

HARTLEY OSCILLATOR

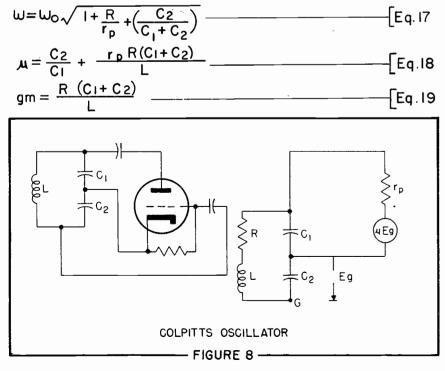
$$\omega \approx \sqrt{\frac{\frac{1+\frac{R_{I}}{r_{p}}}{\frac{1+L_{2}+2N}{C}}} = \omega_{0}\sqrt{1+\frac{R_{I}}{r_{p}}} \qquad [Eq \ 12]$$

$$gm = \frac{C(R_1 + R_2)(L_1 + L_2 + 2M)}{(L_1 + M)(L_2 + M)}$$
 [Eq 13

if
$$M = 0$$
: $gm = \frac{C(R_1 + R_2)(L_1 + L_2)}{L_1 + L_2}$ [Eq 14]

Eq. 15] or
$$gm = \frac{CRL}{L_1 L_2}$$
 where R = total tuned circuit
resistance (in L)
L= totalLintuned circui

$$M = \frac{L_{1+M}}{L_{2}+M} + \frac{P}{(L_{1}+M)(L_{2}+M)}$$
[Eq 16


ed that for equivalent coils, the sta- to support oscillation. The expresbility would be better for the Hartlev

From the expression for u, it can be seen that the greater the ratio of the grid-to-cathode section of the coil to the plate to-cathode section. the easier it is for oscillation to take place. However, the plate section cannot be too small, since then there will not be sufficient transfer of energy from the plate to the coil.

It is interesting to note that it is not necessary to have either gridplate capacitance or mutual inductance between the sections of the coil

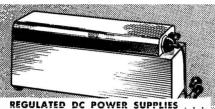
sions are derived containing M because such M is usually present. However, if the two sections of the coil are entirely separated oscillation takes place. In fact, oscillation is even more vigorous without mutual inductance. Of course, the num- are not ber of turns in each section of the coil must be somewhat greater, to make up for the loss of M, if the same frequency is to be maintained with the same tuning capacitor.

The Colpitts oscillator is a variation of the Hartley principle in which the tuned circuit is divided by a ca-

pacitance voltage divider instead of a tap on the coil. It is shown with equivalent circuit in Fig. 8. The expressions for this oscillator are as follows:


Note that the tuned circuit must be adjusted for a resonant frequency slightly below the actual frequency of oscillation. The expressions for u and gM are similar to those for the Hartley, except that they contain the divider capacitances instead of the sections of the coil. The values of both u and gM necessary for oscillation are small. In the expression for frequency, the capacitance values play an important part. It is noteworthy that a relatively high value for C2 makes for less easy oscillation and poorer stability.

One of the important advantages of the Colpitts oscillator is the relatively large capacitances $(C_1 \text{ and } C_2)$ are shunted across the plate-to-cath ode and grid-to-cathode interelectrode capacitances of the tube. This minimizes the effect of the latter on the stability of the oscillator, which depends almost altogether upon the external capacitances. The latter are within the control of the designer, whereas tube capacitance variations

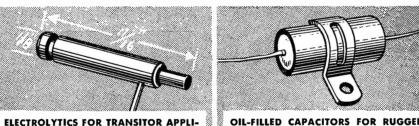

In this article we have discussed some of the more important factors influencing the operation, behavior and suitability of basic oscillator circuits. In the next article of this series we shall consider the use of oscillator circuits in low-frequency and short-wave AM radio receivers.

