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COMPLEX NOTATION 

SCOPE OF ASSIGNMENT 

The preceding assignment 
covered the use of the operator j in 

defining the rectangular coordinates 

of a vector. The definition of and 

the geometric relationship between 

the real and the j parts of the 

complex number were also estab- 

lished. In the rectangular coordi- 

nate system the vector is defined in 

terms of the vertical and horizontal 

components; that is, by stating the 

abscissa and ordinate of the termi- 

nal point of the vector. The rec- 

tangular form is not always conven- 

ient or desirable, in fact, for 

certain mathematical processes this 

form can be quite cumbersome. It is 

therefore necessary in this assign- 

ment to investigate the application 

of the operator j to the polar 
coordinate system. 

FUNDAMENTAL CONSIDERATIONS 

VECTORS.--In an earlier assign- 

ment it was explained that a vector 

could be defined explicitly by stat- 

ing the magnitude and direction of 

the vector. In Fig. 1 the vector 

A can be defined by stating the 

length of A in units and the angle e 

between A and the horizontal axis 

ox'. It is evident that A is the 

hypotenuse of a right triangle 

having sides X and R and the abso- 

lute magnitude of A is given by the 

equation A = R2 + X2. Since R and 

X are squared it makes no difference 

whether the sign of X is positive or 

negative since squaring will always 

make the sign positive. 

The equation A =V R2 + X2 only 

partly defines the vector since A 

could be in any one of four quad- 

rants and thus could make any one of 

four angles with respect to the pos- 

itive X or polar axis. It remains 

Y 

Fig. 1.--Vector Components. 

to determine the direction of A to 

explicitly define the vector. From 

trigonometry, e in Fig. 1 is the 

angle whose tangent is X /R, written 

e = Tan -1 X /R. Vector A is now 
definitely established both as to 

length and direction IN REFERENCE TO 

AN ARBITRARILY SELECTED REFERENCE 
LINE. Mathematically A is defined 
in the polar form by the equation 

A = + X2, /Tan-1 X/R 

which may also be written 

A =TAILL. 

where IAI is the absolute magnitude 

and 6 the angle. 

Quite often a vector may be ex- 
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pressed in the polar form by inspec- 
tion. For example, a voltage of 110 

volts leads a current of 5 amperes 
by an angle of 40 °. Placing the 
current along the polar axis (0 °) 
the polar coordinates of I are 5 L0° 

and for the voltage 110 L400. The 

angle of E is positive and less than 
90° which places E in the first 
quadrant. If the voltage had been 
taken along the polar axis the no- 
tation would have been E = 110 L 0° 

and I = 5Z-40°. The negative angle 
of I indicates the angle is measured 
in a clockwise direction from the 
polar axis and since the angle is 
less than -90° it definitely places 
I in the fourth quadrant. 

METHODS OF CONVERSION 

CONVERTING FROM RECTANGULAR TO 

POLAR FORM. -The rectangular form of 
a vector is easily convertéd to the 
polar form. If a voltage equals 
6 + j8 volts, the absolute magnitude 
of E is 62 + 82 or 10 volts, and 
8 = Tan -1 8/6 = L 53.1 °. In polar 
form E = 10 L 53. 1 °. Another example; 
determine the polar form for the 
voltage -6 + j8 volts. The magni- 
tude of E is 62 + 82 or 10 volts 
and e = Tan -1 8/6 = 53. 1°. But an 

inspection of the rectangular form 
shows the abscissa (real part) of 
E is negative while the ordinate 
(imaginary part) is positive. From 

an earlier lesson when X is negative 
and Y is positive the vector must 
lie in the second quadrant. There- 
fore the real angle e in reference 
to the polar axis is 180 - 53.1 or 
126.9 °. The polar form of the vol- 
tage -6 + j8 is then 10 Z126.9°. 
Fig. 2 illustrates the conversion 
graphically. Until the student be- 
comes thoroughly familiar with the 

conversion process it is suggested 
that the correctness of the conver- 
sion always be checked graphically. 

Fig. 2. -- Converting graphically. 

Determine the polar form for 
the vector E = -15 -j8. 1E1 

V ( -15)2 + ( -8)2 = 17. e = 

Tan -1 -8/ -15 = 28.1 °. But the real 
and j parts of E are both negative 
which places E in the third quadrant 
so A = 180° + 28.1° and the polar 
form of E is 17 L208.1 °. The con- 
version is shown in Fig. 3. 

Fig. 3. -Rectangular Coordinates 
of a rotating vector in 3rd. quadrant. 
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For the fourth quadrant consider 

the voltage 7.07 - j7.07 volts. E = 

V 7.072 + ( -7.07) 
2 

= lo volts. 

8 = Tan" -7.07/7.07 = 45 °. But the 

ordinate is negative and the abs- 

cissa positive which places the 

vector in the fourth quadrant and 

8 = 360° - 45° = 315 °orE = 10Z315 °. 

The conversion is shown in Fig. 4. 

7.07 - j7.07 

Fig. 4.--Rectangular coordinates 
of a rotating vector in 4th quadrant. 

It should be noted that 6 can 

be expressed as either positive or 

negative with respect to the polar 

axis. In the last example e could 

be expressed as -45° measured in a 

clockwise direction from the polar 

axis or the positive angle 315° may 

be used indicating the angle is 

measured in a counter -clockwise 

direction. The angles 315 °and -45° 

are said to be coterminal. Whether 

or not a negative or positive angle 

is used is a matter of convenience. 

When the vector lies in the first, 

second, or third quadrant it is con- 

ventional to use the positive angle 

while the negative angle is ordinar- 

ily used for the vectors in the 

fourth quadrant. There is no hard 

or fast rule and either method is 

mathematically correct. Since most 

electrical vectors appear in the 

first and fourth quadrants the 

writer leans toward positive angles 

in the first quadrant and negative 

angles in the fourth. In either 

case the signs of the real and j 

parts of the rectangular form defi- 

nitely locate the quadrant in which 

the vector should appear and a simple 

sketch will give the essential clue 

to the correct angle to use. The 

magnitude of the vector is not 

affected by its quadrantal position. 

CONVERTING FROM POLAR TO REC- 

TANGULAR FORM.--Polar vectors are 

very convenient for all algebraic 

manipulations EXCEPT ADDITION AND 

SUBTRACTION. As shown in the pre- 

ceding assignment addition and sub- 

traction are very simple processes 

when the rectangular form is used. 

Fig. 5 shows the familiar graph- 

IAISin e 

e 

IAICos A 

A LA 

Fig. 5.--Graphical representation. 

ical representation of a vector, the 

first quadrant being used for con- 

venience. The problem is to deter- 

mine the rectangular coordinates 
from the given polar coordinates. 

It is a simple problem in trigono- 
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metry where the hypotenuse and one 

angle of a right triangle are given. 

