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In this Issue 
Open us ing are systems that  communicate wi th  the outs ide wor ld  us ing 

s tandard protocols .  Because they communicate us ing s tandard protocols ,  
open systems can be in terconnected and wi l l  work  together  regard less o f  
what company manufactured them. For a user who is configuring a computer 
sys tem or  network ,  the  benef i t  o f  open sys tems is  the  f reedom to  choose 
the best component for each function from the offerings of al l  manufacturers. 
In 1983, the Internat ional  Organizat ion for Standardizat ion ( ISO) publ ished 
i t s  Open  Sys tems  In te rconnec t i on  (OSI )  Re fe rence  Mode l  t o  se rve  as  a  
master  model  for  coord inat ing a l l  open systems act iv i t ies .  The OSI  model  

starts functions a framework that organizes all intersystem communications functions into seven layers. 
Specif ic protocols perform the functions of each layer. Any organization can have an open system 
by  imp lemen t ing  these  s tandard  p ro toco l s .  The  movemen t  t owards  th i s  mode l  as  the  g loba l  
standard many open systems has steadi ly gained momentum. Hewlet t -Packard, along with many 
other  manufacturers  and the governments of  many countr ies,  is  commit ted to  the development  
of  s tandards and products based on the OSI model .  

The HP OSI Express card implements the OSI model  for  HP 9000 Ser ies 800 computers.  The 
hardware and f i rmware on the card off- load most of the processing for the seven-layer OSI stack 
from the also computer.  This not only gets the job done faster and improves throughput,  but also 
leaves single t ime for the host processor to service user appl icat ions. Al though i t 's  only a single 
Series required I/O card, the HP OSI Express card implements many complex ideas and required a 
major  design ef for t  that  c la ims most  of  th is  issue.  You' l l  f ind an overv iew of  i ts  design on page 
6.  The sof tware)  between the card dr iver  (which is  par t  o f  the host  sof tware)  and the operat ing 
system described in card is a set of firmware routines called the backplane handler; it 's described in 
the ar t ic le  on page 8.  The card 's  arch i tecture and most  o f  i ts  operat ing system are determined 
b y  a n  H P  1 8 ) .  c a l l e d  t h e  c o m m o n  O S I  n e t w o r k i n g  e n v i r o n m e n t ,  o r  C O N E  ( s e e  p a g e  1 8 ) .  
CONE de f ines  how the  p ro toco l  f i rmware  modu les  in te rac t  and  p rov ides  sys tem func t ions  to  
support the protocol modules. The top three layers of the OSI Express card protocol stackâ€” the 
appl icat ion, presentat ion, and session layer modules â€” are described in the art ic le on page 28. 
These three layers share the same architecture and are implemented using tables. In the protocol 
module for the fourth OSI layerâ€” the transport layerâ€” are the important functions of error detection 
and recovery ,  mul t ip lex ing,  address ing,  and f low cont ro l ,  inc lud ing congest ion avo idance (see 
page and bottom bottom three OSI layers are the network, data link, and physical layers. The bottom 
of  the OSI  s tack on the OSI  Express card is  covered in  the ar t ic le  on page 45.  Because of  the 
number of  layers in  the OSI  s tack,  data throughput  is  an impor tant  cons iderat ion in  the des ign 
of any card implementat ion. Performance analysis of the HP OSI Express card began in the early 
design eliminated and helped identify critical bottlenecks that needed to be eliminated (see page 51). 
As a result,  throughput as high as 600,000 bytes per second has been measured. Troubleshooting 
in a mult ivendor environment is also an important concern because of the need to avoid situations 
in which vendors blame each other 's products for a problem. Logging, t racing, and other support  
features and the OSI Express card are discussed in the art icle on page 67. Final ly, debugging and 
final testing of the card's firmware are the subjects of the articles on pages 59 and 72, respectively. 

4 HEWLETT-PACKARD JOURNAL FEBRUARY 1990 

© Copr. 1949-1998 Hewlett-Packard Co.



Both communications use and the performance of fiber optic voice and data communications systems 
cont inue to  increase and we cont inue to  see new forms of  measur ing ins t rumentat ion adapted 
to the art icle of f iber optic system design, test, and maintenance. The art icle on page 80 presents 
the  des ign  and  app l i ca t i ons  o f  t he  HP 71400A l i gh twave  s igna l  ana l yze r .  Th i s  i ns t rumen t  i s  
designed intensity measure signal strength and distortion, modulation depth and bandwidth, intensity 
noise, systems susceptibil ity to reflected light of high-performance optical systems and components 
such as semiconductor lasers and broadband photodetectors. Unlike an optical spectrum analyzer, 
it does spectrum provide information about the frequency of the carrier. Rather, it acts as a spectrum 
ana lyzer  fo r  the  modu la t ion  on  a  l i gh twave  car r ie r .  I t  comp lements  the  l i gh twave  component  
ana lyzer  descr ibed in  our  June 1989 issue,  which can be thought  o f  as  a  network  analyzer  for  
l ightwave components.  Using high-f requency photodiodes and a broadband ampl i f ier  consist ing 
of  four  s ignal  microwave monol i th ic  d is t r ibuted ampl i f ie r  s tages,  the l ightwave s ignal  analyzer  
can measure l ightwave modulat ion up to  22 GHz.  (Th is  seems l ike a  huge bandwidth unt i l  one 
real izes that the carr ier f requency in a f iber opt ic system is 200,000 GHz or more!)  A companion 
ins t rument ,  the HP 11980A f iber  opt ic  in ter ferometer  (page 92) ,  can be used wi th  the analyzer  
to  measure the l inewid th ,  ch i rp ,  and f requency modula t ion character is t ics  o f  s ing le- f requency 
lasers. The interferometer acts as a frequency discriminator, converting optical phase or frequency 
variat ions into intensity var iat ions, which are then detected by the analyzer.  Chirp and frequency 
modula t ion measurements  wi th  the in ter ferometer  use a  new measurement  techn ique ca l led a  
gated sel f -homodyne technique. 

R.P.  Dolan 
Editor 

Cover 
This is for Standardi rendit ion of the seven layers of the International Organization for Standardi 

zat ion's OSI Reference Model on the HP OSI Express card, and the communicat ion path between 
two end systems over  a network.  

What's Ahead 
The Apr i l  and issue wi l l  feature the design of  the HP 1050 modular  l iqu id chromatograph and 

the HP Open View network management sof tware.  
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An Overv iew of  the  HP OSI  Express Card 
The OSI  Express card prov ides on an I /O card the 
networking services defined by the ISO OSI (Open Systems 
Interconnect ion)  Reference Model ,  resul t ing in of f - loading 
much of the network overhead from the host computer. This 
and other features set the OSI Express card apart from other 
network implementat ions in  ex is tence today.  

by Wil l iam R.  Johnson 

THE DAYS WHEN A VENDOR used a proprietary 
network to "lock in" customer commitment are over. 
Today,  cus tomers  demand mul t ivendor  ne twork 

connectivity providing standardized application services. 
HP's commitment to OSI-based networks provides a path 
to fill this customer requirement. 

The ISO (International Organization for Standardization) 
OSI (Open Systems Interconnection) Reference Model was 
developed to facilitate the development of protocol specifi 
cations for the implementation of vendor independent net 
works. HP has been committed to implementation of OSI- 
based standards since the early 1980s. Now that the stan 
dards have become stable, OSI-based products are becom 
ing available. One of HP's contributions to this arena is the 
OSI Express card for HP 9000 Series 800 computers. 

The OSI Express card provides a platform for the protocol 
stack used by OSI applications. Unlike other networking 
implementations, the common OSI protocol stack resides 
on the card. Thus, much of the network overhead is off 
loaded from the host, leaving CPU bandwidth available for 
processing user applications. This common protocol stack 
consists of elements that implement layers 1 through 6 of 
the OSI Reference Model and the Association Control Ser 
vice Element (ACSE), which is the protocol for the seventh 
layer of the OSI stack. Most of the application layer func 
tionality is performed outside the card environment since 
applications are more intimately tied to specific user func 
tions (e.g., mail service or file systems). An architectural 
view of the OSI Express card is given in Fig. 1 , and Fig. 2 
shows the association between the OSI Express stack and 
the OSI Reference Model. 

The series of articles in this issue associated with the 
OSI Express card provides some insight into how the proj 
ect team at HP's Roseville Networks Division implemented 
the card and what sets it apart from many other implemen 
tations currently in existence today. This article gives an 
overview of the topics covered in the other articles and the 
components shown in Fig. 1. 

OSI  Express Stack 
The protocol layers on the OSI Express card stack provide 

the following services: 
M e d i a  A c c e s s  C o n t r o l  ( M A C )  H a r d w a r e .  T h e  M A C  
hardware is responsible for reading data from the LAN 
interface into the card buffers as specified by the link/MAC 
interface software module. All normal data packets des 

tined for a particular node's address are forwarded by the 
logical link control (LLC) to the network layer. 
Network Layer. The network layer on the OSI Express card 
uses the connectionless network service (CLNS). The OSI 
Express card's CLNS implementation supports the end-sys- 
tem-to-intermediate-system protocol,  which facil i tates 
dynamic network routing capabilities. As new nodes are 
brought up on the LAN, they announce themselves using 
this subset of the network protocol. The service provided 
by CLNS is not reliable and dictates the use of the transport 
layer to provide a reliable data transfer service. Both the 
transport layer and CLNS can provide segmentation and 
reassembly capabilities when warranted. 
Transport Layer Class 4. In addition to ensuring a reliable 
data transfer service, the OSI Express transport is also re 
sponsible for monitoring card congestion and providing 
flow control. 
Session Layer. The OSI Express card's implementation of 
the session layer protocol facilitates the management of an 
application's dialogue by passing parameters, policing state 
transitions, and providing an extensive set of service primi 
tives for applications. 
Presentation Layer and Association Control Service Ele 
ment (ASCE). The OSI Express card's presentation layer 
extracts protocol parameters and negotiates the syntax rules 
for transmitting information across the current association. 
Both ACSE and the presentation layer use a flexible method 
of protocol encoding called ASN.l (Abstract Syntax Nota 
tion One). ASN.l allows arbitrary encodings of the protocol 
header, posing special challenges to the decoder. ASCE is 
used in the transmission of parameters used in the estab 
lishment and release of the association. 

OSI Express Protocols 
The OSI protocols are implemented within the common 

OSI networking environment (CONE). CONE is basically a 
network-specific operating system for the OSI Express card. 
The util i t ies provided by CONE include buffer manage 
ment, timer management, connection management, queue 
management,  nodal  management,  and network manage 
ment. CONE defines a standard protocol interface that pro 
vides  of  isola t ion.  This  feature  ensures  por tabi l i ty  of  
networking software across various hardware anoVor soft 
ware platforms. The basic operating system used in the 
OSI Express card is not part of CONE and consists of a simple 
interrupt system and a rudimentary memory manager. 
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Service requests are transmitted to CONE using the back 
plane message interface (BMI) protocol. Application re 
quests are communicated through the OSI user interface 
to the CONE interface adapter (CIA). The interface adapter 
bundles the request into the BMI format and hands it off 
to the system driver. The BMI converts message-based re 
quests, which are asynchronous, from the interface adapter 
into corresponding CONE procedure calls, which are syn 
chronous. 

The backplane handler controls the hardware that moves 
messages between the host computer and the OSI Express 
card. A special chip, called the HP Precision bus interface 
chip, is used by the backplane handler to gain control of 
the HP Precision bus and perform DMA between the OSI 
Express card and the host memory space. Another special 
chip, called the midplane memory controller, is used by 
the backplane handler to take care of OSI Express card 
midplane bus arbitration and card-resident memory. The 
backplane handler conceals the interactions of these two 
chips from CONE and the driver. 

Diagnostics and Maintenance 
The OSI Express card uses three utilities to aid in fault 

detection and isolation. The hardware diagnostics and 

maintenance program uses the ROM-resident code on the 
card to perform initial configuration of the MAC hardware. 
After configuration, the program is used to access the ROM- 
based test code that exercises both local and remote net 
working hardware. The same utility is also used to down 
load the OSI Express card software into RAM. The host- 
based network and nodal management tool contains the 
tracing (event recording) and logging (error reporting) 
facilities. The network and nodal management tool can be 
used to report network management events and statistics 
as well. However, it is primarily used to resolve protocol 
networking problems causing abnormal application be 
havior (e.g., receipt of nonconforming protocol header in 
formation). The software diagnostic program, which is the 
third fault detection program on the OSI Express card, was 
developed to aid in the identification of defects encoun 
tered during the software development of the card. This 
program uses the software diagnostic module on the card 
to read and write data, set software breakpoints, and indi 
cate when breakpoints have been encountered. The inter 
face to the software diagnostic program provides access to 
data structures and breakpoint locations through the use 
of symbolic names. It also searches CONE-defined data 
structures with little user intervention. 

Network and Nodal  
Management  

Tools 

Application 
Protocol and 

User Interface 

Software 
Diagnostic 

Program 

Hardware 
Diagnostics and 

Maintenance 

OSI Interface Services 

Backplane Message 
Interface Protocol 

OSI  Express Card 

Operating 
System 

CONE Inter face Adapter  

HP Precis ion Bus -  

Backplane Hardware 

Backplane Handler  

Backplane Message Interface 

Host 
"Card 

Common 
OSI 

Network 
Environment 

(CONE) 

Associat ion Control  Service Element 

Presentat ion Layer 

Session Layer  

Transport  Class 4  (TP)  Layer  

Connect ionless Network Service (CLNS) 

IEEE 802.2  Type 1  LogicaL Link Control  (LLC)  

Software 
Diagnostic 

Module 

ROM Resident  
Backplane, 

Self-test,  and 
Download 
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Fig.  1 .  HP OSI Express card overv iew. 
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L a y e r  O S I  M o d e l  
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F ig .  2 .  Compar i son  be tween  the  OSI  Express  componen ts  
and the OSI Reference Model .  

In a multivendor environment it is crucial that network 
ing problems be readily diagnosable. The OSI Express diag 
nostics provide ample data (headers and state information) 
to resolve the problem at hand quickly. 

An implementation of the OSI protocols is not inherently 
doomed to poor performance. In fact, file transfer through 
put using the OSI Express card in some cases is similar to 
that of existing networking products based on the TCP/IP 
protocol stack. Performance is important to HP's customers, 
and special attention to performance was an integral part 
of the development of the OSI Express card. Special focus 
on critical code paths for the OSI Express card resulted in 
throughputs in excess of 600,000 bytes per second. Intelli 
gent use of card memory and creative congestion control 
allow the card to support up to 100 open connections. 
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The HP OSI  Express Card Backplane 
Handler 
The backplane on the HP OSI Express card is handled by 
a pair of VLSI chips and a sef of firmware routines. These 
components  prov ide the in ter face between the HP OSI  
Express card driver on the host machine and the common 
OSI networking environment, or CONE, on the OSI Express 
card. 

by Glenn F.  Talbot t  

THE HP OSI EXPRESS CARD BACKPLANE handler 
is a set of firmware routines that provide an interface 
between the common OSI networking environment 

(CONE) software and the host-resident driver. CONE pro 
vides network-specific operating system functions and 
other facilities for the OSI Express card (see the article on 
page 18). The handler accomplishes its tasks by controlling 
the hardware that moves messages between the host com 
puter and the OSI Express card. The backplane handler 
design is compatible with the I/O architecture defined for 
HP Precision Architecture systems,1 and it makes use of 

the features of this architecture to provide the communica 
tion paths between CONE and the host-resident driver (see 
Fig 1). The HP Precision I/O Architecture defines the types 
of modules that can be connected to an HP Precision bus 
(including processors, memory, and I/O). The OSI Express 
card is classified as an I/O module. 

The OSI Express card connects to an HP 9000 Series 800 
system via the HP Precision bus (HP-PB), which is a 32-bit- 
wide high-performance memory and I/O bus. The HP-PB 
allows all modules connected to it to be either masters or 
slaves in bus transactions. Bus transactions are initiated 
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Fig. 1 .  The data f low relat ionships between the OSI Express 
ca rd  d r i ve r  on  t he  hos t  compu te r  and  the  ma jo r  ha rdware  
and sof tware components  on the card.  

by a master and responses are invoked from one or more 
slaves. For a read transaction, data is transferred from the 
slave to the master, and for a write transaction, data is 
transferred from the master to the slave. Each module that 
can act as a master in bus transactions is capable of being 
a DMA controller. Bus transactions include reading or writ 
ing 4, 16, or 32 bytes and atomically reading and clearing 
16 bytes for semaphore operations. 

The OSI Express card uses a pair of custom VLSI chips 
to perform DMA between its own resident memory and 
the host memory. The first chip is the HP-PB interface chip, 
which acts as the master in the appropriate HP Precision 
bus transactions to perform DMA between the OSI Express 
card and the host system memory space. The second chip 
is the midplane memory controller, which controls the 
DMA between the HP-PB interface chip and the OSI Ex 
press card resident memory. The memory controller chip 
also performs midplane bus arbitration and functions as a 
dynamic RAM memory controller and an interrupt control 
ler. See the box on page 15 for more information about the 
HP-IB interface chip and the midplane memory controller 
chip. The backplane handler hides all the programming 
required for these chips from the host computer OSI Ex 
press driver and CONE. 

Host Interface 

The HP Precision I/O Architecture views an I/O module 
as a continuously addressable portion of the overall HP 
Precision Architecture address space. I/O modules are as 
signed starting addresses and sizes in this space at system 
initialization time. The HP Precision I/O Architecture 
further divides this I/O module address space (called soft 
physical address space, or SPA) into uniform, independent 
register sets consisting of 16 32-bit registers each. 

The OSI Express backplane handler is designed to sup 
port up to 2048 of these register sets. (The HP-PB interface 
chip maps HP-PB accesses to these register sets into the 
Express card's resident memory.) With one exception, for 
the backplane handler each register set is independent of 
all the other register sets, and the register sets are organized 
in inbound-outbound pairs to form full-duplex paths or 
connections. The one register set that is the exception (RS 
1) is used to notify the host system driver of asynchronous 
events on the OSI Express card, and the driver is always 
expected to keep a read transaction pending on this register 
because it is set to receive notification of these events. 

Register Sets 
The registers are numbered zero through 15 within a 

given register set. The registers within each set that are 
used by the backplane handler as they are defined by the 
HP Precision I/O Architecture are listed below. The regis 
ters not included in the list are used by the backplane 
handler to maintain internal state information about the 
register set. 

N u m b e r  N a m e  
4  I O J 3 M A J L I N K  

5  I O _ D M A _ C O M M A N D  

6  I O _ D M A _ A D D R E S S  
7  I O _ D M A _ C O U N T  

1 2  I O _ C O M M A N D  
1 3  I O _ S T A T U S  

Function 
Pointer to DMA control 

structure 
Current DMA chain 

command 
DMA buffer address 
DMA buffer size (bytes) 
Register set I/O command 
Register set status 

The OSI Express card functions as a DMA controller and 
uses DMA chaining to transfer data to and from the card. 
DMA chaining consis ts  of  the DMA control ler ' s  
autonomously following chains of DMA commands written 
in memory by the host processor. HP Precision I/O Ar 
chitecture defines DMA chaining methods and commands 
for HP Precision Architecture systems. A DMA chain con 
sists of a linked list of DMA control structures known as 
quads. Fig. 2 shows a portion of a DMA chain and the 
names of the entries in each quad. 
Data Quad. The data quad is used to maintain reference 
to and information about the data that is being transferred. 
The fields in the data quad have the following meaning 
and use. 
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Data Quad 1 Data Quad 2 Link Quad 

Completion 
List Head 

F i e l d  M e a n i n g  a n d  U s e  
C H A I N J J N K  P o i n t e r  t o  t h e  n e x t  q u a d  i n  t h e  c h a i n  
C H A I N _ C M D  D M A  c h a i n i n g  c o m m a n d  p l u s  

appl ica t ion-speci f ic  f ie lds  
A D D R E S S  M e m o r y  a d d r e s s  o f  t h e  d a t a  b u f f e r  
C O U N T  L e n g t h  o f  t h e  d a t a  b u f f e r  i n  b y t e s  

Bits in the application-specific fields of CHAINLCMD con 
t r o l  t h e  g e n e r a t i o n  o f  a s y n c h r o n o u s  e v e n t s  t o  C O N E  a n d  
the  acknowledgmen t  o f  a synchronous  even t  i nd i ca t ions  t o  

the  hos t .  
L ink  Quad.  A l ink  quad  i s  c rea ted  by  the  dr iver  to  ind ica te  
the  end  of  a  DMA t ransac t ion  (no te :  no t  the  end  of  a  DMA 
c h a i n ) .  W h e n  a  l i n k  q u a d  i s  e n c o u n t e r e d  i n  t h e  c h a i n ,  a  
c o m p l e t i o n  l i s t  i s  f i l l e d  i n  a n d  l i n k e d  i n t o  a  c o m p l e t i o n  
l is t .  I f  the  CHAINJJNK f ie ld  does  not  contain  an END_OF_ 
CHAIN, DMA transfers continue.  The f ields in the l ink quad 
h a v e  t h e  f o l l o w i n g  m e a n i n g  a n d  u s e .  

F i e l d  M e a n i n g  a n d  U s e  
C H A I N J J N K  P o i n t e r  t o  t h e  n e x t  q u a d  i n  t h e  c h a i n ,  o r  

END_OF_CHAIN value 
C C M D  J J N K  C a u s e s  a  c o m p l e t i o n  l i s t  e n t r y  t o  b e  

created and may specify  whether  the  host  
shou ld  be  in te r rup ted  

H E A D _ A D D R  A d d r e s s  o f  t h e  c o m p l e t i o n  l i s t  
ENTRY_ADDR Address  o f  the  comple t ion  l i s t  en t ry  to  

be used to  report  complet ion s ta tus  

C o m p l e t i o n  L i s t  E n t r y .  A  c o m p l e t i o n  l i s t  e n t r y  i s  u s e d  t o  
i nd i ca t e  t he  comple t ion  s t a tu s  o f  a  DMA t r ansac t ion .  One  
i s  f i l l e d  i n  w h e n  a  l i n k  q u a d  i s  e n c o u n t e r e d  i n  t h e  D M A  
cha in .  The  f i e lds  in  the  comple t ion  l i s t  have  the  fo l lowing  

m e a n i n g s  a n d  u s e :  

F i e l d  M e a n i n g  a n d  U s e  
N E X T  J J N K  P o i n t e r  u s e d  t o  l i n k  t h e  e n t r y  i n t o  t h e  

comple t ion  l i s t  
I C L S T A T U S  C o m p l e t i o n  s t a t u s  f i e l d ,  a  c o p y  o f  t h e  

IO_STATUS regis ter  
S A V E J J N K  P o i n t e r  t o  t h e  q u a d  w h e r e  a n  e r r o r  

occurred, or to the l ink quad in the case 
of no error 

S A V E _ C O U N T  

Fig .  2 .  A  por t ion  o f  a  DMA cha in .  

Residue count of bytes remaining in the 
buffer associated with the quad pointed 
to by SAVE JJNK, or zero if no error 

The completion list head contains a semaphore that al 
lows a completion list to be shared by multiple I/O modules, 
and a pointer to the first entry in the completion list. 

DMA Chaining 
DMA chaining is started by the host system driver when 

the address of the first quad in a DMA chain is written into 
the IO_DMA_LINK register of a register set. To tell the OSI 
Express card to start chaining, the driver writes the chain 
command CMD_CHAIN into the register set's IO_COMMAND 
register. This causes an interrupt and the Express card's 
backplane handler is entered. From this point until a com 
pletion list entry is made, the DMA chain belongs to the 
OSI Express card's register set, and DMA chaining is under 
control of the backplane handler through the register set. 
Fig. 3 shows the flow of activities for DMA chaining in the 
driver and in the backplane handler. 

Once control is transferred to the backplane handler, the 
first thing the handler does is queue the register set for 
service. When the register set reaches the head of the queue, 
the backplane handler fetches the quad pointed to by IO_ 
DMAJLINK and copies the quad into the registers IO_DMA_ 
LINK, IO_DMA_COMMAND, IO_DMA_ADDRESS, and IO_ 
DMA_COUNT. The backplane handler then interprets the 
chain command in register IOJDMA_COMMAND, executes 
the indicated DMA operation, and fetches and copies the 
next quad pointed to by IO_DMA_LINK. This fetch, inter 
pret, and execute process is repeated until the value in 
IOJ3MA_LINK is END_OF_CHAIN. When END_OF_CHAIN is 
reached, the backplane handler indicates that the register 
set is ready for a new I/O command by posting the status 
of the DMA transaction in the lO^STATUS register. 

The DMA operation executed by the backplane handler 
is determined by the chain command in the IOJ)MA_COM- 
MAND register. For quads associated with data buffers, 
this chain command is CCMDJN or CCMDJDUT for inbound 
or outbound buffers, respectively. In this case the back 
plane handler transfers the number of bytes of data 
specified in the IO_DMA_COUNT register to or from the 
buffer at the host memory location in the IO_DMA_ AD 
DRESS register. The IO_DMA_ADDRESS and IO_DMA_ 
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Quad 1 Quad 2  L ink  Quad  
I O J 3 M A J J N K  <  

I O . D M A . C O M M A N D  

IO_DMA_ADDRESS 

IOJDMA_COUNT 

I O . C O M M A N D  

IO_STATUS 

I n b o u n d  o r  O u t b o u n d  
Reg is te r  Se t  

Set Address of  First  
Quad into IO_DMA_LINK_ 

Wri te  the  Command 
CMD_CHAIN into IO.COMMANO 

W a k e  U p  
Exp ress  
Card 

Queue Register  Set  

Copy Quad i  to  
Registers 4,  5,  6,  and 7 

Quad 30  Quad n  L i n k  Q u a d  

ICLCOMMAND 
CCMD_LINK 

(L ink  Quad)  

*  C o m p l e t i o n  L i s t  
Po in te rs  

IOJDMA, 
C O M M A N D  

CCMDJN (Inbound) or 
C C M D . O U T  

( O u t b o u n d )  -  "  

Transfer Data to/ f  rom 
IO_DMA_ADDRESS 

No 

Create Completion 
List Entry 

COUNT registers are incremented and decremented as the 
data is transferred. 

The link quads containing a CCMDJJNK chain command 
cause the backplane handler to report the status of the 
previous DMA transfers and continue chaining if the regis 
ter containing the CHAINLLINK field does not indicate END_ 
OF_CHAIN. The CCMDJJNK can also cause the backplane 
handler to generate an interrupt to the host processor which 
indicates to the driver that a completion list entry is ready 
to be read. 

Complet ion List  Entry 
When a link quad containing the CCMDJJNK chain com 

mand is encountered, a completion list entry is created. 
Creating a completion list is a three-or-four-step process. 
First, the backplane handler acquires the semaphore in the 
completion list head at the address in HEAD_ADDR (see Fig. 
4a). This is accomplished by repeatedly mastering (gaining 
control of the bus) a read-and-clear bus transaction until a 
nonzero value is returned. When a nonzero value has been 
read, the OSI Express card owns the semaphore and can 
proceed to the next step. The second step is to fill the four 
fields of the completion list entry indicated by the pointer 

Retu rn  t o  Hos t  

Fig.  3 .  F low of  act iv i t ies involved 
in  a  DMA chain ing operat ion.  

ENTRY^ADDR in the link quad. The third step is to write a 
nonzero value into the semaphore field of the completion 
list head, thus releasing the semaphore, and insert the new 
completion list entry into the completion list (see Fig. 4b). 
These three steps are done automatically by the HP Pre 
cision bus interface chip on command from the backplane 
handler. 

The optional fourth step of the completion list insertion 
process is to generate an interrupt to the host processor. If 
the CCMDJJNK specifies, the address of the host processor 
and the value written in the processor's external interrupt 
register are packed into the chain command word contain 
ing the CCMDJJNK. The backplane handler uses these values 
to master a write to the host processor and cause an interrupt. 

When the OSI Express driver has built a DMA chain and 
started the OSI Express card traversing the chain, sub 
sequent DMA chains can be appended to the existing chain 
without interrupting the card. To do this the driver simply 
writes the address of the first quad in the new chain into 
the CHAINJJNK word of the last quad of the old chain. Since 
the driver does not know whether an append is successful 
(the card may have already fetched the last quad in the old 
chain), there is a mechanism to verify the success of an 
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I O _ D M A _ L I N K  

(b) 
C o m p l e t i o n  

L i s t  H e a d  

S A V E _ C O U N T  

Completion 
List Entry 

F ig .  4 .  (a )  Comple t ion  l i s t  be fo re  execu t ing  a  CCMD_LINK 
chain command, (b) Complet ion l ist  af ter execut ing a CCMD_ 
LINK chain command. 

append. When the driver reads the completion list entry 
for the old chain, a bit in the IO.STATUS word indicates 
whether or not the OSI Express card found END_OF_CHAIN 
in the last quad. If this bit is set (END_OF_CHAIN found) the 
append is not successful and the driver must start the new 
chain by writing the address of the first quad of the new 
chain to the register set's IO_DMA_LINK register and a 
CMD^CHAIN to the ICLCOMMAND register. Using the ap 
pend mechanism, the OSI Express card can run more effi 

ciently when the driver can stay ahead of the card in posting 
DMA chains. This way the driver only starts one chain 
(generating an interrupt on the Express card) on each regis 
ter set being used. 

Procedure Call Interface 

Data transfers between the host computer and the OSI 
Express card are via DMA. DMA chains containing data 
and control information are created by the host driver, and 
the backplane handler uses the HP-PB register sets to trans 
fer the data to and from the OSI Express card. On the OSI 
Express card the data is moved to and from the protocol 
layers. Access to the protocol layers is provided by the 
common OSI network environment, or CONE, and access 
to CONE is through the backplane message interface (BMI). 
Fig. 1 shows the main elements of this of this hierarchy, 
except the protocol layers. The backplane message interface 
is responsible for converting backplane message (asyn 
chronous) requests into corresponding CONE (synchro 
nous) procedure calls for outbound data transfers, and con 
verting CONE procedure calls into backplane message re 
quests for inbound data transfers. The reasons for this par 
ticular interface design are discussed in more detail on 
page 27. 

Handshake Procedures 
The backplane handler interface to CONE uses a set of 

procedures, which are written in C, to transfer messages 
to and from CONE. CONE makes initialization and data 
movement request calls to the backplane handler, and the 
backplane handler makes completion and asynchronous 
event procedure calls to CONE. The data movement re 
quests are made by CONE executing at a normal interrupt 
level. The completion and event calls are made by the 
backplane handler at the backplane handler interrupt level 
(level three) to CONE. These completion and event proce 
dures set flags for processing later by CONE at a normal 
interrupt level. The completion and event procedures are 
located in the backplane message interface module. Point 
ers to these routines are passed to the backplane handler 
at initialization time for each register set. Although these 
procedures are located in the BMI, CONE is responsible 
for initiation, interpretation, and action for messages to 
and from the backplane handler, and the BMI is the inter 
process communication handler. 
Initialization and Data Movement Procedures. These pro 
cedures, which are located in the backplane handler, are 
used by CONE to send messages to the backplane handler. 
â€¢ BH_assocj-s(). This procedure is used by CONE to enable 
an inbound and outbound register pair when a network 
connection is established. It is also used to disable the 
register pair when the connection is broken. The parame 
ters passed when this procedure is called include: 

n The register set number. 
n An identifier that is meaningful to CONE and is used 

to identify subsequent asynchronous events. 
n The priority to be used in servicing the register set. 
n Pointers to the three completion and event procedures 

for this register set. 
n A pointer to a block of memory to be used by the back- 

12  HEWLETT-PACKARD JOURNAL FEBRUARY 1990  

© Copr. 1949-1998 Hewlett-Packard Co.



plane handler to queue asynchronous events. 
Q A pointer to a block of memory to be used by the back 

plane handler to copy event parameters from the host 
computer. 

D The length of the event parameter memory block. 
â€¢ BH_put_data() and BH_get_data(). These routines are used to 

start a data transfer request â€” BH_put_data for inbound 
transfers and BH_get_data for outbound transfers. They 
are also instrumental in determining the state transitions 
i n  t he  backp lane  hand le r ' s  ma in  in t e r rup t  s e rv i ce  
routine. The parameters passed when these procedures 
are called include: 
a The register set number. 
a An identifier that is returned with the BHI_put_data_ 

done() or BHI_get_data_done() call to identify this par 
ticular request. 

a  A pointer  to  a  block of  memory to  be used by the 
backplane handler to queue this request. The block 
of memory ensures that the queue depth of requests 
held by the backplane handler is not limited by the re 
sources directly available to the backplane handler. 

n A pointer to a structure of chained data buffers to be 
sent or filled. This structure is matched to the struc 
tures created by the CONE memory manager. 

n The total number of bytes requested for the transfer. 
n A status value passed to the host computer in the com 

pletion list entry. 
Ã¼ A bit-field mode parameter that controls various as 

pects  of  the  t ransfer ,  such as  whether  er rors  and 
acknowledgments of previous asynchronous events 
should be sent to the host computer. 

Complet ion and Event  Procedures .  These procedures ,  
which are located in the backplane message interface mod 
ule, are used by the backplane handler to send messages 
to CONE. 
â€¢ BHI_cmd_arrival(). This procedure is used to announce 

asynchronous events to CONE. There are two asynchron 
ous events that cause BHLcmd_arnval() to be called by the 
backplane handler. The first event is the posting of out 
bound data to a register set by the host driver. The first 
quad in the DMA chain associated with the register set 
has its transparent bit set and the quad's data buffer is 
set to contain information about how much outbound 
data is being sent. The transparent bit causes a call to 
BHI_cmd_arrival(), passing the buffer attached to the first 
quad. The second case in which BHI_cmd_arrival() is called 
is the resetting of a register set by the driver. CONE must 
acknowledge the receipt of a BHI_cmd_arnval() call with a 
BH_geLdata() call. The backplane handler's internal logic 
prevents more than one BHI_cmd_arrival() per register set 
from being outstanding at  any t ime. The parameters 
passed in a call to BHL cmd_arrival include: 
n The register set of the event. 
a An identifier that is meaningful to CONE (established 

with BH_assoc_rsQ). 
n A code indicating the type of event. 
n The length of data in an event parameter block. 

â€¢ BHI_put_data_done() and BHI_get_data_done(). These proce 
dures are used to announce the completion and freeing 
of resources from prior data movement requests. The 
parameters passed with these procedures include: 

n An identifier that is meaningful to CONE (established 
by the BH_put_data() or BH_get_data() request). 

n A count of the number of bytes moved to or from the 
host computer. 

D A status value passed from the host computer. 
n An error value to indicate backplane handler errors. 

Inbound and Outbound Requests  
Fig. 5 illustrates how these routines are used to perform 

the handshakes for data transfers between the backplane 
handler and CONE. CONE starts off by calling BH_assoc_rs() 
to enable an inbound and outbound register set pair when 
a connection is established. 
Outbound Requests. When BHI_cmd_arrival() is called to in 
form CONE that the host computer has posted outbound 
data to an outbound register set, CONE allocates the re 
quired buffer space and calls BH_get_data(), specifying an 
acknowledgment of the BHI_cmd_arrival() call. When the data 
has been transferred across the backplane, BHI_get_data_ 
done() is called, triggering CONE to send the outbound data 
across the network. 
Inbound Requests. When CONE receives inbound data, it 
calls BH_put_data() to send the data across the backplane, 
specifying that an asynchronous event must be sent to the 
host and giving the size of the data. After the host computer 
receives the asynchronous event, it posts reads to accept 
the data. After the data has been transferred, the backplane 
handler calls BHI_put_data_done(), triggering CONE to release 
the buffers used by the inbound data so they can be used 
to receive more data. 

The send and receive data sequences are repeated as 
often as necessary to move data across the backplane. Note 
that as long as CONE has free buffers available, CONE does 
not have to wait for a preceding BHI_get_data_done() to allo 
cate the next outbound buffer and call BH_get_data(). Also, 
as long as free buffers are available, CONE can receive data 
from the network and call BH_put_data() without waiting for 
the preceding BHLput_data_done() calls to indicate that the 
host has taken previous data. When the connection is cut, 

O u t b o u n d  D a t a  t r a n s f e r s  
BH_assoc_rs ( )  (Enable Register Set) 

BHLcmcLarr ival  {  )  

Backplane 
Handler 

BH.geLdata  (  )  

BHI_get_data_done ( ) 

Backplane 
Message 
Interface 

BH_assoc rs (  )  (Disable Register  Set)  

I n b o u n d  D a t a  T r a n s f e r s  
BH_assoc_rs (  )  (Enable Register Set)  

BH_put_data (  )  

BHLput_data_done (  )  

BH assoc rs  (  )  (Disable Regis ter  Set)  

Backplane 
Message 
Interface 

F ig .  5 .  Handshake  sequences  be tween  the  backp lane  han  
d ler  and CONE (v ia  the backp lane message in ter face) .  
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I / O  C o m m a n d  W r i t e  
BH_puLdata (  
BH_get_data ( 

S t a r t  D M A  

N o  R e g i s t e r  S e t  
N e e d s  S e r v i c e  

S w i t c h  C o n t e x t  
t o  N e w  R e g i s t e r  S e t  

E n d  D M A  

Fig .  6 .  The backp lane hand ler  s ta te  d iagram.  

CONE calls BH_assoc_rs() to disable the register sets used 
by the connection. 

End  DMA 
Processing 

DMA Complet ion 
(Processing Complete 

on One DMA Buf fer )  

Dequeue 
Register Set 

The Backplane Handler 

The simplified state diagram shown in Fig. 6 shows the 
behavior of the backplane handler to inputs from the OSI 
Express card driver on the host computer and from CONE 
through the backplane message interface. 

In the BHJDLE state the backplane handler is typically 
not executing because the OSI Express card processor is 
either executing in the CONE protocol stack, or the proces 
sor is in an idle loop itself. There are two ways to get out 
of BHJDLE. Either a new I/O command is written by the 
host driver into a register set's IO_COMMAND register caus 
ing an interrupt, or the backplane handler's main interrupt 
service routine is called from CONE via BH_puUdata() or 
BH_geUdata() to process a new request. In either case at least 
one register set will be queued for service, and the back 
plane handler will find the queued register set, switch con 
text to that register set, and enter the RSJ3USY state. 

In the RSJ3USY state the backplane handler does all the 
processing required to service one register set, moving the 
register set through the various register set states. If a long 
DMA transfer is started and the backplane handler must 
exit to await DMA completion, the backplane handler will 
enter the DMA^ACTIVE state. DMA_ACTIVE is a transitory state 
that  ends when the DMA completes and the backplane 
handler returns to the RSJ3USY state. When one register 
set can progress no further through the register set states, 
the backplane handler switches to the next queued register 
set. When there are no more register sets, the backplane 
handler returns to the BHJDLE state. 

(cont inued on page 16)  

Queue 
Register Set 
for Service 

Process 
Register Set  
(Register Set 

State Machine)  

Switch 
Context  to 

Register Set 

F i g .  7 .  F l o w c h a r t  f o r  t h e  b a c k  
plane handler 's main interrupt ser 
vice routine. 
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Custom VLSI chips for DMA 

The OSI  Express card uses a  pa i r  o f  custom VLSI  c i rcu i ts  to  
per fo rm DMA be tween the  OSI  Express  card  res iden t  memory  
and the host system's memory. The f irst chip is the Hewlett-Pack 
ard  Prec is ion  bus  in ter face ch ip  and the  o ther  is  the  midp lane 
m e m o r y  c o n t r o l l e r  c h i p .  T h e  b u s  i n t e r f a c e  c h i p  m a s t e r s  t h e  
appropr ia te  HP Prec is ion  bus  t ransac t ions  to  per fo rm DMA be 
tween the OSI Express card and the host system memory space. 
The memory  cont ro l le r  ch ip  is  respons ib le  fo r  cont ro l l ing  DMA 
between the bus interface chip and the OSI Express card resident 
memory ,  per fo rming  midp lane bus  arb i t ra t ion ,  and func t ion ing  
as a dynamic RAM memory controller and an interrupt controller. 

The bus inter face chip funct ions as a bus master  when doing 
DMA on the HP Precis ion bus and as a bus s lave when respond 
ing to  d i rect  I /O to  and f rom the OSI  Express card reg is ters  by 
the host processor. The memory control ler chip serves as a DMA 
control ler  when the bus interface chip is doing DMA, performing 
DMA to or from card memory when the bus interface chip asserts 
a DMA request (DMAR). The memory control ler  chip also serves 
as a bus arbitrator when the bus interface chip responds to direct 
I /O f rom the host  computer ,  grant ing the bus in ter face ch ip the 
bus when i t  asserts a bus request (BUSRQ). 

Both chips are connected to a 68020 processor, dynamic RAM, 
and address and data buses as shown in Fig. 1 . All RAM address 
es on the address bus are  t rans la ted by the memory cont ro l le r  
ch ip  in to  addresses that  map in to  the phys ica l  RAM space.  

DMA between the host  system and the OSI Express card is  a 
complex process,  consider ing that :  
â€¢ Al l  HP Precis ion bus DMA data t ransfers are ei ther 16 or 32 

bytes and must  be s ize-a l igned.  
â€¢ DMA bus transfers on the OSI Express card bus are 16 bi ts,  

and a one-byte shift is required if even-addressed OSI Express 
card bytes are t ransfer red to  odd-addressed host  bytes.  

â€¢ DMA transfers on the HP Precision bus side can be specif ied 
to start or end on arbitrary byte boundaries, with garbage data 
used to pad to 16-byte a l ignment  and s ize.  

â€¢ DMA transfers on the OSI Express card memory side can be 
speci f ied to star t  or  end on arbi t rary byte boundar ies wi th no 
extra data al lowed. 
The bus interface chip and the memory control ler chip combine 

BURSRO 
HP Precision 
Bus Interface 

Chip 

68020 
Processor 

Data 
Bus 

Midplane 
Memory 

Controller 
Chip 

Address 
Bus 

I 

Address 

Frontplane 
Fig .  1 .  OSI  express  card  da ta  and address  buses .  

to  make the task of  doing DMA between OSI Express card mem 
ory and host  memory almost as s imple as programming address 
es and counts.  Fig.  2 shows some of the basic elements on both 
ch ips .  The f igure  is  drawn showing DMA f rom the OSI  Express 
c a r d  t o  t h e  h o s t  c o m p u t e r .  T o  g o  t h e  o t h e r  w a y ,  r e v e r s e  t h e  
direct ion of  the data f low arrows. 

The bus interface chip uses a pair  of  32-byte swing buffers so 
tha t  an  HP-PB t ransact ion  can proceed in  para l le l  w i th  an OSI  
E x p r e s s  c a r d  m i d p l a n e  t r a n s a c t i o n .  T h e  b u s  i n t e r f a c e  c h i p  
PDMA_ADDRESS reg is te r  i s  a  po in te r  i n to  hos t  memory .  I t  i s  
init ial ized to the size-al igned boundary below the desired start ing 
address and is  incremented by the s ize o f  the t ransact ions (16 
or 32 bytes). 

