
H E W L E T T -

F E B R U A R Y 1 9 9 O

P A C K A R D
© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

_j â€” Ã¼ February 1990 Volume 41 â€¢ Number 1

Articles

A n O v e r v i e w o f t h e H P O S I E x p r e s s C a r d , b y W i l l i a m R . J o h n s o n

8
T h e H P O S I E x p r e s s C a r d B a c k p l a n e H a n d l e r , b y G l e n n F . T a l b o t t

1 5 C u s t o m V L S I C h i p s f o r D M A

1Q CONE: A So f twa re Env i ronmen t f o r Ne twork P ro toco l s , by S teven M. Dean , Dav id A .
O K u m p f , a n d H . M i c h a e l W e n z e l

r \ Q The Michael Layers of the H P OSI Express Card Stack, by Kimbal l K. Banker and Michael
A. Ellis

O O I m p l e m e n t a t i o n o f t h e O S I C l a s s 4 T r a n s p o r t P r o t o c o l i n t h e H P O S I E x p r e s s C a r d ,
O O b y R e x A . P u g h

A f - Da ta L i nk Laye r Des ign and Tes t i ng f o r t he HP OS I Exp ress Ca rd , by Jud i t h A . Sm i t h
T O a n d B i l l T h o m a s

49 The OSI Connect ion less Ne twork Pro toco l

51
HP OSI Exp ress Des ign fo r Pe r fo rmance , by E l i zabe th P . Bo r to lo t t o

59 T h e H P O S I E x p r e s s C a r d S o f t w a r e D i a g n o s t i c P r o g r a m , b y J o s e p h R . L o n g o , J r .

Editor, Richard P. Doian â€¢ Associate Editor, Charles L Leath â€¢ Assistant Editor, Gene M. Sadoff â€¢ Art Director, Photographer, Arvid A. Danielson
Suppor t Anne Susan E. Wr ight â€¢ Admin is t ra t ive Serv ices, D iane W. Woodwor th â€¢ Typography, Anne S. LoPrest i â€¢ European Product ion Superv isor , Son ja Wir th

2 HEWLETT-PACKARD JOURNAL FEBRUARY 1990 C Hewlet t -Packard Company 1990 Pr in ted in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

6 7

7 2

Support Features of the HP OSI Express Card, byJayesh K. Shah and Char les L. Hamer

I n t e g r a t i o n a n d T e s t f o r t h e H P O S I E x p r e s s C a r d ' s P r o t o c o l S t a c k , b y N e i l M .
A lexander and Randy J . West ra

80 High -Speed L i gh twave S igna l Ana l ys i s , by Ch r i s t ophe r M . M i l l e r

84 A Broadband Ins t rumenta t ion Photorece iver

92 L i n e w i d t h a n d P o w e r S p e c t r a l M e a s u r e m e n t s o f S i n g l e - F r e q u e n c y L a s e r s , b y
Doug las M. Baney and Wayne V. Sor in

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

7 7 A u t h o r s

The Hewlet t -Packard Journal is publ ished b imonth ly by the Hewlet t -Packard Company to recognize technical contr ibut ions made by Hewlet t -Packard (HP) personnel . Whi le
the in format ion o f in th is pub l ica t ion is be l ieved to be accura te , the Hewle t t -Packard Company makes no warrant ies , express or impl ied , as to the accuracy or re l iab i l i t y o f
such informat ion. The Hewlet t -Packard Company disc la ims al l warrant ies of merchantabi l i ty and f i tness for a part icular purpose and al l obl igat ions and l iabi l i t ies for damages,
including but not l imited to indirect, special , or consequent ial damages, at torney's and expert 's fees, and court costs, ar is ing out of or in connect ion with this publ icat ion.

Subscr ipt ions: non-HP Hewlett-Packard Journal is distr ibuted free of charge to HP research, design, and manufactur ing engineer ing personnel, as wel l as to qual i f ied non-HP
individuals, business and educational inst i tut ions. Please address subscript ion or change of address requests on printed letterhead (or include a business card) to the HP address
on the please cover that is c losest to you. When submitt ing a change of address, please include your zip or postal code and a copy of your old label.

Submiss ions: research ar t ic les in the Hewlet t -Packard Journa l are pr imar i ly authored by HP employees, ar t ic les f rom non-HP authors deal ing wi th HP-re la ted research or
solut ions contact technical problems made possible by using HP equipment are also considered for publication. Please contact the Editor before submitt ing such art icles. Also, the
Hewlett-Packard should encourages technical discussions of the topics presented in recent art ic les and may publ ish let ters expected to be of interest to readers. Letters should
be br ief , and are subject to edi t ing by HP.

Copyr ight publ icat ion 1990 copies Company. A l l r ights reserved. Permiss ion to copy wi thout fee a l l or par t o f th is publ icat ion is hereby granted prov ided that 1) the copies
are not Hewlett-Packard used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the tit le of the publication and date appear on
the copies; Otherwise, be a notice stating that the copying is by permission of the Hewlett-Packard Company appears on the copies. Otherwise, no portion of this publication may be
produced recording, information in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage retrieval system without written
permission of the Hewlet t -Packard Company.

Please Journal , inquir ies, submissions, and requests to: Edi tor , Hewlet t -Packard Journal , 3200 Hi l lv iew Avenue, Palo Al to, CA 94304, U.S.A.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Open us ing are systems that communicate wi th the outs ide wor ld us ing

s tandard protocols . Because they communicate us ing s tandard protocols ,
open systems can be in terconnected and wi l l work together regard less o f
what company manufactured them. For a user who is configuring a computer
sys tem or network , the benef i t o f open sys tems is the f reedom to choose
the best component for each function from the offerings of al l manufacturers.
In 1983, the Internat ional Organizat ion for Standardizat ion (ISO) publ ished
i t s Open Sys tems In te rconnec t i on (OSI) Re fe rence Mode l t o se rve as a
master model for coord inat ing a l l open systems act iv i t ies . The OSI model

starts functions a framework that organizes all intersystem communications functions into seven layers.
Specif ic protocols perform the functions of each layer. Any organization can have an open system
by imp lemen t ing these s tandard p ro toco l s . The movemen t t owards th i s mode l as the g loba l
standard many open systems has steadi ly gained momentum. Hewlet t -Packard, along with many
other manufacturers and the governments of many countr ies, is commit ted to the development
of s tandards and products based on the OSI model .

The HP OSI Express card implements the OSI model for HP 9000 Ser ies 800 computers. The
hardware and f i rmware on the card off- load most of the processing for the seven-layer OSI stack
from the also computer. This not only gets the job done faster and improves throughput, but also
leaves single t ime for the host processor to service user appl icat ions. Al though i t 's only a single
Series required I/O card, the HP OSI Express card implements many complex ideas and required a
major design ef for t that c la ims most of th is issue. You' l l f ind an overv iew of i ts design on page
6. The sof tware) between the card dr iver (which is par t o f the host sof tware) and the operat ing
system described in card is a set of firmware routines called the backplane handler; it 's described in
the ar t ic le on page 8. The card 's arch i tecture and most o f i ts operat ing system are determined
b y a n H P 1 8) . c a l l e d t h e c o m m o n O S I n e t w o r k i n g e n v i r o n m e n t , o r C O N E (s e e p a g e 1 8) .
CONE de f ines how the p ro toco l f i rmware modu les in te rac t and p rov ides sys tem func t ions to
support the protocol modules. The top three layers of the OSI Express card protocol stackâ€” the
appl icat ion, presentat ion, and session layer modules â€” are described in the art ic le on page 28.
These three layers share the same architecture and are implemented using tables. In the protocol
module for the fourth OSI layerâ€” the transport layerâ€” are the important functions of error detection
and recovery , mul t ip lex ing, address ing, and f low cont ro l , inc lud ing congest ion avo idance (see
page and bottom bottom three OSI layers are the network, data link, and physical layers. The bottom
of the OSI s tack on the OSI Express card is covered in the ar t ic le on page 45. Because of the
number of layers in the OSI s tack, data throughput is an impor tant cons iderat ion in the des ign
of any card implementat ion. Performance analysis of the HP OSI Express card began in the early
design eliminated and helped identify critical bottlenecks that needed to be eliminated (see page 51).
As a result, throughput as high as 600,000 bytes per second has been measured. Troubleshooting
in a mult ivendor environment is also an important concern because of the need to avoid situations
in which vendors blame each other 's products for a problem. Logging, t racing, and other support
features and the OSI Express card are discussed in the art icle on page 67. Final ly, debugging and
final testing of the card's firmware are the subjects of the articles on pages 59 and 72, respectively.

4 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Both communications use and the performance of fiber optic voice and data communications systems
cont inue to increase and we cont inue to see new forms of measur ing ins t rumentat ion adapted
to the art icle of f iber optic system design, test, and maintenance. The art icle on page 80 presents
the des ign and app l i ca t i ons o f t he HP 71400A l i gh twave s igna l ana l yze r . Th i s i ns t rumen t i s
designed intensity measure signal strength and distortion, modulation depth and bandwidth, intensity
noise, systems susceptibil ity to reflected light of high-performance optical systems and components
such as semiconductor lasers and broadband photodetectors. Unlike an optical spectrum analyzer,
it does spectrum provide information about the frequency of the carrier. Rather, it acts as a spectrum
ana lyzer fo r the modu la t ion on a l i gh twave car r ie r . I t comp lements the l i gh twave component
ana lyzer descr ibed in our June 1989 issue, which can be thought o f as a network analyzer for
l ightwave components. Using high-f requency photodiodes and a broadband ampl i f ier consist ing
of four s ignal microwave monol i th ic d is t r ibuted ampl i f ie r s tages, the l ightwave s ignal analyzer
can measure l ightwave modulat ion up to 22 GHz. (Th is seems l ike a huge bandwidth unt i l one
real izes that the carr ier f requency in a f iber opt ic system is 200,000 GHz or more!) A companion
ins t rument , the HP 11980A f iber opt ic in ter ferometer (page 92) , can be used wi th the analyzer
to measure the l inewid th , ch i rp , and f requency modula t ion character is t ics o f s ing le- f requency
lasers. The interferometer acts as a frequency discriminator, converting optical phase or frequency
variat ions into intensity var iat ions, which are then detected by the analyzer. Chirp and frequency
modula t ion measurements wi th the in ter ferometer use a new measurement techn ique ca l led a
gated sel f -homodyne technique.

R.P. Dolan
Editor

Cover
This is for Standardi rendit ion of the seven layers of the International Organization for Standardi

zat ion's OSI Reference Model on the HP OSI Express card, and the communicat ion path between
two end systems over a network.

What's Ahead
The Apr i l and issue wi l l feature the design of the HP 1050 modular l iqu id chromatograph and

the HP Open View network management sof tware.

FEBRUARY 1990 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

An Overv iew of the HP OSI Express Card
The OSI Express card prov ides on an I /O card the
networking services defined by the ISO OSI (Open Systems
Interconnect ion) Reference Model , resul t ing in of f - loading
much of the network overhead from the host computer. This
and other features set the OSI Express card apart from other
network implementat ions in ex is tence today.

by Wil l iam R. Johnson

THE DAYS WHEN A VENDOR used a proprietary
network to "lock in" customer commitment are over.
Today, cus tomers demand mul t ivendor ne twork

connectivity providing standardized application services.
HP's commitment to OSI-based networks provides a path
to fill this customer requirement.

The ISO (International Organization for Standardization)
OSI (Open Systems Interconnection) Reference Model was
developed to facilitate the development of protocol specifi
cations for the implementation of vendor independent net
works. HP has been committed to implementation of OSI-
based standards since the early 1980s. Now that the stan
dards have become stable, OSI-based products are becom
ing available. One of HP's contributions to this arena is the
OSI Express card for HP 9000 Series 800 computers.

The OSI Express card provides a platform for the protocol
stack used by OSI applications. Unlike other networking
implementations, the common OSI protocol stack resides
on the card. Thus, much of the network overhead is off
loaded from the host, leaving CPU bandwidth available for
processing user applications. This common protocol stack
consists of elements that implement layers 1 through 6 of
the OSI Reference Model and the Association Control Ser
vice Element (ACSE), which is the protocol for the seventh
layer of the OSI stack. Most of the application layer func
tionality is performed outside the card environment since
applications are more intimately tied to specific user func
tions (e.g., mail service or file systems). An architectural
view of the OSI Express card is given in Fig. 1 , and Fig. 2
shows the association between the OSI Express stack and
the OSI Reference Model.

The series of articles in this issue associated with the
OSI Express card provides some insight into how the proj
ect team at HP's Roseville Networks Division implemented
the card and what sets it apart from many other implemen
tations currently in existence today. This article gives an
overview of the topics covered in the other articles and the
components shown in Fig. 1.

OSI Express Stack
The protocol layers on the OSI Express card stack provide

the following services:
M e d i a A c c e s s C o n t r o l (M A C) H a r d w a r e . T h e M A C
hardware is responsible for reading data from the LAN
interface into the card buffers as specified by the link/MAC
interface software module. All normal data packets des

tined for a particular node's address are forwarded by the
logical link control (LLC) to the network layer.
Network Layer. The network layer on the OSI Express card
uses the connectionless network service (CLNS). The OSI
Express card's CLNS implementation supports the end-sys-
tem-to-intermediate-system protocol, which facil i tates
dynamic network routing capabilities. As new nodes are
brought up on the LAN, they announce themselves using
this subset of the network protocol. The service provided
by CLNS is not reliable and dictates the use of the transport
layer to provide a reliable data transfer service. Both the
transport layer and CLNS can provide segmentation and
reassembly capabilities when warranted.
Transport Layer Class 4. In addition to ensuring a reliable
data transfer service, the OSI Express transport is also re
sponsible for monitoring card congestion and providing
flow control.
Session Layer. The OSI Express card's implementation of
the session layer protocol facilitates the management of an
application's dialogue by passing parameters, policing state
transitions, and providing an extensive set of service primi
tives for applications.
Presentation Layer and Association Control Service Ele
ment (ASCE). The OSI Express card's presentation layer
extracts protocol parameters and negotiates the syntax rules
for transmitting information across the current association.
Both ACSE and the presentation layer use a flexible method
of protocol encoding called ASN.l (Abstract Syntax Nota
tion One). ASN.l allows arbitrary encodings of the protocol
header, posing special challenges to the decoder. ASCE is
used in the transmission of parameters used in the estab
lishment and release of the association.

OSI Express Protocols
The OSI protocols are implemented within the common

OSI networking environment (CONE). CONE is basically a
network-specific operating system for the OSI Express card.
The util i t ies provided by CONE include buffer manage
ment, timer management, connection management, queue
management, nodal management, and network manage
ment. CONE defines a standard protocol interface that pro
vides of isola t ion. This feature ensures por tabi l i ty of
networking software across various hardware anoVor soft
ware platforms. The basic operating system used in the
OSI Express card is not part of CONE and consists of a simple
interrupt system and a rudimentary memory manager.

6 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Service requests are transmitted to CONE using the back
plane message interface (BMI) protocol. Application re
quests are communicated through the OSI user interface
to the CONE interface adapter (CIA). The interface adapter
bundles the request into the BMI format and hands it off
to the system driver. The BMI converts message-based re
quests, which are asynchronous, from the interface adapter
into corresponding CONE procedure calls, which are syn
chronous.

The backplane handler controls the hardware that moves
messages between the host computer and the OSI Express
card. A special chip, called the HP Precision bus interface
chip, is used by the backplane handler to gain control of
the HP Precision bus and perform DMA between the OSI
Express card and the host memory space. Another special
chip, called the midplane memory controller, is used by
the backplane handler to take care of OSI Express card
midplane bus arbitration and card-resident memory. The
backplane handler conceals the interactions of these two
chips from CONE and the driver.

Diagnostics and Maintenance
The OSI Express card uses three utilities to aid in fault

detection and isolation. The hardware diagnostics and

maintenance program uses the ROM-resident code on the
card to perform initial configuration of the MAC hardware.
After configuration, the program is used to access the ROM-
based test code that exercises both local and remote net
working hardware. The same utility is also used to down
load the OSI Express card software into RAM. The host-
based network and nodal management tool contains the
tracing (event recording) and logging (error reporting)
facilities. The network and nodal management tool can be
used to report network management events and statistics
as well. However, it is primarily used to resolve protocol
networking problems causing abnormal application be
havior (e.g., receipt of nonconforming protocol header in
formation). The software diagnostic program, which is the
third fault detection program on the OSI Express card, was
developed to aid in the identification of defects encoun
tered during the software development of the card. This
program uses the software diagnostic module on the card
to read and write data, set software breakpoints, and indi
cate when breakpoints have been encountered. The inter
face to the software diagnostic program provides access to
data structures and breakpoint locations through the use
of symbolic names. It also searches CONE-defined data
structures with little user intervention.

Network and Nodal
Management

Tools

Application
Protocol and

User Interface

Software
Diagnostic

Program

Hardware
Diagnostics and

Maintenance

OSI Interface Services

Backplane Message
Interface Protocol

OSI Express Card

Operating
System

CONE Inter face Adapter

HP Precis ion Bus -

Backplane Hardware

Backplane Handler

Backplane Message Interface

Host
"Card

Common
OSI

Network
Environment

(CONE)

Associat ion Control Service Element

Presentat ion Layer

Session Layer

Transport Class 4 (TP) Layer

Connect ionless Network Service (CLNS)

IEEE 802.2 Type 1 LogicaL Link Control (LLC)

Software
Diagnostic

Module

ROM Resident
Backplane,

Self-test, and
Download

Monitor

IEEE 802.4
Media Access Control (MAC) Hardware

Link/MAC Interface Software

IEEE 802.4 LAN

Other Local
Hosts

Fig. 1 . HP OSI Express card overv iew.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL?

© Copr. 1949-1998 Hewlett-Packard Co.

L a y e r O S I M o d e l

7 Application

OSI Express
Components

Network and Nodal
Management Tools

Transport

Data Link

Physical

Transport Class 4

Connectionless Network
Service

IEEE 802.2 LLC (Type 1)

IEEE 802.3 or 802.4 MAC

1 0 - M b i t / s | 5 - M b i t / s
Broadband I Carr ierband

F ig . 2 . Compar i son be tween the OSI Express componen ts
and the OSI Reference Model .

In a multivendor environment it is crucial that network
ing problems be readily diagnosable. The OSI Express diag
nostics provide ample data (headers and state information)
to resolve the problem at hand quickly.

An implementation of the OSI protocols is not inherently
doomed to poor performance. In fact, file transfer through
put using the OSI Express card in some cases is similar to
that of existing networking products based on the TCP/IP
protocol stack. Performance is important to HP's customers,
and special attention to performance was an integral part
of the development of the OSI Express card. Special focus
on critical code paths for the OSI Express card resulted in
throughputs in excess of 600,000 bytes per second. Intelli
gent use of card memory and creative congestion control
allow the card to support up to 100 open connections.

Acknowledgments
Much credit needs to be given to our section manager

Doug Boliere and his staff â€” Todd Alleckson, Diana Bare,
Mary Ryan, Lloyd Serra, Randi Swisley, and Gary Wer-
muth â€” for putting this effort together and following it
through. Gratitude goes to the hardware engineers who
gave the networking software a home, as well as those who
developed the host software at Information Networks Divi
sion and Colorado Networks Division.

The HP OSI Express Card Backplane
Handler
The backplane on the HP OSI Express card is handled by
a pair of VLSI chips and a sef of firmware routines. These
components prov ide the in ter face between the HP OSI
Express card driver on the host machine and the common
OSI networking environment, or CONE, on the OSI Express
card.

by Glenn F. Talbot t

THE HP OSI EXPRESS CARD BACKPLANE handler
is a set of firmware routines that provide an interface
between the common OSI networking environment

(CONE) software and the host-resident driver. CONE pro
vides network-specific operating system functions and
other facilities for the OSI Express card (see the article on
page 18). The handler accomplishes its tasks by controlling
the hardware that moves messages between the host com
puter and the OSI Express card. The backplane handler
design is compatible with the I/O architecture defined for
HP Precision Architecture systems,1 and it makes use of

the features of this architecture to provide the communica
tion paths between CONE and the host-resident driver (see
Fig 1). The HP Precision I/O Architecture defines the types
of modules that can be connected to an HP Precision bus
(including processors, memory, and I/O). The OSI Express
card is classified as an I/O module.

The OSI Express card connects to an HP 9000 Series 800
system via the HP Precision bus (HP-PB), which is a 32-bit-
wide high-performance memory and I/O bus. The HP-PB
allows all modules connected to it to be either masters or
slaves in bus transactions. Bus transactions are initiated

8 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

H o s t
Memory

1
OSI

Express
Card

Driver

H P P r e c i s i o n B u s

HP Precis ion Bus
Interface Chip

Host
Card

DMA
Cha ins

[Messages

Backplane
Message
Interface ,

Â¡Events

Midplane
Memory

Controller
Chip

Fig. 1 . The data f low relat ionships between the OSI Express
ca rd d r i ve r on t he hos t compu te r and the ma jo r ha rdware
and sof tware components on the card.

by a master and responses are invoked from one or more
slaves. For a read transaction, data is transferred from the
slave to the master, and for a write transaction, data is
transferred from the master to the slave. Each module that
can act as a master in bus transactions is capable of being
a DMA controller. Bus transactions include reading or writ
ing 4, 16, or 32 bytes and atomically reading and clearing
16 bytes for semaphore operations.

The OSI Express card uses a pair of custom VLSI chips
to perform DMA between its own resident memory and
the host memory. The first chip is the HP-PB interface chip,
which acts as the master in the appropriate HP Precision
bus transactions to perform DMA between the OSI Express
card and the host system memory space. The second chip
is the midplane memory controller, which controls the
DMA between the HP-PB interface chip and the OSI Ex
press card resident memory. The memory controller chip
also performs midplane bus arbitration and functions as a
dynamic RAM memory controller and an interrupt control
ler. See the box on page 15 for more information about the
HP-IB interface chip and the midplane memory controller
chip. The backplane handler hides all the programming
required for these chips from the host computer OSI Ex
press driver and CONE.

Host Interface

The HP Precision I/O Architecture views an I/O module
as a continuously addressable portion of the overall HP
Precision Architecture address space. I/O modules are as
signed starting addresses and sizes in this space at system
initialization time. The HP Precision I/O Architecture
further divides this I/O module address space (called soft
physical address space, or SPA) into uniform, independent
register sets consisting of 16 32-bit registers each.

The OSI Express backplane handler is designed to sup
port up to 2048 of these register sets. (The HP-PB interface
chip maps HP-PB accesses to these register sets into the
Express card's resident memory.) With one exception, for
the backplane handler each register set is independent of
all the other register sets, and the register sets are organized
in inbound-outbound pairs to form full-duplex paths or
connections. The one register set that is the exception (RS
1) is used to notify the host system driver of asynchronous
events on the OSI Express card, and the driver is always
expected to keep a read transaction pending on this register
because it is set to receive notification of these events.

Register Sets
The registers are numbered zero through 15 within a

given register set. The registers within each set that are
used by the backplane handler as they are defined by the
HP Precision I/O Architecture are listed below. The regis
ters not included in the list are used by the backplane
handler to maintain internal state information about the
register set.

N u m b e r N a m e
4 I O J 3 M A J L I N K

5 I O _ D M A _ C O M M A N D

6 I O _ D M A _ A D D R E S S
7 I O _ D M A _ C O U N T

1 2 I O _ C O M M A N D
1 3 I O _ S T A T U S

Function
Pointer to DMA control

structure
Current DMA chain

command
DMA buffer address
DMA buffer size (bytes)
Register set I/O command
Register set status

The OSI Express card functions as a DMA controller and
uses DMA chaining to transfer data to and from the card.
DMA chaining consis ts of the DMA control ler ' s
autonomously following chains of DMA commands written
in memory by the host processor. HP Precision I/O Ar
chitecture defines DMA chaining methods and commands
for HP Precision Architecture systems. A DMA chain con
sists of a linked list of DMA control structures known as
quads. Fig. 2 shows a portion of a DMA chain and the
names of the entries in each quad.
Data Quad. The data quad is used to maintain reference
to and information about the data that is being transferred.
The fields in the data quad have the following meaning
and use.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

Data Quad 1 Data Quad 2 Link Quad

Completion
List Head

F i e l d M e a n i n g a n d U s e
C H A I N J J N K P o i n t e r t o t h e n e x t q u a d i n t h e c h a i n
C H A I N _ C M D D M A c h a i n i n g c o m m a n d p l u s

appl ica t ion-speci f ic f ie lds
A D D R E S S M e m o r y a d d r e s s o f t h e d a t a b u f f e r
C O U N T L e n g t h o f t h e d a t a b u f f e r i n b y t e s

Bits in the application-specific fields of CHAINLCMD con
t r o l t h e g e n e r a t i o n o f a s y n c h r o n o u s e v e n t s t o C O N E a n d
the acknowledgmen t o f a synchronous even t i nd i ca t ions t o

the hos t .
L ink Quad. A l ink quad i s c rea ted by the dr iver to ind ica te
the end of a DMA t ransac t ion (no te : no t the end of a DMA
c h a i n) . W h e n a l i n k q u a d i s e n c o u n t e r e d i n t h e c h a i n , a
c o m p l e t i o n l i s t i s f i l l e d i n a n d l i n k e d i n t o a c o m p l e t i o n
l is t . I f the CHAINJJNK f ie ld does not contain an END_OF_
CHAIN, DMA transfers continue. The f ields in the l ink quad
h a v e t h e f o l l o w i n g m e a n i n g a n d u s e .

F i e l d M e a n i n g a n d U s e
C H A I N J J N K P o i n t e r t o t h e n e x t q u a d i n t h e c h a i n , o r

END_OF_CHAIN value
C C M D J J N K C a u s e s a c o m p l e t i o n l i s t e n t r y t o b e

created and may specify whether the host
shou ld be in te r rup ted

H E A D _ A D D R A d d r e s s o f t h e c o m p l e t i o n l i s t
ENTRY_ADDR Address o f the comple t ion l i s t en t ry to

be used to report complet ion s ta tus

C o m p l e t i o n L i s t E n t r y . A c o m p l e t i o n l i s t e n t r y i s u s e d t o
i nd i ca t e t he comple t ion s t a tu s o f a DMA t r ansac t ion . One
i s f i l l e d i n w h e n a l i n k q u a d i s e n c o u n t e r e d i n t h e D M A
cha in . The f i e lds in the comple t ion l i s t have the fo l lowing

m e a n i n g s a n d u s e :

F i e l d M e a n i n g a n d U s e
N E X T J J N K P o i n t e r u s e d t o l i n k t h e e n t r y i n t o t h e

comple t ion l i s t
I C L S T A T U S C o m p l e t i o n s t a t u s f i e l d , a c o p y o f t h e

IO_STATUS regis ter
S A V E J J N K P o i n t e r t o t h e q u a d w h e r e a n e r r o r

occurred, or to the l ink quad in the case
of no error

S A V E _ C O U N T

Fig . 2 . A por t ion o f a DMA cha in .

Residue count of bytes remaining in the
buffer associated with the quad pointed
to by SAVE JJNK, or zero if no error

The completion list head contains a semaphore that al
lows a completion list to be shared by multiple I/O modules,
and a pointer to the first entry in the completion list.

DMA Chaining
DMA chaining is started by the host system driver when

the address of the first quad in a DMA chain is written into
the IO_DMA_LINK register of a register set. To tell the OSI
Express card to start chaining, the driver writes the chain
command CMD_CHAIN into the register set's IO_COMMAND
register. This causes an interrupt and the Express card's
backplane handler is entered. From this point until a com
pletion list entry is made, the DMA chain belongs to the
OSI Express card's register set, and DMA chaining is under
control of the backplane handler through the register set.
Fig. 3 shows the flow of activities for DMA chaining in the
driver and in the backplane handler.

Once control is transferred to the backplane handler, the
first thing the handler does is queue the register set for
service. When the register set reaches the head of the queue,
the backplane handler fetches the quad pointed to by IO_
DMAJLINK and copies the quad into the registers IO_DMA_
LINK, IO_DMA_COMMAND, IO_DMA_ADDRESS, and IO_
DMA_COUNT. The backplane handler then interprets the
chain command in register IOJDMA_COMMAND, executes
the indicated DMA operation, and fetches and copies the
next quad pointed to by IO_DMA_LINK. This fetch, inter
pret, and execute process is repeated until the value in
IOJ3MA_LINK is END_OF_CHAIN. When END_OF_CHAIN is
reached, the backplane handler indicates that the register
set is ready for a new I/O command by posting the status
of the DMA transaction in the lO^STATUS register.

The DMA operation executed by the backplane handler
is determined by the chain command in the IOJ)MA_COM-
MAND register. For quads associated with data buffers,
this chain command is CCMDJN or CCMDJDUT for inbound
or outbound buffers, respectively. In this case the back
plane handler transfers the number of bytes of data
specified in the IO_DMA_COUNT register to or from the
buffer at the host memory location in the IO_DMA_ AD
DRESS register. The IO_DMA_ADDRESS and IO_DMA_

10 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Quad 1 Quad 2 L ink Quad
I O J 3 M A J J N K <

I O . D M A . C O M M A N D

IO_DMA_ADDRESS

IOJDMA_COUNT

I O . C O M M A N D

IO_STATUS

I n b o u n d o r O u t b o u n d
Reg is te r Se t

Set Address of First
Quad into IO_DMA_LINK_

Wri te the Command
CMD_CHAIN into IO.COMMANO

W a k e U p
Exp ress
Card

Queue Register Set

Copy Quad i to
Registers 4, 5, 6, and 7

Quad 30 Quad n L i n k Q u a d

ICLCOMMAND
CCMD_LINK

(L ink Quad)

* C o m p l e t i o n L i s t
Po in te rs

IOJDMA,
C O M M A N D

CCMDJN (Inbound) or
C C M D . O U T

(O u t b o u n d) - "

Transfer Data to/ f rom
IO_DMA_ADDRESS

No

Create Completion
List Entry

COUNT registers are incremented and decremented as the
data is transferred.

The link quads containing a CCMDJJNK chain command
cause the backplane handler to report the status of the
previous DMA transfers and continue chaining if the regis
ter containing the CHAINLLINK field does not indicate END_
OF_CHAIN. The CCMDJJNK can also cause the backplane
handler to generate an interrupt to the host processor which
indicates to the driver that a completion list entry is ready
to be read.

Complet ion List Entry
When a link quad containing the CCMDJJNK chain com

mand is encountered, a completion list entry is created.
Creating a completion list is a three-or-four-step process.
First, the backplane handler acquires the semaphore in the
completion list head at the address in HEAD_ADDR (see Fig.
4a). This is accomplished by repeatedly mastering (gaining
control of the bus) a read-and-clear bus transaction until a
nonzero value is returned. When a nonzero value has been
read, the OSI Express card owns the semaphore and can
proceed to the next step. The second step is to fill the four
fields of the completion list entry indicated by the pointer

Retu rn t o Hos t

Fig. 3 . F low of act iv i t ies involved
in a DMA chain ing operat ion.

ENTRY^ADDR in the link quad. The third step is to write a
nonzero value into the semaphore field of the completion
list head, thus releasing the semaphore, and insert the new
completion list entry into the completion list (see Fig. 4b).
These three steps are done automatically by the HP Pre
cision bus interface chip on command from the backplane
handler.

The optional fourth step of the completion list insertion
process is to generate an interrupt to the host processor. If
the CCMDJJNK specifies, the address of the host processor
and the value written in the processor's external interrupt
register are packed into the chain command word contain
ing the CCMDJJNK. The backplane handler uses these values
to master a write to the host processor and cause an interrupt.

When the OSI Express driver has built a DMA chain and
started the OSI Express card traversing the chain, sub
sequent DMA chains can be appended to the existing chain
without interrupting the card. To do this the driver simply
writes the address of the first quad in the new chain into
the CHAINJJNK word of the last quad of the old chain. Since
the driver does not know whether an append is successful
(the card may have already fetched the last quad in the old
chain), there is a mechanism to verify the success of an

F E B R U A R Y 1 9 9 0 H E W L E T T - P A C K A R D J O U R N A L 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

I O _ D M A _ L I N K

(b)
C o m p l e t i o n

L i s t H e a d

S A V E _ C O U N T

Completion
List Entry

F ig . 4 . (a) Comple t ion l i s t be fo re execu t ing a CCMD_LINK
chain command, (b) Complet ion l ist af ter execut ing a CCMD_
LINK chain command.

append. When the driver reads the completion list entry
for the old chain, a bit in the IO.STATUS word indicates
whether or not the OSI Express card found END_OF_CHAIN
in the last quad. If this bit is set (END_OF_CHAIN found) the
append is not successful and the driver must start the new
chain by writing the address of the first quad of the new
chain to the register set's IO_DMA_LINK register and a
CMD^CHAIN to the ICLCOMMAND register. Using the ap
pend mechanism, the OSI Express card can run more effi

ciently when the driver can stay ahead of the card in posting
DMA chains. This way the driver only starts one chain
(generating an interrupt on the Express card) on each regis
ter set being used.

Procedure Call Interface

Data transfers between the host computer and the OSI
Express card are via DMA. DMA chains containing data
and control information are created by the host driver, and
the backplane handler uses the HP-PB register sets to trans
fer the data to and from the OSI Express card. On the OSI
Express card the data is moved to and from the protocol
layers. Access to the protocol layers is provided by the
common OSI network environment, or CONE, and access
to CONE is through the backplane message interface (BMI).
Fig. 1 shows the main elements of this of this hierarchy,
except the protocol layers. The backplane message interface
is responsible for converting backplane message (asyn
chronous) requests into corresponding CONE (synchro
nous) procedure calls for outbound data transfers, and con
verting CONE procedure calls into backplane message re
quests for inbound data transfers. The reasons for this par
ticular interface design are discussed in more detail on
page 27.

Handshake Procedures
The backplane handler interface to CONE uses a set of

procedures, which are written in C, to transfer messages
to and from CONE. CONE makes initialization and data
movement request calls to the backplane handler, and the
backplane handler makes completion and asynchronous
event procedure calls to CONE. The data movement re
quests are made by CONE executing at a normal interrupt
level. The completion and event calls are made by the
backplane handler at the backplane handler interrupt level
(level three) to CONE. These completion and event proce
dures set flags for processing later by CONE at a normal
interrupt level. The completion and event procedures are
located in the backplane message interface module. Point
ers to these routines are passed to the backplane handler
at initialization time for each register set. Although these
procedures are located in the BMI, CONE is responsible
for initiation, interpretation, and action for messages to
and from the backplane handler, and the BMI is the inter
process communication handler.
Initialization and Data Movement Procedures. These pro
cedures, which are located in the backplane handler, are
used by CONE to send messages to the backplane handler.
â€¢ BH_assocj-s(). This procedure is used by CONE to enable
an inbound and outbound register pair when a network
connection is established. It is also used to disable the
register pair when the connection is broken. The parame
ters passed when this procedure is called include:

n The register set number.
n An identifier that is meaningful to CONE and is used

to identify subsequent asynchronous events.
n The priority to be used in servicing the register set.
n Pointers to the three completion and event procedures

for this register set.
n A pointer to a block of memory to be used by the back-

12 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

plane handler to queue asynchronous events.
Q A pointer to a block of memory to be used by the back

plane handler to copy event parameters from the host
computer.

D The length of the event parameter memory block.
â€¢ BH_put_data() and BH_get_data(). These routines are used to

start a data transfer request â€” BH_put_data for inbound
transfers and BH_get_data for outbound transfers. They
are also instrumental in determining the state transitions
i n t he backp lane hand le r ' s ma in in t e r rup t s e rv i ce
routine. The parameters passed when these procedures
are called include:
a The register set number.
a An identifier that is returned with the BHI_put_data_

done() or BHI_get_data_done() call to identify this par
ticular request.

a A pointer to a block of memory to be used by the
backplane handler to queue this request. The block
of memory ensures that the queue depth of requests
held by the backplane handler is not limited by the re
sources directly available to the backplane handler.

n A pointer to a structure of chained data buffers to be
sent or filled. This structure is matched to the struc
tures created by the CONE memory manager.

n The total number of bytes requested for the transfer.
n A status value passed to the host computer in the com

pletion list entry.
Ã¼ A bit-field mode parameter that controls various as

pects of the t ransfer , such as whether er rors and
acknowledgments of previous asynchronous events
should be sent to the host computer.

Complet ion and Event Procedures . These procedures ,
which are located in the backplane message interface mod
ule, are used by the backplane handler to send messages
to CONE.
â€¢ BHI_cmd_arrival(). This procedure is used to announce

asynchronous events to CONE. There are two asynchron
ous events that cause BHLcmd_arnval() to be called by the
backplane handler. The first event is the posting of out
bound data to a register set by the host driver. The first
quad in the DMA chain associated with the register set
has its transparent bit set and the quad's data buffer is
set to contain information about how much outbound
data is being sent. The transparent bit causes a call to
BHI_cmd_arrival(), passing the buffer attached to the first
quad. The second case in which BHI_cmd_arrival() is called
is the resetting of a register set by the driver. CONE must
acknowledge the receipt of a BHI_cmd_arnval() call with a
BH_geLdata() call. The backplane handler's internal logic
prevents more than one BHI_cmd_arrival() per register set
from being outstanding at any t ime. The parameters
passed in a call to BHL cmd_arrival include:
n The register set of the event.
a An identifier that is meaningful to CONE (established

with BH_assoc_rsQ).
n A code indicating the type of event.
n The length of data in an event parameter block.

â€¢ BHI_put_data_done() and BHI_get_data_done(). These proce
dures are used to announce the completion and freeing
of resources from prior data movement requests. The
parameters passed with these procedures include:

n An identifier that is meaningful to CONE (established
by the BH_put_data() or BH_get_data() request).

n A count of the number of bytes moved to or from the
host computer.

D A status value passed from the host computer.
n An error value to indicate backplane handler errors.

Inbound and Outbound Requests
Fig. 5 illustrates how these routines are used to perform

the handshakes for data transfers between the backplane
handler and CONE. CONE starts off by calling BH_assoc_rs()
to enable an inbound and outbound register set pair when
a connection is established.
Outbound Requests. When BHI_cmd_arrival() is called to in
form CONE that the host computer has posted outbound
data to an outbound register set, CONE allocates the re
quired buffer space and calls BH_get_data(), specifying an
acknowledgment of the BHI_cmd_arrival() call. When the data
has been transferred across the backplane, BHI_get_data_
done() is called, triggering CONE to send the outbound data
across the network.
Inbound Requests. When CONE receives inbound data, it
calls BH_put_data() to send the data across the backplane,
specifying that an asynchronous event must be sent to the
host and giving the size of the data. After the host computer
receives the asynchronous event, it posts reads to accept
the data. After the data has been transferred, the backplane
handler calls BHI_put_data_done(), triggering CONE to release
the buffers used by the inbound data so they can be used
to receive more data.

The send and receive data sequences are repeated as
often as necessary to move data across the backplane. Note
that as long as CONE has free buffers available, CONE does
not have to wait for a preceding BHI_get_data_done() to allo
cate the next outbound buffer and call BH_get_data(). Also,
as long as free buffers are available, CONE can receive data
from the network and call BH_put_data() without waiting for
the preceding BHLput_data_done() calls to indicate that the
host has taken previous data. When the connection is cut,

O u t b o u n d D a t a t r a n s f e r s
BH_assoc_rs () (Enable Register Set)

BHLcmcLarr ival {)

Backplane
Handler

BH.geLdata ()

BHI_get_data_done ()

Backplane
Message
Interface

BH_assoc rs () (Disable Register Set)

I n b o u n d D a t a T r a n s f e r s
BH_assoc_rs () (Enable Register Set)

BH_put_data ()

BHLput_data_done ()

BH assoc rs () (Disable Regis ter Set)

Backplane
Message
Interface

F ig . 5 . Handshake sequences be tween the backp lane han
d ler and CONE (v ia the backp lane message in ter face) .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

I / O C o m m a n d W r i t e
BH_puLdata (
BH_get_data (

S t a r t D M A

N o R e g i s t e r S e t
N e e d s S e r v i c e

S w i t c h C o n t e x t
t o N e w R e g i s t e r S e t

E n d D M A

Fig . 6 . The backp lane hand ler s ta te d iagram.

CONE calls BH_assoc_rs() to disable the register sets used
by the connection.

End DMA
Processing

DMA Complet ion
(Processing Complete

on One DMA Buf fer)

Dequeue
Register Set

The Backplane Handler

The simplified state diagram shown in Fig. 6 shows the
behavior of the backplane handler to inputs from the OSI
Express card driver on the host computer and from CONE
through the backplane message interface.

In the BHJDLE state the backplane handler is typically
not executing because the OSI Express card processor is
either executing in the CONE protocol stack, or the proces
sor is in an idle loop itself. There are two ways to get out
of BHJDLE. Either a new I/O command is written by the
host driver into a register set's IO_COMMAND register caus
ing an interrupt, or the backplane handler's main interrupt
service routine is called from CONE via BH_puUdata() or
BH_geUdata() to process a new request. In either case at least
one register set will be queued for service, and the back
plane handler will find the queued register set, switch con
text to that register set, and enter the RSJ3USY state.

In the RSJ3USY state the backplane handler does all the
processing required to service one register set, moving the
register set through the various register set states. If a long
DMA transfer is started and the backplane handler must
exit to await DMA completion, the backplane handler will
enter the DMA^ACTIVE state. DMA_ACTIVE is a transitory state
that ends when the DMA completes and the backplane
handler returns to the RSJ3USY state. When one register
set can progress no further through the register set states,
the backplane handler switches to the next queued register
set. When there are no more register sets, the backplane
handler returns to the BHJDLE state.

(cont inued on page 16)

Queue
Register Set
for Service

Process
Register Set
(Register Set

State Machine)

Switch
Context to

Register Set

F i g . 7 . F l o w c h a r t f o r t h e b a c k
plane handler 's main interrupt ser
vice routine.

14 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Custom VLSI chips for DMA

The OSI Express card uses a pa i r o f custom VLSI c i rcu i ts to
per fo rm DMA be tween the OSI Express card res iden t memory
and the host system's memory. The f irst chip is the Hewlett-Pack
ard Prec is ion bus in ter face ch ip and the o ther is the midp lane
m e m o r y c o n t r o l l e r c h i p . T h e b u s i n t e r f a c e c h i p m a s t e r s t h e
appropr ia te HP Prec is ion bus t ransac t ions to per fo rm DMA be
tween the OSI Express card and the host system memory space.
The memory cont ro l le r ch ip is respons ib le fo r cont ro l l ing DMA
between the bus interface chip and the OSI Express card resident
memory , per fo rming midp lane bus arb i t ra t ion , and func t ion ing
as a dynamic RAM memory controller and an interrupt controller.

The bus inter face chip funct ions as a bus master when doing
DMA on the HP Precis ion bus and as a bus s lave when respond
ing to d i rect I /O to and f rom the OSI Express card reg is ters by
the host processor. The memory control ler chip serves as a DMA
control ler when the bus interface chip is doing DMA, performing
DMA to or from card memory when the bus interface chip asserts
a DMA request (DMAR). The memory control ler chip also serves
as a bus arbitrator when the bus interface chip responds to direct
I /O f rom the host computer , grant ing the bus in ter face ch ip the
bus when i t asserts a bus request (BUSRQ).

Both chips are connected to a 68020 processor, dynamic RAM,
and address and data buses as shown in Fig. 1 . All RAM address
es on the address bus are t rans la ted by the memory cont ro l le r
ch ip in to addresses that map in to the phys ica l RAM space.

DMA between the host system and the OSI Express card is a
complex process, consider ing that :
â€¢ Al l HP Precis ion bus DMA data t ransfers are ei ther 16 or 32

bytes and must be s ize-a l igned.
â€¢ DMA bus transfers on the OSI Express card bus are 16 bi ts,

and a one-byte shift is required if even-addressed OSI Express
card bytes are t ransfer red to odd-addressed host bytes.

â€¢ DMA transfers on the HP Precision bus side can be specif ied
to start or end on arbitrary byte boundaries, with garbage data
used to pad to 16-byte a l ignment and s ize.

â€¢ DMA transfers on the OSI Express card memory side can be
speci f ied to star t or end on arbi t rary byte boundar ies wi th no
extra data al lowed.
The bus interface chip and the memory control ler chip combine

BURSRO
HP Precision
Bus Interface

Chip

68020
Processor

Data
Bus

Midplane
Memory

Controller
Chip

Address
Bus

I

Address

Frontplane
Fig . 1 . OSI express card da ta and address buses .

to make the task of doing DMA between OSI Express card mem
ory and host memory almost as s imple as programming address
es and counts. Fig. 2 shows some of the basic elements on both
ch ips . The f igure is drawn showing DMA f rom the OSI Express
c a r d t o t h e h o s t c o m p u t e r . T o g o t h e o t h e r w a y , r e v e r s e t h e
direct ion of the data f low arrows.

The bus interface chip uses a pair of 32-byte swing buffers so
tha t an HP-PB t ransact ion can proceed in para l le l w i th an OSI
E x p r e s s c a r d m i d p l a n e t r a n s a c t i o n . T h e b u s i n t e r f a c e c h i p
PDMA_ADDRESS reg is te r i s a po in te r i n to hos t memory . I t i s
init ial ized to the size-al igned boundary below the desired start ing
address and is incremented by the s ize o f the t ransact ions (16
or 32 bytes).

