

USEFUL INFORMATION FOR USERS OF TEKTRONIX INSTRUMENTS

NUMBER 34

PRINTED IN U.S.A

DCTOBER, 1965

INTRODUCTION TO OSCILLOSCOPE DIFFERENTIAL AMPLIFIERS

by

Joseph E. Nelson Tektronix Product Technical Information Group

This is the second and concluding half of an article describing oscilloscope differential amplifiers. The first half, which appeared in the August, 1965 issue of SERVICE SCOPE, discussed differential amplifier characteristics such as common mode rejection ratio, voltage range, frequency range, etc. The effect of probes and filters as well as the importance of source impedance was also discussed.

This second half of the article presents several applications that either require a differential amplifier or can more effectively be performed with a differential amplifier.

Part II

Applications

Differential Measurements

A differential input measurement is one in which the two inputs to a differential amplifier are connected to two points in a circuit under test and the amplifier displays the difference voltage between the points. In this type of measurement each input of the amplifier acts as a reference for the other and ground connections are only used for safety reasons. (Note: The term "differential input" is synonymous with "floating input".)

One application in which differential input was used to advantage concerned the power source of an electric railroad engine. This was a 3-phase transformer system with a solid-state controller that consisted of strings of silicon-controlled rectifiers. The measurement problem was to examine the individual rectifier switching characteristics and note risetime, ringing, and point of occurrence. The circuit (simplified) is shown in Figure 10.

The voltage across the silicon controlled rectifiers before switching was approximately 250 volts; however, the entire system was several kV off ground. Because of

A-2296

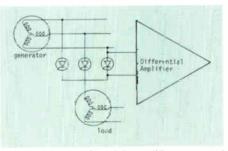


Figure 10. A differential amplifier connected for a differential input measurement in the power system of an electric train.

this latter voltage, two P6013 high-voltage X1000 probes connected to a differential amplifier were used. With this arrangement, the amplifier sensitivity was increased to a point where the switching transients could be seen and photographed.

Slideback Technique

Slideback can be defined as the technique of applying a dc voltage to one input of a differential amplifier in order to change the vertical position on the crt screen of the signal applied to the other input. For example, if an oscilloscope differential amplifier is set for a vertical sensitivity of 0.01 V/cm (trace on-screen) and a ± 1 volt dc voltage is applied to input A, the trace will be deflected upward off screen. If a +1 volt dc voltage is now applied to input B, the trace will return on screen. One might say that the signal *slides back* on-screen as a result of the voltage (slide-back voltage) applied to input B. Also, and this is the principle of operation, the dc voltage applied to input B is common-mode with that of input A, and thus, both are rejected by the amplifier.

A measurement problem often encountered is the need to examine a pulse (say 0.01 volt height) that is superimposed on a dc level (say +1 volt), and make the measurement with the oscilloscope's amplifier dccoupled.

If this composite signal is applied to input A of a differential amplifier and a ± 1 volt dc voltage (slideback voltage) is applied to input B, the two dc levels are common-mode and thus rejected, and only the pulse remains. In this situation, the vertical sensitivity could be increased to 5 mV/cm where the pulse would have a height of 2 centimeters.

Because the dc level of the composite signal in this example can be any voltage up to the maximum common-mode input voltage specified for the amplifier, the slideback voltage should be adjustable from

World Radio History

zero volts up to this maximum commonmode input voltage level. With this source in a separate black box, an arrangement similar to that shown in Fig. 11 can be set up.

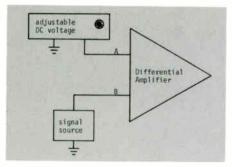


Figure 11. Circuit connections for the slideback technique described in the text.

A second example of slideback technique concerns the detailed examination of small amounts (1 millivolt) of modulation superimposed on a pulse or square wave of +1.0volt pulse height. If this pulse is applied to input A of a differential amplifier (at 0.2 V/cm) and the "black box" slideback voltage source applied to input B, the pulse displayed on the crt screen can be moved vertically by varying the slideback voltage. If the sensitivity is now increased to 1 mV/ cm, the top of the pulse will go off-screen. It can be returned on-screen by adjusting the slideback voltage. Since the sensitivity remained at 1 mV/cm, the sought-for modulation on top of the pulse should occupy one vertical centimeter. (See over-scan limitations later in text).

This example introduces the concept of *effective* crt screen height. A 1 volt pulse was displayed on the crt screen at a sensitivity of 1 mV/cm. Through use of the slideback voltage any portion of the pulse could have been brought on-screen. Since the pulse height was 1 volt and the sensitivity 1 mV/cm, the effective screen height was 1000 cm. The formula for finding the effective screen height is:

Slideback Voltage Vertical Sensitivity = Effective screen height

Applying this formula to the Tektronix Type W High-Gain Differential Comparator Plug-In Unit comes out as follows:

 $\frac{\pm 11.000 \text{ V dc}}{.001 \text{ V/cm}} = 11,000 \text{ cm maximum}$

Differential Comparator

Carrying the slideback technique one step further by making the slideback voltage a calibrated supply with a precision dial and building this into the amplifier makes the device a differential comparator. This instrument, sometimes called a slideback voltmeter, can make both ac and dc voltage measurements. The precision of these measurements in terms of a \pm percent can be calculated from the differential comparator specifications (attenuator accuracy, comparison voltage accuracy, etc.; see example later in text).