The  bus  i n t e r f ace  ch ip  NLCOUNT and  M_COUNT reg i s t e r s  

Data 

Host 
Memory 

Address 

Fig .  2 .  Bas ic  e lements  o f  the  HP 
Prec is ion  Bus  in te r face  ch ip  and  
t he  m idp lane  memory  con t ro l l e r  
chip. 
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count down as the DMA transfer progresses on the HP Precision 
bus  s ide  (NLCOUNT)  and the  OSI  Express  card  midp lane s ide  
(M_COUNT). NLCOUNT is decremented by the HP Precision bus 
transaction size (1 6 or 32 bytes) and IVLCOUNT is decremented 
by  the  midp lane t ransac t ion  s ize  (2  by tes) .  Bo th  reg is te rs  a re  
normal ly in i t ia l ized to the desired s ize of  the t ransfer.  However,  
i f  the t ransfer  is  f rom the host  system to  the OSI  Express card 
and the star t ing host  address is  not  16 (or  32) byte a l igned,  the 
amoun t  o f  m i sa l i gnmen t  i s  added  t o  NLCOUNT to  cause  t ha t  
number  o f  by tes  to  be  read  and  d i sca rded .  The  bus  i n te r face  
chip wi l l  assert  DMAR as long as both M_COUNT and N.COUNT 
are greater  than zero and the swing buf fer  on the OSI  Express 
c a r d  E x  s i d e  i s  n o t  f u l l  ( o r  n o t  e m p t y  f o r  h o s t - t o - O S I  E x  
press card transfers).  

The memory control ler chip has the task of al igning misal igned 
hos t  computer  and  OSI  Express  card  da ta .  I f  da ta  on  the  hos t  
computer  s tar ts  on an odd byte  and the OSI  Express card data 
starts on an even byte, or vice versa, the data is passed through 
the memory control ler chip using the shift  byte register to provide 
the one-byte shif t  required for al l  data transfers between the OSI 
Express card memory and the bus inter face chip.  I f  the star t ing 
addresses  match  (odd -  odd  or  even -  even)  then  DMA data  i s  

t ransferred d i rect ly  between the bus inter face chip and the OSI 
Express card memory wi thout  pass ing through the memory con 
t ro l ler  ch ip .  There is  a  two-c lock-cyc le  penal ty  for  each 16 b i ts  
t ransferred when byte shi f t ing DMA data.  

The  memory  con t ro l l e r  ch ip  DMAJ\DDRESS reg is te r ,  wh ich  
sources the OSI Express card memory address,  is  in i t ia l ized to 
the  s tar t ing  address  o f  the  t rans fer  and is  incremented by  two 
bytes as the data is transferred (one byte for f i rst  or last byte as 
requ i red  by  misa l ignment  and  leng th ) .  The  COUNT reg is te r  i s  
in i t ia l ized to  the number  o f  bytes requi red and is  decremented 
a s  t h e  D M A _ A D D R E S S  r e g i s t e r  i s  i n c r e m e n t e d .  T h e  P D M A _  
OFFSET register is a f ive-bi t  rol lover counter that is used to pro 
v ide  PDMA_ in to  the  bus  in te r face  ch ip  swing  bu f fe rs .  PDMA_ 
OFFSET is  masked to  four  b i ts  when 16-byte HP Prec is ion bus 
t ransact ions  are  be ing used so that  i t  counts  f rom 0 to  15 and 
rol ls de zero.  PDMA_OFFSET is in i t ia l ized to an of fset  value de 
pend ing  on  the  s ize  a l ignment  o f  the  des i red  hos t  s ta r t ing  ad  
dress  (zero  fo r  s ize-a l igned t rans fers ) .  The memory  cont ro l le r  
chip wi l l  dr ive the DMA as long as the bus interface chip asserts 
DMAR and the memory control ler chip COUNT register is greater 
than zero. 

(cont inued f rom page 14)  

Main Interrupt Service Routine 
The backplane handler's main interrupt service routine 

is the component of the backplane handler that drives the 
backplane handler state machine. A flowchart of the back 
plane handler main interrupt service routine is shown in 
figure Fig. 7. 

On entry to the main interrupt service routine, a three 
way decision is made based on the reason for entry. 
â€¢ If the entry is from a call by BH_ puUdataQ or BH_get_data() 

the routine searches for a queued register set to service. 
â€¢ If the entry is from a new command written to a register 

set, the register set is queued for service, and if the back 
plane handler state is DMA^CTIVE, an exit is taken. Other 
wise the interrupt service routine searches for a queued 
register set to service. 

â€¢ If the entry is from a DMA completion, the backplane 
handler ends DMA processing and enters a loop for pro 
cessing one register set. This loop consists of a test to 
see if  there is further action that can be taken on the 
register set, register set processing (which drives the reg 
ister set state machine) if the test is successful, and a 
test for DMA_ACTIVE. If the first test fails and there is 
nothing further that can be done on the current register 
set, that register set is removed from the queue of register 
sets requesting service and the interrupt service routine 
searches for a queued register set to service. If the second 
test shows that DMA is active, an immediate exit is taken. 
Note that there are no context switches to another register 
set before a particular register set being serviced reaches 
DMA completion. This is because on new command en 
tries, if the backplane handler state is DMA_ACTIVE an 
exit is taken with no context switch. Also, BH_ put_data() 
and BH_get_data() will queue a register set for service but 
not call the main interrupt service routine if the back 
plane handler state is DMA-ACTIVE. 
All paths through the main interrupt service routine that 

do not exit with DMA.ACTIVE eventually wind up searching 
for another queued register set to service. Register sets are 

queued for service in multiple priority queues. Each priority 
queue is serviced in a first in, first out fashion before step 
ping to the next-lower-priority queue. (Register set priorities 
are established at initialization.) When a register set is found 
requesting service, a context switch is made to that register 
set and the loop that processes register sets is entered. When 
there are no more register sets requesting service the main 
interrupt service routine exits. 

Register Set  State Machine 
The backplane handler  sends  and receives  mul t ip le  

streams of data on register sets and maintains those register 
sets as independent state machines. Each register set is an 
instance of a register set state machine. Register set state 
changes are driven by the process register set block in the 
main interrupt service routine. A simplified register set 
state diagram is shown in Fig. 8. 

A register set leaves the RSJDLE state either when a new 
request is started (BH_put_data() or BH_get_data() queue a re 
quest and then queue the register set for service) or when 
a host data buffer becomes available (host driver posts a 
DMA chain, and a normal data quad is fetched). If a new 
request is started, the register set transitions to the REQ_ 
PEND state. If a new host buffer becomes available the regis 
ter set transitions to the DATA_PEND state. The register set 
may stay in either RECLPEND or DATA_PEND for a long time 
waiting for driver action, resources to free up, or network 
data to be received to cause the transitions to REQ_DATA_ 
PEND. 

Once in the REQ_DATA_PEND state, DMA data will flow 
through a register set until either the end of the host data 
is encountered or the end of the local request data is en 
countered, or both. When one of these events is encoun 
tered, the register set will transition back to the appropriate 
RECLPEND, DATA_PEND, or RSJDLE state. 

The ability of a register set to go between either the RECL 
PEND or DATA.PEND state and the REQ_DATA_PEND state re 
peatedly allows the OSI Express card to use the backplane 
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Fig.  8 .  Regis ter  set  s ta te d iagram. 

handler as a packet segmentation or reassembly point. 
When networking buffer memory on the OSI Express card 
is scarce and a large buffer of outbound data is posted by 
the driver, CONE can allocate one small buffer to send the 
data. The one buffer can be used over and over again by 
going through multiple iterations of passing it to the back 
plane handler in a BH_get_data() call and then transmitting 
it across the network. Each successive BH_ get_data() call 
reads successive blocks of data from the host computer's 
buffer. On the inbound side the process can be repeated 
using BH_put_data(). The backplane handler is also flexible 
enough to perform the same service for the host computer, 
using large buffers on the card and multiple small buffers 
on the host computer. The result is that because of the 
backplane handler's ability to move data spanning buffer 
boundaries on either the host computer or the OSI Express 
card, the driver and CONE need not worry about accurately 
matching buffers with each other. 

Asynchronous Event Handling 

For inbound and outbound data transfers the backplane 
handler must process asynchronous events to notify CONE 
and the host system of these data transfers. In the outbound 
direction the CONE modules must be notified when the 
host driver posts a buffer of outbound data so that CONE 
can allocate outbound buffers to transport the data to the 
network. CONE needs to be told how much data is out 
bound so that it can allocate resources before the data is 
read onto the OSI Express card. The same problem exists 
in the inbound direction. When a packet of data arrives at 
the backplane handler from the network, the host driver 
and networking code must be told of its arrival and size 
so that host networking memory can be efficiently allo 
cated. 

In the outbound direction, the driver prefixes each out 
bound message, which may be made up of multiple large 
physical buffers linked with DMA chaining quads, with a 
quad and a small buffer containing size and other informa 
tion about the outbound message. A bit is set in the prefix 
quad indicating that it is a transparent command (transpar 
ent to the backplane handler), and the entire DMA chain 

is posted on a register set. 
When the transparent command quad is fetched by the 

backplane handler, the small buffer associated with the 
quad is copied into the event parameter buffer for that 
register set. BHI_cmd_arnval() is then called and the transpar 
ent command and event parameters are passed on to CONE. 
The backplane handler will then suspend fetching quads 
on that register set until CONE has acknowledged the BHL 
cmd_arrival() event with a BH_get_data() call on that register 
set. This prevents a subsequent transparent command from 
overwriting the original command in the the event param 
eter buffer until CONE has acknowledged the first transpar 
ent command. CONE allocates the resources needed to send 
part or all of the data across the network, and then calls 
BH_get_data() with the acknowledge bit set. 

In the inbound direction, transparent indications provide 
event notification to the driver and host networking soft 
ware. One register set (RS 1) is used as a high-priority 
transparent indication register set. This register set is ser 
viced by the backplane handler at a priority higher than 
any other register set, and the driver always keeps a DMA 
chain of small buffers and completion list entries posted 
on the transparent indication register set. 

When the first packet of an inbound message arrives from 
the network, the packet is placed in a line data buffer con 
sisting of one or more physical buffers. A physical buffer 
containing the size and other information about the in 
bound message is prefixed to the line data buffer, and the 
prefixed line data buffer is posted to the backplane handler 
in a BH_put_data() call with the transparent indication bit 
set. When the request generated by the BI-Lput_data() call 
arrives at the head of the request queue on the register set, 
the request is then requeued onto the transparent indication 
register set. The data is then sent via DMA into one of the 
small host computer buffers posted there to receive the 
data, and then the backplane handler creates a completion 
list entry. 

When the driver reads the completion list entry as 
sociated with the transparent indication register set, the 
transparent indication is passed on to host networking soft 
ware, which allocates the resources necessary to receive 
the message. The driver then posts the allocated buffers on 
the correct register set (as indicated in the transparent in 
dication) with an acknowledge bit set in the first quad's 
CHAINLCMD word. The backplane handler then sends the 
data via DMA into the buffers on the host via the appro 
priate register set. 

Conclusion 
Four main benefits have resulted from the design of the 

OSI Express card backplane handler. The first three are all 
related in that they are derived from the flexibility of the 
register set state machine. These benefits include: 
â€¢ The producer and consumer processes on the host and 

on the OSI Express card do not have to be time-syn 
chronized. Data transfers may be started either by the 
host system or the OSI Express card register set being 
used. The host system can post buffers to start the transfer 
or CONE can start the transfer by calling procedures 
BH_put_data() or BH_get_data(). 

â€¢ Data buffers on the host system and the OSI Express card 
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do not need to match in size. Large buffers on the host 
can be filled (or emptied) from multiple small buffers 
on the card, and large buffers on the card can be filled 
(or emptied) from multiple small buffers on the host. 
Neither the host nor the CONE modules resident on the 
I/O module need to know about the buffer sizes on the 
other side of the backplane. 
The independence of buffer sizes has resulted in reduced 
overhead for packet assembly and disassembly (a normal 
operation for network software). The backplane handler 
allows the OSI Express card to combine packet assembly 
and disassembly with the data copy that is required to 
cross the backplane. This allows the OSI Express card 
networking software to accomplish packet assembly and 
disassembly without the added overhead of a data copy. 
The problem of one connection or data path blocking 
data flow on another path at the backplane interface is 
eliminated. The primary reason for the backplane han 
dler's maintaining multiple independent register sets is to 
prevent one path from blocking another. If one of these 

paths becomes blocked because a consumer stops taking 
data, the remaining paths continue to carry data without 
the intervention of the networking application on the 
OSI Express card or the host system. 
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CONE:  A Sof tware  Environment  for  
Network Protocols 
The common OSI network environment, or CONE, provides 
a network-specific operating system for the HP OSI Express 
card and an environment for implementing OSI protocols. 

by Steven M.  Dean,  David  A.  Kumpf ,  and H.  Michael  Wenzel  

IMPLEMENTING HIGH-PERFORMANCE and reliable 
network protocols is an expensive and time-consuming 
endeavor. Supporting products containing these proto 

cols is also costly, considering changes in standards, 
hardware, and application emphasis. Because of these chal 
lenges, in the early 1980s HP began to develop a framework 
for providing portable protocol modules that could be used 
in a number of products to minimize incompatibility prob 
lems and development and support costs. Early network 
protocol portability concepts were used in networking 
products for the HP 9000 Series 500 computers,1 the HP 
9000 Series 300 computers, the HP Vectra personal comput 
er, and the HP code for connecting Digital Equipment Cor 
poration's VAX/VMS systems to HP AdvanceNet.2 Other 
concepts in modularity and protocol flexibility were de 
veloped for products on HP 3000 computers3 and HP 1000 
computers.4 In anticipation of new standards for ISO OSI 
(Open Systems Interconnection) protocols, an HP interdivi 
sional task force was formed to define a networking envi 
ronment for protocols that would incorporate the best ideas 
identified from current and previous network products, 

and provide protocols that were portable to a maximum 
number of machines. This environment is called CONE, or 
common OSI networking environment. 

CONE is a system design for a set of cooperating protocol 
modules, a collection of functions that support these mod 
ules, and a comprehensive specification for module inter 
faces. A protocol module contains the code that imple 
ments the functions for a particular layer of the OSI stack. 
As shown in Fig. 1, the overall OSI Express card network 
system is structured as nested boxes. The more deeply 
nested boxes contain more portable code. The network pro 
tocol code contains the data structures and functions that 
implement the protocol layers. The execution environment 
defines all the interfaces to the network protocol modules, 
providing services that are tuned to support network pro 
tocols and ensure isolation from the embedding operating 
system. The embedding operating system includes the 
facilities provided by the operating system for the processor 
on the OSI Express card. These facilities include a simple 
interrupt system and a rudimentary memory manager. The 
system interface is composed of small, partially portable 
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modules that perform whatever actions are necessary to 
adapt the embedding operating system for network use. 
The services provided by the system interface include: 
â€¢ Interfaces to interrupt service routines for card-to-host 

computer DMA 
â€¢ LAN frontplane hardware and timer functions 
â€¢ Message channels from the card to the host for error 

reporting 
â€¢ Tracing and network management. 

This article describes the CONE architecture and the fea 
tures it provides to support the OSI model. 

OSI Addressing 

Service Access Points and Connect ions 
Two concepts that are central to the OSI model are service 

access points (SAPs) and connections (see Fig. 2). These 
concepts apply at every OSI layer and represent the re 
lationship between a protocol layer and a black box con 
taining all the protocol layers below it. 

An SAP is an addressable point at which protocol ser 
vices are provided for a layer user. A layer user is the next- 
higher protocol layer (e.g., the layer user of the network 
layer is typically the transport layer). SAPs for higher-layer 
users are identified by address or SAP selector information 
carried by the protocol header. Protocol headers are dis 
cussed in the next section. 

A connection represents an association between a pair 
of users for the exchange of information. In the CCITT X.25 
standard, which defines protocols that correspond to the 
first three layers of the OSI model, connections are called 
virtual circuits. Each connection represents a separate com 
munication path that is maintained by lower-layer pro 
tocols. If data stops moving on one connection (e.g., if an 
application stops receiving data), data can still be ex 
changed over other connections, since they are indepen 
dent. 

An analogy will serve to illustrate these concepts. A ser 
vice access point is like a multiline telephone â€” the kind 
with the lighted buttons across the bottom, which is typi 
cally used by small businesses or departments. The tele 
phone (SAP) is the point at which service is offered by the 
telephone company (lower-layer protocols). The telephone 
has a telephone number (address or SAP selector) which 
is used by the telephone company to identify it when plac 
ing calls (see Fig. 3). A connection is like an individual 

Embedding Operat ing System 

call from one telephone number to another. Just like the 
lighted buttons on the telephone, several connections may 
be alive simultaneously between two or more phone num 
bers. Each lighted button (connection endpoint identifier) 
can be viewed as the end of an imaginary wire which is 
used to represent that distinct instance of communication 
with a remote user. The same pair of telephones may even 
have more than one connection active between them at a 
time, each with its own lighted button on each telephone. 
The user can specify which connection will send or receive 
data by pressing the related button (connection endpoint 
identifier). If a remote user stops listening on a given con 
nection, the local user is still free to talk on other connec 
tions whose remote users are more responsive. 

Protocol Headers 
Most networking protocols send data from a local to a 

remote layer user by adding protocol control information 
to the front of the layer user's data buffer. This propended 
control information is called a protocol header. The con 
catenated result then becomes user data for the next-lower 
layer of protocol (see Fig. 4). This works much the same 
as envelopes within other envelopes, with the outermost 
envelopes corresponding to lower layers of protocol. Each 
protocol layer's header control information corresponds to 
handling instructions on each envelope. When a packet is 
received by a machine, each protocol layer examines and 
removes its handling instruction envelope (header) and 
delivers the contents to the next-higher protocol layer. One 
crucial piece of header information identifies which mod 
ule is the next-higher layer. In the OSI model, this is called 
the SAP selector. Datagram protocols carry the SAP selector 
in each packet and treat each packet independently of all 
others. Connection-oriented protocols only exchange the 
(possibly large) SAP selectors during the connection estab 
lishment handshakes. Successive packet headers carry only 
a connection endpoint identifier, which is a dynamically 
allocated shorthand reference that is mapped by the receiv 
ing protocol to the specific connection between a pair of 
layer users. 

Addressing Relat ionships 
Every user application finds a remote application via 

some sort of application directory, which is analogous to 
a telephone directory. To communicate with an application 
on another machine, the directory maps the target applica 
tion's name into an NSAP (network service access point) 
and an n-tuple vector of SAP selectors. The NSAP is the 
intermachine address for the machine, and the n-tuple vec- 

L o c a l  M a c h i n e  R e m o t e  M a c h i n e  A  R e m o t e  M a c h i n e  B  

Connections or Virtual  Circuits 

'Funct ions and Data Structures Provided by CONE.  

F i g .  1 .  L a y e r e d  a r c h i t e c t u r e  o f  t h e  H P  O S I  E x p r e s s  c a r d  
network system. 

'  Connect ion Endpoint  
(  )  Service Access Point  

Fig.  2 .  Serv ice access po in ts  (SAPs)  and connect ions.  
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tor contains an entry (intramachine address) for each OSI 
layer used to communicate with the application on the 
target machine. There are many schemes for assigning SAP 
selector values to each of the entries in the n-tuple vector. 
The ISO OSI standards offer little guidance as to which is 
the best scheme. However, the important thing is that the 
n-tuple vector combination be unique for application-to- 
application communication over a network. 

Fig. 5 shows the addressing relationships between the 
top four layers of the protocol stack for one machine on a 
network. The intermachine address, or NSAP, for all the 
applications on this machine is X. The lines in Fig. 5 do 
not represent connections but addressing relationships, 
that is, they show which module is pointed at by an address 
and what are valid address combinations. For application 
A in Fig. 5, the n-tuple vector is Pi, Si, Tl and for appli 
cation B the n-tuple vector is P22, Si, Tl. For these two 
applications the protocol stack uses the presentation layer 
SAP selector values Pi and P22 to tell these two applica 
tions apart. For application C, which has the n-tuple P44, 
S9, Tl, the presentation layer SAP selector P44 would be 
redundant because no other application uses the subvector 
S9, Tl. For application D the n-tuple is P77, S9, T2. Since 
application C and D have the same SAP selector for the 
session layer (S9), the SAP selectors are interpreted within 
the context of the transport layer SAP selectors Tl and T2, 
respectively. 

Direct applications are applications that use the services 
of lower OSI layers and bypass some of the upper-layer 
protocols. To the rest of the OSI stack these applications 
look like alternative modules to the upper OSI layers. For 
example, applications E and F use the session layer directly. 
To the lower-layer protocols they look like alternative pro 
tocol modules of the presentation layer. The address vec 
tors for applications E and F are S32, T2 and S99, T2, 
respectively. Applications G and H use the transport layer 
directly and they are addressed by the vectors T40 and 
T50, respectively. 

Remote 
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[ A ]  G O  [ Ã § ]  [ t o  

SAP Selector  

Service Access 
Point (SAP) 

Connect ion Endpoint  
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Fig. 3. Telephone analogy i l lustrat ing SAPs and connect ions. 

Protocol Module Interfaces 

In CONE, interfaces to protocol layers are procedure- 
based, as opposed to being message-based as in many pre 
vious network products. Procedure-based means that pro 
tocol modules call one another instead of sending messages 
to each other through the operating system. This minimizes 
the number of instructions because a data packet can pass 
through the protocol layers and be processed without being 
queued. When necessary, protocol interface procedure 
calls are converted to messages to cross a process bound 
ary â€” for instance, when crossing the OSI Express card back 
plane into the host operating system. Within the OSI Ex 
press card protocol stack, higher-level protocol layers call 
lower-level protocols to process outbound packets, and 
lower-level protocol layers call higher-level protocols to 
process inbound packets. To avoid bugs that would be very 
hard for a protocol designer to anticipate, reentrance is not 
allowed, that is, a protocol module cannot call back into 
the protocol module that called it. This means that packets 
move in one direction at a time through the protocol stack 
before all the procedures return to the outermost CONE 
routine. 

Protocol layer interrelationships and protocol module 
interfaces in CONE are represented by three central data 
structures: protocol entries, paths, and service access point 
(SAP) entries. 

Protocol Entries 
For the OSI Express card there is a protocol entry data 

structure for each protocol layer in the system. This in 
cludes protocols from physical layer 1 (IEEE 802.3 or 802.4 
LAN) to application layer 7 which contains the Association 
Control Service Element (ACSE). Fig. 6 shows the config 
uration of these data structures after power-up. The pro 
tocol entry for each protocol layer contains a list of pointers 
to all of its standard procedure entry points and other in 
formation, such as protocol identifiers, statistics, and trace 
and log masks. Standard procedure entry points include 
separate calls for actions like establishing and destroying 
network connections, sending and receiving data, and spe 
cial control commands. This list of entry points is used to 
bind modules dynamically in a way similar to the protocol 
switch table in the University of California, Berkeley UNIX 

L a y e r  2  L a y e r  3  L a y e r  4  L a y e r  5  L a y e r  6  A p p l i c a t i o n  
H e a d e r  H e a d e r  H e a d e r  H e a d e r  H e a d e r  D a t a . . .  

Layer 6 
User's Data 

Layer 5 User's Data 

Layer 4 User 's Data 

Layer 3 User 's Data 

Layer 2 User 's Data 

Total  Line Data Packet  Sent  Ser ia l ly  over  the Wire 

Fig.  4 .  Nest ing o f  pro toco l  headers .  
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networking implementation.3 
Separate entry points exist for categorically different ac 

tions and for each direction of packet travel â€” for example, 
the entry points SP_Send_Down() for outbound packets and 
SP_Send_Up() for inbound packets, which appear in the ses 
sion layer shown in Fig. 6. These separate entry points 
speed access to a protocol's action-handling routines and 
allow protocols to take advantage of implicit assumptions 
about the state of a path, thus reducing extraneous state 
checks and minimizing the number of instructions in the 
most common data-handling cases. All protocols handle 
the same parameter structure for each procedure call, al 
lowing protocols to be used interchangeably as building 
blocks in different combinations as necessary to reach a 
given destination. 

The SAP lookup tables are also set up for each protocol 
layer right after power-up and all are empty except the 
tables for the data link (layer 2) and internet protocol (layer 
3) layers. The SAP lookup table contains the SAP selectors. 
Part of the system configuration at power-up is to set up 
the SAP lookup tables so that the data link protocol module 
(layer 2) can find the network module (layer 3) and layer 
3 can find the transport module (layer 4). The remote net- 
UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries. 

work SAP (NSAP) table is also empty because there is no 
communication with remote nodes at the beginning. If a 
remote node did try to connect right after power-up and 
before any applications started to run, the internet protocol 
layer would create a destination entry to remember who 
is calling and then it would use its SAP entry to find the 
transport layer to give it the packet. The transport layer 
would send an error packet back to the remote node because 
no transport SAP selector values would be active â€” the 
transport layer would not know of any layer users above 
it yet. 

Path Data Structure 
When an application begins to communicate with an 

application on another machine, several data structures are 
set up by CONE to handle the connection between the two 
applications. One of these data structures is the path data 
structure. The path data structure represents an individual 
connection and serves as a focal point to tie together the 
collection of all supporting information required to talk to 
a remote application. It also represents the intramachine 
route taken through the protocol layers by packets on a 
given connection from the user to the LAN interface. It 
consists of an ordered list of all the protocols involved in 

Full-Stack OSI Applications 

Direct 
Session 

Applications 

Direct 
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Applications 
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Layer 6 

SAP Selectors F ig .  5 .  Add ress ing  re la t i onsh ips  
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the conversation, together with their connection state infor 
mation for this connection (see Fig. 7). As each protocol 
module is called by CONE to process an event (Â© in Fig. 
7), it is passed a pointer to its entry in this list. This pointer 
is represented by the PathEntry parameter shown in the in 
terface call IP_Send_Down shown in Fig. 7. The other param 
eter, buf, points to the parameter block that points to the 
line data buffers containing the data packets. Parameter 
blocks and line data buffers are discussed later when the 
CONE memory manager is described. When each protocol 
is finished with its part of the overall processing, the PathEn 
try pointer is used to find the next protocol module to be 
called, either above or below the current one, depending 
on whether the packet is being received or transmitted (see 
the previous and next entries in the path data structure in 
Fig. 7) . Different stacks of protocols can be used for different 
connections by changing the makeup of the path template. 
Paths are used by both datagram and connection-oriented 
protocols on a packet-by-packet basis. 

SAP Entr ies 
SAP entries are used by protocols to find each other 

when a path is first being created. A SAP entry contains 
the SAP selector value that represents the intramachine 
address of the next-higher layer user. This relationship is 
recorded in a standard data structure so that other subsys 
tems like tracing, logging, network management, and 
dynamic debuggers can know which modules are involved 
with a given path or packet. Each path entry points to the 
SAP entry that represents the user on the local end of the 
connection (Â® in Fig. 7). 

When an OSI application is first activated, it sets up the 
n-tuple vector of SAP selectors stored in the SAP lookup 
tables. Each cell in the n-tuple is handled by a separate 
protocol layer. When CONE calls a protocol module that 
serves a new user, it passes the user's SAP selector value, 
user dependent parameters, and a pointer to the related 
protocol global entry for the next-higher layer in the n- 
tuple. The called protocol layer adds the new SAP selector 
value to its SAP lookup table. The relationship of each new 
SAP selector value to other values and the network topol 
ogy is protocol dependent because, besides the SAP selec 
tor value, information from the protocol header on an in 
coming packet is often used by the protocol layer as part 
of the key value to find a given SAP entry. The responsibil 
ity of managing these key values belongs to the protocol 
module. CONE supports the protocols in this function by 
providing address management utility routines that per 
form common functions like creating and destroying SAP 
entries and high-speed mapping of key values to SAP-entry 
pointers for a given SAP entry. 

Besides SAP entries, there is another structure called the 
destination entry, which is used by the data link layer and 
the network layer to contain network intermachine address 
es and other information about the remote node. In align 
ment with the functions defined in the OSI model, destina 
tion entries for the network layer represent the NSAP for 
a remote machine beyond the LAN, and destination entries 
for the data link layer represent machines that share the 
same link (e.g., a LAN) with the local machine. The desti 
nation entry is a standard data structure for all the informa 

tion that needs to be remembered about a remote machine. 
Besides the NSAP, examples of other information that 
would be stored in a destination entry include route and 
remote dependent protocol parameters (e.g., packet size, 
options, version). This structure can be used to filter trace 
and log data for each destination to avoid overloading out 
put files. Transient relationships can exist between the 
network and data link layer destination entries to represent 
routing information â€” for example, to forward a packet to 
the network layer for destination A, use the data link layer 
on destination B as the next stop. References to destination 
entries are counted to ensure that they are held in existence 
while they are pointed at by other structures. 

P r o t o c o l  E n t r y  
Da ta  S t ruc tu res  

S A P  L o o k u p  
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Fig.  6.  Protocol  entry  data st ructures r ight  af ter  power-up.  
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Tying i t  Together  
The protocol entry, path, and SAP entry data structures 

together provide the framework that enables protocol mod 
ules to create and maintain network connections between 
applications on different machines. When a user applica 
tion makes an outbound connection, it directly or indirectly 
passes down all the related local and remote address infor 
mation needed to identify the remote machine and all the 
modules on each end of the connection. CONE uses this 
information when setting up the path data structure and 
its relationship to local SAP entries. As the protocols send 
packets to the remote node to set up the connection, the 
address information is carried by the protocol headers. For 
connections coming alive in the inbound direction, the 
address information in the protocol headers is used by each 
protocol module to find a SAP entry that contains the in 
formation needed to initialize its entry in a fresh path data 
structure. Inbound paths are initialized upward, one pro 
tocol layer at a time. When the incoming connection 
reaches the user application, the path data structure is a 
mirror image of the one built for the outbound path on the 
initiating machine. At any time during the life of the path, 
CONE can be requested to extract all the address (and pro 
tocol parameter) information from a path. This information 
can be used by a user application to call a remote user 
back, or during an error log for precise identification of all 

the modules on each end of a connection having a problem. 
Surrounding these common data structures is an exten 

sive list of rules related to how these structures are used 
and what can and cannot happen as a result of a protocol 
interface event procedure call. These rules specify: 
â€¢ What services a protocol at a given layer can rely on 

from the protocol layer below it without binding itself 
to a specific lower protocol. This is needed for support 
ing protocol replaceability (e.g., OSI internet protocol 
can work with IEEE 802.3, IEEE 802.4, X.25, LAPB, test 
modules, etc.). 

â€¢ How protocol facilities are enabled and disabled, and 
how protocol-specific information is passed to a module 
in the middle of the protocol stack without the modules 
around it having to know what is happening. This is 
needed for protocol module independence and also for 
protocol replaceability. 

â€¢ How paths are used when connections at various levels 
have different lifetimes, or when multiple connections 
multiplex onto each other. 

â€¢ Which modules have the right to read or write each of 
the fields in the common data structures. 

â€¢ At what times the data structure fields are known to be 
valid or assumed to be invalid. 

â€¢ How data sent or received on the network wire (line 
data) flows from layer to layer. 
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â€¢ How buffer space is managed for multiple protocol layers 
and what layer has the right to touch a line data buffer 
(buffer containing data packets) at any given time. 

â€¢ How a line data buffer is to be segmented and reassem 
bled at a given layer when multiple layers have this 
ability. 

â€¢ How flow is controlled on a system-wide basis. For exam 
ple, when there are multiple connection-oriented pro 
tocols, buffers do not need to be reserved by each layer 
to handle its own flow control, retransmission, and queu 
ing requirements. All layers know collectively what will 
happen to data buffer memory entering or exiting the 
system. 

â€¢ How to handle arbitrarily complicated OSI protocol in 
terface events with a minimum number of simple, stan 
dard buffer structures and interface calls. 

â€¢ How to handle error situations, especially under race 
conditions where things are going wrong on both ends 
of the path at the same time. 

Process Model 

One of the major goals of CONE is to provide an architec 
ture where protocol modules can be easily ported to differ 
ent environments. To provide a portable architecture, it is 
essential that a well-defined process structure be ported as 
well. This allows the protocol modules to be designed with 
a specific process structure in mind. 

The underlying process model for the CONE protocol 
code is procedure-oriented. The CONE process model dif 
fers from a typical time-sliced dispatching algorithm in 
that once a task is dispatched, it is run to completion. 
CONE performs a sort of "pseudo-multitasking" in that the 
system depends on the timely completion of a task rather 
than incurring the overhead of process preemption and 
context-switching. A task can be thought of as an event 
handler. When a CONE task is invoked, the dispatcher 
makes a procedure call to the related event handler proce 
dure. The event handler is then free to do whatever it likes 
but must eventually return to the dispatcher. When there 
is no work to be done, the card is idle waiting for an external 
event to occur. When an external event occurs, the handler 
for the event is scheduled. 

A scheduled event handler is represented by a small data 
structure called a token. The protocol module provides the 
space for the token as part of its path data structure. The 
token contains, among other things, the entry point of the 
event handler. When an event handler is scheduled, the 
token is added to the end of a global FIFO task queue. The 
dispatcher simply calls the event handling routine when 
the routine's token reaches the front of the queue. Because 
of the potential overhead, task priorities are avoided as 
much as possible. 

All CONE-based event handlers are considered to be 
tested, trusted system-quality code. With this type of pro 
cess model, the protocol modules must abide by two rules. 
First, the protocol module must complete execution as 
quickly as possible. Waiting in a loop for an external event 
is not allowed because it would delay other tasks from 
running and degrade performance. Second, a protocol mod 
ule is not allowed to reenter the protocol module that called 

it. Disallowing a protocol module from being reentered 
avoids the possibility of infinite loops, and makes coding 
of the protocol modules much simpler because only one 
protocol module at a time can be changing the common 
data structures. Reentrance in a procedure-based system is 
a fertile bug source. For a small cost in performance, reen- 
trance can be avoided by simply scheduling a task to call 
the other layers back only after they have exited back to 
the dispatcher. 

An example of the CONE dispatcher behavior is illus 
trated in Fig. 8. In this example a packet is received that 
requires a TP4 AK (transport 4 acknowledgment) packet 
to be sent back out on the LAN. When a packet for the OSI 
stack is received from the LAN, a frontplane interrupt is 
generated. The frontplane interrupt service routine will 
service the hardware, queue the packet, schedule the in 
bound task of the data link protocol module (LLC = logical 
link control), and exit. At Â© in Fig. 8, the CONE dispatcher 
calls the LLC inbound task scheduled by the frontplane 
interrupt service routine. LLC processes the packet and 
calls the network layer's protocol module (IP), which pro 
cesses the packet and calls the transport protocol module 
(TP4). Since TP4 was entered via its inbound packet inter 
face call, it is not allowed at this time to call an outbound 
interface routine to send an AK. Therefore, it must schedule 
an AK task (2) to send the AK packet out after the inbound 
routines are done. After processing of the inbound packet, 
TP4 returns to IP (3), which returns to LLC, which returns 
to the CONE dispatcher. The CONE dispatcher then moves 
on to the next pending event, namely the AK task, and 
wakes up TP4 to handle the event (4). Since TP4 was entered 
directly from the dispatcher, it is now free to send outbound 
(or inbound) packets, since no other protocol modules are 
in danger of being reentered. At Â©, TP4 calls IP to send 
the AK, which calls LLC to put the packet on the LAN. 
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Memory Management 

CONE provides two types of memory: memory objects 
and line data buffers. A memory object is a contiguous 
block of memory (heap space]. The intended use of a mem 
ory object is to hold a data structure for direct use by a 
CONE-based module. Memory objects can be shared by 
multiple modules but there is always a single, well-defined 
owner which changes very little over the lifetime of the 
object. 

Line data buffers hold data that is sent and received on 
the network wire or line. Unlike memory objects, line data 
buffers are passed, created, and destroyed outside the 
CONE environment. To ensure portability, all CONE-based 
modules allocate, deallocate, write, read, and manipulate 
line data buffers through macro calls to the CONE buffer 
manager. Since protocol modules aren't coupled to specific 
buffer structures, only the buffer manager needs to be 
changed to use a different underlying structure for efficient 
interaction within another operating system. Line data buf 
fers are not guaranteed to be contiguous and may consist 
internally of several smaller memory objects chained to 
gether. 

CONE's use of memory is optimized for speed in allocat 
ing and deallocating memory objects and line data buffers. 
At the same time, it is designed to make maximum use of 
available memory by taking advantage of the predeter 
mined characteristics of protocol memory use. This can be 
contrasted with the memory managers in many conven 
tional operating systems which are not optimized for speed 
of allocation and deallocation, since most regular processes 
allocate arbitrary-size memory objects and keep them until 
the process dies. The CONE buffer manager also plays a 
major role in card flow control, ensuring that all users can 
continue to run in worst-case memory situations. Refer to 
the article on page 36 for a detailed discussion on OSI 
Express card flow control. 

Memory Object  Al locat ion 
A fundamental element of any memory management sys 

tem is the ability to allocate and deallocate contiguous 
blocks of memory dynamically. Although a basic function, 
the method chosen can have a significant effect on perfor 
mance. We studied the first-fit, best-fit, and buddy system 
memory allocation algorithms and these methods proved 
to be slower and more complicated than we needed. Net 
working applications typically make repeated requests Â¡or 
memory objects that fall into a small number of fixed sizes. 
Since the number of different memory object sizes is small, 
a two-level scheme is used in which memory is first divided 
into one of two block sizes, and then small blocks are 
subdivided to fill memory object pools. Having only two 
block sizes greatly reduces the time necessary to allocate 
and deallocate a memory block. A memory block is allo 
cated by removing the block at the head of a free list. A 
memory block is deallocated by inserting the block at the 
head of the free list. Large block sizes are only used to 
grant large line data buffer requests, while the small block 
sizes are used for both small line data and memory objects. 

Dividing the entire memory into fixed-size blocks elimi 
nates external fragmentation because there are no wasted 

chunks of memory between blocks. However, internal frag 
mentation can still be a problem since the memory block 
may be larger than needed. To reduce internal fragmenta 
tion a pool manager was developed. The pool manager 
takes the smaller-size blocks described above and divides 
them into even smaller blocks of various fixed sizes so that 
they fit the groups of memory objects used by CONE-based 
modules. There are several pools, each managing a different 
object size. By studying the distribution of memory object 
sizes that are allocated, we determined that four different 
pool object size groups were needed. With the four pool 
object size groups and the two original block sizes, wasted 
space resulting from internal fragmentation was reduced 
to approximately 10 to 15 percent. CONE-based modules 
are unaware of whether a memory object comes from a 
pool or directly from the free list, since this detail is hidden 
behind the CONE interface. 

The pool manager is designed to allocate and deallocate 
memory objects very quickly. The speed of the pool man 
ager, combined with the simplicity of the memory free list, 
reduces the time required to allocate and deallocate mem 
ory to a very small portion of the overall processing time. 

Line Data Buffer Structure 
The structure of a line data buffer is a key part of the 

CONE design. For portability, the internal structure of line 
data buffers is hidden from CONE-based modules. Line 
data buffers are passed from module to module as protocol 
interface events propagate through the stack. To the layer 
users, a line data buffer is represented by a pointer to a 
standard data structure in a memory object called a param 
eter block which invisibly references the memory area that 
actually stores line data (see Fig. 9). The parameter block 
functions like a baton that is passed from module to mod 
ule. The layer currently holding the parameter block is the 
one that has the right to work with the buffer. The parameter 
block has a fixed part that carries the standard parameters 
every protocol module must recognize, such as the current 
amount of line data contained in the buffer, whether the 
buffer contains a packet fragment or the end of a fragment 
train, and what protocol interface event the packet is related 
to. The rest of the parameter block can be used for storing 
protocol dependent parameters related to the interface 
event. This structure allows the protocol interface proce 
dure calls to have a very small number of parameters, 
speeding up procedure calls from layer to layer. It also 
provides the space for queuing event-related information 
in the suboptimal case where the event can't immediately 
be acted upon and propagated through the stack. 

Data copying is kept to a minimum in the buffer manager 
design, both to maximize performance and to minimize 
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memory use. This led to a special feature in the parameter 
block design. Many connection-oriented protocols, such as 
OSI transport, need to keep a copy of each transmitted 
packet until an acknowledgment of delivery is received 
from the remote machine in case the packet needs to be 
retransmitted. Rather than allocate another buffer and copy 
the data, the parameter block is simply marked with a 
pointer to the protocol module's entry point so that the 
buffer can be given back when the lower protocol layers 
have finished with it. When this entry point is called, the 
protocol module queues the original packet, rather than a 
copy. The retransmission timer is also started during this 
buffer return call made by the lower layers after the previ 
ous transmission has left the machine. This avoids the 
embarassing problem of having multiple retransmitted 
copies of the same packet piling up in the lower layers. 

Line Data Buffer  Manager 
The design of the primitives for the line data buffer man 

ager was driven by what the module designers needed to 
implement the protocol layers' functionality. Primitives 
exist writ allocating and deallocating buffers, reading or writ 
ing data in a line data buffer, adding or removing header 
data in a line data buffer, disabling or enabling line data 
flow inbound or outbound for a path, pacing of line data 
buffer use for each path, and a variety of other functions. 
Line data buffers are allocated asynchronously. If a module 
requests a line data buffer and one is not available, the 
buffer manager will schedule an event and inform the mod 
ule when the buffer is available. 

There are many line data buffer management functions. 
However, the two most important functions are responsible 
for fragmenting a packet for transmission and reassembling 
a packet when it is received. 
Fragmenting a Data Packet. When a protocol module, such 
as the module for the transport layer, receives an outbound 
packet that is larger than it can legally send, the packet 
must be fragmented and sent as several smaller data pack 
ets. When the transport layer fragments a packet it must 
attach a header to each fragment. The buffer manager pro 
vides a primitive that allows the protocol module to attach 
its header, which is in a separate buffer, at any point in 
the data packet without having to copy data from the orig 
inal buffer. By changing fields in the segment control struc 
tures (see Fig. 10) within the line data buffer, the header 
can be attached without copying data by making the new 
fragment buffer point into the relevant data portion of the 
unfragmented buffer. This method significantly improves 
performance because it avoids data copying. 
Reassembling a Data Packet: Some protocol modules, such 
as the network layer, need to reassemble a fragmented in 
bound packet before delivering it to the layer above. The 
buffer manager provides a primitive for reassembling a data 
packet. This routine will handle out-of-order, duplicate, 
and overlapping fragments. Again, links in internal buffer 
segment control structures can be manipulated to avoid 
recopying the data in the buffers being coalesced. 

Allocation versus Preal location 
Establishing a connection requires both types of memory, 

memory objects for connection-specific data structures and 

line data buffers to send and receive packets. The buffer 
manager design evolved from a method in which line data 
buffers were preallocated for each connection based on 
where they were most needed. When a connection was 
established, enough line data buffers were preallocated to 
ensure that the connection could always make progress. 
Any line data buffers that were not preallocated could be 
shared by all other connections to increase performance. 
The idea was to ensure that each connection had enough 
buffers to make progress in worst-case memory situations, 
but allow connection performance to increase when extra, 
uncommitted line data buffers were available. 

