
H E W L E T - P A C K A R D

JOURNAL
J u n e 1 9 9 3

(41 " O Â » H E W L E T T
" V * P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL J u n e 1 9 9 3 V o l u m e 4 4 â € ¢ N u m b e r 3

Articles

j O R C A : a n d R o b o t f o r C h e m i c a l A n a l y s i s , b y G a r y B . G o r d o n , J o s e p h C . R o a r k , a n d
Ar thu r Sch le i fe r

| The HP ORCA System Outside the Analytical Laboratory

) Grav i ty -Sens ing Joy St ick

1 A A b s o l u t e D i g i t a l E n c o d e r

20

31

HP OpenODB: An Object-Oriented Database Management System for Commercial
Appl ica t ions, by Raf iu l Ahad and Tu-T ing Cheng

The HP Ul t ra VGA Graphics Board, by Myron R. Tut t ie , Kenneth M. Wi lson, Samuel H. Chau,
and Yong Deng

POSIX In ter face for MPE/ iX, by Hajesh Lalwani

A / A P r o c e s s f o r P r e v e n t i n g S o f t w a r e H a z a r d s , b y B r i a n C o n n o l l y

R T C o n f i g u r a t i o n M a n a g e m e n t f o r S o f t w a r e T e s t s , b y L e o n a r d T . S c h r o a t h

Editor, Richard R Dolan â€¢ Associate Editor, Charles L Leath â€¢ Publication Production Manager, Susan E. Wright â€¢ I l lustration, RenÃ©e D. Pighini
Typography/Layout , C indy Rub in â€¢ Test and Measurement Organ iza t ion L ia ison, Sydney C. Avey

Advisory Frank Harry W. Brown, Integrated Circui t Business Div is ion, Santa Clara, Cal i forn iaÂ» Frank J. Calv i l lo , Greeley Storage Div is ion. Greeley, Colorado* Harry
Chou, Microwave Systems Div is ion, Santa Hosa, Cal i forn ia Derek I Dang, System Suppor t Div is ion, Mounta in View, Cal i forn iaÂ» Rajesh Desai , Commerc ia l Systems
Division, Cupertino, California â€¢ Kevin G. Ewert, Integrated Systems Division, Sunnyvale, California â€¢ Bernhard Fischer, Boblingen Medical Division, Boblingen, Germany Â»
Douglas Gennetten, Greeley Hardcopy Division, Greeley, ColoradoÂ» Gary Gordon, HP Laboratories, Palo Alto, CaliforniaÂ» Matt J. Marline, Systems Technology Division,
Roseville, California â€¢ Bryan Hoog, Lake Stevens Instrument Division, Everett, Washington Â» Grace Judy, Grenoble Networks Division, Cupertino, California Â» Roger L.
Jungerman, â€¢ Technology Division, Santa Hosa. Cal i fornia â€¢ Paula H. Kanarek, InkJet Components Division, Corval l is. Oregon â€¢ Thomas F Kraemer, Colorado
Springs Division. Colorado Springs, Colorado Â» Ruby B. Lee, Networked Systems Group. Cupertino, California â€¢ Bill Lloyd, HP Laboratories Japan, Kawasaki, Japan Â»
Al f red VXI Waldbronn Analyt ical Div is ion. Waldbronn, GermanyÂ» Michael P. Moore, VXI Systems Div is ion, Loveland, ColoradoÂ» Shel ley I . Moore, San Diego Pr inter
Division, Wil l iam Software CaliforniaÂ» Dona L. Merri l l , Worldwide Customer Support Division. Mountain View, California* Wil l iam M. Mowson, Open Systems Software
Division, Orsolini, Massachusetts Â» Steven J. Narciso, VXI Systems Division, Loveland, Colorado Â» Garry Orsolini, Software Technology Division, Rosevil le. California â€¢
Raj Oza, Peripherals Technology Division, Mountain View. California Â» Han Tian Phua, Asia Peripherals Division, Singapore Â» Ken Poulton, HP Laboratories, Palo Alto,
California Systems Fort Riebesell, Boblingen Instruments Division, Boblingen. GermanyÂ» Marc Sabaiella, Software Engineering Systems Division, Fort Collins, Colorado â€¢
Michael B. Bristol, Integrated Circuit Business Division, Corval l is, OregonÂ» Phi l ip Stenton, HP Laboratories Bristol, Bristol, EnglandÂ» Beng-Hang Tay, Singapore
Networks Operation, Singapore Â» Stephen R. Undy, Systems Technology Division, Fort Collins, Colorado â€¢ Richard B. Wells, Disk Memory Division, Boise, Idaho â€¢ Jim
Wiil i ts, Division. and System Management Division, Fon Coll ins, Colorado Â» Koichi Yanagawa. Kobe Instrument Division. Kobe, Japan Â» Dennis C. York, Corvall is Division.
Corvall is. OregonÂ» Barbara Zimmer, Corporate Engineering, Palo Alto, California

Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 9 3 P r i n t e d i n U . S . A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

I Implementing and Sustaining a Software Inspection Program in an R&D Environment,
by Jean M. MacLeod

64 The Use Process, Total Quality Control Techniques to Improve the Software Localization Process,
by John Kris Goodnow, Cindie A. Hammond, Wil l iam A. Koppes, John J. Krieger, D. Kris
Rovel l -Rixx, and Sandra J. Warner

| Tools for the Language Translation Process

A Transact ion Approach to Er ror Hand l ing , by Bruce A. Rafne l

Error Definition 72
] User Interface Management System for HP-UX System Administration Applications,

by Mark H. Notess

81 SAM versus Manual Administration

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

7 7 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P) p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r
c o n s e q u e n t i a l d a m a g e s , a t t o r n e y ' s a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d a d d r e s s i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . P l e a s e a d d r e s s s u b s c r i p t i o n o r c h a n g e o f a d d r e s s r e q u e s t s o n p r i n t e d l e t t e r h e a d l o r
i nc lude the submi t t i ng ca rd) t o t he HP headquar te rs o f f i ce i n you r coun t r y o r t o t he HP add ress on the back cove r . When submi t t i ng a change o f add ress ,
p l e a s e n o t y o u r z i p o r p o s t a l c o d e a n d a c o p y o f y o u r o l d l a b e l . F r e e s u b s c r i p t i o n s m a y n o t b e a v a i l a b l e i n a l l c o u n t r i e s .

S u b m i s s i o n s : w i t h a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h
H P - r e l a t e d c o n t a c t o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e
E d i t o r b e f o r e a r t i c l e s s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s
a n d m a y a r e l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . U t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

C o p y r i g h t Â © 1 9 9 3 H e w l e t t - P a c k a r d C o m p a n y . A l l r i g h t s r e s e r v e d . P e r m i s s i o n t o c o p y w i t h o u t f e e a l l o r p a r t o f t h i s p u b l i c a t i o n i s h e r e b y g r a n t e d p r o v i d e d
that 1) advantage; Company are not made, used, d isplayed, or d is t r ibuted for commercia l advantage; 2) the Hewlet t -Packard Company copyr ight not ice and the t i t le
o f t h e t h e a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , subm iss ions , and reques t s t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3200 H i l l v i ew Avenue , Pa lo A l t o , CA 94304 U .S .A .

June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
The HP ORCA (Opt imized Robot for Chemical Analysis) system is a di f ferent k ind
of robot . In the words of Gary Gordon, one of the robot 's designers and coauthor
o f the robot on page 6 , "Why would a company choose to opt imize i ts f i rs t robot
for in i t ia l ly doing chemistry instead of , say, c i rcui t board or inst rument test ing?
The answer is that there was a press ing customer need. HP is a major suppl ier
o f ana ly t ica l ins t rumentat ion such as gas chromatographs. Such ins t ruments
he lp ensure the c lean l iness o f the food we eat and the water we dr ink by detec t
ing harmfu l contaminants such as pest ic ides and indust r ia l wastes. The f i rs t
s tep i n e r ro r - i s samp le p repa ra t i on . I t i s t ed ious , t ime-consuming , and e r ro r -
prone â€” entails short, a ripe candidate for automation. Sample preparation entails

reducing injection matrix such as apples, pills, or blood serum to a clear concentrated fluid suitable for injection
in to the chromatograph. I t invo lves such wet chemis t ry operat ions as crush ing, weigh ing, cent r i fug ing,
ext ract ing, and f i l ter ing. These are not enr ich ing tasks for most people, yet tens of thousands of chemists
are locked The the ted ium of the i r repet i t ion. What sca le of sample-prep automat ion is appropr ia te? The
var ia t ions f rom one procedure to the next ru le out ded icated ins t ruments . Ins tead a robot ics approach
f i t s bes t , in te r faced wi th common labora tory appara tus such as cent r i fuges and ba lances. A search fo r
commerc ia l robots showed tha t they were typ ica l l y too b ig and heavy , were op t imized fo r p rec is ion as
sembly volumes. as instal l ing machine screws, and only accessed small work volumes. The HP ORCA robot
system is and d i f ferent . I t manipu la tes smal l (subk i logram) ob jects such as tes t tubes and probes in and
out of l ively p laces wi th in a huge several-cubic-meter work volume at l ively speeds. Much of the contr ibu
tion and gravity-sensing HP ORCA system lies in the intuitive software interface and a gravity-sensing teach pendant
that s impl i f ies teaching the robot new tasks. The HP ORCA system can be eas i ly in tegrated wi th other
app l ica t ions to c reate soph is t ica ted, tu rnkey, automated sys tems."

In object-or iented programming technology, an object consists of some data and the methods or funct ions
that can accep used to access or operate on the data. Object-or iented programming is gaining wide accep
tance developers and development of large software systems because it makes developers more productive and
makes commercial more maintainable and reusable. Central to many large commercial appl icat ions is a
d a t a b a s e o f s y s t e m , w h i c h a l l o w s e f f i c i e n t s t o r a g e a n d f l e x i b l e r e t r i e v a l o f l a r g e a m o u n t s o f
da ta . HP suppor t (page 20) i s an ob jec t -o r ien ted da tabase management sys tem des igned to suppor t
c o m p l e x w i t h a p p l i c a t i o n s . I t c o m b i n e s a f a s t r e l a t i o n a l d a t a b a s e m a n a g e m e n t s y s t e m w i t h a
spec ia l ly deve loped ob ject manager and has a c l ient /server arch i tec ture . HP OpenODB prov ides too ls
that a l low developers to use ob ject -or iented model ing techniques to bu i ld a database. For data access,
i t has a procedura l language cal led OSQL, which is based on the industry-s tandard SQL (Structured
Que ry b i nd i ng I t a l so o f f e r s r un - t ime pe r f o rmance f ea tu res such as l a t e b i nd i ng and schema mod i f i
cat ion di f fers features to control access to data and ensure data integr i ty. The OpenODB model di f fers from
other ob ject models (there is no s tandard object model) ; how and why are expla ined in the ar t ic le .

The HP Ul t ra VGA board is a v ideo accessory card for the HP Vect ra fami ly o f personal computers . (The
same hardware i s embedded in HP Vec t ra 486 /U PCs.) Us ing hardware acce le ra to rs , the U l t ra VGA
b o a r d I t v i d e o p e r f o r m a n c e f o r g r a p h i c s - i n t e n s i v e a p p l i c a t i o n s . I t o f f e r s d i s p l a y r e s o l u t i o n s u p
to 1024 display 768 pixels, refresh rates up to 72 times per second, and up to 256 colors. Software display
dr ivers a l low appl icat ions to take advantage of the per formance enhancements . The ar t ic le on page 31
traces discusses ancestry of the Ultra VGA boardâ€” from CGA to HGC to EGA to VGAâ€” and discusses its design,
i nc lud ing the ha rdware /so f tware t rade -o f f s , t he use o f a cus tom in teg ra ted c i r cu i t and v ideo RAM
memory dev ices, and the dr iver implementat ion.

POSIX s tands fo r Por tab le Opera t ing Sys tem In ter face, a s tandard o f the Ins t i tu te o f E lec t r ica l and
Elect ron ics Engineers . I t def ines a s tandard operat ing system in ter face and env i ronment that guarantee
that any interface, appl icat ion wi l l run under any operat ing system that supports the POSIX interface, which
is s imi lar to the UNIX operat ing system. As expla ined in the ar t ic le on page 41, the MPE/ iX operat ing
system, which runs on HP 3000 Ser ies 900 computer systems, does just that . In MPE/iX, the funct ions,

4 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

serv ices, and appl icat ion program inter face speci f ied in the POSIX standard are in tegrated wi th HP's
MPE XL operat ing sys tem. MPE XL app l ica t ions can access POSIX f i les and POSIX app l ica t ions can
access MPE XL f i les. Exist ing MPE XL appl icat ions are not af fected. The integrat ion team had no t rouble
v isual iz ing MPE XL and POSIX as one operat ing system, but found chal lenges in the areas of d i rectory
st ructure, f i le naming, and secur i ty . The ar t ic le descr ibes their solut ions.

Six papers in this issue are from the 1992 HP Software Engineering Productivi ty Conference. >â€¢ HP's
Medica l so f tware Uni t has been research ing and exper iment ing wi th methods o f prevent ing sof tware
failures hazard safety-crit ical medical applications. The paper on page 47 describes their software hazard
avoidance process, a combination of test ing for hazards and analysis aimed at prevention. *â€¢ If software
can be reused, so can sof tware tests . Wi th th is in mind, two HP pr in ter d iv is ions are implement ing a sof t
ware test l ib rary management system to make i t eas ier to locate ex is t ing tests , determine the i r su i tab i l
i t y , and as them in to tes t su i tes (see page 53) . *â€¢ Whi le the va lue o f so f tware inspect ions as a par t
o f sof tware development is wel l -accepted, in a busy R&D lab i t 's not a lways easy to get an inspect ion
program star ted, mainta in i t once star ted, and meaningfu l ly measure i ts success. The ar t ic le on page 60
discusses one HP div is ion's successful ef for t . > Total Qual i ty Control , or TQC, is a process improvement
technique used extens ive ly wi th in Hewlet t -Packard and by other companies. In the ar t ic le on page 64,
s o f t w a r e t h e a t H P ' s I m a g i n g S y s t e m s D i v i s i o n t e l l h o w t h e y s u c c e s s f u l l y a p p l i e d i t t o r e d u c e t h e
t ime medica l to loca l ize, or t rans late, sof tware text used in medica l d iagnost ic u l t rasound systems. > A
substant ia l number of engineer ing hours are spent develop ing system admin is t ra t ion appl icat ions for the
HP-UX operat ing system, resu l t ing in a major cha l lenge in ach iev ing user in ter face cons is tency. The
ar t ic le on page 71 descr ibes the des ign o f a spec ia l app l ica t ion program in ter face that enforces cons is
tency and error-handling developers from the underlying user interface technology. "â€¢ Typically, error-handling
code 80, argues throughout a program. In the ar t ic le on page 80, Bruce Rafne l argues that th is makes
programs as to wr i te , read, debug, enhance, and reuse. He suggests hand l ing er ro rs in p rograms as
they are handled in a database t ransact ion recovery mechanism: the ent i re t ransact ion is canceled as i f
i t had never occurred i f an error is detected anywhere in i ts processing.

R.P. Dolan
Editor

Cover
T h i s t a k e n o f t h e H P O R C A a n a l y t i c a l r o b o t i n a c t i o n w a s t a k e n b y a u t h o r G a r y G o r d o n w i t h p r o j e c t
manager direction. Murphy control l ing the robot and art ist Nicola Gordon providing art direction.

What's Ahead
In the August issue we' l l have art ic les on HP's new l ine of h igh-br ightness Al lnGaP LEDs, the HP Tsutsuj i
logic synthesis system, the HP ScanJet Me color scanner, the HP-RT (real- t ime) operat ing system design,
the mechanical design for the HP 9000 Ser ies 700Ã industr ia l workstat ions, the computat ion task d ist r ibu
t ion tool a Task Broker, and three papers f rom HP's 1992 Software Product iv i ty Conference â€” one on a
de fec t rea l - t ime sys tem, one on p roduc t i v i t y and C++ , and one on a mode l i ng too l f o r rea l - t ime so f t
w a r e l a s e r W e ' l l a l s o h a v e a r e s e a r c h r e p o r t o n s u r g i c a l l a s e r c o n t r o l .

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system. It also complies with X/Open's* XPG3, POSIX 1003.1
and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

June L993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ORCA: Optimized Robot for Chemical
Analysis
This analytical PC peripheral is a congenial assistant, a sophisticated
robotic teaching environment, and an interesting study of robotic
architecture. Although optimized for the analytical laboratory, it also
has applications in electronic test, quality assurance, and the clinical
laboratory, where heavy commercial assembly robots are unsuitable.

by Gary B. Gordon, Joseph C. Roark, and Arthur Schleifer

Analytical chemists currently spend approximately two
thirds of their time preparing samples to be placed into in
struments for analysis. This sample preparation is not only
tedious, but also subject to errors introduced by human in
teraction and human variation. At the same time, an ever-
increasing number of samples to be analyzed each year
coupled with a declining pool of skilled chemists has re
sulted in a pressing need for automation to improve the
productivity of the analytical laboratory.

Samples arrive in the laboratory in liquid, solid, and gas
form. Quantities range from the microgram or microliter
size to tank cars filled with tons of material. The instru
ments that are used to analyze these samples, such as gas
and liquid chromatographs, usually require that the samples
be cleaned up to remove almost all of the components of the
material except for the chemical compounds of interest.
Sample preparation involves many steps, including weigh
ing, grinding, liquid pipetting and dispensing, concentration,
separation, and chemical reaction or derivitization. In most
cases this work is done by hand, although instruments are
available that perform particular preparation operations. To
provide a system that performs a majority of the operations
required for sample preparation requires a great deal of
flexibility and versatility.

A robotic system seemed like the appropriate solution. But
what type of robot? Robots designed for manufacturing and
assembly are not well-suited for the analytical laboratory.
The requirements for a laboratory robot go beyond the tradi
tional characteristics associated with manufacturing sys
tems. Since today's laboratory and instruments are designed
for people, automation is difficult because not all the pieces
of the laboratory are designed to work with robots. In con
trast, assembly lines redesign the environment, process, and
products to work easily with robots. It will be a long time
before the chemical laboratory retrofits for automation.

Manufacturing robots in general are optimized for a differ
ent problem: very accurate positioning of often heavy pay-
loads, in seldom reconfigured environments. These robots
perform a small number of tasks very precisely in a small
work volume, hi contrast, an analytical robot is required to
perform a wide range and number of tasks over an existing
laboratory workbench and interact with existing laboratory
containers and instruments. The same might be said of a

robot for many other applications, such as electronic test,
quality assurance, or clinical laboratory analysis (see "The
HP ORCA System Outside the Analytical Laboratory" on
page 9). To fit into existing laboratory environments, a robot
must be installable without modification to the laboratory
furniture. This will allow both rapid installation and easy
relocation of the robot within the facility. The robot's work
volume must allow the robot to reach the entire bench area
and access existing analytical instruments. There must also
be sufficient area for a stockroom of supplies for unattended
operation.

The laboratory robot can be involved in three types of tasks
during an analytical experiment. The first is sample intro
duction. Samples arrive in a variety of containers. It is time-
consuming and a potential source of error for the operator
to transfer the sample from the original container to one
that is acceptable for automation. The robot, however, can
be trained to accept a number of different sample trays,
racks, and containers, and introduce them into the system.

Fig. reproduced Typical analytical laboratory work volume. (Photo reproduced
with permission of Scitec SA, Lausanne, Switzerland.)

June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The second set of tasks for the robot is to transport the sam
ples between individual dedicated automated stations for
chemical preparation and instrumental analysis. Samples
must be scheduled and moved between these stations as
necessary to complete the analysis. The third set of tasks for
a robot is where flexible automation provides new capability
to the analytical laboratory. There will always be new chem
ical samples that require analysis steps that have never been
automated. To prototype the automation of such steps, the
robot must be programmed to emulate the human operator or
work with various devices. This last use may require consid
erable dexterity for a robot. All of these types of operations
are required for an effective laboratory robot.

Additional considerations for a laboratory robot are that it
be the size of a human arm and have the dexterity needed
for interaction with current chemical instrumentation. Inter
changeable end effectors (robot fingers) are required to al
low the robot to work with the wide range of existing con
tainers and consumables used in sample preparation. The
robot should provide a simple and clean work area with no
external wires to catch on glassware or instruments.

After evaluating a number of existing robots for this applica
tion, it was finally concluded that a robot could be designed
that was optimized for chemical sample preparation and
other applications that have similar requirements, as men
tioned above. The results of this analysis are the concept
and design described in this article. The new HP analytical
robot is called ORCA, which stands for Optimized Robot for
Chemical Analysis. Fig. 1 shows it installed on a lab bench.

An anthropomorphic arm mounted on a rail was chosen as
the optimum configuration for the analytical laboratory. The
rail can be located at the front or back of a workbench, or
placed in the middle of a table when access to both sides of
the rail is required. Simple software commands permit mov
ing the arm from one side of the rail to the other while main
taining the wrist position (to transfer open containers) or
locking the wrist angle (to transfer objects in virtually any
orientation). The rectilinear geometry, in contrast to the
cylindrical geometry used by many robots, permits more
accessories to be placed within the robot workspace and
provides an excellent match to the laboratory bench. Move
ment of all joints is coordinated through software, which
simplifies the use of the robot by representing the robot
positions and movements in the more familiar Cartesian
coordinate space.

The physical and performance specifications of the HP
ORCA system are shown in Table I.

A robot alone does not satisfy the needs of laboratory auto
mation. Besides the physical aspects of the robot, the system
must be able to work with other devices, computers, and
software. The other major development of the ORCA project
was the control software, which is called Methods Develop
ment Software 2.0, or MDS. MDS runs on the HP Vectra and
other PC-compatible computers under the MicrosoftÂ® Win
dows operating environment. It is designed to allow instru
ments to be added easily to the system. By the use of indus
try-standard communication interfaces, MDS can configure
devices, and procedures can be developed to control and
collect data from external devices. It is designed to be

T a b l e I
O R C A R o b o t A r m H a r d w a r e S p e c i f i c a t i o n s

A r m A r t i c u l a t e d , r a i l - m o u n t e d

Degrees of freedom Six

R e a c h Â ± 5 4 c m

H e i g h t 7 8 c m

R a i l 1 a n d 2 m

W e i g h t 8 . 0 k g

P r e c i s i o n Â ± 0 . 2 5 m m

F i n g e r t r a v e l 4 0 m m

Gripper rotation Â±77 revolutions

Teach pendant Joy stick with emergency stop

Cycle time

Maximum speed

Dwell time

Payload

4 s (move 1 inch up, 12 inches
across, 1 inch down, and back)

75cm/s

50 ms typical (for moves within a
motion)

0.5 kg continuous, 2.5 kg transient
(with restrictions)

< 1.5 mm at continuous payload

1m2

Vertical deflection

Cross-sectional
work envelope

Power requirements 100V, 120V, 220V, or 240V (+5%,
-10%), 350 VA, 47.5 to 66 Hz

5Â°C to 38Â°C at 0 to 90% RH
(noncondensing)

Operating
environment

extensible; new modules can be added to the system at run
time. MDS is also designed to be remotely controlled by
other programs. This allows the laboratory robot system to
be a server in a hierarchical automation system.

Most previous robots were programmed in coordinate space
with computer-like languages. The HP ORCA system, on the
other hand, is taught by first demonstrating to the robot a
move, using another new development, the gravity-sensing
teach pendant (see "Gravity-Sensing Joy Stick," page 12).
The move is then given an intuitive name, for example
getjesttube. Later, this or any other move can be called out
by name and built into higher-level procedures. Simple to
grasp yet powerful, this concept is easily expanded to con
trol an entire benchtop of laboratory equipment. The user is
freed to think about the greater task at hand rather than
specific software details.

Having these components leads to our vision of the auto
mated laboratory bench. For the first time, it is possible to
provide automation for the analytical laboratory all the way
from sample introduction to the final report without human
intervention. The HP ORCA system provides the physical
glue to tie together the individual chemical instruments as
well as the information or data bus, so that the system can
request, acquire, and distribute information to all components
of the workbench.

June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ORCA System Overview
The HP ORCA system is shown pictorially in Fig. 2, which
shows the major functional blocks, hi the broadest sense,
the input to the HP ORCA system is a high-level command,
such as to analyze a drug (such as aspirin) for purity. Near
the output end, the ORCA electronics deliver strings of mil
lions of individual millisecond-by-millisecond commands to
the six robot servos. To keep this transformation task from
becoming overwhelming, it is broken down into manageable
hierarchical levels.

Input to the system begins with a user interacting with the
PC, which is running MDS. MDS provides experiment con
trol through its own programming language. In conjunction
with other applications on the PC, such as HP ChemStation
software, MDS can also be used for chromatograph control.
MDS consists of a core system, which is used to build and
run reusable tasks called procedures, and one or more
modules, such as the robot module.

The MDS robot module accepts MDS procedure commands
for controlling the robot and parses the commands into end-
points for each of the segments of the robot moves. A typical
robot move might be from a starting point taught to the robot
and named OverBalance to an ending point named OnBalance.
These endpoints define straight-line segments. The output of
the MDS robot module, and in fact the output of the PC, is a
string of taught Cartesian waypoints representing the robot
moves, sent every few seconds over an HP-IB link (IEEE
488, IEC 625) to the kinematics processor.

The kinematics processor consists of software running on a
dedicated 68000 microcomputer. One of its tasks is coor
dination of the six axes of the robot to provide smooth mo
tion and arrival at the Cartesian endpoints. This is accom
plished in part by interpolation. The kinematics processor
also handles tool offsets, so that, for example, a test tube
can be rotated about its lip instead of its point of support.
The final function of the kinematics processor is to compute
the acceleration and deceleration profiles and the speed of
each move so that motion is smooth and the axes' speed
limits are not exceeded.

Physically, the kinematics processor shares a cabinet with
the servo power supply. This cabinet has no controls and
can be located out of the way under the bench. The output
of the kinematics processor is coordinated position com
mands in joint space for motion along the path, sent over an
RS-422 bus to the robot at a frame rate of 25 Hz.

The last functional block of the system is the joint interpola
tors, which are distributed throughout the robot. The 25-Hz
commands from the kinematics processor are coarse
enough that they would cause the robot to vibrate and
growl, so instead they are linearly interpolated into 1.25-
millisecond demand signals, which are sent to the digital
servomechanisms.

(continued on page 10)

(800 Hz)

Joint
Microprocessors

(Interpolators

O R C A M e t h o d s H P - I B
Development

Fig. 2. ORCA robot system diagram.

8 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The HP ORCA System Outside the Analytical Laboratory

There a many applications in industry where the precision of a manufacturing
robot is not required. Often, in fact, such robots are genuine misfits. They are
costly, bulky, heavy, and too complex to program for these simpler jobs. The HP
ORCA system, on the other hand, is much better suited for these lighter tasks. It
weighs far as much as its industrial relatives, yet is just as reliable, and it is far
easier robot use because it behaves like an appliance or a PC peripheral. The robot
can be fuss. to a PC, shown a task to do, and put to work without much fuss.

There are numerous small applications in manufacturing where one might not
normally think of using robots. They include many of the repetitive tasks people
now perform in assembly, test, and quality assurance.

At HP, two areas being looked at are instrument front-panel circuit board test and
instrument final test. Front-panel controls are not very accessible electronically,
and typically require human intervention to verify the operation of knobs, switches,
and displays. These panels are quite amenable to robotic automation. Robotic
fingers can manipulate controls, and carried sensors can monitor displays. Such
robots to a niche in medium-scale assembly, where the number of products to
test is too many to do by hand, yet not enough to justify designing, building, and
keeping track of hard-tooled test fixtures.

Other manufacturing uses lie in assembly tasks for which the HP ORCA system's
0.25-mm precision is sufficient. This rules out board loading and fastener inserting.
On the apparent hand, as an assembly operation is studied, it often becomes apparent
that there are many tasks in which dramatic savings and quality improvement can
be had through robotics. Two examples are pick-and-place assembly and adhesives
application.

The ORCA group at HP was encouraged when other HP groups came to us and
wanted chromatograph to try out. Four early users were in two areas: gas chromatograph
manufacturing at HP's Little Falls site in Wilmington, Delaware, and column manu
facturing at the Scientific Instruments Division in Palo Alto, California. The following
story relates how the ORCA/NC lathe project came about at Little Falls.

T h e O R C A / N C L a t h e P r o j e c t

The ORCA/NC lathe project, conceived in a typical HP aisleway conversation, was
initiated to address both current business needs and visions for the future. A shop
supervisor at HP's Avondale, Pennsylvania Division, where many HP ORCA system
components were fabricated and assembled, was able to bait an R&D manager
with found dream of a robot building itself. The manager promptly found a prototype
unit applications began. to the shop, and an investigation of potential applications began.
Five months later, the latest-model HP ORCA system was operating an unattended
NC lathe.

Potential shop applications for a small flexible robot included the transfer of parts
between hydraulic presses in a sequence of staking operations, the loading of
components on a pneumatic manifold, and the loading and unloading of parts on a
machine tool, such as a lathe or mill. The application of the lathe loader was
chosen by it was the simplest in concept. It contributed to profitability by
using outdated equipment (a ten-year-old lathe) and by reducing the shop cost
driver rate, an important metric determined in part by the total of unattended
machining hours.

The experience gained in the lathe loader project was expected to provide a
knowledge base for future projects. It would help in establishing guidelines, plan
ning resources, and scheduling more complex applications. Also, an understanding
of the business ORCA system's capabilities with respect to the fabrication business was
needed. The experience objective was made explicit because other lathe autoload
ers exist that are more accurate and simpler in design than the HP ORCA system.

The project team consisted of a fabrication process engineer, a tooling designer,
and a journeyman machinist. The first challenge was positioning ORCA on the

lathe. ORCA's wanted to access the full width of the lathe so we chose to bolt ORCA's
rail onto the machine bed and operate the robot completely within the lathe
shields. Although the ORCA rail ends are outside the shields, this decision meant
that the robot would be operating in an environment with coolant and metal chips.
Since the lathe is still used 80% of the time for bar-fed jobs, the robot is protected
when not in use by being parked behind the turret under a plastic bag. ORCA-
loaded jobs are run without coolant and the robot is isolated from chips by a
telescoping cover that extends over the rail cover.

The ORCA/NC lathe system includes an ORCA robot, a Hardinge HNC lathe, an HP
Vectra of PC, and an optointerface board. The custom hardware consists of
four part staging magazines, special grippers for the robot, a V-block, and a sec
ondary behind cover. The vertical magazines are mounted across the lathe bed behind
the lathe turret and hold 75 parts each. The grippers are oriented such that the
axis of self- gripped part is perpendicular to ORCA's twist axis. The V-block is self-
centering and spring-loaded, and is mounted on the lathe turret. The secondary
telescoping rail cover is attached to ORCA's torso casting.

In one cycle of the ORCA/NC process, running 50 seconds, the robot removes a part
from moves magazine, then pushes the part into the V-block and moves to a safe posi
tion. collet. lathe turret moves so that the V-block stuffs the part into the collet. The
collet ORCA the part is machined, the spindle stops, and the collet opens. ORCA
removes the part and drops it down a slide leading to a box of completed parts.

The HP ORCA system and the specialized tooling were set up in a lab for develop
ment lab, moved onto the lathe two weeks before startup. In the lab, parts of the
overall exam were simultaneously prototyped, then tested together. For exam
ple, the custom gripper fingers were revised five times. The purpose of two of the
revisions was to increase the maximum gripping force transmitted to the part.
ORCA's by had to exceed the holding force of the magazine and V-block by
enough force to pick and place parts reliably.

Critical requirements for success were robustness over time and the ability to run
for one ability without operator intervention. Robustness is defined as the ability to
run day after day without a crash or robot recalibration or repair. The application
ran in the lab for thousands of cycles.

Overall system control is vested in an ORCA MDS program that calls robot subrou
tines and starts, pauses, and stops the lathe program via the interface board. To
start then application cycle, the lathe program is loaded and started, and then the
MDS program is started. The robot positions within the move subroutine programs
were refined with ORCA's joy-stick teach pendant and refined by keyboard
input. by and repeatability of the movements were further enhanced by
unidirectional programming.

The ORCA/NC system is currently used to machine two brass and aluminum valve
stems. was one part was used in the system's development. The other part was
implemented by the machinist two months after release of the application. In six
months This operation, about 16 hours per week, there have been no problems. This
is partially because of the robustness of the system and very much because of the
ease of use of the system software.

The ORCA/NC lathe project met every initial objective, is a good example of team
work, and has become a shop showpiece. The machine shops at Avondale were
bought by two former managers in November of 1992, when HP moved to Little
Falls. The HP ORCA system continues to run 16 hours per week at the new company,
American Manufacturing Technology.

Nancy Adams
Manufacturing Process Engineer
Little Falls Operation

June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Hand/Gripper Assembly

Forearm Casting

Forearm Cover

Elbow Joint

Upper Arm
Casting

E l b o w a n d W r i s t U p p e r A r m
M o t o r P r i n t e d C o v e r

Circuit Assembly

Torso
Casting

Chassis

Torso Printed
Circuit Assembly

- R a i l M o t o r

Rail and Car

Fig. 3. Exploded view of the robot arm.

Mechanical Design
Robot design benefits greatly from a careful optimization
of lightness, stiffness, speed, and payload. Airplanes seem
almost simpler in comparison, with some being able to carry
100% of their empty weight, compared to 10% to 20% for
robots.

Playing off against the performance goals were economic
considerations, so exotic materials such as titanium and
carbon fiber were not seriously considered. Further, with
the continuing shrinking of electronics, a decision was made
to imbed much of it in the structure itself. This diminished
the payload slightly, but greatly simplified the wiring and
improved the reliability.

The ORCA industrial design achieves other less-tangible goals
with little or no additional expense. It provides a smooth
structure for easy cleaning, accessibility for maintenance, a
compact design for dexterity in tight places, and an attempt
to achieve pleasing lines.

ORCA, unlike any other commercial robot, is an anthropo
morphic shell or exoskeleton, with its chambers tightly
packed with six axes of servo control electronics. Fig. 3
shows an exploded view. The shells are of aluminum, cho
sen over plastics for thermal conductivity. They draw out
what little heat is generated by the pulse-width-modulated

Honeycomb Platform

servos, and spread it over the surface of the robot, where it
is dissipated by convection. The shells are ribbed internally
for torsional rigidity so that the robot is mechanically sound
with the covers removed, allowing easy service.

ORCA is scaled roughly to the proportions of humans. The
similarity continues with its "muscles" â€” its motors â€” which
are physically displaced toward the torso; the elbow and
wrist motors are situated at the shoulder. This reduces the
static moment loads the robot must carry because of its own
weight.

Particular effort went into refining the hand to cut weight and
bulk to a minimum. One interesting feature is that the axes
that pinch and rotate the fingers are coupled mechanically
and in software. The fingers are mounted to parallel gear
racks, which are opened and closed by spinning a pinion
gear that engages them both. Without coupling, whenever
the finger bar was rotated, it would wind the finger racks
around the center pinion gear, open the fingers, and drop the
object. The easy solution is to feed a proportional correction
signal to the pinch servo any time the finger bar is com
manded to rotate; software is cheaper than mechanisms.
Fig. 4 shows the interior of the hand.

Because of the immense advantages of keeping the hand
light and small, gear technology was pushed near its limits.

10 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. Interior of robot hand.

Hardened ground gears and tight machining tolerances are
employed to maintain the five-year minimum lifetime goal
for all mechanisms.

ORCA is supplied mounted on an optical-bench-style table-
top, which comes in several sizes. This surface forms a
stable platform, and its grid of threaded holes provides con
venient attachment points as well as reference locations for
instruments and accessories. A linear rail assembly is fitted
to either the rear, the front, or the centerline of the surface.
The chassis contains the rail motor, which propels the torso
by engaging a steel-cable-reinforced plastic chain stretched
tightly alongside the rail. A simple flat cable similar to that
used dc printers also folds into the rail cavity and carries dc
power and the serial ORCA bus, which affords bidirectional
communications with the six robot joints.

The most interesting feature of the shoulder and elbow
joints is their harmonic drive reduction units, shown in
Fig. 5. These drives use a ring gear with internal teeth,
which engages a flexible inner gear shell. The flexible inner
gear has slightly fewer teeth than the outer rigid ring gear.
For example, in the shoulder reducer, the ring gear has 102
teeth, while the flexible gear has 100 teeth. Lobes inside the
inner flexible gear shell force it into an egg shape and into
contact with the rigid outer ring gear. One rotation of the
lobe assembly causes the two gears to displace relative to
one another by two teeth, or 2% of one revolution of the
flexible gear. Thus the reduction ratio of one stage is 50:1, or
far larger than that obtainable with a single stage of pinion
gears. Furthermore, since many teeth are engaged, the torque
transmitted can be substantial. Because the engagement is
compliant, harmonic drives exhibit little or no backlash.
They are more expensive, but are common in robots and
other high-performance applications because they perform
better and reduce the total number of parts required.

Proceeding outward towards the hand, the moment in
creases, and saving weight becomes more and more impor
tant. Every gram saved becomes a gram of payload. Saving
bulk is of equal importance. The hand, shown in Fig. 4, packs
two servos for rotating the finger bar and changing the grip,
all into a cozy 20 cubic inches. Since the drive train for the
grip extends through the rotating finger bar, commands to
these two servos must be coordinated; otherwise, rotating
the finger bar would drastically change the grip on the object
held, as explained previously.

The Kinematics Processor
The kinematics processor is one of the most interesting
blocks of a robot, and gives an insight into how robots work.
Its input is position data received from the PC over the
HP-IB every few seconds, directing the robot to move in a
coordinated manner from the last Cartesian position to the
next. For example, a command string might direct the robot
to move from coordinates over a test tube rack to coordi
nates over a balance a meter away. Altogether it looks like a
complicated task, but when broken down into individual
steps it is easy to grasp.

Robot Joint Space and Cartesian Space. One important simplifi
cation in understanding robots is to understand the difference
between two different coordinate spaces: the Cartesian space
in which the task is defined, and the robot joint coordinate
space in which ORCA operates.

It takes six coordinates to specify the position and orienta
tion of an object in space, hi our familiar Cartesian system,
these coordinates are x, y, z, yaw, pitch, and roll. ORCA is
fixed in yaw, so we restrict our interest to the other five de
grees of freedom. A sixth degree is added, however, and that
is pinch, to control the fingers. In friendlier terms, we will
refer to these six degrees of freedom as rail (x), reach (y),
height (z), bend, twist, and grip.

Robot joint space is defined as the joint positions of the
robot that must be established to place an object in space
with a specified position and orientation. ORCA has six
movable joints, each controlled by a servo. Setting each of
these correctly will position an object in Cartesian space.
The six joints represent the six degrees of freedom in robot
joint and They are rail, shoulder, elbow, wrist, twist, and
grip. Note that only rail, twist, and grip are the same in both
coordinate systems.

Part of the reason for belaboring these differences in coordi
nate systems is that as the tasks of the robot are divided up,
some are distinctly easier to perform in Cartesian space and
others in robot joint space. In any case, the transformation
must eventually be made to the joint space coordinate system
to control the robot.

