


one dollar



#### JANUARY 1977

| 4  | direct-conversion receiver                        | 16 |
|----|---------------------------------------------------|----|
| 4  | ground-plane antennas                             | 26 |
| a. | matching techniques for solid-state rf amplifiers | 30 |
|    | five-band ssb transmitter                         | 34 |
| ŵ  | computing vswr indicator                          | 58 |
|    | and much more                                     |    |



## an introduction to single-sideband fm

- <image>
- \*Phase lock-loop (PLL) oscillator circuit minimizes unwanted spurious responses.
- \*Hybrid Digital Frequency Presentation.
- \*Advanced Solid-state design...only 3 tubes.
- \*Built-in AC and 12 VDC power supplies.
- \*CW filter standard equipment...not an accessory.
- \*Rugged 6146-B final amplifier tubes.
- \* Cooling fan standard equipment...not an accessory.
- \*High performance noise-blanker is standard equipment ...not an accessory.
- \*Built-in VOX and semi-break in CW keying.
- \*Crystal Calibrator and WWV receiving capability.

#### A BRILLIANT NEW SSB TRANSCEIVER PROVIDING AN UNBEATABLE COMBINATION OF ADVANCED ENGINEERING AND UNIQUE OPERATING FEATURES.

### YOU MAY NEVER HAVE OWNED A TRANSCEIVER THAT OFFERS SO MUCH.

Send for descriptive information on this fine new transceiver, or on the time proven Tempo ONE transceiver which continues to offer reliable, low cost performance.



11240 W. Olympic Blvd., Los Angeles, Calif. 90064 931 N. Euclid, Anaheim, Calif. 92801 Butler, Missouri 64730

64 213/477-6701 714/772-9200 816/679-3127

- \*Microphone provided.
- \*Dual RIT control allows both broad and narrow tuning.
- \*All band 80 through 10 meter coverage.
- \*Multi-mode USB, LSB, CW and AM operation.
- \*Extraordinary receiver sensitivy (.3u S/N 10 db) and oscillator stability (100 Hz 30 min. after warm-up)
- \*Fixed channel crystal control on two available positions.
- \*RF Attenuator.
- \*Adjustable ALC action.
- \*Phone patch in and out jacks.
- \*Separate PTT jack for foot switch.
- \*Built-in speaker.
- \*The TEMPO 2020 ...\$759.00.

Model 8120 external speaker...\$29.95. Model 8010 remote VFO...\$139.00. DenTron amateur radio products have always been strikingly individual. This is the result, not of compulsion to be different, but of a dedication to excellence in American craftsmanship. This dedication now extends to one of the worlds finest high performance Military amateur amplifiers.

Luxury styling, however, would not be fully appreciated without an exceptional power source. The heart of the MLA-2500 is a heavy duty, self-contained power supply.

Compare the MLA-2500. It has the lowest profile of any high performance amplifier in the world. It's modular construction makes it unique, and at \$799.50 it is an unprecedented value.

Very few things in life are absolutely uncompromising. We are proud to count the DenTron MLA-2500 among them. And so will you.

#### MLA-2500 FEATURES

- 160 thru 10 meters
- 2000+ watts PEP input on SSB
- 1000 watts DC input on CW, RTTY, or SSTV
- Variable forced air cooling system
- Self contained continuous duty power supply
- Two EIMAC 8875 external-anode ceramic/metal triodes operating in grounded grid.
- Covers MARS frequencies without modifications
- 50 ohm input and output impedance
- Built in RF watt meter
- 117 V or 234 V AC 50-60 hz
- Size: 51/2" H x 14" W x 14" D.

All DenTron products are made in the U.S.A.

## Introducing the new MLA·2500

## The linear amplifier beyond compromise.



Radio Co. Inc.

2100 Enterprise Parkway Twinsburg, Ohio 44087 (216) 425-3173

## Stay tuned for future programs.



# NH HUN ABBABA Lil KHY KHY ABBABA Lil Lil KHY KHY ABBABA Lil Lil KHY KHY ABBABA ABBA Lil KHY KHY ABBABA ABBA Lil KHY KHY ABBABA ABBA Lil KHY KHY ABBABABABA ABA Lil KHY ABHANABABABABABA Lil KHY KHY ABHANABABABABABA Lil KHY KHY ABAHABABABABABA Lil KHY KHY ABAHABABABABABA Lil KHY KHY ABA HY ABA KHY ABA HY ABA

COMMUNICATIONS CORP. UNDAWA TIL

#### NEW LOW PRICE \$1195.00

The HAL ST-6000 demodulator /keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today -and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystalcontrolled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

or current loop, The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations



of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximumflexibilityfor your present needs —and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights, The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today... or in the future.

HAL Communications Corp., Box 365, 807 E. Green Street Urbana, Illinois 61801 • Telephone: (217) 367-7373



## contents

- 10 single-sideband fm Richard R. Slater, W3EJD
- 16 direct-conversion receiver Richard Silberstein, WØYBF
- 26 ground-plane antennas Harold C. Vance, Sr., K2FF
- 30 matching techniques for solid-state rf power amplifiers Bill L. Leonard, WA7WHZ
- 34 five-band ssb transmitter Harold J. Peters, Jr., WN3WTG
- 40 automatic up/down repeater-mode circuit Paul G. Quinn, WB4PHO
- 46 simple diode tester Lloyd M. Jones, W6DOB
- 49 O measurements R. C. Marshall, G3SBA
- 54 solar power source Edward M. Noll, W3FQJ
- 58 computing vswr indicator Donald B. Lawson, WB9CYY
- 66 how to use the swr meter Robert S. Stein, W6NBI
- 74 microprocessors: the vectored interrupt David G. Larsen, WB4HYJ Peter R. Rony Jonathan A. Titus

| 4   | a second look     | 82  | new products   |
|-----|-------------------|-----|----------------|
| 126 | advertisers index | 16  | novice reading |
| 101 | flea market       | 6   | presstop       |
| 116 | ham mart          | 126 | reader service |
| 78  | ham notebook      | 66  | repair bench   |
| 74  | microprocessors   | 58  | weekender      |

#### **JANUARY 1977**

#### volume 10, number 1

T. H. Tenney, Jr., W1NLB publisher James R. Fisk, W1DTY editor in chief

#### editorial staff

Charles J. Carroll, W1GOO Patricia A. Hawes, WA1WPM Alfred Wilson, W6NIF assistant editors J. Jay O'Brien, W6GO fm editor

James H. Gray, W2EUQ Thomas F. McMullen, Jr., W1SL associate editors Wayne T. Pierce, K3SUK cove

#### publishing staff

Harold P. Kent, WA1WPP assistant publisher

Fred D. Moller, Jr., WA1USO advertising manager

Cynthia M. Schlosser assistant advertising manager Therese R. Bourgault circulation manager

ham radio magazine is published monthly by Communications Technology, Inc. Greenville, New Hampshire 03048 Telephone: 603-878-1441

subscription rates U.S. and Canada: one year, \$10.00 three years, \$20.00 Worldwide: one year, \$15.00 three years, \$35.00

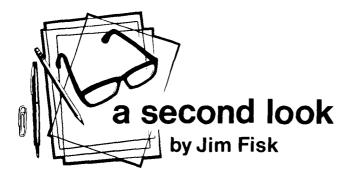
> foreign subscription agents Ham Radio Canada Box 114, Goderich Ontario, Canada, N7A 3Y5

Ham Radio Europe Box 444 194 04 Upplands Vasby, Sweden

Ham Radio France bis, Avenue des Clarions 89000 Auxerre, France 20 bis

Ham Radio Holland Postbus 3051 Delft 2200, Holland

Ham Radio Italy STE, Via Maniago 15 I-20134 Milano, Italy


Ham Radio UK Post Office Box 64, Harrow Middlesex HA3 6HS, England Holland Radio, 143 Greenway Greenside, Johannesburg Republic of South Africa

Copyright 1976 by Communications Technology, Inc Title registered at U.S. Patent Office

Microfilm copies are available from University Microfilms Ann Arbor, Michigan 48103

hr

Second-class postage paid at Greenville, N.H. 03048 and at additional mailing offices



In the evening when I'm working down in the shop, I usually turn on the stereo and listen to some nice, easy music. When I get tired of that, I flick on the receiver and tune around the upper end of 75 meters for an interesting round table – I can invariably find an interesting conversation, whether it's about the sorry state of the economy, the high cost of fuel oil, the fine golfing weather in south Florida, or a technical discussion on the merits of quads vs Yagis. Whatever my mood, there's always something on 75 that piques my curiousity, and occasionally something that starts the old adrenalin flowing.

The other night, for instance, two characters with two-letter calls were holding forth on the low end of 75 phone just inside the Extra class segment. The technical topic of the evening was transmission lines, and to hear these guys talk, they were the *original* experts. In reality all they had to offer was a barge full of baloney. Now I'll readily admit that, of all the subjects in amateur radio, transmission lines are among the most difficult to understand, but that isn't a license to run off at the mouth. And to be perfectly blunt, some amateur publications suffer from the same foot-in-mouth disease when it comes to transmission lines and antennas.

I don't know where all the feedline myths started, but I suspect it had something to do with the do-it-yourself swr bridges which first became popular back in the early 1950s. Up until then most amateurs didn't even know about standing waves, and if they did, they didn't seem to care. However, swr bridges soon caught on, and it wasn't too long before being caught with your swr up was synonymous with getting caught with your pants down. At one time someone even suggested that the Q-signal QSW be used with a scale of 1 to 10 to report your latest swr reading as you moved around the band. Fortunately the idea never caught on.

Some amateurs got interested enough in the subject of standing-wave ratios to dig into the books, but when they discovered that swr is a result of power reflected from a mismatched antenna, it only served to reinforce the myth. If a mismatched antenna causes power to be reflected back down the line, they reasoned, this power *obviously* wasn't radiated by the antenna. Some even suggested that the reflected power got back into the transmitter tank circuit and was dissipated in heat; others apparently thought that reflected power was lost forever to some great swr heaven in the sky. A few well-informed amateurs tried to nip these absurdities in the bud, but it was hopeless — the disease spread faster than the cure.

The whole subject of transmission lines is much too complex to be covered in this short space, but it's time to bury some of the myths. First of all, reflected power is not lost nor does it heat up the tank circuit of your transmitter. Secondly, if your feedline has low loss as is the case on the hf bands, increased loss due to swr is so small you can forget about it. Since a 10:1 swr on 100 feet of RG-8/U at 4.0 MHz increases loss by *less than 1 dB*, don't worry about the fact that the swr rises above 2:1 at the band edges – the station at the other end won't be able to tell the difference. If your transmitter doesn't like to load into a mismatch greater than 2:1, buy or build an antenna tuner and save yourself a lot of grief by forgetting the swr on the line to the antenna if it's within reasonable limits, say 10:1. And finally, if you don't understand transmission lines, don't make wild statements before you have your facts straight.

Jim Fisk, W1DTY editor-in-chief

# LEADING THE CIC-211



#### THE NEW ICOM 4 MEG, MULTI-MODE, 2 METER RADIO

ICOM introduces the first of a great new wave of amateur radios, with new styling, new versatility, new integration of functions. You've never before laid eyes on a radio like the **IC-211**, but you'll recognize what you've got when you first turn the single-knob frequency control on this compact new model. The **IC-211** is fully synthesized in 100 Hz or 5 KHz steps, with dual tracking, optically coupled VFO's displayed by seven-segment LED readouts, providing any split. The **IC-211** rolls through 4 megahertz as easily as a breaker through the surf. With its unique ICOM developed LSI synthesizer, the **IC-211** is now the best "do everything" radio for 2 meters, with FM, USB, LSB and CW operation.

The **IC-211** is so new that your local dealer is still playing with his demo. Just hang in there and you can grab this new leader for yourself. ICOM's new wave is rolling in.

Frequency Coverage: 144 to 148 Mhz Synthesizer: LSI based 100 Hz or 5 KHz PLL, using advanced techniques Modes: SSB (A3J), FM (F3), CW (A1) Selectivity: SSB ± 2.4 KHz or less at -60db FM ± 16 KHz or less at -60db Sensitivity: SSB 0.25 uv 10db SINAD FM 0.4 uv for 20db Q.S. Power Supply: Internal, 117V AC or 13.8V DC Power Output: 10W PEP (SSB), 10W (CW, FM) Size: 111mm H x 241mm W x 264mm D Weight: 6.8 kg

VHF/UHF AMATEUR AND MARINE COMMUNICATION EQUIPMENT



ICOM WEST, INC. Suite 3 13256 Northrup Way Bellevue, Wash. 98005 (206) 747-9020 ICOM EAST, INC. Suite 307 3331 Towerwood Drive Dallas, Texas 75234 (214) 620-2780

**Distributed by** 

ICOM CANADA 7087 Victoria Drive Vancouver B.C. V5P 3Y9 Canada (604) 321-1833



FCC CONSIDERS BAN ON LINEAR AMPLIFIERS for all services, including Amateur. FCC Chief Engineer Ray Spence dropped that bombshell in response to a question posed at the Radio Club of America annual banquet's "Round Table 1976 - Personal Communications" session. At the New York meeting, Ray said the continued circumvention of the FCC's ban on "CB" linears by half a dozen or so manufacturers is forcing the Commission to take a much stronger stance which could result in an across-the-board prohibition on amplifiers for everyone.

Alternatives To Be Considered in the proposed rule making include, in addition to the possible ban, putting all Amateur Radio equipment of commercial manufacture under the equipment approval program that presently applies to gear used by other services. Still another approach would be to forbid the sale of an amplifier to anyone not holding a license that authorizes his use of that amplifier, and make the dealer liable

for any sales made in violation of that prohibition. <u>An Industry Group Dedicated</u> to the well-being of linear amplifiers has been formed. Goals of the new group, being spear-headed by Dentron, are to establish "industry regu-lations" for the proper use of amplifiers, develop marketing techniques to keep them out of the hands of illegal users, and work closely with the FCC to assure enforcement of the Rules regarding linears.

1X2 CALLSIGN APPLICANTS newly eligible January 1 can be assisted by another ARRL prepared chart showing callsign availability. The chart will be available late in the month - send an SASE marked "IX2 Callsign Matrix" to the League for a copy. <u>1190 1X2 Callsigns</u> have now been granted since July 2, with 227 applications still pending. No NX2s have yet been issued as the computer program is still being worked

out, though applications for the new prefix have been received.

FCC REDUCED the number of copies it requires to be filed in Commission rulemaking procedures from 12 to 6 (an original and 5 copies) in an action announced November 9. Anyone wishing a copy of his comments to go to each Commissioner individually may still file an original and 11 copies as before, but the 6 copies specified in the new ruling assures that a filing is distributed to the appropriate FCC staff members. The Relaxation, which amended Part 1 of the Rules, became effective November 22.

PORTABLE AND MOBILE DESIGNATION use ended officially on Friday, November 26, a Thanksgiving present from the FCC, but you'll still need to have an "active" mailing address so you can answer possible FCC citations or advisories within the required 10-day period. Also, portable and mobile designations will still be required of participants in ARRL-sponsored contests. Though portable and mobile designations are more important to some contests than others, it's likely the Rule will be across the board for League events.

NOVICE LICENSE TURNAROUND time can be sharply reduced, say several sources, by printing "AMATEUR RADIO NOVICE APPLICATION" in large letters on the envelope used to apply for a Novice exam, then returning the completed exam to Box 1120 in the envelope it came in marked "COMPLETED AMATEUR RADIO NOVICE EXAM ENCLOSED."

NOVICE CLASS INSTRUCTORS CAN REQUEST written examinations for their students before the students take the code test under a Rules waiver announced by the FCC. Under the terms of the waiver, which will be in effect until June 30, an instructor with a class of five or more students should request sufficient exams for his students at least 30 days before the date he plans to administer the exam. Present FCC requirements for examiners remain unchanged — 21 or more years old, a General or higher class license — and the examiner will be held responsible for returning unused exams unopened along with the exams that have been taken by the students.

Requests For Group Exams should include a photocopy of the examiner's license along with his name and address, the number of exams required, and the date the exams are to be given. To facilitate processing by the FCC, the ARRL recommends including two mailing labels which include the above information along with each request. Requests should go to the FCC, Box 1020, Gettysburg, Pennsylvania 17325.

<u>15TH ANNIVERSARY OF AMATEUR RADIO IN SPACE</u> occurred in December - OSCAR 1 was launched December 12, 1961. OSCAR 7 has now provided more operating time for users than all previous OSCARs combined, according to W3PK (K3JTE). <u>Tests Of JAMSAT's 145-435 MHz transponder have been going very well, and the</u>

Japanese-built unit has met specs nicely.

ITOS-1 Launch, which AMSAT had expected to provide this summer's OSCAR launch, has been scrubbed. LANDSAT C looks like the probable alternative.

## **NOW FROM Wilson**: AMATEUR: ANTENNAS · ROTORS · TOWERS

#### **3 CRANK-UP TOWER MODELS** AVAILABLE

TT-45 FREESTANDING CRANK-UP TOWER, 45 Ft. The TT-45 will support 9 sq. ft. at height of 39 ft. freestanding when properly bracketed to a house or wall at the 8 ft. level. The loads decrease as the tower extension Mast is lengthened. (Loads are based at 50 mph and load permitted on the tower decreases with increases in wind speed over 50 mph). The tower can be completely freestanding with our new concrete or tower rotating bases, which allow the use of our raising fixture. Using these accessories, the towers can be installed by one man easily

List . . . \$310.00

#### FOR THE TOWERING SIGNAL -WILSON'S SST-64 GUYED CRANK-UP TOWER, 64 Ft. All steel tubing is galvanized pla

ted and conforms to ASTM specifications for years of mainten-ance free service. The SST-64 is made of 4 sections, being 4.5", 3.5", 2.5" and 2". These large diameters give unexcelled strength and virtually makes the thin pushup poles a thing of the past. The large loads of today's antennas make the Wilson SST-64 the best value on the market today.

List . . . \$375.00 THE WILSON GT-46 GUYED CRANK-UP TOWER, 46 Ft. The GT-46 features quality construction and materials, with the stability of the Guyed System. FEATURES OF THE GT-46:

• Low cost • High capacity • all steel. Conforms to ASTM (Ameri-can Standard of Testing Materials) · Fully galvanized · 800 lb. winch standard . Guy kits available for factory recommended installa-tions • 2000 lb, raising cable staninstalladard (Aircraft Quality) . Can be roof mounted for extra height • Great looking, slim flag pole de-sign, for the ecology minded.

M340 M620

M520

M520 M204 M203 M155 M154 M153 M108 M106 M106

M103 D854

D843

D833

List .... \$219.00

Gain (dB)

8.5

12.0 10.0 8.5 12.0 10.0 8.5 13.5 13.5 13.0 12.0

8.5 12.0 10.0 8.5 10.0

8.5

Front-ide Ra

engi (ft.)

40

19

17

DB33 wind loading WILSON 204 Taper Swaged Tubing
 Full Compression Clamps \* No Holes Drilled in Elements · Handle 4kw · 2" or 3" Aluminum Booms ROTOR CONTROL BOX SST-64 CRANK-UP TOWER Series -WR 500 ROTOR IH =

#### WR 1000 ROTOR

43

33

Pric

Price \$749.00 420.00 299.00 169.00 129.00 159.00 109.00 89.00 219.00 119.00 109.00 39.00

39.00

149.00

109.00

#### AMATEUR ANTENNAS

The Wilson 204 is the best and most economical antenna of its type on the market. Four elements on a 26' boom plus a Gamma Match (no balun required) make for high performance on CW & phone across the entire 20 meter band. The 204 Monobander is built rugged at the high stress points. Using taper swaged slotted tubing permits larger diameter tubing where it counts, for maximum strength with minimum

The DB33 is the newest addition to the Wilson line of antennas. Designed for the amateur who wants a lightweight economical antenna package, the DB33 compliments the M204 for an excellent DXers combination.

- All Wilson Monoband and Duoband beams have the following common features \* Adjustable 52  $\Omega$  Gamma Match \* Quality Aluminum
  - · Heavy Extruded Element to Boom Mount

#### WR 1000 ROTOR

The Rotor everyone has been waiting years for capable of the largest arrays up to 25 sq. ft.-Superior to prop pitches - Full 4,000 inch lbs. of turning

torque. Braking system requires 12,000 inch lbs, before over-riding - accepts 2" - 3" masts - Weighs 60 lbs. - Size: 11" diameter, 19" high.

The Finest Rotor in the Market Today WR 1000 ..... \$429.00 List

#### WR 500 ROTOR

The Wilson WR500 Rotor has 780 inch lbs. of turning torque before stalling.

In addition, a Special Braking System requires 1300 inch lbs. of torque before windmilling-This is more than twice the braking ability of the other comparable rotor being marketed.

Full 98 Steel Ball Bearing raceway assures elimination of side torque jamming when Rotor is mounted in line with the mast.

Recommended for antennas of 7.5 sq. ft. or less . . . weighs 20 lbs

The

WR500 Rotor . . \$119.95 List

### AVAILABLE THRU YOUR LOCAL DEALER

q. ft.)

210

255

120

90

15 10.5 8.75 6.8 5.25 5.0 4.0 3.0 5.5 4.0 3.0 2.0

12.75

6.0

4.5

FOR THE NAME OF YOUR NEAREST AMATEUR DEALER

WILSON AMATEUR ANTENNA SPECIFICATIONS

(ft.)

70'0" 36'0" 36'4"

36'4" 36'4" 24'3" 24'3" 24'3" 18'0" 19'0"

18'0

18'0

36'4' 24'3' 24'3' 18'0'

(ft.)

39'0" 32'0" 22'6" 20'5" 18'0" 15'9" 14'0" 22'0" 16'1" 15'8" 10'0"

27'0"

15'8"

12'2'

OR FOR A FREE CATALOG OF THE ABOVE PRODUCTS, CONTACT:

#### Electronics Corp. son

4288 SO, POLARIS AVENUE + LAS VEGAS, NEVADA 89103 + (702) 739-1931 + TELEX 684-522



180

38

## KENWOOD...the Pacesetter in



The ultimate transceiver . . . Kenwood's TS-820. No matter what you own now, a move to the TS-820 is your best move. It offers a degree of quality and dependability second to none, and as the owner of this superb unit, you will have at your fingertips the combination of controls and features that, even under the toughest operating conditions, make the TS-820 the Pacesetter that it is.

Unprecedented demand plus the painstaking care Kenwood lavishes on each TS-820 has created a back-log of orders, but rest assured, it's well worth waiting for. Once you have operated the TS-820 you will not be satisfied with anything else.



adjustable to the desired level by a convenient front panel control

Following are a few of the TS-820's many exciting features SPEECH PROCESSER • An HF circut provides quick time constant compression using a true RF compressor as opposed to an IF clipper Amount of compression is

IF SHIFT . The IF SHIFT control varies the IF passband without changing the receive frequency Enables the operator to eliminate unwanted signals by moving them out of the passband of the receiver This feature alone makes the TS-820 the pacesetter that it is

PLL . The TS-820 employs the latest phase lock loop circuitry The single conversion receiver section performance offers superb protection against unwanted cross-modulation And now, PLL allows the frequency to remain the same when switching sidebands (USB, LSB, CW) and eliminates having to recalibrate each time



FREQUENCY RANGE: 1.8-29.7 MHz (160 - 10 meters) MODES: USB, LSB, CW, FSK

MODES: USB, LSB, CW, FSK INPUT POWER: 200W PEP on SSB 160 W DC on CW 100 W DC on FSK ANTENNA IMPEDANCE: 50-75 ohms, unbalanced CARRIER SUPPRESSION: Better than 40 dB SIDEBAND SUPPRESSION: Better than 50 d SPURIOUS RADIATION: Greater than -60 dB dB (Harmonics more than -40 dB) RECEIVER SENSITIVITY: Better than 0.25uV

RECEIVER SELECTIVITY: SSB 2.4 kHz (-6 dB) 4.4 kHz (-60 dB) CW\* 0.5 kHz (-6 dB) 1.8 kHz (-60 dB) 1.8 kHz (-60 dB) "(with optional CW filter installed) IMAGE RATIO: 160-15 meters: Better than 60 dB 10 meters: Better than 60 dB POWER REQUIREMENTS: 120/220 VAC. 50/60 Hz, 13.8 VOC (with optional DS-1A DC-DC converter) POWER CONSUMPTION: Transmit: 280 Watts Receive: 26 Watts (heaters off) DIMENSIONS: 13-1/8" W x 6" H x 13-3/16" D WEIGHT: 35.2 lbs (16 kg)



Solid state remote VFO designed exclusively for use with the TS-820 "Pacesetter". Contains its own RIT circuit and control switch ... is fully compatible with the optional digital display in the TS-820.



As a TS-520 owner, you go on the air with a sense of pride and confidence. Thousands of these precisionbuilt beauties are in operation all over the world . . . in ham shacks, field day sites, in DX and contest stations and in countless mobile installations. No other rig has ever offered the performance, dependability, versatility and value that is built into every KENWOOD TS-520.


You have certainly heard the TS-520's clean signal on the air and have probably heard a lot of glowing praise by other hams. So if you don't already own a 520, maybe it's time you did.

MODES. USB. LSB. CW

POWER: 200 watts PEP input on SSB. 160 watts DC input on CW ANTENNA IMPEDANCE: 50-75 Ohms

unbalanced CARRIER SUPPRESSION: Better than -45 dB UNWANTED SIDEBAND SUPPRESSION: Better than -40 dB

than -40 dB HARMONIC RADIATION: Better than -40 dB AF RESPONSE: 400 to 2600 Hz (-6 dB) AUDIO INPUT SENSITIVITY: 0.25/V for 10 dB (S+N)/N SELECTIVITY SSB 2.4 kHz (-6 dB). 4.4 kHz (-60 dB). CW 0.5 kHz (-6 dB). 1.5 kHz (-60 dB) (with accessory filter) FREQUENCY STABILITY. 100 Hz per 30 minutes after warmup IMAGE RATIO: Better than 50 dB IF REJECTION: Better than 50 dB TUBE & SEMICONDUCTOR COMPLEMENT 3 tubes (2 x S-2001, 12BY7A), 1 IC, 18 FET, 44 transistors, 84 diodes DIMENSIONS: 13.1" W x 5.9" H x 13.2" D WEIGHT: 35.2 lbs



The R-599D is the most complete receiver ever offered. It is entirely solid state and covers the full amateur band, 10 thru 160 meters, CW, LSB, USB, AM and FM. The T-599D transmits CW, LSB, USB and AM, has only 3 vacuum tubes, built-in power supply and full metering.

Because of the larger number of controls and dual VFOs, the combination offers flexibility impossible to duplicate with most transceivers . . . for example, transmitting and receiving on different frequencies, no matter how far apart.



TRIO-KENWOOD COMMUNICATIONS INC. 116 EAST ALONDRA/GARDENA. CA 90248

## an introduction to single-sideband fm

Single-sideband fm, though still in its early stages of development, may prove useful for radio communications here are the basics of the ssb fm system

During the past decade a new communications system was mathematically shown to be possible, was analyzed in depth, and finally several working systems were built in the laboratory. This system, which will be described in some detail in this article, has come to be known as single-sideband fm or (or ssb fm), a term which is also used to describe single-sideband phase modulation.

It is interesting to note that, even though laboratory ssb fm generators exhibit unwanted sideband suppression of 35 dB or more and are relatively straightforward to build, no one ever actually set out to use ssb fm in on-the-air trials. In fact, most professional interest in ssb fm seemed to disappear by 1971 or 1972, perhaps because it was being viewed primarily as a means of saving spectrum space in the commercial fm broadcast band.

Before discussing such details any further, it is necessary to describe the basic system, and to give some historical background as well. Considering the current interest in amateur vhf, fm, the subject of ssb fm should be of general interest, and it is hoped that the following discussion will lead to some amateur experimentation with this mode of communications.

It is not really clear who invented ssb fm, although many people credit it to K.H. Powers, whose work at RCA led to a patent application which was filed in March, 1958.<sup>1</sup> The patent was not granted until September, 1962 - a happenstance which muddled the waters a bit, because E. Bedrosian of the RAND Corporation almost simultaneously published similar results in the Proceedings of the IRE.<sup>2</sup> Since Powers' results were never published, Bedrosian was generally credited with the invention. Certainly, Bedrosian's impressive contributions to the theory of signal processing were extremely important (ssb fm was a "spin-off" of his theory, as was an analysis of clipped waveforms in ssb a-m) and it is probably safe to say that it was his work which most directly influenced the subsequent development of the system.

In 1964 Dubois and Aagaard published an article which further analyzed ssb fm and which also contained block and schematic diagrams of a working system, along with appropriate oscilloscope patterns.<sup>3</sup> Although they were only operating at 500 kHz, a practical ssb fm generator had clearly been developed! Less than a year later, Glorioso and Brazeal of the University of Connecticut published further details and discussed the performance of an ssb fm generator they had built.<sup>4</sup> They were among the first to point out the need for a properly designed ssb fm receiver.

The question of how best to receive ssb fm was also getting attention at Princeton University, and during 1966 Kahn and Thomas published an article in which the theoretically optimum ssb fm receiver was discussed.<sup>5</sup> Although the theoretical receiver was impossible to build (as was pointed out in the article), it served as a guide and showed that a modified PLL detection system was the correct route to take.

Hence, by the end of 1966 most of the groundbreaking had been completed, and it seemed inevitable that ssb fm would become a topic of keen interest to professional and hobbyist alike. Paradoxically, by the end of 1971 the system had virtually faded from further discussion in the technical journals, and a search of the

**By Richard R. Slater, W3EJD**, RD 3, Cherry Lane, Export, Pennsylvania 15632

standard library reference indices shows that no generalinterest electronics or amateur magazine ever published any material on ssb fm.

#### technical discussion

Throughout the remainder of this article, I am going to assume that you are at least partially familiar with the sideband representation of ordinary fm. (If you wish to brush-up on the properties of fm sidebands, see any recent *Radio Amateur's Handbook*). Also, I intend to avoid the use of any mathematics, even though that means some loss of accuracy in the discussion, and will use as examples only sinusoidally modulated signals with full carrier. The full mathematical details can be obtained by consulting the list of references.

#### the ssb fm signal

Although most people may be able to guess what the spectrum of an ssb fm signal ought to look like, a true starting point lies in defining the way in which it must behave. From the journal articles already mentioned, it turns out that a true ssb fm signal has two important properties:

**1.** It must be possible to detect the signal with a device which is sensitive only to frequency deviations (for example, an ideal ratio detector).

2. The transmitted signal must contain only upper or lower sidebands, but not both.

These requirements are not particularly surprising until some thought is given to the second one. If we can really find a way to eliminate one group of sidebands, then it

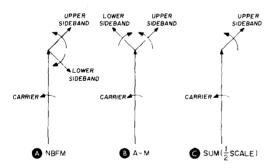



fig. 1. Rotating vector for narrow-band fm (nbfm) and amplitude modulated (a-m) wave at a modulation index of 0.4 and at 40% modulation, respectively. The same oscillator is assumed to produce both carriers, so that the carrier vectors remain in phase.

will no longer be true that, at each instant of time (as in conventional fm), all sidebands add together to give a constant-amplitude signal. Stated another way, a ssb fm signal must have both its amplitude and its frequency change with time. To most people this is the first surprise. The second surprise comes when the first requirement is then re-examined: It implies that, if we run the ssb fm signal through a limiter (and thereby remove the amplitude changes), the signal is converted to ordinary fm. If this were not so, then the detector demanded by the first requirement wouldn't be capable of recovering the modulation.

The amplitude variations in ssb fm can perhaps be made a little more palatable by recalling that a ssb a-m signal also changes in frequency and amplitude. In other words, sideband signals of any type are pretty uncooperative waveforms: They simply refuse to retain the familiar characteristics of their parent signals, especially when viewed on an oscilloscope.

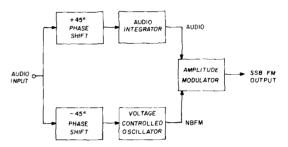



fig. 2. Block diagram of a suggested ssb fm generator (see text).

The ability of a limiter to convert ssb fm to ordinary fm will hopefully seem perfectly reasonable after the actual method of signal generation has been discussed.

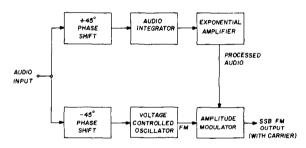
#### generation of ssb fm

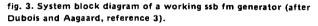
Most of us have, at one time or another, seen the rotating vector model for an a-m waveform. This was widely used in the past to explain the operation of the phasing method of ssb a-m generation; it also is a useful way of introducing ssb fm as well because the methods for generating ssb fm introduced to date are all based on phasing systems.\* Since fm signals can contain several hundred sidebands when modulated with a single tone, it is necessary that we not consider the general case right away. Instead, to simplify the concept of rotating vectors, consider the problem of "sidebanding" a true nbfm signal. This, by mathematical definition, is an fm signal which has only one significant pair of sidebands present; the corresponding rotating vectors are shown in fig. 1A. These vectors are identical to those often used in descriptions of narrow-band phase modulation because they can represent either case.

Fig. 1B shows a diagram for an ordinary a-m wave simultaneously modulated by the same audio tone. The implication is obvious: If all of these vectors are added together, the lower sideband will cancel, leaving an ssb signal with carrier. The next problem is to decide which kind of ssb it is, since it is the result of both an nbfm and an a-m wave.

The question can be answered by asking ourselves what would happen if it were run through an imaginary limiter/fm detector. Clearly, the amplitude variations would be removed and only the frequency excursions would remain. The frequency excursions which are still

<sup>\*</sup>For reasons too involved to be explained in this introductory article, filtering methods are not satisfactory.


present occur at the same rate as the original audio so we conclude it is ssb fm.


But what if the same signal is run through an a-m detector? The signal will have only its amplitude variations recovered, but these too, are present and occur at the audio rate. Thus, we must also have ssb a-m!

The point is not made to confuse (though that may be its present effect), but rather to show that, when only one sideband remains, the presence of a properly phased carrier can enable either an fm or an a-m detector to recover the audio.\* We are therefore at a departure point and must introduce multiple sidebands if we are to obtain a sideband signal which is distinctively different from ssb a-m. However, the method is basically correct and, for the moment, we can use the vector diagram to investigate some of the problems of actually using simultaneous a-m and fm to produce a single-sideband signal.

The very first problem which arises lies in the nonlinear nature of fm: If everything else is held constant, and only the frequency of the modulating tone is changed, the amplitude of the fm sidebands will still change (recall that, in nbfm, the sideband amplitude is inversely proportional to the modulating frequency). Thus, if the lower-sideband of **fig.** 1 has been carefully nulled out at a particular modulating frequency, it will reappear whenever that frequency is changed.

It is obvious that some means is needed to make the system frequency-independent. One method which can be used is to modify the a-m section so that the a-m





sidebands will also change in amplitude as the modulating frequency is changed. If this can be done in just the right way, the a-m lower-sideband will exactly cancel the fm lower-sideband at any audio frequency.

In the case of frequency modulation, it is known that the modulation index decreases by one-half each time the modulating frequency is doubled. In the narrowband case, the sideband amplitudes are proportional to the modulation index if a constant deviation is maintained. Hence, the nbfm sidebands decrease in amplitude

\*Lest an innocent reader attempt to detect *suppressed-carrier* ssb a-m on his fm receiver, let me hasten to add that an injected carrier is unable to maintain the proper absolute phase for fm detection and further, it must be injected before limiting takes place. at 6 dB per octave as the modulating frequency is increased. If the a-m sidebands can be made to behave in the same way, then the desired result will be obtained. In principle, this is easily accomplished by inserting a simple R-C lowpass filter into the a-m audio section. However, there is a very real problem which arises whenever an R-C lowpass filter is used in this way — it will be a source of audio phase shift. This phase shift will rotate the a-m vectors of **fig. 1** so that they no longer cancel the unwanted sideband. Furthermore, the audio phase shift may depend upon the modulating frequency.

In order to control phase shift, a particular kind of lowpass filter – known as an *integrator* – may be used. This introduces a constant phase shift of about 90 degrees at all audio frequencies of interest. The problem of phase matching can then be solved by the introduction of another 90-degree, all-pass network somewhere else in the system. An ordinary R-C filter can be used as an integrator provided that its time constant is at least 15 times the period of the lowest frequency component in the audio. However, the very high attenuation which results can be a disadvantage.

Unfortunately, the 90-degree all-pass network cannot be realized in practice, so commercially available audio phase-shift networks are used which produce two outputs of plus and minus 45 degrees with respect to the input audio. Fig. 2 is a block diagram of a suggested system.

#### a working system

Throughout the discussion to this point, it has been incorrectly assumed that only two sidebands have to be considered in the case of nbfm. While it is true that only two sidebands are present as long as the modulation index is smaller than about 0.4, it is *not* true that what an amateur calls nbfm always has such a small modulation index.

Recall again that, every time the modulating frequency is halved, the modulation index doubles. This means that speech — which contains many audio frequencies — will probably contain a few frequencies which are low enough that the modulation index will considerably exceed 0.4 and which will, in turn, produce multiple sideband pairs. In such a situation, the a-m section won't have a "matching" sideband pair available, and cancellation of all unwanted sidebands will be impossible. In fact, with the fm systems used by most amateurs, nearly every audio frequency produces more than one pair of sidebands. Clearly, the hypothetical system of fig. 2 will not do the job, and something additional is needed.

#### the exponential amplifier

It was at this point that Bedrosian's theory made one of its important contributions; If the audio applied to the a-m section is intentionally distorted, you can generate multiple a-m sidebands with frequencies which match those of their fm counterparts (the distortion generates audio harmonics, which in turn generate the required additional a-m sidebands). The distorting of the audio signal has to be done very precisely, and the correct way of doing it is not very obvious. It is a direct result of Bedrosian's theory that the proper method of doing this is to use a so-called exponential amplifier in the audio chain of the a-m section. The exponential amplifier is not difficult to build, and it turns out to be a kind of inverse compression amplifier. It operates by increasing its gain as the audio input voltage increases. In fact, the gain should change as the mathematical exponent of its input (hence its name). Luckily, this rather exoticquestion which was never answered to everyone's satisfaction; namely, what is the bandwidth of a typical ssb fm signal?

The answer is not necessarily "one-half the bandwidth of an ordinary fm signal," and in fact depends upon the modulating waveform.<sup>7</sup> This is because fm produces multiple sidebands for each modulating frequency, so the bandwidth can't be as easily defined as it is for a-m. Usually the bandwidth of an fm signal is considered to equal the spectrum space which contains

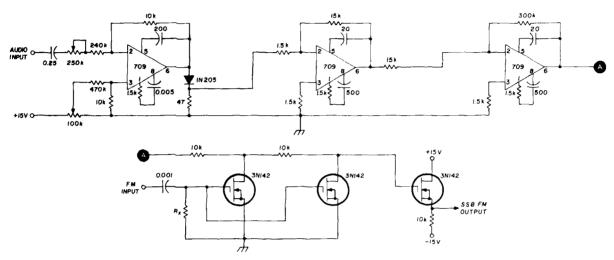



fig. 4. Snider and Schilling's experimental "exponentiator" and amplitude modulator. A dual ±15 volt supply is used. Resistor Rx was not specified by reference 6. Note that this is an example only and is not intended for home construction.

sounding behavior is obtainable simply by inserting a properly-biased diode in a feedback loop.

Fig. 3 shows the corrected system, and this arrangement does produce ssb fm. It is basically the same arrangement used by Dubois and Aagaard in their pioneering experiments in the middle 1960s.<sup>3</sup>

Snider and Schilling<sup>6</sup> have published an IC version of the exponential amplifier (which they called an *exponentiator*); a schematic diagram of their circuit is shown in **fig. 4** to illustrate the ease of construction (the three transistors are an amplitude modulator). Note that the **1N205** diode must have a **150** millivolt drop across it to provide correct operation, and that the last IC must be dc-coupled to the amplitude modulator.

For those who are experimentally inclined, Snider and Schilling's article is recommended since it also contains schematic diagrams of a useful ssb fm amplifier, designed to produce 455-kHz ssb fm. Glorioso and Brazeal<sup>4</sup> give schematics for a discrete exponentiator using four transistors and also for a frequency multiplier. In fact, these two articles contain 90 percent of the constructional material which has been published in the open literature.

#### bandwidth of ssb fm

Now that I have touched very lightly on the electronic details of ssb fm generation, I will turn to a some fixed percentage (often 90) of the radiated power. When sideband enhancement takes place in an ssb fm generator, sidebands which didn't contain enough power to contribute to the bandwidth of the parent signal may become important. If they do, the resulting ssb fm signal will be wider than one-half of the original signal. Just how much wider, or if the signal is always wider, has never been settled because as shown in **fig. 5**, the redistribution of relative sideband power is quite uneven.

A practical rule-of-thumb would seem to be that, first, single-sideband signals derived from wideband fm (modulation index greater than 0.4) are about two-thirds as wide as ordinary fm and, secondly, single-sideband signals derived from narrow-band fm are one-half as wide as nbfm. However, as the later discussion will show, there are many who disagree with this evaluation.

#### effect of limiting

Recall that the act of amplitude-modulating the parent signal cancelled an unwanted group of sidebands; hence, the amplitude variations present in the ssb fm signal can be thought of as information about how the generator accomplished its goal. If that information is removed, it is equivalent to negating the influence of the amplitude-modulator at the generator so the original sidebands are all restored, and ordinary fm results. It follows that the act of subjecting ssb fm to hard limiting restores it to ordinary fm, and it was this potential compatibility with standard fm broadcast receivers that first attracted the attention of the developers of the ssb fm technique.

As was mentioned earlier, if ssb fm were viewed as an end in itself, you would *not* use an ordinary fm receiver to detect it, but would go in the direction indicated by Kahn and Thomas<sup>5</sup> – detecting both amplitude and frequency changes for later processing. Nevertheless, virtually everyone who worked with ssb fm considered only ordinary (consumer) fm receivers because they saw ssb fm as a possible way to squeeze more stations onto the commercial fm broadcast frequencies. This is an important point to keep in mind, because when you take

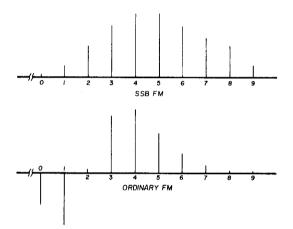



fig. 5. Relative upper sideband amplitudes for ssb fm (top) and ordinary fm (bottom) versus sideband number, where zero indicates the carrier component. Both plots are for a modulation index of 5, but are drawn to different vertical scales. Top: Carrier component equal to unmodulated signal amplitude. Bottom: Carrier component 18% of unmodulated signal amplitude.

only that viewpoint, you can easily "prove" that ssb fm is inferior to ordinary fm. The next section summarizes those arguments.

#### the case against ssb fm

The bandwidth (however you choose to define it) of an ssb fm signal can depend so strongly upon the modulating waveform that very great differences in its bandwidth were obtained by several workers. Mazo and Saltz,<sup>7</sup> who assumed so-called Gaussian modulation, concluded that ssb fm was often wider than fm whenever the modulation index exceeded three. Hence, they declared that it was of little interest for such purposes as standard broadcasting. Kahn and Thomas<sup>5</sup> reached the opposite conclusion for the case of sinusiodal modulation, declaring that wideband ssb fm is half as wide as ordinary fm but that narrow-band ssb fm is 1.4 times as wide! Both of these papers were entirely theoretical, and neither of them contained supporting laboratory experiments.

On the other hand, Glorioso and Brazeal built a working system and agreed with Bedrosian's earlier conclusion that a narrower bandwidth is to be expected for ssb fm. In fact, the bandwidth rules given earlier in this article are based upon these author's findings, as well as those of Dubois and Aagaard; it is believed that they represent the current best choice among decidedly divided opinions. Nevertheless, it could still turn out that ssb fm is unattractive due to bandwidth limitations.

A more certain criticism of ssb fm arises when you consider the signal-to-noise ratio at a conventional discriminator: The amplitude variations inherent in the ssb fm signal make it more difficult to obtain full limiting, so that the threshold characteristics are poorer and the threshold signal-to-noise ratio is degraded. These problems become particularly troublesome at large modulation indexes, as does an accompanying problem of maintaining phase linearity in the receiver i-f strip.<sup>6</sup> For all of these reasons, Snider and Schilling expressed the opinion that ". . . ssb fm will not find broad practical application, since it is both difficult to generate and does not perform as well as fm does."<sup>6</sup>

#### the case in favor of ssb fm

It must be repeated that the usefulness of any communications method depends upon the way in which it is configured. Certainly, if you want to broadcast compatible, high-fidelity ssb fm into the home of an audiophile, you have chosen an impractical goal. On the other hand, if you are interested only in communicating information to a *matched* receiver, ssb fm may indeed be attractive. For example, Glorioso and Brazeal held that, even in the wideband case, "Envelope detection, additional nonlinear processing, and filtering . . . offers threshold characteristics similar to conventional fm. ..."<sup>4</sup> Furthermore, they maintained that there is an accompanying saving in spectrum space.

In the narrowband case, ssb fm is readily detected with a conventional receiver and offers an improved signal-to-noise ratio over conventional fm once the detection threshold is exceeded.<sup>4</sup> Even though the threshold signal-to-noise ratio is still slightly poorer than that of conventional nbfm, it is believed that the loss is a very slight one or two dB.<sup>4</sup>

The accusation that ssb fm is "difficult to generate" depends, of course, upon your own viewpoint. Since Glorioso and Brazeal have shown that ssb fm can be generated at low frequencies and then multiplied to a higher frequency (and a higher modulation index), it is slightly simpler than ssb a-m, which must always be moved by heterodyning (mixing) techniques. Ssb fm is very much like ssb a-m in its requirements for generation and linear amplification, but these are routine requirements and constitute no serious difficulty. In short, the arguments in favor of ssb fm roughly counterbalance the negative opinions, and there does not seem to be sufficient information as of yet to make a go/no-go decision.

Particularly intriguing is the question of suppressedcarrier operation — a possibility which has not been discussed in the literature. Unlike conventional fm, it turns out that ssb fm contains a constant-amplitude component at the carrier frequency, so that carrier reinsertion at the receiver appears to be feasible. This is not immediately obvious from the information given in the references, because each author chose to normalize his calculated sideband amplitudes in such a way that the carrier amplitude appears to decrease as the modulation index is increased. Furthermore, Glorioso and Brazeal show a plot of "carrier level" versus modulation index which, at first inspection, seems to imply that the carrier amplitude does change. In reality, the plot is for the signal level, which is something quite different. Anyone who decides to consult the references should keep these facts in mind.

The main point to be made here is that carrier suppression, though apparently feasible, has not been attempted. When you consider where ssb a-m might be if no one ever thought to suppress the carrier, it is natural to wonder if this is not the next logical step to take in testing the usefulness of ssb fm.

It should be mentioned that ssb phase modulation (ssb pm) may be more attractive to amateurs than ssb fm. The reasons for this are twofold:

1. In the case of ssb fm, the peak envelope power (PEP) increases with decreasing modulating frequency, whereas with ssb pm the PEP is independent of modulating frequency (see expression four in the **appendix**). Hence, ssb pm is not as likely to overdrive any following linear amplifiers at low audio frequencies.

2. An ssb pm generator can be built from fig. 3 by eliminating the audio integrator and replacing the vco with a true phase modulator. Therefore the circuitry is simpler.

Unfortunately, an ssb pm generator has never been explicitly discussed in the open literature so a potential designer is entirely on his own. However, this is not a very serious drawback because any existing ssb fm circuitry can be easily modified as indicated above.

#### closing comments

During the preparation of this article, several amateurs were asked to review it and comment. It was an almost unanimous opinion that a complete schematic diagram of a working ssb fm transmitter, along with alignment instructions, ought to be included, and I assume that a number of readers will agree. However, it is my feeling that, in addition to being beyond the scope of a preliminary article on the subject, the actual hardware is probably illegal to use in the United States due to its use of simultaneous fm and a-m. If the FCC makes its proposed rule changes, then ssb fm may turn out to be legal without special permission. In that case, it would be useful to explore specific equipment after it has been given on-the-air tests, but so far, no one in the amateur community can do this and be sure that it is a lawful activity. Clearly, simultaneous fm and a-m has heretofore been thought of as a sign of sloppy hardware design, rather than a valid means of signal generation, and clarification is needed. By default, ssb fm is emission type F9 (there is no F3a or F3j classification for fm), and F9 emissions are not allowed on any amateur frequency.

It is hoped that readers of this article who have access to a good technical library will be sufficiently attracted to ssb fm to pursue it to the point of designing appropriate equipment. Certainly there is more to be done in the area, and amateurs can make some genuine contributions to the art.

#### references

1. K. H. Powers, United States Patent 3,054,073.

2. E. Bedrosian, "The Analytical Signal Representation of Modulated Waveforms," *Proceedings of the IRE*, November, 1962, page 2071.

3. J. L. Dubois and J. S. Aagaard, "An Experimental SSB-FM System," *IEEE Transactions on Communications Systems*, CS-12, 1964, page 222.

4. R. M. Glorioso and E. H. Brazeal, Jr., "Experiments in 'SSB FM' Communications Systems," *IEEE Transactions on Communications Technology*, COM-13, 1965, page 109.

5. R. E. Kahn and J. B. Thomas, "Bandwidth Properties and Optimum Demodulation of Single-Sideband FM, *IEEE Transactions on Communications Technology*, COM-14, 1966, page 113. 6. A. J. Snider and D. L. Schilling, "The Response of a Quasi-SSB-FM System to Noise," *IEEE Transactions on Communications Technology*, COM-18, 1970, page 763.

7. J. E. Mazo and J. Salz, "Spectral Properties of Single-Sideband Angle Modulation," *IEEE Transactions on Communications Technology*, COM-16, 1968, page 52.

#### bibliography

G.B. Lockhart, "A Special Theory for Hybrid Modulation," *IEEE Transactions on Communications Technology*, COM-21, 1973, page 790.

J.W. Couch, "Signal-to-Noise Ratio Out of an Ideal FM Detector for SSB FM Plus Gaussian Noise at the Input," *IEEE Transactions on Communications Technology*, 1965, page 591.

H. Voelker, "On the Origin and Characteristics of Single-Sided Angle Modulation," *IEEE Transactions on Communications Technology*, 1965, page 555 (see also the discussion following by Bedrosian, Glorioso, and Brazeal).

#### appendix

For those readers who wish more precise details, here are some mathematical relationships:

1. Single-tone ssb fm signal voltage  $v(t): v(t) = V_o \exp(\beta \cos \omega_m t) \cos(\omega_o t + \beta \sin \omega_m t)$ 

where:

в

= modulation index

 $\omega_m$  = modulating angular frequency

 $\omega_o$  = carrier angular frequency, and

 $V_o$  = unmodulated carrier amplitude

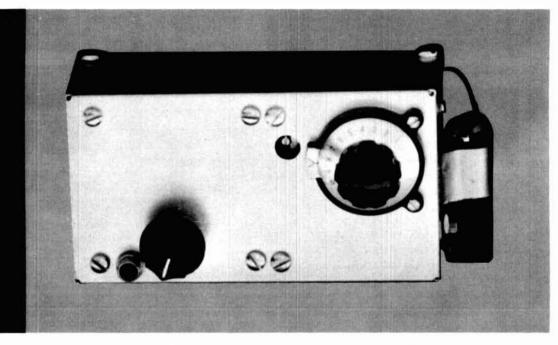
2. Single-tone ssb fm sideband amplitude  $A_m$ 

$$A_m = V_o \beta^m / m! \qquad \qquad m = 0, 1, 2, \dots$$

where:

m = o yields the carrier amplitude  $A_o$ 

3. Peak-to-valley ssb fm envelope voltage, 
$$V_{PV}$$


$$V_{PV} = 2V_o \sinh \beta$$

4. Peak-to-peak ssb fm envelope voltage,  $V_{PP}$ 

$$V_{PP} = 2V_o \exp \beta$$

In all of the above relationships, the ssb pm case may be obtained by replacing  $\beta$  with  $\phi$ , the maximum phase excursion in radians.

#### ham radio



#### direct-conversion receiver for 40 meters I that will perform equally as well as those gir choice. I've included technical expanation

Complete construction and alignment details for a mini receiver

that can be built by beginner or old timer

Here's a tiny solid-state receiver with some great characteristics for headphone reception on 40 meters. The receiver has low-noise properties and anti-overload characteristics as good as those found in some of the better vacuum-tube receivers. Idling-current drain is less than 15 mA using a 9-volt transistor battery. For identification, I call it the DCM-1. It uses an rf jfet, a vfo jfet, an audio jfet, and an op amp final audio stage. Reception is best on CW, but single sideband can be received satisfactorily when the band isn't too crowded. A miniature resonant whip antenna can be used for satisfactory reception from all over the United States.

This project was tailored with the beginner in mind. The receiver is ideal for monitoring 40-meter novice stations without requiring an outdoor antenna. The parts list is quite complete and includes many substitutions that will perform equally as well as those given as a first choice. I've included technical expanations for completeness, but don't be alarmed if at first you don't understand this material when you attempt to build this receiver. After all, we all have to start somewhere, and most of us aren't going to make the big league anyway. I was once a beginner and still don't have all the answers.

If you follow the construction directions you'll have a piece of equipment any amateur would be proud to own. A block diagram of the receiver is shown in fig. 1.

#### product detector and rf circuit

Many references have been made to direct-conversion receivers in the amateur literature. The heart of this receiver is a combination of three jfets in a Y connection such as used in a differential amplifier. This combination is almost the fet equivalent of the well-known RCA bipolar IC, type CA3028A, which has been used in product-detector circuits<sup>1</sup> among its many other applications. One advantage of the fets is that a much lighter load is presented to the vfo than when using bipolar transistors, so no buffer-amplifier is needed. Another advantage is that a better noise figure seems to prevail. Still a third advantage is low current drain. In fig. 2 it's obvious that the total current drain is only that drawn by the third transistor in the Y-connection, Q3. In the case of the prototype receiver, this current was only 8 mA.

In fig. 2, Q1 and Q2 are the matched jfets and Q3 is the series-connected rf amplifier. The variable frequency oscillator (vfo), which functions as the local oscillator (lo), is fed to gates G1 and G2 of Q1, Q2 in push-pull

By Richard Silberstein, WØYBF, 3915 Pleasant Ridge Road, Boulder, Colorado 80301 through conventional trifilar-wound broadband ferrite transformer, T1, with a 4:1 impedance ratio.<sup>2</sup> Q1 and Q2 switch the rf drain current of Q3, producing a mixer output at a frequency difference between that of the vfo and the received signal, which is in the audio range. The audio output is obtained through push-pull transformer T2, whose secondary is resonated to approximately 750 Hz by capacitor C2. I found it essential to use zener diodes CR1 and CR2 across the Q1, Q2 output, otherwise high-voltage switching transients generated in T2 can burn out the twin fets.

The rf signal is fed from the antenna jack to Q3 through a double-tuned resonant circuit consisting of L1, L2. Each inductor of L1, L2 has an unloaded Q of about 220. The two resonant circuits are coupled through C7, a very small capacitor, whose value was found by experiment. Capacitor C7 is merely a twisted pair of plastic-covered solid no. 22 AWG (0.6mm) wires. Resistor R2 was set at 3300 ohms in the prototype, but should be adjusted as described below.

The original circuit was designed for use with the Siliconix E421 dual fet in the Q1, Q2 position and the E304 in the Q3 position. Both are marketed under a different number by Calectro (at least as of this writing). Using the dual fet, the circuit should be sufficiently well balanced in some applications not to require equalization of Q1, Q2 gains. For cases where equalization is desired, or where individual fets are used, the alternative connection at points X, Y, and Z in fig. 2 should be followed, requiring a slightly different circuit-board layout, which is discussed later.

#### vfo (local-oscillator) circuit

The circuit of **fig. 3** is a straight-forward series-tuned Colpitts circuit,<sup>3</sup> also known as the Clapp circuit. Biasing diode CR1 was chosen as a germanium diode,

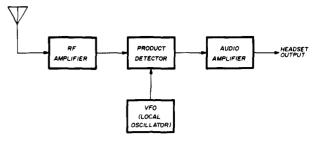



fig. 1. Block diagram of the direct-conversion 40-meter mini receiver.

because in past experiments I found that the oscillator had lower current drain than when using a silicon diode, but the choice is probably not critical. In the Clapp circuit, the impedance is low across feedback capacitors C5 and C6. Therefore it was possible to mount the tuning elements on a separate board from the transistor circuitry, locating the former conveniently close to the variable capacitor and connecting them to the latter through a 50-ohm miniature cable.

Rf chokes L3 and L4 are not critical. In my case they were wound on small ferrite cores as described in **table** 1. Small chokes, such as Millen subminiatures of 10-15  $\mu$ H would be satisfactory. L2 is a Radio Shack 2.5 mH choke, but a small choke of the order of 50  $\mu$ H would be satisfactory. Resistor R5 was 3900 ohms in the prototype, but might best be adjusted for the lo output that affords the highest detector audio output, as described later.

