PRINTED IN USA

)

3 Qi
ﬁeﬁ“;g‘}}-‘

.(: : -
o T
N ol ‘lII .
;‘}m)
: g
\|

1
:
4'.

WA
& ae "
"

il

it ugﬂﬂr ---------- :‘. e |

SRR
---: ‘N
g

TN

% oL, 20
e D

,-‘
ST

|

2 "\\

it

V22

5

A 4D

{,

7
b

awlr 6800

IN PERFORMANCE

The word is getting around. There is
simply no better processor available for
general purpose computer work than
the Motorola MCG6800. This memory
oriented processor is easier to program
and makes possible more efficient,
shorter and faster running programs
than the old fashioned bus oriented
processors. Have you been convinced
that machine language, or assembler
programs are only for the experts?
Well not with a modern 6800 based

computer. Anyone can learn very
quickly with this simple straight-
forward hexidecimal notation pro-

cessor. When you add to these ad-
vantages the unique programmable in-
terfaces and the Mikbug® ROM vyou
truly have a “benchmark’ system.

Mikbug® eliminates the tedious and
time consuming job of loading the
bootstrap program from the switch
console each time the computer is turn-
ed “'On”. With Mikbug® this is auto-
mati¢ and you simply don‘t have
switches and status lights. It has been
said (not by us) that a switch console is
essential for “hardware development,”
(perhaps they meant “hardware de-
bugging”). Anyway the SwTPC 6800
system has no need for either. Thisis a
fully developed, reliable system with
no strange habits. All boards have full
buffering for solid noise immune oper-
ation. One crystal type clock oscillator
drives everything, processor interfaces
and all; so there are no adjustments and
no problems.

FOR VALUE

The SwTPC 6800 in its basic form
comes complete with everything you
will need to operate the computer ex-
cept an 1/0 device. This may be either
a teletype of some kind, or a video

‘1

terminal. You get a heavy duty an-
nodized aluminum case, a 10 Amp
power supply large enough to power a
fully expanded system, a mother board
with seven memory/processor slots and
eight interface slots, a 2,048 word sta-
tic memory and a serial control inter-
face. This kit is now only $395.00. It
was introduced at $450.00, but when
processor prices went down we reduced
the price of the kit accordingly.

As an owner of our 6800 computer
you will get copies of our newsletter
with helpful information and software
listings. We have a library of software
including all the common computer
games and our fantastic BASIC. This
is available to you for the cost of copy-
ing, you don't have to buy anything to
get this material.

What more could you want? Pay a visit
to our nearest dealer and see the 6800,
plus our new cassette interface, graphics
terminal and printer. He will be happy
to demonstrate our system and to sup-
ply you with a 6800 that will fit your
exact needs.

Mikbug® is a Motorola Trademark

Swld 6800

Computer System
with serial interface and 2,048 words

of memory. $39500

Southwest Technical Products Corp.
219 W. Rhapsody
San Antonio, Texas 78216

The Computer Store, 820 Broadway,
Santa Monica, Calif. 90401, (213) 451-0713

Cyberdux, Microcomputer Applications,
1210 Santa Fe Dr., Encinitas, Calif. 32024
(714) 279-4189

The Micro Store, 634 South Central
Expressway, Richardson, Texas 75080
(214) 231-4088

EL.S Systems, 2209 N. Taylor Rd.,
Cleveland Heights, Ohio 44112
(216) 249-7820

Microcomputer Systems Inc.,
144 S. Dale Mabry Ave., Tampa, Florida
33609, (813) 879-4301

Witliam Electronics Supply, 1863 Wood-
bridge Ave., Edison, N.J. 08817
(201) 985-3700

Computer Mart of New York, Inc.
314 Fifth, New York, N.Y. 10001
(212) 279-1048

The Byte Shop ComPuter Store# 1,
1063 EI Camino Real, Mountain View,
Calif. 94040, (415) 969-5464

The Byte Shop ComPuter Store #£2,
3400 EIl Camino Real, Santa Clara, Calif.
95051, (408) 249-4221

A-VID Electronics Co., 1655 E, 28th Street,
Long Beach, Calif. 90806 (213) 426-5526

Computer Warehouse Store, 584 Common-
worth Ave., Boston, Massaschusetts 02215
(617) 261-1100

The Computer Workshop, Inc., 11308
Hounds Way, Rockville, Ind. 20852
(301) 468-0455

The Computer Store, Inc., 120 Cambridge
Street, Burlington, Mass. 01803
(617)272-8770

Marsh Data Systems, 5405 B. Southern
Comfort Bivd., TampPa, Florida 33614
(813) 886-9890

Midwest EnterPrises Inc., 815 Standish Ave.,
Westfield, New Jersey 07090
(212) 432-2066

The Milwaukee Computer Store, 6916 W.
North Ave., Milwaukee, W| 53213
(414) 259-9140

Control ConcePpts, P.O. Box 272,
Needham Heights, Mass. 02194

American Microprocessors, EQuipment &
Supply Corp. at Chicagoland Airport, P.O.
Box 515, Prairie View, ltlinois 60069
{312) 634-0076

The Computer Room Inc., 3938 Beau D'Rue
Dr., Eagan, Minn. 55122, {(612) 452-2567

Computerware, 830 First St., Encinitas,
Cahf. 92024 (714) 436-9119

Atlanta Computer Mart, 5091 B Buford
Highway, Atianta, Ga. 30340
{(404) 321-4390

Four ways to get
more out of (or into)

your computer

Here are four of our most popular computer peripherais. They let you do a lot more with your
Altair 8800 or IMSAI 8080. They are simple to use and simple to install. And they all have the
combined quality and low price that has made Cromemco the leading name in microcomputer

peripherals. Cromemco's delivery is prompt, too.

Watch this space for other exciting new Cromemco products to come.

)| -]
BYTESAVER Fil tiat i
(R | [SRR |

The easy way to put programs Into PROM. Cromemco's
Bytesaver™ gives you a place for up to 8K of PROM memory
using 2704/2708 PROMSs. Also glives you a built-in PROM
programmer (saves buying one separately). Enough memory
capacity to hold powerful programs such as 8K BASIC. Kit
(Model 8KBS-K): $195. Assembled (Mode! 8BKBS-W): $295.

Fast analog 1/0 with 7 channels. Couples your digital com-
puter to an analog world. This advanced board lets you
Input 7 channels of analog to your computer and output 7
channels of analog to feed to output devices. Also has an
8-bit parallel 1/Q port. Very fast conversion — only 5 micro-
seconds. Kit (Model D+7A-K): $145. Assembled (Model
D+7A-W): $245.

JOYSTICK ALSO AVAILABLE: Kit (Model JS-1-K): $65. Assem-
bled (Model JS-1-W): $95.

Let your color TV be your display terminal. You can have a
full-color computer display terminal at unbellevably low cost
with the Cromemco TV Dazzler™. You can display multi-
colored charts, graphs, educatlonal material, games. Requires
only 2K-byte memory for 128 x 128-element picture. Kit
(Model CGI-K): $215. Assembled (Model CG!-W): $350.

Low-cost Optical Data Digitizer: This small, rugged camera is
useful for image recognition, process control, and other
industrial applications. Has 2.8 25-mm lens. Uses Image
sensors that produce 1024-element (32 x 32) picture. Con-
troller boards also available to give software controi of
exposure, frame rate and memory allocations for picture
storage. Camera kit (Mode! 88-ACC-K): $195. Controller kit
(Model 88-CCC-K): $195. Camera assembled (Model 88-
ACC-W): $295.Controller assembled (Mode! 88-CCC-W): $295

Cromemco

Specialists in computer peripherals
2432 Charleston Rd., Mountaln View, CA 94043 @ (415) 964-7400

Imagine a microcomputer

Imagine a microcomputer with all the design
savvy, ruggedness, and sophislication of the best
minicomputers.

Imagine a microcomputer supported by dozens
of interface, memory, and processor oplion boards.
One that can be interfaced to an indefinite number
of peripheral devices including dual floppy discs,
CRT's, line printers, cassette recorders, video dis-
plays, paper tape readers, teleprinters, plotiers,
and custom devices.

Imagine a microcomputer supported by exten-
sive soflware including Extended BASIC, Disk
BASIC, DOS and a complete library of business,
developmental, and industrial programs.

Imagine a microcomputer that witl do everything
a mini will do, only at a fraction of the cost.

You are imagining the Altair™ 8800b. The Altair
8800Db is here today, and it may very well be the
mainframe of the 70’s

The Altair 8800b is a second generation design
of the most popular microcomputer in the field,
the Altair 8800. Built around the 8080A micro-
processor, the Altair 8800b is an open ended
machine that is compatible with all Altair 8800
hardware and software. It can be configured to
match most any system need.

NOTE: Altair is a trademark of MITS, Inc.

M Al ary &

, A Aty A
el P T P U

S p———— -ll-}b.-lw}- 39

A As SYREANP TR o)

Redesigned front panel. Totally synchro-
nous logic design. Same switch and LED
arrangement as original Altair 8800.
New back-lit Duralith (laminated plastic
and mylar, bonded to aluminum]) dress
panel with multi-color graphics. New
longer, flat toggle switches. Five new
functions stored on front panel PROM
including: DISPLAY ACCUMULATOR (dis-
plays contents of accumulator), LOAD
ACCUMULATOR (loads contents of the
8 data switches (A7-AQ) into accumulator)
OUTPUT ACCUMULATOR (Qutputs con-
tents of accumulator to 1/0 device
addressed by the upper 8 address
switches), INPUT ACCUMULATOR (in-
puts to the accumulator from the 1/0
device), and SLOW (causes program
execution at a rate of about 5 cycles per
second —for program debugging).

- oge,
= unnn.-.-nun:nrm]
N e, ;
29723 212 v_uunru:nuunu
Fla

et YT T

Rugged, commercial grade Optima
cabinet,

L— New front panel interface board buffers

all lines to and from 8800b bus.

Two, 34 conductor ribbon cable assem-
blies. Connects front panel board to front
panel interface board. Eliminates need
for complicated front panel/bus wiring.

MITS, Inc. 1976/2450 Alamo S.E./Albuquerque, New Mexico 87106

Full 18 slot motherboard.

New, heavy duty power supply +8 volts
at 18 amps, + 18 volts at 2 amps, 18 volts
at 2 amps. 110 volt or 220 volt operation
(50/60 Hz)., Primary tapped for either
high or low line operation.

—New CPU board with 8080A micro-

processor and Intel 8224 clock generator
and 8216 bus drivers. Clock pulse widths
and phasing as well as frequency are
crystal controlled. Compatible with all
current Altair 8800 software and
hardware.

altair 8800-b

In
This
BUTE

About the Cover

BYTE began with its first issue
dated September 1975. Since that
time, a 96 page magazine has grown
into a 128 page monthly compendium
of information with a reputation of
which we’re quite naturally proud.
That first issue was assembled from
scratch in seven weeks of hectic
activity starting May 25 1975. At that
time, we had no real estimate of the
way in which you, our readers, would
respond. The goal was simply to put
out the best product possible given the
constraints and problems of a new
enterprise. Since that time, much has
changed as the people who bring you

this magazine have all
improved with experience.

The principles upon which BYTE is
based, technical excellence combined
with a sense of humor and a spirit of
fun, have not changed. As a celebra-
tion of that combination, we commis-
sioned Robert Tinney to implement a
fanciful picture of the BYTE 0.01
Centennial Celebration. With this very
personal anniversary, we look forward
to the developments and improve-
ments of the coming year.

grown and

In BNF notation,
<we ::= <We>
< the contents of the BYTE
staff listing, page 5>

Whatever your stand on the ques-
tions of free exchange of software, one
thing is certain: To write software of
any form is an act of creation. The
decision as to what is done with a
work of software should reside with
the creator. If you are a writer of
software, find out about some of the
legal aspects of your work by reading
Calvin N Mooers’ Are You an Author?

A multiprocessor system is a combi-
nation of two or more processors to
accomplish more than what a single
processor could do by itself. In his
article Build This Mathematical Func-
tion Unit, author R Scott Guthrie
describes a simple form of the multi-
processor concept: a scientific calcu-
lator unit controlled by an 8 bit
microprocessor. The calculator comes
preprogrammed with all the software
you need to carry out floating point
arithmetic operations and special func-
tions, to say nothing of an arithmetic
expression parser implicit in the paren-
thesis keys. The calculator peripheral
in one fell swoop eliminates a lot of
the software development required for
an interpretive mathematically oriented
computer language.

Learn how to Randomize Your
Programming by reading Robert
Grappel’s discussion of pseudorandom
number sequences along with practical
software to implement 8 or 16 bit
generators.

Well, here it is: the first version of
Star Trek to be printed in full in
BYTE. Gerald H Herd describes his
version of A BASIC Star Trek Trainer
as implemented on a Data General
NOVA, but easily adaptable to any
BASIC machine with about 5 K bytes
of text area.

One of the choices open to readers
familiar with the industrial OEM mar-
kets is to purchase computer products
intended for systems engineering situ-
ations. . In his product description
article on The MSC 8080+ Microcom-
puter as a Personal System, BYTE
reader Ken Barbier enthusiastically
describes one such product and his
experiences using it.

Binary, octal, hexadecimal or
decimal? That is the question. What-
ever your preference, however, James
Brown will help you out with his
article on How to do a Number of
Conversions. By implementing the
whole set of conversions, you can try
each base on for size, depending upon
your mood and idiosyncracies.

Last month, Burt Hashizume de-
scribed the neat new architecture of
the “super 8080 called Z-80 by its
maker, Zilog Inc. In this issue, Dr
Robert Suding brings the excitement
down to earth with the complete
details of The Circuit for Z-80s, a

complete central processor with some
programmable memory and a dash of
systems software in an erasable ROM
thrown in for good measure.

What’s an SC/MP? Find out by
reviewing Robert Baker's Microproc-
essor Update: SC/MP Fills a Gap.

In the final instalment of our series
of three reprints from Nat Wads-
worth’s Machine Language Program-
ming for the “8008" (and Similar
Microcomputers), you’ll find some
information on the details of machine
language programming in computers
with limited resources.

Recycling pretested integrated cir-
cuits mounted on surplus printed cir-
cuit boards is an inexpensive way to
obtain a good parts inventory. The
main problem is getting the circuits off
the board. Ralph Droms and Jonathan
Bondy have dreamed up A Flameless
IC Recycling Trick as one way to
accomplish the recycling goal.

What does it take to program an
8080 debugging monitor? Joe Kasser
and Richard Allen describe AMSAT's
answer to this question in AMSAT
8080 Standard Debug Monitor:
AMSB80 Version 2. This is a complete
assembly of a useful control program
which can be adapted to any 8080
based microcomputer system.

In the Queue

'BUTE # 13

{or, if you're superstitious,
volume 2, number 1)

SEPTEMBER 1976

staff

26

36

40

50

62

104

108

16

44

76

84

73
74, 81,96
92
a8
124
128
128

Foreground

BUILD THIS MATHEMATICAL FUNCTION UNIT—Part 1
Hardware—Guthrie

RANDOMIZE YOUR PROGRAMMING
Software—Grappel

A BASIC STAR TREK TRAINER
Software—Herd

HOW TO DO A NUMBER OF CONVERSIONS
Software—Brown

THE CIRCUIT FOR Z-80s
Hardware—Suding

A FLAMELESS IC RECYCLING TRICK
Techniques—Bondy-Droms

AMSAT 8080 STANDARD DEBUG MONITOR: AMS80 VERSION 2
Systems Software—Allen-Kasser

Background

ARE YOU AN AUTHOR?
Software—Mooers

THE MSC 8080+ MICROPROCESSOR AS A PERSONAL SYSTEM
Product Description—Barbier

MICROPROCESSOR UPDATE: SC/MP FILLS A GAP

Hardware—Baker
MACHINE LANGUAGE PROGRAMMING FOR THE "8008"”—Chapter 3

Software—Wadsworth

Nucleus
In This BYTE BYTE magazine is published
C One Alll monthly by BYTE Publica-
ome . Come tions, Inc., 70 Main St, Peter-
Letters borough, New Hampshire
03458, Subscription rates are
Software Bug of the Month 4 $12 for one year worldwide.
' f Two years, $22. Three years,
BYTE’s Bits $30. Second class postage paid

at Peterborough New Hamp-
ghire 03458 and at additional
mailing offices. Phone
603-924-7217. Entire contents
copyright 1976 BYTE Publica-
C|Ubs‘ Newsletters tions, Inc, Peterborough NH
Progra ing Quickies 03458. Address editorial cor-
sdramming respondence to Editor, BYTE,
BOMB 70 Main St, Peterborough NH
03458.

What's New?
Classified Ads

Reader’s Service

PUBLISHERS

Virginia Peschke

Manfred Peschke

EDITOR

Carl T Helmers, Jr

GENERAL MANAGER
Manfred Peschke
PRODUCTION MANAGER
Judith Havey

CIRCULATION

Deborah R Luhrs

DEALER CIRCULATION
Deena Zealy

PUBLISHERS ASSISTANTS
Cheryl Hurd

Carol Nyland

ADVERTISING

Elizabeth Alpaugh

Virginia Peschke
TYPOGRAPHY

Custom Marketing Resources, Inc
Goodway Graphics

Mary Lavoie

Taimi Woodward
PHOTOGRAPHY

Ed Crabtree

Custom Marketing Resources, Inc
ART

Mary Jane Frohlich

Bill Morelio

PRINTING

The George Banta Company
Custom Marketing Resources, Inc
ASSOCIATES

Bob Baker

Dan Fylstra

Harold A Mauch

Chris Ryland

PRODUCTS COORDINATOR
Floyd W Rehling

Come One, Come Alll

Editorial by Carl Helmers

Articles Policy

BYTE is continually seek-
ing quality manuscripts writ-
ten by individuals who are
applyving personal systems, or
who have knowledge which
will prove useful to our read-
ers, Manuscripts should have
double spaced fypewritten
texts ‘with wide margins. Num-
bering sequences should be
maintained separately for fig-
ures, tables, photos and list-
ings, Figures and tables should
be provided on separate sheets
of paper, Photos of technical
subjects should be taken with
uniform lighting, sharp focus
and should be supplied in the
form of clear glossy black and
white prints (if you do not
have access to quality photog-
raphy, items to be photo-
graphed can be shipped to us
in many cases). Computer list-
ings should be supplied using
the darkest ribbons possible
on new (not recycled) blank
white computer forms or bond
paper. Where possible, we
would like authors to supply a
short statement about their
background and experience,

Articles which are accepted
are typically acknowledged
with a binder check 4 to 8
weeks after receipt. Honorari-
ums for articles are based
upon the technical quality and
suitability for BYTE’s reader-
ship and are typically $15 to
$30 per typeset magazine
page. We recommend that au-
thors record their name and
address information redun-
dantly on materials submitted,
and that a return envelope
with postage be supplied in
the event the article is not
accepted. B

NCC 1976

BYTE shared a booth with David Ahl’s
Creative Computing at the 1976 NCC show
June 7-10 in New York. For those who are
not familiar with the computing trade, NCC
is the big trade show sponsored by AFIPS
(American Federation of Information Pro-
cessing Societies) and attended by large
numbers of people in the traditional data
processing world. [t features a strong techno-
logical information program with lecturers
on numerous topics, as well as one of the
most complete trade shows with booths
manned by every major manufacturer and
vendor in the computer industry.

This year's floor show was in the New
York Coliseum, and the technical presenta-
tions were held in the New York Hilton and
Americana Hotels. | attended a technical
session on personal computing on Tuesday
morning June 8 in the Americana Hotel.
Speakers at this session included Stephen B
Gray, Ted Nelson, and Dr Alfred Bork. The
theme of Ted Nelson’s talk was the idea of
the computer becoming a home appliance, a
necessity in the home in the same way that a
lot of technological innovations have be-
come ‘“‘necessities.”’ Computer Lib becomes
a reality. To an audience of very sym-
pathetic professionals, Ted emphasized the
concept of the computer and its use as a
“way of life,”’ in the same sense that talking
is a way of life. For those initiated into the
art of computing, the truth of this view is
quite evident. Ted also made great argu-
ments for eliminating the term ‘“‘microcom-
puter” — what we’re all building, buying or
using is not micro in any sense of the word,
but simply an inexpensive computer of the
general purpose variety. (Eliminating that
term also gets rid of an ambiguity with

respect to microprogramming.) Ted made a
strong case of comparison between the
traditional ‘“‘cuckoo’ computer center con-
cept and the medieval church with its
priesthood and obscure Latin language. Per-
sonal computing as practiced by large num-
bers of people will help end the con-
centration of apparent power in the “in”
group of programmers and technicians, just
as the enlightenment and renaissance in
Europe brought about a much wider under-
standing beginning in the 14th century. (See
a forthcoming article by Dave Fylstra and
Mike Wilbur for some further commentary
on the subject.)

Ted also introduced his concept of the
perfect computer store, when he started
talking about the ‘‘itty bitty machine corpo-
ration” whose first computer store is to
open soon in Evanston IL. He intends to
become the McDonald’s of computing. By
way of formal legalisms, he entered several
terms into interstate commerce, a first step
toward obtaining a legally protected trade-
mark: “FUNTRAN” s the itty bitty
machine corporation’s extensible function
translation language, providing word proces-
sing, planning and figuring. ‘‘Simulatrix’’ is
his name for a proposed library of games
with educational and recreational values
combined, a library to be maintained with
royalties to authors. Interactive art works
itty bitty machine corporation is to sell
under the “Lady Lovelace’ trade name (not
a porn film, but the name of the world’s first
programmer), and the itty bitty machine
corporation’s first hardware product is to be
called the “‘heaven eleven,” an LSI-11 with
an Altair compatible bus for peripherals.
(For the upper crust, there is “heaven on
wheels,” a van to be equipped with a
“heaven eleven.”) [All the quoted words in

SUPER CHIP!

From The Digital Group, of course.

If you are considering the purchase of an 8080-based sys-
tem, look no further. The Z-80 has arrived. A new genera-
tion 8080 by the same individuals who helped design the
original 8080 — combining all the advantages of the 6800,
6500 and 8080 into one fantastic little chip! And, the Z-80
maintains complete compatibility with 8080 software.

What’s even better . . . the Z-80 is being brought to you by
The Digital Group — people who understand quality and
realize you expect the ultimate for your expenditure. With
the Z-80, combined with the Digital Group System’s video-
based operation, you're at state of the art. There's no place
better.

Take a look at some specifications:

Z-80 FEATURES

® Complete compatibility with 8080A object code
® 80 new instructions for a total of 158
® 696 Op codes
® Extensive 16-bit arithmetic
® 3 Interrupt modes (incl 8080}, mode 2 provides 128
interrupt vectors
® Built-in automatic dynamic memory refresh
® Eleven addressing modes including:
Immediate
Immediate extended
Page Zero
Relative
Extended
Indexed
Register
Implied
Register Indirect
Bit
Combination of above

® New Instructions (highlights):
Block move up to 64k bytes memory to memory
Block 1/0O up to 256 bytes to/from memory directly
String Search
Direct bit manipulation

® 22 Registers — 16 general purpose

® 1,4, 8 and 16 bit operations

DIGITAL GROUP z-80 CPU CARD
® 2k bytes 500ns static RAM
® 256 bytes EPROM bootstrap loader (1702A)
® 2 Direct Memory Access (DMA) channels
® Hardware Interrupt controller

Supports all 3 modes of interrupt
Mode 2 supports 128 interrupt vectors

® Data and Address bus lines drive 30 TTL loads

® Z-80 runs at maximum rated speed

® Single step or single instruction step

® EPROM de-selectable for full 64k RAM availability
{programs may start at location @)

® Complete interchangeability with Digital Group 8080A,
6800 and 6500 CPUs

The Z-80 is here. And affordable. Prices for complete Digital
Group systems with the Z-80 CPU start at $475. For more
information, please call us or write. Now.

Tt

THE DIGITAL GROUP INC.

PO.BOX 6528
DENVER,CO 80206
(303)861-1686

1

ASCI1/Graphics Programmable, Multi-mode, Video Interface

MERLIN IS HERE!

Have you been trying to decide whether to spend your hard
earned money on a fancy graphics display, or on an ASCII,
alphanumeric (perhaps limited graphics) video interface? Now
there is a third alternativel Get both with MERLIN the
MiniTerm magician who can display your Altair or IMSAI
memory in either format, or both. Of course MERLIN is plug-in
compatible with both computers, and provides standard
composite video output.

MERLIN has a 64 character generator chip to display ASCIl
coded data from your memory as 40 characters by 20 lines. And
by a twist of magic (software control of a mode latch),
MERLIN’s hardware free format “memory saver” mode starts a
new line after every carriage return. Change mode again and each
point on the screen: 100 vertical by 80 or 160 horizontal, is
controlled by a separate memory bit. Want both? Top ’n’ lines
can be ASCI| data, the rest is displayed as graphics.

Software control of ASCII/Graphics mode is just the beginning.
Think of some of the crazy (as well as useful) things that can be
done with software control of: video polarity (black/white),
carriage returns {blanked/displayed), control characters (blank-
ed/video inverted), and cursor (on/off).

By the magic of DMA, MERLIN is super fast! Up to sixty
completely different screens every second makes possible a
whole new world of computer fun: computer animation!

Worried about connecting your keyboard? Just plug it into

MERLIN's keyboard 1/0 connector. Perhaps you think MERLIN
is all magic and no smarts. NOT SO! Sockets and decoding for
4K ROM or 2K (2708) EPROM and our optional ROM software
makes MERLIN the smartest video interface available. Qur basic
ROM (MBI*) contains all these keyboard editing functions for
both fixed and free format modes:

-Cursor Up, Down, Right, Left, and ‘Home’
-Delete Character or to ‘End-of-Memory’
-Auto and Manual Scroll
-Insert and Replace Modes
4 Slave Cursor Operations
-6 User Defined Functions
and MONITOR routines:
-HEX Dump and HEX Input
-ASCIi Text Input
-Set Memory Display Area
Set Display Mode
-Examine/Modify CPU Program Registers
-Examine/Modify Memory
-Memory Fill
-Execute User Program with Automatic Breakpoints

Our extended function ROM (MEI*)) contains more editing
functions, including a search routine, more MONITOR
commands and graphics subroutines. MERLIN’s Basic Intelli-
gence comes with scratch pad RAM memory for monitor use.

With a lot of magic, we at MiniTerm are able to offer this fun
and exciting interface for the low price of only $249. All prepaid
orders received before November 1, 1976 will receive free the
MBI ROM, regularly sold separately at $34.95.

A User Manual, including hardware and software details is
available for $8.00 {deductible from MERLIN order}. Order now
and receive a free listing of LIFE which runs in 1.2K including
800 bytes for the display.

Prices subject to change without notice. Mass. residents please
add 5% sales tax.

A

\MlmTorm Associates
TR TR L ek S T
Box 268, Bedford, Mass. 01730

*MBI - MERLIN’s Basic Intelligence
MEI - MERLIN's Expanded Intelligence

this paragraph are claimed as trademarks of
itty bitty machine corporation.] 1t will be
interesting to see what comes out of
Evanston in the coming months. Ted closed
his talk with the following very quotable
passage: ‘“‘Using a computer should always
be easier than not usingit.”

NCC is a hectic affair, and unfortunately
| had to miss several of the other interesting
technical sessions in order to work the
booth. In the afternoon of June 8, David
Ahl had organized a lengthy session on
related topics.

But the 1976 NCC in New York is merely
a taste of things to come. in the planning
stages, under the overall guidance of chair-
person Dr Portia Isaacson, is the 1977 NCC,
which will be held in Dallas TX at about the
same time next year. Portia is an enthusiastic
personal computing user, and is a member of
the North Texas Computer Hobbyist Group
in the Dallas-Fort Worth area. Her enthu-
siasm for the concept that “personal com-
puting is an idea whose time has come” will
be reflected in the 1977 NCC program. One
major interest area theme is scheduled to be
that of the individual and computing. This
will be reflected in the technical sessions, in
programming and system design contests for
amateurs and enthusiasts, and special exhi-
bits. The show will be a major event on any

small computer person’s travel calendar for
1977.

On a Subject Nearer in Time,
There is Personal Computing '76

As | write this month’s editorial, the final
preparations for the Personal Computing '76
show are being completed by John Dilks and
Dave Jones, who are the principal persons
responsible for the event. The list of exhib-
itors who signed up for booths as of June is
shown in this month’s advertisement for the
show. The technical program will include
numerous detailed seminars by computer
users and manufacturers’ representatives
alike.

I’ll be giving an opening talk at the start
of the show, and other speakers will include
Steven B Gray, founder of the original
Amateur Computer Society, and Ted Nelson,
author of Computer Lib/Dream Machines. |
expect that, like the earlier and very success-
ful shows at Trenton (Amateur Computer
Group of NJ) and Cleveland (Midwest Affili-
ation of Computer Clubs) this year, the
Personal Computing '76 show will be like a
gigantic computer club meeting and will give
ample opportunity for various manufac-
turers and vendors to meet potential users,

Continued on page 126

Personal
‘ Computing

Consumer Trade Fair

Come To Personal Computing ‘76
And Meet Fellow Computer Enthusiasts and
Suppliers in Person . ..

AMSAT Software Development
Computerized Music Micro Computers

Video Terminals Hardware Development
Kit Construction Disc Memories

Printers Computer Comparisons
Computer Games Interfacing

Digital Tapes Program Implementation

e Seminars and Technical talks by leading electronic equipment manufacturers
e Major Exhibits from all over the country

e Demonstrations in many areas including Home and Personal Computing

e Door Prizes, Free Literature and Free Mementos

e All this plus Sun and Surf—Fun and Excitement—Relaxation and Leisure

Weekend Fair admission $5.00 advanced, $7.50 at door. Admission includes Exhibits,
Seminars.

Write for FREE TRIP-KIT to Personal Computing ‘76 Fair Headquarters, Box 1138
Boardwalk and Michigan Ave., Atlantic City, New Jersey 08404

EXHIBITION BOOTHS STILL AVAILABLE—CALL (609) 927-6950

‘ Personal

‘ Computing

Personal Computing ‘76 is your opportunity to meet representatives of many of the
manufacturers you have seen advertised in BYTE. Among the products you’ll get to examine
at firsthand are these...many of the items have been committed as door prizes for the
drawing which will be held at the show.
And then, of course, we at BYTE will do our part toward filling the door prize pot, by
contributing one lifetime subscription to BYTE beginning with issue No. 1. The first 16 issues
will be delivered in a bound volume sometime in 1977, although we’ll start the subscription
with the current issue if the winner is not presently a subscriber.

IBM Corporation will be present at the Personal Computing '76 show, to
demonstrate ‘‘live’’ the 5100 System. This machine is a high technology
combination of video display, keyboard and mass storage hardware with
high technology software of a complete APL interpreter and BASIC
interpreter. Evaluating its features, it is perhaps the ultimate in a small
programming and applications oriented computer system.

MOS Technology, 950 Rittenhouse, Norristown, PA 19401, will supply
this KIM-1 board as a door prize at Personal Computing '76.

MOS Technology

Manufacturers
Cromemco [TV Dazzler]
Digital Equipment Corporation
Digital Group
EBKA [Familiarizor]
Economy Company
E & L Instruments [MMDI-K]
HAL Communications [MCEM-8080]
Heathkit
IBM Corporation
Lear Siegler [ADM Kit]
Microterm
MITS [Altair 680 Kit]
MOS Technology [KIM-1]
MOSTEK [F-8 Evaluation Kit]
National Multiplex
Ohio Scientific
[Model 300 Computer Trainer]
Processor Technology [VDM Kit]
Prolog
RCA Laboratories
Seals Electronics [8K memory board]
Southwest Technical Products
[6800 system kit]
Sphere [310 Kit]
Technical Design Labs
{Z-80 CPU Board]
Vector Electronics Co.
Wave Mate [Wire wrap gun & wire]
Williams Electronics
Wintek

10

Here is a preliminary list of exhibitors as of
June 30, 1976. [Door prize offerings
committed as of June 30 are in brackets
following the exhibitor’s name.)

Stores and Retailers

Computer Mart of NJ
[$25 Gift Certificates]
The Computer Store (Boston) [Books]
Computer Store (LA)
Computer Systems Center
Digital Computer Services
[6502 processor]
Hoboken Computer Works
Itty Bitty Machine Corporation
[Computer Lib]
NBC Imports [T-shirts]
Russ Banks Computer Store
SD Sales

Publishers & Organizations

ARRL, QST

AMSAT

Benwill Publications

BYTE Publications
[Lifetime subscription]

The Computer Hobbyist

Creative Computing [Books]

Hayden Books

Interface

Microcomputer Digest

Peoples Computer Company

SCCS

Cromemco, home of the TV-Dazzler will
supply a TV-Dazzler kit as a door prize at
Personal Computing ‘76. You can proba-
bly expect to see two or three dazzlers in
operation as you walk around the show,
since no product presently available so
epitomizes the fascination of personal
computing as this color graphics display.

E & L Instruments, 61 First Street, Derby,
CT 06418 will make available one MMD-1
computer kit, shown here, as a door prize.

TER
800 SHY

s 6

Southwest Technical Products Corpora-
tion, 219 W. Rhapsody, San Antonio, TX
will provide an SWTPC 6800 computer
system kit as a door prize for the show.

Processor Technology Corporation,
6200-B Hollis Street, Emeryville, CA
94608, will give out a VDM-1 module as a
door prize at Personal Computing ‘76
which plugs directly into the Altair/
IMSAI/Polymorphics backplane bus struc-
ture to produce EIA video such as that
shown in the monitor,

MITS, 2450 Alamo SE, Albuguergue, NM
87106, will provide this Altair 680 in kit
form to the lucky winner of one of the
door prize drawings.

This is the HAL Communications Corpora-
tion’'s MCEM-8080 microcomputer sys-
temn, a single board computer containing a
monitor in 1K bytes of ROM, and 8080-A
processor, 1K bytes of programmable
memory and system buffering. HAL
Communications, 807 East Green Street,
Box 365, Urbana, IL 61801 will provide
an MCEM-8080 as a door prize at the
Personal Computing ‘76 Show.

Ohio Scientific Instruments, 11679 Street,
Hiram, OH will provide a Model 300
Computer Trainer as a door prize for
Personal Computing '76.

11

Wave Mate, 1015 West 190th Street,
Gardena CA 90248, manufacturer of a
wire wrapped computer kit, will provide
this wire wrap gun and unwrapping tool as
a door prize at the show.

o . R e - A e £ KT
nwm S0 - . I

WWHHBEW@

MJB Research & Dewvelopment Corpora-
tion’s contribution to the stack of door
prizes at Personal Computing '76 will be
this 8K Altair compatible ‘’Seals’ memory
board. MJB is located at 36 W 62nd
Street, New York, NY 10023.

Letters

It's about time somebody
jumped in with a word or
two in favor of sanity and
rationality in programming

style.

I
/

STRUCTURE’S WHERE IT’S AT!

In regard to Ronald Herman’s article
page 22, fune 1976 BYTE] on “Program-
ming for the Beginner:” Right On!! | for one
am fed up with articles and letters of the
“my code is two bytes shorter than yours”
variety. It's about time somebody jumped in
with a word or two in favor of sanity and
rationality in programming style. While the
techniques Mr Herman presents are by no
means new, their acceptance among pro-
grammers of smaller systems is shall we say
not as widespread as one might wish. This is
detrimental not only to the individual prac-
titioner of the ‘dirty tricks” school of
programming, but to the home computing
community as a whole, for such practices
can severely restrict the utility and share-
ability of the software produced, and
thereby work to defeat the purpose of
hobbyist software interchange standards.

| think that to a large extent it is up to
such people as the editors of BYTE to
encourage neophyte programmers to develop
structured, top-down programming practices
rather than bit-pinching, memory-grudging
trickery. Novices in particular should be
warned that code of the latter type can be
nearly impossible to debug, and just try and
understand it a year from now! Since you,
the editors, have been pushing for standard-
ization of various sorts, | think that it would
not be too unreasonable for you to exercise
a little discretion as to what sort of program-
ming style is advocated in the articles and
letters you select for publication. | might
also suggest that software-related articles
include metalanguage descriptions of the
algorithms involved, similar to Mr Herman’s
pseudo code.

For those old-timers already past the
point of no return, by all means don’t let me
interfere with your work. If the “quick and
dirty” approach to coding is your bag, then

12

go right ahead. Just don’t ask me to debug it
for you, and please, please don’t tempt
neophytes down your primrose path.

Gregory P Kusnick
3532 Ramona
Palo Alto CA 94306

P.S. In case you haven’t figured this out yet,
all my BOMB points for this month go to
Ronald Herman.

We're all for structured programming, just
surprised at how long it took for someone to
write an article on the subject. Ron
Herman’s article shows a very useful tech-
nique for organizing one’s programming
thoughts. Let it be known: Articles which
use a pseudo code representation for pro-
grams are highly desirable. Of course, in the
cases where what might be called a "‘dirty
trick” is required, we can always partition
the problem so that the tricks are off
isolated in some subroutine.

DISPLAY WANTED

I recently picked up the May and June
issues of BYTE at the “Rochester Hamfest”
at Rochester NY. | was very impressed with
BYTE as it appears to be an excellent
magazine for the ‘“‘computer hobbyist” or
“ham RTTY operator.”

| would like to see an article on a 72
character per line TV display which would
then be compatible with Teletype line
lengths such as the model 32 and 33s, etc.

Vincent R Staffo
Rochester NY

ATTENTION HAMS!
REQUEST FOR A HAM NETWORK

| am a ‘‘charter subscriber” to BYTE and
have been in and around the radiof
electronics business for quite a while, since
1941 in fact. | have an Amateur Extra Class
license and operate all bands, SSB, CW and
RTTY. | am also CE for a St Louis direc-
tional AM and stereo FM station (20 years).

It seems to me that the opportunities in
the microprocessor field are virtually
unlimited but also that the pitfalls are of the
same order. | also believe that a large
number of your readers must also be hams
and RTTYers. | would like to see BYTE
magazine promote a net type of operation
on the ham bands to promote the exchange
of information regarding microprocessor
systems and peripherals. A few minutes of

Continued on page 93

If you thought a rugged,
professional vet affordable
computer didn't exist,

think
IMSAI
8080.

Sure there are other commercial,
high-quality computers that can
perform like the 8080. But their
prices are 5 times as high. There is
a rugged, reliable, industrial com-
puter, with high commercial-type
performance. The IMSAI 8080.
Fully assembled, it's $931.
Unassembled, it’s $599. And ours
is available now.

In our case, you can tell
a computer by its cabinet. The
IMSAI 8080 is made for commer-
cial users. And it looks it. Inside
and out! The cabinet is attractive,
heavy-gauge aluminum. The
heavy-duty lucite front panel has
an extra 8 program controlled
LED?s. It plugs directly into the
Mother Board without a wire
harness. And rugged commercial
grade paddle switches that are
backed up by reliable debouncing
circuits. But higher aesthetics on
the outside is only the beginning.
The guts of the IMSAI 8080 is
where its true beauty lies.

