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COMPLEX NOTATION; PART 1; OPERATOR J 

INTRODUCTION. -In previous as- 
signments the solution of alternat- 

ing current circuits was analyzed on 

the basis of current and voltage. 

The methods outlined, although some- 

what cumbersome, were considered 

necessary for a thorough understand- 

ing of the basic theory. The stu- 

dent has now had sufficient practice 

in these methods to make the assimi- 

lation of complex notation a simple 

matter. With an understanding of 

the complex number the solution of 

such circuits is simplified. Since 

this method of notation is used ex- 

tensively in the more advanced engi- 

neering texts the student will find 

a knowledge of complex notation a 

great aid to future study. 

The student has observed the 

growing complexity of the AC problem 

when the familiar laws of geometry 

and trigonometry alone are used. It 

remained for the late Dr. Charles P. 

Steinmetz of the General Electric 

Company to foresee the use of the 

complex number to simplify the in- 

volved calculations of a-c circuits. 

He noted that the solution of cer- 

tain differential equations suggest- 

ed the use of the complex operator 

j in expressing the approximate sine 

and cosine waveforms of commercial 

alternating currents. 

The use of complex notation 

simplifies the solution of a-c prob- 

lems and is employed by practically 

all modern engineers. It will be 

evident to the student that this 

assignment offers nothing new in 

alternating current theory; that 

which is new is the compact form in 

which the voltages, currents, or 

impedances are expressed and the 

ready application of the mathemati- 

cal laws to this notation and the 

more direct solutions thus made 

possible. 

THE REAL NUMBER. -The earliest 

mathematicians knew only concrete 

positive numbers. With the further 

discovery of the meaning of the 

negative number and the invention of 

zero the real number system was 

complete. The development of the 

Arabic number system added to the 

completeness of the system. The 

real number system is shown graph- 

ically in Fig. 1. 

It is evident that this system 

can be extended indefinitely to 

include all numbers, positive and 

negative, belonging to the FIELD 

OF REAL NUMBERS. In Fig. 1 any 

given number is greater than any 

number to the left of it and less 

than any other number to the right. 

Thus +8 is greater than +4 but less 

than +9 but +4 is greater than +2 

but less than +7. Similarly -4 is 

greater than -8 but less than -2. 

This is true in the algebraic sense. 

Any number has two values, its nu- 

merical value and its algebraic 

value. The numerical value is often 

called the absolute value and is 

determined without reference to 

sign. The algebraic value is the 

signed value meaning the sign 

(+ or -) must be included as part of 

the number. Thus 1151 means the 

absolute value is 15 and may repre- 

sent either + 15 or-15 in the alge- 

braic sense. 

The field of real numbers may 

be broadly classed as all positive 

and negative numbers including zero. 

These two classes may be further 

subdivided into integral (whole) 

and fractional. Thus 2, 8, 8 are 
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2 COMPLEX NOTATION; PART 1; OPERATOR J 

integral values while 1/2, .5 and 

1.78 are fractional numbers. Integ- 

ral and fractional numbers may be 

either positive or negative. A fur- 

-9 -8 -7 -6 -5 -4 -3 -2 -1 
1 1 1 1 1 1 1 II 

To infinity 
0 

3. Indicate whether the 

following are integral o z.frac- 
tional: 10 -2, 7, 1.36, 6, 3/2, 
-4. 

+1 +2 +3 +4 +5 +6 +7 +R +0 II II 
To infinity 

Fig. 1.-- Graphical representation of real number system. 

ther subdivision of the system is 

rational and irrational numbers. A 

rational number is one whose value 

can be exactly expressed as,ie 
quotient of two integers. 3, V16, 

-10, and 3.2 are rational numbers as 

they could be expressed as 3/1, 
±4/1, -10 /1, and 32/10 respectively. 

A number whose value cannot be ex- 

pressed exactly as the quotient of 

two integers is irrational. Many 

physical and electrical constants 
and all expressions of roots that 
cannot be stated exactly are irra- 

tional. For example, V Tr, 7r/2, 

3 16, and w are irrational numbers. 

From the above definitions it is 

evident that all positive and nega- 

tive numbers, whether integral or 

fractional, rational or irrational, 

belong to the field of REAL numbers 

as shown in Fig. 1. 

EXERCISES 

1. Arrange the following in 

ascending order of their absolute 

magnitude: -18, 27 7.2, -7, 1.78 

-VII, 101'3, log 75. 

2. Arrange the numbers in 

Problem 1 in the descending order of 

their algebraic magnitude. 

4. Indicate whether the fol- 

lowing_are rational or irrational: 

27, V64, 31/64, ° 64, 3/27, b125. 

5. Which of the following are 

(a) integral, (b) fractional, (c) 

rational, (d) irrational (e) posi- 

t9ye, (f) negative: -16, 3/2, -VT,' 

A' (A is any real number;, 19.26, 

32 + 42, V18/27. 

THE IMAGINARY NUMBER. -The 
solution of certain quadratic equa- 

tions yields a result that has no 
meaning where real numbers are 
considered. For example the equa- 

tion X2 + 4 = 0. Transposing, 
X2 = -4 sand extracting square root 

of both sides X = tß/-4. But there 

is no real number which when multi- 

plied by itself (squared) will give 

-4. 

Evidently the number V-4 cannot 
belong to the real number system. 

When this kind of number first ap- 

peared in the solution of quadratics 

the solution was rejected because it 

had no "real" significance. This 

suggested the number belonged to an 

"imaginary" system hence the name 
imaginary number. The name is to be 

regretted because, as will be shown, 

it is not imaginary and has a very 

definite significance. The general 

www.americanradiohistory.com

www.americanradiohistory.com


COMPLEX NOTATION; 

definition of the imaginary number 

is: the indicated EVEN root of a 

negative number. 

Some indication of the meaning 

of the imaginary number appeared in 

the writings of early 18th century 

mathematicians but it remained for 

Argand, a Frenchman, and Wessel, a 

Norwegian, to explain their meaning, 

The graphic representation of imagi- 

nary numbers on a complex plane is 

due to them. About the same time, 

Gauss, a German mathematician,pub- 

lished a paper proving that every 

algebraic equation has a root of the 

form A + Bi where i = V -1 which 

showed the general nature of the 

complex number. Gauss placed the 

study and use of the complex number 

on a sçjentific basis. The number 

A + IV -1 will be a subject of con- 

siderable significance in what fol- 

lows. 

When the significance of the 

imaginary number was understood, it 

was only a short time until the real 

number system was extended to in- 

clude the imaginaries. 

To show the reasonableness and 

consistency of the interpretation of 

the real and imaginary numbers, the 

following geometric and algebraic 

argument is presented. In electri- 

cal work "1" is used as a symbol for 

current su in this discussion the 

letter "j" is used to represent the 

V-11. 

Fig. 2 shows the familiar plane 

of reference used in plotting rec- 

tangular coordinates. YOY' is the 

axis of imaginary numbers while XOX' 

is the axis of real numbers. All 

values to the right of 0 are posi- 

tive, all values to the left nega- 

tive. Since the axis XOX' can be 

extended indefinitely any real num- 

ber can be plotted on it if the 

proper scale is selected. The 

PART 1; OPERATOR J 3 

distance OX will be taken as the 

unit of the real number system. If 

the unit length OX is rotated 180° 

V 
1 

Axis of j 

4/ numbers 

X' 0 X 

Axis of real 

numbers 

v 

Fig. 2.--Plane used to plot rec- 

tangular coordinates. 

counter -clockwise (conventional 
positive rotation) it will occupy 

the position OX' and will now re- 

present the real number -1. The 

geometric operation of rotating 

OX 180° is equivalent to multiplying 

OX by -1. If a second geometric 

rotation of 180° is again performed 

on OX' it will return to the origi- 

nal position OX. This is equivalent 

to the algebraic multiplication of 

OX' by -1. Therefore rotation 

through 180° is the geometric opera- 

tor which produces the same result 

as the algebraic multiplying opera- 

tor -1. 
The operation of rotation 

through 180° may be regarded as the 

result of two equal rotations of 

90° performed in succession on OX. 

THE EQUIVALENT ALGEBRAIC OPERATOR TO 

PRODUCE THE SAME RESULT MUST BE 
MULTIPLICATION BY A NUMBER WHICH 

USED TWICE WILL PRODUCE -1. THE 
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4 COMPLEX NOTATION; 

ONLY POSSIBLE NUMBER WHICH WHEN 

MULTIPLIED BY ITSFYF EQUALS -1 IS 
V -1. Thus -1 -1 = -1. There- 

fore the operation pn OX by the 

algebraic operator - -1 will produce 

the same result as the operation of 

rotating OX 90° geometrically. 
Therefore the -1 is an OPERATOR 
which rotates any vector 90° in a 

positive (counter- clockwise) direc- 

tion. -1 = i = j, hence the name 

"operator j." 

In Fig. 2 YOY' is the axis or 

the imaginary numbers because any 

real number rotated 90° will fall on 

this axis. Hence all j numbers may 

be represented on this axis. The 

positive j numbers are plotted above 

zero while the negative j numbers 

will be plotted below zero. The 

V -1 or j is taken as the unit of the 

imaginary number system. Both systems 

are plotted at right angles and have 

only the point ZERO in common. It 

will be seen that there is nothing 

mysterious or imaginary about the j 

number and a solution of the quad- 

ratic equation X2 + 4 = 0 is now 

possible. 

X2 + 4 = 0 

X2 = -4 

(Considering only X = 

the plus root.) 

X = -1 
X = 2/17 

Since j = V -1 then X = 2j 

Since it is general practice 

to write the j preceding the number 

then X = j2 and this may be plotted 

in Fig. 2 as 2 units above zero on 

the vertical axis YOY'. A REAL 

NEGATIVE NUMBER CANNOT HAVE A REAL 

PART 1; OPERATOR J 

EVEN ROOT so all j numbers are at 

once defined. Thus 1-/-4= 3 = 

j3, = 2V-176- 2V:17= j4, 6 = 
j2 etc. ODD ROOTS OF NEGATIVE NUM- 

BERS ARE REAL AND NEGATIVE, hence 

these numbers cannot be classed as 

j numbers. For example 31/7E7= -3, 

132 = -2, etc. 

EXERCISES 

Classify the following as 

belonging to the real number or j 

number system: 

6. -16, 10, - viT 21V5t 

7. 16, Tr, -27-3, -27- 2 

i 

(-27) II 

8. AZ B2 (Where A > B and 
both are real numbers.) 

9. VA2 - B2 (Where A < B.) 

10. VA2 - B2 (Where A = B.) 

11. j8, j215, j320, Vj2, 

5 + j23. 

