E L E C T R O N I C D E S I G N ELEVENTH ANNUAL TRANSISTOR DATA CHART # **FASTEST TRANSISTORS** EQUIREMENTS #### **FASTEST** LOW LEVEL LOGIC **2N709** (NPN) TIME - 6 nsec max @ 5/5/5mA • V_{sat} - 0.3V max @ I_c = 3mA I_B = .15mA ● h_{FE} — 20 min @ I_C=10mA V_{CE}=0.5V f_T — 600 MC min @ $I_c=5mA$ $V_{CE}=4V$ Package: TO-18 #### **FASTEST** LOGIC 2N2369 (NPN) 13 nsec max @ 10/10/10mA • V_{sat} - 0.25V max @ I_c =10mA I_B =1mA 20 min @ I=100mA V_{CE}=2V 500 MC min @ Ic=10mA VcE=10V Package: TO-18 #### **FASTEST** CORE DRIVER 20 nsec @ 50/50/50mA • V_{sat} - 1.0V max @ I_c = 500mA I_B = 50mA • h_{FE} - 20 min @ I_{C} = 500mA V_{CE} = 10V • f_T - 250 MC @ I_C = 50mA V_{CE} = 10V Package: TO-18, TO-5 2N2845 SERIES (NPN) > FAIRCHIL SEMICONDUC A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION ### ELECTRONIC DESIGN'S ELEVENTH ANNUAL # TRANSISTOR DATA CHART 1963 Donald Christiansen Technical Editor ELECTRONIC DESIGN'S 11th Annual Transistor Data Chart includes more than 3,000 listings, of which about 375 appear for the first time. Transistors are classified according to seven application categories: Audio and General Purpose (page T4), High-Frequency (page T16), Power (page T40), Low-Level Switching (page T62), High-Level Switching (page T77) and, for the first time, Field-Effect (page T85) and Unijunction (page T86). Within each category, types are arranged in order of increasing value of a key design parameter. This also permits quick identification of close substitutes. Alternate suppliers are listed in the "Remarks" column. The manufacturer whose data are listed is identified in the "Mfr." column. He is not necessarily the original registrant. A cross index (page T88) identifies types in numerical sequence. Each type in the cross index carries a code that identifies its application category and specifies the block of 10 types in which it appears. A3, for example, means the type can be found in the third block of the Audio section. Many manufacturers, upon request, provide detailed application notes and data sheets to the design engineer. Where this is true, it is noted next to the manufacturer's name in the list of manufacturers (page T1). # **Update Your Transistor File** **Step 1.** Send for your personal copy of the 1963 Transistor Data Chart, Reader-Service No. 549. It has been tailored to meet your needs as a design engineer—to guide you in the rapid selection of transistors for a particular circuit need. **Step 2.** Having narrowed the field to a number of similar types, your next step is to refer to manufacturers' specification sheets for exact test conditions, application details and other pertinent information. But unless you have invested much time and effort on your transistor file, it is bound to contain obsolete types and overlook new ones. So, to supplement the Data Chart, ELECTRONIC DESIGN has made special arrangements with semiconductor manufacturers to provide specification sheets and application notes to readers requesting this material. Merely circle the number alongside each manufacturer's name on the special Reader-Service card at the end of this section. #### **Transistor Manufacturers** | | | Further Information Av | ailable | |------|--|--|-------------------------------------| | Code | Сомрапу | Туре | Ĉircle
Reader-
Service
No. | | Al | Amelco, Inc.
341 Moffett Blvd.
Mountain View, Calif. | FET application notes, 20-
page data folder, and other
brochures | 400 | | AMF | American Machine and Foundry Co.
Leland Airborne Products Div.
AMF Semiconductor Dept.
Vandalia, Ohio | Data sheets on 38 transistor types | 401 | | AMP | Amperex Electronic Corp.
230 Duffy Ave.
Hicksville, L.I., N.Y. | Several condensed catalogs and application notes | 402 | | BE | Bendix Semiconductor Div.
South St.
Holmdel, N.J. | Two guides to silicon and germanium transistors | 403 | | CS | Clark Semiconductor Corp.
Div. of National Semiconductor
Walnut Ave.
Clark, N.J. | Data sheets on transistors | 404 | | CL | Clevite Transistor
200 Smith St.
Waltham 54, Mass. | Condensed catalog and application notes | 405 | | СТ | Crystalonics, Inc.
249 Fifth St.
Cambridge 42, Mass. | 3-ring folder of data sheets and application notes | 406 | | DE | Delco Radio Div.
GM Corp.
Kokomo, Ind. | Condensed catalog, data sheets, application notes and test data | 407 | | FA | Fairchild Semiconductor
545 Whisman Road
Mountain View, Calif. | Condensed catalog and data sheets | 408 | | GE | General Electric Co.
Semiconductor Products Dept.
Electronics Park
Syracuse 1, N.Y. | Condensed catalog, data sheets and application notes | 409 | | GI | General Instrument Corp.
18 East 41st Street
New York 17, N.Y. | Data sheets, tentative specifications and application notes | 410 | | н₩ | Honeywell Semiconductor Products
2747 Fourth Ave. South
Minneapolis 8, Minn. | Application notes, lab reports and data | 411 | | HU | Hughes Semiconductor Div.
500 Superior Ave.
Newport Beach, Calif. | Application selection guide,
data sheets and brochures | 412 | | IND | Industro Transistor Corp.
35-10 36th Ave.
Long Island City 6, N.Y. | Condensed catalog, data sheets and application notes | 413 | | KF | Kearfott Semiconductor Corp.
437 Cherry St.
West Newton 65, Mass. | Loose leaf binder of semi-
conductor engineering data | 414 | | МО | Motorola Semiconductor Products, Inc.
5005 E. McDowell Road
Phoenix 8, Ariz. | Condensed catalog, data sheets and reliability brochure | 415 | | NA | National Semiconductor Corp.
90 Rose Hill Ave.
Danbury, Conn. | Condensed catalog, data sheets, engineering memos, application notes | 416 | | | | Further Information Av | ailable | |------|--|---|-------------------------------------| | Code | Company | Туре | Circle
Reader-
Service
No. | | PSI | Pacific Semiconductor, Inc.
(TRW Electronics)
12955 Chadron Ave.
Hawthome, Calif. | Condensed catalog and data sheets | 417 | | PH | Philco Corp.
Lansdale Div.
504 Church Road
Lansdale, Pa. | Transistor reference chart and planar reliability report | 418 | | RCA | Radio Corp. of America
Semiconductor Div.
Somerville, N.J. | Condensed catalog, data
sheets and application notes
on many devices | 419 | | RRD | Radio Development & Research Corp.
100 Pennsylvania Ave.
Paterson 3, N.J. | Will not manufacture after
1963 | | | RA | Raytheon Co.
Semiconductor Div.
350 Ellis St.
Mountain View, Calif. | Condensed catalog | 421 | | STC | Silicon Transistor Corp.
150 Glen Cove Road
Carle Place, L.I., N.Y. | Condensed catalog | 422 | | SI | Siliconix, Inc.
Sunnyvale, Calif. | Application notes, data sheets and articles on FET devices | 423 | | SSE | Solid State Electronics Corp.
15321 Rayen St.
Sepulveda, Calif. | Data sheet on SST610
transistor | 424 | | SSP | Solid State Products, Inc.
One Pingree St.
Salem, Mass. | Folder of data sheets and comparison chart | 425 | | SSD | Sperry Semiconductor Div.
Norwalk, Conn. | Data sheets and tentative specifications | 426 | | SPR | Sprague Electric Co.
347 Marshall St.
North Adams, Mass. | Condensed catalog | 427 | | SY | Sylvania Semiconductor Div.
100 Sylvan Road
Woburn, Mass. | Full catalog, data sheets
and Circuit Loops brochures | 428 | | ΤI | Texas Instruments Inc.
13500 North Central Expressway
Dallas 22, Texas | Data sheets, application notes and theory of FET devices brochure | 429 | | TR | Transitron Electronic Com.
168 - 182 Albion St.
Wakefield, Mass. | Data sheets, application notes, condensed catalog and an article reprint | 430 | | TS | Tung-Sol Electric, Inc.
One Summer Ave.
Newark 4, N.J. | Condensed catalog, FET.
brochure and silicon double
diffused brochure | 431 | | WE | Western Electric Co., Inc.
Marion and Vine St.
Laureldale, Pa. | Available only to agencies of the U.S. Govt, and their subcontractors | | | WH | Westinghouse Electric Corp.
3 Gateway Center
Pittsburgh 30, Pa. | Condensed catalog, data sheets, application and design notes | 433 | May 24, 1963 T1 ### HOW TO USE THE CHARTS A color code pairs the transistor type with the value of its key parameter. Types are listed in order of increasing value of key parameter. Note, however, that since various manufacturers may characterize their types differently, some "jumps" may take place in the sequence. Consider, for example, a type in the high-frequency category. Its key characteristic will be $f_{\alpha e}$, f_T , or $f_{\alpha b}$ (values of f_T are preceded by a single asterisk; values of f_{ab} , by a double asterisk). But f_{ae} is the frequency at which h_{fe} drops to 0.707 of its low frequency value, and f_T is the gain-bandwidth product, or the product of h_{fe} and frequency at a point where h_{fe} is dropping by 6 db per octave. Thus, f_T is about h_{fe} times greater than $f_{\alpha e}$ for a given transistor. Under maximum ratings, manufacturers were asked to specify collector power dissipation at 25 C case temperature, this generally being the most meaningful single dissipation rating. The derating factor can then be used to estimate P_c for other operating temperatures. Either V_{CEO} or V_{CBO} is listed as a maximum voltage rating. V_{CEO} is related to collector-emitter diode breakdown and V_{CBO} to collector-base diode breakdown. But bear in mind that many manufacturers' data sheets will list other important voltage ratings, such as V_{CES} or V_{CER} . Under characteristics, ELECTRONIC
DESIGN asked manufacturers to supply typical values rather than maxs or mins. Where deviations from this occur they are noted. Finally, it must be cautioned that the characteristics listed are primarily a guide and generally cannot be used for direct comparison of types. This is because it is impossible to list the wide variety of test conditions under which characteristics have been measured. V_{ceo} , for example, can differ considerably for comparable devices when measured at a collector current of 100 μ a in one case and 1 ma in another. The best bet is to consult the manufacturers' data sheets before making the final selection. #### Key to Symbols $f_{\alpha e}$ = small-signal short-circuit forward current transfer ratio cutoff frequency (common-emitter) f_{ab} = small-signal short-circuit forward current transfer ratio cutoff frequency (common-base) f_T = gain-bandwidth product P_c = collector power dissipation (average) T_i = junction temperature deg C mw/°C = derating factor V_{CEO} = max collector voltage, collector to emitter, base open V_{CBO} = max collector voltage, collector to base, emitter open 1_c = max collector current Ip = max collector current (peak) h fe = small-signal short-circuit forward current transfer ratio (common-emitter) h FE = dc short-circuit forward current transfer ratio (com- mon-emitter) Ico = collector cutoff current (dc) emitter open C_{oe} = output capacitance (common-emitter) C_{ob} = output capacitance (common-base) t_r = rise time t_s = storage time $V_{CE(sat)} = collector-to-emitter saturation voltage$ g_m = transconductanceV_P = pinch-off voltage I_{DSS} = zero-bias drain current BV_{DGO} = drain-gate breakdown voltage with gate-source open-circuited BV_{DGS} = breakdown voltage from drain to gate with drain shorted to source C_{is} = common source short-circuit input capacitance N.F. = noise figure n = intrinsic standoff ratio I_{EO} = max emitter reverse current Ip = max peak point emitter current $V_{E(sat)}$ = max emitter saturation voltage V_{EB2} = min emitter reverse voltage V_{OB1} = min base one peak pulse voltage #### Key to Transistor Types | | Construction | GD | Grown diffused | |-----|----------------------|-----|--------------------------| | AJ | Alloy junction | GJ | Grown junction | | AD | Alloy diffused | GR | Rate grown | | DD | Double diffused | МВ | Meltback | | DG | Grown diffused | MD | Micro-alloy diffused | | DJ | Diffused junction | | base | | DM | Diffused mesa | MS | Mesa | | DDM | Double-diffused mesa | PE | Planar epitaxial | | DP | Diffused planar | PL | Planar | | DR | Drift | SBT | Surface barrier | | ED | Electro-chemical | SP | Surface precision alloy | | | diffused - collector | TDP | Triple - diffused planar | | EM | Epitaxial mesa | | p.dilai | | EP | Epitaxial | | Materials | | FA | Fused alloy | ge | germanium | | FJ | Fused junction | si | silicon | #### Manufacturers and their Lines | Manufacturer | Audio
(A) | High-
Frequency
(HF) | Power (P) | Low-Level
Switching
(LL) | High-Level
Switching
(HL) | Field-
Effect
(FE) | Uni-
junction
(LNJ) | |-------------------------|--------------|----------------------------|-----------|--|---------------------------------|--------------------------|---------------------------| | Amelco | | | | • | , , | | | | AMF | | | • | | 1 | | | | Amperex | | • | | • | • | | | | Bendix | • | | | • | • | | | | Clark | | | • | | | | | | Clevite | | • | • | • | • | | | | Crystalonics | | | | • | | • | | | Delco | | | • | | • | | Jan 19 | | Fairchild | | • | • | • | • | | | | General Electric | • | • | • | • | • | | • | | General Instrument | • | • | • | | • | | No. | | Honeywell | | • | • | The Control | | | | | Hughes | • | • | | • | • | | | | Industro | • | • | • | • | • | | | | Kearfott | • | • | • | • | • | | | | Motorola | • | • | • | • | • | • | | | National Semiconductor | • | • | • | • | | | | | Philco | • | • | | • | • | | | | PSI | 1 | • | • | | | | | | Radio Development | • | | | The State of S | | | | | Raytheon | • | • | • | • | • | | | | RCA | • | • | • | • | • | • | | | Silicon Transistor | | | • | | • | | | | Siliconix | 1.15 | | | | | • | | | Solid State Electronics | • | | | • | | | | | Solid State Products | | | | | • | | | | Sperry | • | • | | • | | | | | Sprague | • | • | | • | | | | | Sylvania | • | • | • | • | | | | | Texas Instruments | • | • | • | • | • | | • | | Transitron | | • | • | • | • | | | | Tung-Sol | • | • | | • | • | • | | | Western Electric | • | • | • | • | • | | | | Westinghouse | | | • | | • | | | # AUDIO AND GENERAL PURPOSE Mostly audio and general-purpose types below one watt. In order of increasing forward-current transfer ratio. | | | | E T | | MAX. RATINGS CHARACTERISTICS | | | | | | CS | | | | |-----------------------|---|---------------------------------|---|---|---|--|--------------------------------------|----------------------------------|----------------------------------|--|---------------------------------|--------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE
**G _m | P _c (mw) | T _i | mw/°C | VCEO
*VCBO
(v) | l C (ma) | ¹ CO (μα) | ME (9P) | Coe
*Cob
(pf) | fae
*fT
**fab
(mc) | Remarks | | A 1 | 2N160
2N160A
2N349
2N161
2N161A | RRD
RRD
RRD
RRD
RRD | npn,GJ,si
npn,GJ,si
npn,GJ,si
npn,GJ,si
npn,GJ,si | 0.93
0.93
0.95
0.96
0.96 | 150
150
750
150
150 | 175
175
175
175
175
175 | 11111 | *40
*40
*125
*40
*40 | 25
25
40
25
25 | 0.2
0.2
10
0.2
0.2 | 25
25
-
25
25
25 | 7 - 7 7 | 4 3 5 5 | | | A 2 | 2N348
2N1096
2N347
2N1095
2N163 | RRD
RRD
RRD
RRD
RRD | npn,G1,si
is,L0,nqn
is,L0,nqn
is,L0,nqn | 0.96
0.96
0.98
0.98
0.99 | 750
500
750
500
150 | 175
175
175
175
175
175 | 11111 | *90
*90
*60
*60
*40 | 50
30
60
40
25 | 10
6
10
5
0.2 | -
18
-
25 | -
7
-
7 | 3
3
3
6 | | | A 2 | 2N163A
2N1566
2N2673
2N1154
2N1155 | RRD
TI
GE
NA
NA | npn,GJ,si
npn,MS,si
npn,GD,si
npn,DM,si
npn,DM,si | 0.99
1.2
•8-22
9 | 150
-
250
750
750 | 175
175
185
150
150 | -
80
1.66
5
5 | *40
60
*60
50
80 | 25
100
25
60
50 | 0.2
1
0.004
5
6 | 25
50
11
- | 7
-
4
-
- | 6
-
10
-
- | TR, NA
TI
TI | | | 2N1156
2N117
2N332
2N332A
2N333A | NA
TI
TI
NA
NA | npn, DM, si
npn, GR, si
npn, GR, si
npn, MS, si
npn, MS, si | 9
9·20
9·20
9·20
9·20 | 750
150
150
150
150
500 | 150
175
175
175
175
175 | 5
1
0.86
2.8 | 120
*30
45
45
45 | 40
25
25
-
- | 8
2
2
2
0.5 | 20
20
-
- | -
-
30
15 | -
4
6
- | TI
TR,USN
GE,TR,RRO,NA,RA,AMP
GE, TI
GE, TI | | A 3 | 2N1149
2N243
2N470
2N471
2N472 | TR
TI
TR
TR
TR | is, LD, nqn
is, LD, nqn
is, LD, nqn
is, LD, nqn
is, LD, nqn | 9-20
9-32
10-25
10-25
10-25 | 150
750
200
200
200 | 150
150
200
200
200 | 6 | *45
60
15
30
45 | 25
60
25
25
25
25 | 0.1
1
0.02
0.02
0.02
0.02 | 25
-
22
22
22
22 | 7
-
7
7 | 7
7
8
8
8 | NA, TI
NA, SO
NA, TI, AMP
NA, TI, AMP
NA, TI, AMP | | |
2N472A
2N102/13
2N144/13
2N1439
2N756 | TR
SY
SY
NA
NA | npn,DG,si
npn,AJ,ge
npn,AJ,ge
pnp,AJ,si
npn,DM,si | 10-25
10.5
10.5
12
12-20 | .200
1w
1w
400
500 | 200
75
75
200
200 | 20
20
2.28
2.5 | 45
•30
•60
50
45 | 25
1.5a
0.8a
100 | 0.02
5ma
5ma
0.01
9.2 | 22
-
12
- | 7
-
-
25
- | 8
-
1
- | NA, T! audio/med.power | | A 4 | 2N756A
2N2674
CK64B
CK64C
2N935 | NA
GE
RA
RA
SSD | npn,DM,si
npn,GD,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si | 12-20
•12-40
13.5
13.5 | 500
250
75
75
385 | 200
185
85
85
160 | 2.5
1.66
1.25
1.25
2.85 | 60
•60
45
45
40 | 25
100
100
50 | 0.1
0.004
10
10
0.005 | 11
-
-
18 | -
4
-
-
70 | -
11
-
-
2 | Sub min
Sub min
NA | | A 6 | 2N284
2N284A
2N339A
2N340A
2N341A | AMP
AMP
TR
TR
TR | pnp,AJ,ge
pnp,AJ,ge
npn,DJ,si
npn,DJ,si
npn,DJ,si | 15
15
15
15
15 | 125
125
1000
1000
1000 | 75
75
200
200
200 | 2.5
2.5
8
8
8 | *32
*60
55
85
*125 | 125
125
1
0.1
0.1 | 4.5
4.5
1
1 | 11111 | | 11111 | | | A 5 | 2N927
2N938
2N1247
2N1249
2N1440 | NA
SSD
NA
TR
NA | pnp,AJ,si
pnp,AJ,si
npn,DM,si
N-GJ
pnp,AJ,si | 15
15
15
15
15 | 150
250
30
30
400 | 200
175
150
-
200 | 2.5
1.7
0.2
-
2.28 | 70
35
6
6
50 | -
100
5
5
100 | .005
.001
1.5
0.002
0.01 | -
-
-
12 | 12
7
12
8
25 | .8
1
-
5
1 | NA
TR
audio/med. power | | | 2N1623
2N1655
BCZ12
TR34
2N2391 | RA
RA
AMP
IND
TI | pnp,AJ,si
pnp,AJ,si
si
pnp,AJ,ge
P,si | 15
15
15
15
*15-*45 | 250
250
250
250
120
1000 | 160
160
150
85 | 0.54
0.54
2
3
- | 20
•125
•60
40
20 | 50
50
50
150
30 | .005
.005
0.01
10 | 18
18
8
15
- | 70
70
50
15 | .1
.2
1
1.6 | AMP | | A 6 | TS601
TS603
2N925
2N529
2N756A | TS
TS
NA
GI
TR | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si
•
N-M | *15-*60
*15-*60
16
17
17 | 200
200
150
100
500 | 100
100
200
85 | 2.5
2
0.30 | *12
*20
50
*15
60 | 400
400
-
-
100 | 20
20
.005
3
0.1 | -
-
14
- | -
12
14
5 | -
.8
-
100 | matched pnp,npn | | | 2N1277
2N1584
2N1586
2N1587
2N1588 | TR
TR
TR
TR
TR | N-GJ
N-GJ
npn,GJ,si
N-GJ
npn,GJ,si | *18
18
*18
18
*18 | 150
150
150
150
150
150 | -
150
-
150 | 1.00
1.00
1.33
1.00
1.33 | *40
60
15
30
60 | 25
25
50
25
50 | -
0.5
-
0.5 | -
20
-
20 | 5
5
•2
5
•2 | 15
5
15
5
15 | | | A 7 | 2N334A
2N757
2N757A
2N118
2N333 | NA
NA
NA
TI
TI | npn,MS,si
npn,MS,si
npn,MS,si
npn,GR,si
npn,GR,si | 18-36
18-36
18-36
18-40
18-40 | 500
500
500
150
150 | 175
200
200
175
175 | 2.8
2.5
2.5
1 | 45
45
60
•30
45 | -
-
25
25 | 0.5
0.2
0.1
2 | 15
-
-
20
20 | 11111 | -
-
5
8 | TR
GE,TR,NA,RA,AMP | | | | | | | MAX. RATINGS | | | | | CHA | RACT | ERISTI | CS | | |-----------------------|---|-------------------------------|---|---|---|-----------------------------------|----------------------------------|---------------------------------|---------------------------------|-------------------------------------|----------------------------|---|-----------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe} *hFE **G _m | P _c (mw) | T _i | mw/°C | VCEO | 1 C (ma) | 「CO
(m) | NF
(db) | C _{oe}
*C _{ob}
(pf) | fae
*fT
**fab
(mc) | Remarks | | | 2N1150
2N334
2N758
2N758A
2N1151 | NA
TI
NA
NA
NA | npn,DM,si
npn,GR,si
npn,MS,si
npn,DM,si
npn,DM,si | 18-40
18-90
18-90
18-90
18-90 | 150
150
500
500
150 | 175
175
200
200
175 | 0.86
1
2.5
2.5
0.86 | 45
45
45
60
*45 | 25
25
-
-
25 | 2
2
0.2
0.1
2 | 20
-
-
- | 7
-
-
-
7 | 1
10
-
-
8 | TI
GE,TR,NA,RA,AMP
TR,TI | | A 8 | 2N129
2N923
2N1051
2N1248
2N1670 | SPR
NA
WE
TR
GI | pnp,AJ,ge
pnp,AJ,si
npn,DD,si
N-GJ
pnp,DR,ge | 20
20
20
20
20
20 | 30
150
600
30
120 | 85
200
150
-
85 | 2.5
0.25
-
2 | *3
40
60
6
*100 | 5 - 5 - | -
.005
0.1
0.002
3 | 11111 | -
12
8
8
3 | 30
.8
70
5 | US,MIL only
NA
Hi-volt switch | | | 2N2551
BCZ10
ST1506
ST1543
TNT839 | HU
AMP
TR
TR
TR | pnp,A,si
si
N·M
N·M
npn,MESA,s | *20
20
*20
20
20
20 | 400
250
300
30
100amb | 160
150
-
-
175 | 3.0
2
0.50
-
0.66 | . 150
*25
30
6
45 | 200
50
-
5
5 | 0.1
0.001
-
0.002
0.1µa | 6
8
 | 90
50
-
8
*8 | 1.0
1
-
5
50 | | | A 9 | 2N475A
2N2042
2N2042A
2N761
TMT2427 | TR
MO
MO
NA
TR | npn,DG,si
pnp,AJ,ge
pnp,AJ,ge
npn,DM,si
npn,PL,si | 20-50
20-50
20-50
20-55
•20-60 | 200
200
200
200
500
150amb | 200
100
100
200
175 | 2.67
2.67
2.5
1.0 | 45
*105
*105
45
40 | 25
200
200
-
50 | 0.02
25
25
.2
0.010µa | 20
-
-
-
4 | 7
25
25
-
*6 | 10
0.5
0.5
-
50 | TI
TI
"Meg·A-Life", TI | | | 2N406
2N530
TR722
CK22A
CK64A | SY
GI
IND
RA
RA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 20-80
22
22
22.5
22.5
22.5 | 150
100
150
80
80 | 75
85
2.5
85
85 | 3
2
3
-
- | *20
*15
45
20
.29 | 35
-
200
100
100 | 14
3
10
2
2 | -
14
15
6-5
22 | 3
20
- | 250
-
2.5
1.2
0.8 | •matched pnp,npn
micromin
micromin | | A 10 | 2N2675
2N186A
2N189
2N1150
2N1476 | GE
GE
GE
TR
SSD | npn,GD,si
pnp,AJ,ge
pnp,AJ,ge
npn,GJ,si
pnp,AJ,si | *22-76
24
24
*24
*24
24 | 250
200
75
150
250 | 185
85
85
150
175 | 1.66
4
2
1.33
1.7 | *60
25
25
45
100 | 25
200
50
50
100 | 0.004
16
16
0.5
.05 | 11
-
15
20
- | *4
40
40
•2
7 | 13
0.8
0.8
15
1 | | | | 2N381
2N44
2N229
2N330A
2N460 | SY
GE
SY
SSD
TS | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,si
pnp,AJ,ge | 24-45
25
25
25
25
25 | 200
240
180
385
200 | 85
100
85
2.85
100 | 3.3
4
3
0.3 | *25
45
10
30
*45 | 200
300
-
50
400 | 20
16
100
.005 | 6 8 | 40 | 10
1
600
0.5 | TI
MIL, GI
NA
71 | | A 11 | 2N564
2N592
2N726
2N1265
2N1441 | IND
GI
TI
SY
NA | pnp, AJ, ge
pnp, AJ, ge
pnp, DM, si
pnp, AJ, ge
pnp, AJ, si | 25
25
25
25
25
25 | 150
150
1w
50
400 | 85
100
175
85
200 | 2.5
0.2
-
0.9
2.28 | 30
*20
25
*10
50 | 300
-
50
100
100 | 3
5
.007
100
0.01 | 12
116
-
-
12 | 20
35
-
-
25 | 0.8
0.4
-
600
1 | US,GI
Bilateral, TI
audio/med power | | A 12 | 2N524A
2N1101
2N1102
2N34
2N35 | MO
SY
SY
SY
SY | pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 25-42
25-50
25-50
25-125
25-125 | 225
180
180
150
180 | 100
75
75
75
75
85 | 3
3.6
3.6
3 | *45
*20
*40
*40
*40 | 500
100
100
100
100 | 10
50
50
50
50 | 15
-
-
- | 40 | 5
0.01
0.01
0.01
0.01 | "Meg-A-Life"
RCA
Driver, TI
Driver, TI | | N.12 | 2N306
2N464
2N1474
2N531
CK65B | SY
MO
SSD
GI
RA | npn,AJ,ge
pnp,AJ,si
pnp,AJ,si | 25-125
26
26
27
27 | 180
200
250
100
75 | 85
100
175
85
85 | 3
2.5
1.7
2
1.25 | *20
*45
60
*15
45 | 100
100
100
-
100 | 100
6
.005
3
10 | -
-
14
- | -
7
14 | 0.6
0.7
1 | IND, RA, US, GI, TI
NA
*matched pnp, npn
Sub min | | A 13 | CK65C
2N936
2N244
2N757A
2N279 | RA
SSD
TI
TR
AMP | pnp,AJ,ge
pnp,AJ,si
npn,GJ,si
N-M
pnp,AJ,ge | 27
28
28-90
29
30 | 75
385
750
500
125 | 85
160
160
-
75 | 1.25
2.85
6
0.30
2.5 | 45
35
60
60
•30 | 100
50
60
100 | 10
.005
1
0.1
110 | -
18
-
-
10 | 70
-
5
- | -
.3
8
100
0.15 | Sub min
NA
NA | | A 13 | 2N524
2N594
2N939
2N1446
2N1474A | SY
GI
SSD
IND
SSD | pnp,AJ,ge
npn,AJ,ge
pnp,AJ,si
pnp,AJ,ge
pnp,AJ,si | 30
30
30
30
30 | 225
150
250
200
250 | 100
85
175
85
175 | 3
1.67
1.7
3.33
1.7 | *45
*20
35
45
60 | 500
-
100
400
100 | 10
2
.001
5
.005 | 16
-
6
- | -
15
7
20
7 | 2
2
2
2
2
2 | GE, MO,
TI
Bilateral, TI | | A 14 | 2N1654
2N1656
2N2428
2N331
2N727 | RA
RA
AMP
MO
TI | pnp,AJ,si
pnp,AJ,si
pnp,ge
pnp,AJ,ge
pnp,PE,si | 30
30
30
30-70
*30-*90 | 250
250
165
75
1000 | 160
160
75
85 | 0.54
0.54
0.3
1.2 | *80
*125
*32
*30
20 | 50
50
100
-
50 | .005
5
-
1 | 18
18
4
20 | 70
70
-
50 | .2
.2
1.7
.4 | | | | 2N1372
2N1373
2N2392
2N2711
ST1242 | SY
SY
TI
GE
TR | pnp, AJ, ge
pnp, AJ, ge
P, si
npn, P, si
N-GJ | 30-90
30-90
*30-*90
*30-*90
30 | 150
150
1000
200
200 | 100
100
-
100
- | 2
2
2.67
0.80 | *25
*45
20
*18
*40 | 200
200
30
100
50 | 100
100
-
0.05µ2a
75 | -
-
2.8
- | -
-
-
9
4 | -
-
-
10 | KF, TI
KF, TI | May 24, 1963 T5 # Now 1~ to 14gc low-noise Low-noise devices for your #### SUBAUDIO CIRCUITS Texas Instruments 2N2497-2500 series field-effect transistors give the design engineer extremely low-noise characteristics — as low as 5 db at 10 cycles. They are ideal for such low-frequency equipment as null-detection apparatus, medical research equipment, oscillographic and magnetic tape recorders, oscilloscopes and all types of low-level transducers. ■ The circuit below illustrates how Texas Instruments 2N2500 silicon field-effect transistors are used to achieve low-noise, low-frequency operation. This circuit gives you a maximum voltage gain of 60 db ± 0.5 db from -55° C to 125° C with built-in gain adjustment. You also get good low-frequency response and stable circuit operation. Write for your technical information file on low-noise Tl devices for your subaudio applications. TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement. #### Low-noise devices for your #### **AUDIO CIRCUITS** Now you can design the low-level, high-gain amplifier shown below with typical noise figure as low as 1 db. Advanced low-level planar technology of Texas Instruments 2N929 and 2N2586 transistors makes possible high gain at low current levels, plus the extremely low leakage currents necessary for true low-noise performance. For high-impedance transducer applications, TI 2N930 and 2N2586 devices permit typical 1 db noise figure at emitter currents below 1 microampere, and generator resistances over 1 megohm. These special characteristics allow direct coupling of low-level, high-impedance sources... advantages previously available only with vacuum tubes and field-effect transistors. High gain at low levels plus very thin regions in these units combine to offer low power consumption and high radiation resistance to make the 2N930 and 2N2586 ideal for space applications. A technical information file on almost 50 TI low-noise devices for audio circuits is yours upon request. SEMICONDUCTOR-COMPONENTS DIVISION # solid-state amplification Low-noise devices for your #### LF-UHF CIRCUITS For your low-noise, high-frequency receiver and preamplifier applications, $71\ 2N2415$ germanium mesa transistors give you a typical noise figure of 2.4 db at 200 mc, maximum available gain of 15.5 db at 500 mc with a f_{MAX} of 3 gc. In the following circuit, HRB-Singer, Inc. utilizes 2N2415 transistors and "multiple feedback" techniques to achieve a uniform low noise figure, nominally 6 db, over the entire frequency range of 300 to 1000 mc with an average gain of 35 db. Unique design provides stable operation over a temperature range of -30° to $+70^{\circ}$ C and eliminates the need for RF tuning capacitors. Another line of TI low-noise communications devices is the Dalmesa 2N2188 and TI363 series of germanium alloy diffused mesa transistors. These advanced units offer you ultra-high performance from dc to 100 mc, typical mid-frequency noise figures of less than 2 db, and increased high-frequency stability through guaranteed maximum output capacitance of 2.8 pf at 9 volts. ■ Investigate TI's wide selection of low-noise transistors for LF-UHF circuits by writing for a free fact file on these devices. #### TEXAS INSTRUMENTS I N C O R P O R A T E D 13500 N. CENTRAL EXPRESSWAY P. O. BOX 5012 • DALLAS 22, TEXAS Low-noise devices for your #### **MICROWAVE CIRCUITS** Now you can design microwave circuits for highest frequencies at lowest noise with the new GaAs Pill Varactor Diode from Texas Instruments. These new subminiature devices offer you minimum cutoff frequency of 90 gc to 150 gc at -2 volts with low junction capacitance - CJ @ 0 bias from 0.15 to 0.75 pf. Your production-line requirements for identical plug-in units are met through tight control of junction and package characteristics. These features offer you the lowest package capacitance and inductance in industry today — backed up with Tl varactor manufacturing capacity to meet your tightest production schedules. Tl GaAs Pill Varactor Diodes are particularly applicable to low-noise parametric amplifiers, harmonic generators, microwave switches, sub-harmonic oscillators, phase shifters and parametric limiters. #### FOR FULL INFORMATION write for a fact-filled file of technical data on low-noise TI devices designed for application in your frequency range. Please address your card or letter to Department 605 and specify which of these four information files you desire. 1. SUBAUDIO 2. AUDIO 3. LF-UHF 4. MICROWAVE Ask your authorized TI distributor about "Transistor Circuit Design," an informative new hardbound book for circuit designers authored by 32 TI engineers and published by McGraw-Hill. 19605 | 1 | | | | Yan | | MAX. RATINGS | | | CHARACTERISTICS | | | | CS | | | |---|-----------------------|--|--------------------------------|---|---|-------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---|-------------------------|---|-------------------------------|---| | | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe} *hFE **G _m | P _c
(mw) | т _і
(°с) | mw/°C | V
CEO
*V
CBO
(v) | 1 C
(ma) | l co
(µa) | NF
(db) | C _{oe}
*C _{ob}
(pf) | fae
*fT
**fab
(mc) | Remarks | | | | ST1243
2N2715
2N1432
2N1380
2N1381 | TR
GE
SY
SY | N-GJ
npn,P,si
pnp,DD,ge
pnp,AJ,ge
pnp,AJ,ge | *30
*30-90
30-120
30-300
30-300 | 200
200
80
150
150 | 100
85
100
100 | 0.80
2.67
1.3
2 | *40
*18
*35
*15
*25 | 50
25
10
200
200 | 75
0.05µa
15
14
100 | 2.8
-
-
- | 4
*5
-
- | 10
-
250
-
- | T)
Ti | | | A 15 | 2N532
/N319
2N44A
2N525A
2N405 | GE
GE
MO
RCA | pnp,AJ,ge
pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge | 32
34
34-65
34-65
35 | 100
225
240
225
150 | 85
85
100
71 | 2
4
3 | *15
20
*45
*20 | -
200
500
35 | 3
16
10
14 | 14
-
15
- | 14
25
40
•35 | 5.5 | * matched pnp, npn
MO, TI
"Meg-A-Life" | | | | 2N406
2N734
2N738
2N926
2N928 | RCA
TR
TR
NA
NA | pnp,AJ,ge
npn,MS,si
npn,DM,si
pnp,AJ,si
pnp,AJ,si | 35
35
35
35
35
35 | 150
1.0
1w
150
150 | 71
175
175
200
200 | -
-
2.5
2.5 | *20
*80
*125
50
70 | 35
50
35
- | 14
1
1
.005 | -
20
-
- | *35
5
-
12
12 | -
50
-
0.8
0.8 | TO-18, NA
NA | | | A 16 | 2N1010
2N1564
2N1572
2N2617
BCZ11 | RCA
TI
TR
AMP
AMP | npn,AJ,ge
npn,MS,si
npn,DM,si
pnp,si
si | 35
35
35
35
35
35 | 20
1.2
1.2w
250
250 | 175
175
150
150 | -
-
2
2 | *10
*80
*125
*-25
*25 | 2
50
50
50
50 | 10
1
1
0.001
0.001 | 5
20
-
-
6 | 5
-
-
50 | *2
50
-
3.0
3 | TO-5 TR, NA | | | 4.17 | OC57
2N383
2N190
2N187A
2N119 | AMP
SY
GE
GE
TI | pnp,PADT,g
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,GR,si | e 35
35-110
36
36
36-90 | 10
200
75
200
150 | 55
85
85
85
175 | 3.3
2
4
1 | •7
•30
25
25
*30 | 10
200
50
200
25 | 1.5
20
16
16
2 | -
15
-
20 | -
40
40
- | 1.4
10
1
1
6 | TS.KF, TI
TR, USN | | | A 17 | 2N335
2N335A
2N759
2N759A
2N1152 | TI
NA
NA
NA
NA | npn,GR,si
npn,MS,si
npn,DM,si
npn,DM,si
npn,DM,si | 36-90
36-90
36-90
36-90
36-90 | 150
500
500
500
150 | 175
175
200
200
175 | 1
2.8
2.5
2.5
0.86 | 45
45
45
60
45 | 25
-
-
-
25 | 2
0.5
0.2
0.1
2 | 20
-
-
-
- | -
-
-
7 | 11
-
-
-
1 | TR, GE, NA, RA, AMP
GE, TI
TR, TI | | | | 2N533
2N1278
2N742
2N1009
2N1176 | GI
TR
NA
SY
BE | N·GJ
npn,MS,si
pnp,AJ,ge
pnp,AJ,ge | 37
* 37
40
40
40 | 100
150
-
150
300 | 85
-
200
85
85 | 1.00
1.71
2.5
6.6 | *15
*40
60
*25
15 | -
25
100
20
300 | 3
-
0.1
1
10 | 14 | 14
5
5
- | -
15
200
-
- | • matched pnp, npn, Tl
Switch | | | A 18 | 2N1176A
2N1176B
2N1191
2N1566
2N1678 | BE
BE
MO
TI
GI | pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge
npn,DM,si
pnp,DR,ge | 40
40
40
40
40 |
300
300
200
1200
120 | 85
85
100
175
85 | 6.6
6.6
2.7
8.0
2 | 40
60
•40
60
•60 | 300
300
200
50 | 10
15
2
1µ2
3 | -
10
5
- | -
-
*5
3 | -
1.5
150
- | TI
Trixie Driver | | | A 19 | BCY11
BCY12
CK4A
TR-650
TR-653 | AMP
AMP
RA
IND
IND | si
si
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 40
40
40
40
40 | 312
312
80
150 | 150
150
85
85
85 | 2.5
2.5
-
2.5
2.5
2.5 | *60
*32
24
45
30 | 500
500
100
400
400 | 0.02
0.02
2
1.0
1.0 | 7
7
-
10
10 | 90
90
14
20
20 | 1.5
2
6
2
2 | micromin RF switch
2N650 | | | V 13 | 2N382
TNT840
2N480A
2N929
2N2387 | SY
TR
TR
TI
TI | pnp,AJ,ge
npn,MESA,s
npn,DG,si
npn,PL,si
n pn,PL,si | | 200
100amb
200
600
1200 | 85
175
200
175
175 | 3.3
0.66
-
4.0
8.0 | *25
45
45
45
45 | 200
50
25
30
30 | 20
0.1µa
0.02
0.01µa
0.01µa | -
20
2
2 | -
*8
7
*6
6 | 10
50
11
60
60 | KF, TI
TI | | | A 20 | ST1244
2N43
OC79
2N104
2N215 | TR
GE
AMP
RCA
RCA | npn,GJ,si
pnp,AJ,ge
pnp,PADT,
pnp,AJ,ge
pnp,AJ,ge | *40-125
42
ge 42
44
44 | 200
240
550
150 | 150
100
75
- | 1.33
4
-
-
- | 20
45
• 26
30
30 | 50
300
300
*10
*10 | 0.8
16
10
-
10 | 20
6
-
12
- | *2
40
-
*.7
12 | 20
1.3
1.2
50
*.7 | ті | | | | 2N525
2N1924
2N322
2N465
2N595 | GE
GE
GE
IND
GI | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
npn, AJ, ge | 44
44
45
45
45 | 225
225
140
150
150 | 100
85
85
85
85 | 4
-
4
2.5
1.67 | *45
40
18
*45
*20 | 500
500
100
200 | 10
4
16
6
2 | 6
-
-
15
16 | 25
-
25
20
15 | 2.5
-
2.0
0.8
4 | MO, SY, TI
MO, TI
Driver, MO, TI
MO, RA, US, GI, SY, TI
Bilateral, TI | | | A 21 | 2N924
2N1098
2N1145
2N1372
2N1373 | NA
GE
GE
TI | pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 45
45
45
45
45 | 150
140
140
250
250 | 200
85
85
100
100 | 2.5
4
4
3.3
3.3 | 40
16
16
25
45 | 100
100
200
200 | .005
16
16
3
3 | -
-
7
7 | 12
25
40
- | 0.8
-
-
1.5
1.5 | Driver, TI
Driver
KF
KF | | | A 21 | 2N1442
2N1447
2N1451
2N1477
CK65A | NA
IND
IND
SSD
RA | pnp,AJ,si,
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si
pnp,AJ,ge | 45
45
45
45
45 | 400
200
200
250
80 | 200
85
85
175
85 | 2.28
3.3
3.3
1.7 | 50
45
45
100
24 | 100
400
400
100
100 | 0.01
5
7.5
2
2 | 12
6
9
-
22 | 25
20
20
7
- | 1
3
1.5
1
1.0 | audio/med. power
micromin | | | | Min | | | | MAX. | RATINGS | | | СН | ARACT | ERISTI | CS | | |-----------------------|--|-------------------------------|---|--|--|---------------------------------|---|----------------------------------|---------------------------------|---|---------------------------|------------------------------|---------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE
**G _m | P _c (mw) | T _i | mw/°C | V
CEO
*V
CBO
(v) | 1 C (ma) | l
CO
(µa) | NF
(db) | Coe
*Cob
(pf) | fae
*fT
**fab
(mc) | Remarks | | | TR721
2N762
2N2676
2N280
OC71N | IND
NA
GE
AMP
AMP | pnp,AJ,ge
npn,DM,si
npn,GD,si
pnp,AJ,ge
pnp,ge | 45
45-150
*45-290
47
47 | 150
500
250
125
110 | 2.5
200
185
75
75 | 3
2.5
1.66
2.5
0.45 | 30
45
*60
*20
*-30 | 200
-
25
10
10 | 10
0.2
0.004
150 | 15
-
11
10
10 | 20
-
*4
- | 3
-
15
0.1 | | | A 22 | TR320
2N650
2N650A
2N653
2N1186 | MO
MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 48
49
49
49
49 | 150
200
200
200
200
200 | 85
100
100
100
100 | 3
2.7
2.8
2.8
2.7 | 25
*45
*45
*30
*60 | 100
500
500
250
500 | 10
3
10
5
5 | 5
15
10
5 | 25
-
25
20
- | 2.5
1.5
1.5
1.5
1.5 | 2N320
US, TI
Mega life, TI
SY, US | | | 2N43A*
2N320
2N331
2N363
2N422 | GI
GE
BE
IND
RA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,FA,ge | 50
50
50
50
50 | 150
225
200
150
150 | 100
85
85
85
85 | 2
4
-
2.5
- | *45
20
*30
30 | 200
200
200
200
100 | 10
16
16
10
6 | 18
-
9
-
6.5 | 40
25
-
- | 3.5
2.5
1.16
- | *MIL, GE, TI
MO, TI
IND, MO, GI
RA, US | | A 23 | 2N917
2N918
2N941
2N942
2N1173 | FA
FA
SSD
SSD
WE | npn,DP,si
npn,DP,si
pnp,AJ,si
pnp,AJ,si
npn,A,ge | *50
*50
50
50
50 | 300
300
250
250 | 200
200
175
175
100 | 1.71
1.71
1.7
1.7
1.7
3.3 | 15
15
8
8
*20 | 50
50
200 | 0.0004
0.0004
.001
.001
150 | -
-
-
3.0 | *1.0
*1.0
7
7
25 | *800
*900
16
10 | MO
TO-18 | | A 24 | 2N1174
2N1273
2N1274
2N1383
2N1589 | WE
TI
TI
TI
TR | pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
N-G-5 | 50
50
50
50
50 | 150
150
200
150 | 100
85
85
85
- | 3.3
2.5
2.5
3.3
1.00 | *20
*15
*25
*25
*15 | 200
150
150
200
25 | 100
3
3
14 | 3.0
6.5
6.5
7.0 | 25
-
-
-
-
5 | -
-
1.5
5 | | | A 24 | 2N1590
2N1591
2N1917
2N1918
2N2271 | TR
TR
SSD
SSD
SY | N-G-5
N-G-5
pnp,AJ,si
pnp,AJ,si
pnp,AJ,ge | 50
50
50
50
50 | 150
150
250
250
250
250 | -
175
175
100°C | 1.00
1.00
1.7
1.7
3.3 | *30
*60
8
8
*20 | 25
25
50
50
500 | -
.001
.001
10 | 11111 | 5
5
7
7
- | 5
5
16
10
0.01 | KF
KF | | 4.05 | 2N2354
BCY10
TR-320
2N214
2N228 | SY
AMP
IND
SY
SY | npn,AJ,ge
si
pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge | 50
50
50
50-100
50-100 | 180
312
150
180
180 | 85
150
85
85
85 | 3.0
2.5
2.5
3 | *20
*32
30
*40
*40 | 150
500
200
100
100 | 10
0.02
7.5
50
100 | 7 | 100
20
- | 1.5
2.5
0.01
0.01 | 2N320
Matched | | A 25 | 2N241A
2N270
2N321
2N1059
2N408 | Y2
Y2
Y2
Y2
Y2 | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge | 50-100
50-100
50-100
50-100
50-135 | 200
150
200
180
150 | 85
85
85
75
85 | 3.3
2.5
3.3
3.6
2.5 | *30
*25
*25
*20
*20 | 200
75
200
100
70 | 16
12
16
50
14 | 101.00.00 | 11111 | 10
0,01
10
0,01 | ТІ | | | 2N109
2N217
2N323
2N1374
2N1375 | Y2
Y2
Y2
Y2
Y2 | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 50-150
50-150
50-150
50-150
50-150 | 50
-
140
150
150 | 85
85
85
100
100 | 0.9
-
2.3
2 | *25
*25
*16
*25
*45 | 75
75
100
200
200 | 12
12
16
100
100 | 111111 | 11111 | -
10
800
-
- | TI, KF
TI,KF | | A 26 | 2N526A
2N188A
2N191
2N758A
CK22B | MO
GE
GE
TR
RA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
N-M
pnp,AJ,ge | 53-90
54
54
54
54 | 225
200
75
500
75 | 100
85
85
-
65 | 3
4
2
0.30
1.25 | *45
25
25
60
35 | 500
200
50
100
100 | 10
16
16
0.1
10 | 15
-
15
-
6.5 | 40
40
40
5 | 6.5
1.2
1.2
100 | "Meg-A-Life"
Driver
Submin. | | A 07 | CK66B
CK66C
CK261
CK262
2N566 | RA
RA
RA
RA
IND | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge | 54
54
54
54
55 | 75
75
75
75
75
150 | 85
85
85
85
85 | 1,25
1,25
1,25
1,25
1,25
2,5 | 35
35
35
35
35
30 | 100
100
100
100
300 | 10
10
10
- | -
-
-
12 | -
-
-
20 | 11111 | Submin.