The 8080 is optionally
expandable to a substantial system
with 22 card slots in a single
printed circuit board. And the
durable card cage is made of
commercial-grade anodized

aluminum.
The IMSAI 8080 power

supply produces a true 28 amp
current, enough to power a full
system.

You can expand to a
powerful system with 64K of
memory, plus a floppy disk con-
troller, with its own on-board
8080-and a DOS. A floppy disk
drive, an audio tape cassette input
device, a printer, plus a video
terminal and a teleprinter. These
peripherals will function with an
8-level priority interrupt system.
IMSAI BASIC software is avail-
able in 4K, that you can get in
PROM. And a new $139 4K
RAM board with software

IKoAl susl

memory protect. For the ultimate
in flexibility, you can design the
system for low-cost multiprocessor,
shared memory capability.

Find out more about the
computer you thought didn’t
exist. Get a complete illustrated
brochure describing the IMSAI
8080, options, peripherals, soft-
ware, prices and specifications.
Send one dollar to cover handling.

Call us for the name of the
IMSALI dealer nearest you.

Dealer inquiries invited.

IMSA]

IMS Associates, Inc.
14860 Wicks Boulevard
San Leandro, CA 94577
(415) 483-2093

New Intel microcom
system costs, 1ncrease

Intel has two new LSI components ' e R 2

1 . % £
: ~ SYSTEM |
for the MCS-40™ microcomputer system crnier R) TEY
which will help you cut system costs, D R 201

increase throughput and reduce the num-
ber of components you have to stock for
/O interface requirements. The new Intel o
4269 Programmable Keyboard Display PROGRAMMABLE
and the 4265 Programmable General Pur- LAERLC
pose 1/O devices eliminate the large ‘
number of discrete SSI/MSI components
previously required for keyboard, control
panel, indicator array, alphanumeric dis-
play, printer, communications and other
1/O interfaces. These new LSI parts in-
crease system throughput up to 50%, and
make it easy to add standard Intel memory
and system peripherals.

The 4269 Keyboard Display can be
software programmed to interface to vari-
ous keyboard and display elements and
makes it possible for you to eliminate
fifteen or more discrete components.

It significantly increases system
throughput since it performs the scan,
storage, refresh, and other simultaneous
keyboard/display tasks previously required
of the 4004 or 4040 CPU.

When programmed as a keyboard or
line sensor input interface, the 4269 can
scan up to 64 key closures or lines. When a
key closure is detected, the 4269 generates
a system interrupt and stores up to eight
characters in its first-in/first-out buffer
before requiring CPU service.

In alphanumeric applications, the
4269 eliminates the need to use the CPU

* Self-Scan is a registered trademark of the Burroughs Corporation.

puter [/O devices cut
throughput up to 502

and system memory for display refresh
| since the necessary memory and control
. are built in. One 4269 can operate and

 SCANLIN : B refresh alphanumeric displays or indicator
‘ I arrays with up to 32x4 digits, 16x8 charac-
4269 | tersor any configuration of 128 elements or

PROGRAMMABLE Sy - lights, including a 20-character Burroughs

SRR Self-Scan® Display.
Lo The 4265 General Purpose Program-

| mable [/O is ideally suited to implement
| custom interface requirements. Up to
four devices can be controlled by the
CPU. Each 4265 has 16 I/O lines organ-
ized into four ports which can be used in
14 different data transfer and control/
interface organizations. The 4265 provides
synchronous/asynchronous control, buffer
inputs and outputs, bit set and bit reset
® capability on output port lines-and byte
. transfer control. It can be used to add in-
dustry standard RAM memory such as
® Intel’s 5101 CMOS RAM. And the 4265
- lets you use system peripherals such as the
8251 Programmable Communications
Interface (USART), the 8253 Program-
mable Interval Timer or the 8214 Priority
Interrupt Control Unit.

To order, contact our franchised
distributors: Almac/Stroum, Components
Specialties, Components Plus, Cramer,

- Elmar, Hamilton/Avnet, Industrial Com-
' ponents, Liberty, Pioneer, Sheridan or

- L.A.Varah. For your copy of our MCS-40™
- System brochure, use the bingo card or

R write:Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051.

[] ®

Microcomputers! First from the beginning.

DISPLAY A KEYBOARD.

Are you the proud author of a piece of hobbyist
software? If so, you are in the same class as the
author of a novel, a play or any other kind of salable

writing.

Are You an Author?

Softlifting is a white collar
(no gun) crime which is
easy to commit and hard
to detect.

Calvin N Mooers
Rockford Research Inc
140 1/2 Mt Auburn St
Cambridge MA 02138

Are you the proud author of a piece of
hobbyist software? If so, you are in the same
class as the author of a novel, a play or any
other kind of salable writing. If your soft-
ware is good, and other people want it, it
could be worth something to you. Dollars!
Money!

This is the first of several articles in
BYTE describing details of an owner’s rights
in computer software. It is written from the
hobbyist and software writer’s standpoint.
While | am not a lawyer with a formal legal
degree, | have some practical credentials for
discussing these matters. | have 30 years
experience in studying this topic and in
advising my lawyers concerning my own
patent, trademark and software copyright
problems. | have previously written on this
subject as it concerns the professional data
processing markets (in particular see my
article ““Computer Software and Copyright”
in the March 1975 issue of the ACM
Computing Surveys). Any lawyers or indi-
viduals who read my views on the subject
and have comments to make are invited to
respond in writing to me or via the BYTE
letters column.

Maybe you are not yet an author, but
only a user of personal computing software.
Then you, like everyone else, need more and
better software in order to use and enjoy
your computer. Yet where are the suppliers?

16

Why do some of the potential suppliers seem
to be holding back?

There is a partial answer to this question.
You undoubtedly know that a few bad
apples are rapidly giving all computer hobby-
ists a very bad name. For example, it now
appears that more copies of Altair’s BASIC
have been pirated than have been legally
sold. (See the letter by Bill Gates on page 3
of the February 1976 edition of MITS
Computer Notes, the March April 1976 issue
of People’s Computer Company and widely
published elsewhere in newsletters and club
bulletins.)

Software piracy is a white collar (no gun)
type of crime. It is easy to commit and hard
to detect. As a crime it is in the same class as
shoplifting, or the use of a “‘blue box” on a
telephone to make illegal freebie worldwide
telephone calls. Software piracy is a crime
ethically because it extracts creativity and
effort from the author(s) of software against
their will and thereby robs them of their
property. It is a crime legally to the extent
that existing legal mechanisms are available
for the protection of software by owners
who desire some form of recompense
through sales.

As a software user who has come by his
or her software honestly, what can you do
with your software? What can you not do?
From my experience talking to many
people, | have concluded that very few
persons really know what they can do and
cannot do within the present legal defini-
tions. There is much misinformation and
little real knowledge. One target of this
article is you who are software users.

Furthermore, it is you — the great
majority of honest users — who will by your

A Note of Interest

The concern with protection of software creations is by no means con-
fined to the personal computing field, At about the time this article was being
edited, a survey entitled "‘Development of an Internatjonal System for Legal
Protection of Computer Programs’ by Oliver R Smoot appeared in the April
1976 edition of Communications of the ACM, page 771 of the volume 19
number 4 jssue. The content of the report was an informal account of a
recent (June 1975) meeting of an international committee named the Advi-
sory Group of Non-Governmental Experts on the Protection of Computer
Programs, held under the auspices of the World Intellectual Property Organ-
ization in Geneva, Switzerland. . . CH

peer pressure provide the most effective way
for putting a stop to the bad apples who
steal software. If the software piracy threat
can be stopped, more and better software on
the market will be the result.

Methods of Protection

So you are an author, and you have this
great little piece of hobby software (or
business software). It is so new, it is still a
secret between you and your computer.
Even your best friend hasn’t been provided
with a copy. It is all yours.

(We presume that this software was
created in your own basement, and not on
your company’s time or computer. We pre-
sume that your business arrangement with
your employer allows you to hold ownership
in your own out-of-hours software creations.
{Maybe you had better dig out that copy of
your employment contract, and read the
fine print on this matter.) We also presume
that your creation wasn’t copied from some-
one else’s copyrighted software or
documentation.)

For the moment this new software is all
yours, and you legally and completely own
it. The courts will back you up to the hilt.
So much for the good news.

Now for the bad news. Exactly what is it
that your own? Should you try to protect
your new software? If so, how? How can
you take your software out of your base-
ment without losing your ownership? If you
can find a buyer, what is it that you really
sell? What steps {patent, trademark, copy-
right, trade secret, or other method) should
you take to protect your new property?

The easiest way out is for you to give
your software away, thereby forfeiting
ownership. You won’t have any problems as
an owner. For some kinds of hobby soft-
ware, this is the preferred course. After all, a

hobby is mainly for the fun of the thing, and
you don’t really expect to make any money.

But what if you really did put in an awful
lot of time, and worked up some documen-
tation, got all the bugs out, and have
something that you think others would
really like to pay some money for. What
then?

If you can find a buyer for your software,
someone who is willing to purchase ali rights
to your software, sight-unseen, for some nice
round number, then your worries are also
completely over. The buyer can worry about
protecting it, and selling it. However, most
buyers will want to examine the goods
before buying, so you are back to where we
began: If you want to sell your software
creations, how do you protect your prop-
erty before and after the sale? Thus we get
down to basics.

Secrecy

If you don’t let your software out of
your basement, and you don’t let anyone
else see or have access to it, even by data
line, and you tell no one about it, then you
are probably completely protected (barring a
computer-oriented burglary). This is the
method of protection by secrecy. It is
completely effective. The best people do it:
IBM is reputed to have many more secret
developments filed away in their labs than
all they have ever published or marketed.

Can the “idea” of your new software be

protected? The answer is clearly “No,” .

particularly if the software is to be marketed
to a number of customers. Forget it.

Patent

Can the new software be patented? This
method of software protection might seem
to be a hopeful way, since a patent protects
the processes or devices used to carry out an

17

When you create or pur-
chase software, exactly
what is it that you own?

The easiest way out of
software protection prob-
lems is for you to give
your software away,
thereby forfeiting owner-
ship. This is guaranteed to
cure any problems you
may have as an owner. For
some kinds of software
this is the preferred
course. After all, a hobby
is mainly for the fun of
the thing and you don’t
really expect to make any
money.

In my estimation, the best
tool we have is copyright,
which is the same legal
tool used by all other
authors — authors of
novels, plays, and all other
kinds of creative written
works.

With software, trade secret protection is not likely.
You simply cannot sell copies of the secret and keep

the secret at the same time.

inventive new idea. In practice, the answer is
again “No.” There are two reasons. The first
is that your software is almost certainly not
sufficiently original in concept to be patent-
able. The second is that during the past ten
years the courts — including the Supreme
Court — have had as much trouble in
agreeing about how to deal with software
patents as they have had with the equally
intriguing topic of pornography (What is it?
Should it be allowed?). Finally, getting a
patent will cost you an arm and a leg (more
than $1000), and will take a minimum of
two to three years (if ever) to get. Again,
forget it. Let the big corporations fight this
battle.

Trade Secret

If you are going to sell your software to
more than one customer for hobby com-
puter use, you can also forget the “trade
secret’’ method of protection. This method
works for large companies if it is a manufac-
turing process or formula that can be kept
behind locked doors (like the formula for
Coca Cola). But with software, you simply
cannot sell copies of the secret, and keep the
secret at the same time.

Trademarks

Trademarks are another fascinating legal
device for your protection as an entre-
peneur. Trademark laws protect your use of
a special mark (your trademark) on your
goods or services. The purpose of your
trademark on your software is to inform the
buying public that the goods or services so
marked and sold are manufactured or pro-
vided by you, and not by someone else. If
you are interested in the game of software
selling, you should seriously consider using a
trademark (or service mark) to help protect
you from unfair imitators, since there are
legal sanctions to prevent them from using
your mark. However, useful . as it is, a
trademark cannot be used to protect the
software itself from theft.

Copyright

How can your new software be sold, and
still be protected from “‘soft-lifting”’ (equiva-
lent to “shoplifting” in another context)?
How can it be protected from the pirates? In
my estimation, the best tool we have is
copyright, which is the same legal tool used

18

by all other authors — authors of novels,
plays, and other kinds of creative written
works.

Copyright is unbelievably swift and
cheap. What you do is to place the magic
incantation “Copyright 1976 | Jones” (if
your name is] Jones) at the top of the first
page or title page of your software listing,
and then give a copy so marked to a friend.
You now have a copyright!

It is like magic. The very instant that you
place your program, or listing, or tape, or
documentation on sale or put it into distri-
bution with this notice on it you become the
proud owner of a US copyright in the
software so marked.

You do not need to file papers anywhere
to obtain your legal copyright protection!
(However, more about this topic later, and
about filing a copyright claim in the US
Copyright Office.)

However, if you first distribute any
copies of your software without this copy-
right notice, then you have lost your rights
forever. By first distributing your software
without a copyright notice, you thereby tell
the world that you renounce your owner-
ship, and that anyone thereafter may copy
your software at any time with no need for
permission.

It is best if the notice “Copyright 1976)
Jones” (with the correct name and date) is
placed in a comment line at the head of the
program. It should also be stamped or
handwritten on all tapes and boxes contain-
ing cards or tapes for the software. It is
important that it be placed on the tit/e page
of all documentation. All copies, what-
soever, going out should bear your copyright
notice.

What Copyright Means

A copyright means that no one, without
your permission, is legally authorized to
make copies of your copyrighted software.
In the language of the law, you now have:

“the exclusive right to print, reprint,
publish, copy, and vend the copy-
righted work; to translate the work
into other languages or dialects, or to
make any other version thereof...”

Since one can’t run a computer without first
using a copy of the software to make a data
pattern inside the computer, you can begin
to see how copyright can protect you.

Introducing SCELBAL,
the new microcomputer
language that’s simpler

than machine language.

A complete language for
‘8008 /*°8080" systems
including source listings,
routines, flow charts and
more!

SCELBAL. SCientific ELementary
BAsic Language for ‘‘8008™/*8080"

systems. A complete, illustrated program book. Routines.
Techniques. Source Listings. Flow Charts. And more.
Took several years to develop. Now yours for many years
to come. First time that intimate details of higher level
language has been offered for such a low price. Only $49!
You get 5 Commands: SCR, LIST, RUN, SAVE, LOAD.
14 Statements: REM, LET, IF ... THEN, GOTO, FOR with
STEP, END, INPUT, PRINT, NEXT, GOSUB, RETURN and
optional DIM. 7 Functions: INT, SGN, ABS, SQR, RND,
CHR, TAB. And, it runs in 8K and more. Here's all the
data needed to customize a high level language for your

system ... at a fraction of the cost!
49 ...

a

n

3
u

B

la

Order your copy today! Get $ G

started advancing your system!

'SOFTWARE MANUALS

' Three new basic, com- . mented assembied listing
plete “MUST" manuals! . and more. $17.95.
“80B0" Assembler Pro- <3080” EdHor Program

Captain your own crusading starship

out of stardates, out of fuel, out
of ammunition or out of the galaxy.

into roaming stars that can damage your
ship. Suddenly! Conditlon Red! Alien In
sight! How big is he? Fire a phasor or
torpedo! He's damaged or destroyed.

just the beginning. A new game every
time. Complete program book in machine

source listings, flow charts, routines, etc.

Here’s SCELBI’'s First Book of
Computer Games for the 8008/8080.
- Action-packed. And fun.

{ Try to beat the computer at its own game.
i Here's the first complete machine language
| computer manual for computer games to

- include source listings, flow charts,
SﬂE‘-?‘,s \ routines and more. Space Capture — You
7\,";‘.:‘\, against the computer using '‘search and
Nl““' destroy'’ strategy to shoot down roaming
ﬂm\n\'\ﬂ'ﬁ“ i alien spaceships in outerspace. Hexpawn
ARIES -» i — a mini-chess game that lets the

«: computer make mistakes...but only

. once. Hangman — an updated version

i of the great kid game. Computer selects
\ words at random from long, expandable
i list, Try to beat it in 8 moves or less.
4 L wwuss 1 lllustrated. Fun extras to put your
&““'}:“‘“w b \ computer to challenging, competitive,

f . 95
un use Order yours today! 14 ppd.

SCELBI's new microcomputer mm

Game Book of Outer Space...

gainst the loglc of your ''8008" or
8080"". You must destroy a random
umber of alien ships without running

lan your mission. How much fuel is
sed for your warp factor? Don’t run
ut, you've used valuable fuel. That's

nguage for 4K memory, including

reat intergalactic adventure and fun,

gram operates easily in
4K bytes of RAM {includ-
ing symbol-table). Unique
feature: How to accept
mnemonics related to
“8008" based machines
on “8080". Includes alf
- majoriroutines, pertinent
fiow charts, highly com-
i S

- 1o utilize expanded
- capabilities of “8080".

3_ °"‘1.1~95.° e

identical to 8008
Editor, with machins
codes for “8080"., $14.88.
“8080” Monitor Routines
same functions as ‘8008
specitically developed By
175

ppd.

e
| SAVE $5.35! BUY

MACHINE LANGUAGE
PROGRAMM]NG Detailed presentation of *‘8008" codes ® Flow Charts

Mapping ¢ Floating-point Package e Debugging
FOR THE “8008” Basic programs: loops, counters, masks
(and similar microcomputers) Organizing Tables e Editing/Assembling
Math operations ¢ 1/O, Real Time Programming
Maximizing memories ® And lots more.

¢

i
.

e o i

de..

& i
=
R

i» ppd

L 3.FOR ONLY.

g o 3

o St

e B

$39.50!

Here's the detalled,
basic manual you need to
develop today's machine
language programs. 170
pages. |llustrated. Easy-
to-read, understand. Most
techniques applicable to
other micro-computers,
Including ''8080".
Floating-polnt arlth-
metic package Is
worth the price
alonel

Order todayl

Master Charge, Postal and Bank Money Orders preferred.
Personal checks delay shipping up to 4 weeks. Pricing,
specifications, availability subject to change without notice.
Prices for U.S. and Canadian delivery at book mailing rate.
Add $2.50 for each publication If Priority Air Service (U.S.)
deslred. Forelgn orders add $6.00 for each publication.

SCELE] COMPUTER
C(ONSULTING INC.

1322 Rear Boston Post Rd., Milford, CT 06460
Telephone: 203/874-1573

The best way to explain what this
language of the copyright law means is to
describe what you as the purchaser of the
software can and cannot do with copy-
righted software if you wish to stay within
the law.

After you have bought the copyrighted
software, you may read your copy, throw it
away, re-sell it, give it to a friend, memorize
it, burn it — or do just about anything except
to “make a copy.” You own the paper it is
written on, you own this particular copy of
a program; but you don’t have the legal right
to make further copies! This is what copy-
right is all about.

Of course, computers were not with us in
1909 when the current copyright law was
written. But even back in 1909 they had

“high technology’ for the time— linotypes -

and high speed printing presses. Our present
computers are merely another form of high
technology machines, and they also use and
produce printed material. The copyright law
applies to computers too.

Making a computer listing is both making
a ‘“copy” and “printing” or “reprinting”
copies of a program in the language of the
copyright law. Giving a listing to a buddy is
“publishing,’”’ even if no money is involved
in the act. Selling the listing, say for 504¢, is
“vending”’ a copy. Unless you have permis-
sion, in one way or another, from the
copyright owner, doing any of these things is
called an “infringement” of the copyright.

If you have a copyrighted program listing
in 8080 language, and you convert it to
6800 language, this, in my opinion, is also an
instance of ‘‘translating the work into
another language or dialect.” Taking the
program and making major changes in it is,
in my opinion, an instance of ‘‘making
another version thereof.” Again if you have
not been authorized to do so, these actions
would also be infringements.

It is evident that when you buy some
software for running in your computer, you
must be allowed to do a number of things
that might otherwise be forbidden by the
copyright laws. Thus when you buy copy-
righted software you should get from the
seller, either as a definite written statement,
or more usually as an implied understanding
between the software seller and yourself, a
clear indication of what things you can do
with your purchased software.

The major computer manufacturers seem
to take particular pains to make these
matters very clear. For example, they tell
you that you can copy the software into
your computer (they may even specify the
serial number of the computer) for purposes
of running the computer. They may also

20

permit you to make a limited number of
copies of the listing, but only for purposes
of your own study and maintenance. They
will often tell you that you are not author-
ized to furnish copies of the software,
listing, or documentation to any other per-
son. To maintain their control, they may
even retain ownership of the physical
listings, tapes, and documentation.

These generally-authorized actions per-
mitted with copyrighted software are now
usually understood by the sellers and buyers
of software in the data processing field at
large. Therefore if you as a buyer have any
intent of making a wider use of the software,
you should be sure to get your license or sale
agreement to specify all the actions that you
wish to be permitted.

Copyright, What You Can’t Do

A person has bought some software. What
can he or she do, and what can’t he or she
do with it? What are the penalties?

The wusual understanding between the
seller and the buyer of the software is that
the person buying the software is allowed to
copy the software into his computer to
make it run, that he or she is allowed to
make a limited number of private copies for
safety back-up or maintenance, but that the
buyer shall not furnish copies of any kind to
any other person.

Togo beyond these authorized limita-
tions, and to do other things (make and
distribute other copies, other versions, or
translations) with such purchased software,
is wrong. It is not a city ordinance or state
law that is broken. It is a Federal law duly
passed by Congress. It is called ‘“‘copyright
infringement.”

Three things can happen to a copyright
infringer:

First. The infringer may get a guilty
conscience, but otherwise get away with an
illegal act. As with shoplifting, which is also
difficult to detect, this is the usual outcome.
However if enough people in the hobby field
go in for “soft-lifting,” the software pro-
ducers might get the message, and stop
making software available to hobbyists. In
the hobby field, and for good reason, this is
already beginning to happen in at least one
well known case.

Second. If the software owner finds out
about the infringer’s illegal acts, the infringer
may be in for big trouble, especially if the
owner feels sufficiently damaged by the
illegal activities. The software owner may
decide that there has been so much infringe-
ment that it is now time to “‘give those guys
a lesson’ and to make an example of one of

Now, you can buy an Altair 8800 or
Altair 680 computer kit right off the
shelf. Most all Altair options, software
and manuals are aiso available. The
MITS Dealer List below is just the

beginning:

RETAIL COMPUTER STORE, INC.
410 N.E. 72nd

Seattle, WA 98115

(206) 524-4101

COMPUTER KITS
1044 University Ave.
Berkeley, CA 94710
(415) 845-5300

THE COMPUTER STORE
{(Arrowhead Computer Co.)
820 Broadway

Santa Monica, CA 90401
(213)451-0713

THE COMPUTER SHACK
3120 San Mateo NE
Albuquerque, NM 87110
(505) 883-8282

NOTE: Altair is a trademark of MITS, Inc.

GATEWAY ELECTRONICS
2839 W. 44th Ave.
Denver, CO 80211
(303)458-5444

GATEWAY ELECTRONICS
8123-25 Page Blvd.

St. Louis, MO 63130
(314)427-6116

BYTE'TRONICS

Suite 103 —1600 Hayes St.
Nashville, TN 37203

(615) 329-1979

CHICAGO COMPUTER STORE

517 Talcott Rd.
Park Ridge, IL 60068
(312)823-2388

MARSH DATA SYSTEMS

5405-B Southern Comfort Blvd.

Tampa, FL 33614
(813) 886-9890

MICROSYSTEMS
6605A Backlick Rd.
Springfield, VA 22150
(Washington DC area)
(703) 569-1110

THE COMPUTER SYSTEMCENTER
3330 Piedmont Road

Atlanta, GA 30305

(404) 231-1691

THE COMPUTER STORE, INC,
120 Cambridge St.
Burlington, MA 01803
(617)272-8700

THE COMPUTER STORE OF ANN ARBOR

310 East Washington St.
Ann Arbor, MI 48104
(313)995-7616

COMPUTER PRODUCTS UNLIMITED
4216 West 12th St.

Little Rock, AR 72204

(501) 666-2839

the COMPUTER STORE, INC.
63 South Main St.

Windsor Locks, CT 06096
(203) 871-1783

the COMPUTER STORE of NEW YORK

55 West 39th St.
New York, NY 10018

THE COMPUTER ROOM
3938 Beau D'Rue Drive
Eagan, MN 55122
(612)452-2567

MITS, Inc. 2450 Alamo S.E. Albuquerque, N.M. 87106

the infringers. This could lead to a lot of
rancor, and you certainly wouldn’t want
that to happen to you!

More about the third possibility later.

Getting Caught Can Be
Bad News!

Scenario: A US marshal appears at the
infringer’s door. (Copyright is a federal law,
so it goes to a federal court which uses
federal marshals to convey its “greeting.”)
The marshal carries a legal paper called a
“complaint.” The infringer has now ‘“had
it.”” Like it or not, he must accept the
complaint. A full legal response to it is
required within 20 days. Whatever the
infringer does now could cost plenty of
money, time, and grief. Also bad publicity if
he or she was chosen to be an example.

Probably the best thing an infringer can
do at this stage is to make peace — but fast
— with the owner of the infringed copyright.
All the other alternatives have high risk and
cost. Trying to fight the case (assuming a
real “‘softlifter” is involved} will cost buckets
of money for legal fees, whether the suit is
won or lost. To not fight, or to default on
the complaint, means the infringer will
receive an automatic default judgment which
could cost a minimum of $250 for each
alleged instance of copyright infringement.

In cases of infringement, the copyright
law provides for mandatory damages to be
paid to the owner which ‘“‘shall not be less
than $250 nor more than $5,000” for each
act of infringement. Each time a copy had
been run off for a friend would probably
constitute a separate act of infringement.
The fact that no money was involved in the
deal does not excuse the infringement.
Neither is ignorance of the law an acceptable
excuse.

Profits and Prison

What about the guy who knew the
software was copyrighted, but still made and
sold copies of the software hoping to make a
tidy profit? Maybe he wanted to buy some
super disk system with his ill-gotten gains.
When he copies wilfully and sells the stolen
copyrighted software, it is a federal crime
(ves, | said criminal). The newspapers
recently had accounts of the FBI going after
a nationwide audio-tape bootlegging ring.
Audio tape bootlegging is a similar kind of
copyright infringement.

Although a hobby computer program
pirate would probably have to go large scale
before the software owner could get the
reluctant federal authorities to move, it
could happen. The law provides that if a
copyright infringement is wilful and for

22

profit, the convicted infringer “shall be
punished by imprisonment for not exceeding
one year or by a fine of not less than $100
or more than $1,000, or both, in the
discretion of the court "

The Effects of Software Piracy

But what if the software owners don’t
take the legal sanctions route. What then?
After all, it is terribly expensive for them to
do so. What we can expect to happen — and
now is happening — is that software pro-
ducers will shun the hobby software field.
Already the bad apples in the hobby field
have produced a devastating impact. Bill
Gates, producer of the Altair BASIC, in his
“Open Letter to Hobbyists” mentioned
earlier, tells of his sad experience.

According to Bill, he and two associates
produced the Altair BASIC, investing three
man vyears and burning up $40,000 in
computer time. It was to be sold on commis-
sion through MITS for use with Altair
computers. Gates now finds that many of
the “users” he talks to praise his BASIC very
highly, but few of them can admit that they
bought the copy they use. He says, “*As most
of the hobbyists must be aware, most of you
steal your software.” He is bitter, and says
that the return for his group was less than $2
an hour for the great amount of time they
put into the programming, debugging, and
documentation required to make a first class
package. He continues, ‘“We have written
6800 BASIC, and are writing 8080 APL and
6800 APL, but there is very little incentive
to make this software available to
hobbyists.”

The software people | have talked to
agree with him. This means that prudent
software producers will begin to sell com-
plex packages only to commercial and busi-
ness buyers, since such buyers would be less
likely to break the law. This means that soon
only the hardware and kit manufacturers
will be willing to supply hobbyist systems
software. If so, hobby equipment prices
must rise to absorb the cost of the bundled
software. Another result will be that the
hobbyist will be severely limited in choice of
software. Hobby systems will be limited
mainly to what the manufacturer wants to
produce.

The hobbyists can do a lot to clean up
this situation. They can first learn what the
owner’s rights are in his software. They can
expose the bad apples who are peddling
stolen property. They can exclude bad
apples from hobby meetings until they
change their ways. The pressure from one’s
“peers” can be very powerful if it is properly
applied.m

Rickeys tackling t

..k - - P g ‘ .

he SDK-80

microcomputer kit for his next science project.

Rickey likes soccer, lizards, hot
fudge sundaes, skateboards and
microscopes. He can’t decide if he'd
rather be Franco Harris, Bobby
Fischer or Jonas Salk.

When his Dad brought home
the Inte]l SDK-80 microcomputer
systems kit, Rickey helped him put
it together. It took only four hours.
Everything was there. The 8080
CPU, RAM, PROM, programmable,
[/O, aprinted circuit board with all
those capacitors and resistors and
the other things that go with it. The

best part was the instruction manuals.
Every step was clearly explained. [t was
easy. The programming part looked
especially interesting. So simple. Just
imagine talking to a computer.

The big thrill came on Saturday
when they went to his Dad’s office to
use a terminal. When they connected
the SDK-80 to the teletypewriter
they got a printout. That was excit-
ing. Within an hour they were talking
to the computer, then inventing
games. They stayed all day.

Now Rickey is building a micro-

computer of his own. He may be the
first kid on his block with his own
computer. Thanks to a $350 low
interest loan from his Dad.

If you're interested in being the
first on your block to have a micro-
computer, contact your Intel distri-
butor: Almac/Stroum, Component
Specialties, Components Plus,
Cramer, Elmar, Hamilton/Avnet,
Industrial Components, Liberty,
Pioneer, Sheridan, or L. A. Varah.

Microcomputers.

First from the beginning. |nte|

3065 Bowers Ave, SantaClara,California 95051.

Find ot—by adding 80804compatlble

3P+S Input/Output Module

Our 3P+5S is a simple inexpensive answer
fo handling a variety of peripheral devices.
It has two 8-bit parallel 1/O ports, with full
handshaking logic. Plus, it has a serial I/O
port, with a data rate range from 35 fo
Q600 Baud. Simultaneously handle a paper
fape reader, a keyboard, a TV terminal, a
fape punch, and a felephone coupler!
Available with premium grade low-profile
IC sockets, $149. Owner's Manual, $4.95%*

ALS-8 Assembly
Operating System

Just turn on the switch, and instantly you
have the power to write, edit, assemble,
de-bug, and run your own programs.

The ALS-8 is the most useful software
development tool available today. Optional
firmmware includes SIM-1, an interpretive
simulator, that simulates programs without
running them in real fime. Thus, errors
encountered during testing do nof endanger
your entire system. The TXT-2 firmware adds
the dimension of text editing. Insert, delete,
move entire lines or single characters, and
much more! ALS-8 (assembled only), $425.
SIM-1, $95. TXT-2, $95.

VDM Video Display Module
If you're setting up just the system you really
want, don't fall short by limiting its com-
municating ability. The VDM-1 is an ultra-
high speed video oufput device. Its 16 display
lines have 64 characters each, upper and
lower case. 1024 bytes of random access
memory are on the card. It scrolls up or
down, even to 2000 lines per minute! Any
combinatfion of the 1024 cursors can be
displayed as black-on-white or vice versa.
Free terminal mode software is included,
along with premium grade, low-profile
IC sockets. $199. Owner's Manual, $4.95%

8KRA Static MemoryModule

We now offer a low-power stafic memory
module, with a full 8192 bytes of memory.

It has an exclusive KSET™ address selection
DIP switch, so you can conveniently set
address boundaries in increments of 1K.

Our low-power RAM’s typically require one-
third less power than those commonly used
by our competitors. They'll even retain
memory for 4-5 hours when powered by
fwo "D” flashlight cells. On-board recharging
circuitry and battery connectors male if
possible fo protect your data against sudden
power loss. Each RAM has its own 1C socket,
too, for easier assembly and repair. $295.
Owner's Manual, $4.95¥

2KRO EPROM Module
The 2KRO Read Only Memory will accept
up fo eight 1702A or 5203 EPROM’s (not
included), providing 2048 eight-bit words
of non-volatile storage for monitor,
executive, loader and other programs.
Programming services available from your
dealer or write us for details. $65.
Owner's Manual, $4.95*

4K RA Static Module
The 4KRA (4096 bytes) was our first static
memory module. It's still very popular, and
uses the same low-power static RAM’s as the
8KRA. Plus, we've added a DIP switch, and
every RAM now has its own premium grade,
low profile IC socket. On-board recharging
circuitry (with bafftery backup) makes it
possible fo retain memory for 8-10 hours
during power failure. $159.
Owner’s Manual, $4.95¥

MB-1 MotherBoard
Our single piece Mother Board for the Altair 8800
gives you 16-card capacity in one single installation.
Available with 12 (MB-12) or 16 (MB-1) slofs. $70.
(Discontinued; limited to stocl on hand.)

Wire Wrap Board
Do your own wire wrap prototyping with the WWDB

Wire Wrap Board. Up to 62 16-pin sockefs or various
combinations of 14, 16, 24 and 40-pin sockets. $40.

EXB ExtenderBoard

The EXB Extender Board allows accessibility in servicing
any 8080-compatible module. $35.

*Fully descriptive Owner’'s Manual available
separately. Price refundable with purchase of kit

OnThe 8080 Bus?

products from ProcessorTechnology.

Whether your minicomputer system
is Sol, IMSAI, or Altair, ifs real
capabilities depend on what
goes inside. Processor Tech-
nology Corp. now offers a
full line of 8080-compat-
ible components. From
fine static memories
to a unique assem-
bly language
operating
system. We
also have a
variety of
useful his. . A D T R
soffware 0 L G ' o B Y EXB
packages, ' % TN Ny TR |
available
for little
more
fhan :
copying
COsfs.

Kit Prices
are shown,
and they
include the _
Owner’s Manual. T 4
Assembled units _ B\ ALS-8
available af slightly &

higher prices.

Write Us for further details on all our
8080-compatible products, and for the
dealer nearest you.

6200-V Hollis Street
Emeryville, CA 94608

Build This Mathematical

Part |: Hardware

Why Use a Calculator?

The small computer system designers and
computer hobbyists have a wide variety of 8
bit, 12 and 16 bit microprocessors to choose
among for their design problems. Most of
these units are capable of performing binary
fixed point arithmetic. However, there are
many applications which require floating
point arithmetic operations with greater
precision and extended mathematical func-
tions. Sophisticated software routines or
complicated hardware must usually be de-
veloped and debugged in order to achieve
these goals: However, without undue compli-
cation the floating point arithmetic func-

Figure 1: Mathematical Function Unit System Block Diagram. The Mathe-
matical Function Unit accepts inputs from the computer at the left, simulates
keystroke inputs to the calculator, and decodes BCD outputs which can be
read by the computer. The result of connecting this peripheral to your
microprocessor is a multiprocessor computer system, for the calculator chip is
nothing but a form of microcomputer which comes with a fixed program load
needed to perform mathematical and arithmetic operations.

Function Unit

R Scott Guthrie
1374 Franchere Pl
Sunnyvale CA 94087

tions can be achieved through the use of the
existing hardware found in calculator chips.

The more sophisticated calculator chips
are capable of trigonometric, logarithmic
and other special functions as well as the
standard add, subtract, multiply and divide
capabilities and can be easily interfaced to
microcomputer systems.

My objective with this project was to
develop a method of interfacing a calculator
chip to a microcomputer, thus relieving the
problems of writing the software for arith-
metic and mathematical operations. This
two part article describes how you can
combine the calculator’s hardware with a
conventional 8 bit microcomputer. The re-
sult is a multiprocessor system: the micro-
computer and its ROM programmed calcu-
lator slave.

Hardware

The Mathematical Function Unit is built
of standard TTL, MOS, and CMOS logic
components, and uses TTL compatible input

v

X TOGGLE LINE DIGIT | DIGIT
TIMING COUNT SELECTOR READY LINE ~3
Y IN/OUT LINE - $oR
— 1 LATCH CONTROL
]
FROM °Bo
—o
soweuTeRn) e Jorow 5 w0l ol
PORT c4 DE CODER SOLID TECHNOLOGY v —o82{ COMPUTER
INPUT SIAE INC 8¢o o83/ INPUT
oC3 | CODE SWITCH e YT
G2 | l NET- ' —
LATCH Y WORK MPS 7529~
°__2(l) 2710 4 e 103 P P P
o2 DECODER g s,0. s |Los
0 o)
CALCULATOR DECODERS
————— DATA LINES CHIP
LATCHES

CONTROL LINES
—» OIRECTION OF SIGNAL

26

Figure 2: Memory formats of the Mathematical Function Unit data. When transferring data
from the calculator to the microprocessor’s main memory, one byte at a time is read, starting
with the algebraic sign. A natural way to store the coded numbers read is in the form of 12
bytes in ascending order in the address space of your computer. Each byte’s low order nybble is
a BCD number in the magnitude positions (Xs or Ys in the figure). The high order portion of
each byte contains the content of the decimal point, sign and overflow bit lines at the time the
byte is read from the calculator. For output to the Mathematical Function Unit, the low order
bits of a byte are used to drive the 6 key selection lines CO to C5.

Y | Contents

iIY

tIXXXXXXXX

1 1 1 1 1 |) i

3 4 5 6 7 8 9 A B Address offset
A {hexadecimal)

l— Magnitude of exponent

Sign of exponent

Magnitude of number

Algebraic sign of number

and output lines. Although not shown in the
schematic diagrams, my version included an
internal power supply, so the connections to
the microcomputer are limited to signal and
ground lines. Any 8, 12, or 16 bit machine’s
input and output ports can potentially be
used with this interface.

The basic operations of the Mathematical
Function Unit consist of the input of a code
to be interpreted as a ‘‘function desired,”
the processing or calculating required to
perform that “function,” the decoding and
output of the result, and the internal timing
necded for control.

The functional block diagram of figure 1
shows how these sections are related, and
provides a basic knowledge of the internal
operation of the Mathematical Function
Unit.

Input Section

The input to the Mathematical Function
Unit from an external device such as a
microprocessor consists of 8 lines from an
output port of that device.. These lines are
fabeled X, Y, Cq, C1, Cp, C3, C4 and Cs.
The input section stores the new data
supplied, and decodes this to the “function
desired.” See table 1 for a complete list of
the functions and their codes. The functien
is applied to the calculator chip in the form
of the correct “pushed button.” (Since this
is all done electronically, the pushing of
buttons is simulated using solid state
switches, and no push buttons really exist.)

