

GET ON THE MAILING LIST FOR RCA RADIO SERVICE NEWS . . .

"It's a corker," says Michael Dolgas of Passaic, N. J.

"It's the cat's whiskers," says Ansel Searles, Searles Radio Service, Boscobel, Wis.

They were talking about RCA Radio Service News, the paper that is "published in the interests of radio service engineers." Whether you think it's a corker or the cat's whiskers, you'll agree that it is so good you won't want to miss a single issue. Each issue has technical articles especially written for the radio service profession, articles on the use of new developments such as the cathode ray oscillograph, dozens of practical service tips contributed by readers, and interesting announcements of new products of the RCA Parts Division and the doings of service engineers throughout the country.

Ask us to have your name put on the mailing list, or write direct to RCA Radio Service News, Camden, N. J.

A Booklet on Phonograph Modernization

This twenty-four page booklet explains how to connect electric pickups to radio sets and gives diagrams to help those who are cashing in on the "1935 Opportunity for Service Engineers." Limited quantity still available free on request while they last. See us or write to RCA Parts Division, Advertising Department, Camden, N. J.

STAMPED AND IMPRINTED POSTCARDS, \$1 per 100

Order these business-builders from us or send your order direct to RCA Parts Division, Camden, New Jersey, with your remittance. Order by number and give specific imprinting instructions.

Your Radio Can Take It

It takes all the none and a statemence and passes them on to you unless it you oped with a scentific amena system for short make reception especially, you must have one-fibernat nations and recommend the most-endering PCA World W. Mark A internal System a remarkable "doubled a utility system that reduced none and bring in site tons you never got bylore. Let us make a certified installation. Phore is today.

YOUR IMPRINT HERE PRICE \$1.00 PER HENDRED Government Stamped

Em 2

£4 6

CARUSO, RUDY VALLEE or a SYMPHONY ... whenever you want them

That old phonograph of yours-for a few dollars we can connect it to your radio so that you can hear your fectories aritish through your radio when review with Monsprings to saind, and you get the same modern tone qualify that you get on radio reception or with an RCA Victor Record Placer you can play records through your sailo withheat ever leaving your easy char. And it in mapenture. Those will take the control of the con

YOUR IMPRINT HERE PRICE \$1.00 PLR HI NDRED (Government beamped)

EA 10

SOUTH AMERICA . RUNGERICA . RU

You Never Realize

Now good you all more radio at car be until you install a special short in a an items a system. Let us make a Certify distribution of the none reading RCA World Wide Arterna System You Ille a wire read at this me station you can get without none and itreference.

YOUR IMPRINT HERE PRICE \$1.00 PER HI NDRED Government Stamped

When you can't get what you want on the radio why not listen to your old favorites on your phonograph—played through your radio?

It costs very little to install an electric motor and pickup in your old phonograph and connect it to your radfo. Then you can have the music you want when you want it, without even bothering to wind a spring Phone us well be glad to tell you more about it.

YOUR IMPRINT HERI PRICE \$1.00 FER HENDRED Government humbed

p = 1

de forest amateur radio tubes

PRICE LIST

Type	Ama- teur's Net Price	DESCRIPTION	Elec- trodes	Max. Plate Dissipation Watts	Cathode Type	Cath- ode Volts
203-A	\$17.50	R-F Power Amplifier, Oscillator, Class B Modulator	3	100	Filament	10.0
204-A	97.50	Oscillator, R-F Power Amplifier, Class B Modulator	3	250	Filament	11.0
211	17.50	R-F Power Amplifier, Oscillator, A-F Power Amplifier, Modulator	3	100	Filament	10.0
800	10.00	R-F Power Ampilifier, Oscillator, Class B Modulator	3	35	Filament	7.5
801	4.50	R-F and A-F Power Amplifier, Oscillator, Modulator	3	20	Filament	7.5
802 831	3.90 265.00	R-F Power Amplifier Pentode Oscillator, R-F Power Amplifier	5	10 400	Heater Filament	6.3
840 841	6.00	R-F Pentode R-F Power Amplifier, Oscillator,	5		Filament	2.0
842	3.25	A-F Voltage Amplifier A-F Power Amplifier, Modulator	3	15 15	Filament Filament	7.5 7.5
843	12.50	Power Amplifier, Oscillator Screen Grid R-F Power Amplifier	3	15	Heater	2.5
844 845 849	18.00 20.00 160.00	Screen Grid R-F Power Amplifier Modulator, A-F Power Amplifier Modulator, A-F and R-F Power Amplifier, Oscillator	3	15 75	Heater Filament	2.5 10.0
850 851	37.50 350.00	Modulator A.F and R.F Power	3 4	400 100	Filament Filament	11.0 10.0
852	23.80	Amplifier, Oscillator Oscillator, R-F Power Amplifier	3	750 100	Filament Filament	11.0 10.0
860	35.00		4	100	Filament	10.0
861 864	295.00 1.60	Screen Grid R-F Power Amplifier Amplifier (Low Microphonic De-	4	400	Filament	11.0
865	12.75	sign) Screen Grid R-F Power Amplifier	3 4	15	Filament Filament	7.5
868 918	6.00	Phototube (High Sensitivity)	2 2			<u></u>
955	3.75	Phototube (High Sensitivity) Amplifier, Detector, Oscillator (Acorn Type)	3		Heater	6.3
	Ama			May	13cater	
Type	Ama- teur's Net Price	RECTIFIERS	Elec- trodes	Max. Peak Inverse Volts	Cathode Type	Cath- ode Volts
217-A	teur's Net Price	RECTIFIERS Half-Wave, High-Vacuum	Elec- trodes	Peak Inverse Volts	Cathode Type	Cath- ode Volts
217-A 217-C 866	teur's Net Price \$20.00 20.00 4.50	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum	Electrodes	Peak Inverse Volts 3,500 7,500 7,500	Cathode Type Filament Filament	Cath- ode Volts 10.0 10.0 2.5
217-A 217-C	teur's Net Price \$20.00 20.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor	Electrodes	Peak Inverse Volts 3,500 7,500 7,500 10,000	Cathode Type Filament Filament Filament Filament	Cath- ode Volts 10.0 10.0 2.5 2.5
217-A 217-C 866 866-A 872 872-A	\$20.00 20.00 4.50 5.00 16.50 18.50	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, Hegh-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor	Electrodes	Peak Inverse Volts 3,500 7,500 7,500	Cathode Type Filament Filament	Cath- ode Volts 10.0 10.0 2.5
217-A 217-C 866 866-A 872 872-A	\$20.00 20.00 4.50 5.00 16.50 11.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode, Ray Tub-Vacuum for	Electrodes	Peak Inverse Volts 3,500 7,500 10,000 7,500	Cathode Type Filament Filament Filament Filament	Cath- ode Volts 10.0 10.0 2.5 2.5 5.0
217-A 217-C 866 866-A 872 872-A 878	\$20.00 20.00 4.50 5.00 16.50 11.00 3.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for	Electrodes	Peak Inverse Volts 3,500 7,500 7,500 10,000 7,500 10,000	Cathode Type Filament Filament Filament Filament Filament	Cath- ode Volts 10.0 10.0 2.5 2.5 5.0 5.0
217-A 217-C 866 866-A 872 872-A 878	\$20.00 20.00 4.50 5.00 16.50 11.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode, Ray Tub-Vacuum for	Electrodes	Peak Inverse Volts 3,500 7,500 10,000 7,500 10,000 20,000	Cathode Type Filament Filament Filament Filament Filament	Cath- ode Volts 10.0 10.0 2.5 2.5 5.0 5.0 2.5
217-A 217-C 866 866-A 872 872-A 878	\$20.00 20.00 4.50 5.00 16.50 11.00 3.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray	Electrodes 2 2 2 2 2 2 2 2	Peak Inverse Volts 3,500 7,500 7,500 10,000 20,000 7,500 10,000	Cathode Type Filament Filament Filament Filament Filament Filament Filament	Cath- ode Volts 10.0 10.0 2.5 2.5 5.0 5.0 2.5
217-A 217-C 866 866-A 872 872-A 878 879	teur's Net Price \$20.00 20.00 4.50 5.00 16.50 11.00 3.00 2.00 Ama- teur's Net	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sween-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic Deflection, High-Vacuum	Electrodes 2 2 2 2 2 2 3	Peak Inverse Volts 3,500 7,500 7,500 10,000 7,500 10,000 20,000 7,500 300 Max. Anode No. 2	Cathode Type Filament Filament Filament Filament Filament Filament Filament Filament Cathode	Cath- ode Volts 10.0 10.0 10.0 2.5 2.5 5.0 5.0 2.5 2.5 Cath- ode Volts
217-A 217-C 866 866-A 872-A 872-A 878 879 885	teur's Net Price \$20.00 20.00 4.50 5.00 16.50 11.00 3.00 2.00 Amateur's Net Price	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sween-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic Deflection, High-Vacuum	Electrodes 2 2 2 2 2 2 2 2 trodes	Peak Inverse Volts 3,500 7,500 10,000 7,500 10,000 20,000 7,500 300 Max. Anode No. 2 Volts	Cathode Type Filament Heater Cathode Type Heater	Cath- ode Volts 10.0 10.0 10.0 2.5 2.5 5.0 5.0 2.5 2.5 Cath- ode Volts
217-A 217-C 866-A 876-A 872-A 878-878 879-885	teur's Net Price \$20.00 20.00 4.50 5.00 18.50 11.00 3.00 2.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sweep-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic De- flection, High-Vacuum 5 in., Electrostatic Deflection, High-Vacuum	Electrodes 2 2 2 2 2 2 3 Electrodes	Peak Inverse Volts 3,500 7,500 10,000 7,500 10,000 20,000 7,500 300 Max. Anode No. 2 Volts 4,600 2,000	Cathode Type Filament Filament Filament Filament Filament Filament Filament Filament Filament Heater Cathode Type Heater	Cathode Volts 10.0 10.0 2.5 2.5 5.0 5.0 2.5 2.5 Cathode Volts 2.5 2.5
217-A 217-C 866-A 876-A 872-A 878-879 885 Type	teur's Net Price \$20.00 20.00 4.50 5.00 11.00 3.00 2.00 \$2.00 \$3.00 2.00 \$4.50 5.00 \$4.5	RECTIFIERS Haif-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Haif-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sweep-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic De- flection, High-Vacuum 5 in., Electrostatic Deflection, High-Vacuum, Short Persistence	Electrodes 2 2 2 2 2 2 3 Electrodes	Peak Inverse Volts 3,500 7,500 7,500 10,000 10,000 20,000 7,500 300 Max. Anode No. 2 Volts 4,600 2,000 1,200	Cathode Type Filament Heater Cathode Type Heater Heater	Cathode Volts 10.0 10.0 10.0 2.5 2.5 2.5 2.5 2.5 Cathode Volts 2.5 2.5 2.5
217-A 217-C 866-A 872-A 878-879 885- Type 904- 905- 906	teur's Net Price \$20.00 4.50 11.00 3.00 2.00 Amateur's Net Price \$52.50 45.00 18.00	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sweep-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic Deflection, High-Vacuum 5 in., Electrostatic Deflection, High-Vacuum 10 in., Electrostatic Deflection, High-Vacuum 11 in., Electrostatic Deflection, High-Vacuum 12 in., Electrostatic Deflection, High-Vacuum, Short Persistence Screen 13 in., Electrostatic Deflection, High-Vacuum, Short Persistence	Electrodes 2 2 2 2 2 2 3 Electrodes	Peak Inverse Volts 3,500 7,500 7,500 10,000 7,500 10,000 7,500 300 Max. Anode No. 2 Volts 4,600 2,000 1,200 2,000	Cathode Type Filament Filament Filament Filament Filament Filament Filament Filament Heater Cathode Type Heater Heater Heater	Cathode Volts 10.0 10.0 2.5 5.0 5.0 2.5 2.5 2.5 2.5 Cathode Volts 2.5 2.5 2.5 2.5 2.5
217-A 217-C 866-A 872-A 878-878 879-885 Type 904- 905- 906- 907- 908	teur's Net Price \$20.00 4.50 11.00 3.00 2.00 Amateur's Net Price \$52.50 45.00 18.00 48.75	RECTIFIERS Half-Wave, High-Vacuum Half-Wave, High-Vacuum Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, Mercury-Vapor Half-Wave, High-Vacuum for Cathode-Ray Tubes Half-Wave, High-Vacuum for Cathode-Ray Tubes Gas-Triode for Cathode-Ray Sweep-Circuit Control CATHODE-RAY TUBES 5 in., Electrostatic-Magnetic Deflection, High-Vacuum 3 in., Electrostatic Deflection, High-Vacuum 3 in., Electrostatic Deflection, High-Vacuum 3 in., Electrostatic Deflection, High-Vacuum, Sin., Electrostatic Deflection,	Electrodes 2 2 2 2 2 3 Electrodes 4 4	Peak Inverse Volts 3,500 7,500 10,000 7,500 10,000 7,500 10,000 20,000 7,500 300 Max. Anode No. 2 Volts 4,600 2,000 1,200 2,000 1,200	Cathode Type Filament Heater Cathode Type Heater Heater	Cathode Volts 10.0 10.0 10.0 2.5 2.5 2.5 2.5 2.5 Cathode Volts 2.5 2.5 2.5

RCA-906

RCA-800

RCA-955

RCA-802

RCA-8

GENUINE RCA

MICRO-SENSITIVE RADIO TUBES

with

- QUICKER START
- QUIETER OPERATION
- UNIFORM PERFORMANCE
- UNIFORM VOLUME, and
- SEALED CARTON PROTECTION

Carry a 5-1 public preference over their nearest competitor—now priced to appeal to a price-conscious public.

As distributors of RCA Radio Tubes we are in a position to give recognized dealers and service men special quotations. Write for attractive discounts.

TY	PE V	OLTS	LIST .	TYPE	VOLTS	LIST PRICE	TYPE	VOLTS	LIST PRICE
-00)A	5.0	\$1.25	42	6.3	¢0.00	0017		44. 50
	A	5.0	.59	43	25.0	\$0.99	83V	5.0	\$1.50
1		6.3	1.25	45	25.0	. 99	84	6.3	1.25
_	-v	6.3	.89	46	2.5	. 69	85	6.3	. 99
10	-	7.5	2.00	47	2.5	. 99	89	6.3	.99
11		1.1	1.25	48		. 89	V99	3.3	. 99
12		1.1	1.25	40	30.0	2.50	X99	3.3	. 99
	2A	5.0	.69		2.0	. 99	1A6	2.0	1.25
19		2.0		50	7.5	2.50	2A3	2.5	1.25
20			. 99	53	2.5	1.25	2A5	2.5	. 99
22		3.3	.99	55	2.5	. 99	2A6	2.5	.99
		3.3	1.25	56	2.5	. 69	2A7	2.5	1.25
24		2.5	. 89	57	2.5	. 89	6A4	6.3	1.25
26		1.5	. 59	58	2.5	. 89	6 A 6	6.3	1.25
27		2.5	. 69	59	2.5	1.25	6A7	6.3	1.25
30		2.0	. 69	71A	5.0	. 69	2B7	2.5	1.25
31		2.0	. 69	75	6.3	. 99	6B7	6.3	1.25
32		2.0	1.25	76	6.3	. 69	1C6	2.0	1.50
33		2.0	.99	77	6.3	. 99	6C6	6.3	.99
34		2.0	1.25	78	6.3	.99	6D6	6.3	. 89
35		2.5	. 89	79	6.3	1.25	6F7	6.3	1.50
36		6.3	. 89	80	5.0	. 59	5 Z 3	5.0	. 89
37		6.3	. 69	81	7.5	2.00	12 Z 3	12.6	. 99
38		6.3	. 89	82	2.5	.89	25 Z 5	25.0	.99
39	-44	6.3	. 89	83	5.0	. 89	874		4.90
40		5.0	. 69				876		6.70
41		6.3	.89				886		6.75
				·			?		

RCA RADIO TUBE SALES AIDS

will help you make more money!

Whether it's technical data, business-building forms, or sales aids, for the service man or dealer . . . we have it. In ordering, be sure to print the imprint desired. All orders should be accompanied by cash, check or money order.

LETTERHEADS: Your own stationery as you would want it. Imprinted 500 for \$2.75, 1,000 for \$4.50, including envelopes.

RC-12 MANUAL: Technical data on all receiving type tubes. Single copies free. Additional copies 25 cents each.

NOT-AT-HOME CARDS: Remove all doubt of your having called. Imprinted for 25c per 100,

CALLING CARDS:

Your own business card printed in two colors for almost less than the price of the blank card. \$1.00 for 500.

TUBE TEST STICKERS:

Bring your name to mind when tubes have to be replaced. 2,000 imprinted reminders for \$1.00.

BILLHEADS: Use business-like billheads in all your dealings. Available imprinted for the small amount of \$1.00 for 500.

RADIO TOUR MAPS: Maps showing radio stations of United States, Canada and Mexico, and principal short-wave stations of world by location, call letters and kilocycles. With your imprint: \$2.00 per 100; in lots of 500, \$1.75 per 100; in lots of 1,000, \$1.50 per 100.

DE LUXE LOG: Lists all local and foreign stations. Specify whether merchan-Specify whether merchandise or service copy; is desired for back cover. "S" means service copy. Price imprinted \$3.00 per 100. In lots of 1,000, \$2.75 per 100; in lots of 2,500, \$2.50 per 100.

PRICE LIST CARDS: For store and reference use

reverse side of card gives interchangeable types. Free on request.

Look Neat ...it Pays!

- 1. Test all tubes. Label O.K. tubes and destroy defective tubes in the presence of your customer.
- **2.** Check and compare all voltages with manufacturers service instructions. It helps isolate the trouble. Good test equipment adds prestige to your work.
- 3. Replace defective parts with genuine RCA Parts. The RCA trademark needs no explanation. RCA quality insures satisfied customers.
- 4. Don't let a mis-aligned receiver reflect on the job you have done. Align all receivers, even though you only

Tips FOR PROFITABLE SERVICING

change a tube. Every set, regardless of its type or age, can be improved by realigning.

- **5.** Be neat. Clean up all dirt and polish the cabinet. It only takes a minute and pays large returns.
- **6.** If trouble is not obvious, take the chassis to your shop. It creates a better impression and you'll do a better job.
- 7. Do a good job and ask a fair price. Good work commands a good price. Don't throw away your heritage.
- **8.** Keep a card file and follow up every call. Let your customers know you're interested in their radio problems.
- **9.** Keep up-to-date. Modern service equipment helps you do better work in less time. Increasingly complex circuits require increased knowledge.
- 10. Professional service requires professional appearance. See that your car, your equipment and your appearance measure up to the high standard of the service profession. Good showmanship pays big returns.

Ready-Made Ads and Stamped Postcards Help Sales

The ready-made ad and the Government stamped postcard imprinted with your name are great helps for aggressive Service Engineers. Their cost is low, and the results high. Use them to build your business. Postcards with your imprint, \$1.00 per 100, prepaid. Ready-made ads free.

ORDER THESE FREE AD MATS FROM US OR DIRECT FROM RCA PARTS DIVISION, Camden, N. I.

Foreign Stations like Locals

That's what you'll say when your new all-wave receiver is con-RCA World-Wide PRICE SA 00

Ask us about a Cartified Installation YOUR NAME AND ADDRESS

PRICE \$6.00 Ask on about a Cartified Installation

YOUR NAME AND ADDRESS

LESS MOISE

When Your Short Wave Radio RCA WORLD-WIDE ANTENNA

a a You don't have to wait until the short waves are "hot" if your set is connected to "hot" if your set is connected to an RCA World-Wide Antenna Eliminates noise from electrical devices and autómobiles. RCA Antennas are designed by the Antennas are designed by the same engineers who maintain communication with 46 foreign countries 24 hours daily. Prices 86.00. Certified installation by our antenna specialista extra

Your Name and Address

IMPROVE YOUR SHORT WAVE Radio Reception with the WORLD-WIDE

ANTENNA Regardless of the make, type or age of your short wave receiver, reception will be improved with the RCA World-Wide Antenna.

the RCA world-wide Autenna. Greater signal pick-up and reduc-tion of noise from electrical devices and automobiles gives better re-ception in all locations The RCA World-Wide Antenna is designed world-wide Antenna is gesigned, by the same engineers who main-tain communication with 46 foreign countries 24 hours daily Price 86.00. Certified installation by our trained specialists extra.

Your Name and Address

NOISY? SIGNALS WEAK?

STATIONS

RCA World-Wide Antenna

Your Name and Address

Radio Noisy?

tion. Let us shor

PRICE SA.00 Installation Extra

EM-21

More Stations Loss Noise

radio to an RCA WORLD-WIDE ANTENNA

PRICE 56.00 Installation Extra

YOUR NAME AND ADDRESS

Government Stamped Postcards, Imprinted \$1.00 per 100 : Order any of these postcards imprinted with your name from your RCAP path Distributor or from RCAP Path Distributor, Gandan, New Jarrey, enclosing remittence.

This Week's SPECIALI

Our Trained Engineer Will Come to Your Home and

- e Align all circuits in your receiver
- e Check and label all tubes
- Clean exposed volume control Remove corrosion from antenna terminals
- e Clean and polish radio cabinet

e Estimate cost of any needed repairs

ALL FOR \$200 YOUR IMPRINT HERE

RADIO WEAK?

We can see as well as hear exactly what is wrong with your radio on our RCA Cathode Ray Oscillograph. Drop into our Service Department and se this remarkable instrument.

nmend and install the RCA World-Wide Antenna System. A necessity for noise-free short-wave reception.

YOUR IMPRINT HERE

Oty and State or Slovan Hore CASH-IN ON YOUR OSCILLOGRAPH

A PROVEN BUSINESS-BOOSTER

HOW'S YOUR ANTENNA?

Do you know a poor antenna causes more noisy and unsatisfactory reception than any other factor? The new RCA World-Wide Antenna guarantees more stations with less noise. Phone us, we'll be glad to tell you more about it.

We use the latest RCA fectory-type service equipment.

YOUR IMPRINT HERE

City and State or Slogan Here

MELDS AMPENDA CALDS

PROGRAMS NOISY?

YOU'LL never recognize your old set efter one of our antenna, tube and alignment checks. We quarantee more signals, less checks noise and better tone quality. Latest RCA test equipment used.

AN RCA WORLD-WIDE ANTENNA SYSTEM possity for Heles-Free Short-Wave Recoption. Let us install One

YOUR IMPRINT HERE

City and State or Slogan here

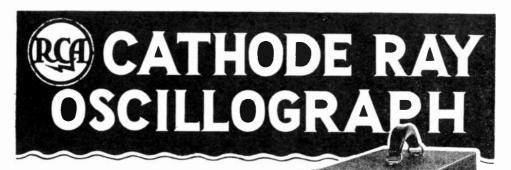
A SUIDE DELIMINED

Shake, Radio Service Engineer

You are interested in servicing every kind of radio apparatus; RCA makes all kinds of radio apparatus and is interested in having it properly serviced. § You are interested in the stabilization of the radio service business. So is RCA. Everything that benefits radio in any of its branches benefits RCA. § Between you and RCA there is a natural partnership. You can depend on RCA to see things from your point of view. § You can depend on RCA, as your partner, to support you in anything that benefits the radio service business in particular and the radio industry and the public in general. § You can depend on RCA to produce accurate Test Instruments designed for your needs and priced for your pocketbook. § You can depend on RCA for Replacement Parts for RCA Victor sets that are built with the same precision as the original parts. § You can depend on RCA to furnish you with complete technical information on its products. § You can depend on the RCA trademark making it easier for you to obtain customers and easier to keep them satisfied.

SALES MANAGER. RCA PARTS DIVISION

— I N D E X —


Pag	ge	Pag	ge
A		•	71
ADAPTER—Oscillator	6	Controls, Tone	
ADDRESS—Public Address Equipment	-	Controls, Volume	71
	18	Control Unit-Instrument Panel Control Unit	
Aerials—See Antennas	10	for Autos	
	16	CROSS INDEX to G. E., Westinghouse and Graybar	
All-wave Coils		Receivers and Guide to Replacement Parts 74, 8	3
A Transport of the Control of the Co	.s !8	D	
Coils		D	
) S Q	Detector Coils	57
	20	DRAWINGS—Antenna Coils52, 5	54
World-Wide		Pickup35, 3	36
	16	R. F. Coils	57
	10	R. F. System of All-Wave Receiver 5	57
	55		29
	9	Drive Gears 4	13
	27		
	28	E	
Roof Antennas		Electrolytic Capacitors	18
	27	Escutcheons—For Pickup Arms	
	19	<u>_</u>	
record Changer	,,	F	
В		Filter Reactors	57
Balls—Steel			52
TO BE A SECURED OF THE PARTY OF	13		13
m	37 31		
Ph. 87 II		G	
D 1 D 111 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 17	Gears—Drive	13
	7		13
	: /		rs
C		I	
CABINET Refinishing Kit		INDICATOR—Output	14
CARACITORS B. I. B	10		28
Packa—RCA Victor Replacement50, 5	8	Intermediate Frequency Coils 25, 63, 64, 6	
B B 4 4 .			13
Electrolytic Dry—Aluminum Containers 4	, ,		
Electrolytic Dry—Paper Containers 4		K	
Electrolytic Wet—Aluminum Containers 4	-	KIT—Cabinet Refinishing Kit	30
Electrolytic Wet—Copper Containers 4	-	TT NAME OF THE OWNER OW	2
Paper Flat	•	KITS—Phonograph Modernization Kits37, 3	
Paper Tubular	-	Knurled Nut Wrench	
Toothpick Mica	•	<u>_</u>	
Tuning. 4		L	
Tuning Capacitors for Magic Brain Receivers 2		Lever—Turntable Speed Shift Lever	7
Carbon Resistors	-		8
Cathode Adaptor	-		3
CATHODE RAY OSCILLOGRAPH 8.			2
COILS—All-Wave	-		
Antenna		M	
Antenna for Magic Brain Receivers 2		MAGIC Brain Parts24, 2	5
Detector—For Magic Brain Receivers 2		Magnetic Pickup	
Intermediate Frequency—For Magic Brain		Mica Capacitors	
Receivers		MODERNIZATION—Phonograph	-
Oscillator—For Magic Brain Receivers 24			3
			-

LIST PRICES Are Shown For All Re-Sale Items

-INDEX-

Page	Pag
MOTORS—Board Layouts	Riveting Punch
Board Spring Assembly	Riveting Anvil
Mounting Assembly	
Phonograph	S
Small Phonograph	Screwdriver-Off-Set
Turntable Drive Replacement Motors 44	Selector Switch
3.7	SERVICE NOTES—Bound Volumes of RCA
N	Service Notes
Needle Boxes	Shielded Antenna System
O .	Shields-For Magic Brain R. F. and I. F. Coils 25
•	Sound Box-Orthophonic
	Spring Assembly—Motor Board
Off-Set Screwdrivers	Steel Balls
	Suppressors—Auto
OSCILLATOR Adapter	Switch-Radio-Record
Modernization Kit. 12	Switches-Selector Switches for Magic Brain
	Receivers
Phonograph	m
OSCILLOGRAPH—Cathode Ray	T
OUTPUT Indicator	Technical Purpose Records
Transformers	TEST Oscillator
	Tone Controls
P	Tools—Miscellaneous
Paper Capacitors	Toothpick Capacitors
PHONOGRAPH—Modernization	TRANSFORMERS—Audio
33, 34, 35, 36, 37, 38, 39	Power Auto 27
Medernization Kits37, 38	Intermediate Frequency63, 64, 65
Motors	Output
Oscillator	Power68, 69
Pickup and Arm—Small 41	Universal Output
Pickup Arm Escutcheons	Universal Power
Pickup Arms	Tuning Capacitors25, 49
Pickup-Magnetic 41	TUNING Wand
Porcelain Resistors	Turntable Brake
Power Transformers	Turntables
Powertrons-Vibiators for Auto Radio 28	Turntable Speed Shift Lever
Power Unit—Regulated—TMV-118-B 15	Turntable—Two-Speed
PUBLIC Address Equipment	Two-Speed Turntables
Punch—Riveting	U
R	U
	UNIVERSAL Transformers21, 22, 23
Radio—Record Switch	
Reactors—Filter	V
	Vibrators—Auto
Records—Technical Purpose	Vibrators
REGULATED Power Unit	Victor Alignment Tool
Replacement Capacitor Packs	Volume Controls
Carbon—1/4 Watt	W
Carbon—1½ Watt	Wand, Tuning
Carbon—1 Watt	Wirewound Resistors
Flexible Wirewound 62	WORLD-WIDE Antenna
Porcelain—Tapped 61	Wrench—Knurled Nut
Wirewound—Flat 62	Wrench-Victor Alignment 16
7 10 10 10 10 10 10 10 10 10 10 10 10 10	** * * Concur- v (Cto): Anglittle (it C

Prices Shown Are Subject to Change Without Notice

STOCK NO. 9545

\$8450

NET PRICE

With RCA tubes, including RCA-906 Cathode Ray Tube

The RCA Cathode Ray Oscillograph, Type TMV-122-B, is complete in every essential requirement for immediate use. It includes two power supplies (one for the Cathode Ray Tube and one for the amplifier), vertical and horizontal amplifiers, saw-tooth timing frequency generator and six tubes, including the RCA-906 Cathode Ray Tube (3-inch).

• 2 VOLTS PER INCH...

Through the use of two wide-frequency-range high-gain amplifiers, the sensitivity is guaranteed at 2 volts d-c per inch for both vertical and horizontal deflection. The amplifiers have flat frequency characteristics between 20 and 90,000 cycles \pm 10 per cent. The amplifier gain is approximately 40.

• 20-15,000 CYCLES . . .

A linear saw-tooth timing frequency oscillator with a special synchronizing circuit is an integral part of the RCA Oscillograph. The frequency range extends from 20 to 15,000 cycles and permits the examination of a single cycle up to 15,000 cycles or the examination of six cycles up to the limit of the amplifier—90,000 cycles.

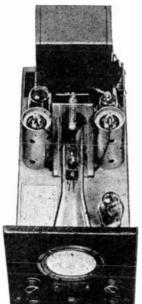
FREQUENCY MODULATOR . . .

The RCA Frequency Modulator, price \$27.50, and the RCA Test Oscillator, Type TMV-97-C, price \$34.50, are auxiliary instruments for aligning radio circuits with the RCA Oscillograph. The Frequency Modulator is a combined motor-driven capacitor and a-c generator. The Test Oscillator has a range from 90 to 25,000 K.C. These instruments are described on pages 10, 11 and 13.

HIGH BRILLIANCE ... COMPLETE CONTROLS ... LOW COST

The X-RAY of RADIO SERVICE

• For Service Engineers


Visual alignment of tuned circuits, "flat-topping" I. F. circuits, measuring hum and checking distortion in audio amplifiers are but few of the problems which are easily solved through the use of the RCA Cathode Ray Oscillograph. A visual presentation of practically all alternating current circuit functions may be quickly and easily made.

• For Amaieurs and Experimenters

The RCA Cathode Ray Oscillograph enables the amateur to monitor percentage modulation, to check modulated waveform for distortion and examine the phase shift in audio amplifiers. Through its use the experimenter may easily and quickly arrive at the solution of the most difficult problem.

• For High Schools and Universities

Now every high school and uni-

versity may easily give students the benefit of visual presentation of alternating current phenomena through the use of an oscillograph. Studies of alternating current wave shapes and demonstrations of the effects of changing constants in circuits may be quickly and easily made.

For Radio Dealers

The RCA Cathode Ray Oscillograph gives the Radio Dealer an instrument for comparison of receiver characteristics and for making extremely effective window displays. Selling-up from a low-priced instrument to a higher-priced one is much easier when the eye as well as the ear can note the difference in performance.

