for use in sets where longer life and more satisactory operation is desired

units

most popular type paper for service replacement

uses. Low in cost, compact and sealed in wax impregnated cardseated in wax impregnated card-board tubes with pigtail leads. Made in a wide variety of capac-ities up to .5 mfd. and in work-ing voltages from 200 to 1000 V. D.C.

Accurate and dependable small

size condensers built to outlast the life of any radio set. Moulding in Bakelite seals and protects units against moisture. Made in all popular sizes and

Small size, wire wound, high re-sistance units made to with-stand service in high current carrying circuits. Wound on porcelain tubes, coated with vitreous enamel and provided with pigtail wire leads.

Ideal units for use in any heavy

duty circuit where adjustable re-

voltage ratings.

MIDGET MICA CONDENSERS

VITREOUS ENAMELED RESISTORS

sistances or voltage dividers are required. Wire wound and coated with vitreous enamel. Made in all standard values and ADJUSTABLE PYROHM ratings RESISTORS

Sold By All Leading Radio Jobbers, Dealers and Mail Order Houses Everywhere.

Send for the new 12 Page Aerovox 1934 Catalog.

Aerovox cardboard container type electrolytic condensers with mounting flanges are the most widely used replacement conden-sers among reliable servicemen. Available in all popular capacities and voltage ratings.

METAL CASED

PAPER CONDENSERS

DRY ELECTROLYTIC

CONDENSERS IN

POUND CANS

CARDBOARD CONTAINER ELECTROLYTIC CONDENSERS

TAR

10.2

The Aerovox line of stamped metal case paper condensers includes a complete variety of capacities and voltage of Capacities and consecutive ratings for every radio use. Made of the highest grade materials obtainable. Suitmaterials obtainable. Suit-able for bypass uses in all standard sets

CONDENSERS AND RESISTORS

BE SURE YOU BUY ONLY AEROVOX PRODUCTS ACCOMPANIED WITH AN AEROVOX GUARANTEE SLIP

All genuine, guaranteed Aerovox products bear the standard Aerovox goldenrod vellow and black label and are packed in boxes of the same color scheme. Each unit is packed with an Aerovox guarantee slip insuring the purchaser of receiving a perfect factory inspected product.

Uses of Concentrically-Wound **Electrolytic Condensers**

By the Engineering Department, Aerovox Corporation

IN the November, 1933 issue of the Research Worker we described briefly some of the new types of electrolytic condensers which were introduced. By referring back to that issue the reader will note that a considerable reduction in the physical sizes of electrolytic condensers is brought about by winding two or more condensers into a single

roll, thereby obtaining what is termed a concentrically-wound condenser. If there is a common negative terminal for two or more condenser sections pass condensers in a radio receiver. composing the concentric unit, then the condenser is referred to as being "concentrically wound-common negative". If there is a common positive terminal for the sections composing the concentric unit, then the resulting condenser is referred to as being "concentrically wound-common positive". Our purpose here is to show some of 1933 issue of the Research Worker. the circuit arrangements which make it possible to use to advantage these concentrically-wound combinations.

It should be appreciated that an in- ser consists of two or more "positives" finite number of combinations are possible, using such constructions and it is therefore not possible to describe other than some of the more generally used types and the circuit arrangements to which they are adapted. From the following descriptions of some of the more widely used types of Aerovox concentrically-wound units, the reader will appreciate the underlying factors of design and be able to

work out for himself other combinations to fit special requirements. There is no question that the future is to see even wider use of concentric combinations to bring about reductions in the space requirements for filter and by-

Fundamental Characteristics

Before discussing circuit arrangements, it will be advisable first to establish clearly in mind the fundamental characteristics of the two general types of concentrically-wound units as described in the November,

As shown in Fig. 1 the concentrically-wound common-negative conden-

wound into a single roll with a single negative foil common to all the anode foils. The figure shows three "positives" but theoretically there may be any number of these anodes. Generally, however, not more than three anodes are used.

