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ASSIGNMENT 13

TWO BASIC FORMS OF ELECTRICITY
Thus far, in all our discussion of current and voltage we have dealt with

direct currents and voltages; that is, the kind obtained from a battery. The
chemical action of a battery keeps the terminals of the batttery at a fixed
potential difference, and when a load is connected to it, a steady current
flows from the negative terminal of the battery through the load and back
to the positive terminal of the battery. This steady current is known as
direct current. (There are several abbreviations used to indicate direct
current. Some of these are: D -C, D.C., DC, d -c, and d.c.)

The type of d -c current which we have been studying is shown in Figure 1.
The battery has a constant emf of 100 volts. The load consists of a 20 ohm
resistor. To find the current flowing in this circuit, we may apply Ohm's
Law. I = E/R = 100/20 = 5 amperes.

Figure 1 (B) is a graph of this current flow, in respect to time. The
vertical axis of the graph represents current in amperes, and the horizontal
axis represents time in minutes. We see from the graph, that at one minute
the current is 5 amperes, at 2 minutes the current is 5 amperes, also at 3 or
4 minutes the current is 5 amperes. This current is, then, a steady, constant
value.

Pulsating Direct Current
Strictly speaking, however, a direct current or voltage merely has to act

in one direction and may change somewhat in magnitude (amount). It has
become common practice to apply the terms direct current and direct voltage
(sometimes d -c voltage) to currents and voltages that are practically constant,
and the term pulsating direct current to a direct current that acts in one
direction but varies somewhat in magnitude over a period of time.

As an example of pulsating direct current, consider the circuit of Figure
2 (A). This circuit consists of a 100 -volt battery connected to a 20 ohm
resistor in series with a rheostat which can have its resistance varied from 0
ohms to 80 ohms. When the resistance of the rheostat is 0 ohms, the current
from the battery will be determined by the 20 ohm resistor and will be 5
amperes. With the resistance of the rheostat completely in the circuit, the
current from the battery will be determined by the resistance of the fixed
resistor, (20 ohms) plus the resistance of the rheostat (80 ohms), or a total
resistance of 100 ohms. One ampere of current will flow, as determined by
Ohm's Law. I = E/R = 100/100 = 1 ampere.

Now suppose that we were to manually adjust this rheostat so that its
resistance varies smoothly from 0 to 80 ohms in just one minute, then
immediately begin to reduce this resistance back toward zero, again taking
just one minute, then increase the resistance toward its maximum of 80
ohms, and so on. While we are doing this, let us see what is happening to
the current flowing from the battery. When the rheostat is set for 0 ohms
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there will be 5 amperes flowing, and as we start to adjust the rheostat, this
current will start to fall off, to 1 ampere, reaching this value one minute later.
It will immediately begin to increase again as we decrease the resistance,
reaching 5 amperes at the end of the second minute. Then it will begin to
decrease to 1 ampere, and so on.

We can plot this information on a graph, putting the current on the
vertical axis and time on the horizontal axis, as shown in Figure 2(B). Let
us examine this graph. At 0 time, the current is 5 amperes. This decreases
to 1 ampere at one minute of time, when the entire rheostat resistance is in
the circuit. At 2 minutes the current is 5 amperes again since the rheostat
is 0 ohms. At 3 minutes the current has again decreased to 1 ampere, etc.
The graph is merely a pictorial representation of the manner in which the
current varies over a period of time.

A study of Figure 2(B) will reveal several things: (1) The current does
not remain constant, (2) the current never stops or reaches zero, and (3) the
current never reverses its direction, but always flows in the same direction.
This is a direct current because it always flows in the same direction, but
since it varies appreciably in magnitude, it is called a pulsating direct current
or pulsating d -c.

In the early days of commercial electricity, direct currents and voltages
were used exclusively because nearly all the electrical power came from
storage batteries, which were recharged at intervals by d -c generators. How-
ever, it soon became quite evident that it was impossible to send this d -c
power over long lines without excessive losses occurring in the lines, especially
with more and more electrical current being used. As you know, one formula
for electrical power is, P = 12R, making the power loss in the wires increase
as the square of the current. Another formula for power is, P = E X I.
From this formula we can see, that for a given amount of power, less current
will be required if the voltage is increased. To illustrate this, let us assume
that 1 kilowatt, or 1000 watts, of electrical power is being used and the
voltage is 100 volts. The current will be 10 amperes.

P = E X I
1000 = 100 X I
1001 = 1000

I = 10 amperes
Now, let us assume that 1 kilowatt of power is to be used, but that the

voltage is 1000 volts. The current is 1 ampere.
P=EXI

1000 = 1000 X I
1000I= 1000

I = 1 ampere
If the load, in the two preceding examples, is located at some distance

from the source, so that the resistance of the lines is appreciable, say 5 ohms,
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there will be losses occurring in the lines. The power loss in the lines can
be found by the formula, P = I2R.

In the first example the power loss in the lines will be 500 watts as shown
by the following problem:

p 12R p (113): X 5 P = 100 X 5 = 500 watts
In the second example the power loss in the lines will be only 5 watts as

shown by the following problem:
P= PR P= (1)2 X 5 P= 1 X 5= 5 watts
From these examples we see that the same amount of power (1 kw in this

case) can be transmitted from the source to the load with much lower losses
occurring, if the voltage is high. Unfortunately, however, there is no simple
way to change low d -c voltages into high d -c voltages. For this reason, a dif-
ferent type of electrical current and voltage, known as alternating current
and alternating voltage, was developed. Alternating current is abbreviated
several ways. Some of these are: A -C, AC, A.C., a -c, a.c.

Alternating Current
Alternating -current systems began commercially in the United States

in 1886. Continued experimentation, investigation, and theoretical analysis
have disclosed many merits of a -c systems. The outstanding advantage of
the a -c system is the relative ease with which alternating voltages can be
generated, and transformed in magnitude. For example, it is a very simple
matter to change 100 volts a -c into 1000 volts a -c. The result is that, at
the present time, approximately 95 per cent of the electrical energy con-
sumed in the United States is generated, transmitted, and actually utilized in
the form of alternating current.