The bus i n t e r f ace ch ip NLCOUNT and M_COUNT reg i s t e r s

Data

Host
Memory

Address

Fig . 2 . Bas ic e lements o f the HP
Prec is ion Bus in te r face ch ip and
t he m idp lane memory con t ro l l e r
chip.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

count down as the DMA transfer progresses on the HP Precision
bus s ide (NLCOUNT) and the OSI Express card midp lane s ide
(M_COUNT). NLCOUNT is decremented by the HP Precision bus
transaction size (1 6 or 32 bytes) and IVLCOUNT is decremented
by the midp lane t ransac t ion s ize (2 by tes) . Bo th reg is te rs a re
normal ly in i t ia l ized to the desired s ize of the t ransfer. However,
i f the t ransfer is f rom the host system to the OSI Express card
and the star t ing host address is not 16 (or 32) byte a l igned, the
amoun t o f m i sa l i gnmen t i s added t o NLCOUNT to cause t ha t
number o f by tes to be read and d i sca rded . The bus i n te r face
chip wi l l assert DMAR as long as both M_COUNT and N.COUNT
are greater than zero and the swing buf fer on the OSI Express
c a r d E x s i d e i s n o t f u l l (o r n o t e m p t y f o r h o s t - t o - O S I E x
press card transfers).

The memory control ler chip has the task of al igning misal igned
hos t computer and OSI Express card da ta . I f da ta on the hos t
computer s tar ts on an odd byte and the OSI Express card data
starts on an even byte, or vice versa, the data is passed through
the memory control ler chip using the shift byte register to provide
the one-byte shif t required for al l data transfers between the OSI
Express card memory and the bus inter face chip. I f the star t ing
addresses match (odd - odd or even - even) then DMA data i s

t ransferred d i rect ly between the bus inter face chip and the OSI
Express card memory wi thout pass ing through the memory con
t ro l ler ch ip . There is a two-c lock-cyc le penal ty for each 16 b i ts
t ransferred when byte shi f t ing DMA data.

The memory con t ro l l e r ch ip DMAJ\DDRESS reg is te r , wh ich
sources the OSI Express card memory address, is in i t ia l ized to
the s tar t ing address o f the t rans fer and is incremented by two
bytes as the data is transferred (one byte for f i rst or last byte as
requ i red by misa l ignment and leng th) . The COUNT reg is te r i s
in i t ia l ized to the number o f bytes requi red and is decremented
a s t h e D M A _ A D D R E S S r e g i s t e r i s i n c r e m e n t e d . T h e P D M A _
OFFSET register is a f ive-bi t rol lover counter that is used to pro
v ide PDMA_ in to the bus in te r face ch ip swing bu f fe rs . PDMA_
OFFSET is masked to four b i ts when 16-byte HP Prec is ion bus
t ransact ions are be ing used so that i t counts f rom 0 to 15 and
rol ls de zero. PDMA_OFFSET is in i t ia l ized to an of fset value de
pend ing on the s ize a l ignment o f the des i red hos t s ta r t ing ad
dress (zero fo r s ize-a l igned t rans fers) . The memory cont ro l le r
chip wi l l dr ive the DMA as long as the bus interface chip asserts
DMAR and the memory control ler chip COUNT register is greater
than zero.

(cont inued f rom page 14)

Main Interrupt Service Routine
The backplane handler's main interrupt service routine

is the component of the backplane handler that drives the
backplane handler state machine. A flowchart of the back
plane handler main interrupt service routine is shown in
figure Fig. 7.

On entry to the main interrupt service routine, a three
way decision is made based on the reason for entry.
â€¢ If the entry is from a call by BH_ puUdataQ or BH_get_data()

the routine searches for a queued register set to service.
â€¢ If the entry is from a new command written to a register

set, the register set is queued for service, and if the back
plane handler state is DMA^CTIVE, an exit is taken. Other
wise the interrupt service routine searches for a queued
register set to service.

â€¢ If the entry is from a DMA completion, the backplane
handler ends DMA processing and enters a loop for pro
cessing one register set. This loop consists of a test to
see if there is further action that can be taken on the
register set, register set processing (which drives the reg
ister set state machine) if the test is successful, and a
test for DMA_ACTIVE. If the first test fails and there is
nothing further that can be done on the current register
set, that register set is removed from the queue of register
sets requesting service and the interrupt service routine
searches for a queued register set to service. If the second
test shows that DMA is active, an immediate exit is taken.
Note that there are no context switches to another register
set before a particular register set being serviced reaches
DMA completion. This is because on new command en
tries, if the backplane handler state is DMA_ACTIVE an
exit is taken with no context switch. Also, BH_ put_data()
and BH_get_data() will queue a register set for service but
not call the main interrupt service routine if the back
plane handler state is DMA-ACTIVE.
All paths through the main interrupt service routine that

do not exit with DMA.ACTIVE eventually wind up searching
for another queued register set to service. Register sets are

queued for service in multiple priority queues. Each priority
queue is serviced in a first in, first out fashion before step
ping to the next-lower-priority queue. (Register set priorities
are established at initialization.) When a register set is found
requesting service, a context switch is made to that register
set and the loop that processes register sets is entered. When
there are no more register sets requesting service the main
interrupt service routine exits.

Register Set State Machine
The backplane handler sends and receives mul t ip le

streams of data on register sets and maintains those register
sets as independent state machines. Each register set is an
instance of a register set state machine. Register set state
changes are driven by the process register set block in the
main interrupt service routine. A simplified register set
state diagram is shown in Fig. 8.

A register set leaves the RSJDLE state either when a new
request is started (BH_put_data() or BH_get_data() queue a re
quest and then queue the register set for service) or when
a host data buffer becomes available (host driver posts a
DMA chain, and a normal data quad is fetched). If a new
request is started, the register set transitions to the REQ_
PEND state. If a new host buffer becomes available the regis
ter set transitions to the DATA_PEND state. The register set
may stay in either RECLPEND or DATA_PEND for a long time
waiting for driver action, resources to free up, or network
data to be received to cause the transitions to REQ_DATA_
PEND.

Once in the REQ_DATA_PEND state, DMA data will flow
through a register set until either the end of the host data
is encountered or the end of the local request data is en
countered, or both. When one of these events is encoun
tered, the register set will transition back to the appropriate
RECLPEND, DATA_PEND, or RSJDLE state.

The ability of a register set to go between either the RECL
PEND or DATA.PEND state and the REQ_DATA_PEND state re
peatedly allows the OSI Express card to use the backplane

16 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Start
Reques t

Host Data
But te r
Ava i lab le

Start
Request

Fig. 8 . Regis ter set s ta te d iagram.

handler as a packet segmentation or reassembly point.
When networking buffer memory on the OSI Express card
is scarce and a large buffer of outbound data is posted by
the driver, CONE can allocate one small buffer to send the
data. The one buffer can be used over and over again by
going through multiple iterations of passing it to the back
plane handler in a BH_get_data() call and then transmitting
it across the network. Each successive BH_ get_data() call
reads successive blocks of data from the host computer's
buffer. On the inbound side the process can be repeated
using BH_put_data(). The backplane handler is also flexible
enough to perform the same service for the host computer,
using large buffers on the card and multiple small buffers
on the host computer. The result is that because of the
backplane handler's ability to move data spanning buffer
boundaries on either the host computer or the OSI Express
card, the driver and CONE need not worry about accurately
matching buffers with each other.

Asynchronous Event Handling

For inbound and outbound data transfers the backplane
handler must process asynchronous events to notify CONE
and the host system of these data transfers. In the outbound
direction the CONE modules must be notified when the
host driver posts a buffer of outbound data so that CONE
can allocate outbound buffers to transport the data to the
network. CONE needs to be told how much data is out
bound so that it can allocate resources before the data is
read onto the OSI Express card. The same problem exists
in the inbound direction. When a packet of data arrives at
the backplane handler from the network, the host driver
and networking code must be told of its arrival and size
so that host networking memory can be efficiently allo
cated.

In the outbound direction, the driver prefixes each out
bound message, which may be made up of multiple large
physical buffers linked with DMA chaining quads, with a
quad and a small buffer containing size and other informa
tion about the outbound message. A bit is set in the prefix
quad indicating that it is a transparent command (transpar
ent to the backplane handler), and the entire DMA chain

is posted on a register set.
When the transparent command quad is fetched by the

backplane handler, the small buffer associated with the
quad is copied into the event parameter buffer for that
register set. BHI_cmd_arnval() is then called and the transpar
ent command and event parameters are passed on to CONE.
The backplane handler will then suspend fetching quads
on that register set until CONE has acknowledged the BHL
cmd_arrival() event with a BH_get_data() call on that register
set. This prevents a subsequent transparent command from
overwriting the original command in the the event param
eter buffer until CONE has acknowledged the first transpar
ent command. CONE allocates the resources needed to send
part or all of the data across the network, and then calls
BH_get_data() with the acknowledge bit set.

In the inbound direction, transparent indications provide
event notification to the driver and host networking soft
ware. One register set (RS 1) is used as a high-priority
transparent indication register set. This register set is ser
viced by the backplane handler at a priority higher than
any other register set, and the driver always keeps a DMA
chain of small buffers and completion list entries posted
on the transparent indication register set.

When the first packet of an inbound message arrives from
the network, the packet is placed in a line data buffer con
sisting of one or more physical buffers. A physical buffer
containing the size and other information about the in
bound message is prefixed to the line data buffer, and the
prefixed line data buffer is posted to the backplane handler
in a BH_put_data() call with the transparent indication bit
set. When the request generated by the BI-Lput_data() call
arrives at the head of the request queue on the register set,
the request is then requeued onto the transparent indication
register set. The data is then sent via DMA into one of the
small host computer buffers posted there to receive the
data, and then the backplane handler creates a completion
list entry.

When the driver reads the completion list entry as
sociated with the transparent indication register set, the
transparent indication is passed on to host networking soft
ware, which allocates the resources necessary to receive
the message. The driver then posts the allocated buffers on
the correct register set (as indicated in the transparent in
dication) with an acknowledge bit set in the first quad's
CHAINLCMD word. The backplane handler then sends the
data via DMA into the buffers on the host via the appro
priate register set.

Conclusion
Four main benefits have resulted from the design of the

OSI Express card backplane handler. The first three are all
related in that they are derived from the flexibility of the
register set state machine. These benefits include:
â€¢ The producer and consumer processes on the host and

on the OSI Express card do not have to be time-syn
chronized. Data transfers may be started either by the
host system or the OSI Express card register set being
used. The host system can post buffers to start the transfer
or CONE can start the transfer by calling procedures
BH_put_data() or BH_get_data().

â€¢ Data buffers on the host system and the OSI Express card

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

do not need to match in size. Large buffers on the host
can be filled (or emptied) from multiple small buffers
on the card, and large buffers on the card can be filled
(or emptied) from multiple small buffers on the host.
Neither the host nor the CONE modules resident on the
I/O module need to know about the buffer sizes on the
other side of the backplane.
The independence of buffer sizes has resulted in reduced
overhead for packet assembly and disassembly (a normal
operation for network software). The backplane handler
allows the OSI Express card to combine packet assembly
and disassembly with the data copy that is required to
cross the backplane. This allows the OSI Express card
networking software to accomplish packet assembly and
disassembly without the added overhead of a data copy.
The problem of one connection or data path blocking
data flow on another path at the backplane interface is
eliminated. The primary reason for the backplane han
dler's maintaining multiple independent register sets is to
prevent one path from blocking another. If one of these

paths becomes blocked because a consumer stops taking
data, the remaining paths continue to carry data without
the intervention of the networking application on the
OSI Express card or the host system.

Acknowledgments
Special thanks to Jim Haagen-Smit who made significant

contributions to the design and development of the back
plane handler, and in reviewing this article. I would also
like to acknowledge the efforts of the HP Precision bus
interface chip design team, especially Vince Cavanna and
Calvin Olsen, and the midplane memory controller chip
design team, especially Mark Fidler and Alan Albrecht, for
providing these remarkable integrated circuits and review
ing this article.

References
1 . D.V. James, et al, "HP Precision Architecture: The Input/Output
System," Hewlett-Packard Journal, Vol. 37, no. 8, August 1986,
pp. 23-30.

CONE: A Sof tware Environment for
Network Protocols
The common OSI network environment, or CONE, provides
a network-specific operating system for the HP OSI Express
card and an environment for implementing OSI protocols.

by Steven M. Dean, David A. Kumpf , and H. Michael Wenzel

IMPLEMENTING HIGH-PERFORMANCE and reliable
network protocols is an expensive and time-consuming
endeavor. Supporting products containing these proto

cols is also costly, considering changes in standards,
hardware, and application emphasis. Because of these chal
lenges, in the early 1980s HP began to develop a framework
for providing portable protocol modules that could be used
in a number of products to minimize incompatibility prob
lems and development and support costs. Early network
protocol portability concepts were used in networking
products for the HP 9000 Series 500 computers,1 the HP
9000 Series 300 computers, the HP Vectra personal comput
er, and the HP code for connecting Digital Equipment Cor
poration's VAX/VMS systems to HP AdvanceNet.2 Other
concepts in modularity and protocol flexibility were de
veloped for products on HP 3000 computers3 and HP 1000
computers.4 In anticipation of new standards for ISO OSI
(Open Systems Interconnection) protocols, an HP interdivi
sional task force was formed to define a networking envi
ronment for protocols that would incorporate the best ideas
identified from current and previous network products,

and provide protocols that were portable to a maximum
number of machines. This environment is called CONE, or
common OSI networking environment.

CONE is a system design for a set of cooperating protocol
modules, a collection of functions that support these mod
ules, and a comprehensive specification for module inter
faces. A protocol module contains the code that imple
ments the functions for a particular layer of the OSI stack.
As shown in Fig. 1, the overall OSI Express card network
system is structured as nested boxes. The more deeply
nested boxes contain more portable code. The network pro
tocol code contains the data structures and functions that
implement the protocol layers. The execution environment
defines all the interfaces to the network protocol modules,
providing services that are tuned to support network pro
tocols and ensure isolation from the embedding operating
system. The embedding operating system includes the
facilities provided by the operating system for the processor
on the OSI Express card. These facilities include a simple
interrupt system and a rudimentary memory manager. The
system interface is composed of small, partially portable

18 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

modules that perform whatever actions are necessary to
adapt the embedding operating system for network use.
The services provided by the system interface include:
â€¢ Interfaces to interrupt service routines for card-to-host

computer DMA
â€¢ LAN frontplane hardware and timer functions
â€¢ Message channels from the card to the host for error

reporting
â€¢ Tracing and network management.

This article describes the CONE architecture and the fea
tures it provides to support the OSI model.

OSI Addressing

Service Access Points and Connect ions
Two concepts that are central to the OSI model are service

access points (SAPs) and connections (see Fig. 2). These
concepts apply at every OSI layer and represent the re
lationship between a protocol layer and a black box con
taining all the protocol layers below it.

An SAP is an addressable point at which protocol ser
vices are provided for a layer user. A layer user is the next-
higher protocol layer (e.g., the layer user of the network
layer is typically the transport layer). SAPs for higher-layer
users are identified by address or SAP selector information
carried by the protocol header. Protocol headers are dis
cussed in the next section.

A connection represents an association between a pair
of users for the exchange of information. In the CCITT X.25
standard, which defines protocols that correspond to the
first three layers of the OSI model, connections are called
virtual circuits. Each connection represents a separate com
munication path that is maintained by lower-layer pro
tocols. If data stops moving on one connection (e.g., if an
application stops receiving data), data can still be ex
changed over other connections, since they are indepen
dent.

An analogy will serve to illustrate these concepts. A ser
vice access point is like a multiline telephone â€” the kind
with the lighted buttons across the bottom, which is typi
cally used by small businesses or departments. The tele
phone (SAP) is the point at which service is offered by the
telephone company (lower-layer protocols). The telephone
has a telephone number (address or SAP selector) which
is used by the telephone company to identify it when plac
ing calls (see Fig. 3). A connection is like an individual

Embedding Operat ing System

call from one telephone number to another. Just like the
lighted buttons on the telephone, several connections may
be alive simultaneously between two or more phone num
bers. Each lighted button (connection endpoint identifier)
can be viewed as the end of an imaginary wire which is
used to represent that distinct instance of communication
with a remote user. The same pair of telephones may even
have more than one connection active between them at a
time, each with its own lighted button on each telephone.
The user can specify which connection will send or receive
data by pressing the related button (connection endpoint
identifier). If a remote user stops listening on a given con
nection, the local user is still free to talk on other connec
tions whose remote users are more responsive.

Protocol Headers
Most networking protocols send data from a local to a

remote layer user by adding protocol control information
to the front of the layer user's data buffer. This propended
control information is called a protocol header. The con
catenated result then becomes user data for the next-lower
layer of protocol (see Fig. 4). This works much the same
as envelopes within other envelopes, with the outermost
envelopes corresponding to lower layers of protocol. Each
protocol layer's header control information corresponds to
handling instructions on each envelope. When a packet is
received by a machine, each protocol layer examines and
removes its handling instruction envelope (header) and
delivers the contents to the next-higher protocol layer. One
crucial piece of header information identifies which mod
ule is the next-higher layer. In the OSI model, this is called
the SAP selector. Datagram protocols carry the SAP selector
in each packet and treat each packet independently of all
others. Connection-oriented protocols only exchange the
(possibly large) SAP selectors during the connection estab
lishment handshakes. Successive packet headers carry only
a connection endpoint identifier, which is a dynamically
allocated shorthand reference that is mapped by the receiv
ing protocol to the specific connection between a pair of
layer users.

Addressing Relat ionships
Every user application finds a remote application via

some sort of application directory, which is analogous to
a telephone directory. To communicate with an application
on another machine, the directory maps the target applica
tion's name into an NSAP (network service access point)
and an n-tuple vector of SAP selectors. The NSAP is the
intermachine address for the machine, and the n-tuple vec-

L o c a l M a c h i n e R e m o t e M a c h i n e A R e m o t e M a c h i n e B

Connections or Virtual Circuits

'Funct ions and Data Structures Provided by CONE.

F i g . 1 . L a y e r e d a r c h i t e c t u r e o f t h e H P O S I E x p r e s s c a r d
network system.

' Connect ion Endpoint
() Service Access Point

Fig. 2 . Serv ice access po in ts (SAPs) and connect ions.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

tor contains an entry (intramachine address) for each OSI
layer used to communicate with the application on the
target machine. There are many schemes for assigning SAP
selector values to each of the entries in the n-tuple vector.
The ISO OSI standards offer little guidance as to which is
the best scheme. However, the important thing is that the
n-tuple vector combination be unique for application-to-
application communication over a network.

Fig. 5 shows the addressing relationships between the
top four layers of the protocol stack for one machine on a
network. The intermachine address, or NSAP, for all the
applications on this machine is X. The lines in Fig. 5 do
not represent connections but addressing relationships,
that is, they show which module is pointed at by an address
and what are valid address combinations. For application
A in Fig. 5, the n-tuple vector is Pi, Si, Tl and for appli
cation B the n-tuple vector is P22, Si, Tl. For these two
applications the protocol stack uses the presentation layer
SAP selector values Pi and P22 to tell these two applica
tions apart. For application C, which has the n-tuple P44,
S9, Tl, the presentation layer SAP selector P44 would be
redundant because no other application uses the subvector
S9, Tl. For application D the n-tuple is P77, S9, T2. Since
application C and D have the same SAP selector for the
session layer (S9), the SAP selectors are interpreted within
the context of the transport layer SAP selectors Tl and T2,
respectively.

Direct applications are applications that use the services
of lower OSI layers and bypass some of the upper-layer
protocols. To the rest of the OSI stack these applications
look like alternative modules to the upper OSI layers. For
example, applications E and F use the session layer directly.
To the lower-layer protocols they look like alternative pro
tocol modules of the presentation layer. The address vec
tors for applications E and F are S32, T2 and S99, T2,
respectively. Applications G and H use the transport layer
directly and they are addressed by the vectors T40 and
T50, respectively.

Remote
"Te lephones"

7890 9876 4321 5432

^
T

_ _ _ J
Connections

[A] G O [Ã §] [t o

SAP Selector

Service Access
Point (SAP)

Connect ion Endpoint
Identifiers

Fig. 3. Telephone analogy i l lustrat ing SAPs and connect ions.

Protocol Module Interfaces

In CONE, interfaces to protocol layers are procedure-
based, as opposed to being message-based as in many pre
vious network products. Procedure-based means that pro
tocol modules call one another instead of sending messages
to each other through the operating system. This minimizes
the number of instructions because a data packet can pass
through the protocol layers and be processed without being
queued. When necessary, protocol interface procedure
calls are converted to messages to cross a process bound
ary â€” for instance, when crossing the OSI Express card back
plane into the host operating system. Within the OSI Ex
press card protocol stack, higher-level protocol layers call
lower-level protocols to process outbound packets, and
lower-level protocol layers call higher-level protocols to
process inbound packets. To avoid bugs that would be very
hard for a protocol designer to anticipate, reentrance is not
allowed, that is, a protocol module cannot call back into
the protocol module that called it. This means that packets
move in one direction at a time through the protocol stack
before all the procedures return to the outermost CONE
routine.

Protocol layer interrelationships and protocol module
interfaces in CONE are represented by three central data
structures: protocol entries, paths, and service access point
(SAP) entries.

Protocol Entries
For the OSI Express card there is a protocol entry data

structure for each protocol layer in the system. This in
cludes protocols from physical layer 1 (IEEE 802.3 or 802.4
LAN) to application layer 7 which contains the Association
Control Service Element (ACSE). Fig. 6 shows the config
uration of these data structures after power-up. The pro
tocol entry for each protocol layer contains a list of pointers
to all of its standard procedure entry points and other in
formation, such as protocol identifiers, statistics, and trace
and log masks. Standard procedure entry points include
separate calls for actions like establishing and destroying
network connections, sending and receiving data, and spe
cial control commands. This list of entry points is used to
bind modules dynamically in a way similar to the protocol
switch table in the University of California, Berkeley UNIX

L a y e r 2 L a y e r 3 L a y e r 4 L a y e r 5 L a y e r 6 A p p l i c a t i o n
H e a d e r H e a d e r H e a d e r H e a d e r H e a d e r D a t a . . .

Layer 6
User's Data

Layer 5 User's Data

Layer 4 User 's Data

Layer 3 User 's Data

Layer 2 User 's Data

Total Line Data Packet Sent Ser ia l ly over the Wire

Fig. 4 . Nest ing o f pro toco l headers .

20 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

networking implementation.3
Separate entry points exist for categorically different ac

tions and for each direction of packet travel â€” for example,
the entry points SP_Send_Down() for outbound packets and
SP_Send_Up() for inbound packets, which appear in the ses
sion layer shown in Fig. 6. These separate entry points
speed access to a protocol's action-handling routines and
allow protocols to take advantage of implicit assumptions
about the state of a path, thus reducing extraneous state
checks and minimizing the number of instructions in the
most common data-handling cases. All protocols handle
the same parameter structure for each procedure call, al
lowing protocols to be used interchangeably as building
blocks in different combinations as necessary to reach a
given destination.

The SAP lookup tables are also set up for each protocol
layer right after power-up and all are empty except the
tables for the data link (layer 2) and internet protocol (layer
3) layers. The SAP lookup table contains the SAP selectors.
Part of the system configuration at power-up is to set up
the SAP lookup tables so that the data link protocol module
(layer 2) can find the network module (layer 3) and layer
3 can find the transport module (layer 4). The remote net-
UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries.

work SAP (NSAP) table is also empty because there is no
communication with remote nodes at the beginning. If a
remote node did try to connect right after power-up and
before any applications started to run, the internet protocol
layer would create a destination entry to remember who
is calling and then it would use its SAP entry to find the
transport layer to give it the packet. The transport layer
would send an error packet back to the remote node because
no transport SAP selector values would be active â€” the
transport layer would not know of any layer users above
it yet.

Path Data Structure
When an application begins to communicate with an

application on another machine, several data structures are
set up by CONE to handle the connection between the two
applications. One of these data structures is the path data
structure. The path data structure represents an individual
connection and serves as a focal point to tie together the
collection of all supporting information required to talk to
a remote application. It also represents the intramachine
route taken through the protocol layers by packets on a
given connection from the user to the LAN interface. It
consists of an ordered list of all the protocols involved in

Full-Stack OSI Applications

Direct
Session

Applications

Direct
Transport

Applications

Layer 7

Layer 6

SAP Selectors F ig . 5 . Add ress ing re la t i onsh ips
on one machine in a network.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

the conversation, together with their connection state infor
mation for this connection (see Fig. 7). As each protocol
module is called by CONE to process an event (Â© in Fig.
7), it is passed a pointer to its entry in this list. This pointer
is represented by the PathEntry parameter shown in the in
terface call IP_Send_Down shown in Fig. 7. The other param
eter, buf, points to the parameter block that points to the
line data buffers containing the data packets. Parameter
blocks and line data buffers are discussed later when the
CONE memory manager is described. When each protocol
is finished with its part of the overall processing, the PathEn
try pointer is used to find the next protocol module to be
called, either above or below the current one, depending
on whether the packet is being received or transmitted (see
the previous and next entries in the path data structure in
Fig. 7) . Different stacks of protocols can be used for different
connections by changing the makeup of the path template.
Paths are used by both datagram and connection-oriented
protocols on a packet-by-packet basis.

SAP Entr ies
SAP entries are used by protocols to find each other

when a path is first being created. A SAP entry contains
the SAP selector value that represents the intramachine
address of the next-higher layer user. This relationship is
recorded in a standard data structure so that other subsys
tems like tracing, logging, network management, and
dynamic debuggers can know which modules are involved
with a given path or packet. Each path entry points to the
SAP entry that represents the user on the local end of the
connection (Â® in Fig. 7).

When an OSI application is first activated, it sets up the
n-tuple vector of SAP selectors stored in the SAP lookup
tables. Each cell in the n-tuple is handled by a separate
protocol layer. When CONE calls a protocol module that
serves a new user, it passes the user's SAP selector value,
user dependent parameters, and a pointer to the related
protocol global entry for the next-higher layer in the n-
tuple. The called protocol layer adds the new SAP selector
value to its SAP lookup table. The relationship of each new
SAP selector value to other values and the network topol
ogy is protocol dependent because, besides the SAP selec
tor value, information from the protocol header on an in
coming packet is often used by the protocol layer as part
of the key value to find a given SAP entry. The responsibil
ity of managing these key values belongs to the protocol
module. CONE supports the protocols in this function by
providing address management utility routines that per
form common functions like creating and destroying SAP
entries and high-speed mapping of key values to SAP-entry
pointers for a given SAP entry.

Besides SAP entries, there is another structure called the
destination entry, which is used by the data link layer and
the network layer to contain network intermachine address
es and other information about the remote node. In align
ment with the functions defined in the OSI model, destina
tion entries for the network layer represent the NSAP for
a remote machine beyond the LAN, and destination entries
for the data link layer represent machines that share the
same link (e.g., a LAN) with the local machine. The desti
nation entry is a standard data structure for all the informa

tion that needs to be remembered about a remote machine.
Besides the NSAP, examples of other information that
would be stored in a destination entry include route and
remote dependent protocol parameters (e.g., packet size,
options, version). This structure can be used to filter trace
and log data for each destination to avoid overloading out
put files. Transient relationships can exist between the
network and data link layer destination entries to represent
routing information â€” for example, to forward a packet to
the network layer for destination A, use the data link layer
on destination B as the next stop. References to destination
entries are counted to ensure that they are held in existence
while they are pointed at by other structures.

P r o t o c o l E n t r y
Da ta S t ruc tu res

S A P L o o k u p
T a b l e s

(One pe r P ro toco l
Layer)

Sess ion
â€¢ Entry Points

â€¢ SP.SemLUp
â€¢ SP_Send_Down

Protocol Global
Variables
â€¢ Local SAPs

Transport 4
â€¢ Entry Points

â€¢ TP_Send_Up
â€¢ TP_Send_Down

â€¢ Protocol Global
Variables
â€¢ Local SAPs

1 One Per SAP Selec tor

Fig. 6. Protocol entry data st ructures r ight af ter power-up.

22 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Tying i t Together
The protocol entry, path, and SAP entry data structures

together provide the framework that enables protocol mod
ules to create and maintain network connections between
applications on different machines. When a user applica
tion makes an outbound connection, it directly or indirectly
passes down all the related local and remote address infor
mation needed to identify the remote machine and all the
modules on each end of the connection. CONE uses this
information when setting up the path data structure and
its relationship to local SAP entries. As the protocols send
packets to the remote node to set up the connection, the
address information is carried by the protocol headers. For
connections coming alive in the inbound direction, the
address information in the protocol headers is used by each
protocol module to find a SAP entry that contains the in
formation needed to initialize its entry in a fresh path data
structure. Inbound paths are initialized upward, one pro
tocol layer at a time. When the incoming connection
reaches the user application, the path data structure is a
mirror image of the one built for the outbound path on the
initiating machine. At any time during the life of the path,
CONE can be requested to extract all the address (and pro
tocol parameter) information from a path. This information
can be used by a user application to call a remote user
back, or during an error log for precise identification of all

the modules on each end of a connection having a problem.
Surrounding these common data structures is an exten

sive list of rules related to how these structures are used
and what can and cannot happen as a result of a protocol
interface event procedure call. These rules specify:
â€¢ What services a protocol at a given layer can rely on

from the protocol layer below it without binding itself
to a specific lower protocol. This is needed for support
ing protocol replaceability (e.g., OSI internet protocol
can work with IEEE 802.3, IEEE 802.4, X.25, LAPB, test
modules, etc.).

â€¢ How protocol facilities are enabled and disabled, and
how protocol-specific information is passed to a module
in the middle of the protocol stack without the modules
around it having to know what is happening. This is
needed for protocol module independence and also for
protocol replaceability.

â€¢ How paths are used when connections at various levels
have different lifetimes, or when multiple connections
multiplex onto each other.

â€¢ Which modules have the right to read or write each of
the fields in the common data structures.

â€¢ At what times the data structure fields are known to be
valid or assumed to be invalid.

â€¢ How data sent or received on the network wire (line
data) flows from layer to layer.

Pro toco l
T a b l e

P r o t o c o l E n t r y
Da ta S t ruc tu res

Transport 4
â€¢ Entry Points

â€¢ TP_S*nd_Up
â€¢ TP_Send_Down

â€¢ Protocol Global
Variables
â€¢ Local SAPs

Internet Protocol
â€¢ Entry Points

â€¢ IP_Send_Up
â€¢ IP_Send_Down

â€¢ Protocol Global
Variables
â€¢ Local SAPs
â€¢ Remote

Destinations

Path Data Structure
(One per Connect ion

or Datagram Path)

Transport 4
â€¢ Local SAP Pointer
â€¢ Remote SAP Value
â€¢ Protocol Module
â€¢ Previous

Next

Internet Protocol
â€¢ Local SAP Pointer
â€¢ Remote SAP Value
â€¢ Protocol Module
â € ¢ P r e v i o u s â € ¢
â€¢ Next

â€¢ Destination
Path Global Variables

Destination Entry
(One per Remote Node)

Remote NSAP Tab le

Interface Call

Â®
Line Data Buffer
(One per Data Packet)

Fig. 7. Relat ion between path and
protocol entry data structures when
applications on dif ferent machines
are communicating over a network.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ How buffer space is managed for multiple protocol layers
and what layer has the right to touch a line data buffer
(buffer containing data packets) at any given time.

â€¢ How a line data buffer is to be segmented and reassem
bled at a given layer when multiple layers have this
ability.

â€¢ How flow is controlled on a system-wide basis. For exam
ple, when there are multiple connection-oriented pro
tocols, buffers do not need to be reserved by each layer
to handle its own flow control, retransmission, and queu
ing requirements. All layers know collectively what will
happen to data buffer memory entering or exiting the
system.

â€¢ How to handle arbitrarily complicated OSI protocol in
terface events with a minimum number of simple, stan
dard buffer structures and interface calls.

â€¢ How to handle error situations, especially under race
conditions where things are going wrong on both ends
of the path at the same time.

Process Model

One of the major goals of CONE is to provide an architec
ture where protocol modules can be easily ported to differ
ent environments. To provide a portable architecture, it is
essential that a well-defined process structure be ported as
well. This allows the protocol modules to be designed with
a specific process structure in mind.

The underlying process model for the CONE protocol
code is procedure-oriented. The CONE process model dif
fers from a typical time-sliced dispatching algorithm in
that once a task is dispatched, it is run to completion.
CONE performs a sort of "pseudo-multitasking" in that the
system depends on the timely completion of a task rather
than incurring the overhead of process preemption and
context-switching. A task can be thought of as an event
handler. When a CONE task is invoked, the dispatcher
makes a procedure call to the related event handler proce
dure. The event handler is then free to do whatever it likes
but must eventually return to the dispatcher. When there
is no work to be done, the card is idle waiting for an external
event to occur. When an external event occurs, the handler
for the event is scheduled.

A scheduled event handler is represented by a small data
structure called a token. The protocol module provides the
space for the token as part of its path data structure. The
token contains, among other things, the entry point of the
event handler. When an event handler is scheduled, the
token is added to the end of a global FIFO task queue. The
dispatcher simply calls the event handling routine when
the routine's token reaches the front of the queue. Because
of the potential overhead, task priorities are avoided as
much as possible.

All CONE-based event handlers are considered to be
tested, trusted system-quality code. With this type of pro
cess model, the protocol modules must abide by two rules.
First, the protocol module must complete execution as
quickly as possible. Waiting in a loop for an external event
is not allowed because it would delay other tasks from
running and degrade performance. Second, a protocol mod
ule is not allowed to reenter the protocol module that called

it. Disallowing a protocol module from being reentered
avoids the possibility of infinite loops, and makes coding
of the protocol modules much simpler because only one
protocol module at a time can be changing the common
data structures. Reentrance in a procedure-based system is
a fertile bug source. For a small cost in performance, reen-
trance can be avoided by simply scheduling a task to call
the other layers back only after they have exited back to
the dispatcher.

An example of the CONE dispatcher behavior is illus
trated in Fig. 8. In this example a packet is received that
requires a TP4 AK (transport 4 acknowledgment) packet
to be sent back out on the LAN. When a packet for the OSI
stack is received from the LAN, a frontplane interrupt is
generated. The frontplane interrupt service routine will
service the hardware, queue the packet, schedule the in
bound task of the data link protocol module (LLC = logical
link control), and exit. At Â© in Fig. 8, the CONE dispatcher
calls the LLC inbound task scheduled by the frontplane
interrupt service routine. LLC processes the packet and
calls the network layer's protocol module (IP), which pro
cesses the packet and calls the transport protocol module
(TP4). Since TP4 was entered via its inbound packet inter
face call, it is not allowed at this time to call an outbound
interface routine to send an AK. Therefore, it must schedule
an AK task (2) to send the AK packet out after the inbound
routines are done. After processing of the inbound packet,
TP4 returns to IP (3), which returns to LLC, which returns
to the CONE dispatcher. The CONE dispatcher then moves
on to the next pending event, namely the AK task, and
wakes up TP4 to handle the event (4). Since TP4 was entered
directly from the dispatcher, it is now free to send outbound
(or inbound) packets, since no other protocol modules are
in danger of being reentered. At Â©, TP4 calls IP to send
the AK, which calls LLC to put the packet on the LAN.

C o n e
D i s p a t c h e r â€¢ Schedu le Acknow ledgmen t Task

- (4) C a l l A c k n o w l e d g m e n t T a s k

T r a n s p o r t
Protocol (TP4)

(D

t i i
N e t w o r k

Protocol (IP)

T T T
Link

Protoco l (LLC)

T T
Â ® A c k n o w l e d g m e n t P a c k e t

L L C I n b o u n d T a s k Q u e u e d t o u
R e c e i v e s P a c k e t F r o n t p l a n e H a r d w a r e
v i a F r o n t p l a n e
I n t e r r u p t S e r v i c e
R o u t i n e

Fig. 8 . Example o f the behav ior o f the CONE d ispatcher .

24 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Memory Management

CONE provides two types of memory: memory objects
and line data buffers. A memory object is a contiguous
block of memory (heap space]. The intended use of a mem
ory object is to hold a data structure for direct use by a
CONE-based module. Memory objects can be shared by
multiple modules but there is always a single, well-defined
owner which changes very little over the lifetime of the
object.

Line data buffers hold data that is sent and received on
the network wire or line. Unlike memory objects, line data
buffers are passed, created, and destroyed outside the
CONE environment. To ensure portability, all CONE-based
modules allocate, deallocate, write, read, and manipulate
line data buffers through macro calls to the CONE buffer
manager. Since protocol modules aren't coupled to specific
buffer structures, only the buffer manager needs to be
changed to use a different underlying structure for efficient
interaction within another operating system. Line data buf
fers are not guaranteed to be contiguous and may consist
internally of several smaller memory objects chained to
gether.

CONE's use of memory is optimized for speed in allocat
ing and deallocating memory objects and line data buffers.
At the same time, it is designed to make maximum use of
available memory by taking advantage of the predeter
mined characteristics of protocol memory use. This can be
contrasted with the memory managers in many conven
tional operating systems which are not optimized for speed
of allocation and deallocation, since most regular processes
allocate arbitrary-size memory objects and keep them until
the process dies. The CONE buffer manager also plays a
major role in card flow control, ensuring that all users can
continue to run in worst-case memory situations. Refer to
the article on page 36 for a detailed discussion on OSI
Express card flow control.

Memory Object Al locat ion
A fundamental element of any memory management sys

tem is the ability to allocate and deallocate contiguous
blocks of memory dynamically. Although a basic function,
the method chosen can have a significant effect on perfor
mance. We studied the first-fit, best-fit, and buddy system
memory allocation algorithms and these methods proved
to be slower and more complicated than we needed. Net
working applications typically make repeated requests Â¡or
memory objects that fall into a small number of fixed sizes.
Since the number of different memory object sizes is small,
a two-level scheme is used in which memory is first divided
into one of two block sizes, and then small blocks are
subdivided to fill memory object pools. Having only two
block sizes greatly reduces the time necessary to allocate
and deallocate a memory block. A memory block is allo
cated by removing the block at the head of a free list. A
memory block is deallocated by inserting the block at the
head of the free list. Large block sizes are only used to
grant large line data buffer requests, while the small block
sizes are used for both small line data and memory objects.

Dividing the entire memory into fixed-size blocks elimi
nates external fragmentation because there are no wasted

chunks of memory between blocks. However, internal frag
mentation can still be a problem since the memory block
may be larger than needed. To reduce internal fragmenta
tion a pool manager was developed. The pool manager
takes the smaller-size blocks described above and divides
them into even smaller blocks of various fixed sizes so that
they fit the groups of memory objects used by CONE-based
modules. There are several pools, each managing a different
object size. By studying the distribution of memory object
sizes that are allocated, we determined that four different
pool object size groups were needed. With the four pool
object size groups and the two original block sizes, wasted
space resulting from internal fragmentation was reduced
to approximately 10 to 15 percent. CONE-based modules
are unaware of whether a memory object comes from a
pool or directly from the free list, since this detail is hidden
behind the CONE interface.

The pool manager is designed to allocate and deallocate
memory objects very quickly. The speed of the pool man
ager, combined with the simplicity of the memory free list,
reduces the time required to allocate and deallocate mem
ory to a very small portion of the overall processing time.

Line Data Buffer Structure
The structure of a line data buffer is a key part of the

CONE design. For portability, the internal structure of line
data buffers is hidden from CONE-based modules. Line
data buffers are passed from module to module as protocol
interface events propagate through the stack. To the layer
users, a line data buffer is represented by a pointer to a
standard data structure in a memory object called a param
eter block which invisibly references the memory area that
actually stores line data (see Fig. 9). The parameter block
functions like a baton that is passed from module to mod
ule. The layer currently holding the parameter block is the
one that has the right to work with the buffer. The parameter
block has a fixed part that carries the standard parameters
every protocol module must recognize, such as the current
amount of line data contained in the buffer, whether the
buffer contains a packet fragment or the end of a fragment
train, and what protocol interface event the packet is related
to. The rest of the parameter block can be used for storing
protocol dependent parameters related to the interface
event. This structure allows the protocol interface proce
dure calls to have a very small number of parameters,
speeding up procedure calls from layer to layer. It also
provides the space for queuing event-related information
in the suboptimal case where the event can't immediately
be acted upon and propagated through the stack.

Data copying is kept to a minimum in the buffer manager
design, both to maximize performance and to minimize

Inv is ib le
Reference

Line Data
Buffer Pointer

Parameter
Block

L ine Da ta Segmen ts

F i g . 9 . T h e c o m p o n e n t s o f a l i n e d a t a b u f f e r .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

memory use. This led to a special feature in the parameter
block design. Many connection-oriented protocols, such as
OSI transport, need to keep a copy of each transmitted
packet until an acknowledgment of delivery is received
from the remote machine in case the packet needs to be
retransmitted. Rather than allocate another buffer and copy
the data, the parameter block is simply marked with a
pointer to the protocol module's entry point so that the
buffer can be given back when the lower protocol layers
have finished with it. When this entry point is called, the
protocol module queues the original packet, rather than a
copy. The retransmission timer is also started during this
buffer return call made by the lower layers after the previ
ous transmission has left the machine. This avoids the
embarassing problem of having multiple retransmitted
copies of the same packet piling up in the lower layers.

Line Data Buffer Manager
The design of the primitives for the line data buffer man

ager was driven by what the module designers needed to
implement the protocol layers' functionality. Primitives
exist writ allocating and deallocating buffers, reading or writ
ing data in a line data buffer, adding or removing header
data in a line data buffer, disabling or enabling line data
flow inbound or outbound for a path, pacing of line data
buffer use for each path, and a variety of other functions.
Line data buffers are allocated asynchronously. If a module
requests a line data buffer and one is not available, the
buffer manager will schedule an event and inform the mod
ule when the buffer is available.

There are many line data buffer management functions.
However, the two most important functions are responsible
for fragmenting a packet for transmission and reassembling
a packet when it is received.
Fragmenting a Data Packet. When a protocol module, such
as the module for the transport layer, receives an outbound
packet that is larger than it can legally send, the packet
must be fragmented and sent as several smaller data pack
ets. When the transport layer fragments a packet it must
attach a header to each fragment. The buffer manager pro
vides a primitive that allows the protocol module to attach
its header, which is in a separate buffer, at any point in
the data packet without having to copy data from the orig
inal buffer. By changing fields in the segment control struc
tures (see Fig. 10) within the line data buffer, the header
can be attached without copying data by making the new
fragment buffer point into the relevant data portion of the
unfragmented buffer. This method significantly improves
performance because it avoids data copying.
Reassembling a Data Packet: Some protocol modules, such
as the network layer, need to reassemble a fragmented in
bound packet before delivering it to the layer above. The
buffer manager provides a primitive for reassembling a data
packet. This routine will handle out-of-order, duplicate,
and overlapping fragments. Again, links in internal buffer
segment control structures can be manipulated to avoid
recopying the data in the buffers being coalesced.

Allocation versus Preal location
Establishing a connection requires both types of memory,

memory objects for connection-specific data structures and

line data buffers to send and receive packets. The buffer
manager design evolved from a method in which line data
buffers were preallocated for each connection based on
where they were most needed. When a connection was
established, enough line data buffers were preallocated to
ensure that the connection could always make progress.
Any line data buffers that were not preallocated could be
shared by all other connections to increase performance.
The idea was to ensure that each connection had enough
buffers to make progress in worst-case memory situations,
but allow connection performance to increase when extra,
uncommitted line data buffers were available.

Since the OSI Express card has a limited number of buf
fers, it became apparent that preallocating line data buffers
restricted the total number of connections that the card
could support. We wanted to support a greater number of
connections. Good performance can be achieved as long
as too many of the open connections do not try to send or
receive data at the same time. The phone company is again
a good analogy. Everyone has a phone and performance is
generally good, even though there isn't enough switching
equipment for everyone to make a call at the same time.

The algorithm used is to have all connections share a
pool of line data memory, rather than preallocate buffers
when a connection is established. When a moderate
number of connections are active, performance is good. As
more connections become active at the same time, connec
tion performance degrades since the aggregate system per
formance is divided among the active connections. This
proved to be a good compromise. Good performance was
achieved while allowing a large number of connections.

Timer Management

Networking stacks use a large number of timer wakeups.
Each connection needs one or more problem timers to de
tect when an expected event is overdue and recovery action
is necessary. Other timers are used to generate protocol
messages to check back with the remote machine before
its problem timers wake up, and to avoid long delays when
the remote machine can't send because of the flow control
rules of OSI transport. Unlike timers for most other appli
cations, network timers rarely expire in normal operation,
since the expected event usually occurs. Instead, they are

Parameter
Block for

S m a l l S e g
ment Buffer

Invisible
Reference

Segment Control Structures

Segment
Header Segment Control

Structures Parameter
Block for

Original Big
Unsegmented

Buffer

Line Data Segments

Fig. 10. This shows what the buffer shown in Fig. 9 looks l ike
af ter f ragmentat ion. The or ig inal buf fer is s t i l l in tact and the
new buffer points into i t .

26 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

canceled or restarted. A resolution of 100 to 200 ms is just
fine since the timers are for exceptional events anyway.

Traditional timer manager implementations have kept
the timers in a linked list. This makes it very easy to deal
with the expiration of a timer because it is simply removed
from the front of the list. However, restarting a timer is
slow because the list has to be scanned to locate the proper
place to insert it. In the case of the OSI Express card this
proved to be too slow. During normal data transfer there
are four timers for every connection, at least two of which
have to be restarted every time a data packet is sent or
received. A quick analysis showed that with just 50 connec
tions, timer insertion could take as long as all other protocol
stack processing combined, causing the timer manager to
become a performance bottleneck.