Since the OSI Express card has a limited number of buf 
fers, it became apparent that preallocating line data buffers 
restricted the total number of connections that the card 
could support. We wanted to support a greater number of 
connections. Good performance can be achieved as long 
as too many of the open connections do not try to send or 
receive data at the same time. The phone company is again 
a good analogy. Everyone has a phone and performance is 
generally good, even though there isn't enough switching 
equipment for everyone to make a call at the same time. 

The algorithm used is to have all connections share a 
pool of line data memory, rather than preallocate buffers 
when a connection is established. When a moderate 
number of connections are active, performance is good. As 
more connections become active at the same time, connec 
tion performance degrades since the aggregate system per 
formance is divided among the active connections. This 
proved to be a good compromise. Good performance was 
achieved while allowing a large number of connections. 

Timer Management 

Networking stacks use a large number of timer wakeups. 
Each connection needs one or more problem timers to de 
tect when an expected event is overdue and recovery action 
is necessary. Other timers are used to generate protocol 
messages to check back with the remote machine before 
its problem timers wake up, and to avoid long delays when 
the remote machine can't send because of the flow control 
rules of OSI transport. Unlike timers for most other appli 
cations, network timers rarely expire in normal operation, 
since the expected event usually occurs. Instead, they are 
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canceled or restarted. A resolution of 100 to 200 ms is just 
fine since the timers are for exceptional events anyway. 

Traditional timer manager implementations have kept 
the timers in a linked list. This makes it very easy to deal 
with the expiration of a timer because it is simply removed 
from the front of the list. However, restarting a timer is 
slow because the list has to be scanned to locate the proper 
place to insert it. In the case of the OSI Express card this 
proved to be too slow. During normal data transfer there 
are four timers for every connection, at least two of which 
have to be restarted every time a data packet is sent or 
received. A quick analysis showed that with just 50 connec 
tions, timer insertion could take as long as all other protocol 
stack processing combined, causing the timer manager to 
become a performance bottleneck. 

What we needed was a way to restart timers quickly. 
The solution is to keep timers in two unordered lists called 
the short-term bin and the long-term bin. Timer wakeups 
are represented by the same tokens that were described 
earlier for event handlers, with the addition of a "time left 
until expiration" field. When a timer is restarted it is simply 
inserted at the head of the appropriate bin. No scanning 
has to be done every time a packet arrives. Periodically, a 
monitor task runs that scans the entire short-term bin look 
ing for timers that have expired since the last time it ran. 
Those timers are removed from the bin and passed to the 
scheduler to be put on the task queue. Every ten times the 
timer monitor task runs, it also scans the long-term bin 
looking for timers that are getting close to expiring and 
need to be moved down into the short-term bin. 

The central idea of this algorithm is to spread the timer 
list scanning overhead among many packets. To be success 
ful the timer monitor task has to run at some large multiple 
of the packet arrival rate. If a packet arrives every 5 ms, 
the timer monitor task can't run every 10 ms or there would 
be little savings. We found that a period of 100 ms is a 
good compromise between precision and performance. 

System Interface 

The system interface is a collection of functions that 
provides the OSI Express card with an interface to the 
embedding operating system on the card and communica 
tion with the host system housing the OSI Express card. 
These functions include interrupt service routines and 
message channels for the card-to-host error reporting, trac 
ing, and network management. 

Interrupt System 
There are eight available interrupt levels on the OSI Ex 

press card. Level zero has the lowest priority and level 
seven the highest priority. The first three levels are soft 
interrupts in that they are generated by a processor write 
to a special hardware register. The rest of the interrupt 
levels are devoted to interrupt handlers for the various card 
hardware components. They include a timer hardware in 
terrupt, DMA hardware interrupt, LAN frontplane 
hardware interrupt, host backplane interrupt, powerfail in 
terrupt, and memory parity and bus error interrupts. 

The OSI Express card contains two types of code: the 
full OSI protocol stack and the card monitor/debugger. The 

full OSI stack runs at interrupt level zero, which is the 
card's background level, and the card monitor/debugger 
runs at interrupt level two. Interrupt level one is reserved 
for applications that may need to preempt the normal OSI 
protocol activities. The OSI stack is the largest and most 
active level since it contains all the protocol modules com 
monly used for general-purpose networking applications. 
The card debugger runs at a higher interrupt level than the 
OSI protocol stack and level one applications so that it can 
preempt all protocol activity, allowing card diagnosis when 
either the OSI protocol stack or other applications are stuck 
in loops. 

There are two CONE dispatcher task queues, one for 
the full OSI stack and one for the card monitor/debugger. 
Each task queue represents a separate independent instance 
of the simple CONE process model. When a task queue 
becomes empty the CONE dispatcher will return to the 
module that called it. In the full-stack OSI case, the dis 
patcher will return to the card background process, which 
is simply an infinite loop that calls the CONE dispatcher. 
Since the card monitor/debugger runs at interrupt level 
two, the CONE dispatcher is called from the level two 
interrupt service routine. 

Backplane Message Interface 
The OSI Express card's backplane interface is message- 

based, in that an interface event (transfer of data inbound 
or outbound) is represented as a message with all the event 
parameters and line data serially encoded into a string of 
bytes. The string is sent via DMA between the host com 
puter RAM and the OSI Express card. 

Since the CONE protocol module interfaces are proce 
dure-based, a module called the backplane message inter 
face, or BMI, is used to translate CONE events (inbound 
packets) into messages that are sent to the host operating 
system and eventually to user applications. For outbound 
packets the backplane message interface converts mes- 
saged-based requests into CONE procedure calls. Because 
of the way the backplane message interface and the CONE 
protocol module interface are designed, any protocol mod 
ule can be accessed across the backplane without the pro 
tocol module's knowing whether the entity above its inter 
face is adjacent to it inside CONE. 

The following factors affected the design of the OSI Ex 
press card's message-based backplane: 
â€¢ High-performance LAN interface chips require rapid, 

high-bandwidth access to buffer memory when data is 
being sent or received on the line. Line signaling is syn 
chronous, meaning that once started, data flows continu 
ously, one bit after another with no wait signals. For 
these reasons, the buffers accessed by the LAN chips are 
located in RAM on the OSI Express card, rather than in 
the host computer. 

â€¢ A specific word of host RAM cannot be rapidly read or 
written by the OSI Express card's processor, nor can card 
RAM be rapidly read or written by the host processor. 
Instead, so that many cards can share access to host 
RAM, the backplane is optimized for very high-speed 
DMA bursts.  This minimizes the amount of bus 
bandwidth lost during bus access arbitration (see arti 
cle on page 8 for more about DMA and the OSI Express 
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card). 
â€¢ The OSI Express card's processor operates as an asyn 

chronous, independent front end to the host processor. 
Very little card-related processing occurs inside the host 
operating system, but rather in user-space processes be 
longing to OSI applications. Since the user-space appli 
cations can be busy, timesharing the host with other 
applications, swapped out to disk, and so on, the cou 
pling between the protocols on the card and the host 
system is very loose. 

â€¢ The backplane hardware supports a large number of in 
dependent DMA channels. Each CONE path that is tied 
to a user application is allocated an inbound and an 
outbound DMA channel at path-creation time. There are 
also fixed DMA channels for trace messages (inbound), 
log messages (inbound), nodal management messages 
(inbound and outbound), debug/monitor messages (in 
bound and outbound), expedited data which bypasses 
normal flow control on each path (inbound and out 
bound), and backplane messages which set up and tear 
down paths and manage dynamic DMA channel assign 
ment (inbound and outbound). 

Conclusion 
CONE provides a system design for supporting system- 

wide and module-internal optimization. Flexibility in the 
overall framework supports interchangeability of indi 
vidual protocol modules and protocols from multiple pro 
tocol families, as well as portability of CONE-based code 
to almost any system. Having a coordinated overall 
framework also makes the system much more instrument- 
able and supportable. Finally, because of this system-wide 
orientation, the overall system performance and the 

number of connections supported for a given amount of 
RAM are much higher than they would otherwise be. 
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The Upper  Layers  of  the  HP OSI  Express 
Card Stack 
The upper  three layers of  the HP OSI Express card share 
the same archi tecture and use tables to s impl i fy  the i r  
implementat ions of  the OSI  s tack.  The appl icat ion and 
presentat ion layers are implemented in  the same module.  

by Kimbal l  K.  Banker  and Michael  A.  El l is  

THE TOP THREE LAYERS of the OSI Reference Model 
consist of the session layer, the presentation layer, 
and the application layer. The purpose of the session 

layer is to provide organized and synchronized exchange 
of data between two cooperating session users â€” that is, two 
presentation layers in different applications. The session 

layer depends on the services of the transport layer to pro 
vide the end-to-end system communication channels for 
data transfer. The presentation layer's job is to negotiate a 
common transfer syntax (representation of data values) that 
is used by applications when transferring various data 
structures back and forth. The application layer is the high- 
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est layer of the OSI Reference Model and does not provide 
sendees to any other layer. This layer uses the common 
protocol called Association Control Service Element, or 
ACSE, to establish and terminate associations between ap 
plications and to negotiate things that are common to appli 
cations. 

Session Layer 

The OSI Express card's implementation of the session 
layer provides services to the presentation layer that enable 
it to: 
â€¢ Establish a virtual connection with a peer session user 

to exchange data in a synchronized manner and release 
the connection in an organized manner 

â€¢ Negotiate for the use of tokens to exchange data and 
arrange for data exchange to be half-duplex or full-duplex 

â€¢ Establish synchronization points within the session con 
nection dialogue so that in the event of errors, dialogue 
can be resumed from the agreed synchronization point 

â€¢ Interrupt a dialogue and resume it later from a prear 
ranged point. 

Session Architecture 
The OSI session protocol is now an international stan 

dard which is specified in ISO documents 8326 and 8327. 
However, defect reports and enhancements continue to be 
made to the base standard. These changes will continue to 
occur long after the first release of the first OSI Express 
product. Therefore, one of the key design considerations 
for our implementation of the session protocol was to pro 
vide for easy maintenance of the software. Another design 
goal was to isolate the protocol software from machine and 
system dependencies, thus allowing the protocol software 
to be portable from machine to machine with little or no 
changes. The common OSI networking environment 
(CONE) architecture enabled us to achieve our portability 
goal. 

The session software is designed to separate those func 
tions that pertain specifically to the OSI protocol and those 
that are called local matters. Local matters are primarily 
tasks that are not included in a protocol specification be 
cause they depend on specific system capabilities, such as 
user interfaces and memory management. As shown in Fig. 
1, the OSI Express implementation divides session func 
tions into two main modules, the session CONE manager 
and the SPM (session protocol machine). 

The session CONE manger is primarily responsible for 
servicing local matters and providing a clean interface be 
tween CONE and the SPM. Some of the major functions of 
the session CONE manager include: 
â€¢ Translating CONE interface macros into a form the SPM 

can act upon 
â€¢ Providing session memory requirements using the CONE 

buffer manager 
â€¢ Providing session timer requirements using the CONE 

timer manager 
â€¢ Providing much of the session abort processing capabil 

ities 
â€¢ Managing the underlying transport connection. 

The SPM is responsible for servicing the OSI session 

B u f f e r  T i m e r  I n t e r f a c e  
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Tables 

F ig .  1 .  A rch i tec tu re  fo r  the  OSI  Express  imp lementa t ion  o f  
the session layer. 

protocol requirements. The three primary functions the 
SPM performs are: 
â€¢ Coordinating state table transitions 
â€¢ Encoding SPDUs (session protocol data units) 
â€¢ Decoding SPDUs. 

Most of the future changes to the session standard will 
affect these three SPM operations. Therefore, maintainabil 
ity was a critical concern in design decisions for the SPM. 

Session State Table 
Aside from some clarifying text, the entire OSI session 

protocol can be defined in terms of tables. Ten separate 
tables dictate session protocol behavior. A portion of a 
typical session state table is represented in Fig. 2. The 
intersection of any given session event (outbound session 
primitive or inbound SPDU) with a valid session protocol 
state indicates a set of specific actions and the new protocol 
state to enter. For example, once the underlying transport 
connection is established, the SPM is in state STA01C. When 
a CN event arrives (indicating a successful connection with 
another session layer) the SPM will change state if the 
proper predicate conditions are met. In this example, if the 
predicate condition "pOl is satisfied, a transition to state 
STA08 occurs, which causes the SPM to generate a session 
connect indication (SCONind) to its session user. 

A fully functional OSI session service implementation 
is responsible for coordinating the intersection of approx 
imately 80 different session events with 32 different pro 
tocol states. This creates 2560 possible state table transi 
tions. Close examination of the session state tables reveals 
that only 600 of the 2560 possible state table transitions 
are considered to be valid. Also, many of the valid inter 
sections result in the same actions and next states. 

A straightforward and common approach to implement 
ing the behavior of these state tables is to create a massive 
series of if-then-else and/or switch statements that account for 
each of the valid session event-state intersections. With 
600 valid intersections to account for, the code's complex 
ity is high and its maintainability low. 

For the OSI Express card implementation of the session 
protocol the objective was to exploit the tabular structure 
of the OSI session protocol as much as possible. By creating 
a structure of multidimensional arrays corresponding to 
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the OSI session state tables, a direct relationship can be 
maintained between the OSI standard and the implemen 
tation. As illustrated in Fig. 3, the basic scheme is as fol 
lows: 
â€¢ Enumerated values of the current session SPM state and 

the incoming session event are used as indexes into a 
combination of arrays that generate a pair of event and 
state indexes. 

â€¢ Ten two-dimensional static arrays are defined, one for 
each of the 10 protocol state tables defined in the OSI 
session protocol standard. These arrays are called sparse 
state table arrays. Each element in a sparse state table 
array is an unsigned byte that represents an index for a 
unique C function that is responsible for processing the 
specific actions of an event-state intersection. The event 
and state indexes generated above are used to select the 
correct sparse state table array and serve as indexes into 
the state table array to generate the corresponding func 
tion index. 

â€¢ The function index is used to select a specific pointer 
to a function from an array of function pointers. The 
selected function is then invoked to service the require 
ments dictated by the session event and the SPM state. 
Invoking functions from pointer arrays (also known as 
jump tables) is one of the rarely used yet very powerful 
capabilities of the C programming language. 

Encoding and Decoding SPDUs 
Array manipulation also plays a key role in how the 

session implementation performs the tasks of encoding and 
decoding SPDUs. SPDUs are constructed in a fairly simple 
variable format that can be nested three levels deep. 

As illustrated in Fig. 4, the mandatory SI (SPDU iden 
tifier) value identifies the type of SPDU. The LI (length 
indicator) following the SI value indicates how many bytes 
remain in the SPDU. The remainder of the SPDU consists 
of an optional combination of PGI (parameter group iden 
tifier) units and PI (parameter identifier) units to define 

Event Index 

â€¢ I 

,  
State Table Index 

State Index 

Sparse State 
Table Arrays 

Address of  Specif ic 
Service Function 

Function 
Address 

Array 

Fig .  3 .  Mu l t id imens iona l  a r rays  used  to  imp lement  the  OSI  
Express vers ion o f  the OSI  sess ion s ta te  tab les .  Event  and 
SPM s ta te  ident i f ie rs  a re  used to  index  in to  the  ar rays  and 
acqu i re  po in te rs  to  the  func t ions  tha t  car ry  ou t  the  ac t ions  
required. 

the particular parameters of the SPDU. PI units are used 
to encapsulate parameter values such as token items and 
reason codes, while PGIs are primarily used to encapsulate 
groups of related PI units. Each PI and PGI unit consists 
of a PI or PGI value identifying the type of parameters, 
followed by a length value. The PI unit terminates with 
the parameter value while the PGI unit follows with either 
a parameter or one or more encapsulated PI units. The 
order in which PI and PGI units appear in an SPDU is also 
important and is uniquely specified for each SPDU. 
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Fig.  2.  A port ion of  a typical  state 
table for the session protocol .  
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S I  =  S P D U  I d e n t i f i e r  

Fig.  4.  Session protocol  data uni t  (SPDU) format.  

A fully functional session implementation is required to 
encode and decode approximately 20 different types of 
SPDUs. There are about 30 different types of PI or PGI units 
that make up these 20 SPDUs, with many SPDUs using the 
same type of PI and PGI units. PI and PGI units have certain 
parameter attributes associated with them, such as the 
maximum number of bytes the parameter may occupy in 
an SPDU. Because so many of the SPDUs contain the same 
types of parameters, and since the same parameter attribute 
information is needed for both encoding and decoding the 
SPDUs, the decision was made to define the parameter and 
ordering attributes only once and make this information 
available for both the encoding and the decoding processes. 

Fig. 5 illustrates the manner in which the SPM encodes 
and decodes SPDUs. Once the SPDU identifier value for 
the SPDU is determined, it serves as an index into an SPDU 
script directory array which contains the script index (lo 
cation) and size of an SPDU script located in the SPDU 
script array. The SPDU script array contains scripts that 
define the order in which parameters should appear in 
each SPDU and indicate whether the parameters are man 
datory or optional in that particular SPDU. For each param 
eter of the SPDU, the SPDU script array also provides an 
index that selects parameter attribute information from the 
parameter attribute array. 

Two independent programming modules are required to 
build and parse the SPDUs. They share the information 
provided by the SPDU and parameter structures defined 
above. 

ACSE and Presentation Layer 

The Association Control Service Element (ACSE) is the 
common protocol for the seventh layer of the OSI hierar- 
chy.1'2'3 ACSE is meant to be used to establish and termi 
nate an association between applications and to negotiate 
things that are common to applications, which can be on 
separate systems. The most important function provided 
by this common protocol is the negotiation related to the 
application context parameter. This parameter is a regis 
tered name that is passed between applications in the ACSE 
connect PDU. The application context parameter defines 
the scope of an application's functionality and is used by 
local applications to ensure that the remote application is 
appropriate for a particular association. 

The presentation layer is the sixth layer of the OSI 
model.4'5 The presentation layer's job is to negotiate com 
mon transfer and abstract syntaxes that can be used by 
applications when transferring various data structures back 
and forth. Abstract syntax refers to the meaning of the data, 
and transfer syntax refers to the manner of encoding the 
data bits. 

An application can use the presentation layer to specify 
several abstract syntaxes for use during an association. For 
example, an application might specify ACSE and virtual 
terminal as two abstract syntaxes to be used together in a 
specific association. The presentation layer will negotiate 
these two abstract syntaxes during the connection estab 
lishment and add the transfer syntaxes for each of the 
abstract syntaxes it is able to support. If these combinations 
are acceptable to both sides, subsequent data transfers are 
transferred with presentation tags denoting the particular 
abstract syntax (and thus which process should receive 
this data). The data is encoded in the negotiated transfer 
syntax and transformed to and from the local representation 
by the presentation service. 

OSI Express Implementat ion 
In the OSI Express card, the ACSE and presentation 

layers are located in the same code section because both 
layers share the same challenge in their implementation. 
The main complexity encountered in implementing ACSE 
and presentation service on a card involved the encoding 
and decoding of the ACSE and presentation protocol data 
units (PDUs) specified by Abstract Syntax Notation One 
(ASN.l).6 The protocol data units contain the protocol con- 
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trol information and data that are exchanged between two 
instances of any protocol. Most protocols (e.g., transport, 
network, LLC) specify the contents (transfer and abstract 
syntax) of their PDUs by means of text within their protocol 
specification document. Most of the upper-layer protocols, 
such as FT AM, directory services, ACSE, and presentation, 
use standard and more formal specifications contained in 
ASN.l. 

The OSI Express implementation separates the presenta 
tion service into two parts: the protocol that provides trans 
fer and abstract syntax negotiation for applications, and 
the transformation of user data from ASN.l transfer syntax 
to the local representation specified by the abstract syntax 
and vice versa. Only the protocol is implemented on the 
card and described in this article, while the remaining 
transformation of user data occurs in the host system. User 
data is delivered to the host fully encoded in the agreed 
upon transfer syntax for a particular abstract syntax. Host 
software recognizes the abstract syntax from a tag (presen 
tation context identifier) in the PDU and directly transforms 
the data from the transfer syntax into a local form recogniz 
able to the particular application service element. Except 
for encoding and decoding PDUs, implementation of the 
presentation protocol was straightforward. 

Two key considerations were identified during the de 
sign phase: memory use and the stability of the OSI ACSE 
and presentation standards. For memory use our goal was 
not to require a contiguous block of physical memory for 
either encoding or decoding since large memory buffers in 
our memory management scheme are not guaranteed. This 
consideration quickly eliminated many alternative designs. 
When we were doing our design the OSI standards were 
just gaining draft approval status with many changes prom 
ised in the future. Therefore, our design and architecture 
had to be easy to modify. The structure of the ACSE/presen- 
tation module is shown in Fig. 6. This architecture is simi 
lar to that used by other layers in the OSI Express card. 
The protocol machine is isolated from the CONE architec 
ture by the ACSE/presentation CONE manager. The CONE 
manager provides a simple interface to the protocol 
machine and insulates the protocol machine from concerns 
of state transitions and memory availability. CONE is de 
scribed in the article on page 18. The heart of the ACSE 
and presentation protocol implementation is the PDU en 
coder and decoder. Understanding some basic attributes 
of ASN.l provides some insight into the technical solution 
of encoding and decoding PDUs for the presentation and 
ACSE protocols. 

A S N . 1  
ASN.l defines a means to specify the different types of 

data structures that can be transferred between protocol 
layers. The ASN.l standard does not specify the encoding 
to be used for each type. A companion standard7 defines 
the encoding rules which together with the ACSE and pres 
entation specifications define the bit encodings used be 
tween the ACSE and presentation protocol layers. The fol 
lowing discussion does not differentiate between the term 
ASN.l and the encoding rules since only one set of encod 
ing rules exists for ASN.l. 

The basic concept underlying ASN.l encoding is quite 

simple. Primitive values are encoded as tag, length, and 
value. The tag identifies the type of value, length indicates 
the length of the value, and value represents the contents 
of the PDU being encoded. Simple primitive types pre 
defined by ASN.l include character string, Boolean, in 
teger, and real. Primitive types can also be bit string or 
octet string. However, the encoding of these types is op 
tional. Primitive values are values that cannot be broken 
down further into other ASN.l values. ASN.l also defines 
complex types, whose values can be broken into additional 
types. 

To accommodate the need to encode complex types, val 
ues can be constructed within outer structure definitions. 
The encoding rules allow a value to consist of another tag, 
length, and value. Structure definitions for these complex 
types include: 
â€¢ Sequence. A fixed ordered list of types. 
â€¢ Sequence Of. An ordered list of a single type. 
â€¢ Set. A fixed unordered list of types. 
â€¢ Set Of. A fixed unordered list of a single type. 
â€¢ Choice. A fixed unordered list of exclusive types. 

These constructed types can be composed of additional 
constructed types. ASN.l allows recursive PDU definitions 
that result in an unbounded collection of permissible se 
quences. The OSI Express presentation layer has several 
unbounded sequence types within its connect PDUs. Since 
values can represent constructed values of tags, lengths, 
and other values, nesting is prevalent in ASN.l encodings. 
In fact, encodings of nested tags and lengths often make 
up a major portion of an encoded PDU. 

An example of an ASN.l representation of a single pres 
entation PDU, connect confirm negative, is shown in Fig. 
7. The PDU description has six parameters, which are de 
fined as follows: 
â€¢ Protocol-version. The presentation protocol version being 

used (currently only one exists). 
â€¢ Responding-presentation-selector. This is presentation layer 

addressing information. 
â€¢ Presentation-context-definition-result-list. This structure con 

tains information about which abstract syntaxes are ac 
cepted at the initial connection and which transfer syn 
tax is accepted for the transfer of PDUs encoded in the 
selected abstract syntaxes. 

â€¢ Default-context-result. This structure specifies whether the 
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Fig.  6 .  OSI  Express card ACSE/presentat ion arch i tecture.  
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p r o p o s e d  o f  c o n t e x t  i s  a c c e p t e d .  i n d e f i n i t e  l e n g t h s  r e q u i r e  t h e  d e c o d e r  t o  k e e p  t r a c k  o f  
â€¢ Provider-reason. This structure contains fields for declaring where end-of-contents (EOC) flags appear in the PDU defi- 

the reason together refusing the connection associated with a nition. Definite and indefinite lengths can appear together 
p a r t i c u l a r  P D U .  i n  t h e  s a m e  P D U  a t  t h e  d i s c r e t i o n  o f  t h e  e n c o d e r .  

â€¢ User-data.  This is data that an application wishes to in- Fig. 8 shows the encoded PDU defined by the ASN.l 
elude on hexadecimal presentat ion service primit ive.  declarat ion in Fig.  7.  The numbers are the hexadecimal 
This PDU rules a complex type of Choice. It is a Choice of values derived by using the basic encoding rules defined 

either represent de- Sequence, and in this case Sequence is always in reference 7, and they represent the values used to de- 
used. The first parameter, Protocol-version, has a context-spe- scribe the semantics defined in Fig. 7. Each line represents 
cific length. appear 0, as denoted by the [0]. Protocol-version is further a tag and a length. The values for complex types appear 
defined as a BIT STRING, with the only acceptable value on the lines following the complex type declaration, and 
being version-1 the value of 0, as denoted by (0). The Presen- primitive types include the value on the same line. Tag 
tation-context-definition-result-list is a complex type with three values are derived from the encoding rules with each bit 
primitive types: Result, Transfer-syntax-name, and Provider- indicating the tag type (complex of primitive type) and the 
reason. The values in parentheses to the right of the six value of the tag. Fig. 8a begins with 30, which is the univer- 
parameters denote the values for specific semantics. For sal tag type for Sequence, followed by 80, which represents 
example, a field, of (1) for a Default-context-result means that an indefinite length. For each indefinite length field, a 
t h e  a p p l i c a t i o n  r e j e c t e d  t h i s  d e f a u l t  c o n t e x t .  c o r r e s p o n d i n g  E O C  f l a g  c o n s i s t i n g  o f  t w o  o c t e t s  o f  z e r o s  

Multiple using of nesting also make decoding and verify- must follow. Only complex types can be encoded using 
ing the Fig. fields challenging. Length fields can be en- indefinite lengths. Fig. 8b shows the same encoded PDU 
coded in that of two ways: definite and indefinite. Definite using definite length encoding. Note that 80 is replaced 
lengths Also be kept  and verif ied during decoding and with the defini te  length indicator  2B. Also note that  the 

CPR-type : : = CHOICE 

{SET {x. 410-1984 APDUs . RTORJapdu} 

SEQUENCE 

{ [0] IMPLICIT Protocol -version DEFAULT {version-1}, 

Protocol -version ::= BIT STRING {version-1 (0)} 

[1] IMPLICIT Responding-presentat ion-selector OPTIONAL, 

Responding-presentat ion-selector ::= OCTET STRING 

[5] IMPLICIT Presentation-context-definition-result -list OPTIONAL, 

Presentat i on -context -definiti on -result-list :: = 

SEQUENCE OF SEQUENCE 

{ [0] IMPLICIT Result 

Result ::= INTEGER{acceptance (0), 

user -rejection ( 1 ) , 

provider-rejection (2) 

} 

[1] IMPLICIT Transfer-syntax-name OPTIONAL, 

Transfer-syntax-name ::= OBJECT IDENTIFIER 

provider-reason[2] IMPLICIT INTEGER 

{ r e a s o n - n o t - s p e c i f i e d  ( 0 ) ,  

abstract -syntax -not -supported ( 1 ) , 

proposed- trans fer -syntaxes -not -supported ( 2 ) , 

local - 1 imit -on-DCS-exceeded (3) 

} OPTIONAL 

> 

[7] IMPLICIT Default-context-result OPTIONAL, 

Default -context -result ::= INTEGER 

{acceptance ( 0 ) , 

user -re ject ion (1), 

provider -re ject ion (2) 

} 
[10] IMPLICIT Provider-reason OPTIONAL 

Provider -reason ::= INTEGER 

{reason-not-specified (0), 

temporary-congestion (1), 

local - 1 imit -exceeded (2), 

cal led -pre sen t at i on -address -unknown ( 3 > , 

protocol -ver s ion- not -supported ( 5 ) , 

default -context -not -supported ( 6 ) , 

user -data-not -readable (6), 

no-PSAP-avail lable (7) } 

J s e r - d a t a  O P T I O N A L  f \ g . 7 .  A n  A S N . 1  s p e c i f i c a t i o n  f o r  

}  t h e  p r e s e n t a t i o n  c o n n e c t  c o n f i r m  

}  n e g a t i v e  P D U .  
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Responding-presentation-selector is encoded in two ways, both 
of which are valid since octet strings can be encoded as 
constructed types at the discretion of the sender. In Fig. 
8a a constructed type is used to break the Responding-presen- 
tation-selector value into three primitive encodings, each with 
a tag of 04 (universal tag type for octet string) and a length 
of 02. Fig. 8b merely encodes the entire value as a primitive 
with a length of 06. ASN.l encoding rules are not deter 
ministic because the encodings given Figs. 8a and 8b are 
valid for the same PDU. 

Another important aspect of ASN.l is the concept of a 
context-specific tag. Some tag values are universal in scope 
and apply to all ASN.l encodings. Other tag types assume 
values whose meaning is specific to a particular PDU. For 
example, context-specific tag value [0] identifies the presen 
tation Protocol-version in Fig. 7. This tag value only means 
Protocol-version when encountered in a presentation connect 
confirm negative PDU. In another PDU, the value [0] means 
something else entirely. 

Context tags allow a protocol designer to assign a tag 
value such that the value of the tag determines the type of 
value. To decode and validate the PDU, the decoder must 
have knowledge of a protocol's context-specific values, 
their meanings, and the order and range of the PDU primi 
tive values. This means that some parts of an ASN.l de 
coder may be generic to any ASN.l encoded PDU (such as 
an ASN.l integer decode routine), while other parts of the 
decoder are quite specific to a single PDU (such as the 
checking needed to verify that presentation transfer syn 
taxes are in the appropriate sequence). 

A final key to understanding ASN.l encoding rules is 
that in almost all cases, the sender chooses which options 
to use. These options include the way in which lengths 
are encoded and when constructed elements may be seg 
mented. Octet strings, for example, may optionally be sent 
as a contiguous string or parsed into a constructed version 
with many pieces, which may themselves be segmented. 
A decoder must handle any combination of the above. 
Thus, the decoder must be able to handle an almost infinite 
number of byte combinations for PDUs of any complexity. 
This makes the decoder more complicated to construct 
than an encoder. For example, Fig. 8 shows that the Respond- 
ing-presentation-selector can be encoded in two ways â€” both 
valid. 

Encoder 
The encoder is responsible for encoding outbound data 

packets based on the ASN.l syntax. Because the encoder 
can select a limited set of options within the rather large 
ASN.l set of choices, encoding is much easier than decod 
ing. The main requirement of the encoder is to know the 
syntax of the PDU to be constructed. In particular, it needs 
to know the order and values of the tags and be equipped 
with the mechanisms to encode the actual lengths and 
values. 

The OSI Express card implementation encodes PDUs 
front to back using indefinite length encoding. An alterna 
tive, encoding ASN.l back to front, has the advantage of 
being able to calculate the lengths and allow definite length 
encoding. Once all of the primitive values are encoded, 
the encoder can work backwards, filling in all of the con 

structed tag lengths. However, encoding back to front does 
not allow data streaming, since all of the PDU must be 
present and encoded (including user data) to calculate the 
lengths. Without data streaming, large pieces of shared 
memory must be used, thus making memory unavailable 
to the rest of the card's processes until all of the PDU and 
its user data has been encoded. 

The encoder is table-driven in that a set of tables is used 
for each type of PDU. Each table contains constants for the 
tag and length and an index to a routine for a particular 
value. A generic algorithm uses the tables to build each 
PDU. The tables allow modifications to be made easily 
when there are changes to the OSI standards. OSI standards 
for tag values and primitives changed constantly during 
our implementation. However, these changes merely meant 
changing a constant used by the table (often a simple macro 

30 80 SEQUENCE 

80 02 07 80 

a3 80 

04 02 01 02 

01 02 03 04 

04 02 05 06 

00 00 

a5 80 

Protocol -ver s i on 

Re spending -pre s en t at ion-selector 

EOC 

Pre se nt at i on -context -de finit i on - 

result-list 

IMPLICIT SEQUENCE 

30 80 SEQUENCE 

8 0  0 1  0 0  R e s u l t  
81 02 51 01 Transfer - syntax-name 

0 0  0 0  E O C  

30 80 SEQUENCE 

8 0  0 1  0 0  R e s u l t  
81 02 51 01 Transfer - syntax-name 

00 00 EOC 

30 80 SEQUENCE 

8 0  0 1  0 1  R e s u l t  

00 00 EOC 

00 00 EOC 

87 01 03 Default-context-result 

8a 01 00 Provider -reason 

00 00 EOC 

3 0  2  B  S E Q U E N C E  

8 0  0 2  0 7  8 0  P r o t o c o l  - v e r s i o n  

83 06 01 02 03 04 05 06 Responding-presentat ion-selector 

a 5  1 7  P r e s e n t a t  i o n -  c o n t e x t  - d e f i n i t  i  o n -  

result - 1 i st 

IMPLICIT SEQUENCE 

30 07 

80 01 00 

81 02 51 01 

30 07 

80 01 00 

81 02 51 01 

30 03 

80 01 01 

87 01 03 

8a 01 00 

SEQUENCE 

Result 

Transfer - syntax -name 

SEQUENCE 

Result 

Transfer -syntax -name 

SEQUENCE 

Result 

Default -context -re suit 

Provider- reason 

(b) 

Fig.  8 .  Encoding for  the PDU shown in  F ig .  7 .  (a)  Indef in i te  
length encoding,  (b)  Def in i te  length encoding.  
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update). Changing the order or adding or deleting a value 
was also easy because only the table entries had to be 
altered. 

Decoder 
The decoder presented a more significant challenge in 

the ACSE/presentation protocol machine. In an effort to 
reduce memory requirements, the decoder does not depend 
upon having the entire PDU in memory to decode. Pieces 
can be received separately, and these need to be decoded 
and the memory released. The decoder also does not require 
contiguous memory. PDU segments can be received from 
the session layer according to the transport segment size. 
In addition, the memory manager on the card presents 
PDUs in separate physical buffers called line data buffers 
(see the article on page 18, which describes the CONE 
memory manager). 

The main job of the decoder is to find the primitive 
values encoded within the complex nesting of tags and 
values, and extract those primitives. Along the way, the 
decoder must also verify that the outer constructed tags 
are correct, and that the lengths associated with all the 
constructed tags are correct. 

The decoder uses a mathematical calculation to predict 
and check directly the appropriate tag values. The idea is 
to generate a unique token that directly identifies particular 
primitive values. This unique tag is calculated by succes 
sively using the outer nested tag values to create a unique 
number that can be predicted a priori. For example, a sim 
ple method to calculate a unique value for any primitive 
is to take every constructed tag value and add it to the total 
calculated from previous constructed tags, and then multi 
ply the new total by some base. This calculation derives a 
unique value for every primitive in a PDU. The unique 
value can be calculated statically from the standard. Our 
implementation uses the same constants as were used in 
the encoding tables above to construct a compiled constant. 
The unique value can then be calculated dynamically as 
the decoder goes through a received PDU. Thus, as the 
decoder is parsing a PDU and successively reading con 
structed tags, it is calculating the currenLuniquejag = (old_ 
unique_tag x base) + tag_value. 

The advantage of this method is that a generic decode 
routine can be used to validate ASN.l syntax, and as soon 
as a primitive is reached within a nested PDU, the generic 
routine can jump directly to a specific routine to deal with 
the primitive. The value can be checked for specifics and 
then used or stored. The generic routine is relatively sim 
ple. It merely loops looking for a tag, length, and value. If 
the value is not a primitive it calculates the unique tag. 
Otherwise it uses the calculated unique tag to know which 
routine to call. Much of the syntax is automatically verified 
during the calculation. 

The disadvantage of using such a calculation is that while 
it guarantees a unique number, the number may grow quite 
large as the depth of nesting within a PDU grows. The 
problem is that the base used must be at least as large as 
the total number of tag values. Thus, the unique tag must 
be able to represent a number as large as the base to the 
nth power, where n is the depth of nesting required. PDUs 
that allow very large nesting may not be suitable for unique 

tag calculation if the largest reasonable number cannot hold 
the maximum calculated unique tag. Calculating a unique 
tag has proven to be fairly quick in comparison to using a 
structure definition to verify each incoming PDU. 

Once a primitive tag value is reached, the derived unique 
tag is used to vector to a procedure specific to that primitive. 
The procedure contains the code to deal with the primitive. 
The decoder has a switch table of valid tags, as well as a 
bit table used to determine correct orders of values and 
mandatory or optional field checks. This mechanism al 
lows the decoder to identify quickly the primitives nested 
within a complex PDU, verify correctness, and take the 
necessary action. 

The decoder must perform two types of length checking: 
definite lengths in which lengths must be kept and verified, 
and indefinite lengths in which the decoder must keep 
track of end-of-contents flags. Definite and indefinite 
lengths can appear together in the same PDU at the discre 
tion of the encoder. The decoder uses two stacks in parallel 
to check the lengths, one for definite values, and one for 
EOCs. The definite length stack pushes a value for each 
constructor type encountered and subtracts a primitive 
length from each of the appropriate constructor values in 
the stack. When the last, innermost primitive is subtracted, 
the appropriate constructor values are popped from the 
stack. Using and saving stacks allows the decoder to receive 
PDU segments and decode part way, stop, save the stack 
values, and resume decoding when the next PDU segment 
is received. Thus, a complete PDU does not have to be 
received before memory can be released back to the card 
memory pool. With this design we have not noticed any 
difference in the amount of time it takes to decode definite 
and indefinite length types. 

Using a Compiler  
During the design phase, the option of using an ASN.l 

compiler was considered for the ACSE and presentation 
protocol machines. The main advantage of a compiler is 
that once the compiler is written, any protocol specification 
that uses ASN.l can be compiled into useful object code. 
The object code then interacts with the protocol machine 
via a set of interface structures. The disadvantages of com 
pilers are that they are complicated to write and existing 
compilers expect PDUs to be decoded from contiguous buf 
fers. The generic code produced is also larger than the 
specific code necessary for relatively small protocols. 
Given the requirement to stream PDUs in memory seg 
ments, to use as little memory as possible, and to decode 
only ACSE and presentation PDUs, the compiler alternative 
was not as attractive as it might be in other applications. 
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Implementat ion of  the OSI  Class 4 
Transport  Layer  Protocol  in  the HP OSI  
Express Card 
The HP OSI Express card's implementation of the transport 
layer protocol provides f low control, congestion control, and 
congest ion avoidance.  

by Rex A.  Pugh 

THE TRANSPORT LAYER is responsible for provid 
ing reliable end-to-end transport services, such as 
error detection and recovery, multiplexing, address 

ing, flow control, and other features. These services relieve 
the upper-layer user (typically the session layer) of any 
concern about the details of achieving reliable cost-effec 
tive data transfers. These services are provided on top of 
both connection-oriented and connectionless network pro 
tocols. Basically, the transport layer is responsible for con 
verting the quality of service provided by the network layer 
into the quality of services demanded by the upper layer 
protocol. 

This article describes the OSI Express card's implemen 
tation of OSI Class 4 Transport Protocol (TP4). The OSI 
Express TP4 implementation extends the definition of the 
OSI transport layer's basic flow control mechanisms to pro 
vide congestion avoidance and congestion control for the 
network and the OSI Express card itself. Because we have 
requirements to support a large number of connections on 
a fairly inexpensive platform, the memory management 
and flow control schemes are designed to work closely 
together and to use the card's limited memory as efficiently 
as possible. This efficiency also includes ensuring fair buf 
fer utilization among connections. 

Flow Control Basics 

An introduction to the basic concepts of flow control, 
congestion control, and congestion avoidance is useful in 
setting the stage for a discussion of the OSI Express card 
TP4 implementation. These concepts are related because 
they all solve the problem of resource management in the 

network. They are also distinct because they solve resource 
problems either in different parts of the network or in a 
different manner. 

Flow Control 
Flow control is the process of controlling the flow of 

data between two network entities. Flow control at the 
transport layer is needed because of the interactions be 
tween the transport service users, the transport protocol 
machines, and the network service. A transport entity can 
be modeled as a pair of queues (inbound and outbound) 
between the transport service user and the transport pro 
tocol machine, and a set of buffers dedicated to receiving 
inbound data and/or storing outbound data for retransmis 
sion (see Fig. 1). The transport entity would want to restrain 
the rate of transport protocol data unit (TPDU*) transmis 
sion over a connection from another transport entity for 
the following reasons: 
â€¢ The user of the receiving transport entity cannot keep 

up with the flow of inbound data. In other words, the 
inbound queue between the transport service user and 
the transport protocol machine has grown too deep. 

â€¢ The receiving transport entity does not have enough buf 
fers to keep up with the flow of inbound data from the 
network. 
Note that analogous situations exist in the outbound di 

rection, but they are usually handled internally between 
the transport user and the transport entity. If the sending 
transport entity does not have enough buffers to keep up 
with the flow of data from the transport user, or the sending 
transport entity is flow controlled by the receiving transport 

"  A TPDU conta ins t ranspor t  layer  cont ro l  commands and data packets-  
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entity, then the transport user must be flow controlled by 
some backpressure mechanism caused by the outbound 
queue's growing too deep. 

Thus flow control is a two-party agreement between the 
transport entities of a connection to limit the flow of packets 
without taking into account the load on the network. Its 
purpose is to ensure that a packet arriving at its destination 
is given the resources it needs to be processed up to the 
transport user. 

Congestion Control  
While flow control is used to prevent end system re 

sources from being overrun, congestion control is used to 
keep resources along a network path from becoming con 
gested. Congestion is said to occur in the network when 
the resource demands exceed the capacity and packets are 
lost because of too much queuing in the network. 

Congestion control is usually categorized as a network 
layer function. In an X.25 type network where the network 
layer is connection-oriented, the congestion problem is 
handled by reserving resources at each of the routers along 
a path during connection setup. The X.25 flow control 
mechanism can be used between the X.25 routers to ensure 
that these resources do not become congested. With a con 
nectionless network layer like ISO 8473, the routers can 
detect that they are becoming congested, but there are no 
explicit flow control mechanisms (like choke packets1) that 
can be used by the OSI network layer alone for controlling 
congestion. 

The most promising approach to congestion control in 
connectionless networks is the use of implicit techniques 
whereby the transport entities are notified that the network 
is becoming congested. The binary feedback scheme2 is an 
example of such a notification technique. The transport 
entities can relieve the congestion by exercising varying 
degrees of flow control. 

Thus congestion control is a social agreement among 
network entities. Different connections may choose differ- 

Transport  
Service 

User 

Session 
Layer 

Transport  
Service 

User 

1  Ã 

T 
Transport  
Protocol 
Machine 

R e t r a n s m i s s i o n  
Q u e u e  B u f f e r s  

T 
=1 Inbound Data 
~  B u f f e r s  

ent flow control practices, but all entities on a network 
must follow the same congestion control strategy. The pur 
pose of congestion control is to control network traffic to 
reduce resource overload. 

