RCA ELECTRONIC COMPONENTS SPEAKERS — PICKUPS

PM LOUDSPEAKERS

QUALITY ENGINEERED TO INSURE DEPENDABLE PERFORMANCE

- Mounting Designed to RMA Standards.
- Dustproof, Rust-Resistant. Universal Transformer Mounting Bracket on All 4", 4" x 6" and 5" PM except Type 305S1. Felted Cone Gives Uniform Strength, PM's
- Dependability and Smooth "Flutter-Free" Response.
- · Rugged Mechanical Construction with Welded Housing Assembly. Exclusive RCA Magnet Clamping
- Spring Securely Locks Magnet in Position, except Types 423S1 and 304S2.
 Moisture-Resistant Voice-Coil Suspen-
- sion Assures High Efficiency and Dependability.
- SPECIFICATIONS Permanent Magnet Types

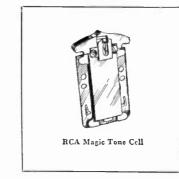
SIZE	TYPE No.	RESONANT FREQUENCY	MAGNET WEIGHT	VOICE COIL IMPEDANCE	MAXIMUM POWER HANDL' CAP. (WATTS)	
2" x 3"	423S1	250-365	1.5	11.8 ohms at 1000 cycles	0.125	\$ 4.30
4" (shallow pot type)	304S2	175-225	1.0	3.2 ohms at 400 cycles	3	3.50
4"	404S2	170-225	1.47	3.2 ohms at 400 cycles	3	3.80
4" x 6"	246S2	150-200	0.68	3.2 ohms at 400 cycles	3	3.50
4" x 6"	446S2	150-200	1.47	3.2 ohms at 400 cycles	3	4.00
5″	205S2	150-200	0.68	3.2 ohms at 400 cycles	3	3.40
5″	405S2	150-200	1.47	3.2 ohms at 400 cycles	3	3.90
5″	305S1	150-200	1.0	3.2 ohms at 400 cycles	3	3.60
5" x 7"	257S1	120-140	1.47	3.2 ohms at 400 cycles	6	5.20
8″	208S2	75-95	2.15	6-8 ohms at 400 cycles	8	6.25
8″	208S4	75-95	2.15	3.2 ohms at 400 cycles	8	6.25
12"	312S1	70-85	2.15	3.2 ohms at 400 cycles	12	9.00
12"	412S1	70-85	6.8	3.2 ohms at 400 cycles	12	11.50
12″	412S4	70-85	6.8	6-8 ohms at 400 cycles	12	12.50

Field Coil Types

SIZE	TYPE No.	RESONANT FREQUENCY	FIELD	VOICE COIL IMPEDANCE	POWER HANDL'C CAP. (WATTS)	LIST PRICE
4" x 6"	746S1	150-200	450 ohms at 65 ma.	3.2 ohms at 400 cycles	3	\$ 5.50
5″	705S1	150-200	450 ohms at 65 ma.	3.2 ohms at 400 cycles	3	5.50
12"	712S1	70-85	1000 ohms at 70 ma.	3.2 ohnis at 400 cycles	12	11.50

CRYSTAL PICKUPS

MAGIC TONE CELL


Replaces crystals in RCA Victor radio-phonographs and record players (1938 and later). Permanent-type jewei point stylus. At 400 cycles, it has approximate impedance of 200,000 ohms and an output of ap-proximately 1½ volts. When used as

SILENT SAPPHIRE

Interchangeable with 70 different phonograph crystals. Similar to Magic Tone Cell in design and characteristics, but smaller in size. Comes complete with crystal, mounting plate, screws, and complete electrical and mechanical installation data. (For additional information see RCA Crystal Pickup Data sheet, Form 2F479.) RCA Silent Sapphire, Stock No. 212X1. Sugg'd List Price: \$7.00.

A complete line of Service Parts is available for all RCA apparatus.

replacement for needle-type pickups, slight adjustment of phono input circuit may be required for best tone and volume. Installation data in-cluded. Stock No. 211X1. Sugg'd List Price: \$7.00.

RCA Crystal	Sugg'd List Price
31050	\$4.20
31156	4.75
33122	4.20
37158	4.75
3 859 8	7.25
38610	5.55
399 19	7.25
70332	7.25
70339	7.00

V 1 8 # 1 1 8 #

et loos Tip

All prices in effect 5/15/49.

40

RCA 12" PM

Loudspeaker

GENERAL (%) ELECTRIC

ALNICO 5 PM LOUDSPEAKERS

All component parts of the new Alnico 5 Loudspeakers are made to the rigid specifications of G-E quality control. This feature, in addition to highly efficient manufacturing skill, combined with the "know-how" of G-E engineers, has made these new superb speakers possible - unsurpassed in fidelity, dependability and durability.

4"

4" GENERAL ELECTRIC'S new 4-inch speakers are the result of years of intensive engineering research to produce units of reduced size with maximum efficiency for use in small portable and table model receivers. In addition to having the "stay-bright" finish and the aluminum foil base voice coil, the new 4-inch speakers are considerably lighter in weight and more compact. This reduction in weight and space has been accomplished through the use of Alnico 5 magnet material, all-weld construction, and smaller yoke assembly. assembly

51/4"

GENERAL ELECTRIC'S 5¹/₄-IN. PM speakers have all been designed and developed to provide full, true, low notes and excellent high frequency definition for voice or motes and excellent fight frequency definition for voice or music reproduction. Skillful designing has been applied to all details to assure the best possible results.

61/2"

GENERAL ELECTRIC 61/2-inch loudspeakers are the result of years of persistent development to improve performance. Never were ideas introduced and combined with better quality materials. Greater sensitivity and power capacity in more compact space was achieved by these methods.

8''

The NEW ALNICO 5 PERMANENT MAGNET material was chiefly responsible for maintaining the excellent performance of the G-E 8-inch speakers and still keeping the over-

all size smaller. The speakers are capable of handling full audio power with very little distortion. These speakers are recommended for quality in design and faithful reproducing characteristics.

SPEAKER CHARACTERISTICS

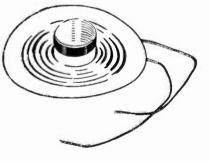
Cone Size, Inches	Speaker Type	Watts Output	Alnico 5 Mag. Wt. Oz.	VC Imp Ohms	List Price
4	S-400D	4	1.3	3.2	\$ 4.25
4	S-402D	4	1.0	3.2	4.00
4	S-403D	4	.68	3,2	3.75
5 1/4	S-525D	4	1.3	3.2	4.75
51/4	S-526D	4	1.0	3.2	4.35
5 1/4	S-527D	4	.68	3.2	4.00
6 1/2	S-625D	4	1.3	3.2	5.50
6 1/2	\$-626D	4	1.0	3.2	5.00
61/2	S-650D	8	2.98	3.2	6.75
8	S-800D	8	2.98	3.2	8.95
8	S-810D	12	6.8	3.2	12.00
8	S-818D	12	6.8	8	12.50
10	S-1000D	12	6.8	3.2	15.25
10	S-1001D	25	14.5	8	24.75
10	S-1003D	25	9.0	8	18.50
10	S-1012D	12	3.16	3.2	10.25
10	S-1018D	12	6.8	8	15.75
12	S-1200D	12	6.8	3.2	16.50
12	S-1201D	25	14.5	8	29.50
12	S-1203D	25	9.0	8	20.50
12	S-1212D	12	3.16	3.2	11.25
12	S-1218D	12	6.8	8	17.00
6 x 9	S-703D	8	1.47	3.2	7.50

G-E LOUDSPEAKER FEATURES

ALNICO 5 MAGNET MA-TERIAL is one of the great wartime engineering developments. Its energy per unit volume - approximately three times as great as other magnets-has enabled G-E engineers to design a new line of smaller speakers with better performance characteristics.

ALL WELD CONSTRUCTION of the newly designed G-E Alnico 5 Loudspeakers not only reduces the weight and size but also increases the rigidity necessary for perfect alignment of all parts. It also eliminates the possibility of dust and moisture accumulation and simplifies the replacement of damaged cones.

scientific laboratory tone reproduction. Especially designed for brilliant reproduction of voice and music. They represent a perfect balance in relative factors of performance ability, cost, and appearance. 12" GENERAL ELECTRIC'S powerful 12-


10"

GENERAL ELECTRIC'S new 10-inch

P.M. speakers are the result of appli-

cation of latest developments in

inch permanent magnet loudspeakers are designed to provide faithful tone reproduction at high levels. They equal or surpass the performance of electro-dynamic speakers of the same size. All weld construction has minimized distortion at maximum operation levels by eliminating vibration.

ALUMINUM FOIL BASE VOICE COILS only are used in all G-E permanent magnet speakers. Exact concentric location with the collar of the spider assembly insures excellent alignment. Humidity or excessive temperature variations do not affect the aluminum foil voice coils, making this type of speaker ideal for receivers designed for use in export markets.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE

SPEAKERS

1161 N. VINE STREET HOLLYWOOD 38. CALIF. 16.1 SIXTH AVENUE NEW YORK 13, N. Y.

N-1000-B Dividing Network

000

SPECIFICATIONS-604B DUPLEX SPEAKER

Area of Horizontal Distribution
Area of Vertical Distribution
Voice Coil Impedance
Dividing Network Impedance
Dividing Network Crossover
Power Rating
Weight (including network)
Diameter
Depth
List Price, less Network

The N-1000-B network associated with the 604B Duplex must be ordered as a separate item. List Price \$24.00.

MODEL 603B MULTICELL DIA-CONE SPEAKER

The Altec Lansing 603B Multicell Dia-Cone The Altec Lansing 603B Multicell Dia-Cone represents a fundamental improvement over the old 603. These new features make the 603B the unanimous choice of those who require an eco-nomical, high-quality speaker. For the sound man it offers high efficiency and wide angle sound distribution; music lovers will delight in its frequency response and freedom from dis-tortion tortion

SPECIFICATIONS-603B MOLITCELL DIA-CORE	JILAKEK
Area of Horizontal Distribution	
Area of Vertical Distribution	
Voice Coil Impedance	
Voice Coil Diameter	
Power Rating	
Weight	
Diameter	1 5 TR
Depth	6 % "
List Price	\$84.00

The Altec Lansing Model 400B Dia-Cone 8" speaker has been designed especially for uses where the benefits of a larger speaker can not be taken advantage of because of space and weight limitations.

The Model 400B Dia-Cone is a low-priced, high-quality The Model 400B Dia-cone is a low-priced, high-quarky unit of very high efficiency—a much greater efficiency than is found in the ordinary 8" speakers. Its light weight and small size make it ideally adaptable for portable uses such as 16MM sound, magnetic recorders, and in installations such as airplanes, buses, etc.

MODEL 400B DIA-CONE SPEAKER

Ŧ

I Т

The Altec Lansing Model 604B Duplex and associated N-1000B Network represents the finest loudspeaker on the market. Manufactured by the same company which makes the famous "Voice of the Theatre" loudspeaker systems used by leading motion picture theatres, this compact unit has all of the fine design principles and construction that have heretofore been available only in the most costly loudspeakers offered for professional use and laboratory standards. Price has not been spared to make the Duplex the peer of all loudspeakers.

The unusual features are (a) Two-way operation utilizing separate diaphragms and voice coils for high and low frequencies. (b) Multicellular horn to provide uniform sound distribution over a wide area. (c) Alnico No. 5 permanent magnets designed for total absence of external stray fields. (d) Both the high and low frequency voice coils made of edge-wise wound ribbon to provide 22% greater efficiency. (e) Large 3" low frequency voice coil for high power capacity. (f) Frequency response of 30 to 16,000 cycles more than spans FM range. (g) Low crossover of 1,000 cycles to assure that the cone will operate as a stiff piston. (h) Overall acoustic efficiency 3 to 5 db greater than the ordinary loudspeaker.

The Model 604B Duplex Loudspeaker and associated N-1000B Network are available separately, or can be supplied together in a number of specially constructed baffle cabinets as illustrated. The cabinet combinations are known as Duplex Loudspeaker Systems.

The Duplex Loudspeaker particularly meets the critical requirements of broadcast and recording studio monitoring, high quality public address and music distribution systems, and when used with 16 mm. sound equipment will increase the audience coverage many fold. Music lovers and discerning people require the Duplex for home use with fine phonograph records and FM reception.

After making acoustic measurements on hundreds of speakers and speaker systems, Altec Lansing makes this unqualified statement: to the best of our knowledge, the frequency response curve of the 604B Duplex cannot be equalled by any speaker unit or speaker system outside the large theatre-type systems!

The Altec Lansing Model 600B Dia-Cone Speaker is similar in design to the Model 603B Dia-Cone, using the exclusive Dia-Cone princi-ple. It meets the needs of those who do not wish to invest in more expensive sneakers, yet whose training, musical education, sound con-sciousness and discriminating hearing, demand faithful reproduction of sound.

The Model 600B Dia-Cone speaker has an

The Model 600B Dia-Cone speaker has an Alnico V permanent magnet and is mounted in a 12" frame. It uses a 3" edgewise wound aluminum voice coil to which is mounted a domed aluminum aloy metal diaphragm and a seamless molded paper cone. The cone vibrates with the voice coil as a piston up to approximately 2,000 cycles. Above this frequency, the domed metal diaphragm, with its high mass stiffness, continues to operate as a piston with the voice coil, resulting in true reproduction of the higher frequencies.

Because of its efficiency, small space requirements, light weight and superior quality of reproduction, the Model 600B Dia-Cone Speaker is an ideal unit in the lower priced speaker field.

A completely new cone technique has extended and smoothed out the frequency response of the new 600B Multicell Dia Cone to the point where this model represents a vast improvement over the earlier 600 model.

SPECIFICATIONS-600B DIA-CONE SPEAKER

Voice Coil Impedance	
Voice Coil Diameter.	
Power Rating	
Weight	12 lbs.
Diamcter	
Depth	
List Price	\$50.65

SPECIFICATIONS-MODEL 400B DIA-CONE SPEAKER

Voice Coil Impedance. Voice Coil Diameter	
Power Rating	
Required Amplifier Source Impedance	4-8 ohms
Weight	
Speaker Diameter	
Speaker Depth	
List Price.	\$24.00

CABINETS MULTICELLULAR HORNS DRIVER UNITS

614

1161 N. VINE STREET HOLLYWOOD 38, CALIF. 161 SIXTH AVENUE NEW YORK 13, N. Y.

605

CABINETS

Altee Lansing offers a variety of haffle cabinets which are engineered for high quality sound re-production. Construction is of heavy ply-wood, with all joints screwed and glued to eliminate spu-rious rattles. The interiors of the cabinets are well padded with fibreglass to prevent side reflections. The following cabinets are available for Altee Lansing speakers listed in this catalogue. Note

618

620

carefully the code numbers of the cabinets when ordering. The suffix letter indicates the size of the hole in the battle necessary to accommodate the required speaker. For example: the 620A (abinet will accommodate a 15" speaker; the 620C Cabinet will accommodate a 12" speaker; the 620C Cabinet will accommodate a 8" speaker. There is no other difference in the three types of cabinet difference in the three types of eabinet.

604B Duplex	603B Multicell Dia-Cone	600B Dia-Cone	400B Dia-Cone
605A 612A 614A 620A	605A 612A 614A 620A	612B 614B 618B 620B	614C 618C 620C

Type 605 Furniture Cabinet-Finish--Walnut or Mahogany. Dimen-sions: Height 38". Width 30". Depth 16". List Price \$180.00

Type 612 Utility Cabinet. Finish — Blue Gray. Finish — Blue G Dimensions: Height 29 ½". Width 25 ½". Depth 17%". List Price \$62.00

Type 614 Portable Utility Cabinet. Finish-Blue Gray. Dimen-sions: Height 24%4" Width 18%4". Depth 14¼".

List Price \$56.00

Type 618 Small Portable Utility Cabinet with slanting front. Finish—Blue Gray. Dimensions: Gray, Dimension Height 22". Width 17". Depth 131/4". List Price \$42.67

Type 620 Small Furniture Cabi-net. Finish—Walnut, Mahogany or White Birch. Dimensions: Height 33 ½". Width 26 ½". Dopth 14 ½". List Price \$113.32

Aftee Lansing multi-cellular horns are constructed from exponen-tial horn cells grouped in different configurations to meet various sound distribution requirements. Each cell is a true exponential horn. The large multi-cellular horn provides the best way of covering long distances and large areas with high levels of quality acoustic power in the frequency range above 200-300 cycles. By choosing the proper configuration of cells, the sound output can be directed for even distribution over any horizontal and vertical area desired; and conversely, to a large degree the sound output can be directed manted areas such as walls and ceiling which might produce echoes, slaps, reverberations, etc. These horns find particular application in large buildings with high noise levels, reverberant cathedrals, ball parks, skating rinks, stadia, race tracks, airports, church carillons, sports arenas, etc. The chart shows multicellular horns available. Note that a throat is not supplied as part of the multi-cellular horn and must be ordered separately according to the type required.

	Cell	Sound Dist			Net Weight	LIST	Code N	Io. Throat R	lequired	Throat	LIST
Horn Code #	Configu- ration	Hori- zontal	Verti- cal	Dimensions *L-W-H	(Less Speakers)	PRICE	1 Unit	2 Units	4 Units	Code No.	PRICE
H-803 H-1003 H-1203B H-1504 H-1803	2 x 4 2 x 5 2 x 6 3 x 5 3 x 6	70° 90° 105° 105° 105°	35° 35° 35° 60° 53°	36 x 32 x 18 35 x 40 x 18 36 x 43 x 18 33 14 x 40 x 24 35 x 43 x 25	86 131 152 160 184	\$155.53 216.67 216.67 244.47 255.53	30162 30210 30210 No. 30166	30170 30170 No. 30172	(2)30170	30162 30166 30210 30170 30172	\$22.20 22.20 22.20 44.40 44.40

* Overall length of horn including throat and 288 unit (s).

290 SPEAKER

The Altec Lansing 290 speaker unit is designed to fit on the throats of various Altec Lansing nulti-cellular horns. Using Alnico 5 permanent magnet, its efficiency when mounted on a multi-cellular horn

290	SPEC	FICAT	IONS
-----	------	-------	------

-40 watts for frequencies above 300 cps. -24 ohms when operating under normal horn loading conditions. -6 Vg * Diameter x 4 7g * Deep. Signal Capacity -V. C. Impedance-Dimensions Deep. -21 lbs Weight

List Price -\$200.00 is such that a sound level of 98 db (ref. 10-16 watts per square

is such that a sound level of 98 db (ref. 10^{-16} watts per square centimeter) is produced at five feet distance for an electrical input of 0.1 watt at 1000 cycles. The use of tangential compliances in the diaphragm and edgewise wound ribbon wire in the voice coil provide maximum power handling capacity and acoustic output. Beryllium copper leads, spot-welded to the voice coil, provide heavy duty connec-tions which will not fatigue under use. The entire diaphragm and voice coil assembly which is mounted in a cast bakelite ring, is field replaceable. When using the 290 sneaker unit for all range reproduction

When using the 290 speaker unit for all range reproduction, it is necessary to attenuate the frequencies below 300 cycles which would otherwise damage the diaphragm and voice coil assembly. This attenuation may be accomplished by the proper sized capacitor either in the input or output circuit of the final power amplifier.

DIVISION OF AIREON MFG. CORP. SALES OFFICE and FACTORY 1401 FAIRFAX TRAFFICWAY KANSAS CITY, KANSAS

inaudagraph Speakers

FIELD COIL MODELS

Di	ustproof, all	-welded const	ruction w	ith hum b	ucking coi VOICE CO	ls or slugs.	List
Size	Model	Resistance	Watts	Imped.	Diam.	Watts	Price
31/2"	F3B2	450 ohms	3	3.2	0.77	1.5	\$4.35
4''	F4B2	450	. 3	3.2	18	2	4.35
	F4B3	1000	· 3 3	3.2	16	2. 2.	4.35
	F4B4	1800 T300	3	3.2	10	2.	4.35
	F4B6	2750	3 3 3 3	3.2	16	2.	4.35
4'' x 6''	F46B2	450	2	3.2	16 9 16 9	2.5	5.00
4 . 0	F46B60	60	3	3.2	10	2.5	
	F46B100	100	3	3.2	16		5.00
			3	3.2	16	2.5	5.00
	F46B3	1000	3 3 3 3 3 3 3	3.2	9 18 18	2.5	5.00
511 B 1	F46B24	1800	3	3.2	18	2.5	5.00
5" Round	F5B1	6-volt	3	3.2	10	2.5	4.55
	F5B2	450	3	3.2 3.2	18	2.5	4.55
	F5B3	1000	3	3.2	10	2.5	4.55
	F5B6	2750	3	3.2	3.6	2.5	4.55
	F5B60	60	3	3.2	390	2.5	4.55
5" Pin Cush.	F51B1	6-volt	3 3 3	3.2	10 10 10 10	2.5	4.55
	F51B2	450		3.2	26	2.5	4.55
	F51B3	1000	3 3	3.2		2.5	4.55
	F51B24	1800	3	3.2 3.2	16	2.5	4.55
	F51B6	2750	3	3.2	16	2.5	
5" x 7"	F57D2	450	4	3.2 3.2	10		4.55
J K /				3.2	3/4	5.	6.50
	F57D3	1000	4	3.2	3/4	5.	6.50
	F57D4	1800 T300	4	3.2	3/4	5.	6.50
6"	F6B1	6-volt	3 3 3	3.2	3/4 3/4 10	3.	5.00
	F6B2	450	3	3.2 3.2	10 10 10	3.	5.00
	F6B3	1000	3	3.2	Ta	3.	5.00
	F6B24	1800	3	3.2	10	3.	5.00
	F6B6	2750	3	3.2	р 16 9 17 3/4	3.	5.00
6" x 9"	F69D1	6-volt	4	3.2 3.2	3/4	6.	7.50
	F69D?	450	4	32	3/4	6.	7.50
	F69D3	1000	4	3.2	3/4 3/4	6.	7.50
	F69D4	1800 T300	4	3.2	3/4	6.	7.50
7''	F7D11	6-volt	4	3.2	3/4	6.	6.50
/	F7D11A*	6-volt	4	3.2 3.2	3/4	6.	6.50
71/01	F75D1	6-volt	4	3.2	3/4		
71/2"	F8D3	1000		3.2	3/4	6.	7.00
0		1000 7200	4	3.2	3/4	6.	7.00
	F8D4	1800 T300	4	3.2	3/4	6.	7.00
	F8D5	2500	4	3.2	3/4	6.	7.00
	F8H8	600	8	8.	1	8.	9.50
	F8H3	1000	8	8.	1	8.	9.50
	F8H24	1800	8	8.	1	8.	9.50
	F8H5	2500	8	8.	1	8.	9.50
10''	F10H8	600	8	8.	1	9.	10.50
	F10H3	1000	8	8.	1	9.	10.50
	F10H24	1800	8	8.	1	9.	10.50
	F10H5	2500	8	8.	1	9.	10.50
12''	F12H8	600	8	8.	i	10.	13.00
	F12H3	1000	8	8.	i	10.	13.00
	F12H24	1800	8	8.	i	10.	13.00
	F12H5	2500	8	8.	i —	10.	13.00
	112115	2300	0	ð.		10.	13.00

AND

PEAK

*Pot rotated 90 degrees

PUBLIC ADDRESS SPEAKERS

These units are primarily engineered for heavy duty public address service. They are conservatively rated, and are designed to give years of trouble-free service. The efficiency and the tone quality of these units are such that they are recommended for all purposes requiring heavy duty units.

		Magnet		–Voice Coil—	oice Coil———		
		Alnico-5	Imped.	Diam.	Watts	Price	
6''	P6J1	6.8 oz.	8	1"	8	\$10.75	
8''	P8J1	6.8	8	1	10	12.00	
	P8L1+	10.	8	11/4	10	20.00	
10''	P10J1	6.8	8	1	10	14.00	
	P10L1	10.	8	11/4	12	20.00	
12''	P12J1	6.8	8	1	12	15.00	
	P12L1	10.	8	11/4	14	21.00	
	P12P1 (P12M1)	21.5	8	11/2	17	40.00	
15''	P15L1	10.	8	11/4	15	30.00	
	P15P2 (P15M2)	21.5	8	11/2	18	45.00	
		+Waterproof cone	and voice co				

EXTENDED RANGE SPEAKERS

Designed expressly for F.M., television, and all installations requiring good performance to 10,000 c.p.s. and beyond. CINAXIAL models illustrated at left extend to 15,000 c.p.s. Not recommended for general public address use because of limited power handling capacity. Model P8JHF1 and P12JHF1 are single cone speakers; CIN-12A consists of 12" low frequency speaker and 3" high frequency speaker. CIN-15B and CIN-15C have 15" low frequency speaker and 5" high frequency units. Bridging networks are built-in, require no controls.

speaker and 5	ingit frequency offis.	Magnet		-Voice Call-		List	
Size	Model	Alnico-5	Imped.	Diam.	Watts	Price	
8''	P8JHF1	6.8	8	1"	7	\$13.50	
12"	P12JHF1	6.8	8	1	10	17.00	
12" Cinaxial	CIN-12A	4.64	8	1	10	27.50	
15" Cinaxial	CIN-15B	10.0	8	11/4	15	47.50	
to chiakiai	CIN-15C	21.5	8	11/2	18	62.50	

Copyright by U. C. P., Inc.

ALNICO 5-PERMANENT MAGNET SPEAKERS REPLACEMENT SPEAKERS

For all receivers, from the smallest to the larger models. Dustproof, all-welded construction, all magnets soldered.

