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THE PARALLEL LCR CIRCUIT 

FOREWORD 

In this technical assignment you will continue 

the study of the effects of resonance but with parallel LCR 

circuits. The mathematics and analytical processes will be 

no more difficult than in the study of series circuits. 

Many of the curves will appear similar to those obtained 

for series circuits -BUT THEY WILL BE OPPOSITE IN MEANING. 
For example, it was learned that at resonance a series LCR 

circuit offers minimum, often almost negligible, impedance 

which is purely resistive. Here you will learn that at 

resonance the impedance of a parallel LCR circuit also is 

purely resistive but has a very high value, often in the 

order of hundreds of thousands of ohms. 

Again some of the results of a mathematical cir- 

cuit analysis may be somewhat startling. For example, an 

r.f. voltage applied across a parallel resonant circuit 

consisting of L in one branch and C in the other, with very 

small resistive losses in each branch, may result in equal 

currents of many amperes in each branch and negligible 

current through the device which produces the applied 

voltage. 

This phenomenon of parallel resonance makes 

possible a filter circuit which will block the passage of 

signals at the one frequency of parallel resonance while 

passing with negligible attenuation signals of all other 

frequencies--just the opposite to the effects at series 

resonance. 

Parallel resonance is made use of in the design 

of transmitter plate tank circuits where high impedance to- 

gether with large tank current and minimum circuit I2R 

losses are desired. The applications of parallel resonant 

circuits are as numerous as those of series resonant cir- 

cuits, and as important. Learn the essential differences 

between the two types and you will then know how to apply 

each. 

E. H. Rietzke, 

President. 
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THE PARALLEL LCR CIRCUIT 

SCOPE OF ASSIGNMENr 

A preceding assignment on 
resistances in series and parallel 
brought out, in a general way, 
the differences between the opera- 
tion of series and parallel cir- 
cuits. Although the operation 
of an a-c circuit composed of in- 
ductance, capacity, and resistance 

differs considerably from that 
of a d -c circuit containing only 
resistance, many of the principal 
characteristics of the two are 
somewhat similar. 

Series circuits containing 
capacity, inductance, and resis- 
tance have been discussed rather 
thoroughly in the preceding as- 
signment. Parallel circuits con- 

taining capacity, inductance, and 

resistance will be analyzed in 

this assignment; and the solution 

of such circuits, explained. The 

various characteristics of paral- 

lel circuits (both resonant and 

non -resonant) will be described, 
and illustrated graphically. 

Although parallel circuit 
calculations, in general, will 
be found to be quite simple to 

perform using the math which has 

been taught up to this point, 
circuit analyses of this type can 

be facilitated to a great extent 
by the use of so- called - opera- 
tors and a system known as complex 

algebra. In view of this fact, 

the application of complex alge- 
bra to alternating- current cir- 
cuits (both series and parallel) 

will be explained in this assign- 
ment. 

PARAI.IF:I, COIIBINATIONS 

OF L, C, AND R 

METHODS OF COMPUTING EQUIVALENT 

RESISTANCE. -The two general methods 

of computing resistances in parallel 

have been given previously. One way 

of determining the total resistance 

of two resistors in parallel is by 

the use of the formula 

1 
g , or 

T = 1 + 1 

2 

R = 
Rill 2 

T R +R 
1 2 

The second method is to measure the 

current through each resistor (or 

calculate I from the applied voltage 

divided by the individual value of 

resistance); the total current will 

equal the sum of the two currents. 

I1 

12 = WRa 

TT r + 
i 

12 

R = WI 

Since the studenthas previously 

worked problems containing resist- 

ances in parallel, no further dis- 

cussion of that will be presented; 
however, parallel circuits contain- 

ing components other than just re- 

sistances, will now be described. 

PARALLEL RESONANCE.--Consider 

the condition existing in a parallel 

circuit consisting of a perfect ca- 

pacity in one branch and a perfect 

inductance in the other, (assuming 
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temporarily a condition of zero re- 

sistance), operated at the frequency 

at which XL ° Xc. The circuit is 

shown in Fig. 1. Assure that L and 
C are of such values that at this 

frequency both XL and Xc equal 10 

ohms. The applied voltage equals 
100 volts. The current through any 

XL = 10 OHMS IL = 10 AMPS 

1 IC = 10 AMPS 

X = 10 OHMS 
C 

100 VOLTS I = O 
Fig. 1.-- Parallel LC circuit. 

one branch of a parallel circuit is 

determined only by the applied volt- 
age and the impedance of that par- 
ticular branch; thus, in the in- 
ductive branch, IL 'E/XL 100 /10 
10 amperes. In the capacitive 
branch, Ic = E/Xc = 100/10 s 10 am- 

peres. Since the inductive branch 
contains, (theoretically), no re- 
sistance, the current through that 
branch lags the applied voltage by 
90 °. For a similar reason the cur- 
rent through the capacity branch 
leads the same applied voltage by 
90 °. This condition is shown in 
Fig. 2. With the two currents 
exactly equal and exactly opposite 
in direction of Plow, their vector 
sum is exactly equal to zero. 
If the condition of zero resistance 

could be obtained it would be pos- 
sible to construct a circuit in 

which the condition of ten amperes 
in each branch of the circuit and 

zero current in the external circuit 

could exist. In that case, the im- 

pedance of the parallel circuit oper- 

ated at the frequency at which XL = 

X, (resonant frequency), would equal 

the applied voltage divided by zero, 

or infinity. No energy is lost once 

the circuit is excited, since there 

is no resistance present. 

IL 

Fig. 2. Vector diagram of IL, Ic, 

and resultant I in circuit of Fig. 

1. 

In the study of inductance and 

capacity it was shown that it is 

impossible to construct a circuit 
having zero resistance losses. This 

means that the 90° Lead and 90° Lag 

are never quite realized. In either 

branch of the circuit the resistance 

R causes the lead or lag to be some 
angle less than 90° produced by X 
alone. The tangent of the angle 
equals X/R; if R is made as small as 

possible, the ratio of X to R may be 
very large and the angle will be 
correspondingly large. With a very 
low loss circuit the conditions 
existing are somewhat as shown by 
IA, Fig. 3. This assumes that the 
losses in the L and C branches are 
equal. It will be seen that now, 
although the current in the external 

circuit is small compared to the 
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current in each branch, it is NOT 

zero and the impedance therefore is 

not infinite. The introduction of a 

certain amount of resistance into 

I 
L 

E 

Fig. 3.- Vectors showing Ic, I, 
and resultant I in an LC circuit 

having some resistance. 

the parallel circuit operating at 

resonance DECREASES the parallel 

impedance of the circuit. 

