

VOL. 12, NO. 3

MARCH, 1940

50c per year in U.S.A. 60c per year in Canada

Aids in Filter Designing

By the Engineering Department, Aerovox Corporation

FILTER networks may be built up from reactances in different configurations but this article is confined to the well-known "ladder"-networks of the type shown in Figure 1. The series impedance Z_1 and the shunt impedance Z_2 may consist of inductive reactances or capacitive reactances or several in combination. They may or may not have appreciable resistance.

Such a ladder network can be considered as built up of several sections either of the "T"-type or the "Pi"type as illustrated in Figure 2. Note that each of the two series arms of the T-section are equal to Z_{1_2} , since adding several sections together will put two of these in series, resulting in a full-series impedance Z. For a similar reason, the individual Pi-section has shunt arms equal to $2Z_2$, for, when two sections are added together two of these are in parallel and form the full-shunt impedance Z_2 .

When a filter ends with half a series-arm it is said to be mid-series terminated. When it ends with the double shunt-arm it is mid-shunt terminated.

The image impedances of a filter are the two impedances, not necessarily alike, which will simultaneously terminate the filter at its two ends so there will be no reflection loss. This occurs when the image impedance is equal to the impedance looking into the filter at that end. When the two image impedances are equal, the filter is symmetrical, and they are equal to Z_0 , the characteristic impedance.

The characteristic impedance and/or the image impedance may be found by measuring the impedance of the filter at one end with the other end left open and again with the other end shorted. The desired impedance equals the geometric mean of the two values obtained.

The image impedance and characteristic impedance generally vary with frequency so the two measurements must be carried out at the same frequency.

CONSTANT-K FILTER

The filters discussed here are of the "constant-k type" which means that the product Z_1Z_2 is constant for all frequencies and equal to k^2 . This value k is again equal to the characteristic impedance of the filter over the greater part of the pass band and equal to the value R used in the calculations.

Such a filter, when properly terminated in its image impedance, acts as a resistance load on the generator throughout the pass-band, but, at the cut-off frequency the load becomes either zero or infinite and thereafter it is imaginary. In other words, in the attenuation band the filter acts as a reactive load, does not take any energy from the generator, and does not transmit any energy to its terminating impedance.

Figure 3 shows the hook-up of four types of filters with the equations for their elements while Tables I and II contain tabulations of these values for different cut-off frequencies.

In general it will be necessary to use filters of more than one section if a sharp enough cut-off is to be obtained and these sections need not necessarily be the same. Other sections, having special attenuation characteristics can be "derived" from the filter sections of the "prototype" described here. These will be dealt with in a later article.

USE OF THE TABLES

Table I lists the element values for low-pass and high-pass filters with 500 ohms and 10,000 ohms characteristic impedance. These are the values for the full series arm and the full shunt arm, Z_1 and Z_2 as in Figure 1. They are given in henries and microfarads except in some cases where microhenries and micro-microfarads are used.

The cut-off frequencies listed were selected to minimize the work to be done by the user. All element values are inversely proportional to the cutoff frequency. This information will serve to find data for filters having a cut-off frequency which may not be

AEROVOX PRODUCTS ARE BUILT BETTER

Printed in U.S.A.

Copyright 1940 by Aerovox Corporation

listed. For instance: A low-pass filter working out of and into a 500 ohm line and having a cut-off frequency of 150 cycles requires a coil of 1.06 henry inductance and a shunt condenser of 4.24 microfarads. For a cut-off frequency of 1500 cycles these values become .106 henry and .424 mfd. When the cut-off frequency is 15 mc. the values become 10.6 microhenry and 42.4 mmfd. Note that the figures remain the same but the decimal point only has been moved. A guide to the placing of the decimal point is found by noting that the required values must be between those for 10 and 30 mc.

When a filter is to be designed for a different characteristic impedance \mathbf{R} , find the required data first for a 500 ohm filter. Then multiply the inductance value by $\mathbf{R}/500$ and divide the capacity value by the same factor.