It is evident from Fig. 5 that the 

two sides of the right triangle will 

fall on the real and j axis when the 

triangle is placed in the standard 

position. The side coinciding with 

the real axis is A Cos A while the 

side representing the j axis projec- 

tion is A Sin A. Thus the polar 

vector ALA can be expressed in the 

rectangular form by 

A = IAI Cos A + IAI j Sin O. 

which can be simplified by factoring 

to 

A = IAI (Cos 0 + j Sin e) 

For example, express the vector A = 

10/45° in the rectangular form. 

A = IAI (Cos 45° + j Sin 45 °) 

Sin 45° = Cos 45° = .707 

A = 10 (.707 + j .707) 

= (10 x .707) + j(10 X .707) 

= 7.07 + j7.07 

Fig. 6 shows the graphical repre- 

sentation. 

Fig. 6.--Graphical representation of 

a rotating vector in first quadrant. 

As a further example convert 

A = 10L-45° to the rectangular form. 

The angle -45° places the vector in 

the fourth quadrant and from the 

preceding assignment Cos A is posi- 

tive and Sin A is negative. 

A = 10 (Cos -45° + j Sin -45 °) 

= 10 (.707 + j - .707) 

= 7.07 - j7.07 

Fig. 7 shows the graphical rep- 

resentation. 

7.07 

-j 7.07 

10 

Fig. 7.--Graphical representation of 

a rotating vector in fourth quadrant. 

It will be observed that the 

correct algebraic sign for each part 

of the rectangular expression is 

determined by the proper choice of 

sign for the accompanying trigono- 

metric function. This will never 

cause difficulty or confusion if the 

student will memorize the sign of 

the sine, cosine, and tangent in 

each quadrant as shown in Fig. 8. 

Convert the vector 15/130° to 
the rectangular form. 

A = 15 (Cos 130° + j Sin 130 °) 

Observing the signs of the trigono- 

metric functions from Fig. 8. 
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A = 15 (- Cos 130° + j Sin 130°) 

= 15 (- Cos 50° + j Sin 50 °) 

= 15 (- .643 + j .766) 

= [15 x (- . 643) ] + [j 15 x .766] 

_ - 9.64 + j 11.49 

A diagram will verify the above 

conversion. 

Quad. 2 

Sin 

Cos - 

Tan - 

Sin - 

Cos - 

Tan + 

Quad. 3 

Quad. 1 

Sin + 

Cos + 

Tan + 

Sin - 

Cos + 

Tan - 

Quad. 4 

Fig. 8.--Table for the conversion 

of trigonometrical functions in 

15. A capacity reactance of 12 ohms, 

a resistance of 25 ohms, and an 

inductive reactance of 40 ohms. 

Convert to rectangular form: 

16. 8 /30° 

17. 94.5/58° 

18. 300 x 105 /51.7° 

19. 440 /201° 

20. 220/-159° 

21. 14.6 /52.6° 
22. 116/238° 

23. 110 / 23.8° 

24. . 006 /180° 

25. 90Z-90° 

Add: 

26. 10 + j15 and 10/30° 

27. 25 - j40 and 30 /40° 

28. 20 / -30° and 10 /80° 

29. . 09 / -30° and 1.2 / -140° 

30. -7 - j20 and 16 /90° 

different quadrants. 

EXERCISES: 

Convert to polar form: 

1. -22 + j30 

2. 5 - j50 

POLAR FORM 

MULTIPLICATION IN THE POLAR 

FORM. -It was shown previously 

that multiplication in the rectangu- 

lar form is somewhat complicated. 

3. .06 - j.025 Multiplication in the polar form is 

4. 755 + j875 quite simple. The vector A in the 

5. -8 -j6 polar form is 1A1 /6 where 
IAA 

is 

6. -1 -j3 the magnitude or MODULUS and O is 

7. 3 - j5 the angle or ARGUMENT. MULTIPLICA- 

8. 9 - j 10 TION OF TWO VECTORS IN POLAR FORM IS 

9. 0 + j40 PERFORMED BY MULTIPLYING THE MAGNI- 

10. -32 - j0 TUDES OR MODULI AND ADDING THE ANGLES 

11. A voltage of 50 volts at 30° OR ARGUMENTS. 

12. A current of 10 amperes at -75° 

13. A current of 21 amperes leading 

a voltage of 100 volts by 21 °when 

A/O B/, , = AB / O + 4, 

the voltage is at -15 °. The above is a general expres- 

14. A pure capacity reactance of 98 sion and applies to all vectors in 

ohms. the polar form. To illustrate the 
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process with numerical values mul- 

tiply 10/30° by 15 /45°. The pro- 

duct is 

10 X 15/30° + 45° = 150 /75° 

Multiply 6 /-25° by 8 /55° 

6 X 8/-25° + 55° = 48/30° 

DIVISION IN THE POLAR FORM. - 
Division is the inverse of multipli- 

cation, so the process of multipli- 

cation is reversed. TO DIVIDE 

VECTORS IN THE POLAR FORM DIVIDE THE 

MAGNITUDE OF THE DIVIDEND BY THE 

MAGNITUDE OF THE DIVISOR AND SUBTRACT 

THE ANGLE OF THE DIVISOR FROM THE 

ANGLE OF THE DIVIDEND. 

To illustrate, divide 48 /30° 

by 16/15° 
148/161 /30° - 15° = 3 Z15° 

Divide: 125 /25° by 25 L55° 

1125/251 /25° - 55° = 5 Z-30° 

The general form for ALO divided by 

B/4 is 1A /B1 /0 - Gb. 

EXERCISES: 

Multiply: 

31. 30/20° by 24/37° 
32. . 06 L -15° by . 003 / -64° 

33. 63/25° by 156/185° 
34. 36 /36° by 22 L -30° 

35. 124/ -175° by .5 /200° 

36 to 40. In exercises 31 to 35 

divide the first vector by the 

second. It must be thoroughly 

understood that the expression for 

the polar vector ALA does not indi- 
cate a product. It is only a form 

of notation used to express the mag- 

nitude and direction of a vector. A 

variation of the form AL O is the 

notation A Cis O which is an abbre- 

viation for A (Cos O + j Sin 0). 

It should be evident by this 

time that the rectangular form is 

more suitable for addition and sub- 

traction of vectors while the polar 

form is to be preferred for multi- 

plication and division. The next 

step is involution (raising to a 

power) and evolution (extracting a 

root) of vectors. The rectangular 

form is not very well suited to 

these operations. The process 

whereby polar vectors are multiplied 

by multiplying the magnitudes and 

ADDING the angles and divided by 

dividing the magnitudes and SUBTRACT- 

ING the angles suggests that the 

angle has properties similar to an 

exponent, and the magnitude proper- 

ties of the co- efficient in alge- 

braic functions. Thus 3X2 times CO 
is carried out by multiplying the 

coefficients 3 X 4 = 12 and adding 

the exponents of X giving a result 

12X2 
+ 3 = 12X6. The above process 

is practically the same as that used 

when multiplying vectors in the 

polar form. 4X6 divided by 2X2 = 

4/2 times X6 -2 or 2X4 which is iden- 

tical to the process used in divid- 

ing vectors in the polar form. By 

mathematics beyond the scope of this 

course the above relationship can be 

demonstrated by proving that 

ers 
= Cos 0 + j Sin O 

where e is 2.718... the base of nat- 

ural or Naperian logarithms. A com- 

plex quantity A may therefore be 

expressed in any one of the follow- 

ing forms: 

A =ALB =A (Cos O + j Sin 0) = e 

The last expression Aeie shows 
the exponential character of the 
angle and indicates why it is correct 

to add the angles when multiplying 



COMPLEX FORM 7 

polar vectors and to subtract the 

angles when dividing. Aeie is call- 

ed an EXPONENTIAL VECTOR and, as 

will be shown later, is a form well 

suited for the processes of involu- 

tion and evolution. 

