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Training —The Economical Way to Increase the 

Effectiveness of Electronic Equipment 

By John E. Remoch, Manager, Technical Department 

Much has been said and written about the vast quantities of 
money, time, and effort being expended to improve the character-
istics of our electronic equipment. This expenditure is certainly 
justified, if America is to hold her place as the leader in technical 
progress. However, improvement in the design of equipment with-
out proper training in its use and operation, does not allow the 
improved equipment to be utilized to its full effectiveness, and 
many times the results fall short of expectations. 

It has been adequately proved that few electronic equipments 
are operated at top efficiency at all times—a survey described in 
Volume I of the MIT Radiation Laboratory Series, shows that in 
one instance, where the performance of approximately 100 different 
radar sets was carefully measured with test equipment of known 
accuracy, the tests revealed that on the average the maximum 
effective range of the sets under test was only one-half the maximum 
range possible, had the equipment been operating at peak efficiency. 
In fact, five of the sets were found to be operating at less than 
10% of their possible maximum range, which means, in effect, that 
these radars were protecting only 1% of their assigned tactical 
areas. (Yet, in each case, the set under test was thought to be in 
normal operating condition by the maintenance personnel involved.) 

These tests were made some time ago, of course, and the elec-
tronics maintenance situation is much improved since that time; 
however, the survey does point out the need for improvement in 
operating efficiency—a need which can best be alleviated by 
adequate training of maintenance personnel. 

It is well known that military electronic equipment particularly 
is designed to continue to perform under even extremely undesir-
able operating conditions. However, the use which can be made 
of any piece of electronic equipment is a direct function of the 
state of operating efficiency of that equipment, and we sincerely 
believe that the technical training of the electronics maintenance 
man ranks equally in importance with the potentialities of the 
equipment for which he is responsible. 



CONSTANT-CURRENT 
VOLTAGE REGULATION 

By Robert G. Nevitt 
Phi/co Held Engineer 

How constant-current devices can he used for regulation of 
high-voltage, low-current, power supplies. 

CONVENTIONAL voltage regulators are 
not readily adaptable to high-voltage 
circuits—especially those where the 
current requirement is small. The 
regulator shown in figure 1 is good 
for low-voltage, low-current require-
ments, but it becomes impractical 
for high-voltage, low-current applica-
tions. Neon tubes, V-R tubes, or 
corona tubes can be connected in 
series to obtain high-voltage regula-
tion, but the bleeder current flowing 
through these tubes is often large in 
comparison to the current drawn by 
the load; therefore the design would 
be uneconomical. 

Figure 2A is the schematic of a 
conventional electronic voltage-regu-
lated supply. One of the disadvan-
tages of this type of regulator is that 
the variation in voltage at point B 
( the grid of the amplifier tube) is 
only a fractional part of the total 
variation which exists between point 
A and ground. This difficulty can be 
minimized by replacing the voltage 
divider with the circuit shown in 
figure 2B.° Practically the total volt-
age variation is applied to the grid 
of the amplifier tube, but again we 
are confronted with the need for a 
constant-voltage device such as a 
voltage-regulator tube. A number of 
regulator tubes would have to be 
connected in series if this circuit were 
used for a high-voltage supply, and 
the current drain through these tubes 
would result in heavy loading. 

For a given percentage of voltage 

•Bousquet, A. B., Electronics, July, 1938, 
p. 28. 

Figure 1. Constant-Voltage Regulator 
Circuit 

regulation, the variations in output 
voltage for a high-voltage supply will 
be much larger than they would be 
for a low-voltage supply. Thus, it can 
be readily seen that if the total vari-
ation in the output voltage of a high-
voltage supply could be fed back to 
the control tube, sufficient regulation 
could be obtained for most purposes 
without the need of an amplifier. 

CONSTANT-CURRENT ACTION 

If a constant-current device is wired 
in series with a resistor (figure 2C), 
the voltage drop across the resistor 
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Figure 2. Part 4—Typical Voltage-
Regulator Circuit 

Part B—Bleeder with Constant-Voltage 
Device 

Part C—Bleeder with Constant-Current 
Device 

will tend to remain constant even 
though the voltage between point A 
and ground varies. Any variation in 
voltage will appear across the ter-
minals of the constant-current device 
( point B to ground). To insure that 
mainly the changes in voltage appear 
between point B and ground, it is 
necessary that the constant-current 
device have a low d-c resistance and 
a high a-c resistance in comparison 
with the resistor. The action of the 
circuit in figure 2C can be improved 
if the resistor is of the thyrite type 
( silicon carbide), since thyrite tends 
to act as a constant-voltage element 
which would further assist in causing 
all of the voltage variation to appear 
across the constant-current element. 

One common constant-current de-
vice is the pentode tube. From the 
ErI„ curves for a pentode, it can be 
seen that as the plate voltage is in-
creased, with all other voltages held 

constant, the plate current remains 
essentially constant. However, the 
triode tube, which is normally con-
sidered to be a constant-voltage de-
vice, can be made to act as a constant-
current device if the effective a-c 
plate resistance is made very large 
in comparison with the load resistor, 
by use of current-type negative feed-
back. The easiest way to obtain 
current-type negative feedback is to 
use an unbypassed cathode resistor as 
shown in figure 3A. The changes in 
plate voltage ( represented by the a-c 
generator) produce changes in the 
bias voltage which appear, when am-
plified, as a series generator in the 
plate circuit. The equivalent circuit 
( figure 3B ) shows the series com-
ponents which will develop the fol-
lowing voltages: 

1. The plate resistance will develop 
a voltage, Er = Iprp.  ( 1 ) 

where: 
I, = a-c plate current 
r, = a-c plate resistance 

2. The cathode resistor will develop 
a voltage, ER = I,Re.  (2) 

where: 
Re = cathode-bias resistance 

3. The tube will amplify the cathode 
voltage, thus producing an opposing 
voltage, — AEg = 

Since these three voltages are in 
series, the total value of a-c plate 
voltage will be: 

E, = I,r, + I,R,. +  

This reduces to: 

E, = I, (r, + Re + Alle) (4) 

The total opposition represented by 
the tube's circuit would then be: 

E„ 
r'„ =  = r, + Re + Rr 

This reduces to: 
(6) 

(3) 

(5) 
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Thus the effective a-c plate resistance 
is determined by the plate resistance, 
by the A  of the tube, and by the 
cathode resistance. 

If the 7B6 (high-p. triode section) 
is taken as an example, as shown in 
figure 4, the following conditions may 
be established: 

Ery =  100 volts 

( E1, = plate-to-cathode voltage) 
E, = —1 volt 
=. 0.4 ma. 

r, = 110K ohms 
A = 100 

(To produce the indicated bias, a 

Figure 3. Part 4 —Triode Tube Con 
nected for Constant-Current Operation 
Part B —Equiralent Circuit of Figure 34 

Figure 4. Constant-Current Triode 
Circuit. Showing Voltages 

resistor of 2500 ohms must be usecl 
for R,..) 

Using equation 6, it will be found 
that the effective a-c plate resistance 
is 362.5K ohms. Since the tube passes 
0.4 ma. at 100 volts, the d-c plate re-
sistance is 252.5K ohms. Thus, the a-c 
plate resistance is only about 1.5 times 
the d-c plate resistance—this is not a 
sufficiently high ratio for constant-
current operation. 

Upon examination of equation 6, it 
can be seen that increasing r,, p, or 
H. will increase r',. Re is, of course, 
the obvious choice. Figure 5 shows 
the revised version of figure 4. The 
cathode resistor value is raised to 
252.5K ohms, which results in a 
cathode voltage of 101 volts. To pro-
vide the same operating conditions 
indicated for the circuit in figure 4, 
the grid is operated at a 100-volt level, 
and the plate is operated at a 201-
volt level. 
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Figure 5. Modified Constant-Current 
Triode Circuit, Showing Voltages 

Using equation 6, r'p is found to 
be 25.6 megohms, whereas the d-c 
resistance of the circuit is now 502.5K 
ohms. In this case, the ratio of a.c.-to-
d.c. resistance is over 50 to 1. This 
ratio is quite suitable for constant-
current applications. (The typical 
ratio for a pentode is in the order 
of 30 to 1.) 

If a still-higher ratio is desired, the 
circuit shown in figure 6 can be used. 
Here, the circuit shown in figure 5 
provides the cathode resistance for a 
second tube in a cascode-type circuit. 
To use equation 6, it is merely neces-
sary to assume a cathode resistance 
( Re ) for the upper tube of 25.6 
megohms. The resulting a-c plate re-
sistance for the entire circuit will 
then be 2586 megohms. Since the re-
sistance to d.c. is only 752.5 ohms, 

the a.c..--to-d.c. resistance ratio for the 
cascode circuit is over 3000 to 1. 

APPLICATIONS 

Figure 7 shows a typical use of the 
constant-current device in a d-c am-
plifier. Here, the coupling circuit acts 
as a voltage divider to d.c. but not 
to a.c. Thus, the signal-coupling loss 
associated  with  the  resistor-type 
divider is eliminated. 

A regulated, high-voltage power 
supply with a negative output is 

Figure 6. Cascode Constant-Current 
Circuit, Showing Voltages 
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Figure 7. D-C Amplifier with 
Constant-Current Coupling 

shown in figure 8. This circuit is 
similar to a conventional regulated 
supply except for the use of the 
constant-current circuit and the lack 
of an amplifier stage. The 6BG6G 
acts as the control tube, and has its 
operating bias established by the vari-
able resistor R. (Changing the setting 
of R will also vary the value of regu-
lated output voltage over a limited 
range.) 

Figure 9 shows an r-f type of high-

Figure 8. High-Voltage Power Supply 
with Constant-Current Voltage Regulation 

voltage power supply with constant-
current voltage regulation. In this 
case, the r-f oscillator bias is deter-
mined, in part, by the voltage across 
the constant-current device. As was 
the case in figure 8, this power supply 
has a negative output and uses no 
amplifier tube. 