If still more losses are intro- 

duced into each branch of the paral- 

lel circuit the condition becomes 

as shown by I, Fig. 3. The cur- 

rent angles of lead and lag are de- 

creased, and the total current I be- 

comes greater. If the current is 

greater, the impedance F,/I becomes 

smaller. It will be seen that at 

tie resonant frequency the result- 

ing current is IN PHASE WITH THE 

VOLTA(, the circuit therefore acts 

as a high value of resistance. 
The lower the losses in the circuit 

the HIGHER THIS EFFECTIVE RESISTANCE 

BECOMES. It should be noted that 

this effect is just the opposite to 

that of the series circuit operated 

at resonance. 

In the circuits described here 

the total impedance of the circuit 

is equal to the applied voltage 

divided by the total current, this 

current being the vector sum of the 

currents through the individual 

branches. 

Fig. 4(A) illustrates the con- 

(A) 

E 

(B) 

E 

Fig. 4. Vectors showing the cur- 

rent in a parallel circuit operated 

off resonance. 

ditions existing in a parallel cir- 
cuit when Xc is greater than XL. 
Under these conditions IL (the cur- 

rent through the inductive branch) 
is greater in value than is I (the 

current through the capacitive 
branch) . The resultant current (IT) 

lags the applied voltage; the cir- 
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cuit therefore acts as an induct- 

ance under the above circumstances. 

Note that if there were no re- 

sistance in either branch, Ic would 

be vertically upward, IL would be 

vertically downward, and their re- 

sultant Iz would also lie vertically 

downward. This means that the cir- 

cuit would look like a purely in- 

ductive reactance, whereas that 
shown in Fig. 4 has some resistive 

component present. 

In order for Xc to be greater 

than XL, the operating frequency of 

a parallel circuit must be lower 
than the resonant frequency. As the 

frequency is lowered (L and C remain- 

ing constant), XL decreases, whereas 

Xc increases. Thus, when a parallel 

circuit is operated below its reso- 

nant frequency, the circuit appears 

inductive. 

In Fig. 4(B) are shown the 
conditions for a parallel circuit in 

which XL is greater than Xc; IL is 
therefore less than I. Under such 

conditions, the circuit acts as a 
capacitor. 

When a parallel circuit is 

operated above its resonant fre- 
quency, the circuit appears capaci- 

tive, since as f increases, XL in- 

creases and Xc decreases, thus per- 
mitting a greater current to flow 
through C than through L. 

SUSCEPTANCE CURVES. -Probably 
the simplest method of illustrating 
the circuit characteristics is by 
means of a "Susceptance" curve. If 

the effect of resistance may be neg- 
lected, the susceptance curve demon- 
strates better than any other means 
the characteristics of the parallel 
circuit at resonance and at fre- 
quencies above and below resonance. 

Such a set of curves is shown 
in Fig. 5. In this figure BL and 
Bc are plotted in place of XL and 

LCR CIRCUIT 

X . Susceptance B is the reciprocal 

of the reactance X and has the same 

relation to X that conductance G has 

to R. Thus the B curve indicates 
the ability of a reactance branch of 

the parallel circuit to pass alter- 

nating current. 

If this curve is compared with 

the series circuit reactance curve 
shown in the previous assignment, it 

will be observed that the curves 
appear very similar. 

Indeed, it is merely necessary 
to replace the symbols of the series 

circuit reactance curves shown in 
Fig. 5 with admittance symbols to 

B' 

B' 

B 

CREASE 

RESONAyT 
FREQUENCY 

Fig. 5.- Susceptance curve. 

obtain the curves. Thus, change the 
symbol Xc to BL, XL to Bc, and X to 
B' to obtain Fig. 5. This means 
that the susceptance of an inductance 
has the form BL = 1 /2nfL which is 
mathematically similar to capacitive 
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reactance Xc 1 /27fC, and ca- 
pacitive susceptance Be has the form 

1/ (1 /2rrfC) . 27fC which is mathe- 
matically similar to inductive re- 

actance XL = 2nfL. Hence Bc is a 

straight line when plotted against 

frequency similar to XL, and BL is a 

curved line like X . 

Resonant frequency is indicated 

by the point where BL = Be. This 

point indicates zero susceptance or 

a zero ability to pass current 
through the parallel circuit. This 

would, if thought of in terms of 
impedance or resistance, indicate 
infinite impedance at that particu- 

lar frequency. Since BL and Be are 
equal at resonance, the circuit 
would be neither inductive nor ca- 
pacitive but would act rather as an 

infinite resistance. 

Curve B passing through this 
point is the algebraic sum, or the 

arithmetic difference, of BL and Be. 

To the left of the resonance point, 

(lower frequency) BL predominates 

and B is below the reference line. 
To the right, (higher frequency), 

Bc predominates and B is above the 

reference line. Curve B, extending 

into the region of BL or Be, clearly 

indicates at any frequency whether 

the parallel circuit is acting as an 

inductance or as a capacity. 

As the frequency is decreased 
below resonance the circuit is 

plainly an inductive circuit due to 

the preponderance of At At fre- 

quencies above resonance Be is pre- 

dominating and the circuit acts as a 

ca),.,c i ty . 

This set of curves will also 

demonstrate the manner in which the 
selectivity of the parallel circuit 

can be increased. Bc varies di- 
rectly as the value of capacity. 
Thus for a larger capacity the Be 
curve will rise more steeply. In a 

similar manner the variation in BL, 

for a given frequency variation, 
will be greater if the value of L is 

decreased. Since the selectivity of 

a parallel circuit is a function of 

the variation of BL and Be for a 

given frequency variation, it will 

be seen that by increasing the value 

of C and decreasing the value of L 

the selectivity of a parallel circuit 

will be increased. This is shown bz 

the dotted curves B`, BL , and Be 

in Fig. 5. 

COMPARISON OF CHARACTERISTICS 
OF SERIES AND PARALLEL CIRCUITS.- - 
A comparison with the characteristics 

of a series circuit will show that 
the parallel circuit characteristics 

are just the opposite to those of a 
series circuit: 

At resonance the parallel cir- 
cuit offers maximum impedance; the 

series circuit offers minimum im- 
pedance, 

At frequencies lower than re- 
sonance the parallel circuit acts as 

an inductance; the series circuit 
acts as a capacity. 

At frequencies higher than the 
resonant frequency the parallel cir- 
cuit acts as a capacity; the series 
circuit acts as an inductance. 