PLOTTING REAL AND J NUMBERS. - 
With the real number axis (X axis) 

representing graphically the real 

number system, the position of any 

real number, positive or negative, 

may be readily plotted. The real 

numbers +4, 7, -3, and -1/2 are 

represented on the real axis of 
Fig. 3. In exactly the same way the 

j numbers -j, j4, j; - j2.5 and 
j77 may be plottea (Fig. 3) on the 

Y or vertical axis. Other numbers 

would occupy corresponding positions 

depending on their value. It is 
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COMPLEX NOTATION; PART 1; OPERATOR J 5 

usual, in practice, to use the same 

length for the unit of the j number 

j number axis 

The solution of the equation 
X2 + 2X + 5 gives the roots X = -1 + 

+ 

j4 

jn 

2 j 

j2,.5 

real number 
axis 

Fig. 3. Plot of real and j numbers on the axis. 

system as for the real number sys- 

tem but this is not absolutely es- 

sential. 

THE COMPLEX NUMBER. --The solu- 

tion of the quadratic equation 
I2 = P/R yields the positive root 
I = VP/R. As long as P and R are 

positive, I will be positive and 

real. For example, 160 watts dis- 

sipated in a 10 ohm resistance, 
I = 160/10 or 4 amperes. The solu- 

tion yields a positive pure real 

number. 
The solution of the quadratic 

equation X2 = -4 gives the principal 

root X = or j2 where -4 = 
VT= iVAT = j2. This answer is 

mathematically a positive pure j 

number, CONSIDERING ONLY THE POSI- 

TIVE ROOT. 

j2 and X = -1 -j2. This solution is 

readily effected by the formula for 

the solution of a quadratic equation 

of the form aX2 + bX + c = 0, where 

a, b, and c are real numbers (See 

Algebra assignments). The solution 

of the equation X2 + 2X + 5 is then 

obtained as follows: 

a = 1, b = 2, c = 5 

x _ -b tba - 4ac 
2a 

X_-2±1/21-4 1 5 

X 

2 1 
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6 COMPLEX NOTATION; PART 1; OPERATOR J 

-2 ¡I/ITV-57 

13. 

14. 

j8, 

-3 

-1 

-2 - j13, -12 

+ J10 

- j10, -6, 10 

- j12, 

+ j2 

X= 
2 

X= -Z f4/::17 
2 2 

X = -1 ± 2/-1 

X = -1 + j2 or -1 -j2 

It is important to note that 

the roots of X2 + 2X + 5 area combi- 

nation of a real and a j number. 

Such a number is called a complex 

number and is the general expression 

for any number. If the j part of 

the expression for a number is zero, 

then what is left is the familiar 

real number. Thus the real number 

10 can be written as 10 + JO or -16 

= -16 + j0. It is evident there is 

no necessity for writing the j0 part 

of such a number. With the real part 

of the number equal to zero, the 

complex number becomes a pure imagi- 

nary such as -j4 or +j3 which could 

have been written as 0 - j4 and 

0 + j3. 

To plot the complex number on 

the Argand diagram, it is only 

necessary to find the point whose 

coordinates are the real part and 

the j part. The complex numbers 

3 +.14, -3 + j5, -2 -j5 and 5 - j3 

are plotted as examples on the rec- 

tangular coordinate plane of refer- 

ence in Fig. 4. 

EXERC ISES 

Plot the following as rectangu- 

lar coordinates: 

12. 3 - j6, 5 + j5, 16 + j0, 

- V16 

15+ j, 17 -j3 
Find the roots of the following 

and express as complex numbers: 

15. 3X2 +X -17 =0 

16. X2- 9X +8 =0 

17. 7X2 +2X+ 12 = 10 

18. 4X2 + 6X = 24 

19. X2 -X -1 =0 

20. X2 + 2X = 2X - 3X2 - 64 

APPLICATION OF THE OPERATOR 
J. -The student has observed that 
the j axis is at right angles to the 

real number axis and that the com- 

plex number is nothing more than a 

method of stating the rectangular 

coordinates of a point. He has seen 

the effect on a real number of the 

rotational operator J. For example, 

the real number 10 when operated on 

(that is, multiplied by) by j be- 

comes j10 and is now at right angles 

to its former position on the Argand 

diagram. Operation by j a second 

time produces j j10 or j210. 
Since j = then .12 - V.-1)2 or 

-1 and hence f 10 = -1 10 or -10. 
These two operations by j have pro- 

duced a 180° rotation. A third 

operation will produce -j10 again a 

90° rotation and a fourth operation 

-j210 = -(0210 = -( -1) 10 = 

1 x 10 or 10. This fourth operation 

brings the number to its original 

position. The evident conclusion is 

that +j is a rotational operator 

www.americanradiohistory.com

www.americanradiohistory.com


 

OPERATOR J- SUPPLEMENTARY NOTES 5 

sary to reduce R' (Fig. 5) to Z., 

Eq. (7) may be used, substituting R' 

for R and Z. for R.. But we al- 

ready have C' (Fig. 5) which can 

be calculated from X'. C" will 

then be equal to C - C'. Thus 

the resistance of the antenna 

of Fig. 6. X of the combination 

X ", X' and RF may be calculated 
from Eq. (4) by making the proper 

substitutions. 

This is a particularly con- 
venient method of coupling to use 
when the transmitter power is low so 

Fig. 4. Fig. 5. 

has been reduced to the impedance 

of the transmission line. But 

the line must be terminated in 
a pure resistive impedance so 
X must be inserted to cancel X 

Fig. 6. Fig. 7.-- Actual Circuit. 

that X" can be a variable condenser. 

In high power installations where X" 

must be a fixed condenser the method 

shown on the sheet "A T NETWORK FOR 

ANTENNA COUPLING" is more often used. 
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COMPLEX NOTATION; PART 1; OPERATOR J 5 

usual, in practice, to use the same 

length for the unit of the j number 

j number axis 

--3 

The solution of the equation 

X2 + 2X + 5 gives the roots X = -1 + 

+ 

- j4 

- in 

0 
_i 

- -j2.5 

in 4 
real number 

axis 

Fig. 3. --Plot of real and j numbers on the axis. 

system as for the real number sys- 

tem but this is not absolutely es- 

sential. 

THE COMPLEX NUMBER. -The solu- 
tion of the quadratic equation 
I2 = P/R yields the positive root 
I = VP/R. As long as P and R are 

positive, I will be positive and 

real. For example, 160 watts dis- 

sipated in a 10 ohm resistance, 

I = 1/160/10 or 4 amperes. The solu- 

tion yields a positive pure real 

number. 
The solution of the quadratic 

equation X2 = -4 gives the principal 

root X = or j2 where V-4 = T 
1/4-= j,'4 = j2. This answer is 

mathematically a positive pure j 

number, CONSIDERING ONLY THE POSI- 

TIVE ROOT. 

j2 and X = -1 -j2. This solution is 

readily effected by the formula for 

the solution of a quadratic equation 

of the form aX2 + bX + c = 0, where 

a, b, and c are real numbers (See 

Algebra assignments). The solution 

of the equation X2 + 2X + 5 is then 

obtained as follows: 

a = 1, b = 2, c=5 

x _ -b t/b2 - 4ac 

2a 

X 
_ -2 ±/22 -4 1 5 

X 

2 1 

-2 36/:17r 

2 

www.americanradiohistory.com

www.americanradiohistory.com


6 COMPLEX NOTATION; PART 1; OPERATOR J 

-2 ili1761/7-17 
X= 

2 

X=-2t4/.:17 
2 2 

X = -1 ± 2/-1 

X = -1 + j2 or -1 -j2 

It is important to note that 

the roots of X2 + 2X + 5 area combi- 

nation of a real and a j number. 

Such a number is called a complex 

number and is the general expression 

for any number. If the j part of 

the expression for a number is zero, 

then what is left is the familiar 

real number. Thus the real number 

10 can be written as 10 + j0 or -16 

= -16 + j0. It is evident there is 

no necessity for writing the j0 part 

of such a number. With the real part 

of the number equal to zero, the 

complex number becomes a pure imagi- 

nary such as -j4 or +j3 which could 

have been written as 0 - j4 and 

0 + j3. 

To plot the complex number on 

the Argand diagram, it is only 

necessary to find the point whose 

coordinates are the real part and 

the j part. The complex numbers 

3 +J4, -3 + j5, -2 -j5 and 5 - j3 

are plotted as examples on the rec- 

tangular coordinate plane of refer- 

ence in Fig. 4. 

EXERC ISES 

Plot the following as rectangu- 

lar coordinates: 

12. 3 - j6, 5 + j5, 16 + j0, 

- 

13. j8, -2 - j13, -12 - j12, 

-3 +j10 

14. -1 - j10, -6, 10 + j2, 

15 +j, 17 -j3 

Find the roots of the following 

and express as complex numbers: 

15. 3X2 +X - 17 = 0 

16. X2 - 9X +8 =0 

17. 7X2 + 2X + 12 = 10 

18. 4X2 + 6X = 24 

19. X2 -X -1 =0 

20. X2 + 2X = 2X - 3X2 - 64 

APPLICATION OF THE OPERATOR 
J.- -The student has observed that 

the j axis is at right angles to the 

real number axis and that the com- 

plex number is nothing more than a 

method of stating the rectangular 

coordinates of a point. He has seen 

the effect on a real number of the 

rotational operator J. For example, 

the real number 10 when operated on 

(that is, multiplied by) by j be- 

comes j10 and is now at right angles 

to its former position on the Argand 

diagram. Operation by j a second 

time produces j j10 or j210. 
Since j = then J2 - 64-1)2 or 

-1 and hence f 10=-1 10 or -10. 

These two operations by j have pro- 

duced a 180° rotation. A third 

operation will produce -j10 again a 

90° rotation and a fourth operation 

-j210 = -0)210 = -( -1) 10 = 

1 x 10 or 10. This fourth operation 

brings the number to its original 

position. The evident conclusion is 

that +j is a rotational operator 
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COMPLEX NOTATION; PART 1; OPERATOR J 7 

producing a 90° counter -clockwise 

rotation on any number on which it 

operates. By a similar process it 

while the operator -j produces a 

90° clockwise or -90° rotation. 

The cyclic variations of suc- 

Axis of reals 
I I 

5-j3 

-2 -j5 Argand Diagram 
or 

Complex Number Planre 

Fig. 4.-- Plotting of complex numbers, Argand Diagram. 

can be shown that -j is an operator 

producing a CLOCKWISE rotation of 

90° on any number. 