The X line is used to distinguish new data
from old. As this line is raised from logic
level O to 1, the data on lines Cq to Cg is

Byte Format: Calculator OQutputs

(e lo]*

S | B3 B2 B1 BO
1 !]

7 6 5 4 3 2 1 0
M’
|

Byte Format: Calculator Inputs

Cs €4 €3 Cc2

[x v [[[]
7 6 5 4 3 2 1
—— —— h \I/-

ACKNOWLEDGEMENTS

| would like to thank J C
Hertsch of MOS Technology,
Inc, for his assistance by sup-
plying information and dona-
ting the calculator chip used in
this project, which was carried
out under the auspices of
California Polytechnic State
University, San Luis Obispb.

27

Wired to MFU pin

BCD digit

Sign bit

Decimal point bit
Overflow bit

Ready Bit

Wired to MFU pin

Calculator function code
{see table 1)

Calculator Control

Figure 3: Schematic Diagram of the Mathematical Function Unit. A total of 25 integrated circuits is required to accomplish the
floating point and mathematical functions of a scientific calculator.

INPUTS FROM
COMPUTER READY READY
| RS
| 20K
[+SV ?C:K !I'ORTPLA,R:OT i
I 74w 2 392
v |
3 &
! 2
| 3t4ﬁ 82 | 14 BI QA 2
I - —1
! CLR o 5 ZI * 1,3';’2 Isl
27TTL x[> 21 13 6)28 Ri ROy ROZ aol®
——— 7‘2‘123 ?/iow is 17
I
| A
- 11 |I3]14 15
i Ql
- +5v /7[7 R3 +sY HEPS2 opIc el
] 10 R9 10K, 174 W {SILICON,PNP)] 1 Ic17
t ND 20K [T " .2 74150
icioB |7 201 10
of 74123] 2ee 9 wie
/_}7—"‘ A =l ICIB 8
(oao: Ifl>-1 = B A T 68 <13
Loaps ¥ 12 a2 ASAV#F ;
B % ' == G
0 _) s
| L L2 MM5610
b 1C15
7402 (20 18, 10K 1/awW RESISTORS = ¢ e
OR TWO 10K *
I 3 ' d DA T LI | SECTIONS |8 SEE NOTE | ,
P 3 14 | o= = i3
C5E|‘> 2[TEN gall8 3 = i) % +75 |; A 14 19}y
IJT'\r 3 R TR T b §'o¥ £ 3 e 20fy,
ca 8 12 o4
o8 A D 1€7,8,9 et 213 e
I —en i3 /Jy'f' 7406 LLEGILRY S MPS 7529~
[7475 16 SECTIONS & 103
6 10 20] 13] 0o
ZJAT[';S C3¢ (S Qc o} YO 3 SEE NOTE ! Z Z (I)-:—q 7 -
L 2 3
PER cz[‘_l> Z1p apje—24, 4 73 (I)"‘ 8] o2
LINE
[7|4ca?54 : Ici12 (1)-'—‘ Slos
| 13 Jir |mmseis Op24
2 EN 16 22 o
o] A QA B 0 [13 = 198 pa
e o, u] = :‘:. o} 1
|co ?——3‘8 a8 a Yup | e Niw P2
— . 2l i 12 e
: = onre 13 24
- Ic13 114 sp
Mmscic O}'0¢ iy O
G| G2 i3 \ 4 se]
!le 19 T)= oe 2
| 0 |—g sC
E E 15 b9 SE 27
[[o] =20 |28
K] 1 Dto :2 £
ohTY 17)
1C14 | DIl SD }-
Integrated Circuit Summary for Figure 3 MMS8i6 O b | g9 |
= Type Pins +5V +7.5V GND 3333333338333 ‘q:‘iii:'
IC1 74123 16 16 8 77 RIO- 21 R22-29 m
IC2 7402 14 14 7 4.7K,1/8 4.TK,i/8W
IC3 7475 16 5 12
iC4 7475 16 5 12
IC5 74155 16 16 8
e omow
I
IC8 7406 14 14 7
1o A% I .2 | accepted as new information, and gated into noted that 64 total combinations are pos-
[N MMSte " 17| the input buffer. After this data has been sible with these 6 input lines; however, only
e e 1 1+ 7| accepted, the data on the C lines is ignored 40 combinations are used, with the other 24
s s 11 % B until the next X line transition from O to 1, codes being invalid. These C lines are not
L 0, s o R, B The Y line is used to determine whether used during the output state of the Mathe-
150 na e ¢ | aninput or an output of information is to be matical Function Unit, when Y is low.
:S% 7400 " e 7 | performed by the Mathematical Function p e
1C23 7400 14 14 7 . . " . . . n
\C24 7402 s 14 7| Unit. A logic 1 on this line indicates an input LOCESSINZISECTION
IC25 7410 14 14 . . . -
i 7400 w1« 0| operation, while a logic O indicates that an The processing of the required function is
1 1 g .
1C28 MM5610 16 1 16 8 | output of information is to occur. done by a large scale integration single chi
1C29 7475 16 5 12 !
1C30 7475 6 5 12 Input lines Cq through Cg are used to 40 key scientific calculator array, (MPS
convey the codes for the different functions 7529-103) made by MOS Technology, Inc.

from the controlling device to the MFU This calculator chip has roughly the same set
input circuitry. A unique combination of O of available functions as some of the more
and 1 levels on these lines at input time is sophisticated non programmable hand held
taken as a ‘‘key pressed”’ code. It may be calculators on the market today. When used

28

READY

+5V cq4 68uF

]

'Y 13V
R7 RB
3 |4 15 20K 10K

+5v

in the Mathematical Function Unit with the
proper hardware and software, your micro-
processor system can outperform the best of
them,

Some of the operating features of the
MPS 7529-103 calculator chip include:

® Number entry in floating point or
scientific notation.

® Automatic selection of correct nota-
tion for result (scientific or floating
point).

® Algebraic problem entry.

® Two levels of parenthesis.

® Full chain calculation with any func-
tion sequence.

The functional features include:

® Basic arithmetic (+,—,*,/)

TRIM
2lcLr
icI19a R3
| 74123 |13 3 220
A Q | 74w
T 5) 20a
Sa Ic21A
310pF 1400
13 7402 g; e 7404
220 Yoo OUTPUTS TO
4 COMPUTER
5 |
! . o] 268 P I
ic218 26A
7404 —2] 7400 l R READY
3>c4 |
| |
2 EN 1
A Qa O OVERFLOW
I
3la o8B 5—<] P DECIMAL POINT
ic2s I
7475 |
: |
= 228 S
s) 208 5 I
7402 | 10,7400 —Hen |
1"
S SIGN
9—<:J BO
7400 |
238 e |
4 is ;IJJB'
'=_¢92
7400 |
{ €30
MM5610 3 3] osa >:|z |
7 SECTIONS E Chd) 23 e 7478 |
(SEE NOTE 1}] [i. A |
—
258 Yo 1 10 I
— . D b I
5
| ra00 L2,
1c27 B 6 10
— 26¢ c oc 83
Ic28 260 Lol 10 T

Note 1: The pin connections for buffers using 7406 and MM5610 integrated circuits
are not shown in detail on the diagram. They are shown in terms of “a’ (input) and “b"’
{output) pins. The connections are as follows:

74086, six sections per package MM5610, six sections per package
Section “a"” pin “b"”’ pin Section “a” pin b’ pin

A 1 2 A 3 2

B 3 4 B 5 4

C 5 6 C 7 6

D 9 8 D 9 10

E 1 10 E 11 12

F 13 12 F 14 15

INPUT TO MFU
(ONE KEY ONLY)

X STATE IRRELEVANT

Y STATE IRRELEVANT

LATCH _‘

INPUT ACTIVE LOW
DATA

SET

NOT
READY

KEY PRESSED
LINE

KEY RELEASED
LINE

SET
READY

MFU
BUSY

TO TI T2 T3 T4 Tf

Figure 4: Mathematical Function Unit input timing sequence. This diagram
shows typical relative timing of several signals during an input operation:
® 7 is the time of an X line transition from O to 1.
® 7y is 1.5 us after Ty. The data must be stable from T until after T7.
® 75 is 300 us after T(). At this time, the ready flip flop is reset.
® 73 is 50 ms after T(. At this time, key pressed is reset, key released
is set.
® 74 is 100 ms after T(). At this time, key released is reset.
® T is the delay until the calculator is again ready. The actual time
interval depends upon the calculator function selected.

QUTPUT FROM MFU
(ONE DIGIT ONLY)

X STATE IRRELEVANT

Y LOW ALWAYS

LATCH
INPUT HIGH ALWAYS —DATA IGNORED
DATA

SET
NOT
READY
KEY PRESSED INACTIVE
LINE

KEY RELEASED INACTIVE
LINE

SET
READY

MFU
BUSY

TO Ti T2 TF

Figure 5: Mathematical Function Unit output timing sequence. This diagram
shows typical relative timing of several signals during an output operation:
® 7 is the time of an X line transition from O to 1.
® 7 is shown to indicate that no data latch pulse occurs in this mode.
® 75 is 300 us after Ty, At this time, the ready flip flop is reset.
® T¢ Is the delay until the calculator is ready again, the maximum time
before a digit is available in the output buffers.

30

® Trig functions (sine, cosine, tangent)

® Inverse trig functions (arc sine, arc
cosine, arc tangent)

® Logarithms (Ln, Log)

® Anti-logarithms (eX, and 10X)

® Exponentiation (YX)

® Factorials (N!)

® Convenience Functions (1/X, X2 VX,
Pi)

® Full feature memory (store, recall,
sum)

® Exchange operation (X ¢ Y)

® Degree or radian selection for trig
functions
® Automatic error detection

® Clearing operations (clear entry, clear
all)

The calculation range includes positive or
negative numbers with absolute values be-
tween 1X10799 and 9.999999X1099. Any
number in this range may be entered and all
results must fall within this range or an
overflow will be indicated.

The output format of the calculator chip
consists of 12 digit positions organized as
shown in figure 2. Each output digit oc-
cupies one byte of memory when the micro-
processor reads information from the Mathe-
matical Function Unit.

The expected decimal point will be indi-
cated in one of the digit locations 1 through
8, and a decimal point will be indicated in
digit location 0 if the calculator chip’s
degree radian mode has been set to the
radian mode.

Output Section

The output section of the Mathematical
Function Unit is connected to the control-
ling processor through 8 output lines to an 8
bit input port. The output section is respon-
sible for the decoding of the data supplied
by the calculator chip after the required
actions have been completed. The output
section also generates the correct sequence
for information presented to the controlling
computer.

A handshaking signal is provided by the
ready (R) line. This line is at a logic 1 level
when the Mathematical Function Unit is not
performing any input output or calculation
operations. This line is used as a signal to the
controlling computer as to the status of the
slave. The ready line could be used to
generate an interrupt upon completion of
the calculations, or it could be connected
directly to an input port line which would
be polled until the Mathematical Function
Unit has set it high indicating completion of
its tasks.

The other 7 lines are data lines to the
controlling computer and contain the infor-
mation normally seen on the display of a
calculator. The B lines contain one BCD
digit of the normally displayed number,
while the 0 {overflow), S {sign), P (decimal
point) lines contain other necessary informa-
tion.

The unit is designed to output one digit
per request, where a request consists of a
transition from a logic 0 to a 1 on input X
line while input Y line is held at a logic O
level. This means that only one digit is
transferred at a time, slowing down the
maximum speed of the system. This greatly
simplifies both the supporting hardware and
software handling of the 12 digits of the
“displayed” number which is sent to the
computer.

These 12 digits are generally loaded into
the controlling computer’s main memory in
12 sequential locations. This leads to the
question of using a direct memory access
operation to transfer this data. Due to the
small amount of data (12 bytes), the calcu-
lator chip’s slow speed, and the added
hardware required, using direct memory
access for the loading of the generated
information would probably not be
efficient.

The overflow line is high (logic 1) if the
digit displayed exceeds the capacity of the
calculator chip. The sign line is high if the
digit position contains a negative sign, at
which time the B lines are invalid. The
decimal point line is high if a decimal point
accompanies the digit on the BCD lines, and
positionally goes to the right of the digit.

The output of the calculator chip is in
seven segment notation and the decoding of
4his to the MEU’s output format of BCD is
done by ICs 20b, 21¢ and e, 22b and c, 23,
24, 25, and 26¢, as shown in the schematic
diagram of figure 3. This decoder circuit

Table 1. Hexadecimal Codes for the Mathematical Function Unit operations.
The low order six bits of an 8 bit byte determine the function presented to
the Mathematical Function Unit according to this table. On hand calculators,
these functions correspond to the mnemonics of the keytops. A simple
“program” for the calculator would be a string of bytes sent one by one with
meaningful selection of these operation codes, followed by reading the

outputs,

Teletype.

Hex Code

Function

Zero (0)

One (1)

Two (2)

Three (3)

Four (4)

Five (5}

Six (6)

Seven (7)

Eight (8)

Nine (9}

Arc Function
Display Restore
Decimal Point
Add

Subtract
Multiply

Divide

Y to the X power
Equals

Left Parenthesis
Right Parenthesis
Pi (3.1415927)
Change Sign
Enter Exponent
Sine

Cosine

Tangent

Natural Log (In)
l.og (base 10)
Square Root
Recall From Memory
Add to Memory
Swap X with Y
Degree — Radians
Store in Memory
Clear Entry — Clear All
1/X Inverse

X2

10%

eX

N! Factorial

LED

o) ic] &
Dmﬂ

N

R3 a ci13
D% e —:l— RIRIR + IcC 19
& h
) o EE - de s
c5r:1 __
bcs5 =
Ic IC
ca |3 i
o= [| [
gcz c b
¢ci ic e s 12
4 L
¢ co 6 e=ocr __ &2,
o ic ic : HSfik:
) 13 ic
| 10

ci2

@ [E=]

Ic R 4

29 [o X

L) Peo®

- S ¢
B804

ic] Bl®
.1C26 o

B3 @

31

formatting them and displaying them on a TV typewriter or

{All other Hex codes are invalid)

Figure 6: Parts placement
in the author’s prototype
of the Mathematical Func-
tion Unit. The unit was
constructed on a piece of
Vector P pattern Vector-
board (.1 inch grid, 2.54
mm grid) as depicted in
photo 1, with this layout.

Photo 1: The physical assembly of the prototype Mathematical Function
Unit. A multiple conductor ribbon cable is used to route ground and signal
information to the microprocessor system which drives the Mathematical
Function Unit through a parallel 10 port. A separate power supply (not
shown in the schematics of this article) was built into the box.

interprets a blanked digit position as a zero,
so ail digit positions contain a digit, overflow
symbol, or negative sign with decimal points
included when applicable.

Timing and Control

The basic timing and control problem for
the Mathematical Function Unit is to pre-
vent the external device from overrunning
the unit with information, holding signals
for the required length of time, controlling
the input and output buffers, and control-
ling the ready flip flop used for handshaking.

The timing pulses are generated by a

series of monostable multivibrators, and the '

ready flip flop is made of NOR Gates, IC 2a,
and 2b in figure 3.

A transition from a logic O to a logic 1
level on the X input line is responsible for

initiating both the input and output se-
guences. These two sequences are deter-
mined by the state of the Y input line,
where a 1 signifies the input procedure,
while a logic 0 means an output of informa-
tion is to be performed.

Input Timing Sequence

The normal environment of the calculator
chip is in a hand held calculator with a
human operator pushing the buttons. This
allows the calculator enough time to scan
the keyboard several times, determining
whether a key is being pressed, or if a noise
spike on the line caused an unwanted pulse
during a couple of scan times. This is the
method used by many calculator chips for
debouncing the push buttons used. The

calculator chip used in this project requires

about 40 ms for a pressed key to be
recognized. (About 7 keyboard scan times.)
This 40 ms delay is virtually impossible for a
human hand to beat, assuring a key will be
recognized every time a button is pushed.
There is always going to be a sufficient delay
between different key pressings due to the

Note: The author and two friends have gotten together in order to make a printed circuit
board available for this design. The product is a two layer board with plated through
holes, and is designed to be compatible with the Altair 8800 or IMSAI computers,
interfacing through an 10 port. The price is quoted as $24.95 plus $1.23 for postage and
handling. California residents please add 6% sales tax. Write RSG Electronics, PO Box 13,
Santa Margarita CA 93453. (Price is subject to change without notice.)

32

slow human controller; however, all of these
delay times do not necessarily hold true
when interfacing with a much faster control-
ling device, such as a microcomputer. This
requires that a timing network be imple-
mented to insure that the calculator chip
receives the proper signals in the proper
sequence, with the proper delays.

The “key pressed’” delay is provided by
monostable multivibrator, IC lb, and is
adjustable by R6. When this 40 to 50 ms
delay is completed, IC 19a, also a mono-
stable multivibrator, is triggered as a ‘“‘key
released” delay providing the system with a
short delay between key pressings. These
two delays form the minimum time required
for the Mathematical Function Unit to
become ready for the next sequence; how-
ever, for some of the more time consuming
functions such as the trigonometric, factorial
and logarithmic functions, the calculator
would not be finished after the two delays
had passed. To insure calculations are com-
pleted before setting the Mathematical Func-
tion Unit state to ‘‘Ready,” both delays
must be completed and a decimal point be
sensed by the output circuitry. Since a
decimal point is the only character present
in all output displays, and is not present
until all calculations are complete, sensing
the decimal point indicates end of calcula-
tion. (The gates used for detection of the
decimal include 20a, 21a and b, 22a and d,
and 26a and b in figure 3.) When these
requirements are met, a condition is placed
on the ready flip flop, setting it to the
“Ready” state. The timing signals for the
input sequence are shown in figure 4.

The length of the delay between T4 and
T (of input routine; see figure 4) will
depend on how the calculator chip’s internal
scan timing coincides with the surrounding
hardware. For the 7529-103 calculator chip
used in this project, this delay will not
exceed 3.3 ms after the calculations or
required actions are complete.

Output Timing Sequence

The output sequence is specified by
placing a logic O level on the Y input line.
This low level inhibits the operation of the
key pressed and key released delays which
are not needed for output. The X line
transitions are used to clock a counter, IC
10, which with IC 17 selects the next digit
to be placed in the output buffers. This digit
is decoded as previously mentioned, and
latched in the buffers while the ready flip
flop is set to “Ready."”

The next digit is found by pulsing the X
line again while keeping the Y line low. The

Y line must be kept low during the entire
output procedure since a high state on this
line resets the counter, which will then point
to the first digit again.

A pictorial description of the output
timing signals is shown as figure 5.

The length of the delay between T9 and
Tf will depend on how the calculator chip’s
internal scan timing coincides with the
surrounding hardware. This delay will not
exceed 3.3 ms for the calculator chip used in
this project.

TTL — MOS — TTL Interface

The power requirements for the Mathe-
matical Function Unit are 5 volts at approx-
imately 0.5 Amps, and 7.5 volts at close to
200 mA. The 5 volt supply is used for all
TTL gates, and the 7.5 volts is used to
operate the MOS calculator chip. The signal
levels are buffered and adjusted from the
TTL input levels to 7.5 volts through the
open collector, high voltage output inverters
ICs 7, 8 and 9, using 10 k ohm pull-up
resistors in the two resistor packs connected
to the 7.5 volt supply.

These higher voltage signals are applied to
the switch matrix made from CMOS Quad
Bilateral Switches (ICs 11-14) operating at
that higher voltage. The signals are then
directly compatible with the calculator chip
used.

The signals coming from the calculator
chip to the output circuitry are buffered to
the 5 volt level through the use of CMOS
Hex Non-inverting Buffers, ICs 15, 16, 27
and 28.

Construction

The Mathematical Function Unit is con-
structed on an 11 by 4 inch (27.94 by 10.16
cm) piece of Vectorboard with all wiring
done point to point. A parts placement
diagram with all of the visible parts, with
numbers referencing figure 3, is found in
figure 6. The two 24 pin multiplexors and
the 28 pin MOS Calculator Chip are placed
in sockets. Photo 1 shows the hardware
mounted in its case; refer to figure 6 to
identify components.

The main component board is bolted in a
13 by 5 by 3 inch (33.02 by 12.7 by 7.62
cm) aluminum chassis with a piece of clear
plexiglas on the top. Contained also in this
chassis are the simple 5 volt and 7.5 volt
power supplies for the unit, with the 5 volt
regulator, power switch and the 10 data line
connector mounted on the rear of the box.
The “Ready” indicator is mounted on the
front panel, indicating the state of the
Mathematical Function Unit.m

33

In part 2 of his article,
which will be published
next month, you'll find
details of the software
needed to drive this calcu-
lator interface from an
Intel 8080 based computer
systemCH

s sntead

R PR R w1 N T B

New. The complete
microprocessor learning system.
Ready -to-use. Economical. User-paced.

Introducing three new add-ons for TI’s basic
Microprogrammer Learning Module.

Microprocessors. Now they’re sim-
pler to understand, easier to cope
with, because of TI’'s complete new
microprocessor learning system.

It’s modular...consists of four,
portable components: the basic
LCM 1001 Microprogrammer
Learning Module and three new
add-ons: Controller. Memory. And
Input/Output.

It’s a down-to-fundamentals
system for getting “hands on” ex-
perience with microprocessors. It
focuses your attention on learning
microprocessor concepts—not on
individual products. You progress
from module to module in a logical
sequence.

Each module is self-contained.
Complete and ready-to-use. No kits
to assemble. Nothing to build. Each
has its own battery/charger power
system. Each has its own instruc-
tion manual.

Microprogrammer Module

This is the one you start with. The
basic building block (LCM-1001). It
demonstrates the most fundamen-
tal level of microprocessor opera-
tion: Single-clock-step microin-
struction. It contains a 4-bit static
parallel processor with manual
switeh inputs, VLED monitors, and
pushbutton manual clock. A 40-pin
socket lets you link up with the
controller. $149.95*

Controller Module

Add the LCM-1002 Controller
Module. Progress from miero to
macro level programming. Learn
instruction set development and
microcomputer architecture. Use
the Controller with RAM or addi-
tional program memory—12 basic
instructions are programmed into
the PROM (which may be rede-
fined). Using these, write your own
programs. Or, expand the instruc-
tion set and customize the system
to your needs using the blank loca-
tions you define yourself. $189.95>

€ 1976 Texas Instruments Incorporated
13500 North Central Expressway
Dallas. Texas

Memory Module

Add an LCM-1003 Memory Mod-
ule to the Controller. Now you're
into fully automated digital system
operation. The read/write memory
is configured as a 1K word by 12-bit
structure, for both data and pro-
gram storage. Switches are pro-
vided for manual loading. The
memory automatically increments
the address. This feature spares
you the tedium of ecycling the
entire memory when loading or
changing memory. $189.95*

Input/Output Module

With the final module, you're in
contact with the outside world.
There are four 4-bit input ports
and four 4-bit output ports with
buffers for data transfer synchron-
ization. Operate the ports inde-
pendently, or in conjunction with
each other. For example, two ports
can recognize an 8-bit code ap-
proach. $109.95%

Building-block System.

This approach to microprocessor
self-instruction is sensible and
economical —add another module
when you’re ready to learn more.

To order your Microprocessor
Learning Modules, call your near-
est TT distributor. Use the coupon
to get a detailed brochure.

To: Texas Instruments Incorporated

Mail checks and money orders to: P.O. Box 3640, M/5S 84. Dalias, Texas 75285 e
Postage paid. Add state and local taxes where applicable. |

Mail company purchase orders to: P.0. Box 5012, M/S 84, Dallas, Texas 75222 P

Postage and taxes will be added to your invoice.
Please send me

__ Copies of Software Design for Microprocessors @ $12.95°° ea.

I enclose [1 check [l money order for $,

New, authoritative
book on microprocessor
software design.
Only $12.95.*

A working knowledge of micro-
processor software is essential.
Acquiring such knowledge is
now simplified with Software
Design for Microprocessors.

Helps you fully understand
basic microprocessor machine
code and assembly language.
Suitable for non-technical pro-
fessionals as well as the techni-
cally trained.

In 500 pages are the graphs,
tables and data needed to learn
the language, special terms, and
the underlying concepts that
lead to understanding the com-
plex facets of microprocessor
software. The text concludes
with four fully-worked examples
for “real world” situations.

Use the coupon below to order
your copy.

* Manufacturer's suggested list price.
Subject to change without notice.

LEARNING
CeNTER

Name

Title

Firm

Address

City

State Zip

“*Subject to change without notice

tAL. AZ, CA, CO, CT, FL, GA, 1A, IL. IN, KY, MA, MD. MI, MN, MO, NC, NJ, NM. NY. OH, PA, TN, TX, UT, VA, WA, W1,

INCORPORATED

r
|
|
|
|
|
: T more information on the Tl Microprocessor Learning Modules.
|
|
|
I
{
|
|
|
!
|

—————— .

TEXAS INSTRUMENTS

61002

Randomize Your Programming

Robert Grappel
148 Wood St
Lexington MA 02173

Computers are supposed to produce pre-
dictable results; when a program acts un-
predictably, it is usually time for head-
scratching and debugging. There are times,
however, when unpredictability is exactly
what the programmer wants. A class of
examples is the simulation of games with a
chance element. How can a computer
simulate a coin toss or the throw of a die or
the picking of a card? In each of these cases,
the application requires a value within set
limits which is unpredictable in its sequence.

As a second class of examples, suppose
one wants to test a program or piece of
hardware with random data. How can a
microcomputer generate the appropriate
numbers? In this case, it would be nice to be
able to repeat the sequence of values at will,

so that any errors that are found can be
repeatedly tested.

This article describes simple programs
which can provide the capability of generat-
ing appropriate sequences. The programs
are written for the Motorola 6800 processor,
but are simple enough that conversion to
other instruction sets should pose no major
problem.

Pseudorandom Sequences

To be precise, the programs described in
this article generate ‘‘pseudorandom” se-
quences. These are sequences which give
each value in the range of the sequence
(except the value 0, which will be discussed
later) exactly once before the sequence
repeats. Given the starting value, the se-

Listing 1: The “RANDOM’ subroutine specified in the symbolic assembly language of the
Motorola 6800 processor, along with hexadecimal machine code. The origin was set arbitrarily
to address 1000 for this assembly, but any other address could be used without change since all
branches use relative addressing and data is passed to RANDOM via a pointer in the index

register.
Line Addr Hex Code Label Op
1 1000 A6 00 RANDOM LDAA
2 1002 26 01 BNE
3 1004 ac INCA
4 1005 16 NOTO TAB
5 1006 C4 8E ANDB
6 1008 27 06 BEQ
7 100A 58 SHIFT ASLB
8 1008 24 FD BCC
9 100D 5D TSTB
10 100E 27 04 BEQ
11 1010 48 SKIP ASLA
12 1011 A7 00 STAA
13 1013 39 RTS
14 1014 48 EXOR ASLA
15 1015 4C INCA
16 1016 A7 00 STAA
17 1018 39 RTS

36

Operand - Commentary

0,X load A from random byte source;
NOTO if random byte not zero then proceed;

else force non zero state A= 1;
begin exclusive OR procedure;

#$8E mask out feedback bits;
SKIP if no feedback then exit without setting bit;

loop to find a set feedback bit;

SHIFT if not set then reiterate;

is there more than one feedback bit?

EXOR if not then shift in a new bit;

shift without setting bit;

0,X restore pseudorandom value to argument;

return to the caller;
shift and set bit;
increment pseudorandom number value;

0.X restore pseudorandom value to argument;

return to the caller;

quence is fixed. If the sequence is long Table 1: Properties of Pseudorandom Generators.
enough, however, the result is an apparently Stages Period Feedback Bits Mask

random sequence. For example, the se- 2 3 1,2 03

quence based on four bit values is: 3 7 23 06

4 15 3,4 oc

1,2,4,9,3,6,13,10,5,11,7,15,14,12,8 5 31 35 14

. 6 63 5,6 30

This looks random when only two or three 7 127 6.7 60

values are considered. A longer sequence can 8 255 2,3,4,8 8E
be chosen and only a portion of each value 51’0 ?(1);3 5.51’0 g;lg
used. Th|sf will heighten the apparent ran- T ot 9:11 0500
domness of the sequence. 12 4095 210,112 0E02
Pseudorandom sequences are usually gen- 13 8191 1,11,12,13 1001
erated in hardware through the use of a shift :g ;gggg 341 3,513.14 gggg
register and feedback from certain stages of 16 BEE3E 11:13,14,16 N

the register through an exclusive OR gate to
the beginning of the register. This hardware
configuration is easily simulated in software,
and such a program is shown as the sub-

. owi 4 6800. The value zero is illegal here, because
routine RANDOM found in listing 1. The

o - the sequence will not set any bits in the byte
origin of the subroutine was chosen to be if all bits ever go to zero simultaneously.

hexadecimal 1000 for no especially strong This case is eliminated by the increment
reason. Any other origin would work as well instruction, line 3, which sets the byte to 1
since all branches within RANDOM use if it ever gets to be zero. The accumulator is
relative addressing. RANDOM generates being used as an eight bit shift register. The
eight bit values, and the sequence is 255 appropriate feedback loop must be
values in length. It is designed to be called simulated. This is done by the instructions
with the address of a byte in which the between NOTO and SKIP. The feedback
random value is to be generated located in loop is an exclusive OR function of certain
the index register. If the same sequence is bits. The AND instruction chooses the bits
desired every time, this byte should be to be exclusive ORed. The exclusive OR
initialized to a fixed value such as zero. If function is true, if and only if exactly one of
the byte is not ln]tlallzed, the sequence will its inputs is true. Hence, if the AND leaves
be based on prior memory content and no bits set, the exclusive OR is false. If at
therefore unpredictable. least one bit is set, the SHIFT loop is

entered. This loop shifts the feedback bits

Random Logic left until one has moved out of the left of

RANDOM begins by loading an accumu- the accumulator and into the carry flag. The
lator with the present val_ue of the random contents of the accumulator are again tested.
byte accessed via the index register of the If the bit that was shifted to the carry was

Listing 2: Using the RANDOM routine to generate a 16 bit pseudorandom number. This
extension js obtained by calling RANDOM once for each byte of a 16 bit number. The origin
used here is arbitrarily chosen as hexadecimal 2000.

Line Addr Hex Code Label Op Operand Commentary
1 2000 00 00 RAND2 RMB 2 reserve two bytes for 16 bit key;
2 2002 CE 20 00 RND16BIT LDX #RAND2 point index at 16 bit random number;
3 2005 BD 10 OO JSR RANDOM calculate high order 8 bit part;
4 2008 A6 00 LDAA 0, X get high order part to A;
5 200A 08 INX point to low order part of 16 bit number;
6 200B 85 01 BITA #1 should carry be propagated down?
7 200D 27 03 BEQ RETRND if not then skip low order randomizer;
8 200F BD 10 00 JSR RANDOM calculate low order 8 bit part;
9 2012 39 RETRND RTS return with new 16 bit number in RAND2;

37

Listing 3: The “DICE” program specified in the symbolic assembly language of the Motorola
6800 processor, along with hexadecimal machine code. This subprogram is written to exercise

the pseudorandom number generator,

print the results (or display them) using the OUTHR

subroutine of the Motorola MIKBUG program. After output, the INEEE subroutine is called to
wait for a keyboard response before generating another ‘roll.” An arbitrary starting address is
used, 2000 hexadecimal, and RANDOM is assumed to start at address 1000 hexadecimal.

Line Addr Hex Code Label Op

1 2000 00 DIE RMB
2 2001 CE 20 00 DICE LDX
3 2004 BD 10 00 ROLL JSR

4 2007 A6 00 LDAA
5 2009 84 OF ANDA
6 200B 81 02 CMPA
7 200D 2D F5 BLT
8 200F 81 0C CMPA
9 2011 2E F1 BGT
10 2013 A6 00 LDAA
11 2015 BD EO 6B JSR
12 2018 BD E1 AC JSR
13 201B 20 E4 BRA

the only bit set, then the test for zero is
passed and the exclusive OR is true. Other-
wise, there was more than one bit set in the
feedback loop and the exclusive OR is false.
If the exclusive OR test was false, then the
contents of the accumulator are shifted left
once and the low order bit is left zero. If the
test was true; then the accumulator is shifted
and the low order bit is made one. The
accumulator is restored into the random
byte and the subroutine returns to the
program which called it.

By changing the feedback connections,
pseudorandom generators of varying periods
and value size can be made. Table 1 shows
the feedback points for generators of lengths
2 to 16. The number of stages is the number
of bits in the shift register, which determines
the maximum value the pseudorandom num-
ber will be. The period of the sequence (the
number of values generated before the se-
guence repeats) is given by the formula
2n—1, where n is the number of stages.
RANDOM can generate sequences cor-
responding to generators of 2 to 8 stages,
simply by changing the mask value of the
AND instruction (line 5 in listing 1) to pick
out the proper bits to exclusive OR. The
appropriate masks are given in table 1.

Longer Sequences

The eight bit accumulator of the 6800
processor limits RANDOM to eight stages. A
more complex program could be written to
directly generate longer sequences, and for
those who wish to write such programs, the
table gives the masks for up to 16 bit
generators. There is another way to generate
longer pseudorandom sequences, and that is
to generate them in smaller sections.
RAND2 shows a simple way to generate 16

38

Operand Commentary

1 one hyte for pseudorandom number seed;
#DIE point index at the random number value;
RANDOM go define next random digit;

0,X move random digit to A;

#$OF force low order value 0 to 15;

#2 is digit less than 2?

ROLL if so then roll again;

#12 is digit greater than 12?

ROLL if so then roll again;

0,X move random digit to A for output;
OUTHR display using MIKBUG Rev 9 OUTHR
INEEE operator response via MIKBUG Rev 9 INEEE
DICE then restart the program

bit sequences using RANDOM twice (see
listing 2). The high order byte is generated
by RANDOM directly. If the byte is even
{which will be the case half of the time), the
low order byte is unchanged by this call. If
the byte is odd, then the low order byte is
changed by another call to RANDOM.
Longer sequences yet can be generated by
extension of the ideas in RAND?2.

Rolling the Die

An example of a practical use for
RANDOM is shown in the little test program
DICE. This program, given in listing 3,
simulates the tossing of a pair of dice. It uses
RANDOM to generate pseudorandom values
between 2 and 12. RANDOM generates an
eight bit value which is truncated to the low
order four bits by an AND masking opera-
tion. If this value is not between 2 and 12,
the process is repeated. It should be clear
how to modify DICE to simulate one
die . .. or two dice, or the flipping of a coin.
In general, the longer the pseudorandom
sequence in use, the more apparently
random- the values returned by these rou-
tines will be. Eight bits should be quite
adequate for many games of chance.
Thorough testing of programs or hardware
might profit from a longer sequence.

Now, generation of nearly random values
should no longer be a problem. This
should ease the job of programmers trying to
simulate games of chance, and help in other
areas of simulation, statistical work, and
testing. These are just about the simplest
programs which can perform the necessary
tasks. Try them. And, when your computer
gives you unpredictable results, you don’t
have to look for the bug. It's your program-
mable ‘‘randomness’’ generator!®

Learn to use a microprocessor.

This
portable computer
teaches you how.

Low cost, battery operated
Intercept Jr. Tutorial
System instructs you on
todays most advanced LS|
semiconductor devices,
then serves double
duty as an operating
solid-state computer!

Send in coupon today.
Intersil, Inc.,
10900 North Tantau Ave., Cupertino, CA 95014,

PRICE QTy. TOTAL

i
Learn microprocessors in hours.

With its detailed Owner’'s Handbook, O I'm interested. Send me Intercept $281.00 __ $
Intercept Jr. teaches you basics of micropro- Jr. Tutorial System complete with
cessors, Random Access Memories (RAMS), Owner's Handbook.
Read Only Memories (ROMs) and input/ O 1 need to know more. Send full FREE
output interfacing, all in less than 8 hours. technical details on Intercept Jr.
Contains everything you need. Plug-in Expansion Modules Also Available
Intercept Jr |S a Complete a"_CMOS O RAM Module, with 1024 words of 145.00 N
computer on a 10- by 12-inch board. Con- Addecih=Zaldtis mEmS,

O P/ROM Module, with sockets for 7465
256 to 2048 words of program.

O 1O Module, for interfacing TTY 8170
keyboard/reader and printer/punch.

tains batteries, entry keyboard, 8-digit LED
display, RAM and ROM memory ... all con-
trolled by an Intersil IM6100 12-bit CMOS
MICroprocessor.

For $281.00 you get both the handbook
and the computer, plus provisions for expan-
sion with 1024 words of additional memory,
from 256 to 2048 words of added program,
and input/output interfacing with terminals. SHIPPING ADDRESS (Please print)

(California residents add 6% sales tax.)

TOTAL PAYMENT DUE

O Check enclosed.
| O Money order enclosed.
O Bill me. (Please list Purchase Order. no

name
company
address

city _

-
‘,

1

A BASIC Star Trek Trainer

10 REM SHIP 1 1S ENTERPRISE, SHIP 2 1S KLINGON BATTLECRUISER.
20 REM EACH VESSEL REPRESENTED BY 7 NUMBERS IN THE STATE ARRAY S.

Listing 1: The text of the
Star Trek Trainer, speci-
fied in BASIC for a Data
General NOVA. For users
of other BASIC defini-
tions, modifications will
be required, depending
upon the specification of
your particular
implementation.,

30 REM S(1,

) IS FORWARD PHASOR,1=0OPERATIVE,0 INOP

40 REM S{2, } REAR PHASOR; 1 OP, 0 INOP. .

50 REM S(3,) PHOTON TORP.;;S{4,

} WARP DRIVE.

