

BROADCAST EQUIPMENT

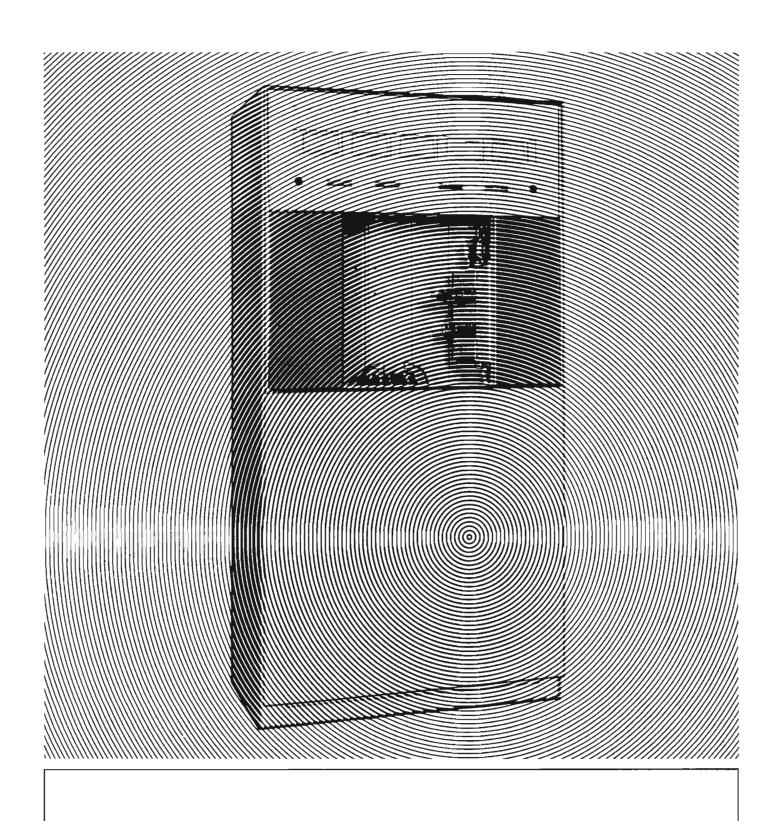
COLLINS BROADCAST EQUIPMENT

TABLE OF CONTENTS:

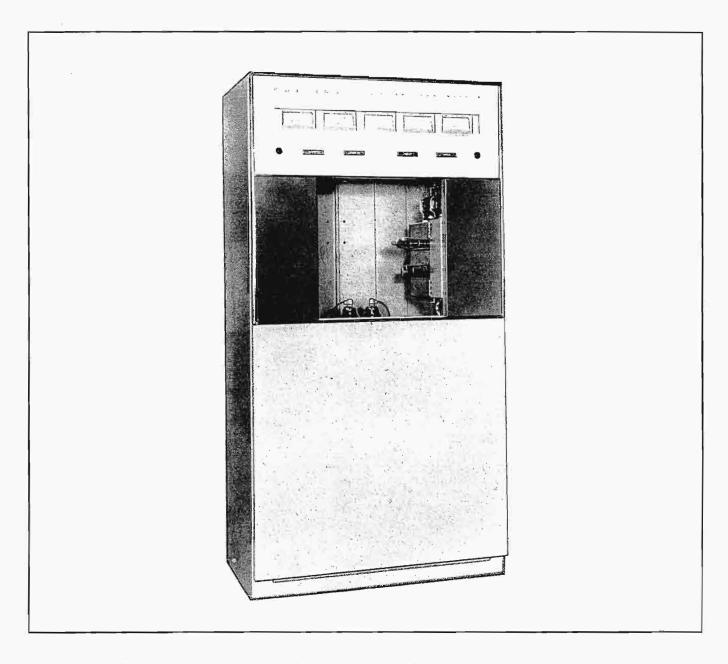
AM Transmitters				2	Tape Equipment			109
Phasing				12	Microphones			121
FM Transmitters				17	Studio Accessories			124
Antennas				32	Measuring, Monitoring.			135
Towers				35	Remote Control			
Transmission Lines				38	STL Microwave			143
Audio Facilities .				92	Tables, Charts, Graphs.			145
Disc Equipment .				102	Indices			

Collins Sales Policy is found at the back of this catalog.

Equipment descriptions in this catalog are necessarily condensed so that the complete line of broadcast units supplied by Collins Radio Company could be shown. For more information on any of these units, you are invited to contact your Collins Broadcast Sales Engineer or Collins Radio Company, Broadcast Communication Division, Dallas, Texas.


The reputation of Collins Radio Company has been built on more than a quarter of a century of research, development and manufacture of distinctive electronic equipment. To assure broadcasters of the very finest equipment, Collins engineers and technicians follow without exception this company-wide philosophy:

Design and build equipment based on technical ingenuity, unique function and quality of craftsmanship, rather than solely on the grounds of price and sales effort.


Whatever the field — broadcast, amateur radio, aviation electronics, military or industrial communication, or space communication—Collins adheres strictly to its basic code that there is no substitute for quality.

Collins research and development, its staff of highly competent field technicians and the Company's never ending stress on quality control assure each Collins broadcast equipment owner that he has the most advanced, thoroughly tested equipment available, and that it will retain its value through the years.

In this catalog is the latest equipment of the complete broadcast line that has earned Collins its unparalleled reputation in the field. Collins famous quality and reliability are integral parts of all these units.

AM TRANSMITTERS AND PHASING

COLLINS 20V-3 1,000/500/250-WATT AM TRANSMITTER

The Collins 20V-3 1,000/500/250-watt AM transmitter, designed for reliable, high fidelity broadcasting at any specified frequency from 540 to 1600 kc or in any of the high frequency broadcast bands up to 12 mc, has many features that make it one of the most advanced transmitters on the market.

The bold, clean-cut styling of the cabinet is in keeping with the modern design of the transmitter circuitry. Streamlined, brushed chrome trim and white meters add to the attractive appearance of the cabinet, which is finished in a high gloss gray, blue-gray and off-white baked enamel. The cabinet and circuitry provide unparalleled accessibility for operation, maintenance and inspection.

The RF and audio chassis swing out and the power supply tilts up so that all components are exposed. Mounted on the RF and audio chassis are quiet, high capacity blowers which force air directly on the tubes to give an extra assurance of long tube life.

Pushbutton control of filament and plate power is provided and may be extended to a remote position. Automatic sequencing of the power control circuits is incorporated. Filament voltage control and power circuit controls may be adjusted while the transmitter is operating.

A typical stability of ±2 cps is attained by using a highly perfected oscillator design in conjunction with very stable, low temperature coefficient crystals — a concept pioneered by Collins to eliminate the troublesome crystal oven.

Thermal time delay circuitry selects the optimum time interval before the transmitter can be returned to the air after a power line failure. After an instantaneous power interruption the carrier can be returned to the air immediately, cutting off-the-air time to a minimum. Overload relays are adjustable and are provided for the RF driver, audio driver, power amplifier and modulator stages. These relays are connected so that an overload removes plate power and the equipment must be re-energized manually.

The 20V-3 power supplies are heavy duty and conservative. One high voltage power supply is used for the modulator and final amplifier. A separate low voltage supply feeds the modulator screen grids, as well as the plates and screen grids of the other RF and audio tubes. Bias supply provides voltages for the modulator, power amplifier and other biasing throughout the transmitter.

The Collins 20V-3 uses four, Type 4-400A tetrodes in the modulator and final amplifier. The use of the 4-400A tetrodes is another concept pioneered by Collins and now widely accepted as the best in transmitter design. Frequency Range: 540-1600 kc standard. Frequencies to 12 mc available.

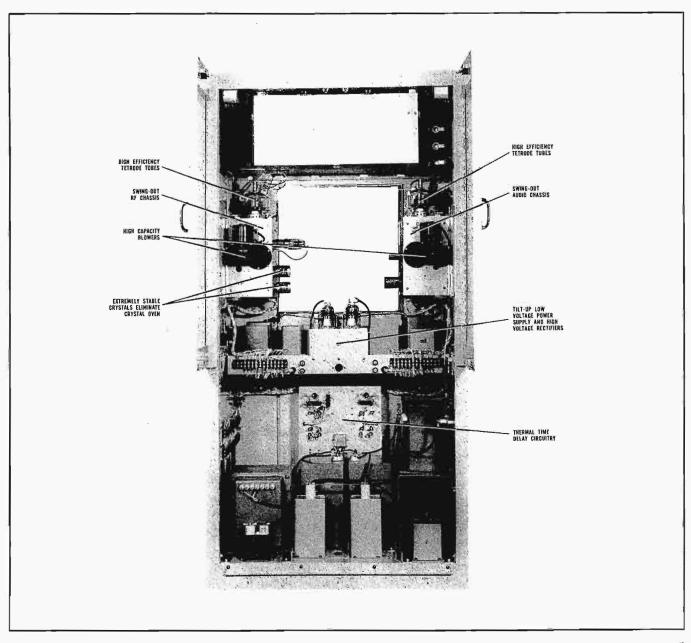
Power Output: 1,000/500/250 watts.

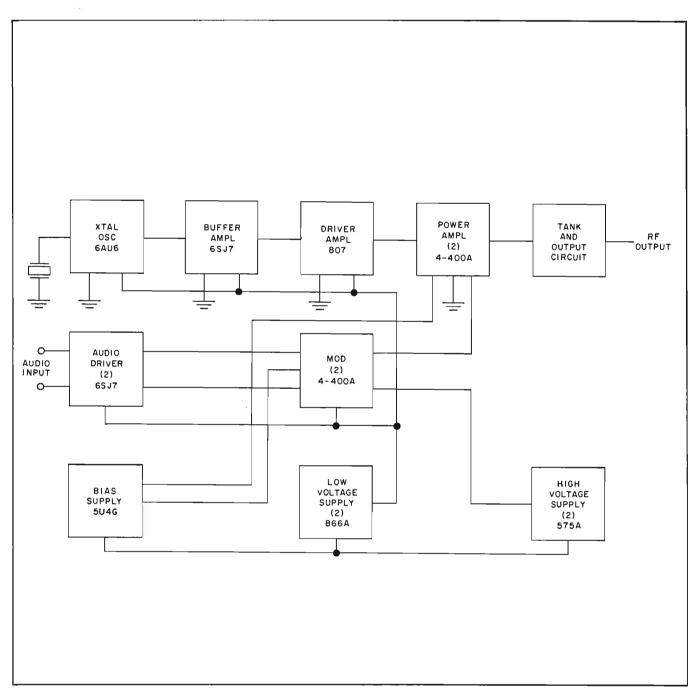
Frequency Stability: Better than ±5 cps. (Typical—Better than ±2 cps.)

Audio Frequency Response: Within ±2 db, 50-10,000 cps.

Audio Frequency Distortion: Less than 3%, 50-7,500 cps up to 95% modulation level. (Typical — Less than 3%, 30-15,000 cps.)

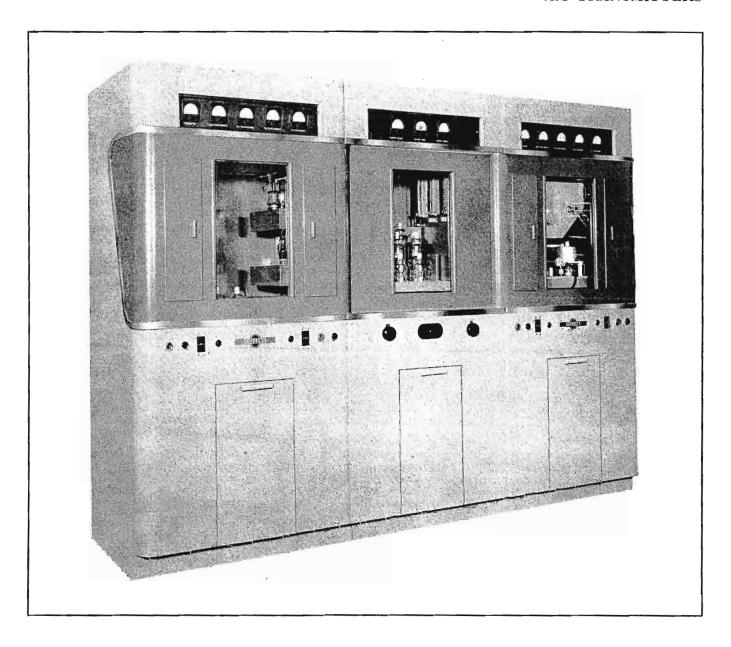
Residual Noise Level: 60 db or better below 100% modulation.


Carrier Shift: Less than 3%, 0.100% modulation. (Typical — Less than 2%.)


RF Output Impedance: 50-70 ohms unbalanced. Others, including balanced, available on order.

Audio Input Impedance: 150/600 ohms balanced.

Audio Input Level: +10 dbm, ±2 db.


Power Source: 208-240 v ac, single phase 50/60 cps.

BLOCK DIAGRAM 20V-3

0% 30%	and (at 1,000 Filaments modulation modulation modulation	2,950 watts 3,250 watts	85% p 80% p 83% p 83% p	f f	Ambient Temperature Range: +15°C to +45°C. Size: 38" W, 76" H, 27" D (96.52 cm W, 103.04 cm H, 68.58 cm D). Weight: Approx. 1,295 lbs (587.41 kg).			
Tube Comp	lement:			P	Part No. 522 2480			
4	4-400A	2 — Final Amplifier	•		Includes one set of tubes, one crystal and one instruction book.			
4	4-400A	2 Modulator			No Part Number			
1	807	Driver Amplifier			Complete set of spare tubes.			
3	6SJ7 1 — Buffer Am		er		No Part Number			
Э	0317	2 - Audio Amplifie	r	•	FCC set of spare tubes.			
1	6AU6	Crystal Oscillator			No Part Number			
2	575A	High Voltage Recti	fier	r	Factory short wave conversion, 1.6 mc-12 mc.			
2	866A	Low Voltage Rectifi						
$\vec{1}$	5U4G	Bias Rectifier		•	to Part Number Spare crystal for 20V and 550A transmitters.			

COLLINS 21E/M 5/10 KW AM TRANSMITTER

The 5,000-watt 21E and 10,000-watt 21M transmitters permit operation at any frequency from 540 kilocycles to 10 megacycles. A convenient power increase package converts the 5 kw 21E into a 10 kw 21M readily.

Straightforward styling of the transmitter cabinets is in keeping with the modern design of the transmitter circuitry. The cabinets are finished in high gloss, bluegray baked enamel with polished chrome trim. Easy access to relays and contactors for inspection and adjustment is possible while the transmitter is on the air.

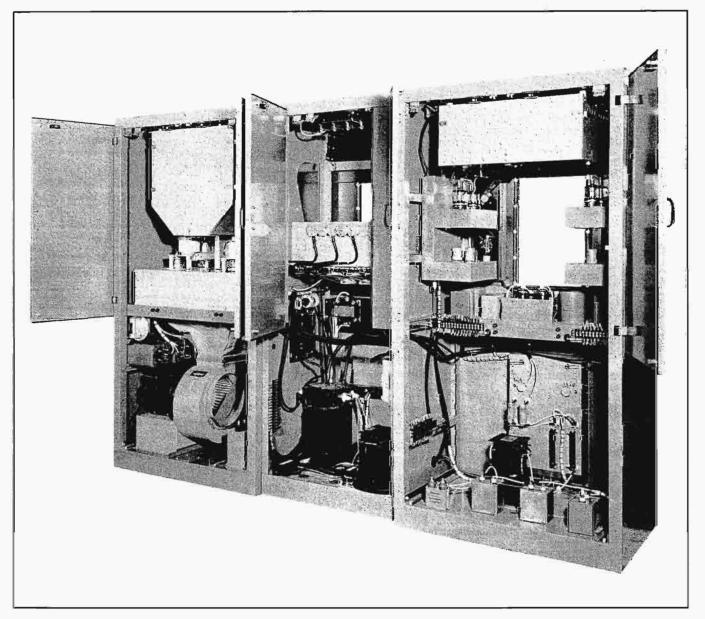
Pushbutton control of filament and plate power is provided. Automatic sequencing is supplied so that all filament bias and plate voltages are applied in correct sequence and with proper time delays. If desired, the pushbutton and indicating light circuits may be extended to a remote position.

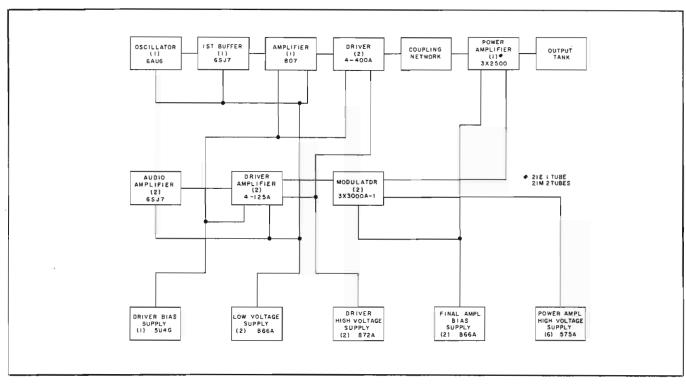
A thermal time delay circuit is employed which gives the transmitter the ability to select the optimum time interval before it can be returned to the air after a power interruption. When a short power interruption occurs, the delay circuit allows only enough time for the filaments to reach operating temperature before the transmitter can be returned to the air. An arc-suppression circuit protects the final amplifier and RF driver tank circuits against arcs to ground due to lightning or other causes. Should an arc occur, this circuit removes plate power until the arc is extinguished and then returns the equipment to normal operation. Class AB, high level modulation is used to eliminate the audio driver transformer and its attendant problems. Adjustable overload relays are furnished for the RF driver, audio driver, power amplifier and modulator stages. Power supplies are heavy duty and conservative.

Plate voltage for the modulator and final amplifier is furnished by a common high voltage supply using six Type 575A rectifiers in a full-wave, 3-phase circuit. Bias for the modulator and final amplifier is provided by a common low voltage supply using two Type 866A rectifiers in a full-wave, 1-phase circuit. Driver unit has separate power supplies for high voltage, low voltage and bias.

The driver high voltage supply employs two Type 872A mercury vapor rectifiers in a single-phase, full-wave circuit. It supplies dc voltage for the plates of the audio drivers and the plates and screens of the RF driver tubes. The low voltage supply uses two Type 866A mercury vapor rectifiers in a single-phase, full-wave circuit to provide dc voltage for plates and screens of the low power stages and for screens of the audio driver tubes. The bias supply employs a 5U4G high vacuum rectifier in a single-phase, full-wave circuit. It supplies bias to the 807 amplifier, audio driver, and RF driver amplifier tubes, and dc

voltage for the arc-suppression circuit. The entire RF network is double shielded to reduce spurious radiation. RF circuits are completely independent of the cabinet proper.


A highly perfected oscillator design in conjunction with extremely stable, low temperature coefficient crystals has resulted in a frequency stability of better than ±5 cps (typical performance is better than ±2 cps) and has eliminated the troublesome crystal oven and its associated thermostats, relays and other controls.


Frequency Range: 540-1600 kc standard, frequencies to 10 mc available.

Power Output: 21E — 5,500/1,100 watts; 5,500/550 watts on order.

21M - 10,600/5,500 watts; 10,600/1,110 watts on order.

Power Increase Package: Converts 21E to a 21M.
Frequency Stability: Better than ±5 cps. (Typical — Better than ±2 cps.)

BLOCK DIAGRAM 21E/M

Audio Frequency Response: Within ±2 db from 30-10,000 cps. (Typical — Within ± 1.5 db from 30-15,000 cps.)

Distortion: Less than 3% from 50-10,000 cps for 95% modulation, including all harmonics up to 16 kc. (Typical — Less than 3% from 30-15,000 cps.)

Residual Noise Level: 60 db or better below 100% modulation.

Carrier Shift: Less than 3%. (Typical value less than

RF Output Impedance: 50 ohms unbalanced, 40-600 ohms unbalanced on order.

Audio Input Impedance: 150/600 ohms balanced.

Audio Input Level: +10 dbm, ± 2 db, 600 ohms input with built-in input pad. With the input pad removed, -5 dbm is sufficient for 100% modulation. 150 ohm connection of input transformer is possible when desired.

Power Source: 208/230 v, 50/60 cps, 3 phase; 50 cps on special order.

Power Demand:

	Power	Power Factor
*5,000 watts	(kw)	(%)
Filaments and Blowers	2.64	_
Output — 0% Modulation	12.8	90.0
— 30% Modulation	13.8	90.0
— 100% Modulation	18.5	90.0
*10,000 watts		
Filaments and Blowers	3.28	—
Output — 0% Modulation	21.2	90.5
— 30% Modulation	23.6	90.1
— 100% Modulation	32.8	91.5

Tube Complement:

	21E			21M
1	6AU6	Crystal Oscillator	1	6AU6
1	6SJ7	Buffer or Multiplier	1	6SJ7
1	807	Amplifier	1	807
2	4-125A	Driver	2	4-125A
1	3X2500A3	Final Amplifier	2	3X2500A3
2	6SJ7	Audio Amplifier	2	6SJ7
2	4-125A	Driver Amplifier	2	4-125A
2	3X3000A1	Modulator .	2	3X3000A1
1	5U4G	Exciter Bias	1	5U4G
2	866A	Final Amplifier Bias	2	866A
2	866A	Low Voltage Plate	2	866A
2	872A	Intermediate Plate	2	872A
6	575A	High Voltage Plate	6	575A

Ambient Temperature Range: Up to 45°C.

Size: 1051/4" W, 76" H, 28" D (267.34 cm W, 193.04 cm H, 71.12 cm D). (Plate transformer external.) Occupies 21 square feet of floor space.

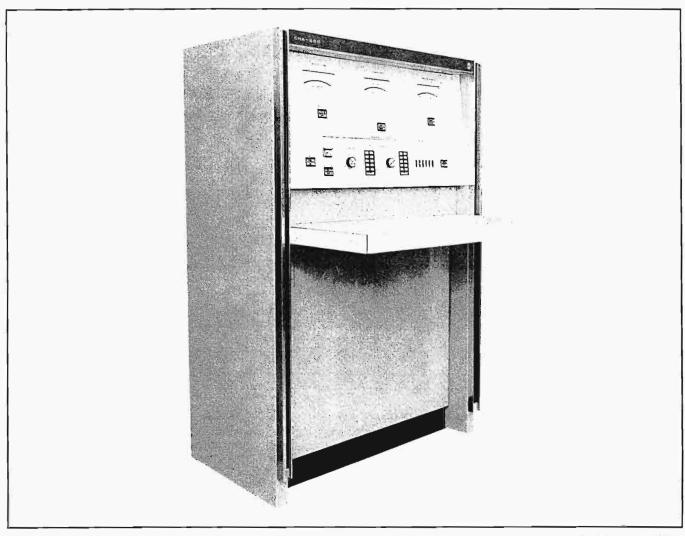
Weight: 21E — Approx. 2,700 lbs. (1224.72 kg). 21M — Approx. 3,000 lbs. (1360.8 kg).

*21E capable of 5,500 watts output; 21M capable of 10,600 watts output.

rart No. 505 9578 (Type 21E)
Includes one set of tubes, one crystal and one instruction book.
No Part Number
Complete set of spare tubes for 21E.
No Part Number
FCC set of crystal and one instruction book.

No Part Number
FCC set of spare tubes for 21E.

No Part Number
5,000/500-watt 21E transmitter on special order. Price in addition to basic 5,000/1,000-watt unit.


Part No. 505 9580 (Type 21M)
Includes one set of tubes, one crystal and one instruction book.

No Part Number
Complete set of spare tubes for 21M

Complete set of spare tubes for 21M.
No Part Number
FCC set of spare tubes for 21M.
No Part Number 10,000/1,000-watt 21M transmitter on special order. Price in addition to basic 10,000/5,000-watt unit.

No Part Number Factory short wave conversion, 1.6 mc-10 mc.
No Part Number

Spare crystal for 21E/M.

CHA-250 CONSOLE

COLLINS CHA-250 kw HF TRANSMITTER

Collins type CHA-250 is a high-frequency broadcast transmitter having a minimum carrier output of 250 kilowatts. The CHA-250 represents advanced state-of-the art techniques which have been adapted to serve the needs of the international broadcaster. The trouble-free tuning and control techniques used in thousands of transmitters built by Collins Radio Company in the past few years were applied during the design of the CHA-250, resulting in a transmitter of extraordinary operating simplicity.

The CHA-250 transmitter has two features never before offered in a transmitter of this power level:

- (1) The ability to tune to any frequency in the 3.95- to 26.5-mc band in 20 seconds or less
- (2) An r-f power amplifier low-loss output tank circuit having no rolling, sliding, or switching contacts.

In broadcasting, on-the-air time is of utmost importance. The Collins CHA-250 transmitter can perform a complete tuning sequence in 20 seconds or less. This feature not only provides a considerable savings in off-the-air time, but it permits a frequency change to be per-

formed in the time normally allocated for a station break. For example, assume the use of a conventional transmitter operating on an r-f circuit requiring an average of four frequency changes daily. Further, assume that the time required to change frequencies on the conventional transmitter to be 5 minutes and that the station programs in 15-minute increments. A comparison of the conventional transmitter and the CHA-250 transmitter tuning times reveals the great advantage the CHA-250 has over any conventional transmitter.

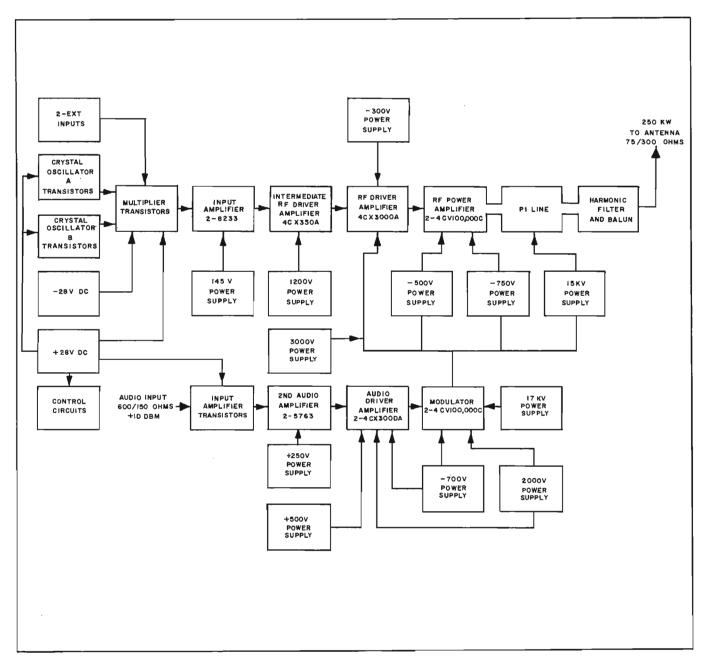
One CHA-250 transmitter, with the ability to change frequency during station break, can provide 1 hour more on-the-air time daily than the conventional transmitter.

A further advantage offered by the CHA-250 is a preset feature to permit programming the automatic tuning circuits of the transmitter in advance of the next frequency change while the transmitter is in operation. This is accomplished by pre-setting the transmitter controls, which provide direct digital readout of the operating frequency, and the exciter crystal selector control for the correct crystal frequency. At the time for frequency change, depressing the TUNE START pushbutton starts the tuning sequence, which is accomplished in 20 seconds or less. Automatic dissipation protection circuitry protects the r-f driver and power amplifier tubes against over-dissipation during any condition of tune-up. It is evident from the above description that a frequency change can easily be accomplished on the CHA-250 transmitter by one operator with a minimum of training.

The pi-line low-loss r-f power amplifier tank circuit and harmonic filter represents a major engineering breakthrough, which is exclusive to the CHA-250 transmitter. It not only obviates the requirement for any rolling, sliding, or switching contacts in this high-power circuit, but it provides a reduction in power loss of more than 50 percent over the equivalent circuit offered by any other transmitter of this power level.

ELECTRICAL SPECIFICATIONS.

Emission: High-level amplitude modulation (A3), Frequency Shift Keying (F1).


Frequency Range: 3.95 to 26.5 mc, continuous coverage. Frequency Control: By oven controlled crystal oscillator (two each furnished), or by either of two customerfurnished external signal sources.

Frequency Stability with Type CR-27/U Crystals: From +5° to +50°C and primary voltage variation ±10%, less than 5 parts per million frequency change per 24-hour period. Greater stabilities obtainable with higher quality crystals.

Tuning Time: Frequency change accomplished in 20 seconds, maximum.

Tuning Mode: Automatic.

Power Output: At least 250-kw unmodulated carrier power. Carrier Shift: Less than 5%, exclusive of that caused by primary power.

Output Impedance: 300 ohms, balanced; 75 ohms, unbalanced.

VSWR: 1.5:1, maximum.

Type of Modulation: High-level AM, FSK.

Modulation Capability: Capable of 100% sine wave or clipped sine wave. Less than 5% tilt or overshoot for trapezoidal waveform from 100 to 3000 cps.

Modulation Duty Factor: Continuous at 100% sine wave; 5 minutes at 100%, clipped sine wave.

Audio Input for 100% Modulation: +10 dbm, ±2 db. Audio Input Impedance: 600/150 ohms, balanced or unbalanced.

Audio Response: Within 1 db from that at 1000 cps between 100 and 7500 cps and within 2 db between 50 to 10,000 cps, at all modulation levels up to 95%.

Audio Distortion: Not more than 4% distortion when modulated 100% over the frequency range of 100 to 5000 cps; and not more than 5% from 50 to 100 cps and from 5000 to 7500 cps.

Noise Level: Carrier hum and extraneous noise is at least 50 db (unweighted) below 100% modulation.

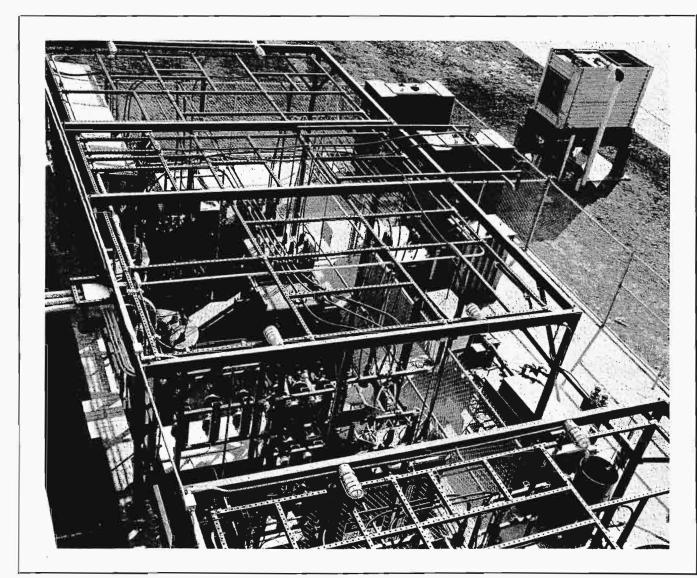
Ilurmonic and Spurious: All harmonics and harmonically related spurious emissions are at least 80 db below carrier level. Incidental phase modulation products that occur close to the carrier and are a result of (1) random crystal variations, (2) power supply ripple, (3) power supply regulation during modulation, (4) mechanical vibration of the crystal, and which appear in the output of the transmitter are at least 43 db below 1 radian.

Power Input:

At Rated Carrier Output: 455 kw at 85% pf At 100% Sine Wave: 682 kw at 85% pf

Power Source: 4160 volts, $\pm 3\%$; 60 cps, $\pm 5\%$, 3-phase, 3-wire (50 cps optional).

Altitude: 0 to 6000 feet.


Temperature: +5° to +50°C at sea level; +5° to +38°C at 6000 feet.

Humidity: 0 to 95% relative humidity.

Storage: -35° to $+60^{\circ}$ C.

Power Source: 4160 volts ±3% (steady state) ±33% (instantaneous); 60 cps ±5% (steady state); ±3% (instantaneous) (50 cps optional)

No Part Number

COLLINS AM TRANSMITTER **CONVERSION KITS**

The conversion kits listed below for the various Collins AM transmitters include all transformers, meters and necessary capacitors for the same frequency. Crystals are not included. One set of tubes is included for the final RF and audio stages only and any necessary rectifiers. Components for frequency change are additional.

No Part Number 300J-2 to 550A

No Part Number 550A to 20V-2.

No Part Number 330J-2 to 20V-2.

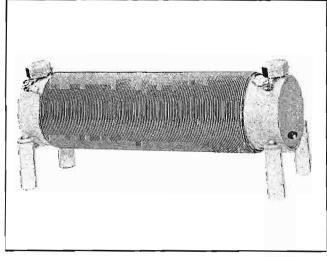
No Part Number 21E to 21M.

COLLINS 172G DUMMY ANTENNA

This air-cooled unit provides a load to dissipate transmitter output for off-the-air testing. Consisting of 8 ferrule type, non-inductive resistors, with insulated end brackets and clips, it may be mounted on the transmitter or adjacent wall. The 172G-1 has an impedance of 52 ohms; the 172G-2, 73 ohms.

Power Rating: 1 kw. Size: Approx. 6" W, 9" H, 121/2" D (15.24 cm W, 22.86

cm H, 31.75 cm D). Weight: 5 lbs. (2.27 kg).

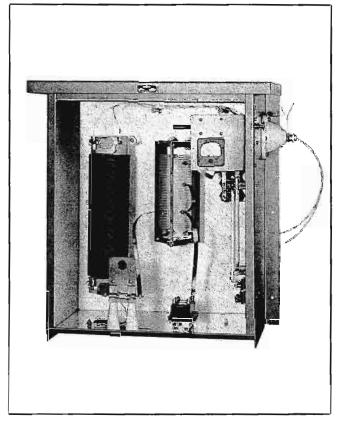

Part No. 522 1410 014 (Type 172G-1) Part No. 522 1411 014 (Type 172G-2)

STATES WG-52 DUMMY ANTENNA

An air-cooled dummy load to dissipate output of the Collins 21E AM Transmitter. The WG-52 has an impedance of 52 ohms and a peak of 7.5 kw.

Part No. 097 8138 00

COLLINS TOWER LIGHTING FILTER CHOKES



These solenoid wound 2- and 3-wire chokes provide high impedance throughout the broadcast band for isolation of the ac power lines from the antenna. Coils are wound of #10 wire and are rated at 2,000 watts, 120

v ac, single phase. Provided with mounting brackets and standoff insulators for mounting in 42E-7/8 antenna coupling units.

Part No. 543 3927 Unhoused, 2-wire, 2,000 watts. Part No. 543 3926 Unhoused, 3-wire, 2,000 watts.

COLLINS 42E ANTENNA COUPLING UNITS

These specially constructed units match a series-fed vertical radiator to an unbalanced transmission line. Intended for continuous, unattended duty in conjuction with transmitters having emission type A0, A1, A2 or A3, the 42E-7 operates with transmitters of carrier power output of 250-1,000 watts. The 42E-8A operates with transmitters of 5,000 watts and the 42E-8B operates with transmitters of 10,000 watts.

The electrical circuit of the 42E Antenna Coupling Units is a low-pass "T" network with good harmonic attenuating properties. A three-wire or two-wire tower lighting filter choke and remote antenna current sampling transformer may be mounted in the cabinet, and an antenna current meter and line current meter jack are provided.

A horn gap furnishes lightning protection. The antenna connection is made by an insulated feed-through bushing on the side of the cabinet and the bushing has a hollow stud for the lighting circuit. The transmission line comes through the base of the cabinet. Gray weatherproof aluminum housing. Remote antenna current metering kit and antenna current transformer for remote reading of antenna current up to 25 amps available for all Collins AM Transmitters.

Size: 42E-7 — 29" W, 28" H, 18" D (73.66 cm W, 71.12 cm H, 45.72 cm D).

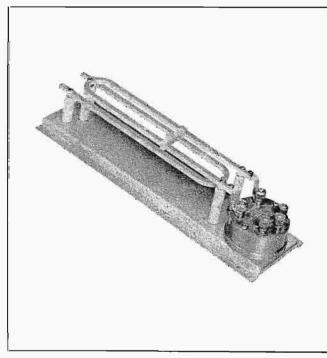
Weight: 64 lbs. (29.03 kg). Size: 42E-8A/B — 36" W, 28" H, 22" D (91.44 cm W, 71.12 cm H, 55.88 cm D).

Weight: 124 lbs. (56.25 kg).

Part No. 522 1028 (Type 42E-7) Part No. 522 1029 (Type 42E-8A) Part No. 522 1029 (Type 42E-88)

COLLINS REMOTE ANTENNA METERING KIT

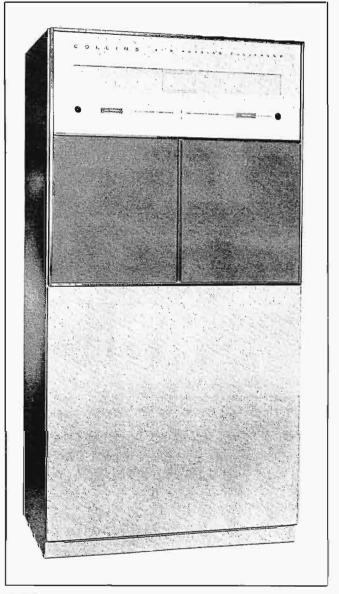
The Collins remote antenna current metering kit is designed for the Collins series of AM transmitters. The kit for the 20V-3 includes RF transformer, thermocouple, remote meter and meter mounting bracket. Specify type of tuner, base current of tower, base resistance or complete description of antenna system.


The kit for the 21E and 21M transmitters includes RF transformer and thermocouple. (Remote meter is included in transmitter.) Specify type of tuner, base current of tower, base resistance or complete description of antenna system.

No Part Number For 20V-3 Transmitters. For 20V-3 Transmitters.

No Part Number
For 20V-3 Transmitters. Same as above but with expanded scale and matching thermocouple.

No Part Number
For 21E/M Transmitters.


COLLINS ANTENNA CURRENT TRANSFORMER

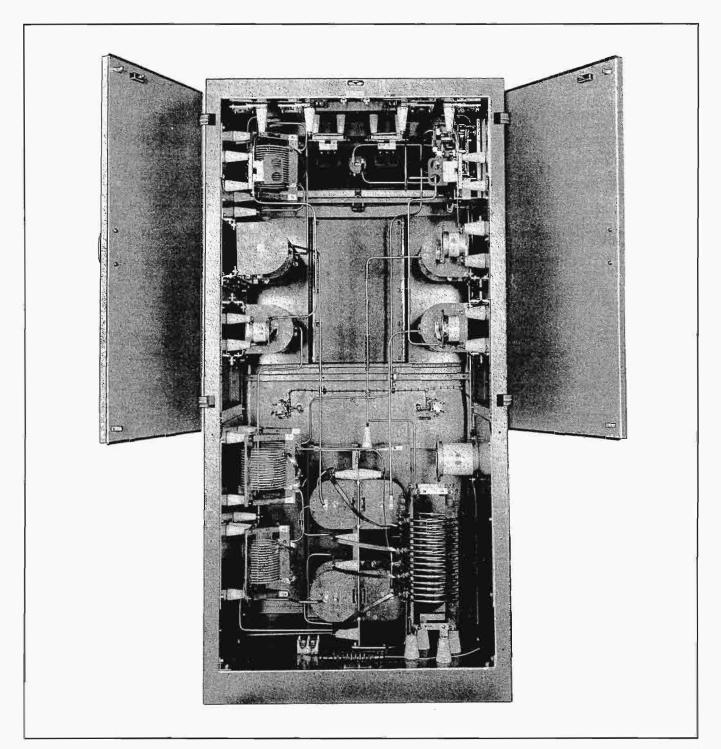
Used with remote thermocouple and meter for remote monitoring of antenna current. For currents up to 25 amps. Thermocouple not included.

Part No. 543 3917

PHASING

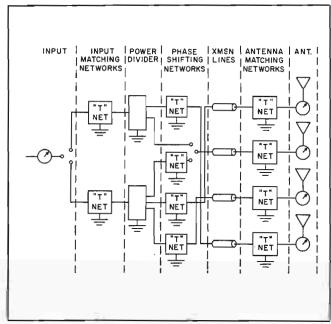
COLLINS 81M PHASOR

Collins Radio Company maintains a research and development staff which devotes its full efforts to custom design and manufacture of phasing and tuning equipment that will meet critical operating parameters with a minimum of maintenance and adjustment. By instituting its own design and construction, Collins can offer fastest possible delivery, maintain its famous standard of quality and sell at the lowest possible cost.


Engineered into each installation are easily-adjusted networks, highest stability, adequate voltage and current safety factors and maximum economy. A customer's requirements, as specified by his consulting engineer, are strictly adhered to and designs are submitted for approval before construction is started.

After the consulting engineer has made channel studies for an available frequency, he will design an array to fit the location, frequency and other requirements. He will determine the pattern shape and size in both the vertical and horizontal planes, the maximum expected operating values of fields in both the nulls (minimum signal areas) and the lobes (maximum signal areas), the proper size, shape, height, spacing, and orientation of the antenna towers, and the phase relationships and amplitude ratios of the radiation fields of the individual antennas. This information is then submitted to the FCC with the application for a construction permit.

A Collins 81M directional antenna phasing and branching system consists of: a branching circuit in which the


power is divided in precisely the amounts of power necessary to give the proper ratio of fields from the individual antennas; an impedance matching circuit to match the power divider input impedance to the common point impedance at which the power input is measured; phase shifting networks in series with each of the transmission lines going to the individual antenna towers; the transmission lines themselves; and the impedance matching network between each of the transmission lines and its associated antenna tower.

The power divider in Collins 81M equipment is usually

a resonant tank circuit consisting of a large fixed coil tapped with smaller variable coils for power adjustment. An alternate design uses a group of variable coils, each one feeding a tower; this group then becomes the tank coil of the circuit.

For 1 kw or lower, the capacitive arm of the tank circuit is a capacitor and variable coil connected in series. The variable coil provides tuning adjustment by varying the over-all negative reactance in this branch of the tank. In higher powers, the tank capacitance is usually a variable vacuum capacitor in parallel with one or more fixed capacitors.

TYPICAL PHASING SYSTEM

Phase shifting networks are "T" designed, with variable coils mechanically connected in tandem for the series arms and a coil and capacitor in series for a shunt arm. Wherever possible, 90° networks — capable of being adjusted ±30° from the design value — are supplied.

Wherever a phase shift network is not required, a series variable coil and capacitor are used to supply variation of $\pm 20^{\circ}$ around a 0° setting. They are used for trimming phase shift of current in the towers in which they are used.

"T" networks are also used for impedance matching at the tower base. The network has sufficient latitude of adjustment to match the transmission line impedance to any expected base operating impedance and still permit adjustment of phase shift.

Switching of circuits for day and night operation or directional and non-directional operation is accomplished by impulse-type, toggle-operated RF relays, energized by pushbutton switches on the front panel. The pushbutton automatically removes the plate voltage of the transmitter before pattern switching and restores it when switching is completed. Interlocks on the cabinet doors also remove the plate voltage when doors are opened.

Amplitude and phase controls have counters to assure accurate resetability. In complex arrays requiring additional controls, the controls and counters are behind the tilt-out panel in the lower half of the cabinet.

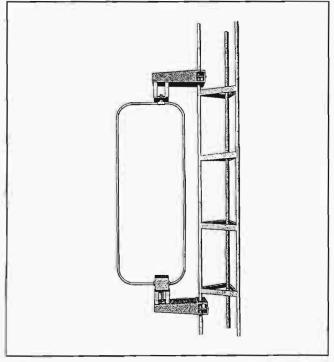
Power dividing circuits and phase shift networks utilize heavy edge-wound copper ribbon inductors and ceramic cased mica capacitors. Vacuum capacitors are used where made necessary by high circulating currents.

Plated 5/16" copper tubing is used for all RF busses and insulation is steatite or Mycalex.

Input and output connections are provided at the top of the phasing cabinet unless otherwise specified. Special terminations are provided for solid dielectric cables in both the phasing cabinet and antenna coupling units.

An input common point RF ammeter is supplied along with line current meter jacks. Antenna current meters have make-before-break switches, which can be operated without opening the cabinet door on the weatherproof coupling units.

Extensive descriptions of typical systems are available upon request of CDS-377.


Power: 1, 5 and 10 kw in 2-, 3-, 4-, 5-, and 6-tower arrays.

Patterns: Directional day and night, same pattern; directional nighttime only; or different pattern day and night.

Size: 38" W, 76" H, 27" D (96.52 cm W, 193.04 cm H, 68.58 cm D). (Complex Collins 81M phasing systems may require two cabinets totaling 76" W.)

No Part Number

COLLINS 564A-1 PHASE SAMPLING LOOP

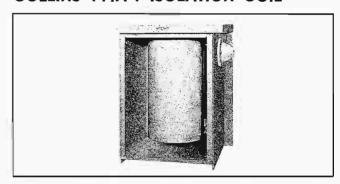
Designed to sample the relative phase relationship of radio frequency energy from 550-1600 kc antenna towers in directional antenna arrays, the Collins 564A-1 is made of two loops of #10 copper wire which may be connected either in series or in parallel. The wires are contained within a loop of %" painted, copper tubing which serves as an electrostatic shield.

A universal coupling permits the loop to be connected to any type of pressurized or unpressurized air or solid dielectric transmission line. The loop offers a good match to lines of 50-75 ohms impedance. A universal mounting bracket allows the loops to be mounted on any part of the antenna structure.

Size: Approx. 30" W, 7' 6" H (76.2 cm W, 228.6 cm H). Weight: 50 lbs. (22.68 kg).

Part No. 522 1518 004

COLLINS 564A-2 PHASE SAMPLING LOOP


An unshielded loop of galvanized iron pipe.

Size: Approx. 42" W, 7' 2" H (106.68 cm W, 218.44 cm H).

Weight: 35 lbs. (15.88 kg).

Part No. 522 1519 004

COLLINS 144A-1 ISOLATION COIL

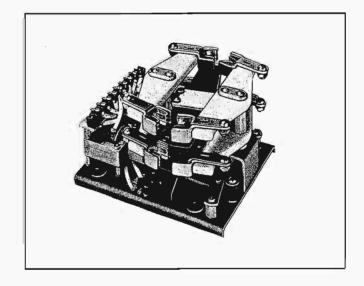
Coil provides isolation for the sampling line in directional arrays, presenting a high impedance for the line across the base insulator. Unit consists of a phenolic coil form which will accommodate 37 turns of RG8/U or similar solid dielectric sampling line. May be mounted on wall of tuning shack or in housing (pictured).

Inductance: Approx. 180 microhenrys.

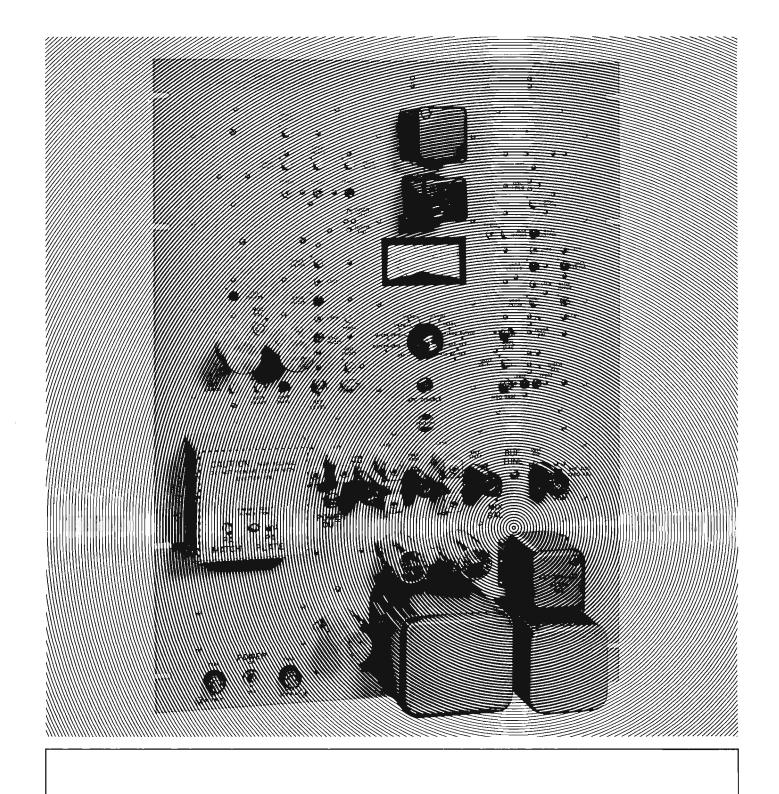
Size: 10" diameter, 18" L (25.4 cm diameter, 45.72 cm L).

Weight: 6 lbs. (2.72 kg).

Part No. 522 1520


(Type 144A-1)

JOHNSON RF CONTACTORS


The 145-100 and 145-200 contactors are especially designed for high voltage radio frequency switching and do voltage switching in high voltage rectifier circuits. They require no "holding" power and will operate with a momentary application of voltage.

Standard contactors are supplied with four auxiliary switches: two "normally closed" for control of solenoid voltage and two "normally open" for operation of signal lamps or other related functions. Solenoids are wired for 220 v, 50-60 cps or 110 v, 50-60 cps on special order.

Part No. 410 0209 00 (Type 145-101-13)
Part No. 410 0210 00 (Type 145-102-13)
Part No. 410 0211 00 (Type 145-201-13)
Part No. 410 0212 00 (Type 145-202-13)

Type No.	Maximum Current	Contacts	Maximum Contact Rating (at 2 mc)	Size
145-101-13	4 amps	SPDT	17 kv, 25 amps	(20.0 cm W, 13.97 cm H, 16.51 cm D)
145-102-13	4 amps	DPDT	17 kv, 25 amps	(20.0 cm W, 13.97 cm H, 16.51 cm D)
145-201-13	8 amps	SPDT	22 kv, 25 amps	(26.67 cm W, 15.88 cm H, 20.96 cm D)
145-202-13	8 amps	DPDT	22 ky, 25 amps	(26.67 cm W, 15.88 cm H, 20.96 cm D)

FM TRANSMITTERS

WHAT'S THE MYSTERY ABOUT STEREO?

The mystery of stereophonic FM broadcasting is wiped away with the new, straightforward Collins approach. Not only does Collins equipment faithfully reproduce "live" sound in both direction and dimension, it also assures the stereo broadcaster a stable system of transmission. The Collins method of composite signal generation does away with the costly and unstable equipment needed in conventional double-injection system of stereo broadcasting.

Amplitude differences result from the directional characteristics of the human ear and the baffle effect produced by the head. The time differences result from the difference in path length to each ear from a sound source which is off to one side.

To provide a realistic stereo effect, the time delay and amplitude differences between the signal received by the left and right ears must be maintained from the original sound source to the ear of the listener. The problem becomes one of maintaining amplitude and phase differences to provide adequate channel separation.

Left and right channels must have proper balance to give the listener faithful reproduction of a live presentation. If the source of sound moves to the left on the program stage, the left channel's volume must increase and the right channel's volume decrease proportionately to convey accurately the change of direction of the sound source.

Adequate channel separation — at least 30 db — must be maintained. Lack of adequate separation would permit "bleeding" of one channel's sound into the other, thus moving the sound source to an apparent center from the listener's point of view.

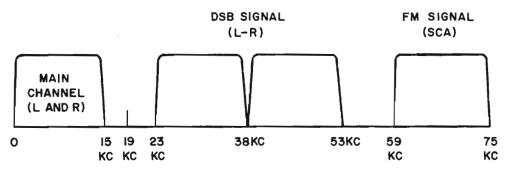
Finally, compatibility is required. The transmitted stereo signal must be capable of being received not only by the stereo FM receiver, but by existing monaural receivers as well.

To comply with FCC requirements, a signal which can be received by monaural receivers must be transmitted. This signal is the combination of the left and right channels, or L+R. To achieve stereo broadcasting, a subcarrier FM signal provides the vehicle for the third dimensional sound. This is the L-R channel.

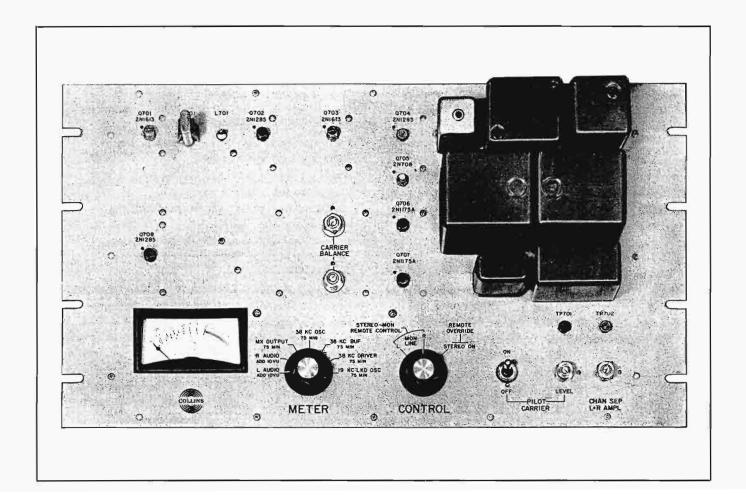
The Collins 786M-1 FM Stereo Multiplex Generator achieves this L-R signal by a mathematical system of

time division. More of this later. Basically, then, the stereo FM receiver gets two signals, an L+R and an L—R. To feed the left channel and the receiver's left speaker, the receiver adds the L+R and L—R signals and derives 2L. The same process by subtraction yields 2R in the right speaker. Since the figure 2 represents a volume control setting, the receiver in effect recovers the L and R sound originally produced at the left and right microphones on the program stage.

Returning to the time division principle, it is this factor which makes the Collins Stereo Generator a standout unit in operation and maintenance. In the conventional stereo generation system, two channels are required to feed L+R and L-R to the exciter. This technique, known as matrixing, requires gain and phase shift between the two channels be maintained within close tolerances to maintain adequate channel separation throughout the system.


Collins' new approach eliminates the need for continual surveillance of time delay shifting between the two channels by eliminating the double-injection system entirely.

Instead, the direct FM wide band exciter is fed a single, composite signal on one wire. Any shift in gain or phase will affect both channels equally, thus maintaining the 35 db channel separation. Not only does this assure the broadcaster an inherently stable method of stereo transmission, but greatly simplifies both operation and maintenance.


The rather expensive matrix networks needed in the dual channel system are eliminated as are the time delay switches needed to match the channels when a shift in gain or phase occurs.

The Collins time division system of stereo signal generation is nothing more than a sampling at a 38 kc rate of left and right audio inputs. The output from the switch is equivalent to L+R plus the L-R double sideband components centered on the switching frequency (38 kc) and its odd harmonics.

The composite wide band spectrum accepted by the exciter would include the L+R signal, a 10% 19 kc pilot carrier inserted for phasing reference, the L-R DSB components centered on the 38 kc subcarrier, and the 67 kc SCA channel when an auxiliary SCA generator is installed.

STEREO MULTIPLEX SPECTRUM

786-1 FM STEREO MULTIPLEX GENERATOR

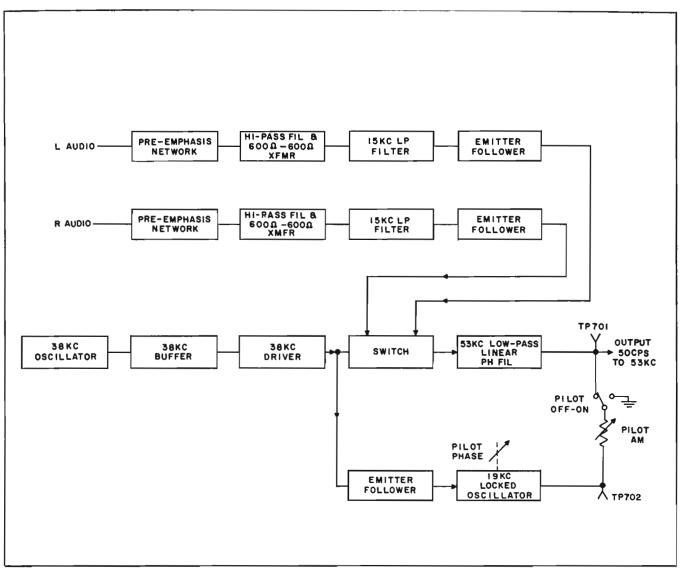
A stable and reliable method of stereophonic FM broadcasting is now available through the new time division system where both stereo channels are integrated into a composite signal which is fed to a wide band exciter (Collins A830-2) on a single line.

The Collins 786M-1 FM Stereo Multiplex Generator does away with the inherent instability of the conventional dual channel method of stereo injection.

Instead, the Collins 786M-1 feeds monaural audio and the subchannel, required for stereo operation, to the exciter on a single, composite signal. The time division system eliminates the costly and unstable dual channels which require matrix networks. L+R and L-R outputs of the matrix networks must be compensated to make up time differences in the two channels. Also, accurate amplitude balance between the two channels must be maintained. In the Collins system, this problem is eliminated by using a wide band direct FM exciter. With a system of this type, any gain changes or time delays will affect the main and sub-channels equally.

The Collins time division system is nothing more than a sampling at a 38 kc rate of the left and right audio inputs. After transmission, a corresponding component in the FM receiver demodulates the composite signal in synchronism with the sampling, converting it to left and right audio through the respective speakers.

The composite stereo signal (L+R) and L-R is achieved by filtering out unwanted harmonics created in the function of the four-diode time division switching circuit. The resulting spectrum shows only the main channel (L+R) which is the monaural signal; a 10% 19 kc pilot carrier; the subchannel (L-R) which is the stereo signal on a 38 kc carrier. An SCA channel may be placed on a 67 kc carrier by addition of an auxiliary SCA generator.


Features of the 786M-1 are:

SIMPLE CIRCUITS — The single line, time division system eliminates matrixing components, greatly simplifying circuitry.

STABLE — All components are temperature-compensated to provide long-term stability. The unit is completely transistorized.

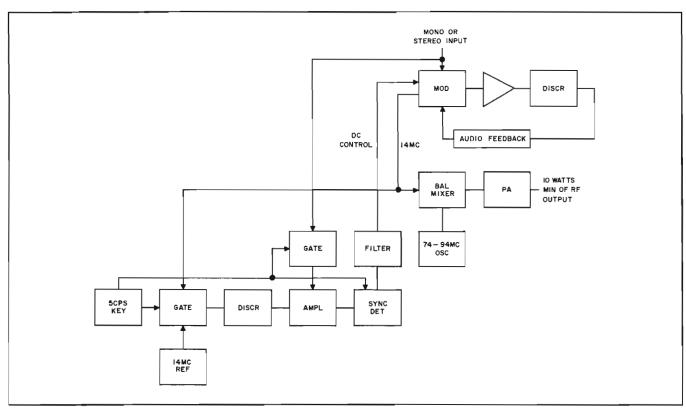
Self-metered — An audio VU meter monitors both audio inputs and interior circuit points for rapid maintenance.

Easily Installed — The Collins 786M-1 may be installed in the 830B-1A, 830D-1A or 830E-1A FM, 830F-1A, 830F-2A, 830H-1A, 830N-1A.

BLOCK DIAGRAM 786M-I

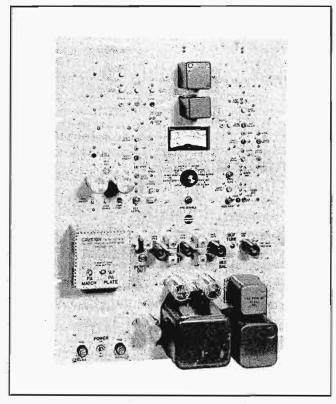
Pre-emphasis networks are plug-in type; can be replaced with 20 db flat pad for testing. Hi-pass filter and 600 ohm-600 ohm transformers prevent interference with exciter AFC circuits by any 5 cps components in input. Transformers convert from balanced to unbalanced inputs. 15 kc low pass filters limit bandwidth to 15 kc to prevent cross-talk between main and sub-channels. Filters provide over 60 db attenuation for frequencies above 19 kc. Emitter followers provide isolation between left and right audio inputs and stereo switch. 38 kc oscillator, buffer and driver provide 38 kc drive signal to the stereo switch. When 38 kc carrier goes positive, upper pair of diodes in switch conduct and connect left channel to output; when carrier goes negative, lower pair of diodes connect right channel to output. L+R correction is obtained by feeding left and right signals around switch through two resistors. The 53 kc low pass linear phase filter removes high frequency switching components which would fall outside the assigned bandwidth. The filter meets the requirement of constant time delay for all frequencies up to 53 kc. Main channel audio and subchannel DSB crossings thus occur simultaneously. The filter also has flat frequency response to 53 kc. These two factors are held to tolerances which provide over 35 db channel separation for 50-15,000 cps audio input frequencies rising to 38 db at 5 kc. The emitter follower and 19 kc locked oscillator provide a 19 kc pilot carrier in phase with the 38 kc subcarrier at the output of the linear phase filter.

Distortion (either channel): Less than 1%, 50-15,000 cps. Channel Separation: 35 db or greater, rising to 38 db at approx. 5 kc.


Pilot Carrier Stability: ±2 cps at 19,000 cps.

Output Impedance: 600 ohms unbalanced.

Size: 19" W, 83/4" H, 31/8" D.


Weight: 14 lbs.

Part No. 522 2914 00

BLOCK DIAGRAM A830-2

COLLINS A830-2 10-WATT DIRECT FM EXCITER

An ideal, independent unit that may be used in educational stations or for other similar low power applications, the Collins A830-2 is a 10-watt direct FM exciter that accepts audio inputs from a monophonic, stereo (see Collins FM Stereo Multiplex Generator description, or SCA source by telephone lines or direct connection and modulates an existing carrier to provide an RF drive signal for direct transmission or further amplification. The unit serves as the exciter portion of the Collins 830B-1A and 830E-1A FM Transmitters (see descriptions) and may be rack mounted in 10-watt installations.

Power Source: 117 v ac ±5%, 50-60 cps, single phase. Power Supply Voltages:

 $+20 \text{ v dc} \pm 0.1 \text{ v}$, regulation $\pm 0.1 \text{ v}$; ripple 0.5%. $-10 \text{ v dc } \pm 0.1 \text{ v}$, regulation $\pm 0.1 \text{ v}$; ripple 0.5%.

 $+300 \text{ v dc} \pm 5.0 \text{ v}$, regulation $\pm 10 \text{ v}$; ripple 1%. Carrier Frequency Stability: Not more than ±2,000 cps. FM Noise Level: 65 db below 100% modulation (±75 kc).

AM Noise Level (RMS): 55 db below 100% AM level. Tube Complement (one each):

6AU6 6U8 12AT7

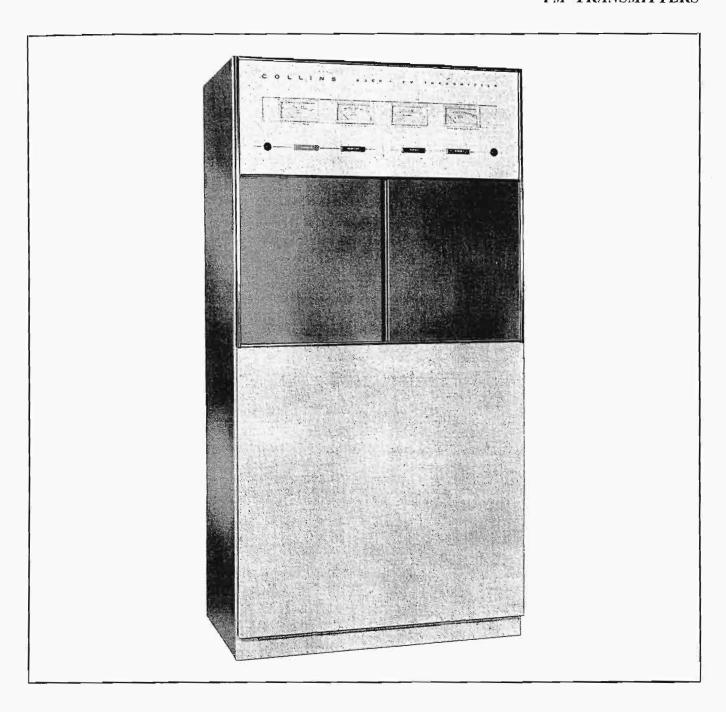
5763 2E26

Size: 19" W, 261/4" H, 33/8" D (48.26 cm W, 66.68 cm H, 8.57 cm D).

Weight: 42 lbs. (19.05 kg).

reignt: 42 IDS. (19.05 kg).
 Part No. 522 2714
 Consists of 10-watt exciter, set of tubes, transistors, power rectifiers, crystal and instruction book. Rack mounted unit.

 No Part Number
 Complete set of spare tubes, plug-in transistors plus power rectifiers for 830A-2.


 Na Part Number
 FCC set of spare tubes, plug-in transistors plus power rectifiers for 830A-2.

 No Part Number

No Part Number

Spare crystal operating frequency for A830-2 10-watt exciter.

Part No. 289 2743 00
Spare 14 mc crystal.

COLLINS 830B-1A FM TRANSMITTER

Designed for top reliability and superior quality sound, the Collins 830B-1A 250 Watt FM Transmitter not only affords the broadcaster an economical, self-contained unit, but also is readily adaptable to a variety of uses, including stereophonic FM and increased station power.

Clean, sharp lines plus "humanized" engineering for both operation and maintenance make the Collins 830B-1A an attractive, integrated unit in the most modern broadcast station.

Other quality features of the Collins 830B-1A which underscore its superior performance include:

Self-Contained — Transformers for the all solid state power supply as well as the harmonic filter are housed

inside the cabinet. Self-contained multiplexing equipment, including the Collins 786M-1 Stereo Generator, also may be installed inside. Space is provided for power transformers when the unit is used as a driver for the 830E-1A 5,000 Watt Transmitter.

SIMPLE OPERATION — The 830B-1A is pushbutton operated, featuring a "step-start" system in which starting sequences are fully automatic. All RF circuits are tuned from the front panel. Adequate metering is provided for rapid operation analysis. All adjustments can be made while the transmitter is on the air.

DEPENDABLE — The compact transmitter uses spacesaving silicon rectifiers which generate a minimum of heat. Spurious radiation is minimized and the unit has a high degree of stability.

MAINTENANCE EASE — Vertical panel construction eliminates hidden components and allows rapid inspection and maintenance. Cabinet interlocks minimize danger during circuitry inspection and maintenance. A grounded shorting stick is readily accessible to discharge capacitors before transmitter servicing.

RIGID TESTING — In accordance with rigid Collins standards, the 830B-1A is tested on the broadcaster's channel under proper load conditions prior to shipment.

The 830B-1A can meet a variety of power situations. Only the blower motor need be changed to convert from the nominal 60 cycle to 50 cycle operation.

Frequency Range: 88-108 mc. Power Output: 250 watts.

Carrier Frequency Stability: ±1000 cps.

Audio Frequency Response: ±1 db, 50-15,000 cps.

Distortion: Less than 1%, 50-15,000 cps. FM Noise Level: 65 db below ± 75 kc.

AM Noise Level: -55 db rms.

Harmonic Attenuation: At least -67 db.

Modulation Capability: ±100 kc.

RF Output Impedance: 50 ohms; SWR not to exceed 2:1.

Audio İnput Level: +10 dbm, ± 2 db.

Power Source: 230 v ac nominal, 60 cps, 1 phase (tapped for 200-250 v in 10 v steps).

Input Power Requirement: 860 watts, 90% power factor.

Power Line Regulation: 3%.

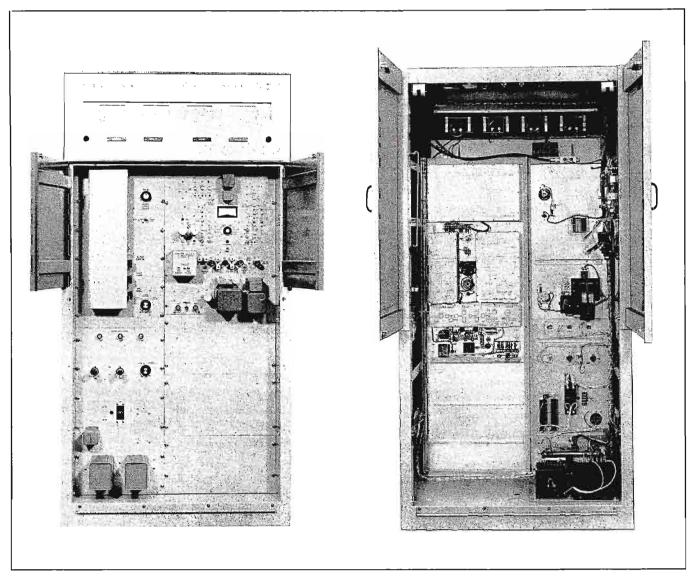
Variations: Slow line, $\pm 5\%$; rapid line, $\pm 3\%$.

Tube Complement:

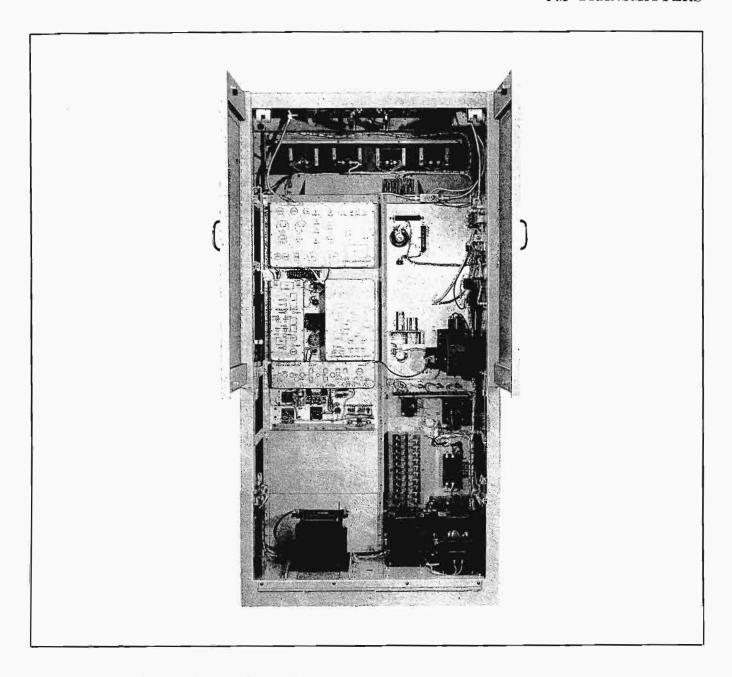
2 OD3 1 5763 1 6U8 1 2E26 1 12AT7 1 4CX250B

Temperature Range: 15° - 45°C.

Humidity: 0% - 95%.


Altitude: 6000 ft. (1828.8 m).

Size: 38" W, 76" H, 27" D (96.52 cm W, 193.04 cm H,


68.58 cm D).

Weight: 638 lbs. (289.4 kg).

Part No. 522 2871

830B-IA FM TRANSMITTER

COLLINS 830D-1A FM TRANSMITTER

Carefully-engineered design, straight-forward circuitry, clean-line cabinetry all make the Collins 830D-1A FM Transmitter a powerful and versatile installation in the most modern station.

The self-contained 1,000 watt unit achieves a new degree of reliability and operational ease never before obtainable by the FM broadcaster.

The new approach A830-2 10 Watt Exciter is the heart of the 830D-1A. This wide band direct FM unit accepts a composite stereo signal directly without using auxiliary modulators for either the stereo or SCA channels.

Operation and maintenance of the Collins 830D-1A is simplicity itself. Fewer components and fewer tuned circuits enhance the dependability and operational ease of the transmitter. Some of its features are:

Self-contained — Transformers for the all solid state power supply as well as the harmonic filter are enclosed in the cabinet. Self-contained multiplexing equipment, including the Collins 786M-1 Stereo Generator, also may be mounted inside.

SIMPLE OPERATION — The 830D-1A is pushbutton operated, featuring a "step-start" system in which starting sequences are fully automatic. All RF circuits are tuned from the front panel. Adequate metering is provided for rapid operational analysis. All adjustments can be made while the transmitter is on the air.

DEPENDABLE - Space-saving silicon rectifiers which generate a minimum of heat are employed. A regulated

filament transformer prolongs tube life. Stability is enhanced through the neutralized final power amplifier. Spurious radiation is held to a minimum; the entire unit has a high degree of stability.

MAINTENANCE Ease — Vertical panel construction eliminates hidden components and allows rapid inspection and maintenance. Cabinet interlocks minimize danger during circuitry inspection and maintenance. A grounded shorting stick is readily accessible to discharge capacitors before transmitter servicing.

RIGID TESTING - In accordance with rigid Collins standards, the 830D-1A is tested on the broadcaster's channel under proper load conditions before shipment is made.

The 830D-1A can meet a variety of power situations. Not a single component need be changed to convert from nominal 60 cycle operation to 50 cycle.

Frequency Range: 88-108 mc. Power Output: 1000 watts.

Carrier Frequency Stability: ±1000 cps.

Audio Frequency Response: ±1 db, 50-15,000 cps.

Distortion: Less than 1%, 50-15,000 cps. FM Noise Level: 65 db below ±75 kc.

AM Noise Level: -55 db rms. Harmonic Attenuation: -73 db. Modulation Capability: ±100 kc.

RF Output Impedance: 50 ohms; SWR not to exceed 2:1.

Audio İnput Level: +10 dbm, ±2 db.

Power Source: 230 v ac nominal, 50-60 cps, 1 phase (tapped for 200-250 v in 10 v steps).

Input Power Requirement: 2300 watts, 90% power factor.

Power Line Regulation: 3%.

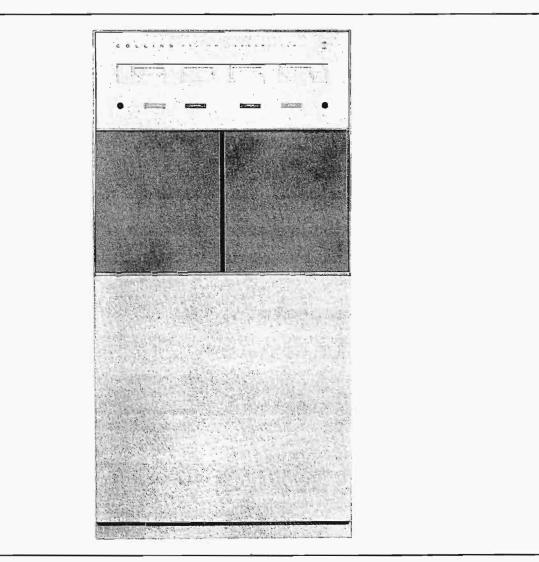
Variations: Slow line, $\pm 5\%$, rapid line, $\pm 3\%$.

Tube Complement:

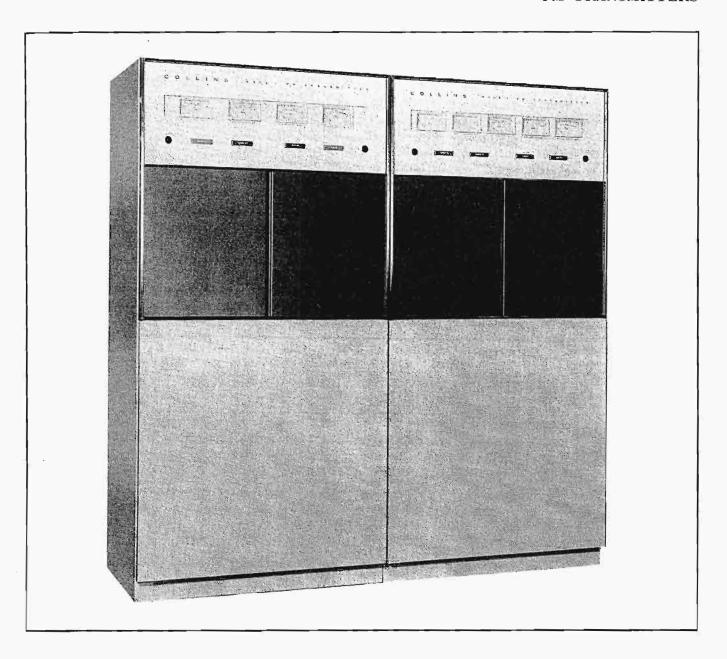
1 6U8 1 5763 1 12AT7 1 2E26 1 4CX1000A 1 6AU6

Temperature Range: 15° - 45°C.

Humidity: 0% - 95%.


Altitude: 6000 ft. (1828.8 m).

Size: 38" W, 76" H, 27" D (96.52 cm W, 193.04 cm H,


68.58 cm D).

Weight: 776 lbs. (351.99 kg).

Part No. 522 2969

830D-IA FM TRANSMITTER

COLLINS 830E-1A 5,000 WATT FM TRANSMITTER

Award-winning design and "humanized" engineering, hallmarks of Collins quality, are reflected in the Collins 830E-1A 5,000 Watt FM Transmitter.

One cabinet houses the A830-2 Direct FM Exciter and the 250 watt B830-1 Driver Unit; the other houses the 5,000 watt, single stage transmitter.

Features of the Collins 830E-1A are:

Self-contained — Every component is housed inside the two cabinets, including power transformers, harmonic filter and directional coupler. An optional accessory is the Collins 786M-1 Stereo Generator which fits inside the driver unit cabinet. Installation of the 786M-1 is a matter of minutes.

SIMPLE OPERATION — The transmitter is pushbutton operated, featuring a "step-start" system in which starting sequences are fully automatic. Highly stable RF circuits

are tuned and metered from the front panel, and all adjustments can be made while the transmitter is on the air. No tuning or trimming of the harmonic filter is required. The PA stage is easily neutralized and is not critical in adjustment.

DEPENDABLE—Grounded screen, eliminating the screen bypass capacitor, does away with a common source of failure. Driver power supply uses silicon rectifiers which take little space and generate a minimum of heat. Efficient blowers force air directly on the 4CX250B and 4CX5000A power amplifier tubes. Power supply is all solid state with the exception of the final amplifier plate voltage supply which uses mercury vapor rectifiers.

Maintenance Ease—Vertical panel construction eliminates hidden components and allows rapid inspection and maintenance. Cabinet interlocks minimize danger during

circuitry inspection and maintenance. A grounded shorting stick is readily accessible to discharge capacitors before transmitter servicing.

RIGID TESTING — In keeping with rigid Collins standards, the 830E-1A is tested on the broadcaster's channel under proper load conditions before the unit is shipped.

While the transmitter nominally operates on 60 cycle power, only the two blower motors need be changed to convert to 50 cycle operation.

Frequency Range: 88-108 mc. Power Output: 5000 watts.

Carrier Frequency Stability: ±1000 cps.

Audio Frequency Response: ±1 db, 50-15,000 cps.

Distortion: Less than 1%, 50-15,000 cps.

FM Noise Level: 65 db below ±75 kc.

AM Noise Level: -55 db rms. Harmonic Attenuation: -80 db. Modulation Capability: ±100 kc.

RF Output Impedance: 50 ohms; SWR not to exceed 2:1.

Audio Input Level: +10 dbm, ±2 db.

Power Source: 230 v ac, 60 cps, 3 phase (tapped for 200.250 v in 10 v steps).

Input Power Requirement: 11 kw, 90% power factor.

Power Line Regulation: 3%.

Variations: Slow line, $\pm 5\%$; rapid line, $\pm 3\%$.

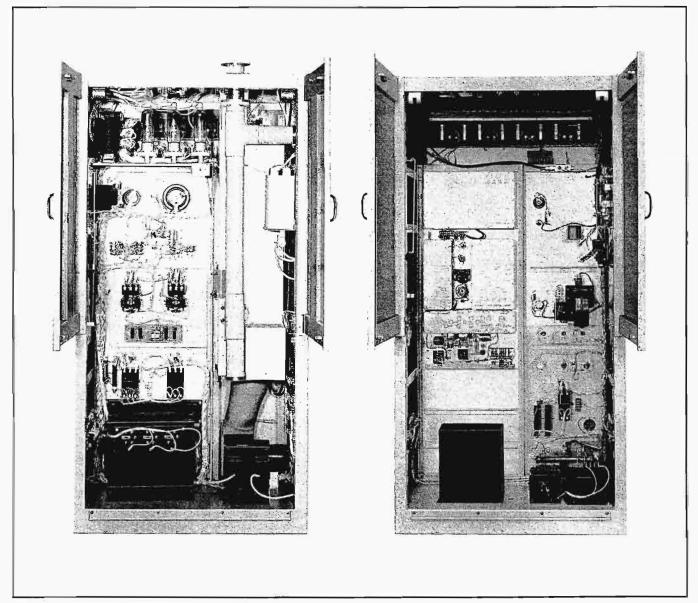
Tube Complement:

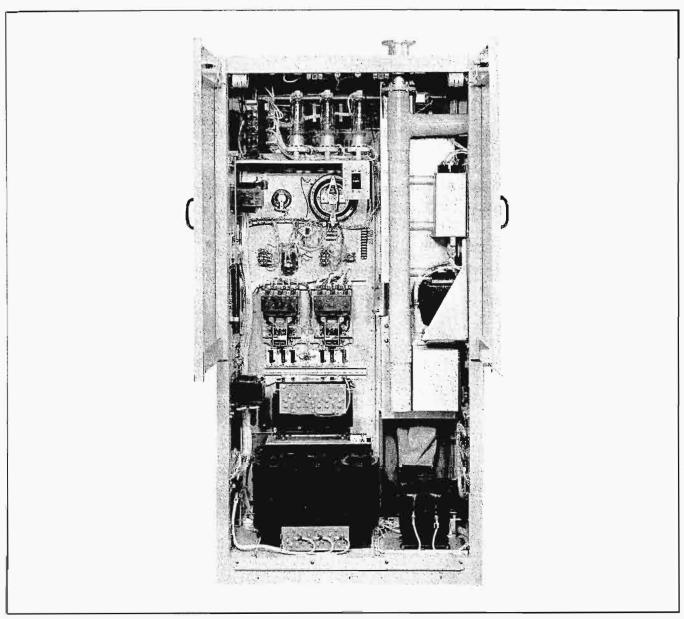
2 OD3 1 2E26 1 6U8 1 4CX250B 1 12AT7 6 872A* 1 6AU6 1 4CX5000A

1 5763 Temperature Range: 15° - 45°C.