In Table II is listed the required data for a band-pass filter of 500 ohms, having different band-widths and different mid-frequencies, f_m . Usually the two cut-off frequencies for the filter are given. Let us call these f_1 and f_2 , f_1 being the smaller one. The mid-frequency is then the geometric mean between the two or $f_m^2 = f_1 f_2$. The band-width, for the purpose of this table is defined as $(f_2 - f_1)/f_m$. So, for instance, a filter with a lower cut-off frequency of 625 cycles and an upper cut-off frequency of 1000 cycles and a band-width of unity. A filter with the same mid-frequency and a band-width of .2 would have cut-off frequencies of 910 and 1110 cycles.

All values are given in henries and microfarads except those marked "m" which are in microhenries and micromicrofarads.

Similar to Table I, element values for different mid-frequencies and different characteristic impedances can be obtained by interpolation or displacement of the decimal point, remembering that all element values are inversely proportional to the mid-frequency, the inductances are proportional and the capacities inversely proportional to the characteristic impedance.

When a different band-width is desired, the element values are found from the following rule: L_2 and C_1 are proportional and L_1 and C_2 inversely proportional to the band-width. Element values for a bandwidth of unity are the same as those given in Table I.

To find the values of capacity and inductance of a band-suppression filter with a characteristic impedance of 500 ohms proceed as follows:— L_2 of the shunt arm is equal to $\frac{1}{4}L_1$ of the band-pass filter, and L_1 of the band-pass filter. C_2 of the shunt arm, in series with L_2 , is equal to $4C_1$ of the band-pass filter; and C_1 of the series arm in parallel with L_1 is equal to $\frac{1}{4}C_2$ of band-pass filter.

		$\mathbf{R} = 500 \mathrm{c}$	hms		R = 10,000 ohms					
	Low-pass		High-p	ass	Low-pass High-pass					
f. (cycles)	L ₁ (henries)	C ₂ (mfds.)	L ₂ (henries)	C, (mfds.)	L ₁ (henries)	C₂ (mfds.)	L ₂ (henries)	C ₁ (mfds.)		
30	5.31	21.2	1.33	5.31	106.	1.06	26.5	.265		
100	1.59	6.37	.398	1.59	31.8	.318	7.96	.0796		
150	1.06	4.24	.265	1.06	21.2	.212	5.31	.0531		
200	.796	3.18	.198	.796	15.9	.159	3.98	.0398		
250	.637	2.55	.159	.637	12.7	.127	3.18	.0318		
300	.531	2.12	.133	.531	10.6	.106	2.65	.0265		
350	.455	1.82	.114	.455	9.09	.0909	2.28	.0228		
400	.398	1.59	.0995	.398	7.96	.0796	1.99	.0199		
450	.354	1.41	.0884	.354	7.07	.0707	1.77	.0177		
500	.318	1.27	.0796	.318	6.37	.0637	1.59	.0159		
550	.289	1.16	.0723	.289	5.78	.0578	1.45	.0145		
600	.265	1.06	.0663	.265	5.31	.0531	1.33	.0133		
650	.245	.979	.0612	.245	4.90	.0490	1.22	.0122		
700	.227	.909	.0568	.227	4.54	.0454	1.14	.0114		
750	.212	.849	.0531	.212	4.24	.0424	1.06	.0106		
800	.199	.796	.0497	.199	3.98	.0398	.995	.00995		
850	.187	.749	.0468	.187	3.74	.0374	.936	.00936		
900	.177	.707	.0442	.177	3.54	.0354	.884	.00884		
950	.168	.670	.0419	.168	3.36	.0336	.839	.00839		
1*	.159	.637	.0398	.159	3.18	.0318	.796	.00796		
3*	.0531	.212	.0133	.0531	1.06	.0106	.265	.00265		
10*	.0159	.0637	.00398	.0159	.318	.00318	.0796	796 <i>#</i>		
30*	.00531	.0212	.00133	.00531	.106	.00106	.0265	$265 \pm$		
100*	.00159	.00637	398†	.00159	.0318	$318 \pm$.00796	7 9.6 #		
300*	581†	.00212	133†	$531 \pm$.0106	$106\frac{7}{4}$.00265	$26.5 \pm$		
1**	159†	637 #	39.8†	159 #	.00318	31.8#	796†	7 .96 #		
3**	53.1†	212#	13.3†	53.1 #	.00106	10.6 #	265†	$2.65 \pm$		
10**	15.9†	63.7#	3.98†	15.9#	318†	$3.18 \pm$	79.6†	0.796#		
30**	5.31†	21.2#	1.33†	5.31#	106†	1.06#	26.5†	0.265#		