60 REM S(5, } 1S DEFLECTOR SHIELD EFFECTIVENESS. 1 TOTALLY EFFECTIVE,O

70 REM MEANS SHIELDS GONE. S{7,

} 1S DAMAGE COEFFICIENT , A MEASURE OF

80 REM TOTAL SUSTAINED DAMAGE.S(6, } IS IMPULE ENGINES STATUS.

90 DIM 5([7 2]

100 REM INITIALIZE VARIABLES
110 FOR I1=1 TO 2

120 FOR J=1TO 6

130 LET S[J,1]=1

140 NEXT J

150 LET S[7,11=0

160 NEXT I

170 REM GEN RANGE AND BRNG
180 PRINT “ENTER STARDATE"

190 INPUT A

200 LET A2=-ABS{A/1000)

210 LET R=1017*RND{A2)

220 LET B=180°RND{A2)

230 LET I=1

240 REM ODD MOVES'ENTERPRISE'S, EVEN KLINGNON
250 PRINT “KLINGON APPROACHING"
260 PRINT “R="R"KM. BEARING="B" DEG."

270 PRINT “COMMAND"
280 INPUT C

290 PRINT C

300 LET I=1

310 LET J=2

320 LET H=0

330 GOSUB C OF 790920,1040, 1140, 1180, 1250, 1310

340 GOTO 1360
350 REM KLING. MOVE SELECTION
360 LET 1=2"

370 REM CHECK KLINGON PHASOR STATUS

380 LET W=S(1,1)+5{2,1]
390 LET J=1

400 IF S[3,1]=1 AND R>3E+06 AND B<100 THEN 710

410 IF W>0 AND R<3E+06 THEN 540

420 IF W#0 THEN 480

430 REM ATTEMPT TO BREAK CONTACT

Gerald H Herd

440 PRINT “KLINGON ATTEMPTS TO BREAK CONTACT"

450 LET C=5
460 GOSUB 1180
470 GOTO 1920

742 Valley Dr
Pensacola FL 32503

480 PRINT "KLINGON MANEUVERING TO ATTACK"

490 LET C=4
500 GOSUB 1140
510 LET 8=0
520 LET H=0
530 GOTO 1920

540 PRINT “KLINGON FIRES PHASOR"'

5560 LET C=1

560 |F B<90 THEN 640
570 1F S(2,1]=0 THEN 600
580 GOSUB 920

590 GOTO 1360

600 LET B=B—90

610 GOSUB 790

620 LET B=B+90

630 GOTO 1360

640 IF S[1,11=0 THEN 670
650 GOsUB 790

660 GOTO 1360 .

670 LET B=B+90

680 GOSUB 920

690 LET B=B—90

700 GOTO 1360

710 PRINT “KLINGON FIRES PHOTON TORPEDO"

720 LET C=3

730 LET B2=B

740 LET B=40

750 GOSUB 1040

760 LET B=B2

770 GOTO 1360

780 REM FIRE FWD PHASORS
790 LET H=0

800 IF S[1,1] #0 THEN 830

810 PRINT "“FWD PHASORS INOP**
820 1F 1=1 THEN 260

830 LET R1=1-0.2*{R/1E+06)

840 LET B1={90-B)/90

850 IF B1<0 OR R>5E+06 THEN 900

860 REM GEN RANDOM NUMBER IN INTERVAL O TO 1

870 IF R1<RND{1) THEN 900

880 LET H=1

890 LET P=4

900 RETURN

910 REM REAR PHASOR

920 IF S[2,1]#0 THEN 960

930 PRINT "REAR PHASORS INOP”
940 REM

950 IF 1=1 THEN 260

960 LET H=0

While complex Star Trek and Space War
games, complete with space warps, fleets of
enemy ships, and starbases currently exist,
they generally require a sophisticated system
to support them. For the microcomputer
hobbyist who does not have the resources of
‘Star Fleet at his disposal for the purchase of
hardware, the following short version of Star
Trek is offered.

The program was developed in BASIC on
a NOVA 1200 minicomputer and emulates a
Star Trek game | originally encountered on
the Univac 1108 system at Georgia Tech.
The program requires about 2200 16 bit
words in its current form, although consider-
able savings of memory are possible by
simply deleting the remarks. While lacking
many of the trappings of larger games, the
BASIC Star Trek Trainer offers the follow-
ing advantages:

1) A choice of weapons, phasor banks or
photon torpedoes, each turn.

2) Maneuvering commands.

3) Deflector shields which weaken as the
number of hits on each craft increases.

40

isti . 970 LET R1=1-0.2°R*1E~06
Listing 1. 980 REM RANGE BEARING CHECK

990 IF R>5E+06 OR B<90 THEN 1030
1000 IF R1<RND(1) THEN 1030
1010 LET H=1
1020 LET P=2
1030 RETURN
1040 LET H=0
1050 IF S[3,1] #0 THEN 1080
1060 PRINT “PHOTON TORPEDO INDP*
1070 IF I=1 THEN 260
1080 IF R<2E+06 OR B>90 THEN 1130
1090 LET R2=(1-8/90)*(1-2°R/1E+08)
1100 IF R2<RND(1) THEN 1130
1110 LET H=1
1120 LET P=8
1130 RETURN
1140 LET R=R*(1-0.5°S[4,1])
1150 LET B=0
1160 LET H=0
1170 RETURN
1180 LET R=R*(1+5(4,1) +0.05°S(6,1))
1190 IF R>1E+08 THEN 1230
1200 PRINT “CONTACT NOT BROKEN"
1210 LET H=0
1220 RETURN
1230 PRINT “CONTACT LOST”
1240 STOP
1250 PRINT “SELF DESTRUCT ACTIVATED"

4) Warp and impulse drive engines, the 120 oR rjoTO 1 STER -1
H i 1280 NEXT |
status of which are taken into accoupt L L
to compute the incremental changes in 1300 STOP
1310 PRINT “MESSAGE FROM KLINGON °** | ACCEPT YDUR SURRENDER"
range between turns. 1320 PRINT "PREPARE TO BE BOARDED."
H H 1330 PRINT “***MESSAGE FROM STAR FLEET COMMAND"*
5) Evasive maneuvering to escape ou.t of 1340 PRINT “YOU DIRTY COWARD®
sensor range and end the game in a 1350 STOP
d 1360 LET J=3-)
raw. 1370 IF C>3 THEN 1920
1380 REM DAMAGE ASSESSMENT
H 1 1390 IF H#0 THEN 1440
The player, as ca_ptaln of th_e Enterprise, 400 lE R INTE I SS
alternates moves WIth the Kllngon battle- ::;g gg;oi"1?)2E°STRUCTIVE POWER OF WEAPON. D= INCREMENTAL D GE DO
. = . D= INCREM A AMA NE, LIMIT
cruiser. After a readout of the range and 1430 REM TO A MAX VALUE OF 2.
H 0 1440 PRINT “HIT"
bearing to th.e enemy vessel, the player is 1450 LET D=P*{1-5(5.,J])
queried for his command. After each move }:‘753 \FD = 2 THEN 1480
‘the player receives a status report of the 1480 LET S=7,J}=S{7,J%+D/
. . 1490 LET S(5,J) =S(5,J1 -P/100
Enterprlse (?l' the Kllngon. 1500 LET 2=10-INT{S(7.J])
Each ship is armed with a forward twin 1510 IF J=1 THEN 1580
q 1620 REM DAMAGE DONE TO KLINGON
phasor bank, a single rear phasor, and a 1530 PRINT “SCANNER REPORT KLINGON"
. 1540 IF 2>1 THEN 1610
forward firing photon torpedo tube. These 1550 PRINT “K LINGON DESTROYED"
i i 1560 STOP
weapons have reIat!ve destructive powers of e e I
4, 2 and 8 respectively. The probability of 1580 PRINT “ENTERPRISE DAMAGE RPT"
’ Y 1590 IF 2>0 THEN 1610
achieving a hit with the phasors is given by 1600 LET 2=1
(|ine 830) 1610 GOTO 2 OF 1620,1640,1850,1730,1730,1780,1780,1780,1830,1830
* 1620 PRINT “ENTERPRISE DESTROYED"*
1630 STOP
PH =1 — R/(5E06) where 1640 PRINT “WEAPON SYST,.DESTROYED"

1650 PRINT “"WARP DRIVE DESTROYED"
1660 PRINT “MAJOR STRUCTURAL DAMAGE"
1670 PRINT “SHIELDS BUCKLING"

1 1 H H 1680 LET S[1,J])=0
R is the range in kllorpe.ters b_etween ships. RSl 1= (MG
For ranges over 5 million kilometers the 1;08 tgg{g.mo
[} J) =
phasors are useless. The forward phasors 1750 GOTO 19J2]o°
1 1730 PRINT “PHASORS DESTROYED"”
may be used for bearings O to 90 degrees, 1720 PRINT “MINOR DAMAGE AMIDSHIPS®
the rear phasors for bearings 90 to 180 1;653:E'TNST‘;'ﬁ?lgltgflngKENlNG"
. 1 5 = 5 =
degrees. The photon torpedo tube may be 1770 GOTO 1920
H 1780 PRINT "FOREWARD PHASORS DESTROYED"
used for targets bfaarlng 0 to 90 degrees _for 1790 PRINT “MINOR DAMAGE AMIDSHIPS"
which the range is at least 2 million kilo- :g?g:’;;N;;'ﬁ?[gwsWEAKEN'NG"
meters. The probability of a hit is given by 1820 GOTO 1920
(Iine 1090) 1830 PRINT “SHIELDS HOLDING NO DAMAGE"”
: 1840 GOTO 1920

p 1 B/90) * 1 1850 PRINT “WEAPONS SYST, DEACT&VATED"
= — — 1860 PRINT “DILITHIUM CRYSTALS OVERHEATING"
H (/) (1 2R/ E08). 1870 LET S[1,J] =0
1880 LET S[3,J]1=0
1890 LET S(3,J1=0

While the phasors are range dependent, the 1900 GOTO 1920

A . o 1910 REM NEW RANGE ,BEARING
photon torpedo is almost entirely bearing 1920 LET R3=0.5°(S[4,1] +514,2] +0.05°{S(6,1] +5(6,2]))
de endent 1930 LET R=R+R3*({RND{1}-0.5}*1E+06 -

pB h h 1940 LET R~ABS((R) 50 (“m
i i i 1950 LET B=ABS{B—150+20°*{RND(1
oth ships have options for maneuvering LI s
to attack and trying to break contact. 1970 LET 1=y
Maneuvering to attack halves the range and gl 260360
1 H H 2000 LET B=ABS(360-8)
brings the bearing to zero. This comrpand G b
appears most useful when used to close in on 2020 END

41

SUMMARY OF INSTRUCTIONS FOR THE GAME

The player will engage a Klingon battle cruiser and will alternate mowves with the
Klingon.

When the prompting message ““'STARDATE?'’ appedrs, enter any random number to
initialize the game. This is a seed for the pseudorandom number generator, and using a
different number each game prevents repetition of the same battles.

Enter the command after the prompting message ‘‘'COMMAND" appears. Select
commands from the following list:

Command 1 fires forward phasors, of which there are two.

Command 2 fires the rear phasor.

Command 3 fires the photon torpedo. The photon torpedo fires forward. The
minimum photon torpedo range is 5 million kilometers.

Command 4 means ‘‘maneuver to attack.”” The bearing to the target Klingon and
the range are reduced.

Command 5 means “attempt to break contact” by using the warp drive. If the
range goes greater than 100 million kilometers, contact is lost and the game ends.

Command 6 is the suicide command, the end game maneuver used to prevent
capture by Klingons.

Command 7 is surrender to the Klingons.

The relative strength of a photon torpedo is 8, the relative strength of the rear Phasors is
2, and the relative strength of the forward phasors is 4.

Listing 2: A sample run of this version of Star Trek.

ENTER STARDATE
6091.1
KLINGON APPROACHING
R= 3849000 KM.
COMMAND
3
MISS
KLINGON FIRES PHOTON TORPEDO
MISS
R= 3661890 KM.
COMMAND
4
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 2021835 KM. BEARING= 15.44 DEG.
COMMAND
3
HIT
SCANNER REPORT KLINGON
SHIELDS HOLDING NO DAMAGE
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 1658325 KM. BEARING= 8.48 DEG.
COMMAND
3
MISS
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 2092815 KM. BEARING= 10.48 DEG.
COMMAND
3
HIT
SCANNER REPORT KLINGON
FOREWARD PHASORS DESTROYED
MINOR DAMAGE AMIDSHIPS
SHIELDS WEAKENING
KLINGON FIRES PHASOR
MISS
R= 2266905 KM.

BEARING= 69.282 DEG.

BEARING= 56.722 DEG.

BEARING= 13.12 DEG.

42

a fleeing or crippled foe. Attempting to
break contact opens the range. (Along about
the time your weapon systems are de-
activated, your shields are half gone and the
Klingon is closing in, it is time to get it in
gear and haul for Alpha Centauri.) The game
ends in a draw when the range exceeds 100
million kilometers.

Damage assessments are provided any
time a vessel is hit by a phasor or photon
torpedo. The amount of damage done de-
pends on the relative strength of the weapon
(8 for a photon torpedo, 4 or 2 for phasors)
as well as the effectiveness of the deflector
shields. The amount of damage done is
computed and added to the cumulative
damage, and the deflector shield effective-
ness is reduced.

Two other commands, surrender and self-
destruct, are included for defeatists.

The program is written in a version of
BASIC which permits GOSUB. . .OF. .. and
GOTO. . .OF. .. statements, and may re-
quire minor reprogramming for other BASIC
languages. The random number function,
RND (X) generates a random variable with
uniform distribution in a range (0,1). The
argument X, when negative, is used as the
random number seed; when positive the
argument is ignored and an internal seed is
used by the generator. By entering a
“stardate’’ at the beginning of each game, a
unique pseudo-random number series is gen-
erated for that game.

The Enterprise and the Klingon use the
same routines for command processing.
Lines 780 — 1030 determine if a phasor shot
produced a hit or a miss. Lines 1040 — 1130
process a photon torpedo command.
Maneuvering to attack is handled in lines
1140 — 1170, while attempting to break
contact transfers control to lines
1180 — 1240. The damage assessment
routine in lines 1380 — 1890 prints out the
scanner reports or damage control reports.
At the end of each move the subroutine in
lines 1910 — 2000 is called to change the
range and bearing.

The computer selects the Klingon's move
in lines 350 — 770. Presently the Klingon is
programmed to be somewhat aggressive. For
novice Star Trek players the Klingon wins
about 75 perecent of the first several dozen
games.®

Seeing Double?

17 el T

(30,000 Cop &S
No it’'s just that f"rst edltlon of this popular book sold out in 5 months flat.

The second edition of AN INTRODUCTION TO MICROCOMPUTERS has been revised and expanded to two
volumes, to keep up with the fast-moving microcomputer industry’s pace of change.

Have things changed that much in just 5 months? You probably know the answer to that already: a flood of
new and second-source CPU chips and a whole host of new LS| support packages. Nowhere else can you get all
this vital information. VOLUME | — BASIC CONCEPTS surveys the subject, from elementary concepts to
system configuration and design. In VOLUME Il — SOME REAL PRODUCTS we take a long, hard look at the
products available today and about to be announced tomorrow. If you're actually putting together your first
system, you may find some help in the latest addition to the microcomputer library: 8080 PROGRAMMING

FOR LOGIC DESIGN.

Whether you are planning new products, updating existing ones, or simply need to keep abreast of the latest
developments in this revolutionary new technology, AN INTRODUCTION TO MICROCOMPUTERS has become

the industry’s standard reference on the subject.

VOLUME | — BASIC CONCEPTS, takes you by the hand, from elementary logic and simple binary arithmetic through the concepts which are shared by
all microcomputers. It tells you how to take an idea that may need a microcomputer and create a product that uses one. This book is complete — every
aspect of microcomputers is covered: the logic devices that constitute a microcomputer system; communicating with external logic via interrupts, direct
memory access, and serial or parallel I/0; microprogramming and macroprogramming; assemblers and assembler directives; linking and relocation —
everything you need to know if you are going to select or use a microcomputer. Volume | is equivalent to Chapters 1 through 6 of AN INTRODUCTION
TO MICROCOMPUTERS, first edition, but with extensive new sections on chip slice products and serial 1/0. Order publication number 2001. Date
available: May 31, 1976.

VOLUME Il — SOME REAL PRODUCTS, covers real microcomputers, in considerable detail. Every major microcomputer: 4-bit, 8-bit or 16-bit, is
described, including some soon to be announced products. Major chip slice products are also covered. More than 20 microcomputers in all. Order
publication number 3001. Date available: July 15, 1976.

8080 PROGRAMMING FOR LOGIC DESIGN, is a completely new book on a totally new subject: implementing digital and combinatorial logic using
assembly language within an 8080 microcomputer system. What happens to fan-in and fan-out? How do you implement a one-shot? This book simulates
well known digital logic devices using assembly language; next it shows you how to simulate an entire schematic, device by device, keeping the assembly
language simulation as close to the digital logic as possible. But that is the wrong way to use a microcomputer; the book explains why, then shows you the
correct way. This book describes the meetmg ground of programmer and logic designer; it is written for both readers. Order publication number 4001. Date
available: June 15, 1976.

For ordering and pricing information in Europe contact: Everywhere else:
Publications Department OSBORNE & ASSOCIATES INC.
UG LD L) P.O. Box 2036 e Berkeley,California 94702 e (415) 548-2805
75015 — Paris, France
Telex: 200858 Sybex Copies of each book are available for $7.50 per book plus sales tax for California residents.

Discounts are available on orders of 100 books or more. Please be sure to include publication
numbers with order. Add 30 cents for surface mail, $2.50 for airmail shipping charge when
ordering from outside the U.S.A. Dealer, distribution and translation inquiries welcome.

BankAmericard and Master Charge orders accepted e Please include in mail order: card number, expiration date, full name and address

“ MONOLITHIC SYBTEMS CORP.

INTERRUPT
DISABLE

g

[We7.e)
8TK PTR

MICRO COMPUTER CONTROL. PANE|.

ADDRESS/DATA
HIGH Low

| A A
o o B8

4 5 6 7

O

Photo 1: One of the keys to the ease of use of this Monolithic Systems Corporation “8080+" microcomputer is its “smart”
control panel. Instead of row after row of blinking lights, this panel uses software to drive a hexadecimal display, with a
hexadecimal data entry keypad and several control function buttons. The photographs accompanying this article are supplied

courtesy of Monolithic Systems Corp, 14 Inverness Dr E, Englewood CO 80110.

The MSC 8080 + Microcomputer

as a Personal System

Ken Barbier
PO Box 1042
Socorro NM 87801

In the beginning there were rows and
rows of little lights and little switches.
Incredible as it may seem, some micro, mini,
and mega computers still come with rows
and rows of little lights and little switches.
After wearing out countless eyeballs, finger-
tips, and four letter words, Mankind finally
asked: “Isn’t there a better way?”

Along came the monitor program in read
only memory, allowing instant power up and
communication with a console terminal
device. This is an excellent solution when
higher level languages are available, and not
too bad a solution when text editors and
assemblers are available. But for entering
machine language routines of any length,

a4

and for debugging programs which are inti-
mately connected with hardware, such as
device drivers, the terminal has its
limitations.

Enter the intelligent control panel, with
hexadecimal or octal keyboard and readout.
Machine language programs or data blocks
can be swiftly entered, and debugging by
single stepping through a program while
monitoring memory or registers becomes a
snap. For the designer of small systems
working down at the machine language or
hardware level the intelligent control panel
can be an attractive alternative .

The MSC 8080+, from Monolithic Sys-
tems Corp, Englewood CO, is an Intel 8080

based microcomputer with what is un-
doubtedly one of the most complete
“smart” panels on the market. It includes
other unique features which make it a good
choice for the person building or experiment-
ing with small systems.

Some Features of the MSC 8080+

Unpack the MSC 8080+, connect a single
+5 VDC @ 2 A power supply, press the
RESET switch on the control panel, and you
have an operating microcomputer. This ease
of setup was one of the reasons | chose this
product as my personal computer. The
control panel monitor program takes up two
of the four 1702A EROM positions on the
processor board, and uses a maximum of 64
bytes of the 1 KB static programmable
memory, also on the board. The panel
monitor program has its own hardware
interrupt via the RESET switch, and does
not interfere with use of the eight RST
instructions which are provided for inter-
rupts by the 8080 processor itself. (A
separate CPU RESET switch provides access
to interrupt 0, once your program is loaded.)

Other goodies supplied include a 4.5 inch
by 7 inch (11.43 cm X 17.78 cm) wire wrap
area right on the processor board, with room
for 42 sixteen pin sockets (12 of these are
used up by the 1 KB RAM). Surrounding
this area are nine 26 pin connectors, ac-
cepting either wire wrap directly, or ribbon
cable connectors, to provide access to periph-
erals. All connections to the 8080 pro-
cessor are already buffered before reaching
the wire wrap section, simplifying the addi-
tion of peripheral interfaces.

On the MSC 8080+ processor board there
is also a DC to DC inverter to provide the
+12, -5, and -9 VDC required for the 8080
integrated circuit and the 1702As, so that
only the single +5 VDC supply is necessary.
Connectors are provided for a number of

Pnoto 2: The various board's of tnis industrial quality product are designed to
be stacked using 1 inch (2.54 ¢cm) spacers. This view illustrates the processor
board (front) and dynamic programmable memory board (rear) mounted
together with spacers; interconnections throughout an MSC 8080+ system are
made using 26 conductor parallel ribbon cable assemblies like the one in the
upper right hand corner of this picture. Also note the uncommitted wire
wrapping area which can be used for custom logic designs oriented to a
specific application system.

45

- & & A B EAaEs .
R N N B TN
=M - _ 3L b

"""‘H"'

Photo 3: A side view of the control panel and processor board stacked together for a minimal system. The control panel consists
of the metal cosmetic panel (top) and a circuit board to which key switches are attached (middle). The processor board is shown
at the bottom of this assembly. For purposes of photography, interboard connector cables have been omitted in this view. Other
boards of the family could be added to this stack. (The author’s system has an additional 4 K CMOS programmable memory
board with battery backup added to the two boards shown here.)

memory options, which are detailed later in
this article.

The control panel is what | found to be
the outstanding feature of the MSC 8080+,
It has a 16 key hexadecimal keypad, a four
digit hex display, 16 function keys, and four
status indicator LEDs. A 20 mA current
loop TTY interface is provided on the panel,
but an additional 1702A (optional) is re-
quired to drive it. This 1702A Teletype
interface contains a program with timing
loops to perform the parallel to serial con-
versions, a software UART algorithm.

The MSC 8080+ is intended for the
industrial market, so the quality of manu-
facture and components is first rate and the
unit comes assembled. Industrial quality
design is one of my reasons for choosing this
processor. In spite of this, the goal of the
under $1000 computer is met.

Control Panel Operation

As supplied, the memory address of the
panel monitor program is (in hexadecimal)
from 0200 through O3FF, and the 1 KB
RAM can be found at 0400 through O7FF.
Some functions of the monitor use the
stack, so the next operation after RESET
should be to initialize the stack. This is done
by entering O7FF on the hexadecimal key-
pad and pressing the LOAD STK PTR
function key. As the digits are entered they
will appear, shifting into the hex display
from the right, and will disappear when
loaded into the desired register. The func-
tions LOAD STK PTR, LOAD ADDR, and
LOAD H+L use 16 bit (4 digit) entries; all
other entries are eight bits (2 digits).

46

A user’s program can now be keyed in.
The start address is set by entering four
digits and using the LOAD ADDR key. The
address entered will disappear from the
display and the eight bit contents of the
addressed location will appear in the two
low order display digits as LOAD ADDR is
pressed, indicating proper operation of the
system. Now enter two digits of data or
program and press LOAD MEM. At this time
an address register in the panel will be
incremented and the contents of the next
sequential memory location will be dis-
played. If a load error occurs (the panel
reads back each entry from memory to
verify it) an error indication of “FF” ap-
pears in the two high order digits of the
display. This gives an instant indication if
you are trying to write into ROM, or a non-
existent address, or hardware that s
malfunctioning.

Loading each sequential memory location
from the panel thus consists of entering and
verifying two hex digits of data and pressing
LOAD MEM. At any time during loading,
the address of the next sequential location
can be displayed by pressing READ ADDR.
When loading is complete you can verify the
program by entering the start address, then
using READ NEXT MEM to examine each
location in turn.

Once your program is entered, initial
values of any register can be set using the
LOAD REG, LOAD H+L, or LOAD STK
PTR keys. Enter your starting address using
LOAD ADDR, and you are ready to run.

Unless you have infinite confidence in
your infallibility, you may want to single
step through the program the first time. Just

press STEP to execute each instruction in
turn. The address of the next instruction will
then be displayed. The contents of any
register can be examined (READ REG) or
changed (LOAD REG) as you step through
your program. DECR ADDR will allow you
to back up the program counter one byte at
a time.

When you are confident the program is
fully debugged, enter the start address and
press RUN to execute it. If things do not go
as planned, press STOP to halt the program
and display the address of the next instruc-
tion. Registers and memory can then be
examined.

Larger segments of programs, or long
loops that would take all day to single step
through, can be run by temporarily patching
in the HALT instruction where traps are
desired. After starting the program with the
RUN key, the PROGRAM HALT indicator
will light when you reach the HALT instruc-
tion. Then simply press STOP to display the
next program address and enable all of the
other panel functions.

The 8080+ control panel uses a combina-
tion of hardware and software, but its
operation is transparent to the user’s pro-
gram. If the user’s program should end up in
the illegal combination of disabled interrupts
and program halt, the panel RESET key will
restore operation without it being necessary
to turn the power off.

It is hard to believe without experiencing
it how easily a program can be keyed in and
debugged using the MSC 8080+ control
panel. It makes an expert out of a novice in
minutes.

Hardware Configuration

One unusual aspect of the MSC unit is the
absence of edge connectors on the boards.
All connections between the control panel,
processor board, and optional memory
boards are through 26 conductor ribbon
cables and matching connectors. The boards
can be physically stacked in endless com-
binations using #4-40 X 1 inch threaded
spacers, or can be mounted in Augat 8170
series frames. As the components of the
system are intended to be a part of the user’s
industrial hardware, no cabinets or power
supplies are furnished.

The control panel, processor, and
dynamic programmable memory boards are
all 7 1/2 inches by 13 1/2 inches (19.05 X
34.29 cm). The CMOS programmable mem-
ory is slightly smaller on the long dimension
but has compatible hole patterns for the
spacers or frame mounting.

Currently available options include the

processor board without programmable
memory, and no EROMs installed in the
four sockets; a dynamic programmable
memory board with room for 32 KB; and a
nonvolatile 4 KB CMOS static program-
mable memory board with built in NiCad
batteries which are kept charged during
normal operation. In the works, according to
MSC, is a compatible EROM board with
pre-loaded software including a text editor
and assembler.

A User Comments on the MSC 8080+

For years | had been waiting for the price
of some old worn out mini to come within
reach of a meager hobbyist budget, but
before that could occur the age of micropro-
cessors was upon us. | didn't feel that | had
the time to spare to put together a system
from a handful of parts, so | watched the
“processor on a board” market develop with
much interest. Prices were still high, but
falling rapidly, when the Altair explosion
occurred. | was instantly tempted by the
first Altair ad, but since | had no TTY or
other terminal to go with it the investment
required for any sort of useful configuration
was still several kilobucks. And there were
all those rows of lights and switches! | had
too many of those to contend with while
earning a paycheck; | resolved that any
system | had at home would have minimal
blinking lights! So | watched, and waited,
and collected specifications sheets, and com-
pared instruction sets.

I think too little has been said about the
relative merits of micros and minis when
comparing instruction sets. It is not enough
to have bunches of instructions and memory
addressing methods. |t is not enough to have
all kinds of tricks to conserve memory. To
be truly useful a machine must have a set of
instructions that are easy to learn, easy to
remember, easy to use, and suited to the
task at hand. A calculator will beat any
micro at number crunching, but is lost as a
controller. (How long must we wait for the
micro-controlling-a-calculator chip?)

Having worked with machines from big
IBM size to hand held calculators, | had a
pretty good idea of what | wanted for a
home controller, game player, and ac-
counting system. The Intel 8008 didn’t quite
make it, but when | saw the instruction set
of the Intel 8080, | flipped! All that
simplified CALLing and RETurning, PUSH-
ing and POPping, and decimal adjust too!

So now | knew my system would use the
8080. | started trying to design a “smart”
control/display panel. From the day | saw
the first Altair ad til | found what | wanted

47

For more information on
the MSC 8080+ contact:
Monolithic Systems Corp, 14
Inverness Dr E, Englewood CO
80110. Their phone number is
{303) 770-7400.

Altair Owners...
Have you heard our new hit single?

THE FIRST DOUBLE DENSITY FLOPPY DISK SYSTEM FOR MICROCOMPUTER SYSTEMS!

MSI is proud to introduce the FD-8
floppy disk memory system for use
with the Altair 8800, Motorola 6800,
and other micro computer systems.

The FD-8 requires only one PIA
chip for interfacing to any
microcomputer system. One 8 bit
bidirectional data port and one 8 bit
control port and that’s it! Complete
FDOS software for 8080 and 6800
systems is provided and can operate
from either RAM or ROM as desired.

Format Specifications:

» 77 Tracks/Diskette

e 16 (32) Sectors/Track*

¢ 256 Bytes/ Sector

e 315,392 (630,784*) Bytes/Diskette
*Model FD-8-11 with Double Density

Introductory Prices:
SINGLE DRIVE MODELS:

SINGLE DENSITY, KIT. . . $ 950.00

DOUBLE DENSITY, KIT. $1250.00
DUAL DRIVE MODELS:

SINGLE DENSITY, KIT .. $1750.00

DOUBLE DENSITY, KIT. .. $2050.00

BASIC FOR THE 6800

We now have full biown BASIC ready
for delivery. It has full floating point
arithmetic, strings, subroutines, arrays,
and USER DEFINED VERBS!

Price $65.00 per copy (Includes
documentation and paper tape)

PROM/RAM BOARD FOR ALTAIR 8800
AND IMSAI SYSTEMS

Contains 3,840 bytes of ROM and
256 bytes of scratchpad RAM on one
board. Extensive monlitor software
provides memory examine/change
using octal or hex, trap functions,
bootstrap loaders for MITS BASIC and
monitor software, paper tape and
cassette dump and load functions using
hex or BNPF formats. Also contains a
DISASSEMBLER and a RELOCATOR.
Price $245.00

ADDITIONAL PRODUCTS FOR THE
SWTP 6800

Wire Wrap Board

Accepts 40 pin, 24 pin, 16 pin and 14
pin sockets as well as discrete
components. Contains 7 805 on-board
regulator for +5V power bus. Plugs
into the SWTP 6800 mother board.
Price $25.00

PROM/RAM Board

Contains 3,840 bytes of 1702A ROM
and 256 bytes of RAM on one board.
May be used to contain MSI-FDOS
software and scratchpad area.

Price $95.00

MSI SOFTWARE PRODUCTS:

12K 6800 Basic. $65.00
Relocating loader program. . . $15.00
Disassembler program... $25.00
IK Mini Assembler program. .. $25.00

We've made several other hits at MSI, including
our floppy disk system for programmable calcu-
lators, CRT terminals, PROM programmers, high
speed printers, and instrumentation interfaces.

For more comprehensive product information,
write MSI at the address below. Watch our monthly
ad, and we’ll introduce you to our new products
for the computer hobbiest.

220 WEST CEDAR. OLATHE. KANSAS 66061 « PHONE 913 764-3273 « TWX 910 749 6403 (MSI OLAT)

48

from MSC, | spent long hours of free time
trying to design the perfect control panel.
All my designs were bogged down in exces-
sive amounts of hardware, so too expensive.
I gave up on the panel idea, and started
building a CRT terminal, although | had
nothing to connect it to yet.

Suddenly there appeared before me (in
one of the electronics trade magazines) a
description of Monolithic Systems Corpora-
tion’'s 8080 based processor board with
single +5 VDC power supply and room left
over for all my interface circuitry. Ideal! By
the time | called them, they were announc-
ing the MSC 8080+ system, with that neat
processor board and a smart panel. | dug out
my old panel design sketches and sure
enough they had stolen all my ideas by long
distance telepathy! And added lots of func-
tions | would never have thought of.

| wasted no time in ordering an MSC
8080+. When it arrived it took me only one
weekend to connect up my CRT terminal
hardware, key in and debug the software |
had previously written, and have a smart
CRT terminal in operation. This is a tribute
both to Monolithic’s interfacing documenta-
tion, and the speed of operation possible
with this control panel.

A 4 KB CMOS board arrived later, and
after hooking it up | was able to turn things
off without losing all my software. Of course
it is still possible to blow my programs by
writing stupid mistakes into them, but the
ability to single step through program seg-
ments has all but eliminated that problem.
(Most debug programs used with a console
terminal have a limited number of settable
traps, or breakpoints, and it is too easy to
sneak past them all and get totally lost. Not
so with single stepping.)

This combination has proved to be an
ideal solution to the problem of putting
together an inexpensive home computer,
especially as | had no method of program
storage with the power off. While the cost is
not as low as some systems advertised in
BYTE, there are many tangible benefits that
come with the small extra expenditure. The
panel has all the functions you’ll ever need
for machine language programming. The
system was factory assembled and tested,
built of the best quality components and
fully guaranteed. All of the ‘“‘works” are
hidden behind a professional appearing front
panel, so it doesn’t lock like a collection of
surplus parts. And, delivery was on a realistic
schedule.

The least | can say is that | am com-
pletely satisfied with this product, and don’t
hesitate to recommend it to other computer-
heads.®

All-new Phi-Deck;
precision remote controlled
cassette transports starting at

under $100!

Featurmg
Re-engineered precision parts

« New cast frames

« 4 motor reliability

« Remotely controlled

« Precise, fast head
engage/disengage

« Quick braking

» Various speed ranges

Electronic packages for control or read/write

For application In: 6. Data duplicating

1. Micro processing 7. Security/automatic warning

2. Data . systems
recordingflogging/storage 8. Test applications

3. Programming 9. Audio visual/education

4. Instrumentation 10. Hi-Fi

5. iIndustrial Control 11. Others

R N

®
TleeI A Division of The Economy Co.
I 1901 North Walnut P.O. Box 25308 I
Oklahoma City, Oklahoma 73125 (405) 521-9000

O | am interested in applicationno.__
O Have Representative call O Send application notes

Name Title
I Company Name I

Address
I City State Zip

Phone Number
I I DN I N N O .

BROWN-OUT PROOF
your ALTAIR 8800

With the unique Parasitic Engineering constant voltage
power supply kit. A custom engineered power supply for
your Altair. It has performance features that no simple
replacement transformer can offer

*BROWN-OUT PROOF: Full output with line voltage as
low as 90 volts.

*OVER-VOLTAGE PROTECTION: Less than 2% increase
for 130 volt input.

*HIGH OUTPUT: 12 amps @ 8 volts; 0.5 amps @ +16
volts. Enough power for an 8800 full of boards.

*STABLE: Output varies less than 10% for any load.
Regulators don't overheat, even with just a few
boards installed.

*CURRENT LIMITED: Overloads can't damage it

*EASY TO INSTALL: All necessary parts included

0n| $75 postpaid in the USA .,

calif. reS|dents add 4,50 sales tax

Don't let power supply problems sabotage your Altair 8800,

PARASITIC ENGINEERING

PO BOX 6314 ALBANY CA 94706

49

How to Do a Number of Conversions

James Brown Perhaps one of the more difficult tasks on
2518 Finley St #636 any small computer is the conversion from
Irving TX 75062 numeric characters to a form usable by the

machine and back again. That is, given some
type of input output device (Teletype or TV

Table 1: Hexadecimal Codes of Selected ASCII Characters (high order bit typewriter) connccted to your computer, it

assumed zero). would be desirable to have the capability of
entering a string of numeric characters (con-
Hexadecimal ASCIl Hexadecimal ASCIl Hexadecimal ASCII secutive digits) through the keyboard. The
Code Character Code Character Code Character computer would then perform some opera-
tion on that number. Finally, the result of
&Y GRS g? ? 2? f that computation is displayed back on the
0A line feed 32 2 42 8 IO device. Since the computer’s natural
: 33 3 43 (] language is N bit binary (i.e., ones and
oD car. ret. 34 4 44 D zeros), how can such a string be converted?
: 35 5 45 E An example of the problem is: How do |
20 space 36 6 46 F . .
] 37 ; a7 G convert the three character decimal string
28 " 38 8 ‘196’ into the binary integer equivalent 1100
2C . 39 9 0100 (or octal 204, or hexadecimal C4)?

2D = 3A : Converting a decimal (base 10} number

: into binary can be a long and involved
operation. Let us work our way into decimal
conversion by considering what would be

Listing 1a: The BIN Rou-
tine Specified for an 8080.

s Piep: . Rel.

:rh/S //st/nq, as f]” the list Addr, Code Label Op. Operand Commentary
ings of this article, shows R —
the symbolic code and ab- 0000 06 00 BIN: MV B,0 ANSWER :=0;
solute machine code for an Note 1 0002 CD xx xx BINLOOP: CALL GET A := INPUT |character]|;
8080 version of the rou- 0005 FE30 o e isALT ‘07

4 Th e 0007 D8 RC if so then return;

e) 0008 FE 32 cPI 2’ is A LT 27

absolute addresses which 000A DO RNC if not then return;

must be adjusted when re- 000B 1F RAR CARRY := Ag;

locating the code to some 8888 Zg MoV A,B A := ANSWER;

: RAL rotate carry into A;

LU é’; A’/"emodry ”:dre,;s, 000E D8 RC overflow: if CARRY = 1 then return;
Llaa U U 000F 47 MOV B,A ANSWER := A;

and ‘0’ characters of an Note2 0010 C3xx xx JMP BINLOOP reiterate for next bit;
ASCIl encoded binary
string, leaving up to 8 bits Note 1: address of GET should replace “xx xx"’.

of input in B. Note 2: “xx xx” should be the address of BINLOOP.

50

necessary to do the following conversions in
order of increasing complexity:

1. Binary character strings (ASCIl 0 or 1)
to or from unsigned 8 bit integers.

2. Octal character strings (ASCII 0 to 7)
to or from unsigned 8 bit integers.

3. Hexadecimal character strings (ASCII
0 to 9, A io F) to or from unsigned 16
bit integers.

4, Signed decimal character strings
(ASCII 0 1o 9, +, —) to or from signed
16 bit integers.

Before we start, let us examine what the
computer secs when a character is read from
the kecyboard, assuming that the kcyboard
speaks ASCII. Examining table 1, notice that
each character is assigned a unique binary
value. Not only are the numeric characters O
thru 9 grouped together; but, if the left hand
four bits were dropped, there would be a
direct correspondence to the binary equival-
ents of 0 thru 9. As shown bclow, this is a
fairly simple task:

Algorithm:
‘ASCII char’ {AND) (0000 1111) = result
Examples
‘0’: (0011 0000) (AND) (0000 1111) =
0000 0000
“1: (0011 0001) (AND) (0000 1111) =
0000 0001
‘9’: (0011 1001) (AND} (0000 1111) =
0000 1001

In each case, the result is a binary number in
the low order of the byte after the AND
operation has masked the high order bits.

Binary Conversions

Converting the ASCII character codes for
1 and O into a true binary value is perhaps
the simplest to actually implement, and is a
good starting point in understanding how
number conversions work. All of the other

Rel.
Addr. Code Label Op.
0000 OE 08 BOT: MV
0002 78 BOTLOOP: MOV
0003 07 RLC
0004 47 MOV
0005 3E 18 MV
0007 17 RAL
Note 1 o008 CD xx xx CALL
000B 0D DCR
Note2 000C C2 xx xx JNZ
000F Cc9 RET

Note 1: address of PUT should replace "xx xx’’.

Note 2: “"xx xx’’ should be the address of BOTLOOP.

routines follow the basic plan presented
here.