At resonance both parallel and 
series circuits act as resistances: 
the series circuit as a very low re- 
sistance, the parallel circuit as a 
very high resistance. 

At resonance adding resistance 
to the series circuit increases the 
resulting resistance, while at re- 
sonance the effective resistance of 
a parallel circuit is decreased if a 
limited amount of resistance is adri- 

ed to each or either branch. 

Fig. 6 shows the relative 
values of current and impedance at 
resonance and at frequencies above 
and below resonance. A comparison 
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of these curves with the equivalent 

curves for the series circuit will 

show the difference between the 

characteristics of the two. 

These curves may be sharpened 

by decreasing the losses in the cir- 

= R 

Z = XL 
= Xc 

INCREASING 
FR 

Fig. 6.- Resonance curves. 

cuit or by decreasing the L/C ratio, 

and broadened by increasing the 
losses or by increasing L and de- 
creasing C. As shown in Fig. 5, 

with normal values of resistance 
the selectivity of a parallel cir- 
cuit is mostly a function of the 
ratio of WC. The lower this ratio 

the greater the degree of selectivity 

of the circuit. This is just the 

opposite to the condition in a series 

circuit. 

If the circuit contains NO re- 

sistance the external current will 

be zero and Z will be infinite at 

resonance. The addition of a limit- 

ed amount of resistance will in- 

crease the value of the external 
current and decrease the value of Z 
at resonance. 

APPLICATION OF COMPI C 

ALGEBRA TO A.C. CIRCUITS 

Up to this point, a.c. circuits 

have been analyzed on the basis of 

currents and voltages; however, as 

more complex a.c. circuits are en- 

countered, it becomes cumbersome to 

utilize the methods of analysis on 

which the solutions of previous 

simpler problems were based. In 

view of that fact, a different (and 

less cumbersome) analytical view- 

point will now be explained here. 

COMPLEX NUMBERS. -Although the 
following discussion may appear to 

be an apparent digression from the 

original trend of thought, it will 

be found to tie in with the a-c an- 

alysis. Recall the effect of multi- 

plying a vector by -1; (See Fig. 7) . 

In this example, assume that vector 

gCJlilßC11111! pW 
MEN G 

i ̀  t _1- 
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1111111--- 
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; 
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i 

Fig. 7.- Vector showing effect of 
multiplying a number by -1. 

AB represents a current of 10 am- 
peres; it is drawn as shown by the 
solid line in the figure. Now, if 
10 is multipled by -1, the product, 
of course, is -10; this value is 
shown by the dotted line in the dia- 
g-am. It is evident that the effect 

1 
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of multiplying a vector by -1, is to 

reverse its direction; i.e., the 
vector is rotated 180° from its 
original position. 

However, in a. c. work there is 
a need to rotate a vector through 
90° instead of a full 180 °. For 
example, if AB in Fig. 7 represents 
a current in phase with a voltage, 
then a factor or operator which 
would rotate AB counterclockwise 
through 90° would cause it to be- 

come a current 90° leading the volt- 
age; and another operator that ro- 

tated the current 90° clockwise 
would produce a current that lagged 

the voltage by 90 °. 

The same convenience would be 

obtained in changing a resistive 
magnitude into an inductive or ca- 

pacitive reactance; in short, it 

would be very desirable to have a 

mathematical symbol or tool that 
could produce 90° rotation in vec- 

tors instead of 180° rotations. 
Fortunately, such a tool or 

operator is available. It has been 

found that the square root of -1, 

-1, (sometimes known as an imagi- 

nary number), produces HALF the ro- 

tation of -1 itself; i.e., 90° in- 

stead of 180° rotation. By agree- 

ment or convention, -1 is assumed 

to rotate a vector 90° counter- 
clockwise; and - -1 then rotates 

it 90° in the opposite direction; 

that is, clockwise. 

In mathematics the cumbersome 

symbol 71 is replaced by the letter 
i. However, in electrical calcula- 

tions this symbol is used to denote 

electrical current, hence it has be- 

come customary to use the letter j 

to represent -1, and the symbol for 

rotation is known as the j- operator. 

Thus +j rotates a quantity 90° 

counterclockwise, and -j rotates it 

90° clockwise. For example, in 

Fig. 8 is shown a vector of length 

ALGEBRA TO A.C. CIRCUITS 7 

5. It is drawn horizontal and to 

the right. If it be multiplied by 

j; thus, j5, it becomes a vector ro- 

tated from its former position by 

90° counterclockwise and now points 

vertically upward as shown in the 

js 

90 
90 5 

Fig. 8.--Rotation of a vector quan- 

tity through 90° by j and -j. 

figure. On the other hand, if it be 

multiplied by -j; thus -j5, it be- 

comes a vector rotated 90° clock- 

wise from its former position, and 

now points vertically downward. 

The operator can therefore be 

used to denote leading and lagging 

currents and voltages. It can also 

be used to represent inductive and 

capacitive REACTANCES. For example, 

suppose one has a resistance of 5 

ohms, an inductive reactance of 5 

ohms, and a capacitive reactance of 

5 ohms. Then these can be written 

as 5 ohms, +j5 ohms, and -j5 ohms, 

respectively. The absence of the 
symbol j in front of a quantity means 

that the quantity is resistive; a +j 

in front of it means that the quan- 
tity represents an inductive react- 

ance; and a -j in front of it means 

that the quantity represents a ca- 

pacitive reactance. It will be seen 

later that a +j reactance produces a 

-j (lagging) current; and a -j react- 

ance produces a +j (leading) current. 

The question now arises, "How 

can we represent a resistance and 
reactance in series ?" The answer is 

to write each us if it were 

by itself, and then connect the two 
quantities with a plus sign. For 
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8 THE PARALLEL 

example, suppose we have a resistance 

and inductance in series. The two 

can be written individually as R 

and jXL; if they are in series, they 

are written as R + jXL. On the 

other hand, if we have a capacitive 

reactance, it is written as -jXL, 

and the two in series are written as 

R+ ( -jX) = R - jXL. (Note the 

-j when a capacitive reactance is 

to be denoted.) 

The cdmbination of a real and 

a j- number (also called imaginary 

number), is known as a complex 
number. A system of algebra has 

been developed to enable calcula- 

tions to be made with complex num- 

bers; the system is known as com- 

plex algebra. Its application and 

use in a.c. circuit calculations 

will now be given. 

The real number is plotted on 

the horizontal axis, whereas the j 

number is plotted on the vertical 

axis. As an illustration, assume 

that in a series R -L circuit, there 

is a resistive drop of 20 volts,and 

an inductive drop of 10 volts. The 

vector expression for this voltage 

is E = 20 + j10 volts. (See Fig. 