			Magnet		-Voice Coil		— List
Size		Model	Alnico-5	Imped.	Diam.	Watts	Price
	21/2"	P2A1	.68 oz.	3.2 ohms	$\frac{2}{16}$ H	L.	\$ 3.65
	-/2	P2C1	1.47	3.2	0 1 B	1.5	4.25
	31/2"	P3A1	.68	3.2	-9 <u>-</u> 1 8	1.5	3.65
	972	P3C2	1.47	3.2	10	2.	4.25
A CONTRACTOR OF A		P3A21	.68	45.	9 16	1.5	4.25
	4''	P4A1	.68	3.2	1 ⁸ G	2.	3.90
CONTRACTOR OF A DESIGNATION OF A DESIGNA		P4C1	1.47	3.2	1^{9}_{16}	2.5	4.50
A COLOR OF STREET, STR		P4A21	.68	45.	9	2.	4.50
Contraction of the	4" x 6"	P46A1	.68	3.2	$\frac{9}{16}$	3.	4.50
31 40 T		P46C1	1.47	3.2	1 ⁹ 8	3.5	5.10
Construction -	5" Round	P5A1	.68	3.2	9 1 6	3.	4.15
A CONTRACTOR OF A	5 Round	P5C1	1.47	3.2	9 1 G	3.5	4.75
		P52F1	3.16	3.2	3/4	5.	6.50
	5" Pin Cush.	PSIAI	.68	3.2	3/4 1 ⁹ 6	3.	4.15
	5 m 643.	P5ICI	1.47	3.2	76	3.5	4.75
		P51A21	.68	45.	$\frac{9}{16}$ $\frac{9}{16}$	3.	4.75
	51/4" Pin Cust		.68	3.2	10 10	4.	4.65
	5/4 Thi Qui	P53C1	1.47	3.2	<u>9</u> 1 6	4.	5.25
	5" x 7"	P57C1	1.47	3.2	19	4.	5.50
	5 . /	P57F1	3.16	3.2	3/4	6.	7.25
	61/2" Pin Cus		.68	3.2	3/4	3.	4.65
	0/2 111 043	P6C1	1.47	3.2	9 1 6	3.5	5.25
		P6F1	3.16	3.2	3/4	5.	7.00
		P6H1	4.64	3.2	1/4	6.	8,75
6	6" x 9"	P69F1	3.16	3.2	3/4	6.	8.00
	0 . /	P69H1	4.64	3.2	1/7	8.	9.75
(The second	7" Pin Cush.	P7E2	2.15	3.2	3/4	5.	7.50
A DE TRA		P7E2A*	2.15	3.2	3/4 3/4	5.	7.50
A CONTRACT DESCRIPTION		P7G2	3.16	3.2	1/4	6.	8.50
Contraction and and and and and and and and and an		P7H2	4.64	3.2	i	8.	10.00
And a state in the state of the	71/2''	P75F1	3.16	3.2	3/4	6.	8.00
	172	P75H1	4.64	3.2	/4	8.	10.00
	8"	P8DI	1.47	3.2	3/4	5.	7.00
· · ·		P8G1	3.16	8.	/4	7.	8.50
		P8G2	3.16	3.2	i	7.	8.50
		P8HI	4.64	8.	i i	8.	10.00
	10''	PIOGI	3.16	8.	i	.8.	10.50
	10	PIOHI	4.64	8.	i	9.	12.00
	12"	PI2GI	3.16	8.	i	10.	11.50
*Pot Rotated 90 Degrees	14	PI2HI	4,64	8.	1	11.	13.00
		112111	7.07	<u> </u>			

TRANSFORMERS

FIXED IMPEDANCE

ADJUSTABLE IMPEDANCE

	,	List Price			List Price
1/2"×1/2"	12A73	7000 ohms to 3.2 ohm V.C\$1.25	1/2''×1/2''	12A3UL	Line to 3.2 ohm V.C.*** \$2.10
/ / / /	12A43	4000 ohms to 3.2 ohm V.C. 1.25		12A3U	Plate to 3.2 ohm V.C.*
	12A23	2000 ohms to 3.2 ohm V.C. 1.25	5/8''×5/8''	58A3U	Plate to 3.2 ohm V.C.* 2.35
	12A53L	500 ohms to 3.2 ohm V.C. 1.25	3/4''×3/4''	34A8U	Plate to 8 ohm V.C.**
~'1'x5/8''	58A83	8000 ohms to 3.2 ohm V.C. 1.50		34A8UL	Line to 8 ohm V.C.***
3/4'' x 3/4''	34C53C	5000 ohms C.T. to 3.2 ohm V.C. 2.00	7/8''×7/8''	78A8UL	Line to 8 ohm V.C.***
/ / / /	34A53	5000 ohms to 3.2 ohm V.C. 2.00			

* Plate impedances of 2000, 4500, 7000 and 10,000 ohms (No C.T.)

** Plate impedances of 3000, 5000, 6600, 7000, 10,000 ohms (All C.T.)

*** Plate impedances of 2000, 1500, 1000 and 500 ohms (No C.T.)

Standard Series speakers, although moderately priced, are exceptionally good in performance and are highly recommended for use in radio and television receivers, recorders, public address equipment, intercom-munication systems and similar applications. Models listed on this page have been completely redesigned in every detail. Magnetic structures have been designed to achieve maximum gap energy, concs selected for uniformity of response, and all speakers are completely dust-proof. Models listed are standard fidelity response only. Standard Series speakers are finished in aluminum.

ALNICO 5 PM MODELS

These PM speakers embody the highly efficient Alnico 5 magnets which insure long life and highest efficiency. Because Alnico 5 magnets are many times more powerful, ounce for ounce, than their predecessors, speakers so equipped offer obvious advantages: lighter weight, for savings in shipping costs; and smaller size, for savings in space in cabinet installations.

				- DIM	ENSION	S, Inches	-1	OICE CO	IL		
Nominal Size	Model No.	Stock †(No.	Jap Energy Level	0.D.	Depth	Baffle Openg.	Diam., In.	Imped., Ohms	Power Watts	*Transformer Size	List Price
12″	P12-S P12-T	ST-102 ST-101	1.5 1.1	12 1/8 12 1/8		10 ¹ / ₂ 10 ¹ / ₂	1	6-8 6-8	10.0 9.0	7∕8 x 7⁄8 ″ 3∕4 x 3⁄4 ″	\$16.50 11.85
10"	P10-S P10-T	ST-120 ST-119	1.5 1.1	10 1/8 10 1/8	5 1/4 5 1/4	8 3/4 8 3/4	1 1	6-8 6-8	9.0 8.0	3/4 x 3/4 " 3/4 x 3/4 "	15.25 10.65
6x9″	P69-S P69-T P69-V	ST-812 ST-811 ST-810	1.5 1.1 .51	6 ³ / ₈ x 9 ¹ / ₄ 6 ³ / ₈ x 9 ¹ / ₄ 6 ³ / ₈ x 9 ¹ / ₄	316 316 314	5 3% x8 1% 5 3% x8 1% 5 3% x8 1%	1 1 3⁄4	3-4 3-4 3-4	8.0 7.5 5.0	3/4 x 3/4 " § 3/4 x 3/4 " § 5/8 x 5/8 " §	12.50 9.60 7.90
8"	P8-S P8-T P8-U P8-V	ST-104 ST-117 ST-116 ST-115	1.5 1.1 .74 .51	8 1/8 8 1/8 8 1/8 8 1/8 8 1/8	318 35% 31/2 3%	6 3/4 6 3/4 6 3/4 6 3/4	1 3⁄4 3⁄4 3⁄4	6-8 3-4 3-4 3-4	8.0 7.0 6.0 5.0	%4 x %4 " %4 x %4 " %8 x %8 " %8 x %8 "	12.25 9.50 8.35 7.30
7″	P7-T P7-T P7-U	ST-804 ST-807 ST-806	1.1 1.1 .74	7 5% 7 5% 7 5%	3_{16}^{7} 3_{14}^{7} 3_{14}^{7} 3_{14}^{7}	6 6 6	1 3⁄4 3⁄4	3-4 3-4 3-4	7.0 6.5 5.5	3/4 x 3/4 " § 3/4 x 3/4 " § 5/8 x 5/8 " §	9.25 8.75 7.95
6"	P6-T P6-V P6-W P6-X	ST-112 ST-110 ST-109 ST-108	1.1 .51 .36 .25		3 ³ 2 1 2 1 2 3 2 3 4	$ 5 \frac{1}{4} \\ 5 \frac{1}{4} \\ 5 \frac{1}{4} \\ 5 \frac{1}{4} \\ 5 \frac{1}{4} $	3/4 9 16 9 16	3-4 3-4 3-4 3-4	6.0 4.0 3.5 3.0	5% x 5% " 5% x 5% " 1⁄2 x 1⁄2" 1⁄2 x 1⁄2"	7.75 6.10 5.65 5.00
51/4 "	P525-V	ST-803	.51	5 1/4	2 1/2	4 1/2	1ºr	3-4	4.0	5% x 5% " §	5.50
5″	P5-V P5-X P5-X	ST-107 ST-105 ST-740	.51 .25 .25	5 5 5	$2\frac{7}{16}$ 2 $\frac{1}{4}$ 2 $\frac{1}{4}$	4 4 4	9 16 9 16	3-4 3-4 45-50	$3.5 \\ 2.5 \\ 2.5$	$\frac{1}{2} \times \frac{1}{2}''$ $\frac{1}{2} \times \frac{1}{2}''$ $\frac{1}{2} \times \frac{1}{2}''$	5.40 4.30 4.95
4″	P4-X P4-X	ST-113 ST-739	.25 .25	5 5	2 2	3 1/2 3 1/2	9 16 9 16	3-4 45-50	$\frac{2.0}{2.0}$	1/2 x 1/2" 1/2 x 1/2"	4.15 4.85

*Size recommended. See Transformer listing +Millions of ergs FIELD COIL MODELS

§No transformer mounting facilities.

Like their PM counterparts, Standard Series field coil models have been completely redesigned and are equipped with hum neutralizing coils. Finish is aluminum. Models listed on this page are standard fidelity.

DIMENSION

1.0

			† Gap	- DIMEN	ISIONS,	Inches 🕂				- FIE	LD -	*Trans-	
Nominal	Model	Stock	Energy			Baffle		Imped.		Resist.,	Power	former	List
Size	No.	No.	Level	0.D.	Depth	Opening	In.	Ohms	Watts	Ohms	Watts	Size	Price
12"	F12-S	ST-744	1.5	12 1/8	676	101/2	1	3-4	10.0	1000	8.5	7/8 x 7/8"	\$14.60
	F12-S	ST-173	1.5	12 1/8	61 ⁷	10 1/2	1	3-4	10.0	1500	8.5	7/8 x 7/8 "	14.60
10"	F10-S	ST-745	1.5	10 1/8	5 %	8 3/4	1	3-4	9.0	750	8.5	3/4 X 3/4 "	12.25
	F10-S	ST-175	1.5	10 1/8	5 %	8 3/4	1	3-4	9.0	1500	8.5	8/4 x 3/4 "	12.70
6x9"	F69-T	ST-814	1.1	6 3% x9 1/4	416	5 3/8 x 8 1/8	1	3-4	7.5	4	6-volt	3/4 × 3/4 " §	9.25
	F69-U		.74	6 3/8 x9 1/4	3 1/2	5 % x8 1/8	3/4	3-4	6.0	4	6-volt	5% x 5% "§	7.95
	F8-S	ST-746	1.5	8 1/8	4 18	6 3/4	1	3-4	8.0	750	8.5	3/4 x 3/4 "	10.65
	F8-5	ST-177	1.5	8 1/8	4 16	6 3/4	1	3-4	8.0	1500	8.5	3/4 x 3/4 "	11.10
8″	F8-T	ST-179	1.1	. 8½	4 1/8	6 3/4	3/4	3-4	7.0	1000	7.0	3/4 x 3/4 "	8.85
	F8-T	ST-180	1.1	8 1/8	4 1/8	6 3/4	3/4	3.4	7.0	:1800	7.0	3/4 x 3/4 "	8.95
	F8-W	ST-736	.36	8 1/8	3 3/8	6 3/4	3⁄4	3-4	4.0	1000	5.0	5% x 5% "	6.65
_	F8-W	ST-737	.36	8 1/8	3 3/8	6 3/4	3/4	3-4	4.0	:1800	5.0	5% x 5% "	7.00
7"	F7+T	ST-809	1.1	7 5/8	318	6	1	3-4	7.0	4	6-volt	3/4 X 3/4 " §	8.65
	F7-U	ST-808	.74	7 5/8	3 1/4	6	3/4	3-4	5.5	4	6-volt	5/8 × 5/8 " §	7.45
	F6-U	ST-186	.74	616	3 3/8	5 1/4	3/4	3-4	5.0	1000	6.0	5% x 5%"	6.75
	F6-U	ST-187	.74	618	3 3/8	5 1/4	3/4	3-4	5.0	:1800	6.0	5% x 5% "	6.75
6″	F6-X	ST-189	.25	611	2 8	5 1/4	18	3-4	3.0	450	4.5	1/2 × 1/2"	5.55
	F6-X	ST-166	.25	612	218	5 1/4	16 9 16	3-4	3.0	1000	4.5	1/2 x 1/2 "	5.65
	F6-X	ST-168	.25	611	218	5 1/4	9	3-4	3.0	11800	4.5	1/2 x 1/2 "	5.90
	F6-X	ST-190	.25	611	218	5 1/4	9	3-4	3.0	2800	4.5	1/2 x 1/2 "	5.80
	F5-W	ST-191	.36	5	2 1/2	4	3/4	3-4	3.0	1000	5.0	1/2 X 1/2 "	5.85
	F5-W	ST-192	.36	5	2 1/2	4	3/4	3-4	3.0	:1800	5.0	1/2 X 1/2"	6.20
5″	F5-X	ST-194	.25	5	$2\frac{7}{16}$	4	16 9 16	3-4	2.5	450	4.5	16 x 16 "	5.35
-	F5-X	ST-165	.25	5	$2\frac{7}{15}$	4	19	3-4	2.5	1000	4.5	1/2 x 1/2 " 1/2 x 1/2 "	5.40
	F5-X	ST-167	.25	5	$2\frac{7}{16}$	4	18	3-4	2.5	:1800	4.5	1/2 x 1/2 "	5.65
	F5-X	ST-195	.25	5	2_{16}^{7}	4	19	3-4	2.5	2800	4.5	1/2 x 1/2"	5.60
	F4-X	ST-196	.25	5	21/4	3 1/2	18	3-4	2.0	450	4.5	1/2 X 1/2"	5.15
4"	F4-X	ST-164	.25	5	2 1/4	3 1/2	18	3-4	2.0	1000	4.5	1/2 x 1/2"	5.20
	<u>F4-X</u>	ST-198	.25	5	2 1/4	3 1/2	18	3-4	2.0	2800	4.5	1/2 x 1/2"	5.40
*Size rock	mmond	ad Sec. 7	Enouglas	mon listin		1 3/2:11				4 170	1 1 1		

*Size recommended. See Transformer listing. †Millions of crgs. ‡Tapped at 300 ohms. 1500-ohm section can be used at full power excitation. Field resistance for full excitation will rise approximately 20%. §No transformer mounting facilities.

VOLUME AND RANGE CONTROLS

 VOLUME AND KANGE CONINCLS

 These "L Pad" type volume controls are highly satisfactory for use in voice coil circuits. Complete with pointer knob and escutcheons.

 ST-276—Level Control, 6-8 ohms, 5 watts

 \$2.20

 ST-276—Level Control, 6-8 ohms, 15 watts

 \$3.00

 ST-60—Range Control, 6-8 ohms, 15 watts

 \$3.00

 \$5.760—Level Control, 6 ohms, 15 watts

 \$3.00

 \$5.760—Level Control, 3-4 ohms, 5 watts

 \$3.00

 \$5.760—Level Control, 3-4 ohms, 15 watts

 \$3.00

 \$5.761—Level Control, 500-600 ohms, 15 watts

 \$3.00

 \$5.761—Level Control, 3-4 ohms, 5 watts

 \$3.50

SPEAKERS Concert

JENSEN Concert Series speakers have long been known and ac-claimed by the trade and by users for their plus performance. From the earliest days, Concert speakers have been recognized by such familiar designations as A12-PM, PM8-C and others and have been known as the finest speakers anywhere available for heavy-duty applications. Now, in greatly improved design, they are highly

recommended for any purpose where exceptional power handling ability and high-quality performance are essential. Standard fidelity models are listed on this page. Concert speakers are attractively finished in blue-gray lacquer and completely dustproofed. Field coil models are equipped with hum neutralizing coils.

				ALNIC	O 5 1	рм мог	DELS	_			
Nominal Size	Model No.	Stock No.	† Gap Energy Level	DIME 0.D.	Depth	5, Inches Baffle Opening	Diam., In.	OICE COI Imped., Ohms	Power Watts	*Transformer Size	List Price
15″	P15-N P15-P P15-Q	ST-654 ST-655 ST-678	6.6 4.6 3.2	$15\frac{1}{8}$ $15\frac{1}{8}$ $15\frac{1}{8}$	8 8 8	$13\frac{1}{4}$ $13\frac{1}{4}$ $13\frac{1}{4}$	$ \begin{array}{c} 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{4} \end{array} $	8 8 8	$20.0 \\ 18.0 \\ 16.0$	1 x1" 1 x1" <u>% x %</u> "	\$55.00 47.25 35.00
12″	P12-N P12-P P12-Q P12-R	ST-656 ST-657 ST-673 ST-103	6.6 4.6 3.2 2.2	$ \begin{array}{r} 12 \frac{1}{16} \\ 12 \frac{1}{8} \\ $	$ \begin{array}{c} 7 \\ 6_{16}^{7} \\ 6_{16}^{1} \\ 6_{16}^{1} \\ 6_{16}^{1} \end{array} $	$ \begin{array}{r} 10\frac{1}{12} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \end{array} $	$1\frac{1}{12}$ $1\frac{1}{2}$ $1\frac{1}{4}$ 1	8 8 6-8	$18.0 \\ 16.0 \\ 14.0 \\ 12.0$	1 x 1 " % x % " % x % " % x % " % x % "	49.00 40.00 27.75 19.50
10"	P10-0 P10-R	ST-676 ST-121	$3.2 \\ 2.2$	10 ¹ / ₈ 10 ¹ / ₈	5 ¼ 5 ¼	8 3/4 8 3/4	1 1/4	8 6·8	12.0 10.0	⁷ / ₈ x ⁷ / ₈ " ⁷ / ₈ x ⁷ / ₈ "	26.30 18.50 24.20
8"	P8-Q P8-R	ST-677 ST-169	$\frac{3.2}{2.2}$	8 1/8 8 1/8	4 18 4	6 ³ / ₄ 6 ³ / ₄	1 1/4	6-8	$10.0 \\ 9.0$	7/8 x 7/8 " 3/4 x 3/4 "	15.25

_ _ _ _ _ _ _

neutralizing coils.

Model P8-Q weatherproof design. No transformer mounting facilities.

					FIELD	COIL	MO	ELS					
Nominal Size	Model No.	Stock No.	† Gap Energy Level	-DIM 0.D.	ENSION Depth	S, Inches- Baffle Opening		DICE CO Imped. Ohms		FIE Resist., Ohms	Power Watts	*Trans- former Size	List Price
15"	F15-N F15-N F15-0	ST-661 ST-662 ST-663	6.6 6.6 3.2	$15\frac{1}{8}$ $15\frac{1}{8}$ $15\frac{1}{8}$	8 3/8 8 3/8 8 3/8	12 1/8 12 1/8 12 1/8	$ 1 \frac{1}{2} 1 \frac{1}{2} 1 \frac{1}{2} 1 \frac{1}{4} $	8 8 8	$20.0 \\ 20.0 \\ 16.0$	4000 5300 1000	$17.5 \\ 17.5 \\ 12.0$	1x1" 7/8 x 7/8"	\$44.00 44.00 28.50
12″	F12-N F12-N F12-0	ST-666 ST-667 ST-668	6.6 6.6 3.2	$12\frac{1}{16}$ $12\frac{1}{16}$ $12\frac{1}{16}$ $12\frac{1}{18}$	713636363	10½ 10½ 10½	$ \begin{array}{c} 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ 1 \frac{1}{4} \end{array} $	8 8 8	$18.0 \\ 18.0 \\ 14.0$	$ \begin{array}{r} 4000 \\ 5300 \\ 1000 \end{array} $	$17.5 \\ 17.5 \\ 12.0$	1 x1" 1 x1" 7/8 x 7/8"	36.50 36.50 21.00
*Size recom			_	1.0			'ield resi	istan ce f	or full	excitation	will rise	approximately	20%.

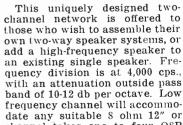
AUDITORIUM SPEAKERS

The first highly-efficient large-size speaker was designed and produced by JENSEN in 1928. It was named the "Auditorium" and never were critics more consistent in its endorsement as the utmost in heavy-duty speakers. For more than 20 years JENSEN Auditorium speakers have set the highest standards for cliciency, response characteristics and faithful performance. Today, the Auditorium line has been completely redesigned and comprises undeniably the best known and most highly respected speakers available, second only to JENSEN Coaxials. They are recommended for theatres, public address systems, line electronic musical instruments, where the utmost in quality reproduction and power handling ability are required.

Nominal Size	Model No.	Stock No.	Energy			Inches Baffle Opening	Diam.,	Imped.,	Pwr.	*Trans- former Size	List Price
18″	PMJ-18	ST-541	28.1	18	9 3/4	15 3/4	2 1/2	8	30	1x1¼″	\$264.50
15″	P15-L	ST-758	13.6	151%	8	131/4	2	8	25	1 x1 ¼ ″	108.60

*Size recommended. See Tranformer listing.

Q8P HIGH-FREQUENCY SPEAKER


C-8

Designed to reproduce the high frequencies from 4,000 to 15,000 cps., when used with dividing network (such as A40-1) and suitable low frequency speaker. Impedance, 16 ohms. Overall diameter, 51/2". Depth, 35%". P.M. design.

Q8P-H.F. Speaker. ST-589. List Price......\$14.65

ST-605-Mounting Arms. Set of 4. List Price......\$1.60

A40-1 NETWORK

date any suitable 8 ohm 12" or 15" speaker. High channel takes one to four QSP High Frequency Speakers (16, 8 and 4 ohm taps). Input, 500 ohms. High Frequency Range Control Switch feature included. Specify

ST-604—List Price \$39.40

JENSEN HYPEX PROJECTORS

Because of the Hypex formula (Patent 2,388,262) giving wider sound distribution and greatly improved acoustical performance, JENSEN Hypex projectors are superior to the usual "exponential" type horns. The Alnico 5 unit is entirely enclosed within the one-piece rigid horn yet easily removed and replaced. Stainless steel and other corrosion-resistant materials and specially treated steel parts insure against weather exposure. Models VH-24, VH-20 and VH-15 have mounting brackets with clutch-type heavy "U" trunnions which afford complete flexibility of adjustment with positive locking into desired position. Weatherproof terminal boxes provide easy, solderless connections with no exposed terminals. Model VH-91 has a universal mounting bracket which permits pointing in any direction and secure locking by a single wing nut.

SPECIFICATIONS

Stock No.	Cut-Off, CPS	Acoust. Path, In.	Coverage Angle Degrees	Power Rating Watts	Voice Coil Imped. Ohms	Diam. In.	Length, In.	Trans.* Core Size	List Price
ST-685	110	58	75	25	16	25	22 3%	1 x 1 1/4	\$74.50
ST-684	140	52	80	25	16	21			63.00
ST-757	180	36	90	15	8	16	15		47.00
ST-171	300	16	100	15	8	8 %	7 5%	5%8 × 5%8	32.50
	No. ST-685 ST-684 ST-757	No. CPS ST-685 110 ST-684 140 ST-757 180 ST-171 300	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stock No. Cut-Off, CPS Path, In. Angle Degrees ST-685 110 58 75 ST-684 140 52 80 ST-757 180 36 90 ST-171 300 16 100	Stock No. Cut-Off, CPS Path, In. Angle Degrees Rating Watts ST-685 110 58 75 25 ST-684 140 52 80 25 ST-757 180 36 90 15 ST-171 300 16 100 15	Stock No. Cut-Off, CPS Path, In. Angle Degrees Rating Watts Imped. Ohms ST-685 110 58 75 25 16 ST-684 140 52 80 25 16 ST-757 180 36 90 15 8 ST-171 300 16 100 15 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stock No. Cut-Off, CPS Path In. Angle Degrees Rating Watts Imped. Ohms Diam. In. Length, In. ST-685 110 58 75 25 16 25 223% ST-684 140 52 80 25 16 21 2034 ST-757 180 36 90 15 8 16 15 ST-171 300 16 100 15 8 8 % 7 %	Stock No. Cut-Off, CPS Path, In. Angle Degrees Rating Watts Imped. Ohms Diam. In. Length, In. Trans.* Core Size ST-685 110 58 75 25 16 25 22% 1x1 ¼ ST-684 140 52 80 25 16 21 20 ¼ 1x1 ¼ ST-757 180 36 90 15 8 16 15 34 x ¾ ST-171 300 16 100 15 8 8 % 7 % % % %

*Not included.

VR-11

HYPEX "Three-sixty" PROJECTORS

Designed for the reproduction of speech and music signals at high efficiency where high noise levels exist. The Hypex formula, made famous by JENSEN Hypex projectors, is incorporated in their design giving greatly improved acoustical performance. With the sound distributed over a circle, they are especially suitable for installations where coverage of relatively large areas and suspension from the ceiling are desired. Model VR-241, of larger size, is intended for speech and music reinforcement. Driver unit has phenolic diaphragm; VR-241 uses same diaphragm as VII-24 and VII-20; VR-11 uses same diaphragm as VII-24 is equipped with weatherproof terminal hox with connecting cable passing through rubber grommet and leads attached to screw terminals provided. VR-11 has two-conductor rubbercovered cable for connections. Both equipped with heavy eyebolt at top for suspension.

VR-241

SPECIFICATIONS Acoust. Path, Coverage Power Voice Coil Model Stock Cut-Off. Rating Imped. Ohms Angle Diam Length, Trans.* List No. No CPS In. Degrees Watts In. In. Core Size Price VR-241 ST-789 ST-791 140 280 54 18 360 16 $\frac{25}{15}$ 1x1 5% x 5% \$79.00 40.00 22 VR-11 360 11 10% *Not included.