Submin.
Submin.
Submin.
US, GI | | A 27 | 2N10S7
2N1144
CK27A
OC58
2N596 | GE
GE
RA
AMP
GI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,PADT,g
npn,AJ,ge | 55
55
55
55
se 55
60 | 140
140
80
10
150 | 85
85
85
55
85 | 4
4
-
-
1.67 | 16
16
15
•7
20 | 100
100
400
10 | 16
16
2
1.5
2 | -
-
-
16 | 25
40
14
-
15 | -
11
1.6
6 | Driver, TI
Driver
micromin RF switch
Bilateral , TI | | A 28 | 2N633
2N937
2N940
2N957
2N1475 | SSD
FA
SSD | pnp,AJ,ge
pnp,AJ,si
pnp,AJ,si
npn,DD,si
pnp,AJ,si | 60
60
60
*60 | 150
385
250
800
250 | 85
160
175
150
175 | 2.5
2.85
1.7
6.5
1.7 | 35
30
35
20
60 | 200
50
100
- | 10
.005
.001
1.0
.005 | -
18
-
-
- | 70
7
*4.0 | 0.8
0.5
2
*400 | RA,
US
NA | | A 20 | OC60
TS602
TS604
AC107
2N220 | AMP
TS
TS
AMP
RCA | pnp,PADT,g
pnp,AJ,ge
pnp,AJ,ge
pnp,gc
pnp,AJ,ge | *60
*60
*60
60
65 | 10
200
200
80
20 | 55
100
100
75 | -
-
-
0.6
- | *7
*12
*20
*-15
*10 | 10
400
400
5
2 | 1.5
20
20
2.0
12 | -
-
3
6 | 11111 | 1.6
-
-
2
*0.85 | | May 24, 1963 | | | | 200 | | MAX. RATINGS | | | | CHA | RACT | ERISTIC | ZS 2 | | | |-----------------------|--|--------------------------------|---|---|---------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|-------------------------------|----------------------------|--------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE
**G _m | P _c (mw) | T _i | mw/°C | VCEO
-VCBO
(v) | 1 C (ma) | ι co
(μα) | NF
(db) | Coe
*Cob
(pf) | fae
*fT
**fab
(mc) | Remarks | | 4.20 | 2N175
2N398A
2N407
2N408
2N649 | RCA
MO
RCA
RCA
RCA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 65
65
65
65
65 | 20
150
150
150
100 | -
100
71
71
- | -
2
-
-
- | *10
105
*20
*20
*20 | 2
200
70
70
50 | 12
12
14
14
14 | 6 | | *0.85
1
-
- | GI, TI
SY | | A 29 | 2N759A
2N1448
2N1452
OC74
2N2043 | TR
IND
IND
AMP
MO | N·M
pnp,AJ,ge
pnp,AJ,ge
pnp,PADT,
pnp,AJ,ge | 65
65
65
65
65-100 | 500
200
200
550
200 | 85
85
75
100 | 0.30
3.33
3.33
-
2.67 | 60
45
45
20
105 | 1 00
400
400
300
2 00 | 0.1
5
7.5
10
25 | 6 9 - | 5
20
20
-
25 | 100
4
2.2
1.5
0.75 | ті | | | 2N2043A
2N323
2N281
2N282
2N361 | MO
GE
AMP
AMP
IND | pnp.AJ.ge
pnp.AJ.ge
pnp.PADT.
pnp.ge
pnp.AJ.ge | 65-100
68
10 70
70
70 | 200
140
165
167
150 | 100
85
75
75
85 | 2.67
4
-
2.5 | 105
18
*32
*-32
45 | 200
100
250
250
200 | 25
16
4.5
4.5
10 | 11111 | 25
25
-
- | 0.75
2.5
0.9
0.9 | "Meg-A-Life", TI
Driver, MO
RA, US | | A 30 | 2N591
2N647
2N735
2N739
2N1352 | RCA
RCA
TI
TI
IND | pnp,AJ,ge
npn,AJ,ge
npn,MS,si
npn,DM,si
npn,AJ,ge | 70
70
70
70
70 | 100
100
1.0
1w
150 | -
175
175
85 | -
-
-
-
2.5 | *32
*25
80
*125
30 | 40
50
50
70
200 | 7
14
1
1
2.5 | -
20
-
- | -
5
-
18 | 0.7
-
50
-
2.5 | SY
TO-18, TR, NA
NA
KF | | | 2N1565
2N1573
2N213
2N1251
TR-383 | TI
TI
SY
SY
IND | npn,MS,si
npn,DM,si
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge | 70
70
70-250
70-250
72 | 1.2
1.2w
150
150
200 | 175
175
85
85
85 | 2.3
2.5
3.33 | *80
*125
*40
*20
25 | 50
50
100
100
200 | 1
1
50
50
7.5 | 20
-
-
-
- | 5
-
-
20 | 50
-
0.01
7.5
1.8 | NA
2N383 | | A 31 | 2N527A
2N241
2N109
2N192
2N217 | MO
GE
RCA
GE
RCA | ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq | 72-121
73
75
75
75
75 | 225
100
150
75
150 | 100
85
-
85
- | 3
3
-
2
- | *45
25
25
25
25
25 | 500
200
70
50
70 | 10
16
14
16
14 | 15
-
-
15
- | 40
40
-
40
- | 7.0
1.3
-
1.5 | "Meg-A-Life"
SO | | | 2N361
2N1192
2N1443
2N1672
C620 | US
MO
NA
GI
CT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si
pnp,AJ,ge
pnp,AJ,si | *75
75
75
75
75
**75 | 150
200
400
120
250 | 85
100
200
85
160 | 2.7
2.28
0.5
2 | 30
*40
50
*40
10 | 200
200
100
-
50 | 10
2
0.01
5 | 13
10
12
-
3.5 | -
25
-
15 | 1.5
2
1
- | TI
audio/med. power
Trixie driver
Ig FE | | A 32 | C622
C624
GT-74
GT-81
TR-323 | CT
CT
GI
GI
IND | iz, LA, qnq
iz, LA, qnq
eg, LA, qnq
eg, LA, qnq
eg, LA, qnq | **75
**75
75
75
75 | 250
250
150
150
150 | 160
160
100
100
85 | 2
2
2
2
2
2.5 | 10
10
25
25
25
16 | 50
50
-
200 | -
5
5
7.5 | 1.5
0.4
6
16 | 15
15
35
35
20 | -
-
-
-
2.5 | tg FE
1g FE
2N323 | | | 2N1376
2N1431
2N2712
2N2716
2N1950 | SY
SY
GE
GE
IND | pnp,AJ,ge
npn,AJ,ge
npn,P,si
npn,P,si
npn,DM,si | 75-150
75-150
*75-225
75-225
75-250 | 150
180
200
200
600 | 100
75
100
100
175 | 2
3.6
2.67
2.67
4 | *25
*25
*18
*18
20 | 200
100
100
25 | 100
50
0.05µa
0.05µa
0.01 | | -
*9
5 | 10 | ТІ | | A 33 | 2N1951
2N1952
2N1279
2N120
2N336 | IND
IND
TR
TI
TI | npn,DM,si
npn,DM,si
N-GJ
npn,GR,si
npn,GR,si | 75-250
75-250
*76
76-333
76-333 | 600
600
150
150
150 | 175
175
-
175
175 | 4
4
1.00
1 | 30
40
*40
*30
45 | -
25
25
25
25 | 0.01
0.01
-
2
2 | -
-
20
20 | -
5
- | -
15
7
13 | TR
TR, GE, NA, RA, AMP | | | 2N336A
2N760
2N760A
2N1153
2N321 | NA
NA
NA
GE | npn,MS,si
npn,DM,si
npn,DM,si
npn,DM,si
npn,AJ,ge | 76-333
76-333
76-333
76-333
80 | 500
500
500
150
225 | 175
200
200
175
85 | 2.8
2.5
2.5
0.86
4 | 45
45
60
45
20 | -
-
25
200 | 0.5
0.2
0.1
2
16 | 1111 | -
-
7
25 | -
-
1
3 | TI
TI
TI, TR
TR, TI
MO | | A 34 | 2N527
2N651
2N651A
2N654
2N780 | SY
MO
MO
MO
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,DM,si | 80
80
80
80
80 | 225
200
200
200
200
1w | 85
100
100
100
175 | 3.7
2.8
2.8
2.8 | *45
*45
*45
*30
45 | 500
500
500
250
50 | 10
3
10
5 | 5
15
10 | 111111 | 3.3
2
2.0
2.0 | TS, TI
US, SY, TI
TI
US, TI/ | | A 25 | 2N1187
2N1370
2N1371
2N1374
2N1375 | MO
TI
TI
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 80
80
80
80
80 | 200
150
150
250
250 | 100
85
85
100
100 | 2.7
2.5
2.5
3.3
3.3 | *60
25
25
25
25
45 | 500
150
150
200
200 | 5
3
3
3
3 | 5
6.5
6.5
6.5
6.5 | 31111 | 2
2.0
2.0
2
2 | GI, KF
KF
KF
KF | | A 35 | 2N1382
2N1449
2N1926
CK28A
OC59 | TI
IND
GE
RA
AMP | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,PADT, | 80
80
80
80
80 | 200
200
225
80
10 | 85
85
85
85
55 | 3.33
-
-
- | 25
45
40
12
*7 | 200
400
500
400
10 | 14
5
4
80
1.5 | 6.5
6
-
-
- | 20
-
14 | 2
5
-
17
2.2 | MO
micromin RF switch | ## SHOCKLEY SEMICONDUCTOR DEVICES #### TYPE E 4-LAYER DIODES #### 1-N SERIES | | Switching Voltage (V_s) in volts | | | urrent (I _b)
liamps | | | y Voltage (V _s)
volts | Holding Current (I _b)
in milliamps | | |--------|--------------------------------------|--------------|--------|------------------------------------|--------|----------|--------------------------------------|---|---------------| | Type | 25°C | -40° to 85°C | 25°C | -40°C | Туре | 25°C | -40° to 85°C | 25°C | 85°C | | 1N3831 | 20±4 | 14-25 | 0.5-15 | 40 max | 1N3839 | 20±4 | 14-25 | 14-50 | 5 min | | 1N3832 | 25±4 | 19-30 | 0.5-15 | 40 max | 1N3840 | 25 ± 4 | 19-30 | 14-50 | 5 min | | 1N3833 | 30 ± 4 | 23-36 | 0.5-15 | 40 max | 1N3841 | 30 ± 4 | 23–36 | 14-50 | 5 mi n | | 1N3834 | 35±4 | 28-41 | 0.5-15 | 40 max | 1N3842 | 35 ± 4 | 28-41 | 14-50 | 5 min | | 1N3835 | 40±4 | 32-46 | 0.5-15 | 40 max | 1N3843 | 40 ± 4 | 32–46 | 14-50 | 5 min | | 1N3836 | 45±4 | 37-51 | 0.5-15 | 40 max | 1N3844 | 45 ± 4 | 37-51 | 14-50 | 5 min | | 1N3837 | 50±4 | 41-57 | 0.5-15 | 40 max | 1N3845 | 50 ± 4 | 41–57 | 14-50 | 5 min | | 1N3838 | 100±10 | 80–115 | 0.5–15 | 40 max | 1N3846 | 100 ± 10 | 80-115 | 14-50 | 5 min | | COMMER | CIAL SERIES | | MIL-LINE | SERIES | | | SERIES A (BROAD SPEC) | | | | |----------|---|--|-----------|--------------|--|--|-----------------------|--|--|--| | Туре | Switching Voltage (V _s)
in volts | Holding
Current (I _b)
in milliamps | Туре | i | ng Voltage (V _s)
n volts
—60° to 125°C | Holding
Current (I _b)
in milliamps | Туре | Switching
Voltage (V _s)
in volts | Holding
Current (I _h)
in milliamps | | | 4E20-8 | 20±4 | 1–15 | 4E20M-8 | 20±4 | 14-25 | 1-15 | 4E20A | 20 ± 6 | 0.5-60 | | | 4E20-28 | 20±4 | 14-45 | 4E20M-28 | 20 ± 4 | 14-25 | 14–45 | 4E30A | 30 ± 6 | 0.5–60 | | | 4E30-8 | 30 ± 4 | 1-15 | 4E30M-8 | 30 ± 4 | 23-36 | 1-15 | 4E40A | 40 ± 6 | 0.5–60 | | | 4E30-28 | 30 ± 4 | 14-45 |
4E30M-28 | 30 ± 4 | 23-36 | 14-45 | 4E50A | 50±6 | 0.5-60 | | | 4E40-8 | 40 ± 4 | 1-15 | 4E40M-8 | 40 ± 4 | 32-46 | 1-15 | | | | | | 4E40-28 | 40 ± 4 | 14-45 | 4E40M-28 | 40±4 | 32-46 | 14-45 | | | | | | 4E50-8 | 50±4 | 1–15 | 4E50M-8 | 50 ± 4 | 41-57 | 1-15 | | | | | | 4E50-28 | 50±4 | 14-45 | 4E50M-28 | 50±4 | 41-57 | 14-45 | | | | | | 4E100-8 | 100 ± 10 | 1-15 | 4E100M-8 | 100 ± 10 | 80-115 | 1–15 | | | | | | 4E100-28 | 100±10 | 14-45 | 4E100M-28 | 100 ± 10 | 80-115 | 14-45 | | | | | | 4E200-8 | 200 ± 20 | 1-15 | 4E200M-8 | 200 ± 20 | 160-230 | 1-15 | | | | | | 4E200-28 | 200 ± 20 | 14-45 | 4E200M-28 | 200 ± 20 | 160-230 | 14-45 | | | | | #### 1 #### TYPE J 4-LAYER DIODES #### COMMERCIAL SERIES MIL-LINE SERIES for extended temperature ranges | Туре | Switching Voltage (V _s)
in volts | Holding
Current (I _h)
in milliamps | Туре | Holding Current (I _h)
in milliamps | | | |----------|---|--|-----------|---|---------|------| | 4J50-5 | 50±5 | 1-10 | 4J50M-5 | 50±5 | 41-57 | 1-10 | | 4J50-25 | 50±5 | 9-45 | 4J50M-25 | 50 ± 5 | 41-57 | 9–45 | | 4J100-5 | 100 ± 10 | 1-10 | 4J100M-5 | 100 ± 10 | 80-115 | 1-10 | | 4J100-25 | 100 ± 10 | 9-45 | 4J100M-25 | 100 ± 10 | 80-115 | 9–45 | | 4J200-5 | 200 ± 20 | 1-10 | 4J200M-5 | 200 ± 20 | 160-230 | 1-10 | | 4J200-25 | 200 ± 20 | 9-45 | 4J200M-25 | 200 ± 20 | 160-230 | 9–45 | #### TYPE G 4-LAYER DIODES #### COMMERCIAL SERIES MIL-LINE SERIES for extended temperature ranges | Туре | Switching Voltage (Vs) in volts | Holding Current (I _h) in milliamps | Туре | Switching \in v
in v
25°C | /oltage (V _s)
rolts
60° to 105°C | Holding Current (I _h) in milliamps | |-------|---------------------------------|--|--------|---------------------------------|--|--| | 4G50 | 50±5 | 1–50 | 4G50M | 50 ± 5 | 41–57 | 1-50 | | 4G100 | 100±10 | 1–50 | 4G100M | 100 ± 10 | 80–115 | 1-50 | | 4G200 | 200±20 | 1–50 | 4G200M | 200 ± 20 | 160–230 | 1-50 | #### New! NPN HIGH FREQUENCY SILICON POWER TRANSISTOR MAXIMUM RATINGS at 25°C base temperature unless otherwise stated CHARACTERISTICS at 25°C unless otherwise stated | | 3TX002 | 3TX003 | 3TX004 | | Condition | 3TX002 | 3TX003 | 3TX004 | |-----------------------|--------------|--------------|--------------|--------------------|---------------------|--------|--------|--------| | BVCBO | 100 V | 100 V | 60 V | F _T min | 10 V, 2.5 A | 150 MC | 150 MC | 150 MC | | 1c | 5 A | 5 A | 5 A | Beta min | 5 V, 5 A | 30 | 10 | 10 | | PAVERAGE | 60 W | 45 W | 45 W | VCE max | 5 A, 0.5 A | 1V | 2V | 3V | | Rт | 2.5°C/W | 3.3°C/W | 3.3°C/W | ICBO max | 150°C 3TX002 - 80 V | 10 MA | 10 MA | 10 MA | | Temperature-Storage | −65 to 200°C | -65 to 200°C | −65 to 200°C | | 3TX003 - 80 V | 10 MA | 10 MA | 10 MA | | Temperature-Operating | −65 to 175°C | -65 to 175°C | −65 to 175°C | | 3TX004 - 50 V | 10 MA | 10 MA | 10 MA | A MAJOR SOURCE FOR 4-LAYER DIODES AND HIGH FREQUENCY SILICON POWER TRANSISTORS. For further information on these and other Shockley solid-state devices, call or write your nearest Clevite distributor or contact: CLEVITE TRANSISTOR, Palo Alto Plant, 1801 Page Mill Road, Palo Alto, California | | | B | | | | MAX. | RATINGS | | | CHA | RACT | ERISTI | cs | | |-----------------------|--|---------------------------------|---|--|--|---------------------------------------|-----------------------------------|---------------------------------|--------------------------------|--------------------------------------|------------------------------|----------------------------|---------------------------------------|---| | Cross
Index
Key | Type
Na. | Mfr. | Туре | ^h f.,
* ^h F E
** G _n | P _c
(mw) | T _i | mw/°C | V
CEO
*V
CBO
(v) | l C (ma) | ا
(س) | NF
(db) | Coe
*Cob
(pf) | fae *fT **fab (mc) | Remarks | | A 20 | TR-321
2N543A
2N736A
2N1566A
TNT841 | IND
TR
TI
TI
TR | pnp,AJ,ge
npn,DG,si
M,si
M,si
npn,MESA,si | 80-201
80-201
80-201
80-331 | 150
200
1000
1200
100amb | 85
200
-
175 | 2.5
-
-
-
0.66 | 30
45
80
80
45 | 2 00
25
100
100
50 | 7.5
0.02
-
-
0.1µa | 20
-
- | 20
7
-
-
*8 | 3.1
15
-
-
50 | 2N 321 | | A 36 | 2N2648
2N527
2N324
2N466
2N1247 | GI
GE
GE
MO
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 80-500
81
85
90
*90 | 250
225
140
200
600 | 100
100
85
100
175 | 3.3
4
4
2.5
4.0 | *35
*45
18
*35
6 | 1
50
100
100
30 | 3µ2
10
16
6
0.005µ2 | -
6
-
15
4 | *18
25
25
-
7 | *10
3.3
3
1
60 | MO
Driver , MO, TI
US, GI, RA, SY, TI | | | 2N1706
2N1707
CK66A
OC75
OC75N | TS
TS
RA
AMP
AMP | -
pnp,AJ,ge
pnp.AJ,ge
pnp,ge | 90
90
90
90
90 | 200
200
80
125
110 | 100
100
85
75
75 | -
-
0.45 | *25
*30
20
*30
*-30 | 400
400
100
50
10 | 10
15
2
5
4.5 | -
22
-
15 | 11111 | 3
3
1.2
0.75 | TI
TI
micromin | | A 37 | 2N2171
2N1376
2N1377
2N2375
2N207 | TS
TI
TI
PH
PH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *90-*250
95
95
95
100 | 500
250
250
250
250
50 | 100
100
100
100
65 | 6.7
25
3.3
3.3
1.25 | *50
45
45
*35
*12 | 400
200
200
500
20 | 10
7
3
2
4 | 3.5
5.5
5.5
-
5 | *20
40
-
*14
- | **7.5
2
2
*15
**2 | KF
KF
Output | | | 2N207A
2N207B
2N360
2N362
2N362
2N534 | PH
PH
RA
IND
PH | pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge | 100
100
100
100
100 | 50
50
150
150
25 | 65
65
85
85
65 | 1.25
1.25
2.5
2.5 | *12
*12
20
20
*50 | 20
20
400
100
25 | 4
4
10
200
8 | 2
2
-
- | 11111 | **2
**2
1,2
-
- | IND, US
RA, US | | A 38 | 2N535
2N535A
2N535B
2N568
2N632 | PH
PH
PH
IND
IND | ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq | 100
100
100
100
100 | 50
50
50
150
150 | 85
85
85
85
85 | -
-
2:5
2.5 | *20
*20
*20
30
30 | 20
20
20
300
200 | 6
6
6
3
10 | 10
5
0
12 | -
-
-
20
- | **2
**2
**2
1.5 | US, GI
RA, US, GI | | | 2N736
2N740
2N1380
2N1381
C621 | TI
TI
TI
TI
CT | npn,MS,si
npn,DM,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si | 100
100
100
100
100
**1)0 | 1.0
1w
250
250
250 | 175
175
100
100
160 | -
3,3
3,3
2 | *80
*125
12
25
10 | 50
100
200
200
50 | 1
1
3
3 | 20
-
5.5
5.5
3.5 | 5
-
40
40
15 | 50
-
2
2 | TO-18, TR, FA, NA
TR, NA | | A 39 | C623
C625
2N1574
TR383
4JX1A547 | CT
CT
TI
IND
GE | pnp,AJ,si
sa,LA,qnq
is,DM,nqn
gg,LA,qnq
gg,LA,qnq | **100
**100
10(
10(
*1(0-*200 | 250
250
1.2w
150
150 | 160
160
175
85
75 | 2
2
-
3
3.0 | 10
10
*125
25
*-20 | 50
50
50
200
100 | -
1
10
6µа | 1.5
0.4
-
6 | 15
15
-
50
*12 | -
-
1.8
*10 | Ig FE
Ig FE
TR
2N383 | | | 2N213A
2N930
2N1944
2N1945
2N1946 | SY
TI
IND
IND
IND | npn,AJ,ge
npn,PL,si
npn,DM,si
npn,DM,si
npn,DM,si | 101-250
*1 00 300
10 +300
10 +300
10 +300
10 +300 | 180
600
600
600
600 | 85
175
175
175
175 | 2.5
4.0
4
4
4 | *40
45
20
30
40 | 100
30
-
-
- | 50
0.01μα
0.01
0.01
0.01 | 2 - | *6 | 10
60
-
- | | | A 40 | 2N1947
2N1948
2N1949
2N2388
CK67B | IND
IND
IND
TI
RA | npn,DM,si
npn,DM,si
npn,DM,si
n pn,PL,si
pnp,AJ,ge | 10)-300
10)-300
10)-300
*:00-300
1(8 | 600
600
600
1200
75 | 175
175
175
175
175
85 | 4
4
8.0
1.25 | 20
30
40
45
35 | 0.01
-
-
30
100 | 0.01
0.01
0.01µa
10 | -
-
2
- | -
-
*6
- | -
-
60
- | Submin. | | A 43 | CK67C
2N265
2N1705
GT-109
2N508 | RA
GE
TS
GI
GE | pnp,AJ,ge
pnp,AJ,ge
-
pnp,AJ,ge
pnp,AJ,ge | 1(8
1 0
1 0
1 0
1 2 | 75
75
200
150
140 | 85
85
100
100
85 | 1.25
2
-
2
4 | 35
25
*18
*25
18 | 100
50
400
-
100 | 10
16
10
6
16 | 15
-
16
- | 40
-
35
25 | 1.5
4
-
3.5 | Submin.
Driver
T!
Driver, MO, T1 | | A 41 | 2N1018
2N2431
ST1290
2N2586
2N2430 | KF
AMP
TR
TI
AMP | pnp,AJ,ge
pnp.ge
N-GJ
npn,PL,si
npn,ge | 1 10
120
120
*120-360
125 | 80
165
200
600
280 | 85
75
-
175
90 | 3.3
0.80
4.0
3.3 | 8
*32
20
45
*32 | 400
150
50
30
30 | 2
10
75
0.002μα
– | -
-
1.5
- | 14
-
4
*6
- | 25
1.7
10
60
25 | micromin RF switch | | A 42 | 2N2614
2N2706
2N2707
AC127
TR-508 | RCA
AMP
AMP
AMP
IND |
pnp,AJ,ge
pnp,ge
np,ge
npn,ge
pnp,AJ,ge | 25
25
25
.25
.25 | 100
280
280
280
280
150 | 100
90
90
90
90
85 | 2.2
0.37
0.37
3.3
2.5 | *20
*-32
*32
*32
16 | 50
200
200
30
200 | 6.5 | -
4
4
-
- | -
-
-
-
20 | 10
2.5
2.5
2.5
2.5
3.5 | 2N508 | | A 42 | 2N652
2N652A
2N655
2N1188
2N1248 | MO
MO
MO
MO
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 130
130
130
130
*130 | 200
200
200
200
200
600 | 100
100
100
100
175 | 2.7
2.8
2.8
2.7
4.0 | *45
*45
*30
*60
6 | 500
500
250
500
30 | 3
10
5
5
0.010μa | 5
15
10
5
4 | -
-
-
7 | 2.5
2.5
2.5
2.5
60 | SY, US, TI
T!
US, TI | The First Complementary Silicon Planar Transistors for a broad range of applications are discussed in a new 32-page brochure. The aim of this "printed seminar" is to familiarize potential users of advanced silicon planar transistors with the advantages and applications of Sperry's new low-level, low-noise, high beta complementary NPN and PNP transistors. The brochure comprehensively reviews the advantages in reducing weight, volume and cost of equipment in circuit applications in addition to detailed parameter distribution and variation curves. Requests for the Sperry Silicon Planar Transistor Brochure are to be made on company letterhead. Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, Long Island, New York. SPERRY SEMICONDUCTOR, Norwalk, Connecticut. SPERRY DIVISIONS OF SPERRY RAND CORPORATION | | | | | | | MAX. | RATINGS | ENAS | PAG | CHA | RACT | ERISTI | cs | | |-----------------------|---|---------------------------------------|--|---|---|---|---|------------------------------------|--|-----------------------------|-----------------------------|------------------------------|-------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Type | hfe
*hFE
**G _m | P _c (mw) | T _i (°c) | mw/°C | V
CEO
*V
CBO
(v) | l C (ma) | ا
(س) | NF
(db) | Coe
*Cob | fae
*fT
**fab
(mc) | Remarks | | | 2N78
2N78 A
2N1592
2N1593
2N1594 | GE
GE
TR
TR
TR | npn,RG,ge
npn,RG,ge
N-G5
N-GJ
N-GJ | *135
*135
140
140
140 | 65
65
150
150
150 | 85
85
-
-
- | 1.1
1.1
1.00
1.00
1.00 | 15v
20
•15
30
•60 | 20
20
25
25
25
25 | 0.7
0.7
-
- | 12
12
-
- | *3
3
5
5 | *9
9
5
5 | | | A 43 | 2N359
2N570
2N631
2N1008A
2N1471 | RA
IND
IND
SY
IND | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
150
150
150 | 150
150
150
400
200 | 85
1T
85
85
85 | 2.5
2.5
2.5
6.6
3.33 | 45
30
25
• 40
12 | 200
300
200
300
200 | 10
3
10
500
2.5 | -
12
-
- | 20
-
-
18 | 1
2
1.2
25
5 | IND, US
GI
RA
BE | | | 2N1193
2N2613
C632
C633
2N467 | MO
RCA
CT
CT
MO | e, LA, qnq
la, LA, qnq
is, LA, qnq
si, LA, qnq
pnp, AJ, ge | 160
160
**175
**175
180 | 200
1 00
2 50
2 50
2 00 | 100
100
160
160
100 | 2.7
2.2
2
2
2.5 | *40
*13
250
350
*35 | 200
10
50
50
100 | 2
4
-
-
6 | 10
5
-
- | -
2
2 | 2.5
*10
-
-
1.2 | TI
tg FE
tg FE
IND, SY, US, TI | | A 44 | CK67A
2N467
2N169A
2N572
2N1378 | RA
GI
GE
IND
TI | pnp,AJ,ge
pnp,AJ,ge
npn,RG,ge
pnp,AJ,ge
pnp,AJ,ge | 180
200
•200
200
200
200 | 80
120
75
150
250 | 85
85
85
85
100 | 2
1.25
2.5
3.3 | 15
•35
•25
30
12 | 100
-
25
300
200 | 2
10
0.9
3
3 | 22
16
6
12
4 | -
40
*2.4
20
40 | -
0.5
*9
3
3 | micromin
MO, RA, US
GI | | | 2N1379
C631
2N2374
2N2429
2N1185 | TI
CT
PH
AMP
MO | pnp,AJ,ge
pnp,AJ,si
pnp,AJ,ge
pnp,ge
pnp,AJ,ge | 200
**201
210
220
260 | 250
250
250
165
200 | 100
160
100
75
100 | 3.3
2
3.3
3.3
2.7 | 25
150
*35
*32
*45 | 200
50
500
30
500 | 3
-
2
-
5 | 4
-
-
4
5 | 40
2
*14
- | 3
-
••15
2.3
3 | tg FE
Output, TI | | A 45 | 2N1194
C640
C641
C642
C643 | MO
CT
CT
CT
CT | pnp,AJ,ge
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si | 280
**20 IC
**40 IC
**60 IC
**90 IO | 200
675
675
675
675 | 100
160
160
160
160 | 2.7
5
5
5
5 | *40
35
35
35
35
35 | 200
50
50
50
50
50 | 2 | 10 | -
8
8
8
8 | 3
20
30
40
50 | TI tg FE tg FE tg FE tg FE | | | C644
SST610
2N461
2N943
2N944
2N945 | CT
SSE
MO
SSD
SSD
SSD | pnp,AJ,si
npn,DM,si
pnp,AJ,ge
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si | 12,0 0
12,0 0
-
-
-
- | 675
500
200
250
250
250 | 160
150
100
175
175
175 | 5
4
2.8
1.7
1.7 | 35
*60
*45
18
18
50 | 50
500
100
50
50
50 | -
0.3ma
10 | -
8
20
-
-
- | 8
20
-
7
7
7 | 60
*0.120
0.7
1
1 | tg FE
USAF, 'TI | | A 46 | 2N946
2N1919
2N1920
2N1921
2N1922
2N2376 | SSD
SSD
SSD
SSD
SSD
PH | pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,se
pnp,AJ,ge | 111111 | 250
250
250
250
250
250
250 | 175
175
175
175
175
175
100 | 1.7
1.7
1.7
1.7
1.7
1.7
3.3 | 80
18
18
50
80
*35 | 50
50
50
50
50
50
50 | -
-
-
-
2 | | 7
7
7
7
7
*14 | 1
1
1
1
•••15 | m. pair 2N2375, TI | ELECTRONIC DESIGN New Darlington Amplifier Transistor In 4 Lead TO-18 Package features very high beta — as high as 2,000 minimum at 100 μA... very low leakage — as low as 1nA maximum at 30 volts... low noise, typically 2 db. □ These microelectronic devices contain two interconnected NPN silicon planar transistors which provide extremely high current gain in a single TO-18 package. □ The design economies and characteristics of these devices are particularly well-suited for high impedance amplifier inputs, low noise amplifiers and high gain stages. □ Production quantities are presently available for new Sperry types; 2N2723, 2N2724 and 2N2725. □ Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, L. I., New York. □ For complete details, SPERRY SEMICONDUCTOR, Norwalk, Connecticut. # HIGH FREQUENCY Includes types ranging up to and above the vhf range. In order of increasing $f_{\alpha e}$, $f_{\alpha b}$, or f_{τ} . | | | | | | | MA | X. RATIN | IGS | | СНА | RACTE | RISTIC | cs | | |-----------------------|--|---------------------------------|---|------------------------------------|--|--|---------------------------------|---------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------|------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT **fab (mc) | P
c
(mw) | T _i
(°C) | mw/°C | °CEO °V CBO (v) | 1 C (ma) | h _{fe} *h _{FE} | ¹ co (μα) | NF
(db) | Coe
*Cob
(pf) | Remarks | | HF 1 | 2N444A
2N707
2N988
2N989
2N1024 | GI
PSI
PSI
PSI
SSD | npn,AJ,ge
npn,TDP,si
npn,TDP,si
npn,TDP,si
pnp,AJ,si | 1
1
1
1
**1 | 150
.006
.006
.006
.006
250 | 100
175
175
175
175
175 | 2
56
20
20
1.7 | - 40
15 | 12
70
70
100 | 25
.005
.05
.05 | 2
300
250
250
0.025 | 12
6
8
11 | .2
.32
.63
7 | TI
NA, KF | | | 2N 1025
2N916
2N2656
PT720
PT886 | SSD
PSI
PSI
PSI
PSI | pnp,AJ,si
npn,TOP,si
npn,TOP,si
npn,TOP,si
npn,TOP,si | 1.2
1.2
1.2
1.6 | 250
.006
.006
.006
.01 | 175
200
200
200
200
175 | 1.7
45
25
25
22 | 35
-
200
200
- | 100
120
50
80 | 9-22
.001
.01
5 | 0.025
300
250
250
180 | -
10
15
- | 7
-
.05
.05
.150 | NA, KF | | HF 2 | PT887
PT888
2N94
2N139
2N193 | PSI
PSI
SY
SY | npn,TDP,si
npn,TDP,si
npn,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 1.6
1.6
2
2(min.)
2 | .01
.01
150
80
150 | 175
175
85
85
85 | 45
45
2.5
.75
2.5 | -
-
*20
*18 | -
-
50
15
50 | .3
.3
50
22-110
9 | 180
180
50
50
50 | 6
4
-
- | .750
1.000
-
-
- | | | | 2N194
2N194A
2N211
2N233A
2N413A | Y2
Y2
Y2
Y2
Y2 | ag, LA, nqn
pg, LA, nqn
gg, LA, nqn
gg, LA, nqn
gg, LA, qnq | 2
2
2
2
2
2 | 150
150
50
150
150 |
85
85
70
85
85 | 2.5
2.5
1.1
2.5
2.5 | *18
*18
*10
*18
*15 | 50
50
50
50
50
200 | 10
10
5-15
30 | 50
50
20
50
10 | 11111 | 11111 | Mixer
Converter
GI | | HF 3 | 2N515
2N516
2N517
2N519A
2N1026 | Y2
Y2
Y2
G1
G22 | ga, LA, nqn
npn, AJ, ge
npn, AJ, ge
np, AJ, si
sa, LA, nqn | 2
2
2
·2
·*2 | 50
50
50
150
250 | 75
75
75
100
175 | 1
1
1
2
1.7 | *18
*18
*18
*25
35 | 10
10
10
- | 25-50
5-15
10-60
25
18-44 | 50
50
50
1
0.025 | -
-
12
- | -
-
14
7 | IND, KF
KF, NA | | | 2N1469
2N1840
2N413
2N1342
2N356 | SSD
PSI
RA
PSI
RCA | pnp, AJ, si
npn, TDP, si
pnp, FA, ge
npn, TDP, si
pnp, AJ, ge | **2
2
2.5
2.8
3 | 150
.013
150
.018
100 | 150
175
85
175
85 | 1.2
25
-
150
1.67 | 35
500
18
300
20 | 100
15
200
12 | 36
.3
30
.01 | 25
180
2.0
190
5 | -
7
8
- | 7
-
.7
12 | KF
IND, US, KF, GI
GI, SY, TI | | HF 4 | 2N438
2N438A
2N445A
2N481
2N1302 | GI
GI
US
TI | npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
npn,ge | 3
3
3
3 | 100
150
150
200
150 | 85
85
100
85
100 | 1.67
2.5
2
3
2.0 | *30
*30
*30
30
*25 | -
-
20
300 | -
70
50
20* | 10
10
2
3
3 | -
12
-
3.6 | 12
12
14
14
12 | TI
RA, TI
TI | | | 2N1564
2N1565
2N1566
2N1889
2N1890 | PSI
PSI
PSI
PSI
PSI | npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si | 3
3
3
3 | .02
.02
.02
.017
.017 | 175
175
175
200
200 | 80
80
80
100
100 | 50
50
50
 | 30
60
130
80
200 | .01
.01
.01
.001 | 190
190
190
190
190 | | 1111 | | | HF 5 | 2N1893
2N1893A
2N1506A
2N482
TR-482 | PSI
PSI
PSI
IND
IND | npn,TDP,si
npn,TDP,si
npn,TDP,si
pnp,AJ,ge
pnp,AJ,ge | 3
3
3.5
3.5
3.5
3.5 | .017
.017
.02
150
150 | 200
200
200
85
85 | 120
140
80
2.5
2.5 | 500
500
500
*14
14 | 80
90
60
200
200 | .001
.001
.005
50
20 | 190
190
190
3
3 | -
10
-
- | -
1.3
12
12 | US, TI | | lesi, | PT1558
2N212
2N385
2N414A
2N1027 | PSI
SY
SY
SY
SY | Page (And Page) And Page (And Page) And Page Page Page Page Page Page Page Page | 4 4 4 | .023
150
150
150
250 | 200
85
100
85
175 | 80
2.5
2.0
2.5
1.7 | -
*18
*25
*15
15 | 40
50
-
200
100 | .005
20
-
-
18 | 210
50
35
20
0.025 | 10 | 1
-
4
-
7 | Converter
GI, TI
KF,GI,AMP
KF | | HF 6 | 2 N 1058
2N94A
2N292
2N388A
2N395 | SY
SY
GE
RCA
RA | eg, LA, nqn
ag, LA, nqn
ag, LA, nqn
ag, nqn
ag, LA, qnq | 4
5
5
5
5 | 50
151
65
151
151 | 75
85
85
-
85 | 1
2.5
.9
-
- | *18
*20
15
*40
25 | 50
20
200
- | 15
19
6-44
30*
40 | 50
50
5
-
2.0 | | -
-
-
-
12 | Converter
TI
TO-5 RF Switch, TI, RCA | | | 2 N 439
2N 439 A
2N 448
2N 520 A
2N 634 | GT
RA
GE
GI
GE | npn,AJ,ge
npn,AJ,ge
npn,RG,ge
pnp,AJ,ge
npn,AJ,ge | 5
5
5
5
5 | 10(
15)
65
15)
15) | 85
85
85
100
85 | 1.67
2.5
1.1
2
2.5 | *30
*30
15
*25
*20 | -
20
-
- | -
25
100
- | 10
10
5
1
5 | -
-
12
- | 12
12
2.4
14
12 | SY, TI
TI
IND, KF, TV
TI | | HF 7 | 2 N 483
2 N 357
2 N 377
2 N 446A
2 N 483 | IND
RCA
SY
GI
US | pnp,FA,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge | 5.5
6
6
6 | 15(
10(
15(
15()
15) | 85
85
100
100
85 | 1.67
2.0
2
2.5 | *12
*20
*25
*30
12 | 20
-
-
-
20 | 60
-
-
120
65 | 3.0
5
5
2
1.5 | -
-
12
10 | -
12
12
14
*12 | US, TI
GI, SY, TI
TI
TI | **9 New Differential Amplifier Transistors** feature close matching of characteristics: \triangle V_{BE} as low as 5 mV maximum. \square Other features include: temperature tracking of V_{BE} \longrightarrow \triangle (V_{BE1} \longrightarrow -V_{BE2})/ \triangle T as low as 10μ V/° C.; extremely high beta — up to 50 min. at 1μ A matched to within 10%; and low noise typically 2db. Extremely low leakage — as low as 1nA max. at 30 volts. \square Because typically 2db. Extremely low leakage — as low as 1nA max. at 30 volts. Because these devices eliminate common-mode signals and allow use of balanced inputs to minimize input drift, they find application in low drift DC amplifiers, operational amplifiers, telemetry, comparators and analog-digital converters. These new microelectronic devices have two closely matched low-level NPN silicon planar transistors, electrically isolated but thermally connected, in a single 6-lead TO-5 package. Production quantities are presently available. Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, L. I., New York. Write today for technical bulletin. SPERRY SEMICONDUCTOR, Norwalk, Connecticut. DIVISIONS OF SPERRY RAND CORPORATION | 1 | | | | | | | MAX. RATINGS | | | | CHA | RACTE | RISTIC | -5 | | |---|-----------------------|--|---------------------------------|---|----------------------------------|--|--|-------------------------------|--|-----------------------------------|--|--|----------------------------------|--------------------------------|---| | | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P _c (mw) | Ť
i
(°C) | mw/°C | V _{CEO} *V _{CBO} (v) | 1 _C | hfe
*hFE | l CO
(μα) | NF
(db) | Coe
*Cob
(pf) | Remarks | | | 35.0 | OC45
2N139
2N218
2N409
2N410 | AMP
RCA
RCA
RCA
RCA | pnp,PADT,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 6
6.8
6.8
6.8
6.8 | 83
80
80
80
80 | 75
85
85
85
85 | 1 | *15
16
16
13
13 | 10
15
15
15
15 | 100
48
48
48
48
75 | 0.5
6
6
10
10 | 8 | 11111 | SY YZ | | | HF 8 | 2N414
2N439
2N1090
CK14
2N485 | RA
Gi
RA
RA
IND | pnp,FA,ge
npn,AJ,ge
npn,AJ,ge
pnp,FA,ge
pnp,AJ,ge | 7
7
7
7
7.5 | 150
100
150
80
200 | 85
85
85
85
85 | -
-
-
3 | *15
*20
18
15
30 | 200
400
100
200
20 | 60
45
50
60
50 | 2.0
3
3
2.0
3 | 6 - 6 - | 9
9
-
12 | IND, US, TS, GE, RCA, AMP, TI
TO-5 RF Switch, SY
TO-5 RF Switch
US | | | | 2N 168A
2N 169
2N 293
2N 388
2N 396 | GE
GE
GE
RA | npn,RG,ge
npn,RG,ge
npn,RG,ge
npn,AJ,ge
pnp,AJ,ge | 8
8
8 | 65
65
65
150 | 85
85
85
100
85 | 1.1
1.1
1.1
2.0 | 15
15
15
*25
20 | 20
20
20
-
- | 40
72
25
-
60 | 5
5
5
5
2.0 | 11111 | 2.4
2.4
2.4
12
12 | SY, TI | | | HF 9 | 2N 449
2N 471A
2N 472A
2N 581
2N 957 | GE
TR
TR
RA
PSI | npn,RG,ge
npn,GJ,si
npn,GJ,si
pnp,AJ,ge
npn,TDP,si | 8
8
8
8 | 65
200
200
100
.006 | 85
200
200
85
150 | 1.1
30
45
-
40 | 15
30
45
15 | 20
25
25
100
•45 | 72
10-25
10-25
30
.01 | 5
.02
.02
3
250 | -
22
22
- | 2.4
7
7
12 | TI
TI
TO-5 RF Switch, RCA | | | | 2N1086
2N1086A
2N1087
2N1121
2N1478 | GE
GE
GE
GI | npn,RG,ge
npn,RG,ge
npn,RG,ge
npn,RG,ge
pnp,fe | 8
8
8
8 | 65
65
65
65
150 | 85
85
85
85
100 | 1.1
1.1
1.1
1.1
2 | 9
9
9
15
*1 | 20
20
20
20
20
100 | 40
40
40
72
70 | 3
3
5
5 | 1111 | 2.4
2.4
2.4
2.4
15 | | | | HF 10 | 2N1624
2N2085
2N358
2N521A
2N140 | GI
GI
GI
RCA | npn,ge
npn,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 8
9
9
10 | 150
150
100
150
80 | 10 0
100
85
100
85 | 2
2
1.67
2 | *0.5
*0.25
*20
*25
16 | 30
10
-
-
15 | 120
100
-
150
75 | 5
5
1
6 | -
-
12
8 | 20
20
12
14
- | SY, TI
SY | | | | 2N219
2N411
2N414B
2N416
2N440 | RCA
RCA
IND
RA
GI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,FA,ge
npn,AJ,ge | 10
10
10
10
10 | 80
80
200
150
100 | 85
85
85
85
85 | -
2.5 ·
-
1.67 | 16
13
14
*12
*30 | 15
15
200
200
– | 75
75
90
80 | 6
10
3
2.0
10 | -
-
4
- | -
12
-
12 | SY
IND, KF
IND, US, GI, TS, KF,AMP
SY, TI | | | HF 11 | 2N440A
2N447A
ST905
2N473
2N474 | GI
GI
TR
TR
TR | npn,AJ,ge
npn,AJ,ge
npn,GR,si
npn,GR,si
npn,GR,si | 10
10
10
10
10 | 150
150
150
200
200 | 85
100
150
200
200 | 2.5
2
1.0
- | *30
*30
*30
*15
*30 | -
-
-
25
25 | 150
65
20-50
20-50 | 10
2
0.1
.02
.02 |
12
25
20
20 | 12
14
7
7
7 | RA, TI
TI
TI | | | | 2N474A
2N475
2N484
2N2425
2N118A | TR
TR
US
KF
TR | npn,GJ,si
npn,GR,si
pnp,FA,ge
pnp,AJ,si
npn,GR,si | 10
10
10
10
10 | 200
200
150
375
150 | 200
200
85
200
175 | 11111 | 30
*45
*12
50
*30 | 25
25
20
50
25 | 20-50
20-50
90
60
19-90 | .02
.02
3.0
0.1
0.1 | 20
20
-
10
27 | 7
7
-
7
7 | TI
TI
TI
JAN, TI | | | HF 12 | 2N478
2N479
2N479A
2N480
2N1417 | TR
TR
TR
TR
TR | npn,GR,si
npn,GR,si
npn,GJ,si
npn,GR,si
npn,GR,si | 11
11
11
11
11 | 200
200
200
200
200
150 | 200
200
200
200
200
150 | - | *15
30
30
45
*15 | 25
25
25
25
25
25 | 40-100
40-100
40-100
40-100
30-200 | 0.2
.02
.02
.02
.02
0.1 | 20
20
20
20
20
19 | 7 7 7 7 | TI
TI
TI
TI
AMP | | | 115.12 | 2N1418
ST15
ST35
ST45
ST904A | TR
TR
TR
TR
TR | npn,GR,si
npn,GR,si
npn,GR,si
npn,GR,si
npn,GR,si | 11
11
11
11
11 | 150
200
200
200
200
150 | 150
200
200
200
200
150 | -
-
-
1.0 | 30
15
30
45
30 | 25
25
25
25
25 | 30-200
10-100
10-100
10-100
60 | 0.1
.02
.02
.02
.02
0.1 | 19
22
22
22
22
25 | 7
7
7
7
7 | NA
2N332 | | | HF 13 | ST910
2N397
2N486
2N751
4C28 | TR
RA
IND
RA
GE | npn,GR,si
pnp,AJ,ge
pnp,AJ,ge
npn,DJ,si
npn,GD,si | 11
12
12
12
12
12 | 15(
15(
-
15(
150 | 150
85
85
175
125 | 1.0
-
3
0.75 | *30
15
30
20
*40 | -
20
50
25 | 140
80
100
4
15 | 0.1
2.0
3
0.01
2 | 20
-
-
-
20 | 7
12
12
6
•20 | TO-5, RF Switch, KF, TI, RCA
RA, US | | | DE 14 | 4C29
4C30
4C31
2N541
2N542 | GE
GE
GE
TR
TR | npn,GD,si
npn,GD,si
npn,GD,si
npn,GR,si
npn,GR,si | 12
12
12
15
15 | 150
150
150
200
200 | 125
125
125
200
200 | 11111 | *40
*40
*40
*15
*30 | 25
25
25
25
25
25 | 30
55
115
80-200
80-200 | 2
2
2
0.2
0.2 | 20
20
20
20
20
20 | *20
*20
*20
7
7 | NA. TI
NA. TĪ | | | HF 14 | 2N542A
2N543
2N602A
2N1091
2N2424 | TR
TR
GI
RA
KF | npn,GJ,si
npn,GR,si
pnp,DR,ft
npn,AJ,ge
pnp,AJ,si | 15
15
15
15
15
15 | 200
200
120
150
37! | 200
200
85
85
200 | -
2
- | 30
*45
*30
15
40 | 25
25
50
100
50 | 80-200
80-200
50
70
80 | 0.2
0.2
5
3
0.1 | 20
20
25
- | 7
7
7
9
7 | NA, TI
TO-5 RF switch | #### **HUGHES SEMICONDUCTOR BUYERS' GUIDE** #### HUGHES® DIODES Silicon MICROSEAL* Diodes — Zener and Computer Types With or without welded leads, or in circuit arrays (0.062" dia.x 0.030" thick). Rated 150 mW free air (minimum), 500 mW mounted in circuit boards, to 1 watt infinite heat sink. Microminiature devices for high density circuit applications. Representative Types are E.I.A. equivalents: 1N46-59, 1N625-27, 1N903-08, 1N914, 1N916, 1N1934-37, 1N3064 and †N3067. Silicon Zener Diodes Power Dissipation up to 500 mW. Hard backs with extremely low noise and dynamic impedance. Stable alloy process. Excellent voltage regulation as low as ±3% at low current level. Representative Types: 1N702-726A, 1N746-759A, 1N957-975B, 1N761-769, 1N1929-1937. Silicon Capacitor Diodes Medium Q devices with good stability and low leakage. Capacitance ranges from 20 to 100 pf (tolerance as low as ±5%) with maximum bias voltage variations up to 150 volts. Representative Types: 1N950-956. Silicon Computer Diodes Diffused planar passivated. Inversive working voltages to 100 volts. Recovery times as low as 2 nsec using a sampling scope circuit. Representative Types: 1N903-08, 1N914, 1N916, 1N3064 and 1N3067. Germanium Point Contact Diodes The first industry standard subminiature glass general purpose and computer diode. Proven stability with inverse working voltages to 190 volts. Recovery times as low as 0.75 nsec using a sampling scope. Representative Types: 1N198B, 1N933, HPS, 1600 series. Germanium Gold Bonded Diodes General purpose and computer applications. Recovery times as low as 3.5 nsec. Improved rugged mechanical stability withstands 30,000 G's centrifuge and 3,000 G's shock. Representative Types: 1N270, 1N276, 1N277 and HD1800 series. Silicon General Purpose Alloy Diodes and Rectifiers Power Dissipation to 250 mW. Forward currents to 0.2 amps. Oxide-coated (surface passivated) units with working inverse voltages up to 1,000 volts. Representative Types: 1N456-459, 1N482B-488B, 1N846-889. #### HUGHES TRANSISTORS PNP Silicon Alloy Junction Transistors 2N1034, 2N1035, 2N1036, 2N1037. 2N1228 through 2N1234, 2N1238 through 2N1244, 2N327A, 2N328A, (also USA 2N328A), 2N329A, HA7597, HA7598, HA7599, HA7520 through HA7529, HA7530, through HA7539... available in the standard TO-5 package or the Hughes coaxial package with up to 5 watts power dissipation. Manufactured by the evaporative-fusion technique which creates unusually low saturation resistance. Retain highly uniform characteristics from batch to batch, making possible much closer tolerances in the design of small-signal, high-temperature and amplifier circuits. PNP Silicon Double Diffused Planar Transistors 2N1254, 2N1255, 2N1256, 2N1257, 2N1258, 2N1259, HA9048, HA9049, 2N1196, 2N1197, (also USA 2N1197), 2N869, 2N995 . . . most types available in any package configuration...TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor...or any industry standard package. Offer many outstanding features: low collector capacitance, good low- and high-level gain characteristics, low leakage currents, low stored base charge, typical ft of 75 mc. High breakdown voltages in combination with gains, plus exceptionally fast-switching capabilities, make these superior general purpose units. 2N1131, 2N1131A, 2N1132, 2N1132A, 2N1132B, 2N1991 . . . available in any package configuration...TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor . . . or any industry standard package. Used extensively in advanced missile, satellite and computer applications. Feature high breakdown voltages, exceptionally low leakage currents, typically 20 nanoamps, measured at stringent bias conditions, Most types offer guaranteed switching times of less than 50 nanoseconds. NPN Silicon Double Diffused Planar Transistors 2N706, 2N706A, 2N706B, 2N707, 2N726, 2N753 Planar, 2N1613, 2N708 Planar, 2N744 Epitaxial, 2N913, 2N914 Planar Epitaxial...available in any package configuration... TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor...or any industry standard package. ON READER-SERVICE CARD CIRCLE 445 #### HUGHES RECTIFIERS Miniature High-Power Rectifiers These 1 amp devices are available from 50 to 3,000 volts PIV in the DO-7 package. Standard Metal Package Rectifiers Available at ratings of 6, 12, 20 and 35 amps. PIV ratings are from 50 to 1,000 volts for the 6 and 12 amp packages. (DO-4 and DO-10), and from 50 to 600 volts in the 20 and 35 amp packages (DO-5 and DO-11). Fast-Switch Rectifiers Hughes' new HF series (1 to 30 amp) "Golden Line" rectifiers have recovery times of less than 200 nanoseconds. Typical room temperature reverse leakage currents at rated PIV of 15 to 80 µamps for 1 to 30 amp devices, respectively. Maximum forward voltage drop of less than 1.4 volts at rated current. Stacked Rectifiers and Assemblies Custom designed stacked rectifiers are available up to 60 kv with currents up to 20 amp. These designs make use of the R-C compensation to assure long life and high reliability. Bridge assemblies for 3-phase and single-phase designs and potted configurations available—minimum deliveries and costs. HUGHES PACKAGED ASSEMBLIES Packaged Assemblies Standard and custom assemblies encapsulated in epoxy. These offer impressive savings in time, money and space. Typical assemblies include: singlephase and 3-phase bridges, voltage doublers and quadruplers, ring modulators, matched pairs, matched quads, phase detectors, computer modules, cartridge rectifiers or any custom units. For more details on any of these products contact your nearest Hughes representative. Or write: Hughes Semiconductor Division Marketing Department, Newport Beach, California. DIODES • TRANSISTORS • RECTIFIERS PACKAGED ASSEMBLIES • CRYSTAL FILTERS *Trademark Hughes Aircraft Company Creating a new world with electronics HUGHES AIRCRAFT COMPANY SEMICONDUCTOR DIVISION | | | | 12.00 | | MAX. RATINGS | | | | | CHA | RACTE | RISTIC | :S | | |-----------------------|--|---------------------------------|--|--------------------------------------|---|------------------------------------|----------------------------------|-----------------------------------|---------------------------------|---|-----------------------------------|-------------------------|---------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
-*fT
**fab
(mc) | P
(m v) | T _i
(°C) | mw∕ °C | V
CBO
(v) | 1 _C (ma) | h _{fe} *hFE | l
(pa) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | OC44
2N388A
2N476
2N477
2N522A | AMP
TI
TR
TR
GI | pnp,PADT,ge
npn,AJ,ge
npn,GJ,si
npn,GJ,si
pnp,AJ,ge | 15
**16
17
17
17 | 83
150
200
200
150 | 75
-
200
200
100 | -
-
-
2 |
*15
40
*15
*30
*25 | 10
200
25
25
- | 100
*60-180
30-60
30-60
200 | 0.5
5
.02
.02 | -
19
19
12 | 20°
8
8 | TI
TI
KF, TI | | HF 15 | 2N582
2N1118
2N1118A
2N232
2N417 | RA
PH
PH
PH
RA | pnp,AJ,ge
pnp,SAT,si
pnp,SAT,si
pnp,SBT,ge
pnp,FA,ge | 18
18
18
20
20 | 100
150
150
9
150 | 85
140
140
55
85 | 1.3
1.3
0.9 | *14
*25
*25
*4.5
*10 | 100
50
50
4.5
200 | 60
20
2 ⁶
39
140 | 3
-
-
6
2.0 | -
-
-
-
4 | 12
*6
*6
*6
-6 | TO-5 RF switch, TI
SPR, KF, MIL
SPR
SPR
IND, US, GI, TS, KF, TI | | | 2N602
2N1899
2N1902
2N1903
2N1904 | GI
PSI
PSI
PSI
PSI | pnp,Dr,ge
npn,DM,si
npn,DM,si
npn,DM,si
npn,DM,si | 20
20
20
20
20
20 | 120
125 **
125
125
125 | 85
150
150
150
150 | 2
1000
1
1
1 | *20
140
140
140
140 | 10a
10a
10a
10a
10a | -
10
10
10
10 | 3
20ma
20
20
20 | 14
-
-
-
- | 4
600
-
- | TI
hi freq., hi pwr | | HF 16 | 2N1907
2N1908
2N2551
PT900
PT901 | TI
TI
HU
PSI
PSI | pnp,AD,ge
pnp,AD,ge
pnp,A,si
npn,DM,si
npn,Ms,si | *20
*20
*20
*20
20
20 | 150 N
150 N
400
125 N
125 N | -
160
150
150 | -
3.0
1000
1000 | 100
130
.150
80
140 | 20a
20a
.1
10a
10a | *10
*10
*90
3
10 | 0.3ma
0.3ma
6
40
30 | -
•1.0
- | -
200
600
600 | hi freq., hi powr.