In the normal a -c power distribution system, the a -c voltage is de -

'eloped
by huge a -c generators or dynamos, which are driven by waterpower

or steam. The output voltage of these generators is high, about 13,000 volts
-2-t71 or greater, but if the electrical energy were transmitted at this voltage, the

line losses would be high due to the large amount of power handled. For
this reason, this high a -c voltage is fed to large transformers. These trans-
formers increase the voltage to a much greater value, in the order of
150,000 volts. This high a -c voltage is then transmitted over the high-tension
transmission lines for distances ranging up to hundreds of miles in some
cases. At this very high voltage, the current will be low for a given amount
of power, so that the line losses are low.

Of course, this extremely high voltage can not be used safely in homes, so
it must be lowered to some safer value, usually 110 volts before it is brought
to the homes of the consumers. This is also done by transformers. Trans-
formers perform this operation, changing low values of a -c voltage into high
values of a -c voltage, or vice versa, very efficiently, and for this reason, cost
very little to operate. Transformers cannot be used with d -c, and no other
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means of transforming the low values of d -c voltage into high values, in an
efficient manner has been developed. For this reason a -c is used almost
exclusively as mentioned previously.

In future assignments, we will learn that we must change the a -c voltage
from the power line into d -c voltage for operation of electronic circuits. This
is performed by circuits known as rectifier circuits. We shall also learn that
when we apply this d -c voltage to certain types of transistor or vacuum
tube circuits, these circuits will generate an a -c voltage. This type of circuit
is called an oscillator. Each of these circuits will be studied in detail at a
later date.

By definition, alternating current (a -c) is a current that periodically
changes in magnitude and direction. Figure 3 (A) shows a diagram of a
circuit --th-M can be used to produce an alternating current. When switch (S)
is in position 1, point X will be 45V positive with respect to point Y. When
the switch is in position 2, point X will be 45V negative with respect to point
Y. Study the circuit of Figure 3(A) and visualize these results. Figure
3(B) is a graph with the voltage at point X with respect to point Y plotted
on the vertical axis. The voltage (E) will have the square waveform shown
on the graph if the double throw switch is alternately held in each position
for one second. This is an alternating voltage (abbreviated a -c voltage). An
alternating current will flow through the resistor connected between points

a -c. It periodically changes in
magnitude and direction.

Let us study Figure 3 (A) carefully to see just what happens. When the
switch is in position 1, current will flow from the negative terminal of the
battery to point Y, through the load resistor from point Y to point X, back to
the battery. When the switch is thrown from position 1 to position 2, the
current flow in this direction stops and now the current flows through the
load resistor from point X to point Y. If we continue throwing the switch
from position 1 to position 2 and then from 2 to 1 at one second intervals,
there will be an alternating voltage across the load resistor. This is shown
by the graph in Figure 3 (B). The current through the load resistor will be
reversing itself at one second intervals.

The a -c voltage which is generated commercially differs considerably
from the a -c voltage illustrated in Figure 3 (B). The most common type of
a -c and the type most practical to generate is called a sine wave voltage.

The Sine Wave
The graph of a sine wave is shown in Figure 4. The voltage is plotted

on the vertical axis and the time in seconds is plotted on the horizontal axis.
This voltage is changing in magnitude and direction so it fits the definition of
a -c, but its change is more gradual than that of Figure 3 (B). Let us examine
the graph of the a -c voltage shown in Figure 4 very carefully and see what we
can learn from this graph. At 0 time, the voltage is 0. At a short time later
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(1/240 second) the voltage has increased to +100 volts. Then it gradually
decreases until, at 1/120 of a second, the voltage has again reached zero. Now
the voltage begins to build up in the negative direction, until at 1/80 of a
second, the voltage has reached a maximum value of -100 volts. In the
interval of time from 1/80 to 1/60 of a second, the voltage decreases to 0
volts. This is one cycle of the a -c voltage. By definition, a cycle is_ane COM-
lete succession of exents. A cycle of the seasons, for example, would be from

spring to summer, summer to fall, fall to winter, and winter back to spring
again. Applied to a -c, this means a voltage or current starts at one value, and
goes through all of its variation and returns to that value to complete one cy-
cle. In Figure 4, in the 1/60 of a second, from time 1/60 to 1/30 of a second on
the time axis, another complete cycle occurs. Notice that each of the cycles
occurs in1/60 of a second. This a -c voltage is called a 60 cycle a -c voltage,
meaning 60 cycles per second, Notice that when we defined a cycle, we did
not say when that cycle should begin. Going back to the seasons we could
have started our cycle with fall just as easily, and in this case the complete
cycle would end with the following summer. In an a -c wave, we can start
our cycle anywhere on the sine wave, in which case it would end the next time
a similar point on the curve appears.

Another term which is used in connection with a -c is alternation. An
alternation is one half of a cycle. In the graph of the sine wave in Figure 4,
that portion of the sine wave from 0 to 1/120 of a second is one alternation,
and is called the positive alternation, since the voltage is positive during
this period. The portion of the wave from 1/120 of a second to 1/60 of a
second is the negative alternation.

Another term which is used in connection with a -c voltages is frequency.
Frequency means the number of times anything happens in a given period of
time. For example, if a wheel is rotating at a speed of 100 revolutions per
second, its frequency is 100 rotations per second. Applied to an a -c voltage,
the frequency represents the number of cycles which occur in one second. The
frequency of the wave shown in Figure 4 is 60 cycles per second. In quite a
few cases, the frequency will be called just 60 cycles. The per second is
understood when dealing with electrical waves.

The alternating current supplied to most of the houses in this country
has a frequency of 60 cycles per second. This means that the current and
voltage go through 60 complete cycles (remember that this is actually 120
reversals or "alternations") in each second.

