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During the war years great strides were made in the development of the magnetron. Power
outputs were raised from a few score watts to hundreds of kilowatts, and operating wavelengths
reduced from some 20 cm to 1 cm. Progress since then has perhaps been less spectacular, but
the following article, which describes a range of magnetrons for wavelengths of 32, 12, 8 and
4 mm, shows that advances are still being made in this field.

Introduction

In recent times the development of the magnetron
has been mainly directed along the following lines ):
1) The achievement of higher pulse powers.

2) The attainment of shorter operating wavelengths,

3) The incorporation of tuning, i.e. increase of the
frequency range.

4) The attainment of high continuous power out-
puts with high efficiencies.

Points 1) and 2) chiefly concern magnetrons for

radar. With a shorter wavelength and the same size
of aerial the received fraction of the transmitted
power is greater and the beam narrower. This makes
for better resolution of the image on the radar screen
and allows the shape of objects to be better dis-
tinguished, which is important for short-range radar
as used on airfields and in harbours. A radar installa-
tion of this kind equipped with an 8 mm magnetron
will be the subject of a forthcoming article in this
Review. :
- Point 4) may be of importance in shortwave
therapy and also in electronic cookers, in which
food is cooked or heated in a very short time by
high-frequency radiation, usually of about 12 cm
wavelength. Both applications are based on the
high dielectric losses occurring in water at these
wavelengths.

1) For an introduction to the principles of magnetrons, see e.g.
J. Verweel, Philips tech. Rev. 14, 44-58, 1952/53. For a
- comprehensive treatment see G. B. Collins, Microwave
magnetrons, Radiation Laboratory Series No. 6, McGraw-
Hill, New York 1948.

In this article attention will be devoted solely to
points 1) and 2). We shall describe a range of
experimental magnetrons designed at the Philips
Research Laboratories, Eindhoven, for operation at
wavelengths of about 32, 12, 8 and 4 mm. The peak
power output of these tubes is, in round figures,
respectively 1100, 70, 80 and 40 kW. In the case of
the 32 mm magnetron the emphasis is placed on
obtaining a high mean power as well as a high peak
power. The other magnetrons may be regarded as
steps on the way towards the highest possible
operating frequency. All tubes are equipped with
an L-type (dispenser) cathode, which has been found
to give good results in magnetrons. The four tubes
in question, together with some of their component
parts, are shown in fig. I, from left to right in order
of diminishing wavelength.

Fig. 2 shows, from left to right, the 12 mm, 8 mm
and 4 mm magnetrons each mounted in its perma-
nent magnet. (No special magnet was developed for
the 32 mm magnetron.)

In the design of magnetrons for ever higher fre-
quencies, use can be made of the laws of similarity.
This design technique will be discussed below. We
shall then deal with the construction of the various
tubes and with the engineering problems involved,
and finally we
characteristics one with the other and in relation
to the scaling laws derived from the similarity
considerations.

shall compare the operating
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Similarity considerations
design

applied to magnetron

The caleulation of the parameters of a magnetron
intended to meet specified requirements is in general
so complex as 1o be virtually impracticable. For
given dimensions and wavelength the theory (see !))
postulates a minimum condition for the magnetic
field B and also an approximately linear relation
between B and the anode voltage V. Design follows
primarily from experience and from analysis of
existing magnetrons. The measured characteristics
of a series of experimental magnetrons can then be
used for making modifications until an optimum
definitive design is evolved.

Another and more direct means of arriving at a
new design, especially where it is the wavelength
that is to be changed, is based on considerations of
similarity. Suppose that a given magnetron at a
given anode current I, and anode voltage V,
requires a magnetic field B at which it delivers a
certain power output with a wavelength 4. If we
now scale up an existing magnetron so that its linear
dimensions all become p times larger, then at the
same current and voltage this magnetron will pro-
duce the same power output at the wavelength p7,
and for this it will require a magnetic field of strength
B/p. If the similarity is exact, the specific conduct-
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ance at a given position in the new magnetron
should be 1/p times the specific conductance at
the corresponding position in the old magnetron,
and the same should apply to the electric field
strength at the cathode.

The scaling laws appropriate to the various parameters of a
magnetron can be deduced as follows. The charges. currents
and fields in a magnetron can be found theoretically with the
and the con-

aid of Maxwell’s equations (for the vacuum

ductors) and the equations of motion for an electron:

B O
curl S-L g L
i ot
curl E (i
ot
divE - g/e,
divB 0 === g
dv
L eE -+ e[v<B]
S = gE in the conductors

S ov inthe vacuum, |

where E is the electric field strength, B the magnetic in-
duction, 8§ the current density, p the charge density, v the
velocity of an electron (charge e, mass m) and ¢ the electrode
47 107" H/m and g — 107%/36x F/m).
The boundary conditions are given by the geometry and the

conductance of the electrodes, the anode voltage and anode

conductivity (u,

current, the constant axial magnetic field and the electric
field at the cathode.

97418,

Fig. 1. The four magnetrons discussed here for wavelengths of (from left to right) about
32,12, 8 and 4 mm. Also depicted are the copper anode blocks (not yet machined to the
correct diameter and height), aud the cathode assemblies.
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Fig. 2. Left 10 right: the 12, 8 and 4 mm magnetrons mounted in their permanent magnels.

We consider two magnetrons 1 and 2; all the dimensions
of 2 are larger than those of I by a factor p. Taking a
coordinale system (x,, y,, z,) for I and a coordinate system
(%3, ¥, 2,) for 2, both with their origin in the centre of the
magnetron, we can define corresponding points by:

Xy = PXp» Y2 — PYr» Sy P3y-

We define moreover as corresponding times:
ty P
Let all electromagnetic quantities of I be known; we give

these the suffix 1. If we give these quantities in magnetron 2

the suffix 2, and we write, for corresponding positions,

E B S
E, =" B, = 5, £
P p p
0 a
4] P; B VIV & ay pl

all these quantities then satisfy equations (1) for the magne-
tron 2. This is indeed evident from the fact that the operators
curl and div are combinations of first derivatives with respect

to the coordinates. For example, the component

oB, 0(B,/p) 1 0B,

dx,y 0 px; p? ox,

It is found that the potentials, the currents and the Poynting
vector are the same in both magnetrons.

For the given boundary conditions the quantities with suffix
2 thus constitute the solution for magnetron 2, the power
output being the same. Since corresponding times in magnetron
2, as defined above, are p times longer than in magnetron I,
the frequency of the oscillations generated by 2 is 1/p times
that of 1.

The various scaling laws should thus enable us,
if we have for example an existing 3 cm magnetron
for the required power output, to construct a 6 mm
magnetron by reducing all dimensions five times and
by increasing the magnetic field five-fold. The
application of similarity principles, however, can
encounter difficulties, such as the following.

1) Towards higher frequencies it is not, in general,

possible to increase the electrode conductance
correspondingly, for with increasing frequency the
effective conductivity in fact decreases us a result
of skin effect. The question then arises in how far
the real situation can be described by attributing
an infinitely high conductance to the anode block of
both magnetrons — in which case the scaling law
would again be satisfied. As regards the effect on
the clectric field which
electron motion, the resistance of the conductors
can normally be disregarded. Obviously, however,
this is

pattern, determines the

not so as regards the energy losses
due to the high-frequency currents in the tube
walls: in the smaller magnetron a larger proportion
of the high-frequency power supplied by the
electron beam will be needed to maintain the
oscillations in the tube. We shall return to this
matter when comparing the results.

2) The scaling factor for the magnetic induction
is that it should increase proportionately with the
frequency. This causes no difficulty while the mag-
netic induction is substantially lower than the
saturation induction of magnetic materials, since
the magnetic air-gap is also reduced. The length of
the required then

approximately the same. However, if the induction

magnetic material remains
required approaches the saturation value, pro-
hibitive difficulties arise in the design of the
magnet.

3) Since, under conditions of similarity, the cur-
rent remains unchanged, the current density must
increase as the square of the frequency. It may then
happen that the cathode emission in the original
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magnetron is limited by the space charge, whereas
in the scaled-down magnetron the emission is
saturated (and possibly supplemented by secondary
emission to bring it to the required value; this will
be touched on presently). The electric fields at the
cathode may not be related in the two cases
exactly as given by the relevant scaling factor, i.e.
strict similarity no longer exists. With further
reductions in size a limiting cathode current will
be reached which will call for modifications to the
design,

4) Upon scaling-down, the voltage remains un-
changed, which means that the electric field
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General construction and some engineering details

The construction will be explained with reference
to the cutaway 32 mm magnetron shown in fig. 3.
The central part is the anode block a; the other
components project from this along two mutually
perpendicular axes.

The anode block is made from a solid copper
cylinder, in which nine small and nine large resonant
cavities are pressed in the form of sectors (constitut-
ing a so-called “rising sun” pattern) by means of a
steel hob; the operation is known as hobbing 2),
The eighteen resonant cavities are coupled together
primarily via the space between cathode and anode,

97420

Fig. 3. Cutaway view of 32 mm magnelron showing the following components: a anode
block; b and ¢ iron end pieces, serving as pole pieces; d and e fernico rings for hurd-glass
seals; k cathode; f connections for cathode and filament (as in fig. 4a); h transformer slot
in copper disc; [ output waveguide; m fernico cap with hole for glass output window; p brass
connection flange; ¢ and r slats functioning as RF chokes.

strength increases. It is therefore necessary to take
into account the danger of electrical breakdown.