This rotational property is not 

confined to the use of a pure real 

or pure j number. It affects com- 

plex numbers in the same way. The 

complex number 3 + j4 is shown 

graphically in Fig. 5. The effect 

of operating on 3 + j4 is also 

shown. The complex number -4 + j3 

is the result of multiplying 3 + j4 

by J. The operation is performed 

as follows: j(3 + j4) = j3 + j24 = 

j3 + ( -1) 4 = j3 -4 = -4 + j3. 

Operation on 3 + j4 by -j would 

produce a 90 degree CLOCKWISE ro- 

tation praducing the complex number 

4 - j3 I.y the same process. It will 

be seen that the operator j produces 

a 90° counter- clockwise rotation 

cessive operations with the opera- 

tor j shows that j = -1, j2 = -1, 

j3 = -VT and j4 = +1, etc. The 

effect of any number of operations 

may be concisely stated: j4" + , 
= 

j° where n is the number of complete 

cycles and the "a" part of the ex- 

ponent is the remainder of uncom- 

pleted operations for any value of 

exponent of j. Thus the effect of 

14 operations by j or j14 is 
j4(3)+2 

= j2 = -1 which means that the num- 

ber has made three complete rotations 

plus one additional 180° rotation. 

Hence 14 operations by j is the same 

as 2 operations or multiplication of 

the original number by -1. In the 

expression j4" + °, the value of n 

is found by dividing the exponent 

of j by 4 and using the REMAINDER as 

the new exponent of J. By similar 
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8 COMPLEX NOTATION; PART 1; OPERATOR J 

reasoning j' = j3 = -j, j9 = j; etc. 

The following powers of j are 

point of origin. In polar coordi- 

nates the distance of the end point 

Fig. 5...-Operating on 

of great importance and should be 
committed to memory: 

j = 
ja= -1 

j3= - V-1 

j4= 1 

USE OF OPERATOR J IN VECTOR 
ANALYSIS. --A vector nas been defined 

as a quantity having both magnitude 

and direction. It has also been 
shown that a vector canbe completely 

defined in either rectangular or 

polar coordinates. (See Vector 

Analysis). The rectangular coordi- 

nate system gives the abscissa and 

ordinate values of the end point of 

the vector, where the initial point 

is understood to be located at the 

3 + j4, multiplication by j. 

of the vector from the point of 
origin is taken as the magnitude of 
the vector. The direction is given 

by the angle between the vector and 
the horizontal axis to the right of 

the vertical bisector or Y axis. In 

this case positive angles are mea- 

sured in a counter -clockwise direc- 

tion from OX (Fig. 2) while negative 

angles are measured in a clockwise 
direction. Polar coordinates are 
readily converted to rectangular 
coordinates by the rules of trigo- 
nometry. Thus a vector inclined 
53.1° to the positive real axis and 
5 units long would be exactly de- 
fined in terms of the real ana j 

axis coordinates which are 3 and j4. 

(See Fig. 4). In this case the real 

part is the adjacent side of a right 
triangle having a hypotenuse 5 units 
long. Adjacent side equals hypote- 

nuse times cosine of the angle or 
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5 Cos 53.1 = 3 units. The j part is 

the opposite side of the same right 

triangle or 5 Sin 53.1 or j4 units 
(j4 units because the ordinate is 

plotted on the j axis). Obviously 

complex notation is a very conven- 

ient method to use with vectors. 

Specifically, voltages and 

currents, as treated in electrical 

work, are time vectors. The effect 

of reactance is such that it causes 

a 90° relationship between it and 

the effects of resistance. The 

component of line current through a 

resistance is always in phase with 

the voltage across it. This resis- 

tive drop component of voltage is 

taken as the real part of the com- 

plex expression for the voltage in a 

series circuit. The current through 

any reactance either leads or lags 

the applied voltage by 90° depending 

on the character of the reactance. 

The component of the line voltage 

across the reactance is taken as the 

j part of the complex number. For 

example, if there exists in a series 

circuit a resistive drop of 30 volts 

and an inductive drop of 40 volts, 

then the vector expression for the 

voltage is E = 30 + j40 volts. If 

the reactive drop had been capaci- 

tive instead of inductive only the 

sign of the j term would be changed 

or E = 30 - j40 volts. The line 

voltage is the_ vector sum of these 

voltages or V302 + 402 = 50 volts. 

In the first case the line current 

would lag the line voltage, in the 

second I would lead E. The vector 
diagram for the two cases is shown 

in Fig. 6. 

The same notation may be applied 

to current. In the parallel circuit 

the applied voltage is the same 

across all branches and the line 

current is the vector sum of the 

branch currents. In a two branch 

PART 1; OPERATOR J 9 

circuit in which one branch contains 

only resistance and the other only 

inductance the line current may be 

+j40 

-j40 

E = 30+j40 

30 

E = 30-j40 

Fig. 6. --Plot of I leading or lag- 

ging line voltage (I reference). 

expressed as the vector sum of the 

two branch currents. The line volt- 

age is taken along the axis of reals 

and the two currents are plotted in 

reference to it as shown in Fig. 7. 

10 
E 

-j8 ' 1 = 10-jS 

Fig. 7.--Plot of I lagging line 

voltage (E reference). 

The resistive branch current is 

VD amperes and is in phase with the 

line voltage and will therefore fall 

on the real axis. The inductive 

1 
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10 COMPLEX NOTATION; 

branch current is 90° lagging and so 

is taken along the -j axis. This 

current is 8 amperes and is written 

as -j8. The complex expression for 

the two currents is I = 10 - j8 

amperes and the line current is the 

v ctor sum of the branch currents is 
V1 + 8 = 12.8 amperes. The line 

current lags the line voltage. 

Summarizing, a resistive com- 

ponent of voltage or current is seen 

to be the real part of the complex 

expression for E or I and the reac- 

tive component is seen to be the j 

part of the expression. It must not 

be assumed that the line voltage or 

line current will always fall on the 

positive real axis. In the cases 

cited, they have been so taken for 

ease of explanation. 

EXERCISES 

Determine the value of the 

following in terms of j less than 
j4 

21. 
j6' jB' j18' j36' jlll 

22. Locate the vector 5 - j7 

on the complex plane. State the 

complex number representing the 
vector for each of three successive 

operations by J. 

23. A certain voltage is the 

vector sum of 55 volts resistive 

component and 88.7 volts inductive 

component. The line current is 

taken along the real axis. Write 

this voltage in the complex form and 

draw a vector diagram to show the 

relation of E and I. Any value of 

I may be assumed. 

24. A voltage is found to be 

19 - J5 volts while the current _is 

PART 1; OPERATOR J 

found to be 8 - j8 amperes. Locate 

these on the complex plane. Is the 

circuit inductive or capacitive ?. 

25. A technician reported the 

voltage in a circuit as 10 - j4 

volts and the current resulting from 

that voltage as 1 + j10 amperes. 

Plot E and I and show that the values 

stated give an impossible result. 

26. The voltage is given as 

173.2 + j100 volts and the current 

as 5 + j8.66 amperes. 

(a) Plot E and I and determine 

angle of lead or lag. 

(b) Determine magnitude of E 

and I. 

27. In a certain problem the 

current is expressed as 15 Cos 40° + 

j15 Sin 40 °. Reduce this expression 

to the explicit rectangular form and 

plot. 

28. i = 10 [Cos ( -10 °) + j 

Sin (- 10 °)]. Reduce this expression 

to the explicit rectangular form and 

plot. 

29. The current is of unit 
value and taken along the real axis. 

This unit current flows through a 

10 ohm resistance in series with a 

200 millihenry inductance. The fre- 

quency of the supply voltage is 20 

cycles per second. Write the expres- 

sion for the supply voltage in the 

rectangular form. 

30. In a series circuit 
containing L, C, and R the resis- 

tance drop is 60 volts, the induc- 

tive reactive drop 48 volts and 

the capacity reactive drop 80 volts. 

Write the complex expression for 

line E and plot on the complex 
planct. 
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IMPEDANCE IN THE COMPLEX 
FORM. --The impedance of a circuit 

is the combined opposition to cur- 

rent flow of reactance and resis- 

tance. The calculation of impedance 

when R and X are known has been 

explained in earlier assignments. 

Determination of angle of lead or 

lag was also covered in these same 

assignments. The complex notation 

employed for expressing current or 

voltage vectors can also be applied 

to impedance with equal facility. 

However impedance is not a vector 

but rather an operator. That is, 

impedance so operates on the voltage 

applied to a circuit to allow a 

current of definite magnitude and 

phase difference angle in respect 

to the applied voltage. This dif- 

ference does not impair the useful- 

ness of complex notation in connec- 

tion with impedance. 

Since resistance acts on the 

voltage or current to cause a phase 

difference angle of zero degrees 

(in phase), the resistive component 

of the impedance will be taken along 

the axis of real numbers. Similarly 

since reactance causes a 90° phase 

difference angle between E and I, 

this component will be taken along 

the j axis. INDUCTIVE REACTANCE IS 

ALWAYS CONSIDERED POSITIVE AND 
CAPACITIVE REACTANCE NEGATIVE. Thus, 

in complex notation a circuit which 

has resistance and inductive react- 

ance will be written Z = R + jX 

ohms while for a circuit with capa- 

city reactance it will be written 

Z = R - jX ohms. It is evident from 

the above that the general form for 

impedance in rectangular coordinates 

is Z = R + j(XL - Xc) where X, and 

X are the magnitudes of the 

reactances. Eor example, consider 

a circuit of 24 ohms resistance and 

19 ohms of inductive reactance. 

PART 1; OPERATOR J 11 

This is written Z = 24 + j19 ohms. 

Another circuit has 8 ohms of resis- 

tance and 30 ohms of capacitive 

reactance. This is expressed 
Z = 8 - j30 ohms. In a circuit con- 

taining both inductive and capaci- 

tive reactance, the usual conven- 

tions are followed to determine the 

predominating reactance by taking 

the algebraic sum of the reactances. 

A coil, capacitor, and resistance 

are connected in series, XL = 36 

ohms, X° = 22 ohms, and R = 16 ohms. 
The impedance would be written 

Z = 16 + j (36 - 22) or Z = 16 + J14 

ohms. If X = 36 ohms and X = 22 

ohms then Z = 16+ j(22 -36) = 16+ 
j ( -14) = 16 - j14 ohms. 

When the inductance or capacity 

is given together with the frequency 

of the applied voltage, the react- 

ance is computed in the usual manner. 

For a coil of 2 henries connected 

across a 60 cycle voltage source 

XL = 2nFL or 754 ohms. A 2 µF con- 
denser in the same circuit would 

offer a reactance of Xe = 1 /27rFC or 

1325 ohms. Since inductive react- 

ance is associated with a plus sign 

and capacitive reactance with a minus 

sign the reactance would be written 

as +j754 ohms and -j1325 ohms. If 

the coil and condenser were in 

series with a 100 ohm resistance the 

total impedance would be in complex 

notation Z = 100 + j(754 - 1325) = 

100 + j (-571) = 100 - 1571 ohms. 

