

New Aerovox Wire Wound Resistors

We take pleasure in announcing a new line of wire wound resistors designed especially to meet requirements for low priced high resistance units of small dimensions and high wattage carrying capacity. In addition to our line of Pyrohm vitreous enamel resistors and carbon resistors which are extensively used in all forms of radio and electrical equipment, these new resistors meet many special needs in apparatus of various types.

"The new resistors, Types 930, 931, 932 and 933 illustrated herewith, are wound on a porcelain tube with a special high grade resistance wire of low temperature coefficient. The entire unit is completely coated with a newly developed refractory compound which resists wear and will not chip or crack. The 5 watt resistors, Type 931, of the same dimensions as our standard 1 watt carbon resistors, Type 1094.

All units are provided with pig tail terminal leads 2" long for mounting and wiring and can be made in all standard resistance values up to the maximum indicated with an asterisk (*) in the accompanying table.

Enclosed with this issue of the Research Worker will be found a circular giving an outline of two new text-books recently published by the Radio Technical Publishing Co., in which Aerovox Condensers and Resistors are illustrated and described as typical examples of modern components for use in various radio circuits. Aerovox products have not

Actovax products have not only been chosen by the authors of these books to illustrate the text of their work for the instruction of radio students and servicemen, but are also extensively used in the laboratories of leading technical schools and colleges throughout the country.

Write For The 1932 Condenser and Resistor Manual and Catalog of Aerovox Products Free of Charge on Request to

Aerovox Wireless Corporation, 70 Washington Street, Brooklyn, N. Y. Manufacturer of The Most Complete Line of Condensers and Resistors in the Radio and Electrical Industries

Resistance - Capacity Filters for Plate and Grid Circuits

By the Engineering Department, Aerovox Wireless Corporation

PLATE and grid circuit filters consisting of resistors and condensers prove very effective in reducing the coupling between the input and output circuits of vacuum tubes and amplifiers. Consider, for example, the circuit shown in Fig. 1 which represents a typical detector circuit with a resistance capacity filter consisting of R2 and C2 connected in the plate circuit. Such a circuit eliminates common coupling betubes. In a circuit such as is shown in

Fig. 1, the B plus terminal would

he connected to the proper tap

on the rectifier filter system. It

is desirable that the A. C. audio

currents in the detector circuit

be prevented from flowing

through the B supply circuit.

The audio currents can be con-

fined to the detector circuit by

means of the filter consisting of

R2 and C2. Let us analyze this

circuit and see how this filter

functions in order to keep the

audio frequency currents con-

To the input of the detector.

we apply a modulated radio fre-

quency voltage and let us assume

that, as a result of the detector

action, we get in the plate circuit,

at a certain moment, a one hun-

dred cycle signal with a magni-

fined to the detector circuit.

s tude of ten volts. This voltage d will cause a current to flow e through the plate resistance of n the detector tube, through the f load resistance R1, and hence . through the condenser C2 back

tube. Since the impedance of the condenser C2 should (for proper decign) be low in comparison with R1, the A. C. current will be nearly equal to

If Rp, the plate resistance of the detector, is 25,000 ohms and R1 is 100,000 ohms, then the current will be

 $I = \frac{10}{25,000 + 100,000}$ = 0.00008 AMPERES = 0.08 mA

follow. One path is through C2 to B- and bias resistor to cathode and the other path is through R2 then through the B supply circuit, hence to B minus and back to the cathode. Since we want the currents to fellow the first path. through C2 direct to B-, we must make the reactance of C2 much less than the resistance of R2. By referring to the reactance chart published in the preceding issue of the "Research Worker" we find that the reactance of the 10 mfd. condenser is 160 ohms at 100 cvcles, the reactance of a 1 mfd. condenser 1600 ohms, and the reactance of a .1 mfd. condenser. 16,000 ohms at 100 cycles.

