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editorial 

SAFETY 
by John E. Remich 

Manager, Technical Department 

In spite of the fact that many millions of dollars are spent each 
year on safety campaigns throughout America, and that much of the 
effort is directed toward reducing the incidence of injury or death 
from electric shock, yet many thousands of persons die needlessly 
in this manner every year. Futhermore, many of these deaths are the 
result of pure carelessness on the part of individuals who should and 
do know most about the danger involved. 

Typical of such cases is one written up recently in several 
Philadelphia and Camden newspapers. The man involved had been 
an electronics technician for many years, and an employee of one 
of the country's largest electronics manufacturers for 16 years. At 
the time of the accident, he was testing a power amplifier in a 
production-model television transmitter from which primary power 
had just been disconnected. Although he had tested many similar 
units before, and was well aware that the unit contained large 
3000-volt filter capacitors, he failed to take the simple precaution 
of using a shorting stick to discharge them. The result, when he 
• accidently touched one of the still-charged capacitors, was instant 
death. 

This is not an isolated type of incident—in fact, there are many 
exactly like it each year in American industry and the Armed 
Forces. Thus, each of us in electronics should be particularly careful 
to maintain the proper respect for potentially dangerous electronic 
equipment. Always use a shorting stick (the bleeder might be open), 
keep one hand in your pocket if you must work on energized equip-
ment, and don't short out interlocks. 

In brief, always observe common-sense safety precautions when 
working with electrical or electronic equipment, and never become 
complacent about, or contemptuous of, the possibility of serious 
injury or death from electric shock. It can happen to any of us, don't 
let it happen to you. 

Li; 



ANTENNA PATTERN PLOTS 
by Gail W. Woodward 
Headquarters Technical Staff 

A comparison of the various methods used 
to display antenna radiation patterns. 

THE EVALUATION of published antenna 
patterns sometimes becomes confusing, 
because the appearance of a plot taken 
in the field often looks quite different 
from the manufacturer's claim or from 
the textbook pattern. A great deal of 
difficulty arises from failure to show 
coordinates or failure on the part of 
the technician to take note of the type 
of presentation. Another confusion 
factor arises when a manufacturer shows 
his antenna patterns in one set of co-
ordinates while he displays a comparison 
pattern using another set of coordinates. 

DISPLAY METHODS 

There are two general methods of 
displaying patterns. One uses polar-
coordinate graph paper, and the other Figure 1. Power Plot Using Polar 

Coordinates 
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Figure 2. Power Plot Using Rectangular Coordinates 

3 



Figure 3. Voltage Plot Using Polar 
Coordinates 

uses rectangular-coordinate graph paper. 
Figure 1 shows a plot of an antenna 
pattern using polar coordinates, and 
figure 2 shows the same plot with 
rectangular coordinates. At first glance 
the two patterns do not appear at all 
related, but a careful check will show 
the equality. Figure 2 could be con-

verted to figure 1 by reducing the 
horizontal base line to zero length, 
while leaving the upper portions pro-
portionately spread out. 

To simplify the following discussion, 
a theoretically perfect antenna is con-
sidered. All of the patterns shown in 
this article are based upon a perfect 
parabolic reflector, uniformly excited 
by a point source located at the focal 
point of the reflector. Wavelength and 
reflector size are such that the beam-
width at the half-power points is some-
what less than 20 degrees. Only four 
minor lobes are shown but a large 
number is actually present. Since the 
relative amplitudes of the minor lobes 
decrease as the angle to the main lobe 
increases, it is necessary to consider 
only the larger ones. 

The pattern shown in figure 3 appears 
much inferior to the one shown in figure 
1; however, the two plots are taken 
on the same antenna—figure 3 is a 
plot of voltage (or current) while figure 
1 is a plot of power. Figure 4 is a 
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Figure 4. Voltage Plot Using Rectangular Coordinates 

4 



voltage plot using rectangular coordi-
nates. A good point of comparison is 
the beamwidth—notice that the beam-
width is the same for the half-power 
points as it is for the 70% voltage 
points (70% E = 50% W). 

It is a safe bet that if one were selling 
antennas to relatively uninformed con-
sumers, he would publish only power 
plots with polar coordinates. 

Figure 5 is a rather horrible looking 
antenna pattern of the same antenna 
used to derive the first four illustrations. 
Here, a polar-coordinate plot in terms 
of decibels is used. The level at the 
point of maximum radiation is taken 
as the zero-db reference. Figure 6 shows 
the same plot using rectangular coor-
dinates—again note that the half-power 
(3-db) points correspond to the other 
beamwidth points. The same general 
shape of pattern would have been ob-
tained if the power scales in figures 1 
and 2 were made logarithmic. 

The plots in figures 5 and 6 have been 
made to look especially bad by choosing 
a large range of db values (40 in this 
case). Figure 6 shows that the base line 
could have easily been drawn at 20 db. 
This would make the minor lobes appear 
much smaller. A very interesting point 

Figure 6. Decibel Plot Using Rectangular Coordinates 

Figure 5. Decibel Plot Using Polar 
Coordinates 

regarding the db plot is the significance 
of the minima values. If the voltage (or 
power) were actually zero, the db value 
would be equal to minus infinity; there-
fore, the minima shown do not represent 
actual values. This type of plot is by 
far the most informative and versatile, 
but, since the antenna characteristics 
look rather poor at first glance, plots 
of this type are seldom found in 
published data. 
A fairly accurate plot of a radar 

antenna pattern can be obtained by 
scanning the antenna past an echo box 
located a few radar-dish diameters away 
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from the antenna. The• horizontal an-
tenna pattern will be traced out on the 
indicator. If a B-scan presentation is 
used, the plot will have rectangular 
coordinates, while if a PPI-type scan 
is used, the plot will have polar coor-
dinates. A fairly accurate plot of the 
free-space pattern will be obtained if 
the echo box is backed up by a power 
absorber whose dimensions subtend the 

angle included in the antenna's larger 
minor lobes. 

CONCLUSION 
It should be pointed out that merely 

comparing the published shapes of an-
tenna patterns is not enough. The tech-
nician must take careful note of the 
units used as well as the type of plot. If 
a published plot does not indicate units, 
it is very likely to be in terms of power. 

What's Your Answer? 
Consider the contact-biased a-f voltage amplifier as it 

is often found in home radios (see drawing A). Assume 
that the zero-signal bias measures one volt. 

It is apparent that if a low-resistance 0-1 ma. meter 
were connected across the grid-leak resistor, the bias 
voltage would be essentially zero, and the meter would 
read maximum contact current. Assume in the case 
shown that this current value is 0.5 ma. 
Now, suppose that instead of returning the grid leak 

to the cathode, it is returned to a positive voltage such 
as the B+ point as shown in figure B. Roughly, how 
far positive will the grid be driven in respect to the 
cathode? 

(Solution next month) 
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INTRODUCTION TO TRANSISTOR 
ELECTRONICS 

Installment IV 
Classical Background for the Free-Electron View (Continued) 

by John Buchanan 
Technical Publications Dept. 

„ A further continuation of the discussion of the methods 
and theories of classical physics, in which some of the 
concepts of statistical mechanics are introduced, and 
the derivation of the Maxwell-Boltzmann distribution 

law is presented. 

SYNOPSIS 

This is the fourth in a series of arti-
cles covering the fundamentals of tran-
sistor electronics. The first article of the 
series, which appeared in the January, 
1952, issue of the BULLETIN, covered the 
atomic view of solids. This view main-
tains the particle nature of the elec-
tron, but introduces the quantum to re-
strict the electron's motion within the 
atom to definite shells, or energy levels. 
Each shell, in turn, permits a finite 
number of planetary orbits, or electron 
states, at the shell's respective energy 
level. Outside an atom, an electron is 
assumed to be completely free to move 
about with random thermal motions. 
Electronic conduction is visualized as a 
drift of free electrons, or as a drift of 
empty electron energy states (electron 
holes), or as a combination of the two. 

The second article, published in the 
April issue, laid the groundwork for 
the more involved free-electron view of 
solids. The first elements of the kinetic 

theory of gases were presented as a 
point for beginning the transition from 
the classical laws of ideal gases to the 
wave-mechanical laws of electron gases. 

The third article, published in the 
September issue, continued the discus-
sion of classical theories as applied to 
systems of ideal particles. Here the "de-
gree of freedom" was introduced as a 
mathematical concept useful in inter-
preting particle behavior and in analyz-
ing the distribution of energy within a 
system. The discussion led to a theory 
of metallic heat capacity based upon the 
atomic view that the free electrons be-
haved approximately as ideal gas mole-
cules. Actzial measurements, however, 
revealed that the "free" electrons have 
a negligible capacity for absorbing ther-
mal energy at room temperatures — a 
complete contradiction of the atomic 
view of classical electrons in thermal 
equilibrium with the atoms. 

COMING ATTRACTIONS 

The unprovoked betrayal of the clas-
sical ideals by the metallic electrons 
was, in truth, the signal which opened 
the quantum's campaign against free 
bodies. It will be recalled that the first 
conquest found its victim in the electro-

magnetic wave — which was reduced 
from its ethereal role to the status of 
a mere photon, and forced to share the 
laws of particles. Now it is that the par-
ticles are under attack, and the wily 
quantum, with an implacable thirst to 
dictate a classless nature for the whole 
universe for all time, is maneuvering to 



force the particles to share the laws of 
waves. The fortifications of the classical 
mechanics, however, are too deeply en-
trenched to risk a frontal attack; and 
hence the campaign is to be waged pri-
marily from within. 

The intrigue begins inside the metals, 
where the free electrons, like their plan-
etary brethren, are attracted by the 
quantum's promises of order and secur-
ity. The electron seems to have the rul-
ing passion of one who has tasted free-
dom, but knows not its flavor beyond 
the primal urge of a blind body in 
soundless space to feel unbound. Its pas-
sion is not for degrees of freedom it 
cannot distinguish, but only for an ab-
sence of obstacles in the path ahead. 
Wherever the quantum can guarantee 
the privileges of a two-track orbit—be it 
about an atom, molecule, or a crystal— 
s crowded electron pair will trade their 
degrees of freedom for the exclusive 
property rights. It was through the 
quantum's success in cornering the 
phase-space market inside of copper that 
led to the catastrophic results of the 
heat-capacity experiment reported in the 
previous discussion. However, the means 
by which this feat was engineered, and 
the ultimate implications, involve the 
degeneracy of the grandest of all the 
ideal gas laws—the Maxwell-Boltzmann 
law for the distribution of velocities. 

This law will be the last of the pre-
liminary classical theories of particles 
that we discuss; but it will prove first in 
importance as a standard of reference 
for gauging the strange social order of 
the quantum and the electron in solids. 

TODAY'S FEATURE 

The laws of ideal molecules which 
have been discussed thus far, although 
fundamental as points of departure in 
passing from classical to quantum sta-
tistics, have involved only the behavior 
of molecules as averaged over the sys-
tem as a whole, and thus have been of 

relatively elementary derivation. The 
conduction properties of a solid, how-
ever, depend primarily upon the actual 
distribution of energy among the elec-
trons, rather than merely the energy per 
average electron. The distribution in 
metals is described by Fermi-Dirac sta-
tistics, and in semiconductors and in-
sulators by wave functions that must 
take into account the crystal lattice of 
positive ions. The new quantum con-
cepts are certain to prove a challenge to 
our normal mental habits, but com-
pounding the difficulty will be the ways 
of thinking that are peculiar simply to 
statistical mechanics—classical, as well 
as quantum. It is our purpose, in this 
article, to become acquainted with some 
of the concepts and methods of statisti-
cal mechanics before they become in-
volved with quantum considerations. 
Other than this broad goal, however, 
there is the more immediate problem of 
understanding the equations that ex-
press the actual microscopic behavior of 
a system of particles. Each of these 
goals should be fulfilled if, by starting 
with familiar principles, we discover 
for ourselves the Maxwell-Boltzmann 
distribution law—the law which defines 
the distribution of energy among the 
molecules of an ideal gas at thermal 
equilibrium. The concepts gained will 
then form a principal bridge in crossing 
from ideal to electron gases. 

We begin with a brief examination 
of the mechanics of impacts between 
ideal molecules. Next, assuming such 
impacts take place, we make the assump-
tion of equal probabilities for all direc-
tions of motion, and "extract" from that 
assumption as much knowledge of the 
nature of a gas at equilibrium as pos-
sible. Afterwards, another equal proba-
bility is to be assumed—the equal prob-
ability of each position in phase space 
that the given gas system can conceiv-
ably occupy. This postulate will be pur-
sued only to indicate the path which 
will link the energy states of ideal dis-
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tinguishable particles with the energy 
states of indistiguishable electrons. The 
discussion up to this point is to be 
largely suggestive, rather than concrete, 
except that new terms and statistical 
methods are to be introduced. Follow-
ing this, however, we trace the logic of 
the steps that Maxwell employed, or im-
plied, in his original derivation of the 
velocity distribution law. Although our 
derivation will not be mathematically 
rigorous, the opportunity will be af-
forded to see how the constants and 
variables find their places; and the sim-
ilar quantum distribution laws, such as 
the Bose-Einstein and the Fermi-Dirac 
laws, may then appear later without 
seeming unduly mysterious. Next, a 
breather is taken while a symposium is 
held pitting the "deterministic" ap-
proach in physics against the "statisti-
cal" approach. And last, there is a brief 
introduction to the term degeneracy as 
applied to systems of particles. At the 
end of this discussion, we may consider 
ourselves to have arrived at the turn of 
the century, and thus to be standing at 
the same point from which we originally 
departed in developing the atomic 
theory of solids. This time, however, we 
shall follow those events that lead to the 
undoing of the atomic point of view, 
and to the development of the free-
electron theory. 