Figure 12. The Tektronix Type W High-Gain Differential Comparator Plug-In Unit.

Operation of the differential comparator as a precision voltmeter consists of applying the signal to be measured to input A with the front panel controls set for a comparison measurement. This internally connects the comparison (slideback) voltage (Vc) to input B. Figure 12 shows the front panel of the Type W High-Gain Differential Comparator Plug-In Unit. Note that the Vc range switch not only changes the range but also can change the polarity of the comparison voltage. This allows comparisons with both positive-going and negative-going signals.

In dc voltage measurements the signalcarrying cable is connected to the A input connector with the input attenuator at 1, but with the input coupling switch set to GND. The display switch is set to A-Vc which means a comparison between whatever signal is present at input A and the comparison voltage. The precision dial is set to zero and the position control used to move the trace (free-run) to the center vertical reference graticule line. This zero voltage line is the start and finish point of a measurement. All that remains is to turn the coupling switch of input A to dc, which allows the trace to disappear off-screen; then slide the trace back on-screen to the reference line with the precision dial. The value of the unknown voltage is the reading of the precision dial.

AC voltage measurements that use a-c input coupling have signals that pass through both polarity. To measure peak-topeak, the comparison voltage dial is adjusted to bring one peak to a graticule reference line and the dial reading is noted. Then the Vc range switch is turned to the opposite polarity and again the precision dial is used to move the peak to the same graticule reference line. The dial reading is noted, and this reading, added to the first dial reading, equals the peak-to-peak voltage.

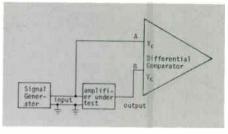


Figure 13. Test setup to measure amplifier gain.

An application in which the two inputs to a differential comparator are used to advantage is the gain setting of low-frequency amplifiers. Figure 13 shows a suggested arrangement in which input A of the comparator is used to measure the input signal (A-Vc Display) and then input B of the comparator is used to measure the output (B-Vc Display).

A second application is the measurement of transmitter carrier power. In the following description, correction must be made for carrier frequencies that are above the flat response portion of the amplifier passband. In addition, since this is a voltage measurement, the transmission line should be terminated so as to minimize standing waves. A "Tee" connector is inserted in the output transmission line and used to couple the input of the differential comparator, through attenuator probes, to the line center conductor. Figure 14 shows the connections.

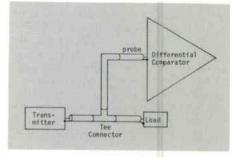


Figure 14. Test setup to measure transmitter power with a differential comparator.

The peak-to-peak sine wave carrier is measured with the differential comparator and the results used in the following fornula:

$$\frac{\left[\frac{P-P \text{ Voltage}}{2} X 0.707\right]^2}{Z \text{ of System}} = Power$$

For example, if 200 volts peak-to-peak carrier voltage is measured with a differential comparator and the transmission system is 50 Ω , the power is :

$$\frac{\left[\frac{200}{2} \times 0.707\right]^2}{50 \ \Omega} = \frac{70.7^2}{50 \ \Omega} = \frac{4998.5}{50 \ \Omega} = 99.97 \ W$$

At low power, as in this example, the signal can be connected directly into the comparator, but at higher power levels attenuator probes must be used and the tolerance of these probes should be included in the power computation.

Limitations of Differential Comparators

Overscan Recovery is a characteristic of differential comparators that states the time required for the amplifier to recover to within some amount of voltage after a return to the screen. For example, in the discussion of effective screen height, the top of a pulse was brought on-screen by use of the slideback voltage. When the pulse falls and rises again, the rapid change causes peaking and ringing of the pulse leading edge. The overscan recovery specifications state that this ringing will reduce to within 10 millivolts after 300 nanoseconds (W unit). Because of this, measurements should not be made in the first 300 nanoseconds after the leading edge of the pulse reappears on the screen,

Rate of Rise is a specification of some differential amplifiers (Tektronix Type Z Differential Comparator Plug-In Unit) that is specified in volts per time. For instance, the maximum rate of rise of the Z unit is 1 volt in 7 nanoseconds. Signals that exceed this rate will cause grid current and subsequent waveform distortion. Similarly, rate of fall of the Z unit is 1 volt in 5 nanoseconds.

Recovery from the conditions caused by pulses that exceed these rates takes an amount of time that is proportional to the pulse amplitude. For example, a 10.0 volt pulse that exceeds the rate of rise specification (say 1.0 volt per 7 nanoseconds) would cause the first 70.0 nanoseconds, measured from the start of the rise, to be unusable.

Differential Comparator Measurement Accuracy

The accuracy of a differential comparator measurement depends on several characteristics of the amplifier. These are: comparison voltage (Vc) and linearity accuracy, CMRR, drift, and input attenuator accuracy. In addition to these characteristics which affect *all* measurements, certain other factors must be considered when measuring pulse amplitude. These include: errors due to amplifier recovery, shift in reference level, and input attenuator compensation.