Since A08 = A (Cos e + j Sin e) 

then Ae 
-j9 must equal A (Cos e - 

j Sin e). The general expression 

for multiplying exponential vectors 

is 

(A0e) . (Be) 4° = AB0 (e + 4') 

and for division 

(Ae3e) /(Be."5) = (A /B) 0 (9 - 0) 

From the foregoing it is evi- 

dent there are several different 

methods of expressing a vector quan- 

tity. For example, by a single 

letter Z where Z represents the com- 

plete vector quantity; in the rec- 

tangular form R + jX; in the polar 

form Z L e, Z in this case represent- 

ing the magnitude; in the exponen- 

tial form Zeie where Z again repre- 

sents the magnitude; in the circular 

or trigonometric form, often abbre- 

viated Z Cis e, Z (cos e + j Sin 0). 

e is usually expressed in degrees 

although the angle may be expressed 

in radians. Thus 36° = rr /5 radians 

and Z might be written: 

taken as a pure abstract expression 

that has no physical analogue. 

COMPLEX FORM 

INVOLUTION IN THE COMPLEX FORM. - 

In complex notation the process of 

raising to a power is simply a case 

of using the vector the requisite 

number of times as a factor. Thus 

(R + jX)2 = (R + jX)(R + jX) 

(R - jX)3 = (R - jX)(R - jX)(R - jX) 

or (R - jX)° means OR - jX) used as 

a factor n times. 

If the rectangular vector 4 + j3 

is changed to the polar form 

5/36.85° the process of involution 

or evolution is much less cumbersome. 

The process is also simplified if 

the exponential form 5036'85° is 

used. Thus (5eJ36'85 
°)2 is perform- 

ed by squaring the coefficient and 

multiplying the exponent by 2 giving 

25es (2X36.85 
°) = 25073.7 °. This is 

readily converted back to the polar 

form as 25 Z73.7°. 

TO RAISE A VECTOR IN THE POLAR 

FORM TO ANY POWER RAISE THE MAGNI- 

TUDE TO THE REQUIRED POWER AND MUL- 

TIPLY THE ANGLE BY THE INDEX OF THE 

POWER. 

If the angle is negative as it 

would be if the vector is 4 - j3 the 

square would be (5e- i3685 °)2 
25e 2x36.66 °= 25e- X73.7 °= 

100 LT /5 = 100 (Cos 7/5 + j Sin 7r /5) = 100 ei" /6 

The form to be used is normally 

decided by convenience. The rectan- 

gular form is best suited to addi- 

tion and subtraction, the polar form 

to multiplication and division, and 

the exponential form to multiplica- 

tion, division, involution, and evo- 

lution. The disadvantage of the ex- 

ponential form is that it has no 

geometric representation and must be 

25Z-73.7°. 

It is evident that the polar 

and exponential forms are best suited 

to involution because they are most 

amenable to the algebraic laws. 

EVOLUTION IN THE COMPLEX FORM. - 
Evolution, the process of finding a 

root, is just the reverse of involu- 

tion. Consider the vector 

1690 45.22 
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To extract any root of this vector 

the laws of algebra are satisfied by 

finding the required root of the co- 

efficient of e and dividing the ex- 

ponent of e by the index of the root. 

Thus 

/169e145'22° 169e1 4 a.22° = 13e.122'81°= 13/22. 61° 

The general form for this process is 

n ZeIB = n(el (B/n)) = °ZLrn 

If H is negative the process is 

unchanged but the angle of the root 

will be negative. For example, the 

cube root of 27 L -45° is 3/-15°. 
Evolution of vectors in the 

rectangular form is somewhat more 

involved and is based on the axiom: 

IF TWO COMPLEX NUMBERS ARE EQUAL 

THEIR REAL PARTS ARE EQUAL AND THEIR 

J PARTS ARE EQUAL. From this axiom 

if R + jX = 10 + j15 then R = 10 and 

jX = 15. To illustrate the method 

the square root of the vector 

119 + j120 will be extracted. By 

the above axiom 

119 + j120 = A + jB (1) 

where A + jB is the root. 

Square both sides of (1) to remove 

the radical 

119 + j120 = (A + j B) 2 = 

A2 + j2AB - B2 

In (2), A2 - B2 is the real part and 

j2AB is the imaginary part. 

By the above axiom 

119 = A2 B2 (3) 

and 

(2) 

j120 = j2AB 

dividing (4) by j2 

60 = AB 

dividing by A 

B = 60 /A 

Substituting the value of B from 

for B in (3) 

119 = A2 - (60/A)2 

(4) 

(5) 

(5) 

119=A2_Q 
A 

Multiplying by A2 

119A2 = A4 - 3600 

Transposing 

A4 - 119A2 - 3600 = 0 

Factoring 

(A2 - 144) (A2 * 25) = 0 

If 

and 

If 

and 

A2 - 144 = 0 then A2= 144 

A = 144 = ± 12 (6) 

A2 + 25 = 0 then A2 = -25 

A = ± V-25 (7) 

The roots in (7) are rejected 

since by (1) A is real and cannot be 

imaginary. Substituting the value 

of A from (6) in (5) 

B=60/±12 
B = ± 

Therefore the square roots of 

119 + j120 are either (12 + j5) or 

( -12 - j5). It is not unusual for 

the expression 119 + j120 to have 

two roots since the number of pos- 

sible roots is indicated by the index 

of the roots. 

It is apparént that the easiest 

method of finding the root of a 

vector in the rectangular form is 

to first convert to the polar form, 

extract the desired root and then 

convert back to rectangular coordi- 

nates if that is the desired form. 

EXERCISES: 

Express the following in the rectan- 

gular, polar, and exponential form: 

41. 15 L30° 

42. 10eJ46° 

43. 100e 
44. 40 (Cos 600 + j Sin 60 °) 

45. 5 Cis - 53.08° 

46. 4 + j 3 

47. 12e -i 
45° 
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Extract the indicated root: 
48. 155 Z30° 
49 3210L -117° 
50. V12. 4 - j 8. 5 

51. 4V-21 - j 14 

52. (54L- 24 °)-1/2 
Raise to the indicated power: 
53. (2 + j3)2 
54. (8/51. 2) 2 

55. (50 Cis 30 °) 3 

56. (7 Z-500)2 
57. (9e327°)4 

58. (10/1Q°)3/2 
59. (2e -i5 )-4/3 
60. (10J -20 °)4 

CALCULATIONS 

THE SLIDE RULE IN COORDINATE 

TRANSFORMATIONS. -The use of a vec- 

tor slide rule greatly facilitates 

the transformation of vectors from 

the polar to the coordinate form and 

vice versa. All calculations 
with complex numbers in this and 

the preceding assignment have been 

performed with the aid of such a rule. 

