Mullard Outlook

AUSTRALIAN EDITION

VOL. 6 No. 3 MAY-JUNE, 1963

MULLARD-AUSTRALIA PTY. LTD.

VOL. 6 - No. 3 MAY-JUNE, 1963

Editorial Office: 35-43 Clarence Street, Sydney. Telephone: 29 2006

Editor: JOERN BORK

All rights reserved by Mullard-Australia Pty. Ltd., Sydney. Information given in this publication does not imply a licence under any patent. Original articles or illustrations reproduced in whole or in part must be accompanied by full acknowledgement: Mullard Outlook, Australian Edition.

TABLE OF CONTENTS

	Pag
Editorial	38
Viewpoint with Mullard	39
Wideband Tuner Stereophonic Pre-	
amplifier	40
Stereophonic Pre-amplifier	40
Wideband Tuner	43
Planar Transistors for High-Speed Com-	
puter Logic	48
Vinkor Manual	48
Mullard Display at I.R.E. Convention	48
I.R.E. Convention Paper	48
New Publication	48
P-N-P Audio Power Transistor	48

The Mullard Wideband Tuner Stereophonic Pre-amplifier contains a Wideband AM tuner with selectable bandpass together with a four-valve stereophonic preamplifier. Although primarily designed for the Mullard Stereo "Ten-Ten" Amplifier, this unit may be used with most other high quality amplifiers.

MULLARD-AUSTRALIA PTY. LTD.

35-43 CLARENCE STREET, SYDNEY Phone: 29 2006

123-129 VICTORIA PDE., COLLINGWOOD, N.5 VICTORIA

Phone: 41 6644

Associated with MULLARD LTD., LONDON

Blithe Spirits

The vast majority of us seem to keep our heads well above water in favourably balancing the household accounts—food, clothing, housekeeping and so on. In fact, we know and our children are trained to know it cannot be otherwise—barring poker machines, horses, dogs and games of chance! Blithe spirits all, paying our way and not unmindful of that breed of women, bless them, that insist on such measures and plod from store to store for the sheer joy and satisfaction of purchasing the specials.

If each household complex is a small business undertaking with fixed overheads, budgets, stock inventory and provision for most contingencies, what then of the need in successful business?

We feel "A Sense of Balance" is an apt heading for the short article Accountancy for Retailers and we trust, when read in conjunction with the wealth of comment, criticism and material appearing in regular trade journals on commonsense selling, that it may be helpful to our readers running relatively small businesses or contemplating starting a small business.

For confidence abounding, reduce your operating costs by using Mullard Valves, Semiconductors and Long Life Picture Tubes—the components with the Quality Bonus.

More Do-It-Yourself

This time not accounting, but the ultimate in valve operated wideband tuner stereophonic pre-amplifiers, for use with the successful Mullard "Ten-Ten" as described in Outlook Vol. 5 No. 4.

M.A.B.

New South Wales	South Australia	Queensland
Martin de Launay Pty. Ltd.	Agents:	C. A. Pearce & Co. Pty. Ltd 33 Bowen Street Brichan
Sydney. Phone: 29 5834	Woollard & Crabbe Limited	Phone: 2 32
Cnr. King & Darby Streets, Newcastle. Phone: 2 4741	180 Wright Street West, Adelaide Phone: 1A 4713	13 Palmer St., Townsvil Phone: 58
144 Keira St., Wollongong. Phone: B 6020	Adelaide. Thole. LATTI	Tarmania
21 Bayliss Street, Wagga.		Medhursts Wholesale Lt
1 Holle: 4044		163 Collins Street, Hoba
Victoria	Western Australia	
Howard Electrical & Radio Company.	Tedco Pty. Ltd.	Launceston. Phone: 220
Vere Street, Richmond. Phone: JB 4716	7 Fitzgerald Street, Perth. Phone: 28 4921	106 Wilson Street, Burn Phone: 19

VIEWPOINT WITH MULLARD

It's a fact that most dealers find bookkeeping an irksome chore. The successful man's interests lie in selling—and rightly so. That's the basic purpose of his being in business at all. Yet it's just as true that well-planned accounting can help him to achieve even better results.

Limited companies are, of course, required by law to keep proper accounts. Also, good book-keeping helps them—and private traders too—to produce figures which will satisfy the Tax Inspector. Efficient accounting also ensures that bills are collected and paid on the due dates, that reliable financial records of a business are available, that the annual profit—or loss can be readily calculated. And should the dealer wish to sell out or seek fresh capital by means of a bank loan, well-kept books clearly reveal the current value of the enterprise.

Double-Entry

A good book on **basic** accountancy will run to at least 500 pages. So there's no room in an article of this length to more than touch upon elementary principles.