For Manufacturers

The RCA Cathode Ray Oscillograph is a valuable instrument either for receiver development or production testing. Better engineering and quicker and better tests are a direct result of its use in the manufacturing field.

SPECIFICATIONS

Focusing

A special circuit with adjustable control on the front panel provides a means of accurately focusing the light beam on the screen.

Illumination

The light intensity is such that photographs may be easily made with ordinary commercial equipment. No hood is required.

Sensitivity

20 to 100,000,000 CPS: 27.0 Volts RMS for 1 inch deflection, 74.0 Volts RMS for full screen image; 20 to 90,000 CPS: 0.7 Volts RMS for 1 inch deflection, 1.9 Volts RMS for full screen deflection.

Sweep Circuit

A linear saw-tooth oscillator, adjustable from 20 to 15,000 cycles, is provided. A special circuit provides a positive means for synchronizing this oscillator with the voltage under test. Binding posts are provided so that an external synchronizing voltage source also may be used.

Amplifiers

Two wide frequency range amplifiers are provided, one for horizontal and one for vertical deflection. The amplifiers are linear from 20 cycles to 90 kilocycles ±10%. The gain is approximately 40.

Centering Adjustments

Two screw driver adjustments are provided at the rear of the case for both vertical and horizontal beam centering adjustment.

Radiotrons Used

1 RCA-906, 1 RCA-879, 1 RCA-885, 1 RCA-80, 2 RCA-57; Total 6.

Power Supply

Complete a-c operation from 110-120-volt lines. Power consumption 50 watts.

Size

Height $12\frac{1}{4}$ inches (less handle), width $7\frac{1}{4}$ inches, length $17\frac{3}{4}$ inches.

Weight

39 pounds

PORTABLE . . . COMPLETE . . . A. C. OPERATED

No longer must service engineers content themselves with a Test Oscillator having high leakage, poor calibration, unsymmetrical modulation or any of the usual undesirable features of most oscillators. A new RCA Test Oscillator, priced at only \$34.50 net to service engineers, overcomes these and all other features heretofore considered unavoidable in instruments of this type. While this new instrument retains the general appearance of its predecessors, its performance and flexibility have been improved to the point where it definitely gives laboratory type performance.

Copper-Shielded Coil Unit

A newly-developed copper-shielded coil assembly gives an output which may be adjusted from less than 1 microvolt to over 0.2 volts over the frequency range from 90 to 1500 K.C. At higher frequencies the maximum output is slightly less while the minimum is somewhat higher. At 25,000 K.C., the leakage is less than 40 microvolts. Provision for oscillograph operation, external modulation, and operation as a heterodyne frequency meter are but few of the many new features of this remarkable instrument.

Again RCA has placed in the hands of service engineers an instrument that permits them to offer factory type service to the most involved and complicated receiver.

DIRECT READING DIAL-WIDE RANGE -OSCILLOGRAPH OPERATION

FREQUENCY RANGE

The output frequency range extends from 90 K.C. to 25,000 K.C. by means of eight overlapping bands. This range covers all radio frequency and intermediate frequency line-up points of all receivers. The frequency range is covered entirely by the fundamental frequency of the oscillator, no harmonics being used.

MODULATION

A separate modulator tube is provided which modulates the radio frequency output with a 400 cycle sine-wave voltage. There is a panel switch provided for operating the oscillator either with or without modulation. Also a panel jack permits applying an external modulating frequency voltage such as a beat frequency oscillator or phonograph output to the r-f signal.

OSCILLOGRAPH OPERATION

Convenient operation with the RCA Oscillograph and RCA Frequency Modulator is accomplished by a sweep circuit jack and operation without modulation. This is a very important feature because of the increasing popularity of the oscillograph method of circuit alignment.

HETERODYNE FREQUENCY METER

By plugging in a pair of headphones in the modulation jack, and placing the modulation switch at the unmodulated position, the modulator tube operates as a detector and the zero beat method of frequency checking may be used. This is very useful to amateur operators for checking the frequency of unknown transmitting stations.

CALIBRATION

The direct reading dial is guaranteed accurate $\pm 3\%$. However, a blank card and frame on the back of the oscillator permits individual calibration when desired. Individual factory calibration is available at an additional charge of \$5.00.

R. F. OUTPUT VOLTAGES

A two-position toggle switch combined with a new variable attenuator circuit provides two ranges of output r-f voltages. The switch gives approximately a 100:1 ratio of voltage change. The minimum range of the high position overlaps the maximum range of the low position, thereby giving a continuous variation over the entire range.

COMPARE THESE R. F. OUTPUT VOLTAGES

COMPAN	E IIIEDE MATE		
	Switch at Lo	w Position	Switch at High Position,
Range, K.C.	Minimum Less Than	Maximum	Maximum Volts
90- 200 200- 400 400- 800 800- 1500 1500- 3100 3100- 6800 6800-14000 14000-25000	1 Micro-Volt 5 Micro-Volts 10 20 40	2 Milli-Volts 2 " 2 " 1 Milli-Volt 1 " 1 "	0 . 2 0 . 2 0 . 2 0 . 2 0 . 1 0 . 1 0 . 1 0 . 1

LOW LEAKAGE . . . COPPER SHIELDING . . . HIGH OUTPUT

NET PRICE

STOCK NO. 9559

Extremely low leakage and high output are two new features that any service engineer can now add to his RCA Test Oscillator, either Type TMV-97-A or TMV-97-B, by means of a Modernization Kit. The Kit is offered for only \$4.75, little more than manufacturing cost, so that owners of either of the older type RCA Oscillators can have equipment of the very latest type at minimum expense.

MATERIAL INCLUDED IN KIT

- 1 Shielded Coil Assembly with mounting unit.
- 1 Range Switch Escutcheon.
- 1 High-Low Output Switch.
- 1 High-Low Output Switch Escutcheon.
- 1 200,000-Ohm Resistor.
- 1 2000-Ohm Resistor.
- 1 Modulation Switch.
- 1 Modulation Switch Escutcheon.
- 1 Dial Scale.
- 1 Sweep Capacitor Jack.
- 1 Instruction Book complete with Drilling Template.

90 K. C.-25,000 K. C.

The frequency range of the modernized oscillator is from 90 K.C. to 25,000 K.C. by means of eight individual over-lapping ranges. The entire range is covered by the fundamental frequency of the oscillator, no harmonics being used. The eight-position range switch and the tuning dial are marked directly in kilocycles.

Thus accurate dial and switch settings for a given frequency are easily and quickly made. The accuracy of dial calibration is guaranteed ±3%.

MODULATION CONTROL

A separate tube is included in all RCA Test Oscillators for providing a 400-cycle modulation frequency. Certain applications, notably those with the RCA Cathode Ray Oscillograph, required an unmodulated output. To provide for this contingency, a two-position toggle switch, mounted on the panel, permits operation either with or without modulation. tion either with or without modulation.

SWEEP CIRCUIT JACK

When using a test oscillator for aligning r-f or i-f stages in conjunction with the RCA Cathode Ray Oscillograph, it is necessary to parallel a sweep capacitor across the tank capacitor of the test oscillator. To facilitate this connection, a jack is provided for mounting on the front panel, thus permitting use of the low-capacity cable furnished with the RCA Frequency Modulator for this application.

MINIATURE MAGIC BRAIN

The heart of the improved test oscillator kit is the shielded coil and switch assembly, similar to the famous RCA Victor MAGIC BRAIN. This unit includes eight coils and an eightposition rotary switch, all compactly mounted in a drawn copper container. High efficiency and low leakage give an output r-f voltage adjustable over a wide range.

Frequency RCA Modulator

FOR ALIGNING
RECEIVERS WITH
YOUR RCA
OSCILLOGRAPH

Net Price

\$2750

Stock No. 9558

TUNING CAPACITOR—Two sections—each 35 mmfd. Panel switch for connection of either one or both to output. Variable sweep range 22.5 mmfd. or 45 mmfd.

CONNECTING CABLE—14-inch low-capacity connecting cable with plugs.

GENERATOR FREQUENCY—Two cycles per revolution permit positive synchronizing for double-sweep alignment.

GENERATOR VOLTAGE-1.5 volts minimum.

MOTOR—Repulsion induction type—1550 R.P.M.

PANEL CONTROLS—"Hi-Lo" capacity switch, "On-Off" switch, output binding posts and single-circuit jack.

SIZE - Height 81/2 inches (including raised handle), case alone 61/2 inches, width 9 1/4 inches, depth 41/2 inches.

WEIGHT-51/4 pounds.

CURRENT CONSUMPTION—25 watts.

ALIGN your circuits visually with this new RCA Frequency Modulator and the RCA Cathode Ray Oscillograph. Sweeps the r-f voltage of your test oscillator over the resonant frequency of the circuit under test and generates an a-c synchronizing voltage simultaneously. Quick, accurate alignment, just like factory production, is quickly done, eliminating all possibility of error. Motor-driven, balanced tuning capacitor of two ranges and a-c generator driven from same shaft, thereby eliminating screen flicker.

FEATURES

TWO PURPOSES—The RCA Frequency Modulator functions both as a sweep capacitor and as an a-c impulse synchronizing generator.

25 SWEEPS PER SECOND—25 sweeps per second in each direction eliminate all possibility of screen flicker of the projected curve.

PEAKED WAVE-FORM—The output of the impulse generator has a very peaked wave-form instead of the usual sine wave of a-c generators. Such a wave-form gives a very positive means of synchronizing the horizontal "saw-tooth" oscillator of the cathode ray oscillograph with the output of the receiver under test.

OUTPUT INDICATOR

\$400

NET PRICE

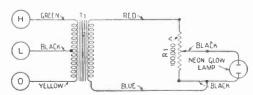
SPECIFICATIONS

Dimensions, $5\frac{3}{8}$ " x $2\frac{7}{8}$ " x $2\frac{3}{8}$ ".

Weight, 13 Ounces.

Case, Die-cast moulded bakelite.

Lamp Rating, 50-60 volts breakdown.


Transformer Ratio, 80:1 (maximum).

Input Impedances, O to H, 4 ohms, O to L, 11/2 ohms, H to L, .6 ohm.

Potentiometer Resistance, 100,000 ohms.

STOCK NO. 4317

See your output with this visual output indicator. It can't burn out; overload does not hurt it. Impresses your customers and gives a quick, accurate indication of the proper alignment point. Works from any dynamic loudspeaker.

The RCA Output Indicator is designed for use with an oscillator when aligning radio receivers. The instrument consists of a tapped step-up transformer, a potentiometer, a glow tube and three binding posts for connecting the output of the receiver to the transformer. The glow of this lamp is very sensitive, following variations in frequency and intensity. This gives a very sensitive indicator for adjusting trimmer capacitors to their optimum position. Stock No. 4317—Net Price \$4.00.

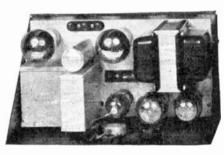
SEE YOUR OUTPUT

A Constant Source of "B" Voltage for Designers, Development Laboratories, Electrical Laboratories, Experimenters, Engineers, Manufacturing Tests, Production Inspection, Physical Laboratories, School Demonstration Rooms, Scientific Service Organizations, Universities, etc.

"Better than B Batteries" sounds impossible, but accurately describes the new RCA Regulated Power Unit. Operating from the 110-volt A.C. lines, it provides a wide range of hum-free direct current voltages that are constant regardless of line voltage or load current variations.

SPECIFICATIONS

The RCA Regulated Power Unit will deliver voltages between 135 volts and 180 volts D.C. at a current drain between 10 m.a. and 80 m.a. with line voltages of 110 volts ± 10% or 120 volts ± 10% with a load voltage variation of not over 2%. Higher voltages may be obtained at reduced current drains.


In addition, the RCA Regulated Power Unit will deliver both 90 volts and 135 volts for operation of

equipment which requires both of these voltages. The 90-volt tap will deliver up to 20 m.a. at 90 volts, while the output from the main section is 40 m.a.

at 135 volta.

TUBES—RCA 80, Rectifier; RCA 2A3, Voltage Regulator; RCA 57, D.C.-A.C. Amplifier; RCA 874, Voltage Standard; RCA 874, Regulator for 90volt tap.

Power Unit from top with hinged cover removed to show compact design and sturdy construction

QUALITY PRODUCT FROM THE RCA PARTS DIVISION

The Stock No. 4160 Alignment Tool is a bakelite shaft combination screw driver and socket wrench. The metal screw driver bit is so shaped that the increase in capacity caused by its touching a trimmer screw is offset by the reduction in inductance caused by its shape. This is very important when making adjustments on all-wave receivers where the screw driver must be inserted through the end of the coil. The socket end fits the main tuning capacitor trimmer adjustment screws used on numerous RCA Victor Receivers. The bakelite shaft is $\frac{1}{12}$ " in diameter, which gives entrance to $\frac{1}{4}$ " holes, used on older model Radiola receivers.

Stock No. 4160

Net Price \$0.60

RIVETING PUNCH

The Stock No. 10987 Riveting Punch is a special metal punch for use with a riveting anvil. The punch may be used with the rivets usually used on radio receivers and permits the service man to make a factory type repair, instead of using machine screws to replace rivets. The punch is #" in diameter and 51/2" long.

Stock No. 10987

Net Price \$0.50

OFF-SET RIVETING ANVIL

The Stock No. 10988 Off-Set Riveting Anvil is a special anvil that permits riveting in places ordinarily inaccessible. It is to be used in conjunction with a riveting punch such as Stock No. 10987. The anvil is \frac{1}{8}" in diameter and \frac{3}{2}" long.

Stock No. 10988

Net Price \$0.70

TUNING WAND

The Stock No. 6679 Tuning Wand is a special alignment tool which makes possible the checking of alignment in all-wave receivers without disturbing the adjustment of the trimmer capacitors. The tool consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron core at the other end. Inserting the brass cyclinder into a coil lowers its inductance, while inserting the iron increases the inductance. From this it is evident that before adjusting trimmers, the adjustment may be checked by inserting each end of the wand into the coil. Proper adjustment is evidenced by a reduction in output with either end of the wand inserted into the coil.

Stock No. 6679

Net Price \$1.10

RCA Tools and Accessories are designed for definite service needs and are applicable to a wide variety of Their practicability is first demonstrated in the manufacturing department of the RCA Manufacturing Company and only those tools that meet the exacting requirements of factory production are offered to service engineers.

OSCILLATOR ADAPTER

The Stock No. 4316 Oscillator Adapter is a desirable accessory for use with the TMV-97-A or B Test Oscillator. The adapter is for inserting in the modulator tube socket when operation without modulation is desired.

Stock No. 4316

Net Price \$0.45

KNURLED NUT WRENCH

The Stock No. 10982 Knurled Nut Wrench is a special wrench designed for tightening or removing the knurled nuts such as are used with toggle type switches. These nuts are ordinarily impossible to remove or tighten without marring. The wrench will hold a nut from \%" to \\\'/2" diameter. The overall \(\text{Length} \) is \(\text{Length} \) is \(\text{Length} \). length is 8½". Stock No. 10982 Net Price \$1.20

OFF-SET SCREW DRIVERS

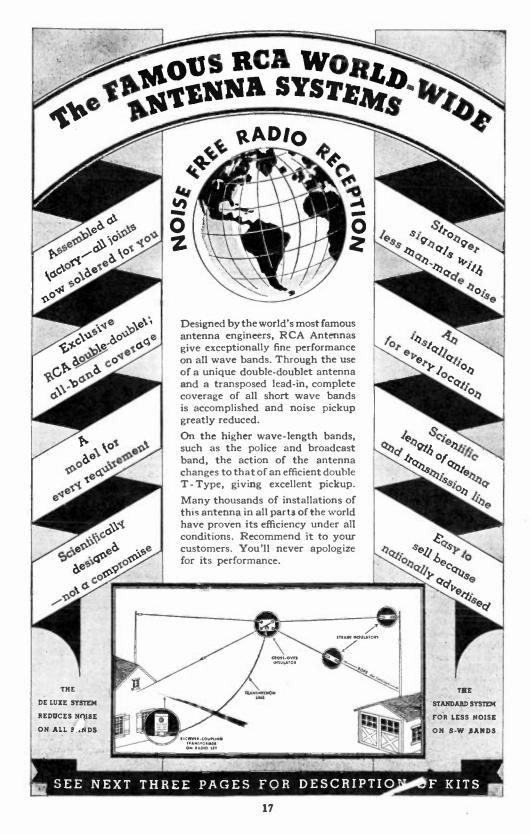
The Stock Nos. 3064 and 2930 Off-Set Screw Drivers are useful for making adjustments to remote control units and other small screws that are inaccessible with an ordinary screw driver. The No. 3064 screw driver is 2½" long, while No. 2930 has an overall length of 4½".

Stock No. 3064

Stock No. 2930

Net Price \$0.50

Net Price \$0.50


VICTOR ALIGNMENT WRENCH

The Stock No. 10983 Socket Wrench is a special flexible end socket wrench designed for adjusting the alignment screws of the 1929 and 1930 Victor Receivers, Models R-32, R-35, etc. The overall length

Stock No. 10983

Net Price \$1.80

THE RCA WORLD-WIDE ANTENNA SYSTEM

STOCK NO. 9500-A-LIST PRICE, \$6.00

1 Roll Transmission Line (80 feet)

1 Receiver-Coupling Transformer

2 Nail-on Knobs

1 Crossover Insulator

4 Strain Insulators

The RCA World-Wide Antenna System has brought new reliability and freedom from noise to short-wave reception. Uses the famous RCA double-doublet antenna with a weatherproof transmission line and a receiver-coupling transformer. A special feature is the electrostatic shield in the receiver-coupling transformer which prevents power line noises from entering the receiver via the lead-in system. Functions as an efficient "T" type antenna on the broadcast band without noise-reducing properties.

Contents of Kit

- 2 Rolls Stranded Antenna Wire (each 46½ feet long)
- 1 Entrance-tube Insulator
- 1 Ground Clamp
- 2 Links (for attaching coupling transformer)
- 1 Instruction Sheet

RCA WORLD-WIDE ANTENNA SYSTEM KIT OF ESSENTIAL PARTS

For dealers, service engineers, or experimenters, who may prefer to buy standard parts locally, the Kit of Essential Parts of the RCA World-Wide Antenna System is provided. All the advantages of the standard Kit (Stock No. 9500-A) may be obtained by the use of this Kit plus antenna wire, insulators, etc., purchased locally. A special instruction sheet discusses results obtained with different lengths of antenna wire and different types of installations.

Amateurs who desire to experiment with the RCA "double-doublet," and dealers and service engineers who buy wire, insulators, etc., in bulk, can get the required special parts for the RCA World-Wide Antenna System in this Kit.

The receiver-coupling transformer included is the improved type, having no switch. It automatically gives the advantages of the "double-doublet" on short waves and of a "T" type antenna on standard broadcast.

STOCK NO. 9550 - LIST PRICE, \$5,00

Contents of Kit

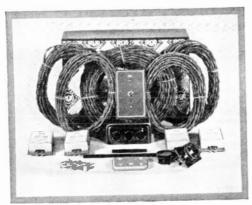
1 Roll Transmission Line (80 feet)

1 Receiver-Coupling Transformer 1 Crossover Insulator

THE RCA DE LUXE WORLD-WIDE ANTENNA SYSTEM

This new RCA De Luxe World-Wide Antenna System is similar to the regular RCA World-Wide Antenna System with the important improvement of noise reduc-

tion on the broadcast band. This is accomplished through the use of a coupling transformer at the antenna end of the transmission line, as well as the receiver end.


Contents of Kit

- 2 Rolls Stranded Antenna Wire (each 461/2 feet)
- 1 Roll Transmission Line (80 feet)
- 1 Antenna Transformer
- 1 Receiver-Coupling Transformer
- 1 Crossover Insulator
- 4 Strain Insulators
- 2 Nail-on Knobs
- 1 Entrance-tube Insulator
- 1 Ground Clamp
- 2 Links (for attaching coupling transformer)
- 1 Instruction Sheet

STOCK NO. 9555-LIST PRICE, \$7.75

RCA WORLD-WIDE DEALER DEMONSTRATION ANTENNA SYSTEMS

STOCK NO. 9504-A-NET PRICE \$9.85

Think what it will mean to be able to make convincing demonstrations of short-wave or standard broadcast reception from radio sets on the floor of your store, when your prospect's interest is high. With the noise-reducing RCA World-Wide Dealer Demonstration Antenna System you no longer need to apologize for the poor reception conditions in your location.

Higher unit sales will result, because you can connect four sets to the RCA World-Wide Dealer Demonstration Antenna System and switch from one set to another instantly, thereby demonstrating the superior performance of higher-priced units.

The RCA Dealer Demonstration Antenna System is the same as the standard RCA

World-Wide Antenna System except that it handles four sets which may be placed at convenient points in the store.

Contents of Kit

- 1 Transmission Line (53 feet)
- 4 Secondary Transmission Lines (27 feet)
- 4 Receiver-Coupling Transformers
- 1 Crossover Insulator

- 1 Four-position Switch complete with switch box and flush plate
- 8 Links for attaching transformer
- 1 Instruction Sheet

RCA ANTENNA ACCESSORIES

LOADING COILS—Loading coils may be used with any RCA World-Wide Antenna System where space does not permit the use of the standard lengths of the "double-doublet" antenna. They compensate for the decreased inductance lost by cutting the longer doublet. The over-all loss when using loading coils is not appreciable. Not furnished with the kits.

Each loading coil consists of the proper number of turns of enameled wire wound on a high-grade porcelain tube; entire assembly dipped in weather-proof compound. Tinned soldering lugs are provided for easy connection. Size of each coil $2\frac{1}{8}$ inches long and $\frac{7}{16}$ inches in diameter.

Stock No. 6958 - List Price, per pair, 60 cents

EXTRA TRANSMISSION LINE (For RCA World-Wide Antenna Kits)—Each kit contains 80 feet of transmission line. When less than 80 feet is required, the excess line provided in kit should be coiled behind the receiver. When more than 80 feet, and less than 160 feet, of transmission line is required, a second 80-foot length should be purchased and spliced and taped to the first length and excess coiled behind receiver. Above 160 feet, transmission line may be cut to exact length required. Only this special transmission line should be used in order to secure proper impedance matching between the "double-doublet" antenna and the receiver-coupling transformer.

Stock No. 4738—1 Roll Transmission Line (80 Feet) List Price, \$3.48

EXTRA TRANSMISSION LINE (For RCA Shielded Antenna System)—Additional transmission line may be added to either the Stock No. 7717 or 7718 Kit up to approximately 500 feet without greatly impaired results. Additional transmission line is available and may be had in any length.

Stock No. 4095—100 feet—List Price, \$2.00

RCA AUTO ROOF ANTENNAS—For use in cars which have no built-in antenna or when the factory-installed antenna does not give satisfaction. Makes a neat job at a small expense. Easily installed, being simply pinned to the inside fabric of the car roof with six safety-pin type fasteners that come with the antenna. Size 11 inches by 32 inches. Composed of No. 23 gauge cotton-covered soft copper wire wound on heavy flat cardboard, then covered with attractive book-cover paper.

Stock No. 7622 (Gray Cover)—List Price, \$1.50 Stock No. 7621 (Tan Cover)—List Price, \$1.50

RCA SHIELDED ANTENNA SYSTEM

(For Standard Broadcast Reception Only)

RCA Standard Shielded Antenna Systems bring startlingly improved performance to the radio listener accustomed to an ordinary makeshift antenna. An antenna transformer matches the antenna impedance to the shielded transmission-line impedance. A receiver-coupling transformer matches the receiver input impedance to the shielded transmission line. This permits having a shielded transmission line of a low impedance value. Having a low impedance value insures little or no electrical noise pickup in the lead-in. The system functions on all antennas of any type and length.

Contents of Kit

1 Antenna Transformer
 1 Lightning Arrester
 1 Receiver-Coupling Transformer
 1 Instruction Sheet
 1 Roll of Shielded Transmission Line (100 feet)

For use with all standard broadcast receivers. Not recommended for all-wave or short-wave receivers.

Stock No. 7718 (Illustrated) - List Price, \$5.00

RCA Victor Model 280, and other receivers having a similar antenna input transformer, do not require the

receiver-coupling transformer of the above kit. For such receivers use Stock No. 7717 Kit (same as Stock No. 7718, less the receiver-coupling transformer).

Stock No. 7717 (Not Illustrated) — List Price, \$3.50

UNIVERSAL OUTPUT TRANSFORMER

STOCK \$195 LIST PRICE

SPECIFICATIONS

Size — Standard Model $-2^{3}/_{4}'' \times 2^{1}/_{4}'' \times 2''$. Cased Model $-2^{3}/_{4}'' \times 2^{3}/_{8}'' \times 3''$.

Voice Coil Impedances
—1 to 15 Ohms.

Primary Load Impedances—1,000 to 20,000 Ohms.

Maximum Working Potential—500 Volts.

Maximum Plate Current (each tube) — 55 Milliamperes.

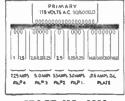
Frequency Range — 30 to 10,000 Cycles.


- One transformer for exact matching of all output tubes (either single or push-pull) to all dynamic loudspeakers. (Covers voice-coil impedances from 1 ohm to 15 ohms.)
- Universal mechanically as well as electrically.
 Angle bracket with slots for easy mounting on either chassis or loudspeaker frame.
- Wide frequency range—30 to 10,000 cycles. No distortion caused by mis-match of tubes or speaker.
- Silicon steel core eliminates possibility of damage from mechanical shock or from temporary electrical overload.
- Tinned soldering terminals for quickly attaching tube and speaker leads.
- Baked varnish impregnation gives protection against normal climatic conditions.
- Low net price insures adequate profit with minimum investment.

SPECIAL IMPREGNATED MODEL

For those extreme tropical conditions of high temperature and humidity, RCA has provided a special cased model of the Universal Output Transformer, having vacuum wax impregnated windings and complete potting in an asphalt compound for protection. The case is cadmium plated and fitted with a bakelite terminal board.

Stock No. 7853 - List Price, \$2.42

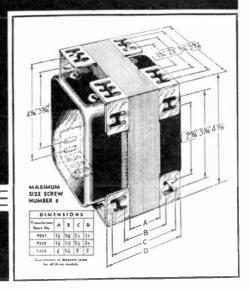

Now service engineers can install true RCA quality in replacement power transformers for any make or model of a-c set manufactured to date and do so from a stock of only four transformers. The new line of four types of RCA Universal Power Transformers is priced surprisingly low, yet has really universal mounting brackets, removable end-bells, wide range of windings and taps, and is truly universal both electrically and mechanically.

LIST PRICE \$6.00

STOCK NO. 9552 LIST PRICE \$6.50

FOR 10-12-TUBE SETS

A heavy-duty transformer capable of handling the largest of standard receivers. Heavy core, high voltage plate winding, removable end-bells and rugged construction make this a transformer capable of meeting the most severe requirements.


FOR CLASS B SETS

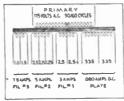
Exceptionally high (475/475) voltage plate winding and high current carrying capacity make this a transformer suitable for Class "B" output amplifiers. Good regulation and the usual RCA features make this an exceptional value.

FOR 1.5, 2.5, 5, and 6.3 VOLT TUBES

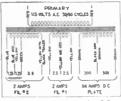
- Universal Mounting Brackets
- Removable End Bells
- Grommets for Leads
- Voltages Marked on Terminal Board
- · Approved by Underwriters
- Adequate Filament Windings

Compare Prices and Quality

· SPECIFICATIONS ·


The transformers have been divided into four classes, for ten- or twelve-tube receivers, for class "B" receivers, for five- to nine-tube receivers, and also for four-tube receivers. Sufficient windings and taps have been brought out to cover any of the receivers that have been manufactured under the particular tube designation indicated. Mechanically, these transformers have mounting slots which permit a wide variety of mounting arrangements. An exclusive feature is the removable end bell, which permits all connections to be made and the bell replaced, thus assuring a workmanlike job. The voltages at each tap are clearly marked on the terminal board. Each transformer includes an insulation sheet to place over the connections to prevent short-circuiting or grounding after replacing the end bell. The end bell permits the transformers to be passed by the underwriters, a feature not usually found in replacement transformers.

FOR 5-9-TUBE SETS


The most popular of the RCA Universal Transformers because it fits the greatest number of receivers. A quality transformer you can use on receivers of many types and manufacture.

FOR 4-TUBE SETS

A high quality small transformer for midget four-tube receivers. Incorporates the high quality features needed for a transformer of this type.

STOCK NO. 9553 LIST PRICE \$4.75

STOCK NO. 9556 LIST PRICE \$2.06

RCA VICTOR MAGIC BRAIN RECEIVER

The sensational performance of the famous RCA Victor Magic Brain Receivers is due to the advanced engineering of the circuits and the precision construction of the parts. Now you can use these fine parts for replacement or experimental use. In proper circuits, these parts bring "Magic Brain" type performance.

RADIO FREQUENCY COILS

The radio frequency coils listed are suitable for use on 1935 models of the RCA Victor Magic Brain receivers or experimental circuits of all types and description. The tuning range given is that obtained when a tuning capacitor having a range of 11–450 mmfd. is used. Trimmer capacitors are included for all windings.

ANTENNA COILS

TUNING RANGE	STOCK	LIST
K.C.	NO.	PRICE
140-410 and 1720-5400	7810	\$2.10
540-1720 and 5400-18,000	*7803	1.82
18,000-36,000	4410	.70

441

FIRST DETECTOR COILS

TUNING RANGE, K.C.	STOCK NO.	LIST PRICE
140–410 and 1720–5400	*7808	\$2.05
540–1720 and 5400–18,000	*7805	2.15
18,000–36,000	†4421	.70

OSCILLATOR COILS

TUNING RANGE, K.C.	STOCK NO.	LIST PRICE
140-410 and 1720-5400	*7809	\$1.70
540-1720 and 5400-18,000	*7807	1.62

No oscillator coil is furnished for 18,000-36,000 K.C. range.

In RCA Victor receivers the second harmonic of the 5400-18,000 K.C. band coil is used.

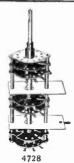
REPLACEMENT PARTS

INTERMEDIATE FREQUENCY TRANSFORMERS

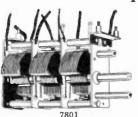
The intermediate frequency transformers used in RCA Victor Magic Brain receivers are efficient, include trimmer capacitors and tune to 460 K.C. A single stage i-f amplifier with two transformers gives a highly selective, high gain intermediate frequency amplifier suitable for many applications.

The following transformers are used in the five-, six-, eightand ten-tube RCA Victor Magic Brain receivers:

STOCK NO.	STAGE	LIST PRICE
4431	First	\$2.28
4433	Second	2.15


The transformers listed below are used in the twelve-tube RCA Victor Magic Brain receivers which have a two-stage i-f amplifier and an additional A.V.C. intermediate frequency stage.

STOCK NO.	STAGE	LIST PRICE	STOCK NO.	STAGE	LIST PRICE
7794	A.V.C.	\$0.82	7792	Second	\$2.22
7791	First	2.35	7793	Third	


SELECTOR SWITCHES

Band changing in all-wave receivers is accomplished through the use of a multi-position gang selector switch. The following switches are suitable for many applications of this type.

NO. OF	NO. OF	STOCK	LIST
GANGS	POSITIONS	NO.	PRICE
10	3	4728	\$4.32
11	4	4617	3.32
11	5	7836	3.05
12	5	7802	4.05

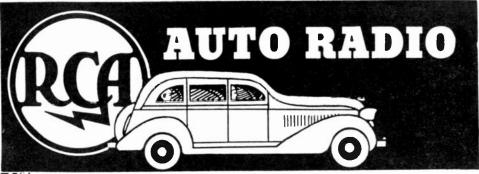
TUNING CAPACITORS

The RCA Victor Magic Brain Tuning Capacitors listed have a wide tuning range and are of rugged mechanical construction. They are held to very exact matching limits and do not include trimmer capacitors.