Hi frequency, | | | 2N495
2N523A
2N1428
2N1429
2N1677 | PH
G1
PH
PH
PH | pnp,SA,si
pnp,AJ,ge
pnp,SAT,si
pnp,SAT,si
pnp,SAT,si | 21
23
23
23
23
23 | 150
150
100
100
100 | 140
100
140
140
140 | 1.3
2
0.86
0.86
0.87 | *25
*20
*6
*6
*4.5 | 50
50
50
50 | 30
300
45
45
50 | .002
1
.001
.001
.001 | -
12
-
-
- | *6
14
*7
*7
*7 | MIL
IND,KF
SPR, chapper | | HF 17 | 2N1065.
2N1900
2N1901
2N274
2N370 | GI
PSI
PSI
RCA
RCA | pnp,Dr,ge
npn,DM,si
npn,DM,si
pnp,Dr,ge
pnp,Dr,ge | 25
25
25
30
30 | 120
125 w
125 w
120
24 | 85
150
150
85
85 | 2
1000
1000
-
- | *40
140
140
*40
*40 | -
5a
a
10
10 | -
10
15
60
60 | 20ma
20ma
16
20 | 12 | 3
600
600
- | hi freq., hi pwr.
hi freq., hi pwr.
SY | | | 2N371
2N372
2N373
2N374
2N1224 | RCA
RCA
RCA
RCA
RCA | pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge | 30
30
30
30
30 | 80
80
80
80
120 | 85
85
85
85
85 | 11111 | 20
20
25
25
25
*40 | 10
10
10
10
10 | -
60
60
60
60 | 20
20
8
8 | | | SY
Mixer, SY
SY
converter, SY
GI, AMP, SY | | HF 18 | 2N1226
2N1395
2N1709
2N1710
2N1750 | RCA
RCA
PSI
PSI
PH | pnp,Dr,ge
pnp,Dr,ge
npn,DM,si
npn,DM,si
pnp,SBT,ge | 30
30
30
30
30 | 12(
12(
13\/
13\/
15 | 85
85
175
175
75 | 86.7
86.7
0.5 | *60
*40
75
60
*14 | 10
10
1.2a
1.2a
5 | 60
90
-
-
*18 | 16
16
50
2 | | -
40
40
•6 | AMP
AMP
Hi freq., hi pwr.
Hi freq., hi pwr. | | | 2N2225
2N2595
2N2598
MHT-6001
2N1425 | KF
SSD
SSD
MH
RCA | pnp,AJ,ge
pnp,DP,si
pnp,DP,si
npn,DP,si
pnp,Dr,ge | 30
*30
*30
30
33 | 22!
4.0
4.0
40.7
80 | 100
200
200
175
71 | 2.3
2.3
270 | 15
60
80
*100
24 | 500
-
-
5a
10 | 300
15-60
15-60
10-120
50 | -
25na
25na
1
12 | 3

-
- | 10
*6
6
- | | | HF 19 | 2N1426
2N1524
2N1525
2N1526
2N1527 | RCA
RCA
RCA
RCA
RCA | pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge | 33
33
33
33
33 | 80
80
80
80
80 | 71
71
71
71
71 | -
0.4
0.4
0.4
0.4 | 24
24
24
24
24 | 10
10
10
10
10 | 130
60
60
130
130 | 12
16
16
16
16 | | -
2
2
-
- | GI
GI
GI | | | 2N934
2N603
2N603A
2N750
2N1633 | RCA
GI
GI
RA
RCA | pnp.ge
pnp.Dr,ge
pnp.DR,ft
npn,DJ,si
pnp,Dr,ge | *35
40
40
40
40 | 151
121
121
151
80 | -
85
85
175
71 | -
2
2
0.75
0.4 | 13
*30
*30
50
34 | 200
-
50
50
10 | *60

60
7
75 | -
3
5
10
16 | -
14
25
-
- | -
3
5
6
- | T1 | | HF 20 | 2N1634
2N1638
2N3746
2N640
2N641 | RCA
RCA
RCA
RCA
RCA | pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge | 40
40
40
42
42 | 80
80
80
80
80 | 71
71
71
85
85 | 0.4
0.4
-
0.75
0.75 | 34
34
34
34
34 | 10
10
20
10 | 75
75
.985
60
60 | 16
7
16
5
7 | | -
2
3.8
-
- | GI
GI
GI | | | 2N642
2N754
2N755
2N839
2N840 | RCA
TR
TR
TR
TR | pnp,Dr,ge
npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,DJ,si | 42
44
44
44
44 | 80
300
300
300
300 | 85
175
175
175
175 | 0.75
-
-
-
- | 34
*60
*100
*45
*45 | 10
50
50
25
25 | 60
20-80
20-80
20-45
40-90 | 7
1
1
0.1
0.1 | -
-
15
15 | -
8
8
-
8 | GI
TMT839 (150mw)
TMT840 (150mw) | | HF 21 | TMT842
2N1196
2N1631
2N1632
2N1635 | TR
HU
RCA
RCA
RCA | npn,DJ,si
pnp,MS,si
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,ge | 44
45
45
45
45 | 1:0
3:5
8(
8(
8(| 175
200
71
71
71
71 | 2
0.4
0.4
0.4 | *45
70
34
34
34 | 25
-
10
10
10 | 20
-
80
80
75 | 0.1
-
16
16
16 | | 6
4
2
2
- | GI
GI
GI | # TEKTRONIX TRANSISTOR-CURVE TRACER INVALUABLE TOOL FOR EVALUATING SEMICONDUCTOR DEVICES With a Type 575, you can plot and measure 7 different transistor characteristics. You can display 4 to 12 curves per family—with input current from 1 microampere/step to 200 milliamperes/step or input voltage from 10 millivolts/step to 200 millivolts/step—in repetitive or single-family presentations. You can select either common-emitter or common-base configurations. The Type 575 provides 20-ampere collector displays (10-ampere average supply current), two ranges of collector supply (0 to 20 volts, 0 to 200 volts), and 2.4-ampere base supply (positive or negative base stepping). Add a Type 175 Adapter and you extend the range of collector displays 10 times and the range of base supply 5 times. You can also test diodes under a wide variety of conditions and observe waveform characteristics on the 5-inch crt with a high degree of accuracy. #### Type 575 Calibrated Displays Vertical Axis—Collector Current, 16 steps from 0.01 ma/div to 1000 ma/div. Pushbuttons are provided for multiplying each current step by 2 and dividing by 10, increasing the current range to 0.001 ma/div to 2000 ma/div. Horizontal Axis—Collector Voltage, 11 steps from 0.01 v/div to 20 v/div. Both Axes—Base Voltage, 6 steps from 0.01 v/div to 0.5 v/div. Base Current, 17 steps from 0.001 ma/div to 200 ma/div. Base Source Voltage, 5 steps from 0.01 v/div to 0.2 v/div. Type 575 Transistor: Curve Tracer \$1075 U.S. Sales Prices f.o.b. Beaverton, Oregon #### HIGH-CURRENT ADAPTER For measuring high-powered semiconductor devices which exceed the current capabilities of a Type 575, ask your Tektronix Field Engineer about the Type 175 High-Current Adapter. Not intended for separate use, the Type 175 depends upon the circuitry and crt of a Type 575 to provide 200-ampere collector displays, three ranges of collector supply, and 12-ampere base supply—for calibrated displays with Collector Current on the Vertical Axis and either Collector Voltage or Base Voltage on the Horizontal Axis. Type 175 Transistor-Curve Tracer High-Current Adapter \$1475 #### HIGH-VOLTAGE TYPE 575 Supplied on order from your Tektronix Field Engineer is a special model of the Type 575 Transistor-Curve Tracer. Although similar to the Type 575, the special model provides much higher diode breakdown test voltage (variable from zero to 1500 volts at a maximum current of 1 milliampere) and also much higher Collector Supply (up to 400 volts, at 0.5 ampere). For complete specifications of this special model—call your Tektronix Field Engineer. Type 575 Mod 122C \$1325 . . . for more information about evaluating semiconductor devices with a Type 575 or other Tektronix test equipment, please call your Tektronix Field Engineer. He will be glad to assist you. **Tektronix, Inc.** / P. O. BOX 500 · BEAVERTON, OREGON / (Area Code 503) Mitchell 4-0161 · TWX: 503-291-6805 · Telex: 036-691 · Cable: TEKTRONIX · OVERSEAS DISTRIBUTORS IN 27 COUNTRIES Tektronix Field Offices are located in principal cities throughout the United States. Please consult your Telephone Directory. Tektronix Canada Ltd: Montreal, Quebec • Toronto (Willowdale) Ontario • Tektronix Ltd., Guernsey, Channel Islands ON READER-SERVICE CARD CIRCLE 446 | | | | and the | | MAX. RATINGS | | | | | | ARACTE | RIST | ICS | | |-----------------------|--|---------------------------------|---|--------------------------------------|---|------------------------------|-----------------------------------|-------------------------------------|----------------------------
---|-------------------------------------|------------------------|---------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT **fab (mc) | P c (n w) | T _i (°C) | mw/°C | V
CEO
*V
CBO
(v) | 1 _C | hfe
*hFE | l CO
(μα) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | 2N1636
2N1637
2N1639
2N344
2N345 | RCA
RCA
RCA
PH
PH | pnp,Di,ge
pnp,Di,ge
pnp,Di,ge
pnp,SB,ge
pnp,SA,ge | 45
45
45
50
50 | 80
80
80
20
20 | 71
71
71
55
55 | 0.4
0.4
0.4
1.33
1.33 | 34
34
34
*5
*5 | 10
10
10
5
5 | 75
80
75
22
35 | 16
5
7
0.7
0.7 | 11111 | -
2
*3
*3 | GI
GI
SPR
SPR | | HF 22 | 2N393
2N604
2N738
2N739
2N740 | PH
GI
AI
AI | pnp,MA,ge
pnp,Dr,ge
npn,P,si
npn,P,si
npn,P,si | 50
50
**50
**50
**50 | 25
120
1.0w
1.0w
1.0w | 100
85
-
- | 0.63
2
-
-
- | *6
*30
*125
*125
*125 | 50
-
-
-
- | 155

•15
•30
•60 | 5
4
.01
.01
1.0 | 14
-
- | *2
3
*8.0
*8.0
*8.0 | SPR,GI
TI | | | 2N759
2N760
2N760A
2N870
2N871 | GE
GE
AI
AI | npn, si
npn,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 500
500
1.50 w
1.8v
1.8v | 200
200
-
-
- | 11111 | 45
45
•60
•100
•100 | 11111 | 36
76
•205
•200
•200 | 0.2
0.2
0.01
.01
0.01 | 11111 | 8
*8.0
*8.0 | Planar Passivated
Planar Passivated | | HF 23 | 2N910
2N911
2N912
2N956
2N998 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 1.8v
1.8v
1.8v
1.8v
1.8v | 111111 | 11111 | *100
*100
*100
*75
*100 | 61111 | *75
*35
*15
*200
*5000 | 2.05
2.05
2.05
0.01
.01 | 11111 | *8.0
*8.0
*8.0
*8 | | | | 2N1564
2N1565
2N1566
2N1572
2N1573 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 1.2v
1.2v
1.2v
1.2v
1.2v | 1111 | | *80
*80
*80
*125
*125 | 11111 | *15
*30
*60
*15
*30 | 1.0
.01
.01
1.0
1.0 | 11111 | *8.0
*8.0
*8.0
*8.0
*8.0 | | | HF 24 | 2N1574
2N1889
2N1890
2N1972
2N1973 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 1.2v
3.0v
3.0v | 1111 | 11811 | *125
*100
*100
-
*100 | | *60
*200
*200
-200
-
*75 | 1.0
0.01
0.01
-
2.5 | 1111 | *8.0
*8
*8
*8.0 | | | | 2N1974
2N1975
2N1983
2N1984
2N1985 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 3.0 /
3.0 /
2.0 /
2.0 / | 11111 | 1111 | *100
*100
*50
*50
*50 | | *35
*15
2.0
2.0
*85 | 2.5
2.05
5.0
5.0
5.0 | 11111 | *8.0
*8.0
*8.0
*8.0 | | | HF 25 | 2N1986
2N1987
2N1988
2N1989
2N1990 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 2.0 /
2.0 /
2.0 /
2.0 /
2.0 / | 411111 | 91111 | *50
*50
*100
*100
*100 | | *130
*60
*85
*40
*20 | 5.0
5.0
5.0
5.0 | 11111 | *8.0
*8.0
*8.0
*8.0
*8.0 | | | | 2N2060
2N2223
2N2223A
2N2223A
2N2453
2N2483 | AI
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 1.5)w
1.6 v
1.6 v
0.6)w
1.2 v | 11111 | 11111 | *100
*100
*100
*60
*60 | | *50
*150
*150
*80 | | 11111 | *8.0
*8.0
*8.0
*8.0
*8.0 | | | HF 26 | 2N2484
2N2590
3N36
ASA-2
ASA-31 | AI
SSD
GE
AI
AI | npn,P,si
pnp,DP,si
npn,MB,ge
npn,P,si
npn,P,si | **50
*50
50
**50
**50 | 1.2 v
4.0
30
75v | 200
85
- | 2.3
0.5
- | *60
60
6
*60 | -
20
-
- | *30
30-80
2,2
*45 | .01
25na
3
.01 | 11111 | *8.0
*5
2
*8.0
*8.0 | tetrode | | | ASA-51
ASA-100
ASA-1000
ASA-1003
ASA-1004 | A1
AI
AI
AI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | **50
**50
**50
**50
**50 | 11111 | 11111 | | 11111 | 11111 | 11111 | | 11111 | *8.0
*8.0
*8.0
*8.0
*8.0 | | | HF 27 | 2N1197
2N604A
TRS100
TRS101
TRS301 | HU
GI
IND
IND
IND | pnp,Ms,si
pnp,DR,ft
npn,DM,si
npn,DM,si
npn,DM,si | 55
60
*60
*60
*60 | 385
120
600-25 C
600-25 C | 300 | 2
2
4
4
4 | 70
*30
*150
*180
*300 | 50
500
500
500 | 70
*30
*25
*30 | 5
0.01
0.01
0.01 | _
25
_
-
- | 4
5
10
15
25 | | | | 2N128
2N841
TMT843
2N929
2N930 | PH
TR
TR
AI
AI | pnp,SB,ge
npn,DJ,si
npn,DJ,si
npn,P,si
npn,P,si | 60
64
64
••70
••70 | 25
300
150
0.1 w
0.1 w | 85
175
175
-
- | 0.82
-
-
-
- | *10
45
45
*45
*45 | 5.
25
25
-
- | 40
80-330
40
•200
•200 | 0.6
0.1
0.1
.01 | 10
15
-
- | *2.5
8
6
*8.0
*8.0 | SPR, MIL
TMT841 (150 mw) | | HF 28 | 2N990
2N991
2N992
2N1335
2N1336 | AMP
AMP
AMP
PSI
PSI | pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
npn,MS,si
npn,MS,si | 70
70
70
70
70
70 | 67
67
67
2. }w
2. }w | 75
75
75
150
150 | 1.33
1.33
1.33
24
24 | 20
* 20
* 20
120
120 | 10
10
10
75
75 | 75
75
75
13
13 | -
-
8
8 | 11111 | -
-
4
4 | RF, Mixer, Oscillator
RF, Mixer, Oscillator
RF, Mixer, Oscillator
High freq., high power
High freq., high power | # AVNET MARKETS S.T.C. PRODUCTS Your requirements of STC silicon power transistors can be met by Avnet. Your Local Avnet Headquarters offers quick and flexible service on the products of Silicon Transistor Corporation...over 150 2N Type Numbers in 12 package sizes from 5 to 300 watts; 21 MIL approvals. When you need silicon power transistors, take advantage of Avnet's on-time delivery of STC products, featuring miniaturized power transistors without heat sink; isolated collector; PNP with NPN complements. Stocks in depth on either standard or hard-to-get items are part of Avnet's comprehensive marketing assistance. There are 10 Local Avnet Headquarters. 10 Local Avnet Headquarters SAN DIEGO, CALIF., 714-224-3633; LOS ANGELES, CALIF., 213-UP 0-6141; SUNNY-VALE, CALIF., 408-RE 6-0300; SEATTLE, WASH., 206-GL 4-4911; PHOENIX, ARIZ., 602-273-1261; SALT LAKE CITY, UTAH, 801-486-7566; CHICAGO, ILL., 312-GL 5-8160; SYRACUSE, N. Y., 315-454-3238; WESTBURY, L. I., N. Y., 516-ED 3-5800; BURLINGTON, MASS., 617-BR 2-3060 AVNET S.T.C. THE AVNET SYSTEM Men/Methods/Materials/Management AVNET ELECTRONICS CORP. I | Γ | 7 | | 000 | E SEE | | | MAX. RATINGS | | | | СНА | RACTE | RISTI | CS | Ro Company | |---|-----------------------|---|---------------------------------------|---|-------------------------------------|--|--|-------------------------------------|---------------------------------------|-------------------------------|--|--|--------------------|---------------------------------------|---| | | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P
c
(mw) | T _i (°C) | mw/°C | V
CEO
*V
CBO
(v) | (ma) | hfe
*hFE | ¹ CO (μα) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | | 2N1337
2N1339
2N1340
2N1341
2N1505 | PSI
PSI
PSI
PSI
PSI | npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si | 70
70
70
70
70
70 | 2.8w
2.8w
2.8w
2.8w
2.8w
3w | 150
150
150
150
175 | 24
24
24
24
0.2 | 120
120
120
120
120
50 | 75
75
75
75
75 | 13
-
-
-
7 | 8
8
8
8 | 11111 | 4
4
4
4
20 | High freq., high power
High freq., high power
High freq., high power
High freq., high power
high freq., high power | | | HF 29 | 2N1506
2N1516
2N1517A
2N2509
2N2510 | PSI
AMP
AMP
A1
AI | npn,MS,si
pnp,PADT,ge
pnp,PADT,ge
npn,P,si
npn,P,si | 70
*70
*70
*70
**70 | 3w
83
100
1.20w
1,20w | 175
-
-
-
- | .2
1.7
1.7
-
- | 60
*20
*40
*125
*100 | 9
10
10
- | 100
150
- | -
-
.001
.005 | 11111 | 8
-
-
*8.0
*8.0 | High freq., high power
RF-IF | | | | 2N2591
2N346
2N993
2N2671
2N2672 | SSD
PH
AMP
AMP
AMP | pnp,DP,si
pnp,SB,ge
pnp,PADT,ge
pnp,AD,ge
pnp,AD,ge | *70
75
75
75
75 | 4.0
20
83
100
100 | 200
55
75
75
75
85 | 2.3
1.3
1.7
0.6
0.6 | 60
*5
*20
*32
*32 | 5
10
10
10 | 50-135
35
75
150
15 | 25na
0.7
-
-
1.2 | -
-
-
1.5 | *5
*3
-
- | SPR
RF, Mixer, Osc., IF AM rec. | | | HF 30 | 2N2089
2N2090
2N2091
2N2092
2N2093 | AMP
AMP
AMP
AMP
AMP |
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge | 75
75
75
75
75
75 | 100
67
83
100
100 | 85
75
75
85
85 | 0.6
.75
1.7
0.6
1.7 | *32
*32
*20
*32
*25 | 10
10
10
10
10 | 150
150
150
150
150 | 1111 | 11111 | | RF, Mixer, Osc., IF AM rec.
RF, Mixer, Osc., IF AM rec.
RF, Mixer, Osc., IF AM rec.
IF, Mixer FM rec.
RF in FM rec. | | | UE 21 | 2N696
2N698
2N699
2N706
2N1252 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | 80
80
80
80
80 | 2w
2w
2w
1w
2w | 175
175
175
175
175 | 13.3
13.3
13.3
6.7
13.3 | 40
*80
80
25
20 | 11111 | 40
30
65
12
35 | 0.1
0.1
.01
.005
0.1 | 11111 | 18
12
12
5
30 | RA,MO,PSI,TR,TI,IND,SY,GI,US
RA, IND, TR, NA, GI, TI, PSI
RA, NA, MH, GI, TI, US, PSI
RA, NA, CL, GI, TI, TR, GE, MO
RA, TR. TI | | | HF 31 | 2N2511
2N2596
2N2597
2N2599
2N2600 | 1A
022
022
022
022 | npn,P,si
pnp, DP, si
pnp, DP, si
pnp, DP, si
pnp, DP, si | **80
*80
*80
*80
*80 | 1.20w
4.0
4.0
4.0
4.0 | 200
200
200
200
200 | 2.3
2.3
2.3
2.3 | *80
60
60
80
80 | 11111 | *80
40-100
80-200
40-100
80-200 | .005
25na
25na
25na
25na
25na | 11111 | *8.0
*6
*6
*6 | | | | | MHT-4401
MHT-4402
MHT-4501
MHT-4502
2N844 | MH
MH
MH
MH
TR | npn,EP,si
npn,EP,si
npn,EP,si
npn,EP,si
npn,DJ,si | 80
80
80
80
86 | 4w
4w
10w
10w
300 | 200
200
200
200
200
175 | 23
23
57
57 | *60
*120
*60
*120
*60 | 500
500
1a
1a
50 | 20-120
20-120
20-120
20-120
40-120 | 1
2
1
2
1 | 11111 | 30
20
25
29
8 | | | | HF 32 | 2N845
2N2592
3N37
2N384
2N697 | TR
SSD
GE
RCA
FA | npn,DJ,si
pnp,DP,si
npn,MB,ge
pnp,Dr,ge
npn,DP,si | 86
*90
90
100
100 | 300
4.0
30
80
2w | 175
200
85
85
175 | 2.3
0.5
-
13.3 | *100
60
6
30
40 | 50
-
20
10
75 | 40-120
100-200
1.1
60
0.01 | 1
25na
3
16 | -
-
-
18 | 8
*5
1.5
-
- | letrode
RA,PSI,TR,US,MO,SY,NA,GI,TI | | | | 2N702
2N703
2N735A
2N736B
2N739A | GI
GI
SSD
SSD
SSD | npn,si
npn,si
npn, DP, si
npn, DP, si
npn, DP, si | 100
100
*100
*100
*100 | 360
360
4. 0
4. 0
4. 0 | 175
175
200
200
200 | 2.4
2.4
2.3
2.3
2.3 | *5
*5
60
60
80 | 10
10
-
-
- | 40
70
40-100
80-200
40-100 | 0.05
0.5
5na
5na
5na | 1111 | 9.9.01 | CL
CL | | | HF 33 | 2N740A
2N758B
2N759B
2N760B
2N920 | 22D
22D
22D
22D
22D
GI | npn, DP, si
npn, DP, si
npn, DP, si
npn, DP, si
npn, DM, si | *100
*100
*100
*100
100 | 4. 0
4. 0
4. 0
4. 0
1.2w | 200
200
200
200
200
200 | 2.3
2.3
2.3
2.3
6.7 | 80
60
60
60
25 | -
-
-
-
220 | 80-200
18-90
36-90
76-333
4 | 5na
5na
5na
5na
.005 | 11111 | *6
*6
*6
5 | (CL, Epitaxial) | | | | 2N921
2N922
2N929A
2N930A
2N979 | GI
GI
SSD
SSD
SPR | npn,DM,si
npn,DM,si
npn, DP, si
npn, DP, si
pnp,MD,ge | 100
100
*100
*100
*100 | 1.2w
1.2w
4.0
4.0
60 | 200
200
200
200
200
100 | 6.7
6.7
2.3
2.3
0.8 | 50
50
45
45
*20 | 200
200
-
100 | 4
4
60-350
150-600
50* | .005
.005
2na
2na
18 | -
4
3
- | 4
4
*6
*6
*2.5 | (CL, Epitaxial)
(CL, Epitaxial) | | | HF 34 | 2N980
2N987
2N1180
2N1224
2N1226 | SPR
AMP
RCA
GI
GI | pnp,MD,ge
pnp,PADT,ge
pnp,Dr,ge
DR,ft
DR,ft | *100
100
100
100
100 | 60
86
80
120
120 | 100°c
90
71
85
85 | 0.8
1.33
-
2
2 | *12
*40
30
*12
*12 | 100
10
10
1.5
1.5 | *70
100
80
60
60 | 1
 | 11111 | *1.5
-
-
5
5 | RF, Mixer, Osc. | | | UE ac | 2N1225
2N1253
2N1396
2N1420
2N1427 | RCA
FA
RCA
FA
GI | pnp,Dr,ge
npn,DP,si
onp,Dr,ge
npn,DP,si
MAD f | 100
100
100
•100
100 | 120
2w
120
2
60 | 85
175
85
175
100 | 13.3
0.013
0.8 | *40
20
*40
30
*6 | 10
-
10
-
10 | 60
45
90
130
25 | 12
0.1
16
0.01
3 | 11111 | 30
-
-
3.5 | AMP
RH, TI
AMP
GI, PSI | | | HF 35 | 2N1499A
2N1613
2N1748
2N1748A
2N1749 | GI
FA
PH
PH
PH | MADT
npn,DP,si
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 100
100
100
100
100 | 60
3w
60
60
75 | 100
200
100
100
100 | 0.8
17.2
.8
0.8 | *20
75
*25
25
*40 | 40
-
-
50
10 | 50
80
45
70
45 | 3
.0004
1.5
1.5
1.5 | | 3
18
•1.3
1.3
•1.3 | SPR
RA, GI, TI, MO, GE, PSI | # General Electric transistors exceed Minuteman 99.999% reliability objective General Electric has completed a silicon transistor reliability improvement program for the MINUTEMAN airborne guidance and control system where data on a single product has been accumulated for over 100,000,000 life test hours . . . unsurpassed in the semiconductor industry. The result is reliability without parallel. For instance, final-phase testing of 4,650 G.E. MINUTEMAN transistors to approximately 24,000,000 transistor hours at 288 mw resulted in ZERO failures. The | Transistor
Minuteman
Part No. | Silicon
Transistor
Description | Maximum
Dissipation | V _{B2} E | Nearest
EIA
Type No. | "Additional
Minuteman
Types"* | |-------------------------------------|--------------------------------------|------------------------|-------------------|----------------------------|--| | 551B | Unijunction | 600 mw | 60 | 2N489 | MM/2N490/M
MM/2N491/M
MM/2N492/M
MM/2N493/M | | 703B | Fixed-Bed
Grown-diffused | 500 mw | 60 | 2N335A | MM/2N494/M
MM/2N332/M
MM/2N333/M
MM/2N336/M | | 801B
* Furnished | Grown-diffused to either A, B or | 250 mw
M MINUTE | 45
MAN 1 | 2N337
evel units. | MM/2N338 | MINUTEMAN Part transistor made by General Electric substantially exceeds the MINUTEMAN objective of an average failure rate of 0.001%/1000 hours in continuous operation at 87 mw (25°C ambient) (see graph). You can have this kind of reliability in *your* military and commercial applications. Just check the chart for MINUTE-MAN Part Numbers, similar EIA Types, and additional MINUTEMAN Types, all produced simultaneously on the same production lines and under the same exacting conditions. For complete specifications see your G-E Semiconductor District Sales Manager, or write Section 11E151. Semiconductor Products Department, General Electric Company, Electronics Park, Syracuse, New York. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ontario. Export: International General Electric, 159 Madison Ave., New York 16, N.Y. GENERAL & ELECTRIC # SILICON POWER TRANSISTORS 7/8" HEX **200 WATT** 2N1936 2N2820 2N1937 2N2821 STC1728 2N2815 2N2822 STC1731 2N2823 2N2816 STC1733 2N2817 2N2824 STC1736 STC1738 2N2818 2N2825 STC1726 STC1750 2N2819 **150 WATT** 2N1015 2N1015A 2N1015B 2N1015C 2N1015D 2N1015E USN2N1016C 2N1016D USN2N1016D 2N1016E 2N1016 STC1015 STC1015A 2N1016A 2N1016B STC1015B USN2N1016B 2N1016C STC1015C STC1015D STC1015E STC1016 STC1016A STC1016B STC1016C STC1016D STC1016E TO-36 75 WATE 2N1514 2N1511 2N2015 2N1512 2N2016 2N1513 T0 - 5385 WATT 2N389 **USN2N389** 2N389A 2N424 **USN2N424** 2N424A 2N1210 2N1211 2N1250 2N1620 2N1722 2N2383 11/16" HEX 85 WATT 2N1208 2N1209 2N1212 2N1616 2N1616A TO-3 75 WATT 2N1070 2N1487 USA2N1487 2N1488 **USA2N1488** 2N1489 USA2N1489 2N1490 USA2N1490 2N1702 40 WATT 2N1047 2N1047A **USN2N1047A** 2N1047B 2N1048 **USN2N1048A** 2N1048A 2N1048B 2N1049 2N1049A **USN2N1049A** 2N1049B 2N2384 2N1050 2N1050A USN2N1050A 2N1050B 2N1768 2N1769 7/16" HEX 40 WATT 2N2150 2N2151 2N2828 2N2829 TO-8 25 WATT 2N1067 2N1068 2N1483 **USA2N1483** 2N1484 USA2N1484 2N1485 **USA2N1485** 2N1486 **USA2N1486** 2N1701 2N2035 2N2308 2N2036 STC1800 STC1810 STC1850 5 WATT 2N497 2N498 2N547 2N548 2N549 2N550 2N551 2N552 2N656 2N656A 2N657 2N657A 2N116 2N1117 2N1479 USA2N1479 2N1480 **USA2N1480** 2N1481 USA2N1481 2N1482 USA2N1482 2N1700 2N2033 2N2034 T0 - 375 WATT STC5080 STC5081 STC5082 STC5083 STC5084 STC5085 PNP-11/16" HEX 85 WATT STC5580 STC5581 STC5582 STC5583 STC5584 STC5585 **PNP** 10 - 53 2P389 2P389A 2P424 2P424A #### CORPORATION SILICON TRANSISTOR CARLE PLACE, L. I., N.Y. (516) PIONEER 2-4100 TWX-516-248-9085 | | | 720 | | | | M | AX. RATII | NGS | 088 | CHA | RACTE | RISTIC | CS | | |-----------------------|--|---------------------------------|---|--|--|--|------------------------------------|--|------------------------------------|--|--|-------------------|--------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P c (mw) | T _i
(°C) | mw/°C | V _{CEO} *V _{CBO} (v) | 1 C (ma) | hfe
*hFE | ¹ CO (μα) | NF
(db) | Coe
*Cob
(pf) | Remarks | | | 2N1958A
2N1959A
2N2084
2N2243
2N2243A |
SYL
SYL
AMP
TI
TI | npn,P,si
npn,P,si
pnp,PADT,ge
npn,PE,si
npn,PE,si | *100
*100
100
*100
*100 | 600
600
125
2800
2800 | 175
175
90
200
200 | -
1.93
16.0
16.0 | *60
*60
*40
*80
*80 | 1000
1000
10
1000
1000 | *20-60
*40-120
100
*40-*120
*40-*120 | | | *14
*14
-
*12
*12 | RF, Mixer, Osc. on FM rec. | | HF 36 | 2N2459
2N2463
2N2515
2N2516
2N2518 | 022
022
022
022
022 | npn,DP,si
npn,DP,si
npn, DP, si
npn, DP, si
npn, DP, si | *100
*100
*100
*100
*100 | 4.0
1.8
4.0
4.0
4.0 | 200
200
200
200
200
200 | 2.3
2.8
2.3
2.3
2.3 | 60
60
60
60
80 | 11111 | 30-80
30-80
40-100
80-200
40-100 | 2na
2na
5na
5na
5na | 1111 | *5
*5
*6
*6
*6 | | | | 2N2519
2N2520
2N2521
2N2521
2N2522
2N2523 | 022
022
022
022
022 | npn, DP, si
npn, DP, si
npn, DP, si
npn, DP, si
npn, DP, si | *100
*100
*100
*100
*100 | 4. 0
4. 0
4. 0
4. 0
4. 0 | 200
200
200
200
200
200 | 2.3
2.3
2.3
2.3
2.3 | 80
60
60
60
45 | 1111 | 80-200
18-90
36-90
76-333
60-350 | Sna
Sna
Sna
Sna
Sna
2na | -
-
-
4 | *6
*6
*6
*6 | | | HF 37 | 2N2524
2N2601
2N2602
2N2603
2N2604 | 022
022
022
022
022 | npn, DP, si
pnp, DP, si
pnp, DP, si
pnp, DP, si
pnp, DP, si | *100
*100
*100
*100
*100 | 4. 0
4. 0
4. 0
4. 0
4. 0 | 200
200
200
200
200
200 | 2.3
2.3
2.3
2.3
2.3 | 45
60
60
60
45 | 11011 | 150-600
18-90
36-90
76-333
60-350 | 2na
25na
25na
25na
10na | 3
-
-
4 | *6
*6
*6
*6 | | | | 2N2605
2N2800
2N2801
3N34
OC171 | SSD
MO
MO
TI
AMP | pnp. DP, si
npn,PE,si
npn,PE,si
npn,GD,si
pnp,DJ,ge | *100
*100
*100
100
100 | 4. 0
800
800
125
60 | 200
200
200
150
75 | 2.3
4.57
4.57
1
2 | 45
*50
*50
30
*20 | -
-
20
5 | 150-600
*30/90
*75/225
4 | 10na
0.1
0.1
0.4
2 | 3
-
20
- | *6
*25
*25
- | tetrode | | HF 38 | 2N1752
2N2593
2N497
2N498
2N656 | PH
SSD
RA
RA
RA | pnp,MD,ge
pnp,DP,si
npn,MS,si
npn,MS,si
npn,MS,si | 106
*110
120
120
120 | 60
4.0
4w
4w
4w | 100
200
175
175
175 | 0.8
2.3
26.5
26.5
26.5 | *12
60
60
100
60 | 50
-
500
500
500 | 250
150-275
25
25
60 | 0.8
25na
0.1
0.1
0.1 | 11111 | *1
*5
20
20
20 | NA, GE, TI, PSI
NA, GE, TI, PSI
NA, GE, TI, PSI | | | 2N657
2N1023
2N1066
2N1397
2N1409 | RA
RCA
RCA
RCA
RA | npn,MS,si
pnp,Dr,ge
pnp,Dr,ge
pnp,Dr,Ge
npn,MS,si | 120
120
120
120
120 | 4w
120
120
120
120
2.8w | 175
85
85
85
150 | 26.5 | 100
40
40
*40
30 | 500
10
10
10
10
500 | 60
60
60
90
30 | 0.1
12
12
16
0.1 | 11111 | 20
-
-
-
20 | NA, GE, TI, PSI AMP AMP PSI | | HF 39 | 2N1410
2N1420
2N2460
2N2464
2N2798 | RA
RA
SSD
SSD
SPR | npn,MS,si
npn,DD,si
npn,DP,si
npn,DP,si
pnp,ED,ge | 120
120
*120
*120
*120
*120 | 2.8w
2w
4.0
1.8
75 | 150
175
200
200
100 | 22.5
13.2
2.3
2.8
1.0 | 30
*60
60
60
*25 | 500
500
-
100 | 50
200
50-130
50-130
*30 | 0.1
.003
2na
2na
3 | 1111 | 20
20
*5
*5
*4 | PSI, GI
PSI, TR, GI, TI, MO | | | PT600
PT601
2N715
2N716
2N1507 | PSI
PSI
TI
TI
RA | npn,DM,si
npn,DM,si
npn,MS,si
npn,MS,si
npn,DD,si | 120
120
125
125
125
120 | 13w
13w
1.2w
1.2w
2w | 175
175
175
175
175
175 | 86.7
86.7
8
8
13.2 | 60
60
*50
*70
60 | -
-
-
-
500 | 12
14
1
1
200 | 1
.001
.001
0.003 | 11111 | 40
40
3
3
20 | hi freq. hi pwr.
hi freq. hi pwr.