Each of these characteristics, where applicable, can influence the overall accuracy of a measurement. By adding the tolerance figures of each characteristic, a "worst case" figure can be obtained for any particular comparator measurement. For example, the overall accuracy of a dc level measurement of approximately 25 volts (2.5 volts after X10 input attenuation) using a W unit would be:

Operator resolution (1 mm at 10 mV/cm) 0.04 %

Vc supply accuracy	0.15 %
Vc readout linearity (0.05%	
of 11.0 volt range)	0.22 %
CMRR (20,000:1)	0.005%
Reference drift (1 mV)	0.04 %
Input attenuator accuracy	$0.05 \ \%$

Overall accuracy 0.505% A pulse measurement in which the signal was approximately 25 volts (2.5 volts after X10 input attenuation) with a width of 0.75 microseconds would be:

neroseconds would be,			
Operator resolution (1 mm at			
10 mV/cm)	0.04 %		
Ve supply accuracy	0.15 %		
Vc readout linearity (0.05%			
of 11.0 volt range)	0.22 %		
CMRR (20,000:1)	0.005%		
Reference drift (1 mV)	0.04 %		
Input attenuator accuracy	0.05 %		
Input attenuator compensation			
(1% with 20 microseconds time			
constant)	1.00 %		
Recovery offset (10 mV)	0.40 %		
Reference level shift (5 mV)	0.20 %		

Overall accuracy 2.105% The large influence of the input attenuator compensation (1%) in this example is due to the narrow width of the signal. When this width is increased to 100 microseconds, the overall accuracy figure is 0.958%.

The tolerance figures used to compute the overall figures can be obtained from the instrument instruction manual. The following formulas should be used to convert these figures to percentages where necessary.

> Vc readout linearity =Vc linearity (%) x range in volts Vc

CMRR error is the reciprocal of the CMRR expressed as a percentage CMRR error (%) = 1/CMRR

Reference drift = $\frac{\text{drift (volts)}}{\text{Vc}} \times 100\%$

Error due to amplifier recovery = offset (volts)

In the above formula, offset refers to the voltage that remains due to overdrive recovery at the time a measurement is made.

Error due to reference shift = $\frac{\text{shift (volts)}}{\text{Vc}} \times 100\%$

Measuring Potentiometer Conformity

A differential amplifier combined with a storage oscilloscope and test jig can be used to measure linearity, tracking, and backlash of potentiometers. The test setup is similar for all three measurements and is shown in Figure 15.

Linearity (independent): This term is defined as the maximum deviation, expressed as a percent of the total applied voltage, of the actual function characteristic from a

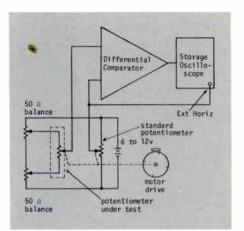


Figure 15. Test setup ta check patentiameters far linearity, tracking, and backlash.

straight reference line with its slope and position chosen to minimize the maximum deviation over the actual electrical travel, or any specified portion thereof*.

The test for linearity is a comparison between a standard and unknown. A standard potentiometer and the potentiometer to be tested are connected in the test circuit with their shafts mechanically coupled together. Both controls are set at the end of their shaft rotation (zero volts out) and the differential amplifier and the oscilloscope are adjusted to position the start of the trace at the vertical midline. Since the horizontal trace is driven by the voltage from the standard potentiometer, the horizontal amplifier should be adjusted to make the complete rotation of the potentiometers correspond to degrees, i.e., degrees per horizontal centimeter. Thus, deviations in linearity can be described in terms of voltage excess at specific points of shaft rotation. For example, a report on a test could read "20 mV beyond tolerance at 200° from ccw end."

With both potentiometers coupled together and connected to the amplifier, it only remains to determine the sensitivity setting of the amplifier before the actual test is run. This setting depends on the tolerance of the potentiometer under test. For example, $\pm 0.1\%$ linearity would mean that the difference voltage between standard and unknown should not exceed 0.1% of the total voltage applied across the controls. With 10.0 volts as a source voltage, the allowable deviation is ± 0.010 volt. With the differential amplifier sensitivity set to 5 mV/cm, the tolerance is ± 2 vertical centimeters from the midline.

The test is completed by turning the two controls throughout their range, either by hand or driven by a slow-speed motor. The interpretation of the trace is simply whether it is within the tolerance limits prescribed.

*From: Wirewound Precision Potentiometers, an Industry Standard published by the Precision Potentiometer Manufacturers Assn. At this point the backlash** of the potentiometer can be checked by reversing the rotation of the control shafts and returning them to their starting point. If no backlash is present, the new trace will exactly superimpose over the first. But with backlash, the new trace will be shifted, and the amount of this shift is a measure of the backlash. This same check can be made after the tracking measurement described below:

Tracking: This term is defined as the difference at any shaft position between the output ratios of any two commonly actuated similar electrical elements expressed as a percentage of the single total voltage applied to them.