5) The requirements with respect to mechanical
strength and dimensional tolerances can lead to
difficulties in the construction of a scaled-down
model.

6) The power output remaining unchanged, the
dissipation per unit surface rises sharply upon
scaling-down. In certain cases this will call for a more
claborate cooling system. With pulsed magnetrons
there is always the additional possibility of reducing
the mean power by using shorter pulses or a lower
pulse-repetition frequency.

The foregoing shows that in order to produce an
appropriate design it will sometimes be necessary
for certain dimensions to differ from those found by
scaling-down an existing tube. Examples will be
encountered in the following pages.

and together form a resonator system having a
series of natural frequencies. In practice the mode
of oscillation used is that in which adjacent resonant
cavities oscillate in anti-phase (“z mode”); the
frequency of this mode is governed by the various
dimensions. After hobbing, cylindrical recesses are
machined to receive the other components. The first
of these components are the two iron end pieces b
and ¢, which function as pole pieces for the magnet;
they fit in the anode block with a small clearance
from the ends of the resonant cavities in order to
minimize the air-gap for the axial magnetic field. The
end pieces are provided with holes through which the
cathode is inserted, and also with rings d and e of
fernico, an alloy to which hard glass can be sealed.
The glass ring sealed to d serves as insulation

2) For further particulars of this process, see G. B. Collins,
loc. cit., p. 654-661.
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between cathode and anode, and the glass tube
sealed to e forms the pinch via which the tube is
exhausted.

The cathode k is an L-type or dispenser cathode,
in the form of a porous tungsten cylinder of the same
length as the anode block. End shields at the end of
this cathode cylinder prevent the axial loss of elec-
trons to the end shields, which would adversely
affect the operation of the magnetron. The coiled
filament inside the cathode cylinder is fed via the
lead-ins through the glass at f.

Perpendicular to the axis of cathode and pole
pieces is mounted the output system. For this
purpose a recess is milled into the anode block so as
to remove the rear wall of one of the resonant
cavities. Against this a copper disc is fitted provided
with a transformer slot k& which couples the resonant
cavity with the wavegunide . At the other end of [
is a vacuum seal consisting of a round window sealed
into the fernico cap m. (The window is absent in
fig. 3.) Finally, the brass flange p enables I to be
joined to the waveguide carrying the energy to the
external circuit.

By means of the transformer slot k it is possible to
adjust the load which the antenna constitutes on
the anode system. When the load increases the
magnetron efficiency increases also, but at a certain
critical load the operation becomes unstable.
Moreover, variations in the antenna impedance,
such as arise with a rotating antenna, cause changes
in the oscillating frequency which are greater the
higher the load. It is usually required that, at a
reflexion coefficient of 0.2, the maximum frequency
drift, termed the pulling figure, should not exceed
a specified value. This may involve some compromise
in the efficiency. The necessary dimensions of the
transformer slot can be determined partly by
calculation and partly by experiment.

The window should be made of a type of glass
with sufficiently low high-frequency losses, so that
there is no danger of it melting at the specified
frequency and the specified mean power. Where
the mean power is particularly high, intensified air-
cooling can be employed. In fig. 3 it can be seen that
the waveguide is chamfered where the window fits:
this reduces the heat development per cm? surface
of window. Thelarger area of window also diminishes
the risk of flash-over due to the high RF field
strengths, which could easily damage the window.
The cylindrical slots q and r in parts ! and p serve to
prevent energy leaking away along the window and
the fernico cap; at this frequency they act as RF
chokes.

The tube is assembled as follows. The various
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metal parts are brazed together, the required
temperature being produced by high-frequency
heating. This is done in a reducing atmosphere, so
that the parts remain perfectly clean. After brazing,
the glass-to-fernico seals are made and the tube, still
without the cathode, is exhausted and tested for
leaks. If this test proves satisfactory, the tube is
opened up again and the cathode sealed in, special
jigs being used to ensure true alignment. The tube
is then finally exhausted and degassed, after which
the cathode is activated. After sealing-off, the cool-
ing jacket is fitted (not shown in fig. 3) and the
coupling flange p secured to the assembly with tin
solder. The magnetron can then be mounted between
the pole pieces of a suitable magnet.

Some constructional details

The foregoing remarks apply equally to all four
tubes of the range described. We shall now discuss
some special problems that arise in the construction
of the individual magnetrons.
High power %

"With the 32 mm magnetron the aim was to
increase both the peak output power and the mean
power. A peak power of about 1100 kW was achieved
at a mean power of 900 W. The peak power increases
with the anode current and the ‘anode voltage; this
also entails an increase in the requisite magnetic
field. The theoretical limits of current and voltage
are difficult to specify; in practice it is found that
every magnetron finally becomes unstable as the
current and voltage are increased and refuses to
oscillate with reasonable efficiency. The maximum
peak power is dependent, among other things, on
the dimensions of the large and small resonant
cavities, the most favourable values for which
must be found empirically. '

A high mean power calls primarily for good dissi-
pation of the power losses. In the 32 mm magnetron
the losses are of the same order of magnitude as the
useful power and are dissipated in the anode, the
cathode and the output window. The copper anode
readily conducts the heat outside, and the use of
water cooling permits the dissipation here of several
hundreds of watts. If no special precautions are
taken, the output window will break down at a
useful power of abogt 500 W, when a few watts are
dissipated in the glass. The window can be ade-
quately cooled by passing a stream of air over it as
mentioned above.

Dissipation in the cathode causes the greatest
difficulty. This is due to back bombardment from
those electrons in the interaction space that absorb
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energy from the high-frequency lield. Provided this
dissipation is smaller than the heater power required
for the cathode, the cathode temperaturc can be
kept constant by reducing the heater current. How-
ever, if the back-bombardment power rises above
the normal heater power, the cathode, even with
zero heater current, becomes overheated, as a result
of which the materials used deteriorate more quickly
and the life of the cathode is curtailed. In the case
of the 32 mm magnetron, several measures were
adopted to keep the cathode temperature within
reasonable bounds. In the first place the length of
the emissive part (and hence the anode length) was
made as large as possible without causing undesired
resonance modes in the anode system. A longer
system means a smaller cathode dissipation per
ecm?. Furthermore the heat dissipation of the cathode
was made as high as possible — just the opposite
to what is done for the cathodes in other tubes.
The rate of heat loss can be increased in the first
place by improving the heat conduction. For this
purpose thicker and better-conducting materials
can be used for the cathode support and leads.
Secondly one can attempt to increase the heat loss
by radiation, which is considerable at the hottest
part of the cathode surface. With the cathode in
question this was done by giving the porous tungsten
cylinder the roughest possible surface. Fig. 4 shows
side by side a cathode (a) for which no special
measurcs have been taken to improve the heat
dissipation, and a cathode (h) designed to give maxi-
mum heat dissipation. At an emitting-surface tem-
perature of 1200 °C the heat dissipation was found
to be 90 W at cathode a and 120 W at cathode h.
The latter is the normal cathode dissipation for this
tube at a mean power of 900 W. With the given
dimensions of the emitting surface this probably
represents the maximum heat dissipation obtainable
in this way.

At these high values of mean power the L cathode
is clearly superior to the oxide cathode, in view of
the higher temperature which the L cathode needs
for normal emission. Morcover an L cathode is much
better able than an oxide cathode to withstand
temperatures higher than the normal operating
temperature.

High frequencies

We shall now discuss some of the difficulties
involved in the scaling-down of dimensions by
taking as an illustration the smallest magnetron of
the range, the 4 mm type. The anode aperture is 1.4
mm in diameter. Around it are grouped 18 resonant

cavities, separated one from the other by copper
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vanes (.14 min thick — precision work, beside which
the mechanism of many a wristwatch looks positively

coarse. Obviously the grinding of the hob for such a

miniature system is no easy matter. Without going
into details it may be mentioned that one aspect of
the utmost importance is to keep the machined

97424

a b

Fig. 4. Cathodes for the 32 mm magnetron. Model @ has a heat
dissipation of 90 W, model b of 120 W

metal, the support and the grinding tool at a con-
stant temperature. A good hob is capable of making
hundreds of anode systems.

The cathode, illustrated in fig. 5, has an cmitting
portion of 0.8 mm diameter. The greatest difficulty
here was centring the cathode in the anode aperture,
the distance between cathode and anode being only
0.3 mm. Although the cathode is very accuralely
sealed to the correct position by means of jigs, during
the subsequent cooling the very slight deformation
due 1o stresses in the glass and cathode components
is still enough to cause impermissible eccentricity.
This did in fact lead to many rejects. For this reason
a special construction was adopted, as shown
schematically in fig. 5. The anode block a with end
pieces b and ¢ is joined via the glass cylinder d to
the cathode connection e. This part is assembled
first, care being taken to align the hole of the collar
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in e very accuratcly with the anode aperture. The
cathode k is then introduced and centred in the
anode system with the aid of a jig. This is made
possible by a small clearance between the cathode
and the collar in e. These parts are then soldered
together at g. As a rule soldering causes much less
deformation than the sealing process, and therefore
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ing current in spite of the limited emission current
of the cathode. The advantage of chahging the anode
length in this connection is that, fundamentally, it
has little effect on the operation, since, theoretically
at least, no currents flow in the axial direction. (It is
again the practical deviations from this that set a
limit to the increase of this dimension.)
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Fig. 5. Sketch of cathode construction for the 4 mm magnetron.
a anode block with end pieces (pole pieces) b and ¢; d glass
cylinder with cathode connection e; k cathode; f filament
connection; g soldered joint; ! output waveguide with fernico
cap and window; v cooling fins soldered to anode.

good results can be obtained with this method.
The final operation in this construction is to seal-in
the filament pin f.