The student possessing a rule with 

scales arranged for vector transfor- 

mation has a valuable tool. The log 

log vector and log log decitrig 
rules are particularly suited to 

this type of work. However for the 

student who has only the regular 

Mannheim polyphase rule vector trans- 

formations can be made by using a 

few simple mathematical devices. 

From trigonometry the following 

relations can be readily established 

for Fig. 9. e = Tan-1 X/R and Z 

= X /Sin O. Suppose it is desired to 

transform the rectangular vector 

3 + j4 to the polar form. If the 

right triangle theorem is used 
( 32 + 42) it involves a sum which 

is not readily solved by the rule. 

However it is a straight forward 

process to calculate O. In this 

case it is the angle whose tangent 

is 4/3 or 1.333. From the rule 

Tan -1 1.333 is /53.15 °. Transfer 

this angle to the sine scale and 

read the value of Z on the A scale 

directly above the X value 4 on the 

jX 

Tan -1 
R 

R 

Fig. 9. - Example for slide rule 

calculations. 

B scale. This is the process of 

finding Z from X /Sin O. Thus 3 + 14 

= 5/53.15'. This method applies to 

all cases where the tangents of A 

lie between .1 and 10. For other 

cases there are special methods that 

will not be discussed here. 

By a reversal of the process 

the polar form 5 /53.15° can be 
transposed to the rectangular form. 

Set the rule up for the sine of 

53.15° and read the X value 4 on the 

B scale under the 5 on the A scale. 

Reset the rule for the cosine of 

53.15° and read the R value 3 on the 

B scale under 5 on the A scale. 
Since the angle is positive and in 

the first quadrant the rectangular 

form of the vector is 3 + j4. 

The student is urged to use the 

rule as often as possible in all 

such calculations. 

POWER DETERMINATION FROM 
COMPLEX QUANTITIES. -The power in a 

circuit may be determined from 
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the current and the voltage in 

either the polar or rectangular 

form. In the polar form power is 

equal to the product of the abso- 

lute magnitude of E and I times 

the cosine of the PHASE ANGLE 
DIFFERENCE. This will be recognized 

as practically the same method as 

that studied in an earlier assign- 

ment where P = EI Cos e. If E _ 

110 L 0° and I = 5 L 30° then P = 

110 x 5 x Cos 30° = 110 x 5 X.866 

= 477 watts. If E = 110 L -25° and 

I = 5 Z30° then P = 110 X 5 X Cos 

( -25° - 300) = 110 X 5 X Cos -55° = 

110 X 5 X .574 = 316 watts. Only 

the magnitude of the angle is impor- 

tant since Cos ( -8) = Cos 8 as long 

as 8 is between +90 and -90 °. 

In the rectangular form the 

power is determined by adding the 

product of the real parts to the 

product of the imaginary parts with- 

out regard to the j in the computa- 

tions. For example, if E = 3 + j4 

and I = 6 + j7 then P = (3 X 6) + 

(4 X 7) = 46 watts. This may be 

checked by transforming the vectors 

to the polar form and solving for 

P. 3 + j4 = 5 L53. 15° and 6 + j7 = 

9. 22 L 49. 4° P = 5 X 9. 22 X Cos 

(53. 15 °- 49. 4 °) = 5 X 9. 22 Cos 3. 75° 

= 5 X 9. 22 X .99786 = 46 watts. 

In finding the product of the 

real and j parts algebraic multipli- 

cation must be used, that is, the 

signs of the terms must be consider- 

ed. If E = 3 - j4 and I = 6 - j7 

then P= (3 X 6) + (-4X -7) = 18 + 28 

= 46 watts. If E = -3+ j4 and I= 
-6 + j7, then P = ( -3 X -6) + (4 X 7) 

= 18 + 28 = 46 watts but if E = 

-3 + j 4 and I = 6+ j 7 then P= 
( -3X6) + (4 X 7) = -18 + 28 = 10 

watts. 

The method used to determine 

power is a matter of convenience. 

Power calculations at radio frequen- 

cies are usually simplified by the 

fact that at resonance unity power 

factor prevails; that is, 8 equals 

zero degrees and Cos 8 = 1. 

THE ADMITTANCE METHOD. --In any 

circuit the impedance may be ex- 

pressed by the formula 

Z = E/I 

where E is the applied voltage, I is 

the circuit current and Z is the im- 

pedance AT THE POINT WHERE E AND I 

ARE MEASURED. In Fig. 10 the cur- 

rent in each branch is equal to 

E /Zb where Zb is the branch impe- 

dance. The total current in the 

combination is 

I =I1 +I2 +I3. . In 

Since the branch currents are 

equal to E/Zb then 

I= E+ E+ E E 

Z1 Z2 Z3 Zn 

Factoring 

I=E(l+-1-+ 
Z1 Z2 Z3 Zn 

Dividing by E 

1. = 1_+ 1_+ 1 1_ 
E Z1 Z2 Z3 Zn 

Since Z = E/I then I/E = 1 /Z. 
The reciprocal of the impedance is 
the admittance Y or Y = 1/Z = I /E. 

Therefore 

Y = Y1 + Y2 + Y3 

For a 

cuit 

or 

two branch parallel cir- 

Y = Y1 
+ Y2 

1= 1. +.1_ 
Z Z1 Z2 

Multiplying by the common de- 
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nominator ZZ1Z2 

Z1Z2 = ZZ2 + ZZ1 

Factoring 

Z1Z2 = Z (Z1 + Z2) 

Dividing by 

Zl 
Zz Z 

Z1 
Zz 

This final equation shows that 

the product divided by the sum holds 

true for impedances in parallel just 

as it does for resistances in para- 

llel. However in the equation just 

developed it must be remembered that 

Z is a vector quantity and all the 

operations must conform to the rules 

of vector algebra. As a numerical 

Z 

Y1 

= 

= 

7.07 - j7.07 ohms 

= _1__3-14 =.12 -j.16 mho. 

Z1 3 + j 4 25 

Y = 1= 1 _ 7.07+j7.07 

2 Z2 7. 07 - j 7.07 100 

= . 0707 + j. 0707 mho. 

Y =Y1+Yz =.12-j.16+ 

.0707 + j.0707 = .1907 - j. 0893 mho. 

Z =1= 1 

Y . 1907 - j.0893 

4. 28 + j 2.04 ohms 

Solving by the product over sum 

method. 

Z1 = 3 + j4 = 5/53.1° 

Zn 

i 

i In 
i 

Fig. 10.--Parallel impedances solved by vector algebra. 

example the impedance of a two 

branch parallel circuit will be de- 

termined first by the admittance 

method and then by the product over 

sum method. The circuit and circuit 

constants are shown in Fig. 11. 