El+ 

-HV (RED) 

(NEG) 

1 CONSTANT CURRENT 
DEVICE 

Figure 9. R-F Power Supply with Constant-Current I oltage Rrgulation 
(Negative Output) 
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B+ 

•  

+ HV (REG) 

CONSTANT 
CURRENT 

DEVICE 

Figure 10. R-F Power Supply with Constant-Current Voltage Regulation 
(Positive Output) 

ROBERT G. NEVITT was born on 
September 25, 1923, in Meyersdale, 
Pa. but received his early education 
in Louisville, Kentucky. Upon grad-
uating from St. Xavier School in 
Louisville, in 1941, he attended the 
University of Louisville for three 
years during which he majored in 

electrical engineering until he was 
called into the U.S. Navy in 1944. 

In the service, he attended various 
electronic schools, and upon gradua-
tion was assigned to maintenance 
work on Navy communications equip-
ment, overseas. 

In 1946, with the War over, he 
returned to the University of Louis-
ville to complete his requirements 
for the degree of Bachelor of Science 
in Electrical Engineering, which he 
received the following year. A posi-
tion as a television instructor with 
the Louisville Radio School occupied 
him until he joined the Phiko Tech-
Rep Division in July, 1951. He has 
been working on a Strategic Air 
Command assignment since that time. 
He is a member of the A.I.E.E., the 
A.R.R.L., and the I.R.E. 
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Figure 11. TV High-Voltage Power Supply with Constant-Current Voltage Regulation 

Where a positive output voltage is 
required, the r-f power supply circuit 
shown if figure 10 can be used. In 
this case, a phase-inverting stage 
( V4) must be used to provide proper 
control action. An interesting feature 
of this circuit is found in the oscillator 
feedback capacitor which consists of 
a metal ring surrounding V2.  The 
capacitance existing between the ring 
and the plate of V2 is sufficient to 
maintain oscillation. 

The conventional TV, high-voltage 
power supply can be adapted for 
constant-current voltage regulation by 
means of the circuit shown in figure 
11. The variations in high voltage 
appear across the constant-current de-
vice ( Vs ), and are used to control 

the conduction of V2. The output of 
VI, the sweep generator, is divided 
by the action of R3 and V2 before it 
is applied to V4. If the output voltage 
tends to increase, V2 becomes a better 
conductor (because of the more-
positive grid voltage) and the drive 
to V4 is thus reduced. This action will 
restore the output voltage to its 
previous value. 

CONCLUSION 

Constant-current voltage regulation 
can be applied to any high-voltage, 
low-current power supply. The ad-
vantages are: low current drain in 
the bleeder section, low d-c voltage 
level for the control circuit, and avail-
ability of practically the entire output 
voltage variation at the control tube. 

MiNSE:ER M OMMirANI MVi 
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NEGATIVE FEEDBACK AND ITS 
APPLICATION TO PHILCO 
MICRO WAVE RADIO 
RELAY EQUIPMENT 

By Gail W. Woodward 
Headquarters Technical Staff 

How the negative feedback technique is applied to the 
Phileo CLR-6, and the advantages that result. 

A MICRO WAVE-RADIO-RELAY  SYSTE M 

must, by nature, produce a tolerably 
small amount of distortion. It is ap-
parent that in a system which uses 
a large number of repeaters, each 
individual repeater must have an ex-
tremely small value of distortion. 

The most effective known method 
for reducing distortion is found in 
the use of negative (or inverse) feed-
back—the greater the feedback, the 
less the distortion. Aside from dis-
tortion considerations, a negative-
feedback system has several other 
advantages which will be discussed 
later. 

The Phileo CLR-6 microwave radio 
relay equipment incorporates /00% 
negative feedback to minimize dis-

tortion. This means that the entire 
output signal is fed back to the input 
circuit, thus resulting in an excep-
tionally stable system. 

MODULATION 

The Phileo CLR-6 utilizes an FM 
carrier for two reasons. The reflex 
klystrons, used at the radio frequency, 
are readily susceptible to direct FM, 
and the noise-reducing feature in-
herent in an FM system can provide 
an effective signal-to-noise-ratio im-
provement of about 20 db ( with a 
reasonable modulation index). 

The block diagram of a typical 
repeater is shown in figure 1. The r-f 
oscillator is frequency-modulated by 
the output of the FM receiver which 

RECEIVING 
R-F  ANTENNA 

INPUT - 7 ,1 

R-F 

MIXER 

T -F 

AMPLIFIER 

DISCRIMINATOR -sw 

VIDEO 

AMPLIFIER 

R-F 

OSCILLATOR 

R-F 

OUTPUT 

 ITRANSMITTING 
ANTENNA 

Figure I. Block Diagram ol Typical Repeater 



is connected directly to the klystron 
repeller. A small portion of the r-f 
output is fed to the receiver mixer— 
thus, the r-f oscillator also serves as 
the local oscillator for the receiver 
r-f sections. Of course, the frequency 
of r-f output must differ from the 
frequency of the r-f input by the 
value of the i.f. ( 90 mc. ). Successive 
repeaters alternately raise and lower 
the r-f signal frequency so that only 
two carrier values are encountered 
in a single system. It can be seen that 
a frequency-modulated input must 
result  in  a frequency-modulated 
output. 

FEEDBACK 

The feedback loop operates as fol-
lows: The frequency-modulated, r-f 
input beats in the mixer, with the 
injection signal from the r-f oscillator, 
thus producing a frequency-modu-
lated, i-f signal which appears at the 
discriminator output as a varying 
voltage ( this voltage is a reproduc-
tion of the original intelligence). This 
signal is amplified by the video ampli-
fier and fed to the repeller plate of 
the r-f oscillator which then repro-
duces a frequency-modulated, r-f out-
put signal. The discriminator diodes 
are connected so that the r-f oscillator 
modulating voltage will swing the r-f 
output frequency in the direction of 
the r-f input modulation. Thus, as far 
as the i-f signal is concerned, the 
modulation of the r-f oscillator will 
tend to cancel the modulation of the 
r-f input—this means negative feed-
back in terms of modulation. The 
feedback is considered to be 100% 
because the entire value of output 
deviation acts upon the r-f input de-
viation. In the CLR-6, an r-f input 
signal deviation of 3 mc. will result 
in an i-f signal deviation of only 30 
kc. ( or 1%), and an r-f output signal 
deviation of 2.97 me. 

Figure 2. Block Diagram of Basic 
Feedback System 

If the r-f oscillator frequency were 
to vary in exact accordance with the 
changes in r-f input frequency, the 
resultant i.f. would have zero devia-
tion. Actually, the modulation of the 
r-f oscillator must be somewhat less 
than that of the r-f input signal; thus, 
it is obvious that the repeater gain 
( in terms of modulation) must be 
slightly less than 1. For the CLR-6, 
the loss in modulation amplitude is 
about 1% in a single repeater. If 10 
repeaters were used, the overall loss 
would be about 9.5%, and with 100 
repeaters, a 63% loss would occur. It 
is evident that if the gain of individual 
repeaters were appreciably less than 
unity, a large number of repeaters 
would be impossible. 

ANALYSIS OF FEEDBACK 

Since the feedback loop encom-
passes the entire repeater ( except 
those r-f components which precede 
the r-f mixer), it can be treated 
matherratically as a single amplifier. 

The basic feedback system is shown 
in figure 2, and: 

E ont =  A in  P 8 Eout 

where: 
= output signal voltage 

E,„ = input signal voltage 
= amplifier gain 

8  = feedback in terms of 
fraction of output fed 
back to input. 



Simplifying: 
E0 (1 + 43) 

or: 

E.„, 
= 

E1 1+ /43 

JL 

(1) 

Since the entire output is applied 
back to the input circuit ( 100% feed-
back), /3 is unity, and equation 1 
simplifies to: 

Eout 
••—• • = 

Ein  1 + L 

(2) 

This equation is called the basic trans-
mission equation. It should be remem-
bered that E.1. t and Ein  are the 
modulation values, not the carrier 
levels, and that p. is the repeater gain 
in terms of modulation. 

Upon examination of equation ei: 

it can be seen that in order for 
Ei. 

to approach unity,  must be large— 
if p. is large, the feedback is corre-
spondingly large. 

FREQUENCY-RESPONSE 

LIMIT AND GAIN 

In any amplifier system, a phase 
shift is encountered as the upper limit 
of the bandpass is approached. This 
phase shift is cumulative, and in a 
multiple-stage repeater can easily ap-
proach 180 degrees. If the repeater 
using 100% inverse feedback suffers 
an additional 180-degree phase shift, 
the feedback becomes positive, and 
oscillation can occur. Here, then, is 
a very important limiting factor—the 
gain of an amplifier to be used with 
100% inverse feedback must be less 
than unity without feedback at the 
frequency for which the phase shift 
is 180 degrees ( this is called the 
Nyquist criterion). 

The repeater shown in figure 1 in-
volves both AM and FM components. 

The FM components include the r-f 
oscillator and the discriminator ( the 
i-f section merely has sufficient gain 
to produce the required limiting 
action), whereas the video amplifier 
is the AM component. The gain of 
the amplifier section is expressed as: 

[A cme ( 3 ) 
Ad 

where: 

A.., 
= video-amplifier gain 
= r-f oscillator modulation 
sensitivity in terms of 
megacycles per volt 
( about 0.35 for the CLR-6 ) 

= discriminator sensitivity in 
terms of megacycles per volt 
( at maximum i-f output this 
is about 0.1) 

By virtue of the extreme overall band-
width (10 mc.) the A terms are not 
dependent upon the modulating fre-
quency—this leaves the video-ampli-
fier circuits as the determining factor 
in the variation of p with modulating 
frequency. 
Using typical components, the over-

all phase shift approaches 180 de-
grees at about 2 mc. Therefore, at 
this frequency, the p. factor must be 
less than unity. At the lower fre-
quencies ( mid-audio range), the t& 
factor must be made as large as possi-
ble to obtain a repeater gain of almost 
unity ( equation 2). In the CLR-6, the 
low-frequency gain ( p.) is made 40 
db, which means essentially 40 db 
of feedback ( 100%). The video ampli-
fier has a cutoff frequency of 4 kc. 
( which means a gain of 37 db at this 
frequency) and a 6-db-per-octave 
decrease in gain as the frequency is 
increased ( see figure 3). Thus, at 
300 kc., the gain ( and hence the 
feedback) is 0 db. At the point of 
180-degree phase shift, the gain is 
sufficiently low that no instability is 
encountered. 
It may be questioned as to how a 

response of 300 kc. can be obtained 

Ad i sc 
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Figure 3. if;rnpli of Frequency Response of CL12-6, Showing Effect of Feedback 

with a 4-kc. amplifier. Actually, at 
the lower frequencies, the gain is 
suppressed to slightly less than unity 
by means of inverse feedback. As the 
gain falls off at higher frequencies, 
the feedback signal reduces in the 
same proportion, thus keeping the 
actual gain at slightly less than unity. 
This action continues to a point where 
the feedback is 0 db—at progressively 
higher frequencies, the flat response 
can no longer be held by means of 
feedback, and the response curve 
therefore falls off. This action is shown 
graphically in figure 3. The solid line 
shows the response with feedback, 
while the dotted line shows the re-
sponse without feedback. 