9) . 

Had the reactive drop been ca- 

pacitive rather than inductive, 

only the sign of the j term would 

differ; i.e., E = 20 - j10 volts. 

The line voltage is the vector sum 

of these voltages. 

V(20)2 + (10)2 = 

400 4 100 = 

500 = 22.4 volts 

(length of vector in Fig. 9 = 22.4) 

In the first case, the line current 

lags the line voltage; in the sec - 

ond, I leads E. 

LCR CIRCUIT 

COMPLEX ALGEBRA.--If it is de- 
sired to add two complex numbers, 

the procedure is as follows: Add 

the real parts of each vector with 

due regard to the sign of each term, 

and write the sum as the real part 
of the answer; then, add the j parts 

of each vector with due regard to 

the sign of each term, and write 

the sum as the j part of the answer. 

Fbr example, when two voltages 30 

+ j12 and 20 + j14 are acting in 

series in a circuit and hence are 

additive, the result is (30 + 20) + 

j (12 + 14) = 50 + j26 volts. 

A complex number can be sub- 

tracted from another by subtracting 

the real parts and the j parts sepa- 

rately; the algebraic rules for sub- 

traction are followed. 

The multiplication of complex 

r NN 
. 11=11:1:::::::::11:=1'fiii7CC: 
11 COC1CCCiC7 
'ii .:Li::::° ..: :C:1111111 

E 20+, j/0 

E-20 -j10 

Fig. 9.-- Method of locating com- 
plex numbers on graph paper. 

numbers involves the same funda- 
mental algebraic ideas as multiplying 
any polynomial expressions; i.e., 
the real and imaginary parts are 
multiplied as separate quantities, 
just like x and y or a and b. 
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For example, multiply 2 + j3 by 

4 - j2. 

2+ j3 
4- i2 
8+ j12 
-14- 126 

8 + j8 - j26 

Note that 4 times j3 = j12, etc. 

Since j2 = (V-7772 = -1, from 

the very meaning of square and square 

root, the final answer is : 

8+ j8- (-6) =8+ j8+6=14+ j8 

Thus, the product of two com- 
plex quantities is a complex quan- 

tity, as is also the quotient, 
square root, etc. 

Now, consider a simple a.c. 
application of multiplication in 
complex algebra. Suppose a current 

of 5 amperes flows through a re- 
sistance of 1,000 ohms in series 
with an inductance of 150 Uhenries, 

and that the frequency of the cur- 
rent is 1,000 kc (1,000,000 c.p.s. 

or 1 mc). This is illustrated in 
Fig. 10. It is desired to know the 

SAmP. /000.2 /SOpH 
6Ò0000` 

E > 

Fig. 10.- Calculation of the volt- 
age drop across an R -L circuit 

through which a given current is 

passed. 

voltage drop E. 

By Ohm's law for a.c., 

E = IZ 

Here I = 5 amperes, and Z = R + jXL. 

Flarther 

X = 2nfL 2n x 106 x 150 x 10'6 
L 

Hence 

and 

= 942 ohms. 

L = 1,000 + j942 

E _ (5) (1,000 4 j942) 

_ (5,000 + j4,710) 

by merely multiplying through by 5. 

In Fig. 11 is given the inter- 

pretation of the answer. The cur- 

rent is taken as the reference axis. 

The 5,000 -volt component of E, being 

a real number, is in phase with the 

current, as shown (although the 

scales used for E and I may be en- 

tirely different). The j4,710 -volt 

component is then 90° leading the 
5.000 -volt component (leading on 
account of the +j), and is accord- 

ingly drawn vertically upward. The 

I = Sam,o. 

47/O 

5000 

Fig. 11.-- Vector relations for cir- 

cuit shown in Fig. 10. 

resultant or total value of E (that 

across R and L) is the hypotenuse of 

the right triangle formed, and there- 
fore has the value 
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E a x/(5,000)2 + (4,710)2 
61870 volts 

This voltage clearly leads the cur- 

rent; from the figure it is evident 

that 

or 

tan e = 4,710/5,000 = 0 . 942 0 

8 = 430 17' leading 

Note how simply the result is 

obtained! However, of even greater 

utility is the use of j- operators in 

a.c. problems involving division. 
For example, suppose E and Z are 

given, then 

I = E/Z 

and division is involved in solving 

for I. 

In order to solve such prob- 

lems, it will be of interest to 

work out a sample problem. Suppose 

a potential of 10 volts is applied 

to an impedance of 15 + J22, How 

much current flows? First note that 

the impedance represents a 15 ohm 

resistance in series with an in- 

ductive reactance of 22 ohms. (It 

is inductive because +j is involved.) 

The current is simply 

I = 10/a5 + J22) 

This, however, dues not directly in- 

dicate the phase of the current nor, 

its magnitude, because the denomi- 
nator is complex. If only the 
numerator were complex, and the 
denominator were real, the express- 

ion could readily be evaluated, as 

will be shown later. 

Hence the first task is to 

attempt to "rationalize" the de- 

nominator, as it is called; i.e., to 

convert the denominator into a real 

number, even though at the same time 

the numerator may become complex. 

This, oddly enough, is readily 

accomplished by multiplying the de- 

nominator (and also the numerator, 

to balance) by the conjugate of the 

denoninator. The conjugate is an 

erpression whose imaginary part has 

the opposite sign to the given er- 

press i on. 

Hence, in the above example, 

multiply numerator and denominator 

by 15 - j22. Thus 

I = 
l15+ j22) 15- j22) 

10 15 _ 122 

The numerator is readily evaluated 
by simply multiplying through by 10: 

(10 x 15) - (J22 x 10) = (150 - 

J220) 

The denominator is multipled out as 

follows: 

15 + J22 

15 - 122 

225 - j330 

+ j330 - j2484 

225 + JO + 484 

or 709. a REAL NUMBER. Note that j2 
= V( -1) 2 = -1, by definition, and 
-J2 = -( -1) _ +1, so that -J2484 is 
simply + 484. 

Indeed, a careful inspection of 
the multiplication process shows that 
the product is essentially 

(15)2 + (22) 2 709 

This is a general rule: the product 
of a complex number A + jB by its 
conjugate A -jB is simply the sum of 
the squares of the real and imaginary 
parts of the number, or A2 + B2, a 
REAL NUMBER. 
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Hence, whenever a complex ex- 

pression is encountered in the de- 

nominator, it can be converted into 

a real number by simply multiplying 

numerator and denominator by the 

conjugate of the complex expression. 

