

Radio Editors of magazines and newspapers will be given permission to reprint in whole or in part, with proper credit to the Aerovox Corporation, the contents of this issue of the Aerovox Research Worker, upon written request. The Aerovox Research Worker is edited and published by the Aerovox Corporation to bring to the Radio Experimenter and Engineer, authoritative, first hand information on capacitors and resistors for electrical and electronic application.

VOL. 34 NOS. 7-8-9

JULY-AUGUST-SEPT., 1964

Subscription By Application Only

Accuracy of Capacitance Measurements

How closely may capacitance be measured with a given type of instrument? Will a capacitance meter suffice for a particular measurement; and if not, will a low-priced, medium - priced, or high - priced bridge be required? Or is some other instrument suitable? These are questions which arise naturally in the mind of a serious worker with capacitors. And they find no satisfactory answer in the commonplace that "A bridge is better than a meter."

A number of capacitance-measuring instruments and setups are in regular use. And, in fact, their number is large enough to confuse the nonspecialist. Some have been chosen on the basis of best suitability, while others owe their adoption to availability, low cost, familiarity, or plain accident. The new user must select the correct instrument for his purposes and he has few guideposts. It is not a matter of rationality of instrumentation — i.e., avoidance of overinstrumentation and underinstrumentation (ordinarily, one never expects to find a radio and television service shop equipped with a 2000 capacitance bridge, nor an engineering research laboratory with a kit-type capacitance meter) - but one of suitability. What instrument should I have?

Where capacitance measurement is the sole requirement and a number of instruments provide the same capacitance ranges and test voltages, accuracy sufficient for the purpose seems to be the best criterion for selecting the instrument. It is not unusual that capacitance measurement accuracy should differ between the various measurement systems, since they employ different numbers of components, each of which is subject to shift in value, and different controls and adjustments. Furthermore, they employ different circuits and methods of readout. This article compares the accuracy of common capacitance measuring instruments, based upon a study of performance data, instrument manufacturer's specifications, and current literature.

Measuring Instruments and Accuracies

CAPACITANCE METERS. These are the simplest instruments for measuring capacitance, since, like nonelectronic voltmeters or current meters, they require no manipulation. They are most useful in test operations, such as troubleshooting, where a direct indication of capacitance is desired at the greatest possible speed. There are four principal varieties: reactance meter, ratio meter, beat-frequency meter, and multi-vibrator meter.

The simple, service-type reactance meter is essentially an a-c milliammeter connected in series with a known a-c voltage and the unknown capacitor. Ideally, current flowing through the circuit is proportional to voltage and reactance, and assuming constant voltage and frequency, the meter scale accordingly may be graduated directly in microfarads. Several capacitance ranges may be provided. Simple reactance meters, such as those employed in electronic ser-

AEROVOX - - The Ginest In Electronic Components

Printed by Aerovox Corporation, New Bedford, Mass., U. S. A.

vicing and often incorporated in multimeters, operate from a 60-cycle voltage.

This is the least accurate type of capacitance meter, $\pm 5^{o^{*}}_{lo}$ to $\pm 15^{\circ}$ of indicated value being common. A part of its inaccuracy is due to the fact that this instrument circuit responds not simply to the reactance of the test capacitor, but actually to its impedance. If the resistive component of this impedance is significant in magnitude, therefore, the meter scale (which has been calibrated on the basis of pure capacitance and reactance only) may be appreciably in error. It is possible, for example, for the percent error to be equal numerically to the power factor of a capacitor under test. Other important causes of error are difficulty in holding the test voltage and sometimes the test frequency constant, and inaccuracies in the rectifier-type indicating meter.

A laboratory - type capacitance meter of the reactance type has appeared relatively recently, in which the shortcomings of the simple service-type instrument have been eliminated. Improved accuracy ($\pm 2\%$ to $\pm 5\%$ of indicated capacitance) has been obtained by use of a frequency-stabilized and voltage-stabilized internal 1000-c/s test signal source, verylow resistances across which the capacitor current develops the indicator voltage, and an accurate vacuum-tube millivoltmeter (rather than a rectifier-type milliammeter or microammeter) as the indicator.