Fig. 5. Harmonic drive reduction unit.

June 1 993 I lewlett-Parkard Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

Gravity-Sensing Joy Stick

What ORCA the most intuitive way to teach moves to a robot? For the HP ORCA
system, joy sticks rapidly became front runners. They are portable, allow control
of many degrees of freedom, and combine delicate movements with the capability
of high speeds.

The problem is that six degrees of freedom need to be taught: rail (x), reach (y),
height master. bend, twist, and pinch. Two degrees of freedom are easy to master.
Everyone who picks up the joy stick can intuitively fly the robot in traverse and
reach affordable and y). The question was, "What would be intuitive and affordable for
commanding the other axes?" Shift keys on the stick housing are common but they
rarely attention habitual, and relearning which one to press distracts one's attention
away from teaching the robot.

The HP solution is to add gravity sensors to the stick box that sense its orientation
and dynamically reassign the axes, transforming the joy stick into a teach pen
dant. perpendicular 1 shows the joy stick and the sensors. The three mutually perpendicular
tilt switches required to sense the six possible orientations are mounted along the
(1-1, 1), (-1,0,1), and (1,1, Dvectors.

Fig. 1. ORCA robot joy stick and orientation-sensing ti lt switches.

In use, traverse the joy stick to its right changes the stick from controlling traverse
and reach to controlling height and reach. In other words, if the joy stick won't at
first Pointing or move in the desired direction, reorient the box so that it will. Pointing
the stick right, left, towards the user, or even down all have the expected result.
The only exceptions are that wrist twist and bend are controlled by pointing the
stick away from the operator, and twisting the knob atop the stick always controls
finger grip. It's a teaching system one never forgets. The user moves the robot in
Cartesian space, not robot joint space, which is a tremendous simplification for
the user.

Controlling the Robot. The first step in robot control is to de
fine the straight line along which the coordinated motion
will occur. This is a matter of straightforward interpolation
in Cartesian space. For example, when the robot is 40% of
the way to its destination, the six individual coordinated
degrees of freedom (x, y, z, bend, twist, grip) will each be
40% of the way to their final values. If the final twist of a
pouring operation starting at 50 degrees is to be 100 degrees,
for example, then at the 40% point, the instantaneous twist
command will be 70 degrees.

The second step is to compute the velocity and acceleration
profiles so that the robot will accelerate up to speed, tra
verse a distance, and decelerate and smoothly stop at the
end of the move. Here the task is twofold. One is to allow
the MDS software to control the speed of the move. The
second is not to exceed the hardware performance limits of
any robot axis. This situation arises because an articulated
robot like ORCA is capable of much faster speeds in some
directions and portions of the working space than in others.
For example, if the arm is fully outstretched it can move
vertically very rapidly, but if commanded to move inward
towards the torso, its speed is limited for a moment as the
elbow tries to accelerate vertically to infinite velocity. The
HP ORCA system avoids such situations by limiting the
velocity and acceleration to the lower of two numbers: the
command from the PC or the limits of the joint servos.

The kinematics processor code is mathematically intensive
and requires a fairly powerful 16-bit microprocessor. The
processor has quite a number of tasks to perform in addition
to computing waypoints along the straight-line trajectory
between the robot's initial and final positions. It takes the
processor 40 milliseconds per waypoint to complete all of
its computations and tasks. Thus the determination of
where the robot should be is not continuous at this point but
periodic, and the period is relatively long. However, this is
just an intermediate step in the control process. The infor
mation is still in the wrong coordinate system and is far too
coaxse for smooth motion control of the robot.

Immediately after computing each coarse Cartesian way-
point (every 40 ms), the kinematics processor converts the
point is robot joint space coordinates. The x coordinate is
easy to transform since it is the same in both spaces; the
robot merely moves a certain number of millimeters down
the rail to the new x coordinate. The same is true with grip
commands to the gripper. The y (in and out) and z (height)
coordinates are slightly more complicated to transform, and
use trigonometry to compute the shoulder and elbow joint
angles in robot space. The wrist joint is not a factor if it is
kept horizontal; its angle bears a simple relation to the
shoulder and elbow joints.

In addition to transforming the waypoints from Cartesian
space to robot joint space, the kinematics processor also
applies the tool offset parameters, if there are any, so that a
test tube can be rotated about its lip instead of its point of
support, for example. The kinematics processor outputs a
joint-space vector every 40 ms and sends it to the six joint
servos for further processing.

12 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Joint Servos. Two Â«ires of the four-conductor ORCA bus that
snakes through the robot carry the serial RS-485 joint com
mands to the joint servos, which are embedded in the robot
shell. The other two conductors cam" unregulated 32Y power.
The data structure sent over the ORCA bus is shown in Fig. 6.
Each pair of joints is serviced by a microprocessor which
strips off its command from the bus at 40-ms intervals. After
each joint's two-byte position command is sent, an idle space
is provided for the joint to send back its position and status.

The fourth step in the robot control process takes place in
the joint microprocessors, which further interpolate the
40-ms interval down to 1.25-ms position demands for the
joint If What is the purpose of all this interpolating? If
the 40-ms points were sent directly to the servos, the robot
motion would be jerky. Yet it is uneconomical to generate
them faster than 40 per second; that would take an unneces
sarily fast kinematics processor and would take up too
much bus communication time. There is an easier way to get
the fine increments to send to the joint servos to ensure
smooth motion. This interpolation step is the task of the
joint microcomputers, which divide the motion down into
1.25-ms intervals. This interpolation produces smooth, non-
jerky robot motion by keeping the step noise at a frequency
well beyond the passband of the robot servos.

This is a particularly easy interpolation to accomplish, since
the number of steps chosen, 32, is a power of two. Interpola
tion then consists of subtracting successive positions, divid
ing the difference by 32 (a right-shift of a binary number by
5 bits), and successively adding that quotient into an accu
mulator initialized to the starting servo demand position.

A consequence of this design expedient is that the robot
actually moves in slight scallops, 40 ms long, since a straight
line in robot joint space is curved in Cartesian space. How
ever, these deviations are on the order of thousandths of an
inch and are insignificant.

The remaining task performed by the joint microprocessors
is to close the digital servos at each joint. These servos use
incremental encoders, dc motors, and pulse-width-modulated
amplifiers â€” technology borrowed from HP plotters. 1 Briefly,
each joint demand position is first subtracted from the actual

position of that joint to generate a position error value. The
servo motor is then commanded to move at a velocity pro
portional to that position error, with the velocity and posi
tion of the joint servo motor being derived from the incre
mental encoder. Since each joint position is fed back to the
PC, the control software knows if the robot has bumped into
anything, and can also employ integral control to correct
small errors such as sag of the arm caused by the influence
of gravity.

A new HP technology introduced in the HP ORCA system is
digital absolute position encoding (see "Absolute Digital
Encoder," page 14) at each of the major joints. Its purpose is
to allow the mechanism to ascertain its position when first
powered up.

Application Development Environment
Although clearly the most conspicuous element, the robot is
but a piece of a total automation system that also involves
controlling and collecting data from analytical instruments
and common laboratory devices, such as pH meters and
balances. The HP Methods Development Software (MDS),
written to address this need, provides a development envi
ronment for creating automation systems with laboratory
robotics. MDS runs under Microsoft Windows on an HP
Vectra or other PC-compatible computer. This choice was
based on users' preferences for a PC-based system, compati
bility with HP ChemStations, and the features that Microsoft
Windows provides for a multitasking graphical user interface.

The targeted customer for MDS is a laboratory robotics ap
plication developer, typically an analytical chemist with
instrumentation and BASIC programming experience. These
developers create applications that a technician runs and
monitors. Robotics programming has to be presented in a
conceptually simple format that makes it easy for the chem
ist to create tasks, which can then be combined to form an
application.

Again, the differences between the use of a robot in the lab
oratory and the manufacturing environment were considered.
Whereas a manufacturing robot is typically programmed to
repeat a small set of tasks in a world that can often be

32V Power

RS-485
(125kbaud)

Response Slots

Fig. 6. ORCA bus and data
structure.

June 1993 Hewlett-Packard Journal 13

© Copr. 1949-1998 Hewlett-Packard Co.

defined with information from CAD drawings, a laboratory
robot is used to perform a wide variety of tasks in a world
where very little predefined knowledge is available. The
laboratory robot must be taught how to interact with test
tubes, vials, racks, balances, and other instruments.

Teaching a robot all of the individual positions and trajecto
ries it must follow for every step in a laboratory application
would be very time-consuming and tedious. The teaching

process can be greatly simplified by providing a mechanism
for teaching small manipulations instead of individual posi
tions. These small manipulations can be used (and, most
important, reused) as building blocks. This idea led to the
concept of a robot motion. A motion in its simplest form is a
sequence of robot positions. The motion is taught interac
tively using a special motion editor and the robot teach pen
dant. The motion is given a descriptive name, which is used
in a program to have the robot execute, or move through,

Absolute Digital Encoder

The HP ORCA robot uses digital servos with incremental encoders, which need to
be initialized when the robot is first turned on. Many digital servo products, such
as plotters and impact printers, can initialize themselves by traversing to the ends
of each with For many other applications, such as, for example, car seats with
memory, robots, or machine tools, this expedient is either impractical or risky. One
solution is to add a potentiometer, but this carries a cost, complicates the wiring,
and is incompatible with leadscrew drives.

The encoder developed for the HP ORCA system is a small package less than 1 cm
thick, uses fits at the rear of the motor ahead of the incremental encoder. It uses
a system of permuting gears, whose phases are measured to ascertain motor
revolution number. Fig. 1 shows the encoder mounted to a servo motor, with its
housing cut away to show the gears.

In practice, a center gear and a transfer gear with 23 teeth combine to drive plastic
satellite gears with 24 and 25 teeth. In operation, as the motor turns, the satellite
gears motor fall farther and farther behind the drive gear. Thus, as the motor
continues to spin, the gears go through a lengthy list of combinations of relative
angles. This effect is shown in Fig. 2 for the first two rotations, an arbitrarily large
number comple rotations, and rotation number 599 where the cycle is nearing comple
tion. then the gears have numbers of teeth that do not have common multiples, then
the cycle is unique and does not repeat until 24x25 = 600 revolutions have occurred.
Since this is more revolutions than ORCA requires to traverse any axis, any gear
orientation corresponds to one unique revolution number and therefore one unique
robot LEDs position. The gear phases are measured by shining light from LEDs
through slits in the gears and onto optosensors.

In use, routed signals from both the absolute and the incremental encoders are routed
via a ribbon cable to each corresponding joint microcontroller, where a simple
algorithm based on modulo arithmetic is used to convert the phase measurements
into a rotates number. When each servo wakes up, its joint motor rotates one
revolution and stops. This produces a slight motion, and in milliseconds the micro
controller knows the absolute position. HP is interested in exploring commercial
applications for this or binary versions of this component and technology.

(a) Rotation #0

(bl Rotation #1

(0 Rotation #2

(d) Rotation #195

(e) R o t a t i o n # 5 9 9

Fig. 2. Absolute digital encoder operation.

Fig. 1. Robot position encoder mounted on a servo motor.

14 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the sequence of positions. In MDS. the program is called a
procedure. Procedures are used as building blocks to connect
robot actions with control of other devices and instruments
into higher-level tasks. Procedures can call other procedures,
much like a subroutine call in BASIC.

The concept of a motion was generalized to be an abstract
execution object, which led us to consider other types of
objects that could be provided to simplify robotics pro
gramming. These types include:

' Tool. Defines the endpoint of the robot arm.
â€¢ Frame. Defines a frame of reference for a motion.
1 Motion. A sequence of robot positions.

Rack. A rectilinear array of positions (similar to a pallet).
1 Syrconfig. A configuration for a syringe pump dispenser.

Procedure. The basic programming unit.
Device. A configuration for an RS-232 or HP-IB device.

The metaphor used to create and store these objects is that
of entries in a dictionary. Motions, racks, tools, frames, syr-
configs, devices, and procedures are all types of entries that
can be created. An entry is an execution object, and a dictio
nary is a file that holds the entry objects. Users create and
name entries, and save them in a dictionary. Each entry type
has its own special editor, or form, for defining or teaching
the entry. Entries can be used as commands (motions and
racks), or as modifiers of entry commands (tools and
frames).

For example, the following procedure statement will exe
cute a motion PickUpDispenserNozzle using a tool offset defined
by the tool NozzleGripper and referenced to a frame NozzleStand:

PickUpDispenserNozz le WITH Nozz leGr ipper AT Nozz leStand

The frame and tool that a motion uses can also be attached
to the motion from within the motion editor, and may provide
defaults for the motion to use when it is executed. The use
of long (31-character) names and the command modifiers

WITH and AT provide a ven," natural-language-like look to pro
cedure statements for robot control and help the procedure
code to be self-documenting. The use of longer names is
simplified and encouraged by pro\iding a variety of selec
tion, copy, and paste features in the user interface, which
reduces typing and programming errors that arise from
typing mistakes.

MDS allows two dictionaries for editing and execution of
entries: a user dictionary and a master dictionary. When an
entry is referenced in a procedure statement, the user dic
tionary is searched first, and allows redefining entries that
are in the master dictionary. Although developers are free
to choose their own guidelines, the master dictionary is
recommended for saving entries that are to be used across
multiple applications and the user dictionary is generally
application-specific.

The user interface for selecting entries to edit and for general
browsing of the dictionaries is the MDS dictionary manager
window (see Fig. 7). This window is the main user interface
to MDS, and provides access to administration utilities, dic
tionary and entry manipulation, and selection of various
views for the entry listings. Double clicking on an entry
name presents an entry information dialog box, which in
turn allows access to editing, execution, or printing of the
entry. Keystroke accelerators are provided for quick access
to common functions, such as editing and execution.

The dictionary manager also provides a command line, with
history, for execution of commands. MDS supports the con
cept of a live command line, from which a user can execute
anything at any time. The new execution preempts current
execution. This feature is used most often to access or
change the value of a variable quickly, and to execute proce
dures to correct problems when the application is paused.

p r

e tF lngers
Ge tV ia lF romBa
GetV la lF romBC
GetVla lFromGC
GetVia lFromGC

etVla lFromSF,

MDS Mon i to r
C o n t r o l . D e b u g L o g g i n g

1*0(1-012] v la l_dataname2$="" ! 2mlv laH
1#0[1-013]
1#0[1-0 l4]v ia l ta rewt=0 ! Empty wt o f cur t
1*0[1-015] v ia l fu l lwt=0 ! Ful l wt of current
1#0[1-016] vlalcount=0 Â¡current 2ml vial In
1*011-017]

MDS Var iab le Watch
.Options
ijt = "1 "

n t h i m b l e = 1
i vi ai s Â» i

t h i m b l e i d e n t t = " â € ¢

â € ¢ / i a l _ d a t a n a m t 1 $ =

i a l _ d a t a r m m e ? S =
(l l u r t l - [J

Â±LT
AA. rv i
H P P r o g r a m R o b o t t

C h a m S t o t i o n M a n a g e r

MDS - L i f tTh imb leFromChamber
E n t r y E d i t C o n t r o l l e a c h V i e w D o n t C h a n g e H a l t R o b o t !

R e l a t i v e T o o l - P o i n t P o s i t i o n :
R a i l R e a c h H e i g h t

- 1 0 2 . 5 4 - 5 0 . 8 3 - 8 5 7
E d i t P o s i t i o n :

B e n d

0 . 0 0
T w i s t
0 . 0 0

G r i p S p e e d
0 . 0 0 1 0 0

-0.20 -24.35 | 0.23 | O l l l l [- L O O

2 - 0 . 2 0 - 2 4 . 3 5 0 . 2 9
3 - 0 . 2 0 0 0 0 - 4 6 0
4 - 0 . 2 0 0 0 0 - 6 9 0

0.00
0.00

0 . 0 0 0 . 0 0

1 50
1.50
1 50

C o m m e n t : i
(l i n e 1) j
r V i e w : R e l a t i v e

C u r r e n t F r a m e : [S F E C h a m b e r F r a m e

E n t e r D o e s
Â © A d d

O R e p l a c e

ZJj jJZI]
_ R e j p [a c e J

C u r r e n t |

Fig. 7. Methods Development
Software (MDS) development
environment.

June 1993 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

Browser
MDSUSER.EXE

"MDS Dict ionary
M a n a g e r "

MDSCFG.DLL
Configuration

Objects
Module Objects

MDSDICT.DLL
Dictionary Objects

Entry Objects
Entry Edit, Print

Objects

M o d u l e M a n a g e r
MDS.EXE
(Hidden)

Executive
MDSEXEC.EXE

"MDS Moni tor"

MDSCPLIB.DLL
Symbol Table

Execution Objects

Command
Processor(s)
MDSCP.EXE

(Hidden)

Entry Types
Edit
Execute

Keywords
Parse
Execute

I/O Control

Program (EXE) With
User Interface

Program (EXE)
(Hidden)

Dynamic Link Library
(DLL)

MDS Message L inks

Variables that are defined exist until they are explicitly re
moved. These features give MDS an interactive feel, and
allow the creation and testing of an application in terms of
small units.

The other main user interface window is the MDS monitor
(see Fig. 7), which shows display output from procedure
statements and provides execution control and debugging
facilities. Debugging facilities include execution stepping,
tracing, and logging display output and errors to log files. A
variable-watch window, which can be used to monitor the
values of variables as they change, is also provided via the
MDS monitor menu.

The procedure editor is the other most commonly used ele
ment for developing an application. Each procedure is edited
within its own window. Multiple edit sessions are possible,
and text can be copied and pasted between them. The pro
cedure editor also allows execution of the entire procedure
or any highlighted text. This feature allows quick and simple
testing of statements and procedures. The procedure editor
also provides direct access to other types of entry editors,
including other procedures. For example, the user need only
double click with the mouse to highlight the name of a pro
cedure, or other entry, and press Ctrl+E to access the editor
for that entry. The procedure editor's features encourage the
use of small procedures that can be easily tested to become
building blocks for higher-level procedures and enhance the
interactive feel of MDS.

MDS Architecture
In addition to supporting the features described in the pre
vious section, MDS is designed for extensibility. Because of
the wide-ranging nature of laboratory robotics, and because
it is a developing field, the types of instruments and objects

Fig. 8. MDS architecture.

with which the robot must interface cannot be predefined in
the software. Thus the software has to be both configurable
and piecewise upgradable. The software also has to support
multitasking of execution and simultaneous editing and pro
gramming during execution. These requirements suggest a
modular design, with several programs that interact with a
defined protocol. Fig. 8 shows the MDS architecture.

The design of MDS is based on a core system that can be
enhanced by the addition of software modules. It is imple
mented as several Windows programs that communicate
with a set of MDS messages, and a set of Windows dynamic
link libraries that provide the basic "glue" for the architec
ture. In Windows, the use of dynamic link libraries allows
sharing of common code and sharing of data between pro
grams. MDS takes advantage of dynamic link libraries for
both of these purposes. Since Windows itself is implemented
as several dynamic link libraries, the various programs that
make up MDS do not have to include code for the windowing
interface. Run-time memory requirements are also minimized
by taking advantage of Windows memory management facil
ities that allow code segments and data to be marked as
load-on-call and discardable.

An important design rule for MDS was that no data structure
definitions could be shared between the programs and dy
namic link libraries that make up MDS. This rule allows MDS
to be truly modularized so that parts of MDS can be modi
fied A affecting or requiring changes to other parts. A
direct benefit was that it enabled the core system to be de
veloped in Palo Alto while the robot and dispenser modules
were developed at the Avondale site, 3000 miles away.

16 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Instead of data structures being shared, a set of data objects
were defined and supported with calls to access their prop
erties. These data objects are supported within dynamic link
libraries, which provide the function call access, and which
"own" the data and allow it to be shared. For example, the
MDSDICT dynamic link library supports the dictionary and
entry objects, the MDSCFG dynamic link library supports
the configuration and module objects, and the MDSCPLJB
dynamic link library supports objects used for execution.
The use of the dynamic link library's local heap for allocating
the objects compensates for the performance penalty of the
overhead of the calls to access the object data. Handles to
the objects are passed among the MDS programs using MDS
messages, which specify an action to take with the object.

Certain objects and their corresponding calls and messages
are considered "core-only" property. Modules can only ac
cess information in these objects using an intermediary ob
ject that can be properly shared with modules. For example,
the entry and dictionary objects are core-only, so an entry
edit block object is used to create and edit an entry object
and is accessible by modules. Even in this case, though, not
all of the object's properties â€” its corresponding entry and
dictionary for example â€” are accessible by modules. These
properties can only be set by a part of the core (the module
manager or browser in this case).

MDS modules extend the functionality of MDS by providing
support for new entry types and commands. Currently, there
are three modules available: the MDS system module, the
ORCA robot module, and a dispenser module that supports
the HP 1243A syringe pump dispenser. The system module is
different from the other modules in that it is an integral part
of the MDS core, while the other modules can be optionally
configured to run as part of MDS. Modules are responsible
for the control of their respective hardware and entry editors,
and for execution of the commands and functions that they
register with MDS. Although the current modules all support
hardware, modules can be written simply to add commands
or other functionality to MDS, such as interfacing with
another software package.

MDS Core. The MDS core system consists of the module
manager MDS.EXE, the browser MDSUSER.EXE, and the
executive MDSEXEC.EXE (see Fig. 8). The executive in turn
supports the MDS command processor MDSCP.EXE as a sep
arate program that it manages. Three dynamic link libraries,
MDSCFG.DLL, MDSDICT.DLL, and MDSCPLIB.DLL, complete
the MDS core.

The module manager is the main MDS program. Its window
appears only momentarily to show booting information, and
is then hidden. The module manager acts as the main gate
way for all MDS messages. It is responsible for maintaining
the configuration of MDS modules (via MDSCFG.DLL) and
dictionaries and entries (via MDSDICT.DLL). When MDS
boots, the module manager reads configuration information
from the MDS.INI file, and executes the module programs
that are to be activated. Modules dynamically register their
entry type and keyword information with the module man
ager at boot time. The module manager also supports dia
logs for modifying the configuration, and for creating and
saving entries.

The browser is the main user interface for MDS. Its window
title is MDS Dictionary Manager, because that is how it appears
to function to the user. Internally, however, it is not the dic
tionary manager; it serves only as the user interface to the
module manager, which is responsible for maintaining dic
tionaries. This distinction between how a user views MDS
and how MDS is implemented internally was important for
maintaining a consistent internal design. The browser win
dow provides the command line and a listing of entries de
fined in the selected dictionaries. The browser also supports
the server portion of Windows dynamic data exchange
(DDE) for MDS.

The executive provides the other window into MDS, the MDS
Monitor window, which displays output from procedure PRINT
statements. The executive also manages the MDS command
processor and provides the user interface for execution
control and debugging facilities.

The MDS command processor is responsible for procedure
and text execution. All execution begins as text execution
(from the command line, a procedure editor, or remote DDE
execution), which is parsed and executed the same as a pro
cedure. The syntax for the MDS procedure language is
based on the HP ChemStation macro language (which is
BASIC-like) with a number of enhancements.

Among the enhancements are support for the MDS entry
concept and a PARALLEL command. The PARALLEL command
allows procedures to be executed in parallel, sharing the
same global symbol table and dictionaries. A set of com
mands for synchronization of parallel execution is also pro
vided. This multitasking feature is used to increase the over
all throughput of an application. For example, a procedure
that tares a balance can be done in parallel with another
procedure that uses the robot to get a beaker for weighing.
When a PARALLEL command is executed, a new instance of
the MDS command processor is run. Because Windows
shares code segments for multiple instances of the same
program, the command executes quickly, and the demands
on memory are limited to the additional data segment for
the new instance.

The MDS command processor parses and executes each line
of a procedure at run time. An execution block object is
used to pass execution information between the command
processor and the modules during execution. Parameters to
module commands are preevaluated for the module and
passed on a shared stack object, whose handle is part of the
execution block object.

An important part of automation is the ability to detect and
recover from error conditions. MDS supports the ON ERROR
statement, which specifies an error handling procedure to
call. Through the use of a RESUME statement, the error han
dler can propagate the error back (RESUME EXIT), fix and
retry the statement (RESUME RETRY), skip the statement
(RESUME NEXT), or have the user decide (RESUME ALERT). The
automatic error handling can be disabled, so that an error
dialog box is always presented to allow the user to decide
what action to take. The user can execute new procedures
to fix the problem and return the application to a continua-
ble state. This feature is particularly helpful during develop
ment of the application, and reduces the need to abort and
restart an application when something goes wrong.

June 1993 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

MDS Dict ionary Manager
C o n t r o l D e b u g L o g g i n g

R_GetTh imbleFromRack
User: s fe_prep

Â«Master: benchl
PutV ia l ln toGCTur re t
PutV ia l in toSFETurre t MDS - FLGetThimbleFromRack

E n t r y Â ¿ d i t C o n t r o l T e a c h V i e w F J o n t C h a n g e
R_GetVia lFromRack
R_PutThimble ln toRack
R Pu tV ia l i n toRack

r R e l a t i v e T o o l - P o i n t P o s i t i o
R a i l R e a c h H e i g h t

- 1 1 7 . 3 8 - 2 4 W 2 6 . 0 5
E d i t P o s i t i o n :

B e g i n n i n g o f M o t Ã
2 2 0 0 0 0 0

E n t r y E d i t C o n t r o l T e a c h V i e w H a l t R o b o t !

" R e l a t i v e T o o l - P o i n t P o s i t i o n
R a i l R e a c h H e i g h t

- 9 0 8 1 - 2 4 . 8 7 2 8 0 3
E n t r y E d i t H a l t R o b o t !

- C u r r e n t T o o l - P o i n t O f f s e t (c m) : -

X Y
8 . 8 0 0 0 0 0 . 0 0

E d i t O f f s e t :
L L
U R Â « S O
R o v i n g H e i g h t

T a u g h t w i t h v i a l i n g n p p e r

D e s c r i p t i o n : D r o p l i n g e r s
v i e w R e l a t i v e

C u r r e n t F r a m e I V i a l R a c k l F r a m

C u r r e n t T o o l : Fig. 9. Robot motion, rack, and
tool editors.

MDS System Module. The MDS system module provides sup
port for procedures and devices. It is a "core-smart" module
in that it uses certain calls and messages that are considered
core-only. For this reason, it is usually thought of as part of
the core system. Also, it is not a true module, in that it only
provides for the creation and editing of procedures and de
vices. Procedure execution is handled by the MDS command
processor, which is maintained by the MDS executive. Device
entries are used in procedures, so their execution is also
handled by the MDS command processor.

Dispenser Module. Liquid handling is important in many labo
ratory robotics applications. Solutions must be prepared,
filtered, and extracted. The use of liquid dispensing in com
bination with a robot and a balance allows the gravimetric
preparation of solutions, eliminating errors that often occur
with the more traditional volumetric methods.

The dispenser module supports the syrconflg entry type, and
control of the HP G1243A syringe pump dispenser. A syrcon-
fig specifies which syringe to use, the syringe size, and the
dispense speeds. An AutoFill feature allows the user to set
levels at which a syringe will automatically refill. When en
abled, this feature eliminates the need for the application to
keep track of syringe levels, thus reducing procedure coding.
The dispenser module also registers a set of commands that
are used with the syrconfig entry to dispense and fill liquids.
The dispenser module is implemented as a single program.

For example, the following statement will dispense 10 ml of
liquid using the syringe specified within the syrconfig Buffer:

DISPENSE 10 ML Buf fer

With AutoFill enabled within the Buffer syrconfig entry, the
syringe will fill and empty until 10 ml are dispensed, using
the volume setting in the entry as a guide. During the fill and
empty cycles, a valve is automatically switched so that fill
ing is done from a reservoir and emptying is done out
through a nozzle.

Robot Module. The robot module supports the HP G1203A
ORCA robot. The robot module provides the tool, frame,
motion, and rack entry types, and a set of commands and
functions for explicit control of the robot arm. The main
robot window presents current robot position and status
information, and provides access to calibration and entry
edits (see Fig. 9). Multiple editors can be opened at any
time, and positions can be copied and pasted.

All of the robot entry editors except for the tool editor are
used interactively with the robot and its teach pendant. The
user can also manually enter position information. For ex
ample, the motion editor presents a form for recording a
sequence of positions. Pressing the remote teach pendant
Enter key automatically records the current robot location as
the next position in the motion. The motion editor allows
setting force (grip) and torque (twist), as well as speed for
individual steps in the motion. These parameters, along with
a reference frame and tool offset, are called motion attri
butes. Another attribute, Don't Change, can be applied to indi
vidual axis values, and indicates that the axis value does not
change for that position, no matter what value might have
been taught. Once taught, positions in a motion can be
rearranged or copied between motions. A motion that is
used to pick up an object can easily be reversed and saved
as a motion that replaces the object.

A rack is defined by teaching two corner locations and an
access location, and by entering the number of rows and
columns for the rack in the rack editor. Once defined, the
desired rack location, or index, is specified as a parameter
to the rack name in the command to move the robot to that
rack access location. By teaching a rack with respect to a
three-point frame, the rack can be accessed in virtually any
orientation, with the robot bend and twist axes changing to
reflect the new access angle. A hand-reference mode of
teaching, by which the bend is locked at an angle perpendic
ular (or parallel) to the rack surface, greatly simplifies
teaching access to tilted racks and centrifuges.

18 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The robot coordinate system is presented as a Cartesian sys
tem with additional bend, twist, and grip axes. The robot
module provides the frame and tool offset transformations
for motion and rack positions. The conversion to joint values
and the straight-line trajectories are all computed in the robot
kinematics processor. When executing a motion, for example,
the robot module applies the frame and tool offsets to each
position in the motions, converting these values into absolute
positions to send to the robot kinematics processor.

Use of Other Laboratory Equipment
A critical requirement for the MDS software is that it be able
to support common laboratory devices through standard
interfaces. MDS supports control of HP-IB (IEEE 488) and
RS-232 (COM) interfaces using the device entry type and
procedures written to use the devices. The device entry type
provides a simple form for assigning the address, COM port
parameters, and buffer sizes. The MDS procedure language
supports using the device entry name in place of a file name
in the BASIC-like OPEN statement. This allows the BASIC
examples included with most manufacturers' instruments to
be easily incorporated into MDS.

Dynamic Data Exchange (DDE). Early in the project we envi
sioned MDS as being the master controller of the robotics
bench. As the project progressed, it rapidly became evident
that MDS must also be capable of being controlled by other
applications and must be able to exchange data with other
applications. High on the list of other applications were the
HP family of ChemStation products and software provided
by other manufacturers for instruments that HP does not
provide.

Windows dynamic data exchange (DDE) was chosen as the
mechanism for the control and exchange of data. DDE al
lows Windows applications to control and pass data using a
client/server model. MDS supports DDE in both client and
server modes. The DDE client support is handled by a set of
commands that allow developers to add DDE to their appli
cation at a very high level. MDS handles all of the low-level
details of the protocol. The DDE server support is handled
by the MDS browser and command processor, and allows
remote execution of any block of text that follows MDS
command syntax. All MDS variables are accessible via DDE,
both for setting and requesting values. In addition, MDS vari
ables can be put on advise, or "hot-linked," which means
that the client application is notified whenever the variable's
value is changed.

By supporting DDE, MDS is able to interact with a wide vari
ety of software that runs under Windows. Features that MDS
lacks, such as database management and report processing,
can be provided using software designed for that purpose,
using DDE as the connection with MDS. Another example is
the use of HP ChemStation software with MDS. Using DDE,

MDS is able to instruct the ChemStation to load and run
methods for samples that the robot has prepared and placed
in the chromatograph's injector. The use of DDE to integrate
MDS with other Windows applications provides a new level
of systems automation for the analytical laboratory.

Conclusion
The HP ORCA hardware and software provide a robotics
system that is easily adapted to the needs and requirements
of the analytical laboratory. The use of a gravity-sensing
teach pendant, in conjunction with a graphical user inter
face, provides an intuitive and simple means for program
ming the robot. Supporting both client and server dynamic
data exchange, the HP ORCA system can be fully integrated
into the information flow as well as the sample flow of the
analytical laboratory. Applications outside the analytical
laboratory are also easily found (see "The HP ORCA System
Outside the Analytical Laboratory," page 9).

Acknowledgments
The ORCA project involved an extraordinary amount of
cooperation between groups at HP Laboratories and the
automated chemical systems program at the HP Avondale
Division (now at HP's Little Falls operation in Wilmington,
Delaware), along with valuable input and support from HP
Analytical Products Group management and the field engi
neering force. The authors enthusiastically acknowledge the
numerous outstanding contributions made along the way by
many individuals as the HP ORCA system emerged from a
feasibility study and grew into a product. The HP Labs con
tributors included John Michnowicz (department manager),
Miles Spellman (kinematics software), Jim Young (torso and
product design), Stu Lerner (arm and finger mechanics),
Carl Myerholtz (bus and joint servos), Andrew Stefanski
(joint refinement and kinematics), Hans Neumann (arm and
hand mechanisms), and Bob Widmayer (digital servos).
Many valuable discussions were had with individuals who
had worked on HP plotter technology. 1 The Avondale R&D
team, led by Greg Murphy, included Eric Park (mechanical
design), Gil Siegal (kinematics software), Phil Fuhrman
(servo electronics), Dave Clouser (robot module), and Jeff
Griffith (dispenser module). The manufacturing engineering
team included Andrea Morris (hand), Dan Liszewski, and
Bill Boyd. Marketing people who were key in shaping the HP
ORCA system's feature set are Mark Shuman, Bill Berry,
John Rollheiser, and John Poole. Lastly, special thanks to
upper management for their support of the ORCA project.

Reference
1. W.D. Baron, et al, "Development of a High-Performance, Low-
Mass, Low-Inertia Plotting Technology," Hewlett-Packard Journal,

Vol. 32, no. 10, October 1981, pp. 3-9.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

June 1993 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

HP OpenODB: An Object-Oriented
Database Management System for
Commercial Applications
The functionality of object-oriented technology and basic relational
database features such as access control, recovery, and a query language
are provided in HP OpenODB.

by Rafiul Ahad and Tu-lÃ¯ng Cheng

HP OpenODB is an advanced object-oriented database
management system (ODBMS) that is designed to support
complex commercial applications. Commercial applications
require support for large numbers of concurrent users, many
short, transactions, security and authorization procedures,
high availability of information access to other databases,
and high integrity. HP OpenODB is a hybrid ODBMS that
combines several years of research and development on a
database object manager with a decade of investment in
relational database technology. This powerful combination
brings the two pieces that make up an object together in an
ODBMS. It also enables a smooth evolution from, and coex
istence with, a relational database management system
(RDBMS).

In the current release, all of HP OpenODB's stored data is
managed by ALLBASE/SQL which is HP's ANSI standard
relational database and is tuned to be the fastest RDBMS on
HP platforms. The HP OpenODB object model is imple
mented by an object manager which provides unlimited
user-defined types of information. HP OpenODB is designed
to port easily to other RDBMSs.

HP OpenODB is well-suited for applications with one or
more of the following characteristics:
Complex and varied data structures
Various data formats
Access to data stored in different systems
Constantly changing environment
Multimedia storage and manipulation
Multiuser access to information.

This article will describe the features and the software
architecture of OpenODB and the object model provided in
OpenODB.

Product Features

OpenODB's object-oriented features help reduce develop
ment and maintenance costs by allowing the developer to
model business problems more intuitively. These features
can be divided into the following categories:
Tools that allow developers to use object-oriented modeling
techniques to build a database

Programmatic capabilities that allow storing code in the
database and interfacing to external functions that support
access to external data and preexisting applications
Run-time performance features such as late binding and
schema modification
Access control and data integrity features.

Object-Oriented Modeling
The features in this category allow users to use OpenODB
objects, types, and functions to model the attributes, rela
tionships, and behavior of things in the real world.

Object Identity. Each object stored in OpenODB has a system-
provided unique handle called an object identifier (OID).
OIDs reduce duplication of information and relieve the de
veloper of the need to create unique keys to identify stored
information in the database.

Complex Objects. Complex objects can be constructed from
simpler objects. Complex objects relieve application code of
the need to manage the relationships between simple objects.

Referential Integrity. Since OpenODB knows about the rela
tionships between objects, it can manage referential integ
rity. With this feature, if objects referenced by other objects
are deleted, the system removes all dependencies. The user
can specify whether or not to cascade changes or just to
delete the immediate dependency. For instance, if manager
Al supervises employees John, Mary, and Joe, and employee
Joe is just function call Name(Manages(:AI|) will return just
John and Mary. The result is a simplified database schema
and simplified application code that can be developed more
quickly since the user does not need to manage referential
integrity explicitly.

User-Defined Data Types. Users can construct user-defined
data types in OpenODB rather than having to do it in the
application code.

Type Hierarchy. Types can be organized in a hierarchy. This
hierarchy of types and related functions allows users to mini
mize the translation from a business model to an OpenODB
schema. The hierarchy also enables a type to inherit func
tions defined on parents, eliminating duplication of functions.

20 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Multiple Inheritance. Functions defined on a type can be
inherited by one or more subtypes. By inheriting rather than
redefining functions, developers can easily extend the func
tionality of an application by reusing existing functions.

Overloaded Functions. Several functions can have the same
name with different implementations. In an application, all
that is needed to do is to call a function (e.g.. Salary). Open-
ODB will determine which code (salary for employee or
salary for manager) to execute based upon the parameter
passed at run time. As a result, application code is simplified
since the logic for determining which function to execute is
in OpenODB.

Dynamic Typing. An object's types can be dynamically
changed without having to destroy and recreate the object.
This is possible because an object can belong to more than
one type.

Encapsulation. OpenODB supports the combination of data
and user-defined functions. Since OpenODB only allows
access to data through these functions, an application is
protected from changes to the function implementation
and the user has control over how to access information
in OpenODB. Encapsulation allows modification of the
function body without changing application code.

Programmatic Features
Procedural Language. OpenODB provides the language
OSQL (Object-Oriented SQL), which is based on SQL. OSQL
includes programming flow statements, including IF/THEN/
ELSE, FOR, and WHILE. This procedural language allows Open
ODB functions to be quite complex, simplifying application
code. Also, application code can be moved into the data
base, allowing applications to share code and get all of the
benefits of sharing data. The code is tightly coupled with an
object type, and OpenODB manages the integrity of the code
and its associated type. This is one of the features that dis
tinguishes OpenODB from more mature database architec
tures in which all of the application code is located in the
application (see Fig. 1).

External Functions. Using external functions, distributed data
and code stored outside of OpenODB can be accessed, re
gardless of data format or location. This simplified view of
an enterprise allows programmers to develop complex ap
plications that integrate existing data and applications more
easily. For instance, a programmer can develop an OpenODB

File Based Network Relational

application that accesses data stored in other databases
(e.g., ALLBASE/SQL. Turbolmage. or DB2) as well as data in
flat files. OpenODB acts as an integrator so that an applica
tion just needs to know OSQL. OSQL statements can call
functions that access data and encapsulate code stored
outside of OpenODB.