We have therefore finally ob- 

tained that 

150 - 1220 _ 150 Igg 0 

709 709 709 

= .212 - j.31 

Note that once the denominator is a 

real number, the numerator may be 

split into a real and imaginary part, 

and that finally a single complex 

Hiner is obtained: (.212 - j.31). 

This expression is readily in- 

terpreted in vector form. (See Fig. 

12.) The current is shown to con- 

sist of two components: one of mag- 

Fig. 12.--Vector diagram for cur- 

rent produced by a given voltage 

across a known impedance. 

nitude .212 amperes in phase with 

the voltage, and another of magni- 

tude 0.31 ampere and lagging the 

voltage by 90° (owing to -j). 

The actual value of the current 

is clearly 

I = (.212)2 +(.31)2 

= .375 amperes 

and the angle is 

6 tan 
-131 a tan-1 1.461 
.212 

a 55.6° 

where the minus sign, in conjunction 

with Fig. 12 indicates that the 

angle is one of lag. 

PARALLEL IMPEDANCES. --So far it 

has been shown how to write the im- 

pedance of circuit elements in 

series; how to evaluate the voltage 

drop across a given impedance if the 

current through it is known; and 

finally how to evaluate the current 

flow through a given impedance when 

the voltage drop across it is known. 

It will now be of interest to 

see how the equivalent or resultant 

impedance of two impedances in paral- 

lel can be evaluated by means of 

j- operators. The circuit is shown 

in Fig. 13; it involves a capacitor 

C = 200 1.41F 

F = 1000 kc/s 

L =/OOitH 

R= 4f) 

Fig. 13.--Parallel circuit having L 

and R in one branch, and C in the 

other. 

in one branch, and an inductance and 

resistance in series in the other 

branch. 

The formula used to compute the 

total impedance is similar to that 

used for resistances in parallel; 

Z Z 
Z - 1 9 

Z 
1 

+ Z2 
(5) 
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where Z1 and Za are the individual 

branch impedances. Using the sys- 

tem of complex notation as explained 

earlier in this assignment, the im- 

pedance of the inductive branch can 

be written as: 

Zl = R + jXL 

Since the capacitive branch is 

considered to have no resistance, 

the impedance of this branch is 

simply Z2 = -j %c. The total im- 
pedance of the circuit will now be: 

Z 
Z Z 

2 ((R + jXL) ( -jXc) 

Z1 + Z2 (R + jXL) + ( -j(c) 

(R + jXL) ( -j3(c) 

R + j (XL - Xc) 

(factoring out the j- operator in 
the denominator). Multiplying Z1 by 
Zm in the numerator, there is ob- 
tained: 

Therefore 

R + jXL 
-j Xc 

-jRxC - j a XcXL 

= XcXL - jRRc 

Z - 
XLXc 

- 
jRXc 

R + j(XL - Xc) 
(6) 

The expression as it stands in- 

volves a complex denominator as well 
as a complex numerator. As has been 
indicated previously it is necessary 
to clear the denominator of j quan- 
tities before a physical interpre- 
tation can be given to the expres- 
sion. The method is exactly the 
same as described previously: multi- 

LCR CIRCUIT 

ply n aerator and denominator by the 

conjugate of the denominator. 

In this way the expression in 

Eq. (6) can be reduced to an ordi- 

nary complex number. However, it 

will be well to proceed with numeri- 

cal values for the various quanti- 
ties. Thus from Fig. 13 it is seen 

that 

X = 2nfL = 6.28 x 1 X 106 x 100 X 

10 -6 = 628 ohms 

and 

Xc = 1/2mf'C = 1/(6.28 X 1 X 106 

X 2.00 x 10-1°)= 796 ohms 

Now, substitute these numerical val- 

ues in Eq. (6) : 

(628) (796) - j (4 X 796) 
Z - _ 

4 + j (628 - 796) 

500,000 - j3,184 

4 -1168 

Now multiply numerator and denomi- 
nator by the conjugate of the de- 
nominator; 

(500, 000 - j3,184) (4 + j 168) 

(4 - j168) (4 + j 168) 

(500, 000 - j 3,184) (4 + j 168) 

28,240 

To simplify the numbers, divide nu- 
merator (either factor) and the de- 
nominator by 10,000, and obtain 

(50 - j.318) (4 + j168) 

2.82 
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Now multiply out the numerator: 

50 - j .318 

4 + j 168 

200 - j 1. 272 

+ j 8, 400 - j253. 4 

200 + j 8398.7 + 53.4 

= 253. 4 + j 8398.7 

Hence 

253. 4 +j 8398. 7 
Z = - 89. 9+ j 2, 978 

2. 82 

This means that the two imped- 

ance arms correspond to a single im- 

pedance consisting of a resistance 

of 89.9 ohms IN SERIES WITH AN IN- 

DUCTANCE WHOSE REACTANCE IS 2,978 

OHMS. This is illustrated in Fig. 

14. The original circuit is shown 

is eQuiva/ent to 

Fig. 14. -The left -hand circuit is 

equivalent to the right -hand circuit 

at 1,000 kc. 

at the left; it is equivalent to the 

one at the right. However, the 

equivalence holds only at 1,000 kc, 

at some other frequency a different 

value of R and L, or even R and C in 

the right -hand circuit will be equiv- 

alent to the left -hand circuit. 

This means that at each fre- 

quency under consideration, a sep- 

arate calculation similar to the one 

given, must be made to obtain the 

equivalent impedance. Nevertheless, 

the method shown, using complex al- 

gebra, is a powerful tool for calcu- 

lating the a -c impedance, current, 

etc. , at any given frequency. 

The next problem will be to 

calculate the same sort of parallel 

circuit as shown in Fig. 13, except 

the C value will be changed to have 

a capacitive reactance equal to the 

inductive reactance or 628 ohms. 

Let R remain a value of 4 ohms, and 

Q will be 628/4 = 157 which is a 

fairly high value. It has been in- 

dicated that parallel resonance is 

obtained when the impedance looking 

into the circuit is purely resistive 

in nature. Now it will be deter- 

mined if our example problem is a 

condition of parallel resonance. 