The vfo tuning inductor, L1, is a high-Q toroid. The tuning capacitor, C3, is a miniature 365 pF air-dielectric broadcast unit. Since this capacitor tunes through a large range, it was necessary to swamp its effect with fixed capacitor C4, which was 470 pF in the prototype. The

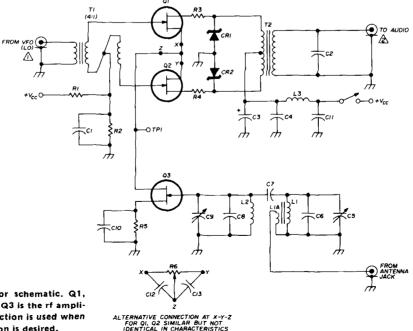



fig. 2. Product-detector schematic. Q1, Q2 are matched ifets; Q3 is the rf amplifier. Alternative connection is used when Q1, Q2 gain equalization is desired. table 1. Parts list for the DCM-1 40-meter receiver. All resistors are ½ W, 10% tolerance. Alternative parts choices are also given.

| table 1. Parts list to     | r the DCM-1 40-meter receiver. All resistors are                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| product detector:          |                                                                                                                                                                               |
| C1, C4;<br>C10 through C13 | 0.02 μF, 25 V disc ceramic                                                                                                                                                    |
| C2                         | 0.05 µF, 100 ∨ mylar                                                                                                                                                          |
| С3                         | 100 μF, 15 V miniature electrolytic, radial<br>leads                                                                                                                          |
| C5, C9                     | 5-30 pF ceramic trimmer                                                                                                                                                       |
| C6, C8                     | 100 pF polystyrene or silvered mica                                                                                                                                           |
| C7                         | coupling gimmick, twisted pair of solid no.                                                                                                                                   |
|                            | 22 AWG (0.6mm) plastic-coated wire, 31/2<br>in. (89mm) long                                                                                                                   |
| L1                         | $30 \ensuremath{\mathbb{V}_2}$ turns no. 24 AWG (0.5mm) on T50-6 toroid core                                                                                                  |
| L1A                        | $2^{1/2}$ turns no. 24 AWG (0.5mm) wound over ground end of L1                                                                                                                |
| L2                         | 31½ turns no. 24 AWG (0.5mm) on T50-6 toroid core                                                                                                                             |
| L3                         | rf choke, 2.5 mH (Radio Shack 270-1713)<br>smaller unit OK                                                                                                                    |
| Q1, Q2                     | twin rf fet in one package (Siliconix E421                                                                                                                                    |
|                            | or Calectro Equivalent). Alternatively, any<br>two hf-vhf n-channel jfets reaonably similar<br>and used with alternate source-current<br>balancing circuit.                   |
| Q3                         | Siliconix E304 or Calectro equivalent. Alter-<br>natively, a third jfet similar to Q1, Q2 may<br>be substituted.                                                              |
| R1                         | 47k                                                                                                                                                                           |
| R2                         | Set for dc voltage source-to-drain across Q3.<br>Use high-impedance voltmeter. Prototype<br>receiver value was 33k                                                            |
| R3, R4                     | 10-22 ohms; not critical                                                                                                                                                      |
| R5                         | 47 ohms                                                                                                                                                                       |
| R6                         | source-current balance pot, 100 ohms (mini-<br>ature Bourns type)                                                                                                             |
| Τ1                         | 13 turns no. 30 AWG (0.25mm) trifilar<br>wound on Indiana General ferrite core<br>CF102-Q1 or Amidon T25-6 core. Impe-<br>dance ratio, 4:1                                    |
| Т2                         | Push-pull audio transformer, Calectro<br>D1-722 or equivalent                                                                                                                 |
| CR1, CR2                   | 18V, ½ W zener diodes                                                                                                                                                         |
| vfo (local oscillator)     | ):                                                                                                                                                                            |
| C1                         | small 180 pF polystyrene or silver mica (see text)                                                                                                                            |
| C2                         | 5-30 pF ceramic trimmer                                                                                                                                                       |
| С3                         | 365 pF broadcast-band capacitor                                                                                                                                               |
| C4                         | 470 pF polystyrene or silver mica (see text)                                                                                                                                  |
| C5, C6                     | 560 pF polystyrene or silver mica                                                                                                                                             |
| C7 through C11             | 0.02 µF, 25 ∨ ceramic                                                                                                                                                         |
| CR1                        | any germanium receiving diode                                                                                                                                                 |
| L1                         | 49 turns no. 24 AWG (0.5mm) on Amidon<br>T50-6 toroid core                                                                                                                    |
| L2 through L4              | choke, 18 <sup>1</sup> / <sub>2</sub> turns no. 26 AWG (0.3mm) on<br>CF102-Q1 ferrite core. Not critical. Alter-<br>native: fill T25-6 toroid with no. 32 AWG<br>(0.2mm) wire |
| Q1                         | any good hf-vhf n-channel jfet (Siliconix<br>E304 or equvalent)                                                                                                               |
| R1                         | 47k                                                                                                                                                                           |
| R2                         | 330 ohms                                                                                                                                                                      |
| R3                         | 4.7k                                                                                                                                                                          |
| R4                         | 10 ohms                                                                                                                                                                       |
| R5                         | 3900 ohms in prototype; see text                                                                                                                                              |
|                            |                                                                                                                                                                               |

| audio amplifier: |                                                             |
|------------------|-------------------------------------------------------------|
| C1, C2           | 0.01 µF, 50 ∨                                               |
| C3, C5           | 25 or 30 $\mu$ F, 15 V miniature electrolytic, radial leads |
| C4, C8           | same as above, but 50 $\mu F$                               |
| C7               | same as above, but 10 $\mu$ F                               |
| C6               | 0.1 μF mylar                                                |
| C9               | 0.005 µF mylar                                              |
| Q1               | n-channel jfet (2N3819, HEP801 or similar)                  |
| R1               | 100k miniature volume control with on-off switch            |
| R2               | 43 ohms                                                     |
| R3               | 27k                                                         |
| R4               | 22ks,                                                       |
| R5               | 2.7k                                                        |
| R6               | 2.7 megohm                                                  |
| R7, R8           | 5.6k                                                        |
| R9               | 220 ohms                                                    |
| UI               | type 741 op amp                                             |
| minalmonut       |                                                             |

#### miscellaneous:

aluminum box, 5<sup>1</sup>/<sub>4</sub> x 3 x 2-1/8 (13x8x5.4cm). Bud CU3006A or Radio Shack 270-238

phone jack (size depends on plug size)

phono jack for antenna connection

dial drive, Calectro E2-744, diameter 11/2 in. (38mm)

battery and battery terminal. Use heavy-duty 9-volt unit

4 spacers, 3/4 in. (19mm) tapped for 6-32 (M3/5) to support product detector panel

2 spacers,  $\frac{1}{2}$  in. (12.5mm) tapped for 6-32 (M3/5) to support vfo tuner panel

4 spacers,  $\frac{1}{2}$  in. (12.5mm) to accomodate 6-32 (M3/5) screws to support rear panels

2 or 4 4-40 (M3) binder-head screws,  $^{1\!\!/}_{4}$  in. (6.5mm) long to mount variable capacitor

8 6-32 (M3/5) binder-head screws,  $\frac{1}{4}$  or 3/8 in. (6.5mm or 9.5mm) long

4 6-32 round-head screws to mount rear panels

 $2\,$  no. 4 sheet-metal screws 3/8 in. (9.5mm) long to secure dial drive to front panel

lockwashers: 12 6-32 (M3/5) and 4 4-40 (M3)

1 circuit board, fiberglass-epoxy,  $2\frac{1}{2} \times 2\frac{1}{2}$  in. (64 x 64mm), copper foll one side

3 circuit boards as above but  $2\frac{1}{2} \times 1-1/8$  in. (64 x 29mm)

3 ft (1m) RF-174/U coax cable

10 ft (3m) hookup wire no. 22 AWG (0.6mm) solid

2 transistor sockets

1 14-pin dip IC socket

overall capacitance of the combination was too high, so C1 was inserted in series (180 pF in the prototype). Capacitor C2, a 5-30 pF ceramic trimmer, sets the tuning at a reference frequency and dial position using a wand applied through a hole in the front panel. The prototype oscillator current drain was about 3 mA.

#### audio circuit

This circuit, fig. 4, is simple yet is the fourth one tried. The small broadcast transistor radios of the pre-IC days employed transformer-couple push-pull Class B output stages to obtain reasonably undistorted speaker out-

put at only 200 mW. However, I noted that the overall drain of such a receiver was 7-8 mA, increasing to 16-17 mA on audio-modulation peaks. I found that even at comfortable headphone volume, a single output transistor produced intolerable distortion. An audio fet, Q1, is biased to draw only a few tenths of a milliampere. Its output feeds a type 741 operational amplifier, U1,

product detector where a balance control is desired, whether a twin fet or individual fets are used. Mounting holes for adjustable ceramic trimmers C5 and C9 may have to be changed, depending upon the style available.

Fig. 7 shows etching templates for the small panels: fig. 7A the vfo oscillator; fig. 7B the vfo tuner; and fig. 7C, the audio amplifier. Fig. 8 shows component and

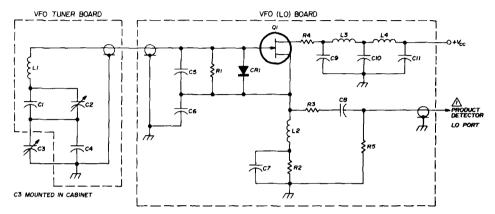



fig. 3. Vfo (local oscillator) schematic. A simple series-tuned Colpitts circuit is used for low current drain.

which works satisfactorily even on a 9-volt battery, drawing about 2.5 mA. The overall receiver current increases at most about 2 mA on loud signals with the volume turned up. The circuit is the same as that of reference 4, except that resistor R6 was increased to 2.7 megohms from 0.82 megohms, affording about 10 dB more signal gain.

#### construction

**Circuit boards. Fig. 5** is a layout of the product-detector board for the twin-fet circuit without balancing adjustment. It shows component location and drilling points. **Fig. 5** is an etching template. **Figs. 6A** and **6B** are for the drilling locations for these panels. Note that the audioamplifier layout is for the 14-pin DIP package socket. For the TO-99 package, stretch the leads to the proper hole numbers, as indicated in fig. 7, and solder. A separate layout is needed for the mini-DIP package. Use care to identify leads from the top of the IC, if this is what the manufacturer's diagram specifies. All boards should be of fiberglass-epoxy resin, such as G-10, with fiberglass paper as a possible substitute, and should have copper foil on one side.

In the type of construction I favor, the conductors are placed like islands surrounded by insulating material, all in a grounded matrix of copper. If this language

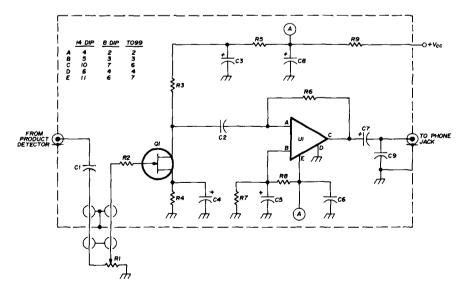
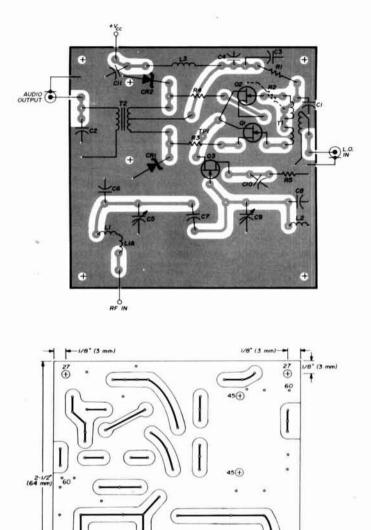




fig. 4. Audio-amplifier schematic. Circuit is similar to that in reference 4. R1 is mounted on front panel.



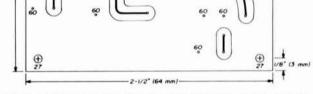



fig. 5. Product-detector layout using twin fets, above, and its etching template, below.

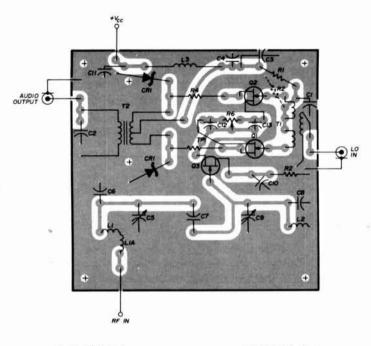
seems complicated, you'll understand by looking at the etching figures. The method takes a little more artwork but actually consumes much less etching fluid than if conductors were laid down individually. Moreover, a surrounding ground plane affords optimum shielding.

Drilling and soldering. Drills should be of the hardest possible steel, since fiberglass is an abrasive material. At least one source of such drills in quantity at reasonable prices has been advertised. \* All small holes not specified in the diagrams are to be drilled with a no. 65 (0.9mm). A stable floor- or table-mounted drill press will work satisfactorily. Some of the holes marked for no. 60 (1mm) are obviously (from inspection of the board diagrams) to be used for grounding the braid on cables

\*Trumbull, 833 Balra Drive, El Cerrito, California 94530.

terminating adjacently, so that they may need to be still larger, perhaps no. 54 (1.4mm). Before mounting components, check all islands for shorts to ground and remove any with a knife or scratch awl.

Use care not to apply too much heat in soldering; conductors etched on the best boards can strip off! Boards made of fiberglass and paper, and others with more of a paper composition, tend to smoulder with excess heat. A pencil-type iron for circuit-board work is desirable. Use a quick, firm push with a clean iron tip into the joint, bringing the solder up simultaneously and withdrawing quickly. For best results, the copper should cleaned immediately before soldering to inhibit be corrosion. Plating the finished board with tin or silver will improve soldering effectivity. (A chemical tinplating kit is sold by Burstein Applebee). The small battery-operated soldering irons are great for getting into small places, and there is an advantage in not dragging a cord around.


After a board has been completed care must be taken to clean off any rosin that bridges the insulating space between conductors and ground. This is important on high-impedance circuits and if the equipment is to be used in a humid climate.

A question arises as to whether to solder transistors and ICs in place or to use sockets. Space and cost are saved by not using sockets, but plugging semiconductors in and out makes it a lot easier to use cut-and-try procedures. In the product-detector board, I soldered the units in place, mainly because the E421 fet would have required an awkward socket wiring arrangement; the other boards are laid out so that sockets may be used if desired. Protect semiconductor leads from heat when soldering and desoldering.

Circuit changes and repairs are not too difficult if you remember not to apply too much heat and to heatsink semiconductors whenever necessary. If a removed component leaves a hole plugged with solder, the solder blob may be removed easily with rosin-coated copper braid sold under the name of *Solder Wick*.

#### testing and adjustment

Product detector and rf amplifier. The first test and adjustment procedure applied to the product detector is to determine the equality of dc voltages across the upper transistor pair and the lower transistor. Voltages should be measured using test point TP1 (fig. 2), which is a short tinned wire to which small clips may be attached. Measurements should be made with a high-impedance voltmeter. No vfo voltage should be applied to the lo port of fig. 2. Leads to a 10k pot can be temporarily attached in lieu of R2. The correct setting of the pot determines the value of R2 to the nearest fixed value available. Equalizing the dc voltages is desirable to avoid running Q1, Q2 at too-low voltage. Under these conditions, an fet will be driven into regions of the operating characteristics considerably below pinch-off, resulting in excessive distortion. This was especially true with the E421s and E304s tested, where the zero-bias saturation drain current, Idss, was not reached until the drain voltage was close to 6 volts; i.e., Vp, the pinch-off



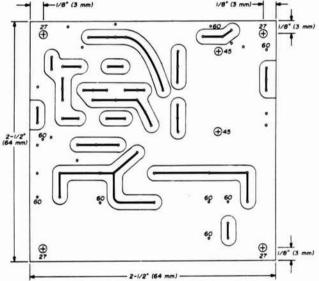


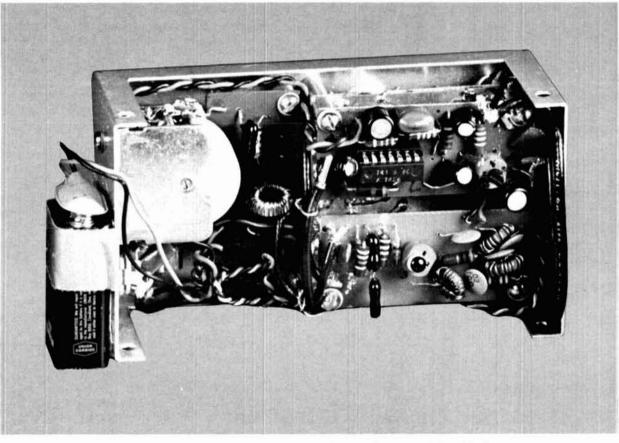

fig. 6. Product-detector layout using separate fets, above, and its etching template, below.

voltage, was close to 6 volts. The 2N4416s tested had much lower values of  $V_p$ .

Tuning the rf front end on the product-detector board is a necessary adjustment. In the prototype, the two tuned input circuits were slightly overcoupled, producing a broadband, double-humped output-voltage vs frequency response, covering 7.0-7.3 MHz. The mixer was operated again without vfo input. In my tests the output of Q3 was measured at TP1 with an rf probe attached to a vacuum-tube voltmeter. Q3 output can also be measured with an oscilloscope probe if the oscilloscope vertical amplifiers will pass 7 MHz. Yet another way is to fashion a probe with a piece of coaxial cable. A small capacitor is placed in series with the center conductor and touched to TP1. At the probing end of the cable the shield should be grounded to the board with a short clip lead. The other end of the cable should go to a receiver, and the output is read on an S-meter.

Still another way to read Q3's relative output is to operate the mixer as a mixer and read the audio output at the beat-note frequency that gives maximum audio output. Many test voms have an ac response up to 1000 Hz. One could be used at the 741 output with the headset disconnected. This method requires a minimum of test equipment but is a little more critical in adjustment.

With the relative-output technique determined, the actual adjustment of the tuned circuits is best accomplished by the following method. Use a signal generator or other equivalent shielded source with a means of attenuation. Attach small clips to short leads of a capacitor of about 470 pF. Tune the signal generator to the center of the desired frequency range and feed its output into the antenna input. Short-circuit L2 and its capacitors with the test capacitor. Force a large signal through and adjust C5 for maximum Q3 output, making sure Q3 is not overloaded. Next, clip the capacitor across L1 and tune C9 for maximum. Always make sure that the maximum occurs in two places as the capacitor is rotated through 360 degrees, otherwise the circuit must be altered to produce resonance.


After both sides are resonated, the auxiliary shunting capacitor is discarded. Then it should be possible to measure output with a small-signal input, and it will be necessary to reduce the input to prevent overload. As frequency is changed the output should be a doublehumped curve if C7 is large enough to cause overcoupling. If C7 is reduced to a value equal to or less than that needed for critical coupling, the curve will be single humped at the original frequency of tune up. A toosmall value of C7 will make the front end resonance curve too narrow for some purposes, and as C7 is made still smaller, the signal-to-noise ratio will deteriorate.

At this point it's evident we're going to have to test several units in conjunction with one another. It should be observed from the diagrams that all rf and audio leads connecting the boards to each other and to the cabinet are coaxial cables, whereas dc leads are pairs of wires braided together. A ground wire braided with battery leads affords some shielding. In the final layout, the units using coaxial cables should be joined by miniature cable lengths just long enough to enable servicing the receiver with boards removed, and the same applies for the dc leads. Earlier, somewhat longer pieces of coax can be used for convenience in bench-testing the newly built units.<sup>5</sup> Temporary dc leads are no problem. It's a good idea to use a current-limited power supply with a milliammeter in series with the line to any new unit to be tested. Gradually bringing up the voltage lets you know whether or not the current drain is reasonable.

Vfo (local oscillator). Vfo alignment is fairly straightforward, although the variable capacitor presents some problems. Before aligning the vfo, it's necessary to have the variable capacitor and the vfo tuning board fastened in position in the aluminum box, so this procedure is described with reference to fig. 9. (Drilling and removal of burrs should have been done before mounting was started).

The prototype receiver was designed to use a small, imported 1-1/2 in. (38mm) dial drive with an 8:1 gear ratio, turning a miniature 365-pF air-dielectric capacitor. Difficulties arise from the fact that sizes and mountinghole positions may vary in different shipments of the better form of dial drive seemed possible but could not be developed in time. Note that in rotational alignment, before drilling and tapping for set screws, the dial should read approximately 0 with the plates fully meshed.

The tuning-capacitor plates are quite close, so great care should be used to prevent metal chips from lodging between the plates and in the ball bearings. While drilling or filing, vulnerable places should be covered with masking tape. When drilling into a cabinet or chassis that



Interior view of the direct-conversion receiver. Audio board is at upper right, with vfo board mounted below. Printed-circuit layouts are shown in fig. 7.

same units. The worst problem, however, is in aligning the capacitor shaft with the dial-drive collar. Even if the shaft could be perfectly aligned, the hole in the collar would probably be a poor fit for the shaft. In the prototype I hack-sawed the capacitor shaft to the proper length and drilled and tapped the collar and the shaft at right angles for two 4-40 (M3) screws. The result was a capacitor that doesn't rotate quite all the way to the closed position (the shaft slipped while drilling). Worse, some drive eccentricity occurred. With the capacitor screwed tightly to the cabinet side, the lateral pressures on the shaft were enough to cause plates to short circuit. The solution was to loosen the capacitor mounting screws and ground the capacitor frame to the vfo tuner board with a short piece of braid. Solder Wick was used as the braid. Eccentricity was still present, causing some annoying backlash during frequency calibration. A

already contains boards and components, it's frequently beneficial to stuff areas to be drilled with small pieces of paper towling or rag. Chips can be removed from odd corners in the same way that small hardware can be removed from tight places: wrap a piece of masking tape with the sticky side out at the end of a pencil and probe.

After mounting the capacitor and dial drive, the vfo tuner board should be mounted, foil side down, on two ½-inch (12.5mm) threaded spacers. A short piece of solid, tinned no. 18 or 20 AWG (1.0 or 0.8mm) wire should protrude from the top of the board, to be soldered to the stator section of C3. See figs. 7B, 8B, and 9.

Now let's resume the vfo test. One sure indication that the vfo is oscillating is that, as the dc voltage is raised, the current will increase until oscillation occurs. When this happens, the meter will jump to a lower value of current. When the vfo is oscillating and voltage is reduced, the current will jump up when the oscillator quits oscillating, but at a lower voltage than where oscillation started as voltage was raised. Never plan on operating an oscillator at a supply voltage below that required to start oscillation, or even close to that upper point on the high-voltage side.

When the oscillator is working and feeding the product detector, the lower limit of the desired tuning range should be set by turning the dial to, say, 5 or 10, allowing some leeway for oscillator drift. Then frequency-set capacitor C2 should be adjusted for this frequency as received on a receiver. If it's not possible to hit the desired frequency and bandspread, remember that increasing C4 and decreasing C1 together increases the bandspread, but increasing C4 lowers the frequency and decreasing C1 raises it, so you have considerable leeway in setting the frequency and bandspread. For

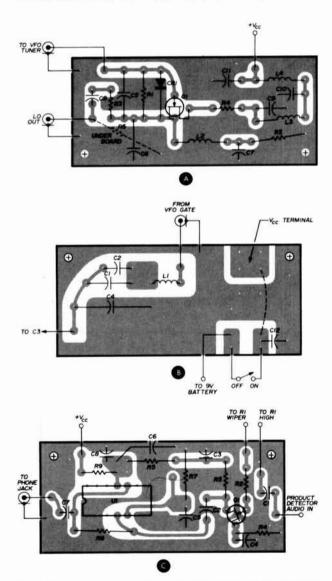



fig. 7. Component placement and etching templates for the small panels. Vfo oscillator board, vfo tuner board, and audioamplifier board are shown in A, B, and C respectively.

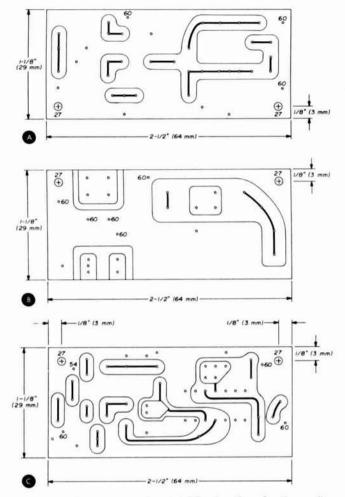



fig. 8. Circuit-board layout and drilling locations for the small panels. Vfo oscillator board is shown at A; vfo tuner and audio boards are shown in B and C.

instance, to cover a limited portion of the 40-meter band (like the novice band), you might first try reducing C1 to 120 or 150 pF and increasing C4 to 510 or 560 pF.

The vfo local oscillator output voltage can be adjusted by varying R5. The local oscillator drive voltage to the product detector is not especially critical, but values of R5 in fig. 3 can be chosen by experiment for maximizing audio output. In my case 3900 ohms was found to be the best, producing an input voltage of 0.9 volts rms to each gate of Q1, Q2.

Audio amplifier. Audio board construction is straightforward. although components are a little crowded. Initial tests can be made with the volume control, R1, hanging loose. Although the output of the productdetector audio transformer is at high impedance, the 50-ohm shielded cables to the 100k volume control can be used, because they contribute in part to the capacitance that resonates the audio transformer secondary (i.e., at audio frequencies, a short length of cable is merely a small capacitance). Using these cables is necessary to prevent the high-gain audio circuit from self oscillating under certain conditions. Final assembly into the small cabinet should be done by reference to **fig. 9**, and is much easier than it looks; it is a gradual process of fitting panels and shortening leads and cables. The 365-pF variable capacitor and the vfo tuner board have been previously mounted. After the volume control and antenna jack are mounted, the four 3/4-inch (19mm) threaded spacers are mounted to the rear end of the front panel. The product detector panel between the variable-capacitor frame and the cabinet cover, but the pressure caused the capacitor to short in some positions. The battery was finally mounted on the outside of the cabinet with wires passed through a notch on the cover plate.

#### a miniature antenna

The receiver was designed to work with a 50-ohm

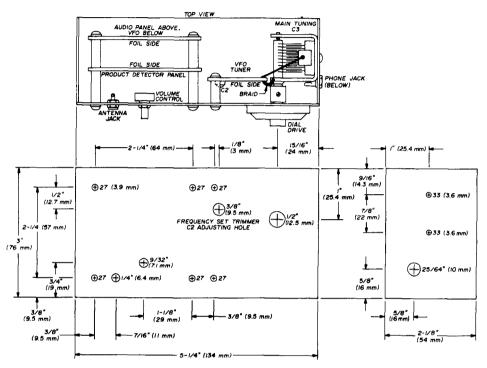



fig. 9. Cabinet layout showing drilling and component-mounting details.

is then laid in position against these spacers. The foil side must face the rear, the bulky components occupying the space between the epoxy side and the cabinet front.

The audio and vfo boards are positioned behind the detector. The audio board mounts on top and the vfo board below, with the foil sides facing inward. They are spaced from the product detector by four 1/2-inch (12.5mm) spacers that are not threaded but pass 6-32 (M3/5) screws. The whole assembly is then secured by four 3/4-inch (19mm) 6-32 (M3/5) screws, which go into the original four threaded spacers, as shown in fig. 9. Lockwashers are used at front and rear.

The cables and dc wire pairs can be tucked into the space between the spacers and the box at the edges. Dress the wires and cables away from tuning inductors and the high-voltage side of all rf circuits.

The  $V_{cc}$  wires should terminate at the  $V_{cc}$  terminal, located for convenience on the vfo tuner board, fig. 8B. The ground wires can be soldered in the appropriate adjacent holes on the ground-foil area. A twisted pair should go to the on-off switch on the volume control. The 9-volt battery connects to a standard snap-on terminal with red and black wires, which go to points indicated in fig. 8B. Originally, the battery was forced outdoor antenna, but excellent results can be had with small antennas for indoor and outdoor use. Even a piece of wire strung up in the room and connected to the antenna jack will bring in many signals. A small, resonant loaded-whip antenna was designed that works very well for outdoor portable use and also indoors when not too near pipes, wires, heat ducts, and flourescent lights.

Fig. 10 illustrates the antenna. A section of RG-58/U coaxial cable with a phono plug at the lower end is strapped to a 3-foot (1m) piece of dowel. The dowel can be mounted in a board as a strand or fastened to the receiver with cable clamps, but in the latter position, there may be some chance of the lightweight reciever overturning. A fiberglass rod could also be used.

A small insulating board of fiberglass or phenolic is mounted flat to the top of the dowel. On one side is mounted a slug-tuned coil form such as J.W. Miller no. 43A001CB1, with the winding space filled with no. 28 AWG (0.3mm) enamelled wire. The end nearest the mounting nut is fastened to the cable center conductor. The shield at this point is not connected anywhere. The hot end of the coil is connected to a pair of galvanizedwire "antlers" spead horizontally from a screw on the other side of the board. Sections of hard-drawn tinned busbar would be even better. The antlers provide top loading. At resonance, the antenna has a resistive impedance near 50 ohms, but it would be difficult to determine what part of this resistance is due to losses.

Approximate resonance can be found with a grid dipper and final resonance determined on background noise or with a signal generator on a small antenna. Tuning, of course, is with a tuning wand, keeping your body, phone cord, and other wiring as far away as possible from the system. A lighter weight antenna could be made using a toroid core on a T50-6 form, adjusting the turns to something near desired resonance. The slugtuned coil can be protected by a plastic pill bottle.

#### summary

One outstanding feature of this receiver is its large dynamic range. With a signal inserted directly at the gate of Q3 in the prototype, the output was linear with input up to a 1-dB saturation fall-off<sup>6,7</sup> at 850 mV rms input, representing an output audio voltage of 8.5 volts rms at about 750 Hz into the 100k volume-control load. Since the audio transformer has a turns ratio of about 2.24, this represented a push-pull drain voltage of 8.5/2.24 = 3.8. In the more linear portion of the characteristic, at lower inputs, the overall voltage gain was 13.3, or 22 dB (from the Q3 input to the transformer output). Of course, Q3 may have a gain of the order of 20 dB, leaving the conversion gain of switching pair Q1, Q2 small, but much better than if diodes had been used.

The double-tuned high-Q rf input has a voltage gain of 50, or 26 dB, so that the signal gain from the antenna jack to the audio-transformer output was 22+26, or 48 dB. Additionally the noise figure appeared to be very good. It was estimated that only about 0.2 mV input was needed for a 10-dB signal-to-noise plus noise ratio. Of course, you'd want to use the full resonant gain of the front end when using the small antenna. With a large antenna, you might be concerned that the saturation voltage is the original 850 divided by 50 (gain of the resonant circuits), or only 17 mV. Yet in practice, with an excellent outdoor antenna, I've failed to notice any great blocking of the receiver by strong signals - and here it must be remembered that the receiver has no agc circuit. When signals are too strong, merely turn down the audio volume. If blocking is a problem, an rf attenuator can be switched into the antenna input.8

The most obvious problem in this receiver is that the audio beat note appears on both sides of zero beat and selectivity is poor. DX can be received well when nearby stations are skipping over. Selectivity can be made comparable to that of an expensive receiver by using a good active audio filter, such as that made by MFJ Enterprises, if you can afford the extra 8 mA current required. However, the backlash in the present tuning system makes it easy to lose the signal. A high-Q resonant transformer might be a good compromise.<sup>9</sup>

One disappointment with the original design was finding more than 100 mV rms of lo signal at TP1 in the product detector with the equipment running at 1.8 volts gate-to-gate lo voltage on  $\Omega1$ ,  $\Omega2$ . This represents an unbalance voltage of unknown origin, which could be due either to unbalance in the transformers, phase unbalances, or even differing gains of each of the twin fets despite identical dc drain currents. Although back leakage through Q3 to the antenna must have been smaller than a few millivolts, such leakage could be detected as a signal comparable with low background noise, with the prototype receiver on the miniature antenna and a standard receiver on my big antenna. With two adjacent

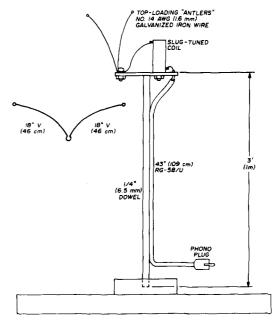



fig. 10. Miniature resonant antenna for indoor use or as a portable outdoor antenna. Tuned circuit has a voltage gain of about 50, or 26 dB. At resonance, the antenna has a resistive impedance near 50 ohms.

large antennas, the effect would be more serious, although the radiation would still be only microwatts. So I recommend, where amateur stations are close together, using the alternative product detector and adjusting R6 of **fig. 2** for minimum antenna output, which should correspond to minimum lo unbalance voltage at TP1.

#### references

1. The Radio Amateur's Handbook, ARRL, Newington, Connecticut, 1976 edition, page 338.

2. William Ress, WA6CNT, "Broadband Double-Balanced Modulator," ham radio, March, 1970.

3. The Radio Amateur's Handbook, ARRL, Newington, Connecticut, 1976 edition, page 139.

4. Loc. cit, page 417.

5. Bill Wildenhein, W8YFB, "Low-Cost Printed Circuit Board," ham radio, January, 1975.

6. Wes Haywood, W7ZOI, "Defining and Measuring Receiver Dynamic Range," *QST*, July, 1975.

7. James R. Fisk, "Receiver Noise Figure, Sensitivity and Dynamic Range – What the Numbers Mean," *ham radio*, October, 1975, pages 8-25.

8. The Radio Amateur's Handbook, ARRL, Newington, Connecticut, 1976 edition, pages 263-264.

9. D.K. Siemer, KØJYD, "The Mavti-40," Part I, *QST*, June, 1975.

ham radio

### the ground-plane antenna:

## its history and development

Some useful information for those interested in the design and adjustment of this popular antenna

This article will be of value to those interested in designing and adjusting ground-plane antennas. The article describes the original invention of the ground-plane antenna, points out an error in assumptions regarding radiation resistance, and includes formulas for designing a simple matching network.

#### background

A study of 30 - 60 MHz antennas made in 1936 by Dr. George H. Brown and J. Epstein of RCA brought to light two principal defects in most types of such antennas used at that time: the transmission line was not terminated properly, and sizable standing waves occurred on the outside of the coaxial transmission line. The J-antenna and the sleeve or coaxial antenna (both popular at that time) were found to be particularly susceptible to such standing waves.

Brown and Epstein found that the use of horizontal quarter-wavelength ground rods extending from the base of the vertical antenna established a virtual ground plane and shielded the coaxial line from the rf field of the antenna. Two types of coaxial matching networks were developed. Both supported the antenna rod mechanically, insulated it from ground at rf but grounded it at lightning and dc frequencies, and at the same time provided a good impedance match between antenna and transmission line at the operating frequency. Two patents resulted from this work: the original<sup>1</sup> was issued in 1941, and another was issued on an improved design<sup>2</sup> in 1942.

The original design, fig. 1, was built and tested in 1938 in Camden, New Jersey. It was my privilege to witness some of these tests. The first design used a quarter-wavelength antenna rod, four quarter-wavelength ground rods, and a quarter-wavelength coaxial support stub shorted at the bottom end. The coaxial transmission line was matched to the antenna base resistance (the reactive component was negligible when the antenna was exactly one-quarter wavelength long) by a quarterwavelength coaxial line connected between the antenna base and the antenna end of the transmission line.

This quarter-wavelength line had a characteristic impedance of

$$Z = \sqrt{R_a Z_l} \tag{1}$$

where

- Z = characteristic impedance of the quarter-wavelength matching section (ohms)
- $R_a$  = antenna resistance (ohms)
- $Z_l$  = transmission-line characteristic impedance (ohms)

This coaxial matching section can be compared to the so-called Q-section used by many amateurs years ago as an impedance transformer between an open-wire transmission line and a center-fed antenna.

#### improved design

In the improved ground-plane design, fig. 2, the coaxial Q-section was eliminated, the transmission line was connected directly to the antenna base, the antenna was shortened to present an impedance of 19-j29.5 ohms, and the previous quarter-wavelength support section was shortened to about one-sixth wavelength. This shorted stub then had an inductive reactance of about +42 ohms which, in parallel with the capacitive antenna impedance of 19-j29.5 ohms, resulted in a parallel impedance of 65 ohms — the characteristic impedance of the coaxial transmission line used at that time. Each of the four horizontal ground rods remained a quarter wavelength long. Tests showed that their length was not too critical.

The values above were calculated as follows, as stated in Dr. Brown's article in *Electronics*:<sup>3</sup>

By Harold C. Vance, Sr., K2FF. (Mr. Vance became a silent key in August, 1976.)

The parallel inductive reactance of the matching stub required for parallel resonance with the capacitive reactance of the antenna is

 $X_s = \frac{R_a^2 + X_a^2}{X_a}$ 

where

 $X_{s}$  = stub reactance (ohms)

 $R_a$  = antenna resistance (ohms)

 $X_a^{"}$  = antenna reactance (ohms)

The parallel impedance of the antenna, a pure resistance at resonance, is

$$R_{p} = \frac{R_{a}^{2} + X_{a}^{2}}{R_{a}}$$
(3)

(2)

where

 $R_p$  = terminating resistance presented to the transmission line at the antenna base.

In his *Electronics* monograph<sup>3</sup> Dr. Brown points out that, ". . . it is practically possible to present a resistance that will match a concentric transmission line of any characteristic impedance above 25 ohms. . .but the antenna length becomes extremely critical when resistances in excess of 100 ohms are desired."

The evolution of the ground-plane antenna design is described in detail in an article by Dr. Brown and J. Epstein in the July, 1940, issue of *Communications* magazine.<sup>4</sup> This article also shows a ground-plane antenna with a close-spaced reflector. A gain of approximately 3 dB was obtained. The antenna and matchingstub lengths were changed slightly to maintain a match between antenna and transmission line when the reflector was added.

#### erroneous assumption

In an article on the ground-plane antenna, Stephens<sup>5</sup>

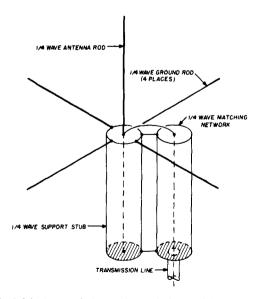



fig. 1. Original ground-plane antenna design, which was built and tested by RCA in Camden, New Jersey in 1938. The coax matching section may be compared to the familiar Q-section transformer used by amateurs years ago to match open-wire transmission lines to center-fed wire antennas.

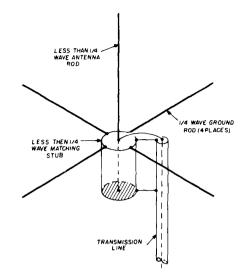



fig. 2. Improved ground-plane antenna. The coaxial Q-section was eliminated, and other innovations resulted in an antenna that was easier to match and adjust.

refers to an article by Hassenbeck<sup>6</sup> giving formulas and curves that claim to be values of resistance and reactance of a vertical antenna supported above four one-quarter wavelength ground rods. Hassenbeck states that data given by King and Blake<sup>7</sup> was used in establishing his curves.

Dr. Brown pointed out<sup>3</sup> that, "the data given by King and Blake apply to a symmetrical antenna fed at its center or to a vertical antenna operating against an infinite metal sheet. . .there is a fundamental difference in the impedance of an antenna operating with four ground rods and an antenna operating over a semiinfinite sheet."

Actual measurements made by Dr. Brown showed that an antenna using four ground rods "has an appreciably lower radiation resistance than is generally assumed for the same antenna operating over a semiinfinite conducting plane." He stated that, "with an antenna exactly one-quarter wave in length, replacing the four ground rods by a metal disc one wavelength in diameter changed the actual measured radiation resistance from 25 ohms with the ground rods to 37 ohms with the one-wavelength-diameter disc."<sup>3</sup> Measurements of an earlier experimental unit<sup>4</sup> showed an antenna resistance of 21 ohms with ground rods.

The actual antenna resistance and reactance values shown in fig. 3 were measured at 60 MHz. The ground rods were one-quarter wavelength at 60 MHz. The antenna-rod diameter was 0.625 inch (16mm), and its length was varied to those shown in the curves.

In Hassenbeck's article<sup>6</sup> the characteristic impedance of the support stub was assumed to be 70 ohms. In the RCA MI-7823-A antenna,<sup>3</sup> Dr. Brown used a stub having a characteristic impedance of only 41 ohms "to lengthen the support section when low frequencies requiring long antenna sections were used, and to make the adjustment of the shorting plug less critical."

In the case of the MI-7823-A antenna the length, S, of the inductive matching and support stub in electrical

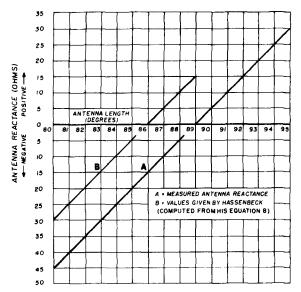



fig. 3. Actual resistance and reactance values of the ground-plane antenna measured at 60 MHz compared with values given by Hassenbeck in reference 6 (top two graphs). Bottom set of curves shows characteristics of the RCA MI-7823-A ground-plane antenna including parallel-resonance resistance,  $R_p$ ; shunt reactances,  $X_L$  and  $X_C$ , required for resonance; and matching-stub length, S<sup>0</sup>, required for the various values of reactance and resistance.

degrees ( $360^\circ$  = one wavelength) is given as:

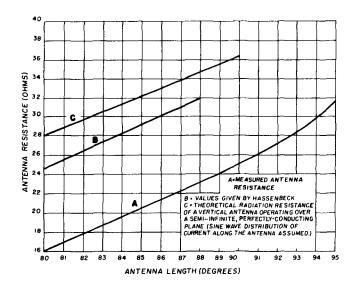
$$\tan S^{\circ} = \frac{X_{stub}}{41}$$
 (4)

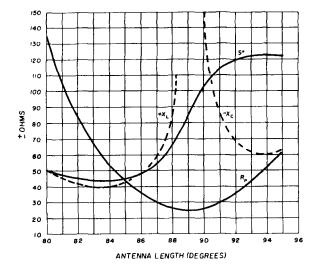
where  $X_{stub}$  is the reactance of the matching stub (ohms) and 41 is the characteristic impedance of the MI-7823-A matching stub (ohms).

In more general terms,

$$\tan S^{\circ} = \frac{X_{stub}}{Z_{stub}}$$
, or  $S^{\circ} = \arctan \frac{X_{stub}}{Z_{stub}}$  (5)

where  $Z_{stub}$  is the characteristic impedance of the stub (ohms).


That is, the stub length, S, in electrical degrees equals the angle whose tangent corresponds to the value obtained when  $X_{stub}$  is divided by  $Z_{stub}$ .


#### conclusion

The need for actual experimental measurements is well illustrated by the error of Hassenbeck's assumption that the radiation resistance of the ground plane antenna would be the same as that of an antenna operating over a semi-infinite sheet. Many factors such as proximity of other objects, incorrect assumptions, and structural differences can cause actual values to vary widely from calculated values. An R + jX bridge, such as those described in  $QST^8$  and ham radio<sup>9,10</sup> will prove invaluable for this purpose.

#### acknowledgement

I wish to thank Dr. Brown for furnishing me with copies of the referenced articles by him and J. Epstein.





#### references

1. U.S. Patent 2,234,333, *Ground-Plane Antenna*, Issued March 11, 1941, to G.H. Brown, J. Epstein and R.F. Lewis, of RCA Laboratories.

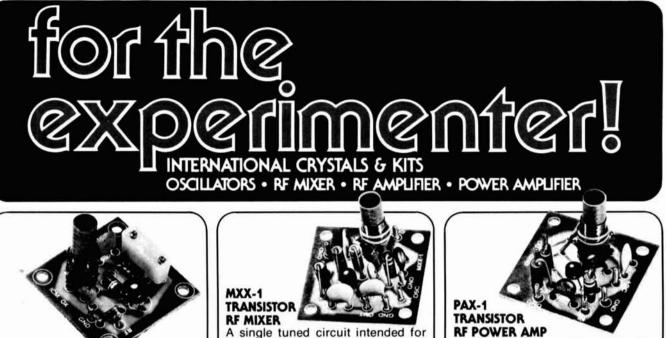
2. U.S. Patent 2,275,342, Improved Ground-Plane Antenna, Issued March 3, 1942, to G.H. Brown.

3. George H. Brown, "Ground Plane Antennas," *Electronics*, December, 1943, page 338.

4. George H. Brown and J. Epstein, "An Ultra-High Frequency Antenna of Simple Design," *Communications*, July, 1940, page 3-5.

5. Robert E. Stephens, "Admittance Matching the Ground-Plane Antenna to Coaxial Transmission Line," *QST*, April, 1973, page 55.

6. H.W. Hassenbeck, "Design Data for Ground-Plane Antennas," *Electronics*, August, 1943, page 98.


 R. King and F.G. Blake, Jr., "The Self Impedance of a Symmetrical Antenna," *Proceedings of the I. R. E.*, 30, 1942, page 335.

 Jerry Hall, K1PLP, and John Kaufmann, WA1CQW, "The Macromatcher," QST, January, 1972, page 14.

9. William A. Wildenhein, W8YFB, "Low Cost Impedance Bridge," ham radio, May, 1973, page 6.

10. Henry S. Keen, W2CTK, "A Simple Bridge for Antenna Measurement," ham radio, September, 1970, page 34.

ham radio



OX OSCILLATOR

Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101 Specify when ordering.

\$3.95 ea.

A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106 Specify when ordering.

\$4.50 ea.



\$4.75 ea.



Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to 22 MHz, OF-1 LO, Cat. No. 035108. 18 to 60 MHz, OF-1 HI, Cat. No. 035109 Specify when ordering.

\$3.25 ea.



TRANSISTOR RF AMP A small signal ar

A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103. Specify when ordering. \$4.50 ea. DAX-1 DROADDAND AMP General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat No. 035107 Specify when ordering \$4.75 ea.

.02% Calibration Tolerance EXPERIMENTER CRYSTALS (HC 6/U Holder) Cat. No. Specifications 031080 3 to 20 MHz - for use in OX OSC Lo \$4.95 ea. Specify when ordering 031081 20 to 60 MHz - For use in OX OSC Hi Specify when ordering \$4. 3 to 20 MHz — For use in OF-1L OSC \$4.95 ea. 031300 \$4.25 ea. Specify when ordering 031310 20 to 60 MHz - For use in OF-1H OSC \$4.25 ea. Specify when ordering.

 Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.



International Crystal Mfg. Co., Inc. 10 North Lee Oklahoma City, Oklahoma 73102

### broadband matching techniques for transistor rf amplifiers

The ins and outs of transistorized rf amplifiers can be effectively matched by using broadband matching techniques

**Ever since the introduction** of the transistor, there has been considerable interest in using the low-impedance characteristic of these devices to advantage in the design of broadband amplifiers. The most critical parts of a multi-octave amplifier are the input and output impedance transformation networks. In general, it is more difficult to accomplish large impedance transformation ratios, or to design networks which can transform low impedances. The latter because transmission-line transformers require a very low line impedance, which usually limits them to impedance ratios of less than 16:1 in 50-ohm systems; other types of transformers require tight coupling coefficients (or excessive leakage inductance will reduce the effective bandwidth).

Numerous methods have been successfully used in

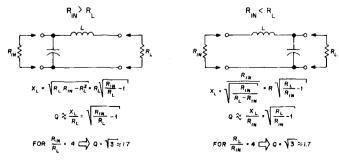



fig. 1. L network calculations of Q.

broadbanding vacuum-tube amplifiers. However, most of these methods yield relatively poor results when applied to low-impedance transistor circuits. Shunt-peaking, which works quite well with high-impedance tube circuits, becomes very difficult to use in transistor circuits because of the presence of  $r_{bb'}$  and  $r_{b'e}$  and the loading effect of  $C_i$ . In addition, the improvement obtained is significantly less than that realized for tube circuits.

The L-network (fig. 1) which is a very simple network, suffers from two serious drawbacks with regard to

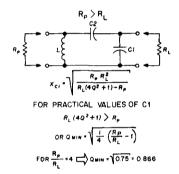



fig. 2. Tapped-tuned circuit calculations of Q.

broadband applications: first, the overall Q of the circuit is determined by the ratio of the impedances to be matched and *cannot* be set independently. Further, the higher the ratio of impedances to be matched, the higher the overall circuit Q. For a ratio of only 4:1, Q = 1.7, which is much too high for multi-octave use. The tapped-tuned circuit (fig. 2) allows the overall circuit Q to be set independently of the terminating impedances. However, there is a restriction on the minimum allowable value for Q which eliminates this circuit from consideration in multi-octave applications. The pinetwork (fig. 3) suffers from essentially the same unacceptable restriction on minimum circuit Q as does the tapped-tuned circuit.

By Bill Leonard, WA7WHZ, Technical Staff, Hughes Aircraft Company, 6573 Debs Avenue, Canoga Park, California 91307

#### transmission-line transformers

The availability of high-frequency, high-permeability ferrites has prompted the development of wideband toroidal transformers which are ideally suited for multioctave, low-impedance applications. There are numerous versions in use today, the more popular of which have been described in principle by Granberg.<sup>1</sup> Only the most popular of these, the transmission-line transformer, will be discussed here.

A wideband model of a toroidal 4:1 impedancematching transformer was first investigated by Ruthroff,<sup>2</sup> and more recently by Pitzalis and Couse.<sup>3</sup> Transmission-line transformers yield nearly the best performance in terms of bandwidth and power handling capability. Units with bandwidth ratios of 20,000:1 (i.e., a Q of 0.007) and power capabilities in excess of 300 watts have been built. Figs. 4 and 5 show 1:1 and 4:1 impedance transformers. It is customary to show both the conventional and the transmission-line equivalent

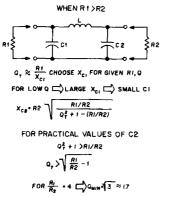



fig. 3. Pi-network calculations of Q.

circuits since the parameters which determine the lower cutoff frequency are very different from those which determine the upper cutoff frequency.

In conventional transformers, the interwinding capacitance resonates with the leakage inductance to produce a loss peak. This limits the high frequency response. In transmission-line transformers, the coils are arranged such that the interwinding capacitance is a distributed component of the characteristic impedance of the line. This characteristic makes the construction of low-impedance lines possible by use of close spacing (many twists per inch) of the wires which form the twisted pair. Although, in principle, any type of transmission line may be used, twisted pairs have the advantages of low cost and small size, while coaxial lines yield the best response due to their having relatively constant impedance as a function of length.

#### frequency response

Analyzing the frequency response of broadband transformers is not a trivial exercise. The upper frequency limitations are related to the length of the transmission line and to the ratio between the characteristic impedance of the line and the load impedance. Usually, the length of

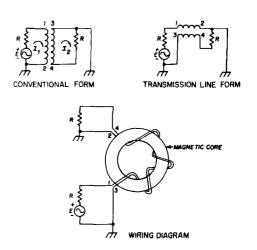



fig. 4. 1:1 impedance transformer shown in the conventional and transmission-line form along with the wiring diagram.

the transmission line is chosen to be  $\lambda/8$  or less at the upper frequency desired. For a 4:1 impedance transformer, the characteristic line impedance  $(Z_o)$  should equal  $\sqrt{R_L R_S}$ . The shorter the physical length of the line, the less important exact matching becomes. The exact expression which describes the high-frequency behavior of the 4:1 impedance transformer can be found in references 2, 3, and 4. The result for matched impedances is

$$\frac{P_{in}}{P_{out}} = \frac{(1+3\cos\beta \ell)^2 + 4\sin^2\beta \ell}{4(1+\cos\beta \ell)^2}$$
(1)

where

e  $\beta$  = phase constant of the line  $\left(\frac{2\pi}{\lambda}\right)$   $\ell$  = line length (same units as λ)  $\beta\ell$  measured in radians

Fig. 6 displays this expression as a function of line length. It can be seen that the upper cutoff (-3 dB) frequency occurs at a line length of  $0.3\lambda$  for matched loads. However, in practice it is customary to keep  $\ell < 0.125\lambda$  to minimize effects of mismatch.

For analysis of the lower cutoff frequency, the

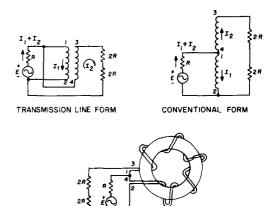



fig. 5. 4:1 impedance transformer shown in the same manner as the 1:1 transformer.

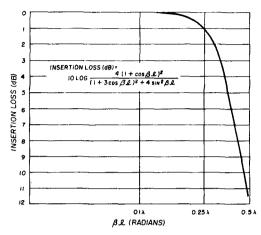



fig. 6. insertion loss versus line length for a matched broadband transformer.

conventional form of the equivalent circuit (fig. 5) is used. The lower cutoff frequency is determined by the falloff of primary reactance as the frequency is decreased. This reactance is determined by the series inductance of the transmission-line conductors, Therefore, the longer the line length, the greater the series inductance, and the lower the cutoff frequency. This is in direct conflict with extending the upper cutoff frequency which, as previously noted, is enhanced by shortening the physical length of the transmission line. Minimizing the overall length, consistent with achieving the necessary reactance for the low-frequency requirements, can be accomplished with high permeability materials such as ferrites. The inductance of a conductor is directly proportional to the relative permeability of the surrounding medium. A high permeability material placed close to the transmission line acts on the external fringe field in such a way as to significantly increase the effective inductance, thereby greatly lowering the lower cutoff frequency. The key point is that there is no influence upon the characteristic impedance of the line. Therefore, there is no degradation of the high-frequency

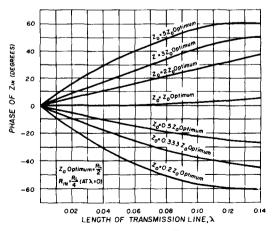



fig. 8. The phase of input impedance,  $Z_{in}$ , versus transmissionline length for mismatched conditions.

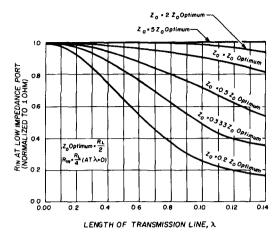



fig. 7. The effect of various mismatched conditions shown as input impedance versus transmission-line length.

cutoff characteristics. Also, power transferred from input to output is not coupled through the ferrite material, but rather through the dielectric medium separating the transmission-line conductors. This is an important characteristic since it allows for relatively small cross-section ferrite materials to be operated at very high power levels without danger of saturation. This is in contrast to the conventional transformer which couples power from primary to secondary entirely through the core which must be chosen to handle the total power without saturating.

In summary, the low-frequency cutoff requirements<sup>3</sup> can be related in the following expression

$$\ell \ge \frac{20R_L}{(1+\mu)f_L}$$
 inches (2)

Thus, the minimum allowable transmission line length can be specified in terms of the load resistance  $(R_L)$ , the lower cutoff frequency  $(f_L \text{ in } MHz)$  and the relative permeability  $(\mu)$  of the core material.\*

Impedance ratios in excess of 4:1 are easily obtained

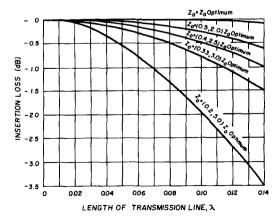



fig. 9. The insertion loss versus line lengths for mismatched conditions.

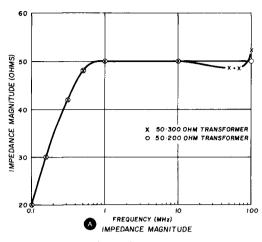
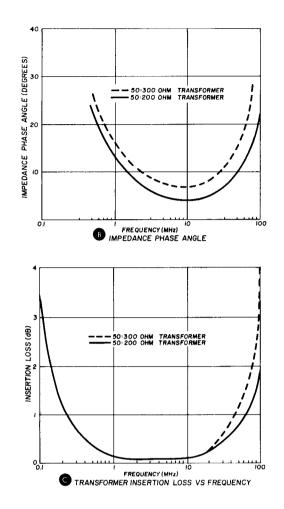



fig. 10. A comparision of two broadband matching transformers. Each transformer was wound on 2 Ferroxcube 266T125 3D3 cores.  $A_T = 330\pm20\%$  mH per 1000 turns,  $\mu = 750\pm20\%$ ,  $A_C = 0.183$  cm<sup>2</sup>. The winding for the 4:1 transformers is made from two no. 30 (0.25mm) vinyl-coated wires with 7 twists/inch. The length is 5.7" (14.5cm) and 10 turns. The winding for the 6:1 transformer has a third 2.5" no. 30 (6.5cm) wire added to form a three-wire transmission line. The transformers were designed for operation from 150 kHz to 100 MHz.


by using the methods described in references 1, 3 and 4 when integer ratios (1:1, 4:1, 9:1,...,  $n^2$ :1) are acceptable. In addition, Krauss<sup>4</sup> discusses the construction of a three-wire transmission line for use in transformers which yields a nearly continuously variable (up to 6:1) ratio transformer. In general, characteristics such as bandwidth, passband ripple, and insertion loss began degrading as higher transformation ratios are required.

#### mismatching

One question that immediately arises is the effect of a mismatch. Doherty and Hatley<sup>5</sup> have investigated this problem for a complex mismatch. Pitzalis and Couse<sup>3</sup> have resolved the question for a 4:1 impedance transformer encountering a resistive mismatch. These results are presented graphically in figs. 7, 8 and 9. These curves are normalized to  $Z_o$  and ignore the low-frequency cutoff effects. They clearly demonstrate the relative insensitivity of the transformation with respect to a resistive mismatch for mismatches as high as 2:1. They also show that for  $Z_o > Z_o$  (optimum), the input impedance is a series R-L circuit, while for the case where  $Z_o < Z_o$  (optimum) the input impedance is that of a parallel R-C circuit. These facts can sometimes be used to advantage when compensation is necessary for stability or other reasons.

\*To find the minimum line length in metric terms, use the following formula

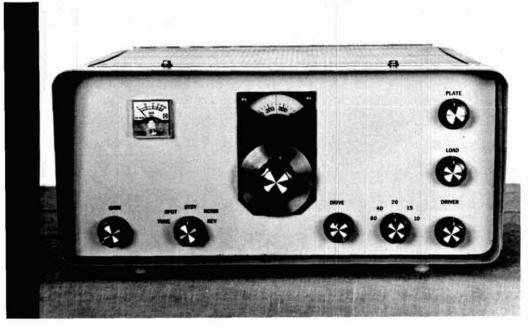
$$\mathfrak{Q} \ge \frac{51R_L}{(1+\mu)f_L} \quad cm$$



In conclusion, a comparision of two representative impedance transformers, as designed and tested by Krauss,<sup>4</sup> is presented in **fig. 10**. A conventional 4:1 impedance transformer is compared with a similar unit which uses a three-wire transmission line to obtain an impedance ratio of 6:1. It can be seen that, as was previously mentioned, the higher impedance ratio unit is slightly inferior in terms of overall performance.

