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Pre face  

This book is nor far microwave engineers; the engineering literature on the 
subject of microwave measurements is already ample. This book has been written 
for three groups of readers. First, for students, who i t  is hoped will find it a 
readable introduction to laboratory procedures. Second, for technicians who are 
working with coaxial instruments and components. Third, for scientists and 
enginers from other fields who must make microwave measurements in the 
course of their research. 

Throughout most of the book we have asumef of the reader on1 y a farnili. 
arity with the basic theory of alternating currents, including the representation 
of ac quantities by complex phasors and the elementary algebra of complex 
numbers. An exception i s  the optional Chapter 4, where we have presented some 
theoretical material. Even here, an acquaintance with the solutions to the one 
dimensional' wave equation will see the reader through quite adequately. 

The efforts of many persons besides the author have gone into the creation 
of this handbook. Mrs. Gladys J. Carter typed The manuscrip1 (several times), 
Mrs. Barbara R. Mucciaccio set the text and equations in type, and Mrs. Jane S. 
Putnam prepared the drawings. Layout was done by Mrs. Wilna 1. Tannahill, and 
editorial supervision was capably performed by Miss Audrey J. Boyan. The en- 
tire handbook was read both in draft and in proof by Mr. Douglas M. Woodard 
of General Radio" Microwave Group. He has made an invaluable contribution 
to the book by ensuring the accuracy of formulas and numerical examples (but 
by the same token he cannot escape responsibility for any errors that remain). 

ID. A.G. 
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CHAPTER 1 

Introduction 
to Coaxial Transmission Cines 

Trave l ing  Waves 

7.1 FIELDS IN COAXIAL LINES 

Although an infinite number of electromagnetic field configurations, or 
modes, as they are called, can propagare along a coaxial transrnissidn line, the 
one we are alrnosf always interested i n  is the principal or transverse electre 
magnetic (TEM) mode, because except in rare instances coaxial lines are intended 
to operate in this mode. The name "transverse electromagnetic" derives from 
the tact that both the electric and magnetic fields belonging to  t h ~ !  TEM mode 
are entirely normal to the direction of propagation. All  the higher modes have, 
in addition to the transverse f~elds, components of either the electric or magnetic 
field in the direction of propagation. 

Not only coaxial lines but also parallel-wire lines, strip lines, in fact all 
fransrnission lines having two or more conductors, allow propagation of TEM 
waves Like the coaxial line, these other multiconductor transmission lFnes are 
almost invariably intended to  work in the TEM mode, although they too have 
higher modes of propagation. Hollow waveguides, on the other hand, are trans- 
mission lfnes that have just a single conductor, and they will not support TEM 
waves. Waveguide transmission must therefore utilize a higher mode. 7 

Unguided waves in an unbounded medium Ithat is, free electromagnetic 
radiation) are transverse electromagnetic and share all the properties That char- 
acterize principal mode waves on transmission lines. 

Waves of any frequency, from dc upward, can propagate in the principal 
mode. Higher-mode waves propagate only above certain cu tuff frequencies that  
depend on the cross section o f  the guiding structure and on the particular mode. 
The possibility of propagalion in the higher modes normally limits the usefulness 
of a coaxial line to frequencies below the lowest higher-rnode cutoff, 

Figures 1.1-1 and 1 .I-2 show the fields belonging to the principal mode in 

an ideal, losslms coaxial line. The electric field has radial lines of force which 
terminate on the conducting surfaces. The magnetic field is tangential; its lines 
of force are concentric, circular loops around the inner conductor. Eoth fields 

+~ropsrly speaking, any transmlmlon Ilne i s  a waveguide, and we  should probably be talking 
about *'coaxial waveguldas." Ta most people, how~ver ,  "wavegulde" s t i l l  connotm a hollow 
Pips, end we  hope we may be forgiven for using old-fashlonod terrnlnology whsn we telk 
about coaxial "rransmlssion lines." 
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Figure t.7-1. Electric field ( E )  and magnetic field (HI belonging to  the principal 

mode in a coaxial line. 

are most intense at the sc~r fac~ of t l i r  lnnrr conductor and decrease i n  intensity 
inversely with ~ncreasing radrus. Thp 1nstnntanrr2cts rnarlnttude of  the electric 
field at  a distance r(rnet~rs1 frorr~ tlic axis is 

1' E =  . -  I (vo l ts f rn~t r r )  
b r 

log, - 

where r 1  is the instantanco~~s potential difference across the line in volts and a 

and b are the radii of the inner and outer conductors in meters. The instantane- 
ous magnitude of the magn~t ic  f i ~ l d  i s  

where i is the instantaneous current in amperes 

Example: Electrical breakdown of air at a pressure of one atmosphere 
occurs when t h ~  electric field intensity is around lo4 voltslcm. What is 

the breakdown voltage of standard 911 6-inch SO-ohm coaxial line (outer 
conductor ID = 0.563 inch, inner conductor OD = 0.244 inch)? 

Breakdown wil l  occur where the electric field is strongest, at the 
surface of the inner conductor. Therefore the breakdown voltage 
 breakdown) wil l  bc qiven by (1.1-1 ) with I = a and E = E(breakdown): 

b 
 breakdown) = a log, - . /?(breakdown) 

a 

The numbcrs must have thp right units bcforc t h ~ v  are plugged into the 
formula. E(breakdown) = 10' volts/crn = lo4 vo~ ts / lO -~  meter - 
1Q6 volts/m~tcr. n = X 0.244 inch = '/1 X 0.244 X 0.0254 meter = 

0.003 1 rnrter. 
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b 
log, - = log 

% X 0.563 inch = log, 
a ' )/2 X 0.244 inch 

0m563 - log, 2.32 = 0.842 
0.244 

Finally, then, "(breakdown} = 2.61 X lo3 volts, or about 2.5 kilovolts. 

Figure 1.1-2. Cross-section views o f  the principal-mode fields. The radii o f  Fnner 
and outer conductors are a and b. (a) The electric field E. I, is the instantane- 
ous voltage between the conductors. The inner conductor is positive and the 
direction of the electric field is from the positive to  the negative conductor. 
(bJ The magnetic field H .  The instantaneous current i flows out of the paper (.) 
i n  the inner conductor and into the paper (0) i n  the outer conductor. 
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Figure 1.1-3. (a) Longitudinal section of coaxial line showing currents, charges, 
and fields i n  a TEM traveling wave moving toward the right. Arrows on inner 
and outer conductors show direction of current; plus and minus signs show 
polarity o f  charge. Radial lines represent the electric field. Circles indicate 
magnetic lines o f  force going into the paper; dots, ones coming out. ( b )  Graphs 
of vdtage and current associated wi th the wave shown in  (a) as a function of 
position. Voltage is called positive when inner conductor is positive; current is 
called positive when it flows t o  the right i n  the center conductor. 
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Figure 7.7-3Ia) shews En longitudinal section the essential features of a 
sinusoidal traveling wave that is propagating toward the right along a coaxial line. 
Immediately below, in { b), graphs show the axial distribution of voltage and cur- 
rent at the same instant The distance between two planes such as aa' and ee' 

that are exactly one spatial cycle apart i s  the wavelength, A. The + and - signs in 
(a) indicate the charge an the conductors and the radial lines are electric llnes of 
force. We have chosen ta  call the voltage positive when the center conductor is 
positive, as it is at the plane m', The arrows drawn on the conductors in l a )  in- 
dicate current direction. The symbols n and between the conductors indicate 
magnetic lines of force; 0 is a line going into the paper, m is one coming out. WP 
have taken the current as positive when it flows to the right in the center con- 
ducdor. Notice that currents, charges, and fields all reverse f rom one half-cycle 
to the next. Notice too that the electric and magnetic fields, hence voltage and 
current, are in phaseat  This relation is characteristic of a fmveling iuavp although 
not of a standkg watw, as we shall see later in the chaoter. 

Is thcrc something about thc fields of Figurc 1.1-3 that tells us that the 
wave is traveling t o  the right rafher Than to the left? The answer is yes. Consider 
for example the plane aa'. Current is flowing from left 20 right i n  the positive 
wire (center conductor) and from right to left ih the negative wire (outer con- 
ductor). Now, we know that current flows out of the positive termina! of a 
source and into the negative terminal, and that it flows into the positive terminal 
of a load and out of the negative terminal. Hence we conclude that energy is 
flowing from left to  right at ao'. At a plane such as cc', where the voltage and 
current are both reversed, the same argument again shows that energy is flowing 
from left t a  right. I f  we wanted to  change the figure to show a wave moving to- 
ward t h ~  left  w ~ !  wnuld havp tn rPvPrSP Pither The ~ iec t r i c  f i e l d ~  ( c h a r r j ~ ~  and vnlt- 
ages) or the magnetic fields (currents), but not both. 

1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH 

The velocity of propagat Ion of principal-mode waves an a uniform, lossless 
line is the same as the velocity of unguided waves (which, as we have said, are 
also TEM) In the medium that separates the conductors. Thus, if the space be- 
tween the conductors of a lossless coaxia! line were wacuated, the waves would 
travel at a speed vfEU(vac) = 2.998 - . . . X 10' A 3 X 70' meters/second, the 
much publicized velocity of light in vacuum, for which physicists usuelly write c, 

Loss due to  imperfect conductors slows down the waves. In  practical high- 
frequency lines this effect is too small ro be of any consequence except under 

f f h l s  Is equivalent to savlng that  the characterlstlc Ernrnlttance la real, whlch, as we shall see 
In Seetlon t.3, is not qui te  true o f  a lossy flne. 
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I I 1 i 

I I / 1 Figure 1.2-1. The effect of conductor 
loss on the velocity of prapagation in 
General Radio 9116-inch 50-ohm preci- 
cision silver air-dielectric line. 
(After T o r y ,  l E E E  Trans~ctiot~s on Instru- 
meittatiou and A l c m ~ r ~ m e n t ,  I'ol lMIS, hfo. 

2 x 1 0  IOYHZ 9e IOOMHZ IGHZ IOGHZ 4, DPCPWI brr, 196 6.) -3 X 10.' 

'requency . . c  

circumstances of the most exacting precision. The relative decrement Avlv that 
conductor loss causes in the velocity of TEM waves in General Radio 9116inch 
50ohm precision silver air-dielectric line is shown as a function of frequency in 
Figure 1.2-1. 

In an  ordinary dielectric the speed V ~ ~ ~ ( d i e l )  of TEM waves is less than 
I'TEM (vac). Physicists call the ratio 

(which is a dimensionless number greater than unity) the index of refraction of 
the particular material because it is the difference in the velocity of light in two 
media that causes refraction at an interface. Engineers often describe the reduc- 
tion in the velocity of waves in a cable due to the presence of a dielectric between 
the conductors in terms of a number called the velocitv factor, which is just the 
reciprocal of the index of refraction. 

LITEM (die11 
velocity factor = < 1 

VTEM (vacl 

Example: When we look up the optical index of refraction of polvethvl- 
enF! we find figures that are close to 1.5. Now, the reciprocal of 1.5 is  
0.67, which as a matter of fact is a typical velocity factor for a cable filled 

with solid polvethylene. Actually this agreement is little more than CO- 

incidental. One would be naive to expect the velocity of electromagnetic 

waves in any material medium to be the same at microwave frequencies 
as i t  is at optical frequencies, five or six orders of magnitude higher. 
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The velocity of TEM waves is determined by two properties of the medium 

according to the relation 

where p is the medium's magnetic permeability (henryslmeter) and E is its elmrie 
permittivity (faradslmeter). The permeability of vacuum, ~ ( v a c ) ,  is a defined 

number exactly equal to 471 X loA7 henrylmeter. The permittivity of vacuum, 
~ ( v a c ) ,  i s  an experimental number equal To 8.85 + . . . X lo-'? faradlmeter. 

In dielectric media the permeability has its vacuum value but cldiel) is al- 
ways larger than ~ ( v a c ) ,  often many times larger. The dimensionless ratio 
~ ( d i e l j / ~ ( v a c )  i s  called the relative permittivity or dielectric constant of the rna- 

terial in question and i s  represented variously by E,, K ,  k, K ,  and, regrettably, 
quite often by E. 

Since the velocity of TEM waves depends inversely on the square root of E ,  the 
velocity in a dielectric medium may be written 

Example: The dielectric constant of dry air a t  one atmosphere and 23 
degrees Celsius is 1.00068. What i s  the velocity factor of an air-dielectric 

coaxial line? 
I f  we compare (1.2-21 w ~ t h  { 1.2-5) we see that t he  velocitv factor is 

equal to 1 1 6  One can find the square root of a number that is verv 
close to unity simply by taking the first term of a binomial series: 

I .t x)'% 1 f 1/2 X .  Thus the velocity factor of an air-dielectric line i s  
1 - %(0.00068) = 0.99966, which is so close to unity that the difference 

between air and vacuum can arrnost always be ignored. 

v,,, (air) 6 vTEM {vat) 

 h he basic svstem of units used by slectrical englnaers Is the meter-kllograrn-s~cond- 
ampere (mks A )  system. The practical electrical unfrs - volts, amperer, watts, farads, ohms. 
etc - belong to the mksA system. The reader should bo wary of t w o  thin*: First, vhys i .  
cists and chernlsts freguenrly continue to use the older Gaussian electrical unirs, a ccntl- 
meter-gram-second (cgsJ system based on the electrostatic unit (flu3 of charge end the 
electromaqnetic unit (emu) of current. Formulas in the Geusslen system have diffarenr con- 
stanrs sntf quantities have different slzes and different units. Second, in practace nobody 
bothers to stick t o  a single system anyway. Thus In this book we shall use centimeters, and 
inches as well as meters, degrees and declbels as well as radians and nepers, and so forth. 
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Example: What i s  the velocity factor of a flexible cable filled with poly- 

ethylene, f, = 2,251 

velocity factor = l/CZTT= 0.87 

We have alreadv pointed out that uTfM(diel) varies wi th frequency, and 
so, therefore, must the dielectric "constant" E,. We shall say no more about this 
except to remark that variations in E ,  with frequency are accompanied bv high 
dielectric .!ass, and low-loss dielectrics such as pol yethy lene, polystyrene, and 
Teflon7 have relative perrnittivities that are constant with frequency. 

The wavelengffi X of a periodic wave is related to i ts frequency f and veloc- 
i t y  Y by the well-known formula 

Since the velocity of TEM waves is the velocity in vacuum divided by 6 the 
wavelength of principal-mode waves on a coaxial line is given by 

Thus the wavelength in an air-dielectric coaxial tine is the sameas the freespace 
wavelength, while that in a solid dielectric line is shorter by the factor 11% 
(But this is not true of waves in hollow waveguides, which are not transverse 
electromagnetic The phase velocity of non-TEM waves is greater than that of 
TEM waves, and it depends on the frequency. Therefore the guide wavelength i s  
longer than the freespace wavelength and is not simply proportional to  Ilf,) 

The phase factor ot  phase constant l3 tel Is haw rapidly the phase of a sinu4 
oidal traveling wave changes with distance along the line. I f  we imagine the 
traveling wave 'Yrozen" at a particular instant of time, P is the amount of phase 
change per unit distance. Since the phase changes by 2 n radians or 360 degrees 
in one wavelength, we have 

Example: What is the phase constant of waves in a flexible cable whose 
velocity factor is 0.67 if the frequency is 300 MHz? 

Registered tredemark of  E.I. duPont de Nemours and Company. 

8 , 1.2 VELOCITY, PHASE CONSTANT* A N 5  ELECTRlCAL LENGTH 



The velocity in the cable is 0.67 X 3 X 10' meterslsecond = 

2.0 X 10%eters/second, so that the wavelength X is 

2.0 X loR rneters/s~cond 
= 0.67 meter 

3.0 X 10' second-' 

and the phase constant 0 is 360 degreesl0.67 meter = 540 dqrees/meter. 

We assurn? that the reader is familiar with the representation of sinusoi- 
dally time-varying quantities by phasors or, as they are often called (incorrectly, 
from the mathematician's point of view), vectors in the complex plane. We will 
use upper-case Vs  and I's to denote phasor voltages and currents, Thus an in- 
stantaneous voltage v(t)  ;hat varies with time according to 

where IVl i s  the peak value of I J ( ~ ) ,  f is the frequency, and is the phase, will be 
represented by the phasor 

Figure 1.2-2. The phasor V = 11/14 4 .  

The magnitude I v I  of the phasor V is equal to the peak value of the time-varying 
quantity t ~ ( t ) ,  and the angle 4 is equal to the phase angle of v(t). The important 
thing to notice is what happens if we change 4. We can see from (1.2-91 that in- 
creasinq # has the same effect as decreasing t ,  so that after we have increased #, 
v ( t )  will reach any particular value in its cycle at a smaller t ,  that is, earlier than 
i t  did before. Increasing the phase anfle 4, which by convention means rotating. 
the phasor V coltntcrclockwise, makes s ( t )  occur earIi~r. 

1.2 VELOCITY, PHASE CONSTANT, A N D  ELECTRICAL LENGTH 9 



I f  V is the phasor that represents the instantaneous voltage v ( t )  due to a 
traveling wave on a transmission line, the angle 4 of V will be found to  increase 
as V is observed a t  points closer and closer to  the source of the wave. This is b e  
cause the time a t  which vIt1 reaches a particular angle in i t s  cycle becomes p r e  
gressively earlier ar points closer and closer to the source. The rate at which d 
changes with distance is the phase constant It. 

phase shift of 
traveling wave 

= + 81 
in line segment 
of length S 

+ toward 
source of wave - away from 

The terms electrical lenqth and electrical distance are used in two really 
quite different senses. One rneanjng, which applies to  a device or a component 
of a transmission system, is the length of air-dielectric line That has the same 
delav time as the device in question. Electrical lengths in this sense are measured 
in units of length: inches, centimeters, etc, The electrical length of a mnnector 
with a solid dielectric support bead. for exampte, wil l  be longer than its physical 
length because the waves propagate more slowly in the solid dielectric than they 
do In air. 

Example: What is the electrical length, in the sense just defined, of a foot 
of cable whase dielectric is solid polyethylene Ect = 2.251? 

From equation I .2-5 we see that 

electrical length = IF (1.2-1 21 

where I i s  the physical length, so that a foot of the cable in question has 
an electrical length of 1 foot X -5 = 1.5 feer. 

The second and more common use of "electrical length" or "electrical 
distance" i s  to refer to  the phase difference OF between two points on a Trans- 
mission Inne. Thus one speaks of a sect~on of I ~ n e  that 1s ~ / 4  rad~an or 45 degrees 
in electrical "length." 

Example: A simp/? way to measure the velocity I *  of propagation in a 
cable ( a t  moderate frequencies) is to  short both ends of a lenqth of the 
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cable and then t o  measure two or more resonant frequencies of the 
shorted line wi th a wavemeter or loosely coupled generator and indica- 
tor. Resonance wi l l  occur when 2 pi, the electrical round-trip "distance" 
Ithat is, phase shift) down the shorted cabre and back again, is a multiple 
of 360 degrees. Thus t he  resonant frequenciesf, wi l l  be given by 

If  Af is the difference between two adjacent resonant frequencies, 

The ratio of voltage V t o  current I in a traveling wave is a constant, a p r o p  
erty of the transmission line d i e d  the characteristic impedance, 2,. 

Zc = (u) (ohms) 
aavelfng wave 

Its reciprocal is called the characteristic admittance. 

So that there is no misunderstanding, let us emphasize that we are talking about 
a traveling wave, not a standing wave. A standingwave distribution o f  voltage 
and current i s  due to the superposition of two traveling waves moving in opposite 
df~ections, and the ratio of total voltage to total current in a standing wave is not 
constant a t  all but  varies from point to point atong the line. 

The voltage and current due to  a traveling wave on an ideal lossless line are 
exactly in pha%, a fact that we remarked upon i n  Section 1.1. Thus the charac- 
teristic impedance and admitrance of such an ideal l i n e a n d  as a matter of fact 
for  nearly all practical purposes the characteristic impedance and admittance of 
actual lines as well-are real numbers. One might therefore have preferred t o  
call them characteristic resistance and conductance. The characteristic irnped- 

 h he term '"lrnmlttance" means "Impedance" and/or "admittance." 



ance of a lossless coaxial line with perfectly smooth conducting surfaces is given 

bv 

1 
= (59.950 ohms) - b 

q loge n 
1 

= (13.03 ohms) - h 
loglo; 

ng to do G 
standard 5 

luctor ID, 

!r-al l size ( 
axial line 
etsr. Wit1 

~f the line 
i s  manufa 
i a given c 

where E, is the relative permittivity of the dielectric, and a and b are the radii of 
the inner and outer conducting surfaces, as in Figure 1.1-2. 

Notice that the dimensions of the line enter into equation 1.3-3 only 
through the ratio blu, so that the ove has nnthi vith 
Z,. Fifty-ohm, rigid, air-dielectric GO ctured in , izes 
from 7 millimeters to 9 inches in dFam wter mnc the 

smaller the inner conductor, the higher the characteristic impedance. Type 
R G 8 A I U  and Type RG-1 TAJU flexible cables, for example, both have a nominal 
diameter, measured inside the braided copper cru t e r  conductor, of 0.284 inch. 
The inner conductor of the Type 8A/U, which is a 50-ohm cable, consists of 
seven strands of 0.0206inch copper wire, whereas that of the Type 11 A/U, a 
75ohrn cable, consists of seven strands of 0.01 59-inch wire. 

The appearance of the factor 1 /JT; in ( 1  -3-3) shows that the presence of 
dielectric material betwwn the conductors lowers the characteristic impedance. 
The decrease ~n 2, is in the =me ratlo as the decrease in the velocity of propaga- 
tion. 

2, (sol id dielectric) = velocity factor X Zc (air dielectric} (7.3-4) 

Equation 1.33 is derived under the assumption of an ideal, lossless line, 
whereas in fact losses and imperfections in the conducting surfaces do influence 
the characteristic impedance. A t  high frequencies these effects are very small in 
lines with sofid, smooth conducting  surface^,^ but they nevertheless can be signi- 
ficant, for example in a precision air-dielectric line that is used as a standard of 
impedance. Although a quantitative discussion of conductor loss must wait until 
Chapter 4, This seems like an  appropriate ;lace to describe, in a physical way at 

t ~ l t h o u g h  st low frequencies the Influence of f lnfte conduct~vlty on transmlsslon-llne char- 
ecterlstlc impedance Is  appreciable: telephone Ilnes, for example, have characterlsrlc Im- 
pedances with sizeable imaglnsry companerrts r r t  voice and carrier fraquencles. 



least, the effect that, imperfect mAductm tww m the €low of G U F ~  d . t H @  
way in whkh they i~~ the line% characteristic impedanca. 

Electromagnetic fields am rapidly attenuated .in conducting media, and 
cwwequently they W n m t e  oniv ,m small dlstams into mnduct0t9 lii a p- 
W cpnductor the field would not mnetrate at all, and the curm'that forms 
the bundary of the field would flow in a surface layer of zero 'thiekneas. The 
attenuation of the field beneath the surface uf.a mt sonductor depends on the 
conductivity of the metal, the f reqloenw, and the geomeW & the su- but 
at: frequmch higher than a few kilohertz, the m u a t i o n  in a gmd conductor 
ls very rapid and the current distribution WQW the sufface WI be treated as 
though it w r e  a uniform layer of very small thickness S that is virtually in- 
dent of s u b  geometry. In tha - of a flat, perfectly smooth, mn-fernmap 
netic metal surface, thd distanm S, called the sktn w, 'b reW to the 
frequency f (hsrtr} and conductivity a (ohm-' meter-' ) by , 

Notice that kp skin depth m r  with h e r  f r e q u ~  andpavrrsr cdndw 
tMtie9 In copper plate, whos dimtarrent conductivity is approximately 
6 X '10' ohm-' meter-', (135) gives skh d-s of abut 

8mm at MHz 
0 , 7 m m a t 1 0 k ~ z  rub* .t?q t # a  I t -  

Q02 mm at 10 MHz 
0 . m  mrn a IOGHz, 1 b,uws 

In a coaxial line with perfect wndumrs the current(a would flow only in 
infinitely thin layers on the conducting wrhcss and the field would stay in the 
dielectric spacr! b t w e n  the m n d u m  But when the mnductivitieaare finite 
the current flow extends somewhat Mow 'dm metal mrface9 and the field pen& 
tram a little into the metal. One effsct of tha field panemtion is that the mag 
niwde of 2, is slightly higher than the value that (1.33) givepfor an ideal line, 
somewhat as though the conductor separation had ineread. Les easy to ex- 
plain on simple physical grounds is the fact that mnductor lass causes a slight 
phase lag rrf the electric field behind the magnetic field. This gives rise to a small 
negative Imaginary (capacitive) component in Zc. I f  the conductor surfaees are 
ampact and smooth by cornparkon with dimensions on the d e r  of ohe skin 
depth, the real and negative imaginary components of the increment in Zc are 
equal, 

An idea of the sire of the dfect w are talking about can be gained from 
Figure 1.31, which shows the increment in 2, due. to conductor I- as a fun* 
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ae- 
F Figure 1.31. The effect of conductor - loss on the characteristic impedance of 

General Radio g/l6-inch precision 50. 
ohm silver air-dielectric line. The incre 
ment in Z, is complex; the real and 
negative imaginary components of AZc 
are equal. ( A j h  Zwzy, k cit. Figure 1.2-1.) 

tion of frequency for General Radio 911 &inch precision Soohm silver airdielee 
iric line. 

1.4 ATTENUATION 

Losses and gains, when unqualified by the words "voltage" or "current," 
are comparisons in amounts of power. What we call a loss and what we call a 
gain is just a matter of which way around we want to express the comparison. 

P? toss ratio, P2 re PI - - 
p2 

p2 
gain ratio, P2 re P1 - - 

p1 

If for example P1 and P2 are the powers at the input and output, respectively, of 
an attenuator, so that PI > P2, the loss ratio is greater than unity and the gain 
ratio is less than unity. 

Loses and gains am usually measured by the logarithms of the loss and 
pin ratios, rather than by these ratios them- The neper is a unit of Ices and 
gain basxi on the natural, or Napierian, logarithm, and the dseibel is a unit based 
cm the common, or Briggsian, logarithm 

1 P1 loss inepera), PZ rep1 lop. 

Since log (I/%) = -log x, a gain in nepers or decibels is the negative of the c o r e  
qmndicg I-, and vice versa. We can convert nepers and decibels by noting that 
log, ox = 0.43429 lo& x, so f hat 
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loss or gain (dB) = 8.686 X loss or gain (nepers) 
and (1.4351 

loss or gain (nepers) = 0.1 151 X loss or gain (dB) 

The Ileper is a unit 8.686 times larger than the dr~b.l. Because of the natural 
occurrence of powers of a and Naplarian logarithms in transmisslan theory, 
nepers are usually used in thoretical work, while the decibel is the practical and 
laboratory unitt Nepets thus bear somewhat the same relation to decibels that 
radians bear to d e g m  

Example: Whet is the number of decibels corresponding to a power rado 
of 0,99877 

Raties that are wry d m  to unity are usually most convenient to 
deal with when they are expressed as unity plus or minus a very small 
number. Thus 0.9987 = 1 - 0.0013. When a ratio is exprsgsed in the 
form 1 i x, the cwreswnding number of decibels Is equal to u.343 x, 
provided x is small. 

number of decibels * 4.343r 
in ratio I * x 

Thus the ratio 0.9987 is equivalent to -4.343 X 0.001 3 = -0.0066 dB. 