Substitute values in Eq. (6) : 

(628) 2 - j (4 X 628) 
Z 

4 + j (628 - 628) 

6282 - j 2512 
6281 

2512 
- - J 

4 + j0 4 4 

= 98,600 - j 628 ohms 

(4 + j0 is the same as 4, and j0 is 

drooned entirely) 

Note carefully that although we have 

a reactive value of -j628 ohms the 

circuit is still for all practical 

purposes resonant. Tan e = 628/98600 

= 0.00637 and e = 22'. A vector 

drawing would reveal the reactive 

component only if plotted on a very 

large scale, since the resistive 

component is 157 times longer than 

the reactive component. Presently 

it will be shown that a very slight 

change of XL or Xc will remove even 

this small reactive value of Z. 

It should be of interest to 

observe the effect of using a simi- 

lar circuit with a lower value of Q. 

Let R = 62.80 so that Q = 10 for 
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X = X = 628 ohms. 
L e 

(628) 2 -j (62.8 X 628) 

62.8 + j (628 - 628) 
Z - 

(628) 2 (62.8 X 628) 
-j 

62.8 62.8 

= 6280 -j 628 ohms 

In this case tan e = 628/6280 = . 10 

and e = 5°42'. Here although R /Xc 

has a ratio of 10 to 1, or 1/15.7 
of its previous value, the cir- 
cuit from a practical viewpoint is 
still essentially at parallel reso- 
nance. 

The series resistance 62.8f1 can 

be transformed to a value which can 
be considered as in parallel with L 

and C as follows: 

Rsh 

2 (628) 2 

RS 62. 8 
- 6280( 

(7) 

Similarly for the previous example: 

(628) 2 

4 Rs h 
= 98, 600.8 

For circuit applications such as 
transmitter tanks with a Q of 10 and 

also for high Q circuits of 150 this 
same approach will be found to give 
the resistive component of the im- 

pedance of the tank and is therefore 
a very useful relation in parallel 
resonant circuits. This relation 
means that at the resonant frequency 
a low resistance in series with L is 
stepped up to a high resistance 
across the terminals of L and C, so 
that the parallel resonant circuit 
acts as an impedance transforming 
device over a narrow range of fre- 
quencies centered on the resonant 
value. Its action is therefore very 
similar to that of a transformer, 

except that the latter acts over a 

greater (and usually lower) band of 
frequencies. 

The impedance transforming 
property is illustrated in Fig. 15, 

is evil/Yu/en/ 
a/ resonance lo 

Rsh 

a 

-----, 

Fig. 15.- Step -up effect of a paral- 
lel- resonant circuit on a resistance. 

where R 
s 

is in series with L and the 
equivalent shunt resistance Rsh is 
in parallel with L and C across ter- 
minals a -a. Eq. (7) can be written 
in another form as 

L 

R` h CR 
(8) 

This is derived from the general 
formula for Z as given by Eq. (5), 
and applies to parallel L -C -R cir- 
cuits in the vicinity of resonance. 
It makes it possible to bypass the 
more involved Eqs. (5) or (6), which 

are used for any parallel circuit 
whether resonant or not. 

Eqs. (7) and (8) can be easily 
transformed by the use of Q =aL /R to 
arrive at the following expression: 

R8 = (9) 

From this expression and by inspec- 
tion of the results in the two ex- 
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amples of Z in parallel circuits 

just shown, it can be seen that the 

impedance of a parallel circuit for 

a given inductance and frequency is 

entirely a function of A. 

Equation (6) can be solved for 

a condition of no reactive component 

in Z by letting 

XLXC(XL - X,) = -R(X0R) 

Solving for ?Cc, 

or 

g 2+R2 
X - 

L 

` X 
L 

L 

C= 
R2 + XL2 

(10) 

By. careful computation to many sig- 

nificant figures these equations 

(10) and (11) can be shown to give 

a purely resistive answer in (6) 

where X and XL are not exactly 

equal. If XL = 628 and R = 4 then 

(628)2 + 16 
X = - 628.02547 

628 

If R is made 62.8n then for XL =6280 

it is found that 

X = 634. 28.Q 

The frequency for resonance in 

a parallel circuit can be defined as 

that producing unity power factor 

(a purely resistive impedance). A 

formula can be developed from Eq. 

(5): 

f 
1 CR2 

r 2n LC 1 L 

(12) 

This further demonstrates that R, as 

well as L and C, has an influence on 

the resonant frequency. 

Another way of seeing the ef- 

fect of R is to draw a vector dia- 

gram of the currents in a parallel 

circuit (Fig. 16). If I, is shown 

leading E by 90° and IL lagging by 

A °, then I, must equal IL sin a in 

magnitude for the reactive components 

to cancel and It to be in phase with 

E, i.e., unity power factor. This 

will also give Z = E/I = R, a purely 

resistive impedance value. 

PARALLEL CIRCUITS WITH R IN 

BOTH L AND C BRANCHES. - Consider the 
special case Fig. 17(A) where the re- 

k\IC 

---- ILS/n61 

Fig. 16.--Vector diagram of the cur- 

rent in a parallel LCR circuit. 

sistance is in both branches of the 

parallel circuit. If XL = X, and R1 

= R2, then it is apparent that Z1 

= Z2 and IL = IC so that the input 

impedance will be purely resistive 

(It is in phase with E). It will be 

equal to I cos a plus IL cos e, 

since these components are both in 

phase with each other and with E. 
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See Fig. 17(B). 
The general expression for the 

input impedance of Fig. 17(A) was 
given by Eq. (5) : 

Z - 
Z1 

Z2 

Z1 + Z2 

Substituting for Z1 and Z2 there is 
obtained 

Z - 

1 
(R1 + jaL) (R2 + J ) 

1 
R1 +R2 + jaL+-- ) jar 

13) 

An example of a solution of 
this type of problem will now be 
shown. Let R1 = 5S), R2 = 3S), 3aL 

1 = 5000, 1 /jor = -j 300, find Z. 

(5 + j500) (3 - j300) 
Z = 

5+ 3 +j500 - j300 

15 + j 1500 - j 1500 - j 2150, 000 

8 + j200 

150,015 

8 +j200 

Rationalizing 
150,015 (8 - j 200) 

Z - 
(8 + j200)(8 -j0) 

1, 200, 120 - j 30, 003, 000 

64+40,000 

1, 200, 120 - j 30, 003, 000 
- 30 - j750 

40,064 

Magnitude of the impedance is 

IZI = 1/302 + 7502 = «900 + 562500 

= 17563400 = 7515) 

It can be seen from this ex- 
ample that any parallel circuit can 
be solved by application of Eq. (5). 
As mentioned previously, for the 
special case of R1 = R2 and XL = Xe, 

the value of Z will be a pure resis- 
tance. 

o 

(A) 

Fig. 17.-- Parallel circuit with R in 

both L and C branches. 