What we needed was a way to restart timers quickly.
The solution is to keep timers in two unordered lists called
the short-term bin and the long-term bin. Timer wakeups
are represented by the same tokens that were described
earlier for event handlers, with the addition of a "time left
until expiration" field. When a timer is restarted it is simply
inserted at the head of the appropriate bin. No scanning
has to be done every time a packet arrives. Periodically, a
monitor task runs that scans the entire short-term bin look
ing for timers that have expired since the last time it ran.
Those timers are removed from the bin and passed to the
scheduler to be put on the task queue. Every ten times the
timer monitor task runs, it also scans the long-term bin
looking for timers that are getting close to expiring and
need to be moved down into the short-term bin.

The central idea of this algorithm is to spread the timer
list scanning overhead among many packets. To be success
ful the timer monitor task has to run at some large multiple
of the packet arrival rate. If a packet arrives every 5 ms,
the timer monitor task can't run every 10 ms or there would
be little savings. We found that a period of 100 ms is a
good compromise between precision and performance.

System Interface

The system interface is a collection of functions that
provides the OSI Express card with an interface to the
embedding operating system on the card and communica
tion with the host system housing the OSI Express card.
These functions include interrupt service routines and
message channels for the card-to-host error reporting, trac
ing, and network management.

Interrupt System
There are eight available interrupt levels on the OSI Ex

press card. Level zero has the lowest priority and level
seven the highest priority. The first three levels are soft
interrupts in that they are generated by a processor write
to a special hardware register. The rest of the interrupt
levels are devoted to interrupt handlers for the various card
hardware components. They include a timer hardware in
terrupt, DMA hardware interrupt, LAN frontplane
hardware interrupt, host backplane interrupt, powerfail in
terrupt, and memory parity and bus error interrupts.

The OSI Express card contains two types of code: the
full OSI protocol stack and the card monitor/debugger. The

full OSI stack runs at interrupt level zero, which is the
card's background level, and the card monitor/debugger
runs at interrupt level two. Interrupt level one is reserved
for applications that may need to preempt the normal OSI
protocol activities. The OSI stack is the largest and most
active level since it contains all the protocol modules com
monly used for general-purpose networking applications.
The card debugger runs at a higher interrupt level than the
OSI protocol stack and level one applications so that it can
preempt all protocol activity, allowing card diagnosis when
either the OSI protocol stack or other applications are stuck
in loops.

There are two CONE dispatcher task queues, one for
the full OSI stack and one for the card monitor/debugger.
Each task queue represents a separate independent instance
of the simple CONE process model. When a task queue
becomes empty the CONE dispatcher will return to the
module that called it. In the full-stack OSI case, the dis
patcher will return to the card background process, which
is simply an infinite loop that calls the CONE dispatcher.
Since the card monitor/debugger runs at interrupt level
two, the CONE dispatcher is called from the level two
interrupt service routine.

Backplane Message Interface
The OSI Express card's backplane interface is message-

based, in that an interface event (transfer of data inbound
or outbound) is represented as a message with all the event
parameters and line data serially encoded into a string of
bytes. The string is sent via DMA between the host com
puter RAM and the OSI Express card.

Since the CONE protocol module interfaces are proce
dure-based, a module called the backplane message inter
face, or BMI, is used to translate CONE events (inbound
packets) into messages that are sent to the host operating
system and eventually to user applications. For outbound
packets the backplane message interface converts mes-
saged-based requests into CONE procedure calls. Because
of the way the backplane message interface and the CONE
protocol module interface are designed, any protocol mod
ule can be accessed across the backplane without the pro
tocol module's knowing whether the entity above its inter
face is adjacent to it inside CONE.

The following factors affected the design of the OSI Ex
press card's message-based backplane:
â€¢ High-performance LAN interface chips require rapid,

high-bandwidth access to buffer memory when data is
being sent or received on the line. Line signaling is syn
chronous, meaning that once started, data flows continu
ously, one bit after another with no wait signals. For
these reasons, the buffers accessed by the LAN chips are
located in RAM on the OSI Express card, rather than in
the host computer.

â€¢ A specific word of host RAM cannot be rapidly read or
written by the OSI Express card's processor, nor can card
RAM be rapidly read or written by the host processor.
Instead, so that many cards can share access to host
RAM, the backplane is optimized for very high-speed
DMA bursts. This minimizes the amount of bus
bandwidth lost during bus access arbitration (see arti
cle on page 8 for more about DMA and the OSI Express

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

card).
â€¢ The OSI Express card's processor operates as an asyn

chronous, independent front end to the host processor.
Very little card-related processing occurs inside the host
operating system, but rather in user-space processes be
longing to OSI applications. Since the user-space appli
cations can be busy, timesharing the host with other
applications, swapped out to disk, and so on, the cou
pling between the protocols on the card and the host
system is very loose.

â€¢ The backplane hardware supports a large number of in
dependent DMA channels. Each CONE path that is tied
to a user application is allocated an inbound and an
outbound DMA channel at path-creation time. There are
also fixed DMA channels for trace messages (inbound),
log messages (inbound), nodal management messages
(inbound and outbound), debug/monitor messages (in
bound and outbound), expedited data which bypasses
normal flow control on each path (inbound and out
bound), and backplane messages which set up and tear
down paths and manage dynamic DMA channel assign
ment (inbound and outbound).

Conclusion
CONE provides a system design for supporting system-

wide and module-internal optimization. Flexibility in the
overall framework supports interchangeability of indi
vidual protocol modules and protocols from multiple pro
tocol families, as well as portability of CONE-based code
to almost any system. Having a coordinated overall
framework also makes the system much more instrument-
able and supportable. Finally, because of this system-wide
orientation, the overall system performance and the

number of connections supported for a given amount of
RAM are much higher than they would otherwise be.

Acknowledgments
The members of the interdivisional task force that de

fined CONE include: Sanjay Chikarmane, Allwyn Sequeira,
Collin Park, and Dean Thompson. Other contributors who
provided additional details and site representation in other
areas include Gerry Claflin, Steve Dean, Doug Gregory, and
Lori Jacobson. CONE system designers include some of
those already mentioned, as well as Bill Gilbert and Dave
Woods. As mentioned earlier, CONE was built with the
best ideas taken from previous products. CONE represents
the work of many people, but the work of one person par
ticularly stands out, Carl Dierschow, who originated the
leaf node architecture which greatly influenced the CONE
design.

References
1. JJ. Balza, H.M. Wenzel, and J.L. Willits, "A Local Area Network
for the HP 9000 Series 500 Computers," Hewlett-Packard JournaJ,
Vol. 35, no. 3, March 1984, pp. 22-27.
2. C. Jour "Leaf Node Architecture, " Hewiett-Packard Jour
nal, Vol. 37, no. 10, October 1986, pp. 31-32.
3. K.J. Faulkner, C.W. Knouse, and B.K. Lynn, "Network Services
and Transport for the HP 3000 Computer," Hewlett-Packard Jour

nal, Vol. 37, no. 10, October 1986, pp. 11-18.
4. D.M. Tribby, "Network Services for HP Real-Time Computers,"
Hewlett-Packard Journai, Vol. 37, no. 10, October 1986, pp. 22-27.
5. S.J. Leffler, W.N. Joy, R.S. Fabry, and M.J. Karels, Networking
Implementation Notes, 4.3 Edition, Computer Systems Research
Group, Department of Electrical Engineering and Computer Sci
ence, 1986. of California, Berkeley, Revised June 5, 1986.

The Upper Layers of the HP OSI Express
Card Stack
The upper three layers of the HP OSI Express card share
the same archi tecture and use tables to s impl i fy the i r
implementat ions of the OSI s tack. The appl icat ion and
presentat ion layers are implemented in the same module.

by Kimbal l K. Banker and Michael A. El l is

THE TOP THREE LAYERS of the OSI Reference Model
consist of the session layer, the presentation layer,
and the application layer. The purpose of the session

layer is to provide organized and synchronized exchange
of data between two cooperating session users â€” that is, two
presentation layers in different applications. The session

layer depends on the services of the transport layer to pro
vide the end-to-end system communication channels for
data transfer. The presentation layer's job is to negotiate a
common transfer syntax (representation of data values) that
is used by applications when transferring various data
structures back and forth. The application layer is the high-

28 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

est layer of the OSI Reference Model and does not provide
sendees to any other layer. This layer uses the common
protocol called Association Control Service Element, or
ACSE, to establish and terminate associations between ap
plications and to negotiate things that are common to appli
cations.

Session Layer

The OSI Express card's implementation of the session
layer provides services to the presentation layer that enable
it to:
â€¢ Establish a virtual connection with a peer session user

to exchange data in a synchronized manner and release
the connection in an organized manner

â€¢ Negotiate for the use of tokens to exchange data and
arrange for data exchange to be half-duplex or full-duplex

â€¢ Establish synchronization points within the session con
nection dialogue so that in the event of errors, dialogue
can be resumed from the agreed synchronization point

â€¢ Interrupt a dialogue and resume it later from a prear
ranged point.

Session Architecture
The OSI session protocol is now an international stan

dard which is specified in ISO documents 8326 and 8327.
However, defect reports and enhancements continue to be
made to the base standard. These changes will continue to
occur long after the first release of the first OSI Express
product. Therefore, one of the key design considerations
for our implementation of the session protocol was to pro
vide for easy maintenance of the software. Another design
goal was to isolate the protocol software from machine and
system dependencies, thus allowing the protocol software
to be portable from machine to machine with little or no
changes. The common OSI networking environment
(CONE) architecture enabled us to achieve our portability
goal.

The session software is designed to separate those func
tions that pertain specifically to the OSI protocol and those
that are called local matters. Local matters are primarily
tasks that are not included in a protocol specification be
cause they depend on specific system capabilities, such as
user interfaces and memory management. As shown in Fig.
1, the OSI Express implementation divides session func
tions into two main modules, the session CONE manager
and the SPM (session protocol machine).

The session CONE manger is primarily responsible for
servicing local matters and providing a clean interface be
tween CONE and the SPM. Some of the major functions of
the session CONE manager include:
â€¢ Translating CONE interface macros into a form the SPM

can act upon
â€¢ Providing session memory requirements using the CONE

buffer manager
â€¢ Providing session timer requirements using the CONE

timer manager
â€¢ Providing much of the session abort processing capabil

ities
â€¢ Managing the underlying transport connection.

The SPM is responsible for servicing the OSI session

B u f f e r T i m e r I n t e r f a c e
M a n a g e r M a n a g e r M a c r o s

I
Session CONE Manager

I
State

Transit ion
Tables

Session
Protocol
Manager

(SPM)

Encode/
Decode
Tables

F ig . 1 . A rch i tec tu re fo r the OSI Express imp lementa t ion o f
the session layer.

protocol requirements. The three primary functions the
SPM performs are:
â€¢ Coordinating state table transitions
â€¢ Encoding SPDUs (session protocol data units)
â€¢ Decoding SPDUs.

Most of the future changes to the session standard will
affect these three SPM operations. Therefore, maintainabil
ity was a critical concern in design decisions for the SPM.

Session State Table
Aside from some clarifying text, the entire OSI session

protocol can be defined in terms of tables. Ten separate
tables dictate session protocol behavior. A portion of a
typical session state table is represented in Fig. 2. The
intersection of any given session event (outbound session
primitive or inbound SPDU) with a valid session protocol
state indicates a set of specific actions and the new protocol
state to enter. For example, once the underlying transport
connection is established, the SPM is in state STA01C. When
a CN event arrives (indicating a successful connection with
another session layer) the SPM will change state if the
proper predicate conditions are met. In this example, if the
predicate condition "pOl is satisfied, a transition to state
STA08 occurs, which causes the SPM to generate a session
connect indication (SCONind) to its session user.

A fully functional OSI session service implementation
is responsible for coordinating the intersection of approx
imately 80 different session events with 32 different pro
tocol states. This creates 2560 possible state table transi
tions. Close examination of the session state tables reveals
that only 600 of the 2560 possible state table transitions
are considered to be valid. Also, many of the valid inter
sections result in the same actions and next states.

A straightforward and common approach to implement
ing the behavior of these state tables is to create a massive
series of if-then-else and/or switch statements that account for
each of the valid session event-state intersections. With
600 valid intersections to account for, the code's complex
ity is high and its maintainability low.

For the OSI Express card implementation of the session
protocol the objective was to exploit the tabular structure
of the OSI session protocol as much as possible. By creating
a structure of multidimensional arrays corresponding to

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

the OSI session state tables, a direct relationship can be
maintained between the OSI standard and the implemen
tation. As illustrated in Fig. 3, the basic scheme is as fol
lows:
â€¢ Enumerated values of the current session SPM state and

the incoming session event are used as indexes into a
combination of arrays that generate a pair of event and
state indexes.

â€¢ Ten two-dimensional static arrays are defined, one for
each of the 10 protocol state tables defined in the OSI
session protocol standard. These arrays are called sparse
state table arrays. Each element in a sparse state table
array is an unsigned byte that represents an index for a
unique C function that is responsible for processing the
specific actions of an event-state intersection. The event
and state indexes generated above are used to select the
correct sparse state table array and serve as indexes into
the state table array to generate the corresponding func
tion index.

â€¢ The function index is used to select a specific pointer
to a function from an array of function pointers. The
selected function is then invoked to service the require
ments dictated by the session event and the SPM state.
Invoking functions from pointer arrays (also known as
jump tables) is one of the rarely used yet very powerful
capabilities of the C programming language.

Encoding and Decoding SPDUs
Array manipulation also plays a key role in how the

session implementation performs the tasks of encoding and
decoding SPDUs. SPDUs are constructed in a fairly simple
variable format that can be nested three levels deep.

As illustrated in Fig. 4, the mandatory SI (SPDU iden
tifier) value identifies the type of SPDU. The LI (length
indicator) following the SI value indicates how many bytes
remain in the SPDU. The remainder of the SPDU consists
of an optional combination of PGI (parameter group iden
tifier) units and PI (parameter identifier) units to define

Event Index

â€¢ I

,
State Table Index

State Index

Sparse State
Table Arrays

Address of Specif ic
Service Function

Function
Address

Array

Fig . 3 . Mu l t id imens iona l a r rays used to imp lement the OSI
Express vers ion o f the OSI sess ion s ta te tab les . Event and
SPM s ta te ident i f ie rs a re used to index in to the ar rays and
acqu i re po in te rs to the func t ions tha t car ry ou t the ac t ions
required.

the particular parameters of the SPDU. PI units are used
to encapsulate parameter values such as token items and
reason codes, while PGIs are primarily used to encapsulate
groups of related PI units. Each PI and PGI unit consists
of a PI or PGI value identifying the type of parameters,
followed by a length value. The PI unit terminates with
the parameter value while the PGI unit follows with either
a parameter or one or more encapsulated PI units. The
order in which PI and PGI units appear in an SPDU is also
important and is uniquely specified for each SPDU.

Session
State

Session
Event

S T A 0 1 A S T A 0 1 B S T A 0 1 C
A w a i t A w a i t I d l e

A A T C O N c n f T C C o n

TDISreq
STA01

STA02A
Await

AC

S T A 0 8 S T A 1 6
A w a i t A w a i t

S C O N r s p T D I S i n d

STA713 [6]

TDISreq

Ap01
SCONind

STA08
p01

TDISreq
STA01

TDISreq
[3]

STA01

TCONrsp
[1]

STA01C

TDISreq
STA01

/ / = States that Are not Logical ly Possible
* = Inva l id S ta tes

Fig. 2. A port ion of a typical state
table for the session protocol .

30 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

S P D U

P G I U n i t

P I U n i t P I U n i t

P G I U n i t
1

P I U n i t P I U n i t

S I I L I I P G I I L I I P I I L I P V P I L I P V P G I I L I I P I I L I P V P I L I P V

L I = L e n g t h I n d i c a t o r
P G I = P a r a m e t e r G r o u p I d e n t i f i e r
P I = P a r a m e t e r I d e n t i f i e r
P V = P a r a m e t e r V a l u e
S I = S P D U I d e n t i f i e r

Fig. 4. Session protocol data uni t (SPDU) format.

A fully functional session implementation is required to
encode and decode approximately 20 different types of
SPDUs. There are about 30 different types of PI or PGI units
that make up these 20 SPDUs, with many SPDUs using the
same type of PI and PGI units. PI and PGI units have certain
parameter attributes associated with them, such as the
maximum number of bytes the parameter may occupy in
an SPDU. Because so many of the SPDUs contain the same
types of parameters, and since the same parameter attribute
information is needed for both encoding and decoding the
SPDUs, the decision was made to define the parameter and
ordering attributes only once and make this information
available for both the encoding and the decoding processes.

Fig. 5 illustrates the manner in which the SPM encodes
and decodes SPDUs. Once the SPDU identifier value for
the SPDU is determined, it serves as an index into an SPDU
script directory array which contains the script index (lo
cation) and size of an SPDU script located in the SPDU
script array. The SPDU script array contains scripts that
define the order in which parameters should appear in
each SPDU and indicate whether the parameters are man
datory or optional in that particular SPDU. For each param
eter of the SPDU, the SPDU script array also provides an
index that selects parameter attribute information from the
parameter attribute array.

Two independent programming modules are required to
build and parse the SPDUs. They share the information
provided by the SPDU and parameter structures defined
above.

ACSE and Presentation Layer

The Association Control Service Element (ACSE) is the
common protocol for the seventh layer of the OSI hierar-
chy.1'2'3 ACSE is meant to be used to establish and termi
nate an association between applications and to negotiate
things that are common to applications, which can be on
separate systems. The most important function provided
by this common protocol is the negotiation related to the
application context parameter. This parameter is a regis
tered name that is passed between applications in the ACSE
connect PDU. The application context parameter defines
the scope of an application's functionality and is used by
local applications to ensure that the remote application is
appropriate for a particular association.

The presentation layer is the sixth layer of the OSI
model.4'5 The presentation layer's job is to negotiate com
mon transfer and abstract syntaxes that can be used by
applications when transferring various data structures back
and forth. Abstract syntax refers to the meaning of the data,
and transfer syntax refers to the manner of encoding the
data bits.

An application can use the presentation layer to specify
several abstract syntaxes for use during an association. For
example, an application might specify ACSE and virtual
terminal as two abstract syntaxes to be used together in a
specific association. The presentation layer will negotiate
these two abstract syntaxes during the connection estab
lishment and add the transfer syntaxes for each of the
abstract syntaxes it is able to support. If these combinations
are acceptable to both sides, subsequent data transfers are
transferred with presentation tags denoting the particular
abstract syntax (and thus which process should receive
this data). The data is encoded in the negotiated transfer
syntax and transformed to and from the local representation
by the presentation service.

OSI Express Implementat ion
In the OSI Express card, the ACSE and presentation

layers are located in the same code section because both
layers share the same challenge in their implementation.
The main complexity encountered in implementing ACSE
and presentation service on a card involved the encoding
and decoding of the ACSE and presentation protocol data
units (PDUs) specified by Abstract Syntax Notation One
(ASN.l).6 The protocol data units contain the protocol con-

SPDU
I d e n t i f i e r

V a l u e

S c r i p t
I n d e x

S P D U S c r i p t
D i r e c t o r y

A r r a y

S P D U E n c o d i n g A t t r i b u t e s

S P D U D e c o d i n g A t t r i b u t e s

P a r a m e t e r
I n d e x

S P D U
S c r i p t
A r r a y

P a r a m e t e r
A t t r i b u t e

A r r a y

F ig . 5 . The method by wh ich the
sess ion p ro toco l manager (SPM)
encodes and decodes SPDUs.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

trol information and data that are exchanged between two
instances of any protocol. Most protocols (e.g., transport,
network, LLC) specify the contents (transfer and abstract
syntax) of their PDUs by means of text within their protocol
specification document. Most of the upper-layer protocols,
such as FT AM, directory services, ACSE, and presentation,
use standard and more formal specifications contained in
ASN.l.

The OSI Express implementation separates the presenta
tion service into two parts: the protocol that provides trans
fer and abstract syntax negotiation for applications, and
the transformation of user data from ASN.l transfer syntax
to the local representation specified by the abstract syntax
and vice versa. Only the protocol is implemented on the
card and described in this article, while the remaining
transformation of user data occurs in the host system. User
data is delivered to the host fully encoded in the agreed
upon transfer syntax for a particular abstract syntax. Host
software recognizes the abstract syntax from a tag (presen
tation context identifier) in the PDU and directly transforms
the data from the transfer syntax into a local form recogniz
able to the particular application service element. Except
for encoding and decoding PDUs, implementation of the
presentation protocol was straightforward.

Two key considerations were identified during the de
sign phase: memory use and the stability of the OSI ACSE
and presentation standards. For memory use our goal was
not to require a contiguous block of physical memory for
either encoding or decoding since large memory buffers in
our memory management scheme are not guaranteed. This
consideration quickly eliminated many alternative designs.
When we were doing our design the OSI standards were
just gaining draft approval status with many changes prom
ised in the future. Therefore, our design and architecture
had to be easy to modify. The structure of the ACSE/presen-
tation module is shown in Fig. 6. This architecture is simi
lar to that used by other layers in the OSI Express card.
The protocol machine is isolated from the CONE architec
ture by the ACSE/presentation CONE manager. The CONE
manager provides a simple interface to the protocol
machine and insulates the protocol machine from concerns
of state transitions and memory availability. CONE is de
scribed in the article on page 18. The heart of the ACSE
and presentation protocol implementation is the PDU en
coder and decoder. Understanding some basic attributes
of ASN.l provides some insight into the technical solution
of encoding and decoding PDUs for the presentation and
ACSE protocols.

A S N . 1
ASN.l defines a means to specify the different types of

data structures that can be transferred between protocol
layers. The ASN.l standard does not specify the encoding
to be used for each type. A companion standard7 defines
the encoding rules which together with the ACSE and pres
entation specifications define the bit encodings used be
tween the ACSE and presentation protocol layers. The fol
lowing discussion does not differentiate between the term
ASN.l and the encoding rules since only one set of encod
ing rules exists for ASN.l.

The basic concept underlying ASN.l encoding is quite

simple. Primitive values are encoded as tag, length, and
value. The tag identifies the type of value, length indicates
the length of the value, and value represents the contents
of the PDU being encoded. Simple primitive types pre
defined by ASN.l include character string, Boolean, in
teger, and real. Primitive types can also be bit string or
octet string. However, the encoding of these types is op
tional. Primitive values are values that cannot be broken
down further into other ASN.l values. ASN.l also defines
complex types, whose values can be broken into additional
types.

To accommodate the need to encode complex types, val
ues can be constructed within outer structure definitions.
The encoding rules allow a value to consist of another tag,
length, and value. Structure definitions for these complex
types include:
â€¢ Sequence. A fixed ordered list of types.
â€¢ Sequence Of. An ordered list of a single type.
â€¢ Set. A fixed unordered list of types.
â€¢ Set Of. A fixed unordered list of a single type.
â€¢ Choice. A fixed unordered list of exclusive types.

These constructed types can be composed of additional
constructed types. ASN.l allows recursive PDU definitions
that result in an unbounded collection of permissible se
quences. The OSI Express presentation layer has several
unbounded sequence types within its connect PDUs. Since
values can represent constructed values of tags, lengths,
and other values, nesting is prevalent in ASN.l encodings.
In fact, encodings of nested tags and lengths often make
up a major portion of an encoded PDU.

An example of an ASN.l representation of a single pres
entation PDU, connect confirm negative, is shown in Fig.
7. The PDU description has six parameters, which are de
fined as follows:
â€¢ Protocol-version. The presentation protocol version being

used (currently only one exists).
â€¢ Responding-presentation-selector. This is presentation layer

addressing information.
â€¢ Presentation-context-definition-result-list. This structure con

tains information about which abstract syntaxes are ac
cepted at the initial connection and which transfer syn
tax is accepted for the transfer of PDUs encoded in the
selected abstract syntaxes.

â€¢ Default-context-result. This structure specifies whether the

B u f f e r T i m e r
M a n a g e r M a n a g e r

Ã Ã
Interface
Macros

ACSE/Presentat ion
CONE Manager

Ã 1
Protocol
Machine
Encoder

Protocol
Machine
Decoder

Specific
Decode

Routines

Fig. 6 . OSI Express card ACSE/presentat ion arch i tecture.

32 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

p r o p o s e d o f c o n t e x t i s a c c e p t e d . i n d e f i n i t e l e n g t h s r e q u i r e t h e d e c o d e r t o k e e p t r a c k o f
â€¢ Provider-reason. This structure contains fields for declaring where end-of-contents (EOC) flags appear in the PDU defi-

the reason together refusing the connection associated with a nition. Definite and indefinite lengths can appear together
p a r t i c u l a r P D U . i n t h e s a m e P D U a t t h e d i s c r e t i o n o f t h e e n c o d e r .

â€¢ User-data. This is data that an application wishes to in- Fig. 8 shows the encoded PDU defined by the ASN.l
elude on hexadecimal presentat ion service primit ive. declarat ion in Fig. 7. The numbers are the hexadecimal
This PDU rules a complex type of Choice. It is a Choice of values derived by using the basic encoding rules defined

either represent de- Sequence, and in this case Sequence is always in reference 7, and they represent the values used to de-
used. The first parameter, Protocol-version, has a context-spe- scribe the semantics defined in Fig. 7. Each line represents
cific length. appear 0, as denoted by the [0]. Protocol-version is further a tag and a length. The values for complex types appear
defined as a BIT STRING, with the only acceptable value on the lines following the complex type declaration, and
being version-1 the value of 0, as denoted by (0). The Presen- primitive types include the value on the same line. Tag
tation-context-definition-result-list is a complex type with three values are derived from the encoding rules with each bit
primitive types: Result, Transfer-syntax-name, and Provider- indicating the tag type (complex of primitive type) and the
reason. The values in parentheses to the right of the six value of the tag. Fig. 8a begins with 30, which is the univer-
parameters denote the values for specific semantics. For sal tag type for Sequence, followed by 80, which represents
example, a field, of (1) for a Default-context-result means that an indefinite length. For each indefinite length field, a
t h e a p p l i c a t i o n r e j e c t e d t h i s d e f a u l t c o n t e x t . c o r r e s p o n d i n g E O C f l a g c o n s i s t i n g o f t w o o c t e t s o f z e r o s

Multiple using of nesting also make decoding and verify- must follow. Only complex types can be encoded using
ing the Fig. fields challenging. Length fields can be en- indefinite lengths. Fig. 8b shows the same encoded PDU
coded in that of two ways: definite and indefinite. Definite using definite length encoding. Note that 80 is replaced
lengths Also be kept and verif ied during decoding and with the defini te length indicator 2B. Also note that the

CPR-type : : = CHOICE

{SET {x. 410-1984 APDUs . RTORJapdu}

SEQUENCE

{ [0] IMPLICIT Protocol -version DEFAULT {version-1},

Protocol -version ::= BIT STRING {version-1 (0)}

[1] IMPLICIT Responding-presentat ion-selector OPTIONAL,

Responding-presentat ion-selector ::= OCTET STRING

[5] IMPLICIT Presentation-context-definition-result -list OPTIONAL,

Presentat i on -context -definiti on -result-list :: =

SEQUENCE OF SEQUENCE

{ [0] IMPLICIT Result

Result ::= INTEGER{acceptance (0),

user -rejection (1) ,

provider-rejection (2)

}

[1] IMPLICIT Transfer-syntax-name OPTIONAL,

Transfer-syntax-name ::= OBJECT IDENTIFIER

provider-reason[2] IMPLICIT INTEGER

{ r e a s o n - n o t - s p e c i f i e d (0) ,

abstract -syntax -not -supported (1) ,

proposed- trans fer -syntaxes -not -supported (2) ,

local - 1 imit -on-DCS-exceeded (3)

} OPTIONAL

>

[7] IMPLICIT Default-context-result OPTIONAL,

Default -context -result ::= INTEGER

{acceptance (0) ,

user -re ject ion (1),

provider -re ject ion (2)

}
[10] IMPLICIT Provider-reason OPTIONAL

Provider -reason ::= INTEGER

{reason-not-specified (0),

temporary-congestion (1),

local - 1 imit -exceeded (2),

cal led -pre sen t at i on -address -unknown (3 > ,

protocol -ver s ion- not -supported (5) ,

default -context -not -supported (6) ,

user -data-not -readable (6),

no-PSAP-avail lable (7) }

J s e r - d a t a O P T I O N A L f \ g . 7 . A n A S N . 1 s p e c i f i c a t i o n f o r

} t h e p r e s e n t a t i o n c o n n e c t c o n f i r m

} n e g a t i v e P D U .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

Responding-presentation-selector is encoded in two ways, both
of which are valid since octet strings can be encoded as
constructed types at the discretion of the sender. In Fig.
8a a constructed type is used to break the Responding-presen-
tation-selector value into three primitive encodings, each with
a tag of 04 (universal tag type for octet string) and a length
of 02. Fig. 8b merely encodes the entire value as a primitive
with a length of 06. ASN.l encoding rules are not deter
ministic because the encodings given Figs. 8a and 8b are
valid for the same PDU.

Another important aspect of ASN.l is the concept of a
context-specific tag. Some tag values are universal in scope
and apply to all ASN.l encodings. Other tag types assume
values whose meaning is specific to a particular PDU. For
example, context-specific tag value [0] identifies the presen
tation Protocol-version in Fig. 7. This tag value only means
Protocol-version when encountered in a presentation connect
confirm negative PDU. In another PDU, the value [0] means
something else entirely.

Context tags allow a protocol designer to assign a tag
value such that the value of the tag determines the type of
value. To decode and validate the PDU, the decoder must
have knowledge of a protocol's context-specific values,
their meanings, and the order and range of the PDU primi
tive values. This means that some parts of an ASN.l de
coder may be generic to any ASN.l encoded PDU (such as
an ASN.l integer decode routine), while other parts of the
decoder are quite specific to a single PDU (such as the
checking needed to verify that presentation transfer syn
taxes are in the appropriate sequence).

A final key to understanding ASN.l encoding rules is
that in almost all cases, the sender chooses which options
to use. These options include the way in which lengths
are encoded and when constructed elements may be seg
mented. Octet strings, for example, may optionally be sent
as a contiguous string or parsed into a constructed version
with many pieces, which may themselves be segmented.
A decoder must handle any combination of the above.
Thus, the decoder must be able to handle an almost infinite
number of byte combinations for PDUs of any complexity.
This makes the decoder more complicated to construct
than an encoder. For example, Fig. 8 shows that the Respond-
ing-presentation-selector can be encoded in two ways â€” both
valid.

Encoder
The encoder is responsible for encoding outbound data

packets based on the ASN.l syntax. Because the encoder
can select a limited set of options within the rather large
ASN.l set of choices, encoding is much easier than decod
ing. The main requirement of the encoder is to know the
syntax of the PDU to be constructed. In particular, it needs
to know the order and values of the tags and be equipped
with the mechanisms to encode the actual lengths and
values.

The OSI Express card implementation encodes PDUs
front to back using indefinite length encoding. An alterna
tive, encoding ASN.l back to front, has the advantage of
being able to calculate the lengths and allow definite length
encoding. Once all of the primitive values are encoded,
the encoder can work backwards, filling in all of the con

structed tag lengths. However, encoding back to front does
not allow data streaming, since all of the PDU must be
present and encoded (including user data) to calculate the
lengths. Without data streaming, large pieces of shared
memory must be used, thus making memory unavailable
to the rest of the card's processes until all of the PDU and
its user data has been encoded.

The encoder is table-driven in that a set of tables is used
for each type of PDU. Each table contains constants for the
tag and length and an index to a routine for a particular
value. A generic algorithm uses the tables to build each
PDU. The tables allow modifications to be made easily
when there are changes to the OSI standards. OSI standards
for tag values and primitives changed constantly during
our implementation. However, these changes merely meant
changing a constant used by the table (often a simple macro

30 80 SEQUENCE

80 02 07 80

a3 80

04 02 01 02

01 02 03 04

04 02 05 06

00 00

a5 80

Protocol -ver s i on

Re spending -pre s en t at ion-selector

EOC

Pre se nt at i on -context -de finit i on -

result-list

IMPLICIT SEQUENCE

30 80 SEQUENCE

8 0 0 1 0 0 R e s u l t
81 02 51 01 Transfer - syntax-name

0 0 0 0 E O C

30 80 SEQUENCE

8 0 0 1 0 0 R e s u l t
81 02 51 01 Transfer - syntax-name

00 00 EOC

30 80 SEQUENCE

8 0 0 1 0 1 R e s u l t

00 00 EOC

00 00 EOC

87 01 03 Default-context-result

8a 01 00 Provider -reason

00 00 EOC

3 0 2 B S E Q U E N C E

8 0 0 2 0 7 8 0 P r o t o c o l - v e r s i o n

83 06 01 02 03 04 05 06 Responding-presentat ion-selector

a 5 1 7 P r e s e n t a t i o n - c o n t e x t - d e f i n i t i o n -

result - 1 i st

IMPLICIT SEQUENCE

30 07

80 01 00

81 02 51 01

30 07

80 01 00

81 02 51 01

30 03

80 01 01

87 01 03

8a 01 00

SEQUENCE

Result

Transfer - syntax -name

SEQUENCE

Result

Transfer -syntax -name

SEQUENCE

Result

Default -context -re suit

Provider- reason

(b)

Fig. 8 . Encoding for the PDU shown in F ig . 7 . (a) Indef in i te
length encoding, (b) Def in i te length encoding.

34 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

update). Changing the order or adding or deleting a value
was also easy because only the table entries had to be
altered.

Decoder
The decoder presented a more significant challenge in

the ACSE/presentation protocol machine. In an effort to
reduce memory requirements, the decoder does not depend
upon having the entire PDU in memory to decode. Pieces
can be received separately, and these need to be decoded
and the memory released. The decoder also does not require
contiguous memory. PDU segments can be received from
the session layer according to the transport segment size.
In addition, the memory manager on the card presents
PDUs in separate physical buffers called line data buffers
(see the article on page 18, which describes the CONE
memory manager).

The main job of the decoder is to find the primitive
values encoded within the complex nesting of tags and
values, and extract those primitives. Along the way, the
decoder must also verify that the outer constructed tags
are correct, and that the lengths associated with all the
constructed tags are correct.

The decoder uses a mathematical calculation to predict
and check directly the appropriate tag values. The idea is
to generate a unique token that directly identifies particular
primitive values. This unique tag is calculated by succes
sively using the outer nested tag values to create a unique
number that can be predicted a priori. For example, a sim
ple method to calculate a unique value for any primitive
is to take every constructed tag value and add it to the total
calculated from previous constructed tags, and then multi
ply the new total by some base. This calculation derives a
unique value for every primitive in a PDU. The unique
value can be calculated statically from the standard. Our
implementation uses the same constants as were used in
the encoding tables above to construct a compiled constant.
The unique value can then be calculated dynamically as
the decoder goes through a received PDU. Thus, as the
decoder is parsing a PDU and successively reading con
structed tags, it is calculating the currenLuniquejag = (old_
unique_tag x base) + tag_value.

The advantage of this method is that a generic decode
routine can be used to validate ASN.l syntax, and as soon
as a primitive is reached within a nested PDU, the generic
routine can jump directly to a specific routine to deal with
the primitive. The value can be checked for specifics and
then used or stored. The generic routine is relatively sim
ple. It merely loops looking for a tag, length, and value. If
the value is not a primitive it calculates the unique tag.
Otherwise it uses the calculated unique tag to know which
routine to call. Much of the syntax is automatically verified
during the calculation.

The disadvantage of using such a calculation is that while
it guarantees a unique number, the number may grow quite
large as the depth of nesting within a PDU grows. The
problem is that the base used must be at least as large as
the total number of tag values. Thus, the unique tag must
be able to represent a number as large as the base to the
nth power, where n is the depth of nesting required. PDUs
that allow very large nesting may not be suitable for unique

tag calculation if the largest reasonable number cannot hold
the maximum calculated unique tag. Calculating a unique
tag has proven to be fairly quick in comparison to using a
structure definition to verify each incoming PDU.

Once a primitive tag value is reached, the derived unique
tag is used to vector to a procedure specific to that primitive.
The procedure contains the code to deal with the primitive.
The decoder has a switch table of valid tags, as well as a
bit table used to determine correct orders of values and
mandatory or optional field checks. This mechanism al
lows the decoder to identify quickly the primitives nested
within a complex PDU, verify correctness, and take the
necessary action.

The decoder must perform two types of length checking:
definite lengths in which lengths must be kept and verified,
and indefinite lengths in which the decoder must keep
track of end-of-contents flags. Definite and indefinite
lengths can appear together in the same PDU at the discre
tion of the encoder. The decoder uses two stacks in parallel
to check the lengths, one for definite values, and one for
EOCs. The definite length stack pushes a value for each
constructor type encountered and subtracts a primitive
length from each of the appropriate constructor values in
the stack. When the last, innermost primitive is subtracted,
the appropriate constructor values are popped from the
stack. Using and saving stacks allows the decoder to receive
PDU segments and decode part way, stop, save the stack
values, and resume decoding when the next PDU segment
is received. Thus, a complete PDU does not have to be
received before memory can be released back to the card
memory pool. With this design we have not noticed any
difference in the amount of time it takes to decode definite
and indefinite length types.

Using a Compiler
During the design phase, the option of using an ASN.l

compiler was considered for the ACSE and presentation
protocol machines. The main advantage of a compiler is
that once the compiler is written, any protocol specification
that uses ASN.l can be compiled into useful object code.
The object code then interacts with the protocol machine
via a set of interface structures. The disadvantages of com
pilers are that they are complicated to write and existing
compilers expect PDUs to be decoded from contiguous buf
fers. The generic code produced is also larger than the
specific code necessary for relatively small protocols.
Given the requirement to stream PDUs in memory seg
ments, to use as little memory as possible, and to decode
only ACSE and presentation PDUs, the compiler alternative
was not as attractive as it might be in other applications.

References
1. Information Processing Systems - Open Systems Interconnec
tion - Application Layer Structure, ISO/DP 9545, ISO/TC97/SC21/
N1743. July 24, 1987. Revised November 1987.
2. In/ormation Processing Systems - Open Systems Interconnec
tion - Specification of Abstract Syntax Notation One f ASN.l), ISO
8824: 1987 (E).
3. Information Processing Systems - Open Systems Interconnec
tion - Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.l), ISO 8825: 1987 (E).
4. Information Processing Systems - Open Systems Interconnec-

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

tion Ele Service Definition for the Association Control Service Ele
ment, ISO 8649: 1987 (E) (ISO/IEC JTC1/SC21 N2326).
5. Information Processing Systems - Open Systems Interconnec
tion - Protocol Definition for the Association Control Service Ele
ment, ISO 8650: 1987 (E) (ISO/IEC JTC1/SC21 N2327).
6. Information Processing Systems - Open Systems Interconnec

tion - Connection Oriented Presentation Service Specification,
ISO 8822: 1988 (ISO/IEC JTC1/SC21 N2335).
7. Information Processing Systems - Open Systems Interconnec
tion - Connection Oriented Presentation Protocol Specification,
ISO 8822: 1988 (ISO/IEC JTC1/SC21 N2336).

Implementat ion of the OSI Class 4
Transport Layer Protocol in the HP OSI
Express Card
The HP OSI Express card's implementation of the transport
layer protocol provides f low control, congestion control, and
congest ion avoidance.

by Rex A. Pugh

THE TRANSPORT LAYER is responsible for provid
ing reliable end-to-end transport services, such as
error detection and recovery, multiplexing, address

ing, flow control, and other features. These services relieve
the upper-layer user (typically the session layer) of any
concern about the details of achieving reliable cost-effec
tive data transfers. These services are provided on top of
both connection-oriented and connectionless network pro
tocols. Basically, the transport layer is responsible for con
verting the quality of service provided by the network layer
into the quality of services demanded by the upper layer
protocol.

This article describes the OSI Express card's implemen
tation of OSI Class 4 Transport Protocol (TP4). The OSI
Express TP4 implementation extends the definition of the
OSI transport layer's basic flow control mechanisms to pro
vide congestion avoidance and congestion control for the
network and the OSI Express card itself. Because we have
requirements to support a large number of connections on
a fairly inexpensive platform, the memory management
and flow control schemes are designed to work closely
together and to use the card's limited memory as efficiently
as possible. This efficiency also includes ensuring fair buf
fer utilization among connections.

Flow Control Basics

An introduction to the basic concepts of flow control,
congestion control, and congestion avoidance is useful in
setting the stage for a discussion of the OSI Express card
TP4 implementation. These concepts are related because
they all solve the problem of resource management in the

network. They are also distinct because they solve resource
problems either in different parts of the network or in a
different manner.

Flow Control
Flow control is the process of controlling the flow of

data between two network entities. Flow control at the
transport layer is needed because of the interactions be
tween the transport service users, the transport protocol
machines, and the network service. A transport entity can
be modeled as a pair of queues (inbound and outbound)
between the transport service user and the transport pro
tocol machine, and a set of buffers dedicated to receiving
inbound data and/or storing outbound data for retransmis
sion (see Fig. 1). The transport entity would want to restrain
the rate of transport protocol data unit (TPDU*) transmis
sion over a connection from another transport entity for
the following reasons:
â€¢ The user of the receiving transport entity cannot keep

up with the flow of inbound data. In other words, the
inbound queue between the transport service user and
the transport protocol machine has grown too deep.

â€¢ The receiving transport entity does not have enough buf
fers to keep up with the flow of inbound data from the
network.
Note that analogous situations exist in the outbound di

rection, but they are usually handled internally between
the transport user and the transport entity. If the sending
transport entity does not have enough buffers to keep up
with the flow of data from the transport user, or the sending
transport entity is flow controlled by the receiving transport

" A TPDU conta ins t ranspor t layer cont ro l commands and data packets-

36 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

entity, then the transport user must be flow controlled by
some backpressure mechanism caused by the outbound
queue's growing too deep.

Thus flow control is a two-party agreement between the
transport entities of a connection to limit the flow of packets
without taking into account the load on the network. Its
purpose is to ensure that a packet arriving at its destination
is given the resources it needs to be processed up to the
transport user.

Congestion Control
While flow control is used to prevent end system re

sources from being overrun, congestion control is used to
keep resources along a network path from becoming con
gested. Congestion is said to occur in the network when
the resource demands exceed the capacity and packets are
lost because of too much queuing in the network.

Congestion control is usually categorized as a network
layer function. In an X.25 type network where the network
layer is connection-oriented, the congestion problem is
handled by reserving resources at each of the routers along
a path during connection setup. The X.25 flow control
mechanism can be used between the X.25 routers to ensure
that these resources do not become congested. With a con
nectionless network layer like ISO 8473, the routers can
detect that they are becoming congested, but there are no
explicit flow control mechanisms (like choke packets1) that
can be used by the OSI network layer alone for controlling
congestion.

The most promising approach to congestion control in
connectionless networks is the use of implicit techniques
whereby the transport entities are notified that the network
is becoming congested. The binary feedback scheme2 is an
example of such a notification technique. The transport
entities can relieve the congestion by exercising varying
degrees of flow control.

Thus congestion control is a social agreement among
network entities. Different connections may choose differ-

Transport
Service

User

Session
Layer

Transport
Service

User

1 Ã

T
Transport
Protocol
Machine

R e t r a n s m i s s i o n
Q u e u e B u f f e r s

T
=1 Inbound Data
~ B u f f e r s

ent flow control practices, but all entities on a network
must follow the same congestion control strategy. The pur
pose of congestion control is to control network traffic to
reduce resource overload.

Congest ion Avoidance
Congestion control helps to improve performance after

congestion has occurred. Congestion avoidance tries to
keep congestion from occurring. Thus congestion control
procedures are curative while congestion avoidance proce
dures are preventive. Given that a graph of throughput
versus network load typically looks like Fig. 2, a congestion
avoidance scheme should cause the network to oscillate
slightly around the knee, while a congestion control
scheme tries to minimize the chances of going over the
cliff. The knee is the optimal operating point because in
creases in load do not offer a proportional increase in
throughput, and it provides a certain amount of reserve for
the natural burstiness associated with network traffic.

Flow Control Mechanisms in TP4

The OSI Class 4 Transport, or TP4, protocol is described
in ISO document number 8073. It provides a reliable end-
to-end data transfer service by using error detection and
recovery mechanisms. Flow control is an inherent part of
this reliable service. This section will describe the protocol
mechanisms that are used to provide flow control in OSI
TP4. These mechanisms make use of the TP4 data stream
structure, TPDU numbering, and TPDU acknowledgments.

TP4 Data Stream Structure
The main service provided by the transport layer is, of

course, data transfer. Two types of transfer service are avail
able from TP4: a normal data service and an expedited data
service. Expedited data at the transport layer bypasses nor
mal data end-to-end flow control, so we need not concern
ourselves with expedited data when discussing TP4 flow
control.

The OSI transport service (TS) interface is modeled as a
set of primitives through which information is passed be
tween the TS provider and the TS user. Normal TS user
data is given to the transport layer by the sending TS user
in a transport data request primitive. TS user data is deliv
ered to the receiving TS user in a transport data indication

Knee Cliff

Load

Network Layer

Fig. 1 . Model o f a t ranspor t ent i ty .

F ig . 2 . A typ ica l graph of throughput versus network load. A
congest ion avo idance scheme shou ld cause the network to
osci l late around the knee, whi le a congest ion control scheme
tr ies to minimize the chances of going over the c l i f f .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

primitive.
The data carried in each transport data request and trans

port data indication primitive is called a transport service
data unit (TSDU). There is no limit on the length of a TSDU.
To deliver a TSDU, the transport protocol may segment
the TSDU into multiple data transport protocol data units
(DT TPDUs). The maximum data TPDU size is negotiated
for each connection at connection establishment. Negotia
tion of a particular size depends on the internal buffer
management scheme and the maximum packet size sup
ported by the underlying network service. The maximum
TPDU sizes allowed in TP4 are 128, 256, 512, 1024, 2048,
4096, and 8192 octets.