#### references

1. H. Granberg, "Broadband Transformers and Power Combining Techniques for RF," *Motorola Applications Note AN-749*, Motorola Semiconductor Products, Inc., Phoenix, Arizona.


2. C. Ruthroff, "Some Broad Band Transformers," Proceedings of the IRE, August, 1959, page 1337.

3. O. Pitzalis, Jr., and T. Couse, "Broadband Transformer Design for Transistor Power Amplifiers," USAECOM Technical Report 2989, U.S. Army Electronics Command, Fort Monmouth, New Jersey, July, 1968.

4. H. Krauss and C. Allen, "Design Toroidal Transformers to Optimize Wideband Performance," *Electronics*, August, 1973, page 113.

5. W. Doherty and W. Hatley, "Broadband Transmitter Techniques," USAECOM Technical Report 01829-M1022 U.S. Army Electronics Command, Fort Monmouth, New Jersey, April, 1967.

ham radio



## 100-watt PEP five-band transmitter

Except for driver and final this rig features solid-state stages, low cost, and easy construction With the prospect of obtaining my general class license in the future, the need for an ssb transmitter arose along with the question of whether to build or buy. Considering the fact that a lot of experience and pleasure can be derived from homebrewing, I decided to build and came up with the following objectives:

- 1. Solid-state devices where practical.
- 2. 100 watts PEP.
- Five-band coverage with CW and upper and lower sideband.
- 4. Low cost.
- 5. Easy construction.

After searching through various publications and not being able to find an article that fit all my requirements, I decided to design each stage separately using standard circuits and/or circuits from other articles.

By Harold Peters, WN3WTG, P. O. Box 1264, Tipton, Pennsylvania 16684

#### description

A block diagram is shown in fig. 1. A 9-MHz dsb signal is generated with the speech amplifier and carrier oscillator, the carrier is removed by the balanced modulator, and the filter then removes one of the sidebands. The vfo and high-frequency oscillator (hfo) signals are But this isn't a major problem and one easily becomes accustomed to it.

The 9-MHz ssb signal and the output of the first mixer are mixed in the second mixer. The driver then amplifies this signal, and the Class AB final increases the signal level to 100 watts PEP output. Tubes are used in the driver and final to keep the cost down.

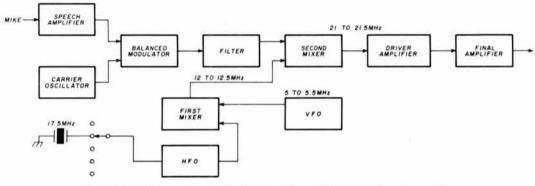
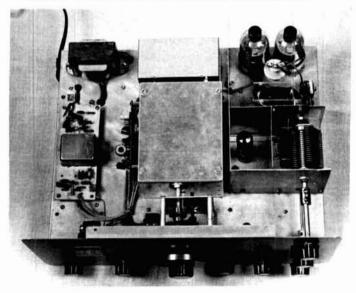




fig. 1. Block diagram showing the five-band transmitter in the 15-meter position.

mixed to produce the signal needed to heterodyne the 9-MHz ssb signal to the desired amateur band. This method results in less bandswitching than most other schemes.

The only disadvantage to this mixing scheme is that a sideband inversion occurs on 40 meters, and a tuning inversion occurs on 15 meters. On 40 meters the upper and lower sideband selection is reversed, and on 15 the low end of the band starts at the high end of the dial.

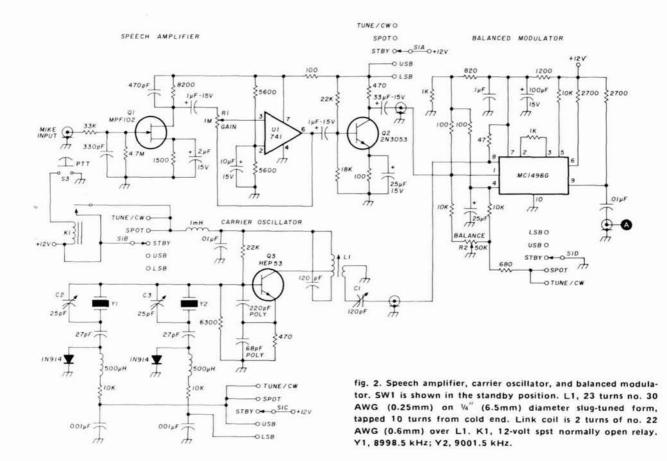
Top view of transmitter with cover removed to show component location. The PC board on the left shows the sideband filter.



The entire transmitter was built a stage at a time and checked for proper operation before going on to the next stage. Each stage represented in the block diagram was built on a separate PC board or in the case of the vacuum-tube stages, in a separate compartment. Besides making construction and testing easier, this method allows for easy removal of a stage should it become defective.

#### speech amplifier and carrier oscillator

The speech amplifier (fig. 2) consists of Q1, U1, and Q2.<sup>1,2</sup> The MPF102 provides a high-impedance input, and the 741 op amp and the 2N3053 provide ample audio power to drive the balanced modulator.


The speech amplifier as well as the carrier oscillator, high-frequency oscillator, and first and second mixer stages were constructed on double-sided glass epoxy PC board. The components were mounted on one side of the board, and the copper was left intact on the reverse side to act as a ground plane for added circuit stability.

The carrier oscillator (fig. 2) uses diode switching for selection of upper or lower sideband.<sup>1,3</sup> The trimmers for the crystals vary the carrier frequency to the desired location on the 9-MHz crystal filter skirt.

The operation of the carrier oscillator was verified by listening for the signal in a general-coverage receiver. The speech amplifier was tested by applying an audio signal to the microphone input and listening for the output with headphones.

#### balanced modulator and filter

The outputs of the speech amplifier and carrier oscillator are mixed in the MC1496 balanced modulator<sup>2</sup> and

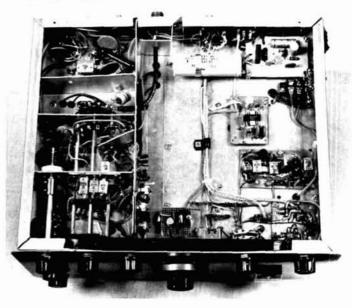


the carrier is suppressed (fig. 2). In the CW mode, balance is upset and the carrier is allowed to pass through.

The 2N2222 (Q5) of the filter stage (fig. 3) acts as a buffer and also serves as the keying point for CW by applying keyed +12 volts from Q6.<sup>4,5</sup> Q7, a 40841 gate-protected dual-gate mosfet, makes up for filter signal loss and acts as the ALC control point.<sup>1</sup>

These stages were constructed on single-sided glass epoxy PC board. Care was taken during construction to ensure that no signal leak through would occur to destroy the carrier and opposite sideband suppression.

With the previous stages operating properly, the output of Q7 is a 9-MHz ssb signal, which can be monitored on a receiver. L1, C1, and R2 (fig. 2) are adjusted for maximum carrier suppression and C2, C3, C4, and C5 are adjusted for best voice quality consistent with good carrier and opposite sideband suppression. L2 is adjusted for maximum output.


#### vfo and hfo

The schematic for these stages is shown in **fig. 4**. The vfo, Q8, is a series-tuned Clapp circuit and includes a two-stage buffer amplifier, Q9, Q10, and a lowpass filter for a very stable and clean output.<sup>1,6</sup> Voltage to the MPF102 is regulated by a 9-volt zener.

The vfo PC board was mounted in its own enclosure with angle brackets, and the box was mounted in the

center of the chassis. Phono jacks couple power and vfo output to the enclosure to make for easy removal of the vfo for testing and temperature compensation. Using a receiver or frequency counter, the vfo was adjusted to

Bottom view of the transmitter. The audio and modulator stages are located in the lower-right corner. The power regulator is in the upper right.



tune from 5-5.5 MHz by adjusting the bandset trimmer and L9.

The hfo was also mounted in a separate enclosure. The crystals are diode switched so that the hfo could be mounted away from the bandswitch.<sup>3</sup> This stage is not used on 80 or 20 meters, as the vfo 5-MHz output is mixed with the 9-MHz ssb signal for output on these bands.

placed on the bandswitch, and the mixer PC boards were placed close by to keep lead lengths short.

With the aid of the grid-dip meter, the toroid/trimmer assemblies were checked and adjusted for approximate frequencies before placing them in the circuit.

#### driver and final amplifier

The driver stage, shown in fig. 3, uses a 6GK6 power

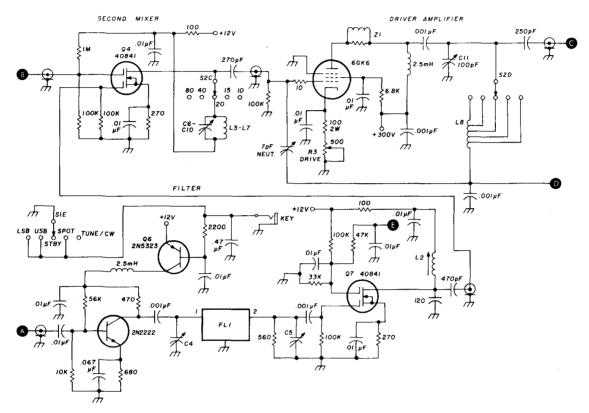
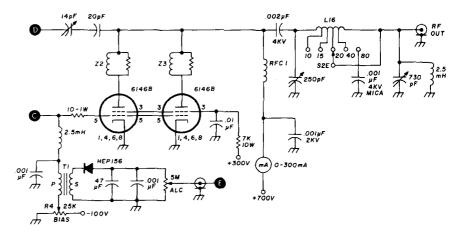



fig. 3. Second mixer, driver, and filter. FL1, 9-MHz crystal filter, KVG XF-9A. C4, C5, 35-pF trimmer. Z1, 4 turns no. 20 AWG (0.8mm) on 47-ohm, 1-watt resistor. L2, 20 turns no. 30 AWG (0.25mm) on T-50-6 form; C6, 250 pF. L4 (40 meters), 22 turns no. 28 AWG (0.3mm) on T-50-6 form; C7, 250 pF. L5 (20 meters), 14 turns no. 22 AWG (0.6mm) on T-50-2 form; C8, 120 pF. L6 (15 meters), 12 turns no. 22 AWG (0.6mm) on T-50-2 form; C9, 120 pF. L7 (10 meters), 9 turns no. 22 AWG (0.6mm) on T-50-2 form; C10, 120 pF. L8, 60 turns no. 28 AWG (0.3mm) on T-68-2 form, tapped at 30, 12, 6, and 3 turns for 40-10 meters respectively.

#### first and second mixers


The first mixer<sup>7</sup> uses a 40841 to mix the vfo and hfo outputs. The proper tank circuit is switched by the bandswitch, with the same tank used for both 80 and 20 meters. The output frequencies of the first mixer are: 5-5.5 MHz for 80 meters, 16-16.5 MHz for 40 meters, 5-5.5 MHz for 20 meters, 12-12.5 MHz for 15 meters, and 19-19.5 MHz for 10 meters.

Q4, another 40841 (fig. 3), serves as the second mixer and uses a circuit similar to that of the first mixer. Second-mixer output is a low-power version of the ssb signal to be transmitted.

All coils in the mixer tanks are wound on toroids for compactness and self-shielding. The windings were spaced on the toroids to occupy the entire circumference of the core. Each toroid and its trimmer were pentode tube.<sup>8</sup> A drive control is included to vary the amount of drive to the final. The driver tank coil differs from the previous tank coils in that it is was wound on a single toroid, tapped for each band, and tuned to resonance with C11 from the front panel of the transmitter.

The final stage (fig. 5) uses two 6146Bs in a class-AB parallel configuration. Plate voltage is supplied through RFC1, a Johnson 102-572 transmitting-type rf choke. Meter M1 measures plate current.

The ALC voltage is obtained from the grid bias. It is rectified and applied to the filter stage through R4, which controls the amount of ALC voltage. The ALC circuit was adjusted with the aid of an oscilloscope. A two-tone test signal was injected into the microphone input, and the transmitter rf output was monitored on fig. 5. Final amplifier. T1, audio transformer; primary 600 ohms, secondary 2000 ohms. Z2, Z3, 5 turns no. 20 AWG (0.8mm) on a 47-ohm 1-watt resistor. L16, 38 turns no. 12 AWG (2.1mm) on T-200-2 form, tapped at 4, 6, 11, and 22 turns for 10-40 meters respectively.



the scope. Audio gain control R1 was advanced until flat-topping just started to occur; then R4 was adjusted to eliminate this distortion.

Conventional procedures were used in adjusting the neutralizing and the final plate and loading capacitors. Plate current at maximum output is about 220 mA.

#### 12-volt power supply

Fig. 6 shows the regulated 12-volt power supply, which was included on the chassis so that during non operating periods the power to the vfo can be left on. A 723 IC regulator and a 2N3772 pass transistor provide about 3 amps at 12 volts.<sup>9</sup> R3 sets the output voltage.

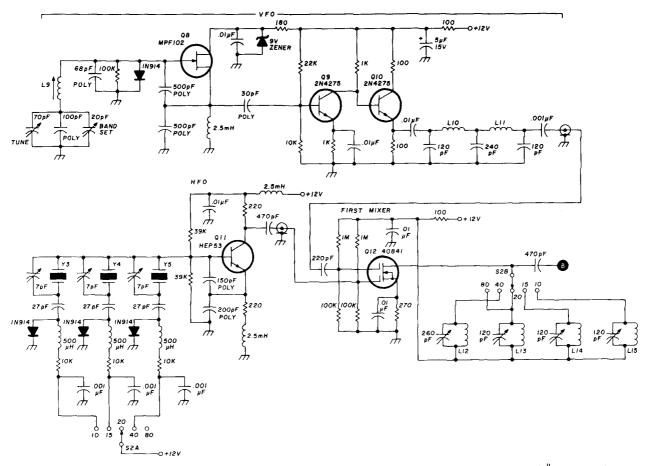



fig. 4. Vfo, hfo, and first mixer. S/2 is shown in the 20-meter position. L9, 35 turns no. 32 AWG (0.2mm) on  $\frac{1}{4}$ " (6.5mm) slug-tuned form. L10, L11, 38 turns no. 32 AWG (0.2mm) on T-37-2 form. L12, 12 turns no. 22 AWG (0.6mm) on T-37-2 form. L12, 31 turns no. 28 AWG (0.3mm) on T-50-6 form. L14, 16 turns no. 22 AWG (0.6mm) on T-50-2 form. L15, 12 turns no. 22 AWG (0.6mm) on T-50-2 form. Y3, 14 MHz. Y4, 17.5 MHz. Y5, 11 MHz.

The 2N3772 was mounted on the back of the chassis, which acts as a heat sink.

#### closing remarks

A small change to be made in the future is to place the spot function on a separate front-panel switch. As it

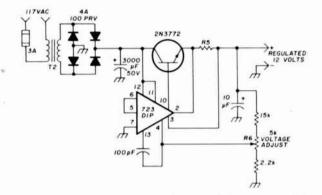



fig. 6. Regulated power supply for the solid-state stages of the transmitter. T2, 24-volt 2-amp power transformer. R5, 0.1-ohm resistor consisting of 8 feet (2.4m) of no. 22 AWG (0.6mm) wire wound on a wooden dowel.

is now, the spot function works only in the upper sideband position. But the opposite sideband can be heard in my receiver because of the close proximity, so it poses no real problem.

#### acknowledgements

I would like to thank all of the authors whose ideas and circuits I borrowed for my transmitter. Special thanks go to Howard Stark, WA4MTH, for his encouragement and assistance.

#### references

1. "A 20-Meter Sideband Transmitter," *The Radio Amateur's Handbook*, ARRL, Newington, Connecticut, 1973 Edition, page 416.

2. "A Solid-State Transceiver for 160 Meters," *The Radio Amateur's Handbook*, ARRL, Newington, Connecticut, 1975 Edition, page 418.

3. Typical Transistorized Oscillator Circuit, JAN Crystals Catalog, page 4.

4. "A Solid-State Transceiver for 160 Meters," *The Radio Amateur's Handbook*, ARRL, Newington, Connecticut, 1975 Edition, page 416.

5. "A Two-Band Transmitter," *The Radio Amateur's Handbook*, ARRL, Newington, Connecticut, 1975 Edition, page 169.

6. Doug DeMaw, W1CER, "More Basics on Solid-State Transmitter Design," *QST*, November, 1974, page 23.

7. Ed Noll, W3FQJ, "Mosfet Circuits," ham radio, February, 1975, pages 55 and 56.

8. "A 20-Meter Sideband Transmitter," *The Radio Amateur's Handbook*, ARRL, Newington, Connecticut, 1973 Edition, page 417.

9. Douglas A. Blakeslee, W1KLK, "AC-Operated Regulated DC Power Supplies for Transistorized Rigs, *QST*, November, 1971, page 12.

ham radio



Standard's 146-A Handheld outclasses them all! A deluxe 2 meter FM transceiver • Full 5 channel capability, 2 channels included • Compact size 1 x 3 x 9 inches • Separate internal mike • Built-in meter to monitor battery condition • Provision for Private Channel (CTCSS), external mike or speaker mike.

Since no two radio applications are exactly alike Standard makes the rugged HORIZON "2" 25 watt, 2 meter FM transceiver for HAM, CAP, and MARS. The HORIZON "2" is also available for



under \*\$299. Both of these rugged radios offer you exceptional quality and outstanding performance at a price that's right.



# automatic 600-kHz up/down repeater-mode circuit for two-meter synthesizers

Although designed for use with the GLB 400B Channelizer, this circuit may be used with other synthesizers using BCD coding to their divide-by-n counters

With the continuing increase in the number of repeaters appearing on two meters, most amateurs are finding that being "rock bound" leaves a lot to be desired, not to mention the cost of filling those crystal sockets in most two meter rigs. The trend seems to be that more amateurs are finding that synthesizers allow them to work the entire band, and, in most cases, that they can work it in 5-kHz increments.

Some synthesizers on the market today use a pair of ganged switches, one to set the repeater input, the other the output frequency. This arrangement doesn't pose a problem except when it comes to mobile operation. Changing repeater frequencies while "threading the needle" in rush hour traffic can be exciting, if not downright hazardous.

This article deals with my answer to improving the ease of operation of the GLB 400B Channelizer, but the

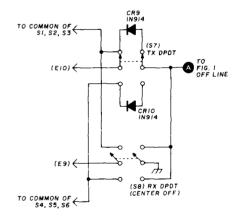



fig. 1. Wiring diagram of the replacement switches for S7 (transmit select) and S8 (receive select). Rear view is shown.

circuit may be used with other synthesizers using BCD coding to their divide-by-n counters.

#### features

The addition of the circuit of fig. 2 provides an automatic 600-kHz up or down shift of the receive frequency and the ability to work repeaters on just one

By Paul Quinn, WB4PHO, Route 2, Box 323D, Carrollton, Georgia 30117

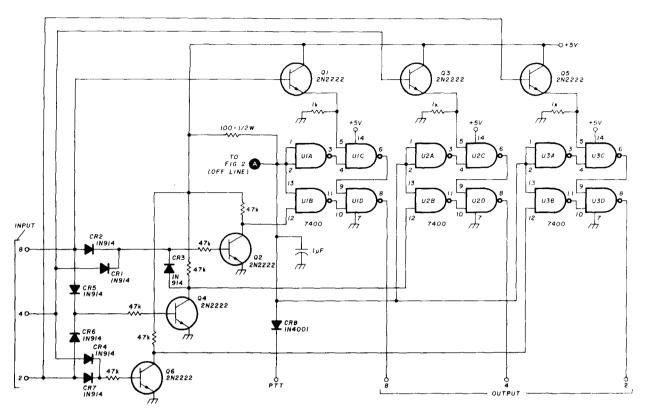



fig. 2. Schematic of the automatic 600-kHz up/down repeater-mode circuit. The 100-ohm resistor is ½ watt; all others are ¼ watt.

control head. The other set of switches can be left on a favorite repeater or simplex frequency and monitored by a simple flick of the transmitter select switch.

This circuit will work with all standard repeater pairings of 146.01 to 146.37 MHz and 147.60 to 147.99 MHz input and will shift to the simplex mode when the control switches are set to the standard simplex frequencies of 146.40 to 146.59 MHz and 147.40 to 147.59 MHz.

Upon setting the repeater input in the control head, such as 146.28 MHz, the circuit changes the BCD input to the 100-kHz divide-by-*n* counter from a 2 to an 8, which offsets the receiver 600 kHz *up* and allows the receiver to operate at 146.88 MHz. Setting the repeater output frequency in the control head allows paralleling the repeater by offsetting the receiver 600 kHz *down*. In either case, the transmitter will always be on the frequency that appears on the control switches when the

microphone PTT switch is depressed. Repeaters in the 147.00-MHz segment, such as 147.63 MHz in and 147.03 MHz out, are working in the same manner.

The combination of transistors Q2, Q4 and Q6 and their associated diodes provides the logic to the circuit. ICs U1, U2 and U3 act as three separate spdt switches that place the logic function in or out and are controlled by the *center off* position of the receive select switch (S8). Q1, Q3 and Q5 act to interface the ICs.

#### construction

A full-size PC board layout for the automatic up/down repeater mode circuit is shown in fig. 3; fig. 4 shows component location. Price information on etched and drilled PC boards may be obtained by sending a self-addressed stamped envelope to the author; however, the circuit is not critical and can be built on Vector board if desired. I would advise against substituting

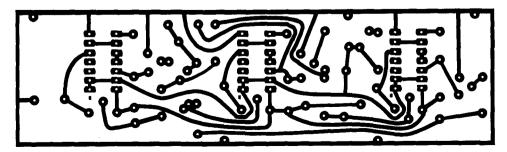
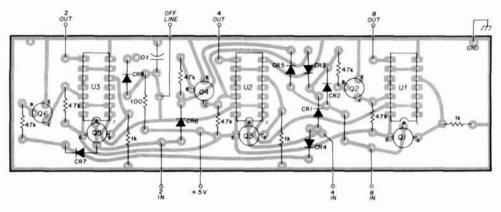




fig. 3. Full-size PC-board layout for the automatic 600-kHz up/down repeater-mode circuit. Send a self-addressed stamped envelope to the author for prices on etched and drilled boards.

fig. 4. Reverse side of PC board showing parts location. CR8 is a type 1N4001; all other diodes are 1N914s. Use a  $V_2$ -watt resistor for the 100-ohm unit; all others may be  $V_4$  watt.



components or resistance values. The use of IC sockets is a must when using surplus ICs.

The Channelizer requires no outward change to its appearance, and only the transmit select switch (S7) need be changed from an spdt to a dpdt. The receive select switch (S8) is changed from an spdt to a dpdt (center off).

Rewire the new switches, S7 and S8, as shown in fig. 1. Diode CR9 and CR10 mount on S7. The ground shown on S8 and the 600 kHz offset should be connected to the ground of the Channelizer main board. The "off line" connects to the 600-kHz offset circuit board.

#### checkout

The circuit should be checked out before installation as follows. Connect 5 volts to the  $V_{cc}$  point and apply a ground to the circuit. With a voltmeter connected to pin 8 of U2, an indication of 4 or more volts should occur. U3 pin 8 should indicate the same positive voltage. U1 pin 8 should read less than 1 volt.

Now connect 5 volts through a 1k resistor to the BCD 2 input and note that pin 8 of U1 is now at 4 or more volts, while pin 8 of U2 and U3 are less than 1 volt. With this connection to the 2 input, place 5 volts through another 1k resistor to the BCD 4 input. Now pin 8 of all ICs should indicate less than 1 volt. Disconnect the resistors and touch one of them to the BCD 8 input. Pin 8 of U1 and U2 should be less than 1 volt, while U3 pin 8 should be 4 volts or more. Place a ground connection to the *off* line and note that when the voltage is again applied to the inputs (one at a time), the corresponding outputs will be high, while the others remain less than 1 volt.

#### installation

The board is connected to the synthesizer by grounding it to the main board of the Channelizer and applying 5 volts to the  $V_{cc}$  point from E5 or some other convenient source. Connect the PTT switch to E8 of the main board. Connect the off line to the switch as shown in fig. 1. Cut the wire from the junction of CR15 and CR16 to E20 and connect the end nearest the diodes to the BCD 8 input. Connect the other wire, nearest E20, to the BCD 8 output. Likewise, cut the wire going to E19 and connect to the BCD 4 input and output. Cut

the wire to E18 and connect to BCD 2 input and output (see fig. 5).

#### operation

Selecting the center position of the receive switch (S8) on the front of the Channelizer enables the 600-kHz repeater mode circuit. Changing the transmit switch (S7) to either up or down position selects the control head to be used, and, as mentioned earlier, two

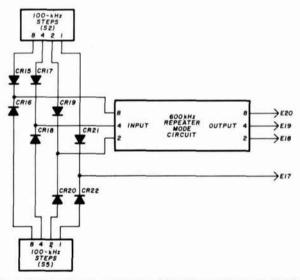
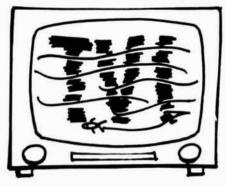




fig. 5. Diagram for connecting the 600-kHz repeater-mode circuit to the GLB 400B Channelizer 2-meter synthesizer (see text).

different repeater frequencies may be set up. But always remember that the repeater input frequency should be used for working *into* the repeater. Selection of the standard simplex frequencies will prevent the circuit from shifting the receiver, so simplex operation is provided, although the repeater mode is still selected by the center position of the receive switch (S8). Setting this switch to either of its extreme positions will disable the 600-kHz up or down circuit and return the synthesizer to its normal operation.

#### ham radio



## Whatever you call it, the common denominator is "I" for Interference.

The study of interference to consumer products such as TV sets, hi-fis, and the like from radio transmitters is a complex subject. For a primer, see p. 11, "QST Magazine" for March, 1976. We do know that radiation interference can be greatly reduced and perhaps eliminated by the use of a well-engineered, guality-built TVI filter. The low-pass type for the transmitter is at times not enough...a high-pass type for the TV set may also be required. But, here's the rub! If a filter is not properly designed and engineered, it may not work like a filter at all. At the R. L. Drake Company, we've been designing and building filters for over 30 years...since before the days of "Uncle Miltie." And, these are real filters...not toys.

For your TVI answer, choose one or more of the following:

# **High Pass Filters** for TV Sets...

provide more than 40 dB attenuation at 52 MC and lower. Protect the TV set from amateur transmitters 6-160 meters.



TV-300-HP For 300 ohm twin lead

TV-75-HP For 75 ohm coaxial cable

DRAKE



# **Low Pass Filters** for Transmitters

A properly designed filter

can tame the beast ...

have four pi sections for sharp cut off below channel 2, and to attenuate tramsmitter harmonics falling in any TV channel and FM band. 52 ohm. SO-239 connectors built in.

## TV-3300-LP

1000 watts max. below 30 MHz. Attenuation better than 80 dB above 41 MHz. Helps TV i-f interference, as well as TV front-end problems.

## TV-5200-LP

200 watts to 52 MHz. Ideal for six meters. For operation below six meters. use TV-3300-LP or TV-42-LP.

## TV-42-LP

is a four section filter designed with 43.2 MC cut-off and extremely high attenuation in all TV channels for transmitters operating at 30 MHz and lower. Rated 100 watts input.

To receive a FREE Drake Full Line Catalog, please send name and date of this publication to:

# R. L. DRAKE COMPANY



540 Richard St., Miamisburg, Ohio 45342 Phone: (513) 866-2421 • Telex: 288-017

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 • 702/382-9470

#### january 1977 br 43



#### WILSON'S NEW WE-800 2M RADIO

Wilson's New Portable 800 Channel 2 Meter Synthesized Radio that can go anywhere with you . 12 watts output in automobile · 2 watt output with internal Ni-Cad Battery Pack (10 "AA" Ni-Cads for Portable use) . Ni-Cads charge when used in auto Cmos low current drain synthesizer Rx 45 Milliamps, 2 watt Tx 450 Milliamps.

Note: Not available for sale. FCC certification pending. Orders accepted as soon as certification granted.

· Uses Wilson's standard BP-1 Battery Pack (Batteries not included) and includes mounting bracket and microphone. Covers frequency range 144-148 MHz in 5 Hz steps • 600 KHz off-set up or down . 6 Channels sub-audible tones available as option • Size 8-1/4" x 6-3/4" x 1-7/8" • weight 1 lb. 15 ounces.

# 450 & 220 HAND HELDS

# MODEL 4502 . . . \$299.95

FREQUENCY RANGE 420 - 450 MHz

- 6 Channel Operation
   Individual Trimmers on all TX/RX Crystals

- Individual Trimmers on all TX/RX Crystein All Crystals Plug In 12 KHz Ceramic Filter 21.4 and 455 KC IF 3. Microvolt Sensitivity for 20 dB Quieting Weight: 1 Ib. 4 oz. less Battery
- Battery Indicator Size: 8 7/8 x 1 3/4 x 2 7/8 Switchable 1 & 1.8 Watts Output
- @ 12 VDC
- © 12 VDC Current Drain: RX 15 MA, TX 500 MA Microswitch Mike Button Unbreakable Lexan® Case

BOTH MODELS USE THE SAME ACCESSORIES AS 1405. EACH UNIT INCLUDES FLEX ANTENNA AND SIMPLEX XTAL FREQ. INSTALLED DURING SPECIAL. 446.00 or 223.50 MHz.

- FREQUENCY RANGE 220 225 MHz
- 6 Channel Operation
  Individual Trimmers on all TX/RX Crystals
  All Crystals Plug In
  12 KHz Ceramic Filter
  10.7 and 455 KC IF
  Allocal Canadit Canadit Var 20 dB Quieting
- .3 Microvolt Sensitivity for 20 dB Quieting Weight: 1 lb. 4 oz. less Battery

- Weight: 110.4 02. less Battery
  Battery Indicator
  Size: 8 7/8 x 1 3/4 x 2 7/8
  Switchable 1 & 2.5 Watts Output
  9 12 VDC
  9 12 VDC
  9 12 VDC © 12 VDC Current Drain: RX 15 MA, TX 400 MA Microswitch Mike Button Unbreakable Lexan® Case

n Electi

4288 SO. POLARIS • LAS VEGAS • NEVADA • 89103 • (702) 739-1931 • TELEX 684-522

- MODEL 2202 . . . \$219.95

# **ACCESSORIES & OPTIONS** ★ Battery Charger (BC-1)

- ★ 10 ea. AA Ni-Cad Battery Pack (BP-1)
- ★ Extra Battery Tray (BT-1)
- ★ Leather Case for 1402 (LC-1)
- ★ Leather Case for 1405, 2202, 4502 (LC-2)
- 🖈 Speaker Mike (SM-2) 6 pin connector
- ★ TE-1 Sub-Audible Tone Encoder, installed
- ★ TE-2 Sub-Audible Tone En-Coder/Decoder, Installed
- ★ TTP Touch-Tone Pad installation free if ordered at time of purchase of radio
- ★ 10.7 KC Monolithic Xtal Filter (XF-1)

(Photo Shown with Optional Touch-Tone Pad)

Q



# WHY WAIT??? BE ON THE AIR NOW WIT Wilson Electronics Corp. HAND HELD

Wilson 2 meter Hand Held radios ... The dependable ones . . . proven performance for the discriminating Ham who insists on quality and value.



\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

\* \* \* \*

\* \* \*

\* \*

\* \* \* \* \* \*

\* \*

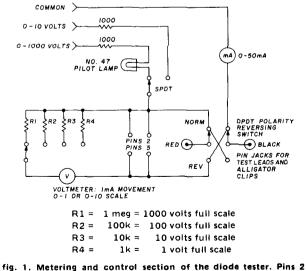
\* \* \* \* \* \* \*

1402SM

HAND HELD

# simple diode tester

An autotransformer controls input voltage to this useful addition to your test equipment


When you have a diode with no numbers on it and no color bands to identify it, what do you do with it? Here's a simple tester to help identify whether the diode is silicon or germanium. The diode current rating can be approximated by the physical size. Refer to the size and ratings from catalogs or other diodes you may have that are of known ratings. Small-signal diodes such as 1N914s and 1N34s will have a PIV rating somewhat above 25 volts. This tester will indicate that some small-signal diodes will have a lot of leakage current compared to the forward current, which is usually detrimental. It will also indicate zener voltage ratings.

#### applications

Other uses for this tester include checking diacs, SCRs, triacs, LEDs, VR tubes, neon tubes, and pull-in and drop-out voltage of small relays, showing that many relays marked 24 volts will work nicely at 12-13 volts. (Multileaf relays may not be advisable at this lower voltage, however). You can form new or old electrolytic capacitors. After an electrolytic capacitor has been formed for a few minutes, the operating voltage for that particular capacitor may be safely marked at about 20 percent less voltage than the maximum forming voltage. That is a voltage where the capacitor is drawing something less than about 5 mA.

This tester was first built and used in 1942 and has been indispensable all these years. An earlier article<sup>1</sup> described this tester, but it was primarily designed to test VR tubes. When 1000-volt PIV diodes became available, it was necessary to modify the tester.

Modifying the tester to accommodate 1000 volts, that is, getting rid of the vacuum-tube dual triode (gridcontrolled rectifier in this case) was easy since I



and 5 are for a 7-pin miniature tube socket and an 8-pin octal socket for testing VR tubes. All resistors are 1 watt.

**By Lloyd Jones, W6DOB**, 17779 Vierra Canyon Road, Salinas, California 93901

happened to have a couple of small Variac controls. With a Variac to control the input to the transformer primary and a solid-state half-wave rectifier with a 2  $\mu$ F capacitor, it was easy to produce 1000 volts.

#### description

If you buy and use any of the diodes (new or surplus), you should build one of these testers. The basic requirement for such a tester is a dc voltage supply that's variable from 0 to at least 500 volts, preferably to 1000 volts. This supply should be "soft"; that is, one with very poor voltage regulation. At 50 mA, the voltage as shown on the voltmeter may drop to 60 or 70 percent of the no-load voltage. (Most of the testing I do on this tester is at less than 5 or 10 mA). When I test unknown surplus diodes it's not uncommon to zap a few of the bad ones, so a no. 47 pilot lamp is connected in series with the 0-50 mA meter to protect the meter movement.

A second meter is used as a voltmeter. An ideal meter for this purpose is a 0-1 mA meter with series resistors adjusted to read 10, 100 and 1000 volts. In my tester another voltmeter with a pushbutton is used to read voltages less than one volt. Ideally, diode rectifiers should be added to the unused filament winding (6.3 V)when using the 1-volt meter to determine whether a diode is germanium (around 0.45 volt) or a silicon (around 0.7 volt).

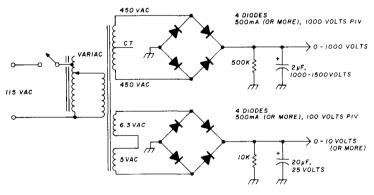



fig. 2. Diode-tester power supply. An autotransformer is a must for input voltage control; so-called "light dimmer" controls and motor-speed controls will not control the ac input voltage.

#### circuit

Consider the tester in two sections. The first is the system following the rectified voltage; the second is for controlling the voltage from zero to some higher value of voltage. Fig. 1 shows the schematic for the most versatile tester. This system uses a transformer and bridge-rectifier power supply (fig. 2) to supply 0-100 and 0-1000 Vdc. (By using the 6.3- and 5-volt windings in series and another bridge rectifier, you'll have more than ample voltage for 0-1 and 0-10 volts. Most small power transformers have these secondary windings).

A dpdt switch is used for quickly reversing the connections to the item under test, which eliminates changing clip leads. An spdt switch selects 0-1000 volts from the high-voltage supply or 1-10 volts from the

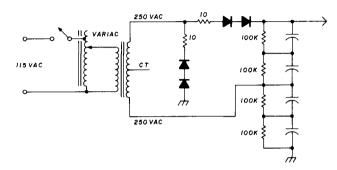



fig. 3. Alternative power supply using a smaller transformer in a voltage-doubler circuit. Diodes are 1000 PIV, 500 mA (or more); all electrolytic capacitors are 40  $\mu$ F, 450 volt; resistors are 1 watt. The 2  $\mu$ F capacitor must be oil filled.

low-voltage supply. A miniature 7-pin tube socket and an octal socket are used for testing VR tubes.

The power supply is shown in fig. 2. If you don't have a 450-volt center-tapped transformer, you can use the full-wave voltage-doubler in fig. 3.

Here's an important warning: while checking the PIV of a diode, be sure to keep the current low. Ten microamperes is fine; 100 microamperes is the maximum that can be used (for one or two seconds). One-hundred microamperes is just discernible on the 50-mA meter by the slightest movement of the pointer. The zener rating of any diode can be read directly on the voltmeter. My collection of zeners includes devices as low as 3 volts and as high as 175 volts. Some are soft; most are hard or stiff, meaning they produce good regulation.

#### closing remarks

By this time it may have occured to you to keep all your old-fashioned parts. Some you can use; some you can give away to other experimenters. The days when you could walk into a radio parts house and buy amateur components are a thing of the past. However, you can find good bargains in surplus components by watching the ads in the amateur magazines. I bought a pound (half a kilogram) of diodes from M. Weinschenker (*ham radio*, May, 1973, page 60) for \$10.00 and found that nearly 85 percent were good. About 100 were 1 amp, 1000 PIV; perhaps 100 were small zeners; another 100 or so were small-signal diodes including some noise diodes.

#### reference

1. Lloyd Jones, W6DOB, "Tester for Glow Tubes, Selenium Rectifiers, and Germanium Rectifiers," *CQ*, November, 1957, page 130.

#### ham radio

"As the designer of the very first frequency counter, I congratulate you on a very neat design at an excellent price. Performance of this counter is really impressive..."

and & Diker

H. K. Dickey Professional Electrical Engineer (Designer of the world's first frequency counter at Berkeley Scientific, 1949)

#### Thank-you, Mr. Dickey.

Thousands more who own Hufco frequency counters proudly agree. Since 1974, Hufco has made counters and "counter-offers" that satisfy people to no end. The Hufco combination – a rock-bottom price and sky-high quality – is proving a very popular duo. Here are three good examples why:

## A 500 mHz (6-digit) frequency counter for under 40 cents per mHz!

Figure it out. It adds up to unheard-of savings. With guaranteed quality to match and exceed the overpriced brands. Let us prove it to you today.





No wonder people respect the Hufco name.

Incidentally, you'll also find it on economically-priced digital display adapters, voice-operated transmits, power mike adapters, CB/Ham timers, and more. Interested? Rush us this coupon today.

## A 30mHz or 250mHz (6-digit) frequency counter — proven best sellers!



# Q measurement and more generally true of most receiver S-meter is used

With a communications receiver, this simple noise generator allows you to determine the loaded Q of tuned circuits

This article describes a simple piece of test equipment that can often replace a signal generator. When used with a communications receiver it can outperform the usual Qmeter by measuring the Q of a tuned circuit while in place in the equipment. The principle, borrowed from the antenna noise bridge, is to energize the tuned circuit with noise, giving constant signal strength over a wide frequency band. The frequency response is then observed using a communications receiver. It is of course necessary that the receiver bandwidth be appreciably narrower than that of the circuit under test, but this is generally true of most communications receivers. The receiver S-meter is used to find the -6 dB bandwidth of the circuit, and from this the Q is calculated.

#### the noise generator

The schematic is shown in fig. 1. Noise is generated by reverse breakdown of the base-emitter junction of Q1, Q1 output is then amplified by the remaining three transistors. The output, which is at low impedance, is S9+26 dB up to 7 MHz and S9 at 28 MHz, which allows very loose coupling to the circuit under test. Several transistors should be tried for Q1 and the noisiest one used. Note that, because the zener voltage is usually about 6 or 7 volts, the zener current and hence the noise output is very sensitive to battery voltage. A good battery is therefore necessary for stable output. Leads must be short to avoid resonance. The components are mounted, complete with a 9-volt transistor battery, in a metal enclosure measuring 3x4½x1 inch (77x108x25.5mm). A shield partition is installed across the enclosure (dashed line, fig. 1), and the electronic components are mounted on a terminal strip with ground connections soldered directly to the enclosure. This construction ensures good shielding, which is essential if the generator is to be used for receiver sensitivity measurements. Note the feedthrough capacitor in the power lead. The on/off switch is arranged to provide the alternatives of an external 12-Vdc supply through an "idiot diode" or 6.3-Vac operation. The 6.3 Vac modulates the noise output, making it easily distinguishable from other noise sources.

By R. C. Marshall, G3SBA, "The Dappled House," 30 Ox Lane, Harpenden, Hertfordshire, England

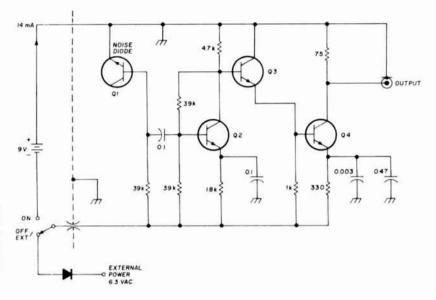



fig. 1. Noise generator schematic. Transistors are type 2N2368; resistors are 1/8 watt; capacitors are ceramic. Noise output is sensitive to battery voltage; therefore a good battery is necessary for stable output. An external ac power supply may also be used (see text).

#### Q measurement

Fig. 2 shows one test setup for Q measurement. Here, both generator and receiver are coupled by the smallest capacitors that give a usable signal at the receiver, which minimizes loading effects. Either or both couplings may

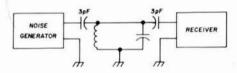



fig. 2. Example of a test arrangement for measuring Q. Minimum coupling between noise generator and receiver is required to minimize loading effects.

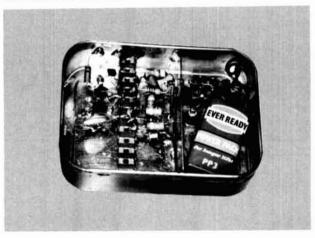
be inductive if convenient. The -6 dB point will be 1 or 2 units below maximum (there seem to be two rival standards; if in doubt, make a 6 dB attenuator and use it with the noise generator to check). Then, assuming sufficiently narrow receiver bandwidth, the formula to use is

$$Q = \frac{170 (f_1)}{\% \ bandwidth (f_2 - f_3)}$$
(1)

where

 $f_1$  = peak response (MHz)  $f_2$  = upper 6-dB point (MHz)  $f_3$  = lower 6-dB point (MHz)

For example, if the peak response is at 14.27 MHz and the -6 dB points are 14.03 MHz and 14.50 MHz as in fig. 3, then


$$Q = \frac{170 \cdot 14.27}{100 \cdot 0.47} = 51.6$$

To measure loaded or in-circuit Q, it's possible to use the equipment's switching, coupling, and amplifying characteristics. For example, fig. 4 shows the input to a hypothetical multiband preselector with a coupled-pair of tuned circuits. The noise generator can be connected to the hot end of the first coil with capacitor C1 removed. To check the first coil, the noise generator can be connected to the antenna socket and a test receiver capacitively coupled to the hot end.

#### response curves for simple filters

The shape of the frequency characteristic of the coupled pair in fig. 4 can be investigated with the noise generator connected to the antenna socket and the test receiver at the output (with C1 replaced). You then have the choice of a) plotting response in S-units using the receiver meter, or b) adjusting an attenuator inserted between the noise generator and the circuit under test to obtain a constant meter reading. This is an example of a simple filter easily checked with the noise generator, provided the receiver bandwidth is a few times narrower than the feature being investigated. A CW receiver will meet almost any needs; an ssb receiver will meet most.

The author's completed noise bridge. On the left is the actual noise generator circuitry.





..... at a price YOU can afford!

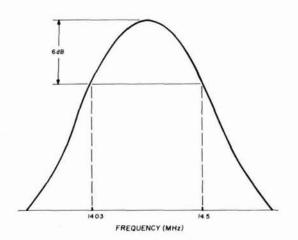



fig. 3. Typical response curve obtained during in-place measurements to determine Q of tuned circuits.

#### tuned-circuit alignment

The generator can be used to align any circuit whose wideband nature does not involve risks such as tuning an input circuit to the image frequency. Tuned circuits associated with crystal filters are particularly easy to align this way, as the need for accurate tuning of a stable generator is avoided — the crystal filter selects the frequency used.

#### checking sensitivity

The sensitivity of a receiver may be checked by connecting the noise generator to its input through a switched attenuator. The generator is powered by ac and the attenuation increased until the buzz in the receiver

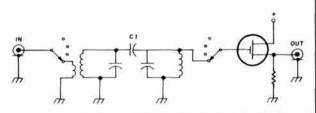



fig. 4. An hypothetical preselector with a coupled pair of tuned circuits. The frequency response of the tuned circuits is easily checked with the noise generator of fig. 1 and a communications receiver of narrower bandwidth than that of the circuit under test.

output is only just distinguishable from the noise. This is a useful way of comparing receivers or checking circuit improvements.

#### design improvement

The Q values of homemade coils may surprise you -1 found values around 25, and the generator has taught me to follow the rules:

1. Use the largest diameter coil and the largest diameter wire possible.

2. Space the turns by one-half to one wire diameter.

ham radio



| TOUCH TONE ENCODE | R (Shown) Complete | \$52.95 |
|-------------------|--------------------|---------|
| REACTUATED CW MON | ITOR -             |         |

| for the best in CW operating | \$24.95 |
|------------------------------|---------|

| CRYSTAL CALIBRATOR - 100, 50, 25 kHz | \$19.95 |
|--------------------------------------|---------|
| range extended to 10, 5, 1 kHz       | \$24.95 |

#### **RTTY OPERATORS**

Digital Date-Time-Message Generator, UARTS. Quick Brown Fox Generator, many others.

**MICROPROCESSOR BUFFS** 

CPU, Backplane, I/O Memory, Timing, many others – boards, kits and assemblies.

**VHF-FM TRANSCEIVER** 

TT Pad Programmable, PROM selected Channels. Hi/Lo Power, PLL-5 kHz resolution.

Above available early '77, write for details.

Send 13¢ Stamp for latest catalog.

SCOTT COMMUNICATIONS SYSTEMS Box 2117, Dept. H, Stamford, Ct. 06906 or Call (203) 357-1667



It had to happen. A tiny frequency synthesizer for your favorite two meter hand-held rig is finally here, and it had to come from GLB Electronics, the pioneer in Amateur Radio Channelizers.

The amazing GLB 200 gives your hand-held complete two-meter coverage from 146 to 147.995 Mhz. in 5 Khz. steps, with built in repeater offset, both *plus* and *minus* 600 Khz! The 200's the ultimate in operating convenience, with an incredibly low current drain of just 3.5 Ma. in receive mode. That's less than the current drain of most touch tone pads.

Your new GLB 200 will operate with any hand-held transceiver, with spurious outputs over 60 DB down! Space does not allow us to show complete specs. here, but we're proud of them. Write us for more information, or to order your GLB 200. You want unlimited flexibility with your handheld two meter transceiver, and GLB wants to hand it to you.

The all new state of the art GLB 200. Completely wired and tested, no other options required, just \$259.95. We welcome Master Charge or BankAmericard.

> GLB ELECTRONICS 60 Autumnwood Dr., Buffalo, N.Y. 14227

# A NEW ERA IN AMATEUR RADIO ARRIVES



With Exclusive Selectivity Control as Standard Feature





With Optional Plugun Auxiliary VFO or Crystal Oscillator

ALL SOLID STATE SSB TRANSCEIVER . 350 WATTS

The State of the Art in • Amateur Radio Transceivers for the Next Decade

# ATLAS 350-XL

- ALL SOLID STATE
- SSB TRANSCEIVER
- 350 WATTS P.E.P. OR CW INPUT
- 10 THROUGH 160 METER COVERAGE



Illustrated with optional AC supply, auxiliary VFO. and Digital Dial.

The all new Atlas 350-XL has all the exciting new features you want, plus superior performance and selectivity control never before possible.

#### **10-160 METER**

•

Full coverage of all six amateur bands in 500 kHz segments. Primary frequency control provides highly stable operation. Also included is provision for adding up to 10 additional 500 kHz segments between 2 to 22 mHz by plugging in auxiliary crystals.

#### 350 WATTS

P.E.P. and CW input. Enough power to work the world barefoot!

#### SELECTIVITY CONTROL (Standard feature)



This amazing new breakthrough in filter design is truly the filter of the future. Selectivity control on the front panel provides control of bandwidth as well as selection of upper or lower sideband, or double sideband. Continuously variable from 300 to 2700 Hz bandwidth. Shape factor is better

than 1.7, with ultimate rejection better than 130 dB. Selectivity for SSB can be set for maximum voice fidelity at 2700 Hz bandwidth, providing transmission and reception of audio from 300 to 3000 Hz, or it can be narrowed down to 2400, 2100 or even 1500 Hz if necessary to reduce adjacent channel QRM. Selectivity can be narrowed gradually to as little as 300 Hz for CW reception.

This amazing new breakthrough in filter design is by Bob Crawford and Eckert Argo of Consulting Engineers. Atlas Radio is privileged to be first to offer this "programmable filter" in the radio communication field and for sometime to come will be the only one.

#### DIGITAL DIAL READOUT

The Atlas 350-XL has space provided for quick installation of this plug-in accessory. Provides precise frequency readout to 1/10 of a kHz. All L.E.D. Dot Matrix 6 digit display

#### MODES OF OPERATION

Standard features: lower or upper sideband, push-totalk or VOX operation, full break-in or semi-break-in CW operation.

#### RECEIVER INCREMENTAL TUNING

This standard feature enables you to receive up to 5 kHz above or below your transmitting frequency.

AUDIO FREQUENCY NOTCH FILTER (Standard feature)



#### PLUG-IN AUXILIARY VFO or CRYSTAL OSCILLATOR (Optional)

Auxiliary VFO is plugged into the space provided on the front panel of the 350-XL. You have a second tuneable VFO with same tuning ranges as primary VFO for tuning to a separate transmit or receive frequency. L.E.D.'s indicate which VFO, primary or sec-

ondary, will be used for receive and transmit.

Or instead of the auxiliary VFO a Crystal Oscillator may be plugged into the front panel. Eleven crystal sockets are available with a vernier control for exact frequency setting

#### SAME PLUG-IN-AND-GO MOBILE FEATURE AS OUR FAMOUS 210x/215x

The 350-XL has its own optional Mobile Mounting Bracket for guick, easy plug-in or removal from your car. All connections are made automatically.

IDEAL FOR DESK TOP OR MOBILE OPERATION Measuring just 5 in. high x 12 in. wide x 121/2 in. deep, and weighing only 13 pounds, the Atlas 350-XL offers more features, performance and value than any other transceiver, regardless of size, on the market today!

#### MANY MORE SPECIAL FEATURES

See your dealer or write for the 350-XL brochure with complete list of features, capabilities, and specification accessories

350-XL ACCESSORIES

#### 350-PS MATCHING AC SUPPLY

Includes front facing speaker and phone jack. Provides 14 volts filtered and regulated D.C. for both low current and high current circuits of the 350-XL. Internal space provided for future installation of accessories such as CW Keyer, Speech Processor, Phone Patch, etc. Operates on 100-130 or 200-260 volts, 50-60 Hz. . \$195.

- DIGITAL DIAL
- PLUG-IN AUXILIARY VFO, MODEL 305 • PLUG-IN AUXILIARY OSCILLATOR, MODEL 311
- PLUG-IN MOBILE MOUNTING KIT
- AUXILIARY CRYSTALS

for providing additional 500 kHz tuning ranges between 2 to 22 mHz.

#### ATLAS 210x/215x SSB TRANSCEIVERS

Our famous little compact SSB Transceivers remain a very important part of our product line

RADIO INC.

417 Via Del Monte. Oceanside: Ca. 92054 Phone (714) 433-1983 Special Customer Service Direct Line - 141 413 9591

# 36-volt solar power source

A system of jumpers and switches to allow versatile metering, maintenance, and use of solar-charged batteries

In my normal solid-state experimental activities and QRPP operations, several days pass before the 12-volt, 5.5 ampere-hour, sun-charged battery needs to be recharged (see the November, 1974, *Circuits and Techniques* column). Thus two additional motorcycle batteries have been included along with a new control panel, fig. 1. Power capacity has been increased and both 24 and 36 volts have been made available. These higher voltages are helpful for work with fets and higher-voltage bipolar transistors.

Each battery can be trickle-charged or charged at the 300-mA rate (in bright sun) each third day. Two or three batteries can be parallel-charged if desired, or other arrangements can be combined depending on your specific needs. Based on a 20-hour discharge rate the current available from each battery is

$$I = \frac{5.5}{20} = 275 \ mA$$

Available power rates based on the 20-hour discharge time, using series-connected units, are

1 battery =  $12 \times 0.275 = 3.3$  watts 2 batteries =  $24 \times 0.275 = 6.6$  watts 3 batteries =  $36 \times 0.275 = 9.9$  watts

In parallel combinations of two and three batteries, power values are

2 batteries =  $12 \times (2 \times 0.275) = 6.6$  watts 3 batteries =  $12 \times (3 \times 0.275) = 9.9$  watts

The figures above are for conservative operation and are based on 20 hours of demand at 275 mA per battery.

How many hours per week do you operate QRP? Even more significantly, during those operating hours your maximum power demand would be intermittent, which will extend your operating-hour capability. The 12-volt, 300 mA solar panel can easily keep your batteries charged for these operating conditions. In my case, the solar power supply supports a considerable amount of solid-state experimentation in addition to on-the-air operation.

Let's look at power capability based on an 8-hour discharge rating

$$I=\frac{5.5}{8}\approx700\ mA$$

Batteries in series

1 battery =  $12 \times 0.7 = 8.4$  watts 2 batteries =  $24 \times 0.7 = 16.8$  watts 3 batteries =  $36 \times 0.7 = 25.2$  watts

By Edward M. Noll, W3FQJ, P.O. Box 75, Chalfont, Pennsylvania 18914

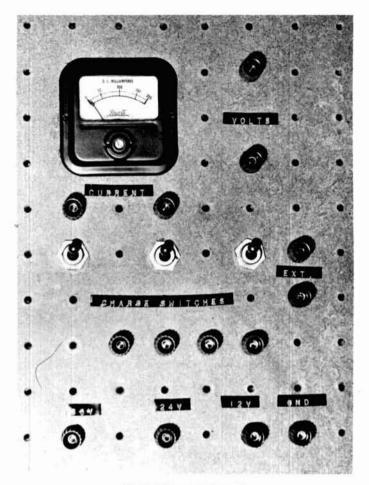



fig. 1. Solar control panel.

Batteries in parallel

2 batteries = 12 x (2 x 0.7) = 16.8 watts 3 batteries = 12 x (3 x 0.7) = 25.2 watts

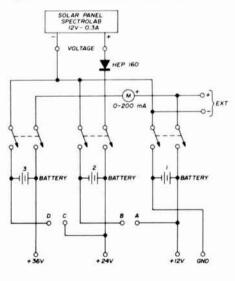
The 8-hour figures indicate that you can draw considerable power from the 3-battery combination for extended periods of operation because of the very nature of the power demand during QRP activities. However, a much longer period is needed to restore the batteries to full charge, because the maximum charging rate is only 300 mA during maximum sunlight.

#### working with the sun

Assume 36 hours of weekly QRP operation at 5 watts. Based on a normal operating situation, a conservative figure for CW and ssb operating time at maximum demand would be one-third this value or 12 (36/3) hours. What would be the weekly watt-hour demand? Watt-hours are a measure of the *quantity* of electricity and are the product of watts and hours

watt-hours = 
$$Wh = 5 \times 12 = 60 Wh$$

This amount of energy must be returned to the battery. In maximum sunlight the solar energy converter at W3FQJ supplies 3.6 watts ( $12 \times 0.3$ ). How many hours of a brightness level producing this amount of output


would be required to replace the weekly watt-hour demand on the battery according to the preceding operating schedule? Assuming 100% efficiency

$$h = \frac{Wh}{W} = 16 \ 2/3 \ hours$$

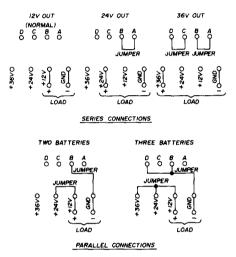
This corresponds to approximately 2-1/3 hours of saturation-level brightness per day, averaged over a week's time. Indeed this amount allows very conservative operation of the solar power source. The one-third correction factor for normal operation is also conservative, compensating for the fact that the power demand on receive is substantially less than on transmit. Furthermore, even during transmit, no significant power demand is made during the spaces of code keying. For sideband transmission the peak demand is made only during the voice peaks; therefore the average power drawn is substantially lower. Consider also the fact that light energy can be converted to electrical watts at levels less than saturation brightness. Even during overcast and in the early morning and late afternoon hours, watt-hour replacement is being made. This extra charge time at lower levels more than compensates for the fact that you can't assume 100% efficiency in the battery-charging process. There is great emphasis today on the development of high-efficiency, lightweight and small-size batteries.

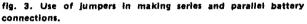
It is instructive to consider watt-hour capacity in terms of the solar panel itself. Again let's be conservative and assume the average brightness is such that saturation current is present something more than 3 hours per day. This average load figure more than compensates for days of dark overcast and rain. On this basis it is safe to assume approximately 25 hours per week of available saturation current, which corresponds to 90 watt-hours. If not maximum, at least significant power is being made available for 3 to 5 hours during the remainder of the day even during the winter months. Therefore the total weekly capability is at least 150 watt-hours. This is an average figure — some weeks more; other weeks less. The

#### fig. 2. Schematic of three-battery control panel.



actual figure also depends on geographical location. Consumption rates of this level, week after week, operate the system near limit at W3FQJ. This data indicates that 10 watts for 15 hours or 25 watts for 6 hours, averaged over the week, will not overburden the system. Using the one-third correction factor, this amounts to 30 operating hours at 10 watts or 18 operating hours at 25 watts.


The maximum power figures above are based on a weekly average. You must be careful not to demand too much power in any one day. For example, if you demand 25 watts for two hours in any one day (six hours of operation), your consumption would be 50 watt hours. Recharge time at maximum sun would be nearly 14 hours (50/3.6). Also in the same time you'll have used a bit more than 4 ampere-hours (25/12 x 2). This is a significant discharge of a 5.5 ampere-hour battery. Another hour of such continuous operation without recharge would discharge your battery completely. Continuous and average demand are factors in solar power systems. Each must be considered individually when working a system near its limit.