The frequency of an a -c voltage is very important. To illustrate this,
consider Figure 5. The symbol at the left of Figure 5 represents a sine wave
generator. This generator could be an a -c generator in a power plant or in a
transistor or vacuum -tube oscillator circuit. The generator is connected to a
loudspeaker. If the frequency of the a -c voltage is 60 cycles, the sound waves
coming from the loudspeaker will be a very low pitched humming sound. As
the frequency of the a -c voltage is increased, (the number of cycles per second
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becomes higher) the pitch of the note heard in the loudspeaker will become
higher. At a frequency of 1000 cycles per second, the note will be a pleasant,
low pitched whistle. As the frequency is increased more and more, the note
will become higher and higher in pitch, until at about 20,000 cycles per
second it has become so high pitched that it cannot be heard. The normal hu-
man ear can hear notes ranging from about 20 cycles per second (abbreviated
20 cps) to about 20,000 cps. These frequencies (20-20,000 cps) are called the
Audio Frequencies, since they are audible to the human ear.

Electrical voltages, corresponding in frequency to the Audio Frequencies
are called Audio Frequency voltages, or Audio Frequency signals. The ab-
breviation for Audio Frequency is AF.

Electrical voltages, whose frequencies are higher than 20,000 cps are
called Radio Frequencies (abbreviated RF). Since these signals range in
the thousands and millions of cycles, they are often expressed in kilocycles
or megacycles. Radio waves range from 20kc (kilocycles) to several thou-
sand megacycles (mc). The terms kc and mc have been used for years to
designate frequency and are still widely employed. However, in 1966 a new
term was adopted to stand for Cycles Per Second. This term is: Hertz-in
honor of the early radio experimenter, Heinrich Hertz. Thus, the term 60
Hertz means the same as 60 cycles per second, 20 kHz means 20,000 cycles
per second, and 30 MHz means 30 megacycles per second.

The Radio Frequency signals are generated by transistor or vacuum -tube
oscillators, since the rotary generators such as used in power plants, cannot
be made to produce these high frequencies. The RF signals generated by
the oscillator circuit in a broadcast transmitter will be somewhere between
500 kHz and 1500 kHz, the exact frequency being specified by the Federal
Communications Commission. A short-wave transmitter may have the fre-
quency of 14,000kHz or 14 MHz. It is the fact that different radio stations use
RF signals of different frequencies that makes "tuning" of a desired station
possible.

The "period" of the wave is defined as the time required for one cycle
to occur. For example, if the frequency of an alternating current is 60 cycles
per second, each individual cycle would last for a period of one one -sixtieth
of a second. We can say that the period is always equal to one divided by
the frequency, and we can write this as:

t= -1

f

where t represents the period in seconds, and f represents the frequency in
cycles per second.
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The Alternating Current
In our study of direct current theory we learned that potential dif-

ference, or voltage, causes a current to flow through the circuit. This also
holds true for alternating current circuits, such as Figure 6(A). During
the time the lower terminal of the generator oscillator is negative, an elec-
tron current will flow to the right in the lower wire, up through the resistor,
and to the left in the upper wire back to the oscillator. A moment later,
when the voltage of the oscillator reverses its polarity, the lower terminal
will become positive (making the upper terminal negative) and the electron
current will be reversed. That is, the current will flow to the right in the
upper wire, down through the resistor, and to the left in the lower wire back
to the oscillator.

In direct current circuits, an individual electron does not necessarily
have to travel completely around the circuit. You will remember that an
electron current consists of a large number of electrons slowly drifting
around the circuit. Of course, if we were to wait long enough, an electron
leaving the battery will return to it, but suppose that there was a switch in the
circuit and we were able to close this switch for only one one -millionth of a
second. An electron current would flow for this one one -millionth of a second,
but this current would not last nearly long enough for an electron to leave
the battery and return to it. In considering alternating current theory, it is
obvious that an electron will seldom, if ever, have sufficient time to travel
completely around the circuit, especially if the voltage alternations of the
oscillator occur rather frequently. The flow of an alternating current in a
wire may be pictured as follows: The current flow consists of an electron
current just as in a direct current circuit, but these electrons are more or less
confined to a particular portion of the wire. First, they slowly drift one way;
then as the voltage reverses, they will drift the other way, but they will never
get more than a short distance away from their original position. In other
words, they "alternately" flow back and forth, forming an "alternating
current".

Perhaps you are wondering whether or not an electric current that is
continually reversing itself-never getting anywhere, so to speak-is of any
use. Consider a paddle wheel in a stream of water, and to the paddle wheel
are attached a number of millstones. We can grind grain between these
stones if the stones are rubbing together. It does not matter whether the
water flows continuously, turning the millstones in a certain direction, or
whether the water flows first one way and then the other. Just as long as the
millstones turn against each other, the grain will be ground and we will be
doing work. In this same manner, electrons flowing through a resistor
generate heat regardless of whether they flow steadily in one direction, or
whether they reverse their direction periodically. If an alternating current
flows through the filament in an electric light bulb, the bulb will be illumi-
nated, and if the frequency of the alternating current is high enough, above
30 Hz , the bulb will appear to be giving off a steady light. Actually, the
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lamp filament cools off somewhat as the alternating current goes through
zero, but the eye does not detect this. Alternating current can be made to
run a motor just as well as a direct current. If a condition is presented
wherein a -c cannot be used, it is a simple matter to change the a -c to d -c.
An example of this is the voltage applied to the plate circuit of vacuum tubes,
as mentioned previously.

Figure 6(B) is a graph of the voltage applied to the resistor in Figure
6(A) and the current which flows through this resistor. In the figure, notice
that the points where the voltage passes through zero, and the points where
the current passes through zero coincide (occur at the same instant of time),
and that the voltage and current reach their maximum values at the same
instant. This is true for a circuit containing resistance, but is not true if
the circuit contains a coil or a capacitor, or both, as we shall learn in a later
assignment. When the two curves coincide as they do in Figure 6, they are
said to be "in phase"; when they do not coincide, they are said to be "out of
phase".

The Characteristics of Sine Waves
Suppose we plot a sine wave voltage with vertical lines at equal time

intervals, as shown in Figure 7.

The time axis is marked off in degrees instead of seconds, as in Figure 4.
This is possible because a cycle represents one complete succession of events,
such as one turn of a wheel. In the rotation of a wheel, we could say that
one complete rotation, or cycle, was 360°, since there are 360 degrees in a
circle. One half of a revolution could be represented by 180° rotation, one
fourth of a rotation by 90°, etc. In a like manner, the cycle of an a -c wave
may be broken into degrees.