As shown in Fig. 2 the concentrically-wound common-negative condenser consists of two or more "negatives" wound into a single roll with a single positive foil common to all the negative foils. Again there is no limit theoretically as to the number of "negatives" but usually there are not more than two

Some Typical Filter Circuits

Now, let us discuss some of the circuit arrangements using these types of condensers. One of the simplest is shown in Fig. 3 where we have a con-

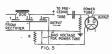
AEROVOX PRODUCTS ARE BUILT BETTER

Printed in U. S. A.

centric common-negative unit consisting of two high-voltage sections marked 1 and 2, these two sections composing, in combination with a choke coil, the main filter system of a power supply device. The choke coil is in the positive side of the circuit and the positive terminals of the condenser are connected either side of this choke coil. The negative foil common to both sections of the condenser is connected to the negative side of the filter circuit.

In the case of a filter system using two choke coils (in the modern radio receiver one of the chokes is usually the field coil of the loud speaker) we can make use of a triple-section, concentrically-wound, common-negative condenser. Such a filter circuit is shown in Fig. 4. It is similar to the

circuit of Fig. 3 with the exception of the addition of another section to the condenser and another choke in the positive side of the filter system. The first types of concentric units to come into general use were the two- and three-section types illustrated in Figs. 3 and 4 and the success of these circuits has brought about the use of the more special types of concentric units now being manufactured.


One of these more special cases is illustrated in Fig. 5. Here we have combined in one unit two filter condensers marked 1 and 2 and, in addition, a low-rolage by-pase alectrolytic section marked 3 which serves as a bypase unit across a resistor. "R" from which is obtained the C-bias voltage for a power tube. Again, as in the condenser shown in Fig. 4, all three sections are concentrically wound, but instead of having three high-voltage

sections, as in the case of Fig. 4, we have in Fig. 5 two high-voltage sections rated probably for a working voltage of 450 volts and a third section, 3, rated probably at only 25 or 50 volts. The first two sections are placed directly across the filter system and hence must withstand the full voltage of the filter; the third section is connected across the resistor and the voltage drop across this resistor may be less than 25 volts. Consequently, section 3 need only be designed to operate at a similarly low voltage. In Fig. 5, to clarify the circuit arrange-

Arg. 5, 10 trainly the circuit arrangement, we have shown very roughly the manner in which the filter system and the condenser tie inot the circuit of the power tube. There is, of course, no reason why three high-voltage sections might not be combined with a lowvoltage section and thereby permit the use of a two-section filter of the type shown in Fig. 4 and the low-voltage section could again be used for bypass purposes.

"Common-Positive" Circuits

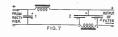
Now let us consider some circuit arrangements for concentrically-wound

common-positive units. The simplest arrangement is that shown in Fig. 6 using a two-section high-voltage condenser with one positive and two negative terminals and the choke coil in the negative side of the filter circuit.

pase unit across a resistor, "R" from which is obtained the C-bias voltage for a power tube. Again, as in the vita with the distribution of the association of condenser shown in Fig. 4, all three sections are concentrically wound, but instead of having three high-voltage

Page 2

of the circuit. In many cases, all, or part of the voltage drop across the second choke is used also as the bias voltage for the power output tubes.


In all cases, when concentric common-negative combinations are used consideration must be given to the voltage between the two "negatives" due to the voltage drop across the choke or other apparatus connected between the two "negatives". The polarity of this voltage drop is shown in Figs. 6 and 7 by the small polarity marks (plus and minus) near the chokes connected in the negative sides of the circuits. This voltage drop is due to the current flowing through the choke coil and the direction of this current is such that the polarity of the

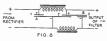
side of the choke nearest the output of the filter is positive and the polarity of the side of the choke nearest the input to the filter is negative. The amount of voltage drop across the chokes (and hence the voltage drop between the two "negatives") will be determined by the resistance in othe shoke and the current and will be equal to the product of the resistance in ohms and the current in amperes.