We can calculate the ratio of two powers from the corresponding voltage 
or current ratios provided we also take into account the immittanees Expressed 
as a function of voltage, the po\nrer dissipated in an immittance is 'WIV~', where 
G is the real (conductive) part of the admittance Y. In terms of current, power 
is equal to HR kP, where R is the real (resistive) pan of the impedance 2. Thus 

Pl - 5 ("I)' G. = ("I)' " 
p2 m g lg- R2 
and the number of nepers or decibels in the powr ratio Pl/P2 is given in terms 
of voltage and current ratios by the formulas 

*Although t h m  rwp.r b W r a pnotlod untt In the Goman tllophow Industw. 



for if GI = G, the 
mnductanca term disappears from the first expmion on the rlght of I1.4-8}, 
and if Itl = R1 the &stance term diseppmrs from the samdmprmion. 

In power ratio PI /Pa 

Textbooks often slate as the andition for the validity of 11.44) and (1.410) 
that the imNances must be equal. This is incur- If what is mwnt isthat 
Zi = 2, , we can see that it is not n-ry. If ki I - 123 I Is meant, it is dead y 
neither m r y  nor sufficient. 

The decibel is atso used to express voltage and wrrent ratios without re 
gard for the amounts Qf power involved. Thw 

numbr of decibels Iv, f 
in v o ~ t m  ratio V~/V, = 20 loglo IFJ 

and likewise for currents Standinpwm ratius, for swrmpk, me a m m ~ n l y  ex- 
8- In decibels; 

AAfPasludonI a#pli@ rn to a i + i 4 ~  !line, rmns 'lhe in trawling 
wavepowerin t n ; d [ - t i a n o t t b e ~ ~ & ~  IPil.Wwloftinshr.sn 
artenuath am in @ib& -t. af -; iff lii b w  d Ah@, the ratio of 
travdi&wwe powei W i n g  ta the miem, which 
has to be a number 16-6s than unity, Is 

power entering 

The companding voltage or mmnt ratio is equal to the quare root of the 
power ratio: 

- &WB) ~ ( o r ~ i ~ s a v i n g  = - - - A Y ~ P )  
8 

travel i n m a  
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me rtPermatiaql e m  or attenurbion faFBPr, a, is the attenuation p~ 
unit length of line. Thus a lengtb I(m8tePs) of line has an attenuation of A(dB) = 

a(dI3lm)f or A (nep) = a(nep/m)L In practim one often finds the attenuation of 
lines and cables given in decibels per foot or per 100 feet or p r  mile. 

Two kinds of loss we respodble for the attenuation in coaxial lines: loss 
due to the finite conductivity of conductors and toss due to dielectric relax* 
don - friction experienced by the alternating palarhatfon in the dielectric. 

Conductor I- d e w s  of course on tfre metal from which the conductors 
are made or wtth whjch they are plated, but it also depsnds on the frequency, 
becaw of the frequencydependent k i n  depth. The part of the attenuation 
constant due to conductor loss, &,@, in an othemi~ ideal coaxial line is given 

where Ye is the characteristic admimnoe, a and b are the radii of the inner and 
outer canducting surfaces, and afu} and o(b) are the conductivities of the inner 
and ouwr conductorr;. The formula shows that hd increases with the square 
mt of the fmquency. The first and m d  terms within the parenthesas in 
(1 .&I 4) are assaciated respective4 y with the inner and outer conductors, and, as 
one would expect, the first term is likely to be the larger. Notice that small lines 
have higher conductor loss than larger lim with the same Y,. 

Equation 1.4-14 accurahtely describes the canductor loss In a ml coaxial 
line I f .  suitable values are used for the mductivities u(a) and o(b). Such valueg 
a n  sometimes considerably tower than the dc conductivitia of the conductor 
metsls,an effect that is presllmably due to the condition of the surface, since the 
effective conducthrlty of a rough or porous surface is found to be lo* than that 
of a smooth, compact one and, furthermore, is found to decrease with rid4 fre- 
q u m y  and concomitantly decreasing skin depth A few examples ere given in 
Table 1.4-1. 

The attenuation constant of General Radio 9/1&inch 50shrn precision 
silvsr air-dielectric line is &own as a function of frequency in Figure 1.4-1. The 
 nua at ion in air-dielectric lines is due entirety to conductor loss. 

P -I 

0 

i Figure 1.4-1. The attenuation constant 
i of General R d i o  9/l&-inch 5 h h m  p m  1 'O* cislon aver  air-dielectric line. 
& (.Aft.. Zomy, h. ci t  Pigwe L2-1.1 



TABLE 1.4-1 

Surface F W U ~ ~ Y  Cmhctivlty 

copperplate ....................... dc 59 X 10' ohm-' WI-' 

2 5  GHz 2 

silver plate 
&plated ....................... dc 6.1 

2 5  GHz 5.3 
8.5 GHz 3.1 

dc plated with 8 
commercial brightener. * 9 9 25  GMz 1.0 

85GHz 0.8 

plated with periudicslly 
mrsdcumnt . . . . . . ,  .......... 2.5GHz 6.0 

8.5 GHz 6.0 

let us turn to dielectric loss. In an ideal capacitor the dielectric displae 
ment current leads the w,aJltage, and therefom the electric field, by exactly 90 
degrees and no power is dissipated. If, on the o t b  hand, the dielectric is lossy, 
displacement current leads #re eleEtric fiald .by less than 90 degraes. This is 
shown in the pham di&,m of .Figure &42, in which the lam 6 by whieh 
the phase differ- falls st1art6f 90 ~ e q i s  t g o ~ l y  t_atqer &an it would 

Figure 1.4-2, ?ham diagram of reactive 
and loss components of dielectric dip 
placement current The loss component 
is enormous! y ex-& 

alectric field 
m 

EOu.W.7 



be in any practical diilectrkt The outoFphaae component of curtent, or reac+ 
tive current, diipalm no PMNBI; it is asdated with energy stored in the dlelw 
tric. The imphas component, or loss current, is associated Mth dissipation due 
to dielectric relaxation, a fr*ktowlike drag on the dielectric's alternating polarb 
mion. 

The size of the loss current relative to the twctive current is a m r e  of 
the lossiness of the dielectric Variow numb- are used to exprlsss this COmparb 
son. One of them is the I#r m e  6, defined in Figure 1.4-2; here are m l  
others: 

la cumnt 
dissipation factor (Dl or loas tangent = tan 6 -.- current 

dielectric Q = =cot6 
loss tangent 

dielectric power factor = 
loss current 

total' dkiplaeement current = sin S 

In a good dielectric the loss current is very small and the total displacement cur- 
rent is practically equal to its reactive component In this case the p o w  factor 
and loss tangent are virtually equal. 

fn theoretical work, use is often mgde of a complex -hO Z- 
e * - j e  *: The real part e' IS the ordinary permittivity and accounts for the reae 
tive component of displecement c u m t  The imaginary part e"accounts far the 
loss current; it is a positive number that is very much smaller than e' in a good 
dielectric f he loss angle 8 is minus the angle of the complex number Z 

There is also a mmplex dative mlttlvity, 2;, defined by 



Thr real and imaginary parts af 3 :.;rro~ju$t W mfa~~4lmg ,- of 3; dividd 
by e(vacj, The loss factor k mlnm tbW1~pfb& wrnplw d a t h  
permittivity: 

loss factor = E: 

When w corngem this bmla8 with tl,&Zbl, W-tb mtdumr- w nmim 
two differen- Fit&, && d&s not depend at dl on the dimensions of the tim. 
Seoond, Q, i m s e s  propmionally with frequency rather than with the qrrare 
root Of Trequw,  as dass. At frequencies blow 10 GHz, loses are due 
mostly ta ~e coMumrs rather than the ctiiactric, wm in solid diet~tric cables 

1.6 DISTRIBUTED CIRCUIT MODEL 

Transmission lines are very often represented by the immensely useFul dis 
tributed circuit model, which is capable of dwribing the propagation not only 
of TEM wavw but at=, with appropriate definitions of current and vottaw, 
of dominant-mode wwres in hollow waveguides. 

Figure 1.51 shows symbolically an demeery length d;u of line with its 
associaM inductance lbK, capacbnce cAx, reslstanca rbr and conductance 
gh. The model is justified in the foltowing way. The magnqtic field betwen 
the line's conductors links Phe circuit formed by lim, and termination, 
and hence is repmemed by wias Inductance unit length of line. The elm- 
tric field fills the dielectric space m n  thq mnduct~rs and #IM g h  rise in 
the model to parallel capacitarm per untt l ehh ,  Gonduaer tm O accounted 
for by adding resistance in swiss with inducQnpe, and dblwtric loss by shunting 
the mpacitance with conductance. We will w r b  thtxm parametets with lower- 

Figrre 1 .S I. Distributed parameters of 
an elementary length of ttamision 
line. 
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case letters as a reminder that each i s  a quant i t~  per unit length of line. Thus 1, 
c, r, and g are respectively the series inductance (henrys/meter), shunt capaci- 
tance Ifaradslmeter), series resistance lohrns/rneter), and shunt conductance 
(ohms-' /meter). Perhaps we should ernphasi7e that these parameters are linearly 
distributed, not lumped into coils, capacitors, etc thal are periodically disposed 
along the line, as Figure 1.5-1 might misleadingly imply. Any length f!x of line, 
no matter how short, contains series inductance equal to Id-c, shunt capacitance 
equal to c i k  and so forth. 

The inductance per unit length of a lossless coaxial line is 

and the capacitance per urlft length is 

Both these parameters are independent of frequency, except insofar as E, may be 
a function of frequency. If losses and non-ideal conducting surfaces are taken 
account of, one obtains expressions for the dissipative parameters r and g and 
also for an additional component of I. These quantities are all frequency-depend- 
ent. (We shall discus the theory of the distributed-circuit model in detail in 

Chapter 4.) 
In the zero-loss approximation the characteristic impedance is given in 

terms of the distributed parameters by 

and the velocity of propagation by 

Example: What is the capacitance per foot of a 50ohrn cable with solid 
pol yethy lene { E ,  = 2.251 dielectric? 

From { 1.531 and (1.54) we have 
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The velocity is given by (1.2-5): 

Thus 

C = 
1 1 

= 1 0 ~ ' '  faradlrneter = 
2 X 1 o8 m/s 50 ohms 

100 pflmeter = 100 pF/3,28 feet = 30.5 pflfoot. 

Example: RG-71AIU is a lowcapacitance cable with a dielectric of air- 
spaced polyethylene which gives a velocity factor of 0.84. The capaci- 
tance is 73.5 pf/foot, What i s  the characteristic impedance? 

The capacitance per meter is 13.5 pF10.305 meter = 44.5 pFJmeter. 
Therefore 

z, = 
1 1 

= 89 ohms, 
0.84 X 3 X 10R mls 44.5 X 1 0 ~ ' ~  Flm 

We said in Section 1.1 that there are, in addition to  the principal OT TEM 
mode, infinitely many higher modes (or waveguide modes) that can propagate on 
a coaxial line at sufficiently high frequencies. Let us recapitulate the ways in 
which TEM and higher-mode waves differ. 1)  Both the electric and magnetic 
fields of TEM waves are perpendicular to the direction of propagation. Higher- 
mode waves also have a field component in the direction of propagation. 2)  A 
transmission line that is to transmit TEM waves must have two or more conduc- 
tors {the cross section of its ~onducting surfaces must be a multiply-connected 
curve}. Higher-mode waves can propagate on any kind of transmission line, in- 
cluding singleconductor (simply connected) sfructures such as hollow wave- 
guides. 3) TEM waves may have any frequency; higher-mode waves can propa- 
gate only above certain cutoff frequencies that depend on the particular mode 
and the cross semion of the transmission line. 41 The velocity of TEM waves is 
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independent of frequency, while velocities of waves belonging to the higher 
modes are f requency-dependent. 

The importance of higher modes in coaxial lines is that the onset of wave- 
guide propagation sets an upper limit to the coaxial line's normal useful frequen- 
cy range. This is so because there is no practical way to prwent the higher modes 
from ~nterfering with propagation in the principal mode, since any discontinuity 
in the coaxial systems is  likely to couple the TEM fields with those of higher 
modes. 

The coaxial waveguide mode wi th the lowest cutoff frequency i s  the H1 
Ior TEll) mode, who% ffelds are shown in Figure 1.6-1. The cutoff frequency 
of the H I ,  mode i s  given approximately by 

where v,.,, i s  the velocity of TEM waves in tho medium that fills the space be- 
tween the conductors. One can see from (1 .61)  that f,,,, is the frequency a t  
which the mean circumference of the conductors is approximately @qua! to a 
wavelength. I f  we take as an example standard 9/t&inch 5Gohm air-dielectric 
line (a  = 0,122 inch, b = 0.287 inch), equation 1.6-1 gives a cutoff frequency of 
about 9.4 GHs, I f  thissame kine is now filled wi th polystyrene, whose distectric 
constant is approximately 2.5, the cutoff f requ~ncy is reduced by a factor of 
11 Jto about 6 GHz. 

The p h a ~  velocityt of non-TEM waves is higher than that of TEM waves; 
it is  infinite at the cutoff frequency and approaches rhe TEM veracity as the f r ~  
quency gets highertt. 

t ~ h a s e  veloclty Ir the velmttv  of propagation of any given point of an Inflrrltely long sfnu* 
alrlgl trawallnq wave. When phage va lm i ty  is ~on5runt  with f r r q u ~ n c y  Ins It l g  In ?hn rnyn nf 

TEM waves) slnusoidal waves, pulses, end modulation envefops all trevel at the same speed 
and theto is no ambiguity when the term "veloclw" is  used w~ithout auallflcation. But  when 
phase velacity changes with frequency, es It does In the cnse of higher-mode waves, pulses 
and modulation envelopes travel more sfowfy t h a n  slne waves and become dlnorted. There 
15 then raid to be "di5persion" and one must dinlngulsh Setween phase velocity and the 
velociry of, sav, the center of a puke. 

t t l n  case the reader thinks thls statement conflicts wlth retatlvlty theory: I t  doesn'r. 
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Below its cutoff frequency a waveguide mode is nonpropagating. The 
phase constant is zero (there is no change in phase from one place to  another) 
and the fields are rapidly attenuated, the more so the lower the frequency. 

This i s  not an attenuation due to dissipation, like the a-ttenuation of the TEM 
mode that we discussed in Section 1.4, but due to reflection from a waveguide 
that is too small to allow the wave to propagate. Below cutoff, too, the electric 
and magnetic fields are in phase quadratur-the characteristic impedance i s  re- 
active. In The propagating region above cutoff the fields are in phase, as they are 
in the TEM mode. 

As an illustration of the kind of dFfficulty that waveguide modes may 
cause, we cite the Hll-mode resonance of a dielectric support bead in an air- 
dielectric line. If we consider the section containing the bead as a length of solid- 
dielectric line, then, as we saw above, the H,,-mode cutoff frequency will be 
considerably tower in this section than in the rest of the line where the dielectric 
is air. One might not expect to  observe any effect due to HI1-mode propagation 
in the bead because, at frequencies that are below W cutoff in the empty line, 
the bead is very short compared with the HI, wavelength in the bead. But this 
argument ignores the fact that the bead is terminated on bath sides by lengths of 
air-filled line, which present inductive reactances to the HI1 waves in the bead a t  
frequencies below HI, cutoff in the empty line. Thus, in the frequency range 
above HI, cutoff En the bead but still! below cutoff in the air-filledIEne,it is pos- 
sible for resonance to occur in the short section of solid-dielectric line with i t s  
two inductive terminations. Such resonances have been observed+ as narrow 
peaks in the insertion loss of the bead. 

t ~ .  F. Gilmore, "TE1 -Mode Rwonance In Precision Coaxial Connectors," Crneral Radio 
Experimenter, August 1966. 
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Standing Waves 

In the preceding sections we have been talking about sinusoidal traveling 
TEM waves in coaxial transmission lines, and we have introduced the parameters 
that describe their propagation: the volocity rr (or the phase constant 01, the 
characteristic impedance Z,, and the attenuation constant B.? 

A pure traveling wave can exist only on a section of line that i s  terminated 
at the receiving, or load, end by a device that reflects no energy back toward the 
generator. Since in practice there are no perfectly reflectionless terminations, 
there are always two traveling waves at any point on a transmission line, a for- 
ward (or incident) wave propagating from the generator toward the load and a 
reflected wave propagaing back toward the generator. I t  is the interference of 
the forward and reflecled waves-constructive here, destructive a Quarter wave 
length away-that produces the distribution of fields along the line that is called 
a standing wave. 

1.7 THE REFLf CTED WAVE 

Any discontinuity in the uniform construction o f  the transmission line 
generates reflections. Thus, nat  on1 y the terminating load but  also connectors, 
junctions, bends, probes. ho le ,  transitions, tuning screws, suppart beads, and so 
on are all sources of reflected waves. I n  Chapter 3 we shall have something to  
say about the reffections contributed by individual discontinuities, but for the 
present we shall consider the simple sftuation, depicted in Figure 1.7-7, i n  which 
a uniform line is terminated in a load which is the only source of reflections. 

Before going on to  talk about the generation of a reflected wave, we must 
stop for a moment and discus the lumped impedance that we show at the end 
of the line in 'Figure f .7-1. Of course this is just a convenient fiction that we use 
to represent the actual state of affairs a t  the end of the line. One might think 
that this goes without saying, since one is so used to  seeing a oneport  device rep- 
resented at low frequencies by a lumped impedance equal ro the impedance that 
the device presents a t  its terminals. A transistor is shown schematically wi th a 

t l s t  us polnt out here thst, although the primary concern of thls book Is coaxlal lines, 
nearly evervthlng we shall have to say In tha rwt of the bonk Is  epplleebls to all klnds of 
transmlsrion IInw whethet they wort in the TEM mode or not The reason 1s that non-TEM 
8s well as TEM waves ara described by  an spproorlately deflned "voltege" t h a t  1s propor- 
tlonel to the electrlc fleld. a 'kcurrenr' that 15 prouontlonal to the magnetic fleld, a charecrer- 
isrlc Impedance Z,, a phase constant P. and an atwnuetfon constant a. Thus the reader who 
ia  8150 Interested In wevequides will fFnd the rnsterinl In the remainder of this chapter snd in 
succeeding chapters releuant. 
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zigzag line in i t s  collector circuit marked "load," although the load actually 
might be a loudspeaker. So far as the transisfor is concerned, 311 that matters is 
the ratio of voltage fo current at the load terminals, and the effects of the loud- 
speaker and the acoustical circuit of the cabinet and its environment are of no 
interest except insofar as they affect this ratio. 

But at microwave frequencies the situation is not quit? SO simple. We may 
stil l  repregnt a oneport device with a lumped impedance equal to th@ ratio of 
voltage to current a t  its terminals prouid~d t~~wri lzats  are chosen a t  ~ c ~ k i c l ?  it i~ 
possible to define a voftagc and a rrrrrent. But surely there is no problem Fn 

talking about voltage and current anywhere we please! This is a prejudice one 
acquires as a result of a low-frequency upbring~ng, and it is not true. I n  micro- 
worse circuits tile concepts of ~aItage and crtrren t are nlcaningfitI only irt a trans- 

mission line and only tuhcn a single mode i s  propugating. For this reason ZWO 
strictconditions must be met before we can talk about the impedance of a micro- 
wave oneport. First, the device must have a piece of transmission line sticking 
out of it. Second, samewhere in this transmission line, far enough from the 
physical termination that the TEM fields are not distorted, a transverse reference 
plane or terminal plane t must be established. The plane t &fines the device's 
port or '"terminafs," and the ratio of voltage to current at t is what we shall mean 
by the device's impedance. The value of l h r  impedance will, as we shall see in 
the next section, depend on the location that is chosen far the terminal plane. 

In practice, the piece of transmission line may be provided bv the device's 
connector. The terminal plane might then be speclfled a t  the outer surface of a 
bead supporting t he  connector's inner conductor. Alternatively, in a connector 
that makes a but t  contact, a mating contact surface can provide the reference 
plane. However the terminal prane may be defined, it is important for the reader 
to  realize that the impedance of a microwave one-port is a meaningles number 

forword wave 

j termination - 
ref lected wave 

Figure 1.7-1. Forward and reflected waves on a terminated line. 
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lumped impedance is a convenient 
fiction used to represent the 
physico I ternina t ion 

p-\ 
F ' , 
I 
1 

Figure 1.7-2. The presence of the physical termination i s  accounted for by 
means of a hypothetical lumped imrnittance a t  the terminal plane. 

'\\ 

unless it i s  accompanied by the specification of the terminal plane. Bearing in 
mind then what is actually involved when we pretend that the line ends in a 
lumped impedance, let us return to  our discussion of the reflected wave. 

We saw in Section 1.3 that the ratio of voltage to  current in a traveling 
wave is always equal to  the characteristic impedance of the line. We wil l  label 
quantities belonging t o  the forward wave with superscript suffixes +, so that we 
have 

1 
E 1 

1 

one - port 
device 
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'4 device's "terminn Is" 



But at the same time, the total voltage and total current in the termination, 
which we wil l  label with subscript.suffixes t, have to  sa~isfy 

where Zt  is the terminating impedance. Suppose for a moment that the forward 
wave is the only wave on the line. Since voltage and current have to  be continu- 
ous across the terminal plane, we would then have 

v* = v+ 
I ,  = I +  

(on1 y a forward wave on the line) 

Figure 1.7-3. If the incroenr wave is the only wave on the line, continuity of 
voltage and current a t  the terminal plane requires that V* = V,, I+  = It. This is 
not possible unless Zt = Z,. 

But equation 1.7-3 is obviously not  consistent wi th (7.7-1 1 and (1.7-2) except in 
the special circumstance that the terminating impedance i s  equal to the charac- 
teristic impedance. When Zt # Z,, the presence of a reflected wave on the line 
makes up the discrepancy between the forward voltage and current and the volt- 
age and current in the termination. 

We wil l  label the voltage and current belonging to the reflected wave with 
superscript suffixes I, thus: V-, I-. I f  we continue t o  use the same reference 
directions for voltage and current that we chose for Y* and I* ,  the reference 
directions indicated in Figures 1.7-3 and 1.7-4, V- and I -  wil l  satisfy 
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This is the same equation as (1.7-1) except for the minus sign in front of Z , ,  
which arises because V- and I- belong to a wave that travels away from the termi- 
nation rather than toward it. 

The total voltage and total current on the line are the sums of the forward 
and reflected voltages and forward and reflected currents: 

Continuity of voltage and current across the terminal plane requires that the 
total voltage and total current in the line at t equal respectively the voltage and 
current in the termination: 

I f  we combine equations 1.7-7 and 1.7-8 with 1.7-1, 1.7-2, and 1.7-4, we can ob- 
tain a formula that tells the magnitude and phase of the reflected wave that is 
generated when a known forward wave is incident upon a known terminating 
i moedance: 

* - 

Figure 1.7-4. When Zt  # Z,, there is a 
reflected wave on the line and the total 

voltage and total current on the line are v'+ V = V  
equal respectively to the voltage and cur- 
rent i n  the termination. 
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Example: We have seen that i f  the terminating impedance equals the 
characteristic impedance of the line, a forward wave alone satisfies the 
requirements of voltage and current continuitv at the terminal plane. 
When Zt = Zc,  (1.7-9) gives V- = 0. A terminating impedance that equals 
the characteristic irnoedance is called a reflectionless terrninati~n.~ 

Example: I f  the termination is a short ( Z t  = O), we know that the total 
vol2agt: at the terminal plane has to be zero; consequently, the forward 
and reflected voltages must cancel there. I f  we substitute Z t  = 0 into 
( 1.7-9) we get V- = - v', that is, the forward wave is completelv reflected 
with a reversal in its ~hase. 

Example: I f  the termination is an open (Zt = 4, (1.7-9) gives If-= I/+, 

which is interpreted as complete reflection wi th no phase reversal. Ar- 
guing on physical grounds, we would say that an open circuit means zero 
current, which implies that the forward and reflected currents cancel. 
Reference to  equations 1.7-1 and 1.7-4 shows that i f  I -  = - I + ,  then 
1)- = v+. 

Example: Consideration of energy tells us in the casc of the two fore- 
going examples that the magnitudes of the forward and reflected voltages 
must be equal, since shorts and opens absorb no power. But neither do 
reactances absorb power. I f  Z ,  = jXt, one can show quite easily that 

so that (1.7-9) gives II-'+I = I v - I .  

tor very often a "matched" terrninatlon. However, we shall avoid the term 
"matched" because it is used with several different meanings. 
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We wi l l  now introduce several quantities that are used to express the mag 
nitude and phase or just the magnitude of the reflection. The ratio of the re 
flected to the incident voltages is called the refledon eof ie ien t  We shall 
represent it wi th a r, although p is often used. 

Equation 1.7-9 gives the reflection coefficient a t  the terrnlnarlon: 

r (at t) = 

{We shall have a good deal more t o  say about this extremely important formula 
in the next section and in Chapter 2.) Reflection coefficients, l ike irnrnittances, 
are ratios of phasors and are consequently complex quantities. We shall use 8 for 
the angle of F. 

0 is the angle by which the reflected voltage leads the incident voltage. The mag 
nitude of r can have values from zero, which corresponds to  a reflectionless 
termination, to  unity, which corresponds to a totally veflecting termination, that 
is, an open, a short, or a pure reactance. The relation between the reflection 
coefficient and the fonvard and reftected currents i s  

as one can see by comparing (1.7-1 0) with (1.7-7 1 and (1.7-4). 

We shall give a proper definition of standinpwave ratio ISWRI in Section 
1.9, but for completeness we must mention it here since i t  is one of the com- 
monest ways of describing the magnitude of the reflection. The standinpwave 
ratio r (S and u are also usedl is related t o  the magnitude of the reflection 
coefficient by 
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Since, as we shall see in Section 1.9, the standingwave ratio is a voltage ratio, it 
is expressed in decibels by 

One can show that r(dB) and IF1 are related by 

where tanh-' is the inverse hyperbolic tangent. The standinpwave ratio can 
have values from unity (0 dB) for a reflectionless termination to infinity (m dB) 
for a totally reflecting one. 

Return loss, which we shall designate with an R, compares the power in the 
reflected wave with that in the forward wave. I t  is  the number of decibels be- 
tween the amount of power in the forward wave and the amount of power in the 
reflected wave. 

incident power Iv+I2 1 
R'dB) = l o  reflected power = 10 loglo 11/712 = 20 log,o fl (1.7-17) 

If the termination is totally reflecting the return loss is zero; a reflectionless 
termination has infinite return loss. The return loss and standing-wave ratio are 
related bv 

r = ctnh (i - - :E) 
where ctnh means the hyperbolic cotangent. 

Reflection loss refers to the loss, due to reflection. in power absorbed by 
the load: 

incident power 
reflection loss (dB) = 10 log,, 

power absorbed by termination 

I v+I2 
= 10 log,, 

1 
= 10 log,,, - 

Iv+I2 - IV-l2 1 - lr12 

Zero reflection loss occurs when the load is nonreflecting. 

t ~ h e  torm "trensmisslon loss" has been used for thls quantltv, but our term "reflection loss" 
I s  more usual. So many different things have been named "transmlsston loss" that we shall 
steer entirely clear of the term. 
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A graphical comparison of the four quantities-reflection coefficient, 
standing-wave ratio, retvrn loss, and reflection loss-that describe the magnitude 
of a reflection is presented in Figure 7.7-5. The reader may be surprised to note 
that a reflection weff icient as high as 0.45 results in a reflection loss of only 1 dB. 

A special case of considerabfe practical interest i s  that in which the reflec 
t ion is very small. The following approximations can often be used when the 
standing-wave ratio is less than about 1.1. 