The maximum value of the sine wave is indicated in Figure 7. It is the
greatest value to which the current or voltage rises. The notations, "imax"
and "Emax" are used to represent maximum values in electronics. The term
peak value is sometimes used in place of maximum value, and means the
same thing.

In Figure 7, it will be apparent that if the vertical lines are drawn long
enough to intersect with the sine -wave curve, each of these lines will have a
different length and each will represent the voltage at some particular instant
of time. The voltage at that instant of time is known as the instantaneous
value of voltage, or the instantaneous voltage of the waveform. From this
figure it is evident that the instantaneous voltage for a sine wave depends
on the particular instant at which the voltage is measured.

Table 1 lists the instantaneous value of a sine wave, at 10° intervals,
assuming that the maximum value is 1.
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Table I

Degrees Sine Degrees Sine Degrees Sine

0 0 130 .766 260 -.985
10 .174 140 .643 270 -1.
20 .34 150 .5 280 -.985
30 .5 160 .34 290 -.94
40 .643 170 .174 300 -.866
50 .766 180 .0 310 -.766
60 .866 190 -.174 320 -.643
70 .94 200 -.34 330 -.5
80 .985 210 -.5 390 -.34
90 1.0 220 -.643 350 -.174

100 .985 230 -.766 360 0

110 .94 240 -.866
120 .866 250 -.94
By referring to this table, we can find the value of a sine wave, at any

instant, if we know the maximum value of the sine wave. For example, if
the maximum value of a sine wave of a -c is 1 volt, what is the value at 30°?
By looking at the table we find that it is .5 volt. If the maximum value is any
value other than one, the value of the sine wave at any instant may be found
by multiplying the figures in the table by the maximum value. For example,
suppose we are considering a sine wave which has a maximum value of 100
volts, and we wish to know its instantaneous value at 60°. By referring to
the table, we find the value of a sine wave with a maximum of 1 volt to be
.866 volt at 60°. To find the instantaneous value of this 100V maximum
wave at 60° we merely multiply .866 by 100 and find that the value of the
100 volt maximum wave, at 60° is 86.6 volts. Using this same principle we
could find the following:

Sine wave
Sine wave
Sine wave
Sine wave
Sine wave
Sine wave

of 100 volts
of 100 volts
of 100 volts

max.
max.
max.

of 100 volts max.
of 200 volts max.
of 155 volts max.

Check the instantaneous
you agree with each.

Another term which is sometimes used in connection with a sine wave is
average value. The average value of a sine wave is the average height of the
curve of one alternation of a sine wave. Thus, if the height of all the vertical
lines of an alternation in Figure 7 were measured, and the average of them
taken, this average would be found to be 0.637, or 63.7% of the maximum
value. We could write this as:

at 30° = 50 volts
at 20° = 34 volts
at 180° = 0 volts
at 270° = -100 volts
at 190° = -34.8 volts
at 70° = 145.7 volts

It

47-10

values given in the examples above, and qs 5`
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Ear = 0.637 E.
and I., = 0.637 Ima,

To apply this formula, let us use a few examples.
Example 1. What is the average value of a sine wave with a maximum

value of 100 volts?
Ea, = 0.637 X E.

= 0.637 X 100
Ea, = 63.7 volts
Example 2. What is the average value of a sine wave whose maximum

value is 155 volts?
Ea, = 0.637 X Emax

= 0.637 X 155
Ea, = 98.7 volts
Example 3. What is the average value of a sine wave which has a

maximum of 900 volts?
Ea, = 0.637 X Emax

= 0.637 X 900
Eav = 573.3 volts
This formula can be rearranged as:

Emax = 0.637

the maximum value, if the average value is known,
should be used.

Example 1. What is the maximum value of a sine wave which has an
average value of 1000 volts?

Eav

Etna X = 0.637
Eav

1000
.637

Emax = 1569.9 volts
The fourth term which is often used when considering an a -c voltage or

current is the effective value.
The term "average value" seems fairly obvious. Although there is noth-

ing particularly difficult about the effective values, it cannot be said that they
are obvious. The effective value of an alternating voltage or current (which
you must remember is varying in magnitude at each instant) must be the
same as a corresponding direct current value. If this were not true, then 1
volt of alternating voltage would not produce the same effect on a resistor
as would 1 volt of direct voltage. Also, 1 ampere of alternating current
would not produce the same heating effect in a given resistor as would 1 am-
pere of direct current, and you can see that this would never do.
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The effective value of a sine wave of current or voltage is defined as
that value which will produce the same heating effect in a resistor as will be
produced by a given value of direct current or voltage. It can be shown
mathematically that the effective value of a sine wave of current or voltage is
the square root of the average of the instantaneous values squared. By ap-
plying this involved procedure, it can be found that the effective value of a
sine wave is .707 times the maximum value.

Stated mathematically this is:
E = 0.707E. Where E is the effective voltage and
I = 0.707 'max I is the effective current.

To apply these formulas let us consider a few examples.
Example 1. What is the effective value of a sine wave which has a

maximum value of 200 volts?

E = 0707Emax
0.707 X 200

E = 141.4 volts
This means that this sine wave of a -c voltage, which reaches a maximum

of 200 volts, will do the same amount of work as a d -c voltage of 141.4 volts.
Example 2. What is the effective value of a sine wave which has a maxi-

mum value of 60 amperes?
I = 0.707 X 'max

= 0.707 X 60
I = 42.42 amperes.
Thus we see that a sine wave of current which reaches a maximum of 60

amperes would produce as much heat in a resistor as 42.42 amperes of direct
current.

Example 3. What is the effective value of a sine wave which has a
maximum of 155 volts?

E = 0.707 X Emax
E = 0.707 X 155
E = 109.6 volts.
We could rewrite this formula as:

Emax 1.414 EE0.707

X = I 1.414 I
0.707

We would use this formula to find the maximum value of a sine wave,
when the effective value is known.
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Example 1. What is the maximum value of a sine wave whose effective
value is 6.3 volts?

Emax = 1.414 X E
= 1.414 X 6.3

Etna. = 8.91 volts.
Example 2. What is the maximum value of a sine wave which has an

effective value of 20 amperes?