#### new control panel

The new control panel has been designed for maximum operating convenience here. You may develop plans that better meet your specific needs. However, the description will give you an idea of how the panel can be arranged for versatile charging and use. Three charge switches permit the batteries to be charged one at a time or two or three simultaneously. This is an aid in dividing the charge current as a function of individual battery use. A 0-200 dc milliammeter is connected in the charge path to the first battery only. It reads the current delivered from the solar panel when battery 1 only is under charge. If the charge switches are closed to the other batteries, this reading will decrease and will give some idea of how current divides among the three batteries. Remember, too, that when parallel-connected, batteries charge each other. Furthermore, a bad battery in the combination can place a heavy load on a good batterv.

Batteries can be connected in series or parallel depending on the operating voltages to be established. Another pair of binding posts is used for external battery charging directly from the solar panel. An additional pair of binding posts permits a measurement of the solar-panel voltage at the point where the incoming wires connect to the control panel. The schematic is shown in fig. 2. Note that the protective-diode cathode and common connect to the poles of the dpst switches. The batteries, using associated binding posts, are connected across the individual terminals of the three switches. Therefore 1, 2, or 3 batteries can be charged at the same time. Battery 1 has its negative side connected to ground, 12 volts can be obtained by connecting the load between +12 volts and ground. Whenever 24 or 36 volts is used all three charging switches are turned off. To obtain 24 volts a jumper is connected between binding posts A and B, which makes +24 volts available at the output binding post labeled +24V. When output is to be obtained from the +36-volt binding post, jumpers must be connected between binding posts A and B and between C and D. Never operate the charging circuit with any jumpers connected between A and B or C or D. A battery short circuit will result if either the battery 2 or battery 3 charge switches are closed with either of these two jumpers in position.

Parallel operation of the three batteries can be obtained by joining the +12, +24, and +36 volt binding posts together. Additionally a ground is established by





joining binding posts D and B with ground. The various binding post interconnections for various series and parallel groupings of the batteries is detailed in **fig. 3**. The 12-volt single-battery operation is inherent. The additional batteries in series or parallel require the use of appropriate jumpers. The charging of an external battery requires only that it be connected across the EXT binding posts. With all charge switches off, the meter will read charging current to the external battery.

#### expro I on forty meters

The Expro I fet transmitter in the August, 1975, column was adapted for 40-meter operation by winding a separate toroid coil. No other charges were required. The coil was wound on an Amidon T68-2 core and consists of 40 turns, number-24 enameled copper wire close-wound. It tuned up well on the antenna also described in the August column. The first contact I made on 40 meters was a special thrill. It was made with "Pop," W2ZTC, of Hancock, New York. Pop is an 88-year old gent with a hand-key CW rhythm better than my own. Thank you Pop for your patience with my rst 539 weak signal. You're the most! Your homebrew 100-watt rig sounded great. This is an example of amateur radio joining the generations.

#### ham radio

# Introducing the 2-meter hand-held that gives you high performance. Without high cost.

It's the new Hy-Gain 3806 2-meter, 6-channel handheld FM transceiver (144-148 MHz). The 2-meter hand-held that takes the high cost out of performance.

The Hy-Gain 3806 is built to out-perform. Outlast. And out-class every other 2-meter hand-held.

It's built tough. Water, dirt and corrosion are sealed out by the specially gasketed case. The speaker /microphone grill is engineered to prevent direct entrance by water. Even changing the power pack in the field won't diminish case integrity. The power section is separately sealed. So you never expose the circuitry.

The high-impact ABS case is extra tough. And ribbed for a sure, nonslip grip. The controls are up front. And easy to operate. There's volume. Squelch. 6-position channel selector. Transmit LED indicator. A meter that indicates battery condition on transmit, signal strength on receive. And a separate power switch for positive on-off.

There's a telescoping antenna that collapses completely into the case. Or you can use our 269 flexible antenna for extra convenience. And there are jacks for use with external antenna. Earphone. And external 12 VDC.

The 3806 has the kind of guts that have made Hy-Gain products famous throughout the world. Its receiver section is superior



to everything else for the money. It has sharply tuned, on-frequency selectivity in the RF amplifier circuit. Two MOS-FET RF amplifier stages. Plus MOS-FET's in the 1st and 2nd mixers. They make the 3806 virtually immune to out-of-band signals. Intermodulation distortion. And cross-modulation. So you get truly incredible



Hy-Gain Electronics Corporation 8601 Northeast Highway Six; Lincoln, NE 68505

dynamic range. For superb adjacent channel rejection, the 1st mixer is followed by a monolithic crystal filter. And the 2nd mixer by an 8-pole ceramic filter.

A frequency multiplication factor of 12 allows you to use thicker, high stability crystals (one set of 146.52 simplex crystals supplied). Audio is enhanced through use of separate speaker and microphone elements. And there's an internally adjustable mic preamp. Something you won't find anywhere else.

The Hy-Gain 3806 hand-held is backed by a complete line of superb accessories. Including AC and DC chargers. Carrying case. External antenna adapter cable. And a Nicad power pack that's so overengineered you won't over-extend it. Even in the most adverse conditions.

The pack is completely sealed in its own tough ABS case. Protected against over-charging. And contact shorting. It has 30-40% more in-use capacity than competitive units.

Soon we'll have a Touch-Tone<sup>®\*</sup> pad available for the 3806. It'll fit flush in the back panel. Because we designed it specifically for the 3806.

The Hy-Gain 3806 2-meter, 6-channel FM hand-held. It gives you the performance you want. Without costing a lot. Available locally through your Hy-Gain dealer. See it and our more than 300 other fine products soon.

# 1976 Hy-Gain Registered Trade-mark of AT&T



# a simple computing vswr indicator

The reasons for using a transmatch to match a randomlength wire antenna to a typical 50-ohm transmitter output impedance are well known. However, practical experience shows that adjusting the transmatch for a good match can become a tedious affair. Since transmitter output changes with the load presented to it, you must constantly put the typical swr bridge on *forward*, adjust for a full-scale meter reading, then switch to *reflected* to read the swr. Otherwise, if you leave the bridge on *reflected* and tune for minimum meter indication, you usually find that, instead of being tuned for minimum swr, you've tuned for minimum transmitter output power instead.

The swr meter described here makes transmatch tuning incredibly simple, since it automatically uses the ratio of forward and reflected wave components to display the swr continuously regardless of transmitter output power. All you have to do is tune the transmatch to

\*A complete parts kit for this computing vswr indicator is being made available in conjunction with this article. For ordering information and prices, write to G.R. Whitehouse & Co., 10 Newbury Drive, Amherst, New Hampshire 03031.

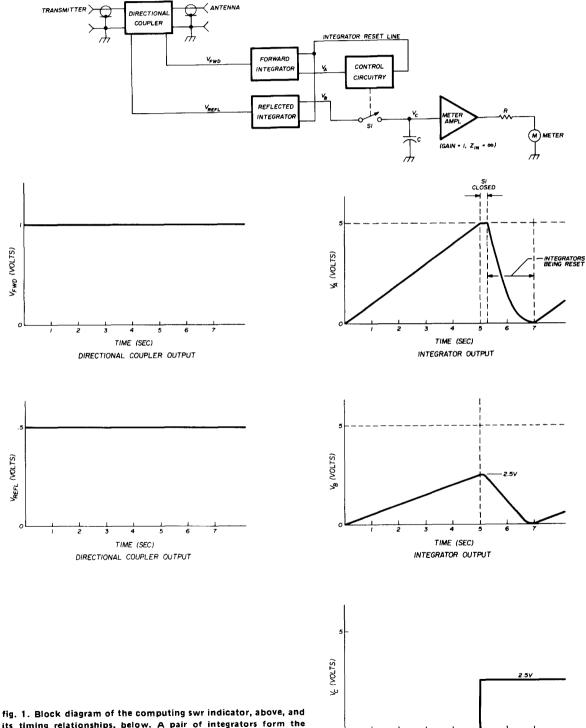
By Donald B. Lawson, WB9CYY, 1317 Randall Court, Madison, Wisconsin 53715

minimum meter deflection, thus avoiding the constant switch flicking and pot diddling usually required with swr meters. The circuit has some advantages over other types of computing swr meters<sup>1,2</sup> including:

**1.** A minimum of parts, which means a minimum of time and money to put it together.

2. Conventional power requirements. The unit may be powered from a 12-volt battery or from a  $\pm 9$  or  $\pm 12$ -volt supply.

**3.** Accuracy over a 1000:1 range of transmitter power levels with no sensitivity adjustment needed. Actually a 100:1 or even a 20:1 range would be adequate for most situations.


- 4. Adaptation to existing swr bridges.
- 5. Only two adjustments needed for initial calibration.

#### operation

To understand how the circuit works, we should first think about how the typical swr meter operates. The usual swr indicator has a directional coupler inserted into the coax line. (The coupler could be of the Varimatch variety,<sup>3</sup> or it could be a directional wattmeter<sup>4</sup>). The coupler outputs a pair of dc voltages proportional to the forward and reflected voltages in the coax. When you adjust the swr meter sensitivity so that the forward dc voltage produces full-scale deflection, you have essentially calibrated the meter; applying the reflected dc signal to the meter allows you to read the swr directly. What this computing swr meter circuit does is adjust the meter sensitivity automatically as it applies the reflected signal to the meter.

voltages are applied to a pair of integrators. The integrator outputs are ramp waveforms for constant inputs; the higher the input voltages the steeper the ramps become. At any instant in time, the ratio of integrator outputs is

Referring to the block diagram of fig. 1 and its timing diagram, you can see that the directional coupler output



rig. 1. Block diagram of the computing swi indicator, above, and its timing relationships, below. A pair of integrators form the heart of the system. At any instant of time the ratio of their outputs is equal to that of the input voltage, assuming the input-voltage ratio is constant, i.e., constant vswr.

TIME (SEC)

CAPACITOR VOLTAGE

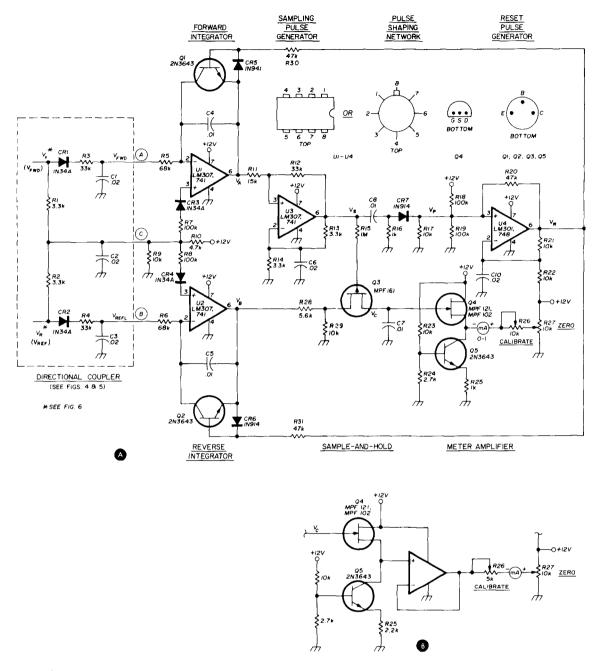



fig. 2. Computing swr indicator schematic, A, and an alternative meter-amplifier circuit, B. If a single 12-volt power supply is used, a special directional coupler is required (see fig. 4).

equal to the ratio of their input voltages (assuming the *ratio* of the input voltages remains constant; i.e., constant swr).

Now, let's say that R in fig. 1A is set so that 5 volts at  $V_C$  produces full-scale meter deflection. The integrators produce ramps  $V_A$  and  $V_B$ . When  $V_A$  reaches 5 volts the control circuit briefly closes S1 so that the capacitor is charged to  $V_B$ .  $V_B$  is 2.5 volts at this time. The meter is now at half-scale deflection, indicating an swr of 3:1. After opening S1, the control circuit resets the integrator outputs to zero and the process starts all over again.

The capacitor will hold the 2.5 volts until S1 is again closed, because the meter-amplifier input draws essentially no current.

In the circuit of fig. 2A (and the corresponding timing diagram of fig. 3), you can see that the integrators operate around +8 volts, instead of zero volts, when you use the single +12 volt supply shown; this requires that a special directional coupler circuit be used (see figs. 4 and 5). If a conventional directional coupler is desired, you must use a dual-polarity power supply as discussed later. When  $V_A$  drops to 3.5 volts, the positive input of

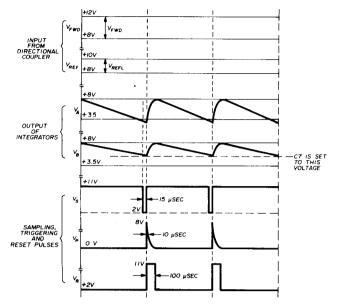



fig. 3. Timing diagram for the circult of fig. 2A showing relationships between input signals, integrator outputs, and sampling, trigger, and reset pulses.

U3 is pulled below the voltage at the negative input, forcing the output low. It is held low until C6 discharges to where the negative input is closer to ground than the positive input, forcing the output high. When the output is low, Q3 is turned on, charging C7 to a new voltage.

The rising edge of U3 output is applied to U4, which generates a pulse in a similar manner, resetting the integrators to 8 volts by discharging C4 and C5 through Q1 and Q2. CR5 and CR6 prevent the transistor baseemitter junctions from accidentally breaking down and turning on the transistors when U4 output is low.

The meter amplifier, Q4 and Q5, can drive meters with sensitivities of 1 mA or better. If the meter you happen to have has lower sensitivity than this (or if you want good meter accuracy) then you should probably use the meter-amplifier circuit shown in fig. 2B. In the circuit of fig. 2A, Q5 acts as a constant 2-mA current source; more meter current means less current through Q4, which would mean a change in Q4 gate-source voltage, introducing some dc error. In fig. 2B, the change in Q4 current is negligible.

The meter is calibrated using the usual swr meter scale. You can calibrate a junk-box meter by:

$$swr = \frac{I_{fs} + 1}{I_{fs} - 1}$$
 (1)

where  $I_{fs}$  is the meter full-scale deflection current.

#### construction hints

U1 and U2 should be good-quality op-amps requiring very small input bias currents. LM307s are a good compromise between cost and results. Type 741s could be used if you have some on hand, although they are slightly inferior to the less-expensive LM307. U3 and U4 should be uncompensated, since they are used as fast pulse generators. Internal compensation makes op amps such as the LM307 and the 741 too slow. Don't use 709s, because their differential input voltage ratings will be exceeded in this application.

Diodes CR3 and CR4 provide better sensitivity at low transmitter power levels by compensating for the forward drop across CR1 and CR2. Diode pairs CR1-CR3 and CR2-CR4 should be matched for forward-voltage drop at low currents. (Do this by matching their forward resistances on the x10k and x100k scales of a vtvm). Diodes CR1 and CR2 should have low reverse leakage current (high back resistance). Using silicon instead of germanium diodes decreases circuit accuracy at low rf power levels (10 watts and less).

Q1 and Q2 should have low leakage current through the collector-base junction; most silicon transistors will work fine here. Check the  $I_{dss}$  of Q4 if you wish; if it's 3 mA or more, decreasing R25 to 680 ohms will reduce the meter-amplifier error mentioned earlier, since Q4 will then supply 3 mA. Don't worry about this if your meter sensitivity is better than 500  $\mu$ A; however, be sure to increase R26 to a value that will protect the meter movement.

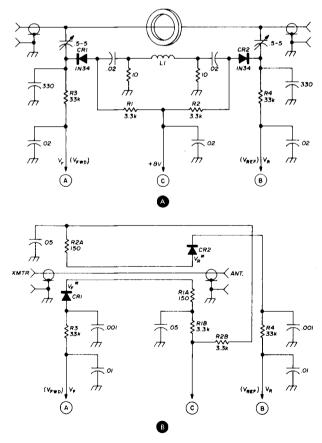



fig. 4. Circuits to be used in modifying existing swr bridges for use with the computing swr meter. A modified directional wattmeter is shown in A; a modified Monimatch in B. Inductor L1 consists of 30 turns of no. 22 AWG (0.6mm) wire on an Amidon T-50-2 form.

If you build this circuit into an existing swr meter, you can use figs, 4 and 5 as guides when wiring the directional coupler to the circuit of fig. 2A. In general, expect better results if you use a Varimatch coupler rather than a directional wattmeter. Directional wattmeters don't seem to work well at power levels below 5 or 10 watts because of their low sensitivity. If you build your circuit from scratch, the directional coupler shown in fig. 5 is easy to build and gives good results to at least 30 MHz.

If you have a dual-polarity power supply  $(\pm 9 \text{ or } \pm 12)$ volts), you'll probably want to use a conventional directional coupler circuit. If so, connect point C of fig. 2A to ground and connect all other ground to the negative supply line. Also, when using either single-polarity supplies of more than 15 volts, or dual-polarity supplies, you'll probably want to increase R23 and R26 (and

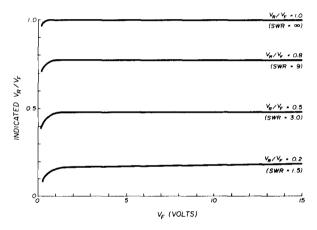
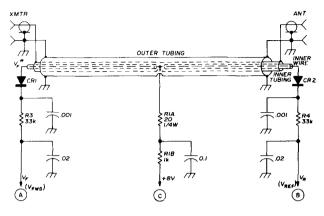




fig. 6. Actual vs indicated ratios of  $V_R/V_F$  as a function of  $V_F$ . VF and VR were dc voltages applied to points VF\* and VR\* of fig. 2A. CR1-CR4 were 1N914s; R5-R8 were 1 megohm. By using the components specified in fig. 2A the curves should extend in nearly straight lines to  $V_F = 0.1$  volt or so.

possibly R27 as well). Except for these minor changes, the circuit will work as is on any voltage between 12-28 volts. At 12 volts the circuit draws approximately 20 mA, making a battery power supply practical. Since the meter calibration accuracy depends on the supply voltage, extreme accuracy will require the use of a regulated power supply. However, as long as the power-supply voltage doesn't vary by much more than  $\pm 10\%$  or  $\pm 15\%$ . the resulting accuracy will be more than adequate for practical use. Be sure that no strong rf fields can get into the op amps. Install the circuit in an aluminum box. Filter all leads entering and leaving the box.

#### calibration and results

The first step in calibration is to check that the directional coupler is working properly. Connect a dummy load to the antenna jack and check for zero volts between points V<sub>refi</sub> and C of fig. 4 or 5. After



inner part of RG-59/U coax with insulation, Inner conductor prepared as shown above

1/4'' (6.5mm) diameter copper tubing, 8" Inner tubing (20cm) long, with a small hole (1/8" 3mm) filed at the midway point Outer tubing

 $\frac{1}{2}''$  (13mm) copper tubing, 7" (18cm) long, with a small hole filed at the midway point

or

fig. 5. The Varimatch circuit modified for use with the computing swr meter of fig. 2A.

removing the dummy load, you should get nearly equal voltages at  $V_{\mathsf{fwd}}$  and  $V_{\mathsf{refl}}$  (they don't have to be exactly equal). These steps need not be taken if you use a dual-polarity power supply and an old but reliable swr bridge directional coupler.

Set the calibration pot (R26) for maximum resistance and apply power to the circuit. With the dummy load connected and the transmitter key down, adjust R27 for zero meter deflection. Next, disconnect the load from the antenna jack, briefly close the key and adjust R26 for full-scale meter deflection. You may want to touch up R27, but this probably won't be necessary. Your computing swr meter is now calibrated and ready for use.

If the circuit doesn't work properly, first check that the transmitter jack really is the transmitter jack. Then, by using very low transmitter power (a half watt or less),

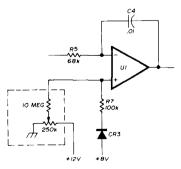



fig. 7. Optional circuit for adjusting U1 offset voltage if the swr meter indicates a random value during key-up conditions. So long as U1 output remains above 3.5 volts the meter needle will stay put with no transmitter output.

you should be able to see the integrators move with your vtvm. Pulses at U3 and U4 can be detected with the vtvm set to ac volts or with a vom set to *output*.

Typical performance using silicon diodes for CR1-CR4 is shown in fig. 6. The integrators are almost impossible to overload (an overload would correspond to

of antenna ideas appear appealing since the transmatch is now an easily used piece of equipment. Even so, many improvements could be made in this circuit. You could, for instance, try a circuit allowing the use of *both* a conventional directional coupler *and* a single-polarity 12-volt supply. This could be done by using CA3130

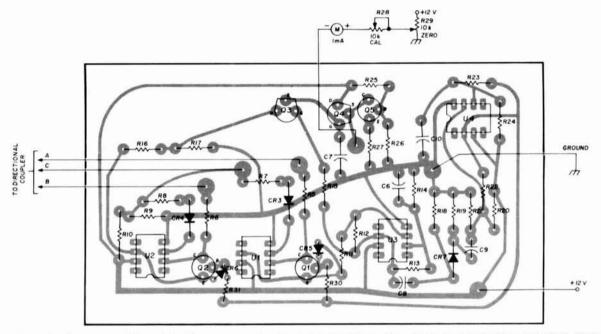



fig. 8. Printed-circuit component layout for the swr computer. A printed-circuit board for this project is available from G.R. Whitehouse (see footnote on page 58).

trying to make the outputs move faster than 0.5 volt per microsecond), so the upper limit to what power the circuit will handle is set by the PIV of CR1 and CR2 and by the width of the pulse fed to Q3. The lower limit for good meter accuracy is set by how well diodes CR1-CR4 are matched, plus whether the diodes are germanium or silicon. The constant offset between indicated and actual  $V_R/V_F$  ratio is due to error in the meter amplifier.

Fayman<sup>1</sup> noted that his swr meter had a tendency to sit at random values of swr during key-up conditions, requiring special circuitry to correct the problem. The circuit of fig. 2A can have the same problem, but it can be overcome by adjusting U1 offset voltage (see dashed box, fig. 7) so that its output drifts slowly toward the positive end of the supply line with no transmitter output. (Check your circuit before adding the pot and resistor of fig. 7; your particular U1 may already be doing this). As long as U1 output remains above 3.5 volts, Q3 will remain turned off, and the meter needle will stand still (it won't go to zero when the key is up, but it won't go off to some random value either).

#### concluding remarks

This computing swr meter has been a big help in transmatch tune up. It also has suddenly made all kinds

CMOS op amps for U1 and U2. Diodes CR1 and CR2 would have to be turned around, and CR3, CR4, R7 and R8 would have to be eliminated; also, an amplifier would have to be used between U1 and U3 to transform a signal exceeding +10 volts to a signal dropping below +3.5 volts.

You could also try reducing the cost (at a sacrifice of accuracy) by using an LM3900 quad amplifier. The problem here is that you'd have an swr of 1:1 every time  $V_{ref1}$  dropped below 0.7 volt or so - not so neat if  $V_{fwd}$  is only 0.8 volt zero to peak. However, for higher voltage levels, this idea might be OK. Another idea would be to add a peak-reading circuit to the directional coupler  $V_{fwd}$  line to indicate transmitter PEP in sideband applications.

#### references

1. D. Fayman, WØGI, "A Simple Computing SWR Meter," *QST*, July, 1973, page 23.

2. T. Mayhugh, W6OTG, "A Digital SWR Computer," 73, November, 1974, page 80; December, 1974, page 86.

 D. DeMaw, W1CER, "The Varimatcher," QST, May, 1966, page 11.

4. D. DeMaw, W1CER, "In-line RF Power Metering," QST, December, 1969, page 11.

ham radio

# here's how HEATHKIT transceivers stack up



Whether you're working low-power CW, 2-meter FM, or going first-class with digital-design SSB, Heath has a transceiver for you! Every Heathkit transceiver gives you the features you need for operating convenience and reliability. They're designed by engineers who are Amateur radio operaters themselves, so they know the kind of quality, features and performance you're looking for. And every Heathkit transceiver gives you that extra pride and satisfaction that comes with handcrafting a fine piece of Amateur radio equipment yourself - kit form savings, too! So check out our line now, you'll see that all the Heathkit transceivers are really performance engineered. And send for the FREE catalog, to read about all the other quality Amateur equipment we have. Mail the coupon below today. You'll be glad you did.

## 2-METER

Our hand-held HW-2021 is the one to have for portable operating. Full 1 watt output, 5 receive and 5 transmit channels plus offset, true FM circuitry and a separate microphone and speaker for excellent audio quality. Sensitivity is 0.5 µV for 12 dB SINAD. Has provision for auto patch encoder (shown installed). Includes rechargeable NiCad battery pack and charger, flexible "rubber duckie" antenna for only \$169.95.

The HW-202 sets an industry standard for 2-meter VALUE! 6 crystal-controlled transmit and receive channels, solid 10-watt transmitter output into infinite VSWR, standard and narrowb S 0 i

Our newest and best 2-meter transceiver is the HW-2036! Digital frequency synthesis for ALL 2-meter frequencies in the band, easy and convenient lever tuning, built-in continuous tone encoder for repeaters. complete offset capability, minimum 10 watts output. Receiver sensitivity is 0.35 µV for 12 dB SINAD; audio output is 1.5 watts at 10% THD. Transmitter output is exceptionally clean, with spurs within 20 MHz of carrier down a full 70 dB! Available with standard PTT microphone for \$269.95 or with the Heathkit Micoder combination microphone/auto patch encoder for \$299.95.

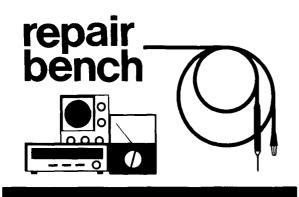
## QRP

The HW-8 low-cost CW transceiver gives you plenty of performance for its low price. Full CW 80-15 meter band coverage with pushbutton band selection; a direct-conversion receiver with outstanding 0.2 µV sensitivity; break-in keying with adjustable T/R delay; lots more. Battery operation, too-great for vacations or emergencies. Only \$129.95.

## SSB/CW

The HW-101 is a full power SSB/CW transceiver that sets the standard for price/performance levels. 180 watts input PEP, 170 watts CW, 0.35 µV sensitivity, high stability FET VFO, PTT and VOX operation. Has crystalcontrolled heterodyne oscillator with built-in crystal calibrator, triple action level control, dial-drive with 36:1 ratio and extra-large tuning knob for easybacklash-free tuning. Offers complete overage of the 80-10 meter Amateur ands. Only \$339.95.

he HW-104 is a broadband design ansceiver that eliminates compliated tuneup. No preselector, load or une controls - no fine-tune fuss -


just dial up the frequency you want, select USB, LSB or CW and go, Covers 3.5 MHz to 29.0 MHz Amateur bands and there's an optional accessory for the top end of 10 meters to 29.7 MHz. Has 100 watts or 1-watt power, sensitivity of 1 µV for 10 dB S+N/N, built-in 100 kHz and 25 kHz calibrators, even a 15 MHz WWV position on the bandswitch. Deluxe in every way, and only \$489.95.

Our finest Amateur transceiver - the SB-104, is probably the best transceiver you can buy at any price! Totally broadbanded, true digital design, 6-digit frequency readout with resolution to 100 Hz on all bands - you don't even need a calibrator! Provides complete 3.5 MHz through 29.7 MHz amateur band coverage, 100 watt or 1-watt output, 1 µV sensitivity. Everything for first-class operating, only \$669.95.

| Please send me my FREE<br>Heathkit catalog.<br>I am not on your mailing list.<br>Name<br>Address Address Address | HEATH<br>Schlumberge |    | Heath Company, Dept. 122-25<br>Benton Harbor, Michigan 49022 |         |  |
|------------------------------------------------------------------------------------------------------------------|----------------------|----|--------------------------------------------------------------|---------|--|
|                                                                                                                  | Heathkit catalog     | g. |                                                              | catalog |  |
| Address Address                                                                                                  | Name                 |    | Name                                                         |         |  |
|                                                                                                                  | Address              |    | Address                                                      |         |  |

There's more for the Ham

| band deviation up to 7.5 kHz with in-<br>stant limiting. Receiver sensitivity is | b  |
|----------------------------------------------------------------------------------|----|
| 0.5 $\mu$ V for 12 dB SINAD; audio output s 3 watts at less than 10% THD. Pro-   | Т  |
| ision for optional tone burst encoder                                            | tr |
| shown installed). Super 2-meter per-                                             | C  |
| ormance for only \$179.95.                                                       | tu |
| FREE                                                                             |    |
|                                                                                  |    |



# **Bob Stein, W6NBI**

# using the swr indicator

**Ever since the end of World War II**, the surplus market has been a major source of test equipment, transmitters and receivers, and parts. For the serious experimenter, the first category has been of paramount importance, enabling him to obtain equipment which would otherwise be out of the question because of cost. Surplus equipment continues to be in strong supply from both industrial and military sources. In fact, there is more available now than ever before, for several reasons.

First of all, the state of the electronics art has changed so rapidly in the past few years that much of the test equipment which was standard in industry is no longer economical to use, although it is perfectly adequate for amateur use. A typical example of this is the slotted line used with the swr indicator, a combination that has largely been replaced by the reflection bridge or the network analyzer. A second reason for the availability of good commercial test equipment is the fact that the military services have been using off-the-shelf commercial equipment, which they continue to surplus.

This article is the first of a series which will explain the uses and benefits of certain classes of test equipment which heretofore have been relatively uncommon in the ham shack. I hope to show how modest investments in such equipment will enable you to improve your testing capabilities as well as expand your knowledge of test methods.

#### the swr indicator

Although there are and have been several types of swr indicators available, the one which is most common and which seems to be the easiest to obtain is the Hewlett-Packard model 415B Standing Wave Indicator. Others which appear on the surplus market from time to time are the Sperry Microwave SWR Indicator model 29A1 and the Narda model 441 VSWR Amplifier. Current

By Robert S. Stein, W6NBI, 1849 Middleton Avenue, Los Altos, California 94022

instruments of the same type are the Hewlett-Packard model 415E SWR Meter and the GenRad (formerly General Radio) Standing-Wave Meter type 1234. Obviously there are differences among all of these, but basically they are similar.

Despite the similarity in names, the swr *indicator* to be discussed in this article is something completely different from the vswr *bridge* commonly found in most ham shacks. The bridge which you use in your transmission line is an rf *power* instrument which measures incident and reflected power or voltage (with varying degrees of accuracy). The vswr is then calculated from these readings, or is read directly from the meter provided that a reference level for the incident wave has been established.

The swr indicator, on the other hand, is an instrument which is exactly what its name says it is – an indicator. It is capable of indicating vswr only when used in conjunction with an rf detector and other equipment, such as a slotted line or a directional coupler. However, it can do this with no more power applied to the device under test than is produced by a signal generator. Thus, vswr readings can be obtained for virtually any type of equipment – converters, attenuators, filters, transmitters, coax relays and switches, antennas, transmission-line sections, and so on.

But that's only the beginning. The swr indicator can also be used with a detector to measure the attenuation and insertion loss of fixed and variable attenuators, insertion loss and response of filters, cross-talk in coaxial relays and switches, and antenna gain (when compared to a standard gain antenna on an antenna range). It can also serve as an extremely sensitive null indicator in ac bridge circuits. So you can see that we are talking about a very versatile instrument.

#### inside the swr indicator

Despite its versatility, the swr indicator is a relatively simple instrument; it is basically nothing more than a tuned electronic voltmeter which responds to a fixed frequency of 1000 Hz. (There are special cases where a frequency other than 1000 Hz is used, but these are rare, and the instrument model number generally will have been modified by the addition of an option or special number. Check the back of the instrument housing for a sticker which shows this modified model number.) The gain is extremely high, resulting in a sensitivity of typically 0.1 microvolt for full-scale meter deflection on the most sensitive range.

The swr indicator incorporates range attenuators, a gain control, and provisions for selecting and matching the type of detector used. The meter scales are marked in swr and dB. Note that the presence of a gain control indicates that the instrument is not a calibrated voltmeter, but is one which is designed to measure the ratio of two voltages. This capability is all that is required, since swr and dB are, by definition, both ratios.

#### outside the swr indicator

As mentioned earlier in this article, a detector must be used with the swr indicator for all rf measurements, and obviously an rf signal source at the desired frequency is required. The signal source must be amplitude modulated with a 1000-Hz sine or square wave. An output of 0.2 milliwatt (100 millivolts across 50 ohms) is generally sufficient. Regardless of the actual output power, the signal source must supply a constant output and should have minimum harmonic distortion. The modulating voltage must also be stable to prevent measurement errors.

The detector must be a square-law device, that is, one whose *output voltage* is proportional to rf *input power*. Coaxial slotted lines usually have a detector built into them, but an external detector must be used for other applications of the swr indicator. Such a detector may be either a coaxially mounted bolometer\* or semiconductor diode, operated at low signal levels.

Although the Hewlett-Packard 415B can supply either 4.3 or 8.7 milliamperes bolometer bias current, bolometer detectors are relatively rare so we will consider all operation using a diode detector. There are many types, made by many manufacturers, all of which will be more than satisfactory for use with the swr indicator. However, be sure that the detector which you use presents a termination which corresponds to the system impedance; both 50- and 75-ohm detectors are available. For the purpose of this article, all impedances are assumed to be 50 ohms.

The Hewlett-Packard model 415B Standing Wave Indicator. Although this instrument has been superseded by the model 415E, it will still provide years of useful service. (Photo courtesy of Hewlett-Packard Company)



A coaxial detector is also a simple and inexpensive device to construct; methods of construction are shown in previous articles by W6VSV<sup>2</sup> and W1JAA.<sup>3</sup> Virtually all commercial detectors incorporate a resistive termination at the rf input connector, but those described in W6VSV's article do not. Therefore a 50-ohm feedthrough termination should be used at the input of such a detector. (Alternatively, a 50-ohm pad and coaxial short can be used, as shown by W6VSV.)

Some diode detectors incorporate a matched load resistor either at the *output* connector or in a separate coaxial load. These too are relatively rare, but bear mentioning. Their advantage is greater square-law range, although this is achieved at a cost of some sensitivity loss.


There are two precautions which must be observed when using a diode detector. The first of these entails staying within the square-law region of the diode. For amateur measurements, power levels up to a few microwatts may be applied to the detector input without causing serious measurement errors. In general, if the applied rf power is kept below the level which results in a full-scale reading on the 30-dB range of the swr indicator with the gain controls at maximum, the detector will be working within its square-law range.

Secondly, if a detector with a matched load is used, the input selector switch on the swr indicator must be set to the high-impedance (200 kilohm) *crystal* position in order not to shunt the detector load with a low impedance. As previously stated, however, detectors with matched loads are relatively uncommon. With an unloaded detector, the input selector is set to the *crystal* position which results in the highest sensitivity.

The attenuation of loss pads, cables, filters, etc., may be measured using the test set-up shown in fig. 1. Loss pads, preferably 10 dB or more, are used at the input and output of the device under test (DUT) to ensure a uniform 50-ohm system. If the detector presents a known 50-ohm impedance at the test frequency (as most commercial units do), the pad between the DUT and the detector may be omitted.

Connect the equipment as shown, except substitute a feedthrough coaxial fitting for the DUT. Adjust the signal-generator output and the range switch and gain controls of the swr indicator for a reference level of 0 dB on the lowest range (most counter clockwise range-switch setting) which will allow for a reduction of signal level equal to the expected attenuation of the DUT. This ensures operation of the detector in its square-law region. For example, if a 20-dB attenuator is to be checked, setting the swr indicator reference level to 0 dB on the 40-dB range setting will allow you to measure up to 30 dB of loss – two 10-dB ranges of the switch plus the 10-dB meter range.

\*There are two types of bolometers: *barretters*, which are normal resistance elements with a positive temperature coefficient, and *thermistors*, which are manufactured from metallic oxide materials which exhibit a negative temperature coefficient. In its simplest form the barretter may be a short length of very fine wire, such as an instrument fuse, or a metallized film resistor.<sup>1</sup>



The Hewlett-Packard models 420A and 423A Crystal Detectors are typical of the many detectors which can be used with the swr indicator. Both detectors are usable from 10 MHz to 12.4 GHz. The response of the 420A, on the top, is  $\pm$ 3.5 dB with a maximum vswr of 3.0. The 423A is flat within  $\pm$ 0.5 dB and has a maximum vswr of 1.5 (1.2 below 4.5 GHz). (Photo courtesy of Hewlett-Packard Company)

Insert the DUT into the test set-up, in place of the coax feedthrough, and note the swr indicator meter reading. *Do not touch the gain controls.* If the meter is still on scale, the attenuation of the DUT is equal to the meter reading on the dB scale. If the meter reads below the 10-dB mark, switch to the next lower (counter-clockwise) range-switch setting which moves the meter on-scale. The attenuation of the DUT in dB then will be equal to the difference between the reference and final switch settings plus the meter reading.

Continuing with the example cited above, assume that when the 20-dB pad is inserted in the test set-up, the range switch has to be changed from the 40- to the 60-dB position, and the meter pointer rests at the 1-dB mark. The attenuation of the loss pad is thus actually 21 dB - two 10-dB switch positions plus 1 dB on the meter.

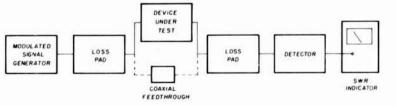

The Hewlett-Packard 415B has a *meter scale* switch which makes reading the meter more accurate under certain conditions. Since the dB scale is logarithmic, the meter scale between 5 and 10 dB is greatly compressed. If the meter reading is in this region, you can set the


fig. 1. Equipment set-up for measuring attenuation, filter response, and gain. The coaxial feedthrough connector is used to establish a reference level on the swr indicator, and is replaced by the device under test (DUT) for the actual measurement. The signal generator may be replaced by any stable small-signal source which is modulated by 1000 Hz signal. meter scale switch to the -5 dB position and turn the range switch to its next lower (counterclockwise) setting. The meter pointer will then fall between 0 and 5 dB, providing a more accurately read indication, but don't forget to subtract 5 dB from your final readings.

If a reading of less than 2 dB is involved, such as would hopefully be expected when measuring insertion loss, it can be read more accurately on the *expanded dB* scale of the meter. This requires setting the *meter scale* switch to *expand* and establishing the reference level with the *meter scale* switch in that position.

#### measuring filter response

The attenuation vs frequency response of a filter may be measured in a manner similar to that just described. However, certain additional precautions are involved. First and foremost, your signal source output must be kept constant over the frequency range of interest. Secondly, if you are interested in the response below -35 dB, the loss pad at the input to the filter must be adjustable or be changed, since 35 dB is about the limit of a typical diode detector's square-law range.





The type 1234 Standing-Wave Meter is the current swr indicator in the GenRad (formerly General Radio) product line. (Photo courtesy GenRad)

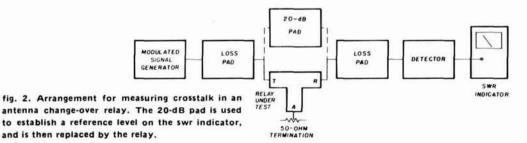
As an example, let's assume that you want to check the response of a 145-MHz bandpass filter. Connect it as shown in fig. 1, using a frequency counter at the output of the signal generator if the frequency calibration of the generator is in doubt. Instead of a fixed loss pad between the signal generator and the filter, use a step attenuator of known accuracy, set to provide 40 dB of attentuation. Tune the signal generator for maximum indication on the swr indicator, using the 30-dB range with the gain controls at or near maximum. Establish a 0-dB reference level by means of the signal generator output attenuator and the swr indicator fine-gain control.

As the generator frequency is varied, the attenuation of the filter can be read directly from the dB scale of the meter in conjunction with the range switch. As you get further away from the center (reference) frequency, you will run out of swr indicator sensitivity. At this point, note the meter reading, reduce the sensitivity of the swr indicator by 20 dB, and lower the attenuation of the step attenuator by 20 dB, thus still keeping a 20-dB pad in the system for impedance matching. If your step attenuator is accurate, the meter indication should be the same as before; if it is not, it indicates an error in the step-attenuator calibration which must be accounted for in subsequent readings. Now continue to check the filter response, adding 20 dB (or the amount by which the step attenuator was changed) to the swr meter readings.

If you don't have a step attenuator, you can accomplish the same thing by using two fixed loss pads between the signal generator and the filter. When you reach the point of maximum swr indicator sensitivity, simply remove one of the pads and continue as described above. In this case, you must add to the swr indicator readings the attenuation of the pad which was removed.

An immediate reaction to these procedures may well be that the accuracy of the measurements at low levels depends on the calibration of the adjustable or additional fixed attenuator. This is true, but all you have to do is to *measure* the attenuator, using the same swr indicator and detector, if you are not sure of the calibration. What could be simpler than a self-checking system?

#### measuring gain


It should be obvious that if attenuation, or signal loss, can be measured with an swr indicator, signal gain can also be determined. This is accomplished by exactly the same procedure described for attenuation measurement, except that the reference level through the coax feedthrough should be established on the most sensitive (60-dB) range of the swr indicator.

For example, let's assume that you want to know the gain of your two-meter converter, and expect it to be between 25 and 30 dB. If you set the 0-dB reference level on the 60-dB range of the swr indicator, you will have to reduce the sensitivity when the converter is connected in place of the feedthrough connector. The amount by which sensitivity is reduced is equal to the change in the range-switch setting *minus* the meter reading, and represents the gain of the converter.

Conversely, gain can be measured by establishing a reference level using the device under test. Then substituting a coaxial feedthrough for the DUT will result in a loss equal to the gain of the active device.

#### measuring cross-talk or isolation

A coaxial antenna change-over relay or switch should

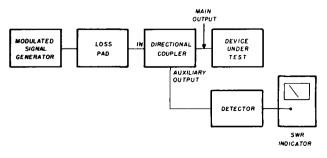


| return |             |         | return |             |        |
|--------|-------------|---------|--------|-------------|--------|
| loss   | reflection  |         | loss   | reflection  |        |
| (dB)   | coefficient | vswr    | (dB)   | coefficient | vswr   |
| 1      | .8913       | 17.3910 | 31     | .0282       | 1.0580 |
| 2      | .7943       | 8.7242  | 32     | .0251       | 1.0515 |
| 3      | .7079       | 5.8480  | 33     | .0224       | 1.0458 |
| 4      | .6310       | 4.4194  | 34     | .0200       | 1.0407 |
| 5      | .5623       | 3.5698  | 35     | .0178       | 1.0362 |
| 6      | .5012       | 3.0095  | 36     | .0158       | 1.0322 |
| 7      | .4467       | 2.6146  | 37     | .0141       | 1.0287 |
| 8      | .3981       | 2.3229  | 38     | .0126       | 1.0255 |
| 9      | .3548       | 2.0999  | 39     | .0112       | 1.0227 |
| 10     | .3162       | 1.9250  | 40     | .0100       | 1.0202 |
| 11     | .2818       | 1.7849  | 41     | .0089       | 1.0180 |
| 12     | .2512       | 1.6709  | 42     | .0079       | 1.0160 |
| 13     | .2239       | 1.5769  | 43     | .0071       | 1.0143 |
| 14     | .1995       | 1.4985  | 44     | .0063       | 1.0127 |
| 15     | .1778       | 1.4326  | 45     | .0056       | 1.0113 |
| 16     | .1585       | 1.3767  | 46     | .0050       | 1.0101 |
| 17     | .1413       | 1.3290  | 47     | .0045       | 1.0090 |
| 18     | .1259       | 1.2880  | 48     | .0040       | 1.0080 |
| 19     | .1122       | 1.2528  | 49     | .0035       | 1.0071 |
| 20     | .1000       | 1.2222  | 50     | .0032       | 1.0063 |
| 21     | .0891       | 1.1957  | 51     | .0028       | 1.0057 |
| 22     | .0794       | 1.1726  | 52     | .0025       | 1.0050 |
| 23     | .0708       | 1.1524  | 53     | .0022       | 1.0045 |
| 24     | .0631       | 1.1347  | 54     | .0020       | 1.0040 |
| 25     | .0562       | 1.1192  | 55     | .0018       | 1.0036 |
| 26     | .0501       | 1.1055  | 56     | .0016       | 1.0032 |
| 27     | .0447       | 1.0935  | 57     | .0014       | 1.0028 |
| 28     | .0398       | 1.0829  | 58     | .0013       | 1.0025 |
| 29     | .0355       | 1.0736  | 59     | .0011       | 1.0022 |
| 30     | .0316       | 1.0653  | 60     | .0010       | 1.0020 |

table 1. Reflection coefficient and VSWR vs return loss

provide at least 50 dB isolation between the transmit and receive connectors, but many do not, especially at uhf. Inadequate isolation can easily result in the destruction of transistors in the receiver when used in proximity to a high-power transmitter.

You can play it safe and measure the cross-talk, or isolation, of your change-over device by means of (you guessed it) the swr indicator. Since you hope to find the cross-talk down by 50-dB, which is well beyond the square-law region of the detector, a substitution method of measurement is employed.


Fig. 2 shows the test set-up for such measurements. Initially, a 20-dB pad is inserted as shown, and a 0-dB reference level established on the swr indicator. Since we hope to find the cross-talk between the transmit and receive ports down by well over 20 dB, the reference level should be set on the 40-dB range. Then remove the 20-dB pad and connect the relay as shown. The isolation will be equal to the change indicated by the swr indicator plus 20 dB.

#### measuring vswr with a directional coupler

This one is for the vhf and uhf enthusiast, since directional couplers are usually used at frequencies of 200 MHz and higher. And although amateurs who are fortunate enough to have a directional coupler normally use it only for power measurements, it can be utilized to measure vswr by return loss. The equipment set-up for this measurement is shown in fig. 3, and the procedure is as follows:

- 1. Establish a reference level of 0 dB on the least sensitive range (but not less than 30 dB) commensurate with the available signal-source power.
- 2. Reverse the input and output connections to the directional coupler, keeping the detector on the auxiliary-output port.
- 3. Determine the return loss  $(\alpha)$  in dB from the reference level, as measured by the swr indicator.

fig. 3. Equipment configuration for measuring reflection coefficient and vswr by the return-loss method. Measurements are essentially independent of the coupling coefficient, but accuracy is severely limited by the directivity of the coupler, as explained in the text.



 Determine the vswr from table 1, which shows the tabulated results of the following equations, where ρ is the reflection coefficient.

and

$$p = 10^{\frac{-\alpha}{20}}$$
$$VSWR = \frac{1+\rho}{1-\rho}$$

Theoretically, measuring vswr by the return-loss method is accurate and guite simple to perform. In practice, however, the directional coupler can introduce large errors if its directivity is not substantially greater than the measured return loss. A good rule of thumb is to use a coupler whose directivity is at least 15 dB greater than the return loss. Since commonly available directional couplers generally have a specified directivity of only 20 or 30 dB, this would appear to limit accurate measurements to return losses of 5 to 15 dB, with the lower of these two values corresponding to a vswr of 3.57 (see table 1). However, even though the difference between the measured return loss and the coupler directivity is less than 15 dB, the technique is still usable for adjusting the equipment under test for minimum vswr.

In addition to coupler directivity, there are other factors which affect measurement accuracy, but these are of lesser importance. A complete discussion of measurement errors using directional couplers is beyond the scope of this article, but appears in reference 4.

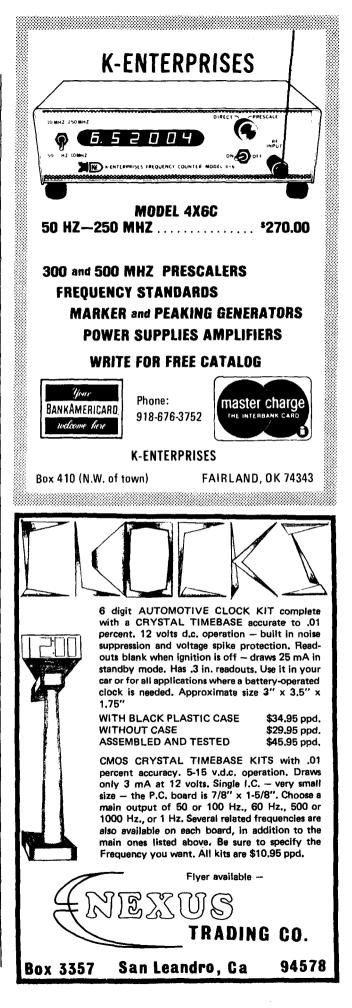
I hope that this article has demonstrated the versatility of the swr indicator in the ham shack. Although the various commercial models mentioned earlier are generally available in limited quantities, there is no sure way of knowing that the supply will continue to exist. Even if you cannot find an instrument on the surplus market, it is a relatively easy unit to build, and will be just as accurate as the commercial versions. An equivalent, though slightly less complicated, instrument is completely described in reference 2.

Despite the length of this article, the primary raison d'être of the swr indicator, that of use with the slotted line, has not been covered. This will be the subject of a future article.

#### references

1. Bruce Clark, K6JYO, "RF Power Detecting Devices," ham radio, June, 1970, page 28.

2. Bob Melvin, W6VSV, "The SWR Meter," ham radio, October, 1970, page 10.


3. Joe Reisert, W1JAA, "VHF/UHF Antenna Matching Techniques," ham radio, July, 1976, page 50.

4. Duane E. Dunwoodie and Peter Lacy, "Why Tolerate Unnecessary Measurement Errors," *Wiltron Technical Review*, Wiltron Company, Palo Alto, California 94303, March, 1975.

5. Operating and Service Manual, 415B Standing Wave Indicator, Hewlett-Packard Company, Palo Alto, California 94304.

6. Operating and Service Manual, 415E SWR Meter, Hewlett-Packard Company, Palo Alto, California 94304.

ham radio



#### SPECIALS FROM



| PHOEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N. 32nd STREET         C.O.D.           NIX, ARIZONA 85008         OR           02-957-0786         Image: Comparison of the second |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF TRANSISTORS           2N1561         15.00         2N3866 JAN TX         4.85         2N5590         6.30           2N1562         15.00         2N3924         3.20         2N5591         10.35           2N1692         15.00         2N3925         6.00         2N5635         4.95           2N1693         15.00         2N3927         11.50         2N5636         11.95           2N2631         4.20         2N3948         2.00         2N5637         20.70           2N2857         1.80         2N3950         26.25         2N5643         20.70           2N28676         12.35         2N4072         1.70         2N5643         20.70           2N2876         12.35         2N4072         1.70         2N5643         20.70           2N2949         3.90         2N4470         2.00         2N5764         27.00           2N2948         15.50         2N4427         1.24         2N5842/MM1607         19.50           2N2950         5.00         2N4440         8.60         2N5852         50.00           2N3300         1.05         2N5070         13.80         2N5922         10.00           2N3300         1.05 | RF TRANSISTORS           MRF207         2.00         Kertron KB6008         5.50         MM3002         1.65           MRF208         10.20         Amperce BLY90         2.50         MM3009         1.80           MRF209         12.35         Amperce A209         8.60         MM3375         7.00           MRF237         1.85         MSC 3000         20.00         MM3904         1.50           MRF450         16.55         MSC 3001         20.00         MM4000         1.24           MRF450         16.55         MSC 3005         20.00         MM4001         1.39           MRF504         6.75         MSC 80205         20.00         MM4001         1.39           MRF507         5.50         MSC 80255         20.00         MM4004         1.60           MRF620         27.00         Fairchild SE7056         3.00         MM4044         3.00           MRF621         30.50         MM1051         5.50         HEPS3013/75         3.00           MRF620         27.90         Fairchild SE7056         3.00         MM4545         3.00           MRF620         27.50         MSC 80255         20.00         MM4064         2.05           M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TUBES           2E26         4.00         5728/T160L         25.00         7984         4.95           3B28         4.00         811A         7.95         8072         32.00           4X150A         15.00         931A         11.95         8156         3.95           4X150G         18.00         5849         32.00         8908         9.95           4CX250F         25.00         6146A         4.75         8950         5.50           4X250F         25.00         6146B/8298A         5.75         4.400A         29.95           4CX250K         27.00         6360         7.95         4.250A         24.95           4CX350A/8321         35.00         6907         35.00         4.125A         20.95           DX415         25.00         7377         40.00         4.65A         15.95                                                                                                                                                                                                                                                                                                                                        | output #1 100 vdc -       12.95         #2 400 vdc +       #3 15000 vdc         #3 15000 vdc       fast recovery         Size: 31/2" x 2" x 23/4"       fast recovery         This power supply was used in a CRT Terminals       METERS         METERS         General Electric       DC Volts       0-80 vdc         Catalogue #50-152011       10.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FET's           2N3070         1.50         2N5460         .90         MFE3002         3.35           2N3436         2.25         2N5465         1.35         MPF102         .45           2N3458         1.30         2N5565         5.45         MPF121         1.50           2N3821         1.60         3N126         3.00         MPF4391         .80           2N3822         1.50         MFE2000         .90         U1282         2.50           2N4351         2.85         MFE2001         1.00         MMF5         5.00           2N4416         1.05         MFE2009         4.80         40673         1.39           2N4875         1.75         MFE2009         4.80         40674         1.49                                                                                                                                                                                                                                                                                                                                                                                                                                       | BE-12433-001         30v at 15 ma.         49           C-404-024         18vct at 400 ma.         1.49           BGH-9         6.3vct at 10 amps         1.49           F-107Z         12V @ 4A or 24 V @ 2A         7.80           DIODES           IN270 Germanium Diodes \$7.95/c           Input 24yde         HEP170, 2.5A, 1000 PIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10.7 MHz Narrow Band Crystal Filter     \$7.95       Bandwidth 13 kHz     Type 2194F       Input & Output Impedance 2700 ohms.     Two Filters in series gives steeper sides & a 30dB Bandwidth of ± 15 kHz.       Johanson     Ferrite Beads       Trimmer Capacitors     12 for .99 or       .6 to 6 pf.     \$1.95       1 to 14 pf.     \$1.95       1 to 20 pf.     \$1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F-21A         6.3vct at 10 amps         5.77           F-18X         6.3vct at 6 amps         3.56           F-93X         6.5v to 40v at 750 ma.         3.53           F-92A         6.5v to 40v at 750 ma.         3.53           F-91X         6.5v to 40v at 300 ma.         2.72           N-51X         Isolation 115vac at 35va.         2.80           Model D-2         6.5v at 3.3 amps         4.95           C-912-034         22vct at 200 ma.         1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CrystalsJUST ARRIVED! These radios have just been1.000000 MHz4.955.000000 MHz4.9510.000000 MHz4.953579.545 KC2.95GE TPL549.95GE TPL539.95GE LL. FM Broadcast Exciter (Stereo) contains the<br>following: 1 ea. Model FM100, FM200, FM400A,<br>FM600, FM800A, and SC200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fairchild 11C90DC Prescaler divide by 10 to 650 MHz. Will take any 65 MHz Counter to 650 MHz or with a 82590 it will divide by 10/100 to 650 MHz. This will take a 6.5 MHz counter to 650 MHz. Kit includes the following.         1 11C90DC       11C90DC         2 N5179       20.88/U         1 MC7805CP       1 Printed Circuit Board and all other parts for assembly.         1 Bridge       82590 add \$5.70 to total.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95H90DC         350 MHz Prescaler Divide by 10/11         9.50           95H90DM         same as above except Mil. version         16.50           95H91DC         350 MHz Prescaler Divide by 5/6         9.50           95H91DC         350 MHz Prescaler Divide by 5/6         9.50           95H91DC         350 MHz Prescaler Divide by 5/6         9.50           95H91DM         same as above except Mil. version         16.50           95H920D         Same Chip         29.95           7.1.         TMS4060/C2107, 4K RAM         19.01           Batteries         NI-CAD's AA cells 1.25 volts at 500 mahr.         \$0.49           Gel-Cell 12 volts at 1.5 Amp Hr. #GC-1215         \$19.95                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fairchild 95H90DC Prescaler divide by 10 to 350 MHz. Will take any 35 MHz Counter to 350 MHz. Kit includes the following.<br>1 95H90DC<br>1 2N5179<br>2 UG-88/u BNC's<br>1 Printed Circuit Board<br>And all other parts for assembly.<br>\$29.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 GHZ Counter Divide by 4         110.50           11C05DM         1 GHZ Counter Divide by 4         110.50           11C06DC         UHF Prescaler 750 MHz D Type flip/flop         12.30           11C24DC         Dual TTL VCM same as MC4024P         2.60           11C4BDC         Phase Freq. Detector same as MC4044P         2.60           11C5BDC         ECL VCM         4.53           11C70DC         600 MHz flip/flop with reset         12.30           11C89DC         1 GHZ 248/256 Prescaler         29.20           11C90DC         650 MHz Prescaler Divide by 10/11         16.00           11C91DC         605 MHz Prescaler Divide by 5/6         16.00                                                                                                                                                                                                                                                | Motorola       MC14410CP       CMOS       tone       Generator       uses       1       MHz       Crystal       to         produce       standard       dual       frequency       telephone       dialing       signal.       Directly       compatible       with         our       12       key       Chomeric       pads.       Kit       includes       the following.         1       MC14410CP       1       Touch       Tone       Pad       1       1       NHz       Crystal         1       Printed       Circuit       Board       (From       Ham       Radio       Sept.       1975)         And       all other       parts for       assembly.       \$19.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fairchild VHF Prescaler Chips           11C01FC         High Speed Dual 5-4 Input no/nor         15.40           11C05PC         1 GHz Counter Divide by 4         74.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEW<br>Motorola, Motorcycle Radio — Model T33BAT \$39.95 FOB Phoenix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# if the 4·BTV weighs 39% more... what do others leave out?

#### **FIXED STATION FOUR BAND VERTICAL**

The 4-BTV is longer for greater aperature, larger in diameter for strength and bandwidth, heavier traps for precision and safety factor. Individually, each subassembly weighs more to collectively give you an antenna designed for convenience of assembly and installation, a wide margin in mechanical stability and far superior electrical performance.

. Lowest SWR-PLUS!

• Bandwidth at its **broadest!** SWR 1.6 to 1 or better at band edges.