SOLUTION OF PARALLEL CIRCUITS 
BY ADMITTANCE METHOD.- Where three 
or more parallel branch circuits 
(see Fig. 18) are to be solved for 
the total parallel impedance, the 
solution can be obtained by using 
Eq. (5) in steps: 

then 

Z - Z1 Z2 
A + Z1 ZZ 

Z ZA Z3 

=ZA+Z3 

or the circuit can be solved by the 
general formula: (14) 

(Zl) (Z2)(Z3) 

ZZ + ZZ + ZZ 
ZT 
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which is derived from the admittance 
form 

1 1 1 1 

ZT Z1 Z2 Z3 
(15) 

as has been shown for resistances in 
'Ohm' s and Kirchhoff' s Laws' . 

If Z1, Z2 and Z3 are complex im- 
pedances containing both resistive 
and reactive elements, the individual 
elements in Eq. (15) can be solved 

o 

1 1 

Since Y = - or 
Z1 2 + j30 

1 2 -j30 
then Y1 = 

2 +j30 2- j30 4 +900 

2 30 
= - -j - = .00221 - j.0332 

904 904 

(notice the admittance Y has an 
opposite sign for the reactive com- 
ponent since it is a reciprocal of 
the impedance) 

Y2 = 
1 

3- 
3+ j 40 3 + j 40 

j 40 (3 + j 40 ) 1609 

z2 z3 
= .001864 + j.02484 

1 4 - 

' 
' 20 4 - 

' 
20 

' 
zA 

Y3 4+j20 4- j20 C 416 

Fig. 18. -Three branches of imped- 

ances connected in parallel. 

separately, and added together to 
get the total admittance YT, then 
Z7 = 1 /Y1. As an example see Fig. 
19, which will now be solved as out- 
lined above. 

+120 

Fig. 19.--Three branches of complex 

impedances connected in parallel. 

= .00962 - j.0481 

YT = .00221 - j.0332 

.001864 + j 02484 

.00962 - j.0481 
.013694 - j.05646 

ZT can then be found by taking the 
reciprocal of YT: 

1 
ZT 

.013694 - j.05646 

x 
013694 + j.05646 
013694 + j.05646 

. 013694 +j. 05646 

1.875 x 10-4 + 31.877 x 10-4 

136. 94 x 10-4 564. 6 x 10-4 
_ + 

33.752 x 10-4 33.752 x 10-4 

= 4.06 + j 16.72 

APPLICATION OF PARALLEL RESON- 

ANCE. -An interesting application of 
parallel resonance to receiver cir- 



18 THE PARALLEL LCR CIRCUIT 

cuits is as a plate load resistance. 

This is illustrated in Fig. 20. 

Capacitor C is made up in part of a 

physical capacitor. The latter may 

Fig. 20. -Application of parallel 
resonance to voltage amplifier stage. 

be variable if tuning over a range 

is desired. The coil has an induc- 

tance L and a resistance R. This 

type of circuit will be found in 

some f.m. and television receivers, 

particularly those that are fixed 

tuned to certain channels, and em- 

ploy a push- button or channel- selec- 

tor switch. 

The object of this circuit is 

to build up as high an impedance at 

resonance as possible, and yet not 

make the circuit tune too sharply, 

or it will not amplify uniformly 
over the desired band width. 

The latter factor depends upon 

the Q of the circuit: the higher 
this is, the narrower the band width. 

The circuit Q or Qc, can be express- 

ed as 

= aCRs 
h (16) 

(in terms of C and the apparent 
shunting resistance Rah. If the 

capacitor has no appreciable losses, 

then the apparent shunting resist- 

ance Rsh is, by Eq. (8), 

Rs = L/CR (8) 

Substitute this value of Rsh in Eq. 

(16) and obtain 
( 17) 

Qc = aCRs = aC ( L/ CR) = R 

But aL /R is the Q of the coil; hence 

it is seen that the circuit Q of a 

parallel- resonant circuit is identi- 

cal with its coil Q if there are no 

other losses in the circuit. If a 

high Q is desired, as in narrow -band 

a.m. broadcast practice, coils of 

low (a. c. ). resistance are required 
to yield high coil and hence high 
circuit Q's. 

At ultra -high frequencies there 

will be losses produced by the fol- 

lowing tube owing to transit -time 
and cathode -lead inductance. These 

input losses of the following tube 

may be represented by a shunt resis- 

tance R1 across the parallel resonant 

circuit feeding the tube. 

The circuit Q will now be lower 
than that produced by the coil 
itself. However, it can very read- 

ily be evaluated. Thus suppose, as 

in Fig. 21, tube I feeds tube II via 

the parallel- resonant circuit com- 
posed of capacitor C and the coil 

Fig. 21. -Parallel- resonant coupling 
circuit between tubes I and II. The 

input resistance of tube II is R1; 
the equivalent shunt resistance of 

the coil resistance R is Rs h 
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whose inductance is L and resistance 

is R. Note that C not only can in- 

clude the output capacitance of tube 

I, but also the input capacitance of 

tube II. 

The latter tube presents in 
addition a resistance R1 to the par- 

allel- resonant circuit, even though 

the grid may be adequately biased 

negative. This is a property of 
u. h. f. operation, and will be dis- 

cussed in a later assignment. 
The effect of coil resistance 

R is to present an equivalent resis- 

tance Rs across the tuned circuit, in 

accordance with Eq. (8). From Fig. 

21 it is clear that Rsh is in paral- 

lel with R1, so that the total net 

resistance across this circuit is 

R1 Rs 
T + 

R1 R h 

(18) 

where RT is lower than Ri or Rsh. 
It therefore follows from Eq. 

(8) that the circuit Q is lower than 

before: 

Q = OCR, (19) 

instead of coCRsh, so that the band 

width will be broadened, and the 

circuit gain reduced. Indeed, at 

sufficiently high frequencies R1 be- 

comes so low that the circuit gain 

is reduced to a value below unity. 
When this occurs, the tube no longer 

amplifies, but instead introduces a 

loss in the system. 

It is at such frequencies that 

new and special tubes, such as the 

Klystron, enter the picture, and new 

and special circuits are required. 

With the releasing of the higher 
band of television frequencies, be- 

tween 400 and 800 mc, we can expect 

even the miniature negative -grid 

tubes to show reduced gain, and if 

frequencies above 2,000 mc or so are 

employed, perhaps the more special 

klystron and similar tubes will have 

to be used. 

CONCLUSIONS 

This concludes the assignment 

on parallel LCR circuits. The meth- 

ods of computing the total resist- 

ance of resistors in parallel were 

shown first. Then the condition of 

parallel resonance was explained. 