A simplified schematic  of the 
CLR-6 is shown in figure 4. The two-
stage video amplifier ( which deter-
mines the overall frequency response) 
is broadbanded except for the plate-
circuit components of the second 
stage—thus, the frequency response 
is mainly determined by the time 
constant of RE, and CF. The value of 
feedback can be varied ( and there-
fore, to a limited degree, the fre-
quency response) by varying the size 
of R. which is field adjusted so that 

a particular repeater will meet the 
specified bandwidth requirements. 

In the discussion of repeater gain 
and  frequency-response  character-
istics, it should be noted that the 
expressions apply only to the modu-
lation. R-f gain and r-f signal level 
represent an entirely different prob-
lem. It has been found that a 15-db 
signal-to-noise ratio is adequate for 
communication. In practice, Philco 
systems incorporate a 30-db fading 
margin, which means that under nor-
mal conditions ( no fade), the r-f 
signal level is at least 45 db above 
the receiver noise level. 

Another point of interest in the 
CLR-6 is the use of the cascode input 
amplifier. This circuit has the gain 
of a pentode with the noise figure of 
a triode. Since this circuit is the 
major factor in noise-figure deter-
mination, the use of the cascode cir-
cuit  provides  a very  desirable 
improvement in noise figure. 

SERVO SYSTEM 

The servo system shown in figure 
5 forms a second, minor, feedback 
loop within the CLR-6. This circuit 
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Figure 5. Block Diagram ot Servo-Amplifier Feedback Loop 

bridges the video-amplifier system, 
as far as frequency control is con-
cerned. RI and C1 act as an integrator 
which allows only the d-c component 
of the discriminator output to be ap-
plied to the servo system. Of course, 
the d-c component will be present 
only when the r-f oscillator is not 
exactly on frequency ( average con-
ditions). The d.c. applied to the con-
verter is converted to a 60-c.p.s. 
pulsating signal which has a reference 
phase determined by the reference 
voltage which actuates the converter. 
The converter output is amplified 
and used to drive one phase winding 
of a two-phase motor (the other 
phase winding is supplied by the 
reference voltage).  Thus,  if the 
average discriminator output is posi-
tive, the two-phase motor will turn 
in one direction, while a negative 
output will cause reversed rotation. 
Of course, if the r-f oscillator is on 
frequency, the average discriminator 
output is zero, and the motor will 
not be excited. The motor is me-
chanically linked to the klystron-
repeller-voltage control ( see figure 4) 
in such a manner that the motor will 
run until the average discriminator 
output is zero, which means that it 
runs until the r-f oscillator is on 
frequency. 

The importance of this automatic-

frequency-control function is obvious 
when one considers the number of 
components in the video amplifier. 
If any component were to change 
value, the d-c output level would 
change and the r-f oscillator would 
be driven off frequency. The servo 
amplifier has no critical parts because 
it functions at the 60-c.p.s. rate. Thus, 
the critical a-f-c function is handled 
in a very stable manner, and each 
repeater will follow any drift tend-
ency that might originate at the in-
sertion terminal. 

Late models of the CLR-6 are 
using a simplified type of servo sys-
tem. The converter and amplifiers 
h we been replaced by a relay system 
consisting of a sensitive, meter-type 
relay and a reset relay. The sensitive 
relay has its armature centered be-
tween two contacts which switch the 
power required to drive a small re-
versible motor ( from this point on, 
the action is as was described above). 
This relay is actuated by the dis-
criminator output—when the average 
d-c output from the discriminator ex-
ceeds 0.05 volt, the relay will swing 
to one side or the other depending 
upon the polarity of the voltage. This 
causes the motor to run in a direction 
that will tune the klystron for the 
proper i.f. After a suitable time inter-
val, as determined by an RC time 
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constant, the second relay terminates 
motor rotation and resets the sensitive 
relay. If balance is not restored, 
the system will recycle the required 
number of times until the discrim-
inator average output is less than 0.05 
volt. 

CONCLUSION 

The feedback actions which have 
been described provide several major 
advantages not found in ordinary 
systems. These advantages are: 

1. Each repeater has an extremely 
low value of distortion; thus, a 
large number of repeaters can 
be cascaded. 

2. The large value of feedback 
tends to minimize microphonic 
tendencies of any stage in the 
system to a point where they 
present no problem at all. 

3. By the same reasoning, noise 
produced in an individual stage 
will also be suppressed. 

4. The frequency response of any 
individual repeater can be pre-
cisely adjusted by a slight varia-
tion in the value of feedback. 

5. The servo-amplifier feedback 
system provides rigid control of 
r-f output frequency in terms 
of r-f input frequency. 

•:. •:* •:. 

ERRATA 

July issue, last paragraph on page 31 should read: 
"A new 2C39 should exhibit 18,000 ;Amhos, . . ." 
Same issue, page 32—The byline should read: 

"LCDR Weber, Electronics Officer, USS Sicily, and 
0. E. Adams, Philco Field Engineer." 

,(' 

What's Your Answer? 

Here is a practical problem as submitted by George 
A. Brown, Philco Field Engineer. 

A 100-wire armored cable has been laid across the 
bottom of a river. A cableman is confronted with the 
task of identifying and labeling each wire at both 
ends of the cable. However, he has only a ringer 
(battery and buzzer), and he is allowed only one 
round trip across the river. How did he do it? 

( Solution next month) 

..1 
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INTRODUCTION TO 
TRANSISTOR ELECTRONICS 

Installment III 
Classical Background for the Free-Electron View 

By John Buchanan 
Technical Publi:ations Deal. 

S. continuation of the discussion of the methods and 
theories of classical physics as applied to systems of 

ideal particles. 

SYNOPSIS 

This is the third of a series of 
articles covering the fundamentals of 
transistor electronics. The first article 
of the series, which appeared in the 
January, 1952, issue of the BULLE-
TIN, covered the atomic view of 
solids. This view maintains the par-
ticle nature of the electron, but intro-
duces the quantum to restrict the 
electron's motion within the atom to 
definite shells, or energy levels. Each 
shell, in turn, permits a finite number 
of planetary orbits, or electron states, 
at the shell's respective energy level. 
Outside an atom, an electron is as-
sumed to be completely free to move 
about with random thermal motions. 
Electronic conduction is visualized 

as a drift of free electrons, or as a 
drift of empty electron energy states 
(electron holes), or as a combination 
of the two. 

The second article, published in the 
April issue, laid the groundwork for 
the more involved free-electron view 
of solids. The first elements of the 
kinetic theory of gases were presented 
as a point for beginning the transition 
from the classical laws of ideal gases 
to the wave-mechanical laws of elec-
tron gases. 

The current article continues the 
discussion of the methods and theories 
of classical physics as applied to sys-
tems of ideal particles. 

NE W CONCEPTS ON THE HORIZON 

Four concepts, each peculiar to our 
normal habits, will meet as one in the 
wave mechanics of free electrons. The 
first involves the loss of individuality 
among the electrons—instead of think-
ing of electrons as particles, we will 
think of them as wave functions. The 
second way of thinking, however, re-
covers somewhat the identity of an 
electron, by permitting us to think 
of it as a particle in an imaginary 

phase space. The third concept has 
the broader and more subtle impli-
cations of a philosophical point of 
view, for it involves the entrance of 
chance in the scenes normally played 
by mechanical cause and effect. The 
fourth turn in our thinking will be 
an unbending of the mind sufficient 
to accept the electron simultaneously 
as both a particle and a wave, or at 
least as a quantity which can exhibit 
either type of property. 
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Except for the fourth, these modes 
of thought do not mark a drastic 
break with the concepts of classical 
mechanics. Rather they are essentially 
extensions of the methods and points 
of view arising from the earlier ap-
proaches to the problems of statistical 
mechanics. However, inasmuch as 
these concepts may be new to us, 
their qualitative meanings may float 
about unanchored unless we retrace 
their lineage to the concrete particles 
of common-sense physics. 

This problem does not arise in the 
atomic view of solids, for we are 
never called upon to abandon the 
electron as a particle, and without 
the clumsiness of special luggage, we 
are immediately free to follow the 
electron's escapades with the quan-
tum. To be sure, these patterns of 
particle behavior answer only to 
mathematical equations, but there is 
always a little body along to act out 
the part on our mental stage. Not so, 
in the free-electron view—here the 
particle disappears, and the function 
must go it alone as something of a 
sound effect off stage. Reason, how-
ever, revolts at accepting variable 
physical properties without a fixture 
of some sort to pin them upon. On 
this account we risk an overemphasis 
of the concept of degree of freedom, 
for when the individual particles dis-
appear, these degrees of freedom, 
acting as stand-ins, can mark their 
places on the stage. They too, may 
seem to vanish, but in one costume 
or another they can always be 
discovered. 