NA, MO
NA, MO
TI | | HF 40 | 2N1785
2N1786
2N1787
2N1864
2N2188 | PH
PH
PH
PH
TI | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,AD,ge | 125
125
125
125
125
*** 125 | 45
45
45
60
125 | 85
85
85
100 | 0.75
.75
0.75
.8
- | *10
*10
*15
*20
40 | 50
50
50
50
50
30 | 150
250
120
60
90 | 2
2
1.5
1.5
3 | 11111 | *1.5
*1.7
*1.5
*1.6 | | | | 2N2190
2N1748A
2N929
2N930
2N1177 | TI
PH
GI
GI
RCA | pnp,AD, ge
pnp,MD,ge
npn,PL,si
npn,PL,si
pnp,Dr,ge | **125
*132
*140
*140
140 | 125
60
1.8 w
1.8 w
80 | 100
175
175
175
71 | 0.8
3.33
3.33 | 60
*25
45
45
30 | 30
50
-
-
10 | 90
70
40-120
100-300
100 | 3
1.5
3na
3na
12 | 11111 | *1.3
*5
*5 | | | HF 41 | 2N1178
2N1179
2N2461
2N2465
3N35 | RCA
RCA
SSD
SSD
TI | pnp,Dr,ge
pnp,Dr,ge
npn,DP,si
npn,DP,si
npn,GD,si | 140
140
*140
*140
*150 | 80
80
4.0
1.8
125 | 71
71
200
200
150 | -
2.3
2.8
1 | 30
30
60
60
30 | 10
10
-
-
20 | 40
80
100-180
100-180
4 | 12
12
2na
2na
0.4 | -
-
14 | *5
*5
- | Tetrode | | UE 43 | 2N728
2N729
2N1726
2N1727
2N1728 | TR
TR
PH
PH
PH | npn,JD,si
npn,DJ,si
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 150
150
150
150
150 | 300
300
60
60
60 | 175
175
100
100
100 | -
0.8
0.8
0.8 | 15
30
*20
*20
*20 | 25
25
50
50
50 | 20
20
150
200
120 | 2.5
2.5
1.5
1.5
1.5 | 11111 | 8
8
*1.5
*1.5
*1.5 | | | HF 42 | 2N1788
2N1789
2N1790
2N2189
2N2191 | PH
PH
PH
TI
TI | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,AD,ge
pnp,AD,ge | 150
150
150
**150
**150 | 60
60
60
125
125 | 100
100
100
- | 0.8
0.8
0.8
-
- | *35
*35
*35
40
60 | 50
50
50
30
30 | 150
200
120
135
135 | 1.5
1.5
1.5
3 | 11111 | *1.5
*1.5
*1.5
- | | May 24, 1963 T27 The high-voltage barrier to passivated PNP transistors has finally been broken —but it took a new manufacturing process to overcome the obstacles. # Now from MOTOROLA Epitaxial, Passivated PNP SILICON TRANSISTORS Made by the Annular* Process Some new words are being added to the dictionary of semiconductor terms—words like Annular and Band-Guard , words that relate to a new manufacturing process which will have a strong influence on transistor design and promises to open new areas for transistor applications. The Annular manufacturing process provides a new degree of freedom from surface effects for semiconductor products. For years, the industry had been working to design high voltage silicon PNP transistors with the low leakage currents normally associated with NPN types, surface passivated by the planar process. For PNP devices, planar techniques proved inadequate since any attempt to increase voltage ratings beyond approximately 20 volts (through increasing collector material resistivity) induced a phenomenon, called channeling, which actually increased leakage current far beyond tolerable levels. Channeling is a condition whereby the surface portion of a transistor collector region actually changes polarity and hecomes an extension of the base region. The base-collector junction, therefore, rather than coming to the top surface where it is protected from the environment by a silicon oxide coating, extends to the unprotected edges of the transistor where it is subject to contamination and surface damage. This phenomenon circumvents the passivation advantages of planar designs and results in excessive leakage currents. The formation of channels has been traced to effects of ionized or polarized particles on or within the passivating oxide coating which create an electrical environment that tends to alter the apparent polarity of the material directly Cross Section of Annular Transistor beneath the oxide—an effect which is particularly pronounced in lightly doped P-type material. The channels are random in nature and erratic in characteristics, and can be highly sensitive to radiation bombardment. As a result of channeling, some manufacturers have reverted to earlier silicon mesa structures or have deliberately circumvented the oxide passivation in planar transistors in order to produce high voltage devices. These methods have yielded high voltage ratings but other characteristics of the resulting transistors do not compare favorably with those of surface passivated devices. Cross Section of Planar Transistor Now, Motorola has overcome these obstacles—but it has taken a new manufacturing process to do so. Rather than trying to eliminate the channel, Motorola, in a new series of "Band-Guard" transistors, has deliberately introduced a channel whose controlled characteristics completely overshadow the variable effects of any randomly induced channel, thus providing a high degree of performance stability. Moreover the controlled channel is terminated close to the base region by a diffused annular band of the same polarity as the collector region but with a resistivity level impervious to channeling. The collector-base junction, therefore, is properly terminated underneath the oxide coating where it is protected against environmentally induced leakage currents. The resultant "Band-Guard" PNP silicon devices, for the first time, combine the low-leakage characteristics of passivated junctions with the high-voltage
characteristics of non-passivated, or mesa structures. And, if theoretical analysis of this process is confirmed by tests now in progress, they will prove to be more resistant to radiation, thus heralding improved performance and greater reliability of space equipment. Though initially devised for the production of high voltage silicon PNP transistors, there are strong indications that the Annular process yields major benefits for NPN and field effect transistors and other semiconductor devices as well. In view of these considerations, there is little doubt that the new, Motorola developed Annular process will take its place among the major milestones in the advancement of the semiconductor art. *Patents Pending †Trademark of Motorola Inc. # ## ... made by the new ANNULAR PROCESS Four new Motorola PNP silicon transistors made by the Annular process and featuring high speed . . . high voltage . . . low leakage . . . and surface passivation and stability, are now immediately available as types 2N2800, 2N2801, 2N2837, and 2N2838. Called "Band-Guard" transistors, the new devices reflect performance advantages inherent in an Annular, oxide-passivated, epitaxially fabricated transistor. **Annular Process** — Provides a new degree of freedom from surface effects of adverse environments. Gives a new degree of performance stability by eliminating sub-surface leakage paths to the unprotected edges of the device. Makes possible combined high voltage and true silicon oxide passivation. Oxide Surface Passivation — Prevents contamination of the junction by external agents. Makes possible the low collector leakage current (1/10th that of other PNP units) of Motorola's "Band-Guard" transistors. **Epitaxial Structure** — Gives lower saturation voltage (% lower) and twice the frequency response (120 mc) of ordinary PNP devices. Other types supplied as "Band-Guard" units include 2N1132, 2N1132A, 2N1132B, and 2N722. Motorola passivated, epitaxial "Band-Guard" transistors are immediately available from your Motorola Seminconductor Distributor or District Office. For full electrical specifications write: Technical Information Center, Motorola Semiconductor Products, Inc., Box 955, Phoenix 1, Arizona. #### "Band-Guard" Transistor Performance Ratings | Characteristic | 2N2800
(TO-5 pkg) | 2N2801
(TO-5 pkg) | 2N2837
(10-18 pkg) | 2N2838
(TO-18 pkg) | Unit | |---|----------------------|----------------------|-----------------------|-----------------------|------| | Collector-Base Breakdown Voltage ($I_{\rm C}=10~\mu Adc, I_{\rm E}=0$) | 50 | 50 | 50 | 50 | Vdc | | $ \begin{array}{c} \text{Collector-Emitter Breakdown Voltage} \\ (I_c = 100 \text{mAdc}, I_n = 0) \end{array} $ | 35 | 35 | 35 | 35 | Vdc | | | 100 | 100 | 100 | 100 | nAdc | | DC Forward Current Transfer Ratio $(I_c = 150 \text{ mAdc}, V_{c\kappa} = 10 \text{ Vdc})^{\circ}$ | 30.90 | 75-225 | 30-90 | 75-225 | _ | | $\begin{aligned} & \text{Current-Gain} \leftarrow \text{Bandwidth Product} \\ & \text{($I_c = 50$ mAdc, $V_{c\kappa} = 10$ Vdc, $f = 100$ mc)} \end{aligned}$ | 120 | 120 | 120 | 120 | mc | *Pulse Test: Pulse Width ≤ 300 μsec, duty cycle ≤ 2% #### ... also supplied as "Band-Guard" types: | Characteristic | 2N1132
(70-5 pkg) | 2N1132A
(TO-5 pkg) | 2N1132B
(70-5 pkg) | 2N722
(TO-18 pkg) | Unit | |--|----------------------|-----------------------|-----------------------|----------------------|------| | Collector-Base Breakdown Voltage ($I_{\rm C}=100~\mu Adc,I_{\rm E}=0$) | 50 | 60 | 70 | 50 | Vdc | | $\begin{array}{c} \text{Collector-Emitter Breakdown Voltage} \\ \text{($I_c = 100 mAdc pulsed)} \end{array}$ | 35 | 40 | 45 | 35 | Vdc | | | 1.0 | s | 01 | 1.0 | μAdc | | DC Forward Current Transfer Ratio (Ie = 150 mAdc, Vcg = 10 Vdc) | 30-90 | 30-90 | 30-90 | 30-90 | _ | | Current-Gain — Bandwidth Product ($I_c = 50 \text{ mAdc}, V_{\text{ele}} = 10 \text{ Vdc}, f = 20 \text{ mc}$) | 60 | 60 | 60 | 60 | mc | "new leader in Total Silicon Technology" MOTOROLA Semiconductor Products Inc. BOX 955 . PHOENIX 1, ARIZONA . A SUBSIDIARY OF MOTOROLA INC. A - 43-034 ON READER-SERVICE CARD CIRCLE 450 | | | | | | MAX. RATINGS | | | | CHARACTERISTICS | | | | | | |-----------------------|--|---------------------------------|--|---|------------------------------------|--|--|--------------------------------------|-----------------------------------|--|---------------------------------------|-------------------------|---------------------------------------|---| | Crass
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P c (mw) | T _i (°C) | mw/°C | V
CEO
*Y
CBO
(v) | 1 C (ma) | h _{fe} *hFE | ¹ CO
(μα) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | 2N2654
2N2797
2N1499A
2N2462
2N2466 | AMP
SPR
PH
SSD
SSD | pnp,AD,ge
pnp,ED,ge
pnp,MD,ge
npn,DP,si
npn,DP,si | 150
*150
*160
*160
*160 | 100
75
60
4.0
1.8 | 75
100°c
100
200
200 | 0.50
1.0
0.8
2.3
2.8 | *25
*20
*20
60
60 | 10
100
100 | 65
*50
*70
150-230
150-230 | | 18.8 | *3.5
*1.5
*5
*5 | | | HF 43 | 2N1500
2N1500
2N1746
2N2207
2N2512 | PH
GI
PH
AMP
AMP | pnp,MD,ge
MADT
pnp,MD,ge
pnp,AD,ge
pnp,AD,ge | *175
, 175
175
175
175
175 | 60
60
60
260
260 | 100
100
100
75
75 | 0.8
0.8
0.8
0.25
0.25 | *15
*0.5
*20
*70
*70 | 50
10
50
50
50 | •70
70
70
200
200 | 1
5
1
- | 11111 | *1.5
3
*1.2
- | | | | 2N1840
2N2494
2N2495
2N2496
PT886 | PSI
AMP
AMP
AMP
PSI | npn, TDP, si
pnp, AD, ge
pnp, AD, ge
pnp, AD, ge
npn, TDP, si | 180
180
180
180
180 | 2
100
100
100
1.6 | 175
85
85
85
85
175 | .013
1.67
1.67
1.67
.01 | 25
*20
*20
*20
*20
22 | 500
10
10
10 | 15
60
60
60 | .3
2.0
2.0
2.0
2.0 | 16661 | 11111 | | | HF 44 | PT887
PT888
2N1566
2N1889
2N1890 | PSI
PSI
PSI
PSI
PSI | npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si | 180
180
190
190
190 | 1.6
1.6
3
3 | 175
175
175
200
200 | .01
.01
.02
.017 | 45
45
80
100
100 | 50 | -
130
80
200 | .3
.01
.001 | 11111 | 11111 | | | | 2N1342
2N1506A
2N1564
2N1565
2N1893 | PSI
PSI
PSI
PSI
PSI | npn, TDP, si
npn, TDP, si
npn, TDP, si
npn, TDP, si
npn, TDP, si | 190
190
190
190
190 | 2.8
3.5
3
3 | 175
200
175
175
200 | .018
.02
.02
.02
.02 | 150
80
80
80
120 | 300
500
50
50
50 | 12
60
30
60
80 | .01
.005
.01
.01
.001 | 11111 | 11111 | | | HF 45 | 2N1893A
2N957
2N995
2N996
2N2318 | PSI
FA
FA
FA
GI | npn,TDP,si
npn,DD,si
pnp,DP,si
pnp,DP,si
npn,si | 190
*2 00
•200
•200
200 | 3
800
1200
1200
360 | 200
150
200
200
200 | .017
6.5
6.9
6.9
2.1 | 140
20
15
12
*1 | 500
-
-
-
20 | 90
*60
*60
*75
60 | .001
-
0.0002
0.0002
0.05 | 1 10 10 10 | -
*7.5
*7.5
5 | | | | 2N2319
2N2320
2N2403
2N2404
2N2618 | GI
GI
NA
NA
SYL | npn,si
npn,si
npn,si
npn,si
npn,MESA,si | 200
200
200
200
200
*200 | 300
600
8000
8000
600 | 200
200
200
200
200
250 | 1.7
3.4
45.2
45.2 | *1
*1
60
60
*60 | 20
20
0.001
0.001
750 | 60
60
20-60
40-120
*25 | 0.05
0.05
1
1
0.25 | 31111 | 5
5
25
25
•14 | | | HF 46 | 2N2618/46
MM799
MM800
MM801
2N1506 | SYL
MO
MO
MO
PSI | npn,MESA,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,MS,si | *200
*200
*200
*300
210 | 400
20w
25 w
4 w
3w | 250
175
175
175
175
175 | 133
167
26.7
0.2 | *60
*60
*60
*60 | 750
-
-
-
-
9 | *25
*10
*10
*10 | 0.25
0.5
0.5
0.5 | 11111 | *14
-
-
-
8 | High freq., high power | | | 2N2781
2N2782
2N2783
PT531
PT612 | PSI
PSI
PSI
PSI
PSI | npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,TDP,si | 210
210
210
210
210
210 | 13
13
13
13
13 | 175
175
175
175
175 | .087
.087
.087
.087
.087 | 75
100
100
75
75 | 2a
2a
2a
2a
2a
2a | 30
30
30
30
30 | .5
.5
.1
.1 | 11111 | 111111 | | | HF 47 | PT1558
PADT28
2N1746
2N588
2N710 | PSI
AMP
PH
PH
MO | npn,TDP,si
pnp,PADT,ge
pnp,MD,ge
npn,MD,ge
pnp,MS,ge | 210
*220
235
250
250 | 4
100
60
30
300 | 200
-
100
85
100 | .023
1.7
0.8
0.75
4 | 80
*35
20
*15
*15 | 10
50
50
50 | 40
120
-
-
40 | .005
-
2
1.8
.2 | -
-
-
3.8
- | 3 - | RF amp
SPR,GI
TI | | | 2N957
2N988
2N989
2N1491
2N1837 | PSI
PSI
PSI
RCA
PSI | npn,TDP,si
npn,TDP,si
npn,TDP,si
npn,MS,si
npn,DM,si | 250
250
250
250
250
250 | .8
1
1
3w
2w | 150
175
175
175
175 |
.006
.006
.006
.006
.20
.13.3 | 40
20
20
30
80 | -
-
50
- | *45
70
70
50
9 | .01
.05
.05
.05
10 | 11111 | -
-
-
-
11 | Hi freq., hi power | | HF 48 | 2N1837A
2N1838
2N1839
2N2485
2N2486 | PSI
PSI
PSI
CS
CS | npn,DM,si
npn,DM,si
npn,DM,si
npn,MS,si
npn,MS,si | 250
250
250
*250
*250
*250 | 2.8w
2w
2w
8.7 w
8.7 w | 175
175
175
200
200 | 18.6
13.3
13.3
50
50 | 80
45
45
120
140 | -
la
la | 9
9
9
•10
•10 | .001
0.1
0.1
500
500 | 1111 | 11
9
9
•8
•8 | Hi freq., hi power
Hi freq., hi power
Hi freq., hi pwr. | | | 2N 26 49
2N 26 50
2N 26 56
2N 27 99
PT 720 | CS
CS
PSI
SPR
PSI | npn,MS,si
npn,MS,si
npn,TDP,si
pnp,ED,ge
npn,TDP,si | *250
*250
250
*250
*250
250 | 8.7 w
8.7 w
1.2
75
1.2 | 200
200
200
100
200 | 50
50
.006
1.0
.006 | 65
140
25
•15
25 | 1 a
1 a
200
100
200 | *10
*10
50
*30
80 | 500
500
.01
3 | 11111 | *8
*8
-
*4 | | | HF 49 | SN 230
SN 234
2N 502
2N 502A
2N ! 492 | CS
CS
PH
PH
RCA | npn,MS,si
npn,MS,si
pnp,MD,ge
pnp,MD,ge
npn,MS,si | *250
*250
*260
*260
*260
275 | 18 w
18 w
60
75
3w | 175
175
85
100
175 | 120
120
1,0
1,0
20 | 65
140
*20
*30
60 | 2a
2a
-
-
50 | *10
*10
65
65
50 | 500
500
1
1.3
10 | -
-
6
- | *25
*25
*1.0
*1.0 | SPR
SPR | | | | | | | MAX. RATINGS CHARACTERIS | | | | | RISTI | CS | | | | |-----------------------|---|--------------------------------|---|--|--|--|-------------------------------|---------------------------------------|--|---|---|----------------------|---------------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT **fab (mc) | P c (mw) | T _i (°C) | mw/°C | УСЕО
*УСВО
(v) | ^{1.} C
(ma) | hfe
*hFE | ¹ C0 (μα) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | 2N2635
2N695
2N707
2N834
2N835 | TI
MO
PSI
GI
GI | pnp, EM, ge
pnp, DM, ge
npn, TDP, si
npn, si
npn, si | *295
300
300
300
300
300 | 300
75
1
360
360 | 100
100
175
200
200 | 4.0
1
.006
2.1
21 | *30
15
56
*40
*25 | 100
50
-
10
10 | 100
40
12
40
30 | 1
0.2
.005
0.5
0.5 | 1111 | *3.5
3.5
-
4
4 | GE
CL
CL | | HF 50 | 2N916
2N960
2N961
2N962
2N964 | PSI
TI
TI
TI | npn,TDP,si
pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
pnp,EM,ge | 300
*300
*300
*300
*300 | 1.2
150
150
150
150 | 200
-
-
-
- | .006
-
-
-
- | 45
15
12
12
15 | 150
150
150
150 | 120
*20
*20
*20
*40 | .001
3
3
3
3 | 11111 | -
*4
*4
*4 | | | | 2N965
2N966
2N985
2N1493
2N2242 | TI
TI
TI
RCA
GI | pnp, EM, ge
pnp, EM, ge
pnp, EM, ge
npn, MS, si
npn, si | *300
*300
*300
300
300 | 150
150
150
3w
360 | -
-
175
200 | -
-
-
20
2.1 | 12
12
15
100
•40 | 150
150
200
50
10 | *40
*40
*60
50
80 | 3
3
3
10
0.1 | 11111 | *4
*4
*6
-6 | | | HF 51 | 2N2381
2N2382
2N2795
2N2796
2N503 | MO
MO
SPR
SPR
PH | pnp,EM,ge
pnp,EM,ge
pnp,ED,ge
pnp,ED,ge
pnp,MD,ge | *300
*300
*300
*300
320 | 750
750
75
75
75
25 | 100
100°c
100°c
85 | 10
10
1.0
1.0
0.5 | *30
*45
*15
*12
*20 | 500
500
100
100
50 | *25
*25
*50
*30
4.2 | 1
1
3
3
3 | 11111 | *3.5
*3.5
*3
*4
*1.0 | SPR | | | 2N703
2N706
2N706A
2N706B
2N706C | SYL
SYL
SYL
SYL | npn,P,si
npn,P,si
npn,P,si
npn,P;si
npn,P,si | *320
*320
*320
*320
*320 | 300
300
300
300
300
300 | 200
200
200
200
200
200 | 1.15.1.1 | *25
*25
*25
*25
*40 | 200
200
200
200
200
200 | *40-100
*20
*20-60
*20-60
*20-60 | .5
.5
.5
.025 | 11111 | *6
-
*5
*5
*5 | W | | HF 52 | 2N706/46
2N706A/46
2N706B/46
2N706C/46
2N706/51 | SYL
SYL
SYL
SYL | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | *320
*320
*320
*320
*320 | 400
400
400
400
400
300 | 200
200
200
200
200
200 | | *25
*25
*25
*40
*25 | 200
200
200
200
200
200 | *20
*20-60
*20-60
*20-60
*20 | .5
.5
.5
.025 | 11111 | *6
*5
*5
*5
*6 | | | | 2N706A/51
2N706B/51
2N706C/51
2N968
2N969 | SYL
SYL
SYL
MO | npn,P,si
npn,P,si
npn,P,si
pnp,DM,ge
pnp,DM,ge | *320
*320
*320
*320
*320
*320 | 300
300
300
300
300
300 | 200
200
200
100
100 | -
-
4
4 | *25
*25
*40
*15
*12 | 200
200
200
- | *20-60
*20-60
*20-60
35
35 | .5
.5
.025
3 | 11111 | *5
*5
*5
4.0
4.0 | RA
RA | | HF 53 | 2N970
2N971
2N972
2N973
2N974 | MO
MO
MO
MO | pnp, DM, ge
pnp, DM, ge
pnp, DM, ge
npn, DM, ge
npn, DM, ge | *320
*320
*320
*320
*320 | 300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4 | *12
*7
*15
*12
*12 | 1 1 1 1 1 | 35
35
75
75
75 | 3
10
3
3
3 | -
-
4.0
4.0 | 4.0
4.0
4.0
- | RA
RA
RA
RA
RA | | | 2N975
2N2256
2N2257
2N2258
2N2259 | MO
MO
MO
MO
MO | npn, DM, ge
npn, ME, si
npn, ME, si
pnp, ME, ge
pnp, ME, ge | *320
*320
*320
*320
*320
*320 | 300
1000
1000
300
300 | 100
175
175
100
100 | 4
6.67
6.67
4 | *7
*7
*7
*7
*7 | 100
100
100
100 | 75
30
50
30
50 | 10
3
3
3
3 | 4.0
4
4
4 | 11111 | RA
CL
CL
Epitaxial
Epitaxial | | HF 54 | 2N499
2N743
2N743/46
2N743/51
2N744 | PH
SYL
SYL
SYL
SYL | pnp,MD,ge
npn,P,si
npn,P,si
npn,P,si
npn,P,si | 340
*350
*350
*350
*350 | 30
300
400
300
300 | 85
200
200
200
200
200 | 9.75
-
-
-
- | 30
*20
*20
*20
*20
*20 | 50 | 8.5
*20-60
*20-60
*20-60
*40-120 | 1.0
1.0
1.0
1.0
1.0 | 11111 | 1.3
*5
*5
*5
*5 | GI, SPR | | | 2N744/46
2N744/51
2N784A
2N784A/46
2N784A/51 | SYL
SYL
SYL
SYL | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | *350
*350
*350
*350
*350 | 400
300
300
400
300 | 200
200
200
200
200
200 | 11111 | *20
*20
*40
*40
*40 | -
200
200
200
200 | *40-120
*40-120
*25-150
*25-150
*25-150 | 1.0
1.0
.025
.025
.025 | 11111 | *5
*5
*3.5
*3.5
*3.5 | | | HF 55 | 2N914
2N915
2N984
2N1962
2N2170 | FA
FA
SPR
SYL
SPR | npn,DP,si
npn,DP,si
pnp,MD,ge
npn,P,si
pnp,MD,ge | *350
*350
*350
*350
*350 | 1200
1200
60
400
60 | 200
200
100
200
100 | 6.9
6.9
0.8
-
0.8 | *15
50
10
*40
10 | -
100
200
100 | 55*
*100
*50
*20-80
*50 | 0.004
0.005
5.0
0.25
5.0 | 11111 | 4.5
*3.0
*2.5
*3.5
*3.0 | CL, MO | | | 2N2397
2N2787
2N2788
2N2788
2N2789
2N2790 | SYL
GI
GI
GI
GI | npn,P,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *350
*350
*350
*350
*350 | 300
3 w
3 w
3 w
1.8 w | 200
175
175
175
175
175 | 5.33
5.33
5.33
3.33 | *25
35
35
35
35
35 | 200
-
-
-
- | *25-125
20-60
40-120
100-300
20-60 | 0.10
2na
2na
2na
2na
2na | 11111 | *5
*5
*5
*5 | | | HF 56 | 2N2791
2N2792
2N741
2N741A
2N1407 | GI
GI
MO
MO
TI | npn,PE,si
npn,PE,si
pnp,MS,ge
pnp,OM,ge
pnp,MS,ge | *350
*350
360
360
375 | 1.8 w
1.8 w
300
300
75 | 175
175
100
100
100 | 3.33
3.33
4
4
1 | 35
35
*15
*20
30 | -
100
100
50 | 40-120
100-300
25
25
6 | 2na
2na
.2
0.2
2 | 7 7 7 | *5
*5
6
6 | Amp VHF | May 24, 1963 T31 | | | | | | MAX. RATINGS | | СНА | RACTE | RISTI | CS | | | | | |-----------------------|--|---------------------------------|---|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|---|-----------------------|--|--| | Cross
Index
Key | Type
No. | Mfr. | Type / | fae
*fT
**fab
(mc) | P c (mw) | T
i
(°C) | mw/°C | V
CEO
*V
CBO
(v) | 1 C
(ma) | hfe
*hFE | ¹ CO (μα) |
NF
(db) | Coe
*Cob
(pf) | Remarks | | | 2N708
2N708/46
2N708/51
2N743
2N828A | SYL
SYL
SYL
MO | npn,P,si
npn,P,si
npn,P,si
npn,PE,si
pnp,DJEM,ge | *400
*400
*400
*400
*400 | 300
400
300
1000
300 | 200
200
200
175
100 | -
-
6.67
4 | *40
*40
*40
*25
*15 | -
-
200
200 | *30 120
*30 120
*30 120
*20 *60
*40 | .025
.025
.025
.002
3 | 11111 | *6
*6
*3.5
*2.2 | | | HF 57 | 2N829
2N916
2N947
2N2217
2N2218 | MO
FA
FA
MO
MO | pnp,DJEM,ge
npn,DP,si
npn,DP,si
npn,DD,si
npn,DD,si | *400
*400
*400
*400
*400 | 300
1200
1200
3
3 | 100
200
200
175
175 | 4
6.9
6.9
5.33
5.33 | *15
25
-
*60
*60 | 200
-
-
-
-
- | *80
*80
*50
20-60
40-120 | 3
0.002
0.005
0.01
0.01 | 11111 | *2.2
*4.0
-
-
- | Pl. Epitaxial
Pl. Epitaxial | | | 2N2219
2N2220
2N2221
2N2222
2N2537 | MO
MO
MO
MO | npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si
pnp,PE,si | *400
*400
*400
*400
*400 | 3
1.8
1.8
1.8
800 | 175
175
175
175
175
200 | 5.33
3.33
3.33
3.33
4.57 | *60
*60
*60
*60
*60 | 11111 | 100-300
20-60
40-120
100-300
*50/150 | 0.01
0.01
0.01
0.01
0.25 | 11111 | 8 | Pl. Epitaxial
Pl. Epitaxial
Pl. Epitaxial
Pl. Epitaxial | | HF 58 | 2N2538
2N2539
2N2540
MM719
2N835 | MO
MO
MO
MO | npn PE,si
npn PE,si
npn PE,si
npn PE,si
npn P,si | *400
*400
*400
*400
*425 | 800
500
500
3 w
300 | 200
200
200
200
200
200 | 4.57
2.86
2.86
17.1 | *60
*60
*60
*60
*25 | -
-
-
200 | *100/300
*50/150
*100/300
*40 | 0.25
0.25
0.25
0.5 | 11111 | *8
*8
*8
- | | | | 2N835 46
2N835 51
2N708
2N744
2N834 | SYL
SYL
FA
TI
SYL | npn,P,si
npn,P,si
npn,DP,si
npn,PE,si
npn,P,si | *425
*425
*450
*450
*450 | 400
300
1200
1000
300 | 200
200
200
175
200 | -
6.9
6.67 | *25
*25
15
*25
*40 | 200
200
-
200
200
200 | -
*50
*40-*120
*25 | -
0.004
.002
0.5 | 1111 | -
*5.0
*3.5
*4 | CL | | HF 59 | 2N834/46
2N834/51
2N835
2N914
2N914/46 | 27F
27F
27F
27F
27F | npn,P,si
npn,P,si
npn,DDM,si
npn,P,si
npn,P,si | *450
*450
*450
*450
*450 | 400
300
300
300
400 | 200
200
175
200
200 | -
2
- | * 10
* 40
* 25
* 40
* 40 | 200
200
200
-
- | *25
*25
40
*30-120
*30-120 | 0.5
0.5
0.5
.025 | 1111 | *4
*4
-
*6
*6 | Epitaxial | | | 2N914/51
2N982
2N983
2N1405
2N1406 | SYL
SPR
SPR
TI | npn,P,si
pnp,MD,ge
pnp,MD,ge
pnp,MS,ge
pnp,MS,ge | *450
*450
*450
450
450 | 300
60
60
75
75 | 200
100
100
100
100 | -
0.8
0.8
1 | *40
15
15
30
30 | -
100
100
50
50 | *30-120
*70
*65
8 | .025
3.0
3.0
2
2 | -
-
-
5
6 | *6
*2.5
*2.5
- | | | HF 60 | 2N2168
2N2169
2N960
2N961
2N962 | SPR
SPR
MO
MO
MO | pnp,MD,ge
pnp,MD,ge
pnp,DM,ge
pnp,DM,ge
pnp,DM,ge | *450
*450
*460
*460
*460 | 60
60
300
300
300 | 100
100
100
100
100 | 0.8
0.8
4
4 | 15
15
*15
*12
*12 | 100
100
100
100
100 | *70
*65
40
40
40 | 3. 0
3.0
0.4
0.4
0.4 | 11111 | *2.5
*2.5
2.2
2.2
2.2 | Epitaxial
Epitaxial, RA
Epitaxial, RA | | | 2N963
2N964
2N964A
2N965
2N966 | MO
MO
MO
MO | npn, DM, ge
npn, DM, ge
npn, DM, ge
npn, DM, ge
npn, DM, ge | *460
*460
*460
*460
*460 | 300
300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4 | *12
*15
*15
*12
*12 | 100
100
100
100
100 | 40
70
80
70
70 | 5
0.4
0.4
0.4
0.4 | 11111 | 2.2
2.2
2.2
2.2
2.2
2.2 | Epitaxial, RA
Epitaxial, RA
Epitaxial, RA
Epitaxial, RA
Epitaxial, RA | | HF 61 | 2N967
2N1143
2N1561
2N1562
2N2095 | MO
TI
MO
MO
SPR | npn,DM,ge
pnp,DB,ge
pnp,MS,ge
pnp,MS,ge
pnp,ED,ge | *460
480
500
500
*500 | 300
750
3w
3w
1w | 100
100
100
100
100 | 4
10
40
40
— | *12
25
*25
*25
*30 | 100
100
500
500
300 | 70
8
10db
10db | 5
.7
1.5
1.5
0.2 | 11111 | 2.2
1.5
7
7
6.5 | Epitaxial, RA
PG=22db © 200mc, MO
High freq., high power
High freq., high power | | | 2N2098
2N2501
2N700
2N700A
2N709 | SPR
MO
MO
MO
SYL | pnp,ED,ge
pnp,PE,si
pnp,DM,ge
pnp,DM,ge
npn,P,si | *500
*500
600
600
*600 | 1w
360
75
75
300 | 100
200
100
100
200 | 2.06
1
1 | *30
*40
*25
*25
*15 | 300
-
50
50
- | -
*50/150
10db
5db200mc
*20-120 | 2
-
0.4
0.4
.005 | -
6
6 | 6.5
*4
1.1
1.1
*3 | UHF Amp.
MIL | | HF 62 | 2N709 46
2N709 51
2N1142
2N2368
2N2369 | SYL
SYL
TI
FA
FA | npn,P,si
npn,P,si
pnp,DB,ge
npn,DP,si
npn,DP,si | *600
*600
600
*650
*650 | 400
300
750
1200
1200 | 200
200
100
200
200 | -
10
6.9
6.9 | *15
*15
30
15
15 | -
100
-
- | *20-120
*20-120
10
*40
*70 | .005
.005
0.7
0.1
0.1 | 1.101.1 | *3
*3
1.5
*2.5
*2.5 | PG=26db @ 200mc,MO | | | 2N1645
2N537
2N1094
2N1141
2N1195 | WE
WE
TI
WE | pnp,DJ,ge
pnp,DG,ge
pnp,DM,ge
µnp,DB,ge
pnp,DM,ge | 700
750
750
750
750
750 | 250
150
750
250 | 100
100
100
100
100 | 12.5
3.3
2.0
10
4.0 | *35
-
*35
*30 | 300
100
40
100
50 | 50
10
13
12
13 | 1.5
2
1.2
0.7
1.2 | 11111 | 10
2.8
4
1.5
4 | U.S. MIL only
U.S., MIL only
PG=30db@200mc, MO
TI, MO | | HF 63 | 2N709
2N709A
2N709A '46
2N709A '51
2N917 | FA
SYL
SYL
SYL
FA | npn,DP,si
npn,P,si
npn,P,si
npn,P,si
npn,DP,si | *800
*800
*800
*800
*800 | 1000
300
400
300
300 | 200
200
200
200
200
200 | 5.0
-
-
-
1.71 | 6.0
*15
*15
*15
15 | 11111 | *55
*30-90
*30-90
*30-90
*50 | 0.005
.050
.050
.050
.050
0.0005 | 11111 | *2.5
*3
*3
*3
*1.0 | | ## **Bendix "Leaf"* Silicon Transistor** *Patent applied for. Magnified 265 times—actual size .025". #### BENDIX SILICON PLANAR EPITAXIAL TRANSISTORS OFFER THESE ADVANTAGES: #### MECHANICAL "Leaf" Configuration Larger Emitter Area Larger Emitter Periphery Larger Bonding Area TO-5 and TO-18 Packages #### ELECTRICAL Lower Saturation Voltage Higher Gain Improved Beta Linearity Higher Reliability 81 Types Write us in Holmdel, New Jersey, soon. #### **Bendix Semiconductor Division** Amperex is now ready to accept high volume as well as special production orders on high frequency and medium power Silicon Planar/Epitaxial **Transistors** Authorized AMPEREX Semiconductor Distributors are geared to expedite your requirements for both Military and Industrial types of AMPEREX Silicon Planar/Epitaxial Transistors: #### California R. V. WEATHERFORD COMPANY Glendale 1, Calif. KIERULFF ELECTRONICS Los Angeles 15, Calif. BRILL SEMICONDUCTOR CORP. Oakland 6, Calif. #### Colorado INTERSTATE RADIO & SUPPLY Denver 4, Colorado #### Connecticut CRAMER ELECTRONICS, INC. Hamden, Conn. #### District of Columbia ELECTRONIC WHOLESALERS, INC. Washington 1, D. C. #### Florida THUROW ELECTRONICS, INC. Cocoa, Fla. • Jacksonville, Fla. • Miaml, Fla. Orlando, Fla. • Pensacolo, Fla. • Tampa, Fla. #### Illinoi NEWARK ELECTRONICS CORP. Chicago, III. #### Indiana RADIO DISTRIBUTING COMPANY Indianapolis 6, Indiana #### Massachusetts RADIO SHACK CORP. Boston, Mass. #### Michigan RADIO SPECIALTIES COMPANY Detroit, Michigan The unique combination of co-ordinated engineering skills and automated production technology has earned for AMPEREX a position of leadership as originator and mass producer of high reliability, high yield PADT germanium transistors, as well as being the first mass producer of reliable, premium quality frame grid tubes. This breadth and depth of "team-thinking-approach" is manifest in the advanced facilities of the two AMPEREX semiconductor plants in Rhode Island. The Slatersville facility is renowned for its leadership in PADT transistors. The Cranston plant is devoted exclusively to development and manufacture of highest quality Silicon Planar/Epitaxial Transistors — to satisfy the most exacting requirements of the fields of Instrumentation, Guidance and Control, Computers and Data Processing and Communications. Available for prompt delivery in both volume and/or specialty production, you will find AMPEREX Silicon Planar/Epitaxials specifically designed for diverse applications: ## military types JAN-2N497-MIL-S-19500/74C JAN-2N498-MIL-S-19500/74C JAN-2N656-MIL-S-19500/74C JAN-2N657-MIL-S-19500/74C USA-2N696-MIL-S-19500/99A S-19500/74C JAN-2N696M—MIL-S-19500/99B S-19500/74C USA-2N697—MIL-S-19500/99A S-19500/74C JAN-2N697M—MIL-S-19500/99B S-19500/74C USA-2N706—MIL-S-19500/120 S-19500/99A JAN-2N706M—MIL-S-19500/120A USN-2N1613—MIL-S-19500/181 #### high voltage amplifiers 2N497 2N699 2N870 2N498 2N719 2N871 2N656 2N719A 2N1889 2N657 2N720 2N1890 2N698 2N720A 2N1893 #### small signal and low level amplifiers 2N910 2N930 2N911 2N1973 2N912 2N1974 2N929 2N1975 #### general purpose amplifiers and switches 2N696 2N718 2N1420 2N697 2N718A 2N1613 2N717 2N956 2N1711 #### high
speed saturating switches 2N706 2N708 2N914 #### uhf and vhf amplifiers 2N915 2N916 #### industrial types 2N1983 2N1985 2N1987 2N1984 2N1986 2N1990 #### low level choppers 2N2569 2N2570 Available in TO-5 and TO-18 cases Write for further details and your copy of the new edition of the AMPEREX Silicon Planar/Epitaxial Semiconductor condensed catalog. Applications engineering assistance available. Amperex Electronic Corporation, Semiconductor and Receiving Tube Division, Hicksville, Long Island, New York. IN CANADA: PHILIPS ELECTRON DEVICES, LTD., TORONTO 17, ONTARIO Ask Amperex #### Minnesota ADMIRAL DISTRIBUTORS, INC. St. Louis Park 16, Minn. #### Missouri BURSTEIN-APPLEBEE COMPANY Kansas City, Missouri #### INTERSTATE INDUSTRIAL ELECTRONICS St. Louis 32, Missouri New York MILO ELECTRONICS New York, N. Y. ROME ELECTRONICS #### Ohio UNITED RADIO, INC. #### Oklahoma OIL CAPITAL INDUSTRIAL ELECTRONIC DISTRIBUTORS Tulsa, Oklahoma #### Oregon UNITED RADIO SUPPLY, INC. Portland 9, Oregon #### Pennsylvania RADIO ELECTRIC SERVICE CO Philadelphia, Pa. CAMERADIO COMPANY Pittsburgh, Pa. #### Texas BUSACKER ELECTRONIC EQUIPMENT CO., INC. Houston 19, Texas #### Washington ROBERT E. PRIEBE COMPANY Seattle 1, Washington Now there is a new approach to micro-circuit packaging . . . 3IPCO® Diode Matrices and Fransistor Strips. They provide the only approach combining: Total function logic Connection oriented packaging Connection oriented batch manufacturing See how these unique features will benefit you. Above is the logic diagram for a full adder and its equivalent BIPCO circuit. Note how "total function" logic is performed with matrices of diodes and strips of transistors and resistors. Since the interconnections are always the same, other functions (counting, decoding, accumulating, etc.) can be performed by simply changing the arrangement of the diodes within the matrix. You can specify parameters, logic levels. BIPCO devices containing up to 100 silicon diodes and 10 silicon transistors are available as individual packages or as printed circuit assemblies for counting, decoding and code-converting applications. Because the diodes and transistors are manufactured and connected in batches, the cost of these units is competitive with that of conventional components and less than that of other micro-circuit devices. Write today for our newest brochure . . . "BIPCO Logic | the Total Function Approach". # HF continued | | | 900 | | | MAX. RATINGS CHARACTERISTIC | | | | | | | CS | | | |-----------------------|---|--------------------------------|--|--|------------------------------------|--|------------------------------|--|---------------------------------------|---|--|--------------------|---------------------------------------|--| | Cross
Index
Key | Type
Na. | Mfr. | Туре | (ae
*fT
**fab
(mc) | P
c
(mw) | T _i (°C) | mw/°C | VCEO
*VCBO
(v) | l C | h _{fe} *h _{FE} | l CO
(μα) | NF
(db) | C _{oe} *C _{ob} (pf) | Remarks | | | 2N2416
2N918
2N2415
2N797
2N955 | TI
FA
TI
TI
RCA | pup, DM, ge
npn, DP, si
pnp, DM, ge
npn, MS, ge
npn, DDM, ge | *800
*900
*900
*1000
*1000 | 75
300
75
150
150 | 100
200
1 00
-
100 | 1.0
1.71
1.0
-
- | *15
15
*15
7
*12 | 20
-
20
150
150 | 20
*50
30
*40 | 1
0.0005
1
1.0
0.6 | 3.4
2.4
— | *1.2
1.0
*1.2
*4
**4 | мО | | HF 64 | 2N2808
2N2784
2N2784 46
2N2784 51
2N218 | RA
SYL
SYL
SYL
SYL | pnp,PE,si
npn,P,si
npn,P,si
npn,P,si
pnp,AJ,ge | *1000
*1200
*1200
*1200
- | 300
300
400
300
80 | 200
200
200
200
200
85 | -
-
-
1.3 | *30
*15
*15
*15
*15
*20 | 11111 | *5
*40-120
*40-120
*40-120
22-110 | 0.002
.005
.005
.005
50 | 7.5
-
-
- | *0.7
*3
*3
*3 | | | | 2N231
2N233
2N247
2N312
2N410 | SPR
SY
SY
SY
SY | pnp,SBT,ge
npn,AJ,ge
pnp,Dr,ge
npn,AJ,ge
pnp,AJ,ge | 11111 | 9
50
80
75
50 | 55
75
100
85
75 | *0.9 1 1 - | *4.5
*10
*40
*15
*20 | 3
50
10
- | 66
10
20-175
-
22-110 | 3
50
50
60
5 | 110011 | -
-
12 | GI, TI | | HF 65 | 2N504
2N544
2N624
2N706A
2N706C | SPR
SY
SY
GE
SY | pnp,MD,ge
pnp,DJ,ge
pnp,DJ,ge
npn,si
npn,DM,si | 11111 | 30
80
100
300
360 | 85
85
100
175
200 | 1.3
1.3
- | *35
*18
*20
25
40 | 50
10
-
-
50 | 16
20-175
20
2.0
20-60 | 100
4
30
0.5
.025 | 11111 | 5.0 | GI
Planar, Epitaxial, RA
CL, RA | | | 2N708
2N717
2N718
2N718A
2N719 | GE
GE
GE
GE | npn,si
npn,si
npn,si
npn,si
npn,si | 11111 | 360
0.4
0.4
0.5
0.4 | 200
175
175
200
175 | 11111 | 40
60
60
75
120 | 11111 | 3.0
-
-
30
15 | 0.5
1.0
1.0
10µa
2.0 | -
-
12
- | 6.0
35
35
25
20 | Planar Epitaxial CL, MO
Planar Passivated, RA
Planar Passivated, CL, PSI
Planar Passivated, PSI
Planar Passivated, PSI | | HF 66 | 2N719A
2N720
2N720A
2N743
2N744 | GE
GE
SY
SY | npn,si
npn,si
npn,si
npn,MS,si
npn,MS,si | 1111 | 0.5
0.4
0.5
300
300 | 200
175
200
175
175 | -
-
2
2 | 120
120
120
*20
*20 | 1.0amp
-
-
200
200 | 15
30
30
20-60
40-120 | 10µa
2.0
-
1
1 | 111111 | 15
20
15
- | Planar Passivated, PSI
Planar Passivated, PSI
Planar Passivated, PSI
Epitaxial, CL., GI, NA, TI, MO
Epitaxial, CL., GI, NA, TI, MO | | | 2N753
2N768
2N769
2N781
2N782 | TI
SPR
SPR
SY
SY | npn,MS,si
pnp,MD,ge
pnp,MD,ge
pnp,MS,ge
pnp,MS,ge | 11111 | 1 w
35
35
150
150 | 175
100
100
100
100 | 6.7 | 25
*12
*12
15
*12 | 50
100
100
•200
200 | -
40
55
25
20 | 0.5
1
0.3
3 | 11111 | 5 | GI, NA, GE, CL
PH
PH
PH
Epitaxial, GE
Epitaxial, GE | | HF 67 | 2N783
2N784
2N828
2N834
2N849/TI-43 | SY
SY
GE
GE
TI | npn,MS,si
npn,MS,si
pnp,ge
npn,si
npn,EP,si | 11111 | 300
300
150
300
1000 | 175
175
100
175 | 2
2
-
-
- | 40
30
15
40
15 | 200
200
200
200
200
30 | 20-60
25
3.0
3.5
*20-*60 | .25
.25
3.0
0.5 | 11111 | 6.0
4.0 | Epitaxial, CL, GI, MO
(CL, Epitaxial), GI
Mesa Epitaxial, RCA
Planar Epitaxial CL | | | 2N850/TI-43
2N851/TI-42
2N852/TI-42
2N914
2N915 | 22 TI | npn,EP,si
npn,EP,si
npn,EP,si
npn,si
npn,si | 11111 | 1000
1000
1000
360
360 | -
-
200
200 | 1 | 15
12
12
40
70 | 30
200
200
-
- | *40-*120
*20-*60
*40-*120
3.0
2.5 | -
-
25тµа
10 | 11111 | -
-
6.0
3.5 | Planar Epitaxial
Planar Passivated | | HF 68 | 2N929
2N930
2N955
2N960
2N961 | SYL
SYL
RCA
GE
GE | npn,P,si
npn,P,si
npn,MS,ge
pnp,ge
pnp,ge | 11111 | 300
300
150
150
150 | 200
200
-
100
100 | 11111 | *45
*45
12
15
12 | -
100
150
150 | -
*60
20
20 | -
-
3.0
3.0 | 111111 | -
-
4.0
4.0 | Mesa Epitaxial, RA
Mesa Epitaxial | | HF 69 | 2N962
2N964
2N965
2N966
2N994 | GE
GE
GE
GE | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 11111 | 150
150
150
150
200 | 100
100
100
100
100
150 | 11111 | 12
15
12
12
12 | 150
150
150
150
150 | 20
20
20
20
20
20 | 3.0
3.0
3.0
3.0
3.0
3.0 | 111111 | 4.0
4.0
4.0
4.0
6.0 | Mesa Epitaxial
Mesa Epitaxial
Mesa Epitaxial
Mesa Epitaxial
Mesa Epitaxial | | nr 69 | 2N1158
2N1158A
2N1204
2N1264
2N1266 | PH
PH
SPR
SY
SY | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,DD,ge
pnp,AJ,ge | 11111 | 60
75
200
50
80 | 100
100
100
75
85 | 0.8
1
-
1
1.3 | *20
*20
*20
*20
*10 | 100
100
500
10 | 50
50
40
15 | 5
7
50
100 | 11111 | *3
*2.8
-
- | PH, MO | | HF 70 | 2N1398
2N1399
2N1400
2N1401
2N1401A | TI
TI
TI
TI | pnp,MS,ge
pnp,MS,si
pnp,MS,ge
pnp,MS,ge
pnp,MS,ge | 11111 | 50
50
50
50
50 | 85 4
85
85
85
85 | 11111 | 30
30
30
30
30 | 10
10
10
10
10 | 2.3
2.3
1.6
2 | 10
10
10
10
10 | 5 6 1 1 - | 11111 | | | 70 | 2N1402
2N1450
2N1494
2N1515
2N1646 | TI
SY
SPR
AMP
SY | pnp,MS,ge
pnp,AJ,ge
pnp,MD,ge
pnp,PADT,ge
pnp,MS,ge | 11111 | 50
120
400
83
150 | 85
100
100
75
100 | 1.6
-
-
2 | 30
*30
*20
*20
*15 | 10
100
500
10
50 | 2.2
20
15
60
20 | 10
10
7
-
3 | 11111 | 11111 | GI
PH, MO
OC169 | # HF continued | | | | | | MAX. RATINGS | | | | | СНА | RACTE | RISTIC | S | | |-----------------------|---|----------------------------------|--|--------------------|----------------------------------|--|------------------------------------
--|--|---|-------------------------------------|------------------------|----------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | fae *fT **fab (mc) | P
c
(mw) | T _i
(°C) | mw/°C | V _{CEO} *V _{CBO} (√) | 1 C (ma) | hfe
*hFE | ¹ CO (μα) | NF
(db) | Coe
*Cob
(pf) | Remarks | | | 2N1676
2N1677
2N1684
2N1711
2N1742 | PH
PH
SY
GE
PH | pnp,SAT,si
pnp,SAT,si
pnp,AJ,ge
npn,si
pnp,MD,ge | 11111 | 100
100
100
0.8
60 | 140
140
100
200
125 | -
1.3
- | *4.5
4.5
*25
75
*20 | 50
50
100
-
55 | 10.5
50
-
50
*33 | .001
0.001
5
10
0.8 | -
-
8
4.9 | -
-
25
- | SPR, chopper " Spr. Chopper Planar Passivated, RA | | HF 71 | 2N1743
2N1744
2N1745
2N1747
2N1782 | PH
PH
PH
PH
SY | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,AJ,ge | 11111 | 60
60
60
60
100 | 125
125
100
100
100 | -
0.8
0.8
1.3 | *20
*20
*20
*20
*30 | 50
50
50
50
100 | *33
*33
*33
70
30-150 | 0.8
0.8
1
1
6 | 10
-
-
-
- | 11111 | | | | 2N1783
2N1784
2N1841
2N1865
2N1866 | SY
SY
WE
PH
PH | pnp,AJ,ge
pnp,AJ,ge
npn,DM,si
pnp,MD,ge
pnp,MD,ge | 11111 | 100
100
1250
60
60 | 100
100
150
100
100 | 1.3
1.3
100
0.8
0.8 | *30
*30
75
*20
*35 | 100
100
2000
50
50 | 30-90
20
30
70
70 | 5
4
.1
2
1 | 11111 | 11111 | | | HF 72 | 2N1867
2N1868
2N1893
2N1958
2N1959 | PH
PH
GE
SY
SY | pnp,MD,ge
pnp,MD,ge
npn,si
npn,MS,si
npn,MS,si | 1111 | 60
0.8
600
600 | 100
100
200
175
175 | 0.8
0.8
-
4
4 | *35
*20
120
*60
*60 | 50
50
-
500
500 | 50
*33
30
20-60
40-120 | 1
1.5
15
0.5
0.5 | 11111 | -
15
18
18 | Planar Passivated
Epitaxial
Epitaxial | | 1.0 | 2N1960
2N1961
2N1962
2N1963
2N1964 | 2Y
2Y
2Y
2Y
2Y
2Y | pnp,MS,ge
pnp,MS,ge
npn,MS,si
npn,MS,si
npn,MS,si | 11111 | 150
150
400
400
400 | 100
100
175
175
175 | 2
2
2.6
2.6
2.6
2.6 | *15
*12
*40
*30
*60 | 200
200
200
200
200
500 | 25
20
20-60
25
20-60 | 3
3
.25
.25
0.5 | 11111 | -
3
3.5
18 | Epitaxial
Epitaxial
Epitaxial
Epitaxial
Epitaxial | | HF 73 | 2N1965
2N1969
2N2192
2N2192A
2N2193 | SY
SY
GE
GE
GE | npn,MS,si
pnp,AJ,ge
npn,si
npn,si
npn,si | 1111 | 400
150
0.8
0.8
0.8 | 175
100
200
200
200
200 | 2.6
2
-
-
- | *60
*30
60
60
80 | 500
400
1.0a
1.0a
1.0a | 40-120
50-200
2.5
2.5
2.5 | 0.5
5
10тµа
10тµа
10тµа | 11111 | 18
20
20
20
20
20 | Epitaxial
71
Planar Epitaxial
Planar Epitaxial
Planar Epitaxial | | | 2N2193A
2N2194
2N2194A
2N2195A
2N2360 | GE
GE
GE
GE
PH | npn,si
npn,si
npn,si
npn,si
pnp,MD,ge | 11111 | 0.8
0.8
0.8
0.6
60 | 200
200
200
200
200
125 | -
-
-
0.75 | 80
60
60
45
*20 | 1.0a
1.0a
1.0a
1.0am
50 | 2.5
2.5
2.5
2.5
• 2.5
• 33 | 10πμα
10πμα
-
100πμ
0.8 | 1111 | 20
20
-
20
- | Planar Epitaxial
Planar Epitaxial
Planar Epitaxial
Planar Epitaxial, RA | | HF 74 | 2N2361
2N2362
2N2363
2N2389
2N2395 | PH
PH
TI
TI | pnp,MD,ge
pnp,MD,ge
pnp,MS,ge
npn,PL,si
npn,PL,si | 11111 | 60
60
125
2000
2000 | 125
120
-
-
- | 0.75
2
-
-
- | *20
*20
60
35
40 | 50
50
30
600
300 | *33
*33
135
*40-*120
*20-*60 | 0.8
0.8
3
- | 11111 | | | | | 2N2396
2N2398
2N2399
2N2410
2N2411 | TI
PH
PH
TI
TI | npn,PL,si
pnp,MD,ge
pnp,MD,ge
npn,PE,si
pnp,PE,si | 11111 | 2000
60
60
2500
1000 | 100
100
-
- | 2 2 | *20
*20
*20
30
20 | 300
50
50
800
100 | *40-*120
*33
*33
*30-*120
*20-*60 | 8.0
8.0 | 11111 | 1111 | | | HF 75 | 2N2412
10B551
10B553
10B555
10B556 | TI
GE
GE
GE
GE | pnp.PE.si
npn.GP.si
npn.PE.si
npn.PE.si
npn.PE.si | 11111 | 1000
100
100
100
100 | 125
125
125
125
125 | 1.0
1.0
1.0
1.0 | 20
*40
*40
*25
*25 | 100
-
-
-
- | *40-*120
*30-120
*30-120
20
*20-60 | 50mμa
.5
.5
.5 | 11111 | 6.0
6.0
6.0
6.0 | | | | 10C573
10C574
11B551
11B552
11B554 | GE
GE
GE
GE | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | 11111 | 100
100
100
100
100 | 125
125
125
125
125
125 | 1.0
1.0
1.0
1.0
1.0 | *45
*45
*60
*60
*60 | | 36-90
73-333
*20-60
*40-120
*40-120 | 0.2
0.2
.5
.5
25mµa | -
-
-
-
12 | *8
*8
-
-
-
*25 | | | HF 76 | 11B555
11B556
11B560
GT1665
MA-1 | GE
GE
GE
GI
SPR | npn,P,si
npn,P,si
npn,P,si
pnp,AJ,ge
pnp,MAT,ge | 11111 | 100
100
100
150
25 | 125
125
125
100
75 | 1.0
1.0
1.0
2 | *60
*100
*100
*100
6 | -
-
-
-
50 | *100-300
*40-120
*40-120
25
40 | 25mµa
25mµa
.5
4
10 | 12
-
-
-
- | *25
*15
-
-
- | Drift | | HF 77 | MA-2
PT850
PT850A
SO-1
SO-2 | SPR
PSI
PSI
SPR
SPR | pnp,MAT,ge
npn,DM,si
npn,DM,si
pnp,SBT,ge
pnp,SBT,ge | 11111 | 20
2w
2.8w
20
15 | 75
175
175
65
65 | 13.3
18.6 | 3
120
120
5
3 | 50
-
-
5
5 | 40
2
2
10
10 | 10
2
2
10
10 | 11111 | - | hi freq., hi pwr.