NOTE: *Kilocycles, **Megacycles, †Microhenries, #Micromicrofarads

TABLE II BAND-PASS FILTERS (R = 500 OHMS)

Band Width	f _m	= 100 cycles	1000 cycles	1500 cycles	2000 cycles	2500 cycles	3000 cycles	3500 cycles	4000 cycles	4500 cycles	5000 cycles	5500 cycles	6000 cycles
.05	$\begin{array}{c} L_1 \\ L_2 \\ C_1 \\ C_2 \end{array}$	31.8 .0199 .0796 127	3.18 .00199 .00796 12.7	2.12 .00133 .00531 8.49	1.59 995m .00398 6.37	1.27 796m .00318 5.09	1.06 663m .00265 4.24	.909 569m .00227 3.64	.796 497m .00199 3.18	.707 442m .00177 2.83	.637 398m .00159 2.55	.579 362m .00145 2.32	.531 332m .00133 2.12
.1	$ \begin{array}{c} \mathbf{L}_1 \\ \mathbf{L}_2 \\ \mathbf{C}_1 \\ \mathbf{C}_2 \end{array} $	15.9 .0398 .159 63.7	1.59 .00398 .0159 6.37	1.06 .00265 .0106 4.24	.796 .00199 .00796 3.18	.637 .00159 .00637 2.55	.531 .00133 .00531 2.12	.455 .00114 .00455 1.82	.398 995m .00398 1.59	.354 884m .00354 1.41	.318 796m .00318 1.27	.289 723m .00289 1.16	.265 663m .00265 1.06
.15	$\begin{array}{c} L_1 \\ L_2 \\ C_1 \\ C_2 \end{array}$	10.6 .0597 .239 42.4	1.06 .00597 .0239 4.24	.707 .00398 .0159 2.83	.531 .00298 .0119 2.12	.424 .00239 .00955 1.70	.354 .00199 .00796 1.41	.303 .00171 .00682 1.21	.265 .00149 .00597 1.06	.236 .00133 .00531 .943	.212 .00119 .00477 .849	.193 .00109 .00434 .772	.177 995m .00398 .707
.2	$L_1 \\ L_2 \\ C_1 \\ C_2$	7.96 .0796 .318 31.8	.796 .00796 .0318 3.18	.531 .00531 .0212 2.12	.398 .00398 .0159 1.59	.318 .00318 .0127 1.27	.265 .00265 .0106 1.06	.227 .00227 .00909 .909	.199 .00199 .00796 .796	.177 .00177 .00707 .707	.159 .00159 .00637 .637	.145 .00145 .00579 .579	.133 .00133 .00531 .531
.25	$L_1 \\ L_2 \\ C_1 \\ C_2$	6.37 .0995 .398 25.5	.637 .00995 .0398 2.55	.424 .00663 .0265 1.70	.318 .00497 .0199 1.27	.255 .00398 .0159 1.01	.212 .00332 .0133 .849	.182 .00284 .0114 .728	.159 .00249 .00995 .637	.141 .00221 .00884 .566	.127 .00199 .00796 .509	.116 .00181 .00723 .463	.106 .00166 .00663 .424