 Hustler exclusive trap covers "Spritz" extruded to otherwise unattainable close tolerances assuring accurate and permanent trap resonance.

• Solid one inch fiberglass trap forms for optimum electrical and mechanical stability.

 Extra heavy duty aluminum mounting bracket with low loss – high strength insulators.

• All sections 1¼" heavy wall, high strength aluminum. Length 21'5".

Stainless steel clamps permitting adjustment

without damage to the aluminum tubing.

 Guaranteed to be easiest assembly of any multi-band vertical.

• Antenna has %"-24 stud at top to accept RM-75 or RM-75-S Hustler resonator for **75 meter** operation when desired.

• Top loading on 75 meters for broader bandwidth and higher radiation efficiency!

• Feed with any length 50 ohm coax.

 $\bullet$  Power capability—full legal limit on SSB and CW.

Ground mount with or without radials; roof mount with radials.

one setting for total band coverage!

new-tronics corporation

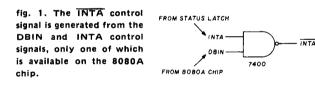
HUSTLER ANTENNA PROD-UCTS—for sixteen years—original designs—created and manufactured by American ingenuity, labor and materials—used by communicators throughout the world.


Hustler designs are patented under one or more of the following assigned to New-Tronics Corporation: 3287732, 3513472, 3419869, 3873985, 3327311, 3599214, 3582951



Available from all distributors who recognize the best!




15800 commerce park drive, brook park, ohio 44142 Exporter: Roburn Agencies, Inc., New York, N. Y.



microcomputer interfacing: the vectored interrupt

This month we continue our discussion of computer interrupts, with emphasis upon the vector-interrupt hardware and software associated with the 8080A micro-processor chip. The three signals that are used in vector-interrupt circuits include INT (input pin 14 on the 8080A chip), INTE (output pin 16), and INTA which is not available on the 8080A chip but derived with external logic.

A positive clock pulse, from an interrupting device, supplies a logic 1 to the INT (*interrupt request*) input. This pulse generates an interrupt request which the CPU recognizes either at the end of the current instruction being executed or while the CPU is in the halt state. The



INTE, *interrupt enable*, output pin indicates the logic state of the interrupt-enable flip-flop within the 8080A chip. This internal flip-flop can be set (enabled) or cleared (disabled) with the aid of the 8080A micro-computer instructions:

| 363 | DI | Disable interrupt flip-flop |
|-----|----|-----------------------------|
| 373 | ΕI | Enable interrupt flip-flop  |

When cleared, the interrupt-enable flip-flop inhibits interrupts from being accepted by the CPU. The flip-flop is automatically cleared when an interrupt is accepted, and also by the RESET input signal applied at pin 12 of the 8080A chip.

The INTA or interrupt acknowledge control signal is

#### By David G. Larsen, WB4HYJ, Peter R. Rony, and Jonathan Titus

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon, Inc., Blacksburg, Virginia. generated by applying the INTA and DBIN control signals to a two-input NAND gate (fig. 1). A logic 1 at DBIN, data bus in, (pin 17 on the 8080A chip) indicates to external devices that the data bus is in the input mode. INTA is a positive clock pulse that is generated as a status output with the aid of a latch connected to the 8080A microprocessor chip.<sup>1,2</sup> We shall talk about the

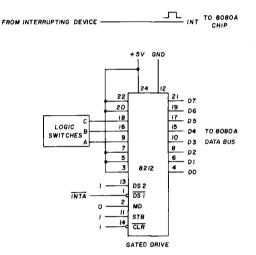
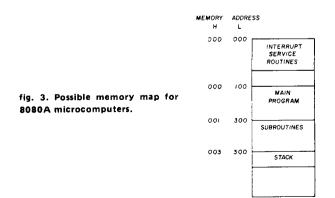




fig. 2. Interface circult for the jamming of a single-byte instruction into the instruction register of an 8080A microprocessor chip.

status latch in a subsequent column. The interesting aspect of the INTA control signal is that it permits you to "jam" an interrupt-vector instruction byte directly into the instruction register in the 8080A chip. This can only be done during an interrupt, but nevertheless it is a unique and highly interesting operation that is possible with the 8080A microprocessor.

A simple circuit that demonstrates how a single-byte instruction can be jammed into the instruction register is shown in **fig. 2**. Assuming that the interrupt-enable flip-flop has been previously enabled by the instruction, 373,



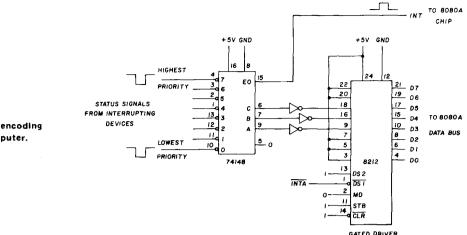



fig. 4. Priority interrupt encoding scheme for an 8080A microcomputer.

the interrupting device must supply a logic 1 input at INT in order to generate an interrupt request. The microcomputer finishes the current instruction and than generates the interrupt acknowledge signal, INTA, which jams the desired vector instruction byte on the data bus and into the instruction register. Although any instruction byte can be jammed into the instruction register during an interrupt, usually the following eight instructions produce a useful result:

| 307 RST 0        | Call the subroutine that starts<br>at HI = 000 and LO = 000 |
|------------------|-------------------------------------------------------------|
| 317 RST 1        | Call the subroutine that starts at HI = 000 and LO = 010    |
| 327 RST 2        | Call the subroutine that starts at HI = 000 and LO = 020    |
| 337 RST 3        | Call the subroutine that starts<br>at HI = 000 and LO = 030 |
| <b>347</b> RST 4 | Call the subroutine that starts<br>at HI = 000 and LO = 040 |
| 357 RST 5        | Call the subroutine that starts<br>at HI = 000 and LO = 050 |
| <b>367</b> RST 6 | Call the subroutine that starts<br>at HI = 000 and LO = 060 |
| 377 RST 7        | Call the subroutine that starts<br>at HI = 000 and LO = 070 |

Thus, the first sixty-four memory locations are reserved for *interrupt service routines* or *pointers*, extremely short programs, often consisting of only a single jump instruction. They tell the microcomputer what to do or where to go for a specified interrupt condition. Such routines precede the main program and associated subroutines in memory (fig. 3). If interrupts or restart instructions are not used, this portion of memory does not have any special significance.

Fig. 4 is probably the simplest priority-encoder interrupt circuit that can be used with an 8080A microcomputer. The Intel 8212 chip is used as an 8-bit three-

Reprinted with permission from *American Laboratory*, August, 1976, copyright © International Scientific Communications, Inc., Fairfield, Connecticut, 1976.

state buffer that inputs the instruction byte into the instruction register. The 74148 8-line to 3-line priority-encoder chip has the following truth table:

|   |   |    |    |    |   | - |   |   |     |     |    |
|---|---|----|----|----|---|---|---|---|-----|-----|----|
|   |   | in | pu | ts |   |   |   | • | out | tpu | ts |
| 0 | 1 | 2  | 3  | 4  | 5 | 6 | 7 | С | в   | A   | ΕO |
| х | х | х  | х  | х  | х | х | 0 | 0 | 0   | 0   | 1  |
| × | х | х  | х  | х  | х | 0 | 1 | 0 | 0   | 1   | 1  |
| х | х | х  | х  | х  | 0 | 1 | 1 | 0 | 1   | 0   | 1  |
| х | х | х  | х  | 0  | 1 | 1 | 1 | 0 | 1   | 1   | 1  |
| x | х | х  | 0  | 1  | 1 | 1 | 1 | 1 | 0   | 0   | 1  |
| x | х | 0  | 1  | 1  | 1 | 1 | 1 | 1 | 0   | 1   | 1  |
| x | 0 | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 0   | 1  |
| 0 | 1 | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   | 1  |
| 1 | 1 | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   | 0  |

The letter X means that the logic state is irrelevant.

The purpose of the circuit of fig. 4 is to input the restart instruction, 3Y7, into the microcomputer. Five of the eight inputs to the 8212 chip are tied to a logic 1 state. The remaining three bits supply the encodedvector address of the restart subroutine. By virtue of its truth table, the 74148 priority encoder chip provides eight priority levels. The inputs to this chip should be latched. The chip provides the three-bit binary output that corresponds to the highest valued priority input which is at logic 0 state. The inverters supply the three-bit Y component of the restart instruction. If there is a logic 0 at any of the inputs to the 74148 chip, a logic 1 output will be generated at the EO output (pin 15). This output serves as the input to the interrupt request pin, INT, on the 8080A chip. Upon receiving an interrupt request, the microcomputer responds with an interrupt acknowledge output, INTA, that strobes the selected highest priority restart instruction into the instruction register.

#### references

1. Intel Corporation, *Intel 8080 Microcomputer Systems User's Manual*, Intel Corporation, Santa Clara, California, September 1975.

2. David Larsen, Peter Rony and Jonathan Titus, Bugbook III, Microcomputer Interfacing Experiments Using the Mark 80<sup>R</sup> Microcomputer, an 8080 System, (E & L Instruments, Inc., Derby, Connecticut, 1975, \$14.95 from Ham Radio Books, Greenville, New Hampshire 03048).

#### ham radio

# you've heard about it

# you've read about it now you can see it-because

HAM RADIO's exciting new Amateur Radio Magazine that everyone has been waiting for. Dedicated to the Beginner and Novice, but written in such a way that it will be enjoyed by all Amateurs and would-be Amateurs, both old and new.

Ham Radio HORIZONS stresses the FUN of Amateur Radio — It also tells you how to get started in this most fascinating of all hobbies. Easy to read and understand. Easy to like. The magazine written with you in mind.



WHAT SHOULD MY FIRST STATION BE LIKE? HOW CAN I WIN AWARDS? WHAT IS DX ALL ABOUT? HOW CAN I UPGRADE MY LICENSE? YOU'LL FIND THE ANSWERS TO ALL THESE QUES-TIONS AND MANY, MANY MORE.

> January 15 is the last date that we can guarantee that you'll have a complete collection of Ham Radio HORIZONS. Don't be left out! Act today!

MARCH

#### To: Ham Radio HORIZONS Greenville, NH 03048

Please sign me up for a one year (12 issue) subscription to Ham Radio HORIZONS.

| - | Enclosed | i.e. | check | ~  | money | order | for | \$10.00  |
|---|----------|------|-------|----|-------|-------|-----|----------|
|   | Enclosed | 15   | CHECK | 01 | money | order | 101 | \$10.00. |

- Please charge my BankAmericard.
- Please charge my MasterCharge Account.

| Ca   | rđ  | NO.  |     |     |
|------|-----|------|-----|-----|
| Ex   | pir | atio | n d | ate |
| 2257 |     |      |     | 1   |

| Bank NO. (M/  | C Only)    |            |             |        |
|---------------|------------|------------|-------------|--------|
| Use your card | or pay now | and get ar | extra issue | e free |

| -    |    |       |  |  |
|------|----|-------|--|--|
| Bill | me | later |  |  |

| Hume.    |      |  |
|----------|------|--|
| Address: |      |  |
| City:    |      |  |
| State:   | Zip: |  |
| State:   |      |  |

# Call toll-free 800-647-8660 for products by MFJ ENTERPRISES

#### 400% MORE RF POWER PLUGS BETWEEN YOUR MICROPHONE AND TRANSMITTER





**LSP-520BX.** 30 db dynamic range IC log amp and 3 active filters give clean audio. RF protected. 9 V battery. 3 conductor,  $\frac{14^{\prime\prime\prime}}{3}$  phone jacks for input and output. 2-3/16 x 3-1/4 x 4 inches.



LSP-520BX II. Same as LSP-520BX but in a beautiful 2-118 x 3-5/8 x 5-9/16 inch Ten-Tec enclosure with uncommitted 4 pin Mic jack, output cable, rotary function switch.

#### SUPER LOGARITHMIC SPEECH PROCESSOR

Up To 400% More RF Power is yours with this plug-in unit. Simply plug the MFJ Super Logarithmic Speech Processor between your microphone and transmitter and your voice is suddenly transformed from a whisper to a Dynamic Output.

Your signal is full of punch with power to slice through QRM and you go from barely readable to "solid copy OM".



#### **CWF-2BX Super CW Filter**

By far the leader. Over 5000 in use. Razor sharp selectivity. 80 Hz bandwidth, extremely steep skirts. No ringing. Plugs between receiver and phones or connect between audio stage for speaker operation.

 Selectable BW: 80, 110, 180 Hz
 60 dB down one octave from center freq. of 750 Hz for 80 Hz BW
 Reduces noise 15 dB
 9 V battery 2-3/16 x 3-1/4 x 4 in.
 CWF-2PC, wired PC board, \$18.95
 CWF-2PCK, kit PC board \$15.95



#### CMOS-8043 Electronic Keyer State of the art design uses CURTIS-8043 Keyer-on-a-chip.

Built-in Key • Dot memory • lambic operation with external squeeze key • 8 to 50
WPM • Sidetone and speaker • Speed, volume, tone, weight controls • Ultra reliable solid state keying + 300 volts max. • 4 position switch for TUNE, OFF, ON, SIDETONE OFF
Uses 4 penlight cells • 2-3/16 x 3-1/4 x 4 inches



#### MFJ-16010 Antenna Tuner

Now you can operate all band — 160 thru 10 Meters — with a single random wire and run your full transceiver power output — up to 200 watts RF power OUTPUT.

 Small enough to carry in your hip pocket,
 2-3/16 x 3-1/4 x 4 inches • Matches low and high impedances by interchanging input and output • SO-239 coaxial connectors • Unique wide range, high performance, 12 position tapped inductor. Uses two stacked toroid cores



#### SBF-2BX SSB Filter

#### Dramatically improves readability.

 Optimizes your audio to reduce sideband splatter, remove low and high pitched QRM, hiss, static crashes, background noise, 60 and 120 Hz hum • Reduces fatique during contest, DX, and ragchewing • Plugs between phones and receiver or connect between audio stage for speaker operation • Selectable bandwidth IC active audio filter • Uses 9 volt battery • 2-3/16 x 3-1/4 x 4 inches



#### MFJ-40T QRP Transmitter

 Work the world with 5 watts on 40 Meter CW.

 • No tuning
 • Matches 50 ohm load
 • Clean output with low harmonic content
 • Power amplifier transistor protected against burnout

 • Switch selects 3 crystals or VFO input
 • 12

 VDC
 • 2-3/16 x 3-1/4 x 4 inches

 MFJ-40V, Companion VFO
 \$27.95

MFJ-12DC, IC Regulated Power Supply, 1 amp, 12 VDC \$27.95



#### MFJ-200BX Frequency Standard

Provides strong, precise markers every 100, 50, or 25 KHz well into VHF region.

 Exclusive circuitry suppresses all unwanted markers 

 Markers are gated for positive identification. CMOS IC's with transistor output.
 No direct connection necessary
 Uses 9 volt battery
 Adjustable trimmer for zero beating to WWV
 Switch selects 100, 50, 25 KHz or OFF
 2-3/16 x 3-1/4 x 4 inches





#### CPO-555 Code Oscillator For the Newcomer to learn the Morse code. For the Old Timer to polish his fist. For the Code Instructor to teach his classes.



#### MFJ-1030BX Receiver Preselector

Clearly copy weak unreadable signals (increases signal 3 to 5 "S" units).

More than 20 dB low noise gain
 Separate input and output tuning controls give maximum gain and RF selectivity to significantly reject out-of-band signals and reduce image responses
 Dual gate MOS FET for low noise, strong signal handling abilities
 Completely stable
 Optimized for 10 thru 30 MHz
 Y battery
 2-1/8 x 3-5/8 x 5-9/16 inches

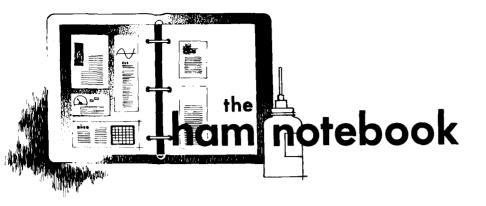
#### **OUR OFFER TO YOU**

Dear Fellow Ham,

Try any MFJ products and if you are not completely satisfied, return it within 30 days for a full prompt refund (less shipping). Call us today toll free 800-647-8660 and charge your Bank-Americard or Master Charge, or mail your order in today with your check or money order (or use your BAC or MC). Please add \$2.00 for shipping and handling. rush.

73, Martin F. Jue, K5FLU

**MISSISSIPPI STATE, MISSISSIPPI 39762** 


P. O. BOX 494

ORDER TODAY. MONEY BACK IF NOT DELIGHTED. ONE YEAR UNCONDITIONAL GUARANTEE



Order By Mail or Call TOLL FREE 800-647-8660 and Charge It On





#### WWV on the Heath SB-102

The SB-102 (and others of the Heath series) may be used to copy WWV on 5, 10, or 15 MHz by using the plug-in heterodyne crystal modification,<sup>1</sup> The bandswitch position and frequency of the heterodyne crystal depend upon the WWV frequency to be monitored. For instance. I use a junk-box crystal with a marked frequency of 8.001 MHz in conjunction with a homebrewed remote vfo operating above 5.6 MHz. This permits me to copy 15 MHz WWV while on the 14 MHz bandswitch position with the crystal tripling. Some crystals I tried would not oscillate properly on their third or fourth overtone in the SB-102 circuit (most did) and if a specific frequency is desired, a proper crystal should be purchased. However, the crystal available in your junk box should at least be given a trial.

Some combinations of crystal/LMO/-WWV frequencies in the 3.5 MHz bandswitch position are shown in table 1.

table 1. crystal frequency chart for copying WWV on the Heath SB-102.

| band                        | WWV<br>frequency         | injection fi<br>(upper/low<br>(MHz) | ver limits) |
|-----------------------------|--------------------------|-------------------------------------|-------------|
| 3.5                         | 5.0                      | 13.3936 to                          | 13.8964     |
| 7.0                         | 10.0                     | 18.3936 to                          | 18.8964     |
| 14.0                        | 15.0                     | 23.3936 to                          | 23.8964     |
| 21.0                        | 20.0                     | 28.3964 to                          | 28.8964     |
| -                           | n frequency compatible u |                                     | ww∨ +       |
| 2. injection<br>3.3936 (for | n frequency<br>Isb)      | = LMO +                             | ₩₩V +       |

This, in conjunction with the formulae, should be sufficient to calculate the needed/desired heterodyne crystal frequency. Remember, the LMO is at its lowest frequency (5.0 MHz) at the upper band edge and vice-versa; it always tunes backwards. As shown in table 1, for WWV at 5 MHz any crystal between 13.3936 and 13.8964 MHz will permit copy at some point between 3.5 and 4.0 MHz. Since the LMO actually tunes a little above and below the 5.0-5.5 MHz range, some margin is provided in case of error or crystal tolerance.

HC-6/U or HC-17/U crystals should be used. FT-243 types won't work. Also, the frequency of the heterodyne crystal should be reasonably close to that of the heterodyne crystal normally in use on the band in question. Check the SB-102 manual for other crystal information.

Paul K. Pagel, K1KXA

## TVI cure for the Kenwood TS-520

A couple of local amateurs were having TVI problems on channel 5 (New York) on two separate cable television systems. On other channels, with an outside antenna, there was also some TVI, but not as bad. I was asked to take a look at the problem and to recommend a solution. From the first, it looked like harmonic interference and not fundamental overload. Initially, I thought that rf from the Kenwood was getting into the ac line via the chassis and ac line cord, but after some filtering, additional bypassing and shielding on the chassis, I concluded that the problem was not there, since these measures did not help appreciably.

Next, I checked neutralization of the 2001A final amplifier tubes, but found them rock-solid from 80 through 10 meters.

Finally, I looked inside the final rf amplifier compartment and discovered the problem. I discovered that the final plate tuning capacitor had only one supporting plate and that the stator and rotor plates are unsupported at the front end. The rotor is grounded to the chassis by a three-legged spring clip that helps to hold the rotor in line. The rotor shaft is attached to a fiber shaft by a flexible coupling, and the fiber shaft exits the final amplifier compartment through a metal sleeve or collar.

Harmonic rf energy is radiated through the sleeve, flows over the outside of the compartment, and thence to the ac line. I also noticed that the fiber shaft is attached to a metal shaft by a small pin, and that the metal shaft makes a dandy little antenna to radiate the unwanted harmonic.

To cure the problem in your TS-520, proceed in the following manner:

1. Remove the three screws that hold the plate tuning capacitor to the wall of the final amplifier compartment.

2. Make a cover of thin sheet aluminum large enough to cover the three screw holes so it can be fastened to the compartment wall.

3. Clean the area of contact so that it makes a good rf-tight joint and drill a hole in the aluminum plate just large enough to pass the shaft of the variable capacitor. File a small notch in the aluminum at the edge of the drilled hole to pass a grounding wire (this wire will be soldered to the above-mentioned sleeve).

4. Scrape the sleeve where the wire will be soldered to it, for a solid joint, and solder one end of a short length of wire to it.

5. Disconnect the flexible coupling from the shaft of the variable capacitor.

6. Immediately behind the front panel of the TS-520 where the variable tuning capacitor shaft passes through, locate a locking spring clip; loosen the bolt and pull the shaft out an inch or so, so that you can slip the aluminum plate over the shaft and the wire soldered to the sleeve.

7. Replace the screws in the capacitor mounting plate and place a solder lug at the upper right-hand screw (looking from the front of the rig back at the plate). Tighten the screws and solder the free end of the wire to the lug. You will also notice a white wire passing through a rather large hole in one wall of the compartment. Try to fashion the aluminum cover plate in such a way as to cover this hole, leaving room only for the wire.

The "fix" described here will remove interference from the picture carrier, but will not solve the sound carrier interference. To get rid of the latter, proceed as follows:

1. Buy, beg or steal a sheet of perforated aluminum of the kind that has small holes and is available at most hardware stores. Do not get the slotted variety!

2. Cut a piece of this screening material large enough to cover the slots in the rf final amplifier compartment. A piece about  $4\frac{1}{2}x5$  inches (11.4x12.7cm) should do the trick. The slots are to permit the blower to pull cooling air through the compartment, and the screen cover you install will not appreciably alter this flow of cooling air. At the screw holes, brush the compartment, walls and the aluminum screening to make a good rf-tight contact.

3. Mount the "shield" made in this manner to the side of the rf amplifier compartment with sheet metal screws or other hardware.

4. On top of the rf amplifier compartment, fit a small piece of screening material just large enough to cover the two holes, and attach it by means of the screw that is close by.

5. The bottom of the TS-520 cabinet has a series of various-sized holes used to pass alignment tools for tuning the different circuits. These also pass rf and should be covered for a complete shielding job.

6. Remove the four feet and the center screw from the cabinet and cut a piece of aluminum screen large enough to cover all of the "tuning" holes and fasten it in place on the inside cabinet floor with the center screw and the four feet.

After completing these operations, the only way rf can escape the transmitter is through the center conductor of the coaxial cable — just where you want it!

I verified the TVI cure by running

the transmitter and an SB-220 at full rated output next to an old TV set that had a barely discernible picture and poor sound. Oh yes, by the way, I used an open-wire feed line to my antenna. No interference on any channel! Needless to say, my amateur buddies, the cable company and the subscribers are very happy; because when you get into the cable you get into the city!

Stacky Stackhouse, W3FUN

## simple tune-up for Drake gear

I have found a very simple method of tuning my Drake T4XB, R4B transmitter-receiver combination that certainly will work with other models of the T4 and R4, and may even work with other equipment. The advantage of my tuning method is that it takes less time, it is easier on the final amplifier tubes and little or no carrier appears on the operating frequency during 95% of the procedure. Here's how it is done:

1. Set the receiver to the desired operating frequency.

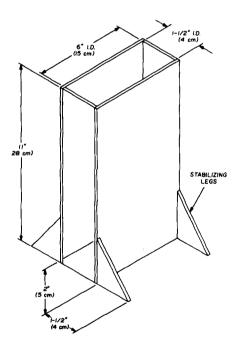
2. Set the transmitter for CW mode operation, place the transceive switch in the "spot" position and tune the transmitter vfo until the spot signal is heard in the receiver. The transmitter "gain" control may have to be advanced slightly, perhaps even one-quarter turn, to obtain enough signal to be useful.

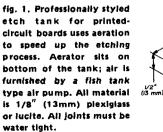
3. Now, using the receiver's S meter, tune both the transmitter and receiver preselectors for maximum S meter reading.

4. While watching the S meter, vary both the transmitter "plate" and "load" tuning controls for maximum signal,

and repeat this step until no further signal increase is possible.

5. Turn the transceive switch to "separate" (with either receiver or transmitter controlling the frequency, as desired) and finish the tune-up according to the instruction book.


J. L. Kofron, W7DIM


#### etch tank


If you etch printed circuit boards regularly, the professionally styled etch tank shown in fig. 1 works very well. It features an aerator that allows you to bubble air from a fish tank pump through the holes in aerator. This speeds up the etching process.

The basic material for the tank is 1/8 inch (13mm) plexiglass. Needless to say, the joints must be water tight.

Gary L. Tater, W3HUC







# NEW-NEW-NEW

#### DC-5



#### SIMPLIFIED VERSION

- easier assembly
- bigger digits
- 50% less soldering

6 DIGIT - 12/24 HOUR

#### DIGITAL CLOCK KIT \$22.95

The best looking clock on the market is now easier to build! New features too push-buttons to set time, larger .4" high readouts and super detailed instructions. The DC-5 comes complete with extruded aluminum case available in 5 colors, line cord transformer, quality PC boards and Polaroid lens filter. Colors available: gold, bronze, blue, silver, black (specify).

Alarm Version, 12 hr. only . .....\$24.95 Time base kit, use with any 60 Hz clock ..... .....\$4.95

#### LOW COST CLOCK

**N**95 \$ 1 DC-4

DC-4 includes all parts and switches, does not include PC board, case or transformer. DC-4 will not fit in case as shown above. Case size required, 3" x 5" x 4"

PC Board, drilled and etched, 3" x 4" ..... ....\$2.95 Transformer, lug mount type, 12 V ac ..... . . . . . . . . 1.49

30 WATT

2 Meter Power Amp

The famous RE class C power amp now available mail order! Four Watts in for 30 Watts out, 2 in for 15 out, 1 in for 30 Watts out, 2 in for 15 out, 1 in for 8 out, Incredible value, complete with all parts, instructions and details on T R relay. Fully stable, output short proof, infinite VSWR protected! Case not included. **Complete Kit** \$22.95

#### 600 MHz PRESCALER

12/24 HOUR 6 DIGIT

LARGE .4" DIGITS

\$44.95 KIT assembled . . \$59.95 Extend the range of

Works with

your counter to 600

MHz.

most any counter. Available kit or assembled and tested. Specify ÷10 or ÷100 with order

#### 741 OP-AMP SPECIAL 10 for \$2.00

Take advantage of a special one time deal on factory prime mini-dip op-amps. These were house numbered for Xerox Corp., but also have the 741 number printed on them. This is the LOWEST price in the USA!

FERRITE BEADS with info and specs ..... 15/\$1.00 6 Hole Balun Beads ..... 5/\$1.00 SLIDE-POT - 10k linear taper ..... 4/\$1.00 1000uf 15V EU TED CAR -

| 1000ut 15V FILTER C | AP | <br> | • • • | <br>. 5/\$1.00 |
|---------------------|----|------|-------|----------------|
| 100007 15V FILTER C |    | <br> |       | <br>. 5/\$1.00 |

| <b>14 PIN</b> | × | • |  | • | .25 | 50/10.00 |
|---------------|---|---|--|---|-----|----------|
| <b>16 PIN</b> |   |   |  | 5 | .30 | 50/12.50 |
| 24 PIN        |   |   |  |   | .50 | 10/ 4.50 |
| <b>40 PIN</b> |   |   |  |   | .75 | 10/ 7.00 |



A complete tone decoder on a single pc board. Features – 400 to 5000 Hz adjustable frequency range, voltage regu-lation, 567 IC. Useful for Touchtone decoding, tone burst detection, FSK demod, signaling, etc. Use 7 units for 12 button touchtone decoding. Complete Kit, TD-1

POWER SUPPLY KIT ±15 V, +5 V A complete bench supply! Dual tracking regulator provides adjustable ±6 to 15 Volts at 100 mA, while a stable 3 terminal regulator produces 5 V at 1 Amp. Novel 2 transformer design permits 110/220 V operation. Complete with all parts except case and cord. PS-3 Power Supply Kit \$14.95

MINI-KITS

300' to any FM broadcast radio. Sensitive mike input requires crystal

ceramic or dynamic mike. Runs on 3 to

A great attention getter which alternately flashes 2 Jumbo LEDs. Use for name badges, buttons, or warning type panel lights. Runs on 3 to 9 volts.

LED BLINKY KIT

9V

200

tion.

3-45

speaker.

Complete Kit

audio output. 3-6V

SIREN KIT

\$2.95

mW

Uses

Ohm

TONE DECODER KIT

opera-

**FM Wireless** Mike Kit

Transmit up to

\$2.95

\$2 95

\$4.95

#### DECADE COUNTER

PARTS KIT INCLUDES • 7490A decade counter • 7475 latch • 7447 LED driver \$3.50

LED readout

Current limit resistors

Complete with instruction and details on how to build an easy, low cost freq. counter

#### INTEGRATED CIRCUITS

| LM567 1.75 | MC1458      |
|------------|-------------|
| LM56575    | MC4024 1.95 |
| 555        | 74107       |
| 556        | 74143 3.50  |
| 7490A      | 7805        |
| 7447       | 309K 1.19   |

Satisfaction guaranteed or money refunded, COD, add \$1.00. Orders under \$10.00 add \$.75. NY residents add 7% tax.





#### SSB **FRANSCEIVE** RS

\$**395**°° MADE IN U.S.A. SIZE: 31/2 x 7 x 81/2

#### MOBILE MONOBANDERS

New!

SOTA

"STATE - OF - THE - ART

| MODEL 160 | 1.8 – 2.0 MHz.    | LSB |
|-----------|-------------------|-----|
| MODEL 80  | 3.5 – 4.0 MHz.    | LSB |
| MODEL 40  | 7.0 – 7.3 MHz.    | LSB |
| MODEL 20  | 14.0 – 14.35 MHz. | USB |

COMPLETELY SOLID STATE . Mosfet mixers for excellent I.M. and cross modulation performance. J-Fet oscillators for stability. I.C.'s used in digital frequency counter, balanced modulator, receiver I.F. amplifier, and audio output for functional simplicity. No relays.

DIGITAL DIAL • Frequency can be read at a glance. 0.3 inch L.E.D. displays are easily visible. Frequency counter offers 100 Hz. accuracy.

SPEECH COMPRESSOR 

Increases average output power approximately 6 db. Level set by mic control.

NOISE BLANKER • Noise pulses are blanked ahead of the crystal filter for optimum reduction of interference.

100 WATTS INPUT • P.E.P. or C.W. 50 watts output (minimum).

BROADBAND OUTPUT . Infinite VSWR protection. Multiple pi-section low-pass filter for minimum spurious output.

**RECEIVER FRONT END DESIGN** • AGC controlled pin diode R.F. attenuator for low distortion large signal Triple tuned preselector offers handling capabilities. superior R.F. selectivity.

QUALITY CONSTRUCTION • Utilizing glass epoxy P.C. boards and commercial grade components. All electrical connections soldered for reliability. P.C. boards accessible for easy servicing.

STANDARD ACCESSORIES • Mobile mounting bracket and power connector with 8 foot battery cable are supplied with unit.

WARRANTY • Full one year warranty on all parts and workmanship with exception to damage incurred by abuse. Our customer service offers one week turnaround time on repairs.

#### SPECIFICATIONS

GENERAL

MODES: S.S.B. and C.W. with Sidetone POWER REQUIREMENTS: 12-14 volts D.C. negative ground only. 12 amps maximum. Reverse polarity protection. WEIGHT: 5.4 lbs.

RECEIVER

- SENSITIVITY: Less than 0.5 microvolt for 15 db. signal-plus-noise/noise ratio. SELECTIVITY: 2.1 KHz @ - 6 db., 3.8 KHz @ - 60
- db.

IMAGE REJECTION: Better than 60 db. AUDIO OUTPUT: 2 Watts at less than 5% distortion into 4 ohm load

TRANSMITTER

100 watts P.E.P. or C.W., nominal. POWER INPUT: POWER OUTPUT: 50 Watts P.E.P. or C.W., minimum

OUTPUT IMPEDANCE: 52 ohms, nominal.

UNWANTED SIDEBAND: -40 db or better. CARRIER SUPPRESSION: -60 db or better

THIRD ORDER DISTORTION: -30 db. or better.

AUDIO RESPONSE: 400 to 2,500 Hz., ± 2 db. MIC INPUT: High impedance dynamic or crystal

microphone

EXTERNAL AMPLIFIER CONTROL: Open col-lector to 100 volts @ 1 amp., maximum. OPTIONAL ACCESSORIES:

#### MODEL MMB-1

Plug in mobile mounting bracket making all connections to the transceiver at once, providing quick and easy installation or removal from the car. Price \$45.00

#### MODEL PS-1

Matching A.C. power supply with built in speaker. Supplies 13.8 VDC regulated at 12 amps. maximum. 110/220 VAC, 50-60 Hz. Price \$125.00 ORDERING INFORMATION:

All Prices F.O.B factory plus shipping. California residents add 6% sales tax. To order now, send a deposit (\$25.00 minimum) to secure a delivery position. Fully refundable at any time. Payment in full required prior to shipment.





SANTA CRUZ, CA. 95060 master charo TELEPHONE: (408) 426-8161



#### side swiper morse keyer



The Swedish firm, Kungsimport, has introduced its new Side Swiper, a keying lever designed by SM6CKU, for use by amateurs or commercial operators throughout the world. The Side Swiper may be used by itself to produce dots and dashes in an easy and natural manner or it may be used as a keying lever for an electronic keyer.

Easy and fun to handle, the Side Swiper requires only a few hours familiarization and provides a distinctive personal fist or the characteristic swing of an old-time operator. CW produced by the Side Swiper is easily recognizable and lacks the monotonous, mechanicalsounding CW of the electronic keyer or bug.

The Side Swiper is personally and individually hand crafted with a wood base and metal armature and contacts, and is priced at \$13.00, airmail shipment included. Your name or callsign may be engraved on the wooden base for an extra dollar. For additional information write Kungsimport, Post Office Box 257, S43401 Kungsbacka, Sweden, or use *check-off* on page 126.

#### Amphenol dummy load coaxial connector

A new combined illuminated power output indicator and dummy load that provides a visual indication of lowpower transmitter performance was recently introduced by Bunker Ramo RF Division.

The new device, designated Amphenol<sup>®</sup> Model 83-888, consists of a light-terminated coaxial load mounted in a modified uhf connector (PL 259-type) body. It can be used to tune your low-power transmitter for maximum output — the brighter the light, the greater the output.

Amplitude modulation can also be checked quickly, because the brilliance of the light increases and varies when someone talks into the microphone when the transmitter is functioning properly. The 83-888 can also be used to check ssb carrier balance: there will be no glow if the carrier is correctly nulled, but the light will glow with modulation.

The new power output indicator mates with standard uhf receptacles (5/8 - 24 thread). Its nominal impedance is 52 ohms, the frequency range is 0-30 MHz, power rating is 4 watts, maximum, and VSWR is 1.1:1 at 27 MHz. For additional information, contact Bunker Ramo RF Division, 33 East Franklin Street, Danbury, Connecticut 06810 or use *check-off* on page 126.

#### printed-circuit board holding fixture



The W.N. Wellman Company, has introduced a versatile holding fixture to facilitate PC board parts-mounting and soldering. The fixture is adjustable to accomodate most PC board sizes and may be positioned to provide convenient and easy assess to either surface of the board. The base of the holding fixture is provided with resilient feet to hold it firmly on a flat work table or bench.

The price is \$7.95 postpaid within the continental U.S. Missouri residents please add \$.25 tax. For additional information, write the W.N. Wellman Company, 451 Saline Road, Post Office Box 722, Fenton, Missouri 63026 or use *check-off* on page 126.

#### Larsen adds TLM trunk lid mount mobile antennas



An all-new mobile antenna mounting option has been added to the wide variety of mobile mounts available from Larsen Electronics. The TLM stands for Trunk Lid Mount, and it is available in seven different variations so that every antenna and mounting condition can be met.

This new Larsen trunk lid antenna mount follows the configuration of the popular Larsen magnetic mount, and results in a low-silhouette installation. It is finished in highly-polished chrome and is provided with a special molded gasket to protect the car finish. The mount clamps to the vehicle with stainless-steel, hollow-head screws that provide a positive ground and will not rust or "freeze" in place. The mount comes factory- assembled with 17 feet of RG58A/U coaxial cable and plug. The TLM is available with hardware to accomodate all standard antenna mounts including Motorola, ASP, GE, RCA and - of course - Larsen. It may

be purchased complete with antenna, or without either antenna or mounting hardware.

For additional information, write Jim Larsen, Larsen Electronics, Box 1686, Vancouver, Washington 98663; telephone (206) 573-2722 or use *check-off* on page 126.

#### dual dc power supplies

Mid-Continent Communications Company recently introduced a new power supply package featuring two independent power supplies, having isolated outputs, contained within a single enclosure. The Mcc/103 power supply helps eliminate bench clutter when designing with ± 15 Vdc and is conveniently dimensioned to facilitate stacking with identical units or with other items of equipment. The wood-grained aluminum enclosure measures 2.25 inches high, 10 inches wide and 5.7 inches deep (5.7x25.4x14.5cm). A backlighted and flush-mounted panel meter permits accurate monitoring of current and voltage for either supply with the desired functions selected by a meter mode switch.

Variable voltage and current limit controls allow easy setting of the voltage to typical values between zero and 25 volts, and the current to typical values between 10 and 250 milliamps. Since the two supplies are completely independent, it is possible to connect them in series or parallel to provide, typically, 50 volts at 250 milliamps or 25 volts at 500 milliamps. A unique feature of the Mcc103 is the provision of two LEDs (light-emitting diodes), one for each section, to indicate when the output current exceeds a preset limit point. This feature can help prevent confusion and false indications during circuit design and testing.

The Mcc103 employs two voltage regulator boards designed for excellent regulation and temperature stability. All components, including the rectifier and filter, are mounted on the printedcircuit board and the boards themselves can be lifted from the enclosure without unsoldering any wiring, permitting easy removal for maintenance and repair. Internally mounted *Thermatab* transistors are used, eliminating shock or shorting hazards. The current-limit system and the internally mounted ac fuse provide total short circuit protection for both the power supply and the load.

Power requirements are 105 to 125 Vac at 25 watts, and the line regulation is  $\pm$  0.2 percent maximum. Load regulation is  $\pm$  0.05 volt, maximum, while ripple and noise are 1 millivolt rms, maximum. The Mcc103 is priced at \$99.95 plus \$2.50 postage and handling. Missouri residents please add 3 percent sales tax. For additional information, write to Mid-Continent Communications Company, Box 4407, Kansas City, Missouri 64127, or use *check-off* on page 126.





#### SET YOUR OWN PRICE IN OUR AUCTION SPECIAL

In order to pass on the greatest possible savings we are running this unique AUCTION. To be part of this AUCTION simply: 1. Choose the items you want from the list below. 2. SET YOUR OWN PRICE.

3. Send a check or money order for the items you want. No CODs.

If you are a high bidder we will ship the equipment. If you are not a successful bidder we will return check

While supplies last no reasonable bid will be refused, however, this is first come, first served.

#### PICK FROM THIS LIST

RCA Scanning Control Heads. Scans 4 channels. Priority channel selectable with switch. RCA Supercarfone Model CMCA-3: 148-162 MHz, 30 w output. Transistorized rcvr & exciter, w/accessories.

RCA Supercarfone Model CMFA-7: 25-50 MHz 100 w output. Transistorized rcvr & exciter, w/accessories.

w/accessories, General Electric TPLs: 152-162 MHz, 30 w out-put. Transistorized rcwr & exciter, Split mount, w/accessories. Model RE 53JA6. General Electric TPLs: Trunk Mount, 152-162 MHz, 30 w output. Model RE 53 JC 6, w/ac-cessories.

Cessories. RCA Low Drain Series: Model CMFT-50: 25-54 MHz, 50 w output, partly transistorized rcvr. Transistorized power supply, w/accessories. RCA Low Drain Series: Model CMFL-50: 25-54 MHz, 50 w output, Transistor Power Supply.

w/accessories.

RCA Low Drain Series: Model CMCT-30: 148-162 MHz, 30 w output, partly transistorized rcvr. Transistor power supply. w/accessories.

Motorola Model U41 GGT 1100: 30-50 MHz, 30 w output. Transistor power supplies. Less accessories. Motorola Model U43 GGT 3100: 152-162 MHz, 30 w output. Transistor power supply. With 30 w output. Transistor power supply. With Private Line. Less accessories. Motorola Model T51GGV: 30-50 MHz, 50 w output. Less accessories. Motorola Model T-43 GGV: 152-162 MHz, 30 Motorola Model 1-43 GGV: 132-162 MHz, 30 w output, Less accessories. Motorola Model U41HHT 1100: 30-50 MHz, 30 w output, Less accessories. General Electric Progress Line Base Station. 40° high. Only 1 left. General Electric Progress Line Receiver and AC Power Supply. Presently tuned to 47 MHz. Only left. 1 left. Motorola Outdoor Cabinet. Stands about 5 ft. high with doors on front & rear. Only 1 left. RCA E-Line Series: CMUE-15: 450-470 MHz, 15 w output. Transistor power supply, w/accessories. These rigs need a good cleaning to make them physically attractive. ALL BIDS MUST BE POSTMARKED NO LATER THAN FEBRUARY 28, 1977

DUPAGE FM Inc.

P. O. Box 1, Lombard, IL 60148 • (312) 627-3540

TERMS: All items are sold as-is. All sales are final. Accessories do not include antennas, crystals, tone reeds, or relays. All items are shipped freight collect. Illinois residents must add 5% sales. tax.



#### H-P offers digital multimeter with touchhold reading probe

The Model 3435A, 3-1/2 digit multimeter from Hewlett-Packard has a unique "touch-hold" probe available as an accessory. It lets the user "freeze" the reading on the display - a convenience when probing closely-packed circuit boards. Accurate enough for both bench and field use, the new digital multimeter is autoranging on ac and dc volts and resistance. Ac and dc current ranges are selected manually. Lighted front panel annunciators display the function and its units.

The digital multimeter covers a dc measurement range from 200 mV full scale to 1200 V full scale with a midrange accuracy of  $\pm (0.1\% \text{ of reading} + 1)$ digit). Ac measurement range is 200 mV full scale to 1200 volts rms full scale with a mid-range accuracy of  $\pm(0.3\%)$  of reading + 3 digits) over a 30 Hz to 100 kHz bandwidth. Ac and dc current measurement range is from 200 microamps to two amps. Dc current accuracy for the 200 µA to 20 mA range is ±(0.3% of reading + 2 digits). Ac current measurements are made over a frequency band of 30 Hz to 10 kHz with a mid-band accuracy of  $\pm(1.7\%)$  of reading + 4 digits). Resistance range is 10 milliohms to 20 megohms with a mid-range accuracy of  $\pm(0.2\%)$  of reading + 2 digits). Open circuit voltage on the ohms terminal when set to its lowest range does not exceed 5 volts, preventing damage to most solid-state devices.

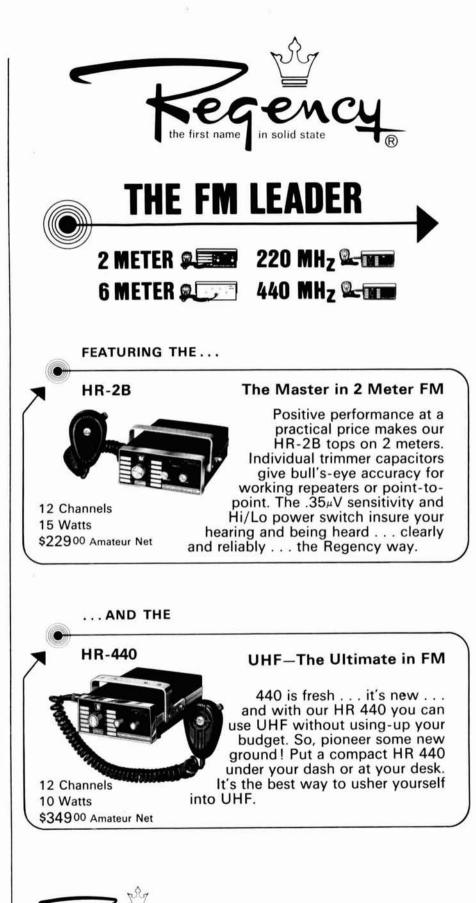
Input protection is provided to 1.2 kV on any dc range, 1700 V (dc + peak ac) on any ac range, and 250 V rms on any resistance range. A front panel fuse protects the instrument from overload when measuring current.

A choice of two power supplies is offered: internal ac power supply and rechargeable lead acid batteries. The standard 3435A Digital Multimeter comes with an internal ac power supply and rechargeable lead acid batteries. Option 001 is a lightweight portable case, ac line power only. Option 002 is the ac line power only with a rack and stack case.

U.S. price of the standard Hewlett-Packard Model 3435A digital multimeter with rechargeable lead acid batteries is \$400. Option 001, ac only in custom plastic case is \$335; 002, ac only, in a rack and stack case is \$365. Delivery is from stock. "Touch-Hold" reading probe U.S. price is \$40, RF Probe is \$87. High Voltage Probe is \$75.

For additional information, write Inquiries Manager, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, California 94304; telephone (415) 493-1501, or use *check-off* on page 126.

#### six new calculators, video game and digital watches from National Semiconductor


National Semiconductor, Consumer Products Division, recently announced 6 new calculator products, including 3 advanced slide rules bearing the National Semiconductor brand name, an ideal family-type model, a teaching version of the QuizKid, a complete line of men's and ladies' LED digital watches and a video game series bearing the name Adversary.

The model 852 calculator offers scientific notation or floating decimal point system with reformating capability from one system to the other. The 852 features algebraic logic, two level parentheses, trig and log functions, degree/radian conversion. It offers an 8-digit Mantissa in floating point system and 5-digit Mantissa plus 2-digit exponent in scientific notation, plus many other features. Suggested retail, \$29.95.

The model 4650 calculator offers algebraic logic, two level parentheses, full accumulating memory addressable in all 4 arithmetic functions, log and trig functions, degree/radian conversion, rectangular/polar coordinates, 8 Mantissa digits, 2-digit exponent display, plus many other features. Suggested retail, \$59.95.

The model 4660 calculator that displays 10-digit Mantissa in floating point system and 10-digit Mantissa plus 2-digit exponent in scientific notation, with algebraic logic, two level parentheses, three separate, addressable, accumulating memories, trig and log functions, decimal degrees and degrees, minutes and seconds conversions, polar and rectangular coordinate conversion and many other features. Suggested retail, \$79.95.

The QuizKid II allows the child to see a timed series of 10 problems which appear automatically in the display. The



ELECTRONICS, INC. 7707 Records Street Indianapolis, Indiana 46226

#### **R-X NOISE BRIDGE**



✓ Learn the truth about your antenna.

∛ Find its resonant frequency.

Adjust it to your operating frequency quickly and easily.

If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not and, if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, Vees, quads, inverted beams, multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz. And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

The price is \$39.95 and we deliver postpaid anywhere in U.S. and Canada. California residents add sales tax.

Italy write i2VTT, P.O. Box 37, 22063 Cantu. Elsewhere send \$42.00 (U.S.) for air parcel post delivery worldwide.

Fully guaranteed by the originator of the R-X Noise Bridge. ORDER YOURS NOW!



# FREE NEW CATALOG

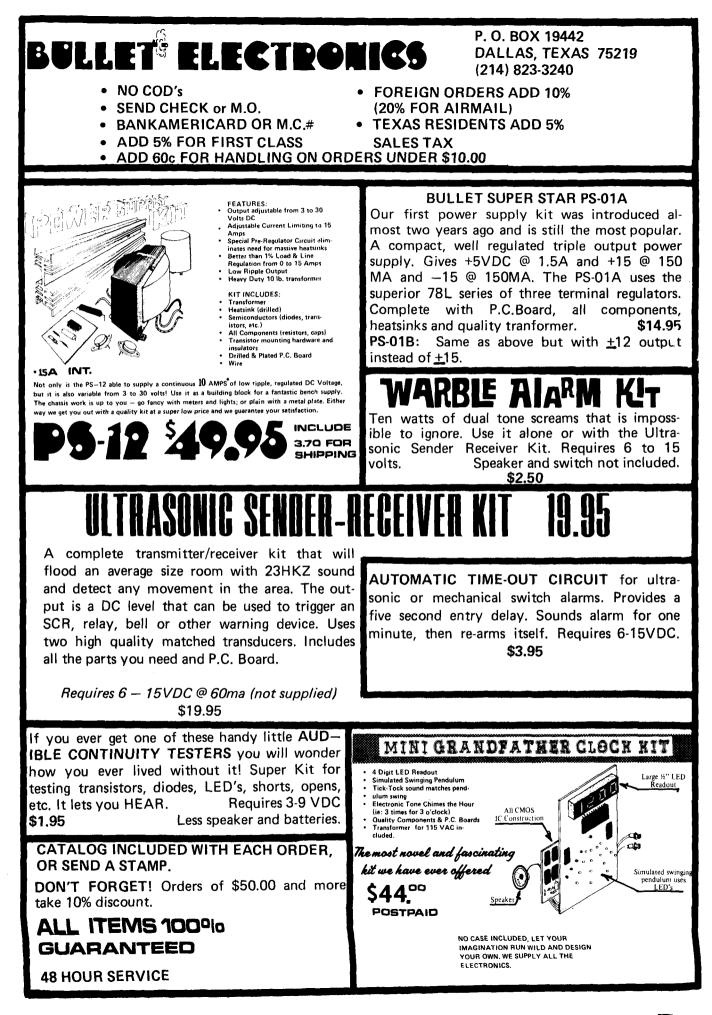


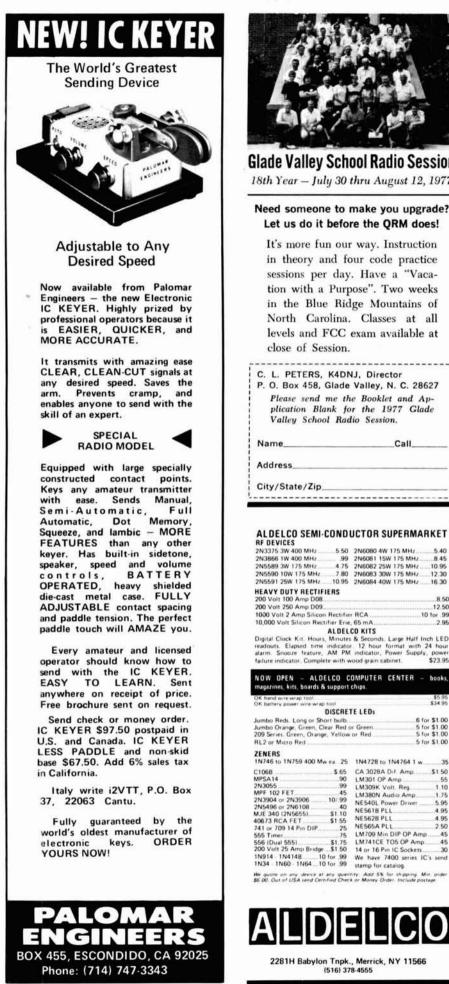
NOW'S THE TIME to request your free new catalog on many, many exciting Amateur products including:

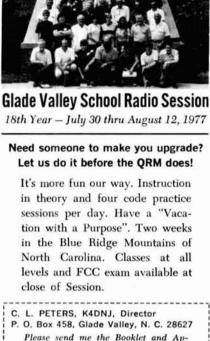
Data-Tone Keyboards Data-Tone Encoders Handheld Encoders Automatic Data-Tone Dialers CW Keyers CW Memories Auto Patches Receiver Preamps Single Tone Encoders Single Tone Decoders Tone to Pulse Converters






DATA SIGNAL, INC. 2403 COMMERCE WAY ALBANY, GA. 31707 912-883-4703 child is required to key in the answer to the problem shown in the display. Over 1200 problems are automatically generated by the calculator, permits selection of the type of arithmetic function (i.e., addition, subtraction, etc.) which is displayed automatically in random sequence, and offers a slow/fast speed control key to adjust time allowed for child to enter answer. Suggested retail, \$24.95. Also available is an optional game adapter which connects two Quiz-Kid II's for a contest.


The QuizKid III – retains all the abilities of QuizKid II plus games for over 6,500 additional problems. Contains amateur and pro keys for adjusting complexity of problems, and a complex key for problems to be automatically displayed with one of the factors missing but with the answer given. This model is being test marketed.


The video game - Adversary features a choice of 3 games: tennis, played by two players on a green court; ice hockey, played by one or two players on blue ice; and handball, played by two players on a brown court. All games are in full color, have realistic sound effects when the ball or puck strikes a surface, and offers a choice of 3 individually selectable paddle sizes. Serves are controlled by players, not by random, and scoring is automatically displayed in large easyto-read numbers after each point is scored. Individual controls enable players to sit in their favorite chairs to compete. The game offers 7 modes of operation: 3 modes of 2 players, 3 modes of a player against himself and one mode with a player against the machine. A special feature allows "time out" during play without changing the score. Suggested retail, \$99.95.

The model 830 Datachecker is an ideal calculator for shopping, taxes, family finances, and features an 8-digit LED display and floating decimal, and is designed to operate like the shopper thinks: add and subtract items, subtotal items, efficiently check grocery bills, balance checkbook. (Battery not included). Suggested retail, \$14.95.

For further information contact Georgene Berglund, Public Relations, National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, California 95051; telephone (408) 732-5000, or use *check-off* on page 126.







| plication Blank f | he Booklet and Ap-<br>or the 1977 Glade |
|-------------------|-----------------------------------------|
| Valley School Ra  | dio Session.                            |
| Name              | Call                                    |
| Address           |                                         |
|                   |                                         |

#### ALDELCO SEMI-CONDUCTOR SUPERMARKET

| III DEFIDED                                                                       |        |                          |          |
|-----------------------------------------------------------------------------------|--------|--------------------------|----------|
| 2N3375 3W 400 MHz                                                                 | 5.50   | 2N6080 4W 175 MHz        |          |
| 2N3866 1W 400 MHz                                                                 | .99    | 2N6081 15W 175 MHz       |          |
| 2N5589 3W 175 MHz                                                                 | 4.75   | 2N6082 25W 175 MHz       | .10.95   |
| 2N5590 10W 175 MHz                                                                |        | 2N6083 30W 175 MHz       | 12.30    |
| 2N5591 25W 175 MHz                                                                | 10.95  | 2N6084 40W 175 MHz       | 16 30    |
| HEAVY DUTY RECTIFIER                                                              |        |                          |          |
| 200 Volt 100 Amp D08                                                              |        |                          |          |
| 200 Volt 250 Amp D09                                                              |        |                          |          |
| 1000 Volt 2 Amp Silicon Re                                                        |        |                          |          |
| 10,000 Volt Silicon Rectifie                                                      | r Erie | 65 mA                    |          |
| A                                                                                 | LDEL   | CO KITS                  |          |
| readouts. Elapsed time initialarm. Snooze feature, Al failure indicator. Complete | M PM   | indicator, Power Supply, | power    |
| NOW OPEN - ALDELO<br>magazines, kits, boards & su                                 |        |                          | books,   |
| OK hand wire wrap tool.<br>OK battery power wire wrap too                         |        |                          | \$5.95   |
|                                                                                   |        |                          | \$34.99  |
|                                                                                   |        | re LEDs                  |          |
| Jumbo Reds. Long or Short                                                         | buib_  |                          | \$1.00   |
| Jumbo Orange, Green, Clear<br>209 Series, Green, Orange, Y                        | Hed c  | Green 5 to               | 1 \$1.00 |
|                                                                                   |        |                          |          |
| RL2 or Micro Red                                                                  | 110011 | 5 10                     | 1 \$1.00 |
| ZENERS                                                                            |        |                          |          |
| 1N746 to 1N759 400 Mw ea                                                          | 1. 25  | 1N4728 to 1N4764 1 w     |          |
| C1068                                                                             | \$.65  | CA 3028A Dif Amp         | \$1.50   |
| MPSA14                                                                            |        | LM301 OP Amp             |          |
| 2N3055                                                                            |        | LM309K Volt. Reg.        | 1.10     |
| MPF 102 FET                                                                       |        | LM380N Audio Amp         |          |
| 2N3904 or 2N3906 10                                                               | 0/.99  | NE540L Power Driver      | 5.95     |
| 2N5496 or 2N6108                                                                  |        | NE561B PLL               |          |
| MJE 340 (2N5655) S<br>40673 RCA FET S                                             | 1 10   | NE562B PLL               |          |
| 40673 HCA FET                                                                     |        | NE565A PLL               |          |
| 741 or 709 14 Pin DIP<br>555 Timer                                                |        | LM709 Min DIP OP Amp     |          |
| 555 Timer<br>556 (Dual 555) \$                                                    |        | LM741CE TO5 OP Amp       |          |
| 300 (004) 0001                                                                    | 1.10   | Emiliare 105 OF Amp.     |          |

(516) 378-4555

#### Cushcraft builds new research and production facility

Construction is underway on the first phase of Cush Craft Corporation's new 50,000 square foot antenna research and production facility.

All manufacturing operations, executive offices and research were moved to the new facility at Grenier Industrial Park in Manchester, New Hampshire at the end of November 1976.

Bob Cushman, Cush Craft treasurer, reports this all new plant is designed especially for antenna manufacturing. It will allow increased production of current amateur, citizen's band and commercial antennas, plus the introduction of several new antenna types.

The new production lines and equipment have been planned for several years and, when fully operational, will be a model for the industry, allowing Cush Craft to maintain its traditionally high value standards.