hi freq., hi pwr. | | | SO-3
ST3031 | SPR
TR | pnp,SBT,ge
npn,DJ,si | - | 20
150 | 65
175 | - | 5
- | 5 - | 10 - | 10 | - | - | | # WHY DO LOW PINCH-OFF UNIFETS* GIVE HIGHER VOLTAGE AMPLIFICATION? BECAUSE AV IS INVERSELY PROPORTIONAL TO V_P WHEN $V_{DD1} = V_{DD2}$ AND $V_{DS1} = V_{DS2} = YOU$ ALSO GET GREATER BIAS STABILITY AND WIDER DYNAMIC RANGE. AVAILABLE NOW IN FOUR g_m VALUES AS SHOWN WRITE FOR FILE #841, THE DESCRIPTIVE PAPER ON LOW V_P UNIFET APPLICATIONS Low Pinch-off UNIFETs *(Unipolar Field-Effect Transistors) now available: | Typical | 2N2841 | 2N2842 | 2N2843 | 2N2844 | | | | | | | | |---|--------|--------|--------|--------|------|--|--|--|--|--|--| | VP | 0.8 | 0.8 | 0.8 | 0.8 | ٧ | | | | | | | | gm | 90 | 270 | 800 | 2000 | μmho | | | | | | | | loss | -50 | -150 | -450 | -1000 | μа | | | | | | | | NF at 1kc | 0.5 | 0.5 | 0.5 | 0.5 | db | | | | | | | | Pinch-off: 1.7v max.—Gate-drain breakdown: 20v min —T0-18 package | | | | | | | | | | | | ## AMPLIFICATION CALCULATIONS FOR HIGH PINCH-OFF VS. LOW PINCH-OFF UNIFETS For all UNIFETs, it can be shown that: $g_{mo} \dagger = \frac{2.5 \, l_{DSS} \dagger \dagger}{V_P} \text{ within about } 20\%$ When $V_{DD1} = V_{DD2} = -15v$ and $V_{DS1} = V_{DS2} = -5v$ then IDSS1 $R_{L1} = 10v$ and IDSS2 $R_{L2} = 10v$ Available voltage amplification, $A_v = g_m R_L$ From these equations, it can be shown that $A_{v1} = \frac{25}{V_{P1}}$ and $A_{v2} = \frac{25}{V_{P2}}$ since $V_{P1} = 5v$ $V_{P2} = 0.8v$ $A_{v1} = 5$ $A_{v2} = 31$ $\dagger g_m$ when $V_{GS} = 0$. $\dagger \dagger$ Drain-source current when $V_{GS} = 0$. ## Siliconix incorporated 1140 West Evelyn Ave. • Sunnyvale 11, California Telephone 245-1000 • Area Code 408 • TWX 408-737-9948 ON READER-SERVICE CARD CIRCLE 454 # POWER Types rated at one watt and higher. In order of increasing power dissipation. | | | | PENEAR OF | | MAX. RATINGS CHARACTERISTICS | | | | | | | | | | |-----------------------|--|----------------------------------|--|------------------------------------|--|--|---------------------------------|--------------------------|---|--|--|--------------------------|-------------------------|----------------------------------| | Crass
Index
Key | Type
Na. | Mfr. | Туре | P _c (w) | w/°C | T _i (°C) | V
CEO
*V
CBO
(v) | l _c (a) | h _{fe} | Ι
(ma)
(*μα) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 1 | 2N2038
2N2039
2N2040
2N2041
2N2198 | TR
TR
TR
TR
TR | npn
npn
npn
npn
npn | 0.6
0.6
0.6
0.6
0.6 | 0.03
0.03
0.03
0.03
0.03
0.025 | 200
200
200
200
200
200 | 45
75
45
75
80 | 0.5
0.5
0.5
0.5 | 12-36
12-36
30-90
30-90
20-70 | 0.001
0.001
0.001
0.001
0.010 | 11111 | 11111 | 1111 | | | | 2N957
2N339
2N340
2N341
2N341A | PSI
TI
TI
TI
TR | npn,TPD,si
npn,GR,si
npn,GR,si
npn,GR,si
npn,DJ,si | 0.8w
1.0
1.0
1.0 | 0.006
0.008
800.0
800.0
800.0 | 150
150
150
150
200 | 40
55
85
*125
*125 | .06
.06
.06 | 9-90
9-90
9-90
9-90
15-90 | 0.01
.001
.001
.001 | 250
6
6
6
- | 30
30
30
30 | 11111 | TR, PSI
TR
TR | | P 2 | 2N342
2N342A
2N342B
2N343
2N343A | TI
TI
TI
TI
TR |
npn,GR,si
npn,GR,si
npn,GJ,si
npn,GR,si
npn,DJ,si | 1.0
1.0
1.0
1.0 | 0.008
0.008
-
0.008
.008 | 150
150
-
150
150 | 60
85
85
60
*60 | .06
.06
0.6
.06 | 9-32
9-32
9-32
28-90
29-90 | .001
.001
-
.001
.001 | 6
6
-
8
- | 30
30
-
30
- | 1 | TR
TR
TR
TR | | | 2N343B
2N497 A
2N498 A
2N656 A
2N657 A | TI
BE
BE
BE
BE
BE | npn,GJ,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PI,si | 1.0
1
1
1
1 | 1 1 1 1 1 | 200
200
200
200
200 | 65
60
60
60
100 | 0.6
-
-
-
- | 28-90
*12-36
*12-36
*30-90
*30-90 | 11111 | 11111 | 11111 | 1 - 1 - 1 | | | P 3 | 2N706
2N707
2N709
2N988
2N989 | FA
PSI
FA
PSI
PSI | npn,DD,si
npn,TDP,si
npn,DP,si
npn,TPD,si
npn,TPD,si | 1.0
1
1.0
1 | 0.0067
.006
0.005
0.006
0.006 | 175
175
200
175
175 | *25
56
6.0
20
20 | 11111 | *45
12
*55
70
70 | *0.005
.005ma
*0.005
0.05
0.05 | *400
300
*800
250
250 | 6
-
8
11 | 0.2
0.32
0.63 | МО | | | 2N1048A
2N1206
2N1207
2N2017
2N2106 | BE
TR
TR
GE
GE | npn,DM,si
npn,GR,si
npn,GR,si
npn,MS,si
npn,MS,si | 1
1.0
1.0
1.0
1.0 | -
10
10
-
- | 165
200
200
200
200
150 | 120
60
*125
60
60 | 0.5
-
-
-
- | *12-36
15-19
15-90
30
12-36 | 1
1
10
200° | -
-
-
-
15 | 11111 | 11111 | BE
BE | | P 4 | 2N2107
2N2108
2N2726
2N2727
7A30 | GE
GE
GE
GE | npn,MS,SI
npn,MS,si
npn,DM,si
npn,DM,si
npn,DM,si | 1.0
1.0
1.0
1.0
1.0 | 1 | 150
150
200
200
150 | 60
60
*200
*200
*50 | 11111 | 30-90
30
*30-90
*75-150
*12-36 | 200°
200°
°1.0
°1.0
°10 | 15
15
-
-
15mc | 11111 | 1 - 1 - 1 | BE
BE | | | 7A31
7A32
2N708
2N869
2N914 | GE
GE
FA
FA | npn,DM,si
npn,DM,si
npn,DP,si
pnp,DP,si
npn,DP,si | 1.0
1.0
1.2
1.2
1.2 | -
0.0069
0.0069
0.0069 | 150
150
200
200
200
200 | *50
*50
15
18
*15 | 11111 | *30-90
*75-200
*50
*50
*55 | *10
*10
*0.004
0.0001
*0.004 | 15mc
15mc
*450
150
*370 | | | MO
CL, MO | | P 5 | 2N915
2N916
2N947
2N995
2N996 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
pnp,DP,si
pnp,DP,si | 1.2
1.2
1.2
1.2
1.2 | 0.0069
0.0069
0.0069
0.0069
0.0069 | 200
200
200
200
200
200 | 50
25
-
15
12 | 11111 | *100
*80
*50
*60
*75 | *0.005
*0.002
*0.005
0.0002
0.0002 | •350
•400
•400
200
200 | 61111 | | RA | | P 6 | 2N1566
2N2368
2N2369
2N2656
PT720 | TI
FA
FA
PSI
PSI | npn,MS,si
npn,DP,si
npn,DP,si
npn,EM,si
npn,TPD,si | 1.2
1.2
1.2
1.2
1.2 | 0.0069
0.0069
0.006
0.006 | 175
200
200
200
200
200 | *80
15
15
25
25 | 50
-
200
200 | 100
•40
•70
50
80 | 1
*0.1
*0.1
0.01
5 | 50
*650
*650
250
250 | -
-
10
15 | -
-
0.05
0.05 | TR,NA | | P 6 | 2N721
2N722
2N978
2N717
2N718 | TR
TR
TR
FA
FA | pnp,PL,si
pnp,PL,si
pnp,PL,si
npn,DD,si
npn,DD,si | 1.25
1.25
1.25
1.5
1.5 | .010
.010
.010
0.010
0.010 | 200
200
200
175
175 | *30
*50
*30
- | 1 1 | *20
*25
*15
*40
*80 | *1
*1
*5
*0.01
*0.01 | *50,000
*60,000
*40,000
*80
*100 | | - | RA, PSI
RA, PSI | | | 2N719
2N720
2N721
2N722
2N2786 | FA
FA
FA
AMP | npn,DD,si
npn,DD,si
pnp,DD,si
pnp,DD,si
pnp,BB | 1.5
1.5
1.5
1.5
1.5 | 0.010
0.010
0.010
0.010
35 | 175
175
175
175
175
75 | -
35
35
*34 | -
-
-
-
150 | *40
*65
*30
*60
*40 | *0.01
*0.01
*0.01
*0.01 | *90
*100
*70
*80 | -
-
-
10 | -
-
-
0.5 | RA, PSI
RA, PSI
0.5w @80mc | | P 7 | PT886
PT887
PT888
2N718A
2N719A | PSI
PSI
PSI
FA
FA | npn,TPD,si
npn,TPD,si
npn,TPD,si
npn,DP,si
npn,DP,si | 1.6
1.6
1.6
1.8
1.8 | 0.01
0.01
0.01
0.0103
0.0103 | 175
175
175
200
200 | 22
45
45
-
60 | 11111 | -
-
-
•80
•40 | 0.3
0.3
0.3
•0.0003
•0.0003 | 180
180
180
*100
*80 | 6.0
4.0
- | 150
750
1000
— | PSI | T40 # **New from Honeywell!** V_{CE}(sat.) Object V MAX.@I_c=5A V_{BE}(sat.) 1 1 V MAX.@I_c=5A 1_{CB0} 0 1 μα@V_{CB}=60V # Four new silicon planar JEDEC transistors featuring 11/16-inch hex package 40-WATT DISSIPATION @ 100°C. | | вусво | BVCEO | BVEBO | GAIN | |--------|-------|-------|-------|--------| | 2N2811 | 80 | 60 | 8 | 20-60 | | 2N2812 | 80 | 60 | 8 | 40-120 | | 2N2813 | 120 | 80 | 8 | 20-60 | | 2N2814 | 120 | 80 | 8 | 40-120 | For price and delivery contact your nearest sales office or distributor. Or write: Dept. ED-5-42. Minneapolis-Honeywell, 2747 Fourth Avenue S., Minneapolis 8, Minn. # Honeywell #### SEMICONDUCTOR PRODUCTS EMPLOYMENT OPPORTUNITIES exist for engineers, scientists, and physicists in Florida. WRITE—Personnel Dept., 1177 Blue Heron Blvd., Riviera Beach, Fla. An Equal Opportunity Employer. HONEYWELL INTERNATIONAL: Sales and service offices in all principal cities of the world. ON READER-SERVICE CARD CIRCLE 455 | | | | | | | MAX. R | ATINGS | | | CHARA | CTERIST | rics | | | |-----------------------|--|--------------------------------|--|--|--|--|--------------------------------|---------------------------------|---|---|---|-----------------------|----------------------|--| | Cross
Index
Key | Гуре
No. | Mfr. | Туре | P _c (w) | w/°C | T _i
(°C) | V
CEO
*V
CBO
(v) | i _c (a) | hfe
*hFE | C0
(ma)
(*μa) | fae
*f _T
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 8 | 2N720A
2N870
2N871
2N910
2N911 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | 1.8
1.8
1.8
1.8
1.8 | 0.0103
0.0103
0.0103
0.0103
0.0103 | 200
200
200
200
200
200 | 80
60
60
60 | 11111 | *80
*80
*200
*135
*70 | *0.0003
*0.0003
*0.0003
*0.0003 | *100
*70
*90
*80
*70 | 11111 | 11111 | PSI
RA
RA
RA, PSI
RA | | , 0 | 2N912
2N956
2N 1890
2N696 | FA
FA
PSI
FA | npn,DP,si
npn,DP,si
npn,TPD,si
npn,DD,si | 1.8
1.8
1.8
2.0 | 0.0103
0.0103
0.01
0.0133 | 200
200
200
175 | 60
-
100
- | | *42
*200
200
*40 | *0.0003
*0.0003
0.001
*0.01 | *60
*100
190
*60 | 1111 | 1111 | RA
PSI
RA, PSI | | | 2N697
2N699
2N1131
2N1132
2N1252 | FA
FA
FA
FA | npn,DD,si
npn,DD,si
pnp,DD,si
pnp,DD,si
npn,DD,si | 2.0
2.0
2.0
2.0
2.0
2.0 | 0.0133
0.0133
0.0133
0.0133
0.0133 | 175
175
175
175
175 | -
35
35 | 11111 | *75
*65
*30
*60
*35 | *0.01
*0.01
*0.01
*0.01
*0.01 | *80
*100
*70
*90
*80 | 11111 | 11111 | RA, PSI
RA
MO
RA | | P 9 | 2 N1253
2N1420
2N1840
2N1983
2N1984 | FA
FA
PSI
FA
FA | npn,DD,si
npn,DD,si
npn,TPD,si
npn,DD,si
npn,DD,si | 2.0
2.0
2
2.0
2.0
2.0 | 0.0133
0.0133
0.013
0.016
0.016 | 175
175
175
150
150 | -
25
25
25
25 | -
500
-
- | *45
*150
15
4.0
4.0 | *0.1
*0.01
0.3
*1.0
*1.0 | *110
*130
180
*10
*10 | 11111 | 11111 | RA
PSI
RA
RA | | | 2N1985
2N1986
2N1987
2N1988
2N1989 | FA
FA
FA
FA | npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si | 2.0
2.0
2.0
2.0
2.0
2.0 | 0.016
0.016
0.016
0.016
0.016 | 150
150
150
150
150 | 25
25
25
45
45 | 11111 | 4.0
*100
*50
*70
*40 | *1.0
*1.0
*1.0
*1.0
*1.0 | *50
*80
*80
*80
*80 | 11111 | 11111 | RA
RA
RA
RA | | P 10 | 2N1990
2N1991
2N2303
2N1335
2N1336 | FA
FA
FA
PSI
PSI | npn,DD,si
npn,DD,si
pnp,DP,si
npn,MS,si
npn,MS,si | 2.0
2.0
2.0
2.8
2.8 | 0.016
0.016
0.0133
0.024
0.024 | 150
150
175
150
150 | 20
-35
.120
120 | -
-
.075
.075 | *40
*30
*120
13 | *1.0
*0.005
.008 | *50
*50
*90
70
70 | 11111 | 11111 | RA
RA
high freq. high pwr.
high freq., high pwr. | | | 2N1339
2N1340
2N1341
2N1342
2N698 | PSI
PSI
PSI
PSI
FA | npn,MS,si
npn,MS,si
npn,MS,si
npn,TPD,si
npn,DP,si | 2.8
2.8
2.8
2.8
3.0 | 0.024
0.024
0.024
0.018
0.0172 | 150
150
150
175
200 | 120
120
120
150
60 | .075
.075
.075
300 | -
-
12
•40 | .008
.008
.008
0.01
•0.0003 | 70
70
70
190
•70 | -
-
8
- | -
-
0.7 | high freq., high pwr.
high freq., high pwr.
high freq., high pwr.
RA, PSI | | P 11 | 2N1505
2N1506
2N1506 A
2N1561
2N1562 | PSI
PSI
BE
MO
MO |
npn,MS,si
npn,MS,si
npn,PL,si
pnp,MS,si
pnp,MS,ge | 3
3
3
3 | 0.2
0.2
-
.04
.04 | 175
175
200
100
100 | 50
60
50
•25
•25 | -
-
.25
.25 | 7
9
•10-10
10
10 | -
-
0 -
.0015 | 70
70
-
500 mc
450 mc | 11111 | | high freq., high pwr., BE
high freq., high pwr., BE
high freq., high pwr.
high freq., high pwr. | | | 2N1564
2N1565
2N1566
2N1613
2N1613 | PSI
PSI
PSI
TR
FA | npn,TPD,si
npn,TPD,si
npn,TPD,si
npn,PL,si
npn,DP,si | 3
3
3
3
3.0 | 0.02
0.02
0.02
0.02
.017
0.0172 | 175
175
175
200
200 | 80
80
80
•75 | 50
50
50 | 30
60
130
*20
*80 | 0.01
0.01
0.01
10na
*0.0003 | 190
19 0
190
•60,000
•80 | 1111 | 1111 | | | P 12 | 2N1692
2N1693
2N1711
2N1711
2N1890 | MO
MO
TR
FA
EA | pnp,MS,ge
pnp,MS,ge
npn,PL,si
npn,DP,si
npn,DP,si | 3
3
3,0
3.0 | .04
.04
.017
0.0172
0.0172 | 100
100
200
200
200 | *25
*25
*75
-
60 | .25
.25
-
- | 10 db
10 db
•100
•130
•200 | .0015
.0015
10na
•0.0003
•0.0003 | 500 mc
-70,000
•100
•90 | 6
6
-
- | 0.5
.4
-
- | PSI
RA | | | 2N1893
2N1893
2N1893A
2N1893A
2N1973
2N1974 | FA
PSI
PSI
FA
FA | npn,DP,si
npn,TPD,si
npn,TPD,si
npn,DP,si
npn,DP,si | 3.0
3
3
3.0
3.0 | 0.0172
0.017
0.017
0.0172
0.0172 | 200
200
200
200
200
200 | 120
140
60
60 | 500
500
-
- | -
80
90
*135
*70 | *0.0003
0.001
0.001
*0.0003
*0.0003 | *70
190
190
*80
*70 | | | RA | | P 13 | 2N1975
2N2049
2N2224
MM719
2N1506A | AMF
FA
BE
MO
PSI | npn,DP,si
npn,DP,si
npn,PL,si
npn,PE,si
npn,TPD,si | 3.0
3.0
3
3
3
3.5 | 0.0172
0.0172
-
17.1
0.02 | 200
200
200
200
200
200 | 60
-
*40
*60
80 | -
-
-
-
500 | *42
3.0
*40-121
*40
60 | *0.0003
*0.0003
 | *60
-
-
*400
190 | -
-
-
10 | -
-
0.8
1.3 | DVV-U- | | | 2N497
2N498
2N656
2N657
TAG200 | TI
TI
TI
TI
FA | npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,DP,si | 4.0
4.0
4.0
4.0
4.0 | .023
.023
.023
.023
.023
0.0228 | 200
200
200
200
200
200 | 60
100
60
100 | 200
200
200
200
200 | 12-36
12-36
30-90
30-90
*80 | 10
10
10
10 | 9 mc
9 mc
8 mc
8 mc | 11111 | 11111 | TR, FA, NA, BE, RCA
TR, FA, NA, BE
TR, FA, NA, BE, RCA,GE
TR, FA, NA, BE, GE | | P 14 | 2N1479
2N1480
2N1481
2N1482
2N1615 | RCA
RCA
RCA
RCA
TR | npn,DJ,si .
npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,ME,si | 4
4
4
4
4 | -
-
-
.023 | 175
175
175
175
175
200 | 60
100
60
100
*100 | 1.5
1.5
1.5
1.5 | 50
50
50
50
•25 | 10
10
10
10
•10 | 1.5 mc
1.5 mc
1.5 mc
1.5 mc
1.5 mc
•25,000 | | - | TR
TR
TR
TR | | | 1 | | | | | TINGS | | | CHARAC | TERIST | ICS | 100 VI | | | |----------------------|---|--------------------------------|---|--|---|--|----------------------------------|-------------------------------|--|--|---|--|----------------------|---| | Cros
Inde:
Key | | Mfr. | Туре | P _c (w) | w/°c | T _i | VCEO *VCBO | ا _د
(a) | h _{fe} | CO
(ma)
(*μa) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 1 | MHT-4401
MHT-4402
MM801
PT1588
ST4341 | MH
MH
MO
PSI
TR | npn,EP,si
npn,EP,si
npn,PE,si
npn,TPD,si
npn,ME,si | 4 4 4 4 4 | 0.023
0.023
26.7
0.023
.023 | 200
200
175
200
200 | *60
*120
*60
80
*80 | 0.5
0.5
-
- | 20-120
20-120
*10
40
*15 | 0.001
0.002
*0.5
0.005
*80 | 80m
80m
•300
210
•15,000 | -
-
10 | -
6
1 | Vce (sat)=1v
Vce (sat)=2 v | | | 2N699B
2N1067
2N1700
2N2102
2N2270 | FA
STC
RCA
RCA
RCA | npn,BP,si
npn,DJ,si
npn,si
npn,TDP,si
npn,TDP,si | 5.0
5
5
5
5 | 0.035
28.6
-
- | 200
175
-
-
- | -
60
*60
120
60 | -
0.5
1.0
1.0
1.0 | 35
*20
35*
35* | *0.0004
5
-
- | *100
1.5
-
-
- | | 11111 | PSI
RCA, AMF
TR
BE
BE | | 0.16 | 2N2297
2N121E
2N2038
2N2039
2N2040 | FA
SY
TR
TR
TR | npn,DP,si
npn,AJ,ge
npn,DJ,si
npn,DJ,si
npn,DJ,si | 5.0
6
6
6
6 | 0.0286
0.1
.03
.03 | 200
85
200
200
200 | *45
45
75
45 | 2
0.5
0.5
0.5 | *35
40-100
12-36
12-36
30-90 | *0.0004
3
.001
.001
.001 | *90
7
-
- | 11111 | 1 1 1 1 1 1 | | | P 16 | 2N2041
OC30
2N326
7F1
7F2 | TR
AMP
SY
GE
GE | npn,DJ,si
pnp,PADT,ge
npn,AJ,ge
npn,um,si
npn,MS,si | 6
6.7
7
7 | .03
75
0.11 | 200
75
85
175
175 | 75
*32
*35
*80
*80 | 0.5
1.4
2
- | 30-90
35
45
•12-36
•30-90 | .001
.012
3
*50
*50 | -
150
-
- | 1111 | 11111 | | | | 7F3
7F4
2N1172
2N1183
2N1183A | GE
GE
DE
RCA
RCA | npn, DM, si
npn, DM, si
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 7
7
7.5
7.5
7.5
7.5 | -
.1
- | 175
175
100
100
100 | *120
*120
*40
45
60 | -
1.5
3
3 | *12-36
*30-90
20
20 | *50
*50
0.100
.03
.03 | -
17
500
500 | -
34
- | 11111 | driver | | P 17 | 2N1183B
2N1184
2N1184A
2N1184B
2N1609 | RCA
RCA
RCA
RCA
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 7.5
7.5
7.5
7.5
7.5
7.5 | -
-
-
10.0 | 100
100
100
100
100 | 80
45
60
80
60 | 3
3
3
1.5 | 20
40
40
40
*30/75 | .03
.03
.03
.03
.03 | 500
500
500
500
15 | -
-
-
32 | 11111 | | | | 2N1610
2N1610
2N1612
2N2403
2N2404 | DE
KF
KF
NA
NA | pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si | 7.5
7.5
7.5
8
8 | 10.0
.1
.1
0.045
0.045 | 100
100
100
200
200 | 60
*80
*60
60 | 1.5
1½
1½
1
1 | *50/125
*35
*35
20-60
40-120 | 100
*20
*20
0.001
0.001 | 15
-
-
200mc
200mc | 32
-
-
12
12 | -
-
1.2
1.2 | | | P 18 | 2N2485
2N2486
2N2649
2N2650
2N122 | CS
CS
CS
TI | npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si
npn,GR,si | 8.7
8.7
8.7
8.7
8.75 | .05
.05
.05
.05
.070 | 200
200
200
200
200
150 | 120
140
65
140
120 | 1
1
1
1
140 | *10
*10
*10
*10
3 | *500
*500
*500
*500 | *250
*250
*250
*250
*250 | 7
5
5
6.5
28 | 5
3
2
4.5 | | | P1 | 2N176
2N350
2N351
2N376
2N669 | SY
SY
RCA
RCA
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 0.15
0.13
1
1
1.5 | 90
100
90
90
90 | *30
*40
40
40
30 | 3
3
3
3
3 | 4.5
40
65
78
90 | 0.3
-
3
3
0.3 | -
5
-
-
5 | 35.5
32
33.5
35
40 | -
4
4
2 | RCA, MO, BE
MO, BE
MO, SY, BE
MO, BE
BE, CL | | | 2N1068
2N1714
2N1715
2N1716
2N1717 | IND
TI
TI
TI
TI | npn,AJ,si
npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si | 10
10
10
10
10 | 0.133
.134
.134
.134
.134 | 175
175
175
175
175
175 | 60
60
100
60
100 | 1.5
1
1
1
1 | 38
-
-
-
- | 0.5
.002
.002
.002
.002 | 20 mc
20 mc
20 mc
20 mc
20 mc | 11111 | 11111 | STC, RCA, AMF, BE | | P 20 | 2N1718
2N1719
2N1720
2N1721
2N1755 | TI
TI
TI
TI
CL | npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si
pnp,AJ,ge | 10
10
10
10
10 | .134
.134
.134
.134
2.5 | 175
175
175
175
175
95 | 60
100
60
100
*40 | 1
1
1
1
3 | | .002
.002
.002
.002
.002 | 20 mc
20 mc
20 mc
20 mc
20 mc
15 | -
-
-
-
30-75 | 11111 | RA
RA
RA | | 7 20 | 2N1756
2N1757
2N1758
2N1759
2N1760 | CL
CL
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 2.5
2.5
2.5
2.5
2.5
2.5 | 95
95
95
95
95 | *60
*80
*100
*40
*60 | 3
3
3
3 | - | 7
7
7
7 | 15
8
8
10
10 | 30-75
30-75
30-75
60-150
60-150 | 11111 | | | P 21 | 2N1761
2N1762
CDT1310
CDT1311
CDT1312 | CL
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 2.5
2.5
1.5
1.5 | 95
95
95
95
95 | *80
*100
*40
*60
*80 | 3
3
5
5
5 | 11111 | 7
7
15
15
15 | 6 5 5 5 | 60-150
60-150
40-120
40-120
40-120 | 111111 | | | | CDT1313
CST1739
CST1740
CST1741
CST1742 | CL
CL
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,LA,qnq
pnp,AJ,ge | 10
10
10
10
10 |
1.5
2.5
2.5
2.5
2.5
2.5 | 95
95
95
95
95 | *100
*40
*40
*40
*40 | 5 3 3 3 3 | 11111 | 15
3
3
3
3 | 5
7
7
7
7 | 40-120
28-39
28-33
32-35
34-37 | 11111 | | May 24, 1963 T43 # $P_{\text{continued}}$ | 0.13 | | 2 | 1 - | S | 6.0 | 30min
20min | 3 | 100 | 58 | 65.0
0.33 | 20
20 | ag,lA,qnq
ag,lA,qnq | KE | ZN1437
ZN1326 | | |----------------------------------|------------------------------|-------------------------------|--|--|--------------------------------------|--|----------------------------------|--------------------------------------|--------------------------------------|---|----------------------------------|--|--|--|-----------------------| |)-10
[' KE | | 2
2
2
- | | 9 | 87.0
8.0
8.0 | 20-60
30min
30min | ~ ~ ~ ~ | 001
08*
09*
001 | 82
82
100 | 72.
EE.0
EE.0 | 20
20
20
20 | 9g,lA,qnq
9g,lA,nqn
9g,lA,qnq | 2X
2X
11 | 2N1294
2N1294
2N1294 | 8 Z d | | , кЕ
, кЕ
, кЕ | 38 | -
-
-
S
Z | -
-
-
30
52 | | £.1
87.0
87.0
87.0 | 50-60
50-60
50-60
- | | 80
90
90
52 | 001
001
06
98 | 2.0
5.1
75.
75. | 20
20
20
20
20 | 93,lA,qnq
93,lA,qnq
93,lA,qnq
93,lA,qnq
93,lA,qnq | 11
11
38
38 | 2N1043
2N1043
2N4001
2N266A | | | | | 22-25
2
92-51
2
2 | -
52
-
- | - 8 - 88 | 1°0
1°0
1°0
1 | -
-
-
50
50 | w w w w w | 30
12
12
80
80 | 58
58
58
58 | 0.33
2.0
2.0
0.5
2.0 | 20
20
20
20
20
20 | 98,LA,qnq
98,LA,qnq
98,LA,qnq
98,LA,qnq | A9
A9
38
38
38 | 821NS
281NS
22NS
A22SNS
82SNS | 47.1 | | | KE
BE | 2
8
8
9 | 2.8
4
-
- | \$
\$
0\$Z•
0\$Z•
\$\$20 | 1
2
- 200
• 200
• 200 | 50
50
10
• 10
• 10 | £
Z
Z
Z | 30
• 30
• 140
• 62
• 140 | 98
98
921
921
921 | 21.
21.
21.
51.
55. | 20
20
18
18
18 | iz,ZM,nqn
iz,ZM,nqn
iz,ZM,nqn
99,LA,qnq
98,LA,qnq | 22
22
22
22
8A | 5N129
5N122
2N534
2N535
2N531 | 7 <u>2</u> q | | 3 | 38 | -
-
-
3.7 | -
33
5.7 | - S | 005 •
-
05 •
05 • | 01.0
52
.30-90
.30-90 | 2
-
-
- | 99
•32
•150
•150 | SZT
SZT
SZT
SZT
SZT | -
-
\$6.0
S1. | 81
21
31
31
31 | iz,MO,nqn
iz,MO,nqn
iz,MO,nqn
99,LA,qnq
iz,2M,nqn | CE
CE
CE
CE
CE | 762
763
764
24307A
24307A | 07 | | | | 11111 | 11111 | 11111 | 05 •
05 •
05 •
05 • | • 15-38
• 15-38
• 15-38
• 15-39 | 11111 | 08.
08.
08.
08. | 941
941
941
941
941 | - | 12
12
12
12
12
13 | iz,MO,nqn
iz,MO,nqn
iz,MO,nqn
iz,MO,nqn
iz,MO,nqn | 30
30
30 | 703
183
194
194 | 92 d | | 7 | | 11111 | 11111 | 11111 | 05 • 05 • 05 • 05 • 05 • 05 • | \$30-80
\$15-36
\$30-80
\$15-36 | 11111 | 08.
08.
08.
08.
08. | 921
921
921
921
921 | | 12
12
12
12
12
12 | iz,MO,nqn
iz,MO,nqn
iz,MO,nqn
iz,MO,nqn
iz,MO,nqn | 30
30
30
30 | 101
702
703
701
702 | | | | | | 11111 | 12
-
-
- | 05
05*
05*
05* | 15
• 15-30
• 15-30
• 30-30 | 11111 | 021
08*
08*
021*
021* | 941
941
941
941
941 | - | 12
12
12
12
12 | iz,MQ,nqn
iz,MQ,nqn
iz,MQ,nqn
iz,MQ,nqn
iz,2M,nqn | 30
30
30
30 | 783
187
187
2022N2
5022N2 | 82 q | | | | | 11111 | -
-
-
-
SI | 05.
05.
05.
SI
engl | 06-08.
06-08.
030-90
30-90 | 30 | \$150
\$150
80
80 | 941
941
941
941
941 | - | 12
12
12
12
12
12 | iz,ZM,nqn
iz,ZM,nqn
iz,MO,nqn
iz,MO,nqn
iz,MO,nqn | 30
30
30
30 | 2N 2S 03
2N 2S 05
2N 2S 01
2N 2S 01
2N 2S 03
2N 2S 03
2N 2S 03 | | | 73¢⊬ | NZ | 3.0
8
-
- | -
-
-
01
10 | 700
700
700
710
710 | 2.
2.
2.0
2.0 | 30-90
30-90
30
30 | 1
0.1
2
2
2 | 09.
08.
32
54
54 | 001
001
52
521
521 | 780.
780.
0.5
5.0
5.0 | 12
12
13
13 | iz,90T,nqn
iz,90T,nqn
9g,lA,qnq
9g,lA,qnq
9g,lA,qnq | PSI
PSI
MH
MH
WH | PT531
PT612
2N307
2N1658
2N1659 | ₹Z d | | freq., hi pwr.
freq., hi pwr. | | -
3.2
3.2
3.2
3.5 | 2
2
2
8 qp
10 qp | \$10
\$10
\$10
\$30
\$40wc | x6m0!
x6m0!
č.
č. | 30
30
30
- | 62.1
62.1
5
2
2
2 | 001
001
97
09
87 | \$21
\$21
\$21
\$21
\$21 | 7,38
7,38
780.
780.
780. | 13
13
13
13 | iz,MO,nqn
iz,MO,nqn
iz,9OT,nqn
iz,9OT,nqn
iz,9OT,nqn | P51
P51
P51
P51
P51
P51 | 2N2782
2N2782
2N2781
2N1710
2N1710 | | | e (sat)=2 v | 38 | 12111 | -
-
-
- | 80m
2
150
2
150 | 0.002
0.1
0.1
5
5
100 | 33
33
30-150 | 9
7
5.8
8
1 | 080
090
250
00
00 | 06
82
06
16
00Z | 720.0
-
5.0
- | 13
11
11
11
10 | iz,93,nqn
9g,1A,qnq
9g,TOA9,qnq.
9g,1A,qnq
9g,TOA9,qnq | HM
ADA
AMA
YZ
9MA | MH T-4502
2N301
2N1314
2N301A
2N301A | FZ d | | v l=(162) 9: | οΛ | 71
90
90
21 | - 52
32
22
32
30 | ф
9
ф
9 | 2
2
2
8
0.001 | 70-150
-
-
-
- | 3 3 3 | 09.
08
02
05
00 | 00Z
06
06
98
58 | 2.0
2.0
2.0
2.0
2.0
2.0
2.0 | 10
10
10
10
10 | 9g,lA,qnq
9g,lA,qnq
9g,lA,qnq
9g,lA,qnq
iz,93,nqn | אא
כר
כר
כר
כר | CTP1105
CTP1108
CTP1111
CTP1111
CTP1111 | | | | | 1.2 | 82
35-32
28-33
58-33
38-36 | L
L
L
L | 2
2
2
2
2 | | 5
5
5
5 | 0b
08*
08*
0b* | \$8
\$6
\$6
\$6
\$6 | 2.5
2.5
2.5
2.5
2.5
2.5 | 10
10
10
10
10 | ag,lA,qnq
ag,lA,qnq
ag,lA,qnq
ag,lA,qnq
ag,lA,qnq | 10
01
01
01
01
01 | C15110¢
C211146
C21-1140
C21-1140
C211143 | ₩ d | | e mark s | צי | .tuO
(w) | Powr.
