b as £, is
varied- from its original optimum value: Figure 5 corresponds to the
flat fade in Fig. 4 and Fig. 6 to the sloped fade.

The shapes of the curves in Figs. 5 and 6 are typical of those
obtained when the channel has no minimum in band. The weighted
error in the fit, E, is not very sensitive to the estimate of f;, the

20

~N

22 JUNE 1977

0= 7 22h, 48m, 23.2 5

CHANNEL ATTENUATICN IN DECIBELS

a0 1 l j | | |
-18 =10 -b 0 5 10 15

FREQUENCY MEASURED FROM MIDBAND % 1.1 MHz

Fig. 4—Two channel scans that produce realization difficulties.
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Fig. 5—Locus of weighted fit error and model parameters with f, as a free variable for
flat fade in Fig. 4.

frequency of the modeled fade minimum. The minimum of E is broad
and flat, due to quantization and instrumentation noise in the channel.
The variation of the parameter a with f; is also typically very gradual.
The salient features of the variation of b with respect to f, are clearly
seen in Fig. 6, and are also present and labeled in Fig. 5. As f, is varied
from its original optimum value, b varies from a value of 1 to a value
of 0 in a sideways s-curve with two stationary points, a maximum and
a minimum. Extensive simulations with known channel characteristics
indicate that a good choice of parameters is the set corresponding to
the point where b is locally minimized. To illustrate this point, assume
that the channel shape is that given by the model, with 6.3-ns delay,
f> at 18,5 x 1.1 MHz, ¢ = 0.04, and b = 0.7. One can cohstruct a plot
similar to Figs. 5 and 6 for this simulated fade, with the result shown
in Fig. 7. The curves in this figure illustrate the results cited above, in
that the true value of f, occurs near a minimum value of 5. A better
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Fig. 6—Locus of weighted fit error and model parameters with f, as a free variable for
typical scan in Fig. 4.

choice for the case shown and for others that have been simulated
would be “on the shoulder” between the minimum and b = 1;- however,
such a criterion is difficult to quantify.

To summarize, if the standard routine does:-not provide:a realizable
fit to a scan, one merely varies f,, the position of the minimum, until
one obtains a realizable solution with a value of b that is stationary*
with respect to variations in f,. We recognize that this procedure
introduces additional sources of error into the estimates of the modél
parameters. The errors in a and b are small because b is near a
stationary value and a is slowly varying. The error in f, is also small,

* Since b is & monotione function of a/f, it is only necessary to invert solutions with
stationary values of the ratio, /8.
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usually less than 3 MHz, but is always in the direction corresponding
to moving the minimum nearest to the band closer. We consider the
effects of these errors in Section VI.

IV. MODEL STATISTICS

Applying the procedures described in Section III to the scans in the
data base results in 25,000 sets of values of a, b, and f,. The relative
joint frequency of occurrence of these three parameters may be de-
scribed by the set of distribution functions shown in Figs. 8 to 12. The
distribution of the parameter b is described in Fig. 8 in terms of the
distribution of —20 log (1 — &), which is approximately exponentially
distributed with a mean of 3.8 dB. This distribution gives the time
that b exceeds the value given by the abscissa as a fraction of the time
in a heavy fading month that the rms level in the channel is depressed
by more than 15 dB. For instance, we see that 40 percent of the time

{b)

—20 Log (1-b)

25—
{a)

—20 Log (a}

30—

(£}
45— 107

—5 Log (E)

50 —

55 | 1 | | ]
-10 0 10 20 30 40 50
x 1.1 MHz

FREQUENCY OF MODEL MINIMUM MEASURED FROM MIDBAND

Fig. 7—Locus of weighted fit error and model parameters with f, as a free variable.
For channel given by model with 7 = 6.31 ns, « = 0.04, 5= 07, . = 18.6 x 1.1 MHz.
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Fig. 8—Distribution of &.

when the channel is depressed the value of b exceeds 0.3. It exceeds
0.7 for 4 percent of that time, and 0.99 about 0.3 percent of that time.
The distribution of b can be modeled in the form

20

P(l—b<X)=X81810 o x23 (13)

The distribution of @ is conditioned on b and is approximately
lognormal as shown in Figs. 9 and 10. The mean and standard deviation
of the distributions in Figs. 9 and 10 are plotted in Fig. 11. From Figs.
9 to 11 it is apparent that a and & are almost independent; however,
less shapely fades tend to occur at less depressed values. We note that
shape occurs when the average depression is 20 to 25 dB,* that the

* The value of a corresponds to average power level over a large frequency span and
not strictly to the average power in a narrowband channel.
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Fig. 9—Distribution of a conditioned on the value of b for —20 log {1 — &) less than
8.5 dB.

average depression is near 25 dB for b greater than 0.7, and that it falls
off gradually io 15 dB for small b. The distribution of A = —20log a is
conditioned on b and may be modeled as

Y - Aa( b)
5 ¥
where P is the cumulative distribution function of a zero mean, unit

variance, and Gaussian random variable, and A.(?) is the mean of A
for a given value of b as given in Fig. 11. We see from Fig. 11 that the

P(A>Y)=1—P[ (14)
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standard deviation of A may be taken as 5 dB regardless of the value
of b; the variations near —20 log (1 — &) = 20 are due to small sample
problems.

Figure 12 shows the time during which scans had f; in 4 X 1.1-MHz
frequency intervals. It is, in effect, an estimate of the density function
of the distribution of £, and is, consequently, quite noisy. The maxima
near + 30 x 1.1 MHz from the center of the band are due in part to the
movement of estimates of £, to achieve realizability. While, on physical
grounds, one would expect f, to have a uniform distribution, the fixed
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delay model is decidedly not a physical model. Consider a simulated
set of simple three-path fades having a uniform distribution of f,, fixed
values for a and b, and a delay 7, fixed at a value other than 6.31 ns.
This set of fades will engender a nonflat probability density function
for the f,’s obtained in fitting to the 6.31-ns model. The probability
density function is flat within the band regardless of the fixed delay of
the set of simulated fades; however, it will more nearly resemble that
shown in Fig. 12 if the delay of the set is greater than 6.31 ns than if it
is less than 6.31 ns, In short, Fig. 12 is characteristic of a channel with
a considerable fraction of delay differences greater than 6 ns.

Based on Fig 12, we approximate the probability density function of
fo by a two-level function. Note that £, is defined on an interval of
length 1/7, where 7 is 6.3 ns the delay of the model. Thus, with f,
measured from the center of the band, the probability density function
for f, may be approximated by

br 1
- lel=—
3 47
prife) = ; 3 (15)
T
- —_— < =,
3 47 |fol 27
30
s MEAN, Ay
20
w
)
w
@ 50
o]
[u]
s
STANDARD DEVIATION
5 —
0 | I | I N
0 ) 8 12 15 20 24

~20 Log [1-b}

Fig. 11—Mean and standard deviatien of the distribution of —20 log a as a function
of —20 log {1 — &).
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Fig. 12—Time that model parameter, f., was in intervals of width 4 x 1.1 MHz.

An extensive examination of various conditional distributions has
established that there are no other obvious and pervasive dependencies
among the statistics of the parameters.

V. CHANNEL DELAY DIFFERENCE

This section presents some results obtained in estimating the chan-
nel delay difference. Some techniques described here are used in the
error analysis in Section VI. Three topics are considered in this section.
First a simple method is presented of estimating the average delay
spread in the channel. A second subsection shows that the distribution
of large delays (larger than 10 ns) can be obtained for a simple three-
path fade model. The delay distribution is shown to be consistent with
the estimate of average delay. A third subsection illustrates the prob-
lem with an observed channel shape that can be matched most
successfully using a simple three-path model with a delay of approxi-
mately 26 ns.

5.1 Mean delay difference in the channel

The mean delay difference of a channel that can be characterized by
a simple three-path model is easily estimated. Consider a fade with a
delay, . If f,, the frequency of the minimum, is uniformly distributed,
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the probability that such a fade produces a minimum in a band B Hz
wide is equal to the ratio of the bandwidth to the spacing of the
minima, or

—= Br. (16)

If p(re) A7 is the fractional number of fades having delays between (£
— 1)A7 and £ A7, then the fractional number of fades having a minimum
in band will be Py, where

Prnin = Z BTkp(Tk)AT = BT (17)
&
and
T Z Tkp('rk)AT = I Tp(‘r)d'r_ (18)

It follows from eq: (17) that one may estimate the mean delay, 7,
from a knowledge of Pri,, the fractional number of scans having a
minimum in a band of width B. Since any method of determining P,
is acceptable, consider estimates of P, from the parameters estimated
using the fixed delay model. The method of estimating the frequency
parameter in the model involved moving null positions of some fades
that had out-of-band minima. These fades can be excluded by using
only the central two-thirds of the band in estimating 7. Of the 24,920
scans in the data base, 3974 had minima between the 4tk and 20tk
frequencies. Hence,

_ [ 3974 1
T {24920} BxLIx10° - m (19)

One might argue that the mean delay should be estimated for a
more carefully screened set of scans. Table I shows the mean delay
estimates obtained from scan populations qualified by having the
estimate of the model parameter a in a given 5-dB intervai. Table II

Table | —Mean delay for scans selected by value of
parameter, a

—20 Log a, dB Number of Scans Scans ‘EithdMin' in Delay, 7, ns

BT

0-5 101 31 174
5-10 726 235 18.4
10-15 4299 875 116
15-20 6891 1161 9.6
20-25 7644 906 6.7
25-30 4184 606 8.2
30-35 1019 159 8.9
All 24920 3974 9.1
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Table ll—Mean delay for scans selected by value of
parameter, b
Seans With Min. in Delay, 7, ns

—~20 Log 1-6, dB Number of Scans Band
0-2 10,442 1186 6.5
2-4 7040 1712 13.8
4-6 3721 538 82
6-8 1474 191 7.4
8-10 892 118 7.5
10-12 527 68 7.3
12-14 282 28 5.6
14-16 190 21 6.3
16-18 146 46 17.9
18-20 99 32 18.4
All 24920 3974 9.1

shows mean delay estimates qualified by the model parameter b, which
specifies the shapeliness of the fade.