Humidity: 0% - 95%.

Altitude: 6000 ft. (1828.8 m).


Size: 76" W, 76" H, 27" D (193.04 cm W, 193.04 cm H,


68.58 cm D).

Weight: 1800 lbs. (816.48 kg).

*Not used if silicon diode rectifiers are employed.

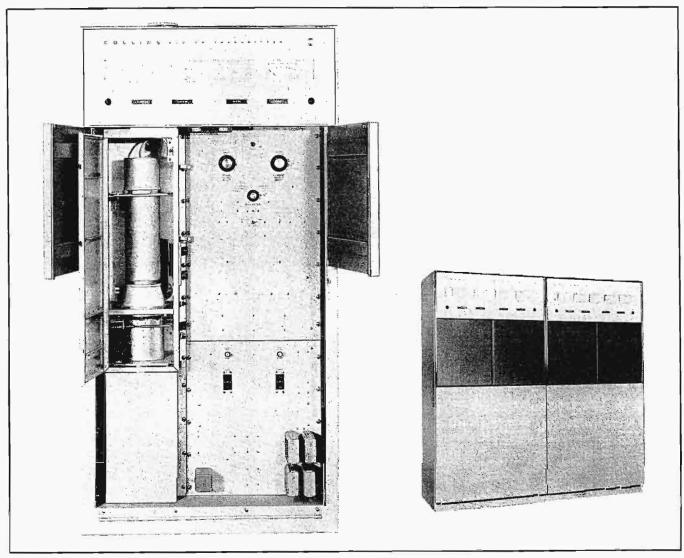
Part No. 522 2872

POWER AMPLIFIER REAR VIEW

COLLINS 830F-1A/10 KW FM TRANSMITTER

The Collins 830F-1A 10 KW FM Transmitter assures the broadcaster the clean, strong signal he needs to make his programming outstanding in a highly competitive market area and the extended coverage required to build and maintain an audience.

Like all Collins FM transmitters, the two-cabinet 10,000 watt model is carefully engineered and manufactured to a quality level that is a hallmark at Collins.


Self-contained — Every component is housed within the two cabinets, including power transformers, harmonic filters and directional coupler. An optional feature is the Collins 786M-1 Stereo Generator which mounts in minutes in the 250 watt driver cabinet.

EASE OF OPERATION — Pushbutton operated, the transmitter starting sequences are fully automatic by the "step-

start" system. RF circuits are tuned and metered at the front panel. All adjustments can be made while the transmitter is on the air. No tuning or trimming of the harmonic filter is required. The PA stage is easily neutralized and is noncritical in adjustment.

DEPENDABLE — Grounded screen eliminates the bypass capacitors, doing away with a common source of failure. The driver power supply uses solid state silicon rectifiers which generate little heat and require a minimum of space. The final amplifier plate voltage supply uses mercury vapor tubes or optional silicon diode rectifiers. Efficient blowers force cooling air directly on the power tubes.

MAINTENANCE EASE — All components are easily accessible and may be rapidly inspected through the use of

POWER AMPLIFIER FRONT VIEW

vertical panels. All panels are interlocked for safety; a grounded shorting stick is provided.

RIGID TESTING — In keeping with rigid Collins standards, the transmitter is tested under actual load conditions on the broadcaster's channel before the unit is shipped.

While the transmitter is designed for 60 cycle operation, only the blower motors and plate contactors need be changed for 50 cycle use.

Collins also manufactures the 830F-2A transmitter. This unit uses an 830D-1A 1,000 watt driver, required when the additional PA is installed for 20,000 watt operation. If an eventual increase to 20KW is planned, the 830F-2A should be installed initially.

Frequency Range: 88-108 mc.

Power Output: 3,000-10,000 watts nominal. Carrier Frequency Stability: ±2,000 cps.

Audio Frequency Response: ±1 db, 50-15,000 cps.

Distortion: Less than 1%, 50-15,000 cps. FM Noise Level: 65 db below ±75 kc.

AM Noise Level: -55 db rms. Harmonic Attenuation: -80 db. Modulation Capability: ±100 kc.

RF Output Impedance: 50 ohms; SWR not to exceed 2:1. Audio Input Level: +10 dbm, ±2 db.

Power Source: 230 v ac, cps (50 cps optional), 3 phase (tapped for 200-250 v in 10 v steps).

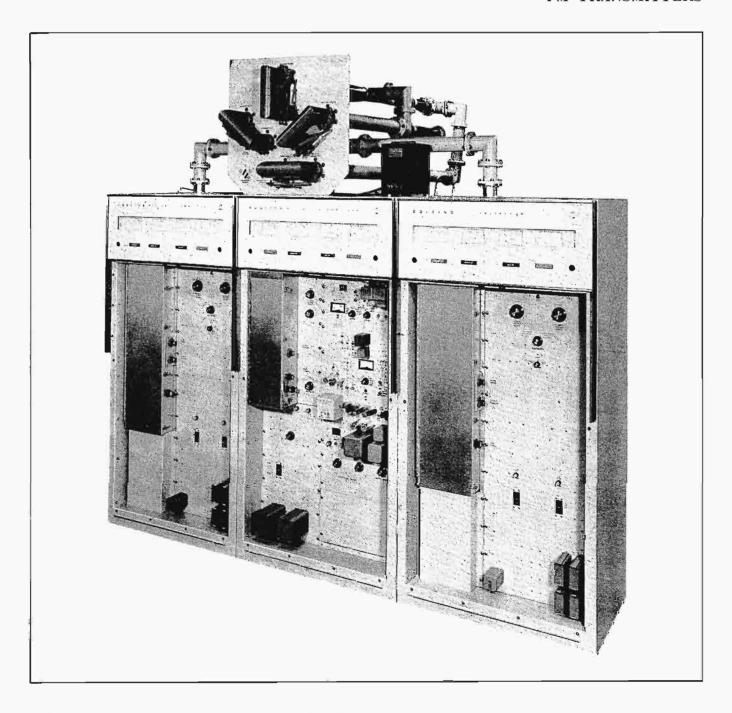
Input Power Requirement: 20 kw, 90% power factor.

Power Line Regulation: 3%.

Variations: Slow line, $\pm 5\%$; rapid line, $\pm 3\%$.

Temperature Range: 20° - 45°C with mercury vapor rectifiers. 10° - 45°C with silicon diode rectifiers.

Humidity: 0% - 95%.


Altitude: 6,000 ft. (1828.8 m).

Size: 76" W, 76" H, 27" D (193 cm W, 193 cm H, 68.6 cm D)

Weight: 1,900 lbs. (861.8 kg).

*Not used if silicon diode rectifiers are employed.

Part No. 522 3054

COLLINS 830H-1A/20 KW FM TRANSMITTER

For the broadcaster requiring extended coverage in major markets, Collins offers the 830H-1A, a 20,000 watt FM transmitter contained in only three cabinets. Use of a diplexing system assures continuous duty even though one of the two power amplifiers is removed from service for routine maintenance or repair.

Careful engineering, use of conservatively-rated components and precision manufacturing techniques assure the broadcaster of quality upon which he can depend.

Outstanding benefits of the 830H-1A are:

Self-Contained — Every component, including power transformers, harmonic filters and directional couplers, are housed within the three cabinets. Only the diplexer

assembly is mounted on the exterior. While the photograph shows a top mounted diplexer, this assembly may be located anywhere convenient to the broadcaster. An optional accessory is the 786M-1 Stereo Generator, which mounts in minutes inside the driver cabinet.

SIMPLE OPERATION — A pushbutton-operated "stepstart" system assures automatic starting sequencing. RF circuits, tuned and metered at the front panel, may be adjusted while the transmitter is on the air. The harmonic filter requires no tuning or trimming. The PA stage is neutralized easily and is noncritical in adjustment.

DEPENDABLE — In event of a PA outage, the transmitter remains on the air at 6 db lower output until the an-

tenna is patched to one amplifier to permit half-power (-3 db) operation while the disabled PA is being restored to service. The transmitter is not off the air during this operation. A grounded screen eliminates the bypass capacitors, common trouble points. Independent driver power supply is solid state, requiring little space and generating little heat. The PA power supply consists of mercury vapor tubes, with a solid state supply an optional feature. Efficient, quiet blowers force air directly on the 4CX1000A and two 4CX5000A power amplifier tubes.

MAINTENANCE EASE — All components are easily accessible for inspection and maintenance through vertical panel construction. All cabinet panels are interlocked for safety; a grounded shorting stick is installed in each cabinet to discharge capacitors before servicing.

RIGID TESTING — The 830H-1A, like all Collins transmitters, is tested on the broadcaster's channel under actual load conditions *before* shipment.

While the transmitter nominally operates on 60 cycles, only the blower motors and plate contactors need be changed for 50 cycle operation.

Frequency Range: 88-108 mc.

Power Output: 6,000-20,000 watts nominal. Carrier Frequency Stability: ±2,000 cps.

Audio Frequency Response: ±1 db, 50-15,000 cps.

Distortion: Less than 1%, 50-15,000 cps.

FM Noise Level: 65 db below ±75 kc.

AM Noise Level: -55 db rms. Harmonic Attenuation: -80 db. Modulation Capability: ±100 kc.

RF Output Impedance: 50 ohms; SWR not to exceed 2:1.

Audio Input Level: +10 dbm, ± 2 db.

Power Source: 230 v ac, 60 cps (50 cps optional), 3 phase (tapped for 200-250 v in 10 v steps).

Input Power Requirement: 40 kw, 90% power factor.

Power Line Regulation: 3%.

Variations: Slow line, $\pm 5\%$; rapid line, $\pm 3\%$.

Tube Complement:

1 6U8 1 2E26 1 12AT7 1 4CX1000A 1 6AU6 12 872A* 1 5763 2 4CX5000A

Temperature Range: 20° - 45°C with mercury vapor rectifiers; 10° - 45°C with silicon diode rectifiers.

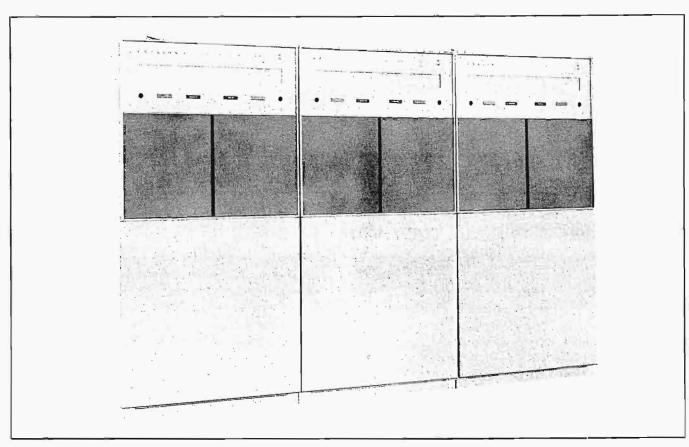
Humidity: 0% - 95%.

Altitude: 6,000 ft. (1828.8 m).

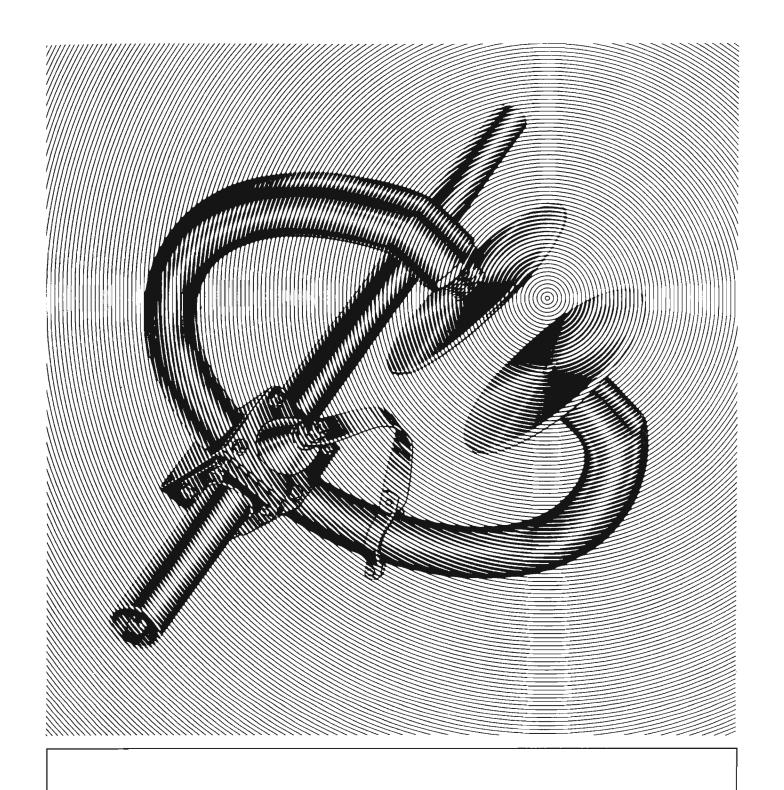
Size: 114" W, 76" H, 27" D (289.6 cm W, 193 cm H,

68.6 cm D).

Weight: 2,900 lbs. (1315 kg).

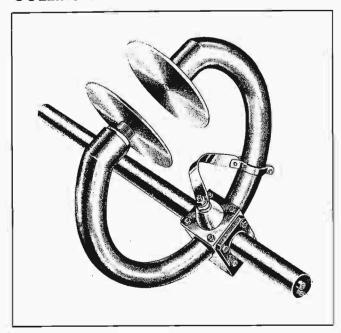

"Not used if silicon diode rectifiers are employed.

Part No. 522 3055


830N-1A FM TRANSMITTER

For the broadcaster whose market includes extensive mobile reception, Collins sells the 830N-1A, a dual 10,000 watt transmitter. This unit transmits 10,000 watts through vertically polarized antennas for automobile receivers and 10,000 watts to the horizontally-polarized antennas for home receivers.

Part No. 522 3592



830H-IA FM TRANSMITTER

ANTENNAS, TOWERS, TRANSMISSION LINES

COLLINS 37M FM ANTENNA

A proven design that has been imitated but never duplicated in efficiency during the past decade, the Collins 37M Antenna still maintains its position of leadership in FM broadcasting.

The advanced design features of the unit make it an ideal antenna for stereo and multiplex operations. The aerodynamic simplicity and low weight of the 37M provide greater efficiencies and savings in new tower costs, erection time and maintenance expense. These features also eliminate undue oscillating and weaving of the tower and antenna.

The Collins 37M Ring Antenna consists of only two basic parts: the radiating ring and the connecting interring transmission line. Any number of rings, either odd or even, may be used to provide maximum flexibility in high power gain.

Antenna arrays mounted on 15%" or 31%" line are available for handling transmitter powers up to 20 kw. Antenna assemblies on 15%" line are rated for power inputs at base of antenna up to 3 kw for a single ring array; 10 kw for four or more rings. Antenna assemblies on 31%" line are rated for power inputs up to 3 kw per ring at base of antenna with maximum of 20 kw for seven or more rings.

Only one inter-element transmission line is required to feed all rings in a multiple element array. The individual radiating rings are identical mechanically and electrically. They are both shunt fed and supported by a single interconnecting feed line, which consists of modified lengths of standard EIA rigid coaxial line insulated with Teflon. The Collins 37M FM Antenna feed system has a stub at the top of the array which is capacitive and adequately removes the inductive reactance created by the shunt feed on the ring. The 37M terminates in a standard EIA 50 ohm flange connection on the bottom element of

the array for coupling directly to 15%" or 31%" transmission line.

The horizontal radiation pattern of the Collins 37M FM Antenna is essentially circular for both top mounting and side mounting arrays. A maximum deviation of only 1 db is obtained in the top mounted arrangement, while the circular pattern of the side mounted array will generally equal that of the top mounted antenna. The extent of deviation from a circular pattern in the side mounted antenna is dependent on the type and size of tower on which the antenna is mounted. In cases of very large supporting structures and in all cases where guy wires are used, expert recommendations should be requested on spacing of insulators and guy wires and mounting of the antenna. Insulators should be placed where the guys attach to the tower and guys should also be broken with insulators approximately every three feet for 15 feet in the immediate area of the antennas.

The voltage standing wave ratio of the Collins 37M Antenna can be maintained at better than 1.1:1 due to the inherently high stability of the tuning system. The capacitor plates of the 37M are adjustable for optimum performance and equal power distribution through all rings. These features allow an accurate prediction of the gain from the given number of loops in the array. Adequate bandwidth virtually eliminates detuning effects caused by changes in atmospheric conditions. The bandwidth and linearity of the antenna are more than adequate for multiplexing service.

The compactness and simplicity of the 37M allow maximum efficiency in ice removal. Each ring may be equipped with an internally mounted, 200-watt heating unit which consists of a cartridge type element inside each of the tuning capacitor plates and an additional flexible heating element extending the full circumference of the inside of the ring. The simplicity of the heating arrangement makes it possible to replace the elements in the field if necessary. The absence of large masses of metal assures efficient and practical deicing of the antenna and capacitor, which is the most critical part of the antenna when icing occurs.

The 37M Antenna is easy and quick to erect. There are no heavy hoisting problems so that many hours of erection time can be saved. Support brackets are specially fabricated for each installation to match the tower and mounting arrangement, thus minimizing erection problems at the site.

Either guyed or self-supporting towers will in nearly all cases support the side mounting 37M. Towers which support top mounting television antenna arrays increase their usefulness with the addition of a side mounting 37M Antenna.

Top or pole mounting design is available on special order for installation on towers where no TV antenna is present or planned. This type of mounting provides the maximum in height and coverage. The light weight and windloading of the top mounting series allows erection on

most guyed and self-supporting towers without extensive tower modification.

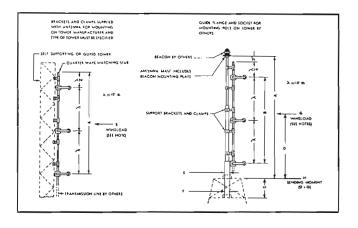
Further information and quotations on the 37M FM Directional Antenna will be supplied upon request.

Part No.	Type and Number of Rings	Part No.	Type and Number of Rings
013 0020	37M-1	013 0070	37 M-6
013 0030	37M-2	013 0080	37M-7
013 0040	37M-3	013 0090	37M-8
013 0050	37M-4	097 1693	37M-10
013 0060	37M-5	097 1528	37M-12

For top mounted, with mast rings mounted on 15%" Line or 31/8" Line, Part Number remains the same for the specified number of rings.

No Part Number

37M FM Antennas for power inputs over 20 kw.


Part No. 013 0099

Deicer per bay installed at the factory.

Part No. 099 0005 00

Replacement heating element Two required not ring.

Replacement heating element. Two required per ring.

		COL	LINS 37-M	ANTENN	IA — SI	DE M	OUNT	ED		
Collins Type	No. of Rings	Power Gain	Field Gain	db Gain		** Inches	On 1 'B***	5/8" Line Weight(lbs.)		/a" Line Veight(lbs.)
37M-1	T.	0.9	.95	- 0.45	2′	5"	43	42	18	69
37M-2	2	2.0	1.41	3.01	12	3	125	91	234	155
37M-3	3	3.0	1.73	4.77	22	1	206	140	386	241
37M-4	4	4.1	2.02	6.13	3 I	10	288	189	538	327
37M-5	5	5.2	2.28	7.16	41	8	370	238	691	413
37M-6	6	6.3	2.51	7.99	51	5	451	287	843	499
37M-7	7	7.3	2.70	8.63	61	3	533	336	996	585
37M-8	8	8.4	2.90	9.24	71	0	614	385	1148	67 I
37M-9*	9	9.4	3.07	9.73	80	10	696	434	1300	757
37M-10*	10	10.5	3.24	10.21	90	7	778	483	1453	843
37M-12*	12	12.5	3.54	10.97	110	3	941	581	1758	1015
37M-14*	14	14.5	3.81	11.61	129	10	1104	679	2062	1187
37M-16*	16	16.5	4.06	12.17	149	5	1267	777	2367	1359

Antennas of over 8 bays are center fed with even numbers of bays or at 1/2 bay separation below center with odd numbers of bays.

COLLINS 37-M ANTENNA — TOP MOUNTED

	No.							On 15	′s″ Line	.				On 31/	s" Line	-	
Collins Type	of	Pwr. Gn,		B Ft.	C Ft.	D Ft.	E Dia.	F Dia.	G Lbs.	H FtLbs.	Dead Wt.	D Ft.	E Dia.	F Dia.	G Lbs.	H FtLbs.	Dead Wt.
37M-1	1	.9	6		3	4-7	3 1/8 "	3 1/8 "	50	- 230	223	4-7	3 1/8 "	3 1/8 "	68	312	250
37M-2	2	2.0	16	10±	4	10	4 1/2 "	4 1/2 "	239	2,390	305	12-3	4 1/2 "	4 1/2 "	291	3,565	360
37M-3	3	3.0	26	20 \pm	7	14-5	6 % "	6 % "	403	5,803	736	14-4	6 % ″	6 5/8 "	486	6,950	825
37M-4	4	4.1	36	$30 \pm$	10	19	7 5% "	7 % ″	564	10,716	1169	18-9	7 % "	7 % "	678	12,713	1290
37M-5	5	5.2	46	40 \pm	12	23	8 % "	7 5% "	747	17,181	1652	22-8	9 % "	9 % "	919	20,769	2128
37M-6	6	6.3	56	50 \pm	14	27-2	9 5% "	8 % "	951	25,867	2285	26-7	10 ¾ "	9 5% "	1173	31,260	2770
37M-7	7	7.3	66	$60 \pm$	15	31	10 ¾ "	8 % "	1175	36,425	3218	3 -3	10 ¾ "	8 5% "	1388	43,375	3485
37M-8*	8	8.4	76	$70 \pm$	16-6	34-9	11 ¾ "	9 % "	1417	49,241	4051	34-8	12 ¾ "	11¾"	1696	58,682	4650
*up to	12 ba	ys on	app	ication													

ANDREW FITTINGS FOR **COLLINS 37M-FM ANTENNA**

The following end terminals and fittings are required for connection of various types of transmission line to Collins 37M FM Antenna. The 37M is supplied with 15%" or 31/8" line. The following lists only Andrew fittings for antenna end of transmission line to antenna line. Be sure to specify correct fitting for transmitter end.

ANDREW H5, 7/8" Heliax to 15/8" 37M: 75AR EIA Flange and 1860 Reducer (inner connectors supplied with 75AR and 1860).

ANDREW H7, 15%" Heliax to 15%" 37M: 87R EIA Flange (with inner connector).

ANDREW H7, 15%" Heliax to 31%" 37M: 87R EIA

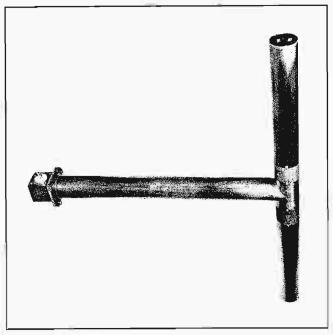
Flange (with inner connector) and 1861 Reducer.

ANDREW H2, 31/8" Heliax to 31/8" 37M: 22R EIA Flange and 15093 Inner Connector.

AMPHENOL RG 17U, 7/8" Solid to 15/8" 37M: 12418-1 Plug, 15069 Inner Connector and 2361 Adapter.

ANDREW 740, 7/8" Semi-flexible to 15/8" 37M: 1860 Reducer (with inner connector).

ANDREW 560, 7/8" Rigid to 15/8" 37M: 1860 Reducer (with inner connector).


ANDREW 561, 15%" Rigid to 15%" 37M: 15069 Inner Connector.

ANDREW 562A, 31/8" Rigid to 15/8" 37M: 1861 Reducer (with inner connector).

ANDREW 562A, 31/8" Rigid to 31/8" 37M: 15093 Inner Connector.

Computed for 100 Mc. For other frequencies multiply by 100 divided by frequency in Mc/s.
Wind loads based on 60 pounds on flat surfaces, 40 pounds per square foot on projected areas of cylindrical surfaces with all sections considered round.

COLLINS 300C VERTICALLY POLARIZED FM ANTENNA

SEE COVER ILLUSTRATION

Collins 300C vertically polarized FM antenna can significantly improve your FM coverage. Here's how:

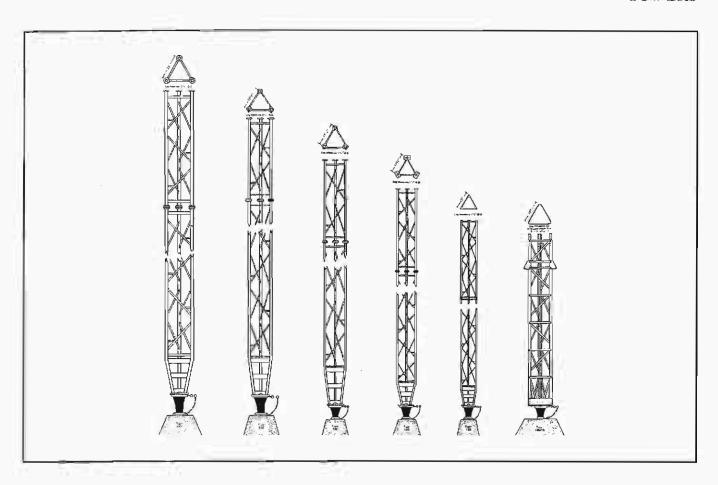
FCC regulations permit simultaneous FM radiation in both horizontal and vertical planes. For example, if your station is authorized for 5 kw ERP (horizontal), vertical radiation can be added up to the same power. Stations now operating with greater ERP than specified in new FCC rules for their classification may radiate vertically up to the maximum ERP specified in the rules.

Two methods are commonly used:

- (1) A single power amplifier and transmission line to provide power for each antenna.
- (2) Two power amplifiers fed from a common exciterdriver and two transmission lines. The antennas are fed separately.

The preferred method will be dictated by your power situation. If minimum initial investment is your primary concern, the first method is preferred. If redundance is important, the second method permits either amplifier to be operated individually or both simultaneously. The recommended ratio of vertical to horizontal ERP is unity.

Collins Type 300C costs no more than your present horizontal bays, can be installed on your present tower and is compatible with your FM transmitter.


Vertical polarization with Collins 300C:

- * fills in shadow areas
- * reduces null effects
- * improves fringe area reception
- * vastly improves car FM radio reception
- * maintains FM stereo quality
- * improves SCA operation

		TYPE 3000	C ANTENNA	— SIDE	MOUNT	ED		
						ower Rating	Len	
Type	No. of Dipoles	Power Gain	Field Gain	DB Gain	On 15/8"	Line On 31/8" Line	Feet &	Inches
300-1	1	.950	.975	002	3	3	3	ç
300-2	2	1.969	1.400	2.942	6	6	13	7
300-3	3	3.120	1.767	4.942	9	9	23	
300-4	4	4.198	2.045	6.230	10	12	33	:
300-5	5	5.310	2.305	7.251	10	15	42	}
300-6	6	6.393	2.528	8.057	10	18	57	•
300-7	7	7.500	2.738	8.75	10	2	62	
300-8*	8	8.571	2.926	9.330	20	24	72	•
300- 9*	9	9.755	3.124	9.892	20	27	82	:
300-10*	10	10.960	3.311	10.398	20	30	91	- 1
300-12*	12	13.195	3.633	11.204	20	36	111	
300-14*	14	15.290	3.910	11.844	20	42	131	:
300-16*	16	17.483	4.181	12.426	20	48	150	9
	w	eight	Wi	nd Load**		Over Turning	Moment***	k
Type	On 15/8″ Line	On 31/8" Line	On 15/8″ Line	On 31/8	" Line	On 15/8" Line	On 31/8"	
300-1	50	55	104	10	4	0		0
300-2	111	135	259	30	7	1,190	1,43	30
300-3	171	215	414	51	0	3,900	4,84	10
300-4	23 2	295	569	71	3	8,350	10,20	00
300-5	292	375	724	91	6	14,300	17,60	00
300-6	353	455	879	111	9	21,100	27,00	00
300-7	413	535	1034	132	2	29,900	38,40	00
300-8*	474	615	1189	152		40,200	51,70	00
300-9*	534	695	1344	172	8	52,100	67,10	00
300-10*	595	775	1499	193	1	65,400	84,40	00
300-12*	716	935	1809	233		96,600	125,00	00
300-14*	837	1095	2119	274		133,965	173,00	
300-16*	958	1255	2429	314		177,000	230,00	

- * Antennas of eight bays and over are center fed with even numbers of bays or at a point ½ bay below center with odd numbers of bays.
- ** Wind load in the direction through the mounting toward the tower computed for 60 lbs. on flat surfaces and 40 lbs. on
- projected areas of cylindrical surfaces.

 *** For 60 lbs. wind loading direction through the mounting toward the tower and referred to the center line of the bottom bay.

AM AND FM TOWERS

Collins furnishes a wide selection of both self-supporting and guyed antenna towers to meet the requirements of any AM or FM installation.

Towers are normally supplied with a protective coating of rust inhibitive paint prior to shipment, although they can be supplied with a galvanized finish at a slightly higher price. Galvanized is recommended in locations where the tower will be subjected to salt water spray, extreme humidity or other corrosive conditions. The finish coat is normally supplied by the tower erector and is in keeping with FAA requirement.

All hardware, fittings, guy insulators, anchor steel and base insulator (where required) are supplied with each tower. The applicable FCC (FAA) lighting kit and wiring are also provided.

UTILITY TOWERS

Available in six basic designs shown, Utility towers meet or exceed RETMA specifications. In the five standard models, steel pipe members are welded together in 20-foot sections, except for the top section length which is according to individual specification. The Type 170 KD tower is of bolted angle-iron construction in 10-foot sections.

Anchors are individually designed to meet the requirements of each tower installation. The I-beam used is imbedded in a concrete slab re-inforced with steel rods and with an earth fill on top.

Each section receives one coat of rust inhibitive, primer paint. Guy lines are galvanized and have a minimum breaking strength of at least twice the maximum calculated loads.

No Part Number

Tower Type	Maximum Recommended Height	Tower Width	Weight Per Foot*	Type of Base Insulation
480	480 ft. (146.3 m)	33 in, (83.82 cm)	28 lbs. (12.7 kg)	Locke or Lappe
340	350 ft. (106.68 m)	19 % in. (50.48 cm)	17 lbs. (7.71 kg)	Utility 3401
220	250 ft. (76.2 m)	19 📆 in. (49.37 cm)	12½ lbs. (5.67 kg)	Utility 3401
081	200 ft. (60.96 m)	16 գ ⁸ թ in. (41,12 cm)	10 lbs. (4.54 kg)	Utility 2201
120	200 ft. (60.96 m)	13 1/4 in. (33.34 cm)	8 lbs. (3.63 kg)	Utility 2201
170KD	320 ff. (97.54 m)	18 in. (45.72 cm)	17 lbs. (7.71 kg)	Utility 3401

FOOTAGE TABLE FOR BROADCAST TOWER HEIGHTS

	55	0 KC TO 107	U KC			1080 KC TO 1600 KC					
кС	METERS	1 WAVE	1/2 WAVE	1/4 WAVE	кс	METERS	1-WAVE	1/2 WAVE	1/4 WA		
550	545	1787.6	893.8	446.8	1080	277.8	911.1	455.5	227.7		
560	536	1758.0	879.0	439.5	1090	275.2	902.6	451.3	225.6		
570	526	1725.3	862.6	431.3							
580	517	1695.7	847.8	423.9	1100	272.7	894.4	447.2	223.		
590	509	1669.5	834.7	417.3	1110	270.3	886.5	443.2	221.6		
0,0	• • • • • • • • • • • • • • • • • • • •				1120	267.9	879.0	439.5	219.		
600	500	1640.0	820.0	410.0	1130	265.5	870.8	435.4	217.		
910	492	1612.7	806.3	403.1	1140	263.2	862.6	431.3	215.6		
620	484	1587.5	799.7	396.8	1150	260.9	855.7	427.8	213.9		
630	476	1561.2	780.6	390.3	1160	258.6	847.8	423.9	211.		
640	469	1546.3	773.1	386.5	1170	256.4	840.9	420.4	210.3		
650	462	1515.3	757.6	378.8	1180	254.2	834.7	417.3	208.		
660	455	1492.4	746.2	373.1	1190	252.1	826.8	413.4	206.		
670	448	1469.4	734.7	367.3					_ • • • • • • • • • • • • • • • • • • •		
					1200	250.0	820.0	410.0	205.0		
680	441 435	1446.4	723.2	361.1	1210	247.9	813.1	406.5	203.2		
690	435	1426.8	713.4	356.2	1220	245.9	806.3	403.1	201.		
700	420	1407 1	702 5	351.0	1230	243.9	799.1	399.5	199.		
700	429	1407.1	703.5	351.2	1240	241.9	793.7	396.8	198.		
710	423	1387.4	693.7	346.8	1250	240.0	787.2	393.6	196.		
720	417	1367.7	683.8	341.9	1260	238.1	780.9	390.4	195.		
730	411	1348.0	674.0	337.0	1270	236.2	774.7	387.3	193.		
740	405	1328.4	664.2	332.1	1280	234.4	768.8	384.4	192.2		
750	400	1312.0	656.0	328.0	1290	232.6	762.9	381.4	190.		
760	395	1295.6	647.8	323.4	1270	202.0	, 02.,	30	170.		
770	390	1279.2	639.6	319.8	1300	230.8	757.0	378.5	189.		
780	385	1262.8	631.4	315.7	1310	229.0	751.1	375.5	187.		
790	380	1246.4	623.2	311.6	1320	227.3	746.2	373.1	186.		
					1330	225.6	739.9	369.9	184.9		
800	375	1230.0	615.0	307.5	1340	223.9	734.7	367.3	183.		
810	370	1213.6	606.8	303.4	1350	222.2	728.8	364.4	182.2		
820	366	1200.4	600.2	300.1	1360	220.6	723.2	361.1	180.5		
830	361	1184.0	592.0	296.0	1370	219.0	718.3	359.1	179.		
840	357	1170.9	585.4	292.7	1380	217.4	713.4	356.2	178.		
850	353	1157.8	578.9	289.4	1390	215.8	707.8	353.1	176.		
860	349	1144.7	572.3	286.1	,	2.0.0	, , , , ,	30311	.,		
870	345	1131.6	565.B	282.9	1400	214.3	703.5	351.2	175.6		
880	341	1118.4	559.2	279.6	1410	212.8	696.9	348.4	174.2		
890	337	1105.3	552.6	276.3	1420	211.3	693.7	346.8	173.4		
					1430	209.8	688.1	344.0	172.0		
900	333	1092.2	546.1	273.0	1440	208.3	683.8	341.9	170.9		
910	330	1082.4	541.2	270.6	1450	206.9	678.6	339.3	169.		
920	326	1069.2	534.6	267.3	1460	205.5	674.0	337.0	168.		
930	323	1059.4	529.7	264.8	1470	204.1	669.4	334.7	167.		
940	319	1046.3	523.1	261.5	1480	202.7	664.2	332.1	166.		
950	316	1036.4	518.2	259.I	1490	201.3	660.2	330.1	165.0		
960	313	1026.6	513.3	256.6							
970	309	1013.5	506.7	253.3	1500	200.0	656.0	328.0	164.0		
980	306	1003.6	501.8	250.9	1510	198.7	651.7	325.8	162.9		
990	303	993.8	496.9	248.4	1520	197.4	647.8	323.4	161.		
					1530	196.1	643.2	321.6	160.8		
1000	300	984.0	492.0	246.0	1540	194.8	639.6	319.8	159.9		
1010	297	974.1	487.5	243.7	1550	193.5	634.6	317.3	158.6		
1020	294.1	964.6	482.3	241.1	1560	192.3	631.4	315.7	157.8		
1030	291.3	955.3	477.6	238.8	1		626.8	313.4	157.8		
1040	288.5	946.2	477.8 473.1		1570	191.1					
1050				236.5	1580	189.9	623.2	311.6	155.8		
1060	285.7 283.0	937.1 928.2	468.5 464.1	234.2 232.0	1590	188.7	618.9	309.4	154.7		
		7/6/	404.	/1/.0							

WIND VELOCITIES AND CORRESPONDING PRESSURES

١	AITD CO	KKLSI ONDING	INLUGATES
	TRUE "EXTREME" VELOCITY MILES PER HOUR V	CYLINDRICAL SURFACES Pressure in Lbs./Sq. Ft. of Projected Area P = 0.0025V ₂ ²	FLAT SURFACES Pressure in Lbs./Sq. Ft. of Projected Area P = 0.0042V _a ²
	10 15 20	.25 .56 I.00	.42 .95
	25	1.6	2.6
	30	2.3	3.8
	35	3.1	5.2
	40	4.0	6.7
	45 50 55	4.0 5.1 6.3 7.6	8.5 0.5 12.7
	60	9.0	15.1
	65	10.6	17.8
	70	12.3	20.6
	75	4.	23.6
	80	6.0	26.9
	85	8.	30.4
	90	20.3	34.0
	95	22.6	37.9
	100	25.0	42.0
	105	27.6	46.3
	110	30.3	50.8
	115	33.1	55.5
	120	36.0	60.5
	125	39.1	65.6
	130	42.3	70.9
	135	45.6	76.5
	140	49.0	82.3
	145	52.6	88.3
	150	56.3	94.5
	155	60.1	100.9
	160	64.0	107.5
	165	68.1	114.3
	170	72.3	121.4
	175	76.6	128.6
	180	81.0	36.1
	185	85.6	143.7
	190	90.3	151.6
	195	95.1	159.7
	200	100.0	168.0
	205	105.1	176.5
	210	110.3	185.2
	215	115.6	194.1
	220 225	121.0	203.3

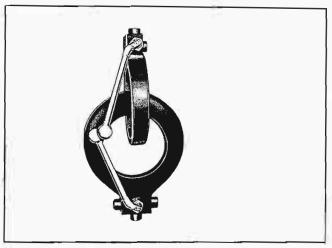
COPPER GROUND WIRE

Bare #10 copper ground wire is used for ground radials. Wire attaches to mesh ground screen.

Weight: 31.8' per lb.
Part No. 421 1010 001

COPPER GROUND STRAP

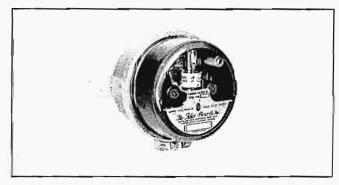
This fine quality copper ground strap is available in two sizes: $2'' \times .032''$ (4.02' per lb.), and $4'' \times .032''$ (2.01' per lb.).


Part No. 097 1445 00 (2" strap) Part No. 097 0811 00 (4" strap)

TRUSCON MESH GROUND SCREEN

Expanded copper mesh ground screen is for use beneath base of antenna tower to increase soil conductivity. Available in 8' x 24' sheets.

Part No. 013 0107 00

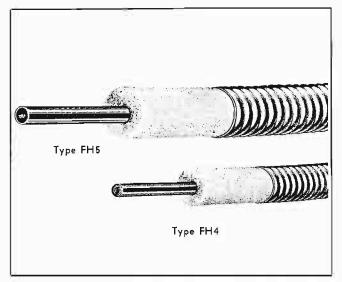

HUGHEY & PHILLIPS RING TRANSFORMER

For use wherever 60 cps energy must be transferred across two points with very low capacitance or at very high voltages. Provides a highly reliable, low capacity means of supplying power across base insulator or insulated radio towers employed as radiators. Their relatively large spacing and low capacity between windings make these isolation transformers desirable for use in directional arrays, and especially with radiators which develop very high voltages across the base insulators. No tuning or RF adjustments are necessary. Available in load capacities of 1750 watts (Model TI 2017) and 3500 watts (Model TI 2035).

Part No. 097 6920 00 (Type TI 2017) Part No. 099 0365 00 (Type TI 2035)

FISHER-PIERCE 63305-C BEACON LIGHT CONTROL

Designed to be mounted on either curved or flat surfaces, the 63305-C will automatically control broadcast tower, billboard or street lighting system directly or with auxiliary controllers. Operated by stable phototube with high sensitivity to north sky illumination, which is predictable and smooth in decline to darkness.


Power Requirements: 105-130 v, 50-60 cps.

Built-in Load Contactor: Single Pole, Single Throw and Single Break.

Load Rating: 3,000 watts normally closed. Closed at night.

Part No. 097 1698 00

FOAM HELIAX

Foam Heliax provides an economical low loss, high strength, corrosion resistant, long life, flexible connection between transmitter and antenna or other RF components.

The low density (approximately 0.45) and closed cell construction of the foamed insulation together with the high conductivity of both all-copper conductors results in minimum attenuation.

The corrugated outer conductor provides maximum resistance to crushing, kinking or denting.

The corrugated outer conductor also provides greater flexibility. Specifically, foam Heliax can be formed to any given radius with approximately one-fourth the effort required to form cables with smooth wall aluminum outer conductors. The flexibility and kink resistance of foam Heliax enable it to be pulled through conduits, around obstructions and through paths in which smooth wall tubing could not be installed.

CHARACTERISTICS

Nominal Size	1/2"	7/8"
Type No. Plain	FH4	FH5
	(099 2454 0	0)(099 1950—)
Type No. Jacketed	FHJ4	FHJ5
	(099 2642 0	0)(099 2625 00)

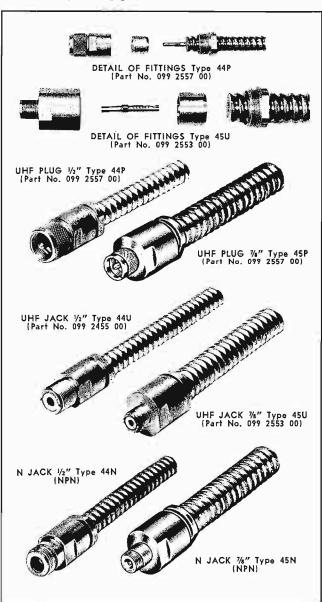
ELECTRICAL

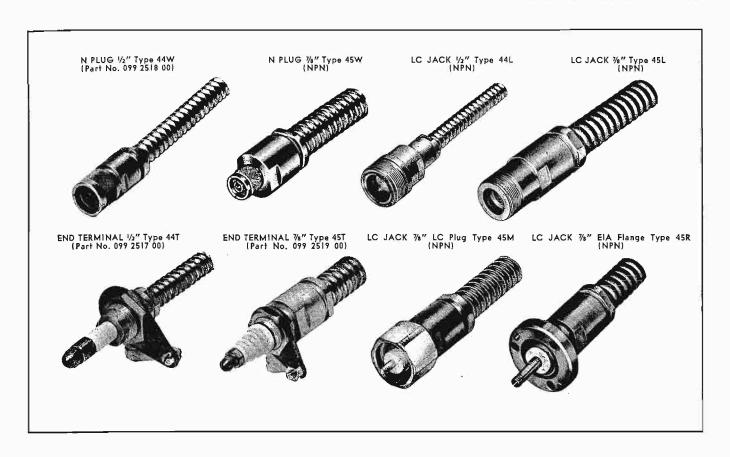
Characteristic Impedan	ce,	
Ohms	50	50
Velocity, per cent	79	79
MECHANICAL		

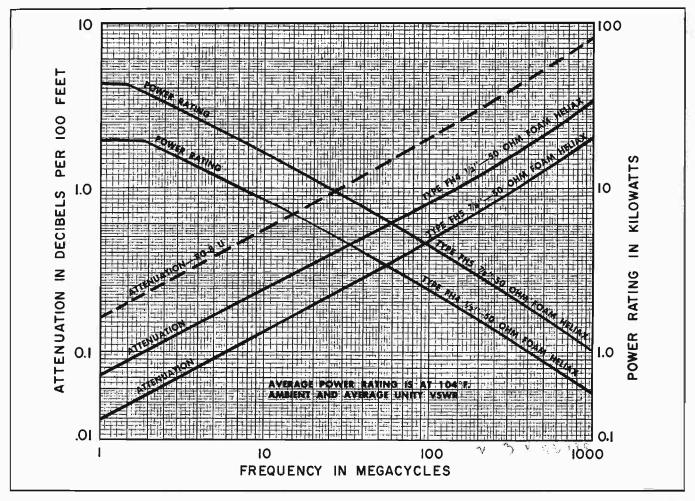
MECHANICAL

Length	Cut	to order
Insulation	Foamed	Polyethylene
Major Diameter, Plain	0.540"	0.980"
Major Diameter, Jacketed	0.660"	1.000"
Inner Conductor, Diameter	0.158"	0.3125"

Average Bending Torque for Minimum Radius

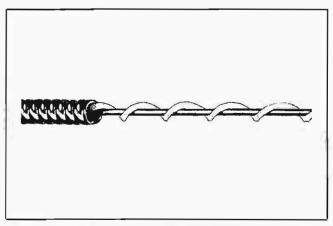

Plain	5.7 ft./lbs.	14.0 ft./lbs.
Jacketed	7.7 ft./lbs.	20.0 ft./lbs.
Minimum Radius, Inches	5	10
Net Weight, Pounds		
per Foot		
Plain	0.19	0.35
Jacketed	0.24	0.42


PACKAGING INFORMATION


Type FH4, Part No. 099 2454 00, ½" foam Heliax: Lengths up to 500 feet shipped in cardboard carton. Over 500 feet shipped on no deposit, no return reels.

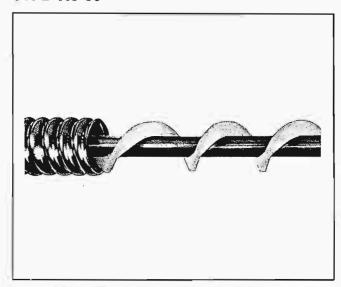
Type FH5, Part No. 099 1950—, 7/8" foam Heliax: Lengths up to 200 feet shipped in cardboard carton. Over 200 feet shipped on no deposit, no return reel.

CABLE FITTINGS



FLEXIBLE HELIAX COAXIAL CABLE

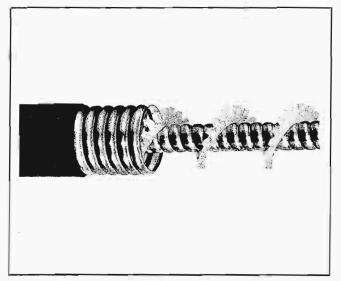
Heliax is a low loss flexible cable produced in continuous splice-free lengths. Electrically and mechanically superior to rigid lines of comparable size, Heliax is uniquely suited to modern communications systems. Heliax cables are produced in 50, 75 and 100 ohms impedances with matching connectors. These connectors are easily attached with common hand tools and are fully compensated to assure excellent electrical performance.


TYPE H3-50

Type H3-50 Heliax, Part No. 099 0008—, is a low loss highly flexible coaxial cable suited for VHF communica-

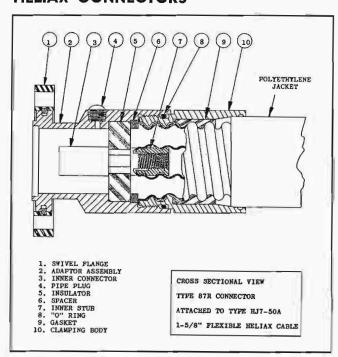
tions, aircrast and missile applications, low power signal measurements and RF instrumentation systems.

TYPE H5-50

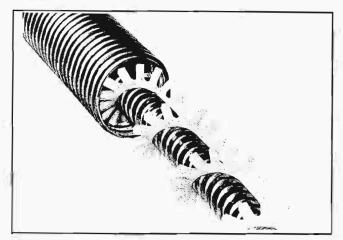

Andrew Type H5-50, Part No. 099 0204—, is the preferred RF cable for VHF/UHF communications. Produced in continuous splice-free lengths, the H5 series features inherently low SWR up to 3000 mc. Also available are:

H5-75 (RG284/U) 75 ohm cable H5-100 (RG285/U) 100 ohm cable

CHARACTERISTICS


SIZE	3/8 "	7/8 "	15/8 "	3 "
Type No. Plain	H3-50	H5-50	H7-50	H8-50A
	099 0008—	099 0204—	099 0235—	099 2311—
RG Number, Plain	RG268/U	RG269/U	RG270/U	
Type No., Jacketed	HJ3-50	HJ5-50	HJ7-50	HJ8-50A
	099 2527 00	099 1188—	099 0890—	099 2312
RG Number, Jacketed		RG318/U	RG319/U	
ELECTRICAL				
Characteristic Impedance, ohms	50	50	50	50
Maximum Frequency, Mc	10800	5200	2800	1600
Velocity, per cent	89.5	91.6	92.1	93.3
Peak Power Rating, kw	10.0	44.0	145	315
MECHANICAL				
Insulation		POLYE	THYLENE	
Copper Outer Conductor, Major Diameter, Inches	0.500	1.005	1.830	2.850
Jacketed Cable Outer Diameter, Inches	.620	1.125	2.000	3.020
Copper Inner Conductor, Major Diameter, Inches	0.162	0.358	0.688	1.140
Recommended Minimum Bending Radius, Inches	5	10	20	30
Net Weight, pounds per foot	0.200	0.444	1.000	1.200
Jacketed Cable, net weight, pounds per foot	0.250	0.520	1.313	1.700

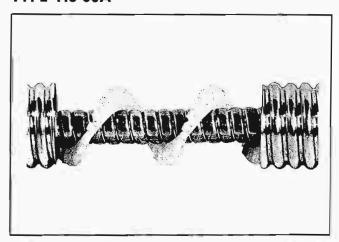
JACKETED HELIAX


Because of the strength and corrosion resistance of the corrugated copper outer conductor, Heliax cables do not normally require jacketing. However, for direct burial in acid soil, very rough handling, or when the outer conductor must be insulated, jacketing is available. Both flooding compound and jacket thickness are closely controlled to provide a tough, abrasion resistant covering. Jacketing is recommended for extreme environments and direct burial.

HELIAX CONNECTORS

The cutaway view shows typical features common to most air dielectric Heliax connectors. These connectors feature Teflon anchor insulators for positive location of inner and outer conductors. There is no differential expansion problem in Heliax cables because of the continuous self compensating corrugated construction. These connectors are used for both plain and jacketed cables.

TYPE H7-50


Type H7-50, Part No. 099 0235—, is the specified cable for FM and high frequency installations. Its very low attenuation and VSWR have made H7 popular at microwave frequencies.

Part No. 099 0235-

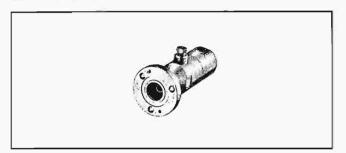
Also available:

Type H7-75 75 ohm cable Type H7-100 100 ohm cable

TYPE H8-50A

This nominal 3-inch low loss cable is extremely flexible and is available in continuous splice free, lengths to serve long and complex installations. End terminations of H8-50A cable mate with 3½ inch EIA standard fittings.

Part No. 099 2311—


Also available: H8-75, 75 ohm cable

CABLE ASSEMBLIES

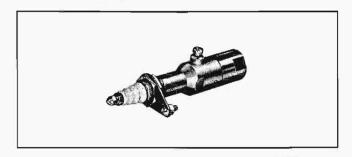
Although Heliax fittings are easily attached with common hand tools, factory attachment using production equipment is even more economical. We suggest that you order assemblies with fittings attached whenever possible.


ANDREW 50 OHM ACCESSORIES

EIA FLANGE

	FOR		
TYPE	SIZE	TYPE	
75AR (Part No. 099 0283 000)	7/8"	H5	
87R* (Part No. 097 3002 00)	15%"	H7	
78R (Part No. 099 2314 000)	3"	Н8	

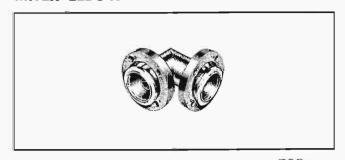
TYPE N JACK


	F(OR
TYPE	SIZE	TYPE
73N (Part No. 099 0396 00)	3/8"	Н3
75AN (Part No. 099 0400 000)	7/8"	H5
87N* (Part No. 099 3003 000)	15/8"	H7
78R (Part No. 099 2314 000) plus 2262 (Part No. 099 0445 00	3"	Н8

UHF JACK

	F	OR
TYPE	SIZE	TYPE
73U (Part No. 099 0397 00)	3/8"	H3
75AU (Part No. 099 0401 000)	7/8"	H5
87U* (Part No. 099 3004 000)	15%"	H7

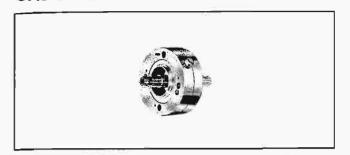
END TERMINAL


	F()K
TYPE	SIZE	TYPE
75AT (Part No. 099 0281 000)	7/8"	H5
87T* (Part No. 099 3005 000)	15/8"	H7
78R (Part No. 099 2314 000) plus 2062 (Part No. 099 0444 00)	3"	Н8

REDUCER CONNECTOR

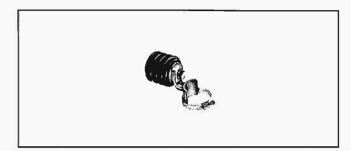
	FROM		
TYPE	SIZE	TO	
87S* (Part No. 099 3006 000)	15/8"	7/8 EIA	
78S (NPN)	3"	15/8 EIA	

MITER ELBOW

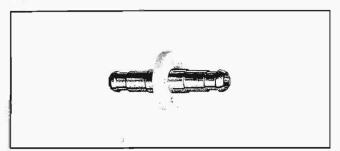


ТҮРІ	3					EIA FLANGE
1060	(Part	No.	099	0404	000)	7/8"
1061	(Part	No.	097	5620	000)	15%"
1062	(Part	No.	097	5621	00)	31/8"

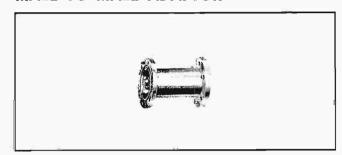
^{*} When ordering non-corrugated inner conductor, order older 77 series.


ANDREW 50 OHM ACCESSORIES

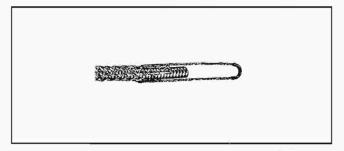
GAS BARRIER


						FOR	
TYPE						EIA FLA	NGE
1260A	(Part	No.	099	0203	000)	17/8	,
1261B	(Part	No.	099	0238	000)	15/8'	,
1262A	(Part	No.	097	5754	00)	31/8'	,

INSULATED HANGERS


	FOR		
TYPE	SIZE	TYPE	
11662-2 (Part No. 099 0410 000)	7/8"	H5	
24622 (Part No. 099 0124 00)	15/8"	H7	
22418 (NPN)	3"	Н8	

EIA INNER CONNECTOR

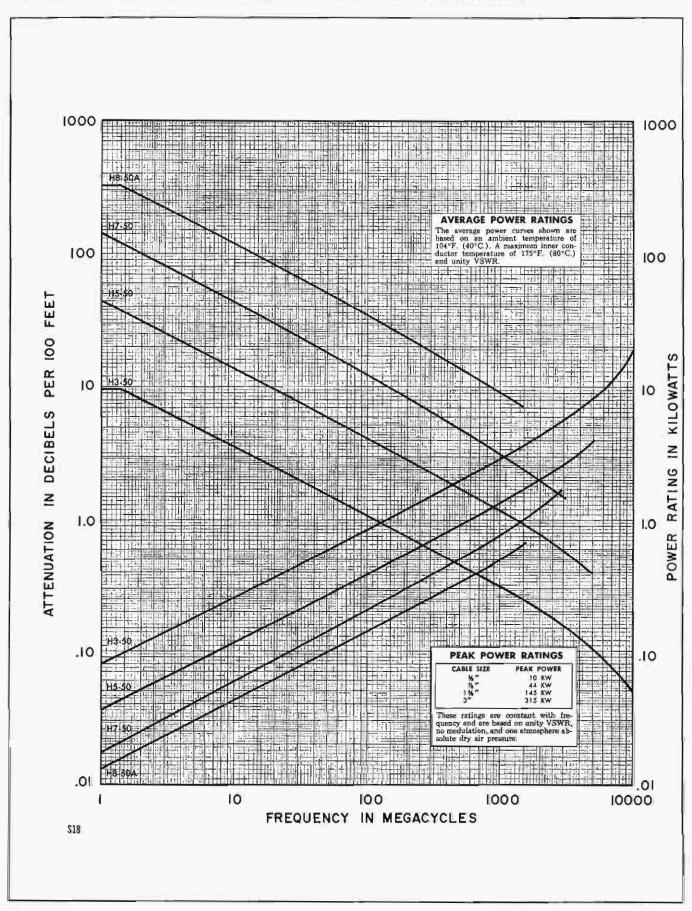

	FOR		
TYPE	SIZE	TYPE	
18275 (Part No. 099 0406 000)	7/8"	H5	
15069 (NPN)	15/8"	H7	
15093 (NPN)	3"	H8	

MALE TO MALE ADAPTOR

Type No. 23187 (Part No. 097 7262 00) 31/8" EIA male to male adaptor.

HOISTING KIT

	FOR			
TYPE	SIZE	TYPE		
19256A (Part No. 099 0408 000)	7/8"	H5		
24312 (Part No. 099 0420 00)	15/8"	H7		
26985 (Part No. 099 2316 00)	3"	Н8		


OTHER ACCESSORIES

Type No. 12395-1 (Part No. 097 5010 000) Wrap Lock

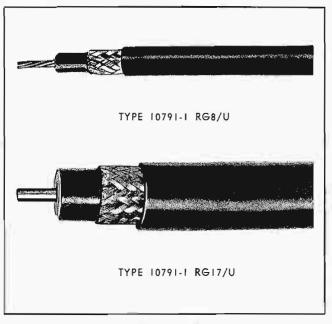
Type No. 24810 (Part No. 099 0409 000) %" Ground Kit

Type No. 24811 (Part No. 099 0419 00) 13/8" Ground Kit

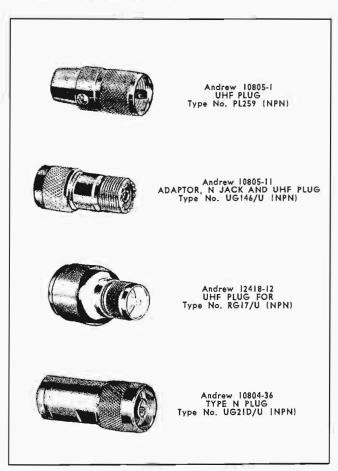
AVERAGE POWER RATINGS AND ATTENUATIONS FOR 50 OHM HELIAX CABLES

EXTRA HIGH TEMPERATURE HELIAX

These low loss, high temperature air dielectric cables were developed for use in high ambient temperatures, such as in aircraft, missiles and space vehicles. Special dielectric materials were developed for low loss, high temperature properties. The flexible corrugated outer conductor uses silver clad materials that assure a high conducting level at maximum operating temperatures along with good mechanical properties.


Swivel flange fittings are available for both cables. These through type connectors incorporate metallic gas seals and anchor insulators as integral parts of the assemblies. A separate flanged gas barrier for Type 26445 cable is available.

Andrew's extensive development background is available to assist in your high temperature cable requirements. Andrew applications engineers are prepared to discuss your specific problem.

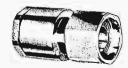

CHARACTERISTICS

Temperature Range	−100 to 825°C	−65 to 350°C
Size	3/8"	7/s"
Type Number	26459 (NPN) 26445 (NPN)
Characteristic Impedance,		
Ohms	50	50
Maximum Frequency, mc	5000	5000
Attenuation-db/100		
500 mc @ 25°C	2.6 db	.8 db
1000 mc @ 25°C	4.2 db	1.8 db
5000 mc @ 25°C	14.0 db	8.6 db
Attenuation-db/100		
500 mc @ 825°C	9.2 db	1.7 db
1000 mc @ 825°C	12.0 db	2.4 db
5000 mc @ 825°C	31.0 db	0.8 db
Velocity, per cent	89.5	90.8
Outer Conductor O.D. in.	.500	1.000
Recommended Minimum		
Bending Radius, inches	5	10

SOLID DIELECTRIC CABLES

A wide variety of cables and fittings are stocked for prompt delivery. Cable assemblies and harnesses for interconnecting antennas and transmitters are in regular production. RG8/U, Part No. 099 0146—, and RG17/U, Part No. 099 0137—, cables have non-contaminating jackets for long useful life. Bulk quantities are shipped in cartons or disposable reels.

Andrew 10804-34 TYPE N JACK Type No. UG23D/U (NPN)


Andrew 10804-11 TYPE N JUNCTION Type No. UG29B/U (NPN)

Andrew 12418-5 Type N Plug for RG17/U Type No. UG167A/U (NPN)

Andrew 10805-6 TYPE UHF JUNCTION Type No. PL258 (NPN)

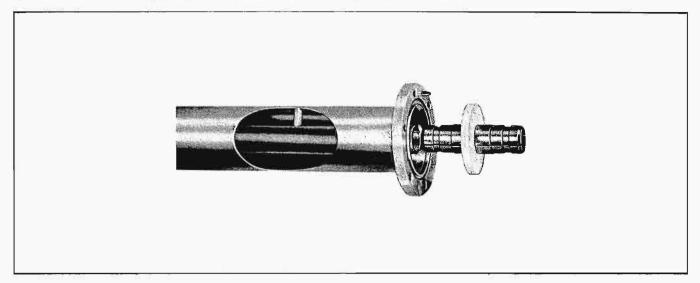
Andrew 12418-1 TYPE LC PLUG Type No. UG154/U (NPN)

Andrew 12418-3 TYPE LC JUNCTION Type No. UG215/U (NPN)

ANDREW RIGID TRANSMISSION LINES

Collins offers a complete selection of Andrew transmission lines and accessories matched for optimum system performance. All transmission lines and fittings are fully compatible with EIA standard RS-225. Equipments described are representative of current production designs.

Copper, the preferred choice for electrical and mechanical performance, is standard in all Andrew transmission lines. However, when weight is an important considera-

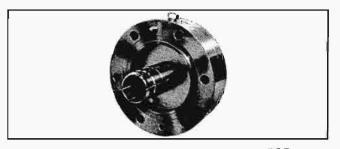

tion, chromate conversion coated aluminum lines and compatible fittings, are available.

Significant contributions have been made in the field of high peak power lines by Andrew engineers. Their high performance, critical designs receive special handling in manufacture to hold deviations to a minimum. A high voltage laboratory and stringent quality control assure maximum peak power service from every component in an Andrew system.

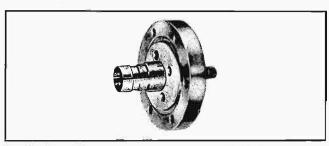
CHARACTERISTICS — ANDREW RIGID TRANSMISSION LINES

Size	7/8"	15%"	31/8"	6½"	9"
Type No.	560	561	562A	573	586
Part No.	(NPN)	(099 7096 00)	(097 7283 00)	(NPN)	(NPN)
Electrical					
Characteristic Impedance, ohms	50	50	50	50	50
Frequency Range, Mc	0-3000	0-2700	0-1600	0-750	0-440
Velocity, Per Cent	99.8	99.8	99.8	99.8	99.8
Peak Power Rating, kw Average Power Rating	43	140	400	1500	3000
Mechanical					
Outer Conductor, O.D. Inches	0.875	1.625''	3.125	6.125	9.000
Inner Conductor, O.D. Inches	0.341	0.664	1.315	2.6000	3.820
Net Weight, lbs.	13	25	55	135	310
No. of sections in crate	12	6	4.	1	1
Shipping Weight, lbs.	400	290	425	305	340
Shipping Dimensions, in.	14x13x245	12x8x245	13x14x245	12x12x245	14 dia.x245

TYPE 562A 31/8" TEFLON INSULATED TRANSMISSION LINE


ANDREW 50 OHM ACCESSORIES — RIGID TRANSMISSION LINES

MITER ELBOW


	r (JK
TYPE	SIZE	TYPE
1060 (Part No. 099 0404 000)	7/8"	560
1061 (Part No. 097 5620 000)	15/8"	561
1062 (Part No. 097 5621 00)	31/8"	562A
1073 (NPN)	61/8"	573
1086 (NPN)	9"	586

GAS BARRIER

	FC)R
TYPE	SIZE	TYPE
1260A (Part No. 099 0203 000)	7/8"	560
1261B (Part No. 099 0238 000)	15/8"	561
1262A (Part No. 097 5754 00)	31/8"	562A
1273 (NPN)	61/8"	573
1286 (NPN)	9"	586

REDUCER

TYPE	FROM	TO
1860 (Part No. 097 5405 000)	560	561
1861 (NPN)	561	562A
1872 (NPN)	562A	573
18362 (NPN)	573	586

TYPE N ADAPTER

	FC)R
TYPE	SIZE	TYPE
2260 (NPN)	7/8"	560
2261 (Part No. 097 7544 00)	15/8"	561
2262 (Part No. 099 0445 00)	31/8"	562A
1872 (NPN) plus	61/8"	573
2262 (Part No. 099 0445 00)		

SPIR-O-LINE COAXIAL CABLE

Spir-O-line was designed and developed to replace sectional air or solid dielectric transmission line. Spir-O-line has been in production for more than five years, successfully performing in critical communication systems throughout the world. Spir-O-line possesses excellent broadband characteristics insuring reliable, trouble-free performance in AM, FM, VHF, UHF, television, microwave, radar, telemetering, missiles, rockets, data processing, patching circuits, delay lines, and many other applications.

Shipped on non-returnable reels.

FEATURES:

- · Low Attenuation
- · Fastest Installation
- Broadband
- Low V.S.W.R.
- No Periodicity
- · Maximum Power Handling
- Minimum Maintenance
- No special installation tools required

Fabrication — The outer conductor is a commercially pure aluminum sheath. In addition to the natural strength of the sheath, additional crush resistance is obtained

through the support of the six polyethylene tubes which are in tangential contact with the high conductivity copper inner conductor. The intimate positioning of the cable's components ensures accurate centering of the inner conductor regardless of the length of cable.

Through the intimate positioning of the high density polyethylene tubes the individual air cells in the dielectric are further compressed such that they eliminate a direct air path between the inner and outer conductor. This design feature increases the breakdown voltage of Spir-O-line coaxial cable and also reduces the attenuation, thereby enabling Spir-O-line to surpass stringent cable system requirements.

Spir-O-line *eliminates* "Helical off-centering" and "slippage" of the inner conductor and cable core in vertical runs and is the only cable so designed.

Bending Radii are shown in table Pg. 49; however, more intricate bending is possible with tooling.

Spir-O-line is manufactured in various sizes and impedance for diversified applications, and is available in continuous lengths up to 1,000 feet or in shorter lengths as required.

Optional Jacket — The commercially pure aluminum sheath possesses excellent corrosion resistance; however, an optional polyethylene jacket is available for direct burial, corrosive atmospheres, or submarine applications.

DESCRIPTION

PART NO.	TYPE NO.	NOMINAL SIZE In Inches	OHMS	SPIR-O-LINE Cable
099 0448—	259/U	3/8	50	Plain Aluminum Sheath
099 0451—	260/U	3/8	50	Polyethylene Jacketed
NPN		3/8	75	Plain Aluminum Sheath
NPN	•	3/8	75	Polyethylene Jacketed
099 0449—	252/U	1/2	50	Plain Aluminum Sheath
097 7023	253/U	1/2	50	Polyethylene Jacketed
NPN		1/2	75	Plain Aluminum Sheath
NPN		1/2	75	Polyethylene Jacketed
099 0450	255/U	7/8	50	Plain Aluminum Sheath
097 7527	254/U	7/8	50	Polyethylene Jacketed
NPN		7/8	75	Plain Aluminum Sheath
NPN		7/8	75	Polyethylene Jacketed
097 7078	257/U	15/8	50	Plain Aluminum Sheath
097 8131	258/U	15/8	50	Polyethylene Jacketed
NPN		15/8	75	Plain Aluminum Sheath
NPN		15/8	75	Polyethylene Jacketed

MECHANICAL AND ELECTRICAL PROPERTIES — SPIR-O-LINE

(Characteristic Imped., Ohms	Nominal Size Inches	Effective Dielectric Constant	Velocity %	60 Cycle Peak Test Voltage KV		ter luctor I.D.	inr Cond	ner uctor Wali	Poly- ethylene Jacket Wall	Minimum Radius Bending Inches	Shipping Length Feet	Maximum Pulling Tension Pounds	Net Weight per 1000 Ft. Pounds	
		3/8	1.44	85.5	2.2	.390	.316	.115	Solid	.030	4	1000	210	100	
	50	1/2	1.44	85.5	3.4	.530	.456	.165	Solid	.050	5	1000	270	175	
	50	7/8	1.44	85.5	6.0	.953	.833	.311	Solid	.070	10	1000	770	555	
		1 5/8	1.44	85.5	11.0	1.786	1.622	.606	.060	.070	25	1000	1850	1200	
		3/8	1.44	85.5	2.2	.390	.316	.071	Solid	.030	4	1000	210	100	
	7.	1/2	1.44	85.5	3.4	.530	.456	.104	Solid	.050	5	1000	270	175	
75	/3	7/8	1.44	85.5	6.0	.953	.833	.191	Solid	.070	10	1000	770	555	
	}	15/8	1.44	85.5	11.0	1.786	1.622	.372	.060	.070	25	1000	1850	1200	

SHIPPING INFORMATION

	Nominal Reel		Reel Reel			Approx. Net Weight Pounds per 1000 ft.		Approx. Shipping Weight Pounds per 1000 ft.	
Characteristic ImpedOhms	Size Inches	Flange Dia.	Drum Dia.	Reel Traverse	Tare WtIbs.	Plain	Polyethylene Jacket	Plain	Polyethylene Jacket
	3/8	28"	20"	18"	35	190	140	135	175
50 JF	1/2	38"	32"	18"	45	175	225	220	270
50, 75	7/8	60"	48"	24"	100	555	655	655	755
	15/8	94"	80″	54"	1893	1200	1380	3093	3273

Spir-O-line cable, in lengths of 500 ft. and longer, is shipped on non-returnable reels* at no extra charge, thereby eliminating two-way freight charges and laborious records. Lengths less than 500 ft. are normally shipped in coils packed in cartons.

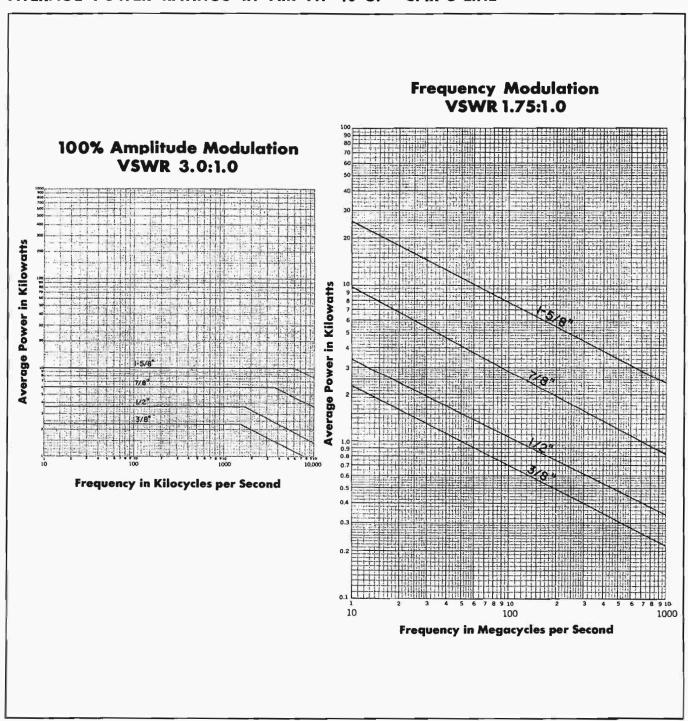
*1%" size Spir-O-line is shipped on a returnable reel.

SPIR-O-LINE HI-TEMP COAXIAL CABLE

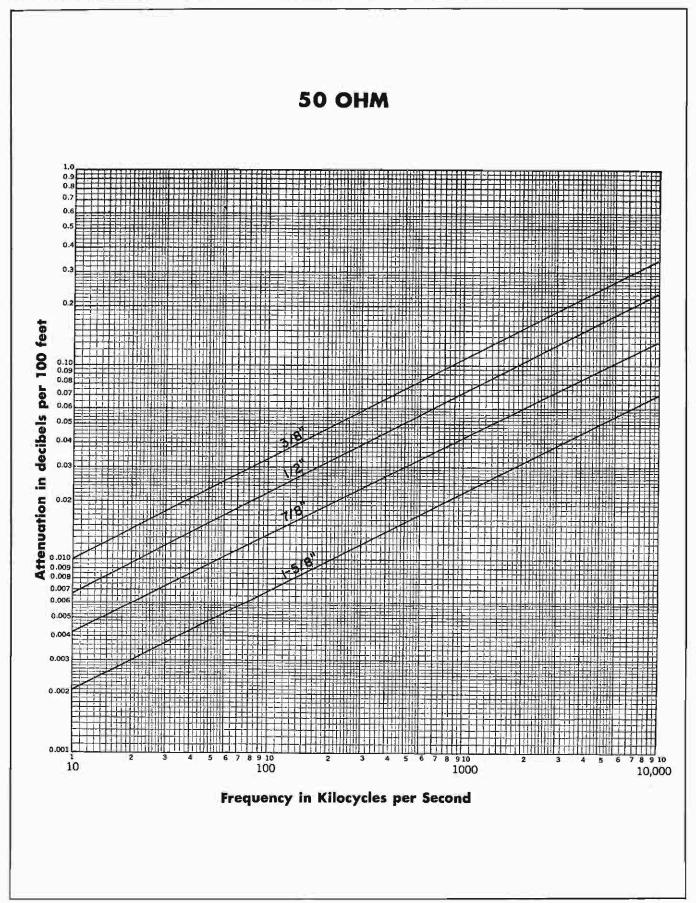
High temperature Spir-O-line was specifically designed to accommodate ambient temperature applications of 180°C. This temperature is based on the maximum of 250°C. Spir-O-line Hi-Temp Cable is especially applicable in providing reliable service in rockets, missiles, aircraft, satellites and other high temperature coaxial requirements. FEATURES:

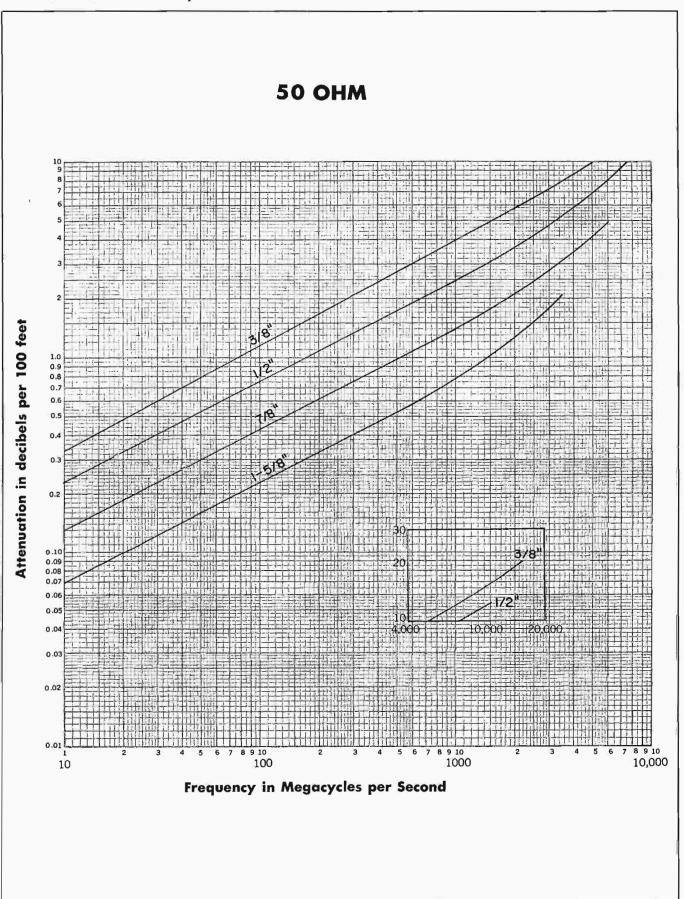
- High Power
- Low VSWR
- Low Attenuation
- Maximum Life
- · Fast Installation
- · No Radiation
- Minimum Maintenance
- Fabrication Spir-O-line Hi-Temp is a modification of standard Spir-O-line Coaxial Cable. The high temperature cable is of the same design; however, two of the

cable's components were replaced with materials which were capable of retaining the same broadband, low loss characteristics of regular Spir-O-line, while now achieving the ability to withstand greater power and higher temperatures than standard Spir-O-line Coaxial Cable. These outstanding properties were obtained by manufacturing the supporting tubes from Teflon® instead of the usual Polyethylene. The high conductivity copper inner conductor was manufactured in tube-form rather than the usual copper rod, except for the 3/8" cable. The characteristics of the inner conductor were further improved by applying silver plating to the outer surface of the copper inner conductor. The light-weight aluminum sheath and the hollow inner conductor are very important in accommodating the weight requirements of the space age. Spir-O-line Hi-Temp is available in 100 ft. lengths and shorter.

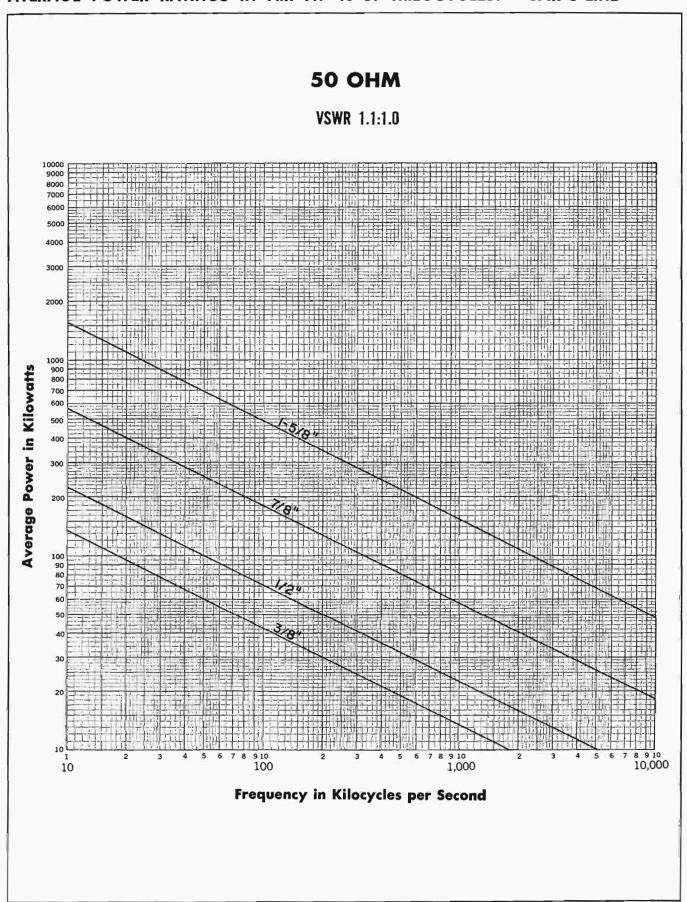

DESCRIPTION

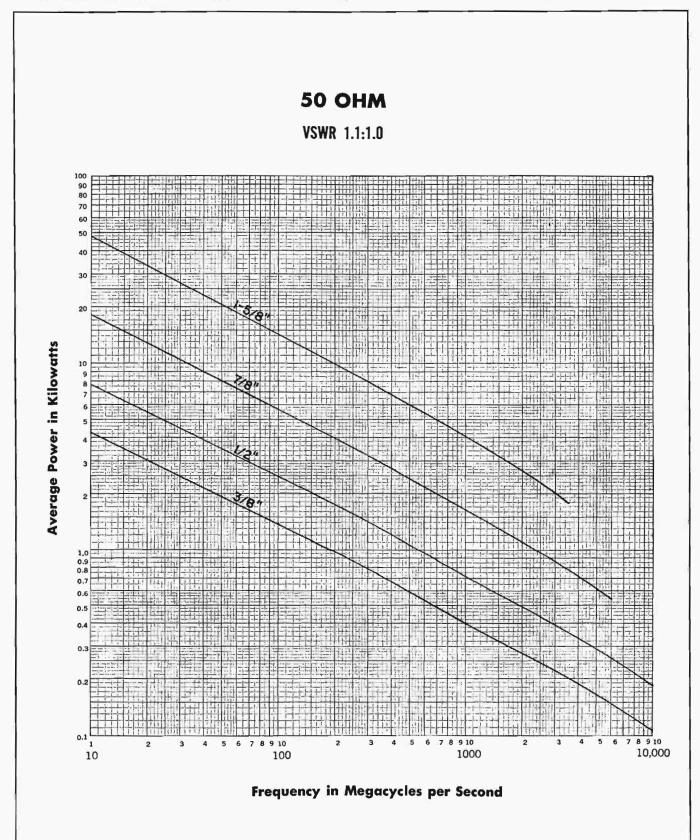
PART NO.	TYPE NO.	IN INCHES Nominal Size	OHMS	CABLE
NPN		3/8	50	Spir-O-line, Hi-Temp, Plain Aluminum sheath, Solid Inner Conductor
NPN		1/2	50	Spir-O-line, Hi-Temp, Plain Aluminum sheath, Tubular Inner Conductor
NPN	256/U	7/8	50	Spir-O-line, Hi-Temp, Plain Aluminum sheath, Tubular Inner Conductor
NPN		15/8	50	Spir-O-line, Hi-Temp, Plain Aluminum sheath, Tubular Inner Conductor

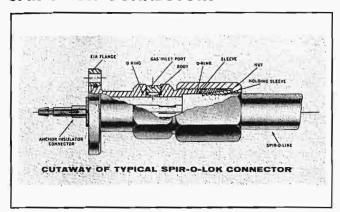

MECHANICAL AND ELECTRICAL PROPERTIES — SHIPPING INFORMATION


Characteristic Impedance	Nominal Size	Effective Dielectric	Velocity	60 Cycle Peak Test Voltage		iter luctor		ner ductor	Minimum Bending Radius	Shipping Length	Maximum Pulling Tension	Net Weight per	Shipping Weight per
Ohms	Inches	Constant	%	KV	O.D.	I.D.	0.D.	Wall	Inches	Feet	Pounds	100 Feet	100 Feet
45	3/8	1.44	85.0	2.2	.390	.316	.115	Solid	4	100	210	10 lbs.	27 lbs.
50	1/2	1.44	85.0	3.4	.530	.456	.165	.020	5	100	270	17 lbs.	34 lbs.
30	7/8	1.44	85.0	6.0	.953	.833	.311	.028	10	100	770	55 lbs.	77 lbs.
	15/8	1.44	85.0	11.0	1.786	1.622	.606	.060	25	100	1850	120 lbs.	220 lbs.