In tracking, the measurement is: how closely do two or more ganged potentiometers have the same output voltage as they are rotated throughout their range? The test setup is the same as that shown in Figure 15. The specification is usually given as: should track within some percentage such as 1.0%. With this specification and 10 volts applied across the potentiometers

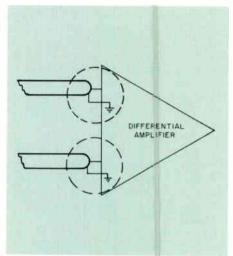
**Backlash: Defined as the maximum difference in a shaft position that occurs when the shaft is moved to the same acutal output ratio point from opposite directions. This measurement excludes the effect of resolution and contact width. under test, the difference voltage should not exceed 1% of 10 volts or 0.1 volt. At these figures, the sensitivity of the differential amplifier should be set to 0.05 V/cm. This corresponds to ± 2 vertical cm.

Backlash can also be checked as described above under linearity. However, in this case the results are total backlash for both controls.

About the Author

Joseph E. Nelson originally trained as a biochemist at Massachusetts Institute of Technology while a member of the U.S. Army. This was concurrent with 6 years as a clinical chemist in army laboratories during World War II.

At the conclusion of World War II, he entered electronics with stress on communications. During the fifties, while with Northrop Aircraft he became associated with standards and measurement techniques. He has published several articles on primary and secondary standards and their relationship to the calibration laboratory.


With Tektronix he has served as a technical writer of instruction manuals and currently as an engineering writer of technical application and instructional articles.

Drawing on his original training as a chemist, he is now active in seeking ways to apply electronic instruments such as differential amplifiers to the field of analytical chemistry.

-The Editor

ERRATA

Figure 9 in Part I of Introduction to Oscilloscope Differential Amplifiers published in the August 1965 issue of Service Scope is incorrectly drawn. The probe shields, in all cases, should be shown grounded to the differential amplifier chassis as follows:

Also in the article, Introduction to Oscilloscope Differential Amplifiers under the heading Probes and Common-Mode Rejection, 2nd paragraph, page 3, the statement, "Tektronix Type 190B Sine-wave Generator at 1 kHz," should read, "General Radio Type 1210C Sine-Wave Generator set to 1 kHz."

IEEE STANDARD SYMBOLS FOR UNITS

In this issue of SERVICE SCOPE we initiate our use of the IEEE STANDARD SYMBOLS FOR UNITS. Future issues of SERVICE SCOPE will continue to use this standard.

The IEEE publication IEEE Transactions on ENGINEERING WRITING AND SPEECH, Volume EWS-8, No. 1, June 1965, presented the Symbols in an article entitled "IEEE Standard Symbols for Units". The Symbols first appeared in the publication "IEEE Standard Symbols for Units, No. 260 (Revision of Part of 51 IRE 21 S1), January 1965".* The Standard Symbols for Units was compiled by the Abbreviations Subcommittee of the IEEE Symbols Committee. It represents four years of careful consideration, thorough discussion and plain hard work by many people. It is consistent with the recommendations of the International Organization for Standardization (ISO) and with the current work of the International Electrotechnical Commission (IEC).

Tektronix, Inc. has decided to follow the lead of the IEEE and adopt the Symbols for Units as a standard for use in our texts, equations, in graphs and diagrams, on the panels and name plates. In so doing, we admit, along with the IEEE, that the Symbols for Units is not perfect. We do believe, however, that the potentialities it offers for better, unambiguous communication are great.

* Reprints are available (\$1.00 for IEEE members; \$3.00 for nonmembers) from IEEE headquarters, 345 East 47 Street, New York, N.Y. 10017. TEKTRONIX PARTS REPLACEMENT KIT 050-0226-00 — ATTENTION U.S. AIR FORCE INSTRUMENT-CALI-BRATION AND REPAIR PERSON-NEL

The instruction sheet for parts replacement kit 050-0226-00 contains an error. This kit replaces the selenium rectifier stack SR741 or SR701 in the Type 180A Time-Mark Generator, or SR460 in the Type 315D Oscilloscope with a silicon rectifier bridge. The kit was produced as a special order for the U.S. Air Force.

The error in the instruction sheet is important only when the kit is used to replace SR701 in the +350-V supply of the Type 180A Time-Mark Generator.

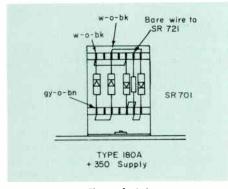
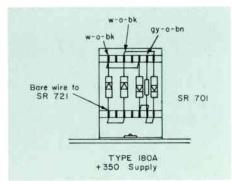



Figure 1 (a).

Figure 1 (b).

Figure 1 (a) is a reproduction of the SR701 rectifier diagram as it appears in the instruction sheet. Here the plus (gy-o-bn wire) and minus (bare wire strap) leads are called out incorrectly. With SR701 connected in this manner, the resistor R701 will smoke and burn. Figure 1 (b) shows SR701 connected properly. Notice that the plus and minus leads are connected the reverse of the way shown in Figure 1 (a).

Our thanks to Sgt. Haist of the Portland Air Force Base for calling this error to our attention.