Run-time Features
Late Binding. OpenODB supports functions that are resolved
at nm time. Late binding allows more flexibility in applica
tion development and gives the full power of overloaded
functions as described above. Late binding also shields user
applications from changes to functions since these changes
can be made online and the new function definition resolved
at run time.

Dynamic Schema Modification. New functions and types in
OpenODB can be created at run time. Users can also change
the implementation of functions without having to recompile
applications.

Performance. To improve run-time performance, functions
can be compiled ahead of time. Also, related functions can
be stored close to each other (clustered) to optimize
performance.

Access Control and Data Integrity
High Availability. OpenODB maximizes the availability of
information by providing:

1 Dual logging to ensure the integrity of the log file
â€¢ Database replication on other systems so that more users

can effectively access the same information and applica
tions can quickly switch over to another system in case of
an unscheduled shutdown

> Automatic switch to a second log file if the original log file
is damaged or becomes full

1 Dynamic file expansion to expand the size of the OpenODB
file system if it becomes full
Online backup of the database, which backs up the database
while it is being accessed.

Multiuser Concurrency Control. OpenODB is designed to
support hundreds of users accessing the same information
while guaranteeing the integrity of that information.

Access Methods on Stored Data. Indexes are automatically
defined on object identifiers (OIDs) when types and functions
are created. These indexes help provide quick access to

Object-Oriented

' i

J 1950s to 1960s

1960s to 1970s

1970s to 1990s

1990s

Application Code

Fig. 1. With each new database
architecture more and more major
components have been moved
from the application level to the
database level. The years show
approximately when the architec
ture was introduced and the peak
years of use. By the way, all of
these architectures are still in use.

June 1993 Hewlett-Packard Journal 2 1

© Copr. 1949-1998 Hewlett-Packard Co.

information stored in the OpenODB database management
system. Users can also define indexes.

Authorization. Access to OpenODB is controlled at the data
base and function levels and is based on authorization level
(individual or group). Authorization statements provide a
flexible way to control access to types and functions in
OpenODB.

Persistent Data and Code. OpenODB allows the storage of
data as well as code between application sessions.

Recovery. OpenODB uses the robust logging and recovery
facilities of the ALLBASE RDBMS. In case of a failure,
OpenODB can handle rollback or rollforward recovery to a
particular time, using the log file to recreate saved work.

Transaction Management. OpenODB ensures the logical and
physical integrity of the database by giving the user com
plete control over the unit of work to be performed within a
single transaction. With this control, a transaction can be
saved or rolled back (temporary work thrown away) to any
point in the transaction.

Multimedia. OpenODB allows the storage and integration of
large, unformatted data in binary format. Some examples
include graphics, images, or voice data. Users can also de
fine functions in OpenODB to manipulate this multimedia
information. For example, the user can store a picture as
well as the function to display the picture.

Product Structure
OpenODB uses a client/server architecture, enabling the
user to use available computer power effectively. The OSQL
interface and a graphical browser are located on the client
side, and an object manager with a relational data storage
engine and an external function interface are located on the
server (see Fig. 2).

Applicat ions
Written in C,

COBOL,
FORTRAN

Pascal, and C++

Clients

Object-Oriented
SQL (OSQL)

Graphical
Browser

Programmatic
Interface

Server
OpenODB

Object
M a n a g e r

Data Storage
M a n a g e r

(ALLBASE/SQL)

Fig. 2. HP OpenODB client/server components.

External
Applicat ions

and Data

The user can write OpenODB applications using any language
that links with the C programming language including COBOL,
FORTRAN, Pascal, Ada, and C++. Any fourth-generation
language (4GL) or CASE tool that generates C code will in
teract with OpenODB. Application development can also be
made easier by using tools that generate user interface code
(e.g., OSF/Motif) in an X- Windows environment.

A software developer uses OSQL as an object definition,
manipulation, and ad hoc query language that interfaces with
the OpenODB server. OSQL can be used either interactively
or from a program. We chose an evolutionary approach for
developing OSQL by using ANSI standard SQL commands
where possible and adding the full power of objects.

The graphical browser tool allows a developer to explore
the structure (schema) of the database and its contents. The
graphical browser is designed to increase the speed of appli
cation development by making it easier to reuse code stored
in OpenODB.

The object manager supports all of the object-oriented fea
tures. This includes complex objects (objects that contain
objects), dynamic schema modification, dynamic typing and
multiple inheritance, encapsulation, late binding, object
identity, overloaded functions, type hierarchy, and unlimited
user-defined types.

The HP ALLBASE /SQL relational database provides the
data storage and dynamic schema manipulation capabilities.
These include authorization (security), declarative queries,
high availability, multimedia support, multiuser concurrency
support (e.g., graphics, images, voice), recovery, referential
integrity, and transaction management. HP ALLBASE/SQL is
transparent to the application developer and end user.

In keeping with an evolutionary approach, we recognized
the need to access data and applications that already exist
in a company's network. It is important to provide a devel
oper access to this information regardless of which vendor's
system it is stored on and regardless of its format. A gate
way approach was considered but rejected because a signifi
cant amount of valuable data is stored in legacy (in-house)
databases that are either custom-designed within a company
or are spread across many different vendors' databases, and
HP would never have the resources to build all the gateways
needed to support commercial applications. Instead, we
created an external function interface that acts like an exit
subroutine in application code. Through this interface, data
base developers can access any code or data that resides
within a company's network. Once external data is brought
into the object manager, it can be integrated with data stored
inside OpenODB and put into a format that is appropriate
for the object-oriented application and the end user.

System Environment
The OpenODB server and all clients are available on HP-UX
8.0 or later versions for the HP 9000 Series 700/800 systems,
and on MPE XL 4.0 or later versions for the HP 3000 Series
900 systems.

OpenODB requires TCP/IP transport and ARPA Berkeley
Services. The OpenODB graphical browser requires the X
Window System.

22 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Employee Object

IDN: 123456789
Name: 'Smith '
Prov ider Set | *P1 . AP2)
W o r t s F o r : " 0 1 * t

Pointers to Other
Objects

GetlDNI) - Integer
SetlDN(lnteger)

AddProvider (Provider)
TotalPremiuml I - (Float)

Fig. part The structure of a typical object. Notice that the data part
contains pointers to the data (or other objects).

Object Models

There is no standard object model. The popular models in
the programming language community are the C++ model1
and the Smalltalk model.2 These two models and others
share many common features.

The commonly accepted definition of an object is something
that contains data and code (called methodst) that operates
on the data. This feature is known as encapsulation. External
users retrieve or manipulate the data stored in objects by
sending messages to the object. These messages are handled
by the methods in the object.

From a database standpoint, the data stored in an object is
the object's attributes or its relationship to other objects.
The relationship is typically represented as a pointer to an
other object. The methods are the possible operations on
the object.

For example, an employee object may have an employee
identifier and name attributes (see Fig. 3). The object may
also have information about the employee's health provider
and who the employee works for. Notice in Fig. 3 that the
relationship information is represented by pointers. Opera
tions on data in an object may include setting or retrieving

data values in the object, or doing some computation on the
data. For example, in the employee object there is an opera
tion to add a provider to the data and another operation for
computing the total premium for the employee.

A data abstraction technique called classification abstrac
tion3 is commonly used in object models. In this technique
objects of similar characteristics are modeled using classes.
A class is used to define the structure of the data part of the
object and the code that operates on the data structure.
Each object that belongs to the class is called an instance of
the class, and it has a copy of the data structure of the class
and can be operated on by the methods specified for the
class (see Fig. 4). For example, to define employee objects,
we would define the class Employee. The class definition of
Employee would state the data structure and the methods in
some syntax. Once the class has been defined, any number
of instances (employee objects) can be created by sending
an appropriate message to the class.

Another abstraction technique called the generalization/
specialization abstraction4 is also used for object models. In
this technique, a superclass may be created to model the
common characteristics of two or more classes. Conversely,
a class's characteristics may be refined by creating sub
classes. For example, we may define a class Manager as a
subclass of Employee. In this case every method and data
structure definition applicable to the employee object is also
applicable to the manager object. Fig. 5 shows that the
classes Manager and Staff inherit the methods and data struc
tures from class Employee and also have their own methods
and data structures.

The OpenODB Model

The OpenODB model is based upon three concepts: objects,
types, and functions. OpenODB objects are still modeled as
data and methods but data is no longer automatically private
to the object. Types are used to define functions, and func
tions are used to define the attributes, relationships, and
operations on objects.

t The in methods, functions, and operations refer to the code in an object.

Employee Object

IDN: 141516
Name: 'Joule
Provider: Set (AP6, AP?I
Works For: AD1

GetlDNI I â€” Integer
Set IDNIInteger)

AddProvider (Provider)
TotalPremium(I -* (Float)

Class Employee

GetlDNI) â€¢ Integer
Set IDNIInteger)

AddProvider (Provider)
TotalPremiuml) â€¢ (Float)

ION: 876Ã4321
Name: 'Watt'
Provider: Set (AP1,AP2)
Works For: "D2

GetlDNI) â€” Integer
Set IDNIInteger)

AddProvider (Provider)
TotalPremiuml I â€” (Float)

Instances of Class Employee

Fig. 4. An illustration of the data
abstraction technique called clas
sification abstraction. With this
technique each object that be
longs to a class is called an
instance of that class. Although
each instance contains data
unique to that instance, the data
structure is the same as that de
fined for the class the instance
belongs to. Note that the same
methods defined for the class
are used for all instances of the
particular class.

June 1993 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

Inher i ted Methods
and Data Structures

f r o m E m p l o y e e

Superclass of
Manager and
Staff Objects

Subclasses to Employee Object

Methods and Data
Structures Added to

Those Inheri ted
from Employee

Fig. data ab illustration of the generalization/specialization data ab
straction technique. Here two objects Manager and Staff inherit charac
teristics from the superclass Employee. They become subclasses when
the methods and data structure inherited from Employee is augmented
with new methods and data structures in each object.

Object
An object is a model (computer representation) of a thing or
concept in the real world. Unlike data, which models the
static aspects of the thing such as its attributes and relation
ships, an object also models the dynamic behavior in terms
of the methods applicable to the object.

Conceptually, an OpenODB object is an encapsulation of
data and operations. However, there are two important dif
ferences between OpenODB objects and those defined for
object-oriented programming languages (OOPL). First, every
data item in OpenODB is created as a function and is acces
sible and modifiable only through functions. This allows a
uniform view of an object since there is no distinction be
tween accessing an object attribute and invoking a method
that returns values. For example, suppose the employee
identification number data item in the employee object is
defined as the function IDN with an integer return type. To
access the employee identifier, we would evaluate the func
tion IDN(e), which is equivalent to using a method in an OOPL
model to access the employee's identification number in an
employee object e. The difference is that OpenODB does not
support strictly local data items as does the OOPL model, in
which local data items are directly accessible only by the
methods defined for the object. With OpenODB, since every
data item is a function, any user who has the proper access
privilege can evaluate the function and modify the data
associated with the object.

It would seem that this model defeats the purpose of private
data in the object-oriented methodology. However, OpenODB
provides mechanisms for maintaining the concept of private
data. Access control mechanisms provided in OpenODB are
discussed later in this article.

The second difference between an OpenODB object model
and an OOPL object model is the way in which an object's
data is organized. In OOPL, the object's data is stored in
some contiguous area of main memory and the object's ref
erence is the address of the first byte of this memory area.
For example, a reference to an employee object is an ad
dress in memory in which an instance of the employee data
structure is stored. In OpenODB, the object's data may be
stored (either clustered or dispersed) anywhere in main
memory or on disk. The reference to the object is indepen
dent of the data associated with the object. This allows
OpenODB objects to evolve gracefully without requiring the
schema to be recompiled every time the object gains or
loses data items.

OpenODB supports three kinds of objects: surrogate, literal,
and aggregate (see Fig. 6). t Surrogate objects represent
things or concepts in the application domain. The character
istics of the thing or concept that the surrogate represents
are obtained by applying relevant functions to the surrogate
object. In OpenODB, a surrogate object is identified by a
unique object identifier (OID) that is totally separate from
any data associated with the object. Examples of things that
could be modeled as surrogate objects include persons, em
ployees, parts, and manufacturing plants. Surrogate objects
may also represent entities used by the OpenODB system to
manage its own data such as the types and functions that
keep track of OpenODB objects. Surrogates must be explic
itly created and deleted either by the system (for system-
defined objects) or by the user (for user-defined objects).

Literal objects are self-identifying in that they have external
(printable) representations that correspond to well-known
concepts. For example the number 123 and the string 'abc'
are literal objects.

An aggregate object is a set, bag, list, or tuple of other
objects. Table I lists the characteristics and some examples
of aggregate objects.

The difference between a list object and a tuple object is
that list objects and tuple objects have different constraints
on the object types that make up their collections. These
differences are described in more detail later. Sets are
subtypes of bags.

In OOPL aggregate objects are supported by built-in con
structs such as arrays, structures, and a library of predefined
classes of aggregate objects.

t Note that l iteral and surrogate objects and types are sometimes collectively referred to as
atomic types.

Object

Atomic Aggregate

(List, Bag, Set, Tuple)

Literal
(e.g., 123, 'abc')

Surrogate

System-Defined
(e.g., Functions that
Manage OpenODB

Objects)

Fig. 6. The taxonomy of OpenODB objects.

User-Defined
(e.g., persons, parts)

24 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Table I
Aggregate Objec ts

T y p e C h a r a c t e r i s t i c

S e t C o n t a i n s n o d u p l i c a t e
elements

B a g M a y c o n t a i n d u p l i c a t e
elements

L i s t O r d e r e d c o l l e c t i o n o f
objects that may contain
duplicates

Tuple Ordered, f ixed-s ized
collection of objects

Example

Set(123,'abc')

Bag(123,123,'abc')

List('abVba','ab')

Tuple(l,'abc',2)

Type
A type is an object that implements the classification ab
straction technique described earlier. OpenODB types are
similar to OOPL classes. However, there are two major dif
ferences between an OpenODB type and an OOPL class.

First, an OOPL class must have a declaration of the data
structure for the data part of its object instance (if there is
any data part for a particular object). Since an OpenODB
object is independent of its data part, OpenODB types do
not have any data structure declaration. The data for an
OpenODB object is defined by means of functions on the
type, and such functions may be defined at any time, not
only when the type is created. This difference can have a
profound effect on the evolution of the application. Con
sider the following fragment of a data schema (written in
hypothetical syntax for OOPL) for an application. Assume
that the classes or types Company and Department have already
been defined.

OOPL Declaration

Class Employee:
Data

IDN integer;
Name char(20);
Providers Set(Company);
Works ln Depar tmen t ;

Me thods

OpenODB Declarationt

Create type Employee;
Create funct ion IDN(Employee)

-> in teger un ique as s to red ;
Create func t ion Name(Employee)

-> char(20) as s tored;
Create funct ion Prov iders(Employee)

-> SetType(Company) as s tored;
Create Funct ion Works ln(Employee)

-> Depar tment as s to red ;

The OpenODB declaration could also be written as:

Create Type Employee Funct ions (
IDN integer unique,
Name char(20),
Providers SetType(Company),
Works ln Depar tmen t)
as stored;

Assume that sometime after the application has been in use,
we decide to include date-of-birth information for employees.
With OOPL, we would have to declare the date-of-birth field
in the data structure for the class Employee, define relevant
methods for it, and then recompile the entire application.

t The document program fragments used here and in the rest of the document are based on
OSQL (object-oriented SQL|, which is OpenODB's database programming language.

With OpenODB we simply define a new function DOB (date-
of-birth) on object Employee to return a date (which is a pre
defined type). Furthermore, the definition of a DOB function
can happen even while the application is running.

The second difference between an OpenODB type and an
OOPL class is that an OpenODB type has an extension, which
is a set of instances of that type. This feature facilitates
queries over classes of objects. For example, in OpenODB, if
we want to obtain the name of an employee whose IDN is
123456789, we simply pose a query as follows:

Select name(e) for each Employee e where IDN(e) = 123456789;

OpenODB is able to find the correct employee because for
this example it keeps track of all the objects of type Employee.

The taxonomy of types is topologically identical to the tax
onomy of objects because types are also divided into three
groups: literal, surrogate, and aggregate. Literal types in
clude integers and characters with extensions that are pre
defined and infinite. An extension of a type is the set of
instances that belong to the type. For example, 1,2,3... are
predefined extensions of the literal type integer.

Surrogate types include system and user-defined types.
When a surrogate type is first created, the extension is
empty. However, the extension for a surrogate type expands
or contracts as objects are explicitly added to or deleted
from the type. For example, the function Create Person would
create a Person object and store it in the extension of the
type Person.

The aggregate types supported are bag, set, tuple, and list
types. They are referred to by type expressions consisting of
constructors BagType, SetType, TupleType, and ListType respec
tively. Their extensions are automatically maintained and
the user cannot explicitly insert objects or delete objects
from extensions of aggregate types. For example, the type
SetType(Person) refers to a type whose instances are sets of
persons. If p is a person, then the object Set(p) is an instance
of the type SetType(Person).

The difference between a list type and a tuple type is that a
list type permits the specification of only one type for its
members while the tuple type permits the specification of
multiple types for its members. For example, an instance of
the type ListType(Person) is an ordered collection of any num
ber of objects of type Person or its subtypes. On the other
hand an instance of the type TupleTypefPerson, integer, char) is an
ordered collection of three objects, the first is of type Person,
the second is of type integer, and the third is of type char.

OpenODB supports subtype/supertype relationships among
types. The subtype/supertype relationship implements the
specialization and generalization abstractions described
earlier. This relationship induces a directed acyclic graph on
the types known as the OpenODB type hierarchy (see Fig. 7).
The type hierarchy is rooted in the type Object. If an object is
an instance of a type, it is also an instance of all the type's
supertypes. Thus the functions defined on the supertypes
can be evaluated with instances of subtypes as arguments.
Conceptually this is the same as subclass inheritance in an
OOPL. For example, we can define the type Manager as a

June 1993 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

subtype of the type Employee. Since by definition members of
subtypes are also members of supertypes, every manager is
an employee. Therefore, all the functions defined on Employee
can be applied to any manager object. We can define addi
tional functions on Manager. For example, the function Super-
vises(m) which takes a manager as an argument and returns
the set of employees supervised by the manager, can be de
fined on type Manager. In general, this function cannot be eval
uated with an employee object as an argument because not
all employees are managers and the function is not defined
for those who are not managers. Finally, since OpenODB al
lows a given type to have multiple supertypes, the inheritance
is actually multiple inheritance (see TeachingAssistant in Fig. 7).

Functions
A function is an object that represents an attribute, a rela
tionship, or an operation on an object. A function maps ob
jects from one type to objects in another (not necessarily
distinct) type. A function has one argument type, one result
type, a result constraint, and an extension consisting of a set
of tuples.

The result constraint can be specified for functions stored in
the database (stored functions) only. If the stored function's
result type is an atomic type or a tuple type of atomic types,
the result constraint can be specified as unique or nonunique
(default). A unique constraint states that the function will
never produce the same results for two different arguments.
For example, the function IDN will never return the same
integer for two different employees. More important, a unique
constraint will not permit setting the same number as the
result of two different arguments. For example, two em
ployees cannot be updated with the same IDN, otherwise an
error will occur. For a function whose result type is SetType,
the result constraint can be specified as disjoint or nondis-
joint (default). The disjoint constraint states that the results
of two different arguments will never overlap. For example,
the function Worksfor(manager) -> SetType(Employee) returns a set
of employees that work for a particular manager. Thus,
Worksfor(john) returns {mary, jack, Jill}, and Worksfor(henry) returns
{cathy, abe, tom}. Each call results in a distinct set of names
being jack If the result constraint is nondisjoint and jack
works for John and henry, then jack would appear in both sets.

Table II summarizes the types allowed to be assigned to func
tion parameters and the relationships between the instances

Object

Table II
Function Parameters and Their Relationships

T e a c h e r M a n a g e r R e s e a r c h e r

Teaching
Assistant

A = R = atomic types or tuple of atomic types
Atomic = literal or surrogate type

of atomic types and a tuple of atomic types that are modeled
by the different parameter settings.

The specification of the function name, its argument and
result types, and the result constraint constitutes the decla
ration of a function, t Like types, functions also have exten
sions that represent the attributes of and relationships be
tween objects. For example, consider the function Name
which is defined on type Person. This function returns a
string of characters whenever it is called with the appropri
ate parameter. A set of object identifier and string pairs
makes up the extension of the Name function. For example:

{<OID1, John> <OID2, Harry> <OID3, Helen> . . . }

where OlDn represents the unique object identifiers and the
names represent the strings of type Person. The declaration
and implementation of a function may take place at different
times in the database schema creation. The implementation
of the function can be changed without recompiling the ap
plications (although the database functions may have to be
recompiled).

A function can be implemented as a stored function, a
derived function, a computed function, or an external func
tion. Derived and computed functions are collectively known
as OSQL-based functions.

Stored Function. In this case the extension of a function is
stored in an SQL table. For example, the functions IDN, Name,
Providers, and Worksln are stored functions. Their result values
can be assigned and modified by the user. The following
script creates an employee and assigns an employee identifier
and a name.

Create Employee e;
IDN(e):= 123456789;
Name(e) := 'Smi th ' ;

t The the type or the resu l t type cou ld be VOID, in which case the funct ion has no argu
ment typically model result respectively. Functions with no results are typically used to model database
update operations.

Fig. 7. An example of OpenODB subtype and supertype relationships.

26 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Derived Function. In this case the extension is described by a
query using other functions. This is analogous to views in
the relational data model. For example, assume we have an
overloaded function called Name and we want to create a
function Employeelnfo that returns the identifier, employee
name, and department name for a given employee. We could
use the following script:

Create funct ion Employeeln fo(Employee e)
-> TupleType(ln teger ,Char ,Char) as osql

se lec t s ing le IDN(e) ,Name(e) ,Name(Works ln(e) | ;

hi this example, Employeelnfo is not stored, but derived from
the functions IDN, Name on Employee, and Name on Department
and Worksln. Unlike stored functions, not all derived functions
are updatable.

Computed Function, hi this case the extension is described by
a program written in OpenODB s database programming lan
guage OSQL. For example, if we want to convert all managers
who have less than a specified number of employees to pro
grammers (assume that Programmer is a subtype of Employee),
we would write:

Create func t ion MgrToEng (In teger minemps) -> Boo lean
as osql
begin

dec la re SetType(Manager) mgrse t ;
dec la re Manager m;
/ ge t a l l t he managers i n mgrse t * /
mgrset := se lec t d is t inc t a tomic m for each Manager m;
fo rm in mgrse t do

i f (count(Superv ises(m) l < minemps)
then

/ c o n v e r t a m a n a g e r t o a p r o g r a m m e r * /
begin

add type Programmer to m;
remove type Manager f rom m;

end
endif;

end;

External Function. For an external function OpenODB uses
code outside of itself to obtain the extension of the function.
The user specifies how to invoke this code. External code
can be specified to be invoked in the following three ways:

â€¢ Specify the implementation to be SQL and provide an SQL
statement to be executed to obtain the extension. This is
used to access SQL databases. For example, assume that
there is a table EMPHISTORYdDN, DEPT, JOBDESC) in an Admin
database that describes the employment history of em
ployees. We could create a function in OpenODB to access
this information as follows:

Create funct ion EmpHistory(Employee e)
-> bagtype(tup le type(Char ,Char)) as externa l
SQLCAdmin ' / JSmi th ' / h t imSJ ' ,

'Select DEPT,JOBDESC
f r omEMPHISTORY
where IDN = :x ' ,L ist(SSN(e))) ;

Here the first argument to SQL is the database name. It could
be specified as NULL in which case the current database
would be used. To access remote SQL databases, ALLBASE/
Net must be installed, and the database must be registered
in AliasDB.5 The second and third arguments are the user
name and the user password respectively. If the second
argument is specified as NULL, the third must also be NULL,
and in this case the default user is used to access the SQL

table. The fourth argument is the SQL statement to be
executed. It may contain references to host variables such
as :x. The fifth parameter is a list of values to be substituted
for the host variables. In this example, IDN(e) will be evalu
ated and the resulting string will be substituted for :x. A con
nection will be made to the current database (if one does
not exist) using the user name and the password. Then the
query will be executed. The result will be converted to
OpenODB format and returned to the caller.

â€¢ Specify the implementation to be OsCommand (an OSQL func
tion tied to operating system commands) and provide the
operating system with the command to be executed to obtain
the extension of the function. For example, we could define
a function Dir to look at a listing of the current directory in
HP-UX with the following OpenODB function.

Create funct ion Di r (Char d) -> bagtype(char) as
externa l OsCommand I ' lsSd ') ;

â€¢ Specify the implementation to be GeneralExtFun or SimpleExtFun
and provide the names of three routines (for GeneralExtFun)
or one routine (for SimpleExtFun) that are linked with the user
application. For GeneralExtFun the first routine is used to open
a scan on the result of the function for a given argument.
The second routine is used to read the result objects. The
third routine is used to close the scan. SimpleExtFun can only
be used for functions whose result type is atomic (literal or
surrogate) or tuple type of atomic. When called, the specified
routine must return the result for a given argument.

To show how SimpleExtFun is used to implement an external
function suppose we have a C program called CreditRating that
computes the credit rating (an integer number) of the per
son with the given identifier (assume a 9-character string).
We could make the C program the body of an OpenODB
function called CrRating as follows:

Create funct ion CrRat ingfchar p) -> char as ex terna l
SimpleExtFun('Credi tRat ing') ;

SimpleExtFun is appropriate here since the C program will
return a single integer number for each argument.

Let us now consider an example that uses the general exter
nal function to implement an external function. Suppose we
have an OpenODB function called JobHist that returns the job
history of a person as a array of character strings. We could
define an OpenODB function that uses the following C code:

Create func t ion JobHis t fchar p] -> BagType(char) as ex terna l
Genera lExtFun('JobHis tOpen ' , 'JobHis tNext ' , ' JobHis tClose ') ;

Here, JobHistOpen, JobHistNext, and JobHistClose are three rou
tines written in C. When JobHistOpen is called with a person's
identifier, it should create a scan data structure and return a
pointer to the data structure as an integer number. One pos
sible way to implement JobHistOpen is to have the routine
allocate storage for the returned array. JobHistOpen can then
return a pointer to a structure that contains an integer num
ber and a pointer to the array. The integer number (initial
ized to -1) keeps track of the the next element of the array
to be returned by JobHistNext. Each time JobHistNext is called it
is given the pointer obtained from JobHistOpen. JobHistNext
increases the integer number of the structure, accesses the
array element at that location and returns the string. When
JobHistClose is called, it is given the pointer obtained from
JobHistOpen. JobHistClose frees the storage that was allocated
by JobHistOpen.

Juno 1993 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

The extensions of all stored functions and some derived
functions can be changed by authorized users. Such a
change is accomplished by update functions associated with
the original function. These update functions are automati
cally generated by the system for updatable functions. For
example, for the stored function Name on Employee, the sys
tem might create an update function called Updname, which
takes the OID for an employee object and a string object and
creates an association between the two. Thus, after using
the Updname function with an Employee object that has the
identifier OID123 and a string labeled 'Smith' as parameters,
references to OID 123 will be associated with 'Smith' and vice
versa.

Function Name Overloading
OpenODB supports function name overloading. Many func
tions can have the same name but different argument types.
For example, in the functions Weight(Part) and Weight(Unit), the
function Weight(Part) returns the weight of an individual part
and the function Weight(Unit) returns the weight of all the
parts on a particular unit.

The functions that are explicitly created by the user are
known as specific functions. For a set of specific functions
with the same name, OpenODB creates a function called the
generic function, whose name is the same as those in the set.
However, the generic function has no implementation. The
name of a function by itself refers to the generic function
and is called a generic function reference. However, if the
name is followed by a type reference separated by a period,
then it refers to a specific function, and such a reference is
called a specific function reference. For example, if function
Weight is defined on type Part, the generic function reference
is Weight and the specific function reference is Weight.Part.

Since the generic function has no implementation, it cannot
be directly evaluated. It must first be bound to a specific
function. OpenODB supports late binding of a generic func
tion to a specific function. If a generic function is used in an
evaluation, then the specific function to be used is deter
mined based on the actual argument at run time. However, if
a specific function is used in an evaluation, then that spe
cific function is used regardless of the argument (the argu
ment must be an instance of the argument type). Thus spe
cific function reference supports early binding.

For example, assume that we have the generic function
Salary on Employee that returns the salary of a given employee.
Suppose we want a manager's salary to include the bonus.
We could overload Salary on Manager to return the sum of
the manager's salary and bonus as the following example
illustrates.

Create funct ion Sa lary(Employee e) -> F loat as s tored;
Crea te func t ion Sa la ry fManager m) -> F loa t as osq l

sa lary .employee(m) + bonus(m) ;

If e is an employee but not a manager, then Salary(e) will return
the salary of employee e. However, if e is also a manager,
Salary(e) will return the sum of the salary of e as an employee
plus the bonus of e as a manager.

In some cases, mapping from a generic function to a specific
function is ambiguous. This happens because objects may
belong to multiple types and there may be more than one

specific function defined on those types. OpenODB does not
prescribe default semantics for choosing a specific function
in case of ambiguities. Instead it reports an error.

Access Control in HP OpenODB

One of the functions of a database management system
(DBMS) is access control. A DBMS must prevent unautho
rized access to data stored in the database. Although com
mercially available DBMSs do have security subsystems that
support access control, support for authorization in object-
oriented and functional database systems has not yet been
fully addressed. In such systems, authorization features
must interact with advanced model and language features
such as user-defined operations, encapsulation, multiple
inheritance, generic operations, and late binding.

Object-oriented languages inherently provide some form of
access control in the way abstract data types encapsulate
private state information.6 Although abstract data types
provide support for access control at the implementation
level, there still remains the need to protect data at the
organizational level.

The authorization model in OpenODB is based on the notion
of controlling function evaluation. Only a single privilege, that
is, the privilege to call functions, is necessary to support an
authorization model that is more powerful and has finer
levels of access granularity than the traditional authorization
model of relational databases.7

The Authorization Model of Relational Systems
The basic authorization model of standard SQL can be char
acterized by a matrix captured by a relation schema
(S,O,M). S is the domain of all subjects that access the data
base system (users, processes), O is the domain of objects
(base relations and views), and M is the domain of access
operations (SELECT, INSERT, DELETE, UPDATE, and ALTER).8

Most RDBMS implementations support the notion of owner
ship. Each database schema has a designated system admin
istrator, database administrator, or database creator who is
the owner of all objects created in that schema. Further
more, the creator of an object becomes the owner of the
object and typically holds all privileges on that object.

An object owner can grant access to the object to other us
ers. Commercial systems implement mechanisms that allow
the owner to grant SELECT, INSERT, DELETE, UPDATE, and ALTER
privileges on objects to other users selectively. Furthermore,
an object owner can permit a GRANT privilege on the object,
thereby enabling other users to further grant privileges on
the object.

Authorization in OpenODB
Many of the concepts developed for relational database au
thorization are fundamental and are applicable to other
technologies such as object-oriented database management
systems. These fundamental concepts include the notion of
ownership, users and groups, privileges, and granting and
revoking privileges. The authorization model of OpenODB
uses many of these fundamental concepts.

28 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Users, Groups, and Owners. Users are modeled by the Open-
ODB type User, which is characterized by a set of functions
that create and destroy user objects, return valid user
names, and match passwords. For example the strings:

Create User 'Smith ' Password 'x012' in tester ;
Create User 'Jones ' Password 'y2 ' in eng ineer ;

create the users Smith and Jones with their respective pass
words and assign Smith to the group tester and Jones to the
group engineer.

Users can be classified by groups. Privileges granted to a
group apply to each user in the group. Typically, users are
classified based on their roles.9'10-11'12 A user can belong to
multiple groups thereby accumulating the privileges from
each individual group. Furthermore, groups may be nested.
A nested group inherits the privileges of the nesting groups
similar to the way functions are inherited by a subtype from
a supertype.

A group is an object in OpenODB that is modeled by the
type Group. A group has attributes such as name and mem
bers and is made up of either individual users or other
groups. Typical functions defined on the type Group include
functions for creating and deleting groups, for adding and
removing subjects, for returning group members, and for
granting and revoking call privileges. The following state
ments create the groups specified for the users Smith and
Jones in the example above.

Create group developer ;
Create group eng ineer subgroup o f deve loper ;
Create group tes ter subgroup o f deve loper ;

The access-control hierarchy created for these functions is
shown in Fig. 8.

The user who creates a given function is said to be the owner
of the function. The owner of a function automatically has a

Object

User

Database
Administrator

Engineer Tester

Fig. 8. An example of an access-control hierarchy in OpenODB.

call privilege on the function. Furthermore, the owner can
grant call privileges to other users using the Grant function
which is described in the next section.

The group hierarchy is rooted in the group Public which has
call authority on common system functions such as Connect
and Select. Every authenticated user by default belongs in
Public.

Database administrators (DBAs) are special users with more
privileges than ordinary users. For example, DBAs have all
the privileges implied by function ownership.

Granting and Revoking Privileges. Call privileges can be
granted and revoked on a per-group basis. Privileges can be
granted unconditionally using the Grant statement or condi
tionally using the Grant statement with an IF option. With un
conditional privilege granting, an authorized group member
can call a function for all possible argument values. For ex
ample, if the user Jones from the example above wants to
grant a call privilege on the salary of employees to the group
tester, the OSQL statement would be:

Grant cal l on salary to tester ;

For granting a conditional privilege, a predicate (Boolean-
valued function) is associated with the group and the func
tion. The predicate has the same argument type as the func
tion. When the function is called, the argument is used to
evaluate the predicate. If the predicate returns true, the user
can call the function with that argument. For example, sup
pose user Jones wants to grant the privilege to tester to be
able to modify the salary for part-time employees. First the
function to filter part-time employees is created:

Create funct ion SalaryGuardfemployee e, f loat sa l) ->
Boolean as OSQL

begin
i f (status(e) = 'part- t ime') return TRUE;
return FALSE;

end;

To grant the privilege to tester:

: f := funassign(funct ion salary.employee);
Grant cal l on : f to tester i f SalaryGuard;

The OpenODB access control model is based on the single
concept of controlling function invocation by allowing only
authorized groups access to a function. The OpenODB ac
cess control mechanism does not impact the performance of
the owner of the function, the database administrator, or
other common OpenODB services.

Acknowledgments
Many people contributed to the design and implementation
of OpenODB. We would like to acknowledge the contribu
tions of managers and researchers of the database technol
ogy department of HP Laboratories, and the development,
support, marketing, learning products, and management
personnel of the database laboratory of HP's Commercial
Systems Division.

June 1993 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

R e f e r e n c e s 8 . C . J . D a t e , A G u i d e t o t h e S Q L S t a n d a r d , A d d i s o n - W e s l e y
1. B. Publishing The C++ Programming Language, Addison Wesley Publishing Company, 1987.
P u b l i s h i n g C o m p a n y , 1 9 8 7 . 9 . E . B . F e r n a n d e z , e t a l , " A n A u t h o r i z a t i o n M o d e l f o r a S h a r e d
2. A. Database," and D. Robson, Smalltalk-80: The Language and Its Database," Proceedings of the ACM SIGMOD International

Implementation, Addison Wesley Publishing Company, 1980. Conference, 1975.
3. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 10. R. Gigliardi, et al, A Flexible and Efficient Database Authoriza-
The Benjamin/Cummings Publishing Company. tion Facility, IBM Research Report 6826 (65360), November 1989.
4. J. M. "Granting and D.C. Smith, "Database Abstractions: Aggregation U- J- A. Larson, "Granting and Revoking Discretionary Authority,"
and Generalization," ACM Transactions on Database Systems, Vol. 2, Information Systems Journal, Vol. 8, no. 4, 1983.
n o . 2 , J u n e 1 9 7 7 . 1 2 . R . A h a d , e t a l , " S u p p o r t i n g A c c e s s C o n t r o l i n a n O b j e c t - O r i e n t e d
5. ALLBASE/Net User's Guide, Hewlett-Packard Company, Part Database Language," Proceedings of the International Conference
N u m b e r 3 6 2 1 6 - 9 0 0 3 1 o n E x t e n d i n g D a t a b a s e T e c h n o l o g y , 1 9 9 2 .

6. J. H. and "Protection in Programming Languages," Commu- Hp.ux Â¡s based on and Â¡s compatib|e wittl UNIX System Laboratories' UNIX* operating system.
nications interface the ACM, Vol. 16 no. 1, January 1973. It also complies with X/Open's* XPG3, POSIX 1003.1 and SVID2 interface specifications.

7. P. for trademark and B. W. Wade, "An Authorization Mechanism for UN,X Â¡s a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
Relational Database Systems," ACM Transactions on Database J X / O p e n i s a t r a d e m a r k o f X / O p e n C o m p a n y L i m i t e d i n t h e U K a n d o t h e r c o u n t r i e s .
Systems, Vol. 1, no. 3, September 1976.

30 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The HP Ultra VGA Graphics Board
By increasing the display memory to 1 M byte and providing some local
graphics processing, the HP Ultra VGA board is able to increase VGA
resolution to 1024 by 768 pixels with 256 colors at all resolutions.

by Myron R. Tuttle, Kenneth M. Wilson, Samuel H. Chau, and Yong Deng

The HP D2325A Ultra VGA board, which represents the latest
in the evolution of HP personal computer video systems, is a
video accessory card for the HP Vectra line of personal com
puters. This board offers exceptional video performance for
graphics-intensive applications such as MicrosoftÂ® Windows
and AutoCADâ„¢. It enhances overall system performance by
using hardware accelerators to relieve the CPU of common
video processing functions. For high-resolution and flicker-
free operation, the Ultra VGA board offers display resolu
tions up to 1024 by 768 noninterlaced and refresh rates up to
72 Hz. Finally, the board is upgradable to 1M bytes of video
memory to give 256 colors in 800 by 600 and 1024 by 768
resolutions.

In this article we present a brief history of the evolution of
PC video systems. We will then discuss the benefits of add
ing acceleration to video hardware and the hardware and
software partitioning trade-offs that must be made. Finally,
the implementation of the HP Ultra VGA board is described,
both as a plug-in accessory and as an embedded feature as it
is in the HP Vectra 486/U family of personal computers.

Evolution of PC Video
1981 marked a dramatic change in the world of computing
because that was the year the IBM personal computer was
introduced. The first IBM PC came equipped with 64K bytes
of RAM and an alphanumeric Monochrome Display Adapter
(MDA). The MDA contained 4K bytes of memory, enough to
store one screen (25 lines of 80 characters each) of alphanu
meric information. The PC with one of these adapters func
tioned like most terminals available at the time. It had very
clean alphanumerics but lacked any graphical capabilities.
Until the introduction of the MDA, virtually all PCs or "home
computers" such as the Apple II, Commodore PET, and the
Tandy Radio Shack TRS-80 used a television monitor or a
modified television monitor as a display, grossly limiting the
resolution.