AVERAGE POWER RATINGS IN AIR AT 40°C. - SPIR-O-LINE




ATTENUATION VS. FREQUENCY (KILOCYCLES) - SPIR-O-LINE

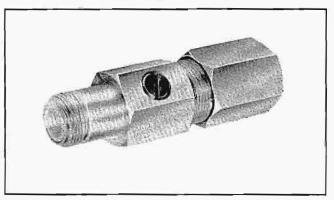


AVERAGE POWER RATINGS IN AIR AT 40°C. (KILOCYCLES) - SPIR-O-LINE

SPIR-O-LOK CONNECTORS

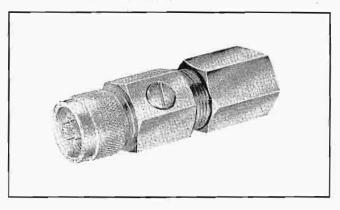
The Prodelin Spir-O-lok* Connector has been designed to facilitate the attachment of connectors to coaxial cable—eliminating special tooling and permitting rapid, trouble-free field assembly. The Spir-O-lok Connectors can be attached in minutes by inexperienced personnel with simple pocket tools. These connectors have been acclaimed the world over—achieving the fastest, simplest, and most positive air dielectric connection available. Regardless of the number of times the cable connection is assembled or dis-assembled, the Spir-O-lok Connector does not distort the cable sheath—mechanically or electrically.

All illustrated Spir-O-lok Connectors are available in a Hi-Temp version for use with Spir-O-line Hi-Temp coaxial cable. To order, merely add 1000 to the prefix of the desired connectors. For example:

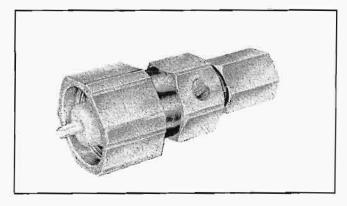

75-500 — Standard Spir-O-lok Connector Becomes 1075-500 — Hi-Temp Spir-O-lok Connector. FEATURES:

- No special application tools.
- · Positive grip without distortion to cable sheath.
- Pressure-tight.
- · Irridite finish for corrosion protection.
- Low VSWR.
- Connection can be made over and over again without replacing parts.
- Fastest connector to apply.

*U.S. Patent No. 3010747

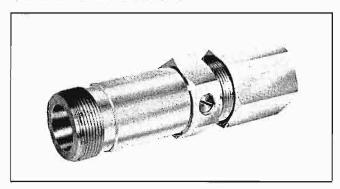

50 OHM ADAPTERS

SPIR-O-LINE TO TYPE N FEMALE (CONNECTS TO UG-21/U)

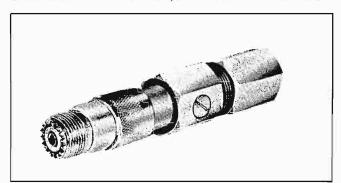

Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
75-375	3/8 in.	2 oz.	25/16	111/16	3/4 & 7/8
75-500	1/2 in.	2 oz.	27/8	111/16	7/8
75-875	% in.	5.5 oz.	413/32	225/32	13/8
75-1625	15% in.	1 lb.	521/32	25/8	2

SPIR-O-LINE TO TYPE N MALE (CONNECTS TO UG-23/U)

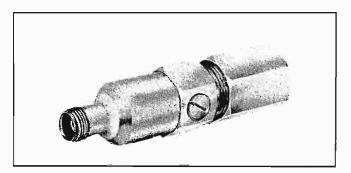
Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
76-375	3⁄8 in.	2.5 oz.	23/4	17/32	3/4 & 7/8
76-500	½ in.	2.5 oz.	227/32	17/32	7/8
76-875	7⁄8 in.	6 oz.	411/32	25/16	13/8
76-1625	1% in.	1 lb.	51%32	2%4	2


SPIR-O-LINE TO TYPE LC MALE (CONNECTS TO UG-352/U)

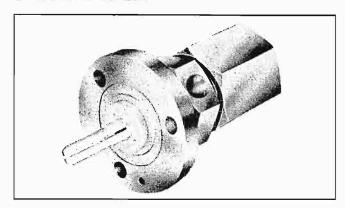
Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
77-500	½ in.	7 oz.	4	223/32	7/8 & 1 ¹ / ₄
77-875	7∕8 in.	6 oz.	413/32	2 1/32	13/8
77-1625	1% in.	1 lb. 2 oz.	61/8	215/32	2


Uncoupled Length is determined by adding 1/2" to the Coupled Length for each Spir-O-lok Nut to be uncoupled.

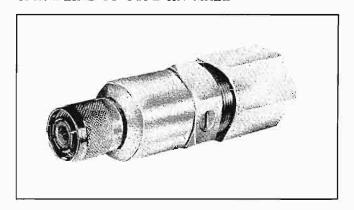
SPIR-O-LINE TO TYPE LC FEMALE (CONNECTS TO UG-154/U)


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
78-375	3∕8 in.	3 oz.	3¾	25/8	3/4 & 11/4
78-500	½ in.	5 oz.	331/32	211/16	7/8 & 1 ¹ / ₄
78-875	7∕8 in.	9 oz.	411/16	31/16	1 3/8
78-1625	1 % in.	1 lb. 2 oz.	61/32	31/32	2

SPIR-O-LINE TO PL-258 (CONNECTS TO PL-259)

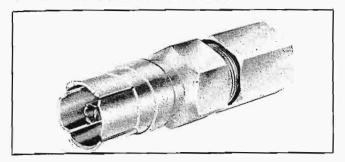

Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
84-375	3⁄8 in.	2½ oz.	313/32	225/32	3/4 & 7/8
84-500	½ in.	4 oz.	331/32	225/32	7/8
84-875	7⁄8 in.	7.5 oz.	51/2	3 1/8	1 3/8
84-1625	1% in.	1 lb.	63/4	323/12	2

SPIR-O-LINE TO TNC FEMALE

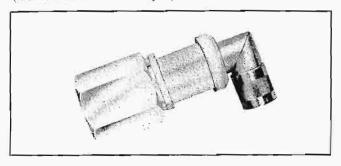

Туре №.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
112-375	3⁄8 in.	2.5 oz.	227/32	115/32	3/4 & 7/8
112-500	⅓ in.	3 oz.	333/64	163/64	7/8
112-875	7∕8 in.	7 oz.	41/8	1%16	13/8

SPIR-O-LINE TO EIA

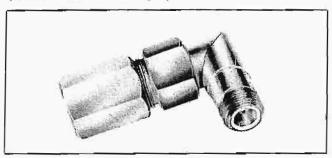
Type No. (Part No.)	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
81-875 (097 7529 00)	% in. to % in. (EIA) Male	7.5 oz.	27/16	11/2	1%
81-1625 (097 7079 00)	1% in. to 1% in. (EIA) Male	1 ib. 6 oz.	427/22	11/4	2
82-375 (NPN)	⅓ in. to ⅙ in. (£IA) Male	8.5 oz.	27/16	1 1/16	% & 1%
82-500 (099 0484 00)	½ in. to % in. (EIA) Male	7 oz.	217/20	13/8	% & 1 %
82-875 (097 7528 00)	% in. to 1% in. (EIA) Male	1 lb. 3 oz.	3 1/8	21/4	1% & 2
82-1625 (099 0485 00)	1% in. to 3% in. (EIA) Male	2 lb. 4 oz.	644	1 1/8	2
85-500 (099 0486 00)	⅓ in. to ⅙ in. (EIA) Female	9.5 oz.	4 1/12	3	% & 1%
85-875 (099 0487 00)	% in. to % in. (EIA) Female	6.5 oz.	313/16	21/2	1 %
85-1625 (097 7080 00)	1% in. to % in. (EIA) Female	1 lb. 2 oz.	617/12	3	2
124-1625 (099 0488 00)	1% in. to 1% in. (EIA) Female	1 lb. 7.5 oz.	61/12	34,	2
142-875 (NPN)	% in. to 1% in. (EIA) Female	1 lb. 3 oz.	41/2	21/8	1% & 2


SPIR-O-LINE TO TYPE HN MALE

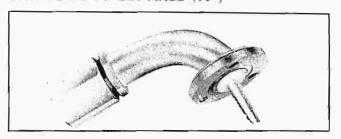
Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
103-375	3⁄8 in.	2.5 oz.	3	1 5/16	3/4 & 7/8
103-500	½ in.	2.5 oz.	31/8	1 1/8	7/8
103-875	7∕a in.	6 oz.	413/32	211/32	13/8
103-1625	15⁄a in.	1 lb.	52%32	23/8	2


Uncoupled Length is determined by adding 1/2" to the Coupled Length for each Spir-O-lok Nut to be uncoupled.

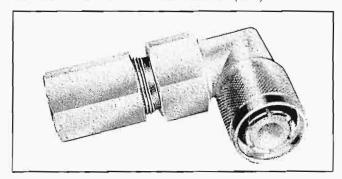
SPIR-O-LINE TO GR-874 UNPRESSURIZED


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
122-375	3⁄8 in.	2 oz.	33/8	1%16	3/4
122-500	⅓ in.	2.5 oz.	35/16	17/16	7/8
122-875	% in.	5 oz.	47/16	213/16	13/8

SPIR-O-LINE TO TYPE N MALE 90° (CONNECTS TO UG-23/U)

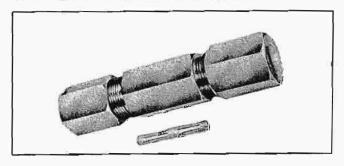

Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
100-375	3/8 in.	3 oz.	2%4	5%4	3/4
100-500	½ in.	5 oz.	2%32	11/16	7/8
100-875	7/s in.	6 oz.	35/16	1 3/4	13/8

SPIR-O-LINE TO TYPE N FEMALE 90° (CONNECTS TO UG-21/U)


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
101-375	3/8 in.	4.5 oz.	2%4	59/64	3/4
101-500	1/2 in.	4.5 oz.	2 % 32	11/16	7/8
101-875	7⁄8 in.	11.5 oz.	35/16	1 3/4	13/8

SPIR-O-LINE TO EIA MALE (90°)

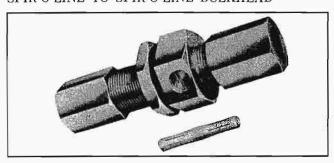
Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
106-875	7∕8 in.	9 oz.	43/8	213/16	13/8


SPIR-O-LINE TO TYPE HN MALE (90°)

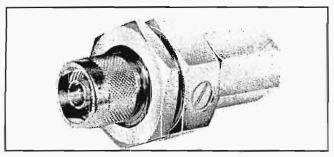
Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
107-375	3/8 in.	3 oz.	23/16	11/16	3/4 & 7/8
107-500	1/2 in.	5 oz.	2%4	5%4	7/8
107-875	7⁄8 in.	6 oz.	35/16	13/4	13/8

50 OHM — COUPLINGS — REDUCERS

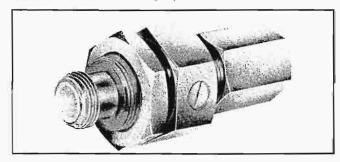
SPIR-O-LINE TO SPIR-O-LINE COUPLING


Type No. (Part No.)	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
79-375 (099 0489 00)	3/8 in.	2.5 oz.	3¾	11/2	3/4
79-500 (099 0490 00)	1/2 in.	3 oz.	315/16	11/2	7/8
79-875 (099 0116 00)	% in.	7 oz.	51/4	2	13/8 & 11/4
79-1625 (099 0491 00)	1⅓ in.	1 lb. 9 oz.	83/16	2	2

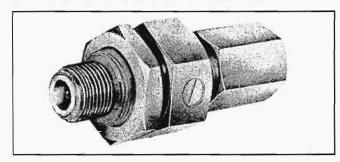
SPIR-O-LINE TO SPIR-O-LINE REDUCER


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
71-500	½ in. to ¾ in.	3 oz.	327/32	1 5/8	3/4 & 7/8
71-875	% in. to ½ in.	5.5 oz.	427/32	2	7/8 & 13/8
71-1625	1% in. to % in.	2 oz.	631/32	21/4	1 % & 2
72-1625	1 5 in. to 1/2 in.	1 oz.	65/16	21/8	1/8 & 2

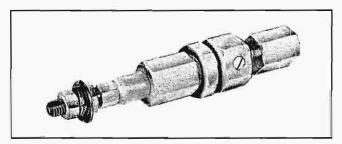
50 OHM BULKHEAD AND END SEALS SPIR-O-LINE TO SPIR-O-LINE BULKHEAD


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
80-375	3∕8 in.	2.5 oz.	315/16	1½	34, 78 & 11/8
80-500	½ in.	3 oz.	315/16	11/2	7/8 & 11/4
80-875	7∕8 in.	8.5 oz.	51/4	2	13/8 & 13/4
80-1625	15/8 in.	1 ib 12 oz.	81/16	2	2 & 23/4
CDID	TIME '	TO TWDE	NI BEAT	E DIN MUE	A D

SPIR-O-LINE TO TYPE N MALE BULKHEAD (CONNECTS TO UG-23/U)


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
96-375	3∕8 in.	3 oz.	23/4	17/32	34 & 13/8
96-500	½ in.	4 oz.	215/16	113/32	7/8 & 13/8
96-875	7∕s in.	9 oz.	41/4	2%32	1 % & 1 %
96-1625	15/8 in.	16 oz.	63/16	2¾	2

SPIR-O-LINE TO TYPE N FEMALE BULKHEAD (CONNECTS TO UG-21/U)


Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
97-375	3⁄8 in.	2.9 oz.	253/64	145/64	3/4 & 11/4
97-500	⅓ in.	3.5 oz.	215/16	145%4	7/8 & 13/8
97-875	7∕a in.	8.8 oz.	411/32	225/32	1% & 1%
97-1625	1% in.	1 lb. 2 oz.	52%32	2 1/8	2
		and the second second	ARREST VALUE	with the second of the	

SPIR-O-LINE TO TYPE HN FEMALE BULKHEAD

Type No.	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
109-375	3/8 in.	2.9 oz.	253/64	145%4	3/4 & 11/4
109-875	7∕8 in.	8.9 oz.	411/16	25⁄8	1% & 1%

END SEALS

Type No. (Part No.)	Cable Size	Weight	Coupled Length Inches	Increases Cable Length Inches	Wrenches Required
95-375 (099 0492 00)	3⁄8 in.	3 oz.	6¾s	51/4	3/4
95-500 (099 0493 00)	½ in.	4 oz.	61/4	5	7/8
95-875 (099 0494 00)	% in.	8.5 oz.	73/8	65/16	11/4 & 13/8
95-1625 (099 8132 00)	1% in.	1 lb. 13 oz.	67/16	37/14	2

Uncoupled Length is determined by adding 1/2" to the Coupled Length for each Spir-O-lok Nut to be uncoupled.

POWER RATING COMPUTATIONS FOR SPIR-O-LINE AND SPIR-O-FOAM COAXIAL CABLES

POWER LIMITATIONS DUE TO VOLTAGE BREAKDOWN AND TEMPERATURE

To compute breakdown voltage using RF power when:

E = breakdown voltage in KV at sea level

S = Factor of safety

D = OD of the inner conductor in inches

C = Constant

50Ω Spir-o-line: C = 34

75 Ω Spir-o-line: C = 46

50Ω Spir-o-line: Hi-Temp = C = 34

50Ω Spir-o-foam: C = 60

75Ω Spir-o-foam: C = 92

The formula is as follows: $E = \frac{CD}{S} KV$

To determine the peak power based on voltage breakdown the following applies:

F = Constant

Pv = Peak power in KW based on voltage breakdown VSWR = Maximum Voltage Standing Wave Ratio anticipated. In AM service the value of Pv must be reduced by a factor of 4. There is also one additional limiting factor in coaxial cable. That, is maximum average power as limited by temperature rise, Pt.

$$Pt = \frac{average power from page 54}{(SWR) (Duty Factor)}$$

Duty factor is applicable only in pulse applications. Pv and Pt must be computed to determine which is the limiting factor. The lowest value should be used as the maximum power handling capability of the transmission line.

$$Pv = \frac{FE_2 KW}{(VWSR)}$$

50Ω Spir-O-line F = 10

75 Ω Spir-O-line F = 7

50Ω Spir-O-line Hi-Temp F = 10

50Ω Spir-O-foam F = 10

75 Ω Spir-O-foam F = 7

EXAMPLES:

Problem: To find the maximum peak power of $\frac{7}{8}$ " 50Ω Spir-O-line, unpressurized at 60,000 ft. altitude, using a safety factor of 2 and a VSWR 2.0:1.0.

Solution:
$$E = \frac{34 (.311)}{2} = 5.31 \text{ KV}$$

from the curve we note the cable will handle 6.5% of the Sea Level Voltage.

E 60,000 = .065 (5.31) = .345 KV

Peak power is

$$Pv = \frac{10 (3.45)!}{2} = 590 \text{ watts}$$

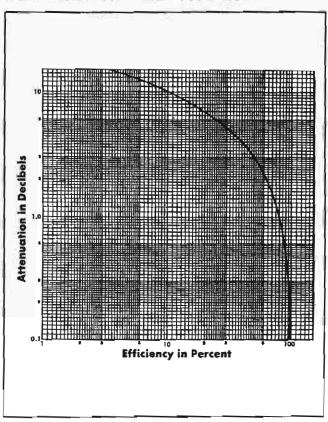
Problem: To find the maximum input power of 1/2" Spir-

O-Line Cable at 4 Kmc with a duty cycle of 0.01 and a VSWR of 2.0:1.

Solution: From curve on Page 54 at 4 Kmc the maximum average power (limited by temperature rise) is 330 W. The peak power by the above formula is:

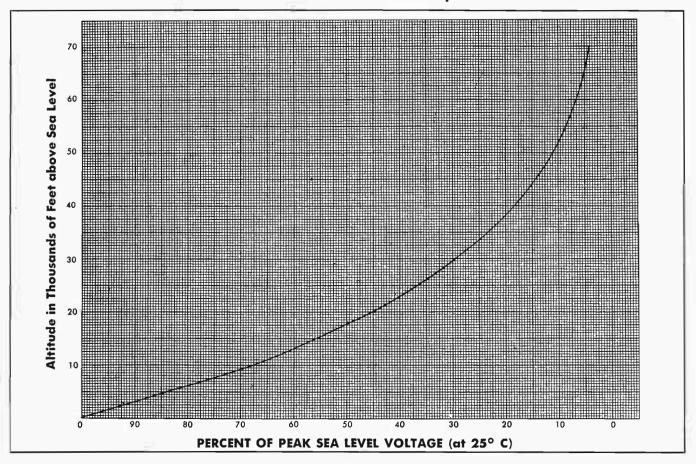
$$P_T = \frac{A_{\text{verage Power}}}{(SWR) \text{ (Duty factor)}} = \frac{330}{2 \times 0.01} = 16.5 \text{ KW}$$

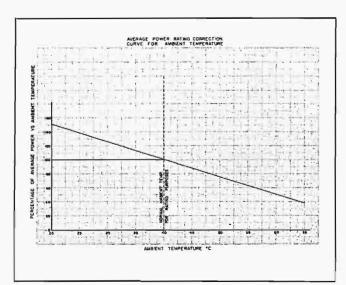
The peak power limited by temperature rise is 16.5 KW. The peak power limited by voltage breakdown is computed as follows:


$$E = \frac{34 (0.165)}{2} = 2.8 \text{ KV}$$

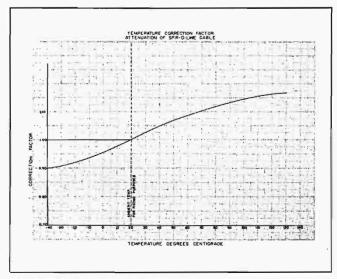
$$P_v = \frac{10 (2.8)^2}{2} = 39.2 \text{ KW}$$

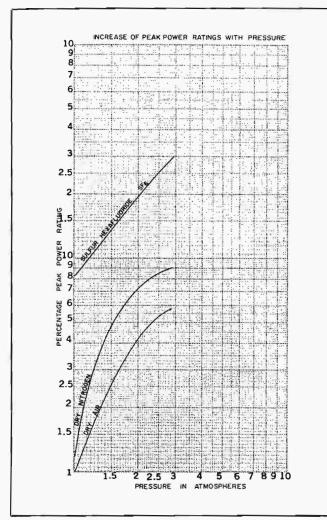
The peak power limited by voltage breakdown is 39.2 KW.


Since the peak power due to temperature rise is lower, the maximum input power is 16.5 KW.


DETERMINATION OF OVERALL TRANSMISSION LINE EFFICIENCY

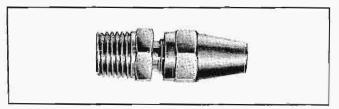
To obtain total loss in a given transmission line, multiply the attenuation in db per 100 ft. by the number of 100 foot lengths of line to be used. By referring to the curve on this page, the overall transmission efficiency may be determined.


ALTITUDE VS VARIATION IN PEAK VOLTAGES (for unpressurized cable)

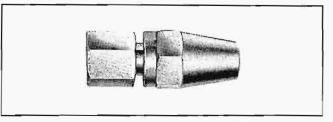


AVERAGE POWER RATING CORRECTION FOR AMBIENT TEMPERATURE—The maximum allowable temperature of the inner conductor of coaxial cable determines the average power rating. For Spir-O-line, using polyethylene dielectric, the maximum allowable temperature is 85°C. The temperature of the center conductor depends upon the power losses of the cable and the ambient temperature. The average power vs frequency curves shown for Spir-O-line and Spir-O-foam are based upon

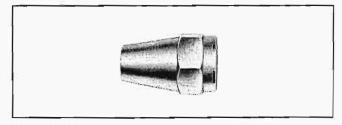
an ambient temperature of 40°C and a temperature rise of 45°C. The power rating at ambient temperatures other than 40°C may be calculated by the above curve.

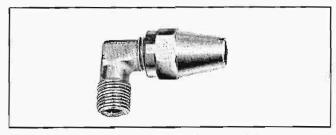


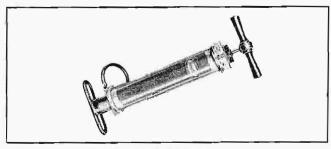
ATTENUATION CORRECTION FACTOR FOR TEM-PERATURE — The attenuation vs frequency curves for Spir-O-line and Spir-O-foam are based upon an ambient temperature of 20°C. Attenuation at temperatures other than 20°C may be calculated by the above curve.

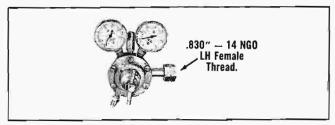


INCREASE OF PEAK POWER RATINGS WITH PRES-SURE — The peak power ratings for Spir-O-line Cable can be increased by pressurization and/or the use of high dielectric strength gases. Curves showing the variation of peak power ratings vs pressure for dry air, sulfur hexafluoride (SF₆), and dry nitrogen (N₂) are shown in the above curve. Other gases may be used but their characteristics should be carefully investigated before using.

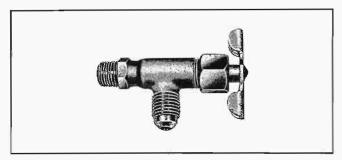

SPIR-O-LINE ACCESSORIES


Type No. 26-150 FLARE FITTING, $\frac{1}{4}$ " OD copper tube, $\frac{1}{4}$ " IPS male (includes flare nut). (NPN).

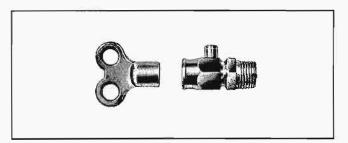

Type No. 27-150 FLARE FITTING, 1/4" OD copper tube, 1/8" IPS female (includes flare nut). (NPN).


Type No. 28-150 FLARE NUT, 1/4" OD copper tube size for use on flare fittings. (NPN).

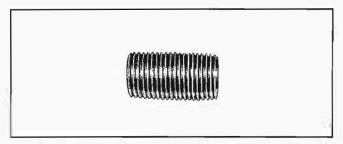
Type No. 29-150 FLARE ELBOW, 1/4" OD copper tube, 1/8" IPS male (includes flare nut). (NPN).

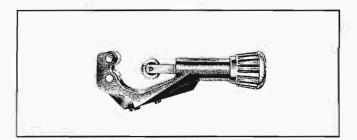


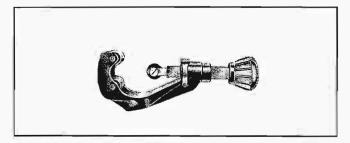
Type No. 30-150 DEHYDRATOR, hand pump consists of blue indicating gel, and will pressurize up to 1000 ft. of 1\%" or 250 ft. of 1\%" Spir-O-line.
(Part No. 099 0517 00).

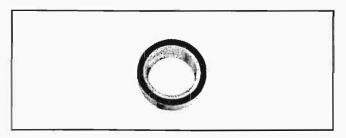


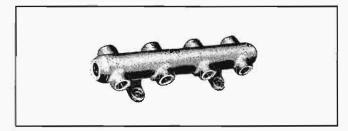
Type No. 31-150 PRESSURE REGULATOR, for use with cylinder Type No. 43-150. (NPN).

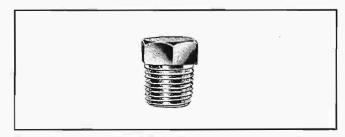

Type No. 44-150 PRESSURE REGULATOR, equipped with yoke for use with cylinder Type No. 41-150. (NPN).

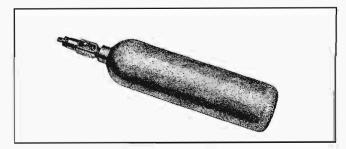

Type No. 32-150 NEEDLE VALVE, right angle type, has $\frac{1}{8}$ " IPS male thread, and side outlet is $\frac{1}{4}$ " OD copper tube. (NPN).

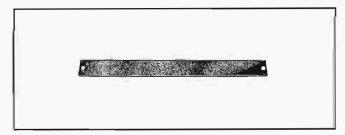

Type No. 33-150 BLEEDER VALVE, with key has 1/8" IPS male thread used wherever necessary when purging transmission line. (NPN).

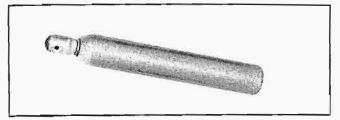

Type No. 34-150 NIPPLE, close, 1/8" IPS, brass. (NPN).

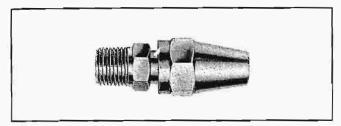

Type No. 35-150 TUBE CUTTER, for tube sizes $^1\!\!4''$ OD to $13\!\!8''$ OD. (NPN).

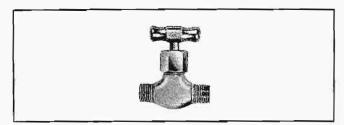

Type 36-150 TUBE CUTTER, for tube sizes $3\!\!/_4{}''$ OD to $21\!\!/_4{}''$ OD. (NPN).


Type No. 38-150 POLYETHYLENE TAPE (34" wide x 20 ft.) used for weather-proofing connectors. Polyethylene tape is the only plastic which should be used on Spir-O-line cable and connectors. (NPN).

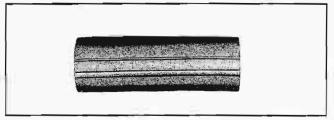

Type No. 39-150 MANIFOLD, has 10 ports 1/8" IPS female. (NPN).


Type No. 40-150 PIPE PLUG, hex head, 1/8" IPS male thread. (NPN).


Type No. 41-150 NITROGEN CYLINDER, 6.2 cu. ft., dry oil pumped nitrogen. (NPN).


Type No. 42-150 GROUNDING STRAP, this consists of 12" of copper equipped with a hole in each end used to ground Spir-O-line from flanged type connector to tower. (NPN).

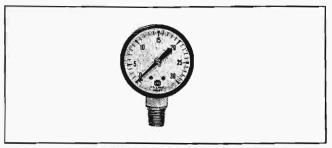
Type No. 43-150 NITROGEN CYLINDER, 112 cu. ft., dry oil pumped nitrogen. (NPN).


Type No. 45-150 FLARE FITTING, 1/4" OD copper tube, 1/8" IPS male includes flare nut. (Part No. 097 7583 00).

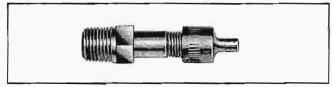
Type No. 47-150 NEEDLE VALVE, equipped with 1/8" IPS male thread. (NPN).


Type No. 48-150 PIPE PLUG, hex head, $\frac{1}{4}$ " IPS male thread. (NPN).

Type No. 93-500 MOUNTING SLEEVE, split, ½" size, used when fastening plain cable with wraplock to tower leg. (NPN).

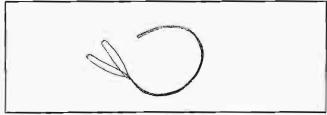

Type No. 93-875 MOUNTING SLEEVE, split, 7/8" size, used when fastening plain cable with wraplock to tower leg. (NPN).

Type No. 93-1625 MOUNTING SLEEVE, split, 15%" size, used when fastening plain cable with wraplock to tower leg. (NPN).



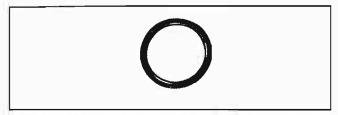
Type No. 50-150 ASSEMBLY for grounding 7/8" Spir-O-line at base of tower; Copper ground rod is 1/2" dia. and 6 feet long, copper wire is #10 AWG and 10 feet long. (NPN).

Type No. 59-150 ASSEMBLY for grounding 15%" Spir-O-line. (NPN).



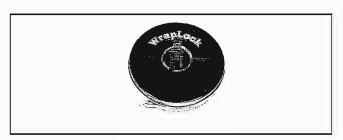
Type No. 24-150 PRESSURE GAUGE, 0-30 PSI with 1/8" IPS male thread. (Part No. 099 6723 00).

Type No. 21-150 GAS INLET VALVE has 1/8" IPS male thread. (Part No. 097 6901 00).


Type No. 70-150 GAS INLET ASSEMBLY — Includes Type No. 24-150 Pressure Gauge, Type No. 22-150 Tee, Type No. 34-150 Nipple, and Type No. 21-150 Gas Inlet Valve. (NPN).

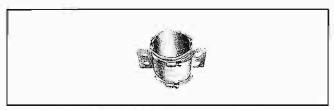
Type No. 90-875 CABLE GRIP, stainless steel, 7/8" size, for use on either plain or jacketed Spir-O-line. (NPN). Type No. 90-1625 CABLE GRIP, stainless steel, 15/8" size, for use on either plain or jacketed Spir-O-line. (NPN).

Type No. 22-150 TEE, all outlets $\frac{1}{8}$ " IPS female. (NPN).

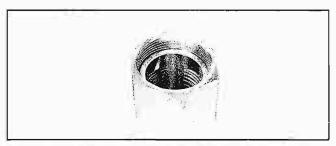


Type No. 308-375 3/8" "O" RING GASKET, for Spir-Olok Connectors. (NPN).

Type No. 308-500 $1\!/\!_2{}^{\prime\prime}$ "O" RING GASKET, for Spir-Olok Connectors. (NPN).


Type No. 308-875 7/8" "O" RING GASKET, for Spir-Olok Connectors. (NPN).

Type No. 308-1625 $15\!\!/\!\!s''$ "O" RING GASKET, for Spir-O-lok Connectors. (NPN).


Type No. 19-150 WRAPLOCK, stainless steel ½" wide x 50 feet, used for attaching Spir-O-line and Spir-O-foam cables to tower or supporting members.

Type No. 20-150 WRAPLOCK, 100 feet. (Part No. 099 0501 00).

Type No. 91-1625 ANCHOR, vertical, $1\frac{5}{8}$ " size, plain sheath, for anchoring cable at top of tower. (NPN).

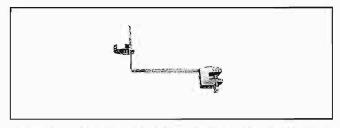
Type No. 91-875 for $\frac{7}{8}$ ". (NPN).

Type No. 143-375 3/8" SPIR-O-LOK NUT ASSEMBLY. (NPN).

Type No. 143-500 $\frac{1}{2}$ " SPIR-O-LOK NUT ASSEMBLY. (NPN).

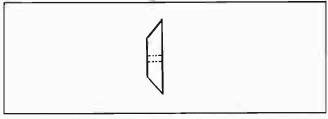
Type No. 143-875 $\frac{7}{8}$ " SPIR-O-LOK NUT ASSEMBLY. (NPN).

Type No. 143-1625 $15\!/\!8''$ SPIR-O-LOK-NUT ASSEMBLY. (NPN).

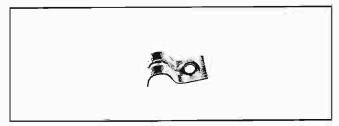


Type No. 94-875 ANCHOR, horizontal, $\frac{7}{8}$ " size, plain sheath, for anchoring cable at building. (NPN).

Type No. 94-1625 ANCHOR, horizontal, 15%" size, plain sheath, for anchoring cable at building. (NPN).


Type No. 92-875 ANCHOR, horizontal, $\frac{7}{8}$ " size, jacketed sheath, for anchoring cable at building. (NPN).

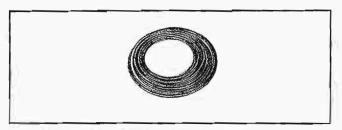
Type No. 92-1625 ANCHOR, horizontal, 15%" size, jacketed sheath, for anchoring cable at building. (NPN).


Type No. 196-875 GROUNDING CLAMP ASSEMBLY, γ_8 " size, for grounding cable at base of tower. (NPN).

Type No. 196-1625 GROUNDING CLAMP ASSEMBLY, 15%" size, for grounding cable at base of tower. (NPN).

Type No. 83-150 SINGLE SIDED CUTTING WHEEL, for special applications. $\frac{7}{8}$ " for use with Type No. 35-150. (NPN).

Type No. 84-150 Same as above except 15/8'' with Type No. 36-150. (NPN).



Type No. 62-150 CABLE CLIP, for use with 1/2" Spir-O-foam. (NPN).

Type No. 64-150 CABLE CLIP, for use with $\frac{7}{8}$ " Spir-O-foam. (NPN).

Type No. 23-150 MANIFOLD, has 6 ports, 1/8" IPS female. (NPN).

Type No. 25-150 COPPER TUBE, soft, 1/4" OD (specify length). Comes in 25' coils. (NPN).

PRODELIN RIGID "800" 7/8" - 50 OHM

COPPER TRANSMISSION LINE AND ACCESSORIES

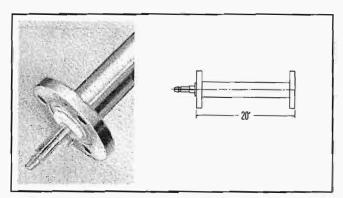
In Accordance With EIA Standard RS-225

7/8" - 50 OHM CHARACTERISTICS

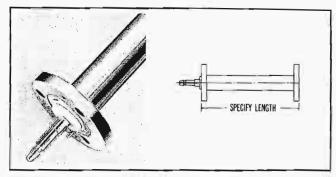
Outer Conductor: High Conductivity Copper Tube — .875 O.D. x .785 I.D.

Inner Conductor: High Conductivity Copper Tube — .341
O.D. x .291 I.D.

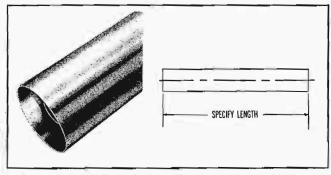
Velocity - Percent: 99.7

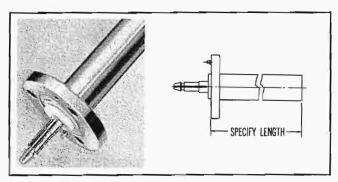

60 cycle, Peak Test Voltage, KV: 6

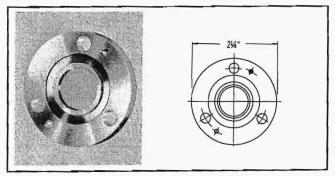
Insulator Supports: Teflon Pins, 15" spacing

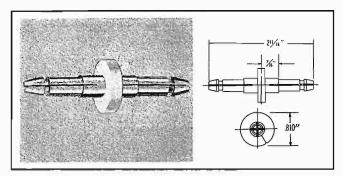

Weight/20 st. lgth: 11 lbs. 10 oz.

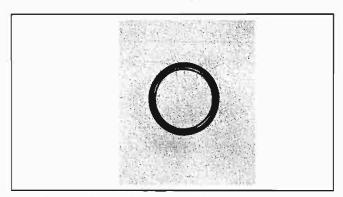
Shipping Weight: 245 lbs. No. Lines/Carton: 16

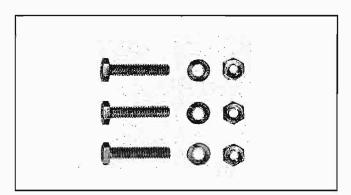

Carton Size: 12" x 12" x 243"

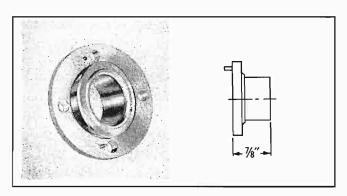

TYPE NO. 100-815 (NPN) — Line assembly, 20 ft. exact length, flanged both ends. Includes anchor insulator connector assembly, "O" ring and hardware. Weight: 11 lbs. 10 oz.

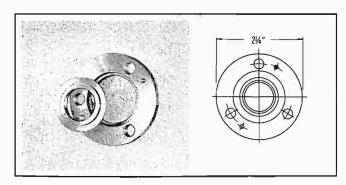

TYPE NO. 102-815 (NPN) — Line assembly, length to be specified, flanged both ends. Includes anchor insulator connector assembly, "O" ring and hardware. Weight: 10 oz. $+5\frac{1}{2}$ oz./ft.

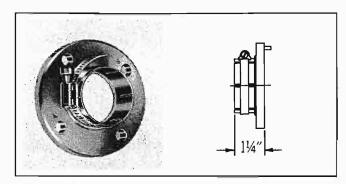

TYPE NO. 103-815 (NPN) — Line assembly, length to be specified, no flanges, hardware or connector. Weight: $5\frac{1}{2}$ oz./ft.

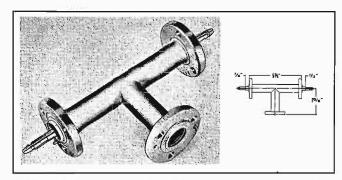

TYPE NO. 105-815 (NPN) — Line assembly, length to be specified, flanged one end. Includes anchor insulator connector assembly, "O" ring and hardware. Weight: $5\frac{1}{2}$ oz. $+5\frac{1}{2}$ oz./ft.

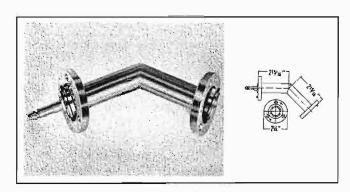

TYPE NO. 300-815 (NPN) — Flange, fixed, for silver brazing. Includes silver solder ring insert. Weight: 4 oz.

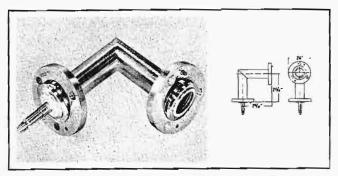

TYPE NO. 302-815 (NPN) — Anchor insulator connector assembly, silver plated. Weight: 1/2 oz.

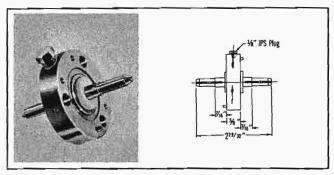

TYPE NO. 308-815 (NPN) — "O" ring for % flanges Type No. 300-815 and Type No. 324-815.

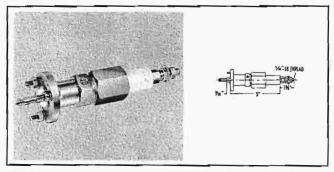

TYPE NO. 315-815 (NPN) — Hardware set for 7/8" flange. Consists of 3 each stainless steel bolts, nuts and lockwashers, 1/4-20 x 1" lg. Weight: 1 oz.

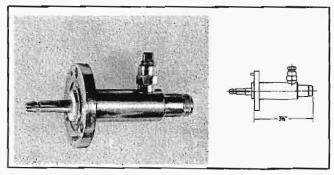

TYPE NO. 322-815 (NPN) — Adapter assembly, flanged to unflanged line, soft solder type, pressurized. No anchor insulator-connector, "O" ring or hardware. Weight: 5½ oz.


TYPE NO. 324-815 (NPN) — Flange, swivel, for silver brazing. Includes silver solder ring insert. Weight: 43/4


TYPE NO. 325-815 (NPN) — Adapter assembly, flanged to unflanged line, unpressurized, clamp type, for indoor use. Includes hardware. Weight: 8 oz.


TYPE NO. 420-815 (NPN) — Tee assembly, swivel flanges all legs, two anchor insulator-connectors, "O" ring and hardware. Weight 1 lb. 9 oz.


TYPE NO. 448-815 (NPN) — Elbow assembly, miter, 45 degree, swivel flanged, male-female. Includes one anchor insulator-connector, "O" ring and hardware. Weight: 1 lb. 1 oz.


TYPE NO. 494-815 (NPN) - Elbow, miter, 90 degree, male-female, swivel flanged. Includes one anchor insulator-connector, "O" ring and hardware. Weight: 1 lb. l oz.

Type No. 500-815 (NPN) — Gas barrier, with "O" ring and extra long hardware. Incorporates 1/8" IPS gas inlet port. Weight: 13 oz.

TYPE NO. 505-815 (NPN) — End seal assembly, flanged with gas inlet port, includes "O" ring and hardware. Weight: 1 lb.

TYPE NO. 521-815 (NPN) — Adapter, EIA flange to type "N" female (UG-23D/U). Includes anchor insulatorconnector, "O" ring and hardware. Incorporates 1/8" IPS port. Weight: 11 oz.

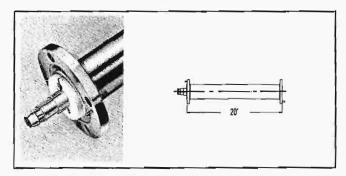
TYPE NO. 536-815 (NPN) - Adapter, EIA flange to "LC" female (UG-215/U). Includes one anchor insulatorconnector, "O" ring and hardware. Incorporates 1/8" IPS port. Weight: 14 oz.

PRODELIN RIGID "800" 15/8" - 50 OHM

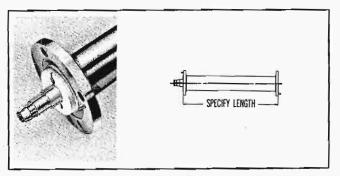
COPPER TRANSMISSION LINE AND ACCESSORIES In Accordance With EIA Standard RS-225

15/8" — 50 OHM CHARACTERISTICS

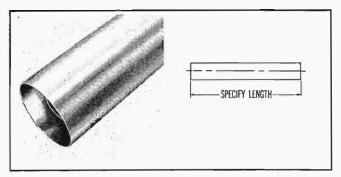
Outer Conductor: High Conductivity Copper Tube -1.625 O.D. x 1.527 I.D.

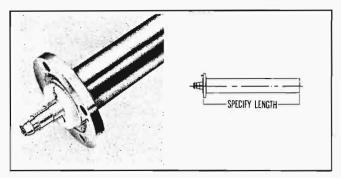

Inner Conductor: High Conductivity Copper Tube -.664 O.D. x .588 I.D.

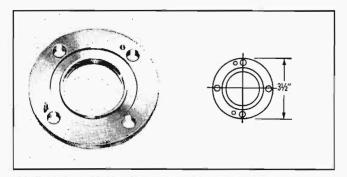
Velocity — Percent: 99.7 60 cycle, Peak Test Voltage, KV: 11

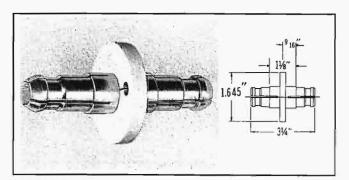

Insulator Supports: Teflon Pins, 30" spacing

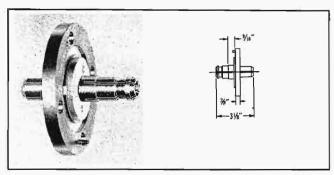
Weight/20 st. lgth.: 28 lbs. Shipping Weight: 280 lbs. No. Lines/Carton: 8

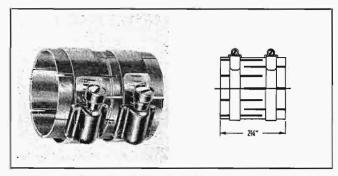

Carton Size: 12" x 12" x 243"

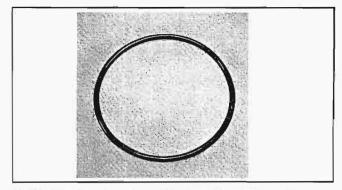

TYPE NO. 100-825 (Part No. 097 7081 --) -- Line assembly, 20 ft. exact length, flanged both ends. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 26 lbs.

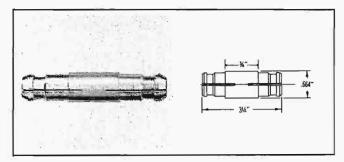

TYPE NO. 102-825 (NPN) - Line assembly, length to be specified, flanged both ends. Includes anchor-insulator connector assembly, "O" ring and hardware. Weight: 2 lbs. + 1 lb. 3 oz./ft.


TYPE NO. 103-825 (NPN) — Line assembly, length to be specified, no flanges, hardware or connector. Weight: 1 lb. 3 oz./ft.

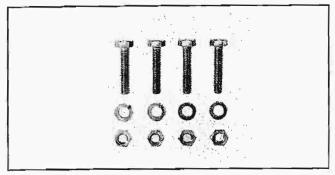

TYPE NO. 105-825 (NPN) — Line assembly, length to be specified, flanged one end. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 1 lb. $3\frac{1}{2}$ oz. + 1 lb. 3 oz./ft.

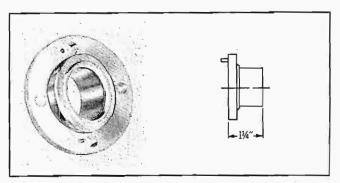

TYPE NO. 300-825 (Part No. 099 0458 00) — Flange, fixed, $3\frac{1}{2}$ " dia., for silver brazing. Includes silver solder ring insert. Weight: 12 oz.

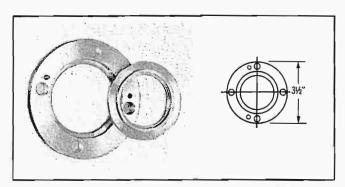

TYPE NO. 302-825 (Part No. 097 7084 00) — Anchor insulator-connector assembly, silver plated. Weight: 3½ oz.

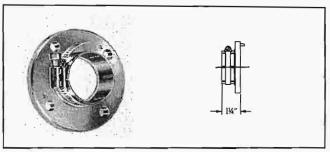

TYPE NO. 304-825 (NPN) — Adapter, flange type, includes anchor insulator-connector assembly. Used for connecting flanged 50 ohm EIA line to flanged 51.5 ohm RMA-VHF line with inner conductor .625 O.D. x .568 I.D. Supplied with "O" ring and hardware. Weight: 1 lb. 3 oz.

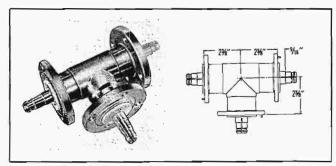

TYPE NO. 305-825 (NPN) — Coupling, straight clamp type, unpressurized. Includes 2 tube clamps. No inner conductor connector. Weight: $5\frac{1}{2}$ oz.

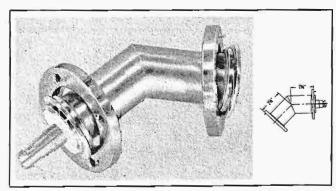

TYPE NO. 308-825 (Part No. 097 7258 00) — "O" ring gasket for 15%" flanges, Type No. 300-825 and Type No. 324-825.

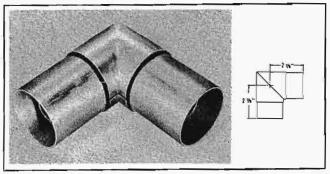

TYPE NO. 310-825 (Part No. 099 0459 00) — Inner conductor connector, silver plated. Weight: 2½ oz.

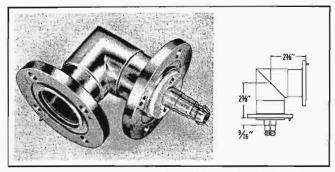

TYPE NO. 312-825 (NPN) — Cover plate, brass, with $\frac{1}{8}$ " IPS gas inlet port and plug. No hardware. Weight: 1 lb.

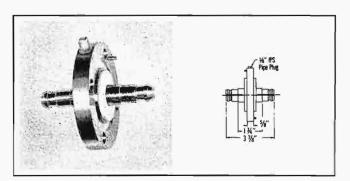

TYPE NO. 315-825 (NPN) — Hardware set for $1\frac{1}{8}$ " flanges. Consists of 4 ea. stainless steel bolts, nuts and lockwashers, $\frac{1}{10}$ "-18 x $1\frac{1}{2}$ " lg. Weight: $3\frac{1}{2}$ oz.

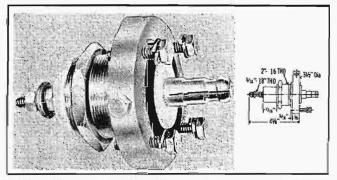

TYPE NO. 322-825 (NPN) — Adapter assembly, flange, swivel to unflanged line, soft solder type, pressurized. No anchor insulator-connector, "O" ring or hardware. Weight: 14 oz.

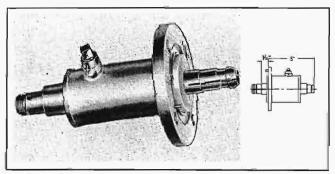

TYPE NO. 324-825 (NPN) — Flange, swivel, 3½" dia., for silver brazing. Includes silver solder ring insert. Weight: 13 oz.

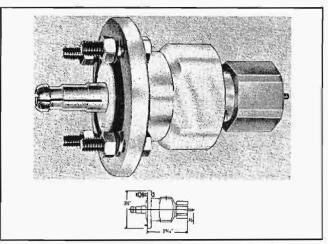

TYPE NO. 325-825 (NPN) — Adapter assembly, flanged to unflanged line, unpressurized, clamp type, for indoor use, includes hardware. Weight: 1 lb 2 oz.

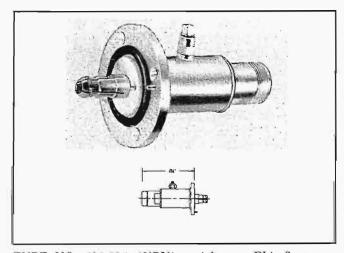

TYPE NO. 420-825 (NPN) — Tee assembly, reinforced, swivel flanges on all three legs, 23%" center lines, affixed male anchor insulators all legs, includes "O" rings and hardware. Weight: 4 lbs. 1 oz.

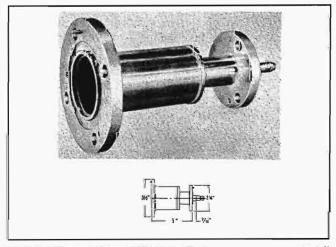

TYPE NO. 448-825 (Part No. 097 7511 00) — Elbow assembly, miter, 45 degree, female, swivel flanged. Includes one anchor insulator-connector, "O" ring and hardware. Weight: 2 lbs. 12 oz.


TYPE NO. 493-825 (NPN) — Elbow assembly, miter, 90 degree, female, reinforced, no flanges, equal legs. Inner conductor each leg cutback & from face of outer conductor. Weight: 15 oz.


TYPE NO. 494-825 (Part No. 097 6739 00) — Elbow assembly, miter, 90 degree, male-female, reinforced, swivel flanged. Includes one affixed male anchor insulator, "O" ring and hardware. Weight: 2 lbs. 14 oz.


TYPE NO. 500-825 (Part No. 097 7085 00) — Gas barrier, with "O" ring and 2" long hardware. Incorporates 1/8" IPS gas inlet port. Weight: 1 lb. 10 oz.


TYPE NO. 505-825 (Part No. 099 0460 00) — End seal assembly, flanged with gas inlet port, includes "O" ring and hardware. Weight: 2 lbs. 10 oz.


TYPE NO. 521-825 (NPN) — Adapter, EIA flange to type "N" female (UG-23D/U). Includes anchor insulator, "O" ring and hardware. Incorporates 1/8" IPS port. Weight: 2 lbs.

TYPE NO. 535-825 (NPN) — Adapter, EIA flange to "LC" male (UG-154/U). Includes anchor insulator, "O" ring and hardware. Incorporates ½" IPS port. Weight: 2 lbs. 12 oz.

TYPE NO. 536-825 (NPN) — Adapter, EIA flange to "LC" female (UG-215/U). Includes anchor insulator, "O" ring and hardware. Incorporates ½" IPS port. Weight: 1 lb. 10 oz.

TYPE NO. 811-825 (NPN) — Reducer, step type, 15%" to 7%" 50 ohm, fixed flanges. Includes one 7%" anchor insulator-connector assembly, "O" ring and hardware. Weight: 1 lb. 12 oz.

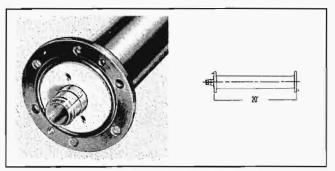
PRODELIN RIGID "800" 31/8" — 50 OHM

COPPER TRANSMISSION LINE AND ACCESSORIES In Accordance With EIA Standard RS-225

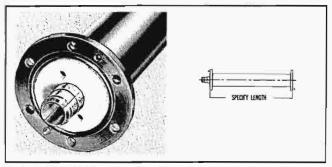
31/8" — 50 OHM CHARACTERISTICS

Outer Conductor: High Conductivity Copper Tube — 3.125 O.D. x 3.027 I.D.

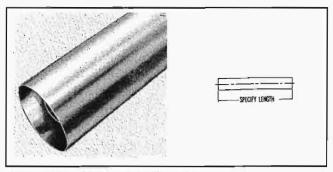
Inner Conductor: High Conductivity Copper Tube — 1.315 O.D. x 1.231 I.D.

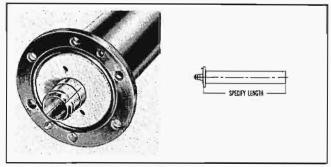

Velocity - Percent: 99.7

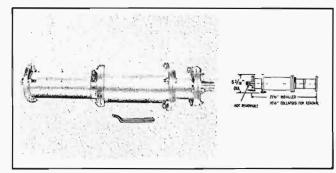
60 cycle, Peak Test Voltage, KV: 19

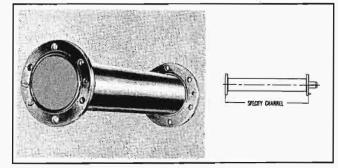

Insulator Supports: Teflon Pins, 60" spacing

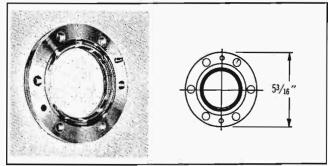
Weight/20 ft. lgth.: 54.5 lbs. Shipping Weight: 270 lbs. No. Lines/Carton: 4

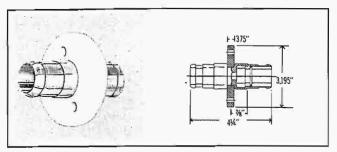

Carton Size: 12" x 12" x 243"


TYPE NO. 100-835 (Part No. 097 6631 —) — Line assembly, 20 ft. exact length flanged both ends. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 54½ lbs.

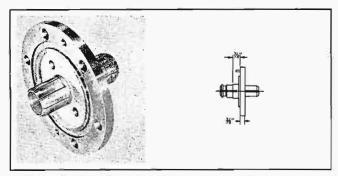

TYPE NO. 102-835 (NPN) — Line assembly, length to be specified, flanged both ends. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 4½ lbs + 2½ lbs./ft.


TYPE NO. 103-835 (NPN) — Line assembly, length to be specified, no flanges, hardware or connector. Weight: 2½ lbs./ft.

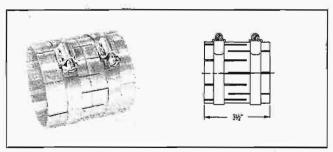

TYPE NO. 105-835 (NPN) — Line assembly, length to be specified, flanged one end. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: $3 \text{ lbs.} + 2\frac{1}{2} \text{ lbs.}/\text{ft.}$


TYPE NO. 120-835 (NPN) — Breakaway section, EIA flanged both ends, permits separating the transmission line at any convenient point. Pressure tight. Weight: 14 lbs.

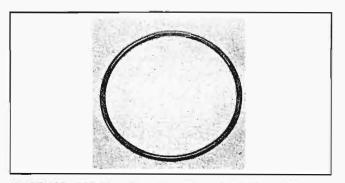
TYPE NO. 130-835 (NPN) — Transformer, ¼ wave, used to join 50 ohm line to 51.5 ohm RMA line. Specify channel from 2 to 13. Connector for 51.5 ohm end supplied. Weight varies with channel.

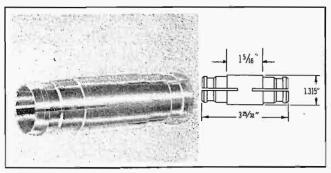


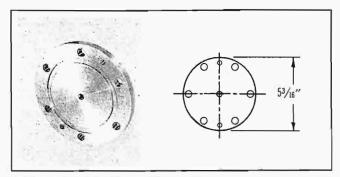
TYPE NO. 300-835 (Part No. 097 6944 00) — Flange, fixed, 5%" dia., for silver brazing. Includes silver solder ring insert. Weight: 1 lb. 10 oz.

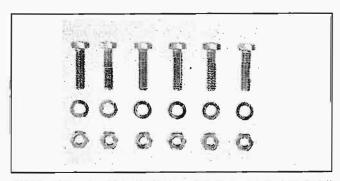


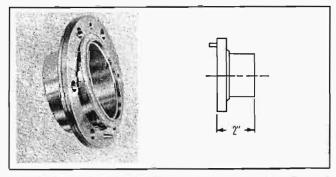
TYPE NO. 302-835 (NPN) — Anchor insulator-connector assembly, spring loaded, silver plated.

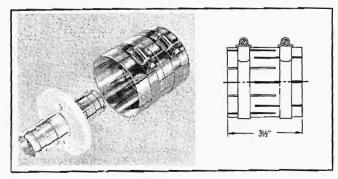

TYPE NO. 303-835 NPN) — Same as 302-835 except contact area is finished with Prodelube #8. Weight: 12 oz.

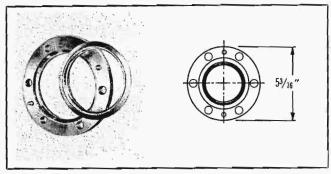

TYPE NO. 304-835 (NPN) — Adapter, flange type, includes anchor insulator-connector. Used for connecting flanged, 50 ohm EIA line to flanged 51.5 ohm RMS-VHF line with inner conductor 1.200 O.D. x 1.136 I.D. Supplied with "O" ring and hardware. Weight: 2 lbs. 9 oz.

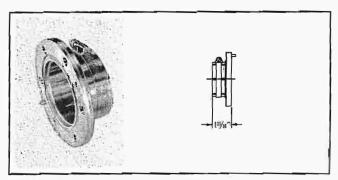

TYPE NO. 305-835 (NPN) — Coupling, straight, clamp type, unpressurized. Includes 2 tube clamps. No inner conductor connector. Does not increase lgth. O.C. Weight: 1 lb. 2 oz.

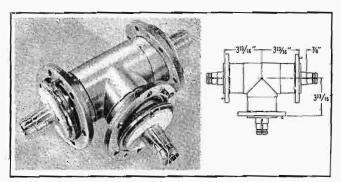

TYPE NO. 308-835 (Part No. 097 6742 00) — "O" ring gasket for 31/8" flanges, Type No. 300-835 and Type No. 324-835.

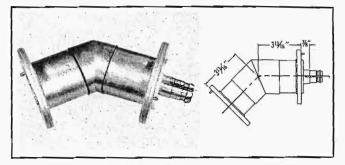

TYPE NO. 310-835 (Part No. 097 6635 00) — Inner conductor connector only, silver plated, spring loaded. Used with Type No. 305-835. Weight: 7 oz.

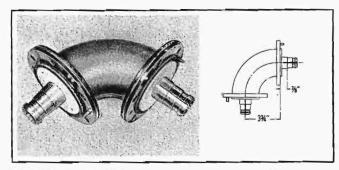

TYPE NO. 312-835 (NPN) — Cover plate, brass, with 1/8" IPS gas inlet port and plug. No hardware. Weight: 2 lbs. 3 oz.

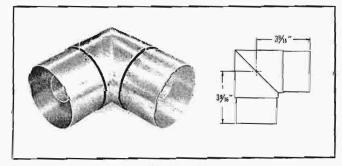

TYPE NO. 315-835 (NPN) — Hardware set for $3\frac{1}{8}$ " flanges. Consists of 6 ea. stainless steel bolts, nuts and lockwashers, $\frac{3}{8}$ "-16 x $1\frac{1}{2}$ " lg. Weight: $8\frac{1}{2}$ oz.

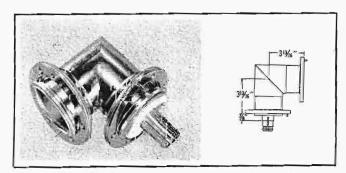

TYPE NO. 322-835 (NPN) — Adapter assembly, flanged to unflanged line, soft solder type, pressurized. No anchor insulator-connector, "O" ring or hardware. Weight: 2 lbs.

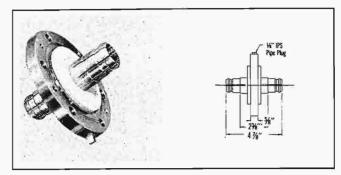

TYPE NO. 323-835 (NPN)—Coupling assembly, straight, clamp type, unpressurized. Includes inner conductor-connector assembly. (Special). Weight: 1 lb. 12 oz.

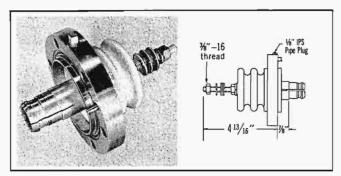

TYPE NO. 324-835 (NPN) — Flange, swivel, 54 dia., for silver brazing. Includes silver solder ring insert. Weight: 1½ lbs.

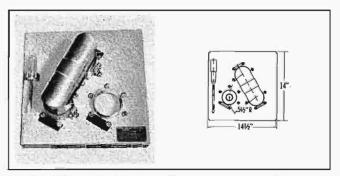

TYPE NO. 325-835 (NPN) — Adapter assembly, flanged to unflanged line, unpressurized, clamp type, for indoor use, includes hardware. Weight: 2½ lbs.

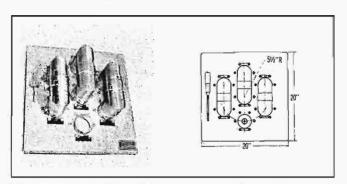

TYPE NO. 420-835 (NPN) — Tee assembly, reinforced, swivel flanges on all three legs, 318" center lines, affixed male anchor insulators all legs, includes "O" rings and hardware. Weight: 10½ lbs.

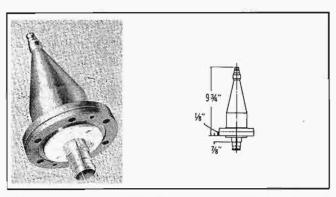

TYPE NO. 448-835 (Part No. 097 6633 00) — Elbow assembly, miter, 45 degree, female, reinforced, swivel flanged. Includes one anchor insulator-connector, "O" ring and hardware. Weight: 7 lbs.

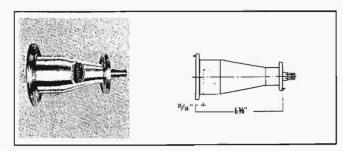

TYPE NO. 485-835 (NPN) — Elbow assembly, sweep, 90 degree, cast bronze, swivel flanged. Includes affixed male anchor insulator-connectors, "O" ring and hardware. Weight: 8 lbs. 4 oz.

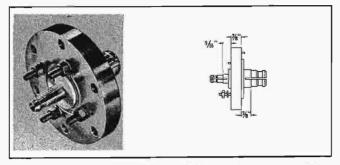

TYPE NO. 493-835 (NPN) — Elbow assembly, miter, 90 degree, female, reinforced, no flanges, equal legs. Inner conductor cut-back 45" from face of outer conductor. Weight: 3 lbs.


TYPE NO. 494-835 (Part No. 097 6986 —) — Elbow assembly, miter, 90 degree, male-female, reinforced, swivel flanged. Includes one affixed male anchor insulator-connector, "O" ring and hardware. Weight: 7 lbs. 12 oz.


TYPE NO. 500-835 (Part No. 097 6725 00) — Gas barrier, with "O" ring gasket and $2\frac{1}{4}$ " long hardware. Incorporates $\frac{1}{8}$ " IPS gas inlet port. Weight: 3 lbs. 13 oz.


TYPE NO. 505-835 (Part No. 099 0461 00) — End seal assembly, flanged, with gas inlet port, includes "O" ring gasket and hardware. Weight: 4 lbs. 6 oz.


TYPE NO. 516-835 (NPN) — Manual transfer patch panel assembly, 3 pole, one 180° connector, includes 3 anchor connectors. Screwdriver mounted on panel. Not pressurized. Weight: 24 lbs.


TYPE NO. 517-835 (NPN) — Manual transfer patch panel assembly, 7 pole, three 180° connectors, includes 7 anchor connectors. Screwdriver mounted on panel. Not pressurized. Weight: 49.5 lbs.

TYPE NO. 521-835 (NPN) — Taper, 31/8"—50 ohm to Type "N" female. Includes anchor insulator assembly, "O" ring, nuts and lockwashers. Weight: 71/2 lbs.

TYPE NO. 801-835 (Part No. 097 7504 00) — Taper, $3\frac{1}{6}$ "-50 ohm to $1\frac{5}{6}$ "-50 ohm. $1\frac{5}{6}$ " anchor connector, "()" ring and hardware furnished. Weight: 4 lbs. 2 oz.

TYPE NO. 810-835 (NPN) — Reducer, flange type, $3\frac{1}{8}$ " to $1\frac{5}{8}$ " 50 ohm, incorporates $3\frac{1}{8}$ " and $1\frac{5}{8}$ " male anchor insulator connector. Includes $1\frac{5}{8}$ " "O" ring, studs, nuts and lockwashers. Weight: 4 lbs. 13 oz.

PRODELIN RIGID "800" 15/8" - 50 OHM

ALUMINUM TRANSMISSION LINE AND ACCESSOR-IES Using EIA Flange Connector

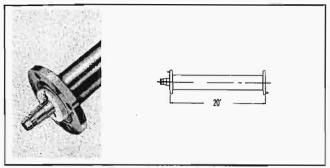
13/8" - 50 OHM CHARACTERISTICS

Outer Conductor: Aluminum, Alloy 1100-H18, 1.625

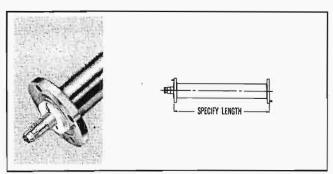
O.D. x 1.527 I.D.

Inner Conductor: High Conductivity Copper Tube—.664
O.D. x .588 I.D.

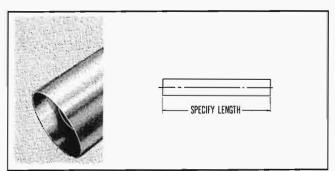
Velocity - Percent: 99.7

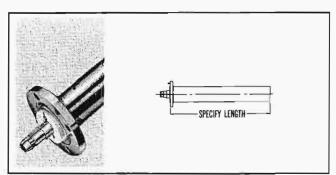

60 cycle, Peak Test Voltage, KV: 11

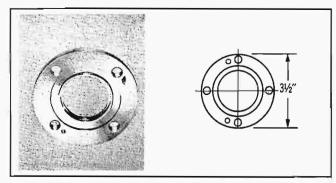
Insulator Supports: Teflon Pins, 30" spacing

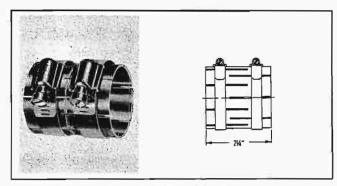

Weight/20 st. lgth.: 13 lbs. 3 oz.

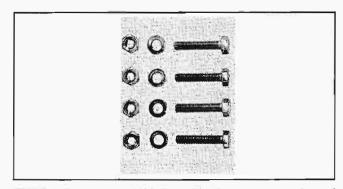
Shipping Weight: 160 lbs. No. Lines/Carton: 8

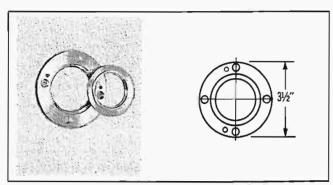

Carton Size: 9" x 16" x 243"

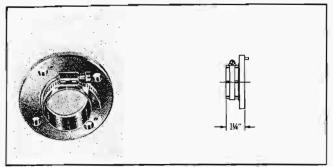

TYPE NO. 100-925 (NPN) — Line assembly, 20 ft. exact length, flanged both ends. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 13 lbs. 3 oz.

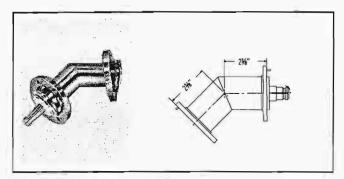

TYPE NO. 102-925 (NPN) — Line assembly, length to be specified, flanged both ends. Includes anchor insulator assembly, "O" ring and hardware. Weight: 1 lb. 3 oz. + 10 oz./ft.

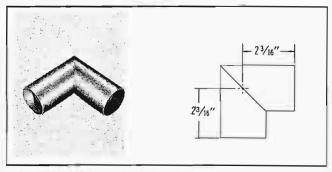

TYPE NO. 103-925 (NPN) — Line assembly, length to be specified, no flanges, hardware or connector. Weight: 10 oz./ft.

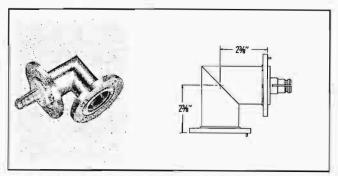

TYPE NO. 105-925 (NPN) — Line assembly, length to be specified, flanged one end. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 12 oz. + 10 oz./ft.

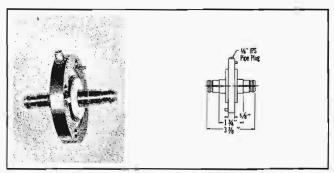

TYPE NO. 300-925 (NPN) — Flange, fixed, 6061 alloy. Weight: $4\frac{1}{2}$ oz.


TYPE NO. 305-925 (NPN) — Coupling, straight, zinc plated, clamp type, unpressurized. Includes 2 tube clamps. No inner conductor connector. Weight: 5½ oz.


TYPE NO. 315-925 (NPN) — Hardware set, consists of 4 each, stainless steel bolts, nuts and lockwashers, $\frac{\pi}{10}$ ". 18 x $1\frac{1}{2}$ " long. Weight: $3\frac{1}{2}$ oz.


TYPE NO. 324-925 (NPN) — Flange, swivel, 6061 alloy. Weight: 4½ oz.


TYPE NO. 325-925 (NPN) - Adapter assembly, zinc plated, flanged to unflanged line, unpressurized, clamp type, for indoor use, includes hardware. Weight: 1 lb. 2 oz.

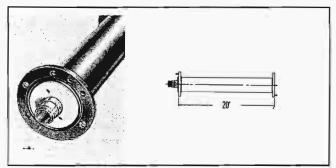

TYPE NO. 448-925 (NPN) — Elbow assembly, miter, 45 degree, male-female. Includes one affixed male anchor insulator, "O" ring and hardware. Weight: 1 lb. 4 oz.

TYPE NO. 493-925 (NPN) — Elbow assembly, miter, 90 degree, female, no flanges, equal legs, unsupported inner conductor. Weight: 8 oz.

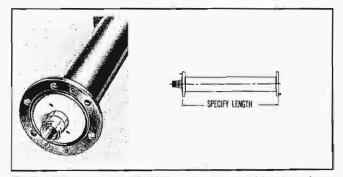
TYPE NO. 494-925 (NPN) - Elbow assembly, miter, 90 degree, male-female, swivel flanges. Includes one affixed male anchor insulator, "O" ring and hardware. Weight: 1 lb. 15 oz.

TYPE NO. 500-925 (NPN) — Gas barrier, zinc plated with "O" ring and 2" long hardware. Incorporates 1/8" IPS gas inlet port. Weight: 1 lb. 10 oz.

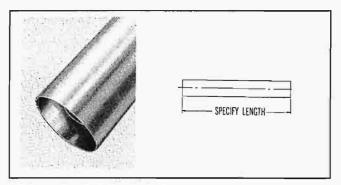
PRODELIN RIGID "800" 31/8" — 50 OHM

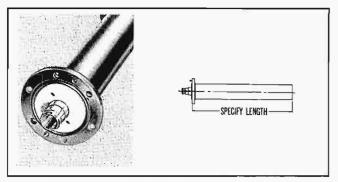

ALUMINUM TRANSMISSION LINE AND ACCESSOR-IES Using EIA Flange Connector

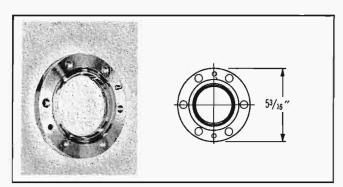
31/8"-50 OHM CHARACTERISTICS

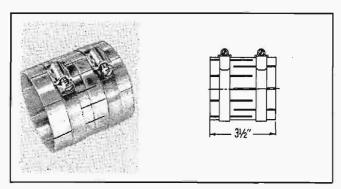

Outer Conductor: Aluminum, Alloy 1100-H18, 3.125 O.D. x 3.027 I.D.

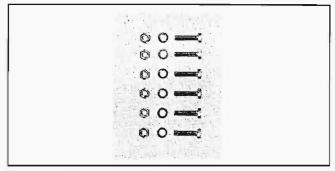
Inner Conductor: High Conductivity Copper Tube -1.315 O.D. x 1.231 I.D.

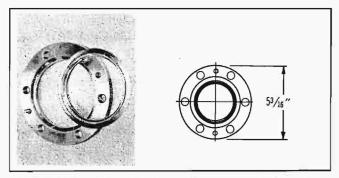

Velocity — Percent: 99.7
60 cycle, Peak Test Voltage, KV: 19 lbs.
Insulator Supports: Teflon Pins, 60" spacing Weight/20 ft. lgth.: 28 lbs. 10 oz.
Shipping Weight: 161 lbs.
No. Lines/Carton: 4

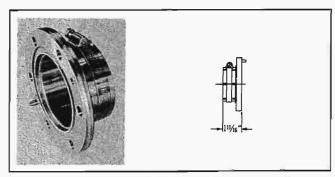

TYPE NO. 100-935 (NPN) - Line assembly, 20 ft. exact length, flanged both ends. Includes anchor insulatorconnector assembly, "O" ring and hardware. Weight: 28 lbs. 10 oz.

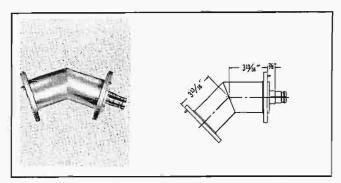

TYPE NO. 102-935 (NPN) - Line assembly, length to be specified, flanged both ends. Includes anchor insulatorconnector assembly, "O" ring and hardware. Weight: 2 lbs. 10 oz. + 1 lb. 5 oz./ft.

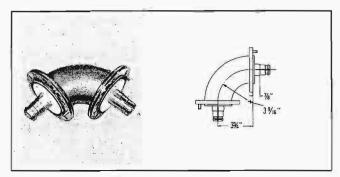

TYPE NO. 103-935 (NPN) — Line assembly, length to be specified, no flanges, hardware or connector. Weight: 1 lb. 5 oz./ft.

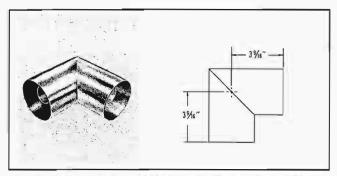

TYPE NO. 105-935 (NPN) — Line assembly, length to be specified, flanged one end. Includes anchor insulator-connector assembly, "O" ring and hardware. Weight: 2 lbs. + 1 lb. 5 oz./ft.

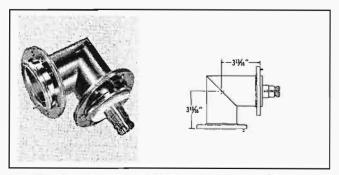

TYPE NO. 300-935 (NPN) — Flange, fixed, 6061 alloy. Weight: 8½ oz.

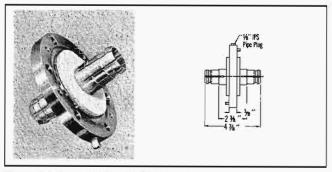

TYPE NO. 305-935 (NPN) — Coupling, straight, zinc plated, clamp type, unpressurized. Includes 2 tube clamps. No inner conductor-conector. Weight: 1 lb. 2 oz.


TYPE NO. 315-935 (NPN) — Hardware set, consists of 6 each stainless steel bolts, nuts and lockwashers, 3%"-16 x 11%" lg. Weight: 81% oz.


TYPE NO. 324-935 (NPN) — Flange, swivel, 6061 alloy. Weight: 8½ oz.


TYPE NO. 325-935 (NPN) — Adapter assembly, zinc plated, flanged to unflanged line, unpressurized, clamp type, for indoor use, includes hardware. Weight: 2 lbs. 8 oz.


TYPE NO. 448-935 (NPN) — Elbow assembly, miter, 45 degree, swivel flanges. Includes one affixed male anchor insulator-connector, "O" ring and hardware. Weight: 3½ lbs.


TYPE NO. 485-935 (NPN) — Elbow assembly, sweep, 90 degree, cast aluminum, swivel flanges. Includes affixed male anchor insulator-connetors, "O" ring and hardware for one end. Weight: 4 lbs. 5 oz.

TYPE NO. 493-935 (NPN) — Elbow assembly, 90 degree, female, no flanges, equal legs. Unsupported inner conductor. Weight: 3 lbs.

TYPE NO. 494-935 (NPN) — Elbow assembly, miter, 90 degree, male-female, swivel flanges. Includes one affixed anchor insulator-connector, "O" ring and hardware. Weight: 4 lbs. 9 oz.

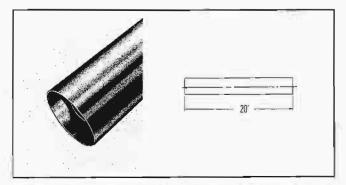
TYPE NO. 500-935 (NPN) — Gas barrier, zinc plated, with "O" ring and $2\frac{1}{4}$ " long hardware. Incorporates $\frac{1}{8}$ " IPS gas inlet port. Weight: 3 lbs. 13 oz.