The current density at the surface of the cathode
in the 4 mm magnetron is about 200 A/ecm?. This is
appreciably more than the saturation emission
possible at reasonable cathode temperatures; the
extra is supplied by the secondary emission due to
back bombardment, which thus plays an essential
role in this tube.

Comparison of results with the scaling factors derived
from similarity considerations

The most important dimensions of a magnetron
are denoted by letters in fig. 6. Column a in Table I
gives the values of these dimensions and the exact
wavelength in millimetres for each tube. To facilitate
comparison, the dimensions are also expressed for
each tube in terms of its wavelength (reduced
dimensions, column b).

The table shows that, except for the anode length,
the systcmé are in fact geometrically similar within
narrow limits and that the measured wavelength is
proportional to the linear dimensions. The reduced
anode length in the 32 mm and 4 mm magnetrons
is about twice that in the others. In the 32 mm

'magnetron this was done to obtain the highest
possible mean power, the cathode dissipation per
unit surface being — as we have seen — the chief
limiting factor. In regard to the 4 mm magnetron

the consideration was to obtain a high total operat-

)
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Fig: 6. Simplified cross-section of the magnetrons described
here, indicating the principal dimensions: d, = anode diam-
eter, d; = cathode diameter, h = anode length, d, = depth of
small resonant cavities, dr = depth of large resonant cavities,
and ¢ = thickness of vane.
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The principa} characteristics of the magnetrons
under discussion are represented in the performance
charts in fig. 7a, b, ¢ and d, in which contours of
constant magnetic induction B, of constant power
output P and of constant efficiency 7 are plotted
with the anode current I, and the anode voltage V,
as coordinates.

Table I. The principal dimensions (see fig. 6)
the wavelength as unit of length.
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is due to the coupling to the waveguide being much
looser, so that in this respect it is not a scaled-down
model. As mentioned, this reduces efficiency, but its
advantageis thatit increases the stability, asappears
from the pulling figure, which is here 16 Mc/s against
13 Mc/s with the 32 mm type and 32 Mec/s with the
8 mm type. (It will be recalled that the ratio of

of the four magnetrons, a in mm, b in terms of

Magnetron .
\ 32 mm 12 mm 8 mm 4 mm
Dimension - :
a b a b a b a b

Wavelength 1 3L.5 12.2 8.50 3.97
Anode diameter d, 10.6 }0.34 4.0510.33 |2.90 0.34 | 1.40 | 0.35
Cathode diameter d. 6.5 |0.21 2.45§0.20 ;185 | 0.22 [ 0.80 | 0.20
Anode length h 21.0 | 0.67 3.85]0.32 |2.72 | 0.32 | 2.50 | 0.63
Depth of small resonant

cavities dy 4.10 | 0.13 1.59 (013 |1.16 | 0.14 | 0.56 [ 0.14
Depth of large resonant

cavities dr 7.38 10.23 2.92|0.24 {2.08 | 0.24 | 0.94 | 0.24
Thickness of vane t 1.12 1 0.036 | 0.43 [ 0.035 | 0.308 | 0.036| 0.143| 0.036

Comparison of the charts for the four magnetrons
reveals clearly the way in which a design according
to the scaling law influences the characteristics. In
general the maximum voltage and the maximum
current are decreased by scaling-down, the first
particularly because of the impossibility of generat-
ing sufficiently strong magnetic fields, and the
second because of the limited emission current
density of the cathode. To illustrate this the operat-
ing region of the 4 mm magnetron is shown shaded in
all charts; strictly, the four performance charts
‘can only be compared with each other in this region.

For a numerical comparison we may select two
arbitrary points in the chart, namely those having
the coordinates (6 A, 15 kV) and (4 A, 13 kV). If we
consider these points for the 8 mm and 12 mm
magnetrons, we see that, from similarity considera-
tions, the corresponding points for the 32 mm and
4 mm magnetrons are those with twice the current,
the anodes being relatively twice as long, i.e. the
points (12 A, 15kV) and (8 A, 13 kV), respectively.
The values of the characteristics read from the
charts at these points are given in Table II, together
with the product BA. In the 7 column we see
that, with the exception of the 12 mm magnetron
(see below), the efficiency decreases monotonically
with the wavelength. This is due to the fact that the
conductance decreases as the wavelength shortens
(owing to skin effect), whereas the scaling factor
requires it to increase. Measurements of the ( of the
resonator system have shown that an efficiency drop
of this order of magnitude is indeed to be expected.

The exception in the case of the 12 mm magnetron

oscillating frequency to pulling figure is a measure
of a magnetron’s stability.)

The last column gives the product BA which,
from similarity considerations, should remain un-
changed when the dimensions are scaled-down. The
table shows that this is true only to a first approxi-
mation. Singling out the 12 mm magnetron, we notice
that this product decreases towards shorter wave-
lengths. The reason is to be found in the limited
primary emission of the cathode; conditions of
exact similarity do not therefore obtain with this-
range of magnetrons. In the 32 mm magnetron the
saturation emission is not quite reached, and so the
electric field at the cathode is virtually zero. The
primary emission in the 4 mm magnetron, on the
other hand, is saturated (see above), so that strong
electric fields appear at the cathode. If, however, the
cathode temperature in the 8 mm and 4 mm magne-
trons is increased, the anode voltage and current

Table II. Comparison of characteristic values for the four
magnetrons, read from the performance charts (fig. 7a, b, ¢, d)
at corresponding points according to similarity considerations.
The comparison is made for two sets of points.

“Vavelengl:hI I, Va B r 7 B2
2 (mm) (A) | (kV) | (Wb/m?) | (KW){ (%) .(10~% Wb/m)
3L.5 12 15 0.28 54 30 90
12.2 6 15 0.83 14 16 101
8.50 6 15 1.03 23 25 88
3.97 12 15 1.85 34 19 73
315 8 13 0.26 30 29 83
12.2 4 13 0.76 8 15 92
8.50 4 13 0.90 8 15 76
3.97 8 13. 1.6 12.5] 12 64
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Fig. 7. Performance charts for the four magnetrons: a) 32 inm,
b) 12 mm, ¢) 8 mm and d) 4 mm. On the abscissa the anode
current [,, on the ordinate the anode voltage V.

Contours of constant magnetic induction B (the
thicker contour in b, ¢ and d relates to the field
produced by the permanent magnet).
Contours of constant power P.

Contours of constant efficiency 7.
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remaining the same, stronger magnetic fields are
indeed required, i.e. the product Bl is closer 1o the
value expeeted from similarity considerations.

Life tests

The life tests on the magnetrons demonstrate
the excellent properties of the L cathode. Not onc of
these tests was terminated by lowered emission.
The most frequent cause of failure was leakage due
to inadequate cooling; the 8 mm magnetron was still
working well after alife test of almost 1500 hours. No
life test has yet been made on the 4 min magnetron.
The results of the tests are given in Table I11. The

Table III. Particulars of life tests on a 32 mm, a 12 mm and
an 8 mm magnetron.

12.2

Wavelength in mm 31.3 8.35
Anode current in A 55 14 14
Anode voltage in kV 31 15.4 16.8
Peak power in kW at be- [

ginning of test 783 46 ‘ 52
Peak power in kW at eud |

of test | 695 40 45
Efficiency in % at Dbe-

ginning of test 46 21 22
Lfficiency in 9, at end of

tlest 41 18 19
Pulse duration in ysec 2.0 0.44 0.50
Pulse-repetition frequency

inc/s 500 2300 1000
Mean initial power in W 783 46 26
Duration of test in hours 238 700 1488

pulse durations and the repetition frequencies were
rather arbitrarily chosen; the mean powers given for
the 12 mm and 8 mm magnetrons are therefore not
the maximum permissible values. A point of impor-
tance for short-range radar is that the 8 mm and
4 mm magnetrons work excellently with pulses of
only 0.01 psec.

Suinmary. An experintental range of magnetrons is described
for wavelengths of 32, 12, 8 and 4 mm, and delivering peak
outputs of 1100, 70, 80 and 40 kW, respectively. Since the four
magnelrons have virtually the same geometrical proportions,
the laws of similarity are theoretically applicable to them.
It is found that the wavelength is proportional, and the requi-
site magnetic field inversely proportional, to the linear dimen-
sions and that the same power is generated for the same anode
voltage and current. Towards shorter wavelengths, however,
difficulties arise owing inter alia to increasing high-frequency
resistance, the limitation of the attainable magnetic field and
cathode emission. Some constructional details are discussed.
The “rising sun’’ anode system is hobbed from a solid copper
block; to this are brazed iron end pieces (pole pieces). The
coupling slot, the output waveguide and its glass window seal
are also discussed. The axially mounted cathode is of the L
iype. Some special constructional problems are touched on
with reference 1o Lhe 32 mm and 4 mm magnetrons. The first
was designed for a high mean power (900 W), which necessi-
tated a cathode eonstruction permitting a high rate of heat
dissipation; the small dimensions of the 4 mm magnetron
called for a special method of assembling the cathode in the
1ube. Comparison of the results of the various tubes shows that
the wavelength is closely proportional to the linear dimensions
and that the mutual disparities in efficiency can be satisfac-
torily explained. Life tests on a 32 min, a 12 mm and an 8 mm
magnetron were terminated after 238, 700 and 1488 hours,
respectively; the power outputs had dropped in that time by
about 159




.