Also available from IBM in 1981 was the Color Graphics
Adapter (CGA). This adapter contained 16K bytes of memory,
enough to hold four alphanumeric pages and provide limited-
resolution graphics. The graphics capabilities of the CGA
allowed it to display 320 by 200 pixels in four colors, or 640
by 200 pixels in two colors. The price of memory was still a
limiting factor in display resolution. The 200-line vertical
resolution severely impacted the CGA's alphanumeric capa
bilities because all characters were displayed in an eight-by-
eight cell and were difficult to read. Several companies, in
cluding Hewlett-Packard, introduced their own extensions

to the CGA, allowing greater resolution. The HP 45981A
multimode adapter increased the resolution to 400 lines but
kept the same horizontal and color resolutions and increased
the memory to 32K bytes. The CGA became the lowest com
mon denominator for graphics-based programs and, in fact,
is still supported today by many applications â€” especially
games.

hi 1982 the Hercules Company introduced the Hercules
Graphics Card (HGC). This adapter fully supported the alpha
numeric capabilities of the Monochrome Display Adapter as
well as providing 720-by-348-pixel monochrome graphics.
Because of its modest cost and industry support, the HGC
became very popular.

The next big breakthrough in PC video came in 1985 when
IBM introduced the Enhanced Graphics Adapter (EGA).
This was the first affordable PC video adapter to enter the
"high-resolution" arena. It supported a resolution of 640 by
350 pixels with up to 16 colors simultaneously displayed
from a palette of 64 colors. The memory required was 128K
bytes. The EGA was fully backward compatible with the
CGA (and with the monochrome monitor, the MDA). In 1987
the IBM PS/2 line of PCs was introduced and with it the
Video Graphics Array (VGA) video adapter. The VGA has
become the de facto standard of the PC industry today. The
original VGA contained 256K bytes of video memory and
supported resolutions up to 640 by 480 pixels with up to 16
colors simultaneously displayed from a palette of 262,144
colors. As memory prices have continued to decrease, the
VGA has been enhanced. The first enhancement was the
Super VGA (SVGA) which increased the resolution to 800 by
600 (or 1024 by 768) pixels. The color depth increased to
allow up to 256 colors to be simultaneously displayed. Dis
play memory was increased to 512K bytes. The VGA is fully
backward compatible with the CGA, EGA, and HGC video
adapters.

The video adapters mentioned above map the display mem
ory into the system processor's memory space. All video and
graphics operations are handled directly by the system pro
cessor. Newer display adapters, such as the HP Ultra VGA
board, have taken the next step by increasing the VGA reso
lution to 1024 by 768 pixels with 256 colors available at all
resolutions (increasing the display memory to 1M bytes) and
providing some local graphics processing in the video dis
play system. This frees the system processor from much of
the work of updating the display and accelerates display
operations.

June 1993 Hewlett-Packard Journal 31

© Copr. 1949-1998 Hewlett-Packard Co.

HP Ultra VGA Board Implementation

In any design there are always trade-offs to improve perfor
mance, save board space, add more features, and so on. The
Ultra VGA board implementation was confronted with some
of these same trade-offs as well as the need to adopt some
new technologies to provide a high-resolution, flicker-free
graphics system.

Software versus Acceleration Trade-offs
In almost all nonscientific programs, video processing is the
performance bottleneck. By taking some of the graphics
burden off the applications, a good video solution is able to
improve overall system performance dramatically. This is
especially true as graphics-oriented user interfaces become
more popular.

Performing the high-level graphics functions like area fill
and line drawing inside the hardware has only become pop
ular in the last few years. The MDA and CGA video solutions
used video routines located in the main system BIOS (basic
input/output system) of the computer and offered a few low-
resolution modes. The EGA and VGA were logical exten
sions to MDA and CGA. They offered more modes, higher
resolutions, more colors, and had their own video BIOS.
There was no support for any high-level graphics functions,
though a few simple graphical mixing functions like XOR
were available. It wasn't until the IBM 8514 that high-level
graphic functions were performed in the hardware. The 8514
is an accelerated display adapter that contains a graphics
engine implemented in hardware. The problem with the
8514 is that it is not backward compatible with VGA.

Since the advent of the 8514, other video manufacturers have
started to put high-level graphics functions and support for
VGA on the same card. Some manufacturers add the capa
bilities of high-level graphics functions directly to the VGA
modes while others add special video modes and VGA modes
that have the extra capabilities the 8514 made popular.

Trade-offs must be made to determine where the high-level
graphics functions like line drawing are implemented. In the
past, an application would use the CPU to calculate all the
points in a line and then write each separate dot in the line
to video memory. This works very well if the CPU has band
width to spare and all video solutions behave the same.
Since all video solutions do not work the same, each appli
cation has to either pander to the lowest common denomi
nator or not work on all machines. Two main solutions to
this problem have been implemented: video BIOS interrupt
calls and application drivers.

The HP Ultra VGA video BIOS contains an industry-standard
set of interrupt calls that change the configuration of the
video adapter, get information about the video solution, and
access all of the functions needed to work with text. All ap
plications that know about the VGA standard can use these
interrupt calls to perform the video BIOS functions. This is
great for text, but there is almost nothing in the VGA BIOS
that helps with drawing objects in graphics modes. Since
graphical user interfaces are now becoming very popular,
graphics support is very important.

Display Driver. The display driver fills the graphics support
gap. A display driver is responsible for providing the means
to translate application graphics commands to hardware
commands and simulating capabilities not directly provided
in the hardware. Each display driver is tailored to a specific
application. Every application designer decides on the
graphics commands needed and how they will be imple
mented. In the same way, each video chip maker chooses
the graphics commands to implement in hardware. The ap
plication must supply a driver for every different video
adapter it must run on (or the hardware manufacturer must
supply a driver for every application it wants to support).
This allows video manufacturers to produce software that
allows specific applications to run at peak performance on
their hardware.

The combination of display drivers, BIOS, and hardware
provides the excellent video performance seen with the HP
Ultra VGA video solution. The HP Ultra VGA board not only
supports all of the modes that VGA contains, but also has a
set of enhanced high-resolution modes that use a graphics
engine to accelerate the most commonly used graphics func
tions. The enhanced modes are not standard VGA modes, but
applications can get access to them via the display drivers.
The drivers increase application performance by taking a
high-level graphics operation like rectangle fill and perform
ing the operation as fast as the video hardware can do it.

Applications send the display driver all graphics-related
operations and the driver decides the best way to perform
those operations. For example, to switch from mode three
(text) to mode 201 (enhanced graphics) an application will
send the driver the command to make the mode change. The
driver then has to decide whether to make the mode change
itself or send the command to the video BIOS. Typically, the
driver will call the video BIOS for commands like mode
changes. However, for commands like line drawing, the
driver will usually communicate directly with the hardware
to draw the line.

The implementation of display drivers is described later in
this article.

Graphics Engine. The graphics engine is a state machine in
side the video ASIC on the HP Ultra VGA board (see Fig. 1).
Its purpose is to perform the high-level graphics functions in
hardware so that the CPU is free to do other tasks. An eight-
word FIFO buffer is provided so that the CPU can send all of
the commands needed for at least one operation (the num
ber of commands varies between operations). The FIFO
reduces the amount of time the CPU has to wait when the
graphics engine is still performing its last command.

The high-level graphics functions supported by the graphics
engine include rectangle fills, line drawing, short stroke vec
tors, image cursor, bit-block transfers (BitBlt), and image
transfers. Rectangle fill is the ability to fill a rectangular area
of video RAM with some specific color and at the same time
change what is already at that specified location in video
RAM. For example, filling an area with all ones and the XOR
operation will invert all colors (pixels) within the rectangle
specified.

32 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Ultra VGA Controller ASIC

S P U B u s

Display
(CRT)

Controller

Video
Clock

Synthesizer

14 MHz

Line drawing is the ability to draw a line between any two
points. Short stroke vectors are a special case of line draw
ing in which short lines of sixteen dots or less are drawn at
any forty-five degree angle (see Fig. 2). Each short stroke
vector takes only one byte to specify, and the graphics en
gine can accept two bytes at a time. This is very handy for
shapes that use many short lines, like characters, and since
only one byte is sent per line, this operation is very fast.

Bit block and image transfers are for moving rectangular
images around in video memory. A BitBlt is the fast transfer
of a rectangular image from one location in video memory to
another. Since the CPU only has to specify the source and
destination coordinates and rectangle size, it can do other
operations while the graphics engine does all of the work.
The BitBlt operation is performed by the CPU first writing
the source, destination, and rectangle size to the FIFO buffer
if the FIFO has enough empty entries (the CPU requires four
empty entries for this operation). Then the CPU writes a com
mand word to the FIFO that tells the graphics engine what
operation to perform. As soon as the command word propa
gates through the FIFO and the graphics engine receives it,
the operation begins immediately. The graphics engine will
read pixels from the memory within the source rectangle and
the corresponding pixels from the destination rectangle. The
graphics engine mixes the two sets of data in any of 256 dif
ferent combinations and then writes the resulting pixels to
the destination rectangle's video memory. This will continue
until As the pixels in the destination rectangle are written. As
soon as the graphics engine has completed this command, it
will go back to the FIFO for the next command.

Image transfer performs the same function as a BitBlt ex
cept that it transfers an image from the CPU memory to
video memory and vice versa. For this operation, the CPU
only has to compute the number of bytes to be transferred

Fig. 1. A simplified block dia
gram of the Ultra VGA board.

and then write (or read) that number of bytes to or from a
dedicated I/O register.

Since the graphic functions named above are constantly
used with any graphical user interface, a large performance
gain will be seen on any benchmark that tests video using
these graphic operations. Since video is often the perfor
mance bottleneck, application-level benchmarks tend to
improve as well.

After the CPU offloads operations to the graphics engine, it
checks the FIFO to make sure that there is enough room
before sending the next command. This means that the CPU
might still have to wait (when the FIFO if full) if all it is do
ing is sending high-level video commands. For benchmarks
that do a large number of one type of operation, the results
may not indicate real performance. Because of this fact,
benchmarks today are moving towards using real applica
tions performing normal operations that can be completely
automated.

Today the most useful benchmarks are applications that use
a graphical user interface. Because of this, many PC bench
marks measure the performance of graphically intensive
applications such as CAD programs. Two industry bench
marks, one running on Microsoft Windows and the other on
AutoCAD, showed that HP Vectra 486/U machines using the
HP Ultra VGA card significantly outperformed other PCs
running the same benchmarks.

Host Bus versus the ISA Bus
Peripheral adapter cards are generally connected to a PC
via the ISA (Industry Standard Architecture) bus, which
runs at approximately 8 MHz (BCLK). BCLK is the ISA clock,
which is obtained by dividing the CPU clock by either three
or four depending on whether the processor clock is 25 MHz

June 199:i Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

90Â° (010)

135Â° (Oil)

180Â° (100)

225Â° (101)

270Â° (110)

la)

45Â° (001)

^ o (ooo)

315Â° (111)

D r a w i n g
â€¢ Direction

B i t s

D D D I M / D I L L L L

D r a w i n g
D i r e c t i o n

(See above)
M o v e o r

D raw to a
N e w P o i n t

P i xe l Leng th
(0-15 Pixe ls)

(b)

Uses 12 Bytes to Encode
11 D raws and 1 Move

M o v e

(0

Fig. a (a) Short stroke vector directions, (b) Byte encoding of a
short stroke vector, (c) Example of a character drawn using short
stroke vectors. This character would require 48 bytes if stored as
normal long vectors â€” 12 X and 12 Y values each two bytes long.

or 33 MHz. One-byte accesses to an accessory card require
a minimum of three BCLKs or approximately 375 ns. Two-byte
accesses require a minimum of six BCLKs or approximately
750 ns. If the accessory board is not ready to start a cycle
when it is accessed, or if the access takes longer than the
minimum, additional wait states of one BCLK each are in
serted. In Fig. 3 the signal BALE (bus address latch enable)
signifies the start of a processor cycle and that the address
on the bus is valid. Read/write (R/W)) and memory-I/O (M-l/0)
are control signals indicating the direction and source or
destination of the data on the bus. The read and write data
signals indicate when the data must be stable for either type
of transfer.

1 2 5 n s

BCLK _TU~i_ri_n_rLrLrLrL

Fig. 3. A typical six-BCLK ISA cycle.

The HP Ultra VGA board is implemented as a 16-bit ISA ac
cessory board. Because of this, its performance is limited by
the bus bandwidth. For example, transferring a word from
one location to another takes a minimum of six BCLKs (750
ns) even though the memory is capable of 80-ns access time.
The HP Vectra 486 and 486/33T computers have an EISA
bus, but the additional cost of implementing the Ultra VGA
board as an EISA peripheral was not justified since it could
not take advantage of the advanced features of the EISA bus
such as bus mastering. Also, being an ISA board allows it to
be used in other HP computers such as the Vectra RS 25/C,
which doesn't have an EISA bus.

In the Vectra 486/U, the video subsystem is not a plug-in
accessory board but is embedded on the processor PC
board. It is connected directly to the host bus and thus can
take advantage of the 32-bit bus width and the fast clock
speed. The chipset used in the HP Vectra 486/U allows for
four separate buses: the local bus, the host bus, the EISA/
ISA bus, and the peripheral bus (see Fig. 4). The Intel486
processor and the secondary cache memory directly inter
face with the local bus. This bus architecture is unique to
the Vectra 486/U. In most Intel486 designs, what we refer to
as the host bus is the local bus and the cache shares bus
bandwidth with other elements of the system. The HP 486/U
gains performance by separating the local bus from the host
bus since most high-speed critical operations are processor
accesses to the cache. This also allows simultaneous access
to main memory or mass storage by intelligent peripherals
without interfering with the CPU.

The host bus is a 32-bit bus, operating at the Intel486 clock
speed, which connects the main subsystems of the processor.
As shown in Fig. 4, these subsystems include the memory
controller, the EISA/ISA bus controller, the peripheral con
troller, and the video controller. The EISA/ISA bus is the
backplane bus used for plug-in accessory cards. The periph
eral bus connects many of the onboard subsystems in an ISA
style protocol.

Devices on the host bus receive the signal HADS (host ad
dress data strobe) to begin a cycle (see Fig. 5). This causes
an address decode to take place in the device. If the device
recognizes the address as its own, it responds by asserting
the signal HLAC (host local access). This causes other devices
on the host bus to remain quiescent for the duration of the
bus cycle. If no device responds, the address is propagated
onto the EISA/ISA and peripheral buses. When the respond
ing host bus device completes its operation, it responds by
asserting the signal HRDY (host ready) which ends the cycle.

By comparing the timing diagrams shown in Figs. 3 and 5, it
can be seen that the host bus implementation can speed up
individual I/O or memory cycles by a factor of four to six.
The decrease in CPU-to-peripheral transfer time and the
accelerator built into the chip (described below) contribute
to the superior performance of the embedded Ultra VGA
subsystem.

VRAM versus DRAM
Most PC video adapters use standard dynamic RAM (DRAM)
for display memory. While this is a cost-effective solution, it
leads to performance penalties. Because a DRAM has a single
data port, accesses from the CPU and the display controller
must be time-multiplexed. The display controller must have

34 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

EISA/ISA
Controller

Peripheral
Controller

Flash
CMOS

Nonvolat i le

EISA/ISA Bus

a high priority because any missing data would show up as
noise or snow on the display. In the original CGA, the only
time the CPU is allowed to access display memory is during
the retrace intervals at the end of each scan line. This means
that that the CPU can get only two or three clean accesses
every 63 us (see Pig. 6a).

The EGA and VGA architectures also use DRAM, but by using
four-bit wide chips, the CPU/display interleave is brought
down to 1:2 (see Fig. 6b). This allows a CPU access every
450 ns. This still necessitates slowing the CPU down, since if
the access just misses, the processor has to wait 450 ns until
the next access window opens.

Another RAM architecture made especially for video use is
the video RAM (VRAM). VRAM is a dual-ported device that
allows the CPU almost unlimited access to the display mem
ory while still maintaining a noise-free display. Fig. 7 shows
a simplified drawing of a 256-bit VRAM. The RAM array in
this case is 16 rows of cells by 16 columns. In an actual
VRAM the array would be 64K bytes in a 256-by-256 array.

hi normal DRAM accesses, a row is selected by the row ad
dress and read in to the sense amplifiers. The column address

HCLK

HADS

HLAC

HRDV

R e a d D a t a

Write Data

Fig. 5. Typical host bus cycle.

Fig. 4. Basic block diagram of the
HP Vectra 486/U.

is used to select one of the column sense amplifiers to read
or write a single bit of the array.

In a VRAM, access to a row is also selected by the row ad
dress. However, instead of only one column being selected,
all of the columns are simultaneously read into a serial shift
register. The data is then shifted out of the shift register as it
is needed by the display. In this way the display controller
need only lock out the CPU for one cycle out of every 256
(or less depending on the width of the VRAMs) to present a
clean display.

The Ultra VGA board uses the VRAM mode when it is oper
ating in its enhanced mode. In the standard VGA mode of

Display Access CPU Access

D i s p l a y D i s p l a y D i s p l a y C P U C P U

pâ€” Retrace Interval 2-3 usâ€” H

63 (is

'a!

(b)

D i s p l a y C P U D i s p l a y C P U D i s p l a y C P U

450ns

Display

Fig. imple CPU/display memory accesses, (a) In the original CGA imple
mentation the CPU gets access only during retrace intervals, (b) In
the EGA and VGA architectures the CPU gets access to memory one
out of every two memory cycles.

June 1993 Hewlett-Packard Journal 35
© Copr. 1949-1998 Hewlett-Packard Co.

Dot Clock
Shift/Load

Serial Shift Register Serial
Data Port

TmmmmTTT

Dynamic
RAM
Array

Column
Address

tmmmttim
Column Sense Amplif iers
16:1 Column Multiplexer

DRAM
Data Port

Fig. 7. Simplified diagram of a
VRAM.

operation the Ultra VGA board accesses video memory as if
it were DRAM.

Clock Synthesizer
Because of the many different display resolutions and moni
tor characteristics associated with the Ultra VGA board, up
to 16 different video dot clock frequencies are needed. The
board space needed would be prohibitive if these clocks
were generated with discrete crystals or oscillators. Instead
we use a clock synthesizer 1C. This relatively new chip
combines analog and digital circuitry on the same chip. It

Data Bus

Dot Clock

Digital-to-
Analog

Converters

Analog Outputs to Monitor

Fig. 8. Simplified diagram of a RAMDAC.

contains an oscillator, a phase-locked loop, and digital divid
ers that drive the phase-locked loop. Except for the refer
ence frequency crystal (14.31818 MHz) and an RC filter, all
of the necessary components are contained on the chip.
This gives enormous capability in very little board space.

RAMDACs
The CGA runs its monitor with four digital signal lines: red,
green, blue, and intensity. This allows a maximum of 16
colors to be displayed. In graphics modes the colors are
fixed by the hardware and selected from two palettes of
four colors each.

The EGA extends this by providing six digital signals: red,
red', green, green', blue, and blue'. This allows a maximum
of 64 different colors to be displayed. The digital-to-analog
converters (DACs) are built into the monitor and the 64
shades are fixed by the manufacturer. The EGA board has a
palette consisting of 16 six-bit entries, and each palette
entry can be programmed to select one out of 64 shades.

The VGA doesn't drive the monitor with digital signals, but
uses analog signals instead, one for each primary color (red,
green, and blue). By varying these signals, an almost infinite
range of colors can be displayed. The standard VGA uses a
RAMDAC with 256 eighteen-bit entries. Each of the entries
has six bits each for red, blue, and green (see Fig. 8). The
maximum number of colors that can be generated is 218 or
262,144. Of these, any 256 can be displayed simultaneously.

Ergonomics in PC Graphics

Higher Resolutions and Higher Refresh Rates
Since the establishment of the IBM VGA as a PC graphics
standard, there has been steady progress in the develop
ment of higher screen resolutions. The IBM VGA offers a

36 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

maximum resolution of 640 by 480 pixels with 16 colors.
Recent super- VGA boards from various manufacturers sup
port higher resolutions of 800 by 600 and 1024 by 768 pixels,
along with 256 colors.

The most direct benefit of higher screen resolution is a larger
display area for the user. This translates to advantages such
as the ability to display more rows and columns of a spread
sheet, or larger sections of a word processor document.

The display refresh rate has also been steadily improved to
address the problem of screen flicker. Flicker is perceived
by the user as a direct result of the monitor screen not being
refreshed at an adequate rate. Since all PC monitors are
based on cathode ray tube (CRT) technology, the contents of
the screen are not static but are constantly being swept onto
the screen phosphor on a line-by-line basis. If the graphics
system does not support an adequate screen refresh rate,
pixel intensity will have time to decrease between successive
refresh cycles, resulting in the perception of rapid screen
flashing, or flicker. Viewing a monitor screen with significant
flicker, especially for long periods of time, can result in eye-
strain and other health hazards. The recent improvement in
screen refresh rates has been largely successful in reducing
the problems associated with screen flicker.

The standard VGA implements a screen refresh rate of 70 Hz
for all text and graphics modes, except for 640 by 480 graph
ics modes, which offer a 60-Hz rate. The Video Electronics
Standards Association (VESA) provides standards for re
fresh rates at higher resolutions including 72 Hz for 800 by
600 resolution and 70 Hz for 1024 by 768 resolution.

Monitors
Increasing the screen resolution or the refresh rate will
directly increase the graphics output horizontal scan rate
(Hsync), a measure of the time between successive horizon
tal display lines on the screen. The standard VGA uses a fixed

Hsync rate of 31.5 kHz for all text and graphics modes. Com
binations of higher resolutions and higher refresh rates can
yield an Hsync rate ranging from 31.5 kHz to beyond 64 kHz.

All standard VGA-only analog monitors on the market can
support only the standard 31.5-kHz Hsync rate. To properly
support modes with higher Hsync rates, dual-sync or multi
sync monitors are required. Dual-sync monitors, such as the
HP Super VGA Display (HP D1194A) and the HP Ergonomic
Super VGA Display (HP D1195A), can support Hsync rates
other than 31.5 KHz. The capabilities of these two monitors
and others are listed in Fig. 9.

Multisync monitors are typically capable of synchronizing to
a continuous range of Hsync frequencies, allowing them to
support standard VGA modes as well as higher resolutions.
The HP Ultra VGA Display (HP D1193A) is an example of a
multisync monitor.

The HPUVGA Utility

With the choice of multiple refresh rates and monitors with
different resolutions, the user needs to configure the graphics
system to select the correct refresh rates for the resolutions
supported by a given monitor. The HP Ultra VGA board is
shipped with a configuration utility called HPUVGA.EXE, which
allows the user to customize the Ultra VGA board output to
any HP PC graphics monitor.

Embedded within the HPUVGA utility is information pertain
ing to the synchronization capabilities of all of HP's PC
graphics monitors. By correctly selecting the monitor in use,
the user is able to view the refresh rates supported by the
monitor at graphical resolutions of 640 by 480, 800 by 600,
and 1024 by 768 pixels. In cases in which the monitor can
support two or more refresh rates for a given resolution, the
user is given a choice. All refresh settings are saved in an HP
CMOS video byte, which is described later.

V s y n c (H z) D 1 1 9 2 A

D1192Aâ€” HP Monochrome Display

D1187Aâ€” HP 20-Inch High-Resolution Display

D1193Aâ€” HP Ultra VGA 17-Inch Display

D1194Aâ€” HP Super VGA Display

D1 195Aâ€” HP Ergonomic Super VGA Display

70

fin

72

60

72

60

7?

60

70

60

70

D1187A
D1193A

64 Shades

D1194A

<<*

â€¢â€¢

D1195A

Fig. capabilities listed, of HP PC monitor capabilities. In addition to the capabilities listed, all of the monitors provide standard VGA modes.

June 1993 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

The HPUVGA utility also supports emulation modes for the
MDA, HGC, and CGA PC graphics standards. Two additional
132-column text modes, with 25 and 43 rows respectively,
can also be set via the HPUVGA utility.

HP CMOS Video Byte
Refresh rate settings for graphics resolutions of 640 by 480,
800 by 600, and 1024 by 768 pixels are saved in the HP CMOS
video byte. The assignments for each bit in this byte are:

Bit 7: Alternate I/O port select
Bit 6: Reserved
Bits 4 and 5: 1024 by 768 refresh timing
Bits 2 and 3: 800 by 600 refresh timing
Bits 0 and 1: 640 by 480 refresh timing

The monitor timings for all supported video modes are
stored in table format in the video BIOS, with one table
entry per video mode. When an application calls the Int 10h
set-mode function of the video BIOS to enter a specific ac
celerated graphics mode, the video BIOS accesses the HP
CMOS video byte to determine the refresh rate currently
selected, then uses the corresponding timing table to get the
correct refresh rate. This scheme allows the refresh rate
control to be application independent.

Since HP CMOS memory is a nonvolatile system resource,
the refresh rate settings are preserved in the same way as
other standard system configuration information. This
scheme is capable of supporting operating systems besides
MS-DOSÂ®. Alternatives to HP CMOS memory for saving re
fresh rate settings have been carefully considered. Adding
EEPROM hardware to the HP Ultra VGA board to store the
refresh rates had the disadvantages of high cost and in
creased design complexity. Using a TSR program (memory
resident software) to preserve the refresh rates would have
worked only for MS-DOS, and other systems such as the OS/2
and UNIX operating systems would also require specific
memory resident software. Memory resident software would
occupy valuable system memory and reduce ease of use.

Display Drivers

A display driver is a distinct program module that is made
up of a group of display functions that provide a standard
interface between an application and a particular type of
video display hardware.

The HP Ultra VGA accessory card provides many features,
such as hardware line drawing, bit-block image transfer
(BitBlt), rectangle fill, and hardware clipping. However,
these features can only be accessed through some special
video enhanced modes which are unique to the graphics
processor in the HP Ultra VGA card. In most cases, applica
tion programs, such as Microsoft Windows and AutoCAD, do
not know (and do not want to know) how to enter these
enhanced modes. It is the manufacturer-specific display
driver that lets the application program take full advantage
of the graphics processor.

For example, to make the HP Ultra VGA card work in
256-color enhanced mode with 1024-by-768-pixel resolution,
a display driver has to call the BIOS interrupt lOh with regis
ters AX=Ox4F02 and BX=Ox205. In general, to set the display in

one of the HP Ultra VGA enhanced video modes, the driver
calls BIOS interrupt lOh with the AX and BX registers set to
values that represent different resolutions and colors.

To access hardware line drawing, BitBlt, and rectangle fill
features of the HP Ultra VGA hardware, the display driver
sets the drawing command register at I/O address 9AE8h.
Fig. 10 shows a definition of each bit in this register.

For example, when an application wants to draw a line on
the screen, the display driver sets the following bits in the
drawing command register at I/O address 9AE8h:

B i t s S e t t i n g M e a n i n g
1 3 - 1 5 0 0 1 D r a w L i n e C o m m a n d
0 4 1 D r a w = Y e s
0 0 1 W r i t e

The driver also has to find out the drawing direction to fill in
bits 5 to 7.

Another important feature of the HP Ultra VGA card is the
short stroke vector drawing ability. Using short vectors for
displaying text in the graphics mode improves video perfor
mance. When an application program requests to display
text on a high-resolution graphics screen, the display driver
sets the short stroke vector command register at the I/O
address 9EE8h. Fig. 2b shows the bit definitions for the short
stroke vector register.

Typically, an application program uses a standard interface to
the display so it doesn't have to be concerned with the type
of hardware installed on the machine in which it is running.
This isolates the application program from the display hard
ware. For example, most Windows applications are written
without regard to the type of video adapter used. Instead, the
programs are written to interface with Microsoft Windows.

Bit

15,14,13

Meaning

Command Type
001: Draw Line
010: Rectangle Fill
110: BitBlt

0 4 D r a w (1 = Y e s 0 = N o)

03 D i rec t ion Type (1 = Rad ia l 0 = xv

02 Las t P ixe l (1 = O f f 0 = On)

0 1 P i x e l M o d e (1 = M u l t i p l e 0 = S i n g l e)

0 0 R e a d / W r i t e 1 1 = W 0 = R)

Fig. 10. Definitions of each bit in the drawing command register.

38 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

W i n d o w s
Appl icat ion

Program

AutoCAD
Application

Program

Ã M â € ¢ M

Windows Core Funct ions
(Dynamic Link Libraries)

Graphics Device
Interface (GDI)

Other
Functions

HP Ultra
VGA Display

Driver for
W i n d o w s

AutoCAD Functions

Autodesk Device
Interface (ADI)

HP Ultra
VGA Display

Driver for
AutoCAD

T T
HP Ultra VGA Adapter

T
Display Monitor

Fig. driver. Software hierarchy from the application to the display driver.

The video adapter's display driver takes care of writing to
the display hardware. The Windows display driver works
with any Windows program. By going through a standard
interface, the display driver developer and the application
program developer are isolated from each other (see Fig. 11).

The Windows Display Driver
The display driver for Windows is a dynamic link library that
consists of a set of graphics functions for the HP Ultra VGA
display card. These functions translate device independent
graphics commands from the Windows graphical device inter
face (GDI) into the commands (such as the drawing com
mand described above) and actions the Ultra VGA graphics
engine needs to draw graphics on the screen. These functions
also give information to Windows and Windows applications
about color resolution, screen size and resolution, graphics
capabilities, and other advanced features, such as BitBlt,
line-drawing, polygon fill, and hardware cursor support.
Applications use this information to create the desired
screen output.

The HP Ultra VGA Windows display driver is based on the
sample driver for the IBM 8514 graphics adapter. The source
code for the 8514 driver is available from Microsoft's Driver
Development Kit. Like most Windows display drivers, the
Ultra VGA driver provides the following basic functions:
Output. Draws various shapes.
Enable. Starts or resumes display activity.
Disable. Stops display activity.
RealizeObject. Creates physical objects (e.g., pens, brushes,
and device fonts) for exclusive use by the display driver.
This is where the translation between device independent
(or logical) and device-optimal (or physical) objects takes
place.

â€¢ Colorlnfo. Translates between logical colors, which are
passed by Windows as double word RGB values, and physi
cal colors recognized and used by the Ultra VGA display
drivers.

â€¢ BitBlt Supports bit-block transfers by copying a rectangular
block of bits from bitmap to bitmap while applying some
specified logical operations to the source and destination
bits. A bitmap is a matrix of memory bits that defines the
color and pattern of a corresponding matrix of pixels on the
device's display screen. Bitmaps provide the ability to pre
pare an image in memory and then quickly copy it to the
display.

â€¢ ExtTextOut. Draws a string of characters at a specified loca
tion on the screen and clips any portion of a character that
extends beyond a bounding box of the string.

â€¢ StrBlt. Supports text drawing for the earlier versions of
Windows. (It just makes a call to ExtTextOut.)

â€¢ Control. Passes special control information to or receives
special information from the Ultra VGA display driver.

Besides the functions listed above, the following features
have been added to take full advantage of the graphics engine
in the Ultra VGA.

â€¢ Different Resolutions. Separate display drivers are provided
to support resolutions of 1024 by 768, 800 by 600, and 640
by 480 pixels with 256 colors.

â€¢ Hardware Cursor. An onboard hardware cursor (64 by 64
pixels) for fast cursor movement in the enhanced mode.

â€¢ Fast Polyline Draw. Onboard hardware is used to draw solid
polylines at a very fast speed.

â€¢ Polygonal Capabilities. An onboard drawing command
register and hardware are used for quick rectangle fill and
scanline drawing.

â€¢ Fast Rectangular Clipping. Rectangular clipping is provided
via a clipping window boundary register and hardware that
discards points that are outside of a specified rectangle or
region drawn on the screen.

â€¢ High-Speed BitBlt. Onboard hardware is used for high-
performance bitmap image transfer operations.

â€¢ FastBorder Function. A function that draws borders for
windows and dialog boxes very quickly.

â€¢ Save Screen Bitmap. The SaveScreenBitmap function allows
Windows to save bitmaps temporarily in offscreen video
memory. This function speeds the drawing operations that
require restoring a portion of the screen that was previously
overwritten.

Â« Support for Large Fonts. Support for large fonts is provided
in which the font and glyph information can exceed 64K
bytes.

â€¢ DIBs Support. This function converts device independent
bitmaps (DIBs) to physical format for direct transfer to the
display without applying a raster operation. Note that a DIB
is a color bitmap in a format that eliminates the problems
that occur when transferring device dependent bitmaps to
devices having difference bitmap formats.

â€¢ Support Device Bitmap. A device bitmap is any bitmap
whose bitmap bits are stored in device memory (such as
RAM on a display adapter) instead of main memory. Device
bitmaps can significantly increase the performance of a
graphics driver and free system memory for other uses.

June 1993 Hewlett-Packard Journal 39
© Copr. 1949-1998 Hewlett-Packard Co.

i Font Caching. Font caching is temporarily saving the most
recently used fonts in onscreen video memory. This function
speeds up text-redisplaying operations.

i Small and Large Fonts. The Ultra VGA display driver pro
vides both small and large fonts in the 1024-by-768 high-
resolution mode.

' Vector Fonts. The Ultra VGA display driver supports vector
fonts. A vector font is a set of glyph definitions, each con
taining a sequence of points representing the start and end
points of the line segments that define the appearance of a
character in a particular font.

Working Together
The functions in the Ultra VGA display driver and the Win
dows graphical device interface (GDI) work together to
make efficient use of the features provided in the HP Ultra
VGA board. The rest of this section describes how these two
entities work together to initialize the display and perform
some simple graphical operations.

When the user types WIN to start Windows, a small program
WIN. COM determines the mode in which Windows is to run.
If it determines that it can run in the enhanced mode, Win
dows runs KRNL386.EXE (via WIN386.EXE). While initializing,
Windows checks the DISPLAY.DRV setting in the SYSTEM.INI file
to determine the file name of the display driver to load. The
HPUxxx.DRV driver modules are the display drivers for differ
ent resolutions and video memory configurations. The
Windows graphical device interface (GDI) then calls the
selected display driver's initialization routine.

During initialization, the Windows GDI makes two calls to
the Enable function in the Ultra VGA display driver. After the
first call, the Enable function then returns to the GDI the
GDI INFO data structure, which describes the general physical
characteristics and capabilities of the HP Ultra VGA graph
ics engine. The GDI uses this information to determine what
the Ultra VGA display driver can do and what the GDI must
simulate.

The second time the GDI makes a call to the Enable function,
the display driver does three things. First, it initializes the
Ultra VGA graphics engine to be ready to run Windows. This
includes saving the current mode, using the video BIOS func
tion 10h calls to set the enhanced display mode and colors,
load the palette, and so on. Next, the Enable function calls the
hookJnt_2Fh function in the display driver so that each call to
interrupt 2Fh will be checked to detect any screen Switch
function calls. This is because in a preemptive multitasking
environment such as 386-enhanced-mode Windows, the dis
play driver has to save and restore the display hardware
settings, such as video mode and register data, whenever
Windows is changed between a Windows application and a
non- Windows application.

The last thing the Enable function does is to initialize and
copy the PDEVICE data structure. The PDEVICE data structure
defines physical objects rather than bitmaps. Physical ob
jects of the attributes (such as color, width, and style) of
lines, patterns, and characters drawn by the display driver.

Physical objects correspond to the logical pens (used to draw
polylines and borders around objects drawn by the Output
function), brushes (used to fill figures drawn by the Output
function and to fill rectangular areas created by the BitBIt
function), and fonts (used by the ExtTextOut function to draw
text). Physical objects also contain Ultra VGA hardware
device dependent information that a display driver needs to
generate output. These physical objects are created by the
RealizeObject function.

After the RealizeObject function is finished creating the default
pens and brushes for Windows and the brushes needed to
draw the desktop and fill the Program Manager window, the
BitBIt and ExtTextOut functions are called to do all the drawing
on the screen. First, the BitBIt function draws a rectangle on
the screen with the background color by using a pattern
copy operation. Next, the BitBIt function is called to draw
some borders and rectangles. Finally, to complete display
initialization all the icons, text, and pictures are put on the
Windows screen by using functions such as BitBIt, ExtTextOut,
and the brushes created by the RealizeObject function.

When a Windows application requests to draw a line on
the screen, the GDI checks the dpLines entry in the GDIINFO
structure, which was filled by the display driver during ini
tialization, to see if the display driver supports line drawing.
Since the Ultra VGA driver supports hardware line drawing,
the GDI calls the Output function to draw a line on the screen.
Otherwise, the GDI has to simulate line drawing by combin
ing scan lines and polylines.

If a Windows application asks to display text on the screen,
the GDI calls the ExtTextOut function in the display driver. The
ExtTextOut function receives a string of character values, a
count a the characters in the string, a starting position, a
physical font, and a DRAWMODE structure. These values are
used to create the individual glyph images on the screen.

Finally, when a user asks to quit Windows, the GDI calls the
Disable function in the display driver. This function frees any
resources associated with the physical device and restores
the Ultra VGA hardware to the state it was in before Windows
started. After the display driver returns from the Disable func
tion, the GDI frees the memory it allocated for the PDEVICE
structure and frees the display driver, removing any driver
code and data from memory.

Acknowledgments
The authors would like to thank the following individuals
who participated in the development of the HP Ultra VGA
products: Mark Linsky, Mark Hanlon, Jean-Claude Roy, Larry
Durandette, Kevin Owen, Kiran Mundkur, Dave Wilkins, and
Mike Milani. We would also like to thank all the members of
the HP Vectra 486/U hardware, BIOS, and utilities teams for
their assistance and cooperation.

UNIX in countries. registered trademark of UNIX System Laboratories Inc. in the USA. and other countries.
Microsoft is a U.S. registered trademark of Microsoft Corporation.
AutoCAD is a U.S. trademark of Autodesk, Inc.
MS-DOS is a US. registered trademark of Microsoft Corporation.

40 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

POSIX Interface for MPE/iX
Differences in directory structure, file naming conventions, and security
were to the areas in which mechanisms had to be developed to
enable the POSIX and MPE XL interfaces to coexist on one operating
system.

By Rajesh Lalwani

The IEEE standard for a Portable Operating System Interface,
or POSIX, defines a standard operating system interface and
environment to support source level application portability.
POSIX specifies the functions and services an operating sys
tem must support and the application programming interface
to these services and functions.

POSIX 1003.1, which defines a standard set of programmatic
interfaces for basic operating system facilities, and POSIX
1003.2, which specifies an interactive interface that provides
a shell and utilities similar to those provided by the UNIX
operating system (see Fig. 1), are integrated in the MPE XL
operating system to form the MPE/iX operating system,
which runs on the HP 3000 Series 900 system.

The programmatic interface and directory structure of
POSIX 1003.1 allow MPE/iX users to use POSIX functional
ity without any impact on existing HP 3000 applications.
Moreover, MPEt applications are able to access POSIX files,
and POSIX applications are able to access MPE files. Thus,
MPE/iX provides interoperability and integration between
MPE and POSIX applications and data.

t From here on MPE will be used to refer to the MPE XL version of the MPE operating system.