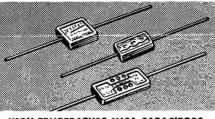
REFERENCES

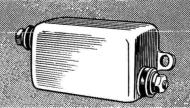
- 1-Eastman, Austin V Fundamentals of Vacuum Tubes, McGraw-Hill 1949; pp. 441-452.
- 2-Edson, Wm. A. Vacuum Tube Oscillators, John Wiley & Sons 1953; pp. 1-12, 158-169, 173-175.
- 3—Everitt, Wm. L. Communication Engineering, McGraw-Hill 1937: pp. 598-615.
- 4-Glasgow, R. S. -- Principles of Radio Engineering, McGraw-Hill 1936; pp. 228-236, 261-269.
- 5-Radiotron Designer's Hankbook RCA-Victor Div. Radio Corp of America (for Amalgamated Wireless Valve Pty. Ltd.) 1952; pp. 49-53, 947 954.
- 6-Seely, Samuel Electron-Tube Circuits, McGraw-Hill 1950; pp. 60-63, 244-253,
- 7-Sturley, K. R. Radio Receiver Design, John Wiley & Sons 1949: pp. 37-53, 162-164, 241-252.
- 8-Terman, F. E. Radio Engineer's Handbook, McGraw-Hill 1943; pp. 467-469

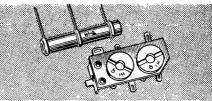
HIGH-VOLTAGE CERAMIC CAPACITORS Result of extensive research by Hi-Q enaineers to produce high-valtage units with same dependable adherence ta specifica tions, ratings and talerances which charac terize all HI-Q campanents. Special dielectric material and new designs far high working voltages in relation to size. Avoil able in slugs, disks, plates, tubulars.

Incarparating use of magnetic amplifier techniques - eliminating all vacuum tubes. Provides extremely dependable, trouble-free precision equipment for industrial and labaratary uses. Minimum af 20,000 hours continuous service. Available in variety af voltages and frequencies. Output: 300 v D.C. with plus/minus 1% regulatian from 0 to 200 MA. Less than 1% ripple.


PLATE ASSEMBLIES SAVE SPACE AND LABOR ... Mast versatile af electronic campanents. Virtually endless cambinations of capacitors and resistors in single units. Limited anly by "K" of material, and physical size Contribute to dependable miniaturiza. tian. Simplify assembly. Reduce number of saldered leads.


MAGNETIC AMPLIFIERS . . . Acme's extensive "knaw-how", gained through the development of magnetic amplifiers, can provide you with the precise component to fit your exact need. Power gain as high as 10 million. Carrier aperating frequencies fram 60 cps to 100 kcs. Pawer output up ta 20 watts. Input sensitivity of 0.10 microwatt In the "instrument grade" class.


HIGH-TEMPERATURE METALLIZED PAPER CAPACITORS ... A major Aerovox development. Ideal for miniaturization. Units enjoy wide usage and are giving excellent service. Full-voltage operation up to 100° C; to 125° C with voltage deroting. Unique thermo-setting solid dielectric - maximum shock- and vibration-proof - no oil leakage.


CATIONS A sub-sub-minioture electrolytic, Type HA, designed especially far new transitars. Marked size reduction - cansiderably smaller than any previously avoilable commercial unit. Typical example: 6 v. 1 mfd. unit shown measures only 1/8" dia. X 11/16" long.

HIGH-TEMPERATURE MICA CAPACITORS . Suitable for operation at temperatures as high as 125° C. Increasingly used in military and special commercial opplications. Available in all molded bokelite-cose styles: Also close temperature caefficient units in which "F" charocteristic of JAN is olmast halved. Silver-micas also.

INTERFERENCE FILTERS . . . Latest units provide maximum attenuation fram 150 KC well up into UHF range. Extra rugged, extra compoct, extro efficient, by any comparisan with previously-avoilable filters. In several standard types for wide voriety of uses. Far extraordinary requirements, special filters con be developed and built.

SPECIAL HI-Q COMPONENTS Devel-

aped to meet special needs. These special

components meet all requirements as estab-

lished by RTMA for class 2 ceramic dielectric

canacitars. Can meet class 1 requirements if

RADIO RANGE FILTERS . . . Depending an frequency required, Acme con supply standard ar miniaturized filters with either taroidal or laminated inductors. Where required, these filters can be manufactured to hold very close phase shift talerances and clase output ratings aver wide temperature ratings. Acme can build the "taughest" ones!