FREE TRADE AMONG 
IDEAL MOLECULES 

Throughout the following discussion 

we assume a system containing an ideal 
gas of monatomic molecules which are 
perfectly spherical and frictionless, and 
are all of the same size and mass. No 
forces, except those caused by impacts, 
act upon the molecules. It is also as-
sumed that the volume is maintained 
constant within fixed boundaries, that • 
the laws of conservation of energy and 
momentum hold, and that the system is 
in a state of thermal equilibrium. The 
number of molecules, N, is very large, 
say something on the order of le, so 
that the chance of any measureable 
fractional variation from the equilib-
rium state is negligible. 

Figure 1 shows the result of a head-
on impact between an ideal molecule in 
'motion and an ideal molecule at rest. 
Assuming the mass is the same for each 
molecule, the laws of conservation of 
momentum and energy require that the 
striking molecule lose all its momentum 
to the one formerly at rest. In other 
words, such an impact results in a com-
plete exchange of velocity, momentum, 
and energy between the two molecules. 

Figure 2 shows the result of a head-
on impact between molecules, both of 
which are in motion relative to the 
observer. The vectors indicate the direc-
tion and magnitude of the velocities 
before and after the impact. Here, as in 
figure 1, the laws of conservation of 
energy and momentum require that the 
impact result in an exact exchange of 
velocity, momentum, and energy be-

VELOCITY OF A 
.41 . BEFORE IMPACT 

A AT REST 
AFTER IMPACT 

VELOCITY OF B 
AFTER IMPACT 

B AT REST 
BEFORE IMPACT 

Figure I. Result of Head-on Impact of Ideal Molecule in Motion, 
with Ideal Molecule at Rest 

9 



VELOCITY OF A _ VELOCITY OF B 

BEFORE IMPACT — AFTER IMPACT 

A B 

VELOCITY OF A VELOCITY OF B 
AFTER IMPACT BEFORE IMPACT 

Figure 2. Result of Head-On Impact Between Two Ideal Molecules, 
Both of Which are in Motion Relative to the Observer 

tween the two molecules. After the im-
pact, molecule A has the same velocity 
that molecule B had before the impact, 
and vice versa. 

Figure 3 shows the result of an im-
pact between two molecules which are 
not traveling along the same straight 
line. We let point 0 represent the point 
of impact, and draw a velocity axis (k) 
through 0 tangential to the two molecu-
lar spheres. We then draw the Y axis so 

that the kiLT plane includes the direction 
lines of the molecular velocities. With 
this reference system, the velocities of 
the two molecules before the collision 
can be divided into two rectangular 
components. The it component of each 
molecule is in the tangential direction, 
and is not affected by the collision. The 
Sr component of each molecule is in the 
direction of a head-on collision, and 
hence is exchanged for the SP. compo-
nent of the other molecule. Before im-

is 

MOLECULE 
A N 

5( AXIS TANGENTIAL 0 
TO POINT OF IMPACT 

MOLECULE 

( VELOCITY OF B \ 
\BEFORE IMPACT) 

\ I 

(VELOCITY OF A\ 
\ AFTER IMPACT ) 

YA - 

Ve, 

OF B\ 
\ AFTER IMPACT / 

(VELOCITY OF A\ 
VA \BEFORE IMPACT) 

Figure 3. Velocity Exchange Resulting from Random Impact Between 
Two Ideal Molecules 
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Figure 4. Imaginary Sequence of Collisions of Molecule A, in Which Molecule A 
Absorbs Energy from Molecules B, C, D, and E, in That Order, Thereby Increasing 
the Magnitude of its Velocity front V, to V,. (In each collision, the initial velocity of 
A is assumed to be tangential to the surfaces at the point of impact, and the initial 
velocity of the colliding molecule to be normal to the surfaces at the point of impact.) 

pact the energies of the molecules are: 
E A = y2 mjcA 2 1/2 m iA 2 

(molecule A) 
En = 1/2  Mi132 + 1/2 illirB2 

(molecule B) 
After impact the energies of the mole-
cules are: 

EA = 1/2 jCA ± 1/2 MiB2 

(molecule A) 
Eii = 1/2  mí 2 + 1/2  mS,A2 

(molecule B) 
Likewise, the velocity and momentum 
of each molecule after impact are the 
vector sums of the molecule's original 
component, and its new S, component. 
It should be noted, however, that if the 
masses of the two molecules differed, 
momentum and energy exchanges would 

require much more complicated equa-
tions than those above. 

Figure 4 indicates how the energy of 
a molecule can be increased by a suc-
cession of collisions. Each increase of 
energy requires that the S, component 
gained by impact be greater than that 
lost in exchange. For a given angle of 
impact, however, the higher the initial 
velocity of a molecule, the less probable 
will be its chance to have a smaller e 
component than that of the molecule 
with which it collides. In a system con-
taining as many as 1024 molecules, 
where each molecule is colliding mil-
lions of times a second, there should be 
at all instants large numbers with ex-
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Figure 5. Equilibrium Conditions for Ideal Gas. (Each box is imagined to contain 
all the molecules with speeds between the limits indicated. At equilibrium, the number 
in each box remains constant. A—Imaginary state of equilibrium, with a net flow of 
molecules "circulating" counterclockwise—the number in each speed box, however, 
remaining constant. B—Actual thermodynamic state of equilibrium, with the traffic 

between any two boxes the same in both directions.) 

tremely high energies above the aver-
age. Theoretically, assuming an infinite 
time, every conceivable combination of 
impacts, with their resulting distribu-
tion of energy, would occur and reoccur 
an infinite number of times. However, 
because of the phenomena of thermal 
equilibrium, there is every reason to be-
lieve that at least one distribution of 
energy is vastly more probable than 
others. Such a distribution of energy, 
of course, will also correspond to the 
most probable distribution of speeds, 
and of velocities. Indeed, if either an 
energy, speed, or velocity distribution is 
known, it is a simple matter to deter-
mine the other two. We shall begin with 
a preliminary investigation of the equil-
ibrium state as represented by the speed 
distribution. 

TRAFFIC PROBLEMS 
OF THE EQUILIBRIUM STATE 

A function which defines a distribu-
tion of speeds will indicate the number 
of molecules with speeds within any 
chosen range—provided the range is 
sufficiently wide to justify a statistical 

average. The distribution, remember, is 
not primarily concerned with which 
molecules, but simply the number of 
molecules, that have certain speeds. Nev-
ertheless, to determine the distribution, 
we must assume that one molecule can 
be distinguished from another. The rea-
son for this will become apparent later. 
An equilibrium state, is by definition, 

a state with a static distribution—that 
is, the number of molecules within each 
speed range remains constant. 

In figure 5, a system at equilibrium is 
arbitararily divided into three "speed 
boxes." Since, at equilibrium, the num-
ber of molecules in each box remains 
constant, this state is reached only when 
the rates at which molecules enter all 
three boxes through collisions equal the 
rates at which they are lost through 
collisions. Figure 5A shows an equil-
ibrium with a net flow from box A to 
box B, balanced by an equal net flow 
from B to C back to A. Although this 
would define an equilibrium state, Boltz-
mann proved that the conditions indi-
cated in figure 5B, where no net flow 
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exists between any of the boxes, is the 
one and only equilibrium consistent 
with thermodynamical postulates. In 
other words, the equilibrium rate of im-
pacts converting A molecules to B mole-
cules equals the reverse B-to-A rate, re-
gardless of which particular speed limits 
we assign respectively to A and B. Even 
if a system is imagined to be divided 
among a billion speed boxes, this same 
equilibrium condition would hold be-
tween any two of the boxes. This, then, 
is the type of distribution we are now 
setting out to discover, purely by hypo-
thetical reasoning. 

Figuratively speaking, we are, in ef-
fect, to analyze the behavior of a self-
contained society of completely inde-
pendent and equal bodies. All the forces 
that hold the society together are rep-
resented by the impacts against the 
walls of the container, and all the forces 
that control the "social order" arise 
from the impacts of the members against 
each other. Experience encourages one 
to suppose that such a society does not 
remain completely lawless, but gradu-
ally drifts toward a state of equilibrium. 
This state represents the division of 
activity most favorable to ideal nature. 
The problem is to determine what the 
a priori probabilities are, "for the sake 
of" which the society cannot remain a 
complete anarchy, but must approach 
an ideal limit of evolution.* 

SPEED LIMITS IN VELOCITY SPACE 

Consider now a system consisting of 
a large number of molecules, N, at ther-
mal equilibrium. We wish to investigate 
the relationships between the three coni-

• A thermodynamicist would never agree that 
an isolated thermodynamical system pro-
gresses from a less orderly to more orderly 
state. To him, all the molecules circulating 
in a uniform current would represent or-
dered energy, whereas a state of equilibrium 
would represent maximum chaos. But this 
is because he is judging the system by the 
amount of work it can be made to do, rather 
than the stability it has been able to achieve. 

ponents of velocity of all the molecules 
which have a speed between c and c 
.0.c. We cannot consider simply the mole-
cules with a speed c, for theoretically 
no two ideal molecules can have exactly 
the same speed, unless we assumed an 
infinite number of molecules. However, 
if we imagine 6,c to be very, very small, 
for example, on the order of one micron 
per second (one millionth of a meter 
per second), then the behavior of the 
molecules within that range, for all 
practical purposes, will be the same as 
their behavior at c. To specify that 6,c 
is very small, we shall use the calculus 
notation dc, in place of ,e.c. However, 
dc is not to be considered so small that 
it approaches zero as a limit; for then, 
since we are assuming a finite number 
of molecules, there would not be a suf-
ficient number, Ne, with speeds between 
c and c de to warrant a statistical 
average. 
Remember that the system is in a 

state 'of equilibrium, and so the number 
of molecules within any given region of 
the system remains constant. This is true 
whether the particular region represents 
a volume in geometrical, velocity, or 
phase space. Ne, as defined above, is 
the equilibrium "population" of a small 
volume in velocity space. 

Since c is speed, not velocity, it is not 
represented by a vector in velocity 
space. Instead, it is the surface of a 
sphere as shown in figure 6. Any point 
on the spherical surface, however, rep-
resents a velocity with a magnitude 
equal to c, and a direction according to 
the position of the point. The outer sur-
face shown in figure 6 is that of c dc, 
and hence the distance (greatly magni-
fied) between it and the inner surface is 
equal to dc. Any vector that ends in the 
thin shell formed by the two surfaces is 
thus a velocity with a speed between c 
and c dc. In a similar manner, we 
imagine the whole of velocity space to 
be divided into a series of concentric 
spheres, each one separated by "speed 
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Figure 6. Spherical Shell in Velocity Space, Representing All Speeds Between c 
(Inner Surface) and e ± de (Outer Surface). (The volume of the ring represents all 
velocities contained in the speed shell which have an X component between lc and 

di.) 

distances" of dc from its inner and 
outer neighbors. Each dot, or vector, in 
velocity space represents the velocity of 
one molecule, and by assuming that a 
molecule in any shell has an equal 
chance to move in any direction, then 
the velocity dots will on the average be 
evenly distributed throughout any one 
shell. 

This last assumption is the first of the 
a priori equal probabilities to be made 
—an equal probability for each direc-
tion of motion, regardless of the partic-
ular speed a molecule may have. The 
first inference from this postulate is that 
of the equal distribution of velocities 
within any small shell of thickness dc. 

MOLECULAR DENSITIES, 
PROBABILITIES, AND NUMBERS* 

The number of molecules in any shell 
per thickness of the shell is called the 
speed density for all speeds represented 
by the shell. Thus, the density at speed c 
is De -= Ne/dc. The concept of speed 

Figure 7. Random Distribution of Dots 
Over an Interval, Showing Method of De-
termining Dot Density. (The average 
density of dots per unit length at any 
point between A and B may be assumed 
to be: DAB = NAB /LAD, where DAB = 
average dot density, LAB -= length of 
interval from A to B, and NAB -= number 

of dots between A and B.) 

density is similar to that of density of 
mass when it is defined as the mass per 
unit length. For example, in figure 7, 
the average density at any point be-

" We should not fret too much over the symbols 
defined here. N, N„ N„ p„ and p, are easy to re-
member; pc and p, are the ones to watch. D, and 
D„ are given primarily for the record, and to 
block a possible misinterpretation of pc or p, as 
speed or velocity density. 
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Figure 8. A—Representative 
Distribution Curve, Plotted as 
Probability Density Vs. Speed 
B—Same Distribution, With 

Speed Density Vs. Speed Shown 
Pictorially 

tween A and B may be considered the 
number of dots between A and B di-
vided by the distance AB. These dots 
may represent a quantity of molecules, 
mass, or anything. Likewise, the AB 
distance may represent an interval of 
speed, of length, or of any other 
denomination. 

The number of molecules per shell 
divided by the volume of the shell is the 
velocity density for all points (molecu-
lar velocities) within the shell. Thus the 
velocity density for all points in the 
shell between c and c dc is: 

N,  
D .= 

477-c2de 
(assuming that the area of the outer sur-
face is approximately the same as that 
of the inner surface, 471-c2). 

The jraction of the molecules that lie 
within the shell c to e dc is the 
probability of a molecule having a speed 
within that range at a given instant of 
time. The fraction, and hence the prob-
ability, is pc = Ne/N. 