Transport
Service

Interface

Transport
Service

Interface

T_Connect_lndication

T_Connec t_Response

TPDU Number ing
The error detection, recovery, and flow control functions

all rely on TPDU numbering. Unlike ARPA TCP, where
sequencing is based on numbering each byte in the data
stream since connection establishment, TP4 sequencing is
based on numbering each TPDU in the data stream since
connection establishment. A transport entity allocates the
sequence number zero to the first DT TPDU that it transmits
for a transport connection. For subsequent DT TPDUs sent
on the same transport connection, the transport entity allo
cates a sequence number one greater than the previous one,
modulo the sequence space size (see Fig. 3).

The sequence number is carried in the header of each
DT TPDU and its corresponding AK (acknowledgment)
TPDU. The sequence number field can be either 7 or 31
bits long. The size of the sequence space is negotiated at
connection establishment. Since a transport entity must
wait until the network's maximum packet lifetime has ex
pired before reusing a sequence number, the 31-bit se
quence space is preferred for performance reasons.

TP4 Acknowledgments
An AK (acknowledgment) TPDU is used in OSI TP4 for

the following reasons:
â€¢ It is the third part of the three-way handshake that is

used for connection establishment (see Fig. 4). It ac
knowledges the receipt of the CC (connect confirm)
TPDU.

â€¢ It is used to provide the connection assurance or keep-
alive function. To detect an unsignaled loss of the net
work connection or failure of the remote transport entity,
an inactivity timer is used. A connection's inactivity

*An octet is eight bi ts.

End System End System

Fig. 4 . Three-way handshake used for connect ion estab l ish
ment.

timer is reset each time a valid TPDU is received on that
connection. If a connection's inactivity timer expires,
the connection is presumed lost and the local transport
entity invokes its release procedures for the connection.
The keep-alive function maintains an idle connection
by periodically transmitting an AK TPDU upon expira
tion of the window timer. Thus the interval of one trans
port entity's window timer must be less than that of its
peer's inactivity timer. Since there is no mechanism for
sharing information about timer values, a transport en
tity must respond to the receipt of a duplicate AK TPDU
not containing the FCC (flow control confirmation) pa
rameter by transmitting an AK TPDU containing the
FCC parameter. Thus, a transport entity can provoke
another transport entity into sending an AK TPDU to
keep the connection alive by transmitting a duplicate
AK TPDU.
It is used to acknowledge the in-sequence receipt of one
or more DT TPDUs. Since OSI TP4 retains DT TPDUs
until acknowledgment (for possible retransmission), re
ceipt of an AK TPDU allows the sender to release the
acknowledged TPDUs and free transmit buffers. To ac
knowledge the receipt of multiple DT TPDUs, an im
plementation of OSI TP4 may withhold sending an AK
TPDU for some time (maximum acknowledgment
holdback time) after receipt of a DT TPDU. This holdback
time must be conveyed to the remote transport entity at
connection establishment time.

DT TPDUs (Data Transport Protocol Data Units)

Sequence Space
Size (31 Bits)

TSDU (Transport Service Data Unit)

O, i , m, n = Sequence Numbers
m = i + 1 Mod (Sequence Space S i ze)

Fig. 3. Transport data service unit
(TSDU) fo rmat and the DT TPDU
number ing scheme.

38 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ It is used to convey TP4 flow control information, as
described in the next section.

TP4 Flow Control
OSI TP4 flow control, like many other schemes, is man

aged by the receiver. TP4 uses a credit scheme. The receiver
sends an indication through the AK TPDU of how many
DT TPDUs it is prepared to receive. More specifically, an
AK TPDU carries the sequence number of the next expected
DT TPDU (this is called the LWE or lower window edge)
and the credit window (CDT), which is the number of DT
TPDUs that the peer transport entity may send on this
connection. The sequence number of the first DT TPDU
that cannot be sent, called the upper window edge (UWE),
is then the lower window edge plus the credit window
modulo the sequence space size (see Fig. 5). As an example,
say that the receiving transport entity has received DT
TPDUs up through sequence number 5. Then the LWE or
next expected DT TPDU number is 6. If the receiver trans
mits an AK TPDU with a CDT of 10 and an LWE of 6, then
the transmitter (receiver of the AK TPDU) has permission
to transmit 10 DT TPDUs numbered 6 through 15. The
transmitter is free to retransmit any DT TPDU that has not
been acknowledged and for which it has credit. A DT TPDU
is acknowledged when an AK TPDU is received whose
LWE is greater than the sequence number of the DT TPDU.

Credit Reduction
OSI TP4 allows the receiver to reduce the credit window

as well as take back credit for DT TPDUs that it has not
yet acknowledged. The LWE cannot be reduced, however,
since it represents the next expected DT TPDU sequence
number and acknowledges receipt of all DT TPDUs of lower
number. Another way of saying this is that the UWE need
not move forward with each successive AK TPDU, and in
fact it may move backwards as long as it isn't less than the
LWE. As will be discussed later, the OSI Express card's
TP4 takes advantage of this feature to provide memory
congestion control by closing the credit window (AK TPDU
with CDT of zero) under certain circumstances.

LWE UWE

illlllllllllli DT TPDUs

- C D T -

U W E = U p p e r W i n d o w E d g e
(Sequence Number of the Fi rst DT TPDU that Cannot Be Sent)

L W E = L o w e r W i n d o w E d g e
(Sequence Number â€” Carried by an AK TPDU â€” of the Next Expected
DT TPDU)

CDT = Cred i t Window or Window S ize
(Number of DT TPDUs a Receiver Can Handle)

Fig. 5 . Parameters associated wi th a buf fer o f DT TPDUs.

OSI Express Card TP4

The OSI Express card's implementation of TP4 (hereafter
called the Express TP4) flow control and network conges
tion control and avoidance policies use many of the basic
protocol mechanisms described above.

Flow Control
In Express TP4 the maximum receive credit window size

(W) is a user-settable parameter. A similar parameter (QJ
is used to provide an upper limit on the number of DT
TPDUs a given connection is allowed to retain awaiting
acknowledgment. The Express TP4 dynamically changes
the window size and queuing limit based on the state of
congestion, so W and Q are treated as upper limits. An
application can set values for W and Q for a particular
connection during connection establishment. A set of val
ues may also be associated with a particular TSAP (trans
port service access point) selector, so that applications can
select from different transport service profiles. In lieu of a
connection using one of the two methods just described,
configured default values are used.

There is no real notion of flow control in the outbound
direction, although TPDU transmissions are paced during
times of congestion. The Express TP4 continues to send
TPDUs until it has used all the credit that it was allocated
by the peer entity, or it has Q TPDUs in its retransmission
queue awaiting acknowledgment, whichever comes first.

Ignoring any congestion control mechanisms for the mo
ment, inbound flow control is also fairly simple. When the
Express TP4 sends an AK TPDU, its goal is to grant a full
window's worth of credit. The CDT field of the AK TPDU
is set to W, and the LWE field is set to the sequence number
of the last in-sequence DT TPDU received plus one (i.e.,
the next expected DT TPDU). The key to the efficient oper-

Receiver

Receive
DT TPDU

Sender

Send Next
DT TPDU

Send AK TPDU
wi th New

LWE and CDT

Wait ing for AK TPDU

Process
AK TPDU

Fig. 6 . S imple f low contro l po l icy .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

ation of the flow control policy is the timing of the AK
TPDU transmissions.

A simple flow control policy (see Fig. 6) could be to send
an AK TPDU granting a full credit window when the last
in-sequence DT TPDU of the current credit window has
been received. This policy would degrade the potential
throughput of the connection, however, because it neglects
the propagation delays and processing times of the DT
TPDUs and AK TPDUs. After transmitting the last DT TPDU
of the current credit window, the sender is idle until the
AK TPDU is received and processed. After sending the AK
TPDU, the receiver is idle until the first DT TPDU of the
new credit window has propagated across the network.
These delays could be lengthy depending on the speed of
the underlying transmission equipment and on the relative
speeds of the sending and receiving end systems.

A more efficient flow control policy, like that im
plemented in the Express TP4, sends credit updates such
that the slowest part of the transmission pipeline (sending
entity, receiving entity, or network subsystem) is not idle
as long as there is data to be transmitted. This is done by
sending an AK TPDU granting a full window's worth of
credit before all of the DT TPDUs of the current credit
window have been received. The point in the current credit
window at which the credit-giving AK TPDU is sent is
called the credit acknowledgment point (CAP). Thus the
CAP is the sequence number of a DT TPDU in the current
credit window whose in-sequence receipt will generate the
transmission of an AK TPDU. The AK TPDU's LWE will
be the sequence number of the DT TPDU causing the gen
eration of the AK TPDU and the CDT field of the AK TPDU
will contain the value of W. The CAP is calculated each
time an AK TPDU is sent, and is just the sum of the credit
acknowledgment interval (CAÃ) and the current LWE. CAI
represents the number of data packets received before an
AK TPDU is sent.

Example
Consider a hypothetical connection where two end sys

tems are connected through an intermediate system via
two 9600-baud full-duplex serial links. Fig. 7 shows the
progression of DT TPDUs and the flow control pacing AK
TPDUs across the links of this connection. At time TO, end
system 1 has received the DT TPDU whose sequence
number is the CAP. End system 1 then places an AK TPDU
in the transmission queue of link A', thereby granting a
new credit window. Meanwhile links A and B are busy
processing DT TPDUs numbered CAP + 1 and CAP + 2 re
spectively. At time Tl, the AK TPDU has made it to the
link B' transmission queue and the DT TPDUs have ad
vanced one hop, allowing DT TPDU number CAP + 3 to be
inserted in the link B transmission queue. Finally, at time
T2, the AK TPDU has made it to end system 2, and again
the DT TPDUs have advanced one hop, allowing DT TPDU
number CAP + 4 to be inserted in the link B transmission
queue. Note that for simplicity, it is assumed that the prop
agation delay of a DT TPDU across a link is equal to that
of an AK TPDU. In reality, DT TPDUs are larger than AK
TPDUs and would take longer to propagate.

For this example, the minimal CAI needed to keep the
links busy is four, and the minimal window size W is eight.
Thus the AK TPDU would carry a CDT of eight, so that
end system 2 has credit to send DT TPDUs numbered
CAP + 5 through CAP + 8 at the time it receives the AK
TPDU (time T2). DT TPDU number CAP + 4 would trigger
end system 1 to send another credit-granting AK. The CAI
should not be greater than W â€” 4 for this example, or end
system 1 will notice an abnormal delay in the packet train
because end system 2 does not have enough credit to keep
the links busy while the AK TPDU is in transit. Any CAI
less than W -4 would avoid the delay problem, but the
increase in AK TPDU traffic tends to decrease the amount
of CPU and link bandwidth that can be used for data trans-

Rece iver

DT [CAP]

DT [CAP + 1]

Link A'

Sender

Intermediate
System

DT[CAP + 1]
L i n k A f

J L i n k A '

Intermediate
System AK [CAP, CDT]

Link B'

DT [CAP + 2]

End
System

1

H L l n k A r D T [C A P + 3]

T 2

Link B

Transmiss ion Queue

Intermediate
System

AK [CAP, CDT]

- f D T [C A P + 4]

Link A' Link B'

F i g . 7 . H y p o t h e t i c a l c o n n e c t i o n
of two end systems through an in
te rmedia te sys tem v ia two 9600-
baud ful l -duplex serial l inks.

40 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

mission. The optimal CAI for this example would be W â€” 4
since that avoids the credit delay and minimizes the
number of AK TPDUs. The graph in Fig. 9 on page 56
shows the effect on throughput of different values for W
and different CAIs (packets per AK TPDU) for each of the
window sizes. This graph was created from a simulation
of the Express TP4 implementation running a connection
between two end systems connected to a single LAN seg
ment. This simulation data and analysis of real Express
TP4 data have shown that a maximum CAI of W/2 yields
the best performance with the least amount of algorithmic
complexity.

Optimal Credit Window
In the Express TP4, the CAI initially starts at half the

credit window size (W/2), but can be reduced and sub
sequently increased dynamically to reach and maintain the
optimal interval during the life of the connection. The op
timal value, as shown in the above example, is large enough
to ensure that the sender receives the AK TPDU granting
a new credit window before it finishes transmitting at least
the last DT TPDU of the current window, but not larger
than the number of DT TPDUs the sender is willing to
queue on its retransmit queue awaiting acknowledgment
(note that this scheme relies on the setting of sufficiently
large values for Q and W such that the optimal CAI can be
reached). If the sending transport entity does not allow W/2
DT TPDUs to be queued awaiting acknowledgment, then
as a receiver, the Express TP4 will decrease the CAI to
avoid waiting for the CAP DT TPDU that would never
come. This situation is detected with the maximum
acknowledgment holdback timer. Since any AK TPDU that
is sent cancels the acknowledgment holdback timer, expi
ration of the holdback timer indicates that the sender may
not have sent the CAP DT TPDU. When the timer expires,
the CAI is decreased to half the number of DT TPDUs
received since the last credit update. This is done to pre
serve the pipelining scheme, since it has been shown that
it is better to send AK TPDUs slightly more often than to
allow the pipeline to dry up. The amount of credit offered
to the receiver is not shrunk (unless congestion is detected),
so if the sender devotes more resources to the connection,
it can take advantage of the larger window size. The CAP
will increase linearly as long as the sender is able to send
up to the CAP DT TPDU before the acknowledgment
holdback timer expires. The linear increase allows the Ex
press TP4 to probe the sender's transmit capability, and
has proved fairly effective.

A more effective mechanism for matching the receiver's
AK TPDU rate to the sender's needs has reached draft pro
posal status as an enhancement to OSI TP4. That mecha
nism allows the sending transport entity to request an
acknowledgment from the receiving transport entity.

Congestion Control and Avoidance

Several network congestion control and avoidance al
gorithms are used in the Express TP4. All of these al
gorithms have been described and rationalized in reference
3. This section provides a basic description of each al
gorithm and how they were effectively incorporated in the

Express TP4 implementation. There is also a description
of how these algorithms are used together with the dynamic
credit window and retransmit queue sizing algorithms to
provide congestion control of card resources and network
resources.

Slow Start CUTE Congest ion Avoidance
Two very similar congestion avoidance schemes have

been described by Jacobsen3 and Jain.4 The fundamental
observation of these two algorithms is that the flow on a
transport connection should obey a "conservation of pack
ets" principle. If a network is running in equilibrium, then
a new packet isn't put onto the network until an old one
leaves. Congestion and ultimately packet loss occur as soon
as this principle is violated. In practice, whenever a new
connection is started or an existing connection is restarted
after an idle period, new packets are injected into the net
work before an old packet has exited. To minimize the
destabilizing effects of these new packet injections, the
CUTE and slow start schemes require the sender to start
from one packet and linearly increase the number of pack
ets sent per round-trip time. The basic algorithm is as fol
lows:
â€¢ When starting or restarting after a packet loss or an idle

period, set a variable congestion window to one.
â€¢ When sending DT TPDUs, send the minimum of the

congestion window or the receiver's advertised credit
window size.

â€¢ On receipt of an AK TPDU acknowledging outstanding
DT TPDUs, increase the congestion window by one up
to some maximum (the minimum of Q or the receiver's
advertised credit window size).
Note that this algorithm also is employed when the re

transmit or retransmission timer expires. The CUTE
scheme proposes that a retransmission time-out be used as
an indication of packet loss because of congestion. Jacob-
sen3 also argues, with some confidence, that if a good
round-trip-time estimator is used in setting the retransmit
timer, a time-out indicates a lost packet and not a broken
timer (assuming that a delayed packet is equated with a
lost packet). For a LAN environment, packets are dropped
because of congestion.

The Express TP4 uses the slow start algorithm (if config
ured to do so) when a connection is first established, upon
expiration of the retransmission timer, and after an idle
period on an existing connection. An idle period is detected
when certain number of keep-alive AK TPDU's have been
sent or received. The slow start and CUTE schemes limit
their description to sender functions. The Express TP4 pro
vides the slow start function on the receive side as well,
to protect both the network and the OSI Express card from
a sender that does not use the slow start scheme. The re
ceiver slow start algorithm is nearly identical to the sen
der's and works as follows:
â€¢ When starting or restarting after an idle period, set a

variable congestion window to one.
â€¢ When sending an AK TPDU, offer a credit window size

equal to the congestion window to the sender.
â€¢ On receipt of the CAP DT TPDU, increase the congestion

window by one up to some maximum W as described

'CUTE stands for Congest ion contro l Using Time-outs at the End-to-end layer .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

above.

Round-Tr ip-Time Var iance Est imat ion
Since the retransmit timer is used to provide congestion

notification, it must be sensitive to abnormal packet delay
as well as packet loss. To do this, it must maintain an
accurate measurement of the round-trip time (RTT). The
round-trip time is defined as the time it takes for a packet
to propagate across the network and its acknowledgment
to propagate back. Most transport implementations use an
averaging algorithm to keep an ongoing estimation of the
round-trip time using measurements taken for each re
ceived acknowledgment.

The Express TP4 uses RTT mean and variance estimation
algorithms3 to derive its retransmission timer value. The
basic estimator equations in a C-language-like notation are:

Err = M-A
A = A + (ErrÂ» Gain)
D = D + ((|Err| - D) Â» Gain)

where:

M = current RTT measurement
A = average estimation for RTT, ora

prediction of the next measurement
Err = error in the previous prediction

of M which may be treated as a variance
Gain = a weighting factor

D = estimated mean deviation
Â» = C notation f or the logical shift right

operation (a division of the left operand
by 2 to the power of the right operand) .

The retransmission timer is then calculated as:

retrans_time = A + 2D.

The addition of the deviation estimator has provided a
more reactive retransmission timer while still damping the
somewhat spurious fluctuations in the round-trip time.

Exponent ia l Retransmit Timer
If it can be believed that a retransmit timer expiration is

a signal of network congestion, then it should be obvious
that the retransmission time should be increased when the
timer expires to avoid further unnecessary retransmissions.
If the network is congested, then the timer most likely
expired because the round-trip time has increased appre
ciably (a packet loss could be viewed as an infinite in
crease). The question is how the retransmissions should
be spaced. An exponential timer back-off seems to be good
enough to provide stability in the face of congestion, al
though in theory even an exponential back-off won't
guarantee stability.5

The Express TP4 uses an exponential back-off with
clamping. Clamping means that the backed-off retransmit
time is used as the new round-trip time estimate, and thus
directly effects the retransmit time for subsequent DT
TPDUs. The exponential back-off equation is as follows:

retransjime = retrans_time x 2n

where n is the number of times the packet has been trans
mitted.

For a given DT TPDU, the first time the retransmission
timer expires the retransmission time is doubled. The sec
ond time it expires, the doubled retransmission time is
quadrupled, and so on.

Dynamic Window and Retransmit Queue Siz ing
The slow start described earlier provides congestion

avoidance when used at connection start-up and restart
after by It provides congestion control when triggered by
a retransmission. The problem with it is that a slow start
only reduces a connection's resource demands for a short
while. It takes time RTTlog2W, where RTT is the round-trip
time and W is the credit window size, for the window
increase to reach W. When a window size reaches W again,
congestion will most likely recur if it doesn't still exist.
Something needs to be done to control a connection's con
tribution to the load on the network for the long run.

The transport credit window size is the most appropriate
control point, since the size of the offered credit window
directly effects the load on the network. Increasing the
window size increases the load on the network, and de
creasing the window size decreases the load. A simple rule
is that to avoid congestion, the sum of all the window sizes
(WÂ¡) of the connections in the network must be less than
the network capacity. If the network becomes congested,
then having each connection reduce its W (while also em
ploying the slow start algorithm to alleviate the congestion)
should bring the network back into equilibrium. Since there
is no notification by the network when a connection is
using less than its fair share of the network resources, a
connection should increase its W in the absence of conges
tion notification to find its limit. For example, a connection
could have been sharing a path with someone else and
converged to a window that gave each connection half the
available bandwidth. If the other connection shuts down,
the released bandwidth will be wasted unless the remain
ing connection increases its window size.

It is argued that a multiplicative decrease of the window
size is best when the feedback selector signals congestion,
while an additive increase of the window size is best in
the absence of congestion.3'6 Network load grows non-
linearly at the onset of congestion, so a multiplicative de
crease is about the least that can be done to help the network
reach equilibrium again. A multiplicative decrease also
affects connections with large window sizes more than
those with small window sizes, so it penalizes connections
fairly. An additive increase slowly probes the capacity of
the network and lessens the chance of overestimating the
available bandwidth. Overestimation could result in fre
quent congestion oscillations.

Like the slow start algorithm, the Express TP4 uses mul
tiplicative decrease and additive increase by adjusting W
on a connection's receive side and by adjusting Q on a
connection's send side. This allows us to control the injec
tion of packets into the network and control the memory
utilization of each connection on the OSI Express card.
The amount of credit given controls the amount of buffer
space needed in the network and on the card. The size of
Q also controls the amount of buffer space needed on the

42 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

card, because TSDUs are not sent to the card from the host
computer unless the connection has credit to send them
or there are less than Q TPDUs already queued awaiting
acknowledgment. The Express TP4 uses the following equa
tions to implement multiplicative decrease and additive
increase.

Upon notification of congestion (multiplicative de
crease):

W = W / 2 (1)
Q ' = Q V 2 . (2)

Upon absence of congestion (additive increase):

W = W + W/4
Q' = Q' + Q'/4.

(3)
(4)

W and Q' are the actual values used by the connection
and W and Q are upper limits for W and Q' respectively.

The window and queue size adjustments are used with
the retransmit timer congestion notification in the follow
ing manner:
â€¢ Expiration of the retransmit timer signals network con

gestion and Q' is decreased.
â€¢ The slow start algorithm is used to clock data packets

out until the congestion window equals Q'.
â€¢ As long as no other notifications of congestion occur, Q'

is increased each time an AK TPDU is received, up to a
maximum of Q.

OSI Express Congestion Control

One of the main design goals of the OSI Express card
was to support a large number of connections. To achieve
this goal, the memory management scheme had to be as
efficient as possible since memory (for data structures and
data buffers) is the limiting factor in supporting many con
nections. OSI Express memory management is provided
by the CONE memory buffer manager (see page 27 for more
about CONE memory buffer manager).

Initially, the memory buffer manager was designed such
that A connection's packet buffers were preallocated. A
connection was guaranteed that the buffers it needed would
be available on demand. This scheme provided good per
formance for each connection when there were many active
connections, but it would not support enough active con
nections. The connections goal had to be met, so the mem
ory buffer manager was redesigned such that all connec
tions share the buffer pool. Theoretically.there can be more
connections active than there are data buffers, so this
scheme maximizes the number of supportable connections
at the cost of individual connection performance as the
ratio of data buffers to the number of connections ap
proaches one.

The Problem and The Solut ion
With a shared buffer scheme comes the possibility of

congestion. (Actually, even without a shared buffer
scheme, other resources such as CPU and queuing capacity
are typically shared, so congestion is not a problem specific
to statistical buffering.) Since no resources are reserved for
each connection, congestion on the card arises from the
same situations as congestion in the network. A new con
nection coming alive or an existing connection restarting

after an idle period injects new packets into the system
without waiting for old packets to leave the system. Also,
since there can be many connections, it is likely that the
sum of the connections' window sizes and other resource
demands could become greater than what the card can
actually supply.

A shared resource scheme also brings the problem of
ensuring that each connection can get its fair share of the
resources. Connections will operate with different window
sizes, packet sizes, and consumption and production rates.
This leads to many different patterns and quantities of
resource use. As many connections start competing for
scarce resources, the congestion control scheme must be
able to determine which connections are and which con
nections are not contributing to the shortage.

The problem of congestion and fairness was addressed
by modeling the card as a simple feedback control system.
The system model used consists of processes (connections)
that take input in the form of user data, buffers, CPU re
sources, and control signals, and produce output in the
form of protocol data units. To guarantee the success of
the system as a whole, each process must be successful.
Each process reports its success by providing feedback sig
nals to a central control decision process. The control de
cision process is responsible for processing these feedback
signals, determining how well the system is performing
and providing control information to the connection pro
cesses so that they will adjust their use of buffers and CPU
resources such that system performance can be maximized.

Control System
Certain measures are needed to determine the load on

the card so that congestion can be detected, controlled, and
hopefully avoided. When the card is lightly loaded, fairness
is not an issue. As resources become scarce, however, some
way is needed to measure each connection's resource use
so that fairness can be determined and control applied to
reduce congestion.

Two types of accounting structures are used on the OSI
Express card to facilitate measurement: accounts and credit
cards. Since outbound packets are already associated with
a connection as they are sent from the host to the card,
each connection uses its own account structure to maintain
its outbound resource use information. All protocol layers
involved in a particular connection charge their outbound
operations directly to the connection's outbound account.
For inbound traffic, when a packet is received from the
LAN, the first three protocol layers do not know which
upper-layer connection the packet is for. Therefore, a single
inbound account is used for all inbound resource use infor
mation for the first three protocol layers, and some com
bined resource use information for upper-layer connec
tions. This provides some level of accountability for in
bound resource use at the lower layers such that compari
sons can be made to overall outbound resource use. Since
a single inbound account exists for all connections, credit
cards are used by the upper four layers (transport and up)
to charge their inbound operations to specific connections.
Thus each connection has an outbound account and a credit
card for the inbound account.

The protocol modules and CONE utilities are responsible

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

for updating the statistics (i.e., charging the operations)
that are used to measure resource use. These statistics in
clude various system and connection queue depths, CPU
use, throughput, and time-averaged memory utilization.
When summed over all of the connections, these statistics
are used along with other signals to determine the degree
of resource shortage or congestion on the card. The indi
vidual connection values indicate which connections are
contributing the most to the congestion (and should be
punished) and which connections are not using their fair
share of resources (and should be allowed to do so).

Flow Control Daemon
The control decision and feedback filtering function is

implemented in a CONE daemon process aptly named the
flow control daemon. Using a daemon allows the overhead
for flow control to be averaged over a number of packets.
The daemon periodically looks at the global resource statis
tics and then sets a target for each of the resources for each
connection. The target level is not just the total number of,
say, buffers divided by the number of connections. Targets
are based on the average use adjusted up or down based
on the scarcity of various resources. This allows more flex
ibility of system configurations since one installation or
mix of connections may perform better with different
maximum queue depths than another. It is also the simplest
way to set targets for things like throughput since total
throughput is not a constant or a linear function of the
number of connections.

Control signals are generated by the flow control daemon
as simple indications of whether a connection should in
crease, decrease, or leave as is its level of resource use.
The daemon determines the direction by comparing the
connection's level of use with the current target levels.
There is a separate direction indication for inbound and
outbound resource use.

The fairness function falls out very simply from this
decision and control scheme. Any connection that is using
more than its fair share of a resource will have a level of
use greater than the average and thus greater than the target
when that resource is scarce. In other words, the "fair
share" is the target.

The control signals are generated when a connection
queries the daemon. The most likely point for querying the
daemon is when a connection is about to make a flow
control decision. That decision point is, of course, in the
TP4 layer of the OSI Express card.

Effects of the Daemon
The effects of flow control notifications to a connection

regarding decreasing or increasing resource use vary ac
cording to whether the direction of traffic is inbound or
outbound.
Outbound. The Express TP4 queries the flow control
daemon for outbound congestion/fairness notification
when it receives an AK TPDU. It is at this point that DT
TPDUs are released from the retransmission queue, and it
can be decided if more or fewer DT TPDUs can be queued
until the next AK TPDU is received.

If the connection is using more than its fair share of
outbound resources (because of congestion or just over-

zealousness), the daemon will return a decrease notifica
tion. A decrease notification causes the Express TP4 to
reduce the connection's retransmit queue size (Q') using
equation 2. The slow start algorithm is then used to clock
DT TPDUs out until the congestion window equals Q'.

If Q' is equal to one when a decrease is signaled, the
Express TP4 goes into DT TPDU send delay mode. In this
mode, transmission of successive DT TPDUs is spaced by
a minimum delay (D) to produce an interpacket gap that
will slow down the connection's demand for resources. If
further decrease signals are received in delay mode, the
minimum delay is increased using D = D x 2.

If the connection is using less than its fair share of out
bound resources, the daemon will return an increase notifi
cation. An increase notification causes the Express TP4 to
increase the connection's retransmit queue size (Q') up to
a maximum of Q, using the additive increase equation. If
an increase signal is received in delay mode, the minimum
delay is decreased using D = D - D/4.
Inbound. The Express TP4 queries the flow control daemon
for inbound congestion/fairness notification when it sends
an AK TPDU. At this point the decision needs to be made
whether more or fewer DT TPDUs should be allowed in
the pipeline until the next AK TPDU is sent. If the connec
tion is using more than its fair share of inbound resources,
the daemon will return a decrease notification. A decrease
notification causes the Express TP4 to reduce the connec
tion's receive window size (W) using equation 1. The slow
start algorithm is then used to clock AK TPDUs out with
credit window (CDT) values increasing from one to W.

If W is equal to one when a decrease is signaled, the
Express TP4 goes into credit delay mode. In this mode,
transmission of AK TPDUs containing a CDT of one are
spaced by a minimum delay to produce an interpacket gap
between incoming DT TPDUs that will slow down the con
nection's demand for resources. If further decrease signals
are received in delay mode, the minimum delay is in
creased using D = D x 2.

If the connection is using less than its fair share of in
bound resources, the daemon will return an increase notifi
cation. An increase notification causes the Express TP4 to
increase the connection's credit window size (W) up to a
maximum of W, using equation 3. If an increase signal is
received in delay mode, the minimum delay is decreased
using D = D - D/4.

Severe Congestion Notif icat ion
The flow control daemon also provides an emergency

notification to Express TP4 in cases where transient short
ages of memory are severe enough to jeopardize the exis
tence of connections. Because the OSI Express card uses
statistical buffering, there is a possibility that a large burst
of outbound data could queue up in the Express TP4 re
transmission queues, while inbound data is flowing in and
getting queued because the host computer is not reading
data from the card. If the situation is such that buffers may
not be available to receive or send AK TPDUs, the daemon
will give an emergency notification to the Express TP4.

Upon receipt of this notification, the Express TP4 sends
an AK TPDU with a CDT of zero, closing the credit window.
Thus DT TPDUs received that are outside the new credit

44 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

window are thrown away so as to avoid memory deadlock.
The Express TP4 also decreases the credit window W and
the retransmit queue size Q' using equations 1 and 2. The
slow start algorithm is used to get the inbound and out
bound data traffic flowing again.

Acknowledgments
A special thanks to Ballard Bare who participated in the

design and development efforts for the OSI Express TP4
implementation, and to Mike Wenzel who contributed to
the design efforts.

References
1. J.C. Majithia, et al., "Experiments in Congestion Control," Pro
ceedings of the international Symposium on Flow Control in Com
puter Networks, Versailles, France, February 1979.
2. K. K. Ramakrishnan and Raj Jain. Congestion Avoidance in
Computer Networks with a Connectionless Network Layer. Part
II: An Cor Binary Feedback Scheme, Digital Equipment Cor
poration. Technical Report #TR-508, August 1987.
3. V. Jacobsen, "Congestion Avoidance and Control," Computer
Review: Communications Architectures and Protocols (SIGCOMM
'88), Vol. 18, no. 4, August 1988.
4. Raj Jain, "A Timeout-Based Congestion Control Scheme for
Window Flow-Controlled Networks," IEEE Journal on Selected
Areas in Communications, Vol. SAC-4, no. 7, October 1986.
5. D. for Aldous, "Ultimate Instability of Exponential Back-off for
Acknowledgment Based Transmission Control of Random Access
Communication Channels," IEEE Transactions on In/ormation
Theory, Vol. IT-33, no. 3, March 1987.
6. K. K. Ramakrishnan and Raj Jain, Congestion Avoidance in
Computer Networks with a Connectionless Network Layer, Digital
Equipment Corporation, Technical Report #TR-506, August 1987.

Data Link Layer Design and Testing for the
OSI Express Card
The modules in the data link layer occupy the bottom of the
OSI Reference Model. Therefore, it was imperative that they
be finished first and that their reliability be assured before
use by the upper layers of the OSI stack.

by Judith A. Smith and Bi l l Thomas

THE DATA LINK LAYER is the second layer in the
OSI Reference Model. Its function is to provide ac
cess to the LAN interface for the OSI network layer

(layer 3), and transmitting and receiving of data packets to
or from the physical layer (layer 1). This article describes
the data link layer, particularly the OSI Express card's im
plementation of this protocol layer. The box on page 49
provides a brief description of the OSI network layer.

The data link layer consists of two sublayers: the Â£LC
(logical link control) sublayer and the MAC (media access
control) sublayer (see Fig. 1). The LLC sublayer provides
a hardware independent interface to the upper-layer pro
tocol. The LLC used for the OSI Express card implementa
tion is specified in ANSI/IEEE standard 802.2. The OSI
Express card uses the Type 1 LLC protocol described within
this specification. Type 1 LLCs exchange PDUs (protocol
data units) between themselves without the establishment
of a data link connection. This is also called connectionless
network protocol. The MAC sublayer controls access to the
shared physical signaling and medium technologies (e.g.,

coaxial cable, twisted pair, fiber optic cables, and even
radio signals). The MAC protocol used by the OSI Express
card implementation is specified in IEEE standard 802.4.
Besides requiring that the OSI Express card implementa
tion conform closely to the IEEE standards, the goals that
guided our design included:
â€¢ Hiding the upper LLC interface details from the data link

layer user (network layer).
â€¢ Making the LLC support multiple MAC sublayers.
â€¢ Making the lower LLC interface simple and flexible

enough to promote testability and ease of integration.
â€¢ Providing a loopback mechanism in the LLC.
â€¢ Creating and porting the MAC code to the OSI Express

card before all other protocol layers.
â€¢ Designing the MAC code and MAC test environment so

that some portions are leverageable to other MAC im
plementations.
Since the data link layer module had to be the first pro

tocol module completed, another goal was to ensure that
the design and development process produced simple and

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

reliable code.

The Data L ink Layer and CONE
The data link layer uses the facilities provided by CONE

(common OSI networking environment) to provide services
to the protocol layer above it and to communicate with the
protocol layer below it. These facilities include data struc
tures for service access points (SAPs), interfaces to the
protocol layer routines, and the path data structure which
represents an individual connection between applications
on different machines. CONE facilities and SAPs are de
scribed in detail in the article on page 18.

The protocol layer above the data link layer is called the
data link layer user. This is the network layer. Since the
LLC is the top layer of the data link layer, the network
layer is also the LLC user. Similarly the MAC user is the
LLC. A SAP is an addressable point at which protocol
services are provided for a layer user. SAPs are identified
by address information found in the headers (protocol
headers) of data packets arriving at each layer. For the LLC
layer a SAP address is called an LSAP. Packets arriving at the
LLC layer usually have two addresses. One indicates where
the packet came from (source) and the other indicates the
packet's destination. The from address is called the source
service access point, or SSAP, and the destination address
is called the destination service access point, or DSAP.

CONE provides three data structures for all the protocol
layers that enable them to communicate with each other.
The first is the protocol entry data structure, which contains
pointers to all the procedures required by a particular pro
tocol layer. For example the following procedures are part
of the data link layer protocol and are used by the network
layer to command the data link layer to perform certain
actions.
â€¢ DL_Add_SAP. Set up an LSAP.
â€¢ DL_Send_Down. Send a data packet.
â€¢ DL_Control_Down. Send an XID or TEST command packet.
â€¢ DL_StarUDown. Set up a path between the data layer and

its user.

â€¢ DI_Delete^SAP. Remove an LSAP.
â€¢ DL_Stop_Down. Remove a path.

Pointers to these procedures are set in the CONE protocol
data structure when the LLC initialization procedure is
called. Also at initialization, an LLC SAP data structure is
set up so that the data link layer can find the network layer.

When a connection is established with a remote applica
tion, CONE creates a data structure called a path. A path
represents the intramachine route taken through the pro
tocol layers by packets on a given connection from the
application to the LAN interface. It consists of an ordered
list of data structures that contain, among other things,
pointers to the SAP entries of the protocol layers involved
in the conversation between the two applications. Fig. 7
on page 23 shows the CONE data structures.

Logical Link Control Sublayer
The LLC sublayer on the OSI Express card performs two

kinds of functions. It sends and receives packets for the
users and sends and responds to XID (exchange identifica
tion) and TEST commands. The XID command is used to
describe the capabilities of the LLC sublayer on one
machine to the LLC sublayer on another machine. The XID
command is sent as a single packet containing the DSAP
and SSAP addresses, a control field set to the XID command,
and the XID information which describes the functions the
LLC supports. The LLC on the receiving machine sends a
response packet to the sender describing itself. The receipt
of the XID command is not reported to the LLC user because
it is handled internally by the LLC sublayer. The TEST
command is used to test the integrity of the communication
link between the LLC sublayers on two communicating
machines. Therefore, the TEST command also causes the
receiving LLC to send a response. The response data from
the receiving machine is expected to be the same data that
is sent in the command packet. Like the XID command, the
TEST command is not sent to the LLC user. The kinds of
DSAP addresses in the XID and TEST commands include
individual, group, and global addresses. The individual

End System End System

Data Link

Fig. 1 . Overv iew of the data l ink
layer and i ts sublayers.

46 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

address is used when the response packet is to be sent for
one particular LSAP address. The group address is used
when the response is to be sent for a group of LLC users.
The global address is used when the response is to be sent
for all of the active LLC SAP addresses. A TEST packet sent
to the global address should result in responses from ad
dress zero and from each of the other active SAPs. One of
the individual addresses, address 0, designates the sending
LLC itself and is always active. Therefore, an XID or TEST
command sent to this address will always generate a re
sponse.

Media Access Control Sublayer
The MAC sublayer is responsible for sending and receiv

ing data from the media. To fulfill this responsibility the
MAC sublayer performs:
â€¢ Conversion of outbound data into a form acceptable to

the hardware that sends the packet onto the media. It
performs the reverse transformation for inbound packets

â€¢ Checking to ensure that received packets have a MAC
address that is acceptable to the OSI Express card and
that there are no detectable transmission errors

â€¢ Managing how many times retransmission of a packet
should be attempted if there are transmission errors.
The MAC sublayer maintains a SAP table with one entry

for each active MAC address. Two addresses are always
active: the local individual MAC address and the broadcast
MAC address. The individual MAC address is stored in
nonvolatile memory on the card and is unique for every
individual card made. The assignment of this address is
managed on a worldwide basis. The broadcast address is
one that all MAC sublayers are required to accept. Addi
tional addresses, such as multicast addresses, may also be
activated. These multicast addresses are used by the net
work layer.

LLC and MAC Interface
The procedures contained in the LLC and MAC sublayers

are designed to conform closely to IEEE standards 802.3

and 802.4 and to maximize the independence between the
two sublayers. The procedures provided by the MAC sub
layer include:
â€¢ SencLPacket. This procedure is used by the LLC sublayer

to request the MAC sublayer to send a data packet out
onto the media.

â€¢ Activate_MAC^Addr and Deactivate_MAC^Addr. These proce
dures are used as their name implies, to activate and
deactivate MAC addresses. When a MAC address is ac
tivated, an entry is made in the MAC SAP lookup table.
A MAC address may be activated more than once if sev
eral LLC users (with different LSAPs) use the same MAC
address. The data structure containing the MAC SAP
has a reference counter that contains a count of the
number of times the address is activated by one of the
LLC users. When the MAC address is deactivated, the
count is reduced, but the MAC address itself is not deac
tivated until the count is reduced to zero.

â€¢ Check_MAC_Addr and Store_lndiv_MAC_Addr. These proce
dures are used to provide independence between the
LLC and MAC sublayers.
The procedures provided by the LLC for the MAC sub

layer include:
â€¢ Check_Packet and Receive_Packet. These procedures are

used to send packets received from the media by the
MAC sublayer to the LLC sublayer, which in turn sends
them to the data link layer user. The Check_Packet proce
dure was developed to improve performance. When the
MAC layer receives a packet from the media it is in a
format used by the hardware to interface to the media.
Therefore, the data must be converted to the format used
by the OSI protocol stack. This effort is wasted if there
is no data link layer user to accept the packet. Therefore,
before the MAC does the conversion, it calls the Check_
Packet procedure to check that the packet's LLC header
is valid and that its destination address has an active
LSAP set up for it. The LLC then returns a pointer to
the LSAP to the MAC sublayer if and only if the packet
is acceptable. If a pointer is returned, the MAC sublayer

Network Parameters Local Address Data IS Address Data ES Address Data

(b) Flag for
Local MAC Address

Flag for
XID/TEST

Flag for
Loop-Back L L C A d d r e s s M A C A d d r e s s

L = True for Local Address Data Set
= False for IS Address Data Set
= Fa lse for ES Address Data Set

(c)

(d)

IS = Intermediate System
ES = End Sys tem

Fig . 2 . (a) Conf igura t ion data fo r
t h e n e t w o r k l a y e r i n i t i a l i z a t i o n ,
(b) D a t a f i e l d s a s s o c i a t e d w i t h
e a c h a d d r e s s d a t a s e t . (c) A d
d ress f i e lds o f l oca l add ress se t
sent down wi th DLJWcLSAP ca l l ,
(d) A d d r e s s f i e l d s o f l o c a l a d
d ress se t a f te r the MAC address
is inserted.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

does the conversion and then passes the packet and
pointer to the LLC sublayer using the Receive_Packet pro
cedure.

â€¢ Return_Sent_Packet. This procedure is used by the MAC
sublayer to return the data structure of the packet that
the MAC sublayer has sent onto the media. The LLC
sublayer will return the data structure to whatever pro
tocol wants it back.

Design Decisions
The network layer and the LLC and MAC sublayers work

together successfully because of the decisions we made to
simplify the design and to minimize the amount of informa
tion each layer needed to have about the other layer. One
of these decisions was that the network layer and the LLC
and MAC sublayers are to return no error messages about
whether or not a packet is successfully sent. This decision
stemmed from trying to decide how a layer user should
respond to an error from lower layers. Since these errors
are characteristic of the particular lower layer in use, han
dling these errors could result in a great deal of dependency
in an upper layer on what was going on in a lower layer,
and would change if the lower layer changed (e.g., if the
IEEE 802.4 MAC was replaced with IEEE 802.3).

After reviewing the functions each layer was required to
provide, we realized that the transport layer had the respon
sibility for end-to-end communication and also that the
transport layer contains algorithms for ensuring the integ
rity of the connection no matter how the packets are lost.
Some packets transmitted with no errors will fail to arrive
at their destination because of network errors on the media.

It was decided to allow the transport layer to detect the
loss of any packets and handle all error recovery. This
relieves the transport layer from having to check status
information from the lower levels on every packet.

One area we went to great length to simplify is address
handling. The individual MAC address is a good example.
The network layer needs, as part of its protocol, to know
which of three MAC addresses (two multicast addresses
and the individual address) a received packet has as its
destination address. One method is to pass the individual
MAC address to the network layer. This has the drawback
that the network layer would have to know the format of
the address and the value of the individual address. To
eliminate the need for the network layer to know this infor
mation, LSAPs are set up for each set of LLC and MAC
addresses the network layer might use. Fig. 2a shows the
configuration data the network layer receives at initializa
tion. The network parameters are used internally by the
network layer and each of the sets of address data is used
to add an LSAP for the network layer. Fig. 2b shows the
data items associated with each set of address data. The
network layer sets up an LSAP with the DLJ\dd_SAP proce
dure, which is in the LLC sublayer. To get the MAC address
field initialized for the local address data, a call is made
to the DL_Add_SAP procedure with one of the parameters
pointing to the local address data shown in Fig. 2c. The
DL_Add_SAP procedure examines the address data fields and
if the field containing the flag for the local MAC address
is true, the LLC calls the MAC sublayer routine Store_lndiv_
MAC_Addr and passes to the routine a pointer to the place
in the address data where the MAC address is supposed

Program A

Upper Layers

,

Path 1
Remote
A d d r e s s =
This Node

LSAP
Loop-Back
Enabled

Path 2
Remote
A d d r e s s =
Local Individual
Address of This
Node

â€¢â€¢ Loop-Back Handler

L A N

LSAP
Address = Pa th 1

Remote
Address

Fig. 3 . Loop-back f lowchar t .

48 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The OSI Connectionless Network
Protocol

The network layer is the third layer of the OSI Reference Model .
I t p rov ides network serv ice to the t ranspor t layer and uses the
data l ink service as provided by the data l ink layer. Two dif ferent
types of serv ice are def ined for the OSI network layer : the con
nect ion-or iented network serv ice us ing the pro toco l def ined in
ISO 8208 (CCITT Recommendation X.25) and the connectionless
network service provided by the connectionless network protocol
(CLNP) def ined in ISO 8473. The OSI Express card re l ies on a
LAN subnetwork techno logy, so i t uses the connect ion less net
work layer protocol. The OSI Express card also uses the end-sys-
tem- to- in termedia te-system rout ing exchange pro toco l def ined
in ISO 9542 to d iscover the ex is tence o f o ther end sys tems or
the existence of one or more intermediate systems on the same
subnetwork (LAN segment) . An end sys tem (ES) i s de f ined as
a sys tem in wh ich there i s a t ranspor t en t i t y in an ins tance o f
commun ica t i on . An in te rmed ia te sys tem (IS) i s a sys tem tha t
prov ides the rout ing and re lay ing funct ions o f the OSI network
layer . End systems re ly on in termediate systems to de l iver net
wo rk p ro toco l da ta un i t s (NPDUs) f r om the sou rce ES t o t he
dest inat ion ES across mult ip le subnetworks.

Service Provided by CLNP
The connect ion less network serv ice (CLNS) prov ides a data

g ram se rv i ce to the t ranspor t l aye r . Each NPDU con ta ins the
source and dest inat ion end system addresses, and is routed to
the dest inat ion as an autonomous uni t (i .e. , not associated wi th
any connect ion between the end systems). The CLNS may mis-
order, dupl icate, or lose packets. Therefore, i t is up to an upper-
layer check such as the t ranspor t layer , to per form error check
ing.