This voltage drop between the two "negatives" will cause a high leakage current to flow between the two "negatives" and very adversely affect the effectiveness of the entire filter system unless one of the "negatives" of the condenser has a film formed on it to limit the current flow. In the case of Fig. 6 the "negative" of section 2 will be of positive polarity with respect to the "negative" of section 1 by the amount of the voltage drop across the filter choke. Hence the negative foll

of section 2 must have a film on it capable of limiting the current flowing between the "negatives" to a very small value. If the voltage drop is 100 volts then the film must be such as to limit the current to a small value at

100 volts. If we were to use a condenser in this circuit which did not have such a film on one of the "negatives" the receiver would hum very badly due to excess leakage current across the choke coil.

Similarly in the case of Fig. 7 the "negative" of section 3 is of positive polarity with respect to the "negative" of section 2. Again the "negative" of section 3 must have a film on its surface such as to limit the current flow.


Design Factors

In the case of common-positive concentric units all the positive foils have a film on their surfaces and we therefore do not have to consider leakage paths between "positives". In the case of common-negative concentric units leakage must be considered and failure to take this factor into account undoubtedly will result in unsatisfactory operation of the receiver. The importance of this point cannot be overembasized.

In many circuits use is made of a combination of common-positive and common-negative constructions in a single unit. Such combinations may bring about some reduction in the physical size of the unit but there is frequently no advantage from a cost standpoint and naturally the more complicated the arrangement the greater are the possibilities of field trouble. single-section condenser and a twosection, common-negative condenser we can combine them into one unit, as shown in Fig. 7, with, as indicated above, a slight reduction in physical size. This latter arrangement is shown in Fig. 8. From the standpoint of sections 1 and 2 we have a concentric common-negative because both of the sections are connected to a commonnegative foil, A. However, from the standpoint of sections 2 and 3 we have

standpoint of sections 2 and 3 we have a common-positive construction because both sections have a commonpositive foil, B. The complete unit is therefore a mixture of common "negatives" but the resulting arrangement is electrically equivalent, at least, to the filter circuit of Fig. 7.

The following points may furthermore serve to indicate the desirability of giving serious consideration to the filter circuit arrangement. In both Figs. 7 and 8 there is present a comnon-positive concentric unit and hence formation of one of the negative foils will have to be resorted to in order that there shall not be excessive leak-

age between "negatives". By slightly rearranging the circuit of Fig. 7 this disadvantage can be eliminated.

In Fig. 9 we show the same filter circuit but we have combined sections that but we have combined sections that but we have combined sections that but we have combined sections to and 2 thereby making them a concentric common-negative and section 3 is a separate unit. In other words, by simply rearranging the connections we can change from the common-positive, exercised to make certain plus one separate section arrangement factors have been considered.

For example, instead of using a of Fig. 7 to the common-negative, plus ingle-section condenser and a twoction, common-negative condenser Fig. 9-and it is always preferable to be can combine them into one unit, shown in Fig. 7, with, as indicated be a complished without unwarranted bove, a slight reduction in physical increase in cost of the complete radio ice. This latter arransement is shown reciver.

It will be obvious to the reader that although we have only covered in this article concentric combinations with respect to their application to filter systems, that similar concentric combinations can also be applied generally to the by-pass circuits of radio receivers. There are many points in the receiver, for example, where two 5 or 10 mfd. low voltage sections (25 or 50 volts) can be wound concentrically and used to by-pass certain audio circuits. Almost invariably where low voltage by-pass condensers are wound concentrically they are of the commonnegative type; it is seldom that such condensers are wound with commonpositives.

The preceding discussion will serve to indicate some of the fundamental factors underlying the design and use of concentrically wound electrolytic condensers of various types. It has of course been impossible to cover all phases of the subject, but the essential phases of the subject, but the essential point will, we hope, be apparent from the foregoing. There is no question but that the general use of concentrically wound units in radio receivers of today has somewhat complicated the problem of design and servicing in the sense that reasonable care must be exercised to make certain that all fortune here here are identified.