It is thus that our present discus-
sion will center upon the transition 
from thinking in terms of particles 
to thinking in terms of degrees of 
freedom. In the process, the degrees 
of freedom will lead us along a path 
through various spaces, including 
phase space, that are inhabited by 
ideal molecules, and will introduce 

us to those functions, including wave 
functions, that govern the behavior 
of the molecules. At the end of the 
journey, a practical application of the 
concept of degrees of freedom is at-
tempted, utilizing free electrons on 
the assumption that the atomic theory 
of solids is correct. However, when 
this is done, the degrees of freedom 
apparently vanish, and instead we 
find the quantum in the wings, wait-
ing for his cue to make a triumphant 
entrance once again. At this point the 
present article ends. 

STARTING OUT WITH A 
DEGREE OF FREEDOM 

It seems that the term degree of 
freedom was originally adopted to 
express a functional characteristic in 
the field of statistics. In determining 
a statistical estimate, the expression 
"number of degrees of freedom" 
means the number of variables which 
are independent of each other in a 
random sampling. For example, if a 
deck of cards were to be dealt 
randomly into four equal piles, three 
of the piles could be partially inde-
pendent of each other; however, no 
choice arises for the fourth pile—it 
must consist of the remaining cards. 
Suppose we are tempted to test for 
the presence of psychic influences on 
the deals, and thus wish to compare 
the empirical with the theoretical 
probabilities. If it is desired to esti-
mate the expectation of a particular 
distribution, say, of the aces and 
kings, by observing a large number 
of random deals, then the distribution 
only for three of the piles needs to 
be considered. Out of four variables, 
only those three that are independent, 
or free, enter into the statistical esti-
mate. Thus, the distribution-probabil-
ity function can be said to have three 
degrees of freedom. 

We now borrow this term, and 
apply it to all mathematical func-

18 



tions.° In the example above, note 
that the degrees of freedom have a 
twofold meaning. 

Not only do they define the number 
of independent variables, but, equal-
ly, they define the minimum number 
of variables that must be determined 
before a particular distribution of the 
cards can be known. Each of these 
interpretations  implies the  other. 
Thus, when degrees of freedom is 
used as a general term for describing 
any function, it refers to the number 
of independent variables the function 
contains, and likewise the minimum 
number of conditions necessary to 
give the function a fixed value. 

Suppose a function is equal to 
x + y, where x and y represent 
quantities of atoms, amperes, apples, 
or anything. If x and y are independ-
ent of each other, in any way, then 
the function has two degrees of free-
dom in which to vary. On the other 
hand, if y is constant, or is, itself, a 
function of x alone, then there is but 
one degree of freedom. For instance, 
ify =x +5,thenx +y =x +x 
+ 5 = 2x + 5, which obviously has 
only the one independent variable, x. 

Now that we have taken the "de-
gree of freedom" from its native field 
of statistics, and placed it in the serv-
ice of independent variables every-
where, the next step is to see how it 
performs its duties in the special case 
of geometrical functions. 

FINDING POSITIONS WITH A 
DEGREE OF FREEDOM 

Let us suppose that the particular 
function is to define the position of 
a point. In all cases, a convenient 
point of origin must be chosen as a 
zero reference. With the origin fixed, 
a system of measuring must be agreed 
upon that will give both the distance 
and the direction of a point from the 
origin. If a point is restricted to a 
given line (straight or curved), only 
one measurement is necessary, and 
thus there is only one degree of free-
dom. If a point is restricted to a 
given surface (plane or curved), two 
measurements are necessary, and thus 
there are two degrees of freedom. 
And for a point in space, three meas-
urements are necessary, so that the 
position function for such a point has 
three degrees of freedom. 

Each measurement, as well as each 
predetermined dimension, is called a 
coordinate, and the point is defined 
when all its coordinates are stated 
in a conventional sequence—e.g., point 
( 4, 5, -3). 
Theoretically, there are an un-

limited number of systems for meas-
uring a position in space. We shall 
discuss the two most commonly used. 
One employs the rectangular co-
ordinates, and the other uses polar 
coordinates. In the rectangular sys-
tem, the measurements are made 
along three perpendicular axes, called 
the X, Y, and Z axes, which represent 

• The word function, when used mathe-
matically, has a way of cloaking its 
meaning in mysterious shrouds. It simply 
means a quantity which can be deter-
mined when definite values are assigned 
to certain other quantities. These other 
quantities are the independent variables 
of the function. Now the variables do not 
necessarily cause, in a physical sense, the 
function to take on a specific value. As 
likely as not they may be the effects of 
the function itself, or of totally external 

causes. For instance, the Ohm's Law 
equation, R = V/I, reveals R as a re-
sistance function of V and I. This fact 
can be symbolized in a general way as 
R ( V, I). Physically, however, we con-
sider the resistance, R, to be a property 
of the conductor itself, and normally 
not actually dependent upon the voltage 
or current. On the other hand, the current 
function, I (V. R), equal to V/R, is 
usually considered dependent physically, 
as well as mathematically, upon V and R. 

19 



the three dimensions of space. If a 
rectangular box is drawn with its edges 
parallel to the three axes as shown in 
figure IC, so that the origin is at one 
corner and point P is at the corner di-
agonally opposite, then the coordinates 
that define the point are the lengths 
and directions of the three dimen-
sions of the box. The distance, r, of 
the point from the origin is con-
sidered positive,  and is equal to 
J x2 +  y2 +  z2, where x, y, and z 
are the coordinates of the point. ( In 
figure 1A, y and z are fixed at zero, 
and in figure 1B, z is zero.) Actually, 
r involves only one degree of free-
dom, since it can be determined by 
one measurement as well as any of 
its coordinates. The additional de-
grees of freedom are required to fix 
the direction. This fact becomes more 
apparent on examination of the sys-
tem of polar coordinates, as shown 
in figure 2. 

The polar system uses the X, Y, 
and Z axes, but only as reference 
lines for measuring of directions and 
not distances. The polar r, like the 
rectangular r, represents the distance 
from the origin to the point. It dif-
fers, however, by being a primary 
coordinate itself, with both magnitude 
and sign,* rather than simply an un-
directed resultant of the other co-
ordinates. In figure 2A, r is constant, 
and the only degree of freedom is 
the direction, represented by angle 
0 which r makes with the positive X 
axis. The point is defined, however, 
by both the constant coordinate and 
the variable coordinate; hence P (10, 
17/4), or P ( 10, 45° ), depending upon 
whether 0 is measured in radians or 
degrees, respectively. If 0 were pre-
determined, and only r were per-

• The polar r, called the radius vector, may 
assume positive or negative values. A 
negative r would have the same magni-
tude as its positive value, but an opposite 
direction. 

-5 -4 -3 -2 --I  0  i 

i  4 I 
2 3 • 5 

0(41 

(CI 

Figure 1. Rectangular-Coordinate System 
for Measuring Positions 

mitted to vary, then the polar system 
would be identical with the rectang-
ular system of figure 1A. Both r and 
0 are variable in figure 2B, giving 
two degrees of freedom to the posi-
tion function in the XY plane. Figure 
2C shows the polar, or, more specif-
ically, the spherical, coordinates for 
measuring a point position in space. 
Each of the three variables, r, 0, and 
0, are degrees of freedom for the 
position function. The measurement 
of 0 defines the angle from the 
positive Z axis to r. 
Note that 0 still applies to the XY 
plane, but is now the angle from the 
positive X axis to the projection of r 
on the XY plane. In both the rec-
tangular and polar systems of co-
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Figure 2. Polar-Coordinate System for 
Measuring Positions 

ordinates, point P is completely de-
fined by the vector OP (not to be 
confused with r, which gives the dis-
tance but not the angular direction). 

So far, the degrees of freedom of 
a single point have been our concern. 
If the position function of a whole 
system of points, representing, say, 
the molecules of a gas at a given in-
stant, is desired, three coordinates 
will be required for each point. As 
in the case of the single point, the 
number of degrees of freedom will 
equal the total number of independ-

ent variables. Mathematically, the 
entire system may be treated as a 
single position. Thus, the function qz 
(x1, X2, X3, • • • , 3C!•; ), ClY ( yi, Y21 y3, • • • 
yN), qz ( z1, z3, z3, . . . zN ), would de-
fine the position of a system of N 
molecules in three-dimensional space. 
The rectangular coordinates (x1, yi, 
z1) are those for the first molecule, 
and so on, to ( xN, yN, zN ) for the Nth 
molecule. The terms qz (x1, . . xx ), 
qv ( y 1. . . y,), and a  ( Z -1, • • •, ZN ), 

may be abbreviated to qz, qy, and qz, 
which symbolizes the three position 
coordinates of the system as a whole. 
If we assume that each molecule has 
three independent coordinates, then 
the system position function has 3N 
degrees of freedom. If N = 1, then 
the position coordinates reduce to 
those of figure 1C. 

IN STRANGE SPACES WITH A 
DEGREE OF FREEDOM 

The degree of freedom slips with 
ease from the position functions to 
those that define the behavior of mov-
ing bodies. Fundamentally, its role 
does not change, but its costumes of 
motion are attractive to the mind's 
eye, for these permit a description 
in physical terms. 
Suppose we wished to define the 

velocity of a moving point. The 
methods for representing velocity are 
identical with those for representing 
position; in fact, a given velocity may 
actually be conceived as a fixed point 
in an imaginary velocity space. For 
example, figure 1 would illustrate 
velocity if the position axes ( X, Y, Z) 
were changed to represent velocity 
axes (X, Y, i), ° and the position 
coordinates ( x, y, z) were changed 

° The dot notation is commonly used to 
represent a change per interval of time. 
For example,  means a change of posi-
tion in the X direction per change of 
time, and 'X means a change in k per 
change of time. 
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to velocity coordinates (  i). The 
origin in this case would represent 
zero velocity, rather than a reference 
point in geometrical space. The ve-
locity vector, OV, or simply V, would 
point in the direction of motion, and 
its length, c =  +  y2 -I- e, 
would be the speed. In this manner 
we consider a velocity function, 
(ic,  ), as defining a point in 

velocity space. Similarly, the accelera-
tion of a point, which is the change 
of its velocity per change in time, 
can be treated as a point in an imagi-
nary acceleration space. If the velocity 
or acceleration were multiplied by an 
associated mass, the point could 
represent, respectively, a position in 
momentum space or a position in force 
space. 