10 PHILIPS TECHNICAL REVIEW

VOLUME 21

THE RESISTANCE NETWORK,
A SIMPLE AND ACCURATE AID TO THE SOLUTION OF POTENTIAL PROBLEMS

by J. C. FRANCKEN.

518.5:53.072.13:621.317.729

Among the methods that can be employed to solve the Laplace equation for given boundary
conditions, that involving the use of a resistance network is in many cases highly attractive.
It is a method applicable to two-dimensional problems and to three-dimensional problems where
there is rotational symmetry. Setting-up the boundary conditions is particularly easy, the
measurements do not take up much time, and remarkably accurate results are attainable. '

In many branches of physics one is frequently
confronted with potential problems, the solution of
which involves finding a function ¢ which satisfies
the Laplace equation, viz., in rectangular coordi-
nates,

e p V¥
—_— - —_— 0. L] . .
x? T oy? T %%

1)

Examples of quantities satisfying the equation are
the electrical potential in a space-charge free region
and the gravitational potential in the space between
the gravitating masses. The temperature under
steady-state conditions of heat flow, and velocity
potential in a non-turbulent stream of incompress-
ible fluid are further examples. Usually the value
of the potential function @ on certain closed surfaces,
e.g. at solid boundaries, is known. In addition,
sometimes the space in which @ must satisfy (1)
is entirely enclosed by a surface at which ¢ is
known. In other cases the space extends to infinity,
at which @ approaches a known constant value. If
@ represents temperature, the constant value will
be the ambient temperature; if it represents electric
potential, the constant value will be earth potential.
The example we shall be using to illustrate the
employment of the resistance network is drawn
from electron optics, and concerns the potential
distribution in electron guns for television picture-

tubes. The surfaces where @ has known values will .

be those of the electrodes of the tube.

Only in a few simple cases is it possible to express
the required potential function explicitly in terms
of its given boundary values at certain surfaces.
Usually one has to proceed by other methods.
Apart from numerical methods, which are now
widely employed in conjunction with digital
computers, analogue techniques are particularly
suited to potential problems. One well-known
analogue technique involves the use of an electrolytic
tank. A model of the electrode assembly, often an

enlarged model, is submerged in a conducting
liquid. The potential distribution existing when
given voltages are applied to the electrodes is not
altered when the model is submerged. The potential
distribution in the electrolyte is measured with a
probe 1)%)3).

The electrolytic tank has proved to be a valuable
aid in the solution of electron-optical problems. It
has, however, its limitations and drawbacks: the
construction of the electrode models is often
laborious and expensive, and measurements in
their vicinity are inaccurate because the liquid near
the electrodes rises in consequence of capillarity.
For three-dimensional problems with rotational
symmetry tanks of “wedge’ section are often used.
A vertical section through this tank has the shape
of a wedge. Electrodes can often be constructed
from strips of metal, the disadvantages of compli-
cated models thus being avoided. On the other hand
a new disadvantage arises in that measurement near
the axis of symmetry, precisely the most important
region, is rendered very inaccurate by the marked
capillary rise at the sloping bottom of the tank. It
is not therefore surprising that, apart from the
electrolytic tank, other analogue techniques have
been developed for the purpose of determining
potential distributions. One of these is the resistance
network, which is the subject of the present article?). -

1) G. Hepp, Measurements of potential by means of the elec-
trolytic tank, Philips tech. Rev. 4, 223-230, 1939.

2) N. Warmoltz, Potential distribution at the igniter of a
relay valve with mercury cathode, Philips tech. Rev. 8,
346-352, 1946.

3) An example of the use of the electrolytic tank for determin-
ing temperature distribution is described in F. Reiniger,
The study of thermal conductivity problems by means of
the electrolytic tank, Philips tech. Rev. 18, 52-60, 1956/57.

4) Another method involves the use of conducting (graphite-
surfaced) paper. This method can be employed for solving
two-dimensional problems. Electrodes are simulated by
cutting them out in copper foil. Conducting paper cannotbe
used for solving rotationally-symmetric three-dimensional
problems, whereas the resistance network can be used in
such cases.
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In theory, the solutions it provides are only approx-
imate; nevertheless in many cases these solutions
are much more exact than those obtained with the
aid of the tank. The resistance network was first
proposed by Hogan ) and first used by De Packh ¢).
However, the credit for pointing out the high degree
of accuracy thereby attainable belongs to Lieb-
mann 7)8),

Explanation of the principle of the network
becomes more straightforward if the terms “differ-
ential operator” and “finite-difference operator” can
be employed. We therefore start by giving a brief
account of the two operators. Resistance networks
for two-dimensional and for rotationally-symmetric
three-dimensional problems are then discussed,
followed by a description of an actual network of
the latter kind, and of the manner in which it is
used. This will be illustrated with the aid of a
practical application. Finally, the implications of
the fact that the network has finite meshes will be
discussed with reference to two examples.

Differential and difference operators

The sum of the second differential -coefficients
with respect to x, ¥ and z of any function w(x,y,z)
is often denoted by the symbol /2

w

a2

2w 2w .
W—F_Z—va. .o (2)

V2 is called the Laplacian operator. The effect of
the operator on the function w will naturally depend
on the point in space at which it is applied (i.e. /2w
is again a function of x, y and z). We are now able
to express the Laplace equation (i.e. (1) above) in
words as follows: a function satisfying the equation
has the property that when operated on by the Laplacian
\/2, the result is zero at every point.

From the differential operator $/2 we shall now
derive a finite-difference operator L that, operating
on the same function at the same point, produces
almost the same effect as /2 itself, i.e. Lw ~ /%w.
For this purpose we consider an arbitrary point O
and three pairs of points, P and @, R and S, and
T and U, which lie respectively in the , y and z
directions at a distance a on either side of O (fig. 1).

5) T. K. Hogan, A general experimental solution of Poisson’s
equation for two independent variables, J. Instn. Engrs.
Austr. 15, 89-92, 1943.

%) D. C. de Packh, A resistor network for the approximate
solution of the Laplace equation, Rev. sci. Instr. 18,
798-799, 1947.

7) G. Liebmann, Solution of partial differential equations

- with a resistance network analogue, Brit. J. appl. Phys. 1,
92-103, 1950.

%) G. Liebmann, Field plotting and ray tracing in electron
optics, Advances in electronies 2, 101-149, 1950.
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We can express the difference between the values
wg and wy of w at points Q and O by using Taylor’s
theorem. This gives us the difference in terms of a
and the derivatives of w with respect to x at point 0:

(bw> " a2<02w) n
—_— —_— a — —_— —_—
wQ wo 0x 1) 2! sz 0

a® [ d%w at /dhw
oo Ly S
3N oxd/,  4l\oat/,
U
[o]
a
S
a
Po d 9 4 °Q
@
R a
z ¢

Fig. 1. Illustrating the derivation of the difference operator L.

97403

By replacing ¢ in the above by —a, we obtain a
similar series for wp— wy:

(bw " a? (02w
—_— — —q{ — | —_— P
1p— Yo bx)o 21\022 /,,

ad 13w al [dw
Lt L
JNoxd/,  4l\oxt/,

Adding these two series and solving for (3%w/dx2),,
we obtain:

(3b)

(%:)0 = i %(wq— wo) + (wp— Wo)s -

=
2 154
—%(Z—;’) e @)
0

The differential coefficient (92w/dx2), is thus ex-
pressed in terms of the differences (wy—w,) and
(wp — wg) plus a number of correction terms, whose
total value can be made as small as desired simply
by making a small enough.
" (2%wfdy?), and (0%w/d22),, the other differential
coefficients occurring in (2) above, can be expressed
as differences in an analogous manner. Inserting in
(2) the expressions thus obtained, we have:




12 PHILIPS TECHNICAL REVIEW

1 X .
(V2W)o= } (wp+ Wq + wr+ws+wr+ WU—6WO) -

N )

/]

a2(a4w otw b“w)
12\0x¢ ' oyt | ost

Introducing the operator L, we now put:

1
(Lw)o=§(wp+wq+wR+ws+wT+wU—6w0).
... (6)

We see from (5) that (Lw), is an approximation to
(V2w)e, approaching it all the more closely according
as ais made smaller. L is the finite-difference operator
referred to above; it is so called because L denotes
an operation whereby the finite differences wp — wy,
etc. are used.

This procedure for deriving a difference operator
from a differential operator can also be followed in
the more general case where the differential equation
involves the first derivatives (dw/dx, etc.) as well as
the second derivatives. By subtracting equations
(3a) and (3b) from each other, one can arrive at an
expression for (dw/dx)y involving (wp—wy) and
(wg—wp) and a series of correction terms whose
sum approaches zero as a goes to zero. We shall
make use of this when dealing with three-dimensional
problems with rotational symmetry.

In the special case where w is independent of z,
we have wp = wy = wy, and (6) simplifies to

1
(Lw)o= g (wp + wy + wr + ws —4wp).  (7)

We can now go on to discuss the principle of the
resistance network.