It was learned that a parallel cir- 

cuit has characteristics which are 

exactly opposite to those of a ser- 

ies circuit. The characteristics of 

a parallel circuit may be summarized 

as follows: 

(1) at resonance, the parallel 

circuit offers maximum impedance to 

the flow of current; 

(2) at frequencies above reson- 

ance, the parallel circuit acts as 

a capacity; 

(3) at frequencies below reso- 

nance, the parallel circuit acts as 

an inductance. 

Parallel- resonant circuits pre- 

sent a very high resistive impedance 

at resonance if the components are 

of low loss, and are therefore well 

suited to provide a plate -coupling 

impedance in an r. f. amplifier stage, 

as well as to act as a series trap 
circuit to block the flow of a cur- 

rent at the resonant frequency. 

The use of the j- operator, 

and of complex algebra to solve a -c 

circuit problems, has enormously 
facilitated the analysis of such 
problems. The basic ideas and meth- 

ods have been presented here; fur- 

ther examples and applications will 

appear in subsequent assignments. 
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EXERCISES 

1. Given: (2 +J5) and (2-Jb); (4 * JO) and (3 - j0); (3 + jil 

and (5 + j4). 

(A) Add each pair of given complex numbers. 

(B) Subtract the second value from the first value of each 

pair of complex numbers. 

2. Given: (3 + jl) and (3 - jl); (2 + jl) and ( -2 + jl); 
(4 + j10) and (2 + j0). 

(A) Multiply each pair of complex numbers. 

(B) Divide the first complex number of each pair by the 
second complex number of the same pair. 

3. 

L 

ioqah 

80010 
E=/0001/ 

The plate tank circuit of 
a transmitter consists of 
a 100 µh inductance and a 

300 µµf capacitance. The 
effective resistance of 
the inductive leg is 50 

ohms and that of the ca- 
pacitive leg is 10 ohms. 
Find the impedance of the 
tank at a frequency of 800 
KC, if the voltage across 
the tank is 1000 V. Use 
the complex algebra method 
(Eq. 13). 

4. In reference to Prob. 3, find the approximate resonant im- 

pedance by use of Equation 8. Note R = 6052 (series value). 

5. What is the impedance of the circuit given in Problem 3 as 

determined by the admittance method? 
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ANSWERS EXERCISE PROBLEMS 

1. (A) 4, 7, 8 + j5 

(B) j 10; 1, -2 -j 3 

2. ( A) 10, - 5, 8 + j 20 

4 + j 3 -3 -j 4 
(B) 

5 
, 

5 
, 2 + j5 

3. i1932 ohms 

4. 5556 ohms 

5. 1939 ohms 

O = 64° 51' 1 ag 

O = 64° 51' lag 



THE PARALLEL LCR CIRCUIT 

EXAMINATION 

1. A low- ohmage resistor of appreciable current -carrying ca- 

pacity is required in the deflection circuit of a television 

receiver. It is made up of a 50 -ohm, 100 -ohm, and 300 -ohm 

resistor, all in parallel. Find the total resistance of the 

combination by two methods. 
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EXAMINATION, Page 2. 

2. In a shunt -peaking type of video amplifier the tube and 

stray -wiring capacity amounts to 30 41f. This capacity is 

placed in parallel with a coil whose inductance is 13.17 

thenries. 

(A) At what frequency will these two circuit elements 
resonate? (Use R of 3 ohms in Eq. (12), as a check on the 
effect of resistance). 

(B) Suppose a generator developing 20 volts at 5 me is 

connected across them. Neglecting the resistance of the 

circuit, find the current in each branch of the circuit, 
also the current in the external circuit to the generator, 
and the impedance of the circuit. 
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EXAMINATION, Page 3. 

2. (Continued) 

(C) Draw a vector diagram showing the total current 

and state whether the circuit is acting as an inductance or 

as a capacity. 

3. What are the characteristics of a parallel circuit, in- 

ductive, capacitive or resistive, under the following con- 

ditions: 

(A) At resonance? Why? 
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EXAMINATION, Page 4. 

3. (Continued) 

(B) At a frequency higher than resonance? Why? 

(C) At a frequency lower than resonance? Why? 

4. (A) How would you design a parallel circuit consisting of 

capacity and inductance to offer the highest impedance at 

resonance? Show this condition on a vector diagram. 
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EXAMINATION, Page 5. 

4. (Continued) 

(B) Also illustrate the conditions in a parallel circuit 

at resonance in which the impedance is not high. Explain 

the reasons for this decreased impedance. 



THE PARALLEL LCR CIRCUIT 

EXAMINATION, Page 6. 

5. How do the characteristics of a series circuit and a paral- 

lel circuit compare at: resonance, at frequencies above 

resonance, at frequencies below resonance? Show these 

differences by the use of appropriate curves. 
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EXAMINATION, Page 7 

6. You wish to trap out an interfering signal having a fre- 

quency of 50 me from a television receiver. You have a 

50 µµf variable capacitor available. 

(A) What value of inductance would you use with this 

capacitor when set at 40 µµf? 

(B) If the coil has a resistance of 1 ohm, what will be 

the approximate parallel impedance? 



THE PARALLEL LCR CIRCUIT 

EXAMINATION, Page 8 

6. (continued) 

(C) What value of inductance would be required if a 100 
µµf capacitor were connected in parallel with the tuning 
capacitor, still set at 40 µµf? 
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7. Using the complex algebra method, calculate the equivalent 
impedance of the following circuit. f = 1.592 me /s. 

Use Eq. (6) . 

NOw 
L-/OOpH 

R- lOn 
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8. Calculate the equivalent impedance of the circuit of ques- 
tion 7, using the parallel resonant impedance formula. 

See Eq. (7), (8) or (9). 
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9. The plate tank circuit of a transmitter consists of L = 

100 µh, C = 400 µµf. The effective resistance of the induc- 

tive leg is 10 ohms. Calculate by Z = L /CR the impedance 
of the circuit. 

(A) Calculate further values of Z by adding to the 10 ohms 

in 5 ohm steps for values from 5 to 50 ohms or 15 to 60 

ohms total R. Show sample calculation and tabulate your 
results. 

(B) Draw a graph on linear paper using added value of re- 

sistance R as the abscissa and Z as ordinate. 



THE PARALLEL LCR CIRCUIT 
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10. Given the circuit and values shown. Find the total parallel 
impedance of the circuit. Use Eq. (13). 

L R1 

F -6Mo /s 
E = 20 volts 
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