The connect ionless network service provides only two service
pr imit ives to the transport layer: an N-UNITDATA request and an
N-UNITDATA indication. The transport layer init iates the transmis
sion of a TPDU or TPDUs by issuing an N-UNITDATA request. The

t ransport layer receives TPDUs v ia the N-UNITDATA indicat ion.
The parameters of both CLNS pr imi t ives are the network source
address, the network dest inat ion address, the network qual i ty of
serv ice, and the network serv ice user data.

The source address and the dest inat ion address parameters
a re OSI ne two rk se rv i ce access po in t (NSAP) add resses . An
NSAP has two parts: the network ent i ty t i t le part which uniquely
identif ies the ES or IS within the global OSI environment, and the
selector part which ident i f ies the network service user within the
ES.

ES-to- IS Exchange Protocol
The ES-to- IS rout ing exchange protocol , which is speci f ied in

ISO 9542, provides solutions to the following practical problems.
â€¢ How do end systems discover the existence and reachabi l i ty

of intermediate systems that can route NPDUs to dest inat ions
on subnetworks other than the ones to which the ES is direct ly
connected?

â€¢ How do end systems discover the existence and reachabi l i ty
o f o ther end systems on the same subnetwork?

â€¢ How do in te rmed ia te sys tems d iscover the ex is tence and
reachab i l i t y o f end sys tems on each o f t he subne tworks to
which they are d i rect ly connected?

â€¢ How do end sys tems dec ide wh ich in te rmed ia te sys tem to
use to forward NPDUs to a par t icu lar dest inat ion when more
than one IS is accessib le?

â€¢ The ES- to- IS protoco l is connect ion less and operates as a
pro toco l w i th in the network layer , spec i f ica l ly in con junct ion
wi th the CLNP, ISO 8473. The ES- to- IS PDUs are car r ied as
user data in data l ink PDUs just l ike ISO 8473 NPDUs. Certain
ES-to- IS protocol funct ions require that the subnetwork (i .e . ,
data forms service) supports broadcast, multicast, or other forms
of mul t idest inat ion addressing for n-way t ransmission.

to be. When this routine is finished the local address data
looks like Fig. 2 d . The availability of the StoreJndiv_MAC_Addr
ensures that the LLC does not have to know what the MAC
address is or where it is stored. When control is returned
to the LLC sublayer, it uses the modified address data buffer
to add an LSAP just as if the MAC address had been
supplied when DLJ\dd_SAP was initially called.

The network layer does not have within its protocol the
concept of XID and TEST commands or responses. Either
the network layer must detect and reject these packets or
the LLC must not send them to the LLC user. Some LLC
users do want to receive these packets. To prevent the
network layer from having to check the LLC control fields
of every packet, special flags were added to the LSAPs for
XID and TEST packets. When the LSAP is activated, the
network layer designates that the XID and TEST flags be set
to prohibit the reception of these responses at this particu
lar SAP. LLC users that do want to receive XID and TEST
packets would not set these flags.

Loop-Back
Loop-back is the process by which the card is able to

receive or appear to receive something it has sent. Loop-

back is often used for testing, but it is also required for the
normal operation of the card. If two programs that are writ
ten to communicate with each other over the network are
run on the same machine, loop-back is necessary for them
to communicate with each other. A data packet from either
of these programs must travel the entire protocol stack
because some of the layers of the network provide services
such as data transformations as well as transporting the
packet from one program to the other. Another reason for
traversing the entire stack is that the card cannot know
whether a packet being sent is also one that the card should
receive unless the entire address of the packet is evaluated.
The task of loop-back, that is, the process of generating a
receive packet from a packet being sent, is the responsibility
of the LLC sublayer in this implementation.

The network layer does not want all packets looped back
to itself. For instance, if all packets sent out with one of
the multicast addresses as the destination address were
looped back, the network layer would be burdened with
spurious packets and would have to check each packet's
network address to be sure it was not one it had sent. Since
one possible error in a network is for two network layers

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 49

© Copr. 1949-1998 Hewlett-Packard Co.

to have the same network layer address, even the detection
of unwanted looped-back packets could be impossible,
since the MAC individual address, which would decide
the issue, is not available to the network layer. The solution
is to have a loop-back flag in the LS AP data structure. When
the loop-back flag is set, the LLC knows that packets sent
on a path using the LSAP should be looped back if the
remote address of the path is the one on which the card
receives packets.

The data flow of a loop-back packet is shown in Fig. 3.
The packet is sent from program A to program B. Program
A sends the packet down to the upper layers just as it
would send a packet to a program on another node. From
there it is sent to the transport layer and then the network
layer. The network layer sends the packet to the LLC using
path 1, which has its remote address set to the node of
program B. In this case since program B is on the same
node, the remote address is the one on which the local
node itself receives packets. The LLC sublayer sends the
packet to the MAC sublayer where it is sent out onto the
network. (Loop-back packets are also sent out onto the
network because the remote address can be one that other
nodes also receive.) The MAC returns the packet to the
LLC after it is sent. The LLC checks to see if the packet
is a loop-back packet. Since it is, the LLC starts the packet
up the stack via path 2, which has as its remote address
the local address of the original packet. The LSAP as
sociated with path 2 has as its address the destination
address of the original packet. The network layer receives
this packet the same way it would if it came from another
node. The packet is then passed up the stack to program B .

Rather than do a full LLC and MAC address comparison
each time a packet is returned from the MAC sublayer, a
flag in the path is tested. This flag is set when the path is
set up, based on whether the LSAP associated with the
path allows loop-back and whether the remote address of
the path is one on which the node receives packets. This
flag must be updated each time an LSAP is added or de
leted. Since LSAPs are usually added at initialization and
never deleted, the updating does not add any overhead to
the card's operation.

The checking of a path's remote address against address
es that are active in the LLC and MAC sublayers is done
by a method that maintains as much independence between
the two sublayers as possible. The LLC sublayer uses the
MAC procedure Check_MACLAddr to check a remote address.
The MAC sublayer returns a flag that indicates whether or
not the address is an active MAC address. Thus, the LLC
does not have to know the format of the MAC address or
how it is stored in the MAC sublayer. If the MAC address
is active, the LLC checks its own LSAPs to determine if
one of them will accept the remote address of the path as
a legitimate destination address.

LLC and MAC Test ing
Once the LLC and MAC interface design was completed,

testing became the next critical issue. The OSI Express
project required that the MAC interface software be one of
the first functional modules on the OSI Express prototype
card. A high percentage of its functionality had to be very
reliable so that code for the LLC and other layers of the

OSI stack could begin to run on the card. Since the pro
totype card was not immediately available, another method
of testing had to be developed to make immediate progress.
The scenario interpreter and test harness environment had
already been developed for the HP 9000 Series 300 HP-UX
environment, so we decided to leverage the tools from this
existing testing environment. The scenario interpreter is a
software test tool that handles the sending and receiving
of data packets to and from the software under test, and
the test harness enables testing in different environments.
Both of these test tools are described in the article on page
72. Testing the MAC interface in the scenario interpreter
and test harness environment also allowed the LLC and
other modules that have interfaces to the MAC software to
exercise this interface without writing special test code. It
was also necessary to be able to do a majority of the debug
ging in the friendly HP-UX environment. Since the
Motorola 68824 token bus controller chip (TBC) had been
previously tested and had proven to be reliable, it was
decided that the TBC could be emulated, thereby avoiding
the need to wait for the hardware prototype to be ready.

As shown in Fig. 4, the MAC interface testing environ
ment used the existing scenario interpreter and its scenario
syntax and the existing test harness. In place of the generic
bounce-back module, a special MAC interface bounce-back
module was written. The generic bounce-back module is
used by any module that needs to make it look as though
it is receiving data packets from the layer below it. It takes
the data transmitted to it and calls the receive routine of
the layer configured above it. The MAC interface could not
use this module because there is no layer below it and so
special code had to be written in the emulator. In a typical
testing instance, the scenario interpreter reads a scenario
that tells it to send a specific amount of data to the config
ured layer. The test harness reads the data, which eventu
ally gets sent to the LLC sublayer. The LLC puts its header
on the data packet and calls the MAC module. The MAC
module prepares all the data structures needed by the TBC

Scenario
Interpreter

Test Results

Card Management
Services

Scenario
Syntax

Exception
Generator

'
Bounce-Back

Module

Fig. 4. MAC inter face sof tware test envi ronment .

50 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

and transmits the packet. The special MAC interface
bounce-back module is then called. This module performs
the tasks that the hardware and the TBC normally perform:
it sets status in the packet to make it appear that it has
been transmitted onto the network and copies the informa
tion in the transmitted packet into buffers in the inbound
buffer pool to make it appear that a packet has been received
from the network. It then causes a receive packet interrupt,
which causes the MAC code responsible for receiving the
packet to be invoked. The transmitted and received packets
are processed and forwarded to the LLC software as though
the code was running on the OSI Express card. When the
received data reaches the scenario interpreter, the interpret
er compares it to the data that was sent and saves the results
of the comparison in the test results file.

Conclusion
The network layer and the data link layer with its LLC

and MAC sublayers provide the network layer user, the
transport layer, with the ability to send a packet efficiently
to any accessible node given just the network layer address.
The network layer locates the destination node even if it
is not on the local area network. The LLC separates packets

it receives that are for the network layer from those that
are for other data link layer users on the OSI Express card.
The MAC sublayer provides an interface to the media that
is independent of the media. This achievement was ac
complished by adherence to international standards and a
design that minimizes the dependencies of the protocols
upon each other's internal operations.

Acknowledgments
We would like to acknowledge and thank the card and

chip hardware design team which consisted of Mike Per
kins, Mark Fidler, Paul Zimmer, Alan Albrecht, Dan Dove,
and Nancy Mundelius. Mike Perkins and Mark Fidler were
also vital in the early debugging and testing of the TBC
chip. Mike Wenzel provided vital insights on how to incor
porate the data link layer into the CONE environment. Cur
tis Derr provided a ROM version of the LLC/MAC and TBC
interface software which is used with the hardware diag
nostic program. He also coordinated the COS (Corporation
for Open Systems) testing of the data link layer. Sped
thanks to Motorola's technical support staff, especia
Rhonda Alexis Dirvin, Paul Polansky, and Robert Ode 1.
who provided excellent technical support of the TBC.

HP OSI Express Design for Performance
Network s tandards are somet imes assoc iated wi th s low
network ing. This is not the case wi th the HP OSI Express
card. Because of ear ly analys is of cr i t ica l code paths,
th roughput exceeds 600,000 by tes per second.

by El izabeth P. Bortolotto

PERFORMANCE ANALYSIS of the HP OSI Express
card began during its early design stages and con
tinued until the product was released. During the

course of the project several different analysis techniques
were applied. These included simple analytic modeling,
path length estimation, simulation, and prototype measure
ment. Several tools were developed to make the prototype
performance measurements. Many estimations of through
put and delay were made during the development phases
of the OSI Express project. These intermediate results led
to redesign or code reduction efforts on the bottlenecks in
the software.

In the end, we far exceeded our initial performance ex
pectations. Early performance investigation was invaluable
in pinpointing potential bottlenecks when there was still
time to make design changes. We learned that the most
fertile areas for performance enhancement and code path
reduction are usually in module redesign, not code tuning.

Static Analysis
The earliest OSI Express performance activity was to

estimate the amount of code in "typical" inbound and out
bound data paths. A typical inbound data path was defined
as the code executed when a data packet is received from
the LAN going to the host service. For this estimate, it was
assumed that the packet arrives without errors. Some as
sumptions were also made about what processing was typ
ical or most common. These assumptions were periodically
revised as we learned more about the system.

Once the path estimates were derived, throughput and
delay measurements could be obtained. This process was
referred to as static analysis because the statistics obtained
were best-case and worst-case estimates without any refer
ence to how a dynamic system behaved. The static analysis
process derived these statistics by comparing the number
of CPU (and DMA) cycles required by a single packet to
the total number of cycles available in the hardware.

The first path measurements were made in units of 68020

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 51

© Copr. 1949-1998 Hewlett-Packard Co.

assembler instructions. An early analysis revealed that
using ten CPU cycles per assembler instruction was a fairly
safe (and usually conservative) estimate. This was true un
less the design engineer used a number of multiply or di
vide instructions. In fact, early analysis showed the high
cost of these two instructions and steps were taken to avoid
using multiplies and divides unless necessary.

Because the earliest performance estimates were attempt
ed before much code was written, it was necessary to study
each software module carefully to understand all of the
tasks that the software would be required to perform. The
typical paths (inbound and outbound) could then be
roughly pseudocoded. A second analysis during this time
revealed that the C compiler on the development systems
typically generated three to four 68020 assembler instruc
tions per line of simple C code. A simple C code line was
defined as a line in which only one operation is performed.
Therefore, if a line of C (or pseudo C) was

a = (b & a) [(c Â« d);

it was estimated as four simple C instructions and therefore
twelve to sixteen 68020 assembler instructions.

The inbound and outbound paths were estimated sepa
rately because independent estimates for each path were
needed to understand the complete set of tasks necessary
to transfer a packet from one node to another. The two
parts are not the same length. We expected to find the
inbound path longer (in terms of instructions) than the
outbound path.

Once the estimation had been completed, the number of
assembler instructions in both paths was multiplied by
10 (ten cycles per 68020 instruction). The result is the
number of processor cycles used in transmitting and receiv
ing one typical data packet by the OSI Express card. Since
the basic hardware architecture of the OSI Express card
was in place, it was relatively easy to estimate the
maximum possible throughput and minimum possible
delay. The following is an example of a static analysis
throughput equation for the OSI Express card.

Throughput in bytes per second â€”

[TC/(PW(RC + WC) + IC)](P - H)

where TC = total available cycles per second
PW = size of the packet in words (16 bits)
RC = number of cycles per read access
WC = number of cycles per write access

= number of instruction cycles in receive
data path

= packet size in bytes
= header size.

1C

P
H

Some of these values were slightly variable. Average or
typical values were often used, and care was taken to esti
mate conservatively.

First Path Estimation
During the course of the OSI Express project, two com

plete data path estimations were made. The first estimate
was made during the design phase, before much coding
had begun. The second estimate was made after most of
the code had been written.

The first code path length estimate was done while the
project was in the early design phase. Only a portion of
the code was written. To get the path length for the code
that was written, a mixed listing of the code was obtained.
A mixed listing in this case was an assembled listing of
the 68020 instructions intermixed with the original C in
structions. The data path was then identified and the as
sembly instructions counted. In addition to giving us the
instruction count, this exercise also educated us on how
the C compiler was behaving and what sort of assembly
code was generated.

As discussed before, most of the code was written at the
time of the first path length estimation when most of the
development engineers were working on their external de
signs. The estimation method used was to read the ISO
specifications for each layer and the ERS for CONE (com
mon OSI networking environment), and write pseudocode
for the data path. The pseudocode was then translated into

Protocol Other
CONE

Utilities
Buffer

Manager
Protocol Other

CONE
Utilities

Buffer
Manager

4 0 0 0 - r

3 0 0 0 - -

2 0 0 0 - -

u > 1 0 0 0 - -

B H B M I Layers
7-5

T P I P L L C M A C

Fig. 1 . First-est imate (ear ly design phase) OSI Express card
ins t ruc t ion count summary fo r 1K-by te packets outbound to
the network.

3000 -T-

o 2 0 0 0 - -
Ã̄

g 1000 --

1
B H

i i
I

B M I L a y e r s T P
7-5

IP L L C M A C

Fig. sum First-estimate OSI Express card instruction count sum
mary for IK-by te packets inbound f rom the network .

52 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

68020 instructions using the the multiplier factors dis
cussed above. This entire process took about six months.

Figs. 1 and 2 show the results of this first estimation
process. Fig. 1 displays the number of instructions in the
outbound data path and Fig. 2 displays the number of in
structions in the inbound data path. The graphs show that
the largest code segment in the data path at that time was
the memory management code. We therefore decided to
redesign the memory manager code to reduce the number
of instructions in the most common data path.

A number of smaller code changes were also made as a
result of this first performance investigation. Redundant
instructions, excessive multiplies, unnecessary initializa
tion, and more streamlined code processes were identified.
In addition, the team learned more about code modules
that were influenced by decisions in distant code modules.

Second Path Estimation
The second estimate was made after the code was basi

cally written but before much unit testing had been done.
This estimate was quite a bit quicker because there was no
pseudocoding to do. In addition, the data path was pretty
well understood by this point. Therefore, mixed listings of
all the code modules (and protocol layers) were obtained
and a walkthrough of the data path was performed. Again,
care was taken to be as accurate as possible, since the
performance statistics resulting from the code count were
only as good as the data.

Code was counted for both the inbound and the outbound
data paths. By the time the second count was made there
had been a number of design changes and developments.
Figs. 3 through 6 show the results of these changes. The
backplane handler code had exploded into a much larger
module than was initially expected. This module then be
came the primary target of a performance redesign effort.

As before, a number of performance opportunities were
identified as a result of the second walkthrough. In addi
tion, we learned more about how the OSI Express card
would behave when parameters were varied in the FTAM,
IPC, and CIA host code. Several changes were suggested

â€¢FTAM = F i le Transfer Access and Management . IPC = In terprocess Communicat ion.
CIA = CONE (Common OSI Network ing Envi ronment) In ter face Adapter .

Protocol Other
CONE

Utilities
Buffer

Manager

F ig . 3 . Second-es t ima te (a f te r cod ing and severa l des ign
changes) instruct ion count summary for 1K-byte packets out
bound to the network.

to the designers of these modules. In one case, we found
that performance was severely impacted during file trans
fers when the data was presented to the OSI Express back
plane in 256-byte buffers instead of kernel clusters (2K-byte
buffers).

Connect ion Establ ishment Path
In addition to the common data path, the connection

establishment path was also analyzed during the OSI Ex
press performance investigation. This analysis was made
a little later in the project after the second path estimate
had been completed. For the sake of speed, this path was
counted in lines of simple C. By this time we had gained
quite a bit of confidence in our estimation method and in
our knowledge of the code processes. This estimation took
much less time than the other two.

It was discovered that the amount of code required to
secure a connection was quite a bit larger than that required
to send or receive a data packet. Of course, we knew that
this was true before even beginning the connect path
analysis. We just did not know how large it was. Our inves
tigation showed us that the connect code path was 91,424
lines of C code (simple) in a typical case. In other words,
it would take approximately 366 milliseconds fora connect
to complete successfully. (We assumed four 68020 instruc
tions per C instruction).

It was also discovered that the connect path provided
many opportunities for path reduction. Once a particular
code path is fully understood, performance opportunities
are usually obvious. This was definitely the case in this
analysis and both of the previous path estimation exercises.

Benef i ts of Ear ly Performance Walkthroughs
There are a number of benefits to performance analysis

during all of the phases of new product design. The benefits
far outweigh the cost of the additional engineer (or two) if
one of the project goals is good performance. The benefits
are obvious when path analysis reveals code redundancy
or other time-saving opportunities. Other benefits that pro
vide big paybacks may not be so obvious. The following
is a list of the less obvious benefits we found during OSI
Express performance analysis.
â€¢ Design inconsistencies were exposed.

Protocol Other
CONE

Utilities
Buffer

Manager
'

2000 - -

1 500 - -

â€¢x 1000 --

K 5 0 0 - - 1
B M I L a y e r s 7 - 5 T P IP LLC MAC

Fig . 4 . Second-es t imate ins t ruc t ion count summary fo r 1K-
byte packets inbound f rom the network.

F E B R U A R Y 1 9 9 0 H E W L E T T - P A C K A R D J O U R N A L 5 3

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ The design engineers became performance conscious
and wrote cleaner code.

â€¢ There was time for redesign of bottleneck areas.
â€¢ We became much more proficient in performance

analysis. Future products benefit from this kind of edu
cation.

Simulat ing Flow Control
The second major step in the OSI Express performance

study was to create a simulation model to aid us in discov
ering how configurable parameters in the OSI Express stack
affected performance. The static or path flow analysis that
was discussed above had yielded best possible throughput
and delay statistics. In other words, the static analysis had
given us an idea of what the upper performance bounds
were, given our code paths. What quickly became apparent
was that it was quite improbable that we could achieve
these upper bounds unless the card was configured with
optimal parameters and all other conditions were perfect.
Fig. 7 shows the difference in throughput when only one
parameter (packet size) is varied.

The reason that packet size plays such a substantial role
in throughput is that it takes approximately the same
amount of work to process an 8K packet (the maximum
packet size allowable by the IEEE 802.4 standard) as it does
a IK packet. At least this is true if the memory management
design is optimal for fast throughput. Larger packets gen
erally require more CPU cycles to process (for memory
copies, DMA transfers, checksum operation, etc.). How
ever, the difference in the cycles required to process two
packets of different sizes is proportionally smaller than the
difference in the number of bytes transferred. Additionally,
processors with cache memories can minimize the differ
ence in the CPU overhead between large and small packets
because copies and checksum operations are repetitive
looping functions.

'Somet imes memory management des igns are opt imized for e f f ic ient memory use a t the
expense both. fast throughput In the OSI Express project, we attempted to optimize for both.

Transport Layer
The OSI transport layer (layer 4) is the layer where the

packet size is determined. Other transport parameters also
have values that can dramatically influence system
throughput and delay. The parameters that govern the flow
of data from one node to another were the major topics of
our simulation study.

The transport layer parameters have significant impact
on the communication performance of a network node.
The flow control algorithm in the transport layer is respon
sible for the dynamic end-to-end pacing of conversation
between two nodes. Its main purpose is to ensure that one
node does not send data faster than another node can re
ceive it. Given two connected nodes, one node will usually
be able to execute faster than the other. The best throughput
between these two nodes is achieved when the slowest
node is kept completely busy. If the flow control algorithm
allows the slower node to become idle, throughput will be
lower than its potential maximum. If the flow control al
gorithm allows too much data to be sent to the slower side
(usually the receiving side), the slow side will eventually
be filled to capacity and be unable to accept more data.
This results in lost data, which must be resent. Resending
data also causes performance degradation.

The flow control algorithm usually has a number of pa
rameters that can be set by the system manager. These
parameters are available so that the algorithm can be tuned
to provide the best performance in a specific user environ
ment. Some of the parameters at the transport layer include
the transport segment size (the maximum amount of data
in each packet), the transport window size (the maximum
number of packets that can be sent at one time), the amount
of credit to extend to a peer, the frequency of acknowledg
ment packets, and the length of the retransmission timer.

Simulat ion Model
The simulation model of the OSI Express card was writ

ten in a language called PC Simscript II. 5. It was primarily
designed to expose and isolate the dynamic elements of

CONE
17.8%

2195

Buffer Manager
14.1%
1736

Protocol
10.4%
1286

Fig. 5 . Second-est imate code breakdown by module for 1K-
byte outbound packets in number of inst ruct ions and percen
tage of total.

Buffer Manager
13.3%
1992

Fig. 6. Second-est imate code breakdown by module for 1K-
byte inbound packets in number of inst ruct ions and percen
tage of total.

54 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

the OSI Express system. Therefore, the transport layer, the
backplane message interface layer (because of the segmen
tation capability at the backplane), and the CONE scheduler
were simulated in great detail. The upper layers (ACSE,
presentation, and session) were not really simulated at all
because they do very little processing for a data packet.
Instead the simulation merely "worked" for the amount of
time that the upper layer headers would typically require
for processing.

The simulation model was specifically designed to allow
a user to vary parameters, getting a performance report at
the end of each simulation run. The idea was that the
simulation would help the OSI Express team define which
parameter values gave the best throughput and delay values
and why.

A number of assumptions were made in the simulation
model that are not necessarily true in the actual OSI Express
system. The reason for these simplifying assumptions is
that they streamlined the simulation implementation and
facilitated the experimentation process. Since the simula
tion was written to isolate dynamic behavior, details that
might obscure or complicate the simulation were ignored.
Although the system representation had been simplified
extensively, an attempt was made to be meticulous in
simulating those parts of the real system that have an im
pact on dynamic behavior on the OSI Express card. To a
large extent, the art of simulation is knowing what not to
simulate.

The following is a list of the major assumptions made
during the design of the simulation program:
â€¢ All packets arrive in order and without error.
â€¢ All data transmissions from the host contain the same

amount of data for all connections (the amount of that
data is a parameter).

â€¢ Since packets are never lost, no retransmission timers
or AK delay timers are included in the transport simu
lation.

â€¢ The two target nodes transmit all data at the highest
priority level (IEEE 802.4 specifies four priority levels:
0, 2, 4, and 6).

â€¢ There is no simulated connect setup or tear-down time.
The assumption is that connections are fully established
before the data is sent to the card.

â€¢ All packets sent onto the simulated network are either

*AK - Acknowledgment packe t

800000 -r

600000 --

400000 --

200000 --

data packets or AK/credit packets. None of the routine
features in the internet protocol are simulated. Con
sequently, there are no end-system or intermediate-sys
tem hello packets to contend with.

â€¢ The packet headers are 80 bytes long.
â€¢ Card memory is a user-configurable parameter. However,

the inbound packet data memory is assumed to be half
of the total data memory. The outbound data packet
memory is also assumed to be half of the total data mem
ory.

â€¢ The host data can be sent to the card faster than the card
can consume it. Also, on the receiving side, the host can
consume the data faster than the card can send it. In
short, the host is assumed to be an infinitely fast source
and sink.

â€¢ The maximum speed of the token bus is 10 Mbits/s. An
assumption is made that the speed with which packet
data can travel is 1 Mbyte/s. This is because there is
overhead for the IEEE 802.4 protocol that prevents the
data packets from traveling much faster.

Simulat ion Model Features
The simulation model has a number of features that in

crease its usability. The model can be run in either half-
duplex or full-duplex mode. In half-duplex mode, one of
the two communicating nodes is a sender and one is the
receiver. In full-duplex mode, both nodes send and receive
simultaneously.

The model has the capability of varying four parameters
automatically and running a complete simulation for each
value of the parameters. Each of the four parameters can
be given a range of values and a step size to vary. Statistics
are collected for each of the simulation runs and saved in
a file.

The model allows the communicating nodes to have a
number of connections alive at the same time. In this mode,
the model can calculate statistics for each connection, as
well as global statistics.

The model has various debugging levels that can be
turned on to enable the user to understand better what is
happening during a simulation run.

There is a separate default parameter generator program
that enables the user to specifiy default parameters easily.
The generator program then creates a default file that is
used by the simulation program.

150000 -+-

1 2 8 2 5 6 5 1 2 1 K 2 K

P a c k e t S i z e (B y t e s)

4 K 8 K

Fig. 7. Throughput versus packet size for a window size of 1 0.

1 2 3 4 5 6 7 8 9

R e c e i v e d D a t a P a c k e t s p e r A K / C r e d i t P a c k e t

Fig. 8 . Throughput versus credi t f requency for a packet s ize
of 1K bytes.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 55

© Copr. 1949-1998 Hewlett-Packard Co.

The simulation model generates and saves a number of
useful statistics during execution. These are formatted and
saved in a file for later examination. Some of these statistics
are:
â€¢ Throughput in bytes per second
â€¢ Total simulaton delay in bytes per second
â€¢ Mean packet delay in milliseconds
Â» Maximum packet delay in milliseconds
â€¢ Mean transport-to-transport delay in milliseconds
â€¢ Mean acknowledge delay in milliseconds
â€¢ Maximum acknowledge delay in milliseconds
Â» Average interval time between packets, in milliseconds
â€¢ Total interval time between packets, in milliseconds
â€¢ Percentage of CPU idle time
â€¢ Maximum and minimum queue depths for five system

queues.
The simulation model has a very friendly user interface

to simplify the selection of the system parameters. In addi
tion, the user interface displays the parameters obtained
from the default file and allows the user to change them
if necessary.

Simulat ion Study Results
Once the simulation was written and verified (by hours

of painstaking cross-checking) a number of simulation ex
periments were run. Time and space prevent describing
all of the results except the most interesting: what happens
when the transport window size and the frequency of send
ing AK/credit packets are varied.

Figs. 8 and 9 show the impact of varying these two param
eters in the simulated system. Each of the data points in
these graphs represents one complete simulation run with
a particular set of parameter values. To get Fig. 9, the win
dow size was set to 10 and the packet size fixed at IK
bytes. For the sake of simplicity, it was assumed that incom
ing packets were only acknowledged when it was time to
send more credit (permission for the transmitting node to
send more packets) to the peer node. The frequency of
sending credit packets was varied from one to ten. In other
words, during the first simulation run, the window size
was ten and the receiving node sent out an AK/credit packet

160000 -r-

100000

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9

P a c k e t s p e r A K

 W i n d o w = 5
- W i n d o w = 1 0

W i n d o w = 2 0
â€” â€” â€” Window = 30

Fig. 9. Throughput as a funct ion of window s ize and packets
per AK for a packet s ize o f 1K by tes .

to the sending node after each packet was received and
processed. The AK/credit packet acknowledged the packet
that was received and gave the sending node permission
to send another. During the next simulation run, the credit
frequency parameter was set to two. An AK/credit packet
was therefore sent after two packets had been received by
the receiving node and processed. In this case the receiving
node acknowledged reception of two packets and gave per
mission to send two more.

As shown above, the best throughput value is achieved
when the receiving node sends an AK/credit packet every
sixth packet. This point represents a balance between send
ing AKs too frequently and not sending them frequently
enough to keep the system fully pipelined. If too many
AKs are sent, they effectively increase the CPU overhead
required to process packets (Fig. 10). That is because the
number of instructions required to construct and send (and
receive) AK packets is significant.

On the other hand, if AK packets are not sent frequently
enough, the sending node will run out of packets to send
and will have to wait for an AK before starting to send
more (the window size limits how many packets can be
sent without an AK). When the sending side stops sending
packets (even for a short while), interarrival time between
incoming packets at the receiving node will, in general,
increase.

Dozens of simulation experiments were run during the
course of the OSI Express project. The flow control param
eter defaults were set based on the information from the
simulations. In addition, we learned a great deal about the
behavior and resulting statistics of the transport stack.
Some design decisions were changed based on the results
of the experiments. For example, we decided not to give
priority to inbound packets by allowing a logical link control
(LLC) process to execute until all the receive packets were
processed. We found out to our surprise that the simulated
throughput dropped sharply when we experimented with
this design. The reason was that the AK/credit packets were
being excessively delayed and the queues between the
transmitting and receiving node were therefore emptying.

Performance Measurement
The final challenge of the OSI Express performance proj

ect was to measure the product, compare the measured
performance with the estimates, and identify any bottle-

100 -T-

= 9 0 - -

Q.
O 8 0 - -

6 0

R e c e i v e C P U

T r a n s m i t C P U

2 3 4 5 6 7

P a c k e t s p e r A K

8 9 1 0

Fig. 10. CPU ut i l izat ion versus credit f requency for a packet
s ize of 1K bytes.

56 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

neck code modules. Several tools were designed and writ
ten to help us get real-time performance measurements.
These tools were basically designed solely for prototype
measurement, not for field or customer use. In the following
paragraphs, three tools are briefly described. These tools
are the real-time procedure tracer, the statistics monitor,
and the statistics formatter.
Real-Time Procedure Tracer. This tool consists of a special
entry and exit macro call that was put after the entry and
before the exit of every procedure in the OSI Express code.
Each module in the OSI Express code was assigned a
hexadecimal number range. The designers of each module
then assigned an even number within that range to each
routine in the module. A second value (1 + even number)
was reserved for the exit macro. These numbers were
passed as parameters in the macro calls. Both the entry
and the exit macros caused the passed hexadecimal value
to be written into a reserved memory location called CIST
ERN. The idea is that using a logic analyzer (such as the
HP 64000, HP 1630, or HP 1650), a user can trace writes
to the CISTERN location and see the procedures being exe
cuted in real time. The hexadecimal value ranges assigned
to each module allow the user to limit the values read to
a specific number range. This way, the user can choose to
see only the transport layer executing, if desired.

To make the traces more readable, a formatter program
was written for HP 64000 trace files. The formatter required
a file that defined the hexadecimal values for specific pro
cedures. It then produced very readable formatted traces.
Fig. 11 is an example of one of these formatted traces.

The procedure traces were used extensively once inte
grated OSI Express code measurements could be made.
These traces allowed us to see how long each module was
executing in as much detail as we cared to see. Code could
be quickly tuned and remeasured. In addition, the trace
macros were optionally compiled, ensuring that they did
not provide needless overhead in the final product code.
Statistics Monitor. A second tool that was designed into

tf call BH_gec_data for Che outbound data

â€¢f BH_get_data entry

12.40 uS, net 12.40 uS

ENTER BH_GET_DATA_p (0x1204)

ENTER BH_QUEUE_IRS_F_p <0xl25c)

EXIT BH_QUEUE_IRS_F_p (Oxl25c) gro

ENTER BH_MAIN_ISR_F_p (0x1290)

ENTER BH_MPX_F_p (0x1284)

EXIT BH_MPX_F_p (0x1284) gross 61.60 uS . net 61.60 uS

ENTER BH_PROCESS_IRS_F_p (Oxl28c)

ENTER START_REQ_p (0x1274)

EXIT START_REQ_p (0x1274) gross 38.40 uS . net 38.40 uS

ENTER START_DMA_READ_p (Oxl24c)

ENTER END_DMA_READ_p (0x1254)

EXIT END_DMA_READ_p (0x1254) gross 56.80 uS , net 56.80 uS

EXIT START_DMA_READ_p (Oxl24c) gross 146 32 uS

ENTER CONTINUE_REQ_p (Oxl27c)

ENTER DO_QUAD_FETCH_p (0x1268)

EXIT DO_QUAD_FETCH_p (0x1268) gross 91.20 uS ,

ENTER DO_DMA_CMD_p (0x1278)

ENTER DO_CCMD_LINK_FN_p (Oxl26c)

E X I T u S (O x l 2 6 c) g r o s s 6 3 . 2 0 u S , n e t 6 3 . 2 0 u S

EXIT DO_DÂ«A_CMD_p (0x1278) gross 147.00 uS , net 83.80 uS

EXIT CONTINUE_REQ_p (Oxl27c) gross 313.50 uS ,

ENTER REQ_COMP_OUT_p (0x1270)

EXIT REQ_COHP_OUT_p (0x1270) gross 33.70 uS , net

ENTER DO_QUAD_FETCH_p (0x1268)

EXIT 00_QUAD_FETCH_p (0x1268) gross 16.30 uS . ne

EXIT BH_PROCESS_IRS_F_p (Oxl28c) gross 709.72 uS .

ENTER BH_KPX_F_p (0x1284)

EXIT BHJlPX_F_p (0x1284) gross 18.80 uS , net 18.80 uS

EXIT BH_MAIN_ISR_F_p (0x1290) gross 853.14 uS . net 63.02 uS

EXIT BH_GET_DATA p (0x1204) gross 970.84 uS . net 105.30 uS
*

* BH_get_data exit

Fig . 11 . An example o f a fo rmat ted p rocedure t race .

net 89.52

st 91.20 uS

net 75.30

33.70

16.30 uS

et 161.50

the OSI Express stack was the statistics monitor. A number
of primitive statistics are kept in the OSI Express code (see
Fig. 12). In addition, statistics are kept (these optionally
compiled) about each of five major queues in the OSI Ex
press system (see Fig. 13). These statistics can be retrieved
and displayed upon command. The statistics can be
cleared, read, or read and cleared. The clear command
clears all of the statistics except for current-value statistics
such as the current queue depths.

These statistics made it possible to get real-time through
put values at at the card level. In addition, the queue statis
tics provided some troubleshooting capability because cer
tain queue depths signaled flow control problems.
Statistics Formatter. The OSI Express statistics formatter
is a tool designed to allow a user to run a user-level test
program a number of times automatically, varying OSI Ex
press parameters each time. The transit statistics are cleared
at the beginning of each test run and sampled at the end.
The purpose of this tool was to find the optimal parameter
set automatically on the working prototype. The simulation
model had this basic capability, so in effect, we were
simulating the simulation model.

Once all of the test program runs have executed, the
formatter can retrieve the file with the statistical samples
and display the results in several ways. Fig. 14 is an exam
ple of one of the types of displays that can be obtained.
The user now has the opportunity to identify, for example,
the highest throughput obtained when packet size is varied
because the test program was repeated for several possible
packet sizes.

Performance Results
After the OSI Express prototype testing had been com

pleted, final performance measurements were made. Of
course, numerous performance values are possible, de
pending on how the card is configured. However, our best-
case throughput for 8K packets was approximately 600,000
bytes per second.

This result reflects numerous redesign, code rewrite, and
code tuning efforts made by the whole team during the
entire lab prototype phase of the project. Many mil-

"Actual ly , there are t ransient star t -up and cool-down pipel in ing ef fects that tend to distor t
the sample. To prevent distort ion, the stat ist ics are cleared after the start-up transient has
d ied out and sampled before the coof -down t rans ient begins.

C u r r e n t C o u n t e r s a n d Q u e u e D e p t h s

Bytes Packets

N u m b e r o f O p e n C o n n e c t i o n s :
G l o b a l R e t r a n s m i s s i o n s :

Frontplane Transmissions to Host:
Frontplane Transmissions to Network:
Backplane Transmissions to Host:
Backplane Transmissions to Network:

Current Queue Depths

Number of Messages in Backplane Queue (to Host) :
Number of Packets in Frontplane Queue (to Host):
Number of Packets in Frontplane Queue (to Network):
Number of Packets in Retransmission Queue:
Number of Packets in Transport Segment Queue (to Network):
Number of Tasks in Scheduler Queue:

Throughput

Fig. 1 2. Pr imit ive stat ist ics kept in the OSI Express code.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 57

© Copr. 1949-1998 Hewlett-Packard Co.

T r a n s m i t

Hos t

Receive

Ã‰
Card

Need
\ m \ - M e m o r y

Queue

â€” I Interface
Q u e u e N e e d

I I | | k - C r e d i t Q u e u e N e e d
M e m o r y

| | | | | â€ ” Re t ransmiss ion Queue
Queue

OSI
Layers

3 through 7

IP
LLC, MAC

O u t b o u n d i = ^ A K / C r e d i t P a c k e t s
Queue LÃ¯pl

Da ta Packe ts
TBC T B C

IEEE 802.4 LAN (10-Mbi t /s)

B M I = B a c k p l a n e M e s s a g e I n t e r f a c e
L L C = L o g i c a l L i n k C o n t r o l
M A C = M e d i a A c c e s s C o n t r o l
T B C = T o k e n B u s C o n t r o l l e r

Fig. 1 3. Locations of the f ive queues in the simulated system
on which stat ist ics are kept.

liseconds were cut out of the code path based on informa
tion uncovered by these investigations. The majority of
these improvements were made well before most code tun
ing efforts began. There is no way that the same code re
ductions could have been made after the code had been
integrated.

Conclusion
Early performance investigation and prediction is vital

to performance sensitive projects, especially if they are

F ig . 14 . One o f the t ypes o f d i sp lays p roduced by the OSI
Express stat ist ics formatter.

large and involve a number of design engineers. A large
amount of very useful data can be retrieved with very little
investment if it begins early enough in the project and
continues through code integration. Full performance in
vestigations should be a part of every product life cycle.

Acknowledgments
Many thanks to Mike Wenzel at Roseville Network Divi

sion and Martin Ackroyd at HP Laboratories in Bristol for
their expert consultation and assistance. Thanks also to
the rest of the OSI Express team for their patience and
many excellent suggestions. Special thanks to Glenn Tal-
bott for writing the CISTERN formatter, and to David Ching
for writing the statistics formatter tool.

58 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The HP OSI Express Card Sof tware
Diagnostic Program
The software diagnostic program is a high-level mnemonic
debugger. The structure def in i t ion ut i l i ty isolates the
d iagnost ic program f rom compi ler d i f ferences and data
def ini t ion changes.

by Joseph R. Longo, Jr .

APPROPRIATE DIAGNOSTIC AND DEBUGGING
TOOLS are essential to any successful software or
hardware development effort. A project as large as

the HP OSI Express card development effort posed some
challenging opportunities. Not only was most of the tech
nology for the card, both software and hardware, still being
defined, but the target computer line was still under de
velopment as well. Tools such as the HP 64000-UX micro
processor development environment and the HP 1650 logic
analyzer were evaluated to understand what was already
available. These tools provided features such as single-step
ping and data tracing and were indispensable for doing
low-level debugging. However, a much higher-level debug
ger was also necessary to observe protocol operations and
system dynamics. Obtaining this information by decipher
ing screens of hexadecimal data would be very tedious and
time-consuming. Also, until the card management tools
were in place much later in the development cycle, there
would be no means of monitoring the utilization of re
sources on the card.

For these reasons, it was decided to pursue the develop
ment of in-house debugging and diagnostic tools. The fol
lowing design goals were established:
â€¢ No existing functions duplicated
â€¢ Modular design
â€¢ Evolving feature set
â€¢ Minimal impact on product performance
â€¢ Minimal impact on card software size
â€¢ No additional hardware on card required
â€¢ No additional coding in product modules required
â€¢ Can be used when all other debugging hooks are re

moved.
The design goals can be summarized as: (Ã) use the lim

ited available time and engineers to develop new functions
rather than trying to duplicate features provided elsewhere,
(2) provide flexibility to accommodate changes in the de
velopment environment and new requests from the cus
tomer base, and (3) ensure that nothing special needs to
be done to use these tools and that their use does not impact
the product being developed. While these goals may appear
to be unattainable, their intent was to focus the project so
that something usable could be provided in a reasonable
time and the effort would not collapse under its own weight
by trying to be the last word in diagnostics. The result of
all this was the development of two modules: the structure

definition utility, which provides a dictionary of data def
initions that can be accessed programatically, and the soft
ware diagnostic program, which is a high-level mnemonic
debugger that can monitor the resources on the card and
allow the user to view data from the card in various formats
(see Fig. 1).

Structure Definit ion Util i ty
During the early stages of the development of the card

software, the definitions of the internal data structures were
constantly in a state of flux. Any module or program ref
erencing these data types was constantly being recompiled
in an effort to keep it up to date. It was quickly recognized
that it would not be practical or productive if the diagnostic
tools, test programs, and formatters had to be recreated
every time a data type changed. Also, at any time in the
development process there could be different versions of
protocol or environment modules under test. It would be
impractical to require that a different version of the diag
nostic and test programs be used depending on which ver
sion of a module was being tested.

A second obstacle in the creation of the diagnostic tools
had to do with the two compilers that were to be used.

User
Terminal

Software
Diagnostic

Program (SOP)

Data Access
Library

Structure
Definition

Util i ty (SDU)

OSI Express Card

SDP
Card

Process

Fig . 1 . Spec ia l d iagnost ic and debugg ing too ls c rea ted fo r
the OSI Express card deve lopment pro jec t cons is ted o f the
software diagnost ic program, which includes the data access
l ibrary, and the structure def ini t ion ut i l i ty.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 59

© Copr. 1949-1998 Hewlett-Packard Co.

The card code was to be compiled with the 68000 C com
piler. The diagnostic programs, which resided on the host,
used the standard UNIX C compiler. The primary difference
between these two compilers has to do with the way data
types are aligned and padded. The 68000 compiler aligns
types such as ints on 2-byte boundaries while the UNIX
compiler aligns ints on 4-byte boundaries. Therefore, a data
buffer retrieved from the card could not be interpreted by
the host program if the same data types were used. These
differences prevented the host diagnostics from compiling
with the same C header files as the card code.

It was obvious that some mechanism was needed to iso
late the test and debugging programs from both the fluctu
ations in the data structure declarations and the differences
in the compilers. The structure definition utility (SDU) was
developed for this purpose. The SDU is used to create a
data dictionary containing the C data type definitions. The
definitions stored in the dictionary can then be accessed
via standard SDU library routines. When a data type
changes, the new definition is loaded into the dictionary
and the engineer can continue testing and debugging with
out recompiling.

The SDU consists of three parts: a stand-alone parser/
compiler program, sdu. build, which processes the C type
definitions and creates the data dictionary, the dictionary
file, which is generated by the sdu. build program, and the
dictionary interface library, which allows applications to
access the information stored in the dictionary (Fig. 2).

When designing the SDU it was necessary to keep in
mind that regardless of how creative the end product was,
no one would ever use it if it was too complicated, took
too long to operate, or required that data be maintained in
more than one location. Given the number of type defini
tions, it was especially important that the sdu. build program
be able to accept standard C include files as input. This
also meant that the sdu. build parser had to recognize as many
of the C data type constructs as possible. After these two
criteria were satisfied the whole process of creating and
accessing the dictionary still had to remain relatively sim
ple and fast.

Input Format
The input to the SDU parser is a C include file containing

the C data types, type definitions, and #defines from the
program header (.h) files. To provide for portability between
compilers and to simplify the parser design, some minimal
structure had to be imposed on the input data. The basic
format for the input data is:

t ype spec i f i e r s
Ã¼

t y p e d e f i n i t i o n s , # d e f i n e s , a n d
d a t a d e f a u l t v a l u e s

required even if the specifiers are not entered. While syntax
is important, the input format is relatively free-form. For
example, there are no restrictions on the number of state
ments per line. At least one blank must separate identifiers
on an input line, but for the most part, separators (blanks,
tabs, newlines) are ignored.