TYPE 1A1 DUAL-TRACE UNIT—VAR. ATTEN. BAL. CONTROL REPLACE-MENT

The following information applies to Type 1A1 Dual-Trace Units with serial numbers below 360.

R130 (Channel 1) and R230 (Channel

2) are the parts list and schematic designations for the potentiometers that serve as the VAR. ATTEN. BAL. controls for Channel 1 and Channel 2 in the Type 1A1 Unit.

Starting with serial number 360, these potentiometers were replaced with a moreserviceable potentiometer (Tektronix part number 311-0459-00). This is the potentiometer you should order when replacing R130 or R230 in units with serial numbers below 360. You should also order an adapter nut (Tektronix part number 220-0420-00) for each replacement potentiometer. The nut used to hold the original potentiometer will not fit the replacement.

TYPE 555 DUAL-BEAM OSCILLO-SCOPE — FAILURE OF INTENSITY CONTROL TO TURN OFF BEAM

The Type 555 Oscilloscope has two INTENSITY controls—one for the Upper Beam and one for the Lower Beam. Inability of one of these controls to turn off its associated beam may be caused by failure of the type 5642 vacuum tube in the INTENSITY control's circuit. Schematic designation of this tube is V822 in the Upper Beam's INTENSITY control circuit or V922 in the Lower Beam's INTENSITY control circuit. Replacement of the defunct 5642 tube will generally clear up the problem.

TYPE M FOUR-TRACE PLUG-IN UNIT—CHANNELS A, B, C, AND D: CROSS-TALK REDUCED

The addition of four 0.01 μ F capacitors (Tektronix part number 283-0050-00) will eliminate high-frequency cross-talk (approximately 0.5% at 20 MHz) in early Type M Four-Trace Units, serial numbers 101-3120.

To add the capacitors, install a #2 solder lug (Tektronix part number 210-0001-00) under the socket-mounting screw nearest pin 2 of each V5323 tube socket. V5323 is a type 7586 vacuum tube and there are four of them—one for each channel—in a Type M Unit. Solder an 0.01 μ F capacitor between pin 2 of the tube socket and the newly installed solder lug of each V5323 tube.

Designate the capacitor C5323 and add it to the parts list and schematic of the Type M Unit's Instruction Manual.

Type M Units, serial numbers 3120 and up have this modification installed at the factory.

TYPE 3A3 DUAL-TRACE DIFFEREN-TIAL AMPLIFIER — UNSTABLE TRACE AND DC SHIFT

Some Type 3A3 Dual-Trace differential amplifier units within the serial number range 101-969, will sometimes exhibit an unstable trace and evidence of dc shift when the attenuator POSITION control is adjusted. This, when it occurs in Channel 1, is caused by oscillations in transistor Q143 and (or) Q243, and, when it occurs in Channel 2, by oscillations in transistors Q343 and (or) Q443.

The cure is the addition of 4 ferrite cores (Tektronix part number 267-0532-00). Install a ferrite core on the #22 wire strap that runs between the emitter pin and the ceramic strip of each of the four transistors, Q143, Q243, Q343, and Q443. Designate the cores L143, L243, L343, and

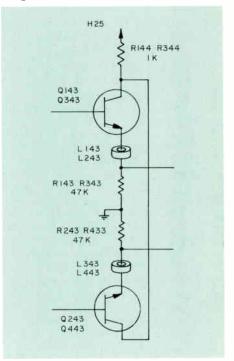


Figure 2. Partial schematic showing installation of ferrite cores to emitter leads of Q143, Q243, Q343, and Q443 in the Type 3A3 Unit.

L443 as shown in Figure 2. Add them to the parts list and to the Channel 1 Input Amplifier and the Channel 2 Input Amplifier schematics in your Type 3A3 Instruction Manual.

TYPE 3A74 FOUR-TRACE PLUG-IN UNIT — PROTECTION AGAINST LARGE POSITIVE TRANSIENTS

The addition of a 1 k, $\frac{1}{2}$ W, 10% resistor (Tektronix part number 302-0102-00) in early Type 3A74 Plug-In Units reduces the possibility of a failure of the Channel 1 trigger-amplifier transistor, Q503, caused by a large positive transient at the input connector. The new resistor replaces the wire strap between the collector and ground of the trigger-amplifier transistor Q503.

Designate this new resistor R501 and add it to the parts list and schematic in the Type 3A74 Instruction Manual.

This improvement is applicable to Type 3A74 Units, serial numbers 101-1309. In Units with serial numbers 1310 and up the protection is installed at the factory.

TYPE 2B67 TIME-BASE UNIT—PRO-TECTION FOR DIODE D126

A grid-to-plate short in V135 (a 6DJ8 vacuum tube) in the Type 2B67 Time-Base Unit, can cause damage to the diode D126, when the MODE switch is in the NOR-MAL position.

Changing R137, a 100 Ω 1/2 W, 10% resis-

tor, to a 220 k, $\frac{1}{2}$ W, 10% resistor (Tektronix part number 302-0224-00) and paralleling it with a 68 pF, 500 V speed-up capacitor (Tektronix part number 281-0549-00) will protect D126 against this damage.