The ratio meter is an electrodynamometer-type instrument which reads directly in microfarads. Its operation is almost free from the effects of test voltage, test frequency, and capacitor power factor (however, the phase angle of the capacitor must not exceed 3 degrees). Accuracy is $1^{o'}_{/o}$ of full scale below 0.3 ufd, and $0.333^{o'}_{/o}$ of full scale at 0.3 ufd and higher. This type of instrument is supplied for use at specified frequencies of 50, 60, or 500 c/s and specified a-c line voltages of 100-130 v and 200-250 v.

Like the laboratory-type reactance meter, the *beat* - *frequency* meter is a refined instrument. It contains two highly stable oscillators, one fixed in frequency and one variable, which are set initially to zero beat with each other. The unknown capacitor then is connected in parallel with the tank of the variable oscillator, which it accordingly detunes. This causes a beat note to be generated at a frequency equal to the difference between the two oscillator frequencies, and this beat-note signal actuates a direct-reading electronic audio frequency meter. The scale of the latter is graduated directly in picofarads instead of cycles per second. This direct-reading instrument has an accuracy of $3\frac{6}{10}$ of full scale.

In the *multivibrator-type meter*, a constant - amplitude, constantfrequency, square wave voltage, generated by a free-running multivibrator, is applied to a rectifiertype a-c meter in series with the unknown capacitor. Under conditions of constant amplitude and frequency, the deflection of the meter is proportional to the capacitance, and the meter consequently may be graduated directly in picofarads. Capacitance ranges are changed by switching the frequency of the multivibrator in discrete steps. Accuracy of this instrument is of the order of $\pm 5\%$ of indicated capacitance.

RESONANT CIRCUIT. An unknown capacitance (C) may be connected in parallel with an accurately known inductance (L) to form a test tank circuit, and the resonant frequency (f) of this combination determined by means of a signal generator loosely coupled to the tank. At resonance, the voltage across the capacitor is maximum and may be indicated by a highimpedance a-c vacuum tube voltmeter connected in parallel with C.

After the resonant frequency has been determined, the unknown capacitance may be calculated from the known tank constants: $C=1/(4\pi^{2}f^{2}L)$. This method of measurement makes no allowance for distributed capacitance of the inductor or for stray circuit capacitance, so that the calculated capacitance may be significantly inaccurate because of these parameters. Also, the frequency must be known closely, otherwise the measurement error may exceed the specified tolerance of the capacitor under test.

The resonant-circuit method is often used with a temporary bench setup of signal generator, inductor, unknown capacitor, and vacuum tube voltmeter. If the wiring is rigid, connections short, and test area free of electrical interference, accuracy of $\pm 5\%$ to $\pm 20\%$ may be expected, depending upon the precision and stability of the signal generator and freedom from strays. This may be improved by subtracting the distributed capacitance of the inductor from the calculated capacitance value.

Some self-contained capacitance checkers of the resonant-circuit type dispense with the calculation by graduating the signal generator dial directly in picofarads and microfarads. (This was done in the Aerovox L-C Checker.)

Capacitance sometimes is measured by this method, using a Q meter. The latter provides the tunable signal generator, accurate inductor, and vacuum tube voltmeter in a more efficient circuit.

BRIDGES. The unreserved opinion occasionally is expressed that a capacitance bridge necessarily is more accurate than any other type of capacitance - measuring instrument. The assumption ostensibly rests upon the fact that the bridge compares the unknown with

a standard capacitor. The statement needs qualification, however, for much depends upon the type of bridge and quality of its components. For example, a highpriced laboratory-type bridge employs highly stable standard capacitors rated at 0.05% or better accuracy, and a precision potentiometer as the adjustable element, whereas a low-cost service-type bridge intended for radio and television troubleshooting usually contains specially selected commercial capacitors (culled for $\pm 1\%$ to $\pm 2\%$ accuracy) and a volume control-type potentiometer.

The bridge circuit is important. While several types may be used for capacitance measurement, those in which a frequency term appears in the null equation (e.g., Wien and resonance bridge circuits) generally are avoided because of the need for frequency stability in excess of desired measurement accuracy. Even when the frequency is of no consequence, other factors which may introduce error include shifts in potentiometer, ratio resistors, standard capacitor, and circuit capacitances. The Schering and comparison-bridge circuits are most often used.