Z2 

Z1 

= 7.07 - j7.07 

+ Z2 = 3 + j4 

10.07 - j3.07 = 

= 10/-45° 

+ 7.07 - j7.07 = 

10.55 Z-16.95° 

For the inductive branch 

Z1 = 3 + j4 ohms 

For the capacitive branch = 4.74/25.05° = 4.28 + j2.04 ohms. 

Z1 ZZ 5 /53. 1° 10 /-45° 
Z = - 

Z1 + 
Z2 10.55/-16.95° 
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The choice of methods is a 

matter of convenience since either 

will produce the same result. In 

general the product over sum method 

is preferred for two branch circuits 

and the admittance method for cir- 

cuits of three or more branches. If 

a third branch Z3 = 4 + j10 ohms is 

added to the two branches in Fig. 

11 then 

Z - 
ZZZ 

Z1Z2 + Z1Z3 + Z2Z3 

An example of the solution of 

an A.C. circuit at radio frequency 

will further illustrate the ease 
with which A.C. circuits are solved 

by means of complex notation. The 

circuit is shown in Fig. 12. The 

reactances are calculated in the 

1 4 - j10 usual manner. 
Y3 = _ .0344 - 1.0862 mho. 

4 + j 10 116 

Y = .0344 - j.0862 + .1907 - j.0893 = .2251 - j. 1755 mho. 

1 1 

Y .2251 - j.1755 

The admittance method can be 

continued indefinitely for any num- 

ber of parallel branches but the 

Fig. 11.- Numerical example for 
impedance of a two branch parallel 

circuit. 

product over sum method becomes more 
and more complicated as the number 

of branches increase. For a three 

branch parallel circuit the product 

over sum formula becomes 

2.76 + j2.15 

XL = 277-FL = 6.28 X 5 x 105 X 10 -4 

= 314 ohms 

Xe = 1/27TFC - 1 

6.28 X 5 X 105x10-,a 

= 318 ohms 

Z1 = 10 + j314 = 314.1/88.2° 

Z2 = 15 - j318 = 318.7/-87.3° 

Z1 + Z2 = 10 + j314 + 15 - j318 

= 25 - j4 = 25.35/-9.1° 

Z = 
Z1 Z 

- 

Z1 + Z2 

314.1188,2° 318.2/-87.2 
25.35/-9.1° 

= 3940/10° = 3895 + j686 ohms. 

The circuit is seen to be 
inductive by the positive angle 
in the polar form or from the 
positive sign of the reactance 
in the rectangular form. The 
equivalent series circuit is 
a resistance of 3895 ohms and 
an inductive reactance of 686 
ohms, or at 500 Kc /s a 218 µH 
coil. 
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ßy the admittance method 

YL 1 - .00101 - j.00318 mho. = 

ZI 10 + j314 

Y = 
1 

= 1 - .000148 + j.00314 mho. 
Z 15 - j318 ` 

Y = Y + Y _ .000249 - j.00004 mho. 

_ 1 _ 1 
- 3890 + j688 ohms. 

Y .000249 - j.00004 

The result is a close check on 

the first method. Calculations made 

500 Mc 
Z=? 

Fig. 12.--Series parallel impedance 

network. 

on the slide rule may not check as 

closely as those above unless great 

care is exercised in making each 

reading. 

SOME GENERAL APPLICATIONS OF 
COMPLEX NOTATION 

LCR NETWORXS. -The following 
discussion will give the student 

some idea of the usefulness of com- 

plex notation in solving some of the 

more common applications of alter- 

nating current circuits. Most com- 

plicated networks can be reduced to 

reasonably simple equivalent cir- 

cuits which are easily solved by 

means of complex algebra. 

Frequently it is necessary 
to transform impedances in such 

manner that a minimum of power 
is lost in the transformation. 
A resistance network cannot be 

used because of the power lost 

in heat in the resistors. A 

pure reactance consumes no power 
and is often employed for making 

a certain resistance appear to 

be of some value other than its 

actual magnitude. 
For example an antenna is 

to be operated on such a mode that 

the impedance at the point of 
coupling is 120 + j0 ohms. This 

antenna is to be excited from 
an 80 ohm (pure resistance) trans- 

mission line. If the trans- 
mission line is connected directly 

to the antenna power will be 

lost due to the mismatch of im- 

pedances. For most efficient 
power transfer the impedance of 
the antenna must be matched to 

that of the transmission line. 
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To insure minimum power loss in 

the matching network the matching 

must be done by using pure re- 

actances. The problem is to 

`sink' the antenna impedance so 

that it presents an impedance of 

80 + j0 ohms to the transmission 

line. A pure reactance in parallel 

with the antenna impedance will 

lower the total impedance. The 

resulting impedance of the antenna 

will then be reactive instead 
of resistive but by connecting 
a suitable reactance of opposite 

sign in series with the parallel 

combination the network can be 

brought back to resonance. 

For example a 100 ohm re- 

sistance is shunted by a 1 4F 
capacitor as shown in Fig. 13. 

What is the apparent resistance 

j44.4S3 4---' veúJ N_ 

F - l000N 

Fig. 13.--Method to obtain a pure 

resistance impedance by an LCR 
network. 

and capacity at 1000 cycles? 

X 
_-1-= 1 -159 ohms 

° at 6.28 X 103 X 10 
-g 

Z Z 100(-j159) 
Z= 

Z1 + Z2 100 - j159 

= 71.5 - j44.4 ohms 

The real part 71.5 ohms is the 

APPARENT resistance and the j 

part 44.4 ohms is the APPARENT 
reactance. The original 100 ohms 

resistance has been transformed 
to 71.5 ohms while the 159 ohms 

capacity reactance has been trans- 

formed to 44.4 ohms. If an in- 

ductance having a reactance of 

44.4 ohms at 1000 cycles is connect- 

ed in series with the parallel 
combination as shown by the dotted 

lines in Fig. 13, the capacity 
reactance will be balanced out 
and the IMPEDANCE LOOKING INTO 

THE NETWORK WOULD BE 71.5 OHMS PURE 

RESISTANCE. This particular 
principle has many important appli- 

cations in radio engineering. 

The solution of more complex 

circuits is greatly simplified by 

complex notation as illustrated in 

the following example. Refer 

to Fig 14. 

Zl = 8.66 + j5 = 10 /30° 

Z2 = 7.07 - j 7.07 = 10!-45° 

Zl + Z2 = 15. 73 - j 2. 07 

= 15. 86 L -7. 5° 

10/30° 10/-45° 
Z - 

P 15.86 / -7. 5° 

= 6.3/ -7. 5° 

Converting Z to the rectangular 
form, 

Z = 6.3(Cos 7.5° - j Sin 7.50) 
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= 6.25 - j.82 ohms 

Since Z is in series with Z3 the 

total impedance is found by addition 

Fig. 

Z9 

11// 
3 j4 

15 

It must be understood that Z1, Z2, 

and Z3 are the expressions for the 

impedances IN THE COMPLEX FORM. 