R137 is located between pins 1 and 7 of V135. Designate the new capacitor C137 and add

it to the parts list and schematic in your

NEW FIELD MODIFICATION KITS

TYPE 544, TYPE 546, and TYPE 547 OSCILLOSCOPES — VERTICAL-OUT-PUT AMPLIFIER PROTECTION

This modification protects the output transistors Q1114 and Q1134 in the Vertical Amplifiers of the above instruments (both conventional and rackmount versions) from excessive collector voltage. The excessive voltage is caused primarily by grid-to-cathode shorts in V707, a type 6080 series-regulator tube, in the +225 V supply.

The protective circuit consists of a new transistor, Q1109, in series with the collector supply of the output-amplifier transistors Q1114 and Q1134. The base of Q1109 is returned to ± 100 V through a new 105 V zener diode (D1109). Should the ± 225 V supply go out of regulation, the fixed base voltage of Q1109 limits the output transistors collector voltage to approximately 205 V.

The new transistors and associated circuitry are all mounted on a small subchassis. This sub-chassis mounts near the rear of the input Vertical-Amplifier chassis using an existing hole in this chassis.

This modification is applicable to the following instruments:

TYPE	SN's
544	101-374
RM544	100-119
546	100-449
RM546	100-149
547	100-2343
RM547	100-259
-	

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0405-00. Price \$5.00.

ALTERNATE/CHOPPED COMPATI-BILITY REWORK

This modification kit is applicable to Type 531, Type 535, Type 541 and Type 545 Oscilloscopes, sn's 101-20000, that have had Field Modification Kit 040-0403-00 (see SERVICE SCOPE, issue #5, December, 1960) installed; and, Type RM31, Type RM35, Type RM41 and Type RM45, sn's 101-1000, that have had Field Modification Kit 040-0198-00-01 (see SERVICE SCOPE, issue #5, December, 1960) installed.

Installation of the Alternate/Chopped Compatibility Rework field modification kit gives to these instruments the ability to utilize the Alternate-Trace feature of the Type 1A1 and Type 1A2 Dual-Trace Plug-In Units.

These plug-in units require an alternatetrace sync pulse at pin 8 of the oscilloscope's plug-in interconnecting socket. This pulse is not available in the oscilloscopes listed above.

The Alternate-Trace/Chopped Compatibility Rework field modification kit corrects this situation by replacing the 6J6 tube in the V78 position with a 6DJ8 tube and changing the oscilloscope's Multi-Trace sync and Chopped-Blanking circuitry to conform to that in the Type 531A, Type 535A, Type 541A, Type 545A/B, Type 546, Type 547, etc., oscilloscopes.

To install the 6DJ8 tube it is necessary to enlarge the socket-mounting hole and replace the original socket for the V78 position with a 9-pin type.

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0404-00. Price: \$5.25. 12 KV HIGH VOLTAGE

This modification is applicable to the following oscilloscopes:

3	
TYPE	SN's
541	101-20000
RM41	101-1000
541 A	20000-up
RM41A	1001-up
543	101-3000
RM43	101-1000
543A	3001-up
RM43A	1001-up
545	101-20000
RM45	101-1000
545A	20000-up
RM45A	1001-up
581	101-3974
581 A	3975-4999*
585	101-5968
585A	5969-8999*
RM85A	101-999*

The modification replaces the original 10-kV high-voltage transformer with a 12-kV transformer, thus increasing the crt accelerating potential to provide greater intensity at fast sweep speeds.

The vertical and horizontal deflection sensitivities of the crt are reduced approxi-

Type 2B67 Instruction Manual. Note also, in these sections of the Instruction Manual, the changed value for R137.

This information is applicable to Type 2B67 Units with serial numbers below 15380. Instruments with higher serial numbers have the new-value resistor and paralleling capacitor installed at the **fac**tory.

mately 15%; a special graticule (supplied with the kit) is used to compensate for this reduction. All front panel and manual references to "CM" should **be** interpreted as "DIV". For example, read "TIME/CM" as "TIME/DIV".

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0176-00. Price: \$18.95.

*NOTE: This kit can be installed in instruments above these serial numbers provided they have external-graticule crt's. It can also be installed in those instruments above these serial numbers provided the instrument is first converted to an externalgraticule crt.

The external-graticule crt must be ordered separately as follows:

Crt, external grat. P31 phosphor (T5810-31), Tektronix part number 154-0354-00.

Crt, external grat. P11 phosphor (T5810-11), Tektronix part number 154-0230-00.

Steps 17 through 22 on page 4 of the modification's instruction sheet tell how to remove the internal-graticule crt and install the external-graticule crt replacement.

TYPE 530 AND TYPE 540 SERIES OSCILLOSCOPES — DC FAN MOTOR

This modification supplies a dc fan motor to enable the following instruments to operate on 50-400 cycle power lines.

TYPE	SN's
531	5001-20000
RM31	101-1000
533	101-3000
RM33	101-1000
535	5001-20000
RM35	101-1000
541	5001-20000
RM41	101-1000
543	101-3000
RM43	101-1000
545	5001-20000
RM45	101-1000

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0255-00. Price \$56.00.