PRODELIN RIGID "800" 15/8" - 50 OHM

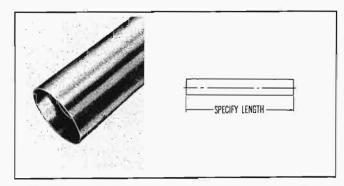
ALUMINUM TRANSMISSION LINE AND ACCESSOR-IES Using the Spir-O-lok Connector

15%"-50 OHM CHARACTERISTICS

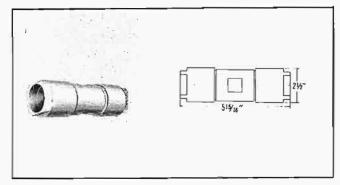
Outer Conductor: Aluminum, Alloy 1100-H18, 1.625 O.D. x 1.527 I.D.

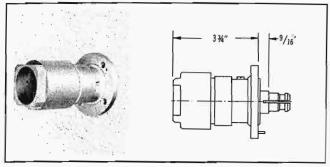

Inner Conductor: High Conductivity Copper Tube .664
O.D. x .588 I.D.

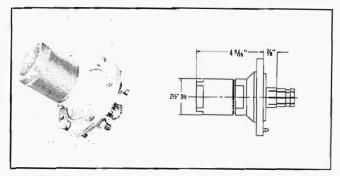
Velocity - Percent: 99.7

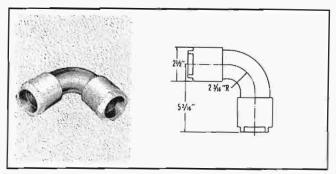

60 cycle, Peak Test Voltage, KV: 11 Insulator Supports: Teflon Pins, 30" spacing

Weight/20 ft. lgth.: 12½ lbs. Shipping Weight: 155 lbs. No. Lines/Carton: 8


Carton Size: 12" x 12" x 243"


TYPE NO. 101-925 (NPN) — Coaxial line assembly, 20 ft. exact length, no flange. Weight: 12½ lbs.


TYPE NO. 103-925 (NPN) — Coaxial line assembly, no flanges, length to be specified. Weight: 10 oz./ ft.


TYPE NO. 79-1025 (NPN) — Coupling assembly, includes anchor insulator-connector. Weight: 1 lb. 10 oz.

TYPE NO. 81-1025 (NPN) - Adapter assembly, 15%" rigid to 15%" EIA male, includes anchor insulator. Weight: 1 lb. 8 oz.

TYPE NO. 82-1025 (NPN) — Adapter assembly, 15/8" to 31/8" EIA male, includes anchor insulator-connector. Weight: 2 lbs. 6 oz.

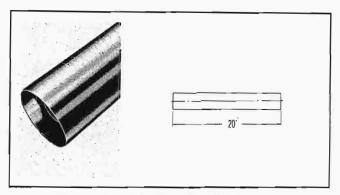
TYPE NO. 485-1025 (NPN) - Elbow assembly, sweep, 90° aluminum with Spir-O-lok connector. Weight: 31/2 lbs.

PRODELIN RIGID "800" 31/8" - 50 OHM

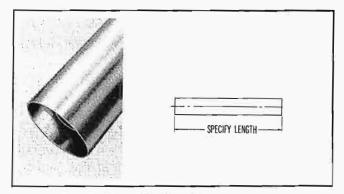
ALUMINUM TRANSMISSION LINE AND ACCESSOR-IES Using the Spir-O-lok Connector

31/8"-50 OHM CHARACTERISTICS

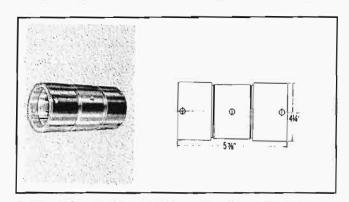
Outer Conductor: Aluminum, Alloy 1100-H18, 3.125 O.D. x 3.027 I.D.

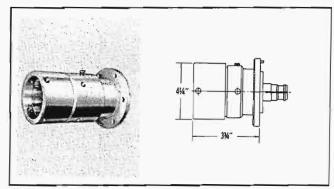

Inner Conductor: High Conductivity Copper Tube 1.315

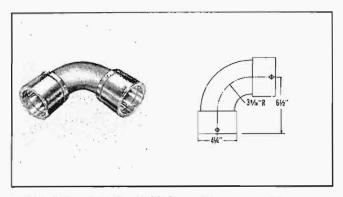
O.D. x 1.231 I.D. Velocity - Percent: 99.7

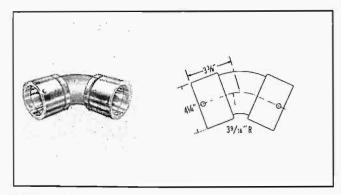

60 cycle, Peak Test Voltage, KV: 19
Insulator Supports: Teflon Pins, 60" spacing
Weight/20 ft. lgth.: 25 lbs.

Shipping Weight: 147 lbs. No. Lines/Carton: 4


Carton Size: 12" x 12" x 243"


TYPE NO. 101-935 (NPN) — Coaxial line assembly, 20 ft. exact length, no flanges. Weight: 25 lbs.

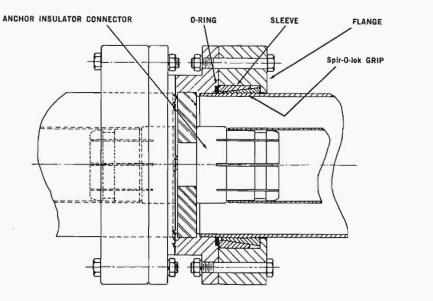

TYPE NO. 103-935 (NPN) - Coaxial line assembly, no flanges, length to be specified. Weight: 1 lb. 4 oz./ft.


TYPE NO. 79-1035 (NPN) - Coupling assembly, includes anchor insulator-connector. Weight: 33/4 lbs.

TYPE NO. 81-1035 (NPN) — Adapter Assembly, 31/8" rigid to 31/8" EIA, male, includes anchor insulator-connector. Weight: 3 lbs. 5 oz.

TYPE NO. 485-1035 (NPN) — Elbow assembly, sweep, 90° cast aluminum with Spir-O-lok connectors, both male ends. Weight: 7 lbs.

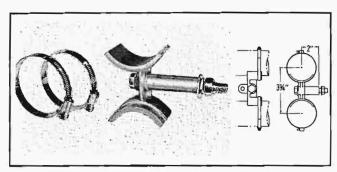

TYPE NO. 490-1035 (NPN) — Elbow assembly, sweep, 45° cast aluminum with Spir-O-lok connectors, both male ends. Weight: 5 lbs. 3½ oz.

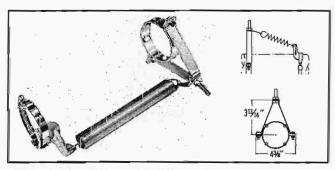

SPIR-O-LOK CONNECTOR FOR ALUMINUM LINE

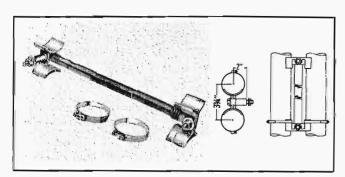
The Spir-O-lok connector was first introduced with Spir-O-line coaxial cable and has now proved to be the simplest, quickest and most positive and foolproof connector available for coaxial cable installations designed to date.

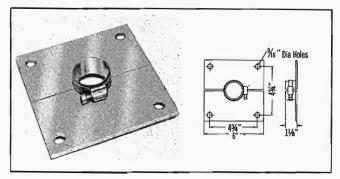
The design of this type connector, which does not require soldering or brazing or any special preparation to the end of the transmission line, permits the assembly of transmission line sections with plain ends in a very economical manner with the use of small hand tools.

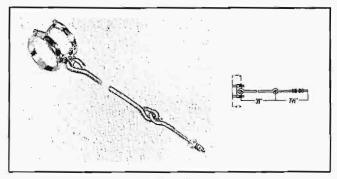
A cross section of the Spir-O-lok grip is illustrated below.

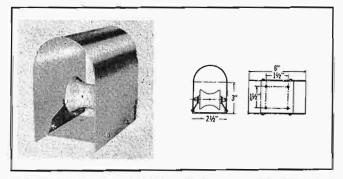


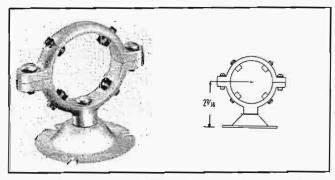

PRODELIN RIGID "800" 15/8" SUPPORTING HARDWARE


TYPE NO. 201-825 (NPN) — Hanger, fixed, direct attached, single line. Mounts through fe" dia. hole. Line clamp and hardware supplied. Weight: 1 lb. 4 oz.

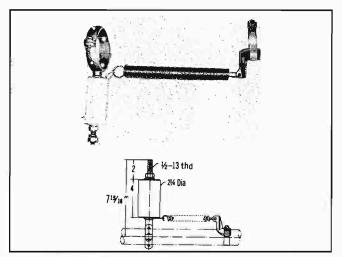

TYPE NO. 202-825 (NPN) — Hanger, fixed, direct attached, dual line. Mounts through "" dia. hole. Line clamps and hardware supplied. Weight: 1 lb. 6 oz.


TYPE NO. 203-825 (NPN) — Hanger, spring suspension, direct attached, single line. Mounts through %" dia. hole. Line clamps and hardware supplied. Weight: 2½ lbs.

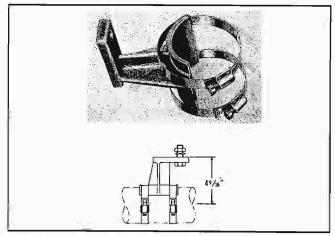

TYPE NO. 204-825 (NPN) — Hanger, spring suspension, direct attached, dual line. Mounts through the dia. hole. Line clamps and hardware supplied. Weight: 3 lbs.


TYPE NO. 205-825 (NPN) — Anchor plate for anchoring single line at point of entry through a wall. One anchor required on each side of wall. Mounting bolts not supplied. Weight: 2 lbs. 10 oz.

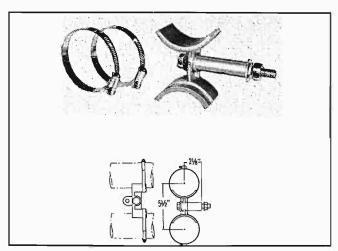

TYPE NO. 208-825 (NPN) — Lateral brace for securing transmission line at base of tower. Complete with clamps. Weight: 2 lbs. 5 oz.


TYPE NO. 209-825 (NPN) — Roller assembly consisting of roller, bracket and hood for outdoor horizontal transmission line runs. Weight: 1 lb. 5 oz.

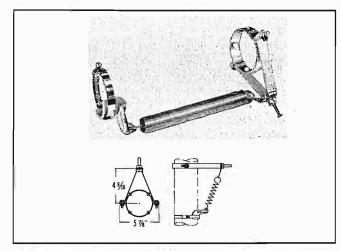
TYPE NO. 211-825 (NPN) — Hanger, slip type, flange mount supports transmission indoors or outdoors. Permits expansion. Weight: 14½ oz.

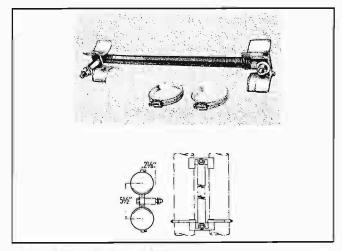


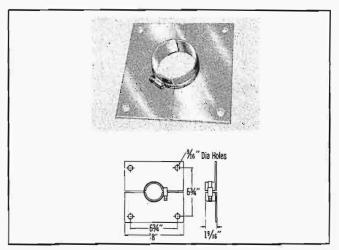
TYPE NO. 212-825 (NPN) — Hanger, slip type, 7" stud mount ($\frac{1}{2}$ "-13 thread. Weight: 1 lb. 3 oz.

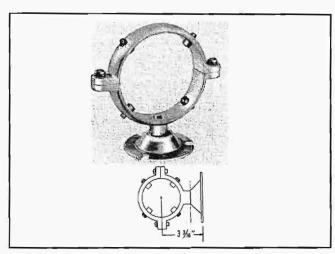


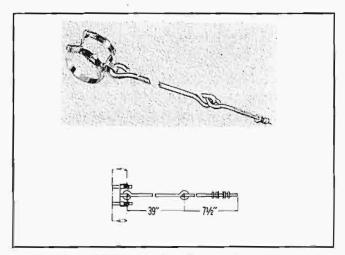
TYPE NO. 213-825 (NPN) — Hanger, insulated, direct attached. Mounts through &" dia. hole. Hardware supplied. Weight: 3 lbs. 11 oz.

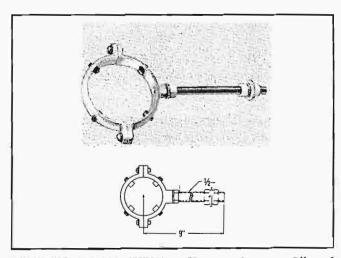

PRODELIN RIGID "800" 31/8" SUPPORTING HARDWARE

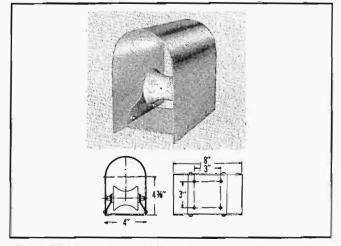

TYPE NO. 201-835 (NPN) — Hanger, fixed, direct attached, single line. Mounts through $^{\rm th}$ dia. hole. Line clamp and hardware supplied. Weight: 2 lbs. 4 oz.

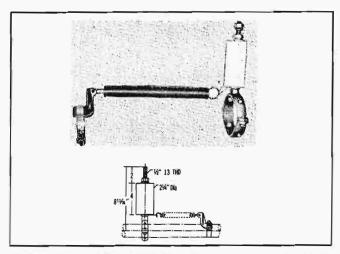

TYPE NO. 202-835 (NPN) — Hanger, fixed, direct attached, dual line. Mounts through %" dia. hole. Line clamps and hardware supplied. Weight: 2 lbs. 2 oz.


TYPE NO. 203-835 (NPN) — Hanger, spring suspension, direct attached, single line. Mounts through the dia. hole. Line clamps and hardware supplied. Weight: 2 lbs. 12 oz.


TYPE NO. 204-835 (NPN) — Hanger, spring suspension, direct attached, dual line. Mounts through 's'' dia. hole. Line clamps and hardware supplied. Weight: 4 lbs. 12 oz.


TYPE NO. 205-835 (NPN) — Anchor plate for anchoring single line at point of entry through a wall. One anchor required on each side of wall. Mounting bolts not supplied. Weight: 2 lbs. 12 oz.


TYPE NO. 211-835 (NPN) — Hanger, slip type, flange mount supports transmission indoors or outdoors. Permits expansion. Weight: 1½ lbs.


TYPE NO. 208-835 (NPN) — Lateral brace for securing transmission line at base of tower. Complete with clamps. Weight: 2 lbs. 5 oz.

TYPE NO. 212-835 (NPN) — Hanger, slip type, 7" stud mount ($\frac{1}{2}$ "-13 thread). Weight: 1 lb. 12 oz.

TYPE NO. 209-835 (NPN) — Roller assembly consisting of roller, bracket and hood for outdoor horizontal transmission line runs. Weight: 1 lb. 3 oz.

TYPE NO. 213-835 (NPN) — Hanger, insulated, direct attached. Mounts through "" dia. hole. Hardware supplied. Weight: 5 lbs.

IMPEDANCE

The characteristic impedance of a coaxial transmission line of infinite conductivity is given by

$$Z_o = \frac{138}{\sqrt{\epsilon_{rff}}} \log_{10} \frac{D}{d}$$

Where $Z_o = \text{Characteristic Impedance in ohms}$ $\epsilon_{\text{eff}} = \text{Effective dielectric constant}$

D = I.D. of the outer conductor in inches

d = 0.D. of the inner conductor in inches

Where Eeff the effective dielectric constant for disc supported line is determined by

$$\epsilon_{\rm eff} = 1 + \frac{\rm NT}{\rm S} (\epsilon - 1)^*$$

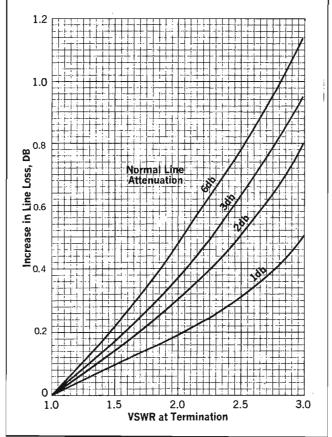
*Rigid "800" is a pin supported line. Each pin is essentially transparent, therefore only the anchor insulators need be considered in this calculation.

Where N = Number of discs

T = Thickness of discs in inches

S = Total line length in inches

 $\epsilon = \text{Dielectric constant of disc}$


The capacitance of this line is

$$C = \frac{7.354 \epsilon_{\text{eff}} 10^{-12}}{\log_{10} \frac{\text{D}}{\text{d}}} \quad \text{farads/foot}$$

The inductance is $L=0.1405 \, log_{^{10}} \Big(\frac{D}{d}\Big) 10^{-6} \, henries/foot$

VSWR AS A FUNCTION OF ATTENUATION

This curve shows the increase in power loss given in DB as a function of VSWR above the normal attenuation of the line. It will be noted that this effect is generally quite small for normal conditions.

These formulae are close approximations for normal calculations at VHF or higher frequencies. When working at lower frequencies the finite conductivity of the materials should be considered.

IMPEDANCE MATCHING

A simple technique for transforming antenna impedance to transmission line impedance is by use of a quarterwave length transformer. The transformer is a section of transmission line whose characteristic impedance can be determined by the formula

$$Z_0 = \sqrt{Z_1 Z_2}$$

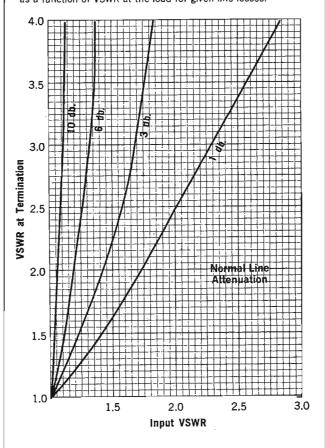
Where $Z_1 = Input$ impedance in ohms $Z_2 = Output$ impedance in ohms

The length of this section must be λ_1 in the coaxial trans-

mission line at the operating frequency. This is given by

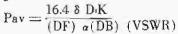
$$\frac{\lambda}{4} = \frac{V\lambda}{400}$$

Where velocity, V in percent is determined by
$$V = \frac{100}{\sqrt{\varepsilon_{eff}}} \text{ and } \lambda = \frac{1180}{f_o}$$


Where $\lambda = W$ avelength in free space in inches

 $\lambda_1 =$ Wavelength in the transmission line in

f_o = Operating frequency in Megacycles/second


ATTENUATION AS A FUNCTION OF VSWR

This curve shows the reduction of VSWR at the input of the line as a function of VSWR at the load for given line losses.

AVERAGE POWER RATING

The average power rating pertains to the temperature rise of the inner conductor. An inner conductor temperature of 100°C is considered safe for Teflon supported copper center conductors. The average power rating with the above mentioned center conductor temperature and a 40 degree centigrade ambient temperature can be calculated from the following:

Where Pav = Average power in kilowatts limited by center conductor temperature.

δ = Emissivity coefficient in watts/in²

D = OD of the transmission line

DF = Duty Factor

VSWR = Standing wave ratio

α(DB) = Attenuation in decibel per 100 feet

K = Derating factor for ambient temperature from curve on this page.

Emissivity coefficient is given in the curve on this page for both copper and aluminum outer conductors. (DB) takes into consideration the increase in losses due to the higher center conductor temperature.

The peak power ratings shown below are nearly constant with frequency and are based on a VSWR of unity and one atmosphere of dry air pressure at sea level and 40°C ambient temperature. No factor of safety has been applied to these values. Rigid "800" is fabricated to give maximum power ratings with little or no degradation in VSWR. The asterisks indicate measured values.

RIGID "800"

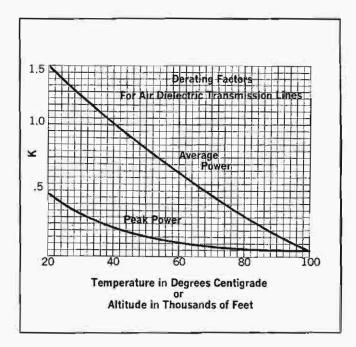
0800	PEAK POWER RATING
LINE SIZE	IN MEGAWATTS
$\frac{7}{8}$ —50 ohm	0.15 Megawatts*
15%-50 ohm	0.50 Megawatts*
31/8-50 ohm	2.0 Megawatts*
$4\frac{1}{8}$ —50 ohm	3.5 Megawatts
$6\frac{1}{8}$ —50 ohm	7.8 Megawatts
$6\frac{1}{8}$ —50 ohm	5.1 Megawatts
950 ohm	17.0 Megawatts

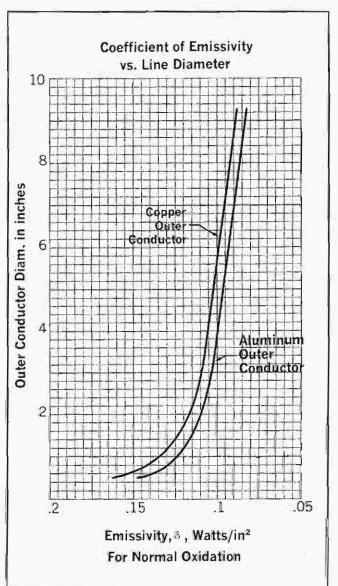
Peak Power in megawatts can be calculated from the following

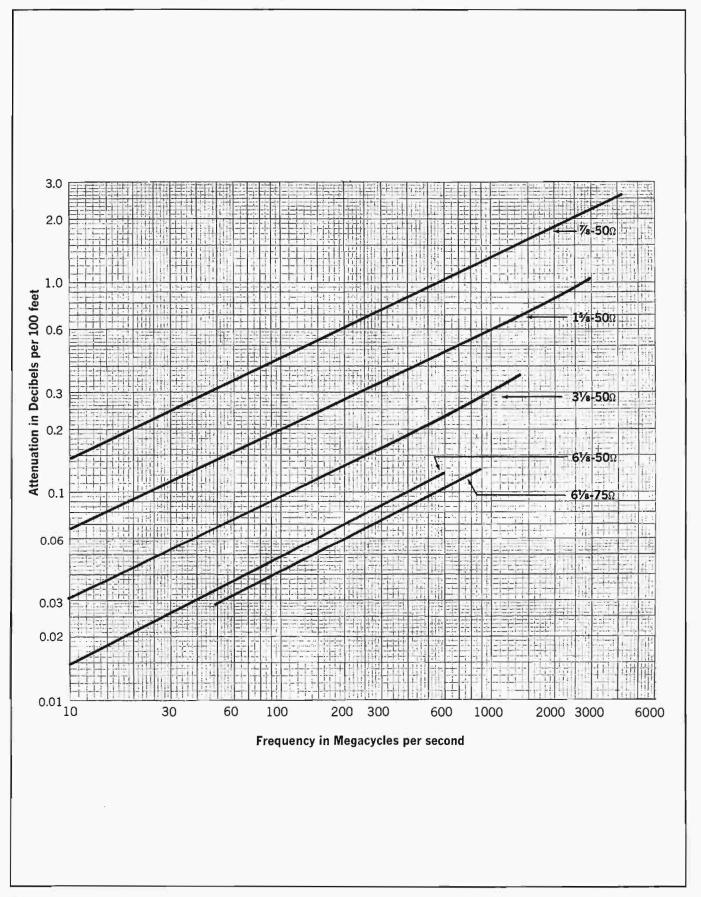
 $P_{v} = \frac{16Kd^{2}log^{10}\left(\frac{D}{d}\right)}{S^{2} \cdot VSWR} \left(\frac{P_{i}}{P}\right)^{2} \left(E_{d}\right)^{2}$

Where P_v = Peak power in megawatts limited by flashover.

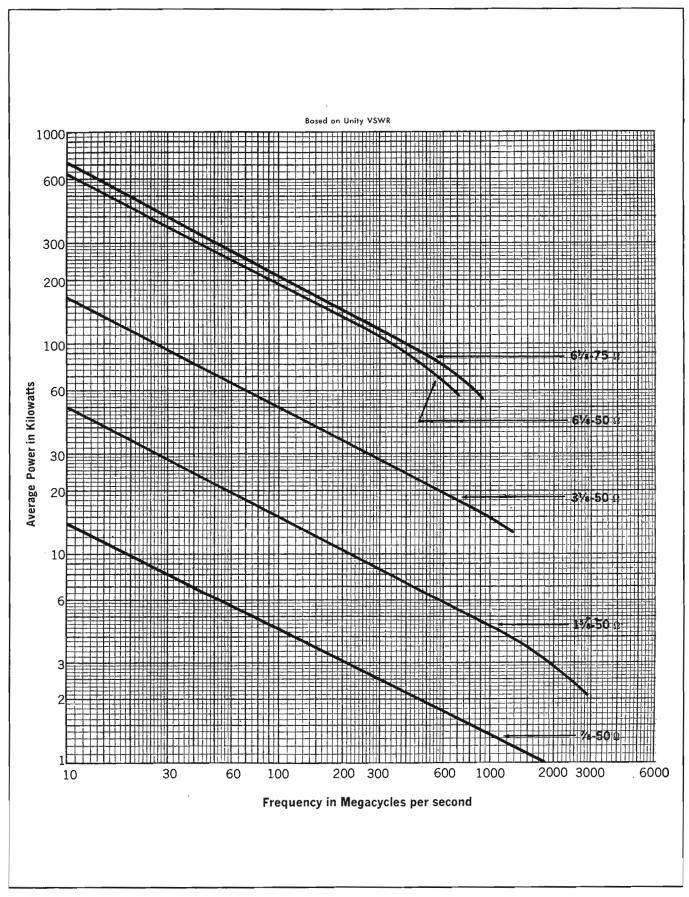
E4 = Dielectric strength of pressurizing medi-

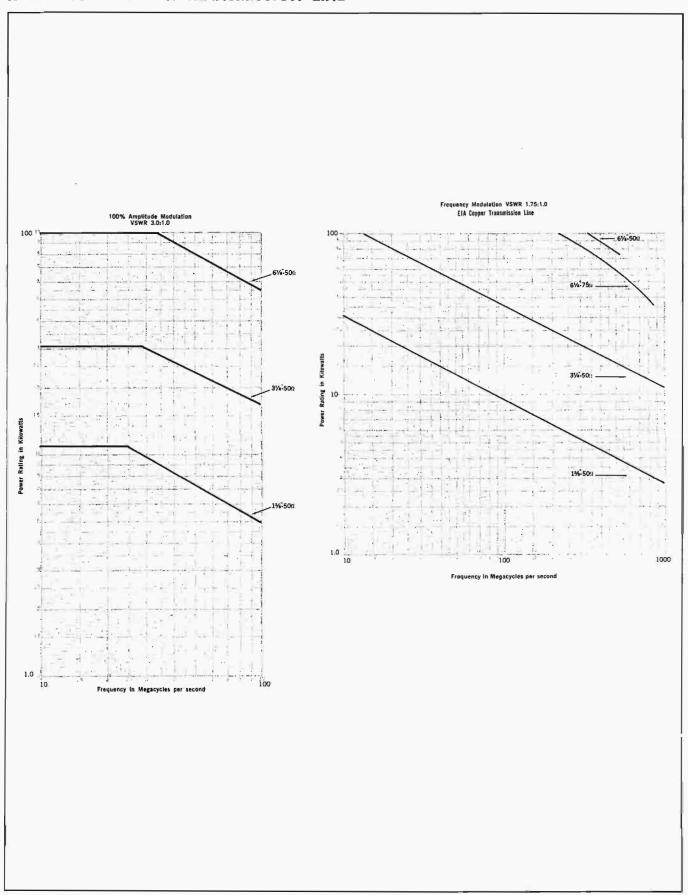

S = Safety factor, normally taken as 2

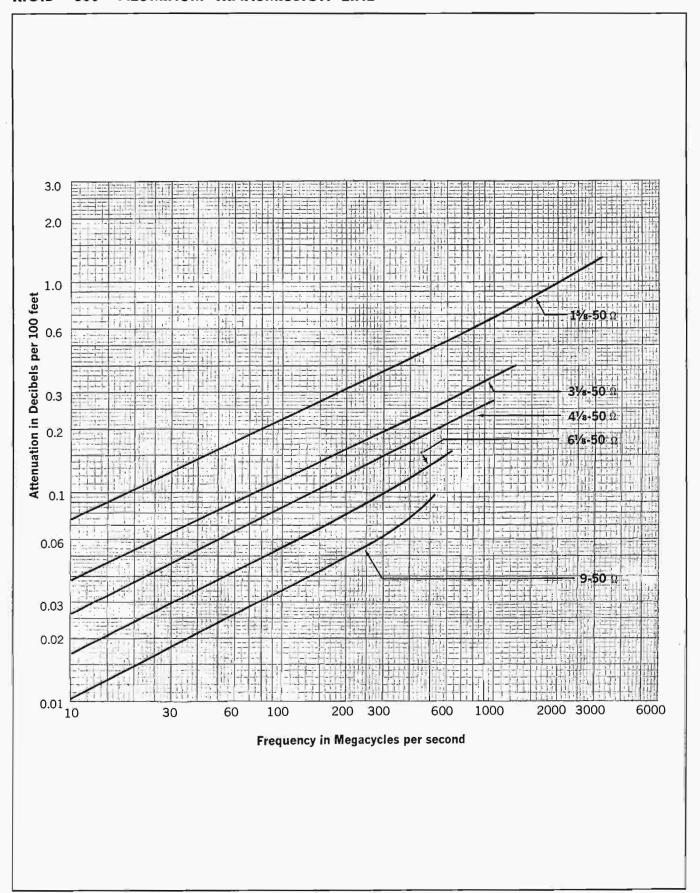

P = Absolute atmospheric pressure in PSI

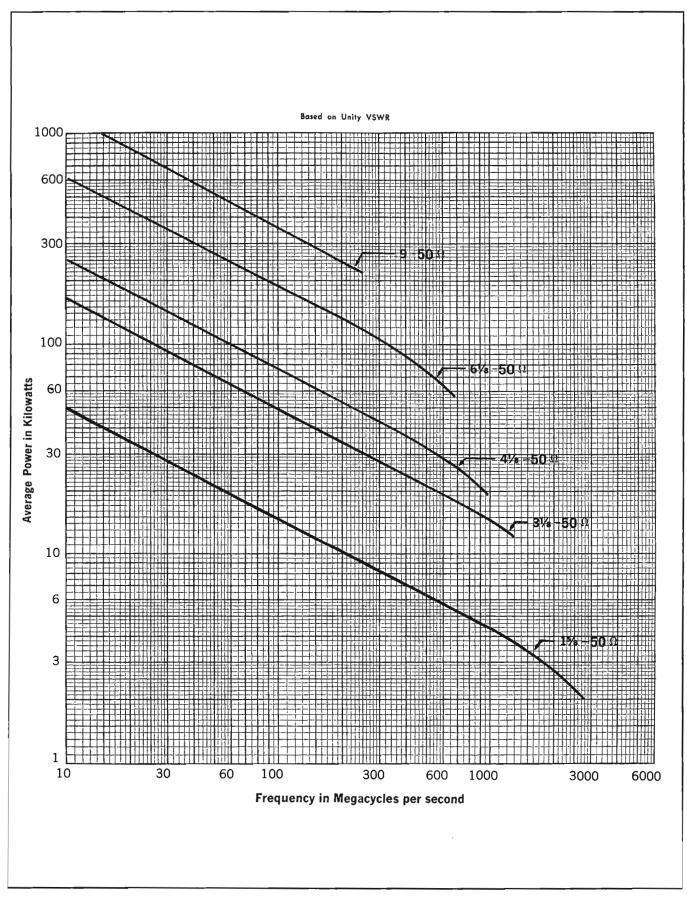

P = Absolute internal line pressure in PSI

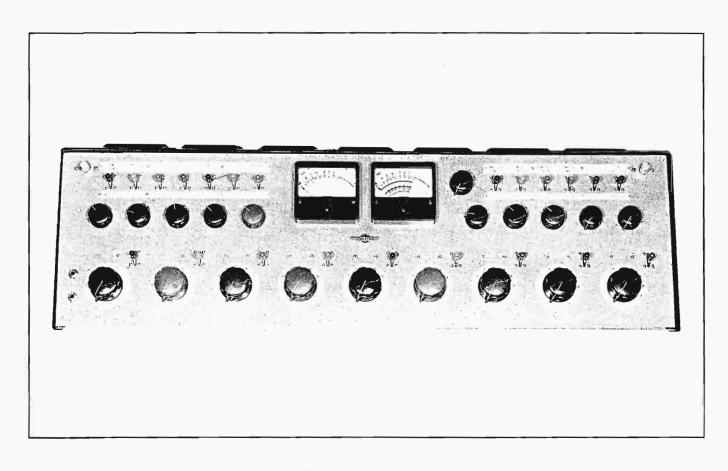
The curve on this page illustrates the effect of altitude on peak power rating for an unpressurized line.


It can be seen from the above formula that higher peak power ratings can be achieved by pressurizing with gases having a dielectric strength greater than air. In many situations increasing the internal pressure (up to 50 Psig) may be sufficient. A combination of greater pressure and higher dielectric strength may yield values 4 to 6 times those normally obtained.




AVERAGE POWER VS. FREQUENCY AT $40\,^{\circ}$ C. AMBIENT TEMPERATURE RIGID "800" COPPER TRANSMISSION LINE


POWER RATING FOR AM-FM RIGID "800" COPPER TRANSMISSION LINE


ATTENUATION VS. FREQUENCY RIGID "800" ALUMINUM TRANSMISSION LINE

AVERAGE POWER VS. FREQUENCY AT 40°C. AMBIENT TEMPERATURE RIGID "800" ALUMINUM TRANSMISSION LINE

COLLINS 212E-1 DUAL CHANNEL SPEECH INPUT CONSOLE

The Collins 212E-1 assures broadcasters and recording studios of meeting a wide range of audio mixing requirements. Designed to meet the needs of most complex installations, the 212E-1 also serves equally well for the small, growing audio installation.

Beginning with the modules required for single studio operation, the Collins 212E-1 can be expanded by simply adding plug-in modules to mix 9 of 22 inputs and to provide two program lines and monitor circuits.

The 212E-1 is also available in a stereo version at additional investment. Stereo configuration provides two low-level stereo channels and an announce channel which is fed directly to both left and right outputs. Two medium-level stereo inputs for tape playback are provided with the option of two monaural channels and two remote mixers.

Although it has a wide variety of functions and controls, the 212E-1 is easily mastered even by the inexperienced operator. Color coded knobs and switches, in addition to write-in strips for line switches and mixing attenuators, make it possible to vary control functions without confusion to the operator.

Space is provided in the 212E-1 Console cabinet for seven preamplifiers plus booster, program, monitor and cueing amplifiers. A 499G-1 Rack Mounting Shelf is supplied for the power supply and relay units.

Spare contacts on lever-switches and an unwired lever-

switch are included for any desired custom wiring. An external position on the second VU meter input switch can be terminated at a patch panel to provide VU monitoring of external audio circuits. Talk-back on a remote line is simplified to a single switch operation after the initial setup of two switches. Lever-switches permit the selection of two program sources for each low level input fader and selection of four program sources for each remote input fader. The mixer attenuators are Daven steptype, with outputs connected to a key-switch so that each input can be fed to either of the two program channels when the Console is used for dual channel operation. The second channel also can be used for audition purposes during normal single-line program operation. All program, audition and remote lines may be monitored audibly and by VU meter.

Reliability of the 212E-1 has been proven by using carefully engineered, highly stable circuits and the finest quality components. The 212E-1 maintains excellent frequency response and low noise and distortion.

Maximum Number of Channels: Seven low level channels, two remote channels, two program channels, one monitor channel and one cueing channel when provided with: ten 356A-1 Preamplifiers, two 356B-1 or 356E-1 Amplifiers, one 356B-1 Program/Monitor Amplifier, one 274K-1 Relay Unit, two 409X-2 Power Supplies and two 499G-1 Rack Mounting Shelves.

Power Source: 115 v or 230 v ac ±10%, 50-60 cps, single phase.

Input Impedance: Low level - 30/150/250/600 ohms balanced or unbalanced, shipped wired for 150 ohms. Remote lines — 150/600 ohms, shipped wired for 600 ohms.

Output Impedance: Line - 150/600 ohms, shipped wired for 600 ohms. Monitor — 600 ohms.

Input Level: Low — -50 dbm nominal (100 db gain). Remote — 0 dbm.

Gain: Low level to program line 100 db. Remote line to program line 54 db.

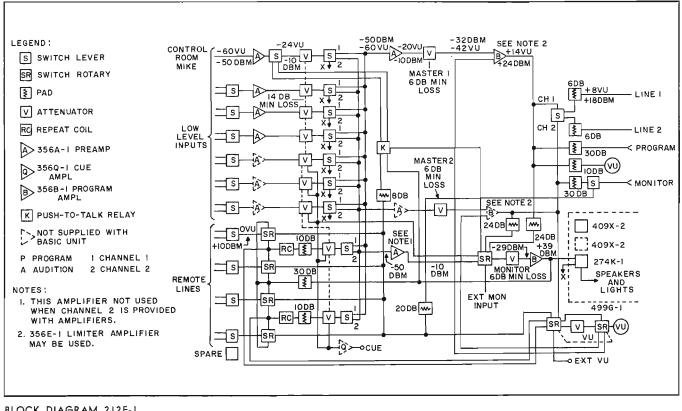
Output Level: Program — + 18 dbm (65 mw). Monitor -+39 dbm (8 watts).

Response: ± 1.5 db, 50-15,000 cps at program line.

Distortion: Less than 1% at +18 dbm at program line. Less than 3% at 8 watts out of Monitor Amplifier.

Noise: At least 68 db below +18 dbm output with -50dbm low level input. (Equivalent input noise level -118 dbm or less.)

Size: 411/8" W, 11" H, 221/2" D (104.46 cm W, 27.94 cm H, 57.15 cm D).


Weight: 135 lbs. (61.24 kg), less modules.

Part No. 522 0773 006
Includes basic cabinet, four 356A-1 Preamplifiers, two 356A-1 Booster Amplifiers, two 356B-1 Program/monitor Amplifiers, one 409X-2 Power Supply and cable, one 274K-1 Relay Unit with necessary plug and cable assembly, one 499G-1 Rack Mounting Shelf, one set of tubes and instruction book.

tubes and instruction book.

No Part Number
FCC set of spare tubes for 212E-1 as listed above.

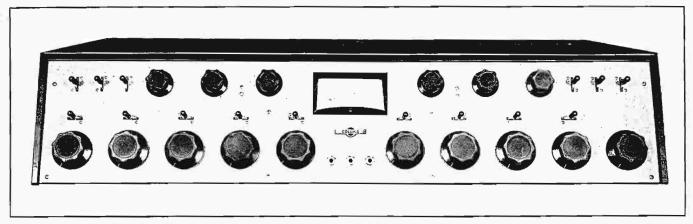
Part No. 553 2652 005
212E-15 Stereo Console

BLOCK DIAGRAM 212E-1

COLLINS 212G-1 SPEECH INPUT CONSOLE

Incorporating many design and control functions of the 212E-1, the 212G-1 is a flexible, self-contained unit that provides complete control over simultaneous broadcasting and auditioning from any combination of 9 of 13 inputs.

The Collins 212G-1 Console is designed for mediumsize radio stations and recording studios which demand a versatile console at production line price. Main features of the 212G-1 are its quality, reliability, ease of servicing plug-in modules and wide variety of controls.


The long, low design of the 212G-1 assures easy operation on an uncrowded control panel. Finger-fitted knobs with big skirts are easily grasped for exact level control.

The VU meter is centered on the panel directly in front of the operator. The lights are external to the meter and

may be replaced without removing the meter face. The meter lights operate from the relay supply voltage giving visual indication of proper operation. A switch allows the VU meter to measure program or external audio levels and gain reduction when a 356E-1 Limiting Amplifier is substituted for a Collins 356B-1 Program Amplifier.

The 356B-1 Monitor Amplifier input may be switched to program, audition or external inputs. Six cueing-type attenuators, a plug-in cueing amplifier and a cueing speaker free the 212G-1 monitor circuits from cueing service.

The hinged top of the Collins 212G-1 Console provides adequate room to service components while the panel remains in position and the unit is operating. No high voltage points are exposed when the cabinet is opened. A

COLLINS 212G-1 SPEECH INPUT CONSOLE

cover protects the terminal wiring strip and connector wiring.

Any of eight circuits may be selected on a terminal strip for control of speakers and warning lights. Extra wiring terminals and two spare lever-switches are provided.

Only two tube types are used in the 212G-1. Slots in the bottom, back and top of the Console provide adequate ventilation for low operating temperatures insuring longer component life.

Maximum Number of Channels: Six low level channels, two medium level channels, one net/remote channel, one program channel, one monitor channel and one cueing channel when provided with: eight 356A-1 Preamplifiers, one 356B-1 or 356E-1 Amplifier, one 356B-1 Program/Monitor Amplifier, one 274K-2 Relay Unit, one 356Q-1 Cueing Amplifier and one 409X-2 Power Supply.

Power Source: 115 v or 230 v ac $\pm 10\%$, 50-60 cps, single phase.

Input Impedance: Low level - 30/150/250/600 ohms balanced or unbalanced, shipped wired for 150 ohms. Net/remote lines - 50/150/250/600 ohms, shipped wired for 600 ohms. Medium level - 600 ohms unbalanced.

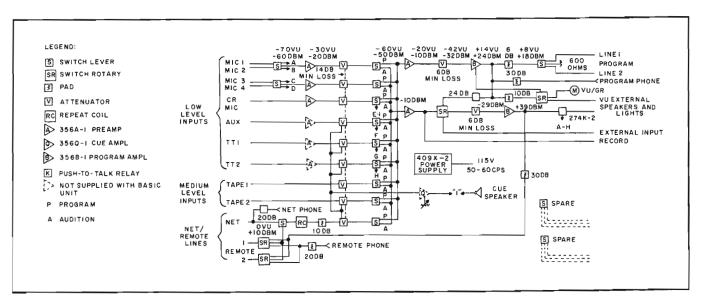
Output Impedance: Line - 150/600 ohms, shipped wired for 600 ohms. Monitor — 600 ohms.

Input Level: Low - -50 dbm nominal (100 db gain). Net/remote - 0 dbm. Medium - - 10 dbm nominal (60 db gain).

Gain: Low level to program line 100 db. Remote line to program line 53 db. Medium level to program line 62 db.

Output Level: Program - + 18 dbm (65 mw). Monitor - + 39 dbm (8 watts).

Response: ± 1.5 db, 50-15,000 cps at program line.


Distortion: Less than 1% at +18 dbm at program line. Less than 3% at 8 watts out of Monitor Amplifier.


Noise: At least 68 db below +18 dbm output with -50dbm low level input. (Equivalent input noise level -118 dbm or less.)

Size: 41 % W, 81/4" H, 211/8" D (104.3 cm W, 20.96 cm H, 53.66 cm D).

Weight: 75 lbs. (34.02 kg), less modules.

Part No. 522 1605 Fart No. 522 1605 Includes basic cabinet, three 356A-I Preamplifiers, two 356A-I boosters, two 356B-I Program/monitor Amplifiers, one 409X-2 Power Supply, one 274K-2 Relay Unit, one set of tubes and instruction book.
No Part Number
FCC set of spare tubes for 212G-I as listed above.

McMARTIN MODEL LT-80A AUDIO AMPLIFIER

The LT-80A is a transistorized light weight audio amplifier which delivers a full 8 watt rms with less than 1% distortion from 50 to 15,000 cps at 1 watt. Hand wired circuitry provides a compact unit weighing less than 6 pounds. The unit is provided with complete overload protection and operates at full performance in high ambient temperatures to 130° F.

SPECIFICATIONS

Power Output: 8 watts rms @ 1000 cps. 12 watts music power. 20 watts peak power.

Frequency Response: 30 to 15,000 cps ± 2 db. 20 to 20,000 cps ± 3 db.

Distortion: Less than 1% 50 to 15,000 cps @ 1 watt. Less than 1% @ 1000 cps @ 8 watts.

Hum and Noise: Microphone(s) -60 db below 8 watts. Program -70 db below 8 watts. Phono (with PH-6A) -60 db below 8 watts.

Inputs: Microphone(s) (1) HiZ; 150 K ohms, .008 v for 8 watts.

Program: Bridging; 10 K ohms, 0.8 v for 8 watts. Phono (with PH-6A): Magnetic, ceramic, crystal. 600 (with MT-6): Balanced; -10 dbm for 8 watts. Tuner (with PH-7): HiZ; 270 K ohms, +5 db gain increase.

Outputs: 4, 8, 16, 150 ohms, 70.7 v/600 ohms.
Controls: (1) Microphone Gain. Program Gain. Tone (cut to -20 db @ 10,000 cps). Power ON-OFF switch.

Semi-conductors: 4—2N508

2-2N1501 2-1N1693

1—2N1371 1—2N1102

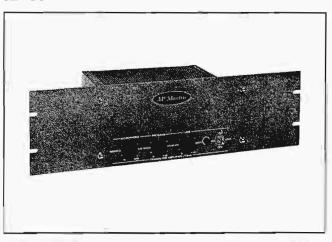
or equivalents

Power Supply: 120 v ac, 50/60 cps, fused, 18 watts max. Ambient Temperature: Full performance to 130° F. Dimensions & Finish: 9" w x 7" d x 4½" h, Black & Natural Gray.

Shipping Weight: 6 lbs.

Part No. 099 2815 000

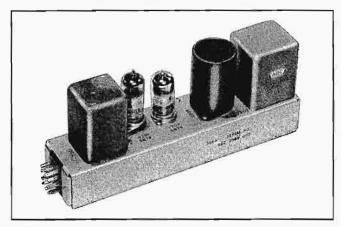
SPECIAL NOTES — Plastic "Guard Nuts" are provided to allow tamper-proof setting of all amplifier controls. Advanced circuitry provides stable operation under extremely adverse conditions such as open or shorted speaker lines and high ambient temperature.


PLUG-IN ACCESSORIES

MT-6 — Shielded 600 ohm input transformer. Frequency response 20 to 20,000 cps.

PH-6A — Phonograph preamplifier. Equalized for magnetic, ceramic, or crystal cartridges.

PH-7 — Program preamplifier. Converts the bridging input to 270 K ohms and provides extra gain of 5 db.


RP-80

The RP-80 is a rack mounting adapter for the Model LT-80A.

Part No. 099 2816 000

COLLINS 356A-1 PREAMPLIFIER

Usually used to feed a line amplifier in the Collins Consoles, the 356A-1 operates from a low level microphone or similar source and has sufficient output to drive a program amplifier or audition facilities.

Input Impedance: Unloaded transformer, source impedance 30/150/250/600 ohms balanced or unbalanced, shipped wired for 150 ohms.

Input Level: -60 db nominal.

Output Impedance: 150/600 ohms balanced or unbalanced, shipped wired for 600 ohms.

Output Level: +18 dbm maximum.

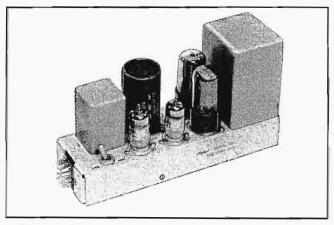
Gain: 40 db.

Frequency Response: ±1 db, 50-15,000 cps.

Distortion: 0.5% maximum.

Noise: —118 dbm at input, or 96 db below full output.

Tubes: Two 5879.


Power Requirements: 6.3 v ac or dc at 0.3 amp. 250 v dc at 6.5 ma or 300 v dc at 7.5 ma.

Size: 2½" W, 45%" H, 9½" D (5.40 cm W, 11.75 cm H, 24.13 cm D).

Weight: 21/4 lbs. (1.02 kg).

Part No. 522 0389 005 No Part Number 100% spare tube kit.

COLLINS 356B-1 PROGRAM/MONITOR AMPLIFIER

Used as the program line amplifier and monitor amplifier in Collins Consoles, the 356B-1 is a three stage amplifier with push-pull output and has a switch for high or low gain.

Input Impedance: Unloaded transformer, source impedance 150/600 ohms balanced or unbalanced, shipped wired for 600 ohms.

Input Level: -32 dbm.

Output Impedance: 150/600 ohms balanced or unbalanced, shipped wired for 600 ohms.

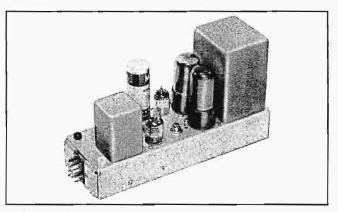
Output Level: +39 dbm (8 watts) maximum. Gain: 56 db or 68 db, selected by toggle switch.

Frequency Response: ±1 db, 50-15,000 cps.

Distortion: 0.5% maximum at +30 dbm, 3% maximum at +39 dbm (8 watts).

Noise: -116 dbm at input, or 90 db below full output of 1 watt.

Tubes: Two 5879 and two 6V6.


Power Requirements: 6.3 v ac at 1.2 amps. 63 ma at 250 v dc at 1 watt output. 75 ma at 300 v dc at 1 watt output. 88 ma at 300 v dc at 8 watts output.

Size: 27/8" W, 53/4" H, 91/2" D (7.3 cm W, 14.61 cm H, 24.13 cm D).

Weight: 6 lbs. (2.72 kg).

Part No. 522 0390 005 No Part Number 100% spare tube kit.

COLLINS 356E-1 LIMITING AMPLIFIER

Designed for Collins Speech Input Consoles to permit unattended remote audio operation, the 356E-1 can be used to control level differences between two or more sources, as a program line compressor, in an expander-compressor operation or as a program amplifier.

The module consists of a push-pull variable gain input stage driving a push-pull output stage. A bias rectifier provides bias to regulate gain of the input stage. A decal to convert a VU meter to a gain reduction meter is furnished with the unit.

Input Impedance: Unloaded transformer, source impedance 150/600 ohms balanced or unbalanced, shipped wired for 600 ohms.

Input Level: -54 dbm to -24 dbm, with threshold control set at 0 dbm output. -34 dbm to -4 dbm, with threshold control set at +20 dbm output. -24 dbm to +6 dbm, with threshold control set at +30 dbm output. (0 dbm equals 1 mw across 600 ohms.)

Output Impedance: 150/600 ohms balanced or unbalanced, shipped wired for 600 ohms.

Output Level: 0 dbm to +18 dbm, with threshold control set at 0 dbm output. +20 dbm to +30 dbm, with threshold control set at +20 dbm output. +30 to +36 dbm, with threshold control set at +30 dbm output.

Response: ± 1 db, 50-15,000 cps.

Distortion: 1.5% maximum, 50-15,000 cps, with no compression. 2% maximum, 50-15,000 cps, at any level up to 30 db gain reduction, with threshold control set at +20 dbm output.

Output Noise: -50 dbm or less, threshold control set for +20 dbm output.

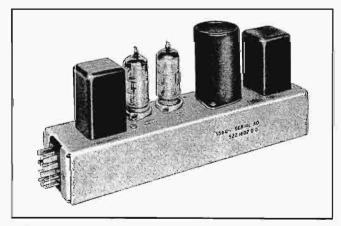
Compression Ratio: Adjustable 1.6:1 to 5:1, with 3:1 optimum performance over a 30 db range at input.

Attack Time: 11 milliseconds, with switch set for dual operation. 62 milliseconds, with switch set for average operation.

Release Time: 0.9 seconds for 63% recovery, with switch set for dual operation. 5.2 seconds for 63% recovery, with switch at average operation.

Gain: 54 db.

Controls: Dual/Average toggle switch at top near front of chassis.


Tubes: One GL-6386 Variable Gain Input Amplifier, two 6V6GT Output Amplifiers and one 6AL5 Bias Rectifier.

Power Source: 6.3 v ac at 1.55 amps. 300 v dc at 77 ma. Size: 3" W, 5\%" H, 9" D (7.63 cm W, 13.65 cm H, 22.86 cm D).

Weight: 5 lbs. (2.27 kg).

Part No. 522 0394 005 No Part Number 100% spare tube kit.

COLLINS 356Q-1 CUE AMPLIFIER

Designed for use in the Collins Consoles, the 356Q-1 is a two stage amplifier used to amplify signals from the cueing line. The 212G-1 has provisions for controlling the gain of the amplifier and includes a speaker for the output.

Gain: 55 db.

Range: 300-10,000 cps.

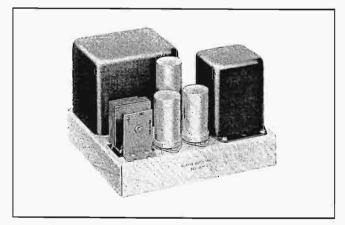
Input Level: -30 dbm nominal.

Output Level: +20 dbm (100 mw) nominal.

Input Impedance: 600 ohms nominal.

Output Impedance: 4 ohms.

Tubes: Two 5879.


Power Requirements: 6.3 v ac or dc at 0.3 amp. 300 v dc

Size: 21/8" W, 45/8" H, 91/2" D (5.4 cm W, 11.75 cm H, 24.13 cm D).

Weight: 21/4 lbs. (1.02 kg).

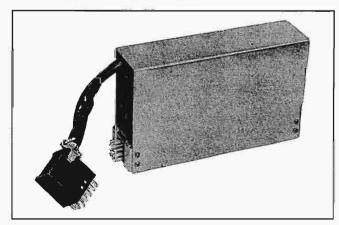
Part No. 522 1607 00 No Part Number 100% spare tube kit.

COLLINS 409X-2 POWER SUPPLY

A plug-in module for Collins Consoles, this unit uses silicon rectifiers in the high voltage circuit for long life and to eliminate heat associated with vacuum tube rectifiers.

Output Voltages: Up to 250 ma at 300 v dc adjustable. 6.0 amps at 6.3 v ac. 1.0 amp at 12 v dc.

Power Requirements: 115/230 v ac ±10%, 50-60 cps, single phase.


Power Input: 225 watts maximum.

Size: 8" W, 6" H, 9½" D (20.32 cm W, 15.24 cm H, 24.13 cm D).

Weight: 25 lbs. (11.34 kg).

Part No. 522 1691 00 Part No. 542 3024 004 Power Supply Cable.

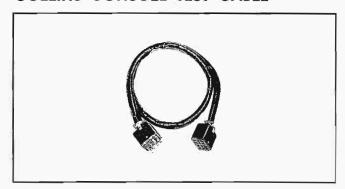
COLLINS 274K-1 RELAY UNIT

Used in Collins 212E-1 Console, this unit has four relays to control studio speakers and warning lights. Each relay is provided with a series shunt circuit to minimize switching transients and arcing. Noise is held to a minimum by mounting the relays on rubber. The 409X-2 Power Supply provides 12 v dc at 1 amp and studio wiring provides power for the warning lights.

Connectors: Howard Jones P-312-AB connector mounted on the front surface and P-315-CCE connector on a 51/6" pendent cable.

5½" pendent cable. Size: 2½" W, 5½" H, 9" D (6.35 cm W, 13.97 cm H, 22.86 cm D).

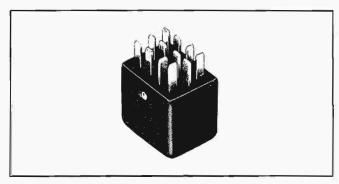
Weight: 21/2 lbs. (1.13 kg).


Part No. 522 0391 005

COLLINS 274K-2 RELAY UNIT

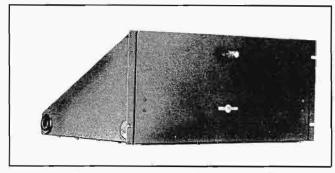
Used with the Collins 212G-1 and 212F-2 Consoles, the 274K-2 is similar to the 274K-1 in all specifications except that relays are unenergized in standby.

Part No. 522 1606 00


COLLINS CONSOLE TEST CABLE

Permits operation and service of any module while removed from the console cabinet.

Part No. 541 6473 003


COLLINS CONSOLE JUMPER PLUG

For use where high level signal inputs eliminate the need for 356A-1 Preamplifiers.

Part No. 541 6459 002

COLLINS 499G-1 SHELF

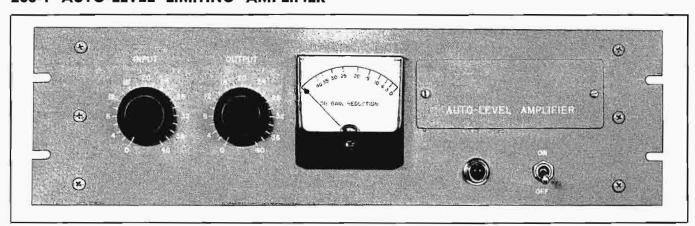
The 499G-1 is a rack mounting shelf used to mount amplifiers, relay units and power supplies associated with the Collins 212E-1 Speech Input Console. The unit is a fixed type rack mounting shelf with a hinged, front panel 8½" H by 173%" W. The floor of the shelf is of cadmium plated, perforated sheet metal.

A Howard Jones barrier strip is mounted at the front or back of the unit. Holes on both sides at front and back allow wiring to individual style. The perforated bottom plate allows mounting components without drilling additional holes.

Size: 19" W, 83/4" H, 14" D (48.26 cm W, 22.23 cm H, 35.56 cm D).

Weight: 11 lbs. (4.99 kg).

Part No. 522 0774 00


COLLINS PLUG-IN BRACKET **ASSEMBLIES**

Plug-in bracket assemblies in 12-pin models without cable are available to facilitate mounting of 356A/B/E-1 Amplifiers in the 499G-1 Rack Mounting Shelf. Also available are 12- and 15-pin plug-in bracket assemblies with cable for use with 274K-1 or 274K-2 Relay Units.

Part No. 542 3038 002 12-pin assembly without cable. Part No. 542 3040 003 12-pin assembly with cable.

Part No. 542 3039 002 15-pin assembly without cable. Part No. 542 3041 004 15-pin assembly with cable.

26J-1 AUTO-LEVEL LIMITING AMPLIFIER

The average program level of the radio broadcast station can be automatically and effectively raised with the 26J-1 Auto-Level Limiting Amplifier. The resulting effect of the 26J-1 is similar to turning up the volume of the radio receiver so that the low level transmission is as well received as the high level transmission.

Automatic fades between microphone and recorded music are also accomplished with the 26J-1. By setting the microphone level at a higher level than the turntable, the automatic fade occurs when the microphone is activated. The higher microphone level automatically fades the music into the background and allows the speech to come through clearly. When the voice portion is absent, the 26J-1 restores the music level to normal. Since these fades are done automatically and electronically, they are far smoother and superior to manual fades.

The 26J-1 does not act as a peak limiting amplifier but functions on a low compression ratio which allows limiting action without noticeable effect on program material. With the slow action and compression ratio of the 26J-1, it is possible to limit up to 30 db without a noticeable effect other than bringing up the average listening level of the program material.

Working in conjunction with the Collins 26U-1 Peak Limiting Amplifier, the two units provide excellent peak limiting as well as average program limiting. The wide dynamic ranges used in most classical and popular music require considerable compression to allow low and high passages to be broadcast equally well.

The Collins 26U-1 Peak Limiting Amplifier, ideally located at the transmitter, protects over-modulation of the transmitter, and the 26J-1 Auto-Level Limiting Amplifier, located at the studio, boosts the average and low level program portions. Thus, these two units allow even the low-priced home and car receivers, which are not capable of reproducing wide dynamic ranges, to receive the entire broadcast as transmitted.

In those instances where there is not a good signal-tonoise ratio, such as old phonograph records and sports events with background noises, the 26J-1 can be operated as a straight amplifier. The limiting action may be disabled by turning off the gain reduction switch.

Frequency Response: ± 1 db, 50-15,000 cps.

Gain: 25 db maximum as shipped. 41 db maximum, with input pad changed from 22 db to 6 db.

Input Impedance: 600 ohms unbalanced.

Input Level: Adjustable, -26 dbm to +30 dbm. Easily changed 22 db "T" pad in input circuit available. (0 dbm equals 1 mw across 600 ohms.)

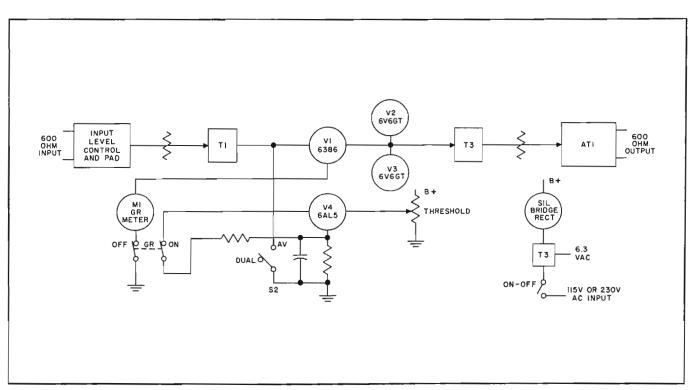
Output Impedance: 600 ohms unbalanced.

Output Level: Adjustable, -24 dbm to +30 dbm; +14dbm nominal.

Distortion: 1.5% maximum, 50-15,000 cps, with no compression. 2% maximum distortion, 50-15,000 cps, at any level up to 30 db gain reduction, with threshold set for 3:1 compression ratio.

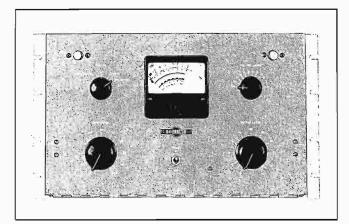
Output Noise: -50 dbm or less. (Threshold set for 3:1 ratio.)

Compression Ratio: 3:1 optimum; adjustable 1.6:1 to 5:1. Attack Time: 11 milliseconds, with switch set for dual operation. 62 milliseconds, with switch set for average operation.


Release Time: 0.9 seconds for 63% recovery, with switch set for dual operation. 5.2 seconds for 63% recovery, with switch set for average operation.

Power Source: 115 v or 230 v ac, 50-60 cps, single phase. Shipped wired for 115 v.

Size: 19" W, 51/2" H, 9" D (48.26 cm W, 13.97 cm H, 22.86 cm D).


Weight: 16 lbs. (7.26 kg).

Part No. 099 2814 00 No Part Number FCC set of spare tubes (includes two silicon rectifiers).

BLOCK DIAGRAM 26J-I

COLLINS 26U-1 LIMITING AMPLIFIER

Designed to achieve maximum modulation with minimum distortion, the Collins 26U-1 Limiting Amplifier provides full tonal range broadcasting with thump-free performance.

The Collins Limiting Amplifier limits loud audio passages to prevent overmodulation, distortion and adjacent channel interference, while allowing low level passages to be broadcast in their true range.

The transmission range of the station's signal and the over-all efficiency of the transmitter are increased through the limiting action which permits a higher average modulation level.

When used with recording equipment or with a public address system, the 26U-1 prevents overloading, and by allowing a higher average audio level, the limiting amplifier improves the signal-to-noise ratio.

A self-balancing circuit eliminates the need of tube selection or delicate balancing procedures usually associated with peak limiters. The Collins Limiting Amplifier is capable of greater than 30 db compression.

Conventional circuitry, negative feedback, full wave rectification for control voltage and silicon rectifiers in the power supply are incorporated into this unit.

An illuminated VU meter with a special scale calibrated in VU and db of compression, which measures five functions, is provided in the Collins Limiting Amplifier.

The VU meter attenuator and a rotary switch allow measurement of external gain reduction, db of compression and levels of input, output and external audio circuits. This external meter circuit measures audio levels on other program lines, eliminating the need for an additional VU meter panel.

Silicon diodes and extended life electrolytic capacitors provide an efficient, low heat power supply with a minimum of maintenance. A voltage regulator provides stabilized reference voltages. Input, output and VU meter level controls are Daven step-type.

The 26U-1 consists of a push-pull variable gain input stage, a push-pull interstage voltage amplifier, and a pushpull output stage. A bias rectifier supplies de bias from the signal output to regulate the gain of the input stage. A self-contained power supply provides the plate and filament voltages.

Designed for rack mounting, the Collins Limiting Amplifier has a minimum number of controls, tubes and tube types. It has a hinged front panel for access to internal wiring and components.

The panel is finished with blue-gray enamel, and the chassis is cadmium plated and chromate dipped.

Frequency Response: ± 1.5 db, 50-15,000 cps.

Gain: 32 db minimum.

Input Impedance: 600 ohms unbalanced.

Input Level: -20 dbm to +20 dbm. Note: 0 dbm equals 1 mw across 600 ohms.

Output Impedance: 600 ohms unbalanced adjustable, or 600 ohms balanced fixed level.

Output Level: -20 dbm to +20 dbm.

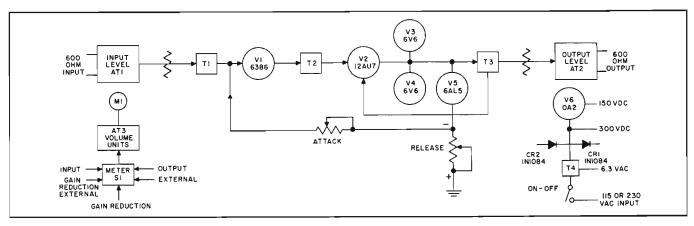
Distortion: 1.5% maximum.

Output Noise: -50 dbm or less.

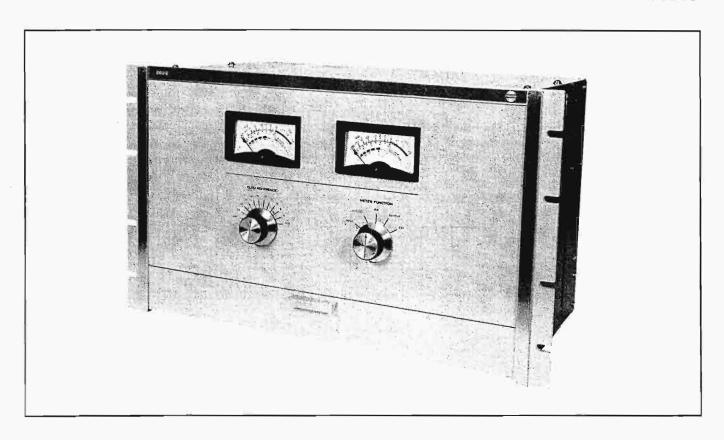
Compression Ratio: 12:1 first 10 db above threshold.

Attack Time: Adjustable, 0.5-3.0 milliseconds.

Release Time: Adjustable, .5-3.0 seconds for 63% recovery.


Power Source: 115 v or 230 v ac, 50-60 cps, single phase. Shipped wired for 115 v.

Size: 19" W, 101/2" H, 9" D (48.26 cm W, 26.67 cm H,


22.86 cm D).

Weight: $32\frac{1}{2}$ lbs. (14.75 kg).

Part No. 522 0966 00 No Part Number 100% set of spare tubes.

BLOCK DIAGRAM 26U-I

COLLINS 26U-2 STEREO LIMITING AMPLIFIER

Easy to operate and maintain and affording maximum flexibility, the Collins 26U-2 Stereo Limiting Amplifier is designed to permit maximum modulation with minimum distortion. It provides full tonal range broadcasting with thump-free performance.

The 26U-2 limits loud audio passage to prevent overmodulation, distortion and adjacent channel interference, while raising low level passages to be broadcast in their true value.

When used with stereo recording equipment, the Collins Stereo Limiting Amplifier prevents overloading and improves signal-to-noise ratio by allowing a higher average audio level.

Based on the time-proven circuitry of the Collins 26U-1, the stereo limiter has conservatively-rated components and long life. Typical mean time between failures: four years of continuous service.

The 26U-2 is designed to meet any requirement of the broadcaster. It may be used as a single channel limiter, two monaural channels or for stereo broadcasting. A switch in the subpanel selects either stereo or monaural operation.

The self-balanced circuit eliminates the need for tube selection or delicate balancing procedures usually associated with peak limiters. The Collins 26U-2 is capable of greater than 30 db compression.

Two illuminated VU meters, calibrated in VU and db of compression, which measure five functions, are incorporated. The meters' attenuator and function switch allow measurement of external and internal gain reduction (db of compression), and levels of input, output and external audio circuits. The external circuit measures audio levels of other program lines, eliminating the need for an additional VU meter panel.

Silicon diodes provide an efficient, low heat power supply with a minimum of maintenance. A voltage regulator provides stabilized reference voltages. Input and output level controls are continuously variable bridge-T attenuators

Occupying only 10.5 inches of rack space, the Collins 26U-2 has a minimum number of controls, tubes and tube types. A hinged front panel with magnetic latches provides access to the subpanel controls.

Size: 19" W, 10½" H, 10¼" total D — 9¼" behind panel (48.26 cm W, 26.67 cm H, 26.04 cm total D — 23.5 cm behind panel).

Weight: 35 lbs. (15.88 kg).

Power Source: 115 v or 230 v ac, 50-60 cps, single phase (150 watts at 115 v ac).

Frequency Range: 50-15,000 cps ±1.5 db.

Input: 600 ohm bridged T (ungrounded), -20 dbm to +20 dbm.

Output: 600 ohm bridged T (ungrounded), -20 dbm to +20 dbm.

Distortion: 1% maximum.
Output Noise: -50 dbm or less.
Cross-Talk: 60 db minimum.

Compression Ratio: 12:1 first 10 db above threshold.

Gain: 40 db.

Attack Time: Adjustable, 0.5-3.0 milliseconds. Release Time: Adjustable, 0.5-3.0 seconds.

Controls:

Panel Mounted

Meter Selector Switch Meter Multiplier Selector

Subpanel Controls

Rear Chassis Controls

Input Level (2) Output Level (2)

Gain Reduction Meter Zero

(2)

Gain Reduction Balance (2)

Stereo-Mono

Power ON-OFF

Attack Time (2)

Release Time (2)

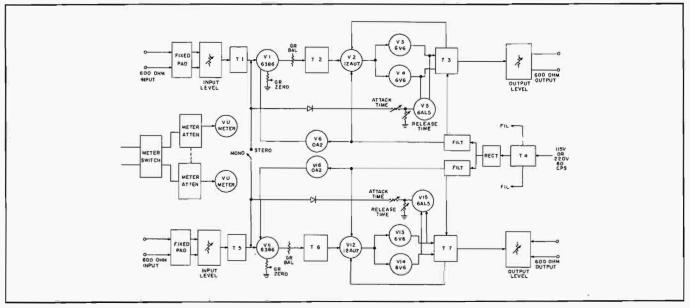
Protection: Overload fuse in primary circuit.

Metering: Two 3½" voltmeters which can be switched to measure Input Level, External Gain Reduction, Gain Reduction, Output Level and External Level.

Tube and Rectifier Complement:

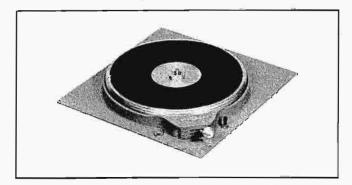
2 GL-6386 Variable gain input stages

2 12AU7 Interstage voltage amplifiers


4 6V6GTA Output amplifiers

2 6AL5 Limiter bias rectifiers

2 OA2 Voltage regulators


4 1N3256 Power rectifiers (silicon, commercial)

Part No. 522 3237 00

BLOCK DIAGRAM 26U-2

COLLINS TT-400/200 TURNTABLES

Collins Turntables feature a simplicity of design which requires only three moving parts in the drive mechanism. There is no complicated linkage system to break down or to add to wow or rumble.

The turntables, constructed of heavy cast aluminum with a blue-gray wrinkle finish, are non-magnetic. A gear speed shift offers selection of 33, 45 and 78 rpm, with neutral between slots. An indentation in the turntable eliminates the need for a spindle adaptor for 7" 45 rpm records.

The tables are rim-driven by a single molded neoprene idler wheel. The idler wheel serves only to transfer power to the rim. It does not determine the speed of the table. Normal wear and reduction of the idler wheel have no effect on the precision of the platter speed.

	Speed	Noise level*	Speed Acceleration
16" TT-400	$331/_{3}$	-48 db	1/10 rev.
	45	-47 db	1/8 rev.
	78	-12 db	1/2 rev.
12" TT-400	$331/_{3}$	-49 db	1/16 rev.
	45	-49 db	1/12 rev.
	78	-46 db	1/3 rev.

*Based on reference level of 7 cm/sec., at 1,000 cps

Models:

TT-400 — 16", 4-pole motor

TT-400S - 16", synchronous motor

TT-450S - 16", synchronous motor, 50 cps

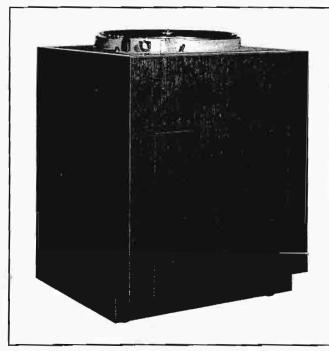
TT-200 - 12", 4-pole motor

TT-200S — 12", synchronous motor

TT-250S - 12", synchronous motor, 50 cps

Size: TT-400 and TT-400S -2'' (5.08 cm) above base plate, 6" (15.24 cm) below base plate, overall base 195%'' square (49.85 cm).

Size: TT-200 - 11/2" (3.81 cm) above table, 41/4" (10.8 cm) below table, base 153/8" W, 141/2" D (39.05 cm W, 36.83 cm D).


TT-200S - Same as TT-200, except 6" (15.24 cm) below table.

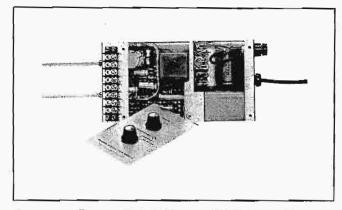
Weight: TT-400 — 53 lbs. (24.04 kg). TT-200 — 22 lbs. (10.23 kg).

Part No. 097 3736 00 (Type TT-400)
Part No. 097 3737 00 (Type TT-4005)
Part No. 097 3737 00 (Type TT-4005)
Part No. 097 6286 00 (Type TT-4505)
Part No. 097 6286 00 (Type TT-4505)
Part No. 097 8123 00
Rubber pad to fill turntable indentation for TT-400/200 series. Allows playing small hole 33½ rpm records.

Part No. 097 7523 00
220 v to 115 v step-down transformer. 150 watis, for use with TT-400/200 turntables.

COLLINS TURNTABLE CABINET

Has front door for accessibility to turntable components. Cutout on top for one Collins TT-400 or TT-200 Series Turntable. Cabinet finished in Kashmir walnut Formica. Other coverings available on special order. Specify turntable model number.


Size: 24" W, 30" H, 24" D (60.96 cm W, 76.2 cm H).

Part No. 097 6131 00 (Type TCFW-2) For use with TT-200 series turntables. Part No. 097 6225 00 (Type TCFW-4) For use with TT-400 series turntables.

COLLINS 356H-1 PHONO EQUALIZER PREAMP

An economical unit to equalize and amplify the output signal of a magnetic phono cartridge, this small transistorized unit is used to replace passive equalizers and console or turntable preamplifiers. The housing of the unit is constructed of steel for magnetic shielding.

Control shafts are 3" long and may be cut to proper length after mounting the unit in the cabinet. The 356H-1 provides choices between two inputs and between four response curves: (1) Flat, for test purposes, and mike preamp use; (2) Hi-Boost, which has a 4 db rise above normal at 15,000 cps; (3) Normal, which is the RIAA equalizing curve, and (4) Hi-Cut, which has a 4 db drop below the Normal curve at 15,000 cps.

Frequency Range: 30-15,000 cps, (Typical — "Flat" position ± 1.5 db, 20-20,000 cps).

Frequency Response: ±1.5 db from RIAA playback equalization response curve.

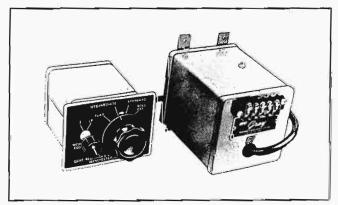
Output Level: -10 dbm, ± 3 db with -50 dbm input at 1,000 cps.

Output Impedance: 150/600 ohms, balanced or unbalanced.

Input Impedance: High impedance bridging, unbalanced. Distortion: 1.0% maximum, 30-15,000 cps at -10 dbm

Output Noise: Signal-to-noise ratio 60 db.

Gain: 40 db at 1000 cps minimum.


Power Source: 120/240 v ac, ±5%, 50/60 cps.

Size: 4" W, 2" H, 73/4" D (10.16 cm W, 5.08 cm H, 19.60 cm D).

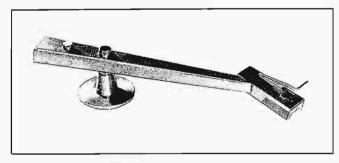
Weight: 5 lbs. (2.27 kg).

Part No. 522 2468 00

GRAY 602C EQUALIZER

Normally used with standard microphone preamplifiers, making it unnecessary to purchase special audio input equipment when using magnetic cartridges. A convenient control permits instantaneous input switching from conventional records to microgroove.

Output Impedance: 250 ohms balanced (150 or 50 ohms available).

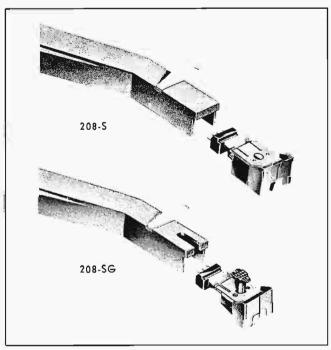

Insertion Loss: 20 db.

Output Level: -67 VU at 4.7 cm/second.

Cable Length: 18" (45.72 kg).

Part No. 272 1438 00

GRAY 212-TN PLAYBACK ARM



A slide-in cartridge is used to allow instant change from standard groove to microgroove. The arm will accommodate all popular magnetic pickup cartridges, including Pickering, G. E., and Fairchild. Available for 12" (212-TN) recordings.

Part No. 099 0386 00

(Type 212-TN)

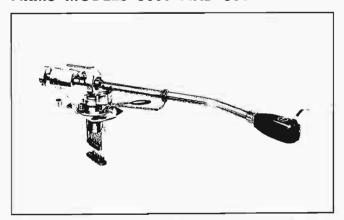
GRAY 208 SERIES PLAYBACK ARMS

The Gray professional stereo tone arm is available in two models that are identical in performance. Model 208-S comes with a slide and modular weights for mounting single play stereo or monophonic cartridges. Model 208-SG has a special slot cut into the front of the tone arm to clear the stem of a G. E. turnaround cartridge allowing plug-in operation and comes with specific hardware for this application.

Accessory slide kits are available for multiple cartridge operation.

The 8-S accessory slide assembly includes the cartridge slide, modular weights, mounting hardware and impressible spacers for the installation of stereo or monophonic single play cartridges. The 8-S slide assembly with cartridge mounted is usable in either the 208-S or 208-SG interchangeably.

The 8-SG accessory slide assembly is specifically designed to mount the G. E. turnaround cartridge. With this cartridge installed, it will only fit the 208-SG arm; however, cartridges are interchangeable between arms in this model.


Response: ±1 db from 5 cps to top end limit imposed by cartridge used.

Size: 238" W, 25%" H, 15" L (7.46 cm W, 6.67 cm H, 38.1 cm D).

Weight: 2 lbs. (0.91 kg).

Part No. 099 0387 00 Part No. 099 0164 00

SHURE SERIES 2 PRECISION PICK-UP ARMS MODELS 3009 AND 3012

The realism and clarity of a stereo record reflect the skill and technical perfection underlying its manufacture. Only when this is maintained in the reproducing equipment can justice be done to the art of the recording engineers. In playing a phonograph record the stylus must follow a path of extraordinary complexity and be highly compliant if the minute detail of the groove is to be traced without damage. Even the best cartridge cannot achieve this unless it is poised free from extraneous influences. The design of a carrying arm capable of realizing the full potential of pick-up and record is highly specialized involving many problems. These have been successfully resolved in the S.M.E., an instrument of unrivalled quality presented with confidence that the user will endorse the claim 'The best pick-up arm in the world'.

DESIGN FEATURES

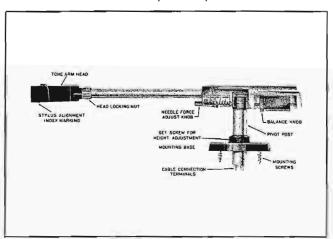
Compensation is provided for the force which tries to move a pick-up arm towards the centre of a record. The arm is given an opposing bias, adjustable for various tracking pressures, which balances the stylus centrally in the groove so that it does not favor one wall.

Precision ball races and knife-edge bearings reduce pivot friction to approximately .020 gram measured at the stylus. Cartridges can be used at optimum stylus pressure without the excess weight otherwise required to overcome friction in the pivots.

A carefully chosen offset minimizes distortion due to tracking error.

The tubular tone arm has a wood lining and the bal-

ance system is decoupled by a compliant joint. Resonances are placed where they can have no effect on the recorded range.