Reflection on what has been 
discussed so far in this assignment 

will reveal that complex notation 

is simply a system for writing the 

X and Y components of vectors. It 

will be recalled that the resultant 

of several vectors was calculated by 

determining the horizontal (X) and 

vertical (Y) component of each vec- 

tor, adding these components in the 

proper algebraic form and then 
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12 COMPLEX NOTATION; 

determining the vector which is the 

resultant of the total vertical and 

horizontal components. This last 

step was made by applying the Right 

Triangle Theorem. In the system of 

writing vectors by the real and j 

axis components, the last operation 

mentioned above is not taken when 

the result is to be left in the 

rectangular coordinate form, that is, 

the vector is considered to be 

completely defined in terms of its 

X and Y components. Just why this 

is done will be evident from the 

discussion of addition and subtrac- 

tion of complex numbers to follow. 

EXERC.ISES 

31. A series circuit contains 

80 µH inductance and .003 µF capa- 

city. R = 120 ohms and F = 400 KC /s. 
Write the impedance in complex form. 

32. Write the complex expres- 

sion for the Impedance of the cir- 

cuit in Problem 31 at resonance. 

33. Write the complex expres- 

sion for the impedance of the cir- 

cuit in Problem 31 at 100 KC /s be- 

low resonance. R is assumed to be 

constant. 

34. Write the complex expres- 

sion for the impedance of the cir- 

cuit of Problem 31 at 50 KC /s above 

resonance. R is assumed to be con- 

stant. 

ADDITION OF COMPLEX NUMBERS. -It 

has been shown that voltages, cur- 

rents and impedances can be written 

in the complex form. It is often 

necessary to combine factors of the 

above by addition or subtraction. 

In earlier assignments this was done 

PART 1; OPERATOR J 

by geometric addition. The same 

fundamental idea is preserved with 

complex numbers. If the voltages, 

currents or impedances are expressed 

in rectangular coordinates their 

addition or subtraction is relative- 

ly simple. If not in rectangular 

coordinate form it will be necessary 

to put the expressions in that form 

before carrying out the process of 

addition or subtraction. 

In earlier work of adding or 

subtracting quantities representing 

voltage, current or impedance it was 

necessary to find the X and Y axis 

components. From what has been 
shown it is evident the complex 

expressions for these quantities are 

already expressed as the geometric 

sum of the X (real) and Y (j) 

components. Thus all that is neces- 

sary is to add the real and j parts 

separately and express the sum in 

the same form. Algebraic addition 

is used meaning the sign of the 
terms must always be considered. It 

must be remembered that ONLY LIKE 

THINGS CAN BE AIDED. Never attempt 

to add voltage to current, current 

to impedance, or some other improper 

combination. 
Two voltages 30 + j40 and 25 + 

j25 are added as follows 

30+ j40 
25 + 125! 

55 + j65 

Write the expressions in the usual 

manner for algebraic addition - 
Add the real and j parts separately 

taking cognizance of the sign of 

each term. 

The sum is 55 + J65 volts. The 

results of this addition are shown 

graphically in Fig. 8. Note that 

the result is the familiar parallel- 

ogram of forces. Other examples are 
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Add 
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10 - j14 

5 + jll 

16+ j4 
3 - j8 

34 - j7 

3 - j16.4 

10 - j9.0 

14+ j0.0 
0 + 126.5 

27 + j1.1 

Where one or the other component is 

zero, it is not necessary to write 

55+j65 

Fig. 8.-- Addition of vectors. 

REGARD TO SIGN OF EACH TERM AND 

WRITE THE SUM AS THE J PART OF THE 

ANSWER. 

Add 

EXERC:ISES 

35. 4+ j9 
-7 + j8 

- j10 

18- j22 

36. 7 - j91 

27+ j42 
0- j7 

-20+ j51 

37. 0 - j4.3 

7.9 - j26.1 

43 - J72 

8 + J37 

38. 17 - j26.1 

49+ j18.3 
-27 + J29 

14 - J31 

39. 111 - J1356 

79 + j899 

167 - j742 
0+ j641 

that part as zero but by so doing 

the chances of error are reduced. 40. 12 - j.76 

Normally 0 + j26.5 is written simple 13.8 - j7.89 

j26.5. 72 +j64.1 

RULE: ADD THE REAL PARTS OF EACH 37 + j19.4 

VECTOR WITH DUE REGARD TO SIGN OF 
EACH TERM AND WRITE THE SUM AS THE 

REAL PART OF THE ANSWER. ADD THE J SUBTRACTION OF COMPLEX NUM - 

PARTS OF EACH VECTOR WITH DUE BERS. -Two complex numbers may be 
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14 COMPLEX NOTATION; PART 1; OPERATOR J 

subtracted by subtracting the real 

parts and the j parts separately. 

Algebraic rules for subtraction are 

followed. For example subtract 
10 + j40 from 60 + j30. Write the 

two numbers in the usual way for 

subtraction. 

60+ j30 
10 + j40 

50- j10 

Subtract the real and j parts 
separately. The result of this sub- 

traction is shown geometrically in 

Fig. 9. To subtract vectors geomet- 

rica9ly rotate the vector represented 

10+j40 

/ 

60+j30 

50-j10 

i% 

-10-j40 

Fig. 9.- Subtraction of vectors. 

by the subtrahend 180° and then add 

to the minuend. To reverse the 

vector 10 + j40 it is necessary to 

multiply by j2 or -1, This gives 

-10 - j4ß as shown by the dotted 

line vector in Fig. 9. Adding -10 

-j40 to 60 + j30 gives 50 - j10. 

Again the familiar parallelogram of 

forces is evident. The results ob- 

tained algebraically are the same as 

those obtained geometrically. The 

complex number shows the intimate 

connection between algebra and 

geometry as applied to vectors of 

time or space. 

EXERCISES 

41. 37 - j40 from 180 + j90 

42. 62 - j18.9 from 70 - j43.6 

43. 73 + j48 from 169 - j66 

44. -107 - J19 from 260 - J96 

45. 17.9+ j74 from -8 + j19 

Check the answers to the above prob- 

lems by means of geometric subtrac- 

tion. 

MULTIPLICATION OF COMPLEX NUM- 

BERS.--The multiplication of complex 

numbers involves the same fundamen- 

tal algebraic ideas as multiplying 

any polynomial expressions. It is 

suggested that the student review 

algebraic multiplication as given in 

Algebra, if there is any difficulty 

experienced in understanding the 

following explanation. 
The following side by side 

examples will show the similarity 

between multiplying 
'X - 2Y) and 

Step 1 

Step 2 

Step 3 

Step 4 

(2X + 3Y) by 

(2 + J3) by (1 - J2) . 

(a) 

2X + 3Y 

X-2Y 
2R2 + 3Xy 

- 4XY - 6Y2 

Step 5 2X2 XY 6Y2 

(b) 

Step 1 2 + J3 

Step 2 1 - 12 

Step 3 2 + j3 

Step 4 - j4 - 126 

Step5 2- j1- j26 
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Note the similarity of the 
steps. Step 1 consists of writing 

the multiplicand. Step 2 consists 

of writing the multiplier directly 

under the multiplicand in the usual 

manner. Step 3 is the first series 

of partial products obtained in 

(a) by multiplying (2X + 3Y) by X 

and in (b) by multiplying 2 + j3 by 

1. Step 4 is the second series of 

partial products obtained in (a) by 

multiplying (2X + 3Y) by -2Y and in 

(b) by multiplying (2 + j3) by -j2. 

The partial products are arranged in 

columns of similar terms. Step 5 is 

the result when the partial products 

are added. The final step for the 

multiplication in (b) is the evalua- 

tion of the j2 term. 
J2 

C 1 
)z 

and substituting this value in the 

expression 2 - jl - j26 gives 
2- j 1- ( -6) = 2- j l+ 6= 8- j 1 

or simply 8 - j the 1 being under- 

stood in the j term. At times, when 

dealing with circuits in general, it 

is convenient to write the quantity 

in general terms such as Z = R + jXL 

for the impedance of a certain cir- 

cuit and Z = R - jXe for another 

circuit. If the product of these 

impedances is desired they are mul- 

tiplied in the same manner as in the 

previous examples. 

R + jXL 

R - jXe 

R2 + jRXL 

- jRXe - J2XLXe 

R2 + j L - j 
RXc 

- j 2XLXc 

jRXL - rjRXe can be factored 

thus j[R (XL - Xe) ] and -j 2XLXe = 

-( -1) XLX = +X Xe. The real terms 

may be written together (and usually 

are) so the final product would be 

written as Rz+ X Xe + j R [ (XL -X)]. 
The real part of this expression is 
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R2+ XLXe and the j part j R[ (XL - 

Xe)] 
It does not always happen that 

both the real and j parts will 

appear in the answer. In fact, a 

very important application (to be 

shown later) is illustrated in the 

following problem. Find the product 

of 13 + j8 and 13 - j8. 

13 + j8 

13-18 
169 + J104 

- j104 - 1264 

169 + j0 - j264 = 

169 - ( -1 64) = 169 + 64 = 233 

The product of (13 + j8) 
(13 - j8) yields a product entirely 

real. 

Another case where the product 
of two j numbers gives a real number 

is the product of any two pure re- 

actances. For example jXL times 

-jXe gives -j2XLXe or -( -1) XLXc = 

X X 
e 

a real number. 

In the parallel circuit one 

method of solution takes the form f 

(Partial product for R(R + jXL) 
(Partial product for -jXe (R + jXL) 

(Sum of partial products) 

where Z and Z2 are the individual 

impedances. mpedances. Fig. 10 show:: 

the circuit. The impedance of the 

inductive branch is R + ,jXL. The 

capacitive branch is considered to 

have zero loss (Resistance) so the 

impedance will be pure capacitive 
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reactance -jXc. The impedance of 

the circuit will then be: 

Z 
= R + jXL + (-jXc) R + j (xz X) 

(R + jXL) (-JXe) XLXe - jRX 

Both addition and multiplica- 

tion were used in the above since 

Fig. 10.- Sample parallel circuit 

showing notation used. 

the numerator is the product of the 

branch impedances and the denomina- 

tor their sum. 

When the complex numbers are in 

rectangular coordinates the division 

is indicated in the usual fractional 

form. Thus to divide 3 + j4 by 
2 + j3 the division is indicated by 

writing 

3.+ 
2 + j3 

The numerator and denominator are 

then multiplied by the CONJUGATE of 

the denominator to complete the 

division. The conjugate of the de- 

nominator is the denominator with 

the sign of the j term reversed. 