TYPE 531, TYPE 535, TYPE 541, TYPE 545 OSCILLOSCOPES — CHOPPING-TRANSIENT BLANKING

This modification provides a means of eliminating switching transients from the crt display by applying a blanking voltage to the crt cathode. Switching transients occur when a multiple-trace plug-in unit is operated in the chopped mode. The blanking voltage is applied by means of a crt CATHODE SELECTOR switch installed on the rear panel of the oscilloscope.

A 6DJ8 tube replaces the 6AU6 tube in the V78 position of the multi-trace unit's Sync-Amplifier circuit. One half of the new tube is used as the Sync Amplifier; the other half is used to generate the blanking pulse.

Installation of the modification involves replacing the old 7-pin socket for V78 with a 9-pin socket to accommodate the new 6DJ8 tube. Also, the addition of a crt CATHODE-SELECTOR switch to rear panel of the oscilloscope plus other minor circuit changes. The instructions divide the modification into several parts to facilitate the installation in the specific instrument at hand.

This modification is applicable to the Type 531, 535, 541 and 545 Oscilloscopes

USED INSTRUMENTS WANTED

1—Type 531 or Type 533 Oscilloscope with a Type CA Dual-Trace Plug-In Unit. Reasonable price. Contact: Will Rast, 3881C Ivanhoe Court, Schiller Park, Illinois. Telephone: 312-678-0867.

1—Type 535A Oscilloscope and 1—Type CA Dual-Trace Plug-In Unit. Instruments must be in good condition. Contact: R. Thompson, Pan Air Corporation, P. O. Box 26425, New Orleans, Louisiana.

USED INSTRUMENTS FOR SALE

1—Type 4S1 Dual-Trace Sampling Unit, sn 000158, and 1—Type 5T1 Timing Unit, sn 000166. Contact: Harry Bifulco, Transistor Specialties, Inc., Plainview, New York. Telephone: 516-WE5-8700.

1—Type 321 Oscilloscope, sn 1244. Instrument is like new—used very little. Carrying case included. Price: \$700.00. Contact: Carl Frederickson, Moline Tool Company, 102 20 Street, Moline, Illinois. Telephone: 309-764-2418.

1-Type 2B67 Time-Base Unit, sn 9562. Contact: John Marino, 75 West Dedham Street, Boston, Massachusetts. Telephone: 617-266-0184.

1—Type 514AD in excellent condition. Has modification installed equipping it with a flatfaced crt. Tektronix Field Engineer John West will act as contact for this ad. Contact him at: Tektronix, Inc., 244 Second Avenue, Waltham, Massachusetts 02154. Telephone: 617-894-4550.

1—Type 545B Oscilloscope, sn 000225. This instrument was purchased new in April of this year. Price is open. Contact: Howard Schmidt, Vinson Manufacturing, 8044 Woodley Avenue, Van Nuys, California.

1—Type 511AD Oscilloscope, sn 2128, in good working order. Has new type 5ABP1 crt. Instruction Manual included. Price: \$200.00 fob Los Alamos, New Mexico; also 1—Type 122 Low-Level Preamplifier, sn 116. In excellent condition. Price: \$50.00 fob Los Alamos, New Mexico. Contact: Jack D. Jacobson, 2309B 33 Street, Los Alamos, New Mexico 87544.

with serial numbers 101 through 19999 and Type RM31, RM35, RM41, and RM45 Oscilloscopes with serial numbers 101 through 999.

Order through your local Tektronix Field Office, Field Engineer, Representative or Distributor. Specify Tektronix Part Number 040-0403-00. Price: \$11.35

TYPE 315D OSCILLOSCOPES — SILI-CON RECTIFIERS

This modification kit replaces the selenium rectifiers in the Type 315D Oscilloscope with silicon rectifiers which offer more reliability and longer life. It is applicable to Type 315D Oscilloscopes, all serial numbers.

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0220-00. Price \$24.70.

TYPE 180A TIME-MARK GENERA-TOR — SILICON RECTIFIERS

This modification kit replaces the selenium rectifiers in the Type 180A Timemark generator with silicon rectifiers which offer more reliability and longer life. It is applicable to Type 180A instruments, sn's 5001-6385 with the exception of sn's 6380

l—Type 661 Sampling System. Includes: I— Type 661 Sampling Oscilloscope, sn 763; I— Type 452 Dual-Trace Sampling Unit, sn 248; I—Type 5TIA Timing Unit, sn 1158. Entire system in practically new condition. Contact: Richard Pasco, Litton Industries, Electronic Tube Division, 1035 Westminister Drive, Williamsport, Pennsylvania. Telephone: 717-326-3561.

1—Type 532-S-2 Oscilloscope, sn 7550 with a Type 53/54C Dual-Trace Plug-In Unit, sn 10827. Contact: Claude C. Ice, Cloister Computing, Inc., 210 North State Street, Ephrata, Pennsylvania. Telephone: 717-733-7377.

3—Type 515A Oscilloscopes; sn's 006436, 006356, and 006443. Contact: Harry Bifulco, Transistor Specialties, Inc., Plainview, New York. Telephone: 516-WE5-8700.