The balance system permits accurate longitudinal and lateral balance of cartridges from 5-20 grams weight and tracking pressures from ½ to 5 grams applied precisely without the need for a stylus pressure gauge.

Versatile and quickly aligned for optimum tracking by sliding the base on its graduated bed plate using the protractor included with each arm. Full advantage can be taken of the best present and future cartridges, impracticable with arms of integrated design.

Lever operated raising and lowering control gives automatic slow descent. Fascinating to use—safeguards valuable records.

Choice of tone arm length to suit space available. If the motor board is big enough the 3012 is better, tracking error is even smaller and for studio use 16" records can be played. Otherwise the 3009 can be used with every confidence and indeed is the one most frequently employed.

SHURE STUDIO DYNETIC PHONO REPRODUCER M226/M222/M22

Model M226 Studio Stereo Dynetic reproducer is of the highest quality, employing a new electromagnetic transducer for playing monophonic and stereophonic phonograph records. It is intended to reproduce recordings with needle forces of ¾ to 1½ grams practically eliminating record and needle wear. The Model M226 Studio Dynetic is intended for studio and professional use and is capable of reproducing records up to 16" (40 cm.) in diameter. The M222 Studio Dynetic is similar to Model 226, but is intended for use with equipment where space is limited. It is designed to reproduce records up to 12" (30 cm.) in diameter.

The cartridges in the Studio Stereo Dynetic reproducers are of the plug-in type and can be readily removed and replaced. Both models M226 and M222 play stereo discs stereophonically, monophonic discs monophonically and stereo discs monophonically. The Model M22 Stereophonic

Cartridge has a replaceable 0.5 mil (0.018 mm.) radius stylus bearing the Model Number N22.

The needle load in the Studio Stereo Dynetic reproducers is readily adjustable by turning a counter-balance (See Fig. A) visible from underneath the arm. With a high grade turntable and motorboard free of vibrations, the counter-balance may be adjusted as far from cartridge as possible resulting in a ¾ gram needle load. Under unsatisfactory conditions of motorboard vibration or when playing records with extremely high modulation, the counter-balance may be set all the way towards the cartridge, resulting in a 1½ gram needle load. The Studio Stereo Dynetic reproducer is available with diamond styli only. To prevent damage, the diamond stylus is packaged in a separate plastic container and should only be installed after mounting the arm.

A magnetic type arm rest designed to harmonize with the appearance of the Studio Stereo Dynetic reproducer, is furnished in the package.

SPECIFICATIONS

Sensitivity: Output at 1000 cycles — 4.5 millivolts ±2 db per channel on WS-1A Test Record (5 centimeters per second).

Response Frequency Characteristic: From 20 to 20,000 cps ±2.5 db. (See Fig. C). There is considerable response down to 10 cycles and up to 30,000 cycles per second.

Channel Separation: More than 22.5 db at 1000 cycles per second.

N22D STYLUS

Needle tip material: Diamond.

Needle tip radius: 0.5 mil (0.013 mm.) ±0.1 mil.

Lateral and vertical needle tip compliance: 22.0 x 10⁶ centimeters per dyne.

Needle tip mass: 0.2 milligram tip mass. 1.1 milligram effective mass.

Tracking force: 3/4 to 11/2 grams — adjustable.

Recommended Load Impedance: 47,000 ohms. Higher values of load impedance will produce a slight increase in high frequency response.

Inductance: 400 millihenries per channel.

D. C. Resistance: 600 ohms per channel.

DIMENSIONS

Overall length: Model M226, 143/4 in., 374 mm. Model M222, 113/2 in., 287 mm.

Stylus to center of base: Model M226, 11 1/32 in., 279 mm. Model M222, 8½ in., 216 mm.

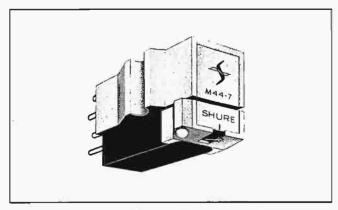
Base diameter: Model M226, 2 in., 50.8 mm. Model M222, 2 in., 50.8 mm.

Range of height of adjustment: Model M226, 15% in., 41.3 mm. Model M222, 15% in., 41.3 mm.

Arm pivot to turntable center: Model M226 10-19/32 in.. 269 mm. Model M222, 81/4 in., 210 mm.

Weight: M226, 11.1 ounces (315 g.).

Weight: M222, 10.6 ounces (300 g.).


Packaged Weight: 1 pound, 3 ounces (538 g.).

Replacement Styli:

M22 Cartridge -

Shure N22D Stylus 0.5 mil radius (0.013 mm.).

SHURE PHONOGRAPH CARTRIDGE MODEL M44-7

The Model M44-7 Dynetic Phonograph Cartridge has been developed for use in all high fidelity applications. It has been designed to connect into magnetic and constant velocity inputs.

Recently, highly technical papers have been published in the leading audio journals to the effect that a hitherto "hidden" source of distortion has finally been identified. It was stated that the difference in the effective angles between the record cutting mechanism's chisel point and the angle of the ball point playback stylus led to an annoying, discernible and measurable distortion. A matching of the vertical tracking angle of the playback stylus to the effective angle at which the record has been cut will eliminate this distortion.

Major recording companies have now begun to use a 15° effective cutting angle and it is the proposed E.I.A. standard (similar in practice and effect to the adoption of the RIAA equalization curve.

The M44 Series of Stereo Dynetic Phono Cartridges has been specifically designed to complement the 15° effective cutting angle now being used on the newest recordings. It also serves to significantly improve the sound obtained from older discs.

The M44-7 is completely compatible. It will play Stereo Discs Stereophonically, Monaural Discs Monaurally, and Stereo Discs Monaurally without excessive wear and distortion.

The Model M44-7 utilizes the Moving Magnet principle and features:

High needle compliance.

Low needle talk.

Low tracking force.

Wide range frequency response.

Improved shielding for maximum reduction of hum pickup.

Exceptional ease in changing stylus assembly.

No magnetic attraction to steel turntables.

SPECIFICATIONS

Frequency Response: From 20 to 20,000 cps. Output Voltage: 9 millivolts per channel at 1,000 cps. Channel Separation: More than 25 db at 1,000 cps.

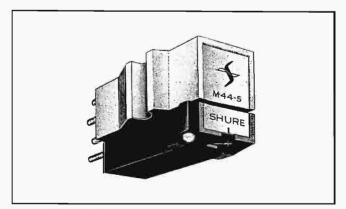
Recommended Load Impedance: 47,000 ohms (per channel).

Stylus Replacement: Model Number N44-7; Radius: .0007" (.018 mm) diamond; stylus grip color: White; *See note - Stylus Model Number N44-3: Radius .0025" (.064 mm) diamond; stylus grip color: Green.

Compliance: Vertical-Horizontal, 20.0 x 106 cm/ dyne.

Tracking: 1.5 to 3.0 grams.

Stylus: "No Scratch" Retractile Feature.


Inductance: 680 millihenries. D. C. Resistance: 650 ohms.

Terminals: 4 terminals (See Figures 2).

Mounting: Standard 1/2" (12.7 mm) mounting center. Weight: Net Weight: 7 grams. Packaged weight: 51/2 ounces (156 grams).

*The N44-3 Stylus may be used in the M44 Dynetic Cartridge to reproduce the standard 78 rpm records. In this case the amplifier should be set to "Monaural" or "A + B." The M44-3 is designed for tracking forces of 1.5 to 3.0 grams.

SHURE PHONOGRAPH CARTRIDGE MODEL M44-5

SPECIFICATIONS:

Frequency Response: From 20 to 20,000 cps. Output Voltage: 6 millivolts per channel at 1,000 cps. Channel Separation: More than 25 db at 1,000 cps. Recommended Load Impedance: 47,000 ohms (per channel).

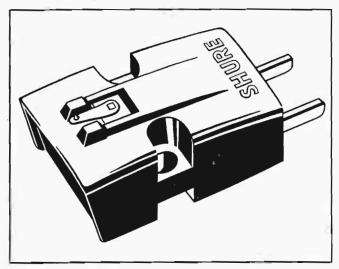
Stylus Replacement: Model Number N44-5; Radius: .0005" (.013 mm) diamond; Stylus grip color: Red; *See Note — Stylus Model number N44-3; Radius .0025" (.064 mm) diamond; Stylus grip color: Green. Compliance: Vertical-Horizontal, 25.0 x 106 cm per dyne.

Tracking: ¾ gram to 1½ grams.
Stylus: "No Scratch" Retractile Feature.

Inductance: 680 millihenries.

D. C. Resistance: 650 ohms.

Terminals: 4 terminals (See Figure 2).


Mounting: Sandard ½" (12.7 mm) mounting center.

Weight: Net Weight: 7 grams. Packaged weight: 5½

ounces (156 grams).

*The N44-3 Stylus may be used in the M44 Dynetic Cartridge to reproduce the standard 78 rpm records. In this case, the amplifier should be set to "Monaural" or "A + B." The N44-3 is designed for tracking forces of 1.5 to 3.0 grams.

SHURE PHONOGRAPH CARTRIDGE MODELS M5D AND M6S

The M5 and M6 Professional Dynetic Cartridges have been developed specifically for use in custom high fidelity sets, record changers, and transcription arms. These cartridges have been designed to connect into magnetic and constant velocity inputs.

This new electromagnetic transducer utilizes the same Dynetic principle employed in the Studio Dynetic Cartridge and tone arm assembly. This new electro-mechanical principle uses a moving magnet which provides extreme linearity and freedom from distortion. Since the magnet turns on its vertical axis, it is possible to place the needle tip at the end of a light metallic beam, providing very low needle point mass. The stylus assembly is held in a durable elastomer composition which provides high needle compliance. Vertical compliance at the needle tip is excellent. Because of these factors, needle talk is practically nonexistent. Other important features are:

- Needle replacement is exceptionally simple and fast. No tools are required.
- Magnetic induction from external hum fields is reduced to a minimum.
- 3. No magnetic attraction to steel turntables.

SPECIFICATIONS — MODEL M5D

Use: Microgroove, 33-1/3 — 45 R.P.M.

Stylus Radius: 1 Mil (0.025 mm) Diamond.

Stylus No.: N5D.

Stylus Color Coding: Black Dot.

SPECIFICATIONS — MODEL M6S

Use: Standard 78 R.P.M.

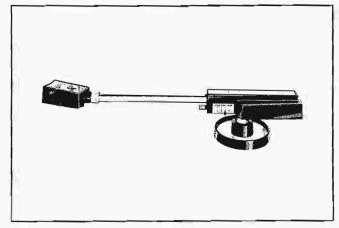
Stylus Radius: 2.7 Mil (0.069 mm) Synthesized Sapphire.

Stylus No.: N6S.

Stylus Color Coding: Yellow Dot.

Response Frequency Characteristic: From 20 to 20,000 cps (See Fig. 1) designed to ideally meet the exacting requirements of typical high fidelity reproduction.

Output Voltage: Output at 1000 cycles 21 millivolts for 10 centimeters per second.

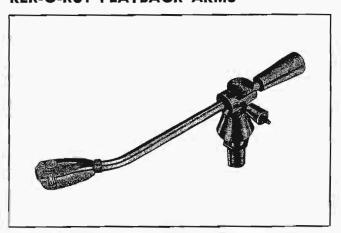

Recommended Load Impedance: 27,000 ohms. Higher values will produce a slight increase in high frequency response.

Compliance: 3.0 x 106 centimeters per dyne.

Tracking Force: 3 to 6 grams. Inductance: 350 millihenrys. D. C. Resistance: 440 ohms. Weight: .44 ounces (12.4 g.).

Packaged Weight: 3.3 ounces (95 g.).

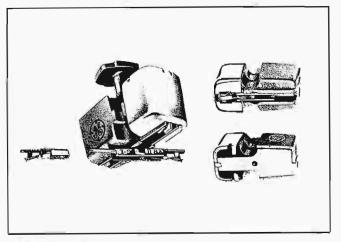
SHURE PLAYBACK ARMS


Accepts stereo and monophonic cartridges. Arm features precision ball bearings at all pivot points, plug-in head with positive alignment lock and variable adjustment. Supplied with arm rest, mounting template, mounting hardware and 4-foot cable assembly.

Size and Weight: 12" arm (M232), 1214" L, 1 lb. (0.45 kg); 16" arm (M236), 141/2" L, 11/8 lbs. (0.48 kg).

Part No. 097 8118 00 Part No. 097 8122 00

(Type M232) (Type M236)


REK-O-KUT PLAYBACK ARMS

Tubular arm body with die cast aluminum cartridge shell and counterweight. Four-conductor lead accommodates all 3- and 4-wire stereo cartridges. Does not include but uses all standard cartridges. Available for either 16" (S-260) or 12" (S-320) recordings.

Part No. 099 0242 00 Part No. 099 0241 00 (Type S-260) (Type S-320)

GENERAL ELECTRIC CARTRIDGES AND STYLI

4GS-01D — Cartridge with 1 mil diamond stylus.

4GS-02D - Cartridge with 2.5 mil diamond stylus.

4GS-01S — Cartridge with 1 mil sapphire stylus.

4GS-02S - Cartridge with 2.5 mil sapphire stylus.

4GD-01D-02S — Cartridge with 1 mil diamond and 2.5 mile sapphire styli.

4GD-01D-02D -- Cartridge with 1 and 2.5 mil diamond styli.

4GD-01S-02S — Cartridge with 1 and 2.5 mil sapphire styli.

4G-01D — 1 mil Diamond Stylus (above cartridges only).
4G-02D — 2.5 mil Diamond Stylus (above cartridges only).

4G-01S — 1 mil Sapphire Stylus (above cartridges only). 4G-02S — 2.5 mil Sapphire Stylus (above cartridges only).

Part No. 097 3844 00 (Type 4GS-01D)
Part No. 097 3845 00 (Type 4GS-02D)
Part No. 097 3846 00 (Type 4GS-02S)
Part No. 097 3847 00 (Type 4GS-02S)
Part No. 097 3848 00 (Type 4GD-01D-02S)
Part No. 097 3850 00 (Type 4GD-01D-02S)
Part No. 097 3850 00 (Type 4GD-01S-02S)
Part No. 097 3853 00 (Type 4G-01D)
Part No. 097 3854 00 (Type 4G-01D)
Part No. 097 3851 00 (Type 4G-01D)
Part No. 097 3852 00 (Type 4G-01S)
Part No. 097 3852 00 (Type 4G-02S)

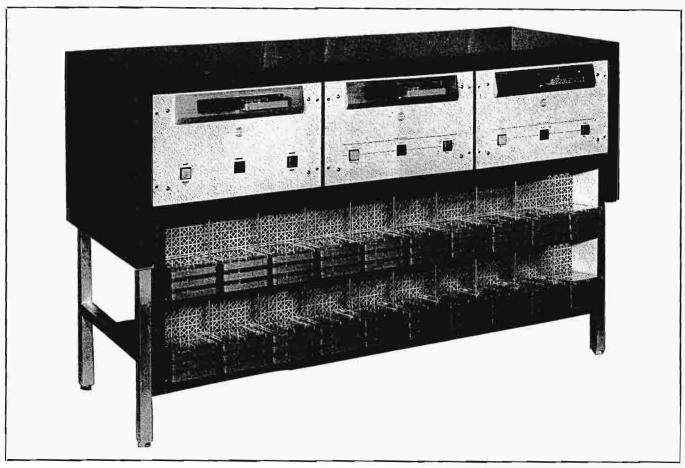
COLLINS 642A-2 AND 216C-2 TAPE CARTRIDGE SYSTEM

Tape cartridge programming with Collins equipment means perfection in recording and playback. Stored in 40-second to 31-minute endless tape cartridges, programs are conveniently and safely stored until air time. Then, the cartridge is inserted into the playback deck, one button pressed, and the program is on the air, on cue.

The ease of programming is only a feature of convenience to the broadcaster. The degree of perfection in cueing spot announcements and the resulting tight production are features the listening audience can observe as a mark of the truly professional broadcaster.

Cueing the tape with Collins equipment is an automatic process not dependent upon human skills. A fraction of a second before the start of the recording process on the upper half of the tape, a tone burst is recorded on the bottom half of the tape. This tone burst automatically stops the endless tape during the playback operation so that there is less than a 0.1-second start time for the next play.

The tone burst recorded on the tape automatically recues the tape for the next play. The playback units contain the necessary relay switching to automatically switch audio feed from an unlimited number of units into a single input of the speech input console. When any unit is started, all others are automatically disconnected from the line. Any unit that is running when another unit is started will continue to run until it is cued to the start position or is manually stopped. A second cue tone can be inserted anywhere on the tape. This is used to trigger the next playback unit or to operate remote equipment.


The cartridge is inserted along a guide and under a sturdy retaining spring which keep the entire cartridge firmly in place. Pressure pads within the cartridge hold the tape flat and firmly against the record/playback head and cue head. A precision gap of 0.00020 of an inch in the record/playback head provides resolution of the complete audio range at the 7½-inch tape speed. The heads are built on laminated cores, which permit high recording levels without danger of core saturation. The laminated cores and the balanced double coil winding result in a signal-to-noise ratio of 55 db or better as measured by the proposed NAB standard of 400 cps at 3% THD.

The capstan pressure roller, pivoting 90° from below the deck surface, snaps into position to hold the tape securely against the driving capstan. The tension of this roller is easily adjustable. The pressure roller resists wear and is accurately ground so that the tape is not fluted or stretched as it passes between the capstan and the pressure roller.

Pulling the pressure roller into position is a heavy duty solenoid guaranteed to last. This solenoid was activated over 2-million times in the Collins Quality Control laboratories and showed no appreciable wear. Activation of the soleniod and pressure roller is a fast, tight operation. Shimmy and vibration are not present.

Mounted on a strong and accurately machined aluminum deck, the mechanical portions of the Collins playback and recorder units are guaranteed to stay in perfect alignment. The precision of the playback and record heads in relation to the capstan, solenoid-activated linkage system and flywheel requires more than a pressed mounting plate. The Collins deck has a cast structural reinforcement so that alignment of all moving parts is always perfect.

Driving the unit is a heavy duty-Bodine synchronous motor with vertical ball thrust bearing. The motor is energized by inserting a tape cartridge. The life and low wear of the motor are features second only to the steady speed. The tape is moved through the unit at 7½ inches per second with 99.6% accuracy.

642A-2 TAPE CARTRIDGE SYSTEM

The motor is coupled to the flywheel with three resilient drive belts. This indirect drive, found in premium grade tape equipment, features much greater driving torque than in direct drive capstan systems. This torque is a must for syllable-splitting cueing required by present day broadcasting standards.

The machined and highly polished solid brass flywheel is typical of Collins precision. The flywheel and capstan, with two Oilite lateral bearings and a ball thrust vertical bearing, are virtually wearproof and maintain their equal balance. The result is very important: the playback unit holds flutter and wow to less than 0.2 of 1% RMS.

The units are finished in a blue-gray baked enamel, and extenders are furnished for rack mounting or other 19" width mounting requirements. The following specifications apply to both the 216C-2 Record and 642A-2 Playback Units:

Power Source: 105-125 v ac, 60 cps (50 cps model available on order), single phase.

Frequency Response: ±2 db 50-12,000 cps, ±4 db 50-15,000 cps, with 1,000 cps reference frequency.

Harmonic Distortion: 2% or less at 0 VU record level. Signal-to-Noise Ratio: 45 db or better at 400 cps.

642A-2 PLAYBACK SPECIFICATIONS

Power Consumption: 100 watts during operation, 25 watts standby.

Gain: 55 db at 1,000 cps.

Size: 15" or 19" W, 834" H, 1334" D (38.1 cm or 48.26 cm W, 22.23 cm H, 34.93 cm D).

Weight: 40 lbs. (18.15 kg).

Part No. 522 3497 00 (Type 642A-2 Playback) 216C-2 RECORD SPECIFICATIONS

Power Consumption: 125 watts.

Audio Inputs: Microphone and line, both variable gain and capable of being mixed. Microphone input 250 ohm impedance (50/600 ohms optional.) Will accommodate input levels from -65 dbm to -35 dbm. Line input 600 ohm impedance (50/250 ohms optional). Will accommodate levels from -15 dbm to +10 dbm.

Cueing: Primary tune, 1000 cps. Secondary tune, 350 cps. Size: 15" or 19" W, 7" H, 133/4" D (38.1 cm or 48.26 cm W, 17.78 cm H, 34.93 cm D).

Weight: 15 lbs. (6.8 kg).

Part No. 522 3496 00 (Type 216C-2 Record)

COLLINS DESK WING CONSOLE

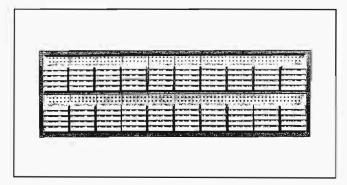
Functional and economical unit for housing three 15" Collins automatic programming playback units (or two playback units and one record unit) and 120 of the Series 300 tape cartridges. Sturdy construction and wear resistant Formica finish in walnut (DWW-3). Other finishes available on request.

Size: 51" W, 30" H, 18" D. (129.5 cm W., 76.2 cm H, 45.72 cm D).

Weight: 150 lbs. (68.04 kg).

Part No. 097 5350 00

COLLINS PRODUCTION CONSOLE CABINET

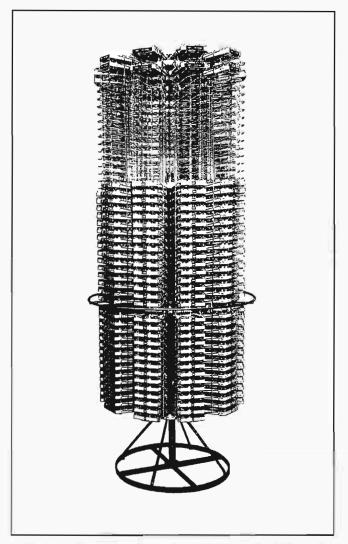


Complete Collins automatic programming recording and playback facilities may be mounted in this cabinet. Houses one 15" playback and one 15" recording amplifier. Has cutout for one 8" speaker (not included). Walnut Formica finish. Other finishes available on request. Size: 18" W, 34" H, 24" D (45.72 cm W, 86.36 cm H, 60.96 cm D).

Weight: 85 lbs. (38.36 kg).

Part No. 097 7522 00

COLLINS TAPE CARTRIDGE RACK



Formica covered wood rack holds 120 of the Series 300 cartridges used with Collins automatic programming equipment. Four rubber cushions allow rack to be set on top of programming wing. It also may be hung on wall. Walnut Formica. Other finishes available on request. Size: 4534" W, 1436" H. 4" D (116.21 cm W, 36.51 cm H, 10.16 cm D).

Weight: 25 Ibs. (11.34 kg).

Part No. 097 5727 00

ABCO LAZY SUSAN CARTRIDGE RACK

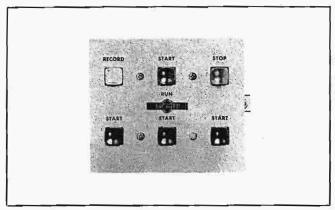
This sturdy, heavy Lazy Susan rack holds 500 of the Series 300 Collins automatic programming equipment tape cartridges. Ten chrome-plated racks with 50 slots each make storage and selection of cartridges fast and simple. Revolves easily on roller bearing hub and will not tip regardless of arrangement of cartridges. Cartridges held in wire holders at an angle to prevent slipping out while the rack is being revolved. Shipped knocked down.

Size: Approx. 72" H, 36" diameter (182.88 cm H, 91.44 cm diameter).

Weight: Approx. 50 lbs. (22.68 kg).

Part No. 097 7559 00

ABCO WIRE CARTRIDGE RACK

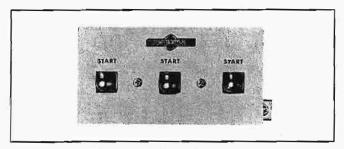

Individual wire rack holding 50 Collins automatic programming equipment cartridges. Identical rack to those used in the Lazy Susan. Includes tapped mounting brackets welded to wire rack.

Size: Approx. 5" W, 11/2" H, 7" D (12.7 cm W, 3.81 cm H, 17.78 cm D).

Weight: Approx. 2 lbs. (0.91 kg).

Part No. 097 7560 00

COLLINS 313T-4 REMOTE CONTROL PANEL

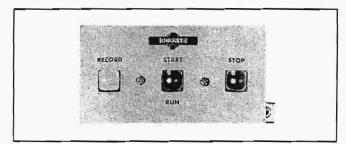


Three Collins automatic programming playback units, in addition to a record/playback system, may be operated with this control panel from a remote point in the broadcast studio. Buttons illuminate when in operation.

Size: 51/8" W, 23/4" H, 41/2" D (13.02 cm W, 6.99 cm H, 11.43 cm D).

Part No. 522 2552 00

COLLINS 313T-3 REMOTE CONTROL PANEL

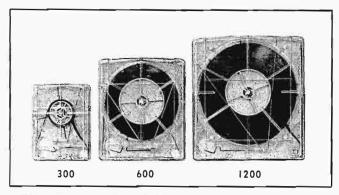


Has three illuminated "start" buttons for control of three or less playback units from a remote point.

Size: 51/8" W, 41/2" H, 41/2" D (13.02 cm W, 11.43 cm H, 11.43 cm D).

Part No. 522 2551 00

COLLINS 313T-1 REMOTE CONTROL PANEL



Has illuminated "start," "record" and "stop" buttons for control of one record/playback system from a remote point.

Size: 51/8" W, 23/8" H, 41/2" D (13.02 cm W, 6.99 cm H, 11.43 cm D).

Part No. 522 2550 00

COLLINS AUTOMATIC PROGRAMMING LOADED CARTRIDGES

Manufactured for Collins automatic programming equipment, these cartridges are loaded with fine quality, specially lubricated tape.

300 Series: Loaded cartridges packed six per box (minimum one box) in following lengths: 40, 70, 90, 100 seconds; 2½, 3, 3½, 5, 5½, 7, 7½, 10, 10½ minutes. Specify length.

Type No.	Part Number	Length
300 Series 300 Series	099 1393 00 099 1394 00 099 1393 00 099 1399 00 099 1500 00 099 1502 00 099 1395 00 099 1395 00 099 1396 00 099 1396 00	Length 40 Second Tape Cartridges 70 Second 90 Second 100 Second 2½ Minute 3 Minute 3½ Minute 5 Minute 5½ Minute 1½ Minute 1½ Minute 1½ Minute 1½ Minute 1½ Minute 10 Minute
300 Series	099 1397 00	101/2 Minute

600 Series: Loaded cartridges packed two per box (minimum one box) in following lengths: 11, 13½, 15, 16 minutes. Specify length.

600 Series	099 1996 00	II Minute
600 Series	099 1997 00	131/2 Minute
600 Series	099 1998 00	15 Minute
600 Series	099 1999 00	16 Minute

1200 Series: Loaded cartridges packed two per box (minimum one box) in 31 minute lengths.

1200 Series 099 1398 00 31 Minute

COLLINS AUTOMATIC PROGRAMMING BLANK CARTRIDGES

Identical to above cartridges for custom loading.

300 Series: Blank cartridges packed six per box (minimum one box). Up to 10½ minutes playing time.

Part No. 099 1594 00

600 Series: Blank cartridges packed two per box (minimum one box). From 11 to 16 minutes playing time.

Part No. 099 2302 00

1200 Series: Blank cartridges packed two per box (minimum one box). From 16½ to 31 minutes playing time.

Part No. 099 1900 00

COLLINS AUTOMATIC PROGRAMMING MM-151 BULK RECORDING TAPE

A fine quality, specially lubricated, Minnesota Mining tape in bulk lengths of 1,700' on 7" reels for use with Collins Automatic Programming blank cartridges.

Part No. 097 2629 00

AUDIOTAPE AND MM RECORDING TAPES

The following tapes are designed for conventional recorders (see description under Collins Automatic Programming MM-151 Bulk Recording Tape for specially lubricated bulk tape):

1251: Audiotape, 1200 ft., 7" reel.

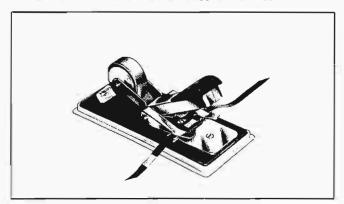
1861: Audiotape, Mylar, 1800 ft., 7" reel.

111A-6: Minnesota Mining tape, 600 ft., 5" reel.

111A-12: Minnesota Mining tape, 1200 ft., 7" reel.

150-18: Minnesota Mining tape, Mylar, 1800 ft., 7" reel.

190-18: Minnesota Mining tape, plastic base, 1800 ft., 7" reel.


Part No. 097 2039 00 (Type 1251)
Part No. 097 2992 00 (Type 1861)
Part No. 272 1408 00 (Type 111A-6)
Part No. 272 1407 00 (Type 111A-12)
Part No. 097 7112 00 (Type 150-18)
Part No. 099 0040 00 (Type 190-18)

REEVES ST-466 BULK SPLICING TAPE

Reeves splicing tape for use with Collins Automatic Programming equipment recording tape. Mylar 1½ mil tape 7/32" wide and supplied in 66' roll.

Part No. 099 0496 00

ROBINS TS4-DLX SPLICER-CUTTER

Used for magnetic recording tape, this unit cuts two rounded indentations in the tape splice, giving the splice a "Gibson Girl" shape and leaving the edges of the tape free of adhesive. The unit can be removed from its base and mounted directly on any tape recorder. It comes complete with a roll of splicing tape and tape feed.

Part No. 097 2058 00

COLLINS AUTOMATIC PROGRAMMING TEST TAPE

Azimuth head alignment test tape for Collins automatic programming playback in 70-second length with 5,000 cps tone on cue track and 10,000 cps tone on program track.

REPLACEMENT PRESSURE PADS

Long lived Polyurethane pad interchangeable with pads in original cartridge in boxes of 50.

Part No. 094 2546 00

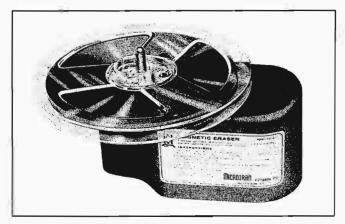
TAPE CARTRIDGE REPAIR KIT

Collins Automatic Programming cartridges may be repaired easily with this repair kit which includes 12 Teflon washers, 12 pressure pads and 12 center screws.

Part No. 099 0066 00 Minimum order of three kits as described above.

MAGNERASER 200C TAPE ERASER

A compact and convenient bulk tape eraser that removes recorded signals from tape up to 35 mm in size and lowers background noise level up to 6 db below that of unused tape. A pushbutton safety switch prevents current from being applied when not in use.


Operating Voltage: 100-130 v, 50-60 cps.

Size: 2" H, 4" diameter (5.08 cm H, 10.16 cm diame-

Weight: 21/2 lbs. (1.13 kg).

Part No. 097 5172 00

MICROTRAN HD-11M TAPE ERASER

A bulk tape demagnetizer that develops a high intensity magnetic field to erase signals and noise without rewinding. Spindle mounting of reel permits rapid and thorough coverage.

Reel Size Range: 5". 7", 101/2" (spindle removable for use with other size reels).

Adapter Hub: Available for use with 101/2" reels.

Rating: 117 v ac, 5 amps.

Size: 5" W, 3" H, 8" D (12.7 cm W, 7.62 cm H, 20.32 cm D).

Part No. 099 0371 00

AMPEX 602 SERIES RECORDER

The 602 is a field recorder that will go where you go - and give you the reliability and professional studioquality you need when you get there! The 602 series units have hysteresis synchronous drive motors and three separate heads: erase, record, and playback. For rack mounting in the studio, it uses minimal rack space.

SPECIFICATIONS/602 SERIES

Measured by professional standard methods. These are the guaranteed minimum specifications the user can expect in long-term operation.

Frequency Response: 40 to 15,000 cps; down no more than 4 db at 15,000; ±2 db from 40 to 10,000 cps at $7\frac{1}{2}$ ips. $3\frac{3}{4}$ ips model +2 -4 db from 40 to 8,000

Signal-to-Noise Ratio: Model 602-1: with full track head, over 57 db; with half-track head, over 55 db. Model 602-2: over 55 db. All at 71/2 ips.

Flutter and Wow: Less than 0.17% at 71/2 ips; less than 0.25% at 33/4 ips (measured at ASA standard).

Timing Accuracy: $\pm 0.2\%$ at $7\frac{1}{2}$ ips (± 3.6 seconds in a 30 minute recording).

Fast Forward or Fast Rewind Time: 90 seconds for full 1200-foot reel.

Heads: Three separate heads: erase, record, playback.

Model 602-1: Full-track or half-track Model 602-2: Two-track heads

Speeds: $7\frac{1}{2}$ ips model or $3\frac{3}{4}$ ips model. Reel Size: 7'' and 5''.

Inputs (each channel): Two inputs, individual gain controls on each.

a. low impedance mike input, 150 microvolts required for program record level (for use with mikes of 30 to 250 ohms nominal impedance).

b. Line input (100K unbalanced), -10 dbm required for program record level.

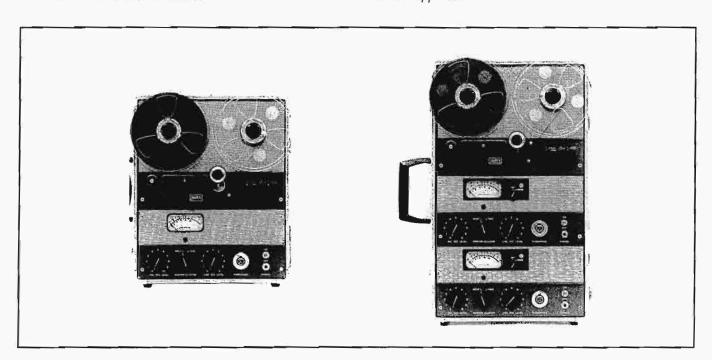
All inputs are Cannon XL connectors. Provision for use of plug-in balanced line or bridging input transformers.

Line input can be used as input for second microphone by accessory plug-in preamplifier (allowing 2 microphones to be mixed on one channel).

Outputs (each channel): a. +4 dbm into 600 ohm. Balanced or unbalanced load.

b. Head phone jack (on front panel).

Monitor selector knob permits monitoring from either the input source or the tape playback, while recording. Equalization: For 117 volt, 50 and 60 cps models: 71/2


ips, NAB; 33/4 ips, 120 microsecond. For 115/230 volt, 50 cps models: 71/2 ips (19 cm/s),

CCIR; 33/4 ips (9.5 cm/s) 200 microsecond.

Power Requirements: Models for 117 v., 60 cps; 117 v., 50 cps; 115/230 v., 50 cps. Model 602-1, 70 volt-amperes; Model 602-2, 105 volt-amperes.

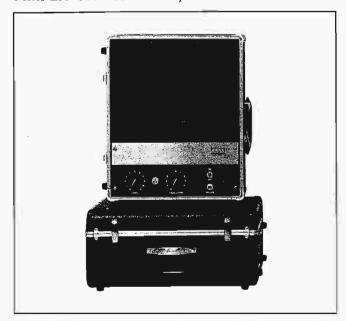
Weight (in case): Model 602-1: 28 lbs. Model 602-2: 42

U. L. Approved

AMPEX 602-1 ONE CHANNEL RECORDER

You may choose full or half-track heads. A rugged, dependable recorder that will meet your performance requirements for a professional mono input.

Portable: 71/2 ips, half-track head, 602-01; 71/2 ips, fulltrack head, 602-02. 33/4 ips, half-track head, 602-17. Uncased: 71/2 ips, half-track head, 602-03. 71/2 ips, fulltrack head, 602-04.


AMPEX 602-2 TWO CHANNEL RECORDER

The 602-02 provides two-track heads with selectivetrack erase head; two electronic channels, give you the versatility of two-track stereo and half-track mono in one unit.

Portable: 71/2 ips, two-track head, 6022-01. 33/4 ips, twotrack head, 6022-07.

Uncased: 71/2 ips, two-track head, 6022-02.

AMPEX 622 SPEAKER/AMPLIFIER

The 622 unit gives you "on-the-spot" studio-quality playback for demonstration or monitoring. Its 10 watt amplifier provides ample volume for a medium size auditorium.

SPECIFICATIONS/622 SPEAKER-AMPLIFIER

Overall Frequency Response (in air): Essentially flat acoustically, range better than 65-10,000 cps.

Speaker Size: Special design 8" full-range speaker.

Power Output: 10 watts amplifier power with no audible harmonic distortion. Speaker can handle full power. Signal-to-Noise: Amplifier noise (including hum), 70 db

below rated output.

Controls & Connections: Volume control, bass-treble control, power switch and on-off indicator light. Built-in AC convenience outlet. Audio input connector is concentric pin type. External speaker connection is head-

phone type jack.

Equalization: Single control on front panel provides adjustment, boosting bass and attenuating treble or vice versa. Maximum bass boost 6 db relative to treble.

Maximum treble boost 6 db relative to bass.

External Speaker Feed: Use of "SPEAKER" jack automatically cuts out the 622's internal speaker and reciprocal network. Flat amplifier output is fed to the external speaker.

Impedance: Inputs, 100,000 ohms. Output, 12 ohms to ex-

ternal speaker.

Power Requirement: 117 volts, 50 or 60 cycles, 0.5 amps,

55 watts.

Weight: 25 pounds. U. L. Approved

DIMENSIONS/602-1 602-2 622

Transport top area: 9% x $12\frac{1}{2}$ ". Electronic top area: $6\frac{1}{8}$ " x $12\frac{1}{2}$ ".

(two electronic sections in Model 602-2).

Depth below top plate: 5".

Overall size, include carrying case:

Model 602-1; 8" x 13¾" x 16½"

Model 602-2; 8" x 13¾" x 23"

Rack Space: will mount in standard 19" width rack, with appropriate Ampex adapter panel.

Model 602-1 with #864 Adapter Panel, takes only 171/2" of vertical rack space.

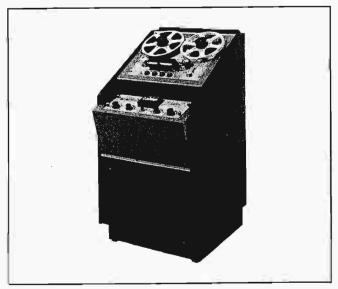
Model 602-2 with #865 Adapter Panel, takes only

233/4" of vertical rack space.

Model 622 speaker/amplifier, overall size in carrying case: 13" x 16" x 8".

Part No. 099 2484 000

ACCESSORIES FOR AMPEX 602 SERIES


	Order By
	Type
	Number
Minor Hardware Kit	897
Portable case —	
for 602-1 one-channel model	854
for 602-2 two-channel model	855
Rack Mount Adapter - for 602-1	864
for 602-2	865
Operation & Maintenance Manual (602 series)	89-0080
Operator's Guide for 622 Amplifier/Speaker	89-0099
Professional Accessory Kit (includes head	
cleaner, demagnetizer, motor oil, Q-tips)	894
Head Demagnetizer	820
Head Cleaner, 4-oz. Can	823
Lubricating Oil, approved, in plastic oiler bott	le 825
Alignment Tapes (see separate Alignment T	ape Price
Schedule and descriptions). Speed and power	frequency
conversion kits available on request from Amp	ex Service
Engineering Department.	
Engineering Department.	

AMPEX 350 SERIES RECORDER

A complete family of professional audio recorders and reproducers featuring the basic 350 tape transport, one of the most dependable transports ever built.

The 350 line offers you a wide choice of mounting configurations, head stacks and speeds, to enable you to select the specific instrument for your requirements.

AMPEX 351 1-CHANNEL (MONOPHONIC) RECORDER/REPRODUCER

This is the unit you will find in practically every radio station. It is the standard of the broadcast industry. Available in full-track or half-track models. Electronics and electronic control panel are in a completely separate chassis from the tape transport. Specifications listed under 351-2.

AMPEX 351-2 2-CHANNEL (STEREOPHONIC) RECORDER/ REPRODUCER

Two 351 single-channel electronics are used with bias oscillator interlock, but retaining all individual controls. Two track heads with separate erase for each channel. Also available with optional four-position head assembly, which includes a quarter-track reproduce head.

SPECIFICATIONS

Tape Speeds: $7\frac{1}{2}$ and 15 ips or $3\frac{3}{4}$ and $7\frac{1}{2}$ ips.

Frequency Response: Overall Response: 15 ips ±2 db 30-18,000; $7\frac{1}{2}$ ips ± 2 db 40-10,000, ± 4 db at 30 cps and 15 kc; $3\frac{\pi}{4}$ ips ± 2 db 50-7,500.

Heads: 351: Half, or full-track erase, record and playback. 351-2: Two-track erase, record and playback. 4position head assembly available, includes quarter track reproduce head.

VU Meters: Two 4½-inch professional meters, each on separate chassis.

Signal-to-Noise Ratio: 15 ips: Full track, 60 db; Half track, 55 db; 2 Channel stereo, 55 db.

71/2 ips: Full track, 60 db; Half track, 55 db; 2 Channel stereo, 55 db.

3¾ ips: Full track, 50 db; Half track, 50 db; 2 Channel stereo, 50 db.

Flutter Content: 15 ips: Well below 0.11%; 71/2 ips: Well below 0.14%; 334 ips: Well below 0.18%.

Start/Stop: Start: Tape accelerates to full speed in less

than 1/10 second. Stop: At 15 ips speed, tape moves less than two inches after pressing "Stop" button. Playback Timing Accuracy: ±0.2% (±3.6 seconds in

a thirty minute recording).

Recording Channel Selector: Two pushbuttons.

Record Input: Suitable to any one of three input terminations: (a) microphone level, 150 to 250 ohms nominal, 200 microvolts required to produce the recommended operating level, may be strapped for 30 to 50 ohms nominal: (b) balanced bridging, 200 K ohms input impedance, -10 dbm required to produce the recommended operating level; (c) unbalanced bridge, 100 K ohms input impedance, -10 dbm required to produce the recommended operating level.

Equalization: All standard models supplied with NAB equalization. AME or CCIR curves available on special order. UNIVERSAL versions contain switchable NAB/

CCIR equalization.

Electronic Adjustments: Accessible from rear of chassis. Playback Output: Plus 8 dbm output into 600 ohms, balanced or unbalanced. Overload margin is maintained by providing a maximum output of +28 dbm before clipping. Can be connected for +4 dbm by restrapping and recalibration.

Power Requirements: Single channel models require 2.0 amperes current; two channel models require 2.5 amperes. Standard models are 117 volts. Universal Series models have built-in multiple tapped power transformer for power input through two ranges: 90 to 130 volts a.c. and 200 to 240 volts a.c., 14 selections. Models available for either 50 or 60 cycles.

Dimensions/Weights: Standard 19 inch wide panels with commercial notching for rack mounting. TAPE TRANS-PORT, 153/4 inches of rack space, weight . . . 50 lbs. ELECTRONIC ASSEMBLY, 7 inches of rack space, weight . . . 18 lbs. (two electronics assemblies required for 2 channel stereo). CONSOLE for 351, 48 inches high x 24½ inches wide x 28½ inches deep, weight . . . 168 lbs.

Mounting Configurations: 351: Portable, unmounted, console. 351-2: Portable, unmounted.

Special Versions: Other speeds, 3-speed motors, special head configurations and wider frequency bands, available on special order.

Warranty: Ampex 4-Star 1-Year Warranty.

AMPEX 352 1-CHANNEL (MONOPHONIC) REPRODUCER ONLY

Contains playback facilities only . . . protects irreplaceable tape recording from accidental erasure. Full-track reproduce head. Half-track on special order.

AMPEX 352-2 2-CHANNEL (STEREOPHONIC) REPRODUCER ONLY

Same as the 352 but with dual playback electronics and two-track reproduce head. Also available with optional additional head for guarter-track playback to reproduce four-track stereo tapes.

SPECIFICATIONS

Tape Speeds: 7½ and 15 ips.

Frequency Response: Playback Response; measured with Ampex standard alignment tape 15 ips ± 2 db 30-15,000; $7\frac{1}{2}$ ips ± 2 db 40-10,000, ± 4 db at 15 kc.

Heads: 352: Full-track reproduce (half-track on special order). 352-2: Two track reproduce (Quarter track reproduce also available).

VU Meters: None.

Signal-to-Noise Ratio: 15 ips: Full track, 60 db; 2 track stereo, 55 db.

7½ ips: 2 track stereo, 55 db. Flutter Content: Same as 351 Series. Start/Stop: Same as 351 Series.

Playback Timing Accuracy: Same as 351 Series.

Recording Channel Selector: None.

Record Input: None.

Equalization: Same as 351 Series.

Electronic Adjustments: Accessible from rear of chassis.

Playback Output: Same as 351 Series.


Power Requirements: Same as 351 Series.

Dimensions/Weights: TAPE TRANSPORT, 153/4 inches of rack space, weight . . . 50 lbs. ELECTRONIC AS-SEMBLY, 51/4 inches of rack space, weight . . . 131/2 lbs. POWER PANEL, 134 inches of rack space, weight . . . 1 lb. CONSOLE DIMENSIONS, 35 inches high x 241/4 inches wide x 243/4 inches deep, weight . . . 109 lbs.

Mounting Configuration: 352: Unmounted, console. 352-2: Unmounted, console.

Special Versions: Same as 351 Series. Warranty: Ampex 4-Star 1-Year Warranty.

AMPEX 354 2-CHANNEL (STEREOPHONIC) RECORDER/REPRODUCER

Its two electronic channels are combined into one compact unit. Fits into same space required for a single-channel electronics. Two-track heads with separate erase for each channel. Also available with optional four-position head assembly, which includes a quarter-track reproduce head.

SPECIFICATIONS

Tape Speeds: 71/2 and 15 ips or 33/4 and 71/2 ips. Frequency Response: 15 ips ± 2 db 30-18,000; $7\frac{1}{2}$ ips ± 2 db 40-12,000, ± 4 db, 30-15,000; 33\(\pm\) ips ± 2 db 40-6,000, + 2 - 4 db 40-8,000.

Heads: 354: Two-track erase, record and playback; 4position head assembly available, includes quarter track reproduce head.

VU Meters: Two 21/2-inch professional meters side by side for easy comparison and balancing of channels.

Signal-to-Noise Ratio: 15 ips: 55 db; 71/2 ips: 55 db; 3¾ ips: 50 db.

Flutter Content: Same as 351 Series.

Start/Stop: Same as 351 Series.

Playback Timing Accuracy: Same as 351 Series. Recording Channel Selector: Selector Switch.

Record Input: Unbalanced bridge, 100 K ohms input impedance, -14 dbm required to produce the recommended operating level. Accessories available to convert input: (a) balanced bridging input transformer, 20,000 ohms input impedance, I db insertion loss; (b) microphone preamplifiers, 150 to 200 ohm nominal impedance. Two versions are available, 40 db gain or 60 db gain.

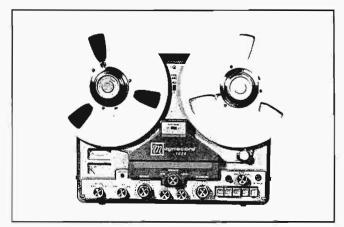
Equalization: All standard models supplied with plug-in NAB equalization units. Plug-in equalizers for AME or CCIR curves available as accessories.

Electronic Adjustments: Accessible: front of electronics

Playback Output: Plus 4 dbm output into 6000 ohms, balanced or unbalanced. Overload margin is maintained by providing a maximum output of +22 dbm before clipping.

Power Requirements: Same as 351 Series, except 354

Series not available in Universal models.


Dimensions/Weights: Standard 19 inch wide panels with commercial notching for rack mounting. TAPE TRANS-PORT, 153/4 inches or rack space, weight . . . 50 lbs. ELECTRONIC ASSEMBLY, 7 inches of rack space, weight . . . 30 lbs. PORTABLE WEIGHT: 103 lbs. in two cases. CONSOLE, 48 inches high x 241/2 inches wide x 281/2 inches deep, weight . . . 155 lbs.

Mounting Configurations: 354: Portable, unmounted, con-

sole.

Special Versions: Same as 351 Series. Warranty: Ampex 4-Star 1-Year Warranty.

MAGNECORD 1028 RECORDER-REPRODUCER

The Magnecord 1028 has advanced circuit design, utilizing latest tube types, and printed wiring to insure uniform high performance from recorder to recorder. SPECIFICATIONS:

Tape Speeds: 7.5 and 15 inches per second.

Flutter and Wow: 0.15% at 7.5 ips; 0.1% at 15 ips.

Timing Accuracy: $\pm 0.2\%$. Reel Size: 5-, 7- and 101/2-inch.

Rewind Time: 2400 feet, less than 100 seconds.

Frequency Response: ±2 db — 40 to 16,000 cps at 7.5

ips; 40 to 22,000 cps at 15 ips. Signal-to-Noise Ratio: 56 db per channel.

Inputs: Hi-Z microphone and Hi-Z unbalanced bridge; Lo-Z microphone and Hi-Z balanced bridge. With input transformer.

Input Sensitivity: -90 dbm to -30 dbm.

Outputs: Cathode follower, 2.0 volts; 150/600-ohm balanced, +4 dbm. With output transformer.

Heads: Selectable Erase, 2-channel Record and 2-channel Play.

Weight: 50 pounds (60 pounds encased).

Dimensions: 175%" wide, 127%" high, 12" deep. (175%" wide, 141%" high, 12" deep encased.)

50 cps model at extra cost.

MAGNECORD 1022 RECORDER-REPRODUCER

FEATURES: Solid state electronics with regulated power supply and built-in input and output transformers. SPECIFICATIONS

Tape Speeds: 7.5 and 15 inches per second.

Flutter and Wow: 0.17% at 7.5 ips; 0.15% at 15 ips.

Timing Accuracy: $\pm 0.2\%$.

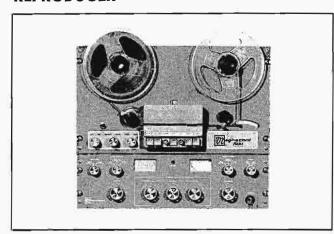
Reel Size: 5-, 7- and 8-inch E.I.A. hubs. Rewind Time: 1200 feet in 80 seconds.

Frequency Response: ±2 db — 25 to 18,000 cps at 7.5 ips; 35 to 22,000 cps at 15 ips.

Signal-to-Noise Ratio: 53 db, both speeds.

Inputs Per Channel: Lo-Z microphone, balanced bridge, unbalanced bridge, auxiliary bridge.

Outputs Per Channel: 150/600-ohm balanced, auxiliary A and auxiliary B unbalanced (+8 dbm).


Heads: Selectable 2-channel Erase, 2-channel Record, 2channel Play and 1/4-track Play.

Weight: 47 pounds.

Dimensions: 19" wide, 153/4" high, 12" deep.

50 cps model at no extra cost.

MAGNECORD 1021 RECORDER-REPRODUCER

FEATURES: Fully transistorized with regulated power supply. Switchable equalization (N.A.B. standard). SPECIFICATIONS

Tape Speeds: 3.75 and 7.5 inches per second.

Flutter and Wow: 0.25% at 3.75 ips; 0.2% at 7.5 ips.

Timing Accuracy: $\pm 0.2\%$.

Reel Size: 5-, 7- and 8-inch E.I.A. hubs.

Rewind Time: 1200 feet in 80 seconds.

Frequency Response: ±2 db — 30 to 8,000 cps at 3.75 ips. 20 to 15,000 cps at 7.5 ips.

Signal-to-Noise Ratio: 53 db, both speeds.

Inputs: Lo-Z microphone, balanced bridge, unbalanced bridge, mixing bridge and auxiliary bridge.

Outputs: 150/600-ohm balanced; unbalanced, auxiliary A and auxiliary B (+8 dbm).

Heads: Full-track Erase, Record and half-track Play.

Weight: 47 pounds (uncased).

Dimensions: 19" wide, 153/4" high, 12" deep.

50 cps model at no extra cost.

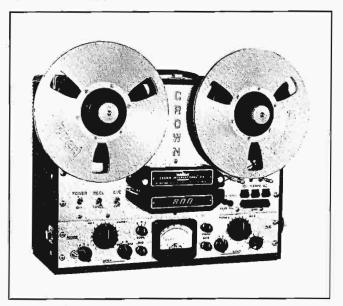
MAGNECORD PT6-6A/J

The PT6-6A Recorder and PT6-6J Amplifier are designed for either rack mounting or portable use. Powered by two-speed hysteresis synchronous motor for 71/2 and 15 ips, selectable by switch. Low impedance and high impedance inputs are provided as well as 4, 8, 16 and 500 ohm outputs. The unit includes full-track erase and record/playback heads (half-track heads may be specified at no additional cost).

Power Input: 60 cps. 50 cps at extra cost.

Frequency Response: ±2 db 50-15,000 cps at 15 ips;

 ± 2 db 50-7,500 cps at $7\frac{1}{2}$ ips. Signal-to-Noise Ratio: 50 db.


Distortion: Less than 2% at 10 watts output.

Flutter: 0.3% at 15 ips; 0.5% at 7½ ips.

Size: Amplifier — 19" W, 7" H, 8" D (48.26 cm W, 17.78 cm H, 20.32 cm D). Recorder — 19" W, 7" H, 11" D (48.26 cm W, 17.78 cm H, 27.94 cm D). Weight: Amplifier - 21 lbs. (9.53 kg) in case. Recorder - 26 lbs (11.79 kg) in case.

Part No. 097 3806 00 With case. (Type PT6-6A) Part No. 097 4491 00 Without case. (Type PT6-6AX) (Type PT6-6J) Part No. 097 3807 00 With case. Part No. 097 4492 00 Without case. (Type PT6-6JX)

CROWN 800 TAPE RECORDERS

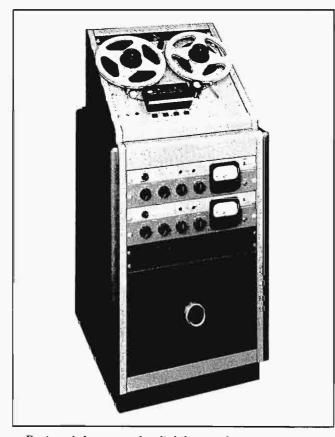
Available in either monaural or stereo models, the Crown 800 series recorder has many advanced features to make it a professional unit for broadcast stations. Each unit is guaranteed to give top quality performance and is thoroughly tested to assure complete satisfaction.

Among its features: 3 heads for 15, 71/2 and 33/4 ips operation, AM adjustment control, transistorized photo electric automatic stop for all functions, photo electric program cueing, all-electric relay and solenoid operation, 3-speed electronic reverberation for echo, automatic shift from front panel for 33/4 and 71/2 ips, automatic torque compensator, accepts 101/2" reels, lowest record-playback intermodulation distortion in industry and over-size lifetime bearings. The stereo version (Type 822) is similar to the monaural unit shown except for the addition of an identical amplifier unit for the second channel.

Power Input: 60 cps. 50 cps at extra cost.

Size: Monaural — 19" W, 15" H, 10½" D (48.26 cm W, 38.1 cm H, 26.67 cm D). Stereo — 19" W, 18½" H, 10½" D (48.26 cm W, 46.99 cm H, 26.67 cm

Weight: Monaural — 48 lbs. (21.77 kg). Stereo — 56 lbs. (25.40 kg).


			Flutter	Noise
Speed	Frequ	ency Response	and Wow	Ratio
15	± 2 db,	30-30,000 cps	.06%	57 db
$7\frac{1}{2}$	± 2 db,	30-20,000 cps	.09%	55 db
33/4	± 3 db,	30-13,000 cps	.18%	51 db
Part No. 099		(Type BX801)		
Part No. 099 Less case	0731 00	(Type BX822)		
Part No. 099				
Part No. 099		onaural recorder.		
	Type 824 ste	reo recorder		

CROWN RC8 REMOTE CONTROL

This unit, with indicator light, is a duplicate of the rewind, play, forward and stop functions mounted on the recorder cabinet. The RC8 includes 25' cable.

Part No. 099 0158 00 - Remote control unit.

CONCERTONE TAPE RECORDERS

Designed for rugged reliability under continuous performance conditions, the Series 90 meets exacting broadcast requirements. The Concertone Edit-O-Matic® feature enables quick cueing, and a flutter filtering system virtually eliminates spurious vibrations and tape flutter.

The unit accommodates up to four heads for stereo. A multichannel erase head provides separate erase for each track to assure easy monophonic and sound-on-sound recording. Separate gain controls for each input signal permit recording from two different sources simultaneously, mixing sounds for proper balance. Handles all reel sizes from 5" to 101/2". Available in monophonic full-or halftrack and stereo 2- or 4-track versions in studio consoles, portable case or rack mounting.

Tape Speeds: 15 and 71/2 ips; or 71/2 and 33/4 ips.

Frequency Response: ±2 db, 40.15,000 cps at 15 ips; ± 2 db, 40-12,000 cps at $7\frac{1}{2}$ ips; ± 2 db, 50-7,500 cps at 33/4 ips.

Signal-to-Noise Ratio: Full track — 55 db at $7\frac{1}{2}$ and 15 ips; 50 db at $3\frac{3}{4}$ ips. Stereo — 50 db at $7\frac{1}{2}$ and 15 ips; 45 at 33/4 ips (based on 2% distortion).

Timing Accuracy: 99.8% or better.

Flutter and Wow: Less than 0.1% rms at 71/2 and 15 ips; less than 0.3% rms at 334 ips.

Rewind and Fast Forward: 90 seconds for 2,400 ft.

Input Impedance: High impedance unbalanced; 50, 250, 600 ohms balanced or unbalanced with plug-in transformers.

Output Impedance: 600 ohms balanced with terminating switch to allow connections to high impedance input. Output Level: 0 VU.

Power Requirements: Monophonic - Approx. 280 watts, 115 v, 60 cps (50 cps on special order). Stereo -Approx. 320 watts, 115 v, 60 cps.

Size: Transport — 19" W, 15\%\%\%\%\ H, 8" D (48.26 cm W, 15\%\%\%\ cm H, 20.32 cm D). Amplifier — 19" W, $5\frac{1}{4}$ " H, 81/4" D (48.26 cm W, 13.34 cm H, 20.96 cm D).

Weight: Transport — 48 lbs (21.77 kg). Amplifier — 12 lbs. (5.44 kg).

Part No. 099 0373 00 (Type 91) Full track, 15 and 7½ ips, rack mounted.

Part No. 099 0374 00 (Type 92) Half track, 15 and 7½ ips, rack mounted.

Part No. 099 0375 00 (Type 93) Two track stereo, rack mounted.

Part No. 099 0376 00 (Type 93-4) Four track stereo, rack mounted.

No Part Number Factory installed conversion kit to 3% and 7½ ips. Specify "A" following model number.

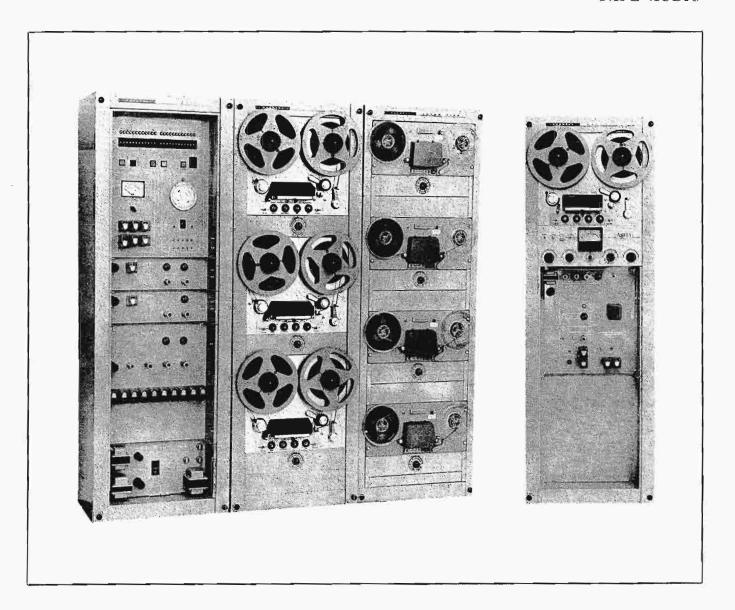
No Part Number Factory installed conversion kit for 50 cps operation. Specify "50 cps" following model number.

Part No. 099 0377 00 Extra playback head, two track or four track stereo head, factory installed.

Part No. 099 0378 00 Complete stereo head assembly. Four heads lerase, record, play, play) two or four track stereo. Factory installed.

No. 099 0379 00 (Type 700105) Transformer, 50-ohm microphone, input. Part No. 099 0379 00

Part No. 099 0380 00 (Type 700106) Transformer, 250-ohm microphone, input.


No. 099 0381 00 (Type 700107) Transformer, 10,000-ohm line-level, input. Part No. 099 0381 00

Part No. 099 0382 00 No. 099 0382 00 (Type 700108) Transformer, 600-ohm line-level, input).

Part No. 099 0383 00 (Type 700122)
Portable case (for transport or two preamplifiers).

Part No. 099 0384 00 No. 099 0384 00 (Type 700133) Portable case (for one preamplifier).

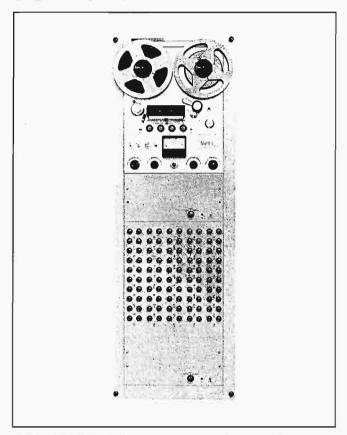
No. 099 0385 00 (Type 700120) Remote control with 25 ft. cord. Part No. 099 0385 00

SCHAFER MODEL 800 AUTOMATION

Schafer Model 800 Automation is a completely new broadcast automation system designed for the station that wants to prepare a full day of programming in just a few hours and still maintain the flexibility necessary for to-day's requirements. Smooth, tight programming becomes extremely simple. Up to ten or more program sources may be controlled by the control unit, allowing a multitude of program combinations. Program categories are assembled automatically at the desired pace with a reliability factor difficult, if not impossible, to achieve with a manual operation. A 25-cycle tone allows over-lap, extremely tight seque, or any timing desired. Automatic tape cueing is accomplished in a number of different ways, including the latest photocell method.

The format may be interrupted or changed at any time, even when the automation is playing on the air. If a channel should fail, the auto-step circuit sustains on-the-air operation and that channel is by-passed until it is rèpaired.

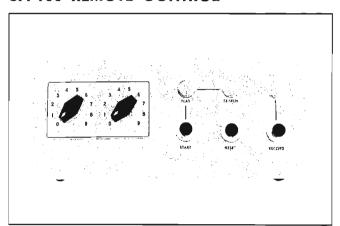
The remote control for the Program Preparation Unit provides all controls necessary for recording tapes for use on automation. Automation remote control is also provided.


A built-in clock can be used to control the program format, or be used to make insertions at predetermined times.

New digital switches and new miniature indicator lights give a new uncluttered appearance to the Automation system. The lighted digital readout indicates which channel is playing. The built-in control panel multimeter can be used to check all power supply voltages, as well as audio output. The Control Unit contains a new solid state power supply and new Autoamtic Electric dual contact plug-in relays. A monitor is built in for cueing purposes.

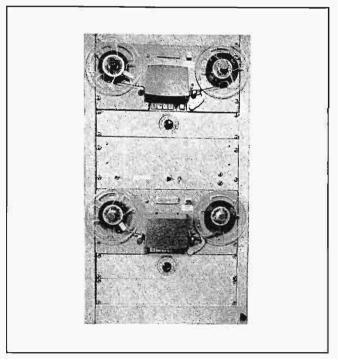
The system is available with any configuration of recorders or other accessories and can incorporate recorders or accessories now owned by the station.

Also available for 50 cps power input at no extra cost.


SCHAFER MODEL SA-100 SPOT LOCATOR

The SA-100 Spot Locator was developed to fill a need for high fielity record-playback facilities to be used in the AM and FM broadcasting industry. This is a device that eliminates storage problems associated with acetate discs, tape cartridges, rolls of tape, etc. Recording and playback is accomplished with the absolute minimum of effort and time.

Connect the SA-100 Spot Locator to an Ampex Recorder and select any one of the 100 spots stored on the tape by merely setting the switches.

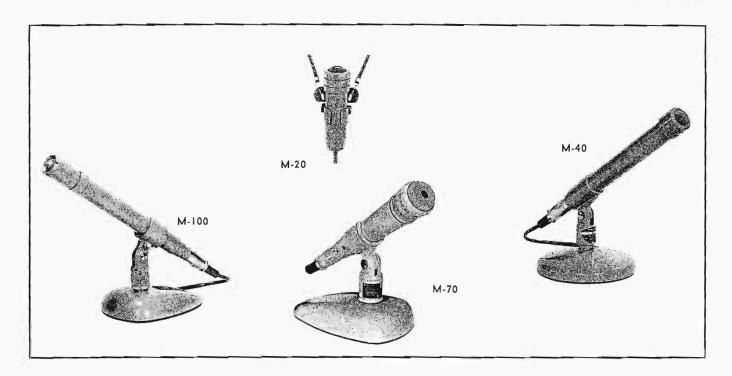

SA-100 REMOTE CONTROL

Remote Control Box permits operation of the Spot Locator from any remote location.

Memory allows pre-setting of sequence of spots for hours in advance for automatic or full automation operation.

SCHAFER MODEL TM-8 AUDIO CLOCK

When time signals are desired in program format it can be easily accomplished with singing jingles or verbal announcements on the Audio Clock. Each tape deck holds 320 time signals. The control unit advances each deck every minute to keep the time signals synchronized with the clock whether each time signal is aired or not. The TM-8 is usually furnished with 2 Ampex PB-PR-10's.


SCHAFER MODEL APL-1 AUTOMATIC PROGRAM LOGGER

Meeting FCC requirements the Schafer Automatic Program Logger eliminates the necessity to keep a written program log. It records 24 hours on a 7-inch reel of 1200 feet of ordinary ½ inch tape. The Monitor Alarm provides a monitor, as well as an alarm, should the program or the logger fail.

The APL-2 (not pictured), provides a second logger recorder to permit playback or recording a second source while the first recorder is in operation. The recorders operate at 1/3 ips, as well as $3\frac{3}{4}\cdot7\frac{1}{2}$ ips. Low cost "white box" tape is available and is adequate for this logging purpose.

SCHAFER MODEL ANP-1 AUTOMATIC NETWORK PROGRAMMER

Operates in conjunction with the Model 800 Automation System to automatically coordinate an automation system and a network.

COLLINS M-100 MICROPHONE

Gives a flexibility unequaled by any other microphone in its price range. Its response is smooth and uniform from 40 to 20,000 cps, but it may be adjusted for varying audio conditions when used by the soprano or the low-voiced sportscaster, or on exceptionally difficult remote broadcasts. Simple screwdriver adjustments allow a low frequency cutoff at 40, 80 or 160 cps, and a high frequency cutoff at 10,000 or 20,000 cps.

The Collins M-100 is a dynamic, omnidirectional microphone that may be used with any amplifiers having a 35-80 ohm or 150-250 ohm input. Includes 20 ft. of cable and desk stand with grip cam-lock to allow easy removal from the stand without disconnecting.

Impedance: 50 ohms or 200 ohms, selectable.

Frequency Response: 40-20,000 cps.

Output Level: -62 db, with reference to 1 mw/10 dynes/cm².

Size: 10½" long, 1" diameter (26.67 cm L, 2.54 cm diameter).

Weight: 9½ oz. (0.269 kg). Color: Non-reflecting blue-gray.

Part No. 099 0078 00

COLLINS M-20 MICROPHONE

This small and rugged lavalier microphone frees hands in one-man speaking situation such as weather shows and demonstrations. It is small enough to be hidden behind a necktie or lapel. Supplied with lavalier clip and 25 ft. of 3-conductor cable. Essentially omnidirectional polar pattern. Desk stand available on order.

Impedance: 50 ohms or 200 ohms, selectable.

Frequency Response: 60-18,000 cps.

Output Level: -57 db, with reference to 1 mw/ 10 dynes/cm².

Size: 4" long, 1" diameter (10.16 cm L, 2.54 cm diameter).

Weight: 3½ oz. (0.099 kg). Color: Non-reflecting blue-gray.

Part No. 097 5464 00 M-20.

M-20. Part No. 097 6627 00 Replacement lavalier clip for M-20. Part No. 097 5826 00 Desk stand for M-20. Part No. 099 0870 00 Replacement cord and clip.

COLLINS M-40 MICROPHONE

Ideal for panel discussions, dinner meetings and interviews. Equipped with desk stand and 20 ft. of three-conductor, plastic jacketed cable. Essentially omnidirectional polar pattern.

Impedance: 50 ohms or 200 ohms, selectable.

Frequency Response: 40-20,000 cps.

Output Level: -59 db, with reference to 1 mw/ 10 dynes/cm².

Size: 95%" long, 1" diameter (24.45 cm long, 2.54 cm diameter).

Weight: 11 oz. (0.31 kg).

Color: Non-reflecting blue-gray.

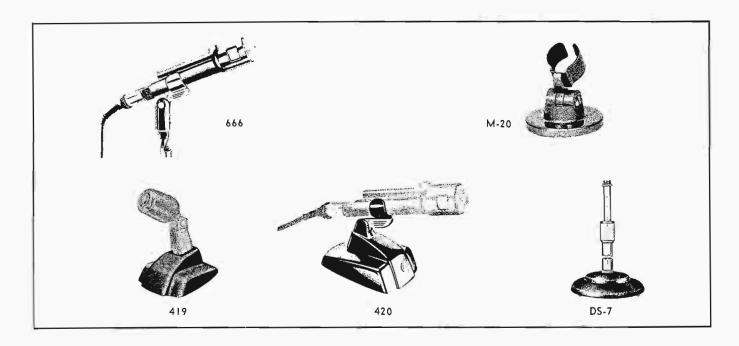
Part No. 097 5463 00

COLLINS M-70 MICROPHONE

Provides highly directional sound selectivity to double the conventional working distance and to cut out unwanted background sounds. It is especially useful in small booths where reflecting surfaces could be a problem. Comes equipped with desk stand and a 20-foot, threeconductor shielded cable.

Impedance: 50 ohms or 200 ohms selectable.

Frequency Response: 40-15,000 cps.


Output Level: -55 db below 1 mn/10 dynes/cm². Size: 648" long, 1 17/32" diameter (17.30 cm long, 3.89

cm diameter).

Weight: 12 ounces, (0.34 kg) (without cable).

Color: Non-reflecting blue-gray.

Part No. 099 2402 000

ELECTRO-VOICE 666 CARDIOID MICROPHONE

This microphone provides high discrimination against sounds from back hemisphere. Permits close talking with no bass accentuation and increases working distance over pressure microphones by factor of 1.7:1 due to polar pattern. Clamp-on stand mount with 5%"-27 thread, 1½" pipe thread adapter and 20' cable included.

Impedance: Changeable on internal terminal board. Wired for 150 ohms, taps at 50 and 250 ohms.

Frequency Response: 30-16,000 cps.

Output Level: -55 db.

Size: $7\frac{1}{2}$ " (19.05 cm) long, $1\frac{3}{4}$ " (4.45 cm) diameter.

Weight: 11 oz. (0.31 kg).

Color: Gray.
Part No. 097 3036 00

ELECTRO-VOICE 665 CARDIOID MICROPHONE

Similar in design and function to the Electro-Voice 666, but for less exacting applications. Includes 18' cable. Impedance: 50 ohms or 200 ohms, selectable by recessed switch.

Frequency Response: 50-14,000 cps.

Output Level: -55 db.

Size: 73" (18.26 cm) long, 1\%" (4.76 cm) diameter.

Color: Gray.
Part No. 097 2211 00

ELECTRO-VOICE AND ALTEC-LANSING MICROPHONES

A complete line of Electro-Voice and Altec-Lansing general purpose and specialized microphones, stands, call letter plates and accessories is sold by your Collins Broadcast Equipment Sales Engineer.

COLLINS M-20 MICROPHONE DESK STAND

A small, non-reflecting blue-gray stand that holds the Collins M-20 Microphone. The M-20 is held with a felt padded clamp that allows the microphone to be slipped in and out of the stand easily.

Part No. 097 5826 00

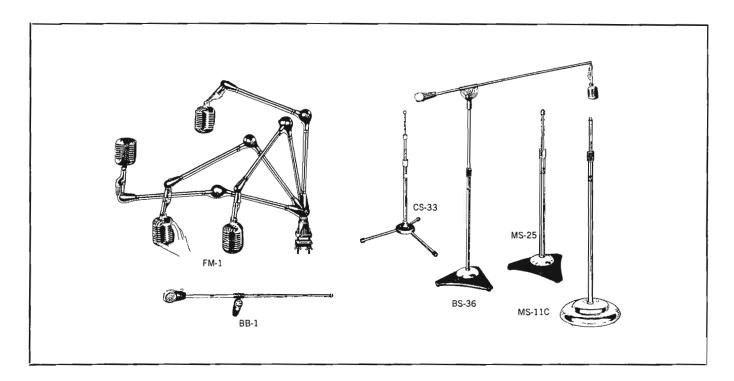
ELECTRO-VOICE 419 MICROPHONE DESK STANDS

Model 419 is used with microphones using large-type stud such as EV Model 665. Model 418 desk stand is similar but for use with microphone using small-type stud. Both have die cast base and gray finish.

Part No. 097 3835 00 (Type 419) Part No. 097 3132 00 (Type 418)

ELECTRO-VOICE 420 MICROPHONE DESK STAND

For use with microphones one inch in diameter. Clamp attachment mounts one inch cylindrical microphones without tools. Heavy cast iron, gray finish.


Weight: 3 lbs. (1.36 kg).

Part No. 097 2438 00

ATLAS DS-7 MICROPHONE DESK STAND

A general purpose, chrome plated adjustable desk stand with base of cast iron and finished in gun metal shrivel finish. Stable base is equipped with pads to prevent damage to desk. Equipped with standard "velvet action" clutch adjustment. Thread size at microphone end is 5%"-27. Adjustable from 8" to 12" (20.32 cm to 30.48 cm). Weight: 3 lbs. (1.36 kg).

Part No. 097 1119 00

FLEXO MIKESTER FM-1

This arm will handle any mike up to 4 lbs. It can be instantly positioned, incorporates a patented enclosed spring-controlled swiveling device, swings out 36" in any direction when fully extended. Clamps or screws to any position. Clips hold cable in place.

Weight: 43/4 lbs. (2.15 kg).

Part No. 097 1499 00

ATLAS CS-33 MICROPHONE FLOOR STAND

Fully collapsible unit with "come apart" base design. The stand has a spring lock leg-holding mechanism so it may be easily disassembled for carrying. No tools or screw fastenings are required to hold the base assembly together. Chrome plated legs tipped with skid-proof rubber shock absorbent bumpers eliminate vibrational conductivity. Model CS-33 adjusts from 26" to 64" (66.04 cm to 162.56 cm) and weighs 4 lbs. (1.81 kg).

Part No. 097 1267 00

ATLAS BS-36 MICROPHONE BOOM STAND

Features "safety air-lock cushion" built into the vertical section to prevent slippage of the upright. Deluxe model BS-36W with ball bearing swivel castors available.

Boom Length: 62" (157.48 cm).

Vertical Length: 48" to 72" (121.92 cm to 182.88 cm).

Base Diameter: 17" (43.18 cm). Weight: 33 lbs. (14.97 kg).

Finish: Chrome and gun metal.

Part No. 097 1500 00 Part No. 097 1790 00 (Type BS-36) (Type BS-36W)

ATLAS BB-1 MICROPHONE BOOM

This 31" microphone boom may be attached to any type of floor stand. All swivel parts are precision die castings resulting in smooth operation and secure positioning. Boom is chrome plated and has $\frac{5}{8}$ "-27 thread.

Weight: 3½" lbs. (1.59 kg).

Part No. 097 0984 00

ATLAS MS-25 FLOOR STAND

Features "safety air-lock cushion" to prevent slippage of telescoping section. Uses a large diameter, oversize telescoping tube ($\frac{7}{8}$ " telescoping tube, $\frac{11}{8}$ " base tube). Terminated in $\frac{5}{8}$ "-27 thread.

Finish: Chrome and gray wrinkle.

Height Adjust: 37" to 66" (93.98 cm to 167.18 cm).

Base Diameter: 17" (43.18 cm).

Weight: 24 lbs (10.89 kg).

Part No. 097 1510 00

ATLAS MS-11C FLOOR STAND

Features an extended length clutch body, inner lined with a wear-proof locking collet which grips without jamming, slipping or sudden dropping. Includes self-leveling, shock absorbing base pads, plus three additional "antitip" points located between the base pads. Terminates in a \(^{8}_{8}\)"-27 thread.

Finish: Chrome or gray wrinkle (Model MS-10C).

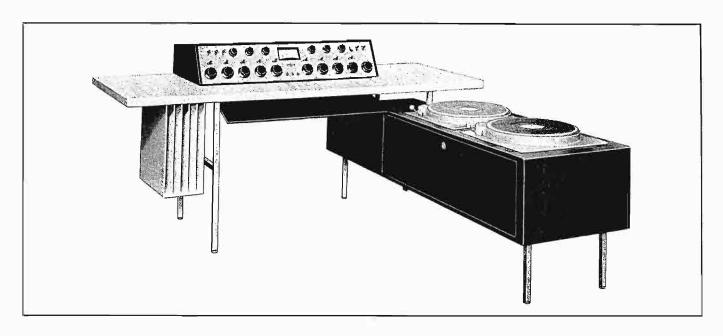
Height Adjust: 35" to 65" (88.90 cm to 165.10 cm).

Base Diameter: 10" (25.4 cm).

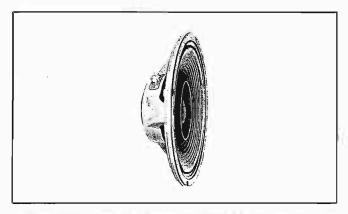
Weight: 12 lbs. (5.44 kg).

Part No. 097 1511 00 Part No. 097 5729 00 (Type MS-11C) (Type MS-10C)

COLLINS CUSTOM CONTROL DESKS


Attractiveness is combined with operational efficiency and economy in Collins control desks, custom designed to each broadcaster's requirements. These desks are sturdily constructed of wood covered with any of a wide range of patterns of long lasting Formica.

Among the features that may be incorporated without sacrificing attractiveness are adjustable feet, built-in


record compartments, hidden console cables and provisions for rack mounting.

A Collins tape cartridge system desk wing console may be placed on left wing to give complete studio facilities in one compact unit. Collins will provide free estimates upon submission of the physical layout of the studio and an outline of functions desired for inclusion in the desk.

No Part Number

COLLINS CS-12 LOUDSPEAKERS

Producing the very finest in high fidelity sound, the Collins CS-12 loudspeaker produces a consistently stable and precise definition. The speaker is designed to operate equally well at full range or as woofers in multiway systems. The CS-12 features Radax construction, which divides the sound between the two cones. A mechanical crossover, when the smaller cone responds to the higher frequencies, occurs at 1,800 cps.

A slug-type magnet is used for concentrating flux density into the air gap. This type magnet has the lowest possible leakage and greatest structural strength. The high frequency long throw voice coil remains in the air gap even on the longest of excursions to prevent non-linear operation.

An edge-wound voice coil, which gains an equivalent of five extra watts from most amplifiers over round-wire coils, is wound with precision, flattened ribbon conductor.

Each speaker is carefully tested and inspected before leaving the factory. An individual frequency response curve check is run on each speaker so that it matches the performance of the laboratory standard.

Frequency Response: 30-13,000 cps. EIA Sensitivity Rating: 43 db. Free-Space Cone Resonance: 40 cps.

Power Handling Capacity: Program Material: 20 watt.

Peak: 40 watt.

Critical Damping Factor: 15.

Impedance: 8 ohm.

Mechanical Crossover: 1800 cps.

Voice Coil Diameter: 2". Total Flux: 70,700 maxwells.

Power Required for 100 db level: 12 watt.

Mounting: Four 1/4" holes equally spaced on 111/2" circle.

Baffle Opening: 11".

Size: $12\frac{1}{4}$ " diameter, $3\frac{1}{2}$ " deep (31.12 cm diameter, 8.89 cm deep).

Weight: 51/2" lbs. (2.49 kg).

Part No. 097 6039 00 (Type CS-12)

Part No. 099 2686 00 Stancor A-3818 Speaker Transformer

JENSEN P12-T SPEAKER

This economy speaker is ideal for a high fidelity system to which additional units may be added.

Impedance: 3.2 ohms. Power Rating: 12 watts.

Baffle Opening: 101/2". Jensen transformer (Stancor A-3818 speaker transformer) for P12-T speaker match-

es to 600 ohms.

Part No. 097 2119 00 (Type P12-T)
Part No. 099 2686 00
Stancor A-3818 speaker transformer.

JENSEN P8-T3 SPEAKER

Similar to the P12-T. Impedance: 3.2 ohms.

Impedance: 3.2 ohms.
Power Rating: 7 watts.
Raffle Opening: 63/"

Baffle Opening: 63/4". Jensen transformer (Stancor A-3818 speaker transformer) for P8-TS speaker matches to 600 ohms.