Congest ion Avoidance 
Congestion control helps to improve performance after 

congestion has occurred. Congestion avoidance tries to 
keep congestion from occurring. Thus congestion control 
procedures are curative while congestion avoidance proce 
dures are preventive. Given that a graph of throughput 
versus network load typically looks like Fig. 2, a congestion 
avoidance scheme should cause the network to oscillate 
slightly around the knee, while a congestion control 
scheme tries to minimize the chances of going over the 
cliff. The knee is the optimal operating point because in 
creases in load do not offer a proportional increase in 
throughput, and it provides a certain amount of reserve for 
the natural burstiness associated with network traffic. 

Flow Control Mechanisms in TP4 

The OSI Class 4 Transport, or TP4, protocol is described 
in ISO document number 8073. It provides a reliable end- 
to-end data transfer service by using error detection and 
recovery mechanisms. Flow control is an inherent part of 
this reliable service. This section will describe the protocol 
mechanisms that are used to provide flow control in OSI 
TP4. These mechanisms make use of the TP4 data stream 
structure, TPDU numbering, and TPDU acknowledgments. 

TP4 Data Stream Structure 
The main service provided by the transport layer is, of 

course, data transfer. Two types of transfer service are avail 
able from TP4: a normal data service and an expedited data 
service. Expedited data at the transport layer bypasses nor 
mal data end-to-end flow control, so we need not concern 
ourselves with expedited data when discussing TP4 flow 
control. 

The OSI transport service (TS) interface is modeled as a 
set of primitives through which information is passed be 
tween the TS provider and the TS user. Normal TS user 
data is given to the transport layer by the sending TS user 
in a transport data request primitive. TS user data is deliv 
ered to the receiving TS user in a transport data indication 

Knee Cliff 

Load 

Network Layer 

Fig.  1 .  Model  o f  a  t ranspor t  ent i ty .  

F ig .  2 .  A typ ica l  graph of  throughput  versus network load.  A 
congest ion  avo idance scheme shou ld  cause the  network  to  
osci l late around the knee, whi le a congest ion control  scheme 
tr ies to minimize the chances of  going over the c l i f f .  

FEBRUARY 1990  HEWLETT-PACKARD JOURNAL 37  

© Copr. 1949-1998 Hewlett-Packard Co.



primitive. 
The data carried in each transport data request and trans 

port data indication primitive is called a transport service 
data unit (TSDU). There is no limit on the length of a TSDU. 
To deliver a TSDU, the transport protocol may segment 
the TSDU into multiple data transport protocol data units 
(DT TPDUs). The maximum data TPDU size is negotiated 
for each connection at connection establishment. Negotia 
tion of a particular size depends on the internal buffer 
management scheme and the maximum packet size sup 
ported by the underlying network service. The maximum 
TPDU sizes allowed in TP4 are 128, 256, 512, 1024, 2048, 
4096, and 8192 octets. 

Transport  
Service 

Interface 

Transport  
Service 

Interface 

T_Connect_lndication 

T_Connec t_Response  

TPDU Number ing  
The error detection, recovery, and flow control functions 

all rely on TPDU numbering. Unlike ARPA TCP, where 
sequencing is based on numbering each byte in the data 
stream since connection establishment, TP4 sequencing is 
based on numbering each TPDU in the data stream since 
connection establishment. A transport entity allocates the 
sequence number zero to the first DT TPDU that it transmits 
for a transport connection. For subsequent DT TPDUs sent 
on the same transport connection, the transport entity allo 
cates a sequence number one greater than the previous one, 
modulo the sequence space size (see Fig. 3). 

The sequence number is carried in the header of each 
DT TPDU and its corresponding AK (acknowledgment) 
TPDU. The sequence number field can be either 7 or 31 
bits long. The size of the sequence space is negotiated at 
connection establishment. Since a transport entity must 
wait until the network's maximum packet lifetime has ex 
pired before reusing a sequence number, the 31-bit se 
quence space is preferred for performance reasons. 

TP4 Acknowledgments  
An AK (acknowledgment) TPDU is used in OSI TP4 for 

the following reasons: 
â€¢ It is the third part of the three-way handshake that is 

used for connection establishment (see Fig. 4). It ac 
knowledges the receipt of the CC (connect confirm) 
TPDU. 

â€¢ It is used to provide the connection assurance or keep- 
alive function. To detect an unsignaled loss of the net 
work connection or failure of the remote transport entity, 
an inactivity timer is used. A connection's inactivity 

*An octet is eight bi ts.  

End System End System 

Fig.  4 .  Three-way handshake used for  connect ion estab l ish 
ment. 

timer is reset each time a valid TPDU is received on that 
connection. If a connection's inactivity timer expires, 
the connection is presumed lost and the local transport 
entity invokes its release procedures for the connection. 
The keep-alive function maintains an idle connection 
by periodically transmitting an AK TPDU upon expira 
tion of the window timer. Thus the interval of one trans 
port entity's window timer must be less than that of its 
peer's inactivity timer. Since there is no mechanism for 
sharing information about timer values, a transport en 
tity must respond to the receipt of a duplicate AK TPDU 
not containing the FCC (flow control confirmation) pa 
rameter by transmitting an AK TPDU containing the 
FCC parameter. Thus, a transport entity can provoke 
another transport entity into sending an AK TPDU to 
keep the connection alive by transmitting a duplicate 
AK TPDU. 
It is used to acknowledge the in-sequence receipt of one 
or more DT TPDUs. Since OSI TP4 retains DT TPDUs 
until acknowledgment (for possible retransmission), re 
ceipt of an AK TPDU allows the sender to release the 
acknowledged TPDUs and free transmit buffers. To ac 
knowledge the receipt of multiple DT TPDUs, an im 
plementation of OSI TP4 may withhold sending an AK 
TPDU for some time (maximum acknowledgment 
holdback time) after receipt of a DT TPDU. This holdback 
time must be conveyed to the remote transport entity at 
connection establishment time. 

DT TPDUs (Data Transport  Protocol  Data Units)  

Sequence Space 
Size (31 Bits) 

TSDU (Transport  Service Data Unit )  

O,  i ,  m,  n  =  Sequence Numbers  
m =  i  +  1  Mod  (Sequence  Space  S i ze )  

Fig. 3. Transport data service unit  
(TSDU)  fo rmat  and the  DT TPDU 
number ing scheme.  
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â€¢ It is used to convey TP4 flow control information, as 
described in the next section. 

TP4 Flow Control  
OSI TP4 flow control, like many other schemes, is man 

aged by the receiver. TP4 uses a credit scheme. The receiver 
sends an indication through the AK TPDU of how many 
DT TPDUs it is prepared to receive. More specifically, an 
AK TPDU carries the sequence number of the next expected 
DT TPDU (this is called the LWE or lower window edge) 
and the credit window (CDT), which is the number of DT 
TPDUs that the peer transport entity may send on this 
connection. The sequence number of the first DT TPDU 
that cannot be sent, called the upper window edge (UWE), 
is then the lower window edge plus the credit window 
modulo the sequence space size (see Fig. 5). As an example, 
say that the receiving transport entity has received DT 
TPDUs up through sequence number 5. Then the LWE or 
next expected DT TPDU number is 6. If the receiver trans 
mits an AK TPDU with a CDT of 10 and an LWE of 6, then 
the transmitter (receiver of the AK TPDU) has permission 
to transmit 10 DT TPDUs numbered 6 through 15. The 
transmitter is free to retransmit any DT TPDU that has not 
been acknowledged and for which it has credit. A DT TPDU 
is acknowledged when an AK TPDU is received whose 
LWE is greater than the sequence number of the DT TPDU. 

Credit  Reduction 
OSI TP4 allows the receiver to reduce the credit window 

as well as take back credit for DT TPDUs that it has not 
yet acknowledged. The LWE cannot be reduced, however, 
since it represents the next expected DT TPDU sequence 
number and acknowledges receipt of all DT TPDUs of lower 
number. Another way of saying this is that the UWE need 
not move forward with each successive AK TPDU, and in 
fact it may move backwards as long as it isn't less than the 
LWE. As will be discussed later, the OSI Express card's 
TP4 takes advantage of this feature to provide memory 
congestion control by closing the credit window (AK TPDU 
with CDT of zero) under certain circumstances. 

LWE UWE 

illlllllllllli DT TPDUs 

- C D T -  

U W E  =  U p p e r  W i n d o w  E d g e  
(Sequence Number  of  the Fi rst  DT TPDU that  Cannot  Be Sent)  

L W E  =  L o w e r  W i n d o w  E d g e  
(Sequence Number â€” Carried by an AK TPDU â€” of the Next Expected 
DT TPDU) 

CDT =  Cred i t  Window or  Window S ize  
(Number  of  DT TPDUs a  Receiver  Can Handle)  

Fig.  5 .  Parameters associated wi th  a buf fer  o f  DT TPDUs.  

OSI Express Card TP4 

The OSI Express card's implementation of TP4 (hereafter 
called the Express TP4) flow control and network conges 
tion control and avoidance policies use many of the basic 
protocol mechanisms described above. 

Flow Control 
In Express TP4 the maximum receive credit window size 

(W) is a user-settable parameter. A similar parameter (QJ 
is used to provide an upper limit on the number of DT 
TPDUs a given connection is allowed to retain awaiting 
acknowledgment. The Express TP4 dynamically changes 
the window size and queuing limit based on the state of 
congestion, so W and Q are treated as upper limits. An 
application can set values for W and Q for a particular 
connection during connection establishment. A set of val 
ues may also be associated with a particular TSAP (trans 
port service access point) selector, so that applications can 
select from different transport service profiles. In lieu of a 
connection using one of the two methods just described, 
configured default values are used. 

There is no real notion of flow control in the outbound 
direction, although TPDU transmissions are paced during 
times of congestion. The Express TP4 continues to send 
TPDUs until it has used all the credit that it was allocated 
by the peer entity, or it has Q TPDUs in its retransmission 
queue awaiting acknowledgment, whichever comes first. 

Ignoring any congestion control mechanisms for the mo 
ment, inbound flow control is also fairly simple. When the 
Express TP4 sends an AK TPDU, its goal is to grant a full 
window's worth of credit. The CDT field of the AK TPDU 
is set to W, and the LWE field is set to the sequence number 
of the last in-sequence DT TPDU received plus one (i.e., 
the next expected DT TPDU). The key to the efficient oper- 

Receiver 

Receive 
DT TPDU 

Sender 

Send Next  
DT  TPDU 

Send AK TPDU 
wi th  New 

LWE and  CDT  

Wait ing for  AK TPDU 

Process 
AK TPDU 

Fig.  6 .  S imple f low contro l  po l icy .  
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ation of the flow control policy is the timing of the AK 
TPDU transmissions. 

A simple flow control policy (see Fig. 6) could be to send 
an AK TPDU granting a full credit window when the last 
in-sequence DT TPDU of the current credit window has 
been received. This policy would degrade the potential 
throughput of the connection, however, because it neglects 
the propagation delays and processing times of the DT 
TPDUs and AK TPDUs. After transmitting the last DT TPDU 
of the current credit window, the sender is idle until the 
AK TPDU is received and processed. After sending the AK 
TPDU, the receiver is idle until the first DT TPDU of the 
new credit window has propagated across the network. 
These delays could be lengthy depending on the speed of 
the underlying transmission equipment and on the relative 
speeds of the sending and receiving end systems. 

A more efficient flow control policy, like that im 
plemented in the Express TP4, sends credit updates such 
that the slowest part of the transmission pipeline (sending 
entity, receiving entity, or network subsystem) is not idle 
as long as there is data to be transmitted. This is done by 
sending an AK TPDU granting a full window's worth of 
credit before all of the DT TPDUs of the current credit 
window have been received. The point in the current credit 
window at which the credit-giving AK TPDU is sent is 
called the credit acknowledgment point (CAP). Thus the 
CAP is the sequence number of a DT TPDU in the current 
credit window whose in-sequence receipt will generate the 
transmission of an AK TPDU. The AK TPDU's LWE will 
be the sequence number of the DT TPDU causing the gen 
eration of the AK TPDU and the CDT field of the AK TPDU 
will contain the value of W. The CAP is calculated each 
time an AK TPDU is sent, and is just the sum of the credit 
acknowledgment interval (CAÃ) and the current LWE. CAI 
represents the number of data packets received before an 
AK TPDU is sent. 

Example 
Consider a hypothetical connection where two end sys 

tems are connected through an intermediate system via 
two 9600-baud full-duplex serial links. Fig. 7 shows the 
progression of DT TPDUs and the flow control pacing AK 
TPDUs across the links of this connection. At time TO, end 
system 1 has received the DT TPDU whose sequence 
number is the CAP. End system 1 then places an AK TPDU 
in the transmission queue of link A', thereby granting a 
new credit window. Meanwhile links A and B are busy 
processing DT TPDUs numbered CAP + 1 and CAP + 2 re 
spectively. At time Tl, the AK TPDU has made it to the 
link B' transmission queue and the DT TPDUs have ad 
vanced one hop, allowing DT TPDU number CAP + 3 to be 
inserted in the link B transmission queue. Finally, at time 
T2, the AK TPDU has made it to end system 2, and again 
the DT TPDUs have advanced one hop, allowing DT TPDU 
number CAP + 4 to be inserted in the link B transmission 
queue. Note that for simplicity, it is assumed that the prop 
agation delay of a DT TPDU across a link is equal to that 
of an AK TPDU. In reality, DT TPDUs are larger than AK 
TPDUs and would take longer to propagate. 

For this example, the minimal CAI needed to keep the 
links busy is four, and the minimal window size W is eight. 
Thus the AK TPDU would carry a CDT of eight, so that 
end system 2 has credit to send DT TPDUs numbered 
CAP + 5 through CAP + 8 at the time it receives the AK 
TPDU (time T2). DT TPDU number CAP + 4 would trigger 
end system 1 to send another credit-granting AK. The CAI 
should not be greater than W â€” 4 for this example, or end 
system 1 will notice an abnormal delay in the packet train 
because end system 2 does not have enough credit to keep 
the links busy while the AK TPDU is in transit. Any CAI 
less than W -4 would avoid the delay problem, but the 
increase in AK TPDU traffic tends to decrease the amount 
of CPU and link bandwidth that can be used for data trans- 

Rece iver  

DT [CAP] 

DT  [CAP +  1 ]  

Link A'  

Sender 

Intermediate 
System 

DT[CAP + 1]  
L i n k A  f  

J  L i n k  A '  

Intermediate 
System AK [CAP, CDT] 

Link B' 

DT  [CAP +  2 ]  

End 
System 

1 

H  L l n k A  r D T [ C A P  +  3 ]  

T 2  

Link B 

Transmiss ion Queue 

Intermediate 
System 

AK [CAP,  CDT]  

- f  D T  [ C A P  +  4 ]  

Link A'  Link B' 

F i g .  7 .  H y p o t h e t i c a l  c o n n e c t i o n  
of  two end systems through an in 
te rmedia te  sys tem v ia  two 9600-  
baud ful l -duplex serial  l inks. 
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mission. The optimal CAI for this example would be W â€” 4 
since that avoids the credit delay and minimizes the 
number of AK TPDUs. The graph in Fig. 9 on page 56 
shows the effect on throughput of different values for W 
and different CAIs (packets per AK TPDU) for each of the 
window sizes. This graph was created from a simulation 
of the Express TP4 implementation running a connection 
between two end systems connected to a single LAN seg 
ment. This simulation data and analysis of real Express 
TP4 data have shown that a maximum CAI of W/2 yields 
the best performance with the least amount of algorithmic 
complexity. 

Optimal  Credit  Window 
In the Express TP4, the CAI initially starts at half the 

credit window size (W/2), but can be reduced and sub 
sequently increased dynamically to reach and maintain the 
optimal interval during the life of the connection. The op 
timal value, as shown in the above example, is large enough 
to ensure that the sender receives the AK TPDU granting 
a new credit window before it finishes transmitting at least 
the last DT TPDU of the current window, but not larger 
than the number of DT TPDUs the sender is willing to 
queue on its retransmit queue awaiting acknowledgment 
(note that this scheme relies on the setting of sufficiently 
large values for Q and W such that the optimal CAI can be 
reached). If the sending transport entity does not allow W/2 
DT TPDUs to be queued awaiting acknowledgment, then 
as a receiver, the Express TP4 will decrease the CAI to 
avoid waiting for the CAP DT TPDU that would never 
come. This situation is detected with the maximum 
acknowledgment holdback timer. Since any AK TPDU that 
is sent cancels the acknowledgment holdback timer, expi 
ration of the holdback timer indicates that the sender may 
not have sent the CAP DT TPDU. When the timer expires, 
the CAI is decreased to half the number of DT TPDUs 
received since the last credit update. This is done to pre 
serve the pipelining scheme, since it has been shown that 
it is better to send AK TPDUs slightly more often than to 
allow the pipeline to dry up. The amount of credit offered 
to the receiver is not shrunk (unless congestion is detected), 
so if the sender devotes more resources to the connection, 
it can take advantage of the larger window size. The CAP 
will increase linearly as long as the sender is able to send 
up to the CAP DT TPDU before the acknowledgment 
holdback timer expires. The linear increase allows the Ex 
press TP4 to probe the sender's transmit capability, and 
has proved fairly effective. 

A more effective mechanism for matching the receiver's 
AK TPDU rate to the sender's needs has reached draft pro 
posal status as an enhancement to OSI TP4. That mecha 
nism allows the sending transport entity to request an 
acknowledgment from the receiving transport entity. 

Congestion Control and Avoidance 

Several network congestion control and avoidance al 
gorithms are used in the Express TP4. All of these al 
gorithms have been described and rationalized in reference 
3. This section provides a basic description of each al 
gorithm and how they were effectively incorporated in the 

Express TP4 implementation. There is also a description 
of how these algorithms are used together with the dynamic 
credit window and retransmit queue sizing algorithms to 
provide congestion control of card resources and network 
resources. 

Slow Start  CUTE Congest ion Avoidance 
Two very similar congestion avoidance schemes have 

been described by Jacobsen3 and Jain.4 The fundamental 
observation of these two algorithms is that the flow on a 
transport connection should obey a "conservation of pack 
ets" principle. If a network is running in equilibrium, then 
a new packet isn't put onto the network until an old one 
leaves. Congestion and ultimately packet loss occur as soon 
as this principle is violated. In practice, whenever a new 
connection is started or an existing connection is restarted 
after an idle period, new packets are injected into the net 
work before an old packet has exited. To minimize the 
destabilizing effects of these new packet injections, the 
CUTE and slow start schemes require the sender to start 
from one packet and linearly increase the number of pack 
ets sent per round-trip time. The basic algorithm is as fol 
lows: 
â€¢ When starting or restarting after a packet loss or an idle 

period, set a variable congestion window to one. 
â€¢ When sending DT TPDUs, send the minimum of the 

congestion window or the receiver's advertised credit 
window size. 

â€¢ On receipt of an AK TPDU acknowledging outstanding 
DT TPDUs, increase the congestion window by one up 
to some maximum (the minimum of Q or the receiver's 
advertised credit window size). 
Note that this algorithm also is employed when the re 

transmit or retransmission timer expires. The CUTE 
scheme proposes that a retransmission time-out be used as 
an indication of packet loss because of congestion. Jacob- 
sen3 also argues, with some confidence, that if a good 
round-trip-time estimator is used in setting the retransmit 
timer, a time-out indicates a lost packet and not a broken 
timer (assuming that a delayed packet is equated with a 
lost packet). For a LAN environment, packets are dropped 
because of congestion. 

The Express TP4 uses the slow start algorithm (if config 
ured to do so) when a connection is first established, upon 
expiration of the retransmission timer, and after an idle 
period on an existing connection. An idle period is detected 
when certain number of keep-alive AK TPDU's have been 
sent or received. The slow start and CUTE schemes limit 
their description to sender functions. The Express TP4 pro 
vides the slow start function on the receive side as well, 
to protect both the network and the OSI Express card from 
a sender that does not use the slow start scheme. The re 
ceiver slow start algorithm is nearly identical to the sen 
der's and works as follows: 
â€¢ When starting or restarting after an idle period, set a 

variable congestion window to one. 
â€¢ When sending an AK TPDU, offer a credit window size 

equal to the congestion window to the sender. 
â€¢ On receipt of the CAP DT TPDU, increase the congestion 

window by one up to some maximum W as described 

'CUTE stands for  Congest ion contro l  Using Time-outs at  the End-to-end layer .  
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above. 

Round-Tr ip-Time Var iance Est imat ion 
Since the retransmit timer is used to provide congestion 

notification, it must be sensitive to abnormal packet delay 
as well as packet loss. To do this, it must maintain an 
accurate measurement of the round-trip time (RTT). The 
round-trip time is defined as the time it takes for a packet 
to propagate across the network and its acknowledgment 
to propagate back. Most transport implementations use an 
averaging algorithm to keep an ongoing estimation of the 
round-trip time using measurements taken for each re 
ceived acknowledgment. 

The Express TP4 uses RTT mean and variance estimation 
algorithms3 to derive its retransmission timer value. The 
basic estimator equations in a C-language-like notation are: 

Err = M-A 
A = A + (ErrÂ» Gain) 
D = D + ((|Err| - D) Â» Gain) 

where: 

M = current RTT measurement 
A = average estimation for RTT, ora 

prediction of the next measurement 
Err = error in the previous prediction 

of M which may be treated as a variance 
Gain = a weighting factor 

D = estimated mean deviation 
Â» = C notation f or the logical shift right 

operation (a division of the left operand 
by 2 to the power of the right operand) . 

The retransmission timer is then calculated as: 

retrans_time = A + 2D. 

The addition of the deviation estimator has provided a 
more reactive retransmission timer while still damping the 
somewhat spurious fluctuations in the round-trip time. 

Exponent ia l  Retransmit  Timer 
If it can be believed that a retransmit timer expiration is 

a signal of network congestion, then it should be obvious 
that the retransmission time should be increased when the 
timer expires to avoid further unnecessary retransmissions. 
If the network is congested, then the timer most likely 
expired because the round-trip time has increased appre 
ciably (a packet loss could be viewed as an infinite in 
crease). The question is how the retransmissions should 
be spaced. An exponential timer back-off seems to be good 
enough to provide stability in the face of congestion, al 
though in theory even an exponential back-off won't 
guarantee stability.5 

The Express TP4 uses an exponential back-off with 
clamping. Clamping means that the backed-off retransmit 
time is used as the new round-trip time estimate, and thus 
directly effects the retransmit time for subsequent DT 
TPDUs. The exponential back-off equation is as follows: 

retransjime = retrans_time x 2n 

where n is the number of times the packet has been trans 
mitted. 

For a given DT TPDU, the first time the retransmission 
timer expires the retransmission time is doubled. The sec 
ond time it expires, the doubled retransmission time is 
quadrupled, and so on. 

Dynamic Window and Retransmit  Queue Siz ing 
The slow start described earlier provides congestion 

avoidance when used at connection start-up and restart 
after by It provides congestion control when triggered by 
a retransmission. The problem with it is that a slow start 
only reduces a connection's resource demands for a short 
while. It takes time RTTlog2W, where RTT is the round-trip 
time and W is the credit window size, for the window 
increase to reach W. When a window size reaches W again, 
congestion will most likely recur if it doesn't still exist. 
Something needs to be done to control a connection's con 
tribution to the load on the network for the long run. 

The transport credit window size is the most appropriate 
control point, since the size of the offered credit window 
directly effects the load on the network. Increasing the 
window size increases the load on the network, and de 
creasing the window size decreases the load. A simple rule 
is that to avoid congestion, the sum of all the window sizes 
(WÂ¡) of the connections in the network must be less than 
the network capacity. If the network becomes congested, 
then having each connection reduce its W (while also em 
ploying the slow start algorithm to alleviate the congestion) 
should bring the network back into equilibrium. Since there 
is no notification by the network when a connection is 
using less than its fair share of the network resources, a 
connection should increase its W in the absence of conges 
tion notification to find its limit. For example, a connection 
could have been sharing a path with someone else and 
converged to a window that gave each connection half the 
available bandwidth. If the other connection shuts down, 
the released bandwidth will be wasted unless the remain 
ing connection increases its window size. 

It is argued that a multiplicative decrease of the window 
size is best when the feedback selector signals congestion, 
while an additive increase of the window size is best in 
the absence of congestion.3'6 Network load grows non- 
linearly at the onset of congestion, so a multiplicative de 
crease is about the least that can be done to help the network 
reach equilibrium again. A multiplicative decrease also 
affects connections with large window sizes more than 
those with small window sizes, so it penalizes connections 
fairly. An additive increase slowly probes the capacity of 
the network and lessens the chance of overestimating the 
available bandwidth. Overestimation could result in fre 
quent congestion oscillations. 

Like the slow start algorithm, the Express TP4 uses mul 
tiplicative decrease and additive increase by adjusting W 
on a connection's receive side and by adjusting Q on a 
connection's send side. This allows us to control the injec 
tion of packets into the network and control the memory 
utilization of each connection on the OSI Express card. 
The amount of credit given controls the amount of buffer 
space needed in the network and on the card. The size of 
Q also controls the amount of buffer space needed on the 
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card, because TSDUs are not sent to the card from the host 
computer unless the connection has credit to send them 
or there are less than Q TPDUs already queued awaiting 
acknowledgment. The Express TP4 uses the following equa 
tions to implement multiplicative decrease and additive 
increase. 

Upon notification of congestion (multiplicative de 
crease): 

W  =  W / 2  ( 1 )  
Q '  =  Q V 2 .  ( 2 )  

Upon absence of congestion (additive increase): 

W =  W +  W/4  
Q' = Q' + Q'/4. 

(3) 
(4) 

W and Q' are the actual values used by the connection 
and W and Q are upper limits for W and Q' respectively. 

The window and queue size adjustments are used with 
the retransmit timer congestion notification in the follow 
ing manner: 
â€¢ Expiration of the retransmit timer signals network con 

gestion and Q' is decreased. 
â€¢ The slow start algorithm is used to clock data packets 

out until the congestion window equals Q'. 
â€¢ As long as no other notifications of congestion occur, Q' 

is increased each time an AK TPDU is received, up to a 
maximum of Q. 

OSI Express Congestion Control 

One of the main design goals of the OSI Express card 
was to support a large number of connections. To achieve 
this goal, the memory management scheme had to be as 
efficient as possible since memory (for data structures and 
data buffers) is the limiting factor in supporting many con 
nections. OSI Express memory management is provided 
by the CONE memory buffer manager (see page 27 for more 
about CONE memory buffer manager). 

Initially, the memory buffer manager was designed such 
that A connection's packet buffers were preallocated. A 
connection was guaranteed that the buffers it needed would 
be available on demand. This scheme provided good per 
formance for each connection when there were many active 
connections, but it would not support enough active con 
nections. The connections goal had to be met, so the mem 
ory buffer manager was redesigned such that all connec 
tions share the buffer pool. Theoretically.there can be more 
connections active than there are data buffers, so this 
scheme maximizes the number of supportable connections 
at the cost of individual connection performance as the 
ratio of data buffers to the number of connections ap 
proaches one. 

The Problem and The Solut ion 
With a shared buffer scheme comes the possibility of 

congestion. (Actually, even without a shared buffer 
scheme, other resources such as CPU and queuing capacity 
are typically shared, so congestion is not a problem specific 
to statistical buffering.) Since no resources are reserved for 
each connection, congestion on the card arises from the 
same situations as congestion in the network. A new con 
nection coming alive or an existing connection restarting 

after an idle period injects new packets into the system 
without waiting for old packets to leave the system. Also, 
since there can be many connections, it is likely that the 
sum of the connections' window sizes and other resource 
demands could become greater than what the card can 
actually supply. 

A shared resource scheme also brings the problem of 
ensuring that each connection can get its fair share of the 
resources. Connections will operate with different window 
sizes, packet sizes, and consumption and production rates. 
This leads to many different patterns and quantities of 
resource use. As many connections start competing for 
scarce resources, the congestion control scheme must be 
able to determine which connections are and which con 
nections are not contributing to the shortage. 

The problem of congestion and fairness was addressed 
by modeling the card as a simple feedback control system. 
The system model used consists of processes (connections) 
that take input in the form of user data, buffers, CPU re 
sources, and control signals, and produce output in the 
form of protocol data units. To guarantee the success of 
the system as a whole, each process must be successful. 
Each process reports its success by providing feedback sig 
nals to a central control decision process. The control de 
cision process is responsible for processing these feedback 
signals, determining how well the system is performing 
and providing control information to the connection pro 
cesses so that they will adjust their use of buffers and CPU 
resources such that system performance can be maximized. 

Control  System 
Certain measures are needed to determine the load on 

the card so that congestion can be detected, controlled, and 
hopefully avoided. When the card is lightly loaded, fairness 
is not an issue. As resources become scarce, however, some 
way is needed to measure each connection's resource use 
so that fairness can be determined and control applied to 
reduce congestion. 

Two types of accounting structures are used on the OSI 
Express card to facilitate measurement: accounts and credit 
cards. Since outbound packets are already associated with 
a connection as they are sent from the host to the card, 
each connection uses its own account structure to maintain 
its outbound resource use information. All protocol layers 
involved in a particular connection charge their outbound 
operations directly to the connection's outbound account. 
For inbound traffic, when a packet is received from the 
LAN, the first three protocol layers do not know which 
upper-layer connection the packet is for. Therefore, a single 
inbound account is used for all inbound resource use infor 
mation for the first three protocol layers, and some com 
bined resource use information for upper-layer connec 
tions. This provides some level of accountability for in 
bound resource use at the lower layers such that compari 
sons can be made to overall outbound resource use. Since 
a single inbound account exists for all connections, credit 
cards are used by the upper four layers (transport and up) 
to charge their inbound operations to specific connections. 
Thus each connection has an outbound account and a credit 
card for the inbound account. 

The protocol modules and CONE utilities are responsible 
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for updating the statistics (i.e., charging the operations) 
that are used to measure resource use. These statistics in 
clude various system and connection queue depths, CPU 
use, throughput, and time-averaged memory utilization. 
When summed over all of the connections, these statistics 
are used along with other signals to determine the degree 
of resource shortage or congestion on the card. The indi 
vidual connection values indicate which connections are 
contributing the most to the congestion (and should be 
punished) and which connections are not using their fair 
share of resources (and should be allowed to do so). 

Flow Control  Daemon 
The control decision and feedback filtering function is 

implemented in a CONE daemon process aptly named the 
flow control daemon. Using a daemon allows the overhead 
for flow control to be averaged over a number of packets. 
The daemon periodically looks at the global resource statis 
tics and then sets a target for each of the resources for each 
connection. The target level is not just the total number of, 
say, buffers divided by the number of connections. Targets 
are based on the average use adjusted up or down based 
on the scarcity of various resources. This allows more flex 
ibility of system configurations since one installation or 
mix of connections may perform better with different 
maximum queue depths than another. It is also the simplest 
way to set targets for things like throughput since total 
throughput is not a constant or a linear function of the 
number of connections. 

Control signals are generated by the flow control daemon 
as simple indications of whether a connection should in 
crease, decrease, or leave as is its level of resource use. 
The daemon determines the direction by comparing the 
connection's level of use with the current target levels. 
There is a separate direction indication for inbound and 
outbound resource use. 

The fairness function falls out very simply from this 
decision and control scheme. Any connection that is using 
more than its fair share of a resource will have a level of 
use greater than the average and thus greater than the target 
when that resource is scarce. In other words, the "fair 
share" is the target. 

The control signals are generated when a connection 
queries the daemon. The most likely point for querying the 
daemon is when a connection is about to make a flow 
control decision. That decision point is, of course, in the 
TP4 layer of the OSI Express card. 

Effects of  the Daemon 
The effects of flow control notifications to a connection 

regarding decreasing or increasing resource use vary ac 
cording to whether the direction of traffic is inbound or 
outbound. 
Outbound. The Express TP4 queries the flow control 
daemon for outbound congestion/fairness notification 
when it receives an AK TPDU. It is at this point that DT 
TPDUs are released from the retransmission queue, and it 
can be decided if more or fewer DT TPDUs can be queued 
until the next AK TPDU is received. 

If the connection is using more than its fair share of 
outbound resources (because of congestion or just over- 

zealousness), the daemon will return a decrease notifica 
tion. A decrease notification causes the Express TP4 to 
reduce the connection's retransmit queue size (Q') using 
equation 2. The slow start algorithm is then used to clock 
DT TPDUs out until the congestion window equals Q'. 

If Q' is equal to one when a decrease is signaled, the 
Express TP4 goes into DT TPDU send delay mode. In this 
mode, transmission of successive DT TPDUs is spaced by 
a minimum delay (D) to produce an interpacket gap that 
will slow down the connection's demand for resources. If 
further decrease signals are received in delay mode, the 
minimum delay is increased using D = D x 2. 

If the connection is using less than its fair share of out 
bound resources, the daemon will return an increase notifi 
cation. An increase notification causes the Express TP4 to 
increase the connection's retransmit queue size (Q') up to 
a maximum of Q, using the additive increase equation. If 
an increase signal is received in delay mode, the minimum 
delay is decreased using D = D - D/4. 
Inbound. The Express TP4 queries the flow control daemon 
for inbound congestion/fairness notification when it sends 
an AK TPDU. At this point the decision needs to be made 
whether more or fewer DT TPDUs should be allowed in 
the pipeline until the next AK TPDU is sent. If the connec 
tion is using more than its fair share of inbound resources, 
the daemon will return a decrease notification. A decrease 
notification causes the Express TP4 to reduce the connec 
tion's receive window size (W) using equation 1. The slow 
start algorithm is then used to clock AK TPDUs out with 
credit window (CDT) values increasing from one to W. 

If W is equal to one when a decrease is signaled, the 
Express TP4 goes into credit delay mode. In this mode, 
transmission of AK TPDUs containing a CDT of one are 
spaced by a minimum delay to produce an interpacket gap 
between incoming DT TPDUs that will slow down the con 
nection's demand for resources. If further decrease signals 
are received in delay mode, the minimum delay is in 
creased using D = D x 2. 

If the connection is using less than its fair share of in 
bound resources, the daemon will return an increase notifi 
cation. An increase notification causes the Express TP4 to 
increase the connection's credit window size (W) up to a 
maximum of W, using equation 3. If an increase signal is 
received in delay mode, the minimum delay is decreased 
using D = D - D/4. 

Severe Congestion Notif icat ion 
The flow control daemon also provides an emergency 

notification to Express TP4 in cases where transient short 
ages of memory are severe enough to jeopardize the exis 
tence of connections. Because the OSI Express card uses 
statistical buffering, there is a possibility that a large burst 
of outbound data could queue up in the Express TP4 re 
transmission queues, while inbound data is flowing in and 
getting queued because the host computer is not reading 
data from the card. If the situation is such that buffers may 
not be available to receive or send AK TPDUs, the daemon 
will give an emergency notification to the Express TP4. 

Upon receipt of this notification, the Express TP4 sends 
an AK TPDU with a CDT of zero, closing the credit window. 
Thus DT TPDUs received that are outside the new credit 
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window are thrown away so as to avoid memory deadlock. 
The Express TP4 also decreases the credit window W and 
the retransmit queue size Q' using equations 1 and 2. The 
slow start algorithm is used to get the inbound and out 
bound data traffic flowing again. 

Acknowledgments 
A special thanks to Ballard Bare who participated in the 

design and development efforts for the OSI Express TP4 
implementation, and to Mike Wenzel who contributed to 
the design efforts. 

References 
1. J.C. Majithia, et al., "Experiments in Congestion Control," Pro 
ceedings of the international Symposium on Flow Control in Com 
puter Networks, Versailles, France, February 1979. 
2. K. K. Ramakrishnan and Raj Jain. Congestion Avoidance in 
Computer Networks with a Connectionless Network Layer. Part 
II: An Cor Binary Feedback Scheme, Digital Equipment Cor 
poration. Technical Report #TR-508, August 1987. 
3. V. Jacobsen, "Congestion Avoidance and Control," Computer 
Review: Communications Architectures and Protocols (SIGCOMM 
'88), Vol. 18, no. 4, August 1988. 
4. Raj Jain, "A Timeout-Based Congestion Control Scheme for 
Window Flow-Controlled Networks," IEEE Journal on Selected 
Areas in Communications, Vol. SAC-4, no. 7, October 1986. 
5. D. for Aldous, "Ultimate Instability of Exponential Back-off for 
Acknowledgment Based Transmission Control of Random Access 
Communication Channels," IEEE Transactions on In/ormation 
Theory, Vol. IT-33, no. 3, March 1987. 
6. K. K. Ramakrishnan and Raj Jain, Congestion Avoidance in 
Computer Networks with a Connectionless Network Layer, Digital 
Equipment Corporation, Technical Report #TR-506, August 1987. 

Data Link Layer Design and Testing for the 
OSI  Express Card 
The modules in the data link layer occupy the bottom of the 
OSI Reference Model. Therefore, it was imperative that they 
be finished first and that their reliability be assured before 
use by the upper layers of  the OSI stack.  

by Judith A.  Smith and Bi l l  Thomas 

THE DATA LINK LAYER is the second layer in the 
OSI Reference Model. Its function is to provide ac 
cess to the LAN interface for the OSI network layer 

(layer 3), and transmitting and receiving of data packets to 
or from the physical layer (layer 1). This article describes 
the data link layer, particularly the OSI Express card's im 
plementation of this protocol layer. The box on page 49 
provides a brief description of the OSI network layer. 

The data link layer consists of two sublayers: the Â£LC 
(logical link control) sublayer and the MAC (media access 
control) sublayer (see Fig. 1). The LLC sublayer provides 
a hardware independent interface to the upper-layer pro 
tocol. The LLC used for the OSI Express card implementa 
tion is specified in ANSI/IEEE standard 802.2. The OSI 
Express card uses the Type 1 LLC protocol described within 
this specification. Type 1 LLCs exchange PDUs (protocol 
data units) between themselves without the establishment 
of a data link connection. This is also called connectionless 
network protocol. The MAC sublayer controls access to the 
shared physical signaling and medium technologies (e.g., 

coaxial cable, twisted pair, fiber optic cables, and even 
radio signals). The MAC protocol used by the OSI Express 
card implementation is specified in IEEE standard 802.4. 
Besides requiring that the OSI Express card implementa 
tion conform closely to the IEEE standards, the goals that 
guided our design included: 
â€¢ Hiding the upper LLC interface details from the data link 

layer user (network layer). 
â€¢ Making the LLC support multiple MAC sublayers. 
â€¢ Making the lower LLC interface simple and flexible 

enough to promote testability and ease of integration. 
â€¢ Providing a loopback mechanism in the LLC. 
â€¢ Creating and porting the MAC code to the OSI Express 

card before all other protocol layers. 
â€¢ Designing the MAC code and MAC test environment so 

that some portions are leverageable to other MAC im 
plementations. 
Since the data link layer module had to be the first pro 

tocol module completed, another goal was to ensure that 
the design and development process produced simple and 
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reliable code. 

The Data  L ink  Layer  and CONE 
The data link layer uses the facilities provided by CONE 

(common OSI networking environment) to provide services 
to the protocol layer above it and to communicate with the 
protocol layer below it. These facilities include data struc 
tures for service access points (SAPs), interfaces to the 
protocol layer routines, and the path data structure which 
represents an individual connection between applications 
on different machines. CONE facilities and SAPs are de 
scribed in detail in the article on page 18. 

The protocol layer above the data link layer is called the 
data link layer user. This is the network layer. Since the 
LLC is the top layer of the data link layer, the network 
layer is also the LLC user. Similarly the MAC user is the 
LLC. A SAP is an addressable point at which protocol 
services are provided for a layer user. SAPs are identified 
by address information found in the headers (protocol 
headers) of data packets arriving at each layer. For the LLC 
layer a SAP address is called an LSAP. Packets arriving at the 
LLC layer usually have two addresses. One indicates where 
the packet came from (source) and the other indicates the 
packet's destination. The from address is called the source 
service access point, or SSAP, and the destination address 
is called the destination service access point, or DSAP. 

CONE provides three data structures for all the protocol 
layers that enable them to communicate with each other. 
The first is the protocol entry data structure, which contains 
pointers to all the procedures required by a particular pro 
tocol layer. For example the following procedures are part 
of the data link layer protocol and are used by the network 
layer to command the data link layer to perform certain 
actions. 
â€¢ DL_Add_SAP. Set up an LSAP. 
â€¢ DL_Send_Down. Send a data packet. 
â€¢ DL_Control_Down. Send an XID or TEST command packet. 
â€¢ DL_StarUDown. Set up a path between the data layer and 

its user. 

â€¢ DI_Delete^SAP. Remove an LSAP. 
â€¢ DL_Stop_Down. Remove a path.  

Pointers to these procedures are set in the CONE protocol 
data structure when the LLC initialization procedure is 
called. Also at initialization, an LLC SAP data structure is 
set up so that the data link layer can find the network layer. 

When a connection is established with a remote applica 
tion, CONE creates a data structure called a path. A path 
represents the intramachine route taken through the pro 
tocol layers by packets on a given connection from the 
application to the LAN interface. It consists of an ordered 
list of data structures that contain, among other things, 
pointers to the SAP entries of the protocol layers involved 
in the conversation between the two applications. Fig. 7 
on page 23 shows the CONE data structures. 

Logical  Link Control  Sublayer 
The LLC sublayer on the OSI Express card performs two 

kinds of functions. It sends and receives packets for the 
users and sends and responds to XID (exchange identifica 
tion) and TEST commands. The XID command is used to 
describe the capabilities of the LLC sublayer on one 
machine to the LLC sublayer on another machine. The XID 
command is sent as a single packet containing the DSAP 
and SSAP addresses, a control field set to the XID command, 
and the XID information which describes the functions the 
LLC supports. The LLC on the receiving machine sends a 
response packet to the sender describing itself. The receipt 
of the XID command is not reported to the LLC user because 
it is handled internally by the LLC sublayer. The TEST 
command is used to test the integrity of the communication 
link between the LLC sublayers on two communicating 
machines. Therefore, the TEST command also causes the 
receiving LLC to send a response. The response data from 
the receiving machine is expected to be the same data that 
is sent in the command packet. Like the XID command, the 
TEST command is not sent to the LLC user. The kinds of 
DSAP addresses in the XID and TEST commands include 
individual, group, and global addresses. The individual 

End System End System 

Data Link 

Fig.  1  .  Overv iew of  the data l ink  
layer and i ts sublayers.  
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address is used when the response packet is to be sent for 
one particular LSAP address. The group address is used 
when the response is to be sent for a group of LLC users. 
The global address is used when the response is to be sent 
for all of the active LLC SAP addresses. A TEST packet sent 
to the global address should result in responses from ad 
dress zero and from each of the other active SAPs. One of 
the individual addresses, address 0, designates the sending 
LLC itself and is always active. Therefore, an XID or TEST 
command sent to this address will always generate a re 
sponse. 

Media Access Control  Sublayer  
The MAC sublayer is responsible for sending and receiv 

ing data from the media. To fulfill this responsibility the 
MAC sublayer performs: 
â€¢ Conversion of outbound data into a form acceptable to 

the hardware that sends the packet onto the media. It 
performs the reverse transformation for inbound packets 

â€¢ Checking to ensure that received packets have a MAC 
address that is acceptable to the OSI Express card and 
that there are no detectable transmission errors 

â€¢ Managing how many times retransmission of a packet 
should be attempted if there are transmission errors. 
The MAC sublayer maintains a SAP table with one entry 

for each active MAC address. Two addresses are always 
active: the local individual MAC address and the broadcast 
MAC address. The individual MAC address is stored in 
nonvolatile memory on the card and is unique for every 
individual card made. The assignment of this address is 
managed on a worldwide basis. The broadcast address is 
one that all MAC sublayers are required to accept. Addi 
tional addresses, such as multicast addresses, may also be 
activated. These multicast addresses are used by the net 
work layer. 