M P E P O S I X (U N I X)
A p p l i c a t i o n A p p l i c a t i o n

M P E P O S I X 1 0 0 3 . 1
P r o g r a m m i n g P r o g r a m m i n g

I n t e r f a c e I n t e r f a c e

HP 3000
Operating

System

Application
Level

System
Level

POSIX is significantly different from MPE in a number of
technical areas such as directory structure, file system, se
curity, user identification, file naming, process management,
and signals. In the summer of 1990, a POSIX architecture
team was formed to look at these differences and to archi
tect a way in which MPE and POSIX could coexist on HP
3000 Series 900 systems.

Despite the differences between MPE and POSIX concepts,
the team had no problem visualizing MPE and POSIX as one
operating system. To achieve a successful integration of
POSIX and MPE, several stumbling blocks had to be over
come. This paper describes the problems encountered in
merging POSIX and MPE in three major technical areas:
directory structure, file naming, and security. The paper
also describes the alternatives rejected by the POSIX
architecture team.

Directory Structure
MPE has a fixed, three-level directory structure. In this
model, the directory tree consists of one or more accounts.
Each account contains one or more groups and each group
has zero or more files in it (see Fig. 2). On the other hand,
POSIX supports the notion of a hierarchical directory struc
ture. Fig. 3 shows a typical POSIX directory. Some of the
features that POSIX requires in a directory structure include:

â€¢ Support for the . and .. entries upon creation of a directory
â€¢ Support for a true hierarchical directory with file names of at

least 14 characters and path names of at least 255 characters
â€¢ Support for the POSIX rule for directory deletion, that is,

the directory must not contain any entries other than . and ..
for the unlink of a directory to succeed.

Root Directory

A c c o u n t s | P A Y R O L L

G r o u p s j J A N 9 2 F E B 9 2

DEVELOP

PX

svs

T E L E S U P P U B

PA-RISC
Hardware Hardware

Files H O U R S T A X I N F O PROFILE S T O R E C l

Fig. 2. A typical MPE directory.

Fig. 1. MPE and POSIX applications coexist on the same system.

June 1993 Hewlett-Packard Journal 41
© Copr. 1949-1998 Hewlett-Packard Co.

Root Directory

lib

l ibc.a

b i n i m p

b i n a d d r _ b k

m y I s d o w n j o a d

Fig. 3. A typical POSIX directory.

MPE groups and accounts are different from the POSIX
directories because of the special information contained in
them. To integrate the POSIX and MPE directory structures
successfully, we had to consider removing this special infor
mation from MPE groups and accounts to accommodate the
new directory structure. The following lists some of this
special information.
On MPE, accounts are used to manage collections of users
for file sharing. Each MPE account entry contains a pointer
to a list of users that are members of that account.
MPE groups and accounts keep track of three resources:
disk space, connect time, and CPU time.
MPE groups and accounts contain security information that
is used to evaluate permission to access certain files.

One of the challenges for the architecture team in integrating
the hierarchical directory of POSIX with the MPE directory
structure was to make the directory generic enough so that
future standards could be supported and the accounting and
user identification functions could be removed from the
directory in the long term. These efforts resulted in the di
rectory shown in Fig. 4.

Conceptually, the new directory structure is just a tree
structure (a directed acyclic graph, to be more precise). The
root of this tree is designated by slash (/). The root may have
files and directories under it. Each directory may have files
and directories under it. There is no architectural limitation
on the depth of the directory tree.

The only restriction on the directory structure has to do
with the MPE groups and accounts. MPE accounts can only
exist as immediate descendants of the root directory and
MPE groups can only exist as immediate descendants of
MPE accounts. This means that although files and directories
can be placed anywhere, MPE directory objects (groups and
accounts) are restricted to their conventional locations.

Accounts and groups are distinguished from POSIX files and
directories based upon how they are created. An account is
a directory that is created by the :NEWACCT command and
purged via the :PURGEACCT command. Similarly, a group is a
directory that is created by the :NEWGROUP command and
purged with the :PURGEGROUP or :PURGEACCT commands.

In the new directory structure all users are registered in the
UID (user identifier) database required by POSIX, and the
combination of the UID and GID (group identifier) data
bases replaces most of the information formerly held in the
MPE account and user directory nodes.

Rejected Directory Designs
In the beginning the architecture team considered the idea
of a dual-root directory structure. Fig. 5 shows an example
of this idea. In this scheme, a directory called MPEXL would
exist directly below the root of the hierarchical directory.
This directory would be the root of the MPE directory con
taining all the accounts, groups, and files. Underlying this
proposal was the assumption that the MPE environment
would not be changed. Factors motivating this proposal
were the desire to maintain compatibility with existing ap
plications, to eliminate the need to modify existing directory
services, and to isolate the POSIX hierarchical directory
services from having to interact with MPE directory struc
tures. This idea was rejected by the architecture team for
several reasons. First, this would make the hierarchical di
rectory nonuniform. The MPEXL directory (shown in Fig. 5)
and all its descendants would not follow the normal hierar
chical directory rules, and applications would have to make
exceptions for them. Second, this would prevent users from
incorporating the hierarchical directory into their current
environment. Finally, this proposal was not in line with the
long-term goal of making all the directory objects in the
system one type.

Another idea was to use the same dual-root structure but
not externalize the fact. With this idea, the directory ser
vices would determine which of the two roots to use when
searching for a particular name, and duplicate entries would
not be allowed in the two roots. Thus, for the directory
shown in Fig. 5, a name like Cl. PUB. SYS would only refer to
CI.PUB.SYS in the MPE directory, and a POSIX interface would
not be able to create a directory /SYS. While this solution
solved some of the problems with the previous alternative, it
still had some problems. For example, the directory services
would have to do an extra search just to determine which
root to use, thus affecting performance. More important,
MPE and POSIX directories would not have been integrated.

Root Directory

PAYROLL

J A N 9 2 F E B 9 2

H O U R S T A X I N F O

DEVELOP

MPE PX

a m c M a k e f i l e

filed

bruna

l e d g e r p a y a b l e d a t a d a i l y l o g P R O F I L E a d d r b k

m y I s d o w n l o a d Fig. 4. A typical MPE/iX directory.

42 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Root D i rec to ry

MPEXL

P A Y R O L L D E V E L O P

J A N 9 2 F E B S 2 M P E P X

H O U R S T A X I N F O P R O F I L E

l i b c a

T E L E S U P P U B

S T O R E C l

â€¢ i

b r u n a j e f f

b i n a d d r . b k

Fig. 5. A director." structure that
myjs downjoad was rejected for MPE/iX.

File Naming
In designing the file naming rules, the main objective was
that the existing MPE interfaces such as MPE intrinsics and
command interpreter (CI) commands should be able to refer
to all objects in the same way they did before MPE/iX. The
familiar MPE objects can be referred to by using the syntax
for file names file.group.account, file. group, or file. The entire file
name is first upshifted by the MPE name server. For exam
ple, if the file name is prgfile.px.develop, the MPE name server
refers to the file PROFILE in group PX in account DEVELOP. Simi
larly, if the file name is, say, prgfile.px, it refers to the file
PROFILE in group PX in the logon account. Finally, if the file
name is fully unqualified (no group or account), say, prgfile, it
refers to the file PRGFILE in the current working directory
(CWD). When a user logs on, the CWD is the same as the
user's logon group. So unless the user has explicitly changed
the CWD, a fully unqualified file name such as prgfile contin
ues to refer to the same object as before MPE/iX (e.g., file
PRGFILE in logon group PX.DEVELOP).

The file named downjoad in Fig. 4 cannot be referenced
through the MPE name server because the file is not in an
MPE group and it doesn't have a valid MPE file name. The file
name must somehow escape being processed by the MPE
name server so that it can be processed by the POSIX name
server. This is done by using the characters . or / at the begin
ning of a file name. For file names beginning with . or /, the
MPE name server does not upshift the name, but passes it to
the POSIX name server. Therefore, the file downjoad in Fig. 4
can be referred to by using the name /users/jeff/bin/downjoad
(the complete path name). Alternately, if the CWD has been
changed to /users/Jeff, the file can also be referred to by the
name ./bin/downjoad. Fig. 6 illustrates the MPE name server
rules for MPE and POSIX file names.

F i l e N a m e P a s s e d t o A c t u a l F i l e N a m e U s e d
MPE Name Se rve r

MPE
F i le Names

POSIX
F i le Names

A.B.C (Group c B, Account
= 0
A.B. logon account
C W D / A (N o t C W D / a l t

C W D / a
CWD/a .b
/ c / b / a (N o t / C / B / A l t

The name server used by POSIX 1003.1 functions and POSIX
1003.2 commands is the POSIX name server. However, MPE
interfaces such as intrinsics and CI commands escape to the
POSIX name server when the file name begins with the . or /
escape characters (see Fig. 7).

The POSIX name server can also refer to all the objects in
the directory. For naming purposes, MPE accounts and MPE
groups can be treated as directories. Hence, the file
PRGFILE.PX.DEVELOP can be referred to as /DEVELOP/PX/PRGFILE.
Since the POSIX name server does not upshift names, the
name /develop/px/prgfile cannot be used to refer to this file.
Since file names are always in POSIX syntax in POSIX appli
cations, they don't have to begin with . or /. Thus, if the CWD
is /DEVELOP/PX/ledger (see Fig. 4), the file name main.c will not
refer to the file MAIN in group C of the logon account, but to
the file named main.c in the CWD. The . is a valid POSIX
character.

A problem with the approach just described is that some
interfaces might have to do special processing to accom
modate POSIX file names. For example, the MPE :listfile
command might have to query the MPE name server to

MPE In t r i ns i cs , Command
In te rp re te r Commands

F i l e Name
Serve r

POSIX 1003.1 Funct ions,
POSIX 1003.2 Commands

t Remember tha t MPE upsh i f t s f i l e names and POSIX does no t .

Fig. 6. MPE name server rules for MPE and POSIX file names.

Fig. 7. The POSIX and MPE name servers. The MPE name server
escapes to the POSIX name server if the file name begins with . or /.

June 199;3 Hewlett-Packard Journal 43
© Copr. 1949-1998 Hewlett-Packard Co.

determine the type of file name it is dealing with (POSIX or
MPE) before accessing the file system. However, this prob
lem is minimized because there is one central file name
server for parsing both MPE and POSIX file names.

Rejected File Naming Alternatives
The architecture team considered and rejected the follow
ing alternatives for file names using the MPE command
interpreter.

PXUTIL. This program would have been an MPE system utility
used for supporting POSIX file names. For example, in PXUTIL
a user could have purged a POSIX file as follows:

pxut i l> purge /users / je f f /addr_bk .

PXUTIL would have also supported the POSIX chdirO function,
allowing the above file to be purged as follows:

pxut i l> chdi r /users/Jef f /
pxu t i l> purge addr_bk

Among the few functions provided by PXUTIL would have
been a mechanism (using : as the first character) for escap
ing to the MPE command interpreter so that the user could
use MPE commands from within PXUTIL. This would have
created problems when the CWD was different from the
logon group. Consider the following scenario:

:he l lo je f f .develop.px
:pxuti l
pxut i l> chdi r /users/Jef f /
pxu t i b : l i s t f i l e@

(logon group px.develop)
(run pxut i l)
(change work ing d i rec to ry)
(escape back to MPE)

Ideally, in this example the MPE :listfile command should
display the files in the directory /users/Jeff/. What happens
instead is that the :listfile command transfers control back to
the MPE command interface into the environment in which
PX.DEVELOP is the logon group and there is no concept of cur
rent files directory. Hence, :listtile would display the files
in the group PX.DEVELOP.

This example illustrates that using PXUTIL and the escape
feature to the MPE command interface would have required
enhancements to the CI commands so they could have un
derstood POSIX names and the current working directory.
We concluded that if all the CI commands were enhanced in
such a manner there would have been no need for PXUTIL.

CLPOSIX Toggle. This alternative defined a command inter
preter variable CLPOSIX, which, when set, would enable
some of the MPE command interpreter commands to ac
cept POSIX-named objects directly. The following sequence
illustrates this idea:

:he l lo je f f .develop.px
:print dailyjog (try to use a POSIX file name directly

in the MPE CI command PRINT)

Inval id Character In Fi le Name. (CIERR 583)

:setvar CLPOSIX true (tell the CI command to accept the
POSIX file names)

:print dailyjog

The main problem with this idea was that with the variable
CLPOSIX set to true, commands that were not enhanced
would not recognize POSIX named objects. Thus, in this
scheme if the :listfile command was not enhanced, the user

would run into the same problem encountered with the
PXUTIL utility. What is worse is that if the :listfile command
were enhanced in the future to support POSIX names, the
user would be surprised to see different results. This means
that the same commands would have behaved differently
when they were enhanced to recognize a variable like
CLPOSIX.

It would have been nice to have an "accept POSIX names"
switch on a per-command basis. In fact, the chosen design in
which the leading characters . or / are used to escape to the
POSIX name server does precisely that.

New Command Interpreter Commands. The last rejected idea
was to create a new set of commands that would have
directly accepted POSIX names. Consider the following
scenario:

:hel lo jef f .develop.px
:chdir /users/Jeff /
:px l is t f@

Presumably, pxlistf would be a new command that behaved
like listf and :listfile and understood POSIX names and the
CWD. This command would have displayed all the objects in
the CWD (/users/Jeff/) as opposed to listf and :listfile which would
have The all the files in the logon group PX.DEVELOP. The
biggest concern with this idea was that multiple commands
would have been doing the same task.

File Access and Security
In the POSIX file access model a process can access a file in
the following ways: read, write, and execute/search. Search
access applies to a directory and execute access applies to
an executable file like a program file or a shell script file.
There is a subtle difference between read (as applied to a
directory) and search access. If a process wants to open a
directory and read the entries in it, the process needs read
permission for that directory. But if a process wants to ac
cess a file, say, /users/jeff/addr_bk, the process needs search
permission for all the directories in the path, namely, /, users,
and Jeff in this particular case.

The standard file access control mechanism of POSIX uses
file permission bits, and every file in the POSIX directory
structure has file permission bits associated with it. All
directories in POSIX are just files of directory type. File per
mission bits contain the information about a file that is used,
along with other information, to determine whether a pro
cess has read, write, or execute/search permission for that
file. The bits are divided into three classes: owner, group,
and other. In addition to the file permission bits there is a
user identifier (UID) and a group identifier (GID) associated
with every file. File permission bits are set at file creation
time and can be changed by the chmod() function. These bits
can be read by using the statO or f stall) functions.

For access control, processes are classified as belonging to
one of three access classes: file owner class, file group class,
and file other class. A process is in the file owner class of a
file if the effective UID of the process matches the UID of
the file. A process is in the file group class of a file if the
process is not in the file owner class and if the effective GID
or one of the supplementary GIDs of the process matches
the GID associated with the file. A specific implementation

44 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

of POSEK may define additional members of the file group
class. Lastly, a process is in the file other class if the process
is not in the file owner class or file group class.

Implementations of POSEX may also provide additional or
alternate file access control mechanisms. An additional ac
cess control mechanism can only further restrict the access
permissions defined by the file permission bits. An alternate
access control mechanism, if enabled, is used instead of the
standard mechanism. The alternate access control mecha
nism has some constraints, the chief being that it must be
enabled only by explicit user action on a per-file basis.
Lastly, POSIX also allows privilege-based security in which
access may be granted to a process if it has the appropriate
privilege. Each POSIX implementation can define what
constitutes an appropriate privilege.

The MPE access control scheme is based on several mecha
nisms such as a file access matrix, lockwords, and access
control definitions (ACDs). Implementing POSIX 1003.1 on
MPE required a mechanism that conformed to the POSIX
1003. 1 standard. The existing MPE access control mecha
nisms did not satisfy the requirements specified in the stan
dard. MPE file user types defined for the file access matrix
are not exclusive categories and MPE XL 3.0 ACDs cannot
express access permissions for a file's owner or group.

To support the POSIX 1003.1 access control mechanism, the
architecture team considered either extending an existing
MPE mechanism or developing a new mechanism. It is gener
ally preferable to extend an existing MPE mechanism since
this approach often minimizes customers' training costs and
HP's development costs. These benefits are maximized
when the modification is a logical feature extension.

The architecture team noticed the close similarity between
the evaluation of ACDs and the POSIX 1003.1 file permission
bits. In both implementations access control evaluation pro
gresses from the most specific entry or classt to the most
general entry or class. A process can match only a single
entry or class because entries and classes are exclusive. The
two access control schemes are also similar in the way they
store access permissions locally with the file object. These
observations led to the design decision to implement POSIX
security using MPE ACDs.

In MPE/iX, POSIX 1003.1 file permission bits have not been
implemented as a separate access control mechanism.
Instead, POSIX 1003.1 functions support the file permission
bits via the MPE ACD mechanism. ACDs themselves have
been enhanced to enable the ACD mechanism to operate as
a POSIX 1003.1 additional access control mechanism and to
provide directory access control. Fig. 8 illustrates these ac
cess control relationships. The translation block performs
the conversion from file permission bits to ACD format and
vice versa.

POSIX 1003.1 applications will continue to use POSIX file
permission bits to specify access permissions and will be

t Entry three to an entry in the ACD such as s, w, x:@.@ in Fig. 9, and class is one of the three
classes a process can be in: file owner class, file group class, or file other class.

MPE Appl icat ion POSIX Application

^ m

ACD Intrinsics

POSIX 1003.1
Applicat ion Program

Interface
(File Permission Bits)

ACD Mechanism

ACD = Access Control Definit ion

Fig. the Access control implementation in MPE/iX. Note that the
ACD mechanism is the foundation for both the MPE ACD intrinsics
and the POSIX file permission bits.

unaware that file permission bits are implemented on top of
the ACD mechanism. On the other hand, MPE applications
will never deal with POSIX file permission bits; they will
deal with ACDs, the file access matrix, and lockwords.
When a POSIX 1003.1 interface such as open)) creates a file,
an ACD will be assigned to the file as part of the file creation
operation. When the POSIX 1003.1 function chmodO is in
voked to set access permissions for a file or directory, ACD
information will be manipulated. Similarly, the stat() and f stall)
functions will evaluate an ACD and map the access permis
sions granted by the ACD into file permission bits using this
mapping in reverse. Fig. 9 illustrates the mapping between
file permission bits and MPE ACD entries.

File
O w n e r F i l e G r o u p F i l e O t h e r

POSIX 1003.1
File Permission Bits

J1ACD, @.@ SOWN^R: RACD, r ,w ,x : SGROUP, $GROUP_MASK. RACD, Two? @.@

M P E A c c e s s C o n t r o l D e f i n i t i o n

Fig. and Mapping between the POSIX 1003.1 file permission bits and
the underlying ACD mechanism.

June 1993 Hewlett-Packard Journal 45
© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
When the MPE XL operating system was being designed for
the new PA-RISC machines, backward compatibility with HP
3000 machines running the MPE V operating system was a
major goal. This resulted in the design and implementation
of the compatibility mode on the new HP 3000 Series 900
machines. Implementing POSIX on the HP 3000 Series 900
machines presented at least as great a challenge to the ar
chitecture team. Maintaining backward compatibility while
seamlessly integrating POSIX and MPE concepts was one of
the chief objectives of the architecture team. This paper has
shown how this objective was achieved in the technical
areas and directory structure, file naming, and file access and
security.

Acknowledgments
I would like to thank the members of the architecture team
and many other engineers who worked on implementing
POSIX on the HP 3000 Series 900 machines. The core
members of the architecture team were Steve Elmer, Craig
Fairchild, Brian O'Connor, Mike Paivinen, and Jeff Vance. I
would also like to thank my managers Bruna Byrne and Ann
Stein for their support despite a very busy schedule during
the POSIX implementation. Finally, I would like to thank
Craig Fairchild, Mike Paivinen and Jeff Vance for reviewing
this paper and providing valuable feedback.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3. POSIX 1003.1 and SVID2 interface specifications.
UNIX is a countries. trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

46 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

A Process for Preventing Software
Hazards
Preventing software hazards in safety-critical medical instrumentation
requires a process that identifies potential hazards early and tracks them
throughout the entire development process.

by Brian Connolly

Since the occurrence of several patient injuries related to
software failures of medical instrumentation,1 much effort
has been put into finding ways to prevent these software
hazards in systems designed for medical use. Software haz
ards are a special category of software defects. If they occur
during the operation of a system they may cause grave dan
ger to human ufe and property. Software by itself does not
harm anyone, but the instruments it controls and the infor
mation it collects from those instruments can cause damage.
Therefore, since accidents in complex computer-controlled
systems involve hardware, software, and human failures,
software procedures to avoid hazards must be considered as
part of overall system safety.

Many methods of analysis, prevention, and verification have
been proposed to handle software hazards. HP's Medical
Systems (MSY) Unit has researched and experimented with
some of these methods and processes. This paper describes
how we combined the most appropriate elements of these
methods to develop a software hazard avoidance process
for our organization. We will also show how the process was
applied to one product.

MSY develops and manufactures instruments that provide
clinical practitioners with patient information at bedside, a

Bedside Monitors

central nursing station, a hospital information system, a doc
tor's office, or anywhere the data is needed. Fig. 1 shows the
layout for a typical high-level medical information and moni
toring system. The information comes from transducers
connected to a patient. Physiologic electromechanical activ
ity is converted to analog electric signals. These signals are
routed to data acquisition subsystems or modules of a com
plete patient monitor. The patient monitor electrically iso
lates the patient and digitizes the signals. Up to 12 modules
can be connected to the patient. The digital data is moved to
the monitor software subsystems where it is formatted, pri
oritized, and queued for display on the local patient monitor
screen, hi addition to local display, there is a proprietary
local network, called SDN (serial data network), which is
the pathway and protocol for displaying selected data from
up to 24 bedside monitors on central reporting stations.

The patient data, whether at a bedside monitor or a central
station, is used by the clinician as one element in patient
treatment. Therefore, in analyzing the hazards in a medical
instrument, consideration must be given to a direct hazard
such as a software condition that produces an unsafe situa
tion for the patient, and the possibility of patient mistreat
ment as a result of a monitor or central station indication

Central Stations

From Patient

Fig. 1. A typical high-level medi
cal information and monitoring
system.

June 1993 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

providing inaccurate trend data or failing to call a patient
alarm. Preventing these problems was the motivating fac
tor for the software quality engineering group at MSY to
investigate software hazards and their avoidance in medical
monitoring and reporting systems.

The Hazard Avoidance Process

Our hazard avoidance process is a combination of refine
ments to our existing verification methodology, which focuses
on testing for hazards, and hazard avoidance analysis, which
focuses on prevention.

Verification
When our investigation of software hazards began, the pri
mary focus of the group was testing and verification of inte
grated embedded microprocessor-based patient monitoring
systems and central reporting stations. Initially we exploited
our experience in testing for hazards to develop a verifica
tion methodology.2 This methodology was integrated into
the normal product test development and test execution
phases of product development.

The approach, as it is currently used, involves documentation
of the test strategy and the creation of a software hazard
avoidance fault tree, which shows the step-by-step verifica
tion of safety-critical subsystems. A portion of a software
hazard avoidance fault tree is shown in Fig. 2.

Generation of a software hazard avoidance fault tree starts
with identification of the most critical system hazards.
There are many methods for identifying these particular

hazards. The method we use involves investigating data on
existing products and discussions with internal and external
experts. The data collected consists of HP customer com
plaints, reports from the government regulatory agencies,
journal articles, and internal HP defect data. External experts
typically include clinicians such as nurses, technicians, doc
tors, MSY biomedical engineers. Internal experts include MSY
engineers and marketing product managers. The experts use
the data and high-level descriptions of the proposed product
to determine the highest-level hazards to be avoided in the
new system implementation.

The fault tree format provides a hierarchical decomposition
of the areas of concern. At the lowest level of the tree, the
"leaves" are tests that must be passed to establish safety for
the lowest subsystem level. For example, tests 1.1.1.2.1
through 1.1.1.2.3 in Fig. 2 must be passed to ensure that the
patient monitor is able to detect a failure in updating patient
data in a specified time period. (Note that a failure in any
one of to lower-level tests is analogous to a logical one to
the next-higher level in the fault tree.) If any test fails, it is a
simple exercise to evaluate the effect on the system. This is
a valuable feature when considering releasing a system for
clinical or beta testing and in making the trade-offs during
development about whether to remove or correct an offend
ing subsystem. The software hazard avoidance fault tree
provides a summary of the plan for verification of hazard
avoidance of the system and a way to ensure that test cases
exist for verifying that the systems software safety goals are
addressed.

Monitor Incorrectly Reports
Patient Status

1.1 Faulty Data Algori thms

1.1.1 Faulty Patient Data
Detection and Report ing
Algorithms

1.1.1.1 Fai lure to Accurately
Report Patient Data over
Specif ied Input Range

1.1.1.1.1 ECG Accuracy Test

1.1.1.1.2 Pressure Accuracy Test

1.1.1.1.3 02 Accuracy Test

1.1.1.2 Failure to Update
Pat ient Data Values within
Specif ied Response Time

1.1.1.2.1 ECG Response Time Test

1.1.1.2.2 Pressure Response Time Test

1.1.1 .2.3 02 Response Time Test

Fig. 2. A portion of a software
hazard fault tree for a patient
monitor.

48 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Wrong Treatment
Administered

Vital Signs Erroneously
Reported as

Exceeding Limits

Vital Signs Exceed
Critical Limits but not

Corrected in Time

Frequency o f Measure
ment too Low

Computer Fails to
Raise Alarm

Sensor Failure Nurse Does not
Respond to Alarm

Computer Fails
to Read within
Required Time

Limits

Human Error
(Doctor Sets

Wrong Limits)

M e c h a n i c a l
Failure

Nurse Fails to
Input Vitals

Manua l ly , o r In
puts Incorrectly

At MSY, hazard avoidance tests are used to verify the safe
operation of the system because when the system is par
tially implemented, it is used in a limited basis in clinical
trials. Clinical trials provide valuable feedback from our
customers in the early phases of implementation when we
can easily make changes.

Since the hazard avoidance fault tree exists in a graphical
representation it provides developers and government regu
lators with a clear map of the verification strategy for a
product and its subsystems.

Avoidance
The software hazard avoidance fault tree and its associated
tests provide a basis for understanding the compliance of a
system with high-level safety objectives. As is the case for
typical software defects, verification activities during the
development process focus on how to either find defects
earlier or ensure that they are not included in the first place.

For finding defects, a whole industry provides tools for low-
level, or white box testing. Instead of manual testing at a
system level, commercially available tools can enable the
developer to test individual software components in an auto
mated fashion. This is more comprehensive than finding
defects in the system test cycle, which occurs at the end of
the development process. The focus is still on defect removal,
rather than prevention. In the prevention case, tools such as
formal design reviews are used on design and specification
documents, and formal inspections are used on code. These

Fig. 3. An example of fault tree
analysis.

prevention techniques are used from the earliest user re
quirements phase through the code phase. Since hazardous
defects are a subset of all software defects, prevention tech
niques are needed to complement the verification process
described above.

For our hazard prevention program, we investigated pro
cesses and analysis techniques that would fit into our prod
uct development process. The IEEE draft document that
defines a standard for software safety plans3 recommends
the following four documents for safety-critical software:
Preliminary hazard analysis report. This report should doc
ument the results of looking for potential hazards from the
initial system design documentation.
Software safety requirement analysis report. This report
should document:
o The list of hazards, their criticality level, and relevant

associated software requirements
Software safety design requirements and guidelines
Safety-related test requirements.

Software safety design analysis report. This report may be
divided into two parts. The first part addresses the safety
analysis of the system's preliminary design, and the second
part addresses the safety analysis of the system's detailed
design.
Software safety code analysis report. This report should
document:

The rationale for and types of analyses performed on each
module

Fig. 4. A part of a table used to
document the results from a fail
ure modes and effects analysis.

June 1993 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

On Event On Event
I n i t i a l i z e T i m e r a n d B e d s I n i t i a l i z e T i m e r a n d B e d s

On Event
Init ial ize Timer and Beds

On Event
Init ial ize Timer and Beds

Message Received and
No Identity Conflict

Simple Backoff

Message Received and
Identity Conflict

Message Received
Time and Precedence

Backoff

Fig. 5. An example of event tree
analysis using a state machine ap
proach. A backoff message tells
the instrument to ignore any
further messages or alarms.

o Recommendations for design and coding changes
o Detailed test recommendations
o An evaluation of safety requirements.

The draft also lists several techniques for hazard analysis
and avoidance. Some of these techniques include:
Formal inspections. A formal method of peer review of
target documentation (design documents, code, test plans,
etc.) that culminates in a review meeting. Each member of
the review team has a specific role in the review meeting.
The objective of the inspection or review process meeting is
to identify issues and defects, which are documented and
addressed later by the reviewed document's author.4
Fault tree analysis. A logic diagram of expected event
sequences. It can be used to show how hardware, software,
mechanical, and human interactions can cause a hazard
(see Fig. 3).
Petri nets. A diagramming technique that enables timing
information to be incorporated into the safety analysis.5
This technique helps to identify software events that are
either too early or too late, thereby leading to hazard condi
tions. While fault tree analysis accents the effect of unex
pected events in a logical linkage, the Petri net focuses con
cern on correct events occurring at possibly incorrect times.
Failure modes and effects analysis. This involves an exami
nation of all the failure modes in a system with a description
of the cause and effect associated with the failure mode.
Failure modes and effects analysis results can be docu
mented in a table (see Fig. 4).

Event tree analysis. This analysis moves events logically
through the system to determine the consequences of these
events. An event tree analysis is different from a fault tree
analysis in that a fault tree traces an undesired event to its
causes. Fig. 5 shows an event tree analysis using a state
machine approach.
Formal specifications. A rigorous mathematical method of
defining a system, with rules and definitions that provide
the basis of proof.6'7

Other techniques proposed in the IEEE standard include
performance analysis, sneak circuit analysis, criticality
analysis, and fault tolerant testing.

The form we chose for our hazard avoidance plan includes
modified versions of the documents defined in the IEEE
standard, some of the analysis techniques described above,
and the hazard verification process described in the pre
vious section. Like the IEEE standard, our plan allows the
analysis format to be adjusted to fit the problem. The adjust
ments are made according to the experience of the the soft
ware quality engineer and the type of application being con
sidered. For instance, most of our analysis is in the form of
formal inspections, but an engineer may decide that instead
of using a state machine to model some function, Petri net
analysis is more applicable. Also like the IEEE standard,
the emphasis is on analysis and documentation during the
software development phases.

Software
Life Cycle

*" Project
Notebook

Test Archive

Sof tware
Hazard

Avoidance
Process

Fig. 6. Software hazard avoid
ance process flow in the software
life cycle.

50 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 7. Inputs and deliverables
associated with each of the
steps in the hazard avoidance
process.

The hazard avoidance activities that take place during the
software development phases are shown in Fig. 6. The in
puts and deliverables to the hazard avoidance activities are
summarized in Fig. 7. Note that although the names of the
documents may differ slightly from the IEEE-recommended
documents, the contents remain the same. The one excep
tion is the software hazard inspection list which corre
sponds to the IEEE-specified software safety code report.
We provide the same contents as the IEEE report in terms of
results, but we are more specific in mentioning the type of
analysis used for hazard avoidance. The result is that no
matter which form of analysis is chosen in any development
phase, the process documentation contains the choice along
with the results for each phase. The overall benefit is the
capability to follow the hazard and its treatment through
each development phase.

Analysis and Verification Together
As shown in Fig. 6, hazard analysis begins in the require
ments phase of a project. When a project establishes user
requirements and has identified a high-level architecture for
a product to fulfill the requirements, work begins on the
preliminary hazard analysis.

With the early documents completed, data from similar
previously released products such as enhancement requests,
defects, and government regulators' reported complaints are
combined together for analysis. An evaluation team consist
ing of users, quality engineers, developers, internal regulatory
personnel, and marketing engineers reviews the collected
data and proposed product architecture, and with each
member's experience base, decides on the levels of concern
for hazards identified in the new product.

The hazards are rated minor, moderate, or major based on
the consensus of the group. Each hazard is evaluated to de
termine its impact on patient care if the hazard were not
removed. These hazardous areas provide the focus for the
quality engineer's future analysis during development and
verification. To complete the preliminary hazard analysis,
each hazard has associated causes and methods of verifica
tion listed. Each cause indicates how a problem might occur
in the given architecture, and the verification list describes
the methods for making sure the hazard isn't included in the
product. Fig. 8 shows a portion of a preliminary hazard report
containing the information mentioned above.

During the specification phase of product development, the
software requirements hazard analysis, which shows re
sults of analyzing the software requirements, is produced.
The requirements are provided in many forms such as data

flow dia verbal descriptions, entity relationship dia
grams, and formal specifications depending on the form of
software being developed. The areas identified as hazards in
the requirements are analyzed according to whatever
method was defined in the preliminary hazard analysis.

hi addition to performing a hazard analysis of the require
ments during the specification phase, a software hazard
avoidance fault tree is also generated from the data provided
in the preliminary hazard analysis phase.

hi the implementation phase, a detailed design hazard
analysis is performed to examine the same areas studied in
the previous phase, except this time the details of the design
and implementation are examined. Following the detailed
design hazard analysis, the software hazard inspection list
is created. This list is a collection of the software functions
requiring inspection in the hazardous areas of the design.
We require inspections of all software functions that have a
cyclomatic complexity of 10 or greater.

The portion of a hazard analysis matrix shown in Fig. 9 pro
vides an overview of the hazard avoidance history for two
hazards identified in the preliminary analysis phase.

Once all the analyses and tests have been completed, the
documentation is kept in the project notebook and the soft
ware test archives for the product. The notebook and ar
chives are kept as evidence of process adherence required
by industry and government regulatory agencies.

Software/Hardware Hazard 3: Error Report ing Fai lure

C a u s e (s) : D e s i g n I m p l e m e n t a t i o n F a i l u r e

V e r i f i c a t i o n : I n s p e c t i o n w i t h p a r t i c i p a t i o n o f S Q E t o v e r i f y s o f t w a r e
design tests hazard avoidance. Use software hazard avoidance fault tree tests
to verify design and implementation of error handling and reporting to
correctly identify errors and their sources.

Level of Concern: Minor. Severe errors cause fai lsafe Â¡noperabi l i ty of the
system, posing inconvenience to staff users.

Software/Hardware Hazard 4: SON Backoff Fai lure

C a u s e (s) : D e s i g n / I m p l e m e n t a t i o n F a i l u r e

V e r i f i c a t i o n : I n s p e c t i o n w i t h p a r t i c i p a t i o n o f S Q E t o v e r i f y s o f t w a r e
design tests hazard avoidance. Use software hazard avoidance fault tree tests
to veri fy design and implementat ion to avoid confl icts and incorrect behav
ior in backoff determination.

Leve l o f Concern : Modera te . A confus ion cou ld occur be tween cent ra l
stations as to "ownership" of bedside information. This could result in
misdirection of patient information, alarms, and recordings if the backoff
algorithm is incorrectly implemented.

"SQE = Software Quality Engineering

Fig. 8. A portion of a preliminary hazard analysis report.

June 1993 Hewlett-Packard Journal 5 1

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. are verified avoidance history for two software hazards as they are analyzed and verified during the hazard avoidance process.

Results
The software hazard avoidance fault tree portion of the haz
ard avoidance process has been used in eight MSY products
and product enhancements since 1989. No safety defects
requiring instrument recalls have been reported for these
products. In one product line, hazard avoidance testing dis
covered 32% (as compared to 15% in previous projects that
used traditional development and testing processes) of all
serious and critical defects that would have had an effect on
patient welfare.

As of writing of this article, one product has used and com
pleted the full hazard avoidance process described in this
paper. Several other projects are in different stages of using
the process. In the project that has completed the process,
two forms of analysis were used during the preliminary haz
ard avoidance phase: formal inspections and formal methods.
The bulk of the hazards were found using formal inspec
tions. A total of 23 inspections were performed on product
documents, finding 12% of all hazardous defects.

Using HP-SL7 (HP Specification Language) two areas of po
tential hazards were specified and examined. Four possible
hazardous defects were identified with formal methods.

Conclusion
The MSY development and implementation of the hazard
avoidance process has helped provide products with fewer
recalls, providing a higher level of customer satisfaction.
The results achieved so far with this process have been ex
cellent. The emphasis on defect prevention will continue to
pervade our development effort, with the hazard avoidance
process as the cornerstone.

Defect prevention and analysis are not enough, and this pro
cess provides a verification trace back to the requirements
phase of development. Also this process provides a system

view of the objectives set in the early phases of a project to
ensure their correct implementation.

From our experience so far, the cost of using this process
depends on the form of analysis chosen. The form of analy
sis has to be carefully considered when a potential hazard is
discovered. The types of analysis and the applicability to the
problem must be investigated. The cost/benefit analysis may
have to consider such questions as the cost of a potential
recall, the possible reuse of functional elements in another
product, and always, the effect on the patient and user.

No matter what form of analysis is chosen, the process steps
have been standardized and documented and are available
for government regulators, other developers, and any other
interested parties to examine. This process provides the
evidence that we have done all we can do to prevent soft
ware hazards before building the instrument.

References
1. E. J. Joyce, "Software Bugs: A Matter of Life and Liability,"
Datamation, May 1987.
2. B. Software "Hazard Avoidance in Patient Monitors," HP Software
Engineering Productivity Conference Proceedings, August 1990.
3. Standard for Software Safety Plans, Technical Committee on
Software Engineering of the IEEE Computer Society, Preliminary
Draft, March 1991.
4. M. E. Fagan, "Advances in Software Inspections," IEEE Transac
tions on Software Engineering, Vol. SE-12, no. 7, July 1986, pp.
744-751.
5. N. IEEE and J. Stolzy, "Safety Analysis Using Petri Nets," IEEE
Transactions on Software Engineering, Vol. SE-13, no. 3, March
1987, pp. 386-397.
6. T. Ferguson and T. Rush, SON Backoff Mechanism: A Hazard
Analysis Using HP-SL, HP Technical Memo, June 1991.
7. S. of and T. Rush, "Rigorous Software Engineering: A Method of
Preventing Software Defects," Hewlett-Packard Journal, Vol. 42,
no. 5, December 1991, pp. 24-31.

52 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Configuration Management for
Software Tests
To support software test reuse and to make it easier to ensure that the
correct software versions are used to test printer products, a software
test management system has been put in place.

by Leonard T. Schroath

Many software development organizations have begun to
formalize software reuse as a way to improve productivity
and increase quality. However, most of the effort is put into
reusable components that are used for creating software
products. Methodologies and processes can exist for the test
development effort as well. If software components can be
reused effectively, test components can be reused also. For
any reuse program to be successful, a formal process and
support tools are essential.

The software quality department that serves HP's Boise
Printer Division and Network Printer Division maintains a
vast printer test library, which includes performance tests,
conformance tests, other black-box tests, test procedures,
test results, test documentation, and known-good output for
comparison. The test library requires extensive scripts to
extract and execute tests for various projects. Many new
tests are leveraged from old tests, but there is only a primitive
browsing mechanism to aid in locating them.

From Lab

Fig. 1 shows the steps and databases involved in submitting,
reviewing, and executing tests in our existing test process.
Except for test execution, the processes shown in Fig. 1 are
scripts that are primarily responsible for moving test data
from one database to another. Each database represents a
different state in the test development process.