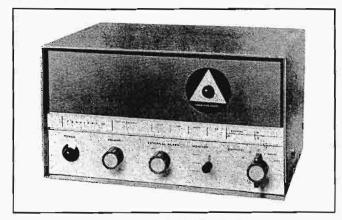
Part No. 099 2644 00 P8-T3 Part No. 099 2686 00 Stancor A-3818 speaker transformer.

JENSEN LEVEL CONTROLS

Designed for use in voice coil or line circuits of similar nominal impedance, Jensen level controls are of the two-section L-pad type. They provide continuously adjustable level without disturbance of other circuit levels or total impedance. Single hole panel mounting. Complete with lock nut, pointer knob and flat metal escutcheon plate. Model ST-760 for 4 ohms impedance, 15 watts. Model ST-411 for 8 ohms impedance, 35 watts.

Part No. 097 2190 00 Part No. 097 2207 00 (Type ST-760) (Type ST-411)

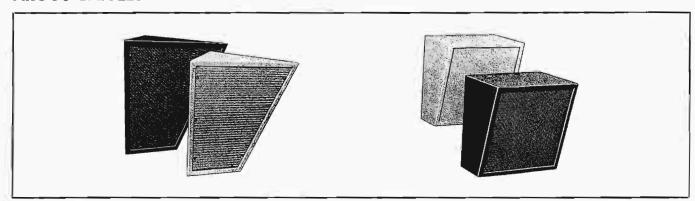
STANCOR A-3818 TRANSFORMER


Transformer for Collins CS-12, Jensen P12-T and P8-TS speakers.

Primary Impedance: 500/1000/1500 ohms. Secondary Impedance: 15/8/4 ohms.

Power Rating: 25 watts.

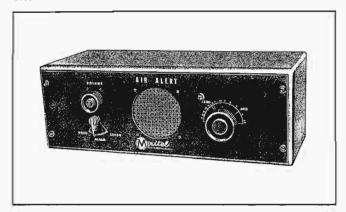
Part No. 099 2686 00


KAAR CONALERT

Designed expressly for CONELRAD Radio Alert. Built for 24-hour service, it gives automatic alarm with visual and aural warning. At time of radio alert, the speaker is automatically connected, you hear CONELRAD message and red pilot lamp on panel is lighted. Provision is also made for external alarm. Available in either cabinet or rack mounting models.

Part No. 097 5423 00 Rack mounted.

ARGOS BAFFLES



Entire front is inset with plastic grille and cloth covered panel. Constructed of plywood and hardboard for good resonant tone. Extra reinforcing blocks and four bolts installed for mounting speakers. Covering is plastic coated leatherette. Available in blonde or walnut. Slanting corner baffle for 8" speaker (SCB-8D) or 12" speaker (SCB-12D).

Weight: 6 lbs. or 8 lbs. (2.72 kg or 3.63 kg). Wall baffle for 8" speaker (WB-8C) or 12" speaker (WB-12C). Weight: 2½ lbs. or 4¼ lbs. (1.13 kg or 1.93 kg).

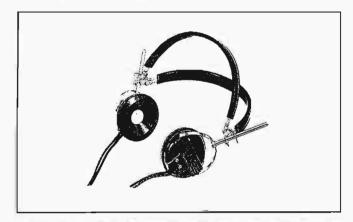
Part No. 099 2374 00 Walnut finish: (Type SCB-8D) Part No. 099 2375 00 Blonde finish. (Type SCB-8D) Part No. 099 2376 00 Walnut finish. (Type SCB-12D) Part No. 099 2377 00 (Type SCB-12D) Blonde finish. Part No. 097 6006 00 Walnut finish. (Type WB-8C) Part No. 097 6008 00 (Type WB-8C) Blonde finish. Part No. 097 6007 00 (Type WB-12C) Walnut finish Part No. 097 6009 00 (Type WB-12C) Blonde finish.

MIRITEL AIR ALERT

Designed to control visible and/or audible alarm circuits on CONELRAD signal from local or sky wave stations. Frequency tunable from 550 to 1600 kc. Built-in speaker operates upon alarm. Relay circuit is voltage regulated. External bell or light control terminals and antenna terminals on rear terminal board. Available for rack or table mounting.

Part No. 097 3192 00 Rack mounted.

TRIMM HEADPHONES


Lightweight, rugged headphones with black Bakelite shell and cap. Rubber covered headband.

Impedance: 600 ohms (Model 156) or 17,000 ohms (Model 157).

Weight: 5 oz. (0.14 kg).

Part No. 273 0003 00 (Type 156) Part No. 273 0004 00 (Type 157)

BRUSH BA-206 HEADPHONES

The Brush BA-206 headphones have an exceptionally flat response out to 10,000 cps and create outstanding fidelity of reception. Their high impedance and negligible power requirements allow monitoring without any effects on associated equipment. The special "Metalseal" crystal elements provide maximum protection against excessive humidity.

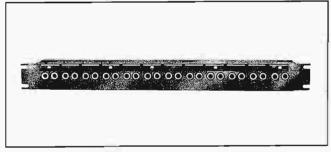
Part No. 099 0495 00

BRUSH BA-200 HEADPHONES

Ideal for general purpose service, the Brush BA-200 headphones have a frequency range from 100 to 5,000 cps. They are especially suitable for general laboratory and studio work as well as for the skilled amateur.

Impedance: 45,000 ohms at 1,000 cps.

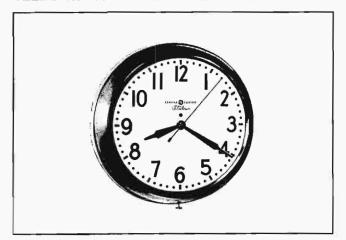
Weight: 6 oz. (0.17 kg).


Part No. 273 0002 00

PATCH CORDS

The plugs are of the shielded type, with the sleeves tied together and grounded. The circuit is maintained through connections to the plug tips. The following lengths are available: 6"; 12"; 24"; 36"; 48"; 60"; and 120". Other patch plugs, phone jacks and single circuit jacks available.

Part No. 361 0010 00 (6")
Part No. 361 0011 00 (12")
Part No. 361 0012 00 (24")
Part No. 361 0013 00 (36")
Part No. 361 0014 00 (48")
Part No. 361 0015 00 (60")


TRIMM JACK PANELS

These panels are available in 12 pair, single row and 24 pair, double row models to fit any standard 19" rack and include such features as: solid 5%" thick Bakelite panel with steel reinforcing; heavy gauge, special spring temper nickel/silver alloy leaves; ground lugs aligned to allow single ground bus to be run full length of strip; large palladium silver contacts; connection lugs fanned out for ease of soldering.

Part No. 097 3561 00 12-pair, single row. Part No. 097 4200 00 24-paid, double row.

TELECHRON 1H1612 STUDIO CLOCK

The Telechron "Commerce" clock has a 12" dial, rich brown case.

Part No. 097 1735 00

SHIELDED WIRE AND MICROPHONE CABLE

8758 — Belden 2-conductor #20, twisted, shielded pair, stranded copper conductors, vinyl insulated.

8738 — Belden 2-conductor #22, twisted, shielded pair, solid copper conductors, vinyl insulated.

439-5900-00 — Two-conductor #22 stranded, 7 No. 30 conductors, one red and one black conductor with one #22 groundwire. Shield is single right-hand wrap, #30 AWG maximum diameter of stranding. Nylon jacket, maximum outside diameter is .140".

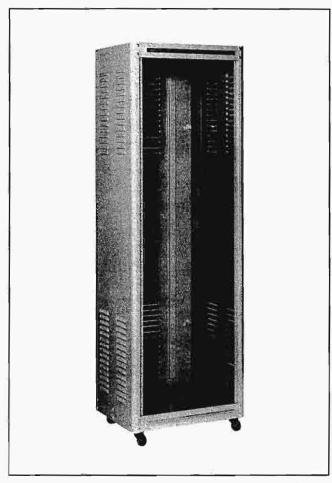
8422 — Belden, shielded microphone cable, 2-conductor #22.

8412 — Belden, shielded microphone cable, 2-conductor #20

423-0219-00 — High voltage wire, 15 kv breakdown insulation.

425-0061-00 — Shielded pair, #16 stranded cotton insulated, 15 amps.

425-0151-00 — Shielded pair, #12 stranded cotton insulated, 20 amps.


Part No. 097 6030 00 (Type 8758) (Type 8738) Part No. 097 6029 00 Part No. 439 5900 00 (Type 439 5900 00) Part No. 097 1142 00 (Type 8422) In lengths of less than 100 ft. More than 100 ft., see below. Part No. 097 1142 00 (Type 8422) In lengths of 100 ft, or more. Less than 100 ft., see above. Part No. 425 0250 00 (Type 8412) In lengths of less than 100 ft. More than 100 ft., see below. Part No. 425 0250 00 (Type 8412) In lengths of 100 ft. or more. Less than 100 ft., see above. Part No. 423 0219 00 (Type 423 0219 00) Part No. 425 0061 00 (Type 425 0061 00) Part No. 425 0151 00 (Type 425 0151 00)

TRIMM 427-6 TERMINAL BOARD

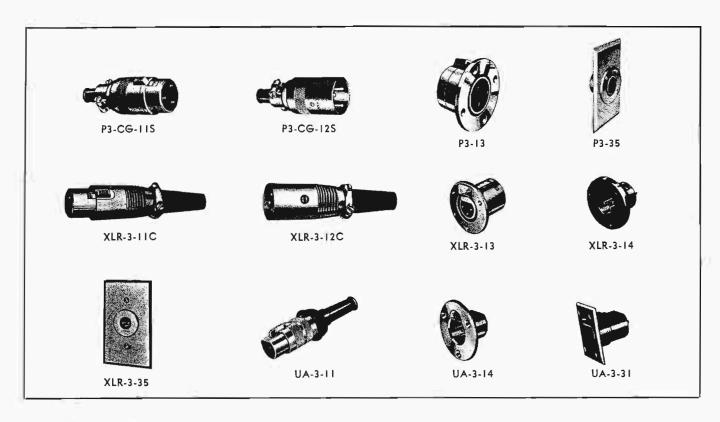
Contains two groups of terminals, each 13 terminals long and 6 terminals high.

Part No. 097 6282 00

BUD CR-1773-B RACK CABINET

A heavy duty rack cabinet that is custom-made for Collins Radio Company. Finished in light gray, this cabinet is made of sturdy steel with a door on the back and provision at the top for mounting a blower fan. Provides 70" of panel space. Shipped knocked down.

Size: 19" W, 76" H, 171/8" D (48.26 cm W, 193.04 cm H, 43.5 cm D).


Part No. 099 2474 00

low.

RACK CABINET BLANK PANELS

These blank panels of 3/16" aluminum are finished in light gray to match the BUD CR-1773-A Rack Cabinet. Size: 19" W (48.26 cm W) and in heights as listed be-

					Inches	Cm.
Part	No.	502	8389	123	(13/4")	(4.45)
Part	No.	502	8393	113	(31/2")	(8.89)
Part	No.	502	8397	123	(51/4")	(13.34)
Part	No.	502	8401	113	(7")	(17.78)
Part	No.	502	8405	113	(83/4")	(22.23)
Part	No.	502	8409	123	(101/2")	(26.67)
Part	No.	502	8413	113	(121/4")	(31.12)
Part	No.	502	8417	113	(14")	(35.56)

CANNON CONNECTORS

Collins Radio Company is an authorized distributor of the full line of Cannon Connectors. The following is a listing of those connectors most often required in audio applications. All are three-contact plugs unless otherwise indicated.

P3-CG-11S — Cannon female cable plug.

P3-CG-12S — Cannon male cable plug.

P3-13 — Cannon female panel receptacle.

P3-14 — Cannon male panel receptacle.

P3-35 — Cannon single gang female wall receptacle.

P3-35-2G — Cannon 2 gang female wall receptacle.

XLR-3-11C - Cannon female cable plug.

XLR 3 11SC — Canon female cable plug with latch-lock cable clamp.

XLR-3-12C — Cannon male cable plug.

XLR-3-12SC — Cannon male cable plug with latch-lock cable clamp.

XLR-3-13 — Cannon female panel receptacle, flush mount.

XLR-3-13N — Cannon female panel receptacle with lock nut.

XLR-3-14 - Cannon male panel receptacle, flush mount.

XLR-3-14N — Cannon male panel receptacle with lock nut.

XLR-3-35 -- Cannon single gang female wall receptacle.

XLR-3-35-2G — Cannon 2-gang female wall receptacle.

XLR-3-36 — Cannon single gang male wall receptacle.

XLR-3-36-2G — Cannon 2-gang male wall receptacle.

UA-3-11 — Cannon female cable plug.

UA-3-12 — Cannon male cable plug.

PA-3-13 — Cannon female panel receptacle, flush mount.

UA-3-14 - Cannon male panel receptacle, flush mount.

UA-3-31 - Cannon female wall mount receptacle.

UA-3-32 - Cannon male wall mount receptacle.

Part	No.	370	2180	00	(Type	P3-CG-	115)
Part	No.	370	2190	00	(Type	P3-CG-	125)
Part	No.	370	2060	00	(Type	P3-13)	
Part	No.	370	2090	00	(Type	P3-14)	
Part	No.	370	2150	00	(Type	P3-35)	
Part	No.	370	2170	00	(Type	P3-35-2	G)
Part	No.	097	5372	00	(Type	XLR-3-1	1C)
Part	No.	097	5371	00	(Type	XLR-3-1	ISC)
Part	No.	097	5370	00	(Type	XLR-3-1	2C)
Part	No.	097	5369	00	(Type	XLR-3-1	2SC)
Part	No.	097	5368	00	(Type	XLR-3-1	3)
Part	No.	097	5367	00	(Type	XLR-3-1	3N)
Part	No.	097	5366	00	(Type	XLR-3-1	4)
Part	No.	097	5365	00	(Type	XLR-3-1	4N)
Part	No.	097	5364	00	(Type	XLR-3-3	5)
Part	No.	097	5363	00	(Type	XLR-3-3	5-2G)
Par}	No.	097	5362	00	(Type	XLR-3-3	6)
Part	No.	097	5361	00	(Type	XLR-3-3	6-2G)
Part	No.	370	2082	00	(Type	UA-3-11)
Par}	No.	370	2081	00	(Type	UA-3-12	1)
Part	No.	370	2079	00	(Type	UA-3-13)
Part	No.	370	2083	00	(Type	UA-3-14)
Part	No.	099	0463	00	(Type	UA-3-31)
Part	No.	099	0464	00	(Type	UA-3-32)

COLLINS 808A-1 REMOTE TURNTABLE-CONSOLE

A compact, completely transistorized portable unit, the three-channel 808A-1 is designed for quick, easy, high fidelity program origination in remote broadcasting. Ideal for promotion-type shows, the turntable-console offers complete facilities to feed program material into a telephone line to the broadcast station. The unit also will allow independent control of public address facilities and can be used to drive a remote amplifier such as the Collins 212H-1.

The 808-A-1 is especially suited for combination work in a small announce booth; for schools where an economical unit but complete facilities are needed; for use in conjunction with sound systems; and for standby studio facilities at the transmitter site in case of breakdown between the studio and transmitter.

The 808A-1 eliminates the need for multiple equipments. Once on location, the unit can be plugged in, connected to a remote line and it is ready for use. It can simultaneously combine the two self-contained turntable outputs with any one of three remote inputs. Built-in phono equalization meets RIAA standards. A VU meter indicates program level, and a headphone jack is provided for program monitoring. Line terminals and microphone jacks are located on the back of the unit.

A bottom dust cover, easily removed, protects the lower portions of the turntables, cabling and amplifiers. The preamplifiers attach to the control panel, which is removable as a unit for servicing. Legs are detachable and selfstoring beneath the unit. The sturdy, modern-looking cabinet is made of steel with a white and gray baked enamel finish. The panel and trim strips are brushed aluminum.

Controls on the panel include the following: and external input selector switch, which will select one of the external outputs of Mike 1, Mike 2 or NEMO; motor power switches which energize the turntable motors; three cue switches which are gauged to the fader control; three separate fader controls for the three inputs; master gain, which controls the over-all output signal; ac power switch, which is gauged to the public address gain; public address gain, which allows independent adjustment of the public address or other remote systems; headphone gain; and turntable shift levers for selection of proper turntable speed of 33, 45 or 78 rpm.

The remote amplifier, made up of six low level modules and one line amplifier module, uses eight General Electric 1175A low noise transistors and two Motorola 651 pushpull Class A-B transistors. Bias is stabilized over a wide temperature range by the use of a germanium diode. The turntable preamplifiers conform to NAB and RIAA specifications and feature a feedback design which offers a consistently stable performance.

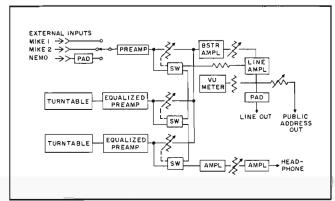
Two Collins TT-200 Turntables with Rek-O-Kut S-320 pickup arms and General Electric sapphire cartridges are furnished with the 808A-1. Specially designed for radio

broadcast use, Collins Turntables maintain 99.95% accurate speed and have negligible wow and flutter. They are mounted on a strong cast aluminum base, and precision machining is used throughout.

Frequency Response: ± 2 db, 50-15,000 cps with 1,000 cps reference.

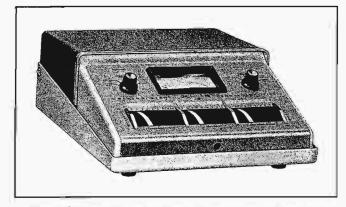
Gain: 100 db minimum on mike input.

Balanced Inputs: Mikes 1 and 2, 50-600 ohms, -55 dbm nominal. NEMO input 600 ohms, 0 dbm nominal.


Noise: Signal-to-noise ratio, 55 db.

Distortion: 2% maximum, 50-15,000 cps at +18 dbm. Power Output: +18 dbm (+8 VU) into 600 ohm program line. Adjustable, high impedance public address output.

Power Source: 120 v ac, $\pm 10\%$, 60 cps, 1 phase. Size: 331/2" W, 33" H (with legs), 201/2" D (85.09 cm W, 83.82 cm H, 52.07 cm D).


Weight: 78 lbs. (35.38 kg).

Part No. 522 2609 00

BLOCK DIAGRAM 808A-I

COLLINS 212H-1 REMOTE AMPLIFIER

The only one of its kind on the market with so many advanced and deluxe features, the Collins 212H-1 is a three channel remote amplifier that provides adequate facilities for most remote applications.

The 212H-1 is transistorized throughout and is built into a highly punishable thermoplastic and vinyl-clad aluminum case. A handle is mounted on the rear chassis to allow quick and easy handling between remote locations. A snap-on cover of durable thermoplastic protects the panel, controls and VU meter.

The unit is completely self-contained and operates from

fourteen 1.5 volt flashlight batteries. These batteries supply power to the amplifier for about 200 hours. The supply is interlocked with the headphone jack so that the unit requires headphones to be plugged in before it becomes operational. The VU meter indicates remaining battery voltage.

A built-in phono equalizer on two of three channels provides instantaneous switching between two phonos and a microphone, or between three microphones. A built-in multiple tone generator allows a quick response check of the remote line or provides a standby tone of 100, 1000 or 5000 cps. Sure-grip thumb wheels $2\frac{1}{4}$ " wide indicate volume input control by a diagonally moving white stripe.

Frequency Response: ±3 db 50-15,000 cps (1000 cps reference at +8 dbm output).

Gain: 90 db nominal on mike input.

Output: Line - Normal, +8 VU (+18 dbm) into 600 ohms; Low, 0 VU (+10 dbm) into 600 ohms; Bridge — -40 dbm into 250 ohms.

Power Source: Self-contained batteries - twelve 1.5 v flashlight batteries for amplifier and two 1.5 v batteries for meter light.

Distortion: 2% maximum 50-15,000 cps + 18 dbm output.

Noise: -115 dbm equivalent input noise or less (-55 dbm input, -60 db noise).

Inputs:

One: a. Unbalanced mike.

b. Phono, equalized for magnetic cartridge.

a. Low impedance balanced mike.

b. Self-contained tone generator.

Three: a. Unbalanced mike.

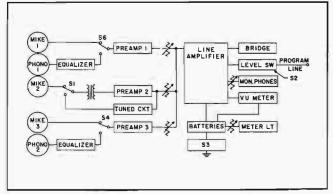
b. Phono, equalized for magnetic cartridge.

Output Connectors:

Two:

a. Program line, binding terminal posts.

b. Bridge feed, male Cannon connector.c. Program monitor, headphone jack.


Ambient Temperature Range: -20°C to +50°C (-4°F to $+122^{\circ}F$).

Ambient Humidity Range: Up to 95%.

Size: 10" W, 41/2" H, 12" D (25.4 cm W, 11.43 cm H, 30.48 cm D)

Weight: 11 lbs. (4.99 kg). Color: Green, white and gray.

Part No. 522 2419 00 Includes batteries

BLOCK DIAGRAM 212H-1

COLLINS 2112Z-1 REMOTE AMPLIFIER

Weighing a total of 22 pounds including batteries and carrying case, the 212Z-1 offers full functions for remote broadcasts. This transistorized remote amplifier mixes inputs from up to four microphones, with program line and communication line outputs as well as an auxiliary output for PA feed.

A power source of both 115 v ac and batteries assures uninterrupted service. Should the ac power fail, an automatic changeover switches the 212Z-1 to battery power and reverts when ac power is restored. A light on the panel indicates when the 212Z-1 operates on ac power. The self-contained batteries have a long life of about

The Collins 212Z-1 is attractively style — yet rugged and convenient to use. Housed in a Royalite carrying case, the 212Z-1 securely fastens to the bottom of the case. The 212Z-1 has a black and metallic blue-gray abrasion-resistant finish.

The four channel mixing circuit incorporated in the amplifier is designed to work with all microphones having a 30 to 600 ohm impedance. The output circuit matches a 600 ohm line. Provisions are made for two program lines and a telephone through the output switch.

Although simultaneous program feed and communication cannot take place over a single line at the same time, the output switch allows rapid interchange between communication and the amplifier output on the same line.

The power supply is a shielded, full-wave unit with germanium diodes and multi-section filtering. A power interlock switch insures no battery drain when the unit is in its closed carrying case.

The Collins 212Z-1 Remote Amplifier is completely transistorized throughout. The tone oscillator, preampli-

fiers and interstage amplifiers use 2N422 hermeticallysealed low noise transistors. The driver employs a 2N465 transistor. The output amplifier, with transformer coupling on the input and output sides, has push-pull 2N44 transistors.

Since line levels are most easily set up by means of a steady audio tone, the 212Z-1 includes a built-in audio tone oscillator as a standard feature.

One or two headphones may be plugged into the monitor jacks. Where loudspeaker monitoring or feed for local public address is desired, the PA terminals are used. An isolated PA feed and an individual gain control allow the operator to handle the program and simultaneously ride gain on the PA system. A multiple jack on the side permits two units to be used simultaneously and controlled by one master gain control.

Frequency Response: ±1.5 db 50-15,000 cps.

Input: 4 channels selected by Daven step-type attenuators numbered to correspond with input plugs.

Input Impedance: 30-600 ohms.

Cain: 90 db maximum.

Noise Level: 55 db below normal output level.

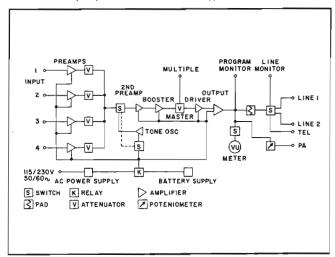
Distortion: Less than 11/2% at +5 dbm.

Power Output: Normal +11 dbm; emergency +16 dbm. Output Impedance: 600 ohms (150 ohms available).

Power Source: 115 v or 230 v ac 50/60 cps or self-contained batteries, such as one 4.5 v Burgess D-3 or Eveready 726, and two 22.5 v Eveready 763. Life of 22.5 v battery is approximately 75 hours; 4.5 v approximately 90 hours. (Batteries not supplied with

Microphone Connections: 4 Cannon XL-3-13N.

Ambient Temperature Range: 0°-45°C.


Ambient Humidity Range: Up to 95%. Size: 15½" W, 6½" H, 14½"D (39.37 cm W, 16.51 cm H, 36.83 cm D).

Weight: 22 lbs. (9.98 kg) (with batteries).

Part No. 522 0330 003 212Z-1 without batteries.

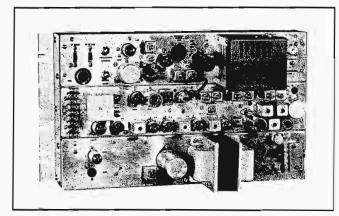
Part No. 015 0520 00 (Type 763)
Two batteries required in addition to one Type 726 battery (below).

Part No. 015 0519 00 (Type 726)
One battery required in addition to two Type 763 batteries (above).

BLOCK DIAGRAM 212Z-1

MARTI REMOTE PICK-UP EQUIPMENT

Marti Remote Transmitter and Receiver provide quality transmission of sports, spot news reports and interviews on frequencies assigned for exclusive use by broadcasters. The unit is compact and light enough to be carried into stadiums and press boxes as easily as a multi-channel remote amplifier.


The audio quality of the Marti for music or voice transmission is guaranteed to be equal to or better than lines with coverage up to 40 miles radius depending upon the type and location of the transmitting and receiving antennas. The Marti Receiver is equipped with an automatic relay that operates an alarm system in the station to indicate a forthcoming broadcast.

The unit may legally be used instead of lines even where lines are available. Many stations, after installing the Marti system, have standing sponsorship of all their remote programs and have actually paid for the equipment in savings on line charges alone. The equipment also opens new program possibilities that are overlooked because of inconvenience in using other, cumbersome and less reliable means.

The Marti Transmitter is operated either by ac or batteries. Designed for continuous duty, the equipment meets the most stringent FCC requirements regarding bandwidth.

It is easily portable and lightweight and does not require frequent tuning. The transmitter and transistorized power supply and associated equipment are easily installed in a car for permanent and immediate use.

MARTI M-25C REMOTE PICK-UP

The M-25C is a 25 watt base station transmitter for communication with mobile units operating in the 144 to 174 megacycle range. The unit provides frequency stability of \pm .0005% within a temperature range of minus 30 degrees C to plus 60 degrees C. The modulation characteristic is adjusted at the factory for ± 7.5 kc for 100% modulation at 1000 cycles.

RF Output: 25 watts, Intermittent (EIA).

Frequency: 144 to 174 megacycles. Crystal Multiplication: 36 times.

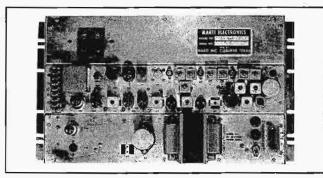
Spurious Emission: Spurious Radiation attenuated at least 70 db below carrier level. Harmonics suppressed at

Audio Inputs: Two (2). One for local control, a carbon microphone. Other for remote control, a two-wire telephone line.

Remote Control Facilities: Built-in line termination unit. Power Requirements: 117-123 v ac 50-60 cps.

Duty Cycle: Intermittent (EIA).

Frequencies Possible: two; maximum spacing 120 Kcs.


Metering: Multiple pin test socket.

Tube Complement: Two 6BL8; one 7059; one 6360-A; & one 8150.

Power Supply: Silicon rectifiers.

Dimension: 101/2" x 19" (standard relay rack mounting).

MARTI MR-30/150 = 170 RECEIVER

The MR-30/150-170 receiver is used for remote pickup from a base station operating in the 150 to 174 megacycle range. The receiver is sensitive to 0.6 microvolts or less for 20 db quieting, and is selective to -100db at \pm 32 kc; -6 db or less at \pm 15 kc.

Application: Remote Pickup.

Frequency Range: 150 to 174 megacycles.

Spurious Response: All spurious and image responses attenuated at least 100 db.

Overall Response: ± 2 db, 60 to 7500 cps with matching transmitter.

Frequency Stability: ±0.0005% with crystal oven.

Temperature Range: -40°C to +70°C.

Audio Output: +8 VU at 600 ohms.

Metering: Signal strength and VU brought out to test Jacks. Visual metering optional.

Tube Complement: 15 required. 8 tube types.

6DS4—1st RF Amp. (Nuvistor)

6DS4-2nd RF Amp. (Nuvistor)

6DS4—1st Mixer (Nuvistor)

6DS4—HF Osc. Trip. (Nuvistor)

6HS6—1st IF Amp.

12AT7-2nd Mixer & LF Osc.

6HS6—2nd IF Amp.

6HS6-3rd IF Amp.

6BH6—1st Limiter

6BH6-2nd Limiter

6AL5—Discriminator

12AX7-Noise Amp.

12AT7-Noise Rect. & Relay Amp.

6CG7-Audio Amp.

OB2-Voltage Reg.

Dimensions: 101/2" H, 19" W, 9" D. Panel finish - WE hammertone grey.

Weight (net): 20 lbs.

TPS-1 POWER SUPPLY

Input Voltage: 12-16 v dc.

Current: Standby — 6 amps; transmit — 13 amps.

Outputs: 6.3 v, 6 amps (regulated). 330 v ac to the recti-

fier system.

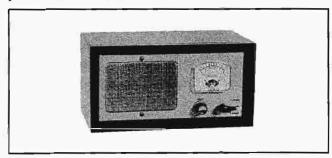
Duty Cycle: Continuous.

Efficiency: Approximately 85%. Size: 17" W, 6" H, 3%" D (43.18 cm W, 15.24 cm H,

8.57 cm D).

Weight: 71/2 lbs. (3.2 kg).

Part No. 097 6653 00

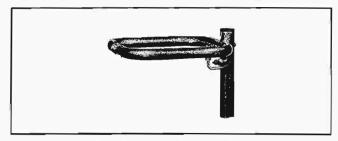

(Type TPS-1)

MARTI REMOTE EQUIPMENT **ACCESSORIES**

MOBILE ASSEMBLAGE — Consists of control unit, all battery and control cables and mounting rack for the M-30B/TPS transmitter (Type TPS-TC).

Part No. 099 0541 00

REMOTE CONTROL CONSOLETTE - For use with M-30B or M-30B/11RS-2R (Type RMC-1). Constructed of wood cabinet and aluminum anodized front panel, complete with VU meter.



Size: 14" W, 9" H, 10" D (35.56 cm W, 22.86 cm H, 25.4 cm D).

Part No. 099 0542 00

The following antennas are tuned or cut to frequency with a standing wave ratio of less than 1.5:1 and are designed for 50-52 ohm transmission lines.

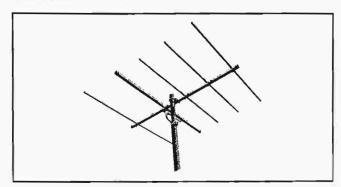
SINGLE RING ANTENNA - Essentially non-directional, horizontally polarized and unity gain.

Specify whether for portable (PA-1) or mobile (MA-1) use.

Part No. 097 6952 Part No. 097 6953 (Type PA-1) (Type MA-1)

TWO RING ANTENNA - Essentially non-directional, horizontally polarized. Has a gain of 3 db (Type RA-2). Part No. 099 0543

ANTENNA BUMPER MOUNT - Chain link bumper mount (Type ASP-143) for use with mobile antenna. Part No. 097 6880 00


FOUR RING ANTENNA (TYPE RA-Y) — Essentially non-directional, horizontally polarized.

non-directional, horizontally polarized. Has a gain of 6 db and power gain of 4.

Impedance: 52 ohms. Weight: 11 lbs.

Part No. 097 6950

FIVE ELEMENT YAGI ANTENNA (TYPE YC) — Unidirectional antenna.

Nominal Impedance: 50 ohms.

Average Gain: 9 db.

Typical VSWR: Under 1.5.

Typical Rear Signal Rejection: 25 db. Power Handling Capacity: 60 watts.

Input Connector: Type AN-SO-239 (Amphenol Type 83-

Polarization: Horizontal or vertical.

Part No. 099 0177

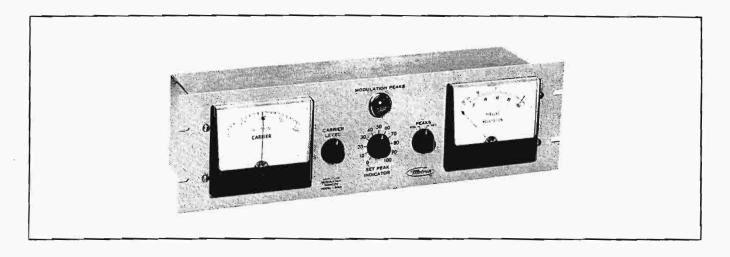
COAXIAL STACKING HARNESS — Required for stacking two, five element Yagi antennas. It is made up of two sections of RG-11/U 75 ohm coaxial cable joined at the center by a coaxial "T" fitting. Each "half" of the phasing harness is an odd multiple of a quarter wave length and by virtue of its characteristic impedance and length, steps the 50 ohm antenna impedance to 100 ohms. When the two cables are joined at the "T" connector, the impedance again becomes 50 ohms (Type 2YC).

Part No. 099 0190

KREKO VERTICALLY POLARIZED ANTENNA -This vertically polarized base antenna has a gain of 6 db (Type SC-155-B).

Part No. 099 0544

VEHICLE ROOFTOP ANTENNA - Designed especially for mounting on a vehicle, this antenna has a 3 db gain (Type ASP-177).


Part No. 099 0545

COAXIAL CABLE AND CONNECTORS — The following coaxial cables and connectors may be used with the Marti Remote Pick-Up Equipment:

Part No. 099 0146
RG 8/U coaxial cable, 100'.
Part No. 099 0137
RG 17/U coaxial cable, 100'.
Part No. 099 0546 00
RG 8/U coancator Pt-259 (Type 83-15P).
Part No. 099 0547 00
RG 8/U straight adapter Pt-258 (Type 83-1J).
Part No. 099 0548 00
RG 17/U to RG 8/U connector (Type GR-6355).
Part No. 097 7023
RG 253/U 5pir-O-line cable, ½", polyethylene jacketed, 100'.
Part No. 099 0549 00
Spir-O-line RG 253/U to Pt-258 connector (Type 87-500).

MEASURING, MONITORING, REMOTE CONTROL

METRON 506B AMPLITUDE MODULATION MONITOR

Occupying only 51/4 inches of rack space, the fully transistorized Metron 506B Amplitude Modulation Monitor continuously measures modulation of the AM r-f carrier.

Meeting or exceeding FCC requirements, the 506B mounts in any standard 19-inch rack or cabinet. Frequently used controls are conveniently located on the front panel together with two easy-to-read illuminated meters for monitoring carrier level and percentage modulation.

Modulation peaks are indicated by a flashing lamp. Flashing level is adjustable from 0 percent to 100 percent modulation. Lamps operate at 60 percent of rated voltage to assure long life.

All external connections are made at the back of the unit. The r-f input may be made to either a coaxial receptacle or barrier type terminal strip. A remotely controlled modulation meter and/or remote flasher may be connected to terminals provided and may be switched in or out at will without affecting circuit calibration.

Two auxiliary audio outputs are provided. One of these is a high impedance, high level output for fidelity measurement; the other feeds a 600-ohm audio monitoring circuit.

Input impedance: 75 ohms Frequency range: 0.5 to 1.6 mc

R-f power required: 0.5 watts (6 to 20 v rms)

Power requirement: 105 to 125 v a.c, 50 to 60 cycles,

10 watts

Dimensions: W 19", H 51/4", D 5" (W 48.26 cm, H 13.34 cm, 12.7 cm)

Weight: 10 lbs. (4.54 kg)

MODULATION PERCENTAGE METER

Accuracy: $\pm 2\%$ of full scale, modulating frequency 1000

Response: ±0.3 db, 30 cps to 100 kc ± 0.1 db, 100 cps to 30 kc

MODULATION PEAKS FLASHER

Range: Continuously adjustable, 0% to 100% Flash point: Flashes when negative modulation exceeds

dial set point by more than 2%

Accuracy: ±2% of full scale, 30 to 15,000 cps

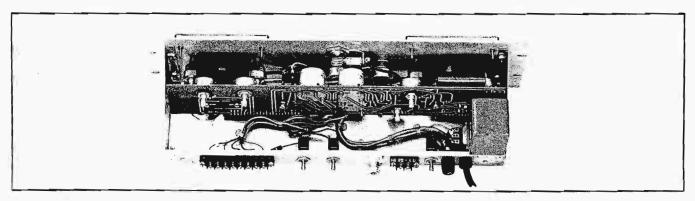
AUDIO MONITORING OUTPUT Response: ±0.5 db, 30 cps to 100 kc

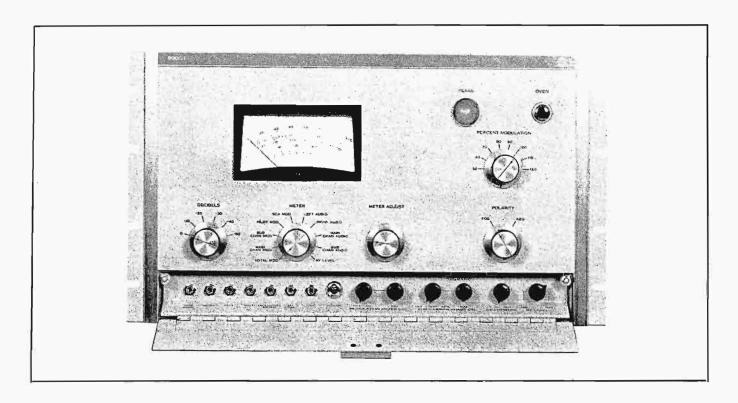
Distortion: Less than 0.2%, 600-ohm load

Output voltage: 0.5 v rms, 100% modulation with 600-

ohm load

FIDELITY MEASURING OUTPUT Response: ± 0.5 db, 30 cps to 100 kc


Distortion: Less than 0.1%, 600-ohm load


Hum and noise level: At least 80 db below 1.5-v rms

signal level

Output voltage: 3.5 v rms at 100% modulation with load resistance exceeding 100,000 ohms shunted by capacitance of less than 500 mmf.

Part No. 099 300 000

COLLINS 900C-1 FM STEREO MODULATION MONITOR

The versatility of the 900C-1 is highlighted by these capabilities:

- Total peak frequency deviation measurement.
- Individual modulation component deviation measurement.
- Stereo signal demodulation for channel separation measurement.
- Channel cross-talk measurement.
- Both monaural and stereo outputs for monitoring and proof-of-performance as required.
- Wideband output for visual proof of separation with oscilloscope.
- AM noise level output for VTVM measurement.
- Test points for pilot carrier frequency measurements.

Versatile and dependable, the Collins 900C-1 FM Stereo Modulation Monitor assures the broadcaster accurate measurement and monitoring of FM stereo multiplex programming in accordance with FCC standards.

Fully transistorized, the unit uses a minimum of primary power, has low heat dissipation and is carefully engineered and manufactured to assure long life through the use of conservatively-rated components.

Plug-in wired circuit cards not only enhance the unit's flexibility and versatility but also speed up fault isolation and maintenance, keeping down-time to a bare minimum.

The 900C-1 has proper phase and frequency response, reads peak values of complex audio signals and has the necessary demodulation circuits. These requirements are not met by monaural monitors, even with modification.

The 900C-1 provides the demodulating circuitry required not only to measure total peak frequency deviation

of the carrier in the 50 cycle to 75 kilocycle range but also to measure deviation caused by the different bands of modulating frequencies: main channel, stereo subchannel, pilot carrier and SCA subchannel.

Total modulation is measured with the peak light and meter; individual modulation components are checked by the meter alone. A self-contained voltmeter is used for direct measurements of channel separation, cross-talk and signal-to-noise ratio.

Careful attention to engineering design and excellence in manufacturing, traditional at Collins, make the 900C-1 an invaluable tool for the current needs of FM and stereo broadcasters.

Referring to the block diagram, the signal flow is as follows:

The input RF is attenuated and mixed with the output of an oscillator-tripler which has an output frequency 500 kc above the input signal carrier frequency.

The 500 kc intermediate frequency is coupled through an isolation stage to a limiter and pulse counter which delivers constant area pulses to a phase linear low pass filter. The filter's output is the wideband audio containing all frequencies between 50 cps and 75,000 cps which are modulating the transmitted carrier. At this point the audio is fed to the modulation metering and stereo demodulator circuits.

In the modulation metering circuit, the wideband audio is fed to a phase splitter which delivers two outputs of opposite phase. One of these, selected by the front panel modulation polarity switch, is fed to the peak light circuit and the true peak reading voltmeter circuit. Switched filters in the audio path break up the total modulation into the four different bands: main channel, stereo subchannel, pilot carrier and SCA subchannel.

In the stereo demodulator circuit, the audio signal from the phase linear low pass filter has the 19 kc pilot carrier separated, doubled to 38 kc and amplified to a level capable of driving the switching diodes. The switch breaks the composite signal into left and right output signals and amplitude correction is made by cross-coupling left and right outputs. The two outputs are filtered to remove all frequencies above 15 kc and then are identically amplified to provide left and right signals.

A built-in calibration circuit assures proper phasing of the regenerated 38 kc subcarrier as required for accurate stereo demodulation.

MODULATION METER SECTION

Meter Positions: Total modulation, main channel modulation, stereo subchannel injection, pilot carrier modulation, SCA subchannel injection.

Meter Range: 0%-133% for total, main and stereo subchannel modulation. 0%-30% for pilot carrier and SCA subchannel injection.

Accuracy: 5% over entire scale.

Meter Characteristics: Rise time, decay time and damping factor as prescribed by FCC for FM monaural monitors (all meter positions).

Frequency Response: ±0.5 db from 50-75,000 cps. Calibration: Self-contained calibrating signal source.

External Meters: Provisions for adding series meter in short line (100 foot maximum) or remote meter in telephone line (5000 ohm maximum loop resistance). PEAK LIMIT INDICATOR LIGHT

Range: Threshold adjustable from 50%-120% modula-

Response: Will flash on modulation peaks of 20 milliseconds duration or greater.

External Indicators: Provision included for external peak limit indicator light.

MONAURAL AUDIO SECTION

Outputs: 0 dbm unbalanced (600 ohm flat or de-emphasized). 10 v rms across 10,000 ohms (flat or de-emphasized).

Frequency Response: ±0.5 db from 50-15,000 cps or within 1.0 db of standard 75 microsecond de-emphasis curve.

Distortion: 0.25% max. 50 cycles per second to 15 kc at 100% modulation.

Signal-to-Noise Ratio: 75 db.

STEREOPHONIC AUDIO SECTION

Outputs: 0 dbm unbalanced (600 ohms flat or de-emphasized). Distortion meter output: 10 v rms across 10,000 ohms unbalanced.

Frequency Response: ±1 db from 50-15,000 cps or within 1.0 db of standard 75 microsecond de-emphasis curve. Distortion: .5% max. from 50-15,000 cps at 90% modu-

lation.

nal-to-Noise Ratio: 55 db on self-contained of

Signal-to-Noise Ratio: 55 db on self-contained voltmeter. Channel Separation: 40 db from 50-15,000 cps. Read on self-contained audio voltmeter.

Channel Cross-Talk: 45 db. Read on self-contained audio voltmeter.

Stereophonic Subcarrier Suppression: 60 db. Read on selfcontained audio voltmeter.

Pilot Carrier Phasing: Transmitter pilot carrier phasing adjusted for proper 0 crossing after calibration of stereophonic subcarrier regeneration in monitor. GENERAL

RF Input: 4.10 v rms at 50 ohms. Input on rear of unit. Outputs:

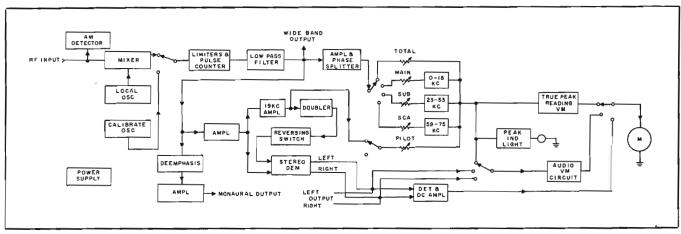
Rear Chassis—Left Channel, Right Channel, Monaural, Remote Meter, Remote Peak Indicator, Wideband Output, IF (500 kc) Output for Frequency Meter, and 19 kc Output (for frequency measurement).

Front Panel — Wideband Output, Monaural Audio Output, Left Audio Output, Right Audio Output, Distortion—Measurement Output, 38 kc, 19 kc, and AM Noise Measurement Output.

Controls:

Front Panel — Function Selector, Voltmeter Reference Adjust, Voltmeter Range Adjust, Peak Indicator Threshold Adjust, Modulation Polarity Select.

Subpanel—Modulation Meter Calibrate Switch, Modulation Meter Calibrate Adjust, Subcarrier Phase Calibrate Switch, Subcarrier Phase Calibrate Adjust, De-emphasis Switch, RF Input Level Adjust, and Power On-Off


and Power On-Off.

Size: 19" W, 101/2" H, 13-25/32" D (48.26 cm W, 26.67 cm H, 33.02 cm D).

Weight: 35 lbs. (15.88 kg).

Primary Power: 120 v or 240 v ±10%, 50-60 cps, 50 watts.

Part No. 522 3275 000

BLOCK DIAGRAM 900C-I

McMARTIN FM FREQUENCY AND MODULATION MONITORS

The McMartin TBM-3000 and TBM-3500 are another first . . . a completely self contained frequency monitor and separate self contained modulation monitor, each independent of the other. These are the first and only monitors to comply with present FCC requirements.

McMARTIN TBM-3000 FM FREQUENCY MONITOR FEATURES:

- Type Approval Number 3-113
- · Single purpose frequency monitor
- Completely self contained
- Accuracy .001%
- Unaffected by modulation
- External metering available
- Reliable double regulated silicon rectifier power supply
- Special meter for good visibility

Frequency Range: 88 to 108 mc - fixed

Deviation Range: +4 kc to -4 kc of specified frequency
Accuracy: Better than .001% or better than 1000 cps
@ any frequency

Stability: 75 to 150 cps within 24 hours

RF Input: 1 to 5 volts @ 50 ohms — ½ watt maximum Front Panel Indicators: Modulation meter. AC power—neon. Crystal oven—6 v. incandescent

Front Panel Controls: Selector switch: RF input, calibrate, operate, meter zero, crystal tuning, power onoff

Chassis Controls: RF level

Outputs: Provisions for external remote meter (optionally available)

Tubes & Diodes: 3—6201; 2—6265; 1—5814A; 1—OB2; 1—OA2; 4—1N56

Rectifiers: 4 silicon 750 ma/600 v.

Power Supply: 100-130VAC; 55 watts; 50-60 cps; C.C.S.; double; regulation; fused

Dimensions: Standard rack 19" width x 83/4" height x 71/2" depth (behind panel)

Shipping weight: 18 lbs.

Part No. 099 2309 000 Type No. TBM 3000

McMARTIN TBM-3500 FM MODULATION MONITOR FEATURES:

- Self contained single purpose modulation monitor
- Accuracy ½ db, 50-75,000 cycles
- External metering available
- High speed indicator reads 10 millisecond peaks
- Measures all modulation carried by FM transmitter, including subchannels
- Measures separately main channel audio modulation without subchannels
- Output provisions for stereo and SCA monitors and proof-of-performance tests

Operating Range: Main Channel 88 to 108 mc
Modulation Range: Full scale meter deflection indicates
deviation of ±100 kc or 133% modulation. Scale
calibration indicates 100% modulation @ ±75 kc.

Metering Accuracy: Within 5% over entire scale (FCC standard for FM)

Meter Characteristics: Well within FCC requirements. Pointer reaches 90% value of a modulation peak, with a duration of only 70 milliseconds. Overshoot is less than 3%. Meter decays from full reading to 10% of value in 720 milliseconds.

Peak Flash Indicator: Responds to modulation peaks with a duration of 10 milliseconds or less.

Frequency Response (Meter & Flasher): ±½ db; 50 cps to 75 kc @ 100% modulation

Stability: Maintained by special inverse feedback.

Audio Frequency Range: Follows FCC de-emphasis curve. ±1.0 db 50 to 15,000 cps.

Audio Distortion: Main Channel—0.5% 50 to 15,000 cps Audio Hum and Noise: Main Channel——65 db below 100% modulation @ low audio frequencies

RF Input: 1 to 5 volts @ 50 ohms (½ watt max.) co-axial input

Front Panel Indicators: 1) Main channel modulation peak flasher (neon)

2) AC power (neon)

Front Panel Meters: 1) Main channel modulation (RF input—total modulation—main channel modulation Front Panel Controls: 1) AC power on-off.

- 2) Main channel modulation meter function switch
- 3) Main channel ±modulation polarity switch
- 4) Main channel peak modulation flasher control

Rear Chassis Controls: RF attenuator

Outputs (front panel): 1) Main Hi-Z phone jack

Outputs (rear chassis): 1) External main channel modulation meter

2) Multiplex

3) Main channel audio Hi-Z

4) Main channel audio 600 ohms

Tubes: 12—Types: 2—12AT7; 1—6BH6; 2—6AK5; 1—12AX7; 1—6BE6; 1—6EM7; 1—2D21; 1—OB2; 1—6AB4; 1—7581

Diodes: 3 (1N51)

Fuse: 1—1 Amp SB-3AG Rectifiers: 4 type 1N2095 Silicon

Power Supply: 100-130VAC; 55 watts; 50-60 cps;

C.C.S.; double; regulation; fused

Dimension: Standard rack 19" width x 834" height x

7½" depth (behind panel) Shipping weight: 18 lbs.

Part No. 099 2308 000

Type No. TBM 3500

McMARTIN FM MODULATION — SCA MULTIPLEX MONITOR

Drawing on their experience as the nation's leading manufacturer of multiplex receivers, McMartin engineers have developed an exceptional instrument which can measure all main channel modulation characteristics as well as all SCA-multiplex operating characteristics.

FEATURES:

- Self contained independent Modulation Monitor, measures all modulation carried by the FM transmitter.
- Separate metering for direct reading of main channel modulation.
- Provisions for measuring all characteristics of one or two subchannels separately.
- Instantaneous direct reading of either subchannel injection at any time.
- Continuous metering of either subchannel frequency.
- Continuous metering of either subchannel modulation.
 Referred to either 5 or 7.5 kc deviation.
- Subchannel metering characteristics identical to main channel requirements as outlined by FCC.
- Direct reading of noise or crosstalk on either subchannel from any source without auxiliary equipment.

- Audio output of both main channel and either subchannel available for aural monitoring and proof of performance checks.
- Separate high speed main and sub peak modulation lamps respond to 10 millisecond peaks.
- Automatic subchannel muting.
- Output terminals for external subchannel failure alarm.
- Output termials for main channel and subchannel modulation extension meters.
- Reliable double regulated silicon rectifier power supply.
- Total modulation output jack to feed either McMartin TBM-2000 (separate SCA-multiplex monitor) or TBM-4500 (stereo monitor).

SPECIFICATIONS

Operating Range: Main Channel 88 to 108 mc. SCA Multiplex 25 to 75 kc.

MAIN CHANNEL MODULATION

Modulation Range: Full scale meter deflection indicates deviation of ±100 kc or 133% modulation. Scale calibration indicates 100% modulation @ ±75 kc.

Metering Accuracy: Within 5% over entire scale (FCC standard for FM).

Meter Characteristics: Well within FCC requirements. Pointer reaches 90% value of a modulation peak with a duration of only 70 milliseconds. Overshoot is less than 3%. Meter decays from full reading to 10% of value in 720 milliseconds.

Peak Flash Indicator: Responds to modulation peaks with a duration of 10 milliseconds or less.

Frequency Response (Meter & Flasher): ±½db; 50 cps to 75 kc @ 100% modulation.

Stability: Maintained by special inverse feedback.

SCA MULTIPLEX MODULATION

Modulation Range: 100% modulation on the meter scale may correspond to deviation of ± 5 kc or ± 7.5 kc as desired. Selection is made by a front panel switch. 133% modulation (full scale) corresponds to deviation of ± 6.67 kc or ± 10 kc.

Metering Accuracy: Same as main channel specifications above.

Meter Characteristics: Same as main channel specifications above.

Peak Flash Indicator: Responds to modulation peaks with a duration of 10 milliseconds or less.

Frequency Response (Meter & Flasher): $\pm \frac{1}{2}$ db; 50 to 7500 cps @ 100% modulation.

Stability: Maintained by special inverse feedback.

SCA MULTIPLEX FREQUENCY

Operating Range: Any two SCA multiplex subcarriers between 25 kc and 75 kc by front panel selector switch.

Deviation Range: Zero center scale is calibrated to ±4000 cps (±.004% of 67 kc).

Accuracy: Better than 100 cps at 67 kc.

Stability: Maintained by crystal with .005% tolerance.

SCA MULTIPLEX INJECTION

Injection Percentage: A separate circuit and meter scale indicates the maximum allowed (FCC) modulation percentage of the main carrier by SCA subcarriers. 30% injection corresponds to about 2/3 of full scale reading.

Accuracy: Within 5% over entire scale.

CROSSTALK & SIGNAL-TO-NOISE RATIO

Metering: Reads crosstalk and S/N ratio of SCA multiplex channel to -65 db with calibrated scale and step attenuator. Measures crosstalk of main into SCA, SCA and/or stereo into SCA.

AUDIO

Frequency Range: Main Channel — Follows FCC de-emphasis curve. ± 1.0 db 50 to 15,000 cps. SCA Channel — 75 microsecond de-emphasis ±1.0 db 50 to 7500 cps.

Distortion: Main Channel — 0.5% 50 to 15,000 cps. SCA Channel — 1.0% 50 to 7500 cps.

Hum and Noise: Main Channel - - 65 db below 100% modulation @ low audio frequencies.

SCA Channel - -65 db below ±7.5 kc deviation @ low audio frequencies.

GENERAL

RF Input: 1 to 5 volts @ 50 ohms (1/2 watt max.) coaxial input.

Front Panel Indicators: 1) Main Channel modulation peak flasher (neon).

SCA modulation peak flasher (neon).

3) AC power (neon).

Front Panel Meters: 1) Main channel modulation (RF input - total modulation - main channel modulation - sub-channel injection).

2) Subchannel frequency (reads selected subchan-

3) Subchannel modulation, crosstalk, S/N.

Front Panel Controls: 1) AC power on-off.

- 2) Main channel modulation meter function switch.
- 3) Main channel ± modulation polarity switch.
- 4) Main channel peak modulation flasher control.
- 5) Subchannel frequency meter function switch.
- Subchannel frequency meter calibrate control.
- 7) Subchannel peak modulation flasher control.
 8) Crosstalk, S/N step attenuator.
- 9) SCA deviation selector 5 or 7.5 kc.

Rear Chassis Controls: RF attenuator.

Outputs (front panel): 1) Main Hi-Z phone jack.

2) SCA Hi-Z phone jack.

Outputs (rear chassis): 1) External main channel modulation meter.

External SCA channel modulation meter.

Multiplex.

4) Main channel audio Hi-Z.

- 5) Main channel audio 600 ohms.
- 6) Subchannel audio Hi-Z.
- 7) Subchannel audio 600 ohms.

8) Subchannel failure relay (for alarm).

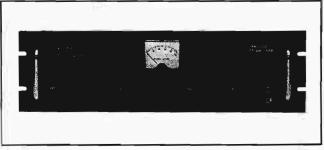
Tubes: 24.

CO. 21.		
Types:	412AT7	1—6SN7
	46BH6	1—6U8
	2—6AK5	22D21
	3—12 A U7	2— $OA2$
	1—6BE6	1—OB2
		2-6AB4

Diodes: 14 (1N51).

Fuse: 1 — 1 Amp SB-3AG.

Rectifiers: 4 type 1N2095 Silicon.


Power: Constant regulated voltage transformer 105-125 volts, 60 cycle AC 65 watts Gaseous regulator type

Dimensions: Panel — standard rack 10¾" x 19". Chassis — 13½" behind panel.

Weight: 34 lbs. Part No. 099 0824 —

(Type No. TBM-4000)

McMARTIN RF AMPLIFIER

The McMartin TBM-2500 RF Amplifier is used in conjunction with any McMartin TBM series FM station monitor when remote operation is necessary. It will also operate with other brands of monitors which require a higher input power level. It will feed a combination of high and low input level monitors.

FEATURES:

- Complete alignment from front panel
- Relative signal level meter
- Carrier failure relay for alarm circuit
- Complete circuit shielding
- Antenna (cut-to-frequency, 4 elements) & 50' coaxial cable supplied
- Stable, non-critical design
- Exceptionally long tube life

SPECIFICATIONS:

Operating range: 88-108 mc.

RF Sensitivity: 300 uv input for 1/2 watt output. 1000 uv input for 2 watt output.

Input: 50 ohms coaxial.

Outputs: (2) 50 ohms coaxial.

Dimensions: 19" wide, 51/4" high, 7" deep.

Finish: Natural gray panel.

Power: 120 VAC, 50-60 cps, 45 watts. Part No. 099 2502 -

(Type TBM-2500)

BARKER & WILLIAMSON 210 AUDIO OSCILLATOR

Resistance capacitance type for making frequency response, distortion and other audio measurements.

Ranges: 30-300, 300-3,000, 3,000-30,000 cps.

Output: 10 v into 500 ohm load. Less than 1% rms harmonics 30-15,000 cps with 500 ohm load.

Response: Better than ± 1 db 30-15,000 cps.

Calibration Accuracy: 3% of scale reading.

Size: 133/4" W, 91/2" H, 71/4" D (34.93 cm W, 24.13 cm H, 18.42 cm D).

Shipping Weight: 17 lbs. (7.71 kg).

Part No. 099 0827 00

NEMS-CLARK 120-E FIELD INTENSITY METER

A lightweight instrument for the measurement of a wide range of radio signal intensities.

Frequency Range: 540-1600 kc.

Field Intensity Range: 10 mv/meter to 10 v/meter.

Accuracy of Attenuators: 2%.

Output Indicator: Direct reading panel meter.

Antenna: Shielded, unbalanced loop.

Power Requirements: Batteries, five 1½ v, two 67½ v

(provisions for external supply). Size: 13" W, 9" H, 53/4" D (33.02 cm W, 22.86 cm H, 14.61 cm D).

Weight: 121/2 lbs. (5.67 kg) with batteries.

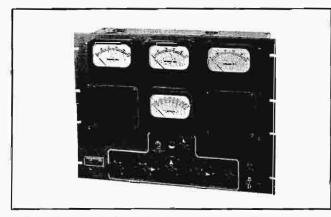
Part No. 097 5516 000

NEMS-CLARK 121 ACCESSORY UNIT

Designed as a companion unit to the 120-E (also 120-D, WX-2A, WX-2B, WX-2C and WX-2D). Its principal function is to operate 1 ma recorders of the Esterline Angus type to give a permanent record of field strength. It can also be used as a general purpose recording and monitoring amplifier when a high input impedance is desired and 5 v dc is available.

Input Required: Approximately 5 v dc. Output: 1 ma into loads up to 2,000 ohms.

Speaker: 4" panel mounted.


Power Source: 117 v, 50-60 cps, or 6 v dc. Power Input: 15 watts ac or 2.5 amps dc.

Size: 121/2" W, 61/2" H, 41/2" D (31.75 cm W, 16.51 cm H, 11.43 cm D).

Weight: 10 lbs. (4.54 kg).

Part No. 099 0370 000

NEMS-CLARK 108 PHASE MONITOR

Provides an indication of the phase relations in directional antenna systems, and is tailored for the particular installation. It usually incorporates provision for indicating the relative amplitudes of the currents in the various antennas, as well as the phase relation. Specify requirement for monitoring 2, 3, 4, or over 4 elements.

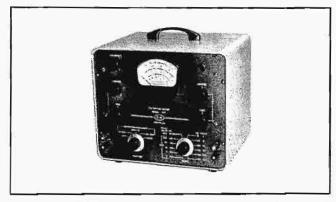
Frequency Range: 100 kc to 2 mc. Phase Angle Range: 0° to 360°.

Monitoring Accuracy: 1°.

Resolution: $\frac{1}{2}^{\circ}$.

RF Input Impedance: 50 or 70 ohms nominal.

RF Voltage Range: 1-7 v.


Tubes: Two 6AU6, two OB3, one 5Y3 and three 6AL5.

Power Requirements: 105-125 v, 80 watts. Size: 19" W, 14" H, 7" D (48.26 cm W, 35.56 cm H, 17.78 cm D).

Weight: 20 lbs. (9.07 kg).

Part No. 099 0366 000 (2 element)
Part No. 099 0367 000 (3 element)
Part No. 099 0368 000 (4 element) Part No. 099 0369 000 (over 4 element)

BARKER & WILLIAMSON 410 DISTORTION METER

Ideal for FCC proof of performance tests and general laboratory use in measuring audio distortion, noise level and ac voltage level, the B & W 410 operates over a wider frequency range and provides increased sensitivity than earlier models.

The distortion meter measures distortion on fundamental frequencies from 20-20,000 cps and indicates harmonics up to 100,000 cps. Distortion levels as low as 0.1% can be indicated and measurements may be made on signal levels of 0.1-30 v rms. Distortion ranges provided are 1% full scale, 3%, 10%, 30% and 100% (full scale). The unit is designed for optimum accuracy on 600 ohms but is satisfactory on sources up to 100,000 ohms.

The 410 voltmeter input impedance is 1 megohm, and it has an accuracy of ±5% on measurements from 0.0005-300 v. Residual noise is less than 0.02 mv. For noise and db measurements, the unit is calibrated in 1 db steps from 0 db to -15 db. The attenuator provides additional ranges from -60 db to +50 db in 10 db steps.

The chassis, panel and case are of aluminum and attractively styled and finished in two tone gray.

Size: 111/4" W, 9" H, 8" D (28.58 cm W, 22.86 cm H, 20.32 cm D).

Weight: 11 lbs. (4.99 kg).

Part No. 099 0569 000

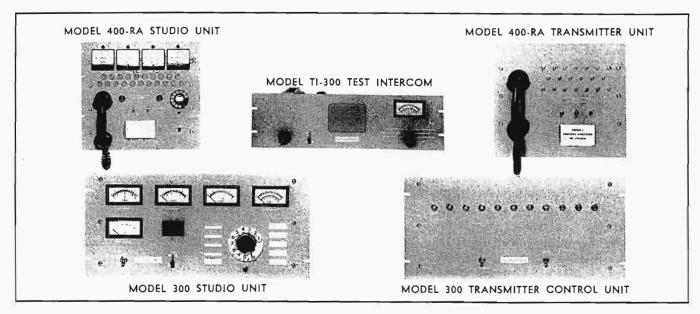
GENERAL RADIO 1181-B FREQUENCY **DEVIATION MONITOR**

Gives direct indications of magnitude and direction of frequency deviation of AM transmitter. Positive indication is provided for failure of either transmitter carrier or monitor crystal oscillator.

Frequency Range: 0.5-1.6 mc (specify crystal frequency).

Deviation Range: ±30 cps.

Primary Power: 105-125 or 210-250 v, 50/60 cps, 125


Size: 19" W, 153/4" H, 13" D (48.26 cm W, 40.01 cm H, 33.02 cm D).

Weight: 51 lbs. (23.4 kg).

Part No. 097 5948 — No Part Number Spare set of tubes.

No Part Number FCC set of spare tubes.

SCHAFER TRANSMITTER REMOTE CONTROL

MODEL 400-RA STUDIO UNIT

An all DC Remote Control that operates on any two metallic lines (lowest tariff). Controls forty (40) different functions and meters twenty (20) different circuits and allows 2-way telephone conversations at all times. Four meters included.

Part No. 099 1518 000

MODEL 400-RA TRANSMITTER UNIT

Designed for location near the transmitter. Provides all calibration controls for the Studio Unit, as well as 110V AC to operate all accessory relays.

Part No. 099 1519 000

MODEL TI-300 TEST INTERCOM

This is a test intercom unit used with the Model 300 Remote Control System for 2-way communication, as well as being a test unit for checking the remote control operation. Two units are necessary for communication between studio and transmitter without additional telephone lines.

NPN

MODEL 300 STUDIO UNIT

A new all DC Remote Control system that operates on any two metallic lines with a resistance of up to 6000 ohms or more. Controls up to twenty (20) different functions and meters up to eleven (11) different circuits, including modulation and frequency. Five meters included. With a TI-300, two-way communication is available, as well as having a test unit at each end.

Part No. 597 0409 000

MODEL 300 TRANSMITTER CONTROL UNIT

Provides all calibration controls for the studio unit, as well as 48 V DC to operate all accessory relays.

Port No. 597 0410 000

REMOTE CONTROL ACCESSORIES

POR-1 PRIMARY OVERLOAD RELAY

Parallels present manual primary overload circuit breaker used in some transmitters, so that overload may be reset by Remote Control.

NPN

TOWER LIGHT CURRENT METERING UNIT TC-25
The TC-25 provides DC output to represent tower light

Part No. 099 1521 000

LATCHING RELAY UNIT LR-1-C

The LR-1-C is used to control circuits locally controlled by switches, such as filaments on-off and plates on-off.

MOTORIZED PLATE RHEOSTAT

For adjustment of plate power without affecting tuning.
MPR-2 For 250 or 500 watt transmitter. Part No. 099 1544 000
MPR-3 For 1000 watt transmitter. Part No. 099 1545 000
MPR-4 For over 1 Kilowatt transmitter. Part No. NPN

MOMENTARY RELAY UNIT MR-2-C

The MR-2-C is used to control circuits locally controlled by push-buttons, such as filaments on-off and plates on-off.

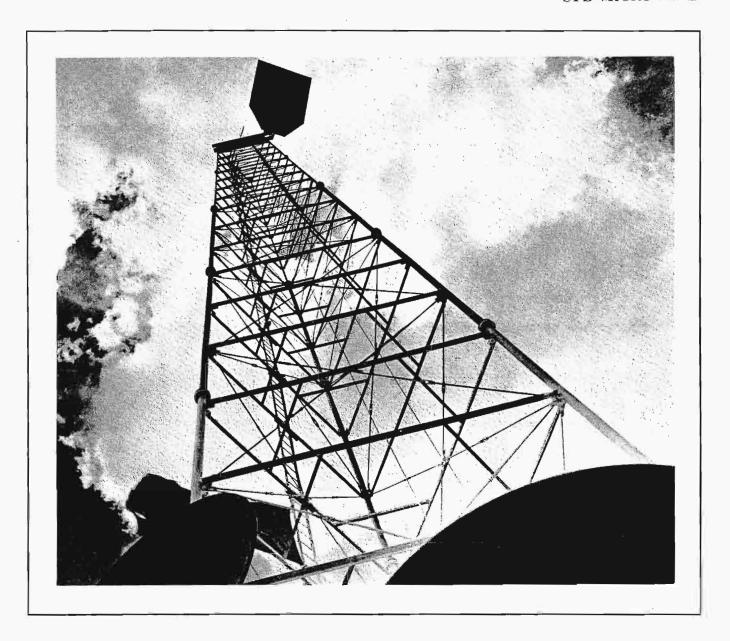
Part No. 097 6781 000

ANTENNA CURRENT METERING UNIT AC-100

The AC-100 provides DC output to represent antenna current.

Part No. 097 7581 000

PLATE CURRENT METERING UNIT PCK-10


The PCK-10 provides remote metering voltage to indicate plate current.

300 MA Part No. 099 1538 000 600 MA Part No. 099 1539 000 1200 MA Part No. 099 1540 000 2400 MA Part No. 097 6663 000

PLATE VOLTAGE METERING UNIT PV-10

The PV-10 provides remote metering voltage to indicate plate voltage for connection to any one mil metering circuit.

Part No. 097 664 000

COLLINS STL MICROWAVE SYSTEMS

As a part of its new Universal Microwave Group, Collins offers STL systems for the broadcast industry. These systems are part of a broad, flexible, transistorized product line.

Collins produces both remodulating and IF heterodyne systems operating in the 5.9 to 8.4 gc frequency range with output power of 1 and 5 watts and receiver bandwidths of 25 megacycles.

Collins' I-F heterodyne system features an improved signal-to-noise ratio, differential phase and differential gain performance over existing equipment.

COMMON CARRIER BAND 5925-6425 MC

MW-108A Video Application: 1 watt (+27 dbm) output Terminal or Remodulating Transmitter.

MW-109A-1 Video Application: 5 watt (+37 dbm) output Terminal or Remodulating Transmitter.

MW-109B Video Application: 5 watt (+37 dbm) output IF Heterodyn Transmitter, 100 mw Driver.

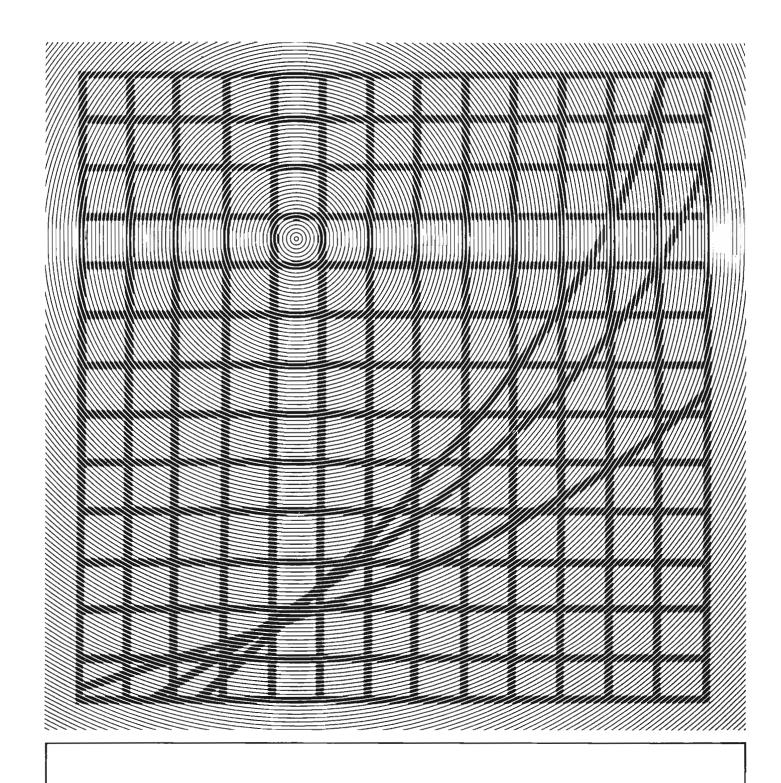
Note: Video Application is shown after type numbers to differentiate from Message Application.

TV — STL BAND 6875-7125 MC

MW-408A: 1 watt (+27 dbm) output Terminal or Remodulating Transmitter.

MW-409A-1: 5 watt (+37 dbm) output Terminal or Remodulating Transmitter.

MW-409B: 5 watt (+37 dbm) output IF Heterodyne Transmitter, 100 mw Driver.


GOVERNMENT BAND - 7125-8400 MC

MW-508A: Video Application: 1 watt (+27 dbm) output Terminal or Remodulating Transmitter.

MW-509A-1 Video Application: 5 watt (+37 dbm) output Terminal or Remodulating Transmitter.

MW-509B Video Application: 5 watt (+37 dbm) output IF Heterodyne Transmitter, 100 mw Driver.

For a low cost, high performance STL microwave system to fit your requirements, call or write Collins Radio Company, Dallas, Texas.