 STOCK NO.
 NO. OF GANGS
 RANGE
 LIST PRICE

 6603
 4
 16-335
 \$3.80

 7801
 3
 11-450
 4.42


 4504
 2
 11-450
 2.78

SHIELDS

The r-f and i-f transformers listed do not include the shields necessary for their use in chassis assemblies. The following shields are easily mounted by means of two self-tapping screws.

STOCK NO.	FOR	LIST PRICE
4521	Antenna, Oscillator or First Detector Coils	\$0.42
7800	I.F.	.45

ACCESSORIES

RCA Automobile Radio Receivers are as sensational in the automotive field as RCA Magic Brain receivers are in the home. Excellent performance, rugged construction and latest design features are a built-in quality of the following parts and accessories. While these parts have been designed primarily for use with RCA Automobile Receivers, they are nevertheless suitable for use with other receivers.

RCA VIBRATORS AND INVERTER-RECTIFIERS

The Vibrator or Inverter-Rectifier is the heart of the high voltage power supply system in practically all automobile receivers. Each type has its advantages. The straight vibrator, which merely interrupts the direct current to the primary of the transformer, requires a rectifying tube for converting the resultant A.C. into direct current. The inverter-rectifier type vibrator functions also as a mechanical rectifier, thus eliminating the necessity for a rectifier tube. It, however, has more parts and is somewhat higher in cost. RCA Auto Receivers use both types, which are available for general use.

VIBRATOR INVERTER-RECTIFIER WITH SCREW MOUNTING BASE

(Complete with buffer capacitors in base)

STOCK NO.	USED IN	LIST PRICE
7604	M-34	\$6.00
7689	M-105	7.20
7694	M-116	7.20

VIBRATOR INVERTER-RECTIFIER WITH PLUG-IN BASE

(Complete with buffer capacitors)

STOCK NO.	USED IN	LIST PRICE
7757	M-123	\$8.50
4278	Base for above vibrator	. 26

4278

VIBRATOR INVERTER

(For use with rectifier tube)

STOCK NO.	USED IN	LIST PRICE
7780	M-107	\$4.96
6980	Base for above vibrator	.20

POWER TRANSFORMERS

RCA Auto Radio Power Transformers are conservatively built and will withstand a wide range of input voltages. They should be used with the vibrators listed on the preceding page for the same receivers.

7759

9457

9049

7775

STOCK NO.	USED IN	LIST PRICE	STOCK NO.	USED IN	LIST PRICE
7759 9049 7775	M-123 M-105 M-107	\$3.95 3.75 3.78	9430 *9457	M-34 M-116	\$3.60 4.78

*Battery operation transformer

SUPPRESSORS-25,000 OHMS

RCA Spark Plug and Distributor Suppressors are built to high standards, are suitable for all cars and have long and carefree life. They are used to reduce the effects of ignition interference when objectionable on certain types of receivers. The suppressors listed are of 25,000 ohms resistance.

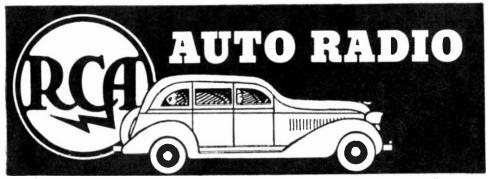
6152

6175

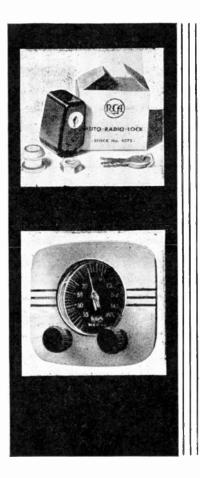
STOCK NO. TYPE LIST PRICE STOCK NO. TYPE LIST PRICE 6151 Spark Plug \$0.56 6175 Splice-in \$0.56 6152 Distributor .56 6670 Elbow-type for .56 spark plugs

BY-PASS CAPACITORS

The usual auto radio installation requires a capacitor to be connected across the output of the generator and from one side of the ammeter to ground. The capacitors listed are suitable for each of these applications.


6494

THE RCA DI-POLE ANTENNA REDUCES IGNITION NOISE. See Page 29


6495

STOCK NO.	TYPE	VALUE	LIST PRICE
6494	Ammeter	0 5 mfd.	\$0.46
649 5	Generator	0 5 mfd.	.72

ACCESSORIES

RCA AUTO RADIO LOCK

Auto Radio Receivers are easy to install—but also easy to steal—unless protected by an RCA Auto Radio Lock. Just remove the old nut from the bulkhead bolt, slip on the special bushing and nut, and the lock slips over the nut and bushing like a spare tire lock. The lock barrel is made by Yale. The RCA Auto Lock fits all makes of auto radio receivers.

Stock No. 4575—List price, \$1.35.

INSTRUMENT PANEL CONTROL UNIT

(For RCA Models M-123 and M-107)

The RCA Instrument Control Unit replaces the steering column control supplied with RCA Victor Models M-107 and M-123. It is designed to be fitted into the instrument control panel of the 1933 and 1934 Ford cars and may be used with a number of others that have suitable panel space. It also may be adapted to other receivers having double shaft controls. Mounts flush with instrument panel. Chromium finish with black enamel stripes.

This control unit makes a neat job that will incresse your sales of RCA Victor Auto receivers.

Stock No. 4476—List price, \$2.75.

POWERTRONS FOR 1935 RCA VICTOB MAGIC BRAIN AUTO RECEIVERS

The RCA Victor 1935 Magic Brain Auto Receivers

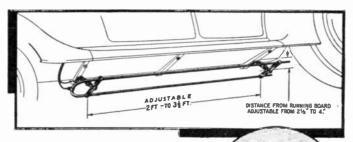
7857

use the newly developed Powertron, which is an advanced development of the vibrator. Long trouble-free life and ease of replacement (all have plug-in bases) are features not found in the usual vibrator.

STOCK NO.	TYPE	USED IN	LIST PRICE
5067	Pri. Interrupters	M-109	\$3.66
7857	Full Wave	M-104 and M-108	5.64

RCA AUTO ROOF ANTENNAE

For use in cars which have no built-in antenna or when the factory-installed antenna does not give satisfaction. Makes a neat job at small expense. Easily installed, being simply pinned to the inside fabric of the car roof with six safety-pin type fasteners that come with the antenna. Size 11 inches by 32 inches. Composed of No. 23 gauge cotton-covered soft copper wire wound on heavy flat cardboard, then covered with attractive book-cover paper.


Stock No. 7622 (Gray cover)—List price, \$1.50. Stock No. 7621 (Tan cover)—List price, \$1.50.

DI-POLE AUTO ANTENNA

LIST PRICE

\$2.60

STOCK NO. 9605

A "Set-up" for the Service Engineer

Steel top autos plus this new noise-reducing running board antenna mean profits for you

Cash in on the new steel-top automobiles without antennas. Install the new RCA Noise-Reducer Di-Pole Antenna on any car and guarantee improved results. As sensational in the automotive field as the famous RCA World-Wide Antenna is in the home field.

The new RCA Noise-Reducer Auto Antenna is an entirely new development in automobile antenna design. It's easily and quickly installed on any car, gives efficient pickup from stations and eliminates all ignition noise pickup by the antenna. Its low price insures a ready sale to any automobile radio purchaser. Works with any set.

SPECIFICATIONS

CONNECTIONS

A machine screw at the center of the bend in the rod is provided for attaching the shielded antenna lead from the receiver.

MOUNTING

Two universal type brackets are provided for attaching to the running board by means of the bolts normally used on the car. The height of the

antenna may be quickly adjusted by the brackets to insure road clearance.

OPERATING PRINCIPLE

Signals are picked up by the antenna acting as a counterpoise and the car acting as an antenna. Decreasing the distance from the antenna to the road increases signal pickup. Noise from nearby sources such as ignition interference is eliminated by cancellation effects caused by the shape of the antenna.

All RCA Victor Service Notes ... Now in Five Bound Volumes

This library contains complete service information, drawings and price lists 1923-1935

The five bound volumes of Service Notes cover all RCA or Victor models produced from 1923 to 1935 except old Victrola instruments that did *not* contain a radio receiver. Complete replacement parts lists are provided for all models issued since 1929.

Service Engineers who use the volumes regard them as their "Business Bible," not alone for the diagrams and drawings, but for the time-saving service information, conveniently arranged for every RCA Victor receiver. Schematic drawings can be obtained elsewhere, but the technical information is not so readily found.

In addition, each volume contains other valuable information, such as impedance, inductance and capacity charts, and other data peculiar to the receivers described therein.

NET PRICE

\$100 PER VOLUME

F. O. B. CAMDEN, N. I.

RCA PHONOGRAPH OSCILLATOR

A Miniature Broadcasting Station for Attaching Pickups or Microphones to All Types of Receivers Without Making Internal Wiring Changes.

STOCK No. 9554

***7**75

LIST PRICE (WITHOUT TUBE)

to worry about difficult pickup connections to receivers not having pickup terminal boards... If the receiver can receive a broadcasting station, it will work perfectly with the RCA Phonograph Oscillator... Includes radio-record switch and connectors for all connections.

SPECIFICATIONS

Tuning Range . 1400 K. C.-1700 K. C.

Type of Modulation

Suppressor Grid Modulation

Input Voltage for Optimum Modulation 0.3 Volts

Output Impedance . . . 30 Ohms

Type of Tube Required

RCA-2A7 or RCA-6A7

Heater Current

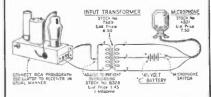

1.0 Ampere (2A7) -0.3 Amperes (6A7)

Plate Current

2.0 Milliamperes at 250 Volts

MAKE AN INEXPENSIVE P. A. SYSTEM

with the RCA Phonograph Oscillator and any radio receiver. The connections and additional parts required are shown in the diagram. Cash in on this large field and make your share of the profits.

Makes Phonograph Modernization Easy

PHONOGRAPH MODERNIZATION

THE 1935 OPPORTUNITY FOR SERVICE ENGINEERS!

Although radio maintains its place as the chief source of home entertainment, the public is showing a growing desire for recorded music, for phonographs and phonograph records.

Those who can afford it are buying radio-phonograph combinations—glorious instruments that bring to their owners a choice of all that the world affords in radio or recorded music. But what of those who cannot now afford a combination instrument? What of these millions who have radio receivers that are in every way satisfactory, but who long also to hear their old and new favorites whenever they wish, as only the phonograph can bring them? Here is the 1935 Opportunity for Service Engineers: Phonograph Modernization.

New Kits Simplify Work

Every phonograph modernization job is more or less a "custom-built" job. Yet the work is so simple that any competent service engineer can handle it without difficulty. RCA Phonograph Modernization Kits make it easy to use scientifically matched parts, parts that are used in the finest RCA Victor radio-phonograph combination instruments.

The Phonograph Oscillator for Easier Installations

The RCA Phonograph Oscillator has been introduced to make the installation of phonograph equipment as easy as possible. If a survey of the receiver to be used discloses that no pickup terminal boards or jacks are available, every effort should be made to sell the RCA Phonograph Oscillator with all kits. This greatly reduces your installation difficulties and insures the best possible results with the minimum time and effort on your part, since all circuit alterations are eliminated.

If, however, a Phonograph Oscillator cannot be sold, and there are no phonograph terminal boards available on the chassis, then internal connections to the chassis must be made. In conjunction with this, you will find that practically all receivers fall into three general classes. These are as follows:

- 1. Receivers having power detectors and low-gain audio stages. In these receivers, it is necessary to connect the secondary of the input transformer in series with the grid of the second detector. The leads from the transformer to the receiver should be thoroughly shielded and grounded to avoid picking up hum.
- 2. Receivers having high-gain audio stages. These receivers usually make it necessary to connect the secondary of the phonograph input transformer in series with the first audio stage.
- 3. Receivers using either 2B7 or 6B7 second detector. Practically all receivers merchandised during 1933 and 1934 use second detectors of this type. In these receivers it is but necessary to place the secondary of the phonograph input transformer in series with the grid cap connections to the 2B7 and 6B7 tubes. Usually this can be done without removing the chassis from the cabinet.

The diagrams on the following pages show the proper connections to be made for receivers of all classes.

MOTOR BOARD LAYOUTS

FOR RCA VICTOR PHONOGRAPH PARTS

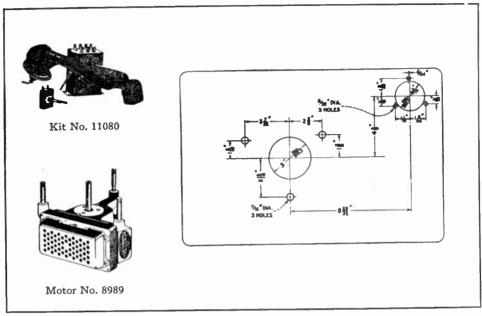


FIGURE 1—Motor Board Layout showing dimensions and location of all holes required for mounting Stock No. 11080 Kit and Stock No. 8989 Motor.

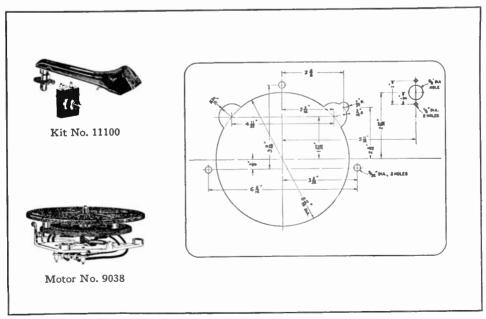


FIGURE 2—Motor Board Layout showing dimensions and location of all holes required for mounting Stock No. 11100 Kit and Stock No. 9038 Motor.

HOOK-UPS USING KIT NO. 11080

(The Standard Installation)

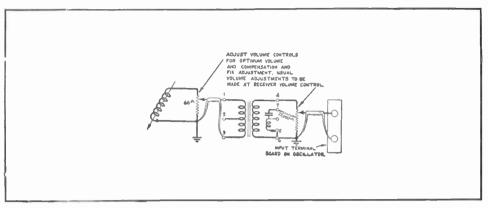


FIGURE 3—Schematic Circuit of Connections of Stock No. 11080 Kit and the RK-24 Phonograph Oscillator.

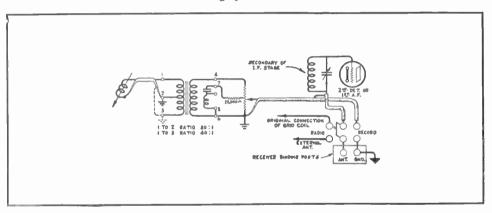


FIGURE 4—Schematic Circuit of Connections of Stock No. 11080 Kit and a typical superheterodyne receiver. In receivers having power detectors and one audio stage the pickup should be connected from terminals 1 to 2 of the input transformer. On receivers having high-gain audio systems, the pick-up connected from terminals 1 to 3 will give the best results.

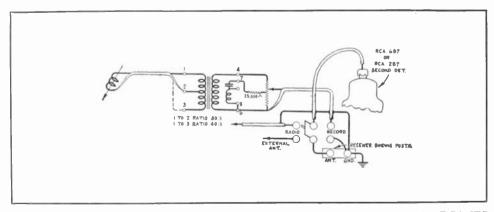


FIGURE 5—Schematic Circuit of Connections of Stock No. 11080 Kit and Receivers using RCA-6B7 or 2B7 Second Detectors. Proper shielding of leads indicated is very important.

HOOK-UPS USING KIT NO. 11100

(The Inexpensive Installation)

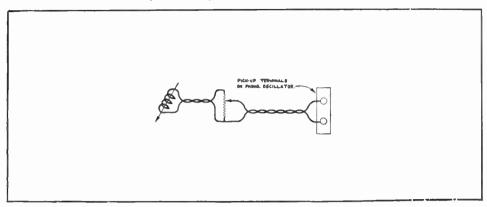


FIGURE 6—Schematic Circuit of Connections of Stock No. 11100 Kit and RK-24 Phonograph Oscillator.

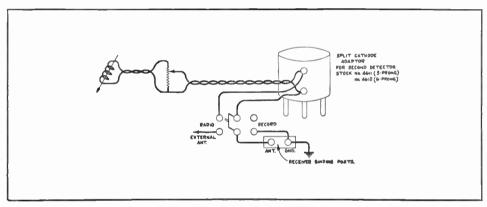


FIGURE 7—Schematic Circuit of Connections of Stock No. 11100 Kit and Stock No. 4611 or 4612 Adaptor. These connections to be used on receivers not having phonograph terminal boards and having high gain audio system. The adaptor is to be placed in the second detector socket.

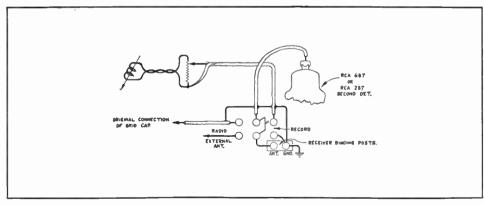
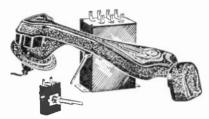



FIGURE 8—Schematic Circuit of Connections of Stock No. 11100 Kit and Receivers using RCA-6B7 or 2B7 Second Detectors. Proper shielding of leads indicated is very important.

FOR THE STANDARD INSTALLATION

RCA VICTOR
Phonograph Modernization Kit
Stock No. 11080

Contents: 7-ohm Pickup, Inertia Type Pickup Arm, 20,000-ohm Volume Control, and Input Transformer. Same type pickup as is used on de luxe RCA Victor instruments. Has Viscaloid damper which gives smoother and wider frequency range. Transformer and volume control include compensation circuit for improved low-volume reproduction. Pickup counter-balanced for two-speed (33) or 73 R.P.M.) operation. List price, \$13.10.

Stock No. 6896

AUTOMATIC ECCENTRIC BRAKE to stop turntable at end of record having an eccentric groove. To be used with Kits Nos. 11080 and 11076 (Pickup arms of the inertia type). List price, \$2.50.

Stock No. 11106

The SHIFT LEVER used to change the speed of the turntable (8948) from standard to long playing. Not included with 8948. List price, \$0.98.

DPDT RADIO-RECORD SWITCH, rotary type, for changing circuit from radio to record reproduction. Used on all modernization installations. Not needed when RCA Phonograph Oscillator is used in installation.

Stock No. 4460 Switch. List price, \$0.40. Stock No. 3829 Knob for above Switch. List

Stock No. 3829 Knob for above Switch. List price, \$0.22.

Stock No. 8989

MOTOR complete, for 60 cycles, 115 volts. This is the same sturdy motor used in the highest quality of phonographs and combinations made by RCA Victor. List price, \$18.52.

Stock No. 3599

MOTOR MOUNTING ASSEMBLY (not illustrated), comprising one screw, one washer and one lock washer. This unit contains the three sets necessary for mounting the Stock No. 8989 Motor on the motor board. List price, \$0.30.

Stock No. 3391

MOTOR BOARD SUSPENSION SPRING ASSEMBLY (not illustrated), comprising 1 bolt, 1 top spring, 1 bottom spring, 2 cap washers, 1 C washer and 1 nut. Recommended for mounting a motor board for Stock No. 8989 in a cabinet. Specially tuned springs prevent vibration being transmitted mechanically to the pickup and spoiling reproduction. Four sets required. List price, 4 sets, \$2.00.

Stock No. 8948

TWO-SPEED TURNTABLE. Fits shaft of Stock No. 8989 Motor. This turntable adds distinction to your work and gives it the stamp of modern workmanship. It is the same turntable used in RCA Victor Combinations to play both standard (78 R.P.M.) and long-playing (33½ R.P.M.) recordings. List price, \$5.50.

RESISTOR—25,000 ohms—carbon type—1/2 watt. (Not illustrated.) Used in phonograph compensation circuits. See Figures 3, 4 and 5. Stock No. 3264. List price, \$0.20.

FOR THE INEXPENSIVE INSTALLATION

RCA VICTOR Phonograph Modernization Kit Stock No. 11100

Contents: A 2450-ohm Midget Pickup and 5000-ohm Volume Control. For inexpensive installations where space is limited. Usually used with Stock No. 9038 Motor, shown at right. Single speed (78 R.P.M.) only. List price, \$5.85.

DPDT RADIO RECORD SWITCH, see opposite page. Not needed when RCA Phonograph Oscillator is used in installation. Stock No. 4460 Switch. List price, \$0.40. Stock No. 3829 Knob for above switch. List price, \$0.22.

Stock No. 9038

SYNCHRONOUS TYPE MOTOR WITH TURNTABLE—115 volts, 60 cycles. Although this motor is not self-starting, it serves the purpose admirably where cost is a factor. Where space is limited this unit fits in easily. Plays either 10- or 12-inch records at standard speed. List price, \$8.00.

Stock No. 3813

MOTOR MOUNTING ASSEMBLY (not illustrated), comprising one metal bushing, two rubber bushings, one flat washer, one lock washer and one nut. Three sets required to mount Stock No. 9038 Motor (above). List price, 3 sets, \$1.68.

MISCELLANEOUS

The parts shown above and on the previous page will handle the great majority of all phonograph modernization jobs. For certain applications the Kits shown below may be preferred. The RCA Parts Division can supply RCA Victor phonograph parts for any requirements.

KITS WITH STRAIGHT ARM PICKUPS. May be used for single-speed (78 R.P.M.) operation only. Usually used as exact replacements on old instruments.

RCA VICTOR Phonograph Modernization Kit Stock No. 11099

Contents: 200-ohm Pickup, Straight Type Pickup Arm, 500-ohm Volume Control and Input Transformer. This Kit, minus the transformer, can be connected to 1929 Victor models without internal circuit changes. List price, \$12.10.

RCA VICTOR Phonograph Modernization Kit Stock No. 11075

Not illustrated: similar to Kit No. 11099. Contents: 20-ohm Pickup, Straight Type Pickup Arm, 60-ohm Volume Control, and Input Transformer. List price, \$10.80.

RCA VICTOR Phonograph Modernization Kit

Contents: 700-ohm Pickup, Inertia Type Pickup Arm, 5000-ohm Volume Control. Due to high impedance of pickup, no input transformer is included. Pickup counter-balanced for two-speed operation. Limited frequency range, no viscaloid damper. Uncompensated volume control. This kit should not be used with low-gain audio systems. List price, \$10.50.

Stock No. 11076

SPLIT-CATHODE ADAPTOR (not illustrated), for cathode type phonograph connection. See Figure No. 7.

Stock No. 4611—5-Prong. List price, \$1.00. Stock No. 4612—6-Prong. List price, \$1.00.

VICTOR TECHNICAL PURPOSE RECORDS

a valuable aid to ALL SERVICE ENGINEERS

The increasing popularity of the RCA Victor Cathode-Ray Oscillograph and other service equipment that is rapidly raising the standards of the servicing profession has brought new interest in some little-known records produced by RCA Victor. While originally made for engineering laboratories, many service shops are ordering them after hearing them in use at RCA Victor Service Meetings.

The Records are various and diversified, including constant frequency discs, varying frequency discs, constant volume discs, aural test records, wireless telegraphy records, and others. The wireless telegraph discs are six in number, and comprise a comprehensive course in Morse telegraphy. They sell for \$5.00 a set. complete with handbook. All other Technical Purpose Records sell at 75 cents each for the 10-inch size, and \$1.25 for the 12-inch size. A few of them follow (the complete list may be procured by writing directly to the RCA Manufacturing Company, Camden, N. J.):

Catalog No.	Size
*XL-101	12-inch
*83001	10-inch
84519-B	12-inch
84519-A	12-inch
84518-B	12-inch
84518-A	12-inch
84517-B	12-inch
84517-A	12-inch

Description

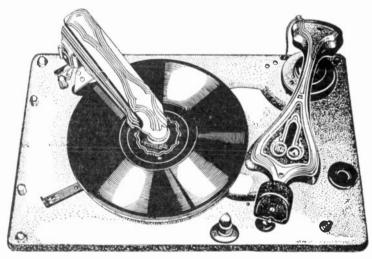
Variable frequency of approximate-constant amplitude from 30 to 10,000 cycles.

Variable frequency of approximate-constant amplitude from 30 to 10,000 cycles. 15-second periods of 46, 50, 58, 68, and 75 cycles per second. 15-second periods of 84, 125, 150, 175, 200, 225, 250, 275, and 300 cycles per second. 15-second periods of 350, 400, 450, 500, 550, 600, 650, 700, and 750 cycles per second. 15-second periods of 800, 850, 900, 950, 1000, 1100, 1200, and 1300 cycles per second. 15-second periods of 1400, 1500, 1600, 1700, 1800, 1900, 2100, and 2200 cycles per

15-second periods of 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, and 3200 cycles

per second.

15-second periods of 3400, 3600, 3800, 4000, 4200, 4400, 4600, 4800, and 5000 cycles per second.


*Single-face. All others double-face.

AUTOMATIC RECORD CHANGER

LIST PRICE \$72.50

STOCK NO. 9501

Uninterrupted record reproduction for as long as an hour and a half (if long-playing records are used) without attention. Automatically changes and plays either eight 10-inch or seven 12-inch records at either 78 or 331/2 R.P.M. Uses extended frequency range Viscaloid pickup and inertial type tone arm.

Overall dimensions of unit: 1815, inches long, 125% inches wide and 8 3 inches high, including parts below the motor board. Requires also space at left of motor board 71/4 x 151/4 inches and 11 inches deep for record well. Stock No. 9501. List price, \$72.50.

RCA VICTOR PHONOGRAPH EQUIPMENT

RCA Victor Phonograph Reproducing Equipment is recognized throughout the world as the ultimate in record reproducing equipment. Advanced mechanical and electrical design, coordination with record development and adaptability for use with modern radio receivers are but few of the many features of this equipment.

PICKUP SUSPENSION ARMS (INERTIA TYPE) List Price \$4.00

STOCK NO.	FOR MODELS	USED WITH PICKUP NO.
6543*	331	6542
7530*	RE-81, CRD-9AC,	
	CRD-9DC	6335
7538*	RAE-84	6335
7579*	RE-80	6335
8643	RAE-68	7085
8675	RE-16, RE-16-A	7412
8732	RE-73	7307
8757	RAE-59, RAE-26,	
	RAE-79	7325
8796	RE-18	7394
8874	RE-19	6217
8880*	RE-20, RE-18-A	6222

^{*} Supplied less escutcheon. See bottom of page for proper escutcheon.

PICKUP SUSPENSION ARMS (STRAIGHT TYPE) List Price \$4.00

STOCK NO.	FOR MODELS	USED WITH PICKUP NO.
8520	R-67, R-47	2601 or 6064
8858	PT-33	7394
8906	CE-29	7475

ESCUTCHEONS FOR INERTIA TYPE PICKUP ARMS

(Includes Mounting Rivets)

STOCK NO.	USED WITH ARM NO.	LIST PRICE
3779	6543	\$0.46
3390	7530, 7579, 7538	.46
3351	8880	.46

RCA VICTOR MAGNETIC PICKUPS

RCA Victor Magnetic Pickups are of rugged mechanical construction and have frequency ranges comparable with modern records and reproducing equipment. We recommend the use of compensated input systems as shown on page 71 with these pickups.

STOCK NO.	ÇOIL IMPEDANCE	LIST PRICE	USED WITH ARM NO.
2601	12 ohms	\$4.00	8520
6064	11 "	4.00	8520
6217	12.7 "	4.00	8874
6222	7 "	4.00	8880
6335	7 "	4.00	7530, 7538, 7579
6542	28 "	4.15	6543
7085	20 "	4.00	8643
7307	12.7 "	4.00	8675
7325	20 "	4.00	8757
7394	7 "	4.00	8796, 8858
7412	48.5 "	4.00	8675
7475	7 "	4.00	8906

LOW PRICED TURNTABLE EQUIPMENT

For 10" or 12" Records

RCA Stock No. 9038 Turntable and motor, together with RCA Stock No. 6592 Pickup Arm, provide low cost phonograph operation with excellent reproduction characteristics. Operation is confined to single speed 78 r.p.m. records only. The small physical size of these units render them particularly suitable for modernization work with old style phonographs.

Stock No. 9038 MOTOR SPECIFICATIONS

Voltage—105-125 volts
Frequency—60 cycles (can be supplied for 50 cycles)
Diameter—7 inches

List Price—\$8.00

Stock No. 6592 PICKUP AND ARM SPECIFICATIONS

Coil Impedance—2450 ohms
Overall Length—7 inches
List Price—\$5.00

RCA VICTOR ORTHOPHONIC SOUND BOXES

List Price \$4.50

RCA Victor Orthophonic Sound Boxes are the ultimate in the mechanical reproducing sound box. Stock No. 6927 is a universal box complete with the necessary bushings to permit use with many earlier type Victor mechanical phonographs fitted with similar type sound boxes.

STOCK NO.	FINISH	USED IN
6915	Gold Bronze	7-11, 2-55G
6917	Gold	8-9
6926	Polished Brass	2-65
6927	Oxidized Bronze	Universal
6930	Gold Bronze	2-25
6932	Polished Brass	2-25

RCA VICTOR TURNTABLES

All RCA Turntables have a felt cover for contact with the record. They are suitable for use with the motors listed on page 44 for same model numbers. The two-speed turntable uses the ball-race speed reducer, which ensures smooth operation at either 33½ r.p.m. or 78 r.p.m.

TWO-SPEED

SINGLE-SPEED

STOCK NO.	USED IN	LIST PRICE	TYPE
7627	2-25	\$1.64	Single-speed
8582	R-86, E-135, RE-17, RE-57, T-5,		
	RE-16, RE-16A	2.00	Single-speed
8642	RAE-68	2.40	Single-speed
8660	2-65 (Blue)	2.00	Single-speed
8667	2-65 (Red)	2.00	Single-speed
8733	RE-73, RE-18, 2-speed M.B., PT-33	3.04	2-speed
8759	RAE-59, RAE-26	3.90	2-speed
8783	RAE-79	4.50	2-speed
8877	RE-19, RE-18A, RE-20	3.00	2-speed
8909	CE-29	5.25	Single-speed
8936	SR-1, SR-3	5.50	2-speed
8937	SR-2	5.50	2-speed
8 948	RE-81, RE-80, RE-40, RE-40P,		·
1	310, 330	5.50	2-speed
8950	RAE-84	6.50	2-speed
8968	CRD-9AC, CRD-9DC	2.58	2-speed
9010	331	5.50	2-speed

NEEDLE BOXES

STOCK NO.	USED IN	LIST PRICE
2759	1-90, 4-40, 7-26, 8-35, 9-56, CE-66, 8-36, 9-16, 12-15, T-90, V-30, E-152, E-35, RE-45, E-135, RE- 17, RE-57, RE-154, RE-73, RE- 156, RE-75, T-5, RE-16, RE-18,	¢0.20
	R-86, RE-16-A	\$0.30
3189	RAE-59, RAE-26, RAE-79, RE-19	.35
3304	CE-29	.35
3416	RAE-84	. 50
3430	RE-81, RE-80, RE-40, 310, 330,	
	RE-40-P	.45
6232	RE-20, RE-18-A	.35
10241	331	.30
10308	4-40, 4-20, 7-10, 8-12	.30
10325	7-25, 7-30, 8-12, 9-25, 9-55	.30
10560	8-8	.35

STEEL BALLS

List Price \$0.25 per package of 20

STOCK NO.	DIAMETER	STOCK NO.	DIAMETER
10129 10194 10278	3/16" 1/4" 3/32"	10705 10941	5/32" 1/8"

INTERMEDIATE GEARS

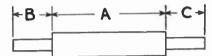
STOCK NO.	SET USED IN	LIST PRICE
8657 10158 10200 10499 10718 10762	2-65 2-30, 2-60, T-90 2-35, 2-55 9-54, 9-56, 10-35 9-55X, 10-50 V-30	\$0.70 .55 .55 .60 1.00

SPRING BARREL DRIVE GEARS

STOCK NO.	SET USED IN	LIST PRICE
10698	T-90	\$0.40
10759	V-30	.50
10959	2-55	.40

RCA VICTOR TURN-TABLE DRIVE MOTORS

RCA Victor Phonograph Motors are of strong foolproof construction, have ample power and are free from variations in speed which cause "wows" in phonograph reproduction. The motor spindles are suitable for use with the two-speed turntables listed on page 42.