What every busy dealer needs is a system which will give him all the information, keep down the errors and involve the minimum of labour. **Single-entry** bookkeeping goes part of the way, but it has drawbacks. With it, errors are not easily detectable, it's not self-balancing and it doesn't give the full story in detail.

The immediate alternative is the **double**entry system. Here the theory is that every transaction has two parts: the debit and the credit. When we receive goods we still owe their cost. When we pay the bill our debt is discharged. Two financial actions, two debits, two credits.

At any given time the totals of all the debit and credit balances must be equal.

This article is third in a series reproduced in Outlook and written by Mr. Francis X. Carus, managing editor of "The Dealer", the magazine of the Radio and TV Retailers' Association in the United Kingdom. The article was originally reprinted in Mullard Outlook, U.K. edition, the journal of our Parent Company. A 'trial balance,' usually struck when preparing the annual accounts, will either show that this is so or reveal errors.

Simplicity

The books needed to operate this system are:-

- (a) The Cash Book which records all money movements in cash, cheques or other bank transfers.
- (b) The Ledger—usually grouped into three classes: sales, purchases, private. This can occupy one or more books to suit convenience.

The sales section of the ledger deals with all the credit transactions between a dealer and his customers. The purchases section records a dealer's credit business with his suppliers. The private section, roughly speaking, holds the remainder of the accounts—those dealing with capital, cash sales and purchases, wages, etc.

In a radio and TV business the sales ledger might be broken down into separate accounts for different types of stock. This sort of sub-division is necessary in order to obtain the information a dealer needs to run his business profitably.

It must be emphasised that the simplest system which can be made to do the job is the best system for a particular business. Elaboration, unless it works for you, is a waste of time and money.

Breaking Down

Some of the modern systems do, in fact, greatly simplify traditional book-keeping while sticking to the proved principles of double-entry. Some of these employ mechanical devices to cut down operations, but they are only justified where the size of the business warrants it.

Books easily obtainable from stationers' shops can provide simplified systems. The Cash Book can be an analysis of sales and purchases and the column totals can be transferred to ledger accounts. Or the Cash Book can be simplified another way, using

MULLARD-AUSTRALIA PERSONALITIES

MR. L. E. NORRIS

Len Norris, our resident representative in Perth, came to Australia from the United Kingdom in 1948 after serving many years in the Royal Air Force in radio communications. He has been closely associated with our Mullard distribution in Western Australia for the past five years and, always a helpful fellow, has identified himself with our products and our service.

Much a family man, married with two children, his interests are close to the home life and gardening.

it only for bank transactions, the actual cash being entered into a Cash Day Book.

Some units sell at the rate of only a few a day. In the small concern there is little point in breaking down sales and purchases into many categories. For the larger firm, on the other hand, it is obviously valuable to have movements of some items broken down again into makes and models.

In passing it should be mentioned—if only because it is the law—that the Wages Book must show the gross wages of employees together with full details of deductions.

Not Expensive

Final accounts are best left to the professional. The services of an auditor are not expensive and can effect real economies by tax savings. Of course, in company accounts, other than those of an exempt private limited company, the employment of a qualified auditor to prepare final accounts is compulsory.

Nobody expects a dealer to be a skilled accountant any more than a car-owner needs to be a trained mechanic. But for sound economic reasons it is as well that both should know a bit about the machinery they're dealing with. And how to get the best from it.

MULLARD WIDEBAND TUNER STEREOPHONIC PRE-AMPLIFIER

Circuit details are given of a wideband AM tuner with selectable band-pass characteristics combined with a four valve stereophonic pre-amplifier which will accommodate a variety of inputs. The performance of the circuit is discussed when magnetic and crystal pick-ups, tape recorder playback heads, and radio inputs are used. Although both units are housed in the one attractive cabinet, in the interest of clarity they will be dealt with separately.

STEREOPHONIC PRE-AMPLIFIER

This pre-amplifier is intended for use primarily with the Mullard Stereo "Ten-Ten" amplifier circuit. It may, however, be used with other amplifiers with different input requirements, such as the Mullard 5-valve 10-watt amplifier circuit or the Mullard 20watt circuit, provided suitable gain adjustments are made.

Facilities are provided for magnetic and crystal pick-ups, tape recorder playback heads and radio inputs. An auxiliary input for any input source convenient to the user is also provided.

Equalisation for disc recordings conforms to the present R.I.A.A. characteristics, adopted by most major recording companies. The tape playback characteristic is intended for use with high impedance heads when playing pre-recorded tapes at a speed of $7\frac{1}{2}$ in/sec.

Controls of comparatively low impedance have been adopted so that the capacitive effect will be minimised when using long coaxial lines between the pre-amplifier and the main amplifier. These provide sufficient control for most applications. A mode switch permits either or both channels to be used, whilst provision is also made for normal or reversed stereophonic or dual channel monophonic operation (see Fig. 1).