The process begins with test data being moved from the lab
to the submit database. Next the test data is reviewed to see if
it is complete. For example, the test program is checked to
make sure it compiles. If anything is wrong with the test
data, it is sent back to the lab for correction, and if every
thing is okay the test data is moved to the trialrun database.
During the trial run phase, the test program is executed to
flush out any problems. If there are problems, the test pro
gram is sent back to the lab for repair. If all goes well, the
test program is moved to the testlib database. Once a test is

1 Besides and test program, test data may also include items such as test documentation and
include files.

Data Flow

â€¢ Control Flow

Fig. 1. The existing test process
without a test management
system.

June 1 993 I lewlett-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

in the testlib database, it is ready for formal test execution.
Test execution involves not only testing the product, but also
capturing data for various databases and generating a test
report. At any point in this process modifications can be
made to the test data, resulting in moving data from the
database (state) it is in back to the submit database.

To improve this process with tools that manage test selec
tion and assist in test development for the various software
and firmware projects at our divisions, a test library man
agement system, or TLMS, has been developed. This new
system is gradually being phased in to enhance and replace
parts of our existing test system. The rest of this paper de
scribes the development, features, and test life cycle of the
test library management system.

Goals
Several goals were established early in the TLMS develop
ment process. First, there was no doubt that a need existed
to track all tests under a version control system so that pre
vious versions of tests could be recovered and executed if
the firmware or software was revised to fix defects or add
enhancements. It was also desirable to be able to track test
versions with firmware or software versions so that custom
ized test suites could be created to test specific features of a
particular version of firmware or software. TLMS also needed
to ensure clear ownership for each version of a test so that
there was only one individual who was responsible for any
and all changes made to a particular version. The entire
maintenance process needed to be more formally defined
and automated as much as possible. Another important goal
was to facilitate test reuse through a test case classification
scheme and a test location mechanism. This scheme would
aid in test case selection and test suite development.

Configuration Management Tool
TLMS is based on an object-oriented configuration manage
ment tool called CaseWare/CM,1 which provides a structured
development environment with a turnkey model that can be
used for most software development projects. This configu
ration management tool also provides both a graphical OSF/
Motif-based user interface and a command-line user interface,
and it runs on HP 9000 Series 300 and 700 workstations.

CaseWare/CM's built-in flexibility allowed us to create a cus
tomized model to fit our test development life cycle. As user
needs change, the model can be modified without impacting
the objects stored in the database.

To help with our reuse efforts, CaseWare/CM records the
development history of the test library as tests are created,
modified, or imported. The test library configuration is stan
dardized across projects so that test developers or test con
sultants who are browsing or searching for reusable tests
can easily find them. Tests and test suites are treated as
objects that can easily be included in other test suites.

Features of TLMS

Components and Attributes
Most of the operations of TLMS center around components.
A component is a related set of attributes that describe an
object such as a test program. Each component has a num
ber of attributes including its name, type, status, source,

description, author, subsystem, creation date, and date of
last modification. A component also has a version attribute.
Specific versions or instances of objects are referred to as
component versions.

Different types of components exist for different types of
objects. Objects in our case are test programs, include files,
spreadsheets, documents, shell scripts, C source files, and
font files. Some component types are built into the configu
ration tool, and others can be created and added to the model
as needed. Specific behavior is given to each component
type, such as how the source attribute is compiled or edited.
Table I lists some of the built-in types and some of the types
that have been created specifically for TLMS.

The naming convention used to designate a component
version has four parts, which helps to avoid ambiguity. Each
part is separated by a slash (/). This slash serves only to de
lineate the four parts of the component version name and
has nothing to do with a file system hierarchy. The four parts
are: subsystem, type, name, and version. Thus, for a test with
a subsystem of fonts, a type of pmac, a test name of fontpri4, and
a version of 2 the four-part name is fonts/pmac/fontpri4/2. Each
of the four parts, along with the state of the component
version, is represented graphically in Fig. 2.

A special type of component version called an assembly is
used to group other component versions together. In the
context of TLMS, a test assembly consists of all component
versions needed to run a test. A minimum test assembly must
include a test program, a test procedure, and some expected

54 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Example

Naming Convention
Subsys tem/Type /Name/Ve rs i on

Four -Par t Name
fonts/pmac/TontpriV2

Fig. 2. A graphical representation of a component version.

results. An assembly is somewhat analogous to a directory
in a file system. The graphical representation of an assembly
displays an extra box around the name to distinguish it easily
from regular component versions (see Fig. 3).

An assembly also has its own collection of attributes, includ
ing name, status, version, owner, and subsystem. An assem
bly may also have its own customized attributes. An exam
ple would be an installation directory attribute, which would
serve as a definition of where to install source files in the
file system once they have been extracted from TLMS.

TLMS uses two special assembly component versions which
are customized for the test library application. The first is of
type testasm (test assembly), which is the basic building block
of test suites (see Fig. 3). There is no limit to the number of
component versions that can be included in a test assembly.
However, by TLMS convention there should be only one main
test program per testasm, and as many include files as needed
for the test. Each test assembly should also have some test
design documentation describing what is being tested.

The other special assembly component version is of type
suite. This assembly is used for grouping test assemblies into
test suites. A test suite can consist of one or more testasms
and one or more test suites. Although there is no require
ment that a test suite consist of only suites and testasms, most
other component version types should be part of a testasm
and not a suite.

Component versions can easily be placed into an assembly
by creating a list of components to be bound into the assem
bly. The operation reconfigure is performed, which automati
cally selects the specified component versions and binds
them into the assembly. The list of components only needs
to have the first three parts of the four-part name for each
component, which causes the latest version of the compo
nent to be bound into the assembly If a specific version of a
component is desired, it may also be specified as the fourth
part of the name in the list of components.

The reuse program being developed for tests in TLMS will
make use of customized attributes found on each testasm.
These in make up a faceted classification scheme,2 in
which the attributes form a tuple that describes a test. Quer
ies to TLMS use the classifications to extract a set of tests
requested by the tester. For example, a query might be to find
all released tests for a specific printer that will exercise the
font selection capability of the printer.

Test Suite Hierarchy
Components representing tests and test suites are grouped
in a hierarchical form to facilitate test location. A catalog is
maintained of reusable testasms (test assemblies) and suites,
any of which can be easily bound into any test suite for any
project. In this manner project-specific test suites can
quickly be developed by combining new and existing tests.

The test library has at its highest level an assembly of type
suite named testlib (see Fig. 4). This assembly consists of
other assemblies of type suite. One is named catalog, which
contains all of the tests that are used in more than one proj
ect. This is the basis of the reusable library. The catalog is
hierarchically arranged into logical subassemblies, which
makes it easy to find tests. Printer conformance tests and
other black-box tests that can be used by more than one
project are found in the catalog.

Test
Assembly

f o n t s p m a c ^ 1 f o n t s m s w o r d ^ 1 f o n t s p j n c l ^ 1 f o n t s a s c i i

f o n t p r i 4 . t t e s t p r o c . p f o n t p r i 4 . i d e s i g n . e x t

R e l e a s e d 3 H R e l e a s e d 2 H R e l e a s e d 1 H R e l e a s e d 1

Main Test
Program

Test Procedure Include File Test Design
Document

Fig. 3. A portion of a typical
TLMS test assembly.

June 1993 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

(see Fig. 3)

Other test suite assemblies bound to the testlib are specific to
projects and are named for the project (e.g., project_a or
project_b). Each project assembly consists of a test suite
named proj_suite, which contains all of the suites and testasms
that make up the entire test suite for that project. A proj_suite
may contain links to testasms or suites that are in the catalog,
or may have its own special component versions tailored for
the specific project. A project assembly may also contain
one or more testasms or suites with a name that corresponds
to a version of software or firmware that is being tested. For
example, a suite may be developed to test certain features of
version 1.2 of some firmware, and hence could be named V1.2.

The subsystem name for all assemblies for a specific project
should match the name of the project, unless the entire suite
or testasm is being used as it came from the catalog. This al
lows extraction or reporting on all component versions that
are specific to the project. For example, in Fig. 3 the compo
nent versions with the subsystem name fonts are actually
from the catalog.

Roles
Much of the activity in TLMS is allowed or disallowed based
on the role of the person interacting with TLMS. Users are
assigned one or more roles. Each role allows browsing
through the test library, along with certain other privileges
briefly described below.

Author. An author is allowed to create a new component ver
sion, derive (check out) a new component version from an
existing component version, and install tests on the file sys
tem for execution. An author who has created or derived a
component version becomes the owner of the component
version until it is reviewed, approved, and released.

Test Librarian. The test librarian is responsible for the content
and structure of the overall test library. The test librarian is
the only one able to create or manipulate component ver
sions of type suite. The test librarian also makes sure that
each test is executed to verify that it works correctly before
putting it into the test library. Finally, the test librarian is the

Fig. 4. A portion of a TLMS test
suite hierarchy.

only person who can officially release component versions
into the test library.

Test Consultant. The test consultant is responsible for review
ing test component versions before submitting them to the
test librarian for a trial test run. Test consultants are only
able to modify component versions that belong to projects
to which they have been assigned. Test consultants, in coop
eration with R&D, define the component versions that belong
in a test suite, but they are not allowed to create them.

Test Technician. The only activity that a test technician is
able to perform in TLMS is a test-suite build, which, in the
context of TLMS, extracts all test sources, procedures, mas
ters, and anything else that is required to execute a test and
places them in the file system. Tests can then be executed.

TLMS Administrator. The TLMS administrator is the superuser
of the system and is responsible for adding new users,
changing their roles, and making changes to the TLMS
model installed in the test library database. The TLMS ad
ministrator is also able to modify any component version
and generally circumvent the built-in security provided by
the rules set up in the TLMS model. This role must be used
with caution.

Software Development Engineer. This role is similar to the test
technician role. An individual with this role has permission
to browse through the test library and is able to perform a
test-suite build to extract tests and place them in the file
system for execution.

Guest. A guest only has permission to browse through TLMS.
A user with this role cannot modify any component version,
extract tests via a build operation, or perform any other
operation. This role is provided for users to look at tests
currently in the test library.

TLMS Life Cycle
The main life cycle for tests is governed by a series of states
and transitions that affect any assembly of type testasm (test
assembly) and the component versions that are bound to it.

56 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A component version progresses through several states
from the time it is checked out or created until it is released
into the test library. Most transitions are made directly to
component versions attached to a test assembly, and all
component versions bound to the testasm make the transition
automatically. Transitions can also be made directly to an
individual component version. Fig. 5 shows the states and
transitions for the TLMS main Ufe cycle.

The initial state is called private. Most newly created test
assemblies begin the life cycle with this state as their default
status. A component version in this state can only be modi
fied by the author (owner) who created it. A private compo
nent version can only be bound into testasms created by the
same owner. A new version cannot be derived from a com
ponent version in this state because it is considered to be
unstable.

The only transition allowed from the private state is when the
testasm is ready to be published. Publishing a test assembly
moves it from the private state to the working state. The tests
are made public for the first time which means that some
one else can bind these component versions into another
testasm, and the librarian can bind a testasm into a suite. This
transition is initiated by the owner of the test assembly.

The working state assumes that the tests bound into a testasm
are in working condition. In other words, the test can be
executed. It may not be completely correct, but at least it
runs. The owner is still the only one who can modify a com
ponent version. New versions can be derived from any com
ponent version in the working state (or any subsequent state),
but when this happens, the source attribute of the original
component version is frozen. The test assembly containing a
modified component version can continue to proceed along
the life cycle, but all source modifications must be made to
the new component version to avoid a double maintenance
problem.

The only transition allowed from the working state is when
the test assembly is ready to be reviewed by the test consul
tant. This transition moves the test assembly from the working
state by the finalreview state. This transition is also initiated by
the owner of the test assembly. Electronic mail is sent to
notify the authorized test consultant that a testasm has been
submitted for final review.

The finalreview state allows the test consultant to review the
test for completeness. All tests should be complete and
must contain all of the necessary documentation. Once a
test assembly is in the finalreview state, it can no longer be
modified by the owner. Only the proper test consultant has
modification privileges.

Two transitions are allowed from the finalreview state. The first
is the transition that moves the test assembly back to the
working state for rework by the owner. A report of the prob
lems encountered is sent to the owner by electronic mail.
This report is required before the transition is made. In the
graphical user interface, a window opens that allows the test
consultant to enter the report, and in the command-line inter
face, the test consultant can attach an ASCII file containing
the report.

The second transition allowed from the finalreview state
moves component versions to the trialrun state. As test as
semblies make this transition, electronic mail is sent to the
test librarian indicating that a test is ready for a trial run.
Electronic mail is also sent to the author acknowledging
that the test has passed final review and is ready for a trial
run. Both transitions from the finalreview state are initiated by
the test consultant.

The trialrun state allows the test librarian to review a test for
completeness and ensure that it executes properly. The test
librarian also makes sure that the testasm has a unique instal
lation directory so that the test can be installed onto the file
system without overwriting other tests. The test librarian is
the only individual who can modify any component version
in the trialrun state. This is to prevent any changes to the com
ponent version without the test librarian knowing about
them.

Two transitions are allowed from the trialrun state. The first
transition moves component versions from the trialrun state
back to the finalreview state if the test assembly is rejected.
This transition is used for those tests that do not meet appli
cable standards or do not pass the trial run. A report of why
the test was rejected is sent via electronic mail to both the
test consultant and the owner (similar to the report sent
when the test assembly is sent back to the working state for
rework).

The second transition allowed from the trialrun state moves
the test assembly to the released state. This transition is
made only after a testasm has successfully completed a trial
run and it meets all of the applicable standards. An acknowl
edgment is sent via electronic mail to the author, the test
consultant, and others who are interested in knowing when
a test are released. Both transitions from the trialrun state are
initiated by the test librarian.

The final state is the released state. Any component version
in this state must have been approved by the test librarian
and by definition, be part of the official test library. A testasm
cannot be released unless all of its member component ver
sions are released. Component versions in this state are no

Rework Reject

Publish Submit to Test
Consultant

Submit to Test
Librarian

Release

Fig. 5. The TLMS main life cycle.
Test assemblies or individual
component versions move
through this life cycle.

June 1993 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

Freeze

Fig. 6. The TLMS test suite life cycle.

longer modifiable by anyone. They are static, including all
attributes. The only exception to this is a comment attribute,
which can be updated at any time by the librarian if more
information needs to be stored with a test.

A separate, shorter life cycle for component versions of type
suite consists of two states: unreleased and released (see Fig. 6).
This life cycle exists to facilitate the creation of large test
suites without the overhead of having to move component
versions of type suite through all five states of the main life
cycle. Remember that component versions of type suite are
typically made up of many test assemblies, and each test
assembly is typically made up of a test program and many
other files.

The initial state is called unreleased. Component versions of
type suite in the unreleased state can be modified as often as
necessary, but only by the test librarian. Transition from the
unreleased state to the released state is allowed only when the
test suite is determined to be frozen (no more changes).
This In can only be ini t iated by the test l ibrarian. In
the case of suites, all component versions bound to it must
either be released already or released at the same time. This

means that all children (test assemblies or suites) not already
released must be in the trialrun state or the unreleased state
(the only two states that allow transitions into the released
state), or the transition will fail. The released state of this
short life cycle is the same as the released state in the main
life cycle.

Comparison
The TLMS main life cycle is intended to improve the test
process described earlier and shown in Fig. 1. Overlaying
the TLMS life cycle states shown in Fig. 5 with the processes
shown in Fig. 1 results in the process diagram shown in
Fig. 7. This diagram shows the following benefits to the
test process with TLMS:
Tests are maintained in one database, and there is no need
to move files from one database to another to change state.
Attribute information such as status, test owner, and creation
date is easily stored and queried.
Test development history is automatically recorded.
The test maintenance process is easier to control.
The test process is simpler.

Security and Access
Security rules for each model can be written and enforced
to maintain the integrity of the database. These rules and
privileges allow or disallow component version creation,
modification, transition, and deletion based on the state of
the component version or the role of the user. Security rules
in TLMS enforce the privileges and operations described in
the life cycle section.

t e s t a s m = T e s t A s s e m b l y

Fig. 7. The test process with
TLMS in place. The items in
parentheses are the states in the
main TLMS life cycle shown in
Fig. 5.

58 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

S u b s y s t e m T y p e N a m e V e r s i o n O w n e r Status Last Mod

User Interfaces
Two user interfaces exist for TLMS. One is a graphical OSF/
Motif-based interface that runs on the X Window System.
Users can select actions from pop-up menus and navigate
through the various windows using a mouse. The other in
terface is a command-line interface. Although a graphical
interface is helpful in giving the user a visual picture of the
elements in the test library, a command-line interface is also
available to perform many simple commands. Among these
are commands to create a component version, move an as
sembly of component versions from one state to another,
modify the source attribute of a component version, install
the test suite onto the file system for execution, and import
an externally developed test into TLMS.

Reports
Reports of useful information are obtained from TLMS
through some command-line queries. Some examples of
reports that are easily obtainable are a list of all component
versions in a test suite, the status of all component versions
in an assembly, the authors of a list of component versions,
a list of all projects using a given component version, and a
list of all component versions currently in a given state.
Fig. 8 shows part of a report of all testasms.

Benefits
TLMS provides an easy, consistent method of maintaining
and accessing all tests. Those who need to interact with the
test library can find what they want without having to ask an
expert. Also, the entire process of test development and
maintenance can be structured and controlled. The develop
ment history of tests in the test library is captured automati
cally. Tests can be identified and selected for a given test
run, and a customized test suite can quickly be created.
Tests that are not yet certified and released by the test
librarian can still be executed if needed.

The software test center is able to increase testing efficiency
by executing a test suite customized for a test run instead of

Fig. 8. A portion of a TLMS test
assembly report.

the myriad of redundant tests that are present in the old test
library. It is also much easier to verify that the proper ver
sions of tests are executed for any version of firmware or
software.

As with all programs, new enhancements and changes will
probably be requested from the user community. TLMS fea
tures can be modified and extended without impact on the
objects stored in the database. Finally, a more formal test
reuse program can be established, which will allow test de
velopers to take advantage of the work of others. This will in
turn decrease the total test development time, a significant
portion of a project's schedule.

Conclusion
The testing process is an important part of the software life
cycle. Without the proper tools and structure, it can become
inefficient and difficult to manage. With large volumes of
tests that any given project, manual processes yield errors that
can be avoided by applying configuration management prac
tices to the test development and maintenance processes.
Customizable tools such as CaseWare/CM are available to
help control these processes. TLMS allows us to improve
and automate test development and maintenance, as well as
establish a formal test reuse program.

Acknowledgments
Special thanks to Fran McKain and Brian Hoffmann for their
ideas and vision of how to manage tests more efficiently.

References
1. CaseWare User's Guide, CaseWare, Inc., 1992.

2. R. Reus and P. Freeman, "Classifying Software for Reus
ability," IEEE Software, Vol. 4, no. 1, January 1987, pp. 6-16.

P o s t S c r i p t i s a r e g i s t e r e d t r a d e m a r k o f A d o b e S y s t e m s , I n c . i n t h e U . S . a n d o t h e r c o u n t r i e s .

M i c r o s o f t i s a U . S . r e g i s t e r e d t r a d e m a r k o f M i c r o s o f t C o r p .

L o t u s a n d 1 - 2 - 3 a r e U . S . r e g i s t e r e d t r a d e m a r k s o f L o t u s D e v e l o p m e n t C o r p o r a t i o n .

June 1993 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

Implementing and Sustaining a
Software Inspection Program in an
R&D Environment
Although software inspections have become a common practice in the
software development process, introducing the inspection process and
sustaining and measuring its success are still challenges.

by Jean M. MacLeod

There is not much disagreement in the industry about the
value and benefits of software inspections. However, there's
more to implementing a software inspection program than
training moderators and creating forms. This paper discusses
how the software inspection program was implemented at
HP's Patient Care Monitoring Systems Division, with empha
sis on how the program is sustained and how its success is
measured.

One thing we learned while implementing and sustaining an
inspection program is that it must be managed with a clear
organizational owner and a champion (chief moderator).
The process must be flexible enough to withstand changes
and improvements without compromising those things that
define formal inspections such as preparation, inspection,
rework, and so on. The implementation is really an evolu
tion that needs tailoring to the culture and environment
while keeping the fundamental process intact.

We have conducted over 85 inspections at our division. Data
has been collected and maintained in a database from the
very beginning so we could analyze how well the process is
working. Besides data about the process itself, we keep data
about the rework performed after each inspection, including
the time to fix defects and the cause of each defect. The
cause data helps us look at the software development
process and identify areas for further investigation and
improvement.

Background
A formal software inspection process was introduced to our
division about two years ago to increase the efficiency of the
defect detection process and ultimately shorten the time to
market for key products in the division. From our historical
data on software projects, we know that it takes an average
of 20 hours to find and fix a defect detected during the testing
phase of a project. We also know that finding and fixing de
fects earlier in the development process takes less time. The
problem we had was to introduce software inspections into
the software development process as painlessly as possible
to gain acceptance of the process and start collecting data
that would prove the value of the process.

We modelled our inspection process after a method that uses
clearly defined process steps: kickoff, preparation, defect
logging meeting, causal analysis, rework, and follow-up.1

Kickoff. This step is used to hand out the materials for the
inspection, assign roles to inspectors, and ensure that every
one understands the purpose of the inspection as well as
when and where the defect logging meeting will be held.
This step can be done in a meeting or by electronic mail.

Preparation. The preparation step is critical to the success of
every inspection. This is when inspectors review and check
the document on their own, noting any defects to be logged.
The objective is for all inspectors to work independently to
find defects so that they will come to the defect logging
meeting prepared to report their defects.

Defect Logging Meeting. This is the time when all inspectors
come together to review the document and report any de
fects that were found. During this meeting a defect log is
maintained by the moderator. The meeting is facilitated by
the moderator and should last no longer than two hours.

Causal Analysis. The purpose of this step is to review three to
five major defects that were found during the defect logging
meeting to determine the most likely causes for the defects.
The causal analysis is done at the end of the defect logging
meeting and involves brainstorming causes of the defects
and possible actions that could be taken to prevent those
defects from occurring again.

Rework. Rework is performed by the owner of the document
that was inspected. The owner is required to fix all defects
and take appropriate action to ensure that every item logged
during the defect logging meeting is addressed. The owner
also assigns a defect cause code to every defect.

Follow-Up. In this step the moderator checks with the docu
ment owner to determine if all defects logged during the
defect logging meeting were addressed. The moderator also
collects and reports all appropriate inspection metrics during
this step.

Our chief moderator was specially trained and then charged
with implementing the software inspection process in the
R&D lab. Although the process was modeled after the steps
mentioned above, we have made modifications to the process
that we felt were necessary to facilitate acceptance of the
process in our organization. Our first goal was to start using
inspections with one project, and then leverage that success

' This includes architecture documents, specifications, design documents, and code listings.

60 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

to help gain acceptance of inspections as a way of doing busi
ness in R&D. We also constantly looked for ways to improve
the inspection process to increase the effectiveness and
efficiency of finding defects.

Implementing the Software Inspection Program
Gaining Support. It is important to gain the proper support
and acceptance whenever a new program is introduced. In
the case of software inspections, the impact is felt across
the entire R&D organization, and therefore it is very impor
tant to involve as many people as possible when trying to
gain support and acceptance for the program.

Initially, the inspection process was accepted by one project
team, including the project manager. They were ready, able,
and willing to use inspections in all phases of the project,
beginning with the architecture documents and continuing
through specification, design, and code. It was important to
gain acceptance from the project manager so that time
could be allocated in the project schedule for inspections.
Because the entire team had accepted the idea, we found
that most inspections were very successful and showed a
very large return on the investment for the time spent by the
team in preparing for and participating in inspections.

While one team was targeted initially as the primary user of
inspections, other teams were also encouraged to conduct
inspections by their software quality engineering team lead
ers. The selling process was much less formal and relied
primarily on the software quality engineering team leader to
gain acceptance from the project team to do inspections.
We found that this process was not as successful in gaining
the acceptance required to make inspections a success
throughout the R&D organization.

In one instance, we had data that showed that one project
team was not getting a very high return on investment from
the inspections they were holding. When we analyzed what
was going on, we found that the team had never been given
a presentation on inspections and didn't understand the pur
pose of inspections. We found that reviews were being held
before the actual defect logging meeting to clean up the doc
ument before the inspection took place. As a result, defect
logging meetings were held that found no critical, serious, or
medium defects; only very low-level defects were found.
Once we determined what seemed to be the root cause of
the problem, an overview session was held with the team to
explain the purpose and benefits of inspections. Inspections
held after the presentation showed some improvement but
more work needs to be done to determine other causes for
the low return on investment.

All project teams must be given the same message about the
purpose of inspections and they must have acceptance from
project managers so that the proper time will be allowed for
preparation and participation in defect logging meetings.

Chief Moderator. The chief moderator is the most important
person when it comes to implementing and sustaining a soft
ware inspection program. It is the moderator's responsibility
to make sure that the process is being followed correctly
and to watch for variations in the data that would indicate a
problem or a need for improvement. The importance of this
role cannot be overstated when it comes to implementing
and sustaining the inspection program.

Initially, the chief moderator acted as a champion for the
inspection process, gaining acceptance from management
and project teams for the process and putting the pieces in
place to ensure that the process was followed in the same
way by all participants. This involved developing forms cus
tomized for the site and writing a guide that could be read by
anyone to help understand the inspection process. The next
job of the chief moderator was to help other moderators
learn how to moderate inspections by observing them as they
conducted defect logging meetings and acting as a coach. It is
important that the process be followed as consistently as
possible. Having the chief moderator coach other moderators
helped maintain the consistency of the inspection process.

The beginning stages of implementing the inspection process
required constant attention by the chief moderator. Once the
process was in place and the other moderators had been
trained, the role of chief moderator was reduced to one of
custodian, that is, analyzing the the data to find patterns that
might indicate a problem. Although the role of the chief
moderator has changed since we introduced the inspection
process, our experience shows that without the constant
watchfulness of the chief moderator the process will get out
of control and the benefits of inspections will suffer.

Getting Started. Our initial inspections were performed on
test scripts written by software quality engineers in the divi
sion. This allowed moderators to practice moderating and
inspectors to see the process in action before it was used
with project teams. Some of the bugs in the inspection forms
were worked out and minor improvements to the process
were made during this time.

Some shortcuts were taken to get the program started. We
decided to go forward with inspections in spite of not having
standards and checklists in place for every type of docu
ment. We recognized that creating standards and having
them accepted by engineers as standards for writing docu
ments and code would take too long. Although we have
some standards and checklists in place, we still don't have a
complete set. It remains a goal to develop standards for all
of the different types of documents.

We also decided not to implement the causal analysis step of
the inspection process during the initial phase of introducing
inspections. Asking inspectors to stay on at the end of a two-
hour meeting to do a causal analysis would increase resis
tance to participating in inspections. Now that the process is
in place, we have recently started performing a causal analy
sis of three to five major defects at the end of every inspec
tion. These limited causal analysis meetings are possible
because inspectors are now familiar with the process and
the defect logging meetings tend to be shorter. As with any
change, however, it has been slow to take hold and it will
take time to recognize the benefits of the causal analysis
meetings.

This has proved to be a successful model for implementing
inspections. It was very useful to practice doing inspections
and make minor improvements before taking the program to
the project teams. When the task of creating standards and
checklists seemed too large and threatened to prevent the
program from getting off the ground, we found it more useful
to keep moving forward in spite of not having all the tools in
place. We also felt that eliminating the causal analysis step

June 1993 Hewlett-Packard Journal 6 1

© Copr. 1949-1998 Hewlett-Packard Co.

Preparation
Time

Specif ication
28.4% (41 7)

A r c h i t e c t u r e S p e c i f i c a t i o n D e s i g n C o d e

Document Type

Fig. 1. Average inspection times by document type.

helped lower resistance to the new process and facilitated
its acceptance by project teams. All of these shortcuts helped
us get the program off the ground and have inspections start
to take on a life of their own.

Sustaining and Improving the Process
Collecting Metrics. Metrics have been collected from the very
beginning of our inspection program to enable us to mea
sure the process and quantify the benefits of inspections. A
MicrosoftÂ® Excel database was created to maintain the
data. Data is collected from every inspection and includes
the type of document inspected, the number of pages in
spected, the number of defects found, defect severities, and
the amount of time spent preparing for and participating in
the inspection (see Fig. 1). This data helps us analyze how
the inspection process is working. Average inspection effec
tiveness (defects per page), inspection efficiency (hours per
defect), and return on investment are monitored to help us
determine the overall usefulness and value of inspections
(see Fig. 2).

Every defect found during an inspection must be resolved
by the author of the document (or the engineer doing the

A v e r a g e H o u r s / A v e r a g e R e t u r n o n A v e r a g e D e f e c t s /
D e f e c t I n v e s t m e n t I n s p e c t i o n

(Hours)

Code
7.4% (109)

Design
30.1% (441)

Fig. 3. Inspection defect causes.

rework). The reworker must assign a severity level to each
defect and, using standard cause codes, assign a defect
cause code for every defect that is fixed. The amount of
time spent doing all of the rework is also noted. This data is
maintained in the inspection database and analyzed to deter
mine the most frequent causes of defects found during in
spections. We have found that design defects are the most
common types of defects discovered with inspections (see
Fig. 3). A further breakdown of the types of design defects
is shown in Fig. 4. A more thorough analysis of this data in
conjunction with the root-cause analysis data being collected
at the end of each inspection should help us determine op
portunities for improvement in the software development
process.

Inspection metrics are also used to help sell the process to
new project teams. We are able to show the results of every
inspection held in the last two years and prove the useful
ness of the process to the most skeptical engineers. We now
have enough data to help other engineers and project man
agers estimate the amount of time to allocate for inspections
based on the type and size of documents (see Fig. 5).

We continue to collect data and look for new ways to ana
lyze it to help us determine where to make improvements in
the process.

Although did did not initially do the causal analysis step of the inspection process, we did
require This reworker to identify as best they could the cause of every defect they fixed. This
is the data shown in Fig. 3.

2 0 T

A r c h i t e c t u r e S p e c i f i c a t i o n D e s i g n

Document Type

Code
10

Fig. to Inspection data by document type. This data is intended to
help determine the effectiveness of the inspection process.

Module Design
26.3% (116)

X

D a t a _
Definition
6.6% (29)

Fig. 4. Design defects by subcategory.

Functional Design
15.6% (6)

Error Handling
1.6% (7)

Process
Communication

8.8% (39)

User Interface
2.9% (13)
Hardware

Interface 2.3%
(10)

Other
35.8% (158)

62 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

2-5 T A v e r a g e H o u r s /
I n s p e c t i o n

Average Defects/
i n s p e c t i o n "

A v e r a g e H o u r s /
D e f e c t * * *

Â¡: =â€¢
A r c h i t e c t u r e S p e c i f i c a t i o n s D e s i g n

Document Type

Code

Fig. 5. Average hours per page by document. Each of these times
includes preparation, defect logging, and rework time.

Intangible Benefits. We can't talk about the benefits of inspec
tions without mentioning the intangible benefits, which are
benefits that are hard to measure and quantify. For example,
we have changed one of the rules for conducting the defect
logging meeting by allowing limited discussions about defects
when necessary. These discussions are allowed if they lead
to a better understanding of a defect or explain how some
thing works. However, discussions about style or how to fix
a defect are not permitted. We have found that the increased
communication, the transfer of knowledge, and the improved
teamwork are some of the intangible benefits from these
discussions. Inspectors leave the inspection feeling that they
have gained something as well as given something.

Managing Process Improvements. All of the data collected is
used to measure the inspection process and look for ways to
improve it. It is important for the chief moderator and other
moderators to be vigilant about the data from inspections
and to look for opportunities for improvement. All of our
moderators meet periodically to talk about what is working
and what is not working. It is easy for the process to break
down and lose some of its effectiveness.

We have found that analyzing the data over time is useful to
show us whether our process is getting better or worse. For
example, when we looked at the effectiveness and efficiency
data points mentioned above at three-to-four-month inter
vals we saw that inspections were not as effective at finding
defects as they were when we first started doing inspections
(see Fig. 6). As a result, we have recently launched an in
spection improvement project aimed at determining why
our effectiveness and efficiency are dropping and what we
can do to reverse the downward trend.

Defect Prevention. As mentioned earlier, when inspections
were originally introduced, we decided not to include the
causal analysis step of the process to facilitate acceptance
of the process. Ultimately, however, the goal of software
inspections is to help prevent defects from occurring again
in the process. We are now trying to collect data on how
some of the defects found during inspections could have
been prevented by doing a causal analysis at the end of each

Three - to -Fou r Mon th I n te r va l s

Â¡=1

h, = Hours fo r Each Inspec t ion

d , = De fec ts Found Dur ing Each Inspec t ion

n = Number o f I nspec t i ons Conduc ted Du r i ng a Pa r t i cu la r I n te rva l

I nspec t i on Hou rs = To ta l Mode ra to r Hou rs + (K i cko f f Mee t i ng Hou rs x
Number o f Pa r t i c i pan ts) + To ta l P repara t i on Hours + (De fec t Logg ing
M e e t i n g H o u r s x N u m b e r o f P a r t i c i p a n t s) + R e w o r k H o u r s

De fec t s = C r i t i ca l , Se r i ous , and Med ium De fec t s

Fig. these Software inspection trends. The calculation of each of these
data points is based on the total number of defects, inspection
hours, and inspections that occur within a particular interval.

inspection. We select three to five of the major defects that
were reported during the defect logging meeting and try to
get to the root cause of the defect by asking why it occurred.
Over time we hope that we will accumulate enough data to
help us pinpoint areas in the development process that need
improvement.

Conclusion
The software inspections program at HP's Patient Care
Monitoring Systems Division has been very successful. We
know from our data that software inspections are a much
more efficient way of finding defects than testing software
at the end of the development process. We also know that
we are getting a better return on investment for our inspec
tion hours by investing them in inspecting the architecture,
specification, and design documents for a product, rather
than the traditional approach of inspecting only code.

Acknowledgments
Patsy Nicolazzo is the chief moderator and primary imple-
mentor of the software inspection program in the R&D orga
nization at our division. It is because of her efforts that the
program has been so successful.

Reference
1. T. Gilb, Principles of Software Engineering Management,
Addison-Wesley Publishing Company, 1988.

Microsoft is a U.S. registered trademark of Microsoft Corp.

June 1993 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

The Use of Total Quality Control
Techniques to Improve the Software
Localization Process
By implementing a few inexpensive process improvement steps, the time
involved in doing translations for text used in HP's medical products has
been significantly reduced.

by John Rovell-Rixx, Goodnow, Cindie A. Hammond, William A. Koppes, John J. Krieger, D. Kris Rovell-Rixx,
and Sandra J. Warner

Text is a major element in the human interface of diagnostic
ultrasound imaging products manufactured at HP's Imaging
Systems Division (ISY). The ultrasound systems, which dis
play real-time two-dimensional images of the anatomy, also
display measurement and calculation labels, operator
prompt messages, help screens, and anatomical annotation
text (Fig. 1).

Regulatory requirements of certain countries stipulate that
medical equipment sold in these countries must be localized
with respect to software and hardware text and related user
documentation.

Even where regulatory requirements do not stipulate lan
guage as a requirement, it can be a competitive advantage to
have a localized product available.

ISY introduces new products or revisions of existing prod
ucts at international medical conventions, where potential

customers from all around the world see English-language
product demonstrations. However, there is usually a large
time delay between English-language and localized product
availability. This can result in lost sales opportunities. In addi
tion, some international sales contracts specify a financial
penalty if a product is not delivered on schedule.

Localizing the software text in a product requires a signifi
cant engineering effort. Engineers must design the English
product, provide documentation for the translators, imple
ment the translated text, and assist with the language verifi
cation and software validation testing. It is prudent to make
the time spent doing this localization work as efficient as
possible.

This paper describes how Total Quality Control (TQC) was
applied to the software localization at our division to reduce
the time required to localize embedded software text used in

Fig. 1. A screen from an HP
SONOS phased array imaging
system.

64 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

1. Issue

Reduce the t ime required to localize the system software.

2. Why Selected

Decreases the t ime to market for al l local language releases,
which increases customer sat isfact ion and reduces the costs
associated with transition plans outside of the U.S.

Reduces engineering resources required for local ization.

(bl

(0

Fig. soft Panels for the first part of the TQC storyboard for the soft
ware translation enhancement project.

our medical diagnostic ultrasound systems. At first we
thought that much of the delay in the localization process
occurred in the translation step. By using TQC we discov
ered that we could reduce delays in areas originally thought
to be beyond the control of the R&D lab.

The TQC Technique
The nine major stages of the TQC process improvement
model are:

1. Issue
2. Why Selected
3. Beginning Status
4. Analysis
5. Actions
6. Results
7. Problems Remaining
8. Standardization
9. Future Plans.

We applied these nine steps to the issue of software
localization.

The Issue. Our first step was to choose an issue and formu
late a concise issue statement. A TQC issue statement must:
Indicate a change or direction
Have an indicator of quality in a product or service
Declare the process or operation involved.

The issue statement for our project is shown in Fig. 2a.

Why Selected. This stage should state why the issue was se
lected. It should show that benefits can be gained by making
improvements and conversely, that undesirable results will
occur if the process continues unmodified. Fig. 2b shows
the output from this stage for our project.

Beginning Status. Before beginning any changes to a process,
the status of the current process must be understood. We
first listed all the details involved in the current localization
process. From these numerous details, we abstracted five
major steps from the current process (see Fig. 2c).

The actions performed during this process include the
following steps:

â€¢ Step 1: Create a LOLA file. The localization engineer ex
tracts the English text from the source file and sends it to
the translator in the form of a LOLA file. LOLA, which stands
for local language, is an HP Vectra PC-based internal soft
ware tool for translation text entry. In LOLA, the translator
sees the software text as isolated text strings.

1 Step 2: Translation. The translator translates the text strings
to the local language using LOLA. The translated text is sent
back to the originating division for implementation.

1 Step 3: Create language software. The translated text is en
coded into software and memory chips (ROMs). The proto
type system ROMs are then delivered to the translator.

â€¢ Step 4: Language verification. The translator verifies the
translated text on a prototype product. During this step, the
translator sees the text in its proper context and can verify
that the wording is appropriate for the context. The transla
tor sends corrections back to the localization engineer at
the originating division.

1 Step 5: Release. The localization engineer corrects the lan
guage software text, quality assurance performs final soft
ware validation, and manufacturing releases the localized
products for shipment.

Because time was the indicator in our issue statement,
we classified the following three different time process
performance measures (PPMs):

PPM-1: The calendar time required for each of the five
steps in the localization process

PPM-2: The calendar time from the English language
release to the local language releases

PPM-3: The number of person days of R&D effort
consumed during each step in the localization
process.

To determine the time required for our current localization
process, we evaluated several recent localization projects
based on these PPMs. The average size of these projects
was 150 software text strings (see Fig. 2c).