With several exceptions, the estimated delay spreads given in Tables
1 and II are reasonably constant. One exception is seen for large values
of b (—20 log 1 — b greater than 16). This is consistent with a channel
for which large differential attenuation across the channel is more
likely to occur when long delays are present. The existence of such a
correlation should not be surprising. The other exception is the large
delays estimated for small values of & and for values of a between 0
and 10.dB. We provide strong evidence of the existence of such a class
of fades in the next subsection. The existence of this subclass of fades
suggests that they have a different physical source than the other
fades in the population.

5.2 Distribution of deiay difference

To further enhance our knowledge of the distribution of delay in the
channel, the data base was processed to extract a delay estimate.
Recall that, for the fixed delay model, parameter estimates are chosen
to minimize the weighted fit error [ E in eq. (9)] for a given fixed 7.
The present calculation was performed for a set of different values of
r and the value which preduced the smallest weighted fit error and
corresponded to a realizable fade was designated as the delay for that
scan if it met certain qualifications.

Because of the degeneracy in the simple three-path model, changing
the delay in the fixed delay model will not appreciably improve the fit
for any scan that can be well approximated by a fixed delay of 6 ns or
less.” In performing the optimum delay calculation, the weighted fit
error was minimized for a predetermined set of delays; the differences
between adjacent delay values were chosen to be approximately 15
percent. A given scan was assigned a delay different from 6.3 ns only
if the third best value of the weighted fit error was at least 0.1 dB
worse than the best value. (We use the third best value because we
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must examine three values to detect a minimum.) This criterion sets
a threshold on the acceptable sharpness of the minimum in the fit
error with respect to changes in delay.

The selection criterion was chosen, after several iterations, to insure
regularity in the estimates derived from successive scans. With the
chosen criterion, the scans that were assigned a new delay occurred in
groups of consecutive scans and may be said to constitute fading
events. During any of these events, the delay was consistent in that
indicated delays were within +15 percent. If we assume that the
physical channel does not change between scans, we can associate a
time with each scan and plot the distribution of the time periods
during which the characterizing delay was greater than a specified
delay.

A series of such plots, conditioned on the concurrently estimated
value of 4, is given in Fig. 13. The uppermost curve contains the data
derived from all scans which met the selection criterion; its shape is

1000

ALL b

100

b>D.1t5

SECONDS OF DATA CHARACTERIZED BY DELAY GREATER THAN ABSCISSA

Q0.3 | b | 1
0 10 20 30 40 50

DELAY IN NANQSECONDS

Fig. 13—Distribution of optimum delay for simple three-path model, as qualified
by realizability, the sharpness of minimum, and by several values of the model
parameter b.
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dominated by the 627 seconds during which the channel was best
modeled by a delay of 43 ns (the largest delay in the test set) or more,
but had tittle shape (& < 0.115). These characteristics contribute to
the large (18 ns) mean delays noted in the previous subsection for
small values of 4. They may be due to quantization but are apparently
not artifacts of the estimation scheme. Although the origin of this type
of channel defect is currently not understood, it should not trouble
any existing radio system.

It is apparent from the distributions in Fig. 13 that very few scans
qualified for a new delay with delays less than 10 ns. Consequently,
the distribution should not be trusted for delays less than 12 or 15 ns;
beyond 15 ns, it may be interpreted as a lower bound to the true
distribution. The three curves qualified by the parameter b correspond
to fades with peak-to-peak variability of 2, 3, and 6 dB. (Peak-to-peak
variability is 20 log(1 + b/1 — b), as may be seen in Fig. 1.) If the delay
were exponentially distributed, the distribution of delay would be a
straight line on Fig. 13 and would have the form

P(r>x)=¢*". (20)

Fitting a straight line to the three distributions in Fig. 13 for which b
> 0.115 shows that the average delay decreases with increasing 8. The
corresponding values are 5, 5.5, and 11 ns. Note that this implies that
b and r in a simple three-path model are not independent.

5.3 An example of a long delay scan

To confirm the existence of long delay scans, consider an event that
covered approximately 10 seconds on 22 June 1977, from 23 h, 28 m, 54
8. A representative scan from the middle of this period is shown with
the fit obtained with the fixed delay (6.3 ns) model in Fig. 14a. To
emphasize the consistency of this channel condition, an average of the
channel condition for the central 4.2 seconds (21 scans) of this event
is compared to the selected scan in Fig. 14b.

It is apparent from Fig. 14a that the 6.3 ns delay does not have
enough curvature (delay is too short) to precisely model the channel
shape. Figure 15 shows the same scan modeled by three-path fades
having delays of 22.7, 26, and 30.3 ns. The 26-ns fit is the best; it has
a weighted fit error 0.4 dB better than the 22.7-ns fit and 0.8 dB better
than the 30.3 ns fit. However, the closeness of all three fits illustrates
the difficulties in estimating channel delay differences. Visually, one
would choose the 26-ns model on the basis that the 30.3-ns fit has too
much curvature and the 22.7-ns fit too little.

V1. ERROR ANALYSIS

To verify that the model adequately répresents the transmission
characteristics of the channel, we examine the errors between-the
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Fiﬁ. 14—Scan from 22 June 1977, 23 h, 28 m, 48.6 5. (a) Comparisen with fixed delay
model. (b) Comparison with average of scans from 23 h, 28 m, 46.4 s to 23 h, 28 m,
50.4 s

channel as observed and as modeled. In this section we consider the
statistics of the rms errors and the maximum errors.

6.7 RMS errors

A useful measure of the quality of the fit of the model to a given
channel scan is the root-mean-square value of the decibel error at each
of the sampled frequencies. Denoting this error as E,,,., we have

23 o)

ne 19

] 2 12
Eopy = [— Y (dB error atfn)z] . {21)

The model parameters were estimated, as described in Section ITI, to
minimize the error, E, which is a weighted sum of the squares of the
power differences at each frequency [see eq. (9}]. The weighting was
chosen [eq. (10)] so that the error E would approximate the error E .
as given by eq. (21).* Indeed, one may show directly that the two
expressions are equivalent as long as

[1—%]« 1for all n. (22)

* Note that the parameter estimation problem cannot be solved in closed form by
minimizing E,..

NEW SELECTIVE FADING MODEL 1059



36—
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a = 0.0123, b= 05228
" f, = ~1t.16x 1.7 MHz

45 ] | 1 |
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FREQUENCY MEASURED FROM MIDBAND -1 MHz

Fig. 15—Model fits to long delay scan for three different model delays.

As we have seen in Fig. 14, this inequality is not always satisfied.
Consequently, in using En., as a standard of comparison, we are
evaluating not only how well the model fits-the observed channel, but
also how well we have chosen the parameters to make the match.

The error E,., is a desirable quantity to work with because we can
estimate its distribution under the assumption of perfect matching.
We observe that if the decibel error were Gaussian with unit variance
and zero mean, 23 EZ,, would be a x” variable with 20 degrees of
freedom (to account for the three parameters estimated per scan).
Observations of a simulated channel with the transmitter and receiver
back-to-back indicate that the instrumentation errors are approxi-
mately Gaussian with a standard deviation, ¢, of about 0.65 dB.
Observations of the channel at mid-day with the channel nominally
flat and unfaded indicate that the standard deviation of the errors is
between 0.68 and 0.73, varying frequency to frequency and day to day
by a few hundredths of a decibel. Hence, if we enter a table of the x*
distribution, @ (x*| 20), with

23 Ep
af

2

X (23)

?
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we can determine the distribution of E,., under the assumption of
perfect matching.* This distribution is shown as a reference on
Figs. 16 and 17. It is indicated by a solid curve labeled “ideal” for o,
= 0.70 and by o’s for o, = 0.75.

Figure 16 presents the distribution of the rms error for two scan
subpopulations using the fixed delay (6.3 ns) model. The subpopulation
of the distribution labeled “standard” consists of all scans that could
be modeled directly; the distribution labeled “modified” shows the rms
error distribution for all scans which required an adjustment of the
frequency of the modeled fade to achieve realizability. Figure 17 shows
the distribution of the rms error for the composite of all samples using
the fixed delay (6.3 ns) model. The distribution labeled simple three-
path model indicates the error distribution that was obtained when
the scan fitting allowed unqualified variation in model delay to achieve
the best fit. That is, the calculation described in Section 5.2 was
performed and the results were qualified only on the basis of realiza-
bility.t

In each case described above, the mean value of the rms error is
close to the median value. For the two subpopulations shown in Fig.
16, the calculated mean fit errors correspond to ¢: values of 0.76 and
0.85 dB, or the errors are about 0.09 dB larger when a realizable fit is
obtained by varying the frequency of the model minimum. Comparing
the composite distributions in Fig. 17, we find that the mean error in
the fixed delay (6.3 ns) model corresponds to o; = 0.78 dB or about
0.08 dB higher than that observed when the channel is quiescent. The
simple three-path model has a distribution of rms error that very
nearly matches the ideal distribution (with 19 degrees of freedom) for
o; = 0.75. This is consistent with the instrumentation error imputed to
the standard distribution in Fig. 16 and is indicative of the instrumen-
tation error in the presence of multipath fading. It is exceptionally
good considering that the data are obtained from time sequential
measurements on a dynamically changing channel. One concludes that
the modeling error is negligible for the simple three-path model. For
the fixed delay model under the assumption that the instrumentation
and modeling errors add in quadrature, the modeling error has a
tolerable value on the order of 0.2 dB. That is,

[(0.75)% + (0.2)*]'* = 0.776.

The tails of the distributions in Figs. 16 and 17 for large errors are
of considerable interest. The tails near small values are of little

* From the central limit theorem, we know that E?7,, will be approximately Gaussian,
as is x°, regardless of whether or not the measurement errors are precisely Gaussian.

i lﬁote that although one cannot always reliably localize the values of the parameters
in fitting with the simple three-path model (see discussions in Section 2.1 and Ref. 7),
the error in the fit is always well defined.
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Fig. 16—Distribution of rms fit error for two scan subpopulations with fixed delay
{6.3 ns) model.

consequence; they are distorted by quantization because one cannot
associate ahy error with the 12 flat fades included in the data base.
The deviation of the distributions from the ideal distribution at large
errors is significant.