An auxiliary output signal suitable for

This article is based on work carried out by D. J. Thomsen of the Mullard Applications Laboratory, Sydney.

programme monitoring or tape recording is provided for all input positions.

Circuit Description

Each channel of the pre-amplifier uses two Mullard high gain pentodes type EF86. The circuit of one channel and components common to both channels are shown in the circuit diagram. All equalisation takes place in the first stage and is achieved by means of frequency selective feedback between the anode and grid of the first EF86. This arrangement was chosen so that the grid circuit impedance of the first stage would be sufficiently low to minimise hum pickup, and reduce the effect of connecting external low impedance circuits. Furthermore the resulting low gain in the first stage tends to reduce 'Miller Effect' between anode and grid which can be troublesome when high values of series grid resistance are used.

The values of components given in the circuit diagram are intended for sources most frequently encountered. However variation of these values to suit other input requirements may be made.

To compensate for differences in acoustical output that may occur between the two channels, a balance control consisting of a logarithmic potentiometer, connected in reverse, ganged to an antilogarithmic potentiometer, connected normally, is included between the two stages. The advantages of this arrangement are discussed in the Mullard publication "Circuits for Audio Amplifiers."*

Negative feedback is applied to the second stage so that the overall gain of the pre-amplifier may be adjusted to suit a variety of Mullard amplifiers. Suitable values of feedback resistor are shown in Table 1.

Mullar Amplifi	d ers	Table 1 Value of Resistance R29/R129	Output Voltage (mV)	-
"Ten-Te	en"	1.0MΩ	26	
5 - 1	0	1·8MΩ	40	
5 - 2	0	No feedback	220	
3-wat	t	required	220	

Power for the pre-amplifier and tuner is derived from the main amplifier. Requirements for each channel are 230 V at 3 mA and $6\cdot3$ V at $0\cdot4$ A. The power supply of the "Ten-Ten" has been designed with sufficient reserve to provide this additional requirement.

Table 2 lists values of filter resistors and decoupling capacitors, recommended for use with other Mullard amplifiers. These components should be mounted in the main amplifier chassis.

*Available from Mullard Offices and Distributors throughout the Commonwealth, priced at 12/6d plus 1/5d postage.

Stereophonic Pre-amplifier (Components within shaded area are mounted on printed wiring boards)

HT Sn Ster	Table 2 noothing Compone eophonic Pre-amp	ents for lifier
Amplifier† Mullard	Smoothing Resistor	Decoupling Capacitor
5 - 20	$27 \text{ k}\Omega \pm 10\% 2 \text{W}$	$32\mu F$
5 - 10	$15 \text{ k}\Omega \pm 10\% 2 \text{W}$	32µF
3-watt	$15 \text{ k}\Omega \pm 10\% 2 \text{W}$	32µF

Performance

The levels of hum and noise in the preamplifier quoted for each input position have been measured with each channel connected to the "Ten-Ten" amplifier. Measurements were made at the output socket of the power amplifier when the input terminals of the pre-amplifier were open-circuited.

Frequency response curves shown in Figs. 4 and 5 also were obtained with this combination of pre-amplifier and power amplifier. Sensitivity figures given below provide an output from the pre-amplifier of 26 mV. This is sufficient to drive the "Ten-Ten" amplifier to an output of 10 W. All measurements were taken with the balance control in the centre position and tone controls set for flat response.

1. Pick-up Input Channels

It is important that sockets for magnetic and crystal pick-ups are not used simultaneously, otherwise the two signals will be mixed.

Equalisation curves for the magnetic and the crystal pick-ups are shown in Fig. 2.

Fig. 1-Mode switch wiring details

2. Magnetic Pick-up

Input impedance Sensitivity at 1 kc/s	100 k Ω approx.
(a) LP	5.0 mV
(b) 78 rev/min	12.5 mV
Cross-talk at 1 kc/s	
(a) LP	45 dB below 10 W
(b) 78 rev/min	53 dB below 10 V
Hum and noise	
(a) LP	56 dB below 10 W
(b) 78 rev/min	61 dB below 10 W

This input channel is most suitable for variable reluctance type pick-ups, but moving coil types with higher outputs may be used if a larger value of series resistance (R5/R105) is included.

[†] These amplifiers are described in Mullard "Circuits for Audio Amplifiers" on pages 29, 39 and 53.