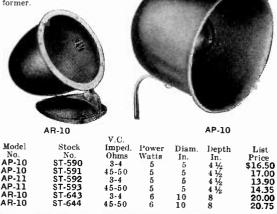
MODEL V-21 DRIVER UNIT

This driver unit incorporates the driver element used in the new Hypex projectors and is electrically and mechanically interchangeable with the former U-20 ST-630 and U-201 ST-732 Driver units. It is designed for rephacement service on former Models H-20 ST-726, H-201 ST-733 and II-Y4 ST-727 Hypex horns. Unit is PM type and equipped with internal screw terminals. Flange is designed for $\frac{1}{4}$ " bolt attachment, with three $\frac{1}{4}$ " holes spaced 120 degrees apart on a radius of 2 $\frac{3}{4}$ ". Voice coil input 16 ohms and power rating 25 watts.

Model V-21 Driver Unit, ST-787

 Model SPH-81 Projector, ST-633
 List Price

 EA-5 Adjustable Stand, ST-730
 5.00


TYPE "S" PROJECTOR

These projectors are complete assemblies of specially designed driver unit and acoustic system, utilizing the Peri-Dynamic principle and correctly engineered projector horn. Response is unusually good in the 100-cycle region and good efficiency is maintained to 5500 cycles, thus qualifying the projector for music and speech reproduction. Projector is suitable for use indoors or out because it is completely weatherproofed. Complete with plugs but without stand. List Price

SPEECH MASTER PROJECTORS

Sturdy construction, overall mechanical protection, double dustproofing, streamline design and exceptional acoustical performance recommend these projectors for paging and intercommunication. PM design. Good talk-back performance in PA systems. Hammered gray finsh; chrome trim.

PM design. Good tant tau, gray finsh; chrome trim. RC 36" cord. Space within case for $\frac{1}{2}$ " x $\frac{1}{2}$ " transformer.

K-410

к-310

H-510

GENUINE JENSEN WIDE-RANGE SERIES

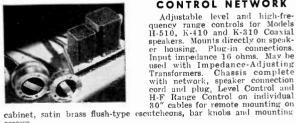
No longer is truly good listening ruled out by cost or size restrictions. Now music can come to life for everyone, for Genuine JENSEN Wide Range loudspeakers include small sizes as well as large . . . low-cost units as well as more expensive models.

The four new JENSEN Coaxial speakers which replace all previous models embody the latest developments in loudspeaker design: the Wide-Range ACOUSTIC LENS for h-f dispersion (in Model H-510), annular Diaplane radiators, and new Hypex contour h-f horns. As a result these speakers achieve thrillingly realistic instrumental

and vocal tone quality and subtly satisfying "presence" low in cost in comparison with previous highestquality systems. The term "high-fidelity" applied to these Coaxial systems connotes wider frequency range, greater response uniformity and better polar characteristics.

Typical of JENSEN leadership is the ACOUSTIC LENS used on Model H-510 Coaxial. This lens acts in conjunction with the h-f horn to distribute h-f radiation uniformly over a wide angle, insuring constant balance and high quality reproduction throughout the whole room.

K-210


COAXIAL SPEAKERS

Nominal Size	Model No.	Stock No.	Input Imped. Ohms	Power Watts	Freq. Range Rating	Baffle Opening In.	O.D. ln.	Depth In.	List Price
15"	H-510	ST-828	16	25	+7	13 1/2	15 1/8	916	\$135.00
15"	K-410	ST-829	16	20	+7	131/4	151/8	9	94.25
15"	К-310	ST-830	16	16	+7	131/4	15 1/8	8 1/8	56.25
12″	K-210	ST-831	8	12	+7	101/2	121/8	6 ⁵ ₁₆	33.40

EXTENDED-RANGE LOUDSPEAKERS (+6 LIM)

_			*Gap	Di	mensions, Inc	hes		Voice Coil -		Trans-	T 1.4
Nominal Size	Model No.	Stock No.	Energy Level	0.D.	Depth	Baffle Open	Diam. In.	Imped. Ohms	Pwr. Watts	former Size†	List Price
15"	P15-NX	ST-817	6.6	15 1/8	8	131/4	1 1/2	8	18.0	1″x1″	\$57.25
12"	P12-NX P12-RX P12-SX	ST-819 ST-885 ST-821	6.6 2.2 1.5	$12\frac{1}{16}\\12\frac{1}{8}\\12\frac{1}{8}$	$ \begin{array}{c} 7 \\ 6 \\ 1_6 \\ 6_{16} \end{array} $	$10\frac{1}{2}$ $10\frac{1}{2}$ $10\frac{1}{2}$	1 1/2 1 1	8 6-8 6-8	16.0 11.0 9.0	1″x1″ 7⁄8″x7⁄8″ 7⁄8″x7⁄8″	51.00 21.50 18.00
10"	P10-RX P10-SX	ST-886 ST-823	2.2 1.5	10 1/8 10 1/8	5 1/4 5 1/4	8 3/4 8 3/4	1	6-8 6-8	9.0 8.0	7/8 " x 7/8 " 3/4 " x 3/4 "	20.50 16.75
8"	P8-RX P8-SX	ST-887 ST-825	2.2 1.5	8 ¹ /8 8 ¹ /8	$\frac{4}{3_{16}^{13}}$	6 3/4 6 3/4	1 1	6-8 6-8	8.0 7.0	3/4 " x 3/4 " 3/4 " x 3/4 "	17.75
6"	P6-TX	ST-826	1.1	615	3 ³ 16	5 1/4	3/4	3-4	5.0	5% "x 5% "	9.00
5″	P5-TX	ST-827	1.1	$5\frac{1}{16}$	2 %	4 15	3/4	3-4	4.0	1/2 " x 1/2 "	8.00

*Millions of ergs. +Size recommended.

A-110 Control Network, ST-832.

List Price \$26.50

CONTROL NETWORK

Adjustable level and high-frequency range controls for Models H-510, K-410 and K-310 Coaxial speakers. Mounts directly on speak-

H-F CONTROL

"L"-type variable control for "shelving" high-frequency response of Model K-210 Coaxial. Impedance 16 ohms. Complete with flush-type satin brass escutcheon and bar knob. List Price \$4.85 ST-836 Control

IMPEDANCE-ADJUSTING TRANSFORMERS

Designed to provide alternative input impedances for Models II-510, K-410 and K-310 Coaxial speakers. High-fidelity. Switch on chassis gives choice of two impedance values. No wiring necessary, connecting plug inserted in socket on speaker terminal panel. May be used with Model A-110 Control Network.

Model T-101 Transformer Assembly, ST-833. Impedance 4 and 8 ohms. List Price \$12.00 Net Each \$7.20

Model T-102 Transformer Assembly, ST-834. Impedances 500-600 and 250 ohms. List Price \$12.00.

Model T-103 Transformer Assembly, ST-835. Impedances 10,000 and 5,000 ohms, center tapped. For plate or high-impedance line coupling. List Price \$12.00.

Type D

Type H

BASS REFLEX CABINETS

TYPE "M" CUSTOMODE cabinets bring new beauty and utility to the loudspeaker enclosures. Embodying the famous JENSEN Bass Reflex principle, they are designed to house 15" speakers. Although a basic CUSTOMODE unit, Type "M" cabinet may be used alone as a separate speaker cabinet. Four concealed cut-outs provided, any two of which may be removed for insertion of flush-type H-F and Level Controls. Foot Assembly furnished, loose, so cabinet may be placed on end or side as desired. Ample space atop cabinet for large receiver.

TYPE "D" Bass Reflex cabinets are handsomely styled, and are well constructed of beautifully striped satin finish veneer walnut, with interlaced bronze strip grille over matching fabric.

TYPE "B" cabinets, inexpensive but durably built enclosures, are well constructed of impregnated composition board and finished in hammered brown lacquer.

TYPE "H" cabinets are sturdily built and incorporate the famous Bass Reflex principle. With front curved to a 14½ inch radius, they are admirably shaped to fit into corners but may be placed in any number of positions as suggested. Type "H" cabinets are finished in brown opaque lacquer but may be refinished by the purchaser to match the locale of the installation. Brackets are furnished for mounting on wall or post. Only one size is offered—for 8-inch speakers—and JENSEN Model P-8-SH speaker may be used.

TYPE "J" cabinets incorporate the Peri-dynamic principle and are designed for wall or post mounting. These cabinets are finished in simulated brown leather with grained effect, with chrome-trimmed grille. JENSEN Model P6-TH speaker is recommended with this cabinet although any 6-inch speaker may be used. Furnished with brackets for mounting.

Type M

Type B

Model	Stock	Speaker		<u>be "M"</u>				
No.	No.	Size	Finish	Height	Dimensio Width	n s Depth	Shipping Lbs.	List Price*
M-252 M-352	ST-768 ST-788	15'' 15''	Blonde Cordovan	36″ 36″	$24'' \\ 24''$	18" 18"		1
			Ту	pe "D"				
D-121 D-151 D-251 D-221	ST-156 ST-157 ST-763 ST-762	12" 15" 15" 12"	Walnut Walnut Blonde Blonde	31″ 31″ 31″ 31″	27 34 " 27 34 " 27 34 " 27 34 " 27 34 "	13 % " 13 % " 13 % " 13 % " 13 % "	50 50 50 50	\$77.50 77.50 79.50 79.50
			Тур	be "B"				
B-81 B-121 B-151	ST-741 ST-742 ST-743	8″ 12″ 15″		24″ 27″ 323⁄8″	18" 24 ¾ 27 ¾	9 ¼ ″ 13 ½″ 13 ½″	19 31 50	31.50 44.50 52.75
			Тур	e "H"				
H-81	ST-141	8″		221/2"	1734"	8 1/2 "		22.50
			Туј	pe "J"				
J-61	ST-751	6″		16 3/4 "	12 3/4 "	6 1/4 "		14.50

Speakers not installed. Cabinets and speakers shipped separately.

Model No.	Stock No.	Cabinet	Size	Model	List Pricet
RM-255	ST-872	M-252	15"	H-510	
RM-256	ST-873	M-252	15″	K-410	
RM-257	ST-874	M-252	15″	K-310	
RM-355	ST-876	M-352	15″	H-510	
RM-356	ST-877	M-352	15″	K-410	
RM-357	ST-878	M-352	15″	K-310	
RD-155	ST-856	D-151	15"	and the second se	
RD-156	ST-857	D-151 D-151	15/	H-510	\$187.75
RD-157	ST-858			K-410	171.75
RD-255		D-151	15"	K-310	133.75
	ST-860	D-251	15"	H-510	214.50
RD-256	ST-861	D-251	15"	K-410	173.75
RD-257	ST-862	D-251	15''	K-310	135.75
RD-123	ST-853	D-121	12"	K-210	110.90
RD-223	ST-854	D-221	12"	K-210	112.90
RB-157	ST-852	B-151	15"	H-510	\$187.75
RB-155	ST-850	B-151	15″	K-410	147.00
RB-156	ST-851	B-151	15″	K-310	109.00
RB-123	ST-848	B-121	12″	K-210	77.90
			14	R-210	77.90

C-11

IMPEDANCE MATCHING TRANSFORMERS

Loudspeakers are relatively low-impedance devices with voice coil impedance values ranging from 3 to 50 ohns. Vacuum tube power output stages on the other hand, are high-impedance devices with impedance load rated anywhere from 1,000 to 14,000 ohms. To reconcile these widely differing impedances, output or impedance matching transformers must be inserted between the signal output and the loudspeaker voice coil. To determine which transformer is to be used in any given case, first of all find out the impedance of the loudspeaker in question and then locate for that speaker the transformer which will match nearest the impedance of the signal source. Differences of the order of 10% are usually of no importance but if a close match cannot be obtained, it is best to select an impedance value which will present a higher rather than lower-than-rated impedance to the output tubes. Thus where a 5,000-to-16 ohm transformer is needed, it would be better to select a 6,000-to-16 ohm unit than a 4,000-to-16 ohm unit. For full and complete treatise on impedance matching, consult Jensen Technical Monograph No. 2. (Price 25c).

ÔØ

TYPE "ZX"

TYPE "ZY"

соммо

500 1000 1500

2000 TYPE "ZL"

COMMON

ØØ

Z

A A A A

6

222N

Ø

Ø

Type ''ZX	and pl	n-tip jack, Ti oil are center	tional "plate mpedance sai taped for pu	'' impeda ues: voice ish-pull ti	IMPEDANCE nce values. Adjustments are easily n coil, 4,506, 7.000, 10,000 and 14, ubes. it. Not Mountable on Speaker.	nade with flexible lead 000 olims. All except
Stock No. ZX-3000 ZX-3001	Core Size 1x1¼" 1x1¼"	Impedance 8 16	Mtg. Ctrs., Inches 114x318 114x318	Power Watts 35.0 35.0	For Use With: PLJ-18, PMJ-18, P15-L, P15-LL VIT-20, VIT-24, VR-241, H-510 ment, Mountable on Speaker.	List Price \$17.15 17.15

ZY-4000	1 x1 1/4 "	8	1 11 x 3 15	35.0	PLJ-18, PMJ-18, P15-L, P15-LL VH-20, VIL-24, VR-241, H-510	\$17.15
		Cased Type.			ent. Not Mounted on Speaker.	
Туре "З		and voice coil.	No cente	r tap avai	lable.	1,000,
ZX-1007	1x1"	8	3 1/8	25.0	P15-N, P15-NX, P15-P, P12-N, P12-NX	9.75
ZX-1005	%a λ %a ″	6-8	3 1/8	16.0	P15-Q, P12-P, P12-Q, P12-R, P12-RX, P12-S, P12-SX, P10-Q, P10-R, P10-RX, P8-P, P8-Q, P8-RX, K-210	7.20
ZX-1002	3/4 x 3/4 "	6-8	2 18	10.0	P12-1, P10-8, P10-8X, P10-1, P8-K, P8-8, P8-8X, P8-RX, VII-15, VR-11	5.00

ZY-4001	1x1 1/4 "	16	115×3 招	35.0	VH-20, VH-24, VK-241, H-510	17.15
Type "Z	Y''	F	in-Tip Adjust	ment.	Mountable on Speaker.	
ZY-2005	1x1"	8	3 1/8	25.0	P15-N, P15-NX, P15-P, P12-N, P12-NX	9.75
ZY-2003	7⁄8 x 7∕8 ″	6-8	3 1/6	16.0	P15-Q, P12-P, P12-Q, P12-R, P12-S, P12-SX, P10-Q, P10-R, P8-P, P8-Q, K-210	7.20
ZY-4004	3/4 X 3/4 "	3-4	2 13	10.0	P8-T	5.00
ZY-2002	3% x 3% "	6 - 8	2 18	10.0	P12-T, P10-S, P10-SX, P10-T, P8-R, P8-S, P8-SX, VH-15, VR-11	5.00
ZY-4002	5% x 5% "	0 - 4	2 %	6.5	P8-U, P8-V, P6-T, P6-X, P6-V	3.35
ZY-4005	5/8 1 5/8 "	6-8	2 38	6.5	VH-91 .	3.35

Types "ZP" and "ZL" Liver priced than "ZX" or "ZY" Types but perfectly satisfactory when used in proper application. Soldering iron required for making adjustments on terminal block "ZP" for "plate," "ZL" for line.

		Solder	r Lug	Terminals.	Mountable on Speaker.	
ZP-1023	½ x ½ ″	4500/3-4 7000/3-4 10000/3-4 14000/3-4	2	3.5	P6-X, P5-V, P5-X, P4-X, P5-TX	2.15
ZP-1025	½ x ½ ″	1500/3-4 2000/3-4 2500/3-4	2	3.5	P6-X, P5-V, P5-X, P4-X, P5-TX	2.15
ZL-2021	½ x ½ ″	500/3-4 1000/3-4 1500/3-4 2000/3-4	2	3.5	P6-X, P5-V, P5-X, P4-X, P5-TX	2.15
"ZP-1024	5%a x 5%a ′′	4500/3-4 7000/3-4 10000/3-4 14000/3-4	2 3/8	6.5	198-U. 198-V. P6-T. P6-TX. P6-V	2.50
* ZP-102 6	5%, x 5%, ″	4500/6-8 7000/6-8 10000/6-8 14000/6-8	2 %	6.5	¥11-91	2.50
ZL-2022	5%a x 5%a ″	500/6-8 1000/6-8 1500/6-8 2000/6-8	2 3/8	6.5	VH-91	2.50

Type "Z"

FIXED IMPEDANCE

				E MANY			
Cased	Type, Screw	Terminals. Not Mountable on Spe	aker.	Cased T	ype, Solder L	ug Terminals. Not Mountable on Sp	eaker.
Stock No.	Impedance		List Price	Stock No.	Impedance	For Use With: Li	st Price
Z-2731	500/16 or 8	PLJ-18, PMJ-18, P15-L, P15-LL, P15-NL, VH-20, VH-24	\$21.40	Z-3344	500/8 or 4	PMJ-18, P15-L, P15-N, P15-NX	\$13.50
Z-2732	16/8	PLJ-18, PMJ-18, P15-L, P15-NL,		Z-3342	500/16 or 8	P15-N, P15-NX, P15-P, P12-N,	
Z-2733	16/8	V1F-20, V1F-24 X1'-101	20.25	Z-3343	500/8 or 4	P12-NX, VII-20, VII-24, VR-241	10.25
		Uncased, Pig-	tail Leads.	Mountable	on Speaker.		
Z-1888 Z-2386 Z-2387 Z-3341 Z-1891 Z-2241	$\begin{array}{r} 500/6-8\\ *3000,6-8\\ *5000/6-8\\ *6000/6-8\\ *10000/6-8\\ *10000/6-8\\ *14000/6-8\end{array}$	P15-N. P15-NX, P15-P. P12-N, P12-NX, F15-N, F12-N	\$6.00	Z-3335 Z-3336 Z-3337 Z-3338 Z-3339 Z-3340	500/3-4 *3000/3-4 *4500/3-4 *7000/3-4 10000/3-4 *11900/3-4	P8-T. F10-S. F8-S. F8-T	2.75
Z-3346 Z-3319 Z-3320 Z-3321 Z-3318 Z-3322 Z-3323	500/16 500/6-8 *3000/6-8 *6000/6-8 *6000/6-8 *10000/6-8 *14000/6-8	VH-20, VH-24, VR-241 P15-QX, P12-P, P12-8X, P12-R, P12-8, P12-8X, P10-Q, P10-R, P10-RX, P8-Q, P4-RX, P15-Q, F12- 512-R, P12-RX, K-210	6.00 Q. 4.00	Z-3310 Z-3311 Z-3312 Z-3313 Z-3314 Z-3315 Z-3316 Z-3316 Z-3317	$\begin{array}{r} 500/3-4\\ 1500/3-4\\ 2000/3-4\\ 2500/3-4\\ *1500/3-4\\ *7000/3-4\\ *10000/3-4\\ *10000/3-4\\ *11000/3-4\end{array}$	P8-U, P8-V, P6-T, P6-TX, P6-V, F8-W, F6-U	1.90
Z-3329 Z-3330 Z-3331 Z-3332	500/3-4 *8000/3-4 *5000/3-4 *6000/3-4	F12-S	4.00	Z-3345 Z-3300 Z-3301 Z-3302	45-50/6-8 500/3-4 1500/3-4 2000/3-4	VH-91, VR-11 AP-10, AP-11, AR-10, P6-X, P5-TX,	2.10
Z-3333 Z-3334 Z-3324 Z-3325 Z-3326	*10000/3-4 *14000/3-4 500/6-8 *3000/6-8 *4500/6-8	P12-T. P10-S. P10-SX. P10-RX. P10-	-т.	Z-3303 Z-3304 Z-3305 Z-3306 Z-3307	2000/3-4 2500/3-4 4500/3-4 *7500/3-4 *10000/3-4	P5-V, P5-X, P1-X, P6-X, F6-X, F5-IX, P5-V, P5-X, P1-X, F6-W, F5-W, F5-X, F4-X, RK-51	1,50
Z-3309 Z-3327 Z-3328	*7000/6-8 *10000/6-8 *14000/6-8	P8-R, P8-S, P8-SX, VH-15, VR-11	2.75	Z-3308 Z-3308 *Center-ta	3-4 grid	All 3-4 ohm V.C. speakers	1.70

These speakers are engineered and manufactured solely for the replacement field for use in home receivers, auto sets, television sets and intercommunication systems. RMA standard dimensions. Fully dust-proofed. Baked aluminum enamel finish. RMA service guarantee. QUAM UNIVERSAL MOUNTING BRACKET comes with all $3\frac{1}{2}$ " to $6\frac{1}{2}$ " speakers and may be attached to any two of the four mounting holes in the U shaped pot.

Figure A

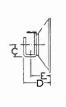
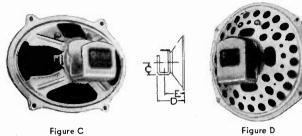


Figure B .
PM — Permanent Magnet Speakers

ED — Electro Dynamic Speakers

		_				DIMENS	IONS IN I	NCHES	SHIP.	
TYPE	CAT. No.	SIZE	FIGURE	FIELD	INPUT (approx.)	C	D	E	WT., LBS.	PRICE
ED	3E45	31/2"	A	†450 Ohms	2.5	11/4	17/8	11/4	3/4	\$ 4.4
PM	3A07	31/2"	A	.68 oz. Alnico 5	2.5	3⁄4	11%32	۹ ^۲ ا	1/2	4.0
	4E45	4"	A	†450 Ohms	3	11/4	2	۱ ₇ ⁷	1	4.4
ED	4E10	4''	A	1000 Ohms	3	1/4	2	₁ 7 ₅ ₁ 7 ₅ ₁ 7 ₅ ₁ 7 ₅		4.4
	4E27	4''	A	2700 Ohms	3	11/4	2	TT		4.4
РМ	4A07	4'' 4''	A	.68 oz. Alnico 5 1.0 oz. Alnico 5	3 3	3/4	²³ / ₃₂ 2 ₁ ³ / ₅		1/2 3/.	4.0 4.2
E IAI	4A1 4A15	4 4''	A	1.0 02. Alnico 5	3	i i	$2\frac{1}{16}$	 6 1 6	1/2 3/4 3/4	4.7
-		-		6 Volt	3.5	11/4		1 % ₃₂	11/4	4.6
	5EV6 5E45	5'' 5''	B B	6 Volt †450 Ohms	3.5 3.5	1/4	2 /8 2 /8	1 1 1 1 3 2 1 1 9/32	1 74	4.6
ED	5E45	5 5''	B	1000 Ohms	3.5	11/4	21/8	1 19/32	i i	4.6
LU	5E18	5"	B	1800 Ohms	3.5	11/4	21/8	119/32	11/4	4.6
	5E27	5"	B	2700 Ohms	3.5	11/4	2 ¹ /8	1 19/32	1	4.6
DM	5A07	5''	В	.68 oz. Alnico 5	3.5	3/4	17/8	17 6 1 16	3/4	4.2
PM	5A1	5''	В	1.0 oz. Alnico 5	3.5	1	2 ⁵	148	1	4.4
	5 A15	5''	B	I.47 oz. Alnico 5	3.5		2 ₁₅	1+5		4.8
ED	52EV6	51/4" 51/4"	А	6 Volt	4	11/4	21/2	143	11/2	5.0
LU	52E10		A	1000 Ohms	4	11/4	21/2	113	11/4	5.0
PM	52A1	5½" 5¼"	A	1.0 oz. Alnico 5 2.15 oz. Alnico 5	4 4	1/8	2 ²³ /64 25/8	1 ³ ⁄4 7⁄8	 1/4	4.6
1 171	52A21		A			, -				
	6EV6	61/2"	D	6 Volt	5	11/4	223/32	21/32	11/2	5.4
ED	6EHV6	6 ¹ /2''	D	6 Volt	6 5	131/64	225/32	$2\frac{1}{15}$	13/4	6.1 5.4
LU	6E10 6E18	6 ¹ /2" 6 ¹ /2"	D D	1000 Ohms 1800 Ohms	5	1 1/4 1 1/4	2 ²³ / ₃₂ 2 ²³ / ₃₂	2 ¹ / ₃₂ 2 ¹ / ₃₂	11/2	5.4
	6E25	6 ¹ /2"	D	2500 Ohms	5	1/4	223/32	21/32	11/2	5.4
	6A1	61/2"	D	1.0 oz. Alnico 5	5	-1	25/8	2	1	4.8
DM	6A15	61/2"	D	1.47 oz. Alnico 5	5	ł	25/8	2	I.	5.2
PM	5A21	61/2"	D	2.15 oz. Alnico 5	5	1/8 3/8	2 ¹ / ₈ 3 ¹¹ / ₆₄	2 ¹ /8 2 ⁹ /32	11/4	5.8
	6A31	6 ¹ /2''	D	3.16 oz. Alnico 5	6	1 3/8	311/64	2%/32	11/2	6.7
ED	7EV6	* 7"	D	6 Volt	7	1%32	2 3⁄4	-	2	6.7
PM	7A21	7''	D	2.15 oz. Alnico 5	6	7/8 11/4	221/32		1	7.2
	7A31	7''	D	3.16 oz. Alnico 5	9	11/4	31/32		2	8.5
	8EV6	8''	D	6 Volt	7	11/4	3%32	-	1 3/4	6.7
	8E10	8''	D	1000 Ohms	7	11/4 111/32	3%32	—	11/2	6.7
rn –	8EH10	8''	D	1000 Ohms	9	11/32	3+±		21/4	7.7
ED	8E18 8EH18	8'' 8''	D	1800 Ohms 1800 Ohms	7 9	1 1/4 1 1 1/32	$\frac{39}{32}$		3/4 21/4	6.7 7.7
	8E25	° 8''	D	2500 Ohms	7	11/32	3 3 3 ⁹ /32		1 3/4	6.7
	8EH25	8''	D	2500 Ohms	9	11/4	3/32 3+3	Ξ.	21/4	7.7
DM	8A21	8''	D	2.15 oz. Alnico 5	7	11/8	313/22	_	11/2	7.2
РМ	8A31	8"	ō	3.16 oz. Alnico 5	9	13/2	321/32	_	21/4	8.5


†450 ohm fields (equipped with hum bucking coils).

31/2" speakers — without Adjust-a-Cone suspension.

Voice coil impedance of above speakers is 3.2 ohms \pm 10%.