Thus the conjugate of 2 + j is 2 - j; 

o f 3 + j 4 i s 3 - j4; of R+ jXis 
R - jX; etc. The division of 
3 + j4 by 2 + j3 is carried out as 

follows:. 

3 + j4 X 2 - 13 _ 13 +_14) (2 - 13) _ 

2+ j3 2-j3 (2+j3)(2-j3) 
18 - i 

13 
This result will be the subject 

of further discussion later in this 

assignment. 

E XERCISES 

The resulting fraction 

18.- 1 

13 

is then written as two fractions by 

46. (10 - j9) (12 + j7) = ? splitting the numerator into a real 

part and a j part: 

47. (13 + j22) (13 - j22) = ? 

18 j 

48. (29 - j 16) (32 - j 16) = ? 13 13 

49. (7.8 + J14) (9.6 + J6.8) = ? This can be further simplified by 

reducing the fractions to decimals 

50. 3(1 + j4 (2-J7) (0 + j14) = and is the preferred method 

DIVISION OF COMPLEX NUMBERS.- - 

Division, the inverse of multiplica- 

tion, is not quite as simple as 

multiplication of complex numbers. 

lE -j i = 1.38 - j.077 
13 13 

It will be seen that this is a 
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different kind of division than 

ever before encountered, except 

when dealing with fractions having 

a radical in the denominator. The 

process of division is considered 

accomplished when the j number has 

been removed from the denominator. 

This method of dividing complex 

numbers is normally employed in 
practice only when dealing with 

general algebraic expressions in- 

volving literal quantities only. 
For the division of circuit values 

another method of writing the complex 

number will be used and the division 

accomplished in a different manner. 

Where literal complex numbers are 

invIllved division by the conjugate 

method is usual. A knowledge of 
this method is required to under- 

stand the derivation of complex 
formula often found in advanced 
textbooks. Suppose it is necessary 

to find the reciprocal of R + jXL. 
This is accomplished as follows: 

1 1 p.- iX,, 

R+ jxL R+ jXL R- jXL 

R - jXL 
R2 +X a 

L 

This may be split into a real and a 

j part thus, 

R X 

Ra + XL2 j Ra + XL 1 

The process outlined above for 

the general case maybe specifically 
applied to any problem with numeri- 

cal coefficients. Consider the 

parallel circuit with circuit values 

as shown in Fig. 11. The values 

shown are typical of modern tank 

circuit design where a moderate 

17 

VA/W ratio is permissible. In this 

problem R is considered constant for 
frequencies off resonance. This is 

F = 1000 KC/s 

91.8µH 

115 a 

Fig. 11.- Parallel circuit with ac- 
tual values given. 

not strictly true in practical 
circuits because R is a function of 

frequency but will be satisfactory 

to demonstrate the practical appli- 

cation of complex numbers in a -c 

problems. 
At a frequency of 1000 kc 

106 _ = 598.8 
6.28 X 1 X 266 

Note: When frequency is ex- 

pressed in megacycles and capacity 

is micromicrofarads the capacitive 

reactance formula may be written 

X _ 106 ohms 
° 2n FmC CupF 

The coil reactance at 1000 KC /s 

is 

XI= 6.28 X 1 X 91.8 = 576.5 ohms 

Note: When frequency is in 

megacycles and inductance in micro - 

henries the inductive reactance for- 

mula may be written 

XL=2rrFm°Lµg 
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The impedance of the capacitive 

branch is Z, = -j598.8 ohms and of the 

inductive branch ZL = 115 + j576.5 

ohms. The total parallel circuit 
impedance at 1000 KC /s is 

Z 
(R + jXL) (-jXe) 

(R + jXL) + (-jXc) 

XLXc - jRXc 

R +jOCL - Xe) 

(576.5 X 598.8) -j (115 X 598.8) 

115 +j (576.5 -598.8) 

345,000 - j68900 

115 - j22. 3 

The entire fraction is then 

multiplied by the conjugate of the 

denominator to complete the division. 

(345.000- j68900) (115 + j22.3) 
Z = 

(115 - j22.3)(115 + j22.3) 

41, 377, 000 + j 230, 000 

1152 + (22.3)2 

41, 377, 000 + j230,000 
-2995 + i 16. 74 

ohms, 13754 

for practical work 

Z = 3000 ohms 

The result of the calculations 

show 1000 kc is very near to the 

frequency of resonance because the j 

term, that is the reactance, is very 

nearly zero. 

For a frequency other than 

resonance it will be round that the 

resistive part of the impedance will 
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be decreased while the reactive part 

of the complex expression will in- 

crease. If frequency is taken as 

950 KC /s with all other factors re- 

maining constant the reactances of 
C and L are found to be -630 and 
547 ohms respectively. Z, = -j630 

ohms and ZL = 115 + j547 ohms. 

Z = Ci15 + .1547) (-1630) _ 

115+ j (547 - 630) 

45720000 + j20250000 

20100 

2270 + j1007 ohms 

The resistive part of the im- 

pedance has decreased to 2270 ohms 

but the reactive part has increased 

from almost zero to 1007 ohms. Note 

that the positive sign of the react- 

ance agrees with the theory that a 

parallel circuit operated below 
resonance has an impedance that is 

inductive in character. 

Referring to the discussion of 

Fig. 10, it was shown that the gen- 

eral expression for the impedance of 

a parallel circuit was 

XLXe - jRXe 

Z R+ j(XL - Xc) 

It should now be evident that 

the next step in clarifying this 
expression is to eliminate the j 

number in the denominator of the 
fraction or in other words to carry 

out the division. This process is 

often referred to as rationalizing 

the denominator. The numerator and 

denominator will both be multiplied 

by AL- j (X - Xe) , the conjugate of 

the denominator. This process will 
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be carried out in detail. 

Z = XLX` - jRX` . R-j (XL 
-X°) 

R+ j(XL - Xc) R- j(XL - Xc) 

The multiplication for the 

numerator is: 

XLXc - jRXc 

R - jXL + jXc 
RXLXc - jR2Xc 

-RXLXc -jXL2Xc 

RX2 + j(X xc2 XL2Xe - R2Xc) 
Z = R2 + ) 

19 

(Remove parenthesis by multiplying term 

by term as in any algebraic multiplication.) 

(Multiplying by R.) 

(Multiplying by -jXL.) 

(Multiplying by jXe) 

(Adding partial products.) 

+ j XLXc z RX z 

qR2X _jXL2Xc jXLXcz .+, Rxc2 

The product of the numerator 

and the conjugate of the denominator 

is seen to be an expression of four 

terms one of which (R)Ç2) is the 

real number part and the other three 

are the j part. The j terms may be 

written as one term by factoring j 

from each term to get j(XLXc2 -XL2Xc 

- RZXc). The complex expression is 

then written 

RXc 2 + j (XLXc 2 - XL2Xc - R2 Xe ) 

The multiplication for the 

denominator is: 

R j(XL -X.) 
R - j(XL - Xc) 

R2+ jR(XL - Xc) 
j2 

(XL 
X0)2 

R2 - j2(XL - 
X0)2 

This may be written R2 + 

(XL - Xe)2 since je = -1. The re- 

sult is a RATIONILIZED denominator 

since it contains no j term. 

The entire fraction now becomes 

The usual custom is to 

ate the real and j terms so 

RX 2 

Z =R2 (RL -Xc)2 

XLXc2 - XX2Xc - 
R2Xc 

R2 (XL Xe) 
2 

separ- 

+ 

This is the general expres- 

sion for the impedance of a two 
branch parallel circuit and is of 

great importance to the radio 
engineer since nearly all tank cir- 

cuits fall within this classifica- 

tion. 

When a circuit is tuned to a 

condition of resonance it is under- 

stood that the process of tuning is 

to balance out any reactance which 

may be present before tuning. The 

first term 

RX 2 

c 
R2 X)2 

in the 
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20 COMPLEX NOTATION; PART 1; OPERATOR J 

above expression for impedance is 

the resistance or real part. The 

second term is the j or reactive 
part. For resonance (that is, 

unity power factor) the j term is 

reduced to zero. By reducing the 

j part of the expression to zero 

the necessary relationship of values 

R, C, and L for resonance is ob- 

tained. A fraction will equal zero 

if the numerator is equal to zero, 

provided the denominator has a value 

other than zero. Under these condi- 

tions the numerator of the j term 

can be made equal to zero. 

XLXc2 
- XL2Xc - R2X = 0 

To solve for X first factor X 

from the left side of the equation. 

Xe (XLXc - Xï2 - R2) = 0 

It is evident that the product of 

two numbers can be zero only if one 

of the numbers is equal to zero. 

If 

XLXe-XL2-R2=0 

then by transposition 

XLXc = R2 + XL2 

dividing bï XL 
RZ + XL2 

X = 

c XL 

Therefore at resonance the 
reactance of the capacitive branch 

must be equal to the complex expres- 

sion 

R2+X2 
L 

XL 

and not simply the inductive react- 

ance as was previously taught. But 

if R is small and the reactances are 

large then the effect of R in the 

equation 

R2 + XL2 

X = 
X 

may be neglected and 

Xe = XL 
2 /XL = XL. 

Or at resonance Xe = XL if R is 
small enough in comparison with the 

individual reactances to be neglec- 

ted. This condition is true in most 

radio circuits provided they are 
lightly loaded. It has previously 

been learned that resistance is re- 

flected from one circuit to another 

by means of coupling. If a circuit 

is heavily loaded the reflected R 

may be quite large and, as a result, 

R is not small enough to be neglect- 

ed. Transmitter tank and transmis- 

sion line coupling circuits are 
usually well loaded so R must be 
taken into consideration when the 
resonant frequency of such circuits 

is to be calculated. Under these 

conditions resonant frequency does 

not equal 

1 

27I- 

DERIVATION OF THE IMPEDANCE 
FORMULA Z = L /CR. --If the assumption 

is made that R in comparison to X is 
small enough to be neglected a very 

important series of expressions can 

be arrived at by considering the 

real part of the expression for 
impedance of a two branch parallel 

circuit. As previously explained at 

resonance the j term is equal to 

zero and 

www.americanradiohistory.com

www.americanradiohistory.com


Z = 
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RX 2 

Only the real term need be considered 

at resonance. If R is quite small 

then at resonance Xc and XL are very 

nearly equal and their difference 

X - X in the denominator of the 

term is so small it will have little 

effect when added to R2. Hence 
(XL - Xc) may be neglected and 

RX 2 

Z - 
R2 R 

and by cancellation 

X 2 

R 

If Xe = XL one may write Z = XL2/R. 