The number of degrees of freedom 
for the functions involving mc don 
once again equal the minimum num-
ber of variables required to define a 
particular function. Now, in number, 
these variables are the same as those 
of corresponding position functions, 
for the number of ways in which a 
body is free to move is the same, re-
gardless of whether we are interested 
in "photographing" its position, its 
rate of change of position, its rate of 
change of rate of change of position, 
or some other relationship. In other 
words, the degrees of freedom are 
the same for both the static and the 
dynamic quantities which describe 
the state of a body. Differences arise 
in the nature of the variables, rather 
than in their number, with the funda-
mental distinction being that the 
dynamic functions include the ele-
ment of time, whereas the static 
functions do not. 

To describe the state of an ideal 
molecule, its position, velocity, and 
mass must be defined for some given 
instant. Assuming the mass to be con-
stant, it may be combined with the 

velocity, and the two quantities ex-
pressed jointly as my, the momentum. 
In this case, the phase ( state ) of the 
molecule is defined by a function with 
six degrees of freedom—three for 
position, and three for momentum. 
For this purpose, we postulate the 
existence of an imaginary phase space 
having six dimensions. A conceptual 
coordinate system for this space re-
quires a point of origin at the inter-
section of six mutually perpendicular 
axes. A point darting back and forth 
in this space would be the con-
tinuously changing state of our mole-
cule. Other points could represent the 
states of other ideal molecules. If it 
is desired to represent the state of a 
whole system of N molecules as a 
single point, then a phase space of 
6N dimensions may be conceived. 
The phase function would then re-
quire 6N coordinates-3N for posi-
tion, and 3N for momentum. Since the 
particular system of coordinates that 
might be selected would not change 
the number of variables, the coordi-
nates may be represented by the 
general symbols q and p, position and 
momentum, respectively. Thus, P (q1, 
q2,  q4, • • •, q3s, pi, p2, p3, P4, • • •, 

133N ) would be a position function in 
phase space denoted by generalized 
cOordinates, which are so named be-
cause they do not specify a particular 
reference system of measuring. 

The pursuit of our subject will not 
lead into an extended journey through 
phase space. However, the six-dimen-
sional space will prove more than an 
interesting fantasy when we return, 
with the quantum and electron, for 
here these two little demons behave 
as if they were in their true abode, 
with our conventional space but a 
curtained window for peeping in. At 
the present, however, we continue our 
adventures with the degree of free-
dom, for it is now at the door of the 
principle of equipartition of energy-
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and this is where it assumes its phy-
sical airs. 

DEGREES OF FREEDOM 
THAT PARTITION THE ENERGY 

First, we recall that the equiparti-
tion principle is a statistical law 
which applies as an average only 
when a large number of molecules 
are considered collectively. The law 
declares that at thermal equilibrium 
the thermal energy of an average 
molecule will be equally divided 
among its different degrees of free-
dom of motion. We shall see that dif-
ferent types of molecules have dif-
ferent degrees of freedom of motion. 
For instance, an ideal monatomic 
molecule has three degrees of free-
dom of motion, and an ideal, rigid, 
diatomic molecule has five. Let us 
assume that a system at thermal equi-
librium contains both monatomic and 
diatomic molecules. According to the 
equipartition principle, the average 
molecule of each type will have the 
same quantity of energy—which we 
shall call one energy unit, and to which 
we shall assign the symbol E—for 
each degree of freedom of motion. 
Thus, the average monatomic mole-
cule will have an energy equal to 3E, 
and the average diatomic molecule 
will have an energy of 5E. The 
equipartition of energy principle, 
then, does not mean that the average 
molecules of all types have the same 
energy per molecule, but, rather, the 
same energy per degree of freedom 
of motion. In general, the more com-
plex the molecule, the more its de-
grees of freedom, and hence the 
greater its total energy. If all the 
molecules within a system at equi-
librium have the same degrees of free-
dom, regardless of whether they have 
the same mass, the total thermal 
energy of the system may be assumed 
to be divided equally into as many 
parts as there are degrees of freedom 

of motion per molecule. Thus the 
total thermal energy of an ideal mon-
atomic gas is divided into three equal 
components, whereas that of an ideal 
diatomic gas is divided into five. In 
a mixture of gases, however, the 
simplicity may vanish, for a proper 
weighting must be made for the num-
ber of molecules and the degrees of 
freedom of each type. In this event, 
the equipartition of energy principle 
is not directly applicable to a few 
degrees of freedom for the system as 
a whole, but applies only at the 
microscopic level. To estimate the 
thermal energy, as well as its dis-
tribution, we first must determine the 
total number of degrees of freedom 
of motion of all the molecules. Or, 
conversely, if we measure the heat 
capacity of a system, it should tell us 
something about the nature of the 
particles that compose the system. 

There are three types of motion 
by which a molecule may exhibit 
thermal energy—translational, rota-
tional, and vibrational. Now a mole-
cule composed of several atoms can 
tumble about with vibrational motion 
as complex as that of a tangle of 
bed springs tossed in the air. How-
ever, by applying in turn the con-
cepts of center of mass; translational, 
rotational, and vibrational degrees of 
freedom;  and  the  principle  of 
equipartition of energy, we can sys-
tematically arrive at a theory of what 
the average thermal energy of even 
the most complex molecule should be 
at a given temperature. 

THE CENTER OF MASS AND 
MOLECULAR MOTION 

In order to isolate the translational 
energy from the rotational and vibra-
tional components, we select some 
reference position within a molecule, 
and assume that all the mass is con-
centrated at that point. The trans-
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lational energy we define to be 3 mv2, 
where m = the total mass and v = 
the velocity of the point at a given 
instant. The problem is greatly sim-
plified if we choose a point that does 
not wobble with the rotation or in-
ternal vibration of the molecule, nor 
change its speed or direction unless 
acted upon by external forces. There 
is only one point in a body that will 
meet this condition, and that is the 
center of mass—also called the center 
of gravity. 

The center of mass is the point at 
which a body theoretically can be 
pivoted in a gravitational field and 
be perfectly balanced regardless of 
the angle at which it is supported. 
We say "theoretically" for the center 
of mass may not lie within the body. 
For instance, the center of mass of 
the balanced weights shown in figure 
3A is external to the system itself. 

Equilibrium is reached when the up-
ward force exerted by the pivot is in 
a direction that passes through the 
center of mass. Adding the extra 
weight to arm A shifts the center 
of mass toward A, and the angle arms 
will rotate counterclockwise in the 
plane of the paper until the center of 
mass is again directly beneath the 
point of suspension. 

The rotation of a free body is 
always about an axis that passes 
through its center of mass; thus, this 
point is unaffected by free rotation. 
Figure 3B shows three possible axes 
of rotation for a football. The ball, 
however, can rotate equally freely 
about any other axis that passes 
through the center of mass. The flight 
of a football's center of mass is as 
smooth as that of a baseball's, even 
though the football may appear to 
be moving in a wobbly spiral. If the 
ball were tossed straight upward with 
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varying  angles  of rotation,  and 
allowed to fall on a frictionless sur-
face, its rebounds would also be 
straight upward (even though its 
rotation might be affected), for the 
center of mass could not veer from 
its vertical line in the absence of ex-
ternal horizontal forces. Thus, by 
assuming all the mass to be concen-
trated at its center, the translational 
motion of any object may be treated 
as simply as that of an ideal mon-
atomic molecule, regardless of what 
shape or angle of rotation the object 
may have. 

The center of mass is also a point 
independent of the purely internal 
forces of a system—whether the sys-
tem is composed of one molecule or 
trillions. This is because every force 
has its equal and opposite reaction. 
When these are completely confined 
within a system, there can be no net 
force to act upon the mass. Thus, 
the trajectory of the center of mass 
of a projectile ( see figure 3C) is not 
altered in the event of the projectile's 
explosion in mid-air—assuming the 
air resistance to be negligible. Like-
wise, a man on a frictionless surface 
would be helpless in trying to change 
the horizontal coordinates of his 
center of mass, and even his most 
inspired acrobatics would fall flat in 
this attempt. The same would be true 
of a system of a hundred people on 
the frictionless surface, even if a plat-
form of planking were provided for 
their maneuvers. In this latter case, 
the mass of the platform would be 
part of the system; but neither the 
ticking of a watch, nor the most im-
pulsive caper could take nature by 
surprise, and the horizontal position 
of the system's center of mass would 
never fluctuate. If the frictionless sur-
face is removed, leaving the system 
suspended in space, not even the 
vertical coordinate of the center of 
mass can be changed. In a like man-

ner, a molecular center of mass is 
independent of the free vibrations 
among the atoms which constitute 
the molecule, and thus such a center 
of mass serves as a point for concen-
trating the translational energy, while 
excluding the internal vibrational 
energy, as well as the rotational 
energy. 

DEGREES OF FREEDOM 
OF TRANSLATIONAL MOTION 

We now wish to subdivide a mole-
cule's thermal energy according to the 
degrees of freedom of each kind of 
motion. Figure 4A illustrates how the 
translational energy of a particle may 
be conceived mathematically as being 
divided into three directions of mo-
tion. The vector, however, represents 
the velocity of the center of mass, 
and not energy. The energy is % mv2. 
However, since 
v2 = jE2 k2 i2 

then %mv2 = m( x2 k2 

=  znic2+ 3rriy2+  me 

The last three terms divide the energy 
according to the three degrees of 
freedom of translation. At thermal 
equilibrium these are equal on the 
average, so that, for the average mole-
cule, 
%mv 2 = 3 2 =  

my2 = % mi2. 