QUAM DESCRIPTIVE PART NUMBERS: Of great convenience in ordering because they convey the specifications of the speaker. First digit indicates size; second letter signifies type, i.e., E: Electro; A: Alnico V #4A1 is a 4" Alnico V P.M. with 1 oz. magnet.

QUAM speakers have been produced under the same management since 1923 and are used by leading set and sound manufacturers throughout the world. They are nationally advertised, fully protected by patents and their use insures customer satisfaction. Special field and voice coils are supplied in QUAM speakers to fit both television and intercom replacements upon request.

Figure D

ED - Electro Dynamic Speakers

PM — Permanent Magnet Speakers

					MAX. WATTS	DIMENS	IONS IN I	NCHES	SHIP.	
TYPE	CAT. No.	SIZE	FIGURE	FIELD	INPUT (approx.)	С	D	Ε	WT., LBS.	LIST PRICE
	10E60	10"	B	600 Ohms	10	1 3/4	5 _T ' ₅		4	\$10.50
ГD	10E10	10"	B	1000 Ohms	10	3⁄₄	5 ₁	_	4	10.5
ED	10E15	10''	В	1500 Ohms	10	1 3/4	5 ₁ '7	—	4	10.5
	10E25	10"	В	2500 Ohms	10	1 ³ /4 1 ³ /4	5 ד'ז 5 ד'ז 5 ד'ז	-	4	10.5
DIA	10A31	10"	В	3.16 oz. Alnico 5	9	1 3/8	41/2	-	23/4	10.5
PM	10A4A	10"	В	4.64 oz Alnico 5	10	13/8	41/2		31/4	11.7
	10A6A	10''	В	6.8 oz Alnico 5	12	1 T 6	45/8	_	31/2	13.6
	12E60	12"	В	600 Ohms	12	1 3/4	5 ⁵ /8	_	5	12.6
ED	12E10	12"	В	1000 Ohms	12	13/4	5%	_	5	12.6
LU	12E15	12"	В	1500 Ohms	12	1 3/4	5 ⁵ /8	—	5	12.6
	12E25	12"	В	2500 Ohms	12	I ³ /4	5 ⁵ /8 5 ⁵ /8	_	51/4	12.6
DH	12A31A	12"	В	3.2 oz. Alnico 5	10	11/4	419/32	_	3 3⁄4	11.3
PM	12A4A	12"	В	4.64 oz. Alnico 5	12	³ /8	51/8	-	4	12.6
	12A6A	12"	В	6.8 oz. Alnico 5	14	۵۲۲۱	51/4		4 3/4	14.5
ED.	46E45	4'' x 6''	С	450 Ohms	3,5	15/64	215/64	1 5/8	11/4	5.3
ED	46E10	4'' x 6''	С	1000 Ohms	3.5	15/64	215/64	15/8	11/4	5.3
	46E15	4'' x 6''	С	1500 Ohms	3.5	15/64	215/64	15/8	11/4	5.3
DM	46A07	4'' x 6''	С	.68 oz. Alnico 5	3.5	3⁄4	1 + ह	127/64	3/4	4.4
PM	46A1	4'' x 6''	С	1.0 oz. Alnico 5	3.5	I	21/4	ا الم		4.7
	46A15	4'' x 6''	С	1.47 oz. Alnico 5	3.5	1	21/4	178		5.1
ED	57E45	5'' x 7''	С	†450 Ohms	5	11/4	31/64	211/32	11/2	6.0
LU	57E10	5'' x 7''	С	1000 Ohms	5	11/4	31/64	211/32	11/2	6.0
DM	57A1	5'' x 7''	С	1.0 oz. Alnico 5	5	1	257/64	2%/32	1	5.4
PM	57A15	5'' x 7''	С	1.47 oz. Alnico 5	5	Ι.	257/64	2%/32	1	5.8
	57A21	5'' x 7''	С	2.15 oz. Alnico 5	5	11/8	39/64	213/32	11/4	6.4
ED	69EV6	6" x 9"	С	6 Volt	8	I	3 <u>†</u> 3	_	2	7.5
B14	69A2	6" x 9"	С	1.4 oz. Alnico 5	8	7/8	2+5	_	11/2	7.5
PM	69A3	6" x 9"	Ċ	3.2 oz. Alnico 5	01	11/4	3 15	_	1 3/4	8.9

\$450 ohm fields (equipped with hum bucking coils).

Voice coil impedance of above speakers is 3.2 ohms \pm 10%.

PUBLIC ADDRESS SPEAKERS

РМ	8A4 8A6	8'' 8''	B B	4.64 oz. Alnico 5 6.8 oz. Alnico 5	12 12	3⁄8 ₁ 78	3 ³ ⁄ ₄ 3 ⁷ ⁄ ₈	-	21/2 3	\$10.20 12.10
РМ	10A4 10A6 10A10	10" 10" 10"	B B B	4.64 oz. Alnico 5 6.8 oz. Alnico 5 10 oz. Alnico 5	14 14 20	1 3/8 1 7 1 3/8 1 3/8	4!/2 45/8 421/64	-	3 ¹ / ₄ 3 ¹ / ₂ 3 ¹ / ₂	11.70 13.60 18.00
РМ	12A4 12A6 12A10	12'' 12'' 12''	B B B	4.64 oz. Alnico 5 6.8 oz. Alnico 5 10 oz. Alnico 5	5 5 25	3/8 7 3/8	51/8 51/4 4+5		4 4 ³ / ₄ 4 ³ / ₄	12.65 14.50 19.00

Voice coil impedance of above speakers is 6-8 ohms.

QUAM ADJUST-A-CONE SUSPENSION While in other speakers, the spider is cemented in place with no means of accurate final adjustment, the QUAM method permits precision centering of the voice coil in a final production operation.

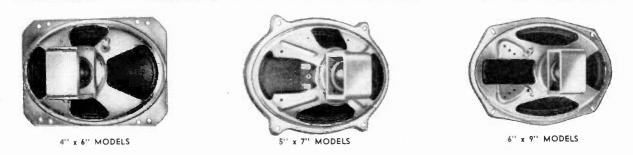
QUAM U SHAPED COIL POT A patented feature used throughout the QUAM replacement line, pro-vides an unbroken flux path of sufficient cross section to carry the full energy of the magnetic field.

Coronet SUPREME HI-FIDELITY SERIES Pat. Applied For

Never before such quality Hi-Fidelity Wide Range performance for so little money. Surpasses previous single, dual unit or coaxial speakers without the attendant irritation often experienced due to phase and amplitude distortion inherent in the latter type. High level, uniform reproduction. Advance engineering features include: (1) Stability at low resonance values heretofore unattainable, (2) Resonance and alignment not affected by humidity variations, (3) Strength of cone anulus increased capacity 5 to 10 times. Comparative tests prove that CORONET Series have all desired qualities demanded in wide range Hi-Fidelity speakers . . . and at low cost.

					TIO				
Size	and Shape	Model No. or Code	Magne Flux Gauss	Approx. Wt.	Vo Diam- eter	oice Coil Dat Impe- dance	a Watts	Over all Depth	L Pri
121/2"	Round	125Z-8	15000	3 lbs.	2.1	8 ohms	20	735/64	\$75.0
151/2"	Round	155Z-8	15000	3 lbs.	2	8 ohms	35	85/8	90.0
S		HIGH FIDELI							ers
		speakers listed b Series, unexcelled							
8''	Round	8WP-8-1	10000	8.0	11/4"	8	10	331/32	\$22.5
0"	Round	10WP-8-1	10000	8.0	1/4"	8	11	5	25.0
2"	Round	12WP-8-1	10000	0.8	1/4"	8	12	57⁄8	27.5
5"	Round	15WP-8-1	10000	8.0	11/4"	8	15	85/8	35.0
	DELUXE	HIGH FIDELI	Y MODE	LS — He	avy Mag	gnets —	No Pot C	Covers	
6''	P.C.	6L-1	10000	3.0	3/4**	3.2	5	31/32	\$ 9.0
8''	Round	8T-8-1	10000	6.0	La.	8	8	4	14.0
0''	Round	10T-8-1	10000	6.0	1	8	9	4 ¹³ / ₃₂	16.0
2''	Round	12T-8-1	10000	6.0	1 2 4	8	10	53/8	18.0
<u> </u>	STANDARD	HI-FIDELITY D	ELUXE P.	M. SPEA				inest installation nd reproduction	
8''	Round	80SP-8	8500	4.0	1.1	8.	8-10	41/2	\$12.5
0''	Round	IOSP-8	0500	4.0	19	8.	10-13	5	14.5
U	Kound	1037-0	8500	4.0		ο.	10-15	9	11.5
2''	Round	12SP-8	8500	4.0 O MAGI	NET D	8. Ynamic	SPEA	57/8 KERS	17.5
2''		12SP-8 Precision wound, Electro Magnet	8500 LECTR high efficient Dynamic Sp	4.0 O MAGI cy field coils eakers the c	NET D	8. YNAMIC engineered eaders in e	12-15 SPEA hum bucking lectro dynam	5% KERS circuits make I nic sound repr	l 7.5
2" Per	Round	12SP-8	8500 LECTR high efficient Dynamic Sp	4.0 O MAGI	NET D	8. YNAMIC 1 engineered	12-15 SPEA hum bucking lectro dynam	5% KERS	I 7.5 Permoflux
2" Per Size	Round moffux_	12SP-8 Precision wound, Electro Magnet Model No.	8500 LECTR high efficient Dynamic Sp Field C Resist-	4.0 O MAGI cy field coils eakers the c oil Data	NET D) and precisior sutstanding 1 Vo Diam- eter 9/14''	8. YNAMIC eaders in e vice Coil Dat Impe-	12-15 SPEA hum bucking lectro dynam	5 7/8 KERS circuits make l nic sound repr Over- all Depth 23/8	17.5 Permoflux oduction. Li Pr
2'' Per Size	Round moffux and Shape	12SP-8 Precision wound, Electro Magnet Model No. or Code 407 408	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100	4.0 O MAG exp field coils eakers the coil oil Data Watts 4 4	NET D) and precisior putstanding 1 Vo Diam- eter %16" %16"	8. YNAMIC eaders in e bice Coil Dat Impe- dance 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4	5 7/8 KERS circuits make I nic sound repr Over- all Depth 2 3/8 2 3/8	17.5 Permoflux oduction. Li Pr \$ 5.0 5.0
2'' Per Size	Round moffux and Shape TV Square	12SP-8 Precision wound, Electro Magnet Model No. or Code 407	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60	4.0 O MAGI cy field coils eakers the coil oil Data Watts	NET D) and precision putstanding f Vo Diam- eter 9/16'' 9/16''	8. YNAMIC eaders in e vice Coil Dat Impe- dance 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4	5 7/8 KERS circuits make l nic sound repr Over- all Depth 23/8	17.5 Permoflux oduction. Li Pr \$ 5.0 5.0
2'' Per Size	Round moffux and Shape TV Square	12SP-8 Precision wound, Electro Magnet Model No. or Code 407 408	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100	4.0 O MAG exp field coils eakers the coil oil Data Watts 4 4	NET D) and precision putstanding f Vo Diam- eter 9/16'' 9/16''	8. YNAMIC eaders in e bice Coil Dat Impe- dance 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4	57/8 KERS circuits make hic sound repr Over- all Depth 23/8 23/8 29/32	17.5 Dermoflux oduction. Pr \$ 5.0 5.0 5.0
2'' Per Size	Round moffux and Shape TV Square TV	12SP-8 Precision wound, Electro Magnet Model No. or Code 407 408 401	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450	4.0 OMAGI cy field coils eakers the coil oil Data Watts 4 4 4	NET D) and precisior putstanding 1 Vo Diam- eter %16" %16"	8. YNAMIC eaders in e cice Coil Dat Impe- dance 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4	5 7/8 KERS circuits make I nic sound repr Over- all Depth 2 3/8 2 3/8	17.5 Permoflux oduction. Pr \$ 5.0 5.0 5.7
2'' Per Size	Round moffux and Shape TV Square TV Eliip. TV	12SP-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60	4.0 O MAGI cy field coils eakers the coil oil Data Watts 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersineered eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make 1 nic sound repr Over- all Depth 23/8 23/8 29/32 29/16 29/16 27/16	17.5 Permoflux oduction. L Pr \$ 5.0 5.0 5.7 5.7
2'' Per Size	Round mofflux_ and Shape TV Square TV Elip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 60 100	4.0 O MAGI cy field coils eakers the coils oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersineered eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make 1 nic sound repr	17.5 Permoflux oduction. Pr \$ 5.0 5.7 5.7 5.7 5.2
2'' Per Size	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4501	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 60 100 450	4.0 D MAG py field coils eakers the coil oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersed eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make of the first sound reproduced and the first sound reproduced and the first sound reproduced and the first sound sound and the first sound sound and the first sound	17.5 Permoflux oduction. L Pr \$ 5.(5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7
2'' Per Size	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4507 4508 4501 4502	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 60 100 450 100 60 100 10	4.0 D MAGI cy field coils eakers the coils oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make l nic sound repr Over- all Depth 23/8 23/8 29/32 29/16 27/16 27/16 27/16 27/16	17.5 Permoflux oduction. L Pr \$ 5.(5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7
2'' Per Size	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 401 4607 4608 4507 4508 4501 4502 4504	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 60 100 100 100 100 100 100 100	4.0 O MAGI cy field coils eakers the c oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersineered eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make Inic sound repr 23/8 23/8 29/32 29/16 27/16 27/16 27/16 27/16 27/16	17.5 Permoflux oduction. Pr \$ 5.0 5.7 5.7 5.7 5.7 5.2 5.2 5.2 5.2
2'' Per Size	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4507 4508 4501 4502 4504 601	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 100 450 100 1800 1800	4.0 O MAGI cy field coils eakers the coil oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- efer 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC eaders in e vice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make l nic sound repr 23/8 23/8 29/32 29/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16	17.5 Permoflux oduction. Pr \$ 5.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
2'' Per Size *6''	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 401 4607 4608 4507 4508 4501 4502 4504	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 60 100 100 100 100 100 100 100	4.0 O MAGI cy field coils eakers the c oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- efer 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersineered eaders in e bice Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make l nic sound repr 23/8 23/8 29/32 29/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16	17.5 Permoflux oduction. L Pr \$ 5.0 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
2" Per	Round moffux and Shape TV Square TV El;ip. TV TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4507 4508 4507 4508 4501 4502 4504 601 602 604	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 100 100 100 100 100 100 100 1	4.0 O MAGI cy field coils eakers the c oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET DY and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. Y NAMIC enders in e dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make finic sound repr 23/8 23/8 29/32 29/16 27/16	17.5 Permoflux oduction. L Pr \$ 5.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
2" Per size **	Round moffux and Shape TV Square TV Eliip. TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4507 4508 4501 4502 4504 601 602	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 60 100 450 1000 1800 450 1000 1800	4.0 O MAGI cy field coils eakers the coils oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET D) and precision putstanding 1 Vo Diam- efer 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC endersed eaders in e dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make l nic sound repr 23/8 23/8 29/32 29/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16 27/16	17.5 Permoflux oduction. Pr \$ 5.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
2" Per size **	Round moffux and Shape TV Square TV El;ip. TV TV TV	125P-8 Precision wound, Electro Magnet Model No. or Code 407 408 401 4607 4608 4507 4508 4507 4508 4507 4508 4501 4502 4504 601 602 604 1049	8500 LECTR high efficient Dynamic Sp Field C Resist- ance 60 100 450 60 100 450 100 450 1000 1800 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 600 1000 1800 1000 1800 1000 1800 1000 1800 1000 1800 1000 1800 1000 1800 1000 1800 1000 1800 1000 1	4.0 O MAGI cy field coils eakers the coil oil Data Watts 4 4 4 4 4 4 4 4 4 4 4 4 4	NET DY and precision putstanding 1 Vo Diam- eter 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16" 9/16"	8. YNAMIC enders in e price Coil Dat Impe- dance 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	12-15 SPEA hum bucking lectro dynam a Watts 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	57/8 KERS circuits make finic sound repr all Depth 23/8 23/8 27/32 29/16 27/172 27/32 2	17.5 Permoflux oduction. Li

Copyright by U. C. P., Inc.


PERMANENT MAGNET DYNAMIC SPEAKERS

... with Powerful ALNICO 5 Magnets . . .

Like all Permoflux electronic and acoustical products, Permoflux PM Speakers, with their powerful, light weight Alnico 5 Magnets, are engineered to the highest performance standards. Their over-all sensitivity, wide frequency response and rugged mechanical design make them favorites wherever fidelity of tone is an important consideration. Because of modern and efficient manufacturing methods and quality control systems which assure remarkable uniformity in production, Permoflux Speakers attain the performance originally engineered into them. The years of development experience behind the perfection achieved in Permoflux Speakers assures the finest sound reproduction in every application.

		Model No.	Magn	et Data		oice Coil Data		Over-	
Size	and Shape	or Code	Flux‡ Gauss	Approx. Wt.	Diam- eter	Impedance Ohms	Watts	al) Depth	List Price
21/2"	Square	*25A	6000	.5	9/16"	3.2	-2	17/16	\$ 4.00
- / 2		*25C	9000	1.5	9/16	3.2	1-2	1 7/8	4.75
3"	Square	*3A	6000	.5	9/16"	3.2	1-2	11/2	4.00
		*3C	9000	1.5	9/16	3.2	1-2	129/32	4.75
31/ ₄ ''	Square	*32A	6000	.5	9/16"	3.2	2-4	1 3/4	4.00
9 74	oquare	*32C	9000	1.5	9/16"	3.2	2-4	2	4.75
4''	Square	*4A	6000	.5	9/16"	3.2	2-4	25/32	4.00
T	540016	*4C	9000	1.5	9/16''	3.2	2-4	23/16	4.75
	Intercom.	*4A	6000	.5	9/16	45 ohm	2-4	125/32	5.00
	Weatherproof	*4CW	9000	1.5	116	3.2	2-4	23/16	5.50
4x6''	Ellip.	*46A	6000	.5	9/16	3.2	2-4	17/8	4.75
-7.0	Emp.	*46C	9000	1.5	9/16	3.2	2-4	29/32	5.50
5''	P.C.	*45A	6000	.5	9/16"	3.2	2-4	19/32	4.25
S	r.C.	*45C	9000	1.5	9/16	3.2	2-4	25/16	5.00
	Intercom.	*45A1	6000	.5	2/16	45 ohm	2-4	1 %32	5.25
	Weatherproof	*45CW	9000	1.5	9/16	3.2	2-4	25/16	5.75
F 11	Round	*45AR	6000	.5	9/16	3.2	2-4	2	4.25
5''	Round	*45CR	9000	1.5	9/16	3.2	2-4	21/4	5.00
EL / 11	6	*52A	6000	.5	9/	3.2	3-5	23/16	4.75
5 /4"	Square	*52C	9000	1.5	9/16	3.2	3-5	2 5/32	5.2
	Auto	*52K	8500	2.0	716 9/16 3/4	3.2	4-6	21/2	6.00
- 14	Auto			1.5	9/16 3/4	3.2	4-6	2 5/32	5.75
5x7"	Ellip.	57C	9000	2.0	716	3.2	5-7	3	7.00
	Auto	57K	8500	2.0	3/4	3.2	5-7	3	7.00
	Auto	**57KA	8500				÷ ·	-	
6"	P.C.	*6A	6000	.5	7/16	3.2	4-6 4-6	2 ³ / ₉ 2 ²³ / ₃₂	4.75 5.50
		*6C	9000	1.5	9/16 3/4	3.2 3.2	4-6 5-7	2 ² ³ / ₃₂ 2 ³ / ₄	6.2
	Auto	*6K	8500	2.0	~/4				
6x9"	Ellip.	6 9 K	8500	2.0	3/4	3.2	5-7	3 1 5/32	7.50
	Auto	**69KA	8500	2.0	3/4 ''	3.2	5-7	3 5/32	7.50
7"	P.C. Auto	7 K	8500	2.0	3/4 3/4	3.2	6-8	33/16	7.00
	Auto	**7KA	8500	2.0	3/4	3.2	6-8	33/16	7.00
8''	P.C. Auto	75K	8500	2.0	3/4 3/4	3.2	6-8	3 1/32	7.5
•		75L	10000	3.0	3/4	3.2	6-8	35/16	8.2
		75S	8500	4.0	1.1	3.2	7-9	3 3/16	10.00
10"	Round	IOL	10000	3.0	3/4 ''	3.2	8-10	45/16	9.7
		IOS	8500	4.0	Ξ.	3.2	9-12	·4 (7/32	12.5
12"	Round	12L	10000	3.0	3/4 ''	3.2	9-12	53/32	11.50
14	Round	125	8500	4.0	<u> </u>	3.2	10-15	53/32	14.0

NOTE . . . + The efficiency or sensitivity of a speaker is proportional to the flux density provided by the magnet. When the voice coil diameter is increased to provide greater watts power handling capacity, a larger magnet is required to give same flux density. * Equipped with Universal Mounting Brackets. ** Pot Rotated 90°.

RE-ENTRANT TRUMPETS

RE-50 RE-60

RACON ACOUSTIC material to prevent resonant effects prevalent in all large reflecting surfaces. Sturdy construction makes them practi-

Waterproof Permanent Magnet Driver Units

Latest improvements are incorporated in these driver units. Higher watt-handling capacity, greater effi-

PM-608

PM-615

cally abuse-proof. Supplied with U-bracket mounting (ratchet swivel type on request). RE-60 and RE-50 have wide band frequency characteristics suitable for best musical reproduction. RE-35 and RE-25 most suitable for band music. All have high degree of intelligibility and are excellent for indoor or outdoor use. Chime systems, recreation centres, sound trucks, railroad and bus terminals, arenas, camps, and noisy factories where there is a high noise level to be overridden.

Model	Acousti	c Bell	Over-all	Cut-off	Distrib	. Net		List
No.	Length	Diam.	Length	(cycles)	Angle	Wt., lb.	Code	Price
RE-60	6'	26''	28''	112	45°	121/2	REMOL	\$66.00
RE-50	4 1/2'	$24\frac{1}{2}''$	23 1/2"	140	50°	111/2	REMOY	45.00
RE-35	3 1/2'	19''	16 1/4 "	175	55°	8	REMOX	32.50
RE-25	$2\frac{1}{2}'$	$13\frac{1}{2}''$	11″	225	60°	5 3/4	REMOD	25.00

ciency and practically lifetime operation. Finest grade of Alnico V steel magnets and Armco magnetic iron throughout. All steel parts plated to prevent corrosion. Units are magnetized, using an electromagnetic cutout switch which gives the maximum flux density obtainable in the gap. All magnets are measured for flux density and each unit is tested with special apparatus for power handling capacity as well as 300-volt ground-test, making for uniformity and ability to withstand all types of service.

Long life plastic diaphragm and formers. Aluminum wire for voice coil to increase efficiency. Life-time leads. Completely waterproof, yet diaphragm easily removed if necessary.

NEW SUPER X UNITS USING LATEST ALNICO V MAGNETS

PM-623

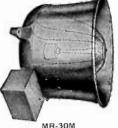
Model No. PM-623	We Net	ight Ship.	Flux Density per sq. cm.	Frequency Range	imp.	Diam.	Ht.	Thread	Capac Peak	ity (watt Operatin		List Price
PM-615 PM-608	6 ½ lb. 5 lb.	9 lh. 7 ½ lb. 6 lb.	15,500 gausses 13,500 gausses 11,000 gausses	80-7000 90-7000 90-6500	15 15 15	5 1/4 " 4 1/4 " 4 "	4 ½" 4 ½" 3 ¼"	1 3/6 x 18 1 3/8 x 18 1 3/6 x 18	$65 \\ 60 \\ 50$	$\frac{35}{30}$	RETIX	\$50.00 35.00 25.00

HIGH EFFICIENCY LINE MATCHING TRANSFORMERS

A series of transformers designed to have wide band frequency transmission with minimum loss. Small in size yet able to handle necessary power requirements. All Models vacuum impregnated.

Model No.	Tune	A	Impedance			
	Туре	Capacity	Primary	Secondary	Code	List Price
TR10S TR10SV TR15C TR25S TR25SV	Strapped Strapped Cased Strapped Strapped	10 watt 10 watt 15 watt 25 watt 25 watt	500 ohm 250, 500, 1000, 2500 500 ohm 500 ohm 250, 500, 1000, 2500	15 15 15 15 15 15	RANFO RANFT RASHO RANGO RANGT	\$2.45 2.70 4.60 3.60 4.10

DIAPHRAGM REPLACEMENTS


Model No.	Description	Voice Coil Diameter	* Net Price
RA-400 WE-500 BA-600 BA-700 RA-401 WE-501 BA-601 BA-701	Large Full Dome Bakelized Diaphragm Large Reverse Dome Bakelized Diaphragm Small Reverse Dome Bakelized Diaphragm Small Reverse Dome Metal Diaphragm Large Head Assembly with Full Dome Bakelized Diaphragm Large Head Assembly with Reverse Dome Bakelized Diaphragm Small Head Assembly with Reverse Dome Bakelized Diaphragm Small Head Assembly with Reverse Dome Metal Diaphragm	2" 1 ¼ " 1 ¼ " 2" 2" 1 ¼ " 1 ¼ "	\$3.60 3.60 1.75 1.35 5.25 5.25 2.75 2.35

Copyright by U. C. P., Inc.

DOUBLE RE-ENTRANT MARINE SPEAKERS

A highly efficient double re-entrant type of horn. The Regular, Midget and Miniature Marine speakers are approved by the U.S. Coast Guard for all Emergency Loudspeaker Systems on ships, under the 53rd Supplement of the Bureau, after tests made by the Bureau of Standards, Washington, D. C. These Marine Speakers are used both as Loudspeakers and as Microphones. The driver Unit and connections are all enclosed, making a completely waterproof speaker not affected by temperature or weather, including use at sea. Made from a heavy aluminum spinning, having a base of heavy aluminum casting. Has special noncorrosive Aluminum casting; baked chromatic Undercoat Finish plus outside lacquer finish. Uses latest type of driver units. Supplied for three-legged flush type rear or U-bracket mounting. All Speakers have waterproof boxes for interior mounting of transformers. Can be used where space is limited, on board

MG-21J

ship, on deck, interior or pilot house, rail and bus terminals, in locomotives, railroad yards, police and fire cars, paging systems or anywhere high noise levels are to be overridden. (U-bracket supplied on request at small additional cost.)