STOCK	SPECIFICATIONS	USED IN	LIST
NO.			PRICE
8648	110 volts—60 cycles	RAE-68	\$32.50
8649	105-125 volts (50 cycles)	RAE-68	32.80
8752	110 volts—25 cycles	RAE-59, RAE-26, RAE-79	38.40
8753	110 volts—30 cycles	RAE-59, RAE-26, RAE-79	38.40
8754	110 volts—50 cycles	RAE-59, RAE-26, RAE-79	35.28
8755	110 volts—60 cycles	RAE-59, RAE-26, RAE-79, CE-29	29 .20
8776	110 volts—25 cycles	RAE-68	39.92
8795	110 volts—60 cycles	RE-18, RE-18A, PT-33, RE-19,	
	-	RE-20, 2-speed M.B.	16.00
8800	110 volts—25 cycles	RE-18, RE-19, RE-20, RE-18A,	
		PT-33, 2-speed M.B.	23.88
8801	110 volts—30 cycles	RE-18, RE-19, RE-18A, PT-33	23.88
8804	110 volts—30 cycles	RAE-68	37.50
8856	110 volts—50 cycles	RE-18, RE-19, RE-18A, RE-20,	
l l		PT-33, 2-speed M.B.	16.00
8887	220 volts—60 cycles	RE-20, RE-18, RE-19, RE-18A	18.68
8888	220 volts—50 cycles	RE-20, RE-18, RE-19, RE-18A	18.68
8939	105-125 volts—60 cycles	RE-81, RE-80	15.92
8940	105-125 volts—50 cycles	RE-81, RE-80	20.20
8941	105-125 volts—25 cycles	RE-81, RE-80	24.64
8952	105-125 volts—60 cycles	RAE-84	35.40
8953	105-125 volts—25 cycles	RAE-84	41.16
8954	105-125 volts—50 cycles	RAE-84	37.50
8966	105-125 volts—60 cycles	CRD-9AC	18.26
8970	110 volts D.C.	CRD-9DC	34.40
8989	110-125 volts—60 cycles	RE-40, RE-40P, 330, 310	18.52
8990	110-125 volts—50 cycles	RE-40, RE-40P, 330, 310	18.52
8991	110-125 volts—40 cycles	RE-40, RE-40P, 330, 310	23.36
8992	110-125 volts—25 cycles	RE-40, RE-40P, 330, 310	23.36
9011	105-125 volts—60 cycles	331	19.72
9012	105-125 volts—25 cycles	331	24.16
9013	105-125 volts—40 cycles	331	24.16
9014	105-125 volts—50 cycles	331	19.72

RCA TOOTH-PICK MICA CAPACITORS

RCA Tooth-Pick Mica Capacitors are well known for their high quality and universal application. From this large assortment you can order a suitable value for any purpose on any receiver.

- Conservatively rated at 500 volts D.C.
- Extremely small size—fit anywhere.
- ◆ Close tolerances—±5%—assures exact value.
- RCA quality at low cost.

CAPACITY			DIM	IENSION	is			
9 Mmfd. 1½ 13/6 13/6 2.25 10842 A-E 12 " 1½ 11/2 13/6 13/6 2.25 10842 A-E 12 " 1½ 11/2 13/6 13/6 3.36 3747 X-J D-C 15 " 1½ 13/6 13/6 3.36 3747 X-J J 15 " 1½ 13/6 13/6 3.36 3747 X-J J 15 " 1½ 13/6 13/6 3.36 3747 X-J J 15 " 1½ 13/6 13/6 3.36 3747 X-J J 15 " 12 13/6 13/6 3.36 3747 X-J J 15 " 15 " 15 " 15 " 15 " 15 " 15 " 1	CAPACITY	· -				LIST PRICE	STOCK NO.	CODE MARKING
10		_ _						
10		d.	$1\frac{1}{2}$	13/16	13/16			A-J
12	1 10	- 1	$1\frac{1}{2}$	13/16	13/16			
20	12		$\frac{1}{2}$	11/32	11/32			
200	1 12	- 1	$1\frac{1}{2}$	13/16	13/16			
45	20	- 1	$\frac{1}{2}$	11/32	11/32			
200 " 1½ 1½2 1½2 1½2 1½2 1½2 1¾2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¼2 1¾3 30 3384 E-U D-T 1 1½2 1¼2 1¼2 1¾3 30 3384 E-U D-T 1 1½2 1¾2 1¾3 30 3384 E-U D-T 1 1 1½2 1¾3 30 30 <td< td=""><td>40</td><td>1</td><td>7/8</td><td>216</td><td>216</td><td></td><td></td><td></td></td<>	40	1	7/8	216	216			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	- 1	7/8	2/16	216			H-7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$] 50	- 1	/8	2/16	13/16			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 00	- 1	$1\frac{1}{2}$	13/16	19/16			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80		18	⁹ 16	11/			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	- 1	1/2	13/	13/			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	- 1	$\frac{1}{7}$ 2	19/16	5/16			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	- 1	118	716 137	13/			
200 280 " 11½ 13½ 13½6 5½6 5½6 30 3616	190	- 1	1/2	11/	11/-			
320 11/2 13/6 16/6 30 3378 E-F 390 13/8 5/6 5/6 34 4032 K-B 400 11/2 5/8 5/8 30 3604 E-U 600 11/2 11/2 11/2 30 3793 D-T 630 11/2 9/32 9/32 30 3384 E-J 650 11/2 9/32 9/32 30 6312 E-C 670 11/2 9/32 9/32 30 6320 C-U 700 11/2 13/6 13/6 48 3513 M 720 11/2 13/6 13/6 48 3513 M 745 11/2 13/6 13/6 30 2734 X-O 770 11/2 13/6 3/6 34 3746 E-V 800 7/8 5/6 5/6 36 3894 H-S 950 <td>200</td> <td>1</td> <td>11/2</td> <td>13/.</td> <td>134</td> <td></td> <td></td> <td>R</td>	200	1	11/2	13/.	134			R
320 11/2 13/6 16/6 30 3378 E-F 390 13/8 5/6 5/6 34 4032 K-B 400 11/2 5/8 5/8 30 3604 E-U 600 11/2 11/2 11/2 30 3793 D-T 630 11/2 9/32 9/32 30 3384 E-J 650 11/2 9/32 9/32 30 6312 E-C 670 11/2 9/32 9/32 30 6320 C-U 700 11/2 13/6 13/6 48 3513 M 720 11/2 13/6 13/6 48 3513 M 745 11/2 13/6 13/6 30 2734 X-O 770 11/2 13/6 3/6 34 3746 E-V 800 7/8 5/6 5/6 36 3894 H-S 950 <td>280</td> <td>- 1</td> <td>7/2</td> <td>5/2</td> <td>5/2</td> <td></td> <td></td> <td></td>	280	- 1	7/2	5/2	5/2			
375 " 138 76 77 78 75 76 76 76 76 76 76 76 76 76 76 76 76 76 76			11/	13/2	13/16		2981	J
390	320	- 1	13/	7/10	7/10			E-F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.	72	5/4	5/10		4032	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.	11%	5/6	5/0		3604	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.	1/2	11/2	11/29		3793	
670 " 11/2 3/92 3/93 .30 3513 M 700 " 11/2 13/16 .48 3513 M 720 " 1/2 5/16 5/16 .40 3699 X-O 745 " 11/2 13/16 .30 2734 X-O 800 " 11/2 13/16 .30 3605 B-H 820 " 7/8 5/16 5/16 .34 3746 E-V 820 " 7/8 5/16 5/16 .30 3784 F-W 900 " 7/8 5/16 5/16 .40 3895 H-T 1000 " 11/2 13/16 .34 3973 A-G 1200 " 11/2 13/16 .30 3460 A-D 1500 " 11/2 13/16 .30 3873 B-V 2250 " 11/2 13/16		,	11/2	9/22	9/32			
670 " 11/2 3/92 3/93 .30 3513 M 700 " 11/2 13/16 .48 3513 M 720 " 1/2 5/16 5/16 .40 3699 X-O 745 " 11/2 13/16 .30 2734 X-O 800 " 11/2 13/16 .30 3605 B-H 820 " 7/8 5/16 5/16 .34 3746 E-V 820 " 7/8 5/16 5/16 .30 3784 F-W 900 " 7/8 5/16 5/16 .40 3895 H-T 1000 " 11/2 13/16 .34 3973 A-G 1200 " 11/2 13/16 .30 3460 A-D 1500 " 11/2 13/16 .30 3873 B-V 2250 " 11/2 13/16		,		9/22	9/32	.30		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ا ،	11/2	9/20	9/33			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ا ،		13/16	13/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		، ا	1/2	5/16	5/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		٠	$1^{\frac{1}{2}}$	13/16	13/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		٠	$1^{1/2}$	13/16	13/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		'	7/8	5/16	5/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	820 '	٠	7/8	5/16	5/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	- 1	7/8	5/16	5/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 950	- 1	$\frac{7}{8}$	5/16	5 16			
	1000	- 1	$1\frac{1}{2}$	13/16	13/16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200		$1\frac{7}{16}$	13/16	13/16			
$\begin{bmatrix} 2250 & & 1\frac{1}{2} & \frac{1}{3}\frac{1}{16} & \frac{7}{16} & \frac{1}{3}\frac{1}{16} & \frac{1}{3}$	1200	- 1	$1\frac{1}{2}$	13/16	13/16			
1 2340 1 1/2 7/6 7/6 7/6	1 2230	- 1	$1\frac{1}{2}$	13/16	13/16			
	2340	- 1	$1\frac{1}{2}$	13/16	13/16		2749	X-X
1 2400 " 1 1/2 1/16 1/16 1/16 1/17	2400	- 1		13/16	13/16		I	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2700 '	"	$1\frac{1}{2}$	13/16	19/16	. 50	7031	

RCA TUBULAR PAPER CAPACITORS

RCA Tubular Paper Capacitors are ideal for the usual low-value by-passing requirements of radio receivers. Small size and self-mounting bus leads permit quick installation with minimum space requirements.

Their Dependability

CAPACITY	D.C. WORKING VOLTAGE	LIST PRICE	STOCK NO.
.0024 Mfd. .005 " .008 " .01 " .02 " .025 " .05 " .1 "	600 800 400 300 200 200 200 200 125	\$0.30 .25 .25 .30 .25 .34 .25 .35	3932 3643 3642 3701 3639 3765 3640 3641 3750
.5 "	125	.40	3751

RCA FLAT TYPE PAPER CAPACITORS

RCA Flat Type Paper Capacitors are similar to the tubular type except they are constructed to require less depth for mounting. Often this type of capacitor is suitable for locations that preclude the use of other types.

CAPACITY	D.C. WORKING VOLTAGE	LIST PRICE	STOCK NO.
.005 Mfd.	600	\$0.38	3617
.006 "	400	.42	3562
.007 "	800	.45	3723
.008 "	800	.35_	3098
.01 "	800	.44	3455
.01 "	300	.38	3578
.015 "	400	.35	3433
.02 "	300	.35	3370
.025 "	300	.48	2756
.025 "	400	.35	7362
.05 "	150	.34	3556
.05 "	300	.40	6317
.1 "	300	.35	3042
.2 "	300	.46	3450
.25 "	300	.40	3597
.5 "	150	.32	3772

The Flat Shape

Helps In Crowded Chassis

RCA ELECTROLYTIC CAPACITORS

RCA Electrolytic Capacitors are supplied in four types, as listed below. Thorough testing, low leakage and conservative voltage ratings make these units suitable for all replacement or experimental use. The wet types are recommended for filter requirements. The dry type are suitable for low voltage filter circuits and by-passing applications.

WET TYPE—ALUMINUM CONTAINER

CAPAC-		OLTAGES	MOUNTING	LIST	STOCK
ITY	PEAK	WORKING		PRICE	NO.
10 Mfd. 10 " 10 " 18 "	475 450 450 300	425 425 425 270	Stud and nut Stud and nut Clamp Stud and nut	1.20 1.40	6443 6571 7590 6609

WET TYPE—COPPER CONTAINER

CAPAC-		OLTAGES	MOUNTING	LIST PRICE	STOCK NO.
4 Mfd.	450	,	Stud and nut	\$1.40	3057
10 "	450		Stud and nut	1.75	2957

DRY TYPE—SMALL TUBULAR

CAPACITY	D.C. RATED PEAK VOLTAGE	LIST PRICE	STOCK NO.
4 Mfd.	25	\$0.60	3796
4 "	300	.86	7641
8 "	175	.95	6548

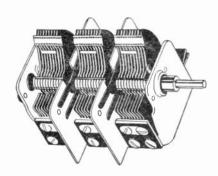
DRY TYPE—ALUMINUM CONTAINER

STOCK NO.	CAPACITY	WORKING VOLTS D. C.	LIST PRICF
4934	{4 4 4	10 50 100	\$1.36
4933 4961	{4 4 8	100 200 450	1.02 1.28

RCA ELECTROLYTIC CAPACITOR PACKS

RCA Electrolytic Capacitor packs consist of from two to four capacitors manufactured as an integral unit. The tabulation shows the capacities, voltages and

internal connections of the various packs. Low voltage filter circuits and high value by-passing requirements are the usual applications for capacitor packs of this type.



ST	VI	Æ	B

	CATIONS	MOUNT-	INTERNAL	DIMENSIONS	STOCK NO.	LIST PRICE
Capacity MFD.	Voltage	ING	CONNECTIONS		NO.	PRICE
4	175 } 175 }	B-Leads	Negative Common	$3\frac{1}{8}$ "x $\frac{15}{16}$ " dia.	3538	\$1.18
5 5	175 225	B-Leads	4-175 Blue Negative—Red Positive—4-225 Bus Negative—Yellow Positive	3¾"x1" dia.	6535	1.25
4 4	200 200	B-Leads	Negative Common	$3\frac{1}{3}$ "x $\frac{15}{16}$ " dia.	6845	1.18
4	150 450	A-Lugs	Negative Common	$5'' \times 1\frac{9}{16}'' \times 1''$	7589	1.64
4 10	150 \ 300 }	A-Lugs	Negative Common	$5'' \times 1\frac{9}{16}'' \times 1''$	6555	1.64
5 5	35 35	B-Leads	Negative Common	$2\frac{1}{2}$ " $x\frac{29}{32}$ " dia.	6513	1.00
5 5	50 \ 50 \	B-Leads	Negative Common	$2\frac{1}{2}$ "x $\frac{29}{32}$ " dia.	6844	1.10
8	175 \ 250	A-Leads	Negative Common—175 Yellow —250 Red	4 ³ / ₁₆ "x1 ½"x1 ½"	6518	1.58
10 10	150 420	A Leads	Negative Common Black—150 Green—420 Red	538"x134"x1"	6574	1.80
4 4 8	150 300 350	A-Leads	Negative Common Black—4-150 Green, 4-300 Blue, 8-350 Red	4_{16}^{7} "x 1_{16}^{9} "x 1_{56}^{5} "	6703	2.46
4 8 10	175 175 25	A-Leads	4 Black Negative—Yellow Positive, 8 Green Negative—Red Positive, 10 Black Negative—Green Positive	$4\frac{3}{16}$ "x $1\frac{3}{16}$ "x $1\frac{1}{8}$ "	6511	1.49
4 10 10	150 25 25	A-Leads	Negative Common Black—4 Yellow, 10 Brown	3½"x3" x1¾"	6626	1.86
4 4 4 10	300 300 150	A-Leads	Negative Common Lug—4-25 Blue, 4-300 Lug, 4-300 Red, 10-150 Yellow	$5'' \times 1\frac{9}{16}'' \times 1\frac{5}{8}''$	6487	2.90
4 4 8 12	150 300 350 25	A-Leads	Negative Common Black, 4-150 Green, 4-300 Blue, 8-350 Red, 12-25 Yellow	$5'' x1\frac{9}{16}''x1\frac{5}{8}''$	6691	2.16
4 8 8 10	175 175 300 25	A-Leads	4-175 Blue Negative, Maroon Positive, 8-175 Green Nega- tive, Brown Positive, 8-300 Black Negative, Red Positive, 10-25 Blue Negative, Green Positive	4 ³ "x2 ³ / ₄ "x1 ³ "	6728	2.94
5 5 8 8	50 50 450 450	A-Leads	5 mfd. Negative Common Green, Positive Yellow, 8 mfd. Nega- tive Common Black, Positive Red and Blue	45%"x17%"x13¼"	6661	2.70

RCA TUNING CAPACITORS

Exact matching throughout the tuning range, modified straight line frequency curve, inclusion of trimmer capacitors and strong mechanical construction made the RCA Tuning Capacitors suitable for many replacement or experimental uses. A wide selection of styles, values and number of gangs permits choice of the proper capacitor for all purposes.

	DE	SCRIPTION		
STOCK NO.	NO. OF GANGS	CAPACITOR EACH GANG MMFD.	USED IN	LIST PRICE
6451	2	12-365	R-17M, R-18W, R-27	\$2.04
6506	3	18-405	R-22, 114	3.24
6533	3	18-380	R-51B, R-53B	5.55
6536	3	14-325	260, 280	5.00
6585	2	14-405	300	2.20
6593	3	15-335	330	3.25
6598	2 3 3	15-335	120, 210, 310	3.00
6603	4	16-335	140, 141, 240, AVR-1	3.80
6624	3	15-335	110, 111, 115	3.50
6660	2	18-410	100, 101	2.78
6680	2 3 3 3	18-405	220, 222	3.80
6694	3	16-405	121, 122	3.75
6717		18-365	142B, 241B	3.50
6723	3 3 3 3 3 3	18-405	112	4.15
6786	3	14–325	R-90P	7.12
7581	3	14–325	R-90	5.00
7588	3	15–335	R-28, RE-40, 331	2.85
7597	3	15–335	R-37, R-37P, R-38, R-38P	2.85
7601	3	16–325	M-34, M-105	2.84
7241	3	18–325	R-7A, R-43, R-11, R-7LW, R-10, RE-18, RAE-26, RE-	_
			16A, R-4, R-6, R-8, R-10	4.00
7438	3	18–325	R-12, RE-18A, RE-19, R-21, R-78, RAE-84	4.40
7548	3	16-325	M-32	3.50
7501	3	18-325	R-70, R-71, R-72, R-73, R-74,	
			R-76, R-77, RE-80	4.20
8700	4	18–330	R-80, R-82, R-86, RAE-68	10.48
8708	4	18–330	RE-20, R-50, R-55, RAE-59	9.50

RCA VICTOR CAPACITOR PACKS

For direct replacement in RCA Victor Receivers

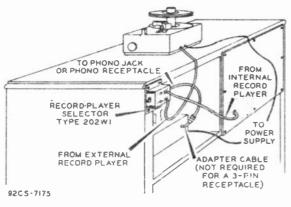
The Capacitor Packs listed in the following tabulation are usually used as replacements in the RCA Victor models listed. They consist of both paper and dry electrolytic type capacitors and may be used in applications where the values are suitable.

			-
STOCK NO.	CAPACITIES (MFD.)	SETS USED IN	LIST
2241	.555-2.0	R-18, Rad-51	\$3.30
2954	.111	R-5, R-5X, R-5DC	.75
3606	.005025	R-28P, RE-40, 100, 101	.40
3722	.0505	R-18W	. 70
3755	.1125	112, 114	.60
6002	.2575	R-44, R-46, R-47	2.25
6003	.111	Rad-21, R-22, R-44, R-46, R-47	1.95
6414	.117575-1.0	R-3B	2.36
6422	.05125-4.0-4.0-0.5-0.5	R-25DC	4.04
6429	.117	R-90, R-90P, 260	.98
6430	.0251255-4.0-4.0	R-90, R-90P, 260	3.78
6492	1.0-3.6	M-34, M-105	1.08
6567	.177	280	.95
6587	4.0-4.0-4.0-4.0-15.0	300	2.42
6620	.005035	110, 111, 115, 120, 121, 122, 210, 220	.50
6621	.051	112, 114	.46
6787	.005017	100	.30
7058	.1115-1.0	RAE-68, R-80, R-82, R-86	2.00
7106	.2775	R-14, R-15, RE-17, R-42, R-48	1.15
7107	1.0-1.0	R-14, R-15, RE-17, R-42, R-48	.70
7108	.111	R-14, R-15, RE-17, R-42, R-48	.80
7231	.052525-2.0	R-5, R-5X	2.50
7238	.15555-1.0	R-7, R-7LW, R-9, R-10DC	2.75
7251	.0252515-1.0	R-5DC	2.70
7256	.00515555-1.0	R-7A, RE-16A	2.65
7264	.111252525575	R-43	2.50
7269	.0505111555-		
	.55-8.0-8.0	R-11,RE-18,RE-18A,R-21,RAE-26	5.40
7285	.115-1.0	RE-20,R-50,R-55,RAE-59,RAE-79	2.10
7286	.1115-1.0	RE-20,R-50,R-55,RAE-59,RAE-79	2.50
7342	.111050555-		
	.5-4.0-4.0-10.0	R-8, R-10, R-12, RE-19, RO-23	6.75

RECORD-PLAYER SELECTOR

Two-Circuit Type

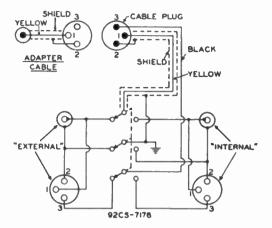
RCA-202WI Record-Player Selector provides a convenient means for switching the "phono" input of a radio or phonograph amplifier between two phonograph pick-ups, such as, for example: an internal and an external pick-up, or two external pick-ups.


Each of the two input circuits of the Selector is provided with a coaxial jack and a 3-pin receptacle. The output cable terminates in a 3-pin plug. The short adapter cable includes a 3-pin receptacle and a coaxial plug for use with equipments which have coaxial type "phono" jacks. These are the two most popular types of fittings used on record-playing devices.

INSTALLATION and APPLICATION

This Record-Player Selector may be mounted on the rear of the radio or phonograph cabinet by means of the wood screws supplied. The selector button should preferably be accessible from the side of the cabinet. See typical installation below.

Electrical connections are made as follows:

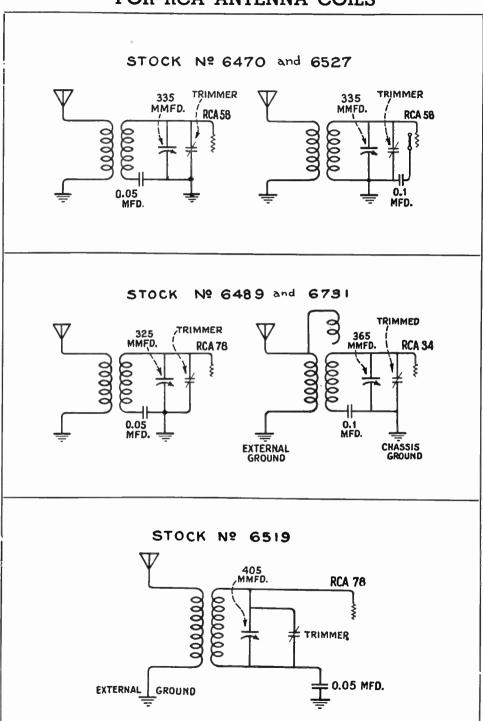

 Remove the phono-plug from the phono-jack on the amplifier chassis and insert it in the jack marked "INTERNAL" on the Selector.

- Typical Installation for 202W1.
- 2. If the amplifier chassis has a 3-pin phonoreceptacle, insert the 3-pin plug of the Selector cable into this receptacle. If the amplifier chassis has a coaxial phono-jack, use the adapter cable between the Selector output plug and amplifier iack.
- Insert the "external" record-player plug into the appropriate jack marked "EXTERNAL" on the Selector.

4. The Selector is now ready for use. Pushing the switch button in either direction selects one of the two pick-ups which are connected to the Selector. It should be noted that this Selector does not control the record-player motors.

This device is not recommended for use with AC/DC equipment which does not meet the requirements of the Underwriters Laboratories.

Schematic Diagram for 202W1.


Devices and arrangements shown or described herein may use patents of RCA or others. Information contained herein is furnished without responsibility by RCA for its use and without prejudice to RCA's patent rights.

RCA VICTOR CAPACITOR PACKS (Continued)

			<u> </u>
STOCK NO.	CAPACITIES (MFD.)	SETS USED IN	LIST PRICE
7421	.0180181112525-	M-30	\$4.25
7477	.1111-1.0-1.0	R-78, RAE-84	2.25
7478	.021555	R-78, RAE-84	2.20
7502	.1111355-1.0-	10, 10, 10	2.20
7502	4.0-8.0-10.0	SW-3, R-24, R-71, R-72	6.40
7513	.11113555-1.0-		
	7.0-10.0-10.0-10.0-10.0	R-74, R-76, R-77, RE-81	8.60
7525	.00500502505125-		
	.575-8.0	R-71B	4.50
7539	.1111355-4.0-	D. H D. H.	
	4.0-8.0-10.0	R-71, R-72	8.80
7546	.00505051252508-	B. 6. 20	2 50
2550	.75-4.0	M-32	3.58
7550	.11135-8.0-10.0-10.0 1.0-1.0	R-73, R-75, RE-80	7.40
7559	.0511135-1.0-8.0-10.0	R-70	6.70
7564	.11135-4.0-8.0-8.0-10.0-	K-70	0.70
/304	10.0	R-73, R-75, RE-80	7.24
7578	.0505	RAE-84	1.04
7582	.111-1.0-1.0-8.0-10.0-10.0	R-73, R-75	8.06
7583	4.0-8.0-8.0-10.0-10.0	R-73, R-75	10.00
8384	.11-4.0	R-62	5.88
8498	1.0-1.0-1.0-1.5-1.5-2.0	R-67	9.75
8553	.05-2.0-3.0-3.0	RAE-68, R-80, R-82, R-86	8.64
8712	.12355	RE-20, R-50, R-55, RAE-59	4.60
8751	.0155-4.0-4.0	RE-20,R-50,R-55,RAE-59,RAE-79	4.60
8839	.01051155-4.0-8.0-	R-4	7.70
8846	.01051155-4.0-8.0- 10.0	R-6	7.75
8890	.0050050505111-		
	.2575-4.0	P-31	4.55
8902	.0155-2.0-4.0-10.0-10.0	CE-29	7.55
8910	10.0-10.0	R-78, RAE-84	4.10
8982	1.0-1.0	R-90, R-90P, 260	1.44
10400	.1155	R-32, RE-45, R-52, RE-75	2.40
10404	.11125	R-32, RE-45, R-52, RE-75	2.40
10818	.2575	R-34, R-35, R-39, RE-57, RE-73	1.25
10819	.1-1.0	R-34, R-35, R-39, RE-57, RE-73	1.20
10837	.111	R-34, R-35, R-39, RE-57, RE-73	. 75
10993	.252525	R-32, RE-45, R-52, RE-75	1.75
	<u> </u>		

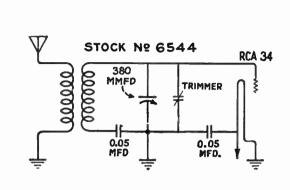
TYPICAL SCHEMATIC DIAGRAMS FOR RCA ANTENNA COILS

ANTENNA COILS

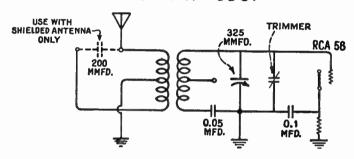
RCA Antenna Coils are of efficient design and simple construction. For improved performance, use these coils for general replacement use in circuits similar to those shown on opposite page.

STOCK NO.	USED IN	LIST PRICE
6470	R-28BW, R-37, R-38, RE-40,	
	R-28, R-37P	\$1.08
6519	R-22, 112, 114	. 88
6527	R-28P, R-37P, R-38P, RE-40P,	
	110, 111, 115, 120, 210, 330,	
	310, 331	1.08
6538	R-90P, 260	1.80
6544	R-51B, R-53B	. 85
6561	280	1.65
6666	100, 101	1.08
6683	220, 222	1.38
6701	121, 122	2.64
6731	M-105	. 88

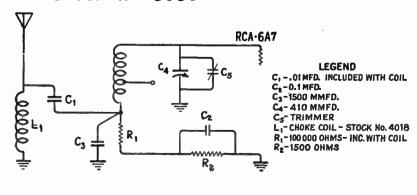
ALL-WAVE COILS AND TRIMMER CAPACITORS

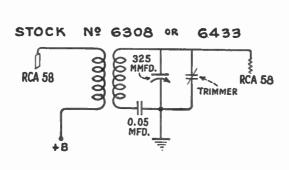

All-Wave Coils complete with an associated tuning capacitor are necessary for modern receivers and experimental designs. The coils listed are suitable for many applications and cover the frequency range given when used with tuning capacitors having a range of 16-335 MMFD.

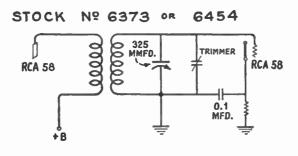
STOCK NO.	FUNCTION	FREQUENCY—K.C.	LIST PRICE
6628	Antenna	8000-18000	\$1.50
6631	Antenna	150-410	2.16
6632	RF	150-410	2.10
6633	Oscillator	150-410	1.40
6634	Antenna	540-1500	1.86
6635	RF	540-1500	2.00
6636	Oscillator	540-1500	1.40
6637	Antenna	1500-4000	1.56
6638	RF	1500-4000	1.66
6639	Oscillator	1500-4000	1.40
6640	Antenna	4000-10000	1.54
6641	RF	4000-10000	1.60
6642	Oscillator	4000-10000	1.34
6643	RF	8000-18000	1.52
6644	Oscillator	8000-18000	1.54

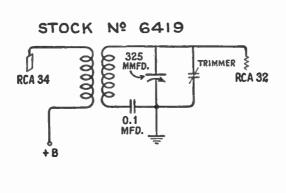


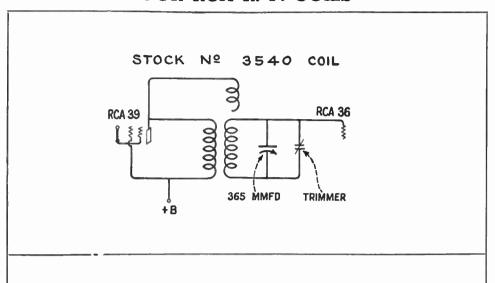
ALL-WAVE COIL WITH TRIMMER CAPACITOR

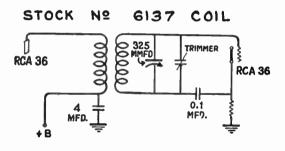

TYPICAL SCHEMATIC DIAGRAMS FOR RCA ANTENNA COILS

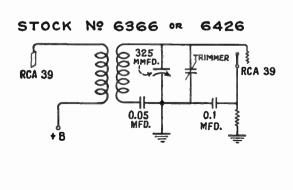

STOCK Nº 6561




STOCK Nº 6666

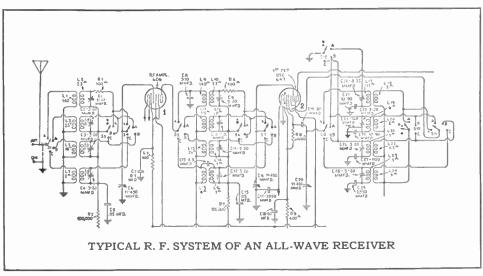

TYPICAL SCHEMATIC DIAGRAMS FOR RCA R. F. COILS





TYPICAL SCHEMATIC DIAGRAMS FOR RCA R. F. COILS

RADIO FREQUENCY COILS


RCA Radio Frequency Coils are suitable for the first detector circuit of many receivers. While designed for the receivers listed, they are also suitable for applications shown on pages 55 and 56.