OIL-FILLED CAPACITORS FOR RUGGED SERVICE . . . Choice of impregnants that are function-fitted to operating conditions. Many different case styles-metal-case tubulars and bathtubs, round-can and rectangu lar-can transmitter units, large steel-case units, widest choice of mountings and terminals, etc.

. . Aerovox offers a radically new form of printed wiring. Emplays silver as the conductor. Mony distinct advontoges. Essentially, this printed wiring affers fidelity of reproduction of original wiring design, with excellent adhesian of conducting material to base material. No corrasive chlarides or ather harmful materials used in production.

THE HOME OF CAPACITOR CRAFTSMANSHIP AEROVOX CORPORATION, NEW BEDFORD, MASS., U. S. A.

SALES OFFICES IN ALL PRINCIPAL CITIES

VOL. 23 NO 12 AND VOL. 24 NO. 1

Electronic Oscillators

Part 1

By the Engineering Department, Aerovox Corporation

circuit has increased its scope and are primarily interested in sustained radio receiver contains at least one oscillator, and TV receivers normally contain three. Every transmitter must contain a carrier-generating and frequency-controlling oscillator, and special types (such as those employing single sideband output) employ several in many cases. The wide use of oscillators in test equipment, such as audio and radio frequency signal generators, frequency meters, griddip meters etc., and in magnetic recorders is well known.

The engineer, service technician, amateur and experimenter are thus vitally affected by the operation of oscillators in general, and important commonly-used types in particular. The object of this article, and those to follow in this series, is to review important fundamental concepts and design factors, and their application to every-day use of oscillators.

Definition of an Oscillator

An oscillator is any device which can be induced into cyclic repetitive action. Mechanically, an example is the clock pendulum; its electrical counterpart is a tuned resonant circuit. In both cases, the period of each cycle, and thus the frequency be considered a *converter* more propof oscillation is controlled, but en- erly than a generator, since it con-

TN the past 25 years of progress, loss in the device if sustained oscil-I probably no other basic electronic lations are to be obtained. Since we the input frequency. versatility as much as the vacuum oscillations without damping, a comtube oscillator. Practically every plete oscillator must have two main parts: a frequency-controlling device which is usually a resonant circuit, and another part which applies energy to the frequency-controlling device in the proper manner to sustain oscillation. The latter is usually an amplifier.

The Institute of Radio Engineers defines an oscillator as

A non-rotating device for producing alternating current, the output frequency of which is determined by the characteristics of the device. (Standards on Antennas. Modulation Systems and Transmitters, Definitions of Terms - IRE

This definition is broad enough to cover all electrical oscillators. We are concerned here with the electronic oscillator which is an electrical oscillator employing one or more vacuum tubes.

An electronic oscillator requires input energy to overcome tube and circuit losses and to supply the required output power. This input energy it obtains by means of electrical energy or from the plate power supply, and indirectly from the heater or filament current to the tube. Basically, it can ergy must be added to overcome the nects electrical energy from one fre-

quency to another usually higher than

Negative Resistance Requirement

For oscillation, energy must flow from the output (usually the plate) circuit to the input circuit (usually the grid) in such magnitude and phase as to overcome the losses of the system. But the basic amplifying action of a vacuum tube is to produce plate voltage which is approximately (exactly with a resistance load) 180 degrees out of phase with the grid voltage which produces it. Part of this output voltage must be applied to the grid circuit in phase with the grid voltage. This is done by reversing the phase (either actually or effectively) of that part of the plate voltage fed back to the grid circuit.

When this condition exists the network develops a negative resistance in the circuit. In a negative resistance, the current increases as the voltage decreases; thus the current and voltage changes are out of phase 180 degrees.

There are three main ways in which a negative resistance can be provided in vacuum tube circuits for oscillation

(1) By actually transmitting a desired portion of the output signal voltage to the input circuit in a feedback circuit which reverses the phase. (2) By the design of a tube, or

the adjustment of the applied poten-

AEROVOX - The Sign Of The Complete Capacitor Line

tials to the tube, so that it exhibits a negative resistance characteristic.

In this article, we will concern ourselves with the basic functional factors in types 1^a and 1^b. Type 2 will be considered later in a separate article.