Model No. M R-30M M R-32M M G-21J M G-22J M G-21B M N-15B	Frequency Di Range 250-6000 250-6000 350-6000 350-6000 450-6000	Angle 50° 55° 47° 55° 65°	Diam. 14" 14" 9½' 12" 9½' 6¼'	25 20 20	Peak 60 120 50 40 35 35	Imp. 15 8 15 15 15 15	Description Regular 2-Unit Midget with Jr. Unit Midget Long Bell Midget with Baby Unit Miniature	4 3/4 "	Net Wt., lb. 25 38 $11\frac{1}{2}$ $12\frac{1}{2}$ $7\frac{1}{2}$ $4\frac{1}{2}$ $61\frac{1}{2}$	Code REDIX REDIT RASOM RECUT RASOB REDUP REDUG	List Price \$130.00 185.00 55.00 57.50 40.00 31.00 33.50
M N-15B M N-16B	450-6000 440-6000	65° 65°	6¼' 10¼'		$\frac{35}{35}$	15 15	Miniature Miniature Long Bell	$10\frac{1}{4}$ "	4 1/2 6 1/4	REDIG	33.50

RE-ENTRANT PAGING SPEAKERS

RE-15 RE-12

A compact type of double re-entrant speaker to fit all

types of paging applications. Some ratchet wall type

mountings, others flush wall type or U-bracket. Ex-tremely efficient. Will override high noise levels.

Mechanically constructed to be non-resonant so as to

transmit all sound through the mouth. In all models

but DW-9R driver unit is completely cased. Can be used indoors or outdoors. Excellent sound energy

MN-168

DW-98

coverage as well as wide angle pick-up when used as a "talkback" from distances unobtainable with microphones. Designed for use where space is limited, but high noise levels are present. Rail and bus stations, on trains, in locomotives, on docks, on police and fire cars, for inter-com systems in schools, hospitals, offices and factories.

Model No. RE-15 RE-12 MN-16B DW-9R	Frequency Di Range 350- 8,500 450-10,000 440- 6,000 750-10,000	stribut Angle 60° 65° 65° 80°	ion Opertg. Capacity 20 watts 10 watts 20 watts 8 watts	Nominal Imp. 15 ohms 15 ohms 15 ohms 15 ohms	Type Mounting Swivel Ratchet & Bracket Swivel Ratchet & Bracket U-Bracket Flush Mounting		Over-all Length 934" 61/2" 1014" 21/4"	Net Wt., lb. $4\frac{3}{4}$ $2\frac{1}{2}$ $6\frac{1}{4}$ $1\frac{1}{2}$	Code REMAC REMAB REDIG REDOX	List Price \$34.00 26.00 33.50 27.50
--	---	--	--	---	--	--	---	---	--	---

RADIAL RE-ENTRANT HORNS & SPEAKERS

SR-35R **SR-60R**

Model No.

SR-60R

*SR-35R

SR-15R

SR-12R

*Re-entrant horn only

Acoustic

Length

61/2

4'

20"

15″

Width 36″

17"

12''

9"

Length 34½″ 16″

12"

9"

SR-15R SR-12R

Cut-off

(cycles) 115

175

330

440

A weatherproof double re-entrant type horn and speaker designed to project sound over a complete circumference of 360°. These are constructed to be nonresonant and in models SR-35R and SR-60R the centre reflecting surface is of Racon Patented Acoustic Material. The deflectors are aluminum covered with this same material

The two larger models can be used for the reproduction of music and speech and all models can be used for announcing and paging. The SR-60R is ideal for reproduction of church chimes.

Models SR-35R and SR-60R employ a standard thread and may be used with any Racon driver unit. Models SR-15R and SR-12R are supplied complete with builtin driver unit

Mounting	Code	List Price
U-Bracket	RADAL	\$85.00
U-Bracket	RADAK	40.00
Swivel Ratchet & Wall Bracket	RADAS	36.50
Swivel Ratchet & Wall Bracket	RADAB	28.50

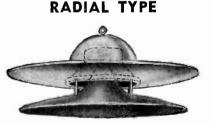
CONE SPEAKER PROJECTORS

Net Weight 35 lb.

10½ lb.

2¾ lb.

5 lb.


P	R	0	J	E	C	T	0	R	٦	'Y	P	E	

Efficient, rugged, suitable for indoor and outdoor use. All projectors have steel back enclosures and waterproof overlap. Provided with two offset mounting hooks.

	Model No. CP-8A CP-8AW	Cone Size 8" 8"	Bell Diam. 15″ 15″	Length 15" 15"	
ļ	CP-12A CP-12AW	$\frac{12''}{12''}$	17" 17"	$\frac{20''}{20''}$	

Description	Code
Aluminum Bell; Steel Back	RUMIX
Aluminum Bell; Steel Back	RIFLE
acoustically damped; cone opening protected by wire	
screening and silk gauze	*
Aluminum Bell; Steel Back	RUMID
Aluminum Bell; Steel Back	ROBOT
acoustically damped; cone opening protected by wire	
screening and silk gauze	

CP-12A

CR-6 CR-12

Speaker is designed to project sound over a complete circumference of 360 degrees, distributing the sound with even intensity and emphasiz-ing the high frequency response lacking in direct cone speakers. Par-ticularly adapted for use in factories and in auditoriums where com-plete coverage is desired. Can be camouflaged to blend with ceiling embitacities. architecture

architecture. IN ALL RACON RADIAL CONE HOUSINGS the upper deflector is made of heavy gauge steel, back cone cover of steel, and lower de-flector of RACON ACOUSTIC material to prevent resonant effects prevalent in all metal reflecting surfaces. Stormproofed for all weather conditions. These cone housings are furnished without speakers.

Model No.	Cone Size	Bell Diam.	Depth	Net Weight	Code	List Price
CR-12 CR-6	12" or 10" 6" or 5"	$31''_{17''}$	$\frac{14''}{7''}$	10 lb. 3½ lb.	RADAG RADAC	\$31.00 11.50
	(Specify a	size of c	one spea	ker to be in	stalled.)	

Copyright by U. C. P., Inc.

40

CM-5 CM-8 CM-12 A re-entrant speaker housing of the Marine type for cone operation. Owing to construction this housing can be used outdoors, as well, in all weather and temperatures without damage. Cone diaphragm is protected not only from direct contact of rain, but also from physical damage. Can be used for voice or music reproduction. IN ALL RACON CONE MARINE SPEAKER HOUSINGS bell is made of heavy gauge aluminum; cone mounting is made of aluminum casting; centre bullet is made of Patented RACON ACOUSTIC mate-rial to prevent resonant effects. Material is stormproofed for all weather conditions. Housings are supplied without Cone Speakers. Model Cone Bell Net

Model No. CM-12 CM-8 CM-5	Cone Size 12" 8" 5"	Bell Diam. 24" 17 ½" 10 ½"	Depth 15" 11 ½" 8 ½"	Net Weight 10 lb. 4 ½ lb. 2 ¼ lb.	Code RELIM REFIM REKIM	List Price \$40.50 21.50 12.00	
-			-		1.00		

List Price \$11.00 12.50

13.50

STRAIGHT TRUMPETS

RACON Speakers Horn Units Horns

OT-444

DT-425

The most efficient horns obtainable. Output from any straight trumpet is approximately 2 DB higher than corresponding re-entrant type with the same input. This is because straight trumpets lack the attenuation from resistance and reflection which is inherent in all re-entrant horns. Will override extremely high noise level, indoors or outdoors.

"DeLuxe" and "Stormproof" Trumpets are made of Racon Acoustic Cloth processed by a patented method which gives a non-vibratory wall, thereby increasing the output of the horn without loss due to wall vibration. Supplied for indoor use (DeLuxe type) and for outdoor use (Stormproof type)—guaranteed for life in all kinds of weather and temperature.

"All Aluminum" Trumpets are made of heavy gauge aluminum spinning with rolled beaded edge and cast aluminum throat sections.

"Unbreakable" Trumpets are made of heavy gauge aluminum spinning reinforced and damped with Patented Racon Acoustic Material to prevent wall vibration.

Larger sizes are useful for chime systems, airports, stadiums, parks, playgrounds, music festivals, for both excellent speech and music. Smaller sizes for railroad and bus terminals, waiting rooms, factories.

CACCHENC	specen an								
Model No.	Air Column (length)	Units Required	Cut-off (cycles)	Distribution Angle	Bell Diam. 30″	Material Unbreakable	Net Weight 21 lb.	Code REGON	List Price \$121.00
ST-415A	6'	1	115	45 °		Unbreakable	23 lb.	REGAY	129.50
DT-425A	61	2	115	50°	30"		20 lb.	RECUR	200.00
QT-444A	6'	4	115	50°	30"	Unbreakable		RIDER	95.00
ST-414A	6'	1	115	45 °	30"	Stormproof	23 lb.		103.50
DT-424A	6'	2	115	50°	30"	Stormproof	25 lb.	RYDOX	
ST-417A	6'	1	115	45°	30"	All Aluminum	19 lb.	RHINO	87.50
DT-427A	Ğ'	9	115	50°	30"	All Aluminum	21 lb.	RHOMB	96.00
ST-414B	6'	1	115	45°	30"	DeLuxe	18 lb.	RHYME	79.50
-	6'	5	115	50°	30"	DeLuxe	21 lb.	RYPAN	88.00
DT-424B		2 1	145	50°	25"	Unbreakable	15 lb.	REFIX	93.50
ST-416A	41/2	1		50°	25"	Stormproof	18 lb.	RACEY	71.00
ST-412A	41/2'	1	145		25 25″	All Aluminum	11 lb.	RIANT	65.00
ST-413A	41/2'	1	145	50°		All Aluminum	16½ lb.	RIBES	73.50
DT-423A	4½'	2	145	55°	25"		16 lb.	RANCH	52.50
ST-412B	41/2'	1	145	50°	2 5″	DeLuxe		RENEW	50.00
ST-411A	31/2'	1	195	50°	22''	Stormproof	12 lb.	REPEX	35.00
ST-410A	31/2'	1	195	50°	22''	All Aluminum	71b.		
ST-411B	31/2'	1	195	50°	22''	DeLuxe	10 lb.	REMIT	35.00
ST-251A	2'	1	250	55°	12"	Stormproof	$2\frac{1}{4}$ lb.	RISAT	17.50
ST-251B	2'	î	250	55°	12"	All Aluminum	2 lb.	RIMAD	15.00
ST-251C	2'	1	250	55°	12"	DeLuxe	1¾ lb.	RIKAL	12.50
31-2010	4		200			2 (1) 1 - Jack ak	a above of 250	not on additional	

Note: All trumpets supplied on request with ratchet swivel mounting bracket at a charge of 35c net ea. additional.

40

CELLULAR HORNS

This series of tweeters provides an economical and effective method of extending the range of conventional cone speakers. When used in conjunction with any welldesigned 12"-15" cone speaker, a uniform response range is provided, from the lowest frequency of the cone to the limits of present-day program material. Response is essentially flat to 12,000 cycles, with usable output to 15,000 cycles. Cellular horn design permits wide angle distribution. All models must be used with a crossover network for optimum performance. The networks listed below are recommended and when employed, any of the tweeter models may be used with amplifiers having an output rating to 25-30 watts.

CHU-2

DHU-1

Model No. CHU-1 CHU-2	High Freq. Speaker Two Cell Horn Two Cell Horn	Freg. Range 900-12000 900-12000	Dispersion Horizontal 100° 100°	Angle Vertical 50° 50°	Material Cloth & Casting Casting	Code RACAM RALUX	List Price \$30.00 37.50
-----------------------------	--	---------------------------------------	--	---------------------------------	--	------------------------	--------------------------------

CROSSOVER NETWORKS

Model No. CON-15R CON-20	Description Variable Audio Taper Resistor Capacitor N Variable Audio Taper Resistor Capacitor In	Code RAFIR RADUX	List Price \$11.00 22.50		
•• • • •	COMPLETE REPR	RODUCERS			
Model No. CG-95 CG-115	Cellular Grand 5-Watt Cellular Grand 20-Watt	Response 70-12000 60-12000	Size 11" x 15" x 11" deep 15" x 21" x 12" deep	List Price \$ 94.50 115.00	

High Freq. Cellular Tweeter Assembly with boxed network in beautiful metal case 900-12000

15" x 21" x 12" deep 115.00 12" x 8" x 12" deep 51.00

NEW! RACON MICROPHONE STANDS

All floor models have heavy cast iron base finished in black crinkle. All tubing of brass with heavy wall thickness and burnished chromium plated finish. Uses 5%" inner tubing and 7%" outer tubing. Table and banquet models use loaded heavy spun steel bases with special turned-in beading -will not scratch the finest polished table top.

RACON LATEST IMPROVED CLUTCH ACTION

A TOUCH to move the extension tubing up or down. Set in any position. No slipping, no wearing of fibre bushings, no turning and tightening of clutches, no turning of thumb screws to hold position of mike.

Special Improved Clutch supplied as part of mike stand or supplied as extra part to be added to old or new microphone stand to convert to latest type; merely remove old clutch arrangement and screw latest device to outer tubing for permanent adjustment.

Model No. FS-10-12 Height Net List Model No. FS-8-10 Model No. Base Clutch Price Туре Adjustment Weight Code FS-10-12 12''Standard Adjustable Floor 35"-65" 14 lbs. REFAL \$11.00 12" FS-10-12S *Special Adjustable Floor 35"-65" 14 lbs. REFAX 13.50 10" FS- 8-10 Standard Adjustable Floor 36"-66" 10 lbs. RINAL 10.00 FS- 8-10S 10" *Special 36"-66" Adjustable Floor 10 lbs. RINAX 12.50 BS-40 7 1/2 " Standard Adjustable Banquet 19"-32" 2 1/2 lbs. RIBET 7.00 TS-20 5 1/2 " Standard Adjustable Table 7"-10" 1 ¼ lbs. RODAT 5.00 TS-18 5 1/2" Standard 7″ Fixed Table 1Ь. RODAS 1 3.25 SC-3 Special Clutch, threaded to fit standard 3" RECAX 3.50 %"-27 threaded tubing

* RACON LATEST IMPROVED CLUTCH ACTION.

Copyright by U. C. P., Inc.

Model No. TS-20

Model No. SC-3

Thank You!

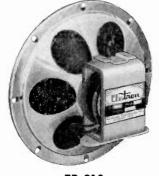
When writing for additional information or when ordering from sources of supply listed in this book, please mention

RADIO'S MASTER

ALUMINUM VOICE COILS ASSURE HIGH FIDELITY

PM-46B

PM-8E


ALNICO V PERMANENT MAGNET SPEAKERS

SIZE INCHES	CATALOG NUMBER	MAGNET WEIGHT OUNCES	VOICE COIL SIZE & IMPEDANCE	WATTS	MOUNTING HOLE CENTERS INCHES	DEPTH INCHES	LIST
			STANDARI	GROUP			
3	PM-3A	.68	3.2 ohms %16"	2-4	$2\frac{13}{16} \times 2\frac{13}{16}$	1 23/32	\$ 3.65
4	PM-4A	.68	3.2 ohms 9/16"	2-4	3 5/16 x 3 5/16	$1\frac{7}{8}$	3.85
4	PM-4B	1.00	3.2 ohms 9/1c''	2-4	3 5/16 x 3 5/16	2 1/16	4.10
4	PM-4C	1.47	3.2 ohmo 9/"	2-4	3 5/16 x 3 5/16	0.1/	4.50
5 5	PM-5A	.68	$3.2 \text{ ohms } \frac{9}{16}$	2-4	3 5/16 x 3 5/16	2 5/22	4.10
5	PM-5B	1.00		2-4	3 5/16 x 3 5/16	2 11/2 2	4.35
5 6	PM-5C	1.47	3.2 ohma 9/"	2-4	3 5/16 x 3 5 16	2 1 1/22	4.75
	PM-6B	1.00	3.2 ohms ⁹ /16	2-4	$4^{3}/_{8} \times 4^{3}/_{8}$	$2 \frac{1}{16} 2 \frac{5}{32} 2 \frac{1}{132} 2 \frac{1}{32} 2 \frac{1}{32} 2 \frac{1}{32} 2 \frac{2}{132} 2 \frac{2}{132} 2 \frac{1}{32} 2 \frac{1}{5} \frac{1}{16} 2 \frac{1}{5} \frac{5}{16} \frac{1}{3} \frac{3}{16} \frac{3}{2} \frac{3}{4} \frac{1}{6}$	4.75
6	PM-6C	1.47	3.2 ohms ⁹ /16"	2-4	$4\frac{3}{8} \times 4\frac{3}{8}$	2 21/22	5.10
6	PM-6E	2.15	3.2 ohms 3//"	4-9	$4\frac{3}{8} \times 4\frac{3}{8}$	2 15/16	5.75
6	PM-6F	3.16	3.2 ohms 3/4"	4-9	4 3/8 x 4 3/8	2 15/16	6.75
. 8	PM-8D	1.47	3.2 ohms ³ / ₄ " 3.2 ohms ³ / ₄ "	4-9	5 7/16 x 5 7/16	3 3/16	6.85
8	PM-8E	2.15	3.2 ohms $\frac{3}{4}$ "	4-9	$5^{7/16} \times 5^{7/16}$	3 3/16	7.10
8	PM-8F	3.16	3.2 ohms 3⁄4″	4-9	5 7/16 x 5 7/16	3 3/16	8.25
10	PM-10G	3.16	3.2 ohms 1"	6-12	6 ¹³ /16 x 6 ¹³ /16	4 1/2	10.25
10	PM-10H	4.64	3.2 ohms 1"	6-12	$6^{13}/16 \times 6^{13}/16$	4 ¹ / ₈ 4 ⁵ / ₈	12.50
12	PM-12G	3.16	3.2 ohms 1"	6-12	8 1/4 x 8 1/4	4 7/8	11.50
12	PM-12H	4.64	3.2 ohms 1"	6-12	$\begin{array}{c} 2 \ 13/16 \times 2 \ 13/16 \\ 3 \ 5/16 \times 3 \ 5/16 \\ 4 \ 3/8 \times 4 \ 3/8 \\ 5 \ 7/16 \times 5 \ 7/16 \\ 5 \ 7/16 \times 5 \ 7/16 \\ 5 \ 7/16 \times 5 \ 7/16 \\ 6 \ 13/16 \times 6 \ 13/16 \\ 6 \ 13/16 \times 6 \ 13/16 \\ 8 \ 1/4 \times 8 \ 1/4 \\ 8 \ 1/4 \times 8 \ 1/4 \\ \end{array}$	4 7/8 5 3/8	13.75
			PUBLIC ADDR	ESS GRO	Vr		
8	PM-8J	6.80	8 ohms 1"	6-12	$57/16 \times 57/16 57/16 \times 57/16 613/16 \times 613/16 613/16 \times 613/16 81/4 \times 81/4 81/4 × 81/4 81/4$	4 34	12.00
8	PM-8L	10.00	8 ohms 1 1/4"	12-20	5 7/16 5 7/16	4 ³ / ₈ 4 ³ / ₈	14.75
10	PM-10J	6.80	8 ohms 1"	6-12	6 ¹³ / ₆ × 6 ¹³ / ₆	4 5%	15.00
10	PM-10L	10.00	8 ohms 1 ¼"	12-20	613/1cx 613/1c	4 5/	17.75
12	PM-12J	6.80	8 ohms 1"	6-12	8 ¹ / ₄ x 8 ¹ / ₄	7 3/	16.00
12	PM-12L	10.00	8 ohms 1 1/4"	12-20	814 x 814	7 3/	19.75
12	PM-12M	14.70	8 ohms 1 1/4"	15-25	8 1/4 x 8 1/4	7 3/	27.50
12	PM-12P	21.50	8 ohms 1 1/2"	20-30	8 ¹ / ₄ x 8 ¹ / ₄	4 5/8 4 5/8 7 3/4 7 3/4 7 3/4 7 3/4 8 7/	37.50
15	PM-15P	21.50	8 ohms 1 1⁄2″	20-30	$10\frac{1}{4} \times 10\frac{1}{4}$	8 7/8	45.00
			OVAL G	ROUP		,0	
4 x 6	PM-46B	1.00	3.2 ohms %/16"	2-4	$3 \frac{5}{8} \times 4 \frac{5}{8} \\3 \frac{5}{8} \times 4 \frac{5}{8} \\4 \frac{11}{32} \times 4 \frac{11}{32} \\4 \frac{11}{32} \times 4 \frac{11}{32} \\4 \frac{11}{32} \times 4 \frac{11}{32} \\4 \frac{5}{8} \times 6 \frac{9}{16} \\4 \frac{5}{8} \times 6 \frac{9}{16$	$\begin{array}{c} 2 & 7/_{32} \\ 2 & 7/_{32} \\ 2 & 7/_{8} \\ 3 & 1/_{4} \\ 3 & 1/_{4} \\ 3 & 9/_{16} \end{array}$	4.65
4 x 6	PM-46C	1.47	3.2 ohms ⁹ /16"	2-4	3 5/2 x 4 5/2	2 7/22	5.05
5 x 7	PM-57C	1.47	J.L Onnis -/16	2-4	4 11/32 x 4 11/32	2 7/32	5.65
5 x 7	PM-57E	2.15	3.2 ohms 3/4"	4-9	4 11/32 x 4 11/32	3 1/2	6.75
5 x 7	PM-57F	3.16	3.2 ohms 3/4" 3.2 ohms 3/4"	4-9	4 11/32 x 4 11/32	3 1/2	7.75
6 x 9	PM-69D	1.47	3.2 ohms 3⁄4″	4-9	4 5/8 x 6 9/16	3 9/16	6.95
6 x 9	PM-69E	2.15	3.2 ohms 3/4"	4-9	4 5/8 x 6 9/16	3 9/16	7.85
6 x 9	PM-69F	3.16	3.2 ohms 1"	4-9	$4\frac{5}{8} \times 6\frac{9}{16}$	$3\frac{9}{16}$ $3\frac{9}{16}$	8.85
			AUTO REPLACE	MENT GR	OUP		
5 ¼	PM-5CA	1.47	3.2 ohms ⁹ /16"	2-4	4 x 4	215/20	5.15
6 ¹ /4	PM-6EA	2.15	3.2 ohms 3/4"	4-9	4 3/4 x 4 3/4	$\begin{array}{c}2 & 1 & 5 \\ 3 & 3 & 1 \\ 3 & 1 & 4 \\ 3 & 1 & 4\end{array}$	5.85
7	PM-7EA	2.15	3.2 ohms 3/4"	4-9	4 1/4 x 5 3/4	3 1/1	6.95
7	PM-7FA	3.16	3.2 ohms 1"	4-9	$\begin{array}{c} 4 \ 3/4 \times 4 \ 3/4 \\ 4 \ 1/4 \times 5 \ 3/4 \\ 4 \ 1/4 \times 5 \ 3/4 \end{array}$	3 5/16	7.95
			WIDE RANG	E GROUP			
8	PM-8JW	6.80	8 ohms 1"	6-12	$5\frac{7}{16} \times 5\frac{7}{16}$ $8\frac{1}{4} \times 8\frac{1}{4}$	4 ³ / ₈	14.25
12	PM-12MW	14.70	8 ohms 1 1/4"	15-25	91/ - 91/	7 3/4	29.50