The large deviation of the modified fits in Fig. 16 reflects the failure
of the fixed delay (6.3 ns) model to accurately fit the long delay fades.
The tail deviation from ideal is modest down to about the 0.5 percent
level, corresponding to a few tens of seconds per month. For compar-
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Fig. 17—Distribution of rms fit error for composite population with fixed delay and
simple three-path models.

ison, we note that the rms error of the fit shown in Fig. 14a is 2.3 dB;
this was the worst fit encountered for the fixed delay (6.3 ns) model.
However, even in this case the model failure is hardly describable as
severe. The model of the channel is depressed by 40 dB and has 9.5 dB
of gain slope; the actual channel is depressed by 39 dB and has 11 dB
of gain slope. Also, we note that the 6.3-ns delay model has the
response minimum at about the same frequency as the best represen-
tation, the 26-ns delay model shown in Fig. 15.
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The deviation of the tail of the error distribution for the three-path
fade (Fig. 17) reflects the fact that there are fades that even this model
has difficulty in fitting. An example of such a fade is shown in Fig. 18
along with the fit provided by the fixed delay (6.3 ns) model. The same
rms error (1.6 dB) is obtained for all values of model delay between
0.05 and 9 ns; the fit degrades for larger delays. Either more than three
rays are needed to describe the channel shape in Fig. 18, or the channel
is so depressed that the amplitudes in the notch are distorted due to
closeness to the noise level in the measuring equipment. The scan
shown in Fig. 18 is one of three similar scans and has little statistical

significance.

6.2 Maximum errors

Another type of error that can be used to judge the guality of the fit
of the model to the channel is the worst-case error. That is, after fitting
to each scan, one records the magnitude of the largest difference (in
decibels) between the observed channel shape and the shape calculated
from the model. The following paragraphs consider the distribution of
these worst-case errors.

Asin the preceding subsection, we can calculate an ideal distribution;
however, the ideal distribution is not as realistic in this case since it is
strongly dependent on the tails of the distributions of the individual
measurement errors. We assume that each power measurement had

20

25—

30—

a5 848 x 1.1 MHz

CHANNEL ATTENUATION IN DECIBELS

Eqms = 1.6dB
E max = 3.9 0B

4

45 I 1 L | I =
-15 -10 —5 1] 5 10 15
x 1.1 MHz

FREQUENCY MEASURED FROM MIDBAND
Fig. 18 —Severe fade observed on 22 June 1977 at 22 h, 29 m, 8.6 s.
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an error in decibels that was Gaussian, with zero mean, a standard
deviation of v20/23 o, to account for the three parameters estimated
from the 23 observations per scan,* and that the errors are independent
frequency to frequency. If the probability of any one measurement
having an error less than x is denoted by P:(x), the probability that all
23 have values less than x is

Pu(x) = [Pi{x)]®. (24)

This is the probability that the maximum error 1s less than x, whereas
we want the probability that it is greater than x which we denote
Q2a(x). It follows immediately from eq. (24) that

Quix)=1- [PI(I)]23
=1-[1- Qx> (25)

The distribution given by (25) is used as a reference in Figs. 19 and
20, which show the distribution of the maximum error for the same
cases as in Figs. 16 and 17. Since the tails of these distributions are
well behaved for larger errors, the distribution of the maximum errors
is apparently dominated by the instrumentation noise. That is, if we
use for the standard deviation of the measurement noise the value
obtained from the mean of E,,. for one of these cases (as given in
Section 6.1), the resulting worst-case error distribution calculated with
eq. (25) will closely match the observed maximum error distribution.

VIl. CONCLUSIONS

By analyzing the errors in fitting the observed channel characteris-
ties in Section VI, we demonstrated that the simple three-path fade
model is indistinguishable from a perfect model of a line-of-sight
microwave radio channel.

The simple three-path model was used in Section V to characterize
the channel delay difference. By two different methods, it was shown
that, when there is 3 dB or more shape present in the channel, the
average delay difference is between 5 and 8 ns. We developed a lower
bound on the tails of the distribution of delay difference. From these
results, which are shown in Fig. 13, we observe that a differential
channel attenuation in-band of 3 dB or more may be due to delay
differences as great as 43 ns. In another dimension, one would expect
to see differential attenuation of 3 dB or more in-band due to delays
greater than 20 ns for at least 70 seconds in a heavy fading month.
This is comparable to the time the channel attenuation at a single
frequency exceeds 40 dB.

* For comparisons with the three-path model, it is appropriate to use v19/23a:.
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Fig. 19—Distribution of maximum (dB) fit error for two scan subpopulations with
fixed delay (6.3 ns} model.

From the error analysis in Section VI, we also conclude that the
fixed delay (6.3 ns) model is a very good approximation to the channel
for all observed conditions. This conclusion is further substantiated by
Figs. 14 and 18, which show the scans for which the fits with the fixed
delay model exhibited the largest rms fit error (2.3 dB} and the largest
maximum error (3.9 dB), respectively. The fixed delay model is pref-
erable to the three-path model for channel modeling because it requires
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only three parameters, and these can always be uniquely determined
from a channel amplitude scan.

The statistics of the parameters of the fixed delay model as described
in Section IV and shown in Figs. B to 12 provide the means of
statistically generating all the channel conditions that one expects to
see on a nominal hop channel operated at 6 GHz. If one determines,
by laboratory test, the parameter values that will cause a particular
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error rate in a digital radio system, one can easily calculate the time
during a heavy fading month that the error rate will equal or exceed
this critical value. A companion paper describes the laboratory test
and the required calculations.®

Future work will be directed toward verifying the model and model
statistics with additional fading data obtained both at 6 GHz and at 4
GHz. Using coherent data obtained in 1973, it will be possible to
determine the extent to which the channel is actually a minimum
phase channel.
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APPENDIX
Estimation of Parameters

The problem of estimating the parameters e, §, and f, in Section III
is equivalent to the problem of determining the first three terms in a
subharmonic Fourier series expansion of a function in the frequency
domain. Since such expansions are not standard, we provide a complete

description of the methodology here.
From eqs. (4) and (9), we may express the weighted mean-square
error between estimated and observed power as*

= ¥ Ca(Yn — a + B cos(wn — wo)T)?

E S C. (26)
For simplicity, we use a normalized weighting function, d,, defined by
do = ZC(';H (@)
so that
Sdy=1 (28)
In terms of the normalized weighting we may write (26) as
E=%diY,—a+ 8 cos{w, — wo)t)? {29)

* Throughout this appendiz, all sumimations are taken over all vatues of n correspond-
ing to all frequencies observed in a scan.
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or in expanded form as
E=Yd.Yi+ o+ T dncos’(wn — wo)7
+ 28 Y d,Yaicos{wn — wo) 7
— 2aB Y, dncos{wa — wo)7 — 2a ¥, d,Y, . {30

The error E is a minimum when «, 8, and w, are chosen so that the
partial derivatives of E with respect to a, §, and wp are all equal to
zero. Setting the partial derivative of eq. (30) with respect to 8 equal
to zero and solving for 8 gives

g = ay da.cos(wn, — wo)T — 3, dnYacos{wa — wo)T
- ¥, dncos*{w, — wo)7

(31)
Substituting (31) into eq. (30), we find Ej, the error minimized with
respect to B8, as

1
Y, dncos®(wn — wo)T

E3=2dﬁY?;+

{a[ T ducost{wn — wo)T — (T dacos{w, — wodt)’]

— 2o [(T dn Yo)(Y, dncos(wn — wo)7)

— (Y drcos{ws, — wo) THY, daYacos(wn — wo)7}]

— (T, duYncos{wn — wo)7)’}. (32)

Minimizing this with respect to « requires that we set the partial
derivative of Ez with respect to « equal to zero. This gives

(¥ d.Y) (Y dacos®(w, — wolr) —

- (¥, drcos{wn — wo) THY, dnYrcos(wn — wo)7)
¥ dncos®(ws — wo) T — (Y, dacos{wn — wo)7)?’

{33)

Substituting (33) into (32) gives E,s, the error minimized with respect
to both « and B, as
Ep=%d,Y:- V*
a (Y da( Y, — Y)cos(w, — wo)7)’
¥ d,cos*{(w, — wo)T — (¥ dncosliwn, — wo)T)?’

(34)
where
7 =3 d.Y.. (35)

We note that we could have obtained this same expression by first
minimizing with respect to « and then with respect to 8; however, one
obtains different but equivalent expressions for « and £, depending on
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the order of differentiation. We develop the alternative expressions for
a and £ in the following paragraphs.

Let us define some new quantities to simplify these expressions. Let
the difference between the observed power and the weighted mean
power in the band be designated by X.; then

X, =Y, -¥d.Y.=Y,- Y. (36)
If we also define the quantities
X. = ¥ dnX.cos wat, (37)
X, = ¥ duXasin w,r, (38)
D, =Y d.cos®(w, — wo)7, (39)
D; = ¥, drcos(wa — wo)T, _ (40)

we may rewrite a and £ from eqs. (31) and (33) as

o [Xccos wor + X,sin wor]Ds

a=Y D.— DI (41)
and
f e Di {{a — T)D,y — (Xocos wor + Xesin wor)) . 42)
Using (41) to eliminate a from (42), we obtain
_ Xccos wor + Xesin wor
B - Da . D% (43)
We may use (43) in (41} to obtain
a=Y+ ﬂDb (44)

Equations (43) and (44) are thie estimators that would have been.
obtained if the order of taking partial derivatives in the preceding
development had been reversed. It is apparent that, after one has
estimated w,, one may estimate « and £ by using either eqs. (41) and
(42), (43) and (44), or eqs. (41} and (43).

The estimate of wo that minimizes the weighted error is obtained by
minimizing Kz, with respect to wo. Using eqs. (35) to (40) in eq. (34),
we write
[X.cos wor + X,sin worJ?

D, - D} ’

To see the explicit dependence of Eg, on ws, we define the following
quantities

de = ¥, dncos’wat — (¥ drcos wat)?, (46)

Ep =Y d. X2 - {45)
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ds =Y dnsin’w,t — (¥ dasin wat)?, (47)
des = ¥, dn0S wa7 8iN w,7 — (¥ drcos wat)H(Y dnsin war). (48)
Substituting these into (45) gives

[X.cos wa.T + X.sin wor ]’

Ep=Y d, X2 - - - .
b= 2 dnXa d.CO8> WoT + 2.sCOS woT 8iN wor + d,sin’wor

{49)

Setting the partial derivative of E4, as given by (49), equal to zero
gives the estimator for wo as

(50

woT = Tanl|:dr:Xs - dcsxc}.

daXc - dcaxs

Obviously, two values of wor in the interval (—=, #] will satisfy
eq. (50). One of these, the principal value, lies in the interval (—=/2,
7/2], the other differs from the first by +#. We shall show that the two
solutions are equivalent, but that our chosen solution is unique.