A—Inductively

B-Capacitatively, through the gridplate capacitánce or external capacitance

Criterion For Oscillation

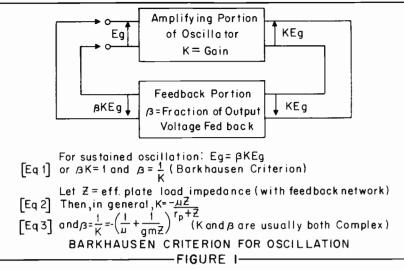
In the consideration of any given oscillator circuit, it is important to know under what conditions of circuit design and adjustment oscillation will take place, as these conditions are limited.

For any oscillator of the feedback type, the Barkhausen criterion of Fig. 1 is applicable. This figure shows the oscillator broken up into its two basic parts, the amplifier and the feedback link. The input voltage to the amplifier EG is the voltage fed back through the feedback circuit. This simple derivation shows that the fraction of the output voltage which is fed back (B), must be equal to the reciprocal of the gain. Both of these factors are complex, because both the amplifier and the feedback circuits do, in general, introduce phase shifts. For oscillation, the phase shifts must cancel.

Equations 2 and 3 apply the criterion to a grounded-cathode amplifier. This expression is general, and can be applied to any particular circuit by evaluating load impedance and B

Şrp

(E9)


Сз

 $E_{Lg} T^{C_2} E_{g}$

TUNED GRID FEEDBACK

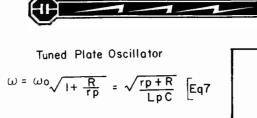
CIRCUIT

FIGURE 2-

in terms of the circuit parameters involved and substituting them in the either by setting up simultaneous general expression equation 3.

Inductive Feedback Circuits

From a theoretical standpoint, probably the most dircct method of providing negative resistance for oscillation is by mutual inductance be- an equation containing complex quantween coils in the plate and grid circuits respectively. The two most common circuits of this type are illustrated, along with their equivalent circuits, in Fig. 2 and 3 respectively. It will be noted that they differ only in the choice of which circuit is tuned.


These circuits can be analyzed equations equating the voltages around each loop, or by substituting appropriate expressions for Z and B in eq 3. For these circuits one method is about as easy as the other. The solution in each case results in tities. Equating the imaginary (i) terms provides an expression for the actual frequency of oscillation compared to the resonant frequency of the tuned circuit. Equating the real terms gives a relation showing the conditions necessary for oscillation. The detailed steps of the analysis are available in the literature, 6, 7 and will thus not be repeated here. The results are as follows:

As might be expected, the expressions have similar forms for the two circuits. However, one interesting difference is that in the tuned grid circuit the frequency of oscillation is lower than the tuned circuit resonant frequency (Eq. 4) while in the tuned plate oscillator it is higher (Eq. 7).

Tuned Grid Oscillator

$$\omega = \frac{\omega_{0}}{\sqrt{1 + A}} = \frac{1}{\sqrt{LpC(1 + A)}} \begin{bmatrix} Eq.4 \\ M \approx -\frac{A}{1 + A} & \frac{Lp}{A} - \frac{CR}{qm} \end{bmatrix} \begin{bmatrix} Eq.5 \\ gm = -\frac{A}{1 + A} & \frac{Lp}{Mr_{p}} - \frac{CR}{M} \end{bmatrix} \begin{bmatrix} Eq.5 \\ eq.6 \end{bmatrix}$$
Where $A = \frac{LpR}{mr_{p}}$ and $b \approx 2\pi x$ actual osc freq

 $\omega = 2\pi \times reso$ Lg rp nant frea of tuned cicuit

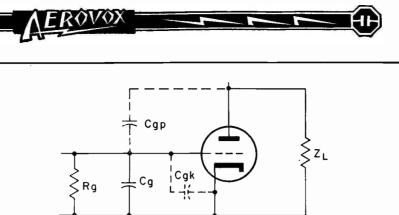
 $\underline{)}$

Eq 8

Eq9

These frequency equations are useful primarily in a qualitative way; quantitatively since w is ordinarily very close to Wo, the values of L and C are usually adjusted at least partly by empirical means, starting with values which by themselves resonate at the frequency of oscillation. But these expressions are important in indicating the direction of frequency change with change of Q and external loading.