S W A  return reflection 
li-l r r ( d 8 )  loss, R loss 

Figure 1.7-5. Graphical comparison of the magnitude of the reflection coef- 
ficient, the standingwave ratio, the return loss, and the reflection loss. 
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I 
R(dB) A -20 log,, 2- (r -1) 

1 -- K (dB) 
r &  1 + 2 X 1 0  

1 
ref. loss(dB] & 8.686 X - IPIZ 

2 

ref. loss(d8) + 8.686 X (r - I ) ~  
8 

1 - - ? - R ( ~ H )  
ref. loss(d0) & 8.686 X - 10 lo 

2 

R { ~ B )  & -10 loglo [ref. loss (dB)] - 6.378 

1.8 IMMITTANCE AND REFLECTION COEFFlClENT 

Although we have talked about immittances and reflection coefficients 
only in connection with the line's termination, i t  should be clear from the arbi- 
trarines of the way in which the terminal plane is defined that these quantities 
are equally meaningful at any other reference plane anywhere on the line. 

Let us assume that a terminal plane t has alr~ady been agreed upon. We 
will specify the location of any other reference plane by giving its (physical) dis- 
tance tu from t toward the gpnerator. The total voltage and total current a t  u) 

I I 

I Figure 1.8-1. Total voltage V(w1, total 

I(w)=I+(wI~ z -7~ )  1 current I ( w ) ,  forward and reflected volt- 
ages ~ ' ( w )  and V-(w) ,  and forward and 

generotor V l w l = V + l ~ l ~ V - ( v /  reflected currents f + ( u ~ )  and 1- (w)  a t  a 
reference plane located a distance w 
from the terminal plane. 

p- W 
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wilt be written V ( w )  and P(w), and the forward and reflected voltages and cur- 
rents at w wil l  be written I."(#), V - ( w ) , ~ + ( w ) ,  and I - ( # ) .  The impedanceZ(w1 
that we see at the plane w  when we look toward the load is defined as the ratio 
of total voltage to total current at w :  

Similarly, the reflection coefficient r ( w )  that we see at the plane w when we 
look toward the load is the ratio o f  the reflected voltage to the forward voltage 
at w: 

Mathematically, Z(w)  and r [ w )  each conveys exact!y the same information, 
If we know one of  them we can calculate the other. Equation 1.7-1 1, which 
gives the terminating reflection coefficient as a function of the terminating im- 
pedance, is obviously quite general, and we now rewrite it so as to  show that it is 
valid at any reference plane w. 

The companion formula for Z ( w )  as a function of r ( w )  i s  

Because o f  the utility o f  both the impedance and reflectton-coefficient concepts, 
the transformation expressed in C 1.8-3 and -4) figures prominently in microwave 
theory. 

Example: What is the reflection coefficient at a reference plane of a 50- 
ohm line where the impedance is 2 5  + j75 ohms? 

(25 + j 75 )  ohms -1 (++j : )  -1 

r =  50 ohms - - 
(25 + j75) ohms 

50 oh ms (l+j:) + I  
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Let us interrupt the discussion for a moment to introduce some labor- 
saving notation. The reader has probably noticed that wherever impedances have 
occurred in our formulas they have been divided by the characteristic impedance 
of the line. As a matter of fact, whenever immittances turn up in transmission- 
line formulas they are always divided by the corresponding characteristic irnmit- 
tance, and we can tidy up such formulas by writing them in terms of normalized 
impedances and admittances, which we shall distinguish from the ordinary, or 
unnormalized, quantities with bars: 

Notice that 2 s  and Y's are not impedances and admittances at all; they are di- 
mensionless ratios. In terms of the normalized impedance, equations 1.8-3 and 
1 .&4 are 

and 

Example: An inductive impedance corresponds to a reflection coefficient 
that lies in the upper half of the complex plane, that is, to one whose 
angle 0 has a positive value between zero and 180 degrees. We can see 
why this is so by referring to  Figure 1.8-2. I f  z i s  inductive, its imaginary 

I / 
/ 

/ 

Figure 1.8-2. , I , / real 

-I +I a x i s  
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part is positive and it lies in the first quadrant of the complex 2-plane. I t  
is obvious from an inspection of the figure that, no matter where 2 falls 
within the first quadrant, 1) the angle {- of the complex number 2 - 1 
will always lie between 0 and 180 degrees, 2) the anqle <+ of the number 
2 + 1 will always lie between 0 and 90 degrees, and 3)  {-wil l  always be 
larger than {+. We conclude therefore that {- - t,, which is equal to the 
angle O of the reflection coefficient r, must be between 0 and 180 
degrees. 

By assuming that 2 has a negative imaginary part, so that it falls in 
the fourth quadrant, the reader will be able to show that capacitive im 
pedances correspond to reflection coefficients that lie in the lower half 
of the complex plane, that is, have negative angles between O and -180 
degrees. 

One of the most important properties of the reflection coefficient is the 
mathematically simple way in which it changes with position on the line. Sup- 
pose we know the reflection coeffici~nt at one reference plane, w l  say, and wish 
to calculate i t  at another, w 2 .  AS we move from W ,  to w2 we observe that 

the forward voltage I,'* changes in magnitude by a factor ea(neD'rn' ("'2 - ' t ' l ) .  

I f  tv2 - wl is a positive quantity the magnitude increases, for we are moving to- 
ward the generator; i f  wz - u), is negative the magnitude decreases, for we are 
moving toward the load. Along with the change in its amplitude, [/+experiences 
a phase change between wl and w2 equal to 0 ( w 2  - tul 1 ,  positive toward the gen- 
erator, neoative toward the load. 

We can express the change in 1,'' from upl to tt12 both in amplitude and in 
phase by writing 

The corresponding expression involving the reflected wave is the same except 
that the  sign of lu2 - ufl is reversed because the reflected wave is propagating in 
the opposite direction. 

l f we divide (1.8-9) by 11.8-8) we have 
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which is the desired relation between the reflection coefficient at w ,  and that at 
w z .  Note that the angle of r changes in the negative (clocku~isc) sense and the 
magnitude diminishes toiuard the fenrrator. Also note the factor 2. The angle 
of r chang~s with position on the line tugice as fast  as the phase of a traveling 
wave, and tlie maqnitude of I? varies as the power, rather than the voltage, of a 
travdfnq wave. 

One can almost always neglect the attenuation of air-dielectric Tines, To 
the extent thal this approximation is valid, the magnitude of the reflection coef- 
ficient is constant everywhere on the line while the anqle changes wi th d lstahc~ 
at a ra te  3, in t"r ccgative scnse (clockwise1 toward the generator. 

r(vzE = r ( w ,  ! . 1 rI -2P(w2 - u*, 1 (lossless line) (1.8-11) 

The standing-wave ratio and return loss, defined in the preceding section, 
mav b? used ro express the maqnitud~ of the reflection at any point on a trans- 
mission line as well as at the termination. On a lossless line they are both con- 
stant. On losy  lines the SWR gets smaller and the return loss larger as we get 
farther from the load. The return loss is affected by the line's attenuation in a 
particularly simple way: as we move away from the load the return loss increases 
by just twice fhe added Irne attenuation. The relation is expressed bv 

where the R's are in decib~ls if cu is in decibelslmeter and in nepers if a i s  in 
nepersi'rneter. The corresponding formula in terms of standingwave ratios is 
considerably more cornpl fcated. 

r (w, )  = ctnh [ctnh- ' r~w, + ~ ( n e p l r n )  X ( t ~ 9  - w *  I ]  (1.8-13) 

I f  the reflection is  small and if the atrenuation is small, ( I  .P-13) is aoproximated 

by 

When we turn to irnmittances we find that their dependence upon position 
is not  ncarly so simple as that of the reflection coefficient. Even on a loscle~s 
line, the relation between the impedances a t  two referencr: planes is complicated: 

2 ( w l  ) + jtanp (w2 - r c ~ ,  1 2 ( w 2 ) =  - (lossless line) 
1 + jZ(wl ) tan0 ( M J ?  - ul1 ) 
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Figure 1.8-3. A transmission-line section of length I transforms the normalized 
terminal impedance zt into a normalized input impedance Zi,. 

Equation 1.8-1 5 expresses the impedance-transforming property of a piece of 
transmission line. I f  we assume that wz>wi,  so that the plane wl  is nearer than 
wz to the load, then one way of looking a t  (1.8-15) is to  regard the length 
w z  - rvl of line as a transformer which sees an impedance Z ( w l  ) connected t o  
its output and presents a transformed impedance 2 { w 2 )  a t  i t s  input. Let us r e  
write ( 1  3 - 1  5) so as to emphasize this transformer point of view. I f  a length I of 
lossless line is terminated in an impedance q, (1.8-15) shows that its input im- 
pedance is 

One can see f rom (1.8-1 51 or (1 -8-1 6) that the transmission line is a differ. 
ent kind of transformer f rom the low-frequency sort that consists of two coupled 
coils. For one thing, the transmission line's "furns ratio" i s  in general a complex 
number. For another, the "turns ratio" is not fixed; it depends on the load im- 
pedance and also on the frequency. Unfortunately there i s  no microwave equiva- 
lent to the low-frequency transformer with its fixed turns ratio, and this makes 
the problem of broadband impedance matching a difficult one a t  microwave 
frequencies, 

Equations 1.8-1 5 and 1 .&I 6 are hard to use for compulafion, and the most 
practical way of performing transmision-line impedance calculations is provided 
by the Smith chart, the subject of the next chapter. But we can learn quite a lot  
about the impedancetransforming property of a piece of line by looking at 
{ f 3 - 7  6) in a few interesting special cases. - 

To begin with, if Zt = 1, that is, if Zt = 7,' ( 1  -8-1 6) givw Z,,{f) = 1,  or 

Xi,(!) = 7, for any length 1 of line. The impedance anywhere on a reflectionless 
line is equal t o  Zc. 

When 1 is a half wavelength (or any multiple o f  a half wavelength),j3l= 180 
degrees {or  a multiple of 180 degrees), the tangents in (1 .&-I 6) are zero, and we 
have 
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A half-wave lossless line is thus a oneteone transformer. 

When the line length is a quarter wavelength (or an odd multiple of a 
quarter wavelength), the tangents in (1.8-16) are infinite. The formula neverthe 
less gives a definite value for zi,, which we can find by taking the limit: 

I f  we write this result with the unnormalized impedances we have 

which shows that a quarter-wave line transforms Zt  into its geometric extreme 
with respect to the characteristic impedance; small terminal impedances become 
large input impedances and vice versa 

Open- and short-circuited line sections, sometimes called stubs, are of con- 

siderable practical importance. The input impedance of a shorted stub can be 

found by putt in^ Zt = 0 in (1.8-16), which gives 

2," {shorted stub) = jtanB1 ( 1.8-20) 

Thus a lossless shorted stub looks like a reactance whose value and sign depend 
on the length. The behavior of the shorted stub is summarized in Table 1.8-1. 

The open stub has an input impedance given by 

- limit 2, + jtanfll 
Z, (open stub) = zt+_ - 1 - -  

1 +jzttanpl jtan41 

and therefore behaves in just the opposite way from the shorted stub (Table 
1.8-2). 
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TABLE 1.8-1 TABLE 1.8-2 

The impedance of the shorted stub. The impedance of the open stub. 

1.9 STANDING WAVES 

The distribution of total voltage and total current on the transmission line, 
the standing wave, is the interference pattern formed by the superposition of the 
forward and reflected waves. The magnitude of the voltage standing wave due 
to a totally reflecting termination on a line with a relatively large amount of at- 
tenuation per wavelength is shown in Figure 1.9-1. The high loss makesvery a p  
parent the fact that the undulations become shallower with increasing distance 
from the termination as the reflected wave becomes more attenuated and the 
forward wave less so. In this book, though, the standing waves that we shall be 
concerned with are those on slotted lines, which can almost always be regarded 
as lossless. Our discussion will therefore be confined to lossless lines. 
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Figure 1.9-1. Voltage standing wave on 
a very lossy line. 

-to 
generator 

I 

Standing waves on lossless lines are periodic-the maxima are all equal 
and the minima are all equal. Furthermore, the voltage maxima and minima oc- 
cur a t  points on the line where the forward and reflected waves are respectively 
exactly in- and out-of-phase. Thus 

and 

Note that we do not have to put a w in parentheses after V* and V- because only 
the magnitudes of these quantities are involved in (1.9-1) and (1.9-2), and the 

magnitudes of the forward and reflected waves do not change from point to  

m i n t  on a lossless line. 

The length of a single period of the standing wave-the distance between 
adjacent minima or adjacent maxima-is a half wavelength, that is to say, half 

the wavelength of a traveling wave. The reason for this is that the phases of the 

h -* , v , a 

Figure 1.9-2. Voltage standing wave on 
a lossless line. 

- - A - - - - - - 
w I V I ~ ! "  

CO., W(IX 
t .  . 

terrn~nclt~on 
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forward and reflected waves shift in opposite directions with changing position 
on the line, so that the angle between the forward and reflected voltages changes 
by 360 degrees in just a half wavelength. 

We have already used the standing-wave ratio r to express the magnitude el 
a reflection, and WP can now define this quantity in a way that explains the ori- 
gin of its name. The SWR is  the ratio of maximum to minimum standing-wave 
voltage. 

If we substitute (1.9-1) and (1.9-2) in (1.9-3) and note that 11'-I/1l'+l= ( r l ,  the 
magnitude of the reflection coefficient, we get 

This formula,which relates the SVVR to the reflection coefficient, is just (1.7-141, 
with which we defined the SWR in terms of lrl in Section 1.7. 

Figure 1.9-3(al shows the shapes of the standing-wave distributions of volt- 
age corresponding to three different amounts of reflection. The magnitude of 
the forward wave is the same in each of the three graphs, When l r l  is small, 11'-1 
is small compared with ll'+l, there is not much difference b ~ t w e ~ n  IL'I,,, and 
Ik",,,, and r is not much larger than unity. As the reflection grows larger the 
standing wavp b~cornes more pronounced. When = 1, so that. Iv-1 and IV'l 
are equal, Itr[,i, = 0, IT'I,,, = 2 1171, and r = m. I t  is important to notice that 
the minima are atways sharper than thp maxima. This feature diwppears as the 
standing wave becomes very shallow, but at the opposite extreme, when 1r1= 1 
( r  = m), the minima are cusps. 

The phase of the standingwave voltage is shown (relative to the phase at 
the terminal plane) in (b) of F~gurc 1.9-3. The phase of I.' is an ever-increasing 
function of distance from the termination. Notice that the change in phase is 
not uniform with distance; the variation is most rapid near the minima, the more 
so the deeper the minimum. 

Whereas the standing wave ratio depends upon the magnitude of the reflec- 
tion coefficient, the position of the standing wave on the line [relative to the 
termination) depends upon the angle O f  of the reflection coefficient a t  the termi- 
nal plane. The relation between Ot and The pos~t ions of the standing-wave minima 
and maxima is easy to work out if we remember two things- 1 ) At a standing- 
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Figure 1.9-3. Voltage standing waves for three different amounts of reflection. 
( a )  Magnitudes and (b )  phases of the total voltage on the line. 

wave minimum (maximum) the forward and reflected waves are exactly out-of- 
phase (in-phase), that is, the angle 0 of the reflection coefficient is 180 degrees 
(0 d~grees). 2) The angle B increases toward the load by an amount per unit 
distance of 213. Thus the distance w(volt min) between the termination and the 
nearest voltage minimum, or w(volt max) between the termination and the near- 
est maximum, is related to B t  by 

(18; c b }  + 

{ ~ ~ f i o l t  minl } = ,t 
u4volt max) 
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Figure 1.9-4. The angle of the terminal reflection coefficient determines the po- 
sition of the standing wave on the line. The relation between the angle of the 
reflection coefficient and the positions of voltage minima and maxima can always 
be worked out by remembering: 1) that the angle of the reflection coefficient i s  
180 degrees (0 degrees) at a voltage minimum (maximum) and 2) that it increases 
toward the load by an amount 20 per unit distance. 

W 

Example: When the voltage extremum nearest the termination is a mini- 
mum, is thc termination inductive or capacitive? 

The final extremum has to be within a quarter wavelength of the 
termination because adjacent extrema are a quarter wavelength apart. In 
the present case the final extremum is a minimum, where 9 = 180 degrees. 
From this minimum to the termination, a distance of less than X/4,0 in- 
creases by an angle of less than 180 degrees. Thus B t  lies between 180 
and 360 degrees (or 0 and -180 degrees). We saw in Section 1.8 that re 
f l~c t ion  coefficients with angles in the lower half of the complex plane 

1 0  
W(vol1 mox) 

correspond to capacitive reactances. 

I f  the extremum nearest the load is a minimum, the load is capacitive; if i t  
is a maximum, the load is inductive. I f  a minimum falls at the load, the load is a 
resistance less than Z,; if a maximum falls at the load, the load is a resistance 
greater than Z,. 

Example: A minimum is observed at a distance of 0.40X from the termi- 
nal plane. This means that there is a maximum O.15h from the termina 
tion. (One always measures the location of minima rather than maxima.} 
What is O , ?  
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Figure 1.9-5. ( a )  I f  the voltage extremum nearest the termination is a rninfmum, 
the termination Fs capacitive. (b )  If the minimum is at the termination, the 
terminating impedance is resistive and smaller than the characteristic impedance. 
(c )  A maximum falls nearest an inductive termination, and ( d )  a maximum falls 
at a resistive termination that i s  larger than the characteristic impedance. 

From the final maximum, where 6 is 0 degrees, to the termination, 
an electrical "distance" of 0.1 5 wavelength X 360 degreeslwavelength = 
54 degrees, 0 increases by 2 X 54 degrees = 108 degrees. Thus 8 ,  = 108 
degrees. 

The impedance, as we have seen, is in general a complex number and varies 
in a complicated way with position on the line. But a t  standing wave maxima 
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and minima the impedance is purety resistive and is very simply related t o  the 
amount of reflection on the line. The impedance Z at any point i s  related to  the 
reflection coefficient by equation 1.8-4, 

A t  a voltage minimum the angle of r is 180 degrees, so the l? (volt min) = -1rl. 
Thus the impedance at a voltage minimum is 

A t  a voltage maximum the angle of r i s  zero, so that r ( v o l t  max) = lrll, and 

I + lrl 
Z(vol t  max) = Z ,  -- - ZCr ( 1.9-7) 

1 - lrl 

We have talked throughout this section about the voltage standing wave. 
The reason is that i l  is much easier to  make a probe that samples the electric field 
in the line than it is to  make a shielded loop that samples the magnetic field, and 
consequently it is almost always the voltage standing wave that one measures on 
a slotted line. Moreover, the current and voltage distributions have exactly the 
same shape and same standing-wave ratio. They differ only in position; the cur- 
rent and voltage standing waves are displaced relative to  each other by a quarter 
wavelength, so that a current maximum is a voltage minimum, and vice versa. 
Mathematically, the connection between the current and voltage standing waves 
IS 
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Figure 1.9-6. The current and voltage 
standing waves are displaced relative to  
each other by a quarter wavelength. 

I 



The reader is invited to supply a derivation of equation 1.9-8; with the help of 
the results of this Section and Section 1.7 he should find that it is not difficult. 
l t follows from (1.9.8) that 

1 lllmax = - I~VIma, 
2, 

and I 

1 I l lmTn = - lvlmin 
2, I 

and therefore that 
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CHAPTER 2 

The Smith Chart 

Transmission-line calculations that one frequently has t o  make, sometimes 
over and over again, would be extremely laborious if they had t o  be done b y  
computation from the formulas given in the previous chapter. The Smith chart 
provides a quick and powerful graphical method for performing many of these 
calculations 

21 THE REFLECTION-COEFFICIENT PLANE 

Figure 2.1-1 shows how a complex number z = x + jy is represented as a 
point on the complex plane. The real part x is set o f f  on the horizontal real axis, 
positive toward the right, and the imaginary part y is set off on  the vertical imap 
inasy axis, positive upward. We may also express the complex number I by giving 
its polar coordinates. These are the magnitude (or modulus) r = d m T  and 
angle (or argument or amplitude) 0 = tan-' y ix .  

and y or of its polar components rand 8 .  I 

Figure 2.1-1. The complex number I 
i s  represented by a point on  the com- 
plex plane. We may express x i n  terms 

The particular complex numbers that we wish t o  plot are reflection coef- 
ficients, and the particular plane whose points represent reflection coefficients 
we shall call the ref lection-coeffjcient plane. We know that the magnitude of a 
reflection coefficien~ cannot be greater than unity, at least as long as the load is 
passive; therefore the part o f  the reflection-meff icient plane that we shall be con- 

0 either of its rectangular components x 
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Figure 2.7-2. The reflectioncoefficient chart. 

cerned with is that part lying within a circle of unit radius about the origin. F i g  
ure 2.1-2 is a chart of this circular region, Since it is usual1 y most convenient to 
work with the polar form of a reflection coefficient, the chart includes a radial 
scale and peripheral degree circle so that values of The magnitude and angle 8 
can be located with a straightedge and dividers. 
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Example: A lossless, air-dielectric line is excited at 600 MHz. The reflec- 
tion coefficient at reference plane b i s  0.5 460 deg. How do we f ind the 
point on the reflection-coefficient chart corresponding to  plane a, 10 
centimeters toward the generator? the point corresponding to  plane c,  
10 centimeters toward the load? 

In an air-dieeectric line the velocity o f  propagation i s  3 X 101° cmls, 
so that a t  600 MHz the wavelength is  3 X 10" ccms"l6 X 10%-'= 50 cm, 

-8. Odeg 

lo generotor 
C--- 

Figure 2.1-3. The angle 8 of the reflection coefficient changes with position on 
the line twice as fast as the phase of a traveling wave. 0 increases toward the  

load. 

to load 

1 -  
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and a distance of 10 cm, or (10 crn)/(50 cmlwavelength) = 0.20 wave- 
length, shifts the phase of a traveling wave through an angle of 
360 deglwavelength X 0.20 wavelength = 72 degrees 

We saw in Section 1.8 that lri is evervwhere the same on a lossless 
line, while 8 changes with position twice as fast as the phase of a travet ing 
wave, The change in B is positive (counterclockwiseJ in the direction of 
the load, Thus to find the points r, and r, un the reflectiewcoefficient 
chart, we 5Tar-t at and move clockwise and counterclockwise respec- 
tively in circular arcs about the chart's center through angles of 
2 X 72 = 144 degrees (Figure 2.1-3). 

Move two degrees around the chart for each degree along the line. Move 
counterclockwise toward the load, clockwise toward the generator. 

Example: Where are the voltage standingwave minima on the line of the 
preceding example? 

A voltage minimum occurs where the forward and reflected voltages 
are in phase opposition, that is, where 0 = 1 80 degrees. A maximum o c  
curs where they are in p h a s ~ w h e r e  0 = 0 degrees To get to the 
nearest t, = 180degrw radial f rom rb (Figure 2.1-31, we move counter- 
clockwise on the chart through 120 degrees. This corresponds to  moving 
along the ;line toward the load through an electrical "distance" of 60 
degrees, Therefore there is a voltage minimum 

1 
60 deg X - wavelengthldegree = 0.167 wavelength 

360 

0.167 wavelength X 50 cmlwavelength = 8.35 crn 

toward the load from plane b. 

2 2  THE lMPEDdNCE GRID 

A Smith chart is a reflection-coefficient chart on which has been superim- 
posed a set of impedance (or admittance) coordinates. It thus combines the 
properties of the reflection-coeff icient chart wi th a graphiwl means tor per form 
ing the important impedance-ref lection-coeff icient transformation expressed i n  
equations 1-83 and 4. 

Figure 22-1 shows a Smith chart with a normalized impedance grid. The 
loci of constant x, the resistive component of 2 = Z/Zc, and constant z, the r e  
active component, are sets of rnuzuatly orthogonal circles, as shown in Figure 
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1 I 1 I I I l  
magnitude 1r1 of 
reflection coef f iclent COAXHB- I B  

Figure 2.2-1. 
The Smith Chart. 

It is a reflection-coefficient chart with a superimposed grid of impedance coordi- 
nates. The chart shown here has a normalized impedance grid. 
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Figure 2.2-2. The loci of constant and constant are sets of mutually 
orthogonal circles. 

2.2-2. The centers of the R-circles lie along the horizontal axis of the chart. The 
centers of the 2-circles lie on the vertical line that is tangent to the right-hand 
side of the chart. Al l  the circles of both sets have in common the point at the ex- 
treme rFght of the chart. 

The nature of the impedance in different regions of the chart is indicated in 
Figure 2.2-3. Points below the horizontal ax is correspond to  impedances with 
capacitive reactive components, points above to those with inductive compc- 
nents. Impedances lying on the horizontal axis are resistive. Impedances to  the 
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left  of the vertical axis have magnitudes that are less than Zc; those to the right, 
greater than 2,. The magnitude of impedances lying on the vertical axis is equar 
toz,. 

Smith charts are commercially available as graph paper. They are also 
available on plastic discs with pivoted radial arms in the form of transmission- 
fine calculators. The most commonly used chart has a normalized impedance 
grid like that of Figure 2.2-1, except more closely divided. The charts shown in 
the figures in this book are intended for illustration rather than calculation, and 
for clarity they have been drawn with considerably abbreviated grids. The reader 
may wish to  hzve at hand a working chart on which to follow the examples we 
shall give. 

Example: What is the reflection coefficient due to  an impedance of 
25 + $5 ohms on a 500hrn line? 

The normalized impedance 5 is ZIZ, = (25 + j35) oRrns/5O ohms = 

0.5 + j0.7. We locate this point on  the chart at the intersection of the 

8.90 deg 
I 

#=I80 deg 

#=-go deg 

Figure 2.2-3. The nature of the impedance in different regions of the Smith 
chart. 
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Figure 2.2-4. 

= 0.5 and 2 = +0.7 circles (Figure 2.2-4) and find that it corresponds 
to a reflection coefficient of 0.52 25-1 00.5 deg. We leave it an an exercise 
for the reader to convince himself of the Smith chart's ut i l i ty  by com- 
puting this result wi th equation 1.8-3. 

Example: A quarter-wavelength 50-ohm lossless line is terminated in an 
impedance Z t  = 20 +j100 ohms. What is its input impedance? 

We enter the chart (Figure2.2-5) at the normalized terminal imped- 
ance, Zt = 0.4 + j20,  and then move clockwise (toward the generator) in 
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input 
plane 

terminal 
plane 

Figure 2.2-5. A terminal impedance of 20 + j100 ohms is transformed by a quar- 
ter-wave line into an input impedance of 4.5 - j24 ohms. 
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a circular arc about the chart's center through an angle equal to twice the 
line's phase shift, that is, through 

2 X '/. wavelength X 360 dqreeslwavelencth = 180 degrees. 
This brings US to the normalized impedance 0.09 - j0.48, which we 
multiply by 50 ohms to  get the input impedance ef 4.5 - j24 ohms. 

The foreqoing example show how the Smith chart is used to calculate the 
impedance anywhere on a lossless line. The impedance makes a fu l l  circle of the 
chart for each half w3vetength of line, 

2.3 THE RADIAL SCALES 

In addition to the reflection-coefficient scale, Smith charts usually include 
a number of radial scales on which are marked off other parameters that depend 
on the relative magnitude of the reflection. Paper charts have the= scales printed 
at the bottom of the sheet so that t h ~ :  parameters can easily be picked up with 
dividers. Some of them are included on the radial arms of the calculators. 