Substituting the complex ex- 

8.66 

j5 

7.0752 

Z2 

-j7.07 S2 

14. -Using complex notation for solving the impedance of a complex circuit. 

Z = Zp + Z3 = 6. 25 - j. 8 2+ 3+ 

= 9.25 + j3.18 ohms. 

j4 pressions for Z1, Z2, and Z3 

Z= R1 +jX1+ 

Thus the circuit of Fig. 14 is 

equivalent to an inductive reactance 

of 3.18 ohms in series with 9.25 

ohms resistance. Conversion to the 

polar form gives the absolute magni- 

tude of the impedance and the angle 

by which it affects the current and 

voltage. 

9.25 + j3. 18 = 9.78 L19.0° 

The angle is positive and I will lag 

E by 19°. 

One of the most important ap- 

plications of complex notation is in 

the development of analytical ex- 

pressions for circuit behavior. 

Fig. 15 shows an impedance Z1 in 

series with Z2 and Z3 in parallel. 

It is apparent that 

Z = Z 
+ Zz Z3 

} 
Z 

3 

(R2 + jX2) (R3 + jX3) 

(R2 + jX2) + (R3 + jX3) 

Simplify 

Z =R1 + jX 1+ 

R2R3 - X2X3 + j(R3X2 + R2X3 

(R2 + R3) + j(X2 + X3) 

In the above expression the 

actual sign of the j term depends on 

whether X is inductive or capacitive. 

The form R + jX is used for greater 

simplicity, the sign of the j term 

being changed to suit the numerical 

values substituted in the formula. 

The formula as derived is a 

general expression for the impedance 

of any A.C. circuit equivalent to 

that shown in Fig. 15. The ease 

with which the impedances Z1, Z2, 

and Z3 are handled algebraically 
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indicates the simplicity of analytic 

solutions when complex notation is 

used. 

Z 

Fig. 15. - Impedances in the complex 

form. 

A second illustration is fur- 

nished by Fig. 16. The impedance 

looking into the circuit is 

Z2 ( Z3 + Z4) 
Z=Z1+ 

Z2 + Z3 + Z4 

The circuit shown in Fig. 16 

z 

z-= 2 

Fig. 16.- -Impedances in the complex 

form forming a T network. 

will be recognized as a T network 

often used to couple a generator to 

a load. Fig. 17 shows the sane type 

of circuit with numerical values 

assigned to the circuit components. 

At an operating frequency of 1000 

kc /s: 

Z1 = jX1 = 

j(6.28 x 106X43.4X 10-8) = j273ohnia 

Z2 = -j X 
2 

= 

1 

-j (6.28 X 108 X 355 X 10-12) _-j448ohms 

Z3 = - X3 = 

1 "-j( )_ 418 ohms 
6.28x106x38 x 10-11 

Z4 = 500 + JO ohms. 

Z = j273 + 

= 1273 + 

-j 448 (500 - j 418) 

500 - j 448 - j 418 

-j448 (500 - j418) 

500 - j866 

Converting to polar form for 

multiplication and division 

-j448 = 448L -90° 

500 - j418 = 654L- 39.95° 

500 - j 866 = 1000 Z-60° 

The impedance for the parallel part 

of the circuit is - 

448 L-90° 654 L-39.95° 

1000 L-60° 
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= 293 Z- 69.95° 

= 100 - j 273 ohms. 

The total impedance 

Z1 + Zp = j273 + 100 - j273 

= 100 ohms. 

The impedance looking into the 
circuit is a pure resistance of 
100 ohms. The circuit of Fig. 17 

could be used to match a 100 ohm 

for most calculations may be 
considered as pure reactances. If-- 

Z = R 

ZL - R2 

Z1 = X1 

Z = X 

Z3 = X3 

then the impedance looking from the 
generator toward the load is- 

R = X + ( X2 R2) X3 

Z Za 1 t X+ X+ R 
380µµF 2 s 2 

F = 1000 R s 

Zp 355µµF 00+tO 

Z4 

5 

Fig. 17. -Circuit components with 
numerical values. 

generator to a 500 ohm load at 
an operating frequency of 1000 Kc /s 
with practically zero power loss. 
This assumes the reactances used 
in the network are designed for 
very low loss. 

DESIGN OF T- NETWORKS. --Fig. 18 

shows the equivalent circuit 
of a typical T network used to 
match a generator to a load. 
Z the internal impedance of 
the generator, and ZL, the impedance 
of the load, are usually pure re- 
sistances. Z1, Z2, and Z3 are 
usually low loss reactances and 

Multiplying by X2 + X3 + R2 

R1 (X2 + X3 ) + R1 R2 = 

X1X2 + X1X3 + X1R2 + X2X3 + R2X3 ( 1) 

The impedance looking from the load 
toward the generator is 

(X-L+ R )) X 3 
R = X + 

R1 

Multiplying by X1 + X3 + R1 

R2 (X1 + X3) + R1R2 = 

X1X2 +X2X3 + X2R1 + X1X3 + R1X3 ( 2) 

Subtract (2) from (1) 

R1 (X2 + X3) - R2 (X1 + X3.) = 

XR + RX3 - X2R1 - R1X 
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Collecting terms 

R1 (X2 + X3) - R2 (X1 + X3) = 

R2 (X1 + X3) - R1 (X2 + X3) 

COMPLEX NOTATION 

direct substitution of reactance 
magnitudes: 

R1R2 = -(X1X2 + XIX3 + XZX3) (5) 

ZP R1 

Fig. 18.--Impedances forming a T Network. 

Transposing 

R1 (X2 + X3) + R1 (X2 + X3) _ 

R2 (X1 + X3) + R2 (X1 + X3) 

2111 (X2 + X3) = 2R2 (X1 + X3) 

Dividing by 2R2 (X2 + X3) 

R 
_ 

X + 
X3 

R2 XZ + X3 
(3) 

Adding equations 1 and 2 

2R1R2 = 2X1X2 + 2X1X3 + 2X2X3 

R1R2 = XIX2 + XIX3 + X2X3 (4) 

Equation (4) would require the sub- 

stitution of reactance values in 

complex form, (i.e. j X1, jX2, etc.) 

Since j2 = - 1, the equation may be 

altered as follows to permit the 

Z L RL 

By means of equations 3 and 5 

it is possible to match two impe- 

dances by means of a T network by 

assuming a value for any one react- 

ance and solving for the other two. 

As will be shown in a later assign- 

ment, if XI, X2, and X3 are made pure 

resistances a T type attenuation pad 

results. By selecting the proper 
resistance values a definite amount 
of attenuation can be obtained with 

the impedance match. 