The probability density at any speed 
lying within a shell is pc= pc/de. Speed 
distribution curves are normally plotted 
as probability density vs. speed. See fig-
ure 8. To find the fraction of molecules 
within any range, *c to c de, the aver-
age probability density for that range is 

multiplied by dc. For instance, 

P 
Pei = ----c-i  dc = poi dc. 

dc 
This probability is simply the area un-
der the probability density curve be-
tween el and c1 dc. The area under 
the complete curve is equal to one, 
which means that the probability of a 
given molecule having a speed some-
where between zero and infinity is cer-
tain. The "speed box" below the chart 
indicates the distribution of the actual 
molecules corresponding to the curve 
above. The number of molecules in the 
compartment with sides c1 and c, ± de 
is N l  = Npa = Npei dc, where N is 
the total number of molecules in the 
system. 

The velocity probability density is 
the probability per unit volume in vel-
ocity space. Thus pv = pv/dv, where 
pv is the fraction of molecules in the 
velocity volume dv.* Figure 9 illustrates 
a small velocity cell with a volume dv 
= 
If pv = velocity probability density in 

cell dv 
Pv = p,dv = p,dicljidà 
= fraction of molecules in cell, 

then 

* The symbol dv represents a small range 
of velocities, and, as such, y symbolizes 
velocity rather than volume. 
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Figure 9. Small Cell in Velocity Space 
with a Volume dr = diedi, Containing 

N. Molecules 

and N, = Np„ = Np,dv 
= number of molecules in cell. 

Similarly 
Po = speed probability density in 

shell dc 
and pc = peck 

= fraction of molecules in shell 
and Nc = Np, = Npcdc 

= number of molecules in shell. 
. . 
X, Y, AND Z PROBABILITIES 

Referring again to figure 6, what frac-
tion of the molecules in the shell, c to c 

dc, will have an k component from 
k to k ± di, where both c and ic are 
taken at random (except that k cannot 
be greater than c), and with di repre-
senting a small change, th, in velocity 
of approximately the same magnitude as 
dc? Since the No molecules are assumed 
to be evenly distributed about the shell, 
this fraction will be represented by the 
ratio of the volume occupied by all the 
velocities with ic components between 
k and ic ± di, to the total volume of 
the shell. Hence, the fraction p,„= 
volume of ring/volume of shell. On cal-
culating this fraction, we find that pc. 
= dic/2c, approximately the ratio of 
the ic-range width to the diameter of the 
shell. 

Now, if a molecule has a given speed 

between c and c dc, Pc x is the prob-
ability that it will have an k component 
between it and ic ± di. But note that 
dk/2c is completely independent of the 
particular value of Sc. k could be zero or 
it could be approximately equal to c in 
magnitude. This tells us that within any 
small range of speeds, c to c dc, the 
ic components, and in the same manner, 
the S, and i components of velocity, will 
be equally distributed from zero up to 
a magnitude equal to c. In other words, 
the fact that c is large or small does not 
favor one possible velocity component 
over another. 

For example, in the shell of molecules 
with speeds between 300 and 300 ± 10-° 
meters per second, there would be just 
as many molecules with taxis velocities 
between 0 and 10-6 meters per second, 
as between 150 and 150 ± 10-0 meters 
per second. Thus, when we assume that 
the velocities are equally distributed in 
all directions, we also assume that the 

jr, and i coordinates are equally dis-
tributed over their respective range 
within a given shell. 

Figure 10 shows a cross section of 

Figure 10. Cross-Section of Speed Shells 
in ICY Plane. (Shells which intersect the 
dotted lines contain x components within 

the respective cU ranges.) 

A 
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velocity space in the SCit plane. We shall 
assume, however, that each of the con-
centric rings represents a complete 
speed shell. In each shell there are the 
same number of molecules with k com-
ponents between 0 and di as there are 
molecules with j components between 
any other two velocities that differ by 
di. However, a shell cannot contain an 
it component of greater magnitude than 
its outer speed limit. Thus, the larger 
the i component, the fewer the rings it 
can occupy. From this we infer that 
there will be more molecules in the sys-
tem with 31 components between 0 and 
di than within any other di range, 
since 0 to di is the only range of k 
components available to all of the rings. 

In figure 10, for example, the range 
;4 to *I ± di does not appear in any of 
the rings smaller than c1. If we consider 
just that part of the system from c1 on 
out, however, there will be the same 
number of molecules with x components 
between ici and 5c1 ± di as between 0 
and di. 
The arguments above apply equally 

to the distribution of the jr and i co-
ordinates. We now see that the initial 
assumption of equal probabilities for all 
directions of motion requires a distribu-
tion function in which the probability 
of a molecule's having a particular i,Sr, 
or i component increases as the com-
ponent becomes smaller. Note that this 
is true regardless of how high the tem-
perature may be. It is also true whether 
or not we postulate a state of equilib-
rium, as long as we assume the state to 
be a reasonably random distribution, or 
even whether or not we postulate the ex-
istence of collisions. A curve such as 
the one shown in figure 11 is a good 
first guess as to the probable distribu-
tion of velocity components in the it, jr, 
• and i directions. 

FIRST THOUGHTS ON THE 
DISTRIBUTION OF ENERGY 

Consider a velocity expressed in polar 

coordinates, V(c, 4,, e). As long as 
equal probabilities of direction are as-
sumed, the directional components 91 
and e are clearly independent of each 
other, and the probabilities that 4) 
and e of a given molecule will lie 
within certain limits are fixed, regard-
less of the magnitude of the individual 
speed c. Thus, it may be said that all 
three variables of velocity are inde-
pendent of each other. Assuming that 
the total energy of the system remains 
constant, the only factor that can cause 
the probability density to vary from one 
point in velocity space to another is the 
speed c. In other words, the probability 
density has but one degree of freedom 
—the variable c. 

Clearly, the most probable distribu-
tion of velocities throughout the entire 
system is the one that corresponds to 
the most probable distribution of the 
total energy among the molecules. If 
over a long period of time a system 
approaches and hovers about an equi-
librium state, the corresponding distri-
bution of energy, since it is the one most 
often approached, is, by definition, the 
most probable distribution. Otherwise, 
we would have to assume that a less 
probable distribution at a random in-
stant of time is more probable than the 
most probable. 
The question arises: What can cause 

one distribution of energy to be more 
probable than others? This question 
can lead to problems concerning the re-
spective roles of necessity and chance— 
a bottomless controversy which we shall 
fall into shortly—but for the present, 
the possibility of both competing points 
of view will be implied. Briefly, on the 
one hand, is the everyday point of view 
that an effect (in this case, the equilib-
rium distribution) is "pushed" into be-
ing by necessary physical causes, but on 
the othér hand, there is the statistician's 
tendency to interpret an effect as being 
"pulled" into being by its own a priori 
probabilities. We shall imply an accept-
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Figure LI. Approximate Shape of Dis-
tribution Curve for Velocity Along a 
Single Axis, That Can Be Expected from 
Assumption of Equal Probabilities of 

Direction 

ance of the former viewpoint by assum-
ing that the state of an isolated system 
at a future instant is completely pre-
destined by its state at a prior instant, 
and an acceptance of the latter view-
point by assuming that the most prob-
able distribution of energy is the one 
that has the most number of ways of 
existing, and by not being concerned 
with the impacts that generate this dis-
tribution. Actually, the latter viewpoint 
is not a departure from our approach 
up to now, for a reconsideration of the 
curve in figure 11 will recall to mind 
that its general shape was determined 
by an estimate of the number of ways 
in which the k, Sr, or i velocities can 
occur. That such a distribution might 
contradict the probabilities of the im-
pacts seems unlikely, but this is a ques-
tion that was not considered. 

Assume that the velocity space is di-
vided into a series of concentric shells 
as in figures 6 and 10, but that instead 
of the thickness of each shell represent-
ing equal changes in speed, dc, assume 
that they represent equal changes in en-
ergy, dE. As before, the changes are 
very, very small, but are large enough 
to allow vast numbers of molecules 
within each of the first few billion 

shells. The problem is to determine the 
maximum number of ways in which N 
molecules can be divided among the 
shells, but with the restriction that the 
total energy of the system must lie be-
tween E and E + dE. Obviously, the 
outermost shell that need be considered 
is the one corresponding to this total 
energy, for the probability of finding a 
molecule with more energy than that 
contained in the system is, of course, 
zero. 

FROM VELOCITY SPACE TO 
PHASE SPACE 

It will be recalled that within a single 
shell the probability density is every-
where the same, and that the chance of 
an k, ¡r, or i component of velocity fall-
ing within a given range di, d¡r, or di, 
respectively, is everywhere equal as long 
as we remain within the shell. If the 
entire system were confined to a single 
shell of uniform density, the probability 
of a particular molecule's being found 
in a given velocity cell of volume dv = 
dId¡rdi would merely be the ratio dv/ 
total volume of the shell. (The total vol-
ume of the shell should not be confused 
with the volume of the sphere which is 
enclosed by the shell.) Now the entire 
system can be confined to a single shell 
of uniform density if we imagine it to 
exist as a point in phase space. The 
phase-space shell will thus be that be-
tween the two surfaces corresponding to 
E and E dE, the limits of the total 
energy. Outside this shell, the probabil-
ity of finding the system point, by defi-
nition, will be zero. Inside the shell, the 
probability density is assumed to be 
everywhere the same—an assumption, 
however, which is by no means obvious, 
and indeed, which has no direct proof, 
although it can be made to appear rea-
sonable. With the assumption of uni-
form density throughout, then the 
chance of the system's being in one state 
will be assumed equal to its chance of 
being in any other state. The most prob-
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Figure 12. Ensemble of Identical Systems 

able distribution, then, will be that 
which embraces the greatest number of 
states, or in other words, occupies the 
largest volume in phase space. 

The phase space of the system will 
have 6N dimensions, or degrees of free-
dom—allowing three coordinates of po-
sition, q, and three coordinates of 
momentum, p, for each molecule. We 
imagine each of these dimensions per-
pendicular to each of the others. The 
state, or phase, of the system at any 
instant is defined by the phase position 
P(€11, q2 • • • 9 q3N9 Pi, P2 • • • 9 P3N) • 
Since the three-dimensional geometrical 
space in which the system is actually 
contained is fixed, the q coordinates will 
have upper limits. Furthermore, since 
the total energy is fixed between E and 
E ± dE, the p coordinates will also 
have upper limits—those corresponding 
to the momenta of a single molecule 
which has absorbed all the energy, 
E ± dE. As the molecules within the 
system are continually changing posi-
tions and momenta, the phase point of 
the system will likewise be continually 
on the move. 

AN IDEAL PHASE-SPACE GAS 

We now imagine that this same sys-
tem is duplicated a vast number of 
times, so that instead of one system of 
N molecules, we have a vast number of 
systems (see figure 12), each with 
N molecules idçntical with the molecules 
in the original system, and each system 
contained in a separate box of exactly 
the same dimensions as the first, and 
each system with a total energy, between 
E and E -1- dE. The systems are isolated 
from each other, so that each is per-
mitted to vary its phase independently 
of the other systems. Such an assem-
blage of identical systems is called an 
ensemble of systems. 

Each system in the ensemble can thus 
be represented by a point in the shell 
E to E -I- dE in the same 6N-dimen-
sional phase space. The entire ensemble 
appears as a streaming "gas" of phase 
points that circulates tin ough the shell. 
Now within the limits of our knowledge, 
there is no reason to assume that the 
ensemble gas, when it reaches equilib-
rium, would not have the same density 
throughout the shell. Note that the equi-
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librium here refers to that of the gas of 
system points, not to the actual gas in 
each system. 

That the ensemble density at equilib-
rium is everywhere uniform is a con-
clusion reached indirectly. It is beyond 
the scope of our discussion to follow the 
mathematical theorems which make this 
assumption acceptable; however, at the 
risk of shadowy reasoning, we can at 
least make an intuitive grasp at its 
plausibility. 

For this, we begin with the determin-
istic assumption that if the phase, or 
state, of an isolated system is completely 
determined at a given instant of time, 
then theoretically, an infinitely exact 
and comprehensive mathematical mind 
could compute the system's phase for 
any other instant of time. For instance, 
if a system consisted of a single mole-
cule whose momentum, energy, size, 
shape, and position were exactly known 
at some instant, and if the dimensions 
of the system boundaries were also 
known, then it would be possible to 
compute the molecule's position and 
momentum at any other instant. In 
other words, the fact that an isolated 
ideal molecule has a particular state at 
one given instant means that the mole-
cule can have one, and only one, par-
ticular state at another given instant. 
The same reasoning applies to a self-
contained system of N molecules. If its 
state at a given instant is plotted as a 
point in phase space, the trajectory of 
that point is predetermined for every 
interval of time therebefore and there-
after. Furthermore, the trajectory can 
never cross itself, for such an occur-
rence would be possible only if ideal 
molecules could have the same positions 
and momenta, while heading in different 
directions—whith, of course, is self-
contradictory. Thus, if a system is ever 
to have the same state twice, its phase 
space trajectory must eventually return 
to its starting position, and begin the 
entire cycle over again. 

Suppose that we started with a system 
in which all the molecules but one were 
at absolute zero, and followed the path 
of the phase point until the system 
reached thermal equilibrium. Since each 
point position on the trajectory is the 
necessary consequence of every other 
point position, it cannot be said that a 
particular position representing an equi-
librium state is more probable than the 
position from which we started, where 
all the energy was contained by one 
molecule. Let us now see if this equal 
probability density along the trajectory 
cannot be extended to the immediate 
vicinity around it. 