.3	$\begin{array}{c} L_1\\ L_2\\ C_1\\ C_2\end{array}$	5.31 .119 .477 21 <i>,</i> 2	.531 .0119 .0477 2.12	.354 .00796 .0318 1.41	.265 .00597 .0239 1.06	.212 .00477 .0191 .849	.177 .00398 .0159 .707	.152 .00341 .0136 .606	.133 .00298 .0119 .531	.118 .00265 .0106 .472	.106 .00239 .00955 .424	.0965 .00217 .00868 .386	.0884 .00199 .00796 .354
.4	$\begin{array}{c} L_1 \\ L_2 \\ C_1 \\ C_2 \end{array}$	3.98 .159 .637 15.9	.398 .0159 .0637 1.59	.265 .0106 .0424 1.06	.199 .00796 .0318 .796	.159 .00637 .0255 .637	.133 .00531 .0212 .531	.111 .00455 .0182 .455	.0995 .00398 .0159 .398	.0884 .00354 .0141 .354	.0796 .00318 .0127 .318	.0723 .00289 .0116 .289	.0663 .00265 .0106 .265
.5	$L_1 \\ L_2 \\ C_1 \\ C_2$	3.18 .199 .796 12.7	.318 .0199 .0796 1.27	.212 .0133 .0531 .849	.159 .00995 .0398 .637	.127 .00796 .0318 .509	.106 .00663 .0265 .424	.0909 .00568 .0227 .364	.0796 .00497 .0199 .318	.0707 .00442 .0177 .283	.0637 .00398 .0159 .255	.0479 .00362 .0145 .232	.0531 .00332 .0133 .212
.6	L_1 L_2 C_1 C_2	2.65 .239 .955 10.6	.265 .0239 .0955 1.06	.177 .0159 .0637 .707	.133 .0119 .0477 .531	.106 .00955 .0382 .424	.0884 .00796 .0318 .354	.0758 .00682 .0273 .303	.0663 .00597 .0239 .265	.0589 .00531 .0212 .236	.0531 .00477 .0191 .212	.0482 .00434 .0174 .193	.0442 .00398 .0159 .177
.7	L ₁ L ₂ C ₁ C ₂	2.27 .279 1.11 9.09	.227 .0279 .111 .909	.15 2 .0186 .0742 .606	.114 .0139 .0557 .455	.0909 .0111 .0446 .364	.0758 .00928 .037'1 .303	.0650 .00796 .0318 .260	.0568 .00696 .0279 .227	.0505 .00619 .0248 .202	.0455 .00557 .0223 .182	.0413 .00506 .0203 .165	.0379 .00464 .0186 .152
.3	$L_1 L_2 C_1 C_1 C_2$	1.99 .318 1.27 7.96	.199 .0318 .127 .796	.133 .0212 .0849 .531	.0995 .0159 .0637 .398	.0796 .0127 .0509 .318	.0663 .0106 .0424 .265	.0568 .00909 .0364 .227	.0497 .00796 .0318 .199	.0442 .00707 .0283 .177	.0398 .00637 .0255 .159	.0362 .00579 .0231 .145	.0332 .00531 .0212 .133
.9	L_1 L_2 C_1 C_2	1.77 .358 1.43 7.07	.177 .0358 .143 .707	.118 .0239 .0955 .472	.0884 .0179 .0716 .354	.0707 .0143 .0573 .283	.0589 .0119 .0477 .236	.0505 .0102 .0409 .202	.0442 .00895 .0358 .177	.0393 .00796 .0318 .157	.0354 .00716 .0286 .141	.0322 .00651 .0260 .129	.0294 .00597 .0239 .118