X and since Xe = XL 

X 
Z- -.-= 

R 

XL = 27FL = coL. Substituting equal 

values for XL 

aIX 
Z= -L 

R 

But Xc = 1/277FC = 1/5.C. Substituting 

for X , 

wL 1 coL 
Z= _ 

R aC ccCR 

Cancelling co, Z = I,/CR. Therefore, 

at resonance where R is small and is 

considered as being only in the 
inductive branch of a two branch 

Parallel circuit Z = I/CR. 

The expressions 

XL9 XcII XLXc L 
Z = _ - _ 

R R R CR 

21 

are of great impörtän .,,to the radio 

engineer and should be memorized. 

It is of still greater importance to 

remember under what conditions they 

can be used without introducing a 
major error. To the formula minded 
engineer the general expression for 

impedance is the more accurate and 

may be used to calculate the imped- 

ance of any two branch parallel cir- 

cuit when the values of.L, C, and R 

are known. The approximate expres- 

sion finds its greatest use only 
when the circuit is at resonance. 

The resistive part of the 

general expression for impedance 

Z - R2 + (XI - Xc)2 
va 2 

may be used to determine the im- 

pedance at resonance only. (Becatse 

at resonance the reactance term is 
reduced to zero) . 

For the values of the circuit 
used in Fig. 11 when substituted in 
the above expression 

= 
115 x 0598.8)2 

- 3008 
1152 + (576.5 - 598.8)s ohms 

using the approximate formula 
Z= I/CR 

91.8 
Z = = 3001 ohms 

266 x 10-° x115 

Since XI, and Xe are also known 
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22 COMPLEX NOTATION; 

and 

Z = XLXc 

576.5 x 598.8 
Z = - 3000 ohms 

115 

The close correlation between 

the exact and approximate expressions 

for the impedance at resonance are 

clearly demonstrated in the above 

examples. 

A very useful application of 

complex notation is in connection 

with the terminating network between 

a transmission line and an antenna. 

This illustration will deal with a 

relatively simple case where the 

antenna is operated at its funda- 

mental frequency, that is,no loading 

is involved, and the antenna im- 

pedance is a pure resistance. 
Fig. 12(a) shows the circuit combi- 

nation and Fig. 12(b) shows the 

equivalent circuit. 

(a) 

Fig. 12.--L circuit termination for 

line. 

PART 1; OPERATOR J 

The problem confronting the 

engineer is one of matching imped- 

ances, that is to make the impedance 

into which the transmission line 

"looks" of the same value as the 

surge impedance of the line. In 

other words Z. must equal the im- 

pedance of the combination to the 

right of point P Fig. 12(b). -jX1 

and Ra are in parallel hence the 

impedance of these two parameters is 

equal to their product divided by 

their sum or 

_jXlRa 
- -iXtRa 

R + ( -j(1) Ra - jX1 

Hence the impedance Z of the in- 

ductance in series with parallel 

combination CR must be 

Z=jXa+R 
- jXl e 

_jX1Ra 
(1) 

By measurement or calculation 

the values of Z. (surge impedance of 

the transmission line) and Z. = Ra 

(the antenna impedance) are known. 

The purpose of the solution is to 

(b) 

Fig. 12.-- Equivalent circuit of 
Fig. 12(a). 

establish the values of X1 and 

X from which L and C can be cal- 
a 

culated. 
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Rationalizing the fractional 

term in equation (1) 

_jX R R + jX1 
z 

Ra R. + jX1 

a a X R -jXR 
Z = jX2 + R 2 z R + X1 

(z) 

Z - 
jX2Ra2 + jX2X12 + X12Ra -jX1Ra2 

R + X12 
a 

Equation (2) may be written 

as follows: 

X 2R 
1 

R2 +X12 

(3) 

+ j 2+ 
X 

2 

a 1 

X2R2 X2X12 - X1Ra2 

Equation 3 expresses the re- 

sult of equation 2 but with the 

real and j parts separated. 

For the transmission line to 

be terminated in a pure resistance, 

the j term must be zero. Then 

X12R 
Z. = Z=R2R2+y 

a 1 

This equation may be solved since 

4 and Ra are known by measurement 

or calculation. 

The solution for X1 follows: 

2R 
= X1 

R 
o R2 +X12 

R 2Z + X 
1 

= 
a o 1 o 

23 

X12R (clearing frac- 

tions) 

X1 8 R - X1 
2 Zo = 

R 
a 
2Z 

o 
(collecting 

X1 terns) 

X12(R° - Zo) = 

R 
2Zo 

(factoring) 

R 2Z 
a o X12 

- (dividing 
R 
a 

Z. by Ra - Zo) 

X2=2 Zo 
1 

R 
° R - Z 

a o 

=R2 Zo 
° R a o 

(taking square 

root of both sides) 

X1 = Ra Zo 

s. R a 
e Z 

In equation 3 the j term must 

be equal to zero for proper termina- 

tion. This means the j term may be 

equated to zero and the expression 

solved for X2 since X1 is known in 

terms of Z and R. As previously 

explained a fraction vilI be equal 
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24 COMPLEX NOTATION; PART 1; OPERATOR J 

to zero if the numerator is zero. 

XaRa 
+ X2X12 - XiR2 = 0 

X2R2 
+ 

X2X12 
= 

X1R1,2 

(collecting X2 terms) 

(11.2 
a ) = Xi a 

Xa + X12) R 

(factoring) 

Xi 
a 
R a 

Xa Ra + Xi2 

(Dividing by R.2 + X12) 

The solution is complete since 

with ß, and Z. known X1 can be de- 
termined. With X1 known X2 may be 

calculated. For any given frequency 

L and C can be determined. 
Suppose that measurements at 

the operating frequency of 1310 KC /s 

on the line and antenna at a broad- 

cast station show that Z. = 120 + JO 

ohms for the antenna and that Z = 

80 ohms for the transmission line. 

For a network like that in Fig. 12 

determine the values of L and C. 

80 
= 120 / - 170 ohms 

120 - 80 

a 

y a XR 
Ra + X12 

170 x 12011 

1202 + 1702 
-56.5ohms 

at 1310 KC/s 

lf)' 
9 

Cl 
= 
6.28 x 1.31 x 170 

and 

= 715 µ11F 

56.5 
- = µH 
6.28x1.31X10re 

6.88 

Fig. 12(c) shows the circuit 

and the calculated and known para- 

meters. 

Fig. 12.-- Values shown for cir- 
cuit as in 12(a). 

The above discussions afford 

examples demonstrating the ease with 

which a -c problems can be solved 

using the complex number. In the 

above condition, for proper matching 

between line and antenna, a more 
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general condition will be establish- For Z to be a pure resistance equal 

ed. Reactances will be used since to Z. the j term must be zero. 

they consume no power but nothing 

will be said about their character, So 

that is, it will not be specified X $ 

R whether the reactances are inductive Z = ___./...__L__ 

° R82 + X12 
or capacitive but will be left to 

the choice of the engineer. The 

equivalent network is shown in Fig. 

13. 

jX2 

Solving X1 in the same manner as 

previously shown 

X 2= R 2 o 

Looking a Ra - zo 

in from a+j`' 

Zo 

Fig. 13.-- Circuit for finding Z. 

looking into the network. 

The impedance looking into the 

circuit from Z. is 

= + jX1Ra 

Ra + jXi 

Xi2Ra 
+ jX1Ra2 

Z = jX2 
+ 

Ra2 + X12 

(Rationalizing) 

jRa2X2 X12Ra 
+ 2 

Z - R2 4.X12 

(Multiplying jX2 by Rae + X12) 

z 
Xi =RQ 

" 

Ra - Ga 

(Where Ra > Zo) 

The character of X is deter- 

mined by the choice of sign, that is, 

if a positive sign is taken for X1 

then it becomes an inductance, if 

the sign is negative Xi is a capaci- 

tive reactance. 

Since X2 is solved in terms of 

XL and Ra, it will then be deter- 

mined by equating the j part of the 

expression for Z to zero and solv- 

ing for X2 in terns of X1 and Ra. 

2 +Ra 2X =0 XiRa + Xi X2 
2 

Xe (Ra 2 + Xi 2) = 

(Factoring and Transposing) 

Xi2Ra 
X,iR 

2+ Xi2X2 + R XZ 
X1R 

2 

Z' R ae + X X 12 j 1 Rae + Xi2 2 - R 2 + X 2 

a 1 

(Separating real and j terms) (Ra > Zo) 
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12 has an opposite sign to that 
of X1 regardless of the choice of 
sign for I. 

This solution is more powerful 

and general in scope because it re- 

moves the restriction as to the 
character of the impedance. It is 

evident that X1 could be chosen 
either as an inductance or capaci- 
tance but X1 is usually chosen as a 
capacitance and Xs an inductance be- 
cause of the better discrimination 
against harmonics. The series in- 

ductance opposes the higher harmonic 
frequencies while C tends to shunt 
them to ground thus keeping them out 

of the antenna. 

It will be observed that the 

above solution holds true for the 
case where the antenna resistance is 

greater than the characteristic im- 

pedance of the line. When the an- 
tenna resistance is less than the 
line impedance, a similar arrange- 
ment is used but the positions of 
the source and "sink" (load) are 
reversed. This case will present 
the line looking into the side where 

the antenna was placed previously 
and with the antenna replacing the 
line position as shown in.Fig. 14(a). 

This will enable the match to be 
made in the reverse direction. The 

impedance into which the line looks 

is 

Z 
(R 

. 
jX ) 

= .- 1 

R * jpz - X1) 

which will be recognized as the 
same solution as the two branch 
parallel circuit with the resist- 
ance all in the inductive branch. 
The solution for X1 and X2 in 
terms of Zo and Ra is carried 
out in the same general manner 
as the preceding case. 

Fig. 14(b) shows the equivalent 

circuit of 14(a). The general 

Ra+jO 

(A) 

Reversed connection of L Network. 