A resistance network for two-dimensional problems

To start with we shall confine ourselves to two-
dimensional cases. There is then one direction —
the z-direction say — in which the function being
sought does not vary. In these cases d%p[0z> = 0,
and Laplace’s equation assumes the form:

8

02(’, 02
ﬁ =0. « e s e e (8)

+ %
To take a definite case, let us consider the example
shown in fig. 2. The three closed outlines s,, s, and s3
represent sections taken at right angles through
three infinitely long prisms. On the periphery of

each prism ¢ has a known comstant value. The
problem is to find a function @ which satisfies (8)
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in the area within s; but outside s, and s,, and which
assumes the prescribed values along s,, s, and ss.
Over s;, s, and s; we place a square grid, the lines
of which are parallel to the x and y axes and spaced
at intervals of a (see fig. 2). The “grid lines” inter-
sect at “grid points”. We shall refer to two grid
points as “adjacent” if their distance apart is the
mesh width a. In fig. 2 the outlines s, s, and s
have been drawn in such a way that they intersect
the grid only in grid points. This is not a necessary
limitation, but it will simplify discussion, and the
examples we shall be dealing with will subject to it.

S3

St

—X 99290

Fig. 2. The unknown function ¢ has known values along the
outlines sy, s, and s;. Throughout the area inside s; but outside
s, and s, it must satisfy the Laplace equation. It is assumed
that s;, s, and s, are such that they intersect a superposed
square grid (mesh width a) only in grid points.

We shall refer to grid points located on the outlines
51, S, and sy as “boundary grid points”, and to the
remaining ones in the area wherein ¢ has to be
determined as “internal grid points”.

The following proposition underlies the principle
of the resistance network employed.

If each internal grid point is allotted a value ¢*
such that between the value @* at any such point and
the values at adjacent grid points the relationship
Lo* = 0 exists and if at the boundary grid points ¢*
has the boundary values specified for the required
function @ at those places, then the difference between
@* and @ at the internal grid points will approach
zero as the mesh width (a) approaches zero.

As we have already pointed out, there is a close
connection between the difference operator L and
the differential operator \/2; the proposition just
stated is accordingly a plausible one. Its truth can
be proved rigorously by demonstrating that at all
grid points @ — @* is smaller than a certain finite
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quantity that approaches zero as the mesh,width a
does so 9).

For the purpose of ﬁnﬂing @* values, a network
of resistors is built up. We shall see later what
requirements the componcntresistorshave to satisfy.
The junctions of the resistance network will corre-
spond to the grid points in fig. 2; accordingly, four
resistors will meet at each junction (fig. 3). We shall

s

Ry 0 Ry
8 dINk 3
b4
(r)L §R3
X
(z)

o

07523

Fig. 3. Resistors Ry, R,, R; and R; meet at O, a junction
in the resistance network. In the two-dimensional case, PQ
represents a line parallel to the x-axis, and RS a line parallel
to the y-axis; in the rotationally-symmetric three-dimensional
case PQ represents a line parallel to the z-axis, RS one parallel
to the r-axis.

refer to junctions corresponding to boundary grid
points as “boundary junctions”. Between the
boundary junctions we may apply voltages that are
proportional to the differences between ¢ values in
the corresponding boundary grid points. If the
lowest value of @ at any of the boundary grid points
iS @min and if we take the potential of the corre-
sponding boundary junction as a datum for meas-
uring the potentials ¥}, of other boundary junctions,
then any of these latter potentials is given by

Vb= (b — Pnuin)/B. - . . . . (9)

The suffix b to 7 and ¢ indicates that they relate to
boundary junctions in the resistance network and

%) See S. Gerschgorin, Z. angew. Math. Mech. 10, 373-382,
1930, or L. Collatz, Numerische Behandlung von Differen-
tialgleichungen, Springer, Berlin, 2nd edition, 1955, p. 320
et seq. Obtaining numerical solutions of the Laplace
equation likewise often involves the solution (preferably
with the aid of a computer) of the finite-difference equation
Le* = 0, and the results obtained are accordingly only
approximate. However, these methods can be based on
difference operators that are better approximations to the
Laplacian than L is, the series of correction terms in (5)
beginning with a higher power of a than a2. If terms invol-
ving @® etc. are to be eliminated, additional equations must
of course be available; this means considering not only
adjacent grid points, but also additional grid points in the
vicinity of a given grid point. See for example Collatz,
loc. cit., p. 352. ’

“boundary curves has the boundary values laid down

to the corresponding boundary grid points. 1/ is a
constant of proportionality. We now allot to each
internal grid point a value

o* = BV + Pmins - . . . (10)

where Vis the potential measured at the correspond-
ing junction in the resistance network. Through a
resistor connecting two adjacent junctions in the
network, e.g. that between P and O in fig. 3, flows
a current having the value (Vp — V,)/R,. Applying
Kirchhoff’s law to junction O, we find that
VP; Vo+ VQ; Vo n Ve—Vo n Vi—T1, Y

1 2 Ry R,
From this and from (10) it follows that for any grid
point O,

@p* — @o* n Po* — po*
Rl RZ

Pr* — @o* | @s*

+ = R, + R, =0. . (11)

+

Comparison of (11) with (7) makes it clear that, if
all four resistors have the same value,

(Lo*)o =
at any grid point 0. Since, in addition, ¢* on the

for @, @* constitutes an approximation to the re-
quired function ¢, provided all resistors composing
the network are of the same value. The question as
to how close the approximation is will be dealt with
at the end of the article.

Three-dimensional problems with rotational sym-
metry

More common than two-dimensional problems
are three-dimensional problems with rotational
symmetry. If the rectangular coordinates are con-
verted to cylindrical coordinates (r, z and ¢ in
fig. 4), the z-axis being made to coincide with the
axis of symmetry, the Laplace equation assumes
the form:

g 1o 2

—_ —_=0. .. 2
ore rbr_}_bz2 (12)

DN

Fig. 4. r, z and 3, cylindrical polar coordinates of a point P,
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Owing to the rotational symmetry #J, does not appear
in the equation. As in the two-dimensional case,
therefore, we have a differential equation involving
two independent variables, these being z and r
instead of x and y. The Laplacian operator is now

(02 n 19 n o2
o ror bzz).

" In order to derive a finite-difference operator from
(13), we let (13) operate on an arbitrary function
u(zr), and consider a point O and the two pairs
of points P,Q and R,S which lie in the z and r
directions respectively, at a distance a on opposite
sides of O. Expressing the differential coefficients
as differences, in the same manner as on pp. 11
and 12, we arrive at the following:

(02u n
or?
a2 (b‘*u

12 \ort

(13)

2w

+53), = (Muo—

022
2 dBu b“u)
r ord 0ty

1 dou
r or
. (14)

where

a?

(Mu)o = 3 (up—uo) + (ug—up) +

+ (1 - Ea;) (ur—uo) + (1 + '2%) (us — “o)} . (15)

The required finite-difference operator M is thus
defined by (15).

We now superpose on the zr-plane a square grid
with a mesh width of a. The mathematical pro-
position stated for L on p.12 is also valid for M 19).
The values of @* that are allotted to the internal
grid points must now satisfy the relationship

(16)

while p* at the boundary grid points must have the
boundary values laid down for ¢. ¢* will then be
an approximation to @; in other words, ¢* will
approach @ as the mesh width a approaches zero.

As before, it is possible to build up a resistance
network whose junctions have potentials correspond-
ing to @* values. In order to deduce the requirements
the resistors will have to satisfy, we shall proceed
as before, but this time (11) must be compared
with (15). Having done this, we find that ¢*

10) For the proof, see Gerschgorin, loc. cit. The proof given
there is a general one valid for all elliptical differential
equations. (8) and (12) are equations of this type.
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satisfies the relationship (Mg*), = 0 provided that

1 111 Let 12V (14" .
N At ( _27)( +2T-) (17)
(see fig. 3).

If the grid is so positioned that the z-axis coincides
with one of the grid lines, then at each of thegrid
points

r=ja,

j being an integer. (17) now becomes:

1 1 1 1

R,'R, Ry R,

7:2j:(2j—1):(2j +1). (18)
In the present case, then, the resistance values must
decrease with increasing distance from the z-axis.
In the network shown in fig. 5, (18) is satisfied for
all values of j except j= 0. This exceptionis a point
that we must lock into.

. | Rk Rfs Rk | Rs
je2~—n——n ot N
é’% 276 26 A S
Rl R %
J=2—p—ll; r—4—1rl; T

R/s

R/ R R
1“]“‘1’.”?1

97407

Rfs

Rts

J=-3

Fig. 5. Part of a network for rotationally-symmetric three-
dimensional problems. Resistors meeting at junctions at which
j # 0 have values satisfying the relation (18). For j =0
(junctions on the axis) the resistors satisfy (20).

The resistors lying along the axis

The zero value of j, appropriate to points on the
axis of symmetry (z-axis), gives rise to complica-
tions. This is clear for example from the conclusion
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that can be drawn from (18), namely that for
resistors meeting at a junction on the axis, R; must
be negative if R,, R, and R, are positive. In addi-
tion, (14) and (15) involve indeterminate 0/0 terms
when r = 0 11). These complications can be avoided
by reverting to the finite-difference operator L (see
(6)) as an approximation to the Laplace operator for
points along the z-axis. The reason we abandoned L
in favour of operator M when we took up the three-
dimensional case with rotational symmetry was that
the former would have led to a three-dimensional
network. This objection does not, however, apply to
points on the axis of symmetry. Let us consider a
point O on that axis (see fig. 1; we shall assume
that the x-axis in this figure represents the axis of
symmetry). At point O, then,

Wp = Wp = Wy — Wg.