In the preceding, zapping the left four
bits to get a binary value has one fatal flaw;
it only works for one character. In develop-
ing something to handle a two character
string such as ‘10’, it might as well accept
ASCII strings with any length, as long as the
resull can be contained in eight bits (an
arbitrary choice).

The simplest way of doing this is to
perform the conversion one character at a
time as they are cntered and develop the
result as cach character of the string (‘1’ or
‘0") is processed. Clearly the first step is to
read the character and convert it into the
binary value 1 or 0, using the masking
technique shown earlicr.

Since most computers have some type of
shift instruction (see note 1), this is an
effective way of moving the new bit into the
result which is being calculated. Specifically,
we must shift the result [eft one bit and then
OR the new converted value to it. This is
mathematically equivalent to multiplying by
2 and adding. For example, the four char-
acter binary string ‘1011’ is entered and
converted to the binary number 1011, This
is equivalent to the expression:

1#2340%2241 %21 47%20=1
{base 10)

and could be accomplished by the following
sequence:

. answer: =0

. INPUT character

. character: = character (AND) 01 (hex)
. answer: =answer (SHIFT LEFT) 1

. answer: = answer {OR) character
. GOTO 2.

S bW N

If those four characters were all | wanted
to enter, | now need to tell the computer to
stop looping, since there is a possibility of
entering as many as eight characters. The

Operand Commentary
C,8 CNT :=8;
A, B A = ANSWER;
CARRY := A7; rotate A Left;
B, A ANSWER := A;
A, 18H A :=b’'00011000’;
rotate A left; AO = CARRY;
PUT OUTPUT = A;
C CNT :=CNT —1;
BOTLOOP if CNT NE O then repeat;
else return;

51

Listing 1b: The BOT Rou-
tine Specified for an 8080.
This routine writes out a
string of &8 binary encoded
ASCII digits, taken from
the B register.

Figure 1a: The BIN Rou-
tine Flowchart. This rou-
tine treats successive
ASCIl ‘0’ and ‘1’ charac-
ters of input as the digits
of a binary string. The
digits are shifted into
ANSWER until an illegal
character or overflow re-

BOT:
turns control. In the 8080 one. In the 8080 code of
code of listing Ta, AN- listing 16, ANSWER is sup-
SWER is register B. BIN: m plied by register B.

ANSWER =
0;
BOTLOOP:
BINLOOP:
FL_L?G?L_ 7
lcHaRACTER
| TERMINATES |
(STRING __
YESLY |TERMINATES |
(STRING__
NO
Rel,
Addr. Code Label Op. Operand
0000 0600 OIN: MVI B,0
Note 1 0002 CD xx xx OINLOOP: CALL GET
0005 FE 30 CPI| ‘0*
0007 D8 RC
0008 FE 38 CPI ‘8’
000A DO RNC
000B E607 AN! 7
000D 4F MoV C A
000E 78 MOV A, B
000F 07 RLC
L 0010 D8 RC
Listing 2a: The OIN Rou- 0011 07 RLC
tine Specified for an 8080. 0012 D8 RC
This routine accepts an in- 0013 07 RLC
put string of ASCII octal oo o en c
characters and collects the 0016 47 MOV 8, A
results in ANSWER (CPU Note2 0017 C3 xx xx IMP

register B). Conversion
ends with invalid char-
acters or an overflow.

Figure 1b: The BOT Rou-
tine Flowchart. BOT is a
binary output routine
which writes an 8 digit
ASCl!! binary string con-
verted from ANSWER.
The digits are printed high
order first in a loop which
shifts out the bits one by

Note 1: address of GET shoutd replace *'xx xx".
Note 2: ““xx xx’* should be the address of OINLOOP.

52

CNT:=8;
—————— =
ROTATE AN- 1 OLD LOW ORDER|
SWER RIGHT 115 NOW IN]
BY ONE | CARRY FLAG !
POSITION e 4
Als
'00011000';
ROTATE rRESULT 1S —jl
CARRY LEFT | ASCII'O' OR'Y
INTO A (00110000 OR }
' oonooon __ |
CNT:=
CNT-1;
Commentary
ANSWER :=0;
A := INPUT [character];
is ALT'0?
if so then return;
isALT8?

if not then return;
A = A & b’00000111’ [mask low order];
C:=A;
A = ANSWER;
rotate A left three
bit positions
and check for
overflow into
CARRY after
each operation;
A = A OR ANSWER;
ANSWER = A;

OINLOOP reiterate for next digit;

simplest way of doing this is to have the
routine recognize some sort of delimiter (ie:
some character other than ‘0’ or ‘1’).
Looking, once again, at table 1, the char-
acters space, period, comma, carriage return,
line feed, are all less than the character ‘0,
when considered as binary values. This con-
dition is rather handy, since the same set of
machine instructions could recognize a
variety of delimiters without rewriting if |
want to change what delimeter means. Look-
ing further, if the special characters between
the 1 and A are excluded as delimiters, the
following pair of tests checks for both
delimiters and invalid characters.

® |f the character is less than a ‘0’ then
finished.

® |f the character is greater than a ‘1’
then illegal character.

There is one further consideration that
this routine should take into account. The
routine should check for a string of char-
acters whose value would exceed the maxi-
mum value which could be contained in
8 bits (anything over 255 decimal). Notice
that the routine really cannot count the
number of characters entered since nine
zeros and a one are still the value one, even
though 10 characters were processed. Most
computers have something called a carry bit
or overflow flag. During a shift left this carry
bit usually receives the most significant bit
from the register being shifted. Thus, as soon
as the carry bit becomes a one, then the
result has overflowed 8 bits; and the number
being entered is too big. Figure T1a shows the
detailed flow of the binary input procedure;
listing 1a shows the 8080 assembly code of
this procedure.

Output is simply the reverse process but
has error checking omitted. Since the input
was left to right, the output should be the
same. (It is extremely frustrating to enter
the character string ‘1100’ and have the
string ‘0011’ printed out.) Fortunately most
computers have a rotate left instruction
(note 1). If | choose to always print
8 characters per 8 bit value (after all, the
computer is working, not me), the output
routine should perform the following steps:

1. value = value (ROTATE LEFT) 1

2. character = value (AND) 1

3. character = character (OR) ‘0’ (ASCII
character code for ‘O’ is hex 30)

4. OUTPUT character

5. GOTO1.

Figure 1b contains the flow diagram for
this procedure, and listing Ib shows typical
code for an 8080 computer.

Octal Conversions

For octal input from strings with ASCI|
characters ‘0O’ thru '7°, the binary input
routine can be used with some modifica-
tions. As shown in figure 2a, the illegal
character check now looks for something
greater than a '7’, the shift left is now three
bits instead of one, and the mask used on
the character during the logical AND opera-
tion is now an octal 7.

The octal output routine was a bit of a
problem because the value is an 8 bit
quantity. Hence, the routine must process
the first two bits, then the next three, then
the next three, left to right, as indicated on
the flow chart. In my implementation, the
8080 had a rotate which would flow through
the carry flag. Thus the bits as they are

Rel.
Addr. Code Label Op. Operand Commentary
0000 OQEO03 0OO0T: MVI C,3 CNT := 3;
0002 AF XRA A Ciear A; Ciear CARRY;
0003 78 MOV A,B A = ANSWER;
Note 1 0004 C3 xx xx JMP OOTSKIP skip around POP first time;
0007 F1 OOTLOOP: POP PSW restore (A, flags);
0008 17 OOTSKIP: RAL rotate A left
0009 17 RAL by three
000A 17 RAL bit positions;
000B Fb PUSH PSW save (A, flags);
000C E607 ANI 7 A = A & b'00000111°
[mask low order];
000E F6 30 ORI ‘0’ := A OR b’00110000’
|add hexadecimal 30];
Note2 0010 CD xx xx CALL PUT OUTPUT = A;
0013 0D DCR C CNT :=CNT —1;
Note 3 0014 C2 xx xx JNZ OOTLOOP if CNT NE O then repeat;
0017 F1 POP PSW flush garbage from stack;
0018 C9 RET return to caller;

Note 1: “’xx xx’’ should be the address of OOTSKIP.
Note 2: address of PUT should replace “xx xx’’.
Note 3: “xx xx’’ should be the address of OOTLOOP.

53

Listing 2b: The OOT
Routine Specified for an
8080. This routine con-
verts the contents of AN-
SWER (CPU register B)
into a 3 digit ASCII string
of octal characters, trans-
ferring the result to the
output device during the
conversion.

OIN:

OINLOOP:

Figure 2a: The OIN Rou-
tine Flowchart. OIN is the
octal version of an input
routine; its logic is an ex-
tension of the simpler BIN
routine. OIN treats suc-
cessive characters from
ASCIl ‘0’ to ‘7’ as octal
digits which are shifted
into ANSWER. The rou-
tine accepts input until an
illegal octal character or
overflow occurs. In the
8080 code of listing 2a,
ANSWER is register B.

oor:
CNT:= 3;

ANSWER:=O CARRY:= O,

A:=ANSWER;

e 1
I ILLEGAL
I cHARACTER |
TERMINATES
(STRING
—_———— -
| MASK THE 3 |
:LOWORDER i
ITS
LB J
SHIFT
ANSWER
LEFT3BITS
[OVERFLOW |
VERFL I
YESyY :TERMINATESI
STRING
[J
NO
ANSWER!=
ANSWER OR
C;

‘ RETURN)

/

A= STACK;

OO0TLOOP!

e —
1OXX IN LOw |
| ORDER |
I (FIRST TIME) |
L -

00TSKIP:

handled are shown below, after the value is
loaded into the A register and carry reset to

zero.

Carry A Register

0 bb bbb bbb
RAL : b bb bbb bb0
RAL : b bb bbb bOb
RAL : b bb bbb Obb

At this point carry and the A register are
saved and a character put out. Processing
then continues at the first rotate, after the
saved information is restored. The A register
plus carry, in effect, operates as if the

machine has a 9 bit register.

Hexadecimal

Input and output of hexadecimals em-
ploys logic similar to the preceding routines,

with the following differences:

1. ASCII ‘O’ through ‘9’ and ‘A’ through

‘F’ are legal numbers.

54

ROTATE A
LEFT 3
POSITIONS

STACK.=A;

Al=ABT,
A=A OR'O'

155

CNT.=CNT-I

TN
I XXX IN LOW |
:onosn(zm,
[3ra TIME) |

YES

CNT NE O
?

NO

CLEAN UP
STACK

RETURN

-

Figure 2b: The OOT Rou-
tine Flowchart. OOT js the
octal version of an output
routine for character string
conversion. Its logic s
complicated by the fact
that 8 bits is not an even
multiple of 3 bits. Thus
there is a special case
which treats the carry flag
as a ninth bit for the first
(high order) output digit.
Then the basic logic con-
sists of shifting 3 places,
extracting 3 bits and crea-
ting an ASCIl character
from ‘0’ to ‘7’ This rou-
tine in jts 8080 implemen-
tation uses the stack as a
temporary data area, as
shown in listing 2b.

Rel,

Addr. Code Label Qp. Operand

0000 210000 XIN: LXI H,0
Note T 0003 CD xx xx XINLOOP: CALL GET

0006 FE 30 CPI ‘0’

0008 D8 RC

0009 FE 3A CPI e
Note2 000B DA xx xx Jc XINSHIFT

000E FE 41 CPI ‘A’

0010 D8 RC

0011 FE 47 CPI ‘G’

0013 DO RNC

0014 C609 ADI

0016 E6OF XINSHIFT: ANI 15

0018 29 DAD H

0019 D8 RC

001A 29 DAD H

0018 D8 RC

001C 29 DAD H

001D D8 RC

001E 29 DAD H

001F D8 RC

0020 B5 ORA L

0021 6F MOV L,A
Note3 0022 C3 xx xx JMP XINLOOP
Note 1: address of GET should replace "“xx xx‘’.
Note 2: ">0¢ xx** should be the address of XINSHIFT.
Note 3: “xx xx“’ should be the address of XINLOOP.

Rel.

Addr. Code Label Op. Operand

0000 OEO04 XOT: MVI C,4

0002 AF XQTLOOP: XRA A

0003 29 DAD H

0004 17 RAL

0005 29 DAD H

0006 17 RAL

0007 29 DAD H

0008 17 RAL

0009 29 DAD H

000A 17 RAL

000B FE OA CPI 10
Note T 000D DA xx xXx JC XOTASCII

0010 C607 ADI 7

0012 C6 30 XOTASCII ADI ‘0’
Note2 0014 CD xx xx CALL PUT

0017 0D DCR Cc
Note3 0018 C2 xx xx JNZ XOTLOOP

001B C9 RET

Note T: “xx xx‘* should be the address of XOTASCII.

Note 2: address of PUT should replace "xx xx’'.
Note 3: “xx xx’* should be the address of XOTLOOP.

2. The shift left is now four bits.

3. On input if the character is ASCII ‘A’
through ‘F’, then a binary 9 is added

to generate a correct value in the low
order 4 bits which are then masked as
usual:

ASCIl A = hexadecimal 41 + 09 =4A
(and) OF = 0A

. On output if a 4bit binary value is
greater than a 9, then a 7 is added to
the value. The conversion is then

Commentary

ANSWER :=0;
A := INPUT |character];
is ALT'0'?
if so then return;
is ALT “:' [numerics]?
if so then go shift it in;
is ALT ‘A"?
if so then return;
is ALT ‘G’ [alphabetic A to F|?
if not then return;
A := A +9 [convert to hexadecimal|;
A = A &b’'000071111’ [mask low order] ;
shift ANSWER register pair
left four bit
positions using
double byte addition
and test each
operation for
an overflow error
return condition;
A := AOR L [add new code to lower order];
restore low order to ANSWER;
reiterate for next nybble;

Commentary

CNT :=4;
CARRY :=0; A :=0 [clear A, CARRY];
Shift four bits of ANSWER

into A using

two byte addition

with CARRY

receiving each

bit from the high

order due to overflow;

is ALT 10 [test for numeric digit]?

if so then go form ASCII character code;
if not then A := A + 7 [adjust to aipha];
A = A+ 0" [convert to ASCII code];
OUTPUT = A;

CNT :=CNT —1;

if CNT NE O then repeat;

else return to caller;

completed by adding hexadecimal 30,
the ASCII code for O (zero).
For example:

00 + 30 = 30o0r ASCII ‘O’
09 + 30 = 39 or ASC|I ‘9’
0A + 07 = 11 + 30 = 41 or ASCII ‘A’
OF + 07 = 16 + 30 = 46 or ASCH ‘F’

The software of 16 bit unsigned hexa-

decimal

input and output conversion is

55

Listing 3a: The XIN Rou-
tine Specified for an 8080,
This routine accepts an in-
put string of ASCII hexa-
decimal characlers and col-
lects the results as a 16 bit
number in ANSWER (CPU
register pair H and L).

Listing 3b: The XOT
Routine Specified for an
8080. This routine con-
verts the contents of AN-
SWER (CPU register pair
H and L) into a 4 digit
ASCII string of hexadeci-
mal characters, iransfer-
ring the results to the out-
put device with PUT.

Figure 3a: The XIN Rou-
tine Flowchart. XIN is the
hexadecimal version of the
input algorithm, with the
extension of accepting
16 bit values. The XIN
routine tests for the valid-
ity of the hexadecimal dig-
its, then converts the low
order bits to a binary ver-
sion of the digit. This
value is then shifted into
the ANSWER being pre-
pared. In the 8080 version
of this routine (listing 3a),
ANSWER becomes the HL
index register pair, and the
8080°s double precision
addition operation is uti-
lized. Conversion termi-
nates with an invalid
character or when over-
flow occurs.

ANSWER:=
0;
XINLOOP: Y
Alx
INPUT,
[ILLEGAL |
| CHARACTER
| TERMINATES
. INPUT
}_VALID ﬁ[[
INUMERIC |
ELARACTER))

|

MilLEGAL |
HEXADECI- |
| MAL CHARAC"|
| TER TERMIN- |
LATES INPUT |

/

(ADJUST Low]
Al=A+9; | ORDER OF |
[VALID HEX- |
[ADECIMAL |
ALPHABETIC
[CHARACTER |
XINSHIFT; -
[_M_/.\;K_L_O\IV.:
.) ORDER 4
A=A &OF; LBITS J|
SHIFT
ANSWER
LEFT 4
BITS
NO
ANSWER =
ANSWER OR

Aj

‘ RETURN ’

shown in listings 32 and 3b as implemented
for an 8080 computer. The flow charts of
figures 3a and 3b outline the logic for
adaptation to other computers. When this
was implemented, an arbitrary choice was
made to use 16 bit values instead of 8 bit.
This can lead to some inconvenience on an
8 bit microprocessor without 16 bit opera-
tions. However, certain instructions were

56

XOT! BEGIN

-

CNT:=4;

L

SHIFT 4 HIGH
ORDER BITS
OF ANSWER
INTO A

XOTLOOP:

YES

@

NO

A=A+ 7

XOTASCII:

AlzA+'0;

155

CNT: =
CNT-1;

RETURN

Figure 3b: The XOT Routine Flowchart.
XOT converts a 16 bit quantity in ANSWER
into a series of ASCII hexadecimal char-
acters, starting with the high order digit. The
logic shifts out 4 bits at a time into the
accumulator, adjusts the value if alphabetic
codes are present then prints the ASCI/
version obtained by adding ‘0’ to the value.
Four digits are created and printed prior to

-retum.

available on the 8080 to perform double
register operations (two 8 bit registers
treated as a single unit). The 8080 DAD
instruction performs 16 bit addition on the
(H,L) register pair using another specified
register pair. When the 8080 instruction
DAD H is encountered, the value in (H,L) is
doubled, thus in effect shifting that pair of
registers left one bit. For input shifting, it

Rel.

Addr, Code Label Op.
0000 210000 DIN: LXI
0003 010000 LXI
Note " 0006 CD xx xx CALL
0009 FE2B CPI
Note2 000B CA xx xx Jz
000E FE 2D CPI
Note3 0010 C2 xx xx JNZ
0013 0D DCR
0014 4 DINSIGN: MQvV
Note 1 0015 CD xx xx CALL
0018 FE 30 DINNUMB: CPI
001A D8 RC
001B FE 3A CPI
001D DO RNC
001E EBOF ANI
0020 4F MOV
0021 78 MOV
0022 0609 MVI
0024 54 MOV
0025 5D MOV
0026 17 RAL
Note 4 0027 D2 xx xx JNC
002A AF XRA
002B 9N SUB
002C 4F MOV
002D 7C MOV
002E 17 RAL
Note5 002F DA xx xx JC
0032 06 MVI
Note 6 0033 C3 xx xx JMP
0036 19 DINMPYN: DAD
0037 DO RNC
0038 05 DCR
Note5 0039 C2 xx xx JNZ
003C 05 DINEGATE DCR
003D 09 DAD
Note2 (003E C3 xx xx JMP
0041 19 DINMPYP DAD
0042 D8 RC
0043 05 DCR
Noted4 0044 C2 xx xx JNZ
0047 09 DAD
Note2 Q046 C3 xx xx JMP

Note 1: address of GET should replace “"xx xx*’.
Note 2: “xx xx'* should be the address of DINSIGN.
Note 3: “xx xx'’ should be the address of DINNUMB.

was a simple matter of performing four of
these and then using an OR to the low order
8 bits from the value generated as a result of
step 3 above. Output necessitated four
groups of DAD H and RAL operations to
shift a bit into carry, then rotate it into the
A register before step 4 was performed (see
listing 3b).

Decimal Integer Conversions

Purely out of habit, | choose to use
leading minus sign to indicate negative,
ASCII ‘—’, with ‘+’ or nothing to indicate
positive integers. Again | felt that a 16 bit
routine would be more useful than an 8 bit
one, allowing two’s complement binary

Listing 4a: The DIN Rou-

SELIE (STl E137 tine Specified for an 8080.
H.0 ANSWER :=0: This routine converts an
B,O SIGN := 0;NSIGN :=0; ASC!I decimal string of
GET A := INPUT [character] ; the form SXXXXX’into a
‘EJ)rI’NSIGN '? A=h'+'?) signed 16 bit quantity in

if so then go save sign 3
O N O ANSWER .(the CPUS H
DINNUMB if not then go to numeric tests; and L register pa/r). The
c SIGN := —1; ‘S’ can be either +', —'or
B,C + NSIGN := SIGN; a null string (’); the ‘X’
GET A := INPUT [character] ;

can be a decimal digit ‘0’

‘0’ is ALT 0?7 s .
if so then return [not numeric] ; to 9" or a null string.
- s ALT "2 (Thus a successful conver-
if not then return [not numeric] ; sfon can involve from 1 to
15 A = A &b'00001111" [mask low order] ; 6 characters.) Conversion
C,A VA.\-LUE := A [save input, low order] ; is terminated by an over-
A, B A := NSIGN; oy a
B,9 CNT :=9; flow or an invalid char-
D, H MULTPLR := ANSWER [high order] ; acter.
E, L MULTPLR := ANSWER [low order] ;

is SIGN positive? [uses copy in Al ;
DINMPYP if not then go to positive multiply;

A A :=0;CARRY :=0;

Cc A = A —VALUE [negate VALUE];
C, A C := A [save negated vaiue] ;

A, H A := ANSWER [high order] ;

is ANSWER negative?
DINMPYN if so then proceed [not first time] ;

B,0 CNT := 0 [so sign extension at DINEGATE works] ;
DINEGATE first time add VALUE to ANSWER [initialized to zero];
D ANSWER := ANSWER + MULTPLR [both are negative] ;
if no overflow then return;
B CNT :=CNT —-1;
DINMPYN if CNT NE O then reiterate;
B CNT := CNT — 1 [now CNT := —1];
B ANSWER := ANSWER + (— VALUE) [16 bit ops] ;
DINSIGN reiterate with next numeric character;
D ANSWER := ANSWER + MULTPLR;
if CARRY := 1 then return [overflow] ;
B CNT := CNT -1;
DINMPYP if CNT NE O then reiterate;
B ANSWER := ANSWER + VALUE;

DINSIGN reiterate with next numeric character;

Note 4: “‘xx xx’’ should be the address of DINMPYP.
Note 5: ““xx xx'* should be the address of DINMPYN.
Note 6: “xx xx"’ should be the address of DINEGATE.

values for 32767 to —32768 instead of 127
to —128 (see note 2).

Input was fairly straightforward, as -
shown by listing 4a and figure 4a. If the first
character read is a ‘~', set the minus flag.
Then for all numbers read, if the minus flag
is set, the value is negated. The developing
answer is multiplied by 10 and the new value
read added to it. The implementation shown
performs multiplication by repeated addi-
tion for simplicity, although a hardware
multiply instruction would certainly im-
prove performance if it were available.

Decimal output, unfortunately, could not

Text continued on page 60

57

DOTPRNT: L

Note 1

lote 2

Note 3

Note 4

Note 5

Note 6

Note 7

Note 3

Note 2

NONZERO= 0

A=
VALUE OR'Q}

OUTPUT:«
A;

DOTBYPA:

TEMP!1
5

YES

RETURN

NO

Rel.
Addr.

0000
0003
0004
0006
0007
0008
oooB
000C
000D
000E
000F
0010
0011
0012
0014
0017
0018
0019
001 A
0018
001C
001D
001F
0020
0021
0022
0023
0024
0025
0028
0029
002C
0020
002E
002F
0032
0033
0036
0038
003A
003D
003E
0040
0043
0044
0045
0047
0049
0048
004D

INTEL FORMAT IN LISTING 4b REQUIRES LOW
ORDER HEXADECIMAL BYTE AT FIRST (LOW)

Code Label Op.
11 xx xXx DOT: LX1
D5 PUSH
EO 01 MVI
7C MOV
17 RAL
D2 xx xx JNC
7D MOV
2F CMA
6F MOV
7C MOV
2F CMA
67 MOV
23 INX
3E 2D MVI
CD xx xx CALL
E3 DOTPOSIT: XTHL
5E MOV
23 INX
56 MOV
23 INX
E3 XTHL
06 00 MVI
7D DOTDIVID: MOV
93 SuUB
7C MOV
7C MOV
9A SBB
67 MOV
FA xx xx JM
04 INR
C3 xx xx JMP
19 DOTOUT: DAD
AF XRA
BO ORA
C2 xx xx JNZ
B1 ORA
C2 xx xx . JNZ
F6 30 DOTPRNT: ORI
0E 00 MVI
CD xx xx CALL
7B DOTBYPA: MOV
FE 01 CPi
C2 xx xx JNZ
D1 POP
Cc9 RET
10 27 TENSTABL: DW
E8 03 DW
64 00 DW
0A 00 Dw
0100 DW
TENSTABLE:
LOCATION
o
2
4
6
8
NOTE!
ADDRESS.
e
) BRANCH |
| TO 1
| DOTPOSIT |
L

58

Operand

D, TENSTABL
D

C, 1

A H

DOTPOSIT
AL

A
H

S5l
>

IoIm 3Z>»II
z =2 4

I r©°

A
TOUT

OTDIVID

WPOOWOIOPPMPm

DOTPRNT
Cc
DOTBYPA
0’

c,0

PUT

AE

1
DOTPOSIT
D

10000
1000
100
10

1

VALUE (DECIMAL)

10 000
I 000
100
10

!

Commentary

POINTER :=addr (TENSTABL};
STACK :=POINTER;
NONZERO :=1;

1= ANSWER;

is ANSWER negative?
if not then go to positive routine;

} ANSWER := —ANSWER — 1 [low order] ;

} ANSWER := —ANSWER — 1 [high order] ;

ANSWER := (—ANSWER —1) + 1;

A :='—' [ASCII leading minus] ;
OUTPUT := A [display minus sign] ;
exchange POINTER and ANSWER;
TEMP := M(POINTER) [low order] ;
POINTER := POINTER + 1;

TEMP := M{POINTER) [high order] ;
POINTER := POINTER +1;
exchange ANSWER and POINTER;
VALUE :=0;

} ANSWER := ANSWER — TEMP [low order] ;

} ANSWER := ANSWER — TEMP [high order] ;

if ANSWER LT O then go put character;
VALUE := VALUE +1;

reiterate, counting in VALUE;
ANSWER := ANSWER + TEMP;

A =0;CARRY :=0;

is VALUE =07

if not then go print it;

is NONZERO = 0 [leading zero test];

if not then bypass leading zero print;

A := A OR ‘0’ [conivert VALUE to ASCII];
NONZERO := 0 [reset zero fiag] ;
OUTPUT := A [display ASCII digit] ;

A := TEMP [low order] ;

is TEMP = 1 [low order] ?

if not then reiterate;

else flush stack

N ——

(HEX)

2710

03E8
0064
000A
0001

v

and return;

define constants for the

decimal division routine
(note: low order at low
memory address for 8080);

Listing 4b: The DOT
Routine Specified for an
8080. This routine con-
verts the signed two's com-
plement number in AN-
SWER (register pair H and
L) into an ASCI!I signed
decimal string with leading
zero suppression. The re-
sult is sent to the oulput
device during the conver-
sion.

DIN:

BEGIN

ANSWER;=0;
SIGN!= 0;
NSIGN:= O,

DOT!

BEGIN

NOTE®
POINTER = 16 BITS

POINTER: =
addr (TEN-
STABL);
NONZERO:=!

ANSWER 316 BITS
TEMPZ 16 BITS

ANSWER =
-ANSWER;

SIGNi=-1;

DINNUMB:

DINSIGN:

-

Al
INPUT;

‘ RETURN ’

MASK Low OO n
. | MASK LOW ORDER
VALUE: = | WITH BINARY i
ABIS; I 00001111 |
[t _
ANSWER = [_DECIMAL LEFTSHIF'ITI
ANSWER*I0| | THEN ADD; USE DIF- |
+ VALUE; | FERENT LOGIC FOR
| £ AND - ALGEBRAIC }
ESICH S J
¥y YES OVER- NO
et FLOW
P

Figure 4a: The DIN Routine Flowchart.
With decimal arithmetic values, the shifting
involved is no longer an integer multiple of
one bit, The DIN routine uses the decimal
version of binary shifting: multiplying the
value by the base of the number system,
then adding in the new low order value. DIN
also includes sign decoding logic for the
ASCII '+’ and ‘=’ characters. In the 8080
version of DIN, the result is a signed two’s
complement number in ANSWER, a 16 bit
quantity in the HL index register pair.

59

@ DOTPOSIT:

TEMP. =MEM

(POINTER);
POINTER =
POINTER +1;

| |
| 16 BIT |
|OPERATIONSI
[_

VALUE=0;

DOTDIVID:

gy

ANSWER; =
ANSWER-
TEMP;

@ NO VALUE =
VALUE +1;
YES
| i —
aveweni: | {wENITo0 |
TEwF STORE vaLve |

Figure 4b: The DOT Routine Flowchart.
The decimal equivalent of the shifting used
in the base 2" output routines is division by
the base of 10. This routine also includes
leading zero suppression and logic to printa
sign digit. Division is performed by repeated
subtraction using values stored in TEN-
STABL. In the 8080 version of listing 4b,
the ANSWER to be output is a 16 bit signed
two’s complement number in the HL index
register pair.

Text continued from page 57

be made quite so simple, primarily because
there really exists no decimal (base 10) left
shift. This left two alternatives, either re-
petitively divide by 10 stacking the re-
mainders, or perform a succession of pseudo
divisions by subtracting appropriate con-
stants. The latter technique was chosen due
to the complexity of multi register division.
The code of such a routine for an 8080 is
shown in listing 4b, and the corresponding
flow chart is figure 4b.

The output routine checks the initial
value to determine if it is negative, and if so,
output the ASCII character ‘', If the value
is negative, it is negated (making it
positive) so that positive and negative num-
bers can be handled the same way. A table
containing powers of 10 {10,000; 1,000;
100; 10; 1) was then utilized to perform
pseudo divisions by successive subtraction.
This is outlined in the flow diagram in figure
4b. For the 8080 implementation, there is
no 16 bit subtraction, héence a multiple
precision subtract operation is coded.

The handling of signed numbers is op-
tional, as well as the zero suppression. They
were included because it is easier to take
them out than to try to divine where they go
and how to do it.

Many microprocessors have an instruction
which maintains decimal numbers. Given the
8 bit quantity hexadecimal 79, assume a
hexadecimal 02 is added to it, giving the
hexadecimal value 7b. This instruction then
can be used to adjust thisresult back to two
decimal digits, 4 bits each. The value then
would appear as hexadecimal 81, which can
be thought of as adding the decimal numbers
79 + 2, giving 81. If computations are to be
made in this packed decimal mode, then the

Assumptions

The assumptions for the procedures of

this article are:

1. An input and output subroutine
exists (GET and PUT) which pre-
serve CPU registers except A.

2. The conversion process is itself a
subroutine.

3. The conversion process need not
save any registers.

4. Validating characters is done
{though not necessary).

5. Overflow checking is done {again
not necessary and in some instances
not desirable).

6. All values are treated as unsigned
integers (except the decimal rou-
tines).

7. Non significant leading zeros are
not required on input.

8. Leading zeros are printed on output
(except for decimal).

hexadecimal routine presented could be used
to input and output these values.

In conclusion, these routines are not
presented as the final answer in number
conversions. In order to implement any or
all of these routines on your own personal
computer, the flow diagrams may be more
useful than the sample 8080 implementa-
tion. That implementation is targeted for
Intel’s 8080 microprocessor, one of the most
widely used hobby computers at the time of
this writing. All the routines made full use of
certain special features and strange quirks of
the 8080 microprocessor. Whatever your
particular machine, the time spent in under-
standing these routines should save you a
few headaches in your next program. ®

Note 1:

During a left shift, as the high order bit
leaves the register, it enters the carry bit and
the vacated low order bit receives a zero.

For example:Before : Carry=0 A=1001 0111

After : Carry=1 A=0010 1110

During a rotate left, as a bit leaves the high
order bit position, that value is shifted into the
vacated low order bit position. On the iIntel
8080, two types of rotate are available:

1. RRL : rotate accumulator copying

swapped bit to carry.
before: Carry=0 A=1001 0111
after: Carry=1 A=00101111

2. RAL : rotate accumulator thru carry

before: Carry=0 A=1001 0111
after: Carry=1 A=00101110

On computers with a rotate through the
carry bit, new bits can be shifted into the
accumulator while old bits are shifted out.

NOTES

Note 2:

Two’s complement arithmetic uses the high
order bit of a value to indicate sign; 1 is
negative and O is positive. A negative value is
formed by complementing all bits of the value
(1 to 0 and 0 to 1) and adding one. Thus, the
largest positive value for a 16 bit quantity is a
hexadecimal 7FFF, and the smallest negative
value is a hexadecimal 8000, or decimal 32767
to —32768. The 8 bit values are 7F to 80 or
127 to —128.

For example: given the value 1, create the
value —1.

0000 0001 = 1 Start with 1
11111110 Complement all 16 bits
+1 Add 1

1111 1111 = -1 Giving the value —1.

60

Software Bug

of the Month 4

Even when a program has been exhaus-
tively tested, bugs can still occur. This
month’s tale concerns an overconfident pro-
grammer who wrote a program, tested it
extensively, and then bragged about it, to his
ultimate regret.

The program was supposed to test
whether the number N was prime. If N was
prime, it was supposed to set K = 1;
otherwise, it would set K = 0. The idea was
to test whether N is a multiple of 2, then 3,
then 4, and so on. A trick was used, in that
if N is not prime — that is, N = |*} — then
either 1 or | must be less than, or equal to,
the square root of N. Therefore we only
need to test multiples of numbers up to the
square root of N.

The FORTRAN version of the program
was as follows:

SUBROUTINE PRIME(N, K)
K =1
| =2

1 IF (MOD(N,
K=0
RETURN

2 1= 1+]
F (I*1 .LE. N) GOTO 1
RETURN
END

1).NE.O) GOTO 2

Not satisfied with his ability to write a
program that works the first time, our
programmer tried out this one on a wide
variety of test cases. All checked out per-
fectly. Great was his despair, then, when the
programmer down the hall said to him one
day, “Hey, you know that bug we’ve been
working on for about a month? You know
what we just traced it to? Your little old
prime subroutine!” (Please don’t ask what a
prime number testing subroutine was doing
in a larger system.)
What was the bug?

[NOTE: The MOD(N, 1) function returns the
integer remainder of the division N/I.]

Answer in Next Month’s BYTE =

SOLUTION TO BUG OF THE MONTH 3

What happened first was that the recog-
nizer for a digit was called; it found the first
digit in the unsigned integer, and quit at that
point. Thus the rest of the unsigned integer
was never found.

The programmer tried to fix this by
rearranging the BNF rule as

{unsigned integer> ::= <unsigned integer> <digit> / <digit>

(that is, putting the second case first).
Unfortunately, this time, the first thing the
recognizer did was to call itself; this made it
call itself again, and so on, producing an
endless loop. So the BNF rule was rear-
ranged again:

<unsigned integer> ::= <digit> <unsigned integer> / <digit>

(that is, rearranging the order in the first
case). This gave him his second endless loop.
His last bug really should have been thought
of first: he was working in PL/Il, which
allows subroutines to be recursive — but
they have to be declared RECURSIVE, and
this he had forgotten.m

W Douglas Maurer

University Library Room 634
George Washington University
Washington DC 20052

If you want a microcomputer
with all of these standard features oo

« 8080 MPU (The one
with growing soft-
ware support)

+ 1024 Byte ROM
(With maximum ca-
pacity of 4K Bytes)
« 1024 Byte RAM
(With maximum

i » Complete with card
= connectors
+ Comprehensive
User’s Manual, plus
Intel 8080 User’s
Manual
« Completely
factory assembled

capacity of 2K and tested—pnot
Bytes) a kit

* TTY Serial /O . Optlonal ac-

* EIA Serial /O cessories: Key-

board/video
display, audio
cassette modem
interface, power supply, ROM programmer
and attractive cabinetry ... plus more options
to follow. The HAL MCEM-8080. $375

* 3 parallel 1/Q's
+ ASCll/Baudot L'T;I .
terminal com- '
patibility with TTY machines or video units
* Monitor having load, dump, display, insert
and go functions

...then let us send you our card.

HAL Communications Corp. has
been a leader in digital communi-
cations for over half a decade.
The MCEM-8080 microcomputer
shows just how far this leadership
has taken us...and how far it

can take you in your applications.
That's why we’d like to send
you our card—one PC
board that we feel is the
best-valued, most complete

microcomputer you can buy. For
details on the MCEM-8080, write
today. We'll also include compre-
hensive information on the HAL
DS-3000 KSR microprocessor-
based terminal, the terminal that
gives you multi-code compati-
bility, flexibility for future
changes, editing, and a
convenient, large video
display format.

HAL Communications Corp.
Box 365,807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

61

The Circuit for Z-80s

proach to microprocessors which | described
in the June 1976 BYTE [page 32| is
reflected in the design of this central pro-

Dr Robert Suding

Research Director, The Digital Group Inc
PO Box 6528

Denver CO 80206

The microprocessor integrated circuit is
the real engine for your system. Now you
can replace that old engine with a real power
house, the new Z-80 (the Z-80 was de-
scribed in Burt Hashizume's Microprocessor
Update on page 34 of August 1976 BYTE).
After initially reading about this integrated
circuit in early '76, | just had to get one to
see how many of the blurbs were true (| give
sales advertisements a 1% credibility on the
first pass).

Aside from a few typos, promised sup-
port chips that didn’t show, and several
mistakes in the software documentation, it
was fabulous. The software flexibility added
by this chip was a great addition to the
8080/6502/6800 Digital Group stable. The
relative branch was very helpful for machine
language programming, and the ability to
test, set, and clear individual bits in a byte
has opened a new world of control applica-
tions. | saw a 20% savings in memory
requirements even though | was still new to
much of the Z-80’s special software.

The Z-80's hardware made good sense
too. Getting rid of the 18 MHz crystal
requirement of the 8224/8080 system and
using a 2.5 MHz crystal with a simple single
phase TTL clock made me happy. The
interrupt and DMA system has some neat
features. Sure gonna be hard to justify using
the old 8080/6502 or 6800 CPU boards any
more, thought |, as | set out to design the
circuit for Z-80s.

The circuit for Z-80s presented in this
article is the actual wiring used in the Digital
Group’s Z-80 processor card. Not too un-
believably, we would just love to sell you the
whole system. The circuit is being published
in complete detail for your information,
whether you choose to purchase it as part of
your system, or use it as a starting point for
your own custom design. The systems ap-

62

cessor circuit.

This Z-80 circuit is shown in figures 1 and
2. In figure 1 you'll find the central pro-
cessor integrated circuit (1C43, a Z-80 made
by Zilog or second source Mostek), and
miscellaneous drivers, decoders and gates. In
figure 2 you'll find the wiring of 2 K bytes
of programmable memory along with a 256
byte 1702A erasable read only memory
which can be used to store the bootstrap
programs for your system.