(B) 

Fig. 14.- Equivalent circuit of 
14(A). 

solution of this circuit has been 
developed earlier in this assignment 

and is 

RX 2 
Z= 

R2 + (XL - Xe ) e 

(1) 

Xo2X - XcXLe - X R2 
j Rs 

(XL 

Changing the subscript to 
conform to those used in Fig. 
144b) 
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multiplying by -1 

R X 2 

ri 1 Z 
z 

)z 

X2 - X1 = _Ra 
2 
/Xz 

a 2 1 

(2) 

2X z 

j 
Xl 

X2 
- 

X1Xz 
_ 

R 
X1 

Raz 
+ (Xz - X1)2 

For the parallel circuit to 

represent a pure resistance equal 

to that of the transmission line 
the reactive term must be zero and 

RXz 
z= z° 

- 2 (xz l - x1 ) 2 (3) 
+ R42 

For the j term to be zero 
the numerator must be equal to 

zero or 

X12X2 - X1X22 - Ra2X1 = 0 (4) 

X1 (X1X2 - 
X22 

- R.2) = 0 (5) 

if 

then 

and 

square both sides 

27 

(10) 

(X2 - X1)2 = 
Ra4/X22 

(11) 

substitute (11) in (3) 

R 
a 
X 

1 
2 

R 4 

R 2 +-I- 
a X 

2 
2 

z 

simplify compound fraction 

XzX2 
Z 

1 2 

(X2 2 Ra 

From (7) 

(12) 

(13) 

X1X2 = Ra2 + X22 (14) 

squaring both sides of (14) 

X 
1 
2X 

z 
2 = 

(2 
+ X22)2 

X1X2 
X22 Raz 

0 (6) substituting for X12X22in (13) 

X1X2 - X2 2 = Ra 
z (7) (R 2 + X 2)2 

a 2 

Z Ra (Xz 2 + Ra 2 ) 

X2(X1 - X2) = Ra2 
(h) 

cancelling 

dividing by X2 

r xl - X2 = Ra 
2/x2 

(9) 

R 2+ X 2 
2 

Ra 

(15) 

(16) 

(17) 
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simplifying 

Z.R. 
R.2 + X22 

solving for x2 
2 

2 2 
X2 = Z oRa - Ra 

COMPLEX NOTATION; PART 1; OPERATOR J 

X 
2 
=ZR - R 

n a a 

(18) 

squaring both sides 

Z 2R 2 

X2 - o a 

1 R(Zo-R) 

(19) cancelling 

(20) 

(25) 

2 

X 2= Z o R - Z 2 Ra (26) 
1 0 

Zo ' R Zo - a a 

To solve for X1 in terms of Z. and 

R from equation (18) extracting square root 
a 

X 
1 

ZoR. = 
R.2 

+ X22 (21) Zo - Rn 

R 
a 

From (14) 

XI X2 = R.2 + X22 (22) 

therefore 

X2 = R (Z - Ra) 

but and 

ZoR. = Ra2 + X22 from (21) 

so 

X1X2 = ZoRa 

and 

but 

so 

Z R 
o a 

X2 

X2 = R (Zo - Ra ) frein (20) 

ZR X= °-= ---- 
1 a (z. a ) 

(23) 

(24) 

R 
" <Z X1 

= Zo Z R e o 

o a 

(27) 

which gives the value of X1 and X2 

in terms of R 
n 

and Z.. 

If the antenna impedance is 
Z = 20 + JO ohms and the transmis- 
sion line has an impedance of Z. = 

100 ohms, X1 and X2 may be found by 
substitution. 

20 
X = 100 

1 100 - 20 

=50 ohms 

X2 = 1/20(100 - 20) 

= 40 ohms 
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L and C may be found for any fre- 

quency by the regular formulas. If 

the operating frequency is 1500 KC, 

then 

and 

40 
L = - 4.25 µH 

6.28 x 1.5 

10-6 
C - = 5520 44yF 

6. 28 x 1.5 x 50 

EXERCISES 

I+hil tiply : 

51. (15 + j8) (10 - j6) 

52. (.6 - J.2) (.4 - J.03) 

53. (Al + jBl) (A2 - jB') 

54. (6 + j8) (4 - j5) 

55. (10 - j5) (5 - J10) 

56. (12 - j5) (.8 - j5) 

57. (A + jB) (C + JD) 

58. (R +1X) - jX) 

59. (It, + jXù (R, - jX,) 

Divide: 

60. 15+j8by10- j6 

61. .4 - j.03 by .6 - j.2 

62. 1byAt - 

63. 1byR- jX 

64. -1 - j3 by -3 + j6 

65. .50+ j80by6- j8 
1 

66. 

67. 

68. 

6 + j8 

50+ j86.6 

6-.18 
R + jX 

R-.1X 

6B . lo,/-j25 

70. 1/j 
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A T NETWORK FOR ANTENNA COUPLING 

Fig. 1. Fig. 2. 

A simple coupling method is 

sometimes used as shown in Fig. 1. 

The broadcast vertical tower 

antenna is usually worked at slight- 

ly greater than a half wavelength and 

therefore has capacitive reactance. 

This is shown as X4 in Fig. 2. In 

this particular coupling method X3 

is chosen to transform R. to Z. and 
XZ is chosen to obtain series 
resonance in the circuit X3, X2, X4. 

Therefore 

or 

X2 - X3 - X4 = 0 (1) 

X3 = X2 - X4 (2) 

Z2 Z3 -JX3 (JXZ- JX4 +R ) (`3) 

Z. = 
Z2 Z -4X3 + JX2 - JX4 + Ra 

Substituting (2) in (3) 

(4) 

X32 - JX3R X32 

j X m R R 3 

a a 

Fig. 3. 

Then, to make Z. resistive, 

X1 must be inductive and equal to 

X3 in magnitude. 

Then 

Z = Zm + j X1 = 

X 2 

(5) 

X2 

R 
- X3 

+ jXl R 
a a 

Solving for X3, 

X 2 

Z. = 
R 

or X3 = ZoRa (6) 

a 

Since Z and Ra are fixed, 

X3 would be calculated first. 
X2 would be chosen to tune the 

antenna to series resonance ac- 
cording to Equation (1). Then 
X1 is inserted so that the trans- 

mission line will be terminated in 

a pure resistive load. Equation 
(4) holds true for any parallel 
circuit such as Fig. 3 where XL = 

X., and all the resistance is 

considered to be in the L branch. 
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SUPPLEMENTARY NOTES 

Supplementary notes on the 

impedance of a resistor shunted by 

a capacitive or an inductive react- 

ance: 

RX? 

2R2+X2 R +XRXZ 2 

Z1 Z2 Z= 
o 

Substituting: 

R(jX) 
Z. R+ jX 

Fig. I. 

Zi = R, 

Fig. L. 

(1) 

If the denominator consisted 

of either a real term alone or a j 

term alone, we could divide without 

further manipulation. But we can- 
not divide directly by a sum of a 

real term and a j term. Therefore 

we must eliminate the j term in 
the denominator by rationalizing 
as demonstrated in problem 7 and 8. 

Therefore: 

j RX R- jX 
Z = x 
° R+ jX R- jX 

jR2X - j2RX2 jR2X + RXZ 

R2 + X2 R2 + XZ 

Z2 = JX, 

(2) 

We have now mathematically 
transformed Fig. 1 to an equivalent 

circuit as shown in Fig. 2. 

Equivalent R-R0 

Equivalent X =Xo 

Fig. 2. 

R (Equivalent) of Fig. 2 will 
° 

be the apparent resistance of Fig. 1 

and will be equal to the first term 

of Eq. (2) . 

X2 
R. = R 

R2 X2 
(3) 

X 
0 

(Equivalent) of Fig. 2 will 

www.americanradiohistory.com

www.americanradiohistory.com
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be the apparent reactance of Fig. 1 

and will be equal to the j term 

of (2) . 

R2 

X° =XR2 + X2 
(4) 

The equivalent inductance or 

capacitance, as the case may be, can 

be calculated from Eq. (4) . Note that 

in Eq. (4) the j notation can be 
dropped since this will have no 

significance concerning the magni- 

tude of X.. 
From Fig. 2, it will be ob- 

served that the impedance of either 

Fig. 1 or 2 is equal to the square 

root of the sum of the squares of 

the equivalent resistance and react- 

ance: 

z. =,/Ro2 +Xo2 (5) 

2 

R2 + 

RX 

X2) 

2 
2 2 XR 

R2 + X2/ 

/()2 + (xR2)2 
X22))`2 - 

x2R2 (X2 + R2) 
- 

(X2 + R2 ) 2 

X2 R2 XR 

X2 
+. 

R2 X2 + R2 

Note that we can drop the j 

notation from Eq. (2) when combining 

with Eq. (5) because in the latter 

we are computing the magnitude only. 

This is a good location to 

pause and review the mathematical 
development to obtain a mental pic- 

ture of what has been accomplished. 

Let us consider Eq. (3). This will 

be encountered many times in various 

communication networks, and illus- 

trates how a resistance may be 
effectively reduced in value by 

shunting it with either a capacity 
or an inductance. This is often 
done in reducing the resistance of 

antenna to match the characteristic 

impedance of a transmission line. 

In case of the antenna, an additional 

reactance of opposite sign would 

be inserted in the transmission 
line to cancel the equivalent react- 

ance Xoas illustrated in Fig. 12(b), 

Page 22. 

Since the formulas given by 
Eq. (3) and (4) will be often en- 

countered in radio work, let us see 

how they can be easily committed to 

memory. Note that Eq. (3), the 
equivalent resistance is R times a 

fraction, while in Eq. (4) the 
equivalent reactance is X times a 

fraction. The denominator in both 
cases is identical. This now sug- 

gests that the positions of R and X 

are interchanged in the numerator 
of the two formulas and may be 
easily remembered. 

Other more extended formulas 

will sometimes contain Eq. (3) and 

(4) and thus are more readily 
analyzed when the student is able 

to recognize the various parts at a 

glance. 

For example note formula (3) 

page 23. The real part of this 
formula is the same as Eq. (3) of 
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OPERATOR J--SUPPLEMENTARY NOTES 

this paper. Exercise problem 71 

shows an example of a resistance, 

R., shunted by an inductance X2. 
Note that the answer given for X, 

in problem 71 is in the form of 

Eq. (4) of this paper. 

The power factor of the circuit 

in Fig. 1 will be the cosine of the 

angle whose tangent is the ratio 

of the reactance to the resistance 

(X °/R°) of the equivalent circuit 2. 

Now suppose that it is desired 

to calculate the value of X to 

reduce R to a given impedance Z °, 

understanding that in this case 

Z. will contain a reactive compon- 

ent. We can do this easily by 
solving Eq. (5) for X. 

From Eq. (5) 

XR Z= 
° 

,/X2 + R2 

Squaring both sides; 

2 
X.211? X.211? 

- 

Z° X2 + R2 

Clearing of fractions: 

Z 2X2 
2R2 

= X2R2 
o o 

Transposing Z °2X2; 

Z 2R2 = X2 (R2 - Zoe) 

Dividing both members by (R2 - 

Zo2); 

X2 - 

Z 2R2 
o 

R2 - Z 2 

Extracting square root: 

ZR 
o 

X= 
VD? 

Z 2 
° 

3 

(6) 

Although the reactance X in 

Eq. (6) may be either capacitive 
or inductive, a capacitor is in- 

variably used when the only object 

is to reduce the resistive component. 

This is because there will be less 

losses in a good capacitor than in 

a coil of the same reactance. How - 

ever, Eq. (6) is useful in calcu- 

lating the reactance of a coil when 

the circuit requires such an ar- 
rangement. 