See Diagrams
Pages 55 and 56
for
Typical Circuits

Using These Precision Coils

STOCK NO.	USED IN	LIST PRICE
2738	R-80, R-82, R-86, RAE-68	\$0.42
2997	R-7A, R-7LW, R-10DC, RE-	
	16A, R-7, R-9, R-4, R-6	1.60
3540	R-27	1.08
6137	M-30	.90
6366	M-32	1.32
6373	R-70	1.06
6411	R-24A, SWA-3	1.54
6419	R-3B	1.04
6426	R-25DC	.95
6433	R-90	1.80
6454	R-73, R-75	.90
6520	R-22, 112, 114	.94
6528	R-28P, R-38P, RE-40P, 110,	
	111, 115, 120, 210, 330, 310,	
	331, R-38	.94
6540	M-34, M-105	.94
6588	300	.70
6699	121, 122	2.44
6719	142B, 241B	.90
7261	R-43	1.25
7278	R-50, R-55, RAE-59, RAE-79,	
	RE-20	1.60
7493	R-8 (220 V)	1.25
		1

RCA CARBON TYPE RESISTORS

Rigid inspection, close tolerances and conservative ratings are inherent characteristics of RCA Carbon Resistors. Color coded in accordance with RMA standards, they are suitable for all replacement and experimental purposes. A wide assortment of values permits selection of the proper value and wattage rating.

RCA CARBON RESISTORS—1/4 WATT LIST PRICE 20 CENTS EACH

- CLOSE LIMITS ± 10%
- CONSERVATIVE RATING

- RMA COLOR CODED
- 100% FACTORY TESTED

RESISTANCE	STOCK	RESISTANCE	STOCK	RESISTANCE	STOCK
OHMS	NO.	OHMS	NO.	OHMS	NO.
80 100 140 150 270 400 550 600 700 750 850 1700	4091 3442 3443 3059 6135 3704 6246 3708 4240 4020 6247 3703	1800 3000 5000 6000 10000 15000 30000 40000 50000 60000 65000 80000	3706 4242 2871 6243 3381 3998 3152 6143 3114 3602 6245 3357	100000 140000 200000 250000 300000 400000 500000 700000 1000000 1500000 2000000	3118 6241 3116 3744 3922 3619 6186 6244 3033 4241 6242

RCA Victor Model Shop where all new designs are tested prior to production

RCA CARBON RESISTORS—½ WATT LIST PRICE 20 CENTS EACH

- LONG PIGTAILS
- AMPLE OVERLOAD RATING

- QUIET OPERATION
- NON-INDUCTIVE

1/2 W	ati
-------	-----

			11		*****
RESISTANCE OHMS	STOCK NO.	RESISTANCE OHMS	STOCK NO.	RESISTANCE OHMS	STOCK NO.
50 63 100 150 170 200 220 250 300 400 500 600 700 750 800 850 1000 1100 1200 1500 1600 1700 1800 2000 2500	3614 3579 4170 3049 6304 3581 6313 3435 3792 3863 3383 3892 3798 3382 3868 3631 2816 6281 3554 3047 3560 3436 3515 3526 6316	2600 2800 3000 3500 4000 4500 5000 6000 8000 10000 15000 16000 17000 18000 19000 24000 24000 25000 30000 31000 45000 50000	3900 3458 3358 3939 6250 3440 3413 6142 6183 3078 2832 6279 3452 3522 3219 6240 6303 3453 3264 3077 3559 3079 6315 3594	60000 70000 80000 90000 100000 110000 150000 160000 170000 200000 230000 250000 300000 350000 400000 450000 600000 750000 10000000 5000000	6282 3464 3297 3912 3252 3295 3360 3080 3869 3046 6228 3946 3514 6187 3948 3947 6280 3700 3048 3439 6278 3076 6188 3051

Read RCA Radio Service News. It's the liveliest and timeliest paper in the service industry. To have your name placed on the mailing list, address a request to RCA Radio Service News, Camden, N. J., U. S. A.

RCA CARBON RESISTORS—1 WATT LIST PRICE 22 CENTS EACH

• SOLID CARBON

• STRONG MECHANICALLY

- EASILY MOUNTED
- ALL SIZES AVAILABLE

1 watt

		11	1	11	
RESISTANCE	STOCK	RESISTANCE	STOCK	RESISTANCE	STOCK
онмѕ	NO.	онмѕ	NO.	онмѕ	NO.
130	10839	5000	3891	50000	2969
170	2736	6000	2563	60000	2724
400	3897	6500	3470	70000	2880
450	6040	8000	2963	80000	6104
500	3632	9000	3155	100000	3058
600	2965	10000	2731	110000	2732
650	3037	12000	3066	180000	3034
800	6103	13000	2964	200000	2798
1000	3738	14000	6306	250000	2549
1200	6134	15000	2545	270000	3039
1300	3035	16000	2796	280000	2971
1500	3153	17000	2797	350000	3038
2000	2547	18000	2730	430000	2799
2500	3469	20000	6114	500000	2970
2800	10840	28000	2966	1000000	2546
3000	3607	29000	3036	1500000	10841
3200	2794	30000	2240	2500000	2367
3500	6136	40000	3045	4000000	2011
4000	3044	45000	2967	6000000	2814
4500	2990				

RCA CARBON RESISTORS—3 WATT LIST PRICE 25 CENTS EACH

RESISTANCE	STOCK	RESISTANCE	STOCK
OHMS	NO.	OHMS	NO.
700 3000 8500 9000 10000 12000	3145 4239 3771 10838 3630 2795	14000 16000 20000 25000 40000	3050 3081 5817 3889 6105

RCA WIRE-WOUND RESISTORS—PORCELAIN TYPE

RCA Porcelain Type Resistors are necessary for applications where resistors must dissipate several watts. A large selection fills all requirements for resistors of this type. Rugged mechanical strength, high overload rating and convenient taps make these resistors adaptable to many experimental applications.

A Heavy Duty Resistor

For High Current Uses

TOTAL RESIST- ANCE OHMS	TAPPED SECTIONS OHMS	OVERALL LENGTH INCHES	OUTSIDE DIAM- ETER INCHES	INSIDE DIAM- ETER INCHES	STOCK NO.	LIST PRICE
. 62		2	7/16	1/4	6737	\$0.56
1.9		$1\frac{1}{2}$	$\frac{1}{2}$	5/16	3001	.60
15		2	$\frac{7}{16}$	1/4	3414	.88
20		2	$\frac{1}{2}$	5/16	3002	.60
34		2	7/16	$\frac{1}{4}$	6295	.60
36		418	$\frac{3}{4}$	7/16	2827	1.30
48	16-16-16	41/2	$\frac{1}{2}$	1/4	2572	1.00
50		2	7/16	1/4	3770	.34
180	17-163	81/2	11/8	3/4	3004	1.48
180		$5\frac{1}{2}$	9/16	5/16	6507	. 60
200		13/4	5/16	3/16	3552	.80
250		71/8	9/16	5/16	3720	1.00
254	12.5-12.5-12.5-216.5	618	$1\frac{1}{4}$	27/32	3478	1.86
315		71/8	9/16	216	3806	.40
320		5	3/4	1/2	3915	. 88
380		5	15/16	5/8	2145	1.60
584	80-504	33/16	1	5/8	2571	1.80
636	80-556	31/8	1	5/8	2372	1.48
2005	425-1580	5	3.4	1/2	6296	.80
3040	160-130-250-1000-1500	$6\frac{1}{2}$	1	5/8	2343	2.00
3665	365-3300	2	7/16	14	3457	. 78
4500		2	7/16	14	3369	.85
7400	3800-500-3100	4	7/16	1/4	3774	.80
7800	3635-3600-565	4	9/16	3/9	6283	1.00
8000		134	5/16	3/16	3553	.80
10000		2	7/16	1/4	3991	.60

RCA FLAT WIRE-WOUND RESISTORS

RCA Flat Wire-Wound Resistors are suitable for many purposes where resistors of higher current carrying capacity are required. The 55 ohm and 60 ohm value are particularly suited for center-tap filament requirements.

High Quality Resistor

For Biasing Output Tube

TAPPED SECTIONS	STOCK NO.	LIST PRICE
No Taps	2013	\$0.50
No Taps	3397	52
	3275	.40
10, 10	10434	. 25
27.5, 27.5	2722	.50
30, 30	6025	.60
60, 70, 120, 90	7458	.50
No Taps	7053	.50
No Taps	2007	.40
	2028	.40
.600, 1900, 440	2242	.80
	No Taps No Taps No Taps 10, 10 27.5, 27.5 30, 30 60, 70, 120, 90 No Taps No Taps No Taps	No Taps 2013 No Taps 3397 No Taps 3275 10, 10 10434 27.5, 27.5 2722 30, 30 6025 60, 70, 120, 90 7458 No Taps 7053 No Taps 2007 No Taps 2028

RCA FLEXIBLE WIRE-WOUND RESISTORS

RCA Flexible Wire-Wound Resistors are suitable for a wide variety of replacement purposes because of their adaptability to various mounting requirements. They are rated at 1 watt per inch for the $\frac{3}{16}$ " diameter resistors and $\frac{1}{2}$ watt per inch for the $\frac{1}{8}$ " diameter resistors. They are color coded in accordance with RMA standards.

A Resistor
That Also
Serves As a
Connection
Wire

RESISTANCE, OHMS	STOCK NO.	LIST PRICE
.5	3743	\$0.20
.7	4356	.15
1.5	6249	.20
2.3	3576	. 24
4	6144	. 20
15	3220	.20
100	4418	.15
120	3359	.20
300	3468	. 20
370	3550	.16
2500	4208	.15

RCA INTERMEDIATE FREQUENCY TRANSFORMER

The modern superheterodyne radio receiver is the direct result of intensive research and resultant refinements carried on by RCA since the first introduction to the industry of the inherent advantages of this type of circuit. Because of this basic background RCA intermediate frequency transformers are today conceded to be the most efficient for this very important feature of the superheterodyne radio receiver. Every research and manufacturing facility commanded by RCA has been combined in the creating of an intermediate frequency transformer

been combined in the creating of an intermediate frequency transformer of excellent construction.

Transformer and Two Trimmers in One Case

FIRST STAGE

STOCK NO.	MOUNTING	FREQUENCY K.C.	USED IN	LIST PRICE
2991 3636 6309 6326 6360 6367 6376 6416 6423 6435 6483 6524 6553 6564 6610 6662 6686 6697 6712 7262 7266	A A A A A A A A A A A A A A A A A A A	175 175 175 175 175 175 175 175 175 175	R-7A, R-4, R-6, RAE-16A M-34, M-105 R-24, R-71, R-72 R-71B M-32 R-73, R-75, RE-80 R-70 R-3B R-25DC R-90, R-90P, 260 R-37, R-38, 120 R-51B, R-53B 330, 331 280 140, 141, 240 100, 101 220, 222 121, 122 142B, 241B R-43 R-11, RE-18, RE-18A, R-21,	\$2.04 1.74 2.50 2.05 2.14 2.14 2.12 2.18 2.84 2.54 1.84 2.28 1.56 2.30 1.55 2.34 1.80 1.70 2.00
			RAE-26	2.20

FIRST STAGE—(Continued)

STOCK NO.	MOUNTING	FREQUENCY K.C.	USED IN	LIST PRICE
7281 7340 7422 7480 7514	A A A A	175 175 175 175 175	RE-20, R-50, R-55, RAE-59, RAE-79 R-8, R-10, R-12, RE-19, RO-23 M-30 R-78, RAE-84	\$2.00 2.00 2.00 2.15
8567	A	175	R-74, R-76, R-77, RE-81 R-80, R-82, R-86, RAE-68	2.04 2.10

SECOND STAGE

STOCK NO.	MOUNTING	FREQUENCY	USED IN	LIST PRICE
		к.с.	USED (IV	LIST FRICE
2992	A	175	D 7 D 74 D 0 D 10 D 0 D 164	#2.00
3637	Â	175 175	R-7,R-7A,R-9,R-10DC,RE-16A	\$2.20
6310	Â	175	M-34, M-105	1.65
6327	A		175 R-24, R-71, R-72 175 R-71B	
6353	Â			2.85
6361	A	175	R-78A, RAE-84	2.35
6368	Â	175 175	M-32	2.28
6375	A		R-73, R-75, RE-80	2.14
6417	A	175 175	R-70	1.88
6424	A		R-3B	2.02
6440		175	R-25DC	2.20
6464	A A	175	R-90, R-90P, 260	1.94
0404	A	175	R-28, R-28P, R-28BW, RE-40,	
			RE-40P, R-22, 110, 111, 114,	
6484		175	115, 210, 310	1.88
	A	175	R-37, R-38, R-37P, R-38P, 120	1.70
6525	A	175	R-51B, R-53B	2.25
6554	A	175	330, 331	1.64
6565	A	175	280	2.10
6611	A	445	140, 141, 240	1.62
6663	В	460	100, 101	1.06
6687	A	175	220, 222	1.78
6698	В	370	121, 122	1.78
6713	A	175	142B, 241B	1.92
6727	A	175	112	1.68
7263	A	175	R-43	2.00
7267	A	175	R-11, RE-18, RE-18A, R-21,	
7000	[175	RAE-26	2.00
7282 7341	A	175	RE-20, R-50, R-55, RAE-59	2.40
	A	175	R-8, R-10, R-12, RE-19, RO-23	2.00
7365	A	175	RAE-79	2.50
7423	A	175	M-30	2.00
7499	A	175	R-78	2.15
7515	A	175	R-74, R-76, R-77, RE-81	2.00
8565	A	175	R-80, R-82, R-86, RAE-68	2.10
8841	Α	175	R-4, R-6	1.80

THIRD STAGE

STOCK NO.	MOUNTING	FREQUENCY K.C.	USED IN	LIST PRICE
6352 6441 6566 7283	A A A	175 175 175 175 175	R-78A, RAE-84 R-90, R-90P, 260 280 RE-20, R-50, R-55, RAE-59, RAE-79 R-78 R-80, R-82, R-86, RAE-68	\$2.35 1.76 1.72 3.25 1.80

RCA AUDIO TRANSFORMERS

Use RCA-quality Audio Transformers replacements in all sets. Consult "turn ratio," "primary impedance," and "tube" column for the transformer you need.

"A" MOUNTING

"B" MOUNTING

"C" MOUNTING

STOCK	TURN	PRIMARY IMPEDANCE AT 60 CYCLES A.C.	COUPLES	MOUNT-	LIST
NO.	RATIO		TUBES	ING	PRICE
6432	1-3	88000 ohms	56 and PP-2A5	A	\$3.69
6488	1-1	12500 ''	6B7 and 89	A	1.30
6551	2-1	5300 ''	56 and 53*	B	1.48
6562	3-1	35000 ''	PP-56andPP-59*	A	3.04
6568	1-2	95000 "	55 and PP-56	Α	3.10
6608	2.6-1	7500 ''	56 and 53*	C	2.04
6710	1-1.5	7500 ''	30 and PP-30*	B	
6732	1-2	4000 ''	6B7 and 41	В	2.00
7271	1-2	40000 ''	27 and PP-47	C	2.20
7425	1-1	8750 ''	37 and PP-112A*	A	1.60
7423	1-1	75000 "	56 and PP-56	A	3.25
7519	3–1	12000 ''	56 and PP-46*	C	2.35
7549	1–3	51000 ''	55 and PP-2A5	A	2.48
7558	1-3	95000 "	56 and 47	A	2.48

^{*}Class "B" Amplifier.

OUTPUT TRANSFORMERS

RCA Victor Audio and Output Transformers are built to the exacting standards - required of all component parts used in RCA Victor receivers and amplifiers. Electrically they are designed to have a flat frequency response throughout the audio frequency spectrum, thus assuring distortionless reproduction.

"A" MOUNTING

"B" MOUNTING

"C" MOUNTING

NO. RATIO AT 3 VOLTS-60 CYCLES A.C. TUBES ING PRICE		_				
6254 58.6-1 7500 " Push-Pull 30 B 1.86 6325 47-1 10000 " Push-Pull 46* B 2.00 6334 25.9-1 22000 " Push-Pull 46* A 2.86 6364 44.9-1 3000 " Single 89 B 2.00 6371 55.2-1 11500 " Push-Pull 47 B 1.96 6378 39.2-1 2350 " Single 47 B 1.96 6455 55.2-1 9500 " Push-Pull 2A5 B 1.95 6467 39.4-1 2400 " Single 2A5 A 1.44 6476 39.4-1 2400 " Single 2A5 A 1.44 6477 107.8-1 2500 " Single 38 A 1.32 6509 30.6-1 2100 " Single 43 A 1.34 6526 64.1-1 11300 " Push-Pull 30* B 1.80 6559 46.25-1 22000 " Push-Pull 59 A		1	IMPEDANCE AT 3 VOLTS-		1	LIST PRICE
6788 42-1 3100 " Single 41 A 1.60 7104 44.8-1 8500 " Push-Pull 45 C 2.50 7234 38.7-1 1100 " Single 47 B 1.20 7258 64.5-1 6000 " Push-Pull 47 B 1.20 7276 55.2-1 6600 " Push-Pull 38 B 1.00	6254 6325 6334 6364 6371 6378 6455 6467 6476 659 659 6591 6605 6659 6709 6730 6770 6788 7104 7234 7258 7276	58.6-1 47-1 25.9-1 44.9-1 55.2-1 39.2-1 55.2-1 39.4-1 107.8-1 30.6-1 64.1-1 50.5-1 46.25-1 58.4-1 50.5-1 44.2-1 39.4-1 59.2-1 30.6-1 39.7-1 42-1 44.8-1 38.7-1 64.5-1 55.2-1	2400 ohms 7500 " 10000 " 22000 " 3000 " 11500 " 2350 " 9500 " 2400 " 2500 " 2100 " 11300 " 10000 " 3400 " 2400 " 10000 " 3400 " 2400 " 11000 " 2400 " 3100 " 2400 " 3100 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 " 3400 "	Push-Pull 30 Push-Pull 46* Push-Pull 46* Single 89 Push-Pull 47 Single 47 Push-Pull 2A5 Single 2A5 Single 2A5 Single 38 Single 43 Push-Pull 30* Single 53 Push-Pull 59 Single 38 Single 38 Single 43 Single 43 Single 43 Single 45 Single 45 Single 47 Push-Pull 45 Single 47 Push-Pull 47 Push-Pull 38	B B A B B B A A A A B A A A A A A A A A	\$1.50 1.80 2.00 2.80 2.00 1.90 1.94 1.95 1.44 1.32 1.34 1.80 1.50 1.95 1.22 1.48 1.60 1.46 2.18 1.52 2.00 1.60 2.50 1.20 1.20 1.20

^{*}Class "B" Amplifier.

RCA FILTER REACTORS

RCA Victor Filter Reactors are constructed of the finest materials under the strict specifications necessary in this type of equipment. In common with audio and power transformers they are subjected to high potential insulation tests and vacuum impregnated to insure against failure due to extreme humidity conditions. They are available in the three physical types illustrated and in a wide range of electrical values. The d-c resistance specification is given at a temperature of 25° Centigrade.

High quality reactors for reducing hum, for impedance coupling of tubes, and for use in amateur transmitters.

"A" MOUNTING

"B" MOUNTING

"C" MOUNTING

SI	PÉCIFICATIONS		DIRECT			
D-C RESIST- ANCE OHMS	A-C IMPEDANCE	INDUC- TANCE HENRIES	CURRENT MILLI- AMPERES	MOUNT- ING	STOCK NO.	LIST PRICE
		12.0	50	В	8911	\$3.15
59	4700 ohms at 60 cycles	6.5	50	В	7518	2.30
157	2500 ohms at 60 cycles	10.0	30	A	3724	1.10
450	3600 ohms at 60 cycles	ļ	55	A	6505	1.06
450	2600 ohms at 60 cycles	7.0	15	A	3537	1.10
500	4500 ohms at 60 cycles	12.0		C	6606	1.66
770	6000 ohms at 60 cycles	16.0	43	A	6552	1
1000	5800 ohms at 60 cycles		45		6431	
1300	11500 ohms at 60 cycles	30.0	30	В	1	
2300	52000 ohms at 60 cycles		0.75	A	6301	1.40

RCA POWER TRANSFORMERS

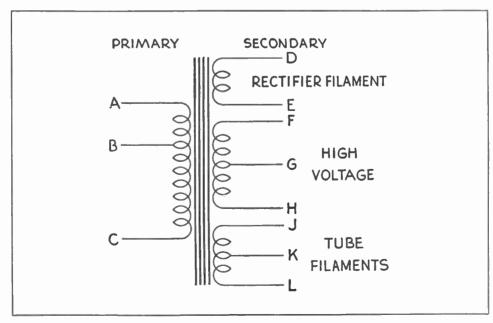
			SECO	ONDAR	Y VOLTA	GES				.	LEAD	COLORS	-See Dies	enm Onnos	ito Dago					
Stock	Typical Tube	D	-E	F	-H	J.	L				LEAD	COLONS	-See Diag	пані Оррос	nto rayo				Mount-	List
No.	Combinations	Volt- age	Cur- rent	Volt- age	Current RMS	Volt- age	Cur- rent	A	В	С	D	E	F	G	н	J	K	L	ing	Price
7560	.3-58, 2-56, 1-47, 1-80	5.0	2.0	750	.075	2.5	7.25	Red		Red	Yellow	Yellow	Brown	Black Brown	Brown	Blue	Blue Yellow	Blue	Α	\$6.14
7584	3-58, 1-56, 1-55, 2-2A5, 1-80	5.0	2.0	750	.097	2.5	9.0	Red		Red	Yellow	Yellow	Brown	Black Brown	Brown	Blue	{ Blue Yellow	Blue	A	5.72
8556	4-24A, 2-27, 2-45, 1-80	5.0	2.0	760	.093	2.5	13.55	Black Red T	{ Black Red	Black	Brown Green	{ Brown Green	{ Black Blue	{ Yellow Red	Black Blue	Brown		Brown	В	9.52
8669	2-24A, 1-27, 1-80	5.0	2.0	650	.055	2.5	7.0	Red		{ Black Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	A	5.20
8679	2-35, 1-24A, 2-27, 2-47, 1-80	5.2	2.0	750	.084	2.6	12.0	Red		{ Black Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Black Blue	Blue	A	7.50
8842	2-35, 1-24A, 2-27, 1-47, 1-80	5.2	2.0	740	.065	2.6	10.9	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	Α .	5.20
8900	1-30, 2-47, 1-80	5.2	2.0	760	.080	2.6	3.0	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Green	Green Yellow	Green	A .	5.60
8978	4-58, 3-56, 2-2A5, 1-80	5.0	2.0	775	.118	2.5	12.5	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	8.50
8985	1-2A5, 1-58, 1-57, 1-2A7, 1-80	5.0	2.0	750	.076	2.5	5.2	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	4.26
9005	2-58, 1-2A7, 1-2B7, 1-2A5, 1-80	5.0	2.0	750	.078	2.5	6.2	Red		Red	Yellow	Yellow	Brown	∫ Błack ∖ Brown	Brown	Blue	{ Blue Yellow	Blue	С	4.80
9026	2-58, 1-2A7, 1-55, 1-56, 1-80, 1-53	5.0	2.0	615	.100	2.5	7.4	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	4.80
9028	4-56, 4-58, 1-55, 2-59, 1-5 Z 3	5.0	3.0	990	.09	2.5	15.25	{ Black Red T	Red Black	Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	7.75
9042	3-58, 1-2A7, 1-2B7, 1-56, 1-53, 1-80	5.0	2.0	640	.133	2.5	8.44	Red		{ Black Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	В	6.84
9441	2-58, 1-2A7, 1-2B7, 1-2A5, 1-80	5.0	2.0	750	.087	2.5	6.2	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	4.92
9446	2-58, 1-2A7, 1-2B7, 1-2A5, 1-80	5.0	2.0	750	.087	2.5	6.2	{ Red Black	Red Black	Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue	{ Blue Yellow	Blue	С	5.40
9464	1-8A7,1-6F7,1-41,1-1V	6.3	.628	330	.105	19.0	.38	Red		Red	Blue		Brown			Green		Black	С	3.20
9505	2-6D6, 1-6A7, 4-76, 242, 1-5Z3	5.0	3.0	775	.113	6.3	4.5	Red	Red Black	{ Black Red T	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue		Blue	С	6.35
9511	2-6D6, 1-6A7, 1-6B7, 1-41, 1-80	5.0	2.0	700	.076	6.3	1.6	Red		Red	Yellow	Yellow	Brown	{ Black Brown	Brown	Blue		Blue	С	4.78

RCA POWER TRANSFORMERS

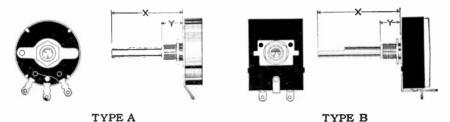
Of rugged construction, the power transformers listed have been designed for continuous operation under extreme conditions of temperature and humidity. Each transformer is subjected to high potential tests, which must be withstood for a definite period, between the given winding and all other windings and from each winding to the case. The three different types of mountings provide a unit for many requirements. The typical tube combinations column represents the tubes used in the RCA Victor receivers using the particular power transformer,

but, of course, any combination of tubes of the proper voltage and current ratings can be used.

See Opposite Page for Specifications and Prices


"A" MOUNTING

"B" MOUNTING

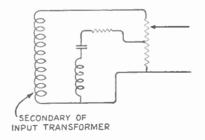

"C" MOUNTING

Key Diagram to Transformers Listed on Opposite Page

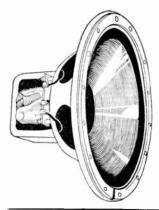
RCA VOLUME AND TONE CONTROLS

RCA Volume and Tone Control Potentiometers are manufactured from the finest materials primarily for use in RCA Victor radio receivers. A large selection of resistance values and physical characteristics supply the proper unit for all requirements. They are supplied in both the wire-wound and carbon-type, as indicated in the associated table, and have a standardized $\frac{3}{8}$ " x 32" thread for which a mounting nut is supplied. They are quiet in operation and give excellent service.

A Unit For Any Requirement


		TRICAL ICATIONS		MECH. SPECIFI	ANICAL CATIO				
RESI	-	T PERCEN	TAGE	TYPE	X	Y	Switch	STOCK NO.	PRICE
25%	50%	75%	100%		INCHES	INCHES			
15	30	45	60	A-Wire	1 3/8	34	No	7078	\$1.25
15	30	45	60	A-Wire	1 7/16	13/16	No	3164	1.50
750	1500	2250	3000	A-Wire	119/32	1/4	Yes	6465	1.22
750	1500	2250	3000	A-Wire	1 1/32	1/4	Yes	6599	1.25
900	1800	2700	3600	A-Wire	1 1/16	7/16	Yes	7061	1.20
1125	2250	3375	4500	A-Wire	1 3/16	3/8	Yes	6508	1.36
1125	2250	3375	4500	A-Wire	115/16	7/16	No	2995	1.20
30	150	900	5000	B-Carbon	1 1/32	3/8	No	6590	1.20
90	8000	19000	20 000	A-Carbon	111/64	1/2	No	2959	1.15
400	400	400	0	A-Wire	2	3/8	No }	6275	2.50
4000	8000	14000	25000	B-Carbon			No∫	0275	2.30
12500	25000	37500	50000	A-Carbon	1 1/16	1364	No	6157	1.25
4000	8300	13800	30000	B-Carbon	2	3/8	No	6355	1.45
4000	12500	33500	50000	A-Carbon	119/32	3/8	No	6714	1.20
3500	12500	29000	50000	A-Carbon	1 1/16	3/8	No	3142	1.25
8500	17000	25000	50000	B-Carbon	2	3/8	No	6322	1.25
5000	11000	30000	50000	B-Carbon	115/16	3/8	No	3234	1.50
5000	11000	30000	50000	B-Carbon	2	5/32	No	6307	1.60
3000	10000	40000	100000	B-Carbon	2	5/32	No	6324	1.30

RCA VOLUME AND TONE CONTROLS (Continued)


		TRICAL.		MECHA SPECIFIO					
RESI		AT PERCEN	- 1	TYPE	X	Y	Switch	NO.	LIST PRICE
25%	50%	75%	100%		INS.	INS.			
4000	7500	42000	100000	A-Carbon	1 1/32	3/8	No	6623	\$1.25
4000	7500	42000	100000	A-Carbon	119/32	3/8	Yes	6619	1.44
4000	7500	42000	100000	A-Carbon	119/32	3/8	No	6645	1.20
4000	7500	42000	100000	A-Carbon	219/32	3/8	Yes	6705	1.20
4000	7500	42000	100000	A-Carbon	215/16	3/8	Yes	6681	1.25
19000	38000	116000	190000	A-Carbon	3/8	3/8	Yes	6499	1.36
70000	175000	192000	200000	B-Carbon	2	3/8	No	6448	1.04
18000	42000	120000	200000	B-Carbon	115/16	3/8	Yes	309 3	1.35
1450	25000	130000	250000	A-Carbon	117/32	3/8	No	6612	1.20
2500	13000	55000	500000	B-Carbon	119/32	3/8	Yes	6486	1.10
25000	85000	415000	500000	B-Carbon	2	3/8	No	6276	1.40
2750	50000	250000	500000	A-Carbon	119/32	3/8	No	6485	1.20
25000	85000	400000	500000	B-Carbon	1 5/16	3/8	No	3143	1.20
2500	13000	55000	500000	B-Carbon	125/32	3/3	No	6559	1.60
2500	13000	55000	500000	B-Carbon	$1^{29}/_{32}$	3/8	No	6595	1.46
40000	200000	370000	1000000	B-Carbon	2	3/8	No	6328	1.45
50000	200000	500000	1000000	B-Carbon	1 1/2	3/8	No	6363	1.38
120000	500000	620000	1000000	B-Carbon	1 1/32	3/8	Yes	6560	1.60
120000	500000	620000	1000000	B-Carbon	119/32	3/8	Yes	6590	1.20
95000			2000000	B-Carbon	2	3/8	No	3707	1.40
2800	80000	360000	2000000	B-Carbon	2	3/8	Yes	6370	1.34
7000	270000	1000000	4000000	B-Carbon	2	3/8	No	6449	1.06

TAPPED VOLUME CONTROLS

STOCK	TOTAL	TAPPED	LIST
NO.	RESIST.	AT	PRICE
6275	30,000Ω	6,000Ω	\$2.50
6447	44,000Ω	$\left\{ egin{array}{l} 7,000\Omega \ 14,000\Omega \end{array} ight\}$	1.92

TYPICAL CIRCUIT OF COMPENSATED VOLUME CONTROL
OF ELECTRIC PHONOGRAPH


RCA LOUDSPEAKERS

A complete line of dynamic loudspeakers offering a wide choice of both physical and electrical characteristics are included in this list of RCA loudspeakers. The finest materials and workmanship are combined in the production of these units. Excellent fidelity of reproduction is an inherent characteristic of all the loudspeakers listed.