Full direct memory access (DMA) is used
in this design. What’s DMA to you? Well for
one thing, DMA permits hand loading of the
memory from a front panel which is com-
pletely independent of a particular proces-
sor. |t permits future processor upgrading by
replacing a single board. High speed data
devices, such as some tape, disk, and video
systems which may operate too fast for most
processors, can directly load memory using
DMA. Finally, for the truly gigantic among
you, multiple processors can share common
memory with the addition of control logic.

Buffering is included on this processor
board design to permit driving a full memory
system {64 K bytes) and up to 256 10 ports.
Miscellaneous logical functions such as
power on reset and single stepping are
provided,

The EROM bootstrap provides a con-
venient way to initialize the system at power
on, by using a low cost cassette [page 46,
July 7976 BYTE]. We use an EROM in the
design in order to allow customized
initialization by sophisticated users able to
program their own EROMs. Circuitry to
inhibit EROM selection is included in order
to permit full use of 0 page”’ programmable
memory for user software.

Two K bytes of programmable random
access memory give sufficient storage for a
small operating system, The Digital Group
Z-80 system includes a cassette which loads
this area of programmable memory with a
system monitor which permits reading and

writing other cassettes, kcyboard entry of
data and programs, and TV display of
memory data, all 14 registers, indices, and
flags (in octal or hexadecimal).

The system used to interface this pro-
cessor to memory and 1O exemplifies the
“processor independence” ideal mentioned
in my article in the June BYTE. Two sets of
16 address lines are brought out from each
Digital Group processor card. The 16 lines
labeled “memory address” in figure 1 lead to
the memory boards; the 16 lines labeled
“port address” in figure 2 go to the 1O port
selecting card(s). Similarly, memory data to
and from the processor is separated, as is the
peripheral 10 data to and from the pro-
cessor.

The Z-80 DMA read, write and 10 lines
are brought to decoding logic to derive your
universal control lines, ie: memory read
(MRD), memory write (MWR), 10 read
(1ORD), and 10 write (IOWR).

The major objective of processor inde-
pendency is supported by providing this
common sct of 32 address lines, 32 data
lines, and 4 control lines for cach processor.
It is the responsibility of the processor board
to provide the logical derivation of these 68
lines. The complete list of backplane con-
nections for the system includes all 68 logic
lines and is summarized in table 1. The rest
of the system is interfaced to this common
68 line system. Processor interchange is thus
particularly simple: It is achieved by
plugging in a different processor card.

Z-80 Processor Circuit

The logic of this Digital Group Z-80
processor circuit may be logically divided
into six interrelated sections. They are the
processor itself and immediate ‘‘house-
keeping” logic, run control, DMA, interrupt,
buffering, and memory. The processor and
immediate housekeeping consists of the
Z-80, a 7400 single phase crystal controlled
clock generator, and decoders for read,
write, memory and 10 operations. These are
all found in figure 1.

A power on reset function is provided by
IC38d, one section of a 4010 CMOS buffer.
An external switch is attached to the back-
plane assembly for a remote “reset and go”’
operation after power has been applied.

When inserting large integrated circuits into sockets,
avoid uneven stresses. In extreme cases of uneven
insertion pressure, it is possible to crack the case of a
24 or 40 pin integrated circuit, rendering it useless.

A 7442, 1CA8, decodes 10 states of the
processor: memory reading, memory
writing, input port reading, and output port
writing. Each of these signals occurs at the
proper time as determined by the processor.

Run control logic permits single stepping
through a program if a front panel readout is
provided for viewing the resulting instruc-
tion sequencing. In addition, wait states for
slow external memory and the EROM access
delay are provided. The wait line input of
the Z-80 is utilized to control execution. A
feature of this Z-80 circuit is the ability to
jumper select either ‘“‘single step” or “‘step
on instruction.” The jumpering for “‘single
steps” permits stepping within an instruction
cycle in the same manner as the 8080. ““Step
on instruction’” will display only the first
byte of each single or multibyte instruction.
Normal processor running mode is unaf-
fected by which stepping mode is selected.

Two sections of a 7402, IC28a and
IC28b, are used as a run latch. When the step
switch is activated, the run latch is reset, and
the one shot (74123, IC37b) fires a 50 ms
pulse to debounce the switch. The resultant
pulse is held in a 7474 latch section,
IC29a, for a very short time until synchro-
nized by the Z-80 and acknowledged
through the second oneshot section of 1C37.
The 7402 NOR gate iC28c passes either the
continuous run or the step pulse depending
on the mode selected. 1C28d will then drop
the ready line if either no run command
exists (continous or step), or the ‘‘wait”
command line goes high. If no “single step”
operation is o be used, pin 43 of the
backplane is tied to +5 V externally.

Direct Memory Access

The Z-80 has built-in features for direct
memory access. The DMA logic supporting
the processor consists of sections of 1C44,
1C29 and JC49. DMA is designed as an
external request for control of memory and
the granting of this request as soon as the
processor can safely suspend its operations
without losing current data. A DMA request
is entered whenever either pin 8 or 9 of
IC44c goes high. This will set a latch, IC29b,
bringing down the Z-80’s bus request line.

Text continued on page 68

63

Contrary to some grape-
vine rumors, you can't
simply unplug your 8080
integrated circuit and plug
in a Z-80. A glance at
figure 1 and comparison of
1C43's 7Z-80 pinouts with
an 8080 specification will
shoot that rumor down.
Once you have a Z-80
wired, however, the in-
struction set is a superset
of the 8080 instruction set
which provides a better
general purpose processing
architecture.

Figure 1: The central processor of the Z-80 circuit. See also figure 2 for the balance of the logic found in the Digital Group Z-80
central processor card. This figure contains the processor integrated circuit, 1C43, and ancilliary logic of the system clock, buffers,
run control, interrupts and direct memory access control. A summary of back plane connections is found in table 1 accompanying

oacKPLANE PIvs— A 0 A ARARANA

A3 A4 A5 A6 AT AB A9 AIO All Al2 A3 Al4 AlS MOO MOl MO2 MO3 MO4 MO5 MO6 MO7
MEMORY ADDRESS MEMORY OUTPUTS

DMAG RFSH MRQ MWR MRD I0RD I0WR DMA ENO OMARQ NMI
BACKPLANE [3 - : , N.O.RESET BUTTON .
PINS —» . | o - {
| RESET |
+5v |+5v [+5v |45v OSCILLATOR] i
i BACKPLANE(|
i ASSEMBLY |
4 RESISTORS = 138470
2.2K +5v 7] PROCESSOR
CARD
4 .
] R? SRe 74L502 '
?2.5 22K 3220 b
9 I 1" 9 MHz 1
OMA SELECT
¢ _ZP —A CRYSTALT, 3 JUMPER MODE
10 12 12 10 Cl8 SR9 powER ON Tg oMA| CONTROL
Ic32 icaz 22uf] 100K peget
8797 8797 CLK
ctk Prep® +5V 74
R8 @ 1C29b
2.2M 8 L J747a
@ 8 /J7|2 2.2K
7400
A 4
a |7 5 |2 A 9
+5V [10] ==
STATE DECODE 13 8 INTACK
DMA 12 ‘E@
ic48 RIO 74L502 JUMPE
7442 eS8 y (3] 7440 R
| INSTRUCTION
14 15 |3 ToRG 2l o m STEP
— prvem— RS
RQ MRQ °—€
LORD SINGLE STEP
MRD
NOT
23 28 |I9 20 lai |22 6 27 26 25 |i7 3 A
BA RFSH MRQ TIORQ RD WD [} Mi RESET BUSRG@ NMI INT Z
1C43 Z-80 CENTRAL PROCESSING UNIT
WAIT |[—
24
— PROCESSOR ADDRESS BUS S P PROCESSOR DATA BUS ——
A0 Al A2 A3 A4 A5 A6 A7 A8 A9 AI0 All AI2 A3 Al4 AI5 DO DI D2 D3 D4 D5 D& D7
30 |31 |32 [33 [34 |35 [36 [37 |38 [39 [40 [i 2 [3 [a |5 14 15 [12 Jar [z Jo Jio [i3
DMA GRANT
WIRED TO : DO
e 1
-1
32-15 D2
31- 03
31-15 D4
30-1 05
30-15 06
4a7-1 LSB MSB
4r-is —27
4|-|I LOCAL
41-15 DATA
BUS
0=CPU CONTROL
]=DMA CONTROL MSB
IC41 Ical ical 1c42 Ica2 ic42 1c47 Ic30 130 €30 Ic31
8To7 8To7 8T97 are7 8797 8797 8797 aT97 8197 sT97 8797
DMA GRANT _2’ 4 |e |4 712 |7o 2 la e |ia |72 70 2 la s g 6 i iz lo 2 la
Ay {b c 7N/ a _<n N 4074. {a A b _§c7 b Jc7 t e o 0 v/ _OMA_
3 5 J7 T3 u Yo Y3 Y5 Y2 Yz Yu Yo Y3 s 5 Yz Tis Ju Yo Yz [5GRANT
+5V |[+5v | +5V [+5V [+5V [+5v |+5v [+5v [+5v [+5V |+5V |+5v |+5V |+5v +5V |+5V [+5V [+5v |+5v |+5V |+5V |[+5V
24 RESISTORS ——»
2.2K 2
¢ q { < q < 4 [q
A

AO

64

this article. The complete list of power connections for both figures 1 and 2 is found in table 2. This schematic was redrawn to fit
the constraints of the magazine page. A complete schematic in its original form, drawn on one page, is included with the
documentation of the Digital Group Z-80 central processor kit.

STOP/STEP+5V +5V GND -2y

! |
i
| ! |}LF 1wt
I I) +
L BACKPLANE 1
] PROCESSOR T .HI._.
S OluF ol F
v U g P v
TO+5V POWER TO -12V
2 SUPPLY CONDITIONING SUPPLY
+5v POINTS POINTS .
R5 A (FI1G6.2) 13
Ci7 47 it SR ica7 c
22uF K INTACK D 7442 . = 14
X 12 15
6 7 1 7 6 5 4 3 2 1 oA
OlpF IC37b PRE Lk y 7 6 5 4 3 2 1
g 74123 g|° 3 |c29u I
A CLK o CLR
R4
2.2M 3470 /J79 |5 —===|=== ___J___ || ===|
§\ 16 15 14 13 eIz il 610 98,
RUN CONTROL LOGIC : ACKNOWLEDGE INTERRUPT REQUEST :
|7 N
R3 4+5v T E 3 4 5 > & 7 8
22K 8 S ot i e e i it i -
RESISTORS
15 [3 2.2K—=|p A
+5V
12 O D +5V
IC37a = I
a4p)0 il 218 74723 Q|4 | m D b +5V
74LS02 10RD A 5 3 D +5V .
SED | 4 4 D§
3 & D
2.2K UNNUMBERED RESISTORS 2 6
2 IN16 PIN DIP “RESISTOR PACKS* ; '?,
0 UNNUMBERED RESISTORS
J Ic3 IC35 1c34 1c34
= N 8 PIN SIP "RESISTOR PACKS" 74|255 74125 74125 74125
X 2 5 2 9 2 5 2 9
|_&.47137loc|¢74.,|3., oc7
3 6 " 8 3 6 1 8
(FIG.2)
470 Ic21 PING —— 3
L RESISTORS
IORD 2.2Kl +
Do AAA
FIA
pa—v—r¢
Ba—w
LR
De—VW
D7 __aan
c3) <31 1c32 1c32 Ic39 1c39 Ic45 Ica5 7403 7403 7403 7403
74125 74125 74125 74125
3797 8197 8Te7 8197
5 12 10 4 6 14 \ ¢ 3‘ 6 1t 6‘ 1 8
| 4 16[13 Ao 4 J6[iz A0
SN LRBRE A
7 no s 5 |7 [13 2 |5 |12 5 [12 o
3 b b b b I0RD .
-— +5V
8 DIODES 4
IN9I4 8
(OPTIONAL RESISTORS
PROTECT- 2.2K
I0N)

0000000 bobAbAL S

D PO! PO2 PO3 P04 PO5 PO6 PO7 MIO MII MI2 MI3 MI4 MI5 MI6 MI7 PIO PII Pl2 PI3 P4 PI5 PI6 PI7
PERIPHERAL OUTPUTS MEMORY INPUTS PERIPHERAL INPUTS

Table 1: A Generalized Processor Independent Bus Structure. This table lists connector pin identification, signal name, DMA
access properties, primary signal direction relative to the processor card, and description. This is the bus definition used in the

Digital Group systems.

DMA Inor DMA Inor
Pin Name G? Out? Description Pin Name G? Out? Description
1 — — — +5 V power bus A - — - +5 V power bus
2 - — - System ground bus B — — - System ground bus
3 = - = Spare voltage bus C - - - Spare voltage bus
4 = = = —5 V power bus {not used by D = = = —5 V power bus {not used by
Z-80) Z-80)
5 MI7 IN E PI7 IN
6 MI6 IN F PI6 IN
7 Mis IN H PI5 IN
8 MI4 IN Input data from memory J Pl4 IN > Input data from peripherals
g MI3 IN K PI3 IN
10 MI2 IN L PI2 IN
11 M IN M PI1 IN
12 MIO IN N PIO IN
13 MO7 G OUT Y P PO7 G OUT Y
14 MO6 G ouT R PO6 G ouT
15 MO5 G ouT S PO5 G ouT
16 MO4 G ouT >- Output data to memory T PO4 G ouT Output data to peripherals
17 MO3 G ouT U PO3 G ouT
18 MO2 G ouT V P02 G ouT
19 MO1 G ouT W PO1 G ouT
20 MO0 G ouT _J X POO G ouT
21 MRD- G ouT Memory read data strobe Y I0ORD- ouT Peripheral read data strobe
22 A0 G OUT) Z PAD G OUT Y
23 At G ouT AA PA1 G ouT
24 A2 G ouT AB PA2 G ouT
25 A3 G ouT AC PA3 G OUT - Peripheral address, low order,
26 A4 G ouT AD PA4 G ouT identical to AO through A7 in
27 A5 G ouT AE PA5 G ouT Z-80 processor.
28 A6 G ouT AF PAB G ouT
29 A7 G ouT ? Memory address lines AH PA7 G ouT
30 A8 G ouT AJ PAS8 OUT Y
31 A9 G ouT AK PA9 ouT
32 A10 G ouT AL PA10 ouT
33 Al G ouT AM PA11 ouT Peripheral address, high order,
34 A12 G ouT AN PA12 ouT wired to ground (logical 0) in
35 A13 G ouT AP PA13 ouT Z2-80 processor.
36 A14 G ouT AR PA14 ouT
37 A15 G ouT _J AS PA15 ouT
38 MWR- G ouT Memory write data strobe AT 10WR- ouT Peripheral write data strobe
39 RFSH- G ouT Refresh line (2-80) for dynamic AU IRQ- IN Interrupt request line
memories
40 DMARQ IN DMA Request #1 AV * ouT Cassette bootstrap: Data output
41 DMAG ouT DMA Grant AW * ouT Output port 1 bit 0
42 DMAEND IN DMA end signal AX * IN Cassette bootstrap: Data input
43 RUN IN Run if logic 1, stop or step if 0 AY * IN Input port 1 bit 0
44 STEP IN Stop if 0 and RUN = 0;single step AZ NMI- IN Non maskable interrupt input
each 1 pulse.
45 WRQ- IN Wait request, from external slow BA ROMDIS IN Bootstrap ROM disable
memories
46 MRQ- G ouT Memory request BB DMARQ IN DMA Request #2
47 RESET- IN Reset signal BC - — — unused
48 ROMCE- ouT ROM on processor board is BD * ouT Valid memory address (6800,
enabled; do not decode page 0. 6502 systems)
49 — — — +12 V power bus BE - = = +12 V power bus
50 — — — —12 V power bus BF - — - —12 V power bus
NOTES:

“G" in the “DMA G?” column indicates that
the signal is in a high impedance state when the
DMAG signal is logical 1. This means that the line
in qguestion can be driven by an alternate three
state driver during a DMA operation. If the signal is
not disabled by DMAG, then this column is blank.

In the “Name’’ column, if the name is followed
by a minus sign as in “MRD-", then the signal is
active low. This is indicated in the logic diagram by
a bar over the name in question.

An "*" in the name column indicates a signal
which is not defined by the processor circuit of
figures 1 and 2 in this article.

“In or Out?’’ is relative to the central processor
card.

Figure 2: The Digital Group Z-80 processor card also includes this memory
subsystem. Memory banks 0 and 1 are programmable user memory typically
decoded to addresses at split octal locations 000/000 to 007/377, hexa-
decimal 0000 to O7FF. The programmable jumpers JA13, JA14 and JA15 in
this diagram are used to pick the base address for these memory banks, and
allow the lower two 1 K blocks of any of the eight 8 K blocks in the Z-80’s
64 K memory address space. The read only memory, [C20, is enabled during
bootstrap. During bootstrap, since the ROM addresses overlap the pro-
grammable memory addresses at locations 0 to 377 octal (0 to FF hexa-
decimal) the ROMCE line is used to disable any programmable memory ref-
erences to page 0. After bootstrapping the programmable memory exclusive
of page 0, the ROM becomes invisible to the system when the ROMDIS line is
in a high state. (This line should be controlled by a manual switch.)——>

66

vOobL
€€

vOovL
EED

oy

S 1404 Siv .

m.w.
PObL

peot

T givr

SHd3dnnr
NOILY D07

300030 ©

IEECEE

AHOWIW M2
qdv08 Ndd

af

39vd

0= 3718VSIT WOH
NOILVYHIdC TYWHON HOS

1= 378YSI WOH

‘dvH151008 804

slgnoy [ve>— y

‘310N

€L |92

AG+

[3K2 0oL

¢l bt

a

d

442
€221 €

300730 ¢
378YN3

k4

v
S

IH] L

CREREE J :

S®¥20718 3148 Al
Q3SANN HOd4 SITBVYNI diHD

9v SV PV €V 2V

Y

<3

v oV

ovd
—cyy] 1vd
<&v] 2vd
£vd

<av] vvd

~<3v] SVd

] owd

NOILINIZ3d
$s3jyaav
1¥0d 01

<tv] tvd
<v] evd
<] 6vd
<v] 0l vd
<wv] 11vd
<] 2ivd
<av] €1vd
<av] ¥Ivd
<5¥] §Ivd

os|HMN

<5] 1in

<3] 9

<2] s

—< 5] vin

<¢] £in

<ol 2im

1] 0| 6] B[4] 9] &

<u] 1w

)4

40 90 sa vQ €0 20 14

430v071_dvdi51008

3IWOH [Br>——

€

48

»e'e

AG+

b2v

1X32 1

LOHSIANO

Iv4
LIvM

4R 2
1221

X372

ANIY

[l Q1 8
MEP
k4-}

4do0i
3

AS+

32 HLiIM QIWWVHOOHd

vt 8 X 982

(4314V3H3HL G3HOND
‘ONIGVOT dVH151008
NIHM 03718¥YN3I)

WOy3
dV¥y5151008
V2oLl
023l

a1}

X €X g1 L1 2I9I2AGI2IYI 2{E1 2121 2111 2101,

3 3
ol M

21

FA-

81

9v

L2€/100-000/%00
(IYL1D0)

61

SvY

53553400V

(o34

124

IVIIdAL

}34

v

2ole

m|

91| ve

LYl
A6
1Z

(1'9id)

JAS

4o

wi{

v
ov

47
€

100 viva

2101 €121
S 2121
G
i1 01DY

yoav

8 X M

| MNVE AMOW3IW

NI vivQ

SI'X
vI'x
8'x
X
9°X
[+ ¢
L

Hl |

A2I-

AR

._,_4; H
2INId PBZD!
A6 -

<1 oin

|48/ £00-000/ 000

EIX X 2li2r92IseIv g 2ie 2l 2o,

] 1N0 V1VG

(erx|
bI'x
#'x
Py
o'x
s'x
'x
z'x
I'x

(dAL) 1INI 9D1=11'9
(dALYZNIG'S, 2t 1IVe L'X
310N

€

221

151,

001 HAOY

4
931
S]]
31

(Y100}
$3553HAQV
IV2dAL

co12 8 X Ml
O XNVE AHOW3IW

NLVYLVO
't

<

W2 119 11'e € (12 1 1

< _n_ 6V

os]| 8V

ez LY

62| 9V

2| ov

llﬁvﬂ

sz] €V

kA4

<a v
L <Aov

—<0Z] ooM

—<s1] om

<z} zom

-2 £on

—<31] vom

Mme/l

~ n__ son

K-}

<] som

< m__ om

67

One way to test out a
newly constructed circuit
(not necessarily the best
way) is the traditional
“smoke test’”: Turn on
power and see if the
circuit burns up. A far
better method is to do a
little thinking and careful
inspection first.

Text continued from page 63

When the Z-80 is finished with any needed
housekeeping, it issues the bus acknowledge
signal, granting the request. Further Z-80
operations are suspended and the various
buffers, 1C31, 1C32, IC33, 1C41, 1C42 and
IC47, go to a high impedance state, and the
external circuitry making the request is
alfowed full control over memory using the
backplane bus.

DMA request and grant is ended by any
of three -methods. A reset operation will
always end any current DMA operation. A
jumper at pin 9 of IC29b allows selecting
one of the other two DMA ending opera-
tions. If the jumper is connected from pin 9
to pin 10 of IC29b, then the DMA operation
will be ended whenever both DMA request
lines return low. if the jumper is connected
from pin 9 of 1C29b to the line labeled DMA
end, then a latched DMA operation results.
One or more positive going pulses at either
DMA Request line will initiate DMA. One or
more positive going pulses at the DMA end
line will end the DMA.

Interrupts

The Z-80 has extended interrupt process-
ing capabilities, and sufficient hardware is
included on the Digital Group Z-80 board to
support the three Z-80 interrupt modes.
Mode O is the same as the 8080A, generally
considered as the eight restart instructions
which are placed on the data bus upon an
interrupt acknowledge signal from the pro-
cessor. Mode 1 is an automatic interrupt to
address 000070. Mode 2 is an extremely
powerful vectored interrupt system which is
new with the Z-80. A new register, called the
| register, is used as a high order portion of
the vector address. When an interrupt is
encountered and acknowledged, the data
placed on the data bus becomes the low
order portion of the interrupt vector ad-
dress. Interrupt processing thus starts at an
arbitrary 16 bit address formed from the |
register and a variable input. Another inter-
rupt system provided by the Z-80 is called
non maskable interrupt (NMI). This inter-
rupt will occur anytime the Z-80’s pin 17 is
brought low, and is intended for highest
priority operations like responding to a
power failure before the power supply
capacitors bleed down.

IC50, IC44, 1C36, IC35, IC34 and 1C27
provide the needed interrupt processing
interfaces. The 74125s of IC34 and IC35
provide three state buffering for the inter-
rupt address vectoring required by Z-80
interrupt modes 0 and 2. The 7442, I1C27,

68

produces an interrupt honored acknowledge-
ment signal (if required) for use in mode 0.
The INT input at the Z-80 pin 16 will be
forced low whenever any interrupt input,
except NMI, is brought low. Interrupts are
interfaced using a 16 pin DIP socket.

Buffering

The Digital Group processor circuits are
designed to drive a full complement of
memory and 1O. [n addition, the processors
are designed to operate under direct memory
access as mentioned previously, and three
state buffers permit isolating the processor
card from its own (see figure 2) and auxil-
iary memory.

Sections of 8T97s 1C41, IC42 and 1C47
provide buffered address outputs from the
Z-80 processor with each section capable of
each driving 30 standard TTL loads. These
drivers handle both memory and 10 port
addressing. DMA grant is connected to these
drivers so that when a DMA is in process, the
external device is given full control of the
address lines since the processor’s drivers are
in a high impedance state.

The 8T97 sections used for data output,
1C31 and 1C32, provide the ability to drive
as many as seven Digital Group 1O boards
(28 ports) without further buffering.

Data input to the processor is placed onto
the internal bidirectional bus by two types
of circuits. A pair of 741255 provides a three
state noninverted buffering of memory input
from a backplane bus (pins 5 to 12) which
has noninverted data. A pair of open col-
lector 7403s, 1C40 and [C46, provide an
inverted open collector drive of the same
bus, a requirement since the Digital Group
peripherals put data onto the backplane in
inverted form. Notice, however, that the pin
connections of the 7403 are compatible with
the 74126 circuit, so if you desire to use this
design with noninverting peripherals simply
replace the 7403s with 74126s to change the
sense of the data on the outputs of the
receivers.

Memory (see figure 2) in this Z-80 proc-
essor circuit is of two types, EROM and
programmable memory. The EROM is a
single chip preprogrammed by the Digital
Group to simplify system operation of
our kits. If you roll your own software, a
customized bootstrap EROM could also be
used. When power is applied to the system, a
“power on reset” function results, which
starts the processor running at address
000 000. IC29 and IC25 deccde the lowest
256 bytes of memory, resulting in a EROM
chip enable condition. The EROM proceeds
through its programming to clear the screen,
display a message, initialize some program-

mable memory addresses, and control initial
cassette reading.

Two K of programmable memory allows
an extensive operating system to be entered
from cassette. Sixteen 2102s are arranged as
two banks of 8 integrated circuits. Which of
the two banks selected (if either) is a
function of decoding by [C23, 1C24 and
IC25, as well as the three jumper settings.
The 7442 will assign the two banks of 2102s
as the bottom 2 K of any one of eight 8 K
blocks in memory address space.

The three jumpers permit assigning the
processor's 2 K programmable memory to
addresses other than the bottom 2 K. When
a user wishes to add one or more Digital
Group 8 K boards to his or her system, the
processor’s 2 K may be moved to fall above
the highest address of the supplemental 8 K
board. Example: A user has two Digital
Group 8 K memory boards on his system.
By assigning the processor circuit’s 2K to
the address range of 16 K to 18 K, one
memory board to 0 to 8 K, and the other to
8 K to 16 K, an 18 K system results, with all
active memory in the low address range.

The EROM used for bootstrapping is a
relatively slow device, so the processor must
be forced to wait for its data access. A
74121 provides a 475 ns delaying pulse to
the processor when either the processor
EROM is accessed or an external slow
memory access is required. Since the Digital
Group programmable memory cards are
built using 500 ns access time (or faster)
2102 static memories, the processor nor-
mally runs at full speed.

Some Notes on Construction

While the circuit diagrams of figures 1
and 2 provide the information needed to
wire wrap or hand wire your own Z-80
processor, I'll bet you'll find the Digital
Group processor board in our kit to be a

worthwhile time saver. This Z-80 processor
card is manufactured using two sided FR-10
printed circuit board material and measures
12 inches wide by 5 inches high (30.5 cm
wide by 12.7 cm high). It has a dual 50 pin
(100 terminals in all) connector to the
backplane assembly. The definition of sig-
nals at the connector is provided in table 1.
The Digital Group board is not “Altair
compatible’” due to two major system con-
straints: processor independency and use of
a single fully protected external power
supply. These design goals ruled out the bus
structure supported by MITS and indepen-
dent suppliers of peripherals for MITS
systems. Experienced designers will un-
doubtedly interface the Z-80 to the ‘‘Altair
bus” but the processor dependency problem
will remain. Some experimenters may wish
to custom design this Z-80 into their own
system. The circuit of figures 1 and 2 should
provide sufficient details of the Z-80’s opera-
tion to assist you and provide a starting
point. Further detailed information on the
Z-80 chip and its specifications is of course
available from its manufacturer, Zilog Inc.

Testing

After building the processor circuit, but
before inserting any of your (socketed)
integrated circuits, try a little preliminary
testing with an ohmmeter. Check for a short
between backplane terminals 1 and 2, 2 and
50, and 1 and 50. 1 and 2 should show an
initial momentary low resistance and then
approach infinity as power supply bypass
capacitors charge up. 2 and 50 will show
some resistance due to the zener, and to
ohmmeter polarity, but not a short.

Two techniques are possible at this point.
One way (referred to in the fine print of
traditional literature as the “‘smoke test”) is
to plug in all integrated circuits and insert
the card in a backplane assembly wired for

Only $59.95 .
Assembled i
Tested

i,) b
R b
AT R A ’
T e
o/ ma e
> f ; sCettes), e 1w

s ® [3P

N W m— et Y et

FINALLY - A CASSETTE INTERFACE THAT WORKS!

The PerCom CI-810

Easily connected to any computer @
'Kansas City’ Standard e
Littde or no software required @

PerCom Data Co.

4021 Windsor, Garland, Texas 75042

(214) 276-1968

PerCom — ‘peripherals for personal computing’

An 8-bit parallel interface

Load a 1k byte program in 40 seconds
Easily upgraded to 218 byte/sec |
Operate 2 tape units simultaneously ® 18 page Instruction Manual

e

e]
|BeNaAMERICAAD

69

Table 2: Power connections for the Z-80
processor circuit shown in figures 1 and 2.
Note that IC8 and 1C9, IC18 and IC19 are
omitted from the numbering sequence.

Number Type +5V GND -9V
1CO 2102 10 9 -
1C1 2102 10 9 -
1C2 2102 10 9 -
1C3 2102 10 9 -
1C4 2102 10 9 —
iIC5 2102 10 9 —
1C6 2102 10 9 -
IC7 2102 10 9 —
1C10 2102 10 9 —
1IC11 2102 10 9 —
1C12 2102 10 9 -
1C13 2102 10 9 —
1IC14 2102 10 9 —
IC15 2102 10 9 —
1IC16 2102 10 9 —
1C17 2102 10 9 —
1C20 1702A 12,13, - 16,24

15,22,
23

1C21 74121 14 7 -
1C22 7400 14 7 -
1C23 7442 16 8 —
1C24 7404 14 7 —
1C25 7420 14 7 —
1C26 7430 14 7 —
1C27 7442 16 8 —
1C28 7402 14 7 —
1C29 7474 14 7 —
1C30 8T97 16 8 —
1C31 8T97 16 8 —
1C32 8T97 16 8 —
IC33 7404 14 7 —
IC34 74125 14 7 —
1C35 74125 14 7 —
1C36 7430 14 7 —
1C37 74123 16 8 —
1C38 4010 16,1 8 -
1C39 74125 14 7 -
1C40 7403 14 7 —
1C41 8T97 16 8 —
1C42 8T97 16 8 -
1C43 Z-80 11 29 -
1C44 741802 14 7 —
IC45 74125 14 7 —
1C46 7403 14 7 -
1C47 8T97 16 8 —
1C48 7442 16 8 —
1C49 7440 14 7 —
1CB0 7400 14 7 —
800 ns

Figure 3: Central processor clock timing
waveform. To verify the frequency of oscil-
lation with a calibrated oscilloscope, mea-
sure the total time interval for two cycles of
the clock waveform. This interval should be
800 ns if the correct crystal is used and it is
oscillating at its fundamental frequency. A
frequency counter would show 2.5 MHz as
the frequency.

70

power. Another way is to insert only one or
two integrated circuits at a time, function by
function, and test as you go. The Digital
Group has found a compromise which seems
to work best when building kits, namely to
plug in all but most critical or expensive
integrated circuits, then test. This approach
is optimal when using printed circuit wiring
since the probability of a disastrous wiring
error is in general low, assuming a fully
debugged printed circuit board. Then if OK
so far, plug them in and go ahead.

So, proceeding with this approach, insert
all integrated circuits except the Z-80, the
1702A, and the 2102s. Note that all inte-
grated circuits except 2102s in the Digital
Group Z-80 board have their keyway or dot
indicating the pin 1 end oriented away from
the connector.

Measure the resistance at the backplane
voltage supply pins again. In particular, note
the lower resistance value between back-
plane pins 1 and 2. Reverse the chmmeter
and remeasure. A shorted reading now indi-
cates a bad integrated circuit, and near equal
readings indicate a reversed integrated circuit
somewhere. Now insert the crystal into its
holder. In our Digital Group kits this is done
by snapping in the body of the crystal
(gently), then pushing forward to contact
the pins.

Before inserting the processor card into
its backplane connector, measure the volt-
ages at the connector. A single wrong voltage
may cost you a board’s worth of ICs.

Measure these backplane pins against
ground:

Pin 1 — +5V 5%
Pin 2 — 0V
Pin50 — —12V £10%

(The backplane pin 1 end is marked on the
Digital Group Z-80 processor card. If you
use a homebrew assembly, use the equivalent
tést before proceeding.)

Make a final inspection of the processor.
Check for shorts between components on
the top and lines running underneath. In kit
systems, look for any solder bridges. Check
the proper pin 1 orientation of all your
integrated circuits. If you use the printed
circuit, sight down the rows of pins for
missing solder points. Missed solder points
typically seem to occur at the end pins of
integrated circuit sockets, and one side of
resistors or capacitors.

After all this preliminary checking you
can insert the processor board into its
connector.

Apply power to the system and again
measure voltages at the processor card as
noted previously.

Checking Your Waveforms

Connect a calibrated triggered sweep
oscilloscope to pin 6 of the 7400 IC50b. Set
the triggering to occur on the positive edge,
and the sweep setting to 100 ns per division.
Look for a two cycle time of 800 ns seconds
as shown in figure 3. If your oscilloscope
does not sweep as fast as 100 ns/div, then a
slower sweep can be used; but be absolutely
sure that the two cycle time is exactly 800
nanoseconds as shown in figure 3.

A frequency counter may also be at-
tached to pin 6 of IC50b. The desired
frequency is 2.5 MHz. Any appreciable error
indicates either a defective crystal, a bad
7400, or an overtone oscillation (one way to
correct this last case is by using 74L00 for
1C50).

Measure the voltage at the following pins
(before expensive integrated circuits have
been inserted). Correct any discrepancy.

Z-80 (1C43) : pin29=0V
pin 11 =+5V

:pins24 & 16=-9V
pins 12, 13, 15, 22

1702A (1C20)

and 23=+5V
Any 2102 RAM: pin9=0V
pin 10=+5V

Carefully insert the Z-80, the 1702A, and
the 2102s. With the large Z-80 and 1702
circuits, insertion should be done evenly
without allowing excessive stress. Packages
have been known to crack into two parts
during insertion. Make sure that pin 1
(indicated by either a dot or a 1 on these
circuits) is properly oriented. Recheck the
processor circuit asembly for orientation,
lead shorts, solder shorts, and missing solder
joints. Think courageous thoughts. Plug in
the processor board. Bravely turn on power.

Using the Z-80 Processor Card

Several operational systems structures
(see my June 1976 BYTE article) are con-
sistent with this processor circuit design.
This Z-80 circuit can be used with a minimal
amount of additional hardware {(a PIA and
UART, a Teletype machine, and a suitably
programmed EROM) as if it were an *‘evalu-
ation board” that maintains system de-
pendency so that different processor
integrated circuits may be compared.

Preferably, this board becomes the key
component in a much larger general purpose
system. A special EROM is provided in the
Digital Group Z-80 kit which interfaces this
Z-80 board to our audio cassette and TV
based system structure. A cassette of pro-
gramming is provided with our kit version,
which loads programmable memory with an

r

S.T.M. SYSTEMS

Presents
BABY!

A complete microcomputer in an attache case.

The unit uses the MCS 6502 8 Bit Microprocessor.

Up to 4K RAM fully buffered * Slot for 4K ROM
(2708 type)

DMA, Video Interface (composite video) sixteen 32
character lines.

Audio cassette Interface (data rate approximately 1200
BPS load & dump).

1/0 ports with 1 PIA 6820, 6520 type.

Typewriter type 63 key keyboard, (upper and lower
case plus Greek with control key).

Power supply 120 VAC to 5 volt 3 amp fully regulated.
Speaker, two (2) LEDs, DMA, 60 Hz real time clock,
video on and off keyboard and audio cassette dump
and load format all under program control,

The first 200 systems sold will have a frosted Plexiglas
case! Standard unit will have molded plastic case,
Plexiglas case will become an option.

Audio cassette tape supplied with dump program, text
editor, games of Shooting Stars, Life and Ticktack Toe,
Music Program (self generated computer music and
user generated from keyboard).

*Basic unit with 2K RAM and 512 Byte bootstrap
loader and monitor in firmware (PROM) ...$ 850.00
UnitwithdKRAM $1000.00
Remember it's not a kit, it's fully tested and ready to
go. Just plug BABY! in hook up your video monitor,
load your auto cassette with the programs we supply
and you're off and running.

Optional Video Monitor. $150.00

Be the first person on your block to have this unique,
completely portable system.

ORDER TODAY:
S. T. M. SYSTEMS
P.O. Box 248
Mont Vernon, N.H. 03057

Not a Kit Fully Tested

[0 BankAmericard Exp. [(Jcashier’s Check
] Master Charge No. OMoney Order

Personal Check (allow 6—8 weeks for personal check to clear.)
Delivery 60 to 90 days after Receipt Of Order

Name
Address
City State Zip

Ask for our OEM discounts on customized version.

operating system for reading and writing
cassettes, and building and displaying
programs.