m = microhenries

continued next page

TABLE II BAND-PASS FILTERS (R = 500 OHMS)

Band	f m	= 6500	7000	7500	8000	8500	9000	9500	10	100	1	10
Width		cycles	cycles	cycles	cycles	cycles	cycles	cycles	kc.	kc.	mc.	mc.
.05	$L_1 \\ L_2 \\ C_1 \\ C_2$.490 306m .00122 1.96	.455 284m .00114 1.82	.424 265m .00106 1.70	.398 249m 995mmf 1.59	.374 234m 936mmf. 1.50	.354 221m 884mmf 1.41	.335 209m . 838mmf 1.34	.318 199m . 796mmf 1.27	.0318 19.9m . 79.6mmf. .127	.00318 1.99m 7.96mmf. .0127	318m .199m .796mmf. .00127
.1	L,	.245	.227	.212	.199	.187	.177	.168	.159	.0159	.00159	159m
	L,	61 2m	568m	531m	497m	468m	442m	419m	398m	39.8m	3.98m	.398m
	C,	.00245	.00227	.00212	.00199	.00187	.00177	.00168	.00159	159mmf.	15.9mmf.	1.59mmf.
	C,	.979	.909	.849	.796	.749	.707	.670	.637	.0637	.00637	637mmf.
.15	L ₁	.163	.152	.141	.133	.125	.118	.112	.106	.0106	.00106	106m
	L ₂	918m	852m	796m	746m	702m	663m	628m	597m	59.7m	5.97m	.597m
	C ₁	.00367	.00341	.00318	.00298	.00281	.00265	.00251	.00239	239mmf.	23.9mmf.	2.39mmf.
	C ₂	.653	.606	.566	.531	.499	.472	.447	.424	.0424	.00424	424mmf.
.2	L ₁	.122	.114	.106	.0995	.0936	.0084	.0838	.0796	.00796	796m	79.6m
	L ₂	.00122	.00114	.00106	.995m	936m	884m	838m	796m	79.6m	7.96m	.796m
	C ₁	.00490	.00455	.00424	.00398	.00374	.00354	.00335	.00318	318mmf.	31.8mmf.	3.18mmf.
	C ₂	.490	.455	.424	.398	.374	.354	.335	.318	.0318	.00318	318mmf.
.25	L,	.0979	.0909	.0849	.0796	.0749	.0707	.0670	.0637	.00637	637m	63.7m
	L,	.00153	.00142	.00133	.00124	.00117	.00111	.00105	995m	99.5m	9.95m	.995m
	C,	.00612	.00568	.00531	.00497	.00468	.00442	.00419	.00398	398mmf.	39.8mmf.	3.98mmf.
	C,	.392	.364	.340	.318	.300	.283	.268	.255	.0255	.00255	255mmf.
.3	L_1	.0816	.0758	.0707	.0663	.0624	.0589	.0558	.0531	.00531	531m	53.1m
	L_2	.00184	.00171	.00159	.00149	.00140	.00133	.00126	.00119	119m	11.9m	1.19m
	C_1	.00735	.00682	.00637	.00597	.00562	.00531	.00503	.00477	477mmf.	47.7mmf.	4.77mmf.
	C_2	.326	.303	.283	.265	.250	.236	.223	.212	.0212	.00212	212mmf.
.4	Lı	.0612	.0568	.0531	.0497	.0468	.0442	.0419	.0398	.00398	398m	39.8m
	L₂	.00245	.00227	.00212	.00199	.00187	.00177	.00168	.00159	159m	15.9m	1.59m
	Cı	.00979	.00909	.00849	.00796	.00749	.00707	.00670	.00637	637mmf.	63.7mmf.	6.37mmf.
	C₂	.245	.227	.212	.199	.187	.177	.168	.159	.0159	.00159	159mmf.
.5	L ₁	.0490	.0455	.0424	.0398	.0374	.0354	.0335	.0318	.00318	318m	31.8m
	L ₂	.00306	.00284	.00265	.00249	.00234	.00221	.00209	.00199	199m	19.9m	1.99m
	C ₁	.0122	.0114	.0106	.00995	.00936	.00884	.00838	.00796	796mmf.	79.6mmf.	7.96mmf.
	C ₂	.196	.182	.170	.159	.150	.141	.134	.127	.0127	.00127	127mmf.
.6	L_1	.0408	.0379	.0354	.0332	.0312	.0295	.0279	.0265	.00265	265m	26.5m
	L_2	.00367	.00341	.00318	.00298	.00281	.00265	.00251	.00239	239m	23.9m	2.39m
	C_1	.0147	.0136	.0127	.0119	.0113	.0106	.0101	.00955	955mmf.	95.5mmf.	9.55mmf.
	C_2	.163	.152	.141	.133	.125	.118	.112	.106	.0106	.00106	106mmf.
.7	L_1	.0350	.0325	.0303	.0284	.0267	.0253	.0239	.0227	.00227	227m	22.7m
	L_2	.00429	.00398	.00371	.00348	.00328	.00309	.00293	.00279	279m	27.9m	2.79m
	C_1	.0171	.0159	.0149	.0139	.0131	.0124	.0117	.0111	.00111	111mmf.	11.1mmf.
	C_2	.140	.130	.121	.114	.107	.101	.0957	.0909	.00909	909mmf.	9.09mmf.
.8	L,	.0306	.0284	.0265	.0249	.0234	.0221	.0209	.0199	.00199	199m	19.9m
	L ₂	.00490	.00455	.00424	.00398	.00374	.00254	.00335	.00318	318m	31.8m	3.18m
	C,	.0196	.0182	.0170	.0159	.0150	.0141	.0134	.0127	.00127	127mmf.	12.7mmf.
	C ₂	.122	.113	.106	.0995	.0936	.0884	.0838	.0796	.00796	796mmf.	79.6mmf.
.9	L ₁	.0272	.0253	.0236	.0221	.0208	.0196	.0186	.0177	.00177	177m	17.7m
	L ₂	.00551	.00512	.00477	.00448	.00421	.00398	.00377	.00358	2_8m	35.8m	3.58m
	C ₁	.0220	.0205	.0191	.0179	.0169	.1059	.0151	.0143	.00143	143mmf.	14.3mmf.
	C ₂	.109	.101	.0943	.0884	.0832	.0786	.0745	.0707	.00707	707mmf.	70.7mmf.