It should be emphasized again 

that Eq. (6) solves for X only under 

the conditions of the circuit in 

Fig. 1. If a capacitor is shunted 

by a coil and a resistance in 
series, the equations shown in pages 

16 and 18 of this assignment must 
be used. Note also that Z of Fig. 1 

will always have a reactive compon- 

ent and this is included in the 

result of Equation (5) . 

However, in practice it is 

more often desired to calculate 
the required X to reduce R to an 
equivalent resistive component. 

This can be done by solving Eq. 
(3) for X. 

X2 
_ R 

192 

www.americanradiohistory.com

www.americanradiohistory.com


4 OPERATOR J-- SUPPLEMENTARY NOTES 

Ro (R2 + X2) = RX2 

RoR2 = RX2 - Ró 2; 

R R2 
X2 - ° 

R-R 
o 

R 
X = R ° 

R - R 
° 

(7) 

The required capacity may then 

be calculated from X as given in 
Eq. (7). The equivalent reactance 

of the combination would then be 

given by Eq. (4) and, if desired, 

this could be cancelled by a react- 

ance of opposite sign as mentioned 

on Page 2. 

Page 1 shows the development of 

formulas to convert a parallel cir- 

cuit to a series circuit, but it is 

sometimes desired to do the opposite. 

Suppose Fig. 2 represents an antenna 

with capacitive reactance, and it is 

desired to couple it to a transmis- 

sion line of lower impedance by the 
use of an L network as shown in 
Fig. 7. 

The antenna resistance may be 

reduced to the transmission line 

impedance, Z °, by shunting with a 

capacity. But first the series 

antenna circuit must be converted to 

the equivalent parallel circuit 
(Fig. 5) so that it may be seen what 

equivalent capacity is already in 

parallel with the equivalent paral- 

lel resistance of the antenna and 

what this resistance will be. 

The formulas for this purpose 

can be simply developed by reversing 

the process used on page one. Bear 

in mind that in this case R. and X. 

are known while X and R are unknown. 

Squaring Eqs. (3) and (4) and adding: 

R 2 + X 2 = 
o o 

(X2R)2 + (XR2)2 

(R2 + X2)2 

X2R2 (R2 + X2) 

(R2 + X2) 2 

X2R 2 

R2 + X2 

(8) 

To solve for R, divide Eq. 
(8) by Eq. (3) . (Invert right hand 

side of Eq. (3) and multiply.) 

R2 +X 2 X2R2 
0 o _ 

R R2 + X2 
o 

R2 + X2 
- R 

Rx2 

(9) 

To solve for X, divide Eq. (8) 

by Eq. 00. (Invert right hand side 

of Eq. (4) and multiply.) 

R 2 + X 2 X2R2 R2 + X2 
° 

° _ - X 
X R2 + X2 XR2 

o 

Thus if the given antenna has 
an impedance Zg = R - jXg, as shown 

in Fig. 4 the first step in making 
calculations for an L coupling net- 

work would be to convert to an 
equivalent parallel circuit as 

shown in Fig. 5. 

Note the change in subscripts 

indicated in the diagram. 

The following calculations must 

be based on .Fig. 5. In calculating 

the capacitive reactance Xe, neces- 
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OPERATOR J 

EXAMINATION 

1. Evaluate the following powers of j: 

j'" 
1 ̀ 0 ) 7 , 4 5--- 

,/ 7- ,/ - _ 

J9 "J;,+/ - 
/ r-- 4 C3) /. ' /s' 

- J 
¢(7)+3 

J ' - \/-- 
. J6 4-C9) r: z / 

d 
_ J ' _ 

j6, j9' j12' 
116 

J38. 

2. Plot the vector 5 + j12. Operate on it by -j and plot the 

new vector. Operate on the new vector by j2. Show the 

values of the 3 vectors and plot on the complex plane. 

3. Add: 

(a) 3+ J5 and 7+ j2. 3' t- Js 
J 

(b) 14 + J11 and -6 - j4. 

/¢ v // 
- - ¢ 

8 -j7 
4. In Problem 3 subtract the second complex number from the 

first in both (a) and (b) parts. 

+ (6) / 4-- --j i1 

j3 

C ç) 
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THE OPERATOR J 

EXAMINATION, Page 2. 

4. (Continued) 

5. Show the following subtractions performed 

the Argand diagram on graph paper. 

(a) Subtract 7 + j2 from 3 + j5. 

(b) Subtract -6 -j4 from 14 + jll. 

6. Multiply: 

(a) 3 + j5 by 7 + j2. 

+I .5. 

7+z 

geometrically on 

.`C / 7- ,/ 
J 

dy/p = 2/ -Pi ¢/ - /o 

// + ¢I 

(b) A - JB by -C + jD. 

,g e 
c 

. c +j C .:( - b 

D -,gc CA t s ) 
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V - 33 

THE OPERATOR J 

EXAMINATION, Page 3. 

7. Divide and express result in the same form. 

(a) (3 + j5) by (7 + j2) 

x 

7 ./'z 7-J2- 

.5-3 

/ z 

9-7 

. ,s¢8 

(b) 173 + j100 by 5 + ji8. 

` /8 ,t.(o6-s _'Z6,to 73 ti ° " .7.-.. x -- 8 z s t- , ¢ .i8 s - 
s + , - .26s - J .26) 

= 7.6¢ -ja 7 s--/ 9 

www.americanradiohistory.com

www.americanradiohistory.com


THE OPERATOR J 

EXAMINATION, Page 4. 

8. Find the reciprocal of 5 + j3 and express in the form R + jX. 

j. 3 

9. Show the 

plane. 

(a) -5 

(b) -j5 

(c) 6 + 

(d) 7 - 

(e) -7 + 

X 
- 3 _,_--- 

<s"- J 3 
- 3 

y 

/ 
. ? 

- 3 

1` 

position of the following vectors on the complex 

j3 

j5 

j5 

Plot to scale on graph paper. 

10. A resistance of 100 ohms terminates a certain transmission 

line. It is desired to reduce the apparent value of this 

resistance to a lower value. It is accordingly shunted by 

a 100 µµf condenser. The frequency of the supply is 15 me /s. 

(a) What is the apparent resistance of the combination? 

(b) What is the apparent capacitance of the condenser? 

(These values are indicated by the equivalent series impedance 

determined by rationalizing the parallel impedance) 
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THE OPERATOR J 

EXAMINATION, Page 5. 

10. (Continued) / - /D¢ / _ 
ire 

C. .28x /s-x/0 F4.3 

Ch) X 

/00 K //zoo 
,2 /,L D O 

co 

// 
/ 

/D (O X /60 00 _ aS . aN ur 

2/2-40 

i 
/ - 

G ¢ ,X,8 x/x/o Xs,1 
ó 

4-//// 
ot/z -,ff 
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e 
ANSWERS TO EXERCISE PROBLFJIS 

1. 1.78, Log 75, ter, 11, 2n, 7.2, -18, 101'2 

2. 101'2, 7.2, 2n, Log 75, 1.78, -rr, -VII, -18 

3. Fractional: 10_2, 7r, 1.36, V6, 3/2 

Integral: -4 

4. Rational: 64, 31/6i; VET, 314?-77- 

Irrational: 2n, 51/1:5 

5. (a) -16, V57-7-47- 

(b) 3/2, 19.26. 18/27 

(c) ,, 32 + 42, -16, 19.26 

(fi) --,,/;2; 18/27 

(e) 3/2, 19.26, 32 + 42, /18/27 

(f) -16, 

6. Real: -16, 1 , -I55T; 2i37:5- 

Imaginary: 3-1/76- 

16, n, 

-27-1/2 _27-1/2 
7. Real: 

Imaginary: 

8. Real. 

9. Imaginary. 

10. Real. 

11. Real: j215, 5 + j23 

Imaginary: j8, j320, fr 
12. 3 - j6 4th Quadrant 

5 + j5 1st Quadrant 

16 + j0 Positive X axis 

Negative X axis 

13. j8 on + j axis 

-2 - j13 3rd Quadrant 

- 12 -j12 3rd Quadrant 

-3 + j10 2nd Quadrant 
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14. -1 - j10 3rd Quadrant 

-6 Negative X axis 

10 + j2 9 units on positive X axis 
15 + j 1st Quadrant 

17 - j 1st Quadrant 

15. 2.22 + j0 

-2.553 + JG 

16. 8 + JO 

1+ j0 

17. -.143 ± j.515 

18. 1.81 + j0 

-3.31 + JO 

19. 1.618 + j0 

-.618+ j0 

20. ± j4 

21. j, 1, 1, -j, -j 

22. 5 - j7 4th Quadrant 

7 + j5 1st Quadrant 

-5 + j7 2nd Quadrant 

-7 - J5 3rd Quadrant 

23. 55 + j 88.7 volts 1st Quadrant 

21. E= 19- j5V 
I = 8 - j 8A Inductive 

25. A > 90° an impossible condition. 

26. I leads E by 30 °, E = 200 V at 30 °, I = 10A at 60 °. 

27. 11.5 + j9.64A 

28. 9.85 - j1.74 ( -10° in 4th Quad. Sin is - and Cos + in 4th Quad.) 

29. 10 + j25.12V if I = lA 

30. 60 - j32 volts 4th Quadrant 

31. 120 + j68 Ohms 
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32. Z = 120 + JO dms 

33. Z = 120 - j123 ohns 

34. 120 +j47 ohms 

35. 15 - J15 

36. 14 - j5 

37. 58.9 - j65.4 

38. 53 - j9.8 

39. 357 - J558 

40. p134.8 + j74.85 

41. 143 + j130 

42. 8 - j24.7 

4111 
43. 96 - j113 

44. 367 - j76 

45. -25.9 - j55 

46. 183 - j38 

47. 653 

48. 672 - j976 

49. -20.3 + j187 

50. -462 + J2130 

51. 198 - j10 

52. .234 - j.098 

53. AlA2 

+ 

BlBa 

+ j(°2"1 - 

AIN) 

54. 64+ j2 

55. -j125 

56. -15.4 - j64 
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57. AC-BD+j (BC +AD) 

58. R2 + X2 

59. RiR2 + XLXe + j (R2XL - R1X,) 

60. .75 + j1.25 

61. .615 + j.155 

A B1 

Al2 + B12 Al2 + II 
62. 

63. 

64. 

65. 

R X 

R2 + X2 R2 + X2 

-.333 + j.333 

-6.37 + j4.81 

.06 - j.08 

67. -3.93 + j9.2 

R2 - X2 2RX 
68. + 

R2 +X2 R2 +X2 

69. J.4 

70. -j 
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