TABLES, CHARTS, GRAPHS

FINDING POWER AND VOLTAGE/CURRENT WHEN DECIBELS ARE KNOWN

			Vallaria	D	Voltage	Power		Voltage	Power
/oltage Ratio	Power Ratio	— d b +	Voltage Ratio	Power Ratio	Ratio	Ratio	-db+	Ratio	Ratio
.0000	1.0000	0	1.000	1.000	.5623	.3162	5.0	1,778	3.162
.9886	.9772	۱.	1.012	1.023	.5559	.3090	5, I	1.799	3.236
.9772	.9550	.2	1,023	1.047	.5495	.3020	5.2	1.820	3.311
.9661	.9333	.3	1.035	1.072	.5433	.2951	5.3	1.841	3.388
.9550	.9120	.4	1.047	1.096	.5370	.2884	5.4	1.862	3.467
.9441	.8913	.5	1.059	1.122	.5309	.2818	5.5	1.884	3.548
.9333	.8710	.6	1.072	1.148	.5248	.2754	5.6	1.905	3.631
.9226	.8511	.7	1.084	1,175	,5188	.2692	5.7	1.928	3.715
.9120	.8318	.8	1.096	1.202	.5129	.2630	5.8	1.950	3.802
.9016	.8128	.9	1.109	1.230	.5070	.2570	5.9	1.972	3.890
.8913	.7943	1,0	1.122	1.259	.5012	.2512	6.0	1.995	3.981
	.7762	1.1	1.135	1.288	.4955	.2455	6.1	2.018	4.074
0188.	.7586	1.2	1.135	1.318	.4898	.2399	6.2	2.042	4.169
.8710	.7413	1.3	1.146	1.349	.4842	.2344	6.3	2.065	4.266
.8511 .8610	.7413	1.3	1.175	1.380	.4786	.2291	6.4	2.089	4.365
					.4732	.2239	6.5	2.113	4.467
.8414	.7079	1.5	1.189	1.413	.4677	.2188	6.6	2,138	4.571
.8318	.6918	1.6	1.202	1.445	.4624	.2138	6.7	2.163	4.677
.8222	.6761	1.7	1,216	1.479	.4571	.2089	6.8	2.188	4.786
.8128 .8035	.6607 .6457	1.8 1.9	1.230 1.245	1.514 1.549	.45/1	.2042	6.9	2,213	4.898
						.1995	7.0	2.239	5,012
.7943	.6310	2.0	1.259	1.585	.4467		7.0 7.1	2.239	5.129
.7852	.6166	2.1	1.274	1.622	.4416	.1950	7.1	2.291	5.124
.7762	.6026	2.2	1.288	1.660	.4365	.1905			
.7674	.5888	2.3	1.303	893,1	.4315	.1862	7.3	2.317	5.370
.7586	.5754	2.4	1.318	1.738	.4266	.1820	7.4	2.344	5.495
.7499	.5623	2.5	1,334	1.778	.4217	.1778	7,5	2.371	5.623
.7413	.5495	2.6	1.349	1.820	.4169	.1738	7.6	2.399	5.754
.7328	.5370	2.7	1.365	1.862	.4121	.1698	7.7	2.427	5.888
.7244	.5248	2.8	1.380	1.905	.4074	.1660	7.8	2.455	6.026
.7161	.5129	2.9	1.396	1.950	.4027	.1622	7.9	2.483	6.166
.7079	.5012	3.0	1,413	1.995	1898.	.1585	8.0	2.512	6.310
.6998	.4898	3.1	1.429	2.042	.3936	.1549	1.8	2.541	6.457
.6918	.4786	3.2	1.445	2.089	.3890	.1514	8.2	2.570	6.607
.6839	.4677	3.3	1.462	2.138	.3846	.1479	8.3	2.600	6.761
.6761	.4571	3.4	1.479	2.188	.3802	.1445	8.4	2.630	6.918
.6683	.4467	3.5	1.496	2.239	.3758	.1413	8.5	2.661	7.079
.6607	.4365	3.6	1.514	2.291	.3715	.1380	8.6	2.692	7.244
.6531	.4266	3.7	1.531	2.344	.3673	.1349	8.7	2.723	7.413
.6457	.4169	3.8	1.549	2.399	.3631	.1318	8.8	2.754	7.586
.6383	.4074	3.9	1.567	2.455	.3589	.1288	8.9	2.786	7.762
.6310	.3981	4.0	1.585	2.512	.3548	.1259	9.0	2.818	7.943
.6237	.3890	4.1	1.603	2.570	.3508	.1230	9.1	2.85!	8.128
.6166	.3802	4.2	1.622	2.630	.3467	.1202	9.2	2.884	8.318
.6095	.3715	4.3	1.641	2.692	.3428	.1175	9.3	2,917	8.511
.6026	.3631	4.4	1.660	2.754	.3388	.1148	9.4	2.951	8.710
.5957	.3548	4.5	1,679	2.818	,3350	.1122	9.5	2.985	8.913
.5888	.3467	4.6	1.698	2.884	.3311	.1096	9.6	3.020	9.120
.5821	.3388	4.7	1.718	2.951	.3273	.1072	9.7	3.055	9.333
.5754	.3311	4.8	1.738	3.020	.3236	.1047	9.8	3.090	9.550
.5689	,3236	4.9	1.758	3,090	.3199	.1023	9.9	3,126	9.772

FINDING POWER AND VOLTAGE/CURRENT WHEN DECIBELS ARE KNOWN (Continued)

Ratio Ratio -db+ Ratio Ratio Ratio Ratio -db+		Power
3126	Ratio	Ratio
	5.623	31.62
3.090	5.689	32.36
3.3055	5.754	33.11
	5.821	33.88
1.295 0.8710 10.6 3.388 11.48 1.660 0.2754 15.6 1.2917 0.8511 10.7 3.428 11.75 1.641 0.2692 15.7 1.2884 0.8318 10.8 3.467 12.02 1.6622 0.2630 15.8 1.2851 0.8128 10.9 3.508 12.30 1.603 0.2570 15.9 15.9 1.288 0.7943 11.0 3.548 12.59 1.585 0.2512 16.0 15.8 1.2754 0.7762 11.1 3.589 12.88 1.567 0.2455 16.1 1.2754 0.7786 11.2 3.631 3.18 1.549 0.2399 16.2 0.2723 0.7413 11.3 3.673 3.49 1.531 0.2344 16.3 0.2692 0.07244 11.4 3.715 3.800 1.514 0.02291 16.5 0.2600 0.0704 11.6 3.802 14.45 1.479 0.2188 16.6 0.2600 0.6761 11.7 3.846 14.79 1.462 0.2138 16.7 0.2570 16.2 0.2570 1.8 3.890 15.14 1.445 0.0209 16.8 1.57 0.2511 0.6407 11.9 3.936 15.49 1.429 0.02042 16.9 16.9 1.2548 0.6166 12.1 0.06457 11.9 3.936 15.49 1.429 0.02042 16.9 1.2483 0.6166 12.1 0.0271 16.22 1.396 0.1950 17.1 0.2483 0.6166 12.1 0.0271 16.22 1.396 0.1950 17.2 0.2483 0.6166 12.1 0.0271 16.22 1.396 0.1950 17.2 0.2483 0.6166 12.1 0.0271 16.22 1.396 0.1950 17.2 0.2485 0.6026 12.2 0.744 1.69 1.738 1.349 0.1820 17.4 0.2311 0.5623 12.5 0.2311 0.7788 1.349 0.1820 17.4 0.1820 17.4 0.2311 0.05623 12.5 0.2311 0.7888 12.3 0.1970 17.1 0.5231 0.5623 12.5 0.2548 12.8 0.3660 1.78 0.3231 0.5748 12.8 0.3660 1.78 0.3231 0.5748 12.8 0.3660 1.78 0.3231 0.3498 13.1 0.4567 13.4 0.4577 13.3 0.4677 13.3 0.4677 13.3 0.4677 13.3 0.4677 13.3 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4571 13.4 0.4577 13.8 0.4577 13.8	5.888	34.67
1.2917 .08511 10.7 3.428 11.75 .1641 .02692 15.7	5.957	35.48
1.2884 .08318 10.8 3.467 12.02 .1622 .02630 15.8	6.026	36.31
.2851 .08128 10.9 3.508 12.30 .1603 .02570 15.9 .2818 .07943 11.0 3.548 12.59 .1585 .02512 16.0 .2786 .07762 11.1 3.589 12.88 .1567 .02455 16.1 .2754 .07586 11.2 3.631 13.18 .1549 .02399 16.2 .2723 .07413 11.3 3.673 13.49 .1531 .02344 16.3 .2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2600 .06761 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0	6.095	37.15
1.0 2.518 .07943 11.0 3.548 12.59 .1585 .02512 16.0 .2786 .07762 11.1 3.589 12.88 .1567 .02455 16.1 .2754 .07586 11.2 3.631 13.18 .1549 .02399 16.2 .2723 .07413 11.3 3.673 13.49 .1531 .02344 16.3 .2692 .07244 11.4 3.715 13.80 .1514 .02291 16.4 .2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.8002 14.45 .1479 .02188 16.6 .2600 .06761 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1344 .01738 17.6 .2317 .055248 12.8 4.365 19.05 .128 .01608 17.8 .2249 .05548 12.8 4.365 19.05 .128 .01608 17.7 .2291 .05248 12.8 4.365 19.05 .128 .01608 17.7 .2291 .05248 12.8 4.365 19.05 .128 .01608 17.8 .2213 .04898 13.1 4.519 2.042 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2183 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2188 .04786 13.6 4.786 22.91 .1175 .01380 .0168 18.6 .2018 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2188 .04676 13.5 4.782 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 .01648 18.7 .2089 .04365 13.6 4.786 22.91 .1175 .01380 .186 .2018 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2018 .04677 13.3 4.624 21.38	6.166	38.02
1.2786	6.237	38.90
.2754 .07586 11.2 3.631 13.18 .1549 .02399 16.2 .2723 .07413 11.3 3.673 13.49 .1531 .02344 16.3 .2692 .07244 11.4 3.715 13.80 .1514 .02291 16.4 .2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2600 .06761 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2457 .05888 12.3 4.121 16.98 .1365 .01862 17.3	6.310	39.81
.2723 .07413 11.3 3.673 13.49 .1531 .02344 16.3 .2692 .07244 11.4 3.715 13.80 .1514 .02291 16.4 .2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2600 .06761 11.8 3.890 15.14 .1445 .02089 16.8 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .0042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01955 17.0 .2483 .06166 12.1 4.027 16.20 .1380 .01905 17.1 .24247 .05888 12.3 4.121 16.98 .1365 .01862 17.3	6.383	40.74
.2692 .07244 11.4 3.715 13.80 .1514 .02291 16.4 .2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2500 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2485 .06026 12.2 4.074 16.60 .1380 .01955 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 <	6.457	41.69
2661 .07079 11.5 3.758 14.13 .1496 .02239 16.5 .2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2600 .06751 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2391 .05523 12.5 4.217 17.78 .1334 .01778 17.5	6.531	42.66
.2630 .06918 11.6 3.802 14.45 .1479 .02188 16.6 .2600 .06761 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2485 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1318 .01778 17.5	6.607	43.65
.2600 .06761 11.7 3.846 14.79 .1462 .02138 16.7 .2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01955 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1333 .01698 <	6.683	44.67
.2570 .06607 11.8 3.890 15.14 .1445 .02089 16.8 .2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8	6.761	45.71
.2541 .06457 11.9 3.936 15.49 .1429 .02042 16.9 .2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2245 .05129 12.9 4.416 19.50 .1274 .01622 <	6.839	46.77
.2512 .06310 12.0 3.981 15.85 .1413 .01995 17.0 .2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2255 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0	6.918	47.86
.2483 .06166 12.1 4.027 16.22 .1396 .01950 17.1 .2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 <	6.998	48.98
.2455 .06026 12.2 4.074 16.60 .1380 .01905 17.2 .2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 <	7.079	50.12
.2427 .05888 12.3 4.121 16.98 .1365 .01862 17.3 .2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2138 .04677 13.3 4.624 21.38 .1216 .01479 <	7.161	51.29
.2399 .05754 12.4 4.169 17.38 .1349 .01820 17.4 .2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 <	7.244	52.48
.2371 .05623 12.5 4.217 17.78 .1334 .01778 17.5 .2344 .05495 12.6 4.266 18.20 .1318 .01738 17.6 .2317 .05370 12.7 4.315 18.62 .1303 .01698 17.7 .2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 <	7.328	53.70
.2344	7.413	54.95
.2317	7.499	56.23
.2291 .05248 12.8 4.365 19.05 .1288 .01660 17.8 .2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 <	7.586	57.54
.2265 .05129 12.9 4.416 19.50 .1274 .01622 17.9 .2239 .05012 13.0 4.467 19.95 .1259 .01585 18.0 .2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2045 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03891 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890	7.674 7.762	58.88 60.26
.2239	7.762 7.852	61.66
.2213 .04898 13.1 4.519 20.42 .1245 .01549 18.1 .2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03891 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 <		
.2188 .04786 13.2 4.571 20.89 .1230 .01514 18.2 .2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1928 .03715 14.3 5.188 26.92 .1084 .01175 <	7.943	63.10
.2163 .04677 13.3 4.624 21.38 .1216 .01479 18.3 .2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 <	8.035	64.57
.2138 .04571 13.4 4.677 21.88 .1202 .01445 18.4 .2113 .04467 13.5 4.732 22.39 .1189 .01413 18.5 .2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 <	8.128	66.07
.2113	8.222 8.318	67.61 69.18
.2089 .04365 13.6 4.786 22.91 .1175 .01380 18.6 .2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.414	70.79
.2065 .04266 13.7 4.842 23.44 .1161 .01349 18.7 .2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.511	70.74
.2042 .04169 13.8 4.898 23.99 .1148 .01318 18.8 .2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.610	74.13
.2018 .04074 13.9 4.955 24.55 .1135 .01288 18.9 .1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.710	75.86
.1995 .03981 14.0 5.012 25.12 .1122 .01259 19.0 .1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.811	77.62
.1972 .03890 14.1 5.070 25.70 .1109 .01230 19.1 .1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	8.913	79.43
.1950 .03802 14.2 5.129 26.30 .1096 .01202 19.2 .1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	9.016	81.28
.1928 .03715 14.3 5.188 26.92 .1084 .01175 19.3 .1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	9.120	83.18
.1905 .03631 14.4 5.248 27.54 .1072 .01148 19.4	9.226	85.11
	9.333	87.10
1004 02540 145 5200 2010 1050 01122 105	9.441	89.13
.1884 .03548 14.5 5.309 28.18 .1059 .01122 19.5	9.441	91.20
.1862 .03467 14.6 5.370 28.84 .1047 .01096 19.6		93.33
.1841 .03388 14.7 5.433 29.51 .1035 .01072 19.7	9.661 9.772	95.50
.1820 .03311 14.8 5.495 30.20 .1023 .01047 19.8 .1799 .03236 14.9 5.559 30.90 .1012 .01023 19.9	9.772	97.72
.1799 .03236 14.9 5.559 30.90 .1012 .01023 19.9	10.000	100.00

FINDING DECIBELS WHEN VOLTAGE/CURRENT RATIO IS KNOWN

oltage Ratio	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
1.0	.000	.086	.172	.257	.341	.424	.506	.588	.668	.74
1.1	.828	.906	.984	1.062	1.138	1.214	1.289	1,364	1.438	1.5
1.2	1.584	1.656	1.727	1.798	1.868	1.938	2.007	2.076	2.144	2.2
1.3	2,279	2.345	2.411	2.477	2.542	2.607	2.671	2.734	2.798	2.8
1.4	2.923	2.984	3.046	3.107	3.167	3.227	3.287	3.346	3.405	3.4
1.5	3.522	3.580	3.637	3.694	3.750	3.807	3.862	3.918	3.973	4.0
1.6	4.082	4.137	4.190	4.244	4.297	4.350	4.402	4.454	4.506	4.5
1.7	4.609	4.660	4.711	4.761	4.811	4.861	4.910	4.959	5.008	5.0
1.8	5.105	5.154	5.201	5.249	5.296	5.343	5.390	5.437	5.483	5.5
1.9	5.575	5.62	5.666	5.711	5.756	5.801	5.845	5.889	5.933	5.9
2.0	6.02 i	6.064	6.107	6.150	6.193	6.235	6.277	6.319	6.361	6.4
2.1	6.444	6.486	6.527	6.568	6.608	6.649	6.689	6.729	6.769	6.8
2.2	6.848	6.888	6.927	6.966	7.008	7.044	7.082	7.121	7.159	7.1
2.3	7.235	7.272	7.310	7.347	7.384	7.421	7.458	7.495	7.532	7.5
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.854	7.889	7.9
2.5	7.959	7.993	8.028	8.062	8.097	8.131	8.165	8.199	8.232	8.2
2.6	8.299	8.333	8.366	8.399	8.432	8.465	8.498	8.530	8.563	8.5
2.7	8.627	8.659	8.691	8.723	8.755	8.787	818.8	8.850	8.881	8.9
2.8	8.943	8.974	9.005	9.036	9.066	9.097	9.127	9.158	9.188	9.2
2.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.484	9.5
3.0	9.542	9.571	9.600	9.629	9.657	9.686	9.714	9.743	9.771	9.7
3.1	9.827	9.855	9.883	9.911	9.939	9.966	9.994	10.021	10.049	10.0
3.2	10.103	10.130	10.157	10.184	10.211	10.238	10.264	10.291	10.317	10.3
3.3	10.370	10.397	10.423	10.449	10.475	10.501	10.527	10.553	10.578	10.6
3.4	10.630	10.655	10.681	10.706	10.731	10.756	10.782	10.807	10.832	10.8
3.5	10.881	10.906	10.931	10.955	10.980	11.005	11.029	11.053	11.078	11.1
3.6	11.126	11.150	11.174	11.198	11.222	11.246	11.270	11.293	11.317	11.3
3.7	11.364	11.387	11.411	11.434	11.457	11.481	11.504	11.527	11.550	11.5
3.8 3.9	11.596 11.821	11.618 11.844	11.641 11.866	11.664 11.888	11.687 11.910	11.709 11.932	11.732 11.954	11.754 11.976	11.777 11.998	11.7 12.0
4.0	12.041	12.063 12.277	12.085	12.106 12.319	12.128	12.149	12.171	12.192	12.213	12.2
4.1	12.256		12.298		12.340	12.361	12.382	12.403	12.424	12.4
4.2	12.465	12,486	12.506	12.527	12.547	12.568	12.588	12.609	12.629	12.6
4.3 4.4	12.669 12.869	12.690 12.889	12.710 12.908	12.730 12.928	12.750 12.948	12.770 12.967	12.790 12.987	12.810 13.006	12.829 13.026	12.8 13.0
4.5	13.064									
4.5 4.6	13.064	13.084 13.274	13.103 13.293	3. 22 3.3 2	13.141 13.330	13.160 13.349	13.179 13.368	13.198 13.386	13.217 13.405	13.2 13.4
4.7	13.442	13.460	13.479	13.497	13.516	13.534	13.552	13.570	13.589	13.6
4.8	13.625	13.643	13.661	13.679	13.697	13.715	13.733	13.751	13.768	13.7
4.9	13.804	13.822	13.839	13.857	13.875	13.892	13.910	13.927	13.945	13.9
5.0	13.979	13.997	14.014	14.031	14.049	14.066	14.083	14.100	14.117	14.1
5.1	14.151	14.168	14.185	14.202	14.219	14.236	14.253	14.270	14.287	14.3
5.2	14.320	14.337	14.353	14.370	14.387	14.403	14.420	14.436	14.453	14.4
5.3	14.486	14.502	14.518	14.535	14.551	14.567	14.583	14.599	14.616	14.6
5.4	14.648	14.664	14.680	14.696	14.712	14.728	14.744	14.760	14.776	14.7
5.5	14.807	14.823	14.839	14.855	14.870	14.886	14.902	14.917	14.933	14.9
5.6	14.964	14.979	14.995	15.010	15.026	15.041	15.056	15.072	15.087	15.1
5.7	15.117	15.133	15.148	15.163	15.178	15.193	15.208	15.224	15.239	15.2
5.8	15.269	15.284	15.298	15.313	15.328	15.343	15.358	15.373	15.388	15.4
5.9	15.417	15.432	15.446	15.461	15.476	15.490	15.505	15.519	15.534	15.5
6.0	15.563	15.577	15.592	15.606	15.621	15.635	15.649	15.664	15.678	15.6
6.1	15.707	15.721	15.735	15.749	15.763	15.778	15.792	15.806	15.820	15.8
6.2	15.848	15.862	15.876	15.890	15.904	15.918	15.931	15.945	15.959	15.9
6.3	15.987	16.001	16.014	16.028	16.042	16.055	16.069	16.083	16.096	16.1
6.4	16.124	16.137	16.151	16.164	16.178	16.191	16.205	16.218	16.232	16.24

FINDING DECIBELS WHEN VOLTAGE/CURRENT RATIO IS KNOWN (Continued)

Voltage										
Ratio	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
6.5	16.258	16.272	16.285	16.298	16.312	16.325	16.338	16.351	16.365	16.37
6.6	16.391	16.404	16.417	16.430	16.443	16.456	16,469	16.483	16.496	16.50
6.7	16.521	16.534	16.547	16.560	16.573	16.586	16.599	16.612	16.625	16,63
6.8	16.650	16.663	16.676	16.688	16.701	16.714	16.726	16,739	16.752	16.76
6.9	16.777	16.790	16.802	16.815	16.827	16.840	(6.852	16.865	16.877	16.89
7.0	16.902	16.914	16.927	16.939	16.951	16.964	16.976	16.988	17.001	17,01
7.1	17.025	17.037	17.050	17.062	17.074	17.086	17.098	17.110	17,122	17,13
7.2	17.147	17.159	17.171	17.183	17.195	17.207	17.219	17.231	17.243	17.25
7.3	17.266	17.278	17.290	17.302	17.314	17.326	17.338	17.349	17.361	17.37
7.4	17.385	17.396	17.408	17,420	17.43 I	17.443	17.455	17.466	17.478	17.49
7.5	17.501	17.513	17,524	17.536	17.547	17.559	17.570	17.582	17.593	17.60
7.6	17.616	17.628	17.639	17.650	17.662	17.673	17.685	17.696	17.707	17.71
7.7	17.730	17,741	17.752	17.764	17.775	17.786	17.797	17.808	17.820	17.83
7.8	17.842	17.853	17.864	17.875	17.886	17.897	17.908	17.919	17.931	17.94
7.9	17.953	17.964	17.975	17.985	17.996	18.007	18.018	18.029	18.040	18.05
8.0	18.062	18.073	18.083	18.094	18.105					
8.0 8.1	18.170	18.180	18.083	18.202	18.105	18.116	18.127	18.137	18.148	18.15
8.2	18.170	18.180	18.191	18,202	18.212	18.223 18.329	18.234 18.340	18.244 18.350	18.255 18.361	18.26
8.3	18.382	18.392	18.402	18.413	18.423	18.434	18.340	18.455		
8,4	18.486	18.496	18.506	18.517	18.527	18.537	18.547	18.455	18.465 18.568	18.47
										18.57
8.5	18.588	18.599	18.609	18.619	18.629	18,639	18.649	18.660	18.670	18.68
8.6	18.690	18.700	18.710	18.720	18.730	18.740	18.750	18.760	18.770	18.78
8.7	18.790	18.800	18.810	18.820	18.830	18.840	18.850	18.860	18.870	18.88
8.8	18.890	18.900	18.909	18.919	18.929	18.939	18.949	18.958	18.968	18.97
8.9	18.988	18.998	19.007	19.017	19.027	19.036	19.046	19.056	19.066	19.07
9.0	19.085	19.094	19.104	19.114	19.123	19.133	19.143	19.152	19.162	19.17
9.1	19.181	19.190	19,200	19.209	19.219	19.228	19.238	19.247	19.257	19.22
9.2	19.276	19.285	19.295	19.304	19.313	19.323	19.332	19.342	19.351	19.36
9.3	19.370	19.379	19.388	19.398	19,407	19.416	19.426	19.435	19.444	19.45
9.4	19.463	19.472	19.481	19.490	19.499	19.509	19.518	19.527	19.536	19.54
9.5	19.554	19.564	19.573	19.582	19.591	19.600	19.609	19.618	19.627	19.63
9.6	19.645	19.654	19.664	19.673	19.682	19.691	19.700	19.709	19.718	19.72
9.7	19.735	19.744	19.753	19.762	19.771	19.780	19.789	19.798	19.807	19.81
9.8	19.825	19.833	19.842	19.851	19.860	19.869	19.878	19.886	19,895	19.90
9.9	E19.91	19.921	19.930	19.939	19.948	19.956	19.965	19.974	19.983	19,99
oitage										
Ratio	0	1	2	3	4	<u></u>	6	7	8	9
10	20.000	20.828	21.584	22.279	22.923	23.522	24.082	24.609	25.105	25.57
20	26.021	26.444	26.848	27.235	27.604	27.959	28.299	28.627	28.943	29.24
30	29,542	29.827	30.103	30.370	30.630	30.881	31.126	31.364	31.596	31.82
40	32.041	32.256	32.465	32.669	32.869	33.064	33,255	33.442	33.625	33.80
50	33.979	34.15!	34.320	34.486	34.648	34.807	34.964	35.117	35.269	35.41
60	35.563	35.707	35.848	35.987	36.124	36.258	36.391	36.521	36.650	36.77
70	36.902	37.025	37.147	37.266	37.385	37.501	37.616	37.730	37.842	37.95
80	38.062	38.170	38,276	38.382	38.486	38.588	38.690	38.790	38.890	38.98
90	39.085	39,181	39.276	39.370	39.463	39.554	39.645	39.735	39.825	39.91
100	40.000									

Distance in Miles From an FM Transmitter to Its 54 dbu (0.5 mv/m) Contour For Various Heights and Powers

													•			inc													
	20	113.5	100.5	98.5	96	94	92	06	98	82	83	-8	80	78	75	73.5	71.5	70	89	99	63.5	63	09	22	22	52	48	45	
	18	001	47	9.2	93	06	88	82	82	80	79	77	75	73	71.5	70	47	92	63	60.5	58.5	56.5	22	52	49.5	45.4	42	35.5	
	91	9.2	93	91.5	89	85.5	83	80	78	76	75	71.5	7.1	69.5	47	9	63	61.5	58.5	22	22	23	20	47	43.5	40	35	30	
	4	91.5	06	86.5	84	87.5	78.7	76.5	73.7	72	70	69	29	9	63	61.5	09	28	26	54	52	44	45.5	43	40	35.5	31.5	25	
	12	87	85	82	80	77	75	72	69.5	89	99	9	63	9.19	09	28	26	54.5	52	20	47.5	45	42	38.5	35.5	32	28	21.5	
	2	82	80	77.5	7.5	73	70.5	89	92	64	62.5	9.09	09	28	26	22	52.5	50.5	48	46	43	4	38	35.5	32	28.5	24.5	18.2	
	&	78	75	73	71	69	49	9	61.5	09	58.5	22	55.5	54.5	52.5	50.5	48.5	47	45	42.5	40	38	35	32.5	29.5	26.5	22	91	
	•	73	71	69.5	47	9	62	09	57	55.5	22	53	52	20	48.5	47	45	43	4	38.5	37	35	32	29	27	23.5	61	4	
	4	69.5	4	99	63	09	58.5	55.5	23	52	2	20	48	46.5	45	43	41.7	40	38	35.5	33.5	52	28.7	27	24.5	2 1	17.5	12.5	
	7	9	63	9.09	58.5	26	54.5	25	20	48.5	47.5	45.5	44	43	41.5	40	38	36.5	34.5	32.5	30.5	28.5	26.5	24	22	18.5	15.5	10.7	
	0	09	58.5	56.5	54.5	52	50.5	48	45.5	45	43	42	40.5	39.5	38	36	35	33	31.2	29.6	28	26	24	22	61	17	13.7	6	
ver in	-2	22	53.5	52	20	48.5	46	44.5	42	40.5	40	38	36.5	35.5	34.5	32.5	3 –	30	28	27	25	23	21.5	61	17.5	12	12	8.2	
Po	4	51.5	20	48	45.5	44.5	42	40	38	37.5	36	35	33	32	30.5	30	28	26.5	25.5	24.5	22	21	61	17.5	91	13.5	=	7.4	
	9-	47.5	45	43	42	40	38.5	36.5	32	33.5	32.5	31.5	30	28.5	28	27	25.5	24.5	23	21.5	20	18.5	17.5	91	4	12	6	9.9	
	8	42	40.5	40	38	36	32	32.5	3.	30	29	28	27	26.5	25	23.5	23	21.5	20.5	19.5	8-	17	15.5	4	12.5	10.5	8.2	5.8	
	01-	38	37	35	33.5	32	=	29	28	27	26.5	25	24.5	23.5	22	21.5	20.5	19.5	18.5	18	16.5	15.5	4	12.5	=	8.7	7.3	5.2	
	-12	34	32.5	31.5	30	29	28	26.5	25	24.5	23	22.5	21.5	2	20	61	18.5	17.5	11	91	12	13.5	12	=	8.5	80	6.5	4.6	
	-14	30	29	28	27	25.5	24.5	23	22	21.5	20.5	20	61	18.5	<u>8</u>	17	16.5	15.5	15	4	13	12	=	6	8.3	7.2	5.7	4.	
	-16	26.5	25	24.5	23	22	21.5	50	61	18.5	<u>8</u>	17.5	17	16.5	91	15.5	14.5	13.5	_3	12	1.5	10.5	6	8.2	7.3	6.5	5.2	3.7	
	-18	23	22	21.5	20.5	20	61	18.2	17.4	11	16	5.5	- 2	14.6	4	13.4	13	12	11.5	10.5	9.2	8.7	80	7.3	9.9	5.7	4.6	3.2	
	-20	20	61	18.5	<u>∞</u>	17.5	17	9 !	2	2	4 ;	13.5	<u> </u>	12.5	12	1.5	=	0	9.1	8.7	8.2	7.7	7.2	6.5	2.8	2	4	2.8	
HAAT	ë F	3400	3200	3000	2800	2600	2400	2200	2000	0061	1800	1700	0091	1500	1400	1300	1200	1100	0001	006	800	700	009	200	400	300	200	00	
	Power in dbk	-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18	—20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 23 26.5 30 34 38 42 47.5 51.5 55 60 65 69.5 73 78 82 87 91.5 95 100 10	-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 23 26.5 30 34 38 42 47.5 51.5 55 60 65 69.5 73 78 82 87 91.5 95 100 1 19 22 25 29 32.5 37 40.5 45 50 53.5 58.5 63 67 71 75 80 85 90 93 97 1	Power in dbk -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 23 26.5 30 34 38 42 47.5 51.5 55 60 65 69.5 73 78 82 87 91.5 95 100 1 19 22 25 29 32.5 37 40.5 45 50 53.5 58.5 65 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5	20 23 26.5 30 34 38 42 47.5 51.5 58 60 65 69.5 73 78 82 87 91.5 95 100 1 18.5 21.5 24.5 28 31.5 35 40 43 48 52 56.5 60 67 71 75 80 84 89 93	20 23 26.5 30 34 38 42 47.5 51.5 56 60.5 67.5 73 78 82 87 91.5 95 100 11 18.5 21.5 24.5 28 31.5 36 40 43 48 52 56.5 60.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67	-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 18 18 20.5 23 24.5 28 31 38 42 47.5 51.5 56 60.5 67.5 67.5 71 75 82 86.5 91.5 95 117.5 20. 22 25.5 29 32.5 38 42 45.5 50 54.5 58.5 60.5 65 69.5 73 77.5 82 86.5 91.5 95 117.5 20. 22 25.5 29 32.5 38 42 42.5 45.5 50 54.5 58.5 63 67 71 75 80 84 89 93 117.5 20.5 23 27 30 33.5 38 42 45.5 50 54.5 58.5 60 65 69 67 71 75 80 84 89 93 117.5 20.5 22 25.5 29 32.5 38 38 42 44.5 48.5 52 56.5 60 65 69 67 71 75 80 84 89 93 117.5 20 22 25.5 29 31.5 38 31.5 38 42 44.5 48.5 52 56 60 65 69 67 73 77.5 81.5 85.5 90 17.5 81.5 81.5 81.5 81.5 81.5 81.5 81.5 81	Power in dbk 20	Fower in dbk 20 218 26.5 30 34 38 42 47.5 51.5 55 60 65 69.5 73 78 82 87 91.5 95 100 11 818 20.5 24.5 28 31.5 35 40 43 48 52 56.5 60.5 65 69.5 73 77.5 82 80.8 89.9 93 17.5 80 82.5 91.5 95 11.5 20.5 23 24.5 28 31.5 35 40 44.5 48.5 52 56.5 60.5 65 60.5 65 60.5 65 60.5 65 60.5 65 60.5 65 60.5 65 60.5 65 60.5 60.	20 18 16 14 12 14 12 14 16 17 14 16 18 20 23 2.6.5 30 34 38 42 47.5 51.5 55 60 65 69.5 73 78 82 87 91.5 97 10 18 18 18 18 42 47.5 51.5 58.5 60.5 69.5 73 78 82 87 91.5 97 19 18 18 18 42 47.5 51.5 58.5 60.5 69.5 73 77.5 82 86.5 91.5 97 19 18 20.5 23.5 40.5 48.5 58.5 60.5 69.5 73 77.5 82 86.5 91.5 95 11 18 18 40 44.5 48.5 58.5 60.5 69.5 69.5 73 77.5 82 86.5 90.5 93 94.5 <th>Power in dbk 20</th> <th>Fower in dbk —20 —18 —16 —14 —12 —10 —8 —6 —4 —2 —0 2 4 6 8 10 12 14 16 18 20 23 26.5 30 34 38 42 47.5 51.5 58.6 60 65 69.5 73 77.5 82 86.5 91.5 95 10 11 81.5 21.5 24.5 28 31.5 35 40 43 48 52 56.5 60.5 65 69.5 73 77.5 82 86.5 91.5 95 11 82 20.5 23 24.5 28 31.5 38 42 45 50 54.5 58.5 63 67 71 75 80 84 89 93 11 83 20.5 23 24.5 28 31.5 38 42 45.5 50 54.5 58.5 63 67 71 75 80 84 89 93 11 84 20.5 24.5 28 31.5 38 42 44.5 48.5 52 56.5 60 65 69 73 77.5 82 86.5 90 84 89 93 11 85 20.5 24.5 28 31 35 38.5 40 44.5 48.5 52 56.5 60 65 69 73 77.5 82 86.5 90 84 89 89 89 11 86 20.5 24.5 28 31 35 38.5 40 44.5 48.5 52 56.5 60 65 69 73 70.5 75 78.7 81.5 82 88 89 89 89 89 89 89 89 89 89 89 89 89</th> <th>Fower in dbk -20</th> <th> 20</th> <th> 20</th> <th>Power in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control</th> <th> Power in Power in</th> <th> Park /th> <th> Power in Power in</th> <th>-20 -18 -16 -14 -12 -10 -8 -4 -2 0 2 4 6 8 10 12 14 16 18 18 18 19 12 14 16 18 18 18 19 12 14 16 18 18 18 19 12 14 15 18 18 18 18 19 12 14 16 18 18 18 18 18 18 18</th> <th>-20 -18 -16 -17 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 18 18 18 18 18 18 18 18 18 19 12 14 16 18 18 18 18 19 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18</th> <th> 1. 1. 1. 1. 1. 1. 1. 1.</th> <th>-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 18 -10 12 14 15 18 18 -10 12 14 15 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19</th> <th> 1. 1. 1. 1. 1. 1. 1. 1.</th> <th> 1. 1. 1. 1. 1. 1. 1. 1.</th> <th> 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</th> <th> 1. 1. 1. 1. 1. 1. 1. 1.</th> <th> 10 10 11 11 12 13 14 15 14 15 14 15 15 15</th>	Power in dbk 20	Fower in dbk —20 —18 —16 —14 —12 —10 —8 —6 —4 —2 —0 2 4 6 8 10 12 14 16 18 20 23 26.5 30 34 38 42 47.5 51.5 58.6 60 65 69.5 73 77.5 82 86.5 91.5 95 10 11 81.5 21.5 24.5 28 31.5 35 40 43 48 52 56.5 60.5 65 69.5 73 77.5 82 86.5 91.5 95 11 82 20.5 23 24.5 28 31.5 38 42 45 50 54.5 58.5 63 67 71 75 80 84 89 93 11 83 20.5 23 24.5 28 31.5 38 42 45.5 50 54.5 58.5 63 67 71 75 80 84 89 93 11 84 20.5 24.5 28 31.5 38 42 44.5 48.5 52 56.5 60 65 69 73 77.5 82 86.5 90 84 89 93 11 85 20.5 24.5 28 31 35 38.5 40 44.5 48.5 52 56.5 60 65 69 73 77.5 82 86.5 90 84 89 89 89 11 86 20.5 24.5 28 31 35 38.5 40 44.5 48.5 52 56.5 60 65 69 73 70.5 75 78.7 81.5 82 88 89 89 89 89 89 89 89 89 89 89 89 89	Fower in dbk -20	20	20	Power in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in	Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park Park	Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in Power in	-20 -18 -16 -14 -12 -10 -8 -4 -2 0 2 4 6 8 10 12 14 16 18 18 18 19 12 14 16 18 18 18 19 12 14 16 18 18 18 19 12 14 15 18 18 18 18 19 12 14 16 18 18 18 18 18 18 18	-20 -18 -16 -17 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 18 18 18 18 18 18 18 18 18 19 12 14 16 18 18 18 18 19 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	1. 1. 1. 1. 1. 1. 1. 1.	-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 18 -10 12 14 15 18 18 -10 12 14 15 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1. 1. 1. 1. 1. 1. 1. 1.	1. 1. 1. 1. 1. 1. 1. 1.	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1. 1. 1. 1. 1. 1. 1. 1.	10 10 11 11 12 13 14 15 14 15 14 15 15 15

Distance in Miles From an FM Transmitter to Its 60 dbu (1 Mv/m) Contour For Various Heights and Powers

												<u> </u>		_																			
	20	99	92	9	9	99	99	9	64	62	19	09	28	27	22	54	52	20	44	47	45	45	40	37	36	35	33	30	28	26	24	20	
	18	9	9	9	99	64	64	62	60.5	59.5	29	57.5	22	54	25	2	44	47	45.5	44	41.5	39	36.5	35	33	31.5	30	28	26	24	2	18.	
	16	92	9	92	64	63	19	59.5	57.5	55.5	22	23	51.5	50.1	48.5	47.5	46	44.5	43	40.5	39	36	35	31.5	30	29	27.5	25.5	24	21.5	61	16.2	
	14	9	64	64	62	09	59	56.5	54	52.5	51.5	20	44	47	46	45	44	4	40	38	36	33	32	29.5	28	26.5	25	23	21.5	19.5	17.0	14.5	
	12	49	62	09	29	28	22	52	50.5	49.5	48.5	46.5	45	44	43	41.5	40	38	36.5	35	33	3.1	29	27	25.4	24.5	23	2.1	61	17.5	15.2	12.9	
	01	09	59	57	22	53	2	44	46.5	45.5	44.5	43	42	40.5	40	39	37.5	35	34	32	30	28.5	26	24.5	23.0	21.5	20.2	61	17.8	15.5	14.0	11.3	
	∞	57	55	53	21	49.5	47.5	45.5	44	43.5	43	40	39	38	36	35	34	32	31	29	27.5	26	24	22	20.5	19.8	18.5	11	15.8	4	12	0	
	•	52	50.5	49.5	48	46	4	42	40	39	38.5	37	35.5	35	33	32.5	3.1	29.5	28	26	25	24	21.5	20	19.0	17.8	16.8	15.6	14.0	12.5	8.01	6	
	4	49	47	45	44	42	40	39	37	35.5	35	33	32.5	31.5	30	29	28	26.5	25.5	24.5	23	21	19.7	17.9	17.0	91	12	4	12.5	11.3	4.7	8.3	
	7	45	42.5	4	40	39	37	32	33.5	33	31.5	30	29.5	28.5	27.5	26.5	25.5	24.5	23	2	20.5	19.2	8	1.91	15.2	14.5	14.0	12.6	9.01	0	8.8	7.4	
dbk	0	40.5	39	38	36	35	34	32	30	29.5	29	28	26.5	26	2.5	24	23	22	21	20	18.5	17	91	14.5	14.0	12.5	0.1	10.5	6.6	6	7.9	6.5	
Power in	-2	37	35	34	33	32	30.5	29	28	27	25.5	25	24	23	22	21.5	2	20	61	8	17	91	14.5	13.2	12.5	8.1.	10.3	01	8.9	8.1	7.1	5.9	
Pov	4	34	32	3	30	29	28	26	25	24.5	23.5	22.5	21.5	2 ا	20	61	8	17.1	17	16.4	15.2	4	12.3	12	10.5	01	9.5	8.8	8.0	7.4	6.4	5.2	
	9-	30	28.5	28	26.5	25.5	24.5	23.5	22	21.5	20.5	20	19.2	18.6	18	17.5	17	91	15.6	14.5	13.5	13	8.1.	01	9.6	6	8.6	œ	7.3	9.9	5.7	4.7	
	8	27	25	24.5	24	22.5	21.5	20.5	20	61	8	17.3	17.1	16.9	16.2	15.5	15	14.5	4	13	12	10.5	9.8	6	8.6	8.2	7.8	7.2	6.7	5.9	5.0	4.	
	-10	22.5	22	21.5	20.5	20	61	<u>∞</u>	11	16.5	91	15.5	12	14.9	4	13.8	3	12.5	12	11.2	10.3	4.7	6	8.2	7.8	7.4	7.0	6.3	5.9	5.1	4.5	3.8	
	-12	20	19.5	61	8_	11	9	15.5	15	14.5	4	13.8	13.2	13	12.5	12	1.5	Ξ	10.2	7.6	9.2	8.6	80	7.3	7.0	9.9	1.9	5.7	5.1	4.7	4.0	3.2	
	41 –	17.5	16.5	91	15.7	2	4	13.5	13.1	12.7	12.6	9.11	11.5	4.	11.2	10.5	01	9.5	6	8.8	8.2	7.8	7.1	9.9	6.2	5.9	5.3	2	4.6	4.	3.6	2.9	
	-16	5	14.5	4	13.5	13	12.8	12	11.7	11.2	=	10.5	10.3	01	7.6	9.3	6	8.5	œ	7.8	7.3	7	6.5	5.8	5.5	5.	8.4	4.5	4.0	3.7	3.2	2.7	
	<u>8</u> 1	-33	12.2	12	8	1.5	=	10.8	10.2	0	4.7	9.2	6	6	9.8	8.2	7.8	7.6	7.2	8.9	9.9	6.2	2.7	2	4.8	4.6	4.2	4	3.7	3.3	2.8	2.3	
	-20	=	=	10.5	0	4.7	4.4	9.2	6	8.7	8.5	8.3	 	80	7.5	7.3	7	8.9	4.9	6.2	5.8	5.4	2	4.6	4.2	4	3.8	3.6	3.2	2.9	2.5	2	
AHAAT	£ .s	3400	3200	3000	2800	2600	2400	2200	2000	0061	1800	1700	1600	1500	1400	1300	1200	1100	1000	006	800	700	009	200	450	400	350	300	250	200	150	001	

Distance in Miles From an FM Transmitter to Its 80 dbu (10 mv/m) Contour For Various Heights and Powers

		20	46.5	45		41.5																								
		28				38																	_	_	-	_	B.2			
		91				34															16.5		_	12,5	_	8.9				
		4				30																				7.8				
		12				26.5																								
		0.				23																					5.2			
		ю	23	22	21.5	20	6 6	-8	17.5	17	16.5	15,5	- 2	14.5	4	<u></u>	12.5	11.5	Ξ	10.5	9.3	8.8	œ	7.5	6.7	5,8	4.7	3.3		
		9	20	6	18.5	2 8	7.7	16.5	- 2	14.8	14.5	4	13.5	13	12	11.5	=	10.2	9.2	8.8	8.3	7.8	7.2	6.7	6.0	5.0	4.2	3.0		
		4	18	17	11	9 1		14.5	13.5	<u>.</u>	12.5	12	1 1.8	=	10.5	0	9.2	8.7	8.2	7.8	7.4	7.0	6.5	9	5.2	4.5	3.8	2.7		
<u>بد</u>		2	12	15	14.5	4 .	12.5	17	5.	=	10.5	0	9.2	9.0	8.7	8.3	89	7.8	7.2	7.0	6.7	6.3	5.8	5.2	4.7	4	3,3	2.3		
in dbk		٥	12.5	13	1.5		10.5	0	6	6	8.7	8.4	8.1	8.0	7.7	7.4	7.1	6.8	4.4	6.2	6.0	5.5	5.0	4.6	4.1	3.6	3.0	2.0		
Power in		-2	6	8.8	8.5	4. 6	. 6	- ∞	7.8	7.7	7.6	7.3	7.0	7.0	6.7	6.4	6.2	9	5.8	5.6	5.1	4.8	4.5	4	3.7	3.2	2.6	6.		
A.		4	7.3	7.3	7.1	7.1	7.0	6.8	6.7	6.6	6.3	6.1	9	5.9	5.7	5.6	5.4	5.2	2	4.8	4.6	4.2	3.8	3.6	3.2	2.8	2.3	1.7		
		9	6.0	6.0	9.0	5.9	9.0	5.6	5.4	5.3	5,3	5.2	5.	5.0	5.0	4.8	4.7	4.6	4.4	4.2	3.9	3.7	3,4	3.2	2.8	2.6	2	<u> </u>		
		8	4.8	4.8	4,8	8. 1.	4.7	4.7	4.6	4.6	4.5	4.4	4.3	4.2	4.2	4.	4.0	3.9	3.8	3.7	3.4	3.2	3.0	2.8	2.6	2.2	. 8	1.3		
		-10	4.0	4.0	4,0	0.4) 6. 6.	3.8	3,8	3.7	3.7	3.6	3.6	3.6	3.5	3.4	3,3	3.2	3.1	m	2.9	2.8	2.7	2.5	2.2	6.1	1.7	1.2		
		_12	3.2	3.2		3.2	3.2	3.2	3.	3.0	3.0	2.9	2.9	2.8	2.8	2,7	2.7	2.7	2.6	2.6	2,5	2.4	2.3	2.1	2.0	<u>1</u> .8	7.5	0.		
		41-	2.6	2,6	2.6	2.5	2.5	2,5	2.5	2.5	2.5	2.4	2.3	2.3	2.3	2.2	2.2	2.2	2.2	2,1	2.1	2.0	6.1		1.7	1.5	1.3	0.9		
		-16	2.1	2.1	2.1	2.1	2.1	2.1	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	7.8	H. H.	8.	1.7			1.7	9.	1.5	1,3	1,2	0.8		
		18	<u>~</u>	8.	8.1	- -		- es:	1.8	1.8	<u>-</u>	1.8	1.7	1.7	1.7	1.7	1.7	1.7	9.1	9.1	5.	1.5	4-	4.		1.2	0.1	9.0		
		-20	1.3	1.3	1.3		<u> </u>	<u></u>	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1,2	1.2	1,2	1.2	2	0.1	0.9	8.0	0.5		
	AHAAT	ë E	3400	3200	3000	2800	2400	2200	2000	1900	1800	1700	0091	1500	1400	1300	1200	00 1	1000	900	800	700	009	200	400	300	200	001		

CONVERSION TABLE FOR UNITS OF LENGTH

KILOMETERS	1013	10%	3.937 × 10 ⁷	3.937 × 10 ⁴	3.281 × 10³	6.214 × 10 ⁻¹	90 I	s01	-
MILLIMETERS CENTIMETERS	108	104	3.937 × 10 ²	3.937 × 10 ⁻¹	3.281 × 10 ⁻²	6.214 × 10 ⁻⁶	01	_	s—01
MILLIMETERS	107	103	3.937 × 10	3.937 × 10 ⁻²	3.281 × 10 ⁻³	6.214 × 10 ⁻⁷		0.1	9-01
MILES	1.609 × 10 ¹³	1.609 × 10°	6.336 × 107	6.336 × 10⁴	5.280 × 10 ³		1.609 × 106	1.609 × 10 ⁵	1.609
FEET	3.048 × 10°	3.048 × 10 ⁵	1.2 × 10 ⁴	12	_	1.894 × 10 ⁻⁴	3.048 × 10²	3.048 × 10	3.048 × 10 ⁻⁴
INCHES	2.540 × 108	2.540 × 10 ⁴	103	_	8.333 × 10-2	1.578 × 10 ⁻⁵	2.540 × 10	2.540	2.540 × 10 ⁻⁵
MILS	2.540 × 10 ⁵	2.540 × 10	_	10-3	8.333 × 10-5	1.578 × 10-8	2.540 × 10-2	2.540 × 10-3	2.540 × 10-8
MICRONS	104	-	3.937 × 10-2	3.937 × 10-5	3.281 × 10-6	6.214 × 10-10	10-3	10-4	6-01
ANGSTROMS	_	10-4	3.937 × 10 ⁻⁶	3.937 × 10-°	3.281 × 10 ⁻¹⁰	6.214 × 10 ⁻¹⁴	10-7	10-8	10-13
MULTIPLY NUMBER OF BY TO OBTAIN NUMBER OF	ANGSTROMS	MICRONS	MILS	INCHES	FEET	MILES	MILLIMETERS	CENTIMETERS	KILOMETERS

SYMBOLS AND PREFIXES

		100	1	1.6	
ac	alternating current	ISO	International Standards	uhf	ultra-high frequency
af	audio frequency		Organization	v	velocity
AFC	automatic frequency	<i>J</i>	V — [v	volt
	control	k	kilo (10³)	va	voltampere
a-m	amplitude modulation	kg	kilogram	vhf	very high frequency
amp	ampere	kva	kilovolt ampere	vlf	very low frequency
ASA	American Standards	kw	kilowatt	vol	volume
	Association	L	inductance	vs	versus
ASTM	American Society for	lab	laboratory	w	watt _.
	Testing Materials	lb.	pound	X	reactance
AVC	automatic volume control	LC	inductance-capacitance	Y	admittance
ave	average	lf	low frequency	Z	impedance
B_{-}	susceptance	log	logarithm	α	short-circuit forward
BCD	binary-coded decimal	m	mass		current-transfer ratio
C	capacitance	m	meter; milli (10 ⁻³)	_	(common base)
C	Centigrade, degrees	ma	milliampere	$oldsymbol{eta}$	short-circuit forward
	Centigrade	max	maximum		current-transfer ratio
cm	centimeter	mbar	millibar	_	(common emitter)
COD	cash on delivery	Mc	megacycles per second	${ m L}$	reflection coefficient
cps	cycles per second	mh	millihenry	Δ	increment
cw	continuous wave	mil	0.001 inch	δ	loss angle
D	dissipation factor	min	minimum; minute	θ	phase angle
$^{\mathrm{db}}$	decibel	mm	millimeter	λ	wavelength
$_{ m dbm}$	decibel referred to one	mmho	millimho	μ	micro- (10 ⁻⁶)
	milliwatt	$m\Omega$	milliohm	μa	microampere
$_{ m dc}$	direct current	$\mathrm{M}\Omega$	megohm	$\mu { m bar}$	microbar
E	voltage	$MM\Omega$	megamegohm	μf	microfarad
EIA	Electronics Industries	mv	millivolt	$\mu \mathbf{h}$	microhenry
	Association	mw	milliwatt	μsec	microsecond
emſ	electromotive force	n	nano (10 ⁻⁹); any	μv	microvolt
F	Fahrenheit, degrees		number	Ω	ohm
	Fahrenheit	nsec	nanosecond	Ω	mho
f	farad	n℧	nanomho	w	angular velocity $(2\pi f)$
f	frequency	OZ	ounce		
ſm	frequency modulation	p	parallel, as L_p		
f.o.b.	free on board	PF	power factor		
G	conductance	pf	picofarad		
g	gravitation constant	PН	hydrogen in		
$^{ m g}_{ m Gc}$	gigacycles per second		concentration		
g_m	transconductance	pp	push-pull; pages	DDEEL	VEC
Й	henry	ppm	parts per million	PREFI	YES
h_f	forward current-transfer	p-to-p	peak-to-peak	Orders	of magnitude from 10^{12} to
	ratio	prf	pulse repetition	10-18	are designated by the fol-
h_i	short-circuit input		frequency	lowing	prefixes:
	impedance	Q R	quality factor		
/	open-circuit output	R	resistance	Order	Prefix Symbol
	admittance	®	registered trademark	I O 12	tera T
h_r	reverse voltage-transfer	RC	resistance-capacitance	109	giga G
	ratio	re	referred to	106	mega M
I	current	rf	radio frequency	103	kilo k
1EC	International	RH	relative humidity	I 0 ²	hecto h
	Electrotechnical	rms	root-mean-square	10	deka da
	Commission	rpm	revolutions per minute	10-1	deci d
IEEE	Institute of Electrical	х.	series, as L_s	10-2	centi c
	and Electronics	sec	second	10-3	milli m
	Engineers	sync	synchronous,	10-6	micro μ
i-f	intermediate frequency	-	synchronizing	10-9	nano n
in.	inch	T	period	10-12	
IRE	Institute of Radio	t	temperature	1015	F
	Engineers	t	time	10-18	
	-				

FREQUENCY DESIGNATION OF FM BROADCAST CHANNELS

Freq. Channel (Mc): No. 88.1 .201 88.3 .202 88.5 .203 88.7 .204 88.9 .205	Freq. Channel (Mc): No. 94.9235 95.1236 95.3237 95.5238 95.7239	Freq. Channel (Mc): No. 101.5 268 101.7 269 101.9 270 102.1 271 102.3 272
89.1 206 89.3 207 89.5 208 89.7 209 89.9 210	95.9 240 96.1 241 96.3 242 96.5 243 96.7 244	102.5 273 102.7 274 102.9 275 103.1 276 103.3 277
90.1 211 90.3 212 90.5 213 90.7 214 90.9 215	96.9 245 97.1 246 97.3 247 97.5 248 97.7 249	103.5 278 103.7 279 103.9 280 104.1 281 104.3 282
91.1	97.9250 98.1251 98.3252 98.5253 98.7254	104.5 283 104.7 284 104.9 285 105.1 286 105.3 287
92.1	98.9 255 99.1 256 99.3 257 99.5 258 99.7 259	105.5 288 105.7 289 105.9 290 106.1 291 106.3 292
93.1 226 93.3 227 93.5 228 93.7 229 93.9 230	99.9. 260 100.1. 261 100.3. 262 100.5 263 100.7. 264	106.5 293 106.7 294 106.9 295 107.1 296 107.3 297
94.1231 94.3232 94.5233 94.7234	100.9 265 101.1 266 101.3 267	107.5298 107.7299 107.9300

CHANNELS AVAILABLE FOR ASSIGNMENT TO NONCOMMERCIAL EDUCATIONAL FM STATIONS

Freq Channel (Mc): No.		Freq. Channel (Mc): No.
88.1201	89.5208	90.9
88.3202	89.7209	91.1
88.5203	89.9210	91.3217
88.7 204	90.1211	91.5 218
88.9205	90.3212	91.7219
89.11 206	90.5213	91.9 220
89.3207	90.7	

^{&#}x27; The frequency 89.1 Mc in the New York City metropolitan area is reserved for the use of the United Nations.

CONVERT ELECTRICAL DEGREES TO FEET, OR VICE VERSA WHEN FREQUENCY AND EITHER FEET OR DEGREES IS KNOWN

From the expression

$$\text{Feet} = \frac{\text{degrees}}{360^{\circ}} \times \frac{300}{\text{f(Mc)}} \times 3.281 = \text{degrees} \times \frac{2.734}{\text{f(Mc)}}$$

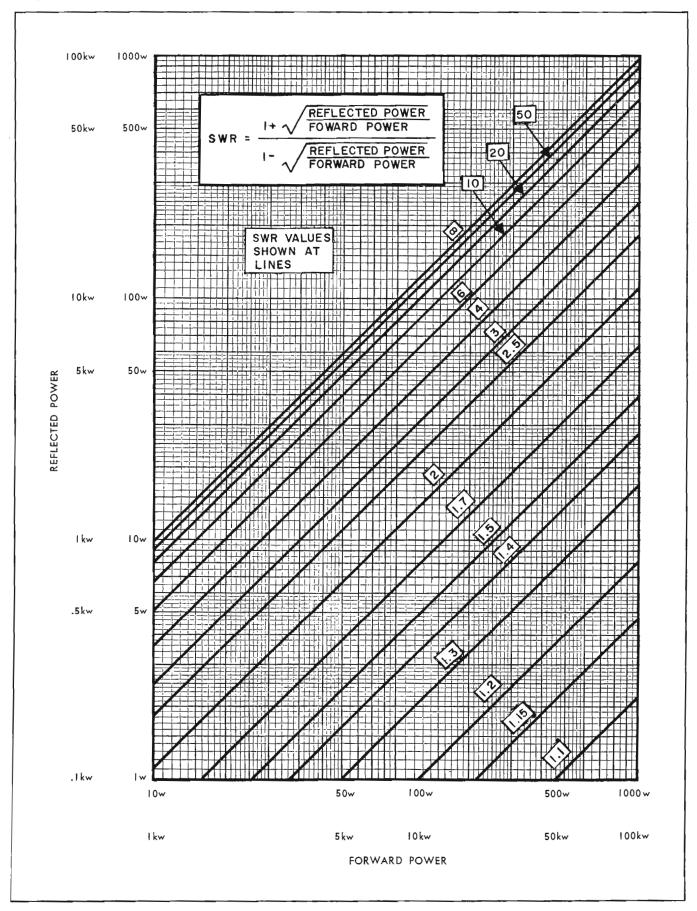
The following ratio may be set up on the slide rule using C and D scales:

$$\frac{2.734}{f(Mc)} = \frac{feet}{degrees}$$

Set 2.734 on scale C over frequency in megacycles on scale D; read feet and degrees on scales C and D, respectively. In some instances it may be convenient to use the folded scales CF and DF.

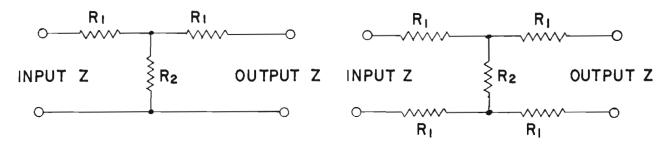
METRIC CONVERSION

To convert pounds to kilograms, multiply by .4536 To convert inches to centimeters, multiply by 2.54

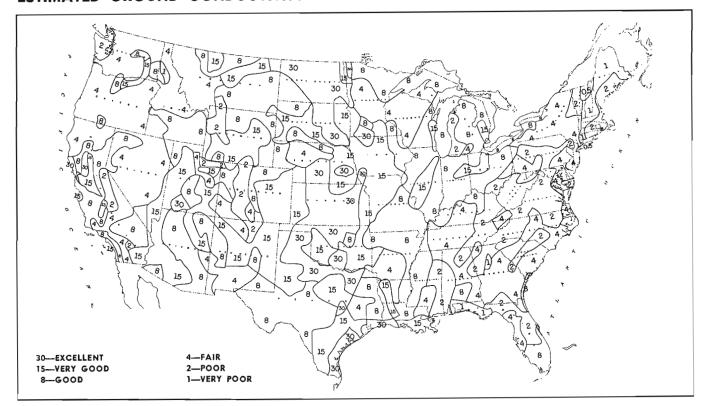

TELEPHONE CABLE COLOR CODE

Pair No.	Color	Mate
I	Blue	White
2	Orange	White
3	Green	White
3 4	Brown	White
5	Slate	White
6	Blue White	White
7	Blue Orange	White
8	Blue Green	White
9	Blue Brown	White
10	Blue Slate	White
11	Orange White	White
12	Orange Green	White
13	Orange Brown	White
14	Orange Slate	White
15	Green White	White
16	Green Brown	White
17	Green Slate	White
18	Brown White	White
19	Brown Slate	White
20	Slate White	White
21	Blue	Red
21		Red
23	Orange	
23	Green	Red
	Brown	Red Red
25	Slate	
26	Blue White	Red
27	Blue Orange	Red
28	Blue Green	Red
29	Blue Brown	Red
30	Blue Slate	Red
31	Orange White	Red
32	Orange Green	Red
33	Orange Brown	Red
34	Orange Slate	Red
35	Green White	Red
36 37	Green Brown Green Slate	Red
38		Red Red
38	Brown White Brown Slate	
40	Slate White	Red Red
41	Blue	Black
42		Black
	Orange Crass	
43	Green	Black
44 45	Brown	Black
	Slate	Black
46	Blue White	Black
47	Blue Orange	Black
48	Blue Green	Black
49	Blue Brown	Black
50	Blue Slate	Black
OTE—The	last pair in all cables is a Red	with W

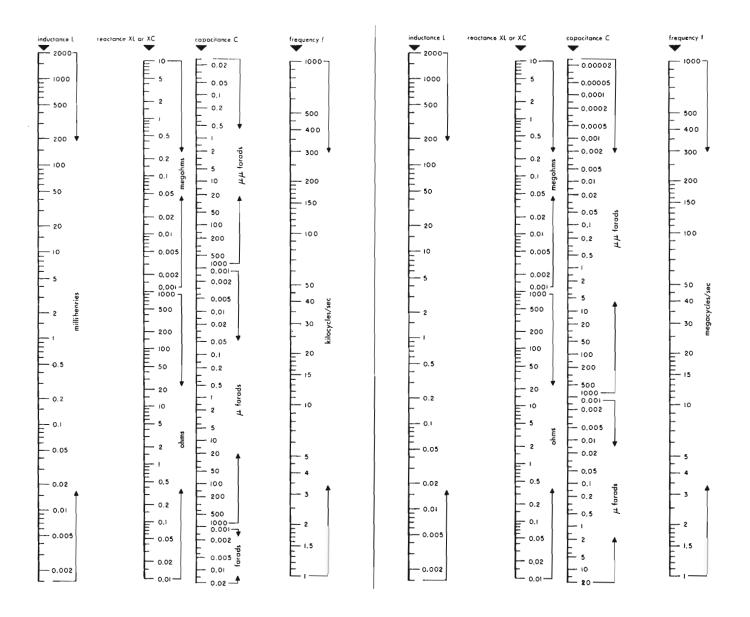
NOTE—The last pair in all cables is a Red with White mate, viz.


	indio, via.				
6-pair	cable	6th	pair	Red	White
11-pair	cable	lith	pair	Red	White
16-pair	cable	16th	раіг	Red	White
26-pair	cable	26th	pair	Red	White
51-pair	cable	51st	pair	Red	White

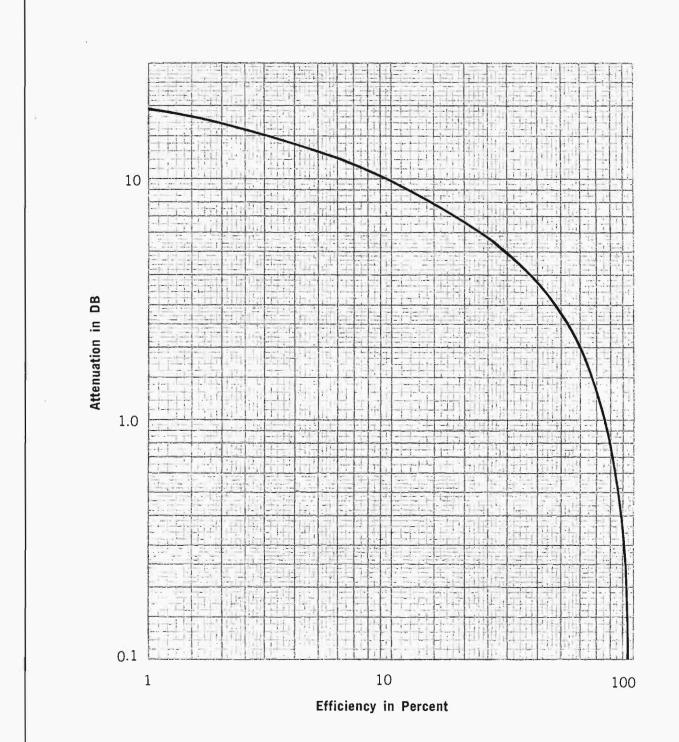
FORWARD VS. REFLECTED POWER


ATTENUATOR NETWORK

Input and Output Z.=600 ohms

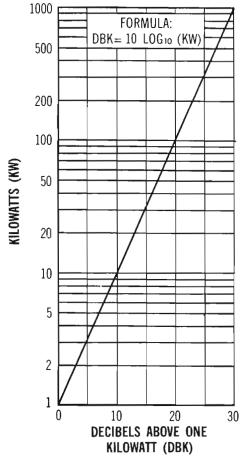


DB			DB			Ī	DB			DB		
LOSS	R_1	R_2	LOSS	R_i	R_2		LOSS	R_1	R_2	LOSS	$\mathbf{R_i}$	R_2
0.5	17.2	10464	16	435.8	195.1]	0.5	8.6	10464	16	217.9	195.1
1	34.5	5208	17	451.5	172.9	ı	1	17.25	5208	17	225.7	172.9
2	68.8	2582	18	465.8	152.5	1	2	34.4	2582	18	232.9	152.5
3	102.7	1703	19	479.0	136.4	1	3	51.3	1703	19	239.5	136.4
4	135.8	1249	20	490.4	121.2	П	4	67.9	1249	20	245.2	121.2
5	168.1	987.6	22	511.7	95.9	1	5	84.1	987.6	22	255.9	95.9
6	199.3	803.4	24	528.8	76.0		6	99.7	803.4	24	264.4	76.0
7	229.7	685.2	26	542.7	60.3	П	7	114.8	685.2	26	271.4	60.3
8	258.4	567.6	28	541.1	47.8	П	8	129.2	567.6	28	277.0	47.8
9	285.8	487.2	30	563.0	38.0		9	142.9	487.2	30	281.6	38.0
10	312.0	421.6	32	570.6	30.2		10	156.0	421.6	32	285.3	30.2
11	336.1	367.4	34	576.5	24.0		11	168.1	367.4	34	288.3	24.0
12	359.1	321.7	36	581.1	19.0		12	179.5	321.7	36	290.6	19.0
13	380.5	282.8	38	585.1	15.1		13	190.3	282.8	38	292.5	15.1
14	400.4	249.4	40	588.1	12.0		14	200.2	249.4	40	294.1	12.0
15	418.8	220.4					15	209.4	220.4			

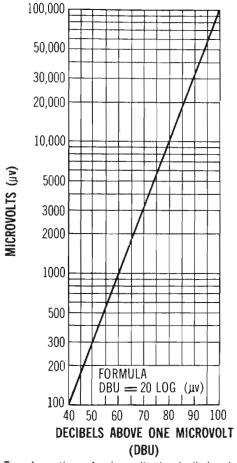

ESTIMATED GROUND CONDUCTIVITY

REACTANCE CHART

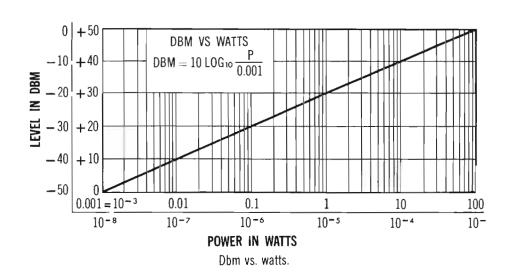
	DECIMAL EQUIVALE	NTS OF FRACTIONS	
1/16	9/3228125 5/163125	17/32	
3/32		19/32	•
5/32	13/32	21/32 .65625 11/16 .6875	29/3290625 15/169375
7/32 .21875	15/32 .46875 1/2 .5		•



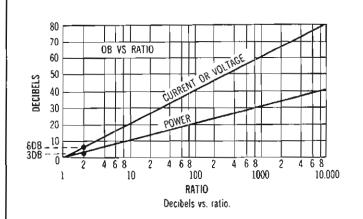
DETERMINATION OF OVERALL TRANSMISSION LINE EFFICIENCY

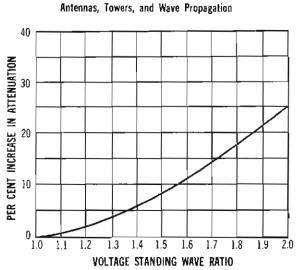

To obtain total loss in a given transmission line, multiply the attenuation in db per 100 ft. by the number of 100 foot lengths of line to be used. By referring to the curve on this page, the overall transmission efficiency may be determined.

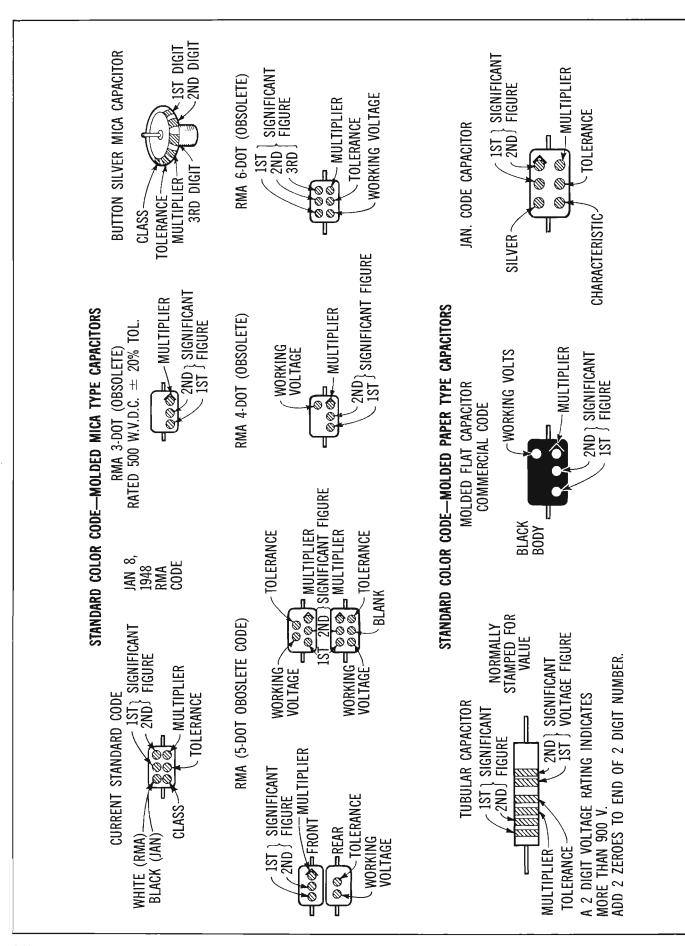
STATION LAYOUTS



Transformation of kilowatts to decibels above 1 kw.




Transformation of microvolts to decibels above 1 µv.


Volume Level to Power and Voltage Conversion					
Reference Level					
0 dbm = 1 mw, 600 ohms					

Milliwatts	Volts	Dbm
0.000001	0.0007746	- 6 0
0.000010	0.002449	— 50
0.000100	0.007746	<u> </u>
0.001	0.02449	30
0.010	0.07746	— 20
0.100	0.2449	<u> </u>
1.000	0.7746	0
Watts	Volts	Dbm
0.001000	0.7746	0
0.002512	1.228	+4
0.006310	1.946	+8
0.01000	2.449	+10
0.1000	7.746	+20
1.000	24.49	+30
10.00	77.46	+40

Increase in altenuation in line due to VSWR on line.

ING -OR -IER	NONE 0 0 00 0,000 00,000 00,000 000,000	CERAMIC CAPACITOR CAPACITY CAPACITY CAPACITY CAPACITY (OPT.) TOLERANCE MULTIPLIER	5-DOT 3-DOT 3-DOT S-DOT AMULTIPLIER TOLERANCE TEMP. COEFF.
ORS AND CAPACITORS SECOND RING END COLOR DOT COLOR SECOND FIGURE MULTIPLIER	0 1 2 3 3 4 0,000 5 5 00,000 6 00,000 7 0,000,000 9 000,000,000	RESISTOR USULATED IN-INSULATED TOLERANCE T AND 2ND GNIFICANT FIGURES STORS HAVE 1ST LE WIDTH	CERAMIC CAPACITOR TEMP. COEFF. MULTIPLIER TOLERANCE
STANDARD COLOR CODE—RESIST FIRST RING BODY COLOR FIRST FIGURE	0 2 3 4 7 7 9	STOR Jer -2nd Figure Figure	EXTENDED RANGE TC CERAMIC HICAP TC MULTIPLIER COEFF. EN BURGE CAPACITY (MULTIPLIER
INSULATED UNINSULATED COLOR	BLACK BROWN RED ORANGE YELLOW GREEN BLUE VIOLET GRAY WHITE	ISTOR IER 1-2nd Figure 1-Figure	5-DOT RADIAL LEAD CERAMIC CAPACITOR CAPACITY TEMP: COEFF. TOLERANCE COE

INDEX BY DESCRIPTION

Accessories, Transmission Lines	38-83
Air Alert	126
AM Towers	35
AM Transmitters	2, 5, 8
Amplifier, Audio	95
Amplifier, Auto-Level Limiting	98
Amplifier, Cue	97
Amplifier, Limiting	
Amplifier, Limiting Console	
Amplifier, Program/Monitor	
Amplifier, Stereo Limiting	
Antenna Coupling Unit	
Antenna Current Metering Unit	
Antenna Current Transformer	
Assemblies, Cable Heliax	
Audio Amplifier	
Audio Clock	
Audio Oscillator	140
Auto-Level Limiting Amplifier	
Automatic Network Programmer	
Automatic Program Logger	
Automation System	
Baffles	
Batteries, Remote Amplifier	
Beacon Light Control	37
Bracket Assemblies, Console	
Cable Assemblies, Heliax	41
Cable, Coaxial, Flexible Heliax	40, 41
Cable, Coaxial, Spir-O-Line	48, 49
Cable Fittings, Foam Heliax	
Cable Fittings, Heliax Dielectric	45, 46
Cable, Heliax, Dielectric	
Cable, Power Supply	97
Cabinet, Turntable	103
Cannon Connectors	
Cartridges, Automatic Programming	
Cartridges & Styli	108
Choke, lower Lighting	11
Clock, Audio	120
Clock, Studio	
Conalert Speaker	125
Connectors, Cannon	128
Connectors, Heliax	41
Connectors, Spir-O-Lok	55-58
Console, Desk Wing	110
Console, Production Cabinet	110
Console, Speech Input	
Contactor	15
Control Panels, Remote	
Conversion Kits, Tape Recorder	118
Conversion Kit, Transmitter	11
Crystal, Transmitter	.4, 7, 20
Custom Control Desk	
Deicer, Antenna	33
Dummy Antenna	
Equalizer	
Exciter, FM	
Flexo Mikester FM-1	
FM Antenna	32-34

FM Towers	.38 141
Generator, Stereo Multiplex Ground Screen Ground Strap Ground Wire	37 37 37
Heating Element, FM Antenna	. 33
Intercom, Test	15
Jack Panels	126 98
Latching Relay	121 125
Meter Accessory Unit	141 141
Metering Unit, Plate Voltage Microphones	142 122 123
Microphone Boom Stand	123 127 121 122
Microphone Boom Stand Microphone Cord & Clip Microphone Desk Stands Microphone Floor Stands Microwave Systems, STL Momentary Relay Monitor, Frequency Deviation Monitor, Modulation 135, 136, 138,	143 143 142 141 139
Oscillator, Audio	140
Pads, Replacement Pressure Pads, Turntable Indentation Patch Cords Phase Monitor Phasing Phasor	103 126 141
Phono Equalizer Preamp Phonograph Cartridge	103 107 105
Plate Current Metering Unit	142 142 107
	97 133
Programmer, Automatic Network	
Rack Cabinet Panels	

Recorder Accessories	114
Recorder-Amplifier	. 116
Recorder/Reproducer 114	-116
Recording Tapes111	, 112
Rectifiers	20
Relay Unit, Console 9	7.98
Demote Amplifier 130	131
Remote Amplifier	120
Remote Control	142
Remote Control Accessories	142
Remote Control Panels	.111
Remote Control Recorder	
Remote Control Tape Recorder	
Remote Equipment	. 132
Remote Equipment Accessories	133
Remote Turntable, Console	129
Replacement Pressure Pads	112
Reproducer	. 115
Reproducer	. 140
Rheostat, Motorized Plate	142
Ring Transformer	37
Sampling Loop	14
Shelf, Console	98
Shelf, Console	4, 7
Speaker Speaker/Amplifier	125
Speaker/Amplifier	114
Splicing Tape	.112
Spot Locator	120
Stereo Head Assembly	118
Stereo Multiplex Generator	18
STL Microwave Systems	143
SIL Microwave Systems	193
Studio Clock	100
Styli	108
Tape, Automatic Programming Test	112
Tape Cartridge Racks	110
Tane Cartridge Repair Kit	112
Tape Cartridge System	108
Tane Frasers	112
Tane Recorders 117	7. 118
Tape Recorder Case	7. 118
Tana Chicar Cutter	112
Terminal Board	127
Tape Recorder Case	. 127
Test Cable, Console	30
lowers, AM	35
Towers, FM	35
TOWER LIGHT CONTONE MCCCIME	
Tower Lighting Choke	11
Transformer, Loudspeaker	124
Transformer, Speaker	125
Transformers, Tape Recorder	118
Transformer, Turntable	. 103
Transistors	
Transmission Lines	16, 47
Transmission Line Accessories	38-83
Transmitter Control Unit	142
Transmitter, Remote Control Studio Unit	142
Tubes 4, 7, 20, 94, 96, 97, 99, 10	0 141
Turntables 4, 7, 20, 34, 30, 37, 33, 10	102
Turntable Cabinet	102
Turntable Cabinet	
Wire, Shielded	127

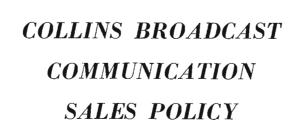
INDEX BY TYPE NUMBER

1H1612 Studio Clock127	45W Cable Fitting	84-875 Adapter	56
2YC Stacking Harness133	47-150 Needle Valve 63	84-1625 Adapter	
4G-01D Cartridge & Styli 108	48-150 Pipe Plug	85-500 Adapter	
4G-02D Cartridge & Styli 108	50-150 Assembly	.85-875 Adapter	
		85-1625 Adapter	
4G-01S Cartridge & Styli 108	59-150 Assembly		
4G-02S Cartridge & Styli108	62-150 Cable Clip	87-500 Connector	
4GD-01D-02D Cartridge & Styli 108	64-150 Cable Clip 64	87N Jack	
4GD-01D-02S Cartridge & Styli108	70-150 Gas Inlet Assembly 63	87R Flange	
4GD-01S-02S Cartridge & Styli 108	71-500 Reducer 68	87S Connector	42
4GS-01D Cartridge & Styli	71-875 Reducer	87T Terminal	42
4GS-02D Cartridge & Styli 108	71-1625 Reducer	87U Jack ,	42
4GS-01S Cartridge & Styli 108	72-1625 Reducer	90-875 Cable Grip	
4GS-02S Cartridge & Styli	73N Jack	90-1625 Cable Grip	
19-150 Wraplock	73U Jack 42	91 Tape Recorder	118
20-150 Wraplock	75-375 Adapter		
20V3 Transmitter 2	75-500 Adapter	91-1625 Anchor	
21-150 Gas Inlet Valve63	75-875 Adapter	92 Tape Recorder	
21E/M Transmitter	75-1625 Adapter	92-875 Anchor	
22-150 Tee 63	75AN Jack42	92-1625 Anchor	
23-150 Manifold	75AR Flange	93 Tape Recorder	118
24-150 Pressure Gauge	75AT Terminal	93-4 Tape Recorder	
25-150 Copper Tube	75AU Jack	93-500 Mounting Sleeve	
26-150 Flare Fitting	76-375 Adapter	93-875 Mounting Sleeve	
		93-1625 Mounting Sleeve	
26U-1 Amplifier, Limiting Console 100	76-500 Adapter		
26U-2 Amplifier, Stereo Limiting 101	76-875 Adapter	94-875 Anchor	
27-150 Flare Fitting 61	76-1625 Adapter	94-1625 Anchor	
28-150 Nut	77-500 Adapter	95-375 End Seal	
29-150 Elbow	77-875 Adapter, 55	95-500 End Seal	
30-150 Dehydrator	77-1625 Adapter	95-875 End Seal	58
31-150 Regulator 61	78-375 Adapter	95-1625 End Seal	, 58
32-150 Needle Valve	78-500 Adapter	96-375 Bulkhead	58
33-150 Bleeder Valve	78-875 Adapter	96-500 Bulkhead	
34-150 Nipple	78-1625 Adapter	96-875 Bulkhead	58
35-150 Tube Cutter	78R Flange	96-1625 Bulkhead	
36-150 Tube Cutter	78S Connector	97-375 Bulkhead	
37M FM Antennas	79-375 Coupling	97-500 Bulkhead	
38-150 Polyethylene Tape	79-500 Coupling	97-875 Bulkhead	58
39-150 Manifold	79-875 Coupling	97-1625 Bulkhead	58
40-150 Pipe Piug	79-1025 Coupling Assembly	100-375 Adapter	, 5 7
41-150 Nitrogen Cylinder 62	79-1035 Coupling Assembly	100-500 Adapter	,57
42-150 Grounding Strap 62	79-1625 Coupling	100-815 Transmission Line	65
42E-7 Antenna Coupling Unit	80-375 Bulkhead	100-825 Transmission Line	67
42E-8A Antenna Coupling 11	80-500 Bulkhead 58	100-835 Transmission Line	71
42E-8B Antenna Coupling	80-875 Bulkhead	100-875 Adapter	
43-150 Nitrogen Cylinder	80-1625 Bulkhead	100-925 Transmission Line	
44-150 Regulator	81-875 Adapter	100-935 Transmission Line	
		101-375 Adapter	
44L Cable Fitting	81-1025 Adapter Assembly 79		
44N Cable Fitting	81-1035 Adapter Assembly79	101-500 Adapter	
44P Cable Fitting 38	81-1625 Adapter	101-875 Adapter	
44T Cable Fitting	81M Phasor 12	101-925 Transmission Line	78
44U Cable Fitting	82-375 Adapter 56	101-935 Transmission Line	79
44W Cable Fitting 39	82-500 Adapter 56	102-815 Transmission Line	65
45-150 Flare Fitting 63	82-875 Adapter 56	102-825 Transmission Line	
45L Cable Fitting	82-1025 Adapter Assembly	102-835 Transmission Line	
45M Cable Fitting		102-925 Transmission Line	
	82-1625 Adapter		
45N Cable Fitting	83-150 Cutting Wheel 64	102-935 Transmission Line	
45P Cable Fitting 38	83-1J Adapter	103-375 Adapter	
45R Cable Fitting 39	83-1SP Connector	103-500 Adapter	
45T Cable Fitting39	84-150 Cutting Wheel 56	103-815 Transmission Line	65
45U Cable Fitting 38	84-500 Adapter 56	103-825 Transmission Line	68

INDEX BY TYPE NUMBER (continued)

103-835 Transmission Line 71	212-825 Hanger	340 Tower
103-875 Adapter 56	212-835 Hanger 83	350 Recorders
103-925 Transmission Line	212E-1S Console 92	351 Recorder/Reproducer 114
103-935 Transmission Line	212G-1 Console	352 Reproducer
103-1625 Adapter	212H-1 Remote Amplifier	352-1 Recorder/Reproducer 115
105-815 Transmission Line 65	212TN Playback Arm 104	352-2 Reproducer
105-825 Transmission Line	212Z-1 Remote Amplifier	354 Recorder/Reproducer 116
	•	356A-1 Preamplifier 96
105-835 Transmission Line	213-825 Hanger	•
105-925 Transmission Line75	213-835 Hanger 83	
105-935 Transmission Line	216C-2 Tape Record	356E-1 Limiting Amplifier
106-875 Adapter57	220 Tower 35	356Q-1 Cue Amplifier 97
107-375 Adapter57	252/U Transmission Line	400-RA Transmitter Control
107-500 Adapter57	253/U Transmission Line	409X-2 Power Supply
107-875 Adapter57	254/U Transmission Line 48	410 Distortion Meter
108 Phase Monitors141	255/U Transmission Line 48	418 Microphone Desk Stand 122
109-375 Bulkhead58	256/U Transmission Line	419 Microphone Desk Stand 122
109-875 Bulkhead58	257/U Transmission Line 48	420 Microphone Desk Stand
111A-6 Recording Tape112	258/U Transmission Line	420-815 Tee Assembly
111A-12 Recording Tape112	259/U Transmission Line 48	420-825 Tee Assembly 69
113-375 Adapter 56	260/U Transmission Line	420-835 Tee Assembly
113-500 Adapter 56	274K-1 Relay Unit, Console 97	423-0219-00 Microphone Cable . 127
113-875 Adapter56	274K-2 Relay Unit, Console 98	425 Microphone Floor Stand
120 Tower	300 Cartridges	425-0061-00 Microphone Cable 127
120-835 Breakaway Section	300 Transmitter Control	425-0151-00 Microphone Cable 127
		427-6 Terminal Board 127
120-E Intensity Meter		
121 Meter Accessory Unit	300-825 Flange	
122-375 Adapter 57	300-835 Flange	448-815 Assembly
122-500 Adapter 57	300-925 Flange	448-825 Assembly 69
122-875 Adapter 57	300-935 Flange	448-835 Assembly
124-1625 Adapter 56	300C Antenna	448-925 Assembly
130-835 Transformer 71	302-815 Insulator	448-935 Assembly 77
142-875 Adapter 56	302-825 Insulator	480 Tower
143-375 Nut Assembly	302-835 Insulator	485-835 Assembly
		485-935 Assembly
143-500 Nut Assembly	303-835 Insulator	
143-875 Nut Assembly64	304-825 Adapter 68	485-1025 Assembly
143-1625 Nut Assembly 64	304-835 Adapter	485-1035 Assembly
144A-1 Isolation Coil 15	305-825 Coupling	490-1035 Assembly 80
145-101-13 Contactor 15	305-835 Coupling 72	493-825 Assembly 69
145-102-13 Contactor 15	305-925 Coupling	493-835 Assembly
145-201-13 Contactor	305-935 Coupling 77	493-925 Assembly
145-202-13 Contactor	308-375 Ring	493-935 Assembly 98
		494-815 Assembly
150-18 Recording Tape	308-500 Ring	
156 Headphones 126	308-815 Ring 66	
157 Headphones 126	308-825 Ring 68	,
170KD Tower 35	308-835 Ring	494-925 Assembly
172G-1 Dummy Antenna	308-875 Ring	494-935 Assembly
172G-2 Dummy Antenna 11	308-1625 Ring	499G-1 Console Shelf 98
180 Tower	310-825 Connector 68	500-815 Gas Barrier 67
190-18 Recording Tape 112	310-835 Connector	500-825 Gas Barrier
196-875 Grounding Clamp Assembly 64	312-825 Cover Plate 69	500-835 Gas Barrier
196-1625 Grounding Clamp Assembly 64	312-835 Cover Plate	500-925 Gas Barrier 76
	313T Remote Control Panels	500-935 Gas Barrier
		505-815 Assembly
201-825 Hanger 81	315-815 Flange Hardware 66	
201-835 Hanger 82	315-825 Flange Hardware	505-825 Assembly 69
202-825 Hanger	315-835 Flange Hardware72	505-835 Assembly
202-835 Hanger82	315-925 Hardware Set	506B Modulation Monitor
203-825 Hanger81	315-935 Hardware Set 77	516-835 Assembly 74
203-835 Hanger	322-815 Adapter Assembly	517-835 Assembly 74
204-825 Hanger 81	322-825 Adapter Assembly 69	521-815 Adapter 67
204-835 Hanger 82		521-825 Adapter 69
<u> </u>	322-835 Adapter Assembly	
205-825 Anchor Plate81	323-835 Coupling Assembly73	
205-835 Anchor Plate	324-815 Flange	535-825 Adapter
208-825 Lateral Brace 81	324-825 Flange	536-815 Adapter
208-835 Lateral Brace 83	324-835 Flange	536-825 Adapter 69
208-S Playback Arm 104	324-925 Flange	560 Transmission Line 47
208-SG Playback Arm 104	324-935 Flange	561 Transmission Line
209-825 Roller Assembly	325-815 Adapter Assembly 66	562A Transmission Line
209-835 Roller Assembly	325-825 Adapter Assembly	564A-1 Sampling Loop
210 Audio Oscillator	325-835 Adapter Assembly 73	564A-2 Sampling Loop 14
211-825 Hanger81	325-925 Adapter Assembly	573 Transmission Line 47
211-835 Hanger 83	325-935 Adapter Assembly 77	600 Cartridge 111

INDEX BY TYPE NUMBER (continued)