EXTRA STRONG CONSTRUCTION PROVIDES LONGER LIFE

ED-345

ED-810

ED-6945

ELECTRO DYNAMIC SPEAKERS

SIZE	CATALOG NUMBER	FIELD RESISTANCE	VOICE COIL SIZE & IMPEDANCE	WATTS	MOUNTING HOLE CENTERS INCHES	DEPTH	LIST PRICE
			STANDARD G	ROUP			
3	ED-345	450 ohms	3.2 ohms ⁹ /16"	2-4	$2 \frac{13}{16} \times 2 \frac{13}{16}$	2 1/32 2 3/16 2 7/16 2 7/16 2 7/16 2 15/16 2 15/16 2 15/16 2 15/16	\$ 4.35
4	ED-445	450 ohms	3.2 ohms ⁹ /16" 3.2 ohms ⁹ /16"	2-4	$3 \frac{5}{16} \times 3 \frac{5}{16}$ $3 \frac{5}{16} \times 3 \frac{5}{16}$	$2\frac{3}{16}$	4.50
	ED-545	450 ohms	3.2 ohms ⁹ /16" 3.2 ohms ⁹ /16"	2-4	3 5/16 x 3 5/16	2 7/16	4.75
5 5 6 6 6	ED-510	1000 ohms	3.2 ohms 9/16"	2-4	$\begin{array}{c} 3 & 5/16 \times 3 & 5/16 \\ 3 & 5/16 \times 3 & 5/16 \\ 4 & 3/8 \times 4 & 3/8 \\ 5 & 7/16 \times 5 & 7/16 \\ 5 & 7/16 \times 5 & 7/16 \end{array}$	2 7/16	4.75
š	ED-518	1800 ohms#	3.2 ohms ⁹ /16"	2-4	3 5/16 x 3 5/16	2 7/16	4.75
6	ED-645	450 ohms	3.2 ohms 3/4"	4-9	4 3/2 x 4 3/2	2 15/16	5.50
6	ED-610	1000 ohms	3.2 ohms 3/4"	4-9	$4 \frac{3}{8} \times 4 \frac{3}{8}$	2 15/16	5.50
6	ED-618	1800 ohms#	3.2 ohms 3/4"	4-9	4 3/ x 4 3/	2 1 5/16	5.50
8	ED-810	1000 ohms	3.2 ohms ³ /4" 3.2 ohms ³ /4"	4-9	5 7/16 × 5 7/16	3 3/16	6.8
8.	ED-818	1800 ohms#	3.2 ohms 3/4"	4-9	5 ⁷ / ₁₆ x 5 ⁷ / ₁₆	3 3/16	6.8
10	ED-1010	1000 ohms	3.2 ohms 1"	6-12	613/16 × 613/16	4 5/	10.50
10	ED-1010	1800 ohms*	3.2 ohms 1"	6-12	613/16 × 613/16	4 5%	10.65
10	ED-1018	1000 ohms	3.2 ohms 1"	6-12	81/ 81/	5 3/2	12.75
	ED-1218	1800 ohms*	3.2 ohms 1"	6-12	$\begin{array}{c} 6 & 1 & 3_{16} \times 6 & 1 & 3_{16} \\ 6 & 1 & 3_{16} \times 6 & 1 & 3_{16} \\ 8 & 1_4 \times 8 & 1_4 \\ 8 & 1_4 \times 8 & 1_4 \\ \end{array}$	4 5/8 4 5/8 5 3/8 5 3/8	12.90
12	ED-1218	1000 onms *	5.2 Onms I	0-12	0 74 × 0 74	5 /8	12.0
			OVAL GRO	OUP			
4 x 6	ED-4645	450 ohms	3.2 ohms 9/16"	2-4	$3\frac{5}{8} \times 4\frac{5}{8}$	2 3/8	5.25
4 x 6	ED-4610	1000 ohms	3.2 ohms 9/16"	2-4	$3\frac{5}{8} \times 4\frac{5}{8}$	$2 \frac{3}{8}$	5.2
5 x 7	ED-5745	450 ohms	3 2 ohms 3/"	4-9	$4 \frac{11}{32} \times 4 \frac{11}{32}$	3 1/4	6.2
5 x 7	ED-5710	1000 ohms	3.2 ohms 3/4"	4-9	$411/_{32} \times 411/_{32}$	3 1/4 3 1/4	6.2
6 x 9	ED-6945	450 ohms	3.2 ohms 3/4"	4-9	$4\frac{5}{8} \times 6\frac{9}{16}$	3 9/16	7.3
6 x 9	ED-6910	1000 ohms	3.2 ohms $\frac{3}{4}''$ 3.2 ohms $\frac{3}{4}''$ 3.2 ohms $\frac{3}{4}''$ 3.2 ohms $\frac{3}{4}''$	4-9	$\begin{array}{c} 3 \ 5/8 \times 4 \ 5/8 \\ 3 \ 5/8 \times 4 \ 5/8 \\ 4 \ 11/_{32} \times 4 \ 11/_{32} \\ 4 \ 11/_{32} \times 4 \ 11/_{32} \\ 4 \ 11/_{32} \times 4 \ 11/_{32} \\ 4 \ 5/8 \times 6 \ 9/16 \\ 4 \ 5/8 \times 6 \ 9/16 \end{array}$	3 9/16	7.3
			TV REPLACEMEN	T GROU			
5	ED-5T6	60 ohms	3.2 ohms %16"	2-4	35/ + 35/	2 7/16	4.7
5	ED-5T10	100 ohms	3.2 ohms 9/16	2-4	3 5/ 3 3 5/ 6	2 7/10	4.7
	ED-46T6	60 ohms	3.2 ohms ⁹ / ₁₆ " 3.2 ohms ⁹ / ₁₆ "	2-4	3 5/2 4 5/2	2 3/2	5.2
4 x 6	ED-46T10	100 ohms	$3.2 \text{ ohms } \frac{9}{16}$	2-4	$3 \frac{5}{16} \times 3 \frac{5}{16} \\ 3 \frac{5}{16} \times 3 \frac{5}{16} \\ 3 \frac{5}{8} \times 4 \frac{5}{8} \\ 3 \frac{5}{8} \times 4 \frac{5}{8} \\ 3 \frac{5}{8} \times 4 \frac{5}{8} $	$2\frac{7}{16}$ $2\frac{3}{8}$ $2\frac{3}{8}$	5.2
4 x 6	ED-46110	100 onms	3.2 Onms %16	2-4	3 78 x 4 78	- 78	5.2
		A	UTO REPLACEME	NT GRO	UP		
4	ED-4Y6	4 ohms	3.2 ohms ⁹ /16"	2-4	3 ⁵ / ₁₆ x 3 ⁵ / ₁₆	23/16 27/16	4.5
5	ED-5Y6	4 ohms	3.2 ohms 9/16"	2-4	3 ⁵ /16 × 3 ⁵ /16	2 7/16	4.7
5 1/4	ED-5S6	4 ohms	3.2 ohms 9/16"	2-4	4 x 4	2 15/32	5.1
6 4	ED-6Y6	4 ohms	3.2 ohms 3/4"	4-9	$\begin{array}{r} 4 \ \frac{3}{8} \times 4 \ \frac{3}{8} \\ 4 \ \frac{3}{4} \times 4 \ \frac{3}{4} \end{array}$	215/32 33/16	5.5
6 1/4	ED-6S6	4 ohms	3.2 ohms 3⁄4″ 3.2 ohms 3⁄4″	4-9	4 3/4 x 4 3/4	3 3/16	5.7
7 4	ED-7Y6	4 ohms	3.2 ohms 1"	4-9	$4 \frac{1}{4} \times 5 \frac{3}{4}$	3 5/16	6.7
			3.2 ohms 1"	4-9	4 5/8 x 6 9/16	3 9/16	7.4

NOTE: * Tapped at 300 ohms.

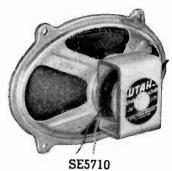
NOTE: 3 - 4 - 5 1/4 - 6 - 6 1/4 inch speakers have square type mountings.

NOTE: 5 - 8 - 10 - 12 - 15 inch speakers have round type mountings.

NOTE: Transformer Mounting Brackets and 2 drilled and tapped holes in Pot are provided on the smaller speakers.

Copyright by U. C. P., Inc.

STRONG CONSTRUCTION


.....

N. 0.11

Htak

SE625

ELECTRO DYNAMIC SPEAKERS

AUTO

STANDARD

Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Field Resistance Ohms	List Price Each	Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Field Resistance Ohms	List Price Each
SE5Y6 SE5S6 SE6S6 SE7Y6 SE7Y6A	3-4 3-4 3-4 3-4 3-4	14 3/4 3/4 3/4	2-4 2-4 4-9 4-9 4-9	4 4 4 4	\$ 5.05 5.45 5.45 7.45	SE345 SE310 SE318 SE327	3-4 3-4 3-4 3-4	9 10 9 16 9 16 9 16	2-4 2-4 2-4 2-4	450 1000 1800 2750	\$ 4.70 4.75 4.75 4.75 4.75
SE7Z6 SE69Y6	3-4 3-4	3/4 3/4 3/4 3/4	4-9 4-9	4 4 4	7.45 7.75 7.95	SE445 SE410 SE418 SE427	3-4 3-4 3-4 3-4	9 16 9 16 9 16 9 16 16 16	2-4 2-4 2-4 2-4	450 1000 1800	4.80 4.90 4.90
		OV/			1	SE545 SE510 SE518	3-4 3-4 3-4		2-4 2-4 2-4 2-4	2750 450 1000 1800	4.90 4.90 5.00
Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Field Resistance Ohms	List Price Each	SE527 SE645 SE610	3-4 3-4 3-4	⁹ 16 3/4 3/4	2-4 4-9 4-9	2750 450 1000	5.00 5.00 5.85 6.00
SE4645 SE4610 SE4618	3-4 3-4	9 16 19 19	2-4 2-4	450 1000	\$ 5.45 5.55	SE618 SE625 SE810	3-4 3-4 3-4	3/4 3/4	4-9 4-9	1800 2500	6.00 6.00
SE4627	3-4 3-4	34 344 19 245	2-4 2-4	1800 2750	5.55 5.55	SE818 SE825	3-4 3-4	3/4 3/4 3/4	4-9 4-9 4-9	1000 1800 2500	7.30 7.55 7.55
SE5745 SE5710 SE5718 SE5727	3-4 3-4 3-4	3/4 3/4 3/4 3/4	4-9 4-9 4-9	450 1000 1800	6.25 6.50 6.50	SE1010 SE1015 SE1025	3-4 3-4 3-4	1 1 1	6-12 6-12 6-12	1000 1500 2500	12.00 12.25 12.25
SE6945 SE6910	3-4 3-4 3-4	3/4	4-9	450	6.50 7.25	SE1210 SE1215 SE1225	3-4 3-4 3-4	1 1 1	6-12 6-12 6-12	1000 1500 2500	14.00 14.25
SE6918 SE6927	3-4 3-4 3-4	3/4 3/4 3/4	4-9 4-9 4-9	1000 1800 2750	7.50 7.50 7.50	SE1510 SE1515 SE1525	8 8 8	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	20-30 20-30 20-30	1000 1500 2500	14.25 27.00 28.00 28.00

UNIVERSAL OUTPUT TRANSFORMERS

Utah Catalog Number	Impedanc Primary	es Secondary	Nominal Wattage	Core Size	A	В	C C	Mounting Centers	List Price
7364 5999	Any tube combination Any tube combination	Any V.C. Any V.C.	8 12	³ / ₈ x ⁵ / ₈ ³ / ₄ x ³ / ₄	15%	x 118 x	1 %	2 3/4	Each \$2.50
		UNIVERSAL LIN	E TRANSF		-14	A 116 A	1 72	2.3/8	3:00
8747-B 8749-B	560-1000-1500-2000 ohms 500-1000-1500-2000 ohms	3-4 & 6-8 ohms 3-4 & 6-8 ohms	8 12	5% x 5%	15%			23%	2.50
		SINGLE OUTPUT	TRANSF		-10	A -16 A	1 72	2%	3.00
8770-A 8771-A 8772-A 8773-A Center tapped.	2500 ohms 5000 ohms 7000 ohms 10000 ohms*	3-4 ohms 3-4 ohms 3-4 ohms 3-4 ohms	3.5 3.5 3.5 6.5	$\frac{1}{2} \times \frac{1}{2}$	$1\frac{1}{16}$ $1\frac{5}{16}$ $1\frac{5}{16}$ $1\frac{5}{18}$ $1\frac{5}{8}$	x 113 x x 113 x	1 ¹ /4 1 ¹ /4	2 2 2 2 ³³ /4	1.45 1.45 1.45 1.90
	Catalog Number 7364 5999 8747-B 8749-B 8749-B 8770-A 8771-A 8771-A 8772-A 8773-A	Catalog Number Impedanc. Primary Primary 7364 Any tube combination 5999 Any tube combination 8747-B 560-1000-1500-2000 ohms 8749-B 500-1000-1500-2000 ohms 8770-A 2500 ohms 8771-A 5000 ohms 8772-A 7000 ohms 8773-A 10000 ohms*	Catalog Number Impedances Primary Secondary 7364 Any tube combination Any tube combination Any V.C. 5999 Any tube combination Any V.C. UNIVERSAL LIN 8747-B 560-1000-1500-2000 ohms 3-4 & 6-8 ohms 8749-B 500-1000-1500-2000 ohms 3-4 & 6-8 ohms SINGLE OUTPUT 8770-A 2500 ohms 3-4 ohms 8771-A 5000 ohms 3-4 ohms 8772-A 7000 ohms* 3-4 ohms 8773-A 10000 ohms* 3-4 ohms	Catalog Number Impedances Primary Impedances Secondary Nominal Wattage 7364 Any tube combination Any tube combination Any V.C. 8 Any V.C. 8 12 UNIVERSAL LINE TRANSF 8747-B 560-1000-1500-2000 ohms 3-4 & 6-8 ohms 8 3-4 & 6-8 ohms 12 SINGLE OUTPUT TRANSF 8770-A 8770-A 2500 ohms 3-4 ohms 3.5 8-4 ohms 3.5 8-5 8771-A 5000 ohms 3-4 ohms 3.5 8-4 ohms 3.5 8-5 8772-A 7000 ohms* 3-4 ohms 3.5 7-4 ohms 3.5	Catalog Number Impedances Primary Impedances Secondary Nominal Wattage Core Size Inches 7364 5999 Any tube combination Any tube combination Any V.C. 8 3% x 5% 3% 7364 5999 Any tube combination Any tube combination Any V.C. 12 3% x 5% 3% 8747-B 560-1000-1500-2000 ohms 500-1000-1500-2000 ohms 3-4 & 6-8 ohms 3-4 & 6-8 ohms 8 5% x 5% 3% 8749-B 500-1000-1500-2000 ohms 500-1000-1500-2000 ohms 3-4 & 6-8 ohms 3-4 & 6-8 ohms 8 5% x 5% 3% 8770-A 2500 ohms 8771-A 3-4 ohms 3-4 ohms 3.5 1/2 x 1/2 3% 8771-A 2500 ohms 8773-A 3-4 ohms 3-4 ohms 3.5 1/2 x 1/2 3% 8773-A 10000 ohms 8773-A 3-4 ohms 3-5 3.5 1/2 x 1/2 3%	Catalog Number Impedances Primary Impedances Secondary Nominal Wattage Core Size Inches A Inches 7364 Any tube combination Any tube combination Any V.C. 8 3/4 5/4 2/5/4 5999 Any tube combination Any V.C. 12 3/4 3/4 2/5/4 5999 Any tube combination Any V.C. 12 3/4 3/4 2/5/4 8747-B 560-1000-1500-2000 ohms 3-4 & 6-8 ohms 12 3/4 3/4 2/3/4 8749-B 500-1000-1500-2000 ohms 3-4 & 6-8 ohms 12 3/4 3/4 2/3/4 8770-A 2500 ohms 3-4 & 6-8 ohms 3.5 1/2 1/5 8771-A 5000 ohms 3-4 ohms 3.5 1/2 1/3 8772-A 7000 ohms 3-4 ohms 3.5 1/2 1/3 8773-A 10000 ohms* 3-4 ohms 3.5 1/2 1/3	Catalog Number Impedances Primary Impedances Secondary Nominal Wattage Core Size Inches Dimension A B 7364 Any tube combination Any tube combination Any V.C. 8 3/4 × 5/4 15/4 × 11/1 5999 Any tube combination Any V.C. 12 3/4 × 3/4 × 12/1 × 12/2 × 12/4 × 12/1 × 12/1 × 12/1 × 12/1 × 12/1 × 12/1 × 12/1 × 12/1 × 12/2 13/2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TUBE APPLICATIONS:

8770-A: 25L6, 25B6, 35L6, 35B5, 35A5, 50B5, 50L6; 8771-A: 6V6, 25A6, 6AQ5; 8772-A: 6F6, 6K6, 6AC5; 8773-A: PP6F6, PP6K6, PP6V6, PP6AC5 • See Next Page for Utah's PM Speakers •

....

ALUMINUM VOICE COILS

SP3A

SP7EA

SP12LW

Ontimum

Audio Watts

1-2

2-4

2-4

2-4

2-4

2-4

2-4

2-4

2-4

2-4

2-4

2-4

4-9

4-9

4-9

4-9

4-9

6-12

12-20

6-12

6-12

6-12

12-20

6-12

6-12

6-12

12-20

12-20

List

Price Each

\$ 3.65

3.65

3.95

4.40

3.90

4.22

4.58

4.16

4.49

4.85

5.27

5.69

6.24

6.93

7.00

7.45

8.95

13.32 14.75

10.45

12.50

15.20

18.25

11.75

14.00

16.25

17,50

20.75

Alnico V

Weight Ounces

.68

.68

1.00

1.47

.68

1.00

1.47

.68

1.00

1.47

1.00

1.47

2.15

3.16

1.47

2.15

3.16

6.80

6.80

3.16

4.64

6.80

10.00

3.16

4.64

6.80

6.80

10.00

STANDARD

Voice Coil

Diameter

Inches

.2.

16 16

18 18

16

016 016 016

16

10

10

10

18

3⁄4

3⁄4 3⁄4

3⁄4 3⁄4

8/4

11/4

1

1

1

1

1

1

1

11/4

11/

11/4

PERMANENT MAGNET SPEAKERS

Utah

Catalog Number

SPZA

SP3A

SP3B

SP3C

SP4A

SP4B

SP4C

SP5A

SP5B

SP5C

SP6B

SP6C

SP6D

SP6E

SP6F

SP8D

SP8E

SP8F

SP&J

SP8K

SP10G

SP10H

SP10.I

SP10L

SP12G

SP12H

SP12J

SP12K

SP12L

Voice Coil

I mpedance Ohms

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

8

3-4

3-4

3-4

8

3-4

3-4

3-4

8

8

Αυτο

Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Alnico V Weight Ounces	List Price Each
SP5DA	3-4	3/4	4-9	2.15	6.95
SP6EA	3-4	3/4	2-4	1.47	\$ 5.65
SP69D	3-4	3/4	4-9	2.15	7.95
SP7EA	3-4	3⁄4	4-9	1.47	7.90

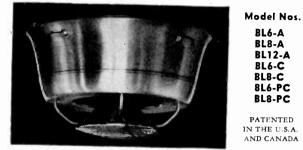
OVAL

Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Alnico V Weight Ounces	List Price Each
SP46B	3-4	P 16	2-4	1.00	\$ 4.75
SP46C	3-4	10	2-4	1.47	5.70
SP57C	3-4	18	2-4	1.47	6.20
SP57E	3-4	3/4	4-9	2.15	7.45
SP57F	3-4	8/4	4-9	3.16	8.50
SP69D	3-4	3/4	4-9	1.47	7.90
SP69E	3-4	3/4	4-9	2.15	8.45
SP69F	3-4	3/4	4-9	3.16	8,95

WIDE RANGE and PA

Utah Catalog Number	Voice Coil Impedance Ohms	Voice Coil Diameter Inches	Optimum Audio Watts	Alnico V Weight Ounces	List Price Each
SP&JW	8	1	6-12	6.80	\$15.10
SP12LW	8	11/4	12-20	10.00	24.25
SP12M	8	11/4	15-25	14.70	29.50
SP12P	8	11/2	20-30	21.50	39.50
SP15P	8	11/2	20-30	21.50	47.50
SP15R	8	2	30-40	31.80	62.50

OUTDOOR


							INTER	-сомм	UNICAT		
Utah	Voice Coil	Voice Coil	Optimum	Alnico V	List	1					
Catalog Number	Impedance Ohms	Diameter Inches	Audio Watts	Weight Ounces	Price Each	Utah Catalog	Voice Coil Impedance	Voice Coil Diameter	Optimum Audio	Alnico V Weight	List Price Each
SP4CO	3-4	10 10	2-4	1.47	\$ 5.25	Number	Ohms	Inches	Watts	Ounces	Each
SP5CO	3-4	16	2-4	1.47	5.60	SP4A1	44	10	2-4	.68	\$ 4.60
SP6EO	3-4	3/4	4-9	2.15	7.00	SP5AI	44	10	2-4	.68	4.85

See Preceding Page for Utah's EM Speakers

Copyright by U. C. P., Inc.

"Heard Everywhere" FLUSH MOUNTING CEILING BAFFLES WITH "FLOATING CONICAL ACTION"

BL6-A BL8-A BL12-A BL6-C BL8-C 8L6-PC BL8-PC PATENTED IN THE U.S.A.

List

Price

DIMENSIONS OF VARIOUS MODEL BAFFLES

6" models — 984" at top x $4\frac{1}{4}$ " deep. 8" models — $13\frac{1}{2}$ " at top x $4\frac{1}{8}$ " deep.

12.	models - 18%"	at top x 8	" deep.	
	Sp	kr. Size		
Model No.	Type	for Battle	Material	Finish
BL6 - A	Fluch Mounting	611	A las maines	Catin.

BL6 - A BL6 - A		Mounting	Aluminum	Satin	13.00
BL8 - A BL8 - A	Flush	Mounting 6'' Mounting 8'' Mounting 8''	Aluminum Aluminum Aluminum	Pol'd Satin Pol'd	$13.50 \\ 22.00 \\ 24.00$
BL12-A BL12-A	Flush	Mounting 12" Mounting 12"	Aluminum Aluminum	Pol'd Satin	29.00 27.00

DESCRIPTION OF BAFFLE

The flush mounting ceiling baffle is designed to mount flush to the ceiling quickly by inserting 4 toggle bolts, completely sealing back of housing to the ceiling. This baffle is recommended for normal ceilings. Uniform sound reproduction at 360° giving CONTROLLED SOUND evenly in all directions. Baffle is made of spun metal, of either 18 or 20 gauge aluminum or copper. Heavy "4" jute lines interior with louvres on sides for proper pressure relief.

ARCHITECTS' SPECIFICATIONS

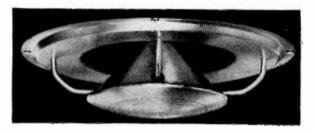

This speaker baffle housing contains a half inch flange at top with 4 holes evenly placed for proper mounting to the ceiling. The lower metal cone is mounted to the housing by 4 one-quarter inch formed metal rods having 4 hard rubber grommets preventing metallic resonance. The upper part of the rods are threaded and mount through a tempered masonite speaker ring. All hardware furnished complete with each baffle.

Recessed Wall Type Directional Speaker Baffles

DESCRIPTION

This speaker trim ring is made of spun metal, 18 or 20 gauge aluminum or copper. Flocked metal color grille cloth protects speaker conemasonite ring with 4 round head screws mounts through housing for mounting speaker. Housing has a depth of 1/2" and a half inch flange for mounting housing to wall.

Model No.	Type	Spkr. Siz for Baffle		Finish	List Price
RS6 - A R RS6 - A R RS8 - A R RS8 - A R RS8 - A R RS12-A R	ecessed ecessed ecessed ecessed ecessed	Wall 6" Wall 6" Wall 8" Wall 8" Wall 8" Wall 12"	Aluminum Aluminum Aluminum Aluminum Aluminum	Satin Pol'd Satin Pol'd Satin Pol'd	2.40 2.65 11.00 14.00 14.00 16.00



Model	Nos.
RS8-C	RS6-A
RS8-PC	RS8-A
RS12-C	RS12-A
RS6-PC	RS6-C

FEATURES

Concealment of speakers. Easily installed, Finished to match surroundings.

For Low Ceilings

Model Nos: AL12-C AL12-PC AL6-PC AL8-PC AL6-A AL8-A AL12-A AL6-C AL8-C

DIMENSIONS OF VARIOUS MODEL BAFFLES

The overall diameter at top of housing flange:

- $6^{\prime\prime}\ model = 95^{\prime\prime}\ in\ diameter,\ depth\ 1^{\prime\prime}_{2^{\prime\prime}}$ $8^{\prime\prime}\ model = 115^{\prime\prime}_{4^{\prime\prime}}\ in\ diameter,\ depth\ 1^{\prime\prime}_{2^{\prime\prime}}$ $12^{\prime\prime}\ model = 165^{\prime\prime}_{2^{\prime\prime}}\ in\ diameter,\ depth\ 1^{\prime\prime}$

DESCRIPTION

The false ceiling speaker housing is made of either 18 or 20 gauge aluminum or copper. Housing is spun metal, having a depth of $\frac{1}{2}$ " and a half inch flange for mounting housing to ceiling, The lower metal cone is mounted to the housing by 4 one-quarter inch formed metal rods having 4 hard rubber grommets preventing metallic resonance. The upper part of the rods are threaded and mount through a tempered masonite speaker wing. All hardware furnished complete with each baffle. The sound coverage of this baffle is approximately 360°.

Model No.	Тур		. Size affle Mater	ial Finish	Price
AL6 - A AL8 - A AL8 - A AL12-A	False False False False	Ceiling Ceiling Ceiling Ceiling Ceiling Ceiling	8" Alumin 8" Alumin 2" Alumin	um Pol'd um Satin um Pol'd um Satin	6.50 7.00 13.50 15.00 17.09 18.09

LOWELL METAL PRODUCTS CORPORATION ST. LOUIS, MO., U.S.A.

JIM LANSING SIGNATURE **SPEAKERS**

JAMES B. LANSING SOUND, inc.

JIM LANSING SIGNATURE SPEAKERS are engineered and precision fabricated to supply without compromise the finest loud speaker performance possible.

GENERAL PURPOSE SPEAKER SPECIFICATIONS

D-130 ---- 15 INCH

Power Input
Impedance (nominal).15 Ohms
Resonant Frequency 55 Cycles
Outside Diameter15 ³ / ₁₆ ins.
Depth 55% ins.
Field Perm. Mag.
Voice Coil Diameter4 ins.
Mounting Dimen. R.M.A. Std.
Net Weight

LIST PRICE \$77.50

D-131 - 12 INCH

Power Input
Impedance (nominal).16 Ohms
Resonant Frequency 65 Cycles
Outside Diameter
Depth5 ins.
Field Perm. Mag.
Voice Coil Diameter4 ins.
Mounting Dimen. R.M.A. Std.
Net Weight17 pounds
LIST PRICE \$69.50

208 --- 8 INCH 19 Watte Deriver Immed

Power Input14 Watts
Impedance (nominal).8 Ohms
Resonant Frequency 90 Cycles
Outside Diameter
Depth
Field Perm. Mag.
Voice Coil Diameter2 ins.
Mounting DimenR.M.A. Std.
Net Weight 4 pounds

LIST PRICE \$34.50

All Jim Lansing general purpose speakers utilize exceedingly large Alnico V Permanent Magnets, edge wound aluminum ribbon voice coils, aluminum high frequency center diaphragm vented to the rear to eliminate non-linear compression effects, and heavy, extremely rigid, cast aluminum frames.

D-130A 15 INCH LOW FREQUENCY UNIT

Power Input 25 Watts Impedance (nominal).16 Ohms Resonant Frequency 40 Cycles Outside Diameter 15 3 ins. 5% ins. Depth Perm. Mag. Field Voice Coil Diameter...4 ins. Mounting Dimen. R.M.A. Std. Net Weight 19 pounds

LIST PRICE \$97.50

D-175H HIGH FREQUENCY UNIT AND HORN Power Input....12 Watts Peak above 1200 C.P.S. --4 dbattenuator built into N-1000 Network permits use in 25 Watt system Impedance (nominal).16 Ohms Perm. Mag. Field Outside Diameter 41/2 ins. Weight _____11 pounds

LIST PRICE \$140.00

DIVIDING NETWORK

Input Impedance16 Ohms
Output Impedance 16 Ohms (each section)
Net Weight

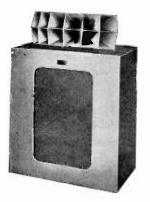
LIST PRICE \$48.00

D-1001 TWO-WAY KIT INCLUDES THE FOLLOWING UNITS: ONE D-130A, ONE D-175H AND ONE N-1000 LIST PRICE \$275.00

The D-1001 Kit provides the basic Jim Lansing Two-Way system for use where critical listeners demand flawless reproduction of the entire frequency range.