LLC and MAC Interface 
The procedures contained in the LLC and MAC sublayers 

are designed to conform closely to IEEE standards 802.3 

and 802.4 and to maximize the independence between the 
two sublayers. The procedures provided by the MAC sub 
layer include: 
â€¢ SencLPacket. This procedure is used by the LLC sublayer 

to request the MAC sublayer to send a data packet out 
onto the media. 

â€¢ Activate_MAC^Addr and Deactivate_MAC^Addr. These proce 
dures are used as their name implies, to activate and 
deactivate MAC addresses. When a MAC address is ac 
tivated, an entry is made in the MAC SAP lookup table. 
A MAC address may be activated more than once if sev 
eral LLC users (with different LSAPs) use the same MAC 
address. The data structure containing the MAC SAP 
has a reference counter that contains a count of the 
number of times the address is activated by one of the 
LLC users. When the MAC address is deactivated, the 
count is reduced, but the MAC address itself is not deac 
tivated until the count is reduced to zero. 

â€¢ Check_MAC_Addr and Store_lndiv_MAC_Addr. These proce 
dures are used to provide independence between the 
LLC and MAC sublayers. 
The procedures provided by the LLC for the MAC sub 

layer include: 
â€¢ Check_Packet and Receive_Packet. These procedures are 

used to send packets received from the media by the 
MAC sublayer to the LLC sublayer, which in turn sends 
them to the data link layer user. The Check_Packet proce 
dure was developed to improve performance. When the 
MAC layer receives a packet from the media it is in a 
format used by the hardware to interface to the media. 
Therefore, the data must be converted to the format used 
by the OSI protocol stack. This effort is wasted if there 
is no data link layer user to accept the packet. Therefore, 
before the MAC does the conversion, it calls the Check_ 
Packet procedure to check that the packet's LLC header 
is valid and that its destination address has an active 
LSAP set up for it. The LLC then returns a pointer to 
the LSAP to the MAC sublayer if and only if the packet 
is acceptable. If a pointer is returned, the MAC sublayer 

Network Parameters Local  Address Data IS Address Data ES Address Data  

(b) Flag for 
Local  MAC Address 

Flag for 
XID/TEST 

Flag for 
Loop-Back L L C  A d d r e s s  M A C  A d d r e s s  

L = True for  Local  Address Data  Set  
=  False for  IS  Address Data  Set  
=  Fa lse  for  ES Address Data  Set  

(c) 

(d) 

IS  =  Intermediate  System 
ES =  End  Sys tem 

Fig .  2 .  (a )  Conf igura t ion  data  fo r  
t h e  n e t w o r k  l a y e r  i n i t i a l i z a t i o n ,  
( b )  D a t a  f i e l d s  a s s o c i a t e d  w i t h  
e a c h  a d d r e s s  d a t a  s e t .  ( c )  A d  
d ress  f i e lds  o f  l oca l  add ress  se t  
sent  down wi th  DLJWcLSAP ca l l ,  
( d )  A d d r e s s  f i e l d s  o f  l o c a l  a d  
d ress  se t  a f te r  the  MAC address  
is inserted. 
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does the conversion and then passes the packet and 
pointer to the LLC sublayer using the Receive_Packet pro 
cedure. 

â€¢ Return_Sent_Packet. This procedure is used by the MAC 
sublayer to return the data structure of the packet that 
the MAC sublayer has sent onto the media. The LLC 
sublayer will return the data structure to whatever pro 
tocol wants it back. 

Design Decisions 
The network layer and the LLC and MAC sublayers work 

together successfully because of the decisions we made to 
simplify the design and to minimize the amount of informa 
tion each layer needed to have about the other layer. One 
of these decisions was that the network layer and the LLC 
and MAC sublayers are to return no error messages about 
whether or not a packet is successfully sent. This decision 
stemmed from trying to decide how a layer user should 
respond to an error from lower layers. Since these errors 
are characteristic of the particular lower layer in use, han 
dling these errors could result in a great deal of dependency 
in an upper layer on what was going on in a lower layer, 
and would change if the lower layer changed (e.g., if the 
IEEE 802.4 MAC was replaced with IEEE 802.3). 

After reviewing the functions each layer was required to 
provide, we realized that the transport layer had the respon 
sibility for end-to-end communication and also that the 
transport layer contains algorithms for ensuring the integ 
rity of the connection no matter how the packets are lost. 
Some packets transmitted with no errors will fail to arrive 
at their destination because of network errors on the media. 

It was decided to allow the transport layer to detect the 
loss of any packets and handle all error recovery. This 
relieves the transport layer from having to check status 
information from the lower levels on every packet. 

One area we went to great length to simplify is address 
handling. The individual MAC address is a good example. 
The network layer needs, as part of its protocol, to know 
which of three MAC addresses (two multicast addresses 
and the individual address) a received packet has as its 
destination address. One method is to pass the individual 
MAC address to the network layer. This has the drawback 
that the network layer would have to know the format of 
the address and the value of the individual address. To 
eliminate the need for the network layer to know this infor 
mation, LSAPs are set up for each set of LLC and MAC 
addresses the network layer might use. Fig. 2a shows the 
configuration data the network layer receives at initializa 
tion. The network parameters are used internally by the 
network layer and each of the sets of address data is used 
to add an LSAP for the network layer. Fig. 2b shows the 
data items associated with each set of address data. The 
network layer sets up an LSAP with the DLJ\dd_SAP proce 
dure, which is in the LLC sublayer. To get the MAC address 
field initialized for the local address data, a call is made 
to the DL_Add_SAP procedure with one of the parameters 
pointing to the local address data shown in Fig. 2c. The 
DL_Add_SAP procedure examines the address data fields and 
if the field containing the flag for the local MAC address 
is true, the LLC calls the MAC sublayer routine Store_lndiv_ 
MAC_Addr and passes to the routine a pointer to the place 
in the address data where the MAC address is supposed 

Program A 

Upper  Layers 

,  

Path 1 
Remote  
A d d r e s s  =  
This  Node 

LSAP 
Loop-Back 
Enabled 

Path 2 
Remote  
A d d r e s s  =  
Local Individual 
Address of  This  
Node 

â€¢â€¢ Loop-Back Handler  

L A N  

LSAP 
Address  =  Pa th  1  

Remote 
Address 

Fig.  3 .  Loop-back f lowchar t .  
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The OSI Connectionless Network 
Protocol 

The network layer is the third layer of the OSI Reference Model . 
I t  p rov ides network  serv ice to  the t ranspor t  layer  and uses the 
data l ink service as provided by the data l ink layer. Two dif ferent 
types of  serv ice are def ined for  the OSI  network layer :  the con 
nect ion-or iented network  serv ice  us ing the pro toco l  def ined in  
ISO 8208 (CCITT Recommendation X.25) and the connectionless 
network service provided by the connectionless network protocol 
(CLNP) def ined in  ISO 8473.  The OSI  Express card re l ies  on a 
LAN subnetwork  techno logy,  so  i t  uses the connect ion less  net  
work layer protocol. The OSI Express card also uses the end-sys- 
tem- to- in termedia te-system rout ing exchange pro toco l  def ined 
in  ISO 9542 to  d iscover  the  ex is tence o f  o ther  end sys tems or  
the existence of  one or more intermediate systems on the same 
subnetwork  (LAN segment ) .  An  end sys tem (ES)  i s  de f ined  as  
a  sys tem in  wh ich  there  i s  a  t ranspor t  en t i t y  in  an  ins tance  o f  
commun ica t i on .  An  in te rmed ia te  sys tem ( IS )  i s  a  sys tem tha t  
prov ides the rout ing and re lay ing funct ions o f  the OSI  network  
layer .  End systems re ly  on in termediate  systems to  de l iver  net  
wo rk  p ro toco l  da ta  un i t s  (NPDUs)  f r om  the  sou rce  ES  t o  t he  
dest inat ion ES across mult ip le subnetworks.  

Service Provided by CLNP 
The connect ion less  network  serv ice  (CLNS)  prov ides  a  data  

g ram se rv i ce  to  the  t ranspor t  l aye r .  Each  NPDU con ta ins  the  
source and dest inat ion end system addresses,  and is  routed to  
the dest inat ion as an autonomous uni t  ( i .e. ,  not  associated wi th 
any connect ion between the end systems).  The CLNS may mis-  
order,  dupl icate, or lose packets. Therefore, i t  is up to an upper- 
layer  check such as the t ranspor t  layer ,  to  per form error  check 
ing. 

The connect ionless network service provides only two service 
pr imit ives to the transport layer:  an N-UNITDATA request and an 
N-UNITDATA indication. The transport layer init iates the transmis 
sion of a TPDU or TPDUs by issuing an N-UNITDATA request. The 

t ransport  layer  receives TPDUs v ia the N-UNITDATA indicat ion.  
The parameters of  both CLNS pr imi t ives are the network source 
address, the network dest inat ion address, the network qual i ty of  
serv ice,  and the network serv ice user data.  

The source address and the dest inat ion  address parameters  
a re  OSI  ne two rk  se rv i ce  access  po in t  (NSAP)  add resses .  An  
NSAP has two parts:  the network ent i ty  t i t le part  which uniquely 
identif ies the ES or IS within the global OSI environment, and the 
selector part  which ident i f ies the network service user within the 
ES. 

ES-to- IS Exchange Protocol 
The ES-to- IS rout ing exchange protocol ,  which is  speci f ied in 

ISO 9542, provides solutions to the following practical problems. 
â€¢ How do end systems discover the existence and reachabi l i ty 

of  intermediate systems that can route NPDUs to dest inat ions 
on subnetworks other than the ones to which the ES is direct ly 
connected? 

â€¢ How do end systems discover the existence and reachabi l i ty 
o f  o ther  end systems on the same subnetwork? 

â€¢  How do  in te rmed ia te  sys tems d iscover  the  ex is tence  and  
reachab i l i t y  o f  end  sys tems  on  each  o f  t he  subne tworks  to  
which they are d i rect ly  connected? 

â€¢ How do end sys tems dec ide  wh ich  in te rmed ia te  sys tem to  
use to  forward NPDUs to  a  par t icu lar  dest inat ion when more 
than one IS is  accessib le? 

â€¢ The ES- to- IS protoco l  is  connect ion less and operates as a  
pro toco l  w i th in  the network  layer ,  spec i f ica l ly  in  con junct ion 
wi th  the CLNP,  ISO 8473.  The ES- to- IS PDUs are  car r ied  as  
user data in data l ink PDUs just l ike ISO 8473 NPDUs. Certain 
ES-to- IS protocol  funct ions require that  the subnetwork ( i .e . ,  
data forms service) supports broadcast, multicast, or other forms 
of  mul t idest inat ion addressing for  n-way t ransmission.  

to be. When this routine is finished the local address data 
looks like Fig. 2 d . The availability of the StoreJndiv_MAC_Addr 
ensures that the LLC does not have to know what the MAC 
address is or where it is stored. When control is returned 
to the LLC sublayer, it uses the modified address data buffer 
to add an LSAP just as if the MAC address had been 
supplied when DLJ\dd_SAP was initially called. 

The network layer does not have within its protocol the 
concept of XID and TEST commands or responses. Either 
the network layer must detect and reject these packets or 
the LLC must not send them to the LLC user. Some LLC 
users do want to receive these packets. To prevent the 
network layer from having to check the LLC control fields 
of every packet, special flags were added to the LSAPs for 
XID and TEST packets. When the LSAP is activated, the 
network layer designates that the XID and TEST flags be set 
to prohibit the reception of these responses at this particu 
lar SAP. LLC users that do want to receive XID and TEST 
packets would not set these flags. 

Loop-Back 
Loop-back is the process by which the card is able to 

receive or appear to receive something it has sent. Loop- 

back is often used for testing, but it is also required for the 
normal operation of the card. If two programs that are writ 
ten to communicate with each other over the network are 
run on the same machine, loop-back is necessary for them 
to communicate with each other. A data packet from either 
of these programs must travel the entire protocol stack 
because some of the layers of the network provide services 
such as data transformations as well as transporting the 
packet from one program to the other. Another reason for 
traversing the entire stack is that the card cannot know 
whether a packet being sent is also one that the card should 
receive unless the entire address of the packet is evaluated. 
The task of loop-back, that is, the process of generating a 
receive packet from a packet being sent, is the responsibility 
of the LLC sublayer in this implementation. 

The network layer does not want all packets looped back 
to itself. For instance, if all packets sent out with one of 
the multicast addresses as the destination address were 
looped back, the network layer would be burdened with 
spurious packets and would have to check each packet's 
network address to be sure it was not one it had sent. Since 
one possible error in a network is for two network layers 
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to have the same network layer address, even the detection 
of unwanted looped-back packets could be impossible, 
since the MAC individual address, which would decide 
the issue, is not available to the network layer. The solution 
is to have a loop-back flag in the LS AP data structure. When 
the loop-back flag is set, the LLC knows that packets sent 
on a path using the LSAP should be looped back if the 
remote address of the path is the one on which the card 
receives packets. 

The data flow of a loop-back packet is shown in Fig. 3. 
The packet is sent from program A to program B. Program 
A sends the packet down to the upper layers just as it 
would send a packet to a program on another node. From 
there it is sent to the transport layer and then the network 
layer. The network layer sends the packet to the LLC using 
path 1, which has its remote address set to the node of 
program B. In this case since program B is on the same 
node, the remote address is the one on which the local 
node itself receives packets. The LLC sublayer sends the 
packet to the MAC sublayer where it is sent out onto the 
network. (Loop-back packets are also sent out onto the 
network because the remote address can be one that other 
nodes also receive.) The MAC returns the packet to the 
LLC after it is sent. The LLC checks to see if the packet 
is a loop-back packet. Since it is, the LLC starts the packet 
up the stack via path 2, which has as its remote address 
the local address of the original packet. The LSAP as 
sociated with path 2 has as its address the destination 
address of the original packet. The network layer receives 
this packet the same way it would if it came from another 
node. The packet is then passed up the stack to program B . 

Rather than do a full LLC and MAC address comparison 
each time a packet is returned from the MAC sublayer, a 
flag in the path is tested. This flag is set when the path is 
set up, based on whether the LSAP associated with the 
path allows loop-back and whether the remote address of 
the path is one on which the node receives packets. This 
flag must be updated each time an LSAP is added or de 
leted. Since LSAPs are usually added at initialization and 
never deleted, the updating does not add any overhead to 
the card's operation. 

The checking of a path's remote address against address 
es that are active in the LLC and MAC sublayers is done 
by a method that maintains as much independence between 
the two sublayers as possible. The LLC sublayer uses the 
MAC procedure Check_MACLAddr to check a remote address. 
The MAC sublayer returns a flag that indicates whether or 
not the address is an active MAC address. Thus, the LLC 
does not have to know the format of the MAC address or 
how it is stored in the MAC sublayer. If the MAC address 
is active, the LLC checks its own LSAPs to determine if 
one of them will accept the remote address of the path as 
a legitimate destination address. 

LLC and MAC Test ing  
Once the LLC and MAC interface design was completed, 

testing became the next critical issue. The OSI Express 
project required that the MAC interface software be one of 
the first functional modules on the OSI Express prototype 
card. A high percentage of its functionality had to be very 
reliable so that code for the LLC and other layers of the 

OSI stack could begin to run on the card. Since the pro 
totype card was not immediately available, another method 
of testing had to be developed to make immediate progress. 
The scenario interpreter and test harness environment had 
already been developed for the HP 9000 Series 300 HP-UX 
environment, so we decided to leverage the tools from this 
existing testing environment. The scenario interpreter is a 
software test tool that handles the sending and receiving 
of data packets to and from the software under test, and 
the test harness enables testing in different environments. 
Both of these test tools are described in the article on page 
72. Testing the MAC interface in the scenario interpreter 
and test harness environment also allowed the LLC and 
other modules that have interfaces to the MAC software to 
exercise this interface without writing special test code. It 
was also necessary to be able to do a majority of the debug 
ging in the friendly HP-UX environment. Since the 
Motorola 68824 token bus controller chip (TBC) had been 
previously tested and had proven to be reliable, it was 
decided that the TBC could be emulated, thereby avoiding 
the need to wait for the hardware prototype to be ready. 

As shown in Fig. 4, the MAC interface testing environ 
ment used the existing scenario interpreter and its scenario 
syntax and the existing test harness. In place of the generic 
bounce-back module, a special MAC interface bounce-back 
module was written. The generic bounce-back module is 
used by any module that needs to make it look as though 
it is receiving data packets from the layer below it. It takes 
the data transmitted to it and calls the receive routine of 
the layer configured above it. The MAC interface could not 
use this module because there is no layer below it and so 
special code had to be written in the emulator. In a typical 
testing instance, the scenario interpreter reads a scenario 
that tells it to send a specific amount of data to the config 
ured layer. The test harness reads the data, which eventu 
ally gets sent to the LLC sublayer. The LLC puts its header 
on the data packet and calls the MAC module. The MAC 
module prepares all the data structures needed by the TBC 
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Test Results 
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Fig.  4.  MAC inter face sof tware test  envi ronment .  
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and transmits the packet. The special MAC interface 
bounce-back module is then called. This module performs 
the tasks that the hardware and the TBC normally perform: 
it sets status in the packet to make it appear that it has 
been transmitted onto the network and copies the informa 
tion in the transmitted packet into buffers in the inbound 
buffer pool to make it appear that a packet has been received 
from the network. It then causes a receive packet interrupt, 
which causes the MAC code responsible for receiving the 
packet to be invoked. The transmitted and received packets 
are processed and forwarded to the LLC software as though 
the code was running on the OSI Express card. When the 
received data reaches the scenario interpreter, the interpret 
er compares it to the data that was sent and saves the results 
of the comparison in the test results file. 

Conclusion 
The network layer and the data link layer with its LLC 

and MAC sublayers provide the network layer user, the 
transport layer, with the ability to send a packet efficiently 
to any accessible node given just the network layer address. 
The network layer locates the destination node even if it 
is not on the local area network. The LLC separates packets 

it receives that are for the network layer from those that 
are for other data link layer users on the OSI Express card. 
The MAC sublayer provides an interface to the media that 
is independent of the media. This achievement was ac 
complished by adherence to international standards and a 
design that minimizes the dependencies of the protocols 
upon each other's internal operations. 

Acknowledgments 
We would like to acknowledge and thank the card and 

chip hardware design team which consisted of Mike Per 
kins, Mark Fidler, Paul Zimmer, Alan Albrecht, Dan Dove, 
and Nancy Mundelius. Mike Perkins and Mark Fidler were 
also vital in the early debugging and testing of the TBC 
chip. Mike Wenzel provided vital insights on how to incor 
porate the data link layer into the CONE environment. Cur 
tis Derr provided a ROM version of the LLC/MAC and TBC 
interface software which is used with the hardware diag 
nostic program. He also coordinated the COS (Corporation 
for Open Systems) testing of the data link layer. Sped 
thanks to Motorola's technical support staff, especia 
Rhonda Alexis Dirvin, Paul Polansky, and Robert Ode 1. 
who provided excellent technical support of the TBC. 

HP OSI Express Design for Performance 
Network s tandards are somet imes assoc iated wi th  s low 
network ing.  This is  not  the case wi th the HP OSI Express 
card.  Because of  ear ly  analys is  of  cr i t ica l  code paths,  
th roughput  exceeds 600,000 by tes  per  second.  

by El izabeth P.  Bortolotto 

PERFORMANCE ANALYSIS of the HP OSI Express 
card began during its early design stages and con 
tinued until the product was released. During the 

course of the project several different analysis techniques 
were applied. These included simple analytic modeling, 
path length estimation, simulation, and prototype measure 
ment. Several tools were developed to make the prototype 
performance measurements. Many estimations of through 
put and delay were made during the development phases 
of the OSI Express project. These intermediate results led 
to redesign or code reduction efforts on the bottlenecks in 
the software. 

In the end, we far exceeded our initial performance ex 
pectations. Early performance investigation was invaluable 
in pinpointing potential bottlenecks when there was still 
time to make design changes. We learned that the most 
fertile areas for performance enhancement and code path 
reduction are usually in module redesign, not code tuning. 

Static Analysis 
The earliest OSI Express performance activity was to 

estimate the amount of code in "typical" inbound and out 
bound data paths. A typical inbound data path was defined 
as the code executed when a data packet is received from 
the LAN going to the host service. For this estimate, it was 
assumed that the packet arrives without errors. Some as 
sumptions were also made about what processing was typ 
ical or most common. These assumptions were periodically 
revised as we learned more about the system. 

Once the path estimates were derived, throughput and 
delay measurements could be obtained. This process was 
referred to as static analysis because the statistics obtained 
were best-case and worst-case estimates without any refer 
ence to how a dynamic system behaved. The static analysis 
process derived these statistics by comparing the number 
of CPU (and DMA) cycles required by a single packet to 
the total number of cycles available in the hardware. 

The first path measurements were made in units of 68020 
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assembler instructions. An early analysis revealed that 
using ten CPU cycles per assembler instruction was a fairly 
safe (and usually conservative) estimate. This was true un 
less the design engineer used a number of multiply or di 
vide instructions. In fact, early analysis showed the high 
cost of these two instructions and steps were taken to avoid 
using multiplies and divides unless necessary. 

Because the earliest performance estimates were attempt 
ed before much code was written, it was necessary to study 
each software module carefully to understand all of the 
tasks that the software would be required to perform. The 
typical paths (inbound and outbound) could then be 
roughly pseudocoded. A second analysis during this time 
revealed that the C compiler on the development systems 
typically generated three to four 68020 assembler instruc 
tions per line of simple C code. A simple C code line was 
defined as a line in which only one operation is performed. 
Therefore, if a line of C (or pseudo C) was 

a = (b & a) [ (c Â« d); 

it was estimated as four simple C instructions and therefore 
twelve to sixteen 68020 assembler instructions. 

The inbound and outbound paths were estimated sepa 
rately because independent estimates for each path were 
needed to understand the complete set of tasks necessary 
to transfer a packet from one node to another. The two 
parts are not the same length. We expected to find the 
inbound path longer (in terms of instructions) than the 
outbound path. 

Once the estimation had been completed, the number of 
assembler instructions in both paths was multiplied by 
10 (ten cycles per 68020 instruction). The result is the 
number of processor cycles used in transmitting and receiv 
ing one typical data packet by the OSI Express card. Since 
the basic hardware architecture of the OSI Express card 
was in place, it was relatively easy to estimate the 
maximum possible throughput and minimum possible 
delay. The following is an example of a static analysis 
throughput equation for the OSI Express card. 

Throughput in bytes per second â€” 

[TC/(PW(RC + WC) + IC)](P - H) 

where TC = total available cycles per second 
PW = size of the packet in words (16 bits) 
RC = number of cycles per read access 
WC = number of cycles per write access 

= number of instruction cycles in receive 
data path 

= packet size in bytes 
= header size. 

1C 

P 
H 

Some of these values were slightly variable. Average or 
typical values were often used, and care was taken to esti 
mate conservatively. 

First Path Estimation 
During the course of the OSI Express project, two com 

plete data path estimations were made. The first estimate 
was made during the design phase, before much coding 
had begun. The second estimate was made after most of 
the code had been written. 

The first code path length estimate was done while the 
project was in the early design phase. Only a portion of 
the code was written. To get the path length for the code 
that was written, a mixed listing of the code was obtained. 
A mixed listing in this case was an assembled listing of 
the 68020 instructions intermixed with the original C in 
structions. The data path was then identified and the as 
sembly instructions counted. In addition to giving us the 
instruction count, this exercise also educated us on how 
the C compiler was behaving and what sort of assembly 
code was generated. 

As discussed before, most of the code was written at the 
time of the first path length estimation when most of the 
development engineers were working on their external de 
signs. The estimation method used was to read the ISO 
specifications for each layer and the ERS for CONE (com 
mon OSI networking environment), and write pseudocode 
for the data path. The pseudocode was then translated into 
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68020 instructions using the the multiplier factors dis 
cussed above. This entire process took about six months. 

Figs. 1 and 2 show the results of this first estimation 
process. Fig. 1 displays the number of instructions in the 
outbound data path and Fig. 2 displays the number of in 
structions in the inbound data path. The graphs show that 
the largest code segment in the data path at that time was 
the memory management code. We therefore decided to 
redesign the memory manager code to reduce the number 
of instructions in the most common data path. 

A number of smaller code changes were also made as a 
result of this first performance investigation. Redundant 
instructions, excessive multiplies, unnecessary initializa 
tion, and more streamlined code processes were identified. 
In addition, the team learned more about code modules 
that were influenced by decisions in distant code modules. 

Second Path Estimation 
The second estimate was made after the code was basi 

cally written but before much unit testing had been done. 
This estimate was quite a bit quicker because there was no 
pseudocoding to do. In addition, the data path was pretty 
well understood by this point. Therefore, mixed listings of 
all the code modules (and protocol layers) were obtained 
and a walkthrough of the data path was performed. Again, 
care was taken to be as accurate as possible, since the 
performance statistics resulting from the code count were 
only as good as the data. 

Code was counted for both the inbound and the outbound 
data paths. By the time the second count was made there 
had been a number of design changes and developments. 
Figs. 3 through 6 show the results of these changes. The 
backplane handler code had exploded into a much larger 
module than was initially expected. This module then be 
came the primary target of a performance redesign effort. 

As before, a number of performance opportunities were 
identified as a result of the second walkthrough. In addi 
tion, we learned more about how the OSI Express card 
would behave when parameters were varied in the FTAM, 
IPC, and CIA host code. Several changes were suggested 

â€¢FTAM = F i le  Transfer  Access and Management .  IPC = In terprocess Communicat ion.  
CIA = CONE (Common OSI  Network ing Envi ronment)  In ter face Adapter .  
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F ig .  3 .  Second-es t ima te  (a f te r  cod ing  and  severa l  des ign  
changes) instruct ion count summary for 1K-byte packets out 
bound to the network. 

to the designers of these modules. In one case, we found 
that performance was severely impacted during file trans 
fers when the data was presented to the OSI Express back 
plane in 256-byte buffers instead of kernel clusters (2K-byte 
buffers). 

Connect ion Establ ishment Path 
In addition to the common data path, the connection 

establishment path was also analyzed during the OSI Ex 
press performance investigation. This analysis was made 
a little later in the project after the second path estimate 
had been completed. For the sake of speed, this path was 
counted in lines of simple C. By this time we had gained 
quite a bit of confidence in our estimation method and in 
our knowledge of the code processes. This estimation took 
much less time than the other two. 

It was discovered that the amount of code required to 
secure a connection was quite a bit larger than that required 
to send or receive a data packet. Of course, we knew that 
this was true before even beginning the connect path 
analysis. We just did not know how large it was. Our inves 
tigation showed us that the connect code path was 91,424 
lines of C code (simple) in a typical case. In other words, 
it would take approximately 366 milliseconds fora connect 
to complete successfully. (We assumed four 68020 instruc 
tions per C instruction). 

It was also discovered that the connect path provided 
many opportunities for path reduction. Once a particular 
code path is fully understood, performance opportunities 
are usually obvious. This was definitely the case in this 
analysis and both of the previous path estimation exercises. 

Benef i ts  of  Ear ly  Performance Walkthroughs 
There are a number of benefits to performance analysis 

during all of the phases of new product design. The benefits 
far outweigh the cost of the additional engineer (or two) if 
one of the project goals is good performance. The benefits 
are obvious when path analysis reveals code redundancy 
or other time-saving opportunities. Other benefits that pro 
vide big paybacks may not be so obvious. The following 
is a list of the less obvious benefits we found during OSI 
Express performance analysis. 
â€¢ Design inconsistencies were exposed. 
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â€¢ The design engineers became performance conscious 
and wrote cleaner code. 

â€¢ There was time for redesign of bottleneck areas. 
â€¢ We became much more proficient in performance 

analysis. Future products benefit from this kind of edu 
cation. 

Simulat ing Flow Control  
The second major step in the OSI Express performance 

study was to create a simulation model to aid us in discov 
ering how configurable parameters in the OSI Express stack 
affected performance. The static or path flow analysis that 
was discussed above had yielded best possible throughput 
and delay statistics. In other words, the static analysis had 
given us an idea of what the upper performance bounds 
were, given our code paths. What quickly became apparent 
was that it was quite improbable that we could achieve 
these upper bounds unless the card was configured with 
optimal parameters and all other conditions were perfect. 
Fig. 7 shows the difference in throughput when only one 
parameter (packet size) is varied. 

The reason that packet size plays such a substantial role 
in throughput is that it takes approximately the same 
amount of work to process an 8K packet (the maximum 
packet size allowable by the IEEE 802.4 standard) as it does 
a IK packet. At least this is true if the memory management 
design is optimal for fast throughput. Larger packets gen 
erally require more CPU cycles to process (for memory 
copies, DMA transfers, checksum operation, etc.). How 
ever, the difference in the cycles required to process two 
packets of different sizes is proportionally smaller than the 
difference in the number of bytes transferred. Additionally, 
processors with cache memories can minimize the differ 
ence in the CPU overhead between large and small packets 
because copies and checksum operations are repetitive 
looping functions. 

'Somet imes memory management  des igns are  opt imized for  e f f ic ient  memory use a t  the 
expense both. fast throughput In the OSI Express project, we attempted to optimize for both. 

Transport  Layer  
The OSI transport layer (layer 4) is the layer where the 

packet size is determined. Other transport parameters also 
have values that can dramatically influence system 
throughput and delay. The parameters that govern the flow 
of data from one node to another were the major topics of 
our simulation study. 

The transport layer parameters have significant impact 
on the communication performance of a network node. 
The flow control algorithm in the transport layer is respon 
sible for the dynamic end-to-end pacing of conversation 
between two nodes. Its main purpose is to ensure that one 
node does not send data faster than another node can re 
ceive it. Given two connected nodes, one node will usually 
be able to execute faster than the other. The best throughput 
between these two nodes is achieved when the slowest 
node is kept completely busy. If the flow control algorithm 
allows the slower node to become idle, throughput will be 
lower than its potential maximum. If the flow control al 
gorithm allows too much data to be sent to the slower side 
(usually the receiving side), the slow side will eventually 
be filled to capacity and be unable to accept more data. 
This results in lost data, which must be resent. Resending 
data also causes performance degradation. 

The flow control algorithm usually has a number of pa 
rameters that can be set by the system manager. These 
parameters are available so that the algorithm can be tuned 
to provide the best performance in a specific user environ 
ment. Some of the parameters at the transport layer include 
the transport segment size (the maximum amount of data 
in each packet), the transport window size (the maximum 
number of packets that can be sent at one time), the amount 
of credit to extend to a peer, the frequency of acknowledg 
ment packets, and the length of the retransmission timer. 

Simulat ion Model 
The simulation model of the OSI Express card was writ 

ten in a language called PC Simscript II. 5. It was primarily 
designed to expose and isolate the dynamic elements of 
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the OSI Express system. Therefore, the transport layer, the 
backplane message interface layer (because of the segmen 
tation capability at the backplane), and the CONE scheduler 
were simulated in great detail. The upper layers (ACSE, 
presentation, and session) were not really simulated at all 
because they do very little processing for a data packet. 
Instead the simulation merely "worked" for the amount of 
time that the upper layer headers would typically require 
for processing. 

The simulation model was specifically designed to allow 
a user to vary parameters, getting a performance report at 
the end of each simulation run. The idea was that the 
simulation would help the OSI Express team define which 
parameter values gave the best throughput and delay values 
and why. 

A number of assumptions were made in the simulation 
model that are not necessarily true in the actual OSI Express 
system. The reason for these simplifying assumptions is 
that they streamlined the simulation implementation and 
facilitated the experimentation process. Since the simula 
tion was written to isolate dynamic behavior, details that 
might obscure or complicate the simulation were ignored. 
Although the system representation had been simplified 
extensively, an attempt was made to be meticulous in 
simulating those parts of the real system that have an im 
pact on dynamic behavior on the OSI Express card. To a 
large extent, the art of simulation is knowing what not to 
simulate. 

The following is a list of the major assumptions made 
during the design of the simulation program: 
â€¢ All packets arrive in order and without error. 
â€¢ All data transmissions from the host contain the same 

amount of data for all connections (the amount of that 
data is a parameter). 

â€¢ Since packets are never lost, no retransmission timers 
or AK delay timers are included in the transport simu 
lation. 

â€¢ The two target nodes transmit all data at the highest 
priority level (IEEE 802.4 specifies four priority levels: 
0, 2, 4, and 6). 

â€¢ There is no simulated connect setup or tear-down time. 
The assumption is that connections are fully established 
before the data is sent to the card. 

â€¢ All packets sent onto the simulated network are either 

*AK -  Acknowledgment  packe t  

800000 -r 

600000 -- 

400000 -- 

200000 -- 

data packets or AK/credit packets. None of the routine 
features in the internet protocol are simulated. Con 
sequently, there are no end-system or intermediate-sys 
tem hello packets to contend with. 

â€¢ The packet headers are 80 bytes long. 
â€¢ Card memory is a user-configurable parameter. However, 

the inbound packet data memory is assumed to be half 
of the total data memory. The outbound data packet 
memory is also assumed to be half of the total data mem 
ory. 

â€¢ The host data can be sent to the card faster than the card 
can consume it. Also, on the receiving side, the host can 
consume the data faster than the card can send it. In 
short, the host is assumed to be an infinitely fast source 
and sink. 

â€¢ The maximum speed of the token bus is 10 Mbits/s. An 
assumption is made that the speed with which packet 
data can travel is 1 Mbyte/s. This is because there is 
overhead for the IEEE 802.4 protocol that prevents the 
data packets from traveling much faster. 

Simulat ion Model  Features 
The simulation model has a number of features that in 

crease its usability. The model can be run in either half- 
duplex or full-duplex mode. In half-duplex mode, one of 
the two communicating nodes is a sender and one is the 
receiver. In full-duplex mode, both nodes send and receive 
simultaneously. 

The model has the capability of varying four parameters 
automatically and running a complete simulation for each 
value of the parameters. Each of the four parameters can 
be given a range of values and a step size to vary. Statistics 
are collected for each of the simulation runs and saved in 
a file. 

The model allows the communicating nodes to have a 
number of connections alive at the same time. In this mode, 
the model can calculate statistics for each connection, as 
well as global statistics. 

The model has various debugging levels that can be 
turned on to enable the user to understand better what is 
happening during a simulation run. 

There is a separate default parameter generator program 
that enables the user to specifiy default parameters easily. 
The generator program then creates a default file that is 
used by the simulation program. 

150000 -+- 
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Fig. 7. Throughput versus packet size for a window size of 1 0. 
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Fig.  8 .  Throughput  versus credi t  f requency for  a packet  s ize 
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The simulation model generates and saves a number of 
useful statistics during execution. These are formatted and 
saved in a file for later examination. Some of these statistics 
are: 
â€¢ Throughput in bytes per second 
â€¢ Total simulaton delay in bytes per second 
â€¢ Mean packet delay in milliseconds 
Â» Maximum packet delay in milliseconds 
â€¢ Mean transport-to-transport delay in milliseconds 
â€¢ Mean acknowledge delay in milliseconds 
â€¢ Maximum acknowledge delay in milliseconds 
Â» Average interval time between packets, in milliseconds 
â€¢ Total interval time between packets, in milliseconds 
â€¢ Percentage of CPU idle time 
â€¢ Maximum and minimum queue depths for five system 

queues. 
The simulation model has a very friendly user interface 

to simplify the selection of the system parameters. In addi 
tion, the user interface displays the parameters obtained 
from the default file and allows the user to change them 
if necessary. 

Simulat ion Study Results 
Once the simulation was written and verified (by hours 

of painstaking cross-checking) a number of simulation ex 
periments were run. Time and space prevent describing 
all of the results except the most interesting: what happens 
when the transport window size and the frequency of send 
ing AK/credit packets are varied. 

Figs. 8 and 9 show the impact of varying these two param 
eters in the simulated system. Each of the data points in 
these graphs represents one complete simulation run with 
a particular set of parameter values. To get Fig. 9, the win 
dow size was set to 10 and the packet size fixed at IK 
bytes. For the sake of simplicity, it was assumed that incom 
ing packets were only acknowledged when it was time to 
send more credit (permission for the transmitting node to 
send more packets) to the peer node. The frequency of 
sending credit packets was varied from one to ten. In other 
words, during the first simulation run, the window size 
was ten and the receiving node sent out an AK/credit packet 

160000 -r- 

100000 

1  3  5  7  9  1 1  1 3  1 5  1 7  1 9  2 1  2 3  2 5  2 7  2 9  

P a c k e t s  p e r  A K  

  W i n d o w  =  5  
-  W i n d o w  =  1 0  

W i n d o w  =  2 0  
â€”  â€”  â€”  Window =  30  

Fig.  9.  Throughput  as a funct ion of  window s ize and packets 
per  AK for  a  packet  s ize  o f  1K by tes .  

to the sending node after each packet was received and 
processed. The AK/credit packet acknowledged the packet 
that was received and gave the sending node permission 
to send another. During the next simulation run, the credit 
frequency parameter was set to two. An AK/credit packet 
was therefore sent after two packets had been received by 
the receiving node and processed. In this case the receiving 
node acknowledged reception of two packets and gave per 
mission to send two more. 

As shown above, the best throughput value is achieved 
when the receiving node sends an AK/credit packet every 
sixth packet. This point represents a balance between send 
ing AKs too frequently and not sending them frequently 
enough to keep the system fully pipelined. If too many 
AKs are sent, they effectively increase the CPU overhead 
required to process packets (Fig. 10). That is because the 
number of instructions required to construct and send (and 
receive) AK packets is significant. 

On the other hand, if AK packets are not sent frequently 
enough, the sending node will run out of packets to send 
and will have to wait for an AK before starting to send 
more (the window size limits how many packets can be 
sent without an AK). When the sending side stops sending 
packets (even for a short while), interarrival time between 
incoming packets at the receiving node will, in general, 
increase. 

Dozens of simulation experiments were run during the 
course of the OSI Express project. The flow control param 
eter defaults were set based on the information from the 
simulations. In addition, we learned a great deal about the 
behavior and resulting statistics of the transport stack. 
Some design decisions were changed based on the results 
of the experiments. For example, we decided not to give 
priority to inbound packets by allowing a logical link control 
(LLC) process to execute until all the receive packets were 
processed. We found out to our surprise that the simulated 
throughput dropped sharply when we experimented with 
this design. The reason was that the AK/credit packets were 
being excessively delayed and the queues between the 
transmitting and receiving node were therefore emptying. 

Performance Measurement  
The final challenge of the OSI Express performance proj 

ect was to measure the product, compare the measured 
performance with the estimates, and identify any bottle- 

100 -T- 

=  9 0  - -  

Q. 
O  8 0  - -  

6 0  

R e c e i v e  C P U  

T r a n s m i t  C P U  

2 3 4 5 6 7  

P a c k e t s  p e r  A K  

8 9  1 0  

Fig. 10. CPU ut i l izat ion versus credit  f requency for a packet 
s ize of  1K bytes.  
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neck code modules. Several tools were designed and writ 
ten to help us get real-time performance measurements. 
These tools were basically designed solely for prototype 
measurement, not for field or customer use. In the following 
paragraphs, three tools are briefly described. These tools 
are the real-time procedure tracer, the statistics monitor, 
and the statistics formatter. 
Real-Time Procedure Tracer. This tool consists of a special 
entry and exit macro call that was put after the entry and 
before the exit of every procedure in the OSI Express code. 
Each module in the OSI Express code was assigned a 
hexadecimal number range. The designers of each module 
then assigned an even number within that range to each 
routine in the module. A second value (1 + even number) 
was reserved for the exit macro. These numbers were 
passed as parameters in the macro calls. Both the entry 
and the exit macros caused the passed hexadecimal value 
to be written into a reserved memory location called CIST 
ERN. The idea is that using a logic analyzer (such as the 
HP 64000, HP 1630, or HP 1650), a user can trace writes 
to the CISTERN location and see the procedures being exe 
cuted in real time. The hexadecimal value ranges assigned 
to each module allow the user to limit the values read to 
a specific number range. This way, the user can choose to 
see only the transport layer executing, if desired. 

To make the traces more readable, a formatter program 
was written for HP 64000 trace files. The formatter required 
a file that defined the hexadecimal values for specific pro 
cedures. It then produced very readable formatted traces. 
Fig. 11 is an example of one of these formatted traces. 

The procedure traces were used extensively once inte 
grated OSI Express code measurements could be made. 
These traces allowed us to see how long each module was 
executing in as much detail as we cared to see. Code could 
be quickly tuned and remeasured. In addition, the trace 
macros were optionally compiled, ensuring that they did 
not provide needless overhead in the final product code. 
Statistics Monitor. A second tool that was designed into 

tf call BH_gec_data for Che outbound data 

â€¢f BH_get_data entry 

12.40 uS, net 12.40 uS 

ENTER BH_GET_DATA_p (0x1204) 

ENTER BH_QUEUE_IRS_F_p <0xl25c) 

EXIT BH_QUEUE_IRS_F_p (Oxl25c) gro 

ENTER BH_MAIN_ISR_F_p (0x1290) 

ENTER BH_MPX_F_p (0x1284) 

EXIT BH_MPX_F_p (0x1284) gross 61.60 uS . net 61.60 uS 

ENTER BH_PROCESS_IRS_F_p (Oxl28c) 

ENTER START_REQ_p (0x1274) 

EXIT START_REQ_p (0x1274) gross 38.40 uS . net 38.40 uS 

ENTER START_DMA_READ_p (Oxl24c) 

ENTER END_DMA_READ_p (0x1254) 

EXIT END_DMA_READ_p (0x1254) gross 56.80 uS , net 56.80 uS 

EXIT START_DMA_READ_p (Oxl24c) gross 146 32 uS 

ENTER CONTINUE_REQ_p (Oxl27c) 

ENTER DO_QUAD_FETCH_p (0x1268) 

EXIT DO_QUAD_FETCH_p (0x1268) gross 91.20 uS , 

ENTER DO_DMA_CMD_p (0x1278) 

ENTER DO_CCMD_LINK_FN_p (Oxl26c) 

E X I T  u S  ( O x l 2 6 c )  g r o s s  6 3 . 2 0  u S  ,  n e t  6 3 . 2 0  u S  

EXIT DO_DÂ«A_CMD_p (0x1278) gross 147.00 uS , net 83.80 uS 

EXIT CONTINUE_REQ_p (Oxl27c) gross 313.50 uS , 

ENTER REQ_COMP_OUT_p (0x1270) 

EXIT REQ_COHP_OUT_p (0x1270) gross 33.70 uS , net 

ENTER DO_QUAD_FETCH_p (0x1268) 

EXIT 00_QUAD_FETCH_p (0x1268) gross 16.30 uS . ne 

EXIT BH_PROCESS_IRS_F_p (Oxl28c) gross 709.72 uS . 