In  addition to ths magnitude of the reflection cmfficient, three other 

quantities are commonly used to express the amount of reflection from a termi- 
nation. They are the standinpwave ratio, the return less, and the reflection loss, 
all of which were defined in Section 1.7. Many Smith charts have scales for 
these quantities. 

Example: What is; the standing-wave ratio due to a terminating imped- 
ance of 27.5 + jS0 ohms on a 50-ohm line' What i s  the return loss? 
What proportion of the power incident on the Eoad is reflected? 

The narmalized terminal impedance is 0.55 +j1.0. I f  we locate this 
point on the Smith chart Figure 2.31) and carry the radius down to the 
appropriate radial scales we get a standinpwave ratio of 4.0 (12 dB), a 
return loss of 4.4 dB, and a reflection loss of 1.9 dB. Now, a reflection 
loss of 1.9 dB corresponds to  a power ratio of 5.5, so that the power in- 
cident on the load is  1.5 times the power absorbed by the load. Thus one 
third of the incident power is reflected. 

Actuarly we can read standinpwave ratios from the Smith charr without 
referring to  the SWR scale. We saw In Sect~on 1.9 {equation 1.9-7) that the nor- 
malized impedance at a vottage maximum is equal to the standingwave ratio. 
Thus we can read SWR's from the narmalized-resistance scale along the 0 = 0 
radial. 

The scale marked "attenuation: 1-dB steps"' (or "transmission loss: 1-dB 
steps") facilitates taking in to account the effect of the line's attenuation. As we 
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ref lecf ion coef f iclent 
I 

20 10 s l  2 
return loss (dB1 

I 

1 .o 
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0 Q) 

I 

reflection 1053 (dB1 

Figure 2.3-1. The parameters that express the relative magnitude of the reflec- 
tion are marked off on radial scales. 

p I 

05 1 2 5 10 

I I II I I 

2.3 THE RADIAL SCALES 6 1 



ottenuotion: Id8 steps 
toward generator - - toward load 

Figure 2.3-2. Attenuation in the line causes the magnitude of the reflection 
coefficient to diminish toward the generator. The distance between consecutive 
marks on the "attenuation - 1-dB steps" scale corresponds to the change in 
due to 1-dB attenuation. 
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saw in Section 1.8, attenuation causes the reflection coefficient t o  grow smaller 
in the direction o f  the generator. A section of line whose total attenuation is 
.4!dB) reduces the reflection coefficient by  a factor 1 o-~.'' (dB) .  The "attenu- 
ation: 1-dB steps" scale (Figure 2.3-2) has unnumbered marks at distances from 
the center of the chart equal to  10-0 ( = I ) ,  10-~. ' ,  etc times the 
chart's radius, so that the radial distance between two consecutive marks repre- 
sents the change in lrl due to  1-dB attenuation in  the line. 

Example: The far end of a piece of cable is shorted and a standing-wave 
measurpment at the near end gives a standinpwave ratio of 3.0. When a 
load is substituted for the short, the near-end SWR is 1.5. What is the 
SWR of the load? 

Refer to Figure 2.3-3. The short causes a far-end SWR of infinity. 

and, since there are three 1-dB steps between infinity and the near-end 
SWR of 3.0, the attenuation of the cable is 3 dB. To find the SWR of  the 
load, we start at the near-end SWR of  1.5 and move outward three I -dB 
steps, arriving at a standing-wave ratio of 2.3. 

2.4 WAVELENGTH CIRCLES 

The most convenient unit in which to measure distance along the line i s  
usually the wavelength. For this reason the Smith chart has around its periphery, 
in addition to  the 8-circle, two circular scales marked of f  in wavelengths, one in- 
creasing counterclockwise and rnarked "wavelengths toward load," the other in- 
creasing clockwise and marked "wavelengths toward generator." Each of these 
scales increases bv  one half wavelength in a ful l  circle around the chart. The 
Smith chart calculators havr? movable wavelength circles. On printed charts. 
these circles are necessarily fixed, and their zeros are on the left side of the chart, 
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Figure 2.4-1. Wavelength circles. 

at 8 = 180 degrees. This choice of the zero position facilitates calculations in- 
volving positions of standingwave minima. 

-- 

Example: A voltage standing-wave minimum is found 0.30 wavelength 
from the termination of a lossless line. What is the angle 8, of the termi- 
nal reflection coefficient? If the standing-wave ratio is 2.0, what i s  the 
terminal impedance? 

Refer to Figure 2.4-2. A voltage minimum occurs where the reflec- 
tion coefficient is 180 degrees. If we start at the 0 = 180-degree radial 
and go around the chart 0.30 wavelength toward the load we find that 
8 ,  = 36 degrees. I f  the SWR is 2.0, the normalized terminal impedance is 
1.57 + j0.70. 
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- !  
to generotor I 

Figure 2.4-2. Using the Smith chart to determine terminal impedance from SWR 
and position of voltage minimum. 
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2.5 ADMITTANCE 

The Smith chart may be thought of as a "map" of the impedance plane, 
drawn on the reflection-coefficient plane according to the (normalized) imped- 
ance-ref lection-coeff icient transformation 

If we turn (2.51) upside down, we obtain a formula for the (normalized) 
admittance as a function of r: 

Let us look at the right-hand sides of equations 2.51 and 2.52. Not only are the 
two functions (1 + r ) / ( 1  - r') and (1 - F) / ( l  + I-) reciprocals of each other, they 
are also transformed into each other by the substitution of -r for r. Thus we 
see that the normalized admittance y(r) corresponding to a particular reflection 
coefficient r is equal to the normalized impedancez(-r) corresponding to -F. 
We may express this important result by the equation - 
Y {r) = Z (-1-1 (2.5-3) 

Example: What is the normalized admittance Y corresponding to a nor- 
malized impedance 2 of 2.0 -+ jO? 

Of course = 112.0 + jO. According to (2.5-3) we should get this 
same answer if we first find the value of r that corresponds to 2 = 2.0 
and then find the impedance corresponding to minus this value of r. The 
value of r corresponding to 2 = 2.0 is 

The value of corresponding to F = -113.0 is 
I 

We note that we can derive (2.53) in another way. From the point r on 
the Smith chart one reaches the point -r by going around the chart a quarter 
wavelength in either direction. Equation 2.53 follows from the fact that, as we 
saw in Section 1.8 (equation 1.8-15), normalized impedances a quarter wave 
length apart on a lossless line are reciprocal. 

Equation 2 5 3  shows us how to use a Smith chart with a normalized im- 
pedance grid to make conversions between impedance and admittance. The 
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point -r is the one diametrically opposite I? and equidistant from the center of 
the chart Thus (2.5-3) says that the normalized admittance of a point on the 
chart is equal to the normalized impedance coordinates of the image point sym- 
melrically located on the opposite side. 

Example: What is the admittance corresponding to a reflection coeffi- 
cient of 0.5 '4135 deg on a line whose characteristic admittance is 20 
rnillimhos? 

The point r = 0.5 251 35 deg is shown on the Smith chart of Figure 
2.5- 1. To find the corresponding normalized admittance we proceed in a 
straight line through the chart's center to  thesymmetrically located point 
on the other side. This is -r. The normalized impedance at -r i s  
1.4 - j1.3, and according to (2.5-3) this i s  equal to the normalized admit- 
tance corresponding to r. Thus ?(when r = 0.5 41 35 deg) = 1.4 -j 1.3, 
The unnormalized admittance is Y X 20 millimhos = 28 - 126 miTlimhos 

Figure 2.5-1. The normalized admittance corresponding to the point r is equal 
to the normalized impedance corresponding to the point -r. 
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Figure 2.5-2. Smith chart with normalized admittance grid. 

Equation 2.5-3 also shows us how to  make a Smith chart with a normalized 
admittance grid. I f  we rotate the grid of the normalized impedance chart through 
180 degrees, so that the grid coordinates that used to be a t  the point ra re  now 
at-r, the numbers that we read otf the rotated grid at a given poinl on the chart 
are the normalized admittance betonging to that point. If we also change the 

labels from "resistive component" to "conductive cornpanent'hnd from "reac- 
tive companent" to "susceptive component" we have the admittance chart 
shown in Figure 2.5-2. 
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Figure 2.53. The admittance chart of Figure 2.5-2 after it has been rotated 1 &O 
degrees. The @-circle now has i t s  zero on the left-hand side. 

Admittance charts are available, and so are charts with superposed irnped- 
ance and admittance grids. We do not  need special admittance charts, however, 
for we can plot normalized admittances direct1 y on the normalized impedance 
grid without going through the additional step of transferring the point acros 
the chart. Let us take the admittance chart of Figure 2.52 and rotate it-the 
whole chart this time, no1 just the grid-through 180 degrees. The result of this 
rotation is shown in Figure 2.5-3. Now, if we compare Figure 2.5-3 with Figure 
2.2-1 we see that the combined effect of the two transformations-a 180deqree 
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rotation of the grid and a 180degree rotation of the whole chart-is to leave us 
with something that looks just like the impedance chart that we started with. 
There are two differences. First, the resistance coordinates have become con- 
ductance coordinares and the reactance coordinates are now susceptance coordi- 
nates Second, since the ref lection-coefficient plane itself has been rotated 
through 180 degrees, the angle 0 of the reflection cozfficient is now zero at the 
left side of the chart {though it still increases counterc~ockwise}. 

Figure 2.5-4. One can use the normalized impedance chart far admittances 
simply by reading "cnnductive component" for "resistive component" and 
" I  susceptive component" for "reactive component " and remembering that 180 
degrees must be added to readings on the "angle of reflection coefficient" circle. 
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Apparently, then, we can use the normalized impedance chart when we are 
working wi th admittances simply by reading "conductive component" fo r  " r e  
sistive component" and "susceptive component" for "reactive component." A4 l 
the properties of the Smith chart that we have discussed in the previous section 
of this chapter are retained when the chart is used in this way except that the 
"angle of reflection coefficient" circle does not apply as it is printed. Angles 
read from t h ~ s  scale must have 1 8U degrees added or subtracted before they are 
correct. The "wavelengths toward generator" and "wavelengths toward load" 
circles are correct as they stand, though one should bear in mind that  voltage 
minima, which sccur a t  0 = 180 degrees, are now at the right-hand side of the 
chart. 

Example: A capacitance of 10 pF in parallel with a resistance of 300 
ohms constitutes the termination af a 300-ohm line that we wi l l  consider 
lossless. I f  the line is driven at 100 MHz, wil l  the standingwave extremum 
nearest t o  the termination be a voltage maximum or minimum? Where 
wil l  ~t be? 

The characterisric admittance of the line is Y, = 1/300 ohms = 

3.33 X f o - ~  mho. The susceptance of a 1 (TpF capacitance a t  1 00 MHz is 

B = 27rfC = 6.28 X 100 X 106 sL1 X 10 X 10-l2 farad 

= 6.28 X 10- mho, 

and the normalized susceptance 5 is 

Thc normal~zcd conductance corresponding to the mistance of 300 
ohms is 1. The normalized terminal admittance F, of 1 + j1.89 is  
plotted on the Smith chart of Figure 2.54. As we move around the chart 
from the termination toward the generator we first cross the horizonral 
axis on its right-hand side. Since this is now the 0 = 18Odegree radial, 
the first extremum is a voltage minimum. I t  is 0.085 wavelength from 
the termination. 

Notice in the example that a capacitive admittance falls in theupper half 
of the chart because it has a positive susceptive part. A capacitive impedance, 
which has a negative reactive part, would fa1 l in the lower half. 

Tn this chapter we have given the reader only a sketchy introduction to the 
most commonly used kind of Smith chart. We hava not discussed the many dif- 
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ferent varieties of the chart that are in use, nor the many kinds of calculation 
that can be done with the chart's help. We leave it to the reader to instruct him 
self as the need arises. 
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CHAPTER 3 

Two- Ports and Discontinuities 

3.7 THE SCATT €RING PARAMETERS 

We saw in Section 1.7 that we may characterize a one-port device by 3 )  
choosing a convenient reference plane in the associated transmission line and 2) 
specifying the reflection coefficient or Emmittance that the device presents a t  
this reference plane. Such a characterization iqnores what is actually going on in- 
side the termination, but  it allows us to predict the effect that the termination 
wil l  h w e  on the system to  which it is connected. A t w w o r t  presents us with an 
analogous situation. We are often not concerned wi th the details of wave propa 
gation inside the device itself; we simply want to know what the effect will be of 
inserting the twc-port into the microwave system. 

Now, while a single reference plane and a single complex number - a re- 
flection coefficrent or immittance - completely characterize a one-port, two 
reference planes and two or three or four complex numbers are needed for a 
complete representadion of a two-port. The reader is undoubtedly familiar with 
some of the many sets of two-port parameters, fhe y -  or 11-parameters, for 
example, used in transistor circuit design a t  lower frequencies. But of all the 
two-port representations, by far the most useful at microwave frequencies is the 
set of four numbers called scattering parameters, or $-parameters. Scattering 
parameters were invented in 1937 by a physicist, who used them to s o l v ~  a 
problem in nuclear physics. When physicists went to  work on microwave prob- 
lems during the World War I I development of radar, they brought the s-parame- 
ters with them into electrical engineering. 

Figure 3.1-1 shows a two-port "black box" with two transmis~ion lines 
sticking out of it; reference planes t l  and t2, located in these lines, define ports 

1 and 2. In  the most general posible case there wil l  be both an  incident and an 
outgoing (scattered) wave at eacl I port. We have written 17; and I;; to stand for 
the incident and outgoing voltages a t  port 1, and F/; and 15 for those at port 2. 

Wher~as the outgoing wave at a pasive termination is due entirety to  re- 
flection of energy from the incident wave, this is not generally true at t he  ports 
of a two-port. The outgoing wave a t  port 1, for example, can be due partly to  
reflection of energy that is incident at port 7 and partly to transmission through 
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Figure 3.1-1. In general there can be both an incident and a scattered wave at 
each port. 

the twpport of energy that is incident at port 2. For this reason we have to use 
not just a single coefficient but two coefficients to describe the generation of an 
outgoing wave at port 1 : 

The coefficient sll accounts for reflection of some of the incident wave at port 1 
and s12 accounts for transmission through the two-port of some of the incident 
wave at port 2. Likewis two more coefficients describe the generation of Vi.';: 

Here sz1 accounts for transmission of I.;' and sz2 for reflection of v;. The num- 
bers sll , s12, s2, , and sz2 are the scattering parameterst Like the r's that de- 
scribe reflections from one-ports, the scattering parameters are complex numbers, 
ratios of incident and outgoing voltages. As a matter of fact, i t  is quite appro- 
priate to think of the s-parameters as a generalization of the notion of reflection 
coefficient. 

Let us look a little more closely at the physical meaning of each of the 
scattering coefficients. First we consider the reflection parameters sll andsz2. 
Suppose a reflectionless load terminates port 2, as shown in Figure 3.1-2. The in- 

 MA^^ engineers choose to use "normalized" in- and out-going voltages when they deflne 
the scattering parameters: 

where ZC1 and ZC2 are the cheracterlstlc Impedances of the lines in which ports 1 and 2 are 
located. As the reader can see bv looking at (3.1-1) and (3.1-2). this alternative choice does 
not affect s l l  end s p .  but it does make a difference in sl2 and s21: 
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Figure 3.1-2. When port 2 sees a reflectionless termination, the reflection coeffi- 
cient r1 prasented by port 1 i s  equal to st!, 

cident wavm a t  port 2 is just the wave reflected from the termination, which in 
the present case is zero. When = 0, equation 3.1-1 becomes 

But v1-/l/,* is the reflection coefficient ri that we measure when we look into 
port 1, so that we have 

sll = rl ( ' ~ i t h  reflectionless load on port 2) (3,l-3) 

The coefficient s l l  is the reflection coefficient presented by port  1 when port 2 
has a ref lectionbs termination. The same argument would obviously be valid i f  
we put t h ~  reflectionless load on port 1 instead of port 2, so that 

$21 = f (w i th  reflectionless load on port 1) (3. 1 -4) 

Since sll and s j 2  are reflection coefficienls measured at one port when there i s  
no incidcnt wave at the other, they represent reflections that are intrinsic to the 
two-port. 

Let us once again put a reflectionless load 03 port 2. When there is no in- 
cident wave a t  port 2, the outgoing wave these is due entirely to transmission 
through the two-poet of energy incident at  port 7 ,  and the ratio V;/C that we 
measure under these circumstances is the voltage gain that a traveling wave expe 
riences as i t  traverses the two-port from port 1 to port 2. If v,+ = 0, equation 
3.1-2 becomes 
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whence we have the following interpretation of s21 : 

521 = ($)v; - - 
traveling-wave voltage gain 
from port 1 to port 2 

= 0 

Likewise, 

travel inpwave voltage gain 

= from port 2 to port 1 

Example: What are the scattering parameters of the 1-to-n turns-ratio 
ideal transformer shown in Figure 3.1-3? 

Let the characteristic impedances of the lines in which the ports are 
located both be Z,. If we put a reflectionless load on port 2, the irnped- 
ance connected to the right-hand winding is Z,, and the impedance that 
we measure when we look into port 1 is~,/n'. Therefore the reflection 
coefficient presented by port 1 is 

1 - - 1  
n2 - rl (reflectionless load on port 2) = - - ,,, 
1 

- + 1  
n2 

Likewise 

n2- 1 Fz (reflectionless load on port 1) = - = s~~ = - s l l  
n2 +1  

Figure 3.1-3. 
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We know that the total voltage at port 1 and the total voltage at 
port 2 are in the ratio 1 to n, that is 

But when there is a reflectionless load on port 2 we also know that 1/2+= 0 
and VIP / V: = 31, .  Thus in this special circumstance 

In the other direction we of course have 

Example: Let tl and t 2  be two reference planes in a uniform transmis- 
sion line (Figure 3.1-4). The length 1 of line between these two planes 
may be regarded as a twc-port. What are its s-parameters? 

If  the reflection coefficient that we see when we look toward the 
right at t 2  i s  zero, it will also be zero at t l .  Thus s l l  = 0, and we can see 
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Figure 3,l-4. A section of trans- 
mission line may be regarded as 
a two-part with s l l  = sz2 = O 

1 - =Cl(dB/mll 
and $12 = s21 = 10 
& -01, 

C I L- 

I t2 
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l i k ~ w i v  that = 0, T t i ~  vo l t ag~  of a travelinq wave is m u l t i p l ~ ~ d  by a 
-- .& CY(dI3lrn) 1 

factor 10 as thr  wave traverses the line segment in either di- 
rection, and its phas~  is shiftrd through an anqle -61. Therefore s l l  = 

3.2 MIO-PORTS WITH SPECIAL PROPERTIES 

In the rnost qeneral possible case, all four of a two-port's s-paramet~rs arp 
d i f f c r~n t ,  independent numbers, and we must measure or calccrlat~! each of them 
in order to obtain a complete description of the device. B I J ~  virtually any two- 
port we are likely to  encounter in practice will have one or more properties that 
tell us, even before w r  look at the particular device, simplifying relations amonq 
its s-parameters. 

For instance, i f  the two-port is passive, that is, i f  i t  dops not contain tran- 
sistors or other sources of microwave FnPrgy, we know that we cannol get out of 
i t  energy that we do not put in. This means, for one thing, that the reflected 
component of the outgoing wave at pithpr port cannot be larger in magnitude 
than the incidpnt wave at that port, which we can state compactly by writing 

Is,, l < l ,  ]<I (passive two-port) (3.2-1 

11 means, for another, that a transmittpd wave cannot be powcr-amplified by the 
two-port. Ouantitat~vely, 

(passive two-port ) 

where Z,, and ZCz are the charact~ristic impedances of ports 1 and 2. 
Many of the two-ports one encotlnters are electrically symmetric, which is 

to  say that thcir effect on the microwavcl system is unaltered if they arc turncd 
around end for end. Obviously in a symmetric two-port i t  rnak~s n[o difference 
which port is labeled "1" and which "2". 

I t  is  not  necessary that t h ~  ~ P V ~ C P  be symmetric in o r d ~ r  to have (3.2-4) 
satisfi~cl. I t  can be shown that a reciprocal two-port has the propertv 

S I I  = s,2 

SI2 =.<?I 
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Zc2st2 = ZclsZI (reciprocal two-port). (3.2-5) 

We will not give a d~f in i t ion of rrc i~roci tv,  b ~ ~ ~ r ,  generally s~eaking, a device i s  
reciprocal i f  1)  i t  i s  linear, i.e., its parameters do not chanqr with the magnitudes 
of the fields, and 2) i t  contains only isotropic media-ones that have the same 

properties in all dirttctions. Thus transmission lines, connectors, tuners, direc- 
tional couplers, filters, attenirators, in fact an\! structure made of ordinary dielec- 
trics and conductors is reciprocal. Amplifiers, mixers and ferrite isolators are 
non-reciprocal. 

Another importan1 class of two-ports comprises the ones that arc! lossless. 
BV lossless we rnmn that they do not dissipate any energy internally, This is not 
t t~e  -171~ as saying that they havr-? ?pro ins~rtion loss, s i n c ~ ,  as WP shall SPP in 
Section 3.4, inwrtion loss can bt? due to reflection as well as clissipation. Sections 
of air-dielectric line, connec tuners art .hat can be considered 
lossless for most purposes. 1 1  s device t t  cident power has to be 
equal to the total outgoin! This co~ ?ads to thc followina 
relations: 

tors, and 
7 a lossli.s~ 
1 power. 

? devices I 

14 total in' 
nstraint 11 

2 
zC21sl2 1 - zcl  IS^, I = J z c , z c 2 ( i  - 1sI1 I ) 1 (3.2-71 

3 
arg s2: + arg sz, = arq s,, + aro sit It 1, 3. 5 , .  . X 180 dcq 2 (3.2-6) 

h!otice {hr magnitude signs. Without them, (3.2-6) is the same as (3.2-3) and the 

first part of (3.2-7) is the same as (3.2-5). 

3.3 MISMATCH LOSS 

The term "mismatch 10s" is used when one talks about the transfer of 
power across a single junction. Mismatch loss measl.rrrAs the ratio by which the 
power transferred from the source side to the lclad side of t h ~  junction falls short 
of the amount that would bc transferred if the two sid~!s were "matched." But 
I ~P term "~natch" is used in several different senscs. so i t  is necessary to rnakr? 
clrar which "matched" condition "mismatch loss" refers to. 

I t  is a well-known theorem that the maxirni~m possible amount of poww i s  
extracted from a soclrce bv a load whose impedance is equal to the complex con- 
jugate of the source im~edance.t Thus a source whose impedance is 50 + j25 

tprovldod the source is linear. A linear source Is one whose impedance and emf are both in- 
dependent of the laad, that is, independent of any incoming wave. The catch in the maxl- 
mum-power theorem i s  that the primary sources of microwave power-oscillators and 
ampllflers-are not in general linear. A good laboratory approximation to a linear source Is 
Provided by an oscillator that  1s Isolated from Its load by 6 or 10 dB of attenuation. 
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ohms wil l  deliver maximum power to  a load impedance of 50 - j25 ohms. If the 
source and load impedances are complex conjugates of each other, so are the 
source and load reflection coefficients. Thus we may state the maximum power 
transfer theorem by saying that maximum power is extracted from a source by a 
load whose reflection coefficient is the complex conjugate of the source ref l e e  
t ion coefficient, 

q - c  
Figure 3.3-1. The amount o f  power 

IJOUrCe'-+t-+loodI 

21 = comp. conj. 2, 
condition for maximum power transfer (3.3-1 1 

F1 = cornp. conj. r, 

that the source delivers to  the load de- junction 

pends on the reflection coefficients r, 
of the source and r I  of the load. 

The maximum amount o f  power that the source can deliver is called the source's 
available power. 

COAX -HB-77 

Example: A source and load are connected a t  a junctFon whose charac 
teristfc impedance is 50 ohms. When the load is reflection less (rl = O), 
the power delivered to the load is 0.02 wart. A measurement of the re 

flection coefficient r.t of the source yields a value of 0.5 4 + 30 deg. How 
much pawer wil l  the source deliver to  a conjugate load? 

plone 
o f  the 
junction 

When the source is terminated in a reflectionless load there is only 
one wave crossing the sourceload junction. This is the primary wave 
emitted by the source. I t  is totally absorbed by the load, and we calcu- 
late that it must have an amplitude of 

d m w a t t  X 50 aims = 1.0 volt rms 

Let us see what happens when the load is a conjugate match to the 
source: I?! = romp. conj. r, = 0.5 & - 30 deg. Now the 7-volt primary 
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wave i s  partially reflected by the load. The amplitude of this reflection 
is  0.5 volt and its phase is -30 degrees with respect to the incident pri- 
mary wave. The rcflected wave in turn experiences a partial reflection 
from the source, so there is a second wave incident on the load whose 
amplitude is 0.25 volt & 0 deg. There is a second reflection from the load 
01  amplitude 0.125 volt 4 -30 deg, and so ori. The total voltage incident 
on the load is 

( 1  + 0.25 + 0.0625 + - - volts '4 0 deg. = 1.33 volts zS 0 deg. 

The power incident on the load is (1.33 v0l ts)~/50 ohms = 0.035 watt, 
The total voltage reflected from the load is 

and the reflected power is 

(0.67 volt)* 150 ohms = 0.0090 watt 

The power absorbed by the load is thus 0.035 - 0.0090 = 0.026 watt. 
This is the available power of the source. 

This example explains the apparent paradox that a reflecting load can absorb 
more power than a nonreflecting one i f  the source is not reflectionless. 

One kind of mismatch loss is the conjugate mismatch loss. This is the loss 
that occurs because a nonconjugate load does not extract the available power 
from the source. 

source's available power 
conjugate-mismatch-loss ratio = 

Dower delivered to load 

The formula for the conjugatemismatch-loss ratio as a function of the source 
and load reflection coefficients is 

I i - rs rl12 
conjugate-mismatch-loss ratio = 

(1 - lrs12)  (1 - lr,t2) 

One rarely knows the angles of r, and P I ,  and without them one cannot 
calculate the numerator of (3.3-3). However, even i f  just the magnitudes of I?, 
and rr are known, (3.3-3) can still be used to calculate the largest and smallest 
values that the conjugate mismatch loss can have. For given values of IF, 1 and 
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lrrl, the right-hand side of (3.53) is maxim~rm whrn arg rs + arg rf = 180 deg 
and minimum when arg rs + arg ry = 0 dm. Thus, for q i v ~ n  magnitudes of source 
and load reflections, 

maximum 
conjugate- - { I  + llTSl lrll12 = 11- (rsrr - 1)' 

mismatch- ( l - l ~ ~ ~ ' ) ( l - ~ ~ ~ ~ ~ )  45 rl 
loss ratio 

minimum (1 - Irsl lrll)2 
(rs - 11) 

conjugate- = = I + --- 
mismatch- ( I  - lrs12) (1 - irl12) 4rSq 

loss ratio 

! 
Several features of these formulas are worth noting. 1) I t  does not matter which 
reflection is associated with the source and which with the load, since the formu- 
las are symmetrical with respect to source and load. 2) I f  one side of the junc- 
tion is reflectionless, the maximum and minimum losses are equal. 3) I f  the 
magnitudes of the two reflections are equal, the minimum mismatch loss is zero 
(ratio is unity). This is no surprise, since if lFsl = lrll there could be a conjugate 
match if arg rs = -arg rl. 