This current has two paths to

An idea of the value of R2 can be obtained from the curve shown in Fig. 2 which shows to a closer approximation how the degree of filtering depends upon the relation between the resistance of R2 and the reactance of C2. It will be noted that the percentage of the total current flowing through C2 the desired path increases very rapidly with increase in the ratio of R2 to the reactance of C2. Beyond the ratio of about 50, there is but a slight increase in filtering efficiency and we can therefore say that the resistance in such a filter should

AEROVOX PRODUCTS ARE BUILT BETTER

Printed in U. S. A.

greater than the reactance of C2 at the lowest frequency it is desired to filter. If we design the filter to function efficiently at the lowest frequency, then it will be even more efficient at higher fre-

have a value of about 50 times be found in practically all high rent will have to flow through quality amplifiers. Which combination of the

above capacities and resistances would actually be used would depend somewhat upon the circuit of the amplifier. In most cases quencies due to the fact that the the combination of a 1 mfd. con-

reactance of the condenser de- denser and 80,000 ohm resistor creases as the frequency increases.

It will be appreciated that there is nothing absolute about this ratio of 50 and that in certain circuits higher ratios may prove desirable. Our purpose here is simply to indicate the basis of operation in such circuits without attempting to do the impossible of setting down any hard and fast rules.

If we assume a ratio of fifty, then the following resistance values would be used:

If C2 is	Then R2 should be
10.0 Mfd.	8,000 ohms
1.0 "	80,000 "
0.1 "	800,000 "

Any one of these combinations will reduce the current through the B supply circuits to about 2% of what it would be without the filter. It is not surprising would prove most desirable. Higher values of capacity would increase the cost and smaller values of capacity would necessi-

value as to cause a serious reduction in the voltage actually applied to the plate of the tube. It is necessary that the experimenter determine in a particular amplifier which combination will in his particular case give the best compromise between cost and efficiency.

tate a resistance of such a high

Such circuits also have the effect of reducing the hum voltage applied to the tube. No B supply filter circuit is perfect and there will always be some hum voltage across the output of the filter. This hum voltage will cause a small A. C. current to be present in the plate current circuits of all the tubes. Referring sarily mean that the hum in the therefore that such filters are to again to Fig. 1, this A. C. cur- loud speaker will be decreased

R2 and hence through either C2 or R1. Since the impedance of C2 should be much lower than the resistance of R1, practically all the current flows through C2 and the A, C, hum voltage effectively in the plate circuit of the tube is therefore the same as the A. C. hum voltage across the condenser.

In terms of the hum voltage output from the B power filter circuit, the A. C. hum current flowing through R2 and C2 will be equal to

and working with this equation. we finally can determine that the ratio of the hum voltage from the B supply to the hum voltage present in the tube circuit is proportional to

 $\sqrt{(R_2 \otimes C_2)^2 + 1}$

Since (RoWCo)² will, in a proper filter circuit, be much larger than unity, we can neglect the latter in the above square root and say that the reduction in hum voltage applied to the tube is proportional to RoWCo which is really the ratio of the resistance of the reactance. If we refer to Fig. 2, we find that the degree of filtering of the A. C. signal currents is proportional to the same ratio since R2 divided by Xc., is the same as R₂WC₂.

We can say in conclusion therefore that a resistance capacity filter in the plate circuit of a tube does two things: It keeps the audio currents in the proper circuit and thereby prevents common coupling, and secondly, it reduces the hum voltage applied to the tube. In both cases the effectiveness of the circuit is proportional to R2WC2 the ratio of the resistance to the reactance. The fact that such filter circuits reduce the hum applied to a particular tube does not neces-

the manner in which the hum with the hum voltage in another tube. If the hum voltage in one tube is such as to balance out the hum voltage of another tube. then the overall hum is decreased. In a circuit in which this was occurring, there would result an increase in hum from the loud speaker if a hum filter circuit was placed in the plate circuit of any tube, since reducing the hum from the tube would mean that the balancing out effect could no longer occur and the loud speaker hum would therefore increase. If, on the other hand, the hum voltages from the various tubes were such as to aid each other, then reducing the hum in any one circuit would cause a corresponding reduction in the hum from the loud speaker. An example of this was re-