600MA Plate Current Metering Unit	700133 Tape Recorder Case 118	DTC CA December	117
602 Recorders	A830-2 FM Exciter	PT6-6A Recorder	
602 Recorder Accessories	A-3818 Speaker Transformer	PT6-6J Recorder	
602C Equalizer	AC-100 Antenna Current Metering Unit 142	PT6-6JX Recorder	
622 Speaker/Amplifier	ANP-1 Automatic Network Programmer120	PV-10 Plate Voltage Metering Unit	
642A-2 Tape Playback	APL-1 Automatic Program Logger 120	RA-2 Antenna	
665 Microphone	ASP-143 Bumper Mount	RA-Y Antenna	
666 Microphone	ASP-177 Antenna 133	RC8 Remote Control	
726 Amplifier Batteries	BA-200 Headphones	RG17/U Cable Fitting	
763 Amplifier Batteries	BA-206 Headphones	RMC-1 Remote Control	
786-1 Generator	BB-1 Microphone Boom	S-260 Playback Arm	
800 Automation System	BS-36 Microphone Boom Stand	S-320 Playback Arm	
801-835 Taper74	BS-36W Microphone Boom Stand	-	
808A-1 Remote Turntable, Console	BX800 Tape Recorder	SA-100 Remote Control, Shafer	
	BX801 Tape Recorder	SA-100 Spot Locator, Shafer	
810-835 Reducer	CHA 250 Transmitter	SC-155-B Antenna	
811-825 Reducer		SCB-8D Baffle	
830B-1 FM Transmitter	CS-12 Loudspeakers 124	SCB-12D Baffle	125
830D-1A FM Transmitter	CS-33 Microphone Floor Stand	ST-411 Level Control	125
830E-1A FM Transmitter 25	DS-7 Microphone Desk Stand 122	ST-466 Splicing Tape	112
830F-3054 FM Transmitter	FH4 Transmission Line	ST-760 Level Control	125
830H-1A/20 FM Transmitter	FH5 Transmission Line	TBM-2500 RF Amplifier	
900C-1 Modulation Monitor136	FHJ4 Transmission Line 38	TBM-3000 Modulation Monitor	
1060 Elbow 42, 47	FHJ5 Transmission Line	TBM-3500 Modulation Monitor	
1061 Elbow 42, 47	FM-1 Flexo Mikester	TBM-4000 Modulation Monitor	
1062 Elbow	GR-6355 Connector		
1073 Elbow47	H3-50 Transmission Line 40	TC-25 Tower Light Current Metering	
1068 Elbow47	H5-50 Transmission Line 40	TCFW-2 Turntable Cabinet	
1181-B Frequency Deviation Monitor141	H7-50 Transmission Line 40, 41	TCFW-4 Turntable Cabinet	
1200 Cartridge111	H8-50A Transmission Line 40, 41	TI-300 Test Intercom	142
1200 MA Plate Current Metering Unit142	HD-11M Tape Eraser 112	TI2017 Ring Transformer	37
1251 Recording Tape 112	HJ3-50 Transmission Line 40	Tl2035 Ring Transformer	37
1260A Gas Barrier42, 47	HJ5-50 Transmission Line 40	TM-8 Audio Clock	120
1261B Gas Barrier	HJ7-50 Transmission Line40	TPS-1 Remote Power Supply	133
1262A Gas Barrier	HJ8-50A Transmission Line	TPS-TC Mobile Assemblage	133
1273 Gas Barrier47	LR-1-C Latching Relay 142	TS4-DLX Tape Splicer, Cutter	
1286 Gas Barrier47	LT-80A Amplifier95	TT-200 Turntable	
	M5D/M6S Phonograph Cartridge 107	TT-200\$ Turntable	
1860 Reducer	M-20 Microphone 121	TT-250S Turntable	
1861 Reducer	·		
1861 Recording Tape	M-25C Remote Transmitter 132	TT-400 Turntable	
1872 Reducer47	M44-5 Phonograph Cartridge 106	TT-400S Turntable	
2260 Adapter	M44-7 Phonograph Cartridge	TT-450S Turntable	
2261 Adapter47	M-70 Microphone121	UA-3-11 Connector	
2262 Adapter 47	M-90AC Recorder-Amplifier 116	UA-3-12 Connector	128
2400 MA Plate Current Metering Unit142	M-90ACX Recorder-Amplifier 116	UA-3-13 Connector	128
3009/3012 Pick-up Arms104	M-90A Recorder-Amplifier 116	UA-3-14 Connector	128
8412 Microphone Cable127	M-100 Microphone 121	UA-3-31 Connector	128
8422 Microphone Cable 127	M226/M222/M22 Phono Reproducer 105	UA-3-32 Connector	128
8738 Microphone Cable127	M232 Playback Arm 107	UG21D/U Cable Fitting	45
8758 Microphone Cable 127	M236 Playback Arm 107	UG23D/U Cable Fitting	
11662-2 Insulated Hanger 43	MA-1 Antenna	UG29B/U Cable Fitting	
12395-1 Wraplock	MM-151 Recording Tape	UG146/U Cable Fitting	
15069 Connector	MPR-2 Motorized Plate Rheostat	UG154/U Cable Fitting	
15093 Connector 43	MPR-3 Motorized Plate Rheostat	UG167A/U Cable Fitting	
		_	
18275 Connector	MPR-4 Motorized Plate Rheostat	UG215/U Cable Fitting	
18362 Reducer	MR-2-C Momentary Relay	WB-8C Baffle	
19256A Hoisting Kit 43	MR-30/150-170 Remote Receiver	WB-12C Baffle	
22418 Hanger43	MS-10C Microphone Floor Stand	WG-52 Dummy Antenna	
23187 Adapter 43	MS-11C Microphone Floor Stand123	XLR-3-11C Connector	. 128
24312 Hoisting Kit43	MS-25 Microphone Floor Stand123	XLR-3-11SC Connector	128
24622 Hanger43	P3-13 Connector	XLR-3-12C Connector	128
24810 Ground Kit43	P3-14 Connector	XLR-3-12SC Connector	128
24811 Ground Kit43	P3-35 Connector	XLR-3-13 Connector	128
26445 Transmission Line45	P3-35-2G Connector	XLR-3-13N Connector	
26459 Transmission Line	P3-CG-11S Connector	XLR-3-14 Connector	
26985 Hoisting Kit	P3-CG-12S Connector 128	XLR-3-14N Connector	
700105 Transformer			
	P8-TS Speaker	XLR-3-35 Connector	
700106 Transformer	P12-T Speaker 125	XLR-3-35G Connector	
700107 Transformer	PA-1 Antenna	XLR-3-36 Connector	
700108 Transformer	PL258 Cable Fitting46	XLR-3-36-2G Connector	
700120 Remote Control, Tape Recorder118	PL259 Cable Fitting45	YC Antenna	
700122 Tape Recorder Case118	POR-1 Primary Overload Relay 142	ZY-2003 Loudspeaker Transformer	124

INDEX BY PART NUMBER

012 0020 000	27M 1 22	007 2051 000	40.010	007 0052 000	PA-1133
013 0020 000 013 0030 000	37M-1	097 3851 000	4G-01S 108	097 6952 000	
013 0030 000		097 3852 000	4G-02S	097 6953 000	MA-1 133 253/U
	37M-333	097 3853 000		097 7023 000	
013 0050 000	37M-433	097 3854 000	4G-02D108	097 7078 000	257/U48
013 0060 000	37M-5	097 3971 000	TT-200 102	097 7079 000	81-1625
013 0070 000	37M-633	097 4200 000	Panel126	097 7080 000	85-1625
013 0080 000	37M-733	097 4491 000	PT6-6AX117	097 7081 —	100-82567
013 0090 000	37M-8 33	097 4492 000	PT6-6JX 117	097 7084 000	302-825 68
013 0099 000	Deicer33	097 5010 000	12395-1 43	097 7085 000	500-825
013 0107 000	Screen	097 5172 000	2000	097 7112 000	150-18 112
015 0519 000	726 131	097 5350 000	Console 110	097 7258 000	308-82568
015 0520 000	763	097 5361 000	XLR-3-36-2G	097 7262 000	23187 43
094 2946 000	Pad 112	097 5362 000	XLR-3-36 128	097 7283 000	562A 47
097 0436 000	186047	097 5363 000	XLR-3-35G128	097 7504 000	801-83574
097 0811 000	Strap 37	097 5364 000	XLR-3-35 128	097 7522 000	Cabinet 110
097 0984 000	BB-1 123	097 5365 000	XLR-3-14N 128	097 7523 000	Transformer 103
097 1119 000	DS-7122	097 5366 000	XLR-3-14	097 7527 000	254/U 48
097 1142 000	8422127	097 5367 000	XLR-3-13N 128	097 7528 000	82-87556
097 1267 000	CS-33123	097 5368 000	XLR-3-13 128	097 7529 000	81-87556
097 1445 000	Strap37	097 5369 000	XLR-3-12SC 128	097 7544 000	226147
097 1500 000	BS-36123	097 5370 000	XLR-3-12C128	097 7559 000	Rack110
097 1510 000	MS-25123	097 5371 000	XLR-3-11SC 128	097 7560 000	Rack 110
097 1511 000	MS-11C123	097 5372 000	XLR-3-11C	097 7581 000	AC-100 142
097 1528 000	37M-1233	097 5423 000	Speaker 125	097 8118 000	M232107
097 1636 000	425123	097 5516 000	120-E141	097 8122 000	M236107
097 1636 000	FM-1123	097 5620 000	106142, 47	097 8123 000	Pad 103
097 1693 000	37M-1033	097 5621 000	1062 42, 47	097 8131 000	258/U48
097 1698 000	Beacon Light Control37	097 5727 000	Rack	099 0005 000	Element 33
097 1724 000	ZY-2003	097 5729 000	MS-10C123	099 0008	H3-5040
097 1735 000	1H1612127	097 5754 000	1262A 43, 47	099 0040 000	190-18112
097 1790 000	BS-36W 123	097 5948	1181-B 141	099 0066 000	Kit112
097 2058 000	TS4-DLX112	097 6006 000	WB-8C 125	099 0078 000	M-100 121
097 2119 000	P12-T 125	097 6007 000	WB-12C	099 0116 000	79-875 57
097 2190 000	ST-760	097 6008 000	WB-8C 125	099 0124 000	2462243
097 2207 000	ST-411125	097 6009 000	WB-12C125	099 0137 000	Cable133
097 2211 000	665122	097 6029 000	8738 127	099 0146 000	Cable133
097 2309 000	1251 112	097 6030 000	8758 127	099 0158 000	RC8117
097 2438 000	420 122	097 6039 000	CS-12 124	099 0164 000	208-SG104
097 2629 000	MM-151111	097 6076 000	Tape	099 0177 000	YC 133
097 2888 000	M-90ACX116	097 6131 000	TCFW-2 103	099 0910 000	2YC 133
097 2889 000	M-90R 116	097 6225 000	TCFW-4 103	099 0203 000	1260A 42,47
097 2992 000	1861	097 6282 000	427-6	099 0204	н5-5040
097 3002 000	87R 42	097 6285 000	TT-250S	099 0235 —	H7-5040,41
097 3036 000	666 122	097 6286 000	TT-450S 102	099 0238 000	1261B 43,47
097 3132 000	418	097 6627 000	Clip121	099 0241 000	S-320 107
097 3192 000	Alert 126	097 6631 —	100-83571	099 0242 000	S-260 107
097 3561 000	Panel	097 6633 000	448-83573	099 0281 000	75AT 42
097 3736 000	TT-400102	097 6635 000	310-835	099 0283 000	75AR 42
097 3737 000	TT-400S102	097 6653 000	TPS-1 133	099 0365 000	TI 2035 37
097 3806 000	PT6-6A117	097 6663 000	2400MA 142	099 0366 000	108141
097 3807 000	PT6-6J 117	097 6664 000	PV-10142	099 0367 000	108141
097 3811 000	TT-200S 102	097 6725 000	500-835 74	099 0368 000	108 141
097 3835 000	419	097 6739 000	494-825 69	099 0369 000	108141
097 3844 000	4GS-01D108	097 6742 000	308-835	099 0370 000	121141
097 3845 000	4GS-02D108	097 6781 000	MR-2-C142	099 0371 000	HD-11M
097 3846 000	4GS-01S	097 6880 000	ASP-143	099 0373 000	91
097 3847 000	4GS-02S		21-150	099 0374 000	92
097 3848 000	4GD-01D-02S	097 6901 000			92118
097 3849 000		097 6920 000	TI2017	099 0374 000	93
097 3850 000		097 6944 000	300-835	099 0375 000	93-4
037 3030 000	4GD-01S-02S 108	097 6950 000	RA-Y 133	099 0376 000	33-4110

INDEX BY PART NUMBER (continued)

999 937 000 Head 1.18 999 1399 100 300 1111 977 2010 000 JA-21 128 999 1399 100 307 007 Head 1.18 999 1399 100 302 1111 977 2012 000 JA-21 128 999 1399 100 302 1111 977 2012 000 JA-21 128 128 999 1399 100 302 1111 977 2012 000 JA-21 128 128 999 1399 100 302 1111 977 2012 000 JA-21 128 128 999 1399 100 400-58 142 977 2175 000 JA-21 128 128 999 1399 100 302 JA-21 128 999 1399 1399 1399 1399 1399 1399 1399						
999 9389 000 700105 118 099 159 000 400-RA 142 370 2080 000 P.14 128 999 0380 000 700107 118 099 159 000 400-RA 142 370 2090 000 P.14 128 999 0380 000 700107 118 099 159 000 400-RA 142 370 2090 000 P.14 128 999 0380 000 70012 118 099 159 000 400-RA 142 370 2090 000 P.14 128 999 0380 000 70012 118 099 159 000 100 161-LC 142 370 2090 000 P.15 120 120 120 120 120 120 120 120 120 120	099 0377 000		099 1399 000	300	370 2081 000	UA-3-12128
999 0381 000 700106	099 0378 000		099 1500 000	300 111	370 2082 000	UA-3-11 128
999 0381 000 7001067 1118 099 1519 000 1200 11-1.C 142 370 2090 00 93-14 128 099 0381 000 700107 1118 099 1510 000 15-15-1 142 370 2170 000 95-35-52 128 099 0381 000 700108 1118 099 1510 000 17-25-1 142 370 2170 000 95-35-52 128 099 0381 000 700133 1118 099 1510 000 1200 MM 142 370 2170 000 95-35-52 128 099 0381 000 700135 1118 099 1510 000 1200 MM 142 410 0209 000 15-10 151 128 099 0381 000 1201 1118 099 1510 000 1200 MM 142 410 0209 000 15-50 151 128 099 0381 000 1201 111 410 0209 000 15-50 151 128 099 0385 000 1207 MM 142 410 0209 000 15-50 151 15 15 15 15 15 15 15 15 15 15 15 15	099 0379 000	700105118	099 1518 000	400-RA142	370 2083 000	UA-3-14 128
999 0381 000 700107 118 099 1520 000 17-25 14-2 370 2139 000 93-35 128 099 0381 000 700103 118 099 1530 000 500 MA. 14-2 370 2139 000 93-65-115 128 099 0385 000 700132 118 099 1535 000 600 MA. 14-2 370 2139 000 93-65-115 128 099 0385 000 2005 118 099 0385 000 2005 118 099 0385 000 2005 114 099 1545 000 MPR 2 14-2 410 2010 000 155-115 128 099 0385 000 2005 114 099 1545 000 MPR 2 14-2 410 2010 000 155-1013 135 099 0385 000 2005 114 099 155-100 MPR 2 14-2 410 2010 001 155-1013 135 099 0385 000 2005 114 099 159-100 300 111 421 1010 011 W/m 3 17-0 17-0 17-0 17-0 17-0 17-0 17-0 17-0	099 0380 000	700106	099 1519 000	400-RA 142	370 2090 000	
999 0385 000 700162 118 099 1521 000 70.25 142 370 2170 000 97.35.56 128 099 0385 000 700162 118 099 1538 000 300 MM 142 370 2180 000 97.051 15 128 099 0385 000 700133 118 099 1538 000 300 MM 142 41 41 200 000 1545 151 31 31 31 31 31 31 31 31 31 31 31 31 31		700107				
99 9383 007 00122 118 099 1383 007 000 PAC 112 370 2180 000 PSC-0155 128 099 0385 007 00133 118 099 1385 000 000 MA 142 370 2190 000 PSC-0155 128 099 0385 000 70120 118 099 1385 000 000 MR-2 14 42 410 0209 001 145 102 13 15 15 109 0385 000 714 140 0209 001 145 102 13 15 15 109 0385 000 718 140 0209 039 100 118 140 0209 039 100 118 140 0209 039 100 118 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 120 130 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 140 0209 039 100 140 0209 039 100 140 0209 0						
999 0845 000 70132						
99 9385 007 007 2027 138 099 1546 000 1200 MA 142 410 0079 000 145101-13 15 099 0385 000 2127N 104 099 1546 000 MPR 2 142 410 0211 000 145-001-13 15 099 0395 000 78M 42 40 999 1590 000 300 1111 410 0212 001 145-201-13 15 099 0395 000 78M 42 40 999 1590 000 300 1111 420 1011 001 145-201-13 15 099 0395 000 78M 42 40 999 1590 000 300 1111 420 1011 001 145-201-13 15 099 0395 000 78M 42 40 999 1590 000 300 1111 420 1011 001 145-201-13 15 099 0395 000 78M 42 40 999 1590 000 300 1111 420 1011 001 145-201-13 15 099 0400 000 1560 42,47 099 1595 000 300 1111 420 1011 000 425-015-10 127 099 0406 000 12275 43 999 1995 000 300 1111 420 1011 000 425-015-10 127 099 0406 000 12255 43 999 1995 000 300 1111 420 1011 000 425-015-10 127 099 0406 000 125564 43 999 1995 000 300 1111 420 1011 000 425-015-10 127 099 0406 000 125564 43 999 1995 000 300 1111 420 1011 000 425-015-10 127 099 0406 000 1100 425-015-10 420 420 420 420 420 420 420 420 420 42					370 2180 000	P3-CG-11S 128
999 0387 000 212TN	099 0384 000	700133118	099 1539 000	600 MA 142	370 2190 000	P3-CG-12S 128
999 0387 000 212TN	. 099 0385 000	700120118	099 1540 000	1200 MA 142	410 0209 000	145-101-13
999 0358 000 7384 42 099 1395 000 300 1111 421 0011 000 145-201-13 15 099 0358 000 7384 42 099 1395 000 300 1111 421 0011 001 Wire 37 099 0440 000 7584 42 42 099 1390 000 1200 1111 421 0011 001 Wire 37 099 0440 000 7584 42 42 099 1390 000 1200 1111 421 0011 000 425-001-00 1200 1200 1200 1111 421 0011 000 425-001-00 1200 1200 1200 1200 1200 1200 12	099 0386 000	212TN 104	099 1544 000			
999 0595 000 73N						
999 6077 COD 75NN 42 (999 1590 000 1200 1111 421 1010 001 Wire 37 099 0410 000 75NN 42 (999 1595 000 300 1111 421 1010 001 Wire 127 099 0410 000 1200 443 (999 1595 000 300 1111 425 0151 000 127 099 0416 000 1200 443 (999 1595 000 300 1111 425 0151 000 127 099 0416 000 1200 443 (999 1595 000 300 1111 425 0151 000 127 099 0419 000 1200 443 (999 1595 000 300 1111 502 838) 131 099 0419 000 1200 443 (999 1595 000 600 1111 502 838) 131 099 0419 000 1200 443 (999 1595 000 600 1111 502 838) 131 099 0419 000 2481 43 (999 1595 000 600 1111 502 838) 131 099 0419 000 2481 43 (999 1595 000 600 1111 502 838) 131 099 0419 000 2520 47 099 0415 000 2520 47 099 0415 000 2520 47 099 0415 000 2520 47 099 0415 000 1200 448 099 2530 000 1111 502 840 131 099 0419 000 1200 448 099 2530 000 184 099 0419 000 1200 448 099 2530 000 184 099 0419 000 1200 448 099 2530 000 184 099 0419 000 1200 448 099 2530 000 184 099 0419 000 1200 448 099 0419 000 1200 448 099 2530 000 184 099 0419 000 1200 448 090 0419 000 448 090 04						
999 (A010 000 75N						
999 04410 000 1500 42410 42 999 1959 000 300 1111 425 0151 000 4250151 00 127 999 04460 000 18275 43 099 1939 000 300 1111 425 0151 000 343 95900 000 127 999 04480 000 18265 43 43 099 1939 000 300 1111 502 8389 123 Panel 127 999 0449 000 24510 43 099 1939 000 500 1111 502 8389 123 Panel 127 999 0449 000 24510 43 099 1939 000 500 1111 502 8389 123 Panel 127 999 0449 000 24510 43 099 1939 000 500 1111 502 8389 123 Panel 127 999 0449 000 24510 43 099 1939 000 500 1111 502 8405 131 Panel 127 999 0445 000 252 47 099 1939 000 600 1111 502 8405 131 Panel 127 999 0445 2597 48 099 2300 000 1844 500 138 502 8401 131 Panel 127 999 0445 000 252 48 099 2310 184 500 138 502 8407 131 Panel 127 999 0445 000 2557 48 099 2300 000 1844 500 138 502 8417 131 Panel 127 999 0445 000 2557 48 099 2300 000 1844 500 138 502 8417 131 Panel 127 999 0445 000 000 2557 48 099 2300 000 1844 500 138 502 8417 131 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2311 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Panel 127 999 0445 000 000 2557 48 099 2315 Pane	099 0397 000	73U42	099 1598 000	300 111	421 1010 001	Wire 37
999 (404 000 1867 4.3 099 1995 000 300 111 425 015 000 425-915 000 127 099 (408 000 19256A 4.3 099 1995 000 300 111 425 025 000 439-990-000 127 099 (408 000 19256A 4.3 099 1995 000 300 111 502 839 123 Fanel 127 127 129 1	099 0400 000	75AN42	099 1900 000	1200 111	423 0219 000	Wire 127
999 (404 000 1867 4.3 099 1995 000 300 111 425 015 000 425-915 000 127 099 (408 000 19256A 4.3 099 1995 000 300 111 425 025 000 439-990-000 127 099 (408 000 19256A 4.3 099 1995 000 300 111 502 839 123 Fanel 127 127 129 1	099 0401 000	75AU 42	099 1950	FH5 38		
999 0406 000 18275						
999 0408 000 9256A 43 099 1994 000 300 111 439 5900 00 439 5900 00 127 999 0410 000 13652-2 43 099 1995 000 600 111 502 8393 113 Panel 127 999 0410 000 24912 43 099 1997 000 600 111 502 8393 113 Panel 127 999 0445 000 24912 43 099 1998 000 600 111 502 8393 113 Panel 127 999 0445 000 24912 43 099 1998 000 600 111 502 8393 113 Panel 127 999 0445 000 2262 47 099 1999 000 600 111 502 8051 113 Panel 127 999 0448 257/U 48 099 2302 000 600 111 502 8051 113 Panel 127 999 0449 257/U 48 099 2302 000 1804 5500 138 502 819 113 Panel 127 999 0449 257/U 48 099 2309 000 1804 5500 138 502 819 113 Panel 127 999 0449 257/U 48 099 2309 000 1804 5500 138 502 819 113 Panel 127 999 0450 000 255/U 48 099 2319 000 1804 5500 138 502 819 113 Panel 127 999 0450 000 255/U 48 099 2319 000 1804 5500 138 502 819 113 Panel 127 999 0450 000 255/U 88 099 2214 000 788 44 522 039 005 322/1 131 999 0450 000 505 825 58 699 2214 000 788 44 522 039 005 3565-1 96 999 0461 000 505 825 74 099 2214 000 26895 43 320 2099 05 3565-1 96 999 0462 000 505 825 74 099 2214 000 508 812 125 522 0394 005 3565-1 96 999 0463 000 10-3-31 128 099 2376 000 508 812 125 522 0394 005 3565-1 96 999 0464 000 505 825 74 099 2455 000 788 200 200 200 200 200 200 200 200 999 0464 000 505 825 74 099 2455 000 788 200 20						
099 0419 000 24510 43 099 1995 000 300 1111 502 8393 123 Panel 127 099 0419 000 24511 43 099 1997 000 600 1111 502 8397 123 Panel 127 099 0419 000 24511 43 099 1998 000 600 1111 502 8397 123 Panel 127 099 0445 000 2262 47 099 1999 000 600 1111 502 8405 113 Panel 127 099 0445 000 2262 47 099 1999 000 600 1111 502 8405 113 Panel 127 099 0446 000 255/U 48 099 2308 000 78M-3000 138 502 8413 113 Panel 127 099 0449 255/U 48 099 2308 000 78M-3000 138 502 8413 113 Panel 127 099 0450 000 255/U 48 099 2311 000 78M-3000 138 502 8413 113 Panel 127 099 0450 000 500 525/U 48 099 2311 000 78R 400 4041 505 9578 000 2125/U 153 099 0450 000 500 525/U 58 88 099 2314 000 78R 402 502 503 500 2125/U 153 099 0450 000 500 525/U 58 88 099 2314 000 78R 42 502 503 500 5356.1 9.6 099 0450 000 500 505 500 500 500 500 500 50						
999 0410 000 1662.2 43 099 1996 000 600 111 502 8393 113 Panel 127 129 120	099 0408 000	19256A43	099 1994 000	300 111	439 5900 000	439-5900-00 127
999 0419 000 24811 43 099 1997 000 600 111 502 8397 123 Panel 127 0990 0445 000 2562 47 099 1999 000 600 111 502 8405 113 Panel 127 0990 0448 000 2562 47 099 1999 000 600 111 502 8405 113 Panel 127 0990 0449 — 252 /U 48 099 2308 000 TBM-3500 138 502 8413 113 Panel 127 0990 0450 000 255 /U 48 099 2310 000 TBM-3500 138 502 8413 117 Panel 127 0990 0451 — 260 /U 48 099 2311 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2312 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2312 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2316 000 26898 4 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 58800 117 099 2455 000 505-120 125 522 0966 000 260-1 9.8 0990 0479 000 58800 117 099 2455 000 540 505-525 522 074 000 4950-1 9.8 0990 0480 000 58800 117 099 2455 000 540 505-525 522 074 000 4950-1 9.8 0990 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000	099 0409 000		099 1995 000	300 111	502 8389 123	Panel
999 0419 000 24811 43 099 1997 000 600 111 502 8397 123 Panel 127 0990 0445 000 2562 47 099 1999 000 600 111 502 8405 113 Panel 127 0990 0448 000 2562 47 099 1999 000 600 111 502 8405 113 Panel 127 0990 0449 — 252 /U 48 099 2308 000 TBM-3500 138 502 8413 113 Panel 127 0990 0450 000 255 /U 48 099 2310 000 TBM-3500 138 502 8413 117 Panel 127 0990 0451 — 260 /U 48 099 2311 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2312 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2312 — 18-50 A 40,41 505 9578 000 216/M 15 0990 0458 000 300 225 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2314 000 78 0990 0458 000 505-525 68 099 2316 000 26898 4 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0458 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 505-525 6 0990 0479 000 58800 117 099 2455 000 505-120 125 522 0966 000 260-1 9.8 0990 0479 000 58800 117 099 2455 000 540 505-525 522 074 000 4950-1 9.8 0990 0480 000 58800 117 099 2455 000 540 505-525 522 074 000 4950-1 9.8 0990 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 58800 117 099 2455 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000 6 0590 0480 000	099 0410 000	11662-2 43	099 1996 000	600	502 8393 113	Panel
999 Q450 000 24312						
999 0445 000 2522 47 099 1999 000 600 111 502 8405 113 Panel 127 099 0449 — 252 /U 48 099 2308 000 TBM-3500 138 502 8413 113 Panel 127 099 0450 000 255 /U 48 099 2308 000 TBM-3500 138 502 8413 113 Panel 127 099 0451 — 260 /U 48 099 2311 — HI-50A 40 1520 3300 32 122 /I 131 13 Panel 127 099 0451 — 260 000 300-825 68 099 2311 — HI-50A 40 052 2300 30 22 12/M 5.5 099 0458 000 300-825 68 099 2314 000 78R 42 522 0389 005 356A1 96 099 0469 000 505 8353 74 099 2374 000 SCB-BB 125 522 0389 005 356A1 96 099 0460 000 505 8353 74 099 2374 000 SCB-BB 125 522 0389 005 356A1 96 099 0460 000 400 400 400 400 400 400 400 40						
999 0448 — 289/U 48 099 2302 000 600 111 502 8409 122 Panel 127 099 0450 000 255/U 48 099 2309 000 TBM-3500 138 502 8417 113 Panel 127 099 0451 — 260/U 48 099 2309 000 TBM-3500 138 502 8417 113 Panel 127 099 0451 — 260/U 48 099 2311 — 18-50A 40.041 505 9576 000 21E/M 55 099 0458 000 300-825 68 099 2314 000 78R 42 522 0330 003 2122.1 131 099 0459 000 505 825 69 099 2316 000 78R 42 522 0330 003 2122.1 131 099 0459 000 505 825 69 099 2316 000 78R 42 522 0330 003 2122.1 131 099 0459 000 505 825 69 099 2316 000 26885 43 522 0390 005 55681 96 099 0461 000 505 825 69 099 2316 000 26885 43 522 0390 005 55681 96 099 0462 000 M-90AC 116 099 2375 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2374 000 505 835 174 099 2375 000 505 835 174 099 2375 000 505 835 174 099 2374 000 505 835 174 099 2375 00						
999 0449 — 252/U 48 099 2388 000 TEM-3500 138 502 813 113 Panel 127 099 0451 — 260/U 48 099 231 — H8-50A 0.041 505 9578 000 21E/M .5 509 9458 000 30.08.25 68 099 2312 — H8-50A 0.041 505 9578 000 21E/M .5 509 9458 000 30.08.25 68 099 2314 000 78R 4.2 52 2038 905 356A1 .96 099 0469 000 505-825 689 099 2316 000 2585 43 52 2009 005 356B1 .96 099 0461 000 505-835 74 099 2374 000 50B-80 1.25 52 0334 005 356A1 .96 099 0461 000 505-835 74 099 2375 000 50B-80 1.25 52 0334 005 356A1 .96 099 0461 000 049-904 1.16 099 2375 000 50B-80 1.25 52 0334 005 356A1 .96 099 0463 000 UA-3-31 128 099 2376 000 50B-80 1.25 52 0334 005 356A1 .96 099 0463 000 UA-3-32 128 099 2377 000 50B-80 1.25 52 0334 005 356A1 .96 099 0464 000 UA-3-32 128 099 2377 000 50B-80 1.25 52 0374 000 499G-1 .98 090 0464 000 UA-3-32 128 099 2375 000 50B-80 1.25 52 0374 000 499G-1 .98 090 0464 000 UA-3-32 128 099 2375 000 50B-12 1.25 52 0374 000 425-7 .11 099 0480 000 UA-3-32 128 099 2375 000 50B-12 1.25 52 0374 000 425-7 .11 099 0480 000 05800 117 099 2454 000 FH4 33 52 1028 000 425-8 1.1 099 0481 000 Case 117 099 2590 — TEM-2500 140 52 1410 141 172G-2 111 099 0480 000 52-60 556 099 2518 000 444W 39 52 1518 004 564A-1 14 099 0480 000 82-60 556 099 2518 000 444W 39 52 1518 004 564A-1 14 099 0486 000 82-60 556 099 2587 000 447 39 52 1518 004 564A-1 14 099 0480 000 82-60 556 099 2587 000 447 38 52 1605 000 124G-1 .93 099 0488 000 82-60 556 099 2587 000 447 38 52 1605 000 124G-1 .93 099 0488 000 82-60 55 6 099 2587 000 447 38 52 1605 000 124G-1 .93 099 0488 000 82-60 556 099 2587 000 447 38 52 1605 000 124G-1 .93 099 0480 000 79-500 57 099 2642 000 FH14 38 52 1605 000 124G-1 .93 099 0480 000 79-500 57 099 2642 000 FH14 38 52 1605 000 124G-1 .93 099 0480 000 79-500 57 099 2642 000 FH14 38 52 1605 000 124G-1 .93 099 0480 000 79-500 57 099 2642 000 FH14 38 52 1605 000 124G-1 .93 099 0480 000 79-500 57 099 2642 000 87-700 140 140 122 12 12 12 12 12 12 12 12 12 12 12 12	099 0445 000		099 1999 000	600111	502 8405 113	
999 0450 000 255/U 48 099 2399 000 TEM-3000 138 502 8417 113 Panel 127 099 0458 000 300-825 68 099 2312 — H3-50A 40 522 0330 003 2127-1 131 099 0459 000 310-825 68 099 2314 000 78R 4 22 52303 003 2127-1 131 099 0459 000 505-825 69 099 2316 000 26985 43 522 0390 005 3568-1 96 099 0460 000 505-825 69 099 2316 000 26985 43 522 0390 005 3568-1 96 099 0462 000 M-90AC 116 099 2375 000 SCB-8D 125 52 0391 005 274K-1 97 099 0450 000 UA3-31 128 099 2375 000 SCB-8D 125 522 0391 005 274K-1 97 099 0450 000 M-90AC 116 099 2375 000 SCB-8D 125 522 0391 005 274K-1 97 099 0464 000 UA3-32 128 099 2377 000 SCB-120 125 522 0391 005 274K-1 97 099 0450 000 BX801 117 099 2454 000 F44 33 52 125 522 0966 000 260-1 100 099 0479 000 BX800 117 099 2455 000 44U 33 522 1029 000 42E-8A 111 099 0480 000 BX800 117 099 2455 000 44U 33 52 1029 000 42E-8A 111 099 0481 000 Case 117 099 2500 — TBM-300 44T 39 52 111 014 176-2 111 099 0480 000 82-500 C56 099 2518 000 44T 39 52 111 014 176-2 111 099 0480 000 82-500 S56 099 2519 000 45T 39 52 111 014 176-2 111 099 0480 000 82-500 S56 099 257 000 45T 39 52 111 014 176-2 11 1099 0480 000 82-500 S56 099 257 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 257 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 257 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 257 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 258 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 258 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 258 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 258 000 124 1625 S56 099 258 000 45T 39 52 111 014 176-2 11 1099 0480 000 85-500 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000 124 1625 S56 099 258 000	099 0448	259/U48	099 2302 000	600 111	502 8409 123	Panel 127
999 0450 000 255,7U 48 099 2399 000 TBM-3000 138 502 817 113 Panel 127 099 0458 000 300.825 68 099 2312 — HB-50A 40 52 0330 003 2127 131 099 0459 000 310.825 68 099 2314 000 78R 42 252030 003 2127 131 099 0459 000 310.825 68 099 2314 000 78R 42 252 0330 003 2127 131 099 0459 000 505.825 69 099 2316 000 26985 43 52 0399 005 3568-1 96 099 0460 000 505.825 69 099 2316 000 26985 43 52 0399 005 3568-1 96 099 0462 000 M-90AC 116 099 2375 000 SCB-8D 125 52 0399 005 3568-1 96 099 0462 000 M-90AC 116 099 2375 000 SCB-8D 125 52 0399 005 274K-1 97 099 0463 000 H3-33 1 128 099 2375 000 SCB-120 125 52 0399 005 274K-1 97 099 0479 000 H3-31 128 099 2375 000 SCB-120 125 52 0399 005 274K-1 97 099 0479 000 H3-31 17 099 2454 000 H4 33 52 125 52 0956 000 260-1 100 099 0479 000 BX800 117 099 2455 000 44U 33 52 125 000 0427 110 099 0489 000 SR800 117 099 2455 000 44U 33 52 125 100 000 425-8A 11 099 0489 000 Case 117 099 2550 00 44U 33 52 125 100 000 425-8A 11 099 0489 000 82500 Case 117 099 2517 000 44T 399 522 111 014 172G-2 11 099 0488 000 82500 SCB-56 099 2518 000 44T 399 522 1519 000 425-8A 11 099 0488 000 82-500 556 099 2518 000 45T 399 522 1519 000 466A2 14 099 0488 000 82-500 556 099 2519 000 45T 399 522 1519 000 466A2 14 099 0488 000 85-500 556 099 257 000 45T 399 522 1519 000 466A2 14 099 0488 000 85-500 556 099 257 000 45T 38 38 522 1605 000 212G-1 93 099 0490 000 55-75 50 099 2625 000 H15 38 52 22 22 2500 000 356Q-1 97 099 0491 000 79-1625 57 099 2625 000 H15 38 52 22 2450 000 212G-1 99 30 099 0490 000 55-75 50 099 2625 000 156 13 50 099 257 500 000 000 566 135 52 22 2450 000 000 212G-1 130 099 0490 000 55-75 50 099 2625 000 157 000 400 000 37 000 000 000 000 000 000 000 00	099 0449	252/U48	099 2308 000	TBM-3500 138	502 8413 113	Panel
999 0458 00 300 2825 68 099 2312 — H8-50A 40, 150 597570 00 21E/M 5 909 0458 000 310 825 68 099 2314 000 78R 42 52 0339 003 21271 1311 099 0459 000 310 825 68 099 2314 000 78R 42 52 0339 005 3568-1 96 099 0469 000 505 835 74 099 2374 000 58-8 50 125 52 0339 005 3568-1 96 099 0460 000 505 835 74 099 2375 000 58-8 50 125 52 0339 005 3568-1 96 099 0460 000 490AC 116 099 2375 000 58-8 50 125 52 0339 005 3568-1 96 099 0460 000 49.34 32 128 099 2375 000 58-8 10 125 52 0339 005 2564-1 96 099 0460 000 43-32 128 099 2375 000 58-8 10 125 52 0339 005 2564-1 96 090 0460 000 43-32 128 099 2375 000 58-8 10 125 52 0399 005 2564-1 98 090 0460 000 43-32 128 099 2375 000 58-120 125 52 0074 000 4996-1 98 090 040 000 43-32 128 099 2375 000 58-120 125 52 0074 000 4996-1 98 090 000 000 043-32 128 099 2375 000 58-120 125 52 0074 000 4996-1 100 039 0479 000 81800 117 099 2454 000 FH4 38 52 1008 000 425-7 11 099 0480 000 81800 117 099 2454 000 FH4 38 52 1008 000 425-8 11 099 0480 000 000 81800 117 099 2454 000 FH4 38 52 1008 000 425-8 11 099 0480 000 000 81800 117 099 2457 000 447 39 52 111 014 176-6 1 11 099 0480 000 82-200 556 099 2518 000 444 39 52 1515 004 564A 1 14 099 0485 000 82-1625 556 099 2518 000 444 39 3 52 1515 004 564A 1 14 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 4 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 1515 004 564A 2 1.4 6 099 0485 000 82-1625 556 099 2518 000 450 38 32 125 000 000 000 000 000 000 000 000 000 0						Panel 127
999 9459 000 300.825 68 099 2312 — HJ8-50A 40 522 0339 005 356A-1 96 099 9459 000 310.825 68 099 2314 000 78R 4 22 522 0389 005 356A-1 96 099 6461 000 505.825 69 099 2316 000 26985 43 522 0399 005 356A-1 96 099 6461 000 505.835 74 099 2374 000 \$268-80 125 522 0394 005 366E-1 96 099 6462 000 HS90C 116 099 2375 000 \$CB-80 125 522 0394 005 274K-1 97 099-463 000 LA-3-31 128 099 2376 000 \$CB-8120 125 522 0394 005 274K-1 97 099-463 000 HS90C 117 099 2455 000 KSB-120 125 522 0956 000 26U-1 1000 099 6479 000 KSB-1 17 099 2455 000 44U 38 522 1028 000 42E-7 11 099 9480 000 KSB-1 17 099 2455 000 44U 38 522 1028 000 42E-7 11 099 9480 000 Case 117 099 2455 000 44U 38 522 1029 000 42E-8A 11 099 0481 000 Case 117 099 2517 000 44T 39 522 1141 014 172G-1 11 099 9481 000 82-50 55 000 55 6 099 2518 000 44W 39 522 1141 014 172G-1 11 099 9481 000 82-50 55 6 099 2518 000 44W 39 522 1141 014 172G-1 11 099 9488 000 82-50 55 6 099 2519 000 45T 39 522 1151 004 56AA-1 14 099 9488 000 85-50 55 6 099 2519 000 45T 39 522 1151 004 56AA-1 14 099 9488 000 85-50 55 6 099 2519 000 45T 39 522 1519 004 56AA-1 14 099 9489 000 85-50 55 6 099 2553 000 45U 38 522 1050 000 144A-1 15 099 9489 000 79-375 57 099 2625 000 HJ5 38 522 1605 000 274G-2 98 099 0499 000 79-500 57 099 2642 000 HJ4 38 522 1605 000 274G-2 98 099 0499 000 79-500 57 099 2642 000 HJ4 38 522 1605 000 274G-2 98 099 0499 000 79-500 58 099 0490 00 79-500 58 099 2625 000 HJ5 38 522 2480 000 Premp 103 99 0490 00 55-05 58 099 2500 000 56B 135 522 2480 000 Premp 103 99 0490 00 55-05 58 099 2625 000 HJ4 38 522 122 120 000 2044-1 130 099 0495 00 85-05 58 099 300 000 56B 135 522 2480 000 200 274G-2 98 099 0490 00 55-05 58 099 300 000 56B 135 522 2480 000 200 000 2015 61 12 099 340 000 55-05 58 099 300 000 56B 135 522 2480 000 000 000 120-10 130 099 0495 000 85-05 58 099 300 000 56B 135 522 2480 000 000 000 131 11 130 099 0495 000 87 46 52 52 58 500 000 303 131 11 130 099 0495 000 56C 12 12 12 12 12 12 12 13 10 10 10 11 12 12 12 12 12 13 10 10 10 10 11 12 12 12 12 13 10 10 10 10 11 12 12 12 13 10						
999 9489 000						
999 0460 000						
989 0461 000	099 0459 000		099 2314 000	78R 42	522 0389 005	
999 0461 000	099 0460 000	505-825 69	099 2316 000	26985	522 0390 005	356B-1 96
999 0462 000 M-90AC 116 099 2375 000 SCB-8D 125 52 0391 005 274K-1 97 089-0463 000 IA-3-31 128 099 2376 000 SCB-12D 125 52 0774 000 4995-1 98 8 059 0464 000 IA-3-32 128 059 2377 000 SCB-12D 125 52 0506 000 26U-1 100 99 0479 000 ISBN 117 059 2450 000 FH4					522 0394 005	356E-1 96
989-0463 000 UA-3-31 128 099 2376 000 SCR-12D 125 52 0774 000 4996-1 98 0896 100 UA-3-32 128 099 2476 000 FM 4 38 522 1965 000 26U-1 100 099 0479 000 BM80 1177 099 2456 000 FM 4 38 522 1028 000 42E-7 111 099 0480 000 BM80 1177 099 2456 000 FM 4 38 522 1028 000 42E-8 111 11 099 0480 000 BM80 1177 099 2500 00 44U 38 352 1028 000 42E-8 111 11 11 099 0481 000 Case 1177 099 2500 00 44T 39 522 1410 14 1726-2 111 099 0482 000 BM80 00 1177 099 2517 000 44T 39 522 1410 14 1726-2 111 099 0482 000 BM80 00 BM80 00 55-56 099 2518 000 44W 399 522 1518 004 564A-1 14 4 099 0485 000 BM85 0						
999 0464 000						4000 1 09
999 0479 000 BX800						4996-190
1999 0481 000 0 0 0 0 0 0 0 0		UA-3-32128	099 2377 000	SCB-12D	522 0966 000	260-1100
1989 0482 000 Case 117 099 2500 TBM 2500 140 140 1726-1 11 11099 0482 000 Case 117 099 2517 000 44T 39 522 1411 014 1726-2 11 11099 0484 000 82-500 .566 099 2518 000 44W 39 522 1518 004 564A-1 .14 14099 0486 000 82-500 .566 099 2518 000 44W 39 522 1518 004 564A-2 .14 14099 0486 000 85-500 .566 099 2527 000 45T 39 522 1518 004 564A-2 .14 14099 0486 000 85-500 .566 099 2557 000 44P 38 522 1505 000 144A-1 .15	099 0479 000	BX801117	099 2454 000	FH4 38	522 1028 000	42E-7
0.99 0.481 0.00 Case	099 0480 000	BX800	099 2455 000	44U 38	522 1029 000	42E-8A 11
099 0482 000						
099 0484 000						
099 0485 000 82-1625 56 099 2519 000 45T 39 522 1519 004 564A-2 14						
099 0485 000 85-500 56 099 2527 000 HJ3-50 40 522 1520 000 144A-1 15 099 0487 000 85-875 56 099 2553 000 450 38 522 1605 000 212C-1 93 099 0488 000 124-1625 56 099 2557 000 450 38 522 1606 000 274G-2 98 099 0489 000 79-375 57 099 2625 000 FHJ5 38 522 1607 000 3560-1 97 099 0490 000 79-500 57 099 2640 000 FHJ5 38 522 1607 000 409X-2 97 099 0491 000 79-500 57 099 2640 000 FHJ5 38 522 16107 000 409X-2 97 099 0491 000 79-500 57 099 2640 000 FHJ5 38 522 1691 000 2000 409X-2 97 099 0491 000 79-1625 57 099 2644 000 A3818 125 522 2419 000 212H-1 130 099 0492 000 95-500 58 099 3000 000 5068 135 522 2480 000 Preamp 103 099 0493 000 95-500 58 099 3000 000 5068 135 522 2480 000 20V3 2 2 099 0494 000 95-875 58 099 3003 000 87N 42 522 2550 000 313T-1 1111 099 0496 000 5T-466 112 099 3005 000 87T 42 522 2550 000 313T-1 1111 099 0496 000 ST-466 112 099 3005 000 87T 42 522 2550 000 313T-4 1111 099 0501 000 20-150 64 099 3006 000 87S 42 522 2609 000 808A-1 129 099 0541 000 TPS-TC 133 099 5826 000 Stand 121,121 522 2714 000 A830-2 20 099 0541 000 TPS-TC 133 099 5826 000 Stand 121,121 522 2714 000 A300-2 20 099 0540 000 RA-2 133 099 8723 000 24-150 63 522 2870 000 330F-1 21 099 0545 000 RA-2 133 099 8123 000 95-1625 58 522 2969 000 830F-1 21 099 0540 000 SC-15-B 133 099 8123 000 95-1625 58 522 2969 000 830F-1 22 099 0540 000 RA-2 133 099 8123 000 95-1625 58 522 2969 000 830F-1 21 099 0540 000 RA-2 133 099 8123 000 95-1625 58 522 2969 000 830F-1 299 095 0540 000 RA-2 133 099 8123 000 95-1625 58 522 2969 000 830F-1 299 095 0540 000 RA-2 133 099 8123 000 95-1625 58 522 2969 000 800-1 13 099 0540 000 RA-2 133 099 8123 000 95-1625 58 52 2969 000 800-1 13 099 0540 000 RA-2 133 099 8123 000 95-1625 58 52 2969 000 800-1 13 099 0540 000 RA-2 133 099 8123 000 95-1625 58 52 2969 000 800-1 13 099 0540 000 RA-2 133 099 8123 000 95-1625 58 52 2969 000 800-1 13 099 0540 000 RA-2 133 099 800-1 11 13 100 000 000 11 11 1361 0010 000 11 11 1361 0010 000 11 11 1361 0010 000 11 11 1361 0010 000 11 11 1361 0010 000 11 11 1361 0010 000 11 11 1361 0010 0			099 2518 000			
099 0487 000	099 0485 000		099 2519 000	45T 39	522 1519 004	
099 0487 000	099 0486 000	85-500 56	099 2527 000	HJ3-50	522 1520 000	144A-1
099 0488 000 124-1625 56 099 2557 000 44P 38 522 1606 000 274G-2 98 089 0489 000 79-375 57 099 2625 000 FHJ5 38 522 1607 000 366-1 97 099 0490 000 79-500 57 099 2642 000 FHJ4 38 522 1691 000 409X-2 97 099 0491 000 79-505 57 099 2642 000 FHJ4 38 522 1680 000 409X-2 97 099 0492 000 95-375 58 099 3000 000 568 135 522 2480 000 20V3 .2 099 0493 000 95-500 58 099 3000 000 566B 135 522 2480 000 20V3 .2 199 0495 000 BA-206 126 099 3004 000 87N 42 522 2550 000 313T-1 111 199 0501 000 TS-466 112 099 3005 000 87T 42 522 2550 000 313T-4 111 199 0541 000 PS-105 64 099 3006 000 87C	099 0487 000				522 1605 000	212G-1 93
999 0489 000 79-375 57 999 2625 000 FHJ5 38 522 1607 000 3560-1 97 97 999 0490 000 79-500 57 999 2644 000 FHJ4 38 522 1691 000 409%-2 97 99 0491 000 79-1625 57 999 2644 000 A3818 125 522 2419 000 212H-1 130 199 0492 000 95-375 58 099 2814 000 Amplifier 98 522 2468 000 Preamp 103 99 0493 000 95-500 58 099 3000 000 5068 135 522 2480 000 2093 2 2 099 0494 000 95-875 58 099 3000 000 5068 135 522 2480 000 2093 2 2 099 0494 000 95-875 58 099 3004 000 87N 42 522 2550 000 3137-1 1111 111 199 0495 000 BA-206 126 099 3004 000 87N 42 522 2551 000 3137-3 111 111 199 0495 000 BA-206 112 099 3005 000 87T 42 522 2550 000 3137-4 111 199 0501 000 20-150 64 099 3006 000 875 42 522 2699 000 808A-1 129 099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A830-2 20 099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A830-2 20 099 0541 000 TPS-TC 133 099 5226 000 Stand 121.121 522 2714 000 A830-2 20 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 330E-1A 25 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830E-1A 25 099 0544 000 SC-155-B 133 099 7096 000 561 47 522 2914 000 786-1 18 8 099 0545 000 SR-177 133 272 1407 000 111A-12 112 522 2375 000 830E-1A 23 099 0545 000 SR-177 133 272 1407 000 111A-12 112 522 2375 000 900C-1 136 099 0546 000 83-15P 133 273 0002 000 111A-12 112 522 2375 000 900C-1 136 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 60C-2 108 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 60C-2 108 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 60C-2 108 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 60C-2 108 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 900C-1 136 099 0549 000 87-500 133 273 0002 000 156 126 522 3497 000 900C-1 136 099 0549 000 87-500 139 289 2743 000 0741 126 542 3039 002 Assembly 98 099 090 000 111 361 0014 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 543 3397 000 1000 Choke 111 099 1396 000 3		124-1625 56				
099 0490 000 79-500 .57 099 2642 000 FHJ4 38 522 1691 000 409X-2 97 099 0491 000 79-1625 .57 099 2644 000 A3818 125 522 2419 000 212H-1 130 099 0492 000 95-375 .58 099 2814 000 Amplifier 98 522 2468 000 Preamp 103 099 0493 000 95-500 .58 099 3000 000 506B 135 522 2480 000 20V3 .2 2 099 0494 000 95-875 .58 099 3000 000 87N .42 522 2550 000 313T-1 1111 099 0495 000 BA-206 126 099 3004 000 87U .42 522 2550 000 313T-3 .111 1099 0495 000 BA-206 126 099 3005 000 87T .42 522 2550 000 313T-3 .111 099 0495 000 BA-206 .64 099 3006 000 87S .42 522 2550 000 313T-4 .111 099 0510 000 20-150 .64 099 3006 000 87S .42 522 2550 000 313T-4 .111 099 0510 000 20-150 .64 099 3006 000 87S .42 522 2550 000 313T-4 .111 099 0510 000 20-150 .64 099 3006 000 87S .42 522 2609 000 808A-1 .129 099 0517 000 30-150 .61 099 5464 000 M-20 .121 522 2714 000 A830-2 .20 099 0541 000 FPS-TC .133 099 5266 000 Stand .121,121 522 2714 000 A830-2 .20 099 0541 000 FPS-TC .133 099 6723 000 24-150 .63 522 2872 000 3306-1 .21 099 0544 000 SC-155-B .133 099 6723 000 24-150 .63 522 2872 000 3306-1 .25 099 0544 000 SC-155-B .133 099 7096 000 561 .47 522 2914 000 786-1 .18 099 0544 000 SC-155-B .133 099 7096 000 561 .47 522 2914 000 786-1 .18 099 0544 000 SC-155-B .133 099 7096 000 561 .47 522 2914 000 786-1 .18 099 0544 000 SC-155-B .133 099 7096 000 561 .47 522 2914 000 786-1 .18 099 0540 000 83-157 .133 272 1407 000 111A-6 .112 .522 3237 000 26U-2 .101 099 0540 000 83-157 .133 272 1408 000 111A-6 .112 .522 3237 000 26U-2 .101 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0549 000 87-500 .133 273 0002 000 BA-200 .126 .522 3497 000 6C2-2 .108 099 0880 — .117-50 .40 361 0012 000 Patch Cord .126 .542 3039 002 Assembly .98 099 1393 000						
099 0491 000 79-1625 57 099 2644 000 A3818 125 522 2419 000 212H-1 130 099 0492 000 95-375 58 099 2814 000 Amplifier 98 522 2468 000 Preamp 103 099 0493 000 95-500 58 099 3000 000 506B 135 522 2480 000 20V3 2 099 0494 000 95-875 58 099 3000 000 87N 42 522 2550 000 313T-1 1111 099 0495 000 BA-206 126 099 3004 000 87N 42 522 2551 000 313T-1 1111 099 0495 000 ST-466 112 099 3005 000 87T 42 522 2550 000 313T-4 1111 099 0496 000 ST-466 112 099 3005 000 87T 42 522 2550 000 313T-4 111 099 0501 000 20-150 64 099 306 000 87S 42 522 2550 000 313T-4 111 099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A330-2 20 099 0541 000 TPS-TC 133 099 5826 000 Stand 121.121 522 2714 000 830B-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830B-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830B-1 25 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2914 000 786-1 188 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 373 000 260-2 101 099 0546 000 83-1SP 133 272 1407 000 111A-12 112 522 375 000 900-1 136 099 0548 000 68-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0002 000 BA-200 126 52 3592 000 216C-2 108 099 0549 000 87-500 133 273 0000 000 157 126 542 3497 000 642A-2 108 099 0549 000 87-500 133 273 0000 000 156 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0000 000 156 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0000 000 156 126 542 3040 004 330H-1A/20 29 099 0824						
099 0492 000 95-375 58 099 2814 000 Amplifier 98 522 2468 000 Preamp 103 109 0493 000 95-500 58 099 3000 000 5068 135 522 2480 000 20V3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	099 0490 000		099 2642 000	FHJ4 38		
099 0493 000 95-500 .58 099 3000 000 506B .135 522 2480 000 20V3 .2 099 0495 000 95-875 .58 099 3003 000 87N .42 522 2550 000 313T-1 .111 099 0495 000 8A-206 .126 099 3004 000 87U .42 522 2551 000 313T-3 .111 099 0496 000 ST-466 .112 099 3005 000 87T .42 522 2552 000 313T-4 .111 099 0501 000 20-150 .64 099 3006 000 87S .42 522 2552 000 313T-4 .111 099 0510 000 20-150 .64 099 3006 000 87S .42 522 2509 000 808A-1 .129 099 0517 000 30-150 .61 099 5464 000 M-20 .121 522 2714 000 A830-2 .20 099 0514 000 TPS-TC .133 099 5826 000 Stand .121,121 522 2871 000 830B-1 .21 099 0542 000 RMC-1 .133 099 5826 000 Stand .121,121 522 2871 000 830B-1 .21 099 0543 000 RA-2 .133 099 6723 000 24-150 .63 522 2872 000 830B-1 .25 099 0543 000 RA-2 .133 099 8123 000 95-1625 58 522 2969 000 830D-1A .23 099 0545 000 ASP-177 .133 272 1408 000 111A-12 .112 522 3054 000 830F-3054 .27 099 0546 000 83-15 .1 .133 272 1408 000 111A-6 .112 522 327 000 26U-2 .101 099 0548 000 87-500 .133 273 0002 000 BA-200 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3497 000 642A-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3496 000 216G-2 .108 099 0549 000 87-500 .133 273 0003 000 156 .126 522 3490 000 300 .108 .108 .108 .108 .108 .108 .108 .1	099 0491 000	79-162557	099 2644 000	A-3818 125	522 2419 000	
099 0493 000 95-500 58 099 3000 000 506B 135 522 2480 000 20V3 2 2 999 0494 000 95-8075 58 099 3003 000 87N 42 522 2550 000 313T-1 111 111 11 11 11 11 11 11 11 11 11 11	099 0492 000	95-37558	099 2814 000	Amplifier 98	522 2468 000	Preamp 103
99 0494 000 95-875 58 099 3003 000 87N 42 522 2550 000 313T-1 111 099 0495 000 BA-206 126 099 3004 000 87U 42 522 2550 000 313T-3 111 099 0496 000 5T-466 112 099 3005 000 87T 42 522 2550 000 313T-4 111 099 0501 000 20-150 64 099 3006 000 87S 42 522 2609 000 808A-1 129 099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A830-2 20 099 0517 000 30-150 61 099 5826 000 Stand 121.121 522 2714 000 A830-2 20 099 0541 000 FP-TC 133 099 5826 000 Stand 121.121 522 2871 000 308-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830F-1A 25 099 0543 000 RA-2 133 099 6723 000 24-150 63 522 2872 000 830F-1A 25 099 0540 000 RA-2 133 099 6723 000 24-150 58 522 2914 000 786-1 18 099 0540 000 SC1-55-B 133 099 8123 000 95-1625 5.8 522 2969 000 830D-1A 23 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-1SP 133 272 1408 000 111A-6 1112 522 337 000 26U-2 101 099 0549 000 87-500 133 273 000 00 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 000 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 000 000 BA-200 126 522 3490 000 216C-2 108 099 0549 000 410 141 273 0004 000 157 126 522 3490 000 216C-2 108 099 0549 000 87-500 133 273 000 000 BA-200 126 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3040 004 Assembly 98 099 0827 000 210 140 361 0012 000 Patch Cord 126 542 3030 002 Assembly 98 099 1818 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 000 Assembly 98 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3090 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3090 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3090 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3090 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3090 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 30					522 2480 000	20V3 2
099 0495 000 BA-206						313T-1 111
99 0496 000 ST-466 112 099 3005 000 87T 42 522 2552 000 313T-4 111 099 0501 000 20-150 64 099 3006 000 87S 42 522 2609 000 808A-1 129 090 5017 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A830-2 20 099 0517 000 TPS-TC 133 099 5826 000 Stand 121,121 522 2714 000 830B-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830B-1 21 099 0543 000 RA-2 133 099 6723 000 24-150 63 522 2872 000 830B-1A 25 099 0543 000 RA-2 133 099 7096 000 561 47 522 2914 000 786-1 18 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0546 000 83-157 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-15P 133 272 1408 000 111A-6 112 522 3275 000 900C-1 136 099 0547 000 83-15 133 273 0002 000 BA-200 126 52 3496 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 52 3259 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0827 000 210 140 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 188 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1993 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1993 000 300 111 361 0014 000 Patch Cord 126 543 3917 000 Transformer 12 099 1995 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1995 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1995 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Choke 11 099 1396 000 300 300 111 361 0016 000 Patch Cord 126 543 3917 000 Choke 11						
099 0501 000 20-150 64 099 3006 000 87S 42 522 2609 000 808A-1 129 099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A330-2 20 099 0541 000 TPS-TC 133 099 5826 000 Stand 121,121 522 2872 000 830B-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830B-1A 25 099 0543 000 RA-2 133 099 7096 000 561 47 522 2914 000 786-1 18 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0546 000 83-1SP 133 272 1408 000 111-12 112 522 3054 000 830D-1A 23 099 0547 000 83-11 133 272 1408 000 111-6 112 522 3379 000 26U-2 101 099 0548 000 68-630 63-13 273 0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
099 0517 000 30-150 61 099 5464 000 M-20 121 522 2714 000 A830-2 20 099 0541 000 TPS-TC 133 099 5826 000 Stand 121,121 522 2871 000 830B-1 21 099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830B-1 21 099 0543 000 RA-2 133 099 7096 000 561 47 522 2914 000 786-1 18 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-1SP 133 272 1408 000 111A-6 112 522 3054 000 830F-3054 27 099 0547 000 83-1SP 133 272 1408 000 011A-6 112 522 327 000 26U-2 101 099 0547 000 83-1SP 133 272 1408 000 60C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0002 000 BA-200 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0000 000 156 126 522 3497 000 642A-2 108 099 0549 000 410 141 273 0004 000 157 126 522 3497 000 642A-2 108 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0820 — HJ7-50 40 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1189 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11				87142		
099 0541 000	099 0501 000	20-15064	099 3006 000	87\$42		
099 0541 000	099 0517 000	30-15061	099 5464 000	M-20121		
099 0542 000 RMC-1 133 099 6723 000 24-150 63 522 2872 000 830E-1A 25 099 0543 000 RA-2 133 099 7096 000 561 47 522 2914 000 786-1 18 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-1SP 133 272 1408 000 111A-6 112 522 3237 000 26U-2 101 099 0547 000 83-1SP 133 272 1408 000 111A-6 112 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3038 002 Assembly 98 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 189 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Choke 11 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3927 000 Choke 11	099 0541 000	TPS-TC133			522 2871 000	830B-121
099 0543 000 RA-2 133 099 7096 000 561 47 522 2914 000 786-1 18 099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-1SP 133 272 1408 000 111A-6 112 522 3237 000 26U-2 101 099 0547 000 83-1J 133 272 1438 000 602C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6473 003 Cable 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3040 003 Cable 98 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3038 002 Assembly 98 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 188 — HJ5-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0016 000 Patch Cord 126 542 3040 003 Assembly 98 099 1399 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3927 000 Choke 11 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3927 000 Choke 11						830E-1A 25
099 0544 000 SC-155-B 133 099 8123 000 95-1625 58 522 2969 000 830D-1A 23 099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-1SP 133 272 1408 000 111A-6 112 522 3237 000 26U-2 101 099 0547 000 83-1J 133 272 1438 000 602C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2						
099 0545 000 ASP-177 133 272 1407 000 111A-12 112 522 3054 000 830F-3054 27 099 0546 000 83-ISP 133 272 1408 000 111A-6 112 522 3237 000 26U-2 101 099 0547 000 83-IJ 133 272 1438 000 602C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0549 000 410 141 273 0004 000 157 126 522 3592 000 80H-1A/20 29 099 0827 000 210 140 361 0010 000 Patch Cord 126 541 6459 002 Plug 98 099 0870 000 210 140 361 0010 0						
099 0546 000 83-1SP 133 272 1408 000 111A-6 112 522 3237 000 26U-2 101 099 0547 000 83-1J 133 272 1438 000 602C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0827 000 210 140 361 0010 000 Patch Cord 126 541 6459 002 Plug 98 099 0870 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1388 — HJ5-50 40 361 0013 000 Patch Cord </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
099 0547 000 83-1J 133 272 1438 000 602C 103 522 3275 000 900C-1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0870 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3038 002 Assembly 98 099 1889 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cor			272 1407 000			
099 0547 000 83·1J 133 272 1438 000 602C 103 522 3275 000 900C·1 136 099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C·2 108 099 0549 000 87·500 133 273 0003 000 156 126 522 3497 000 642A·2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H·1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X·2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X·2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord<	099 0546 000		272 1408 000	111A-6112	522 3237 000	
099 0548 000 GR-6355 133 273 0002 000 BA-200 126 522 3496 000 216C-2 108 099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0015 000 Patch Cord 126	099 0547 000	83-1J 133		602C 103	522 3275 000	900C-1136
099 0549 000 87-500 133 273 0003 000 156 126 522 3497 000 642A-2 108 099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0015 000 Patch Cord 126 542 3040 003 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord					522 3496 000	2160-2
099 0569 000 410 141 273 0004 000 157 126 522 3592 000 830H-1A/20 29 099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1396 000 300 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11						
099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 542 3024 004 409X-2 97 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3038 002 Assembly 98 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11						
099 0824 — TBM-4000 139 289 2743 000 Crystal 20 541 6459 002 Plug 98 099 0827 000 210 140 361 0010 000 Patch Cord 126 541 6473 003 Cable 98 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1396 000 300 111	099 0569 000	410141	273 0004 000	157 126		
099 0827 000 210 140 361 0010 000 Patch Cord 126 541 6473 003 Cable 98 099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1396 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111		TBM-4000 139	289 2743 000	Crystal 20		
099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3024 004 409X-2 97 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3038 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3039 002 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 003 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11				•	541 6473 003	Cable 98
099 0870 000 Clip 121 361 0011 000 Patch Cord 126 542 3038 002 Assembly 98 099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3041 004 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11					542 3024 004	409X-2 97
099 0890 — HJ7-50 40 361 0012 000 Patch Cord 126 542 3039 002 Assembly 98 099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3041 004 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11			361 0011 000	Patch Cord 126		
099 1188 — HJ5-50 40 361 0013 000 Patch Cord 126 542 3040 003 Assembly 98 099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3040 004 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 542 3041 004 Assembly 98 099 1395 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11	099 0890 —	HJ7-5040	361 0012 000	Patch Cord126		-
099 1393 000 300 111 361 0014 000 Patch Cord 126 542 3041 004 Assembly 98 099 1394 000 300 111 361 0015 000 Patch Cord 126 543 3041 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3917 000 Transformer 12 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11 11 11 11 12 12 12 12 12	099 1188					-
099 1394 000 300 111 361 0015 000 Patch Cord 126 543 3917 000 Transformer 12 099 1395 000 300 111 361 0016 000 Patch Cord 126 543 3926 000 Choke 11 099 1396 000 300 111 370 2060 000 P3-13 128 543 3927 000 Choke 11						
099 1395 000 300						
099 1395 000 300			361 0015 000	Patch Cord126	543 3917 000	Transformer12
099 1396 000 300	099 1395 000	300111	361 0016 000	Patch Cord126		
040 COLT COV CHICAGO	099 1396 000	300111				
370 2073 000 0m3-13						
			2.2 20,0 000		000 2002 000	

HOW TO ORDER

This catalog has been prepared to make it possible for you to order directly from the Collins Broadcast Communication Division or your Collins Broadcast Sales Engineer with a minimum of effort and maximum assurance that you will receive the best equipment available. Collins type numbers and part numbers are listed so that you may order by mail, if you wish, and receive the same fast, personal service that is available from your Collins Broadcast Sales Engineer.

PRICES

Prices in the price book inside the back cover replace all previous prices and are subject to change without notice. Orders are filled at prices in effect at the time of shipment. If prices are reduced, you receive the advantage of the lower price. Collins customers outside the 50 United States should contact Collins Radio Company, International Division, Dallas, Texas, or Collins Radio Company of Canada, Ltd., Toronto 16, Ontario.

SIGNED ORDERS

All orders must be signed by an officer of the purchasing corporation, partnership or company. All orders, down payment agreements and terms are subject to final acceptance at the Collins Broadcast Sales Division office in Dallas, Texas.

SUBSTITUTION AND MODIFICATION

Collins reserves the right to modify, without notice, the design and specifications of equipment designed by Collins.

TERMS OF SALE

Terms of payment for all Collins Radio Company broadcast equipment sales fall into the following categories:

- 1. Cash in advance or C.O.D.
- 2. Net 30 days.
- 3. 30-60-90 days (no interest or carrying charge).
- 4. Conditional Sales Contract.

DOWN PAYMENT

On all firm orders applicable to Conditional Sales Contracts, a minimum down payment of 25% is required, with the balance spread equally. In the case of contingent orders, a minimum of 3% down is required.

SHIPMENT

In the absence of specific instructions Collins will select the carrier to whom delivery will be made for shipment to the purchaser.

DAMAGES IN SHIPPING

Usually, shipments from Collins Radio Company or one of its vendors on a drop ship basis are made "Shipping Charges Collect." As such, the equipment automatically becomes the property of the purchaser when picked up by the carrier. Should damage occur during shipment, the request for inspection and claims for damage must be made by the purchaser with reimbursement paid directly to him. Collins will gladly assist the purchaser with any necessary information he may require to successfully negotiate a claim.

DELIVERY

Unless otherwise specified, delivery will be made f.o.b. from one of Collins' various shipping points or from the shipping point of a supplier of Collins. Although Collins makes every effort to expedite shipments, the Company cannot guarantee nor be held responsible for delays in shipments caused by a supplier of Collins or by the carrier.

FIELD SERVICE

Fast field service is assured owners of Collins broadcast equipment by the Collins Service Division. A staff of selected specialists is maintained to provide Collins customers a level of service consistent with high performance equipment. For service on Collins equipment which is essential to continued on-the-air operations of the station, contact your Collins Broadcast Sales Engineer. For emergency, after-hours service, Call Dallas, Texas, 214 AD 5-9511. Collins field service engineers are stationed at key points throughout the world. Overseas customers contact your nearest International office.

RETURNING GOODS

All returned goods, whether for repair, replacement or credit. must be authorized by Collins Radio Company. A

return material tag and service report will be enclosed with your authorization for the return of the goods. An accurately completed report will assure prompt handling of repairs, necessary parts, replacements and adjustments of accounts where required. Address material as follows:

Collins Radio Company

Dallas, Texas 75207

Attention: CRG/Re (Sales Order Number)

Contingent on Collins' agreement to accept such returned goods, a restocking charge of 15% will be made on all items returned due to customer requested changes or deletions from original orders after shipment is made. All returns must be sent prepaid and properly insured by the customer. If warranted, Collins will adjust and/or issue credit for these shipping expenses.

GUARANTEE

Collins' faith in its equipment — as well as its record of quality and reliability — allows the Company to maintain a formal guarantee that Collins will repair or replace, without charge, any equipment, parts or accessories which are defective as to design, workmanship or material, and which are returned to Collins with transportation prepaid. To be eligible for the Collins guarantee, several conditions must be met:

- 1. Notice of the claimed defect in equipment manufactured by Collins is given Collins within two years from date of delivery and goods are returned in accordance with Collins' instructions to you.
- 2. Equipment, accessories, tubes and batteries not manufactured by Collins or from a Collins design are subject to only such warranties and adjustments as Collins may obtain from the supplier.
- Equipment or accessories will not be considered defective if the equipment has been exposed to improper treatment, excessive moisture or if it has been altered or repaired by persons other than Collins authorized representatives.

In no event does Collins have any liability for consequential damages or for the loss, damage or expense directly or indirectly arising from the use of the products or any inability to use them either separately or in combination with other equipment or materials or from any other cause. Collins further guarantees that any Collins radio transmitter will deliver full radio frequency power output at the antenna terminal when connected to a suitable load, but Collins does not guarantee any definite coverage or range.

UNITED STATES BROADCAST OFFICES

Collins Radio Company **Broadcast Communication Division**

Dallas 7, Texas

Telephone: Area Code 214 ADams 5-9511

K. A. Blake

California, Nevada, Oregon, Washington

Collins Radio Company P. O. Box 57087

Los Angeles 57, California Telephone: DUnkirk 5-6421

B. E. Dobbins 2662 Elm Avenue Boulder, Colorado Telephone: 442-6163 Arizona, Colorado, Idaho, Montana, Utah, Wyoming

R. C. Evans P. O. Box 8026

Arkansas, Western Half of Kentucky, Louisiana, Mississippi, Western Half of

Jackson 4, Mississippi Telephone: 939-4220

Indiana, Michigan (East of Lake Michigan), Ohio

R. J. Henry Route 2

Roanoke, Indiana Telephone: 672-2906

L. H. Leggett Collins Radio Company 1271 Avenue of the Americas New York 20, New York Telephone: JUdson 6-5678 Connecticut, Delaware, District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont

J. L. Littlejohn

Michigan (West of Lake Michigan), Minnesota, Nebraska, North Dakota, South Dakota, Wisconsin

12708 Myrtle Circle Hopkins, Minnesota Telephone: 935-7011

Illinois, Iowa, Kansas, Missouri

E. G. Randolph Collins Radio Company Cedar Rapids, Iowa Telephone: EMpire 5-8411

J. H. Speck

Collins Radio Company

Dallas, Texas

New Mexico, Oklahoma, Texas

Telephone: ADams 5-9511

J. F. Stanbery P. O. Box 325 Gatlinburg, Tennessee Telephone: 436-5497 Eastern Half of Kentucky, North Carolina, South Carolina, Eastern Half of Tennessee,

Virginia, West Virginia

C. W. Walters 3658 Colebrook Drive Jacksonville, Florida Telephone: SPring 1-2978 Alabama, Florida, Georgia

Special Consultant George Wetmore Collins Radio Company Universal Building Washington, D.C.

INTERNATIONAL

Collins Radio Company International Division Dallas 7, Texas, U.S.A.

Why is this trademark important to you?

For 30 years one principle has guided us in meeting our responsibility to provide you with equipment of the highest performance standards. That principle is integrity.

integrity in design	25% of our people are in Research and Development.
integrity in manufacturing	The best facilities, the best materials, the industry's finest craftsmen.
integrity in sales	Honest claims, backed up by a seldom- used but always dependable guarantee.
integrity in service	Around the world, around the clock to insure Collins performance.

Our trademark is a symbol of Collins integrity. You can depend on it.

COLLINS RADIO COMPANY • Broadcast Communication Division, Dallas • International Division, Dallas

UNIVAIR AIRCRAFT CORPORATION

PLANT, OFFICES AND WAREHOUSES: RT. 3, BOX 59, AURORA, COLORADO 80010 - -

TELEPHONE: (303) 364-7661

CESSNA SKYWAGON 180

CESSNA SKYLANE

CESSNA AGWAGON

CESSNA CENTURION

CESSNA 401B

CESSNA SUPER SKYMASTER

CESSNA SKYWAGON 207

FACTORY SALES ORGANIZATION.

WE CAN SUPPLY ALL CESSNA AIRCRAFT PARTS FROM A BOLT AND NUT TO A NEW AIRPLANE. ALL CESSNA PARTS AT UNIVAIR'S LOW PRICES, IF PARTS WON'T HELP, WE'LL SELL YOU A COMPLETE NEW PLANE.

PARTS ARE AVAILABLE. WRITE - PHONE - WIRE FOR ALL YOUR CESSTA. REQUIREMENTS.

CESSNA SUPER SKYLANE

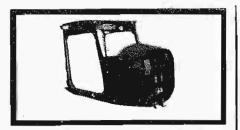
CESSNA SKYWAGON 185

CESSNA 414

CESSNA 3100

CESSNA 402B

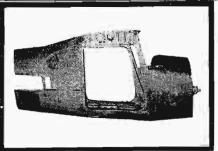
CESSNA SKYWAGON 206



CESSNA 421 GOLDEN EAGLE

UNIVAIR AIRCRAFT CORPORATION

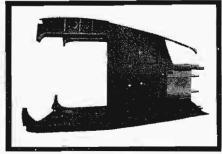
Route 3, Box 59, Aurora, Colorado 80010 **Telephone: 303-364-7661**


FRONT AND CENTER FUSELAGE SECTIONS (Model 172 shown)

MODEL 172

P/N	Aircraft SN	Year	Price
0591101-1	28000-36965	1956-58	1244.40
0591101-4	36966-46754	1959	1243.20

MODEL 175


0591101-3	55001-55703	1958	1234.80
0591101-8	56778-57002	1961	1254.00

FRONT AND CENTER FUSELAGE SECTIONS (Model 182 shown)

MODEL 182

P/N	Aircraft SN	Year	Price
0791101-1	33000-33842	1700	1369.20
	33843-34753	1957	1383.00
0791101-10	52359-53007	1960	1351.20
0791101-14	53008-53598	1961	1370.40

CENTER SECTION FUSELAGE (Model 182 shown)

MODEL 182

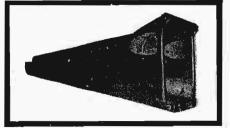
		Year			
0791160-1	53599-54423	1962	814.20		
CESSNA SKYLANE					
0791160-2	53599-54423	1962	814.20		

FRONT SECTION FUSELAGE (Model 172 shown)

MODEL 172

P/N	Aircraft SN	Year	Price
0591301-8	36966-46754	1959	584.40
0591301-16	46755-47746	1960	567.60
0591302-3	47747-49544	1961	597.60

MODEL 175


0591301-5	55001-55703	1958	571.80
0591301-12	55704-56238	1959	585.00
0591301-14	56239-56777	1960	596.40
0591302-1	56778-57002	1961	595.20
0591302-5	57003-57119	1962	595.20

MODEL 180

0791300-14	50356-50661	1959	637.80
0791302-1	50662-50911	1960	681.60
0791302-6	50912-51311	1961	700.80

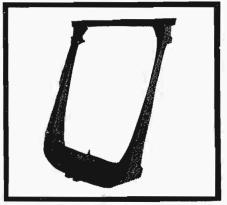
MODEL 182

0791301-1	33000-33842	1956	675.60
0791301-7	33843-34753	1957	673.20
0791301-9	33843-34753	1957	673.20
0791301-10	51557-52358	1959	690.00
0791301-12	52359-53007	1960	679.20

AFT FUSELAGE SECTIONS (Model 140A shown)

MODEL 140A

	Aircraft SN	Year	Price		
0412000-14	15051-15689	1949-50	261.00		
	MODEL 170	В			
0591200-6	26996 & Up	1952 on	637.00		
MODEL 172					
0512008-7	46755-47746	1960	549.50		
MODEL 175					
0591201-4	55001-56238	1958	621.00		
0512009-7	56239-57119	1960	654.50		


AFT FUSELAGE SECTIONS (Model 182 shown)

MODEL 182

P/N	Aircraft SN	Year	Price
0791201-1	33000-52358	1956	265.50
0791201-3	52359-53598	1960	294.50

MODEL 310

0891200-1	35000-35546	1954-57 1037.00
		1954-55 1203.00
0891201-2	35225-35546	1956-57 1037.00

DOORPOST BULKHEADS (Model 182 shown)

MODEL 180

Aircraft SN | Year | Price

P/N

	0513006-120	50356-50661	1959	347.90			
	MODEL 182						
	0513007-11	33000-51556	1956,58	218.40			
		51557-52358	1959	223.30			
Ī	0513007-24	52359-53007	1960	223,30			

MODEL 210

1213100-1 | 57001-57840 | 1961 | 213.50

AFT TAILCONES (Model 180 shown)

MODEL 180

	Aircraft SN Year		Price	
0791200-5cp	32151-51063	1956-63	143.00	
MODEL 210				
1212001-2 57001-57840 1960-61 195.60				

WHEN ORDERING, GIVE MAKE, MODEL AND SERIAL NUMBER All prices on this list are subject to change without notice.

AERONC

AERONCA SERVICE MANUALS

Model 11AC "Chief".....\$ 6.00 *

Madel 7AC "Champion"....\$ 6.00 *

* Plus Postage

ש

Ercoupe

Ξ

(2)

..... \$ 6.00 * \$ 6.00 *

(2) 3

PIPER CUB (J.3)
Service Manual (28 pages, includes assembly drawings.)
Parts List (24 pages with 6 diagramatic foldours.)

(3)

PIPER CUB SUPER CRUISER (PA-12)

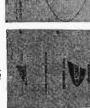
1

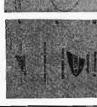
(3)

(3)

1) PARTS CATALOG \$10.00 *
Models 1946-47-48 Stinson Vayager

& Flying Station Wagon. (83 pages, illustrated.)





(2) SERVICE BULLETINS & LETTERS-\$ 5.00 *

(4)

COLUMN COLUMN Doing P.

3

(2)

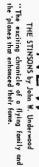
(3)

(2)

(5)

Del Service and and

(6)



TAYLORCRAFT NOWN Service Manual

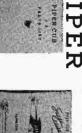
TAYLORCRAFT MANUAL

TAYLORCRAFT

* Plus Postage

un şlere szare

(1) Service Paris List..... \$ 3.00 * for Aircraft Engines Hodels 6A4-150-B3 & 6A4-145-A3

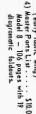

Service Manual - Model BC12D. . . . \$ 6.00 * Owner's Manual - Models B & B12. . \$ 6.00 * Both in hordy red covers with plastic

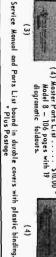
Ξ

UNIVAIR AIRCRAFT CORPORATION AURORA, COLORADO Phone (303) 364-7661 ROUTE 3, BOX 59 80010

23


LUSCOMBE


(3)



(4)

T.

UNIVAIR Flottorp Controllable
Pitch Propellers - Field
Service Manual \$ 1.50 *

(series R002-R003)

Anna

PROPELLERS

UNIVAIR Aeromatic Propeller Field Service Manual. Model F-200 \$ 1.50 *

-

*** 21 40000

rade) (ack at AEROMANC

Fremille

· Plus Postage

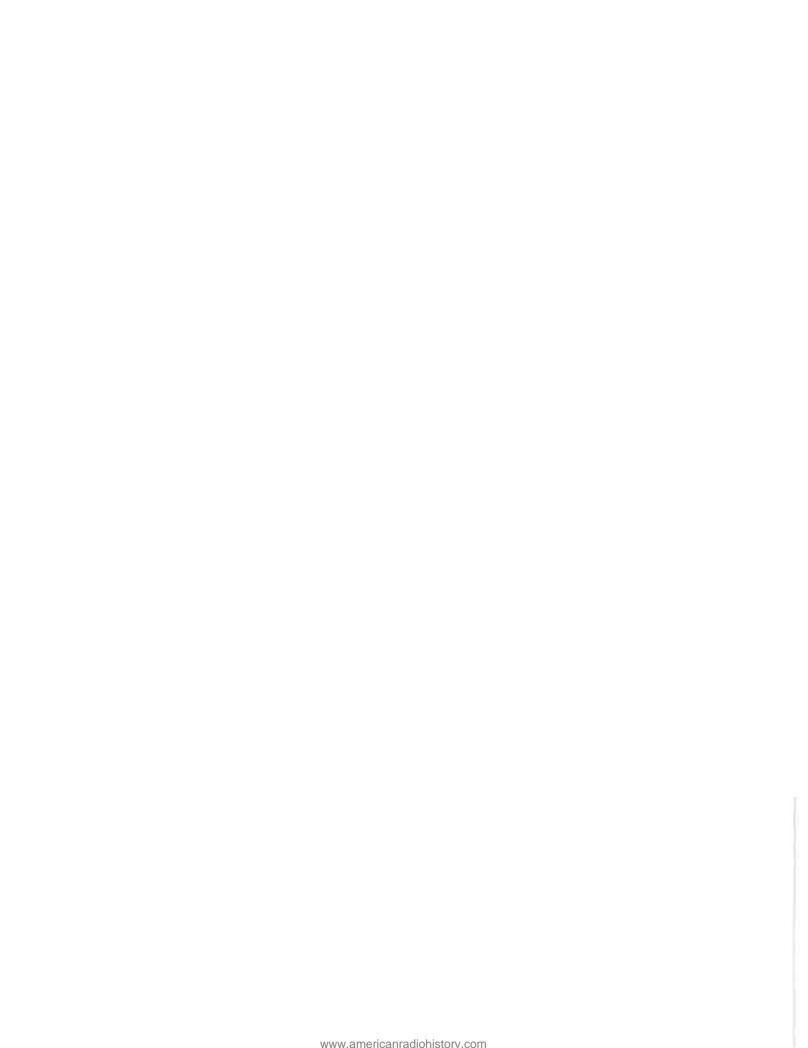
(2) Service Manual \$ 5.00 * for Madels 6A4-150-B3
B31 & 6A4-165-B5

* Plus Postage

(2)

* Plus Postage

Engine Logbook . . . \$.75 * (3½ X 6 size, hard cover) (3½ X 6 size, hard cover) .75


BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO.
38704
Everett, Mass.

RUST CORPORATION
168 TREMONT STREET
EVERETT, MASSACHUSETTS 02149

				4		
		4				*
	# diZ					
tion						
Station-						
	State			100		
			Lize/III ite			
TitleAddress	City Message:-					
Titl	City_					
П		ПГ				