If we replace wor by wor + 7 in eqs. (39), (40), (43), (44), and (45), we
see that D, and 8 change sign and « and Eg, are unchanged. Since we
want the solution with 8 greater than zero, we take the principal value
solution to (50) if the resulting estimate of 8 is positive. Otherwise we
add or subtract = to obtain a positive value for 8 and a value of wer in
the appropriate interval.

While we could substitute the result of eq. (50) into (49} to obtain
the minimum error, E.p.,, it is more generally useful to evaluate E.p
for the optimum wo. This is especially true when we do not use the
optimum wo, as given by eq. (50). The simplest form for E.s is obtained
by substituting (43) into (45) to give

Ey=7 d.X%— (D.— DHB (51)

These equations were implemented, with the modifications de-
scribed in Section 3.2, to obtain all the fits described in this paper.
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Digital Radio Qutage Due to Selective
Fading—Observation vs Prediction From
Laboratory Simulation
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A statistical model (introduced in a companion paper) of fading on
a radio path is used with laboratory measurements on a digital radio
system lo estimate the outage due to multipath fading, where outage
is the time that the bit error rate (BER) exceeds a threshold. Over the
range of BER of interest (10°° to 107°), the calculated outage agrees
favorably with the outage observed during the period for which the
fading model was developed. It is further shown that the calculated
outage, when scaled to a heavy fading month on the basts of single-
[requency, time-faded statistics, agrees equally well with the outage
observed on the same path during a heavy fading month. The agree-
ment between measured and predicted outage substantiates the se-
lective fading model. The prescribed laboratory measurements char-
acterize the sensitivity of the radio system lo selective fading. Thus,
the methodology provides a useful basis for comparing the outage of
alternative realizations of digital radio systems.

I. INTRODUCTION

Present interest in using high-speed common carrier digital radio
has precipitated a need for estimating the performance of such systems
during periods of selective (multipath) fading. This paper describes a
method of characterizing a digital radio system in the laboratory which
allows the outage to be accurately estimated. For a digital radio
system, outage requirements are stated in terms of the number of
seconds in a time period (usually a heavy fading month) during which
the bit error rate (BER) may exceed a specified level; typically, 1072 or
107" is appropriate to voice circuit application.

The method is based upon a statistical channel model® developed
from measurements on an unprotected 26.4-mile hop in the 6-GHz
band in Palmetto, Georgia in 1977 using a general trade 8-PSK digital
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radio system as a channel measuring probe. The modeled fading
occurrences were scaled to the basis of a heavy fading month using the
occurrence of time faded below a level at a single frequency as the
means of calibration. The bit error rate performance of the digital
radio system was measured during the time period used for channel
modeling and for an extended period corresponding to a heavy fading
month. This same radio system was later subjected to a measurement
program in the laboratory using a multipath simulator which provides
a circuit realization of the fading model. The measured results are used
with the channel model to determine the occurrence of channel con-
ditions which will cause the BER to exceed a given threshold. Compar-
isons on the basis of the modeling period and a heavy fading month
show good agreement between calculated and observed outages for
BERs between 107 and 1072,

The properties of the fixed-delay channel model are reviewed briefly
in Section II as a basis for describing the measurements and for the
subsequent outage calculations. This three-parameter channel model
is realized in the laboratory by an I1F fade simulator. The simulator
and its use in obtaining the necessary laboratory data are described in
Section III. The procedures to be followed in calculating outage times
for a given BER are described in Section IV. Calculated and observed
outage times are compared in Section V. Conclusions are provided in
Section VI,

Il. MODEL DESCRIPTION—METHODOLOGY

It has been demonstrated® that the complex voltage transfer function
of a line-of-sight microwave radio channel is well modeled by the
function

Hi{w) = a [l — be/™0] (1)

with + fixed. A 6-GHz channel (30-MHz bandwidth) has been charac-
terized statistically by the model with-7 = 6.3 ns. Such a channel has
a power transfer function given by

| H(w)|? = a*[1 + b* — 2b cos(w — wo)r] 2)
and an envelope delay distortion function, i.e., the derivatjve of the
phase of H{w) with respect to w, given by

br({cos{w — wo)r — b)

1+ &% — 2b cos{w — wo) T’ @

D{w) =

In the following paragraphs, we summarize the properties of the model,
the statistics of the model parameters, and the measurement objec-

tives.
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2.1 Fixed delay model

A plot of the attenuation produced by the fixed delay model of eq.
(1) is shown in Fig. 1. Since the delay is fixed at 6.3 ns, the spacing
between nulls of the response, 158.4 MHz, is much larger than the
channel bandwidth. The parameters a and & control the depth and
shape of the simulated fade, respectively. The parameter fo(=wo/2)
determines the position of the fade minimum or notch. Both the notch
frequency, f,, and the response frequency, f, are measured from the
center of the 30-MHz channel for convenience.

The model function of eq. (1} may be interpreted as the response of
a channel which provides a direct transmission path with amplitude
and a second path providing a relative amplitude & at a delay of 6.3 ns
and with a phase of wor + 7 (independently controllable) at the center
frequency of the channel. This interpretation is represented in Fig. 2
by a phasor diagram at w = 0, the center frequency of the channel.
Varying the frequency, w, over the channel bandwidth (30 MHz)} moves
the angle of the interfering ray through an arc of about 60 degrees (2m
% 30 MHz X 6.3 ns = #/3), centered at the position shown. This
diagram is useful for understanding the fade simnulation; it also provides
an alternate means of describing the position of the notch. The notch
position may be specified by its frequency, f,, or by ¢, the angle of the
interfering path at the center of the channel.

—20 Log |H{ed)|

25

CHANNEL
BANDWIDTH

35 L ] I 1
-100 -5

o
8
8
g

200

Fig. 1—Attenuation of channel model function, H{w} = a[1 — & expl(—Jlw — wol7}], for
r=63ns,a=0156=07
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{H{wl @ = 20 115 MR

f=—15 MHz

Fig. 2—Phasor diagram of a modeled fade, ¢ = 45°, = 0.7.

From Figs. 1 and 2, or eq. (1), it may be seen that varying a changes
the overall level and varying b changes the shapeliness of the modeled
fade. Furthermore, if the minimum is within the 30-MHz channel
bandwidth (|¢|< 30°), the fixed delay model can generate notches
with a wide range of levels and notch widths. With the minimum out
of band, it can generate a wide range of combinations of levels, slopes,
and curvatures within the channel bandwidth.

2.2 Model statistics

The statistics of the model parameters were obtained from a selected
data base during which heavy fading activity was observed.® The
distribution of b is best described in terms of B = —20 log(1l — b).
Figure 3 shows the distribution of B and the least-squares straight line
fit to the distribution over the region where it best represents selective
fading—between B values of 3.and 23 dB. The channel is described by
B greater than 23 dB for less than 0.15 percent of the observed time
which makes the distribution less certain beyond this point. At the
other extreme, during the periods of time when there is little or no
selective fading, the channel is characterized by values of B less than
3 dB. Thus, the fitted line represents a lower bound on the distribution
for B less than 3 dB. Since the fitted line has an intercept of 5400
seconds, we may model the fraction of 5400 seconds during which B
exceeded a value X by the probability distribution

P(B>X) = e %% (4)
Thus the probability of finding a value of B between X and X + dX is

pe(X) dX = :_1: Rhe (5)

g ¢
The distribution of a is lognormal with a standard deviation of 5 dB
and a mean that is dependent on B (or b). Hence, the probability that
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Fig. 3—Distribution of B for madel data base periad.

= —20 log a has a value between Y and Y + dY is given by

pa(Y) dY = 4y, e ¥~ Al BIF/50 ©
52n
The relationship between Ay, the mean of the distribution, and B is

given in Fig. 4.

The distribution of £, is found to be independent of A and B. It is
usually simpler to work with ¢ rather than f,. The two variables are
simply related in that ¢ is defined on the interval (—«, «) and a 2.5-
degree change in ¢ corresponds to a 1.1-MHz change in f,. For the
fixed delay model, the variable ¢ has been found to have a probability
density function that can be described as uniform at two levels, with
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Fig. 4—Mean and standard deviation of the distribution of A = —20 log a as a
function of B.

values less than 7/2 being five times more likely than values greater
than #/2. Thus, we have the probability density function per degree
as:

1

216 |¢| <90
psld) = (N
1 (o]
1080 90° =< || = 180.

The functions in egs. (5) to (7) can be used to determine the
probability of finding a, b, and f, in some region of a-b-f, space. This
probability can be converted to number of seconds in the observation
period by multiplying by 5400 seconds. To convert this probability to
the number of seconds in a month requires scaling the data base. The
scaling may be obtained from Fig. 5 which shows, for several frequen-
cies in the band, the time during the model data base period that the
channel was faded below a given level. Distributions are shown for
average power in the band and for power at selected frequencies at the
center and near the edges of the radio channel. (Frequencies indicated
are at IF where the center frequency is at 70 MHz.) For the path used,
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Fig. 5—Amplitude distributions for model data base period.

one expects the received voltage (single frequency) relative to midday
average to be less than L for 72.5 x 10* L? seconds in a month.” For the
data base used, the fading is best described by 48 X 10* L* hence, the
data represent % of a fading month. To obtain outage on a seconds-
per-heavy-fading-month basis, the probabilities calculated with eqs.
(5) to (7) must be multiplied by 5400 x 1.5 or 8100 seconds,

2.3 Qutage estimation

The fixed delay model described above can be simulated with an
equivalent circuit laboratory measurement to determine the equip-
ment response to multipath fading. Conceptually, one determines
critical values of A and B for which a specified error rate is achieved
for each fade notch position. In practice, it is difficult to maintain a
constant BER; it is more expedient to fix b and vary the carrier-to-noise
ratio (z} while plotting the BER. From the resulting curves, one may
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compute critical contours of A and B for each prescribed notch location
and BER. Using eqs. (5) and (6), the probability that A and B lie on the
high error rate side of a given critical contour may be calculated.