To illustrate the design of a 
T network assume it is desired to 

match a 300 ohm generator to a 600 

ohm load at 1000 Kc /s. The circuit 

is shown in Fig. 19. X3 is assumed 

to be 800 ohms capacitive reactance. 
In making this assumption care must 

be exercised that X3 is not made too 

low other wise the load will be 

transformed to a value below that of 

the generator and X2 would change 
from an inductive to a capacitive 
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reactance. If the network is to 1 X. - 800 
handle any great amount of power X3 

2 X2 800 is usually a fixed capacity, X1 and 2 

X2 being inductances adjustable by X2 - 800 = 2X1 - 1600 
taps. Properly adjusted the im- 
pedance facing the load terminals 2X1 = X2 - 800 + 1600 
will measure 600 ohms and facing the 
generator or source 300 ohms both X1 = .5X2 + 400 
being pure resistances. 

600 +j0 

132 

Fig. 19. -- Matching impedances by a 

T network so the resulting impedance 

will be resistive. 

It is evident from Fig. 19 that 
the impedance of X3, in parallel 
with X2 and R2 in series, must 
transform the series impedance of 
X2 and R2 to 300 ohms plus a certain 
amount of capacity reactance. The 
reactance of X1 then will cancel the 
equivalent series reactance of the 
parallel combination and leave only 
the pure resistance facing the power 
source. The problem is to convert 
the parallel part of the network 
facing the load to 300 - jX ohms. 
X1 will then be made equal to -jX 
but opposite in sign. The solution 
is obtained from equations 3 and 5. 

R X + X 

R2 X 

300 X1 + (-800) 

600 X2 + (-800) 

RiR2 = -(X1X2 + XiX3 + X2X3) 

300 X 600 = - [(. 5X2 + 400) X2 + 

(. 5X2 + 400) ( -800) + X2 ( -800)] 

180,000 = - (. 5X22 + 400 X2 - 

400X2 - 320000 - 800X2) 

180,000 = -(.5X22- 800X2 - 320000) 

180,000 = -.5X22 + 800X2 + 320000 

.5X22 - 800X2 - 320000 + 180000 = 0 

.5X22 - 800X2 - 140000 =0 

Multiplying by 2 

X22 - 1600X2 - 280,000 =0 

This is a quadratic equation which 
may be solved by the quadratic 
formula 

X2 = 

-b ± v'b2 - 4ac 

2a 

+1600 ± V16002 - 4(1)(-280000) 
2(1) 

X2 = +1759 or -159 

The equation may also be solved by 
factoring: 

(X2 - 1759) (X2 + 159) = 

X22 - 1600X2 - 280,000 
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(X2 - 1759)(X2 + 159) = 0 
147 x 104L-18.8° 

+ = j 1279. 5 
1130 Z58° If 

X2 - 1759 = 0, X2 = 1759 = j 1279. 5 + 1301 Z-76. 8° 

If = j 1279. 5 + 297 - j 1266 

X2 + 159 = 0, X2 = -159 = 297 + j 13. 5 

The negative value for X2 may be This is very close to 300 ohms pure 

discarded since X2 is known to be resistance. 

positive. Similarly it can be shown that 

If 

X2 = 1759 ohms and X1 = .5X2 + 400 

then 

Xi = (. 5 X 1759) + 400 = 1279. 5 ohms 

Summarizing 

R = 300 ohms 

R2 = 600 ohms 

X1 = 1279. 5 ohms 

X2 = 1759 ohms 

X3 = -800 ohms 

At 1000 Kc/s 

1 1 

C = -- _ 
wX 6.28 x 106 x 8 x 102 

.0002 µF 

X 1279. 5 
L = L = - 204 WH 

1 ce 6.28 x 106 

1759 
L 

2 
- 280 pH 

2 6.28 x 106 

The impedance facing the source is 

-j800(600 + j 1759) 
R =j 1279.5 + 

600 + j 1759 - j 800 

141 x 104 - j 48 x 104 
R1 = j1279.5 + 

600 + 3959 

R2=jX2+ 
R1 + jXl - jX3 

-jX3 (R1 + jX1) 

THE 7r NETWORX. -The Tr network 

is frequently used to couple a 

transmitter to an antenna. Among 

amateurs this circuit is frequently 

referred to as a Collin's coupler. 

Properly designed the circuit has 

excellent harmonic suppression 
qualities. The circuit is shown in 

Fig. 20. When Z2 is inductive and 

Z1 and Z3 capacitive the circuit is 

essentially a low pass filter. The 

network is designed to cuttoff just 

above the fundamental frequency. 
The general expression for the im- 

pedance looking into the circuit is 

Z1 (Z2 + 
7.3 Z4 

) Z3 + Z4 
Z - 

Z + ZZ + 
Z3 Z4 

Z +Z 
3 4 

The various impedances may be partly 

resistive and partly reactive or 
wholly resistive or wholly reactive. 

DESIGN OF A 'r NETWORK. -If in 
Fig. 20. 

Z = R 
1 

Z = R 
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Z1 = X1 (capacitive reactance) 3 and 4. If sufficient coupling is 

to be obtained X2 must not exceed 

Z2 = X2 (inductive reactance) VE17. 
Assume it is desired to couple 

Z3 = X3 (capacitive reactance) an 1800 ohm generator to a 300 ohm 

Fig. 20.--A Tr network used to couple a transmitter to an antenna. 

It can be shown that the following line. 

equations are true 

-X X X 
R1R2 = 1800 x 300 = 735 

R R - 1 x s 
(1) 

1 z X + X2 + 
X3 X2 must not exceed 735 ohms. Assume 

R 
+ 

X 
a value of 650 ohms. Then 

3 1 2 
X (X (2) 

-300 x 650 
R2 X3 

( X1 
X 

2 
) 

X3 - 

300 + (300 X 1800 - 6502 

As in the T network one of the 

reactances must be opposite in sign -195 x 103 

to the other two so that the termi- 643 

nating impedances will be pure re- 

sistances. _ -303 ohms 

It can also be shown that -1800 x 650 
-R2X2 X 

1 
- 

X3 
g + R 

2 (3) 1800 + (300 X 1800) - 6502 

2 1 
R - g 
2 2 

-R1X2 -117 X 104 

X 
R1 + R1R2 - X22 

(4) 2143 

In designing the Tr network X2 

is usually arbitrarily selected and 

X1 and X3 calculated from Equations 

X = -546 ohms 
1 

The complete circuit is shown 

in Fig. 21. 
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If the circuit is designed on 

the basis of the minus sign preced- 

ing the radical in Equations 3 and 4, 

1800 Q 

650 

300 Q 

Fig. 21.-A TI network for harmonic 

suppression. 

then 

X3 - 

-195 x 103 

300 - v' (300 X 1800) - 6502 

-195 x 103 

-43 

= +4535 ohms (X3 must be an 

inductance) 

117x104 
X - 

1 1800 - 343 1457 

-117 x 104 
803 

The resulting circuit is shown 

in Fig. 22. Fig. 21 is the better 

of the two from the standpoint of 

harmonic suppression. With the 

reactances and operating frequency 

known it is a simple matter to 

calculate the required values of L 

and C. 

Another example to illustrate 

the ease of algebraic manipulation 

for the complex quantity is in the 

determination of the impedance look- 

ing into a network involving coup- 

ling. Fig. 23 shows the schematic 

circuit. Z1 is the impedance of the 

generator (R of the tube), Z2 the 

impedance of the primary, Z3 the 

impedance of the secondary, and Z4 

the impedance coupling the two meshes 

together, and which is due to the 

mutual inductance of the two coils. 