Page 4

Figure 3

As shown above, octal base of Aerovox plug-in condenser is of special design and construction, made in Aerovox's own molding department.

own molding department. Nickel-plated brass prongs engage with standard octal socket contacts of similar metal. Prongs connect with aluminum-section tabs through aluminum studs, as shown, with junctions imbedded in protective bakelite seal to eliminate corrosive effects. Aluminum studs spun over prong ends. Section tab placed in cylindrical recess of aluminum stud, and portion of stud wall is partly sheared and collapsed firmly on imbedded tab for permanently tight, low-resistance, aluminum-to-aluminum bond.

Hermetic sealing achieved by can edge spun over soft-rubber gasket and bakelite plug. Vented cover for full protection.

If standard octal socket is correctly wired, condenser simply cannot be incorrectly connected because of octalbase keying.

Units firmly gripped in octal sockets, just as in case of octal-base radio tubes and vibrators.

	and the second se	
Max.	AEROVOX TYPE Plug-In Electroly 525v. SURGE 450v.	AEP tics D.C. Work.
	AER 450-Single	Section
T	ype AEF-450-Bingie	List
Can	Size-Ins.	Drice
Mfda	DiaHigh	Price
MITUS.	1 5/39 x 2-1/2	\$1.20
10	1-5/52 = -1/2	1.75
20	1-5/32 x 2-1/2	3.05
40	1-5/32 x 2-1/2	4.25
80	1-5/32 x 4-1/4	
	AEP-450-Doubl	e Section
T	ype ALL 11/2	1.95
10-10	1-5/32 x 2-1/2	2.75
20-20	1-5/32 x 3	Section
7	Type AEP-450-Trip	e Section 2.65
10 10	$10 \ 1-5/32 \ x \ 2-1/2$	2.00
10-10-	Type AEP 45	025
	L'Spe ILLE	
10-10	x 450 1 E / 99 x 9	-1/2 2.65
+-20) x 25 1-3/32 x 2	-,

Developed primarily for the U. S. Signal Corps and for use in aircraft and police radio, the new AEROVOX Series AP Plug-in Electrolytic Condensers are now available for other applications where, above all else, continuity of service is a prime requisite.

The far-reaching advantages of the plug-in electrolytic are at once obvious. Readily removed, tested, replaced, these octal-base condensers handle with the same ease as conventional radio tube or vibrator. Assemblies can be equipped with fresh plug-ins immediately prior to shipment or to actual use, which feature is vitally important in overseas radio trade. Users of radio or electronic equipment subject to continuous service, can carry "spares" on hand for instant replacement. Auto-radio and home-radio service is vastly simplified.

The many technical problems involved in producing a hermetically-sealed, leak-proof, corrosion-proof, octal-base plug-in condenser have been thoroughly solved. These units are available in the paper type as well as in electrolytic as herein listed.

Ask Your Jobber...

Ask to see this latest achievement in condensers. Use plug-in condensers in that next assembly intended for continuous, dependable service. Or write us direct.