/max

Imax

= 1.414 X I
= 1.414 X 20
= 28.28 amperes.

Example 3. What is the maximum value of a sine wave which has an
effective value of 110 volts?

Emax = 1.414 X E
= 1.414 X 110

Emax = 155.5 volts.

This last example illustrates the voltage which is supplied to most homes
by the electric power companies. The voltage is called 110 volts a -c. This
voltage is actually a sine wave voltage with an effective value of 110 volts.
The peak value of this voltage is 155.5 volts. All a -c voltmeters and current
meters read effective values.

Because of the way in which they are obtained, effective values of current
or voltage are frequently referred to as "root mean squared" values. This
is often abbreviated "rms".

The average values of an alternating current or voltage are seldom used
in ordinary electronics work. Unless the current or voltage is specifically
indicated otherwise, whenever we speak of an alternating current or voltage
we mean its effective value.

Frequency and Wavelength
The wavelength of an alternating current sine wave is the actual physical

length of one cycle in space. The relation between frequency and wave-
length is a simple one. The wavelength is equal to the speed at which the
electric waves travel divided by the frequency in cycles. This speed is equal
to 186,000 miles per second or 300,000,000 meters per second (a meter is
slightly longer than a yard). To get the wavelength of the wave in meters
we divide 300,000,000 by the frequency or: Wavelength in meters =

300 X 106
f

The customary symbol for wavelength in meters is the Greek letter
lambda, written k.

Let us take several numerical examples.
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Example 1. Suppose we wish to find the wavelength of a broadcast sta-
tion which operates on a carrier frequency of 1000 kc. Using the formula,
we have = 300,000,000 300 X 106 = -300 = 300 meters.

1,000,000 1 X 106 1
This tells us that the actual length in space of this radio wave is 300

meters. This is about 985 feet.
Example 2. What is the wavelength of the radio wave from a short-wave

station operating on 20 megacycles?
300 X 106 300= = -= 15 meters.
20 X 106 20!

Example 3. What is the wavelength of a television station operating on
80 m.c.?

X 00?, = 80300X
106

106 = 3.75 meters.380

Some radio receiver dials are marked both in frequency and in wave-
length. In some countries, (particularly in Europe), the wavelength and
never the frequency of the station is shown on radio dials. Even in this
country, the short waves are usually referred to by wavelength rather than
by frequency, as for example the 49 meter band, the 19 meter band, etc.

A few examples will show that the lower the frequency the longer the
wavelength, or to say the same thing another way, the higher the frequency
the shorter the wavelength. Our 60 cycle a -c power has a wavelength of
5,000,000 meters (approximately 3,000 miles) whereas the wavelength of
certain television carrier frequencies is about 1 meter.

Phase Relations of Sine Waves
Perhaps you have suspected, or have been told, that alternating currents

are much more difficult to understand than are direct currents. This is not
true. However, alternating currents are more complex and there are more
different possibilities to consider.

One factor which makes the study of a -c more complex is the matter of
phase. This has been mentioned previously, but will be discussed in more
detail now. Phase is a measure of time. It shows how one sine wave is vary-
ing in respect to another sine wave of the same frequency.

When two or more sine waves, either currents or voltages, are in phase,
they pass through corresponding values at the same instant. That is, they
both reach their maximum positive values at the same time, they both pass
through zero at the same time. They both reach their maximum negative
values at the same time, and so on. Two currents that are in phase are shown
in Figure 8(A). Notice that the two waves are exactly "in -step" as far as
time is concerned. They are of different amplitudes, but are in phase. (Am-
plitude means height of the wave, or magnitude.)

When two sine waves are out of phase they do not pass through cor-
responding values at the same time. Figure 8(B) shows two sine waves
which are 90° out of phase. These waves are 90° out of phase because they
pass through corresponding values 90° apart on the time axis. Notice that
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the sine wave of current, I1, has reached a maximum (completed 1/4 of a
cycle) at the time 12 is at zero. The current I1, is said to be leading 12 by 90°.

Figure 8(C) shows two sine wave currents which are 90° out of phase;
but in this case, I, reaches its maximum 90° before II does, so 12 is leading Ii
by 90°. It is just as correct to say that II is lagging 12 by 90°.

In these examples we have seen the phase relationship of two sine waves
of current. Figure 9 illustrates the phase relationship of two sine waves of
voltage. In Figure 9(A) the two voltages are in phase, in Figure 9(B) E1 is
leading E9 by 90°, and in Figure 9(C) E1 is lagging E2 by 90°.

In Figure 10(A) we see two sine waves 45° out of phase. E1 is leading
E, by 45° since E1 is reaching its maximum 45° before E2 reaches its
maximum.

Figure 10(B) illustrates two sine waves which are 180° out of phase.
These two waves go through their zero values at the same instant, but one
is increasing in a positive direction while the other is increasing in a negative
direction.

Figure 10 (C) shows two sine waves out of phase approximately 15°. The
voltage E1 is leading E9 by approximately 15°.

In Figure 11 we see the phase relationship of a sine wave of voltage and
a sine wave of current. The voltage wave, E, leads the current wave, I, by
90° in Figure 11(A). In Figure 11 (B), the current wave I leads the
voltage wave E by 90°. Figure 11 (C) shows the voltage wave E, leading the
current I by approximately 135°.

These examples illustrate the wide variety of phase relations which will
be encountered in the use of a -c in electronics circuits. You are probably
wondering under what conditions these out of phase conditions occur. The
answer to that question is an easy one. Any time a circuit with a -c voltage
applied has either inductance (coils), or capacitance (capacitors), there
will be an out of phase conditions between the voltage and the current, and
between the voltages at different points in the circuit.

Figure 12(A) shows an a -c generator connected to a capacitor, and
Figure 12(B) shows the phase relationship which results between the voltage
and the current. The current is leading the voltage by 90°. The reason
why this occurs will be discussed in the assignment on capacitors.

Figure 13 (A) shows an a -c generator connected to a coil, and the phase
relationship of the voltage and current are shown in Figure 13(B). Notiee
that in this case, the current is lagging the voltage by 90°.

In Figure 6 we have already seen the phase relationship of the voltage
and current in an a -c circuit containing resistance alone.