DEGREES OF FREEDOM 
OF ROTATIONAL MOTION 

Figure 4B illustrates the rotational 
energy of a rigid body divided ac-
cording to the three degrees of free-
dom of angular rotation. The origin 
is the center of mass, and the vectors 
coincide with the axes of rotation— 
their length being proportional to the 

25 
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Figure 4. A. Division of Translational Energy into Three Degrees of Freedom 
B. Division of Rotational Energy into Three Degrees of Freedom 

angular velocity ( radians, or degrees, 
per unit time), and their direction 
indicating the direction of rotation. 
The direction of rotation is the same 
as that in which a right-hand screw 
would be rotated to advance it in 
the direction of the vector. Though 
vectors of angular velocity are at 
right angles to their respective planes 
of rotation, they may be added in 
the same manner as other vectors, 
and their resultant will represent the 
magnitude and direction of the re-
sultant angular velocity. Conversely, 
the vector of any angular velocity can 
be resolved into rectangular com-
ponents. The reference axes for rota-
tion, however, normally do not remain 
fixed in space, as do those used to 
describe translational motion; rather, 
they are fixed with reference to the 
body, and thus follow its rotational 
as well as its translational movements. 
For instance, a shaft can be revolving 
about an axis directed along its length, 
but if it is simultaneously being 
turned to point in another direction, 
then obviously the longitudinal axis 
follows this second rotation. 
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Where the angular velocity, cu, ° 
is the rotational analogue of the trans-
lational velocity, v, the moment of 
inertia, ° ° I, is the rotational analogue 
of the translational mass, m. How-
ever, unlike m, the moment of inertia 
of a body varies with the position 
and direction of the axis of rotation. 
A slender rod, for example, would 
offer less inertia on being rolled be-
tween the fingers, than when twirled 
like a baton. The moments of inertia, 
I, Ix, I„ and Iz, will all be equal only 
if the body has spherical symmetry. 
The principle of equipartition of 

No= 2 ir f = the number of radians per 
second, where f = the number of cycles 
per second. 

When a rigid body rotates about . an 
axis, regardless of whether the axis passes 
through or is entirely external to the 
body, every point in the body ( except 
those that lie on the axis) moves in the 
path of a circle about the axis. If r is 
the radius of the circle described by a 
small element of mass m, mr2 is the 
moment of inertia of in about the axis. 
The total moment of inertia, I, about 
the axis is the sum of the moments of 
inertia of all the elements of mass. 



energy applies, nevertheless, to the 
degrees of freedom of rotation. Thus, 
the molecular axes having the smallest 
moments of inertia should, on the 
average, have the greatest angular 
velocities. The total rotational energy 

% I w 2 =  %  w .2   

For the average molecule, 

Ji I w 2 =  % I.,4 2, etc. 

If the rotational energy of a body 
is to be changed, a turning force, or 
torque, must be exerted about an 
axis of rotation. This cannot be ac-
complished by a force that is directed 
so that it passes through the axis, 
whatever the angle, for a torque im-
plies a force with leverage about an 
axis. Now our definition of an ideal 
monatomic molecule described it as 
a particle having a perfectly spherical 
and frictionless outer surface. The 
frictionless surface prevents the possi-
bility of a component of force at 
right angles to the radius of the 
sphere. All collision forces on such a 
particle are necessarily directed to-
ward its center of mass and hence 
toward every possible axis of free 
rotation, since they all pass through 
the center of mass. 

Any rotational energy that might 
be present would exist as an inherent 
property of the particle, and not be 
subject to change. As an example, 
suppose that billiard balls were ideal 
molecules. Instead of rolling, they 
would slide about like caroms, and 
their collisions with one another 
would affect only the translational 
velocities. The rotational velocities, if 
any, would remain unchanged—even 
if we should pick up a ball, we could 
neither start nor stop its spinning. To 

• This equation strictly holds only for cer-
tain reference axes, called the principal 
axes of inertia. 

**Actually, atomic nuclei, as well as elec-

inspect both sides of a nonspinning 
ball held in the hand, the observer 
himself would have to turn around. 
Ideal monatomic molecules, then, do 
not have rotational degrees of free-
dom. Neither do actual monatomic 
molecules such as helium, neon, and 
argon. One might expect their elec-
tron shells to rotate, if it were not 
for the fact that this would require 
electror  orbits forbidden by the 
quantum. Because of the quantum, 
however, all atoms may be considered 
as frictionless spheres, or better, as 
merely dimensionless points of mass, 
for none has rotational degrees of 
freedom about its own nucleus—at 
least not from a thermal point of 
view at ordinary temperatures. The 
free rotation of a particle requires 
a combination of at least two atoms, 
and an axis of rotation that passes 
through their combined center of 
mass, but is external to at least one 
of the nuclei. This latter requirement 
is illustrated in the following example. 
Figure 5 shows three types of 

molecules, classified according to 
their rotational degrees of freedom. 
Figure 5A is simply the equivalent 
mass point of a monatomic molecule 
which, as explained above, has no 
rotational degrees of freedom." Di-
atomic molecules, such as H2, 02, etc., 
have two rotational degrees of free-
dom, as shown at the left in figure 
5B. The distance between the mass 
points is approximately 10' cm., and 
the center of mass is at the midway 
point of the line of centers. The two 
axes of rotation are perpendicular to 
each other and to the line of centers. 
A molecule of three or more atoms 
also has only two axes of rotation if 
all the mass points lie in the same 
straight line. However, if one of the 

trans, appear to spin about their centers 
of mass. However, both nuclear and 
electron spins are fixed by the quantum, 
and hence are not free variables of thermal 
energy. 
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Figure 5. Rotational Degrees of Freedon 
of (A) Monatomic Molecule, 
(B) Diatomic Molecule, and 
(C) Polyatomic Molecule 

nuclear mass points of a polyatomic 
molecule is not collinear with the 
other mass points, the molecule will 
have three axes of rotation, and hence 
three rotational degrees of freedom, 
as illustrated in figure 5C. 

From the foregoing discussion we 
conclude that a rigid gas molecule— 
that is, a gas molecule with no internal 
vibrational energy—may have a total 
of 3, 5, or 6 degrees of freedom of 
motion, depending upon whether the 
molecule is respectively monatomic, 
diatomic,  or noncollinearly poly-
atomic. Three of the degrees of free-
dom in each instance are those of 
translational motion, and the remain-
ing degrees of freedom are those of 
rotational motion. Note that six de-

grees of freedom of motion is the 
maximum number for a rigid gas 
molecule, whether the molecule com-
prises three atoms, or three hundred. 

DEGREES OF FREEDOM 

OF VIBRATIONAL MOTION 

If a gas molecule is not rigid, new 
degrees of freedom must be added 
to account for vibrational motion. The 
actual modes of vibration within large 
molecules can be quite complex, but 
the essential problem is to determine 
the number of these modes, and their 
distribution of energy. Remember, 
that to completely define at a given 
instant the motion of a mass point in 
space, three coordinates are required. 
To completely define at a given in-
stant the motion of N mass points, 
3N coordinates are required. If all 
these coordinates are independently 
variable, the system will have 3N de-
grees of freedom in which to move. 
Now consider a single gas molecule 
composed of N noncollinear atoms, 
all of which are free to vibrate. There 
will be a total of 3N degrees of free-
dom of motion. Of these, three will 
be translational, and three will be 
rotational, leaving 3N — 6 degrees of 
freedom for vibrational motion. If all 
the N atoms were collinear, there 
would be only two rotational degrees 
of freedom, and hence 3N — 5 vibra-
tional degrees of freedom. In other 
words, one additional mode of vibra-
tion is possible if all the atoms are 
arranged in a single, straight line. 

In a manner similar to the way in 
which the velocity of a molecule is 
divided into components according to 
a system of reference axes, the vibra-
tional motion may also be described. 
Here, again, the choice of a system of 
reference is simply one of con-
venience. Since all the atoms in a 
molecule are coupled to each other, 
a gain in energy by any one is soon 
spread throughout the molecule. For 
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this reason, the principle components 
of vibration, equal to the number of 
vibrational degrees of freedom, are 
usually selected so that each is a 
vibrational mode involving all the 
atoms in the molecule. ( Even though 
a vibrational mode may apply to the 
molecule as a whole, a particularly 
strong valence bond may effectively 
control its frequency. For example, 
a hydrogen-carbon, or hydrogen-
oxygen bond has a characteristic 
frequency of approximately 9 x 1013 
cycles per second, changing but little 
with the size and shape of the rest 
of the molecule.) These principal 
modes are called the normal vibra-
tions. A normal vibration is recog-
nized as one in which the atoms 
oscillate in phase—that is, the atoms 
pass through their equilibrium posi-
tions simultaneously, and reach their 
peak displacements simultaneously. 
Each normal vibration has its charac-
teristic frequency. If two or more 
normal vibrations of the same mole-
cule have the same frequency, they 
are  called  degenerate  vibrations. 
Later, we shall see that the term de-
generate carries a broader implication 
when applied to molecular activities. 

Normal vibrations may be divided 
into two types: valence vibrations, 
and deformation vibrations. Valence 
vibrations are extensional (stretching) 
oscillations of atoms in the direction 
of their valence bonds. Deformation 
vibrations are flexural  ( bending ) 
oscillations of atoms at right angles 
to their valence bonds. 

It can be shown that a molecule of 
N atoms, having 3N — 6 vibrations, 
will have N — 1 valence vibrations, 
with the remaining normal vibrations 
being of the deformation type. 