Instead of starting with a single sys-
tem, imagine a huge number of systems, 
such as Ne, where N, as before, is the 
number of molecules per system. As-
sume that all of the systems are so 
nearly "in phase"—say, that only the 
position of a single molecule varies in-
finitesimally—that their phase points 
almost, but not quite, occupy the same 
position at the start. In effect, they form 
what we might call a "phase molecule," 
which occupies an infinitesimal volume 
in phase space. The surface of this 
"p-molecule" we imagine to be com-
pletely defined by the tightly clustered 
outer points, and the interior to be of 
uniform density. After starting a p-mole-
cule at some phase position, we might 
expect its volume to gradually become 
greater, for it seems that the NN systems 
might gradually become more and more 
out of step with the passage of time. 
However, none of the phase points can 
penetrate the outer surface formed by 
the original surface points, for that 
would be equivalent to one trajectory 
crossing another. Also, there must be 
some limit to the expansion, since the 
phase-space shell is finite. On the other 
hand, there intuitively seems to be little 
possibility that a p-molecule will con-
tract, for this would require the assump-
tion that the corresponding molecules 
in the NN isolated systems, if started at 
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slightly different positions, will auto-
matically tend to become more nearly 
in phase as time progresses. Since this 
seems contrary to experience, let us as-
sume that a contraction cannot take 
place, and thus that a p-molecule will 
either expand or maintain a constant 
volume. 
We now pack the entire phase-space 

shell between E and E + dE with these 
p-molecules and deliberately arrange 
their shapes so that the surface of each 
coincides exactly with the adjacent sur-
faces of its surrounding neighbors. In 
this way we "force" a uniform proba-
bility density for an ensemble of sys-
tems in the E to E + dE phase-space 
shell. The question is, will this uniform 
density, where every possible phase of 
a system of N molecules of given energy 
is equally represented, be maintained 
if the ensemble is permitted to run 
through its paces without further adjust-
ment? 

First, we know that the surface of 
one p-molecule cannot penetrate the sur-
face of another, else it would follow that 
one 4set of trajectories can cross an-
other set. Thus, if we assume that one 
p-molecule expands, it must also be as-
sumed that others will simultaneously 
contract, for we have purposely packed 
them one against the other. However, if 
we can hold to the intuitive implausibil-
ity of the contraction of a p-molecule, 
in the same measure we may assume 
that it is equally improbable that a 
p-molecule will expand. Its shape may 
vary, but not its volume, nor its density. 
These arguments, of course, do not con-
stitute a proof of the ensemble proper-
ties. Nevertheless, they may aid in mak-
ing it easier to assume that the equilib-
rium density of an ensemble in the 
phase space is one that is uniform 
throughout, and that the various trajec-
tories, each of which is equally prob-
able, do not tend to "bunch" together 
in any region. 
The fact that the density in the vicin-

ity of a moving phase point will not 
vary, and hence that the volume contain-
ing a fixed number of points remains 
constant, can be proven by statistical 
mechanics. The former property is 
called the conservation of density in 
phase, and the latter, the conservation 
of extension in phase. 

Of major importance to us is to gain 
a visual image of the ensemble "gas" of 
ideal systems whose individual energies 
lie between E and E ± dE. This gas is 
incompressible, and, at equilibrium, is 
of equal density throughout. As long as 
the energy, E, is not zero, the phase 
points are continuously on the move. 
However, the points never collide with 
one another, but follow predetermined 
tracks with no crossings. A single phase 
point has no volume, and hence its tra-
jectory may be of infinite length before 
it circles back upon itself. However, a 
phase molecule does have volume, and 
thus its trajectory sooner or later will 
occupy all the phase space available to 
it, and within a finite time must begin 
at least an approximate repetition of its 
previous cycle. Whether the cycle will 
include every possible phase position 
consistent with the energy, we do not 
know, but it seems probable that this 
would be the case. 
The key assumption, however, is that 

the equilibrium probability density for 
the ensemble is everywhere uniform, for 
this permits us to postulate an equal 
probability for each phase position in 
the shell. 

PHASE-SPACE INTERPRETATION 
OF THERMAL EQUILIBRIUM 

We should be careful not to confuse 
the equilibrium of the ensemble of sys-
tems with the equilibrium of a single 
system. The equilibrium conditions of 
the former tell us that every state of an 
ideal gas is equally probable. The equili-
brium conditions of the latter are then 
derived from this assumption, by sup-
posing that the most probable distribu-
tion in velocity space corresponds to 
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Figure 13. Effects of Switching Molecules from One Velocity Cell to Another. 
(Switching either of the A molecules with the B molecule does not change the velocity 
distribution, but does change the system's phase-space cell. Switching both A molecules 
to the B cell and the B molecule to the A cell changes the velocity distribution as well 
as the phase-space cell. Switching the positions of the A, and A, molecules changes 
neither the distribution nor the phase-space cell, but does shift the phase point to a 

new position in the phase-space cell.) 

the one having the largest volume (i.e., 
largest number of ways of existing) 
in phase space. 

A small cell in phase space, 
dP = dqi, dq2, . . . dq3N; dpi, 
dp2 . . . dp3N, divided by the total 
volume of the phase-space shell will 
equal the probability that a system 
with energy between E and E + dE 
will be found in that cell at any given 
instant of time. However, remember 
that there are six dimensions to the 
cell for each molecule in the system, 
and that each molecule is distinguish-
able by its own particular set of coor-
dinates. Thus, molecule A may be 
assumed to control the coordinates 
(qi, q2, q3, pi, p2, p3), molecule B 
the coordinates (q4, q5, q6, p4, p5, p6), 
and so on. If only a single coordinate of 
molecule A is exchanged for a corre-
sponding coordinate of molecule B, the 
entire system moves to a different phase 
cell—provided the exchanged coordi-
nates differ by more than dq or dp, 
otherwise the phase point moves to a 
new position in the same cell, dP. 

Figure 13 shows two small cells in 
velocity space, each with a volume equal 
to dkffli. If a molecule in the A cell 
changes position with a molecule in 
the B cell, the velocity distribution re-
mains the same, for this is determined 

solely by the number of molecules in 
the respective cells—not which mole-
cules. On the other hand, switching the 
molecules does change the phase position 
of the entire system to a different cell 
in phase space. Thus it is that more than 
one phase cell corresponds to the same 
distribution of velocity (also of speed 
or energy) in a system. Although the 
distribution, itself, is not affected by 
which molecules are in which cells, the 
probability of the distribution is affected 
thereby, and the most probable distribu-
tion is the one that offers the greatest 
number of ways for switching molecules 
without changing the number in any 
velocity cell. This, in turn, is the dis-
tribution having the greatest number of 
cells, or the greatest volume, in phase 
space. 

If the number of molecules, N, is 
large, it can be shown that the most 
probable distribution is so very much 
more probable than all the other dis-
tributions combined that the latter may 
be ignored in determining the average 
distribution probabilities. In other 
words, the phase-space volume corre-
sponding to the distribution at thermal 
equilibrium occupies almost the entire 
E to E ± dE shell, so that once equili-
brium is reached, the resulting distribu-
tion may be considered the certain 
distribution thereafter, without intro-
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ducing an appreciable error in the 
functions defining the probabilities of 
a molecule having the various ranges 
of velocity. 

SUMMARY OF PHASE-SPACE 
METHOD FOR DERIVING 
DISTRIBUTION LAW 

We now summarize the key postulates 
from which the Maxwell-Boltzmann 
distribution law may be derived: 

1. The system is composed of a 
large fixed number, N, of dis-
tinguishable ideal molecules 
contained in a volume of fixed 
boundaries. 

2. The total energy Et is constant, 
and lies within a small range 
E to E ± dE. 

3. The equilibrium distribution is 
the most probable distribution, 
and corresponds to the distribu-
tion having the maximum num-
ber of equal ways of dividing 
the energy. 

4. There is an equal probability 
of finding the system in any 
cell of equal volume in the 
system's phase-space shell. 

5. Any probability, whether that 
of a particular distribution, or 
that of finding a particular 
molecule in a particular ve-
locity cell, will equal the frac-
tion of the phase-space shell 
occupied by the phase cells 
corresponding to the respective 
distribution. In other words, 
the phase-space dimensions are 
the only factors influencing the 
the probabilities. 

We shall not follow the actual deriva-
tion of the Maxwell-Boltzmann law em-
ploying the foregoing set of postulates, 
but shall follow, instead, Maxwell's 
original derivation, which is less rigor-
ous, and more useful in understanding 
the introduction of the constants. The 
postulates above, however, are important 
as a bridge to link classical mechanics 

with wave mechanics, because their 
wave-mechanical interpretations are the 
basic assumptions behind the quantum 
distribution laws. These latter laws are 
the more accurate for real gases, and 
describe the equilibrium state of a ther-
modynamic system under any conditions 
of temperature, pressure, and volume; 
whereas the classical laws break down 
at low temperatures and high pressures. 
The quantum distribution laws differ 
from the classical laws because of 
changes in the above postulates, which 
have the net effect of reducing the 
number of phase-space cells available 
to a system. A discussion of these differ-
ences, however, is best postponed until 
the wave properties of electrons have 
been established. Of importance now 
is to remember that the Maxwell-
Boltzmann distribution law can be de-
rived by the same general method that 
is used to derive the quantum distribu-
tion laws—i.e., the Bose-Einstein and 
Fermi-Dirac statistics. 

This method begins by determining 
the appropriate general equation for 
the number of ways N objects may be 
divided among M boxes under the speci-
fied conditions. Next, the function 
identifying the most probable distribu-
tion is determined. Finally, the actual 
values of the constants that enter the 
function are derived. 

MAXWELL'S LAW OF VELOCITIES* 

With this we leave the dust clouds in 
phase space, but with plans to return 
to see the changes wrought after the 
quantum takes over. The descent to 
three-dimensional space, via Maxwellian 
logic, is tricky, however, and the occa-

" The discussion here is rather tedious and 
offers little in the way of spectator interest. 
All the fun to be had lies in joining the 
game. So if the reader feels out of practice, 
or more hurried to learn "what goes" than 
curious about "how come," this section can 
be lightly scanned or saved for a rainy day. 
However, the dogged sports who cling to 
the problem step by step will find their 
investment sound. 

23 



sional traveler is well advised to hold 
to his thinking cap when taking one or 
two of the turns. Maxwell's method has 
been accused of being imperfect, al-
though it leads to the correct results. 
However, the derivation admirably il-
lustrates the mysterious ways by which 
the mathematical theorist, in quantum, 
as well as classical mechanics, seem-
ingly picks solutions out of the air while 
leaving a proof to be supported by its 
own boot straps. If the reader delights 
in those things which are quite unusual, 
he will enjoy seeking out the false turn 
in Maxwell's logic, for if he does, it will 
be quite unusual. Now we are thinking 
in the Maxwellian vein. 

Maxwell begins with assumptions that 
are essentially the same as postulates 1, 
2, and 3 listed above, but in place of 
postulates 4 and 5, he makes two other 
assumptions, which however, are im-
plicit within the postulates of phase. 
space probabilities. One is the assump-
tion of equal probabilities for all direc-
tions of motion, and the other is the 
assumption that the it, and i compo-
nents of velocity are independent of 
each other. The first of these we have 
already fully exploited; the second, 
however, is by no means as obvious.* 

Maxwell assumed the i,Sr, and i com-
ponents of velocity to be independent 
because they are at right angles to each 
other, and consequently any component 
of force that would change the one 
would not affect the others. When a vel-
ocity is expressed in polar coordinates 
(c, 4„ e), it is clear that there are three 
independent degrees of freedom for the 

" Actually, it seems that Maxwell's assump-
tion that the Z, and i components are 
independent need not be presented as a 
basic premise; for it will be recalled that 
the three polar coordinates (c, 0, and e) 
must be independent if equal probabilities 
for direction are assumed. In the presence 
of a rigorous proof that the number of 
degrees of freedom cannot be changed by 
a change in coordinate systems, the hy-
pothesis of equal probabilities for direction 
would be sufficient. 

velocity, but when the polar coordinates 
are converted to rectangular coordi-
nates each of the latter coordinates 

¡r, i,) is revealed as a function of 
c. The first intuition might be to sup-
pose that the probability of finding a 
random molecule with an it component 
between it and x ± di depends some-
what upon whether the jr and compo-
nents are large or small. If the constant-
energy system consisted of only two or 
three molecules, this dependence would 
certainly exist, but for equilibrium 
among a large number of molecules, the 
assumption of independence among the 
rectangular coordinates leads to the 
same distribution formula as that de-
rived from the phase-space method. In 
other words, if we imagine that each 
molecule in a system at equilibrium is 
composed of three little baskets of en-
ergy corresponding to three degrees of 
freedom, and that all the baskets are 
disassociated and then rejoined at ran-
dom into N groups of three, the same 
average distribution results as that at 
which we started; for each of the two 
distributions may be assumed to be the 
most probable distribution of the same 
three independent quantities. 

Suppose that the probabilities that a 
molecule picked at random from any-
where in the system—not just from a 
particular speed shell—are such that 

Px = 1/10 = chance that i lies be-
tween 0 and 50 meters/sec. 