If an a -c circuit contains a combination of resistance and capacitance,
resistance and inductance, or resistance, capacitance, and inductance, a wide
variety of phase relationship may result. The amount of phase difference
will be determined by the value of the individual components.
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The Addition of Sine Waves
In direct current circuits, we can readily find the resultant value of two

voltages or currents in the same circuit since all we have to do is add their
individual values. Figure 14 illustrates this. In Figure 14 (A) the resultant
of E1 and E., is 150 volts. We find this by adding + 100 and +50. In Figure
14 (B) the two voltage sources are so connected that the two emf's are op-
posing each other, or "bucking". To find the resultant voltage of these
two in series, we add the individual values algebraically. The number, +100
added to -50 gives +50 as an answer. The resultant voltage is 50 volts as
indicated in the figure.

The resultant of two or more a -c waves can be found by adding their
instantaneous values. This is shown graphically in Figure 15 and Figure 16.

In Figure 15 we have two sine wave generators connected in series.
These two generators are delivering a -c voltages which are of the same fre-
quency, and are in phase. The maximum value of E1 is 100 volts, and the
maximum value of E, is 50 volts. We wish to know the resultant value of
these two voltages in series. In the graph on Figure 15, we have plotted
these two voltages, and the resultant of them in series. The resultant voltage
is labeled E1 + E.,. To obtain this curve we add the instantaneous values of
each wave. At zero on the time axis E1 is 0 and E9 is 0. Adding these two we
obtain 0 for E1 + E,. At 90° on the time axis, E1 is + 100 volts and E, is
+50 volts. This gives us +150 volts for E1 + E9 at this point. At 180° both E1
and E, are 0, so E1 + E., is also zero. At 270°, E1 is -100 volts, E2 is -50
volts, so the resultant E1 + E., is -150 volts. At 360° the resultant is
again 0.

In Figure 16 we have two a -c generators, each delivering 100 volts maxi-
mum. The two voltages are 90° out of phase. (E2 is leading E1 by 90°).
We wish to find the resultant of these two voltages. This is done graphically
by plotting the two waves E1 and E9, and adding their instantaneous values.
We find that the resultant of these two voltages is not 200 volts. The maxi-
mum of the resultant of these two voltages is only 141 volts. Furthermore
the resultant voltage, E1 + E. is out of phase with each of the original
voltages. If Figure 16 is studied carefully, the reason the resultant voltage
is not equal to the sum of E1 and E., will be apparent. It is because these
voltages are not acting together. In Figure 15 the two voltages were acting
together, since they were in phase, but in Figure 16, the two voltages are
out of phase and do not reach their maximum values at the same time.
When E, is maximum, El is at zero, and when E1 is maximum E, is at zero.
When E1 is at 45° its instantaneous value is 70.7 volts, and at this same time
the instantaneous value of E, is also 70.7 volts. This gives a resultant value
of 141 volts at this time. If all other points are plotted it will be found
that the sum of the two instantaneous values is never greater than 141 volts.
The graph of the resultant of the two voltages shows that the resultant volt-
age reaches a maximum positive at 45°, a maximum negative at 225°, and
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goes through zero at 135° and 315°. The resultant wave is 45° out of phase
with E1 and E2.

As an examination of Figures 15 and 16 shows, it is considerable trouble
to combine alternating currents or voltages by plotting their instantaneous
values, point by point, in this fashion.

These difficulties have led to the adoption of "vectors" for combining
currents and voltages in alternating current circuits, since the use of vectors
greatly simplifies the solution of many of the a -c problems encountered in
electronics work.

Vectors
Suppose that the line 'max in Figure 17 is revolving counterclockwise at

some constant speed. This speed could be measured easily in "degrees per
second" since there are 360° in a complete circle or in one revolution of the
line.

As the line iaxrevolves, let us stop it at 30° intervals (points 2,3,4,
etc. in Figure 17) and measure its height above its starting horizontal line.
If this height is plotted on the vertical axis of a graph, and the horizontal
axis is plotted in degrees representing the angle through which the line has
turned, we would obtain the sine wave shown at the right in Figure 17.

This shows us that it is possible to develop a sine wave by a line whose
length represents the magnitude of the current or voltage, and which is
rotating at a rate equal to one revolution per cycle. Since it is possible to
develop a sine wave, by plotting the height of the rotating line (In.) above
the horizontal line, it is permissible to use such a rotating line to represent a
sine wave. A longer line would represent a greater current, and one which
is rotating faster represents a higher frequency. In this example, 'max is
equal to a maximum value of an alternating current. Likewise we could
represent a sine wave voltage by a counterclockwise rotating line having a
length Emax.

In Figure 17 the line In,ax has a certain definite length. It also has an
arrowhead on one end of it, indicating that it has direction. We call such a
quantity, one that has magnitude (length) and direction, a "vector quantity".

Using Vectors to Show Phase Relationship
The phase relationship between two sine waves of the same frequency

may be indicated by vectors. Remember that a vector is a line which is
rotating one revolution for each cycle. Suppose we had two sine waves and
represented each by a vector. If the frequency of the two sine waves were
the same, these two vectors would be rotating at the same speed. It might
be compared to the spokes on a wagon wheel. As the wheel turns, each of
the spokes rotate at the same rate. The angle between the two spokes
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remains the same. Thus, if we are comparing two sine waves of the same
frequency, their phase relationship may be indicated by the angle between
the two vectors. This is shown in Figure 19 (B). The vector Ii represents
a sine wave current, the vector 12 represents another sine wave current of
the same frequency. The two currents are 45° out of phase. They are both
rotating at a rate of one revolution per cycle and thus the two vectors rotate
"in step" just as the spokes of a wheel. The 45° angle will be maintained
between these two vectors (spokes).

Remember these things concerning vectors. 1. A vector may be used to
represent a sine wave of voltage or current. 2. A vector is considered to be
rotating one revolution per cycle, in a counter -clockwise direction. 3. The
length of a vector represents the amplitude of the voltage or current.
4. A vector has direction as indicated by the arrow. 5. Phase relationships
between two or more sine waves can be indicated by the angle between the
vectors used to represent these waves.