By repeating this calculation for a uniform set of notch positions
and using (7) to determine the probability weighting given to each-and
summing, one may estimate the probability of all selective fades that
produce a BER exceeding the prescribed one. Multiplying this proba-
bility by 5400 gives the outage time expected over the data base period;
multiplying by 8100 gives the expected outage time per heavy fading
month.

The following section describes the laboratory measurement; Sec-
tion IV describes the reduction of the measured curves and parameters
to outage times.

. LABORATORY MEASUREMENTS

Figure 6 illustrates stressing of a digital radio system by means of an
1F fade simulator. The simnulator, which is inserted after linear IF
preamplification but before any high-gain amplification, shapes both
the desired signal and the effective received noise. It is necessary to
operate the simulator at a sufficiently large input carrier-to-noise ratio
that the concomitantly shaped noise at its output remains a negligible
contributor to degraded system performance throughout the operating
range of interest.

Within its restricted frequency range of operation, the IF simulator
is adjusted to achieve those specific shapes implied by Fig. 2. Although
the measurements could have been made using an RF fade simulator,
the choice of an IF simulator was based primarily upon considerations
of signal and noise levels, and the repeatability of .adjustments. The
following section describes an IF shape-stressing measurement in the
minimum detail necessary to qualify the data collected.

3.1 Representative IF two-path fade stressing measurement

The block diagram of Fig. 7 illustrates an arrangement employing
an IF fade simulator and an 1F flat noise source. A pseudo-random test

RF TRANSMITTER, RF — IF MAIN
M ATOR »{ DOWN COVERTER, [—af  ouF FADE »|  RECEIVER,
) IF PREAMPLIFIER DEMODULATDR
=
DATA PATTERN BER TEST
GENERATOR i RECE!VER

Fig. 6—1r fade stressing.
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pattern modulates the 6-GHz radio transmitter whose output is nom-
inally 5 watts (@, in Fig. 7). The output spectrum is usually shaped by
a bandpass filter following the microwave power amplifier to comply
with FCC regulations.

To enable back-to-back operation of the transmitter and receiver of
a single repeater which normally operate on different radio channels,
a radio test translator was employed. The translator output power was
approximately —30 dBm (adjustable, at ®) to simulate the unfaded
received signal level (RSL) observed typically in the field.

Assuming a linear RF-IF conversion gain of 20 dB, the signal power
at the input {©) to the 1F fade simulator is —10 dBm. The simulator
incorporates low-noise linear amplification. A reference insertion loss
for the main unfaded ray is 10 dB, including the output power summer.
Hence the maximum desired signal power at the input to the main IF
amplifier (@) is —20 dBm.

Assuming a 30-MHz receiver noise bandwidth and a current-art
receiving system noise figure of 5 dB, the total system noise power is
approximately —95 dBm, referred to the receiver's input port. This
results in a flat receiver noise contribution of —85 dBm at input @ to
the main IF amplifier. Consequently, the maximum attainable carrier
to simulator-shaped RF noise ratio is 10 log (Co/N,) = —20 — (—85) =
65 dB. The noise contributed by the fade simulator amplifiers must
not exceed —100 dBm, to be negligible.

Flat iF noise much larger than the unwanted and shaped system
noise is added artificially at @ and is adjusted in magnitude by a
calibrated attenuator @ to superpose thermal noise degradations upon
the simulated selective fading degradations of the desired signal. One
would ideally measure the added IF noise power in the final predetec-
tion bandwidth of the digital radio system, or twice the Nyquist
bandwidth. It is more convenient in the laboratory to reference carrier-
to-noise ratios to the output of the main 1F amplifier by using the™
precalibrated Acc voltage {assuming that wideband Acc detection is
employed), to measure both the unshaped signal and noise powers.
The carrier-to-noise ratio at the detector would be higher—by the
ratio of the system noise bandwidths that would be measured at the
respective points.

The noise source output in Fig. 7 may be adjusted so that an
attenuator setting of 0 dB @ results in a noise power equivalent to
that of the unfaded signal power (the attenuator is then calibrated
directly in uncorrected Cy/Ny, in dB). As the iFr fade simulator is
readjusted to achieve different prescribed fade shapes, its mean inser-
tion loss may also change. The change in insertion loss is determined
by monitoring the change in signal power at &); the same loss increment
{dB) must be added to the noise attenuator {) to reestablish the 0 dB
reference.
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3.2 IF two-path fade simulator

Figure 8 illustrates splitting the desired IF signal into an arbitrarily
phased, adjustable “main” component and a “delayed” component
fixed in delay (r ns) but adjustable in magnitude. The main component
is further resolved into orthogonal components (inset to Fig. 8) using
wideband networks exhibiting flat gain and well-behaved delay. A
particular sum vector is constructed by adjusting the orthogonal
components to establish a simulated fade notch frequency; in practice,
the phase sense of 0- and 90-degree components are independently
reversible, as indicated by the switches in the figure, for complete
flexibility in notch frequency selection.

The 6.3-ns fixed delay added to the delayed path imparts a phase
shift of 159 degrees at the 70-MHz 1F center frequency. This is shown
built out to 225 degrees, relative to the 0-degree transmission path,
using a 66-degree wideband network of the same type. The delayed
vector is fixed in direction opposite the midrange position of the
adjustable main vector, corresponding to a channel-centered fade (¢
= 0 degrees).

Since 1/7 = 158.4 MHz, a change of 1 degree in direction of the main
vector corresponds to a frequency displacement of the fade notch
location of 0.44 MHz. For ¢ = —45 degrees, the notch location is
displaced 19.8 MHz below the channel center (f, = —19.8 MHz). The
magnitude of the delayed component is then adjusted to achieve the
desired notch depth.

_/—[ },_‘}_\g az

2,‘/7

a= (u1z+n2

1
1

H:' MAIN H DELAYED
a[1-pe~Hwr-0l)
oy
90° COMPONENTS SHOWN
FOR:
- ] 7= 63ns
20 I c T 1/r = 158.4 MHz

70 MHz 2 o= 15

INPUT [ [JH f,= 15/360 x 158.4
'—" = 66MH
DUTPUT 6.6 MHz

ab

66° r S <,
J
168° FOR 6.3 ns

DELAYED

Fig. 8—1F fade simulator—conceptual block diagram.
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3.3 Digital radio performance stressed by in-band selectivity and thermal
noise

The radio equipment was measured at uniformly spaced notch
frequencies separated by 4.4 MHz (A¢ = 10 degrees). To fully charac-
terize a period of variation in ¢, or f,, one would need to make 36 sets
of measurements. Ideally, half may be omitted because of symmetry.
For given values of A and B, the same error rate should obtain for a
notch at a given frequency displacement above or below the channel
band center. Variations in B ought not to have a significant effect for
|¢| greater than 90 degrees. It was determined that detailed measure-
ments were required for nine different values of f, to characterize the
digital radio tested.

Using a wideband RF fade simulator in the field, the digital radio
performance for out-of-channel notch locations was relatively inde-
pendent of whether minimum or nonminimum-phase fade simulations
were employed. The nonminimum phase fade is modeled by eq. {1)
with the sign of the phase term reversed. This leaves the amplitude
[eq. (2)] unchanged, but reverses the sign of the envelope delay
distortion [eq. (3)]. We conclude that the minimum phase channel
model is sufficiently general for use in simulating the channel and in
estimating performance.

The 1F fade simulator was adjusted for each notch frequency, and
the depth of notch was varied by adjusting the magnitude of the
delayed component. Then various amounts of IF thermal noise were
added. Figure 9 typifies the performance data collected. BERs are
plotted versus the uncorrected IF carrier-to-noise ratio (C/Ny), for a
constant fade notch offset from midchannel (f, = —19.8 MHz, r = 6.3
ns). Each curve corresponds to a different notch depth (B = —20
log(1—b) dB), and hence a different amplitude and delay shape in the
radio channel. Each curve is also identified with an in-band selectivity,
defined as the difference between the maximum and minimum atten-
uation present in the (25.3-MHz) channel bandwidth. The lower-left
“baseline” curve presents the unshaped signal, flat fading performance
obtained by adding only IF thermal noise. This curve was verified
(without the added IF noise) by attenuating the received RF input
signal in the back-to-back configuration.

Consideration was given to matching the order of measurements to
characteristics of the particular digital radio tested. For example,
considerable scattering of data at low error rates can result from
synchronizations involving different reference carrier phases. The au-
thors elected to perform several synchronizations while observing the
BER for each phase, and then chose that phase giving the worst
performance.* Synchronization was accomplished at the low error rate

* Because the phase information in the measured system was Gray coded and digital
access was on a per-rail basis, one rail had twice the BER of the other two. All
measurements in the field and in the laboratory were made on this worst-case rail.
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[-l;‘ig. 9—High-speed digital radio IF dispersive fade simulations, 1 = 6.3 ns, o= —19.8
z.

(bottom) of each curve, and this phase relationship was maintained
for all data points obtained for each curve.

From the baseline curve of Fig. 9, a BER = 1 X 107 obtains for 10
log(C/N,) = 21.5 dB. For the digital radio system installed on the
instrumented hop and reported in the figure, the measured flat fade
margin for a threshold BER = 1 X 10°® was 40.5 dB This leads to an
unfaded IF carrier-to-noise ratio 10 log(Co/Ny) = 21.5 + 40.5 = 62 dB.

From the baseline curve for a BER = 1 X 1077, note that insertion of
a fade whose notch depth is 6.5 dB results in four orders of magnitude
degradation in BER performance; equivalently, an in-band selectivity
of only 5.7 dB in 25.3 MHz results in a BER > 1 X 107°.

The asymptotic regions in Fig. 9, corresponding to high values of C/
Ni;, are not normally presented in characterizations of this type;
however, system outage depends primarily upon the performance in
these asymptotic regions. Thus, under typical fading conditions, the
transmitted carrier power might be increased at will without improving
the BER significantly. The effects of decreasing the carrier power are
discussed in Section 4.4.