MISSING INSTRUMENTS

Following are the instruments reported to us in the past 60 days as lost or presumed stolen. With each instrument (or group of instruments), we list their legal owner. Should you have any information on the present whereabouts of these instruments, or information that might lead to their eventual recovery, please contact the individual or firm listed here as the owner. If you prefer, you may relay your information to any local Tektronix Field Office, Field Engineer, or Field Representative.

1—Type 531A Oscilloscope, sn 23634; 1—Type CA Dual-Trace Plug-In Unit, sn 62882; 1—Type C12 Camera, sn 7021. Missing and presumed stolen from the Vissionaire Corporation in Los Angeles, California. Contact: Mr. Schwartz, Sunbeam Lighting Company, 777 14 Place, Los Angeles, California.

1—Type C12 Camera, sn 6782 reported as missing on or about August 23, 1965. Contact: T. F. Brandt, General Electric, 6901 Elmwood Avenue, Philadelphia, Pennsylvania. Or, J. J. Donnan, Security Office, same address. Telephone: 215-SA4-1500, ext. 2233.

1—Type 310 Oscilloscope, sn 2549, and case removed from the car of J. Zamimiak at Rosewell Memorial Park in Buffalo, New York. Contact: Mr. Zamimiak, Industrial Service Representative, General Electric Company, X-Ray and 6381. These two instruments were modified at the factory.

Order through your local Tektronix Field Office, Field Engineer, Field Representative or Distributor. Specify Tektronix part number 040-0214-00. Price: \$14.40.

TYPE 515, TYPE 515A, AND TYPE RM15 OSCILLOSCOPE — SILICON RECTIFIERS

This modification replaces the sclenium rectifiers in the Type 515, Type 515A and Type RM15 Oscilloscopes with silicon rectifiers. The new rectifiers offer better reliability and longer life.

The installation consists of removing the original selenium rectifiers and installing a new silcon-rectifier bracket assembly and three additional resistors. The three resistors compensate for the lower voltage loss occasioned by the new rectifiers.

Order through your local Tektronix Field Office, Field Engineer, Representative, or Distributor. Specify for:

	Tektronix			
Туре	Serial Number	Part Number	Price	
RM15	101-1000	040-0205-00	\$15.60	
515	1001-4029	040-0205-00	15.60	
515A	101- 755	040-0208-00	15.60	

Department, 6466 Ridings Road, Syracuse, New York.

1—Type 321 Portable Oscilloscope, sn 1092. This instrument disappeared while in the possession of a Nuclear Data, Inc., field representative in New York City on July 20, 1965. It is presumed stolen. Contact: C. Donald Swanson, Nuclear Data, Inc., P. O. Box 451, Palatine, Illinois.

1—Type 310A Oscilloscope, sn 011501. This instrument disappeared on July 16, 1965, while under the care of Robert W. Lindner, Customer Engineer, Control Data Corporation, Corporate Marketing Division, 1945 Route 22, Union, New Jersey. Telephone: 201-687-4744.

1—Type 564 Storage Oscilloscope, sn 004518; 1—Type 3A74 Four-Trace Amplifier Unit, sn 2448; 1—Type 2B67 Time-Base Unit, sn 13509. These instruments are reported as missing or stolen from the San Francisco Medical Center. Contact: University of California, San Francisco Department.

1—Type 321 Portable Oscilloscope, sn 3576. This instrument was reported missing and presumed stolen by Sidney Pickles of Nevada Antenna Systems. The loss occurred about August 24, 1965. Contact: Sidney Pickles, Nevada Antenna Systems, Colusa County Airport, Colusa, California.

1—Type 561A Oscilloscope, sn 11115; 1—Type 2A60 Amplifier Unit, sn 1772; 1—Type 2A61 Amplifier Unit, sn 762; 1—Type 3B3 Time-Base Unit, sn 2213; 1—Type 3A1 Dual-Trace Amplifier Unit, sn 6165. The equipment, which was purchased in July 1964, was removed from the laboratory of John B. Hudson, Asst. Professor, Department of Materials Engineering, Rensselaer Polytechnic Institute, Troy, New York, about August 15, 1965. Contact: Mr. Hudson if you have information on these instruments.

1—Type 503 Oscilloscope, sn 2613, missing from radio station KVIL in Dallas, Texas. Contact: G. L. Vaughan, Chief Engineer, KVIL Radio Station, 4152 Mockingbird Lane, Dallas, Texas.

l—Type 111 Pulse Generator, sn 452, missing from the Tektronix, Inc., Palo Alto Field Office. Contact: Rose Ballesteros, Tektronix, Inc., 3944 Fabian Way, Palo Alto, California 94303. Telephone: 415-326-8500. Information can also be reported to any local Tektronix Field Office, Field Engineer, or Field Representative.

Service Scope

USEFUL INFORMATION FOR

USERS OF TEKTRONIX INSTRUMENTS

Tektronix, Inc. P.O. Box 500 Beaverton, Oregon, U.S.A. 97005

> Mr. Ed. Harding 5325 Colfax Ave., S. Minneapolis, Minn.

RETURN REQUESTED

BULK RATE U. S. POSTAGE PAID Beaverton, Oregon Permit No. 1

-