	ı	SICAL CATIONS	1	TRICAL CATIONS	FIELD	-
STOCK NO.	DIAMETER INCHES	DEPTH INCHES	VOICE COIL IMPEDANCE OHMS	FIELD COIL RESISTANCE OHMS	CUR- RENT AM- PERES	LIST PRICE
7818 7819 7824 7847 9043 9044 9429 9435 9436 9438 9440 9445 9447 9449 9453 9455 9461 9462 9463 9467 9462 9463 9467 9472 9473 9474 9480 9491 9494 9497 9502 9508 9514 9527	8732 103/8 103/8 103/8 61/2 61/2 61/2 5 5 5 103/8 61/2 69/6 101/4 5 103/8 5 103/8 10	33/4 59/16 63/8 43/32 21/3/32 31/3/32 31/3/32 63/8 43/32 43/	2.1 4.5 4.5 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	1290 P.M. 40 1350 1360 5900 P.M. 1360 1800 6950 1060 1300 1200 1290 P.M. 1500 1300 5900 750 1800 2950 1300 100 2950 4 40 P.M. 2060 1290 1290	.4 .060 .063 .029 .063 .050 .035 .078 .075 .050 .085 .029 .110 .050 .060 .085 .276 .060 1.73 1.73 .4	\$6.58 12.18 8.00 6.30 5.50 5.00 4.85 4.75 5.30 6.88 4.75 7.14 5.25 5.20 5.58 10.00 5.20 8.50 5.14 9.42 5.15 8.50 8.00 7.10 15.44 4.16 5.65 6.75 8.40 17.40 6.00 8.00
9532 9536 9538 9541 9543	$\begin{array}{c} 87_{32} \\ 103\% \\ 75\% \\ 103\% \\ 103\% \\ 103\% \\ 103\% \\ \end{array}$	$3\frac{3}{4}$ $6\frac{3}{8}$ 4 $7\frac{7}{8}$ $6\frac{3}{8}$	2.2 4.5 4.5 7.0 4.2	1070 1070 P.M. 2060 1975	.070	7.50 8.40 7.65 17.32 10.36

RCA LOUDSPEAKER CONES

While RCA Loudspeaker Cones are designed primarily for replacement use in RCA Loudspeakers, they nevertheless may be used with all speakers provided the mechanical and electrical characteristics are correct. The larger sizes have the corrugated type of construction which eliminates any possibility of paper rattles or cone distortion. The frequency characteristics of RCA Cones when properly used are remarkably free from peals in the useful reproducing range.

PHYSI	CAL SPECIFIC	CATIONS	VOICE COIL		
OUTSIDE DIAMETER INCHES	DEPTH INCHES	VOICE COIL DIAMETER INCHES	IMPEDANCE OHMS	STOCK NO.	LIST PRICE
5 5 5 6 ¹ / ₄ 6 ³ / ₈ 6 ³ / ₈ 7 ⁵ / ₈ 7 ⁵ / ₈	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{7}{32} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 1\frac{13}{16} \\ 2 \\ 2 \end{array} $	1 1/8 11/6 1 1/8 1 1 1 1 1/6 11/6	4.2 2.2 4.2 4.2 4.2 4.2 4.2 4.2	8987 7598 9023 9492 9428 9499 8962 8984	\$1.00 .87 1.00 .74 1.00 1.22 1.12 1.25
$ \begin{array}{c c} 75/8 \\ 101/4 \\ 101/4 \\ 101/4 \\ 101/4 \end{array} $	$ \begin{array}{c} 2\\3\frac{1}{4}\\3\\3\frac{3}{32}\\3\frac{1}{4} \end{array} $	$ \begin{array}{c} 11_{16} \\ 111_{32} \\ 15_{8} \\ 11_{2} \\ 119_{32} \end{array} $	4.5 1.0 13 3.0 7.0	9539 8935 8558 8601 8916	.86 1.05 2.00 1.50 1.65

ASSEMBLING RCA VICTOR CONES AT RADIO HEADQUARTERS

7

REPLACEMENT PARTS GUIDE AND CROSS-INDEX FOR

RCA VICTOR, GENERAL ELECTRIC, WESTINGHOUSE AND GRAYBAR RECEIVERS

The following list gives the Stock Number and List Price of the important parts for the receivers listed. The cross-index shows the model numbers of the receivers that have identical chassis sold by the companies indicated. RCA Victor parts are exact replacements for the General Electric, Westinghouse and Graybar receivers listed. Use this guide for quickly finding the part you need.

	A 1//ata-	G.E.	Westing-	Graybar	Ante		Dete Oscil		1st		2nd			F.	Output		Co			ume		ne		wer		Pack or Voltage
I HU	A Victor	G.E.	house Int.	Electric	Co	il	Co		Tra	ins,	Tra	ns.	Tra	ıns.	* Combi A. F. Tra	ned With nsformer			Cor	ntrol	Соп	trol	Tra	ans.		acitor
					Stock No.	List Price																				
R-		J-70 T-12	WR-17 WR-14	GT-7 GB-4	2997 2955	\$1.60 1.20	7436 2956	\$2.20 1.40)	\$2.04	8841	\$1.80	8840	\$3.60	* 7234	1.20	7442 7236	\$1.00 1.00	2995 2959	\$1.20 1.15	3234	\$1.50	8842 8669	\$5.20 5.20	8839 2957	\$7.70 1.75
R-	5-DC	T-12-D			3022	1.30	2956	1.40	2nd R.F.				7252	2.25	7276	1.00	7236	1.00	2959	1.15					7251	2.70
R- R-		T-12-E J-75 S-22 and	WR-14-CR	GC-13	2955 2997	1.20 1.60	2956 7436	1.40 2.20	2991	2.04	8841	1.80	7343	3.50	7234	1.20	7236 8601	1.00 1.50	2959 2995	1.15 1.20	3234	1.50	8669 8842	5.20 5.20	2957 8839	1.75 7.70
Ľ.	·	S-22-X	WR-10	GB-8	2997	1.60	2998	2.15	2991	2.04	2992	2.20	7239	4.00	*	*	8601	1.50	2995	1.20	2996	1.20	8679	7.50	2957	1.75
	7A 7-DC &	S-22 (2)	WR-10-A	GB-8-A	2997	1.60	2998	2.15	2991	2.04	2992	2.20	7255	3.50	*	*	8601	1.50	2995	1.20	3093	1.35	8679	7.50	2957	1.75
	7 LW				2997 2997	1.60 1.60	2998 3226	2.15 1.05	2991 7336	2.04 2.50	2992 7337	2.20 2.50	7239 7239	4.00 4.00	*	*	8601 8601	1.50 1.50	2995 3231	1.20 1.25	2996	1.20	8769	10.92	2957	1.75
R-	.8 -8-DC	J-80	WR-18	GT-8	3095	1,25	3235	1.90	7340	2.00	7341	2.00	7343	3.50	*	*	8601	1.50	3092	1.25	3234	1.50	7344	6.90	7342	6.75
	220 volt)	S-42	WR-12		7493 2997	1.25 1.60	7494 2998	2.55 2.15	2991 2991	2.04 2.04	2992 2992	2.20 2.20	7239 7239	4.00 4.00	*	*	8601 8601	1.50 1.50	2995 2995	1.20 1.20	2996 2996	1.20 1.20	8679	7.50	7238 2957	2.75 1.75
R-	10 10-DC 11	S-132 K-62	WR-15-A WR-15	GB-989 GB-9	3035 2997 3095	1.25 1.60 1.25	3235 2998 3096	1.90 2.15 2.25	7340 2991 7266	2.00 2.04 2.20	7341 2992 7267	2.00 2.20 2.00	7343 7239 7271	3.50 4.00 2.20	* * 7258	* * 1.20	8601 8601 8601	1.50 1.50 1.50	3092 2995 3092	1.25 1.20 1.25	3234 2996 3093	1.50 1.20 1.35	7344 7272	6.90 8.00	7342 7238 7269	6.75 2.75 5.40
RI	12 E-16 E-16-A	J-85 SZ-42-P	WR-13 WR-13-A	GC-14	3095 2997 2997	1.25 1.60 1.60	3235 2998 2998	1.90 2.15 2.15	7340 2991 2991	2.00 2.04 2.04	7341 2992 2992	2.00 2.20 2.20	7343 7239 7255	3.50 4.00 3.50	* * 7258	1,20	8601 8601 8601	1.50 1.50 1.50	3092 2995 2995	1.25 1.20 1.20	3234 2996 3093	1.50 1.20 1.35	7344 8679 8679	6.90 7.50 7.50	7342 2957 2957	6.75 1.75 1.75
1	17-M	BX or K-41	WR-26-M		3715	1.08	3714	.98									7594	1.00	3542	1.18	٠,				3538	1.18
	E-18 and RE-18A	KZ-62-P	• • •	41.4	3095	1.25	3096	2.25	7266	2.20	7267	2.00	7271	2.20	7258	1.20	8601	1.50	3092	1.25	3093	1.35	7272	8.00	7269	5.40
R-	-18-W	K-40-A	• • •		3715	1.08	3714	.98	- · ·						6477	1.32	7598	.87	3542	1.18					3538	1.18
	nd. 18 E-19		• • •	GB-310	8318 3095	4.80 1.25	(R.F. Co 3235	oil Ass.) 1.90	7340	2.00	7341	2.00	5667 7343	6.75 3.50	·•;		8601	1.50	5901 3092	1.95 1.25	3234	1.50	8335 7344	9,60 6,90	8333 7342	7.40 6.75

RE-20				7278	\$1.60	3139	\$2.65	7281	\$2.00	7282 (2d) 7283 (3d)	\$2.40 3.25	8711	\$4.25	•	•	8558	\$2.00	3142	\$1.25	3143	\$1.20	8710	\$9.52	8751	\$4.60
R-21 Rad. 21 and Rad. 22	B-1 and B-2			3095 8535 8536 7026 8534	1.75 2.55		2.25 (Export)	7266	2.20	7267	2.00	7271 8496	2.20 11.25	7258	\$1.20	8601 8359 (Rad. 2	1.50 1.40 22 only)	3092 6049	1.25	3093	1.35	7272	8.00	7269	5.40
R-22-S R-22-W	L-50 L-51			(Exp.) 6519 6519		8520 (Det. 8521 (Osc. 6520 (Det. 6521 (Osc.) .60) .94	6464 6464	1.88					6509 6509	1.34	8987 8987	1.00	6508 6508	1.36					6510 6510	1.00
RO-23 R-24 R-24-A (47) R-24-A	JZ-835 JZ-822 JZ-822-A	WR-16 WR-24		3095 6308 6308	1.25 1.36 1.36	3235 7504 7481	1.90 2.25 2.20	7340 6309 6367	2.00 2.50 2.14	7341 6310 6368	2.00 2.50 2.14	7343 8917 7549	3.50 3.42 2.48	* * 6371	* * 1.90	8601 8921 8935	1.50 1.20 1.05	3092 6322 6369	1.25 1.25 1.16	3234 6307 6370	1.50 1.60 1.34	7344 8918 7551	6.90 5.40 6.40	7342 7502 7550	6.75 6.40 7.40
(2A5) R-25-DC RAE-26		WR-24		6454 6426 3095	.90 .95 1.25	7481 6425 3096	2.20 2.65 2.25	6423 7266	2.14 2.84 2.20	6368 6424 7267	2.14 2.20 2.00	7549 6421 7271	3.68 2.20	6455	1.95	7442 8601	1.27	6452 6468 3092	1.40	6370	1.34	7584	5.72	7582 6422	8.06 4.04
R-27	K-40	WR-26		3540 (E'rly) 3715 (Late)	1.08	3714	.98						2.20	7258 Early P 6477 (Late P	1.32	7598 (Dyn.)	1.50	3542	1.25	3093	1.35	7272	8,00	7269 3538	1.18
R-28	K-50			6470	1.08	6471 (Osc. 6540 (Det.		6464	1.88	-				6467	1.44	8987	1.00	6465	1.22	6466	.45	8985	4.26	7589	1.64
R-28-P	K-50-P			6527	1.08	6471 (Osc. 6528 (Det.	.74	6464	1.88					6467	1.44	8987	1.00	6465	1.22	6466	.45	8985	4.26	7589	1.64
R-28-P (A to G)	K-51-P	WR-27		6527	1.08	6471 (Osc. 6528 (Det.	.74	6464	1.88					6467	1.44	8987	1.00	6465	1.22	6466	. 45	8985	4.26	7589	1.64
M-30 P-31	A-90 A-81			6137 8894	.90 1.25	6138 6138	2.00	7422 8891	2.00	7423 8892	2.00 1.85	7425 7425 (1st) 8889	1.60 1.60 1.50	7424 6254	1.20 1.80	8829 8829	1.05 1.05	6157 6239	1.25 1.05					7421 8890	4.25 4.55
M-32	A-60			6366	1.32	6365	2.32	6360	2.14	6361	2.28	(2nd) 7545	2.48	6364	2.00	8962	1.12	6363	1.38					7554	4.50
Victor R-32, RE-45, R- 52, RE-75				10448 (1st, 3rd or 4th)	1.00	10447 (2nd)	1.25					10414	4.68	10418	10.00	10801	2.00	10450	2.04	10408	1,25	10415	11.48	10417	3.50
Rad, 33 (A, C,)			GB-311	8463	5.40	(R. F. Coil	Assm.\					5667	6.75	8333	7.40			5901	1.95			8335	9.60		
M-34	B-40	WR-33		6489	.88	6471 (Osc. 6540 (Det		3636	1.74	3637	1.65	6488	1.30	3688	1.50	9023	1.00	6499	1.36	6490	.35	9430	3.60	7600	4.06
Victor R-35, R-39, RE- 57, RE-73				10828 R. F.)	(Ant.) 1.50;	1.40; 10 10816 (3	1829 (1st rd R. F.)	R, F,) 1.60;	1.50; 10817	10830 (Link)		8554	7.86	•	•	8558	2.00	10826	2.40	10813	1.25	10917	14.00	10909	7.65

Rad. 60	••		GB-330	8341	6.00	Det. Co	il	8342	3.60	Use in stag	ali	5805	4.80	•	•		••	5811	1.90			8344	12.90	8346	16.24
RAE-59	H-72	• • • • • • • • • • • • • • • • • • • •		7278	1.60	3139 ((R. F. ar	2.65	7281	2.00	(2nd) 7283 (3rd)	3.25	8711	4.25	•	•	8558	2.00	3142	1.25	3143	1.20	8710	9.52	8751	4.60
										(3rd) 7282	2.40														
R-51-B, R- R-55	ј	:::	GB-100	6544 7278	.85 1.60	6545 3139	2.44	6524 7281	2.28	6525 7282 (2nd) 7283	2.25 2.40 3.25	6523 8711	5.24 4.25	6526 *	1.80	9432 8558	1.88 2.00	3707 3142	1.40	6449 3143	1.06 1.20	8710	9.52	8751	4.60
Rad. 51			GB-320	8318	4.80	(R. F. C	bly					5667	6.75	*	*	8359	1.40	5901	1.95			8335	9.60	8333	7.40
				<u> </u>						(3rd)										_					
11-50	11-02	•••		1210	1.00	3139	2.03	1201	2.00	(2nd) 7283	3.25	0111	4.23			0336	2.00	3142	1.25	3143	1.20	8/10	9.52	8751	4.60
R-50	H-32			7278	1.60	3139	2.65	7281	2.00	7282	2.40	8711	4.25	١.		8558	2.00	3142	1.25	3143	1.20	8710	9.52	0751	4.60
Rad. 48	T -41	WR-4	GB-678	R.F.) 7112 (1st R.F.)	1.50	3rd R.F.) 7113 (2nd, 3rd or 4th R.F.)	1.50						*	7104	2.50	8601	1.50	7129	2.30			8609	9.92	8608	8.00
Rad. 46		• • • • • • • • • • • • • • • • • • • •	GB-550	8469 (1st	2.25	8470 (2nd or	1.75					6004	3.75	6019	5.85	8558	2.00	6005	1.44			8472	12.90	8476	16.00
R-43 Rad. 44	S-42-B		GB-500	7261 8469 (1st R.F.)	1.25 2.25	2998 8470 (2nd or 3rd R.F.)	2.15 1.75	7262	2.00	7263	2.00	7265 6004	2.75 3.75		*	8601	1.50	7260 6005	1.20	7260	1.20	8472	12.90	2957 8476	1.7
RE-40-P	K-54-P	WR-29	• • • •	6527	1.08	6471 (Osc.) 6528 (Det.)	.74 .94	6464	1.88					6467	1.44	8987	1.00	6465	1.22	6466	.45	8985	4.26	7589	1.6
RE-40	K-54			6470		6471 (Osc.) 6540 (Det.)	.74	6464	1.88				• • •	6467	1.44	8987	1.00	6465	1.22	6466	.45	8985	4.26	7589	1.64
R-38-P	K-65-P	• • •		6527		6471 (Osc.) 6528 (Det.)	.74 .94 .74	6483	1.84	6484	1.70			6476	1.44	9428	1.00	6485	1.20	6486	1.10	9005	4.80	6487	2.9
R-38	K-65			6470	1.08	6471 (Osc.) 6540 (Det.)	.74 .94	6483	1.84	6484	1.70			6476	1.44	9428	1.00	6485	1.20	6486	1.10	9005	4.80	6487	2.9
R-37-P	K-60-P	WR-28		6527	1.08	6471 (Osc.) 6528 (Det.)	.74	6483	1.84	6484	1.70			6476	1,44	9428	1.00	6485	1.20	6486	1.10	9005	4.80	6487	2.9
R-37	K-60			6470	\$1.08	6471 (Osc.) 6540 (Det.)	\$.74 .94	6483	\$1.84	6484	\$1.70			5476	\$1.44	9428	\$1.00	6485	\$1.20	6486	\$1.10	9005	\$4.80	6487	\$2.9
				Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	LIs Pric
RCA Victor	G.E.	Westing- house Int.	Graybar Electric	Ante Co		Detect Oscillat		1st Tra		Tra	I. F. ins.		F.		ned With Insformer	Co	one		ume ntrol		ntrol		wer ins.	High	Voltage pacitor
		1				Datas							_	Output	Trans.			14.1		-				Filter	Pack o

	nd. 62 nd. 64			GB-340	8341 8341	\$6.00 6.00	(R. F. Det. Assen (R. F. Det. Assen	Coil nbly) and Coil		\$3.60 3.60	Use 8 in a stage Use 8 in a stage	8 342	5805 5869	\$4.80 9.90	8383 5868	\$10.00 7.75	8558 8558	\$2.00 2.00	5811 2336 2334 (Sen.)	\$1.90 1.75 1.90				\$12.90 20.28	8382 8368	\$16.50 15.00
Ra	nd. 66			GB-600	8480	10.00	(R. F. Det.	and	8481 (1st or	3.90	8482 (3rd)		6021	18.75	6019	5.85	8558	2.00	6027	1.44			8483	12.90	8487	14.25
Ra	nd. 67	••			8480	10.00	Assen (R. F. Det. Asser	and Coil			0; 8499 () (3rd) 6.		8506	9.75	8505	22.20	8558	2.00	2336 (Rad.) 2602 (Ph.)	1.75 1.95	2603	\$1.95	8501	27.00	8504	28.20
1	AE-68				8563	1.60	B564	2.40			10; 8565 (5 (3rd) 2.		8554	7.86	•	•	8558	2.00	7156	3.00	7074	1.25	8556	9.52	8553	8.64
l B	70 and I-70-N 71	J-72 J-82	WR-21 WR-19		6373 6308	1.06 1.36	6374 7504	2.14 2.25	6376 6309	2.12 2.50		1.88 2.50	7558 8917	2.48 3.42	6378	1.94	8935 8921	1.05	6372 6322	1.34	7522 6307	1.30 1.60	7560 8918	6.14 5.40	7559 7502	6.70 6.40
R-	71-B				6308	1.36	7524	2.30	6326	2.05	6327	2.85	7526	2.50	7527 (Inc. Input)	3.25	8921	1.20	6328	1.45	6329	1.25			7525	4.50
	72 73 (47)	J-86 J-83	WR-22	** *	6308 6308	1.36 1.36	7504 7481	2.25 2.20	6309 5367	2.50 2.14	6310 6368	2.50 2.14	8917 7549	3.42 2.48	6371	1.90	8969 8935	1.27 1.05	6322 6369	1.25 1.16	6307 6370	1.60 1.34	8918 7551	5.40 6.40	7502 7550	6.40 7.40
R-	73 (2A5) 74 75 (47)	J-83-A J-100 J-87	WR-20		6454 6308 6308	,90 1.36 1.36	7481 7504 7481	2.20 2.25 2.20	6367 7514 6367	2.14 2.04 2.14	7515	2.14 2.00 2.14	7.549 7519 7549	2.48 2.35 2.48	6455 6325 6371	1.95 2.00 1.90	8969 8935 8935	1.27 1.05 1.05	6452 6322 6369	1.40 1.25 1.16	6370 6324 6370	1.34 1.30 1.34	7584 8932 7551	5.72 7.70 6.40	7582 7513 7550	8.06 8.60 7.40
R- R- R-		J-87-A J-105 J-107	• • •		6454 6308 6308	.90 1.36 1.36	7481 7504 7504	2.20 2.25 2.25	6367 7514 7514	2.14 2.04 2.04	7515	2.14 2.00 2.00	7549 7519 7519	2.48 2.35 2.35	6455 6325 6325	1.95 2.00 2.00	8969 8935 8935	1.27 1.05 1.05	6452 6322 6322	1.40 1.25 1.25	6370 7522 7522	1.34 1.30 1.30	7584 8932 8932	5.72 7.70 7.70	7582 7513 7513	8.06 8.60 8.60
R-		J-125			6308	1.36	7481	2.20			15; 7499 (! (3rd) 1.		7479	3.25	8912 (Inc. Input)	4.36	8916	1.65	6275	2.50	6276	1.40	8913	8.65	8910	4,10
	78 Noise ppressor	J-125-A		•••	6308	1.36	7504	2.25			15; 6353 ((3rd) 2.		7479	3.25	8912 (Inc. Input)	4.36	8916	1.65	6275 6354 (Sup.)	2.50 1.30	6276	1.40	8913	8.65	8910	4.10
R/	\E-79	* *			7278	1.60	3139	2.65			00; 7365 (l (3rd) 3.2		8711	4.25	•	*	8558	2.00	7398	3.00	3143	1.20	8749	15.56	8751	4.60
RE	E-80		WR-23		6308	1.36	7481	2.20	6367	2.14	6368	2.14	7549	2.48	6371	1.90	8935	1.05	6369 (Rad.) 6385	1.16	6370	1.34	7551	6.40	7550	7.40
	id. 80, 2, 86	H-31, 51, 71	WR-5, 6, 7	GB-700, 770, 900	8563	1.60	8564	2.40			0; 8565 ((3rd) 2.1		8554	7.86	•	•	8558	2.00	(Ph.) 7061	1.20	7074	1.25	8556	9.52	8553	8.64
RI	E-80-SW		WR-25	•••	6308	1.36	7481	2.20	6367	2,14	6368	2.14	7549	2.48	6371	1.90	8935	1.05	6369 (Rad.) 6385 (Ph.)	1.16 2.02	6370	1.34	7551	6.40	7550	7.40

o

			<u> </u>	Ī		Detecte	ne				1		-	Output	Trans.			Volu		T	one	Pov	wor	Filter F	
RCA Victor	G.E.	Westing- house Int.	Graybar Electric	Ante Co		Oscillat Coil			I. F. ans.		I. F.	A. Tra		* Combi	ned With ansformer	Co	ne	Con			ntrol	Tra		High \ Cap	/oltage acitor
				Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	L'st Price	Stock No.	List Price
RE-81		• • •		6308	\$1.36	7504	\$2.25	7514	\$2.04	7515	\$2.00	7519	\$2.35	6325	\$2.00	8935	\$1.05	6322 (Rad.) 6337 (Ph.)	\$1.25 1.60	7522	\$1.30	8932	\$7.70	7513	\$8.60
Rad. 82-R	H-51-R	WR-6-R		8563	1.60	8564	2.40		(1st) 2.			8554	7.86	*	*	8558	2.00	7156	3.00	7074	1.25	8556	9.52	855 3	8.64
and 86-R RAE-84	and 71-R	and 7-R		6308	1.36	7504	2.25	7480	0; 8566 (1st) 2. 5; 6352	15: 6353	3 (2nd)	7479	3.25	8912 (Inc. Input)	4.36	8916	1.65	6275 6354 (Sup.)	2.50 1.30	6276	1.40	8913	8.65	8910	4.10
R-90	K-106			6433	1.80	6437 (Osc.) 6438 (Det.)	1.24		(1st) 2. 4; 6441			6432	3.69	6455	1.95	8969	1.27	6447 6450 (Sup.)	1.92 1.24	6448 (Low) 6449	1.04	8978	8.50	6430	3.78
R-90-P	K-106-P			6538	1.80	6437 (Osc.) 6539 (Det.)	1.24 1.44		(1st) 2. 14; 644			6432	3.69	6455	1.95	8969	1.27	6447 6450 (Sup.)	1.92 1.24	(High) 6448 (Low) 6449	1.04	8978	8.50	6430	3.78
91-B	C-30			6820	.86	6821 (2nd R.F.)	.96								•••	9471	.70	6829	1.05	(High:				6831 (C-8, C-12)	.94
100	K-43	WR-32		€666	1.08	6664	.94	6662	2.34	6663	1.06			6659	1.60	8987	1.00	6667	1.58	6669	,50	9045	4.84	6661	2.70
101	M-41			6666	1.08	6664	.94	6662	2.34	6663	1.06			(38) 6788	1.60	8987	1.00	6667	1.58	6669	.50	9464	3.20	6661	2.70
M-101	D-50			4950	.74	6967 (Osc.) 6966 (Det.)	.52 .80	4951	1.26	4952	1.76			(41) 4957	1,18	9602	.75	5018	1.00			7859	2.02	4958	1.34
102	M-40			6820	.86	6821	.96									9471	.70	3542	1.18					6823	1.14
103 M-104	M-42 D-51			6666 4950	1.08 .74	(2nd R.F.) 6664 (Osc.) 6967 (Osc.) 6966 (Det.)	.94 .52 .80	6662 4951	2.34 1.26	6663 4952	1.06 1.76			4803 4957	1.45 1.18	9588 9602	.71 .75	6667 5018	1.58 1.00	6669 5001		9464 7859	3.20 2.02	6661 4958	2.70 1.34
M-105	C-41	WR-41		6731	.88	6471 (Osc.)	.74	3636	1.74	3637	1.65	6732	2.00	3688	1.50	9023	1.00	6499	1.36	6490	.35	9049	3.75	7600	4.06
M-107	C-60			6965	.70	6540 (Det.) 6967 (Osc.)	.94	6960	1.80	6962	1.85			6982	1.35	9492	.74	6978	1.20	6669	.50	7775	3.78	7776	1.90
M-108	D-52			4350	.74	6966 (Det.) 6967 (Osc.) 6966 (Det.)	.80 .52 .80	4951	1.26	4952	1.76			4957	1.18	9602	.75	5018	1.00	5001	_	7859	2.02	4958	1.34
M-109	D-72			4950	.74	6967 (Osc.)	.52	5055	1.32	5056	1.42	5057	1.00	5090	2.62	9598	.78	5018	1.00	5072		5065	2.48	5069	1,76
110	K-52			6527	1.08	6966 (Det.) 6471 (Osc.)	.74	6464	1.88					6467	1.44	8987	1.00	6465	1.22	6623	1	8985	4.26	7589	1.64
111	K-53	WR-35		6527	1.08	6528 (Det.) 6471 (Osc.) 6528 (Det.)	.74	6464	1.88					6467	1.44	8987	1.00	6465	1.22	6623	1.25	8985	4.26	7589	1.64

112	L-52	WR-34	T	. 1	6519	.88	6521 (C	sc.)	.60	6727	1.68			1	Γ	6730	1.52	9428	1.00	672	4 1.20	T	1		1	- 1	6728	2.94
112-A				H	6519	.88	6520 (D 6521 (C	et.)	.94	6727	1.68			l		7846	1.65	9492	.74	470	2 1.30					.] (6728	2.94
114	L-53			·	6519		6520 (D 6521 (D 6520 (D	et.) ec.)	.94 .60 .94	6464	1.88					6509	1.34	8987	1.00	650	8 1.36					_ '	6783	4.38
115	K-53-M				6527	1.08			.74	6464	1.88					6467	1.44	8987	7 1.00	646	5 1.22	6623	1.25	898	5 4.2	26 7	7589	1.64
M-116	B-52	WR-42			6742	.88	6528 (E 6745 (E 6743 (E	sc.)	.94 .62 .98	6740	2.16	6741	1.78	6759	2.55	6764	1.42	8987	7 1.00	674	6 1.20	6747	7 1.20	945 (A.C 945	(.) 7 4.7		6738	1.54
117	M-50			`	4903 (Ant. Det.)	1.58	4902 (C	ec.)	1.22	4900	2.25	4901	1.50			4893	1.48	9533	3.50	442	9 1.40	5052	2 .30	(Bat 489		98 :	7790	1.05
118	M-51, M- 51-A	WR-48, WR-48		· II	4430 (Ant.	1.92	4432 (0	ec.)	1.65	4431	2.28	4433	2.15			4505	1.55	9492	2 .74	442	9 1.40	4426	.35	951	1 4.7	78	7790	1.05
119	M-52			.	Det.) 5051 (Ant.	1.28	5050 (0	(sc.)	.56	4900	2.25	4901	1.50			4893	1.48	9588	.71	442	9 1.40	490	5 .30	489	7 3.9	98	7790	1.05
120	K-63	WR-36		- 11	Det.) 6527	1.08	6471 (C 6528 (C	Osc.) Det.)	.74 .94	6483	1.84	6484	1.70			6476	1.44	942	1.00	648	5 1.20	661	9 1.44	900	5 4.1	80	6487	2.90
121, 122	K-64	WR-37			6701	2.64	6700 (C		2.30 2.44	6697	1.80	6698	1.78		.	. 6476	1.44	942	1.00	669	5 1.20	670	5 1.20	944	6 5.	40	6371	1.20
M-123	C-61				S965	.70		Osc.)	.52	6960	1.80	6962	1.85	6969	1.50	6970	1.52	949	2 .74	697	2 .90		1 .90	775	9 3.	95	7758	6.00
124	M-63		.		6527	1.08	6471 (0 6528 (1		.74 .94	6483	1.84	6484	1.70			6476	1.44	942	8 1.00	(Su 648		661	9 1.44	900	5 4.	30	6487	2.90
125	M-62	WR-53			5087 (Ant.	1.86	5089 (0	Osc.)	1.90	5102 (1.98		8 5103 (3rd)				4893	1.48	958	.71	442	29 1.40	505	2 .30	951	1 4.	78	7790	1.05
126-B	C-62				Det.) 6992 (Ant.	.98	6664 (0	Osc.)	.94	6993	2.10	6994	1.05	•	*	6996	1.68	942	8 1.00	699	1.10	666	9 .50)			4349	3.95
127	K-64-D				Det.) 6983	2.68	8 6700 (6 6699 (1	Osc.) Det.)	2.30 2.44	6697	1.80	6698	1.78	6987	4.5	6988	1.60	949	9 1.22	669	1.20	670	5 1.20	·	.		6985	1.50
RCA Victor	G.E.		Graybar Electric		ntenna Coil		Detecto Coil	or		cillator Coil	-	st I. F. Trans.		nd I. F. Trans.		A. F. Trans.	Out Tra		Cone	В	Volum Contr		Ton Contr		Pov Tra		or : Vol	r Pack High Itage acitor
				Stoc No			Stock No.	List Price	Sto			o. List	Stor			ock List o. Price	Stock No.	List Price	Stock I No. F			List Price	Stock No.	List Price		Price	No.	List Price
128	Mt-61	WR-46		4516(7803 (A &	1.	82 7	4514(B) 7805 (A & C)	\$1.65 2.15	4511 7807 (A &	1	.52 4 .62	131 \$2.2	8 44	33 \$2.	15 .		4818	\$2.15	9533 \$	3.50	4519	\$1.25	4517	\$0.90	9511	\$4.78	7790	\$1.05
128-E		WR-50		4734(7803 (B &	(A) 3	.05 4 .82 7	4751(A) 7805 (B & C)	2.38 2.15		1	3.05 4 .62	431 2.2	8 44	33 2.	15 .		4818	2.15	9533	3.50	4519	1.25	4517	.90	9511	4.78	7790	1.05