	CABINETS	
D-1000	Gray utility cabinet with D-1001 components installedList F	Price \$365.00
D-1002	Dark Mahogany furniture cabinet with D-1001 components installed List F	Price 395.00
D-1003	Bleached Mahogany furniture cabinet with D-1001 components installed List F	Price 410.00
D-1002 D-1003 D-1004	Corner cabinet, dark Mahogany, two D-180A, one D-175H and N-1000 installed List F	Price 497.50
D-1005	Corner cabinet, bleached Mahogany, two D-130A, one D-175H and N-1000 installed List F	Price 512.50
C-502D	Dark Mahogany furniture cabinet with D-130 speaker installed List F	Price 177.00
C-503D	Dark Mahogany furniture cabinet with D-131 speaker installed List F	Price 169.00
C-504D	Bleached Mahogany furniture cabinet with D-130 speaker installed List F	Price 192.00
C-505D	Bleached Mahogany furniture cabinet with D-131 speaker installed List F	Price 184.00

Speaker Systems for


Theater and Home

SPEAKERS

IRU SONIC

MODEL P-52A Coaxial Speaker

Combines in a single assembly a Low-Frequency unit of the cone type, a High-Frequency unit of the multicellular type and the complementary 2-channel crossover. Ideal for AM and FM reception, broadcast station monitoring and sound-motion picture reproduction. Electrical Characteristics: (1) Power input: 20 Watts; (2) Crossover Frequency: 12,000 C.P.S.; (3) High-Frequency distribution: $80^{\circ} \times 40^{\circ}$; (4) Field Excitation: $6\frac{1}{2}$ lb. Alnico 5; (5) Input impedance: 16 Ohms; (6) Frequency response: \pm 5 db from 40 to 14,000 C.P.S.; (7) Cone resonance: 41 cycles.

Physical Characteristics: (1) Overall Diameter: $15\frac{1}{6}$ "; (2) Baffle Opening: $13\frac{1}{2}$ "; (3) Depth behind mounting panel 10"; (4) Net Weight: 30 Pounds.

Subdues deficiencies both in the set itself and in source material. Built with the same precision limits and same engineering skill found in all Tru-Sonic units. Especially designed as a replacement speaker . . . Full 15 watts of power handling capacity. Seamless molded curvilinear cone of new design. Two acoustic sections, one for reproducing lowest bass, and one for extended high tones. Reproducing range 40 to 14,000 cycles. Powerful Alnico 5 magnet. Greatest electro-acoustic transfer efficiency and widest range of any speaker utilizing one voice coil. 90° High-Frequency dispersion. Silver Spiral differential diffuser. Specifications: (1) Power Input: 15 Watts; (2) 2½ lb. Alnico 5; (3) Input Impedance: 8 or 16 Ohms; (4) Overall Diameter: 15½"; (5) Net Weight: 23 lbs. . . . Licensed under Western Electric Patents.

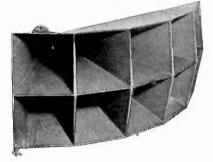
Price, Model P-52FR, 15" dia. \$80; Model P-22FR, 12" dia. \$70 List. MODEL P-52HF Separate 2-Way System

In order to provide a de luxe presentation for the most discriminating audience, Stephens engineers have designed the Tru-Sonic Separate 2-Way Speaker System. Space requirements are greater than for the Tru-Sonic Coaxial unit, for in order to extend the tone range and permit the ultimate in realism, larger physical proportions are necessary. The P-52HF is standard in the Tru-Sonic Model 52U Utility Cabinet. Components consist of a Tru-Sonic Type P-15 High-Frequency Driver, a Model P-52LX Low-Frequency Driver, a Series 800 High-Frequency Cellular Horn and a Model 800X Crossover. *Electrical Characteristics*: (1) Power input: 20 Watts; (2) Crossover frequency: 800 cycles; (3) Number of high-frequency cells: 8, 10 or 12 (See below); (4) 6½ lb. Alnico 5; (5) Input impedance: 16 Ohms; (6) Cone resonance: 41 cycles; (7) Frequency response: ± 5 db from 40 to 14,000 cycles. Weight: 130 lbs. Licensed under Western Electric Patents..... Price, with 2x4 horn \$320, with 2x5 horn \$332.50, with 2x6 horn \$345, with 2x4 horn in 52SD Cabinet \$440 List. **MODEL P-52LX and P-22L Low-Frequency Drivers**

Low-Frequency driver components for Tru-Sonic Separate 2-Way Systems. (Model P-52LX illustrated and described. P-22L same as P-52LX except 12" cone diameter and 2½-lb. magnet.) Powerful 15" speaker with curvilinear-designed, highly efficient seamless moulded and moisture-resistant cone. Suspension compliance has been carefully calculated to promote ideal piston-like action of the diaphragm. Effective driving area is approximately 125 sq. inches. Voice coil is 2" in diameter, treated with a refined temperature-resistant varnish, and wound with highly conductive copper wire. Electrical Characteristics: (1) Power Input: 20 Watts; (2) 4 lb. Alnico 5;(3) Input Impedance: 8 or 16 Ohms; (4) Cone Resonance: 41 cycles. Physical Characteristics: (1) Overall Diameter: 15 ½";(2) Baffle Opening: 13 ½";(3) Depth behind Mounting Panel: 8 ½"; (4) Net Weight: 25 Pounds; (5) Mounting Dimensions: RMA Standard. Licensed under Western Electric Patents . . Price, Model P-52LX \$80; P-22L \$70 List.

STEPHENS MANUFACTURING CORPORATION

Speaker Systems for


Theater and Home

Components for 2-Way Speaker Systems


Several systems of different crossover frequency and size may be assembled from the components shown here. However the same series of horns must be used with crossover networks of the same series number. For example, P-30 and P-40 Drivers should be used only with Series 400 and 600 Horns and Crossovers. The P-15 Driver is used with the Series 800 Horns and Crossovers only. It is desirable to use the lowest crossover and complementary components that the individual's space limitations and economy will permit. On the Series 400-600 Crossovers 2L-F, 8 ohm drivers, preferablyModelP-52LX, are recommended.

HIGH-FREQUENCY HORNS

In order for the listener who is off the axis to receive his balanced proportion of high to low tones, the high-frequency beam must be properly deflected. This is accomplished in Tru-Sonic standard High-Frequency Horns by utilizing multiple cells nested together so as to provide coverage through a large horizontal angle and a smaller vertical angle. The normal listening area is entirely served in this manner with high frequencies. The High-Frequency Horn serves an additional important purpose: its design provides proper acoustic loading on the high-frequency unit without which it cannot operate efficiently.

SERIES 400

Model 436H Horn and Y Throat. For larger theaters. Takes 2 P-30 or P-40 Drivers. 400 cycle, 3 x 6 configuration, 60° x 120° dispersion. 56"W x 281/2"D x 33"H overall. Weight: 135 lbs. **Price, \$340 List.**

Both Model 425H and 436H Horns take Model 400X Crossover. Size of each 400 cycle cell: 8" x 8" x 29". Intercepts 20° solid angle.

SERIES 600

Model 625H Horn. Takes P-30 or P-40 Driver and Model 600X Crossover. 600 cycle, 2 x 5 configuration, 40° x 100° dispersion. 23½"W x 16½"D x 11½"H overall. Size of each 600 cycle cell: 5" x 5" x 15". Intercepts 20° solid angle. Weight: 35 lbs......Price, \$110 List.

SERIES 800

Model 824H Horn. 800 cycle, 2 x 4 configuration, 40° x 80° dispersion. 16"W x 10"D x 111/2"H overall. Weight: 15 lbs. **Price, \$50 List.**

Model 825H Horn. 800 cycle, 2 x 5 configuration, 40° x 100° dispersion. 18"W x 10"D x $11\frac{1}{2}"H$ overall. Weight: 18 lbs. **Price, \$67.50 List.**

Model 826H Horn. 800 cycle, 2 x 6 configuration, 40° x 120° dispersion. 20"W x 10"D x 11½"H overall. Weight: 20 lbs. **Price, \$75 List.**

All Series 800 Horns take a P-15 Driver and Model 800X Crossover. Size of each 800 cycle cell: $4'' \times 4'' \times 11''$. Intercepts 20° solid angle.

STEPHENS MANUFACTURING CORPORATION

Theater and Home

Components for 2-Way Speaker Systems

HIGH-FREQUENCY DRIVERS

As generators of acoustic power in the upper end of the audible spectrum, the Tru-Sonic High-Frequency units present a perfect blend of sound-engineered design and listener preference. Acoustic response, in combination with Low-Frequency units, has been adjusted to levels picked as being most pleasing to a large majority of selected listeners. Actual listening tests on scores of representative groups of people have dictated the design of the acoustic proportions in the critical compression chamber.

TYPE P-40 40-Watt PM. Range: 350-16000 cycles. 16 Ohms. Dia. 7", Depth overall 5½". Weight: 35 lbs.

Price, \$200 List

 TYPE P-30

 30.Watt PM. Range: 350-16000 cycles.

 16 Ohms. Dia. 6", Depth overall 4".

 Weight: 25 lbs.

Price, \$120 List

20-Watt PM. Range: 500-16000 cycles. 16 Ohms. Dimensions: 4" x 6" x 3³/₄" overall. Weight: 12 lbs.

Price, \$70 List

LOW-LOSS CROSSOVERS

By means of the Tru-Sonic Dividing Network, or electrical crossover, the Low-Frequency reproducer receives the lower portion of the audible spectrum. The High-Frequency reproducer receives the energy carrying the treble tones and distributes them throughout the entire listening area without loss of level. Enclosed in non-metallic containers to eliminate distortion with varying frequency, the design of these crossovers allows 12 db attenuation per octave, the standard in universal practice. Attenuation is 3 db at crossover frequency; phase rotation is 270°. Low insertion loss through perfected construction is $\frac{1}{2}$ db. Input impedance 16 ohms, low output impedance 16 ohms, high output impedance 16 ohms on all models.

MODEL 400X 400 cycle, up to 80 watts. 6"W x 4"D x 4"H overall. Weight: 10 lbs. Price, \$95 List

MODEL 600X 600 cycles, up to 80 watts. 5"W x 3¾"D x 3¾"H overall. Weight: 8 lbs. Price, \$67.50 List

MODEL 800X 800 cycle, up to 40 watts. 5"W x 3¾"D x 3¾"H overall. Weight 6 lbs.

Price, \$45 List

STEPHENS MANUFACTURING CORPORATION

TRU SONIC

Speaker Systems for

De Luxe 2-Way Systems and Cabinets

MODEL P-63HF: Specially designed for reproduction of the very highest quality source material; ideal for theaters and auditoriums up to 1750 seats. Over-size components make possible low level operation with negligible distortion for the de luxe FM station monitor room.

Conservatively rated at 30 watts to permit full dynamic impact at high levels of operation, it employs a 600 cycle crossover to relieve the two Model P-52LX, 1.5", 20-watt low frequency drivers of high frequencies and consequent inter-modulation and cone breakup. Radical design permits horn loading down to 60 cycles. Special chamber behind drivers reinforces bass to 30 cycles. 2 x 5, 10 cell, 100° x 40° H-F dispersing horn. Model P-30,

MODEL P-63HF-SD

2-Way System in Period Cabinet, mahogany or bleached blonde (please specify). 30 cycle, 36^{"W} x 25^{"D} x 45½^{"H}. Wt.: 245 lbs. **Price, \$807.50 List.**

MODEL 52D

De Luxe Cabinet in either mahogany or bleached blonde (please specify). 6 cu. ft., 42 cycle, 15" baffle. 23½"W x ió½"D x 34½"H. Weight: 75 lbs. Price, \$130 List 30-watt H-F driver extends range beyond 15,000 cycles with efficiency over 50%. Total Alnico 5 magnet over 11 pounds. Equipped with H-F attenuator to perfectly balance room acoustics. Size, 25" deep by 36" wide by 45" high, allows this unit to be employed under practically any space limitation. Input: 16 ohms.

Wt.: 245 lbs. Price, \$675 List.

MODEL 52SD

Period De Luxe Cabinet, mahogany or bleached blonde (please specify). 8 cu. ft., 37 cycle, 15" baffle. 28³/₄"W x 19"D x 36¹/₂"H. Weight: 80 lbs.

Price, \$180 List. With P-52A Coaxial Speaker, \$385 List. With P-52HF 2-Way System,

\$440 List.

MODEL 52U

Gray Utility Cabinet, wine flocked grill, 3/4" Pine Plywood, 6 cu. ft., 42 cycle (specify 12" or 15" baffle). 231/2"W x 17"D x 32"H. Weight: 70 lbs. Price, \$60 List

Theater and Home

MODEL P-63HF

MODEL 52SD

MODEL 327 Portable cabinet in black leatherette with chrome hardware (specify 12" or 15" baffle). 18"W x 12"D x 233/4"H. Weight: 28 lbs.

Price, \$75 List

STEPHENS MANUFACTURING CORPORATION

C-34

Non-resonant - Stormproof - Uniform response - Rugged construction

The utmost in performance can be obtained from these **be**w, non-resonant reflex projectors. All resonance is eliminated by fibre gasket seals and special rubber rim which dampens rim vibration. The bracket mounting assembly is securely fastened to a main body steel casting which guarantees long life under extreme conditions of mechanical strain. All spinnings are of weather-resistant, heavy gauge aluminum, finished in a high lustre gray enamel.

-adding gray	CITORITOI.					
MODEL	Air Column	Dispersion	Low Frequency	Length	Diameter	LIST PRICE
DR-32 DR-42 DR-54 DR-72	$2\frac{1}{2}$ ft. $3\frac{1}{2}$ ft. $4\frac{1}{2}$ ft. 6 ft.	75° 80° 90° 100°	175 c.p.s. 135 c.p.s. 105 c.p.s. 85 c.p.s.	12 in. 15 in. 18 in. 25 in.	14 in. 21 in. 26 in. 31 in.	\$23.50 28.00 40.00 60.00

NEW ATLAS "ALAVITIT-V-FILITS" PAGING & TALK-BACK SPEAKERS Complete with unbreakable super-efficient "V-PLUS" Driver Unit

These speakers include the newly developed, unbreakable, hermetically-sealed driver units using the Alnico "V-PLUS" magnetic circuit. They offer a maximum of efficiency as a reproducer, and the utmost in performance as a microphone, in talk-back circuits. The new, improved ball swivel mounting bracket permits quick and simple directional adjustment in every position, horizontal and vertical. All aluminum construction, finished in high lustre gray enamel.

TP-15V 15½ in. 8½ in. \$44.00 TP-24V 22 in. 10 in. 49.50	MODEL	Overall Length	Bell Diameter	LIST PRICE
		00 .		

ATLAS SOUND CORPORATION

MODEL SS-3

with

HM-2

SPEAKER SUPPORT STANDS

Both models extend from five to ten feet. Heavy steel construction finished in gray enamel and cadmium plating. PS-1 top fitting supplied. The HM-2 permits the use of three "DR" Projectors on a single support stand.

MODEL. 55.2 SS-3 HM-2

30.00 15.00

LIST PRICE

\$35.00

PIPE STANCHION FITTING

"DR" re-entrant or "RC" radial "U" brackets adapted to 3/4" pipe fittings. This steel adaptor has holes properly located to match holes in "U' bracket. All mounting bolts supplied. Female 3/4" pipe thread.

MODEL PS-1

LIST PRICE \$2.00

TWO UNIT TO ONE PROJECTOR ADAPTOR

When it is found necessary to obtain the greatest possible power output from a single projector the H-2U is recommended This device permits the use of two driver units with any type of projector. Construction: Cast aluminum. All threads 13/8"-18. LIST PRICE \$10.00 MODEL H-2U

SPEAKER POWER **VOLUME CONTROL**

For adjusting volume of individual speakers. Power handling: 10 watts constant. Complete as illustrated.

LIST PRICE \$5.00

RADIAL DRIVER UNIT PROJECTOR

- Non-resonant.
- Dual Rubber Rims.
- 100% Storm-Proof.
- Uniform 360° Coverage. ٠

The advantage of 360° coverage often per-The advantage of 360° coverage often per-mits the use of one speaker where nor-mally a multiple of directional projectors may be required. The radial projectors are of all-aluminum construction finished in a weather-proof gray enamel. Thread size 13%"-18. The use of the H-2U two-unit adaptor will double the power output for single projector high power application.

MODEL .				•	RC-36	RC-48
Air'Column					3 ft.	4 ft.
Bell Diameter					24 in.	28 in.
Overall Height						21 in.
LIST PRICE (ho	n	on	ly)	•	\$40.00	\$50.00

MARINE Midget PROJECTOR

for 5" Cone Speakers

- · Be-entrant.
- Weatherproof. .
- Efficient.
- Compact.

Will accommodate any standard 5" cone speaker. The efficient means of loading the cone

laading the cone diaphragm greatly increases the normal efficiency of any cone speaker. Offers protection against weather and mechanical abuse. Universal steel mounting bracket supplied. Bell diameter 10 inches . . Overall length 8 inches . . Finish: Gray enamel. Supplied less cone speaker unit. MODEL WX-5 LIST PRICE \$13.50

TWO-WAY ENCLOSURE for 8" Cone Speakers

The front and back wave of the speaker is utilized to assist in good sound coverage in long corridors and central locations. Adjustable wall or ceiling mounting brackets supplied. All steel finished

In gray enamel. Cloth screens on both sides. Speaker mounting screws in-cluded. Outside diameter 10"... Depth 5". MODEL TW-8 LIST PRICE \$8.25

PARABOLIC BAFFLES for 12"

Cone Speaker

All steel construction waterproof inter-lock seal between sections. All mounting bolts and hanging loops supplied. Fin-ished in gray enamel. Model . SM-12 20 in. Diam, Bell Length 18 in. Speaker Size 12 in. List Price \$14.50 \$15.50

BAFFLE MOUNTING FIXTURE

Offers convenient mounting for Parabolic Baffles. Com-plete adjustable saddle fixture and base pedestal as illustrated. MODEL ST-8

LIST PRICE \$5.25

RADIAL CONE SPEAKER PROJECTOR

for 12-inch Cone Speakers

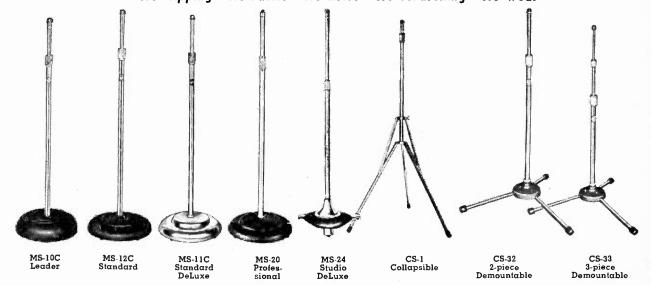
40

360° Coverage

This radial projector offers an excellent baffle for any standard 12" diameter standard cone speaker and produces smooth and uniform 360° coverage. With a good grade of cone speaker it will adequately load the reproducer down to 60 cycles. The enclosure is designed to shed water and can, therefore, be used indoors and out. Finished in gray enamel . . . Outside diameter 29 inches . . Overall height 13 inches MODEL L-360 LIST PRICE \$35.00

Copyright by U. C. P., Inc.

C-36


MODEL RC-1

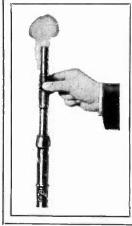
ATLAS SOUND CORPORATION

"FULL GRIP — VELVET ACTION" Microphone Stands No slipping - No rattle - No noise - No scratching - No wear

The "Full Grip" Clutch offers an extended length clutch body, permitting a secure, full-hand grip. The clutch mechanism is inner-lined with a wear-proof bakelite locking collet which grips without jamming, slipping, or sudden dropping. All bases are functionally designed to offer maximum stability for a given base weight. The maximum base mass is located at the outer periphery of the casting where the concentrated

MODEL	Weight	Base Finish
MS-10C	9 lbs.	Gray Shrivel
MS-12C	12 lbs.	Gray Shrivel
MS-11C	12 lbs.	Full Chrome
†MS-20	15 lbs.	Gray Shrivel
†MS-24	24 lbs.	Chrome & Gray Shrivel
§CS-1	5 lbs.	Cadmium Plated
*CS-32	4 lbs.	Chrome & Gray
*CS-33	3 lbs.	Hammerloid

*Each stand is individually packed complete in a single carton.


†The MS-20 and MS-24 use large diameter, oversize, telescoping brass tube assemblies (7/8" telescoping tube -11%" base tube) resulting in a handsome and fine-appearing stand that supple-

weight is most useful. All bases include self-leveling, shockabsorbent base pads, plus three additional "anti-tip" points located between the base pads. The complete tube assemblies of all models are "super-chrome" plated, assuring "life-time" wear. All models terminate in a 5%"-27 carefully machined thread.

Tube Finish	Height Adjst.	Base Diam.	LIST PRICE
Full Chrome	35'' to 64''	10''	\$ 8.25
Full Chrome	35'' to 65''	10''	9.00
Full Chrome	35'' to 65''	10''	11.00
Full Chrome	42'' to 72''	12''	13.50
Full Chrome	42'' to 72''	17''	19.00
Full Chrome	23" to 62"	Collapsible	17.00
Full Chrome	36" to 64"	Demountable	9.00
Full Chrome	26" to 64"	Demountable	11.00

ments the professional appearance of large-size high quality microphones.

SCollapsible to a minimum overall length of 23 inches.

NEW AUTOMATIC "Sleeve Action" MICROPHONE STAND Quiet . . . No Rasp . . . Smooth . . . No Jolt or Jar

This amazing new automatic "Sleeve Action" clutch mechanism is a fully automatic means of adjusting the height of a microphone stand. A slight downward pressure on the "Sleeve Action" control permits the telescoping section to be lowered. To raise the stand, the telescoping tube can be grasped at any point and simply extended. The new "Sleeve Action" is built for life-time use. It cannot creep or change position without a deliberate pressure on the actuating sleeve control.

The quality of materials, plating, and general specifications are identical to the "Full Grip" models described above. The "Sleeve Action" stand is available in two models; either full chrome or shrivel base.

MODEL	Weight	Base Finish	Tube Finish	Height Adjst.	Base Diam.	LIST PRICE
MS-12S	12 lbs.	Gray Shrivel	Full Chrome	35'' to 65''	10''	S16.00
MS-11S	12 lbs.	Full Chrome	Full Chrome	35'' to 65''	10"	18.00

Copyright by U. C. P., Inc.

-

TLAS SOUND CORPORATION PROFESSIONAL BOOM STAND

	Precis	Tip Control by "Floating Action" sion Built — Attractively Styled For Every Application sional Studio Microphone Support
	"velvet smooth" in operation. By simple and qu to the MS-24. The BS-35 is adjustable vertically an sion can be adjusted for all microphone weights of Specifications Dimensions: Maximum vertical boom arm 63". Base Diameter, at floor contact po	extension 72", minimum 48". Length of horizontal ints, 17". Total weight 35 lbs. Tube diameters 11%" Base finished in chromium and gun-metal shrivel, rs for holding cable to boom section supplied.
	MICROPHONE ADAP	TORS AND FITTINGS
	MODEL Description LIST PRICE	MODEL Description LIST PRICE
	AD-1 $\frac{5}{6''-27}$ female to $\frac{1}{2''}$ pipe thread	AD-8 6" long tube 5%"-27 male each
	male (RCA Adaptor) \$0.75 AD-2 1/8" pipe female to 5%"-27 male50	end
	AD-2 1/8" pipe female to 5%"-27 male50 AD-3 1/8" pipe female to 5%"-27 female .50	AD-10 5%"-24 female to 5%"-27 female
	AD-4 3/4" long, 5/8"-27 male running	(W. E. Adaptor)
	thread	AD-11 Flange, 5%''-27 female. Base Diameter 11/4''
	coupling	AD-12 Flange, 5/8"-27 male. Base holes
	AD-6 7/8''-27 female to 7/8''-27 female,	on 7/8" mounting centers50
A la	coupling .50	All adaptors chrome plated. We are prepared to supply any special types of
	AD-7 3" long tube %"-27 male each end	adaptors or fittings, and bent tube sections, to your specifications in reasonable quantities.
		

ADJUSTABLE BANQUET STAND

This stand incorporates the "Full Grip -Velvet Action" principle of adjust-ment. The tube and base are com-pletely finished in "super chrome" of-fering a fine appearing stand suitable for use on a banquet table. Adjustable from 18" to 32". Base diameter 8"; Weight 5 lbs.

Model TS-6

MODEL DA-1 (shown with MS-20 floor

stand)

"VELVET ACTION"

ATLAS Desk Stands employ the

ATLAS Desk Stands employ the same fine finish and workman-ship as embodied in the floor models. The adjustable Model DS-7 uses heavy duty 5%" and 7%" tubing. Felt base pads in-cluded. Base diameter 6", fin-ish gray shrivel; tube chromium platod

Fixed 6" 8" to 13"

Height Adj. List Price

\$2.75

4.50

DESK STANDS

List Price \$7.50

This desk attachment can be applied to This desk attachment can be applied to any type of microphone stand. This is an item which has long been required in many permanent as well as rental installations. It offers the speaker facil-ities for holding notes or other reference material. A microphone can be directly attached to the desk by using the BC-1 Bracket Clamp. The DA-1 is complete with %"-27 thread attachment and tilt adjustment. Sturdy construction finished in bright adjuminum. in bright aluminum

Model DA-1 (less floorstand)

"BABY BOOM" ATTACHMENT

Easily attached to any type of microphone stand. Can be locked in any position. Length of tube 32", chrome plated; castings in gray shrivel. 5%"-27 thread size.

List Price \$3.00

FLEXIBLE GOOSE NECK Can be attached to any microphone

List Price \$2.50

List Price \$7.00

40

Model BB-1

"SNAP-ON" MICROPHONE **ATTACHMENT**

A quick, simple, and safe means of attaching any microphone to any floor stand. Eliminates the need of threading the microphone on and off the stand. A twosection "Snap-On" ball bearing spring sleeve attachment permits the microphone to be attached or removed instantaneously. One section is attached to the microphone and one section permanently fastened to the stand.