ENTER BH_KPX_F_p (0x1284) 

EXIT BHJlPX_F_p (0x1284) gross 18.80 uS , net 18.80 uS 

EXIT BH_MAIN_ISR_F_p (0x1290) gross 853.14 uS . net 63.02 uS 

EXIT BH_GET_DATA p (0x1204) gross 970.84 uS . net 105.30 uS 
* 

* BH_get_data exit 

Fig .  11 .  An example  o f  a  fo rmat ted  p rocedure  t race .  

net 89.52 

st 91.20 uS 

net 75.30 

33.70 

16.30 uS 

et 161.50 

the OSI Express stack was the statistics monitor. A number 
of primitive statistics are kept in the OSI Express code (see 
Fig. 12). In addition, statistics are kept (these optionally 
compiled) about each of five major queues in the OSI Ex 
press system (see Fig. 13). These statistics can be retrieved 
and displayed upon command. The statistics can be 
cleared, read, or read and cleared. The clear command 
clears all of the statistics except for current-value statistics 
such as the current queue depths. 

These statistics made it possible to get real-time through 
put values at at the card level. In addition, the queue statis 
tics provided some troubleshooting capability because cer 
tain queue depths signaled flow control problems. 
Statistics Formatter. The OSI Express statistics formatter 
is a tool designed to allow a user to run a user-level test 
program a number of times automatically, varying OSI Ex 
press parameters each time. The transit statistics are cleared 
at the beginning of each test run and sampled at the end. 
The purpose of this tool was to find the optimal parameter 
set automatically on the working prototype. The simulation 
model had this basic capability, so in effect, we were 
simulating the simulation model. 

Once all of the test program runs have executed, the 
formatter can retrieve the file with the statistical samples 
and display the results in several ways. Fig. 14 is an exam 
ple of one of the types of displays that can be obtained. 
The user now has the opportunity to identify, for example, 
the highest throughput obtained when packet size is varied 
because the test program was repeated for several possible 
packet sizes. 

Performance Results 
After the OSI Express prototype testing had been com 

pleted, final performance measurements were made. Of 
course, numerous performance values are possible, de 
pending on how the card is configured. However, our best- 
case throughput for 8K packets was approximately 600,000 
bytes per second. 

This result reflects numerous redesign, code rewrite, and 
code tuning efforts made by the whole team during the 
entire lab prototype phase of the project. Many mil- 

"Actual ly ,  there are t ransient  star t -up and cool-down pipel in ing ef fects that  tend to distor t  
the sample. To prevent distort ion, the stat ist ics are cleared after the start-up transient has 
d ied out  and sampled before the coof -down t rans ient  begins.  

C u r r e n t  C o u n t e r s  a n d  Q u e u e  D e p t h s  

Bytes Packets 

N u m b e r  o f  O p e n  C o n n e c t i o n s :  
G l o b a l  R e t r a n s m i s s i o n s :  

Frontplane Transmissions to Host:  
Frontplane Transmissions to Network: 
Backplane Transmissions to Host:  
Backplane Transmissions to Network: 

Current  Queue Depths 

Number of  Messages in Backplane Queue ( to Host) :  
Number of  Packets in Frontplane Queue (to Host):  
Number of  Packets in Frontplane Queue ( to Network):  
Number of  Packets in Retransmission Queue: 
Number of  Packets in Transport  Segment Queue ( to Network):  
Number of  Tasks in Scheduler  Queue:  

Throughput 

Fig.  1 2.  Pr imit ive stat ist ics kept in the OSI Express code. 
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Q u e u e  N e e d  
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IEEE 802.4  LAN (10-Mbi t /s )  

B M I  =  B a c k p l a n e  M e s s a g e  I n t e r f a c e  
L L C  =  L o g i c a l  L i n k  C o n t r o l  
M A C  =  M e d i a  A c c e s s  C o n t r o l  
T B C  =  T o k e n  B u s  C o n t r o l l e r  

Fig. 1 3. Locations of the f ive queues in the simulated system 
on which stat ist ics are kept.  

liseconds were cut out of the code path based on informa 
tion uncovered by these investigations. The majority of 
these improvements were made well before most code tun 
ing efforts began. There is no way that the same code re 
ductions could have been made after the code had been 
integrated. 

Conclusion 
Early performance investigation and prediction is vital 

to performance sensitive projects, especially if they are 

F ig .  14 .  One  o f  the  t ypes  o f  d i sp lays  p roduced  by  the  OSI  
Express stat ist ics formatter. 

large and involve a number of design engineers. A large 
amount of very useful data can be retrieved with very little 
investment if it begins early enough in the project and 
continues through code integration. Full performance in 
vestigations should be a part of every product life cycle. 
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The HP OSI  Express Card Sof tware 
Diagnostic Program 
The software diagnostic program is a high-level mnemonic 
debugger.  The structure def in i t ion ut i l i ty isolates the 
d iagnost ic  program f rom compi ler  d i f ferences and data 
def ini t ion changes. 

by Joseph R.  Longo,  Jr .  

APPROPRIATE DIAGNOSTIC AND DEBUGGING 
TOOLS are essential to any successful software or 
hardware development effort. A project as large as 

the HP OSI Express card development effort posed some 
challenging opportunities. Not only was most of the tech 
nology for the card, both software and hardware, still being 
defined, but the target computer line was still under de 
velopment as well. Tools such as the HP 64000-UX micro 
processor development environment and the HP 1650 logic 
analyzer were evaluated to understand what was already 
available. These tools provided features such as single-step 
ping and data tracing and were indispensable for doing 
low-level debugging. However, a much higher-level debug 
ger was also necessary to observe protocol operations and 
system dynamics. Obtaining this information by decipher 
ing screens of hexadecimal data would be very tedious and 
time-consuming. Also, until the card management tools 
were in place much later in the development cycle, there 
would be no means of monitoring the utilization of re 
sources on the card. 

For these reasons, it was decided to pursue the develop 
ment of in-house debugging and diagnostic tools. The fol 
lowing design goals were established: 
â€¢ No existing functions duplicated 
â€¢ Modular design 
â€¢ Evolving feature set 
â€¢ Minimal impact on product performance 
â€¢ Minimal impact on card software size 
â€¢ No additional hardware on card required 
â€¢ No additional coding in product modules required 
â€¢ Can be used when all other debugging hooks are re 

moved. 
The design goals can be summarized as: (Ã) use the lim 

ited available time and engineers to develop new functions 
rather than trying to duplicate features provided elsewhere, 
(2) provide flexibility to accommodate changes in the de 
velopment environment and new requests from the cus 
tomer base, and (3) ensure that nothing special needs to 
be done to use these tools and that their use does not impact 
the product being developed. While these goals may appear 
to be unattainable, their intent was to focus the project so 
that something usable could be provided in a reasonable 
time and the effort would not collapse under its own weight 
by trying to be the last word in diagnostics. The result of 
all this was the development of two modules: the structure 

definition utility, which provides a dictionary of data def 
initions that can be accessed programatically, and the soft 
ware diagnostic program, which is a high-level mnemonic 
debugger that can monitor the resources on the card and 
allow the user to view data from the card in various formats 
(see Fig. 1). 

Structure Definit ion Util i ty 
During the early stages of the development of the card 

software, the definitions of the internal data structures were 
constantly in a state of flux. Any module or program ref 
erencing these data types was constantly being recompiled 
in an effort to keep it up to date. It was quickly recognized 
that it would not be practical or productive if the diagnostic 
tools, test programs, and formatters had to be recreated 
every time a data type changed. Also, at any time in the 
development process there could be different versions of 
protocol or environment modules under test. It would be 
impractical to require that a different version of the diag 
nostic and test programs be used depending on which ver 
sion of a module was being tested. 

A second obstacle in the creation of the diagnostic tools 
had to do with the two compilers that were to be used. 

User 
Terminal  

Software 
Diagnostic 

Program (SOP) 

Data Access 
Library 

Structure 
Definition 

Util i ty (SDU) 

OSI  Express Card 

SDP 
Card 

Process 

Fig .  1  .  Spec ia l  d iagnost ic  and debugg ing too ls  c rea ted fo r  
the  OSI  Express card  deve lopment  pro jec t  cons is ted o f  the  
software diagnost ic program, which includes the data access 
l ibrary, and the structure def ini t ion ut i l i ty.  
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The card code was to be compiled with the 68000 C com 
piler. The diagnostic programs, which resided on the host, 
used the standard UNIX C compiler. The primary difference 
between these two compilers has to do with the way data 
types are aligned and padded. The 68000 compiler aligns 
types such as ints on 2-byte boundaries while the UNIX 
compiler aligns ints on 4-byte boundaries. Therefore, a data 
buffer retrieved from the card could not be interpreted by 
the host program if the same data types were used. These 
differences prevented the host diagnostics from compiling 
with the same C header files as the card code. 

It was obvious that some mechanism was needed to iso 
late the test and debugging programs from both the fluctu 
ations in the data structure declarations and the differences 
in the compilers. The structure definition utility (SDU) was 
developed for this purpose. The SDU is used to create a 
data dictionary containing the C data type definitions. The 
definitions stored in the dictionary can then be accessed 
via standard SDU library routines. When a data type 
changes, the new definition is loaded into the dictionary 
and the engineer can continue testing and debugging with 
out recompiling. 

The SDU consists of three parts: a stand-alone parser/ 
compiler program, sdu. build, which processes the C type 
definitions and creates the data dictionary, the dictionary 
file, which is generated by the sdu. build program, and the 
dictionary interface library, which allows applications to 
access the information stored in the dictionary (Fig. 2). 

When designing the SDU it was necessary to keep in 
mind that regardless of how creative the end product was, 
no one would ever use it if it was too complicated, took 
too long to operate, or required that data be maintained in 
more than one location. Given the number of type defini 
tions, it was especially important that the sdu. build program 
be able to accept standard C include files as input. This 
also meant that the sdu. build parser had to recognize as many 
of the C data type constructs as possible. After these two 
criteria were satisfied the whole process of creating and 
accessing the dictionary still had to remain relatively sim 
ple and fast. 

Input Format 
The input to the SDU parser is a C include file containing 

the C data types, type definitions, and #defines from the 
program header (.h) files. To provide for portability between 
compilers and to simplify the parser design, some minimal 
structure had to be imposed on the input data. The basic 
format for the input data is: 

t ype  spec i f i e r s  
Ã¼ 

t y p e  d e f i n i t i o n s ,  # d e f i n e s ,  a n d  
d a t a  d e f a u l t  v a l u e s  

required even if the specifiers are not entered. While syntax 
is important, the input format is relatively free-form. For 
example, there are no restrictions on the number of state 
ments per line. At least one blank must separate identifiers 
on an input line, but for the most part, separators (blanks, 
tabs, newlines) are ignored. 

All data declarations are defined from the atomic C data 
types (int, char, short, etc.). The alignment and sizes of the 
C basic types are preloaded into the data dictionary. These 
values can be redefined and/or new values added using 
the type specifiers input. The primary reason for redefining 
the basic type values is the use of a different C compiler. 
At least two and possibly three different C compilers were 
expected to be used during the development of the card 
code. The main differences between the compilers were 
the alignment of the data types and the padding of struct/union 
data types. The SDU compiler defaults to the alignment 
requirements of the HP 9000 Series 300 and 68000 C com 
pilers. The syntax for a type specifier entry is: 

t y p e ,  t y p e j e n ,  a l i g n m e n t ,  f o r m a t ;  

Type is an ASCII string representing the name of the type 
specifier to be loaded. Typejen is a decimal value indicating 
the storage requirements of the type specifier in bytes (e.g., 
storage for the C type char is one byte). Alignment is a decimal 
value indicating the byte alignment of the type when it 
appears within a struct/union type declaration. The value is 
in bytes and must be greater than zero. The value is used 
to determine to what boundary (byte, even byte, double 
word, etc.) the type should be aligned. The value is also 
used to determine the padding within the struct type. The 
format field is a single character indicating the default dis 
play form for this data type (x = hexadecimal, d = decimal, 
a = ASCII). 

Variable Defini t ions and Constants 
The C variable definitions and constants are specified in 

the second part of the SDU parser input. The variable def 
initions must be in standard C format as defined in the C 
reference manual.1 Data declarations (e.g., intabc;) and type 

. h  F i l e s  

SDU Dict ionary 
Interface Library 

Application 
Program 

Data 
Dictionary 

The input is divided into two parts: the type specifiers 
and the type declarations. The punctuation denotes the 
beginning and end of input and separates the two sections. 
The type specifiers are optional, but the punctuation is 

UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries. 

Fig. 2. The structure definit ion uti l i ty consists of a stand-alone 
parser/compi ler  program (sdu.bui id j ,  a dict ionary f i le bui l t  by 
the program,  and a  d ic t ionary  in ter face l ib rary .  Input  to  the 
SDU is  a  C inc lude f i le  conta in ing C data  types,  type def in i  
t ions, and #defines from the program header (. t \)  f i les. 
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definitions (typedefs) are accepted as input. Both simple and 
complex (structunion) definitions can be loaded. Constants 
are loaded using the C preprocessor #define statement. The 
constant values can be used in subsequent #define state 
ments or to specify the size of an array in a type definition. 
Application programs can access the #define values once 
the dictionary is created. The SDU compiler will also rec 
ognize C comments (/* */) and some forms of compiler 
directives (#ifdef, #else). 

It is not necessary to define all the variables and constants 
explicitly in the same file as the basic type specifiers. It is 
not even necessary to have them all in a single text file. 
The SDU parser allows the user to specify the name of the 
file or files containing the definitions instead of the defini 
tions themselves. Given the name of the file bracketed by 
percent signs (%name%), the SDU parser will open the 
specified file and load the definitions. This feature allows 
the variable and constant definitions to be used directly 
by the C programs since any special SDU symbols can be 
restricted to the input specification file and do not have 
to be put in with the types. 

Default  Information 
The SDU provides routines that allow applications to 

create data buffers based on definitions loaded in the dic 
tionary. These buffers can then be used by the applications 
for various purposes such as testing, debugging, and vali 
dation. The SDU provides mechanisms for storing default 
values for the data definitions in the dictionary. The default 
values can then be loaded into the data buffers created for 
the applications. The default information is loaded at the 
same time as the data definitions using the format: 

d e f i n i t i o n  n a m e  =  d e f a u l t  v a l u e ;  

The definition must have already been loaded into the 
dictionary. If the definition name is an item within a struct 
or union type then it must be fully qualified. 

Creating the Dictionary 
The data dictionary is created by the sdu. build program 

from the C include files. Depending on the amount of infor 
mation to be processed, the creation of the dictionary can 
be a time-intensive task. So that every application does not 
have to incur this overhead cost each time it wishes to 
access the dictionary, the sdu. build program is run as a stand 
alone program. The sdu. build program must be run whenever 
new data definitions are to be added to a dictionary. Once 
the dictionary is created, the dictionary can be accessed 
by multiple applications. 

Building the dictionary is a two-step process. The first 
step is to create the dictionary in the internal memory of 
the sdu. build program. As the data declarations are read they 
are loaded into the internal tables and data structures of 
the dictionary. The SDU compiler is responsible for reading 
and verifying the input definitions and loading the informa 
tion into the tables. Each #define constant and data declara 
tion will have at least one entry in a table (struct/union data 
types have one entry for each element defined as part of 
the struct/union declaration). Any errors encountered during 
the processing will cause the program to terminate and 

display an appropriate message. The second step is to save 
the table information from the internal memory into some 
thing more accessible by the user applications. Once the 
dictionary has been successfully loaded the memory image 
is written to an HP-UX disk file. The name of this file is 
specified in the run string when the sdu.build program is 
executed. 

Accessing the Dict ionary 
Applications planning to use the data dictionary must 

link with the dictionary interface library. This library con 
tains all the routines for accessing information stored in 
the dictionary. The first library call made by the application 
must be the one to load the dictionary information from 
the disk file into the application's internal memory. The 
application passes the name of the dictionary file to the 
load call. The load routine allocates memory for the dictio 
nary and reads the data into memory. The amount of space 
required was written to a header record in the disk file by 
the build program. The dictionary loaded is now an exact 
copy of the dictionary created by the sdu.build program. 

The load routine performs one more task before the data 
can be accessed by the calling application. The internal 
design of the dictionary requires numerous pointers to link 
various pieces of information together. These pointers, 
which are really just memory addresses, are valid only in 
the original memory space where the dictionary was 
created. Although the system call malloc is used in both the 
build and the load processes, it cannot be guaranteed that 
the memory obtained from the call will be in exactly the 
same address location each time. Therefore, the internal 
pointers must be modified to reflect the location of the data 
in the new address space. 

The pointers are adjusted by comparing the load address 
and the build address (which was stored in the image file). 
The required pointer adjustment is the difference between 
the starting address for the build and the starting address 
of the internal memory for the load. This adjustment value 
(positive or negative) is added to all pointers in the internal 
dictionary structures. When the pointers are adjusted the 
load process is complete and the dictionary is ready for 
use by the application. 

Deve lop ing  sdu .bu i ld  
Developing a program that can recognize C-language data 

declarations in all forms is akin to writing a mini version 
of the C compiler. Development of the SDU parser/compiler 
program sdu.build would have been a formidable task had 
it not been for the tools yace and lex available under the 
HP-UX operating system.2 Yace is a generalized tool for 
describing input to programs; it imposes a structure on the 
input and then provides a framework in which to develop 
routines to handle the input as it is recognized. The parser 
generated from yace organizes the input according to the 
specified structure rules to determine if the data is valid. 
Lex is used to generate the lexical analyzer, which assembles 
the input stream into identifiable items known as tokens, 
which are then passed to the parser. Lex has its own set of 
rules called regular expressions,3 which define the input 
tokens. Regular expressions are patterns against which the 
input is compared; a match represents a recognized token. 
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The parser and lexical analyzer are combined to create the 
SDU compiler known as sdu. build. 

The first step in using yace is to define the set of rules, 
or grammar, for the input. A grammar specifies the syntactic 
structure of a language, with the language in this case being 
the C data declarations. The syntax is used to determine 
whether a sequence of words (or tokens) is in the language. 
Describing the syntax of a language is not as hard as it 
sounds. A notation known as Backus-Naur form (BNF)4 
already exists for specifying the syntax of a language. Con 
verting the C data declarations to BNF was simplified by 
the fact that a partial grammar already existed.3 Elements 
not supported by the SDU were eliminated from the gram 
mar. 

The grammar consists of a sequence of rules. A rule is 
written with a left-hand side and a right-hand side sepa 
rated by a colon. The left-hand side consists of a single 
unique symbol called a nonterminal. The right-hand side 
consists of a sequence of zero or more terminals and non 
terminals sometimes called a formulation. One or more 
formulations may appear on the right-hand side of a rule. 
A rule must exist for every nonterminal symbol. Terminal 
symbols, which are synonymous with tokens, are not de 
fined further in the grammar but are returned from the 
lexical analyzer. Examples of grammar rules used for de 
scribing some simplified mathematical expressions are: 

e x p r e s s i o n  :  p r i m a r y  
' ( '  expression ' ) '  

|  ' - ' e x p r e s s i o n  
|  exp ress ion  '  +  '  exp ress ion  
|  exp ress ion  ' - '  exp ress ion  
|  exp ress ion  ' * '  exp ress ion  
|  exp ress ion  ' / '  exp ress ion  

p r i m a r y  :  i d e n t i f i e r  
|  c o n s t a n t  

The symbols expression and primary are nonterminals while 
identifier and constant are terminals. Values enclosed in single 
quotes are literals and must be recognized from the input 
stream along with the terminals. The vertical bar (|) means 
"or" and is used to combine formulations for the same 
nonterminal symbol. The nonterminal symbol on the left- 
hand side of the first rule is called the start symbol. This 
symbol represents the most general structure defined by 
the grammar rules and is used to denote the language that 
the grammar describes. 

Once the grammar is defined in BNF, it is a very simple 
process to convert it to a form that is acceptable to yace. 
Because terminals and nonterminals look alike, yace re 
quires terminals to be defined using the %token statement 
in a declarations section ahead of the grammar. Any gram 
mar that involves arithmetic expressions must define the 
precedence and associativity of the operators in the decla 
rations section to avoid parsing conflicts. Some additional 
punctuation, such as semicolons ( at the end of each gram 
mar rule, and double percent signs (%%) to separate the 
declarations section from the grammar, must also be added 
before the file can be processed by yace. With these modifi 
cations the specifications can now be turned into a C pro 

gram by yace that will parse an input stream based on the 
grammar rules. 

The function of the lexical analyzer is to read the input 
stream a character at a time and assemble tokens from the 
unstructured data. Tokens can be anything from operators 
to reserved words to user-defined constants and identifiers. 
Separating the tokens can be any number of white-space 
characters (blanks, tabs, and line separators), which are 
typically ignored. The most time-consuming part of creat 
ing the lexical analyzer is defining the regular expressions, 
or patterns, which are used to recognize the input tokens. 
The patterns must be general enough to recognize all forms 
of the tokens and yet be specific enough to exclude tokens 
that are not of the desired class. The syntax for defining 
regular expressions is similar to the pattern matching fea 
tures found in most editors. A pattern to match C identifiers 
might look like: 

[ A  -  Z a  -  z _ ] [ A  -  Z a  -  z O  -  9 _ ]  

C identifiers start with a letter or underscore followed 
by an In number of letters, digits, or underscores. In 
the case where a token matches more than one pattern, lex 
attempts to resolve the conflict by first choosing the pattern 
that represents the longest possible input string, and then, 
if the conflict still exists, by choosing the pattern that is 
listed first. Once a pattern is matched, lex executes any 
action associated with the pattern. Actions can be specified 
along with the patterns; they consist of one or more lines 
of C code that perform additional processing on the tokens. 
For example, when an identifier is recognized it can be a 
user-defined value or a C reserved word such as typedef or 
struct. The action associated with the identifier pattern can 
be used to search a table of reserved words to determine 
the type of identifier found. This information can then be 
returned to the parser along with the token. 

Using the lexical analyzer and the parser as just de 
scribed, we now have a program that will read and validate 
the input data. There is still one more step before this 
program can be used to create the data dictionary. Now 
that we know the information is acceptable we have to do 
something with it. This requires going back to the specifi 
cations for yace and adding actions for each grammar rule. 
The actions consist of one or more C statements that are 
performed each time a rule is recognized. Unlike the lex 
actions, these actions may return values that can be accessed 
by other actions. They can also access values returned by 
the lexical analyzer for tokens. In the sdu. build program, the 
purpose of the yace actions is to load the C data declarations 
into the internal structures of the data dictionary. With the 
addition of the yace actions the sdu. build program is now 
complete. 

Software Diagnost ic  Program 
The software diagnostic program (SDP) is an interactive 

application program that runs under the HP-UX operating 
system on HP 9000 Series 800 computers. It provides diag 
nostic and debugging features for the software downloaded 
to the OSI Express card. The primary function of the diag 
nostic program is to provide a means for dynamically 
accessing data structures on the card and then displaying 
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the data in an easily readable format. The SDP also allows 
the user to monitor certain aspects of the card's operation 
and to gather and report performance related statistics. 
Some of the features provided include: 
â€¢ Dynamic access to card-resident data structures 
â€¢ Data formatting capabilities 
â€¢ Single-character commands 
â€¢ Statistical displays 
â€¢ Mnemonic access to global symbols 
â€¢ Per-path state information displays 
â€¢ Print and log functions 
â€¢ Breakpoints, traps, and suspend function 
â€¢ Card death display 
â€¢ Dumpfile access. 

The diagnostic program consists of two primary modules : 
the data access routines and the user interface module. The 
access routines provide the mechanisms to read and write 
information between the application and the card or the 
dumpfile. The user interface module handles all the in 
teractions with the user, makes the necessary access routine 
calls to read or write data, and does the formatting and 
displaying of information to the terminal screen. The user 
interface and the data access routines were developed in 
a modular fashion with a documented interface between 
the two. While the library routines were originally intended 
for use only by the user interface module, the interface is 
designed to allow other applications access to the func 
tions. 

Data Access Routines 
The data access routines provide the mechanisms for 

reading and writing information between the host applica 
tion and the card or the dumpfile. The data access routines 
consist of three major components: the host-resident library 
routines, the dumpfile access module, and the card-resi 
dent process. The library is a well-defined set of calls that 
provide the application interface to the various data access 
operations. The library routines do all the error checking 
on the call parameters and then route the request to either 
the card process or the dumpfile access module. The library 
routines decode any received responses and return the 
appropriate data and status information back to the host 
application program. The most important service provided 
by the library routines is providing a transparent interface 
to the data. The same library calls are used to access both 
the dumpfile and the card. 

The card process is downloaded to the card along with 
the networking software. It receives messages from the host 
library via an established communication channel and then 
performs the requested operation on the card. Status infor 
mation and any data retrieved are returned to the host via 
the same communication channel. For the card process to 
be able to carry out its duties, it must operate independently 
from the networking software and it must not rely on any 
services provided through CONE (common OSI networking 
environment). The process must also be able to interrupt 
the networking operations when necessary, and be able to 
operate when the networking software has died. Most of 
this independence is achieved by communicating directly 
with the backplane handler (on the card) and the driver 
(from the host). This interface bypasses most of the standard 

communication paths used by the networking software. 
The card process manages all its own data buffers and has 
no dependencies on external data structures. Also, the card 
process is designed to operate at a higher interrupt level 
than the network protocols. This allows the diagnostic 
module to gain control of the card processor when neces 
sary. 

In some debugging situations it is not always possible 
or practical to access the OSI Express card directly. During 
development, for example, if the card died abnormally the 
developer might not be able to get to the problem for some 
time. Rather than tie up the hardware for an extended 
period of time or attempt to try to reproduce the problem 
at a later time it is often better to save the card image and 
attempt to diagnose the problem off-line. The facility exists 
for dumping the card image to a disk file. However, most 
engineers prefer something other than digging through 
stacks of hexadecimal listings. In fact, the preferred method 
is to use the same debugging tool on both the card and the 
dumpfile. For this reason, the library routines provide ac 
cess to both the card and the dumpfile, the only change 
being the parameters that are passed to the call that initiates 
the connection. Once the connection is established, card 
and dumpfile operations are identical, with the exception 
that write operations are not allowed to the dumpfile. What 
is going on is completely transparent to the user sitting at 
the terminal. 

User Interface 
When developing the user interface it was important to 

keep in mind some basic concepts. First, the users of the 
diagnostic program would be in the process of learning 
many new debugging tools such as the symbolic debuggers 
on the HP 9000 Series 300 (cdb) and 800 (xdb) and the HP 
64000-UX development environment at the same time. It 
was important to keep the interface simple and the number 
of special keys to a minimum so as not to make the learning 
curve too long or steep. Also, where possible, functions or 
data input operations should be handled in the same way 
as the corresponding operations in the other debuggers. 
Something as simple as entering numeric information 
should not require users to learn two different formats. 
Second, the development time for providing a useful de 
bugging tool required that the complexity of the interface 
be kept to a minimum so the functionality would be avail 
able on time. 

When the diagnostic is initially invoked the user is pre 
sented with a menu listing the major functional areas avail 
able, such as resource utilization or data retrieval. Sub 
menus may be displayed detailing the operations available 
within a particular functional area depending on the selec 
tion on the main menu. Once a specific operation has been 
selected, the appropriate screen is displayed containing 
any data retrieved from the card and a list of commands 
available for that display. 

The user interface has a two-tiered command structure 
consisting of global and local commands. Both global and 
local commands are typically single keyboard characters 
which are acted on as soon as they are typed (Return is not 
required). Global commands are active for every display 
within the program and can be entered whenever a com- 
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DISPLAY: l=memory 2=cast 3=struct 4=path states 5=card info (+)=more 

Fig .  3 .  Raw- form d isp lay  o f  da ta  
retr ieved from the card. 

mand is expected as input. Some examples of global com 
mands include: help (?), quit (Q), shell escape (!), and main 
menu (M). Local commands are specific to the display with 
which they are associated and are only available when that 
display is current (appearing on the terminal). The local 
commands for a particular display are shown at the bottom 
of the terminal screen. Local commands perform operations 
such as reread statistics, reformat data, and retrieve a global 
data structure from the card. While global commands are 
unique for the entire program the local commands are 
unique only within the associated display. The same 
keyboard character may invoke entirely different functions 
in different displays. 

The software diagnostic uses the HP-UX curses5 screen 
control package to create displays and handle all interac 
tions with the terminal. Curses is designed to use the termi 
nal screen control and display capabilities. Briefly, curses 
uses data structures called windows to collect the data to 
be displayed. The application program writes the data to 
be displayed to the current window and then makes the 
appropriate curses calls to transfer the window to the termi 
nal screen. The primary benefit of using curses is that it 
relieves the application of the overhead of dealing with 

different terminal types and cursor movements. It also 
minimizes the amount of information that must be redis 
played on the screen by only transmitting the text informa 
tion that has changed from the previous display. 

Data Access Operat ions 
The data access operations are all functions and com 

mands for accessing, formatting, and manipulating infor 
mation from the card. As with most debuggers, the ability 
to view data is one of the most frequently used. Data re 
trieved from the card can be displayed in two forms: raw 
and cast. In raw form (Fig. 3) the data is displayed in col 
umns of four-byte integers. The first column is the RAM 
address of the first byte of data in each row. The address 
and data values are hexadecimal. The right two screen 
columns contain the ASCII representation of each byte of 
data in the row if it is printable. If the byte is not a printable 
character then a period is shown as a placeholder. The user 
also has the option to change the data format from hexadec 
imal to decimal and from four-byte integers to columns of 
two-byte words. The NEXT and PREVIOUS functions can be 
used to page through memory from the initial display ad 
dress. 

memory: OOSOOOOOh - 009fffffh 

0x834338 bmi_globals_t - struct ( 

mod_globs = struct { 

valid_drain_list = 0; 

module_id = Oxl; 

trace_mask â€” 0 ; 
log_mask = OxeOOOOOOO; 

diag_mask = 0 ; 
mod_glob_stats - struct ( 

item_ptr = 0 ; 
item_size = 0; 

) ; 
canonical_addr - 24585; 

path_report_pid = "(" (040); 

nm_req_rtn = Ox846al4; 
nm_event_rtn = Ox846al4; 

) ; 
proto_globs = struct { 

sap_t_addr = 0; 

Press Return to continue, SPACE to stop 

estate: RUNNING 

Fig.  4 .  Cast - form d isp lay  o f  data  
retr ieved from the card.  
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The second form of data formatting is the cast function. 
The data retrieved from the card can be displayed based 
on a specified C data type (Fig. 4). When the cast function 
is selected the user is prompted for the RAM address from 
which to retrieve the information and the name of a data 
type, which will define the formatting of the data. To use 
the cast function the specified data type must be in the 
SOU data dictionary and the dictionary must have been 
loaded into the user interface module. The data type is 
displayed and the information is formatted based on the 
data type. Data can be reformatted simply by specifying a 
different data type. If the data type exceeds a single screen 
the user is allowed to page through the displays. The user 
can switch between the raw and cast displays without hav 
ing to reread the data from the card. 

Address values can be entered in either numeric or 
mnemonic forms. Numeric addresses can be either hexa 
decimal, decimal, or octal values. Mnemonic addresses are 
entered by typing the name of a global variable or proce 
dure. C variables and procedure names must be preceded 
by an underbar (_) while assembly variables and labels may 
or may not require an underbar depending on how they 
are declared in the code. The address value is obtained by 
searching the linker symbol file (.L), which corresponds to 
the download file on the OSI Express card. In addition to 
other information, the symbol file contains global symbol 
records,6 which provide the names of global symbols (vari 
ables and procedures) and their relocated addresses. The 
address stored in the file for the symbol entered is then 
used to retrieve the information from the card. Use of the 
mnemonic address is recommended whenever possible. 
Not only does it eliminate the need to look up the address 
of the variable in the first place, it ensures that the address 
will be correct regardless of the version of the card software 
being accessed. 

One level of addressing indirection can be accessed by 
preceding the address values, either numeric or mnemonic, 
by an asterisk (*). The address location on the card is then 
interpreted as containing the address of the data to be re 
trieved. In other words, the address specified is really a 
pointer to the data rather than the data itself. All address 
values, either direct or indirect, are checked to ensure that 

they are in the range of accessible addresses on the card. 
Both read access and write access are allowed to RAM 
memory, while only read access is permitted to EEPROM 
addresses. 

Card Death Display 
Whenever the OSI Express card dies abnormally, either 

from a software exception (address error, divide by zero, 
etc.) or an internal error (disaster log), or is halted from 
the host, a fatal error routine is invoked on the card to save 
the state of the card processors and record the error infor 
mation at the time the card halted. The routine also sends 
an error indication to the host which reports that the card 
has died. During development and testing these situations 
were common. At such times, the process of gathering the 
data to determine why the error occurred can be time-con 
suming and involved. The type of error and even the size 
of the RAM memory can influence the location of the infor 
mation to be read. Once the error is known a text file must 
still be searched to determine the meaning of the error. 

The card death information display attempts to provide 
on one screen all the error information necessary to deter 
mine where and possibly why the card died. The diagnostic 
program gathers the information concerning the card death 
from the various memory locations and, after analyzing the 
data, displays on the screen the values that relate to the 
type of death that occurred (Fig. 5). The processor registers, 
including the stack pointer, the program counter, the status 
register, and the data and address registers, are retrieved 
and displayed in the center of the screen. When a card 
module dies gracefully it stores information in a disaster 
record. This information is retrieved, if available, and dis 
played at the bottom of the screen. The program also 
evaluates the error and supplies an apparent reason, or best 
guess, as to why the card died. On this screen the user 
should have enough data to understand why the card died 
and be able to locate any additional information. 

Resource Util ization 
The displays available under the resource utilization 

selection are intended to provide information on the oper 
ational state of the various modules and resources on the 

memory: OOSOOOOOh - 009fffffh estate: RUNNING 

Type of Death: cmd.stop issued 

Type of Error: 0 

Apparent Reason: Card stopped from host 

Subsys Id: 0 

Location : 0 

PROCESSOR REGISTERS ( SF_cmds top_CPU_regs ) 

Stack Ptr: 009ff5bc Program Ctr: 00849844 Status Reg: 2004 

DO-D7 00000000 00002004 OOOOOOdf 00001a88 008210e8 009fOOOO 00820000 00000600 

AO-A7 00400018 0083a066 00208c68 00833188 00008090 00200000 00203c42 009ff5bc 

DISASTER RECORD 

Current Module: 0 

Current Region: 0 

F l a g s  :  0  

ISO 

Myentry Pointer: 0 

Event Pointer : 0 

Event Length : 0 

D I S P L A Y :  1 - m e m o r y  2 - c a s t  3 - s t r u c t  4 = p a t h  s t a t e s  5 - c a r d  i n f o  ( + ) - m o r e  Fig .  5 .  Card  dea th  d isp lay .  

FEBRUARY 1990  HEWLETT-PACKARD JOURNAL 65  

© Copr. 1949-1998 Hewlett-Packard Co.



Flow Control estate: RUNNING 

CONNECTIONS 

Active Inbound : 1 

Active Outbound: 1 

Active Retrans : 1 

THROUGHPUT 

Card CPU Packets In : 

Card CPU Packets Out: 

Throughput Bytes In : 

Card Memory Out : 

Card Throughput Bytes: 0 

Actual 

0 

0 

0 

0 

ERAS 

Era Boundaries : 457 

Eras Memory Tight: 0 

Eras CPU Tight : 0 

E r a  P e r i o d  :  1 0 0 0  

Target 

1000 
1000 
1000000 
500000000 

Scaled 

1000 
1000 

1000000 
500000000 

MEMORY MANAGER 

Available BLOCKS on FREE LIST : 52 

Available LARGE buffer segments: 313 

Available SMALL buffer segments: 1581 

Available TINY buffer segments: 2 

'=Read stats l=Read and Clear 2=Clear and Read 

F i g .  6 .  R e s o u r c e  u t i l i z a t i o n  d i s  
p l ay  show ing  f l ow  con t ro l  s t a t i s  
tics. 

OSI Express card. For the most part, the displays contain 
various combinations of statistics gathered from the card 
that can be monitored to determine such things as 
throughput, flow control (Fig. 6), and memory utilization 
(Fig. 7). There are basically two types of statistics that are 
maintained; cumulative and actual. The cumulative statis 
tics represent values that have accumulated over a time 
period. Examples of cumulative statistics include front- 
plane packets transmitted, number of global retransmis 
sions, and backplane bytes transferred. These statistics can 
be cleared to zero by the user. Actual statistics reflect the 
conditions as they currently exist on the card. Number of 
open connections, available buffer manager memory, and 
scheduler queue depth are examples of actual statistics. 
Actual statistics cannot be cleared. 

Trap/Breakpoint /Suspend 
When attempting to debug problems on the card it is 

often necessary to stop the processing on the card to 
examine the current state of the processor or a global vari 

able before continuing. The diagnostic program provides 
three mechanisms for stopping the card: breakpoints, traps, 
and suspend. 

The breakpoint feature is similar in implementation to 
breakpoints in other debuggers. The user specifies the ad 
dress of the instruction on the card where the breakpoint 
should be set. When that location is reached in the process 
ing stream the card is stopped and a message is sent to the 
host application, which notifies the user. The card remains 
stopped until the user tells it to continue. The card then 
resumes processing from the instruction at the breakpoint 
location. 

Traps are basically predefined breakpoints hardcoded in 
the networking software that can be turned on and off as 
needed. The locations of the trap calls are determined by 
the code developers and can be anywhere in the executable 
code. When a trap is encountered a diagnostic procedure 
on the card is called. The diagnostic procedure checks the 
trap type with a global mask to determine whether this 
trap is on or off. The trap type is one of the parameters 

B  i f f e r  M a n a g e r  U t i l i z a t i o n  e s t a t e :  R U N N I N G  

T o t a l  M e m o r y  ( b y t e s )  
A v a i l a b l e  M e m o r y  
A v a i l a b l e  P e r c e n t  

1646544  
1430312 
86 

A v a i l a b l e  B L O C K S  o n  F R E E  L I S T  :  5 2  
A v a i l a b l e  T I N Y  b u f f e r  s e g m e n t s :  2  
A v a i l a b l e  S M A L L  b u f f e r  s e g m e n t s :  1 5 8 1  
A v a i l a b l e  L A R G E  b u f f e r  s e g m e n t s :  3 1 3  

POOL MANAGER 
N u m b e r  o f  s e g m e n t s  :  
O b j e c t s  p e r  s e g m e n t :  
O b j e c t s  i n  u s e  :  
O b j e c t  s i z e  ( b y t e s )  :  

S u b t a s k e r  Q u e u e  D e p t h  :  0  
L L C  I n b o u n d  Q u e u e  D e p t h  :  0  

' '=Read stats 

segment size: 220 

segment size: 480 

segment size: 2064 

F i g .  7 .  R e s o u r c e  u t i l i z a t i o n  d i s  
p lay  show ing  memory  u t i l i za t i on  
statistics. 
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passed on the trap call and is defined by the code developer. 
The global mask is configurable from the user interface 
module. If the trap is off then the call returns and the code 
continues without any break. If the trap is on then the card 
is stopped and a message is sent to the host application. 
Again, the card remains stopped until the user tells it to 
continue. Processing resumes from the instruction after the 
trap call. 

The suspend operation gives the user the ability to stop 
the card at any moment in time. This is a global command 
issued from the user interface. When the request is received 
by the card process a routine is invoked that interrupts the 
networking protocols and places the card in an idle loop. 
The card timer manager interrupts are also suppressed by 
this routine. The suspend will remain in effect until a re 
sume command is issued by the user. The purpose of the 
suspend function is to give the user the opportunity to take 
a quick look around without having data change or move 
before it can be examined. 

Summary 
The success of these modules is evidenced by their accep 

tance as the tools of choice for much of the debugging, 
diagnostic, and testing efforts. The use of these tools signif 
icantly reduced the time needed to isolate many of the 
defects encountered in the card software. The statistical 

displays provided valuable information on throughput and 
flow control early enough in the development cycle to 
allow time to make any necessary adjustments. 

Acknowledgments 
The following individuals have contributed to the suc 

cess of these tools through their work on either the design 
or the coding of certain functions: Gerry Claflin, Steve 
Dean, John Nivinski, and Chuck Black. Also, I would espe 
cially like to mention David Ching, who provided the 
routines for processing the linker symbol file, and Chwee 
Kong Quek for his work on the dumpfile access module. 

References 
1. B.W. Kernighan and D.M. Ritchie, The C Programming Lan 
guage, Prentice-Hall, 1978. 
2. HP-UX Concepts and Tutorials, Volume 3: Programming Envi 
ronment, Hewlett-Packard Company, 1986. 
3. A.V. Aho and J.D. Ullman, Principles of Compiler Design, Ad- 
dison-Wesley, 1979. 
4. A.T. Schreinerand H.G. Friedman, Jr., Introduction to Compiler 
Construction with UNIX, Prentice-Hall, 1985. 
5. HP-UX Concepts and Tutorials, Volume 4: Device I/O and User 
Interfacing, Hewlett-Packard Company, 1985. 
6. File Format Reference for the HP 64000-UX Microprocessor 
Development Environment, Hewlett-Packard Company, 1987. 

Support  Features of  the HP OSI  Express 
Card 
The HP OSI Express card offers event logging and tracing 
to faci l i tate troubleshoot ing in mult ivendor networks. 

by Jayesh K.  Shah and Char les L .  Hamer 

TODAY'S STATE-OF-THE-ART automated factories 
require the seamless interaction of systems and de 
vices supplied by a diverse set of vendors. To manage 

this complex environment effectively and keep it operating 
smoothly, users must be able to resolve problems quickly. 
The HP OSI Express card incorporates several powerful 
new features to aid the troubleshooter. This article high 
lights the support features of the HP OSI Express card and 
illustrates their use in two troubleshooting scenarios. 

Architecture Overview 
The support architecture of the HP OSI Express card was 

an important consideration since the development of OSI 
protocols was a new area of endeavor for HP as well as for 
other computer companies. Numerous communication 
problems with other OSI implementations were expected. 

Therefore, a superior set of diagnostic capabilities was 
needed to resolve problems quickly in an I/O card environ 
ment. To achieve this functionality it was decided to extend 
the host's own nodal management facilities to include the 
HP OSI Express card. This design provides a single nodal 
management mechanism for event logging and protocol 
tracing for both host and card modules and provides the 
user with several benefits. The user does not have to be 
concerned whether a layer, module, or service resides in 
the host or on the card. The same set of tools with the same 
capabilities can be used to manage all aspects of the prod 
uct. In addition, the trace and log output from both host- 
and card-based modules are identical in format because they 
share a common header and terminology for describing the 
severity of an error or the type of message being traced. 