Printed Wiring Board Showing Components of Stereophonic Pre-amplifier

Stereophonic Pre-amplifier Printed Wiring Board

DC CONDITIONS OF PRE-AMPLIFIER

Poi Meast	nt of urement	Voltage (V)	DC Range og Avometer* (V)
Amplifier H	IT	317	1000
Pre-amp H	Г Supply	230	1000
C9		208	1000
V2/V202 EF86	Anode Screen Grid Cathode	85 120 2 · 1	1000 1000 25
V1/V101 EF86	Anode Screen Grid Cathode	80 75 1 · 6	1000 1000 25

* Resistance of Avometer: 1000V range 20MΩ 25V range 500kΩ

3. Crystal Pick-up

Input impedance	100 kΩ	
(a) LP	62 mV	
(b) 78 rev/min	160 mV	
Cross-talk at 1 kc/s		
(a) LP	47 dB below 10	W
(b) 78 rev/min	53 dB below 10) W
Hum and noise		
(a) LP	56 dB below 10) W
(b) 78 rev/min	61 dB below 10	W

Low and medium output crystal pick-ups can be used with this input circuit. The input is loaded with a 100 k Ω resistor R6/R106 in order that the crystal cartridge characteristic shall approximate that of a magnetic cartridge, thus allowing the same feedback network to be used. This produces the best compromise with most types of pick-up. However if the pick-up is not suitable for this form of loading, or its output is too high, it can be connected to the auxiliary input socket, the function of which is discussed below.

4. Tape Playback Input Circuit

Input impedance	80 k Ω (approx.)
Sensitivity at 5 kc/s	3.8 mV
Cross-talk at 1 kc/s	41 dB below 10 W
Hum and noise	53 dB below 10 W

The equalisation characteristic chosen for this position is shown in Fig. 3. For frequencies above 100 c/s the curve follows the CCIR characteristic, but below this frequency slightly less boost is used. This gives good performance with high impedance heads when replaying pre-recorded tapes. If a greater sensitivity is required, resistors R_3/R_{103} may be reduced until the required sensitivity is obtained.

WAFER DETAILS OF INPUT-SELECTING SWITCH

Fig. 6-Wiring details of switch SB1-2

5. Radio Input Circuit

Input impedance	1 MΩ
Sensitivity	300 mV RH channel
	27.5 mV LH channel
Cross-talk at 1 kc/s	48 dB below 10 W
Hum and noise	58 dB below 10 W

The frequency response of this input circuit is given in Fig. 4. The wideband tuner, which forms an integral part of the unit is connected to the left hand channel. The gain of this channel has been adjusted to suit the low output impedance of the tuner. An external tuner may be connected to the right hand channel so that stereophonic broadcasts may be reproduced. The values of impedance and sensitivity quoted for the right hand channel should meet most requirements.

6. Auxiliary Input Circuit

This channel is identical to the radio input channel and can be used for high output crystal pick-ups, for example, or for tape pre-amplifiers such as the circuit described in Chapter 12 of "Circuits for Audio Amplifiers".

7. Auxiliary Output Circuit

This output circuit is derived from the second EF86 and provides approximately 3.5 mV. Equipment plugged into this socket should not have an impedance of less than 500 k Ω . The tone controls are inoperative when this output is used.

8. Tone Controls

Tone control characteristics of the pre-amplifier are shown in Fig. 5. These indicate that an adequate measure of control is provided in the unit for most applications.

9. Harmonic Distortion

The total harmonic distortion of each channel of the preamplifier at a level sufficient for 1 watt output is 0.15%. At outputs of ten times this level, the harmonic distortion is only 0.26%.

WIDEBAND TUNER

This tuner was released two years ago and is now widely accepted. Whilst the circuitry remains the same, one major change—the use of a printed wiring board —has been introduced to simplify assembly of the unit.

Particular attention has been paid to the principles of good design in the planning of the tuner and the following desirable features have been incorporated:—

1. Reasonable selectivity for the country user, together with a facility for increasing the IF bandpass to accept the full frequency range of local stations.

2. A tuning indicator in the narrow band position to facilitate precise station tuning. 3. A 10 kc/s whistle filter to reduce to inaudibility the adjacent station carrier beat, but of very high Q to minimise attenuation near the 10 kc/s point.

IF Bandpass

Special, readily obtainable IF inductors, enabling the IF bandpass characteristics to be varied, are used. These inductors consist of a single winding and a 100 pF capacitor housed in a standard IF can. Two inductors are connected between the 6AN7/ECH80 mixer and the 6N8/EBF80 IF amplifier. A choice of two values of bottom capacitive coupling between the two units allows for an IF bandpass of either 8.5 kc/s or 18 kc/s at the 6 dB points, as shown in Fig. 7. IFT3 is a slightly overcoupled conventional transformer and, with normal circuit damping, has adequate bandwidth.

Tuning Indicator

A 1M3/DM70/71 tuning indicator, which is operative only in the 'normal' position of the selectivity switch, assists in the accurate tuning of the desired station.