For such a point, therefore, we can rewrite (6) in
" the form

p— Wo) + (WQ — ) +

+ 2(wp — wg) + 2(wy —-wo)%.

(L) = = }(w
19)

Comparison of (11) with the above expression makes
it clear that, in the grid points on the z-axis, p* will
satisfy Lo* = 0 provided that

(20)

These conditions have in fact been satisfied in the
network of fig. 5, where the resistors forming the
axis have the value 2R.

The network of fig. 5 is not used in practice;
practical versions extend to one side of the z-axis
only. Such networks are perfectly satisfactory if
the axial resistors are given a value of 4R instead
of 2R. The validity of this can be confirmed by
reasoning as follows. Imagine the 2R resistance
along the z-axis in fig. 5 to have been replaced by
two 4R resistances in parallel, as in fig. 6a. On
account of the rotational symmetry of the system,
no current flows from the upper portion to the por-
tion under the z-axis. The lower portion can there-

11) Along the axis, 3p/0or and the other odd-order derivatives
with respect to r are all zero in consequence of the symme-
try of the system. Hence the middle term of differential
operator (13) becomes 0/0; similar indeterminacies occur
in the correction terms of (14). If the terms of the finite-
difference operator (15) (with u replaced by @) are ar-
ranged in a slightly different manner, the expression
(a/2r)(po — pr) appears which likewise has the value 0/0.

RESISTANCE NETWORK - ' ST
. R " Rk
L,
R éR R
4R 4R
b

97408

Fig. 6. Network (a) is equivalent to that in fig. 5, the 2R resis-
tors along the z-axis having been replaced by two parallel 4R
resistors. On account of symmetry, no current flows from the
part of the network below the z-axis to the part above it. The
lower half can therefore be removed without aﬂ'ectmg the
upper half, as in (b).

fore be omitted (fig. 6b) without making any differ-
ence to the upper portion 12).

Design and use of the resistance network

Resistance networks suitable both for two-
dimensional problems and for three-dimensional
problems with rotational symmetry have been
constructed in several Philips Laboratorics. The
two designs are identical apart from the valucs of
the resistors and we shall therefore confine ourselves
to describing the network for solving rotationally-
This net-
work is constructed according to the arrangement
shown in fig. 6b. It extends over 50 meshes in the
z-direction and over 25 in the r-direction, and, is
accordingly composed of (51X25) 4 (26 x50) =
2575 resistors in all, which are mounted on the back
of a sheet of insulating material (fig. 7). The junc-
tions have silver-plated contact pins that pass
through to the front of the panel. -

In order to determine the potential distribution
in some electrode assembly (for example), the

symmetric three-dimensional problems.

system is simulated on the resistance network by
linking the junctions corresponding to the electrode
outlines with copper wire. In principle it would
be possible to apply voltages across the simulated
electrodesin the manner described above (p.13, first
column). This is not necessary, however: by the

12) The network of fig. 6b can be arrived at directly by writing
(19) in the form:

s 3 (wp —wp) + (wg—1wp) + 4(105—100):~ .

(Lw)o =
On comparing (11) with the above, we. obtain the condi-
tion

1 1 1 1

ITI.E;.E —.R—4 =1 1.0.4,

' which is satisfied if R, = R, — 4R, R, — oo and R, = R.

-2
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Fig. 7. Some of the 2575 resistors composing the network
designed for three-dimensional problems with rotational
symmetry.

following simple procedure the required potential
distribution can be found more conveniently. One
of the electrodes, G for example (sce fig. 8), is con-
nected to terminal B of potentiometer AB, and all
the other electrodes (K and 4, in fig. 8) are con-
nected to A, the other potentiometer terminal.
A and B are connected up to an accumulator. To
measure the potential at, say, the junction P, the
latter
potentiometer via a null indicating instrument.

is connected to the slide contact of the

Once the slide has been brought to a position where

K. ... ./ .L/A, ¢ D

—>

__!}—_1 97427
b o

Fig. 8. Bridge circuit for measuring the potentials of junctions
in the resistance network. K, G and A, are electrode models.
The configuration is the same as in fig. 9. AB is a 1000 Q
polentiometer with a setting error of about 0.01 Q. The null
indicator is an electronic D.C. millivoltmeter with an internal
resistance of 0.6 M().
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the null indicator shows a null reading, the poten-
tiometer setting indicates the potential difference
between P and A (or B) as a proportion of the
potential difference between B and A. The value
thus found is therefore the potential of P when
electrode G has unit potential and all the other
electrodes have zero potential. By repeating the
measurements for the other junctions one obtains
the potential distribution under the above-mentioned
circumstances. One of the other electrodes, A,
for example, is now given an effective potential of
unity and the others are held at zero; the potential
distribution is then measured again. The potential
distribution for any given combination of electrode
potentials is then found simply by combining these
results linearly (superposition). Generalizing, if
there are n electrodes instead of three, the meas-
urements have to be repeated n—1 times in
order to find, by linear combination of the results,
a solution for any given set of electrode poten-
tials. The convenience of this method lies in the
fact that no adjustment or measurement of voltage
1S necessary.

In view of the accuracy required, ull the resistors
were wound from manganin wire, to tolerances of
40.29%,. Liebmann?) has pointed out that the
average error arising in the measurement of poten-
tial, due to inexact resistance values, is much smaller
than the errors in the resistances themselves, being
from a tenth to a hundredth thereof. This is a
consequence of the statistical properties of the net-
work, whereby errors are levelled out. The tempera-
ture coefficient of manganin is so small, the voltage
employed (usually about 2 V) is so low and the
physical dimensions of the resistors are so large
that there is no fear of errors due to heating-up of
the resistors.

The upper limit to the (in prineiple, arbitrary)
value of R (see fig. 6b) is fixed by the requirement
that the highest value in the network, which is 4R,
shall not be an unreasonably high one for wire-
wound resistors. On the other hand the smallest
resistors must not have too low a value, otherwise
the current through them would be large enough
to set up appreciable potential differences in the
copper wires representing the electrode outlines.
In the present networks, R has the value 3600 Q.
The extreme resistance values are therefore 4R
14400 Q and R/50 = 72 ().

A valve voltmeter type GM 6010 3) serves as the
null indicator. It is a D.C. millivoltmeter combining

13) A. L. Biermasz and A. J. Michels, An electronic D.C.
millivoltmeter, Philips tech. Rev. 16, 117-122, 1954/55.
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Fig. 9. The resistance network ismounted on the back of a large board of insulating material.
The silver-plated contacts that are visible on the front of the panel are the junctions of the
network, The electrode configuration seen on the board corresponds to a problem dealt
with in this article by way of example. Lengths of 2 inm copper wire, representing electrode
outlines, are attached to the appropriate contacts with metal clips. Electrical potentials
are applied to these electrode models via heavy copper strips lying along the edges of the
network. In order to prevent differences of potential arising along the electrode outlines,
each is linked to its copper sirip by more than one wire. In the pliotograph the user has
his right hand on one of the knobs of the decade potentiometer; with his left hand he is
pressing a key that enables him to check that the needle of the instrument he is watching

is giving a null reading.

great sensitivity (readings down to 2 .V can be
obtained) with a high internal resistance (0.6 M(Q).
The “null current” is therefore less than about
3x10732 A, which is so small that it makes no
perceptible difference to the potential distribution.
If it was other than very small it could give rise to
appreciable errors, particularly in measurements on
the axis of symmetry, where the highest-valued
resistors lie.

The potentiometer must be very accurate, as its
errors show up unchanged in the results. The
potentiometer employed had an average accuracy
of 1 in 105,

A photograph of the resistance network appears
in fig. 9.

Fields of infinite extent

The region throughout which the required function is present
is by no means always enclosed by a boundary such as s, in
fig. 2. Often it extends to infinity, ¢ approaching a constant
value ¢ . One can proceed as follows in such cases. First of
all, the electrodes are plotted on the network on a scale so
small that the junctions around the edge correspond to grid
points where @ is already fairly close to @_. All the junctions
around the edge are joined up and given a potential corre-
sponding to @, . The simulated electrodes are given potentials
in proportion to those of the actual system and an equipoten-
tial curve, just enclosing the area within which ¢ has to be
found, is then determined by measurement. Subsequently
the scale is increased in such a way that it is still just possible
to accommodate the equipotential curve thus found — whose
potential is now known — on the resistance network; from then
on this curve is treated as an electrode. A similar method can
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be employed when it is desired to investigate only part of the
region where p is present, and to plot it on a very large scale,
so that one or more clectrodes or parts thereof fall outside the
resistance network.

The same measurement procedure can be followed as before,
one of the electrodes being given a potential differing from
that common to other electrodes, and the nett potential dis-
tribution being found by linear combination of the results of
successive measurements under these conditions.

It is often possible in practice to employ less laborious
methods for circumventing the limitations of the resistance
network due to its finite dimensions. We shall return to this
point when discussing one of its applications.

Example of an application: the determination of
the cut-off voltage and maximum cathode loading
of electron guns '

Often potential distributions are determined to
serve as basis for the calculation of electron paths.
Here we shall deal with a different example, namely
the measurement of potential distributions within
tetrode electron guns for cathode-ray tubes as a step
towards determining the cut-off voltage and the
maximum cathode loading. These two quantities are
of importance in the design of electron guns.