Gain
(db) | (KC)
+L
+QG | (pm)
(DD) | ajų
ajų* | (o) | (^)
*V
CEO | (O ₀) | J₀/M | р
(w) | Type | .13M | Type
No. | Cross
Index
Key | | | MAX. RATINGS CHARACTERISTICS | | | | | | | | | | 4 | | | | | | | | | | | MAX. RATINGS | | | | CHARAC | TERIST | ICS | | | | |-----------------------|--|-------------------------------|--|--|--|-----------------------------------|----------------------------------|----------------------------|---|----------------------------------|--------------------------------------|---------------------------|----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (w) | w/°C | T _i
(°C) | V
CEO
*V
CBO
(v) | l _c (a) | h _{fe} *h | CO (mo) (* μα) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 29 | 2N1438
2N1465
2N1466
2N1504
2N2552 | KF
KF
KF
KF | e, LA, qnq
e, LA, qnq
e, LA, qnq
e, LA, qnq
eg, LA, qnq | 20
20
20
20
20
20 | 0.33
0.33
0.33
0.33
0.33 | 85
85
85
85
100 | 100
120
120
80
•40 | 3
3
3
3 | 20min
20min
20min
20min
*33 | 0.5
0.5
0.5
0.5
*40 | 5
5
5
10 | 1111 | 2
2
2
2
2 | TO-10
TO-13
TO-10 | | | 2N2553
2N2554
2N2555
2N2555
2N2556
2N2557 | KF
KF
KF
KF | g, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq | 20
20
20
20
20
20 | .27
.27
.27
.27
.27
.27 | 100
100
100
100
100 | *60
*80
*100
*40
*60 | 1
1
1
1
1 | *33
*33
*33
*33
*33 | *40
*40
*40
*40
*40 | 10
10
10
10
10 | 11111 | | | | P 30 | 2N2558
2N2559
2N2560
2N2561
2N2562 | KF
KF
KF
KF | pnp,AJ,ge
pnp,AJ,ge
eg,LA,qnq
eg,LA,qnq
pnp,AJ,ge | 20
20
20
20
20
20 | .27
.27
.27
.27
.27 | 100
100
100
100
100 | *80
*100
*40
*60
*80 | 1
1
3
3
3 | *33
*33
*25
*25
*25 | *40
*40
*40
*40 | 10
10
10
10
10 | | - | | | P 30 | 2N2563
CDT1319
CDT1320
CDT1321
CDT1322 | KF
CL
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 20
20
20
20
20
20 | .27
1.5
1.5
1.5
1.5 | 100
100
100
100
100 | *100
*40
*60
*80
100 | 3
5
5
5
5 | *25
20-60
20-60
20-60
20-60 | *40
15
15
15
15 | 10
5
5
5
5 | 1 - 1 | 11111 | | | 0.01 | CK 31
CK-312
CK-313
CK-314
CK-315 | RA
RA
RA
RA | pnp,AJ,ge
pg,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 20
20
20
20
20
20 | 0.33
0.33
0.33
0.33
0.33 | 85
85
85
85
85 | 80
100
120
150
200 | 3 3 3 3 | 11111 | 1
1
1
1
1 | 5
5
5
5 | 1 - 1 - 1 | | | | P 31 | MM799
2N234A
2N235A
2N235B
2N236A |
MO
BE
BE
BE
BE | npn,PE,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 20
25
25
25
25
25 | 133
1.2
1.2
1.2
1.2 | 175
90
90
90
95 | *60
30
40
40
40 | -
3
3
3
3 | *10
-
-
-
- | *0.5
1
1.0
1.0
1.0 | *200
-
-
-
- | 11111 | 12
34
36
38
35 | CL
CL
CL | | P 32 | 2N285A
2N296
2N399
2N400
2N1146 | BE
SY
BE
BE
CL | pnp,AJ,ge
pg,LA,qnq
pg,LA,qnq
pg,LA,qnq
pg,LA,qnq | 25
25
25
25
25
25 | 1.2
0.33
1.2
1.2
0.7 | 95
100
90
95
95 | 40
*60
40
40
*40 | 3
2
3
3
15 | -
20
-
-
- | 1.0
2.0
1.5
1.3
25 | -
4
-
4 | -
-
33
35
- | 39
-
-
6
- | hFE 20 min., CL
BE | | F 32 | 2N1146A
2N1146B
2N1146C
2N1147
2N1147A | CL
CL
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 25
25
25
25
25
25 | 0.7
0.7
0.7
0.7 | 95
95
95
95
95 | *60
*80
*100
*40
*60 | 15
15
15
15
15 | 1111 | 25
25
25
25
25
25 | 4 4 4 4 | | - | BE
BE
BE
solder lugs, BE
solder lugs, BE | | P 33 | 2N1147B
2N1147C
2N1483
2N1484
2N1485 | CL
CL
RCA
RCA
RCA | pnp,AJ,ge
pnp,AJ,ge
npn,DJ,si
npn,DJ,si
npn,DJ,si | 25
25
25
25
25
25 | 1111 | 95
95
200
200
200 | *80
*100
60
100 | 15
15
3
3 | -
45
45
45 | 25
25
15
15
15 | 4
4
1.25mc
1.25mc
1.25mc | 111111 | 1.1.1.1.1 | solder lugs, BE
solder lugs, BE
STC, AMF
STC, AMF
STC, AMF | | F 33 | 2N1486
B-177
B-178
B-179
CTP1500 | RCA
BE
BE
BE
CL | npn,DJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 25
25
25
25
25
25 | 1.2
1.2
1.2
1.2
1.0 | 200
90
90
90
90
95 | 100
30
30
40
100 | 3
3
3
3
15 | 45
-
-
-
30-75 | 15
1.0
1.0
1.0 | 1.25mc
-
-
-
- | -
36
30-36
25-30 | 111111 | STC, AMF | | P 34 | CTP1503
CTP1504
CTP1508
CTP1544
CTP1545 | CT
CT
CT
CT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 25
25
25
25
25
25 | 1.0
1.0
1.0
1.0
1.0 | 95
95
95
95
95 | 80
60
40
60
80 | 15
15
15
25
25 | 30-75
30-75
30-75
25-75
25-75 | 8
8
8
15
15 | -
-
3
3 | 11111 | 11111 | | | 1 34 | CTP1552
CTP1553
MM800
2N236B
2N242 | CL
MO
BE
SY | pnp,AJ,ge
pnp,AJ,ge
npn,PE,si
pnp,AJ,ge
pnp,AJ,ge | 25
25
25
30
30 | 1.0
1.0
167
-
0.33 | 95
95
175
85
100 | 40
100
*60
40
*45 | 25
25
-
3
2.0 | 25-75
25-75
*10
- | 15
15
*0.5
1.0
3.0 | 3
*200
5 | -
-
37
36 | -
17
4
- | CL
CL, BE, TS, SO | | P 35 | 2N257
2N268
ST7530
ST7120
ST7130 | BE
BE
TR
TR
TR | pnp,AJ,ge
pnp,AJ,ge
npn,ME,si
npn,ME,si
npn,ME,si | 30
30
30@100
30@100 | 2.0 | 90
90
150
160
160 | 40
-
40
• 45
• 45 | 3
2
5
5 | -
-
*20
*20
*20 | 2 | -
*8,000
*8,000
*8,000 | 1 1 | 33
35 | CL
SY, CL | | | 2N538
2N539
2N540
2N1202
2N1203 | MH
MH
MH
MH
MH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 32
32
32
32
32
32
32 | 0.45
0.45
0.45
0.45
0.45 | 100
100
100
100
100 | *80
*80
*80
*80
*120 | 3
3.0
3.0
3 | 20-50
30-75
45-113
40-120
25-75 | 2
2
2
2
2 | 400
400
400
400 | 11111 | 1 | KF
(MH, JAN2N 539), KF
KF
KF
KF | May 24, 1963 T45 | | | | | | MAX. RATINGS | | | - | CHARA | CTERIST | ICS | • • | | | |-----------------------|--|----------------------------------|--|--|--------------------------------------|--|---------------------------------------|-------------------------------|--|---------------------------------|---|-----------------------|----------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (w) | w/°C | T _i
(°C) | *V _{CBO} (v) | I _с (а) | hfe
*hFE | CO
(ma)
(*μa) | fae
*f
T
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | | 2N1261
2N1262
2N1263
2N1501
2N1502 | MH
MH
MH
MH
MH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 32
32
32
32
32
32 | 0.45
0.45
0.45
0.45
0.45 | 100
100
100
100
100 | *80
*80
*80
*60
*40 | 3 3 3 3 3 | 20-50
30-75
45-113
25-100
25-100 | 2 2 2 2 2 2 | 400
400
400
400
400 | 11111 | 11111 | KF
KF
KF
KF
KF | | P 36 | CA2D2
2N463
2N1011
2N256
2N307 | MH
WE
BE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,A,ge
pnp,A,ge | 32
35
35
37
37 | 0.45
-
0.2
2.0
2.0 | 100
100
95
100
100 | 20
60
80
•30
•35 | 3
5
3
3 | *20
60
30-75
-
*20 | 4
0.1
15
3
15 | 400
4
-
5
3 | -
25
- | 11 111 | мо | | | 2N663
2N178
2N554
2N555
2N1047 | DE
MO
MO
MO
STC | pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,si | 37
40
40
40
40 | 2.0
1.4
1.4
1.4
0.2 | 100
90
90
90
90
200 | *50
*40
*15
*30
80 | 4
3
3
3
2 | *25/75
50
50
50
12-36 | 4
-
-
-
.015 | 15
6
6
- | 30
35
35
- | 1 | BE
BE
TR, TI, BE | | P 37 | 2N1047A
2N1047B
2N1047C
2N1048
2N1048A | TI
TI
BE
STC
TI | npn,MS,si
npn,DM,si
npn,DM,si
npn,DJ,si
npn,MSI,si | 40
40
40
40
40 | .228
-
-
0.2
.228 | 200
-
165
200
200 | 80
80
80
120
120 | 0.5
0.75
8
2
0.5 | 12-36
12*-36*
*12-36
12-36
12-36 | .0015
-
.015
.0015 | 8 mc
90
-
-
8 mc | 1111 | 1111 | TR, BE
BE
TR, TI, BE
TR, STC, BE | | | 2N1048B
2N1048C
2N1049
2N1049A
2N1049B | TI
BE
STC
TI
STC | npn,DM,si
npn,DM,si
npn,DJ,si
npn,MS,si
npn,D,si | 40
40
40
40
40 | -
0.2
.228 | 165
200
200 | 12 0
120
80
80
80 | 0.75
8
2
0.5 | 30°-90°
*12-36
30-90
30-90 | -
.015
.0015 | -
-
7 mc | 11111 | 41111 | STC, BE
TR, TI, BE
TR, STC, BE
BE | | P 38 | 2N1049C
2N1050
2N1050A
2N1050B
2N1050C | BE
STC
TI,
TI
BE | npn,DM,si
npn,DM,si
npn,MS,si
npn,DM,si
npn,DM,si | 40
40
40
40
40 | -
0.2
.228
-
- | 200
200
200
200 | 80
120
120
120
120
120 | 8
2
5
0.75
8 | *30-90
30-90
30-90
30-90
*30-90 | -
.015
7 mc
-
- | | 1111 | 1111 | TR, TI, BE
TR, STC, BE
STC, BE | | P 39 | 2N1647
2N1648
2N1649
2N1650
2N1690 | TR
TR
TR
TR
STC | is,LQ,nqn
is,LQ,nqn
is,LQ,nqn
is,LQ,nqn
is,Q,nqn | 40
40
40
40
40 | .27
.27
.27
.27 | 175
175
175
175 | *80
*120
*80
*120 | 3 3 3 - | 15-45
15-45
30-90
30-90 | .025
.025
.025
.025 | 10 mc
10 mc
10 mc
10 mc | 1111 | 11111 | BE
BE
BE
TI | | | 2N1691
2N1886
2N2018
2N2019
2N2020 | TI
TR
TR
TR
TR | npn,DM,si
is,LD,nqn
is,LD,nqn
is,LD,nqn
is,LD,nqn | 40
40
40
40
40 | .27
.27
.27
.27 | 175
175
175
175
175 | 120
60
*150
*200
*150 | 0.5
5
-
-
- | *20-*60
20-80
20-60
20-60
40-120 | .35
.01
.01 | 8 mc
10 mc
10 mc
10 mc | | 1111 | STC | | D.40 | 2N2021
MHT-6001
2N1120
2N250
2N251 | TR
MH
BE
TI
TI | npn,DJ,si
npn,DP,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 40
40
45
50
50 | .27
-
1.0
.27
.27 | 175
175
95
100
100 | *200
100
*80
30
60 | -
3
15
5
5 | 40-120
10-120
20-50
60
60 | .01
0.001
15
2
2 | 10 mc
30m
-
- | -
-
30
30 | | Planar
MO
CL, BE
BE, CL | | P 40 | 2N553
2N665
2N1014
2N1069
2N1070 | DE
DE
RCA
STC
STC | pnp,AJ,ge
pnp,AJ,ge
is,LD,nqn
is,LD,nqn
is,LD,nqn | 50
50
50
50
50 | 1.5
1.5
1.0
.29
.29 | 100
100
100
175
175 | *80
*80
100
60 | 5
5
10
4
4 | -
-
75
20
20 | 0.02
0.02
0.1
1 | 25
25
-
1
1 | -
26
-
- | -
30
-
- | BE
JAN2N665
RCA, AMF, FT, BE
RCA, AMF, FT, BE | | | 2N1722
2N1724
2N1905
2N1906
2N2266 | TI
TI
RCA
RCA
MH | npn,MS,si
npn,MS,si
pnp,Dr,ge
pnp,Dr,ge
pnp,AJ,ge | 50
50
50
50
50 | .67
.67
0.7
0.7
0.5 | 175
175
-
-
125 | 80
80
60
100
*100 | 7.5
7.5
10
10
5.0 | -
90
125
25-75 | 1
1
.15
.15 | 20 mc
20 mc
-
-
400 | 11111 | | STC | | P 41 | 2N2267
2N1722
2N1724
2N1704
2N1657 | MH
TR
TR
NA
NA
RA | pnp,AJ,ge
npn,PL,si
npn,PL,si
npn,si
npn,DB,si | 50
50@100
50@100
50-200
55 | 0.5
500
.33 | 125
175
175
175
175
200 | *120
80
80
3.3
60 | 5. 0
7.5
7.5
45
2 | 25-75
*20
*20
100
50 | 2
-
0.1
10 | 400
•10,000
•10,000
-
10 mc | 15 | 60
- | | | P 42 |
2N419
2N639
2N639A
2N639B
2N1073 | BE
BE
BE
BE
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 60
60
60
60 | 1.2
1.2
1.2
1.2
1.2 | 95
100
100
100
100 | 45
40
70
80
40 | 3
5
5
5
10 | -
15-30
15-30
15-30
20-6 | 0.5
1.0
1.0
2.2
2.0 | -
-
-
1.5 | 11111 | 5
-
-
- | CL
CL | | 16 | 2N1073A
2N1073B
2N1136
2N1136A
2N1136B | BE
BE
BE
BE
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 60
60
60
60 | 1.0
1.0
1.2
1.2
1.2 | 100
100
100
100
100 | 80
120
40
70
80 | 10
10
6
6
6 | 20-6
20-6
-
-
- | 1.5
2.0
0.5
2
2 | 1.5
-
-
- | 11111 | 11111 | DE
CL
CL
CL | # ANSISTORS 2N2875 Features remarkably high beta linearity over wide range of collector currents. Dissipates up to 15 Watts of power at 100°C case. | Туре | DC Current
Gain
@ Ic=
500mA
(IB) | Typical
Collector
Saturation
Voltage
@ Ic=
500mA
(Volts) | Minimum
Sustaining
Voltage
@ Ic=
50mA
(Volts) | Typical
Cut-Off
Frequency
@ Ic=
100mA
(Mc) | Power Dissipation Rating @ 100°C Case (Watts) | |--------|--|--|--|---|---| | 2N2875 | 20-60 | 1.0 | 50 | 30 | 15 | IN A 1/16" STUD-MOUNTED **PACKAGE** 2N2866-7 Features extremely low RCS of 0.75 Ohms Max. Dissipates up to 20 Watts of power at 100°C case. High beta linearity. | Туре | DC Current
Gain
@ Ic=
500mA
(β) | Typical Collector Saturation Voltage @ Ic= 1 Amp (Volts) | Minimum
Sustaining
Voltage
@ Ic=
50mA
(Volts) | Typical
Cut-Off
Frequency
@ Ic=
100mA
(Mc) | Power
Dissipation
Rating
@ 100°C
Case
(Watts) | |--------|---|--|--|---|--| | 2N2866 | 20-60 | 0.4 | 80 | 15 | 20 | | 2N2867 | 40-120 | 0.4 | 80 | 15 | 20 | #### TRANSITRON'S NEW STATE-OF-THE-ART SILICON PLANAR TRANSISTORS FEATURE GREATER RELIABILITY, LOWER RCS, AND PERMIT FURTHER CIRCUIT SIMPLIFICATION IN DEMANDING POWER CATEGORIES. Drawing heavily upon its broad experience in silicon power transistor development and stud-mounted packaging, Transitron introduces its new PNP 2N2875 and NPN 2N2866-7 intermediate power silicon transistors. They combine all the recognized advantages of planar construction with the efficiency of $\frac{7}{16}$ hex base stud-mounted packaging, which solves a variety of annoying mounting problems. And, because they complement each other, extensive circuit simplification is now practical within power applications. These highly reliable silicon planar power transistors are the product of the same intensive Transitron Total Reliability Program that produced the popular $\%_6$ " NPN 2N1647-50 and 2N2018-21 series for modern military ICBM systems. Continuous lot control from ingot stage, thorough product improvement documentation, and comprehensive failure analysis have enabled Transitron Product Engineering to develop units which will satisfy the strictest requirements. The 2N2875 and the 2N2866-7, and other complementing PNP and NPN silicon power transistors, are available through your Transitron Distributor. For complete information, write Transitron's Wakefield, Mass. installation. electronic corporation wakefield, melrose, boston, mass. SALES OFFICES IN PRINCIPAL CITIES THROUGHOUT THE IL. S. A. AND FURDE | | 1 | - | | | | | MAX. RA | ATINGS | | (| CHARAC | TERIST | ICS | | | |---------------------|---|--------|--------------------------------|--|--------------------------------------|--------------------------------------|--|---------------------------------|----------------------------|--|------------------------------------|---|-------------------------|----------------------|--| | Cros
Inde
Key | | | Mfr. | Туре | P _c (w) | w/°C | T _i (°C) | V
CEO
*V
CBO
(v) | l _c (a) | hfe
*hFE | l _{CO}
(ma)
(*μa) | fae
*f _T
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | | 2N1137
2N1137
2N1137
2N1138
2N1138 | A E | BE
BE
BE
BE
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 60
60
60
60 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 40
70
80
40
70 | 9 9 9 9 9 | 11111 | 0.5
2
2
0.5
2.0 | 1111 | 11111 | 11111 | CL
CL
CL | | P 4 | 2N1138
2N1210
2N1211
2N1487
2N1488 | 1 | BE
TR
TR
RCA
RCA | gp,AJ,ge
is,Ld,nqn
np,DJ,si
is,Ld,nqn
si,Ld,nqn | 60
60
60
60 | 1.2
.27
.27
- | 100
175
175
175
175 | 80
*60
*80
60
100 | 6
5
5
6 | 15-75
15-75
30
30 | 2
50
50
25
25 | 15 mc
15 mc
1 mc
1 mc | | 11111 | CL
STC, FN, FT
STC, FN, FT
STC, FT, AMF, BE
STC, FT, AMF, BE | | | 2N1489
2N1490
2N1616
2N1617
2N1618 | F 1 | RCA
RCA
TR
TR
TR | npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,DJ,si
si,LO,nqn | 60
60
60
60 | -
.27
.27
.27 | 175
175
175
175
175 | 60
100
60
70
80 | 6
5
5
5 | 30
30
15-75
15-75
15-75 | 25
25
50
50
50 | 1 mc
1.25mc
15 mc
15 mc
15 mc | 11111 | 1-1-1-1 | STC, FT, AMF, BE
STC, FT, AMF, BE
AMF, FT, STC, BE
AMF, FT, STC, BE
AMF, FT, STC, BE | | P 4 | ST440
ST450
2N2137
2N2137
2N2138 | A N | TR
TR
MO
MO
MO | npn,DJ,si
npn,DJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 60
60
62.5
62.5
62.5 | .27
.27
0.83
0.83
0.83 | 150
150
100
100
100 | 60
*60
*30
30
45 | 5
5
3
3 | 10
10
30-60
30-60
30-60 | 1
1
2
2
2
2 | -
20
20
20 | 11111 | 11111 | STC "Meg-A-Life" "Meg-A-Life" | | | 2N2139
2N2140
2N2141
2N2142
2N2143 | N
N | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 60
75
90
30
45 | 30
3
3
3
3 | 30-60
30-60
30-60
50-100
50-100 | 2
2
2
2
2 | 20
20
20
20
20
20 | | 11111 | "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" | | P 4 | 2N2144
2N2145
2N2146
2N301
2N301 | M
M | MO
MO
MO
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,A,ge
pnp,A,ge | 62.5
62.5
62.5
75
75 | 0.83
0.83
0.83
1.0
1.0 | 100
100
100
100
100 | 60
75
90
• 40
• 60 | 3
3
3
3 | 50-100
50-100
50-100
•62.5
•62.5 | 2
2
2
3
3 | 20
20
20
5
5 | 11111 | 11111 | "Meg-A-Life"
"Meg-A-Life"
"Meg-A-Life" | | D.44 | 2N174/
2N1511
2N1512
2N1513
2N1514 | F | TS
RCA
RCA
RCA
RCA | npn,AJ,ge
npn,si
npn,si
npn,si
npn,si | 75-95
75
75
75
75
75 | 11111 | 95

-
- | *80
60
100
60
100 | 15
6
6
6 | *37
15*
*15
*25
*25 | 8 | 10
-
-
- | 11111 | 11111 | MO, SO, DE
STC
STC
STC
STC | | P 46 | 2N1703
2N2101
3N45
3N46
3N47 | N N | RCA
AMF
MH
MH
MH | npn,si
npn,MESA,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 75
75
75
75
75
75 | 0.5
1.0
1.0
1.0 | 200
100
100
100 | 60
*60
*60
*80
*40 | 5
3.0
12
12
12 | *15
*15-60
30-120
20-80
30-120 | *1
3.0
3.0
3 | -
1.5mc
750
450
750 | 11111 | 11111 | STC | | | 3N48
2N424
2N389
2N389/
2N424 | 1 1 | MH
TI
TI
STC
TI | pnp,AJ,ge
npn,DJ,si
npn,DJ,si
npn,D,si
npn,DJ,si | 75
85
85
85
85 | 1.0
.48
.48
- | 100
200
200
-
200 | *60
80
60
60
*80 | 12
2
2
-
2 | 20-80
12-60
12-60
-
12.60 | 3
10
10
-
10 | 450
6 mc
7 mc
-
6 mc | 11111 | 11111 | STC, TR, RA, FT, AMF, BE,
STC, TR, RA, AMF, FT, BE,
AMF, BE
STC, TR, RA, FN, FT | | P4 | 2N1619
2N1660
2N1661
2N1662
2N1894 | F | TR
RA
RA
RA | npn,DJ,si
npn,DB,si
npn,DB,si
npn,DB,si
npn,DB,si | 85
85
85
85
85 | .27
0.5
0.5
0.5
0.5 | 200
200
200
200
200
200 | 80
60
80
100
60 | 5
2
2
2
2 | 30
90
90
90
90
30 | 0.1
10
10
10
.01 | 15 mc
40 mc
40 mc
40 mc | | 11111 | | | | 2N1895
2N1896
2N1897
2N1898
2N2383 | F | RA
RA
RA
RA
STC | npn,DB,si
npn,DB,si
npn,DB,si
npn,DB,si
npn,DJ,si | 85
85
85
85
85 | 0.5
0.5
0.5
0.5
0.5 | 200
200
200
200
200
180 | 80
60
80
100
80 | 2
2
2
2
5 | 30
90
90
90
*20-*60 | .01
.01
.01
.01 | -
-
-
-
*3.0mc | 11111 | | 5Q. Flange | | P 4 | 2N238-
2N2526
2N252-
2N2522
2N2528
STC11 | | STC
MO
MO
MO
STC | npn,DJ,si
pnip,AD,ge
pnip,AD,ge
pnip,AD,ge
npn,DJ,si |
85
85
85
85
85 | 0.5
1
1
1
- | 180
110
110
110
200 | 80
80
120
160
60 | 5
10
10
10
6 | *20-*60
*20-50
*20-50
*20-50
10-50 | *3.0
3
3
3
.025 | *3.0mc
-
-
-
1 mc | 1111 | - | 1 tex Stud | | P 4 | STC11
STC11
STC11
2N176
2N255/ | 13 3 | STC
STC
STC
DE
DE | npn,DJ,si
npn,DJ,si
npn,DJ,si
pnp,A,ge
pnp,A,ge | 85
85
85
90
90 | -
-
-
0.8
0.8 | 200
200
200
100
100 | 100
60
100
•40
•15 | 6
6
7
5 | 10-50
25-75
25-75
*25/90 | .025
.025
.025
.025
.3 | 1 mc
1 mc
1 mc
4 | -
-
-
25
25 | - | | | | 2N256/
2N297/
2N350/
2N351/
2N376/ | | DE
MO
MO
MO
MO | pnp,A,ge
onp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 0.8
1.2
1.4
1.4
1.4 | 100
100
100
100
100 | *25
*60
*50
*50
*50 | 5
3
3
4
5 | 40-100
30
45
60 | 5
3
3
3
3 | 5
5
5
5 | -
33
33
35 | | DE, BE, CL
BE, CL
BE, CL
BE, CL | # Raytheon introduces new F7 series of 63 VHF-UHF varactor diodes Now available for use in medium power frequency multipliers and converters, these new Raytheon varactor diodes offer outstanding series resistance characteristics, a wide variety of types, and parameters maintained to close tolerances. The new F7 series varactors are mounted in standard glass packages with axial leads and are usable in frequency multipliers from 2 Mc to 2 Gc at input power levels from 0.1 to 10 watts. For immediate delivery contact your nearest Raytheon Field Office or, Raytheon Company, Semiconductor Division, 350 Ellis Street, Mountain View, California. Cutoff frequency: Normalization power: Reverse breakdown voltage: Junction capacitance at BVR: Series resistance: Power dissipation: Price: Price: Availability: 30 · 100 Gc 5 · 20 kw 45 · 120 v in 15 v steps 1.8 · 8.2 pf in 10% EIA values 0.33 · 2.2 ohm in 20% EIA values 1 watt \$15.00 (1-24) \$9.90 (25-99) standard values in stock, others 10 · 30 days | | | | | | | MAX. RA | TINGS | | (| CHARAC | TERIST | ics | | | |-----------------------|--|----------------------------|---|----------------------------|--|---------------------------------|---------------------------------------|----------------------------------|--|----------------------------------|---------------------------------|------------------------|----------------------|--| | Crass
Index
Key | Гуре
No. | Mfr. | Type | P _c (w) | w/°C | T _i (°C) | VCEO *VCBO | l _c (a) | h _{fe} *h | l _{CO}
(ma)
(*μa) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 50 | 2N379
2N380
2N627
2N628
2N629 | DE
DE
MO
MO | pnp,A,ge
pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | .8
.8
1.2
1.2 | 100
100
100
100
100 | *80
*60
*40
*60
*80 | 7
7
10
10 | *20/90
*20/90
10-30
10-30
10-30 | 8
8
4
4
4 | 3
5
5
5 | 38
38
38
38 | 1 1 1 1 | BE, CL
BE, CL
BE, CL | | 1 30 | 2N630
2N677
2N677A
2N677B
2N677C | MO
BE
BE
BE
BE | gnp,AJ,ge
gn,AJ,ge
gn,AJ,ge
gg,LA,qnq
gg,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
50
60
90
100 | 10
15
15
15
15 | 10-30
45
45
45
45 | 4
1
1
1 | 5
-
-
- | 38
-
-
-
- | 11111 | BE, CL
CL
CL
CL
CL | | P 51 | 2N678
2N678A
2N678B
2N678C
2N1031 | BE
BE
BE
BE
BE | pnp,AJ,ge
pg,LA,qnq
pg,LA,qnq
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
0.8 | 100
100
100
100
100 | 150
60
90
100
30 | 15
15
15
15
15 | 75
75
75
75
75
20-60 | 1
1
1
1.0 | 1 | 1111 | 11111 | CL
CL
CL
CL
CL | | | 2N1031A
2N1031B
2N1031C
2N1032
2N1032A | BE
BE
BE
BE
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 0.8
0.8
0.8
0.8
0.8 | 100
100
100
100
100 | 40
70
80
30
40 | 15
15
15
15
15 | 20-60
20-60
20-60
50-100
50-100 | 1.0
1.0
2.0
1.0
1.0 | | 11111 | 11111 | CL
CL
CL
CL | | P 52 | 2N1032B
2N1032C
2N1073
2N1073A
2N1073B | BE
BE
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,A,ge
pnp,A,ge
pnp,A,ge | 90
90
90
90
90 | 0.8
0.8
0.8
0.8
0.8 | 100
100
110
110
110 | 70
80
*40
*80
*120 | 15
15
10
10
10 | 50-100
50-100
*20/60
*20/60
*20/60 | 2.0
2
10
10
10 | -
30
30
30
30 | 11111 | 1111 | CL
CL | | 1 32 | 2N1162
2N1162A
2N1163
2N1163A
2N1164 | MO
MO
MO
MO | gnp,AJ,ge
gg,LA,qnq
gg,LA,qnq
gg,LA,qnq
gg,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 50
*50
*50
*50
*50
*80 | 25
25
25
25
25
25 | 15-65
15-65
15-65
15-65
15-65 | 3
15
3
15
3 | 4 4 4 4 | - 1 1 1 1 | 11111 | CL, BE
BE, CL
CL, BE
BE
CL, BE | | P 53 | 2N1164A
2N1165
2N1165A
2N1166
2N1166A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*80
*80
*100 | 25
25
25
25
25
25 | 15-65
15-65
15-65
15-65
15-65 | 15
3
15
3
15 | 4 4 4 4 | 11111 | 11111 | BE
CL, BE
BE
CL, BE
BE | | 7 33 | 2N1167
2N1167A
2N1358M
2N1359
2N1360 | MO
MO
DE
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,A,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
0.8
1.2
1.2 | 100
100
110
100
100 | *100
*100
*80
*50
*50 | 25
25
15
3
3 | 15-65
15-65
25/50
35-90
60-140 | 3
15
4
3
3 | 4
4
5.0
7
5 | 11111 | 1 - 1 - 1 | CL, BE
BE
BE
BE | | | 2N1362
2N1363
2N1364
2N1365
2N1529 | MO
MO
MO
MO
MO | gnp,AJ,ge
gnp,AJ,ge
gnp,AJ,ge
gnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*100
*120
*120
*40 | 3
3
3
5 | 35-90
60-140
35-90
60-140
20-40 | 3
3
3
2 | 7
5
7
5
10 | 11111 | 11111 | BE
BE
BE
BE
CL, BE | | P 54 | 2N1529A
2N1530
2N1530A
2N1531
2N1531A | MO
MO
MO
MO
MO | gnp,AJ,ge
gn,AJ,ge
gn,AJ,ge
gn,AJ,ge
gn,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *40
*40
*60
*80
*80 | 5
5
5
5 | 20-40
20-40
20-40
20-40
20-40 | 2 2 2 2 2 2 | 10
10
10
10
10 | 11111 | 11111 | BE
CL, BE
BE
CL, BE
BE | | | 2N1532
2N1532A
2N1533
2N1534
2N1534A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*100
*120
*40
*40 | 5
5
5
5
5 | 20-40
20-40
20-40
*35-70
35-70 | 2
2
2
2
2 | 10
10
10
8.5
8.5 | 11111 | | CL, BE
BE
CL, BE
CL, DE, BE
BE | | P 55 | 2N1535
2N1535A
2N1536
2N1536A
2N1537 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*60
*80
*80
100 | 5
5
5
5
5 | *35-70
35-70
*35-70
35-70
35-70 | 2
2
2
2
2 | 8.5
8.5
8.5
8.5
8.5 | | 11111 | CL, DE, BE
BE
CL, DE, BE
BE
CL, DE, BE | | P 56 | 2N1537A
2N1538
2N1539
2N1539A
2N1540 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*120
*40
*40
*60 | 5
5
5
5 | 35-70
35-70
50-100
50-100
50-100 | 2 2 2 2 2 2 | 8.5
8.5
4
4 | | 11111 | BE
CL, BE
CL, BE
BE
CL, BE | | 1 30 | 2N1540A
2N1541
2N1541A
2N1542
2N1542A | MO
MO
MO
MO | g,LA,qnq
g,LA,qnq
g,LA,qnq
g,LA,qnq
g,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*80
*80
*100
*100 | 5
5
5
5
5 | 50-100
50-100
50-100
50-100
50-100 | 2 2 2 2 2 2 | 4
4
4
4 | 1 | -11-1-1 | BE
CL, BE
BE
CL, BE
BE | # IF AVAILABILITY COUNTS, AMELCO SEMICONDUCTOR IS THE SOURCE! A broad line of planar transistors plus these technological advances: #### **MICRO-CIRCUITS** Using advanced diffusion techniques in conjunction with precise process control and thin film technology, Amelco offers both digital and analog integrated circuits. Stock items consist of nor logic building blocks; a wide variety of package configurations is possible. Micro-circuits offer the advantages of low cost, design simplicity, size, weight and power reductions. #### FIELD EFFECT TRANSISTORS Amelco FET's are N-Channel silicon planar devices which offer very high input impedance, negative temperature coefficient, low leakage current, low capacitance, low noise figure and all proven mechanical advantages of silicon
double diffused transistors. FET's provide circuit simplicity, tiny size. Standard package, TO-18; also available in TO-5, TO-46, and TO-51 outlines. #### SPECIAL ASSEMBLIES Amelco Special Assemblies (ASA's) consist of any combination of those devices which are a standard product, mounted in a single header. ASA's in general are any specially selected multiple transistor combination such as Differential Amplifiers and Darlington configurations. #### **MICRO-CHIP TRANSISTORS** All standard Amelco transistors are available in Micro-Chip form for ultra-small assemblies. The semiconductor chip is bonded to a molybdenum substrate; junctions and surfaces are protected by a passivated surface of silicon oxide. The chip is coated for mechanical protection and is individually packed with conductive strips connected to the Micro-Chip's leads for testing in the package. #### SALES OFFICES: Southwest: 1625 East 126th St., Hawthorne, Calif. Northwest: 1300 Terra Bella Avenue, Mountain View, California Southeast: 1725 Eye Street, Washington, D.C. Northeast: 873 Township Line Rd., Philadelphia, Pa. #### REPRESENTATIVES: #### CALIFORNIA Los Angeles: Maggs Electronics • 685-6141 Mountain View: Electro-Tech Sales Co. • 968-7141 San Jose: Winco • CY 7-1068 #### COLORADO Denver: Gossard & Associates • 935-5685 #### FLORID! Orlando: Gulf Electronic Sales • 424-3512 #### ILLINOIS Chicago: Carlson Electronics Sales, Inc. • SP 4-0277 #### MARYLAND Glenside, Pa.: Daniel and Company . 884-2130 #### MASSACHUSETTS Wakefield: Dynamic Devices, Inc. • 245-9100 #### MINNESOTA Minneapolis: R-J Sales & Engineering Co. 922-1425 #### **NEW JERSEY** Morristown: Graydon Associates, Inc. • 538-9246 #### NEW YORK Fayetteville: Graydon/Sherman, Inc. • 463-4533 Great Neck, L.I.: Gemini Electronics, Inc. HU 2-4446 #### NORTH CAROLINA Winston-Salem: Southeastern Sales, Inc. • 725-0554 #### OHIO Dayton: Gibson Electronics Marketing Co. 298-7683 Lakewood: Electronic Sales • LA 1-5951 #### PENNSYLVANIA Glenside: Daniel and Company • 884-2130 #### TEXAS Dallas: Vista Engineering Associates • EM 3-6216 #### WASHINGTON Seattle: N. R. Schultz Company . MA 4-8650 DATA SHEETS, TECHNICAL AND SALES INFORMATION AVAILABLE #### AMELCO SEMICONDUCTOR DIVISION OF TELEDYNE, INC./1300 TERRA BELLA AVE., MOUNTAIN VIEW, CALIFORNIA MAIL ADDRESS: P. O. BOX 1030, MOUNTAIN VIEW, CALIFORNIA / PHONE: (415) 968-9241 / TWX: (415) 969-9112 # Why depend on 'selected' transistors for your communications applications? # See how Amberex production-run # YOU NEED LOW NOISE AT HIGH FREQUENCY **3-DOT SMALL GEOMETRY** gives you Low rbb' · High ft as in the P.A.D.T. 2N2495 #### you need STABLE HIGH GAIN #### 2-DOT SMALL GEOMETRY gives you Stable High Gain Low, low Capacity · High fr as in the P.A.D.T. 2N2654 AMPEREX production-run P.A.D.T. transistors are immediately available from these and other authorized Industrial Electronic Distributors and in volume quantities from our semiconductor plant at Slatersville, Rhode Island CALIFORNIA R. V. WEATHERFORD COMPANY Glendale 1, Calif. KIERULFF ELECTRONICS Las Angeles 15, Calif. BRILL SEMICONDUCTOR CORP #### COLORADO INTERSTATE RADIO & SUPPLY Denver 4, Calorado #### CONNECTICUT CRAMER ELECTRONICS, INC. Hamden, Conn. DISTRICT OF COLUMBIA ELECTRONIC WHOLESALERS, INC. Washington 1, D. C. Cocoa, Fla. • Jacksonville, Fla. • Miami, Fla. Orlando, Fla. • Pensocala, Fla. • Tampa, Fla. #### ILLINOIS NEWARK ELECTRONICS CORP. Chicago, III. #### INDIANA RADIO DISTRIBUTING COMPANY #### MASSACHUSETTS RADIO SHACK CORP. Boston, Moss. MICHIGAN RADIO SPECIALTIES COMPANY Detroit, Michigon #### MINNESOTA ADMIRAL DISTRIBUTORS, INC. St. Lauis Park 16, Minn. #### MISSOURI SSUMPI BURSTEIN-APPLEBEE COMPANY Konsos City, Missouri INTERSTATE INDUSTRIAL ELECTRONICS S1: Louis 32, Missouri #### NEW YORK MILO ELECTRONICS New York, N. Y. ROME ELECTRONICS Rame, N. Y. UNITED RADIO, INC. Cincinnati, Ohio #### OKLAHOMA OIL CAPITAL INDUSTRIAL ELECTRONIC DISTRIBUTORS Tulso, Oklohoma UNITED RADIO SUPPLY, INC. Portland 9, Oregon #### PENNSYLVANIA RADIO ELECTRIC SERVICE CQ. Philodelphia, Pa. CAMERADIO COMPANY #### TEXAS BUSACKER ELECTRONIC EQUIPMENT CO., INC. Houston 19, Texas WASHINGTON ROBERT E. PRIEBE COMPANY Seattle 1, Washington # designs for specific requirements! PH COLLECTOR 2-DOT LARGE GEOMETRY QİVES YOLL a universal, high performance transistor for a wide range of frequencies for entertainment, industrial and military applications. 3s in the P.A.D.T. 2N2084 (MIL-S-19500/213A NAVY) P.A.D.T. 2N2089 for P.A.D.T. 2N2092 for P.A.D.T. 2N2087 RF AMPEREX semiconductor specialists have been engaged in a continuing technological program that brings the superior performance and high-level production-benefits of PADT to ever expanding applications in the areas of communications, radar, instrumentation and AM-FM-TV receivers. From this program there have emerged the four distinctive P.A.D.T. transistor geometries illustrated above...each with "DESIGNED-IN" parameters and performance characteristics of significance to specific end-equipment needs – and reproducible, IN MASS PRODUCTION, without selection... at P.A.D.T. production-run prices! As you are undoubtedly aware, P.A.D.T. is the unique AMPEREX Post Alloy Diffusion Technique by which simultaneous diffusion and alloying take place under specified and controlled conditions. This exclusive process makes it possible to mass-produce superior communications type transistors with a base layer of only a few ten thousands of an inch and with extremely high cut-off frequencies... and P.A.D.T. does this with consistently high yields and with unequalled uniformity, stability and reliability. For detailed data and/or applications engineering assistance, write to: AMPEREX Electronic Corporation, Semiconductor and Receiving Tube Division, Hicksville, Long Island, New York. | | | | | | | MAX. R | | | (| HARAC | TERIST | ICS | | | |-----------------------|---|------------------------------|---|-------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|---------------------------------|--|---------------------------------------|--|------------------------|---------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (w) | w/°C | τ _ί
(ος) | V
CEO
*V
CBO
(v) | l _c (a) | h _{fe} | I _{CO}
(ma)
(*µa) | fae
*f _T
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | P 57 | 2N1543
2N1544
2N1544A
2N1545
2N1545A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *120
*40
*40
*60
*60 | 5 5 5 5 5 | 50-100
75-150
75-150
75-150
75-150 | 2
2
2
2
2 | 4
4
4
4
4 | 11111 | | CL, BE
CL, BE
BE
CL, BE
BE | | | 2N1546
2N1546A
2N1547
2N1547A
2N1548 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*100
*100
*120 | 5
5
5
5 | 75-150
75-150
75-150
75-100
75-150 | 2 2 2 2 2 2 | 4
4
4
4 | 11111 | 11111 | CL, BE
BE
CL, BE
BE
CL, BE | | P 58 | 2N1549
2N1549A
2N1550
2N1550A
2N1551 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *40
*40
*60
*60
*80 | 15
15
15
15
15 | 10-30
10-30
10-30
10-30
10-30 | 3
3
3
3
2 | 10
10
10
10
10 | 1111 | | CL, BE
BE
CL, BE
BE
CL, BE | | | 2N1551A
2N1552
2N1552A
2N1553
2N1553A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*100
*100
*40
*40 | 15
15
15
15
15 | 10-30
10-30
10-30
30-60
30-60 | 3 2 3 2 3 | 10
10
10
6
6 | 11111 | 11111 | BE
CL, BE
BE
CL, BE
BE | | P 59 | 2N1554
2N1554A
2N1555
2N1555A
2N1556 | MO
MO
MO
MO | ga,LA,qnq
ga,LA,qnq
ga,LA,qnq
ga,LA,qnq
ga,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*60
*80
*80
*100 | 15
15
15
15
15 | 30-60
30-60
30-60
30-60
30-60 | 2 3 3 3 3 3 | 9 9 9 9 | 11111 | 1111 | CL, BE
BE
CL, BE
BE
CL, BE | | P 39 | 2N1556A
2N1557
2N1557A
2N1558
2N1558A | MO
MO
MO
MO | ga,LA,qnq
ga,LA,qnq
ga,LA,qnq
pnp,AJ,ge
ga,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*40
*40
*60
*60 | 15
15
15
15
15 | 30-60
50-100
50-100
50-100
50-100 | 3 3 3 3 | 6
6
5
5 | | | BE
CL, BE
BE
CL, BE
BE | | P 60 | 2N1559
2N1559A
2N1560
2N1560A
2N392 | MO
MO
MO
MO
DE | ge,LA,qnq
ge,LA,qnq
ge,LA,qnq
ge,LA,qnq
ge,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*100
*100
*60 | 15
15
15
15
15 | 50-100
50-100
50-100
50-100 | 3
3
3
0.065 | 5
5
5
5
6 | 11111 | 11111 | CL, BE
BE
CL, BE
BE
BE | | P 60 | 2N669
2N1159
2N1160
2N1168
3N49 | DE
DE
DE
DE
MH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 94
94
94
94 |
1.2
0.8
0.8
0.8
1.25 | 100
100
100
100
100 | *40
*80
*80
*50
*60 | 3
5
7
5
15 | -
-
-
-
30-120 | 0.065
0.065
0.065
0.065
3 | 10
10
10
10
750 | 11111 | | BE
BE
BE, CL | | | 3N50
3N51
3N52
151-04
151-07 | MH
MH
WH
WH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,si
npn,AJ,si | 94
94
94
100
100 | 1.25
1.25
1.25
1.4
1.4 | 100
100
100
150
150 | *80
*40
*60
*80
*140 | 15
15
15
6.0
6.0 | 20-80
30-120
20-80
*11
*11 | 3
3
10ma
10ma | 450
750
450
25
25 | | | | | P 61 | 152-04
152-05
152-08
151-05
151-06 | WH
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4
1.4 | 150
150
150
150
150 | *80
*100
*160
*100
*120 | 6.0
6.0
6.0
6.0
6.0 | *18
*18
*18
*11
*11 | 10ma
10ma
10ma
10ma
10ma | 25
25
25
25
25
25 | | | | | P 62 | 151-08
151-09
151-10
152-06
152-07 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4
1.4 | 150
150
150
150
150 | *160
*180
*200
*120
*140 | 6.0
6.0
6.0
6.0
6.0 | *11
*11
*11
*18
*18 | 10ma
10ma
10ma
10ma
10ma | 25
25
25
25
25
25
25 | | | | | P 62 | 152-09
152-10
2N 1084
2N 1085
2N 1157 A | WH
WH
TR
TR
MH | npn,AJ,si
npn,AJ,si
pnp,PL,si
npn,ME,si
pnp,AJ,ge | 100
100
5@100
5@100
100 | 1.4
1.4
.050
.050
1.43 | 150
150
200
200
200
95 | *180
*200
*60
60
*80 | 6.0
6.0 | *18
18
*20
*40
50 | 10ma
10ma
*10
*15
20 | 25
25
•25,000
•15,000
75 | _ | - | | | P 63 | 2N1206
2N1207
2N1651
2N1652
2N1653 | TR
TR
BE
BE
BE | npn,ME,si
npn,ME,si
pnp,DJ,ge
pnp,DJ,ge
pnp,DJ,ge | 3@100
3@100
100
100
100 | .030
.030
1.2
1.2
1.2 | 200
200
110
110
110 | 60
125
60
100
120 | 25
25
25
25 | 15
15
30
30
30 | *1
*1
2.0
2.0
2.0 | *30,000
*30,000
-
-
- | | | Sat. volt=1.0v
Sat. volt=0.5v
Sat. volt=0.5v | | P 63 | 2N1675
2N1936
2N1937
2N1899
2N1900 | WE
TI
TI
PSI
PSI | npn,D, ge
npn,MS,si
npn,MS,si
npn,DM,si
npn,DM,si | 100
100
100
125
125 | 1.34
1.34
1 | 150
175
175
150
150 | 100
60
80
140
140 | 10
15
15
10
5 | 12
-
-
10
10 | 0.008
20
20
20
20
20 | 50mc
7 mc
7 mc
20
20 | -
-
-
10
- | 100
-
-
100
- | hi freq., hi power
hi freq., hi power | # ALLIED # sets the record for fast service wherever you are it's easier, faster to do business with # ALLIED #### CHICAGO 100 N. Western Ave., Chicago 80 TAylor 9-9100 (AREA CODE 312) TWX: 312-431-1721 #### DETROIT 16047 West McNichols Road, Detroit 35 836-0007 (AREA CODE 313) #### MILWAUKEE 2461 W. Center St., Milwaukee 6 Hilltop 4-8320 (AREA CODE 414) #### MINNEAPOLIS . ST. PAUL 730 E. 38th St., Minneapolis 7 TAylor 7-5401 (AREA CODE 612) #### CLEVELAND 4824 Turney Road, Cleveland 25 883-5252 (AREA CODE 216) #### LOS ANGELES AREA 2085 East Foothill Blvd., Pasadena MUrray 1-5291 • SYcamore 5-5901 (AREA CODE 213) TWX: 213-449-1455 #### SAN FRANCISCO AREA 2439 Birch Street, Palo Alto, Cal. 321-0240 (AREA CODE 415) #### SEATTLE 1020 Fourth Ave., South, Seattle 4 MUtual 2-8026 (AREA CODE 206) #### DAYTON 1823 Catalpa Drive, Dayton 6 278-5866 (AREA CODE 513) #### DALLAS 5622 Dyer Street, Dallas 6 EMerson 3-6221 (AREA CODE 214) #### DENVER 6767 East 39th Avenue, Denver 7 399-2250 (AREA CODE 303) #### ROCHESTER 1622 Monroe Ave., Rochester 18, N. Y. CHapel 4-8750 (AREA CODE 716) #### WASHINGTON D.C. . BALTIMORE 5509 Colorado Ave., N.W. Washington 11, D.C. TUckerman 2-6560 TUckerman 2-5100 (AREA CODE 202) use the services of the ALLIED facility nearest you #### ALLIED ELECTRONICS industrial subsidiary of ASK FOR YOUR ALLIED 672-PAGE, 1963 INDUSTRIAL CATALOG ON READER-SERVICE CARD CIRCLE 460 | | | 89.3 | | | | MAX. R | ATINGS | | (| CHARAC | TERIST | ICS | | | |-----------------------|---|---------------------------------|---|--|------------------------------------|---------------------------------|-------------------------------------|---------------------------------------|--|-----------------------------------|----------------------------------|-----------------------|--------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | P _c (w) | w/°C | T _i
(°C) | *VCBO (v) | ا _د
(۵) | hfe
*hFE | l _{CO} (ma) (*μa) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | | 2N1901
2N1902
2N1903
2N1904
PT900 | PSI
PSI
PSI
PSI
PSI | npn,DM,si
npn,DM,si
npn,DM,si
npn,DM,si
npn,DM,si | 125
125
125
125
125
125 | 1
1
1
1 | 150
150
150
150
150 | 140
140
140
140
80 | 5
10
10
10 | 10
10
10
10
3 | 20
20
20
20
20
10 | 20
20
20
20
20
20 | -
10
-
10 | -
100
-
100 | hi freq., hi pwr.