In comparing the two circuits, the expression A is signicant. Because the feedback "tickler" coil LP in the tuned grid circuit is usually much smaller than LG and R is very much smaller than rp, the value of A is for less than 1. Because of the presence of the ratio of inductances in A. and the fact that the plate coil is normally much smaller than the grid coil in the tuned grid circuit, it will be noted that the frequency of this circuit is less sensitive to changes in R (and thus Q) than in the tuned plate circuit. Also, in the expressions for M and *g*M, the plate inductance appears in the numerator of the first fraction for both oscillators. Accordingly, since the plate inductance is relatively much smaller in the tuned grid circuit, the latter will oscillate with smaller values of M and gM than will the tuned plate circuit.


In addition to the above-mentioned relative disadvantages, the tuned plate circuit requires of its designer that he make the unpleasant choice between (1) having plate d-c voltage applied to the coil and capacitor with series feed or (2) adding an r-f choke, with its added expense and danger of self-resonance somewhere in the tuning range, with shunt feed. On the other hand, in the tuned grid circuit, the plate coil is aperiodic, isolated from tuning adjustments, is easily insulated and adapts itself nicely to series feed, which is always used.

In defense of the tuned plate circuit, it should be said that it is less sensitive to power supply voltage variations. This arises from the fact that space-charge capacitance, a function of plate voltage, is greater between grid and cathode than between is the regenerative effect, especially

 \bigcirc

Another assumption in the analysis cillator if the plate load is inductive of the inductive feedback oscillators and the grid-plate capacitance is sufis that grid-plate capacitance is negficient. As can be seen from Eq. 10, ligible. This is a reasonable assumpthe frequency, grid-plate capacitance, tion, since, although it does add a and phase shift of gain are all interrecertain amount of loading effect to lated in determining whether the inthe input circuit, this capacitance put resistance is to be negative and does not materially affect the action oscillations will take place. of the inductively-coupled feedback. As in our previous discussions of In general, an advantage of inducinductive feedback oscillators, the eftively-coupled feedback oscillators is fect of grid current is neglected and that M provides a convenient parathe tube is assumed to be a linear demeter for adjustment of operating vice, both permissable for most praccharacteristics by adjustment of the tical oscillators. It is also assumed size of the feedback coil and its phythat grid-plate capacitance has negsical position. A general disadvantage ligible effect on the gain. in multi-range circuits is that band-About the only common type of switching is complicated by the adoscillator depending primarily upon ditional coil terminals. grid-plate capacitance for oscillation Capacitive Feedback Circuits is the tuned-plate-tuned-grid type il-Under certain conditions, a deliblustrated in Fig. 5, with its equivalent erate circuit feedback path is not circuit. In essence, it is simply a tuned-circuit amplifier adjusted to necessary for the support of oscillations. One common instance of this oscillate. Sometimes an external capacitor is connected between plate plate and cathode. The space-charge in triodes, of the grid-plate capaci- and grid; its purpose would be either

C _ _ . R+(-0 ∟ംച്ച ELg ("Eg) TUNED PLATE FEEDBACK CIRCUIT - FIGURE 3

[Eq IO] Rg= _____ ___CgpKi K=amplification = Kr+jKi [Eq. II] Cg = Cgk + (I - Kr) Cgp INPUT IMPEDANCE OF A TRIODE -FIGURE 4-

than when it is connected to the plate. It is important to note some of the assumptions made in the derivation of the equations 4 through 9. First. the effect of rectified grid current, been neglected. The vacuum tube and its circuit has been considered as a linear device, whereas ordinarilv it must be non-linear for oscillator operation. However, this is not too power oscillator is a thing of the past except in special applications. and the usual circuit is designed for stability and flexibility. For the attainment of the best stability, the grid current must be kept relatively low, making the equations nearly valid.