Figures 6, 7, 8, and 9 show the 
normal vibrations of a few of the 
simpler molecules. A diatomic mole-
cule, as shown in figure 6, has but 

VALENCE  VIBRATION  ( I ) 

—  — --- 0 

4-

Figure 6. Normal Vibration of a 
Diatomic Molecule 

one. vibrational degree of freedom— 
a valence vibration. A linear, triatomic 
molecule, such as carbon dioxide, 
CO2, has 3N — 5 = 4 vibrational 
degrees of freedom, as shown in figure 
7. Of these, N — 1 = 2 are valence 
vibrations.  The  two  deformation 
vibrations are simply the two com-
ponents of the flexural oscillation 
shown in figure 7C. (One component 
is in the plane of the paper, with the 
other component perpendicular to the 
plane of the paper.) Since these can 
be considered as similar components 
of a single, combined mode of oscilla-
tion, the two deformation modes have 
the same frequency, and hence are 
classed as degenerate. Figure 8 shows 
the 3N — 6 = 3 vibrational modes 
of a non-linear triatomic molecule, 
such as the water molecule, H20. 
There are two valence vibrations 
( figures 8A and 8B), as in the case 
of the linear triatomic molecule, but 
only  one  deformation  vibration 
(figure 8C). A second deformation 
vibration is effectively traded for a 

Figure 7. Normal Vibrations of a 
Linear Triatomic Molecule 
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VALENCE 

VIBRATIONS(2) 

Figure 8. Normal Vibrations of a 
Non-Linear Triatomic Molecule 

third rotational degree of freedom. 
Figure 9 shows the 3N — 5 = 7 
vibrations of a linear molecule with 
four atoms. Of these, N — 1 = 3 are 
valence vibrations. This leaves four 
vibrations for the deformation modes, 
two of which are the perpendicular 
components of the oscillations il-
lustrated in figures 9D and 9E. 

It should be remembered that the 
vibrational motions are so propor-
tioned that they do not disturb the 
center of mass, nor produce a net 
angular momentum. For example, in 
figure 9E, if all four atoms were of 
the same mass, the maximum dis-
placements of the two center atoms 
would necessarily be greater than 
those of the end atoms, else there 
would be a net rotation about the 
center of mass—clockwise at the in-
stant shown in the left-hand side of 
figure 9E. 

Figure 9 also suggests the modes 
of vibration that can be expected 
for a linear molecule containing a 
large number of atoms. For example, 
the first deformation oscillation, with 
its two degrees of freedom, would 

correspond to the first harmonic of a 
vibrating string; the second deforma-
tion oscillation to the second harmonic, 
and so on to N — 2 harmonics. 

Now imagine a molecule in the 
shape of a rectangular block contain-
ing a trillion trillion atoms. This mole-
cule would be a crystal of approxi-
mately the size of a package of 
cigarettes. N = 1024 is such a large 
number that for all practical purposes 
we may neglect the translational and 
rotational degrees of freedom, and 
assume that the crystal has 3N normal 
vibrations. Of these, we may assume 
N to be valence vibrations and 2N 
to be deformation vibrations. Instead 
of assigning but one degree of free-
dom to each mode, we may assign 
three. Thus, there would be N normal 
modes of vibration, each with 3 
coordinates," corresponding to the X, 

VALENCE VIBRATIONS (3) 

0 
4 -
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0 0  0 

0-0- -0-0  0  00 0 
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DEFORMATION VIBRATIONS (4) 
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Figure 9. Normal Vibrations of a 
Linear Molecule of Four Atoms 
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Figure 10. Representative Defortnat . 
Mode of Vibration of a Crystal 

Y, and Z axes. To define one of these 
modes, a wave function with three 
degrees of freedom is required. Thus, 
the wave function W(n„, ny, n1) = 
W( 6, 3, 1) would define the deforma-
tion mode illustrated in figure 10, 
where n„, ny, and n, represent the 
standing wave harmonics along their 
respective axes.° 

It is interesting to note that the 
cyclic motions normal to a given 
crystal can be defined by sets of 
integers which are limited to a finite 
number of values. In other words, 
the  wave  function  is effectively 
quantized, and has definite upper and 
lower limits. It will be recalled that 
the cyclic motion of the electron in 
the Bohr hydrogen atom was also 
quantized, this motion having a lower 
orbital limit, though not an upper 
limit since no outer boundary was 
assumed. Also, the motion of the 
electron was expressed  by three 
quantum numbers, each representing 
a degree of freedom of orbital mo-
tion, and a fourth quantum number 
to represent its degree of rotation. 

• This example is an ideal case assumed 
for the sake of simplicity. The behavior 
of actual crystals reveals a great com-
plexity of interlocking vibrations between 
modes of nearly the same frequency, 
with vibrational modes resulting which 
would not occur with crystals of different 
shape or structure. 

We should not carry the analogy too 
far, however, for with our vibrating 
atoms and molecules we are still 
within the laws of classical mechanics, 
and the quantum mechanics does not 
begin until the appearance of Planck's 
constant, h. Though the crystal wave 
function represents a definite band 
of frequencies, no restrictions have 
been introduced which would limit 
the energy a particular mode could 
have. Thus, whereas the frequencies 
are quantized according to the vibra-
tional degrees of freedom, the energy, 
as yet, we assume to be continuously 
variable. 

When we apply the equipartition 
of energy principle to the vibrational 
degrees of freedom, we find that these 
degrees must be doubled if the prin-
ciple is to hold. Thus the one vibra-
tional degree of freedom of the di-
atomic molecule in figure 6 effectively 
becomes two degrees of freedom. The 
reason for this is that the energy of 
a vibrating system is partly kinetic 
and partly potential. At the instant 
of maximum displacement, the energy 
is entirely potential; at the equilibrium 
point, the energy is entirely kinetic; 
and at all intermediate points, the 
energy is divided between the two 
forms. This is illustrated by the swing 
of a pendulum, as shown in figure 11. 
In the case of a simple harmonic os-
cillator, the energy averaged over a 
complete cycle is one-half potential 
and one-half kinetic. The equiparti-
tion principle requires the average 
kinetic energy for all degrees of free-
dom of motion to be the same at 
thermal equilibrium. But a vibrational 
degree of freedom cannot meet this 
requirement unless a corre43onding 
average quantity of potential energy 
is also stored. Thus, a vibrational de-
gree of freedom is effectively equiva-
lent to two translational or two 
rotational degrees of freedom, insofar 
as its energy content is concerned. 
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Figure 11. Division of Energy into 
Potential and Kinetic Forma in a 
Simple Harmonic Oscillator, 
as Represented by a Pendulum 

This apparently contradicts our pre-
vious usage of the term degree of 
freedom. At this point, in order to 
keep our basic concept of a degree 
of freedom from eluding us and 
eloping with a degree of freedom of 
its own, it might be wise to pause 
and swat at a semantic gnat. 

DEPARTMENT FOR KEEPING THE 

RECORD STRAIGHT 

We defined the degrees of freedom 
of motion of an N mass-point system 
to be 3N. On the other hand, we 
declared that the equipartition prin-
ciple applies to all the degrees of 
freedom of motion. However, if the 
equipartition of energy principle is 
true, we see from the discussion above 
that the number of degrees of freedom 
becomes greater than 3N if vibrational 
modes are present. The apparent 
contradiction lies in the fact that if 
a mass point moves through a field 
of force—as does an atom when vibrat-
ing about a valence bond—the state 
of its energy varies with its position 
as well as with its velocity. In geo-
metrical space, the three directions 
in which a position may vary are the 
same as the three directions in which 

its velocity may vary. Thus, the 
energy of a vibration is effectively 
shared by the same degree of freedom 
of motion twice. We could assume 
a phase space with six dimensions for 
each mass point—three for position, 
and three for momentum—then each 
vibrational degree of freedom would 
actually equal two degrees of motion 
in phase space. But rather than 
force a meeting of words, it seems the 
better to disrobe the degree of free-
dom of its physical masquerade, and 
keep to its original meaning. 

A degree of freedom is simply a 
unit of freedom, and the degrees of 
freedom of a function are simply its 
number of independent variables, and 
not the variables themselves. The de-
grees of freedom of an energy func-
tion will depend upon the particular 
function. Thus, the function E = 1/2 
( mc2 ), where the speed, c, can be 
defined by one coordinate, has one 
degree of freedom if m is constant. 
On the other hand, E = 1/2 ( mv2), 
where the velocity, v, requires three 
coordinates to be defined, will have 
three degrees of freedom. If we so 
desire, further subdivisions can be 
made, and we can call the respective 
coordinates degrees of freedom of 
one thing or another. From this point 
of view, the additional degrees of 
freedom are not extra "baskets" that 
actually increase the energy-carrying 
capacity of a system, but are extra 
ways in which to divide the energy; 
and the fact that the thermal energy 
of an average molecule increases 
with an increase in its degrees of free-
dom is to be traced to the proba-
bilities of energy exchange governing 
its collisions. If the statement of the 
equipartition principle is to have a 
reasonably concrete meaning, it seems 
that possibly the expression degrees 
of freedom of energy can be favored 
to replace degrees of freedom of mo-
tion. In the discussions to follow, 
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where the equipartition principle is 
implied, we shall make this substitu-
tion. It should be understood, how-
ever, that the number of degrees of 
freedom of energy is a particular 
function of, but not necessarily equal 
to, the number of degrees of freedom 
of motion. 

While straightening the records, 
we may as well review the log up to 
this point, the better to fix our present 
position. We began with the degree 
of freedom as it appeared in the field 
of statistics, and followed it from 
there to its role as a free variable 
unit applying to all variable functions. 
From that point we traced its special 
application in functions defining posi-
tions in geometrical space. Here the 
degree of freedom became identified 
with the directions in which a point 
is free to move. We specified these 
as degrees of freedom of motion, and 
saw how they could be used to con-
struct imaginary spaces similar to 
geometrical space. Next, the centers 
of mass of atomic nuclei were substi-
tuted for the points in space, and the 
energy of the molecules was found 
to divide itself according to the de-
grees of freedom of motion, each 
division of which we have just agreed 
to call a degree of freedom of energy. 
By this division of energy, the degrees 
of freedom thus become effective sub-
stitutes for the particles. Instead of 
imagining individual  particles  as 
carriers of energy, it is actually less 
complicated to imagine the energy 
stored in a fixed number of degrees 
of freedom. Furthermore, in the vibra-
tions among large numbers of atoms 
or molecules, as in a crystal, the in-
dividual particles begin to lose their 
identity anyway, for when all are 
coupled together, each mode of vibra-
tion involves every particle in the 
system, and the energy of a particular 
vibration cannot be confined to a 
particular particle. Thus, we found 

that a wave function, expressing the 
normal vibrations of a system, as-
sumes a macroscopic nature, where 
the individuality of the particles is 
secondary to the number of degrees 
of freedom of energy. We should note, 
however, that the degrees of freedom 
of a wave function, such as nz, ny, nz, 
of the function W( nz, n„ n,), are 
not the same as the degrees of free-
dom of vibrational energy of the sys-
tem in question. These latter appear 
as the number of solutions which the 
wave function may have, or rather as 
twice the number of solutions, if we 
subdivide them into potential and 
kinetic components. 