Conclusion

The Z-80 is a neat chip to use. Contrary
to some grapevine rumors, you can’t simply
unplug your 8080 integrated circuit and plug
in the Z-80; but it is an architecturally
simple chip to design with. | hope this design
excites you as much as the Z-80 excited me.
Enjoy.m

71

1Ly

TDL IS PROUD TO ANNOUNCE THE REVOLUTIONARY Z-80 CPU CARD,
AN ALTAIR/IMSAI COMPATIBLE CPU CARD FEATURING THE POWERFUL
Z-80 uP PRODUCEDBY ZILOG INCORPORATED. WHAT’S SO REVOLUTION-
ARY ABOUT THE Z-80? A LOOK AT THE FOLLOWING COMPARISONS
WILL SHOWYOU:

As you can see, the Z-80 is a very N
powerlul and fast UP - in fact its a NEXT Comparison of the Zilog Z-80, Intel 8080, and Motorola 6800CPU chips
generation microprocessor. And its 280 8080 6800
available to you in a totally compatible)
format, NOW. Just unplug your current NL/JMBER{OF. 158 78 72
CPU card, plug in the Z-80 CPU, load /nftruc/l%ns st 17 7 5
a program, and you're up and running - :dfirrre'gsinegl(;oedress i s 5
with a NEXT gefneranon uP. The pon/edr Voltage Rquired b o e
and versatility of the Z-80 is unequalle sk
in the uP field, and it opens the door to gtla”za’gz Clock Rate [13C-3MHz 0.5-2MHz 0.1-1MHz
tremendous developments in the state of C/ggk VO?!Z?]SB e §4 i .
the art. More powerful, faster, and less . . . : : .
memory consuming versions of your Dyﬂ;?%ﬁ?:}gwﬂﬁgeggf,?%g'ﬁ’Qﬁ’ signals
f#érem Focn softwar_e are just a part gf requiring additional circuitry Yes No No
possibilities the Z-80 provides. (TDL's . ; :
own 8-K BASIC for the Z-80 will be Single instruction memory to memory and
available in September.) memory to I/O BLOCK TRANSFERS Yes No No
) Single instruction SET, RESET, or TEST
Each Z-80 CPU kit comes complete with: of any bit in accumulator, any
U Prir\;etcorpmercial quality boards, IC ge;;(ira;/purpose r/egisttgr, or any v N N
sockets etc. xternal memory location es o) o
® easy to follow instructions Single /nstrugt;’on B#OCK SEARCH of
® Zilog's Z-80 Manual any desired length of external
® Schematics memory for any 8-bit character Yes No No
® An easy to understand and apply user's Non—Maskgf)/e Interrupt and TTL
guide compatible inputs Yes No Yes
® TDL's Z-MONITOR on paper tape (soon Internal sync of inputs and direct
to be available in deluxe PROM version) strobe of outputs Yes No No
e And membership in the Z-80 user's
group. * Includes all 78 machine code instructions of the 8080A and is therefore capable
Move up to the Z-80. Only $269. of running any standard 8080A software without modification.
THE FASTEST RAM? The high speed ADDITIONAL FEATURES OF THE Z-80:
capability of the Z-80 demands an extra- ¢ Up to 500% more throughput than the 8080A
fast RAM to back it up, and TDL's new ® Requires 25% to 50% less memory space than the B8080A CPU
78K RAM board fills the biil. The Z8K is e Three modes of fast interrupt response plus a non-maskable interrupt
an 8K by 8 static RAM with the fastest ¢ Outperforms any other microcomputer in 4-, 8-, 16-bit applications
access time in personalcomputing - 215ns. e

Its the only RAM in personal computing
fast enough to let the Z-80 run at full
speed with no wait states. If that isn't
enough, it also happens to be one of the
lowest powered RAMs around as well.
Only 150 ma typical current load on the
5V supply. That makes the Z8K run cool
-and perfect for battery standby opera-
tion as well. Other so-called “low power”
4K RAM boards can't compete with these
specs. Its the perfect match for the Z-80,
and its features and low cost make it a
perfect match for ANY uP. (It's fully Altair
gus compatible of course...) Price: Only
295

WHAT ABOUT AQUALITY? All TDL
products share one thing in common -
exceptionally high quality. The quality
starts with engineering that is dedicated
to keep your system state of the art at the
lowest possible cost. Consider also the
“Qual Division" whose ONLY purpose is

to keep TDL's products the best in the
industry. And our products use only the
finest boards available, prime components,
sockets for all ICs, gold plated edge
contacts and other earmarks of a
commercial grade product. And its backed
by a solid 90 day guarantee on parts and
materials.

SAVE MONEY NOW Order both a Z-80
CPU card, and one or more Z8BK RAM
boards before September 1st, 1976, and
you can deduct 10% on the total cost. Act
now while this special offer lasts. (Does

TDL/

not apply to COD orders.)

HOW TO ORDER Just send check or
money order, or use your BankAmericard
or Mastercharge and your orders will be
shipped to you postpaid within 30 days.
COD orders must be accompanied by a
25% deposit. Your credit card order must
include the serial # of the card, expiration
date, and your order must be 5|gned New
Jersey residents add 5% state sales tax.
For more information, send for our free
catalog.

Dealer Inquiries Invited

(609) 392-7070 TECHNICAL DESIGN LABS INC.
342 COLUMBUS AVENUE
72 TRENTON, NEW JERSEY 08629

YTE’S

ITS

Attention: Southern California Readers,
Educators

Here is a bulletin board listing of a new
course which is probably worth taking if
you're a novice, or emulating if you're an
instructor.

The prospect of a computer in every
home, shop and classroom is no idle “‘cam-
paign promise” to one professor at Cali-
fornia State University, Long Beach.

“If you can’t buy one, build one,”" is one
of several approaches taken in three com-
puter courses to be offered on Saturdays
beginning September 4 through the CSULB
School of Education. All three courses are
designed for non-technical people: teachers,
librarians, businesspeople; hobbyists or
homemakers.

The instructor, Richard C McLaughlin,
associate professor of instructional media,
says that “some years ago, as a junior high
school science teacher, | realized that my
role in life was not developing future scien-
tists but rather promoting an appreciation of
science and technology among our entire
population.” His background includes a
bachelor’s degree cum laude in physics from
the State University of New York at Albany
and a PhD in instructional communications
from Syracuse University. He has recently
been active in the Southern California Com-
puter Society, the California Educational
Computing Consortium and the North
Orange County Computer Club.

While some attention will be paid to
traditional computers and minicomputers in
these courses, by far the greatest emphasis
will be placed upon low cost general purpose
computers. These are now available as do-it-

yourself kits (about $1000) or already as-
sembled and waiting to be plugged in. Prof
McLaughlin's courses can be of great use to
people having little or no background in
computer technology but willing to learn.

The purpose of the courses will be to
acquire a functional understanding of com-
puters resulting in practical applications. The
first five Saturdays will constitute a course
on the building of a microcomputer. No
actual construction will be required, but the
class should be of immense value to anyone
using a microcomputer (or a larger mini-
computer) or planning to build one from a
kit.

The second course of five Saturdays will
cover programming any type of computer
(large timesharing service, minicomputer or
personal computer system) in the conversa-
tional BASIC language now used in many
schools and businesses throughout the
nation.

The last five Saturdays will be devoted to
a course on using computer terminals and
setting up work stations tailored to the end
user’s special needs, be they in the class-
room, library, shop or home.

The three courses begin on September 4,
October 9 and November 13, running from
8:30 AM to 2:30 PM. Each course is worth
two credit units and may be taken inde-
pendently according to the student’s own
needs. Classes are open to all high school
graduates, college students and adults. Per-
sons not formally admitted to CSULB may
enroll at $66 per course through the Office
of Continuing Education, 1250 Bellflower
Bivd, Long Beach CA 90840. Telephone:
(213) 498-5561.m

Microcomputer Interfacing Workshop

September 23, 24, 25, 1976, a three-day
workshop based on the popular 8080 micro-
processor, sponsored by the VPI and SU
Extension Division of the Continuing Educa-
tion Center in Blacksburg VA, will include
many hours of experience in programming
and interface construction with over 12
operating microcomputers for participant
use. For more information contact Dr Norris
Bell, VPI and SU Continuing Education
Center, Blacksburg VA 24061, (703)
951-6328.=

Functional Specification:
Altair Bus Driver

A question which has recurred in several
letters is “How do | interface my simple 8
bit bidirectional bus to an Altair compatible
peripheral?” What is needed is an article
which defines the signals of the Altair back
plane and gives an interface plan and design
for making an Altair compatible extension
bus to an arbitrary 8 bit processor such as
the 6800, 6502, 8080, Z-80, 2650, etc. Such
an article must include a table of pinouts,
power and logic requirements, photographs
of a prototype and a rough description of
the processor and system in which it is
used.m

73

Video Terminal Interface: Connects

to standard TV monitor or modified
receiver to display 16 lines of 32 or 64
characters. Characters are formed in

a 7 X 9 matrix for easy readability. Char-
acter set includes 128 upper and lower
case ASCII characters and 64 graphic
characters for plotting on a 48 x 64

(48 x 128 with memory option) array.
An 8-bit input port is provided for the
keyboard. Characters are stored in the
onboard memory, which may be read
out of or written in to by the computer,
Cursor control, text editing, and graph-
ics software is included. $185 (32

char.) kit. $210 (64 char.) kit.

Poly 1/0 Idea Board: This will save
you a lot of time in making prototype
circuits. I/O port address is selectable
with dip switch, and inputs

and outputs are fully buffered. $55 kit. |

Analog Interface: Good for interfacing |
your computer to an analog world. Ten
bits of resolution in and out. $145 for one
channel and $195 for two channels (kit).

Ask about how to get a free POLY /O
Idea Board or Analog Board,

8K RAM on a single board. Connection
for battery backup. $300 kit.

Special Offer

| Video Terminal Interface
| (32 character) and 8K RAM, $450 kit.
Expires - September 30th, 1976.

| You've probably been hearing about the
POLY 88 microcomputer system that
uses keyboard and video. We don’t have
the space here to describe all the fea-
tures. See it at your local computer store,
Support your local computer store

All prices and specifications subject to change

without notice. Prices are USA only. Calif. residents
add 6% sales tax. All non-paid orders add 5% USA

shipping, handling, and insurance. {Outside USA add
10%) Bankamericard and Master Charge accepted.

PolyMorphic
Systems

737 S. Kellogg, Goleta, CA 93017
(805) 967-2351

0OSI 400 System

Ohio Scientific Instruments, 11679 Hay-
den St, Hiram OH 44234, has announced the
“Model 400 Superboard” single board com-
puter. The board itself, minus components,
sells for $29 and will work with either the
MOS Technology 6502 or the Motorola
6800 central processor circuits. The board
has slots for 1 K bytes of memory, 1 6820
PIA, one 6850 PIA, current loop (Teletype)

IH_E_!- i

| Oak e

and RS-232 serial interfaces. A complete kit
for a 6502 version with monitor PROM and
parts for a Teletype current loop interface is
$139, and the same kit for a 6800 processor
is $159. Also available is the Model 470
floppy disk, the Model 420 memory expan-
sion board, the Model 430 10 board, and the
Model 440 video graphics board. Write for
the OSI catalog brochure about their boards,
kits and assembled products.m

Advance Information

Lloyd Rice of Computalker has forwarded
to BYTE a copy of the “‘advance announce-
ment” brochure on the Computalker CT-1
Speech Synthesizer. The price of this unit
will be $395 in Altair/IMSAl/Polymorphic
compatible plug-in board form, Target date
for hardware delivery is September 1 1976.
All Computalker CT-1 customers will be
supplied with the CSR1 software driver
package which features ‘a sophisticated
synthesis by rule system incorporating the
latest research findings on human
speech Versions are planned for the
8080, 6800 and 6502 CPU chips.” Write
Computalker, 821 Pacific St No. 4, Santa
Monica CA 90405, for the brochure, which
also is accompanied by a reprint of Lloyd’s
article in the April 1976 issue of Dr Dobbs’
Journal of Computer Calisthenics and
Orthodontia.® ’

Catalog for Electronics Designing
and Testing

59 Ways to Save Time and Money Design-
ing and Testing in Electronics, a full color 32
page catalog of electronic prototype bread-
boarding and test equipment, has been intro-
duced by Continental Specialties Corpora-
tion. The catalog is said to have a lot more
utility than simply displaying CSC products
and prices; it is billed as ““a handy problem-
solver for electronics hobbyists as well as
working designers, technicians and produc-
tion people who want to save time and
money in every aspect of design, production
and QC testing.” The catalog, which includes
a list of domestic and foreign distributors, is
available free from Continental Specialties
Corporation, 44 Kendall St, POB 1942, New
Haven CT 06509.m

74

Right from the Source

Intersil, manufacturer of the IM6100
PDP-8 compatible microcomputer, has just
announced their version of the prototyping
and evaluation board necded to try out the
microcomputer. The “Intercept Jr'' system
is a tutorial trainer utilizing Intersil’s
IM6100 and related CMOS devices. Accord-
ing to the manufacturer, “the system pro-
vides students, hobbyists and designers with
practical low cost exposure to micro-
processors, RAMs, PROMs and input output
interfacing.”

The Intercept Jr product recognizes the
instruction set of Digital Equipment Corpo-
ration’s PDP-8/ET™™ minicomputer and pro-
vides an operating CMOS microcomputer on
a 10 by 11 inch (25.4 by 27.9 cm) double
sided printed circuit board. Also on the

board are a keyboard, two 4 digit LED
displays, a “resident microinterpreter,” and
a battery power supply. The extra boards
shown in the photo include a CMOS 1 K by
12 bit programmable memory module with
its own battery backup for non-volatility, a
2 K by 12 bit PROM module and a serial 10
interface which has both R5-232 and 20 mA
current loop capabilities.

The Intercept |Jr system comes com-
pletely assembled and factory tested with
batteries. Power terminals are also provided
to enable running the system from a 5 or
10 V power source. The owner’s handbook
contains full details of the system's opera-
tion, a hardware description and basic pro-
gramming techniques. The prices arc well
within the range of the individual who wants
a PDP-8 compatible machine: The basic
computer module is $281, the program-
mable random access memory module is
$145, the PROM module is $74.65, and the
I0 module is $81.70. A computer store
could easily buy these modules, put them
inside an attractive case and have a com-
mercial finished product with a well known
instruction set. According to the Intersil
people, all modules are in stock for immedi-
ate delivery.

For information and ordering contact
Intersil Inc, 10900 No Tantau Av, Cupertino
CA 95014.=

Software New Product: 8080 TRACE Program

The 8080 TRACE Program is a valuable
software development tool which speeds and
simplifies 8080 program debugging. TRACE
performs its function by executing the
problem program’s instructions under
TRACE control and provides the pro-
grammer a visual display of the program
counter (PC), contents of the status word
(SW) and registers A through L for each
executed instruction. Thus, deviations from
expected performance are readily recognized
and corrected with minimal programmer
participation.

TRACE uses an 1O terminal such as an
octal keyboard and display device for
entering TRACE run parameters and dis-
playing register contents dynamically. The
instruction location is displayed for each
instruction executed within the address
limits specified by the programmer at
TRACE initiation time. The sense switches
can be used optionally to select registers for
display during the program’s run time.

The TRACE program listing and descrip-
tion are available for $7.50; an Altair ACR-
compatible cassette tape is included for $10.
For additional information, send SASE to R
E Rydel, 1411 Northgate Sq, Apt 21B,
Reston VA 22090.=

B T Fna s nmany

Meet the new
OSI400
Computer System.

Now more performance and
more flexibility actually cost you less.

Ask yourself how much system you need. Or how little.
Whatever the answer, even if you want to change it later, you
get more system for less money with the OSI 400.

Start with the OSI Superboard. Add your choice (!} of a
6502, 6512 or 6800 microprocessor; eight 2102s for 1024 bytes
of RAM; and an external front panel. Power itup and you havea
working CPU. Or populate the board with a processor, system
clock, 512 bytes of PROM, 1024 of RAM, an ACIA with RS-232
or 20 ma loop interface, a PIA with 16 1/Q lines and full buffer-
ing to as many as 250 system boards for system expansion.

Even fully populated, Superboard costs fess than $140 with
a 6502, less than $160 with a 6800.

But take a look at what you can have for $29. Our special
offer includes a plated-through-hole G-10 epoxy Superboard,
bare, plus a 50-page theory of operation and construction
manual including complete chip documentation in an attrac-
tive OS! binder.

And Superboard is just the beginning of the OS! 400
system. You can expand its memory; interface to many 1/0Os

: including plotters, cas-
settes, FSK, ASCII,
Baudot and more; go
video, includinggraph-
ics; even add floppy
disk. And bare boards
are just$29 each, com-
plete with in-depth
manuals,

But first things first.

Name

Address Gity

State Phone

HAnxAM[mmu] Enclose check or money order or supply
ezzml

. Good thru
Interbank No. (Master Charge)

Sign your name

Ohio Scientific Instruments
Ohio residents, 11679 Hayden Street
please add tax. Hiram, Ohio 44234 Dept. B
—

| |
! |
| |
| |
| |
| |
l ¥ Bank Card information below. I
= Card No. (include all digits) :
| |
I |
| |
| |
| |

Microprocessor Update:

SC/MP Fills a Gap

Robert Baker
15 Windsor Dr
Atco NJ 08004

Figure 1: Internal block
diagram of the National
Semiconductor SC/IMP. In
addition to a fairly typical
8 bit bus oriented proc-
essor design, the SC/MP
includes some features
intended for ultra Jow cost
system designs. These
include three program-
mable output flags, a serial
input and output port, and
two sense inputs, one of
which can be used for
interrupts. This is one of
the reasons it is possible to
make an inexpensive mini-
mal system such as the
$99 kit shown in photo 1.

The new National Semiconductor micro-
processor SC/MP, commonly called SCAMP,
was designed to fill a gap between clumsy 4
bit microprocessors and the currently avail-
able 8 bit microprocessors. According to the
manufacturer, it is simple to use, requiring
very few support chips for a basic system
and is upgradable as the need arises. Only a
single +10 to +14 V power supply is needed
for the 40 pin dual inline processor.chip. A
block diagram of the processor chip is shown

Microprocessor

The processor provides simple interfacing
with an 8 bit data bus that has TTL or
CMOS compatible options. There are four
serial data output ports and three serial data
input ports along with two sense inputs for
simple 10 hardware. Three software con-
trolled, user accessible output control flags
may be used as needed for these direct
control output applications. A separate bus

in figure 1. access control provides Direct Memory
———— e ————————————
| 4MSB MULTIPLEXED I
ADDRESS 12-817
| #<] LATCHED
| ADDRESS
| ouTPUT
ADDRESS |
CRYSTAL [> 9S¢ILLATOR
OR TIMING | — PROGRAM I
GENERATOR COUNTER
CAPACITOR [>—o| 6817
| EOINERY REGISTERS
r POINTER
o [REQUEST [C>eb e I
2 POINTER 3
ob ENABLE IN—— [S=—b; '
(s}
o4 [ENABLE OUT— [>e—i 0 BS%S‘F'I}RIEI:%FER,
X’I;‘F'(TRDY C>—* controL I
© | STROBE }—'D“'— MR ACCUMULATOR
~ | WRITE DATA
| ee BB
5| O
START/ STOP —[> EXTENSION | seriaL
RESET o> _p<] DATA OUT
‘ ’ SENSE A/
INTERRUPT
|] ! SENSE B
vss [> INSTRUCTION %[?ATUS |
| DECODE —
| FLAG O
ves [> 8 CONTROL S 2 I <
GATING 8 £z . =p<_|FLAG |
FUNCTION s Ix < JFLAG2
CONTROL Ta| |EL =
=t B S |
4-BIT € ¥ CONTROL
I0 STATUS ALU OUTPUTS

INSTRUCTION
REGISTER

y

ZUFFER

DATA IO

Access (DMA), multiprocessor, and single
instruction step capabilities. The direct
memory access feature allows fast direct
data transfers from memory to peripherals,
peripherals to memory, and peripheral to
peripheral. Asynchronous control signals are
generated on chip for direct interfacing to
memories of any speed. Multiple mode, 16
bit addressing allows addressing of up to
64 K bytes of memory with peripherals
addressed in the same manner as memory.
The available addressing modes include
program counter relative, pointer relative,
immediate data, and auto-indexing. There
are 46 instructions available as listed in table
1.

The typical microcycle time is 2 us, so
instruction times range from 10 to 46 us.
Four 16 bit address pointer registers are
available as stack pointers to external mem-
ory for unlimited subroutine nesting.

Applications

A first level or basic SC/MP system is
shown in figure 2. This is a typical dedicated
intelligent controller. The only requirements
are a power supply {(+10 to +14 V), a clock
timing capacitor or crystal, and the desired
memory. In this configuration, only 4096
bytes of memory are addressable. By adding
a hex D flip flop {National MM74C174), an
8 channel digital multiplexer (National
MM74C151), and a 1 to 8 demultiplexer
{National MM74C42), the system can be
expanded to a second level system as shown
in figure 3. This system provides 8 input and
8 output serial data ports along with four
general purpose, latched, control flags. There
is no change in the memory addressing
capability; only 4096 bytes can still be
addressed.

Expanding the system (further) requires
the addition of interface latch elements

CRYSTAL OR
CLOCK TIMING CAPACITOR

ADDRESS STROBE

R
SM/MP | 12-BIT LATCHED 3"5“.5‘5’& °
CPU CHiP | ADDRESS BUS (ROM/PROM/RAM)

READ STROBE
WRITE STROBE
_ 8-BIT DATA BUS

fe————— SENSE A / INTERRUPT
[¢—————— SENSE B

je—————— SERJIAL DATA IN
SERIAL DATA OUT
[CONTROL OUTPUT
—— CONTROL OUTPUT
|— CONTROL OUTPUT
jo————— CONTINUE /START"
je——— RESET/ STOP

Photo 1: National Semiconductor markets an evaluation kit for SC/MP which
is probably one of the least expensive ways to try out a working processor.
The kit includes the circuit board, all electronic components including
processor and firmware ROM, crystal for 1 MHz clock speed and power
supply regulator. The assembly of this board, using ample documentation as a
guide, results in a computer with 256 bytes of programmable memory, a 512
byte firmware operating system called “KITBUG” and a 20 mA Teletype
current loop interface for operator control. A single 12 V power supply is
required.

Figure 2: What National
Semiconductor calls a
“first level” system is illus-
trated in this block dia-
gram. This block diagram
roughly corresponds to
what the SCI/MP kit pro-
duces after assembly. The
block labelled ‘‘Standard
Memory” contains 256
bytes of programmable
memory and 512 bytes of
read only memory in the
kit.

77

Table 1. SC/MP instruc-
tion summary (Typical
execution time, 2 us per
microcycle).

Double-byte instructions:

Execution
time in
microcycles

Single-byte instructions:

Execution
time in
microcycles

Memory Reference Load 18 Extension Register
Store 18
AND 18
OR 18
EXCLUSIVE OR 18
Decimal ADD 23
ADD 19
Complement and ADD 20 Pointer Register Move
Transfer Jump 11
Jump if positive 9,11
jzn’fg Hzero o g:H Shift, Rotate, Serial 1/0
Memory increment/
Decrement Increment and load 22
Decrement and load 22
Immediate Load 10 Miscellaneous
AND 10
OR 10
EXCLUSIVE OR 10
Decimal ADD 15
ADD 11
Complement and ADD 12
Miscellaneous Delay 310
132,096

(ISP-8A/543) and buffering (such as the
ISP-8A/551) to the processor. This
expanded system, as shown in figure 4,
provides a full capability system which can
now address up to 64 K bytes of memory.
There is a complete collection of hard-
ware and software support for the SC/MP
system including a debug system, application
cards, assembler, editor, system diagnostics,
cross assembler, and application routines.
The National Semiconductor users group,
COMPUTE, is also available to SC/MP users

Figure 3: The SCIMP “sec-
ond level” system is illus-

-

CRYSTAL OR
CLOCK TIMING CAPACITOR

trated by this diagram.
Here, the use of additional
CMOS integrated circuits
provides more serial inputs
and outputs for use in a
dedicated control situ-
ation.

12- BIT LATCHED STANDA, .0
RO T MEMORY
SM/MP (ROM/PROM/RAM)
CPU CHIP | READ STROBE

ADDRESS STROBE

Load AC from extension

AND extension

OR extension

EXCLUSIVE or extension
Decimal ADD extension

ADD extension

Complement and ADD extension

-

COIOOUCIOING GUIOITIOT N0 N O

Exchange pointer low
Exchange pointer high
Exchange pointer with PC

Serial 1/0

Shift right

Shift right with link
Rotate right

Rotate right with link

Halt

Exchange AC and extension
Clear carry/link

Set carry/link

Disable interrupts

Enable interrupts

Copy status to AC

Copy AC 1o status

No operation

i
iR

as well as their software library which makes
programs available for the cost of
reproduction.

In Conclusion

The SC/MP processor is approximately an
order of magnitude slower than other 8 bit
processors such as the 6800, 8080, Z-80 or
6502. For example, the SC/MP addition
time for an 8 bit quantity in memory is 19
microcycles or 38 us at its rated speed, as
opposed to the 4 processor cycles or 4 us

WRITE STROBE

—

_8-BIT DATA BUS

[—— > DATA SYNC

> CMOS HEX-D
FLIP-FLOP ——— & DELAY
SENSE A /INTERRUPT MM74C174 AT CTIED

——
CONTROL FLAGS

N
SEESED (RELAYS,INDICATORS,ETC)
SERIAL IN IGHT
8 CHANNEL Mux [= prUTSSER'AL
CONTROL OUTPUTS MM74CI5I : {FROM TRANSDUCERS,
Bl [¢—————————— SWITCHES, ETC.)
SERIAL OUT
| & FEIGHT SERIAL
1-OF -8 DEMUX : OUTPUTS
MM74C42 (PULSE SOLENOIDS,
CONTINUE / RESET/ l— & FIRE SCRS,ETC.)
START STOP

78

required for an MOS Technology 6502 to
add two 8 bit numbers at its rated 1 MHz
clock speed.

As with any 8 bit processor, the instruc-
tion set of the ‘SC/MP is adequate to
accomplish general purpose functions. The
set includes one very interesting function
which reflects the SC/MP’s intended use in
dedicated low cost systems: in such systems
timing loops are a frequent requirement, so
National put in a hardware delay instruction
which provides a programmable wait period
of from 3 to 132,096 microcycles with a
single instruction. This eliminates the need
for programmed timing loops while allowing
a very flexible resolution of from 6 micro-
seconds 10 0.264192 seconds. While this is
not a trué real time clock integrated into an
interrupt structure, the delay instruction
should provide programming convenience in
many lime dependent situations.

Thus, balancing its low cosl against a
relatively slow execution time, the SC/MP
will most likely be implemented as a
“smart” control element buried into periph-
erals and accessories for the personal systems
market. Adapting it as a general purpose
processor is quite possible; however, in larger
systems where the processor is a small part

CRYSTAL OR
CLOCK TIMING CAPACITOR

Kl

12-BIT LATCHED ADDRESS BUS

BUFFERED
ADDRESS

SC ({MP

CPU CHIP | conTROL BUS

8-8IT DATA BUS

ADDRESS
STROBE

Qo-l1

MEMORY
WAIT

ADDRESS
READ AND
WRITE
STROBE

lg——mp BUFFERED
8-8IT
BIDIRECTIONAL
DATA BUS

BUFFER
ELEMENT
ISP-BA/55|

of the total cost, the price advantage relative
to a faster processor is minimal. In small
systems, such as the prototyping kit illus-
trated in photo 1, the price advantage
relative to faster processors is obvious in the
$99 price of this simple processor available
off the shelf from several distributors. If
you're building a small computer for a
specialized application, then SC/MP will be a
likely prospect when combined with some
read only memory and custom IO devices.m

INTERFACE f—— {ONTROL

LATCH FLAGS
ELEMENTS
ISP-8A /543 fp ADDRESS

Figure 4: National calls
this the ‘‘expanded
SC/MP’’ system. Here, the
use of a buffer element
and interface latch ele-
ment results in a conven-
tional 16 bit address bus
along with an 8 bit bidirec-
tional data bus, for use in
larger systems.

MODEL CC-7 SPECIFICATIONS:

A. Recording Mode: Tape saturation binary.
This is not an FSK or Home type recorder.
No voice capability. No Modem. (NRZ)

B. Two channels (1} Clock, {2) Data. OR, Two
data channels providing four (4) tracks on
the cassette. Can also be used for Bi-Phase,
Manchester codes etc.

C. Inputs: Two (2). Will accept TTY, TTL or
RS 232 digital.

D. Outputs: Two (2). Board changeable from
RS 232 to TTY or TTL digital.

E. Runs at 2400 baud or less. Synchronous or
Asynchronous. Runs at 4800 baud or less.
Synchronous or Asynchronous. Runs at
3.1"/sec., Speed regulation * 5%

il

. Compatability : Will interface any computer
or termina! with a serial 1/0. {Altair, Sphere,
M6800, PDP8, LS1 11, IMSALI, etc.

G. Other Data: (110-220 V), (50-60 Hz); 3
Watts total; UL listed 955D; three wire line
cord; on/off switch; audio, meter and light
operation monitors. Remote control of mo-
tor optional. Four foot, seven conductor
remoting cable provided. Uses high grade
audio cassettes,

H. Warrantee: 90 days. All units tested at 300
and 2400 baud before shipment. Test cas-
sette with 8080 software program included.
This cassette was recorded and played back
during quality control.

ALSO AVAILABLE: MODEL CC-7A with vari-
able speed motor. Uses electronic speed control
at 4''/sec. or less. Regulation * .2%

Runs at 4800 baud Synchronous or Asynchro-
nous without external circuitry.

Recommended for quantity users who ex-
change tapes. Comes with speed adjusting tape
to set exact speed.

DIGITAL DATA RECORDER $149.95

FOR COMPUTER or TELETYPE USE
Any baud rate up to 4800

Uses the industry standard tape satura-
tion method to beat all FSK systems ten to
one. No modems or FSK decoders required.
Loads 8K of memory in 17 seconds. This
recorder, using high grade audio cassettes,
enables you to back up your computer by
loading and dumping programs and data fast
as you go, thus enabling you to get by with
less memory. Can be software controlled.

Model CC7 ... $149.95
Model CC7A. .. $169.95

NATIONAL multiplex

CORPORATION

NEW — 8080 |/O BOARD with ROM,
Permanent Relief from “Bootstrap Chafing”

This is our new “‘turnkey’’ board. Tum on
your Altair or Imsai and go {No Bootstrap-
ping). Controls one terminal {CRT or TTY)
and one or two cassettes with all programs
in ROM. Enables you to turn on and just
type in what you want done. Loads, Dumps,
Examines, Modifies from the keyboard in
Hex. Loads Octal. For the cassettes, it is a
fully software controlled Load and Dump at
the touch of a key. Even loads MITS Basic.
Ends "Bootstrap Chafe” forever. Uses 512
bytes of ROM, one UART for the terminal
and one USART for the Cassettes. Our
orders are backing up on this one. No, 2S10
(R)

Kit form $140. —
tested $170.00

Fully assembled and

Send Two Dollars for Cassette Operating
and Maintenance Manual with Schematics
and Software control data for 8080 and
6800. Includes Manual on
1/0 board above. Postpaid

Master Charge & BankAmericard accepted.

On orders for Recorders and Kits please add
$2.00 for Shipping & Handling.
(N.J. Residents add 5% Sales Tax)

3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
{201) 561-3600

79

" You’ll Want to Nybble at these
Byte Books

® The TTL Cookbook by Don Lancaster, published by
Howard W Sams, Indianapolis, Indiana. Start your quest for data
here with Don’s tutorial explanations of what makes a TTL logic
design tick. 335 pages, $8.95.

e The TTL Data Book for Design- Engineers, by Texas
Instruments Incorporated. How does an engineer find out about
the TTL circuits? He reads the manufacturer’s literature. This
640 page beauty covers the detailed specs of most of the 7400
series TTL logic devices. No experimenter working with TTL has
a complete library without The TTL Data Book for Design
Engineers. Order yours today, only $3.95.

e The Supplement to The TTL Data Book for Design
Engineers, by Texas Instruments Incorporated. What happens
when you can’t find a 7400 series device listed in The Data Book
for Design Engineers? Before you start screaming and tearing
your hair out in frustration, turn to the Supplement. The
Supplement has 400 pages of additional information including a
comprehensive index to both TTL Data Book volumes. To be
complete {and keep your hair in place and vocal cords intact)
you'd best order the supplement at $1.95 to accompany the
main volume.

e The Linear and Interface Circuits Data Book for Design
Engineers, by Texas Instruments Incorporated. When you run
across one of those weird numbers like 75365 the immediate
frustration problem occurs again. What kind of gate could that
be? We won't tell in this ad, but you can find out by reading the
specifications in The Linear and Interface Circuits Data Book for
Design Engineers. You can interface your brain to the 72xxx
{linear) and 75xxx (interface) series of functions by ordering
your copy of this 688 page manual at only $3.95.

e The Semiconductor Memory Data Book for Design
Engineers, by Texas Instruments Incorporated. Don't forget the
importance of memories to your systems. Refer to this 272 page
manual to find out about the T1 versions of many of the popular
random access memories and read only memories. Order your
personal copy today, onty $2.95.

Where does the editor of a computer magazine turn
when he must verify some author’s hardware design?
Information on a 75450 interface gate, or a 74147
priority encoder circuit does not spring forth by magic.
Checking the information supplied by authors is part of
BYTE’s quality control program.

When you build a project, you need this same sort of
information. All you find in the advertisements for parts
are mysterious numbers identifying the little beasties . . .
hardly the sort of information which can be used to
design a custom logic circuit. You can find out about
many of the numbers by using the information found in
these books. No laboratory hench is complete without
an accompanying library shelf filled with references —
and this set of Texas Instruments engineering manuals
plus Don Lancaster's 77L Cookbook will provide an
excellent starting point or addition to your personal
library.

® The Transistor and Diode Data Book for Design Engi-
neers, by Texas Instruments Incorporated. You'd expect a big
fat data book and a wide line of diodes and transistors from a
company which has been around from the start of semicon-
ductors. Well, it’s available in the form of this 1248 page manual
from T) which describes the characteristics of over 800 types of
transistors and over 500 types of silicon diodes. This book covers
the TI line of low power semiconductors {1 Watt or less). You
won't find every type of transistor or diode in existence here,
but you'll find most of the numbers used in switching and
amplifying circuits. Order your copy today, only $4.95.

e The Power Semiconductor Handbook for Design Engi-
neers by Texas Instruments Incorporated. To complement
the low power transistor handbook, Tl supplies this 800 page
tome on high power transistors and related switching devices.
Here is where you find data on the brute force monsters which
are used to control many Watts electronically. Fill out your
library with this book, available for only $3.95.

e Understanding Solid State Electronics by Texas Intru-
ments Incorporated. This is an excellent tutorial introduc-
tion to the subject of transistor and diode circuitry. The book
was created for the reader who wants or needs to understand
electronics, but can’t devote years to the study. This 242 page
softbound book is a must addition to the beginner's library at
only $2.95.

e The Optoelectronics Data Book for Design Engineers by
Texas Instruments Incorporated. This 366 page book is a
compendium of information on T| phototransistors, LEDs and
related devices. Order yours at $2.95.

TTL Cookbook @ $8.95 Please add 75 cents for postage and handling. Please allow six weeks for delivery.
TTL Data Book @ $3.95

Send to: Name
—____Supplement to TTL Data Book @ $1.95 2
Linear and Interface Circuits @ $3.95 Address
Semiconductor Memory Data @ $2.95 City State Zip
Transistor and Diode Data Book @ $4.95
; @ Check enclosed
______Power Semiconductor Handbook @ $3.95
Understanding Solid State Electronics @ $2.95 o BillMC # Exp. Date
Optoelectronics Data Book @ $2.95 .
o Bill BA # Exp. Date
BUI[PETERBOROUGH, NH 03458 Signature
- s

80

IF YOU CAN’T FIND IT OFF THE SHELF

TRY THE DATA DOMAIN

We are proud to announce we are now dealers for the Digital Group.

IMS Cromemco CSC Vector OSI Processor Tech

the XL Yara 1)

111 S. College Av
Bloomington, Ind. 47401
Phone (812) 334-3607

OEMs and Kit Makers Take Note:

Bowmar Instrument Corporation, 8000
Bluffton Rd, Fort Wayne IN 46809, has
introduced a new thermal printer, called the
TP-3120, which can be integrated into
products for the consumer markets. The
printer is said to be highly reliable due to
minimization of moving parts and evidence
of a mean time between failure in excess of
3 million characters for the thermal print
head and an overall operating life of more
than 1 million lines of printing.

The TP-3120 operates at a speed of 29.4
characters per second and prints up to 1.07
lines per second. The printer produces alpha-
numeric outputs, has low power consump-
tion and quiet operation, and thus should

prove attractive in small systems. The design
goal was a printer for use in microprocessor
based terminals, medical electronics, point
of sale cash register devices, test equipment
and other instances where hard copy is a
desirable feature if the cost is low enough.m

A 6800 Evaluation Board — Plus
EROM Programmer and Tiny BASIC!

AMI (American Microsystems Inc) has
introduced a microprocessor prototyping
board for hardware and software evaluation
of the 6800 based microcomputer systems
family in specific applications.

The AMI 6800 Microprocessor Evaluation
Board (EVK300) features a built-in program-
mer for the S6834 EROM circuit. This
feature gives the AMI board an additional
capability not usually found in evaluation
kits. Using the board, designers can become
proficient with the 6800 processor, and
system development can take place quickly
and painlessly.

The board can also serve as a general
purpose computer for low volume systems
by the utilization of up to 58 input/output
lines and expansion up to 56 K bytes of
programmable or read only memory.

The single board computer measures 10.5

81

inches (26.7 cm) by 12 inches (30.5 ¢m) and
has two 86 pin edge connectors. The board
can be used for evaluating incoming micro-
circuits and for programming EROMs on a
limited production basis. Communication
with the computer is done through a Tele-
type current loop interface.

A high level interpretive computer lan-
guage called AMI 6800 Tiny BASIC is
furnished to EVK300 board users residing in
the EROM at no extra charge, and proto-
typing operating system program (PROTO),
residing in the ROM, is also supplied with
the board.

The board is available in three package
options: in kit form with the printed circuit
board and a minimum of parts (EVK100 —
$295); an expanded kit with 512 byte
EROM (EVK200 — $595) and the expanded
kit fully assembled and tested having 2 K
bytes EROM with Tiny BASIC {(EVK300 —
$950). Contact American Microsystems Inc,
3800 Homestead Rd, Santa Clara CA
95051.m

More Tiny BASIC — Doctor Dobbs
Is Really Moving

Electronic Product Associates Inc, 1157
Vega St, San Diego CA 92110, have an-
nounced that Tiny BASIC is now available
for the Micro-68 computer development
system. This BASIC is a 16 bit integer
arithmetic subset of Dartmouth BASIC and
includes: LET, IF ... THEN, INPUT,
PRINT, GOTO, GOSUB, RETURN, END,
REM, CLEAR, LIST, RUN, RND, and USR.
The entire system will fit in only 2K of

L

82

memory and is available for a number of
different configurations for input and out-
put. Adding Tiny BASIC for $10 to the
Micro-68 computer provides one of the
lowest cost BASIC language systems avail-
able today. The Micro-68 is a Motorola/
AMI/Hitachi 6800 prototype development
system which sells complete with power
supply, cabinet, hexadecimal keyboard and
6 digit LED priced at $430.m

Get Up and Running Quickly
with This Self Contained Package

Electronic Product Associates Inc, 1157

Vega St, San Diego CA 92110,
(714)276-8911, has announced a complete
microcomputer system for $1050. Called the
Expanded-68, the computer is based on the
Motorofa 6800 microprocessor chip set. De-
signed for engineering prototype develop-
ment use, the Expanded-68 comes with 8 K
of memory, power supply, 16 digit key-
board, Teletype interface, hexadecimal LED
display, expansion cabinet, application
manual and programming manual. It should
prove quite usable for the experimenter as
well as the industrial designer. Also available
for direct interfacing are: dual floppy disk
drive, 40 column impact printer, 132 col-
umn printer, cassette tape interface, TV
interface, general purpose board, and full
ASCII keyboard.m

The IMSAI Floppy Disk Subsystem

IMS Associates, 14860 Wicks Blvd, San
Leandro CA 94577, recently announced the
availability of a floppy disk drive with an
intelligent interface and controller. The
system is specifically designed for use with
the IMSAI 8080 computer.