A family of curves like those shown in Fig. 9 was obtained (but are
not given here) for each of nine uniformly spaced frequency offsets
below midchannel to characterize the digital radio system sufficiently
for the prediction of outage. A number of spot checks were also made
using both RF and 1F fade simulators at symmetrical positive and
negative offset frequencies, to establish that acceptable symmetry
existed.
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IV. CALCULATION OF OUTAGE

This section describes four methods of calculating outage. The
derivation of the critical curves of A and B, which provide the basis
for making and understanding these calculations, is given in Section
4.1. In Section 4.2 the detailed calculation of outage from the critical
A-B curves is described. It is shown in Section 4.3 that for the present
system this method may be greatly simplified by calculating only
selectivity-caused outage (i.e., neglecting thermal noise). Section 4.4
presents an approximate method of accounting for the effects of
thermal noise. Section 4.5 provides a basis for estimating the selectiv-
ity-caused outage from a single measurement.

4.1 Derivation of critical characteristics

To calculate the outage for a fixed bit error rate, one must first
obtain the critical curves of A and B at each simulated value of f,, the
notch position. Thus, from Fig. @ which corresponds to f, = —19.8 MHz
(or ¢ = —45°), we obtain six points on the critical curve of A and B for
a BER of 107>, one point from each of the six curves which cross the
critical BER. The value of B is obtained from the value of b since

B = —201log(1 — b). (8)

For the curve in Fig. 9 corresponding to B = 4.4 dB, we obtain the
corresponding critical value of A for a BER of 107 from the value of
carrier-to-noise ratio, which is 20.2 dB where this curve crosses the
1072 BER line. Since the carrier-to-noise ratio is 62 dB when the channel
is unfaded, the 20.2 dB value corresponds to a relative average power
loss of 41.8 dB,

L,=62-202=418dB. (9

Without loss of generality, we assume that the PSK signal has a
rectangular spectrum of width f;; consequently, the relative power
transmitted by the model is obtained from eq. (2) as*

1 (™
Poy=—— H(w)|* dw
2nfy J'_wf,, e

wfoT

- a2{1 + b — 2b cos 2wf.,-r(3in f "T)}. (10)

* The calculated result is not critically dependent on the flatness of the signal
Bpectrum or the spectral width chosen. We have used for fu a value of 25.3 MHz as
representing the effective width of the signal.
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Defining a correction term by

C=-10 log[l + b% — 2b cos 2wf,,f(‘°’i“ ”f"")}, (11)
wfor
we may express the signal loss as
Li=—10log P,,=A + C. (12)
Thus, we obtain the critical value of A as
A=L,-C. {13)

For B=44dB (b= 04) and f, = —19.8 MHz, we find C'= 2.06 dB and
the critical value of 4 is 41.8 — 2.1 = 39.7 dB.

Carrying out these calculations for the six curves in Fig. 9, one can
generate the critical curve of A and B for f, = —19.8 MHz and a BER
of 107, The curve is shown in Fig. 10 along with the critical curves for
several other values of the BER. A complete set of curves must be
generated for all values of f..

The curves in Fig. 10 are typical of the critical curves obtained for
| fo| = 33 MHz. The intercept with the A-axis represents the flat fade
margin for the given BER; this margin is independent of notch position.
The intercept of a critical contour with the B-axis represents the
shape, or relative fade depth, margin for the given notch position. For
values of B to the right of this intercept, the critical value of BER
cannot be obtained at any carrier-to-noise ratio for the given notch
position.

4.2 Outage calculation— detailed method

The probability, P,, of finding A and B outside all eritical contours
may be written with eqs. (5), (6), and {7) as

Hlo = J' Do) Pe() dop, (14)

bt 4

where

P¢) = f f pa(YIps(X) dY dX, (15)
o Jan

and A.(X) is the functional relation of the critical values of 4 to B (or
X), for B less than B., the B-axis intercept, and for a given BER and ¢
value.* Since measurements were made for a uniformly spaced set of
notch positions with spacing A¢ = 10°, we may approximate (14) by

* The dependence of the function A-(X) and the asymptote B, on BER and ¢ is not
explicitly denoted to keep notation simple.
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Fig. 10—Critical curves of A and B for f, = —18.8 MHz.
Po=A¢ Y poldilPeldi). (16)
All

To illustrate the calculation of outage probability with eqs. (15) and
(16), we shall calculate the term in the summation of eq. (16) corre-
sponding to a BER of 107° and ¢: = —45° (or f, = —19.8 MHz). From
Fig. 11, which is taken from Fig. 10, we note that the double integral
in eq. (15) may be broken into integrations over two regions. Thus

P =j j palY)ps(X) dY dX (17)
B, J—m»

B, pm
= J J pa(Y)ps(X) dY dX,
o Jamn

where the two double integrals correspond to integrations over Regions
1 and 2, respectively, in Fig. 11. Qutage due to the occurrence of A and
B in Region 1 may be described as outage due only to shape or
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selectivity. In Region 2, outage is due to the combined effects of signal
loss and selectivity.

Using eqs. (5) and (6}, the integral over Region 1 is obtained as
e 5/*8 The contribution due to thermal noise and shape (Region 2} is
slightly more complicated. Dividing the interval 0 to B. in Fig. 11 into
N subintervals, as shown in Fig. 12, the probability of being in Region
2 is the sum of the probabilities for each subinterval. Thus eq. (17)
becomes

N -
P._-(¢>.-) = g B8 2 [eka-ll-?B = e_kaa-E] Pg (A*—A'J(Bﬂ), {18)

fome' 5
where
1 o
P(X)=— j e =2 dx. (19)
Ve Jx
50
REGION 2
- — —-SELECTIVITY AND THERMAL
NOISE LIMITED
[%s]
-
w
@
(4]
w
a
Z BER = 103
=z
=
3
o 30 REGION 1
g SELECTIVITY LIMITED
]
<
25|
20|
15 ] I I I I
0 5 B 10 15 20 25 an

B=-20 Log (1—h} IN DECIBELS

Fig. 11—Classification of outage with respect to critical curve for BEr = 107% f, =
19.8 MHz.
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Fig. 12—Outage calculation for an incremental interval.

Evaluating the two components of eq. (18) from Fig. 11, we find
P.{—45°) = 0.181 + 0.003 = 0.184. (20}

This calculation was performed for 10 values of ¢: from —5 to —85
degrees in 10-degree steps. Using these results in eq. (16) and multi-
plying by two to account for positive values of ¢; which are assumed to
contribute equally, we find the probability, P, for a BER of 107" as

P, = 0.0996.
The expected outage for the data base period is; then,
T, = 5400 x 0.0996 = 538 seconds. (21)

4.3 Outage calculation— selectivity only

It is apparent from eq. (20} that most of the outage for the system
under study is caused by selectivity, fades characterized by A and B
values in Region 1. From egs. {14} and (17), we may express P, the
probability of outage due to seleetivity, as
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P, = J' f Peld)ps(X) dX do. (22)
-ndB,

For the system studied for a BER of 109, a finite B. is obtained only
for | ¢ | < 90 degrees. Hence, we may use eq. (7) to simplify (22)*

2A¢ 10

= —BAp,) /3.8
216 2 e . (23)

From eq. (23) we see that the outage due only to selectivity depends
on the relationship between B,, the asymptote of critical B values, and
the notch angle or notch frequency. Figure 13 shows the relationship
between B. and the notch frequency for four values of BER. It is
apparent from eq. (22) that the outage probability is the probability of
finding B and f, values in the region above this curve. Such curves,
therefore, provide a useful basis for evaluating the selectivity outage
of a digital radio system.

4.4 Qutage calculation— approximate method

For a radio system sensitive to both thermal noise and selectivity,
the calculation of Section 4.3 is inadequate and that of Section 4.2 is
unduly cumbersome.

To illustrate a simpler, but generally applicable, method and at the
same time to provide a useful incidental result, let us evaluate the
effect of reducing the transmitted power by 10 dB. For the reduced
power system, the carrier-to-noise ratio would be 52 dB for the unfaded
channel, and the critical curves of A and B would be shifted by 10 dB.
Figure 14 shows the critical curve of A and B for a 107 BER and f, =
—19.8 MHz with an overplot of the conditional mean of the distribution
of A. The dotted curves on Fig. 14 represent 2-sigma intervals on
either side of the mean. From the properties of the Gaussian distri-
bution, one may determine that more than 95 percent of the values of
A and B will lie between these two dotted curves. We designate as A,
and B,, the coordinates of the intersection of two curves: the critical 4
— B curve and the conditional mean curve. Then approximating the
critical curve of A and B with a straight line segment tangent at (4,
B..), with slope s, we may approximate the probability of outage by
integrating the probabilities over the region to the right of the tangent
line. Using eqs. (15) and (16), we obtain

P,=Ap Y pulop) f f pa(Ype(X)dY dX. (24)
All ¢; o Ja, +stB-B)

* The factor of two is required in eq. {23) because the indicated summation corre-
sponds to an integration only over negative notch frequencies {¢, < 0).
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Interchanging the order of integration and ignoring* the B dependence
of Ays(B), this becomes

P, = Ad uz Doy Bn/380866/5 (25)
All o

Evaluating eq. (25) for a 107 BER and multiplying the result by 5400
gives an outage estimate for the data base period of 602 seconds.
Recalculating the total outage time at a 10 BER using the method of
Section 4.2 [eqs. (16) and (18)] gives 636 seconds, which verifies the
accuracy of the approximate method. The estimate of 636 seconds was
calculated as an upper bound; the 602 seconds calculated using (25)
tend to be a lower bound. We conclude that backing off transmitted
power by 10 dB would increase the outage by about 12 percent (538 to
602).

4.5 A further simplification

In this section, we show that the outage due to selectivity can be
estimated approximately for a given BER from a determination of the
in-band selectivity required (with the notch out-of-band} to produce
that BER. Such a measurement may provide a useful approximation
for any digital system using quadrature modulation components;®
however, we provide a justification based on the performance of the
system at hand. In-band selectivity is defined as the difference between
the maximum and minimum attenuation present in the (25.3-MHz)
channel bandwidth.

Since the in-band selectivity is a constant for any of the curves
shown in Fig. 9, one can use Fig. 9 to plot the asymptotic BER against
in-band selectivity for f, = —19.8 MHz. Such a plot was generated for
each notch position measured to produce the family of curves shown
in Fig. 15. Note that, except for notch positions near the band center,
the BER is uniquely related to the in-band selectivity. Neglecting the
in-band notches, we find that a 107 BER corresponds to an in-band
selectivity of 5.5 dB.