1)3, = 1/100 = chance that j, lies be-
tween 400 and 450 meters/sec. 
pz = 1/20 = chance that i lies be-

tween 200 and 250 meters/sec. 
If the x, y, and z velocities are inde-

pendent of each other, the chance that 
a molecule picked at random will have 
a velocity, v, that lies within the vel-
ocity box that combines all these ranges 
is: 

Pv = Px Pr Pz 
= 1/10 • 1/100 • 1/20 
= 1/20,000 

In other words, 1/10 of the molecules 
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Figure 14. Two Velocity Cells of Equal Volume, Lying in Different Speed Shells 

are to be found in the given range; 
of these, 1/100 will be in the ST range; 
and of these, 1/20 will be in the i 
range. 

Figure 14 shows two small velocity 
cells, A and B, both of the same volume 
dv = clidS,di, which are located at ran-
dom in separate speed shells. Cell A is 
in the e to c dc shell, and cell B is 
in the c Ac to c ± A c de shell. 
The probability of finding a particular 
molecule in the A cell is p, = Px py 
where px is the fraction of x velocities 
in the entire system between x and x 
dx, etc. Dividing both sides by the vol-
ume of the cell: 

P, Pz p, P7  

dv (IST di 

or 

= PxPyP7 (1) 
where the p's are the probability densi-
ties. It should be noted that the density, 
p„ is the same at each point in the c to 
c de shell. Remembering that the 
logarithim of a product is equal to the 
sum of the logs of its factors, we can 
write 

log p, = log Px ± log py + log pz 
Since the speed is approximately the 

same throughout the c to c dc shell, 
we can assume that cell A represents a 

squared speed of 
e2 — v2 — 12 + d42 

where k,Sr, and i are the average vel-
ocity coordinates within the cell. 

Now, in moving from cell A to cell B, 
the change in c2 is 

.pc2 = A.s,2 zse 

and the change in log p, is 
slog p, Alog pz Alog py slog pz 

(3) 

(2) 

If we divide each side of equation 3 by 
the corresponding sides of equation 2, 
and then remove the denominator on 
the right side, the result is 

A log p, (A x2 ± A A 12) 
A e2 

A log Px -F à log py A log p, (4) 

It may seem strange that we can com-
bine two equations which seem, at the 
most, only vaguely related. However, it 
should be remembered that in terms of 
polar coordinates we found that the only 
variable effecting the distribution, and 
hence the probability densities, is the 
speed c. Regardless of this connection, 
however, even if c represented, say, the 
speed of a meteor, and p, was a proba-

• Ac2, ak2, etc. are to be interpreted as 
à(12), etc. respectively, and not as (AO', (Ai) 2, 
etc. 
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bility density giving the fraction of 
votes cast per minute in the last elec-
tion, equation 4 would still be mathe-
matically valid. 

The next step involves a trick or two 
in mental juggling. Remember that it 
is assumed that the x, y, and z velocities 
are independent of each other, and con-
sequently Alog Px is not affected by the 
changes in log py or log pz. The only 
variable that causes log Px to change is 
the velocity ic, or, for the sake of con-
venience, 12. If A¡,2 and Ai2 are both 
zero, then so are Alog py and Alog pz. 
(In other words, if there is no change 
in Sr or i, there can be no change in the 
probability density for either or 
and hence no change in the logs of the 
probability densities.) Thus, with AS,2, 
3à2, and Apr  and Ap, all equal to zero, 
equation 4 becomes: 

A l p, log p.=  og  
A e2 

But suppose that simultaneously with 
the change in 12, there is also a change 
in 3,2. Sirice Aer2 remains the same, so 
also must Alog Px- Furthermore, equa-
tion 5 must still hold, for (A log pv/ 
Ac2) Ai2 is the only term on the left-
hand side of equation 4 that can account 
for a change in log px. By equation 5: 
A log p, = Apx if and i remain con-
stant, for then Ac2 = Aic2 ± O ± 0. 
Now, however, à log p, and Ac2 have 
new values, for 

Alog p, = Alog Px Alog py 
and 

Ac2 = Ar12 A¡,2 
But, since equation 5 still holds, and 
Alog p„ and AZ2 remain the same, the 
ratio Alog pv/LIc2 must be a constant. 
In other words, the log of the speed 
probability density varies directly with 
the square of the speed, or equivalently, 
with the energy. 

We recall that the log of a number is 
the exponent of another number that is 
called the base of the logarithm. Thus, 
in the equation 100 = 102, 2 is the log 
of 100 to the base 10. But an exponent, 

A .±2 (5) 

and hence a log, is a pure number, for 
it is meaningless to raise a base to the 
power of a quantity of energy, velocity, 
etc. Thus, log pv, Alog pv, or Alog Px can 
have no physical dimensions. The ratio, 
Alog pv/Ac2, then, has the dimensions 
of 1/speed2, and we shall give it the 
symbol, —1/a2. Here, a represents some 
speed; though just what speed, we do 
not know at this time. The minus sign 
is inserted because of the fact (see fig-
ure 11) that the probability density 
along each velocity axis must decrease 
as the velocity increases. If ir2 increases, 
Ak2 is positive, and Alog Px must be 
negative to represent a decrease in the 
log of the density. Equation 5 thus 
becomes 

Similarly 

and 

A 312 
A log px 

a 2 

log py = 

log pz =. — 

A 3,2 
a2 

A e 
2 

(6) 

Equation 6 reveals that if log Px were 
plotted against i2, the resulting curve 
would be a straight line with a negative 
slope such as those in figure 15, where 

Figure 15. Three Possible Curves of 
the Equation: 

log Px = — 12/a2 k 
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log p. is shown decreasing at a steady 
rate of —1/a2 as 12 increases. Each of 
the three lines expresses the following 
equation, which is equivalent to equa-
tion 6: 

log p. = — *2 a2 k (7) 

For line A, a is large, k is positive. 
For line B, a is large, k is zero. 
For line C, a is small, k is negative. 

Equation 7 does not specify from 
what base the log of p. is to be taken, 
since the parameter k can always be ad-
justed to agree with any particular se-
lection. However, for convenience in 
calculus operations, the base, e = 
2.71828 . . . , of the natural logarithms 
is always the choice. Thus, equation 7 
may be expressed as 

• 2 
X 

Px =  e — K 

or 

= ek e (12/1'2) 

Since k is simply a constant of propor-
tionality, ek is also a constant of pro-
portionality, and may be represented by 
A = ek. 
Hence 

• 
p. — Ae a2) (8) 

It will be recalled that the probability 
of finding an i velocity between k and 
+ di is 

Px = px di 
On substituting from equation 8, we get 

p=dk Aé (±2/a2) (9) 

The number of molecules with x ve-
locities between k and + di is 

N. = Np. 
On substituting from equation 9, we get 

= dx NAe (i2/a2) (10) 

Since every molecule has some value 
of k, adding together the molecules, N., 
in every interval, di, from i = — oo to 

+ co, must give a total of N mole-

cules. The only way that the right side 
of equation 10 can be summed over all 
values of i to k ± di to equal N, is 

1 
when A = 

Thus, equation 8 becomes _ (i2/ 

Similarly 

and 

e 
Px 

a  

e 
(ir2/a 2) 

PY — a VT.r 

Pz —  

e 
a V -Tr 

By equation 1 
Pv =  Px Py Pz 

And on substitution of p., py, and pz 
from equations 11, we get 

e (*.2 jr• 2 ± 2/ 

Pv 2 77'3 /2 

Since i2 e = c2 approximately, 
e — (c2/a2) 

Pv — , a3 r3/2 

(12) 

The probability of finding a molecule in 
a velocity cell of volume didS,dà, at a 
speed between c and c dc, is 

e — (c2/a2) 

pxyz = , 3/2 didSrdi 
a 7r 

(13) 

Note that the smaller the speed c, the 
greater will be the probability. 

The probability of finding a molecule 
in a speed shell c to c dc, where both 
spherical surfaces may be assumed to 
have an area equal to 47,-c2, and hence 
where the shell volume is approximately 
equal to 47rc2dc, is 

(c 2/ a 2) 

Pc e, r3/2 47rc2dc 
a  

(c2/a 2) 

4c2e dc (14) 

Pc = 2 V7. 
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Figure 16. The Maxwell-Boltzmann Distribution Curve 

Note that as c approaches zero, the 
probability also approaches zero. This 
may seem contradictory to our expecta-
tions, for equation 13 reveals that the 
probability of a molecule's being found 
in a given-sized velocity cell increases 
as the cell approaches the zero region 
of velocity space. Although this is true, 
the total number of equal-sized cells 
that can be contained in a speed shell 
progressively becomes less the smaller 
the speed c. Thus, even though the 
velocity probability density is greatest 
at zero, the number of molecules in the 
0 to dc shell is not. 

The number of molecules with speeds 
between c and c dc is, by equa-
tion 14, 

Ne 
4 Nc2 
«3 V; 

The first factor approaches zero as c 
approaches zero, and the second factor 
approaches zero as c approaches infin-
ity. Thus, as e is varied from zero to 
infinity, Nc must increase from zero to 
a maximum, and then gradually de-
crease toward zero again. The maxi-
mum represents the speed of greatest 
probability. At that point the probabil-
ity neither increases nor decreases with 

— (c2/2) 
e de (15) 

a small change in speed. It can be 
shown that the only speed at which this 
occurs is when c = «. In other words, 

is the most probable speed. 

To find the average speed, "e, we add 
the speeds of all the molecules together, 
and divide the total by N. This gives a 
value of 

2« 
C = 

To find the average squared speed, 
C2, we add the squares of the speeds of 
all the molecules together, and divide 
the total by N. This gives a value of 

3 C2 «2 
2 

or 

C = a\/7 (16) 
Figure 16 shows the speed probability 

density according to the Maxwellian law 
of velocities with «, Z, and C indicated, 
and with «/10 taken as the unit speed. 

Rearranging equation 16, we see that 

a2 = 2C2/3 

and 

ma2/2 = 2/3 mC2/2 

where m is the mass of one molecule, 
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and mC2/2 is the average energy per 
molecule. 
Thus, 

ma2/2 = 2/3 Eave 

Certainly, this is an open invitation 
to recall our old friend, kT; for one of 
our earlier discoveries was that kT 
equals two-thirds of the average energy 
per molecule. So it must be that 

ma2/2 = kT. 
By making the proper substitutions in 

equation 15, we obtain 

3/2 

Ne = 47rN (27IrnkT) 

MC-9 

e 2kT dc 

(17) 

It can be shown that 
c2dc = dE V2E/m3 

where E is 1/2 mc2. So if the molecular 
energy E is substituted for c as the vari-
able in equation 17, 

27rN  
NE — 

(ACT) 3/2 

—E 
kT 

VE e dE 

(18) 
This is the Maxwell-Boltzmann law 

for the distribution of energy among 
ideal molecules at thermal equilibrium 
at an absolute temperature, T. If the 
number of molecules is known for a 
given volume, and the temperature is 
known, then the number of molecules 
having a particular energy between E 
and E ± dE can be readily computed 
from equation 18. The use of this equa-
tion, of course, depends upon whether 
the molecules can be assumed to be-
have approximately as an ideal gas. If 
not, then the more exact quantum sta-
tistics must be employed. 

SIMILARITIES BETWEEN CLASSICAL 
AND QUANTUM STATISTICS 

It should be remembered that the 
probabilities expressed by the above 
equations are all directly proportional 
to the size of the cells or shells in ve-
locity space that are chosen. Thus, the 

number of molecules in a cell did;rdi 
will depend on the magnitude of each 
of the three dimensions. Likewise, the 
number of molecules in a shell of vol-
ume 4/rc2dc will depend upon the mag-
nitude of dc. It will be discovered later 
that the quantum effectively partitions 
a system's phase space into a fixed se-
quence of unit cells all of the same size. 
The number of these unit cells that per-
mit a molecule to have an energy be-
tween E and E + dE will depend upon 
the magnitude of dE, and may be repre-
sented by the general function g(dE). 
This quantity will be equivalent to the 
number of ways a molecule can have an 
energy between E and E + dE. If 
g(dE) is substituted for the volume of 
the velocity shell between E and E ± 
dE, equation 18 can be transformed into 
the equivalent equation: 

g(dE) 
NE — 

Ae E/kT 

(19) 

This. is the Maxwell-Boltzmann law ex-
pressed in a general form. 

Only for the purpose of a preliminary 
comparison, the Bose-Einstein and 
Fermi-Dirac distribution laws are shown 
below. The Bose-Einstein statistics ap-
ply generally to all atoms or molecules 
containing an even number of elemen-
tary particles (electrons, protons, and 
neutrons), and also to photons. The 
Fermi-Dirac statistics apply to the ele-
mentary particles themselves, except 
photons, and to atomic nuclei contain-
ing odd numbers of protons and 
neutrons. 

is 

The Bose-Einstein distribution law is 
g(dE)  

E/kT 
Ac — 1 

NE = 

(20) 

And the Fermi-Dirac distribution law 

g(dE) 
NE — 

E/kT 
Ac + 1 (21) 
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The parameter, A, and the variable 
g(dE) have the same significance in 
each equation, but the values may vary 
from one equation to the other. How'- 
ever, whenever the term Ac E/kT be. 
come large relative to 1, equations 20 
and 21 become equivalent to the classi-
cal distribution equation. 