Whistle Filter

The 10 kc/s whistle filter consists of a 250 mH inductance tuned by a 1000 pF capacitor and is variable over small limits by means of an adjustable core. The 250 mH coil is wound on a Mullard Vinkor pot core type LA2303 resulting in an inductor of very high Q capable of providing 26 dB attenuation at 10kc/s and less than 6 dB attenuation at 200 c/s either side of this frequency.

Fig. 7—IF response curves

The Circuit

Apart from the features mentioned, the remainder of the circuit is conventional. Standard aerial and oscillator coils and a standard two-gang broadcast tuning capacitor are used. In order to preserve space and for greater reliability, small by-pass capacitors of the polyester type have been utilised.

Assembly

The assembly of the tuner printed wiring board is similar to that described for the pre-amplifier. Care should be taken that all component leads are kept as short as possible and leads from the 'Wide-Normal' switch to IFT1, IFT2 and C13 should be screened.

Heater wiring shown is for a centre tapped 6.3 V winding. If a centre tapped winding is not available two resistors of value 22 Ω 1W 5% and 25 Ω 1W 5% may be wired in series across the 6.3 V line and the junction of the two resistors earthed. The 1M3/DM70/71 together with R15 may then be wired across the 25 Ω resistor with pin 5 of the indicator connected to earth.

Alignment

Alignment should be carried out following the procedure shown in Table 3 with the 'Wide-Normal' switch in the 'normal' position.

Wideband Tuner (Components within shaded area are mounted on printed wiring boards)

WIDEBAND TUNER (cont.)

Printed Wiring Board Showing Components of Wideband Tuner

DC CONDITIONS OF TUNER

Point of Measurement Tuner HT Supply		Voltage (V)	DC Range of Avometer* (V)
		125	250
V1 6AN7/ECH80	Anode Grid No. 2, 4 Osc. Anode Osc. Grid Cathode	$ \begin{array}{r} 125 \\ 83 \\ 103 \\ -2 \\ 2 \end{array} $	250 250 250 25 25 25
V2 6N8/EBF80	Anode Grid No. 2 Cathode	125 83 2	250 250 25

* Resistance of Avometer: 250V range 5ΜΩ 25V range 500kΩ

Printed Wiring Board

The printed wiring board is assembled by inserting the components in the positions indicated. The projecting leads should then be soldered to the copper foil on the reverse side. Waste leads are then cut-off. Care should be taken to ensure that excess heat is not transmitted to the copper foil, otherwise the bonding of the copper foil to the insulating material may be damaged, causing the foil to lift away. Care should also be taken not to use so much solder that it overflows the connection point and forms a short circuit to adjacent conductors.

The chassis of the Wideband Tuner Stereophonic Pre-amplifier is easily assembled by the home constructor. The unit consists of a chassis attached to a front and back panel and around this assembly is fitted a wrap-around top and flat bottom cover.

These pieces are made of 16BG steel sheet. However, 16 s.w.g. aluminium may be used. If it is desired to use a lighter gauge steel, it is recommended that three angle or channel supports be bolted or spot-welded at each end and between the printed wiring cut-outs. The dimensions of

WIDEBAND TUNER ALIGNMENT PROCEDURE

		1	ABLE 3	
Order	Connect Generator to	Tune Generator to	Tune Receiver to	Adjust for Maximum Peak Output
1	Grid 1 6N8	455 kc/s	525 kc/s (gang closed)	IFT3 Secondary (Top) (Connect 330Ω resistor between P and B of IFT3)
2	Grid 1 6N8	455 kc/s	525 kc/s (gang closed)	IFT3 Primary (Bottom) (Connect 330Ω resistor between G and F of IFT3)
3	Grid 1 6AN7	455 kc/s	525 kc/s (gang closed)	IFT2
4	Grid 1 6AN7	455 kc/s	525 kc/s (gang closed)	IFT1
REPE	EAT ADJU	ISTMENTS IS C	B UNTIL	MAXIMUM OUTPUT
5	Aerial Terminal	525 kc/s	525 kc/s (gang closed)	Oscillator Core
6	Aerial Terminal	1605 kc/s	1605 kc/s (gang open)	C4 (oscillator trimmer)
7	Aerial Terminal	600 kc/s	600 kc/s	Aerial Core
8	Aerial	1400 kc/s	1400 kc/s	C2 (aerial trimmer)

REPEAT ADJUSTMENTS UNTIL MAXIMUM OUTPUT IS OBTAINED

Wideband Tuner Printed Wiring Board

Use of External Power Supply

At a voltage of 125V, the current drain of the Wideband Tuner is 18mA.