All data declarations are defined from the atomic C data
types (int, char, short, etc.). The alignment and sizes of the
C basic types are preloaded into the data dictionary. These
values can be redefined and/or new values added using
the type specifiers input. The primary reason for redefining
the basic type values is the use of a different C compiler.
At least two and possibly three different C compilers were
expected to be used during the development of the card
code. The main differences between the compilers were
the alignment of the data types and the padding of struct/union
data types. The SDU compiler defaults to the alignment
requirements of the HP 9000 Series 300 and 68000 C com
pilers. The syntax for a type specifier entry is:

t y p e , t y p e j e n , a l i g n m e n t , f o r m a t ;

Type is an ASCII string representing the name of the type
specifier to be loaded. Typejen is a decimal value indicating
the storage requirements of the type specifier in bytes (e.g.,
storage for the C type char is one byte). Alignment is a decimal
value indicating the byte alignment of the type when it
appears within a struct/union type declaration. The value is
in bytes and must be greater than zero. The value is used
to determine to what boundary (byte, even byte, double
word, etc.) the type should be aligned. The value is also
used to determine the padding within the struct type. The
format field is a single character indicating the default dis
play form for this data type (x = hexadecimal, d = decimal,
a = ASCII).

Variable Defini t ions and Constants
The C variable definitions and constants are specified in

the second part of the SDU parser input. The variable def
initions must be in standard C format as defined in the C
reference manual.1 Data declarations (e.g., intabc;) and type

. h F i l e s

SDU Dict ionary
Interface Library

Application
Program

Data
Dictionary

The input is divided into two parts: the type specifiers
and the type declarations. The punctuation denotes the
beginning and end of input and separates the two sections.
The type specifiers are optional, but the punctuation is

UNIX countries. a registered trademark of AT&T in the U.S.A. and other countries.

Fig. 2. The structure definit ion uti l i ty consists of a stand-alone
parser/compi ler program (sdu.bui id j , a dict ionary f i le bui l t by
the program, and a d ic t ionary in ter face l ib rary . Input to the
SDU is a C inc lude f i le conta in ing C data types, type def in i
t ions, and #defines from the program header (. t \) f i les.

60 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

definitions (typedefs) are accepted as input. Both simple and
complex (structunion) definitions can be loaded. Constants
are loaded using the C preprocessor #define statement. The
constant values can be used in subsequent #define state
ments or to specify the size of an array in a type definition.
Application programs can access the #define values once
the dictionary is created. The SDU compiler will also rec
ognize C comments (/* */) and some forms of compiler
directives (#ifdef, #else).

It is not necessary to define all the variables and constants
explicitly in the same file as the basic type specifiers. It is
not even necessary to have them all in a single text file.
The SDU parser allows the user to specify the name of the
file or files containing the definitions instead of the defini
tions themselves. Given the name of the file bracketed by
percent signs (%name%), the SDU parser will open the
specified file and load the definitions. This feature allows
the variable and constant definitions to be used directly
by the C programs since any special SDU symbols can be
restricted to the input specification file and do not have
to be put in with the types.

Default Information
The SDU provides routines that allow applications to

create data buffers based on definitions loaded in the dic
tionary. These buffers can then be used by the applications
for various purposes such as testing, debugging, and vali
dation. The SDU provides mechanisms for storing default
values for the data definitions in the dictionary. The default
values can then be loaded into the data buffers created for
the applications. The default information is loaded at the
same time as the data definitions using the format:

d e f i n i t i o n n a m e = d e f a u l t v a l u e ;

The definition must have already been loaded into the
dictionary. If the definition name is an item within a struct
or union type then it must be fully qualified.

Creating the Dictionary
The data dictionary is created by the sdu. build program

from the C include files. Depending on the amount of infor
mation to be processed, the creation of the dictionary can
be a time-intensive task. So that every application does not
have to incur this overhead cost each time it wishes to
access the dictionary, the sdu. build program is run as a stand
alone program. The sdu. build program must be run whenever
new data definitions are to be added to a dictionary. Once
the dictionary is created, the dictionary can be accessed
by multiple applications.

Building the dictionary is a two-step process. The first
step is to create the dictionary in the internal memory of
the sdu. build program. As the data declarations are read they
are loaded into the internal tables and data structures of
the dictionary. The SDU compiler is responsible for reading
and verifying the input definitions and loading the informa
tion into the tables. Each #define constant and data declara
tion will have at least one entry in a table (struct/union data
types have one entry for each element defined as part of
the struct/union declaration). Any errors encountered during
the processing will cause the program to terminate and

display an appropriate message. The second step is to save
the table information from the internal memory into some
thing more accessible by the user applications. Once the
dictionary has been successfully loaded the memory image
is written to an HP-UX disk file. The name of this file is
specified in the run string when the sdu.build program is
executed.

Accessing the Dict ionary
Applications planning to use the data dictionary must

link with the dictionary interface library. This library con
tains all the routines for accessing information stored in
the dictionary. The first library call made by the application
must be the one to load the dictionary information from
the disk file into the application's internal memory. The
application passes the name of the dictionary file to the
load call. The load routine allocates memory for the dictio
nary and reads the data into memory. The amount of space
required was written to a header record in the disk file by
the build program. The dictionary loaded is now an exact
copy of the dictionary created by the sdu.build program.

The load routine performs one more task before the data
can be accessed by the calling application. The internal
design of the dictionary requires numerous pointers to link
various pieces of information together. These pointers,
which are really just memory addresses, are valid only in
the original memory space where the dictionary was
created. Although the system call malloc is used in both the
build and the load processes, it cannot be guaranteed that
the memory obtained from the call will be in exactly the
same address location each time. Therefore, the internal
pointers must be modified to reflect the location of the data
in the new address space.

The pointers are adjusted by comparing the load address
and the build address (which was stored in the image file).
The required pointer adjustment is the difference between
the starting address for the build and the starting address
of the internal memory for the load. This adjustment value
(positive or negative) is added to all pointers in the internal
dictionary structures. When the pointers are adjusted the
load process is complete and the dictionary is ready for
use by the application.

Deve lop ing sdu .bu i ld
Developing a program that can recognize C-language data

declarations in all forms is akin to writing a mini version
of the C compiler. Development of the SDU parser/compiler
program sdu.build would have been a formidable task had
it not been for the tools yace and lex available under the
HP-UX operating system.2 Yace is a generalized tool for
describing input to programs; it imposes a structure on the
input and then provides a framework in which to develop
routines to handle the input as it is recognized. The parser
generated from yace organizes the input according to the
specified structure rules to determine if the data is valid.
Lex is used to generate the lexical analyzer, which assembles
the input stream into identifiable items known as tokens,
which are then passed to the parser. Lex has its own set of
rules called regular expressions,3 which define the input
tokens. Regular expressions are patterns against which the
input is compared; a match represents a recognized token.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 61

© Copr. 1949-1998 Hewlett-Packard Co.

The parser and lexical analyzer are combined to create the
SDU compiler known as sdu. build.

The first step in using yace is to define the set of rules,
or grammar, for the input. A grammar specifies the syntactic
structure of a language, with the language in this case being
the C data declarations. The syntax is used to determine
whether a sequence of words (or tokens) is in the language.
Describing the syntax of a language is not as hard as it
sounds. A notation known as Backus-Naur form (BNF)4
already exists for specifying the syntax of a language. Con
verting the C data declarations to BNF was simplified by
the fact that a partial grammar already existed.3 Elements
not supported by the SDU were eliminated from the gram
mar.

The grammar consists of a sequence of rules. A rule is
written with a left-hand side and a right-hand side sepa
rated by a colon. The left-hand side consists of a single
unique symbol called a nonterminal. The right-hand side
consists of a sequence of zero or more terminals and non
terminals sometimes called a formulation. One or more
formulations may appear on the right-hand side of a rule.
A rule must exist for every nonterminal symbol. Terminal
symbols, which are synonymous with tokens, are not de
fined further in the grammar but are returned from the
lexical analyzer. Examples of grammar rules used for de
scribing some simplified mathematical expressions are:

e x p r e s s i o n : p r i m a r y
' (' expression ') '

| ' - ' e x p r e s s i o n
| exp ress ion ' + ' exp ress ion
| exp ress ion ' - ' exp ress ion
| exp ress ion ' * ' exp ress ion
| exp ress ion ' / ' exp ress ion

p r i m a r y : i d e n t i f i e r
| c o n s t a n t

The symbols expression and primary are nonterminals while
identifier and constant are terminals. Values enclosed in single
quotes are literals and must be recognized from the input
stream along with the terminals. The vertical bar (|) means
"or" and is used to combine formulations for the same
nonterminal symbol. The nonterminal symbol on the left-
hand side of the first rule is called the start symbol. This
symbol represents the most general structure defined by
the grammar rules and is used to denote the language that
the grammar describes.

Once the grammar is defined in BNF, it is a very simple
process to convert it to a form that is acceptable to yace.
Because terminals and nonterminals look alike, yace re
quires terminals to be defined using the %token statement
in a declarations section ahead of the grammar. Any gram
mar that involves arithmetic expressions must define the
precedence and associativity of the operators in the decla
rations section to avoid parsing conflicts. Some additional
punctuation, such as semicolons (at the end of each gram
mar rule, and double percent signs (%%) to separate the
declarations section from the grammar, must also be added
before the file can be processed by yace. With these modifi
cations the specifications can now be turned into a C pro

gram by yace that will parse an input stream based on the
grammar rules.

The function of the lexical analyzer is to read the input
stream a character at a time and assemble tokens from the
unstructured data. Tokens can be anything from operators
to reserved words to user-defined constants and identifiers.
Separating the tokens can be any number of white-space
characters (blanks, tabs, and line separators), which are
typically ignored. The most time-consuming part of creat
ing the lexical analyzer is defining the regular expressions,
or patterns, which are used to recognize the input tokens.
The patterns must be general enough to recognize all forms
of the tokens and yet be specific enough to exclude tokens
that are not of the desired class. The syntax for defining
regular expressions is similar to the pattern matching fea
tures found in most editors. A pattern to match C identifiers
might look like:

[A - Z a - z _] [A - Z a - z O - 9 _]

C identifiers start with a letter or underscore followed
by an In number of letters, digits, or underscores. In
the case where a token matches more than one pattern, lex
attempts to resolve the conflict by first choosing the pattern
that represents the longest possible input string, and then,
if the conflict still exists, by choosing the pattern that is
listed first. Once a pattern is matched, lex executes any
action associated with the pattern. Actions can be specified
along with the patterns; they consist of one or more lines
of C code that perform additional processing on the tokens.
For example, when an identifier is recognized it can be a
user-defined value or a C reserved word such as typedef or
struct. The action associated with the identifier pattern can
be used to search a table of reserved words to determine
the type of identifier found. This information can then be
returned to the parser along with the token.

Using the lexical analyzer and the parser as just de
scribed, we now have a program that will read and validate
the input data. There is still one more step before this
program can be used to create the data dictionary. Now
that we know the information is acceptable we have to do
something with it. This requires going back to the specifi
cations for yace and adding actions for each grammar rule.
The actions consist of one or more C statements that are
performed each time a rule is recognized. Unlike the lex
actions, these actions may return values that can be accessed
by other actions. They can also access values returned by
the lexical analyzer for tokens. In the sdu. build program, the
purpose of the yace actions is to load the C data declarations
into the internal structures of the data dictionary. With the
addition of the yace actions the sdu. build program is now
complete.

Software Diagnost ic Program
The software diagnostic program (SDP) is an interactive

application program that runs under the HP-UX operating
system on HP 9000 Series 800 computers. It provides diag
nostic and debugging features for the software downloaded
to the OSI Express card. The primary function of the diag
nostic program is to provide a means for dynamically
accessing data structures on the card and then displaying

62 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

the data in an easily readable format. The SDP also allows
the user to monitor certain aspects of the card's operation
and to gather and report performance related statistics.
Some of the features provided include:
â€¢ Dynamic access to card-resident data structures
â€¢ Data formatting capabilities
â€¢ Single-character commands
â€¢ Statistical displays
â€¢ Mnemonic access to global symbols
â€¢ Per-path state information displays
â€¢ Print and log functions
â€¢ Breakpoints, traps, and suspend function
â€¢ Card death display
â€¢ Dumpfile access.

The diagnostic program consists of two primary modules :
the data access routines and the user interface module. The
access routines provide the mechanisms to read and write
information between the application and the card or the
dumpfile. The user interface module handles all the in
teractions with the user, makes the necessary access routine
calls to read or write data, and does the formatting and
displaying of information to the terminal screen. The user
interface and the data access routines were developed in
a modular fashion with a documented interface between
the two. While the library routines were originally intended
for use only by the user interface module, the interface is
designed to allow other applications access to the func
tions.

Data Access Routines
The data access routines provide the mechanisms for

reading and writing information between the host applica
tion and the card or the dumpfile. The data access routines
consist of three major components: the host-resident library
routines, the dumpfile access module, and the card-resi
dent process. The library is a well-defined set of calls that
provide the application interface to the various data access
operations. The library routines do all the error checking
on the call parameters and then route the request to either
the card process or the dumpfile access module. The library
routines decode any received responses and return the
appropriate data and status information back to the host
application program. The most important service provided
by the library routines is providing a transparent interface
to the data. The same library calls are used to access both
the dumpfile and the card.

The card process is downloaded to the card along with
the networking software. It receives messages from the host
library via an established communication channel and then
performs the requested operation on the card. Status infor
mation and any data retrieved are returned to the host via
the same communication channel. For the card process to
be able to carry out its duties, it must operate independently
from the networking software and it must not rely on any
services provided through CONE (common OSI networking
environment). The process must also be able to interrupt
the networking operations when necessary, and be able to
operate when the networking software has died. Most of
this independence is achieved by communicating directly
with the backplane handler (on the card) and the driver
(from the host). This interface bypasses most of the standard

communication paths used by the networking software.
The card process manages all its own data buffers and has
no dependencies on external data structures. Also, the card
process is designed to operate at a higher interrupt level
than the network protocols. This allows the diagnostic
module to gain control of the card processor when neces
sary.

In some debugging situations it is not always possible
or practical to access the OSI Express card directly. During
development, for example, if the card died abnormally the
developer might not be able to get to the problem for some
time. Rather than tie up the hardware for an extended
period of time or attempt to try to reproduce the problem
at a later time it is often better to save the card image and
attempt to diagnose the problem off-line. The facility exists
for dumping the card image to a disk file. However, most
engineers prefer something other than digging through
stacks of hexadecimal listings. In fact, the preferred method
is to use the same debugging tool on both the card and the
dumpfile. For this reason, the library routines provide ac
cess to both the card and the dumpfile, the only change
being the parameters that are passed to the call that initiates
the connection. Once the connection is established, card
and dumpfile operations are identical, with the exception
that write operations are not allowed to the dumpfile. What
is going on is completely transparent to the user sitting at
the terminal.

User Interface
When developing the user interface it was important to

keep in mind some basic concepts. First, the users of the
diagnostic program would be in the process of learning
many new debugging tools such as the symbolic debuggers
on the HP 9000 Series 300 (cdb) and 800 (xdb) and the HP
64000-UX development environment at the same time. It
was important to keep the interface simple and the number
of special keys to a minimum so as not to make the learning
curve too long or steep. Also, where possible, functions or
data input operations should be handled in the same way
as the corresponding operations in the other debuggers.
Something as simple as entering numeric information
should not require users to learn two different formats.
Second, the development time for providing a useful de
bugging tool required that the complexity of the interface
be kept to a minimum so the functionality would be avail
able on time.

When the diagnostic is initially invoked the user is pre
sented with a menu listing the major functional areas avail
able, such as resource utilization or data retrieval. Sub
menus may be displayed detailing the operations available
within a particular functional area depending on the selec
tion on the main menu. Once a specific operation has been
selected, the appropriate screen is displayed containing
any data retrieved from the card and a list of commands
available for that display.

The user interface has a two-tiered command structure
consisting of global and local commands. Both global and
local commands are typically single keyboard characters
which are acted on as soon as they are typed (Return is not
required). Global commands are active for every display
within the program and can be entered whenever a com-

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 63

© Copr. 1949-1998 Hewlett-Packard Co.

DISPLAY: l=memory 2=cast 3=struct 4=path states 5=card info (+)=more

Fig . 3 . Raw- form d isp lay o f da ta
retr ieved from the card.

mand is expected as input. Some examples of global com
mands include: help (?), quit (Q), shell escape (!), and main
menu (M). Local commands are specific to the display with
which they are associated and are only available when that
display is current (appearing on the terminal). The local
commands for a particular display are shown at the bottom
of the terminal screen. Local commands perform operations
such as reread statistics, reformat data, and retrieve a global
data structure from the card. While global commands are
unique for the entire program the local commands are
unique only within the associated display. The same
keyboard character may invoke entirely different functions
in different displays.

The software diagnostic uses the HP-UX curses5 screen
control package to create displays and handle all interac
tions with the terminal. Curses is designed to use the termi
nal screen control and display capabilities. Briefly, curses
uses data structures called windows to collect the data to
be displayed. The application program writes the data to
be displayed to the current window and then makes the
appropriate curses calls to transfer the window to the termi
nal screen. The primary benefit of using curses is that it
relieves the application of the overhead of dealing with

different terminal types and cursor movements. It also
minimizes the amount of information that must be redis
played on the screen by only transmitting the text informa
tion that has changed from the previous display.

Data Access Operat ions
The data access operations are all functions and com

mands for accessing, formatting, and manipulating infor
mation from the card. As with most debuggers, the ability
to view data is one of the most frequently used. Data re
trieved from the card can be displayed in two forms: raw
and cast. In raw form (Fig. 3) the data is displayed in col
umns of four-byte integers. The first column is the RAM
address of the first byte of data in each row. The address
and data values are hexadecimal. The right two screen
columns contain the ASCII representation of each byte of
data in the row if it is printable. If the byte is not a printable
character then a period is shown as a placeholder. The user
also has the option to change the data format from hexadec
imal to decimal and from four-byte integers to columns of
two-byte words. The NEXT and PREVIOUS functions can be
used to page through memory from the initial display ad
dress.

memory: OOSOOOOOh - 009fffffh

0x834338 bmi_globals_t - struct (

mod_globs = struct {

valid_drain_list = 0;

module_id = Oxl;

trace_mask â€” 0 ;
log_mask = OxeOOOOOOO;

diag_mask = 0 ;
mod_glob_stats - struct (

item_ptr = 0 ;
item_size = 0;

) ;
canonical_addr - 24585;

path_report_pid = "(" (040);

nm_req_rtn = Ox846al4;
nm_event_rtn = Ox846al4;

) ;
proto_globs = struct {

sap_t_addr = 0;

Press Return to continue, SPACE to stop

estate: RUNNING

Fig. 4 . Cast - form d isp lay o f data
retr ieved from the card.

64 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

The second form of data formatting is the cast function.
The data retrieved from the card can be displayed based
on a specified C data type (Fig. 4). When the cast function
is selected the user is prompted for the RAM address from
which to retrieve the information and the name of a data
type, which will define the formatting of the data. To use
the cast function the specified data type must be in the
SOU data dictionary and the dictionary must have been
loaded into the user interface module. The data type is
displayed and the information is formatted based on the
data type. Data can be reformatted simply by specifying a
different data type. If the data type exceeds a single screen
the user is allowed to page through the displays. The user
can switch between the raw and cast displays without hav
ing to reread the data from the card.

Address values can be entered in either numeric or
mnemonic forms. Numeric addresses can be either hexa
decimal, decimal, or octal values. Mnemonic addresses are
entered by typing the name of a global variable or proce
dure. C variables and procedure names must be preceded
by an underbar (_) while assembly variables and labels may
or may not require an underbar depending on how they
are declared in the code. The address value is obtained by
searching the linker symbol file (.L), which corresponds to
the download file on the OSI Express card. In addition to
other information, the symbol file contains global symbol
records,6 which provide the names of global symbols (vari
ables and procedures) and their relocated addresses. The
address stored in the file for the symbol entered is then
used to retrieve the information from the card. Use of the
mnemonic address is recommended whenever possible.
Not only does it eliminate the need to look up the address
of the variable in the first place, it ensures that the address
will be correct regardless of the version of the card software
being accessed.

One level of addressing indirection can be accessed by
preceding the address values, either numeric or mnemonic,
by an asterisk (*). The address location on the card is then
interpreted as containing the address of the data to be re
trieved. In other words, the address specified is really a
pointer to the data rather than the data itself. All address
values, either direct or indirect, are checked to ensure that

they are in the range of accessible addresses on the card.
Both read access and write access are allowed to RAM
memory, while only read access is permitted to EEPROM
addresses.

Card Death Display
Whenever the OSI Express card dies abnormally, either

from a software exception (address error, divide by zero,
etc.) or an internal error (disaster log), or is halted from
the host, a fatal error routine is invoked on the card to save
the state of the card processors and record the error infor
mation at the time the card halted. The routine also sends
an error indication to the host which reports that the card
has died. During development and testing these situations
were common. At such times, the process of gathering the
data to determine why the error occurred can be time-con
suming and involved. The type of error and even the size
of the RAM memory can influence the location of the infor
mation to be read. Once the error is known a text file must
still be searched to determine the meaning of the error.

The card death information display attempts to provide
on one screen all the error information necessary to deter
mine where and possibly why the card died. The diagnostic
program gathers the information concerning the card death
from the various memory locations and, after analyzing the
data, displays on the screen the values that relate to the
type of death that occurred (Fig. 5). The processor registers,
including the stack pointer, the program counter, the status
register, and the data and address registers, are retrieved
and displayed in the center of the screen. When a card
module dies gracefully it stores information in a disaster
record. This information is retrieved, if available, and dis
played at the bottom of the screen. The program also
evaluates the error and supplies an apparent reason, or best
guess, as to why the card died. On this screen the user
should have enough data to understand why the card died
and be able to locate any additional information.

Resource Util ization
The displays available under the resource utilization

selection are intended to provide information on the oper
ational state of the various modules and resources on the

memory: OOSOOOOOh - 009fffffh estate: RUNNING

Type of Death: cmd.stop issued

Type of Error: 0

Apparent Reason: Card stopped from host

Subsys Id: 0

Location : 0

PROCESSOR REGISTERS (SF_cmds top_CPU_regs)

Stack Ptr: 009ff5bc Program Ctr: 00849844 Status Reg: 2004

DO-D7 00000000 00002004 OOOOOOdf 00001a88 008210e8 009fOOOO 00820000 00000600

AO-A7 00400018 0083a066 00208c68 00833188 00008090 00200000 00203c42 009ff5bc

DISASTER RECORD

Current Module: 0

Current Region: 0

F l a g s : 0

ISO

Myentry Pointer: 0

Event Pointer : 0

Event Length : 0

D I S P L A Y : 1 - m e m o r y 2 - c a s t 3 - s t r u c t 4 = p a t h s t a t e s 5 - c a r d i n f o (+) - m o r e Fig . 5 . Card dea th d isp lay .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 65

© Copr. 1949-1998 Hewlett-Packard Co.

Flow Control estate: RUNNING

CONNECTIONS

Active Inbound : 1

Active Outbound: 1

Active Retrans : 1

THROUGHPUT

Card CPU Packets In :

Card CPU Packets Out:

Throughput Bytes In :

Card Memory Out :

Card Throughput Bytes: 0

Actual

0

0

0

0

ERAS

Era Boundaries : 457

Eras Memory Tight: 0

Eras CPU Tight : 0

E r a P e r i o d : 1 0 0 0

Target

1000
1000
1000000
500000000

Scaled

1000
1000

1000000
500000000

MEMORY MANAGER

Available BLOCKS on FREE LIST : 52

Available LARGE buffer segments: 313

Available SMALL buffer segments: 1581

Available TINY buffer segments: 2

'=Read stats l=Read and Clear 2=Clear and Read

F i g . 6 . R e s o u r c e u t i l i z a t i o n d i s
p l ay show ing f l ow con t ro l s t a t i s
tics.

OSI Express card. For the most part, the displays contain
various combinations of statistics gathered from the card
that can be monitored to determine such things as
throughput, flow control (Fig. 6), and memory utilization
(Fig. 7). There are basically two types of statistics that are
maintained; cumulative and actual. The cumulative statis
tics represent values that have accumulated over a time
period. Examples of cumulative statistics include front-
plane packets transmitted, number of global retransmis
sions, and backplane bytes transferred. These statistics can
be cleared to zero by the user. Actual statistics reflect the
conditions as they currently exist on the card. Number of
open connections, available buffer manager memory, and
scheduler queue depth are examples of actual statistics.
Actual statistics cannot be cleared.

Trap/Breakpoint /Suspend
When attempting to debug problems on the card it is

often necessary to stop the processing on the card to
examine the current state of the processor or a global vari

able before continuing. The diagnostic program provides
three mechanisms for stopping the card: breakpoints, traps,
and suspend.

The breakpoint feature is similar in implementation to
breakpoints in other debuggers. The user specifies the ad
dress of the instruction on the card where the breakpoint
should be set. When that location is reached in the process
ing stream the card is stopped and a message is sent to the
host application, which notifies the user. The card remains
stopped until the user tells it to continue. The card then
resumes processing from the instruction at the breakpoint
location.

Traps are basically predefined breakpoints hardcoded in
the networking software that can be turned on and off as
needed. The locations of the trap calls are determined by
the code developers and can be anywhere in the executable
code. When a trap is encountered a diagnostic procedure
on the card is called. The diagnostic procedure checks the
trap type with a global mask to determine whether this
trap is on or off. The trap type is one of the parameters

B i f f e r M a n a g e r U t i l i z a t i o n e s t a t e : R U N N I N G

T o t a l M e m o r y (b y t e s)
A v a i l a b l e M e m o r y
A v a i l a b l e P e r c e n t

1646544
1430312
86

A v a i l a b l e B L O C K S o n F R E E L I S T : 5 2
A v a i l a b l e T I N Y b u f f e r s e g m e n t s : 2
A v a i l a b l e S M A L L b u f f e r s e g m e n t s : 1 5 8 1
A v a i l a b l e L A R G E b u f f e r s e g m e n t s : 3 1 3

POOL MANAGER
N u m b e r o f s e g m e n t s :
O b j e c t s p e r s e g m e n t :
O b j e c t s i n u s e :
O b j e c t s i z e (b y t e s) :

S u b t a s k e r Q u e u e D e p t h : 0
L L C I n b o u n d Q u e u e D e p t h : 0

' '=Read stats

segment size: 220

segment size: 480

segment size: 2064

F i g . 7 . R e s o u r c e u t i l i z a t i o n d i s
p lay show ing memory u t i l i za t i on
statistics.

66 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

passed on the trap call and is defined by the code developer.
The global mask is configurable from the user interface
module. If the trap is off then the call returns and the code
continues without any break. If the trap is on then the card
is stopped and a message is sent to the host application.
Again, the card remains stopped until the user tells it to
continue. Processing resumes from the instruction after the
trap call.

The suspend operation gives the user the ability to stop
the card at any moment in time. This is a global command
issued from the user interface. When the request is received
by the card process a routine is invoked that interrupts the
networking protocols and places the card in an idle loop.
The card timer manager interrupts are also suppressed by
this routine. The suspend will remain in effect until a re
sume command is issued by the user. The purpose of the
suspend function is to give the user the opportunity to take
a quick look around without having data change or move
before it can be examined.

Summary
The success of these modules is evidenced by their accep

tance as the tools of choice for much of the debugging,
diagnostic, and testing efforts. The use of these tools signif
icantly reduced the time needed to isolate many of the
defects encountered in the card software. The statistical

displays provided valuable information on throughput and
flow control early enough in the development cycle to
allow time to make any necessary adjustments.

Acknowledgments
The following individuals have contributed to the suc

cess of these tools through their work on either the design
or the coding of certain functions: Gerry Claflin, Steve
Dean, John Nivinski, and Chuck Black. Also, I would espe
cially like to mention David Ching, who provided the
routines for processing the linker symbol file, and Chwee
Kong Quek for his work on the dumpfile access module.

References
1. B.W. Kernighan and D.M. Ritchie, The C Programming Lan
guage, Prentice-Hall, 1978.
2. HP-UX Concepts and Tutorials, Volume 3: Programming Envi
ronment, Hewlett-Packard Company, 1986.
3. A.V. Aho and J.D. Ullman, Principles of Compiler Design, Ad-
dison-Wesley, 1979.
4. A.T. Schreinerand H.G. Friedman, Jr., Introduction to Compiler
Construction with UNIX, Prentice-Hall, 1985.
5. HP-UX Concepts and Tutorials, Volume 4: Device I/O and User
Interfacing, Hewlett-Packard Company, 1985.
6. File Format Reference for the HP 64000-UX Microprocessor
Development Environment, Hewlett-Packard Company, 1987.

Support Features of the HP OSI Express
Card
The HP OSI Express card offers event logging and tracing
to faci l i tate troubleshoot ing in mult ivendor networks.

by Jayesh K. Shah and Char les L . Hamer

TODAY'S STATE-OF-THE-ART automated factories
require the seamless interaction of systems and de
vices supplied by a diverse set of vendors. To manage

this complex environment effectively and keep it operating
smoothly, users must be able to resolve problems quickly.
The HP OSI Express card incorporates several powerful
new features to aid the troubleshooter. This article high
lights the support features of the HP OSI Express card and
illustrates their use in two troubleshooting scenarios.

Architecture Overview
The support architecture of the HP OSI Express card was

an important consideration since the development of OSI
protocols was a new area of endeavor for HP as well as for
other computer companies. Numerous communication
problems with other OSI implementations were expected.

Therefore, a superior set of diagnostic capabilities was
needed to resolve problems quickly in an I/O card environ
ment. To achieve this functionality it was decided to extend
the host's own nodal management facilities to include the
HP OSI Express card. This design provides a single nodal
management mechanism for event logging and protocol
tracing for both host and card modules and provides the
user with several benefits. The user does not have to be
concerned whether a layer, module, or service resides in
the host or on the card. The same set of tools with the same
capabilities can be used to manage all aspects of the prod
uct. In addition, the trace and log output from both host-
and card-based modules are identical in format because they
share a common header and terminology for describing the
severity of an error or the type of message being traced.

The OSÃ Express support architecture is shown in Fig.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 67

© Copr. 1949-1998 Hewlett-Packard Co.

1. The numbered arrows show the initial flow of control
and information to enable a log class (logging severity level)
and then to send log information from a card-based layer
to the file system. Log classes are controlled by the user
via the nodal management applications osiconfig and osicon-
trol. When the user enters a command to enable a particular
log class in a particular layer, a request is passed by the
nodal management application to the trace/log facility,
which validates the request and ensures that various trace/
log resources have been allocated. The request is then
passed to subsystem management services (SMS), which
provides facilities that allow the user to access management
services (parameter manipulation, statistics collection,
status, and control) and sends the request to card manage
ment services (CMS). CMS, which is the card-based counter
part of SMS, provides nodal and network management ser
vices to both the host-based management applications and
the card-based protocol and system modules. After receiv
ing the request from SMS, CMS forwards the request to the
appropriate protocol layer or system module.

When an event that must be logged occurs in a card-based
protocol layer, the event is passed from the protocol stack
to CMS which communicates through the kernel with the
log daemon. The log daemon receives the event (log) mes
sages from the OSI Express card, obtains the system time
(timestamps the message) and formats a log call to the host
trace/log facility. Unformatted log messages are then writ
ten to the file system. When the user reads the log file, the

trace/log formatter osidump is used. Osidump writes formatted
log entries to the log file or terminal.

Event Logging
Logging is used to record abnormal or unusual network

ing events such as the receipt of an inbound packet with
invalid protocol information (remote protocol error) or a
remote system's refusal to accept a connect request. This
is different from tracing. Tracing is used to record all infor
mation of a particular type or types from one or more layers
or modules.

Log Headers
Log (and trace) messages have two parts: the header part

and the data part. The header consists of the first eight
lines (see Fig. 2). It includes the timestamp and other iden
tifiers. The contents of the header are very important be
cause the data in the header usually determines the format
ting capabilities of the trace/log formatter. The data portion
of the message that follows the header contains the descrip
tion of the event (error message text).

One of the more important fields in the header is the log
class. This is the severity of the event being logged. When
logging is enabled the severity can be selected by the user.
The user can choose to ignore event messages that are by
nature informational, but when problems occur the user
can modify the log class to obtain informational messages.
Log messages have four classes of severity: disaster, error,

Nodal
M a n a g e m e n t

Tools

Enable/
Disable

Trace/Log Unformatted
Trace/Log
Messages

L Formatted
Logs

File I/O
System

Card
System

Modules

Fig. 1 . HP OSI Express card sup
p o r t a r c h i t e c t u r e . T h e n u m b e r s
show the sequence of operat ions
for get t ing log in format ion f rom a
card-based layer to the file system.

68 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

warning, and informational. Disaster class messages are
logged when a condition occurs that could jeopardize the
integrity of the system or network. Discovering that another
system on the network is using the identical NSAP address
is one example of a disaster class event. Once a disaster
event occurs, the event is logged and the OSI Express card
is taken off-line. The next lower event classification is error
class. Errors are events that cause a user application to fail
or take extra steps to recover. This is the default log class
for most of the product's layers or modules. The definition
of an error class event put the additional burden on the
OSI Express card software developers of understanding the
end result of an event. It could only be classified as an
error once it was understood that it would adversely impact
a user application. The expiration of one connection's
transport inactivity timer is an example of an error class
event. The error class designation is not as significant for
what is included as an error as it is for what is excluded
as an error. The error class definition prevents events that
are interesting but not a problem (from the application
point of view) from being logged. This not only saves disk

space but frees the user from having to consider events
that do not affect applications. Warning and informational
class events are the next-lower-severity log classes. Warn
ing events such as "Destination NSAP Unreachable,"
which impacts the network layer, or informational events
such as receipt of a duplicate connection request, which
impacts the transport layer, have no impact on user appli
cations except for time loss. These events are probably
most useful for performance analysis.

Two fields in the header provide connection information:
the connection identifier (CID) and the path identifier (path
ID). The CID is used by host software to reference a connec
tion and is returned to the user. The path ID identifies a
specific communication path on the OSI Express card and
thus serves the same purpose in the card environment as
the CID does in the host environment. From a troubleshoot
ing perspective the path ID is very useful when problems
occur on inbound connection requests that fail before
reaching the host. In this situation, a CID will not exist
since the request does not reach connection management
and hence a CID is not issued.

F i g . 2 . A . f o r m a t t e d r e m o t e p r o
tocol error log message . There are

; : t h e h e a d e r a n d t h e

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 69

© Copr. 1949-1998 Hewlett-Packard Co.

Another field in the header and one of the most signifi
cant contributions to the supportability of this product is
the log instance. The log instance is an identifier that
threads log messages together. When a module first detects
an error, it obtains a new unique log instance identifier
and logs the event. The log instance is then passed with
the error to the calling entity. If the calling entity also logs
an error as a result of processing the error it receives, it
logs the error as well as the log instance passed to it. The
calling entity then returns the log instance to its caller. In
this manner, the log instance is propagated all the way up
to the user application. Log events with the same log in
stance are related. The earliest event with the same log
instance is the root of the problem. Without a log instance
mechanism, a user might think that several errors had oc
curred when in fact only one had occurred. Once the error
is returned to the user application the log instance is avail
able via a special function call to the service interface.
Thus, the log instance provides an audit trail from the
module that first detects an error all the way back to the
user application.

Other fields in the header of interest to users include the
user identifier (UID), and the process identifier (PID). The
UID is the HP-UX user identifier of the user that created
the connection. The PID is the identifier of the process that
created the connection.

Error Messages
Special attention was focused on the content of error

messages. All error messages include the problem category,
the cause of the problem, and the corrective action recom
mended to resolve the problem. At all points in the code
where an error might be logged, the protocol developer had
to resolve the problem and not merely report it. It was also
generally agreed to return any helpful information that was
available to the user that would aid problem resolution.
For this reason the session state vector is appended to the
error text in Fig. 2.

The product troubleshooting guide is tightly coupled to
the error messages. In Fig. 2, for example, the user is re
ferred to troubletree Card_04 in the troubleshooting guide.
Card_04 is a troubleshooting procedure designed to lead
the user through the process of resolving a remote protocol
error. The technique of referring to a specific troubleshoot
ing procedure in the troubleshooting manual is used when
the resolution procedure is longer than what could easily
be described in a log message.

In addition, since usability was of great concern, we
wanted to avoid terse log messages that required interpret
ing to understand what transpired. Therefore, error mes
sages were reviewed and reworked to ensure that the text
was clear. As a result of the efforts to make error messages
more usable, an error messages manual was not required
as part of the product's documentation.

CMS Informat ional Log
Another feature designed to aid troubleshooting is the

CMS informational log message. Recall that CMS is used
by the protocol stack and system modules to log event
messages and trace protocol and system module activity.
When CMS receives a request to log a message it checks

to see if it has logged a message on that path before. If it
has, it just performs the log or trace task requested by the
calling software module. If it has not logged a message on
that path before, it logs a CMS informational message and
then logs the message requested by the calling software
module. The informational message logged by CMS in
cludes as much of both the local and remote applications'
presentation addresses as is known. An application's pre
sentation address is also often referred to as its PST-N
selectors. This information is logged in the data portion of
the log message and is especially useful for remotely in
itiated connections as is typical on server nodes. Now,
when an error occurs, information is available that provides
the presentation addresses of the affected applications.

A Troubleshoot ing Scenar io
Two sample scenarios will illustrate the use of the trou

bleshooting features described above. Troubleshooting
scenario I is shown in Fig. 3. Assume that user application
1 (UAl), an HP MMS (Manufacturing Message Service)
client, on node A wants to communicate with user appli
cation 2 (UA2) on node B. Furthermore, assume that UAl's
connect request to UA2 fails because UA2 has a different
presentation address from the one UAl is trying to com
municate with. This can occur when the same presentation
address is maintained in two separate locations. For exam
ple, a shop-floor-device OSI implementation may not pro
vide a directory service user agent for directory access.
Instead, it may locally manage presentation addresses,
thereby providing an opportunity for address inconsis
tency.

In Fig. 3 the dotted line represents the SAPs (service
access points] that have been activated by UA2 to receive

N o d e A

User
Application

1

N o d e B

Presentation
- + P S A P

Transport Transport
T S A P N o t i
i n T a b l e |
Connection I
Rejected

Outbound
Connect Request

Inbound
Connect Request

SPP = Serv ice Prov ider Process

Fig. 3 . Troubleshoot ing scenar io 1 .

70 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

requests from MMS client applications. UAl obtains the
PST-N selectors for UA2 and sends an mm_connect request
to UA2. When the connect request is received by the trans
port layer on node B, the transport layer finds that the
destination TSAP (transport service access point) is not in
its table and rejects the request. The transport layer on
node B rejects the connect request by sending a disconnect
request to the transport layer on node A. The transport
layer on node A logs this event. When it logs the event, it
gets a unique log instance value. The transport layer on
node A returns an error along with the log instance to the
session layer. If any other module in the propagation path
logs additional information, the log instance will be iden
tical to the one originally logged by the transport layer. As
explained above, the log instance is a mechanism that
threads together all errors related to a specific error.

Error information returned to UAl from the service inter
face includes the log instance. The user can then use the
log instance as a key to query the log file for the underlying
cause of the problem. All necessary data required to resolve
the problem is logged along with the error message. In this
example, the transport layer on node A will log the discon
nect request TPDU (transport protocol data unit) in the
data portion of the message. In this way, fault isolation and
correction are facilitated by the use of the log instance, a
detailed error message, and a comprehensive troubleshoot
ing procedure.

Another Scenario
Fig. 4 illustrates troubleshooting scenario 2. In this

scenario, assume that an FTAM (File Transfer Access and
Management) initiator application on a remote system re
ceives an abort indication while transferring a file to the
local HP system. Also, assume that the remote system has
limited troubleshooting capability. Thus, we need to isolate
and resolve the problem from the responder side. Assume
that the cause of the problem is that the remote system has
sent an invalid session PDU (protocol data unit) and the
local session entity aborted the connection.

When the connection was aborted on the responder side,
a connection information message was logged by CMS with
the complete presentation address of both the initiator and
the responder along with the path identifier of the aborted
connection. To resolve the problem, the user searches the
log file for the CMS message with the appropriate initiator
and responder presentation addresses. Locating this log
message provides the user with the path ID, which can be
used as a key to query the log file for errors that occurred
on the aborted connection. The abort event message that
the user obtains informs the user that the type of problem
encountered was a remote protocol error (see Fig. 2). The
event message also specifies the exact nature of the problem:
the received PDU had an incorrect value for the session
indicator. This type of problem is typically caused by a
defect in the remote vendor's code and can be resolved
only by a code change in the remote vendor's implementa
tion. Therefore, the corrective action in the error message
tells the user to follow a procedure that recreates the prob
lem with tracing turned on. The additional trace informa
tion will help the remote system's vendor understand the
context in which the problem occured so that an appro

priate fix can be made.

Tracing
Tracing is used to record all activity of a specific kind.

It provides the contextual information that may be neces
sary to determine the cause or the activities that led up to
a networking event. Both normal and abnormal events are
recorded and, in fact, the trace utility cannot distinguish
between the two. Tracing is a very useful tool for isolating
remote protocol errors (interoperability problems) or inter
nal defects.

Typically, a troubleshooter uses network tracing as a last
resort to identify a problem. This is because configuration
problems and user application problems are much more
common, and because the use of trace tools and the analysis
of the output require significant expertise. A major prob
lem, therefore, is knowing when to use tracing. The log
message in troubleshooting scenario 2 is typical of remote
protocol error log messages generated by protocol modules.
The message is intended to define the problem clearly and
guide the troubleshooter to a procedure to isolate it.

The user can enable several types of tracing for each
subsystem. The most commonly used trace kinds are listed
below.
â€¢ Header Inbound. Traces protocol headers received from

the next-lower protocol layer before decoding is done.
â€¢ Header Outbound. Traces protocol headers after encod

ing is complete before they are sent to the next-lower
protocol layer.

â€¢ PDU Inbound. Traces the whole protocol data unit as it
is received.

â€¢ PDU Outbound. Traces the whole protocol data unit as

Remote System

User
Application

F T A M
Initiator

SPP

Local System

FTAM
Responder

SPP

SPP = Serv ice Prov ider Process

Fig. 4 . Troubleshoot ing scenar io 2 .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 71

© Copr. 1949-1998 Hewlett-Packard Co.

it is being sent.
â€¢ State Trace. Traces protocol state information.

A fundamental problem with tracing in general is that
the person analyzing the trace file must recognize an abnor
mal event and so must have a fairly intimate knowledge
of the protocol. The logging trace is a special trace type
that writes a copy of the log message to the trace file. For
instance, when tracing is enabled at the transport layer and
this layer logs a message, that message is written to the log
file (this is normal) and also to the trace file. The logging

trace message acts as a marker within the trace file to help
the person analyzing it locate the area of interest.

Acknowledgments
We are grateful to Mike Wenzel for his patience and for

helping us evaluate various technical alternatives. Rich
Rolph was instrumental in the development of usable error
messages and troubleshooting procedures. We would like
to thank the entire OSI Express team for suggesting and
implementing supportability and usability features.

Integrat ion and Test for the OSI Express
Card's Protocol Stack
Special test tools and a mult id imensional integrat ion
process enabled engineers to develop, test, and debug the
f i rmware for the OSI Express card in two d i f ferent
environments. In one environment an emulation of the OSI
Express card was used and in another the rea l hardware
was used.

by Nei l M. Alexander and Randy J . Westra

THE OSI EXPRESS PROJECT consisted of many inde
pendent project teams (made up of one or more en
gineers) working on specific portions of the protocol

modules or support code. Each team needed the ability to
test and develop code independent of others. However,
periodically they needed to have a set of stable and tested
code from other teams to enable them to test their own
code. Since each engineer was involved in testing, test
environments were designed to maximize their efforts. One
environment consisted of an emulation of the OSI Express
card on the development machines and another test envi
ronment consisted of a real OSI Express card connected to
a target machine. Both the target and the development
machines were HP 9000 Series 800 computers running the
HP-UX operating system. Because of the number of en
gineers working on the project, multiple development and
test machines were configured as a network. These test and
development environments are shown in Fig. 1.

Test Architecture

Each protocol module was first tested in isolation before
the module was integrated with the rest of the modules of
the OSI Express stack. The CONE (common OSI networking
environment) protocol module interface facilitates this
module isolation since a stack can be built that does not
contain all seven protocol modules. Protocol modules do

not call each other directly to pass packets but instead
make calls to CONE. A data structure called a path report
is used to specify the modules configured into a stack.
Protocol modules not specified in a path report will not
be called by CONE and do not need to be in the stack.
However, even with this modular design, several test mod
ules are needed to test the stack fully.

The architecture and the modules involved in testing the
OSI Express card firmware are shown in Fig. 2. This archi
tecture was used on the host (running in user space) to test
and debug protocol modules before the hardware was
ready. When the hardware was ready, this same architec
ture was used on the target machines to test the protocol
modules in the real environment.

Exception Generator
The exception generator is a test module that is config

ured in the stack below the module being tested. Packets
moving inbound to the protocol module under test and
moving outbound from the module are operated on by the
exception generator. Packets not operated on by the excep
tion generator are simply passed through to the next layer.

The exception generator can intercept, modify, generate,
or discard packets as they are moving up or down the stack.
Packets intercepted are placed in the exception generator
packet queue. Up to ten packets can be saved in the queue
at one time. Packets stored in this queue can be modified

72 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

and then sent up or down the protocol stack. In this way,
PDUs that occur rarely can be constructed. Also, errors in
transmission can be simulated by corrupting a packet in
the queue and then sending it.

Scenario Interpreter Agent
The scenario interpreter agent performs functions similar

to the exception generator. Whereas the exception
generator is configured below the module under test, the
scenario interpreter agent is positioned above the module
under test. The scenario interpreter agent operates on in
bound packets coming from the module under test and
outbound packets going to the module under test. A packet
can be intercepted as it moves down the stack and placed
in the packet queue of the scenario interpreter agent. A
saved packet is sent to the module under test by releasing
it from the save queue of the scenario interpreter agent.