APPLICATION OF THE 
DISTRIBUTION LAWS 

Whenever an analytical interpretation 
of a thermodynamic property is re-
quired, one or the other of the statistics 
discussed above is likely to enter the 
problem. For example, equations that 
have . been derived with their aid are 
those for thermionic emission of atoms 
and electrons from heated surfaces, elec-
trical and thermal conductivities, the 
thermocouple effect, the Hall effect, heat 
capacities, electrical discharges through 
gases, noise levels in vacuum-tube cir-
cuits, the photoelectric effect, heat radi-
ation, the rates of gas diffusion, of 
sound propagation, and of chemical re-
actions, and a host of other physical 
phenomena. Indeed, a complete analysis 
of any physical property of any system 
ultimately leads to the statistics that 
govern the actions of the particles that 
make up that system. The importance 
of the distribution laws in explaining 
the behavior of semiconductors is the 
reason we have concentrated so much 
of our attention upon the classical 
derivation. 

The factor, eB/kT , is a variable in 
many of the equations which appear in 
treatises on semiconductors. It is well to 
remember that kT represents the most 
probable kinetic energy of a mass point, 
inasmuch as that point may be assumed 
to behave as an ideal molecule. Since 
kT has the dimensions of energy, so 
also must the quantity represented by B, 
for the over-all exponent must be a pure 
number. It should also be noted that e" 
is always a pure number, as also is any 
probability, p. However, a probability 

density, p, or any other non-trivial 
density for that matter, is never a pure 
number. For example, the formula giv-
ing the density of electron holes in a 
semiconductor under equilibrium con-
ditions at a temperature T is 

— (qV/kT) 
p = Ae 

Since p has the dimensions of charge 
per unit volume, so also must A. The 
factor q is the charge of the hole, and 
V the electrostatic potential of the re-

- (qV/kT) 
gion. The variable e indi-
cates that the density is least in regions 
of high potential energy, but increases 
with the temperature. 

Another point to remember is that the 
distribution laws are formulas which 
give the "population" of a particular 
range at a given instant of time, not the 
"rates of birth and death." At equilib-
rium, however, the "birth and death 
rates" are equal to each other, so that 
the "population" equals the equilibrium 
"birth rate" times the average "life-
time." For an ideal gas it can be read-
ily imagined that the average "lifetime" 
of a high-velocity particle will be 
shorter than that of a low-velocity par-
ticle, since the high-velocity particle will 
collide with another particle in a shorter 
time. Thus, for a given N, of a high-
speed shell, the rate at which the speeds 
are produced must be greater than the 
rate for a low-speed shell of the same 
N. This is a factor that would need to 
be considered when determining the 
rate at which particles escape through 
a surface, such as the rate of escape of. 
the electrons during thermionic emis-
sion. 

A BRIEF PREVIEW OF 
WAVE-MECHANICAL CONCEPTS 

Figure 17 illustrates the Maxwell-
Boltzmann distribution of velocities plot-
ted in the xy plane of velocity space. It 
will be noted that the area of greatest 
density is at the zero point. A shell with 
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Figure 17. Maxwell-Boltzmann Distribu-
tion of Molecules in Velocity Space 

the maximum number of molecules, 
however, is the one with the a ring at 
its center, corresponding to the most 
probable level of energy, ma2/2, or kT. 

It is of interest to note that if the 
velocity axes in figure 17 were changed 
to represent an xy plane in geometrical 
space, and the zero point were desig-
nated as the position of a proton, the 
illustration could roughly pass as the 
wave-mechanical picture of a hydrogen 
atom with its electron in the lowest en-
ergy state. The a ring, representing the 
most probable distance from the nu-
cleus, would correspond to the first 
Bohr orbit, even though the probability 
density is greatest in the immediate 
vicinity of the nucleus. The actual dis-
tribution curve, plotted as a function of 
the distance from the nucleus, is very 
similar in appearance to a Maxwellian 
curve, but its significance and the 
method by which it is derived are to-
tally different. One or two of these 
differences can be mentioned now with-
out prematurely becoming over-involved 
in wave mechanics. 

First, if figure 17 were changed to 
illustrate a hydrogen atom, the dots 
would represent the average positions 
of one electron over a period of time. 
Furthermore, the representation would 

be only that of a single energy shell. 
Thus, the total energy is the same for 
every dot—presumably the electron 
bounces around so that the point of 
maximum kinetic energy and lowest po-
tential energy is at the nucleus, and vice 
versa at points infinitely removed from 
the nucleus. This, then, is not to be con-
fused with the statistical laws governing 
the distribution of energy in a system, 
as exemplified by equations 19, 20, and 
21. Rather, there is a much more revo-
lutionary significance. Briefly, such a 
picture of a hydrogen atom represents 
the most accurate description, even 
theoretically, that can be given of the 
atom's lowest energy state. In classical 
physics, and even in the older quantum 
mechanics of the Bohr atom, it was as-
sumed that the state of a system at a 
given instant can, at least, be theo-
retically known, so that all the positions, 
directions of motion, and divisions of 
energy might be predicted as the state 
at some other instant. However, the new 
wave mechanics reveals that, in the first 
place, there are insufficient grounds for 
assuming a completely defined position 
and momentum for a particle at a given 
instant of time; and in the second place, 
even if we did make such an assump-
tion, there is even less reason to believe 
that a future state at another instant can 
be definitely predicted, even if we as-
sumed that it could be observed—an 
event which is, itself, an impossibility. 
In short, the Newtonian laws of motion, 
which were formerly assumed to com-
pletely govern the state of a body at 
every instant, have been replaced by 
wave equations which also define the 
state of a body, but a state that cannot 
be pin-pointed to a definite position, 
velocity, momentum, energy, or instant 
of time—it is a state of possibilities, 
instead of actualities. 

It is also a sad state of affairs for the 
loyal physicist who struggles to uphold 
the old creed of strict determinism; for 
at the same time he is honor bound to 
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admit that neither observation nor equa-
tion can directly support the belief that 
the exact state of a system at one in-
stant is a necessary consequence of its 
exact state at a previous instant. The 
determinism that once was a positive 
doctrine of materialism has now become 
an uncertain faith leading towards 
subjectivism. 
The new concepts, however, did not 

arrive overnight in a single packet. The 
fact is that for some time the old phil-
osophy was gradually being undermined 
by various points of view that were tak-
ing root in the different branches of 
physics. It was in the development of 
wave mechanics that these different ap-
proaches suddenly converged. First, 
there was the revolutionary change in 
the physicist's thinking being wrought 
by the older quantum mechanics; then 
there was the equally revolutionary ap-
proach of the relativity theory; even 
before this the Newtonian equations of 
motion had been duplicated in various 
forms in which the concept of force was 
no longer necessary; and finally, there 
was the approach via statistical me-
chanics, where, through mental habit, 
chance often appears as a more concrete 
reality than physical force. All of these 
avenues of thought have contributed to 
the downfall of classical determinism, 
and to the rise of wave-mechanical in-
determinism. However, it is only the 
conflict between the viewpoint of the 
classical determinist and that of the 
statistician that we shall touch upon 
now. 

THE ETERNAL COMBATANTS— 
NECESSITY AND CHANCE 

"Certainly the early physicists found 
no place for chance among the causes 
which they recognized — love, strife, 
mind, fire, or the like." 

—Aristotle (384-323 B.C.) 
The early successes of Newtonian 

mechanics in explaining and predicting 
the behavior of nature inevitably nour-

ished the faith that all physical events 
are brought into being by physical 
forces. Paralleling this thought is the 
earlier belief that all things exist by 
necessity, and nothing by chance—for 
if it were supposed that something could 
exist by chance, the possibility that 
something, which does exist, need not 
exist, must also be assumed. Since this 
latter assumption is incapable of proof, 
and since everyday experience continu-
ously encourages the belief that every 
effect can be assigned a cause, there 
seems little to gain by asseiting the 
actuality of chance. An event which is 
normally ascribed to chance, such as a 
particular throw of dice, thus is recog-
nized as a necessary event which differs 
from a deterministic event only in that 
the mind cannot assimilate the causes 
into a parade leading to the final effect. 
Even if a law of chance were believed to 
exist, it would be a variable function of 
the believer's mind. For example, the 
probability that the second card drawn 
from a deck is an ace would depend 
upon whether or not the first card 
drawn were known. It was this meeting 
of the concepts of necessity and physi-
cal cause that led to a strongly fortified 
positivistic and deterministic approach 
among the classical theorists. 
Nor have the empiricists and engi-

neers been of lesser faith, for certainly 
their achievements, in themselves, pay 
respect to a belief in the search and 
application of physical cause. "Human 
knowledge and human power meet in 
one; for where the cause is not known 
the effect cannot be produced"—this 
statement by Francis Bacon, an early 
prophet of the deterministic faith, might 
well be called the first dictum of the 
empirical and the applied sciences. 

The physical sciences—empirical and 
applied, as well as theoretical—are thus 
actually the products of determinism. 
Classical physics expressed this deter-
minism by assuming that all changes in 
the position of a body were caused by 
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its motion, and that all changes in its 
motion were caused by physical forces 
in obedience to Newton's laws. Thus, all 
physical events were seen as the neces-
sary consequence of prior motions and 
forces. 

Chance, however, in spite of this at-
mosphere, would not be denied a lawful 
hearing. Its influence was particularly 
felt by the statistical theorists, even to 
the extent that some of them came to 
embrace the cause of indeterminism. 

One of these theorists was Clerk Max-
well, a Scotsman of great intellectual 
wealth, whom we remember chiefly for 
the development of the electromagnetic 
field and wave theories, but to whom 
we are also indebted for contributions 
in astronomy—such as his theoretical 
proof that Saturn's rings must consist 
of small, separate satellite bodies—and 
for valuable experiments in the study of 
color vision, as well as for the discovery 
of the velocity-distribution law of ideal 
gases. 

In contrast to Maxwell was his con-
temporary, Ludwig Boltzmann, a Vien-
nese physicist and strict determinist, 
who, however, is chiefly famous for his 
application of the theory of probability 
in the kinetic theory of gases. 

It is known that according to the 
second law of thermodynamics, every 
irreversible transfer of energy from one 
system to another is always accompa-
nied by an an increase in the amount 
of "disordered" energy in the universe 
—energy which is no longer available 
for conversion into work. Of such a 
nature are the frictional losses in any 
machine, or the radiation losses in a 
resistor. The function which measures 
this "disordered" energy is called the 
entropy of a system. For the universe 
as a whole, the entropy is seen as con-
stantly increasing. Boltzmann was the 
first to show that the macroscopic func-
tion, entropy, can be identified with 
the probability of a microscopic dis-
tribution of energy. Boltzmann was also 

the first to propose the method of cal-
culating the equilibrium distribution of 
thermal energy in a system from its 
number of corresponding phase states. 
It should be recalled, however, that this 
method is essentially deterministic; for 
the equal probabilities of the different 
states require a uniform ensemble 
density, and this uniformity is in turn 
based upon the assumption that the state 
of an isolated system at any given in-
stant is completely determined by its 
state at any other given instant. 

Maxwell, however, derived his ve-
locity law with a minimum of physical 
postulates; in fact, not even collisions 
between molecules were involved. On 
this account, Boltzmann vigorously 
argued that Maxwell's method was not 
valid, for it is only by means of impacts 
between molecules that an equilibrium 
distribution can be achieved. Maxwell's 
proof would hold even if the absence 
of collisions were postulated, thus prov-
ing an impossibility. Boltzmann did not 
rest upon these objections, but followed 
through with a magnificent contribution 
to the deductive arts, rigorously proving 
through the probabilities of collisions 
that there can be but one law of ve-
locities at thermal equilibrium. Boltz-
mann's law, however, was exactly the 
same as Maxwell's. Although Maxwell 
was the originator, Boltzmann was the 
first to actually derive the distribution 
law from the laws of classical me-
chanics, and for this reason the honors 
are usually divided by calling it the 
Maxwell-Boltzmann distribution law. 

We say that Boltzmann held the clas-
sical point of view by his insistence that 
the equilibrium state of a gas can only 
be explained as the effect of forces in-
herent within the mechanical impacts. 
This places Maxwell closer to the pure 
statistician's point of view, where the 
tendency is to see an equilibrium state 
simply as the effect of a priori 
probabilities. 
The pure statistician, however, has 
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more than mental habit to support his 
point of view. For instance, if an effect 
has a certain probability of occurring, 
then its necessary physical cause must 
also have that same probability, and 
likewise the cause of the cause, and so 
on ad infinitum. Thus, can it not be 
argued that the probability is prior to 
and has a certain independence of the 
physical cause? 

Again, the heads-or-tails probability 
of a coin toss is readily determined by 
assuming equal a priori probabilities 
for the two ways in which the coin may 
land. The "Boltzmann," or Newtonian 
method of determining the probabilities 
of impact, angle, spin, height, etc. of 
the flip would be quite an achievement. 
However, could it be correctly argued 
that a "Maxwellian" method of deter-
mining the probabilities solely from the 
effect would be invalid because it does 
not necessarily assume that the coin be 
tossed? 

If, with all known factors considered, 
a function accurately defines the proba-
bility of occurrence of an event, that 
is, by definition, as far as one can go 
in predicting the event. Thus, since even 
the most probable of physical causes are 
not known with absolute certainty, is 
it not true that all our equations pre-
dicting physical states, if rigorously de-
fined, would assume the nature of 
probability functions? 

Finally, there are the elementary 
events, such as the actions of electrons, 
which seem to just happen, not from 
known physical causes, but in ways 
which obey probability equations. Since 
all physical events are aggregates of 
these elementary events, should we not 
expect the elementary probability func-
tions to eventually replace the laws of 
force, conservation of energy, etc. as 
the basic physical laws of the universe 
—from which the classical laws are to 
be derived as statistical averages? 