In order to supply power to the Tuner from an existing amplifier or other power supplies, R16 should be calculated as follows:

$$R 16 = \frac{V \text{ supply} - 125}{0.018}$$

CONSTRUCTIONAL DETAILS

these pieces are as follows:-

(a)	Back Panel	15"	x 6"	
(b)	Front Panel	15" 1	x 6"	
(c)	Chassis	157" 2	x 9"	
(d)	Top Cover	251" 2	x 87"	
(e)	Bottom Cover	157" 2	x 83"	

Each piece should be marked as shown in the chassis outlines and dimensions and the holes cut as indicated. Bends of 90° should be made accurately along the dotted lines. The fold lines shown are positioned to allow for shrinkage when using 16BG steel, thus providing correct final dimensions.

Example:

Supply voltage = 300V

$$R16 = \frac{300 - 125}{0.018} = 9722.2\Omega \text{ or } 10000\Omega$$

approximately.

A rating of 10W should be adequate for any resistor used in this position.

To simplify assembly all major components (printed wiring boards, controls, etc.) may be mounted on the respective panels before the unit is fitted together.

All input and feedback components for valves V1/V101 are assembled on switch SB as a sub-assembly. Wiring details are shown in Fig. 6.

Input, output and heater leads should be screened to reduce the possibility of hum pick-up. Screen earthing should be at one point only so that earth loops are avoided.

WIDEBAND TUNER (cont.)

45

Mullard

COMPONENTS PARTS LIST

WIDEBAND TUNER

Capacitors					
Circuit Re	ef. Value	Rating	Tolerance	Description	
C1a-C1b C2 C3	3-30 pF	T USED	(= 70)	D2 tuning gang M.S.P. trimmer Philips type	
C4 C5 C6 C7 C9 C10 C11 C12 C14 C14 C15 C14 C15 C16 C17 C19 C20 C21 C22 C22 C23	$\begin{array}{c} 3-30 \text{ pF} \\ 8.2 \text{ pF} \\ 0.047 \mu\text{F} \\ 0.047 \mu\text{F} \\ 47 \text{ pF} \\ 425 \text{ pF} \\ 0.047 \\ 2200 \text{ pF} \\ 2200 \text{ pF} \\ 2200 \text{ pF} \\ 0.047 \mu\text{F} \\ 0.047 \mu\text{F} \\ 0.047 \mu\text{F} \\ 1000 \text{ pF} \\ 100 \text{ pF} \\ 100 \text{ pF} \\ 100 \text{ pF} \\ 0.027 \\ 0.027 \\ 8 \mu\text{F} \end{array}$	500 VW 400 VW 400 VW 500 VW 500 VW 500 VW 500 VW 500 VW 500 VW 400 VW 400 VW 400 VW 400 VW 400 V 400 V 400 VW 350 VP	$5 \\ 10 \\ 10 \\ 5 \\ 2\frac{1}{2} \\ 10 \\ 5 \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10 \\ 1$	trimmer Philips type N.P.O. Ceramic Polyester Polyester N.P.O. Ceramic Silvered Mica Polyester Silvered Mica N.P.O. Ceramic Silvered Mica Polyester Polyester Polyester Polyester N.P.O. Ceramic Polyester Polyester Polyester Polyester Polyester Polystyrene Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester Polyester	
Resistors					
<i>Circuit</i> <i>Ref.</i> R1 R2 R3 R4 R5 R6 R7	Value Rating (W) 1 180 Ω 2 22kΩ 2 3.9kΩ 1 10kΩ 1 1.0MΩ 2	$\begin{array}{c} \textit{Tolerance} \\ (\pm \%) \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c} Circuit Value \\ Ref. \\ R8 330 \ \Omega \\ R9 100 k\Omega \\ R10 560 k\Omega \\ R11 47 k\Omega \\ R12 4.7 M\Omega \\ R13 4.7 M\Omega \\ R14 1.0 M\Omega \\ R15 82 \ \Omega \end{array}$	$\begin{array}{c c} Rating & Tolerance \\ (W) & (\pm\%) \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ 1 & 10 \\ \end{array}$	

Mullard Valves

6AN7/ECH80 (one); 6N8/EBF80 (one); 1M3/DM70/DM71 (one).

		Coils	
Quantity	Description	Type	Supplier
1	IFT1	118	R.C.S.
î	IFT2	118	R.C.S.
î	IFT3	119	R.C.S.
1	Aerial Coil	221	R.C.S.
1	Oscillator Coil	223	R.C.S.
î	Whistle Filter Coil (Vinkor LA2303)	Special Transformers Pty. Ltd

MISCELLANEOUS

2	Kit of parts for dial drive assembly available fro EFCO Manufacturing Co. Pty. Ltd., 108 Princes Highway,	om:—
	Arncliffe, N.S.W.	
Quantity 2	Description Valve sockets B9A (printed wir-	Supplier
2	Part No. X9A89C) or equiva- lent Valve shields to suit socket type	M.S.P.
1	X9A89C Switch, 2 pole, 2 position slide (OAK) Dial Assembly	M.S.P.
1	Printed Wiring Board, Wide- band Tuner, type 608 5-tag Strip	R.C.S.
1 1	2-tag Strip Aerial Terminal Miscellaneous Hardware, Wire, etc.	
<i>Juantity</i>	Description Plug and Socket (Acme 2-pin)	Supplier
1	No. 705	M.S.P.
1	Socket 5-pin type 5QMS S/A, Part No. 755 Cover type 10B, Part No. 1626	M.S.P. M.S.P.