Example: What are the maximum and minimum conjugate-mismatch- 
loss ratios when the source SWR is 1.6 and the load SWR is 1.2? 

maximum 
conjugate- 

= 1 + (1 '6X 1'2-1)2 = 7-11 (0.45dB) 
mismatch- 4 X 1.6 X 1.2 
loss ratio 

minimum 
conjugate - - (1.6- 1 . 2 ) ~  
mismatch- ' + 4 X 1.6 X 1.2 

= 1.021 (0.090dB) 

loss ratio 

For manv reasons a microwave system is usually made as reflectionless as 
possible, and consequently electrical specifications of microwave components 
and equipment are usually stated with respect to reflectionless rather than conju- 
gate terminations. 
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Example: The specified output power of a signal generator is conven- 
tionally assumed ro be the power that the generator would de l i v~ r  to a 
reflectionless Ioad, How large a mismatch error do we make i f  we use a 
power meter whose SWR is 1.3 to measure the output power of a signal 
generator whose SWR i s  f .2? 

From (3.3-2) w e  have 

powsr that source would conjugate-mismatch-loss ratio 
deliver to a reflectionless load - 

- 
of source and actual load 

power delivered to conjugate-mismatch-loss ratio 
actual load of SOUrFe and re'lectionless load 

As we saw above, we can calculate an upper and a lower l i m ~ t  to  the nu- 
merator on the right of (3.35). Using the two relations in (3.341, we 
have 

maximum 
conjugatemismatch- 

= 1 + (1.2 X 1.3 - 1 ) 2  
4 X 1.2 X 1.3 

= 1.05 10% ratio of source 
and actual load 

and 

minimum 
conjugate-rnisrnatch- 

= 1 + (1.2- 1.31~ 
loss ratio of source 4 X  T.2X 1.3 

= 7.0016 

and actual load 

The denominator on the right of (3.3-5) has a definite value that is inde 
pendent of the angle of the source's reflection coefficient. When rl = 1, 
either of the formulas in (3.34) gives 

conjuyate-mismatch- 
lossratioofsource = 1 + (1.2- 1 l 2  

4 X 1.2 
= 1.0083 

and reflectionless load 

Thus the power thzt the generator would deliver to a reflectionless load 
is somewhere behveen 1.05/1.0083 = 1.041 and 1.0016/1.0083 = 

{ I  - 0.0067) t imes the measured power, t ha t  is, between 4.1 percent 
above and 0.67 percent below the measured power. 
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Before we leave the subject of the loses that are associated with a single 
junction, let us briefly call attention to the special case in which the source is re- 

flectionless. When there is no reflection from the source, the wave incident on 
the load is always just the primary wave emitted by the source, and the maxi- 
mum power transfcr to the load occurs when the load also is nonreflscting. Any 
power that is reflected from the loed represents a loss in load po.aer with respect 
ro the source's available Dower, so tha t  in this special case the conjugate mis- 
match loss is  ?qua1 to the reflection loss, which we defined in Section 1.7, 
Chapter 1. 

2 
reflection- - I - r 1  - 1)  conjuoate-mismatch-loss ratio 
toss ratio - 

- ' - 
4rl when source is nonreflecting 

I t  is important to rcalize that the reflection loss and conjugate mismatch loss are 
the sane only when thrl source is ref lectionless. When this is not the case, reflec- 
tion loss has very little meaning, since in general maximum power transfer occurs 
when there i s  a reilcction from the load. 

3.4 INSERTION LOSS AND ATTENUATION 

Now we turn to the rather confused subject of losses associated with t w e  
ports. The confusion arises because there is not general aqreement on the mean- 
ings of the terms "insertion loss" and "attenuation." 

Insertion loss has its origins in low-frequency filter theory. I t  i s  usuallyt 
defined by 

power delivered to load 
connected directly to source 

insrtion-loss ratio = 
power delivered to load 

when two-port is inserted 

A problem with insertion loss at microwave frequencies is  that, unless the 
connecting hardware at port 1 is  the same as that at port 2, the concept of inser- 
tion loss is in principle meaningless hacause the source and load cannot be con- 
nected directly. Perhaps we should also point out that the insertion loss i s  nega- 
tive (ratio less than unity) when the two-port improves the power transfer 
between source and load. 

But not always. "Insertion loss'' is sometlmes used wlth the rneanlng of "transducer loss" 
and sometimes wlth the meaning of "characteristic in~ert lon loss," both of which are 
defined below. 
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Figure 3.4-1. 

F17,~-Ft-;'i-pl 

The difficulties wirh insertion loss are obviated in another two-port loss 
concept. Transducer loss, whose definition is universally agreed upon, compares 
the power delivered to the load when :he two-port i s  inserted with the available 
power of the source. 

input 
junction 

transducer- - source's available power 
loss ratio power delivered to load when two-port is inserted 

(3.4-2) 

output 
junction 

The transducer loss clearly cannot be negative (loss ratio less than unity), and the 
definition is valid regardless of the hardin/are at the ports. 

In general the ~nsertion loss and the transducer loss depend in a complicated 
way on both the source and load as well as on the two-port itself. The formulas 
for these two losses, derivations of which the interested reader will find in 
Chaptw 4, are 

tl 'z COAX-HB-7b 

insertion- l (1  - s l l ~ )  (1  -522r1) - ~ ~ ~ ~ ~ ~ r ~ r ~ 1 ~  
loss ratio =(2 &)( I I - rXr1l2 (3.4-3) 

transducer- l(i  - 5,1rs) ( I  - s22rl) - s12s21 r*rl I 
loss ratio 

(3.4-4) 

We call the reader's attention to the term slzszl rcrl. This interaction term arises 
because of multiple reflections back and forth within the two-port. If either of 
the terminations is nonreflecting, or if the backward transmission slz is zero, the 
interaction term is zero. Equations 3.4-3 and 3,44 differ only in the denornina- 
tors within the second sets of parentheses. Comparison of these donominarors 
reveals that 

transducer- - insertion- conjugatemismatch-loss ratio - 
toss ratio loss ratio 

X 
of source and load 

(3.4-51 
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A 10s quantity that, unlike the insertion and transducer losses, is a proper- 
t y  of the two-port alone is the one that has usually been called attenuationt and 
more recentlv has Elad the name charaeteris?ic insertion loss given to ir .  

ava~lable power From 
artmuation ratio or 

r~flflpc~ionlcss so~lrce 
characteristic-insertion- = 

power del rvered to r~j'lectinnlcss 
loss ratio 

load by reflecrionless source with 
TWO-port inserted between them 

Comparison with (3.4-2) reveals that attenuatlon is t he  same as transducer lo= 
when the source and load are reflectionless. IT the source and load are d l r e c t l ~  
mate-able, and if the source and load ports have the same characteristic imped- 
ance, the attenuation is also equal to t he  insertion loss when the source and load 
are ref lectionless. 

attenuation or 
transducer loss - iosertion loss 

characteristic = - 
when r, = rl = 0 when r, = rl= 0 

insertion loss 

In conwast to the cc.mplicated formulas 13.4-3) and (3.4-41, the characteristic 
insertion loss depends in a very simple way upon quantities that are properties of 
the two-port alone. 'If we put r, = rl = O in either (3.4-3) or (3.4-4) we have 

attenuatlon ratio or zc 2 
characteristic-insertion- = - . 1 

105s ratio ze 1 
p 

The reader might like to verify that (3.4-8) also follows from the definition 
(3.4-6) of the characteristic insertion loss and the definition 13.1-5) o f  the for- 
ward transmission coefficient s 2 ~ .  

Notice that nons of the losses WE! have defined thus Far i s  a loss in the sense 
of dissipatfon. Each is  a loss only in the sense of a comparison with some hypm 
thetical coupling of source and load. To say that the insertion loss of a compo- 
nent of a microwave system is 3 dB does not mean that it dissipates Iialf the 
power tha t  is delivered to  it. I t  means thaz when thf component is put into t he  
system the power arriving at i ts load srde IS cut in half. Thls arnb~guity tn the 
meaninq of the word "lossv' gives rise to the apparent paradox that a losless- 

+-The trouble wlth the term "attenuetlon" is t h a t  It is used t o  designate almost any com- 
parlson of power leuels. 
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that is, dissipationless-device can have a non-zero insertion loss (and i t  also 
provrs that engineers are as prone as everybody else to using ambiguous 
terminology). 

The amount of power actually dissipated, usually as heat, within the two- 
port is the difference betwwn the input power and the power delivered to the 
load. We can if we like define a dissipation-loss ratio by 

power d r l i v ~ r ~ d  
to two-@ort 

dissipation-loss ratio = 
po\ver del ivered 

to load 

and we note that this is just the reciprocal of the familiar quantity efficiency. 
The reflection from the load influences the amount of power that is dissipated, 
so that the dissipation loss is a function of rI as w ~ l l  as thc s-parameters: 

2 
dissipation-loss - Zcz 

' X  
11-~~~r~ l  - I ( ~ ~ ~ ~ ~ ~  - S , l S 2 2 )  rI + s , ~  I? 

- -  - 
ratio GI Isz, I? 1 - lI - f12 

(3.4-10) 

I t  i s  possiblr to separate the transducer loss into a part that is due to mis- 
match at the input junction and a part that IS due to dissipation 

transducer- - c?njuqatemismatch-loss dissipation- 
loss ratio - ratio at inout junction ' loss ratio 

(3.4-1 11 

This is  merely a fairly obvious identity, and not a particularly useful one at that, 
because both the mismatch loss and the dissipation loss are in general involved 
functions. There is one case, however, in which it yields a simple and instructive 
relation. When rs = rl = 0, (3.4-1 1) becomes 

characteristic- 
1 

2 
insertion- - Zc2 1 - Isl1 1 

- . - .  
2 (L=rl=O) 13.b12) loss (attenuation) 1 - 1 Zc, l s z l  I? 

ratio 
- - 

rpflpction- dissipation-losc 
loss ratio ratio 
at ~ngut  
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This equation shows that the characteristic insertion loss is due l o  reflection 07 

dissipation or both. I t  is important for the wader to bear in mind that the ex- 
pressions given in (3.4-1 2) for the reflection- and dissipation-loss ratios are valid 
only when r, = PI = 0. 

Formulas, such as (3.4-33 and (3.441, that exprpss the various loss quanti- 
ties in terms a: r,, ri, and the s-parameters of the two-port are usually of no u s  
for computation. Apart from the fact  that these formulas are extremely compli- 
cated, we usually do not know the angles of the complex numbers that they d e  
pend upon. As an  ~xarnple of ths sort of computational use to which this sort of 
equation can be put, we shall discuss the mismatch error t ha t  arises in the inser- 
tion rneasurernmt of atrenuation (characterisric ~nserlion loss). 

A practical way to measure attenuation is ro insert the unknown corr~pc- 
nent into a nominally matched system and record :he decrease in transmitted 
power. Of course what this method actually rneasuqes is insertFon loss, and when 
the result is taken as t h ~  attenuation there is an error that is due to the mismatch 
that inevitably exists. Comparison of equations 3.68 and 3.4-3 shorn t ha t  

insrrtion-loss 
(attenuation) ratio - 1(1 - s l ~  rs) ( 1  - J Z ~  r[) -xla~21 r1r112 

~nsertion-loss 
(3.4-1 3) 

11 - r,crll? 
ratio 

We can also express this ratio in Terms of the input reflection coefficient r1 tha t  
the device pre-nts at port 1 or The output reflection coefficient r? that it ore- 
sents at port 2. 

charactcrist~c- 
insert ion-fnss 

2 
(attenuationlsatio -11-r lrs lZI~-s~~r112  - I , - S ~ ~ ~ ~ I  Il-r2rrl2 

insertion-loss 11 - ]r,rI~? 11 - rsl-{l2 
ratio 

13.4-14) 

The reflection coef f i~ i~ ln ts  r, and T2 are rnpasured with the respective opposite 
terminations in place (we shall go into the sublect of input and output reflection 
coefficients in th? next secrion). I f  we know ttie magnitudes but not the angles 
o f  the various complex quavtities in 13.4-1 3) and (3.4-1 4) we can still calculate 
the limits of the mismatch error.? 

~ e r  us warn the reader t h a t  thls problem Is sornetfmes treated Incorrectly In the I lterature. 
One can flnd d)scussions thst Ignore lhr? fact that  d is5 i~a t l an  loss depends on fhn load. or 
assume erroneously t h a t  Insertion toss i s  the sum of either dlrslpetlon loss or attenuatTon snd 
a mismatch loss a t  each port. These mlstakes have  l e d  t o  wrong answers Tn publlcarlons that 
have en ~bllgatien to b e  more relfable. 
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Example: What can we say about the attenuation (charactaristic inser- 
tion loss) of an attenuator i f  the measured insertim loss is 20 dB, the 
measuring system SWR is 1.05 in either direction, and the insertion S i R  
of the attenuator is 1.15 at each end? 

To begin with, let us note that considerable simplification of this 
problem results from the fact that 20 dB of attenuation beween the 
porrs are enough to wamp the interaction between the smakl mismatches 
at each end of the artenuator. Thus, as the reader can easily verify, the 
interaction term s ~ ~ s ~ ~  FSrI in (3.4-13) i s  negliqible compared with the 
rest of the numerator. We f h ~ n  have the approximation 

characteristic- 
insertion-loss 

(attenuation) ratio , 11 - - ~ 1 1 r X 1 *  11 - 522r ! I2  

insert iok los 11 - r.qrrt2 
ratio 

negrect ing 
interaction 

(3.4-751 

The maximum value of {3.4-15) would occur if the quantities s l l  Fs and 
sZ2 rl both had angles of 180 degrees and the quantity r,rl had an angle 
of 0 degrees. 

characteristic- 
maximum( i n= r t i ~n - l os  1 = 

value (attenuation) ratio a ( 1  f Is11 ~ I L I ) '  (1 + Is?i- Ilr11)~ 
of insertion-loss ( I - I ~ ~ I I ~ ~ I ~ ~  

ratio 

The minimum value would occur i f  s l l  r, and had angles of 0 de- 
grees a d  T;Tr had an angle of 180 degrees: 

characteristic- \ 
2 

( 1  - IS,, ~ l r J l ~ 2 ( ~  - lsZ2 llr,lj 
of insertion-loss ( 1  + I ~ ~ I I ~ ~ I I '  
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In the present case the numbers we need are 

and 

and the maximum and minimum values of (3.4-15) are 

rnaxlrnum - (1 + 0.070 X 0.024)~ ( 1  + 0.070 X 0 . 0 2 4 ) ~  
- 

value ( 1  - 0.024 X 0.024) 

(we now make labor-saving use of the binomial theorem) 

and 

minimum - (1 - 0.070 X 0.0241~ (1 - 0.070 X 0.02412 - 
va lu~  ( 1  + 0.024 X 0.0241~ 

Thus the true attenuation is between 0.79 percent above and 0.79 per- 
cent below the measured insertion lass, or, in other words, mismatch 
causes an error of 5 0.79 pprcent or * 0.034 dB. 

3.5 INPUT AND OUTPUT REFLECT1ON COEFFICIENTS 

We have seen that when port 2 has a nonreflecting termination 'the reflec- 
tion coefficient that one sees when one looks into port 1 i s  s l l .  The stand~ng 
wave ratio corresponding to s l l  is called the insertion SWR. 

1 + lsl,l = insertion SWR at port 1 = 
SWR at port 1 with 

1 - Isll I nonreflecting load on port 2 
(3.5-7 1 

Likewise 

1 + Iszz l 
- SWR a t  port 2 with 

insertion SWR a t  port 2 = - 
1 - t nonreflecting laad on port 1 (3.521 
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Example: A connector pair is fo~lnd  to tlavc. an insertinn SWR of  1.7. 
What is its attenuation (cl-raracteristic insertion loss)? 

Connectors can normally b ~ !  consid~rc1cJ IOSS~PS? jScli%?i.~ipalionless), 
and two-ports in this catpaory satisfy 

and 

if WF! assclrnc that Z,, = Z,,. T h ~ r ~ f o r e ,  fnr our ronnrrtor pair, 

and 

1 - attenuation (dB)  = 10 loglo - - 1 
I .  I l o  loslo 1 - 0.00226 

= 10 log," ( 1 + 0.00226) = 0.0098 dB 

In t h e  general case in which port 2 is not terminated in a rcflectionless load 
but in a reflection coefficient ria, the reflection coefficient tha t  one sees when 
one looks into port 1 is given bv the very important formula 

COAX-HB-'I 

Figure 3.5-1. The reflection coefficient rl of the load i s  transformed by the two- 
port into a reflection coefficient rl that is presented by port 1. 
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Most of the two-ports one is likely to have dealings with are reciprocal, and usu- 
ally their ports have the same characteristic impedance. When these conditions 

are met, $ 1 2  = 321 and (3.53) becomes 

(reciprocal and Z,, = Z c 2 )  

Equations 3.5-3 and 3.5-4 show that r, consists of an intrinsic part .TI, and a part 
that i s  a transformation of rl. When TI = 0, T1 =sll. 

Example: We saw in Section 3.2 that a transmission line segment of 
length 1 can be regarded as a two-port whose $1, and st2 are zero and 

1 - BCY(dB~rn)l 
whos~  szl = s l z  = 10 ri -PI. Thus, according to (3.5-41, the 
reflection coefficient presented by the input end of the segment i s  

where rI is the reflection coefficient that terminates the segment at its 
load end (Figure 3.5-2). The reader should compare this relation with 

equation 1.8-10, Chapter 1. 

Figure 3.5-2. 

Example: A 3-dB attenuator has an insertion SWR that is specified to be 
less than 1.1, presumably at either port. What is the maximum SWR a t  
its input if its output sees a SWR of 1.27 

At worst we have 



Also 

and 

I f  the angles of s t ! ,  5 2 2 .  s2, and rr are chosen so as to maximize lrl I, 
equation 3 -54  becomes 

and ttie maximum input SWR i s  therefore ( 1  + 0.094)/.(1 - 0.094) + 1.2. 
Notice that the term Isz2 llrll was too small to  influence our result 
appreciably. 

Equation 3.5-3 has a very interesting property, one that is put  to  good use 
in many of the procedures fo r  measuring the parameters of two-ports. Suppose 
we attach to port 2 a variable-length shorted stub, as shown in (a) of Figure 
3.5-3. Since the short is totally reflecting, the magnitude Jrll of the road ref lec- 
t ion coefficient i s  unity. But the angle 81 of rl depends upon the adjustable 
length of line between the short and the terminal plane t?. As we vary the length 
of the shorted stub through one half wavelength, the angle 19[ wil l  rotate through 
360 degrees, and rl wil l  trace out a circle of uni t  radius on the complex F-plane, 
as shown in (b) of Figure 3.53. 

Now, the interesting property of equation 3.53 is this: as J?l describes a 
circle on the complex F-plane, so wil l  rl. Since the rl-circle has a radius o f  
unity, the rl-circle wil l  in general fall inside i t  (an exception occurs when the 
two-port is lossless, i n  which case the rl-circle falls on top of the rl-circle). The 
rl-circle will not  in general be centered about the origin of the r-plane, and 
points that are uniformly disposed about the r rc i rc le  wil l  not in general corre- 
spond t o  uniformly disposed points on the rl -circle. 
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variable-length 
shorted stub 

(a) 

90 deg 

180 deg 

I 
90 deg 

Figure 3.5-3. As ri traces out a circle of unit radius on the complex 
r-plane, r, also traces out a circle. Points that are uniformly spaced 
around the rl-circle do not in general correspond to points that are 
uniformly spaced on the rl -circle. 
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The radius of the rl-circle and the locatio~i of its center are determined by 
the twc-port. The relations between ths rl -circle and the sparameters of the 
two-port are shown in Figure 3.54. The radius of the rl-circle is given by 

or, i f  reciprocity applies, 

z, 2 R = - .  IsZl l2  
(reciprocity) 

I 1 - 1 ~ ~ ~ 1  

- 

Figure 3.5-4. The rt-circle is  a function of the parameters of the 
two-port. The radius R is the reciprocal of the dissipative compo- 
nent of the backward attenuation ratio, i.e., the attenuation ratio 
that appliff when energy flows into port 2 and out of port 1. 
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This expression looks like the reciprocal of the dissipative factor in the for- 
mula (3.4-12) for the characteristic-insertion-loss (attenuation) ratio, except that 
the subscripts 1 and 2 are turned around. Therefore 

dissipalive factor in 

dissipation-loss ratio - attenuation ratio when 1 -  - - 
R when rl 'I rr, = 0 - load is connected to 

port 1 and source is 
connected to port 2 

When the two-port is not electrically symmetric, so that it matters which port we 
call *1 and which W ,  i t  is important to keep in mind the seemingly paradoxical 
fact that, whereas I?, is measured with the load on port 2 and energy flowing in- 
to port 1, R is related to the dissipation loss that applies when the load is on port 
1 and energy flows into port 2. 

3.6 REFLECTIONS FROM DISCONTINUITIES 

By discontinuity we mean any interruption in the uniform structure of the 
transmission line. The one we have shown in Figure 3.61 is a little exaggerated, 
but the reader should be aware that bends, connectors, beads or posts supporting 
the inner conductor, probes, slots, tuning screws, and so forth are all discontinu- 
ities and that they are all sources of reflected waves of greater or lesser 
magnitude. 

The fields in the discontinuity region are not, in general, principal-mode 
(TEM) fie1ds.t While a small discontinuity, such as a probe, may give rise only 

t ~ v e r y t h i n g  we  shall say here has relevance for hollow waveguide If  we  substitute "domi- 
nant mode" for "prlncfpal mode" or "TEM mode." 

Figure 3.6-1. A rather extreme example of what we call a discontinuity. 
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to a slight perturbation of the TEM-mode fields, a structure, such as a tee, that 
totally destroys thr uniformity and syrr~metry of the line can be expected to dis- 
tort the lines of forcc. to such an extent that they bear little resemblance to the 
TEM-mode fields in the uniform line. These field perturbations are not neces- 
sarily confined to the limits of the d~scontinuitv region. Although non-TEM 
modes are nonpropagating-we assume that the frequency is below the lowest 
higher-mode cutoff-the non-TEM-mode fields may penetrate some distance in- 
to the uniform line before they arc effectively attenuated. 

Let us look at  a few practical coaxial-line discontinuity structures. 1-he 
simplest discontinuity one can talk about i s  a transverse conducting plane that 
terminates the line, shown in Figure 3.6-2. To the extent that the plane is  per- 
fectly conducting, it is an electrical mirror. At the conducting surface the inci- 
dent wave experiences a total reflection, in which the electric field (voltage) 
reverses direction bur the magnetic field {current) does not. The transvrrse con- 
ducting surface is therefore electrically equival~nt to an ideal short circuit whose 
location coincides with that of the surface. The short-circuiting plane is almost 
exceptional among discontinuities in that i t  does not generate any non-TEM- 
mode fields. The only fields present belong to  [tic? incidcnl and r~flected TEM 
waves. 

actual line terminoted by 
transverse conducting 
plane 

equivalent ideal line 
terminated in ideal 

short c i rcui t  

Figure 3.6-2. A perfectly conducting transverse surface that terminates the line 
looks electrically like an ideal short circuit. 
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Next let us considcr a line whose 13nd is simply l ~ f t  open. Eve might naivelv 
Fxpect by analogy with the pr~vious ~ x a r r l p l e  that such a termination would look 
like an ideal open circuit, but it does not. There are two rpasons for this. The 
first is the fringing of the fields shown in F~gure 3.63, becaise of which thr 
shunt ca~acitance G per unit length of lint! increases toward the end while t h e  
s~r ies inductance I per unit length dec r~ases  (at the vpry end c is tw ice and 1 one 
half the respective values given in Section 1.5 for an unterrninated Itne), Since 
the impedance (Z = Pr/l, not Z, )  near an oprn end is high, it is primarilv the in- 
crease in capacitance rather than the decr~aw in inductance that governs the 
electrical behavior of the open end, and the excess shunt capacitance in the ter- 
minal region can be treated as though it were a lumped capacitor connected to 
the end of the Tine. 

- electric line of  force 

magnetic line of fo rce  {o$tgf}poper 

COAX-HS-08 

Figure 3.6-3. Fringing of the field a t  the open end of a coaxial line. 

The other difference between the actual open end and the ideal open cir- 

cuit is due to radiation, which results in a loss of power from the wave incident 
an the termination. This loss introduces an equivalent radiation condu~tance in 

parallel with the equiv;lE~nt terminating caoacitanca. 
TWO practical shieldad o~~n-circcr i t  terminations are shown in Figure 3.8-5. 

As long as the qap betw~en t h ~  center conductor and the end sur fac~ in (a )  is 
very much smaller than the wavelenyti, the ~quivatent lumped capacitancr- is 
constant with frequency. Usually whai one would l i k ~  te have is not a constant 

capacitance but an ~quivalent ideal open stub of constant plectrical lengrh. Ey 
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octuol line with 
open end 

equivalent idea! line 
terminated by 
capocitive edmiftance 

COAX-HB-IB 

Figure 3.6-4. The effect of fringing fields and radiation a t  the open end can be 
accounted for by assuming that the line i s  ideal but that it is terminated in a 

capacitive admittance. 

Figure 3.6-5, {a) The shielded open-circuited termination i s  electrically equiva- 
lent to a terminating capacitance that, within limit, does not  vary with frequen- 
cy. (b) A properly proportioned diameter increase at the end of the center 
conductor makes the termination closely equivalent to an ideal open stub of 
constant electrical length. 
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means of an appropriately proportioned diameter increase at the end of the ten- 

ter conductor, as shown in (b) of F igi~re 3.6-5, ,the equivalent lumped capacitance 
can be made to vary with frequency in such a way that the termination looks 
l i k ~ !  an open stub of fixed electrical length. 

Let us look at some two-port discontinuity structures. In an air-dielectric 
coaxial line something has to support the center conductor, and this job i s  usu- 
ally done by dielectric beads. A bead and its equivalent circuit are shown in F i g  
ure 3.6-6 (a). Provided the frequency is low enough that no higher modes can 
propaqate even in the Gcnd, the bead is simply a short section of dielectric-filled 
line, whose capacitance per unit length is higher than that of the emptv line and 

dielectric 

++ $;;$ n t 

capaci tor 

equivalent 

3V::or 

outer- ? 

Figure 3.6-6. (a) Dielectric bead supporting the center conductor i s  equivalent 
to  a section of line that is a little longer than the bead itself, shunted by a 
capacitor. (b) A groove in the inner or outer conductor is approximately equiva- 
lent to a series inductor. 
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whose characteristic impedance is therefore lower. If the faces o f  the bead arc 
planes normal to the line's axis, and if the diameters of the inner and outer con- 
ductors remain constant, there are no fringing fields in the empty line adjacent 
to the bead. A precise equivalent circuit of the dielectric bead is a section of 
ideal line that is a little longer than the bead itself, shunted by a capacitor. The 
additional electrical length accounts for the fact that TEM waves travel mere 
slowly in the head than they do in  the empty line. The capacitor accounts for 
the bead's excess capacitance. 

Part (b) of Figure 3.6-6 shows grooves cut in  the inner nr outer conductor 
of the line. The predominant effect of either of these discontinuities is to create 
an additional amount of magnetic field, so that either one is approximately 
equivalent to  a series inductor, 

The step in  t h ~  inner conductor OD in Figure 3.6-7 (a)  is the boundary 
between two different cliara6teristic impedances; the characteristic impedance to 
the right of the step is less than that to the  left because the ratio bla is  less on the 
right. In addition to t!>e change in characteristic impedance, the step causes 
fringing of the fields, predominantly t he  electric field, the effect of which is ap- 
proximated bv an es~.~ivalent snunt capacitor. 