For our present purposes an electron gun can be
stylized as a set of parallel flat electrodes of infinite
extent. The simplest form of gun (the triode gun in
fig. 10) comprises three electrodes, the cathode K,
the grid G and the anode A. Grid and anode have
a circular aperture. The centres of the apertures
lie on an axis perpendicular to the cathode, and
consequently the potential field exhibits rotational
symmetry about this axis. The anodec has a positive
voltage V,, of 15 kV, say, with respect to the

/ % g
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Fig. 10. Diagram to show the arrangement of electrodes in a
triode gun. K cathode. G grid. 4 anode.

cathode. The grid voltage Vg (‘vh{cll is also mcasured
with respect to the cathode) serves to modulate the
beam current I issuing from the gun. For a given
anode voltage ¥, ¥ can be adjusted to a value
such that the beam current is reduced to zero. This
V¢ value is always negative, of course; it is termed
the cut-off voltage V. It is an important quantity,
determining the maximum signal voltage that may

VOLUME 21

be applied to the grid without its becoming positive
(see fig. 11). Moreover, there is a simple relationship
between V, and the maximum current Ipax that
the gun can deliver under these conditions, viz. 14):
3

Inax &~ 3X10-8 V% ampere . (21)
(Ve in volts). It is therefore desirable that some
method should be available for determining ¥V, from

I max

 —>5

97524

Fig. 11. The above curve showing the beam current I of a
triode gun as a function of the grid voltage Vg, the anode
voltage being constant, is a normal I 4- V¢ characteristic for a
triode. If excessive spot “blooming™ is to be avoided, the
signal voltage must not be allowed to push V¢ above zero
(otherwise grid current would start to flow). The “blacks” in
the signal eurrent correspond to —V., the cut-off voltage.
Henee V. also represents the maximum signal voltage.

the dimensions of the gun and from the voltage
applied to the anode.

_ For this purpose we employ a graphical method,
the graphs being derived from measurements
performed with the resistance network. Use can be
made of these graphs in the design of tetrode guns.
A tetrode gun has a fourth electrode which is
mounted close to the grid in the space between grid
and anode ( fig. 12). The fourth electrode is given a
positive potential of about 300 V and is known as
the “first anode”, the original anode being called
“final anode” in order to distinguish between the
two. In practical cases the voltage on the final
anode has but little influence on the cut-off voltage
and the beam current, and consequently we ouly

11) Sec for example M. Ploke, Elementare Tllcc;rie der Elck-
tronenstrahlerzeugung mit Triodensystemen, Z. angew.
Phys. 3, 441-449, 1951 and 4, 1-12, 1952.
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nced consider the triode portion K-G-4,. Even so,
the system possesses properties different to those
of a normal triode gun. In the latter, grid and anode
arc comparatively far apart. Consequently the field
between these electrodes is more or less uniform and

A2 97411

Fig. 12. In a tetrode gun the first anode A4,, which is given a
potential of about 300 V, is placed close to the grid G. The
final anode A, carries a high tension of about 16 kV.

its strength is given by the potential difference
between grid and anode divided by the distance
separating those electrodes. Hence this ratio deter-
mines the cut-off voltage, the diameter of the anode
aperture playing no part at all. In a tetrode gun,
on the other hand, the clearance between grid and
first. anode is small and the field between them is
anything but uniform. Consequently the potential
difference and distance between these electrodes
each exercise a separate effect, and the size of the
aperture in the first anode also has an influence on
the cut-off voltage.

Let us take the following for the potential
distribution along the axis (assuming @(0) = 0):

p(z) = Viu fz) + Ve h(z). . . . (22)

f(2) represents the variations in potential along the
axis when ¥V, = 1 and V; = 0, and h(z) represents
the corresponding distribution when V=1 and
V= 0 (fig. 13). The beam current will be cut off
when the current density in the centre of the
cathode (where current density, as a function of
position on the cathode, always exhibits a maxi-
mum) has become zero. Let us assume that the
electrons have no initial velocity on quitting the
cathode; if that is so, the beam current will be cut
off the moment that the potential gradient at the
centre of the cathode becomes zero, for the field
strength E(0) will then be zero- at that point.
Since E along the axis is —dg/[dz, we can find the
field strength at the cathode centre by differentiat-
ing (22) with respect to z and putting z = 0:

E(0) = —{(Vu f'(0) + Ve h'(0). . (23)

E(0) becomes zero when V= —%f (0)/h’(0)§ Vs
hence the cut-off voltage is
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A ()
VC—WVM—DVAI. CL (24)

The quantity D = f’(0)/h'(0) is known as the
“penetration coefficient” or “Durchgriff”.

With the aid of the resistance network, curves
f(z) and h(z),were determined for many different
combinations of electrode dimensions and separa-
tions, D being derived from the slopes of these
curves at the cathode. It was found that their slopes
at this point hardly alter in consequence of a change
in the axial thickness of the first anode; hence D
is virtually independent of that dimension. The
discovery was. welcome, because it meant one
parameter less to be considered. Our investigations
were limited to the case where the openings in grid
and first anode have the same diameter. Since it is
only the ratios between electrode dimensions that
matter, the parameters are finally reduced to three.
The overall results of the measurements are dis-
played in the set of graphs appearing in fig. 14.
From these graphs one can determine the pene-
tration coefficient of a gun whose dimensions are
known; V,, the cut-off voltage, can then be calcul-
ated with the aid of (24).
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Fig. 13. a) Potential distribution f(z) along the central axis.in
the triode portion of a tetrode gun when Vg = 0 and V4 = 1.
b) Potential- distribution’ h(z) along the same *axis when
Ve=1 and V4; = 0. . .
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Fig. 14. Graphs allowing D, the “penetration coefficient”, and s, the “equivalent anode
distance”, to be determined for an electron gun of given dimensions. For the meaning of

_ the letters see fig. 13.
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A second .important quantity provided by the
same measurements is the current density in the
centre of the cathode (the maximum. cathode load-
ing). It is impermissible for the current density to
exceed a certain value at this point, and this natu-
rally constitutes a limit in design. Using a simplified
theory, Ploke %) has derived the following for the
current density at the cathode centre:

-3 3
(IVe)?

J(0) ~ 4.8x10 X s72 A/mm?, . (25)
in which I is measured in amperes and ¥ in volts,
and where

1

S§=—= —rn-

IO)

The parameter s is sometimes called the “equiv-
alent anode distance”. The reason for the name is
that if a potential difference of Ve 4 Vi exists
between cathode and anode in a plane parallel diode
(V¢ < 0), the field strength in the intervening space
becomes equal to E(0) when the anode-to-cathode
distance is s. This can be deduced from (23) and
(24). '

In order to calculate D we had to determine the
slope h’(0) at the cathode;-we can now use it again
to calculate s. Curves from which s can be read off
for a gun of known dimensions also appear in fig. 14.
Knowing s, we can work out from (25) the maximum
cathode loading for any wvalue of beam current.

Numerical example

Suppose that we want to determine the cut-off voltage and
the maximum cathode loading for a tetrode gun with the
dimensions k = 0.15 mm, d = 0.15 mm, 2r¢ = 2r4, = 0.75
mm and ! = 0.35 mm (see fig. 13), and with an accelerator
anode potential of ¥4, = 300.V.

By calculation, k/2rc = 0.20, d/2r¢ =0.20 and I/2rg =
0.466. The values of D and s/2r¢ appropriate to these values
of k/2rg and d/2r¢ are now determined from the two graphs
in fig. 14 for l/2rc = 0.4 and.0.5. We then find by linear
interpolation that, for l/2r¢ = 0.466, D is 0.23 and s/2r¢ is
0.51, from which it follows that s is 0.39 mm. Formula (24)
gives Ve = 0.23X300 =69 V for the cut-off voltage and
formula (25) gives j(0) = 0.40 I3/ for the maximum cathode

. loading. If for example the gun provides a beam current of

100 A, so that I = 10~* A, the maximum cathode loading
will be j(0) = 1.6 x10-® A/mm2

The limited dimenswns of the résistance network

Figs. 8 and. 9 are related to the ethple just worked out;

- they represent, however, the more general case in which the

grid and first anode apertures are unequal. We may now make
some observations concerning the measures taken to allow
for the fact that the resistance network is not infinitely large
in relation to the electrode models plotted upon it. It will be
seen from these two figures that the outline of the ﬁrst anode
has been extended along two edges of the network, the_junc-
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tions on CD and DE hayirig been wired togcther. As already -
stated, the results of the measurements -are much the same
whether the final anode is present or not, and we can according-
ly leave it off the network. In these circumstances any point
beyond the first anode and at some distance from its aperture
will have a potential equal to that of the first anode itself. This
will certainly be more or less true of points in space corre-
sponding to the junctions-along CD and DE. There is therefore
no ob]ectlon to giving these junctions the said potentlal If
they were not joined up, one would be completely in the dark
about possible errors arising because the portion of the net-
work to the right of the first anode is, as it were, left floating.
In the event, the junctions along CD and DE have been short-
circuited; and while it is true that the outline thus traced no
longer conforms to that of the first anode under investigation,
one does at least know that the discrepancy w111 not’ glve rise
to any serious error. -

Our second observation concerns the interelectrode spaces
between K and G and between G and 4,. The network only
extends over a comparatively short distance in the radial
direction; what sort of error does this give rise to? The results
of measurements of potential in the inter-electrode spaces
along the edge of the network (ie. for maximum r) are re-
assuring, for the variation in the z-direction proves to be linear
within the required limits of accuracy. This means that the
height of the network (its extent in the r-direction) is adequate.