_ If we use the original model of eq. (2) to determine the values of B
that will produce an in-band selectivity of 5.5 dB for a number of
different notch positions, we would generate Fig. 16. It is apparent that
for this system there is a good correspondence between the curves of
asymptotic performance (Fig. 13) and the curves of constant in-band
selectivity (Fig. 16).

To reinforce this conclusion, we provide Figs. 17, 18, and 19, Figure
17 shows the locus of in-band selectivity in a 25.3-MHz band corre-

* Including the effect of the slope of As(B) at B = B,, gives the same symbolic result
with s interpreted as the algebraic sum of the slope of the tangent and dAo./dB evaluated
at B =R,
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Fig. 15—Measured asymptotic bit error rate vs peak-to-peak amplitude difference in
a 25.3-MHz band.
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Fig. 16—Locus of B and £, for modeled fades that have fixed peak-to-peak amplitude
in a 25.3-MHz band.

sponding to each of the curves of constant BER in Fig. 13. That is, for
each BER and each value of notch position, f,, we have plotted the
peak-to-peak amplitude difference in the band for the corresponding
value of B., the asymptotic critical value of B. Figure 18 shows a
similar set of curves with the peak-to-peak delay distortion in a 25.3-
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_Fig. 17—In-band selectivity {in 25.3-MHz bandwidth) corresponding to asymptotic
critical values of notch depth {B.) for several values of BER.
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Fig. 18—Peak-to-peak envelope delay distortion in 25.3-MHz bandwidth correspond-
ing to asymptotic critical values of notch depth (B.) for several values of BER.

MHz band as the ordinate. Similarly, Fig. 19 has as the ordinate the
“slope,” or amplitude difference at a separation of 25.3 MHz. It is again
clear from these three figures that the in-band selectivity is the
relevant channel impairment giving rise to errors. We see from Fig. 18
that, for out-of-band notches, high BERs are obtained with very small
values of peak-to-peak delay distortion, and from Fig. 19 that for in-
band notches high BERs are obtained for very small values (zero at
mid-band} of slope.
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The model data base was analyzed to determine the time during
which the in-band selectivity in a band of 26.3 MHz exceeded a given
value. Figure 20 presents this distribution for in-band selectivity as
calculated from the modeled fits. Figure 20 can be used directly in
conjunction with Fig. 16 to calculate the outage times for the model
data base.* For instance, from Fig. 15 we note that 5.5 dB of selectivity
corresponds to & 107° BER. We use Fig. 20 to determine that 5.5 dB
was exceeded for 520 seconds.

V. COMPARISONS OF CALCULATED AND OBSERVED OUTAGES

Using the methods of Sections 4.2 to 4.6, outage times were calcu-
lated for bit error rates of 1072 to 107® for both the model data base
period and for a heavy fading month, by multiplying the outage
probabilities by 5400 and 8100, respectively.

5.1 Model data base period

Calculated and observed} outages for the model data-base period
are shown in Table L. In general, comparing the calculated results with
observed results, we see that the outage is underestimated at high
BERs and overestimated at low BERs. Any estimation procedure based
on the current modeled state of the channel will tend to underestimate

* In practice, one would use a gingle measurement of in-band selectivity. For instance,
n. I:ig. 9 one would take the 5.7-dB value corresponding to the curve asymptotic at a
107" BER.

+ Because of quantization, the outage times observed from the field experiment
correspond to bit error rates of 1.26 X 107, 1.57 X 107, 0.981 x 10 *, and .19 X 10°".
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Fig. 20—Distribution of in-band selectivity (25.3-MHz bandwidth) for model data
e.

Table |I—Qutage in modeling data base pericd (seconds)
BER= 107°% 107* 10° 10°°

Observed 636 903 1191 1487
Detailed calculation {Section 4.2} 538 960 1430 1860
Approximate calculation (Section 4.4) 527 950 1420 1830
Asymptotic caleulation (Section 4.3) 527 950 1420 1830
Seﬁactivity calculation {Section 4.5) 510 900 1570 2730

outage at high BERs because of hysteresis effects in the radio receiving
equipment. That is, when the channel condition becomes sufficiently
gevere, the bit error rate becomes high enough (on the order of 107%)
that the timing and/or phase of the radio system breaks lock. If the
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channel impairment becomes less severe, the BER will not improve
until the system resynchronizes. The hysteresis is important at the
1072 BER, since a significant fraction of the events that cause 1072 BER
will cause the system to break lock.

One would expect to overestimate the outage at low BERs because
of the method of taking data. Recall that, in measuring the curves in
Fig. 9, it was found that the BER depended on the phase to which the
system had locked. The recorded performance represented the worst-
phase condition. At a 107° BER, the best phase produces a BER that is
about % that produced by the worst phase; the difference in BER from
worst to best phase at a 10™® BER is negligible. Hence, one would
expect outage to be overestimated significantly at low bit error rates.

In comparing the outage calculated from in-band selectivity (Section
4.5) to the outage observed, we find that the overestimation of outage
at low BERs is more severe than with the other methods. This is due
to the greater sensitivity of the differential selectivity method to the
bias induced by choosing the worst-case phase. For instance, compar-
ing calculations at a 10™® BER, we find that Fig. 20 is steeper for
amplitude differences near 2 dB than is Fig. 3 near B values of 3.5 dB.
(Figure 9 verifies the appropriateness of this comparison). More gen-
erally, one expects the method based on in-band selectivity to overes-
timate the outage because the method is based on notches out of band.
From Fig. 15, it is apparent that, for a given AA, some scans will not
have the BER specified.

We conclude that, although ealculation of outage from sensitivity to
in-band selectivity provides quick estimates, they are less accurate.
The calculation requires knowledge of the distribution of in-band
selectivity over a specified bandwidth. These statistics are neither
simple nor generally available. It has been shown,' for instance, that
slope statistics have a nontrivial dependence upon the measurement
bandwidth.

It is clear that the calculations based on selectivity (Sections 4.3 and
4.5) agree for the system studied here because that system has very
little outage due to thermal noise limitations, and because it is sensitive
primarily to in-band amplitude excursions. The extent to which these
statements are true for other systems is currently unknown.

5.2 Qutage on a monthly basis

The results in Table I may be put on the basis of a heavy fading
month by increasing them by a factor of 1.5, as discussed in Section
2.2. The resulting outages (including the scaled observed outage) are
compared with the outage observed in a one-month period® in Table
II. We see that the outage times observed in the total one-month
period agree well with the values obtained by scaling the observed
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Table l—Qutage in a heavy fading month (seconds}
BER= 1077 10 107° 107"

Observed (Ref. 8) 1000 1320 2100 2900
Scaled observation from Table L 956 1350 1790 2230
Calculation (Section 4.2—4.4) 800 1430 2140 2760
Selectivity calculation {Section 4.5) 770 1350 2350 4100

outage for the data base period used in modeling, except for the slight
divergence appearing at low BERs. This divergence should not be
unexpected for this equipment. As may be seen in Fig. 15, a 107° BER
may be caused by differential amplitude selectivity in band of 2 dB.
Such modest amounts of selectivity may be expected to occur some-
times in the presence of very moderate selective fading. The modeling
data base was constructed by selecting only periods of significant
selective fading. This reinforces the comments made in conjunction
with Fig. 3, namely, that the model distribution of B represents a lower
bound for small values of B which can contribute to outage at the 107°
BER level.

VI. CONCLUSIONS

We have demonstrated the validity of a technique for estimating the
unprotected outage of a digital radio system due to selective fading on
a particular hop in the 6-GHz common carrier band. The technique
required field measurements to statistically characterize the param-
eters of a model of propagation on the hop. It also requires performance
data obtained in the laboratory for the radio system by stressing it
with a two-path fade simulator with a differential path delay of 6.3 ns,
corresponding to the fixed delay channel model. Since the radio path
on which these measurements were made has a length close to the
average for the Bell System long haul radio network and has an
average incidence of fading activity, the channel model is representa-
tive of a typical path. At the very least, the technique provides a basis
for determining the relative merits of various digital radio systems
operating without benefit of space diversity.

For the system under test, outage was calculated by four different
methods. Because this system was selectivity-limited rather than
noise-limited, all four methods predicted approximately the same
outage as that summarized in Table I; however, the method based on
in-band selectivity is more severely biased at low BERs. The method
based on asymptotic performance and that based on in-band selectivity
can only be used to estimate outage due to selectivity. If the transmit-
ted power of the system under test were reduced by 10 dB, both of the
other two methods, the detailed and the approximate method, would
predict an increase in outage time of about 12 percent.
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Data Base Subject Index. H.H. Teitelbaum and D.T. Hawkins, On Line, 2, No. 2,
{April 1978), pp. 16-21.

An Error Analysis for a Rolling Year Traffic Data Base. C.E. Johnson, IEEE
Int. Conf. Commun. Conf. Rel., 1, (June 4, 1978}, pp. 5.1.1-5.1.5.

File Format for Data Exchange Between Graphic Data Bases. A.G. Gross,
Proc. Fifteenth Des Automation Conf., (June 1978), pp. 54-59.

Multiple Data Base Searching: Techniques and Pitfalls. D.T. Hawkins, On
Line, 2, No. 2, (April 1978), pp- 9-15.

PL/I Language Summary. R.F. Rosin, ACM SIGPLAN History of Programming
Languages Conf., (June 1, 1978), pp. 225-226.

Unconventional Uses of On-Line Retrieval Systems. D.T. Hawkins, J. Amer.
Soc. Inform. Sei,, 29, No. 4, (July 1978), p. 209,

Verification and Design Aspects of True Concurrency. D.W. Mizell, Fifth
Ann. ACM Symp. Princ. Prog. Lang., (Jan. 1978}, pp. 171-175.

Workshop Report: The New and the Not So New. M.F. Slana and G.G. Dumas,
Computer, 11, No. 3, (March 1978) pp. 47-51.

ELECTRICAL AND ELECTRONIC ENGINEERING

An Approximate Method to Estimate an Upper Bound on the Effect of Multipath
Delay Distortien on Digital Transmission. W.C. Jakes, Jr., IEEE Int. Commun.
Conf. Rec., 3 (1978), pp. 47.1.1-47.1.5.