In  Figure 3.6-7 (b) th~!  inner conductor OD and the outer conductor I D  
both jump simultaneously. I f  the ratio bla is the same on either side of the step, 
the characteristic impedance will not  change, but  the fringing wil l  s t i l l  introduce 
an equivalent shunt capacitance at the discontinuity. 

Figure 3.6-7. Steps in conductor diameters cause fringing that can be approxi- 
mately accounted for by equivalent shunt capacitors. 
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A discontinuity is  a two-port (or a one-port), and everything we have said 
in the precedinq sections of this chapter about two-ports and their s-parameters 
and about losses applies to discontinuiti~s as to other two-ports. In particular, 
since all the structures we think of as discontinuiti~s are reciprocal, and virtuallv 
all of them may for most pvrposes be reqarded as lossless (dissipationlrss), their 
s-parameters practicallv alwavs satisfy equations 3.2-5 through 3.2-8, which we 
reca~itulate here: 

(reciprocity) 

The first of the zero-dissipation relations'(3.6-2) shows that a dissipation- 
less discontinuity has the same insertion SWR in either direction whether i t  is 
symmetric or not. 

Isj1 1 = 1xZ2 1 \ .- (3.62) 

insertion SWR 1 + Is11 I 1 + 1 - insertion SWR - - - (zero dissipation) 
a t  port 1 1 - 1 1 - IsZZ I at port 2 

(3.85) 

G 2  Is121 = zc7 1 - 9 1  1 = J z ~ ~ z ~ ~  (1 - l S I 1  t 2  

arg X Y Z  + arg sZl = arg s ly  + arg sz2 * 1, 3, 5, . . . X 180 deg 

The ~ c o n d  zero-dissipation relation (3.6-3) shows that we can calculate the at- 
tenuation (characteristic insertion loss) of any dissipationless structure i f  we 
know i t s  insertion SWR. 

& 

n 
' 2 .  , - 

,- 2 (3.6-3) 
P 
t4 (3.6-4) - 

characteristic- 
%c 2 1 - 

insertion-loss = - . - - 1 
2 

(attenuation) ratio ' ~ 1  Iszl l 1 - 1 . ~ ~ ~  l2 

2 
- (ri-rtion + 1) (zero dissipation) (3.6-6) 

"insertion 

where we have written rin,,,on for the insertion SWR. 

It frequently happens that a measured reflection coefficient isdue not only 
to the reflection one would like to measure but also to one or more interfering 
r~flections that one i s  not interested in but yet cannot eliminate from the meas- 
uring situation. Sorting out all the contributions to a measured reflection coeffi- 
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cient would at t7e very least confront us with a complicated calculation, and, 
more often than not, such a calculation would not be possible at a l l  b e c a w  we 
would not have enough information about t h ~  phases of the component 

reflections. 
Figure 3.6-8 shows schematinallv a measuring arrangement that can some- 

times be used 2 0  separate the reflection due to a termination from tha t  due to an 
intervening discontinuity. The reflectian coefficient that we spe when we look 
through the discontinuity toward the load i s  Fin,,, and the correspond~ng 
standingwave ratio i s  r;,,,,. The reflection coefficient and SWR of tho termina- 
tion are r,, and r,,, , and t h e  insertion SWR of the discontinuity is 

As the length of 2 1 - n ~  variablelength line ~ c t i o n  changes, rimput moves in a 
circular locus on the rcflwtion-coefficim plane, making one complete circle for 
a half-wavelength change in tine length. The circle will not in oeneral be centercd 
at the origin of the r-plane. Whether or not the circte encloses the origin depends 
on t h ~  relaf~vc size of 1 s i l  I and 1 r,, I. Wher 1 r,, I > Isll I, the r,,-circle 
enclosesthe origin of the r-plane; when Ir,, I< Isll I, it does not. 

A t  some point on the ~l,p,,-circle, lrinpurl is maximum: and at the dla- 
metrically opposite point, 1 ri,,,,l i s  minimum. I f  the 5-parameters of the dis- 
continuity satisfy the conditions (3.61) through (3.64) for a lossless, reciprocal 

dissipadionFess, 

terrnino tion 

variable 
electrical 

length 

Figure 3.6-8. A variable-length line section k tween the termination and the 
discontinuity makes possible the separation of :.he reflection due to the terrnina- 
tion from that due to the discontinuity. 
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two-port, i t  can be shown that equation 3.5-3 gives the following formulas for 
the maximum and minimum values of the input reflection coefficient. 

If we write these formulas in terms of standingwave ratios, they become exceed- 
ingl y simple: 

(rinput)max = 'insertion rterm (3.6-10) 

rinsertion 

'tenn 

'term 

'insertion 
t 

('insertion > 'term ) I 
('insertion < rterm ) I 

In the practical applications of this method, one varies the length of the 
line and rneasures (r,,pu,)rn,x and ( T ~ ~ ~ ~ ~ ) ~ ~ ~ .  Both rinsedon and r,, can then 
be calculated from the measured quantities by the simultaneous solution of 
(3.6-1 0) and i3.6-11). 
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CHARTER 4 

Some Theoretical Background 

In this chapter we providc, for those r ~ a d ~ r s  who w~sh I T ,  a littlp of thrj 
t h ~ o r y  thaf unrferl~es rnatrrial that is prcscntmd w~thour ncrch ] t ~ s ? ~ f  iratinn 0I.e 
whew in t l i ~  bonk. Wr slial l  confinla oursrlvr? to j!JSf two tooics. Tht. fir77 four 

spctlons of the chapter q~vr: an account of th r  t h ~ n r y  of d i c f r ~b r~ r~d  parampter 
transmiss~on l i n ~ s ,  and ttw last two SCctlnns p r o v i d ~  an introduction to flow 
q rap l l ~  and t h ~ i r  applicat~on to mlcrowavn systems. Rradrrs who are not con- 
c ~ r n ~ r l  with ~hporv and  who are willinq to rake an fa~tcl snrnp of th. formulas 
ql~nterl rslvwhvtr in thn hnnk Arp ~ n v ~ t ~ r l  tn n m ~ t  thrq rh?ipt-r. 

4.1 TRAVELING WAVES ON DISTRIBUTED PARAMETER LINES 

In our brbf  d~scl~ss~an of the dtstr~butpd crrcu~t mod4 In S ~ c f ~ o n  1.5 wn 
dcscr~bed how th? l inr is rrlprcvntcd by a cirruir havinq ~ n ~ d i r n ~ n s i o n a l  pl~vqi- 
cal Pxrenqlnn alonq the  Iwqth of thc linc and con rain in!^ linearly distribufrcl 

SF'TIPS ~ndt~ctancc! and rcsistancr! and shunt canacrtanw and condurtance. I f  wp 

Figure 4.1-1. An infinitessimal length dx of line in the distributed parameter 

model. 
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write z for the series impedance per unit length and for fhe shunt admittanre 
per unit length, then 

z = r jwl 14.1-1 1 

and 

where r, !, g, and c arc respectively the series resistance, series inductance, shunt 
conductance, and shunt capacitance, all per unit length of line. 

Let w be the variable of position along the line's axis, increasing from 
right to left as shown in Figure 4.1-2. I f  V(wl and I(w1 are the voltage and cur- 
rent in the line at s r J ,  defined as In Figure 4.1-2, t h ~ n  their rates of change with 
position will be given by 

and 

Elimination of I ( w )  between (4.1-3) and (4.1-4) leads to a second-order differen- 
t ia l  equation in V(ttr), 

where 

r = +- 

Figure 4.1-2. 
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is called the propagation constant The real part of 7 is the attenuation corfstant 
a and the imaginary part is the phase constant 0. 

When we substitute (4.1-1 ) for t and (4.1-2) for ?/ in (4.1-61 we get 

The lines we are interested in are not too lossy, so we shall regard r/wf and g/wc 
as small quantities. Let us expand (4.1-8) in powers of r l w l  and flwc: 

The largest imaginary terms that are neglected in (4.1-9) are of the second order 
in small quantities and the largest real terms are of the third order. 

The imaginary part of (4.1-9) is the phase constant and the real part is  the 
attenuation constant. Retaining only the leading terms, we have 

and 

Our assumption about the smallness of r l w l  andglwc, specificallv that they are 
both much less than unity, is equivalent to saying that rK<P or,in other words, 
that the attenuation constant is much less than 277 nepers (or about 55 dB) per 
wavelength. While this condition is bound to  be met in any line that is used for 
transmission at high frequencies, i t  will cease to obtain at sufficientlv low f r e  
quencies no matter how lossless, within practical limits, the line may be. 

Equation 4.1-5 is a homogeneous differential equation with constant coef- 
ficients, which governs the behavior of C.7 as a function of position w. The con- 
stancy of the coefficients is due to the fact that the line is uniform; if itwere not, 
y would be a function of w. Homogeneity, which means that there are no terms 
that do not involve the dependent variable I.', reflects the fact that there are no 
energy sources in the part of the line to which (4.1-5) applies. If there were such 
sources, for example if we were talking about a traveling-wave device with cou- 
pling between an electron beam and the transmission line, there would be a driv- 
ing function on the right-hand side of (4.1-5). 
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The two Independent solutions that we know (4.1-5) must have are e + w  

and e-yu. The complete solution is a linear combination of these functions, and 
accordingly we write 

where ~" (0 )  and d ( 0 )  are arbitrary constants to be determined from the bound- 
ary conditions. 

The two parts of r', v+(o) e'w' and I/-(O) e-Yw, represent respectively a 
rightgoing (toward - 1 0 )  and a leftgoing (toward +w) wave: We can understand 
why this is so as follows. Our 1's and 1's are phasors- timeindependent com- 
plex auantities that represent sinusoidally timevarying voltages and currents. I t  
is conventional with electrical engineers, although not with physicists, to write 
the time dependence of sinusoidal functions with a positive imaginary exponent 
thus: 

v ( t )  = real part ( vejwt) = Ilrl cos (wt + arg 1.7 (4.1-13) 

Tho angle of the complex number 17 is the phase of the sinusoidal voltage v(t1. 

Thus the distribution of instantaneous voltaqe v(w,t)  on the line corresponding 
to the phasor function ~ ' ( 0 )  efy" ' IS 

~ ) ( t l ~ , t )  = 1v4(0) leW" cos (bru + wt + argv'(0)) (4.1-14) 

At any instant of time this is a sinusoidal function of lu that i s  attenuated exp- 
nentially toward the riaht (toward - iu),  As time progress, the exponential en- 
velope remains fixed while the oscillating cosine moves to the right inside i t  with 
a phase velocity given by 

d ( - i ~ )  
ph.5~ velocity = (-) - W  - - 

argument of P 
coslne remains 
constant 

Let us write ~ ' ( r u l  and IYL(w) for the rightgoing and leftgoing parts of the 
expression (4.1-12) for L"u4. Thus 

17(ru) = V + ( T U )  + d ( 1 u )  

where 

~ ' ( w )  = v+(0)eV'' and C7-(w) = C7-(0)e-w" 
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We can calculate the current Fn the line with the help of (4.1-3) and (4.1-6). 

The factor l l y l z i s  the characteristic admittance Y, of the line and its reciprocal 
is the characteristic impedance. 

We recognize the two parts of the right-hand side of (4.1-1 7) as rightgoing and 
leftgoing waves, and hence we write, in conformity with the notation we have 
already adopted for the two parts of V ( w ) ,  

4.2 LOSSLESS COAXIAL Ll NE 

i ( w )  = I + (w)  + i - (w)  

where 

i + ( w )  = Y, v + ( w )  and I-(tu) = -Y, V-(w)  
1 

I f  the radii of the inner and outer conducting surfaces of the coaxial line 
are a and b respectively, and if there i s  an amount of charge x per unit length of 
line uniformly distributed over the inner conductor, we can write down from 
Gauss' law that the magnitude E(r) of the electric field a t  any radius r between 
the conductors i s  

I (4.1-19) 

X 1 E(r) = - * - 
27r~ r (4.2-1 1 

The energy WE per unit length of line associated with the electric field is 

and the capacitance per unit length is 

(4.2-31 
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I f  the current in the inner conductor is i, Ampere's line-integral formula 
gives for the magnitude H(rE of the magnetic f~eld at any radius r between the 
conductors 

The energy per uni t  length of line associated with the magnetic field is 

and the external inductance per unit length I ,  i s  

The external inductance I ,  is that associated with magnetic flux in the dielectric 
between the conductors as opposed to an internal inductance li, which we shall 
cons id~r  in the next section, t h a t  a r k s  owing to the flux that penetrates below 
the surfaces of imperfect conductors. Note that the constant p in (4.2-5) is the 
permeability of the dielectric, and hence is equal to  ~ ( v a c ) .  

The reader might well ask what c and 1, can possibly have to do with prop 
agation of waves on the line a t  high frequencies, since they are dc values of ca 
pacitance and inductance, and surely the fields at 9 GHz do not  look like dc fields. 
But in fact thp fields a t  9 G H z  do took like dc fields, and this i s  because we are 
talking about TEM waves. 

It is possible to  show in a very elegant manner+ that, in any axially uniform 
metal tic guiding system, Maxwell's equations separate so as t o  yield ordinary dif- 
ferential equations in the axial direction that are identical with the distributed- 
parameter transmission-line equations (4.1-3) and (4.1-4). 12 is this remarkable 
fact that justif ies the usc of the distributed parameter model to represent wave 
propagation in any tran.mi.~sia l ine or waveF~ide. The f ield-theory solution to 
the problem also shows that in the case of the TEM mode: 1 } the fields always 
have the =me form as the dc fields, 2) the quantities that appear as"voltage" 
and "current" in the field equations can be identified wi th the ordinary voltage 
and current in the line, and 3) the distributed w i e s  impedance and shunt admit- 
tance that appear in the field equations are just the quantities that we arrive a t  

t ~ h e  (nterested reader 15 referred ro N. Marcuvitz (ed), "Waveguide Handbook." Vol. 10, 
MlT Radiation Laboralow SerTes, McGraw-Hill Book Co.. New York, 1951, P 1 ff. 

110 4.2 LOSSLESS C O A X I A L  LINE 



by assuming a distributed inductance given by (4.2-6) and capacitance given by 
(4.2-3). Thus the distributed parameter model of t h ~  line, with values of induct- 
ance and capacitance that are calculated on the assumption that the fields are 
static, is an accurate description of TEM wave propagation on any lossless trans 
mission line at frequencies up to those at which l+qlter modes begin to propagate. 

Having, we hope, assured the reader that our unsophisticated treatment of 
transmission-line propagation is I~gitimate, we shall conclude thissection by cal- 
culating the propagation constant and characteristic impedance of a lossless 
coaxial line. 

If we put z = jwl,and y = jwc in (4.1-6) and (4.1-18) we get, respectively, 

and 

Now making use of the forumlas we have just calculated for c and l , ,  (4.2-3) and 
(4.2-61, we have 

or, in view of (4.1-15). 

0 1 phase velocity = - = - 
B JF 

and 

Bear in mind that p and E in these formulas are the permeability and permittivity 
of the dielectric. 

4.3 COAXIAL LINES WITH SMALL LOSSES 

We pointed out in Chapter 1 that the fields in a lossy line are not strictly 
TEM. Nevertheless, i f  the losses are small we are justified in assuming that the 
fields are virtually the same as they would be in a lossless line and hence that we 
may continue to use our distributed parameter model to represent the line. 

4.3 COAXIAL L I N E S  W I T H  S M A L L  LOSSES 11  1 



When the tine is lossless, the only contribution to the variation of voltage 
with distance i s  the changing magnetic flux in the space between the conductors, 
and, as we saw in  tbe preceding section, this leads to an inductive component 
jwl, of 2. Conductor loss causes the electr~c field to have a small tangential corn- 
ponent at the conductinq surfaces. This tangential field component gives rise to 
an additional contribution to dvldtu which we account for in the model by add- 
ing a small impedance in s~ries with I,. 

We shall assume that it i s  possible to  define a surface impedance Zs as the 
ratio of the tangential component E,, of the electric field at the surface of the 
mctal to the surface current density K (arnperes/metzr). 

The surface impedance of an ideal, planeconducting surface is given byt 

where fi IS equal to  ptvac) for a nonferromaqnet~c conductor and a is the con- 
ductivity in ohms-'jmeter. An interesting aspect of {4.32) is that the resistive 
and reactive components of Z, are equal. 

The case of a real conductor is complicated by the degree of compactness 
and the surface finish. The irregularities of a rough or porous surface may well 
extend to depths on the order of, or even much Greater than, the skin depth. 
Then not only is the surface impedance much greater than the ideal value given 
by (4.3-21, but it i s  also no longer accurate to assume that the real and imaginarv 
parts of LCT are equal. I t  has ncvertlleless become customary to talk about surface 
impedance in terms of "effective conductivities" as though (4.3-2) applied rigor- 
ously. Accordingly, let us define uPft and 5 p f - x  so that the real and imaginary 
parts of Z, are glven hv 

and 

+see for example Ramo and Whinnery, "Flslds and Waves In Modern Radio," (second 
edltionl. John Wiley and Sons, New York, 1953, p 239. 
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At frequencies high enouqh that the sk~n  depth is  very much smaller than 
.he radius of the inner conductor, the wries 16stance per unit lpnqth r arid the 
additional series reactance per unit lrngth wli dr~c to the surface ~mpedanc~ of 
the conductors are given by 

= 
1 + 1 

(4.35) 
' e f f ,  R (inner cond) "'J 

and 

1 + 1 
(4.3-6) 

'vff, X (inner cond) 2nbJ "qff, X (outer 

The component I i  of the inductance per unit length is called internal inductance 
becaus~ it i s  due to magnetic flux within the in t~ r lo r  of the conductors. 

The conductor-loss component of the  I~ne's attenuation i s  qlven by the 
first term on the right of (4.1-1 1) .  

Since a itself is a small quantity we may ignore the contribution of 1; to I and 
write 

The inductance li causes a small increase in the phase constant (decrease in 
the velocity of propagation). If we put 1 = I ,  + 1; into (4.1-10) w~ have 

A 0  (due to conductors) - 1 1; 

fi (lossless line) 2 4 

We are justified in ignoring the effect of r on p. Referring to equation 4.1-9, w e  
see that the lar~est imaginary tprrns involving r are of the second order in small 
quantities, whereas the correction we have just calculated is of the first order. 

Both r and li affect the characteristic impedance siqnificantly. If we ignore 
diel~ctric loss for the moment we have 
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The foregoing theory of conductor loss finds practical application in  the 
case of precision air-dielectric lines whose conductors have been fabricated so as 
to have smooth, compact surfaces, For such conducting surfaces one can assume 
that o,g = a e ~  and hence that r = wli. In this circumstance 

oltcond) - AP(cond1 - = real part 
fl(lossless) fi( Yossles? 

= - imaginary part 

The shunt admittance per unit length of a lossless line is 

27I~ 
yllossless) = jwc = jw - 

h 
(4.3141 

log, - 
a 

The shunt admittance of a line with a lossy dielectric is found by substituting the 
complex permittivity E'-~E "= ~ { l - j  tan S ) ,  where S i s  the loss angle, i n  place of 
E in (4.314). Thus 

so that the shunt conductance due to  dielectric loss is 

g = o c  tan S (4.3-7 61 

The contribution tha tg  makes to the line's attenuation is  found by putting 
(4.31 61 into the second term on the right of (4.7-1 1): 

7 

The influence of dielectric loss on the phase constant can be ignored. Even 
theoretically, g, l ike r, causes a change in fl that is o f  the second order i n  small 
quantities. But even if  g were large, i t s  effect on fl would be swamped by the un- 
certainty in the dielectric constant. 
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Under some circumstances, though, dielectric loss might have a significant 
effect on the characteristic impedance, since i t  gives rise to an imaginary cornpe 
nent. Ignoring conductor loss, we have 

AZ,{diel) i 
= - tan 6 

Z,(lossless) 2 

4.4 THE TERMINATED LlNE 

Let us return to the general expressions (4.1-16) and (4.1-19) for the volt- 
age and current on the line: 

V(w) = v+(w)  + v-(w) 

where 

v'(w) = v+(0)evw and V-(tu) = V-(0)e-rw 

and 

I(w1 = I + ( w )  + I- (w)  

where 

f ( w )  = Y, v*(w) and 1-(w) = -Y,v-(w) 

Mathematically, various sets of boundary conditions might be used to d e  
termine the two constants ~ ' ( 0 )  and V-(0) in (4.4-1) and (4.4-2). As a matter 
of fact, though, we do not wish to make a unique determination of ~ ' ( 0 )  and 
V-(01. For the present we are interested in the effect of terminating the line at 
i t s  right-hand end in a load of known impedance or reflection coefficient, and 
this condition imposes a constraint on (4.4-1) and (4.4-2) that is sufficient only 
to fix the ratio of ~ ' ( 0 )  and V-(0). This partial determination of the solution to 
the problem will enable us to calculate impedances and reflection coefficients, 
but not the actual values of voltages and currents. To find these we would have 
to specify another boundary condition, for example the voltage at the load or at 
the generator. 
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r I W ~  =I: " i w l  +z7wi 

genera tor  Zt . r t  

reference 
plone w 

t e r m ~ n o ~  
plone f 

Figure 4.4-1. 

Let the load's terminal plane t be at w = 0. We can write (4.4-1) and 
(4.4-2) in the form 

where 

is the reflection coefficient of the load. Equations (4.4-3) and (4.4-4) emphasize 
the role of the forward and reflected waves in making up the total voltage and 
current on the line. 

I f  we solve (4.4-1) and (4.4-2) for v+(w)  and V - ( w )  in terms of  V ( w )  and 
I (w) ,  obtaining 

and 
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and then use these expressions, evaluated at w = 0, to eliminate v,'+(o) and V-(01 
from (4.4-1 1 and (4.4-2), we get 

VEwl = Y ( 0 )  coskyw + Z,I(O) sinhyw (4.4-8) 

Equations (4.48) and (4.49) put in prominence the 2-port-network aspect of a 

length of line, since they may be thought of as relations between the voltage and 
current a t  an input port and the voltage and current at an output port. 

The reflection coefficient r ( w )  a t  the reference plane w is defined by 

and the impedance X ( w )  is  defined by 

Impedance and reflection coefficient are mathematicaTly equivaient. I f  we corn 
bine the definitions (4.410) and (4.4-111 with either (4.4-1) and (4.4-2) or 
14.46) and (4.4-71, we get 

Readers who are acquainted with the theory of conformal mapping will recog 
nise (4.4-12) as a bilinear transformation which maps the right-hand half of the 
2-plane into the interior of the unit circle about tSe origin of the P-plane. 

From (4.4-1 1 we have 

so that the refatiorl between the reflection coefficient r ( w )  at any plane w and 
that a't the terminal plane w = 0 is 
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The relation between the impedance Z(rc~) at w and that a t  w = 0 can be obtained 
by dividing (4.4-8) by (4.4-9). We get  

+ tanh yw 
Z(w1 - Kc - -  
Xc Z(0) 

1 + - tanhyw 
z'+ 

The voltage and current relations (4.48) and (4.4-9) and the impedance 
relation (4.4-14) are really quite complicated because the arguments of the hy- 
perbolic functions are complex. We can obtain simpler expressions that are valid 

when the attenuation is small. Making use of welt known identities, we have 

and 

sinh yw = sinh la I jP)w - sinh aw cos flu> F j cosh a w  sin OW (4.4-161 

I f  a is small enough that law)' is negligible cornpard with mu, we can make the 
approximations cash au7 G 1 and sinh aw 4 aw. When we do so, (4.4-8) and 
(4.4-9) become 

Sf(w) = (YlO) + Z,I(O)aw) cas flu, -t j (ZcT(0)  4. V(O)aw) sin flw (4.4-17) 

I (w)  = ( I I O }  + Y, v(O]aw) cos ow + j (Y,V(O) + I(O]IYW) sin Pw (4.4- 18) 

and (4.4-1 41 becomes 

e(~) ]  - - -  
f ~ + ~ . )  + j +? crw) tan& 

'(O) + aw tan ow "C b + y a w ) + j ( F  ) 
The standing-wave pattern on the line is most appropriately expressed in 

terms of the reflection coefficient r(w1 = lr(iu) lejoiw).  Making use of the ex- 
pressions (4.4-3) and (4.4-4) for the voltage and current, and writing * to denote 
a compFex conjugate, we have 
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and 

I I ( w ) I  = J- 

Apart from the factor I Y ,  I in (4.4-21), the expressions for I V I  and 11 I differ only 
in the sign o f  the cosine term. We leave it as an exercise for the reader t o  demon- 
strate the perhaps surprising fact that successive standinpwave maxima and 
minima are not a half wavelength apart when a # 0. 

The power flowing in the line toward the load is 

1 
P = - real part (Vl*} 

2 

(* denotes complex conjugate). In  terms o f  forward and reflected waves, 
(4.4-22) becomes 

1 
p = - real part [ (v+ + ti-) Y,* /v+* - V-*)I 

2 
(4.4-23) 

and, i f  Y, is real, 

1 1 
In  this expression, - Y, I and - Y, 1 V-lZ are clearly the amounts o f  power 

2 2 
in the forward and reflected waves respectively, and the neb forward power is the 
difference between them. 

When the characteristic immittance is not  purely real it is not  possible to  
separate the power f low jnto a t oward  part that is proportFonal to  1v+I2 and a 
reflected part proporfional t o  lv-I2. We leave it to the reader t o  show that, wi th 
a qiven forward voltage, fhe power delivered to  the load wil l  be maximum when 
the load immittance is equal to  the complex conjugate o f  the characteristic im- 
rnittance. Thus when the characteristic irnmirtance i s  not real, maximum power 
is not delivered to  a nonref lecting load. 
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4.5 APPLICATION OF SIGNAL FLOW GRAPHS TO MICROWAVE CIRCUITS~ 

Figure 4.5-1 shows a two-port wi th a current and a voltage so defined at 
each port  that % real part (VII1  *) and '/1 real part (V212 *) are the 
amounts of power flowing into ports 1 and 2 respectively. The characteristic im- 
pedances of the lines in which ports 1 and 2 are located are Zcl and Zc2. The 
ingoing and outgoing voltages a t  each port are given in terms of the correspond- 
ing V and I by 

and the scattering matrix of the two-port is defined by 

We gave a simplified introduction to the scattering matrix i n  Chapter 3, and we 
shall not elaborate on that here. The reader wil l  find a discussion of s-matrix 
theory in any text on microwave circuits. 

Example: The scattering matrix of a length 1 of transmission line is 

=I ,-\ t-\ 1. 

'transmhion 
line 

-- 

Ti / i  two -po r t  
Figure 4.5-1. 

! I  

TJ. K. Hunton, "Analysis of Microwave Techniques by Means of Signal Flow Graphs," I R E  
Transactions on hlicrowarnc. nleor?, dud T e r h ~ i q f r ~ s ,  Vol MTT-8. pp 206-21 2, March 1960. 

1 I I '  L I I3 



Figure 4.5-2. 

Example: Let us calculate the scattering matrix of an admittance Y 
shunted across a line of characteristic admittance Y,. We shall take both 
terminal planes t l  and t p  t o  be coincident wi th the plane of Y (Figure 
4.52). 

When port 2 is terminated by a reflectionless load, the admittance 
Y ,  that one sees i f  one looks into port 1 i s  Y + Y,, and the reflection 
coefficient one sees, which is equal to sl l  , is 

Yf 
I - -  

- yc - - -  - Y 
rdectionles load on ~ O R  2 

(4.551 
1 + - 

yc 

Obviously the total voltages at the two ports have to  be equal, so 

or, dividing by V; , 

Now, if port 2 is again terminated in a reflectionless load, so that V; = 0, 
the last equation yields a relation between sll and sll: 

Since the shunt admittance is a symmetric obstacle, the scattering matrix 
is symmetric and we may combine (4.5-5) and (4.5-61 and write 
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Figure 4.5-3. Flow graph consisting of 
a single branch. 