Power Supply Components

Quantity 1 1	Value 12 kΩ 32 μF	Rating 10 W 350 VW	Tolerance 10%	Description wire wound resistor electrolytic capacitor
--------------------	-------------------------	--------------------------	------------------	--

STEREOPHONIC PRE-AMPLIFIER

		Capacit	tors	
Circuit Ref.	Value	Rating	Tolerance	Description
C1 C101	150 pF	600 V	(%)	Polystyrene
C2 C102	2200 pF	400 V	10	Polyester
C3 C103	390 pF	600 V	10	Polystyrene
C4 C104	560 pF	600 V	10	Polystyrene
C5 C105	220 pF	600 V	10	Polystyrene
C6 C106	25 µF	12 V		Electrolytic
C7 C107	$0.1 \mu\text{F}$	400 V	10	Polyester
C8 C108	$0.1 \mu\text{F}$	400 V	10	Polyester
C9 C109	8 μF	450 VW		Electrolytic
C10 C110	25 µF	12 VW		Electrolytic
CII CIII	$0.1 \mu F$	400 V	10	 Polyester
C12 C112	$0.1 \mu F$	400 V	10	Polyester
C13 C113	0.1 µF	400 V	10	Polyester
C14 C114	500 pF	600 V	10	Polystyrene
C16 C116	2200 pr	400 V	10	Polyester
C17 C117	0.022	400 V	10	Polyester
en em	0.022	400 ¥	10	roiyester
		Resisto	ors	
Circuit Ref.	Value	Rating	Tolerance	Description
		(W)	$(\pm \%)$	
R1 R101	$1 M\Omega$	12	10	
R2	100 kΩ	12	10	
R102	$1 M\Omega$	12	10	
R3 R103	56 K11	2	10	
R4 R104	08 KII	2	10	
R5 R105	100 10	2	10	
R7 R100	150 10	2	10	
R8 R108	560 k()	21	10	
R9 R109	560 k0	21	10	
R10 R110	5.6 MQ	2	10	
R11 R111	220 kΩ	1	10	
R12 R112	100 kΩ	1	10	
R13 R113	220 kΩ	12	10	High Stability
R14 R114	2.2 kΩ	12	10	High Stability
R15 R115	$1 M\Omega$	12	10	High Stability
RV16 RV116	$1 M\Omega \log.$	$+1 M\Omega$ antilog		Potentiometer
R17 R117	3.3 kΩ	12	10	
R18 R118	8.2 kΩ	12	10	High Stability
R19 R119	$100 \text{ k}\Omega$	2	10	High Stability
R20 R120	1.2 kΩ	2	10	High Stability
RZI RIZI	390 KII	1 050 1 2 1	10	High Stability
RV22 RV122	47 k0	+ 250 K11 log.	10	Potentiometer
R23 R123	30 k0	21	10	
R25 R125	68 k0	21	10	
RV26 RV126	250 k0 log	1 250 ku log	10	Potentiometer
R27 R127	6.8 k0	1 250 KST 10g.	10	rotentiometer
RV28 RV128	250 kΩ log.	+ 250 ku log.	10	Potentiometer
R29 R129	1 MΩ	12	10	

Mullard Valves

EF86 (four).

	MISCELLANEOU	IS
Quantity	<i>Description</i>	Supplier
4	Valve Sockets B9A (printed wir- ing type with skirt type X9A89C) or equivalent	M.S.P.
4	Valve Shields to suit socket type X9A89C	
1	Printed Wiring Board, Pre-ampli- fier, type 607	R.C.S.
1	Chassis Assembly (Chassis, Back, Front, Bottom Cover, Top Cover)	Heating Systems Pty. Ltd
1	Front Escutcheon	R.C.S.
1	Selector Switch, Oak H type, No. AK51392	M.S.P.
2	Mode Switch, 3-pole, 3-position, Side Action Oak	M.S.P.
8	Sockets, 2-pin Acme (+ plugs)	
1	Plug, 5-pin type B5 CUSP, Part No. 705	M.S.P.
1	Socket, 5-pin, type 5QMS S/A, Part No. 755	M.S.P.
1	Cover, type 10B, Part No. 1626	M.S.P.
1	Lamp Holder and Bezel	
1	Indicator Lamp, 6.3V 0.3A	
4	Rubber Feet	
6	Knobs	
1	Tagstrip, 4 lugs	
1	Front Decorative Trim, 40½" approx. Miscellaneous Hardware, Wire,	

Planar Transistors for High-Speed Computer Logic

These silicon n-p-n planar transistors, types BSY38 and BSY39, in TO-18 encapsulation, are intended for high-speed computer logic and fast switching applications.