Thus, the statistician tends to evoke 
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the laws of probability to wield a non-
physical authority over physical events, 
in which Newtonian cause is merely 
an interval in a sequence of chance 
effects; and the statistician's mind is 
tempted by the vision of a universe 
evolving, not through flights before the 
states of greater physical force, but 
through attractions towards the states 
of greater probability. 

Our discussion here is not intended 
to be a plea for one mode of thinking 
as opposed to the other, nor even to 
imply that there is a fixed line of cleav-
age between the two. The problem is an 
open controversy, and philosophical 
overtones outside the realm of the phy-
sical sciences could not fairly be ig-
nored if one were seeking to resolve the 
issue in his own mind. Within the phy-
sical sciences there are good teachers 
and good theorists in both schools of 
thought. Our subject will necessarily 
emphasize the statistical point of view, 
for the Newtonian laws break down 
completely in interpreting, even quali-
tatively, the new free-electron mechan-
ics. The reader will find that different 
interpretations in different treatises of 
the same wave function may simply be 
a reflection of this difference in basic 
approach. Thus, a statistical bias might 
view the electron as a small particle 
relative to the area at its command; 
whereas a deterministic viewpoint might 
interpret the electron as simply a smear 
of charge filling all the space in which 
it is free tg move. These interpretations 
and viewpoints have frequently become 
caught in their own cross fire, for it is 
the particle that traditionally has been 
closely associated with Newtonian me-
chanics, whereas the smear of charge 
suggests the nature of a statistical 
average. Our present purpose is not to 
draw a definite conclusion, but merely 
to practice an aquaintanceship with the 
statistical mind. It is important to re-
member, however, that in the determin-
istic point of view, probability is a func. 



tion of an observer's knowledge, and not 
that of an actual physical state. Proba-
bility, in the indeterministic point of 
view, can be a law that actually guides 
the course of the universe. 

DYNAMIC DEGENERACY 

Insofar as the qualitative fundamen-
tals of ideal molecular systems are un-
derstood, we now stand approximately 
with the physicist of the early 1900's. 
At least we are in a position to keep 
pace with the quantum's main campaign 
as it lays waste to the classical ideals. 
The word degeneracy will appear with 
increasing frequency. Since the mean-
ing of the term has, itself, somewhat 
"degenerated" from the original conno-
tation, the word is often a source of 
confusion when used in different con-
texts. For this reason the general usage 
of the term will be given now, and the 
later modifications when they arise. 

Originally, the word degenerate was 
an expression used in the kinetic theory 
of gases to describe a gas that did not 
obey the ideal gas laws. In other words, 
a gas was either ideal or degenerate. All 
real gases are degenerate in some de-
gree, and the greater their deviation 
from the ideal, the greater, it is said, is 
their degeneracy. This degeneracy may 
be caused by many independent factors. 
For example, the molecules may have 
small attractions for each other, or they 
may be so crowded together that the 
actual space in which they are free to 
move is considerably less than the total 
volume of the container. The first factor 
would cause the pressure to be less than 
that predicted by the ideal gas equation 
of state, PV = nRT, whereas the sec-
ond factor would cause the pressure to 
be greater. 

Degeneracy of a gas also results if 
there are any restrictions on the distri-
bution of velocities or energy. Insofar 
as the quantum restricts the movements 
of electrons, it will add to the degener-
acy of an electron gas. It is at this point 

that confusion can arise concerning the 
meaning of degeneracy. The reason is 
that the original application as a broad 
descriptive term for any variation from 
the ideal laws has been gradually aban-
doned through lack of use. Degeneracy 
now is more commonly identified with 
particular quantum conditions, and the 
quantum texts rarely refer to its older 
meaning. However, it will be seen that 
electrons that are not degenerate accord-
ing to the quantum conditions, are also 
those that approximately obey the ideal 
gas laws. 
Now the quantum always makes its 

appearance in connection with periodic 
actions of one sort or another. For ex-
ample, in the Bohr atom, it determines 
the orbits for the "bi-cycling" of elec-
tron pairs about the nucleus. In search-
ing for terms to describe the restricted 
state of an electron in cyclic motion, 
scientists borrowed the words degener-
ate and degeneracy. These words, which 
were originally used in connection with 
gases, thus assumed, via the quantum 
and the electron, special meanings with 
reference to periodic functions. 

Imagine a particle of constant energy 
with a fixed periodic motion for each 
of its three translatipnal degrees of 
freedom. Our astronomers call such a 
state of motion a "conditioned period-
icity." Normally, the resultant motion 
of a body with a conditioned periodicity 
is not, itself, periodic; that is, the body 
does not repeat the same orbit over and 
over again. However, if the frequencies 
(f., fy, fz) of the three component mo-
tions are such that the ratios f./fy, 
fy/f„ and f./f, are rational numbers— 
i.e. integers, or fractions that can be 
expressed as ratios of integers, such as 
7, 3/29, etc., as opposed to numbers 
such as -\72— or 7r, which are endless 
non-repeating decimals — the resultant 
motion of the body will be periodic, and 
the path it describes will be a closed 
curve. A particle thus confined to mo-
tion along a single line is said to have 
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but one independent periodicity, and is 
classed as totally degenerate. Or, from 
the point of view of the number of de-
grees of freedom that has been surren-
dered, the particle is said to have a 
degeneracy of two. 

If only one of the ratios of the com-
ponent frequencies is a rational number, 
the resultant motion will not be peri-
odic, but the path will be confined to a 
fixed surface, and over an infinite time 
will touch every included point. The 
particle is thus said to have two inde-
pendent periodicities; and, since one of 
its degrees of freedom is not in use, it 
has a degeneracy of one. 

If none of the frequency ratios is a 
rational number, the resultant motion 
will not be periodic, but the path will 
be confined to a fixed volume, and over 
an infinite time will touch every in-
cluded point. The particle thus has three 
independent periodicities, and is said to 
be non-degenerate. 

When a system of many particles 
with periodicities is considered—a solid, 
for example—the normal modes of mol-
ecular vibration, or the periodic func-
tions of the electrons may be described 
in a similar manner. If there are two 
normal vibrations having a rational ra-
tio, the resultant mode has a degeneracy 
of one; if there are a hundred normal 
vibrations whose frequency ratios are 
rational numbers, the resultant mode 
has a single periodicity, and hence a 
degeneracy of ninety-nine. Normal vi-
brations of the same frequency are of 
special interest, and the reader may re-
call that these are called degenerate vi-
brations; although if rigorously defined, 

degenerate vibrations would be any 
whose frequency ratios are rational. 
. It should be noted that the interpre-
tation of periodic degeneracy does not 
in itself describe a condition that re-
stricts the exchange of energy between 
particles, or that decreases the number 
of degrees of freedom for partitioning 
the energy. A change of energy in any 
of the component motions of an "ideal" 
degenerate particle will simply mean a 
change of orbits. However, when the 
quantum enters the picture, it limits the 
number of possible orbits, and the pe-
riodic degeneracy finds a new interpre-
tation—a degeneracy of energy states. 
When applied to an electron gas, the 
term implies the existence of many elec-
trons that obey the same periodic func-
tion. It will be recalled, however, that 
the classical conception of a degenerate 
gas does not require such an assump-
tion. Because of the differences between 
the old and new interpretations of de-
generacy, a newcomer is often confused 
by being, confronted with definitions 
from different sources that appear, at 
best, only remotely related. However, 
any quantum state that is classed as de-
generate will in one way or another pre-
vent a system of particles from obeying 
the Maxwell-Boltzmann distribution law. 
Since all the laws of ideal gases, includ-
ing the equation of state, PV = nRT, 
can be derived from the Maxwell-
Boltzmann distribution law, it can be 
said that a quantum degeneracy, which 
describes a microscopic state, reflects a 
classical degeneracy when its effects are 
observed at the macroscopic level. 
The stage is now set for the reappear-

ance of the quantum. 
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ROCKET AND ROCKET CIRCUIT 
TESTING 

by Donald Love 
Philco Field Engineer 

Construction details and theory of operation of a simple 
device for testing HVAR rocket igniters and the firing 
circuits used to launch these rockets from aircraft. 

THROUGH THE COLD CLEAR SKIES over 
North Korea, Captain Dale D. Ryder 
hurled his B-26 light bomber at a com-
munist flak position. Earlier in the con-
flict, the communists had learned to take 
cover whenever a B-26 aimed its four-
teen forward-firing machine guns at 
them. However, this aircraft had been 
modified to accommodate a bombardier, 
and its original hard nose which 
mounted eight .50-caliber machine guns 
had been replaced with a plexiglass 
nose. The aircraft was still formidable, 
however, because in addition to the 
three guns in each wing, it carried eight 
HVAR rockets beneath its wings. Four 
men were risking their lives to destroy 
an enemy gun position. Captain Ryder 
took careful aim and turned loose his 
entire fire power. Of the eight rockets 
at his command not one would fire! On 
the second trip to the target these four 
men again risked their lives to no avail. 
Still not one rocket was fired, and 
all eight remained on the aircraft as 
it taxied into service position on its 
home base. 

This regrettable incident sparked the 
imagination of Captain Ryder, who was 
not only a pilot, but also assistant Wing 
Communication Officer. He sketched his 
plans for a rocket circuit tester and 
turned the development of a working 
model over to Philco Field Engineers 
George Hukle and Donald Love. Their 
experiments ranged from a set capable 
of detecting the reduction in resistance 
of a circuit caused by a person's touch-
ing the wiring, to a set which would 
not only test the rocket firing squib, but 
also the entire firing circuit. 

Several months of spare-time work 
resulted in the final complete tester 
shown in figure 1. Its use eliminates 
the need for Circuit Continuity Tester 
Type #680 and type B-2 Circuit Tester. 
It permits ohmic resistance tests of the 
rocket squib, voltage tests of the rocket-
firing circuits in the aircraft, and con-
tinuity tests of those firing circuits using 
type A-2 Projector Release intervalo-
meters. 

In portable form, the tester facilitates 
the testing of rocket motors by Arma-
ment personnel, and when installed in 
an aircraft it may be used to preflight-
test the rocket-firing system, even to 
determining that rocket motors are 
properly armed. Before takeoff, the 
pilot can be assured that each of his 
rockets is ready for action. After take-
off, the tester can reveal to the pilot 

Figure 1. Completed Rocket-Firing-
Circuit Tester 
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exactly how many useable rockets he 
is carrying, and in which positions 
they are mounted beneath his wings. 
The tester consists of a D'Arsonval-

type milliammeter and associated cir-
cuitry, mounted in a small, sheet-metal 
box, as shown in figure 1. It serves 
three functions — high-voltage test 
(0-30v.), low-voltage test (0-5v.) and 
continuity test (10 ohms, center-scale). 
The high-voltage test is used before 
the plane is loaded. It reveals to the 
armorer that no crossed wiring has 
placed a voltage across any of the firing 
cables. A second test, using the 0-5 volt 
range, shows the presence of low volt-
ages which may have shorted to the 
firing circuits and are capable of firing 
a rocket. The third test before loading 
brings to light any firing cable which 
has become grounded to the aircraft 
frame. Next, the armorer may energize 
the Projector Release intervalometer 
and measure the firing pulse as it is 
applied to the rotor of the intervalo-
meter. Should this release mechanism 
be defective, the condition is readily 
apparent. If any of the circuits are 
defective, a rocket need not be trans-
ported from the supply dump to be 
needlessly loaded on the aircraft. How-
ever, every operating rocket position 
may be utilized. 

After loading, rockets are usually not 
armed until immediately prior to take-
off at the end of the runway. As each 
rocket is plugged in, the pilot may 
check the circuit continuity from the 
Projector Release intervalometer rotor, 
out through the firing cable to the 
rocket, and through the rocket motor 
to the frame of the aircraft. If dust, 
rust, or corrosion makes arming diffi-
cult, the continuity test will reveal the 
defective circuit, and the armorer can 
easily rectify the situation and provide 
proper arming before takeoff. 

(Note: Any continuity test of a rocket 
motor must not cause firing of the 
rocket. Since this check involves the 
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FUNCTION SWITCH POSITIONS 
I. NORMAL (O-30 VOLTS) 
2. STRAY VOLTS (O-5 VOLTS) 
3. SQUIB TEST 

Figure 2. Schematic Diagram of 
Complete Tester 

• 
passage of a measurement current 
through the squib, provision must be 
made to limit the current to a safe 
value. The HVAR rocket squib requires 
several amperes for reliable instantane-
ous firing, and a current well in excess 
of 60 ma. must be applied over a long 
period of time to cause firing. This 
tester permits a maximum value of only 
10 ma. to flow during any measurement 
—this value should be considered sale 
only for the HV AR rocket. Be/ore using 
this tester upon any other rocket type, 
make sure that the maximum sale-
current rating is well over 10 ma.) 

In flight, before reaching the target, 
or after releasing some of the rockets, 
the pilot may flip the intervalometer 
selector switch through its various posi-
tions to determine in what positions 
armed rockets are mounted. Rarely will 
a pilot return to his home base with 
a rocket beneath his wing. Of course, 
a break in the wiring may occur, or 
the rocket arming plug may become 
disconnected; however, either condition 
is revealed to the pilot before he dives 
upon his target. 