A f low graph is a connected system of directed line segments that repre 
sents a set o f  algebraic equations. The vertices or nodes of  the graph are the vari- 
ables in the equations and the tine segments or branches are the coefficients. In 
the f low graphs that are used to  describe microwave circuits, the nodes are the 
ingoing and outgoing voltages, the ~ " s  and V-'s, and the branches are s-parame 
ters and reflection coefficients. Consider for example the equation 

which describes the reflection due to  a load. The f low graph of (4.5-8) is shown 
in Figure 4.53. 

The f low graph o f  equation 4.53, which describes a two-port i n  terms o f  
its scattering matrix, is shown in Figure 4.5-4. 

Figure 4.5-4, Flow grdph representing two-port scattering relations, 
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Another elementary f low graph that we shal l need to use is that of a source, 
which we represent by an ideal voltage source Es in series with an impedance Z,,  
as shown at the left of Figure 4.55. The voltage and current at the terminal 
plane t are related by 

and if  we replace Vs and I, with V: and V; by substituting the relations 
Vs = V: + IIJ and IsZc = V; - Vi, we get 

which we wil l  write 

where 

and 

The f low graph of equation 4.5-10 is shown at the right of FFgure 4.55. 

Figure 4.5-5. Equivalent circuit and f low graph o f  a source. 



1 FI~'&-, I O O ~  

=11, '12, '21, '22 

Figure 4.5-6. A two-port terminated in a load. 

When two microwave components are connected together, the outgoing 
wave at one port i s  the incident wave at the abutting one. Accordingly we may 
obtain the f low graph of an entire system by plugging together the f low graphs of 
its individual parts so that each V- coincides with the abutting v'. Thus if  we 
connect a load to port 2 of a two-port device, as in Figure 4-54, the f low graph 
of the composite system is obtained by combining the graph o f  Figure 4.54 with 
that o f  Figure 4-53; it is shown in Figure 4.57. 

The importance of f low graphs is that they are the basis o f  a powerful t o p  
ological method for calculating measurable parameters - immittances, reflection 

;j? $22 

S 
12 I - - o/ - J7 

"I- %+ 5 
COAX-HB-57 

Figure 4.5-7. Flow graph o f  the two-port and load shown In Figure 4.5-6. 



coeff ~cients, tosses, phase shifts, etc - in rnicrowav~ systems. By means of the 
nontauching loop rule one can write down expressions for these quantities more 
or less from an inspection of the flow graph.? 

We shall require a few definitions. 

The branches are the d ~ r e c t e d  line segments out of which the flow graph is 
made. 

The nodes of the graph arc rhc points a t  which thc branchcs bcqin and cnd. 
A source node i s  a node to which are attached onlv exiting branches. 
A node value or signal is the value of the variable associat~d with a node. 

We practice the economy of using the letter that stands for lhe value also to l ab~ l  
the node. The I?' 's and T' 's in our graphs are node values. 

A branch tmnsmission is the value of the coefficient that is associated with 
a branch. Tile s's of Figure 4.57 are branch transmissions. 

A path is  a set of consecutive, codirectional branches along which no node 
b encountered more than once. 

A  pa^ transmissian i s  the product of the branch rransmissions along a 
path. 

A first-order loop 1s a closed path on which anv node is encountered just 
once per circuit. 

The meaning of first-order loop transmission wil l  be obvious. 
A second-order loop i s  two first-order laops that do not t o u c l ~  
The meaning of second-order loop transmission wil l  be obvious, 
A thirdsrder loop is three first-order loops that de not touch, etc. 
The graph determinant is given by 

graph determinant = 1 - first-order loop transmissions 
alt firat- 
ordsr loops 

t xsecond-order loop transmissions - . . . (4.513) 

all second- 
order loops 

The ~0faCt0r of a path is the graph d~terrvinant of the part of the graph 

that does not touch the path at any point. 
A graph transmission can be defined from a source node to a non-seurcr 

node. The graph transmission from source node S to non-source node R i s  the 

amount of signal or node value R due to a unit of signal or nadc value S. That i s  

to say, 

t ~ n  excellent lnrroducrlon to flow graphs 15 to be found in Meson and Zirnrnermnn, 
"Electronic Circuits, Signals, and Svstems," John Wlley and Sons, Inc., New York, 7960, 
Chapter 4. 



Figure 4.5-8. The graph 
transmission from source 
nodeS to non-source node 

R is R/S when all other 
source-node values are 

zero. 

S /source node 

COAX·HB-61 

' \ --
--

graph transmission from (R) 
source nodeS to non-source node R = S all other source-node 

values equal to zero 

' ' 

(4.5-14) 

Finally, we can state the nontouching loop rule for calculating graph trans-
missions: 

graph transmission 
from S toR 

~ path X 
£..J transmission 

all paths 
from S toR 

path 
cofactor 

graph determinant 
(4.5-15) 

Example: We will illustrate the topological method by deriving the use
ful formula for the reflection coefficient r 1 = V1 ;v; that one sees if one 
looks into port 1 of the loaded two-port shown in Figure 4.5-6. We ob
serve from the flow graph of Figure 4.5-7 that v; is a source node and 

V1 is a non-source node, so that V~ ;v; is the graph transmission from 
v; to V1. 

The graph has just a single first-order loop, s22 fz, so that the graph 
determinant is 1-s22 f 1. There are two paths from v; to V~: su and 
s21 fzs12 • The cofactor of s11 is 1-s22r 1, and the cofactor of s21 fzs12 is 
1. Thus, according to (4.5-15), 

or 
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Example: As a further example let us consider the system shown in Fiq- 
ure 4.59, in which a two-port is terminated at port 2 in a load and a t  
port 1 in a source. The flow graph is shown in F~gure 4.5-1 0. We shall 
calculate the ratio v ; / S ,  the graph transmission from source node S to 

non-source node V; . 

Figure 4.5-9. A two-port with source and load. 

Figure 4.5-10. Flow graph of the two-port, source, and load shown in 
Figure 4.5-9. 

The graph has three f irst-order loops: c s l l ,  T,szl r1slz, and sz2 rl. 
There is one second-order loop, <sllsz2q. There is only one path from 
S to V ; ;  its transmission is szl and its cofactor is 1. Thus 



4.6 LOSS FORMULAS 

In  this section WP shall derive the basic formulas for the different kinds of 
loss that we discussed in Sections 3.3 and 3.4. 

Let us first consider the transfer of power from a source to a load that is 
directly connected to it (Figure 4.6-11. Using the method of the last section, one 
finds from inspection of the f low graph that the incident wave at the load v i i s  

The power delivered to the load, according to (4.4-241, is 

1 
P, = - Yc 1v;TZ ( 1  - lf,F2} 

2 
(4.621 

where Y,, the characteristic admittance of the connecting transmission line, is 
assumed to be real. Substituting (4.81), we have 

We leave it to the reader to  show that, when S and r, are fixed, 4 is maximum 
when f = r,* and that this rnaxlrnum value of I), called the generator's available 
power Pa,,,, , is given by 

From (4.63) and (4.64) we have 

Pavan - 11 - ~ ~ ~ ~ 1 2  
conjugate mismatch loss ratia = - - 

P! ( I  - /rst2) ( I  - lrl12) (4.65) 

Figure 4.6-1. Schematic diagram and flow graph of source and directly con- 
nected load. 
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I f  a two-port is inserted between the source and the load, the load power 
wil l  be 

where Yc2 rs the characteristic admittance of the port 2-tc-load junction and 
V i  = vyis the voltage of the wave leaving port 2 and entering the load. I f  we 
substitute (4.51 7), which gives the ratio Vi/S, into (4.6-2) we get 

comparing (4.87) with (4.6-41, we have 

P,,,II (sou~ceF 
transducer-loss mtio = 

f'l 

When the source and load can be mated directly, so that it is meaningful to talk 
about insertion loss, we have, from a comparison o f  (4.6-7) with {4.63) ,  

insertion-10% - Pi with load connected direct Ey to source 
ratio 

- 
P, with two-port inserted 

assuming that = Z,,. 
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CHAPTER 5 

Basic Measurement Methods 
and Procedures 

5.1 REFLECTOMETERS, BRIDGES, AND SLOTTED LINES 

These are the three basic kinds of instruments that measure immittances 
or reflection coefficients at microwave frequeneies. Although reflection coef- 
ficient and irnmittance are fundamentally one-port parameters, their measure- 
ment i s  the basis of many two-port methods, as well as methods for the measure- 
ment of such quantities as the propagation parameters of lines and the electric 
and magnetic properties of materials. 

There are two different kinds of reflectometers. The frequency-domain 
reflectorneter (FDR) makes cw measurements whereas the time-domain reflecto- 
meter (TDR) is a pulse instrument. 

The principle of the frequency-domain reflectometer is shown in Figure 
5.1-1. The directional coupler, whose schematic diagram i s  shown separately in 
Figure 5.1-2, is a four-port device with the following property: ports 1 and 2 are 
each coupled to ports 3 and 4 but not to each other, and likewise ports 3 and 4 
are each coupled to ports 1 and 2 but not to each other. Thus a sample of the 

Q meter 

4 detector 
reflection less 

termination 

4 
sine - wave 
generator I* direction01 one -port 

coupler COAX.HB-16 

Figure 5.1-1. Basic frequency-domain reflectometer. 
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COAX-HB-I7 

Figure 5.1-2. Schematic diagram of a directional coupler. 

wave that i s  reflected from the unknown load in Figure 5.1-1 is diverted from 
the main transmission line and measured by the meter. 

The basic time-domain reflectometer is shown in Figure 5.1-3. The princi- 
ple of its operation is obvious; the echo from each discontinuity in the system 
under examination is displayed on the oscilloscope. A drawing of the sort of 
trace one might see on the oscilloscope is shown in Figure 5.1-4. The step at to  
is the front of the generator's pulse. The small dip at tl  shows that there is a 
small shunt capacitive discontinuity in the system located at a distance 
%Itl  - to ) /#  beyond the sampling point. The step at t2 indicates a resistive load 
(whose resistance is larger than the characteristic impedance of the line} at a 
distance %(t2 - t o  ) /v  beyond the sampling point. 

oscil loscope 

Figure 5.1-3. Basic timedomain 
reflectometer. 

pulse 
genera tor to system under 

sompling test 
point 

COAX-HB-83 

Figure 5.1-4. TDR oscilloscope 
trace. 

I 
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Figure 5.1-5. Schematic diagram of the Thurston bridge. 

As an example from the large variety of microwave bridge arrangements, 
we shall describe the Thurston bridge, shown schematically in Figure 5.1-5. 
Three coaxial lines, the admittance branches, meet in a T-junction. These lines, 
the unknown branch, the real branch, and the imaginary branch, are terminated 
respectively in the unknown admittance, a reflectionless load, and a variable 
short. A fourth branch, normal to the plane of the junction, goes to the detec- 
tor. The generator signal is injected into the three admittance branches by three 
identical variable coupling loops, which are driven in parallel by the generator. 

An equivalent circuit of the bridge junction is shown in Figure 5.1-6. 
Since the voltage injected into each admittance branch by its coupling loop is 
proportional to  the variable coefficient of  coupling, we have shown generators 
in these three branches whose emf's are proportional to the three coupling coef- 
ficients, k,, k,, and ki. The currents I , ,  I, ,  and Ii are the currents in the three 
branches a t  the locations of the respective coupling loops. The admittance Fi 
is the normalized admittance that we see at the location of the coupling loop in 
the unknown branch when we look toward the unknown admittance. I t  i t  equal 
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Figure 5.1-6. Equivalent circuit 
of the bridge of Figure 5.1-5. 

5 emf a k l  8 *i 
emf C k ,  I emf a L, 
n n 

detector 

t o  the normalized admittance Fx of the unknown transformed by the length o f  
line that separates the unknown from the coupting loop. The variable short in 
the imaginary branch is set at an electrical distance of 45 degrees (W8) or 135 
degrees (3h18) from the location of the coupling loop in that line. The normaC 
ized admittance presented by the imaginary branch at the coupling loop is there 
fore - j  (see equation 1.8-20). The normalized admittance of the real branch is 1. 

The bridge is balanced by adjusting the loops for a detector null. A t  bal- 
ance, therefore, the currents in the three admittance branches add up to zero at 

the j14nction. I f  we assume that the distance from the loops to  the junction is 
negligible, we have I ,  + I ,  + I i  = 0 at balance, and sincei, a y.:k,, I ,  a: 1 X k,, 
and Ii a -jki, this null condition leads to  

- - - ' (-k, + jkiJ a t  balance 
k, 

We see from this equation that the real and imaginary components of Fi are 
proportional to  the coupling coefficients k, and k i  respectively, and both of 
them are multiplied by l/k,. An indicator i s  attached to  each coupling loop so 
as t o  show i t s  angular position and hence the deqree of coupling. The scales cor- 
responding t o  k,, ki, and k, are calibrated to read respectiveFy the real and imag- 
inary parts o f  7; and a mulfiplping factor. 

The assumption that the distance between the loops and the junction is 
zero is of course valid only at low frequencies. The bridge can be compensated 
to correct this error up t o  about 7500 MHz, which is therefore the upper l imit to  
the useful frequency range of this sort of instrument. 

Figure 5.1-7 is a photograph of the General Radio Type 1609 Precision 
UHF Bridge, which operates on the principle we have just described. 
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Figure 5.1-7. The General Radio 

9 Type 1609 Precision UHF 
Bridge. 

I L 

The "classical" method of measuring reflection coefficients and immit- 
tances, and still the most versatile method, is the standinpwave technique, in 
which the standing wave due to  the termination is explored by means of a mov- 
able probe inserted into a slotted line. The basic slotted-line arrangement for the 
measurement of an unknown immittance or reflection coefficient is shown in 
Figure 5.1-8. As we saw in Section 1.9, both the magnitude and phase of the r e  
flection coefficient at the terminal plane can be determined from the standing 
wave ratio on the slotted line and the position of the minima. 

stonding-wave 
detector ond meter 

generator I 
probe- 

slotted line I I 

Figure 5.1-8. Basic arrangement for determination of an unknown immittancs 
or reflection coefficient with a slotted line. 
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Figure 5.2-1. The General Radio 
Type 874-CBB Slotted Line. 

The General Radio 874-LBB coaxial slotted line is shown in Figure 5.2-1. 
'tt is a 5Gcentimeter section of rigid, 50-ohm air-dielectric line wi th a narrow 
axial slot in the outer conductor. A probe, which protrudes through the slot into 
the region between the conductors, samples the electric field; En the line. The 
probe is mounted on a carriage that travels the length of the line. The slot is 
clearly seen in the close-up of Figure 5-2-2, which also shows how the micram- 
eter is swung into position Yn order to  make small, precise displacementsef the 
carriage. The probe carriage slides on the outer conductor, thus ensuring con- 
stancy of probe penetration as the carriage a moved along the line, 

Figure 5.2-2. The dot along the top of the line's outer conductor is clearly visi- 
ble in this closaup of the carriage assembly, which also shows the micrometer in 
position. 
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Figure 5.2-3. The probe i s  part of the rf- 
probe subassembly that includes the left-hand 
connector. A small screw inside the connec- 
tor's center conductor adjusts probe depth. 

The probe itself is part of the rf-probe subasembly that includes the left- 
hand connector on the carriage (Figure 5.2-3). This connector's center conductor 
is electrically connected to the probe,and a small screw inside the center conduc- 
tor adjusts the probe depth. A grounded sleeve, part of the main carriage assem- 
bly, shields the probe as it passes through the slot, thus preventing changes in 
probe voltage due to variations in capacitance to the slot walls as the carriage is 
moved. The probe carriage also houses an envelope detector consisting of a diode 
rectifier and by-pass capacitor. The rectified probevoltage is brought to  the right- 
hand connector on the carriage. 

There are two emntially different methods that can be used to  detect the 
probe voltage. In the heterodyne method, a local oscillator and mixer convert 
an unmodulated rf signal on the probe to an intermediate-frequency signal, 
which is amplified and measured. Alternatively, the rf signal on the line can be 
modulated and a standing-wave meter used to measure the rectified modulation 
envelope of the probe voltage. We shall discuss this latter method first. 

When the Type 874-LBB Slotted Line is to be used with a standing-wave 
meter, the subassembly consisting of the left-hand-connector and probe may be 
replaced by the probe-and-tuner (GR Type 900-DP) shown in Figure 5.2-4. The 
900-DP contains an adjustable shorted stub that shunts the probe. Adjustment 
of the stub for resonance with the probe and diode capacitance maximizes the 
detector sensitivity and permits the probk to be adjusted for minimum penetrz- 
tion into the line. The right-hand connector, at which the rectified modulation 
envelope is available, is connected to the standing-wave meter, When ease of 
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Figure 5.2-4. (a) When the Type 874-LBB Slotted Line i s  used with a standing 
wave meter, the rf-probe subassembly I Figure 5.2-3) is replaced by the probeand- 
tuner [Type 9OCLDP). The micrometer at the top of the 900-DP adjusts probe 
depth. (b) Close up of 900-DP removed from its seat in the probe carriage. 

probe-depth adjustment is  not important, an inexpensive alternative to the 
900-DP is the rf-probe subassembly with a GR Type 874020L Adjustable Stub 
attached to i t s  connector. 

Modulation of the rf generator usually consists in keying the signal on and 
off with a fifty-percent duty cycle a t  a rate of 1 kHz. Sinewave amp1 itude mod- 
ulation of an oscillator is usually accompanied by an objectional amount of f r e  
quency modulation. 

A standing-wave meter is a l -k Hz tuned amplifier preceded by a calibrated 
adjustable attenuator and followed by a rectifier and meter. The GR 1234 
StandingWave Meter is shown in Figure 5.2-5. The numbers on the meter's SWR 
scales are proportional to the reciprocal of the square of the 1-kHz voltage a t  the 
input; if the detector has a square-law response-a point we shall take up pres 
ently-the meter readings are therefore proportional to the reciprocal of the 
probe voltage. Thus, if the meter reading is 1.0 (0 dB) when the probe i s  at a 
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voltage maximum, the meter reading a t  a voltage minimum is equal to  the 
standing-wave ratio r (or r(dB)). 

Large SWR's (greater than 4.0) can be read on the Type 1234 i f  the "meter 
scale" switch is turned to "3.2 - 10" or "10 - 4 0  to obtain the minimum 
reading. In  these positions of the switch, the voltage gain ahead of the meter is 
increased by factors of 3.1 6 (70 dB) and 10 (20 dB1 respectively. Small SWR's 
(from 1.2 down to about 1.007 ) can be read accurate1 y on the expanded scales 
"1 - 1.2" and "1 - 1.05.'Vn these positions of the "meter scale" switch, the 
gain ahead of the meter is increased, but bias currents are applied to the meter 

I 
I 

' SWR l lR  /+- 
p-- - -- 

t' 1 i 4 

Figure 5.2-5. The G R Type 1234 Standing-Wave Meter. 
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Figure 5.2-6, The General Radio Type 874-LB& Slotted Line with Type 90[1DP 
probe-and-tuner and Type 1234 SWR Meter in a typical laboratory setup. Behind 
the slotted line on the left is the modulating power supply and next to i t  i 5  the 
oscillator. The device under test is mounted in the shielded component mount 
attached to  the right-hand end of the slotted line. 

that offset ~ t s  reading downscale. The combined effect of the increased gain and 
the offset i s  that a full-scale reading of 1.0 (0 dB) on the expanded scales occurs 
for the same det~ctor  voltage as on the "1 - 4" scales but, because of the higher 
gain, decreases in the probe voltage by factors of only 1.2 and 1.05 move the 
needle al b the way doivnscale in these ranges. 

I f  grass errors are to be avoided, two additional components must be in- 
cluded in The slotted-line setup, Thew are an attenuator or isolator and a low- 
pass harmonic filter, both inserted between the generator and the slotted line. 
The aztenuator, 6 or 10 dB, serves to pad the oscillztor from changes in i t s  load 
impedance as various loads, including shorts and opens, are attached to  the 
slotted line. Without the pad the oscillator frequency would be likely to change 
w ~ t h  such wide variations in load impedance. A ferrite isolator answers for this 
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oscillator tefrninotlon 
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Figure 5.2-7. Schematic diagram of a slotted-line setup using a modulated oscil- 
lator and SWR meter. 

purpose just as well. The low-pass filter keeps harmonics of tlie oscillator f r e  

quency out of the slotted line. This precaution is unnecessarv when a hetero- 

dyne detector is used because of  the hiqh frequency selectivity of the heterodvne 
method, but the tuned probe and diode used with the SWR meter may have very 

little harmonic reject ion beca~~se of higher-order resonances. When the SW R is 
high, wen a small harmonic signal accompanyinq the oscillator output could lead 
to a totally crraneaus measurcmcnt o f  the voltage a t  a standingwave minimum. 

llllhen the appl~ed signal is sufficiently small, a diode detector i s  a square- 
law dev~ce, that is, the r~c t i f i ed  output voltage 1s proportional to the square of 
the r f  input voltage. We have already said that the calibration of the SWR meter 
i s  based on  he assumption that the diode is operatrng in i t s  square-law range. 
Unfor tunate l~  one cannot state what the squarelaw range of a d i o d ~  is, because 
the rectification characteristic dcpsnds not  anlv on the individual diod? but also 
on the source and load impedances that the diode sees, but the curve of Figure 
5.2-8 i s  repres~ntative. 

I t  i s  important to be able to determine whether, under given circum- 
stances (frequency. probe depth, stub length, oscillator power, diode), the detec- 
tor is within i t s  square-law rangp. Thc! slotted line itself can be made to function 
as an accurately ml ibrat~d attenuator in a precise determination of the dctcctor 
response characteristic. We show in Appendix A t o  this chapter that i f  the 
slotted line has a to'talfy reflecting termination. the standing wave (whose SWR 
IS of course ~nfrnrte) has the form of a rectified sinusoid, as shown in Figure 
5.2-9. In this special case, the electrical distance along t h ~  line between a vo l t aq~  
maximum and the positinn on either s rd~  of the maximum where 1 I f /  = 'h 171ma, 
i s  60 degrees or 116 wavelength. Thus the followinq procedure mav be used as a 
checr on the proper response of t h e  d~tector. (1 3 Terminate t h ~  slotted line in 
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Figure 5.2-8. Typical rectification characteristic of a silicon point-con- 
tact microwave diode. In this particular case the diode exhibited a 
square-law response up to about 100 rnV of rf input. 
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Figure 5.2-9. When the termination on the slotted line is totally reflecting, the 
standing wave has the form of a rectified sinusoid and the half-voltage points are 
60 degrees o r  XI6 from the  maxima. 

an open- or short-circuit. (2) Locate two consecutive minima. The point mid- 
way between them is a maximum (we m e w r e  minimum positions and comptctc 
maximum positions because minima are sharper). (3) Take a SWR-meter readinq 
at the maximum. (41 Take a second reading at a poinz A16 away f rom the maxi- 

mum I213 of the way f rom the maximum to  an adjacent minfmurn). tn this latter 
position the probe voTtage i s  one half i ts value at the maximum. ( 5 )  I f  the diode 
is operating in its square-law region, the second SWR-scale reading wil l  be 6.02 
dB higher than the first (SWR increases downscale), If the diode is beinq driven 
beyond its square-law region, the reading wil l  differ by less than 6.02 dB. In  the 
latter case, the power level at the detector must be reduced - by withdrawing 
the probe, detuning it, decreasing the oscillator output, or inserting additional 
attenuation between the oscillator and the slotted line. 

The minimum amount of rf signal that must reach the diode is determined 
by the requirement that the noise generated i n  the first s t q e  of the 1-k'Hz ampli- 
fier musl not cause an appreciable error in the meter read~ng. One can make an 
estimate of the minimum usable signal from the following considerations, The 
output of the 1-kHz amplifier contains two components, one due to  the signal 
and the other due t o  noise. I f  V is the voltage of this output siqnal, then, slnce 
signal and noise are uncorrelated, 

I,$,, (signal + noise) = lf&, (signal} + [/A,, (noise). (5.2-1 ) 

5.2 STANDING-WAVE MEASURING EOUlPMENT 



Because o f  the squarelaw response of the diode, SWR-scale readings are inversely 
proportional t o  the square root of the amplifier output voltage: 

1 
SWR-scale reading a - 

VKZ 
The presence of noise increases the meter deflection and hence makes the actual 
SWR-scale reading smaller than a true reading. In  view of (5.2-1) and (5.2-2) we 
can see that the actual reading (due to  both signal and noise), the true reading 
(which would be observed if  there were no noise), and the reading due to  noise 
alone are related by 

1 - 1 + 1 
(5.2-3) 

SW R-scale 

signal + noise 

Example: Suppose that we wil l  tolerate at most a one-percent error due 
to noise in the SWR-scale reading. Since the SWR-scale reading in the 
presence of noise is smaller than the true reading (meter deflection i s  
larger), the requirement o f  a one-percent maximum error means that 

SWR-scale 
reading 
due to 

signal + noise 
3 0.99 

SW R-scale 
reading 
due to 
signal 

or, in view of (5.2-31, 
1 

reading 

signal + noise 
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whr!n~r we get 

SW R-scale 
reading 
due 20 

signal + noise 
SWlR-scale 

< 0.45 

reading 
due to 
noise 

Thus the SWR-scale reading d u ~  to both signal and noise must not be 
more than 0.45 times t he  r~ad ing due to noise alone (mefer defl~ctron 
due to both signal and noise must be at least lJt0.451~ 4 4 limes the 
def l~c t ion  due to noise alonel. 

The noise reading should he made by turning off the r f  qpnerator; discon- 
necting the SWR meter from the detector would radically chanqe t h e  source irn- 
pedance that the I-kHz amplif iar sees and hence also the amounF of noise t ha t  it 
generates, 

The dynamic range of a point-contacr diode used as a SWR det~ctor ,  
lrrnired a t  the bottom by noise and a t  the top by devration from square-law rp- 
sponsp, rs typically 30 d B  or betier. A bolometer, whlle ~t is on the o r d ~ r  of 10 
dB less sensitive than a d~ode, has a dynamic ranqe of about 50 dB. The bolom- 
eters that are usually used as SWR detectors are barretters rather than thermis- 
tors. The barretter is an ohmic devicc consistinq of a piecr of vPrv fine piatintrm 
wire inslallrd ir, ttle samt! kind of yackaqe Ll~at I~uuses a puir~ l-curilacl diudu. 
When the barretter IS used as a standinq-wave detector, it IS suppli~d with a bias 
current of a few rnilliamp~res by t h ~  SWR meter. The prcscncc of an rf current 
in the wire causes a temlperarure rise-in addltion to the alreadv-elevated 
IPrnperature due to The bias current. The increase in temperature causes an in- 
CTP~SF!  in t h ~  wire's dc res~stance, whicti in turn causps an increase in the dc volt- 
agr dror, along it. The thermal time constant of the barrettcr wire is short 
 nou ugh that the resistanc~ changes can follow the I-kH:! modulation of the r f  
sfanal, and the 1-kHz fluctuations in thc dc vo l t ag~  drop acros t h e  bar re t t~r  are 
applied to  the Input o f  the l-k Hz arnplif ier. The barretter's response i s  very p r e  
cisely square-law as tong as t h e  dc bias current is very much larger than the rf 
current. 