hi freq., hi power | | P 64 | 2N173
2N174
2N229
2N277
2N278 | DE
DE
WH
DE
DE | ga,LA,qnq
ia,LA,qnq
ag,LA,qnq
ag,LA,qnq
ga,LA,qnq | 150
150
150
150
150 | 0.5
0.5
2.0
0.5
0.5 | 100
100
150
100
100 | *60
*80
*200
*40
*50 | 0.5
15
10
15
15 | -
*100
-
- | 0.1
0.1
10ma
0.1
0.1 | 10
10
30
10 | 11 11 | 20
40
20
20 | MO, TS, TI, RCA, SO, BE
TS, MO, TI, RCA, SO, BE
MO, TS, TI, RCA, SO, BE
MO, TS, TI, RCA, BE, SO | | | 2N441
2N442
2N443
2N456A
2N457A | DE
DE
DE
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,A,ge
pnp,A,ge | 150
150
150
150
150 | 0.5
0.5
0.5
0.5 | 100
100
100
100
100 | *40
*50
*60
*40
*60 | 15
15
15
7
7 | -
-
-
*30-90
*30-90 | 0.1
0.1
0.1
*0.5
*0.5 | 10
10
10
•200
•200 | 11111 | 20
20
20
-
- | MO, TS, TI, RCA, BE
MO, TS, TI, RCA, BE
MO, TS, TI, RCA, BE
USA, Mil
USA, Mil | | P 65 | 2N458A
2N511
2N511A
2N511B
2N512 | CL
TI
TI
TI | pnp,A,ge
pnp,Al,ge
pnp,Al,ge
pnp,Al,ge | 150
150
150
150
150 | 0.5
2
2
2
2 | 100
100
100
100
100 | *80
40
60
80
40 | 7
25
25
25
25
25 | *30-90
20-60
20-60
20-60
20-60 | •0.5
5
5
5
5 | •200
-
-
-
- | 11111 | 11111 | USA, Mil
Sat. voll=0,2v, BE
Sat. voll=0,2v, BE
BE | | | 2N512A
2N512B
2N513
2N513A
2N513B | TI
TI
TI
TI | sg,LA,qnq
sg,LA,qnq
sg,LA,qnq
sg,LA,qnq
sg,LA,qnq | 150
150
150
150
150 | 2
2
2
2
2 | 100
100
100
100
100 | 60
80
40
60
80 | 25
25
25
25
25
25 | 20-60
20-60
20-60
20-60
20-60 | 5
5
5
5 | | 11111 | - | Sat volt=0.4v
Sat volt=0.4v
Sat volt=0.4v | | P 66 | 2N514
2N514A
2N514B
2N1015
2N1015A | TI
TI
TI
WH
WH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 2
2
2
1.43
1.43 | 100
100
100
150
150 | 40
60
80
*30
•60 | 25
25
25
7.5
7.5 | 20-60
20-60
20-60
•10
•10 | 5
5
5
10
10 | -
-
25
25 | | 1111 | Sat. volt=0.5v, BE
Sat. volt=0.5v, BE
Sat. volt=0.5v, BE
STC, AMF
AMF | | | 2N1015B
2N1015C
2N1016
2N1016A
2N1016B | WH
WH
WH
AMF
AMF | is,LA,nqn
npn,AJ,si
npn,AJ,si
npn,FJ,si
npn,FJ,si | 150
150
150
150
150 | 1.43
1.43
1.43
1.4
1.4 | 150
150
150
150
150 | *100
*150
*30
60
100 | 7.5
7.5
7.5
7.5
7.5
75 | *10
*10
*10
8
8 | 10
10
10
10
10 | 25
25
30
- | 11111 | | AMF
AMF | | P 67 | 2N 1016 D
2N 1021
2N 1022
2N 1099
2N 1100 | WH
TI
TI
DE
DE | si A, lang
sg, lA, nnn
sg, lA, nnn
sg, lA, nnn
sg, lA, nnn
sg, lA, nnn | 150
150
150
150
150 | 1.43
2
2
0.5
0.5 | 150
100
100
100
100 | *200
*100
*120
*80
*100 | 7.5
10
10
15
15 | *10
*30-90
*30-90
- | 10
2
2
0.1
0.1 | 30
-
-
10
10 | 11111 | -
-
40
40 | DE, BE
DE, BE
TS, MO, TI, RCA, SO, BE
TS, MO, RCA, SO, BE | | | 2N1358A
2N1412USN
2N1907
2N1908
2N1980 | DE
DE
TI
TI | pnp,A,ge
pnp,A,ge
pnp,AD,ge
pnp,AD,ge
pnp,AJ,ge | 150
150
150
150
150 | 0.5
0.5
2
2
2 | 110
110
100
100
100 | *100
*100
100
130
*50 | 15
15
20
20
15 | *25/50
*25/50
10
10
50 | 4
4
10
10
6 | 5.0
5.0
-
- | 11111 | | TS | | P 68 | 2N1981
2N1982
2N2015
2N2016
2N2233 | TI
TI
RCA
RCA
WH | pnp,AJ,ge
pnp,AJ,si
npn,si
npn,si
npn,AJ,si | 150
150
150
150
150 | 2
2
-
-
2.0 | 100
100
-
-
150 | *70
*90
100
130
*200 | 15
15
10
10
10 | 50
50
10
*15
•400 | 6
6
*15
—
10ma | -
-
-
-
35 | |
1111 | TS
TS | | | 2N2226
2N2227
2N2228
2N2231
2N2230 | WH
WH
WH
WH | npn,F,si
npn,F,si
npn,F,si
npn,F,si
npn,F,si | 150
150
150
150
150 | 2
2
2
2
2 | 150
150
150
150
150 | *50
*100
*150
*100
*50 | 10
10
10
10
10 | 100
100
100
400
400 | 10
10
10
10
10 | 11
11
11
11
11 | 11111 | 11111 | | | P 69 | 2N2232
2N2330
2N2331
2N2580
2N2581 | WH
MO
MO
DE
DE | npn,F,si
npn,DDP,si
npn,DDP,si
npn,D,si
npn,D,si | 150
150
150
150
150 | 2
0.8
0.5
0.7
0.7 | 150
175
175
150
150 | *150
5.33
3.33
400
400 | 10
*30
*30
10 | 400
-
-
*10/40
*25/65 | 10
50
50
5
5 | 11
0.1
0.1
50
50 | 1111 | 7
7
~ | Epitaxial
Epitaxial | | | 2N2582
2N2583
2N2075
2N2075A
2N2076 | DE
DE
MO
MO | npn,D,si
npn,D,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
170
170
170 | 0.7
0.7
2
2
2 | 150
150
110
110
110 | 500
500
80
80
70 | 10
10
15
15
15 | *10/40
*25/65
25-100
25-100
25-100 | 5
5
4.0
4.0
4.0 | 50
50
10
10 | 11111 | 11111 | SO
"Meg-A-Life"
SO, "Meg-A-Life" | | P 70 | 2N2077
2N2078
2N2079
2N2080
2N2081 | MO
MO
MO
MO
MO | ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq
ag, LA, qnq | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 50
40
80
70
50 | 15
15
15
15
15 | 25-100
25-100
40-160
40-160
40-160 | 4.0
4.0
4.0
4.0
4.0 | 10
10
10
10
10 |) 1 1 1 1 | | SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life" | Merck makes 10 different solid-state materials. When you specify Merck you're almost never restricted by materials in the scope of your design. In fact, you can design 99 per cent of devices today with Merck materials. As added benefits you'll enjoy device uniformity, fewer rejects and simplified purchasing. Newcomers to the industry ask why. Old-timers know Merck is a basic manufacturer of polycrystalline silicon, with the largest research budget in the industry during the past half decade. As a result Merck customers have been consistently first to exploit such discoveries as single crystal, float-zone refined silicon, epitaxial silicon, Z-Met Thermoelectric Material and many III-V compounds. If you're interested in the profitable aspects of being <u>first</u>, write, wire or phone us today. Merck makes it awfully easy to be a customer. RESEARCH and PRODUCTION FOR BETTER SOLID-STATE MATERIALS | Γ | | | | | | | MAX. RA | | | (| CHARAC | TERIST | ICS | | | |---|-----------------------|---|----------------------------|---|--|--|--|-------------------------------------|----------------------------------|---|--------------------------------------|--|-----------------------|----------------------|--| | | Cross
Index
Key | Гуре
No. | Mfr. | Туре | P _c (w) | w/°c | T _i
(°C) | VCEO *VCBO | l _c (a) | h _{fe} *h _{FE} | Ι
(ma)
(* μα) | fae
*f _T
(kc) | Pawr.
Gain
(db) | Pawr.
Out.
(w) | Remarks | | | P 71 | 2N2082
2N2082A
2N2152
2N2152A
2N2153 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | *40
*40
45
45
60 | 15
15
30
30
30 | *70
*70
50-100
50-100
50-100 | 4
4.0
4.0
4.0 | 10
10
2.7
2.7
2.7 | 11111 | 11111 | SO, "Meg-A-Life"
"Meg-A-Life"
SO, "Meg-A-Life" | | | | 2N2154
2N2155
2N2156
2N2157
2N2158 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 75
90
45
60
75 | 30
30
30
30
30 | 50-100
50-100
80-160
80-160
30-160 | 4.0
4.0
4.0
4.0
4.0 | 2.7
2.7
2.7
2.7
2.7
2.7 | 11111 | | SO, "Meg-A-Life"
SO
SO, "Meg-A-Life"
SO, "Meg-A-Life"
SO, "Meg-A-Life" | | | P 72 | 2N2490
2N2491
2N2492
2N2493
2N2728 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | *70
*60
*80
*100
*15 | 15
15
15
15
15
50 | *20-40
*25-50
*25-50
*25-50
*40-130 | 3
3
2
3
*30 | 10
10
10
10 | 11111 | 1111 | | | | 1 72 | MP500
MP500A
MP501
MP502
MP504 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 45
45
60
75
45 | 60
60
60
60 | 30-60
30-60
30-60
30-60
50-100 | 4.0
4.0
4.0
4.0
4.0 | 3.6
3.6
3.6
3.6
3.6 | 11111 | 11111 | "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" | | | P 73 | MP505
MP506
2N574
2N574A
2N575 | MO
MO
MH
MH
MH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
187
187
187 | 2
2
2.5
2.5
2.5
2.5 | 110
110
100
100
100 | 60
75
*60
*80
*60 | 60
60
10
10
25 | 50-100
50-100
9-22
9-22
19-42 | 4.0
4.0
7
20
7 | 3.6
3.6
100
100
150 | 11111 | | "Meg-A-Life"
"Meg-A-Life"
USA
USA | | | F /3 | 2N575A
2N1157
DA3F3
2N2739
2N2740 | MH
MH
MH
WH
WH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,si
npn,AJ,si | 187
187
187
200
200 | 2.5
2.5
2.5
2.0
2.0 | 100
100
100
175
175 | *80
*60
*60
*50
*200 | 25
40
25
20
20 | 19-42
38-84
35
•10
•10 | 20
7
20
15ma
15ma | 150
200
175
14
14 | 111 | - | | | | | 2N2741
2N2742
2N2745
2N2746
2N2747 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
np,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2.0
2.0
2.0
2.0
2.0
2.0 | 175
175
175
175
175
175 | *150
*200
*50
*100
*150 | 20
20
20
20
20
20 | *10
*10
*10
*10
*10 | 15ma
15ma
15ma
15ma
15ma | 14
14
14.5
14.5
14.5 | | | | | | P 74 | 2N2748
2N2751
2N2752
2N2753
2N2754 | WH
WH
WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | 200
200
200
200
200
200 | 2.0
2.0
2.0
2.0
2.0
2.0 | 175
175
175
175
175
175 | *200
*50
*100
*150
*200 | 20
20
20
20
20
20 | *10
*10
*10
*10
*10 | 15ma
15ma
15ma
15ma
15ma | 14.5
16
16
16
16 | | | | | | | 2N2757
2N2758
2N2759
2N2760
2N2761 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2.0
2.0
2.0
2.0
2.0
2.0 | 175
175
175
175
175
175 | *50
*100
*150
*200
*250 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15ma
15ma
15ma
15ma
15ma | 14
14
14
14
14 | | | | | | P 75 | 2N2763
2N2764
2N2765
2N2766
2N2769 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2.0
2:0
2.0
2.0
2.0
2.0 | 175
175
175
175
175 | *50
*100
*150
*200
*50 | 30
30
30
30
30 | *10
*10
*10
*10
*10
*10 | 15ma
15ma
15ma
15ma
15ma | 14.5
14.5
14.5
14.5
16 | | | | | | P 76 | 2N2771
2N2772
2N2776
2N1809
2N1810 | WH
WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | 200
200
200
250
250 | 2.0
2.0
2.0
2.22
2.22 | 175
175
175
175
175
175 | *150
*200
*100
*50
*100 | 30
30
30
30
30
30 | *10
*10
*10
10 | 15ma
15ma
15ma
15
15 | 16
16
16
17
17 | | | | | | 70 | 2N1811
2N1812
2N1813
2N1814
2N1816 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,FJ,si
npn,FJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175 | *150
*200
*250
*300
*50 | 30
30
30
30
30
30 | 10
10
10
10
10 | 15
15
15
15
15 | 17
17
-
-
18 | 111111 | 11111 | | | | P 77 | 2N1817
2N1818
2N1819
2N1823
2N1824 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175 | *100
*150
*200
*50
*100 | 30
30
30
30
30
30 | 10
10
10
10
10 | 15
15
15
15
15 | 18
18
18
19
19 | 11111 | 11111 | | | | F // | 2N 1825
2N 1826
2N 1830
2N 1831
2N 1832 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175 | *150
*200
*50
*100
*150 |
30
30
30
30
30
30 | 10
10
•10
•10
•10 | 15
15
5ma
5ma
5ma | 19
19
14
14
14 | = | - | | ## performance ... our constant parameter NATIONAL SEMICONDUCTOR CORPORATION OFFERS THE DESIGNER A COMPLETE SILICON LINE OF TRANSISTORS, INTEGRATED DEVICES, AND PACKAGED MODULES . . . NPN AND PNP SMALL SIGNAL: NPN PLANAR, NPN MESA, NPN ALLOY. NPN AND PNP SWITCHING: NPN MESA EPITAXIAL, NPN PLANAR EPITAXIAL, PNP ALLOY. NPN MEDIUM POWER: NPN MESA EPITAXIAL, NPN PLANAR EPITAXIAL. INCH* (INTEGRATED CHOPPER): NPN PLANAR EPITAXIAL INTEGRATED DEVICE. NPN VHF DRIVER AND POWER: NPN PLANAR EPITAXIAL, NPN MESA. NPN AVALANCHE. FOR FURTHER INFORMATION, WRITE OR PHONE NATIONAL SEMICONDUCTOR CORPORATION, PRODUCT MARKETING DEPARTMENT, DANBURY, CONNECTICUT. Pat. applied for ## NATIONAL SEMICONDUCTOR DANBURY, CONN. • PHONE: (AREA CODE 203) 743-7624 • TWX 203-744-1590 ON READER-SERVICE CARD CIRCLE 462 | | | | | | | MAX. RA | TINGS | | (| HARAC | TERIST | ICS | | | |-----------------------|---|----------------------------|--|--|--|--|-------------------------------------|----------------------------------|--|--|--------------------------------------|-----------------------|----------------------------------|--| | Cross
Index
Key | Гуре
Na. | Mfr. | Туре | P _c (w) | w/°C | T _i
(°C) | VCED
*VCBO
(v) | ا _د
(۵) | hfe
*hFE | l _{CO} (πα) (*μα) | fae
*fT
(kc) | Powr.
Gain
(db) | Powr.
Out.
(w) | Remarks | | | 2N 1833
2N 2109
2N 2110
2N 2111
2N 2112 | WH
WH
WH
WH | npn,AJ,si
npn,FJ,si
npn,FJ,si,
npn,FJ,si
npn,FJ,si | 250
250
2 50
2 50
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | *200
*50
*100
*150
*200 | 30
30
30
30
30
30 | *10
10
10
10
10 | 5ma
15
15
15
15 | 14
14
14
14
14 | 1111 | 1111 | | | P 78 | 2N2113
2N2114
2N2116
2N2117
2N2118 | WH
WH
WH
WH
WH | npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | *250
*300
*50
*100
*150 | 30
30
30
30
30 | 10
10
10
10
10 | 15
15
15
15
15 | -
14.5
14.5
14.5 | 11111 | | | | P 79 | 2N2119
2N2123
2N2124
2N2125
2N2126 | WH
WH
WH
WH | npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | *200
*50
*100
*150
*200 | 30
30
30
30
30 | 10
10
10
10 | 15
15
15
15
15 | 14.5
16
16
16
16 | 11111 | 11111 | | | F /3 | 2N2130
2N2131
2N2132
2N2133
2N1620 | WH
WH
WH
WH
TR | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn | 250
250
250
250
250 | 2.22
2.22
2.22
2.22
0.4 | 175
175
175
175
175
200°C | *50
*100
*150
*200
*100 | 30
30
30
30
5 | *10
*10
*10
*10 | 5ma
5ma
5ma
5ma
10 | 14
14
14
14
800 | - | 60 | | | | 2N2032
SN-101
SN-102
ST5060
ST5061 | TR
CS
CS
TR
TR | npn
npn,MS,si
npn,MS,si
npn
npn | 11111 | 0.9
8.7
8.7
0.025
0.025 | 200°C
200
200
200
200
200 | *45
-
-
40
70 | 5
140
120 | 12
1
1
9-36
9-36 | 40
40
0.005
0.005 | 1200
0.5
0.5
-
- | 11111 | 45
*3
*5
- | *at 200mc
*at 100mc | | P 80 | ST6510
ST6511
ST6512
2N914
2N916 | TR
TR
TR
GE
GE | npn
npn
npn
npn,si
npn,si | 11111 | 0.088
0.088
0.088
360
360 | 200
200
200
200
200
200 | 20
*40
*40
-
- | -
-
-
40
45 | 20min
20-60
40-120
-
- | 0.005
0.005
0.005
3.0
3.0 | 10K
10K
10K
25mµ
10mµ | | -
-
6.0
6.0 | Planar Epitaxial, RA
Planar Passivated , RA | | | 2N2192
2N2192A
2N2193
2N2193A
2N2194 | GE
GE
GE
GE | npn,si
npn,si
npn,si
npn,si
npn,si | 11111 | 0.8
0.8
0.8
0.8
0.8 | 200
200
200
200
200
200 | 1 1 1 1 | 60
60
80
80
60 | 1.0amp
1.0amp
1.0amp
1.0amp
1.0amp | 2.5
2.5
2.5
2.5
2.5
2.5 | 10mµ
10mµ
10mµ
10mµ
10mµ | | 20
20
20
20
20
20 | Planar Epitaxial, RA
Planar Epitaxial, RA
Planar Epitaxial, RA
Planar Epitaxial, RA
Planar Epitaxial, RA | | P 81 | 2N2194A
2N2195 | GE
GE | npn,si
npn,si | - | 0.8
0.6 | 200
200 | - | 60
45 | 1.0amp
1.0amp | 2.5
2.5 | 10mµ
100mµ | - | 20
20 | Planar Epitaxial, RA
Planar Epitaxial, RA | T60 ELECTRONIC DESIGN - MODEL PB-1 AUTOMATIC TRANSISTOR TEST SET A "go/no go" unit, ideal for quality control and incoming inspection. Completely transistorized and compact, it provides simple, high speed operation at low initial cost. - MODEL OT-1 HI-FREQUENCY TRANSISTOR TEST SET Measures high over a range of 1-10. Individual plug-in units provide frequencies of 20 mc, 100 mc, and 200 mc. Other frequencies available upon request. Vc up to 30 v, IE up to 100 ma. Overall accuracy ±3%. - MODEL OX-1 MULTIPLEXER A solid state unit utilizing a cold cathode GS10K Dekatron tube for the switching function. The instrument is a programmable 10-channel device with single pole switching; several units can be cascaded to obtain multiple channel input. Sampling rate: d.c. to 10,000/sec. Signal range: ±10 v. Write today for full information . . . Baird-Atomic offers the most complete line of Transistor Test equipment. Engineers and Scientists: Investigate challenging opportunities with B/A. Write Industrial Relations Director. An equal opportunity employer. # LOW LEVEL SWITCHING Generally types rated under one watt. In order of $f_{\alpha e}$ ($f_{\alpha b}$ or f_{τ} where noted). | | | | | | 108 | MAX | . RATING | S | 1302 | CHAR | ACTERIS | TICS | SV | ITCHING | | | |-----------------------|--|--------------------------------|---|-----------------------------------|--|--|---------------------------------|-------------------------------|--|--------------------------------|-----------------------------------|---------------------------------------|--|---|-------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*!T
**fab
(mc) | P _c (mw) | τ _i (°c) | mw/°C | VCEO
VCBO
(v) | l C (ma) | hfe
*hFE | l _{C0} (μο) | C _{oe} *C _{ob} (pf) | t _r
(μsec)
*ton
(nsec) | † _s
(μsec)
*†off
(nsec) | V _{ce(sat)} | Remarks | | LL 1 | 2N1034
2N1275
2N1037
2N329A
2N1035 | RA
RA
RA
CT
RA | pnp,FA,si
pnp,FA,si
pnp,FA,ge
pnp,AJ,si
pnp,FA,si | 0.2
0.2
0.25
0.3
0.3 | 250
250
250
250
250
250 | 160
160
160
160 | -
.54
-
3
- | *40
80
*35
35
*35 | 50
100
50
50
50 | 15
15
30
28
30 | 5
.005
5
.005
5 | 70
60
70
70
70 | 11111 | 1111 | | SSD, NA, KF
KF
SSD, NA, KF
SSD, NA, KF, AMP | | | 2N1036
2N1640
C301
2N328A
2N329A | RA
CT
CT
CT
SSD | pnp,FA,si
pnp,AJ,si
si,LA,qnq
is,LA,qnq
is,LA,qnq | 0.4
0.4
0.4
0.5
**0.5 | 250
250
250
250
250
385 | 160
160
160
160 | -
2
2
3
2.85 | *30
20
70
30
30 | 50
50
50
50
50 | 60
11
4
60
*88 | 5
.001
5
.005
0.1 | 70
50
50
70
70 | | 11111 | 11111 | SSD, NA, KF
KF
KF
KF, RA | | LL 2 | 2N1057
2N327A
2N670
2N2670
2N1234 | GE
WT
PH
PH
HU | pnp,AJ,ge
pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si | 0.5
0.7
0.7
••0.7
0.8 | 240

300
-300
400 | 100
200
85
85
160 | 4
3
5.0
-
3 | 45
.3
40
•40
110 | 300
200
2a
2a
100 | 15
200
• 100
21 | 300
100
20
20
0.1 | 40
70
-
-
95 | 1111 | 11111 | 0,08
-
0,3
0.3
- | RA, KF, SD
Pulse Amp.
Pulse Amp
TO-5 Package, KF | | | 2N1244
2N1641
C302
2N327A
2N328A | HU
CT
CT
HU
HU | is, LA, qnq
is, LA, qnq
is, LA, qnq
is, LA, qnq
is, LA, qnq | 0.8
0.8
0.8
1.0 | 1000
250
250
385
385 | 160
160
160
160
160 | 7.4
2
2
2
3
3 | 110
10
8
50
50 | 200
50
50
100 | 20
15
12
14
25 | 0.1
.001
.2
0.1
0.1 | 95
50
50
95
95 | 11111 | 11111 | 1 1 1 1 | Coaxial package RA, SSD, KF WT, RA, SSD, JA, KF | | LL 3 | 2N329A
2N331
2N1056
2N2370
2N2371 | HU
RCA
GE
NA
NA | pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,si
pnp,si | 1.0
1.0
1.0
1.0
1.0 | 385
200
240
200
200 | 160
85
100
200
200 | 3
3
4
1.4
1.4 | 50
*30
50
15
15 | 100
200
300
50
50 |
50
-
25
15
20 | 10
16
25
0.005
0.005 | 95
-
40
15
15 | 11111 | - | -
0.09
- | WT, RA, SSD, NA, KF
BE, US, MO
Neon indicator
2.5db NF
2.5 db NF | | | 2N2372
2N2373
TS605
TS606
2N1228 | NA
NA
TS
TS | pnp,si
pnp,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,si | 1.0
1.0
**1.0
**1.0 | 150
150
150
150
150
400 | 200
200
100
100
160 | 0.86
0.86
-
-
3 | 15
15
12
20
*15 | 50
50
400
400
100 | 15
20
*15
*15
20 | 0.005
0.005
10
10
0.1 | 15
15
-
-
95 | 11111 | 1 - 1 - 1 | 1 1 1 1 | 2.5 db NF
2.5 db NF
WT,KF, SSD | | LL 4 | 2N1229
2N1230
2N1231
2N1232
2N1233 | HU
HU
HU
HU | pnp,AJ,si
pnp,FJ,si
pnp,FJ,si
pnp,FJ,si
pnp,FJ,si | 1.2
1.2
1.2
1.2
1.2 | 400
400
400
400
400 | 160
200
200
200
200
200 | 3 | 15
*35
*35
65
65 | 100
500
500
500
500 | 36
14
24
14
24 | 0.1
0.1
0.1
0.1
0.1 | 95
100
100
100
100 | 1111 | | -
-
-
- | WT, NA, KF.AMP, SSD
WT, NA, KF. SSD, AMP
WT, NA, KF. SSD, AMP
WT, NA, KF. SSD, AMP
WT, NA, KF.SSD, AMP | | | 2N1234
2N1238
2N1239
2N1240
2N1241 | HU
HU
HU
HU | pnp,FJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si | 1.2
1.2
1.2
1.2
1.2 | 400
1000
1000
1000
1000 | 200
160
160
160
160 | 7.4
7.4
7.4
7.4
7.4 | 110
15
15
35
35 | 500
200
200
200
200
200 | 14
20
36
20
36 | 0.1
0.1
0.1
0.1
0.1 | 100
95
95
95
95 | 11111 | | 11111 | WT, NA, KF, SSD
Coaxial package
Coaxial package
Coaxial package
Coaxial package | | LL 5 | 2N1242
2N1243
2N1642
C106
OC122 | HU
HU
CT
CT
AMP | pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,ge | 1.2
1.2
1.2
1.2
1.3 | 1000
1000
250
250
300 | 160
160
160
160
90 | 7.4
7.4
2
2
4.5 | 60
60
6
10
*32 | 200
200
50
50
50 | 20
36
23
50
180 | 0.1
0.1
.005
50 | 95
95
50 | 11111 | 11111 | 11111 | Coaxial package
Coaxial package
Field effect | | | 2N312
2N519
2N519A
B1154
B1154A | SY
IND
IND
BE
BE | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 1.5
1.5
1.5
1.5
1.5 | 100
150
150
400
400 | 85
85
85
100
100 | 1.66
2.5
2.5
.15 | 15
15
25
40
60 | 200
200
200
300
300 | -
25
25
-
- | 15
2
1
10
15 | -
14
14
20
20 | 1.5
-
1.3
1.5
1.5 | 2
-
0.7
-
- | 0.075
-
-
.25
.25 | US, KF, TI
US, KF | | LL 6 | OC123
2N328A
2N536
2N679
2N1220 | AMP
SZD
PH
SY
SZD | pnp,AJ,ge
pnp,FA,si
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,si | 1.5
2
** 2
2
** 2 | 300
385
50
150
250 | 90
160
85
85
175 | 4.5
2.85
-
2.5
1.7 | *50
40
*20
20
25 | 500
50
30
200
100 | 160
30
50
-
*9 | -
5
4.0
25
0.1 | 70
-
18 | -
-
-
5
- | -
-
5
- | -
0.07
0.3
- | KF | | | 2N1222
2N1223
2N1446
OC80
2N438 | SSD
SSD
IND
AMP
SY | pnp,AJ,si
pnp,AJ,si
pnp,AJ,ge
pnp,PADT,ge
npn,AJ,ge | **2
**2
2
2
2.5 | 250
250
200
550
100 | 175
175
85
75
85 | 1.7
1.7
3.33
-
1.6 | 25
40
45
*32
30 | 100
100
400
600 | 10
6
30
85
20 | .005
0.1
5
10
10 | *18
15
- | -
-
0.7 | 1.1.1.1 | 1 1 1 1 | - | | LL 7 | 2N817
2N818
2N356
2N356A
2N520 | RA
RA
SY
GI
KF | npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge | 2.5
2.5
3
3 | 75
75
100
150
150 | 85
85
85
100
100 | 1.25
1.25
1.6
2 | 30
30
20
30
20 | 400
400
500
500 | 20
20
-
60
20(min) | 10
10
25
3
25 | 20
20
-
14
- | -
1.0
1.5 | -
0.3
0.3
- | -
0.6
0.18 | Submin
Submin
Gl
SY, TI
TI | # LL continued | | | | | | | MAX | RATING | S | | CHAR | ACTERIS | TICS | SI | WITCHING | ; | | |-----------------------|--|-----------------------------------|---|-----------------------------------|----------------------------------|--------------------------------------|--|--|--|------------------------------------|---------------------------------|----------------------------------|--|---|------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P c (mw) | T _i | mw/°C | V _{CEO} *V _{CBO} (v) | l C (ma) | h _{fe} *h | l _{CO}
(μα) | Coe
*Cab
(pf) | t _r
(μsec)
*ton
(nsec) | † _s
(μsec)
*†off
(nsec) | V _{ce(sat)} | Remarks | | | 2N801
2N802
2N1051
2N1302
2N1447 | RA
RA
WE
TI
IND | pnp,AJ,ge
pnp,AJ,ge
npn,D,si
npn,AJ,ge
pnp,AJ,ge | 3
3
**3
3 | 75
75
250
150
200 | 85
85
150
-
85 | 1.25
1.25
4.0
-
3.33 | 30
30
40
25
45 | 400
400
100
300
400 | 30
30
30
*20
45 | 4
4
0.1
6
5 | 20
20
7.0
*20 | 11111 | 11111 | -
-
-
0.4
- | Submin
Submin | | LL 8 | 2N1993
2N1353
2N385A
2N404A
2N425 | TI
IND
SY
RCA
SY | npn,A.ge
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 3.5
4
4
4 | 300
200
150
150
150 | 100
85
100
100
85 | 4.0
3.33
2
-
2.5 | *30
15
*40
40
20 | 300
200
200
150
400 | *120
70
30-110
30 | 4
2.5
40
5
2.0 | *13
12
-
20
14 | 0.2
.6
-
-
1.0 | 0.7
.4
-
-
0.3 | 0.07
0.1
-
-
0.2 | KF, US
GI, TI
GI,IND,TS,KF, TI
RA, IND, TS, US, KF, GI | | | 2N799
2N800
2N824
2N1027
2N1028 | RA
RA
RA
SSD
SSD | ag, LA, qnq
ag, LA, qnq
ag, LA, qqn
iz, LA, qnq
iz, LA, qnq | 4
4
4
**4
**4 | 75
75
75
250
250 | 85
85
85
176
175 | 1.25
1.25
1.25
1.7
1.7 | 25
25
25
•18
•10 | 150
150
100
100
100 | 30
20
40
18
9 | 5
5
.025
.025 | 20
20
20
7
7 | 11111 | 11111 | 11111 | Submin
Submin
Submin
NA, SSD, KF
NA, KF | | LL 9 | 2N1404
2N1448
2N1605A
2N1780
2N1781 | IT
DAI
Y2
Y2
Y2
Y2 | pnp,A,ge
pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
gg,LA,nqn | **4
4
4
4 | 300
200
200
100
100 | 100
85
100
100
100 | 4.0
3.33
2.6
1.3
1.3 | *25
45
40
25
25 | 300
400
200
100
100 | *90
65
40
30-110
40 | 3
5
10
10
5 | *13
20
20
20
20 | 0.18
-
-
-
- | 0.8 | 0.08
-
-
-
- | GI, RCA | | | 2N 1808
2N 2000
2N 395
2N 520
2N 520 A | TI
TI
GE
IND
IND | npn, A, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | ** 4
4
** 4.5
4.5
4.5 | 300
300
500
150
150 | 85
100
100
85
85 | 5.0
4
6.67
2.5
2.5 | *25
50
*30
15
25 | 300
750
200
200
200
200 | *120
*100
40
100 | 3
8
6
1 | *13
30
*14
14
14 | 0.2
-
0.55
-
0.9 | 0.7
-
0.5
-
0.7 | 0.07
0.6
- | TI, KF, PH
US, KF
US, KF, TI | | LL 10 | 2N1169
2N1170
2N1302
2N1303
2N1354 | SY
SY
TI
TI
IND | ag,LA,nqn
ag,LA,nqn
ag,LA,nqn
ag,LA,qnq
ag,LA,qnq | 4.5
4.5
4.5
4.5
4.5 | 120
120
150
150
200 | 85
85
85
85
85 | 2
2
2.5
2.5
3.33 | 25
25
25
• 30
30 | 400
400
300
300
200 | 20
20
-
-
70 | 50
50
5
3
2.5 | 20
20
11
16
12 | -
.70
.40 | -
.50
.90 | -
.1v
.1v
0.1 | RCA
RCA
TO-5, SY, GI, RCA
GI, KF, AMP
KF, US | | | 2N123
2N315
2N315A
2N388A
2N396A | SY
GI
GI
RCA
SY | pnp,AJ,ge
ge,LA,qnq
ge,LA,nqn
ge,LA,nqn | \$
5
5
5
5 | 100
100
150
150
150 | 85
85
100
100
100 | 1.66
2
2
-
2 | 15
*20
*30
*40
30 | 125
500
500
200
200 | 30-150
-
70
•30
30-150 | 0.6
1
1
5
6 | 14
14
20 | 1.0
0.9
1 | 0.2
0.4
0.7 | 0.2
0.12
0.12
- | KF, IND, US
IND, US, KF
TS,KF,GE,GI,RCA | | LL 11 | 2N414
2N439
2N450
2N576
2N578 | SY
SY
GE
SY
RCA | onp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge | 5
5
5
5 | 150
100
150
200
120 | 85
85
85
100
71 | 2.5
1.66
2.5
2.6 | *30
*20
12
20
20 | 200
-
125
400
400 | 30-90
-
-
15 | 5
10
6
20 | -
20
- | 0.5
-
2
0.85 | 0.7
1
0.33 | 0.25
0.2
0.4
0.2 | KF, GI, US, TS
TI
IND,US,KF,GI | | | 2N585
2N658
2N803
2N804
2N815 | RCA
RA
RA
RA
RA | npn,AJ,ge
pnp,FA,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 5
5
5
5
5 | 120
150
75
75
75 | 71
85
85
85
85 | 1.25
1.25
1.25
1.25 | 25
16
30
30
25 | 200
1a
400
400
200 | 40
40
40
60 | 3
2.5
4
4
10 | 12
20
20
20
20 | 0.35 | 0.25 | 0.1
0.25
-
- | SY, GI,
TI
KF
Submin
Submin
Submin | | LL 12 | 2N816
2N819
2N820
2N825
2N826 | RA
RA
RA
RA | npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 5
5
5
5 | 75
75
75
75
75
75 | 85
85
85
85
85 | 1.25
1.25
1.25
1.25
1.25
1.25 | 25
30
30
30
30
30 | 200
400
400
200
200 | 60
30
30
30
30 | 10
10
10
6
6 | 20
20
20
20
20
20 | 11111 | 11111 | 11111 | Submin
Submin
Submin
Submin | | 11.12 | 2N1012
2N1219
2N1221
2N1348
2N1449 | GI
SSD
SSD
IND
IND | npn,AJ,ge
pnp,AJ,si
pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge | 5
**5
**5
5 | 150
250
250
200
200 | 100
175
175
175
85
85 | 2
1.7
1.7
3.33
3.33 | *40
25
25
40
45 | 100
100
400
400 | *18
20
95
80 | 5
0.1
.005
5
5 | 10
15
*15
12 | 0.1 | 0.1 | 0.1 | KF, TI | | LL 13 | 2N1994
GT1658
KGS1005
2N357
2N357A | TI
GI
KF
SY
GI | ge,LA,nqn
ge,LA,nqn
ge,LA,nqn
ge,LA,nqn | 5
5
6
6 | 150
150
200
100
150 | 85
100
85
85
100 | 2.5
2
5.2
1.6
2 | 30
*30
30
*15
30 | 300
-
400
500
500 | 50
40
-
90 | 5
3
12
25
3 | 11
10
-
-
14 | 1.1
-
1.2
0.5 | 1.5
-
.7
0.5 | -
-
.20
0.18 | GI, TI
SY, TI | | LL 14 | 2N377
2N426
2N789
2N902
2N1319 | SY
SY
RA
RA
RCA | npn,AJ,ge
pnp,AJ,ge
npn,DB,si
npn,DB,si
pnp,AJ,ge | 6 6 6 | 150
150
-
-
120 | 100
85
-
71 | 2
2.5
1.4
- | *20
*20
45
45
20 | 200
400
25
25
400 | -
15
15
30 | 10
2
.002
.002
2.5 | 14
5
5 | 2.5
1.0
-
-
20 | 0.7
0.3
-
- | -
0.22
-
-
- | GE, GLTI
RA, TS, GI, US, TI, KF
Submin
Submin
TI | | CC 14 | 2N1343
2N1997
2N2181
2N2182
2N2183 | IND
TI
PH
PH
PH | pnp,AJ,ge
npn,AJ,ge
pnp,SAT,si
pnp,SAT,si
pnp,SAT,si | 6
6
*6
*6 | 150
250
150
150
150 | 85
100
140
140
140 | 2.5
3.3
1.3
1.3 | 20
45
•25
•25
•15 | 400

50
50
50 | 40
4
10
10
10 | 3
15
0.01
0.01
0.01 | 12
-
•12
•12
•12 | 1.0 | 11111 | 11-11 | Chopper
2N2181
Chopper | May 24, 1963 T63 600 mc f_T Switches... 120V V_{CB} Core Drivers... 100 mc Amplifier... All Available Now with... # PHILCO SILICON PLANAR RELIABILITY Philco's versatile line of Epitaxial Silicon Planar NPN Transistors enables you to upgrade reliability in transistor applications. | IIITRA | HIGH | SPEED | SWITCHES | |--------|------|-------|----------| | TYPE | Ma | Maximum Ratings | | | | | Charac | teristics | | | | |----------------------------|--------------------------|------------------------|-----------------------|-----------------------------|-------------------------|-------------------------------------|--------|----------------------------|-----------------------------|------------------------------|-------------------------------| | | T _S °C. | V _{CB} volts | P _T @25°C. | I _{CBO}
max. μa | h _{FE}
min. | V _{CE} (SAT)
max. volts | min. | C _{ob}
max. pf | t _s
max. nsec | t _{on}
max. nsec | t _{off}
max. nsec | | 2N709 | 300 | 15 | 300 | 0.05 | 20 | 0.30 | 600 | 3 | 6 | 15 | 15 | | T-2877 *T0-18 case—collect | 300
for internally co | 15
nnected to case. | 300 | 0.05 | 20 | 0.30 | 500 | 3 | 8 | 17 | 17 | | CORE | DRIVER | C/DIII CE | AMDII | FIEDS | |------|--------|-----------|-------|-------| | TYPE* | V _{CB}
max. volts | f _T
@ 50 ma
mc | h _{FE}
@ 150 ma | |----------------------------------|-------------------------------|---------------------------------|-----------------------------| | 2N1893 | 120 | 50 | 40 | | 2N1613 *TO-5 case—collector inte | 75 | 60 | 40 | #### 100 mc LOW-NOISE AMPLIFIER Industry's Newest Silicon Amplifier Standard | TYPE | Power | Maximum | Minimum | |---------|----------------|--------------|-------------------| | | Gain | Noise Figure | BV _{CEO} | | T-2857* | 15-22db@100 mc | 5db@100 mc | 20 volts | The new Philco T-2857 is industry's first silicon amplifier transistor to be functionally tested at 100 mc for fixed-matched, fixed neutralized, and fixed-bias performance. This insures interchangeability in practical communications circuits. *TO-18 case with 4 leads—collector isolated from case: Whatever your silicon transistor application, evaluate Philco Planar Transistors. For complete data, and new Reliability report, write Dept. ED52463. ON READER-SERVICE CARD CIRCLE 464 #### VERY HIGH SPEED SWITCHES These Philco Types Feature Industry's Best Combination of Voltage, Switching Speed, and Beta. | TYPE | | M | aximum | Ratings | | Characteristics | | | | | | | | | | | | |--------|--------------------|------------------------|------------------------|----------------------------------|-------------------|-----------------------------|-------------------------|-------------------------------------|---------------------------|-------------------------|-----------------------------|------------------------------|-------------------------------|--|--|--|--| | 71 | T _S °C. | V _{CBO} volts | V _{CEO} volts | P _T
@ 25° C.