Analysis. During this stage we used brainstorming techniques
to analyze previous projects to determine where time was
spent. To promote an open and nonintimidating atmosphere,
we followed these typical brainstorming guidelines:
All ideas are permitted with one person speaking at a time
Evaluation and discussion of ideas is postponed until later
Questions are asked only to clarify ideas
After all ideas are presented, the items on the list are
clarified to be sure they are understood by all.

June 1993 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

4. Analysis

Text process. frozen very late, delaying the start of the translation process.

Local language releases have low visibi l i ty and are poorly managed.

Local language releases are often given low prior i ty.

Not enough communicat ion with the translators.

Translation tools used by R&D are poor (signif icant manual effort required).

R&D doesn't develop text with translat ion in mind.

5. Actions

Stabil ize text and start the translation process earl ier in the development
cycle.

Increase the visibil i ty of translation activit ies by providing regular status
updates.

Incorporate translat ion activi t ies into the project management documents.

Work to establ ish a better "team" relat ionship with the translators.

Develop better translation tools.

Provide software development guidel ines for text .

(b)

6. Results
Elapsed Time by Translation Step

B e g i n n i n g B e f o r e T Q C
R e v i s i o n A v e r a g e R e v i s i o n 1

1 5 0 S t r i n g s 5 0 S t r i n g s

After TQC
Revision 2
245 Strings

S t e p l S t e p 2 S t e p 3 S t e p 4 S t e p 5
Localization

(c)

Fig. 3. Panels for the second part of the TQC storyboard for the
software translation enhancement project.

Several major items pertaining to ISY procedures were
found from these brainstorming sessions:

â€¢ Preparing the original English LOLA file required many
hours of manual effort to cut and paste text from the source
code into the LOLA file. This process is tedious and error
prone.

â€¢ The product development schedule did not provide enough
time for localization activities. As soon as English was re
leased engineering resources were dedicated to higher-
priority projects. Localization was not a formal item in the
product's release protocol.

â€¢ Most engineers at our division had an English-focused view
point and did not realize that certain design considerations
are needed to make the software text localizable. Also,
since it one was given the responsibility for localization, it
was seen as someone else's job.

â€¢ Messages in languages other than English typically require
between 30% and 50% more text characters. Often, the design
of the original English text did not take this into account.

â€¢ Syntax in languages other than English is typically different.
Sometimes engineers would construct text messages from
individual translated words assuming that the syntax was
universal. This resulted in nonsense localized messages.

â€¢ No attempt was made to stabilize software text before
English release. Engineers continued to make text changes
until final testing had begun. The translators either had to
wait until the English product was released to begin, or they
began earlier but had to revise the text numerous times.

In addition to the major items above, we also identified
many smaller process items that involved our interactions
with the translators. Fig. 3a summarizes all the issues found
in the brainstorming session.

To better evaluate why these items occurred, we created
several cause and effect diagrams, also called "fishbone"
diagrams because of their visual similarity to a fish skeleton.
We found four major categories in which time could be lost:
process, communications, people, and tools. The categories
are drawn as branches off the backbone of the cause and
effect diagram shown in Fig. 4.

Each of these categories was branched further until root
causes were identified. Each fishbone diagram highlights
the causes for the step being addressed, which in this case is
step 2 (translation).

Initially we created fishbone diagrams for Step 1 (create
LOLA file) and Step 3 (create language software) because
each required a large amount of engineering time and they
were steps over which we had control. We believed that
R&D had little control over Step 2 (translation), but since it
took the longest time, we diagrammed it.

The fishbone diagram shown in Fig. 4 revealed some impor
tant issues. Since we do not have exclusive use of scarce
translation resources, we must be on time in delivering
translation materials to the translators. If we are late in
sending our translation materials, the translators work on
tasks from other HP divisions. We can keep our place in the
work queue by giving more accurate dates to the translators.

Low estimates of the number of text strings to be translated
were another cause of delay. The translators schedule their
time based on the estimate we give them. If we underesti
mate the number of strings, our text cannot be translated in
the time allotted. The translators then spend a lot of time
juggling their projects to find time to translate the extra
strings.

Our estimates of the number of strings were low because
when the scope of the project increased, we did not update
the estimate.

Poor communication between the translators and our divi
sion led to many small time delays, which together had a
large impact on the turnaround time.

After creating the fishbone diagrams, we tied the root
causes to the PPMs mentioned above. This gave us the in
sight needed for the next stage: developing the appropriate
action plan.

66 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Process

Low Priority Poor Text Change Control

= 4 ^ ^
</% *A

Number of Strings Estimates Poor

People

Too Few Translators

Limited Use of
Outside Agencies

Step 2 Translation

C h a n g e s i n R e t u r n D a t e s V a c a t i o n S c h e d u l e s
n o t C o m m u n i c a t e d n o t C o m m u n i c a t e d

A s s i g n e d P r i o r i t y N o t T o o M a n y P h o n e C a l l s t o
C o m m u n i c a t e d T r a n s l a t o r s S l o w s t h e m D o w n

Translators Hesitant
to Ask Questions

Poor Use of LOLA by ISY

J01

Lack of Highlights
on Changed Text

Operator's Guide not Available Poor Quality Faxes

E-Mai l Loses Messages

Communications

Fig. original process. and effect diagram for step 2 (translation) of the original translation process.

/
Tools

Actions. We held another brainstorming session to gather
ideas to address the root causes of the delays. This resulted
in a list of thirteen specific action items which were evalu
ated for impact, effort, and the amount of control we had
over the action item. We also identified owners for the action
items. Fig. 3b summarizes the main themes of the action
items.

The following list ties the main themes of the action items
to the problem they solve and the process performance
measures (PPMs) that are impacted:

Action: Stabilize text and start the translation process
earlier.

Problem: Text is frozen very late, delaying the start of the
translation process.

PPM: 2 â€” English-to-language release time

Action: Include translation activities in project manage
ment documents.

Problem: We often give local language releases a low
priority and thus they are poorly managed and
have low visibility.

PPMs: 1, 2, and 3 â€” elapsed time for each step, English-
to-language release time, and the number of R&D
person days consumed

Action: Establish a better team relationship with the
translators.

Problem: Communication
PPMs: 1, 2, and 3

Action: Investigate the development of our translation
tools.

Problem: Significant manual effort is required to convert
between LOLA and the source code.

PPMs: 1, 2, and 3

Action: Investigate software development guidelines for
text string design.

Problem: English text must be reworked to function with
translations.

PPMs: 1, 2, and 3

Results. After we generated the action plan, we began ad
dressing the action items. This resulted in the following
major changes to our localization process:

â€¢ In striving to release localized products earlier, stabilization
of text has become a priority for software developers.

â€¢ The visibility of the translation activities has increased.
â€¢ Communication with the translators has improved, as has

our credibility with them. By working as a team with the
translators, we have improved communication and reduced
turnaround time.

â€¢ Software development guidelines for handling localization
have been established, published, and distributed internally.

Next, we evaluated the effect these actions had on our origi
nal goals by examining two localized product releases that
occurred during the course of our activities. Fig. 3c shows
PPM-1 (elapsed time between process steps) for the two
product releases compared with the beginning average data
from Fig. 2c. Revision 1 was before taking the actions listed
above, while revision 2 shows the effects of the actions.

As we collected the data to generate the graph, we found that
our PPMs were flawed. We did not have a good mechanism
for scaling the results based on the number of text strings.
Obviously, revision 1, which contained approximately 50
strings, would take a shorter period of time to localize than
revision 2, which contained approximately 245 strings.
Despite this problem, it is still apparent that our efforts have
significantly reduced the times for steps 2 and 4. Because

(continued on page 69)

June 1993 Hewlett-Packard Journal 67
© Copr. 1949-1998 Hewlett-Packard Co.

Tools for the Language Translation Process

The software translation enhancement project described in the accompanying
article for the need to reduce engineering time required to prepare text for
translation and integrate translated text into the product. Partially automating the
preparation and integration of local language text through the use of new devel
opment valuable reduces inconsistencies between languages and frees valuable
engineering resources.

C u r r e n t P r o c e s s

The current translation process is based around LOLA, or local language software
tool, which is a PC-based application used by HP's medical products divisions for
language translations. LOLA requires that files be in a special format, consisting of
general information (such as revision, language, context), format specifications,
and translatable text. The engineer responsible for localization manually converts
a source file containing text to the required LOLA format. Converted files are
moved using a workstation to the PC and sent to the translators. Translators using
LOLA translate the files to the local language and return the translations to the
originating division. The engineer then moves the files from the PC to a work
station and manually converts the translations to source code.

R e q u i r e m e n t s

The requirements identified by the TQC team for automatic handling of local
language translations were:

â€¢ A unique text file format must be specified that will hold master English text and
associated local language translations. The text format must be C-like in its con
struction and must contain all the information in a C source file as well as the
information in a standard LOLA file.

â€¢ English and local language text files must be placed under revision control.
â€¢ The tools must automatically generate:

o English LOLA files from master English text files
English C source files from master English text files

o Local language text files from local language LOLA files
o Local language LOLA files from local language text files

Local language C files from local language text files
A file file. differences between two different versions of a text file.

T e x t F o r m a t

With Formats above requirements in mind, a file format was specified. Formats and
global indicates take the form of functions. The name of the function indicates
the format to be set, and the function argument indicates the value of the format
(e.g., Â¡ustify(CENTER);). Global formats, such as character sets and fonts, are usually
software platform dependent, and are contained in the construct global{}. Text and
formats to be interpreted as translatable are contained in the construct string! }.

Development
Workstat ions

Workstat ion
1

Workstat ion
2

LAN

LAN

Fig. 1. The run-time environment for the translation tools.

C source code that logically belongs in the file can be included outside these
additional constructs and will not be interpreted by the tools. A typical string
definition is as follows:

str ing {
s ize(4 , 50) ; / max s ize - 4 l ines , 50 chars each * /
cap i ta l i ze (L INE) ; / cap i ta l i ze f i r s t word o f l i ne * /
just i fy ! LEFT); / le f t just i fy text * /
c o n s t c h a r " c o n s t U s e r _ d e f _ m s g = { / " u s e r m e s s a g e t h a t * /

" E n t e r a c o m m e n t t o d e s c r i b e t h e " , / ' a p p e a r s o n d i s p l a y * /
"LOOP (up to 16 characters) : " , 0} ;

desc r i p t i on lD ia log box p romp t t ha t appea rs when the use r
se lec ts 'Manua l En t ry ' f rom the s to re d ia log box . The
user is ab le to type in any 16-charac ter s t r ing to
descr ibe the f i le to be s tored. OKAY and CANCEL but tons
w i l l appear be low the message . The user se lec ts OKAY
when sa t i s f i ed w i th the comment o r CANCEL
to se lec t a comment f rom the l i s t ins tead.) ;

L o c a l i z a t i o n T o o l s

The following localization tools were created to perform the required file conver
sions, from differences between revisions, and transfer files to and from a
translation database. Fig. 1 shows the environment in which these tools run.

â€¢ newtextfile. This program generates header and global text information for the
particular software environment.

â€¢textZhex, hex2text, and hex2c. These tools perform the file conversions specified in
the requirements.

â€¢ textdiffs. This is an interactive X Windows application. When an English file is
changed, the engineer uses this program to generate the LOLA database files.

â€¢ readyloclang. This program transfers any files in the source tree to the LOLA
database and checks the consistency of that database.

â€¢ transferloclang. This program moves LOLA files from the LOLA database to the
PC server. It also puts the files in DOS format.

â€¢ receiveloclang. This program moves LOLA files from the PC server to the
development workstation.

â€¢ lolarc. This program runs on the PC, and depending on the parameters sent to it,
transfers LOLA files between the PC server and the PC.

The following scenario in conjunction with Fig. 2 shows the typical life of a text
file using the localization tools.

1 . A new converted text file, which has been placed under revision control, is converted
to hexadecimal and placed in a LOLA file.

2. The LOLA file is added to the translation database automatically by readyloclang
when the database is ready for translation. Readyloclang will inform the user if
textdiffs needs to be run on the file.

3. The LOLA files to be translated are transferred to the PC and archived.

4. The archived file is sent to the translators via e-mail for translation into the
local language.

5. When unarchived, translators are done, the file is returned (via e-mail), unarchived,
transferred to the PC server workstation, and then moved to a development work
station. This results in a local language LOLA file containing a reference to the
English revision of the text file from which it was derived.

6. The original English revision of the text file and the LOLA local language file are
used to create the local language text file.

7. The local language text file is checked in and C source code is automatically
generated.

When engineers revise an English text file, the process is slightly more compli
cated. data engineer uses textdiffs to create the necessary LOLA files for the data
base. are allows the engineer to match strings interactively that are the same

68 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Deve lopmen t
W o r k s t a t i o n

English Text Files
under Revision

Control

(a) To
Translators

Â ®

PC PC Server Development
Workstat ion

Fig. with localization division ROMs. cycle of a text file that is translated with the localization tools, (a) The flow from originating division to translators, (b) The return flow from translators to product ROMs.

between two revisions of the file. When the translator first looks at a matched
line will shown. the translated text from the previous revision will be shown.

Embedding the format and comments in the text file centralizes documentation.
Previously, the documentation was disseminated through the C file and the LOLA
file. provides only a single file format to keep under revision control provides easier
tracking of changes.

C o n c l u s i o n

The scheme outlined above helps to reduce the chance of inconsistencies between
languages. Since all translated files refer back to English, comments, text formats, Ultimately, the new tools and processes will reduce the engineering resources
and code (other than text external to the additional constructs) are identical in all required for translating to local languages and improve the quality of translated
languages. Having a single file format to maintain ensures that changes to an text.
English text file are carried through to the English LOLA file and the local language
text reports immediately after a change. Software testers use LOLA reports showing
all the be to help them verify the operation of the system. These reports can be
made defect soon after any changes, reducing redundant defect reporting HP Imaging Systems Division

our action plan did not specifically address the R&D-intensive
cutting and pasting process, steps 1, 3, and 5 did not improve
significantly.

Problems Remaining. Although we were able to achieve a
significant degree of success, we did not solve all of the lo
calization issues we discovered during analysis (see Fig. 5a).

Standardization. The TQC process should lead to the devel
opment of standards. Standards help to maintain a process
and provide a platform from which to continue to build
(see Fig. 5b).

We developed three standard documents. The first of these
documents, the Translation Status Memo, is published
monthly. This document helps maintain high visibility for
translations and clearly communicates changes to the
schedule. The second document, the Division Release Plan,
details the features and products scheduled for release in
upcoming months. This document has been updated to in
clude both local and English language release dates. Lastly,
the Guide for Creating Translatable System Text has been
published and distributed to the software development staff,
and is a living document in our software environment.

June 1993 Hewlett-Packard Journal 69
© Copr. 1949-1998 Hewlett-Packard Co.

7. Problems Remaining

Localization toolset is defined but not implemented.

Project management documents st i l l need to be updated.

The relat ive priori ty of local izat ion versus new feature development is st i l l
an issue.

" Idle t ime" (t ime lost between translat ion steps) needs to be accounted for
better in the process model and then measured.

(a)

8. Standardization

Translation Status Memo published monthly by the translation coordinator.

Release Plan updated to include local language releases.

Guide for Creating Translatable System Text published and distributed
internally.

(b)

9. Future Plans

Update activities. Product Lile Cycle to better address translation related activities.

Implement the Localization Tool Set.

Cont inue to col lect metr ics regarding local izat ion t ime associated with new
releases.

(0

Fig. soft Panels for the third part of the TQC storyboard for the soft
ware translation enhancement project.

Future Plans. The final stage in the TQC process is generating
plans for the future (see Fig. 5c). We plan to update our
product life cycle process, and continue to collect metrics
on local language releases.

In addition, we plan to collect metrics on a new localization
tool set, which is design to improve our efficiency in handling
English and translated text (see "Tools for the Language
Translation Process" on page 68). This toolset will obviate
the need to cut and paste, and will automate many of the
other steps in the localization process. Without our TQC
efforts, we would not have been able to justify the high cost
of implementing these tools.

Conclusion
Our group, although untrained in TQC methodologies, suc
cessfully applied TQC principles to a real problem. Even
though we focused on the results rather than the process, we
learned a lot about the process. We were able to scale the
use of TQC so that the process did not overshadow the prob
lem at hand. In addition, we identified causes of problems
that may not have been uncovered with an unstructured, ad
hoc approach.

Given the positive experience we had with TQC methods
during this project, we will enthusiastically and confidently
use it again.

Acknowledgments
The authors would like to thank Paul Kelly for his encour
agement and advice in the writing of this article.

70 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

A Transaction Approach to Error
Handling
The transaction-based recovery concept used in databases can be
applied to commercial applications to help provide more reusable
and maintainable programs.

by Bruce A. Rafnel

Commercial programs contain two major paths: a forward
path that does the work and a reverse path that rolls back
the work when errors are detected. Typically, these paths
are so to bound together that both paths are difficult to
read. Code that is difficult to read results in code that is
difficult to write, debug, enhance, and reuse.

For example, in the object-oriented programming method
ology, one reason why objects are not as reusable as they
should be is that they are tightly bound together at the error-
handling level. Many times error codes even give clues about
how an object is implemented.

The solution is to handle errors in programs as they are han
dled in a database transaction recovery mechanism. In a
database transaction, the transaction either executes in its
entirety or, if an error is detected in any of its operations, it
is totally canceled as if it had never executed. If an error is
found, all work is automatically rolled back to the beginning
of the transaction.

Error Handling
Software developers have sometimes been dismayed by how
difficult commercial programs are to maintain and design,
compared to programs they developed in school. Someone
typically points out that programs developed in school were
"toys," which assumed perfect inputs and hardware with
unlimited memory and disk space. In addition, most software
engineers have very little formal training in error-handling
methods. Typically, software developers learned error han
dling by example or by trial and error, and they use the tradi
tional error-handling model: check for an error, find an error,
and return an error code.

Many formal design processes, such as structured analysis
and structured design, recommend that errors be ignored
during design because they are an implementation detail. It
seems that this implementation detail can take up to one
third of the code in commercial programs. This is not just
code added around algorithms, but code placed directly in
the middle of the algorithms. The resulting programs are
difficult to read, debug, and reuse.

A database transaction is a unit of work that involves one or more operations on a database.
For example, the operation of inserting data in the database could be a transaction if it 's the
only operation performed. If the insert is combined with an update, both operations would be
considered one transaction.

Exception handling, or error handling, has a large academic
base and many of the ideas given in this paper are probably
not new. However, most of the ideas presented here are
based on 15 years of observations and experiences with a
lot of good feedback from experienced programmers. This
paper will describe a programming style that separates most
of the error-handling process from the main algorithms.

Mixed Forward and Reverse Path Problem
The two major paths in commercial programs are shown in
Fig. 1. The forward path is the path doing the work that
the program is designed for. The reverse path is the error-
handling code needed to keep the forward path working
correctly. It does this by detecting problems, fixing them,
and rolling back partially completed work to a point where
the algorithm can continue forward again.

Tramp Error Problem
Often an intermediate function in a program has to stop what
it is doing in the middle of the algorithm because a function
it called cannot complete its designed task. This can lead to

Forward Path Reverse Error Path

- Function A
Setup
Validate Inputs
Call Function C
Validate Results
Call Function B
Validate Results
Return

Function B
Setup
Validate Inputs
Call Function C
Validate Results
Operation
Validate Results
Return

Function C
Setup
Validate Inputs
Operation
Validate Results
Return

Fig. path Traditional error-handling program flow. The forward path
does the work of the program and the reverse path does the error
handling. Notice that error-handling code is dispersed throughout
the algorithm.

June 1993 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

Error Definition

In the accompanying article errors are not defects. Errors are exceptions that a
particular algorithm is not designed to handle. Defects are errors that are out of
the design limits of a whole application or system.

For example, many algorithms are designed with the assumption that there is
unlimited memory. When there is not enough memory for the algorithm to com
plete to this is an error. A whole application must be designed to handle
these errors errors. If an application does not handle these errors and the
program halts or the program behaves in an undocumented way, this is a defect. In
other words, errors are relative in that they depend on what level of the software
hierarchy is being observed.

Error handling consists of four main parts: detection, correction, recovery, and
reporting. Error recovery is the main focus of the accompanying article.

"tramp errors." Tramp errors are errors in functions that
are not directly related to the current function.

Tramp errors are the result of a real error occurring in a
lower-level function. For example, function A() calls function B().
Function B() needs some memory, so it calls the mallocO memory
allocation function. The mallocO function returns an out-of-
memory error. This is a real error for the mallocO function.
Function B() does not know how to get more memory, so it has
to stop and pass the error back to function A(). From the per
spective of function B() and probably function A(), an out-of-
memory error is a tramp error.

Tramp errors prevent functions from being the black boxes
they were designed to be. In the above example, notice that
function A() now knows something about how function B() is
implemented.

Tramp errors are really part of error recovery and not part of
error detection because if the real errors could be corrected
immediately, tramp errors would not occur.

Unreadable Code and Poor Reuse
Mixed forward and reverse paths and tramp errors combine
to obscure the main forward path of the program, which is
doing the real work. The correction and recovery parts of
error handling are the main areas that obscure the code. Most
of the detection and reporting code can be put in separate
functions.

Because of tramp errors, almost every function has to handle
errors generated by all lower-level functions called. This can
cause tight data coupling which makes code reuse more
difficult.

Transaction Error-Handling Solution
To solve the above problems, two things need to be done:
separate the forward processing path from the reverse error-
processing path and use context independent error codes.
This method of error handling is very similar to the way
databases handle error recovery. Transactions are used to
control the rollback process when a group of database
operations cannot be completed successfully.

' The tramp tramp error is used because it is very similar to the tramp data term used in
structured analysis and structured design.1

Separate the Paths
The traditional defensive way of programming is to assume
that a function may have failed to complete its designed
task, resulting in a lot of error-handling code to check for
the errors and to roll back partially completed work. This is
what we have in Fig. 1.

Reverse this assumption and assume that returning func
tions have completed their designed tasks successfully. If
the function or any of the functions it calls has errors, it will
pass processing control to a recovery point defined by the
programmer. In other words, transaction points are defined
so that if there are any problems, the work will be rolled back
to those points and the processing will proceed forward
again.

With this approach, there is no need to check for errors after
each function call, and the forward path is not cluttered
with tramp error-detection code. Only error-detection code
for real errors remains, and most of the error-correction and
recovery code is clustered around the beginning and end of
the transactions (see Fig. 2).

Because errors are processed separately from where they
are detected, the error codes need to hold the context of the
error.

Context Independent Error Codes
Error codes that provide more information than just an error
number are context independent error codes. Information
such as what function generated the error, the state that
caused the error, the recommended correction, and the error
severity must be encoded in the error code so that it can be
corrected in a location separate from the forward processing
path.

Usually contexts of errors are encoded for error-reporting
functions. For example, the names of the program, function,
error type, and error code are saved and reported later.
However, sophisticated encoding schemes are rarely used
because with traditional error handling, the context of the

Forward Path Reverse Error Path

Function A
Begin Transaction
Setup
Validate Inputs
Call Function C
Call Function B
End Transaction

Function B
Setup
Validate Inputs
Call Function C
Operation
Val idate Result
Return

â€¢ Function C
Setup
Validate Inputs
Operation
Val idate Result
Return

Fig. 2. Transaction error-handling program flow.

72 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

error is already known because checking is done right after
a call to the offending function.

With transaction error handling, the recovery process is
separated from the forward processing path so context
independent error codes are required. This may involve the
creation of unique error codes across a whole application
or system (with the codes bound at compile time). An alter
native would be to assign code ranges or other unique
identifiers to functions at run time.

Code Readability and Reuse
The transaction approach makes programs easier to read
because the reverse error process paths are visually sepa
rated from the forward process paths.

The transaction error-handling style makes it possible to
create some general error-recovery interfaces so that func
tions (modules or objects) will only be loosely connected at
the error-handling level. This is possible because the number
of tramp errors used to control the recovery process is
reduced and only the real errors need to be handled.

Implementation

The following are some ideas about how to start developing
a transaction error-handling library. The list is not exhaustive
and there are some problem areas, but it does offer some
concrete ideas for building a transaction error-handling
mechanism.

Transaction Control Management
Some language support is needed to implement the mecha
nism that controls error recovery. Languages like HP's Pascal-
MODCAL have a try/recover feature that can be used to support
a transaction error-handling style. The try/recover statement
defines error-recovery code to be executed if an execution
error is detected within a particular area of a program. Fig. 3
shows the flow of control for a try/recover statement.

For other languages a feature usually called a "global goto"
must be used. This feature allows a lower-level function and
all other functions above it to exit to a point defined in a
higher-level function without passing error-code flags
through all the other functions. In C this is done with the
setjmp and longjmp library routines. The setjmp function saves
its environment stack when it is called, and longjmp restores
the environment saved by setjmp. The examples given later in
this article are written in C and show how these functions
are used.

Try

A r e a o f P r o g r a m u n d e r
T r y a n d R e c o v e r C o n t r o l

C o d e

C o d e

C o d e

C o d e

E r r o r

E r r o r

E r r o r

R e c o v e r
E r r o r - R e c o v e r y C o d e

Fig. 3. The control flow for a try/recover statement.

The new C++ exception-handling feature2 provides an excel
lent foundation for a transaction-based error handler. Refer
ence 3 also describes how to add C++ error-handling func
tions to regular C programs. However, overuse of the C++
exception-handling feature could lead to code that is just as
cluttered as the traditional error-handling style. Transaction
boundaries for objects must be designed with the same care
that goes into the design of an object's interface.

If the language is missing a global goto (or multithreaded)
feature, macros or other WTapper* functions can be used to
build recovery processes that are mostly invisible. Wrapper
functions are described in more detail later.

Some of the features that might be considered for a
transaction error-handling package include:

â€¢ Allowing nested transactions by keeping the transaction
begin points on a stack

> Allowing functions to share a common transaction stack
â€¢ Allowing functions to define their own transactions with a

common transaction stack or allowing functions to define
then- own transaction stack for special cases

â€¢ Defining special transaction points to handle errors in
common categories (For example, abort the whole pro
gram, restart the whole program, close all files and restart,
close current file and restart, and release all memory not
needed and restart.)

â€¢ Making provisions for the transaction error handling to be
turned on and off (When it is off, a function returns error
codes in the traditional way.)

> Defining expected errors for some functions by masking out
the errors needed. (This feature can be simulated by turning
off transaction error handling, but then unexpected errors
will also have to be managed.)

Transaction Data Management
Recovery involves more than just rolling back functions
because there may be some intermediate work that needs to
be undone. This may involve releasing unneeded memory or
changing global variables back to the values they had at the
beginning of the transaction.

Memory. Memory is best managed with a mechanism similar
to the mark/release memory feature provided in some imple
mentations of the Pascal programming language. The mark/
release procedures allow dynamic allocation and deallocation
of memory in an executing Pascal program.

The C language functions mallocO and freed, in conjunction
with a stack of pointers to keep track of the memory allo
cated, provide the best features for allocating and freeing
memory. With these features, a mark function can be called
just before the program transaction's start point to mark the
current stack point. If a longjmpO goes to this recovery point,
a release function is called to free any memory allocated
after the mark point.

A commit function, which indicates the successful comple
tion of a transaction in the database context, is needed at
the end of a program transaction to remove pointers from
the mark/release stack. Nested transactions, however, need to
be considered. A simple solution would be to have each
transaction keep its own mark/release stack.

' Wrapper cannot (or macros) are used to add functional i ty to exist ing functions that cannot
be changed (e.g., library functions).

June 1993 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Globals. Global variables (and other static variables) can be
rolled back with a strategy similar to the memory manage
ment problem. Just before a transaction's begin point the
states of all the globals that might be changed in a transaction
are saved on a stack. This allows transactions to be nested.

Context Independent Error Codes. The traditional error-
handling style of checking error codes after each function
call automatically gives errors a context. The transaction
error-handling style needs to provide this context information
in another way.

The biggest challenge here is that error codes alone are not
very useful. For example, 97 could be the letter "a" (ASCII
code), the digits "6" and "1" (BCD format), index 97 into a
message array, the 97th error, an out-of-memory error, a
disk-full error, a divide-by-zero error, and so forth.

To decode an error code the source of the error must be
known. Some information that may need to be saved when
an error occurs includes the machine name, program name,
process number, module name, function name, and of
course, the error code. This information needs to be sent
only when it is necessary to roll back a transaction.

The amount of information that has to be saved is depen
dent on the location of the transaction recovery point and
the run-time environment. For example, a client-server
application may need more information than a simple PC
application. Each recovery point can usually find higher-
level context information fairly easily. For example, the
names of the machine, program, module, and function can
easily be passed down to a lower-level recovery point. How
ever, lower-level context information cannot be collected
because the function that had the error would no longer be
active.

Implementation Summary
The following are some points to consider when implement
ing a transaction error-handling scheme:
Put the rollback points (if any) at the beginning of functions

Â» Put error detection and default substitution at the beginning
of functions

â€¢ Put some error-detection code in the middle of functions to
check intermediate values

â€¢ Put error-detection code at the end of functions to validate
the results

â€¢> Do not put error-handling code for managing rollbacks in
the middle of a function.

Examples
Traditional Error-Handling Style. The following example pro
gram, which reads a binary formatted file, is coded with a
common error-handling style. The code would have been
more cluttered without the aExitErrO and aRetErrO macros to
manage the error reporting and recovery. This example uses
the simple error-recovery process: detect error, report error,
and exit. However, notice how much error-handling code is
mixed in with the algorithm.

/ *
r
r
r
r
r

read. c - Read a b inary fo rmat ted f i le
Th is program reads and pr in ts a b inary f i le tha t has the
fo l l ow ing s t ruc tu re :

Record type code (The las t record has a va lue o f 0)
S i z e N u m b e r o f c h a r a c t e r s i n M s g

*/
*/
*/
*/
*/

/ M s g O t o 2 0 4 8 c h a r a c t e r s
/ R e c o r d t y p e c o d e
/ S i z e
/ M s g
/ .
/ .
/ * .

#def ine aExi tErr(pMsg, pErr)
#def ine aRetErr(pMsg, pErr)

t y p e d e f s t r u c t !
l o n g T y p e ;
i n t S i z e ;

} a F i l e H e a d ;

pu ts (pMsg) ;ex i t (pEr r)
puts(pMsg); return(pErr)

/
/
/
/
/
/
/

Forward A lgor i thm:

Main
1. Open the fi le.
2. Cal l the Read process.
3. Close the fi le.

ma in () {
Â¡nt
FILE1

Err;
InFile;

Â¡f ((InFile = fopenC'fi le.bin", "rb")) == NULL) {
aExitErrC'Error: Could not open: f i le. bin",1);

Â¡f ((Err = aRead(lnFi le)) !=0){
aExitErrC'Error: While reading: f i le. bin", 2);

Â¡f(fclose(lnFile){
aExitErrC'Error: Closing: fi le. bin", 9);

} / * m a i n () * /

/
f
I *
r
r
r
r
r
i*
r

Forward A lgor i thm con t inued :

Read Process
1. Read the Type and Size values.
2. If Type = 0, exit.
3 . Read Size number of characters in to the

Msg var iab le.
4. Pr int the Msg.
5. Goto step 1.

i n t aRead(pHand le)
F I L E p H a n d l e ;

Â¡nt
c h a r
long
aFileHead

Err, N;
Msg;
RecNum;
RecHead;

*/
V
*/
*/
*/
*/
*/
*/
*/
*/

i f ((Msg = (char *) mal loc(2048|) == NULL) {
aRetErr("Error : Out of memory", 3) ;

}

RecNum = OL;
wh i l e (1) {

i f (fseekfpHandle, RecNum, SEEK_SET) < 0) {
aRetErrC'Error: in fseek", 4);

}
N = f readdchar *) &RecHead, s izeof(aFi leHead), 1, pHandle) ;
Â¡ f (N<0) {

aRetErrC'Error: in fread", 5);
} e l s e i f (N ! = 1) {

aRetErrC'Error: short f read", 6);

74 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

if(RecHead.Type==OL){
r e t u r n (O) ; / * E O F * /

}
if(ReclÂ·lead.Size){

Â¡f ((N = freadIMsg, RecHead.Size, 1,
plÂ·landle))<0){

aRetErrC'Error: Â¡n fread", 7);
} e l s e i f (N ! = 1) {

aRetErr("Error: short fread",8);
}
Â¡f((Err = aPrint(Msg,

RecHead.Size)) !=0){
aRetErr("Error: Â¡n aPrint", Err);

RecNum = RecNum + RecHead.Size + sizeof(aFilelÂ·lead);

} / *aRead() * /

Transaction Error-Handling Method. The following listings show
an implementation of the transaction error-handling style.
The first listing shows the program (transaction) re ad. c rewrit
ten to The the t ransact ion error-handl ing s ty le . The
other listings show the support functions for the transaction
error-handling method.

Notice in the main body of the algorithm that the code fol
lowing the recovery sections is clearer than the traditional
error-handling example and there is no error-handling or
recovery code mixed in with the algorithm.

There are some obvious shortcomings in the support mod
ules. For example, most of the macros should be functions
and the vEnv values should be saved in a linked list.

A number of engineers have pointed out that the transaction
implementation of read. c is not really shorter than the tradi
tional implementation of read. c because the error-handling
code was simply moved out of read. c and put in the support
functions. But that is exactly the goal: to remove the error-
handling code from most functions and encapsulate the error-
handling in common shared code.

The Main Program. This program performs the same function
as the read. c program given above. However, it has been
recoded to use the transaction style of error handling. The
functions erSet, erUnset, and erRollBack provide the error han
dling and are defined in the include file erpub.h, which is
described below.

The include file epub.h contains wrapper macros which are
defined so that the appropriate transaction error-handling
functions are called in place of the standard library function.
For example, when the standard function fclose is invoked,
the function eClose is actually called.

/ r e a d . c - R e a d a b i n a r y f o r m a t t e d f i l e * /
/ T h i s p r o g r a m r e a d s a n d p r i n t s a b i n a r y f i l e t h a t h a s t h e * /
/ f o l l o w i n g s t r u c t u r e : * /
/ * * /
I * R e c o r d t y p e c o d e (T h e l a s t r e c o r d h a s a v a l u e o f 0) * /
/ S i z e N u m b e r o f c h a r a c t e r s i n M s g * /
/ M s g O t o 2 0 4 8 c h a r a c t e r s * /
/ R e c o r d t y p e c o d e * /
/ S i z e * /
/ M s g * /
/ * * /

/ i nc lude "e rpub .h "
/ i nc lude "epub .h "

typedef struct {
l o n g T y p e ;
Â ¡ n t S i z e ;

JaFileHead;

r
r
r
r
r
r
r
r

Forward Algorithm:

Main
1. Open the file.
2. Call the Read process.
3. Close the file.

main(){
FILE1 InFile;

erRecOn = 1;
if (erSetO) {/ Transaction rollback point */

printfC'Error: %d in function: %sn", erErr,
erFun);

erUnsetO;
exit(l);

}/ End Recovery section */

InFile = fopen("file.bm", "rb");
aRead(lnFile);
fclose(lnFile);
erUnsetO;

} / *ma in () * /

/ *
/
/
/
r
r
r
r
r
r

Forward Algorithm continued:

Read Process
1. Read the Type and Size values.
2. If Type = 0, exit.
3. Read Size number of characters into the

Msg variable.
4. Print the Msg.
5. Goto step 1.

int aRead(pHandle)
FILE*pHandle;

c h a r
long
aFileHead

Msg;
RecNum;
RecHead;

*/
* /
1
" I
* /
* /
* /
* /

*/
V
*/
*/
Â»/
*/
*/
*/
*/

Msg = (char *) malloc(caMsgLen);

RecNum = OL;
while (1){

fseeklpHandle, RecNum, SEEK_SET);
fread((char *) SRecHead, sizeof(aFileHead), 1, pHandle);
Â¡f(RecHead.Type==OL){

r e t u r n E O F * /
}
if (RecHead.Size) {

fread(Msg, RecHead.Size, l.pHandle);
aPrint(Msg, RecHead.Size);

}
RecNum = RecNum + RecHead.Size + sizeof(aFileHead);

}
} / *aRead() * /

File erpub.h. The macros and global data structures defined
in this file form a crude error transaction manager. The
following operations are performed by these macros:
erSet. This macro adds a rollback point to the vEnv
(environment) stack.
erUnset. This macro removes the top rollback point from
the vEnv stack.

June 1993 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ erRollBack. This macro saves the function name and error
code in a global area (erFun and erErr), and if the erRecOn flag
is true, control is passed to the rollback point defined on the
top of the vEnv stack. If erRecOn is false, erRollBack will simply
return the usual error code.

Remember that these macros are for illustration only. Thus,
there are no internal checks for problems, and the global data
structures should be defined as static values in a library mod
ule or to into a s t ructure that is created and passed to
each of the transaction error-handling functions.

/ e rpub .h - E r ro r Recove ry Pub l i c I nc l ude f i l e * /
inc lude <se t jmp .h>

/ P r i v a t e V a r i a b l e s * /
d e f i n e v M a x E n v 5
j m p _ b u f v E n v [v M a x E n v] ;
i n t v L e v e l = - 1 ;

/ P u b l i c V a r i a b l e s * /
d e f i n e c e r F u n N a m e L e n 3 2
d e f i n e e r S e t () s e t j m p (v E n v [+ + v L e v e l] |
d e f i n e e r l l n s e t O â € ” v L e v e l
d e f i n e e r R o l l B a c k (p F u n , p E r r , p R e t)

s t rncpy fe rFun , pFun , ce rFunNameLen) ;
e rFun [ce rFunNameLen-1] = \0 ; \
e rEr r = pEr r ; \
i f (erRecOn && vLevel >= 0) {

long jmp(vEnv[vLeve l] , pEr r) ;
} e l s e { \

re tu rn (pRet) ; \
}

i n t e r E r r = 0 ;
c h a r e r F u n [c e r F u n N a m e L e n] ;
i n t e r R e c O n = 0 ;

File epub.h. This file contains wrapper macros that cause the
functions defined in the file e. c to be called in place of the
standard library functions. The functions in e.c will behave
the same as the standard library functions, but if the error
transaction manager is on (erRecOn is true in erpub.h), control
will be passed to the last defined rollback point, rather than
just returning the same error code as the associated standard
library function.

Using these wrapper macros makes it easier to add trans
action error handling to old programs, but if it is desired to
make the error-handling process more visible, the functions
defined in e.c would be called directly instead of the standard
library functions.

This file is also a good place to define context independent
error codes.