#### automotive ignition noise filter



Marine Technology recently announced its new EMI-15A filter designed to control ignition system generated noise in mobile two-way radios.

The introduction in 1975 of highvoltage, solid-state ignition systems in all American automobiles focused attention on the need for better suppression of ignition interference. Fully fifty per cent of engine noise problems in an automobile come from the ignition system.

The EMI-15A is a three-element lowpass LC filter designed to control ignition system-generated noise. It prevents coupling of ignition impulses into the vehicle primary wiring system and supplements suppressor-type spark plugs and wiring. Installation is made at the battery connection to the coil or electronic ignition system.

Suggested retail price is \$6.95, and the units are available from stock. For additional information contact Morgan Cox, Marine Technology, 2780 Temple Avenue, Long Beach, California 90806; telephone (213) 427-6443, or use *check-off* on page 126.

#### mobile radio case



If you worry about leaving your mobile radio in your car unattended, and if is is not convenient to carry your radio when you leave your car, Platt Luggage may have the solution to your problem. Platt has introduced a new line of rugged, lightweight, molded cases for mobile radio equipment and accessories. Molded from high-density polyethylene with a double wall construction, the cases incorporate shock-absorbent polyfoam interiors that can be custom-cut to fit nearly any size and shape of mobile equipment.

A Platt case makes it convenient to carry your radio if you want to take it with you and it protects the radio if you want to leave it in the trunk of your car. The case is ruggedly handsome and is dent, shatter and scuff proof. Two sizes are available to fit nearly any requirement: CB-1 measures 12x8.5x4.25inches (30.5x21.6x10.8cm) and CB-2 m e a s u r es 13.5x10x4 in ch es (34.3x25.4x10.2cm). Finished in black, they make attractive companions for your equipment and are guaranteed for five years. The CB-1 sells for only \$14.95 and the CB-2 is priced at

#### No Other 2 Meter Transceiver Provides The Features Of The



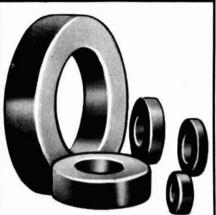


#### •143.5-148.5 MHz.

- 5KHz STEPS
   MADE IN THE USA
- 35-45 WATTS .25 uv RECEIVER
- LARGE LED FREQUENCY DISPLAY
- CHOICE OF 8 POLE OR SUPER SELECTIVE 16 POLE FILTER
- 100% DUTY CYCLE
- ACCOMMODATES MARS, CAP, ETC.
- COMPACT, ATTRACTIVE, RUGGED.
- CLEANEST TRANSMIT SPECTRUM
- INTERMOD IMMUNE RECEIVER

#### Direct from *Clegg* only ..... Phone toll free for brochure or to order your FM-DX!

FM-DX complete with mike and accessories – \$599.00 or with 16 pole super filter – \$650.00 MASTERCHARGE & BANKAMERICA CARDS WELCOME


(Please add 2% on credit card purchases,

we pay shipping on orders accompanied by check or money order.)

1099 Communications Corp.

208 Centerville Road, Lancaster, PA 17603 Toll free sales & services - Phone (800) 233-0250 In Pa. call (717) 299-7221 (collect)

#### TOROID CORES



 $\begin{array}{c} \sqrt{} & \text{All the popular sizes and mixes.} \\ \sqrt{} & \text{Fast Service. Same day shipment} \\ \text{via first class mail or air.} \\ \sqrt{} & \text{No minimum order.} \end{array}$ 

**IRON POWDER TOROIDS:** 

| CORE<br>SIZE | MIX 2<br>.5:30<br>MHz<br>u = 10 | MIX 6<br>10-90<br>MHz<br>u=8.5 | MIX 12<br>60-200<br>MHz<br>u = 4 | SIZE<br>OD<br>(in.) | PRICE<br>USA<br>\$ |
|--------------|---------------------------------|--------------------------------|----------------------------------|---------------------|--------------------|
| T-200        | 120                             |                                |                                  | 2.00                | 3.25               |
| T-106        | 135                             |                                |                                  | 1.06                | 1.50               |
| T-80         | 55                              | 45                             |                                  | .80                 | .80                |
| T-68         | 57                              | 47                             | 21                               | .68                 | .65                |
| T-50         | 51                              | 40                             | 18                               | .50                 | .55                |
| T-25         | 34                              | 27                             | 12                               | .25                 | .40                |

#### **RF FERRITE TOROIDS:**

| CORE<br>SIZE | MIX Q 1<br>u=125<br>.1.70<br>MHz | MIX 02<br>u = 40<br>10-150<br>MHz | SIZE<br>OD<br>(in.) | PRICE<br>USA<br>\$ |
|--------------|----------------------------------|-----------------------------------|---------------------|--------------------|
| F-240        | 1300                             | 400                               | 2.40                | 6.00               |
| F-125        | 900                              | 300                               | 1.25                | 3.00               |
| F-87         | 600                              | 190                               | .87                 | 2.05               |
| F-50         | 500                              | 190                               | .50                 | 1.25               |
| F-37         | 400                              | 140                               | .37                 | 1.25               |
| F-23         | 190                              | 60                                | .23                 | 1.10               |

Chart shows uH per 100 turns. FERRITE BEADS:





TO ORDER: Specify both core size and mix for toroids. Packing and shipping 50 cents per order USA and Canada. Californians add 6% sales tax.

Fast service. Free brochure and winding chart on request.



# Out of Band

#### **Shortwave Listening**

Our only business is supplying everything needed to tune outside the Amateur Radio bands and identify what you hear. Our mini-catalog details Barlow Wadley, Drake and Yaesu receivers, WORLD RADIO TV HANDBOOK, logs, antennas, calibrators, CON-FIDENTIAL FREQUENCY LIST, receiving antenna tuners, FM or TV station guides, AM pattern maps, audio filters, special ITU lists, QSL albums and every book published on "listening."

#### **GILFER ASSOCIATES, INC**

P.O. Box 239, Park Ridge, NJ 07656



\$19.95. For additional information, write to Platt Luggage, Incorporated, 2301 South Prairie Avenue, Chicago, Illinois 60616, or use *check-off* on page 126.

#### oscilloscope and monitor adapter



I-f circuit waveform observations along with ssb and a-m transmitter signal monitoring has been made possible by Leader Instruments Corporation through the introduction of its new LBO-310 Ham Oscilloscope.

The new 3-inch (7.5cm) scope, which has a vertical sensitivity of 20 mV p-p division and a vertical bandwidth from dc through 4 MHz will also indicate tuned condition for RTTY operation as well as facilitate ssb signal observation through the use of an internal, two-tone test generator. The LBO-310, in combination with the LA-31 adapter will also provide continuous monitoring of rf output to 500 watts. Maximum input to the vertical amplifier is 600V, dc + ac peak-to-peak at a 1 megohm impedance. Transmitter monitoring is from 1.8 to 54 MHz at power levels from 2 to 500 watts with a deflection sensitivity of 1 watt per division into 50-ohm or 75ohm impedances. The LBO-310 is priced at \$269.95.

The LA-31 adapter which makes it possible to monitor the output waveform and power of both ssb and a-m transmissions from 5 to 500 watts over the frequency range from 1.8 to 54 MHz. It sells for \$22.95.

For further details write Leader Instruments Corporation, 151 Dupont Street, Plainview, New York, 11803 or use *check-off* on page 126.



# you're carefree

when you know you've got the very best!

## Larsen Külrod antennas

Repeater or simplex, home station or mobile, 1 watt or 50 ... what really counts is the intelligence that gets radiated. Jim Larsen, W7DZL found that out years ago when he was both hamming and running a two-way commercial shop. That's when he started working with mobile antennas . . . gain antennas that didn't waste power in useless heat. Today, thousands and thousands of Larsen Antennas are being used. We call it the Larsen Kulrod® Antenna. Amateurs using them on 2 meters, on 450 and six call them the antenna that lets you hear the difference.

Larsen Külrod Antennas are available for every popular type of mount. For those using a 3/4" hole in their vehicle we suggest the LM mount for fastest, easiest and most efficient attachment.

For the 3/8" hole advocates there's the JM mount . . . fully patented and the first real improvement in antenna attaching in 25 years.

And for the "no holes" gang there's the unbeatable MM-LM . . . the magnetic mount that defies all road speeds.

Send today for data sheets that give the full story on Larsen Kūlrod Antennas that let you hear the difference and give you carefree communications.

Illustrated . . . Larsen JM-150-K Kūlrod Antenna and mount for 2 meter band. Comes complete with coax, plug and all mounting hardware. Easy to follow instructions. Handles full 200 watts.



11611 N.E. 50th Ave. • P.O. Box 1686 • Vancouver, WA 98663 • Phone: 206/573-2722 In Canada write to: Canadian Larsen Electronics. Ltd. 1340 Clark Drive • Vancouver, B.C. V5L 3K9 • Phone: 604/254-4936

\* Kūlrod . . . a registered trademark of Larsen Electronics.

january 1977 hr 91

This MFJ Antenna Tuner... lets you operate all bands - 160 thru 10 Meters with a simple random wire. Use virtually any transceiver - up to 200 watts RF power OUTPUT.



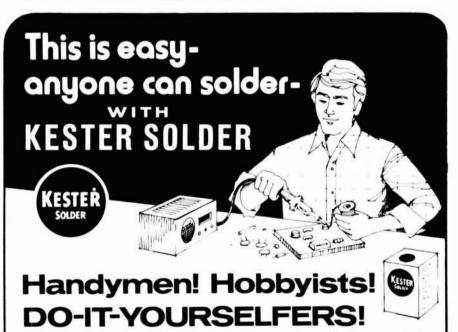
Imagine being able to operate all bands - anywhere, with virtually any transceiver - using a simple random wire and an antenna tuner small enough to carry in your hip pocket. Size is only 2-3/16 x 3-1/4 x 4 inches.

Operate from your apartment with a makeshift wall to wall antenna. Tune a simple vertical for low angle, DX operation. Operate from your motel room with a wire dropped from a window. Tune out the SWR on your mobile whip. Enjoy ham radio on a camping or backpack trip with a wire thrown over a tree. Prepare for an emergency. Take it on a DX expedition or use it for Field Day.

Match both high and low impedances by interchanging input and output. SO-239 coaxial connectors are used. The secret of this tiny, powerful tuner is a 12 position variable inductor

made from two stacked toroid cores, and a quality capacitor manufactured especially for MFJ.

95


Try it - no obligation. If not delighted, return it within 30 days for a refund (less shipping). This tuner is unconditionally guaranteed for one year.

To order, simply call us toll free 800-647-8660 and charge it on your BankAmericard or Master Charge or mail us a check or money order for \$39.95 plus \$2.00 for shipping and handling.

Don't wait any longer to operate on all bands. Order today.

#### MFJ ENTERPRISES

P. O. Box 494 Mississippi State, MS 39762 Call Toll Free ... 800-647-8660



Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing — a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. — Save money — repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals

When you Solder go "First Class" - use Kester Solder.

For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

**KESTER SOLDER** Litton 4201 WRIGHTWOOD AVENUE/CHICAGO, ILLINOIS 60639

#### NOVICE OR OLD PRO . . . **ALPHA POWER** IS YOUR KEY TO A BIG SIGNAL



ALPHA/VOMAX can boost the "talk power" of any rig up to ten times or more. Its new split band speech processing technique is

the only system more effective than rf *clipping* – *AND* distortion is extremely low – and it's simple to install and use! \$179.50 [12V]; AC supply, \$10.

ALPHA 76 is a heavy-duty "rock crusher"... a full kilowatt [2+ KW PEP], 10 thru 160 meter desk top linear amplifier . .



ear amplifier . . . a no-compromise ALPHA at the price of ordinary linears. Unique design features permit efficient operation at legal 250 watt Novice input while you're working on the General! \$985 complete.

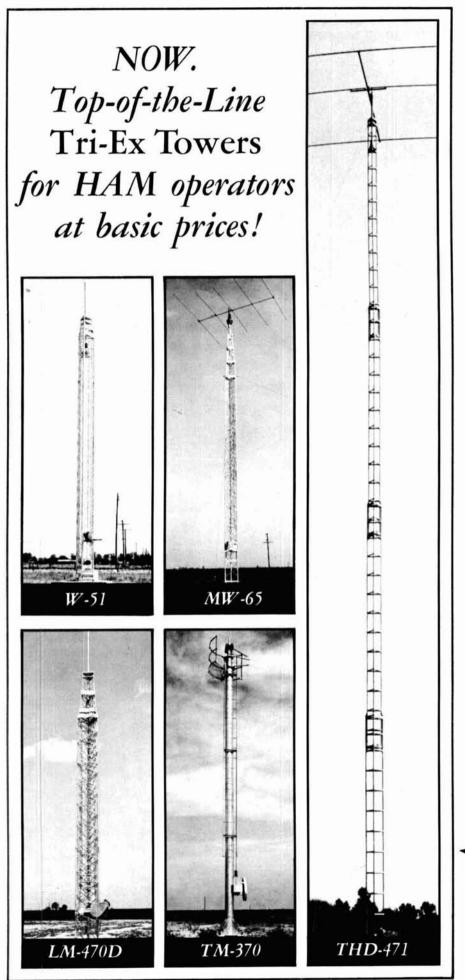
Other superb ALPHA's not shown in-clude the exclusive "NO-TUNE-UP" ALPHA 374 [the most convenient of all maximum-legal-power linears, \$1395] and the fabulous ALPHA 77D "ULTI-MATE LINEAR", \$2995. Call or write ETO for detailed literature on all **ALPHA** products.



EHRHORN TECHNOLOGICAL OPERATIONS, INC. BROOKSVILLE, FLORIDA 33512 (904) 796-1428



Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.


Regularly \$78.00. Now, over 30% discount (only \$54.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include \$3.00 U.S. postage, or \$4.00 in Canada, \$5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

**D-D ENTERPRISES** 

Dept. A, P. O. Box 7776 San Francisco, CA 94119



#### W Series

An aerodynamic tower designed to hold 9 square feet in a 50 mph wind. Six models at different heights.

#### MW Series

Self-supporting when attached at first section will hold normal Tri-Band beam. Six models.

#### LM Series

A 'W' brace motorized tower. Holds large antenna loads up to 70 feet high. Super buy.

#### TM Series

Features tubular construction for really big antenna loads. Up to 100 feet. Free-standing, with motors to raise and lower.

#### THD Series

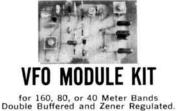
Very popular. Low Cost. Holds Tri-Band antennas. Eight models — all support 7 square feet of antenna at full height in 70 mph winds. Guyed.

Start with Top-of-the-Line Tri-Ex Towers. At basic prices. Write today, for your best buy.



More Details? CHECK-OFF Page 126



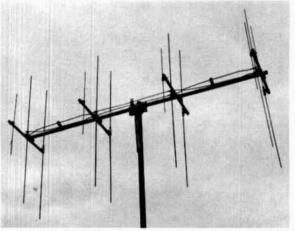

8-18 WATTS INPUT, 50-70 WATTS OUT-PUT ALL SOLID-STATE BROADBAND DESIGN MICROSTRIPLINE CIRCUITRY VSWR & REVERSE VOLTAGE PROTEC-TED EXTRA LARGE HEAT SINK <0.5 dB INSERTION LOSS IN RECEIVE >40 dB HARMONIC & SPURIOUS RE-JECTION SIZE: 4.1"H x 4.0"W x 6.0"L 1 YEAR WARRANTY ON PARTS, 90 DAYS ON TRANSISTOR Model No. 12-1060A-220 \$129.95 Please add \$2.00 shipping and handling — Continental U.S.A. CALIF. residents add 6% sales tax. DEALER INQUIRIES INVITED! Glostronics P. O. BOX 4032 TORRANCE, CALIF. 90503 Govt. SURPLUS ELECTRONIC DME New ITEMS . . . New BARGAINS!

220 MHz RF POWER AMPLIFIERS

**UPON REQUEST!** FREE

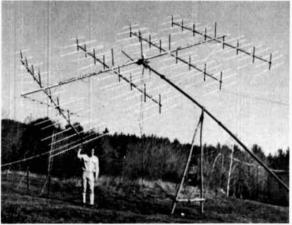
If you haven't received our new Catalog, write for free copy today. Address: Dept. HR

#### FAIR RADIO SALES OHIO . 45802 016




20Mw of filtered output. Includes VFO Style Tuning Capacitor. Operates from 9 to 15 VDC.

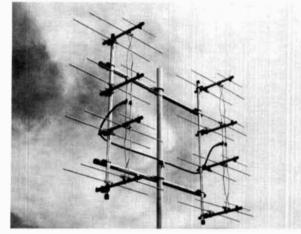
> \$29.95 ppd USA (specify band with order) direct conversion catalog \$1.00 ppd


DIRECT CONVERSION TECHNIQUE 3132 NORTH LOWELL AVENUE CHICAGO, ILLINOIS 60641

# VDF DX



#### SSB/CW -


Discover reliability in long-haul communications with VHF SSB and CW. The Cush Craft DX-Array also gives low angle, high gain performance for many exotic propagation modes — tropo, aurora, sporadic-E, and meteor scatter. Horizontally polarized DX-Arrays may be used singly or combined in pairs (twice Effective Radiated Power) or quads (4 x ERP). Each DXK stacking kit is complete with stacking frame and phasing harness (vertical mast not supplied). This year has seen some spectacular VHF band openings — Don't miss the next one!



Dave Olean, K1WHS, with his 160 Element DX-Array and Polar Mount EME System

#### FM —

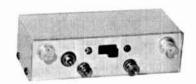
Enjoy the thrill of dependable long distance contacts on simplex or thru remote repeaters. The 20 element colinear DX-Array offers a precise pattern with large capture area. This vertically polarized, horizontally stacked array provides a narrow beamwidth for the discriminating FM user. Wide impedance and gain bandwidths make the DX-Array a natural choice for the serious FM'er. A vertical polarization bracket, model DX-VPB, is required (support boom and mast not supplied). Seek out new horizons with DX-Array!



#### EME —

Many VHF experimenters have found excitement in conquering the formidable Earth-Moon-Earth (EME) path. 2-meter moonbouncers have achieved outstanding success using eight stacked DX-Arrays. Impedance and gain characteristics of this antenna permit stacking without the critical detuning problems inherent in large arrays of Yagis. Enlarging system size will yield a more uniform gain increase with DX-Arrays than with many other large antennas. The physical configuration alleviates mounting and phasing/tuning problems. EME enthusiasts are setting new records — So can you!

#### DX-ARRAY LEADS THE WAY!




| DIODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T                                                                                                                                                                                                                                                                                                                                                    | SOCKETS/PLUGS                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | TRANSIST                                                                                                                                       | ORS, LEDS, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1N914 100v<br>1N4004 400v<br>1N4005 600v<br>1N4007 1000v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z .25 2 Amp                                                                                                                                                                                                                                                                                                                                          | pcb         .25         ww           pcb         .45         ww           pcb         .55         ww           pcb         .35         ww | .45<br>.40<br>.75<br>.75<br>1.25<br>1.45<br>1.95<br>.25<br>1.20<br>2.50                                                       | 2N2222 NPN<br>2N2907 PNP<br>2N3906 PNP<br>2N3055 NPN<br>LED Green, Rec<br>D.L. 747 7 seg 5<br>HP 276 Com-cat<br>XAN72 7 seg c<br>FND 359 Red 7 | l, Yellow .15<br>5/8″ high 1.95<br>thode .3″ high 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C MOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································                                                                                                                                                                                                                                                                                                               | — т                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Τ</b> L -                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CD4000         .25           CD4001         .25           CD4002         .25           CD4007         .35           CD4009         .25           CD4010         .50           CD4012         .25           CD4012         .25           CD4013         .40           CD4014         1.10           CD4015         1.10           CD4016         .45           CD4017         1.10           CD4018         1.10           CD4019         .70           CD4020         .85           CD4023         .25           CD4024         .95           CD4025         .35           CD4026         1.95           CD4027         .75           CD4033         1.95           CD4030         .45           CD4033         1.95           CD4044         .95           CD4044         .95           CD40450         .85           CD4046         1.50           CD4046         .30           CD4050         .85           CD4069         .30           CD4069         .30 <td>7400.15<math>7401</math>.15<math>7402</math>.20<math>7403</math>.25<math>7404</math>.15<math>7405</math>.25<math>7406</math>.45<math>7407</math>.55<math>7408</math>.25<math>7409</math>.15<math>7410</math>.15<math>7410</math>.15<math>7412</math>.30<math>7413</math>.65<math>7414</math>1.10<math>7416</math>.25<math>7417</math>.50<math>7420</math>.15<math>7426</math>.40<math>7427</math>.45<math>7430</math>.20<math>7432</math>.45<math>7438</math>.20<math>7440</math>.25<math>7441</math>1.15<math>7442</math>.65<math>7443</math>.95<math>7444</math>.95<math>7445</math>.95<math>7446</math>1.20<math>7450</math>.25</td> <td>7451.25<math>7453</math>.25<math>7454</math>.25<math>7460</math>.25<math>7470</math>.45<math>7472</math>.45<math>7473</math>.35<math>7474</math>.40<math>7475</math>.45<math>7476</math>.20<math>7480</math>.65<math>7483</math>1.00<math>7485</math>1.05<math>7486</math>.40<math>7491</math>1.15<math>7492</math>.95<math>7493</math>.60<math>7494</math>1.25<math>7495</math>.85<math>7496</math>.95<math>74100</math>1.85<math>74107</math>.45<math>74121</math>.40<math>74122</math>.55<math>74123</math>.55<math>74124</math>1.35<math>74141</math>1.30<math>74150</math>1.00<math>74151</math>.95<math>74154</math>.75</td> <td></td> <td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td>74\$00       .55         74\$02       .55         74\$03       .50         74\$10       .25         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$12       1.50         74\$133       .45         74\$151A       1.00         74\$158       .65         74\$158       .65         74\$158       .65         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45      <t< td=""></t<></td> | 7400.15 $7401$ .15 $7402$ .20 $7403$ .25 $7404$ .15 $7405$ .25 $7406$ .45 $7407$ .55 $7408$ .25 $7409$ .15 $7410$ .15 $7410$ .15 $7412$ .30 $7413$ .65 $7414$ 1.10 $7416$ .25 $7417$ .50 $7420$ .15 $7426$ .40 $7427$ .45 $7430$ .20 $7432$ .45 $7438$ .20 $7440$ .25 $7441$ 1.15 $7442$ .65 $7443$ .95 $7444$ .95 $7445$ .95 $7446$ 1.20 $7450$ .25 | 7451.25 $7453$ .25 $7454$ .25 $7460$ .25 $7470$ .45 $7472$ .45 $7473$ .35 $7474$ .40 $7475$ .45 $7476$ .20 $7480$ .65 $7483$ 1.00 $7485$ 1.05 $7486$ .40 $7491$ 1.15 $7492$ .95 $7493$ .60 $7494$ 1.25 $7495$ .85 $7496$ .95 $74100$ 1.85 $74107$ .45 $74121$ .40 $74122$ .55 $74123$ .55 $74124$ 1.35 $74141$ 1.30 $74150$ 1.00 $74151$ .95 $74154$ .75                                                                                          |                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                           | 74\$00       .55         74\$02       .55         74\$03       .50         74\$10       .25         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$11       .45         74\$20       .50         74\$12       1.50         74\$133       .45         74\$151A       1.00         74\$158       .65         74\$158       .65         74\$158       .65         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45         74\$150       .45 <t< td=""></t<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      | LINEARS, RE                                                                                                                                                                                                                                                                                                                                                                                                                                       | GULAT                                                                                                                         | ORS, etc.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MEMORY, CLOCKS           74S188(8223)         3.00           8080         26.50           MM1702A         10.50           MM5314         3.95           MM5316         4.95           2102-1         1.95           2102L1         2.25           TMS6011         9.95           TR 1602A         6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7889 Clairemont Mer<br>All orders ship<br>Open accounts<br>Dis                                                                                                                                                                                                                                                                                       | invited<br>scounts available at OEM Qu<br>lifornia Residents add 6% Sa                                                                                                                                                                                                                                                                                                                                                                            | LM34<br>LM34<br>LM34<br>LM37<br>LM38<br>LM70<br>LM71<br><b>UN1</b><br>92111 •<br>No minim<br>COD orde<br>antities<br>ales Tax | 10 1.55<br>19 .30<br>1 .45<br><b>IMITED</b><br>(714) 278-4394                                                                                  | LM723 .45<br>LM725 1.95<br>LM739 1.50<br>LM741 .25<br>LM747 1.10<br>LM1307 1.25<br>LM1458 .95<br>LM3900 .65<br>LM75451 .65<br>NE555 .50<br>NE556 1.10<br>NE566 1.95<br>NE567 1.35<br>SN72720 .35<br>SN72820 .35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





#### PRE-AMP



#### HIGH GAIN . LOW NOISE

35dB power gain, 2.5-3.0 dB N.F. at 150 MHz 2 stage, R.F. protected, dual-gate MOSFETS. Manual gain control and provision for AGC.  $4\frac{3}{8}$ " x  $1\frac{7}{8}$ " x  $1\frac{3}{8}$ " aluminum case with power switch and choice of BNC or RCA phono connectors (be sure to specify). Available factory tuned to the frequency of your choice from 5 MHz to 250 MHz with approximately 3% bandwidth. Up to 10% B.W. available on special order.

N. Y. State residents add sales tax.

Model 201 price: 5-250 MHz \$29.95



196-23 JAMAICA AVE. HOLLIS, N. Y. 11423



MOTOROLA, GE, RCA, ETC. EQUIPMENT MOBILES, BASES, PORTABLES, MOBILE-TELEPHONES, REPEATERS, REMOTE CONTROLS, TONE EQUIPMENT, 2-WAY TEST EQUIPMENT Operational Units Only Commissions/Finders Fees CAL-COM SYSTEMS, INC. 701-51A KINGS ROW, SAN JOSE, CALIF, 95112 Telephone 24 Hours 408/998-4444

#### PREVENT THEFT



# The proof of the pudding is in the eating.



The proof of

**Triton IV** 



#### Here's some of the proof . . .

K4EME — This is my second TRITON IV. They are excellent xceivers! WA8ICK — Luv it. Dynamite! W9NXU — I am very thrilled with this unit, it is great. K4EME — This is my second TRITON IV. They are excellent xeevers! WABICK — Luv it. Dynamite! W9NXU — I am very thrilled with this unit, it is great. I think you have scooped the field. WAOAYA — I like CW and full break-in. (Beautiful) K3TFU — I love the unit. WA3YEZ — Rig is just great. Combined with your service makes a super transceiver. WNOSED — Beautiful radio to use. Magnificent CW filter! Just a pure joy. W8IIT — I have had my TRITON IV for two months and am delighted with it. YNIMBY — It is a very nice rig. W3GTX — New features very welcome. WOBYC — Bought one of the first TRITON II, like it so well I updated it with a TRITON IV. W2TBK — It is absolutely fantastic. WBOOPI — I am pleased with the rig. WA3GJA — Very-very-very nice. Good audio quality. W5ZBC — The most outstanding rig I have ever used. K8CJQ — Excellent rig, Good filters. W7BKK — Very happy . . . getting excellent qual-ity reports. W2CET — Power-signal reports good. WB2UEH — I like the compactness and appearance. VE3IBK — An excellent rig with superior receiving quality. K4IVM — I think it is tops. WA4LOG — I've become so used to dip, peak and adjust, this TRITON is a beautiful new experience. KL7IHW — Easy to set up—works great. K4JXD — Seems to be very FB rig. WA7KHE — Fantastic performance. Thanks for a fine rig. WB4BPG — No problems—fine rig. VEIBZ — Good work. W9HQT — Receiver better than expected, CW break-in is super. WOAP — Tremendous transceiver. I appreciate your engineering. WA2ZRO — Wonderful. KOSFV - Real nice rig. You thought of almost every feature and built it in. KQ9DQ - Beautiful. WB0JIQ - Beautiful radio; however, your ads do not do justice to the radio. WNSSOH — Very sophisticated—Easiest tuning rig ever. Very glad I bought it. NOV — Very impressed. W4LZP — Very good results. Put out 100 watts as good as 300 watt rigs. WA4DQY — I think the TRITON IV is great. W6QXN — Appreciate full CW break-in. W0INH — Enjoy light weight. - I am extremely pleased with the clarity of receiver and after putting rig on the air, received unsolicited compliments on the audio quality of the transmitter. K4PHY — Was 3rd in USA, first in fourth district in WWCQ contest. W8RYU — Own Argonaut. Both fine rigs. W4CDA -- Compact, light weight, good engineering. WB2WZG — TRITON IV is the most versitile CW/SSB radio I have ever used. WB2FMV — Outstanding. Highly pleased with performance. WA8ACZ — A real nice rig. I have owned about every other make. WSEGK — Works nicely. WB4ECO — I tried this rig, a pleasure to operate. WA4YRK — Excellent reports on audio. WB8NKB — Wonderful. W9QPQ — An excellent rig. Love it. W8SOP — Makes running SSB nets a real breeze. Also good on CW nets. WL7IRT — Fantastic rig. W4MDB — Has rekindled my interest and enthusiasm in Amateur Radio to an extent I hadn't thought possible. It far out dis-tances any competitive product at any price. W6EYR — Very nice. Been a ham for 45 years and now solid state perfection. W2RPH — Excellent rig. WNOTOK — TRITON IV is a fabulous piece of equipment. WSVIW — Very nice rig WB2LQF — Wow! W9JCV — Tnx for giving us a FB piece of equipment made in the USA. W8GHO — Very pleased. K4KXB — Seems to have everything desired. W4SZ — A pleasure to operate. W2FKF — Greatest rig I ever had. So far in a month 34 QSO's without one miss. Been a ham since 1922. W4GVC — Nothing but complements. WB9EZE — Well pleased with performance and simplicity of operation. K4ETI — Rig is great. W8CNV — Man—! what a rig. I've had this call since 1929. Never saw anything like it and I've seen them all! WB2MZU — Seems like everything the S ---- O -- was supposed to be at one third the price. WNOYHE — I think it is a very good rig. WB9FTD — Break-in CW is very impressive. K0CBA — I believe it is one of the finest HF transceivers on the market. I can't tell you how pleased I am with the noise blanker. I can get on the air from my home station again for the first time in a few years. Other rigs with noise blankers just didn't hack it, WA7HW — I am very pleased with this equipment. It is certainly of high quality. W7IIA — Excellent equipment. WB0RWA — Couldn't be more pleased with it. It certainly has performed beautifully and is all I expected and more. WB4QIT — Like it very much — keep up the good work. WN1YVX — Really impressed with looks and performance. WONC — Very FB rig. Performs up to specifications, an excellent design. K8PBZ — Already have TRITON II and IV. W7KD This little ''T-4'' is smooth as silk . . . I've received some very flattering reports about transmitter voice quality and the CW operation is the greatest. WN8TTO — I found that the TRITON IV was the best rig on the market for around \$800.1 love it' W2IBK — It is absolutely fantastic. nets. WL7IRT — Fantastic rig. W4MDB — Has rekindled my interest and enthusiasm in Amateur Radio to an extent I hadn't thought possible. It far out disat receiver performance. I thought I had a top notch receiver with the H ------! WIFYM — Your guarantee is refreshingly proper. WBMOK — Sure makes a guy look twice at his old tube type gear. WITES — Finest CW ever, CW selectivity very good. WBSIVE — Very satisfied with TRITON IV, Just what I was looking for to use on my yacht. Thanks. WABONP — Also have a TRITON II. I am pleased that Al Kahn and the good guys at TEN-TEC thought of the CW op-erator! W2EMX — Excellent Amateur gear meets and exceeds advertised claims. WOAMJ — It looks like there is nothing left to be desired, It is beautiful. W6SE — The receive function is outstanding. It is superb in transmit. WIBV — In love with this fantastic gem. It's so easy and a pleasure to operate. W6ASH — Very happy with performance. Particularly impressed with full break-in and light weight. WADIMS — By far the best rig I have ever operated. I am glad I decided on the TRITON IV and not one of the other transceivers on the market. WASHQO - Thank you gentlemen.

Add your name to the growing list. See your TEN-TEC dealer or write for full details.





CPoly Paks Inc." Wakefield, Mass., U.S.A. 1976



RATES Non-commercial ads 10¢ per word; commercial ads 40¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by nonprofit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

CIRCUIT BOARDS. Artwork, negatives, etching. SASE for details. Karl Raup, WB40XG, Box 8013, Orlando, Fla. 32806.

HAM RADIO HORIZONS, a super new maga-zine for the Beginner, the Novice and anyone interested in Amateur Radio . . . What it's all about, How to get started, The fun of ham radio. It's all here and just \$10.00 per year. HURRY! HURRY! Ham Radio HORIZONS, Crannille, NH 03048 Greenville, NH 03048.

WANTED: Power transformer for a Pearce-Simpson Capri 30, part no. 1202-102. Call collect (312) 489-4161.

STOP don't junk that television set. ASE manufactures the world's most complete line of television picture tubes. Over 1700 types. Most types immediate delivery. Tubes for Old or New TV's, black & white and color. 2 year factory warranty. Lowest prices anywhere. Allied Sales & Engineering. Inc., Dept. 22, Pimento, IN 47866. Telephone 812-495-6555.

BUY — SELL — TRADE. Write for free mailer. Give name, address and call letters. Complete stock of major brands, new and reconditioned equipment. Call for best deal. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 8012 Conser, Overland Park, Ks. 66204. 913-281.5001 381-5901.

TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator \$139.00. Dozen black ribbons \$6.50; case 40 rolls 11/16 perf. tape \$17.50 FOB. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349

MULTI-BAND DIPOLE TRAPS. Pace-Traps are the key devices required to build the all-band dipole depicted in the ARRL handbook. Two models available. NG-series (novice gallon) — 14.95. FG-series (full gallon) — 16.95. Pace-Sulator (weather-proof no-solder center - in-sulator) — 4.95. Antenna instructions fur-nished. Shipped postpaid in USA. Check or N.O. to, Pace-Traps, Upland Rd., Middlebury, Conn. 06762.

VERY in-ter-est-ing! Next 4 big issues \$1. "The Ham Trader," Sycamore, IL 60178.

FIRST ISSUE OF HAM RADIO, March 1968 and all 1968 with exception of September. Complete 1969, 1970, 1971 except December and 1972, make offer. W1VRR, Edward W. Tellquist, 92 Morris Ave., New Haven, CT. 06512.

12 BUTTON TOUCH-TONE PAD, tested and guaranteed \$10.00. Module for pad, no wiring, just connect, with instructions \$6.00. M. Wahl, 2922 Sheridan Ave., Miami Beach, Fla. 33140.

SYNTHESIZER. See Ham Radio, July 76, pg. 20-23, figures 21 to 24. Kit for \$115, assembled and tested, \$140. Power supply to run from 117 volts additional \$15.00. CTD, P. O. Box 708, Cambridge, MA 02139.

CALL US OR WRITE for our special prices on Dentron, Cush-Craft, W2AU baluns, MFJ pro-ducts and Ham Keys. Kryder Electronics, Dept. H, P. O. Box 652, Ft. Wayne, Indiana 46801. AC 219/484-4946. W9LWW.

SAVE! Bomar FM, xtals \$4.00 ppd. Dentron, Hustler, CushCraft, W. M. Nye, Ameco. Used gear, Complete catalog - write Ferris Radio, 308 E. Harry, Hazel Park, Mich. 48030.

HAM RADIO HORIZONS, a super new maga-zine for the Beginner, the Novice and anyone interested in Amateur Radio. . . What it's all about, How to get started, The fun of ham radio. It's all here and just \$10.00 per year. HURRY! HURRY! Ham Radio HORIZONS, Greenville, NH 03048.

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, Ca. 94806. WANTED: Navy or McElroy Key. "Don't let yours go silent" (we will love it and use it). Also 1920s microphone. K4NBN, Del Popwell, 1946 Sweetbriar Ln., Jacksonville, Fla. 32217.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Litera-ture, Estes Engineering, 930 Marine Dr., Port Angeles, WA 93862.

DEMONSTRATOR SALE. All new and guaran-teed in factory cartons. Icom IC21A and DV21 both \$500, IC21A \$275, UHF IC30A with five channels, \$300. IC202 SSB \$200, Atlas 210X \$500, Kenwood TS700A \$500. Used Swan Cygnet 260 \$225, Swan 350 with both power supplies \$300. Triton 2, perfect, \$400, 262 power supply for Triton \$75.00. Sorry, no trades at these prices. Master Charge and BankAmericard. Call (512) 883-5103, Douglas Electronics, 1118 South Staples Street, Corpus Christi, TX 78404.

TRAVEL-PAK QSL KIT — Send call and 25¢; receive your call sample kit in return. Samco, Box 203, Wyantskill, N. Y. 12198.

ELECTRONIC TELETYPE: Hal RVD-1005 video display and DKB-2010 keyboard; mint condi-tion, \$625. K3WIK, 1098 Mountain Rd., Pasa-dena, Md. 21122. (301) 437-0171.

LOOKING FOR USED GEAR? Buyers & Sellers radio brokerage has the equipment you want at the right prices. Call our Ham Gear Hot-line 617-536-8777 Monday-Friday, 9-9.

SIGNAL/ONE REPAIRS. High SWR protection. RIT. K6BE/5. 505-522-3705.

FREE Electronics Surplus Catalog. Electronic Specialties, 1659 Wetmore, Tucson, AZ 85705.

MOTOROLA HT220, 2 mtr. 6 freq., universal omni, 'E' series, PL, touch tone, speaker mike, ant., battery, charger, external antenna adapter, case. With 13/73, 28/88, 63/03, 04/64, 16/--, 52/52. Mint condition. \$650.00. Sam Gardali, WB6PBN, 319½ McHenry, Mo-desto, Ca. (209) 529-2312.

MOBILE BONDING STRAPS under 50¢ each. Literature. Estes Engineering, 930 Marine Drive, Port Angeles, Wash. 98362.

FERRITE BEADS: w/specification and applica-tion sheet - 10/\$1.00. Assorted PC pots -5/\$1.00. Miniature mica trimmers, 3:40 pf. 5/\$1.00. Postpaid. Includes latest catalog. Stamp for catalog alone. CPO Surplus, Box 189, Braintree, MA 02184.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method — All the supplies for four P.C. boards, direct from magazine article in less than 2 hours. Only \$19.95. S.A.S.E. for details. Excel Circuits, P. O. Box 891, Troy, Michigan 48099, 313-549-0440.

DESK CONSOLE EQUIPMENT CABINET: Build from design drawings, photographs; \$4.75. Bill Morris, WA5RSC, P. O. Box 411, Lubbock, Morris, W TX 79408.

MODERN CODE PRACTICE. 0.22 wpm on four 60 min. cassettes \$10. Royal, P. O. 2174, Sandusky, Ohio 44870.

125-Hz CRYSTAL FILTER for Drake R-4C re-ceivers. Ideal for DX and contest work, \$125.00. Sherwood Engineering, Inc., Dept. G, 1268 So. Ogden St., Denver, CO 80210.

TELL YOUR FRIENDS about Ham Radio Maga-

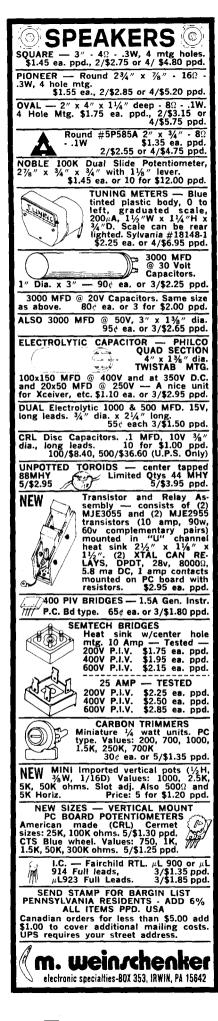


- ALL DUPLEXERS AND CAVITIES ARE TEMPERATURE COMPEN-SATED WITH INVAR® AND MEET ALL COMMERCIAL STANDARDS
- **ONLY TOP QUALITY MATERIALS** GO INTO OUR PRODUCTS.
- BOTH KITS & ASSEMBLED DU-PLEXERS AND CAVITIES ARE AVAILABLE TO YOU AT A SAVINGS TO YOU.

Mod. 62-3...6 cav., 2 mtr., insertion loss 0.6 db with isolation 100 db typical; pwr. 350 w. Kit \$349 ea.-Assembled \$439.

Mod. 4220-3...4 cav. 220 MHz insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kit \$249 ea. - Assembled \$329.

Mod. 4440-3...4 cav. 440 MHz, insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kits \$249 ea. - Assembled \$329.


Mod. 30 Cavity Kits: 2 mtr. \$65 ea., 220 MHz \$65 ea., 440 MHz \$65 ea.,; mtr. \$115 ea. Add \$15 for Assembled Kit.

Also available: 6 mtr., 4 cav. Kit \$399-Assembled \$499, 2 mtr. 4 cav. Kit \$249-Assembled \$329, 440 MHz TV Repeater Duplexer

Only hand tools are necessary to assemble Kits!

Send your order to: Distributor: TUFTS RADIO, 386 Main St., Medford, Mass. 02155. Phone (617) 395-8280.

(Prices F.O.B. Medford, Mass. All units can be shipped U.P.S.-C.O.D. orders require \$50 deposit. -- Mass. residents add 5% sales tax.)



# flea market

2-30 MHz COUNTER pc boards \$8.25. Details. P. O. Box 6173, Anaheim, Ca. 92806.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manu-facturing Company, Box 126, Agincourt, On-tario, Canada. MIS 3B4.

RTTY CLOSEOUT — NS-1A PLL TU while they last. Wired/tested \$24.95. Board \$3.00. All postpaid. SASE for info. Nat Stinnette Elec-tronics, Tavares, FL 32778.

CANADIAN JUMBO SURPLUS and Parts Cata-logs. Bargains Galore. Send \$1. ETCO-HR, Box 741, Montreal "A" H3c 2V2.

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reason rates. WA4FRV, (804) 320-4439 evenings.

RTTY — NS-1A PLL TU (HR 8/76). Wired/ tested \$29.95 ppd. Board \$4.75 ppd. SASE for info. Nat Stinnette Electronics, Tavares, FL 32778

NAMEBADGES — \$1.50 — Name and call sign \$2.00. Engraved plastic with pin, clutches or adhesive. Black, white, red, blue. Include payment with order. Special prices on club badges and hamfest plaques. Donan En-graving, P. O. Box 07155, Lakewood, Ohio gravina 44107.

OSL'S - BROWNIE W3CJI - 3035B Lehigh. Atlentown, Pa. 18103. Samples with cut catalog 50¢.

WIRE DIPOLE CUTTING CHART & NOTES on installation. Chart covers 2 meters through 160 meters. Helpful information. \$1.00 ppd. W. E. Schroedter, 6108 N. Sherman Blvd., Milwaukee, Wisc. 53209.

OSCAR 7, SSB-CW TRANSMIT CONVERTERS. For 28 or 50 MHz input at 20 mw. 432 MHz output at 1 watt. Solid state, for 12 volt sup-ply. 35 watt solid state amplifier available for this converter. Units designed and built by WØENC. Write for information. UHF-VHF Communications, 53 St. Andrew, Rapid City, S D 5701 S. D. 57701.

**TECH MANUALS** for Govt. surplus gear — \$6.50 each: SP-600JX, URM- 25D, OS-8A/U, PRC-8, 9, 10. Thousands more available. Send 50c (coin) for 22-page list. W3IHD, 7218 Roanne Drive, Washington, D. C. 20021.

VARIABLE AND TRIMMER CAPACITORS — Mil-len, Johnson, Hammarlund, Erie, Arco. In stock for immediate shipment, write for free price list "A". D & V Radio Parts, 12805 W. Sarle Rd., R#2, Freeland, Mich. 48623.

DON'T READ THIS AD unless you want a good deal and good service on your next ham radio or hi-fi purchase. Thousands of satis-fied customers nation-wide have made us the largest volume communications and hi-fi deal-er in the country. We are factory-authorized dealers for Kenwood, Drake, Collins, ICOM, Regency, and over 100 other brands of amateur radio and hi-fi gear. We have some-thing for you! Call or write us today and become one of the many happy and satisfied customers of Hoosier Electronics, Inc., P. O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456. 238-1456

RUBBER STAMP, name/call/QTH \$2.50 ppd. (CA residents add tax). LWM Press, Box 22161, San Diego, CA 92122.

SB-401 WITH CRYSTAL PACK \$245, SB-313 (80-15M + foreign BC) with all crystal filters \$245, Mosley SWV-7 \$40, Add shipping. WBSNSS, 104 Galahad, Victoria, TX 77901. WB5NSS, 10 512-578-4495.

TELETYPEWRITER PARTS, gears, manuals, sup-nlies. tape, toroids. SASE list. Typetronics, plies, tape, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

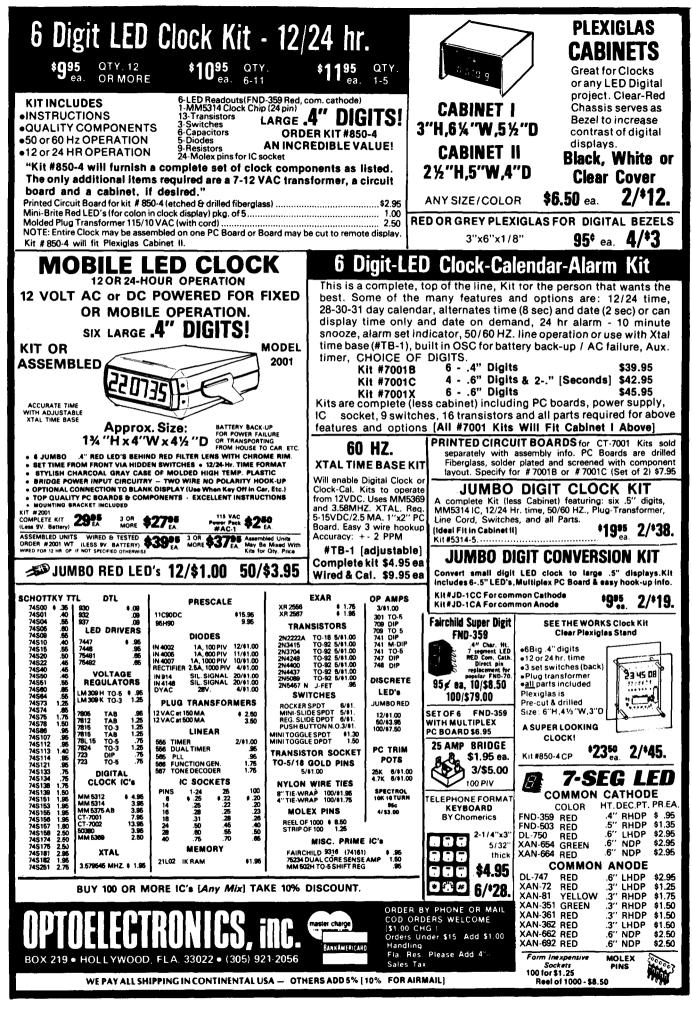
SELL — Touch tone pad, solid state, sub-miniature size, great for HT's, \$25. Regency HR2A, excellent condition, unmodified, \$125. Knight VOM KG-640, mint, \$20. Heath SWR bridge, AM-2, \$10. Heath 2M, 5/4 wave mobil antenna, never used, \$12. Drake low pass filter, TV-100, 100 watts, \$5. Slinky dipole, \$20. Motorola RF transistors, new, sealed, 2N5643, 2N5642, \$5 each. Prices include shipping. Send SASE for more information. WA9WDB/P5 John Teles, 10511 Tenneco, Houston, Texas 77099.

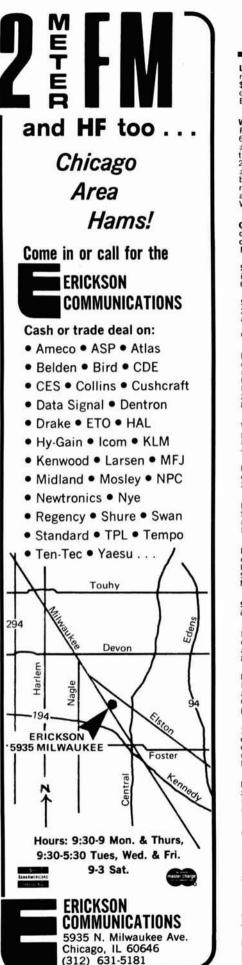
PORTA-PAK the accessory that makes your mobile really portable. \$67.50 and \$88.00. Dealer inquiries invited. P. O. Box 67, Somers, Wisc. 53171.

#### SPECIAL OFFER

--- all in stock for delivery

SAVE \$\$\$\$ SPECIAL ON ICOM IC-230. Call now for price too low to be published.


Icom, IC22S, IC230, IC22A, IC215, IC502, IC202, Collins KWM2a, 75S3C, 32S3C, 30L1, Yaesu FT101, Kenwood TS820, TS520, TS700A, Atlas 210X DD1, 220cs, 206, Drake T4XC, R4C, L4B, MN200, MN2000 SSR1 SPR4 FS4 TR22C TR33, TR4C, Tempo 2020, Tempo One, CL146A, VHF One, Standard 146A, Horizon Two, VHF Engineering Synthesizer II, EBC144AJR, all Hygain, Newtronics, Antenna Specialists, Savoy, Larsen, Mosley antennas. Also Turner, Astatic, Shure, Spectronics DD1, Sc250 Bird 43, Loads, elements, Swan, National Radio NCL2000. NCX1000, HRO-500, KLM Multi 2700A, Multi II, Multi 7 all linears in stock. Ten-Tec KR50A, KR20A, Triton II, Venus SS2, SS2K, C1. DX Engineering, CDE, Brimstone, Cush-Craft, TEN TO FIFTEEN, TO TWENTY PER CENT OFF on everything in the house. Top trades given on your used equipment, Barry Electronics World Wide amateur Radio Since 1920.


#### **Barry Electronics**

512 BROADWAY NEW YORK, N. Y. 10012 212-925-7000

#### TESTEOHIDMENT

| All equipment listed is operational and un<br>conditionally guaranteed. Money back if not<br>satisfied-equipment being returned must be<br>shipped prepaid. Include check or money order<br>with order. Prices include UPS or motor freight<br>charges.<br>BECKMAN 7570A Counter Freq conv<br>10-1000mHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TESTEQUIPMEN                                | 1    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| satisfied—equipment being returned must be<br>shipped prepaid. Include check or money order<br>10-1000mHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |      |
| shipped prepaid. Include check or money order<br>with order. Prices include UPS or motor freight<br>charges.<br>BECKMAN 7570A Counter Freq conv<br>10-1000mHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | conditionally guaranteed. Money back if     |      |
| with order. Prices include UPS or motor freight<br>charges.<br>BECKMAN 7570A Counter Freq conv<br>10-1000mHz 275<br>BOONTON 190A Q-mtr 30-200mHz 425<br>BOONTON 202E AM-FM sig gen<br>54-216mHz 395<br>DE1 TDU-2 30mHz video display 55<br>GR546C Audio microvolter 85<br>HP100ER Freq stand .05 parts/mil<br>Outputs 10,100Hz 1,100,1000MHz 155<br>HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs 375<br>HP166B (Mil) Delay sweep for above 130<br>HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs 475<br>HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug 585<br>HP202B LF Osc .5Hz 50KHz 10v. out 75<br>HP203AG Lab Audio Gen .02-20kHz, 195<br>HP212A Pulse Gen .06-5kHzPRR 65<br>HP430CR Microwave Pwr Mtr 45<br>HP540B Transfer Osc to 12.4gHz for<br>use with HP524 type counters 145<br>HP646 Sig gen 1.8-4gHz FM-CW 365<br>HP646 Sig gen 8.2-12.4gHz Sweep<br>range 4.4mHz-4.4gHz 495<br>HP803A VHF Ant bridge 50-500mHz 135<br>SINGER SSB4 Sideband spec anal<br>0-40mHz, res. to 10Hz 635<br>TEK 181 Time-mark scope calib. 55<br>TEK 180 Sig gen(const ampl) 50mHz 125<br>FK 505 Std VTVM (rf to 500mHz 155<br>FOC moments and the set of all test equipment<br>send stamped. setf-addressed envelope<br><b>GRAY ElectronicS</b><br>P.O.Box 941, Monroe, Mich. 48161 | satisfied—equipment being returned must     |      |
| BECKMAN 7570A Counter Freq conv<br>10-1000mHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with order. Prices include UPS or motor fre | ight |
| 10-1000mHz275BOONTON 190A Q-mtr 30-200mHz425BOONTON 202E AM-FM sig gen54-216mHz54-216mHz395DEI TDU-2 30mHz video display55GR546C Audio microvolter85HP100ER Freq stand .05 parts/milOutputs 10,100Hz 1,100,1000MHzOutputs 10,100Hz 1,100,1000MHz.155HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs.375HP166B (Mil) Delay sweep for above.130HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs.475HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug.585HP202B LF Osc .5Hz-50kHz 10v. out.75HP36AG Lab Audio Gen.02-20kHz,.195HP430CR Microwave Pwr Mtr.45HP540B Transfer Osc to 12.4gHz for<br>use with HP524 type counters.145HP646 Sig gen 1.8-4gHz FM-CW.365HP648 Sweep Gen 8.2-12.4gHz Sweep<br>range 4.4mHz-4.4gHZ.495HP608 VHF Ant bridge 50-500mHz.135SINGER SSB4 Sideband spec anal<br>0-40mHz, res. to 10Hz.635TEK 181 Time-mark scope calib55TEK 536 Dual beam 10mHz scope<br>less plug-ins.295TEK 565 Dual beam 10mHz scope<br>less plug-ins.295TEK 565 Dual beam 10mHz scope<br>less plug-ins.625FO.BOX 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                             | charges.                                    |      |
| BOONTON 190A Q-mtr 30-200mHz       425         BOONTON 202E AM-FM sig gen       54-216mHz         S4-216mHz       395         DEI TDU-2 30mHz video display       55         GR546C Audio microvolter       85         HP100ER Freq stand .05 parts/mil       0utputs 10, 100Hz 1, 100, 1000MHz       155         HP160B(USM105) 15MHz scope with       76         reg horiz, dual trace vert plugs       375         HP164B(Mil) Delay sweep for above       130         HP170A(USM140) 30MHz scope with       76         HP185A Sampling scope 1 gHz 186B       xstr rise time plug       85         HP202B LF Osc. 5Hz 50kHz 10v. out       75         HP212A Pulse Gen       0.4 SkHz PRR       65         HP30CR Microwave Pwr Mtr       45         HP540B Transfer Osc to 12.4 gHz for       365         HP6316 Sweep Gen 8.2 12.4 gHz for       365         HP646 Sweep Gen 8.2 12.4 gHz       365         HP803A VHF Ant bridge 50-500mHz       135         SINGER SSB4 Sideband spec anal       0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib       55         TEK 505 Dual bean 10mHz scope       295         Iess plug-ins       295         TEK 505 Dual bean 10mHz scope       295                                                                                                                                                                                                                                                                | BECKMAN 7570A Counter Freq conv             |      |
| BOONTON 202E AM-FM sig gen<br>54-216mHz       395         DEI TDU-2 30mHz video display       55         GR546C Audio microvolter       85         HP100ER Freq stand. 05 parts/mil       0utputs 10,1000/Hz       155         HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs       375         HP166B (Mil) Delay sweep for above       130         HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs       475         HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug       585         HP202B LF Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP202B LG Osc       5H2 200 KHz 10V. out       75         HP30CR Microwave Pwr Mtr       45       45         HP540B Transfer Osc to 12.4gHz for<br>use with HP524 type counters       145         HP540B Sweep Gen 8.2 12.4gHz Sweep<br>range 4.4mHz 4.4gHz       45         HP686 Sweep Gen 8.2 12.4gHz Sweep<br>range 4.4mHz 4.4gHz       45         HP803A VHF Ant bridge 50-500mHz       135                                                                                                                                                                               | 10-1000mHz                                  |      |
| 54-216mHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 425  |
| DEI TDU-2 30mHz video display       55         GR546C Audio microvolter       85         HP100ER Freq stand.05 parts/mil       Outputs 10, 100Hz 1, 100, 1000MHz       155         HP160B(USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs       375         HP164B(Mil) Delay sweep for above       130         HP170A(USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs       475         HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug       585         HP202B LF Osc.5Hz-50kHz 10v. out       75         HP212A Pulse Gen.06-5kHzPRR       65         HP30CR Microwave Pwr Mtr       45         HP540B Transfer Osc to 12.4gHz for<br>use with HP524 type counters       145         HP686 Sweep Gen 8.2-12.4gHz Sweep<br>range 4.4mHz-4.4gHz       365         HP803A VHF Ant bridge 50-500mHz       135         SINGER SSB4 Sideband spec anal<br>0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib       55         TEK 505 Dual bean 10mHz scope<br>less plug-ins       295         TEK 550 Suld VTVM (rf to 500mHz)       295         TS 505 Std VTVM (rf to 500mHz)       65         For complete list of all test equipment<br>send stamped, self-addressed envelope         GRAAY       Electronics         P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                         |                                             |      |
| GR546C Audio microvolter       85         HP100ER Freq stand.05 parts/mil       Outputs 10,1004,1100,1000MHz       155         HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs       375         HP160B (Mil) Delay sweep for above       130         HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs       375         HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug       585         HP202B LF Osc.5Hz-50kHz 10v. out       75         HP205AG Lab Audio Gen.02-20kHz,       195         HP210A CM Kirowave Pwr Mtr       45         HP540B Transfer Osc to 12.4gHz for<br>use with HP524 type counters       145         HP616 Sig gen 1.8-4gHz FM-CW       365         HP6303 VHF Ant bridge 50-500mHz       135         SINGER SSB4 Sideband spec anal       0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib       55       55         TEK 181 Time-mark scope calib       295       125         TEK 536 TuAHz X-Y scope, accepts<br>two letter-series plug-ins       295         TEK 530 Suld VTVM (rf to 500mHz)       65         For complete list of all test equipment<br>send stamped, self-addressed envelope       65         For complete list of all test equipment<br>send stamped, self-addressed envelope       65 <td></td> <td></td>                                                                                                                                                    |                                             |      |
| HP100ER Freq stand .05 parts/mil<br>Outputs 10, 100Hz 1, 100, 1000MHz 155<br>HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs 375<br>HP166B (Mil) Delay sweep for above 130<br>HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs 475<br>HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |      |
| Outputs 10, 100Hz 1, 100, 1000MHz 155<br>HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs 375<br>HP166B (Mil) Delay sweep for above 130<br>HP170A (USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs 475<br>HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | . 65 |
| HP160B (USM105) 15MHz scope with<br>reg horiz, dual trace vert plugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Outputs 10 100Hz 1 100 1000MHz              | 155  |
| reg horiz, dual trace vert plugs 375<br>HP166B(MiI) Delay sweep for above 130<br>HP170A(USM140) 30MHz scope with<br>reg horiz, dual trace vert plugs 475<br>HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |      |
| HP156B (Mil) Delay sweep for above       130         HP156B (Mil) Delay sweep for above       130         HP170A (USM140) 30MHz scope with       reg horiz, dual trace vert plugs       475         HP185A Sampling scope 1 gHz 186B       xstr rise time plug       585         HP202B LF Osc. 5Hz:50kHz 10v. out       75         HP205AG Lab Audio Gen .02-20kHz,       195         HP212A Pulse Gen .06-5kHzPRR       65         HP430CR Microwave Pwr Mtr       45         HP540B Transfer Osc to 12.4gHz for       325         Use with HP524 type counters       145         HP561B Digital clock/rcdr       325         HP616 Sig gen 1.8-4gHz FM-CW       365         HP680A VHF Ant bridge 50-500mHz       135         SINGER SSB4 Sideband spec anal       0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib.       555         TEK 536 11MHz X-Y scope, accepts       295         two letter series plug-ins       295         TEK 565 Dual beam 10mHz scope       625         For complete list of all test equipment send stamped, self-addressed envelope       625         FO.BOX 941, Monroe, Mich. 48161       48161                                                                                                                                                                                                                                                                                                                             |                                             | 375  |
| reg horiz, dual trace vert plugs 475<br>HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HP166B(Mil)Delay sweep for above            | 130  |
| HP185A Sampling scope 1 gHz 186B<br>xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HP170A(USM140) 30MHz scope with             |      |
| xstr rise time plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reg horiz, dual trace vert plugs            | 475  |
| HP202B LF Osc .5H2 50kH2 10v. out 75<br>HP205AG Lab Audio Gen .02 20kH2, 195<br>HP212A Pulse Gen .06 5kH2PRR 65<br>HP430CR Microwave Pwr Mtr 45<br>HP540B Transfer Osc to 12.49H2 for<br>use with HP524 type counters 145<br>HP571B -561B Digital clock/rcdr 325<br>HP616 Sig gen 1.8-49H2 FM-CW 365<br>HP686 Sweep Gen 8.2 12.49H2 Sweep<br>range 4.4mH2-4.49H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |      |
| HP205AG Lab Audio Gen .02-20kHz, 195<br>HP212A Pulse Gen .06-5kHzPRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xstr rise time plug                         |      |
| HP212A Pulse Gen .06-5kHzPRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |      |
| HP430CR Microwave Pwr Mtr       45         HP540B Transfer Osc to 12.49Hz for       use with HP524 type counters       145         HP571B-561B Digital clock/rcdr       325         HP616 Sig gen 1.8-49Hz FM-CW       365         HP686 Sweep Gen 8.2-12.49HZ Sweep       range 4.4mHz-4.49Hz       495         HP886 Sweep Gen 8.2-12.49HZ Sweep       range 4.4mHz-4.49Hz       495         SINGER SSB4 Sideband spec anal       0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib       55       55         TEK 180 Sig gen (const ampl) 50mHz       125         TEK 536 Dual beam 10mHz scope       125         Iess plug-ins       625         For complete list of all test equipment send stamped, self-addressed envelope       6         GRAY       Electronics         P.O.Box 941, Monroe, Mich. 48161       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HP205AG LdD A0010 Gell .02-20KH2,           |      |
| HP540B Transfer Osc to 12.49Hz for<br>use with HP524 type counters       145         HP571B-561B Digital clock/rcdr       325         HP616 Sig gen 1.8-49Hz FM-CW       365         HP64086 Sweep Gen 8.2-12.49Hz Sweep<br>range 4.4mHz-4.49Hz       495         HP803A VHF Ant bridge 50-500mHz       133         SINGER SSB4 Sideband spec anal<br>0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib.       55         TEK 190 Sig gen(const ampl) 50mHz       125         TEK 536 11MHz X-Y scope, accepts<br>two letter-series plug-ins       295         TEK 565 Dual beam 10mHz scope<br>less plug-ins       625         TS 505 Std VTVM (rf to 500mHz)       65         For complete list of all test equipment<br>send stamped, self-addressed envelope         GRAY       Electronics         P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HP430CR Microwave Pwr Mtr                   |      |
| use with HP 524 type counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |      |
| HP616 Sig gen 1.8-4gHz FM-CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | 145  |
| HP8086 Sweep Gen 8.2·12.4gHz Sweep<br>range 4.4mHz-4.4gHz 49Hz 495<br>HP803A VHF Ant bridge 50·500mHz 135<br>SINGER SSB4 Sideband spec anal<br>0·40mHz, res. to 10Hz 635<br>TEK 181 Time·mark scope calib. 55<br>TEK 190 Sig gen(const ampl) 50mHz 125<br>TEK 536 11MHz X-Y scope, accepts<br>two letter series plug-ins 295<br>TEK 550 Dual beam 10mHz scope<br>less plug-ins 625<br>TS 505 Std VTVM (rf to 500mHz) 65<br>For complete list of all test equipment<br>send stamped. self-addressed envelope<br><b>GRAY Electronics</b><br>P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |      |
| range 4.4mHz-4.4gHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             | 365  |
| HP803A VHF Ant bridge 50-500mHz 135<br>SINGER SSB4 Sideband spec anal<br>0-40mHz, res. to 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |      |
| SINGER SSB4 Sideband spec anal       0-40mHz, res. to 10Hz       635         TEK 181 Time-mark scope calib.       55         TEK 190 Sig gen(const ampl) 50mHz       125         TEK 536 11MHz X-Y scope, accepts       two letter-series plug-ins       295         TEK 565 Dual beam 10mHz scope       less plug-ins       625         TS 505 Std VTVM (rf to 500mHz)       65       For complete list of all test equipment send stamped, self-addressed envelope         GRAY       Electronics         P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |      |
| 0-40mHz, res. to 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | 135  |
| TEK 181 Time mark scope calib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 475  |
| TEK 190 Sig gen(const ampl) 50mHz 125<br>TEK 536 11MHz X-Y scope, accepts<br>two letter series plug-ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |      |
| TEK 536 11 MHz X-Y scope, accepts<br>two letter series plug-ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |      |
| TEK 565 Dual beam 10mHz scope<br>less plug-ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |      |
| less plug-ins       625         TS 505 Std VTVM (rf to 500mHz)       65         For complete list of all test equipment<br>send stamped, self-addressed envelope         GRAY       Electronics         P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | two letter-series plug-ins                  | 295  |
| TS 505 Std VTVM (rf to 500mHz) 65<br>For complete list of all test equipment<br>send stamped, self-addressed envelope<br>GRAY Electronics<br>P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |      |
| For complete list of all test equipment<br>send stamped, self-addressed envelope<br>GRAY Electronics<br>P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |      |
| GRAY Electronics<br>P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | 65   |
| GRAY Electronics<br>P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |      |
| P.O.Box 941, Monroe, Mich. 48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                           |      |
| Specializing in used test equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P.O.Box 941, Monroe, Mich. 4816             | 51   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specializing in used test equipment.        |      |





## flea market

LARSEN ANTENNAS (our specialty) 2,432 mag-netic, trunk-lip 5/8 \$33.00, 5/8 ground plane \$45.00. BankAmericard and Mastercharge ac-cepted. 201-962-4695. Narwid Electronics, 61 Bellot Road, Ringwood, NJ 07456.