RCA Victor	G.E.	Westing- house Int.	Graybar Electric			Detect Coi		Oscilla Coil		1st Tra	I. F.	2nd Trai		A. Trai		Out Tra	tput ins.	Co	ne	Volu Cont		To: Con:		Po Tra	wer ins.	or Vo	r Pack High Itage acitor
				Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.		Stock No.		Stock No.	List Price
135-B	C-70	WR-47		4430	\$1.92	Comb 4430	with	4432	\$1.65	4431	\$2.28	7840 (2nd) 4538 (3rd)	\$2.35	4533	\$3.98	Comb. 4533	with	9539	\$0.86	4535	\$1.40	4536	\$0.95				
ACR-136				4516(5) 7803 (A & C)	1.65 1.82	4514(B) 7805 (A & C)	1.65 2.15		1.52 1.62		2.28	4433	2.15			4505	\$1.55	9492	.74	4519	1.25	4517	.90	9511	\$4.78	7790	\$1.05
140 and 140-E	K-80	WR-30		6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643 (D-2nd)	1.86 1.56 1.54 1.50 1.52		2.00 1.66 1.60 1.52	6639(B)	1.40 1.40 1.34 1.54		1.55	6611	1.62	6608	2.04	6605	1.48	8969	1.27	6612	1.20	6627	1.44	9042	6.84	6571	1.20
141-E	K-80-X	WR-31		6631(X) 6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643 (D-2nd)	2.16 1.86 1.56 1.54 1.50	6635(A)	2.00 1.66 1.60	6639(B)	1.40 1.40 1.40 1.34 1.54	6610	1.55	6611	1.62	6608	2.04	6605	1.48	8969	1.27	6612	1.20	6627	1.44	9042	6.84	6571	1.20
140 and 140-E (External I.F.)	K-80	WR-30		See Mod	el 140	See Mode	el 140	See Mod	el 140	6890	2.40	6891	2.40	6608	2.04	6605	1.48	8969	1.27	6612	1.20	6892	1.50	9042	6.84	6889	1.55
141 and 141-E (External	K-80-X	WR-31		See Mode	el 141	See Mode	ol 141	See Mod	el 141	6890	2.40	6891	2.40	6608	2.04	6605	1.48	8969	1.27	6612	1.20	6892	1.50	9042	6.84	6889	1.55
142-B	B-81			6489	.86	6719	.90	6720	.78	6712	1.70	6713	1.92	6710	2.22	6709	2.18	9428	1.00	6714	1.20	6716	.38				
143	M-81	WR-45, WR-45- A		7810 (X & B) 7803 (A & C)	2.10 1.82	7808 (X & B) 7805 (A & C)	2.05 2.15	7809 (X & B) 7807 (A & C)	1.70	4431	2.28	4433	2.15	4620	2.98	9535	1.50	9533	3.50	4519 4618 (Sen.)	1.25	4616	1.28	9505	6.35	7790	1.05
210	K-55			6527	1.08	6528	.94	6471	.74	6464	1.88					6770	2.00	8935	1.05	6599	1.25	6860	1.15	8985	4.26	7589	1.64
211	M-56			4430	1.92	Comb. 4430	with	4432	1.65	4431	2.28	4433	2.15			4472	1.40	8935	1.05	4429	1.40	4426	- 1	9511	- 1	Ī	1.05

214 220	M-55 K-66 M-65			4903 6683 6701	1.58 1.38 2.64	6684 6699	1.10	4902 6685 6700		4900 6686 6697	1.80	4901 6687 6698	1.50 1.78 1.78			4818 6690 6770	2.15 1.46 2.00	9533 8969 8935		4429 6682 6695	1.40 1.25 1.20	5052 6681 6705	.30 1.25 1.20	4897 9441 9446	4.92	7589 6691 6703	1.64 2.16 2.46
221 222 223 224	K-66-M C-67 M-67			6683 6527 4516(B) 7803 (A & C)	1.38 1.08 1.65 1.82	6684 6528 4514(B) 7805 (A & C)	1.10 .94 1.65	6685 6471 4511(B) 7807 (A & C)	1.05	6686 6483 4431	1.80	6687 6484 4433	1.78 1.70 2.15		::	6690 6861 4472	1.46 1.36 1.40	8969 8935 8935	1.05	6682 6485 4519	1.25 1.20 1.25	6681 6860 4517	1.25 1.15 .90		4.92 3.60 4.78	6691 6862 7790	2.16 3.34 1.05
224-E			••	4734(A) 7803 (B & C)	3.05 1.82	4751(A) 7805 (B & C)	2.38 2.15	4733(A) 7807 (B & C)	3.05 1.62	4431	2.28	4433	2.15			4472	1.40	8935	1.05	4519	1.25	4517	. 90	9511	4.78	7790	1.05
225	M-655		:	5087	1.86			5089	1.90	5102	1.98	5103	1.98			4892	1.30	8935	1.05	4429	1.48	5052	.30	9511	4.78	5101	2.14
226	M-66	WR-46- A		4803(B) 7803 (A & C)	1.92 1.82	4815(B) 7805 (A & C)	1.80 2.15	4807(B) 7807 (A & C)	1.85 1.62		2.28	4433	2.15			4892	1.30	8935	1.05	4519	1.25	4517	. 90	9511	4.78	7790	1.05
235-B	C-75			4430	1.92	Comb. 4430	with	4432	1.65	4431	2.28	7840 (2nd) 4538 (3rd)	2.35	4533	3.98	Comb. 4533	with	9432	1.88	4535	1.40	4536	.95				
236-В				4796	2.30	Comb. 4796	with	4800	1.90	4431	2.28	7840 (2nd) 4538 (3rd)	2.35 2.15	4533	3.98	Comb. 4533	with			4535	1.40	4799	.62		.,		
240	K-83			6634 (A) 6637 (B) 6640 (C) 6628 (D-1st) 6643 (D-2nd)	1.86 1.56 1.54 1.50	6638 (B) 6641 (C) 6643 (D)	1.66		1.40		1.55		1.62	6608	2.04	6805	1.43	8959	1.27	6612	1.20	6627	1.44	9042	6.84	6571	1.20
241-B 242	B-86 M-86	::	::	6489 7810 (X & B) 7803 (A & C)	2.10	6719 7808 (X & B) 7805 (A & C)	2.05	6720 7809 (X & B) 7807 (A & C)		4431	1.70		1.92 2.15	6710 4620	2.22		2.18 1.34		1.00 1.27		1.20 1.25 1.25	6716 4616	.38 1.28		6.35	7790	1.05
260	K-107			6538	1.80	6539	1.44	643?	1.24	6435	2.54	6440 (2nd) 6441 (3rd)	1.94	6432	3.69	6455	1.95	8969	1.27	6447 6450 (Sup.)	1.92	(Low)	1.04	ı	8.50	6443	1.50
261	K-105			6538	1.80	6539	1.44	6437	1.24	6435	2.54	6440 (2nd) 6441 (3rd)	1.76	6432	3.69	6455	1.95	8969	1.27	6447 645C (Sup.)	1.92	(Low)	1.04			6443	
262	M-106			7810 (X & B) 7803 (A & C) 4410(D)	1.82	7808 (X & B) 7805 (A & C) 4421(D)	2.05 2.15	(X & B) 7807 (A & C)	1.70		2.28		2.15	7841 7832 (T-3)	4.05 2.85	7834	3.73	8969	1.27		1.25 1.30		1.00	1	6.35	7790	1.05

RCA Victor	G.E.	Westing- house Int.	Graybar Electric	Anter Coi		Datec Coi		Oscilla Coi			I. F. ans.	2nd Tra		A. Tra		Out Tra	tput ins.	Cı	one	Volu Cont		To: Con:			wer ans.	or I Vol	r Pack High Itage acitor
				Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price	Stock No.	List Price			Stock No.		Stock No.	List Price	Stock No.	List Price		List Price	Stock No.	List Price
263	M-107			7810 (X & B) 7803 (A & C) 4410(D)	\$2.10 1.82 .70	(X & B) 7805 (A & C)	\$2.05 2.15 .70	7809 (X & B) 7807 (A & C)	\$1.70 1.62	1	\$2.28	4433	\$2.15	7841 7832 (T-3)	\$4.05 2.85	1	\$1.60	8969	\$1.27	4832 7804 (Sen.)	\$1.25 1.30	4829 (Low) 4830 (High)	\$1.00		\$6.35	7790	\$1.05
280	K-126 M-125			7310 (X & B) 7803 (A & C) 4410(D)		7808 (X & B) 7805 (A & C)	1.44 2.05 2.15	7809 (X & B)	1.70	7791	2.30	6565 (AVC) 6566 (2nd) 7792 (2nd) 7793 (3rd) 7794	2.10 1.72 2.22 2.50	(Inter.) 7785 (Driv.)	3.04 3.10 2.40 4.25	4506	1.95	8 9 69	1.27	6450 (Sup.)	1.92 1.24 2.05 1.30	(High) 4829	1.04 1.06 1.00 1.35	9505	7.75		1.20
300	K-48			6588	.70	6589	.80	(Tuned B.F.)				(AVC)		•••		6591	1.22	8987	1.00	6586 6590 (Phono.)	1.20					6587	2.42
301	M-49			6666	1.08			6664	. 94	6662	2.34	6663	1.06			6788	1.60	8987	1.00	6827	1.58	6669	. 50	9464	3.20	6661	2.70
310	K-58			6527	1.08	6528	. 94	6471	.74	6464	1.88			** •		6467	1.44	9428	1.00	(Phono.) 6599 6475	1.25	6860	1.15	8985	4.26	7589	1.64
320				6701	2.64	6699	2.44	6700	2.30	6697	1.80	6698	1.78	** *		6476	1.44	9428	1.00	(Phono.) 6695 6757 (Phono.)	1.20	6705	1.20	9446	5.40	6571	1.20
321	M-68			6701	2.64	6699	2.44	6700	2.30	6697	1.80	6698	1.78			6770	2.00	8969	1.27	6695 6766	1.20	6705	1.20	9446	5.40	6571	1.20
322	M-69	WR-49		4516(B) 7803	1.65 1.82		1.68 2.15	4511(B) 7807	1.52	4431	2.28	4433	2.15			4472	1.40	8935	1.05	(Phono.) 4519 6766	1.25	4517	. 90	9511	4.78	7790	1.05
322-E				(A & C) 4734(A) 7803 (B & C)	3.05 1.82	(A & C) 4751(A) 7805 (B & C)	2.38 2.15	(A & C) 4733(A) 7807 (B & C)	3.05 1.62	4431	2.28	4433	2.15	• • •		4472	1.40	8935	1.05	(Phono.)	1.25	4517	.90	9511	4.78	7790	1.05
327				6983	2.68	6699	2.44	6700	2.30	6697	1.80	6698	1.78	6987	4.50	4599	1.34	8969	1.27	6695 4590	1.20	6705	1.20			6986	1.60
330	K-78			6527	1.08	6528	. 94	6471	.74	6553	1.56	8554	1.64	8551	1.48	6556	1.50	8969	1.27	(Phono.) 6594 6804 (Phono.)	1.40 1.60	6595	1.46	9026	4.80	7590	1.40

331	K-79		 6527	1.08	6528	.94	6471	.74	6553	1.56	6554	1.64	6551	1.48	6556	1.50	8969	1.27	6485	1.20	6595	1.46	9026	4.80	7590	1.40
340	K-88	WR-38	 6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643 (D-2nd)	1.56 1.54	6635(A) 6638(B) 6641(C) 6643(D)	1.66		1.48 1.48 1.34 1.54	6610	1.55	6611	1.62	6608	2.04	6605	1.48	8969	1.27	6560 (Phono.) 6612 6766 (Phono.)	1.60 1.20 2.28	6627	1.44	9042	6.84	6571	1.20
340-E	K-88-X	WR-39	 6631(X) 6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643 (D-2nd)	1.86 1.56 1.54	6632(X) 6635(A) 6638(B) 6641(C) 6643(D)	2.00 1.66 1.60	6633(X) 6636(A) . 6639(B) 6642(C) 6644(D)	1.40 1.40 1.40 1.34 1.54	6610	1.55	6611	1.62	6608	2.04	6605	1.48	8969	1.27	8612 6766 (Phono.)	1.20	6627	1.44	9042	6.84	6571	1.20
340 (External I.F)	K-88	WR-38	 6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643 (D-2nd)	1.56 1.54	6635(A) 6638(B) 6641(C) 6643(D)	1.66 1.60	6636(A) 6639(B) 6642(C) 6644(D)	1.40 1.40 1.34 1.54	6890	2.40	6891	2.40	6608	2.04	6605	1.48	8969	1.27	6612 6766 (Phono.)	1.20 2.28	6892	1.50	9042	6.84	6889	1.55
340-E (External I.F.)	K-88-X	WR-39	 6631(X) 6634(A) 6637(B) 6640(C) 6628 (D-1st) 6643	1.86 1.56 1.54	6632(X) 6635(A) 6638(B) 6641(C) 6643(D)	1.60	6636(A) 6639(B)	1.40 1.40 1.40 1.34	6890	2.40	6891	2.40	6608	2.04	6605	1.48	8969	1.27	6612 6766 (Phono.)	1.20 2.28	6892	1.50	9042	6.84	6889	1.55
341	M-89		 (D-2nd) 7810 (X & B) 7803 (A & C)		7808 (X & B) 7805 (A & C)		7809 (X & B) 7807 (A & C)	1.70 1.62	4431	2.28	4433	2.15	4620	2.98	4599	1.34	8969	1.27	4618 (Sen.) 6766	1.25 1.25 2.28		1.28	9505	6.35	7790	1.05
380	M-128		 6561	1.65	6539	1.44	6437	1.24	6564	2.30	6565 (AVC) 6566 (2nd)	1.72	(Driv.)	3.04	6569	1.95	8969	1.27	(Phono.) 6447 6450 (Sup.) 6799 (Phono.)	1.92 1.24 3.00		1.04	9028	7.75	6571	1,20
380-I1R	M-128- R		 6561	1.65	6539	1.44	6437	1.24	6564	2.30	6565 (AVC) 6566 (2nd)	2.10 1.72	6562 (Driv.) 6568 (Inter.)	3.04		1.95	8969	1.27	6447 6450 (Sup.) 6799 (Phono.)		6448 (Low) 6449 (High)	1.04	9028	7.75	6571	1.20
381	M-129		 7810 (X & B) 7803 (A & C) 4410(D)	1.82	7808 (X & B) 7805 (A & C) 4421(D)		7809 (X & B) 7807 (A & €)	1.70 1.62	7791	2.35	7792 (2nd) 7793 (3rd) 7794 (AVC)	2.22 2.50 .82	7785 (Driv.) 7786 (Inter.)	2.40 4.25	4506	2.85	7000	1.89	7798 7804 (Sen.)	2.05 1.30		1.00	9505	6.35	7790	1.05

RCA RADIO TUBE CHART

				DIMENSIONS			RAT	IHG				- 3				A-C	MUTUAL	VOLT-	LOAD		
TYPE	NAME	BASE	SOCKET CONNEC- TIONS	MAXIMUM OVERALL	CATHODE		MEDIT OR EATED	PLATE	SCREEN	USE Values to right give operating conditions	SUP- PLY	AOF12 ==	SCREEN		PLATE MILLI-	PLATE RESIS-	DUC-	AGE AMPLI-	FOR STATED	POWER OUT-	m
			HUNS	LENGTH X DIAMETER		VOLTS	AMPERES	MAX. VOLTS	MAX. VOLTS	and characteristics for indicated typical use	VOLTS	102,32	VOLIS	AMP.	AMP.	TANCE	MICRO- MHOS	FACTOR	POWER OUTPUT OHMS	PUT WATTS	
IA6	PENTAGRIO CONVERTER 8	SMALL S-PIN	F10. 26	4}}" ± 1%"	D-C FILAMENT	2.0	0.06	180	67.5	CONVERTER	180	{- 3.0} min.}	67.5	2.4	1.3	500000	Anode-Gri Oscillator (Conversion	Grid(#1)	5 max. vol Resistor, 50 ance, 300 n	0000 ohma.	. I 3A
106	PENTAGRID CONVERTER 9	SMALL S-PIN	F1G. 26	413" x 1%"	D-C FILAMENT	2.0	0.12	180	67.5	CONVERTER	180	{- 3.0} min.	67.5	2.0	1.5	750000	Anode Gri Oscillator Conversio	Grid(# 1)	Resistor, St	0000 ohma.	. 10
2A3	POWER AMPLIFIER							250	-	CLASS A AMPLIFIER	250	-45	_	_	60.0	800	5250	4.2	2500	3.5	1
283	TRIODE	MEDIUM 4-PIN	FIG. 1	5}" ± 21€"	FILAMENT	2.5	2.5	300		PUSH-PULL AMPLIFIER	300	-62	Self-		40.0		tput is for		5000	10.0	2A:
2A5	POWER AMPLIFIER	MEDIUM 8-PIN	FIG. 15A	411 × 112"	HEATER	2.5	1.75	250	450	-	300	-62	Fixed		40.0		load, plate-		3000	15.0	
	DUPLEX-DIQUE				HEATER	2.3	1.73	250	250	CLASS A AMPLIFIER	250	-16.5	250	6.5	34.0	1000C0	2200	220	7600	3.0	2A
2A6	HIGH-MU TRIODE	SMALL 6-PIN	FIG. 13	4 17" x 118"	HEATER	2.5	0.8	250		TRIODE UNIT AS CLASS A AMPLIFIER	250 m	- 1.35			0.4		-	Gain p	per stage =	50-60	2A6
2A7	PENTAGRID CONVERTER 0	SMALL 7-PIN	F1G. 20	412" x 114"	HEATER	2.5	0.8	250	100	CONVERTER	250	{ - 3.0 } min. }	100	2.2	3.5	360000	Anode Gri Oscillator (Conversion	Grid(#1)	Resistor, 50	0000 ohms.	287
287	DUPLEX-DIODE PENTODE	SMALL 7-PIN	FIG. 21	4}}" = 1%"	HEATER	2.5	0.8	250	125	PENTODE UNIT AS R.F. AMPLIFIER PENTODE UNIT AS A.F. AMPLIFIER	100 250 250-Te	- 3.0 - 3.0 - 4.5	100 125 50	1.7	5.8 9.0 0.65	300000 650000	950 1125	285 730			28
6A4	POWER AMPLIFIER PENTODE	MEDIUM B-PIN	FIG. 6	416" x 118"	FILAMENT	6.3	0.3	180	180	CLASS A AMPLIFIER	100	- 6.5 -12.0	100	1.6	9.0	83250 45500	1200 2200	100	11000	0.31	6A4
6A6	TWIN-TRIODE AMPLIFIER	MEDIUM 7-PINA	FIG. 24	4計" x 1計"	HEATER	6.3	0.8	300	-	CLASS B AMPLIFIER	250	0			Power	output va	lue is for or	e tube	8000 10000	8.0 10.0	GA6
6A7	PENTAGRID CONVERTER 0	SMALL T-PIN	FIG. 20	417 x 176	HEATER	6.3	0.3	250	100	CONVERTER	250	(- 3.0) min.	100	2.2	3.5	360000	Anode Grie Oscillator C Conversion	1 (#2) 20 Grid (#1)	0 max. vol Resistor, 50	s, 4.0 ma.	6A7
6B7	DUPLEX-DIODE	SMALL 7-PIN	FIG. 21	4177 4 9 7						PENTODE UNIT AS	100 250	- 3.0 - 3.0	100 125	1.7	5.8	300000 650000	950	285			
007	PENTODE	SMALL 7-PIN	F 147 51	417 x 116"	HEATER	6.3	0.3	250	125	PENTODE UNIT AS	250-¥	- 4.5	50	4.3	0.65	030000	1125	730			687
606	TRIPLE-GRID DETECTOR	SMALL 6-PIN	FIG. 11	412" x 1%"	HEATER	6.3	0.3	250	100	SCREEN GRID R.F. AMPLIFIER	250	- 3.0	100	0.5	2.0	exceeds 1.5 mes.	1225	exceeds 1500			
	AMPLIFIER			116 - 116		0.3	0.3	230	100	BIAS DETECTOR	250	-1.95	50	Cathode o					tor 250000		6C8
606	TRIPLE-GRID SUPER-CONTROL	SMALL 6-PIR	FIG. 11	411 x 142"	HEATER	6.3	0.3	250	100	SCREEN GRID R-F AMPLIFIER	250	(- 3.0) min.	100	2.0	8.2	800000	1600	1280			
	AMPLIFIER					0.5	0.5		100	MIXER IN SUPERHETERODYNE	250	-10.0	100	-	-1		Oscillato	peak vol	ts = 7.0.		6D6
	Grids #3 and #5 are Requires different soc			ut control-grid.								lied through						*For grid	of following	ng tube.	
			2					100	_	TRIODE UNIT AS	100	- 3.0			3.5	17800	450	8			
6F7	PENTODE	SMALL 7-PIN	FIG. 27	4H' x 1A'	HEATER	6.3	0.3	250	100	PENTODE UNIT AS	250	(- 3.0) min.	100	1.5	6.5	850000	1100	900			6F7
								250	100	PENTODE UNIT AS	250	-10.0	100	0.6	2.8		tor peak vo				

4-00°	DETECTOR TRIODE	MEDIUM 4-PIN	FIG. 1	4}}" = 1}}"	D-C FILAMENT	5.0	0.25	45	_	GRID LEAK DETECTOR	-45	Gri	d Return		1.5	30000	666	20			100-A
01-A	DETECTOR +	MEDIUM 4-PIN	FIQ. 1	411 = 111 "	D-C FILAMENT	5.0	0.25	135	_	CLASS A AMPLIFIER	90 135	- 4.5 - 9.0			2.5 3.0	11000 10000	725 880	8.0		_	01-
10	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	5] " x 213"	FILAMENT	7.5	1.25	425		CLASS A AMPLIFIER	350 425	-31.0 -39.0		_	16.0 18.0	5150 5000	1550 1600	8.0	11000	0.9	10
11 12	DETECTOR* AMPLIFIEH TRIODE	WD 4-PIN MEDIUM 4-PIN	FIG. 12 FIG. 1	44° x 1克°	D-C FILAMENT	1.1	0.25	135	_	CLASS A AMPLIFIER	90 135	- 4.5 -10.5			2.5 3.0	15500 15000	425 440	6.6			11
19	TWIN-TRIODE AMPLIFIER	SMALL 6-PIN	FIG. 25	$4\frac{1}{4}^{\sigma} - x \cdot 1\frac{a}{18}^{\sigma}$	D-C FILAMENT	2.0	0.26	135	_	CLASS B AMPLIFIER	135 135	- 3.0	_			output val			10000 10000	2.1 1.9	19
20	POWER AMPLIFIER TRIODE	SMALL 4-PIN	F10. 1	41° x 118°	D-G FILAMENT	3.3	0.132	135		CLASS A AMPLIFIER	90 135	-16.5 -22.5		_	3.0 6.5	8000 6300	415 525	3.3	9600 6500	0.045 0.110	'20
22	R-F AMPLIFIER TETRODE	MEDIUM 4-PIN	F10. 4	535" x 113"	D-C FILAMENT	3.3	0.132	135	67.5	SCREEN GRID R.F. AMPLIFIER	135 135	- 1.5 - 1.5	45 67.5	0.6° 1.3°	1.7 3.7	725000 325000	375 500	270 160	_	_	22
24-A	R-F AMPLIFIER	MEDIUM S-PIN	FIG. 9	5½" x 1}}"	HEATER	2.5	1.75	275	90	SCREEN GRID R.F. AMPLIFIER	180 250	- 3.0 - 3.0	90 90	1.7°	4.0 4.0	400000 600000	1000 1050	400 630			24-8
64°A	TETAODE	meanom 3-1h	ria. v	223 7 116	1121121					BIAS DETECTOR	250●	approx.	20 to 45			ate current	with no	signal.	1 milliam	HETE	
26	AMPLIFIER TRIODE	MEDIUM 4-PIN	FIQ. 1	411 × 111	FILAMENT	1.5	1.05	180		CLASS A AMPLIFIER	90 180	- 7.0 -14.5			2.9 6.2	8900 7300	935 1150	8.3 8.3	_		26
27	DETECTOR &	MEDIUM 6-PIN	FIG. 8	4}" x 1%"	HEATER	2.5	1.75	275	_	CLASS A AMPLIFIER	135 250	- 9.0 -21.0			4.5 5.2	9000 9250	1000 975	9.0			27
a-1	TRIODE	JACON OT IN		74 - 116						BIAS DETECTOR	250	= 30.0 approx.				ate current	with no	signal.	. 2 milliam	ere	
30	DETECTOR * AMPLIFIER TRIODE	SMALL 4-PIN	FIG. 1	41" x 128"	D-C FILAMENT	2.0	0.06	180	_	CLASS A AMPLIFIER	90 135 180	4.5 9.0 13.5			2.5 3.0 3.1	10300 10300	900 900	9.3 9.3 9.3	_		30
	★For G	rid-leak Detection	n-plate volt	ts 45, grid return to	+ filament o	or to cath	ode.			 Applied through 	gh plate	coupling re	sistor of 2	250000 ohu	ms or 500)-henry cho	ke shunted	by 0.25	megohm re	sistor. *N	(aximum
31	POWER AMPLIFIER TRIODE	SMALL 4-PIN	F10. 1	41" x 116"	D-C FILAMENT	2.0	0.13	180		CLASS A AMPLIFIER	135 180	-22.5 -30.0			8.0 12.3	4100 3600	925 1050	3.8	7000 5700	0.185 0.375	31
	R-F AMPLIFIER			*1.7	D-C	2.0	0.06	180	67.5	SCREEN CRID R-F AMPLIFIER	135 180	- 3.0 - 3.0	67.5 67.5	G.4* B.4*	1.7	950000 1200000	640 650	610 780	_	_	32
32	TETRODE	MEDIUM 4-PIN	FIG. 4	5뉴" x 1H"	FILAMENT	2.0	0.00	100	07.3	BIAS DETECTOR	180♥	approx.	67.5		P1	ate current	to be adju		.2 milliam	ere	32
33	POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	FIG. 6	418" x 118"	D-C FILAMENT	2.0	0.26	180	180	CLASS A AMPLIFIER	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	SUPER-CONTROL R-F AMPLIFIER PENTODE	MEDIUM 4-PIN	FIG. 4A	517 x 1117	D-C FILAMENT	2.0	0.06	180	67.5	SCREEM GRID R-F AMPLIFIER	135 180	- 3.0 min.	67.5 67.5	1.0	2.8	600000 1000000	600 620	360 620	—	_	34
35	SUPER-CONTROL R-F AMPLIFIER TETRODE	MEDIUM 5-PIN	FIG. 9	5 1 x 1 1 7	HEATER	2.5	1.75	275	90	9CREEN GRID R.F AMPLIFIER	180 250	{- 3.0} min.}	90 90	2.5	6.3 6.5	300000 400000	1020 1050	305 420	-		35
										SCREEN CRID R-F AMPLIFIER	100 180	- 1.5 - 3.0	55 90	==_	1.8	550000 5000#0	850 1050	470 525			
36	R-F AMPLIFIER TETRODE	CMALL 5-PIN	FIG. 9	4닭 * x 1눉 *	HEATER	6.3	0.3	250	90	BIAS DETECTOR	250 100 250	- 3.0 - 5.0 - 8.0	90 55 90	1.7*	3.2 Pi	550040 ate custent	to be adju		.1 milliam	pere	36
											90	- 6.0			2.5	11500 10200	800 900	9.2	I		
37	DETECTOR * AMPLIFIER TRIODE	SMALL S-PIN	FIG. 8	$4\frac{1}{4}^{o} \times 1\frac{9}{16}^{o}$	HEATER	6.3	0.3	250	_	CLASS A AMPLIFIER	180 250 90	-13.5 -18.0			7.5	8400	1100	9.2	.2 milliam	2000	37
								,		BIAS DETECTOR	250	-28.0					with no	signal.			
38	POWER AMPLIFIER PENTODE	SMALL 5-PIN	FIG. SA	417 x 1%"	HEATER	6.3	0.3	250	250	CLASS A AMPLIFIER	100 180 250	- 9.0 -18.0 -25.0	100 180 250	1.2 2.4 3.6	7.0 14.0 22.0	149000 115000 100000	875 1050 1200	120 120 120	15000 11 600 10000	0.27 1.00 2.50	38
	SUPER-CONTROL R-F AMPLIFIER	SMALL 5-PIN	FIG. SA	4}}" x 1;%"	HEATER	6.3	0.3	250	90	SCREEN CRID R-F AMPLIFIER	90 180	(- 3.0)	90 90	1.6	5.6	375000 750000	960 1000	360 750			39-44

[#]For Grid-leak Detection—piate volts 45, grid return to + filament or to cathode.

Either A. C. or D. C. may be used on filament or heaster, except as specifically noted. For use of D. C. on A-C filament types, decrease stated grid volts by ½ (approx.) of filament voltage.

Applied through plate coupling resistor of 250000 ohms or 500-henry choke shunted by 0.25 megohm resistor.
 Applied through plate coupling resistor of 100000 ohms.
 Meximum.