Features include high stability, high working temperature, low bottoming voltage and a high emitter current rating. In addition their linear characteristics render them suitable for use in video and narrow-band IF amplifiers. Abridged data is as follows:—

$V_{\rm CB}$ max. (I _E = 0mA)	+ 20	V
$V_{\rm CE}$ max. (cut-off)	+ 15	V
I _{см} max.	200	mA
P_{tot} max. ($T_{amb} = 25^{\circ}C$)	300	mW
BSY38		
$h_{\rm FE}~(I_{\rm C}=10{\rm mA})$	30-60	
BSY39		
$h_{\rm FE}$ (I _c = 10mA)	40-120	
f_1	300	Mc/s

Vinkor Manual

This Manual has been prepared to show at a glance the extensive range of Mullard Vinkor Adjustable Pot Cores. It will enable designers to select the Vinkor most suitable for a specific application and shows all the basic technical characteristics set out in a convenient form. Lift-out Broadsheets are included for quick design reference.

The Vinkor Manual is available from Mullard Offices and distributors throughout the Commonwealth priced at 5/3d plus 8d postage.

The Mullard Display at the I.R.E. Convention

number of A new developments from the Mullard Research Laboratories, together with various applications of recent additions to the Mullard range of products demon-strated by practical working models, stimulated considerable interest at the Mullard Display Stand. Solid State

The focal point of the Mullard Display was a comprehensive control system illustrating some of the many applications of solid state devices.* **Floating Sphere** A further dem-

A further demonstration of a closed loop feedback system was provided by a float-

ing metal sphere supported by a magnetic field from an electro-magnet whose field strength was varied by a three-stage transistor DC amplifier and a photoconductive cell. As the sphere was attracted towards the electro-magnet it interrupted a beam of light falling on the cell, thus reducing the current flowing in the magnet and the sphere tended to fall. This in turn resulted in more light falling on the cell with a consequent increase in the magnetic field intensity. A condition of equilibrium was eventually reached where the sphere re-

P-N-P Audio Power Transistor

The ADY26 germanium transistor of the p-n-p alloy-diffused type is one of the latest additions to the Mullard professional design range. This power transistor features a dissipation of 100W at room temperature. Abridged data is as follows:—

V_{CB} max. (I _E = 0A) - 80	V
V _{CE} max.	- 60	V
$h_{\rm FE} (I_{\rm E} = 5A)$	40 - 120	
fhfb	>100	kc/s
I _{CM} max.	30	A
I _{BM} max.	3	A

The ADY26, for which TO-36 encapsulation is used, is suitable for high-powered audio amplifiers, vibration amplifier service and inverter applications. For these applications, a pair of ADY26 transistors, mounted on a heat sink, could provide power levels of 500W or more.

mained suspended by the electro-magnetic field which counteracted the effect of gravity.

Microminiaturisation

The Mullard technique of microminiaturisation[†] using film resistors and capacitors deposited onto a wafer together with their inter-connections was shown for the first time in Australia.

* See article "Solid State Power Conversion and Control" Outlook Vol. 6 No. 2 page 17. † See article "Mullard Microcircuits" Outlook Vol. 6 No. 2 page 17.

New Publication

The Mullard Bulletin is a further addition to the already extensive range of Mullard publications. It contains a summary of recent Mullard announcements, including new developments in electronic valves, tubes, semiconductor devices and components. The Bulletin is issued four times per year to recipients of Mullard Technical Communications and to subscribers to the Mullard Technical Handbook. Copies are available, on request, to key personnel within the Industry; Government Departments; training establishments and libraries.

CHANGE OF ADDRESS

Kindly notify Mullard-Australia Pty. Ltd. as soon as possible. Thirty days' notice will enable our mailing system to operate more efficiently. THANK YOU.

I.R.E. Convention Paper on DC Converters

A paper on the subject of "Transient Operating Conditions of Transistors in DC Converters" was read by Mr. R. L. Webb of the Mullard Applications Laboratory at the I.R.E. Convention of May this year, in Melbourne. Mr. Webb's paper dealt particularly with factors influencing peak currents, peak voltages and dissipation during the switching phase of DC converter operation and used for illustration experimental results obtained from a 5 kc/s mediumpower converter using OC28 transistors. It was believed that the analysis contained in the paper might prove useful where exceptionally stringent conditions appeared to make doubtful the satisfactory operation of DC converters designed by straightforward methods.