In Fig. 23, current It in flow- 

ing through Z2 produces a back 

e. m. f. in that impedance of value 

I 
1 
Z 

2 
but at the same time it 

induces a voltage in mesh 2 of value 

I1Z4, where Z4 is the transfer or 

mutual effect, mentioned above, and 

which specifies how much voltage is 

induced in one mesh due to a current 

flow in the other. The voltage 

induced in mesh 2 causes a current 

I2 to flow in 

rent in turn 

agency of Z4 
which is of a 

that mesh. This cur - 

induces through the 

a voltage in mesh 1 

direction opposite to 

I1Z2, and hence is a voltage rise 

in that mesh. Thus the voltage 

1800 Q 

650 Q 

300 Q 

Fig. 22. -A resulting circuit of a 

Tr network. 

drops in either mesh are the result 

of currents in both meshes, because 

of the coupling between the two 

meshes. The equation of current 
flow for each mesh can be written as 

follows: 

Mesh 1. E = I1Z1 + I1Z2 - I,Z} 

Mesh 2. 0 = -I1Z4 t I2Z3 

(1) 

(2) 

Note that in Mesh 1 the voltage 
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drops (and rises) must total to the 
impressed voltage E, whereas in Mesh 

2 the sum of the voltage drops must 
equal zero, since no voltage is 
directly impressed in this mesh. 

Transposing -í1Z4 in Equation 
(2) and solving for I2 by dividing 

e Load 

Fig. 23. -A schematic circuit. 

both members by Z3 

I1Z4 = I2Z3 

I = 
I1Z 

3 

(3) 

The value of I2 can now be 
substituted from (3) in (1). Thus, 

Z2 
E = 11Z1 + I1Z2 - I 

Z4 
(4) 

3 

Essentially, Equations (1) and 
(2) have been solved simultaneously 
for I in terms of E, Z1, Z2, Z3 and 
Z4, the solution being obtainable 
from equation (4) in one step. 
However, interest at this time is 
not centered upon obtaining the 
value I1, but rather upon determining 
the impedance of the primary circuit 

with the secondary reacting on it. 
This impedance is clearly E /I1 and 
can be found by dividing both 
members of Equation (4) by I. The 

result is: 
E Z2 - =Z 

1 

+Z 
2 

- 
Z4 

(5) 
1 3 

Call the primary impedance Zp. If 
there were no coupling between the 
primary and secondary (Z4 = 0) then 
Z would be simply Z1 + Z2. But if 
there is coupling, then Z is 
changed from the above value to 

Z2 
+ Z á 1 2 rL 

3 

Fig. 24. -Equivalent circuit composed 
of a resistive mesh. 

The additional term, 

Z2 
4 

Z3 

is called the REFLECTED IMPEDANCE. 



ANSWERS TO EXERCISE PROBLEMS 

1. 

4. 

7. 

10. 

13. 

16. 

19. 

22. 

25. 

28. 

31. 

34. 

37. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

51. 

54. 

57. 

60. 

37.2/126° 

1155 /_ 49. 2° 

5.83L-59° 

32 / 180° 

E = 100/-15° 
I = 21 /6° 

6.93 + j 4 

-411 - j158 

-61.5 - j98.4 

0 - j 90 

19 - j.16 

720 /57° 

792 /6° 

20 / 49° 

248 /- 15° 

Rectangular 

13 + j7.5 

7.07 + j7.07 

-100 + j0 

20 + j34.6 

3 - j4 

4 + J3 

8.5 - j8.5 

12.4/15° 

2.24/53.4° 

64 / 102.4° 

6561 /108° 

104 / -80° 

2. 

5. 

8. 

11. 

14. 

17. 

20. 

23. 

26. 

29. 

32. 

35. 

38. 

49. 

52. 

55. 

58. 

50.2 L -84. 3° 

10 / 217° 

13. 5 L -48° 

50 /30° 

98 /-90° 

50 + j80 

-205 -J78.8 

101 + 344. 4 

18.7+j20 

-.841 - j.817 

.00018 L-79° 

62 /25° 

.404/-160° 

Polar 

15/30° 

10 /45° 

100/180° 

40/60° 

5/ -53.1° 

5 /36.8° 

12/ -45° 

5.94/ -39° 

. 136 L1e or 

125000 L 90 

31.6 / 15° 

/-168' 

3. .065 /-22. 6° 

6. 3. 16 /252° 

9. 40 /90° 

12. 10 Z-75° 

15. 37. 5 /48. 2° 

18. 186 } 106 + 

j 235 X 106 

2 1 . 8 . 86 - j 11. 6 

24. -.006 + j0 

27. 48 - j 20. 7 

30. -7 - j4 

33. 9828/210° 

36. 1.25/-17° 

39. 1.64/66° 

Exponential 

15eJ 
360 

100 46° 

1000 180° 

40es66 
5e-i 63. 1° 

5 e i 30. 8° 

12e 
-.1 46 

50. 3.87 / -17.2° 

53. 13/112.6° 

56. 49 L- 100° 

59. . 397 /6.67° 





CONPLFX NOTATION 

EXAMINATION 

1. (A) Convert to polar form: 
-8 + j9 =? 

14 - j7 = 

(B) Convert to rectangular form: 
27 /88° 

50 %210 

2. (A) (49 L34°) (56 L-40°) _ 

(B) (-6 + j 14) (62 L 129°) _ 



COMPLEX NOTATION 

EXAMINATION, Page 2. 

3. 75 L60 °÷ 15 L -35° = ? 

148 L 128 *: 22 L 316° = ? 

4. (9 L-15°)3 = ? 

(8 L90°) 1/3 

5. E = 220 Z 170°, I = 4 Z 100°, Find P. 

E = 20 + j40 volts, I = 3 + j6 amperes. Find P. 



COMPLEX NOTATION 

EXAMINATION, Page 3 

6. 80uH 25 CI (A) Find Z of circuit. 

E = 500 volte 

(B) Calculate power lost in circuit 



COMPLEX NOTATION 

EXAMINATION, Page 4 

7. What is the equivalent series impedance of a 200 ohm resis- 
tance shunted by a . 74F capacitor. F = 1000 c. p. s. 

8. 

Calculate X1 and Xa. Use the 
T- Network formulas and solve 
them simultaneously. 



I 

I 

i 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
i 
I 

I 

I 

9. 

COMPLEX NOTATION 

EXAMINATION, Page 5. 

Rp= 

2000 ii_ x i 500+j 0 S2 

r 

Calculate C1 and C3 

for 1000 Kc /s when 
X2 is 

maximum 
value. 

80% of its 

permissible 



10. 

COMPLEX NOTATION 

EXAMINATION, Page 6. 

l0 Sl 

J100 ß 

A reads 1 ampere what 
is the current in each 
branch of the circuit? 
Find the input imped- 
ance first. 