Capacitance Bridge. Accuracy of the laboratory-type bridge for direct capacitance measurements lies between 0.01% and $\pm 0.25\%$ of indicated capacitance, depending upon model and manufacture. At the other extreme is the servicetype bridge, the accuracy of which is not often specified but may be found to be of the order of $\pm 5\%$ in factory-built models and somewhat poorer in some kit-assembled instruments. Most of the service-type bridges combine capacitance and resistance measurement.

Impedance Bridge. This instrument combines capacitance, inductance, and resistance measurements in several ranges. Its accuracy lies between $\pm 0.1\%$ and $\pm 2\%$ of indicated capacitance in factorybuilt instruments, depending upon model and manufacture. Impedance bridges assembled from kits may show an accuracy of $\pm 2\%$ to $\pm 10\%$, depending upon care of assembly and calibration.

SUBSTITUTION CIRCUITS. Sub-

stitution-type measurements compensate automatically for stray and distributed capacitance, t h e r e b y eliminating error due to that source (see Aerovox Research Worker, Oct.-Nov.-Dec., 1962). The nucleus of the substitution circuit is a precision, direct-reading variable capacitor. The circuit, which may be either a bridge, twin-T network, or resonant tank, is adjusted first with the variable capacitor set to its maximum capacitance (C_{τ}) . At this setting, the bridge or T-network is nulled, or the input to the tank is adjusted to the resonant frequency, and the unknown capacitor is not in the circuit. The unknown then is connected and the circuit readjusted by reducing the variable capacitance to a value C² until null (or resonance) is restored. The unknown capacitance $C_X = C_1 - C_2 - T h u s$, the unknown capacitance is equal to the capacitance removed from the circuit to compensate for the "detuning" action of the unknown capacitor.

Accuracy of the substitution method depends upon the accuracy of the variable capacitor. This generally is less than $\pm 0.05\%$, depending upon model and manufacture. Measurements with a variable capacitor of the air-tuned type usually are limited to a maximum of 1150 pf, the maximum capacitance of most precision air variable capacitors. A precision decade capacitor may, of course, be used in lieu of the air variable, with an accuracy of the order of $\pm 0.25\%$.

Substitution-type measurements of capacitance often are made with a Q meter, which supplies the signal generator and direct-reading variable capacitor, together with very-high-impedance a-c vacuum tube voltmeter. Accuracy with this instrument is of the order of ± 1 pf below a dial setting of 100 pf, and $\pm 1\%$ above 100 pf (the common dial maximum is 450 pf).

Required Accuracy

What accuracy is actually re-quired? This depends upon the capacitor application. Obviously, wider tolerances are allowable in some applications than in others and this will dictate the required accuracy of measurement. For example, capacitance must be as close as possible to specified value when a capacitor is to be used in an RC or LC tuned circuit, wave filter, or timing circuit, but it may vary $\pm 10\%$ to $\pm 20\%$ (and often more) of nominal value in some bypass and coupling applications where critical time constants are not involved. Filter capacitors in power supplies also may have a wide tolerance in most instances.

In general, capacitance must be known most closely in those applications in which the capacitance directly affects a frequency, time, or phase value (tuned circuits, delay devices, timers, multivibrators, wave filters, phase shifters, critical coupling, critical bypassing, sync circuits) and less closely (but to a degree better than the specified tolerance) in those circuits which do not involve those sensitive terms (power supply filters, energy storage, noncritical bypassing, non critical coupling, d-c blocking, interference elimination). The precision of measurement needed for the first requirement is, of course, not needed for the second requirement. A useful rule of thumb is to determine the maximum error which can be tolerated in the application and then to select the instrument or measuring circuit which affords an accuracy of one-half that figure.

Latest data are now available on paper and combination paper/plastic film dielectrics. Up to date information on Aerovox types P20 and VP20 from 0.25 to 50 uf — to 50 KV and types P25, P26, P27, VP25, VP26, and VP27 from 0.005 — 1 uf to 200 KV.