cently experienced in the laboratory in some tests to reduce the hum output from a midget receiver. It was found possible to decrease the hum to a negligible value by decreasing the effectiveness of the filter in the plate circuit of the detector. This increased the hum in the detector circuit which balanced out the hum produced in the power tube circuit and caused a marked overall reduction in the hum audible from the loud speaker. Consideration of these facts must be realized in any experimental work on amplifiers for it is such effects which cause the hum to increase when a change is made in a circuit that at first thought would appear to be one which ought to cause a reduction in hum.

There are of course various ways in which resistance capacity filters may be connected to the tube. Certain possibilities are illustrated in Fig. 3. In this circuit we show a resistance capacity filter in plate circuit of T1 and indicate how the condenser C3 may be connected either to ground or directly back to the cathode of the tube. In such

by the same amount. The hum circuits, it is usually better to to return to the cathode of T1. in the loud speaker depends connect the condenser directly upon many things, and one of back to the cathode since this arthe most important of these is rangement returns the A. C. audio currents directly to the cavoltage from one tube combines thode of the tube. In this conrealized that such an arrangedesirable, and in others undesirable, and it is a matter of experiment to determine which arrangement gives the best results.

Resistance capacity filters are also connected in the grid circuits as shown in Fig. 3. Here we also show two possible arrangements: one which utilizes a resistance R1 and a condenser C1 with the condenser returned to the cathode of the tube and the resistance connected to the ground. The alternative arrangement is to eliminate the resis- city filter is used in the grid cirtance capacity filter and connect cuit of the power tube. The the lower end of R4 directly to ground. The latter arrangement is usually best for the following filament through the C bias cirreasons.

circuit of T1 causes current to equal to the A. C. plate current flow through R3 and C4 R4. Since these currents originate from T1, it is necessary that they be returned by the most direct grid of the power tube and it has path back to the cathode of T1. a phase relation such as to de-The currents through R3 are re- crease the amplitude of the sigturned to the cathode by C3. nal. The overall gain of the The currents through R4 must power tube circuit is therefore also be returned to the cathode reduced if any considerable of T1. If we use a resistance amount of A. C. voltage appears capacity filter R1 C1, in the grid across the bias circuit; to keep circuit of T2, then the currents the voltage across the circuit low in R4 must flow through C1 and it is necessary to use bypass conthe C bias circuit of T2, in order densers across C bias resistors.

Such arrangement is obviously undesirable and it is therefore better not to use any filter in the grid circuit but to connect R4 directly to ground. With such nection, however, it must be an arrangement the currents go directly to ground and hence ment causes the hum currents back to the cathode of T1. To from the B supply circuit to also use a resistance capacity filter in flow through the C bias circuit. the grid circuit of T2, would ac-In certain cases this may prove tually cause an increase in the common coupling between the two tubes. Such filters in the grid circuit should therefore not be used in resistance coupled amplifiers. They can be used in conjunction with transformer coupled amplifiers since in such amplifiers the primary and secondary of the transformer isolates the two circuits. Using grid circuit filters in resistance coupled amplifiers, may actually cause an increase in hum and increase in coupling between the two circuits.

In the circuits of Figs. 1 and 3, we also indicate condensers connected across the C bias resistor. The size of this capacity is determined largely upon the value of the C bias resistor and the amplification constant of the tube. It is usually sufficient, however, to make the bypass condenser across the C bias resistor of a value such that the impedance of the C bias circuit is small in comparison with the value of the C bias resistor. Let us, for example, consider a power tube circuit in which no resistance cana-A. C. current developed in the plate circuit must return to the cuit. The A. C. voltage drop The A. C. current in the plate across the C bias circuit will be times the C bias impedance. The voltage drop across the C bias circuit is impressed back on the