Implications of the finite mesh w1dth

Obviously, the'mesh with a of the theoretical grid
cannot be reduced indefinitely, as this would lead
to ever larger models on the resistance network.
Hence the network will only provide approximate
solutions to the problems worked out on it. In
general, it is impossible on the basis of purely
theoretical reasoning to estimate this fundamental
error with any degree of accuracy. To get some
idea of this accuracy, the network can be used for
working out a problem whose exact solution is
known, the potential distribution found with the
network being compared with the known distribu-
tion. Alternatively, measurements can be performed
for ever smaller mesh widths, a better approximation
to the correct solution then being found by extra-
polation %) 18)

Cylindrical capacitor
Here we shall givé some results of investigations
- t :
relating to a cylindrical capacitor 17).- For such a
capacitor the potentidl distribution ‘can be worked
out exactly. Further, it is possible by calculation

to find the solution that would be obtained with an

1) L. F. Richardson, How to solve differential’ equations -
approximately by arithmetic,-Math, Gazette 12, 415-421,
1924/25.

18) R. Culver, The use of extrapolation techniques with
electrical network analogue solutions, Brit. J. appl. Phys.
3, 376-378, 1952.

17) J C. Francken, Electron optics of the image iconoscope,
thesis Delft, 1953, p. 36 et seq.
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“jdeal” resistance network. The error due to the
finite mesh width can then be determined by com-
paring the latter solution with the exact one. Other
errors, like those due to inaccuracies in resistor
values or in the adjustment of the bndge, are thus
excluded in this comparison.

If the ratio of the radii of the inner and outer
electrodes is 1:10 and if the mesh width is made
equal to the inner radius, the error is found to be, at
worst, —0.7%, of the voltage across the electrodes
(the worst error arises at the grid points closest to
the inner electrode). Near the outer electrode the

“error is only about —0.07%. If the mesh width is
halved, the errors become about —0.2%, and about
-0.029, respectively. By correction of results by
extrapolation the errors can be brought down to
about —0.03%, and about —0.0019, respectively.

The problem of the cylindrical capacitor was also
worked out on the actual resistance network, with
the two mesh widths mentioned above. After
correction by extrapolation, the results for junctions
near the inner and outer electrodes differed from
the calculated true values by —0.035%, and
—0.0089, respectively. Differences between the
experimental values and those calculated from the
“ideal” network are due to the other errors referred
to above, and have nothing to do with finite mesh

" width.

An electrostatic lens

Extensive investigations were also made into the
part played by the finite mesh width when the
problem is to determine the potential distribution
along the axis of an electrostatic lens as in fig. 15a.
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Fig. 15. a) Lens of a type used in electrostatically focussed
picture-tubes. The electrodes to right and left have the highest
potential in the tube; the middle one is at cathode potential.
b) Shape of the same lens when stylized for the purpose of
investigating the effect of the finite mesh width on resistance-

network measurements of the potential distribution along the,

lens axis. The electrode dimension ! has been selected as the
characteristic length to fix the mesh number, i.e. the scale on
which the lens is to be modelled on the network (mesh number
n = lfa, a being the mesh width of the grid; see fig. 2).

This type of lens is used in television picture-tubes.
The two mnarrower electrodes have the highest
potential present in the tube; the middle electrode
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is at cathode potential. For the purpose of the
investigation the lens was stylized, being given the
symmetrical shape indicated in fig. 156. In the
stylized lens the ends of the outside electrodes are
closed by conducting plates.

The electrodes are “capped’ in this way for the same reason
that led us to introduce further connecting wires into the model
of the first anode dealt with above. Here as before, we have to
consider the inter-clectrode gaps. It is possible, amongst other
things, to short-circuit the entire upper edge of the network
and to give it zero or unit potential. It proves that this has’
no appreciable effects on the results. It may be concluded that
the limited size of the network in relation to the spaces between
the electrodes, does not prejudice the reliability of the measure-
ments.
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Fig. 16. The lens of fig. 15b plotted on the resistance network.
Symmetry makes it unnecessary to model more than a quarter
of the lens assembly. Measurements were carried out on three
electrode models (one at a time, of course) plotted with mesh
numbers of 2, 3 and 4, and marked I, IT and III respectively
in the diagram.

The left-hand edge of the resistance network is
made a mirror plane of symmetry by doubling the
values of the resistors forming this edge (cf. the

975206
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Fig. 17. Variation in potential along the axis of the lens in
fig. 15b, as determined by means of a resistance network.
The scale of this graph is too small to allow any distinction
to be made between the slightly different results obtained from
measurements on the three different models.
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mirror plane along the z-axis in fig. 6b). In conse-
quence, only a quarter of the lens had to be simulated
on the network. The proportions of the stylized elec-
trodes were so chosen that the lens could be plotted
with “mesh numbers” that were in the proportions
of 2:3:4. The “mesh number” is the ratio n
between [, one of the dimensions of the lens, and a,
the mesh width of the grid. Any dimension of the
lens can be chosen for this purpose provided that it
is consistently adhered to. Our choice is indicated
in fig. 15b. The greater the mesh number, the finer
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Fig. 18. The relative error (the measured value @, divided by
the “correct” value @) in the potential distribution curve of
fig. 17, plotted as a function of the mesh width a. The quantity
a/l along the abscissa is the reciprocal (1/n) of the mesh number.
The seven curves are appropriate to seven points along the
z-axis. Each has been drawn through three points determined
by resistance-network measurements on three models (I, IT
and IIT in fig. 16). Even when the coarsest grid is used the
errors remain small.
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is the grid and the bigger is the electrode model on
the network (fig. 16). The potential values measured
along the lens axis are plotted in fig. 17. The curve
as drawn here is not thin enough to reveal divergen-
cies arising from the use of the three mesh numbers.

The three values found for each point along the
axis were used to work out, by Culver’s method of
extrapolation 16), a value regarded as correct. The
three measured values of each set were divided by
the “correct” value and the results plotted in
fig. 18; the three points of each set are joined by a
smooth curve. Sets of values appropriate to several
points on the z-axis are given. The figure clearly
reveals how slight an effect is exercised by the finite
mesh width on the results of measurements with the
resistance network.

Summary. The resistance network has won a place beside the
electrolytic tank as an aid to the solution of Laplace’s equation
for given boundary conditions. Two kinds of network have
practical importance. The first is useful for solving two-
dimensional problems, the second for solving three-dimensional
problems where rotational symmetry exists. In either case
Laplace’s equation reduces to a differential equation involving
two independent variables only. The network is built up of
resistors, four of which meect at each junction. The junctions
correspond to the grid points of a hypothetical square grid
which is imagined to have been set up in the field space.
Junctions corresponding to boundaries are given potentials
proportional to those values which the boundaries are known
to have. Provided the resistors composing the network have
the right values, the remaining junctions will then acquire
potentials that are approximately proportional to the re-
quired potential function. Discrepancies from the actual
valucs decrease as the mesh width of the grid is reduced to
zero. Conditions which must be satisfied by the resistances
composing the network, in both the two-dimensional and in
the rotationally-symmetric three-dimensional case, are worked
out in the course of the article. An example of the employment
of a network for rotationally-symmetric three-dimensional
problems is given in which curves are derived which allow
the cut-off voltage and maximum cathode loading of-tetrode
electron guns to be determined. Finally, examples are given
to show that the errors due to the finite mesh width are very
small.
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VECTOR-ELECTROCARDIOGRAPHY

by G. C. E. BURGER *) and G. KLEIN.

621.3.012.1:612.17:612.172.4

Developments in electronic engineering enable the physician to apply increasingly refined

physical methods to problems of diagnosis. One of these methods, which has madegreat strides in

the last 20 years, is the investigation by means of the vector-electrocardiograph of the electrical

phenomena accompanying the contraction of the heart. The article below describes one of the

vector-electrocardiographs built in the Philips Research Laboratory at Eindhoven and in use at

the Philips Health Centre. In the introduction the physical principles of vector-electrocardi-
ography aretouched on and a brief discussion is devoted to the nature of the electrical phenomena

concerned and the relation between vector-electrocardiography and conventional electrocardi-

ography from which it evolved.

Introduction

A valuable aid in cardiology is the study of the
electrical phenomena that occur during the contrac-
tion and subsequent relaxation of the heart muscle.
These electrical phenomena are related to the man-
ner in which the stimulus giving rise to the contrac-
tion is propagated over the heart muscle. Changes
in these electrical phenomena enable the cardiolo-
gist to learn something about the cardiac disorders
responsible for the changes, such as the presence of
an inactive part (infarction) or an enlargement
(cardiac hypertrophy) of the heart muscle. Purely
mechanical disorders (openings in the septum, val-
vular deficiencies) are not primarily included in this
category, although they are not infrequently the
cause of other disorders which in turn do manifest
themselves by an electrical phenomenon.

Elecirical phenomena accompanying muscular con-
traction

The electrical phenomena referred to are brought
about roughly as follows.

In the resting state the wall of every muscle fibre
(a2 membrane) constitutes an electric double layer;
the potential of the interior of the fibre is about
60 mV lower than that of the environment (the
“medium”). This phenomenonis termed polarization.
At the position where a stimulus is applied to the
fibre, this potential difference — known as the
membrane potential or resting potential — decays very
rapidly (in approximatel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>