Bounce-Back Module
The bounce-back module sits at the bottom of the stack,

and as its name implies, it enables packets heading down
the stack to be sent (bounced) back up the stack. Normally,
a protocol stack runs in a two-node configuration consisting
of a sender and a receiver with the two nodes connected
by a communication medium such as coax cable. When

testing of the protocol stack first started, all testing was
done in a single-node configuration. Packets were sent
down the stack, turned around by the bounce-back test
module, and then sent back up the stack. To make one
stack act as both the incoming and the outgoing protocol
stacks, the bounce-back module maintains a set of tables.
The tables contain the proper inbound CONE call for each
outgoing CONE call.

The bounce-back module makes different calls to CONE
depending on which layer is configured above it in the
stack. Thus, a separate table is maintained in the bounce-
back module for each protocol layer that may be above it.
For example, a stack can be configured for testing that
consists only of the session layer above the bounce-back
module. The session layer is a connection-oriented pro
tocol layer and receives different incoming CONE calls
than a connectionless layer such as the network layer. In
this example, a packet would flow outbound from the ses
sion layer and be received by the bounce-back module.
The bounce-back module would look in the session table
to find the corresponding incoming call for the session
layer. The packet would be copied and sent back up to the
session layer, which would accept the incoming call as if
it were part of the receiving node in a two-node test.

Development
Machines were used
to develop and
test code using
an emulation
of the OSI Express/Card.

Project servers
stored code and test
suites and produced
integration directories.

I n t e
gration
Code

Target
Machine

OSI
Express

Card

Target
Machine

OSI
Express

Card

Target
Machine

OSI
Express

Card

Target machines were
used for testing the
OSI Express card.
Card downloads
and tests were
obtained from
the project servers.

Fig. 1 . OS/ Express card test ing environments.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 73

© Copr. 1949-1998 Hewlett-Packard Co.

Error Handling
Every CONE call returns an error value to the protocol

module making the call. Normally, the exception generator
and the scenario interpreter agent would simply propagate
the error value returned to them to the next layer. However,
the error value returned can be changed by the test modules.
In this way error paths can be executed in the protocol
modules for unusual error return values from CONE calls.
Since the bounce-back module is at the bottom of the stack
and cannot propagate error return values, tables were used
as explained above for the return value of each CONE call.

Scenario Interpreter
To generate packets to send down the stack, the scenario

interpreter is used. Scenarios are test specifications that
tell the scenario interpreter what packets to send and what
packets to expect to receive. Each scenario has two sides,
which can be thought of as a sender and a receiver. Packets
are defined using packet definition commands. These con
structed packets are sent down the stack using packet send/
receive commands. A parameter tells the scenario interpre
ter whether to send or expect to receive a packet. When a
packet is received it is compared to the packet specified
in the scenario. If the packets do not match, an error is
reported. Repeating sequences of data are generated by
macros in the scenario interpreter. For example, a repeating
sequence of 5000 bytes is generated with the simple macro
15000. The value of each byte is one greater than the previous
byte, modulo 256.

The scenario interpreter also controls the exception
generator, bounce-back module, and scenario interpreter
agent test modules. Commands to these test modules are
sent down the protocol stack in special command packets.
Command packets are created in the same fashion as data
packets. A parameter indicates whether the packet is a data
packet or a command packet. The command packets are
absorbed by the test module they are intended for. A test
module can also send a command packet to the scenario
interpreter. For example, the scenario interpreter can send
a command packet to the exception generator telling it to
signal the scenario interpreter when a certain number of
outbound packets have passed through the exception
generator. After sending the packet, the scenario interpreter
waits for a response. When the exception generator deter
mines that the specified number of packets have passed
through, it sends a command packet to the scenario in
terpreter telling it that the specified number of packets
were sent. After the scenario interpreter receives the ex
pected response it can then proceed. The scenario interpret
er can also wait for inbound packets to pass through a test
module.

This interaction between the scenario interpreter and the
test modules is used to test the many states of a protocol
layer. One example is the session layer. Several special
packets that the session layer sends to its peer on another
machine are preceded by a prepare packet. The two packets
are sent one after the other (prepare packet followed by a
special packet). However, some states in the session pro
tocol state machine are only entered when a data packet
is sent after the prepare packet is received but before the
special packet is received (see Fig. 3). To test this case, a

prepare and special packet combination is sent down the
stack. The special packet is caught and saved by the excep
tion generator. On the receiving side the scenario interpre
ter waits to receive the prepare packet. After receiving the
prepare packet, the scenario interpreter sends a data packet
and the receiving side enters the desired state. Finally, the
special packet previously captured by the exception
generator is released. Without this kind of control, hitting
the desired state on the receiving side would only result
as a matter of chance.

Another example of packet timing involves the transport
layer. The transport layer receives acknowledgments from
its peer on another node for the packets it sends. The timing
of these acknowledgments is not deterministic. Testing all
the transport protocol states requires sending certain pack
ets after an acknowledgment is received. To send a packet
after the transport layer receives an acknowledgment re
quires the scenario interpreter to wait for the exception
generator to signal that the acknowledgment packet has
arrived.

The scenario interpreter interfaces to the stack via the
test harness. The test harness operates in the two different

Sender
Side

Receiver
Side

Scenario
Interpreter

Test Results

Scenarios

Host

Card

Outbound
Packets

Inbound
Packets

Scenario Interpreter
Agent (SIA)

Test Module
Packet Queue

*Â»Â»

Exception Generator
Test Module Packet Queue

^ ^ ^ B

T
Rest of

Protocol Stack

Bounce-Back
Test Module

M H M

Ã
Packets are
turned around
and sent back up.

Fig. 2 . Arch i tecture for tes t ing protoco l modules.

74 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

environments. In the environment where the stack is actu
ally running on the OSI Express card, the test harness uses
a tool called UL-IPC (upper-layer interprocess communica
tion) to communicate with the card. In the user space en
vironment on the development machine, the test harness
uses shared buffers (HP-UX IPC) to communicate with the
protocol stack which is also running in user space. Fig. 4
shows these environments.

Integration Process

System integration in its simplest form is the process of
creating a set of deliverables (e.g., executable product code,
test code, etc.) from some source code. For the OSI Express
card the integration process was driven by project goals,
project size, and environment.

Goals and Results
The integration process for the OSI Express card was

designed with follow-on products in mind. CONE
exemplifies how this works. CONE allows the protocol
modules to be combined in different ways to create new
protocol stacks. The integration process also needed the
ability to produce additional products without modifica
tion to the build process. Like CONE, this involved combin
ing existing code in new ways to produce additional prod
ucts. The whole problem can be thought of as multidimen
sional, in that the integration process for the OSI Express
card needed to run in a multiple-machine environment,
where there were multiple products, each product having
multiple versions, each version's code subject to compila
tion in multiple ways.

The challenge was to create a process that would run
effectively in a network environment, supply timely and
accurate integration services, and be flexible enough to
produce all the targeted outputs required. Other goals for
the integration process included quick response to changes
by developers, sufficient tracking to create a history of the
events that occurred during any given integration, and pro-

Prepare
Packet

Special Packet

â€¢Data Packet
Received

'Test Case

duction of metrics for managing the project.
Although the integration process was modified over

the course of the project, what eventually developed was
a set of structures and concepts that make integration in
this multidimensional environment possible. A successful
integration for a given version of a product produced a
download file that was able to run on the card, an emulation
testing environment to run on development machines, and
host-based tools to run on the host machine housing the
card. The test environments were similar in that they used
the same set of source code to build from. They were dif
ferent in the deliverables that came out of the environment
and the compilers required to produce them. The deliver
ables for each of these environments was built separately
in its own integration directory. These integration direc
tories were built in a standard way so that they had the
same look to the build processes regardless of the type of
deliverables being built. Standardization of integration di
rectories made it easy to support multiple products, ver
sions, and types of compiles. Having an integration direc
tory with a standard structure residing in a known direc
tory, it was easy to build tools that performed their func
tions simply by being passed only the name of the integra
tion directory. The flexibility to perform different types of
integrations within the integration directory came from the
control files (inputs to HP-UX scripts) contained within
each integration directory. This information included what
source to use, what to build, and compiler options. The
integration scripts could then use these files to determine
exactly what needed to be done for a particular integration
space.

The Process
To get a better understanding of how the integration pro

cess functions, let's see what happens when a a new version
of a source code module is added to the system. Fig. 5
shows the data flows between some of the components

User Space on the
Development Machine

(a) T e s t H a r n e s s

Target Machine

OSI
Express

Card

Real Hardware

(b)

F ig . 3 . Sess ion s ta te mach ine f o r t he p repa re packe t and
specia l packet scenar io.

Test Harness

Fig. 4. (a) Test harness in user space, (b) Test harness used
wi th the real OS/ Express card.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 75

© Copr. 1949-1998 Hewlett-Packard Co.

involved in the integration process. Assume that a de
veloper would like to make a bug fix to an existing inte
gration. The first step would be to check out the source
code using the HP-UX revision control system (RCS) and
put it into a directory on the development system. The
specific version is identified by an RCS tag. The RCS tag
associates a name with a revision number, so in this case
the developer would check out the source code using a tag
that is associated with the integration version in which the
bug is being fixed. The developer would then make the
changes necessary to the source, compile it, and test it
using a standard test suite that uses code from the integra
tion directory associated with the change. After the change
has passed testing in the emulation space it can be checked
back into the common source directories. At this time the
new versions are tagged to indicate that they are the latest
tested versions and are ready to be integrated. This tag
serves as a communication vehicle to tell the integration
process that a new version of some module needs to be
brought into a specific set of integration directories.

Within each integration directory, a source map contains
the name, version, and location of each piece of source
code that is needed for a specific integration. The location
serves a dual role in that it is the subdirectory path within
the source directory of where to get the source code and
it is the subdirectory path of where the code belongs within
the integration directory. An updated version of this map
can be generated by finding out which version of a file
needs to be used. To do this a process is run that selects
a version of the code to use based on one or more tags. In
this case the tag that the developer put on the code would

be used. When the module that was updated is looked at,
the process would discover that a new version of the file
is now needed and a new source map would be created to
reflect these changes. The next step would be to place the
correct version of the source code into the appropriate di
rectory within the integration directory. This process is
accomplished by using the source map previously gener
ated to direct RCS as to what version to check out and
where to put it. Other checking is done at this point to
make sure the source code residing in a directory is actually
the version specified by the source map.

Once valid source code has been placed in an integration
directory it is compiled or assembled as required to create
relocatable object files, which are then linked into a library.
The compiler to use is determined by parsing the integra
tion directory name. Based on a subfield within the name,
one of three compiles is chosen: Express card downloads,
host-based debugging tools, or card emulations. Each of
these types of integration requires that a different compiler
be used. The scripts that perform this process verify that
the compiler or assembler needed is available on the
machine that they are being run from. The compiler or
assembler options needed are collected from three loca
tions.
â€¢ Options that are specific to the compiler being used are

contained in the script that calls the compiler.
â€¢ Options that are specific to a library being built come

from a control file that describes the name of the library
to build, where to build it, where the source can be
found, and what compiler options are needed.

â€¢ Options that apply to all compiles within an integration

Integration Directories

Options, Names of Librar ies

Source Files

Errors, Events,
Process Summary

S c r i p t s f o r
C o m p i l i n g ,

L ink ing , e t c .

Results of
Compil ing and Linking

Summary
Audits

Project Source
Files

Al l Versions
Stored with RCS

Process
Management

Log File

Fig. 5. extracting flow for the portion of the OS/ Express card integration involved in extracting the
desired download files from the project source directory and building the new object fi les, download

f i les, and logging f i les.

76 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

directory come from a global flags file.
These three sets of options are combined and passed to

the compiler. Note that since the global flags file and the
file that describes how to build libraries are both contained
in the a integration directory, they are unique to a
particular integration.

After all the libraries are built other types of targets can
be built. These could be programs or downloads depending
on the type of integration directory. Again there are control
files that specify what target outputs to build, where the
inputs can be found, the tool that needs to be called, and
where to store the result. If the above steps have all run
successfully then the integration directory is again up to
date and ready for use by the rest of the team.

The mechanism used to deliver an integration to develop
ers is network mounting. Mounting allows a given machine
to have access to another machine's files as if they were
stored locally. This method avoids the problem of develop
ers working with out-of-date copies of an integration, and
provides immediate availability of an updated integration
to all developers.

Data Logging
Since there is a standard set of scripts that provide inte

gration build services, inclusion of consistent logging and
error handling was straightforward. The scripts log infor
mation to four different log files.
Error Log. The most detailed log contains the warning mes
sages and compile errors generated from calling compilers
and other tools needed to produce the target outputs. This
file also contains separators indicating what was built and
whether or not the process was successful.
Process Log. The process log is a process summary indicat
ing whether a program or library was built successfully.
The log file and the error log file are useful for identifying

details about process failures or simple compile errors.
Event Log. This file is an event history of the actions upon
every module involved in a compile. Every time a module
is checked out, compiled, or archived into a library, a record
is written to the event log with the time and date, the
module name, the version number, what was done (com
piled, archived), and if it was successful. This file is estab
lished when an integration process is started and is never
purged until the the integration directory is removed. The
event log provides a useful audit trail to track down things
like when a given module changed, what else might have
changed at the same time, or whether a particular fix was
made.
Process Management Log. This logging file is used to man
age the overall integration process. Since there are generally
over ten integration directories active at any given time,
looking at logging files within each directory to determine
what needs to be done is time-consuming and provides no
overview of how the integration process is working. Any
integration build run on any machine in the network logs
to this file to indicate if a major integration process was
successful. Information in each record includes the start
and stop time, the process run, and the name of the inte
gration directory that was processed.

Acknowledgments
Tim McGowen produced the early version of the OSI

Express card integration tools from which the current pro
cess evolved. Jeff Ferreira-Pro was instrumental in setting
the long range direction of the integration process and the
use of RCS, and Kevin Porter and Mike McKinnon produced,
tuned, and managed the integration process. Also con
tributing to the success of the test tools through their work
on designing, coding, and enhancing the tools were: Lynn
Vaughan, Meryem Primmer, and Jon Saunders.

Authors
February 1990

e z= HP osi overview zr=z=rr^=:
Wil l iam R. Johnson

Bi l l Johnson helped de-
sign, develop, and test the
session protocol sof tware
for the OSI Express card
and con t r i bu ted to the de
ve lopment o f s tandards
produced by the U.S.A. Na
tional Institute of Standards
and Technology (NIST) for
the upper layer of OSI. After

joining HP in 1985, he helped implement MAP 2.1
ne twork ing fo r HP 1000 A-Ser ies computers . Be
fore coming to HP, he worked for a year in software
development at IBM. Bi l l is now manufacturing net
works program manager , respons ib le fo r market
planning, trade show support, and f ield education.
He is a 1 985 graduate of California State University
a t Ch ico , and has a BS degree in compute r sc i
ence. Born in Gait, California, he has two children
and res ides in Auburn. He enjoys gol f ing, sk i ing,
fami ly out ings, and home improvement pro jects .

8 â € ” O S I B a c k p l a n e H a n d l e r

Glenn F. Talbott
t I I G l e n n T a l b o t t h a s b e e n a

' deve lopment eng ineer fo r
I ^ ^ l H P s i n c e h e g r a d u a t e d

â€¢ from the University of
Cal i fornia at I rv ine in 1977

i with a BS degree in electri
cal engineering. He helped
deve lop t he backp lane a r
ch i tec ture and des ign for

I the OSI Express card. He
also worked on the remote console and boot code
for the MAP 2.1 pro jec t and deve loped the HP
98645A measurement l ib ra ry . A member o f the
IEEE. Glenn's professional interests focus on
f i rmware and low- leve l so f tware and hardware in
terfaces. A U.S. Marine Corps veteran, he was born
in Washington, D.C. , and now l ives in Auburn,
California. His hobbies include Softball, skiing, and
camping.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 77

© Copr. 1949-1998 Hewlett-Packard Co.

1 8 H Z C O N E S o f t w a r e E n v i r o n m e n t
David A. Kumpf

A graduate of the University
of California at Davis with a
BS degree in computer sci
ence and mathemat ics ,
Dave Kumpf jo ined HP in

i l W t e - * f i s i 1 9 8 5 a s a s o f t w a r e e n -
! ^ H g i n e e r r i g h t a f t e r h e
I g r a d u a t e d . H e h e l p e d d e -

/Â£â€ž; ' Ã velop and increase the
\ * "%?*K, : f ' - - ' : func t iona l i t y o f the tes t har

ness, improve performance of the t imer manager,
and imp lement the backp lane message in te r face
for the OSI Express card. Before that , he worked
on the synchronous data l ink cont ro l product for
HP's business operating system, MPE XL. Born in
Milwaukee, Wisconsin, Dave has two children and
res ides in Rosevi l le , Cal i forn ia . He enjoys back
pack ing, mounta ineer ing, and reading.

Steven M. Dean
As a member o f the
Rosevil le Networks Division
technical staff, Steve Dean
designed and implemented
" ie bu f fe r manager and

" schedu ler , wh ich are par ts
^ ^ ^ y | k ' o f t h e c o m m o n O S I n e t -

^ p w o r k i n g e n v i r o n m e n t
m * r t (C O N E) f o r t h e O S I E x p r e s s

^ ^ T (â € ” c a r d A f t e r j o i n i n g H P i n
1984, he worked as a process eng ineer wi th the
manufacturing team that automated the autoinser-
t ion process for bu i ld ing I /O and network ing
boards. Before that , he served as a deve lopment
eng ineer a t Amdahl Corporat ion, work ing on a
small operating system that was used to run diag
nost ic programs for f inal re l iabi l i ty tests before
product shipment. Steve earned his BS (1 982) and
MS (1986) degrees in computer sc ience a t the
California State University at Chico. Born in Chico,
he now lives in Rocklin, California, where he enjoys
gol f , basketbal l , and f ishing.

H. Michael Wenzel
The space shuttle was Mike
Wenzel 's major concern for
f ive years when he served
as a contract officer on the
shut t le program and as a
captain in the U.S. Air
Force. His first project after

i com ing to HP in 1974 was
the deve lopment o f
firmware for a raster printer.

As a sys tems des igner , he was the p r imary de
s igner for the OSI Express card and is current ly
working on I/O systems design and performance.
He has developed software for several data com
mun ica t ions and ne twork p ro jec ts , inc lud ing de
sign of the message manager and architecture for
the HP LAN/9000 Ser ies 500 network subsystem.
Mike has previously authored an article for the HP
Journal (March 1 984). He received his BSEE (1 969)
and MSEE (1971) degrees f rom the Univers i ty o f
Denver. He was born in Al ton, I l l ino is and l ives in
Granite Bay, California. The father of two children,
he enjoys music, h ik ing, fami ly act iv i t ies, and
investing.

28 â€”OSI Upper-Layer Protocols â€”
Kimball K. Banker

As an R&D engineer in HP's
Data Systems Division, Kim
Banker helped develop the
HP 2250A measurement
and cont ro l processor . He
has worked on other HP
fac to ry au tomat ion p rod
ucts and on the HP 1 2065A
v ideo output card for the
HP 1 000 A-Series comput

e r , and he lped des ign and deve lop the sess ion
protocol layerforthe OSI Express card. For the past
three years, he has par t ic ipated in ANSI and OSI
protocol standards committees and has designed
and implemented these standards into HP network
ing products . K im serves as ANSI 's U.S. sess ion
editor and as session rapporteur in ISO SC 21 , and
is a member of the IEEE 802. 6 committee on met
ropolitan area networks. He came to HP after earn
ing his BS degree in electrical engineering from the
University of California at Davis in 1 977 and an MS
degree in computer engineer ing at Carnegie-Mel
lon University in 1 979. Kim lives in Rocklin, Califor
n ia and enjoys b icyc l ing, basketbal l , sk i ing, and
swimming.

Michael A. El l is
Along wi th a pass ion for
tandem mounta in b ik ing in
Northern Cal i fornia, Mike
El l is a lso is a sof tware en
gineer with the HP Roseville
Networks D iv is ion . He de
s igned and imp lemented
the ACSE and presentation
protocol modules for the
OSI Express card. He also

part icipated in the development of standards and
funct ional speci f icat ions forOSI, ACSE, and pres
entat ion protocols. Af ter jo in ing HP in 1983, Mike
worked on the installation and support of marketing
and manufactur ing systems. Ear l ier , he des igned
and developed an interactive real-t ime data base
management system for use in ja i l faci l i t ies in the
Uni ted Sta tes . H is pro fess iona l soc ie ty member
sh ips have inc luded chai r ing the U.S.A. Nat ional
Inst i tute of Standards and Technology Special In
terest Group on Upper Layer Arch i tec ture (1987)
and membership in the ANSI X3T5.5 Upper Layer
Arch i tec ture Commit tee (1986-87) . He rece ived a
BS degree (1978) in genet ics f rom the Univers i ty
of California at Davis and an MS degree (1 983) in
computer science from Sacramento State Univer
s i t y . Born in A lbuquerque , New Mex ico , M ike re
sides in Sacramento, Cal i fornia, and enjoys moun
ta in b ik ing, sk i ing, windsur f ing, and music.

36 â€” OSI Class 4 Transport Protocol â€”

Rex A. Pugh
a As a member of the R&D

des ign team at the
Rosev i l le Networks Div i
s ion, Rex Pugh co-

. . , . a e s ' g n e d a n d d e v e l o p e d
the OSI c lass 4 t ransport
protocol for the HP OSI Ex
press card. He currently is
inves t iga t ing rou t ing pro
toco l s , f ocus ing on de

velopment and standardization of an OSI connec-

t ion less rou t ing pro toco l . He worked on the de
ve lopment o f SNA layers 3 and 4 to p rov ide con
nectivity for the HP 3000 MPE XL operating system
with IBM systems. Rex came to HP in 1 984 as a soft
ware des ign engineer a f ter graduat ing f rom the
University of California at Davis with a major in com
puter sc ience and mathemat ics . He is a member
of the Amer ican Nat ional Standards Inst i tute
X3S3.3 subcommit tee, which is developing OSI
network and t ransport layer s tandards. Born in
Arvada, Colorado, he l ives in Sacramento, Cali for
n ia, and enjoys water and snow sk i ing.

4 5 = O S I D a t a L i n k L a y e r D e s i g n = l = Z
Judith A. Smith

Short ly af ter graduat ing
f rom Cal i forn ia State Uni
versi ty at Sacramento with
a BS degree in computer
sc ience in 1985, Judy
Smith came to HP as a soft
w a r e d e v e l o p m e n t e n
g inee r . She des igned , im
plemented and tested sof t
ware used in the OSI Ex

press card and in the past has tested LAN cards.
Current ly , she is work ing on d iagnost ics for LAN
interface cards for the HP-UX and MPE XL operat
ing systems. Born in Sacramento, California, Judy
is an act ive member of the Sacramento Val ley
Chapter o f the Society of Women Engineers. She
res ides in Rosevi l le , Cal i forn ia and enjoys s ing
ing with the Sweet Adelines, cycling, and downhil l
skiing.

Bil l Thomas
Bil l Thomas's major profes
sional interest is designing
the hardware-so f tware in
t e r f aces be tween compu t
ers and their per ipherals.
Before helping design and
imp lement the HP OSI Ex
press card , he des igned
hardware and sof tware for
|Q test SyStems and HP-IB

in ter face cards. He a lso des igned sof tware that
created an automated test and measurement envi
ronment for HP 1 000 computer systems. Bill came
to HP in 1 969. He received his BS degree in 1 969
at the University of California at Berkeley and an MS
degree in 1 972 at Colorado State University, both
in e lect r ica l engineer ing. At Berkeley, he was a
member of the engineer ing f ra tern i ty , Eta Kappa
Nu, and is now a member of the IEEE. Act ive in
amateur rad io emergency communica t ions , he
l ives in Carmlchael, Cal i fornia.

51 HZ OSI Design for Performance

E l i z a b e t h P . B o r t o l o t t o
, " > L i z B o r t o l o t t o s e r v e d a s a

r j f e p e r f o r m a n c e e n g i n e e r
working with the Rosevi l le

4 â€ ” Ne two rks D i v i s i on R&D
team that deve loped and
Imp lemented the OSI Ex
press card . She came to
HP in 1 983 as a laboratory
f i rmware engineer , and
was responsib le for

f i rmware design for the HP 98642 four-channel mul
tiplexer and the HP DMI/3000 system. She is cur-

78 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

rent ly a technical market ing engineer. L iz earned
a BS degree (1982) and an MS degree (1988) in
computer science from California State University
at Chico. Bom in Kansas Ci ty , Missour i , she and
her husband live in Loomis, California, and are ex
pecting their first child . Liz is very interested in en
vironmental concerns and also enjoys ski ing, bik
ing, dancing, vol leybal l , and music.

5 9 O S I S o f t w a r e D i a g n o s t i c P r o g r a m Z Z Z

Joseph R. Longo, Jr .
Rick Longo is a sof tware
development engineer who
was responsible for the de-

, ~ s i g n a n d d e v e l o p m e n t o f
â€¢ diagnostic and debugging

_ _ ~ t o o l s f o r t h e H P O S I E x -
press card. He came to HP
as a summer student in
1980ancl Â¡0Â¡ned full-time in
1981, working on manufac

turing appl icat ions and technical support projects
before moving to the Rosevi l le Networks Div is ion
laboratory in 1985. Rick is current ly researching
network management sof tware for LAN devices.
Whi le s tudy ing fo r h is BS degree (1980) in com
puter science from the Cal i fornia State Universi ty
at Chico, he worked for a year at Burroughs Corpo
rat ion. Born in Los Mol inos, Cal i fornia, he resides
in Roseville, California. Rick enjoys volleyball, golf,
Softbal l , hiking, and family outings.

â€¢"

6 7 = O S I S u p p o r t F e a t u r e s ^ ^ = ^ z = :

Jayesh K. Shah
I Jay Shah has t raveled a
l long way f rom his bi r th-
' p lace of Aden in Southern

Yemen to h is present
hometown of Ci t rus
Heights, Cal i fornia. He
came to HP in 1 988 as a de
velopment engineer in the
Rosev i l le Networks Div i
s ion , work ing on t rou

b leshoot ing methods and format def in i t ion for the
HP OSI Express card. Currently, he's testing LAN
cards for HP Vectra computer systems. Jay earned
h is BSE degree (1986) in computer sys tems en
gineering from Arizona State University and his MS
degree (1988) in computer sc ience f rom the Un i
versity of California at Los Angeles. He is a member
of the IEEE and the ACM. His hobbies include read
ing, ski ing, and travel ing.

Charles L. Hamer
I Chuck Hamer is a technical

marke t i ng suppor t en
gineer in HP's Rosevi l le
Networks D iv is ion . He de
ve loped the suppor t s t ra t
egy fo r t he MAP 3 .0 p rod
uct, the troubleshoot ing

I methodology for the OSI
Express card, and the MAP
3.0 troubleshooting training

module . He a lso worked on the MAP 2.1 product
and prov ided on- l ine suppor t for DS/1000 and
X. 25/1 000 systems at the HP Network Support
Center . BeforecomingtoHP, Chuck was a systems

I ,

engineer for Data Switch Corporation, responsible
fo r sa les suppor t o f per iphera l and communica
tions matrix switches, and a network designer with
Bechtel Power Corporation, where he designed an
in ternal communicat ions network. Bom in
Spokane, Washington, Chuck has a BA degree in
economics f rom the Universi ty of Cal i fornia at
Berkeley He lives in Ophir, California, and enjoys
canoeing and hobby farming. He is the t reasurer
of the Ophir Elementary School parent- teachers
association.

7 2 I Z O S I P r o t o c o l S t a c k I n t e g r a t i o n r =

Nei l M. Alexander
As a software development
engineer , Nei l A lexander
prov ided sof tware conf ig-

* j ^ u r a t i o n m a n a g e m e n t p r o
cesses and tools for the HP
OSI Express pro jec t . Be
fore he came to HP in 1 988,
Nei l superv ised the in for
mat ion center a t the Sac
ramento Municipal Ut i l i ty

Dis t r ic t . He a lso served as a lead programmer at
Wismer and Becker Construction Engineers, as an
appl icat ion analyst at Control Data Corporat ion,
and an assoc ia te engineer a t Lockheed Miss i les
and Space Company. Born in Sacramento, Cal i for
n ia , he rece ived a BS degree (1972) in computer
science and mathematics from the California State
Universi ty at Chico. He current ly resides in
Rosevil le, California.

Randy J. Westra
l Randy Westra came to HP

J i n 1983 as a deve lopment
* eng ineer shor t ly a f te r he
1 earned BS and MS degrees

in computer sc ience f rom
| the Universi ty of Iowa. He

worked in the R&D labora
tory at the Logic Systems
Div is ion developing an
ed i to r , comp i le rs , and de

buggers fo r the HP 64000 mic roprocessor de
velopment system. Af ter t ransferr ing to the
Rosevil le Networks Division, Randy developed test
tools and the session protocol layer for the OSI Ex
press card. Born in Sioux Center, Iowa, Randy lives'
in Rosevil le, California with his wife and new daugh
ter . He enjoys swimming, reading, and t ravel ing.

8 0 ~ L i g h t w a v e S i g n a l A n a l y s i s ~

Christopher M. Mil ler
| As a pro ject manager for

the past f ive years at HP's
Signal Analysis Division,
Chr is Mi l ler was respon-

| sible for development of the
HP 71400A l ightwave s ig-

[nal analyzer. Before that,
he was the p ro jec t man
ager for the HP 71300A
mi l l imeter spectrum

analyzer. Ear l ier , he was wi th HP Laborator ies,
where he designed high-speed bipolar and GaAs
in tegrated c i rcu i ts . He came to HP in 1979 f rom
Hughes A i rc ra f t Company, where he des igned

electronic systems for laser target designators and
cryogenic coolers for in f rared sensors. Chr is
coauthored an In ternat iona l Mic rowave Sym
posium paper on a high-speed photoreceiver and
has written several other symposium papers on RF
and l ightwave subjects. Born in Merced, California,
he earned a BSEE deg ree (1 975) from the Univer
sity of California at Berkeley, and an MSEE degree
(1978) f rom the Universi ty of Cal i fornia at Los
Ange les Marr ied and the fa ther o f two sons, he
l ives in Santa Rosa, Cal i fornia, where he enjoys
wine tast ing, p jnn ing, sk i ing, body sur f ing, and
camping.

92 ZZ Fiber Opt ic Interferometer

Douglas M. Baney
Now a doc tora l cand ida te
in appl ied phys ics a t the
Ecole Nationale SupÃ©rieure
des Telecommunicat ions in
Par is , Doug Baney has
been wi th HP's Signal
Analysis Divis ion since
1981, special iz ing in the
des ign o f microwave
ampl i f iers and f requency

mult ipl iers. Most recently, he contributed to the de
velopment of the HP 1 1980A l ightwave interferome
ter. He earned his BS degree (1 981) in electronic
engineer ing f rom the Cal i fornia Polytechnic State
University at San Luis Obispo and an MSEE degree
(1986) f rom the Universi ty of Cal i fornia at Santa
Barbara with an HP fellowship. Doug is an author
and coauthor of several scientif ic and conference
ar t ic les publ ished in Engl ish and French on the
laser power spectrum, and is named a co-inventor
in a patent for an optical measurement technique.
Born in Wayne, New Jersey, Doug now l ives in
Par is. When he returns to Cal i fornia, he plans to
continue his favorite activity, sailing his Hobie Cat.

Wayne V. Sor in
t W a y n e S o r i n d e v e l o p e d

I new fiber-optics-based
measurement techniques
and instrumentat ion af ter
his arr ival at HP

I Laboratories in 1 985. He
also contributed to the idea

l_ fo r the ga ted de layed se l f -
y h o m o d y n e t e c h n i q u e d u r -
Ã ing development of the HP

1 1 980A fiber optic interferometer. While attending
Stanford Univers i ty , he s tud ied evanescent in ter
actions in single-mode optical f ibers. Born in New
Westminster, Brit ish Columbia, Wayne earned a BS
degree (1978) in physics and a BS degree (1 980)
in e lectr ical engineer ing f rom the Univers i ty of
Br i t i sh Co lumbia , and MSEE (1982) and PhD de
grees (1986) f rom Stanford Univers i ty . Wayne
holds f ive patents on f iber optics components and
is a member of the IEEE and the OSA. He is the
author of 1 4 technical papers in the field of fiber op
t ics components and lasers , and teaches a f iber
optics course at California State University at San
Jose. His major professional interests are develop
ing new f ibe r op t i cs -based measurement tech
niques and instrumentation. Married and the father
of a son, he enjoys playing tennis and soccer in his
hometown of Mountain View, Cal i fornia.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 79

© Copr. 1949-1998 Hewlett-Packard Co.

High-Speed Lightwave Signal Analysis
This analyzer measures the important character is t ics of
h igh-capaci ty l ightwave systems and the i r components,
inc lud ing s ing le- f requency or d is t r ibuted feedback
semiconductor lasers and broadband pin photodetectors.

by Christopher M. Mil ler

THE LOW PROPAGATION LOSS and extremely
broad bandwidth of single-mode optical fiber have
contributed to the emergence of high-capacity digital

transmission systems and analog-modulated microwave-
frequency systems. New lightwave components have been
developed to support these high-speed systems. Most no
table among these components are single-frequency or dis
tributed feedback semiconductor lasers and broadband pin
photodetectors.

The HP 71400A Lightwave Signal Analyzer has been
designed to measure the important characteristics of these
lightwave components and systems, such as signal strength
and distortion, modulation depth and bandwidth, intensity
noise, and susceptibility to reflected light. When the light
wave signal analyzer is used in conjunction with the HP
11980A Fiber Optic Interferometer (see article, page 92),
the linewidth, chirp, and frequency modulation charac
teristics of single-frequency lasers can be measured.

System Descript ion
The HP 71400A Lightwave Signal Analyzer, Fig. 1, is

part of the HP 70000 Modular Measurement System, which
provides RF, microwave, and now lightwave measurement
capability. The HP 70000 is an expandable system and can
be upgraded as requirements grow and new modules be
come available. For example, the HP 71400A can measure
lightwave modulation up to 22 GHz. However, substitution
of a 2.9-GHz RF front-end module makes the system an HP
71401 A, which for certain applications may be a more cost-
effective solution. In addition to being lightwave signal
analyzers, the HP 71400A and HP 71401A also function as
microwave and RF spectrum analyzers. The current offer
ing of HP 70000 modules is shown in Fig. 2.

A simplified block diagram of the HP 71400A is shown
in Fig. 3. The key module in the system is the HP 70810A
Lightwave Receiver. Light from the input fiber is collimated
by a lens and focused onto a high-speed pin photodetector.
The optical attenuator in the collimated beam prevents
overload of the front end. The photodetector converts

F i g . 1 . A n H P 7 0 0 0 0 M o d u l a r
Measurement Sys tem conf igured
as an HP 7 1400 A Lightwave Signal
A n a l y z e r , s h o w n w i t h t h e H P
1 1 980 A Fiber Optic Interferometer.

80 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. The HP 70000 fami ly of modular instruments includes
l igh twave s igna l ana lyzers , RF, microwave, and mi l l imeter -
wave spec t rum ana lyzers , t rack ing genera to rs , m ic rowave
power meters, d ig i t izers, and vector vol tmeters.

photons (optical power) to electrons (photocurrent). The
time varying component of this photocurrent, which repre
sents the demodulated signal, is fed through the preampli
fier to the input of the microwave spectrum analyzer. The
dc portion of the photocurrent is fed to a power meter
circuit. Thus the same detector is used to measure both
the average power and the modulated power.

The lightwave signal analyzer is often confused with an
optical spectrum analyzer (also called a spectrometer). Al
though both instruments have frequency-domain displays,
the information they provide is quite different. The optical

spectrum analyzer shows the spectral distribution of aver
age optical power and is useful for observing the modes of
multimode lasers or the sidelobe rejection of single-fre
quency lasers. Its measurement resolution is typically about
0.1 nm or approximately 18 GHz at a wavelength of 1300
run. The lightwave signal analyzer displays the total aver
age power and the modulation spectrum, but provides no
information about the wavelength of the optical signal.
This distinction is shown in Fig. 4.

Lightwave Receiver Design
Four major subassemblies make up the lightwave re

ceiver module. They are the optoblock, the optical micro-
circuit, the average power circuitry, and the optical at
tenuator control circuitry. The optical and high-frequency
RF circuits are located close to the front-panel connectors,
as shown in Fig. 5.

The optoblock is essentially an optical-mechanical as
sembly that serves two functions. It collimates the light at
the input and refocuses it onto the detector, and along the
way it allows for attenuation of the light. The input to the
optoblock uses the fiber optic connector adapter system
developed by HP's Boblingen Instruments Division. The
adapter system is based on the precision DiamondÂ® HMS-
10/HP fiber optic connector.1 This adapter design allows
easy access to the ferrule for cleaning, provides a physical,
low-return-loss contact to the input fiber, and allows mat
ing to any of five different connector systems: HMS-10/HP,

HP 70810A Lightwave Receiver Sect ion

HP 70000
S e r i e s

T r a c k i n g G e n e r a t o r
(O p t i o n a l)

R F
O u t p u t

To Tes t
Device

+ (See Fig. 14)

Fig. HP Receiver lightwave signal analyzer system, highlighting the HP 70810A Lightwave Receiver
section.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 81

© Copr. 1949-1998 Hewlett-Packard Co.

A n o p t i c a l s p e c t r u m a n a l y z e r
m e a s u r e s l a s e r m o d e s

The l i gh twave s i gna l ana l yze r
m e a s u r e s b a s e b a n d s i g n a l s

Reso lu t i on
B a n d w i d t h
= 0 . 1 n m

T i m e F r e q u e n c y 2 2
GHz

Fig. 4. Measurement d i f ferences between a l ightwave s ignal
analyzer and an opt ica l spect rum analyzer .

F ig . 5 . HP 708WA L igh twave Rece iver , showing the prox im
ity of the optoblock and optical microcircuit to the front panel.

FC/PC, ST, biconic, and DIN. Internally, the fiber butts up
against a piece of glass on the backside of the connector.
Index matching fluid at this interface and an antireflection
coating on the glass-to-air surface help maintain the con
nector's good input return loss.

Exiting the input connector, the light passes into air. The
diverging beam is collimated into an expanded parallel
beam, which then passes through a continuously variable
O-to-30-dB circular filter. The filter is coated with a metallic
neutral density layer which reduces the wavelength depen
dence of the optical attenuation. The filter is angled to the
optical axis to prevent reflection back to the optical connec
tor. The positioning of the filter with the drive motor, op
tical encoder, and drive electronics will be described later.

A mirror positioned at a 45-degree angle to the optical
path directs the light to the output lens, which focuses it
onto the detector. The mirror is partially transmissive,
which allows the light to be aligned to the detector by
viewing the reflected light from the illuminated detector
with a microscope objective, as shown in Fig. 6.

Optical Microcircuit
The optical microcircuit containing the pin photodiode

and microwave preamplifier is mated to the optoblock. The
pin detector works by converting received optical power

into an electrical current. Light at wavelengths between
1200 and 1600 nm enters through the antireflection-coated
top surface, and passes through the transparent InP p layer.
Electron/hole pairs are created when the photons are ab
sorbed in the InGaAs i region. Reverse bias is applied across
the device, sweeping the electrons out through the bottom
n-type InP substrate, while the holes are collected by the
p-type top contact. The active area is only 25 /xm in diam
eter, which keeps the device capacitance low. This, along
with the short transit time across the i layer, contributes
to a 20-GHz device bandwidth.

Electrical photocurrent from the photodiode's anode is
terminated in a preamplifier that has an input impedance
of 50Ã1 and a bandwidth of 100 kHz to 22 GHz. The cathode
side of the photodiode is bypassed by an 800-pF capacitor
to provide a good RF termination. The preamplifier helps
overcome the relatively high noise figure of the microwave
spectrum analyzer shown in Fig. 3. It also improves the
overall system sensitivity. The preamplifier has about 32
dB of gain, provided by a cascade of four microwave
monolithic integrated circuit (MMIC) amplifier chips, each
with a nominal gain of 8 dB (see box, page 84).

The optical microcircuit package includes the bias board
assembly. This was done to shield the bias lines from any
radiated electromagnetic interference (EMI). In addition, a

Microscope Eyepiece

Continuously Variable
Neutral Densi ty Fi l ter ,

Fiber Optic
Cable (Input)

Encoder

Motor

Copper Mirror

Â¡,|Â¡i|,l Signal Output

Photodiode

Microci rcui t Package' Microcircuit
Printed Circuit Board

F i g . 6 . O p t o b l o c k a n d m i c r o c i r
c u i t a s s e m b l y s h o w i n g o p t i c a l
al ignment.

82 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

spiral wound gasket is placed at the microcircuit-optoblock
interface to reduce the likelihood of any EMI pickup. A
rubber O-ring gasket is also placed at this interface to help
seal the microcircuit assembly.

Average Power Circuitry
Connected to the cathode of the photodetector is a trans-

impedance amplifier, which is the input circuit for the
average power circuitry. The design of the average power
meter was highly leveraged from the HP 8152A Optical
Average Power Meter.2 Fig. 7 shows the block diagram of
the average power circuitry, which incorporates four key
elements: a transimpedance amplifier, offset correction,
wavelength gain correction, and digitization.

In this design, the transimpedance amplifier serves a
dual role. It converts photocurrent into an equivalent volt
age depending on which feedback resistor is selected. In
addition, it provides the reverse bias for the photodiode.
The input amplifier is an OPA111BM, which was chosen
for its low input offset characteristics. The transimpedance
amplifier is followed by a difference amplifier which re
moves the bias voltage component from the signal compo
nent being measured. This amplifier is followed by an in
ternal gain-adjust amplifier, which is set to produce a 4-volt
output when â€” 20 dBm of optical power is present at the
input.

The two values of feedback resistors, along with the three
values of step gain, provide six different range settings.

- -Guarding

" H I

The proper range is automatically selected as a function
of input power level. The design allows a measurement
range of + 3 dBm to less than - 60 dBm when there is no
optical attenuation present. With the attenuator set to 30
dB, power levels up to +33 dBm can be measured. In the
lowest range the feedback resistor is 3.33 Mil and at â€”60
dBm the photocurrent is less than 1 nA, so guarding is
used to prevent offset errors resulting from leakage cur
rents.

X DAC, ADC, and Of fset DAC
To compensate for the photodiode's responsivity vari

ations with wavelength, a multiplying digital-to-analog
converter called the \ DAC is used as a variable-gain
amplifier. The average power reading of the HP 71400A is
calibrated at two wavelengths: 1300 nm and 1550 nm. The
responsivity at 1300 nm is defined as 0 dB and the relative
responsivity value at 1550 nm is within Â±0.5 dB of this
value. To calibrate the HP 71400A to an external reference
or if the customer chooses to operate at another wavelength,
the value of the X DAC can be varied by Â±3 dB using the
USER CAL function.

The operation of the analog-to-digital converter (ADC)
circuitry is identical to that of the HP 8152A.2 An AD7550
13-bit ADC is used, with the following relationship for a
10-dB range step:

n = Ain{4096/Vfs) + 4096,

Photocurrent
Input

Fig . 7 . B lock d iagram of the average power meter c i rcu i t .

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 83

© Copr. 1949-1998 Hewlett-Packard Co.

A Broadband Instrumentation Photoreceiver

A broadband microwave ampl i f ier is the key to achieving good
pho to rece i ve r sens i t i v i t y w i t hou t comprom is i ng t he sys tem 's
bandwidth. The ampl i f ier in the HP 7081 OA Lightwave Receiver
consists of four microwave monoli thic distr ibuted ampli f iers1 that
have their low-frequency corner extended down to 1 00 kHz. Each
ampl i f ier chip is an independent d ist r ibuted ampl i f ier consist ing
of seven GaAs FETs spaced along synthetic 50ÃÃ input and output
transmission l ines. In this distributed design, the signal from each
FET adds to that of i ts neighbors to produce gain at f requencies
beyond the cutof f of the indiv idual FETs.

between the 1 0-pF on-chip bypass capacitor and the inductance
o f the bond w i re connec ted to the ex te rna l bypass capac i to r .
The ampl i f ier b ias is fed into the reverse terminat ion end of the
drain line through a bias choke. This feed point has the advantage
of less sensi t iv i ty to b ias choke shunt ing impedances. The bias
choke i s cons t ruc ted by c lose -w ind ing insu la ted , go ld -p la ted
copper wi re around a h igh-magnet ic- loss cy l indr ica l core. In ter
s tage coup l ing i s th rough a 1000-pF Ta05 th in - f i lm in tegra ted
c i rcui t capaci tor in paral le l wi th a 0.047-,u,F ceramic capaci tor .
The integrated capaci tor has good microwave per formance and

Interstage Blocking
Capacitors

1000 pF

Suspended Substrate
Transmission Line

0.047

HhlÂ·
Fig. external capacitors, of single amplifier stage, showing bias choke, external bypass capacitors, and

the in ters tage coupl ing capaci tors for the MMIC chip.

Deta i ls o f the input s tage o f the photorece iver (F ig . 1) show
how the good low- f requency and h igh - f requency pe r fo rmance
of the ampli f ier cascade is achieved. The gate and drain art i f ic ial
transmission l ines are externally bypassed with 0.047-^iF ceramic
capacitors. A 10ÃÃ resistor is used to prevent paral lel resonance

- 1 - 1 0

the la rge ceramic capac i to r is mounted on a shor t suspended-
subst rate t ransmiss ion l ine segment to reduce paras i t ic capaci
tance to ground. Typ ica l ga in and no ise f igure for the cascade
are shown in Fig. 2.