				DIMENSIONS			RATI	ING		USE	D: 47-					A-C	MUTUAL	VOLT-	LOAD	-	
TYPE	NAME	BASE	SOCKET CONNEC-	MAXIMUM OVERALL	CATHODE TYPE =		ENT OR	PLATE	SCHEEN	Values to right give operating conditions	PLATE SUP- PLY	GRID VOLTS =	SCREEN	MILLI-	MILLI-	PLATE RESIS-	DUC- TANCE	AMPLI	FOR STATED POWER	POWER OUT- PUT	TYP
			TIONS	LENGTH X DIAMETER		VOLTS	AMPERES	MAX. VOLTS	MAX. VOLTS	and characteristics for indicated typical use	VOLTS	*02138	10013	AMP.	AMP.	TANCE	MICRO- MHOS	FACTOR	OUTPUT OHMS	WATTS	
40	VOLTAGE AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	4]}" x 1]}"	D-C FILAMENT	5.0	0.25	180	_	CLASS A AMPLIFIER	135 m 180 m	- 1.5 - 3.0	_		0.2	150000 150000	200 200	30 30			44
41	POWER AMPLIFIER PENTODE	SMALL 8-PIN	F10. 15A	4½" x 1½"	HEATER	6.3	0.4	250	250	CLASS A AMPLIFTER	100 180 250	- 7.0 -13.5 -18.0	180 180 250	1.6 3.0 5.5	9.0 18.5 32.0	103500 81000 68000	1450 1850 2200	150 150 150	12000 9000 7600	0.33 1.50 3.40	4
42	POWER AMPLIFIER PENTODE	MEDIUM 6-PIN	FIG. 18A	4}\$" x 1}}"	HEATER	6.3	0.7	250	250	CLASS A AMPLIFIER	250	-16.5	250	6.5	34.0	100000	2200	220	7000	3.00	4:
43	POWER AMPLIFIER	MEDIUM 6-PIN	FIG. ISA	411" x 111"	HEATER	25.0	0.3	135	135	CLASS A AMPLIFIER	95	-15.0 -20.0	95 135	7.0	20.0 34.0	45000 35000	2000	90 80	4500 4000	0.90	4
45	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	416" x 116"	FILAMENT	2.5	1.5	275	=	CLASS A AMPLIFTER	180 250 275	-31.5 -50.0 -56.0	_		31.0 34.0 36.0	1650 1610 1700	2125 2175 2050	3.5 3.5 3.5	2700 3900 4600	0.82 1.60 2.00	4
	DUAL-GRID							250		CLASS A AMPLIFIER D		-33.0			22.0	2380	2350	5.6	6400	1.25	
46	POWER AMPLIFIER	MEDIUM 5-PIN	FIG. 7	53" x 216"	FILAMENT	2.5	1.75	400	_	CLASS B AMPLIFIER •	300 400	0	_	-			ues are for ste-to-plat		5200 5800	16.0 20.0	4
47	POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	FIG. 6	5}" x 216"	FILAMENT	2.5	1.75	250	250	CLASS A AMPLIFIER	250	-16.5	250	6.0	31.0	60000	2500	150	7000	2.7	4
43	POWER AMPLIFIER	MEDIUM 6-PIN	FIG. 15	53" x 2,14"	D-C HEATER	30.0	0.4	125	100	CLASS A AMPLIFTER	96 125	-19.0 -20.0	96 100	9.0	52.0 56.0		3800 3900	_	1500 1500	2.0	4
1	DUAL-GRID				D-C			135		CLASS A AMPLIFIER C	135	- 20.0		_	6.0	4175	1125	4.7	11000	0.17	
49	POWER AMPLIFIER	MEDIUM 6-PIN	FIG. 7	411 x 112"	FILAMENT	2.0	0.12	180	-	CLASS B AMPLIFIER 4	180	0		-			lues are for ate-to plate		12000	3.5	4
50	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	61 x 211"	FILAMENT	7.5	1.25	450	-	CLASS A AMPLIFIER	300 400 450	-54.0 -70.0 -84.0	_	-	35.0 55.0 55.0	2000 1800 1800	1900 2100 2100	3.8 3.8 3.8	4600 3670 4350	1.6 3.4 4.6	5
53	TWIN-TRIODE AMPLIFIER	MEDIUM 7-PIN#	FIG. 24	418" x 118"	HEATER	2.5	2.0	300	_	CLASS B AMPLIFIER	250 300	0		_			lue is for o		8000 10000	8.0	5
55	DUPLEX-DIODE TRIODE	SMALL 8-PIN	FIG. 13	4]}" x 1/6"	HEATER	2.5	1.0	250	_	TRIODE UNIT AS CLASS A AMPLIFIER	135 180 250	-10.5 -13.5 -20.0	-	-	3.7 6.0 8.0	11000 8500 7500	750 975 1100	8.3 8.3 8.3	25000 20000 20000	0.075 0.160 0.350	5
	SUPER-TRIODE									CLASS A AMPLIFIER	250	-13.5			5.0	9500	1450	13.8	~ ~		
56	AMPLIFIER DETECTOR*	SMALL 8-PIN	F10. 8	4}" x 11%"	HEATER	2.5	1.0	250	_	BIAS DETECTOR	250	approx.	-	-	Pla	ate current	to be adju		2 milliam	pere	5
	TRIPLE-GRID		- VILIENIA -							SCREEN GRID R.F AMPLIFIER	250	- 3.0	100	0.5	2.0	exceeds 1.5 meg.	1225	exceeds 1500	-	_	
57	DETECTOR AMPLIFIER	SMALL 8-PIN	FIQ. 11	4}}" x 1%"	HEATER	2.5	1.0	250	100	BIAS DETECTOR	250	- 1.95	50	Cathode 0.65		_		upling resi			5

^{*}For Grid-leak Detection—plate volts 45, grid return to + filament or to cathode.

*Requires different socket from small 7-pin.

-	TRIPLE-CRID		FIG. 11		HEATER	2.5	1.0	250	100	SCREEN GRID R.F. AMPLIFIER	250	{ - 3.0} min.	100	2.0	8.2	800000	1600	1280			***
58	SUPER-CONTROL AMPLIFIER	SMALL 6-PIN	FIG. II	4}8" x 11%"	HEATER	1.3	1.0	230	100	MIXER IN SUPERHETERODYNE	250	-10.0	100				Oscillator 1	peak volts	- 7.0.		58
						1		250	_	AS TRIODE 9 CLASS A AMPLIFIER	250	-28.0			26.0	2300	2600	6.0	5000	1.25	
59	TRIPLE-GRID	MEDIUM 7-PIN#	FIG. 18	5}" x 214"	HEATER	2.5	2.0	250	250	AS PENTODE ** CLASS A AMPLIFIER	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.00	59
								400	_	AS TRIODE O	300 400	0	_			output vali			4600 6000	15.0	

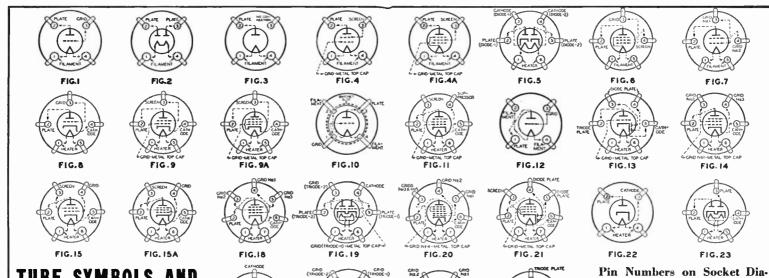
[☐] Grid next to plate tied to plate. ◆Two grids tied together

MApplied through plate coupling resistor of 250000 ohms.

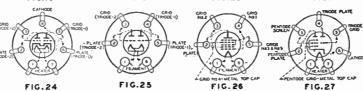
^{**}For grid of following tube.

71-A	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	411 × 111 "	FILAMENT	5.0	0.25	180	_	CLASS A AMPLIFIER	90 180	-19.0 -43.0			10.0	2170 1750	1700	3.0	3000 4800	0.125	71-A
75	DUPLEX-DIODE HIGH-MU TRIODE	SMALL 6-PIN	FIG. 13	$4\frac{17}{32}$ x $1\frac{9}{16}$	HEATER	6.3	0.3	250	_	TRIODE UNIT AS CLASS A AMPLIFIER	250 ×	-1.35			0.4			-	per stage =		75
76	SUPER-TRIODE AMPLIFIER	SMALL S-PIN	FIQ. 8	.17 9 7	HEATER					CLASS A AMPLIFIER	250	-13.5			5.0	9500	1450	13.8			
	DETECTOR	SMALL S-PIN	710. 8	41" x 125"	PIEATER	6.3	0.3	250		BIAS DETECTOR	250	-20.0		_	Pk	te current	to be adju		2 milliem	pere	76
77	TRIPLE-GRID	SMALL 6-PIN	FIG. 11	413" x 1%"	HEATER	6.3	0.3	250	100	SCREEN GRID R-F AMPLIFIER	100 250	- 1.5 - 3.0	60 100	0.4	1.7	650000 1500000	1100 1250	715 1500			
	AMPLIFIER	J	7102 11	*33 × 116	PROFIEM	0.0		130	100	BIAS DETECTOR	250	- 1.95	50	Cathode 0.65			Plate co	upling resis	istor 25000 stor 25000	00 ohms. 0 ohms**.	77
78	TRIPLE-GRID SUPER-CONTROL AMPLIFIER	SMALL 6-PIN	FIQ. 11	417 x 116"	HEATER	6.3	0.3	350	125	SCREEN GRID R-F AMPLIFIER	90 180 250 250	{- 3.0} min.}	90 75 100 125	1.3 1.0 1.7 2.6	5.4 4.0 7.0 10.5	315000 1000000 800000 600000	1275 1100 1450 1650	400 1100 1160 990		_	78
79	TWIN-TRIODE AMPLIFIER	SMALL 8-PIN	FIG. 19	411" x 141"	HEATER	6.3	0.6	250	_	CLASS B AMPLIFTER	180 250	0	_	_		output val			7000 14000	5.5	79
85	DUPLEX-DIQUE TRIODE	SMALL 6-PIN	FIQ. 13	411" x 14"	HEATER	6.3	0.3	250	_	TRIODE UNIT AS CLASS A AMPLIFIER	135 180 250 _e	-10.5 -13.5 -20.0	_		3.7 6.0 8.0	11000 8500 7500	750 975 1100	8.3 8.3 8.3	25000 20000 20000	0.075 0.160 0.350	85
										AS TRIODE ¶ CLASS A AMPLIFIER	160 180 250	-20.0 -22.5 -31.0		_	17.0 20.0 32.0	3300 3000 2600	1425 1550 1800	4.7 4.7 4.7	7000 6500 5500	0.300 0.400 0.900	
89	TRIPLE-GRID POWER AMPLIFIER	SMALL 6-PIN	F10. 14	4분 " x 1% "	HEATER	6.3	0.4	250	250	AS PENTODE *** CLASS A AMPLIFIER	100 180 250	-10.0 -18.0 -25.0	100 180 250	1.6 3.0 5.5	9.5 20.0 32.0	104000 80000 70000	1200 1.50 1800	125 125 125	10700 8000 6750	0.33 1.50 3.40	89
										AS TRIODE ** CLASS B AMPLIFIER	180	0	—	_	Power of	output vali	ses are for te-tu-plate	2 tubes load.	13600 9400	2.50 3.50	
V99 X99	DETECTOR * AMPLIFIER TRIODE	SMALL 4-NUB SMALL 4-PIN	FIQ. 10 FIQ. 1	34″ x 1六″ 44″ x 1六″	D-C FILAMENT	3.3	0.063	90	_	CLASS A AMPLIFIER	90	- 4.5		_	2.5	15500	425	6.6			V99 X99
112-A	DETECTOR + AMPLIFIER TRIODE	MEDIUM 4-PIN	FIQ. 1	4}}" x 1}}"	D-C FILAMENT	5.0	0.25	180	_	CLASS A AMPLIFTER	90 180	- 4.5 -13.5	_	_	5.0	5400 4700	1575 1800	8.5		_	112-A

*For Grid-leak Detection—plate volts 45, grid return to + filament or to cathode.


Either A. C. or D. C. may be used on filament or heater, except as specifically noted. For use of D. C. on A-C filament types, decrease stated grid volts by ½ (approx.) of filament voltage.

Requires different socket from small 7-pin.


^{a B} Grid #1 is control grid. Grid #2 is screen. Grid #3 tied to cathode.
**Grid #1 is control grid. Grids #2 and #3 tied to plate. #Applied through plate coupling resistor of 250000 ohms.
**Grids #1 and #2 connected together. Grid #3 tied to plate.
**Por grid of following tube.

RECTIFIERS

523	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	F1Q. 2	5]"	$x \ 2\frac{1}{16} ''$	FILAMENT	5.0	3.0		_	Maximum A-C Voltage per Plate	523
1223	HALF-WAVE RECYIFIER	SMALL 4-PIN	F1Q. 22	41"	$x \cdot 1_{\overline{16}}^{ \sigma}$	HEATER	12.6	0.3		_	Maximum A-C Plate Voltage	1223
2525	RECTIFIER- DOUBLER	SMALL 6-PIN	FIG. 8	41"	$x \cdot 1\frac{9}{16}$	HEATER	25.0	0.3	_	_	Maximum A-C Voltage per Plate	2525
1-v°	MALF-WAVE RECTIFIER	SMALL 4-PIN	FIG. 22	41"	$x\cdot 1_{\overline{16}}^{0}$	HEATER	6.3	0.3	-	_	Maximum A-C Plate Voltage	I-v°
80	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	FIG. 2	411"	ж 111°	FILAMENT	5.0	2.0		-	A-C Voltage per Plate (Volta RMS) 350 400 550 The 550 volt rating applies to filter circuits having an input choke of at least 20 henries.	80
'81	HALF-WAVE RECTIFIER	MEDIUM 4-PIN	FIG. 3	61"	x 217 "	PILAMENT	7.5	1.25		-	Maximum A-C Plate Voltage	181
82	FULL-WAVE > RECTIFIER	MEDIUM 4-PIN	FIG. 2	411	$x \cdot 1_{12}^{12} ^{\prime\prime}$	FILAMENT	2.5	3.0	_	_	Maximum A-C Voltage per Plate500 Volta RMS Maximum D-C Output Current125 Milliamperes Maximum Peak Plate Current400 Milliamperes	82
83	FULL-WAVE > RECTIFIER	MEDIUM 4-PIN	FIG. 2	5]"	x 2 1 "	FILAMENT	5.0	3.0	_	_	Maximura A-C Voltage per Plate500 Volts, RMS Maximura D-C Output Current250 Milliamperes Maximura Peak Plate Current800 Milliamperes	83
83-V	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	F1Q. 2	411 "	x 1117	HEATER &	5.0	2.0	-	_	Maximum A-C Plate Voltage per Plate	83-Y
84 also 624	FULL-WAVE RECTIFIER	SMALL S-PIN	F1Q. 23	417	$x \cdot 1_{\overline{14}}^{\frac{n}{n}}$	HEATER	6.3	0.5	-	-	Maximum A-C Voltage per Plate	84 also 626
>	Mercury Vapor Tyr	e. * Interchang	cable with T	ype 1.	▲ Catho	de connected	to No. 4	base pin				

TUBE SYMBOLS AND BOTTOM VIEWS OF SOCKET CONNECTIONS

grams are shown according to the new system recently standardized by the Radio Manufacturers Association.

INDEX OF TYPES BY USE AND BY CATHODE VOLTAGE

CATHODE VOLTS	POWER AMPLIFIERS	VOLTAGE AMPLIFIERS Encluding Duples-Drede Types	CONVENTERS IN SUPERHETERODYNES	DETECTORS	MIXER TUBES IN SUPERHETERODYNES	RECTIFIERS	CATHODE VOLTS
1.1		11, 12		11, 12			1.1
1.5		26				_	1.5
2.0	19, 31, 33, 49	30, 32, 34	1A6, 1C6	30, 32	1A6, 1C6, 34		2.0
2.5	2A3, 2A5, 45, 46, 47, \$3, 59	2A6, 2B7, 24-A, 27, 35, 55, 56, 57, 58	2A7	2A6, 2B7, 24-A, 27, 55, 56, 57	2A7, 24-A, 35, 57, 58	E2	2.5
3.3	'20	22, 99		99			3.3

5.0	112-A, 71-A	01-A, 40, 112-A		00-A, 01-A, 40, 112-A		5Z3, 80, 83, 83-V	5.0
6.3	6A4, 6A6, 38, 41, 42, 79, 89	6B7, 6C6, 6D6, 6P7, 36, 37, 39-44, 75, 76, 77, 78, 85	6A7, 6P7	6B7, 6C6, 6P7, 36, 37, 75, 76, 77, 85	6A7, 6C6, 6D6, 6F7, 36, 39-44, 77, 78	1-v, 84	6.3
7.5	10, 50					'81	7.5
12.6						1223	12.6
25.0	43					2525	25.0
30.0	48				<u> </u>		30.0

RCA INSTITUTES

offets Practical Instruction in Radio and Associated Electronic Arts

Resident Schools in New York and Chicago

Day and Evening Classes Weekly Tuition Rates

RADIO ENGINEERING

SOUND AMPLIFICATION

COMMERCIAL RADIO OPERATING - POLICE AND AIRCRAFT RADIO

BROADCAST TRANSMISSION

RADIO SERVICING

MATHEMATICS AS APPLIED TO RADIO

RADIO PRINCIPLES

SPECIAL CODE TRAINING

APPLICATIONS OF THE ELECTRONIC TUBE

SOUND MOTION PICTURES

PUBLIC ADDRESS SYSTEMS

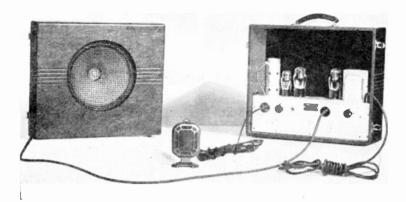
SHORT COURSES IN SPECIALIZED SUBJECTS

EXTENSION COURSES FOR HOME STUDY

On Convenient "No Obligation" Plan

SOUND AMPLIFICATION RADIO SERVICING RADIO OPERATING

Illustrated Catalog on Request



RCA INSTITUTES, INC.

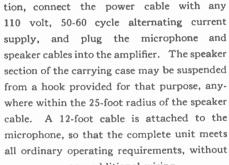
DEPT. RV-35

75 VARICK STREET NEW YORK 1154 MERCHANDISE MART CHICAGO

RECOGNIZED STANDARD IN RADIO INSTRUCTION SINCE 1909

MODEL PG-63B: Double-button Carbon Microphone; 6-watt Amplifier, 3 stage, 75 db. gain, 50-60 cycles, A. C. 105-125 volts; 10" electro-dynamic Speaker, Phonograph Jack, Tone Control, RCA Radio Tubes: 1RCA-57, 1RCA-56, 1RCA-53, 1RCA-80. Self-contained in handsome carrying case, finished in dark Spanish blue fabrikoid. Dimensions: 81/8" deep, 16%" wide, 16" high. Weight: 281/2 pounds. List price, complete, \$79.50 f. o. b. Camden, N. J.

RCA VICTOR PORTABLE PUBLIC ADDRESS SYSTEM


Model PG-63B (Cat. No. MI-4701A)

The RCA Victor portable Public Address System *Model PG-63B* is admirably suited for moderate-sized auditoriums; also for such diversified applications as bus terminals, carnivals, restaurants, stores and gymnasiums.

Exceptional tone quality and ease of operation make the new PG-63B the outstanding Portable P. A. system in the low-price field. Matched loudspeaker and amplifier insure faithful reproduction of voice or record.

The dynamic speaker will handle the maximum output of the 6-watt amplifier without distortion. The equipment and controls are simple, convenient and foolproof. To set it in opera-

Right: Double Button Carbon Type Microphone, improved model; gives remarkably efficient results.

any additional wiring.

By means of separate portable phonograph attachments, records may be used for musical programs or to furnish music background for voice announcements.

Complete System
LIST PRICE

5.0.b. Camden

RCA Victor Portable Public Address System

Model PG-62D

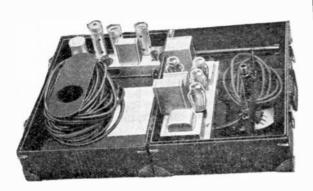
20 Watts Output ...
Valocity Mike...Two
Speakers...All in
Two Compact Cases.

LIST PRICE

\$395

MODEL PG-62D Includes: Velocity microphone; announcer type Stand with extension arm; 20-watt amplifier, 5 stage, 108 db. gain, 50-60 cycles, a-c. 105-125 volts; 2 electro-dynamic speakers, finished wood baffle; RCA Radio Tubes: 1RCA-57, 2RCA-56, 3RCA-59, 1RCA-83. Amplifier, microphone and cables assembled in reënforced carrying case which is 15" high, 22" long, 9" deep. Loudspeakers fit together, forming a compact portable case which is 1234" high, 23 34" long, 10" deep. List price complete: \$395.00 f.o.b. Camden, N. J.

MODEL PG-62D, because of its marvelous sensitivity, due to the famous RCA Victor Velocity Microphone and high fidelity loudspeakers, is the finest portable public address system of its kind on the market. Auditoriums, banquet halls, dance halls, restaurants, night clubs, hotels and a host of other places find this model perfectly adaptable for their use. It can be used to amplify speeches in large auditoriums or orchestral music in large restaurants or dance halls, without distortion. Will provide ample volume for audiences of 2500.


Below: This amplifier case allows space to hold the microphone as well as the amplifier. It is reenforced and is covered with black leatherette; 22" long, 15" high, 9" deep.

Complete Sound Systems

RCA Victor Commercial Sound Systems, with their great flexibility, cover practically the whole field of electrical sound control, reproduction and distribution. The applications range from simple announcing systems to the most elaborate indoor or outdoor installations. Standardized, matched units insure satisfactory performance and contribute greatly to ease and economy of installation.

We are prepared to give you technical assistance and detailed specifications on any type of sound reenforcing system, or on Photophone sound picture equipment for non-theatrical installations.

Write or call us for complete information on RCA Victor Commercial Sound Systems.

Portable P. A. Systems

Centralized Radio

Photophone Sound Picture Equipment

Announcing and Paging Systems

Antenaplex

Sound Reënforcement

The RCA VICTOR RECORD PLAYER

Attaches to Any Radio . . . Transforms it into a

Convenient Combination

ONE of the most justly popular and fast-selling radio accessories of the year is RCA Victor's new Record Player, which, for the first time, makes it possible to hear phonograph records through the tubes and loudspeaker of an ordinary radio. The instrument is a combination of synchronous motor, electric pick-up and turntable, capable of playing either 10-inch or 12-inch records at standard speed. It is portable, extremely compact, and may be operated remotely from the radio without jumping up and down to change records. Installed with RCA Phonograph Oscillator (See page 32), the Record Player may be quickly attached to any radio.

RCA Victor Record Player. Weighs only 8½ pounds. Housed in an attractive walnut-finished cabinet only 101/8" long, 8" wide, 5" high. List price, complete with volume control, needle cup and power cord, only \$16.50 (slightly higher in Far West)

The RCA Victor Store Recorder

A four-tube recording device built especially for dealer use with the object of increasing store traffic and of providing additional profits on recording blanks. Operates on 60 cycle a-c current. Sold complete with two-button microphone, hand-operated pick-up lift, two-speed turntable, volume control, visual neon "modulation" indicator. 14" x 18½" x 14" walnut-finished table cabinet is provided with air vents, removable lid and special compartment for storing microphone.

Record Needles										
Туре	Half Tone	Full Tone	Extra Loud	Price						
STEEL	75 needles to Package 100 Packages to Carton	100 needles to Package 100 Packages to Carton	100 needles to Package 100 Packages to Carton	\$10.00 per Carton						
TUNGSTONE	None made	8 needles to Container 50 Containers to Carton	8 needles to Container 50 Containers to Carton	\$12.50 per Carton						
SHADOW- GRAPH	5,000 needles to Carton	10,000 needles to Carton	None made	\$3.25 per Thousand						
HOME RECORDING	8 needles to Container. 50 Containers to Carton									
CHROMIUM (Green or Orange Shank)	6 needles to Container. 50 Containers to Carton									

Standard Victor Records

Red Seal—Covering music exclusively of the classical or semi-classical type. List price range: from \$1.00 per Record to \$3.50 per Record.

Black Label—Incorporating chiefly the music of popular dance bands and radio vocal artists. List price range: 75 cents per ten-inch Record. Twelve-inch, \$1.25.

Blue Bird Records—Containing old familiar tunes, race numbers and popular dance melodies. All ten-inch size. List price, 35 cents per Record.

Special Victor Records

Home Recording Blanks—Made'especially for recording selections on Home Recording units. List prices: Six-inch Blanks (kit of 4), 95 cents; Ten-inch Blanks (kit of 2), 95 cents; Twelve-inch Blanks (kit of 2), \$1.75.

Technical Purpose - See page 39.

Wireless Telegraph—A set of six records comprising a comprehensive course in Morse telegraphy. List price, complete with handbook, \$5.00 per set.

For Extra Profits . . . Extra Store Traffic . . . The RCA VICTOR STORE RECORDER

Here is an instrument that's not made for public sale. But, for scores of dealers, it has proved an extremely effective sales maker. It's a four-tube device capable of an extraordinarily high quality of recording, and it was manufactured especially to increase store traffic and to provide additional profits on recording blanks. The Store Recorder is equipped with a two-button microphone, hand-operated pick-up lift, two-speed turntable, volume control and visual neon "modulation" indicator-everything, in short, that is necessary to the making of unusually good "amateur" recordings. It operates on 60 cycle a-c current. Enclosed in a handsome walnut-finished table cabinet provided with air vents, removable lid and special compartment for storing the microphone, the Store Recorder is at once convenient, portable, and marvelously efficient. No other device of comparable price and purpose can remotely approximate its effectiveness.

The handsome walnut-finished cabinet of the RCA Victor Store Recorder measures 14" high, 181/2" wide, 14" deep. It is shipped from the factory with a special six-piece advertising campaign to promote the sale of recorded blanks.

VICTOR RECORDS

Red Seal—Covering music exclusively of the classical or semi-classical type. List price range: from \$1.00 per Record to \$3.50 per Record.

Black Label—Incorporating chiefly the music of popular dance bands and radio vocal artists. List price range: 75 cents per teninch Record. Twelve-inch, \$1.25.

Blue Bird Records—Containing old familiar tunes, race numbers and popular dance melodies. All ten-inch size. List price, 35 cents per Record.

United States-Foreign—Designed to reach alien residents in the United States. Recorded in 30 different languages. Price range same as Black Label Records.

Educational Records—Offer selections for school, college and university study. Include

both Red Seal and Black Label Records, and cover the list price range of these two groups.

Home Recording Blanks—Grooved discs of semi-soft material made especially for recording selections on Home Recording units. List prices: Six-inch Blanks (kit of 4) 95 cents; Ten-inch Blanks (kit of 2) 95 cents; Twelve-inch Blanks (kit of 2) \$1.75.

Technical Purpose—Special Records for research, service and development uses, including constant frequency discs, varying frequency discs, constant volume discs, aural test records and others. List prices: Teninch Record, 75 cents each. Twelve-inch Record, \$1.25 each. See page 39 for description and list.

Wireless Telegraph—A group of six records comprising a comprehensive course in Morse telegraphy. List price, complete with handbook, \$5.00 per set.

AMATEUR'S NET PRICE \$6950

F. O. B. FACTORY

THE RCA Amateur Communications Receiver, Model ACR-136, presents a combination of attractive features not usually found even in receivers selling at a considerably higher price. The design of the ACR-136 has been determined by a desire to produce a receiver of superior sensitivity, selectivity and operating characteristics at a price which would make it an outstanding value.

· SPECIFICATIONS ·

CABINET: Metal, black ripple finish, cabinet size 22" long x 101/2" high x 111/2" deep.

CIRCUIT: 7-Tube Superheterodyne, 460 K. C. Intermediate Frequency.

TUBES: 6D6 r-f amplifier; 6A7 oscillator and mixer; 6D6 i-f amplifier; 6B7 second detector, automatic volume control, a-f amplifier; 6D6 beat-frequency oscillator; 42 a-f output; 80 rectifier.

FREQUENCY RANGE: 540 to 18,000 kilocycles, continuous in three bands.

DIAL: Calibrated in kilocycles and megacycles, with vernier pointer for positive logging of received stations. Vernier pointer makes over 9 complete revolutions while main pointer covers one band.

BAND CHANGING: By switch from front of panel. Each band employs a separate set of antenna, r-f and oscillator coils. No tapped coils.

POWER SUPPLY: Built-in. An integral part of receiver.

POWER CONSUMPTION: 85 watts.

SPEAKER: Five-inch, full electro-dynamic, built-in.

CONTROLS: (1) Stand-by Switch; (2) Combined Power Switch and Sensitivity Control; (3) High-Frequency Tone Control; (4) Beat-Frequency Oscillator "On-Off" Switch; (5) Dual-Ratio Vernier Tuning Control; (6) Band Switch; (7) Audio Volume Control; (8) Automatic Volume Control "On-Off" Switch. The Beat-Frequency Oscillator Adjustment Handle is readily accessible by raising lid.

ACCESSORIES: The ACR-136 is supplied complete with coils, tubes, power supply, and speaker. There is nothing else to buy. Connect it to antenna and plug in the power supply and your phones. It is ready to operate.

THE GREATEST VALUE IN AMATEUR RECEIVERS

RCA PARTS for the AMATEUR

Operators of amateur radio stations, and experimenters, will appreciate the high quality and low cost of the many RCA Parts that are suitable for their use. The conservative engineering and high overload rating of RCA Parts insure long life in many experimental applications. The extreme flexibility of RCA Test Equipment makes it desirable for many amateur applications. Several RCA products suitable for amateur use are described below. Others can be found by referring to the index.

THE RCA CATHODE RAY OSCILLOGRAPH

offers the most direct method of checking every phase of transmitter performance. Checking of percentage modulation, of distortion in audio amplifiers, and of many other transmitter characteristics is easily and quickly done with the Cathode Ray Oscillograph. It also may be used to monitor modulation either direct or remotely. A linear horizontal sweep frequency gives a true picture of the modulation envelope, no interpretation being necessary. Vertical and horizontal amplifiers permit examination of low voltages.

STOCK NO. 9545 NET PRICE \$84.50

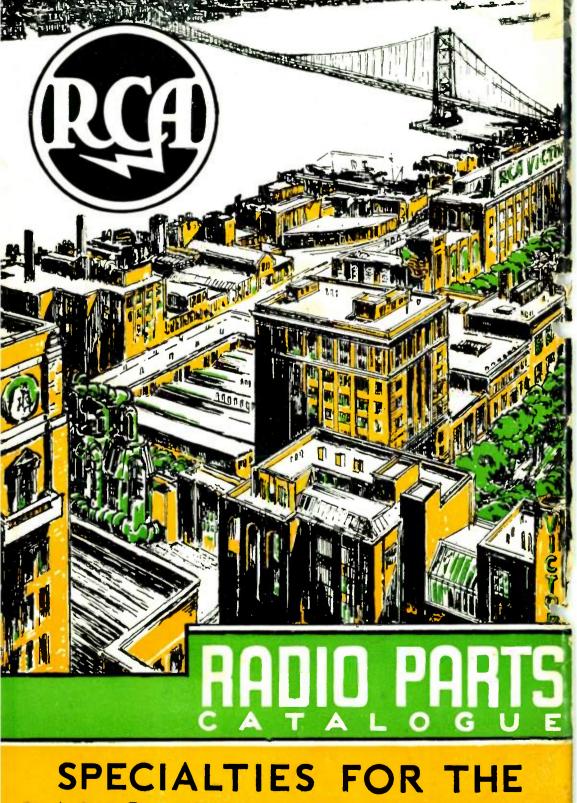
STOCK NO. 9595 NET PRICE \$34.50

THE RCA TEST OSCILLATOR has many applications for the amateur, such as aligning experimental circuits, frequency monitoring and frequency checking. By providing a source of r-f over a wide frequency range, the efficiency of experimental circuits, both receiving and transmitting, may be quickly determined. A phone jack permits operation as a heterodyne frequency meter, thereby permitting an accurate frequency check of any source of r-f voltage. Frequency range—90 K. C.–25000 K. C.

RCA POWER TRANSFORMERS are ruggedly constructed and conservatively rated. The Stock No. 9552 Transformer shown has sufficient windings for all requirements of a medium-powered power supply. 475/475 (115 M. A.)—1.25/1.25 (3.0 A)—2.5 (3.5 A)—

2.5/1.25/1.25 (5.0 A)—1/1.5.7.25 A) Primary 115 volts.

RCA ANTENNA SYSTEMS are famous for their scientific design and satisfactory performance. The Stock No. 9550 Kit contains the essentials for making a highly satisfactory receiving or medium-powered transmitting antenna. Use of the double-doublet arrangement for transmitting permits high efficiency at any two frequencies plus noise-reduction while receiving. Instruction sheet tells how to compute antenna lengths for all frequencies.


STOCK NO. 9550 NET PRICE \$2.85

STOCK NO. 9552 LIST PRICE \$6.50

- Output Transformers, p. 21
- Tuning Wands, p. 16
- Power Units, p. 15
- Phonograph Equipment, p. 38
- Audio Transformers, p. 65
- Power Transformers, p. 22
- Mica Capacitors, p. 45
- F. Transformers, p. 63
- Filter Capacitors, p. 47

RADIO SERVICE ENGINEER
World Radio History ENGINEER