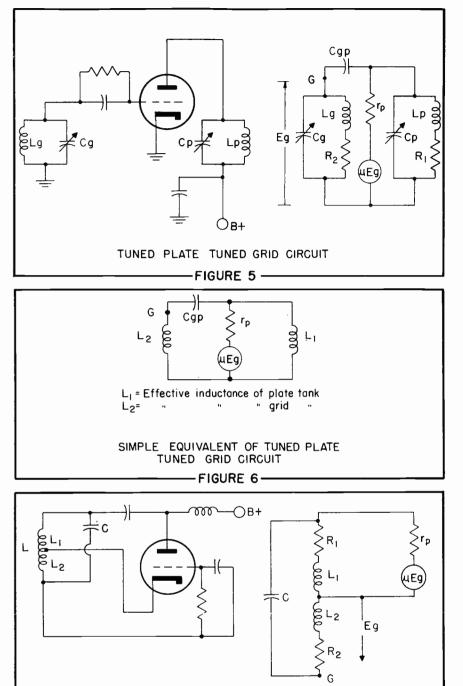
effect is thus greater upon the fre- tance. This effect becomes evident quency when the frequency-determin- upon examination of the expression ing circuit is connected to the grid for the input resistance of a triode. Figure 4 illustrates the input impedance, which includes, in general, both a resistive and a capacitive component. The values of these depend upon the nature and magnitude of present in nearly all oscillators, has the plate load impedance as well as the grid-plate capacitance. When the plate load is a pure resistance, the resistive component of input impedance becomes infinite and the input impedance becomes a pure capacibad an assumption. Nowadays, the tance. (Amplification K depending upon plate load impedance.)

> However, when the plate load impedance becomes inductive, and KI becomes negative. the input resistance becomes negative. If the negative resistance exceeds grid losses, oscillation can take place. Thus a simple amplifier can become an os

to increase feedback at low frequencies or to improve stability by reducing the effect of variations in the grid-plate capacitance.

From the equivalent circuit it will be noted that the feedback coupling is the result of the fact the grid circuit and the grid-plate capacitance are connected in series across the plate signal voltage.

As was explained above, this type of circuit will oscillate if the plate load is inductive. Since the plate load here is a parallel tuned circuit, the resonant frequency of this tuned circuit must be made *higher* than the expected frequency of oscillation. The net reactance of the parallel combination is then inductive as desired. It can also be shown that the grid tuned circuit must be tuned to be inductive, but slightly less inductive than the plate circuit.


The basic effective setup can perhaps be more clearly visualized by substituting inductances of the effective values for the two resonant circuits respectively, as illustrated in Fig. 6. It can be seen that for steadystate oscillation conditions, the effective inductances of the two tuned circuits and the grid-plate capacitance must resonate at the oscilltion frequency.

The tuned-plate-tuned-grid oscillator has the disadvantage of depending upon the grid-plate capacitance of the tube for a vital part of its operation. Its stability of frequency is thus affected by the thermal and other causes of variation of this factor. Besides, the fact that the grid-plate capacitance is fixed causes the degree of feedback to vary in an undesirable manner when an appreciable frequency range is to be covered. These difficulties, added to the inconvenience and expense of providing two tuned circuits, are undoubtedly the reasons that this circuit is not often encountarad

A slight varation of the tuned-platetuned-grid circuit is the "TNT" version, in which the principle is the same, but the grid circuit is adjusted to its proper effective inductance by the distributed capacitance of the grid coil, instead of the grid capacitor. Although this eliminates the need for one capacitor, this circuit still retains all the other disadvantages of the tuned plate-tuned-grid circuit.

Tuned-Circuit Feedback

Other types of oscillators do not employ either inductive or capacitive feedback in the manner described above, but derive the feedback phase respectively, of the resonant circuit. and amplitude relation from a tuned

HARTLEY OSCILLATOR

FIGURE 7

circuit. This tuned circuit is ordin-

arily the same one which determines

Probably the best-known example

of this type is the Hartley, illustrated

with its equivalent circuit in Fig. 7.

The tuned circuit is divided into two

parts by the cathode tap. Grid and

plate signal voltages of opposite phase

are then obtained from the two ends,

the frequency of oscillation.

cuit in the same manner as for the inductive-feedback circuit earlier in this article, the following relations are obtained:

Note that the frequency relation Eq. 12 is the same as that for the tuned plate oscillator (Eq. 7) except that in this case it is the resistance of the plate section of the coil, instead of the total resistance of the coil, which influences frequency of By analysis of the equivalent cir- operation. Thus it would be expect-