Model SO-1

List Price \$2.50

C-38

plated.

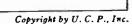
Model

DS-5 DS-7

Copyright by U. C. P., Inc.

1.25-49

STANDARD SERIES **rescent** Permanent Magnet Dynamic Speakers

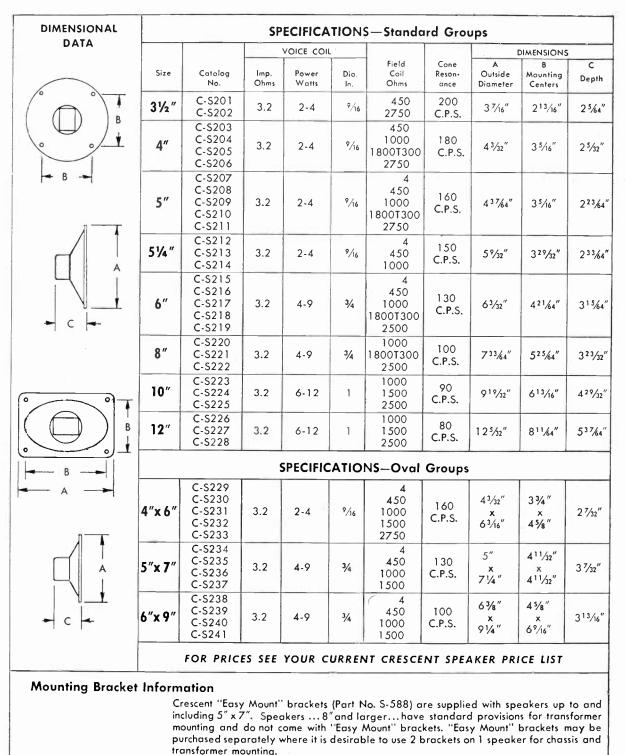

USING POWERFUL ALNICO V MAGNETS, RUGGED CONES WITH DUSTCOVERS AND PRECISION WOUND VOICE COILS ...

Crescent Standard Series PM Speakers are scientifically designed and engineered for maximum sensitivity, sturdy construction, low resonance and smoath frequency response. Individual testing for noise, poor response and resonant frequency assures a quality product that is always unifarm. The "Easy Maunt" feature eliminates "blacksmithing" and simplifies difficult mounting prablems.

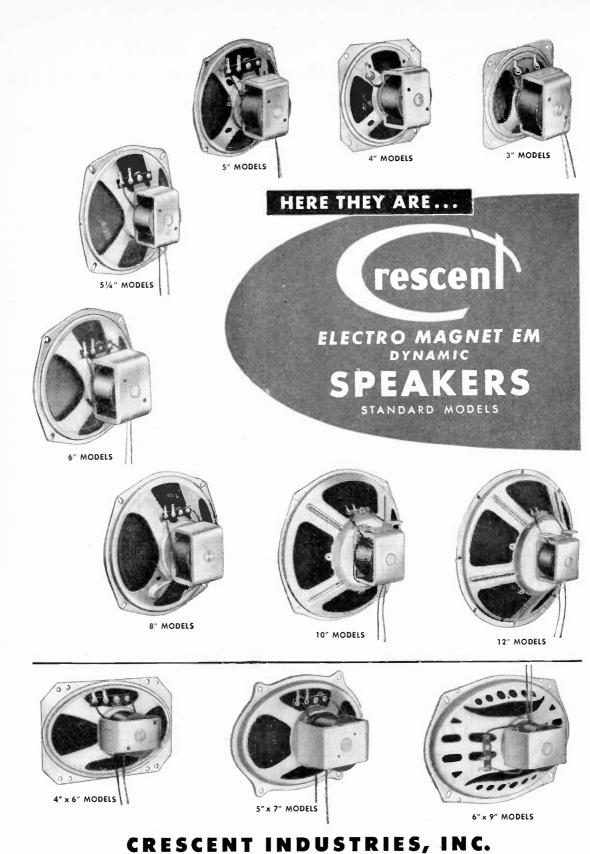
				1	—Standa		·			MOUNTING BRACKE
Size	Catalog	Imp.	Power	Dio.	Magnet Weight	Cane Reson-	A Outside	B	с	
Size	No.	Ohms	Watts	In.	Oz.	ance	Diameter	Centers	Depth	
31⁄2″	C-S101 C-S102 C-S103	3.2	2-4	⁹ /16	.68 1.00 1.47	200 C.P.S.	3 7/16″	2 1 3/16"	1 ²³ / ₃₂ " 1 ⁷ /8 " 2 ⁵ /64"	
4″	C-S104 C-S105 C-S106	3.2	2-4	9/16	.68 1.00 1.47	180 C.P.S.	4 ³ / ₃₂ "	3 5/16"	1 ¹³ /16" 1 ³¹ /32" 2 ⁵ /32"	
5″	C-S107 C-S108 C-S109	3.2	2-4	9/16	.68 1.00 1.47	160 C.P.S.	4 3 7/64"	3 5/16"	2". 2 ⁵ /32" 2 ²³ /64"	
5¼″	C-S110 C-S111 C-S112	3.2	2-4	9/16	.68 1.00 1.47	150 C.P.S.	5%/32″	329/32"	2 ⁵ /32" 2 ⁵ /16" 2 ^{3 3} /64"	
6″	C-\$113 C-\$114 C-\$115	3.2	2-4	9/16	.68 1.00 1.47	130 C.P.S.	6 ³ /32″	421/64"	2 ¹¹ / ₃₂ " 2 ¹ / ₂ " 2 ⁴⁵ / ₆₄ "	A FEW OF THE MANY APPLICATION
8″	*C-S116 C-S117 C-S118	3.2	4-9	3/4	1.43 2.15 3.16	100 C.P.S.	7 3 3 /64"	525/64"	2 5 7/64" 3 1 5/32" 3 1 5/32"	
0	*C-\$119 C-\$120 ; C-\$121	3.2	6-12	1	3.36 4.64 6.80	100 C.P.S.	733/64"	525/64"	3 ¹¹ / ₆₄ " 4" 4"	
10″	*C-S122 C-S123 C-S124	3.2	6-12	1	3.36 4.64 6.80	90 C.P.S.	939/64"	613/16″	3 ⁶¹ / ₆₄ " 4 ²⁵ / ₃₂ " 4 ²⁵ / ₃₂ "	
12″	*C-\$125 C-\$126 C-\$127	3.2	6-12	1	3.36 4.64 6.80	80 C.P.S.	1 2 5/32″	811/64"	4 ⁴¹ / ₆₄ " 5 ²⁹ / ₆₄ " 5 ²⁹ / ₆₄ "	
			SPECIFIC		NS—Ova	l Group	s			
4″x 6″	C-S128 C-S129 C-S130	3.2	2-4	9/16	.68 1.00 1.47	160 C.P.S.	4 ³ / ₃₂ " x 6 ³ / ₁₆ "	3 ³ /4" × 4 ⁵ /8"	1 ²⁷ / ₃₂ " 2" 2 ³ /16"	
5″x 7″	C-\$131 C-\$132 C-\$133	3.2	2-4	9/16	.68 1.00 1.47	130 C.P.S.	5" × 7¼"	4 ¹¹ / ₃₂ " × 4 ¹¹ / ₃₂ "	2 ²⁹ /64" 2 ³⁹ /64" 2 ⁴⁹ /64"	
6″x9″	*C-S134 C-S135 C-S136	3.2	4-9	3/4	1.43 2.15 3.16	100 C.P.S.	6 ³ /8" × 9 ¹ /4"	4 5/8" × 6 °/16"	3" 3°/16" 3°/16"	
	FOR PRI	CES SEL	YOUR		NT CRES	CENT SP	FAKER P	RICE LIST	-	See Mounting Brackets, Bottom of Next Page.

*These Models Use Centerless Ground Magnets

The centerless ground magnet, a relatively new type of canstructian (illustrated at right), eliminates the canventional pole piece, reduces the overall depth of the speaker and results in higher magnetic efficiency per magnet weight. However, its greatest advantages can be obtained only when the diameter of the voice coil bears a suitable relationship to the length of the magnet.



C-40


standard series **rescent Electro Magnet Dynamic Speakers**

EQUIPPED WITH HUMBUCKING COILS OR SHADING RINGS AND RÜGGED CONES WITH DUSTCOVERS...

Crescent Standard Series EM Speakers are designed and engineered to fit the wide range of types and sizes needed in the radio service field. Rigid inspection and individual testing in our quality control section eliminate "comebacks" that are often costly to the radio servicer in time and customer good will. The "Easy Mount" feature saves time and tempers and offers a simple solution for even the toughest jobs.

Copyright by U. C. P., Inc.

4140 WEST BELMONT AVENUE, CHICAGO 41, ILLINOIS, U.S.A.

MANUFACTURERS OF

RECORD CHANGERS . WIRE RECORDERS . LOUD SPEAKERS . TOYS . METAL STAMPINGS . TOOLS AND DIES

SPEAKER

REFLEX LOUDSPEAKERS

The reflex horns pioneered by University represent the most efficient method of converting electrical power into acoustic energy. When used with University driver units, they are capable of conversion efficiencies up to 50% and in addition. provide compactness and weather protection without any sacrifice in performance.

Heavy gauge metal and corrosion resistant finishes on horn and hardware are assurance of trouble-free performance regardless of changes in temperature and humidity. Each speaker is equipped with a rubber damping rim which prevents vibration and mechanical resonance. Adjustable UNIVERSITY "U" bracket mounting simplifies installation and holds the speaker firmly locked in any position.

Four models cover every public address requirement. Model GII has the longest air column and is ideal for the reproduction of symphonic music. The model LII with a higher cutoff is designed as a general purpose speaker and is recommended for music transmission where economy without sacrifice of quality is essential. In installations where a smaller horn is required, the Model PII will render excellent service for both speech and music. The Model SMII will find its widest application in the reproduction of speech where clarity and a high degree of intelligibility are necessary. Accessories include Model PMA adapter and 2YC connector.

MODEL LOW FREQU DIAMETER LENGTH . WEIGHT .	ENCY	cu :	TOFF	:	:	÷	•	:	:	SMH 200 CPS 15½ INCHES 12 INCHES 6 LBS.	PH 150 CPS 20 INCHES 15 INCHES 10 LBS.	LH 120 CPS 251/2 INCHES 181/2 INCHES 15 LBS.	GH 85 CPS 30 INCHES 25 INCHES 22 LBS.
PRICE (Horn	only)						1			\$24.50	\$29.00	\$44.50	\$60.00

BREAKDOWN PROOF DRIVER UNITS

University driver units are breakdown proof and guaranteed for one year. Ratings are conservative and operation over long periods is assured. They are of the PM dynamic type, incorporate highest qual-ity Alnico magnets and one-piece molded phenolic diaphragms. Unique "rim centering" construction eliminates aligning pins and permanently centers the voice coil and head assembly in a much closer magnetic gap. This results in a higher conversion efficiency and misalignment due to shock or vibration is virtually eliminated. Hermetically sealed housings provide complete protection from out-

MODEL LH

mivensi

door exposure and corrosive fumes. The PA-30 has a 30-watt built-in line matching transformer. Transformer terminals provide 16, 165, 250, 500, 1000, 2000-ohm taps for constant impedance systems and 2½, 5, 10, 20 and 30-watt taps for 70-volt constant voltage systems. Use the PA-30 or SA-HF for Model MA-25 represents the best "watts per dollar" value of any driver unit made. It combines efficiency, waterproof construction and economy.

ACCESSORIES

and the formation of the second				A00133	O KIEJ
				Model PMA Adapter	For mounting any UNIVER- SITY "U" bracket speaker on standard ½" pipe. PRICE \$1.50
MODEL PA-30	MODEL SA-HF	SA-HF	MODEL MA-25	8	Use with two driver units to provide up to 60 watts for any UNIVERSITY trumpet or pro- jector.
POWER IMPEDANCE FREQUENCY. DIAMETER HEIGHT. WEIGHT. THREAD SIZE FLUX DENSITY IN GAUSS PER SQ. CM.	30 WATTS ADJUSTABLE* 80 to 10,000 CPS 634 INCHES 64 INCHES 6 LBS. 138'-18 15,000	25 WATTS 16 OHMS	25 WATTS 16 OHMS	Model 2YC Connector	PRICE \$10.00 For adapting Western Elec- tric horns for use with any UNIVERSITY driver unit.
PRICE . *16-0hm Voice Coil—165, 250, 4	\$50.00 500, 1000, 2000-Ohr	\$37.00 m Transformer Tap	\$25.00 s.	Unit Adapter	PRICE \$2.50

619

40

PAGING SPEAKERS INDUSTRIAL

These speakers are reflex air column horns with built-in hermeti-cally sealed driver units. Models CR, 118, and MIL are directional and model IBR has a radial deflector for uniform 360° dispersion. They are capable of continuous use for intercommunication and paging on shipboard, docks, loading platforms, terminals and industrial plants.

Models CR can handle 18 watts of input power continuously, so that it is useful for high power alarm or announcing systems. Models 1B8 and IBR have a continuous power handling capacity of 12 watts, which recommends them for paging or announcing in noisy industrial

areas. The models MIL and MIS with a 3 wait continuous power capacity are efficient intercommunication speakers. The model MIS is designed for flush panel mounting.

While capable of producing adequate volume with low power, these speakers can handle more power than any other speaker of comparable size and weight. Modernization of old sound systems is easily accomplished by replacement of obsolete speakers with these models. Standard voice coil impedances permit installation without changes in the existing line or amplifier.

PAGING SPEAKERS RADIAL DIRECTIONAL AND

WEIGHT.

PRICE .

MODEL MIS MIS MODEL 3 WATTS 8 OHMS 45 OHMS 150° POWER. DISPERSION -FREQUENCY. DIMENSIONS -500-9000 37/8" Deep, 51/2" O.D. 41/2" Mounting Dia.

21/8 LBS.

8 OHM, \$20.00 45 OHM, \$21.25

MIL

3 WATTS 8 OHMS

45 OHMS 120°

400-9000

31/2 LBS.

6 INCHES DIA. 7 INCHES HIGH

8 OHM, \$25.00 45 OHM, \$26.25

MODEL IBS

188 12 WATTS 8 OHMS 90 0 300-6000 9 INCHES DIA. 9 INCHES HIGH 5 LBS. \$32.50

MODEL CR

CR 18 WATTS 16 OHMS

90 0 250-6000 11 INCHES DIA. 9 INCHES HIGH 9 LBS. \$42.00

MODEL IBR

IBR 12 WATTS 8 OHMS

360° 300-6000 9 INCHES DIA. 11 INCHES HIGH 5 I B S \$39.00

COAXIAL SPEAKERS WEATHERPROOF RANGE WIDE

The Model WLC is a high fidelity co-axial speaker with a response range essentially flat from 50-10,000 cycles. It includes a 12" Cone speaker, a unit-driven tweeter and a built-in crossover network. Corrosion-resistant, all metal construction permits constant exposure regardless of temperature and humidity. Ideally suited for concert band-shells, drive-in theatres and all indoor or outdoor installations where high quality reproduction of music and voice are essential. A sturdy mounting bracket facilitates installation and permits tilting and locking the speaker in any desired vertical plane.

POWER	25 WATTS
MPEDANCE	
	50-10,000 CPS
DISPERSION	
DIAMETER	33″
DEPTH	18″
CROSSOVER	
FREQ.	1000 CYCLES
WEIGHT	40 LBS.
PRICE	\$200.00

MODEL

PRICE

(Horn only)

LOW CUTOFF 120 CPS

5 FT.

281/2"

181/2"

\$59.00

211/2 LBS.

MODEL WLC

RSH

180 CPS

3 FT.

181/2"

12 LBS.

\$38.50

11″

RPH

150 CPS

4 FT.

18 LBS \$45.00

25″

14"

PROJECTORS REFLEX RADIAL RLH

Air column horns with radial deflectors for uniform 360° sound distribution cover large areas and override high noise-levels, without blasting. Both rims rubber loaded to mini-mize mechanical resonance. The long air col-umn of the RLH and its low frequency cut-off make it well suited for music and general applications. The smaller model RPH, with a somewhat higher cutoff, will serve for both music and speech. The RSH finds wide appli-cation for high clarity reproduction of speech. sation for high clarity reproduction of speech. Shipped complete with hardware but less driver unit.

RADIAL CONE-SPEAKER RBP-8 UNIFORM DOWN TO

80 CYCLES

18 INCHES 9 INCHES

9 LBS.

\$19.60

40

PROJECTORS

These compact projectors consist of an acoustic chamber for housing a cone speaker and a radial deflector for uniform 360° dispersion. Of all metal, rubber cushioned construction, the model RBP-12, designed for a 12" cone speaker, provides uniform response down to 50 cycles and model RBP-3 designed for an 8" speaker, has a low frequency limit of 80 cycles. Any standard make of 8" or 12" cone speaker can be installed in these baffles. Both models are watershedding and may be used indoors or out. They are shipped complete with hardware but less cone speaker.

MODEL

DIAMETER

HEIGHT

WEIGHT

FREQUENCY UNIFORM DOWN TO

RBP-12

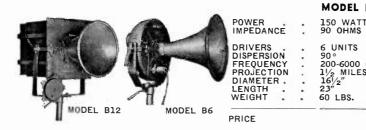
27 INCHES

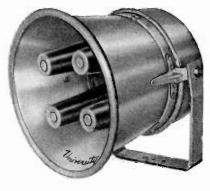
11 INCHES

19 LBS.

\$35.00

50 CYCLES




UNIVERSITY super power speakers are the answer to every public address installation where tremendous amounts of concentrated power must be transmitted over long distances.

The Model 4A4 incorporates 4 PM driver units mounted on the back of a heavy cast mounting plate. Each driver opens into a reflexed air column on the front of the mounting plate. The four air columns feed into a common bell. Compactness makes them ideally suited for aeroplane broadcasting and use in Church towers.

In the Models B-6 and B-12, the PM driver units are mounted circumferentially on a rugged "tone chamber" casting which provides individual acoustic paths from each driver unit to a mixing chamber at the center of the casting. The patented design of the mixing chamber and the acoustic paths minimizes high frequency cancellation.

All speakers are completely waterproof and characterized by their ruggedness. Power ratings are conservative and projection ranges are often exceded in actual operation. Speakers of this type were recently heard 15 miles in a carillon installation at the Empire State Building in New York City. "U" brackets permit a vertical swing of approximately 120° and locking in any position. Longer horns are available with B6 or B12 for music. For B6, diameter 30 inches, length 48 inches. For B12, diameter 30 inches, length 32 inches, Response 85 - 6000 cps. Prices on request. NOTE: Model 4A4 is sold and shipped less driver units. Standard driver units Model SA-HF may be used,

MODEL 4A4

B-6	MODEL B-12	MODEL 4A4
TS	300 WATTS DOUBLE INPUT 90 OHMS EACH	100 WATTS 4, 16, 60 OHMS
	12 UNITS 90 °	4 UNITS 80 °
CPS S	250-6000 CPS 2 MILES 19" SQUARE 28" LÔNG 30 LBS.	200-6000 CPS 1 MILE 16″ 17″ 23 LBS.
		\$93.00 (less Units)

RAILROAD AND

101/4 LBS.

\$65.00

UNIVERSITY marine and railroad speakers are submergence, explosion, shock and vibration proof and are unaffected by live steam. Their reflex air columns are built of rugged castings and are equipped with Aluico V PM dynamic units.

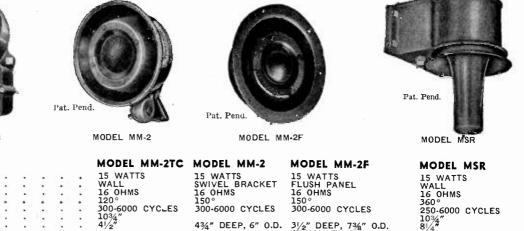
Models MSC, MM-2TC, MM-2 and MM-2F have hermetically sealed housings and biult-in driver units. Models MSR and MM-2TC have space for volume control and line matching transformer. Tapped

MODEL MM-2TC

POWER TYPE MOUNTING IMPEDANCE DISPERSION

FREQUENCY HEIGHT. DEPTH .

WIDTH.


WEIGHT

PRICE

MARINE TYPES

holes provide access to volume control and for receiving a conduit. All are designed for bulkhead mounting - the Model MM-2F may be flush mounted.

These speakers will operate efficiently under the most arduous conditions -- on ships, docks, in railroad yards or locomotive cabs, in mines, laundries and mills --- wherever dirt, salt spray, humidity, explosive dusts and vapors constitute a hazard.

4 LBS.

\$37.00

31/2" DEEP, 73%" O.D. 6" MOUNTING HOLE DIA. 73/4" 83/4 LBS. \$65.00

Copyright by U. C. P., Inc.

51/2 LBS.

\$37.00

HIGH FREQUENCY TWEETER SPEAKERS*

The UNIVERSITY PM tweeter provides the only efficient and econom-ical method of extending the upper register to 15,000 cycles to obtain high fidelity speaker response. It can be connected to the voice coil terminals of an existing PM or field excited cone speaker through a simple, economical high-pass filter without creating any electrical un-halance. Model 4407 is an adapter which quickly changes a 12" speaker to a concurred results requere with the creating and the left of the speaker to a concurred results of the section of the speaker of the section to a co-axial reproducer with response to 15,000 cycles. Models 4401

níversi

and 4402 offer compactness, high power handling capacity and wide dispersion for the construction of wide range duplex systems. The model 4403 is a complete high frequency speaker and consists of the model cabinet. The 4405 high-pass filter or its electrical equivalent must be used with the 4401, 4402 or 4407 for satisfactory performance.

MODEL 4405

MODEL 4410

EAKE

MODEL 4407	MODEL	4401	MODEL 4402	MODEL 4404	MUDEL 4405
MODEL 4407					MODEL 4405
RESPONSE IMPEDANCE POWER HOR. DISTRIBTN. VERT. DISTRIBTN. DIMENSIONS	MODEL 4407 2,000-15,000 CPS 12 OHMS 6 WATTS 60° 40° 12″ DIA., 3″ D	MODEL 4401 2,000-15,000 CPS 12 OHMS 6 WATTS G0° 40° 41/2″ W x 25%″ H x 5″ D	6-8 OHMS (Units in par.) 12 WATTS 100° 50°	MODEL 4404 2,000-15,000 CPS 6-8 0HMS 12 WATTS 100° 50° 111/2" W x 41/4" H x 61/2" D	High-pass filter unit for use with models 4401, 4407 and 4402 — includes high fre- quency volume control. Cut- off frequency approximately 2000 cycles. Die cast con- tainer dimensions: $3\frac{1}{2}$ wide x $2\frac{1}{4}$ deep x $2\frac{1}{2}$ high.
PRICE	\$25.00	\$20.00	\$40.00	\$60.00	\$10.00

600-CYCLE TWEETERS*

The models 4408 and 4409 tweeters permit easy assembly of 2 and 3-way speaker systems at crossovers as low as 600 cycles. Con-struction is of sturdy cast aluminum throughout. New horn design allows wider distribution pattern. Available in 6 and 25-watt capacities.

RESPONSE . IMPEDANCE POWER . HOR. DIST. VERT. DIST. DIMENSIONS	MODEL 4408 600-15,000 CPS 12 OHMS 6 WATTS 80° 40° 534″ H x 738″ W x 111/8″ D	MODEL 4409 600-15,000 CPS 8 OHMS 25 WATTS 80° 40° 534″ H x 73'8″ W x 111/8″ D	MODEL 4408-4409	MODEL 4410	600 cycles LC di- viding network for use with models 408 and 4409. Provision for ex- ternal high fre- quency control. Di- mensions, approx.: 8" W x 4" II x 3 ¹ / ₄ " D.	
PRICE	\$27.50	\$40.00		MODEL 4410	\$35.00	

NOTE: Instructions packed with all tweeter models include specifications for the simple assembly of necessary filters and crossover networks.

WEATHERPROOF AND INDOOR LINE MATCHING TRANSFORMERS

Model

No.

5401

5402

5409

5410

5403

5403-

5408

5414

MODELS 5401, 5409, 5410

MODEL 5402

The new UNIVERSITY line of matching transformers is designed for use with UNIVERSITY loudspeakers in indoor and outdoor installations. Excellent performance is assured throughout the useful audio frequency range at rated output. The models 5401, 5402, 5409 and 5410 are housed in watertight enclosures and incorporate die cast mounting brackets. They may be fastened to any surface with two screws or bolts or may be fastened to the brackets of the models MIL, IBS or CR. When used in the latter manner, the mounting bracket of the transformer acts as a combined mounting support for both the transformer and speaker. The model 5402 may be mounted on the U bracket of any loudspeaker by means of a simple clamp which is supplied or on any surface with two screws or bolts. The uncased transformers for indoor use may also be fastened to any surface with two screws or bolts.

	DESCRIPTION		IMS CONDARY	LIST PRICE
	12 Watt, waterproof case	500, 1000, 1500, 2000	4,8	\$12.50
	25 Watt, waterproof case	250, 500, 1000, 1500, 2000	4,8,16	20.00
	12 Watt, waterproof case	45	8	12.00
	20 Watt, waterproof case	500, 1000, 1500, 2000	8,16	13,50
	12 Watt, uncased, for indoor use	500, 1000, 1500, 2000	4,8	3.50
-1	12 Watt, uncased, for indoor use	45	8	3.00
	20 Watt, uncased, for indoor use	500. 1000, 1500, 2000	8,16	4.50
	30 Watt, uncased, for indoor use	165, 250, 500, 1000, 200	0 16	6.00
ote :	Connecting a speaker of twice the	impedance across a given seco	ndary will	double

riven secondary will double Nnt all primary values. Conversely, a speaker whose impedance is half the secondary value, will halve all primary values. As an example, the following impedances are available with the model 5402:

PRIMARY IMPEDANCE	SECONDARY LOAD
125, 250, 500, 750, 1000, 1500, 2000	4 Ohms
125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000	8 Ohms
250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000	16 Ohms