/ e p u b . h - E r r o r L i b r a r y W r a p p e r M a c r o s (o n l y a f e w a r e
s h o w n h e r e) * /

d e f i n e c e E O F 1
d e f i n e c e O u t O f M e m 2
d e f i n e c e R e a d E r r 3
d e f i n e c e R e a d S h o r t 4

i f n d e f v l n E
d e f i n e f c l o s e (p S t r e a m) e C l o s e (p S t r e a m)
d e f i n e f o p e n f p F i l e N a m e , p T y p e) e O p e n (p F i l e N a m e , p T y p e)
d e f i n e f r e a d (p P t r , p S i z e , p N l t e m , p S t r e a m)

eReadfpPtr , pSize, pNl tem, pStream)
d e f i n e f s e e k f p S t r e a m , p O f f s e t , p P r t N a m e)

eSeekfpSt ream, pOf fse t , pPr tName)
d e f i n e m a l l o c (p S i z e) e M a l l o c (p S i z e)
#end i f

File e.c. This file contains the implementations of the wrapper
macros defined in epub.h. Only two of the functions are
shown in the following listing. Notice that these functions
behave exactly like the standard library functions with the
same name because they call the standard library functions.

For more flexibility, a real error transaction manager might
allow the user to define the error codes that determine
whether or not a rollback occurs.

/ e . c - E r ro r L ib ra ry Wrapper Func t ions (on ly a few a re
shown here) * /

d e f i n e v l n E
i n c l u d e " e p u b . h "

v o i d * e M a l l o c (p S i z e)
s i ze_ t pS ize ;

{
v o i d * M e m ;
i f ((M e m = m a l l o c (p S i z e)) = = N U L L) {

e rRo l lBackC 'ma l loc " , ceOutOfMem, Mem) ;
}
re turn(Mem);

} / * e M a l l o c * /

s ize_t eRead(pPt r , pS ize , pNl tem, pSt ream)
c h a r p P t r ;
s i ze_ t pS ize , pN l tem;
F I L E p S t r e a m ;

{
s i z e _ t N u m ;
Num = f readlpPtr , pSize, pNl tem, pStream);
Â¡f(feof(pStream)){

erRol lBackC' f read", ceEOF, Num);
} e l s e i f (N u m < = 0) {

erRol lBackC' f read" , ceReadErr , Num);
}e lse i f (Num < pNl tem) {

erRol lBackC' f read" , ceReadShor t , Num);
}
return(Num);

} / * e R e a d * /

Conclusion
When transaction error handling was introduced on a proj
ect, after initially resisted removing IF statements after
calls to functions using transaction error handling. After
seeing how much easier the code was to write and read, the
resistance faded and engineers started setting up their own
transaction recovery points.

It would seem that debugging code using the transaction
error-handling style would be difficult. However, experience
has shown the debugging time to be a little better than the
debugging time for a traditional error-handling style. This
decrease in time can probably be attributed to less em
bedded error-handling code, causing defects to stand out
more. Also when error-handling code is added, it is added in
a structured way that disturbs very little of an already de
bugged program. This supports the way most engineers
traditionally like to code.

So far this error-handling style has not been used on any large
projects, but it has been used on small programs and func
tions written for enhancing old programs. One of the nicest
features of this style is that it can be used independently of
other error-handling styles.

76 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In summary, a transaction error-handling style can lead to
the following benefits:

Â« More reuse because error handling can be separated from
the algorithm so that the coupling between functions is
looser

â€¢ Improved code supportability because it is easier to read
the algorithm and see what happens with errors

â€¢ Better code quality because there are fewer error-handling
statements in the main algorithm, so the code is easier to
read and the defects stand out.

Just as the functional parts of algorithms are being separated
from user interfaces (client/server models), error handling
can also be separated from the functional algorithm.

Acknowledgments
The author would like to thank a number of coworkers who
helped review and refine the ideas presented in this paper,
in particular Andra Marynowski and Kevin Wentzel who
were there at the birth of this coding style. Also thanks to
King Wah Moberg for a number of reviews.

References
1. M. Design, The Practical Guide to Structured Systems Design,
Yourdon Press, 1980, p. 104.
2. B. Stroustrup and M. Ellis, The Annotated C++ Reference Manual,
Addison- Wesley Publishing Company, 1990.
3. C. Vidal, "Exception Handling," The C Users Journal, September
1992.

Authors
June 1993

K L A L a b o r a t o r y K o b o t

Gary B. Gordon

Gary Gordon was the project
manager for the HP Labora
tories phase of the ORCA
robot project. He joined HP
full-time in 1966 as a digital
designer on the computing
counter project, HP's first
arithmetic unit to employ
digital ICs. Later he became

project manager and then section manager for HP's
first laser interferometer. Gary is perhaps best known
for pioneering HP's entry into instrumentation for dig
ital designers with such instruments as the logic
probe, clip, and pulserand the logic analyzer and
signature analyzer. In 1979 he transferred to HP's
central research laboratories, where he has been a
project manager for a series of instruments for the
HP Analytical Products Group including the just-
introduced high-sensitivity capillary electrophoresis
detector. Presently he heads a micromachining effort.
Gary received a BSEE degree in RF communications
from the University of California at Berkeley in 1962
and an MSEE degree in computer design from Stan
ford University in 1970. He has authored a dozen ar
ticles, has had products featured on seven magazine

covers, is named as an inventor in 23 patents, and is
listed in Who's Who in California. He served four
years as a U.S. naval officer and is an associate pro
fessor at California State University at San Jose. His
hobbies include large-format photography (he shot
this issue's cover), flying, and designing and building
modern furniture and houses.

Joseph C. Roark

Software design engineer
Joe Roark was born in
Springfield, Ohio and stud
ied chemistry at Denison
University (BS 1974) and
Duke University (PhD 1980).
He joined HP Laboratories in
1 980, where he worked on
prototypes for the HP 1046A

fluorescence detector and the HP MicroAssay System.
More recently, he moved to the Scientific Instruments
Division and contributed to the architecture and the
method development software for the ORCA robot
project. He's presently working on networking and
automation for HP ChemLAN products. A member of
the American Chemical Society, Joe is named as a
coinventor in a patent related to robot motion. Outside
work, he plays jazz piano and soccer and coaches
youth soccer and baseball teams. He is married and
has two children.

Arthur Schleifer

A New York City native,
Artie Schleifer has held sev
eral technical and manage
ment positions since joining
HP's Avondale Division in
1 974. He contributed to the
development of the HP
8450/51 diode array spectra-
photometers and was proj

ect manager for robotic systems at HP Genenchem,
HP's joint venture with Genentech, Inc. Now at the
Scientific Instruments Division, he was project man
ager for the Analytical Products Group for the ORCA
project and currently works on hyphenated instrument
control and DOS and Windows systems software.
Artie received a BS degree in chemistry from the City
University of New York in 1971 and worked at Wyeth
Laboratories before coming to HP. He is the author of
six papers and conference presentations on chemistry,
instrument software, and automation and is named
as an inventor in three patents on software algorithms
and robotics. Artie coaches soccer and baseball, has

two sons, and enjoys sailing, boardsailing, tennis,
Softball, golf, woodworking, gardening, and skiing.

20 HP OpenODB

Rafiul Ahad

As architect of the HP
OpenODB program at HP's
Commercial Systems Divi
sion, Rafiul Ahad is respon
sible for software design
and development and con
sultation with customers.
Born in Rangoon, Burma, he
studied physics and computer

science at Rangoon University. His degrees (BSc in
physics and MSc in computer science) were awarded
in 1973 and 1975. He continued his studies at the
Asian Institute of Technology in Bangkok, Thailand,
from which he received an MSc degree in computer
applications in 1980. After coming to the United
States, he completed work for a PhD degree in com
puter science at the University of Southern California
in 1 985. Before coming to HP in 1 989, he was an as
sistant professor at the University of Maryland. Rafiul
is the author of four technical articles in the area of
database systems and has presented papers at nu
merous conferences. He is a member of the ACM and
the IEEE. He is married, has two children, and enjoys
tennis and volleyball.

Tu-Ting Cheng

R&D section manager
Tu-Ting Cheng was born in
Bangkok, Thailand and at
tended National Taiwan
University, from which he
received a BSEE degree in
1969. Later, he completed
work for an MSCS degree
from the University of

Wisconsin at Madison (1 971) and for MS and PhD
degrees in computer science from Ohio State Univer
sity (1975 and 1976). With HP since 1976, most of his
work has been in the database area, and he is now
responsible for the HP OpenODB program. Tu-Ting
and his wife have one child, and he likes ballroom
dancing.

June 1993 Hewlett-Packard Journal 77
© Copr. 1949-1998 Hewlett-Packard Co.

3 1 H P U l t r a V G A G r a p h i c s B o a r d

Myron R. Tuttle

A development engineer at
the California PC Division,
Myron Tuttle studied elec
trical engineering at the
University of California at
Berkeley (BSEE 1973 and
MSEE 1974). With HP since
1974, he worked on the HP
2625/28 terminals and the

original multimode video board for the HP Vectra. He
contributed to the development of the video subsys
tem for the HP Ultra VGA board and is now involved
in video and graphics development. Myron is named
as the inventor for a patent on automated software
testing and is coauthor of an earlier HP Journal article
as well as a paper for an HP software conference. He
also served in the U.S. Navy as an electronic techni
cian. His hobbies include computer programming,
home improvement projects, and classical music.

Kenneth M. Wilson

With HP's California PC
Division since 1989, Ken
Wilson has worked on a
series of HP Vectra products,
including the Vectra 486/25T
and 331 the Vectra 486s/20,
and the HP Super VGA
board. Most recently, he
contributed to the develop

ment of the HP Ultra VGA board. He completed work
for a BSEE degree from California State Polytechnic
College at San Luis Obispo in 1988 and expects to
receive his MSEE degree from Stanford University in
1 993. His professional specialty is computer architec
ture, and when he takes a break from work, he enjoys
boardsailing and relaxing in his hot tub.

Samuel H. Chau

R&D engineer Sam Chau
was born in Hong Kong and
attended the University of
California at Berkeley. He
received his BA degree in
computer science in 1984
and came to HP's Santa
Clara Division in 1985. Now
at the California Personal

Computer Division, he contributed to the develop
ment of the HP Super VGA board and worked on the
hardware and display timings for the HP Ultra VGA
board and the HP Vectra 486U embedded Ultra VGA+.
Sam's outside interests include personal computers,
audio and video technologies, photography, piano,
classical music, and badminton.

Yong Deng
Born in Shanghai, China,
software design engineer
Yong Deng joined HP's
California Personal Com
puter Division in 1989. He
studied for his bachelor's
degree in computer science
at the University of California
at Santa Cruz and graduated

in 1986. In the past, he was responsible for software
drivers and utilities for HP's intelligent graphics con
trollers. He developed a new display redraw method
that improved CAD display list performance. He also
ported Texas Instruments Graphics Language (TIGA)
2.05 and 2.20 to HP's intelligent graphics controllers.
For the HP Ultra VGA graphics project, he was respon
sible for the AutoCAD and Windows high-resolution
display drivers and video BIOS. His other professional
experience includes software development at National
Semiconductor and Autodesk Inc. His professional
interests include high-resolution display drivers and
application development for Windows and CAD tools.
Yong is married and has a young daughter.

4 1 P O S I X I n t e r f a c e f o r M P E / i X

Rajesh Lalwani
A software engineer at the
Commercial Systems Divi
sion, Rajesh Lalwani joined
HP in 1988. He was born in
Mandsaur in the Madhya
Pradesh state of India. He
received a master of tech
nology degree in computer
science from the Indian

Institute of Technology, New Delhi in 1986 and an
MSCS degree from Pennsylvania State University in
1988. In the past, he enhanced and maintained com
mand interpreter software and components of the
MPE operating system kernel. More recently, he de
veloped a procedure for parsing MPE and POSIX file
names and a directory traversal routine. He's currently
working on symbolic links functionality and device files
for MPE/iX. Rajesh is the author of several POSIX
articles, has presented a number of conference papers
on the same topic, and is working on a book on
POSIX. 1 . His outside activities include tennis, watch
ing classic movies, and staying in touch with his
wife, who is finishing her medical degree in India.

4 7 P r e v e n t i n g S o f t w a r e H a z a r d s

Brian Connolly

Brian Connolly is a project
manager for software quality
engineering in HP's Patient
Monitoring Systems Division
and has been with the com
pany since 1984. Previously,
he developed real-time soft
ware systems for Raytheon
Corporation and Westing-

house Corporation. Since joining HP, he has worked on
real-time software development for a bedside monitor
ing application, object-oriented software development
in a clinical information system, and software quality

engineering for several bedside monitor and central
reporting station products. He has written several
papers related to hazard avoidance and software
quality and testing for internal HP publication. He's
also a member of the IEEE. His educational back
ground include a BS degree in physics and engineer
ing awarded by Loyola College in 1977, and an MES
degree (1983) in digital systems, also from Loyola.
Brian is married and has two children. His leisure
activities include running, swimming, woodworking,
and coaching youth soccer.

5 3 C o n f i g u r a t i o n M a n a g e m e n t f o r
Tes ts

Leonard T. Schroath

With HP since 1985, soft
ware quality engineer Len
Schroath worked at the
Logic Systems Division and
the Colorado Springs Divi
sion before moving to his
current position at the Boise
Printer Division. He's the
author or coauthor of six

papers for HP conferences related to software quality,
testing, and reuse. Len was born in Detroit, Michigan
and attended Brigham Young University, from which
he received a BS degree in computer science in 1985.
He is married, has three small children, and is a
coach at his local YMCA. He also enjoys music and
sports and officiates at basketball games.

6 0 S o f t w a r e I n s p e c t i o n s

Jean M. MacLeod

^ ^ ^ ^ A n a t i v e o f A r l i n g t o n ,
â € ¢ i j f a t A * M a s s a c h u s e t t s , J e a n

MacLeod studied elementary
education and sociology at
Emmanuel College in Boston,

^ - f M a s s a c h u s e t t s , a n d r e c e i v e d
a BA degree in 1971. She
has worked in the software
quality field since 1974, ini

tially in several small to mid-sized companies before
joining Apollo in 1987. At Apollo, she was responsi
ble for initiating a software inspection program in an
R&D lab. She joined HP's Corporate Engineering Soft
ware Initiative in 1991, and contributed to the improve
ment of software inspections for the Patient Care
Monitoring Systems Division at Waltham. She's now
working on software process improvement with other
divisions in the Northeast. Jean is a member of the
Society of Women Engineers. She has two teenage
children and enjoys golf, racquetball, and reading.

78 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

6 4 T Q C f o r S o f t w a r e L o c a l i z a t i o n

John W. Goodnow

A section manager at HP's
Imaging Systems Division,
John Goodnow joined HP in
1 983 shortly after receiving
a BS degree in electrical
engineering from the Univer
sity of Pennsylvania. He
earned an MS degree in
electrical engineering in

1988 from Stanford University through the Honors
Coop program. His first HP projects included work on
HP PageWriter electrocardiographs and ultrasound
system software, and he continued work on ultra
sound software development as a project manager
and now as a section manager. John's professional
interests include computer and system architecture,
operating systems, and image processing. Born in
York, Pennsylvania, he is married and enjoys board-
sailing, skiing, woodworking, and vacationing on
Martha's Vineyard.

CindieA. Hammond

Cindie Hammond has been
with HP's Imaging Systems
Division since 1989. Born in
Nassau, the Bahamas, she
studied computer science at
the University of Utah, from
which she received a BS
degree the same year she
started at HP. An R&D soft

ware development engineer, her professional interests
include ultrasound imaging and Â¡mage processing.
She's a member of the ACM and tutors mathematics
at a local elementary school. Her outside activities
include Softball, boardsailing, drawing and painting,
and renovating her home.

Will iam A. Koppes

Bill Koppes was born in
Morristown, New Jersey
and studied electrical engi
neering at the University of
Washington at Seattle
(BSEE 1976) and at the
University of California at
Berkeley (MSEE 1978). At
Berkeley's Donner Labora

tory he also developed positron emission tomography
and reconstruction algorithms. He joined HP's Imag
ing Systems Division in 1 978, where he first was a
hardware development engineer and then a software
development engineer, project manager, and section
manager. Now principal engineer at the Advanced
Imaging Systems group, his professional interests
include medical imaging and clinical diagnosis, soft
ware development, and B&D management. He is
coauthor of a paper related to digital signal and Â¡mage
processing and has actively participated in several
professional conferences. Bill is married, has a son
and daughter, and enjoys composing and performing
music.

John J. Krieger

John Krieger joined HP's
Waltham Division in 1974,
where he worked on the
digital hardware and soft
ware design of the HP
47210A capnometer. After
moving to the Imaging Sys
tems Division, he contrib
uted to the software design

and development for the HP SUNOS 100 and 1000
cardiovascular imaging systems. He's now specializ
ing in diagnostic ultrasound imaging. He's the author
of two previous HP Journal articles related to the HP
4721 OA capnometer, and has presented papers at
two HP software engineering productivity confer
ences. He is also the inventor of a patent related to a
help facility for the HP SONOS 100. Born in Santa
Monica, California, John received a combined bache
lor's and master's degree in electrical and biomedical
engineering from the University of California at Los
Angeles in 1 973. He is married and has two daugh
ters. Active in his church, he enjoys acting in commu
nity theater and is renovating his home, an 1850s
vintage New England farm house.

Daniel Kris Rovell-Rixx

^ M M ^ k K r i s R o v e l l - R i x x h a s b e e n
J I k w i t h H P s i n c e 1 9 9 0 a n d i s a
W â € ¢ . s o f t w a r e d e v e l o p m e n t e n g i -
' â€¢Â»â€¢ "â€¢ neer at the Imaging Systems

Division. Previously, he de
signed and implemented
real-time software for auto
mated test equipment and
fuel controls for jet aircraft

at the Hamilton-Standard Division of United Technol
ogies. He also worked for Ashton-Tate, and for a small
manufacturer of IBM PC peripherals. Born in Miami,
Florida, he completed work for a BS degree in engi
neering (computer science emphasis) in 1979 from the
University of Florida and an MS degree in engineering
management in 1987 from Western New England
College. He's a member of the ACM and the IEEE. Kris
is a sailing enthusiast. He and his wife have sailed in
the Virgin Islands and Windward Islands, and in 1992
he was a volunteer for Sail Boston '92, a parade of
tall ships. He's also an amateur radio operator (call
sign WX1Z) and enjoys all types of music.

Sandra J. Warner

Sandy Warner joined HP in
1984 as a clinical applica
tions specialist in the Mid
west sales organization and
is now a globalization spe
cialist in the Imaging Sys
tems Division. Her profes
sional interests include
market research on customer

needs, foreign language translations, and ISO 9000
coordination. She was born in Rochester, New York
and has a BS degree in zoology from The Ohio State
University (1 976). Before joining HP she managed a
mobile cardiovascular testing service for a diagnostic
service organization and before that she managed a
diagnostic lab for a medical center. Outside of work,
she teaches astronomy for an HP-sponsored school
science program, and likes skiing, carpentry, land
scaping, and backyard barbecue extravaganzas.

7 1 T r a n s a c t i o n E r r o r H a n d l i n g

Bruce A. Rafnel

Software development
engineer Bruce Rafnel has
worked in the R&D labs at
eight HP divisions since join
ing the company's General

Ã¨- Jk : â€¢â€¢-: s Division in 1981.
p K - - - â € ¢ -

development of software for
theHP150andHPVectra

personal computers and working on the dictionary
team for the HP 3000 and HP 9000 computers. He's
now in the Professional Services Division. A graduate
of California Polytechnic State University at San Luis
Obispo, he received a BS degree in computer science
in 1981. He's a member of the IEEE and the C User's
Group, and includes document management systems,
computer graphics and Â¡mage processing, object-
oriented programming, and neural networks as pro
fessional interests. Bruce is married and has a young
daughter. His hobbies include home automation with
voice control.

8 0 H P - U X S y s t e m A d m i n i s t r a t i o n

Mark H. Notess

Mark Notess was born in
Buffalo, New York and
studied English and teaching
English as a second language
at Virginia Polytechnic Insti
tute and State University. He
received a BA degree in
English in 1979 and an MA
degree in education in 1981.

He was an instructor at the University of Alabama
and later was a programmer and instructional designer
at the Virginia Cooperative Extension Service before
completing an MS degree in computer science, again
from Virginia Polytechnic Institute, in 1988. Since
joining what is now HP's Open Systems Software
Division the same year, he has designed, imple
mented, and tested software for several projects,
including user interfaces for HP-UX system adminis
tration. His work on the object action manager for
HP-UX has resulted in a patent application. He is a
coauthor of two articles and has presented several
papers at technical conferences. He's also a member
of the ACM and SIGCHI. Mark is married and has
three children. His leisure interests include reading
medieval history and literature, hiking, and playing
acoustic guitar.

June 1993 Hewlett-Packard Journal 79
© Copr. 1949-1998 Hewlett-Packard Co.

A User Interface Management System
for HP-UX System Administration
Applications
Developing applications to simplify HP-UX system administration has
been needs easier by the creation of a tool that addresses the needs of
the developer.

by Mark H. Notess

The HP-UX system administration manager (SAM) provides
basic system administration functionality for standalone
HP-UX systems and diskless clusters. The SAM tool simpli
fies HP-UX system administration so that the administrator
does not have to be a technical expert to manage an HP-UX
system. Typical HP-UX system administration functions
such as adding a peripheral, setting up the spooler, and add
ing or deleting users are provided in SAM. See "SAM versus
Manual Administration" on page 81 for an example of the
simplification provided with SAM.

By any measure, SAM is a large, complex interactive appli
cation. Of the approximately 150,000 lines of noncomment
source code, almost half of it is directly related to the user
interface. The SAM user interface consists of over 270 dis
tinct screens, excluding help screens and messages. A sub
stantial number of software, human factors, and learning
products engineering hours have been spent working on
SAM.

Any interactive application the size of SAM faces a major
challenge in achieving a consistent user interface. User inter
face consistency includes many topics of concern such as:
Interaction paradigm
Selection and navigation methods
Position, labeling, and behavior of common elements
Relative layout of elements on the screen
Colors, fonts, cursor shapes
Message types
Error handling.

With many developers coding portions of the SAM user inter
face, it is impossible to achieve consistency without some
mechanisms in place to assist in the process. Style guides
have been useful consistency mechanisms, but rarely suf
fice. We adopted a "no rules without tools" approach and
decided to create a user interface tool that would enforce,
where possible, consistency among developers. Where a
semantic understanding of the interface was necessary, we
developed a style guide, but the goal was to let the tool han
dle as much as possible. The other motivation for our tool
was rapid development. Many general-purpose user interface
toolkits are not easy to learn, are hard to use, and take a long
time to master. Even user interface management systems that
are easier to work with are still general-purpose and contain

a lot or features that are irrelevant for a given application or
class of applications. We wanted SAM developers to be
as productive as possible, so we wanted to minimize the
following:

'â€¢ Time to learn the user interface tool
* Time to prototype
Â» Time to write working code.

To achieve rapid development, we needed to hide the under
lying user interface technology! and provide an application
program interface (API) that was at our developers' level of
interest.

The result of our concern for user interface consistency and
rapid development is the object action manager (ObAM), an
application-class-specific API for SAM and SAM-like applica
tions. The remainder of this paper describes the design of
ObAM and reviews our preliminary results.

Design and Development
The old SAM user interface architecture did not shield de
velopers from the underlying user interface technology and
as a result they had to learn more about the technology than
they wanted. While we did have a library of convenience
functions such as message handlers, developers still found
the API difficult to learn and a distraction from their primary
focus â€” putting functionality in SAM. Providing SAM devel
opers with a user interface toolkit they could use meant that
we had to study the requirements of user interfaces for sys
tem administration and then factor out common elements
and high-level constructs that would be most useful. Exam
ples of common elements used by every application include
displaying messages to the user and validating user input. The
following sections list some of the higher-lever constructs
we factored out.

List Management. Much of system administration is a matter
of adding, deleting, or modifying items in a list. For example,
system administrators frequently select an object such as a
device file, print job, or disk from a list to perform some
operation on. List manipulations such as filtering or sorting
items can be useful for large lists and require the same type
of interaction independent of what type of item is in the list.

t User interface technology includes components such as window managers, display handlers,
and graphics routines.

80 June 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

SAM versus Manual Administration

To illustrate the simplification provided by SAM consider the following example,
which shows what is involved in adding a user called samt to the group users
without SAM and with SAM.

Without SAM. The following keyboard operations are required to add a user to
the system.

1 . Add the new user to the group users by editing the file /etc/group. After the edit
we have:

users: :20: john,harry ,sue,k lv ,samt

2 . A d d s a m t t o t h e / e t c / p a s s w d f i l e . F i r s t m a k e a b a c k u p c o p y o f t h e f i l e :

cp / e t c / passwd / e t c / passwd .o l d

3. Edit for /etc/passwd file to add a line for the the new user. The new line for
samt might look like:

samt : , . . :120:300:samthomas,x2007: /users /samt /b in /ksh

4. Create a home directory for the user:

Description File

cd / use rs { go t o use rs d i r ec to r y)
mkdir samt (create a directory called samt)
c h o w n s a m t s a m t (s e t o w n e r s h i p)
c h g r p u s e r s s a m t (s e t g r o u p o w n e r s h i p)
chmod samt (set permissions for samt)

5. Create a login environment for the new user by copying the default profile file
from /etc to the new users directory:

cp /e tc /d . p ro f i le /users /samt / .p ro f i le

With Groups After selecting the Add... item from the SAM Users and Groups
Actions menu, the administrator fills in a form. If the default values on the form
are adequate, all the administrator has to do is:

1 . Type in a login name and select OK.

2. Enter a password (twice) and again select OK.

SAM does the rest. This approach avoids error-prone procedures such as editing
files and typing command strings.

Task A System administration is task-oriented. A
typical task sequence consists of selecting an object to oper
ate on, choosing the action to perform, supplying the neces
sary task parameters, launching the task, and verifying the
success of the task.

Selectors. Supplying task parameters can be done with a
small set of user interface elements we call selectors. Exam
ples of selectors are a field for text entry, a list to choose
from, or an option to toggle.

Procedures. Some tasks consist of multiple, possibly interde
pendent or sequential steps. While doing the steps, users
want to be able to figure out where they are in the process,
redo or revisit earlier steps, and so on.

The new SAM user interface architecture (Fig. 1) completely
shields developers from the underlying user interface tech
nology. Developers have only one API to learn, which is tai
lored to their needs. With this architecture developers retain
direct control over the items most important to them while
the ObAM controls the common elements. For example, ele
ment names, object attributes, and messages are controlled

G r a p h i c s D i s p l a y C h a r a c t e r - B a s e d
Terminal

Fig. 1. The SAM user interface software architecture.

by the developer, and fonts, window positioning, labeling,
and control button layout are under ObAM control.

Choosing the Underlying Technology
Most user interface tools only support one display tech
nology. With SAM, however, we wanted to provide an OSF/
Motif a user interface while continuing to support a
character-based terminal user interface. After an extensive
evaluation, we selected a third-party tool called Dialog Man
ager from ISAt to provide the platform on which to build our
user interface management system. Dialog Manager provides
multiplatform support (OSF/Motif, terminals, MicrosoftÂ®
Windows, MPE/iX, Presentation Manager, etc.), 16-bit inter
nationalization, and run-time binding of the user interface.

ObAM
The major components of the ObAM are shown in Fig. 2.
The description file defines the various screens used by a
particular application and declares the functions to use in
callbacks. These functions, which are associated with items
on the screen via definitions in the description file, perform
operations associated with those items. For example, a
menu item for mounting a disk might eventually result in the
execution of a C function containing a series of HP-UX sys
tem calls to accomplish the task. At run time the description
file is read in and parsed, and a data structure is created
with the appropriate linkages to the developers' callback
functions. The object-list executor is responsible for listing
objects on the screen (see Fig. 3) and facilitating user opera
tion of the display, and the dialog box builder is responsible
for creating dialog boxes on the screen.

Description File
The description file allows developers to define the type of
objects they are managing, the attributes of those objects,
the actions that can be applied to the objects, and the inputs
that are necessary for those actions to proceed. ObAM inter
prets the contents of the description file at run time to
create all the SAM screens.

The description file shown below is for a simple file man
ager application. The ObAM description file language is not
a full-featured programming language; it contains only defi
nitions and variables. No sequencing, branching, or looping
constructs are defined in the language.

t Informationssysteme fur Computerintegrierte Automatisierung GmbH.

June 1993 Hewlett-Packard Journal 81
© Copr. 1949-1998 Hewlett-Packard Co.

Object-
List

Executor

Appl icat ion
(Cal lbacks,
Commands)

Uilib
(User

Interface
Library)

l i b ra ry "ca l lbacks . s i " / po in ts to shared l i b ra ry * /

ob jec t_ l i s t_sc reen samp le {
l abe l "F i l e Manager "
s t a t u s j t e m f i _ p a t h
labe l "D i rec to ry : "
subÃ rea f i l es { / mu l t ip le subareas may be de f ined * /

labe l "F i les"
en t ry ca l lback f i _pwd() / *ge t pa th fo r cu r ren t d i rec to ry * /

/ ' de f i ne the fo rmat and labe ls to show on the sc reen * /
table {

Â¡nit "/bin/11 -a 'pwd' I /bin/grep -v
'Atota l ' I awk ' {pr in t$1; pr in t $2; pr in t
$3; print $4; print $5; print $6; print $7;
pr int $8; pr int $9} ' "

a t t r f Lpe rm { l abe l "Pe rm iss ions " co lumn 1 }
a t t r f i j i nks { l abe l "L inks " t ype numer i c

j us t i f y r i gh t }
a t t r f i _ o w n e r { l a b e l " O w n e r " c o l u m n 2 }
a t t r f Lg roup { l abe l "G roup " co lumn 3 }
a t t r f i_s ize { labe l "S ize (by tes) " co lumn 4

w id th 12 type numer ic jus t i fy r igh t }
a t t r f i _mon th { l abe l "Mon th " co lumn 6 w id th 3 }
a t t r f i_day { labe l "Day" co lumn 5 type

numer i c j us t i f y r i gh t }
a t t r f i _ t ime { l abe l "T ime / nYear " co lumn 7 }
a t t r f i_name { key labe l "F i le Name" co lumn 8)

}
/ *Ac t i ons assoc ia ted w i t h t he Ac t i ons menu i t em * /

User

Character-
Based

Terminal

Workstat ion
Graphics
Display

PC Graphics
Display

Fig. 2. The main components in
and associated with ObAM.

Fig. asso The SAM screen that appears when the description file asso
ciated with our simple file manager example is parsed and displayed.

ac t i on f i _ remove {
labe l "Remove"
m n e m o n i c " R " / K e y b o a r d i n p u t s e l e c t o r * /
do " rm $(f i_name| "
g ray when no se lec t ions

}
ac t i on f i _ cd {

labe l "Change D i rec to ry "
mnemon ic "C "
d o f i _ c h a n g e d i r

}
ac t ion f i_cd_ immed {

labe l "Change To"
mnemon i c "T "
g ray when no or mul t ip le se lec t ions
do f i_cd_to()

/ de f i ne d ia log box fo r t he change d i rec to ry ac t i on * /

task_d ia log f i_changed i r {
l abe l "Change Work ing D i rec to ry "
/ when the OK bu t ton i s se lec ted execu te f i _cd_do i t () * /
ok ca l lback f i_cd_doi t ()
tex t_ed i t f i_cd_path {
l abe l "New D i rec to ry : "
width 30 }

Fig. 3 shows the object-list screen that ObAM creates for
this menu The List, View, Options, Actions, and Help menu
items are put on the screen automatically. This is the same
for other standard screen items. Object-list screens provide
list manipulation with the List menu item. The Actions menu
item contains a pull-down menu with actions that can be
performed on the selected object. The View pull-down menu
allows users to customize the list presentation through speci
fying the attributes (columns) to display, the order to display
the columns, the objects to filter out, and how to sort the
data.

Fig. 4 shows the dialog box defined by the task dialog
fLchangedir in the listing above. When the action item Change
Directory is selected from the Actions pull-down menu, ObAM
accesses the task fLchangedir to determine what to do. Accord
ing to the definitions in fLchangedir, when the user enters the
desired directory in the selector and pushes the OK button,
the callback function fi_cd_doit is executed. The callback

82 June 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Change Working directory (hp

N e w D i r e c t o r y : I j

OK C a n c e l | H e l p |

Fig. action The dialog box that appears when the Change Directory action
item is selected from the Actions menu.

function executes the chdir command to change to the new
directory.

For dialog boxes we wanted to lay out selectors (text_edit in
this example) automatically rather than requiring develop
ers to worry about positioning objects on the screen. As we
designed our dialog-box builder, we realized it was unlikely
that we could do all the layout automatically because too
much semantic knowledge of the task is required to make
the appropriate layout decisions. Our solution was to lay out
selectors in the order in which they appear in the descrip
tion file. In addition, if the developer defines more selectors
than will fit on the screen, we add scroll bars to the screen
automatically. ObAM also provides some simple layout con
structs that allow specification of columns, skipping lines,
indenting, and grouping. In trading off control for flexibility,
we chose to control only where we had enough information
to control appropriately.

Application functionality can be connected to the screens in
two ways: callback functions, which can be used to get data
from the screens and perform actions with that data, and a
shell interface, which provides direct access to HP-UX com
mands from ObAM. Direct calls to commands can include
variables as arguments so that screen data can be used in
command execution. The Remove action in the sample de
scription file uses this capability to remove one or more
files.

User Interface Library
Within the developer's callbacks, the user interface library
(uilib) functions provide access to the data on the screens
and allow developers to control a limited number of screen
characteristics such as visibility and graying. The code be
low shows the C functions associated (via a shared library)
with the simple file manager example defined above.

mt f i_cd_do i t ()
{

charbuf [1025] ;

uÂ¡_get_data("fÂ¡_cd_path",buf);
chdir(buf) ;
return(O);

} / * f i _ c d _ d o i t * /

i n t f i _cd_ to ()
{

char buf[1025];

uLget_object_fÂ¡eld("fÂ¡_name",buf);
chdir(buf);
return(O);

} / * f i _ c d _ d o i t * /

Â¡ntfLpwdO

charbuf [1025] ;

ui_set_status(1 ,getcwd(buf,1 025));
return(O);

} / * f i _ p w d * /

Evaluation and Discussion
Since ObAM has been in use for SAM development, our ini
tial evaluation suggests that we have been successful in
achieving our goals.

Developer Learning. Learning the new user interface tools is
an order of magnitude faster and easier than the old tool.
Users have reported learning times of two or three days for
the new system as opposed to two or three weeks for the
old system.

Prototyping. An entire functional area of SAM can now be
prototyped in a day or two. Because ObAM supports using
HP-UX commands directly as well as C callbacks, a com
pletely functional prototype can be built without the devel
oper having to write and compile any C code. Turning an
ObAM prototype into an ObAM product is evolutionary. The
screens can be constructed rapidly, and the functionality to
support the screens can be added incrementally.

Development. Developer satisfaction is much higher with the
new tools. Our old development tools required us to central
ize screen creation responsibilities. If we had allowed devel
opers to create their own screens with our old system, we
would have paid a heavy price for having everyone learn the
cumbersome screen creation tool we had available, and it
would have been much more difficult to enforce consistency
across all the areas of SAM. Consequently, in the old system,
most of the SAM screens were created by one engineer. Re
quests for new screens or changes had to be funneled
through that one person, even if the need was as trivial as
changing the name of a callback or lengthening a field. In
contrast, ObAM puts developers in control of the parts of
the interface that are most important to them and reduces
time-consuming dependencies between engineers.

Consistency. Our consistency issues can be divided into two
categories: semantic and syntactic. Semantic consistency is
achieved by mapping different sets of functionality onto
ObAM capabilities using the same set of rules. This mapping
has to be done by hand because ObAM is not intelligent
enough to determine the attributes of a printer object, or to
figure out what steps are needed to add a disk. We have pro
duced a SAM user interface style guide to help developers
with these decisions. Syntactic consistency is achieved by
ensuring that similar user interface elements look and feel
similar. ObAM has made our syntactic consistency effort
much easier. ObAM code knows, for example, that a push
button label should be followed by "..." if pressing it leads to
another screen; the developer doesn't have to think about
this decision.

An unstated goal of our ObAM work was to create some
thing that would be useful beyond SAM. SAM itself is not so
much a single application as it is a collection of related ap
plications such as a file system manager, a user accounts
manager, a cluster configuration tool, and so on. We know
that other projects have similar needs for rapid development
of consistent user interfaces. Over the years, the SAM team

June 1993 Hewlett-Packard Journal 83
© Copr. 1949-1998 Hewlett-Packard Co.

has received many inquiries about how to create SAM-like
user interfaces. This interest suggests that we have achieved
an application-category user interface management system,
not just a SAM-specific user interface management system.

Areas for Improvement
ObAM is still in its early stages, but we have already found
areas for improvements and new features. Some of these
areas include:

1 More factoring is needed. Some messaging and error han
dling is repetitive enough that we could support it in the
description-file, further reducing the amount of application
developer code.

1 Performance could be improved by precompiling screen
descriptions. Our current architecture requires two separate
parsing cycles for task dialog descriptions.

â€¢ Better error messages would aid learning and prototyping.
Currently, ObAM identifies the point of failure when parsing
a description file, but it could provide more helpful error
messages.

Conclusion
Our success in creating an application-specific user inter
face management system suggests that other types of inter
active applications could speed development and improve

user interface consistency if an appropriate system existed
that was tuned to the requirements of each type of applica
tion. Application-specific user interface management systems
are likely to be beneficial when the target user interface has
the following characteristics:

Large size (many screens)
Factorability (many similarities between interactions)
Multiplatform (more than one user interface display
technology must be supported)
Developers do not have to be user interface designers.

Acknowledgments
ObAM was a team effort. Significant R&D contributions
came from Mike Conca, Tammy Heiserman, Mike Kingdom,
and Scott Warren, with Paula Curtis and Dan Castle provid
ing human factors input. Management support came from
Aland Adams the SAM project manager.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.
Microsoft is a U.S. registered trademark of Microsoft Corp.

F r : U o r l d w i d Â » R o Â « t Â » r / 1 9 0 L D 0 0 1 0 | 2 9 7

T Â ° : Â ¡ ^ C O R P O R A T E H E A D Q U A R T E R S
D D I V 0 0 0 Â ° I D R * 1 4 9 8 2

J u n e 1 9 9 3 V o l u m e 4 4 â € ¢ N u m b e r 3

Techn ica l I n fo rmat ion f rom the Labora to r i es o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , P . O . B o x 5 1 8 2 7
P a l o A l t o , C a l i f o r n i a , 9 4 3 0 3 - 0 7 2 4 U . S . A .

Y o k o g a w a - H e w l e t t - P a c k a r d L t d . , S u g i n a m i - K u T o k y o 1 6 8 J a p a n

H E W L E T T
P A C K A R D

5091-7203E

© Copr. 1949-1998 Hewlett-Packard Co.

	ORCA: Optimized Robot for Chemical Analysis
	The HP ORCA System Outside the Analytical Laboratory
	Gravity-Sensing Joy Stick
	Absolute Digital Encoder
	HP OpenODB: An Object Oriented Database Management System for Commercial Applications
	The HP Ultra VGA Graphics Board
	POSIX Interface for MPE/iX
	A Process for Preventing Software Hazards
	Configuration Management for Software Tests
	Tools for the Language Translation Process
	A Transaction Approach to Error Handling
	Error Definition
	User Interface Management System for HP UX System Administration Applications
	SAM versus Manual Administration