WANTED: Complete Manual, schematics for Federal Telephone & Radio FT-125 - B25A2 2M 6V gear #473063, has transmitter 282B25A #474902, receiver 148AA #4703385. Also #26 tubes, manual schematics for Motorola K 7288 2M xcvr, has PA7265B receiver, PA 7279A pls, #6300, PA 7291C #16413 transmitter. Will buy or copy. Company records destroyed in natural disaster. Source for parts, test cables appreciated. Robert Clark, 714 W. 11th, Waynesboro, VA 22980.

QRP TRANSMATCH for HW7, Ten-Tec, and others. Send stamp for details to Peter Mea-cham Associates, 19 Loretta Road, Waltham, Mass. 02154.

SST-T-1 gets you on 160-10. See ad this issue. SST Electronics, Box 1, Lawndale, Calif. 90260.

SYNTHESIZER, see Ham Radio, July 76, pg. 20-23, figures 21-24. Kit for \$115. Assembled and tested, \$140. Power supply to run from 117V additional \$15. CTD, P. O. Box 708, Cambridge, MA 02139.

**MOTOROLA:** HT200 repeater complete with control circuits. Mounted in commercially milled block of alum. Size  $5'' \ge 7'' \ge 11/2''$ . Mil-standard construction throughout, \$250.00. More info contact: Ray Waldemar, WA7ZYR, 2025 W. Indian School Rd., Phoenix, Arizona 85015, Apt. 628.

WANTED: Car telephones and mobile tele-phone parts, heads, cables, etc. Greg Hyman, 87 Yonkers Ave., Yonkers, N. Y. 10701. 914-476-4330.

NEED. #12 enameled or old cotton covered copper wire. 25 or 30 lb. spool. W4NNT, 6913-29th Ave., Tampa, FL 33619.

MANUALS for most ham gear, 1939/70. List \$1.00. Send SASE (or 25¢) for one specific model quote. Hobby Industry, WØJJK, Box H864, Council Bluffs, Iowa 51501.

HT SCR-146A xtals, mike, standcharger, belt-clip case. Commercial grade fiberglass co-linear ASP-680A. Factory tuned for 2M. List \$105.00, 1 year old, \$50.00. WB9SZQ, T. Menzel, 1971 W. Mill, Milwaukee, WI 53209.

SIDESWIPER only \$13. Airmailed USA. Kungs-import, Box 257, Kungsbacka, Sweden.

FOR SALE: Lampkin 107c Generator. 1 year old, mint condition. Original cost \$3,000. Make an offer. Pete Hons, Portage, Pa. 15946. 814-736-3883.

RTTY DEMODULATORS — Immediate delivery. New ST-5's with auto-start and AK-1 AFSK audio oscillator, \$185 or \$25 and balance UPS COD, David Tancig, 618 W. White St., Cham-paign, III. 61820.

1 KW. LINEAR (continuous duty amplifier) custom manufactured compact with heavy duty power supply used once, excellent like new - \$195 (ship UPS 50 lb.) OUNG, 210 Richardson Ave.. San Francisco, CA 94123.

HAM RADIO HORIZONS, a super new maga-zine for the Beginner, the Novice and anyone interested in Amateur Radio . . . What it's all about, How to get started, The fun of ham radio. It's all here and just \$10.00 per year. HURRY! HURRY! Ham Radio HORIZONS, Greenville, NH 03048.

EXCLUSIVELY HAM TELETYPE 22nd year, RTTY Journal, articles, news, DX, VHF, classi-fied ads. Sample 35c. \$3.50 per year. Box 837, Royal Oak, Michigan 48068.

UHF 4 CHANNEL POCKET SCANNER (Tea-berry). Mint cond. \$60. WB8MRC, R. Koetsier, 959 Charlotte, Grand Rapids, MI 49504. 616-UHF 4 453-8434.

FREE CATALOG. Calculators, digital thermo-meters, ultrasonics, kits, strobes, ni-cads, LEDS, transistors, IC's, unique components. Chaney's, Box 27038, Denver, Colo. 80227.

#### SUPER CALCULATOR VALUE!



New Calculators made by one of the largest calculator manufacturers (their name has been removed so that we can offer these at this low, low price).

- **Check These Quality Features**

- Full 8 digit capacity All 4 functions plus constant (K) switch Floating or 2, 3, 4 decimal pt. set switch Clear last entry key Automatic display time out to conserve
- battery Indicator for input greater than 8 digits Indicator for answer greater than

- Indicator for entry condition digits Indicator for low battery condition Quality aluminum keyboard with tactile feedback buttons Size approx.  $6'' \ge 3\frac{1}{2}'' \ge 1\frac{3}{4}''$ . White case with black trim.

These were originally designed to operate from six AA size nicad batteries, however, they were removed by the manufacturer before we purchased them. It's up to you to power the calculator — there is room in the battery compartment to wire pen-light batteries in or use a small trans-former and rectifier to make a handy desk calculator.

Please include \$1.00 for shipping. AA size nicads (used - excellent con-dition) 59¢ ea.



P. O. Box 27038 • Denver, Colorado 80227 303-973-1052

Send for our free catalog listing hundreds of bar-gains on nicads, IC's, transistors, digital ther-mometers, clocks, ultrasonics, strobe lights, kits, crystals, resistors, capacitors, etc.

NEW STUFF WHF SIGNAL GENERATOR microdot Model 412 FM Signal Generator, 400-550 MHz. Digital read-out. Stability .0006%/hour, 1,µV-1V, 50 ohm ±1d8. Absolutely Top Drawer. With manuals, complete. Write for complete specs. \$650.00. HP UHF Noise Source with modulator, Model HO1-349A. \$500.

#### MIXED VALUES. **DISC CERAMIC CAPACITORS** \$5.00/LB. PPD. IN U.S.A.

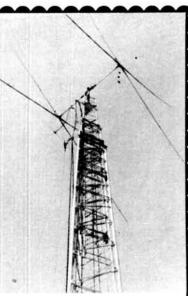
If you don't like the pound you get — call or write and we'll send another pound FREE. (And you keep the first pound.)

.7-9pF Glass Piston Trimmer, JFD, VC-1 \$2.25 ea 10 for \$1.75 ea 4.7 MFD/10V Sprague 158D \$7.50/Hundred

COLLINS 635V-1 Bandpass filter, 2-29.999 MHz, tunes in 1 kc increments. Sharply selective filter w/integral linear RF amps \$175.00



Great Repeater Receiver. 215-265 MHz Plug in front-end & video unit with BW  $1.5 \ \text{KC} = 1$  MC built-in deviation meter. Defense Electronics Model TMR-5A. Only 1 in stock. SPECIAL \$215.00




RVCR 2 to 30 MHz depending on the plug-in front end, Provision for XTAL control. Makes a fine single-channel H.F. RCVR. \$125.00 100 kHz solid state standard frequency oscillator. Complete in oven. Size: 41/4" x 2" x 11/2". James Knight's part #JKT0-23. Octal plug-in. Hermetically sealed. \$25.00 WE ARE BUYERS as well as sellers. What have you? We don't have a catalog, by the time we'd publish it the merchandise would be gone.

DISC-CAP, 19075 BRAEMORE RD. NORTHRIDGE, CA. 91326 213-360-3387

| 7400N TTL Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FAIRCHILD TECHNOLOGY KITS FAIRCHILD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DPDT ANT 1 200 10-20 3400 MINIATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SN7400H         16         SN7450A         25           SN7401N         16         SN7450A         25           SN7401N         16         SN7450A         25           SN7401N         15         SN7450A         25           SN7402N         15         SN7450A         50           SN7403N         16         SN7477N         35           SN7403N         16         SN7477N         39           SN7403N         16         SN7477N         35           SN7403N         24         SN747N         35           SN7406N         24         SN747N         39           SN7406N         29         SN747N         30           SN7406N         29         SN747N         30           SN7406N         29         SN747N         30           SN7406N         29         SN747N         30           SN7406N         25         SN747N         30           SN7406N         25         SN747N         30           SN7406N         25         SN747N         30           SN7406N         25         SN746N         10           SN7406N         25         SN746N         11                                                                                 | • Complete Specifications on back of each kit<br>• Packaged for WALL DISPLAY APPEARANCE<br>• Dealer's Inquires Invited — Price List Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On         Orf         On         22         2 55         2 55         1 27         1 20           Image: I                                                                                                                    |
| SN74100         18         SN74100         18         SN74100         17.55           SN74110         30         SN7463M         70         SN74100         5.00           SN74120         33         SN7463M         89         SN741370         5.00           SN74120         33         SN7463M         89         SN741370         2.10           SN74134         45         SN7464M         35         SN74170         1.86           SN74134         70         SN7464M         3.59         SN74170         1.50           SN74134         70         SN7464M         3.59         SN74170         1.50           SN74170         55         SN7464M         75         SN74170         1.60           SN74270         33         SN7421M         75         SN74170         1.60           SN74270         33         SN7423M         49         SN74170         00           SN74228         49         SN7433M         49         SN74161N         2.49           SN74228         37         SN7424M         49         SN74161N         2.49                                                                                                           | Fix0001         0.5 High Common Cathods Digit         51 00<br>1 500         Fix0001         0.9 -Element Tare Reade Array         16 00<br>15 00           F1X0002         0.5 High Common Cathods Digit         1 00         F170041         12 -Element Cathods Paget         4 00           F1X0003         0.5 High Common Cathods Digit         1 00         F170041         12 -Element Cathods Paget         4 00           F1X0003         0.8 High Common Andre Digit         2 00         F170050         3 General Purpose Opto Couplers         1 00           F1X0005         0.8 High Common Andre Digit         2 00         F1X0050         3 General Purpose Opto Couplers         1 00           F1X0010         12 Hour, 31 0pt Ock Disptay         7 00         M005 CuOK CIRCUTS         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monte Marce Law PB-123 \$1.75<br>Marce Marce Law Active Marc |
| Shr7425H         29         Shr7495H         79         Shr74182N         95           Shr7427H         29         Shr7497H         4.00         Shr74182N         155           Shr7427H         37         Shr7497H         4.00         Shr74182N         2.5           Shr7427H         37         Shr7497H         4.00         Shr74182N         2.5           Shr7430H         26         Shr74107N         39         Shr74187N         6.00           Shr7432H         27         Shr74107N         39         Shr74187N         6.00           Shr7432H         31         Shr74127N         39         Shr74190N         1.05           Shr7432H         27         Shr74127N         39         Shr74190N         1.25           Shr7432H         27         Shr74122N         50         Shr74192N         1.25           Shr7432H         27         Shr74122N         60         Shr74192N         1.25           Shr7432H         15         Shr74122N         60         Shr74192N         89           Shr7432H         15         Shr74122N         60         Shr74192N         89                                                             | LED LAMPS         FTX0400         Digital Cock/Calendar Cocut         7.00           FTX0021         10 Ret LED Lamps         1.00         FTX0471         Protein Cock/Lamps         7.00           FTX0022         10 LED Mounting Cale         1.00         FTX0471         Digital Cock/Calendar with BCD         7.00           FTX0021         10 LED Mounting Cale         1.00         FTX0420         Dired LED Cock/Calendar with BCD         7.00           FTX0022         10 LED Mounting Cale         1.00         FTX0420         Dired Dire Dired Dired Dired (FMX170)         5.00           FTX0030         FTX0403         S Round Lene Rhote Transistors         1.00         FTX0403         Dired Dire Dired Dired Dired Dired (FMX18170)         5.00           FTX00303         S Round Lene Rhote Transistors         1.00         FTX0403         Dired Dire Dired Dired Dired Dired Dired Dired Dired (FMX18170)         5.00           FTX00303         S Round Lene Rhote Transistors         1.00         Dired Dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: State                      |
| SN7441N         89         SN74132N         1.09         SN74198N         1.25           SN7442N         59         SN74143N         1.5         SN74198N         7.5           SN7444N         75         SN74141N         1.15         SN74198N         1.25           SN7444N         75         SN74141N         1.5         SN74198N         1.75           SN7444N         75         SN74141N         4.50         SN74198N         1.75           SN7444N         75         SN74141N         4.50         SN74198N         1.75           SN7444N         76         SN74142N         4.50         SN74198N         1.55           SN7444N         79         SN74147N         4.50         SN74198N         1.55           SN7444N         79         SN74147N         2.35         SN7427NN         59           SN7445N         79         SN74147N         2.15         SN7427NN         59           SN7445N         26         SN74148N         1.00         SN7427NN         50           SN7453N         27         SN74148N         1.00         SN7428NN         6.00           SN7453N         27         SN74151N         77         SN7428NN | FTX0033         3 Round Lens Photo Duringtons         1.00         FTX0106         Automobile Clock Kit         40.00           1000         Red         1.031         FTX0106         Automobile Clock Kit         40.00           1000         Red         1.031         FTX0106         Automobile Clock Kit         40.00           1000         Red         1.031         FTX0106         Automobile Clock Kit         40.00           10209         Red         1.031         FTX0106         Automobile Clock Kit         40.00           10209         Red         1.031         KC209         FTX0106         Automobile Clock Kit         40.00           10209         Red         1.031         KC209         FTX0106         Automobile Clock Kit         40.00           1011         FTX0106         Automobile Clock Kit         40.00         45.11         FTX0106           10209         FTX0106         Automobile Clock Kit         40.00         45.11         FTX0106           10209         FTX0106         Automobile Clock Kit         40.00         45.11         FTX0106           10001         KC206         Red         10.051         KC206         Red         10.051         KC206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACCESSORIES<br>The Accessories<br>State State |
| SN7454N         20         SN74153N         99         SN72687N         75           MAYO 0THERS AVAILABLE ON REQUEST<br>20% Discount for 100 Combined 7400's         75           CD4000         25         CMOS S         74204N         75           CD4000         25         CMOS S         74204N         85           CD4000         25         CM0435         1.85         74(20N         85           CD4000         2.50         CD4040         2.45         74(20N         85           CD4009         25         CD4042         1.90         74(20N         85           CD4009         25         CD4042         1.90         74(20N         85           CD4009         59         CD4044         1.50         74(27N         1.50           CD4009         59         CD4045         1.50         74(27N         1.50                                                                                                                                                                                                                                                                                                                               | XC22         Green         4-31         XC356         Green         4-31         XC356         Green         7-31         6-51           XC22         Orange         4-31         XC356         Tellow         4-31         XC356         Tellow         7-31         red         1-2           XC22         Orange         4-31         XC356         Tellow         4-31         XC356         Tellow         7-31         red         1-2           XC22         Orange         4-31         XC356         Drange         4-31         XC356         Orange         7-31         red         1-2           SL-22         Orange         4-31         XC356         Drange         4-31         XC356         Orange         7-31         red         1-2           SL-22         Orange         4-31         XC356         Drange         4-31         XC356         Drange         7-31         6-31           DL707         DISPLAY         LEDS         DL308         DL308         DL308         DL308         DL308         DL308         DL308         DL308         DL306         T7-31         5-31         7-31         7-31         7-31         7-31         7-31         7-31         7-31 <td>S1.95</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D04011         25         CD4047         2.75         74(080N         3.00           CD4012         25         CD4049         79         74(08N)         2.00           CD4013         47         CD4050         79         74(017N)         1.25           CD4016         56         CD4016         79         74(017N)         1.25           CD4017         1.35         CD4016         2.90         74(0151)         2.90           CD4017         1.35         CD4060         3.25         74(0151)         2.90           CD4016         3.55         CD4066         3.25         74(0151)         3.15           CD4017         3.55         CD4066         1.75         74(018)         3.15           CD4021         2.55         CD4067         45         74(016)         3.00           CD4022         2.55         CD4087         45         74(016)         3.00           CD4024         1.50         CD4081         45         74(016)         3.26           CD4022         2.55         CD4081         45         74(016)         3.26           CD4022         2.55         CD4081         45         74(016)         3.26                      | MAN 1         Common Anode         270         2.95         MAN 3620         Common Anode mange         300         1.75           MAN 2         S x 7 Doft Marin         300         4.95         MAN 31640         Common Cathode mange         300         1.75           MAN 3         Common Cathode         125         3.9         MAN 4710         Common Anode m61         300         1.95           MAN 4         Common Cathode         187         155         D1.704         Common Cathode m300         300         1.95           MAN 4         Common Anode m04         1.87         D1.74         Common Cathode m300         300         1.95           MAN 7         Common Anode m04         1.95         D1.704         Common Cathode m300         300         1.95           MAN 7         Common Anode m04         1.05         D1.704         Common Anode m300         1.95           MAN 7         Common Anode other m1         300         1.95         D1.737         Common Anode m300         1.95           MAN 17         Common Anode other m300         1.75         D1.747         Common Anode m300         2.95           MAN 182         Common Anode other m4         300         1.75         D1.730         Common Cathode m300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CD4027         59         CD4518         2.50         74c193         2.75           CD4029         1.65         CD4566         3.00         74c195         2.75           CD4029         2.90         74c00N         39         Mc14016         36           CD4030         65         74c02N         35         MC14016         36           LM030H         35         LINEAR         LM1310N         1.65           LM030H         35         LINEAR         LM131N         1.65           LM030H         35         LINEAR         LM1450N         65           LM030H         35         LINEAR         LM1450N         65           LM030H         35         LINEAR         LM1450N         65           LM030H         35         LM1450N         95         65                                                                                                                                                                                                                                                                                                                                                                                             | MAN 82<br>MAN 84         Common Acade yellow         300         175         FNDS03<br>FNDS03         Common Cathode         500         1.00           MAN 84         Common Cathode yellow         300         1.75         FNDS03         Common Cathode         500         1.00           IC SOLDERTAIL — LOW PROFILE (TIN) SOCKETS           1.24         25-49         50 100         1.24         25-49         50 100           8 pm         171         16         15         50 100         28 pm         53 8 37         36           14 pn         20         19         18         50.2         28 pm         45         44         43           15 pn         22         21         20         35         50         50         50         50           18 pm         29         28         27         26         59         56         52         61           22 pin         37         36         35         SOLDERTAIL STANDARD (TIN)         50         52         61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INT22         5.6         400m         4.1100         1144007         1000 PP1 14MP         1011 00           INT23         6.6         400m         4.1100         1154005         200m         6.100           INT23         6.8         400m         4.1100         1154005         200m         6.100           INT53         6.8         400m         4.1100         1144145         75         10m         15.1100           INSE28         15         400m         4.1100         1144155         155         1101         12.1100           INSE29         5.6         500m         2.8         114725         5.6         122         100         114415         12.1100           INSE29         5.6         500m         2.8         114725         5.6         122         100         12.1100         114415         12.1100         1147415         114725         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415         12.1100         1147415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LM309H         36         LM373N         3.25         LM356V         1.85           LM307CN         35         LM37N         4.00         LM211N         1.95           LM308H         1.00         LM306N         1.39         LM306N         2.95           LM308H         1.00         LM306N         1.91         LM306N         50           LM308H         1.00         LM306N         1.91         LM306N         50           LM308H         1.00         LM306N         1.91         LM306N         50           LM308H         1.01         LM306N         1.95         LM306N         1.91           LM308H         1.01         LM306N         1.91         1.00         LM306N         1.25           LM308H         1.91         1.01         LM311H         1.00         LM306N         1.25           LM311H         30         NE530F         6.00         LM5559H         1.00           LM316N         1.30         NE536F         6.00         LM7558H         90           LM316N         1.30         NE536F         6.00         LM7558H         1.25                                                                                       | 14 pm         5 27         25         24         100         28 pm         5 99         90         81           16 pm         30         27         25         24         100         36 pm         1 39         1 26         1 15           38 pm         1 39         1 26         1 15         36 pm         1 39         1 26         1 15           24 pm         49         45         42         1 30         1 45         1 30           SOLDERTAIL STANDARD (GOLD)           8 pm         5 30         27         24         1 10         100         90           16 pm         35         32         29         1 10         100         90         1 76         1 36         1 76           18 pm         5.2         47         43         40         90         1 75         1 40         1 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Interests         100         101         61.100         111183         50.PW         35.AMP         1.60           1M4001         50.9PV         1.400         11.00         11.01         1.70           1M4002         100 PW         1.400         12.100         11.1114         150.PW         3.5MP         1.50           1M4003         200 PW         1.4MP         12.100         11.116         150.PW         3.5MP         1.80           1M4003         400 PW         1.4MP         12.100         11.116         100.PW         3.5MP         3.00           SCR AND FW BRIDGE RECTIFIERS           C360         15.4%         400 PV         5.5P         1.95           C360         15.4%         000V         5.5P         1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LM200+5 135 NE550N 79 80388 4.95<br>LM200+52 135 NE550V 79 LM7545 49<br>LM200+72 135 NE550F 79 LM7545 49<br>LM200+75 135 NE561B 5.00 75451CN 39<br>LM200+75 157 NE561B 5.00 75452CN 39<br>LM200+75 175 NE562B 5.00 75452CN 39<br>LM200+72 175 NE5654 125 75454CN 39<br>LM200+72 175 NE5654 125 75454CN 89<br>LM200+75 175 NE566N 125 75454CN 89<br>LM200+75 175 NE567H 136 75494CN 89<br>LM200+75 15 75 NE567H 136 75494CN 89<br>LM200+75 15 75 NE567H 136 75494CN 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WIRE WRAP SOCKETS (GOLD) LEVEL #3           10 pin         \$45         41         37         24 pin         \$105         95         85           14 pin         39         38         37         28 pin         140         125         110           15 pin         43         42         41         36 pin         159         145         130           16 pin         55         68         62         40 pin         175         155         140           LILID         WIRE WRAP TOOL         Part Number K50 30         \$5.95         68           COLSPAN= WIRE WRAP TOOL         Part Number K50 30         \$5.95         68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20228         1.64.@ 200V         SCR         50           MDA 980-3         25A@ 200V         PW BRIDGE REC.         1.95           MDA 980-3         25A@ 200V         PW BRIDGE REC.         1.95           MPS 480-551         25A@ 200V         PW BRIDGE REC.         1.95           MPS 480-551         0         TRANSISTORS         PH4/49         451.00           MPS 480-514         311.00         PH3064         314.00         344.00         451.00           202271         431.00         PH3064         431.00         344.00         451.00         344.00         451.00           2022724         531.00         PH3064         531.00         244.01         451.00         344.00         451.00           202704         531.00         240.70         531.00         244.01         451.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00         351.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LMC2017-24 175 LM/100CN 45 CA013 215<br>LMC2017-5 9.55 LM/109H 29 CA0332 2.56<br>LMC324N 180 LM/109H 29 CA035 2.48<br>LMC30H 170 LM/10N 79 CA035 9.135<br>LMC40N-5 1.55 LM/11N 19 CA0364 1.30<br>LMC40N-6 1.55 LM/71N 19 CA0364 1.30<br>LMC40N-6 1.55 LM/72H 55 CA0369 3.25<br>LMC40N-6 1.55 LM/73N 1.00 CA0360 85<br>LMC40N-15 1.55 LM/73N 1.00 CA0360 2.00<br>LMC40N-6 1.55 LM/73N 1.00 CA0360 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image: Second                                                                   | TRUTING         C41 00         TRUTING         S51 00         TRUCHS         441 00           TRUCHS         C41 00         TRUTING         S51 00         TRUCHS         441 00           TRUCHS         C41 00         TRUTING         S51 00         TRUCHS         441 00           TRUCHS         C41 00         TRUTING         S51 00         TRUCHS         541 00           TRUCHS         S51 00         TRUTING         S51 00         TRUTING         S51 00         TRUTING         S51 00           TRUCHS         S51 00         TRUTING         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LMX4067-24 1.95 LM741CN 35 CA3063 1.60<br>LMX4075 1.75 LM74114N 39 CA3066 85<br>LMX407-6 1.75 LM747H 79 CA3069 3.75<br>LMX407-8 1.75 LM747H 79 CA3091 10.20<br>LMX407-12 1.75 LM748H 39 CA3123 2.15<br>LMX407-15 1.75 LM748H 39 CA3130 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 AWG - 25 ft. min \$2.10 50 ft \$2.75 100 ft \$3.50 1000 ft \$24.00<br>SPECIFY COLOR White - Yellow - Red - Green - Blue - Black<br>50 PCS. RESISTOR ASSORTMENTS \$1.75 PER ASST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAPACITOR 50 VOLT CERAMIC<br>DISC CAPACITORS<br>19 10-49 50 100 1-9 10-49 50 100<br>10 pt 05 04 00 001pF 05 04 005<br>27 pt 05 04 00 001pF 05 04 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LMI3407-18         1.75         LM1303N         90         CA3140         1.25           LMI3407-24         1.75         LM1304N         1.19         CA3060         1.75           LMI36N         1.00         LM1304N         1.00         CA1140         1.25           LMI36N         1.00         LM1304N         1.19         CA3060         1.75           LMI36N         1.00         LM1305N         1.40         RC1194         5.195           LMI351CN         65         LMQ107N         85         RC4195         3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 0HM 12 0HM 13 0HM 18 0HM 22 0HM<br>ASST, 1 5 ta 27 0HM 33 0HM 29 0HM 47 0HM 56 0HM 1/4 WATT 5% - 50 PCS<br>66 0HM 82 0HM 10 0HM 120 0HM 150 0HM 150 0HM<br>ASST, 2 5 ta 180 0HM 220 0HM 270 0HM 330 0HM 390 0HM 1/4 WATT 5% - 59 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47 pr 05 04 03 01 µF 05 04 035<br>100 pr 05 04 03 02 µF 05 05 04<br>220 pr 05 04 03 04 74 F 06 05 04<br>470 pr 05 04 035 14 F 12 09 075<br>109 v01 m14 AF FLM CAPACITORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 74L502         39         74L500         I         I         74L513         159           74L503         39         74L574         65         742513         169           74L504         45         74L575         79         74L5157         155           74L505         45         74L576         65         7425157         155           74L506         45         74L576         65         74L5162         225           74L508         39         74L506         219         74L5163         225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 470 OHM 560 OHM 680 OHM 820 OHM 1K<br>ASST, 3 5 41 7.4 WATT 5% 5 67 6 8K<br>ASST, 4 5 45, 8 7.4 15K 17K 5 67 6 8K<br>ASST, 4 5 45, 8 7.4 11K 17K 15K 18K 1/4 WATT 5% 5 9 PCS.<br>225 27K 30K 39K 47K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 001ml         12         10         07         022ml         13         11         08           0022         12         10         07         047ml         21         13         13           0047ml         12         10         07         047ml         21         13         13           01ml         12         10         07         fml         27         23         17           01ml         12         10         07         tml         27         23         17           01ml         12         10         07         tml         37         27         22           + Tork         01ml         0.07         tatmatules         (SOL0)         CAPACTORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 741.510         39         744.586         2.49         741.5164         2.75           741.513         79         744.586         65         744.5175         1.96           741.514         2.19         744.590         1.25         741.5175         1.96           741.512         3.99         744.590         1.25         741.5180         2.69           741.526         39         744.592         1.25         741.5190         2.65           741.526         49         744.532         1.25         741.5190         2.65           741.527         45         744.539         1.25         741.5190         2.65           741.527         45         744.539         1.25         741.5191         2.65           741.527         45         744.539         1.25         741.5191         2.65                                                                                                                                                                                                                                                                                                                                                    | ASST, 5 5 ea 56k 80k 82k 100k 120k 14 WATT 5% 50 PCS.<br>150k 100k 220k 270k 330k<br>ASST, 6 5 ea 390k 470k 560k 680k 820k 1/4 WATT 5% 50 PCS.<br>10k 1.2W 15W 15W 2.2W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.35V         28         23         17         2.225V         31         27         22           22.05V         28         23         17         3.325V         31         27         22           33.35V         28         23         17         4.762V         31         27         22           47.75V         28         23         17         4.762V         32         28         23           47.75V         28         23         17         6.872V         36         31         25           68.05V         28         23         17         10.25V         40         35         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 74L528         49         74L536         1.89         74L5107         2.85           74L530         39         74L5107         65         74L5194         2.25           74L532         45         74L5109         665         74L5194         2.25           74L532         45         74L5109         65         74L5195         2.25           74L534         49         74L5102         65         74L5251         1.89           74L535         39         74L512         1.55         74L5255         1.89           74L535         39         74L512         1.55         74L5279         79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASST. 7 5 44 2 7M 3 3M 3 9M 4 7M 5 6M 1/4 WATT 5% 50PCS.<br>ASST. 8R Includes Resistor Assortments 1-7 (350 PCS.) \$10.95 ea.<br>55.00 Minimum Order — U.S. Funds Doly<br>See Sheets - See - Seed 24e Stamp for 1977 Catalog<br>Children Manihum Dealer - U.S. Funds Doly<br>Dealer Officient Analytics - See The Second S                                | 10,35V 28 23 17 15,25V 63 50 40<br>minintrute Aumount ELECTROTIFIC CAPACTORS<br>Actal Lead<br>47/50V 15 13 10 47/52V 15 13 10<br>10,56V 15 13 10 10,16V 15 13 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ML335         JP         Fitter 183         1.89         74L6270         5.95           74L573         66         74L533         1.89         74L6270         5.96           MMS309         6         Digt, BCD Outputs, Reset PN         59         59           MMS309         6         Digt, BCD Outputs, Reset PN         59         59           MMS314         6         Digt, BCD Outputs, T.97         Outputs         455           MMS314         6         Digt, T.207         74 Hour, S.97         495           MMS314         6         Digt, L207         197         00 rold         6.95           MMS316         4         Digt, L207         197         00 rold         6.95           MMS316         4         Digt, L207         197         197         197           MMS316         4         Digt, L207         197         197         197           MMS316         0 Digt, L206         First With MMS41         9.85         197           MMS317         Veter Diock Ohn, For Lise With MMS41         9.85         197         198         198                                                                                      | California Residents – Adé 8% Sales Tax Dealer Discount Available – Request Pricing<br>Dealer Discount Available – | 4         725V         16         14         12         10,25V         16         14         11           10,55V         15         13         10         10,55V         16         14         11           10,55V         16         14         12         4,716V         15         13         10           22,55V         17         15         12         4,756V         15         13         10           22,55V         24         20         18         4,756V         16         14         11           47,55V         19         17         15         10,1025V         15         13         10           47,56V         25         21         19         10,25V         15         13         10           100,55V         24         20         18         10,55V         15         13         10           100,55V         24         20         18         10,55V         16         14         12           100,55V         35         30         28         47,56V         16         14         12           100,55V         32         28         50,0016V         19         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7400 DATA HANDBOOKS<br>7400 Pin-out & Description of 5400/7400 ICS \$2.95<br>CMOS Pin-out & Description of 4000 Series ICS \$2.95<br>Linear Pin-out & Founctional Description<br>ALL THREE HANDBOOKS \$6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1021-A HOWARD AVE., SAN CARLOS, CA. 94070<br>PHONE ORDERS WELCOME — (415) 592-8097<br>All Advertised Prices Good Thru January                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2003/97 45 41 18 100/279 24 20 18<br>470/279 133 29 27 100/507 35 30 28<br>1000/169 55 50 45 220/169 23 17 16<br>2200/169 70 62 55 470/259 31 28 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

•



#### The popular CUA 64-12 by Heights

Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA **IS PUTTING** IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX -SIGNALS EARLIEST IN AND LAST OUT.

#### ALUMINUM

**Complete Telescoping** and Fold-Over Series available

Self-Supporting

Easy to Assemble and Erect

All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving doz-ens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS

#### HEIGHTS MANUFACTURING CO.

In Almont Heights Industrial Park Almont, Michigan 48003

# flea market

#### **Coming Events**

LAPORTE WINTER HAMFEST — The LaPorte, Indiana, ARC will hold its Winter Hamfest on the 27th of February, 1977, beginning at 8 a.m. (Chicago time) at the LaPorte Civic Auditorium. Good food, plenty of FREE tables, 50 miles East of Chicago. Talk-in on 01-61 and 94. Donation \$2.00 at the gate. Informa-tion from LPARC, P. O. Box 30, LaPorte, IN. 46250. 46350.

THE CHERRYLAND AMATEUR RADIO CLUB will hold its 4th Annual Swap 'n Shop, Sat-urday, February 12, from 9 a.m. to 4 p.m. at the Northwestern Michigan College in Traverse City. A donation of \$1 includes a chance on all prizes. Plenty of free display tables for whatever you may wish to bring in elec-tronic equipment and parts. Everyone is wel-come and a turnout of over 300 Hams and experimenters is expected. For more informa-tion contact Bill Mader, WA8WWM, at (616) 326-6392 or Box 2, Empire AFS, Mich. 49630.

MANSFIELD MID-WINTER HAMFEST AUCTION, February 6, 1977, Richard County Fairgrounds, Mansfield, Ohio. Prizes, flea market, auction. Doors open 8 a.m., talk-in 146.34/94, S2/52. Tickets \$1.50 in advance, \$2.00 at the door. Contact Harry Frietchen, K8JPF, 120 Home-wood, Mansfield, Ohio 44906. 419-529-2801 or 419-524-1441.

W6LS 12th Los Angeles Amateur Radio Con-vention. Saturday and Sunday, May 21 & 22. 2814 Empire Avenue, Burbank, CA 91605.

2814 Empire Avenue, Burbank, CA 91605.
 NEW HAMPSHIRE QSO PARTY, sponsored by the Concord Brasspounders, Inc., WIOC, to promote Worked New Hampshire Award.
 2000Z Feb. 12 to 0500Z Feb. 13, and 1400Z Feb. 13 to 0200Z Feb. 14. Stations may be worked once per band mode. N. H. stations may work each other. N. H. stations send RS(T) and county. Out-of-state stations send RS(T), ARRL section or country. N. H. stations score 1 point per QSO, times the no. of ARRL sections plus countries plus N. H. counties. Others score 5 points per N. H. QSO, times the no. of N. H. counties. Suggested frequen-cies are: CW — 1810, 3555, 7055, 14055, 21055, 28130; Phone — 1820, 3933, 3975, FM Simplex (No Repeaters). Awards: Top-scorer in each N. H. county, and top scorer in each state, province, and country (50 points minimum). Certificate available for confirmation of all 10 N. H. counties. Send logs, summary and check sheets to: Concord Brasspounders, Inc., C. Halloway, 9 Via Tran-quila, Concord, N. H. 03301 by March 14, 1977. Include business-size SASE for results and/or award.

THE 5TH ANNUAL MIDWINTER SWAPFEST of the West Allis Radio Amateur Club will be Saturday, January 22, 1977 starting at 8 a.m. at the Waukesha County Expo Center, Tickets: \$1.50 advanced, \$2.00 at door, Reserved tables by advanced reservation only \$1.50 per 4 ft. table. Non-reserved tables first come, first served, Talk-in on 146.52 MHz, Directions: I-94 to Waukesha Co. F, south to FT, west to Expo. For information and tickets write: WARAC, P. O. Box 1072, Milwaukee, WI 53201.

IOWA: Davenport Radio Amateur Club Hamfest is Sunday, Feb. 27, 1977 at the Masonic Temple in Davenport, Ia. Admission is \$1.50 advance, \$2.00 at door. Talk in on 28.488 and 52. Refreshments and tables available. For tickets send S.A.S.E. to Dick Lane, WAØGXC, 116 Park Ave., So. Eldridge, Ia. 52748.

#### Stolen Equipment

ICOM 22S, SN 0017: Has total of nineteen channels programmed in first 20 positions, no channel 19. All above 15 are 147 meg. Stolen from: Ken Keyte, WØTGL, 303-598-7097. 3812 Windsor Ave., Colo. Springs, Colo. 80907.

STOLEN from locked car in Chicago, IL October 19, 1976, one Motorola Metrum II 25W, Ser. #C 064, one Motorola HT 220 series H23 FFN, serial #TP1174C. Please contact Robert L. Scott, WB9BVT, 200 W. Chicago Ave., Oak Park, IL 60302.

STOLEN from Ross Distributing Co., 26 So. State, Preston, Idaho 83263 on 10-18-76 in unopened carton, one Kenwood TS-700A, Serial #414264.

#### DON & BOB'S SUPER BUYS

Check These Super Buys! Call for Items Not Listed

100/100 FT SALE Hy Gain 18AVT/WB + 100 ft RG8U 100 CDE Big Talk + 100 ft rotor cable 100 KLM KR400 Rotor + 100 ft rotor cable 100

WIRE, ETC. Premax heavy-duty 4 ft ground rod + clamp \$4.00 Consolidated antenna wire: #14 stranded \$5.00/100 ft. #12 stranded \$8.00/100 ft. #22 GA phosbronze longwire antenna wire \$2.50/1000 ft. SEALED CARTONS Raytheon 811A \$15.00/ pair 572B/TI60L \$21.95.

pair 5/28/1100L \$21.95. **CALL US** TS520, TS700A, Atlas 210X, ETO. All in sealed cartons. **EXTRAS** 5 ea,  $\frac{1}{4}$ " shaft knobs for panel. Very nice \$1.00/5. Rubber feet  $30 \notin 5$ . Buss AGC3 fuse 5¢. CDE .001/10KV door-knob cap \$1.95. Mallory 2.5A/1000PIV epoxy diode 19¢ ea.

COAX Belden coax: RG8U 8237 19¢ ft. 8214 RG8 foam 23¢ ft. 9888 double shield 8214 foam (suitable for direct burying) 35¢ ft. 8214 white jacket 29¢ ft. 8210 72 ohm kw twinlead \$19.00/C. Amphenol PL259 59¢. UG175 19¢.

CDE Ham-2 \$129.00. CD44 \$104.00. AR-22XL \$50.00. Belden 8 wire rotor cable 14¢ ft.

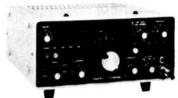
ELECTRA Bearcat 101 UHF/VHF \$289.00 (sealed)

SUPER PRICES Multi 7, II. Call for quote on Tempo 2020, TS820.

All Prices FOB Houston. Quotes Good 30 Days. All Items Guaranteed. Call Us!

#### MADISON ELECTRONICS SUPPLY, INC.

1508 McKinney 713/658-0268


Houston, Texas 77002 Nites 713/497-5683



You can really "ham" it up with our great line of transceivers!

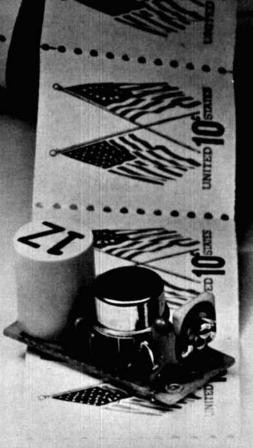


The TS-520 SKENWOOD \$629. Transceiver. Solid state 80 thru 10 meters.



The FT-620B YAESU Transceiver \$449. Solid state 6 meters SSB.

CTC · UHF/VHF POWER TRANSISTORS FOR AMATEUR USE J101 UNDERWOOD CAPACITORS


Order Direct 1. Check or M.O. with order Order Direct 2. Bank Americard or Mastercharge 3 E-Z Ways 3. C.O.D. (20% deposit, please) FREE brochures and particulars on all models



## **ME-3** microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in



\$29.95 each

Wired and tested, complete with K-1 element Communication/ /pecialist/ P. O. BOX 153 BREA, CALIFORNIA 92621 (714) 998-3021 K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS \$3.00 each





master charge

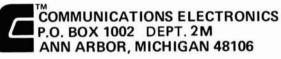
BANKAMERICARD

strong her

## MOTOROLA OWNERS

#### 400 CHANNEL HT-220 SYNTHESIZER

If you had to purchase 400 transmit and 400 receive crystals from Motorola, you could spend \$14.00 each or \$11,200.00. But from Communications Electronics, you can get our CE2001, 2 meter synthesizer module and totally eliminate expensive crystals. Originally designed by WA4DSY and greatly improved by The Portable Clinic, the CE2001 frequency synthesizer module will give you complete 2 meter coverage from 146.000 MHz to 147.995 MHz in 5 KHz steps including built in repeater offsets of plus or minus 600 KHz, and simplex operation. Spurious outputs over 45 DB down and frequency stability better than 0.002%. Not a kit, but a complete synthesizer module specifically designed for your Motorola omni PL length HT-220 transceiver. We offer you a


completely wired synthesizer mounted in an omni frame and a back cover with the frequency selection switches installed for only \$299.95. Extensive detailed installation instructions make our synthesizer module easy to install, but if you prefer, CE will install it on your working omni PL length 1.8 watt HT220 for \$149.95 more. We can modify any VHF HT220 for our synthesizer and give you a 30 day guarantee. To order your completely wired & tested synthesizer module, call our toll free U.S.A. 24 hour order & information line 800-521-4414. Outside U.S.A. & Michigan 24 hour phone (313) 994-4441. Money order or charge card on mail orders for immediate shipment. Dealer inquiries invited. Michigan residents add tax. Foreign orders invited. For engineering advice, call after 6:00 P.M. E.S.T.

Toll free U.S.A. 24 hour order & information line 800-521-4414. Outside U.S.A. & Michigan 24 hour phone 313-994-4441. Certified check or charge card on mail orders for immediate shipment. Dealer inquiries invited. Michigan residents add tax. Foreign orders invited. Call toll free or write for your free complete catalog & specifications. Satisfaction guaranteed or your money back. For engineering advice, call after 6:00 P.M. E.S.T.

ORLANDO

77

ORLANGO HAMCATION 77 ORLANDO HAMCATION 77



The 1977 Hamcation Committee

CALL TOLL FREE 800-521-4414 or 313-994-4441

#### proudly presents The ARRL SOUTHEASTERN 0B **DIVISION CONVENTION** and **ORLANDOHAMCATION 77 ORLANDOHAMCATION 77** The Greatest ORLANDO HAMFEST ever!! Plus.. The Southern Region ANTIQUE WIRELESS ASSO. Conv. 2 AT THE SHERATON'S TWIN TOWERS HOTEL & CONVENTION COMPLEX NEAR FLORIDA'S TURNPIKE & I-4 INTERSECTION FEBRUARY 11\*-12-13, 1977 SPECIAL ALERT !!!! To the first 25 who notifies us by mail of our goof in our full page ad in the December issue of QST, we will send to you a complimentary ticket to our Hamcation '77 Hamfest. Advance registration \$3, At door \$4, Swapfest table \$5, per day. For a complete Hamfest information package send a SASE to; Georgia Denman K4ZXS, 405 Enka Way Orlando Fla. 32811. Make all checks payable to 'The Orlando Amateur Radio Club' FOR HOTEL RESERVATIONS AND INFORMATION WRITE TO; SHERATON TWIN TOWERS, HOTEL, 5780 MAJOR BLVD. ORLANDO FLORIDA 32805. Rooms single \$28, double \$36 per day. \*SWAPFEST TABLES WILL BE AVAILABLE FRIDAY FEB. 11 AT 6PM SWAP AREA WILL BE OPEN FRIDAY NIGHT, No additional charge for Friday night required . ORLANDOHAMCATION 77 ORLANDOHAMCATION 77 ORLANDOHAMCATI



#### SPECIAL OF THE MONTH



SERVICE WAKE UP SERVICE used, just installed in the board. 1-LM309K, heat sink, 2-2N5137 5-2N3904, 2-7400, 7402, 1-7403, 3-7410, 1-7413, 2-7430, 9-7474, 1-7486, 1-74151, 1-74154, 1-4001. 2-741CT, 5-TIP29 & 30, 1-LM380 AN (14), 3-MDA942-1 Bridges, 1-555 Timer, 1-OnOff 10K Vol Con 1-Fuse Block with 1 A SloBto 1-4" Speaker 3. 2 Ohm 1 Watt, 1-Transformer 16V Pri 5V-12V 1-Thumbwheel Switch 2 Digit 12 Positions, 40 other Misc. Weight 4 lbs

USE FOR: 5V DC Power Supply Price: \$12.95

7400.18

7401.20

7402.20

7403.20

7404 . 20

7405.20

7406.39

7407.39

7408.20

7409.24

7410.20

7411.20

7412.24

7413.35

7414.70

7416.33

7417.33

7420.20

7422.50

7423.28

7425.24

7426.24

7427.24

7428.40

7429.40

7430.20

7432.28

7433.34

7437.28

7438.28

7439.36

7440.20

PRATURES

12 H

٢

Brightness Control Capel rm and Snoose T

Comport 3.0"x1.75"



Orders from Foreign countries add appropriate postage

VIDEO GAME KIT

More Details? CHECK-OFF Page 126

\$9.95

0.27 ChHt 0.187 ChHt

1.00

2/1.00

TIL 302

MAN4



#### VHF CONVERTERS UHF

RF Freq. (MHz) † IF Freq. † N.F. (typical) Nom. Gain

28-32 2.5dB 30dB \$44.95

MMc50

50.0

MMc144 144-148 28-32 2.8dB 30dB \$49.95 220-224 28-32 3.4dB 1296-1300 28-32 9.0dB 432-436 28-32 3 8dB 28dB \$59.95 20dB \$69.95 26dB \$54.95

MMc432

MMc129

MMc220



+Other ranges, amateur, commercial & scientific to order. Power 12V DC Low N.F. units on special order. Size 11/4" x 21/2" x 41/2" plus connectors. L.O. output option \$5.00 extra. Shipping: Converters \$2.50 each.

ANTENNAS 144-148 MHz Model 8XY/2M \$39.95

Gain 9.5dB in each plane, 50 feed. For OSCAR communications add Circular polarization harness, PMH/2C Also available for 2 meters: 8 over 8 J-Slot, Model D8/2M 8 by 8 vertical pol. D8/2M-vert. (See our ad, October 1976, for details of D8/2M)

\$9.70 \$39.95 \$48.70


420-450 MHz

48 element J-Beam MULTIBEAM Gain +15.7 dBd. Feed 50 coaxial. Model 70/MBM48 \$49.95

Shipping: Antennas FOB Concord, Mass. via UPS. Write direct for Polar plots, Gain & VSWR curves.

|                                                                 | for full line catalogue of<br>equipment requirements. |                                    | nounces | anu |
|-----------------------------------------------------------------|-------------------------------------------------------|------------------------------------|---------|-----|
| Pre-Selector Filters<br>Varactor Triplers<br>Decade Pre-Scalers | Pre-Amplifiers<br>Transverters<br>Digital Counters    | Converters<br>Antennas<br>Crystals |         |     |
| NEWS ITEM: All Mid<br>low exchange rate of th                   | crowave Modules, J-Beam<br>ne Pound!                  | prices reduced,                    | due to  | the |





110 january 1977

#### PREASSEMBLED

#### COMPLETE KIT



## **Crescent Frequency Counters Features:**

High Sensitivity VHF pre-scaler (built-in). 100mv RMS @  $50\Omega$  @ 300MHZ. Frequency range DC through 600MHZ Model 600, DC through 300MHZ Model 300.

**2** Excellent temperature compensation crystal controlled time base, yielding  $\pm 1$  part/  $10^6$  stability per hour after 10 min warm-up,  $\pm 10$  PPM worst case, from  $0^{\circ}$  to + 55°C!, at 100Hz @ 450MHZ is attainable, typically if calibrated to WWVL. This is approximately 2 parts in  $10^{7}$ !

**3** 7 digit display, resolution 100Hz with 10m Sec. gate interval, pre-scaled! 10Hz resolution with 1 Sec. pre-scaled, 1Hz resolution with 10 Sec. gate interval pre-scaled!

Built-in 5VDC regulator; input to 3-terminal regulator is accessible for use with 12VDC out-board PS. You can use this counter mobile.

**D** Easy 6 hour assembly; all circuit broad tracks are pre-tinned, have drilled holes and are plated through! All I.C. socks included -- Makes trouble shooting a breeze.

Cabinet, plexy window and all necessary components included for easy, trouble-free assembly.

**7** 90-Day full coverage warranty.

Optional accessories TCXO time base yielding  $\frac{1}{2}$  PPM stability. \$79.95

Optional 10 Sec. time gate resolution to 1Hz. \$15.00. (Free with purchase of above TCXO)

Optional 12VDC power recepticle and cord assembly \$15.00 (on preassembled counter only)

"HAVE IT YOUR WAY"

Complete kit or preassembled, burned in, and environmental chamber tested unit available for the commercial shop

|                                                                                                                         | KIT Model 300K<br>Model 600K | \$139.00 ea.<br>179.00 ea. | PREASSEMBLED & TESTED Model 300AT \$199.00<br>Model 600 AT 249.00 |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------------------------------------------------|
| ITY STATE ZIP<br>BANK AMERICARD & MASTER CHARGE accepted,<br>please include card number and expiration date with order. | NAME                         |                            |                                                                   |
| please include card number and expiration date with order.                                                              | TREET                        |                            |                                                                   |
|                                                                                                                         | ЗГТΥ                         |                            |                                                                   |
|                                                                                                                         | ALL SIGN                     |                            |                                                                   |
|                                                                                                                         |                              | SEND                       |                                                                   |
|                                                                                                                         |                              |                            | for all your wire & cable needs                                   |
|                                                                                                                         | resce                        |                            | for all your wire & cable needs                                   |

# SPEC COMM 512A/560A — The Go Anywhere, to the station - use the BA-1 to the station - use the station - use the station - use the BA-1 to the station - use

Now there's no need to buy a mobile rig, a base rig, and a HT/Portable unit. The SPEC COMM 512A/560A does It all with the help of its unique plug-in "Snap-Pack" Modules! The modules plug into the back of the radio in seconds and provide a Super-Versatile System.

. In the car it's a 25 Wt. Mobile with the BA-1 Amp. Module. \$84.95. Small & Light enough to take with you to avoid theft. (Only 3 lbs!) 21/4x6x10" w/module.

· Later, snap-off the BA-1 and snapon the BP-1 NICAD Battery Pack for all day operation as a High Power 5 BP-1 Pkg.: \$89.95.



DEALER INQUIRIES INVITED

Amp. w/ the AC-7 Supply. Or, use the rig "barefoot" w/ the AC-1 Supply Module. \$49.95.

 SM-10 Remote S Meter available. (Illuminated.)

 For the Ultimate in Versatility add our SC1800 PLL Synthesizer. Over 1800 channel combinations! Also useable w/ most other 2M rigs. \$225.00.

 Super Hot/Super Sharp Receiver! 0.3 µV/20dB Qt. -90 dB @ ± 30 **kHz** 

 Made in USA — finest quality throughout. Outstanding audio quality on both xmit. & rcve.