If a system were composed of a 
completely continuous substance, then 
theoretically it would have an infinite 
number of degrees of freedom. It is 
a curious fact that the quantization 
of the mass into particles limits the 
degrees of freedom of a system, yet 
the more this quantization is carried 
out per unit volume, the more the 
degrees of freedom should multiply. 
We shall find, however, that the en-
trance of the quantum will appear 
to reverse this prediction. 

HEAT CAPACITY 

The degrees of freedom of energy 
are now to be put to a practical test, 
by using them to evaluate the heat 
capacity of a system. The common 
practice is to measure and express 
thermal energy in calories,* British 
thermal units,* ° joules, ergs, or foot-
pounds. It is principally in equations 
of a theoretical nature that the units 

° One gram-calorie is the quantity of heat 
required to raise the temperature of one 
grain of water 1° C. (or 10  abs.). One 
kilogram-calorie  equals  1000  gram-
calories. 

•• One British thermal unit (BTU) is the 
quantity of heat required to raise the 
temperature of one pound of water 10 F. 
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k and R, the Boltzmann and universal 
gas constants, respectively, have a 
practical use. Whenever a quantity is 
dependent upon the temperature, k 
and R are apt to be involved in the 
formulas that define or predict the. 
value of that quantity. An important 
example arises when we seek to ex-
plain the heat capacities of various 
substances in accordance with the 
kinetic theory of molecules. 
The term heat capacity is defined 

as the heat absorbed per degree of 
temperature rise. The heat capacity 
of a system is the thermal energy 
absorbed ( A ET) divided by the 
change in temperature ( A T). 

Thus, 
heat capacity  t ET! A T 

HEAT CAPACITY AT 
CONSTANT VOLU ME 

What is the molar heat capacity of 
an ideal monatomic gas at constant 
volume? 
Since, 

kT = % of the average energy per 
molecule, 

then, 

%kT = average energy per 
molecule, 

and, 

% k = average energy per 
molecule per degree.  (1) 

In other words, for each absolute-
degree change in temperature, the 
energy of each molecule will change 
by an average amount equal to %k. 

Thus, for N molecules, AET = 
Nk AT. Let Cy = the heat capacity 
of an ideal gas at constant volume; 
then, 

A ET 34(Nk AT) 
cv =  Nk. 

A T 

For one mole of an ideal gas: 

Cv =% NAk = 3,4 R, 
34 

where N., is Avogadro's number, and 
R is the universal gas constant. Since 
R is approximately equal to 2 gram-
calories/mole/degree, then the molar 
Cv = 3/2 x 2 = 3 gram-calories/-
mole/degree. This is the theoretical 
value for an ideal gas, but it checks 
very closely with the observed molar 
Cv's of the inert, monatomic gases. 
For example, the observed value for 
helium is 3.02 gram-calories/mole/-
degree, and for argon is 3.07 gram-, 
calories/mole/degree. 

When the temperature of an ideal 
gas is increased one degree, each 
mole will have gained three calories 
of energy. This is true regardless of 
whether the volume is held constant, 
or not. However, if the gas is allowed 
to expand while being heated, work 
is done. The heat required to raise 
the temperature must then equal 
Cv AT + W, where W is the work 
of expansion. 

HEAT CAPACITY AT 
CONSTANT PRESSURE 

What is the molar heat capacity Of 
an ideal monatomic gas at constant 
pressure? Suppose the box in figure 
12 contains 1 mole of gas, and that 
the east wall is the face of a piston 
which moves outward when the gas 
is heated in such a manner that the 
pressure at all times remains constant. 

Figure 12. Expansion of Volume of a 
Box by not Amount LE  1.4 LL 



If the temperature is increased by 

T, the east wall moves outward a 
distance,  A L, so that the work of 
expansion is 

W = force x distance = pressure 
x area x AL = PL2 AL = P AV, 

where: 

..‘T is the change in volume. 

Now, PV = nRT (equation of the 
state of an ideal gas), 

and, n = 1 ( by the assumption of 
only 1 mole of gas), 

so, PV = RT (before heating).  (2) 
Also, P (V + A V) = R (T + A T) 
( after heating), 

or, (PV — RT) + P AV = R A T. 

But, PV — RT = 0 ( by equation 2). 
Thus, W = PAV = R AT 
Then, total heat = A ET = CV AT 
+ W = Cv AT + R AT 

and the heat per mole per degree = 
A ET Cv AT + R AT 

 — Cv + R 
A T  A T 

The quantity, Cv + R, is the molar 
heat capacity at constant pressure, 
and is given the symbol Cp. The first 
term Cv is the added energy actually 
retained by a mole for each degree of 
temperature, while R is the energy 
expended in increasing the volume. 
Since Cv = 3/2 R, then C1. = 5/2 R 
= 5 gram-calories/mole/degree, for 
an ideal gas. 

It is C v, the heat capacity at con-
stant volume, however, that is our 
chief interest, since the solids in which 
electron gases are contained do not 
appreciably expand, as compared 
with constant-pressure gas systems. 

We originally defined k as a unit 
of energy per molecule, and then in-
terpreted the unit as a "degree" of 
temperature. Unfortunately, because 
k is only a partial measure of a mole-
cule's energy per degree of tempera-
ture, it can be awkward to use where 

the total energy is to be expressed. 
The same may be said for the gas 
constant, R. However, from the point 
of view of system mechanics, the 
energy per particle need not be of 
fundamental importance. What is im-
portant is the energy per degree of 
freedom. 

A unit for expressing the total 
energy of an ideal system per degree 
of temperature is Cv. Since for an 
ideal monatomic gas, Cv = 3/2 Nk, 

Cv 3 
then' —N = —2 k' is a constant express-

ing the total energy/molecule/degree. 
Now the ideal monatomic molecule 
has three degrees of freedom of 
energy, and its total energy, 3/2 kT, 
is divided equally among them. This 
means that the average ideal molecule 
has an energy of 1/2 kT per degree 
of freedom. This quantity expresses 
the total energy per degree of free-
dom—not some fractional part—where 
k/2 is the unit of energy, and T is 
the number of units. 

PRELUDE TO DISASTER 

The principle of equiparition of 
energy states that at thermal equil-
ibrium the molecular energy is di-
vided equally among all the degrees 
of freedom of energy. 
For a system of ideal molecules, Cv 

would  remain  constant and  not 
change with temperature. Thus, the 
total thermal energy could be ex-
pressed as CvT, as accurately as a 
change in thermal energy is expressed 
as Cv T. The problem now is to 
establish the rules for predicting the 
value of Cv for a system of N mole-
cules. 
First, since a change in thermal 

energy is shared equally by each de-
gree of freedom of energy, then 
Cv = nr cr, 
where: 

= number of degrees of 
freedom 

35 



cf = "heat capacity" per degree 
of freedom 

= k/2 (energy/degree of 
freedom/degree of 
temperature) 

Next, we must determine the num-
ber of degrees of freedom of energy 
of the particular system in question. 
This, of course, will vary, not only 
with the number, but the kind of 
molecules. As a specific example, sup-
pose that we attempt to estimate the 
heat capacity of a block composed of 
1 mole of copper. Since the block is 
effectively a single molecule, the 
translational and rotational degrees of 
freedom of the atoms do not enter 
the problem. However, the NA atoms 
may be assumed to have 3NA vibra-
tional degrees of freedom, giving a 
total of 2 x 3NA = 6NA degrees of 
freedom of energy. But this is not 
all, for according to the atomic 
theory, a metal will also have a gas 
of monatomic molecules flying about 
within it in the form of free electrons. 
Empirical data, such as that of the 
thermoelectric and the Hall effects, 
indicates  approximately  one  free 
electron per atom. Thus, the electron 
gas should add 3NA degrees of free-
dom of translational energy. 

Thus, Cv = n1 c, 

= (6NA + 3NA )-
2 

= 3 NAk + %NA 

= 3R + %R 
= 6 calories/deg. absolute 

+ 3 calories/deg. 
absolute = 9 gram-

calories/deg. absolute 
(per mole). 

If the atoms and electrons in a 
copper bar behave in the manner of 
ideal particles, then 1 atomic weight 
of copper should require 9 gram-
calories to raise its temperature 1 de-

gree absolute (or 1 degree centi-
grade)-6 calories for the atoms, and 
3 calories for the electrons. 

Behind this prediction is arrayed 
the power and dignity of the whole 
body of Newtonian mechanics, as 
well as that of the atomic theory of 
solids. But wait! A peek at the data 
of an actual experiment reveals a 
molar C. for copper of 6.01 gram-
calories/deg. absolute/mole. This is 
little more than the molar Cv of an 
average insulator. Where are the free 
electrons? The dastardly traitors have 

abandoned their posts in the hour of 
need. Without a struggle, 3N degrees 
of freedom are surrendered, and 
after them must roll the revered 
crowns of classical mechanics. Un-
less we please to look the other way, 

the fact must now be faced that the 
free electrons of the atomic theory 

of solids do not exist. 
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....S Vution to . . . 

Last Month's "What's Your Answer?" 

The output voltage at E. will consist of the rectified 
output of GI, the 50-volt generator. 

The generator with the largest output voltage will cause 
the selenium rectifiers associated with the other generators 
to appear as open circuits because of the inverse nature of 
the applied voltage. Thus, only CR1 will conduct, thereby 
rectifying the output of GI. 

Mr. Tefius Dectrow, the contributor of this problem, 
>  says the circuit is used as a maximum-source trigger device.  \ 

(The generators are vacuum-tube circuits with varying 
\  outputs, of course.) Another application could be found  \ 

in a diversity reception system in which each generator 
<  represented the detector stage of a corresponding space-

diversity receiver. 
< 
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