The D4 Channel Bank Codec. D.A. Spires, IEEE Trans. Circuits and Syst., CAS-
25, (July 1978), pp. 468-475.

On the Design of Quantizers for DPCM Coders: Influence of the Subjective
Testing Methodology. C.B. Rubinstein and J.0. Limb, IEEE Trans. Commun.,
26, No. 5, (May 1978), pp. 565-572.

A Digital Codec Simulation Facility. W.R. Daumer, IEEE Trans. Commun.,
COM-26, (May 1978), pp. 665-669.

Direct Polar Display of Subnanesecond Millimeter-Wave Switching Transients
at 300 Mbit/s. F. Bosch and S. Cheng, IEEE Trans. Microw. Theory Tech., MTT-
26, No. 1, {January 1978), pp. 24-27.

The Evolution of Techniques for Data Cemmunication Over Voice-Band Chan-
nels. E.R. Kretzmer, IEEE Commun. Soc. Mag., 16, No. 1, pp. 10-14.
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A Fault Tolerant Memory for Duplex Systems. W.T. Hartwell, C.W. Hoffner,
W.N. Toy, IEEE Trans. Rel., R-27, (June 1978), pp. 134-138.

Gaussian Power Model for Optical Fiber Splices. C.M. Miller and S.C. Mettler,
Proceedings of Conference on Laser and Electrooptical Systems, (February 7, 1978), pp.
36-37.

Heat Conduction in the Cable Insulation. of Force-Cooled Underground Trans-
mission Lines. J4.V. Sanders, L.R. Glicksman, W.M. Rohsenow, P. Koci, and M.
Buckwcitz, PAS-97, (January-February 1978), pp. 134-139.

An Implicit Enumeration Algorithm for Sequencing Polices Applied to-Tele-
phone Switching. L.J. Ackerman, H. Luss, and R.S. Berkowitz, IEEE Trans. Syst.
Man. Cybern., 8 (April 1978), pp. 286-300.

LAMPAC-A High Density Printed Wiring Board for General Application.
V. L. Brown, Proc. First Printed World Conv. Ckt., London, England, I (June 5, 1978),
pp. 24.1-24.15.

Microprocessors in Telecommunication Systems, D.C. Stanzione, Proc. IEEE,
66, No, 2, (February 1978), pp. 192-199.

Multiparameter Multiport Sensitivity Measure. M.J. Chien, 1978 IEEE Int.
Symp. Ckts. Syat., New York, (May 17, 1878), pp. 1040-1045.

Statistical Modeling for Circuit Design. E.M. Butler, Conference Record of
Electro/78, 5 (May 23, 1978), pp. 1-5.

Sufficient Criteria for PCIR Stability in Linear 2-Port Networks-in Terms of
Qualitative Data. J4.D. Williams and N.N. Puni, 1978 IEEE International Sym-
posium on Circuits and Systems Proceedings, 78CH135-1, CAS (May 1978), pp. 638-641.

MECHANICAL AND CIVIL ENGINEERING

Experimental and Analytical Investigation of Self-Excited Chatter Vibrations
in Metal Cutting. N. Saravanja-Fabris and A.F. D'Souza, J.. Mech. Des., 100
(January 1978), pp. 92-99.

PHYSICS

Calculation of Per-Unit-Volume RF Scattering Cross Sections in the Radar
Aurora. J. Minkoff, Can. J. Phys., 56 (February 1978), pp. 280-287.

Calorimetric Measurements of Absorption and Scattering Losses in Optical
Fibers. F.T. Stone, W.B. Gardner, and C.R. Lovelace, Opt. Lett., 2 (Feburary 1978},
pp. 48-50.

CCITT No. 8 (And Other) Common Channel Signaling Systems. Network Man-
agement Signals. 4.8. Ryan, Conference Record Sem. Tele. Switéh. Signal. Tech.,
Singapore, (April 17-28 1978}, pp. 9-1-9-13.

Comparison of Cyclofusion in Central and Peripheral Vision. M.T. Sullivan
and A.E. Kertesz, Proc. Ann. Conf. Assn. Res. Vision Opthal. Mol., Sarasota, Flerida,
{April 1978), p. 140.

Digital Transmission Network Maintenance Aspects. W. Bleickardt, Proc.
Ann. Rel. Maintain. Symp., Los Angeles, Calif, IEEE Catalog No. 77CH1308-6R,
(January 17-19, 1978), pp. 460-464.

A Guide to Conduit Selection. J.W. Peters, Tel. Eng. Manage., (September 1,
1978), pp. 116-121.

Measured Performance of a High Capacity 6GHz Digital Radio System. W.T.
Barnett, ICC ‘78 Conference Record, 3 (June 4-7, 1978), pp. 47.4.1-47.4.6.

Mechanized Activity Tracking and Fill Monitoring in the Loop Plant. G.W.
Aughenbaugh and -N.H. Nee, The International Symposium on Subscriber Loops and
Services, {1978), pp. 85-89.

On-Line Information Retriéval Bibliography. D.T. Hawkins, On-Line Review,
2(1978), pp- 63-106.

Plant Engineering in a Phone Center Environment. R. Sherman, Proceedings
of International Symposium onh Subacriber Loops and Services, (March 1978), pp. 90-93.
The Reflections of a Former High Energy Physicist Doing Industrial Applied
Mathematics. R.A. Mercer, Proc. 39th A.L.LP. Conference, American Institute of
Physics, New York, N.Y., (1978), pp. 193-196.

Results of an Experiment to Detect for Field-Normal Plasma Line Scattering in
the Auroral Ionsphere. J. Minkoff, M. Laviola, R. Tsunoda, and R. Presnell,
Radio Sei., 13, No. 3, (1978), pp. 577-580.
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The Role of the ITU and CCITT in Telecommunications. J.S. Ryan, Commun.
Trans. Tech. Switch. Syst. Sem, Princeton, Univ., (March 20, 1978), pp. 2-1-2-6.
Spectrum Management in the Loop Plant. R.K. Even, J. Kreutzberg, G. Miller,
and L.M. Smith, The International Symposium on Subscriber Loops and Services,
(February 1978), pp. 234-238.

A Study of the Effects of Mobile Telephone Use on Driving Behavior. A
Kames, 28th IEEE Veh. Technol. Conf., Denver, Colorado, 78CH1297-IVT, (March 22-
24, 1978). p. 537.

Two Conferences Address Local Digital Switching and Transmission in Zurich
and Atlanta. R.W. Wyndrum, Jr., Communications Society Magazine, 16 (July
1978}, p. 23-24.

Underwater Sound Arrival Angle Estimation by Multiple Cross Correlation
Measurements. H.J. Young, IEEE International Conference on Acoustics, Speech
& Signal Processing Record, (April 10-12, 1978), pp. 659-664.

SYSTEMS ENGINEERING AND OPERATIONS RESEARCH

The Output of Multiserver Queuing Systems. C.D. Pack, Oper. Res. 26 (May-
June 1978), pp. 492-509.
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A Counterexample to a Conjecture on the
Blocking Probabilities of Linear Graphs

by HW. BERKOWITZ

(Manuscript received November 21, 1978)

It was conjectured by Chung and Hwang that a series-parallel
regular linear graph is superior to another if its degree sequence
majorizes the degree sequence of the other. A counterexample to this
conjecture is given,

The following definitions are taken from Refs. 1 and 2. Consider a ¢-
stage linear graph with a source (the vertex of the first stage) and a
sink {the vertex of the last stage). All the vertices are arranged in a
sequence of stages such that, for each edge, one vertex is in stage i and
the other vertex is in stage i + 1, for some {. Each edge is in one of two
states, busy or idle. A linear graph is blocked if every path joining the
source and the sink contains a busy edge. Assume that any edge
connecting a vertex in stage { with a vertex in stage ¢ + 1 has probability
p: of being busy for 1 = i = ¢ — 1. For a #stage linear graph, the
sequence {pi, p2, +++ , pi1} is called the link occupancies for that
graph. One {-stage linear graph is superior to another if, for any given
link occupancies, the blocking probability of the first graph does not
exceed that of the second.

Let e be an edge from a vertex a in stage i to a vertex b in stage i
+ I. Define A{e) to be the ratio of the outdegree of a to the indegree
of b. A t-stage linear graph is regular if, foreach i, 1 <i<t—1,ife
and f are any two edges between stage { and stage { + 1, than A(e} =
A(f). In this case, let A; = A{e), Thus a regular linear graph is associated

with a unique degree sequence (A, Az, «++ , Arry).
A degree sequence (A;, Az, --- , A1) majorizes another degree
sequence {\', A2, - -, AV ifand only if Ajds - - A= AN - -4 A/ for

every ,1<i=<¢—1.
A series-parallel regular linear graph is a regular linear graph which
is either a series combination or a parallel combination of two smaller
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series-parallel regular linear graphs with an €édge being the smallest
such graph.

I. A COUNTEREXAMPLE

In Ref. 2, Chung and Hwang conjectured that one series-parallel
regular linear graph is superior to another if the degree sequence of
the first majorizes the degree sequence of the second.

The graphs of Fig. 1 are a counterexample to this conjecture. The
degree sequence of graph (a) is (2, 1, 1, 1/2), the degree sequence of
graph (b) is (2, 1/2, 2, 1/2). Thus, the degree sequence of graph (a)
majorizes the degree sequence of graph (b).

(a)

(b)

Fig. 1—Counterexample.

Let (p1, pz, ps pe) be the link occupancies of the two graphs. Let g;
=1 — p, for 1 =i = 4. Then the blocking probability of graph (a) is A
= (1 — ¢q:¢2¢3¢4)°. The blocking probability of graph (b) is B = (p, +
Pz — pp2)® + (D3 + pa — ppa)® — (D1 + P2 — PW)*(Ds + pa — Paps)’.
Nowletp;=01,for1=i=4 ThenA=(1- (0.9)%)2 = (1 — 0.6551)*
> (1 — 0.7)2 = 0.09. But B = 2(0.19)® — (0.19)* < 2(0.2)* = 0.08. Thus
for this set of p/’s, the blocking probability of graph (b) is less than
that of graph (a); so graph (a) is not superior to graph (b), contradicting
the conjecture.
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