The floppy disk has a capacity of 243 K

bytes using the [BM 3740 format. The
interface and controller contains its own
processor and direct access memory which
operate independently but under command
of the main processor of the IMSAI 8080.
This enables the main processor to perform
other tasks while a disk operation is in
process. Also, the user can change the
program format of the disk by reprogram-
ming the interface EROM chips.

Up to four floppy disk drives can be
controlled by one interface and controller.
Each disk can be write protected under
software control.

The disk drive comes in a cabinet with a
power supply and the capacity to accom-
modate a second drive as shown in the
photo. A rack mounted version is also
available. All interconnection cables are
included. The IMSAI floppy disk drive and
interface controller are $1,649 assembled
and $1,449 unassembled. An additional disk
drive without a cabinet is $925. The inter-
face controller alone is $799 assembled and
$599 unassembled.

Disk operating system software is avail-
able on diskette for $40. Also, 12 K Ex-
tended BASIC with disk access capability
was announced in July of this year.®

A PROM Resident 8080 Assembler

Microcomputer Technique Inc, 1120
Reston International Office Center Building,
Reston VA 22091, has announced a resident
assembler which runs in the Intel System
Design Kit (SDK) microcomputer. The
assembler requires 4 K bytes of memory and
is available from stock for $450, delivered in
four preprogrammed PROM chips.

The MTI assembler operates in one, two
or three passes (user selectable), produces
relocatable or absolute object code, contains
a relocatable [oader, has rudimentary condi-
tional assembly statements and is designed
to work with serial media such as magnetic
or paper tape.®

IMSAI

announces
a unique
4K RAM
board

for just
$139.

Nobody has a 4K RAM board
that gives you so much for your
money. It’s fully compatible with
the Altair 8800.

Through the front panel
or under software control, you
can write protect or unprotect
any 1K group of RAM’s. Also
under software control you can
check the status of any 4K RAM
board in 1K blocks to determine
whether it’s protected or not. The
board has LED’s that clearly show
you the memory protect status
of each 1K block and which
block is active. And there’s a
circuit provided that will let you
prevent the loss of data in the
memory if there’s a power failure.
This low power board has a
guaranteed 450 ns cycle time~
no wait cycle required. There’s
nothing like the IMSAI 4K RAM
board around.

Dealer inquiries invited.

IS

IMS Associates, Inc.

IMS Associates, Inc. Dept. B-9
1922 Republic Ave.

San Leandro, CA 94577
(415) 483-2093

Order Your IMSAI 4K RAM Board For
Only $139. Use BankAmericard,
Master Charge, personal check or
money order.

O Send 4K RAM boards today
O Charge to my credit card

O BAC No.
O MC No.

Signature

Name
Address
City/State/Zip

—r— — — — — — — — —

Chapter 3

MACHINE LANGUAGE

PROGRAMMING FOR THE “8008”
and similar microcomputers

FUNDAMENTAL PROGRAMMING SKILLS

Before one can effectively develop machine
language programs for a computer, one must
be thoroughly familiar with the instruction
set for the machine. It is assumed for the re-
mainder of this manual that the reader has
studied the detailed information for the in-
struction set of the 8008 CPU which was
provided in the first chapter. The programmer
should become intimately familiar with the
mnemonics (pronounced kneemonics) for
each type of instruction. Mnemonics are
easily remembered symbolic representations
of machine language instructions. They are far
easier to work with than the actual numeric
codes used by the computer when the pro-
grammer is developing a program. While the
programmer will develop programs and think
in terms of the mnemonics, the programmer
must eventually convert the mnemenics to
the machine codes used by the computer.
This, however, is almost purely a look-up
procedure. In fact, as will be seen shortly,
this task can actually be performed by the
computer through the use of an ASSEMBLER
program.

Machine language programmers should also
be familiar with manipulating numbers in
binary and octal form. It is assumed that

readers are familiar with representing numbers
as binary values. However, there may be a few
readers who are not used to the convention of
representing binary numbers by their octal
equivalents. The technique is quite simple.
It consists merely of grouping binary digits
into groups of three and representing their
value as an octal number. The octal num-
bering system only uses the digits 0 through
7. This is exactly the range that a group of
three binary digits can represent. The octal
numbering system makes it a lot easier to
manipulate binary numbers. For instance,
most people find it considerably more con-
venient to remember a three digit octal num-
ber such as 104 than the binary equivalent
01000100. An octal number is easily ex-
panded to a binary number by simply placing
the octal value in binary form using three
binary digits.

The information in an eight bit binary re-
gister can be readily converted to an octal
number by grouping the bits into groups of
three starting with the least significant bits.
The two most significant bits in the register
which form the last group will only be able to
represent the octal numbers 0 to 3. The dia-
gram below illustrates the convention.

EIGHT CELL REGISTER

BYTE Reprint

Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was
assigned to the left of the most significant bit
so that the octal convention for the two most
significant bits could be maintained.

A table illustrating the relationship
between the binary and octal systems is
provided for reference below.

BINARY
PATTERN

REPRESENTATIVE
OCTAL NO.

000
001
010
011
100
101
110
111

S MWW= O

A person who desires to develop machine
language programs for computers should
become familiar with standard conventions
used when dealing with closed registers
(groups of binary cells of fixed length such as
a memory word or CPU register). One very
simple point to remember is that when a
group of cells in a register is in the all ones
condition:

11111111

and a count of 1 is added to the register, the
register goes to the value:

00000000

Lou ok ok sk ok sk Sk sk ok ok sk sk e ke ke ok o ok ok oK ok sk sk 3k 3k 3K sk ok 3 ok 3k ok Sk ok ke ok K skok ok ke kok ok ok

* * + * * + * * * Or, if a count of: 10 (binary) was added to a
0 * 0 * 14+ 0 * 0 * 0 f 1 * 0 * 0 = register that contained all ones, the new value
% * + * * + * * * in the register would be as shown:

3 e ok 3k e sk 3k o 3k 3k 3k ok koK 3k 3 3k o ek ok 3k sk ok 3 sk sk sk e ok sk 3k sk 3 sk 3 sk ok ok sk sk sk sk sk sk ke sk sk

11111111
+00 000010

00000001

Similarly, going the opposite way, if one sub-
CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS tracts a number such as 100 (binary) from a

.

84

Reprinted from MACHINE LANGUAGE
PROGRAMMING FOR THE ‘8008 (and
similar microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

register that contains some lesser value, such
as 010 (binary), the register would contain
the result shown below:

00000010
00000100

11111110

It may be noted that if one uses all the bits
in a fixed length register, one may represent
mathematical values with an absolute magni-
tude from zero to the quantity two to the
Nth power, minus one (0 to (2**N - 1))
where N is the number of bits in the register.
If all the bits in a register are used to
represent the magnitude of a number, and it is
also desired to represent the magnitude as
being either positive or negative in sign, then
some additional means must be available to
record the sign of the magnitude. Generally,
this would require using another register or
memory location solely for the purpose of
keeping track of the sign of a number.

In many applications it is desirable to es-
tablish a convention that will allow one to
manipulate positive and negative numbers
without having to use an additional register
to maintain the sign of a number. One way
this may be done is to simply assign the most
significant bit in a register to be a sign in-
dicator. The remaining bits represent the
magnitude of the number regardless of
whether it is positive or negative. When this is
done, the magnitude range for an N cell re-
gister becomes 0 to (2**(N-1))-1 rather than
0 to (2**N) - 1. The convention normally
used is that if the most significant bit in the
register is a one then the number represented
by the remaining bits is negative in sign. If
the MSB is zero, then the remaining bits
specify the magnitude of a positive number.
This convention allows computer
programmers to manipulate mathematical
quantities in a fashion that makes it easy for
the computer to keep track of the sign of a
number. Some examples of binary numbers in
an eight bit register are shown next.

BINARY
REPRESENTATION OCTAL DECIMAL

00001000 010 + 8
10001000 210 - 8
01111111 177 +127
11111111 371 - 127
00000001 001 + 1
10000001 201 -1

While the signed bit convention allows the
sign of a number to be stored in the same re-

gister (or word) as the magnitude, simply
using the signed bit convention alone can still
be a somewhat clumsy method to use in a
computer. This is because of the method in
which a computer mathematically adds the
contents of two binary registers in the accum-
ulator. Suppose, for example, that a computer
was to add together positive and negative
numbers that were stored in registers in the
signed bit format.

0 (+ 8 decimal)
PLUS 0 (- 8 decimal)

EQUAL 10 010 000 (Thisis not0!)

The result of the operation illustrated
would not be what the programmer intended!
In order for the operation to be performed
correctly, it is necessary to establish a method
for processing the negative number called the
two’s complement convention. In the two’s
complement convention, a negative number is
represented by complementing what the value
for a positive number would be (comple-
menting is the process of replacing bits
thar are ‘0O’ with a ‘1,” and those that are ‘1’
with a 0) and then adding the value one (1) to
the complemented value. As an example, the
number minus eight (-8) decimal would be
derived from the number plus eight (+8) by
the following operations.

00001000 (Original + 8)
11110111 (Complemented)
00000001 (now add +1)
11111000 (2's complement

form of - 8)

Some examples of numbers expressed in
two's complement notation with the signed
bit convention are shown below.

BINARY
REPRESENTATION OCTAL DECIMAL
00001000 010 + 8
11111000 370 - 8
01111111 1717 +127
10000001 201 - 127
00000001 001 + 1
11111111 371 -1
00000000 000 + 0
10000000 200 - 128

Note that when using the two’s comple-
ment method, one may still use the conven-

85

tion of having the MSB in the register estab-
lish the sign. If the MSB = 1, as in the above
illustration, the number is assumed to be
negative. Since the number is in the two’s
complement form, the computer can readily
add a positive and a negative number and
come up with a result that is readily inter-
preted. Look!

00 (+ 8 decimal)

oo

00 000 000 (Correct answer =0)

Another established convention in handling
numbers with a computer is to assume that ‘0’
is a positive value. Because of this convention,
the magnitude of the largest negative number
that can be represented in a fixed length re-
gister is one more than that possible for a
positive number. '

The various means of storing and mani-
pulating the signs of numbers as just dis-
cussed have advantages and drawbacks, and
the method used depends on the specific
application. However, for most user’s, the
two’s complement signed bit convention will
be the most convenient, most often used,
method. The prospective machine language
programmer should make sure that the con-
vention is well understood.

Another area that the machine language
programmer must have a thorough knowledge
of is the conversion of numbers between the
decimal numbering system that most people
work with on a daily basis, and the binary and
octal numbering system utilized by computer
technologists. Programmers working with
microcomputers will generally find the octal
numbering system most convenient. Because
the conversion from octal to binary is simply
a matter of grouping binary bits into groups
of three as discussed at the start of this
chapter, it is easier to remember octal codes
than long strings of binary digits. However,
most people are used to thinking in decimal
terms, which the computer does not use at
the machine language level. Thus, it is nec-
essary for programmers to be able to convert
back and forth between the various num-
bering systems as programs are developed.

The conversion process that is generally the
most troublesome for people to learn is from
decimal to binary, or decimal to octal (and
vice-versa)! It is usually a bit easier for people
to learn to convert from decimal to octal, and
then use the simple octal to binary expansion
technique, than to convert directly from
decimal to binary. The easier method will be
presented here. It is assumed that the reader
is already familiar with going from octal to
binary (and vice-versa). Only the conversions
between decimal and octal (and the reverse)
will be presented at this point.

A decimal number may be converted to its
octal equivalent by the following technique:

Divide the decimal number by 8. Record
the remainder (note that is the RE-
MAINDER!!) as the least significant digit
of the octal number being derived. Take the
quotient just obtained and use it as the new
dividend. Divide the new dividend by 8.
The remainder from this operation becomes

the next significant digit of the octal number.
The quotient is again used as the new divi-
dend. The process is continued until the quo-
tient becomes ‘0.” The number obtained from
placing all the remainders (from each division)
in increasing significant order (first remainder

ORIGINAL NUMBER 1234
LAST QUOTIENT BECOMES
NEW DIVIDEND 154
LAST QUOTIENT BECOMES
NEW DIVIDEND 19

LAST QUOTIENT BECOMES
NEW DIVIDEND

Thus the octal equivalent of 1234 decimal is:

as the least significant digit, last remainder as
the most significant digit) is the octal number
equivalent of the original decimal. The
process is illustrated below for clarity.

The octal equivalent of 1234 decimal is:

/ 8 = 154 2

/8 = 19 2

/8 = 2 3

; 8 = . 2.
2322

The above method is quite easy and
straightforward. Since a majority of the time
the user will be interested in conversions of
decimal numbers less than 255 (the maximum
decimal number that can be expressed in an

ORIGINAL NUMBER 255
LAST QUOTIENT BECOMES
NEW DIVIDEND 31

LAST QUOTIENT BECOMES
NEW DIVIDEND

Thus the octal equivalent of 255 is:

eight bit register) only a few divisions are
necessary:

The octal equivalent of 255 decimal is:

QUOTIENT REMAINDER

/| 8 = 31 7

/| 8 = 3 7

/] 8 = . 3
377

For numbers less than 63 decimal (and
such numbers are used frequently to set
counters in loop routines) the above method
reduces to one division with the remainder
being the LSD and the quotient the MSD.

This is a feat most programmers have little
difficulty doing in their head!

The octal equivalent of 63 decimal is:

grams. These bookkeeping matters have to do
with memory usage and allocation.

As the reader who has read chapter one in
this manual knows, each type of instruction
uséd in the 8008 CPU requires one, two, or
three words of memory. As a general rule,
simple register to register or register to
memory commands require but one memory
word. Immediate type commands require two
memory locations (the instruction code
followed immediately by the data or oper-
and). Jump or call instructions require three
words of memory storage. One word for the
instruction code and two more words for the
address of the location specified by the in-
struction. The fact that different types of in-
structions require different amounts of
memory is important to the programmer.

As programmers write a program it is often
necessary for them to keep tabs on how many
words of memory the actual operating por-
tion of the program will require (in addition
to controlling the areas in memory that will
be used for data storage). One reason for
maintaining a count of the number of
memory words a program requires is simply
to ensure that the program will fit into the
available memory space.

Often a program that is a little too long to
be stored in an available amount of memory
when first developed can be rewritten, after
some thought, to fit in the available space.
Generally, the trade-off between writing com-
pact programs versus not-so-compact routines
is simply the programmer’s development time.
Hastily constructed programs tend to require
more memory storage area because the pro-
grammer does not take the time to consider
memory conserving instruction combinations.

However, even if one is not concerned

ORIGINAL NUMBER 63 / 8

LAST QUOTIENT BECOMES
NEW DIVIDEND 7/ 8

Thus the octal equivalent of 63 is:

Going from octal to decimal is quite easy

too. The process consists of simply multi-

plying each octal digit by the number 8 raised
to its positional (weighted) power, and then
adding up the total of each product for all

the octal digits:

2322 Octal =
..... X (8*¥0) = (2X1) s 2
.2 X (8*1) = (2X8) s 16
.3 X (8*%2) = (3X 64) s 192
2 X (8%¥3) = (2X512) = 1024
Thus the decimal equivalend of 2322 Octal is: _i“;;:im

Besides the basic mathematical skills in-
volved with using octal and binary numbers,
there are some practical bookkeeping consid-
erations that machine language programmers
must learn to deal with as they develop pro-

7 7
7
71
MEMORY TOTAL
WORDS WORDS
THIS THIS
INSTR. ROUTINE
2 2
2 4
2 6
1 7
1 8
1 9
1 10

86

about conserving the amount of memory used
by a particular program, one still often needs
to know how much space a group of in-
structions will consume in memory. This is
0 that one can tell where another program
might be placed without interfering with a
previous program.

For these reasons, programmers often find
it advantageous to develop the habit of
writing down the number of memory words
utilized by each instruction as they write the
mnemonic sequences for a routine. Addition-
ally, it is often desirable to maintain a column
showing the total number of words required
for storage of a routine. An example of a
work sheet with this practice being followed
is illustrated here:

MNEMONICS COMMENTS

LAI 000 Place 000 in accumulator

LHI 001 Set Register Hto 1

LLI 150 And Regis L to 150

ADM Add the contents of memory
INL Locations 150 & 151 on page 1
ADM Adding second number to first
RET End of subroutine

In the example the total number of words
used in column was kept using decimal num-
bers. Many programmers prefer to maintain
this column using octal numbers because of
the direct correlation between the total num-
ber of words used, and the actual memory
addresses used by the 8008.

The example just presented can be used to
introduce another consideration during pro-
gram development. That is memory alloca-
tion. One must distinguish between program
sorage areas in memory, and areas used to

hold data that is operated on by the program.
Note that the sample subroutine was designed
to have the computer add the contents of
memory locations 150 and 151 on page 01.
Thus, those two locations must be reserved
for data. One must ensure that those
specific memory locations are not inadver-
tantly used for some other purpose. In a
typical program, one may have many lo-
cations in memory assigned for holding or
manipulating data. It is important that one
maintain some sort of system of recording
where one plans to store blocks of data and

PG | LOC MACHINE CODE LABELS MNEMONICS COMMENTS
01 000 ADD, Add no’s @ 150 & 151
01 010

01 020

01 030

01 040

01 050

01 060

01 070

o1 | 100

01 110

01 120

01 130

01 140

01 150 Number storage

01 151 Number storage

01 152

01 153

01 154

01 155

01 156

01 157

01 160

01 170

01 200

PROGRAM DEVELOPMENT WORK SHEET

PG | LOC MACHINE CODE LABELS MNEMONICS COMMENTS
01 | 000 | 006 | 00O ADD, LA 000 Set ACC = 000

01 002 | 056 | 001 LHI 001 Set pntr PG = 1

01 | 004 | 066 150 LLI150 Set pntr LOC =150
01 006 | 207 ADM Add 1'st no. to ACC
01 007 060 INL Adv pntr to 2'nd no.
01 010 207 ADM Add 2'nd no. to 1'st
01 011 007 RET Exit subroutine

87

MEMORY USAGE MAP

where various operating routines will reside
as a program is developed. This can be readily
accomplished by setting up and using memory
usage maps (often commonly referred to as
core maps). An example of a memory usage
map being started for the subroutine just dis-
cussed is shown.

The same type of form may also be used as
a program development sheet as shown 'here .
One may observe that the form provides for
memory addresses, the actual octal values
of the machine codes, labels and mnemonics
used by the programmer, and additional in-
formation.

Memory usage maps are extremely valuable
for keeping large programs organized as they
are developed, or for displaying the locations
of a variety of different programs that one
might desire to have residing in memory at
the same time. It is suggested that the person
intending to do even a moderate amount of
machine language programming make up a
supply of such forms (using a ditto or mimeo-
graph machine) to have on hand.

There are some important factors about
machine language programming that should
be pointed out as they have considerable im-
pact on the total efficiency and speed at
which one can develop such programs and get
them operating correctly. The factors relate
to one simple fact. People developing machine
language programs (especially beginners) are
very prone to making programming mistakes!
Regardless of how carefully one proceeds, it
always seems that any fair sized program
needs to be revised before a properly
operating program is achieved. The impact
that changes in a program have on the de-
velopment (or redevelopment) effort vary
according to where in the program such
changes must be made. The reason for the
seriousness of the problem is because program
changes generally result in the addresses of
the instructions in memory being altered.
Remember, if an instruction is added, or de-

MEMORY

PAGE LOC CONTENTS
01 000 006
01 001 000
01 002 056
01 003 001
01 004 066
01 005 150
01 006 207
01 007 060
01 010 207
01 011 066
** 01 012 160
** 01 013 370
** 01 014 007

leted, then all the remaining instructions in
the routine being altered must be moved to
different locations! This can have multiplying
effects if the instructions that are moved are
referred to by other routines (such as call and
jump commands) because then the addresses
referred to by those types of commands must
be altered too! To illustrate the situation, a
change will be made to the sample program
presented several pages ago. Suppose it was
decided that the subroutine should place the
result of the addition calculation in a word in
memory before exiting the subroutine,
instead of simply having the result in the ac-
cumulator. The original program, for
example, could have been residing in the
locations shown on the program development
work sheet on the previous page. Changing
the program would result in it occupying the
following memory locations:

MNEMONICS COMMENTS
LAI 000 Place 000 in accumulator
LHI 001 Set Reg Hto 1
LLI 150 Set Reg L to 150
ADM Add contents of memory

INL Locations 150 & 151

ADM Add 2nd to 1st
LLI 160 Set Reg L to 160
LMA Save answer @ 160
RET End of subroutine

The ** locations denote the additional
memory locations required by the modified
subroutine. If the programmer had already
developed a routine that resided in locations
012, 013, or 014, the change would require
that it be moved!

If one was using a program development
work sheet, one would have had to erase the
original RET instruction at the end of the
routine and then written in the two new
commands, and added the RET instruction
at the end. The effects would not be too de-
vestating since the change was inserted at the
end of the subroutine. But, suppose a similar
change was necessary at the start of a sub-

routine that had 50 instructions in it? The
programmer would have to do a lot of
erasing!

The effects of changes in program source
listings was recognized early as a problem in
developing programs. Because of this people
developed programs called EDITORS that
would enable the computer to assist people in
the task of creating and manipulating source
listings for programs. An EDITOR is a
program that will allow a person to use a com-
puter as a text buffer. Source listings may be
entered from a keyboard or other input
device and stored in the computer’s memory.
Information that is placed in the text buffer is
kept in an organized fashion, usually by lines
of text. An Editor program generally has a
variety of commands available to the operator
to allow the information stored in the text
buffer to be manipulated. For instance, lines
of information in the text buffer may be

added, deleted, moved about or inserted
before other lines, and so forth. Naturally, the
information in the buffer can be displayed to
the operator on an output device such as a
cathode ray tube (CRT) or electromechan-
ical printing mechanism. Using this type of
program, a programmer can rapidly create a
source listing and modify it as necessary.
When a permanent copy is desired, the
contents of the text buffer may be punched
on paper tape or written on a magnetic
tape cassette. It turns out that the copy
placed on paper tape or a cassette can often
be further processed by another program to
be discussed shortly which is termed an

88

ASSEMBLER program. However, an
important reason for making a copy of the
text buffer on paper tape or magnetic cassette
tape is because if it is ever necessary to make
changes to the source listing, then the old
listing can be quickly reloaded back into the
computer. Changes may then be rapidly made
using the Editor program, and a new clean
listing obtained in a fraction of the time that
might be required to erase and rewrite a large
number of lines using pencil and paper.

Relatively small programs can be developed
using manual methods. That is, by writing the
source listings with pencil and paper. But,
anyone that is planning on doing extensive
program development work should obtain an
Editor program in order to substantually
increase their overall program development
efficiency. Besides, an Editor program can be
put to a lot of good uses besides just making
up source listings! Such as enabling one to
edit correspondence or prepare written
documents that are nice and neat in a fraction
of the time required by conventional
methods.

Changes in source listings naturally result in
changes to the machine codes (which the
mnemonics simply symbolize). Even more
important, the addresses associated with
instructions often must be changed due to
additions or deletions of words of machine
code. For instance, in the example routine
being used in this section, memory address
PAGE 01 LOCATION 011 originally
contained the code for a RET (RETURN) in-
struction which is 007. When the subroutine
was changed by adding several more
instructions (so the answer could be stored in
a memory location), the RET instruction was
shifted down to the address PAGE 01
LOCATION 014. The address where it
formerly resided was changed to hold the
code for the first part of the LLI 160
instruction which is 066. Had changes been
made earlier in the routine, then many more
memory locations would need to be assigned
different machine codes. However, the
changes caused by adding on to the sample
program previously discussed are not as far
reaching as the one presented on the follow-
ing page. There the changes result in the
addresses of subroutines referred to by other
routines being changed, so that it is then
necessary to go back and modify the machine
codes in all of the routines that refer to the
subroutine that was changed!

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS
00 000 026 OVER, LCI 100 Load reg C with 100
00 001 100 '
00 002 106 CAL NEWONE Call a new subroutine
00 003 013
00 004 000
00 005 106 CAL LOAD And then another
00 006 023
00 007 000
00 010 104 JMP OVER Jump back & repeat
00 . 011 000
00 012 000
00 013 056 NEWONE, LHI 000 Load reg H with zeroes
00 014 000
00 015 066 LLI 200 And L with 200
00 016 200
00 017 317 LBM Fetch mem contents to B
00 020 010 INB Increment the value in B
00 021 371 LMB Place B back into memory
00 022 007 RET End of subroutine

MEMORY

PAGE LOC CONTENTS MNEMONICS COMMENTS
00 023 056 LOAD, LHI 003 Set H to PG 03
00 024 003
00 025 361 LLB Place register B into L
00 026 370 LMA Place ACC into memory
00 027 021 DEC Decrement value in reg C
00 030 013 RFZ Return if C is not zero
00 031 000 HLT Halt when C = zero

Suppose it was decided to insert a single
word instruction right after the LCI 100 com-
mand in the above program. The new program
would appear as shown next.

MEMORY
PAGE LOC CONTENTS MNEMO
00 000 026 OVER,
00 001 100
00 002 250
* 00 003 106
* 00 004 ** 014
* 00 005 000
* 00 006 106
* 00 007 ** 024
* 00 010 000
* 00 011 104
* 00 012 000
* 00 013 000
* 00 014 056
* 00 015 000
* 00 016 066
* 00 017 200
* 00 020 317
* 00 021 010
* 00 022 371
* 00 023 007
* 00 024 056 LOAD,
* 00 025 003
* 00 026 361
* 00 027 370
* 00 030 021
* 00 031 013
* 00 032 000

NICS COMMENTS

LCI 100 Load reg C with 100
XRA Clear the accumulator
CAL NEWONE Call a new subroutine
CAL LOAD And then another
JMP OVER Jump back and repeat

NEWONE, LHI 000

Load Reg H with zeroes

LLI 200 And L with 200

LBM Fetch mem contents to B
INB Increment the value in B
LMB Place B back into memory
RET Exit subroutine

LHI 003 Set H to PAGE 03

LLB Place reg B into L

LMA Place ACC into memory
DCC Decrement value in reg C
RFZ Return if C is not zero
HLT Halt when C is zero

Note in the illustration how not only the
addresses of all the instructions beyond
location 002 (denoted by the *) change, but
even more important, that parts of the in-
structions themselves (the address portion
of the CAL instructions, denoted by the **)
must now be altered. The essential point
being made here is that if the starting address
of a routine or subroutine that is referred to
by any other part of the program is changed,
then each and every reference to that routine
must be located and the address portion
corrected! This can be an extremely formi-
dable, time consuming, tedious, and down
right frustrating task if all the references must
be found and corrected by manual means in a
jarge program!

Early computer technologists soon became
diggusted with making such program correc-
tions by hand methods after learning that it
was almost impossible to develop large pro-
grams without making a few errors. They
went to work on finding a method to ease the
task of making such corrections and came up
with a type of program called an ASSEM-
BLER that could utilize the computer it-
self to perform such exacting tasks.
ASSEMBLER programs are types of programs
that are able to process source listings when
they have been written in mnemonic (sym-

bolic) form and translate them into the
OBJECT code (actual machine language code)
that is utilized directly by the computer. An
ASSEMBLER also keeps track of assigning
the proper addresses to references to rout-
ines and subroutines. This is accomplished
through a process initiated by the program-
mer assigning LABELS to routines in the
source listing. One may now see that the
combination of an Editor and an Assembler
program can greatly ease the task of de-
veloping machine language programs over
that of the purely manual method. The use

MNEMONIC

LHI 001
LLI 000

AGAIN, LMI000
INL

JFZ AGAIN

HLT

89

of such programs is almost mandatory when
programs become large because the manual
method becomes highly unwieldy. A primary
reason that an Editor and Assembler are so
useful is because if a mistake is made in the
program, one can use the relatively quick
method of utilizing the Editor program to
revise the source listing. Then, one may use
the Assembler program to reprocess the
corrected source listing and produce a new
version of the machine code assigned to new
addresses if appropriate.

For quite small programs, say less than
100 instructions, the use of Editor and
Assembler programs are not mandatory.
In fact, even if one uses these aids for small
programs, one should know how to manually

convert mnemonic listings to object code.
This is because it may occasionally be de-
sirable to make minor program changes
(patches) without having to go through
the process of using an Editor and Assem-
bler. This is particularly true when one
is DEBUGGING large programs and wants
to ascertain whether a minor correction will
correct a problem. The process of convert-
ing from a mnemonic listing to actual mach-
ine code is not difficult in concept. Many
readers will have discerned the process from
the examples already provided. However, for
any who are in doubt, the process will be
explained for the sake of clarity.

Suppose a person desired to produce a
small program that would set the contents
of all the words in PAGE 01 of memory to
000. The programmer would first develop
the algorithm and write it down as a mne-
monic (source) listing. Such an algorithm
might appear as follows.

COMMENTS

Set the high address register to PAGE 01.
Set the low address register to the first
location on the page assigned by reg. H.
Load the contents of the memory location
specified by registers H & L to 000.
Advance register L to the next memory
location (but do not change the page).

If the value of register L is not 000

after it has been incremented then JUMP
back to the part of the program denoted by
the label AGAIN and repeat the process.
If the value of register L is 000, then have
the computer stop as the program is done!

To convert the source listing to machine
(object) code the programmer must first
decide where the program is to reside in
memory. In this particular case it would
certainly not be wise to place the program
anywhere on PAGE 01 as the program would
self destruct! The program could safely be
placed anywhere else. For the sake of demon-
stration it will be assumed that it is to reside
on PAGE 02 starting at LOCATION 100. To
convert the source listing to machine code the
programmer would simply make a list of the
addresses to be occupied by the program.
Then the programmer would simply look up
the machine code corresponding to the
mnemonic for each instruction and place this
number next to the address in which it
will reside. (The machine code for each
mnemonic used by the ‘8008° CPU is
provided in Chapter ONE of this manual.)

Since some instructions are location
dependent in that they require the actual
address of referenced routines, it is often
necessary to assign the machine code in two
processes. The first process consist of
assigning the machine codes to specific
memory addresses wherever possible. When
the machine code requires an address that
has not yet been determined, the memory
location is left blank. The second process
consists of going back and filling in any blanks
once the addresses of referenced routines have
been determined. In the example being used
for illustration, only one process is required
because the address specified by the label
AGAIN isdefined before the label (address}) is
referenced by the JFZ instruction. The
saample program when converted to
machiné language code would appear as
shown next.

ORIGINAL MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LHI 001 02 100 056 Machine code for LHI mnemonic
02 101 001 Immediate part of LHI mnemonic
LLI 000 02 102 066 Machine code for LLI mnemonic
02 103 000 Immediate part of LLI mnemonic
AGAIN, LMI 000 02 104 076 Machine code for LMI mnemonic
Note that the label AGAIN now
defines an address of LOCATION
104 on PAGE 02
02 105 000 Immediate part of LMI mnemonic
INL 02 106 060 Increment low address here
JFZ AGAIN 02 107 110 Machine code for JFZ mnemonic
02 110 104 Low address portion of the CONDI-
TIONAL JUMP instruction as
defined by label AGAIN above
02 111 002 PAGE address portion of the
CONDITIONAL JUMP instruction
defined by label AGAIN
HLT 02 112 377 Alternately, the code 000 or 001

could have been used here as the
machine code for a HALT command

Once the program has been put in machine
language form the actual machine code may
be placed in the assigned locations in mem-
ory. The programmer may then proceed to
verify the algorithm’s validity. For small
programs such as the example just illustrated
the machine code can simply be loaded into
the correct memory locations using manual
methods typically provided on microcom-
puter systems. Such small programs can then
be easily checked out by stepping through
the program one instruction at a time.

If the program is relatively large then a
special loader program which is typically
provided with an ASSEMBLER program
could be used to load in the machine code.

Checking out and DEBUGGING large
programs can sometimes be difficult if a
few simple rules are not followed. A good
rule of thumb is to first test out each sub-
routine independently. One may choose to
STEP through a subroutine, or else to place
HALT instructions at the end of each sub-

routine. Then one may verify that data was
manipulated properly by a particular sub-
routine before going on to the next section
in a program. The use of strategically located
HALT instructions in a program initially
being tried out is an important technique
for the programmer to remember. When a
HALT is encountered the user may check the
contents of memory locations and examine
the contents of CPU registers to determine
if they contain the proper values at that
point in the program. (Using the manual
operator controls and indicator lamps typi-
cally- provided with microcomputer develop-
ment systems.) If all is well at a check point
then the programmer may replace the
HALT instruction with the actual in-
sruction for that point. One may then
continue checking the operation of
the program after making certain that
any registers that were altered by the
examination procedure (typically
registers H and L in an ‘8008’ system)
have been reset to the desired values
if they will effect operation of the
program as it continues!

20

It is often helpful to use a utility pro-
gram known as a MEMORY DUMP pro-
gram to check the contents of memory
locations when testing a new program.
A memory dump program is a small utility
program that will allow the contents of
areas in memory to be displayed on an
output device. Naturally, the memory dump
program must reside in an area of memory
outside that being used by the program
being checked. By using this type of pro-
gram the operator may readily verify the
contents of memory locations before and
after specific operations occur to see if
their contents are as expected. A memory
dump program is also a valuable aid in
determining whether a program has been
properly loaded or that a portion of a
program is still intact after a program
under test has gone errant.

One will find that having flow charts
and memory maps at hand during the
DEBUGGING process is also very help-
ful. They serve as a refresher on where
routines are supposed to be in memory
and what the routines are supposed to
be doing.

If minor corrections are necessary or
desired, then one may often make program

corrections, or PATCHES as they are com-
monly referred to by software people, to
see if the corrections believed appropriate
will work as planned. An easy way to make
a PATCH to a program is to replace a CALL
or JUMP instruction with a CALL to a new
subroutine that contains the desired cor-
rections (plus the original CALL or JUMP
instruction if necessary). If a CALL or
JUMP instruction is not available in the
vicinity of the area where a correction must
be made then one can replace three words
of instructions with a CALL patch provided
that one is very careful not to split up a
multi-word instruction. If this cannot be
avoided, then the remaining portion of
a split-up multi-word instruction must be
replaced with a NO-OPERATION instruc-
tion such as a LAA command (in an ‘8008’
system). One must also make certain that
the instructions displaced by the inserted
CALL instruction are placed in the patch-
ing subroutine (provided that they are not
being removed purposely). An example
of several patches being made to the small
example program previously discussed will
be illustrated next.

Suppose, in the example just presented,
that the operator decided not to clear (set
to 000) all the words in PAGE 01 of mem-
ory, but rather to only clear the locations
000 to 177 (octal) on the page. The pro-
gram could be modified by replacing the
JFZ AGAIN instruction which started at
LOCATION 107 on PAGE 02 with the
command CAL 000 003 (CALL the sub-
routine starting at LOCATION 000 on
PAGE 03 which will be the PATCH).
Now at LOCATION 000 on PAGE 03
one could put:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LAI 200 03 000 006
03 001 200
CPL 03 002 276
JFZ AGAIN 03 003 110
03 004 104
03 005 002
RET 03 006 007

COMMENTS

Put value 200 into the ACC
Note value of 200 used because
contents of register L has

been incremented
Compare contents of the ACC

with the contents of register L
If accumulator and L do not
match then continue with the
original program

End of PATCH subroutine

Suppose instead of filling every word on
PAGE 01 with zeroes the programmer de-
cided to fill every other other word? A patch
could be made by replacing the LMI 000

MEMORY MEMORY

MNEMONIC ADDRESS CONTENTS
LMI 000 03 000 076
03 001 000
INL 03 002 060
INL 03 003 060
RET 03 004 007

command at LOCATION 106 on PAGE 02
and again inserting a CAL 000 003 command
to a patch subroutine that might appear as
illustrated below.

COMMENTS

Keep the LMI instruction

as part of the PATCH

Keep original increment L
And add another increment
L to skip every other word
Exit from PATCH subroutine

Finally, to illustrate a patch that splits a
multi-word command, consider a hypo-
thetical case where the programmer decided
that prior to doing the clearing routine, it
would be important to save the contents
of register H before setting it to PAGE 01.
If a three word CALL command is placed
starting at LOCATION 100 on PAGE 02 in
the original routine to serve as a PATCH, it
may be observed that the second half of the
LLI 000 instruction would cause a problem
when the program returned from the patch.

MEMORY MEMORY

MNEMONIC ADDRESS CONTENTS
LEH 03 000 345
LHI 001 03 001 056
03 002 001
LLI 000 03 003 066
03 004 000
RET 03 Q05 007

(The value of 000 at LOCATION 103 on
PAGE 02 in the example program would be
interpreted as a HLT command by the com-
puter when it returned from the patch sub-
routine.) In order to avoid this problem the
programmer could place a LAA (effectively a
NO-OPERATION command) at LOCATION
103 on PAGE 02 after placing the patch
command CAL 000 003 instruction beginning
at LOCATION 100 on PAGE 02. The actual
patch subroutine might appear as shown
below.

COMMENTS

Save register H in register E
Now set register H to point
to PAGE 01

And set the low address
pointer to LOCATION 000
End of PATCH subroutine

In the balance of this manual numerous
techniques for developing machine language
programs will be presented and discussed.
Many of the examples used will be presented
as subroutines that the reader may use when
developing customized programs. It is im-
portant for the new programmer to learn
to think of programs in terms of routines
or subroutines and then learn to combine
subroutines into larger programs. This prac-
tice makes it easier for the programmer to
initially develop programs. It is generally
much easier to create small algorithms and
then combine them, in the form of sub-
routines, into larger programs. Remember,
subroutines are sequences of instructions
that can be CALLED by other parts of a
program. They are terminated by RETURN
or CONDITIONAL RETURN commands.
It is also wise when developing programs to -
leave some room in memory between sub-
routines so that patches can be inserted
or routines lengthened without having to
rearrange the contents of a large amount of
memory. Finally, while speaking of sub-
routines, it will be pointed out that the
user would be wise to keep a note book
of subroutines that the individual develops
in order to build up a reference library
of pertinent routines. It takes time to think
up and check out algorithms. It is very easy
to forget just how one had solved a par-
ticular problem six months after one init-
ially accomplished the task. Save your
accrued efforts. The more routines you
have to utilize, the more valuable your
machine becomes. The power of the machine
is all determined by WHAT YOU PUT IN ITS
MEMORY'!

First, the programmer should clearly define and write down on paper exactly
what the program is to accomplish.

Next, flow charts to aid in the complex task of writing the mnemonic (source)
listings are prepared. They should be as detailed as necessary for the program-
mer’s level of experience and ability.

Memory maps should be used to distribute and keep track of program storage
areas and data manipulating regions in available memory.

Using the flow charts and memory maps as guides, the actual source listings of
the algorithms are written using the symbolic representations of the instructions.
An Editor program is frequently used to good advantage at this point.

The mnemonic source listings are converted into the actual machine language
numerical codes assigned to specific addresses in memory. An Assembler pro-
gram makes this task quite easy and should be used for large programs.

The prepared machine code is loaded in