The Addition of Vector Quantities
We represent alternating sine wave currents or voltages by vectors since

it is much simpler to add together two vectors which represent the two
currents or voltages, than it is to add the two sine waves, point by point.
Because of this, the solution of most alternating current problems involves
vector addition, so let us see how this is done.

An ordinary unit, such as an ohm, expresses only a quantity, and so we
can add ohms directly. A vector, however, has both magnitude and direction,
so they must be added in such a manner that these two things (magnitude
and direction) are considered.

In Figure 18 (A) we have shown a small portion of an electronics circuit.
We have a junction where two alternating currents combine and flow in one
common wire. The amount of current in two of the wires is known. The
phase angle between the two currents is also known. The current in the
common wire is to be determined.

If practical, you would merely insert an ammeter in the common wire
to measure the combined current It. In studying a circuit diagram, or in a
good many actual circuits, it will not be possible to insert an ammeter in the
common wire to measure It, the sum of I1 and I2.

The known currents II and 1, are each 3 amperes and I, is known to be
leading I1 by 45 degrees. The two currents are said to be 45 degrees out of
phase. We can plot the waveforms of II and 12 on the same axis and add their
instantaneous values to obtain the waveform of It. See Figure 18(B). Notice
that we are careful to plot the waveforms of It and I,, 45 degrees out of
phase. The waveform of It has a maximum value of approximately 5.5 amps.
The waveform of It lags 1, by 22.5 degrees and leads II by 22.5 degrees.
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The only fault we can find in this solution is that it takes a lot of time and
careful work.

In Figure 18(C) we have added I1 and 12 and determined It by means of
vectors. You can see at a glance that the vector solution doesn't involve
much work. The vector solution gives us the same answer as the more
tedious addition of waveforms.

It does not take a mathematician to set up and add I1 and 12 using
vectors. Choose a convenient scale, say 1/4 inch equals 1 ampere. The
lengths of the arrows indicate the amounts of each current in amperes. The
vectors representing I1 and 12 should each be 3/4 inches long since II and 12
are each 3 amperes.

First draw a line 3/4 inches long as shown in Figure 19 (A). Label this
vector I1. The vector representing 12 will also be 3/4 inches long. 12 is
known to be leading II by 45 degrees. We will have to have a 45 degree angle
between the vectors representing I, and I1. To indicate that one sine wave is
leading another, the leading vector is drawn on the counterclockwise side of
the other vector. In Figure 19(B) we see the vector 12 drawn on the
counterclockwise side of II and the angle between the two lines is 45°.
Now we have drawn the vectors representing the two sine waves. The length
of each vector indicates the amplitude of each sine wave, and the angle
between them (45°) indicates the phase relationship between them. As
mentioned previously, each of these vectors is rotating, but since their speed
of rotation is equal, they will maintain the 45° angle between them. For all
practical purposes, we could "stop" the rotating vectors in some convenient
position and analyze them.

There are several ways of adding vectors, but the most simple method is
shown in Figure 19(C). To find the resultant (the sum of the two) of Ii,
and we "complete the parallelogram". To do this, from the tip of the
arrow I2 we draw a line which is parallel with I1. This is the dotted line
(a) in Figure 19(C). Then from the tip of I1 draw a line which is parallel
with I,. The sum of the two or the resultant, then, is represented by the
line drawn from the "tail" of It and I,, to the point where these two dotted
lines cross. This is the solid line It in Figure 19(C). The angle that this
line has in respect to the two other vectors indicates the phase angle, and the
length of the line represents the magnitude of the current. If we were to
measure the angle of It, in respect to II and I2, with a protractor, (a device
for measuring angles), we would find that It leads I1 by 22.5° and that it
lags 12 by 22.5°. Its length is 1% inches. Since we have used 1/4 inch to
represent one ampere, the 13/s inch long resultant would indicate 5.5 amps.
This is the same information as obtained in Figure 18(B), but is found much
more simply by using vectors.

To further illustrate the use of vectors, let us consider Figure 20. In
this figure we have two oscillators (a -c generators) connected in series across
a resistor. One oscillator is putting out 2 volts. We call this voltage E1.
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The second oscillator is putting out 1 volt. We call this voltage E2. The
second oscillator voltage E2, is lagging E1 by 60 degrees. How much voltage
do we have across the resistor? We could plot the wave forms of the two
voltages and add the instantaneous values as shown in Figure 20(B). The
easy method will involve just a few strokes of a pencil for rapid vector
addition. This is shown in Figure 20(C). Draw the first oscillator voltage
to a convenient scale representing 2 volts. [E1 of Figure 20(C)]. Draw the
second oscillator voltage vector half as long (1 volt) and of such direction
that it indicates a lag of 60 degrees. [E2 of Figure 20 (C) ]. Add the two
vectors by the method shown in Figure 19(C), and the combined voltage
across the resistor Et can be quickly scaled and found to be approximately
2.65 volts. A protractor will show that Et "lags" E1 by about 19 degrees
and "leads" E2 by about 41 degrees.

Figure 21(A) shows the vectors for the waveforms shown in Figure 16.
Study this vector diagram and see if it doesn't convey the same information
as the wave shapes shown in Figure 16(B).

Figure 21 (B) shows the vectors for the voltages shown in Figure 15.
Notice that since the two voltages are in phase, they are laid out on the same
line, "tail to head". The resultant voltage is equal to the total length of the
line, or 150 volts in this case.

Figure 21(C) shows a vector representation of the voltage and current
associated with a capacitor. Compare this with the waveforms shown in
Figure 12.

Figure 21(D) shows a vector diagram of the voltage and current of a
coil. Compare this with Figure 13(B).

These examples will serve to introduce the subject of vectors. Other
applications of vectors will be made from time to time in the training program.
We shall make use of this simple way of representing sine waves in the
explanation of a great deal of a -c circuits.