T o a c h i e v e m a x i m u m p h o t o r e c e i v e r s e n s i t i v i t y , t h e p h o t o -

Fig 2
cade

Start 0.1 GHz
Stop 26.5 GHz

. Gain and noise f igure of the four-stage ampl i f ier cas-
over the WO-MHz- to-22-GHz f requency range.

0.047 MF â€¢
Drain Bypass

Capac i to r

Fig . 3 . Photograph o f the photod iode and f i rs t s tage o f the
amplif ier.

84 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Star t 0 .1 GHz
S top 22 GHz

Fig. 4. Combined f requency response f la tness of the photo-
detector and the ampl i f ier .

detector is not back terminated. Consequent ly , the photod iode
is p laced as c lose as possible to the ampl i f ier input to minimize
mismatch loss. This is shown in Fig. 3. The combined frequency
reponse o f the photodetec tor and ampl i f ie r i s shown in F ig . 4 .
Overal l f reqency response rol l -of f for the opt ical receiver micro-
c i rcu i t is 13 dB. of which 8 dB is f rom the ampl i f ier and 5 dB is
f rom the photodiode.

Reference
1. J . Or r . "A S tab le 2 -26 .5 GHz Two-Stage Dua l -Gate D is t r ibu ted MMIC Ampl i f ie r , '
IEEE-MTT-S Internat ional Microwave Symposium Digest. HH-4, 1986. pg. 81 7.

Dennis Der ickson
Development Engineer

Signal Analysis Divis ion

where n is the number of ADC counts, Ain is the analog
input voltage, and V(s is the full-scale input voltage. A
one-millivolt change in the voltage at Ve in Fig. 7 produces
a one-count change in the ADC reading. To center the input
voltage range on the ADC range, Ve is shifted down by
3.901V to produce the following relationship:

V e (V)

> 7 . 9 9 6
7 .996
4 . 0 0 0
0 . 4 0 0
0 . 0 0 0

-0.195
<-0.195

Ain(V)

4.095
0 . 0 9 9

-3.501
-3.901
- 4 . 0 9 6

ADC
Counts

o v e r f l o w
8191
4195

595
195

0
underflow

Relative
Power

2.0
1.0
0.1
0.0

The relative power in a given range is computed by sub
tracting 195 from the ADC counts and then dividing by
4000 counts.

Because the reverse-biased, uncooled InGaAs photodiode
has a substantial dark current of several nanoamperes that
is present under no illumination, offset compensation had
to be designed to correct for offsets that could be larger
than the signal in the most sensitive range. There are two
convenient places to put the offset correction DAC: before
or after the step-gain amplifier. Placing the offset correction
after the step-gain amplifier has the advantage that the
resolution of the offset correction is constant and indepen
dent of range, and there can be a one-to-one correspondence
between an ADC count and an offset DAC count. However,
the disadvantage is that the effective offset correction range,
referenced to the input, decreases as the step gain is in-

F r e q

f imptd

M a r k e r

R L 1 . 0 0 0 m W

T r a c e s

S t a t e

f l i s c

f lTTEfJ 0 dB
. 5 .00 dB/D lU

M R t t l * F R Q B . 0 B G H z _
X

MKR NRM
O n . O f f

HIGHEST

PEfiK

RUG PWR : .13
MflRKER REÃ PWR

CENTER 11.00 GHz
RB 3.00 MHz W 300 kHz

DELTfi

R.I.N.

BÂ£L
PONER

SPflN 22.00 GHz "ORE

ST 3BE.7 msec 1 of 4
| MENU | T |

Fig. 8. Typical d isplay of the l ight
wave s ignal analyzer showing the
m e n u k e y l a b e l s (f i r m k e y s a n d
sof tkeys), the average power bar,
a n d t h e m o d u l a t e d l i g h t w a v e
spectrum.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 85

© Copr. 1949-1998 Hewlett-Packard Co.

Microwave Mode Reference Plane

I

HP 7081 OA
Lightwave Receiver

Lightwave Opt ical Mode Reference Plane

creased. In this design, a significant offset can exist because
of a large dark current component, particularly at the maxi
mum instrument operating temperature of 55Â°C. Therefore,
a 12-bit offset DAC is used to supply an offset correction
at the input of the step-gain amplifier that can compensate
for as much as 250 nA of dark current at the photodiode.
This causes a corresponding loss in offset resolution in the
most sensitive range, and these leftover residual offset
counts are recorded and subtracted in the firmware.

Input Optical Attenuator
The control circuitry for the input optical attenuator was

highly leveraged from another instrument, the HP 81 58 A
Optical Attenuator.3 The digital motor controller uses an
8-bit microprocessor with 128 bytes of internal RAM and
a 16-bit internal timer. This processor sets the pulse width
of the motor drive, whose period is 31.25 kHz. The motor
driver itself is a simple transistor full bridge circuit. An
optical encoder, driven in quadrature mode, provides an
effective resolution of 2048 positions per revolution. The
positions, corresponding to 1-dB steps of the linear filter
wheel, are measured at both 1300 nm and 1550 nm, and
these positions are stored in EEPROM. The HP 7 1400 A
uses the same motor control firmware as the HP 8158A,
which is based on a PD (proportional differential) al
gorithm.3

Display and User Interface
The goal of the display and user interface design was

that both optical and microwave scientists and engineers
would be comfortable with it. Basically, the design follows
the HP 70000 electrical spectrum analyzer formats, and
integrates the optical functionality into this context.

Primarily menu-driven, the user interface consists of a
set of firmkeys on the left side of the display. As shown
in Fig. 8, these firmkeys are the basic analyzer control
function headings, which when selected, pull up submenus
on the softkeys on the right side of the display. These
softkeys for the most part represent immediately executable
functions. Control of optical parameters such as wavelength
calibration, optical attenuation, power meter offset zeroing,
and optical marker functions is offered on submenus with
related analyzer functions.

Displayed intensity modulation of a lightwave carrier

HP 70000 Series
Spectrum
Analyzer

Lightwave Electr ical Mode
Reference Plane F i g . 9 . D i a g r a m i n d i c a t i n g t h e

m e a s u r e n t r e f e r e n c e p l a n e f o r
each mode of the l ightwave signal
analyzer.

has essentially the same appearance as the electrical mod
ulation spectrum, so the basic display format mimics that
of the electrical spectrum analyzer with one important dif
ference. This difference is the display of the average power
bar on the left side of the screen (see Fig. 8). In addition
to providing an accurate average power indication, the
graphical power bar representation makes optical align
ment much easier. The average power and modulated
power displays are coupled in that they are have the same
scale and are referenced to the same absolute amplitude
level.

The lightwave signal analyzer has three measurement
modes. Two modes are for making lightwave measure
ments â€” the input is the optical input of the lightwave sec
tion. The difference in these two modes is in the display
units. In lightwave-optical mode, the display is referenced
to the optical input connector and the display is calibrated
in optical power units. In lightwave-electrical mode, the
display is referenced to the input of the electrical spectrum
analyzer and the display is calibrated in electrical power

o cc

17 1 8 1 9

Column

2 0

F i g . 1 0 . M o d u l e a d d r e s s m a p f o r t h e l i g h t w a v e s i g n a l
analyzer.

86 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Temperature-Tuned
Nd:YAG Laser
X = 1 .32 iun

Temperature-Tuned
Nd:YAG Laser
X = 1.32 turn

3-dB Fiber
Directional

Coupler

Microwave
Power
Meter

units. This mode was implemented because, before the
lightwave signal analyzer was developed, customers be
came accustomed to using electrical spectrum analyzers to
make these lightwave measurements, and have specified
some of these measurements in electrical power units. The
display units of these two modes are related by the follow
ing equation:

Pelec(dBm) = 2Popt(dBm) + 10log[(l mW) x r2 x 50fixGv(|in|2]

where r is the responsivity of the photodiode and Gv(Un) is
the linear voltage gain of the microwave preamplifier.

The third measurement mode, the microwave mode, is
for making strictly electrical measurements. In the micro
wave mode the RF input of the lightwave section is used
and the optical path is bypassed. The three modes are
shown in Fig. 9.

Firmware Design Overview
As previously mentioned, the HP 71400A Lightwave Sig

nal Analyzer is part of the HP 70000 Modular Measurement
System (MMS). In this system, certain instrument modules,
designated as masters, can control the operation of other
modules, designated as .slaves. Communication between
modules occurs over the internal high-speed modular sys
tem interface bus (HP-MSIB). Whether a module operates
as a master or a slave is determined by the module's internal
firmware design and its relative position in the module
address map.4 The address map for the lightwave signal
analyzer, indicating the row and column positions of the
modules in the system, is shown in Fig. 10. The HP 70810A
lightwave section, in the row 0, column 17 location, is the
master module, controlling all the modules at higher row
and column addresses up to the column where another
master is present on row 0. Thus, a number of independent
instruments can be configured in the system, simultane
ously making measurements.

Microwave
Spectrum
Analyzer

Fig. 1 1 . Diagram of the reference
receiver used to cal ibrate the l ight
wave signal analyzer.

Firmware for the lightwave module is written in the C
programming language, and the compiled code runs on a
Motorola 68000 microprocessor. The firmware consists of
three major components:
â€¢ The pSOS operating system, written by Software Compo

nent Group, Inc.5 This is a full multitasking operating
system.

â€¢ The MMS instrument shell. This is a large, integrated
collection of support routines and drivers intended to
supply functionality to most HP 70000 Series modules.

â€¢ Lightwave-section-specific code written on top of the
instrument shell and the pSOS operating system.
The lightwave-specific code encompasses a number of

elements. Communication, measurement coordination,
and control of the HP 70900A local oscillator module must
be established and maintained. The HP 70900A local oscil
lator module is the controller of the electrical spectrum
analyzer and is allocated a display subwindow for present
ing the lightwave modulation spectrum. An array contain
ing the flatness corrections for the frequency response
of the optical microcircuit is stored in the HP 7081 OA's
EEPROM and is passed over the HP-MSIB to the HP 70900A
to apply as a correction to the displayed trace. A small
vertical stripe on the left edge of the window is reserved
for the average power bar, which the HP 70810A generates.
The HP 70900A is relied upon to display all annotation
normally associated with the spectrum analyzer except for
the active parameter area, the message area, the mode anno
tation, and the average power and optical attenuation anno
tation, for which the HP 70810A is responsible. The manual
interface is handled entirely by the lightwave section. All
remote commands and parameters are parsed by the HP
70810A. Commands that are intended to modify the spec
trum analyzer are passed along to the HP 70900A.

When the HP 70810A is operated without an HP 70900A
as its slave, it operates in a stand-alone mode. In this mode
the module can be used as a lightwave converter, can make

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 87

© Copr. 1949-1998 Hewlett-Packard Co.

P o l a r i z a t i o n 2 0 x
P r e s e r v i n g L e n s

Fig. 12. Heterodyne laser system
f o r c a l i b r a t i n g r e f e r e n c e r e c e i v
ers.

average optical power measurements, and can control the
optical attenuation.

Calibration
A major contribution of the HP 71400A is its optical

calibration. To our knowledge it is the only lightwave prod
uct that is calibrated in both relative and absolute power
levels out to a modulation bandwidth of 22 GHz. The light
wave signal analyzer is calibrated by comparing its re
sponse at 250 frequency points to that of a reference re
ceiver. This specially packaged reference receiver is cali
brated as shown in Fig. 11. All sources of electrical fre
quency response error, including detector capacitance,
mismatch loss, cable loss, and spectrum analyzer ampli
tude errors, are measured by feeding a power-meter-cali
brated microwave signal through the fixture and into the
spectrum analyzer. The frequency response of the reference
detector's photocurrent is then calibrated by turning off
the microwave signal and injecting a constant amplitude-
modulated optical signal whose modulation frequency is
determined by the heterodyne interaction of two quasiplanar-
ring, diode-pumped Nd:YAG lasers,6 one of which is tem
perature tuned over a 22-GHz range.

These two highly stable single-line lasers produce a beat
frequency with a linewidth less than 10 kHz, which is essen
tial for accurate repeatable measurements. As shown in
Fig. 12, the system is constructed with polarization-pre
serving fiber to avoid amplitude variations of the beat fre
quency caused by a change in the relative polarizations of
the two laser signals. The output powers of the lasers are
monitored during the calibration process, eliminating an

other potential error source.7
After the reference receiver is calibrated, it is used to

calibrate lightwave signal analyzer systems. To calibrate a
system, a gain-switched diode laser's output is measured
with the reference receiver. The calibrated laser response
is then used to calibrate the system under test.

RL 10.00 dBm
Atten O d B
5.00 dB/Div
Avg Pwr 19 .1 dBm
Responsivity
1428 Volts/Watt

Mkr #1AFra 13 .04 GHz
- 3 . 1 0 d B

Lightwave Electrical

'bias = 75 mA

= 4 0 m A

Start 10.0 MHz
R B 3 . 0 0 M H z V B 1 0 . 0 k H z

Stop 10.00 GHz
St 1.799 s

Fig . 13 . Modu la t ion f requency response measurement o f a
high-speed laser.

88 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

System Performance
The HP 71400A Lightwave Signal Analyzer offers ad

vanced lightwave measurement performance. The combi
nation of the broad-bandwidth pin photodetector, the high-
gain, low-noise microwave preamplifier, and Hewlett-
Packard's highest-performance spectrum analyzer offers
excellent measurement sensitivity out to 22 GHz. The dis
played average optical noise floor in a 10-Hz resolution
bandwidth is typically better than - 68 dBm from 10 MHz
to 16 GHz, allowing optical signals below - 60 dBm (1 nW)
to be detected easily. With the built-in 30-dB optical at
tenuator, intensity modulation up to + 15 dBm (31.6 mW)
can be displayed.

Modulated power frequency response is flat within an
excellent Â±1.0 dB from 100 kHz to 22 GHz. This is a result
of the optical heterodyne calibration technique and the
method of calibrating the HP 71400A as a system. The
system calibration corrects for the roll-off of the HP 70810A
lightwave section and the frequency response of the spec
trum analyzer. The mismatch loss and cable loss between
the lightwave section and the spectrum analyzer are also
corrected.

RL 10.00 (iW
Atten 0 dB
3.00 dB Div
Avg Pwr 1 .36 mW
Marker
11.33 GHz
468.8 nW

Mkr #1 Frq 11 .33 GHz
468.8 nW

L igh twave Op t i ca l

m A

Start 24.0 MHz
R B 3 . 0 0 M H z V B 1 0 . 0 k H z

Stop 18.00 GHz
St 1.798 s

Fig . 15. In tens i ty no ise measurement o f a h igh-speed laser
showing the intensi ty noise peaking.

Measurements
The HP 71400A can make a number of measurements

on lasers, optical modulators, and receivers.8 Only a few
can be described here.

A key parameter in any lightwave system is the modula
tion bandwidth of the optical source. Current-modulated
semiconductor lasers today have bandwidths that are ap
proaching 20 GHz. This bandwidth is achieved by optimi
zation of the laser construction and selection of the appro
priate current bias point. Fig. 13 shows a measurement of
intensity modulation frequency response on a semiconduc
tor laser designed particularly for high-frequency opera
tion. As can be shown analytically,9 the modulation band
width increases as a function of bias. In addition, the peak
ing in the response decreases, which is generally advan
tageous. If the current is increased beyond the critically
damped response point, the bandwidth decreases.

This intensity modulation response measurement was
made with the HP 71400A in conjunction with the HP
70300A tracking generator (20 Hz to 2.9 GHz) and the HP
70301A tracking generator (2.7 GHz to 18 GHz). Fig. 14
shows the setup. These tracking generators are also mod
ules in the HP 70000 MMS family, and produce a modula
tion signal that is locked to the frequency to which the
analyzer is tuned, thus making stimulus-response measure
ments easy and straightforward.

In most applications the laser noise spectrum is very
important for a number of reasons. It obviously impacts

HP 7Ã“300A/
70301 A

Tracking
Generator

Fig. 14. Block d iagram of the instrumentat ion for h igh-speed
laser modulat ion f requency response measurements.

the signal-to-noise ratio in a transmission system. Further
more, it can be shown that the intensity noise spectrum
has the same general shape as the intensity modulation
response, and can be used as a indicator of potential mod
ulation bandwidth.9 The characteristic noise peak of the
intensity noise spectrum also increases in frequency and
decreases in amplitude as the bias current is increased.
This is shown in Fig. 15.

The laser intensity noise spectrum can be greatly affected
by both the magnitude and the polarization of the optical
power that is fed back to the laser. This is called reflection-
induced noise and is typically caused by reflections from
optical connectors. This reflected power upsets the dynamic
equilibrium of the lasing process and typically increases
the amplitude of the intensity noise as shown in Fig. 16.

RL 16 .00 dBm
A t t e n 0 d B
10.00 dB/Div
A v g P w r 1 6 . 1 d B m
R e s p o n s i v i t y
1428 Vo l t s /Wat t

M k r # 1 F r q 9 . 1 5 G H z
- 2 4 . 3 6 d B m

L igh twave E lec t r i ca l

Re f l ec t i on - Induced
Lase r No ise

O p t i m i z e d L a s e r
No i se F loo r

H f -
Start 24.0 MHz
R B 3 . 0 0 M H z V B 1 0 . 0 k H z

Stop 18.00 GHz
St 1.798 s

Fig . 16 . E f fec ts o f op t i ca l re f lec t ions on the laser in tens i ty
noise.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 89

© Copr. 1949-1998 Hewlett-Packard Co.

It also can induce a ripple on the spectrum with a frequency
that is inversely porportional to the round-trip time from
the laser to the reflection. It should be noted that other
instruments, such as an optical time-domain reflectometer,
can measure the magnitude of a reflection, but the light
wave signal analyzer is the only instrument that can mea
sure the effect of these reflections on the noise characteris
tic of the laser under test.

An important quantity related to signal-to-noise ratio is
the relative intensity noise (RIN). It is a ratio of the optical
noise power to the average optical power, and is an indica
tion of the maximum possible signal-to-noise ratio in a
lightwave system, where the dominant noise source is the
laser intensity noise. In the lightwave-optical measurement
mode, the HP 71400A makes the following measurement
when the RIN marker is activated:

= : P / P r noise' avg

where Pn0ise 's the optical noise power expressed in a 1-Hz
bandwidth, and Pavg is the average optical power. This
measurement can be made directly because of the built-in
power meter function.

Before the development of the lightwave signal analyzer,
customers used a photodiode and a microwave spectrum
analyzer to make this noise measurement, and an ammeter
to monitor the photocurrent. This has led to an alternate
expression of RIN in electrical power units, since these
were the units of the measurement equipment being used.
The HP 71400A has the ability to express this RIN measure
ment in electrical power units in the lightwave-electrical
measurement mode. Fig. 17 shows an RIN measurement
in electrical power units of - 143 dB at 4.65 GHz for this
semiconductor laser. Notice that the noise floor of the HP
71400A is 10 dB lower than the laser noise floor in this mea
surement.

The HP 71400A can make a number of useful measure
ments involving large-signal digital modulation of lasers.

RL 16.00 dBm
Atien O dB
10.00 dB/Div
Avg Pwr 15 .9 dBm
Marker RIN
4.65 GHz
-143 .18 dBc (1 Hz)
1

Mkr #1AFrq 4 .65 GHz
-143 .18 dBc (1 Hz)

Lightwave Electrical
Sample

Laser Intensity Noise

HP 71400A Noise F loor
H 1 1 1 â € ”

Start 24.0 MHz
R B 3 . 0 0 M H z V B 1 0 . 0 k H z

Stop 10.00 GHz
St 1 .798 sec

Fig. 1 7. Relat ive intensity noise (RIN) measurement of a high
speed laser .

R L - 1 1 . 5 6 d B m
Atten 5 dB
3.00 dB/Div
A v g P w r - 5 . 3 d B m

Mkr #1 Frq 566 MHz
- 3 1 . 2 4 d B m

Lightwave Optical

A l / v
Center 1.173 GHz
R B 1 . 0 0 M H z V B 3 . 0 0 k H z

Span 2.346 GHz
St 10.00 s

Fig. 18. Broadband sweep of a laser modula ted wi th a 565-
megabi t -per-second PRBS data pat tern.

Fig. 18 shows a laser transmitting pseudorandom binary
sequence (PRBS) intensity modulation at 565 megabits per
second. This sequence is a widely used test signal usually
observed as an eye diagram in the time domain. In the
frequency domain, an envelope that is the Fourier trans
form of the pulse shape is displayed. Nonideal characteris
tics, such as clock feedthough, are evident. As shown in
Fig. 19, a narrower frequency sweep reveals that the signal
is divided into discrete frequencies whose spacing is equal
to the clock rate divided by the sequence length. Noise is
also visible. In fact, different signal-to-noise ratios are ob
servable as the feedback to the laser is adjusted. It is likely
that this is the only way to measure transmitter-related

R L - 2 4 . 0 0 d B m
Atten 0 dB
3.00 dB/Div
A v g P w r - 1 6 . 6 d B m
Marker A
554 kHz
- 0 .0 :

M k r # 1 A F r q 5 5 4 k H z
- 0 . 0 2 d B

Lightwave Optical

Center 250.000 MHz
RB 21 . 5 kHz VB 1 .00 kHz

Span 2.321 MHz
St 323.8 ms

Fig . 1 9. Narrowband sweep of a laser modulated with a PRBS
data pat tern , showing the ind iv idua l f requency components
and the ef fect of the polar izat ion of the ref lected l ight on the
signal-to-noise.

90 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

R L - 1 0 . 0 0 d B m
A t ten 8 dB
3.00 dB DIV
A v g P w r - 1 5 . 7 d B m
Marke r A
12.51 GHz
- 2 . 9 8 d B
1

Mkr #1AFrq 12 .51 GHz
- 2 . 9 8 d B

Lightwave Optical

Center 11.00 GHz
R B 3 0 0 k H z V B 1 0 . 0 k H z

Span 22.00 GHz
St 22.00 s

Fig . 20. Modula t ion spect rum of a pu lsed laser .

noise problems under large-signal modulation. In princi
ple, it is possible to estimate bit error rate from this signal-
to-noise ratio.

High-speed pulse modulation can also be displayed on
the HP 71400A. Fig. 20 shows the frequency-domain spec
trum of a laser being driven at 100 MHz and generating
35-picosecond-wide pulses. The spacing between the indi
vidual discrete frequencies is equal to the pulse repetion
rate. Once again, the envelope is the Fourier transform of
the pulse shape. The pulse width can be determined from
the 3-dB bandwidth, here 12.5 GHz, by assuming the pulse
shape is Gaussian and using the following relationship:

Pulse Width = 0.44/Optical 3-dB Bandwidth.

This technique may be just as accurate as measuring the
pulse width on a sampling oscilloscope, where the rise
time of the scope must be deconvolved to get the correct
answer.

Acknowledgments
The development of the HP 71400A Lightwave Signal

Analyzer depended on contributions of a number of indi
viduals, spread over a number of Hewlett-Packard divi
sions. This project had the potential to be a project man
ager's nightmare with all the personnel interdependency
and new technology development, along with an aggressive

introduction schedule. It was the dedication and persever
ance of the following people that made this product hap
pen. The project team and their responsibilities were: Den
nis Derickson, microcircuit design, Roberto Collins, digital
design, Jimmie Yarnell, mechanical design, Dave Bailey
and Zoltan Azary, firmware design. The instrument shell
design team completed their portion of the firmware under
significant time constraints. This product was based on a
new technology for Signal Analysis Division, and the effort
of the NPI team to get this product into production was
commendable. The major contributions of this instrument
were dependent on the high-speed pin photodiode, distrib
uted MMIC amplifier, and TaO5 thin-film integrated
capacitor technology, all developed by the engineers at
Microwave Technology Division. Portions of the design
were leveraged from existing products with the help of the
engineers at Boblingen Instruments Division. I would like
to thank Jack Dupre and the rest of the management team
at Signal Analysis Division who supported the develop
ment of this product. Finally, I would especially like to
acknowledge the efforts of Rory Van Tuyl, who started our
lightwave program at Signal Analysis Division and whose
vision this product reflects.

References
1. W. Op "A High-Precision Optical Connector for Op
tical Test and Instrumentation," Hewlett-Packard Journal, Vol. 38,
no. 2, February 1987, pp. 28-30.
2. H. Schweikardt, "An Accurate Two-Channel Optical Average
Power Meter," Hewlett-Packard Journal, Vol. 38, no. 2, February
1987, pp. 8-11.
3. B. Maisenbacher, S. Schmidt, and M. Schlicker, "Design Ap
proach for a Programmable Optical Attenuator," Hewlett-Packard
Journal, Vol. 38, no. 2, February 1987, pp. 31-35.
4. Product Note 70000-1, HP 70000 System Design Overview,
Hewlett-Packard Publication No. 5954-9135.
5. pSOS-68K User's Manual, The Software Components Group
Inc., Doc. No. PK68K-MAN.
6. W. R. Trutna Jr., D. K. Donald, and M. Nazarathy, "Unidirec
tional Diode Laser-Pumped Nd:YAG Ring Laser," Optical Letters,
Vol. 12, 1987, pg. 248.
7. T. of Tan, R. L. Jungerman, and S. S. Elliot, "Calibration of
Optical Receivers and Modulators Using an Optical Heterodyne
Technique," ÃEEE-MTT-S International Microwave Symposium
Digest, OO-2, 1988, pp. 1067-1070.
8. Application Note 371, Lightwave Measurements with the HP
71400 Lightwave Signal AnaJyzer, Hewlett-Packard Publication
No. 5954-9137.
9. C. Miller, D. Baney, and J. Dupre, "Measurements on Lasers
for High-Capacity Communication Systems," Hewlett-Packard RF,
Microwave, and Lightwave Measurement Symposium, 1989.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 91

© Copr. 1949-1998 Hewlett-Packard Co.

Linewidth and Power Spectral
Measurements of Single-Frequency
Lasers
A specia l f iber opt ic in ter ferometer preprocesses opt ica l
s ignals for a l ightwave s ignal analyzer to measure laser
character is t ics us ing de layed and gated de layed se l f -
homodyne techniques.

by Douglas M. Baney and Wayne V. Sor in

WITH THE ADVENT OF SEMICONDUCTOR lasers
and low-loss optical fibers, the possibility of
achieving over 1000-Gbit-km/s bandwidth-dis

tance products has propelled research towards improving
the performance of the laser and the optical fiber transmis
sion medium.1 To minimize transmission penalties result
ing from dispersion in long optical fiber communication
links, high-performance lightwave communication sys
tems require lasers that operate in a single longitudinal
mode (i.e., single-frequency oscillation) and have minimal
dynamic linewidth broadening (i.e., frequency chirp)
under modulation. In coherent communications, the lasing
linewidth becomes an important determinant of system
performance. In the development of FSK modulated sys
tems, which often rely on modulating the injection current
to a semiconductor laser, the FM deviation as a function
of both injection current and modulation frequency must
be characterized.

Advances in laser technology necessary to meet the strin
gent requirements of communications system design have
required similiar advances in measurement techniques and
technology. The HP 1 1 980A Fiber Optic Interferometer was
developed to work as an accessory to the HP 71400A Light
wave Signal Analyzer (see article, page 80) to enable users
to characterize many important spectral modulation prop
erties of single-frequency telecommunication lasers.

Interferometer Design
The function of the HP 11980A is to act as a frequency

discriminator, converting optical phase or frequency devia

tions into intensity variations, which can then be detected
using a square-law photodetector (e.g., the high-speed
photodiode of the HP 71400A). Inside the HP 11980A is
an unbalanced fiber optic Mach-Zehnder interferometer
(see Fig. 1). This type of interferometer has an input direc
tional coupler, which splits the incoming optical signal
into two equal parts. The two signals then travel along
separate fiber paths where they experience a differential
delay, TO. The two signals are then recombined using
another directional coupler. Since the optical fiber does
not preserve the polarization state, a polarization state con
troller is added to one arm of the interferometer. The con
troller is purely mechanical and consists simply of a loop
of fiber that can be rotated. This adjustment allows the user
to maximize the interference signal by ensuring similar
polarization states at the combining directional coupler.
The optical output can then be sent to the HP 71400A
where intensity variations are converted to a time-varying
photocurrent, which is displayed on a spectrum analyzer.

The HP 11 980 A interferometer is completely passive and
has the same adaptable fiber optic connectors as the HP
71400A. The connectors are compatible with the HMS-10/
HP, FC/PC, ST, biconic, and DIN connector formats. Fused
single-mode fiber directional couplers from Gould, Inc.
were chosen for their broad wavelength range from 1250
to 1600 nanometers, enabling coverage of the important
1300-nm and 1550-nm telecommunication windows. One
arm of the interferometer is spliced to a 730-meter reel of
Corning single-mode optical fiber to provide a differential
delay of 3.5 microseconds. This delay permits laser

HP 11980A F iber Opt ic In ter ferometer

0 0

HP 71400A
Lightwave Signal

Analyzer

Fig. 1 . Distributed feedback (DFB)
l ase r l i new id th measu remen t us
i n g t h e d e l a y e d s e l f - h o m o d y n e
technique.

92 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

linewidth measurements as low as 225 kHz (Lorentzian
line shapes).

Laser Diode Linewidth
The most basic type of semiconductor laser uses reflec

tions from cleaved end facets to provide the feedback
needed for laser operation. One disadvantage of this Fabry-
Perot type laser is that it generally operates in several fre
quency modes, each separated by about 100 GHz. This can
produce effective laser linewidths greater than 500 GHz,
which can limit data rates (because of dispersion) in long-
haul fiber optic communication links. One possible solu
tion for reducing the effects of dispersion is the develop
ment of DFB (distributed feedback) and DBR (distributed
Bragg reflector) semiconductor lasers. In these lasers, a
wavelength filter (a diffraction grating) suppresses all but
one of the frequency modes of the laser. The resulting
linewidths for these lasers are typically less than 50 MHz.
Considering that the laser itself oscillates at a frequency of
about 200,000 GHz, this is a relatively small fractional
linewidth.

DFB and DBR lasers have a tendency to change their
operating frequency for different levels of injection current.
This causes the laser to frequency chirp while being
amplitude modulated, which can also result in limited data
rates because of dispersion. The magnitude of these fre
quency chirps can be in the tens of gigahertz. Measurements
of linewidth and frequency chirp yield important informa
tion not only about the laser's performance in a lightwave
link, but also about the physical characteristics of the laser
itself.

Measuring Linewidth
The HP 11980A enables measurement of laser linewidth,

Av, by preprocessing the optical signal for the HP 71400A
Lightwave Signal Analyzer. The block diagram of the mea
surement system is shown in Fig. 1. The single-frequency
laser, typically a DFB or DBR laser, is coupled to an optical
fiber. Isolators are often used to reduce perturbations of

SE(f)

Â¿r * i x â€¢ t

S Â ¡ (f) = S E (f) * S E (f)

F ig . 2 . A f te r de tec t i on i n the HP 71400A L igh twave S igna l
Ana lyzer , the spec t rum o f the s igna l f rom the HP 1 1980 A
F ibe r Op t i c I n te r f e rome te r i s t he au toco r re l a t i on f unc t i on
o f the laser 's e lect r ic f ie ld spect rum SE(f) . The -k ind icates
correlation.

the laser by optical feedback arising from optical scattering
in the fiber or at optical interfaces. The signal to be analyzed
is then fed into the unbalanced Mach-Zehnder fiber optic
interferometer inside the HP 11980A. Inside the inter
ferometer the laser signal is split into two signals, which
experience different delays before being recombined and
sent to the photodiode of the HP 71400A. If the differential
delay r0 is larger than the coherence time TC of the laser,

R L - 4 4 . 0 0 d B m
Atten O d B
2.00 dB Div
A v g P w r - 1 8 . 3 d B m

Mkr #1AFrq 23 .4 MHz
- 3 . 0 3 d B

Lightwave Electrical
Sample

DFB LD 1549 nm
Biased at 2 l,h

Start 500 kHz
RB 100 kHz VB 300 Hz

(a)

R L - 6 0 . 0 0 d B m
Atten 0 dB
2.00 dB Div

- - A v g P w r - 1 8 . 2 d B m
Reference Level
- 6 0 . 0 0 d B m

Stop 100.0 MHz
St 9.950 s

Mkr #1AFrq 25 .5 MHz
- 3 . 0 0 d B

Lightwave Electrical
Sample

DFB LD 1549 nm
Biased at 2 I,.,

Start 600.0 MHz
R B 1 0 0 k H z V B 3 0 0 H z

Stop 800.0 MHz
St 20.00 s

(b)

Fig. 3. (a) A l inewidth measurement for a DFB laser operat ing
at 1549 nm. The l inewidth is approximately 25 MHz. (b) Two-
s ided measurement of the same laser l inewidth.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 93

© Copr. 1949-1998 Hewlett-Packard Co.

the two combined signals become uncorrelated. This pro
cess is equivalent to mixing two separate laser signals, both
having the same linewidth and center frequency. The mix
ing (i.e., multiplying) of these two signals is accomplished
as a result of the square-law nature of the photodiode. The
resulting photocurrent spectrum is the autocorrelation
function of the laser's electric field spectrum SE(f) and is
commonly referred to as the delayed self-homodyne
linewidth measurement. This process is shown graphically
in Fig. 2. Since the displayed spectrum is the autocorrela
tion function of the laser's line shape, its spectral width is
approximately twice that of the laser linewidth.2 For the
special case of Lorentzian line shapes, the autocorrelation
function is also Lorentzian and has a linewidth exactly
twice that of the original line shape. For Gaussian line
shapes, the autocorrelation function is also Gaussian but
has a linewidth equal to \/2 times that of the original line
shape. Currently, most single-frequency semiconductor
lasers are accurately described by Lorentzian line shapes.

For the delayed self-homodyne measurement to be valid,
the combining signals from the two arms of the interferome
ter must be uncorrelated. For the HP 11980A, this means
that the coherence time of the laser should be less than the
interferometer delay of 3.5 microseconds. Since the coher
ence time is approximately equal to the inverse of the
linewidth (i.e., rc ~ 1/Av), the HP 11980A can measure
linewidths less than 300 kHz.

The signal-to-noise ratio of the displayed photocurrent
spectrum can often be improved by manual adjustment of
the front-panel knob on the HP 11 980 A. This polarization
state adjustment can increase the interference between the
two mixing signals by ensuring that their polarization states
are closely matched. The shape of the displayed spectrum
is not altered by this adjustment, only its size relative to
the noise floor. It was decided not to automate this adjust
ment because of the additional complexity that would be
required.

Fig. 3a shows a linewidth measurement for a DFB laser
operating at 1549 nanometers. The linewidth, Av, is found
by placing the display delta marker at the - 3-dB point
from the peak. The half width is measured, since the au
tocorrelation process doubles the width of the laser's spec
trum. For the conditions of Fig. 3a, the laser linewidth is
measured to be approximately 25 MHz.

It is also possible to display a two-sided line shape by
by applying a small amount of amplitude modulation to
the laser and observing the linewidth convolved about one
of the modulation sidebands.3 This result is shown in Fig.
3b where the full double-width Lorentzian line shape is
displayed. The linewidth is again measured to be about 25
MHz, which agrees with that obtained in Fig. 3a.

Modulated Laser Power Spectrum Measurement
Using a newly developed measurement technique,4 the

HP 11980A Fiber Optic Interferometer can used to measure
laser chirp as well as intentional frequency modulation.
Chirp can be thought of as the unwanted frequency devia
tion in the optical carrier of a modulated laser. There exist
a variety of techniques to measure the modulated power
spectrum of a single-frequency laser. These include grating
and Fabry-Perot spectrometers and heterodyne down-con
version using two lasers. The technique presented here
was developed in response to the shortcomings of previ
ously known techniques. For example, it offers superior
frequency resolution than grating spectrometers, which in
practice are limited to a resolution of about 1 angstrom
(approximately 15 GHz). Higher resolution (i.e., finesse)
can be achieved with Fabry-Perot spectrometers, but the
wavelength range is limited for a fixed pair of mirrors. In
heterodyne techniques, two lasers are required and their
wavelengths must be precisely controlled, which often re
quires a high degree of complexity. The technique pre
sented in this section overcomes these problems, allowing
homodyne frequency measurements to be made over a
range of 300 kHz to 22 GHz.

Laser chirp in semiconductor lasers is caused by the
dependence of the real and imaginary parts of the index
of refraction on the injection current. Because of this effect,
modulation of the injection current can result in large fluc
tuations of the lasing wavelength. This phenomenon is
responsible for a substantial widening of the electric field
modulation power spectrum, Sm(f), beyond the Fourier
transform limit of the information bandwidth. A wide
power spectrum can impose severe transmission penalties
in lightwave links with nonnegligible wavelength disper
sion. Using the new gated delayed self-homodyne tech
nique,4 a homodyne measurement of Sm(f) can be performed
using the HP 1 1 980 A in conjunction with the HP 71400A.

H P 7 1 4 0 0 A

Spectrum
Analyzer

Modulation
Source

1 mi â€” Â«ii- [_ â€” ^ t
Gate Input

Per iod = 2T -f t
Fig. 4 . Gated delayed se l f -homo-
dyne technique for measuring laser
frequency chirp and FM deviation.

94 HEWLETT-PACKARD JOURNAL FEBRUARY 1990

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4 shows the measurement setup. With the laser
biased above threshold, the injection current is gated be
tween two states, one state modulated and the other state
unmodulated. Thus, the laser behaves as a modulated laser
for a period TO and an unmodulated laser, or local oscillator
signal, for a sequential period TO. The period TO is chosen
to equal the differential delay in the arms of the fiber optic
interferometer, which is assumed to be longer than the
coherence time of the laser. In the HP 11 980 A, there is a
continuous combination of a modulated state with an un
modulated state. These states are then mixed in the photo-
detector of the HP 71400A. The power spectrum of the
detector photocurrent, SÂ¡(f), is displayed by the HP 71400A.
The homodyne down-conversion of the optical spectrum
is illustrated in Fig. 5. In this figure, the modulated spec
trum is shown to be asymmetrically located around the
average frequency v0. This demonstrates the folding about
zero frequency which is characteristic of homodyne mixing.

This spectrum, SÂ¡(f), for the case where ra > TC, can be
approximated as:5

S,(f) = SD(f) * <Sm(f) + Sm(-f)}

where SD(f) is the direct intensity modulation that would
be measured if the interferometer were not present, and
the other terms describe the Lorentzian line shape of the
laser crosscorrelated with the homodyne power spectrum
of the lasers's electric field modulation. The ability to make
this measurement while the laser is modulated allows the
determination of the alpha factor,6 which characterizes the
coupling between gain and frequency chirp in semiconduc
tor lasers.

Figs. 6a and 6b demonstrate some of the experimental
results that can be obtained using this gated delayed self-
homodyne technique. In Fig. 6a, the injection current to a
DFB laser is sinusoidally modulated at a rate of 300 MHz.
Besides introducing a small amount of intensity modula
tion, the optical frequency is also modulated. The modula-

SE(f) S J f)

I
I B

S , (f) = S E (f) * S m (f)

D

AA
_Â» . f

Fig. 5. For the gated delayed sel f -homodyne technique, the
power spectrum of the detector photocurrent is the crosscor-
relat ion funct ion of the laser electr ic f ield spectrum SE(f) and
the modulated electr ic f ield spectrum Sm(f). Homodyne detec
t ion resul ts in the fo ld ing of the upper and lower s idebands,
as i l lustrated in the displayed spectrum.

tion of the optical carrier results in an electric field spec
trum whose peaks are spaced by 300 MHz and whose
amplitudes are described in terms of Bessel functions as
predicted by classical FM theory. By adjusting the injection
current to null a specific Bessel sideband, the frequency
modulation index /3 can be determined very accurately.
This technique is useful for accurately determining the
optical FM response at various modulation frequencies.

In Fig. 6b, the modulation frequency was reduced to 45
MHz, which results in a larger FM modulation index for

. R L - 2 8 . 0 0 d B m
A t t e n 0 d B
4 .00 dB/D iv .
A v g P w r - 2 1 . 2 d B m

L igh twave E lec t r i ca l

M o d u l a t e d P o w e r S p e c t r u m :
DFB LD B iased a t 2 .2 l th

= 300 MHz
Petec = 3.4 dBm

Star t 24 .0 MHz
RB 3 .00 MHz V B 1 0 . 0 k H z

R L - 3 6 . 2 9 d B m
A t ten 4 dB
3 .00 dB/D iv
A v g P w r - 1 6 . 8 d B m

Stop 2 .500 GHz
St 247 .6 ms

L igh twave E lec t r i ca l

S tar t 24.0 MHz
RB 3 .00 MHz VB 3 .00 kHz

S top 10 .00 GHz
St 3 .325 s

(b)

F ig . 6 . (a) Ga ted de layed se l f - homodyne power spec t rum
for a DFB laser wi th in ject ion current s inusoidal ly modulated
at 300 MHz. (b) Same measurement wi th the modulat ion f re
quency reduced to 45 MHz, resu l t ing in a larger modulat ion
index . The two cu rves rep resen t d i f f e ren t s inuso ida l d r i ve
cu r ren t s t o t he l ase r , r esu l t i ng i n d i f f e ren t deg rees o f f r e
quency ch i rp ing.

FEBRUARY 1990 HEWLETT-PACKARD JOURNAL 95

© Copr. 1949-1998 Hewlett-Packard Co.

the laser. The individual sidebands are no longer resolved
because of the finite linewidth of the laser, and the spec
trum takes on the shape of the probability density function
for wideband sinusoidal FM modulation. The two curves
in Fig. 6b indicate the progression of laser chirp with in
creasing modulation power. The difference between these
two curves corresponds to a ratio of optical frequency chirp
to injection current of 410 MHz/mA at a modulation fre
quency of 45 MHz.

The resolution of the technique is approximately equal
to the laser linewidth and therefore can be significantly
superior to that of the Fabry-Perot spectrometer while being
able to operate over a wavelength range of approximately
1250 to 1600 nm. Compared to heterodyne techniques em
ploying two lasers, this technique has the advantage of
wavelength autotracking between the local oscillator and
the modulated laser, since the same laser is used to generate
both signals.

Summary
The HP 11 980 A Fiber Optic Interferometer was de

veloped to enhance the measurement capabilities of the
HP 71400A Lightwave Signal Analyzer. The fiber inter
ferometer provides the ability to compare an optical signal
with a 3.5-microsecond delayed version of itself. Using this
type of comparision, information can be obtained about
deviations in the optical carrier frequency. This enhance
ment allows the HP 71400A to measure laser linewidths
as low as 225 kHz and frequency chirp (up to Â±22 GHz)
over a wavelength range of 1250 to 1600 nm.

Acknowledgments
Since the conception of the HP 11980A was based on a

new measurement technique, it required allocation of pre
viously unscheduled human and material resources. Many
people put in the extra effort needed to make it a reality.
Some key people and their responsibilities are as follows.
Rory Van Tuyl provided indispensable management and
technical support. Scott Conrad and Ron Koo provided
manufacturing and production engineering support. Dean
Carter performed mechanical design. At Hewlett-Packard
Laboratories, Moshe Nazarathy and Steve Newton provided
important technical support.

References
1. N.A. Olsson, G.P. Agrawal, and K.W. Wecht, "16 Gbit/s, 70 km
pulse transmission by simultaneous dispersion and loss compen
sation with 1.5 fan optical amplifiers," Electronics Letters, Vol.
25, April 1989, pp. 603-605.
2. M. Nazarathy, W.V. Sorin, D.M. Baney, and S.A. Newton,
"Spectral analysis of optical mixing measurements," Journal of
Lightwave Technology, Vol. LT-7, 1989, pp. 1083-1096.
3. R.D. Esman and L. Goldberg, "Simple measurement of laser
diode spectral linewidth using modulation sidebands," Elec
tronics Letters, Vol. 24, October 1988, pp. 1393-1395.
4. D.M. Baney and W.V. Sorin, "Measurement of a modulated
DFB laser spectrum using gated delayed self-homodyne
technique," Electronics Letters, Vol. 24, May 1988, pp. 669-670.
5. D.M. Baney and P.B. Gallion, "Power spectrum measurement
of a modulated semiconductor laser using an interferometric self-
homodyne technique: influence of quantum phase noise and field
correlation," IEEE Journal of Quantum Electronics, Vol. 25,
October 1989, pp. 2106-2112.
6. C.H. Henry, "Phase noise in semiconductor lasers," Journal of
Lightwave Technology, Vol. LT-4, 1986, pp. 298-311, 1986.

OICK DQL4N

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i fornia 94304

ADDRESS CORRECTION REQUESTED

February 1990 Volume 41 â€¢ Number 1

irmation from the LabÃ³ralo
Hewlett -Packard Company
ckard Company, 3200 Hi l lv iew

Ito. California 94304 U.S. A

1180 AM Amste lveen, The Nether lands
Yokogawa-Hewlet t -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1MB Cana'

C H A N G E O F A D D R E S S :

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journal , 3200 Hi l lv iew Avenue, Palo Al to, CA 94304 U.S.A. Inc lude your o ld address label , i f any. Al low 60 days

5953-8579

© Copr. 1949-1998 Hewlett-Packard Co.

	An Overview of the HP OSI Express Card
	The HP OSI Express Card Backplane Handler
	Custom VLSI chips for DMA
	CONE: A Software Environment for Network Protocols
	The Upper Layers of the HP OSI Express Card Stack
	The OSI Connectionless Network Protocol
	HP OSI Express Design for Performance
	The HP OSI Express Card Software Diagnostic Program
	Support Features of the HP OSI Express Card
	Integration and Test for the HP OSI Express Card's Protocol Stack
	High-Speed Lightwave Signal Analysis
	Linewidth and Power Spectral Measurements of Single-Frequency Lasers