Heterodyne detection can be used as an alternative! to the SWR meter when 
greater sensitivity and more accuracy are wanted, as is the case, for example, in 

the measurement o f  very high standingwave ratios. 
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Figure 5.2-1 0. The heterodyne method of standingwave detection. 

When theType 874LBB Slotted-Line is used in a heterodyne arrangement, 
the 900-DP probe-and-tuner is not used, The rf-probe subassembly is installed in 
the left side of the probe carriage, the diode is removed from the probe carriage 
(the right-hand connector is unused), and the rf-input arm of a diode mixer 
(Type 874-MRAL, Figure 5.2-1 I ) is connected directly to the probe through the 
left-hand connector. The signal on the slotted line is unmodulated and the local- 
oscillator frequency is offset from the signal frequency by an amount equal to 
the intermediate frequency, usually 30 MHz. 

local 
Figure 5.2-1 1. The GR oscill o tor 

Type 874-M RAL Mixer. input 

min 

i -f r f  signal 
output p, - input from 

x rcr orobe - diode 
60 MHz 

low-poss 
fi l ter 
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Figure 5.2-12. The GR Type 1236 30-MHz i-f amplifier and meter. 

The GR Type 1236, a 30-MHz i-f amplifier and meter combination, is 
shown in Figure 5.2-12. To measure a standingwave ratio with this instrument, 
one adjusts the "attenuation" and "gain" controls for a meter reading of 0 dB 
when the probe is at a standingwave minimum. The reading on the dB scale 
when the probe is moved to a maximum, plus any change in the attenuator set- 
ting that is needed to keep the needle on the scale, is equal to the SWR in dB. 
The "expanded I-dB range" position on the "meter scale" switch spreads the 
segment of the main scale between 9 and 10 dB out over the entire movement of 
the needle. This scale i s  used when the SWR is less than 1 dB (ratio less than 
1.12). The "compressed uncalibrated" position of the "meter scale" switch 
turns on an automatic-gain-control loop whose threshold corresponds to a meter 
deflect~on of about 35 percent of full scale, A very wide range of input-signal 
levels is then compressed into the upper 65 percent of the meter movement. The 
"compressed uncalibrated" range facilitates the initial location of maxima and 
minima when the SWR i s  high. 

Some care is needed in the adjustment of the local-oscillator frequency for 
heterodyne detection to make sure that the i-f signal is not due to harmonics of 
the local oscillator beating with harmonics of the probe signal. Two correct local 
oscillator frequencies are given by 

fi = fs * fi (correct local-oscillator frequency) (5.2-41 

where the subscripts 1, s, and i refer to the local oscillator, the probe signal, and 
the i-f signal respectively. Thus, with the usual intermediate frequency of 
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Figure 5,2-13. The 874-LEI3 Slotted Line in a typical laboratory setup using 
heterodyne detmtion. The Type 874-MRAL Mixer is attached to the left-hand 
connector on the probe carriage. The local oscillator (extreme right} i s  supplied 
with power from an auxiliary power takeoff plug on the Type 1236 I-F Ampli- 
fier. To the left of the Type 1236 is the oscillator that drives the slotted line, 
and its power supply (extreme le f t )  is switched to the cw mode since an unmodu- 
lated signal is detected by the heterodyne method. 

30 MHz, correct i-f signals wil l  be observed at two local-oscil lator frequencies, 
60 MHz apart, one on either side of the slotted-line frequency. I f  the i-f signal is 
due to  the nth harmonic of the slotted-line signal beating wi th then" harmonic 
of the Eocal oscillator, the local-osci llator frequency will be 

1 
fi = fs + - fi IspurFous i-f signal due to  nm harmonic) 

*1 

These pairs of spurious images occur between the pair of correct local-oscillator 
frequencies. Any doubt about the local-oscillator setting can be resolved quickly 
by a check of the slotted-line wavelength to see that it corresponds t o  the genera- 
tor's fundamental frequency. 

We have seen that when a microwave diode is used as a demodulator it is 
operated at Tow enough levels-a few millivolts-that its detection characteris- 
t ic  is square-law. But as a mixer the diode functions as a switch tha l  is turned on 
and off by the local oscillator. The conversion characteristic of the mixer i s  
linear; that is, the level of the i-f signal is proportional t o  the level of the rf signal 
f rom the probe. 

The functioning of the diode as an efficient mixer requires a relatively large 
local-oscil lator signal, since the local-oscil lator voltage has to push the diode 
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q u ~ r e  far into its forward conduction region and quite far into its back-biased 
"off" reqion. If conversion is to be linear, the chang~ in diode rpsistance due to 
the p r o b ~  signal must be n~g l l q~b le  compared with that due to  the local-osciltaror 
signal, In other words, the probe voltage must be very much smaller than the 
local-oscillator voltage. 

The rpctified direct cilrrenr that flows through thp d~odc  is a measure of 
t h ~  m ix~ r ' s  conversron efficiency. 01 course the diode current depends primarily 
on the local-oscil latar sqqnar level, hut i t  is also son~wha t  frequ~ncv dependent- 
rnore poww 1s necded to produce a qiven diode currcnt at higher f r~qu~nc ies .  
Furthermore, as one can sm from the schematic diagram af the mrxer in Figure 
5.2-1 1, the probe arm of the mixer shunts thp path over which t h ~  local-oscillator 
signal gets to the diode, and the irnpcdance of this shunt a t  the local-oscrllator 
f r j ~ ~ u ~ n c v  affects the coupling of local-oscillator power to t h ~  d~ode. Thp 

amount of diode current that is optimum 1s a question of sianal-to-noise ratio: 
lararr currents generatp rnore d i o d ~  noise and srnall~r cu r r~n t s  y i ~ l d  lower con- 
v~rs ion ~ff iciency. This is not a crucial matter and a diode currpnt of about half 
a mi l l iam~ere is satisfactory. The "dc mixer current" position of the " r n ~ t ~ r  

scale" sw~tch on the Type 1236 I-F Ampl i f~vr  puts the front-panel meter in 
s~r ies w ~ t h  Itie cpntpr condr~cfor of the r-f input so that the d i o d ~  currpnt in thp 

Type 874-MRAL Mjxer can be check~d. Sinc~. th? probe is an open clrcui t for 
dirrct current, the Incal-oscillator output must provide a dc path to ground for 
t'hr diode current. 

5.3 MEASUREMENT OF ONE-PORT REFLECTION COEFFICIENTS AND 
IMMITTAMCES BY THE STAND1 NG-WAVE METHOD 

In  Section 1.9, Chapter I ,  we di%cussed the way in which the terminal r e  
f lcc~ion coefficient on a lossless line determ~nes the relative amount of standinp 
wave vot tage variation and also the posit~on o f  the standing wave. Wc saw rhere 
that the magnitude of the terminal reflection coefficient determines the standing 
wave ratio, wtiile its angle deterrnin~s the position of the standing wave. 

When the standingwave ratio is neither too large nQr ton small it can be 
r ~ a d  directly from the scalp of a standing-wav~ ~ n d j c a t ~ x  in a completelv 

straightfonvard manner. Very large or small SWR's may r ~ q u i r e  some sp~cial  
t~clrniques that w~ shall tab.? UQ presentlv. 

The angle of the terminal reflection coefficient is a l~ t t l r :  more complicated 
to find. Thp procedure ~nvolves the followinq steps. 1 )  Determ~nation of the 

position of a standinq-wave minimum when the unknown load terminates the 

slottrd line. (One always measures the posillons of minirna rather than maxima, 
This is partly because minima are sharper and partly 'because they are perturbed 
IPS than maxima by t h e  prpsPnce of r h ~  probe.1 2) Detervination of t he  posi- 
t ~ o n  of a standinpwav~ mlnlmum when t h ~  sloltr?d line is terminated in a shoct, 
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m s 

unknown 
slotled line terrninotion 

standmg wave due stond~ng wove due 
to unknown to short 

SWR 
indicotor 1-krhort 

plane of  short 

S 

generator 

Figure 5.3-1. When a short replaces the unknown termination, the shift i n  the 
position o f  a standinpwave minimum determines the angle of the unknown 
reflection coefficient. 

+A+ 

3) Measurement o f  the wavelength on t h ~  slotted line. This is just twice the dis- 
tance between adjacen~ minima. (A  slotted-line measurement of wavelength is 
l ikr ly  t o  be far more accurate than a reading on the frequency dial of a micro- 
wave oscillator.) 4) When the short replaces the unknown termination, the new 
minima wil l  not in general fall where the old ones did Let A be the physical dis- 
tance f rom a minimum due to  t h e  unknown to a minimum due to the short.+ 
The angle 19, of thc unknown reflection coefficient at a refrrencc plune .r that 
coincides with the p I a n ~  nf tlte short is given by 

 he{ sign applies when the minimum due to the short is on the g,,,rator 
side of the one due to  the unknown. load 1 

Let us see why this procedure works. Determination of a minimum posi- 
t ion when the line is shorted serves to identify a reference plane, Ipt us call i ts ' ,  
that is exactly an integral number of half wavelengths from the plane s of the 
short. At sf, no matter how the line is terminated, the itnpedunce and rpflectio,~ 

coefficient arc the same nc those at s. Now, when the unknown load terminates 
the I ine, a minimum wil l  not in general fa1 t at  st. Let us label with an m the posi- 

t ~ i n c e  a standing wave has minima every half wauelength, a minimum due t o  the short will 
always fall wrthin a quarter wavetength of a given minlmum due t o  the unknown. Thus we  
she11 as$ume Tor the sake of a dofinite picture that A i s  not greater than a quarter wavelength, 
although the result we shall qlve is vatld when A is  the distance f rom any minimum due t o  
tho unknown to any minimum due t o  the short. 
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tion of a minimum due to the unknown. The distance between s' and m is A. 
Sinca the angle 9 of the reflection coefficient a t  a standing-wave minimum is 180 
degrees, the angle O{sr) a t  s t ,  hence also the angle B ( s )  at s, is equal to 180 deg 
k a A ,  + when ; is on the load side of m, - when d is on the generator side of m. 

Example: When an unknown load i s  connected to  the slotted line the 
SWR I S  1.6. When a GR Type 874-WN3 Short-Circuit Termination is 
connected to the line, the minimum position shifts 5.1 cm toward the 
load and the distance between minima is 12.0 cm. The plane of the short 
in the Type 874WN3 is 3.0 cm toward the load from the front (genera- 

Figure 5.3-2. 
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tor side) surface of the bead in the 874-WN3's connector. What is the 
impedance of the unknown load at the front surface of the bead in the 
load's connector? 

The wavelength h is 2 X 12.0 cm = 24.0 cm, so that the minimum 
shift A of 5.1 cm is equal to 0.212 wavelength. If we enter the Smith 
chart (Figure 5.32) on the 0 = 180 deg radial at a radius corresponding 
to a SWR of 1.6, and then go around the chart toward the load (because 
the minimum shifted toward the load) 0.212 wavelength, we arrive at the 
point on the chart that corresponds to the plane s of the short. But we 
don't want the impedance at this plane; we want it at the front surface of 
the bead, 3.0 cm = 0.125 wavelength toward the generator from s. So 
we back up toward the generator 0.125 wavelength and arrive a t  a nor- 
malized impedance of 0.75 - j0.32. 

We mentioned above that very small and very large standingwave ratios re- 
quire special techniques. The measurement of small values of the SWR presents 
no particular difficulty provided the indicating instrument has sufficient sensi- 
tivity to allow the accurate reading of very small changes in the probe voltage. A 
problem arises, however, in the location of the minima, since they are so broad. 
The solution is to locate two points on the "hillsides" of the standing wave, one 
on either side of the minimum, at which the meter readings are equal (Figure 
5.33). The minimum must obviously be halfway between these points. For 
highest accuracy, the two points should be chosen where the slope of the stand- 
ing wave is greatest. 

Figure 5.3-3. Location of the minimum when the SWR is small. If the standing 
wave voltages at the two positions w l  and w2 are equal, there is a minimum at 
w(volt min) = % (ruz - w , ) .  
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Large standing-wave ratios present the reverse problem. The minimum is 
sharp and easily located but the measured SWR is likely to  be in error owing to 
perturbatjon of the standing wave by the probe. The probe introduces a shunt 
discontinuity into the slotted line. Since the impedance at a standing-wave rnini- 
mum on a line wi th a high SWR is small, the effect of thp probe is negligible 
when the probe is at a minimum. But a t  a standing-wave maximum, where the 
impedance I S  very high, the probe admittance may be a significant load across 
the I ~ne, The effect of toading by the probe is that measured SWR's are smaller 
than they would be if the probe werp not there. 

Because of probe loading, standingwavc ratios larger than about 7 0 should 
be determined by thp width-of-minimum method, i n  which all readings are taken 
with the probe close to a standingwave minimum. Two points, one on either 
side of the minimum, are located at which I V I  =&I 1/1,1, (3.01 dB higher than 
I TfI,,,). The separation 6 b~ tween  these points is measured wi th the micrometer, 
and tlie standing-wave ratio is calculated from the formula 

Equation 5.3-2 is derived in Appendix B to  this chapter. 

I v I  

Figure 5.3-4. Determination of a large standingwave ratio by the width-of  
minimum method. 
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A p p e n d i x  t o  C h a p t e r  5 

A. Shape of the Standing Wave when the Termination is Totally Reflecting 

Equation 4.4-20, Chapter 4, gives t h e  magnitude of the standing-wave volt- 
age distribution. I f  we apply this formula to the case of an open or short on the 
end of a lossless line by setting a! = 0 and F(0) = +l  , we have 

I V ( W )  l d2 4 2 cos 3 1 0  = 2 - (1 + cos 2pw) = ( ~ [ ~ p , " p " ~ I / }  15.A-1) 

Since the magnitudes of t h e  cosine and sine fall to % at 60 degrees either side of 
a maxlmum, the half-voltage points are 60 degrees or X/6 away from the maxima. 

B. The Widthsf-Minimum Formula 

The standing-wave voltage distribution on a lossless line is given by equa 
tion 4.4-20, Chapter 4, with o! set equal to zero: 

(We have omitted the zeros in parentheses following the r's because the magni- 
tude of the reflection coefficient is the same everywhere on a lossless line.) 

The width 6 of the minimum is defined as twice the distance from the 
minimum point urm,, to the point on either side of wmi, at which the voltage 
has increased by a factor of 6. Thus 

A minimum occurs where the cosine in (5.B-1) i s  equal t~ -1, so that w,~ ,  is the 
value of w that makes the argument of the cosine equal to .rr radians, and 

A t  a distance 5/2 either side of w,,,, the argument of the cosine differs from n 
by 06, and since cos(lr +_ 86 1 = -cos p6 we have 
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Substitc~tion of (5.0-31 and (5.B-4) in {5.B-2) yieFds the equation 

and tlir replacement of If 1 by ( r  - 1 )/IT + 1 )  leads to 

1 
If we replace cospG bv the first two terms, 1 - of i t s  power series, we get 

the approximate formula 
2 
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Table of Symbols  

total attenuation o f  line section 
rad~us of inner conductor of coaxial line 
radius of outer conductor o t  coaxial line 
shunt capacitancelunit length of line 
velocitv of liqht 
dissipation factor of dielectric 

2.718 . . . 
electric f i ~ l d  strength 

phasor electromotive force 
f r ~ q ~ ~ e n c y  
shunt conductancs/unit length of line 
condrlctance 
magnetic field strength 
instantan~ous current 

phasor current 
phasor current of forward {or ingoing) wave 
phasor current of reflected (or outgoing) wave 
phasor current in the termination 
phasor current a t  the location w 
imaq~nary opprador ( j  = ) 

surfac? current density 
physical lcnqth of a section of line 
series ~nductanceJunit length of line 
index of refraction 
an inteqer 
turns ratio of transformer 
power 
d~elrc:ric Q 
standinpiwave ratio 
wries rcsEstanceJunit length of line 
return loss 

resistance 
scattering parameter 
amp! itude of a source 
symbol u s ~ d  to label r~ference plane of t h ~  termination 
veloci-y 
instantaneous voltaoe 
phasor vo I tage 
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phasor voltage af forward (or ingoing) wave 
phasor voltage of reflected (or oubgo~ng) wave 

phasor voltaae across thp termination 
phasor voltage a t  the location w 
variable of position on a transmission line 
energytunit length of line associated wizh the electric field 
energylunit lenqth of line associated with the magnetic field 
shunt adrnittance/unit length of line 
admittance 
normalized admittance 
characteristic admittance ~f line 
admittance of termination 
series impedancelunit length of line 
impedance 
normalized impedance 
characteristic admittance of line 
adm~ttance of termination 
ratio of voltage to current at the location ul 
attenuation constant 
phase constant 
propagation constant (y = or + jo) 
rctlection coeff Ecient 
reflection coefficient of the termination 
ratio of reflected to forward voltages a t  the location U.J 

loss angle of dielectric 
skin depth 
"width" of standinq-wave minimum 
shift in minimum position 
permittivity 
relative permittivity 
complex permittivity 
complex relative permittivity 
real parz of 7 
irnaqinary part of 7 
real part of Tr 
imaginary part of 6, loss factor 
angle of rcf lect~on coefficient 
angle of a phasor 
wav~length 
p~rmeabi l i ty  
~onduct iv i ty 
charg~lunit length of line 
angular frequency 
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I ndex  

Adjustable Stub, 138 
Admittance. 1 1, 66-72, 109 

normalized, 37, 66, 67 
norrnalizcd grid, 68 
per unlt length, 114 

Angle, Phase, 9 
Attenuation: 14-20, 60-63,8490 

below cutoff, 25 
characteristic insertion loss, 86-91 

a 02 
due to conductor loss, 17, 18 
constant or factor, TJ, 107 
due to dielectric loss, 20 

Available Power, 80, 81, 129 

Barretter, 145 
"Black-Box", 73 
Bolometer, 145 
Branch, 123, 126 
Branch Transmission, 126 
Breakdown Voltage, 2.3 
Bridges: 1; 31 - 136 

Thurston, 133 
UHF, 134 

Capacitance Per Unit Length, 21,22, 
109 

Characteristic. 
admittance, 11, I09 
irnrnittance, 11-14 
impedance, 28,37,109,1'73, 11 5 
impedance of losslea line, 1 2,21, 

I l l  
insertion loss, 813-90, 102 

Coaxial L~ne :  
lossless, 109-1 1 1 
wi th small losses, 11 1-1 15 

Coaxial Slatted Line, 1361 49 
Coefficient: 

input and output reflection, 90-96 
reflection, 32, 34-42,44, 51-54, 57, 

60,61.63,74,75 
Cotactor, 126 
Complex Permittivity, 19 
Complex Reflection-Coefficient Plane, 
93-95 

Conductivity, Effective, 11 2, 114 
Conductor Loss, 5.6, 12-1 4, 17, 18, 

112,113 
Conjugate Mismatch Loss: 81 -84,129 

maximum and minimum, 82,83 
Constant: 

dielectric, 7 
phase, 8, TO, 107, 113 
propagation, 107, 1 1 1 

Continuity of Voltage and Current, 
30 

Current. 
displacement, 18 
distributions, 47-49 
instantaneous, 2, 3 
loss, I8 
maxima and minima, 47-49 
rate of change wi th position, 106 
ratio, 84-1 6 
reactive, 18 
st~rface, density, 1 12 
total, 29, 30 

Cutoff Frequency, 23 
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Decibel, 14, 15 
Dielectric: 

constant, 7 
power factor, 19 
Q, 19 
velocity in, 7 

Directional Coupler, 131 
DisconfinuitEes, 96-1 04 
Dissipation: 

factor, 19 
loss, 87,96 

Distance, Electrical, 1 0 
Distributed Circuit Model, 20-22 
Distributed Parameter Transmission 

Line. 105-1 09 

Effective Conductlvity, 1 12, 1 T4 
f fficiency, 87 
Electric- 

field, 1-3, 109 
perrnlttivity, 7 

Electrical Distance or Length, 10 
Elect~ically Symmetric Two-Port, 78 
Energy Per Unit Length, 109-7 10 
Error: 

noise, 144 
mismatch, 88-90 

External Inductance Per U n i ~  Length, 
110 

Fields, 
electric, 1-3 
 HI^, 24 
in coaxial l in~s, 1-5 
instantaneous magnitude, 2 
rnagnet~c, 1-3 
principal mode, 3 

Flow Graphs, 1201 29 
Forward Wavr, 26,28,29 

Frequcncv: 
resonant, 1 1 
cutoff, 23 

Frequency-Domain Reflectometer, 
131-132 

Gain Ratio, 14 
Graph Determinant, 126 
Graph T1-ansmissiom, 126 
Grid, I mpedance, 54-60 

Heterodyne Method, 137, 145, 146 
Higher-Mode Waves, 1,22-25 
Homogeneity, 107 

Ideal Transformer, 76, 77 
Irnrnittance, Characteristic, I l-la 

measurement of ,  135- 149 
l mpedance 

characteristic, I 1, 13,28, 37, 1W, 
111, 113, 115 

grid, 54-60 
input, 58,59 
lumped, 2.6 
normalized, 37 
normal  zed grid, 54 
surface, 112 
tcrrninal, 29.36,58,59, 64,65 
t rans f~ rm~ng  property, 40 

Incident Wave, 26,28,29 
Index of Refract~on, 5 
Inductance Per Unit Length, 21, 1 10, 

113 
Insertion Loss: 84-90, 130 

standing-wave ratio, 90-92, 
102-704 

Instantaneous Voltage, 2,3,9, 10, 708 
Internal Inductance, 1 10, 11 3 

Length, Electrical, 10 
Light, Velocity of ,  5 



Loop Transmission, 126 
Loss. 

angle, 18, 19 
characteristic insertion, 8690, 92, 

1 02 
conductor, 5, 6, 72-14, f 7, 18, 

112, 113 
conjugate mismatch, 81-84. 129 
dissipation, 87,96 
factor,l9 
formulas (flow graph!, 129-1 30 
~nsertion, 84-90, 1 3C- 
mismatch, 79-84 
ratio, 14 
reflection, 33-35,60, 61 
return, 33-35, 60, 67,84 
tangent, 79 
transducer, 85-87, 130 
transmission, 60 
two-port, 84 

Lossless Line, 1 ,  109-1 11 
Lossless Two-Port, 79 
Lumped Impedance, 26 

Magnetic Field: 1-3, 10 
instantaneous magnitude, 2 
permeability, 7 

Maximum Power Trans'er, 79-90 
Measuring Equipment, SWR, 136149 
Mismatch: 

error, 88-90 
lo=, 79-84 

Mixer, 148 
Mode: 

principal, 1 
higher order, 1,22-25 

Neper, 14, 15 
Nade, 523,126 
Node Value or Signal, 126 
Noise, Error Due To, 144 

Nontouching Loop Rule, 12G127 
Normalized: 

admittance, 37,66, 67 
admittance grid, 68 
impedance, 37 
impedance chart, 71 
impedance grid, 54 

One-Port Device, 73 
Open Srub, 47.42 

Parameters: 
distributed model, 105 
normalized scattering, 74 
reflection, 74 
scattering, 73-78, 120-1 23 

Passive Two-Port, 78 
Path, 126 
Path Transmission, 126 
Permeability, Magnetic, 7, 110 
Permittivity: 

complex, I 9  
complex relative, 19 
etectric, 7 
relative, 7, f 2 

Phase: 
angle, 9 
canstart, 8,9,1OJ, TI3 
factor, 3 
shift, 10 
velocity, 8,23, 108 

Phasor, 9, 10 
Plane, Terminal or Reference, 2 7 
Power: 

available, 80,81, 129 
delivered to load, 1 29 
gain, 14 
loss, 14 
maximum transfer, 79-80 
ratios, 1416 

Principal Mode, 1 
Principal Mode Fields, 3 



Probe and Tuner, 137 
Propagation Constant, 107, 11  1 

Radial Scales, 60-63 
Ratio. 

current, 14-1 6 
insertion standing wave, 90-92, 

102-104 
power, 14-16 
standing wave, 32-35, 39, 60, 61 
voltage, 14-1 6 
voltage to  current, 28 

Reactance Per Unit Length, 1 13 
Reciprocal Two-Port, 78 
Reference Plane, 27 
Reflected Wave, 26-35 
Reflection: 

loss, 33-35, 60, 6: ,84 
parameters, 74 

Reflections, from Discontinuities, 
96-1 04 

Reflection Coefficient: 32, 35-42, 
44, 57, 60-62, 74, 75 
chart, 52 
complex plane, 93-95 
input and output, 90-96 
measurement of, 135-1 53 
plane, 51-54 

Reflectionless: 
source, 84 
termination, 31 

Refkctometer, 131-1 36 
Refraction, Index of, 6 
Relative Permittivity, 7, 12 
Resistance Per Unit Length, 173 
Resonance, J 1 

HI1 mode, 25 
Return Loss, 33-35,39,60,61 

Scatfering Matrix: 120-123 
normalized parameters, 74 
parameters, 73-78 

Shorted Stubs, 41,43,93 
Shunt Admittance Per Unit Length, 

114 
Signal-Flow Graphs, 120-1 29 
Skin Depth, 'I3 
Slotted Lines, 131-1 49 
Smith Chart, 51-72 

Sow rce: 
equivalent circuit and f low graph, 

124 
node, 126 
ref lectionless, 84 

Square-Law Response, 138, 141, 143 
Standing Waves, 5, 1 1 ,25,42-49 

lossless line, 43 
meter, 138 
technique, 135, 149-1 53 

Standing-Wave Ratlo 32-35,44,60,61 
lossy line, 39 
insertion, 90-92, 102-1 04 

Stubs: 41,42,93 
adjustable, 138 

Surface Current Density, 1 12 
Surface Impedance, 1 12 
Symmetric Two-Port, 78 

Terminal: 
impedance, 29,36,64,65 
plane, 27 

Terminated Line Calculations, 
115-179 

Termination Reflectionless, 31 
Thurston Bridge, 133 
Time-Domain Reflectometer, 131 -1 32 
Total: 

current, 29, 30 
voltage, 29, 30, 77 

Transducer Loss, 8587. 1 30 
Transfcrmer, Ideal, 76,77 
Transmission Lass, 60 
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Transverse Electromagnetic Mode, 1, 
22,96,97, 101, 110 

Traveling Waves: 
sinusoidal, 5, 1 1, 26 
fields, 4 
power, 16 
on distributed parameter lines, 105 

I wo-Port: 
"black box", 73 
discontinu~ties, 100-104 
electrically symmetric, 78 
lossy, 84 
lossless, 79 
passive, 78 
reciprocal, 78 

Ul I7 Bridge, 134 
Unguided Waves, 1 

Velocity Factor, 6-8 
Velocity of tight, 5 
Velocity of Propagation; 

i n  cable, 10 
in dielectric, 7 
on lossless line, 5, 21 , 22 
of TEM waves, 7 
of unguided waves, 5 

Velocity, Phase, 8.23. 108 

Voltage: 
breakdown, 2,3 
distribution, 47-49 
instantaneous, 2,3,9, 10, 108 
maxima and minima, 47-49, 

54,64 
rate of change with position, 106 
ratio, 14-16 
total, 29, 30, 77 

Wavelength, 8 
Wavelength C~rcles, 63-65 
Waves: 

forward (incident), 26, 28 
higher-mode, 1 

phase shift, 10 
reflected, 26-35 
standing, 5, 1 1,26, 42-49 
transverse electromagnetic, 1 ,  4, 

96,97, 101 
trwel~ng, 4, 5, 11, 26 
unguided, 1 
velocity of propaqation, 5, 7 

Width-of-Minimum Method, 153-755 

Zero-Loss Approximation: 
for characteristic impedance, 21 
for velocity of propagation, 2T 