SEND FOR DATA SHEET

Available through your Dealer, (Or direct if no dir. in your area)

#### SCR1000 2M REPEATER -SO ADVANCED, IT'S DESTINED TO BECOME AN INDUSTRY STANDARD!

. Full Metering . Front panel AF Level & Timer controls . Lighted Pushbuttons for control/test functions/status indicators • CMOS control logic & timers • Built-in IDer & AC Sup-ply • Exclusive Hot Carrier Diode Receiver front end • 30 Wts. out • Provisions for Autopatch, Remote Control, etc. . Auto-switchover to emergency power, etc. . Repeat Audio Quality "that Sounds like direct For the group that demands the finest!

Introductory price \$899.95

Sold Factory Direct only Inquire about our Repeater Boards: Rcvr., Xmtr., 25 Wt. Amp., COR/Control, and IDer.



SPECT Box 140 HR - WORCESTER, PA 19490 (215) 631-1710



five nine plus 3402 Campus Claremont, CA 91711 [714] 621-1658

Antenna Products for the Amateur All Prices Postpaid in U.S.A. [outside U.S.A. add shipping shipping weight - 1 lb.] California Residents . add 6% sales tax

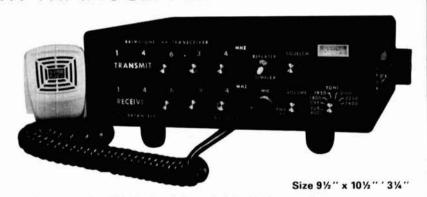
IMPEDANCE CONVERSION TRANSFORMERS 3-30 MHz Bandwidth 2 KW Rating Recessed Connector-Eliminates shorting problems Exclusive no soldering antenna

wire fastening system

 High efficiency toroidal construction ABS Plastic Case



6:1 and 9:1 \$22.95 each


1:1 and 4:1 \$16.95 each

Other ratios guoted on request

the **BRIMSTONE 144** 2 METER EM TRANSCEIVER

#### THE FIRST AND STILL THE **ONLY 2 METER TRANSCEIVER** THAT OFFERS IT ALL!

- · No crystals to buy.
- Complete band average 143 to 149.99 MHZ, 142 . MHZ optional.
- Independent transmit/receive frequency control, yet simplex with the flip of a switch.
- Autopatch, tone burst and sub-audible tone capability by simply plugging in the desired module.
- Very low transmitter spurious output. Some manufacturers have demonstrated their inability to eliminate unwanted spurious outputs. The Brimstone has demonstrated that non-harmonic spurious output at least - 70Dd below the



- rated power output is possible when the radio is properly designed and constructed. • The Brimstone 144 is designed for an unprecedented degree of component
- accessibility and plug-in modularity.
- The only amateur 2 meter FM transceiver with a TWO YEAR WARRANTY.

We have changed our company name to TEC-KAN, Inc. and at this time we are offering a special Fall Sale Price on the Brimstone 144. Check with your dealer on the Fall Special and ask for the 6 page full color brochure.



**REPEATER AND AUTOPATCH** CONTROL MODULE **RPT CM-4** 

If you are planning a repeater and need a control circuit, we have just what you need! Complete control of repeater as well as the autopatch. Local or remote control. If you are using telephone line control for your repeater the RPT CM is idea because it uses an opti-coupler for complete line isolation and low voltage, low current control.

If you are using the TKI SCAP-3D, you can call your autopatch line number and the RPT CM will automatically answer and connect you allowing you to send tones over the phone to turn the repeater on or off, or access the autopatch and communicate through the repeater over the autopatch phone line.

When calling the repeater on the autopatch line, you have 20 seconds to either access the autopatch or turn the repeater off or on. If the proper codes are not sent within 20 seconds the RPT CM automatically disconnects.

If you call the autopatch number, hang up, wait 30 seconds and call the number again, the repeater transmitter will be keyed and a tone sent each time the phone rings, thus signaling a mobile operator to access the autopatch. If there is no one available to access the patch, it will automatically disconnect after 30 seconds of ringing.

It also features a COR "Hold" circuit, which is adjustable from 1 to 5 seconds, and automatic "time out" timer, that resets each time the receiver COR drops. No need to wait for the repeater to drop out to reset the timer.

If you are planning a repeater, all you need is a good transmitter and receiver and the TKI RPT CM Control Module.

Price \$79.95



#### HANDI-TALKIE SCANNER KIT SK1402

Six Channel Croos Scanner Kit has provisions to include Mostek Touch-Tone Encoder Chip. Features dwell and normal operation. "Dwell" mode monitors each channel that has a signal on it for 8 seconds. "Normal" monitors in conventional manner. Manua operation locks out the scanner



Size 9 1/18 x 4 1/16

Includes LED channel indicators, schematic and installation instructions. Designed for Wilson 1402SM Talkie

| Scanner Kit Model SK1402                        | \$49.95 |
|-------------------------------------------------|---------|
| Includes Touch-Tone Encoder Chip Model SK1402TE | \$58.95 |
| Digi-Tran Pad, when ordered with Scanner Kit    | \$7.50  |

Digi-Tran Pad, when ordered with Scanner Kit



#### AUTOPATCH SCAP-3D FEATURES

- 3 Digit access, single digit disconnect.
- 4 sec. time limit on access
- Anti-falsing tone decoders. AGC with 30 Db dynamic range on all inputs and outputs.
- 3 digit on-off control of repeater or other devices
- Remote inhibit or disconnect of autopatch as well as remote "off" function.
- Monitor amplifier allows monitoring all signals going into and out of the repeater. Adjustable level controls on all inputs and outputs.
- Jumpers on circuit board and frequency control pots on tone decoders allow field programming of access codes.
- Adjustable time out function. Patch will automatically disconnect in 30 to 90 . seconds after it is accessed if no carrier is received
  - 90 days warranty.
- High quality tantalum and polyester capacitors used in tone decoder circuits to provide reliable low drift performance.
- Rugged G10 glass epoxy circuit board
- · High output level allows transmitter to be modulated through a dedicated phone line
- Provisions for connecting LEDS for status indication at the local control point. Reverse polarity protection on supply line.
- · Easily connected and adjusted.

Price \$199.95

## SWAN METERS HELP YOU GET IT ALL ON

#### Keep things in tune for a song.

Our SWR-3 SWR meter and FS-1 field strength meter help you make sure you've got it all on the air and going in the right direction. Both are pocket sized with easy-on-the-pocket prices. Use your Swan credit card. Applications at your dealer or write to us.

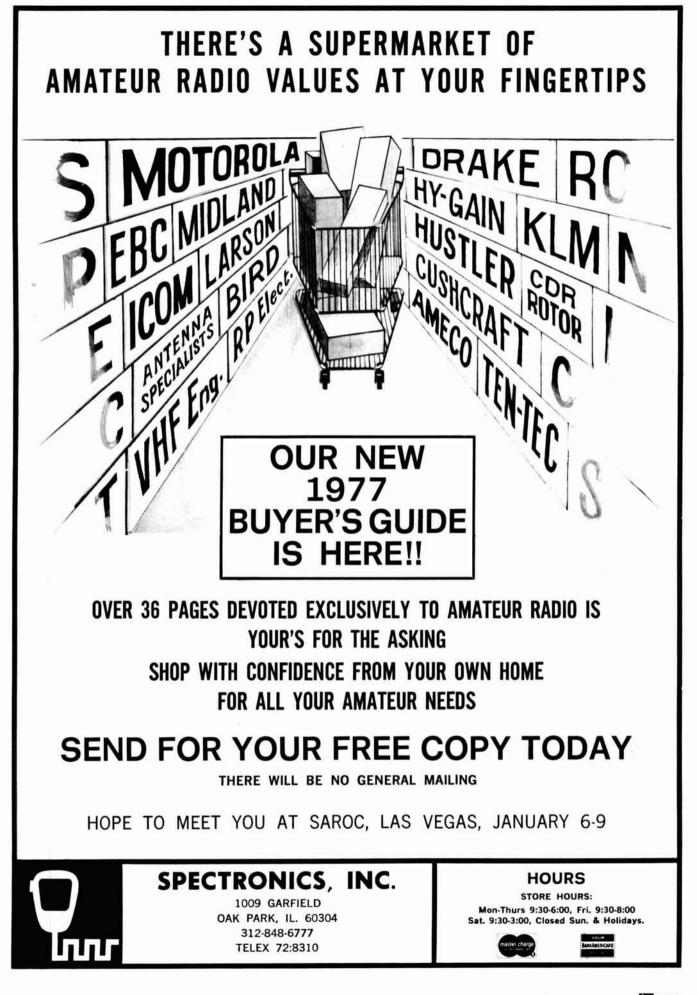


SWR-3 SWR Meter. Why bother with big, bulky meters when this one does the job just as well? Measures 1:1 to 3:1 SWR from 1.7 MHz to 55 MHz with all the accuracy you need. \$10.95 (Prices FOB Oceanside CA) **FS-1 Field Strength Meter.** Get field strength readings just about anywhere with this fit-anywhere meter. Telescoping antenna, level adjust knob, 1.5 MHz to 200 MHz, 0-10 relative scale meter. \$9.95





| age -                                                             | CURT                                                                         | S KEYER                                                          |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|
| TUTT                                                              | CHIP                                                                         | \$24.95                                                          |
| (See Feb 75 CQ, Apr 75<br>KB4200 Keyboard Ki<br>EK420/KM420 Keyer | tage and handlin<br>HR, Feb 76 QST, Ra<br>syer (Oct 74 QST<br>/Memory (Oct 7 | 49.95<br>1.50<br>40 Andbook 75<br>1) \$549.95<br>3 QST) \$439.90 |
| EK430 CMOS Keyer<br>IK440 Instructokeye                           |                                                                              | \$224.95                                                         |


LEARN RADIO CODE THE EASY WAY. Based on modern psychological techniques – This course will take you beyond 13 w.p.m. in ESS THAN HALF THE TIME! No Books To Read No Visual Gimmicks To Distract You We hit he and Learn

Just Listen And Learn

Available in Cassette also for only \$10.95.



2½ hr. instruction





#### Ham Radio's guide to help you find your local

#### Alabama

LONG'S ELECTRONICS 3521 TENTH AVE. NORTH BIRMINGHAM, AL 35234 800-633-3410 Call us Toll Free to place your order

#### California

C & A ELECTRONICS 2529 EAST CARSON ST. P. O. BOX 5232 CARSON, CA 90745 213-834-5868 Not the biggest, but the best since 1962.

#### CARSON ELECTRONICS 12010 EAST CARSON ST.

HAWAIIAN GARDENS, CA 90716 213-421-3786 Dealing exclusively in ICOM communications equipment.

#### HAM RADIO OUTLET

999 HOWARD AVENUE BURLINGAME, CA 94010 415-342-5757 Northern California's largest new and used ham inventory.

#### M-TRON

2811 TELEGRAPH AVENUE OAKLAND, CA 94609 415-763-6262 We service what we sell.

#### QUEMENT ELECTRONICS

1000 SO. BASCOM AVENUE SAN JOSE, CA 95128 408-998-5900 Serving the world's Radio Amateurs since 1933.

#### TOWER ELECTRONICS CORP. 24001 ALICIA PARKWAY MISSION VIEJO, CA 92675 714-768-8900 Authorized Yaesu Sales & Service. Mail orders welcome.

#### Colorado

C W ELECTRONIC SALES CO. 1401 BLAKE ST. DENVER, CO 80202 303-573-1386 Rocky Mountain area's complete ham radio distributor.

#### Florida

GRICE ELECTRONICS 320 EAST GREGORY PENSACOLA, FL 32502 904-434-2481 Gulf Coast dealer for Atlas, Drake, Icom, Kenwood.

#### Illinois

ERICKSON COMMUNICATIONS, INC. 5935 NORTH MILWAUKEE AVE. CHICAGO, IL 60646 312-631-5181 Headquarters for all your Amateur Radio needs.

KLAUS RADIO, INC. 8400 NORTH PIONEER PARKWAY PEORIA, IL 61614 309-691-4840 Let us quote your Amateur needs.

SPECTRONICS, INC. 1009 GARFIELD STREET OAK PARK, IL 60304 312-848-6777 Chicagoland's Amateur Radio leader.

#### Indiana

HOOSIER ELECTRONICS P. O. BOX 2001 TERRE HAUTE, IN 47802 812-238-1456 Ham Headquarters of the Midwest. Store in Meadow Shopping Center.

#### Kansas

ASSOCIATED RADIO 8012 CONSER P.O.B. 4327 OVERLAND PARK, KS 66204 913-381-5901 Amateur Radio's Top Dealer. Buy — Sell — Trade.

#### Kentucky

COHOON AMATEUR SUPPLY HIGHWAY 475 TRENTON, KY 42286 502-886-4535 Ten-Tec dealer --- Call 24 hours for best deal

Dealers - you should be here too! Contact Ham Radio today for complete details.

#### Maryland

COMM CENTER, INC. 9624 FT. MEADE ROAD LAUREL PLAZA RT. 198 LAUREL, MD 20810 301-792-0600 New & Used Amateur Equipment. All Inquiries Invited.

#### Massachusetts

TUFTS RADIO ELECTRONICS 386 MAIN STREET MEDFORD, MA 02155 617-395-8280 New England's friendliest ham store.

#### Michigan

PURCHASE RADIO SUPPLY 327 E. HOOVER ANN ARBOR, MI 48104 313-668-8696 or 668-8262 We still sell Ham parts!

RADIO SUPPLY & ENGINEERING 1203 WEST 14 MILE ROAD CLAWSON, MI 48017 313-435-5660 10001 Chalmers, Detroit, MI 48213, 313-371-9050.

#### Minnesota

ELECTRONIC CENTER, INC. 127 THIRD AVENUE NORTH MINNEAPOLIS, MN 55401 612-371-5240 ECI is still your best buy.

#### Missouri

MIDCOM ELECTRONICS, INC. 2506 SO. BRENTWOOD BLVD. ST. LOUIS, MO 63144 314-961-9990 At Midcom you can try before you buy!

#### New Hampshire

EVANS RADIO, INC. BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301 603-224-9961 Icom & Yaesu dealer. We service what we sell.

#### Amateur Radio Dealer

#### New Jersey

ATKINSON & SMITH, INC. 17 LEWIS ST. EATONTOWN, NJ 07724 201-542-2447 Ham supplies since "55".

#### New York

ADIRONDACK RADIO SUPPLY, INC. 185 W. MAIN STREET AMSTERDAM, NY 12010 518-842-8350 Yaesu dealer for the Northeast.

#### ALDELCO

2281 BABYLON TURNPIKE MERRICK, NY 11566 516-378-4555 Computer center, books, magazines, chips, semiconductors, electronic parts.

#### **CFP COMMUNICATIONS**

211 NORTH MAIN STREET HORSEHEADS, NY 14845 607-739-0187 Jim Beckett, WA2KTJ, Manager Bryant Hozempa, WB2LVW, Sales

#### GRAND CENTRAL RADIO 124 EAST 44 STREET NEW YORK, NY 10017 212-682-3869

Drake, Atlas, Ten-Tec, Midland, Hy-Gain, Mosley in stock

#### HARRISON

"HAM HEADQUARTERS, USA" ROUTE 110 & SMITH STREET FARMINGDALE, L. I., N. Y. 11735 516-293-7990 Since 1925 ... Service, Satisfaction, Savings. Try Us!

#### RADIO WORLD

ONEIDA COUNTY AIRPORT TERMINAL BLDG. ORISKANY, NY 13424 315-337-2622 New & used ham equipment. See Warren Spindler, K2IXN.

#### Ohio

UNIVERSAL SERVICE 114 N. THIRD STREET COLUMBUS, OH 43215 614-221-2335 Give U.S. a try when ready to buy.

#### Oklahoma

RADIO STORE, INC. 2102 SOUTHWEST 59th ST. (AT 59th & S. PENNSYLVANIA) OKLAHOMA CITY, OK 73119 405-682-2929 New and used equipment parts and supply.

#### Oregon

OREGON HAM SALES 409 WEST FIRST AVENUE ALBANY, OR 97321 503-926-4591 Yaesu dealer for the Northwest.

#### Pennsylvania

ELECTRONIC EXCHANGE 136 N. MAIN STREET SOUDERTON, PA 18964 215-723-1200 New & Used Amateur Radio sales and service.

**"HAM" BUERGER, INC.** 68 N. YORK ROAD WILLOW GROVE, PA 19090 215-659-5900 Communications specialists. Sales and service.

HAMTRONICS, INC. 4033 BROWNSVILLE ROAD TREVOSE, PA 19047 215-357-1400 Same location for 25 years.

#### South Dakota

BURGHARDT AMATEUR CENTER 124 FIRST AVE. N.W. P.O. BOX 73 WATERTOWN, SD 57201 605-886-7314 America's most reliable Amateur Radio Dealer — Nationwide!

#### Texas

HARDIN ELECTRONICS 5635 E. ROSEDALE FT. WORTH, TX 76112 817-461-9761 You bet Ft. Worth has a ham store!

TECO ELECTRONICS SUPER STORE 1717 S. JUPITER ROAD GARLAND, TX 75040 800-527-4642 Call Toll Free for Service Today!

#### Virginia

ARCADE ELECTRONICS 7048 COLUMBIA PIKE ANNANDALE, VA 22003 703-256-4610 Serving Maryland, D.C., and Virginia area since 1962.

#### Wisconsin

AMATEUR ELECTRONIC SUPPLY, INC. 4828 WEST FOND du LAC AVENUE MILWAUKEE, WI 53216 414-442-4200 Open Mon & Fri 9-9, Tues, Wed, Thurs, 9-5:30, Sat, 9-3.

## SWAN METERS HELP YOU GIVE IT YOUR ALL

#### SWR Bridge for 21.95

Our little dual meter SWR bridge indicates relative forward power and SWR simultaneously.

The unit is capable of handling up to 1000 watts

and will indicate 1:1 to infinity

VSWR from 3.5 MHz to 150 MHz on 100 microampere meters. Ideal for mobile or home operation with low in-line insertion loss.

Use your Swan credit card. Applications at your dealer or write to Swan. ELECTRONICS A subsidiary of Cubic Corporation 305 Airport Rd. Oceanside, CA 92054 (714) 757-7525

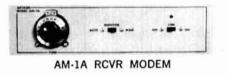






MODEL 6154 TERMALINE®

I'D BUY FROM US YOUR INQUIRY OR ORDER WILL GET OUR PROMPT ATTENTION AUTHORIZED


#### Bind DISTRIBUTOR

WEBSTER COMMUNICATIONS 115 BELLARMINE ROCHESTER, MI 48063 313-375-0420

#### FAST SCAN AMATEUR TELEVISION EQUIPMENT

- · SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

AX-10 TRANSMITTER



APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401

The easy \$25 counter kit!

An easy-to-build 50mHz (6-digit) Frequency Counter for a measly \$25! Standard easy-to-find parts, too! (Unlike other kits.) Any Radio Shack has them. Uses 7 segment LED readouts — no scarce Nixie® tubes! No tricky crystal ovens, either! Kit includes a classy cabinet with front panel, PC boards, hardware, instructions, and diagrams. A proven design! An unbeatable offer!

Write or call today! P.O. Box 357, Dept. 56, Provo, UT 84601 (801) 375-8566

6-DIGIT (50 mHz Kit) FREQUENCY COUNTERS





| ADVA                                                                                                                                                                                                                                                                                                                                                      | KIT \$1195<br>ASSEMBLED \$17.95<br>ADD \$1.25 FOR<br>POSTAGE/HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DIDDES         TRANSISTORS         TRANSISTORS <thtransistors< th=""> <th< th=""></th<></thtransistors<> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>VARIABLE PC</li> <li>Continuously Variable from</li> <li>Short-Circuit Proof</li> <li>Typical Regulation of 0.1%</li> <li>Electronic Current Limiting</li> <li>Very Low Output Ripple</li> <li>Fiberglass PC Board Mounts</li> <li>Assemble in about One Hour</li> <li>Makes a Great Bench or Lab</li> <li>Includes All Components ex</li> </ul> | at 300mA<br>All Components<br>Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTOG         403         NYZZZA*         5/31         24:33         29         WFY13         4/31         KSSA         ESSA                                                                                                                                                                                                                                           |
| CONTRACT ADVANCES.                                                                                                                                                                                                                                                                                                                                        | BORE SPECIALS:     ACTION AND A CONTRACT AND A | WY1872         B         20222         1.80         2014         LX1111         M         M         MY1872         M           WY1872         B         25502         1.80         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25504         25604         25604         25604         25604         25604         25604         25604         25604         25604 <td< th=""></td<>                                                                                                                                                                                                         |

#### OSCAR users Don't miss these two operating DX'ers

#### SATELLABE

A sophisticated multi-scale circular slide rule that gives the user all the data required to track and make contacts through the Amateur built OSCAR spacecraft. Using only the equatorial crossing point and time of one spacecraft orbit, the Satellabe will calculate azimuth and elevation information from the user's location for that entire orbit and predict all subsequent orbits as well. Designed by OSCAR user K2ZRO for AMSAT.

#### Just \$7.95

HAM RADIO

#### W2AB's SECOND OP **7th EDITION Fully Computer Revised**

aids available only from


#### (formerly W9IOP)

This wonderfull operating aid immediately tells prefix, continent, DX Zone, country name, local beam heading, time differential, QSL bureau and postal information for every recognized DX country. Don't go another day without this nifty tool!

only \$3.50



Greenville, NH 03048



TRAGIC WASTE OF RF **TRAGIC WASTE OF RF** could be your fate as precious watts zig-zag round the world to shower just a little — or little or none — on that hoped for DX station. BUT WE HAVE AN ALTERNATIVE — THE JOYSTICK VFA (Variable freq. ant.), which gives low angle, omni-directional, harmonic free radiation on all bands 160 thru 10 (+ MARS and receive on all BC & SW). Stalwarts W6TYP and G4DJY achieved notable results in contests — just to mention two of the many who have sent glowing reports of the VFA in use, often in poor QTH and/or under QRP. SYSTEM 'A' \$69.90 Receiving Only SYSTEM 'J' S91.33 500W P.E.P. &/or proved Q Factor Receive Air Mail cost included Air Mail cost included (each system 3 sections easily assembled to make unit 7' 6" long. Matching ATU.) Not only will you save space but you will save \$\$\$ at present low exch. rate and by buying direct UK manuf. Rush your order — Mastercharge or check, or ask for brochure. PARTRIDGE (HR) ELECTRONICS LTD. BROADSTAIRS, KENT, ENGLAND G3CED TEL. THANET 62525 G3VFA

## We thought you might be interested in a 2-meter, synthesized, VHF-FM transceiver featuring 800 frequencies in 5KHz steps, variable RF output from 1 to 25 watts, 4 front panel selectable splits, a signal/power meter, and a price tag below five hundred dollars.

#### TRANSMITTER SPECIFICATIONS

Frequency Range: 144 to 148MHz. Front Panel Frequency Splits: Simplex, +0.6MHz, -0.6MHz, +1MHz, -1MHz. Frequencies: 800 (5KHz separation). Modulation: 16F3 ±5KHz for 100% at 1,000Hz. RF Power Output: 1-25 Watts, variable. Frequency Stability: Within ±0.001% from -20°C. to +60°C. Hum & Noise: Better than - 30dB 2/3 rated system deviation at 1.000Hz. Antenna Impedance: 50 Ohms. Switching: Solid-state type. Spurious & Harmonic: At least 60dB below rated carrier power. Microphone: Turner, low impedance. Audio Frequency Response: 300Hz to 3,000Hz, referred to +1, -8dB of 6dB/Octave deemphasis curve. Audio Distortion: Less than 7% at 1,000Hz, 2/3 system deviation. Frequency Display: 6 digit, 7 segment HP LED. Optional Accessory: Plug in touch-tone encoder \$50. Face plate also available in black.

#### **RECEIVER SPECIFICATIONS**

Frequencies: 143 to 148.995MHz. Usable Sensitivity (12dB sinad): 0.35uV @ 50% audio. Quieting Sensitivity (20dB): 0.5uV minimum. Squelch Threshold Sensitivity: 0.25uV minimum. Squelch Limit Sensitivity: 2.0uV or less. Modulation Acceptance Bandwidth: ±7.5KHz minimum. Adjacent Channel Selectivity: 70dB minimum. Spurious Response Attenuation: 70dB minimum. Intermodulation Attenuation: 60dB minimum. Local Oscillator Freguency Stability: ± 10 parts per million. Audio Output Power: 4.0 Watts into a 4 Ohm load @ less than 10% distortion. Audio Frequency Response: +2dB to -8dB from the standard 6dB per Octave de-emphasis from 300Hz to 3,000Hz. Hum & Noise: -50dB squelched and - 30dB unsquelched. Chassis Size: 71/8"W x 25/8"H x 10". Specifications and prices subject to change without notice.

## SO, WE BUILT ONE FOR YOU.

REQUENCY.



730 WEST McNAB ROAD · FORT LAUDERDALE, FLORIDA 33309

S 2 25

ANGONY

#### **TS-1 MICROMINIATURE ENCODER-DECODER**

- Available in all EIA standard tones 67.0Hz-203.5Hz
- Microminiature in size, 1.25x2.0x.65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3-9ma.
- Decode sensitivity better than 10mvRMS, bandwidth, ±2Hz max., limited
- Low distortion adjustable sinewave output
- □ Frequency accuracy, ±25Hz, frequency stability ±1Hz
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with K-1 element

\$59.95

K-1 field replaceable, plug-in, frequency determining elements

\$3.00 each

#### COMMUNICATIONS SPECIALISTS P.O. BOX 153 **BREA, CALIFORNIA 92621**

(714) 998-3021

### YOUR BEST BUY IN KITS



#### ANALOG-DIGI-LAB Features 3 Regulated power Supplies. 3 Output wave forms. 8 digi-

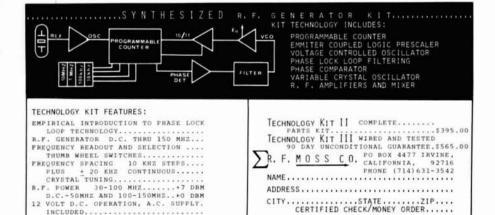
8 LEDs with drivers. 1 AP Super strip. Easily constructed. Designed by RETS Electronic Schools. Now only

Clock Kit (complete less case) \$12.95 Clock Cabinet \$6.50 or \$4.50 with purchase of clock kit. Function Generator Kit \$10.95

TECHNOLOGY KIT I 3 LAYER P.C.B. CONSTRUCTION DETAILS, PARTS LIST...575.00

#### FREOUENCY COUNTER

7 Digit 0-300 MHz Freq. Counter \$99.00 7 Digit 0-500 MHz Freq. Counter \$139.00 8 Digit 0-30 MHz Counter with options \$109.00 0-300 MHz Prescaler for 8 Digit Counter \$19.95 0-300 MHz Prescaler with Preamp \$29.95 0-600 MHz Prescaler for 8 Digit Counter \$39.95 Cabinet accessory package available for all of \$24.95 the above


Anyone of the above kits available pre-assembled for an additional \$50.00. Allow 3-4 weeks on assembled units.

C.O.D. WITH 20% DOWN......

ORDER NOW AVAILABLE FEB 1, 1977....

Please add \$1.00 Shipping/Handling on any order under \$15.00 Send SASE for flyer. Featuring Electronic components and kits available. HAL-TRONIX

P. O. Box 1101 • Southgate, Mich. 48195 • (313) 285-1782





| NEW        | ELECT        | RONIC           | PARTS         |
|------------|--------------|-----------------|---------------|
| Resistors  | Meters       | LED Displays    | Fuses         |
| Capacitors | Switches     | Proto Boards    | IC sockets    |
| Diodes     | Dozy Boxes   | Mod U Line      | Test Clips    |
| Trimpots   | Transistors  | Hardware        | And much more |
| 5          | ASE brings o | ur new parts ca | talog.        |
| Nu         |              | Electr          |               |

| P9<br>P15 |          | 1/2 x2 3/8 | 20 20  |         |          |
|-----------|----------|------------|--------|---------|----------|
| P15       | 26-230   |            | 20-30  | \$ 7.95 | \$16.95  |
|           |          | 11/2×3     | 20-30  | 9.95    | 19.95°¢  |
|           | 400-500  | 11/2×3     | 20     | 15.95   | 34.95    |
| P13       | 20-230   | 11/2×31/4  | 15-20  | 12.95   | 24.95 an |
| xm        | trs, con | N., ant.   | for VH | IF & U  |          |
| ,         |          | roni       |        |         |          |

Everybody wants the ultimate ham station, but the only way most of us are going to get it is to start now and grow into it.

And the best way to start is with our 700CX.

Then you'll have an excellent transceiver with 700 solid watts P.E.P. input of SSB power at the lowest cost per watt – about a buck – of any comparable equipment.

And when you're ready to add capability and features, plug in or hook up Swan accessory equipment for easy expandability.

For instance, just plug in our 510-X crystal oscillator when you want extra frequency coverage. Want VOX? Plug in the Swan VX-2 and start talking. Or hook up our FP-1 telephone patch in minutes.

And when you're ready for that big jump to all-the-law-allows, our 2000 watt P.E.P.

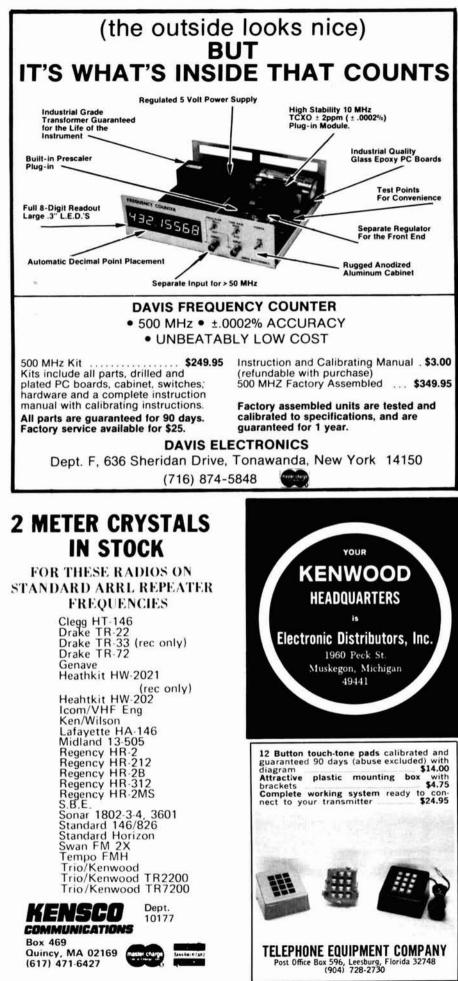
input Mark II linear amp is waiting in the wings.

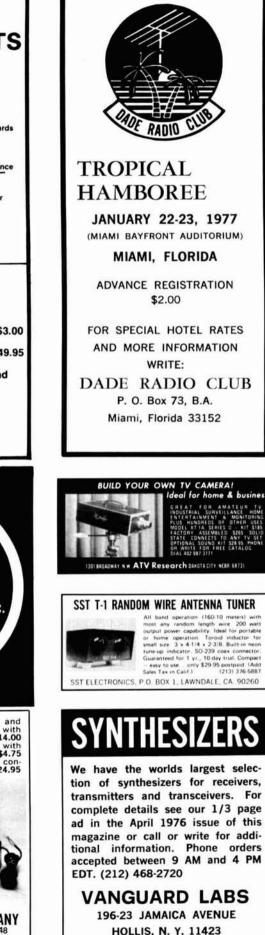
Add our complete selection of power supplies, microphones and other options and you've got everything you need for a full-house rig in matching specs and matching decor.

So your ham station will look and perform like it belongs together.

The 700CX is designed to handle problems like cross-modulation and front end overload. And you get all bands from 10 to 80 meters with selectable upper or lower sideband, AM, or CW with sidetone.

Get started on your dream rig today. See the 700CX and all of its accessories at your nearest Swan dealer. Use your Swan credit card. Applications at your dealer or write to us.


| 700CX Champion Transceiver \$                                   | 649.95    |
|-----------------------------------------------------------------|-----------|
| 117-XC 110V AC Power Supply S<br>(includes Speaker and Cabinet) | 159.95    |
| 117-X 110V AC Power Supply \$<br>(less Speaker and Cabinet)     | 114.95    |
| 510-X Crystal Oscillator \$                                     | 67.95     |
| VX-2 Plug-In VOX                                                | 44.95     |
| FP-1 Telephone Patch                                            |           |
| Mark II Linear Amplifier                                        | 849.95    |
| complete with 110/220 VAC power supply ar                       | nd tubes) |
| prices FOB Oceanside, CA)                                       |           |
|                                                                 |           |


Dealers throughout the world



## **SWAN 700CX TRANSCEIVER.** IT'S THE WAY TO GROW.









## IN 2-METER & "220" MOBILE, MIDLAND MAKES IT

Midland makes four tough, top-performing mobile transceivers for serious amateurs. Reading from the top: There's Midland's newest-Model 13-510-with P.L.L. synthesizer, simplex and offsets to give it 4,000 frequency capability between 144 and 148 MHz. Combined with just about the most sensitive, selective dual conversion receiver you'll find, and a transmitter that puts out an honest 25 watts, you could hardly ask for more.

In the second row, there's Midland's deluxe, 30-watt 2-meter mobile-Model 13-505-featuring selective or simultaneous control for 12 crystal-controlled channels with "Channel A" priority switching, and such Midland standards as automatic VSWR protection and connection for tone burst. The third row lines up Midland's basic 2-Meter mobile-Model 13-500. This popular 12-channel, 15-watt transceiver has a complete multiple FET front end couple with high-Q helicalized cavity resonators. Despite its small size ( $21/4^{"}$  h. x  $63/8^{"}$  w. x  $87/8^{"}$  d.), it's designed for exceptional service and serviceability.

At the bottom is Model 13-509, Midland's "220" mobile. With 12-channel capacity, crystal controlled, it shares the compact size and receiver features of the 13-500 above, while delivering 10 watts output power (switchable to 1 watt when you want it).

All four are leading values from the leading name in personal communications: Midland.



Want to know more about Midland Amateur Radio? Write for our free brochure today.





... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 234

#### INDEX

|                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ULA                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| ATV *                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inte. Circuit                                                        |
| Adva 265                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Int'l Xtal                                                           |
| Aldelco 347                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jade 50                                                              |
| Amcomm 500                                                                                                                                                                                                                                                                                                                                                                                                                                                  | James                                                                |
| Amidon 005                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan 067                                                              |
| ATV *<br>Adva 265<br>Aldelco 347<br>Amccomm 500<br>Amidon005<br>Aptron 380<br>Atlas 198<br>Atronics 382<br>Barber 383<br>Barry *<br>Budwig 233<br>Bullet 328<br>Bunker Ramo 525                                                                                                                                                                                                                                                                             | Int'l Xtal<br>Jade 50<br>James<br>Jan 067<br>Jensen                  |
| Atlas 198                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jensen<br>K-Enterprise<br>Kensco<br>Kenwood                          |
| Atronics 382                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kensco                                                               |
| Barber 383                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kenwood *                                                            |
| Barry *                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kester Sold                                                          |
| Budwig 233                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Larsen                                                               |
| Bullet 328                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Leader                                                               |
| Bunker Ramo 525                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lyle 37                                                              |
| CEP 022                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFJ 08                                                               |
| Bullet 328<br>Bunker Ramo 525<br>CFP 022<br>Cal-Com 282<br>Chaney's 488<br>Clegg 027<br>Communications                                                                                                                                                                                                                                                                                                                                                      | Leader<br>Lyle 37<br>MFJ 08<br>MHz 4<br>Madison *                    |
| Chaney's 488                                                                                                                                                                                                                                                                                                                                                                                                                                                | Madison *                                                            |
| Clegg 027                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marine Tec                                                           |
| Communications<br>Electronics 489                                                                                                                                                                                                                                                                                                                                                                                                                           | Mid Contine                                                          |
| Electronics 489                                                                                                                                                                                                                                                                                                                                                                                                                                             | Midland                                                              |
| Communications                                                                                                                                                                                                                                                                                                                                                                                                                                              | Midland<br>Mini Labs                                                 |
| Specialists 330                                                                                                                                                                                                                                                                                                                                                                                                                                             | Moss *                                                               |
| Specialists 330<br>Crescent Wire 490                                                                                                                                                                                                                                                                                                                                                                                                                        | National Se                                                          |
| Curtic 034                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New-Tronic                                                           |
| Curtis 034<br>Cush Craft 035                                                                                                                                                                                                                                                                                                                                                                                                                                | Nexus                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Northshore                                                           |
| Cush Craft 035<br>D-D 269<br>Dames 324<br>Data Signal 270<br>Davis 332<br>Dentron 259<br>Direct Conv. Tech. *<br>Digi-Key 520<br>Disc-Cap 449<br>Drake 039<br>DuPage FM 287                                                                                                                                                                                                                                                                                 | NuData                                                               |
| Date Signal 270                                                                                                                                                                                                                                                                                                                                                                                                                                             | Optoelectro                                                          |
| Data Signal 270                                                                                                                                                                                                                                                                                                                                                                                                                                             | Optoelectro                                                          |
| Davis 332                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Orlando Ha<br>Pagel<br>Palomar<br>Platt 5<br>Poly Paks<br>Porta Pak  |
| Dentron 259                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Palamar                                                              |
| Direct Conv. Tech.                                                                                                                                                                                                                                                                                                                                                                                                                                          | Patomar                                                              |
| Digi-Key 520                                                                                                                                                                                                                                                                                                                                                                                                                                                | Partriuge                                                            |
| Disc-Cap449                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Platt 3                                                              |
| Drake 039                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Poly Paks                                                            |
| DuPage FM 287                                                                                                                                                                                                                                                                                                                                                                                                                                               | Porta Pak<br>RP 098                                                  |
| E. T. O. *                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP098                                                                |
| Elect. Dist044                                                                                                                                                                                                                                                                                                                                                                                                                                              | Callbook _                                                           |
| Electrospace 40/                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ramsey                                                               |
| ELPROCON 301                                                                                                                                                                                                                                                                                                                                                                                                                                                | Regency                                                              |
| DuPage FM         287           E. T. O. *         Elect. Dist.         044           Elect. Dist.         044         04           Electrospace         407         801           Epsilon         046         91           Equinox         521         521           Erickson         047         Fair         048           594         429         429         429                                                                                       | SST 3/                                                               |
| Equinox 521                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scott                                                                |
| Erickson         047           Fair         048           59+         429           GLB         522           Gilfer         207           Clade Velley         213                                                                                                                                                                                                                                                                                         | SOTA:                                                                |
| Fair 048                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Space                                                                |
| 59+ 429                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spectronics                                                          |
| GLB 522                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spec. Comr<br>Spec. Inter.                                           |
| Gilfer 207                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spec. Inter.                                                         |
| Glade Valley213                                                                                                                                                                                                                                                                                                                                                                                                                                             | Standard<br>SwanI<br>Tec-Kan<br>Tele. Equip                          |
| Glostronics 523                                                                                                                                                                                                                                                                                                                                                                                                                                             | Swan 1                                                               |
| Gray 055                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tec-Kan                                                              |
| Gregory 201                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tele. Equip                                                          |
| Hal 057                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Telrex                                                               |
| Hal-Tronix 254                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ten-Tec *                                                            |
| HamLine 466                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tri-Ex                                                               |
| Ham Radio 150                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hamboree                                                             |
| Ham Center 491                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tele: Equip.<br>Telrex<br>Ten-Tec *<br>Tri-Ex<br>Hamboree<br>Tufts 3 |
| HR HORIZONS 150                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) VHF                                                                |
| Hamtronics 246                                                                                                                                                                                                                                                                                                                                                                                                                                              | Engineer                                                             |
| Heath 060                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vanguard '                                                           |
| GLB         522           Gilfer         207           Glade Valley         213           Glostronics         523           Gray         055           Gregory         201           Hal         057           Hal-Tonix         254           Ham Radio         150           Ham Center         491           HR HORIZONS         150           Haath         060           Heights         061           Henry         062           Hewlett         281 | Varian                                                               |
| Henry 062                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Webster Co                                                           |
| Hewlett                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Webster Ra                                                           |
| Packard 281                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weinschenk                                                           |
| Packard 281<br>Hufco 403<br>Hy-Gain 064<br>Icom 065                                                                                                                                                                                                                                                                                                                                                                                                         | Wellman *                                                            |
| Hy Gain 064                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wilson                                                               |
| 1com 065                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yaesu                                                                |
| 005                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |

nte. Circuits \_\_\_\_ 518 Int'l Xtal \_\_\_\_ 066 Jade \_\_\_\_ 509 lames \_\_\_\_\_ 333 lan \_\_\_\_\_ 067 lensen \_\_\_\_\_ 293 K-Enterprises \_\_\_\_\_ 293 Kensco \_\_\_\_ 394 Kenwood \* 071 Kenvood Kester Solder Larsen 078 Leader 412 Lyle 373 MFJ 082 MHZ 415 Madison \* Marine Tech. Mid Continent Midland 086 Mini Labs 44 Moss \* National Semi New Tronics Kester Solder 492 453 441 National Semi \_\_\_\_\_323 New-Tronics \_\_\_\_\_171 Nexus \_\_\_\_454 Northshore \_\_\_\_\_296 NuData \_\_\_\_455 Optoelectron NuData 455 Optoelectronics 352 Orlando Hamfest \* Pagel \_\_\_\_ 092 Palomar \_\_\_\_ 0 093 Paloma Partridge 528 439 Platt 5: Poly Paks Porta Pak RP 098 096 274 
 ¿P

 Callbook

 Ramsey

 Regency

 SST

 375

 Scott

 519

 TA

 506

 107
 098 100 102 Spectronics 191 Spec. Comm. 36 Spec. Inter. 108 191 366 Standard 109 Swan 111 Tec-Kan 507 Tele. Equip. 496 Telrex 377 Ten-Tec \* 116 109 Tri-Ex \_\_\_\_ 116 Hamboree \* Tufts \_\_\_\_ 321 VHF Engineering Vanguard \* Varian \_\_\_\_ 043 \_\_\_\_121 Varian \_\_\_\_ 043 Webster Comm. 423 255 Webster Radio Weinschenker Wellman \*

123 127

\*Please contact this advertiser directly. Limit 15 inquiries per request.

#### January 1977

Please use before February 28, 1977

Tear off and mail to HAM RADIO MAGAZINE - "check off" Greenville, N. H. 03048

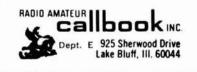
| NAME   |      |
|--------|------|
|        | CALL |
| STREET |      |
| CITY   |      |
| STATE  | ZIP  |



### There's nothing like it

#### 

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.


The U. S. Callbook has nearly 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 235,000 calls, names and addresses of amateurs outside of the USA.

#### **U.S. Callbook** \$14.95

#### Foreign Callbook \$13.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add \$1.25 for shipping. Illinois residents add 5% Sales Tax.



### AdverTisers iNdex

| 4-10-13C-2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . UCV                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ATV Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                   |
| Adva Electronics Aldelco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                   |
| Amcomm, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                   |
| Amidon Associates<br>Aptron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                   |
| Atlas Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52, 5                |
| Atronics<br>Barber Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                   |
| Barry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                   |
| Budwig Mfg. Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                    |
| Bullet<br>CFP Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                    |
| Cal-Com Systems, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                    |
| Chaney's Electronics<br>Clegg Communications Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 8                 |
| Communications Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                   |
| Communications Electronics<br>Communications Specialists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107, 12              |
| Crescent Wire & Cable, Inc.<br>Curtis Electro Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ii                   |
| Cush Craft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                    |
| D-D Enterprises<br>Dames, Ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                    |
| Data Signal, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| Davis Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                   |
| Dentron Radio Co.<br>Direct Conversion Technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                    |
| Digi-Key Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                   |
| Disc-Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                   |
| Drake Co., R. L.<br>DuPage FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                    |
| Ehrhorn Technological Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is, Inc. 9           |
| Electronic Distributors<br>Electrospace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                   |
| ELPROCON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                    |
| Epsilon Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                   |
| Equinox<br>Erickson Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                   |
| Fair Radio Sales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                    |
| Five Nine Plus<br>GLB Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                   |
| Gilfer Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                    |
| Glade Valley Radio Sessions<br>Glostronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                    |
| Gray Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                   |
| Gregory Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                   |
| Hal Communications Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                   |
| HamLine Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                    |
| Ham Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                   |
| Ham Radio Center, Inc.<br>Ham Radio HORIZONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                    |
| Hamtronics, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                   |
| Heath Company<br>Heights Mfg. Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64, 6<br>10<br>Cover |
| Heights Mfg. Co.<br>Henry Radio Stores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cover                |
| Hufco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48, 94, 11           |
| Hy-Gain Electronics Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                    |
| Integrated Circuits Unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                    |
| International Crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .2                   |
| Jade Company<br>James Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                   |
| Jan Crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                    |
| Jensen Tools<br>K-Enterprises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                   |
| Kensco Communications, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inc. 8,              |
| Kester Solder<br>Larsen Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                    |
| Leader Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                    |
| Lyle Products<br>MFJ Enterprises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77. 9<br>77. 9       |
| MHz Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                    |
| Madison Electronics Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                   |
| Midland International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                   |
| Moss, R. F. Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                   |
| New-Tronics Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Northshore RF Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                   |
| NuData Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                   |
| Orlando Hamfest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                   |
| Pagel Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                    |
| Palomar Engineers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86, 88, 9            |
| Poly Paks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                   |
| Porta Pak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                   |
| RP Electronics<br>Radio Amateur Callbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91 12                |
| Ramsey Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51, 12               |
| Regency Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                    |
| Scott Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                   |
| SOTA Industries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| Space Electronics Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Spectrum Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ii                   |
| Spectrum International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                   |
| Swan Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114, 118, 12         |
| Tec-Kan Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                   |
| Telephone Equipment Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                   |
| Ten-Tec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Tri-Ex Tower Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                    |
| Tropical Hamboree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                   |
| VHF Engineering, Div. of Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ian 12               |
| Vanguard Labs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98, 12               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cover I              |
| Varian, Eimac Division<br>Webster Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                   |
| Varian, Eimac Division<br>Webster Communication<br>Webster Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                   |
| Lyle Products<br>MFJ Enterprises<br>MHZ Electronics Supply<br>Midland International<br>Mini Labs Industries<br>Moss, R. F. Company<br>New-Tronics Corporation<br>Nexus Trading Company<br>Northshore RF Technology<br>NuData Electronics<br>Optoelectronics<br>Optoelectronics<br>Pagel Electronics<br>Palomar Engineers<br>Partridge (HR) Electronics<br>Poly Paks<br>Porta Pak<br>RP Electronics<br>Ramsey Electronics<br>SST Electronics<br>SST Electronics<br>Socit Communications<br>Sota Industries<br>Space Electronics<br>Spectrum Communications<br>Spectrum Communications<br>Swan Electronics<br>Telephone Equipment Co.<br>Telrex Labs<br>Ten-Tec<br>Tri-Ex Tower Corp.<br>Tropical Hamboree<br>Tuts Radio Electronics<br>Vanguard Labs<br>Varian, Eimac Division<br>Webster Radio<br>Weinschenker<br>Wilson Electronics<br>Yaesu Electronics |                      |

126 Ir january 1977

#### SEND SASE BUSINESS SIZE FOR COMPLETE MAIL ORDER CATALOG



FT- 101E TRANSCEIVER

| XCVR W/Processor           | 749                                                                                                                                                                                                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                                          |
| XCVR W/O Processor         | 659                                                                                                                                                                                                                                                                                                                      |
|                            |                                                                                                                                                                                                                                                                                                                          |
| XCVR W/O Processor         |                                                                                                                                                                                                                                                                                                                          |
| AC Only, Less Mike         | 599                                                                                                                                                                                                                                                                                                                      |
| Linear Amplifier           | 399                                                                                                                                                                                                                                                                                                                      |
| 6M Transverter             | 189                                                                                                                                                                                                                                                                                                                      |
| 2M Transverter             | 219                                                                                                                                                                                                                                                                                                                      |
| External VFO               | 99                                                                                                                                                                                                                                                                                                                       |
| Speaker                    | 19                                                                                                                                                                                                                                                                                                                       |
| Speaker/Patch              | 59                                                                                                                                                                                                                                                                                                                       |
| Monitor Scope              | 199                                                                                                                                                                                                                                                                                                                      |
| Dynamic Base Mike          | 29                                                                                                                                                                                                                                                                                                                       |
| Cooling Fan                | 19                                                                                                                                                                                                                                                                                                                       |
| Mobile Mount               | 19                                                                                                                                                                                                                                                                                                                       |
| <b>RF</b> Speech Processor | 89                                                                                                                                                                                                                                                                                                                       |
| 600 Hz CW Filter           | 45                                                                                                                                                                                                                                                                                                                       |
| 8 Pole SSB Filter          |                                                                                                                                                                                                                                                                                                                          |
| for FT-101                 | 49                                                                                                                                                                                                                                                                                                                       |
| SSB TRANSCEIVERS           |                                                                                                                                                                                                                                                                                                                          |
| 6M AM/CW/SSB               | 449                                                                                                                                                                                                                                                                                                                      |
| 2M AM/FM/CW/SSB            | 629                                                                                                                                                                                                                                                                                                                      |
|                            | XCVR W/O Processor<br>AC Only, Less Mike<br>Linear Amplifier<br>6M Transverter<br>2M Transverter<br>External VFO<br>Speaker/Patch<br>Monitor Scope<br>Dynamic Base Mike<br>Cooling Fan<br>Mobile Mount<br>RF Speech Processor<br>600 Hz CW Filter<br>8 Pole SSB Filter<br>for FT-101<br>SSB TRANSCEIVERS<br>6M AM/CW/SSB |



#### 160-10AT

SUPERTUNERTM Want an antenna tuner to match everything between 160 and 10 through bal-anced line, coax line and random line. Superrandom line. Super-tunerTM is the one for you at just \$129.50 160-10AT-3K

SUPER SUPERTUNERTM Designed and engineered to be compatible with the full-power highly efficient



modern amplifiers now available to the amateur. In our opinion the finest tuner on the market today. \$229.50

#### 80-10AT SKYMATCHERTM

Here's an antenna tuner for 80 through 10 meters, handles full legal power handles full legal power and matches your 52 ohm transceiver to a random wire antenna. 80-10AT is yours for only \$59.50



#### The Atlas 210x/215x Solid state SSB/CW transceivers 200 watts P.E.P. input No transmitter tuning

- The ultimate in sensitivity, selectivity, and overload immunity. Plus extended frequency coverage for MARS operation when used with 10x Plus
- crystal oscillator. 210x or 215x ..... 210x or 215x w/noise blanker \$679. \$719

| 210X OF 215X W/HOISE DIdINE  |  | \$113. |
|------------------------------|--|--------|
| AC Console 110/220 V         |  | \$149. |
| Portable AC supply 110/220 V |  | \$100. |
| Plug-in Mobile kit           |  |        |
| Digital display unit         |  |        |
| Mobile ant. matcher          |  |        |





----- This electrically small 80/75 40.8 20 meter anterna operates at any length from 24 to 70 feet + no extra balun or transmatch needed • portable—erects & stores in minutes • small enoughto thin attic or apartment + full legal power = low SWR over complete 80/75, 40.8 20 meter bands • much lower atmo-spheric noise pickup than a vertical and needs no racialis \* kut includes a pair of specially-made 4-inch das by 4-inch long celle, containing 335 feet of radiating conductor, balun, 50 fl RG58/U coas, PL255 connector, nylon rope & instruction man-ual • now in use by US bept of State. US Army, radio schools, plus thousands of hams the world over. 10.4.140.414

HE S FRONT YER



ICOM IC-22S

latest mechanical and electronic construction techniques combine to make the Econo-Line your best amplifier value. Unique broad-band circuitry requires no tuning throughout the entire 2-meter band and adjacent MARS channels. See these great new additions to the TPL COMMUN-ICATIONS product line at your favorite amateur radio dealer.

For prices and specifications please write for our Amateur Products Summary! FCC type accepted power amplifiers also available. Please call or write for a copy of TPL's Commercial Products Summary.

| BOM                                                     | Novice Crystals<br>(Specify Band Only) | Make/Model      | Xmit Freq     | . Rec. Freq.                                                                             |
|---------------------------------------------------------|----------------------------------------|-----------------|---------------|------------------------------------------------------------------------------------------|
| Standard  Clegg Regency Wilson Drake And Others!        | kit • Ken • NOW!                       |                 |               |                                                                                          |
| TUFTS                                                   | Master Charge & BankAmerica<br>Name    | Call            |               | Open 9AM to 9PM<br>MonFri.<br>Sat. 9-6<br>Prices FOB Medford                             |
| 209 Mystic Ave.<br>Medford MA 02155<br>(617) 395-8280   | AddressCityOrder:                      | State           | _ Zip         | dents add 5% sales tax.                                                                  |
| New England's<br>Friendliest Ham Store<br>FRFF Gift Wit |                                        | ALL SALES FINAL | BANKAMERICARD | Orders over \$1000<br>deduct 5%. Add \$3.50<br>for shipping & handling<br>on all orders. |

| (iii) is a large of                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| by nown for 0 best volumer MHz MHz in the file of a quality and the best volumer MHz MHz, and is now which the file of a quality high power RF Amplifier which file of a Any high 2.30 MHz, or 140-170 MHz, and is now which the file of a Any high 2.30 MHz or 430-480 MHz, and is now which the file of a file of 210-230 MHz or thermal transfer blue, fine ar (SSB) with the file of a gravity of 210-230 mique and the file of the file of a mique of the file of a mique and the file of a mique of the file                                                                                                                   |
| ing from 20 MHZ of "therman gain rev infinite Water Stores and inclusion of 210-230 unique "therman gain rev infinite Water Stores and inclusion of 210-230 unique "therman gain rev infinite Water Stores and infinite Water Stor                                                                                                                   |
| which Engineering from VHF Eng<br>VHF Engineering from VHF Eng<br>versatility of going write: VHF Eng<br>versatility Call or write: VHF Eng<br>versatility Call or write: VHF Eng<br>versatility of going from VHF Eng<br>versatility Call or write: VHF Eng<br>vers |
| versatility. Call of 607-723 WER AMPLIFIEL POWER INPUT 300W(PEP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NY. 155 THIGH MUSSION OW(PER) 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLUE LINE THE END STREET TO TOW TOW Shares Street S                                                                                                                   |
| CW MISSBEEN 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2-30-160Min CWAM/SSB/FM 2W 120W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BLC 10/10 140-170MHz EM CW/FW 10W 40W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BL0 10(150 140 200MHZ CW IM ISM 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BLO 2160 220 330MH2 CWIAMISSDIEM JOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BLD 10 120 220.450MHz CW/AM/SSB/FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} BLD \ 10 40 \\ BLE \ 10 40 \\ 420.450 \\ 420.450 \\ CW NW  \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BLE 20180 420.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLC 2/60 220-230MHz CW/AM/SSB/FM 500<br>BLD 10/120 420-450MHz CW/AM/SSB/FM 10W<br>BLE 10/40 420-450<br>BLE 2/40 420-450<br>BLE 30/80 420-450<br>BLE 10/80 420-450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| allow the man of the main of the second of t                                                                                                                   |
| blace (black) is a line of the second of the pression of the p                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manager Balance and a start of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

128 👉 january 1977

## YAESU Deluxe "101" Series The Ultimate Station Combination



FL-101 Transmitter

■ 160 thru 10 Meter coverage with two auxiliary bands ■ All mode operation: SSB, CW, AM, and FSK ■ 240 Watts PEP ■ Reliable, plug-in circuit boards ■ Built-in AC supply ■ Built-in, fully adjustable VOX ■ Automatic break-in CW operation with sidetone ■ Indicator light for internal VFO operation ■ Provision for optional RF speech processor ■



FR-101 Digital Readout Receiver

■ Total Coverage: 160 thru 2 Meters with optional 6 and 2 Meter converters
 ■ Provision for all mode reception; SSB, CW, AM, RTTY, and FM with optional filters and FM detector
 ■ Complete transceive capability with all 101 series equipment
 ■ Reliable, plug-in circuit boards
 ■ Selectable fast or slow AGC
 ■ Built-in, threshold adjustable, noise blanker
 ■ Better than 1 KHz readout on all bands
 ■ Fixed channel, crystal-controlled operation
 ■ ±5 KHz clarifier
 ■ Built-in calibrator 25 or 100 KHz (selectable)
 ■ Indicator lights for internal VFO and clarifier
 ■ Built-in AC and 12V DC power supply

#### And . . . For General Coverage - Our New FRG-7 !

Synthesized all solid state hi-performance
 Triple conversion
 Continuous coverage: 500
 KHz to 29.99
 MHz
 AC or internal battery with automatic switching in case of power failure
 USB/LSB/AM/CW
 Drift canceling circuit
 Ceramic IF filters
 5 KHz direct dial readout
 Many, many more super features found only in receivers at three times its price! See at your dealer, or write us for brochure







## Your blueprints for 220 watts at 900 MHz.

Put EIMAC's 3CX400U7 ceramic-metal high-mu triode in EIMAC's CV-850 cavity and get over 13 dB gain in the 850-870 MHz land mobile band.

Simple? Yes.

Reliable? You bet.

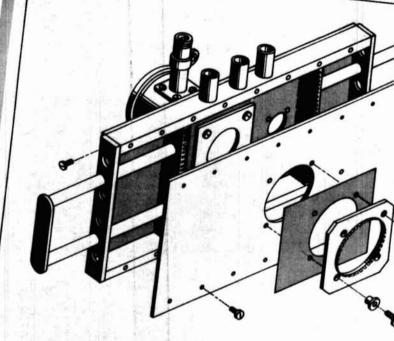
EIMAC has the answers today for tomorrow's communication requirements. For details contact Varian, EIMAC Division, 301 Industrial Way, San Carlos 94070. (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.



USED ON

APPLICATION

NEXT ASSY


APPO

PROVED

SIGN ACTIVITY APPO

DAT

SIZ B



2.065

50

10

E

C