The OSÃ Express support architecture is shown in Fig. 
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1. The numbered arrows show the initial flow of control 
and information to enable a log class (logging severity level) 
and then to send log information from a card-based layer 
to the file system. Log classes are controlled by the user 
via the nodal management applications osiconfig and osicon- 
trol. When the user enters a command to enable a particular 
log class in a particular layer, a request is passed by the 
nodal management application to the trace/log facility, 
which validates the request and ensures that various trace/ 
log resources have been allocated. The request is then 
passed to subsystem management services (SMS), which 
provides facilities that allow the user to access management 
services (parameter manipulation, statistics collection, 
status, and control) and sends the request to card manage 
ment services (CMS). CMS, which is the card-based counter 
part of SMS, provides nodal and network management ser 
vices to both the host-based management applications and 
the card-based protocol and system modules. After receiv 
ing the request from SMS, CMS forwards the request to the 
appropriate protocol layer or system module. 

When an event that must be logged occurs in a card-based 
protocol layer, the event is passed from the protocol stack 
to CMS which communicates through the kernel with the 
log daemon. The log daemon receives the event (log) mes 
sages from the OSI Express card, obtains the system time 
(timestamps the message) and formats a log call to the host 
trace/log facility. Unformatted log messages are then writ 
ten to the file system. When the user reads the log file, the 

trace/log formatter osidump is used. Osidump writes formatted 
log entries to the log file or terminal. 

Event Logging 
Logging is used to record abnormal or unusual network 

ing events such as the receipt of an inbound packet with 
invalid protocol information (remote protocol error) or a 
remote system's refusal to accept a connect request. This 
is different from tracing. Tracing is used to record all infor 
mation of a particular type or types from one or more layers 
or modules. 

Log Headers 
Log (and trace) messages have two parts: the header part 

and the data part. The header consists of the first eight 
lines (see Fig. 2). It includes the timestamp and other iden 
tifiers. The contents of the header are very important be 
cause the data in the header usually determines the format 
ting capabilities of the trace/log formatter. The data portion 
of the message that follows the header contains the descrip 
tion of the event (error message text). 

One of the more important fields in the header is the log 
class. This is the severity of the event being logged. When 
logging is enabled the severity can be selected by the user. 
The user can choose to ignore event messages that are by 
nature informational, but when problems occur the user 
can modify the log class to obtain informational messages. 
Log messages have four classes of severity: disaster, error, 
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warning, and informational. Disaster class messages are 
logged when a condition occurs that could jeopardize the 
integrity of the system or network. Discovering that another 
system on the network is using the identical NSAP address 
is one example of a disaster class event. Once a disaster 
event occurs, the event is logged and the OSI Express card 
is taken off-line. The next lower event classification is error 
class. Errors are events that cause a user application to fail 
or take extra steps to recover. This is the default log class 
for most of the product's layers or modules. The definition 
of an error class event put the additional burden on the 
OSI Express card software developers of understanding the 
end result of an event. It could only be classified as an 
error once it was understood that it would adversely impact 
a user application. The expiration of one connection's 
transport inactivity timer is an example of an error class 
event. The error class designation is not as significant for 
what is included as an error as it is for what is excluded 
as an error. The error class definition prevents events that 
are interesting but not a problem (from the application 
point of view) from being logged. This not only saves disk 

space but frees the user from having to consider events 
that do not affect applications. Warning and informational 
class events are the next-lower-severity log classes. Warn 
ing events such as "Destination NSAP Unreachable," 
which impacts the network layer, or informational events 
such as receipt of a duplicate connection request, which 
impacts the transport layer, have no impact on user appli 
cations except for time loss. These events are probably 
most useful for performance analysis. 

Two fields in the header provide connection information: 
the connection identifier (CID) and the path identifier (path 
ID). The CID is used by host software to reference a connec 
tion and is returned to the user. The path ID identifies a 
specific communication path on the OSI Express card and 
thus serves the same purpose in the card environment as 
the CID does in the host environment. From a troubleshoot 
ing perspective the path ID is very useful when problems 
occur on inbound connection requests that fail before 
reaching the host. In this situation, a CID will not exist 
since the request does not reach connection management 
and hence a CID is not issued. 

F i g .  2 .  A .  f o r m a t t e d  r e m o t e  p r o  
tocol error log message . There are 

; :  t h e  h e a d e r  a n d  t h e  
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Another field in the header and one of the most signifi 
cant contributions to the supportability of this product is 
the log instance. The log instance is an identifier that 
threads log messages together. When a module first detects 
an error, it obtains a new unique log instance identifier 
and logs the event. The log instance is then passed with 
the error to the calling entity. If the calling entity also logs 
an error as a result of processing the error it receives, it 
logs the error as well as the log instance passed to it. The 
calling entity then returns the log instance to its caller. In 
this manner, the log instance is propagated all the way up 
to the user application. Log events with the same log in 
stance are related. The earliest event with the same log 
instance is the root of the problem. Without a log instance 
mechanism, a user might think that several errors had oc 
curred when in fact only one had occurred. Once the error 
is returned to the user application the log instance is avail 
able via a special function call to the service interface. 
Thus, the log instance provides an audit trail from the 
module that first detects an error all the way back to the 
user application. 

Other fields in the header of interest to users include the 
user identifier (UID), and the process identifier (PID). The 
UID is the HP-UX user identifier of the user that created 
the connection. The PID is the identifier of the process that 
created the connection. 

Error Messages 
Special attention was focused on the content of error 

messages. All error messages include the problem category, 
the cause of the problem, and the corrective action recom 
mended to resolve the problem. At all points in the code 
where an error might be logged, the protocol developer had 
to resolve the problem and not merely report it. It was also 
generally agreed to return any helpful information that was 
available to the user that would aid problem resolution. 
For this reason the session state vector is appended to the 
error text in Fig. 2. 

The product troubleshooting guide is tightly coupled to 
the error messages. In Fig. 2, for example, the user is re 
ferred to troubletree Card_04 in the troubleshooting guide. 
Card_04 is a troubleshooting procedure designed to lead 
the user through the process of resolving a remote protocol 
error. The technique of referring to a specific troubleshoot 
ing procedure in the troubleshooting manual is used when 
the resolution procedure is longer than what could easily 
be described in a log message. 

In addition, since usability was of great concern, we 
wanted to avoid terse log messages that required interpret 
ing to understand what transpired. Therefore, error mes 
sages were reviewed and reworked to ensure that the text 
was clear. As a result of the efforts to make error messages 
more usable, an error messages manual was not required 
as part of the product's documentation. 

CMS Informat ional  Log 
Another feature designed to aid troubleshooting is the 

CMS informational log message. Recall that CMS is used 
by the protocol stack and system modules to log event 
messages and trace protocol and system module activity. 
When CMS receives a request to log a message it checks 

to see if it has logged a message on that path before. If it 
has, it just performs the log or trace task requested by the 
calling software module. If it has not logged a message on 
that path before, it logs a CMS informational message and 
then logs the message requested by the calling software 
module. The informational message logged by CMS in 
cludes as much of both the local and remote applications' 
presentation addresses as is known. An application's pre 
sentation address is also often referred to as its PST-N 
selectors. This information is logged in the data portion of 
the log message and is especially useful for remotely in 
itiated connections as is typical on server nodes. Now, 
when an error occurs, information is available that provides 
the presentation addresses of the affected applications. 

A Troubleshoot ing Scenar io 
Two sample scenarios will illustrate the use of the trou 

bleshooting features described above. Troubleshooting 
scenario I is shown in Fig. 3. Assume that user application 
1 (UAl), an HP MMS (Manufacturing Message Service) 
client, on node A wants to communicate with user appli 
cation 2 (UA2) on node B. Furthermore, assume that UAl's 
connect request to UA2 fails because UA2 has a different 
presentation address from the one UAl is trying to com 
municate with. This can occur when the same presentation 
address is maintained in two separate locations. For exam 
ple, a shop-floor-device OSI implementation may not pro 
vide a directory service user agent for directory access. 
Instead, it may locally manage presentation addresses, 
thereby providing an opportunity for address inconsis 
tency. 

In Fig. 3 the dotted line represents the SAPs (service 
access points] that have been activated by UA2 to receive 
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requests from MMS client applications. UAl obtains the 
PST-N selectors for UA2 and sends an mm_connect request 
to UA2. When the connect request is received by the trans 
port layer on node B, the transport layer finds that the 
destination TSAP (transport service access point) is not in 
its table and rejects the request. The transport layer on 
node B rejects the connect request by sending a disconnect 
request to the transport layer on node A. The transport 
layer on node A logs this event. When it logs the event, it 
gets a unique log instance value. The transport layer on 
node A returns an error along with the log instance to the 
session layer. If any other module in the propagation path 
logs additional information, the log instance will be iden 
tical to the one originally logged by the transport layer. As 
explained above, the log instance is a mechanism that 
threads together all errors related to a specific error. 

Error information returned to UAl from the service inter 
face includes the log instance. The user can then use the 
log instance as a key to query the log file for the underlying 
cause of the problem. All necessary data required to resolve 
the problem is logged along with the error message. In this 
example, the transport layer on node A will log the discon 
nect request TPDU (transport protocol data unit) in the 
data portion of the message. In this way, fault isolation and 
correction are facilitated by the use of the log instance, a 
detailed error message, and a comprehensive troubleshoot 
ing procedure. 

Another Scenario 
Fig. 4 illustrates troubleshooting scenario 2. In this 

scenario, assume that an FTAM (File Transfer Access and 
Management) initiator application on a remote system re 
ceives an abort indication while transferring a file to the 
local HP system. Also, assume that the remote system has 
limited troubleshooting capability. Thus, we need to isolate 
and resolve the problem from the responder side. Assume 
that the cause of the problem is that the remote system has 
sent an invalid session PDU (protocol data unit) and the 
local session entity aborted the connection. 

When the connection was aborted on the responder side, 
a connection information message was logged by CMS with 
the complete presentation address of both the initiator and 
the responder along with the path identifier of the aborted 
connection. To resolve the problem, the user searches the 
log file for the CMS message with the appropriate initiator 
and responder presentation addresses. Locating this log 
message provides the user with the path ID, which can be 
used as a key to query the log file for errors that occurred 
on the aborted connection. The abort event message that 
the user obtains informs the user that the type of problem 
encountered was a remote protocol error (see Fig. 2). The 
event message also specifies the exact nature of the problem: 
the received PDU had an incorrect value for the session 
indicator. This type of problem is typically caused by a 
defect in the remote vendor's code and can be resolved 
only by a code change in the remote vendor's implementa 
tion. Therefore, the corrective action in the error message 
tells the user to follow a procedure that recreates the prob 
lem with tracing turned on. The additional trace informa 
tion will help the remote system's vendor understand the 
context in which the problem occured so that an appro 

priate fix can be made. 

Tracing 
Tracing is used to record all activity of a specific kind. 

It provides the contextual information that may be neces 
sary to determine the cause or the activities that led up to 
a networking event. Both normal and abnormal events are 
recorded and, in fact, the trace utility cannot distinguish 
between the two. Tracing is a very useful tool for isolating 
remote protocol errors (interoperability problems) or inter 
nal defects. 

Typically, a troubleshooter uses network tracing as a last 
resort to identify a problem. This is because configuration 
problems and user application problems are much more 
common, and because the use of trace tools and the analysis 
of the output require significant expertise. A major prob 
lem, therefore, is knowing when to use tracing. The log 
message in troubleshooting scenario 2 is typical of remote 
protocol error log messages generated by protocol modules. 
The message is intended to define the problem clearly and 
guide the troubleshooter to a procedure to isolate it. 

The user can enable several types of tracing for each 
subsystem. The most commonly used trace kinds are listed 
below. 
â€¢ Header Inbound. Traces protocol headers received from 

the next-lower protocol layer before decoding is done. 
â€¢ Header Outbound. Traces protocol headers after encod 

ing is complete before they are sent to the next-lower 
protocol layer. 

â€¢ PDU Inbound. Traces the whole protocol data unit as it 
is received. 

â€¢ PDU Outbound. Traces the whole protocol data unit as 
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it is being sent. 
â€¢ State Trace. Traces protocol state information. 

A fundamental problem with tracing in general is that 
the person analyzing the trace file must recognize an abnor 
mal event and so must have a fairly intimate knowledge 
of the protocol. The logging trace is a special trace type 
that writes a copy of the log message to the trace file. For 
instance, when tracing is enabled at the transport layer and 
this layer logs a message, that message is written to the log 
file (this is normal) and also to the trace file. The logging 

trace message acts as a marker within the trace file to help 
the person analyzing it locate the area of interest. 
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Integrat ion and Test  for  the OSI  Express 
Card's Protocol  Stack 
Special  test  tools and a mult id imensional  integrat ion 
process enabled engineers to develop, test, and debug the 
f i rmware for  the OSI Express card in  two d i f ferent  
environments. In one environment an emulation of the OSI 
Express card  was used and in  another  the rea l  hardware 
was used. 

by Nei l  M.  Alexander  and Randy J .  Westra  

THE OSI EXPRESS PROJECT consisted of many inde 
pendent project teams (made up of one or more en 
gineers) working on specific portions of the protocol 

modules or support code. Each team needed the ability to 
test and develop code independent of others. However, 
periodically they needed to have a set of stable and tested 
code from other teams to enable them to test their own 
code. Since each engineer was involved in testing, test 
environments were designed to maximize their efforts. One 
environment consisted of an emulation of the OSI Express 
card on the development machines and another test envi 
ronment consisted of a real OSI Express card connected to 
a target machine. Both the target and the development 
machines were HP 9000 Series 800 computers running the 
HP-UX operating system. Because of the number of en 
gineers working on the project, multiple development and 
test machines were configured as a network. These test and 
development environments are shown in Fig. 1. 

Test Architecture 

Each protocol module was first tested in isolation before 
the module was integrated with the rest of the modules of 
the OSI Express stack. The CONE (common OSI networking 
environment) protocol module interface facilitates this 
module isolation since a stack can be built that does not 
contain all seven protocol modules. Protocol modules do 

not call each other directly to pass packets but instead 
make calls to CONE. A data structure called a path report 
is used to specify the modules configured into a stack. 
Protocol modules not specified in a path report will not 
be called by CONE and do not need to be in the stack. 
However, even with this modular design, several test mod 
ules are needed to test the stack fully. 

The architecture and the modules involved in testing the 
OSI Express card firmware are shown in Fig. 2. This archi 
tecture was used on the host (running in user space) to test 
and debug protocol modules before the hardware was 
ready. When the hardware was ready, this same architec 
ture was used on the target machines to test the protocol 
modules in the real environment. 

Exception Generator 
The exception generator is a test module that is config 

ured in the stack below the module being tested. Packets 
moving inbound to the protocol module under test and 
moving outbound from the module are operated on by the 
exception generator. Packets not operated on by the excep 
tion generator are simply passed through to the next layer. 

The exception generator can intercept, modify, generate, 
or discard packets as they are moving up or down the stack. 
Packets intercepted are placed in the exception generator 
packet queue. Up to ten packets can be saved in the queue 
at one time. Packets stored in this queue can be modified 
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and then sent up or down the protocol stack. In this way, 
PDUs that occur rarely can be constructed. Also, errors in 
transmission can be simulated by corrupting a packet in 
the queue and then sending it. 

Scenario Interpreter Agent 
The scenario interpreter agent performs functions similar 

to the exception generator. Whereas the exception 
generator is configured below the module under test, the 
scenario interpreter agent is positioned above the module 
under test. The scenario interpreter agent operates on in 
bound packets coming from the module under test and 
outbound packets going to the module under test. A packet 
can be intercepted as it moves down the stack and placed 
in the packet queue of the scenario interpreter agent. A 
saved packet is sent to the module under test by releasing 
it from the save queue of the scenario interpreter agent. 

Bounce-Back Module 
The bounce-back module sits at the bottom of the stack, 

and as its name implies, it enables packets heading down 
the stack to be sent (bounced) back up the stack. Normally, 
a protocol stack runs in a two-node configuration consisting 
of a sender and a receiver with the two nodes connected 
by a communication medium such as coax cable. When 

testing of the protocol stack first started, all testing was 
done in a single-node configuration. Packets were sent 
down the stack, turned around by the bounce-back test 
module, and then sent back up the stack. To make one 
stack act as both the incoming and the outgoing protocol 
stacks, the bounce-back module maintains a set of tables. 
The tables contain the proper inbound CONE call for each 
outgoing CONE call. 

The bounce-back module makes different calls to CONE 
depending on which layer is configured above it in the 
stack. Thus, a separate table is maintained in the bounce- 
back module for each protocol layer that may be above it. 
For example, a stack can be configured for testing that 
consists only of the session layer above the bounce-back 
module. The session layer is a connection-oriented pro 
tocol layer and receives different incoming CONE calls 
than a connectionless layer such as the network layer. In 
this example, a packet would flow outbound from the ses 
sion layer and be received by the bounce-back module. 
The bounce-back module would look in the session table 
to find the corresponding incoming call for the session 
layer. The packet would be copied and sent back up to the 
session layer, which would accept the incoming call as if 
it were part of the receiving node in a two-node test. 
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Error Handling 
Every CONE call returns an error value to the protocol 

module making the call. Normally, the exception generator 
and the scenario interpreter agent would simply propagate 
the error value returned to them to the next layer. However, 
the error value returned can be changed by the test modules. 
In this way error paths can be executed in the protocol 
modules for unusual error return values from CONE calls. 
Since the bounce-back module is at the bottom of the stack 
and cannot propagate error return values, tables were used 
as explained above for the return value of each CONE call. 

Scenario Interpreter 
To generate packets to send down the stack, the scenario 

interpreter is used. Scenarios are test specifications that 
tell the scenario interpreter what packets to send and what 
packets to expect to receive. Each scenario has two sides, 
which can be thought of as a sender and a receiver. Packets 
are defined using packet definition commands. These con 
structed packets are sent down the stack using packet send/ 
receive commands. A parameter tells the scenario interpre 
ter whether to send or expect to receive a packet. When a 
packet is received it is compared to the packet specified 
in the scenario. If the packets do not match, an error is 
reported. Repeating sequences of data are generated by 
macros in the scenario interpreter. For example, a repeating 
sequence of 5000 bytes is generated with the simple macro 
15000. The value of each byte is one greater than the previous 
byte, modulo 256. 

The scenario interpreter also controls the exception 
generator, bounce-back module, and scenario interpreter 
agent test modules. Commands to these test modules are 
sent down the protocol stack in special command packets. 
Command packets are created in the same fashion as data 
packets. A parameter indicates whether the packet is a data 
packet or a command packet. The command packets are 
absorbed by the test module they are intended for. A test 
module can also send a command packet to the scenario 
interpreter. For example, the scenario interpreter can send 
a command packet to the exception generator telling it to 
signal the scenario interpreter when a certain number of 
outbound packets have passed through the exception 
generator. After sending the packet, the scenario interpreter 
waits for a response. When the exception generator deter 
mines that the specified number of packets have passed 
through, it sends a command packet to the scenario in 
terpreter telling it that the specified number of packets 
were sent. After the scenario interpreter receives the ex 
pected response it can then proceed. The scenario interpret 
er can also wait for inbound packets to pass through a test 
module. 

This interaction between the scenario interpreter and the 
test modules is used to test the many states of a protocol 
layer. One example is the session layer. Several special 
packets that the session layer sends to its peer on another 
machine are preceded by a prepare packet. The two packets 
are sent one after the other (prepare packet followed by a 
special packet). However, some states in the session pro 
tocol state machine are only entered when a data packet 
is sent after the prepare packet is received but before the 
special packet is received (see Fig. 3). To test this case, a 

prepare and special packet combination is sent down the 
stack. The special packet is caught and saved by the excep 
tion generator. On the receiving side the scenario interpre 
ter waits to receive the prepare packet. After receiving the 
prepare packet, the scenario interpreter sends a data packet 
and the receiving side enters the desired state. Finally, the 
special packet previously captured by the exception 
generator is released. Without this kind of control, hitting 
the desired state on the receiving side would only result 
as a matter of chance. 

Another example of packet timing involves the transport 
layer. The transport layer receives acknowledgments from 
its peer on another node for the packets it sends. The timing 
of these acknowledgments is not deterministic. Testing all 
the transport protocol states requires sending certain pack 
ets after an acknowledgment is received. To send a packet 
after the transport layer receives an acknowledgment re 
quires the scenario interpreter to wait for the exception 
generator to signal that the acknowledgment packet has 
arrived. 

The scenario interpreter interfaces to the stack via the 
test harness. The test harness operates in the two different 
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environments. In the environment where the stack is actu 
ally running on the OSI Express card, the test harness uses 
a tool called UL-IPC (upper-layer interprocess communica 
tion) to communicate with the card. In the user space en 
vironment on the development machine, the test harness 
uses shared buffers (HP-UX IPC) to communicate with the 
protocol stack which is also running in user space. Fig. 4 
shows these environments. 

Integration Process 

System integration in its simplest form is the process of 
creating a set of deliverables (e.g., executable product code, 
test code, etc.) from some source code. For the OSI Express 
card the integration process was driven by project goals, 
project size, and environment. 

Goals and Results 
The integration process for the OSI Express card was 

designed with follow-on products in mind. CONE 
exemplifies how this works. CONE allows the protocol 
modules to be combined in different ways to create new 
protocol stacks. The integration process also needed the 
ability to produce additional products without modifica 
tion to the build process. Like CONE, this involved combin 
ing existing code in new ways to produce additional prod 
ucts. The whole problem can be thought of as multidimen 
sional, in that the integration process for the OSI Express 
card needed to run in a multiple-machine environment, 
where there were multiple products, each product having 
multiple versions, each version's code subject to compila 
tion in multiple ways. 

The challenge was to create a process that would run 
effectively in a network environment, supply timely and 
accurate integration services, and be flexible enough to 
produce all the targeted outputs required. Other goals for 
the integration process included quick response to changes 
by developers, sufficient tracking to create a history of the 
events that occurred during any given integration, and pro- 

Prepare 
Packet 

Special  Packet 

â€¢Data Packet 
Received 

'Test  Case 

duction of metrics for managing the project. 
Although the integration process was modified over 

the course of the project, what eventually developed was 
a set of structures and concepts that make integration in 
this multidimensional environment possible. A successful 
integration for a given version of a product produced a 
download file that was able to run on the card, an emulation 
testing environment to run on development machines, and 
host-based tools to run on the host machine housing the 
card. The test environments were similar in that they used 
the same set of source code to build from. They were dif 
ferent in the deliverables that came out of the environment 
and the compilers required to produce them. The deliver 
ables for each of these environments was built separately 
in its own integration directory. These integration direc 
tories were built in a standard way so that they had the 
same look to the build processes regardless of the type of 
deliverables being built. Standardization of integration di 
rectories made it easy to support multiple products, ver 
sions, and types of compiles. Having an integration direc 
tory with a standard structure residing in a known direc 
tory, it was easy to build tools that performed their func 
tions simply by being passed only the name of the integra 
tion directory. The flexibility to perform different types of 
integrations within the integration directory came from the 
control files (inputs to HP-UX scripts) contained within 
each integration directory. This information included what 
source to use, what to build, and compiler options. The 
integration scripts could then use these files to determine 
exactly what needed to be done for a particular integration 
space. 

The Process 
To get a better understanding of how the integration pro 

cess functions, let's see what happens when a a new version 
of a source code module is added to the system. Fig. 5 
shows the data flows between some of the components 
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( a )  T e s t  H a r n e s s  

Target  Machine 

OSI 
Express 

Card 
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F ig .  3 .  Sess ion  s ta te  mach ine  f o r  t he  p repa re  packe t  and  
specia l  packet  scenar io.  

Test  Harness 

Fig.  4.  (a)  Test  harness in user space,  (b)  Test  harness used 
wi th the real  OS/ Express card.  
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involved in the integration process. Assume that a de 
veloper would like to make a bug fix to an existing inte 
gration. The first step would be to check out the source 
code using the HP-UX revision control system (RCS) and 
put it into a directory on the development system. The 
specific version is identified by an RCS tag. The RCS tag 
associates a name with a revision number, so in this case 
the developer would check out the source code using a tag 
that is associated with the integration version in which the 
bug is being fixed. The developer would then make the 
changes necessary to the source, compile it, and test it 
using a standard test suite that uses code from the integra 
tion directory associated with the change. After the change 
has passed testing in the emulation space it can be checked 
back into the common source directories. At this time the 
new versions are tagged to indicate that they are the latest 
tested versions and are ready to be integrated. This tag 
serves as a communication vehicle to tell the integration 
process that a new version of some module needs to be 
brought into a specific set of integration directories. 

Within each integration directory, a source map contains 
the name, version, and location of each piece of source 
code that is needed for a specific integration. The location 
serves a dual role in that it is the subdirectory path within 
the source directory of where to get the source code and 
it is the subdirectory path of where the code belongs within 
the integration directory. An updated version of this map 
can be generated by finding out which version of a file 
needs to be used. To do this a process is run that selects 
a version of the code to use based on one or more tags. In 
this case the tag that the developer put on the code would 

be used. When the module that was updated is looked at, 
the process would discover that a new version of the file 
is now needed and a new source map would be created to 
reflect these changes. The next step would be to place the 
correct version of the source code into the appropriate di 
rectory within the integration directory. This process is 
accomplished by using the source map previously gener 
ated to direct RCS as to what version to check out and 
where to put it. Other checking is done at this point to 
make sure the source code residing in a directory is actually 
the version specified by the source map. 

Once valid source code has been placed in an integration 
directory it is compiled or assembled as required to create 
relocatable object files, which are then linked into a library. 
The compiler to use is determined by parsing the integra 
tion directory name. Based on a subfield within the name, 
one of three compiles is chosen: Express card downloads, 
host-based debugging tools, or card emulations. Each of 
these types of integration requires that a different compiler 
be used. The scripts that perform this process verify that 
the compiler or assembler needed is available on the 
machine that they are being run from. The compiler or 
assembler options needed are collected from three loca 
tions. 
â€¢ Options that are specific to the compiler being used are 

contained in the script that calls the compiler. 
â€¢ Options that are specific to a library being built come 

from a control file that describes the name of the library 
to build, where to build it, where the source can be 
found, and what compiler options are needed. 

â€¢ Options that apply to all compiles within an integration 
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Fig. 5. extracting flow for the portion of the OS/ Express card integration involved in extracting the 
desired download files from the project source directory and building the new object fi les, download 

f i les,  and logging f i les.  
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directory come from a global flags file. 
These three sets of options are combined and passed to 

the compiler. Note that since the global flags file and the 
file that describes how to build libraries are both contained 
in the a integration directory, they are unique to a 
particular integration. 

After all the libraries are built other types of targets can 
be built. These could be programs or downloads depending 
on the type of integration directory. Again there are control 
files that specify what target outputs to build, where the 
inputs can be found, the tool that needs to be called, and 
where to store the result. If the above steps have all run 
successfully then the integration directory is again up to 
date and ready for use by the rest of the team. 

The mechanism used to deliver an integration to develop 
ers is network mounting. Mounting allows a given machine 
to have access to another machine's files as if they were 
stored locally. This method avoids the problem of develop 
ers working with out-of-date copies of an integration, and 
provides immediate availability of an updated integration 
to all developers. 

Data Logging 
Since there is a standard set of scripts that provide inte 

gration build services, inclusion of consistent logging and 
error handling was straightforward. The scripts log infor 
mation to four different log files. 
Error Log. The most detailed log contains the warning mes 
sages and compile errors generated from calling compilers 
and other tools needed to produce the target outputs. This 
file also contains separators indicating what was built and 
whether or not the process was successful. 
Process Log. The process log is a process summary indicat 
ing whether a program or library was built successfully. 
The log file and the error log file are useful for identifying 

details about process failures or simple compile errors. 
Event Log. This file is an event history of the actions upon 
every module involved in a compile. Every time a module 
is checked out, compiled, or archived into a library, a record 
is written to the event log with the time and date, the 
module name, the version number, what was done (com 
piled, archived), and if it was successful. This file is estab 
lished when an integration process is started and is never 
purged until the the integration directory is removed. The 
event log provides a useful audit trail to track down things 
like when a given module changed, what else might have 
changed at the same time, or whether a particular fix was 
made. 
Process Management Log. This logging file is used to man 
age the overall integration process. Since there are generally 
over ten integration directories active at any given time, 
looking at logging files within each directory to determine 
what needs to be done is time-consuming and provides no 
overview of how the integration process is working. Any 
integration build run on any machine in the network logs 
to this file to indicate if a major integration process was 
successful. Information in each record includes the start 
and stop time, the process run, and the name of the inte 
gration directory that was processed. 
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J  i n  1983  as  a  deve lopment  
*  eng ineer  shor t ly  a f te r  he  
1 earned BS and MS degrees 

in  computer  sc ience f rom 
|  the Universi ty of  Iowa. He 

worked  in  the  R&D labora  
tory at  the Logic Systems 
Div is ion developing an 
ed i to r ,  comp i le rs ,  and  de  

buggers  fo r  the  HP 64000  mic roprocessor  de  
velopment system. Af ter  t ransferr ing to the 
Rosevil le Networks Division, Randy developed test 
tools and the session protocol layer for the OSI Ex 
press card. Born in Sioux Center, Iowa, Randy lives' 
in Rosevil le, California with his wife and new daugh 
ter .  He enjoys swimming,  reading,  and t ravel ing.  

8 0  ~  L i g h t w a v e  S i g n a l  A n a l y s i s  ~  

Christopher M. Mil ler  
|  As a  pro ject  manager  for  

the past  f ive years at  HP's 
Signal Analysis Division, 
Chr is Mi l ler  was respon- 

| sible for development of the 
HP 71400A l ightwave s ig-  

[  nal analyzer. Before that, 
he  was  the  p ro jec t  man  
ager  for  the HP 71300A 
mi l l imeter spectrum 

analyzer.  Ear l ier ,  he was wi th HP Laborator ies,  
where he designed high-speed bipolar and GaAs 
in tegrated c i rcu i ts .  He came to HP in  1979 f rom 
Hughes A i rc ra f t  Company,  where  he  des igned 

electronic systems for laser target designators and 
cryogenic coolers for  in f rared sensors.  Chr is  
coauthored an In ternat iona l  Mic rowave Sym 
posium paper on a high-speed photoreceiver and 
has written several other symposium papers on RF 
and l ightwave subjects. Born in Merced, California, 
he earned a BSEE deg ree (1 975) from the Univer 
sity of California at Berkeley, and an MSEE degree 
(1978) f rom the Universi ty of  Cal i fornia at  Los 
Ange les  Marr ied  and the  fa ther  o f  two sons,  he  
l ives in Santa Rosa, Cal i fornia,  where he enjoys 
wine tast ing,  p jnn ing,  sk i ing,  body sur f ing,  and 
camping.  

92 ZZ Fiber  Opt ic  Interferometer  

Douglas M.  Baney 
Now a doc tora l  cand ida te  
in  appl ied phys ics  a t  the 
Ecole Nationale SupÃ©rieure 
des Telecommunicat ions in 
Par is ,  Doug Baney has 
been wi th HP's Signal  
Analysis Divis ion since 
1981, special iz ing in the 
des ign o f  microwave 
ampl i f iers  and f requency 

mult ipl iers. Most recently, he contributed to the de 
velopment of the HP 1 1980A l ightwave interferome 
ter. He earned his BS degree (1 981 ) in electronic 
engineer ing f rom the Cal i fornia Polytechnic State 
University at San Luis Obispo and an MSEE degree 
(1986) f rom the Universi ty of  Cal i fornia at  Santa 
Barbara with an HP fellowship. Doug is an author 
and coauthor of several scientif ic and conference 
ar t ic les publ ished in  Engl ish and French on the 
laser power spectrum, and is named a co-inventor 
in a patent for an optical measurement technique. 
Born in  Wayne,  New Jersey,  Doug now l ives in  
Par is.  When he returns to Cal i fornia,  he plans to 
continue his favorite activity, sailing his Hobie Cat. 

Wayne V.  Sor in  
t  W a y n e  S o r i n  d e v e l o p e d  

I new fiber-optics-based 
measurement  techniques 
and instrumentat ion af ter 
his arr ival at HP 

I Laboratories in 1 985. He 
also contributed to the idea 

l_  fo r  the  ga ted  de layed se l f -  
y  h o m o d y n e  t e c h n i q u e  d u r -  
Ã ing development of the HP 

1 1 980A fiber optic interferometer. While attending 
Stanford Univers i ty ,  he s tud ied evanescent  in ter  
actions in single-mode optical f ibers. Born in New 
Westminster, Brit ish Columbia, Wayne earned a BS 
degree (1978) in physics and a BS degree (1 980) 
in e lectr ical  engineer ing f rom the Univers i ty of  
Br i t i sh  Co lumbia ,  and  MSEE (1982)  and  PhD de  
grees (1986) f rom Stanford Univers i ty .  Wayne 
holds f ive patents on f iber optics components and 
is  a  member of  the IEEE and the OSA. He is  the 
author of 1 4 technical papers in the field of fiber op 
t ics  components  and lasers ,  and teaches a  f iber  
optics course at California State University at San 
Jose. His major professional interests are develop 
ing  new f ibe r  op t i cs -based  measurement  tech  
niques and instrumentation. Married and the father 
of a son, he enjoys playing tennis and soccer in his 
hometown of  Mountain View, Cal i fornia.  
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High-Speed Lightwave Signal Analysis 
This analyzer measures the important  character is t ics of  
h igh-capaci ty  l ightwave systems and the i r  components,  
inc lud ing s ing le- f requency or  d is t r ibuted feedback 
semiconductor lasers and broadband pin photodetectors.  

by Christopher M. Mil ler  

THE LOW PROPAGATION LOSS and extremely 
broad bandwidth of single-mode optical fiber have 
contributed to the emergence of high-capacity digital 

transmission systems and analog-modulated microwave- 
frequency systems. New lightwave components have been 
developed to support these high-speed systems. Most no 
table among these components are single-frequency or dis 
tributed feedback semiconductor lasers and broadband pin 
photodetectors. 

The HP 71400A Lightwave Signal Analyzer has been 
designed to measure the important characteristics of these 
lightwave components and systems, such as signal strength 
and distortion, modulation depth and bandwidth, intensity 
noise, and susceptibility to reflected light. When the light 
wave signal analyzer is used in conjunction with the HP 
11980A Fiber Optic Interferometer (see article, page 92), 
the linewidth, chirp, and frequency modulation charac 
teristics of single-frequency lasers can be measured. 

System Descript ion 
The HP 71400A Lightwave Signal Analyzer, Fig. 1, is 

part of the HP 70000 Modular Measurement System, which 
provides RF, microwave, and now lightwave measurement 
capability. The HP 70000 is an expandable system and can 
be upgraded as requirements grow and new modules be 
come available. For example, the HP 71400A can measure 
lightwave modulation up to 22 GHz. However, substitution 
of a 2.9-GHz RF front-end module makes the system an HP 
71401 A, which for certain applications may be a more cost- 
effective solution. In addition to being lightwave signal 
analyzers, the HP 71400A and HP 71401A also function as 
microwave and RF spectrum analyzers. The current offer 
ing of HP 70000 modules is shown in Fig. 2. 

A simplified block diagram of the HP 71400A is shown 
in Fig. 3. The key module in the system is the HP 70810A 
Lightwave Receiver. Light from the input fiber is collimated 
by a lens and focused onto a high-speed pin photodetector. 
The optical attenuator in the collimated beam prevents 
overload of the front end. The photodetector converts 

F i g .  1 .  A n  H P  7 0 0 0 0  M o d u l a r  
Measurement  Sys tem conf igured 
as an HP 7 1400 A Lightwave Signal 
A n a l y z e r ,  s h o w n  w i t h  t h e  H P  
1 1 980 A Fiber Optic Interferometer. 
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Fig. 2.  The HP 70000 fami ly of  modular instruments includes 
l igh twave s igna l  ana lyzers ,  RF,  microwave,  and mi l l imeter -  
wave  spec t rum ana lyzers ,  t rack ing  genera to rs ,  m ic rowave  
power meters,  d ig i t izers,  and vector  vol tmeters.  

photons (optical power) to electrons (photocurrent). The 
time varying component of this photocurrent, which repre 
sents the demodulated signal, is fed through the preampli 
fier to the input of the microwave spectrum analyzer. The 
dc portion of the photocurrent is fed to a power meter 
circuit. Thus the same detector is used to measure both 
the average power and the modulated power. 

The lightwave signal analyzer is often confused with an 
optical spectrum analyzer (also called a spectrometer). Al 
though both instruments have frequency-domain displays, 
the information they provide is quite different. The optical 

spectrum analyzer shows the spectral distribution of aver 
age optical power and is useful for observing the modes of 
multimode lasers or the sidelobe rejection of single-fre 
quency lasers. Its measurement resolution is typically about 
0.1 nm or approximately 18 GHz at a wavelength of 1300 
run. The lightwave signal analyzer displays the total aver 
age power and the modulation spectrum, but provides no 
information about the wavelength of the optical signal. 
This distinction is shown in Fig. 4. 

Lightwave Receiver Design 
Four major subassemblies make up the lightwave re 

ceiver module. They are the optoblock, the optical micro- 
circuit, the average power circuitry, and the optical at 
tenuator control circuitry. The optical and high-frequency 
RF circuits are located close to the front-panel connectors, 
as shown in Fig. 5. 

The optoblock is essentially an optical-mechanical as 
sembly that serves two functions. It collimates the light at 
the input and refocuses it onto the detector, and along the 
way it allows for attenuation of the light. The input to the 
optoblock uses the fiber optic connector adapter system 
developed by HP's Boblingen Instruments Division. The 
adapter system is based on the precision DiamondÂ® HMS- 
10/HP fiber optic connector.1 This adapter design allows 
easy access to the ferrule for cleaning, provides a physical, 
low-return-loss contact to the input fiber, and allows mat 
ing to any of five different connector systems: HMS-10/HP, 

HP 70810A Lightwave Receiver Sect ion 

HP 70000 
S e r i e s  

T r a c k i n g  G e n e r a t o r  
( O p t i o n a l )  

R F  
O u t p u t  

To Tes t  
Device 

+ (See Fig.  14) 

Fig. HP Receiver lightwave signal analyzer system, highlighting the HP 70810A Lightwave Receiver 
section. 
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A n  o p t i c a l  s p e c t r u m  a n a l y z e r  
m e a s u r e s  l a s e r  m o d e s  

The  l i gh twave  s i gna l  ana l yze r  
m e a s u r e s  b a s e b a n d  s i g n a l s  

Reso lu t i on  
B a n d w i d t h  
=  0 . 1  n m  

T i m e  F r e q u e n c y  2 2  
GHz 

Fig.  4.  Measurement d i f ferences between a l ightwave s ignal  
analyzer  and an opt ica l  spect rum analyzer .  

F ig .  5 .  HP 708WA L igh twave Rece iver ,  showing  the  prox im 
ity of the optoblock and optical microcircuit to the front panel. 

FC/PC, ST, biconic, and DIN. Internally, the fiber butts up 
against a piece of glass on the backside of the connector. 
Index matching fluid at this interface and an antireflection 
coating on the glass-to-air surface help maintain the con 
nector's good input return loss. 

Exiting the input connector, the light passes into air. The 
diverging beam is collimated into an expanded parallel 
beam, which then passes through a continuously variable 
O-to-30-dB circular filter. The filter is coated with a metallic 
neutral density layer which reduces the wavelength depen 
dence of the optical attenuation. The filter is angled to the 
optical axis to prevent reflection back to the optical connec 
tor. The positioning of the filter with the drive motor, op 
tical encoder, and drive electronics will be described later. 

A mirror positioned at a 45-degree angle to the optical 
path directs the light to the output lens, which focuses it 
onto the detector. The mirror is partially transmissive, 
which allows the light to be aligned to the detector by 
viewing the reflected light from the illuminated detector 
with a microscope objective, as shown in Fig. 6. 

Optical Microcircuit  
The optical microcircuit containing the pin photodiode 

and microwave preamplifier is mated to the optoblock. The 
pin detector works by converting received optical power 

into an electrical current. Light at wavelengths between 
1200 and 1600 nm enters through the antireflection-coated 
top surface, and passes through the transparent InP p layer. 
Electron/hole pairs are created when the photons are ab 
sorbed in the InGaAs i region. Reverse bias is applied across 
the device, sweeping the electrons out through the bottom 
n-type InP substrate, while the holes are collected by the 
p-type top contact. The active area is only 25 /xm in diam 
eter, which keeps the device capacitance low. This, along 
with the short transit time across the i layer, contributes 
to a 20-GHz device bandwidth. 

Electrical photocurrent from the photodiode's anode is 
terminated in a preamplifier that has an input impedance 
of 50Ã1 and a bandwidth of 100 kHz to 22 GHz. The cathode 
side of the photodiode is bypassed by an 800-pF capacitor 
to provide a good RF termination. The preamplifier helps 
overcome the relatively high noise figure of the microwave 
spectrum analyzer shown in Fig. 3. It also improves the 
overall system sensitivity. The preamplifier has about 32 
dB of gain, provided by a cascade of four microwave 
monolithic integrated circuit (MMIC) amplifier chips, each 
with a nominal gain of 8 dB (see box, page 84). 

The optical microcircuit package includes the bias board 
assembly. This was done to shield the bias lines from any 
radiated electromagnetic interference (EMI). In addition, a 

Microscope Eyepiece 

Continuously Variable 
Neutral  Densi ty  Fi l ter ,  

Fiber Optic 
Cable ( Input) 

Encoder 

Motor 

Copper Mirror  

Â¡,|Â¡i|,l Signal Output 

Photodiode 

Microci rcui t  Package'  Microcircuit 
Printed Circuit  Board 

F i g .  6 .  O p t o b l o c k  a n d  m i c r o c i r  
c u i t  a s s e m b l y  s h o w i n g  o p t i c a l  
al ignment. 
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spiral wound gasket is placed at the microcircuit-optoblock 
interface to reduce the likelihood of any EMI pickup. A 
rubber O-ring gasket is also placed at this interface to help 
seal the microcircuit assembly. 

Average Power Circuitry 
Connected to the cathode of the photodetector is a trans- 

impedance amplifier, which is the input circuit for the 
average power circuitry. The design of the average power 
meter was highly leveraged from the HP 8152A Optical 
Average Power Meter.2 Fig. 7 shows the block diagram of 
the average power circuitry, which incorporates four key 
elements: a transimpedance amplifier, offset correction, 
wavelength gain correction, and digitization. 

In this design, the transimpedance amplifier serves a 
dual role. It converts photocurrent into an equivalent volt 
age depending on which feedback resistor is selected. In 
addition, it provides the reverse bias for the photodiode. 
The input amplifier is an OPA111BM, which was chosen 
for its low input offset characteristics. The transimpedance 
amplifier is followed by a difference amplifier which re 
moves the bias voltage component from the signal compo 
nent being measured. This amplifier is followed by an in 
ternal gain-adjust amplifier, which is set to produce a 4-volt 
output when â€” 20 dBm of optical power is present at the 
input. 

The two values of feedback resistors, along with the three 
values of step gain, provide six different range settings. 

- -Guarding 

" H I  

The proper range is automatically selected as a function 
of input power level. The design allows a measurement 
range of + 3 dBm to less than - 60 dBm when there is no 
optical attenuation present. With the attenuator set to 30 
dB, power levels up to +33 dBm can be measured. In the 
lowest range the feedback resistor is 3.33 Mil and at â€”60 
dBm the photocurrent is less than 1 nA, so guarding is 
used to prevent offset errors resulting from leakage cur 
rents. 