THEORY OF OPERATION 

The full schematic diagram of the 
rocket tester is shown in figure 2. The 
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Figure 3. Effective Circuit of Tester with 
Function Switch in NORMAL Position 

(Voltmeter, 0-30 Volts) 

d-p-d-t, spring-return, center-off, func-
tion switch is normally in the NORMAL 
position (figure 3), and the tester 
serves as a voltmeter which has a full-
scale deflection of thirty volts. As the 
intervalometer is rotated through its 
various positions, any voltage above five 
volts is readily indicated. When the 
function switch is held in the STRAY 
VOLTS position (figure 4), a shunting 
resistor is introduced into the multiplier 
circuit. In this position, the tester is 
also a voltmeter, with a full-scale de-
flection of only five volts. Again, flip-
ping through the positions of the inter-
valometer, any stray voltage capable 
of firing a rocket motor will be in-
dicated. In the remaining, or SQUIB 
TEST, position, the tester is a low-
range ohmmeter (figure 5). Ohmic re-
sistance of the firing circuits may vary 
from one aircraft type to another, but 

Figure 4. Effective Circuit of Tester 
with Function Switch in STRAY VOLTS 

Position (Voltmeter, 0-5 Volts) 

in general, the resistance is about 0.5 
ohm. Rocket-motor squibs also vary in 
resistance, but exhaustive tests have 
revealed that they range from 0.5 to 
1.5 ohms. Squibs which differ from 
these values may not fire at all or may 
fire with improper timing, thus causing 
the rocket to miss the aiming point. 
Hence, a green scale should be super-
imposed on the face of the milliammeter 
from the one-ohm mark to the two-ohm 
mark, to facilitate obtaining a "GOOD-
BAD" indication. Of course, should a 
particular tester be prepared for use 
by Armament Supply personnel as a 
portable rocket-testing instrument, the 
green scale should be positioned be-
tween the 0.5- and the 1.5-ohm marks. 

This tester is designed so that it can 
be readily constructed from parts 
normally available in any electronic-
maintenance activity, or in any radio-
parts supply house. Parts required are 
listed in Table I. 

Resistor R2 is for calibration pur-
poses, and is desirable because of volt-
age changes during the life of the 
battery. Calibration is easily achieved 
in the following manner: With the 
tester installed and all rocket stations 
cleared (disconnected), operate the 
function switch to the SQUIB TEST 
position, and adjust R2 for full-scale 
deflection on the meter. 

Figure 5. Effective Circuit of Tester with 
Function Switch in SQUIB TEST Position 
(Ohmmeter, 10-Ohms at Center Scale) 
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• Table I. Parts List or Rocket-Firint Circuit Tester 

Schematic 
Symbol Quantity . Description 

Mi 1 ea. Milliammeter", Weston, 0-1 ma. (approx. 100 ohms). 
R, 1 ea. Resistor, carbon, 100-ohm, 1/2-watt. 
II: 1 ea. Potentiometer, wire-wound, 100-ohm, 1/2-watt. 
113 1 ea. Resistor, carbon, 11-ohm, 1/2-watt. 
R. 1 ea. Resistor, carbon, 600-ohm, 1/2-watt. 
SW 1 ea. Switch, toggle (or rotary), two-pole-double-throw, center-

position off, spring-return, (low amperage). 
E 1 ea. Battery, 1.5-volt dry cell (BA-30 or equiv.). 

3 ft. Cable, aircraft, AN-20 (or equiv.). 
4 ft. Wire, flex-lead (for use as test leads on portable model only). 
2 ea. Clip, battery or alligator type, (for test leads on portable 

model only). 

To calibrate the green portion of the 
scale, secure or construct two precision 
resistors. One should measure exactly 
0.5 ohm, the other 1.5 ohms. A resist-
ance bridge is most useful in this opera-
tion. Connect the 0.5-ohm resistor in 
place of the rocket motor, and mark 
the meter indication on the face plate 
of the milliammeter. Next, substitute 
the 1.5-ohm resistor and again mark 
the deflection on the face plate of the 
milliammeter. Color the area green 
between these two marks. If extremely 
accurate resistances are not available, 
it it advisable to use several different 
resistors of values as near to these values 
as possible. An average of the readings 
should be marked upon the face plate 
of the milliammeter. 

For installation in aircraft, only one 
external lead is connected to the aircraft 
wiring (the other connection being the 
aircraft frame). This connection is 
shown in figure 2 as the ungrounded 
lead. This lead is soldered to the rotor 
arm of the type A-2 Projector Release 
intervalometer. This rotor arm receives 

" The circuit shown in figure 2 is designed 
for a 0-1 ma. meter with about 100 ohms 
internal resistance (a typical commercial 
value). However, almost any basic move-
ment with a sensitivity equal to or greater 
than 10 ma. can be used. For example, if a 
0-10 ma. meter is to be used, merely omit 
Rs. If any other movement is used, choose 
a value for R8 that will shunt the movement 
to 10 ma. (for a 0-1 ma. meter, the shunting 

the firing voltage and in turn passes 
it to the firing cables leading to the 
rocket positions under the aircraft wing. 
Testing is complete because each firing 
pulse will indicate upon the meter. 

OPERATION 

The following procedure is recom-
mended for preflight testing of the above 
aircraft rocket-firing system: 

1. Set the intervalometer for auto-
matic firing of all rocket stations 
belore aircraft is loaded. 

2. Trigger the intervalometer 
through all positions. A reading 
should be noted on the tester 
in the NORMAL position of the 
function switch. (Failure to ob-
tain a reading for any position 
indicates either a poor contact 
within the intervalometer or a 
grounded cable.) 

3. Run through all intervalometer 
positions without triggering, 
while holding the function 
switch in the STRAY VOLTS 

resistor should have a value of 1/9 of the 
internal meter resistance). Of course, dif-
ferent resistance values will alter the mid-
scale-ohms value, but, since the units are 
calibrated individually, no impairment of 
function or accuracy will result. (The 
Weston, Model-301, 0-10 ma. meter has a 
two-ohm internal resistance. This means that 
the center-scale reading on SQUIB TEST 
would be two ohms—a desirable condition.) 
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position. Any voltage capable 
of firing a rocket motor will be 
indicated. (At this point, if all 
checks are ok, it is safe to load 
and arm the rockets.) 

4. Run through each of the inter-
valometer positions while the 
function switch is held in the 
SQUIB TEST position. Any 
grounded cable will be revealed 
by this test as a low-resistance 
indication. 

5. After loading and arming 

Solution . . . 

rocket', hold function switch in 
SQUIB TEST position, and 
without triggering run inter-
valometer through all positions. 
Each position should produce 
a reading in the green range 
of the meter. 

The total time required for one man 
to perform these simple steps is con-
siderably less than the time formerly 
required for two men to make compara-
ble tests using much more complex test 
equipment. 

Last Month's "What's Your Answer?" 

Since the circuit shown in the problem was not overheating, 
it is evident that no short circuits are present. The only other 
possible cause of zero voltage between points A and B would 
be an in-phase condition between the two halves of the high-
voltage-secondary winding of the transformer. 

In manufacture, the two halves of the secondary are wound 
as two separate windings and the two are joined when the leads 
are attached. It is conceivable that one winding might be con-
nected in reverse, thus converting the circuit to a half-wave 
rectifier with the two diodes conducting simultaneously. Since 
the two secondary voltages are in the same phase they will buck 
each other with respect to points A and B. 
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ELIMINATING SWITCHBOARD-RINGING 
INTERFERENCE IN CARRIER-VHF 

SYSTEMS 
by F. C. Farrar 

Philco Field Engineer 

A simple modification to eliminate the transmission in-
terruptions caused by blocking of the phase-modulator 
stage of a T-14/TRC transmitter by high-amplitude, 
20-cycle ringing voltage leaking through an EE-101A 

ringer before relay closure. 

A RINGING-INTERFERENCE PROBLEM 
which was causing considerable trouble 
on practically all carrier-VHF systems 
in Korea was recently presented to this 
writer for analysis and solution. After 
a study of the equipment used in a 
carrier-VHF system, the source of inter-
ference was determined and a simele 
solution was evolved. Since this particu-

lar kind of interference probably causes 
trouble wherever carrier-VHF equipment 
is used, the findings are presented for 
others who might be confronted with 
the same problem. 

In the carrier-VHF system shown in 
figure 1, a ringer unit is required be-
tween the switchboard and the carrier 
equipment, because the low-frequency 
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Figure 1. Simplified Schematic Diagram of Carrier-VHF System, 
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Figure 2. Simplified Block Diagram of EE-101A Voice-Frequency Ringer 

(20 cycles) signal which is used to 
ring a switchboard or magneto telephone 
is not transmitted satisfactorily through 
the carrier equipment. The ringer unit 
generates a ringing signal of 1000 cycles 
(easily transmitted) interrupted at a 
20-cycle rate. At the distant terminal, 
a similar ringer unit is also required 
between the carrier bay and the switch-
board. In this ringer unit, the 1000/20-
cycle current received through the 
carrier equipment is used to actuate a 
relay which connects a source of low-
frequency ringing current to the switch-
board for operating the switchboard 
signals or ringing the telephone bell. 

Whenever the switchboard operator 
throws the ring key, an 85-volt, 20-cycle 
ringing signal is applied through the 
two-wire talk path to the EE-101A ringer 
unit. (See figure 2.) The talk path 
through the ringer unit has a varistor-
arrangement bridge connected across it 
to rectify the switchboard ringing cur-
rent. The rectified current operates a 
relay at B, which applies the 1000/20-

cycle current at a level of approximately 
O dbm to the line side of the ringer, 
and then to the channel of the carrier 
bay. Also, the operation of the relay 
breaks the talk path through the ringer 
between the switchboard and the carrier 
bay, and keeps the path open as long 
as the ring key is held in the ring 
position. (Each ringer operates in the 
reverse direction, of course, for signal-
ling from the remote terminal.) 

The undesirable part of the operation 
described in the preceding paragraph 
is that, when the ring key is first thrown, 
a short period of time is required for 
the bridge circuit to rectify sufficient 
current to operate the relay which breaks 
the talk path through the ringer and 
applies the 1000/20-cycle ringing cur-
rent to the carrier bay. As a result of 
this delay, the 85-volt ringing-current 
signal is applied momentarily to the 
channel binding post of the carrier bay. 
The level of the signal is much greater 
than the 0-dbm signal level that the 
equipment is designed to accept from 
the ringer unit. 



Each channel of the carrier bay has 
a 2-p.f. capacitor in series with the two-
wire side of the hybrid coil to attenuate 
by about one-half the frequencies 
around 20 cycles. In addition, channels 
2, 3, and 4 have bandpass filters which 
block audio frequencies below 200 
cycles. Channel 1, which is a voice-fre-
quency channel, contains a filter that 
permits frequencies from 0 to 2800 
cycles to pass. Although channel 1 has 
a voltage-limiting device which tends to 
suppress high-amplitude signals, the de-
vice is effective only against signals such 
as those caused by loud speaking. 

These circuit features seem to do a 
good job in preventing undesirable 
effects when the CF-1 bays are operated 
in conjunction with land lines; however, 
. serious interference results when the 
equipment is operated with VHF (AN/ 
TRC-1) radio relay equipment. 

The T-14 transmitter, which is used 
in relaying the multichannel frequencies 
to the distant carrier terminal, is de-
signed to accept signals of not over +8 
dbm in signal strength. When signals 
above this level are supplied to the 
transmitter, its phase-modulator stage is 
biased below cutoff on the negative half-
cycles. During the brief time interval 
that is required for operation of the 
relay in the ringer unit, a voltage con-
siderably greater than a +8-dbm level 
is applied to the transmitter, thereby 
blocking it for this time duration. This 
condition may also be caused by jiggling 
of the hook on a common-battery tele-
phone connected to channel 1. Since 
one channel of most CF-1 bays is used 
for telegraph operation, the teletype 
and cryptographic equipment either 
runs open or garbles at the distant 
terminal whenever the T-14 transmitter 
is thus blocked, because during the 
blocking interval no transmission can 
occur over any of the four channels. 

Thus, a solution had to be found 
which would prevent the interference 
from occurring and yet would not ap-
preciably affect the quality of the trans-
missions. It was found that if a .1-4. 
capacitor was connected in series with 
either the tip or ring conductor of the 
transmitting pair from the CF-1 bay to 
the transmitter, the undesirable effects 
could be overcome. This capacitor offers 
sufficient capacitive reactance to keep 
the interfering low-frequency currents 
from reaching the transmitter, and has 
negligible attenuation on the frequencies 
used in channels 2, 3, and 4. In channel 
1, at 1000 cycles the signal level is re-
duced by about 4 or 5 db, which is 
sufficient to prevent blocking of the 
transmitter. This attenuation produces 
no undesirable effect, because the loss 
can be easily compensated for by means 
of the equalization and circuit-net-loss 
adjustments at the distant CF-1 bay. 

A test was made with the capacitor 
in the circuit. After the circuit was re-
aligned, there was no discernible differ-
ence in a person's voice. Since telephone 
handsets have a limited frequency re-
sponse, the very low frequencies in the 
range in which the capacitor provides 
attenuation would not be reproduced 
even if no attenuation were introduced. 

In cases where it is desirable to use 
a phantom circuit as an order-wire cir-
cuit between the CF-1 and the VHF 
equipment, the phantom circuit can be 
easily obtained by placing a C-161 re-
peating coil in the circuit, as shown in 
figure 1. 

In most of the installations where 
ringing interference existed, a CF-1A 
bay was used. Since the CF-1B bay has 
improved circuit features, it is not so 
susceptible to this trouble; however, the 
modification suggested above may also 
provide an improvement for some sys-
tems that employ the CF-1B bay. 

44 



- 