A -C Waves, Other than Sine Waves
A -C voltages and currents which have sine -wave shapes are encountered

to a great extent in electronics, but there are some cases where a -c voltages
and currents will be found which have wave shapes differing from sine
waves. In Figure 3 we have seen one of these wave shapes, that of a square
wave. Figure 22 shows another wave shape that is sometimes encountered in
electronics equipment, especially certain types of test equipment, and is
frequently encountered in television equipment. This wave is an a -c wave,
since it is periodically changing in magnitude and direction. This wave shape
is called a saw -tooth wave due to its resemblance to a tooth on a saw.
Another wave shape which differs from a sine wave is the audio signal which
we have mentioned previously. The wave shape of a typical audio signal is
shown in Figure 23. Before discussing this wave shape let us review briefly
how this signal is developed.
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Any vibrating body will set up sound waves in the air. For example,
when a key is struck on a piano, the hammer strikes the string, setting it into
a state of vibration. The vibrating string sets up sound waves in the air,
by causing regions of higher than normal, and lower than normal air pressure
to travel away from the string. When these sound waves strike the diaphragm
of a microphone, they cause the diaphragm to vibrate. The microphone then
changes these vibrations into audio signals, which are sound waves in an
electrical form.

You may have wondered why different musical instruments have a
different sound when playing the same note. For example, if middle C is
played on a piano, and on a horn, it does not sound the same. Actually, both
of these notes are of the same frequency, (the number of times per second
that the vibrations are occurring), but the difference in sound is due to the
difference in wave shape. As the sound waves strike the diaphragm of a micro-
phone, the vibration of the diaphragm is directly "in step" with the sound
wave. It produces audio signals which correspond to the sound waves, not
only in frequency, but also in amplitude. The amplitude of the audio signal
will vary in step with any irregularities in the sound waves. In this way,
audio signals are not pure sine waves, but are closer to the wave form shown
in Figure 23. The wave shape of an audio signal produced by the sound
waves from a vibrating string may be closer to a pure sine wave than that in
Figure 23, but the audio signal produced by a human voice is much more
irregular than the wave shape shown in Figure 23. The characteristic sounds
of different instruments and voices is due to the wave shape of the sound
waves produced. As was pointed out previously, the frequency of audio signals
range from 20 to approximately 20,000 cycles per second.

Harmonics
Harmonic is the term used to define some multiple of a fundamental

frequency. For example, the second harmonic of a 60 cycle per second signal
is 120 cycles per second, the third harmonic is 180 cycles per second, the
fourth is 240 cycles per second, etc.

Figure 24 shows a fundamental and its third harmonic plotted on the
same graph.

Summary
This assignment has presented a large amount of information about

alternating current and voltages. To summarize, let us put some of this in
the form of definitions.
Pulsating d-c-A current which is always in one direction, but which is vary-
ing in amplitude.
Alternating Current or Voltage -A current or voltage that periodically
changes in magnitude and direction.
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Cycle-One complete succession of events. Applied to a sine wave; from
zero to a maximum, back to zero, to a maximum of opposite polarity and
back to zero again. It is equal to 360 electrical degrees.

Frequency-Number of cycles per second: measured in cycles per second, or
Hz.

Power Frequencies or Commercial Frequencies-The frequencies of the a -c
power delivered to homes. In most localities the a -c frequency is 60 cycles
per second. In some cases 25 and 50 cycles per second are used.

Audio Frequencies-The frequencies which are in the range of the human
ear-approximately 20-20,000 cycles per second (20Hz - 20kHz).
Radio-Frequencies-Frequencies higher than 20,000 cycles per second.

Period-Length of time required for one cycle.

Instantaneous Value-The value of voltage or current for any given instant.

Peak Value of a Sine Wave-The maximum value of voltage or current
during one cycle. It is equal to 1.414 times the effective value.

Effective or RMS Value of a Sine Wave-That value of the sine wave which
will produce the same heating effect as the same amount of d -c voltage or
current. Numerically it equals .707 times the maximum value of the sine
wave. This is the value which is read by a -c meters.

Average Value of a Sine Wave-The average of all the instantaneous values
for one alternation. It is equal to .637 times the peak value.

Harmonics-Multiples of a fundamental frequency.

Phase Relationship-A measure of the time difference in degrees of two sine
waves of the same frequency, in reaching corresponding points on the
same time axis.

Vectors-Rotating lines which may be used to represent sine waves. The
length of each vector is determined by the magnitude of the sine wave, and
the angle between vectors is determined by the amount of phase difference.

Wave shape-Sine waves are the one most commonly encountered. Others
which may be found in electronics circuits are square waves, saw -tooth waves,
and audio signals which are irregular in shape.

In future assignments, we shall apply our knowledge of a -c to the
subject of coils and capacitors, and find out how each of these circuit
components react to alternating currents and voltages. We will then be in
a position to study one of the most fascinating subjects in electronics-
the action of coils and capacitors in combination.
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"HOW TO PRONOUNCE . . ."
(Note: the accent falls on the part shown in CAPITAL letters.)

amplitude (AMM-plih-tude)

audio (AWE-dee-owe)

diaphragm (DIE-uh-framm)

harmonic (har-MONN-ic)

oscillator (OSS-ill-aye-tor)

parallelogram (pare-a-LELL-owe-gramm)

phase (FAZE)

vector (VEKK-tor)
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Test Questions
Be sure to number your Answer Sheet Assignment 13.
Place your Name and Associate Number on every Answer Sheet.
Submit your answers for this assignment immediately after you finish them.
This will give you the greatest possible benefit from our personal grading
service.

1. What is a direct current which is changing in magnitude, called?
2. What is the frequency of the a -c voltage supplied to most homes in the

United States?

3. Does an a -c meter read; peak, effective, or average values of a -c?
4. If the peak value of an a -c voltage is 300 volts, what is the effective

value?

5. An a -c voltage has a frequency of 10,000 cycles per second. (A) Is this
called an Audio Frequency or a Radio Frequency? (B) How would you
state this frequency using the term Hertz?

6. What is the frequency of the third harmonic of a 100 cycle per second
a -c voltage?

7. Draw the vectors for the following:
Two a -c voltages, each of 100 volts maximum, and 90° out of phase.

8. Use the values given in Table I on page 9 and draw a sine wave.
9. Which can be changed from a low value to a high value easier, a -c or d -c?

10. The effective value of voltage delivered to most homes is 110 volts. What
is the peak value of this voltage?
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