X DAC,  ADC,  and Of fset  DAC 
To compensate for the photodiode's responsivity vari 

ations with wavelength, a multiplying digital-to-analog 
converter called the \ DAC is used as a variable-gain 
amplifier. The average power reading of the HP 71400A is 
calibrated at two wavelengths: 1300 nm and 1550 nm. The 
responsivity at 1300 nm is defined as 0 dB and the relative 
responsivity value at 1550 nm is within Â±0.5 dB of this 
value. To calibrate the HP 71400A to an external reference 
or if the customer chooses to operate at another wavelength, 
the value of the X DAC can be varied by Â±3 dB using the 
USER CAL function. 

The operation of the analog-to-digital converter (ADC) 
circuitry is identical to that of the HP 8152A.2 An AD7550 
13-bit ADC is used, with the following relationship for a 
10-dB range step: 

n = Ain{4096/Vfs) + 4096, 

Photocurrent 
Input 

Fig .  7 .  B lock  d iagram of  the  average power  meter  c i rcu i t .  
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A Broadband Instrumentation Photoreceiver 

A broadband microwave ampl i f ier is the key to achieving good 
pho to rece i ve r  sens i t i v i t y  w i t hou t  comprom is i ng  t he  sys tem 's  
bandwidth.  The ampl i f ier  in the HP 7081 OA Lightwave Receiver 
consists of four microwave monoli thic distr ibuted ampli f iers1 that 
have their low-frequency corner extended down to 1 00 kHz. Each 
ampl i f ier  chip is  an independent d ist r ibuted ampl i f ier  consist ing 
of seven GaAs FETs spaced along synthetic 50ÃÃ input and output 
transmission l ines. In this distributed design, the signal from each 
FET adds to that of  i ts neighbors to produce gain at  f requencies 
beyond the cutof f  of  the indiv idual  FETs. 

between the 1 0-pF on-chip bypass capacitor and the inductance 
o f  the  bond  w i re  connec ted  to  the  ex te rna l  bypass  capac i to r .  
The ampl i f ier  b ias is  fed into the reverse terminat ion end of  the 
drain line through a bias choke. This feed point has the advantage 
of  less sensi t iv i ty  to b ias choke shunt ing impedances.  The bias 
choke  i s  cons t ruc ted  by  c lose -w ind ing  insu la ted ,  go ld -p la ted  
copper  wi re around a h igh-magnet ic- loss cy l indr ica l  core.  In ter  
s tage  coup l ing  i s  th rough a  1000-pF Ta05 th in - f i lm in tegra ted  
c i rcui t  capaci tor  in paral le l  wi th a 0.047-,u,F ceramic capaci tor .  
The integrated capaci tor  has good microwave per formance and 

Interstage Blocking 
Capacitors 

1000 pF 

Suspended Substrate 
Transmission Line 

0.047 

HhlÂ· 
Fig. external capacitors, of single amplifier stage, showing bias choke, external bypass capacitors, and 

the in ters tage coupl ing capaci tors  for  the MMIC chip.  

Deta i ls  o f  the  input  s tage o f  the  photorece iver  (F ig .  1 )  show 
how the  good  low- f requency  and  h igh - f requency  pe r fo rmance  
of the ampli f ier cascade is achieved. The gate and drain art i f ic ial  
transmission l ines are externally bypassed with 0.047-^iF ceramic 
capacitors. A 10ÃÃ resistor is used to prevent paral lel resonance 

- 1 - 1 0  

the  la rge ceramic  capac i to r  is  mounted on a  shor t  suspended-  
subst rate t ransmiss ion l ine segment  to  reduce paras i t ic  capaci  
tance to  ground.  Typ ica l  ga in  and no ise f igure  for  the cascade 
are shown in Fig. 2.  

T o  a c h i e v e  m a x i m u m  p h o t o r e c e i v e r  s e n s i t i v i t y ,  t h e  p h o t o -  

Fig 2 
cade  

Start  0.1 GHz 
Stop 26.5  GHz 

.  Gain and noise f igure of  the four-stage ampl i f ier  cas-  
over  the WO-MHz- to-22-GHz f requency range.  

0.047 MF â€¢ 
Drain Bypass 

Capac i to r  

Fig .  3 .  Photograph o f  the  photod iode and f i rs t  s tage o f  the  
amplif ier. 
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Star t  0 .1  GHz 
S top  22  GHz  

Fig.  4.  Combined f requency response f la tness of  the photo-  
detector and the ampl i f ier .  

detector  is  not  back terminated.  Consequent ly ,  the photod iode 
is p laced as c lose as possible to the ampl i f ier  input  to minimize 
mismatch loss.  This is shown in Fig.  3.  The combined frequency 
reponse o f  the  photodetec tor  and ampl i f ie r  i s  shown in  F ig .  4 .  
Overal l  f reqency response rol l -of f  for  the opt ical  receiver micro- 
c i rcu i t  is  13 dB.  of  which 8 dB is  f rom the ampl i f ier  and 5 dB is  
f rom the photodiode.  

Reference 
1.  J .  Or r .  "A  S tab le  2 -26 .5  GHz Two-Stage Dua l -Gate  D is t r ibu ted  MMIC Ampl i f ie r , '  
IEEE-MTT-S Internat ional Microwave Symposium Digest.  HH-4, 1986. pg. 81 7. 

Dennis Der ickson 
Development  Engineer  

Signal Analysis Divis ion 

where n is the number of ADC counts, Ain is the analog 
input voltage, and V(s is the full-scale input voltage. A 
one-millivolt change in the voltage at Ve in Fig. 7 produces 
a one-count change in the ADC reading. To center the input 
voltage range on the ADC range, Ve is shifted down by 
3.901V to produce the following relationship: 

V e ( V )  

> 7 . 9 9 6  
7 .996  
4 . 0 0 0  
0 . 4 0 0  
0 . 0 0 0  

-0.195 
<-0.195 

Ain(V) 

4.095 
0 . 0 9 9  

-3.501 
-3.901 
- 4 . 0 9 6  

ADC 
Counts 

o v e r f l o w  
8191 
4195 

595  
195 

0 
underflow 

Relative 
Power 

2.0 
1.0 
0.1 
0.0 

The relative power in a given range is computed by sub 
tracting 195 from the ADC counts and then dividing by 
4000 counts. 

Because the reverse-biased, uncooled InGaAs photodiode 
has a substantial dark current of several nanoamperes that 
is present under no illumination, offset compensation had 
to be designed to correct for offsets that could be larger 
than the signal in the most sensitive range. There are two 
convenient places to put the offset correction DAC: before 
or after the step-gain amplifier. Placing the offset correction 
after the step-gain amplifier has the advantage that the 
resolution of the offset correction is constant and indepen 
dent of range, and there can be a one-to-one correspondence 
between an ADC count and an offset DAC count. However, 
the disadvantage is that the effective offset correction range, 
referenced to the input, decreases as the step gain is in- 

F r e q  

f imptd 

M a r k e r  

R L  1 . 0 0 0  m W  

T r a c e s  

S t a t e  

f l i s c  

f lTTEfJ  0  dB 
. 5 .00  dB/D lU  

M R  t t l * F R Q  B . 0 B  G H z _  
X 

MKR NRM 
O n .  O f f  

HIGHEST 

PEfiK 

RUG PWR : .13 
MflRKER REÃ PWR 

CENTER 11.00 GHz 
RB 3.00 MHz W 300 kHz 

DELTfi 

R.I.N. 

BÂ£L 
PONER 

SPflN 22.00 GHz "ORE 

ST 3BE.7 msec 1 of 4 
| MENU | T | 

Fig.  8.  Typical  d isplay of  the l ight  
wave s ignal  analyzer showing the 
m e n u  k e y  l a b e l s  ( f i r m k e y s  a n d  
sof tkeys),  the average power bar,  
a n d  t h e  m o d u l a t e d  l i g h t w a v e  
spectrum. 
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Microwave Mode Reference Plane 

I 

HP 7081 OA 
Lightwave Receiver 

Lightwave Opt ical  Mode Reference Plane 

creased. In this design, a significant offset can exist because 
of a large dark current component, particularly at the maxi 
mum instrument operating temperature of 55Â°C. Therefore, 
a 12-bit offset DAC is used to supply an offset correction 
at the input of the step-gain amplifier that can compensate 
for as much as 250 nA of dark current at the photodiode. 
This causes a corresponding loss in offset resolution in the 
most sensitive range, and these leftover residual offset 
counts are recorded and subtracted in the firmware. 

Input Optical  Attenuator 
The control circuitry for the input optical attenuator was 

highly leveraged from another instrument, the HP 81 58 A 
Optical Attenuator.3 The digital motor controller uses an 
8-bit microprocessor with 128 bytes of internal RAM and 
a 16-bit internal timer. This processor sets the pulse width 
of the motor drive, whose period is 31.25 kHz. The motor 
driver itself is a simple transistor full bridge circuit. An 
optical encoder, driven in quadrature mode, provides an 
effective resolution of 2048 positions per revolution. The 
positions, corresponding to 1-dB steps of the linear filter 
wheel, are measured at both 1300 nm and 1550 nm, and 
these positions are stored in EEPROM. The HP 7 1400 A 
uses the same motor control firmware as the HP 8158A, 
which is based on a PD (proportional differential) al 
gorithm.3 

Display and User Interface 
The goal of the display and user interface design was 

that both optical and microwave scientists and engineers 
would be comfortable with it. Basically, the design follows 
the HP 70000 electrical spectrum analyzer formats, and 
integrates the optical functionality into this context. 

Primarily menu-driven, the user interface consists of a 
set of firmkeys on the left side of the display. As shown 
in Fig. 8, these firmkeys are the basic analyzer control 
function headings, which when selected, pull up submenus 
on the softkeys on the right side of the display. These 
softkeys for the most part represent immediately executable 
functions. Control of optical parameters such as wavelength 
calibration, optical attenuation, power meter offset zeroing, 
and optical marker functions is offered on submenus with 
related analyzer functions. 

Displayed intensity modulation of a lightwave carrier 

HP 70000 Series 
Spectrum 
Analyzer 

Lightwave Electr ical  Mode 
Reference Plane F i g .  9 .  D i a g r a m  i n d i c a t i n g  t h e  

m e a s u r e n t  r e f e r e n c e  p l a n e  f o r  
each mode of the l ightwave signal 
analyzer. 

has essentially the same appearance as the electrical mod 
ulation spectrum, so the basic display format mimics that 
of the electrical spectrum analyzer with one important dif 
ference. This difference is the display of the average power 
bar on the left side of the screen (see Fig. 8). In addition 
to providing an accurate average power indication, the 
graphical power bar representation makes optical align 
ment much easier. The average power and modulated 
power displays are coupled in that they are have the same 
scale and are referenced to the same absolute amplitude 
level. 

The lightwave signal analyzer has three measurement 
modes. Two modes are for making lightwave measure 
ments â€” the input is the optical input of the lightwave sec 
tion. The difference in these two modes is in the display 
units. In lightwave-optical mode, the display is referenced 
to the optical input connector and the display is calibrated 
in optical power units. In lightwave-electrical mode, the 
display is referenced to the input of the electrical spectrum 
analyzer and the display is calibrated in electrical power 

o cc 

17 1 8  1 9  

Column 

2 0  

F i g .  1 0 .  M o d u l e  a d d r e s s  m a p  f o r  t h e  l i g h t w a v e  s i g n a l  
analyzer. 
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Temperature-Tuned 
Nd:YAG Laser  
X  =  1 .32  iun  

Temperature-Tuned 
Nd:YAG Laser  
X = 1.32 turn 

3-dB Fiber 
Directional 

Coupler  

Microwave 
Power 
Meter 

units. This mode was implemented because, before the 
lightwave signal analyzer was developed, customers be 
came accustomed to using electrical spectrum analyzers to 
make these lightwave measurements, and have specified 
some of these measurements in electrical power units. The 
display units of these two modes are related by the follow 
ing equation: 

Pelec(dBm) = 2Popt(dBm) + 10log[(l mW) x r2 x 50fixGv(|in|2] 

where r is the responsivity of the photodiode and Gv(Un) is 
the linear voltage gain of the microwave preamplifier. 

The third measurement mode, the microwave mode, is 
for making strictly electrical measurements. In the micro 
wave mode the RF input of the lightwave section is used 
and the optical path is bypassed. The three modes are 
shown in Fig. 9. 

Firmware Design Overview 
As previously mentioned, the HP 71400A Lightwave Sig 

nal Analyzer is part of the HP 70000 Modular Measurement 
System (MMS). In this system, certain instrument modules, 
designated as masters, can control the operation of other 
modules, designated as .slaves. Communication between 
modules occurs over the internal high-speed modular sys 
tem interface bus (HP-MSIB). Whether a module operates 
as a master or a slave is determined by the module's internal 
firmware design and its relative position in the module 
address map.4 The address map for the lightwave signal 
analyzer, indicating the row and column positions of the 
modules in the system, is shown in Fig. 10. The HP 70810A 
lightwave section, in the row 0, column 17 location, is the 
master module, controlling all the modules at higher row 
and column addresses up to the column where another 
master is present on row 0. Thus, a number of independent 
instruments can be configured in the system, simultane 
ously making measurements. 

Microwave 
Spectrum 
Analyzer 

Fig. 1 1 . Diagram of the reference 
receiver used to cal ibrate the l ight 
wave signal  analyzer.  

Firmware for the lightwave module is written in the C 
programming language, and the compiled code runs on a 
Motorola 68000 microprocessor. The firmware consists of 
three major components: 
â€¢ The pSOS operating system, written by Software Compo 

nent Group, Inc.5 This is a full multitasking operating 
system. 

â€¢ The MMS instrument shell. This is a large, integrated 
collection of support routines and drivers intended to 
supply functionality to most HP 70000 Series modules. 

â€¢ Lightwave-section-specific code written on top of the 
instrument shell and the pSOS operating system. 
The lightwave-specific code encompasses a number of 

elements. Communication, measurement coordination, 
and control of the HP 70900A local oscillator module must 
be established and maintained. The HP 70900A local oscil 
lator module is the controller of the electrical spectrum 
analyzer and is allocated a display subwindow for present 
ing the lightwave modulation spectrum. An array contain 
ing the flatness corrections for the frequency response 
of the optical microcircuit is stored in the HP 7081 OA's 
EEPROM and is passed over the HP-MSIB to the HP 70900A 
to apply as a correction to the displayed trace. A small 
vertical stripe on the left edge of the window is reserved 
for the average power bar, which the HP 70810A generates. 
The HP 70900A is relied upon to display all annotation 
normally associated with the spectrum analyzer except for 
the active parameter area, the message area, the mode anno 
tation, and the average power and optical attenuation anno 
tation, for which the HP 70810A is responsible. The manual 
interface is handled entirely by the lightwave section. All 
remote commands and parameters are parsed by the HP 
70810A. Commands that are intended to modify the spec 
trum analyzer are passed along to the HP 70900A. 

When the HP 70810A is operated without an HP 70900A 
as its slave, it operates in a stand-alone mode. In this mode 
the module can be used as a lightwave converter, can make 
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P o l a r i z a t i o n  2 0 x  
P r e s e r v i n g  L e n s  

Fig.  12.  Heterodyne laser  system 
f o r  c a l i b r a t i n g  r e f e r e n c e  r e c e i v  
ers. 

average optical power measurements, and can control the 
optical attenuation. 

Calibration 
A major contribution of the HP 71400A is its optical 

calibration. To our knowledge it is the only lightwave prod 
uct that is calibrated in both relative and absolute power 
levels out to a modulation bandwidth of 22 GHz. The light 
wave signal analyzer is calibrated by comparing its re 
sponse at 250 frequency points to that of a reference re 
ceiver. This specially packaged reference receiver is cali 
brated as shown in Fig. 11. All sources of electrical fre 
quency response error, including detector capacitance, 
mismatch loss, cable loss, and spectrum analyzer ampli 
tude errors, are measured by feeding a power-meter-cali 
brated microwave signal through the fixture and into the 
spectrum analyzer. The frequency response of the reference 
detector's photocurrent is then calibrated by turning off 
the microwave signal and injecting a constant amplitude- 
modulated optical signal whose modulation frequency is 
determined by the heterodyne interaction of two quasiplanar- 
ring, diode-pumped Nd:YAG lasers,6 one of which is tem 
perature tuned over a 22-GHz range. 

These two highly stable single-line lasers produce a beat 
frequency with a linewidth less than 10 kHz, which is essen 
tial for accurate repeatable measurements. As shown in 
Fig. 12, the system is constructed with polarization-pre 
serving fiber to avoid amplitude variations of the beat fre 
quency caused by a change in the relative polarizations of 
the two laser signals. The output powers of the lasers are 
monitored during the calibration process, eliminating an 

other potential error source.7 
After the reference receiver is calibrated, it is used to 

calibrate lightwave signal analyzer systems. To calibrate a 
system, a gain-switched diode laser's output is measured 
with the reference receiver. The calibrated laser response 
is then used to calibrate the system under test. 

RL 10.00 dBm 
Atten O d B 
5.00 dB/Div 
Avg Pwr  19 .1  dBm 
Responsivity 
1428 Volts/Watt  

Mkr  #1AFra  13 .04  GHz  
- 3 . 1 0  d B  

Lightwave Electrical 

'bias = 75 mA 

=  4 0  m A  

Start  10.0 MHz 
R B  3 . 0 0  M H z  V B  1 0 . 0  k H z  

Stop 10.00 GHz 
St 1.799 s 

Fig .  13 .  Modu la t ion  f requency  response measurement  o f  a  
high-speed laser.  
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System Performance 
The HP 71400A Lightwave Signal Analyzer offers ad 

vanced lightwave measurement performance. The combi 
nation of the broad-bandwidth pin photodetector, the high- 
gain, low-noise microwave preamplifier, and Hewlett- 
Packard's highest-performance spectrum analyzer offers 
excellent measurement sensitivity out to 22 GHz. The dis 
played average optical noise floor in a 10-Hz resolution 
bandwidth is typically better than - 68 dBm from 10 MHz 
to 16 GHz, allowing optical signals below - 60 dBm (1 nW) 
to be detected easily. With the built-in 30-dB optical at 
tenuator, intensity modulation up to + 15 dBm (31.6 mW) 
can be displayed. 

Modulated power frequency response is flat within an 
excellent Â±1.0 dB from 100 kHz to 22 GHz. This is a result 
of the optical heterodyne calibration technique and the 
method of calibrating the HP 71400A as a system. The 
system calibration corrects for the roll-off of the HP 70810A 
lightwave section and the frequency response of the spec 
trum analyzer. The mismatch loss and cable loss between 
the lightwave section and the spectrum analyzer are also 
corrected. 

RL 10.00  ( iW 
Atten 0 dB 
3.00 dB Div 
Avg Pwr  1 .36  mW 
Marker 
11.33 GHz 
468.8 nW 

Mkr  #1  Frq  11 .33  GHz  
468.8 nW 

L igh twave  Op t i ca l  

m A  

Start  24.0 MHz 
R B  3 . 0 0  M H z  V B  1 0 . 0  k H z  

Stop 18.00 GHz 
St 1.798 s 

Fig .  15.  In tens i ty  no ise  measurement  o f  a  h igh-speed laser  
showing the intensi ty noise peaking.  

Measurements 
The HP 71400A can make a number of measurements 

on lasers, optical modulators, and receivers.8 Only a few 
can be described here. 

A key parameter in any lightwave system is the modula 
tion bandwidth of the optical source. Current-modulated 
semiconductor lasers today have bandwidths that are ap 
proaching 20 GHz. This bandwidth is achieved by optimi 
zation of the laser construction and selection of the appro 
priate current bias point. Fig. 13 shows a measurement of 
intensity modulation frequency response on a semiconduc 
tor laser designed particularly for high-frequency opera 
tion. As can be shown analytically,9 the modulation band 
width increases as a function of bias. In addition, the peak 
ing in the response decreases, which is generally advan 
tageous. If the current is increased beyond the critically 
damped response point, the bandwidth decreases. 

This intensity modulation response measurement was 
made with the HP 71400A in conjunction with the HP 
70300A tracking generator (20 Hz to 2.9 GHz) and the HP 
70301A tracking generator (2.7 GHz to 18 GHz). Fig. 14 
shows the setup. These tracking generators are also mod 
ules in the HP 70000 MMS family, and produce a modula 
tion signal that is locked to the frequency to which the 
analyzer is tuned, thus making stimulus-response measure 
ments easy and straightforward. 

In most applications the laser noise spectrum is very 
important for a number of reasons. It obviously impacts 

HP 7Ã“300A/ 
70301 A 

Tracking 
Generator 

Fig.  14.  Block d iagram of  the instrumentat ion for  h igh-speed 
laser  modulat ion f requency response measurements.  

the signal-to-noise ratio in a transmission system. Further 
more, it can be shown that the intensity noise spectrum 
has the same general shape as the intensity modulation 
response, and can be used as a indicator of potential mod 
ulation bandwidth.9 The characteristic noise peak of the 
intensity noise spectrum also increases in frequency and 
decreases in amplitude as the bias current is increased. 
This is shown in Fig. 15. 

The laser intensity noise spectrum can be greatly affected 
by both the magnitude and the polarization of the optical 
power that is fed back to the laser. This is called reflection- 
induced noise and is typically caused by reflections from 
optical connectors. This reflected power upsets the dynamic 
equilibrium of the lasing process and typically increases 
the amplitude of the intensity noise as shown in Fig. 16. 

RL 16 .00  dBm 
A t t e n  0  d B  
10.00 dB/Div  
A v g  P w r  1 6 . 1  d B m  
R e s p o n s i v i t y  
1428  Vo l t s /Wat t  

M k r  # 1  F r q  9 . 1 5  G H z  
- 2 4 . 3 6  d B m  

L igh twave  E lec t r i ca l  

Re f l ec t i on - Induced  
Lase r  No ise  

O p t i m i z e d  L a s e r  
No i se  F loo r  

H    f -  
Start  24.0 MHz 
R B  3 . 0 0  M H z  V B  1 0 . 0  k H z  

Stop 18.00 GHz 
St 1.798 s 

Fig .  16 .  E f fec ts  o f  op t i ca l  re f lec t ions  on  the  laser  in tens i ty  
noise. 
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It also can induce a ripple on the spectrum with a frequency 
that is inversely porportional to the round-trip time from 
the laser to the reflection. It should be noted that other 
instruments, such as an optical time-domain reflectometer, 
can measure the magnitude of a reflection, but the light 
wave signal analyzer is the only instrument that can mea 
sure the effect of these reflections on the noise characteris 
tic of the laser under test. 

An important quantity related to signal-to-noise ratio is 
the relative intensity noise (RIN). It is a ratio of the optical 
noise power to the average optical power, and is an indica 
tion of the maximum possible signal-to-noise ratio in a 
lightwave system, where the dominant noise source is the 
laser intensity noise. In the lightwave-optical measurement 
mode, the HP 71400A makes the following measurement 
when the RIN marker is activated: 

= :  P  / P  r noise' avg 

where Pn0ise 's the optical noise power expressed in a 1-Hz 
bandwidth, and Pavg is the average optical power. This 
measurement can be made directly because of the built-in 
power meter function. 

Before the development of the lightwave signal analyzer, 
customers used a photodiode and a microwave spectrum 
analyzer to make this noise measurement, and an ammeter 
to monitor the photocurrent. This has led to an alternate 
expression of RIN in electrical power units, since these 
were the units of the measurement equipment being used. 
The HP 71400A has the ability to express this RIN measure 
ment in electrical power units in the lightwave-electrical 
measurement mode. Fig. 17 shows an RIN measurement 
in electrical power units of - 143 dB at 4.65 GHz for this 
semiconductor laser. Notice that the noise floor of the HP 
71400A is 10 dB lower than the laser noise floor in this mea 
surement. 

The HP 71400A can make a number of useful measure 
ments involving large-signal digital modulation of lasers. 

RL 16.00 dBm 
Atien O dB 
10.00 dB/Div 
Avg Pwr  15 .9  dBm 
Marker RIN 
4.65 GHz 
-143 .18  dBc  (1  Hz )  
1 

Mkr  #1AFrq  4 .65  GHz  
-143 .18  dBc  (1  Hz )  

Lightwave Electrical 
Sample 

Laser Intensity Noise 

HP 71400A Noise F loor  
H    1    1    1  â € ”  

Start  24.0 MHz 
R B  3 . 0 0  M H z  V B  1 0 . 0  k H z  

Stop 10.00 GHz 
St 1 .798 sec 

Fig. 1 7. Relat ive intensity noise (RIN) measurement of a high 
speed laser .  

R L  - 1 1 . 5 6  d B m  
Atten 5 dB 
3.00 dB/Div 
A v g  P w r  - 5 . 3  d B m  

Mkr  #1  Frq 566 MHz 
- 3 1 . 2 4  d B m  

Lightwave Optical 

A l / v  
Center 1.173 GHz 
R B  1 . 0 0  M H z  V B  3 . 0 0  k H z  

Span 2.346 GHz 
St 10.00 s 

Fig.  18.  Broadband sweep of  a  laser  modula ted wi th  a  565-  
megabi t -per-second PRBS data pat tern.  

Fig. 18 shows a laser transmitting pseudorandom binary 
sequence (PRBS) intensity modulation at 565 megabits per 
second. This sequence is a widely used test signal usually 
observed as an eye diagram in the time domain. In the 
frequency domain, an envelope that is the Fourier trans 
form of the pulse shape is displayed. Nonideal characteris 
tics, such as clock feedthough, are evident. As shown in 
Fig. 19, a narrower frequency sweep reveals that the signal 
is divided into discrete frequencies whose spacing is equal 
to the clock rate divided by the sequence length. Noise is 
also visible. In fact, different signal-to-noise ratios are ob 
servable as the feedback to the laser is adjusted. It is likely 
that this is the only way to measure transmitter-related 

R L  - 2 4 . 0 0  d B m  
Atten 0 dB 
3.00 dB/Div 
A v g  P w r  - 1 6 . 6  d B m  
Marker A 
554 kHz 
- 0 .0 :  

M k r  # 1 A F r q  5 5 4  k H z  
- 0 . 0 2  d B  

Lightwave Optical 

Center  250.000 MHz 
RB 21 .  5  kHz  VB 1 .00  kHz  

Span 2.321 MHz 
St 323.8 ms 

Fig . 1 9. Narrowband sweep of a laser modulated with a PRBS 
data  pat tern ,  showing the ind iv idua l  f requency components  
and the ef fect  of  the polar izat ion of  the ref lected l ight  on the 
signal-to-noise. 
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R L  - 1 0 . 0 0  d B m  
A t ten  8  dB  
3.00 dB DIV 
A v g  P w r  - 1 5 . 7  d B m  
Marke r  A  
12.51 GHz 
- 2 . 9 8  d B  
1 

Mkr  #1AFrq  12 .51  GHz  
- 2 . 9 8  d B  

Lightwave Optical 

Center  11.00 GHz 
R B  3 0 0  k H z  V B  1 0 . 0  k H z  

Span 22.00 GHz 
St 22.00 s 

Fig .  20.  Modula t ion  spect rum of  a  pu lsed laser .  

noise problems under large-signal modulation. In princi 
ple, it is possible to estimate bit error rate from this signal- 
to-noise ratio. 

High-speed pulse modulation can also be displayed on 
the HP 71400A. Fig. 20 shows the frequency-domain spec 
trum of a laser being driven at 100 MHz and generating 
35-picosecond-wide pulses. The spacing between the indi 
vidual discrete frequencies is equal to the pulse repetion 
rate. Once again, the envelope is the Fourier transform of 
the pulse shape. The pulse width can be determined from 
the 3-dB bandwidth, here 12.5 GHz, by assuming the pulse 
shape is Gaussian and using the following relationship: 

Pulse Width = 0.44/Optical 3-dB Bandwidth. 

This technique may be just as accurate as measuring the 
pulse width on a sampling oscilloscope, where the rise 
time of the scope must be deconvolved to get the correct 
answer. 
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Linewidth and Power Spectral 
Measurements of Single-Frequency 
Lasers 
A specia l  f iber  opt ic  in ter ferometer  preprocesses opt ica l  
s ignals for  a l ightwave s ignal  analyzer  to measure laser  
character is t ics  us ing de layed and gated de layed se l f -  
homodyne techniques.  

by Douglas  M.  Baney and Wayne V.  Sor in  

WITH THE ADVENT OF SEMICONDUCTOR lasers 
and low-loss optical fibers, the possibility of 
achieving over 1000-Gbit-km/s bandwidth-dis 

tance products has propelled research towards improving 
the performance of the laser and the optical fiber transmis 
sion medium.1 To minimize transmission penalties result 
ing from dispersion in long optical fiber communication 
links, high-performance lightwave communication sys 
tems require lasers that operate in a single longitudinal 
mode (i.e., single-frequency oscillation) and have minimal 
dynamic linewidth broadening (i.e., frequency chirp) 
under modulation. In coherent communications, the lasing 
linewidth becomes an important determinant of system 
performance. In the development of FSK modulated sys 
tems, which often rely on modulating the injection current 
to a semiconductor laser, the FM deviation as a function 
of both injection current and modulation frequency must 
be characterized. 

Advances in laser technology necessary to meet the strin 
gent requirements of communications system design have 
required similiar advances in measurement techniques and 
technology. The HP 1 1 980A Fiber Optic Interferometer was 
developed to work as an accessory to the HP 71400A Light 
wave Signal Analyzer (see article, page 80) to enable users 
to characterize many important spectral modulation prop 
erties of single-frequency telecommunication lasers. 

Interferometer Design 
The function of the HP 11980A is to act as a frequency 

discriminator, converting optical phase or frequency devia 

tions into intensity variations, which can then be detected 
using a square-law photodetector (e.g., the high-speed 
photodiode of the HP 71400A). Inside the HP 11980A is 
an unbalanced fiber optic Mach-Zehnder interferometer 
(see Fig. 1). This type of interferometer has an input direc 
tional coupler, which splits the incoming optical signal 
into two equal parts. The two signals then travel along 
separate fiber paths where they experience a differential 
delay, TO. The two signals are then recombined using 
another directional coupler. Since the optical fiber does 
not preserve the polarization state, a polarization state con 
troller is added to one arm of the interferometer. The con 
troller is purely mechanical and consists simply of a loop 
of fiber that can be rotated. This adjustment allows the user 
to maximize the interference signal by ensuring similar 
polarization states at the combining directional coupler. 
The optical output can then be sent to the HP 71400A 
where intensity variations are converted to a time-varying 
photocurrent, which is displayed on a spectrum analyzer. 

The HP 11 980 A interferometer is completely passive and 
has the same adaptable fiber optic connectors as the HP 
71400A. The connectors are compatible with the HMS-10/ 
HP, FC/PC, ST, biconic, and DIN connector formats. Fused 
single-mode fiber directional couplers from Gould, Inc. 
were chosen for their broad wavelength range from 1250 
to 1600 nanometers, enabling coverage of the important 
1300-nm and 1550-nm telecommunication windows. One 
arm of the interferometer is spliced to a 730-meter reel of 
Corning single-mode optical fiber to provide a differential 
delay of 3.5 microseconds. This delay permits laser 

HP 11980A F iber  Opt ic  In ter ferometer  

0 0  

HP 71400A 
Lightwave Signal 

Analyzer 

Fig. 1 . Distributed feedback (DFB) 
l ase r  l i new id th  measu remen t  us  
i n g  t h e  d e l a y e d  s e l f - h o m o d y n e  
technique. 
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linewidth measurements as low as 225 kHz (Lorentzian 
line shapes). 

Laser Diode Linewidth 
The most basic type of semiconductor laser uses reflec 

tions from cleaved end facets to provide the feedback 
needed for laser operation. One disadvantage of this Fabry- 
Perot type laser is that it generally operates in several fre 
quency modes, each separated by about 100 GHz. This can 
produce effective laser linewidths greater than 500 GHz, 
which can limit data rates (because of dispersion) in long- 
haul fiber optic communication links. One possible solu 
tion for reducing the effects of dispersion is the develop 
ment of DFB (distributed feedback) and DBR (distributed 
Bragg reflector) semiconductor lasers. In these lasers, a 
wavelength filter (a diffraction grating) suppresses all but 
one of the frequency modes of the laser. The resulting 
linewidths for these lasers are typically less than 50 MHz. 
Considering that the laser itself oscillates at a frequency of 
about 200,000 GHz, this is a relatively small fractional 
linewidth. 

DFB and DBR lasers have a tendency to change their 
operating frequency for different levels of injection current. 
This causes the laser to frequency chirp while being 
amplitude modulated, which can also result in limited data 
rates because of dispersion. The magnitude of these fre 
quency chirps can be in the tens of gigahertz. Measurements 
of linewidth and frequency chirp yield important informa 
tion not only about the laser's performance in a lightwave 
link, but also about the physical characteristics of the laser 
itself. 

Measuring Linewidth 
The HP 11980A enables measurement of laser linewidth, 

Av, by preprocessing the optical signal for the HP 71400A 
Lightwave Signal Analyzer. The block diagram of the mea 
surement system is shown in Fig. 1. The single-frequency 
laser, typically a DFB or DBR laser, is coupled to an optical 
fiber. Isolators are often used to reduce perturbations of 

SE(f) 

Â¿r * i x â€¢ t 

S Â ¡ ( f )  =  S E ( f )  *  S E ( f )  

F ig .  2 .  A f te r  de tec t i on  i n  the  HP 71400A L igh twave  S igna l  
Ana lyzer ,  the  spec t rum o f  the  s igna l  f rom the  HP 1  1980 A  
F ibe r  Op t i c  I n te r f e rome te r  i s  t he  au toco r re l a t i on  f unc t i on  
o f  the laser 's  e lect r ic  f ie ld  spect rum SE(f ) .  The -k  ind icates 
correlation. 

the laser by optical feedback arising from optical scattering 
in the fiber or at optical interfaces. The signal to be analyzed 
is then fed into the unbalanced Mach-Zehnder fiber optic 
interferometer inside the HP 11980A. Inside the inter 
ferometer the laser signal is split into two signals, which 
experience different delays before being recombined and 
sent to the photodiode of the HP 71400A. If the differential 
delay r0 is larger than the coherence time TC of the laser, 
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Fig. 3. (a) A l inewidth measurement for a DFB laser operat ing 
at  1549 nm. The l inewidth is  approximately 25 MHz. (b)  Two- 
s ided measurement  of  the same laser  l inewidth.  
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the two combined signals become uncorrelated. This pro 
cess is equivalent to mixing two separate laser signals, both 
having the same linewidth and center frequency. The mix 
ing (i.e., multiplying) of these two signals is accomplished 
as a result of the square-law nature of the photodiode. The 
resulting photocurrent spectrum is the autocorrelation 
function of the laser's electric field spectrum SE(f) and is 
commonly referred to as the delayed self-homodyne 
linewidth measurement. This process is shown graphically 
in Fig. 2. Since the displayed spectrum is the autocorrela 
tion function of the laser's line shape, its spectral width is 
approximately twice that of the laser linewidth.2 For the 
special case of Lorentzian line shapes, the autocorrelation 
function is also Lorentzian and has a linewidth exactly 
twice that of the original line shape. For Gaussian line 
shapes, the autocorrelation function is also Gaussian but 
has a linewidth equal to \/2 times that of the original line 
shape. Currently, most single-frequency semiconductor 
lasers are accurately described by Lorentzian line shapes. 

For the delayed self-homodyne measurement to be valid, 
the combining signals from the two arms of the interferome 
ter must be uncorrelated. For the HP 11980A, this means 
that the coherence time of the laser should be less than the 
interferometer delay of 3.5 microseconds. Since the coher 
ence time is approximately equal to the inverse of the 
linewidth (i.e., rc ~ 1/Av), the HP 11980A can measure 
linewidths less than 300 kHz. 

The signal-to-noise ratio of the displayed photocurrent 
spectrum can often be improved by manual adjustment of 
the front-panel knob on the HP 11 980 A. This polarization 
state adjustment can increase the interference between the 
two mixing signals by ensuring that their polarization states 
are closely matched. The shape of the displayed spectrum 
is not altered by this adjustment, only its size relative to 
the noise floor. It was decided not to automate this adjust 
ment because of the additional complexity that would be 
required. 

Fig. 3a shows a linewidth measurement for a DFB laser 
operating at 1549 nanometers. The linewidth, Av, is found 
by placing the display delta marker at the - 3-dB point 
from the peak. The half width is measured, since the au 
tocorrelation process doubles the width of the laser's spec 
trum. For the conditions of Fig. 3a, the laser linewidth is 
measured to be approximately 25 MHz. 

It is also possible to display a two-sided line shape by 
by applying a small amount of amplitude modulation to 
the laser and observing the linewidth convolved about one 
of the modulation sidebands.3 This result is shown in Fig. 
3b where the full double-width Lorentzian line shape is 
displayed. The linewidth is again measured to be about 25 
MHz, which agrees with that obtained in Fig. 3a. 

Modulated Laser  Power  Spectrum Measurement  
Using a newly developed measurement technique,4 the 

HP 11980A Fiber Optic Interferometer can used to measure 
laser chirp as well as intentional frequency modulation. 
Chirp can be thought of as the unwanted frequency devia 
tion in the optical carrier of a modulated laser. There exist 
a variety of techniques to measure the modulated power 
spectrum of a single-frequency laser. These include grating 
and Fabry-Perot spectrometers and heterodyne down-con 
version using two lasers. The technique presented here 
was developed in response to the shortcomings of previ 
ously known techniques. For example, it offers superior 
frequency resolution than grating spectrometers, which in 
practice are limited to a resolution of about 1 angstrom 
(approximately 15 GHz). Higher resolution (i.e., finesse) 
can be achieved with Fabry-Perot spectrometers, but the 
wavelength range is limited for a fixed pair of mirrors. In 
heterodyne techniques, two lasers are required and their 
wavelengths must be precisely controlled, which often re 
quires a high degree of complexity. The technique pre 
sented in this section overcomes these problems, allowing 
homodyne frequency measurements to be made over a 
range of 300 kHz to 22 GHz. 

Laser chirp in semiconductor lasers is caused by the 
dependence of the real and imaginary parts of the index 
of refraction on the injection current. Because of this effect, 
modulation of the injection current can result in large fluc 
tuations of the lasing wavelength. This phenomenon is 
responsible for a substantial widening of the electric field 
modulation power spectrum, Sm(f), beyond the Fourier 
transform limit of the information bandwidth. A wide 
power spectrum can impose severe transmission penalties 
in lightwave links with nonnegligible wavelength disper 
sion. Using the new gated delayed self-homodyne tech 
nique,4 a homodyne measurement of Sm(f) can be performed 
using the HP 1 1 980 A in conjunction with the HP 71400A. 

H P 7 1 4 0 0 A  

Spectrum 
Analyzer 

Modulation 
Source 

1 mi â€” Â«ii- [   _ â€” ^ t 
Gate Input 

Per iod =  2T -f t 
Fig.  4 .  Gated delayed se l f -homo- 
dyne technique for measuring laser 
frequency chirp and FM deviation. 
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Fig. 4 shows the measurement setup. With the laser 
biased above threshold, the injection current is gated be 
tween two states, one state modulated and the other state 
unmodulated. Thus, the laser behaves as a modulated laser 
for a period TO and an unmodulated laser, or local oscillator 
signal, for a sequential period TO. The period TO is chosen 
to equal the differential delay in the arms of the fiber optic 
interferometer, which is assumed to be longer than the 
coherence time of the laser. In the HP 11 980 A, there is a 
continuous combination of a modulated state with an un 
modulated state. These states are then mixed in the photo- 
detector of the HP 71400A. The power spectrum of the 
detector photocurrent, SÂ¡(f), is displayed by the HP 71400A. 
The homodyne down-conversion of the optical spectrum 
is illustrated in Fig. 5. In this figure, the modulated spec 
trum is shown to be asymmetrically located around the 
average frequency v0. This demonstrates the folding about 
zero frequency which is characteristic of homodyne mixing. 

This spectrum, SÂ¡(f), for the case where ra > TC, can be 
approximated as:5 

S,(f) = SD(f) * <Sm(f) + Sm(-f)} 

where SD(f) is the direct intensity modulation that would 
be measured if the interferometer were not present, and 
the other terms describe the Lorentzian line shape of the 
laser crosscorrelated with the homodyne power spectrum 
of the lasers's electric field modulation. The ability to make 
this measurement while the laser is modulated allows the 
determination of the alpha factor,6 which characterizes the 
coupling between gain and frequency chirp in semiconduc 
tor lasers. 

Figs. 6a and 6b demonstrate some of the experimental 
results that can be obtained using this gated delayed self- 
homodyne technique. In Fig. 6a, the injection current to a 
DFB laser is sinusoidally modulated at a rate of 300 MHz. 
Besides introducing a small amount of intensity modula 
tion, the optical frequency is also modulated. The modula- 

SE(f) S J f )  

I  
I  B  

S , ( f )  =  S E ( f )  *  S m ( f )  

D  

AA 
_Â» .  f  

Fig.  5.  For  the gated delayed sel f -homodyne technique,  the 
power spectrum of the detector photocurrent is the crosscor- 
relat ion funct ion of the laser electr ic f ield spectrum SE(f) and 
the modulated electr ic f ield spectrum Sm(f).  Homodyne detec 
t ion resul ts  in the fo ld ing of  the upper and lower s idebands,  
as i l lustrated in the displayed spectrum. 

tion of the optical carrier results in an electric field spec 
trum whose peaks are spaced by 300 MHz and whose 
amplitudes are described in terms of Bessel functions as 
predicted by classical FM theory. By adjusting the injection 
current to null a specific Bessel sideband, the frequency 
modulation index /3 can be determined very accurately. 
This technique is useful for accurately determining the 
optical FM response at various modulation frequencies. 

In Fig. 6b, the modulation frequency was reduced to 45 
MHz, which results in a larger FM modulation index for 
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the laser. The individual sidebands are no longer resolved 
because of the finite linewidth of the laser, and the spec 
trum takes on the shape of the probability density function 
for wideband sinusoidal FM modulation. The two curves 
in Fig. 6b indicate the progression of laser chirp with in 
creasing modulation power. The difference between these 
two curves corresponds to a ratio of optical frequency chirp 
to injection current of 410 MHz/mA at a modulation fre 
quency of 45 MHz. 

The resolution of the technique is approximately equal 
to the laser linewidth and therefore can be significantly 
superior to that of the Fabry-Perot spectrometer while being 
able to operate over a wavelength range of approximately 
1250 to 1600 nm. Compared to heterodyne techniques em 
ploying two lasers, this technique has the advantage of 
wavelength autotracking between the local oscillator and 
the modulated laser, since the same laser is used to generate 
both signals. 

Summary  
The HP 11 980 A Fiber Optic Interferometer was de 

veloped to enhance the measurement capabilities of the 
HP 71400A Lightwave Signal Analyzer. The fiber inter 
ferometer provides the ability to compare an optical signal 
with a 3.5-microsecond delayed version of itself. Using this 
type of comparision, information can be obtained about 
deviations in the optical carrier frequency. This enhance 
ment allows the HP 71400A to measure laser linewidths 
as low as 225 kHz and frequency chirp (up to Â±22 GHz) 
over a wavelength range of 1250 to 1600 nm. 
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