mw | I _C ma | l _{CBO}
max. μa | h _{FE}
min. | V _{CE} (SAT)
max. volts | f _T
min. mc | C _{ob} max. pf | t _s
max. nsec | t _{on}
max. nsec | t _{off}
max. nsec | | | | | | 2N2710 | 300 | 40 | 20 | 360 | 500 | 0.03 | 40 | 0.25 | 500 | 4 | 15 | 20 | 35 | | | | | | 2N2651 | 300 | 40 | 20 | 360 | 500 | 0.03 | 25 | 0.25 | 350 | 4 | 25 | 35 | 75 | | | | | | 2N914 | 300 | 40 | 15 | 360 | 500 | 0.025 | 30 | 0.25 | 300 | 6 | 20 | 40 @
200 ma | 40 @
200 ma | | | | | | 2N834 | 175 | 40 | 30** | 300 | 200 | 0.50 | 25 | 0.25 | 350 | 4 | 25 | 35 | 75 | | | | | | 2N784A | 300 | 40 | 15 | 350 | 200 | 0.025 | 25 | 0.19 | 300 | 3.5 | 15 | 20 | 40 | | | | | | 2N708 | 300 | 40 | 15 | 360 | | 0.025 | 30 | 0.40 | 300 | 6 | 25 | | | | | | | | 2N706 | 175 | 25 | 20* | 300 | 50 | 0.5 | 20 | 0.60 | 200 | 6 | 60 | | | | | | | *VCER **VCES † TO-18 case—collector internally connected to case. LANSDALE DIVISION, LANSDALE, PA. # LL continued | | | | | | | MAX. | RATINGS | | 1 | CHARACTERISTICS | | SW | ITCHING | | | | |-----------------------|--|--------------------------------|---|--------------------------------|--|--|--------------------------------------|-------------------------------|---------------------------------|-------------------------------|--|----------------------------------|--|---|---------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P _c (mw) | τ _ί
(°c) | mw/°C | VCEO | I C | hfe
*hFE | _{CO}
(μα) | Coe
*Cob
(pf) | t _r
(μsec)
*ton
(nsec) | t _s
(μsec)
*toff
(nsec) | V _{ce(sat)} | Remarks | | | 2N2184
2N2274
2N2275
2N2276
2N2277 | PH
PH
PH
PH
PH | pnp,SAT,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si | *6
*6
*6
*6 | 150
150
150
150
150 | 140
140
140
140
140 | 1.3
1.3
1.3
1.3
1.3 | • 15
25
25
15
15 | 50
50
50
50
50 | *15
10
10
10
10 | 0.0003
0.045
0.045
0.003
0.003 | *12
9
9
9 | 11111 | 11111 | 1111 | Pair 2N2183
Chopper
2N2274
chopper
2N2276 | | LL 15 | 2N2185
2N2186
2N2187
2N100
2N1090 | PH
PH
PH
SY
RCA | pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,AJ,ge
npn,AJ,ge | *6.5
*6.5
*6.5
7
7 | 150
150
150
150
150
120 | 140
140
140
100
85 | 1.3
1.3
1.3
2 | 30
30
30
40
25 | 50
50
50
-
400 | -
-
25(min)
50 | 0.001
0.001
0.001
15
4 | 9
9
- | -
-
-
0.25 | -
-
-
0.20 | 1 - 1 1 | chopper
M. Pair
2N2185
Gl | | | 2N1114
2N1995
GT123
2N2278
2N2279 | SY
TI
GI
PH
PH | npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,SAT,si
pnp,SAT,si | 7
7
7
*7.6
*7.6 | 150
150
150
150
150 | 100
85
150
140
140 | 2
2.5
2
1.3
1.3 | *15
25
*25
15
15 | 200
300
-
50
50 | -
40
- | 30
5
3
0.001
0.001 | -
11
15
9
9 | -
0,9
- | -
0.5
-
- | -
0.1
-
- | TI
Chopper
2N2278 | | LL 16 | 2N123
2N388
2N396
2N396A
2N576A | GE
GI
GE
PH
SY | pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 8
8
8
**8 | 150
150
200
500
200 | 85
100
100
100
100 | 2,5
2
3.3
6.67
2,6 | 15
*25
20
*30
40 | 125
500
200
200
400 | 0.987
-
-
•100
- | 6
5
6
40 | 15
10
12
•14 | 0.45
0.6
0.4
.2
2 | 0.90
0.4
0.6
.25 | 0.15

0.08
.15
0.4 | SY
SY, GE, RA, TI –
TI, GI, SY, KF | | | 2N579
2N581
2N583
2N597
2N598 | RCA
RCA
RCA
PH
PH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 8
8
**8
8 | 120
150
120
250
250 | 71
85
- 85
100
100 | -
-
3.3
3.3 | 20
18
18
*45
*35 | 400
100
100
500
500 | 30
30
30
•70
125• | 3
3
3.5
3 | 12
12
•15
•15 | 0.36
0.20
0.20
-
- | 0.33
0.20
0.20
- | 0.2
0.35
0.35
0.085
0.085 | INO, US, KF,
GI
US,IND,GI,KF,TI
KF-MIL | | LL 17 | 2N600
2N662
2N714
2N790
2N792 | PH
RA
RCA
RA
RA | pnp, AJ, ge
pnp, FA, ge
pnp, AJ, ge
npn, DB, si
npn, DB, si | *8
8
8
8 | 750
150
150
- | 100
85
85
- | 10
-
-
1.4
1.4 | *35
11
30
45
45 | 500
1a
200
25
25 | *125
-
80
30
60 | 3
2.5
2
.002 | *15
12
11
8
5 | 11111 | 11111 | 0.085
0.25
-
-
- | MIL
KF
Submin
Submin | | | 2N903
2N905
2N1280
2N1284
2N1304 | RA
RA
IND
IND
TI | npn,DB,si
npn,DB,si
pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 8
8
8
8 | -
200
150
150 | 85
85
85
85 | 3.33
2.5
2.5 | 45
45
16
20
•25 | 25
25
400
400
300 | 30
80
60
90
110 | .002
.002
5
2 | 20
20
10
15
16 | -
.10
.45
.45 | -
-
.9
.50 | -
-
15
.1v | Submin
Submin
TO-5, GI, SY, GE, AMP | | LL 18 | 2N1305
2N1347
2N1350
2N1351
2N1355 | T1
IND
IND
IND
IND | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 8
8
8
8 | 150
150
200
200
200 | 85
85
85
85
85 | 2.5
2.5
3.33
3.33
3.33 | *30
20
50
40
30 | 300
200
400
400
200 | 100
80
95
65
80 | 3
2.5
10
5
2.5 | 11
12
12
12
12
12 | .28

-
-
.4 | .80
-
-
-
-
.6 | .1v
-
-
-
0.08 | TO-5, KF, GI, AMP
KF
KF
US | | | 2N1356
2N1478
2N1685
2N2001
2N2177 | IND
PH
SY
TI
SSD | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
si,LA,qnq | 8
**8
8
8 | 200
250
100
300
100 | 100
100
100
100
100
175 | 2.66
3.3
1.3
4
0.7 | 30
*30
25
30
6 | 200
500
200
750
50 | 80
•70
40
-
•95 | 2.5
3.5
10
5
*0.5 | 12
*15
20
30
10 | .A

 | .6
-
-
- | 0.08
.085
-
-
- | us | | LL 19 | 2N2178
2N167
2N358
2N358A
2N394 | SSD
GE
GI
SY
GE | np,AJ,si
np,GJ,ge
np,AJ,ge
np,AJ,ge
np,AJ,ge | **8
9
9 | 100
65
100
150
150 | 175
85
85
100
85 | 0.7
1.1
2
2
2.5 | 6
30
20
•30
10 | 50
75
500
500
200 | •95
0,985
60
25-75 | *0.5
1.5
3
5 | 10
2.5
14
14
12 | 0.4
0.4
- | 0.7
0.5
- | 0.35
0.18
-
0.04 | USAF2N167-MIL
SY, TI
GI
KF | | | 2N823
2N1198
2N2274
2N2275
2N2276 | RA
GE
PH
PH
PH | npn,AJ,ge
npn,RG,ge
pnp,SP,si
pnp,SP,si
pnp,SP,si | 9
*9
*9 | 75
65
150
150
150 | 85
85
140
140
140 | 1.25
1.1
1.3
1.3
1.3 | 25
25
•25
•25
•15 | 100
75
50
50
50 | 40
-
*15
*15
*15 | 5
1.5
.003
.003
.003 | 20
2.5
*6
*6
*6 | 0,4
-
-
- | 0.7
-
-
- | -
0.35
-
-
- | Submin
Chopper
pair 2N2274
chopper | | LL 20 | 2N2277
2N397
2N440
2N518
2N521 | PH
RCA
SY
GE
IND | pnp,SP,si
pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *9
10
10
10
10 | 15 0
150
100
150
150 | 140
85
85
85
85 | 1.3
-
1.66
2.5
2.5 | *15
30
*15
12
15 | 50
200
-
125
200 | 10
• 40
—
—
70 | 0.003
6
10
6
1 | *9
*20
-
12
14 | -
0.3
0.8
- | -
0.7
0.9
- | -
0.2
0.25
0.15 | pair 2N2276
GI,TI
US, KF | | LL 21 | 2N521A
2N600
2N659
2N745
2N805 | IND
PH
RA
RA
RA | pnp,AJ,ge
pnp,AJ,ge
pnp,FA,ge
npn,MS,si
pnp,AJ,ge | 10
10
10
10
10 | 150
750
150
150
75 | 85
100
85
175
85 | 2.5
10
-
0.75
1.25 | 25
35
14
45
30 | 200
500
1a
50
400 | 150
-
-
22
60 | 1
10
2.5
10
4 | 14
15
12
3
20 | 0,2
-
-
-
- | 0.5
-
-
-
- | 0.085
0.25
-
- | US, KF
KF, GI
Submin
Submin | | LL 21 | 2N806
2N821
2N822
2N1281
2N1349 | RA
RA
RA
IND
IND | pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 75
75
75
200
200 | 85
85
85
85
85 | 1.25
1.25
1.25
3.33
3.33 | 30
30
30
16
40 | 400
400
400
400
400 | 60
40
40
90
110 | 10
10
5
5 | 20
20
20
10
12 | -
-
-
.9
- | - | - | Submin
Submin
Submin | ELECTRONIC DESIGN # Obsoletes the Silicon Alloy Transistor with a complete line of Bed Mounted, Passivated # Epitaxial Junction PNP Silicon Transistors Featuring - HIGH V_{eb} ULTRA LOW LEAKAGE LOW OFFSET VOLTAGE HIGH FREQUENCY **RELIABILITY** These transistors are available in TO-5, TO-18, TO-46 and Molytab packages. | Characteristic | | n | | |---|---------|---------|---------| | | C9001 | C9002 | C9003 | | V_{cb} and V_{eb} ($I_b = 10^{-10}$ a) | 15v | 25v | 40v | | V _{ce} | 10v | 20v | 35v | | I _{cbo} and I _{ebo} (100°C) | 3nA | 3nA | 3nA | | $V_0 (I_b = 200 \mu a; I_e = 0)$ | 0.3mV | 0.5mV | 0.8mV | | Beta at 1mc ($I_c = 1$ ma; $V_{ce} = 6v$) | 30 | 20 | 10 | | Dissipation (case temp. =25°C) | 2 watts | 2 watts | 2 watts | | Max. Operating Temperature | 200°C | 200°C | 200°C | | Package | TO-46 | TO-46 | TO-46 | In addition, virtually all present PNP types can be supplied in this new construction in quantities and at competitive prices for direct replacement in existing circuits. Write or call to discuss your requirements. CTUSTALONICS 147 SHERMAN STREET, CAMBRIDGE 40, MASS., TELEPHONE: (617) 491-1670 ON READER-SERVICE CARD CIRCLE 465 # LL continued | Γ | | | | | | | MAX | . RATING | TINGS CHARACTERISTICS SWITCHING | | | | ING | | | | | |---|-----------------------|---|--------------------------------|---|----------------------------------|--|-----------------------------------|--------------------------------------|----------------------------------|---------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|---|--------------------------------------|---| | | Cross
Index
Key | Type
No. | Mfr. | Type | fae
*fT
**fab
(mc) | P c (mw) | T (
(°c) | mw/°C | VCEO *VCBO (v) | l C
(ma) | hfe
*hFE | lco
(μο) | Coe
*Cob
(pf) | (μsec)
*ton
(nsec) | t _s
(μsec)
*toff
(nsec) | V _{ce(sat)}
(v) | Remarks | | | | 2N1996
2N1998
2N2185
2N2186
2N2187 | TI
TI
PH
PH
PH | npn,AJ,ge
pnp,AJ,ge
pnp,SP,si
pnp,SP,si
pnp,SP,si | 10
10
10
10
10 | 150
250
150
150
150 | 85
100
140
140
140 | 2.5
3.3
1.3
1.3
1.3 | 20
35
*30
*30
*30 | 300
400
50
50
50 | 11111 | 5
4
0.001
0.001
0.001 | 11
15
•6
•9
•6 | 11111 | 1111 | | Chopper
Chopper
Pair 2 N2185 | | | LL 22 | 2N2648
R212
2N427
2N791
2N904 | GI
TS
GI
RA
RA | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
npn, DB, si
npn, DB, si | **10
**10.
11
11
11 | 250
0-
150
-
- | 100
85
100
- | 3.3
-
2
1.4 | *35
30
*30
45
45 | 1 a
400
-
25
25 | *80-500
*20
-
60
60 | 3
-
2
.002 | *18
*200
14
5
20 | .12
5
0.43
-
- | .6
*20
0.3
-
- | 0.105 | KF, TS, TI, IND, RA, US
Submin
Submin | | | | 2N316
2N316A
2N397
2N404
2N428A | GI
GE
RCA
GI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,ge | 12
12
12
12
12
12 | 100
150
200
120
150 | 85
100
100
85
100 | 2
2
3.3
-
2 | *20
*30
15
*25
*0.25 | 500
500
200
100
10 | 130
-
-
100 | 1
6
5
5 | 14
14
12
-
20 | 0.4
0.4
0.3
0.17
0.43 | 0.4
0.4
0.7
0.20
0.3 | 0.14
0.14
0.07
0.12
0.22 | KF
IND, US, KF
TI, KF
US,GE,RA,GI,SY,KF, PH, TI, AMP | | | LL 23 | 2N635
2N1306
2N1307
2N1313
2N1344 | GE
TI
TI
IND
IND | npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 12
12
12
12
12 | 150
150
150
175
175 | 85
85
85
85
85 | 2.5
2.5
2.5
-
2.5 | 20
*25
*30
*30
15 | 300
300
300
400
400 | -
110
110
80
90 | 5
5
3
-
5 | 16
11
14
12 | .22
.20
-
0.7 | -
.50
.80
-
0.3 | .lv
.lv
- | TO-5,GI,SY,GE,AMP
TO-5,GI, KF,AMP
KF, TI
KF | | | | 2N1345
2N1346
2N1357
2N2278
2N2279 | IND
IND
IND
PH
PH | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,SAT,si
pnp,SAT,si | 12
12
12
•12
•12 | 150
150
200
150
150 | 85
85
85
140
140 | 2.5
2.5
3.33
1.3
1.3 | 10
12
30
•15
•15 | 400
400
200
50
50 | 60
125
85
- | 3
2.5
2.5
0.001
0.001 | 14
14
12
•6
•6 | .3
.3
- | .4
.4
.7
- | -
.10
0.07
-
- | KF
KF
Chopper
Pair 2 N2278 | | | LL 24 | 2N269
2N793
2N906
2N1091
2N582 | RCA
RA
RA
RCA
SY | pnp,AJ,ge
npn,DB,si
npn,DB,si
npn,AJ,ge
pnp,AJ,ge | 13
13
13
13
14 | 120
-
-
120
120 | 85
-
85
71 | 1,4
-
-
2,6 | 25
45
45
25
*25 | 100
25
25
400
100 | 40
150
150
70
40(min) |
2
.002
.002
4
5 | 5
20
- | 0.17
-
0.20
- | 0.20
-
0.17
- | 0.12
-
-
-
- | Submin
Submin
GI
KF, RCA, TI | | | | 2N584
2N807
2N808
2N858
2N859 | RCA
RA
RA
PH
PH | ga,LA,qnq
ga,LA,qnq
pnp,AJ,ge
pnp,SP,si
qnq,SP,si | **14
14
14
14
14 | 120
75
75
150
150 | 85
85
85
140
140 | 1.25
1.25
1.3
1.3 | 25
25
25
•40
•40 | 100
100
100
50
50 | 60
40
40
33
65 | 2
5
5
.1
.1 | 12
20
20
5
5 | 0.15
-
-
-
- | 0.17
-
-
-
- | 0.2
-
-
-
- | US
Submin
Submin
SPR
SPR | | | LL 25 | 2N860
2N862
2N580
2N636A
2N660 | PH
PH
RCA
SY
RA | pnp,SA,si
pnp,SP,si
pnp,AJ,ge
npn,AJ,ge
pnp,FA,ge | 14
14
15
15 | 150
150
120
150
150 | 140
140
71
100
85 | 1.3
1.3
-
2 | *25
*15
20
*25
11 | 50
50
400
300
1a | 33
33
45
100-300 | .1
.1
3
6
2.5 | 5
5
-
20
12 | 0.16
-
- | -
0.29
-
- | 0.2 - 0.25 | SPR
SPR
GI,IND.US,TS,KF
TI
KF, TI | | | | 2N1282
2N1316
2N1317
2N1318
2N1999 | IND
IND
IND
IND
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 15
15
15
15
15 | 200
200
200
200
200
250 | 85
85
85
85
100 | 3.33
3.33
3.33
3.33
3.33 | 16
30
20
10
30 | 400
400
400
400
400 | 100
100
95
85 | 5
2
3
4
4 | 10
14
14
14
14
15 | .8
-
-
- | | - | KF
KF | | | LL 26 | 2N388A
2N599
2N601
2N2280
2N2281 | T1
PH
PH
PH
PH | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,SAT,si
pnp,SAT,si | **16
*16
16
*16
*16 | 150
250
750
150
150 | 100
100
140
140 | 3.3
10.0
1.3
1.3 | 40
*30
*30
10 | 200
500
500
50
50 | *60-*180
*175
*175
-
- | 5
3.5
3.5
0.003
0.003 | *20
*15
*15
10 | -
-
-
-
10 | | -
0.07
*0.07
-
- | MIL
Chopper
2N2280 | | | | 2N428
2N636
2N522
2N522A
2N582 | GI
GE
IND
IND
RCA | pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 17
17
18
18
18 | 150
150
150
150
150 | 100
85
85
85
85
85 | 2
2.5
2.5
2.5
2.5 | *30
*20
15
*25
25 | -
300
200
200
100 | -
120
200
60 | 2
5.
1
1
5 | 14
-
14
14
- | 0.43
-
-
0.2
0.15 | 0.3
-
-
0.5
0.17 | 0.22
-
-
-
0.2 | SY, RA, IND, US, PH, TS, TI, KF, GE
TI
US,KF
US,KF,TI
TS,GI,IND,SY,KF | | | LL 27 | 2N584
2N1308
2N1309
2N2165
2N2166 | RCA
TI
TI
SPR
SPR | pnp,AJ,ge
npn,AJ,ge
pnp,AJ,ge
pnp,SP,si
pnp,SP,si | 18
18
18
*18
*18 | 120
150
150
150
150 | 85
85
85
- | 2.5
2.5
1.3
1.3 | 25
*25
*30
*30
*15 | 100
300
300
-
- | 60
200
210
2.5-4.5
2.5-4.5 | 2
5
3
0.02
0.02 | 12
15
11
*10
*10 | 0.15
-
-
-
- | 0.17
-
-
-
- | 0.2
-
-
-
- | US
TO-5,SY,GE,AMP
TO-5, KF, GI, AMP | | | | 2N2377
2N317
2N317A
2N337
2N417 | SPR
GI
GI
TI
IND | pnp,SP,si
pnp,AJ,ge
pnp,AJ,ge
npn,GD,si
pnp,AJ,ge | 18
20
20
20
20
20 | 150
100
150
125
200 | 140
85
100
150
85 | 1.3
2
2
.001
3 | *25
*30
*30
*45
*30 | 50
500
500
20
20 | 20
-
180
19
140 | .002
1
1
1
2 | 14
14
14
- | 0.3
0.3
0.05 | 0.4
0.4
0.02 | -
0.18
0.18
1.5 | TO-18
US, IND, KF
IND, US, KF, PH
TR, RA, GE, AMP
KF, US, TI | | | LL 28 | 2N 496
2N661
2N7 46
2N 1008
2N 1008 A | PH
RA
RA
BE
BE | pnp,SAT,si
pnp,FA,ge
npn,MS,si
pnp,AJ,ge
pnp,AJ,ge | 20
20
20
20
20
20 | 150
150
150
400
400 | 140
85
175
85
85 | 1.3
-
0.75
6.6
6.6 | *10
9
45
20
40 | 50
1a
50
300
300 | *25
-
45
100
100 | .001
2.5
10
10
10 | *6
12
3
- | | | .06
0.25
-
0.25
0.25 | MIL
KF, TI
Submin | # Transistor circuits and low power applications need this safety feature! IRC PW Resistors are available with special resistance windings, designed to act as a standard resistor at normal operating wattages and fuse at some specific overload condition. They can also provide positive temperature compensation to offset transistor high temperature avalanching. Thus they offer a standard circuit resistor that can provide fusing or temperature compensating characteristics in one unit at a cost as low as 5 cents each. These triple-duty resistors come in seven sizes—2, 3, 5, 7, 10, 15 and 20 watts. Write for Bulletin P-7: International Resistance Co., 401 N. Broad Street, Philadelphia 8, Pa. | | | | | | | MAX | . RATING | S | | CHAR | ACTERIS | TICS | SW | ITCHING | | | |-----------------------|--|------------------------------|--|-------------------------------------|---------------------------------------|--|--|--|---------------------------------|--|---------------------------------------|-----------------------------------|--|---|------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT **(ab (mc) | P c (mw) | т _і | mw/°C | V
CEO
*V
CBO
(v) | 1 C (ma) | h _{fe} *h | Ι _{CO}
(μο) | Cae
*Cab
(pf) | t _τ
(μsec)
*ton
(nsec) | t _s
(μsec)
*toff
(nsec) | V _{ce(sat)}
(v) | Remarks | | | 2N1008B
2N1017
2N1119
2N2162
2N2163 | BE
US
PH
SPR
SPR | pnp,AJ,ge
pnp,FA,ge
pnp,SAT,si
pnp,SP,si
pnp,SP,si | 20
20
•20
•20
•20 | 400
150
150
150
150 | 85
85
140
—
— | 6.6
-
1.3
1.3
1.3 | 60
10
*10
*30
*15 | 300
400
50
- | 100
*25
3.5-35
3.5-35 | 10
2
.001
0.01
0.01 | 12
6.0
*10
*10 | 0.25
-
-
- | 11111 | 0.25
0.25
.06
- | KF
SPR-MIL | | LL 29 | CK419
CK420
CK421
CK474
CK475 | RA
RA
RA
RA
RA | npn,FA,si
npn,FA,si
npn,FA,si
npn,DB,si
npn,DB,si | 20
20
20
20
20
20 | 385
385
385
250
250 | 160
160
160
180
180 | -
-
1.9
1.9 | 4Q
35
30
40
35 | 50
50
50
50
50 | 15
30
60
15
30 | .005
.005
.005
.005 | 35
-
20
20
20 | 11111 | 11111 | 11111 | | | 11. 20 | CK476
CK477
TMT1543
2N861
2N863 | RA
RA
TR
PH
PH | npn,DB,si
npn,DB,si
npn,MS
pnp,SP,si
pnp,SP,si | 20
20
20
22
22
22 | 250
250
30
150
150 | 180
180
150
140
140 | 1.9
1.9
-
1.3
1.3 | 30
30
6
•25
•15 | 50
50
-
50
50 | 60
65
15
65
65 | .005
.005
0.01
0.1
.1 | 20
20
5
5 | 11111 | 11111 | 11111 | Low noise, low level unil
SPR
SPR | | LL 30 | 2N864
2N523
2N523A
2N523A
2N2280
2N2281 | PH
IND
IND
PH
PH | pnp,SP,si
pnp,AJ,ge
pnp,AJ,ge
pnp,SP,si
pnp,SP,si | 22
24
24
•24
•24
•24 | 150
150
150
150
150 | 140
85
85
140
140 | 1.3
2.5
2.5
1.3
1.3 | *6
15
20
*10
*10 | 50
200
200
50
50 | 65
200
300
-
- | .1
1
1
3
3 | 14
14
•7
•7 | -
0.1
-
- | -
0.4
- | -
-
.05
.05 | SPR
US, KF
US, KF
Chopper
Pair 2 N2280 | | | 2N747
2N748
2N338
2N643
2N645 | RA
RA
TI
RCA
RCA | npn,MS,si
npn,MS,si
npn,GD,si
pnp,DR,ge
pnp,Dr,ge | 25
25
30
30°
•• 30 | 150
150
125
120
120 | 175
175
150
71
85 | 0.75
0.75
.001
- | 25
30
• 45
30
30 | 50
50
20
100
100 | 30
10
39
45
45 | 10
6
1
3 | 6
-
2
2 | -
.06
0.03
0.01 | -
.02
0.006
0.002 | 1.5
- | Submin
TR, RA, NA, GE, AMP
*gain-bandwidth, Gi
*gain bandwidth, Gi | | LL 31 | 2N907
2N1060
2N1276
KGS1004
2N2167 | RA
WE
TI
KF
SPR | npn,DB,si
npn,D,ge
npn,MS,si
pnp,AJ,ge
pnp,SP,se | 30
30
**30
32
*36 | 250
150
200
150 | 150
-
85
- | 2.0
-
3
1.3 | 45
40
40
10
•12 | 25
50
25
400 | 35
20
9-22
120
4–9 | .002
0.1
-
12
0.02 | 20
5
-
*10 | 1, 1 1 1 1 | 11111 | -
•200
-
- | Submin | | | 2N842
2N2 164
TMT842
TMT840
TMT839 | TR
SPR
TR
TR
TR | npn,GJ,si
pnp,SP,si
npn,DJ,si
npn,MS
npn,MS | 44
+44
44
45
45 | 300
150
150
150
150 | 175
-
175
175
175 | 1.3
-
-
- | *45
*12
*45
*45
*45
*45 | 25
-
25
-
- | 20
6.0-40
20
40-90
20-45 | 0.1
0.02
.1
1 max
1 max | 6
*10
6
15 max
15 max | 11111 | 1111 | -
2 max
2 max | NA | | LL 32 | 2N908
2N337 A
2N644
2N2349
2N2677 | RA
GE-
RCA
GE
GE | npn,DB,si
npn,GD,si
pnp,DR,ge
npn,GD,si
npn,GD,si | 45
**50
*50
**50
**50 | 500
120
150
250 | 175
71
200 | 3,33
-
1.66 | 45
*45
30
*40
*45 |
25
20
100
25
25 | 75
*55
45
*250
120 | .002
0.001
3
1.0 | 20
•2
-
•4
•3 | | -
.09
0,004
-
.09 | -
-
1.5
0.8 | Submin
•gain bandwidth, Gl | | | ST3030
TMT1131
TNT842
TNT843
2N865 | TR
TR
TR
TR
PH | npn,DJ,si
pnp,MS
npn,MESA,si
npn,MESA,si
pnp,SP,si | 50
50
*50
*50
52 | 100
150
100
100
150 | 150
200
175
175
140 | 0.8
-
0.66
0.66
1.3 | 15
*50
45
45
45
*10 | -
50
50
50 | *15-45
*20
*45
150 | 50
1 max
0.1
0.1
.1 | 4
45max
*6
*6 | .04
-
0.04
0.04
- | .07
-
0.01
0.01
- | 40
1.5 max
0.05
0.05
— | SPR | | LL 33 | 2N1254
2N1256
2N1258
2N1427
2N1779 | HU
HU
UH
PH
SY | pnp,MS,si
pnp,MS,si
pnp,MS,si
pnp,MA,ge
npn,A'J,ge | 55
55
55
60
60 | 250
250
250
250
25
100 | 160
160
160
85
100 | 1.8
1.8
1.8
-
1.3 | 30
40
30
•6
25 | -
-
50
100 | 25
25
25
120
25 | 0.2
0.2
0.2
.5
10 | 8
8
8
•3.5 | 11111 | .015

-
-
- | .015

.1
 | TO-5 package
TO-5 package
TO-5 package | | 11.21 | 2N2244
2N2245
2N2246
2N2247
2N2248 | NA
NA
NA
NA | npn,si
npn,si
npn,si
npn,si
npn,si | 60
60
60
60 | 500
500
500
500
500 | 200
200
200
200
200
200 | 2.85
2.85
2.85
2.85
2.85
2.85 | 200
20
20
45
45 | 100
100
100
100
100 | 40-120
80-250
150-450
40-120
80-250 | 0.01
0.01
0.01
0.01
0.01 | 8
8
8
8 | . 11111 | 1111 | - | | | LL 34 | 2N2249
2N2250
2N2251
2N2252
2N2253 | NA
NA
NA
NA | npn,si
npn,si
npn,si
npn,si
npn,si | 60
60
60
60 | 500
500
500
500
500 | 200
200
200
200
200
200 | 2.85
2.85
2.85
2.85
2.85
2.85 | 45
20
20
20
20
45 | 100
100
100
100
100 | 150-450
40-120
80-250
150-450
40-120 | 0.01
0.01
0.01
0.01
0.01 | 8
8
8
8 | 11111 | 11111 | | 4db NF
4db NF
4db NF
4db NF | | 11.25 | 2N2254
2N2255
2N2693
2N2694
TMT1132 | NA
NA
TI
TI
TR | npn,si
npn,si
npn,PE,si
npn,PE,si
pnp,MS | 60
60
•60
•60
60 | 500
500
600
600
150 | 200
200
175
175
200 | 2.85
2.85
4.0
4.0 | 45
45
30
20
*50 | 100
100
30
30
- | 80-250
150-450
*60
*30
*30-90 | 0.01
0.01
.001
.001
1 max | 8
8
*3.4
*3.4
45 max | -
0.7
0.7
- | 0.6
1.0 | 0.1
0.1
1.5 max | 4db NF
4db NF
For 100 ua Switching
For 100 ua Switching | | LL 35 | 2N843
TMT843
TMT841
2N560
2N645 | TR
TR
TR
WE
RCA | npn,DJ,si
npn,DJ,si
npn,MS
npn,DD,si
pnp,DR,ge | 64
64
65
70
70 | 300
150
150
500
120 | 175
175
175
150
85 | -
-
-
4.0 | *45
*45
*45
60
30 | 25
25
-
100
100 | 40
40
80-330
20
45 | .1
1 max
0.1
3 | 6
6
15max
8
2 | -
0.06
0.01 | -
-
0.05
0.002 | -
2 max
.5 | US, NA
Gain band width, Gl | #### HITACHI TRANSISTORS #### SPECIFY "MESA" TYPE TRANSISTORS FOR HIGH FREQUENCY USE 2SA233, 2SA234, 2SA235 Hitachi PNP germanium diffused "Mesa" type transistors provide outstanding high frequency characteristics compared with conventional alloy junction or drift transistors. Exclusive "Mesa" type transistors are indispensable for FM receivers used in tuner circuits and intermediate frequency amplifiers and also in TV receivers in intermediate frequency amplifiers. They can be used effectively in short-wave converters, medium wave converters and all high frequency applications. For superior performance, specify Hitachi "Mesa" type transistors . . . another engineering achievement from one of the world leaders in electronics. Maximum Ratings (Ta=25°C) | Ítems | Symbol | Unit | 2SA233 | 2SA234 | 2SA235 | |-----------------------|--------|------|--------|--------------|--------| | Collector Voltage | Vсво | V | -20 | - 20 | - 20 | | Emitter Voltage | VEBO | ٧ | - 0.5 | - 0.5 | - 0.5 | | Collector Current | Ic | mA | -10 | — 10 | - 10 | | Emitter Current | IE | mA | 10 | 10 | 10 | | Junction Temperature | Ti | °C | 85 | 85 | 85 | | Collector Dissipation | Pc | mW | 80 | 80 | 80 | | Ambient Temperature | TA | °C | 60 | 60 | 60 | Characteristics (Ta=25°C) | Items | Symbol | Conditions for measurement | Unit | 2SA233 | 2SA234 | 2SA235 | |---------------------------------|--------|---|------|--------|--------|--------| | Max. Collector Cut-off-Current | Ісво | V _C =-20V I _E =0 | μΑ | -30 | -30 | -30 | | Max. Emitter Cut-off-Current | IEBO | V _E = -0.5V 1 _C = 0 | μΑ | -50 | - 50 | - 50 | | Current Amplification
Factor | hfe | $V_C = -6V$ $I_E = 1 mA$ | | 50 | 60 | 80 | | Alpha Cut-off Frequency | fаь | VC=-6V IE=1mA | Мс | 90 | 110 | 125 | Typical Operation (Ta=25°C) | Items | Conditions for Measurement | Unit | 2SA233 | 2SA234 | 2SA235 | |--------------------|------------------------------------|------|--------|--------|--------| | Power Gain at | Vc=-6V | | | | | | FM Radio Frequency | fs = 100Mc/s | db | _ | _ | 12 | | | $R_g = 75\Omega$ $R_L = 2k\Omega$ | | | | | | Mixer Gain at | Vc=-6V | | | | | | FM Radio Frequency | fs = 100Mc/s fosc = 110.7Mc | db | _ | _ | 13 | | | $R_g = 3k\Omega$ $R_L = 15k\Omega$ | | | | | 10.7 Mc Intermediate Frequency Amplifier Circuit Hitachi New York, Ltd. 666, 5th Avenue, New York 19, N.Y., U.S.A., Sole Agent: International Importer Inc. 2242 South Western Avenue, Chicago 8, Illinois, U.S.A. | | | | | | | MAX | . RATING | S | | CHAR | ACTERIS | TICS | SV | ITCHING | ; | | |-----------------------|---|-------------------------------|---|--------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|----------------------------------|---------------------------------|---|-----------------------------------|---|--|---|--------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P _c (mw) | т _і | mw/°C | **CEO
**CBO
(*) | 1 C (ma) | hfe
*hFE | ¹ CO
(μα) | C _{oe}
*C _{ob}
(pf) | t _r
(μsec)
*ton
(nsec) | t _s
(μsec)
*t _{off}
(nsec) | V _{ce(sat)} | Remarks | | | 2N1411
2N2180
2N1255
OC46
2N1257 | PH
PH
HU
AMP
HU | pnp,MA,ge
pnp,MA,ge
pnp,MS,si
pnp,PADT,ge
pnp,MS,si | *70
*70
75
73
75 | 50
50
250
83
250 | 100
100
160
75
160 | 0.67
0.67
1.8
-
1.8 | 15
15
15
•20
30 | 50
50
-
125 | 100
100
30
80
40 | 1.0
1.0
0.2
3
0.2 | 3.0
3.0
8
- | 75
75
-
- | 1111 | 80.0
-
-
- | TO-5 Package
TO-5 Package | | LL 36 | OC139
OC140
2N1259
OC47
2N706 | AMP
AMP
HU
AMP
FA | npn,PADT,ge
npn,PADT,ge
pnp,MS,si
pnp,PADT,ge
npn,DP,si | 73.5
74.5
75
75.5
*80 | 100
100
250
83
1w | 75
75
160
75
175 | -
1.8
-
6.7 | *20
*20
50
*20
20 | 250
250
-
125 | 45
75
50
⊘200
45 | 0.8
0.8
0.2
<3
0.005 | - 8
- 5 | -
-
-
0.02 | 1111 | -
%
-
- | TO-5 Package
IND, TI, RCA, PH, CL, MO | | | TMT696
2N702
2N2800
2N2801
TMT697 | TR
TI
MO
MO
TR | npn,MS
npn,DJ,si
pnp, PE,si
pnp, PE,si
npn,MS | 80
100
•100
•100
100 | 150
150
800
800
150 | 200
175
200
200
200 | -
.002
4.57
4.57 | *60
20
*50
*50
60 | -
50
-
-
- | *20-60
15-45
*30/90
*75/225
*40-120 | 1max
.5
0.01
0.1
1max | 35max
-
*25
*25
35max | 25
25
25 | -
100
100 | 1.5max
.6
0.4
0.4
1.5max | FA, NA, GI | | LL 37 | 2N1507
2N2188
2N2190
2N703
2N1139 | RA
TI
TI
TI
TR | npn,DD,si
pnp,AD,ge
pnp,AD,ge
npn,MS,si
npn,GR,si | 120
**125
**125
*150
150 | 1w
125
125
600
500 | 175
-
-
-
175 | 13.2
-
-
-
- | 60
40
60
25
15 | 500
30
30
50
25 | 200
90
90
•40-•120
20 | .003
3
3
-
.25 | 20
-
-
-
8 | 80
-
-
12 | 600
-
-
-
10 | .07
-
-
0.5
0.7 | JI | | | 2N2189
2N2191
2N2330
2N2331
2N501 | TI
TI
MO
MO
PH | pnp, AD, ge
pnp, AD, ge
npn, DDP, si
npn, DDP, si
pnp, MD, ge | **150
**150
150
150
175 | 125
125
800
500
60 | -
175
175
100 | 5.33
3.33
0.8 | 40
60
*30
*30
*15 | 30
30
-
-
50 | 135
135
50
50 | 3
3
0.1
0.1
1.0 | -
7
7
1.75 | -
-
-
0.013 | -
-
-
0.007 | -
-
-
-
0.08 | SPR, GI | | LL 38 | 2N501A
2N7 6 8
2N2411
2N 2086
2N2087 | PH
PH
TI
PH
PH | pnp,MD,ge
pnp,MD,ge
pnp,PE,si
npn,MS,si
npn,MS,si | 175
*175
200
*225
*225 | 175
35
1000
600
600 | 60
100
200
175
175 | 0.8
0.46
5.71
4.0
4.0 | *15
12
20
*120
*120 | 50
100
100
500
500 | -
40
•20-60
•70
•65 | 1.0
1
.001
2.0
2.0 |
1.1
1.6
*4
*7.4
*7.4 | 0.013
-
.008
0.06
0.055 | 0.007
-
.050
0.085
0.065 | 1.0
0.09
0.1
0.43
0.39 | SPR, GI | | | 2N 240C
2N 1495
2N 1495
2N 1496
2N 2048 | PH
PH
PH
PH
PH | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 225° *240 *240 *240 *240 250° | 150
250
250
500
150 | 100
100
100
100
100 | 2.0
3.3
3.3
6.67
2.0 | *12
*40
40
40
*20 | 100
500
500
500
100 | *60
*60
60
60
125 | 3
7
4
4
1.0 | *2.2
*4.0
4.0
4.0
*1.5 | 0.03
30
30
0.035 | 0.1
-
-
-
- | 0.13
0.18
0.18
0.18
0.18 | MO
MO | | LL 39 | 2N2380
2N2380A
2N2478
2N559
2N705 | PH
PH
PH
WE
TI | npn,MS,si
npn,MS,si
npn,MS,si
pnp,DG,ge
pnp,AJ,ge | *270
*270
*275
300
300 | 600
600
2000
150
300 | 175
175
175
100
100 | 4.0
4.0
4
4.0
4 | *80
*80
*120
*15
*15 | 500
500
500
50
50 | 70
70
•70
25
6 | 4
4
2
3
.3 | *7.4
*7.4
*7.4
-
5 | 0.06
0.06
.055
0.002
0.03 | 0.06
0.06
.065
0.003
0.075 | 0.6
0.4
.45
.3
0.2 | MO,SY,GE,RA, AMP | | | 2N708
2N710
2N711
2N711A
2N711B | PH
TI
TI
TI | npn,PL,si
pnp,MS,ge
pnp,MS,ge
pnp,MS,ge
pnp,MS,ge | *300
300
300
*300
*300 | 1200
100
300
150
150 | 200
300
100
- | 2.1
4
-
-
- | *40
*15
*12
7 | 50
50
100
100 | *120
6
6
*25.*150
*30.*150 | .025
.3
0.3
1.5
1.5 | *6
5
5
*6 | -
.06
.07 | .025
.075
0.1
- | .4
80
90
0.5
0.45 | SY,MO,RCA,GE,RA, AMP
MO,SY,RCA,GE,RA, AMP
MO
MO | | LL 40 | 2N784A
2N960
2N961
2N962
2N964 | PH
TI
TI
TI | npn,PL,si
pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
pnp,EM,ge | *300
*300
*300
*300
*300 | 1000
150
150
150
150 | 175
-
-
-
-
- | 6.85
-
-
-
- | *40
15
12
12
15 | 200
150
150
150
150 | *150
*20
*20
*20
*20
*40 | .025
3
3
3
3 | *3.5
*4
*4
*4
*4 | 11111 | .015
-
-
-
- | .19
0.5
0.5
0.5
0.5 | | | | 2N965
2N966
2N985
2N1992
2N2401 | TI
TI
TI
WE
PH | pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
npn,D,si
pnp,MD,ge | *300
*300
*300
300
*300 | 150
150
150
350
150 | -
-
200
100 | -
-
2.0
2.0 | 12
12
15
15
15 | 150
150
200
50
100 | *40
*40
*60
30
*90 | 3
3
3
0.5
1.5 | 4
*4
*6
5
*2.2 | - | -
-
20ns
0.09 | 0.5
0.5
0.6
0.25
0.12 | | | LL 41 | 2N2717
2N2381
2N2382
2N2256
2N2257 | AMP
MO
MO
MO
MO | pnp,AD,ge
pnp,EM,ge
pnp,EM,ge
npn,ME,si
npn,ME,si | 300
*300
*300
320
320 | 275
750
750
1000
1000 | 75
100
100
175
175 | 0.50
10
10
6.67
6.67 | *-15
*30
*45
*7
*7 | 300
500
500
100
100 | 50
•25
•25
•25
30
50 | -
1
1
3
3 | -
*3.5
*3.5
4
4 | .020
8
8
3
3 | .040
20
20
4
4 | -
0.25
0.25
-
- | | | | 2N2258
2N2259
2N2402
2N707A
2N537 | MO
MO
PH
MO
WE | pnp,ME,ge
pnp,ME,ge
pnp,MD,ge
npn,DM,si
pnp,D,ge | 320
320
*325
350
400 | 300
300
150
1w
250 | 100
100
100
175
100 | 4
4
2.0
6.7
3.3 | *7
*7
*18
*70
*30 | 100
100
100
-
100 | 30
50
170
30
9 | 3
3
1.5
.01
0.1 | 4
4
*2.2
4
- | 4
4
-
- | 3
3
0.075
- | -
0.11
- | Epitaxial
Epitaxial
Epitaxial, GI | | LL 42 | 2N706A
2N706B
2N828
2N828
2N828A
2N829 | MO
MO
MO
MO
MO | npn,DM,si
npn,DM,si
pnp,DM,si
pnp,DJEM,ge
pnp,DJEM,ge | 400
400
400
•400
•400 | 1w
1w
500
300
300 | 175
175
175
100
100 | 6.7
6.7
4
4 | *25
*25
*15
*15
*15 | 200
200
200
200 | 4
4
4
•40
•80 | .005
.005
.4
3 | 4.5
4.5
3.5
*2.2
*2.2 | .018
.018
-
- | .016
.016
-
30
30 | -
-
0.11
0.11 | MO,SY,TI,NA,HU,GI,TI,PH,CL,DP
MO,SY,PSI,TI,HU,NA,GI,CL,DP
Epitaxial, SY, RA | | | | | | | | MAX | . RATING | S | | CHAR | ACTERIS | TICS | S | WITCHING | ; | | |-----------------------|--|-------------------------------|---|--------------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------------------|---------------------------------------|--|-----------------------------------|------------------------------------|--------------------------------|-----------------------------------|-------------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(mc) | P _c (mw) | т _і | mw/°C | VCE0 *VCB0 (v) | 1 C (ma) | hfe
*hFE | lCO
(μο) | Coe
*Cob
(pf) | tr
(μsec)
*ton
(nsec) | t _s
(μsec)
*toff | V _{ce(sat)} | Remarks | | LL 43 | 2N1195
2N1204
2N1204A
2N1494A
2N2096 | WE
PH
PH
PH
SPR | pnp,D,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,ED,ge | 400
*400
*400
*400
*400 | 300
200
200
400
750 | 100
100
100
100
100 | 4.0
2.67
2.67
5.3 | *30
*20
*20
*20
*20
25 | 50
500
50 0
500
500 | 25
30
45
*45
*40 | 5
4
4
4
12 | 2.5
*5.0
*5.0
*5.0
*20 | 0.015
0.015
0.015
35 | -
-
-
70 | 03
0.3
0.3
0.6 | | | LL 43 | 2N2097
2N2099
2N2100
2N2537
2N2538 | SPR
SPR
SPR
MO
MO | pnp,ED,ge
pnp,ED,ge
pnp,ED,ge
npn, PE,si
npn, PE,si | *400
*400
*400
*400
*400 | 750
750
750
800
800 | 100
100
100
200
200 | -
-
4.57
4.57 | 40
25
40
*60
*60 | 500
500
500
-
- | *50
*40
*50
*50/150
*100/300 | 12
12
12
0.25
0.25 | *20
*20
*20
*8
*8 | 20
35
20
*40
*40 | 50
70
50
*40
*40 | 0.5
0.6
0.5
0.25
0.45 | | | | 2N2539
2N2540
NS345
2N744
2N779A | MO
MO
NA
TI
PH | npn, PE,si
npn, PE,si
npn, DM,si
npn, PE,si
pnp,MD,ge | *400
*400
400
450
450 | 500
500
500
1000
60 | 200
200
175
175
100 | 2.86
2.86
2.8
6.67 | *6 0
*60
30
12
*15 | 200
50 | *50/150
*100/300
80-200
*40-120 | 0.25
025
.002
1 | *8
5
*3.5
1.9 | *40
*40
.003 | *40
*40
-
.009 | 0.45
0.45
-
0.2 | SPR | | LL 44 | 2N779B
2N835
2N846A
2N834
2N2501 | PH
MO
PH
MO
MO | pnp,MD,ge
npn,DDM,si
pnp,MD,ge
npn,DM,si
pnp, PE,si | *450
450
450
500
*500 | 150
300
60
1w
360 | 100
175
100
175
200 | 2.0
2
.8
6.7
2.06 | 15
*25
*15
*40
*40 | 100
200
50
200 | 125
40

5
*50/150 | 0.5
0.5
1
.01 | 1.4
-
1.9
2.8
•4 | 13
-
.015 | .016 | 0.09
0.3
-
-
0.2 | Epitaxial
SPR
SY,PH,CL,DP, GI | | | 2N2651
2N1094
2N559
2N2710
2N1385 | PH
WE
WE
PH
TI | npn,PL,si
pnp,D,ge
pnp,DG,ge
npn,PL,si
pnp,MS,ge | *600
600
750
*650
750 | 1200
150
150
1200
750 | 200
100
100
200
100 | 2.1
2.0
0.5
2.1
8 | *40
30
15
*40
25 | 500
40
50
500
100 | *50
25
25
*65
30 | .012
5.0
5
.012
5 | *2.85
2.5
-
*2.85
1.3 | -
0.002
-
.001 | .007
-
0.003
.015 | .2
-
-
.2
4 | US, MIL only
TO-5, non saturated | | LL 45 | 2N768
2N769
2N918
2N976
2N797 | PH
PH
FA
PH
TI | pnp,MD,ge
pnp,MD,ge
npn,DP,si
pnp,MD,ge
npn,MS,ge | *900
900
*900
*900
*1000 | 35
35
300
100
150 | 100
100
200
100 | 0.46
0.46
1.71
1.33 | *12
*12
15
*15
7 | 100
100
—
100
150 | *40
55
*50
*80
*40 | 1
0.3
0.0003
3
1.0 | *1.6
1.5
*1.0
*1.5
*4 | -
0.007 | 11111 | 0.09
0.13
0.3
0.12
0.44 | SPR
MO | | | 2N2205
2N2206
2N167A
2N240
2N269 | RCA
RCA
GE
PH
RCA |
npn,AJ,ge
pnp,SBT,ge
pnp,AJ,ge | 1000
1000
-
-
- | -
65
25
120 | -
85
85
85 | 25
25
-
0.82 | 200
-
30
*6
*25 | *20
*40
75
15
100 | -
30
30
*50 | -
0.6
0.5
5 | -
-
*4
- | 0.035
-
-
- | 0.025
-
-
- | -
-
0.15 | TO-18 SPR-MIL | | LL 46 | 2N335B
2N336A
2N377A
2N388A
2N398 | GE
GE
SY
SY
RCA | npn,GJ,si
npn,GJ,si
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge | ****** | 500
500
150
150
50 | 175
175
100
100
55 | -
2
2 | 60
45
* 40
25
* 105 | 25
25
200
200
100 | 52
75
20-60
60-180
60 | 1
1
40
40
6 | -
11
- | |
!.5usGC (max)
 | -
ax) - | GI, TI
GI
GL KF, MO, TI | | | 2N399A
2N438A
2N439A
2N440A
2N496 | GE
SY
SY
SY
PH | pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,SB,si | 11111 | 150
150
150
200
150 | 100
85
85
85
85
140 | 2.5
2.5
3.3
1.3 | 15
*25
*25
*25
10 | 200
200
200
200
200
50 | 70
15(min)
30(min)
40
5.0 |
2
10
10
10
10 | -
-
-
6 | 0.7
0.5
0.3 | 11111 | -
-
-
-
0.08 | GI, TI
GI, TI
GI, TI | | LL 47 | 2N556
2N557
2N558
2N586
2N587 | SY
SY
SY
RCA
SY | npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge
npn,AJ,ge | 11111 | 100
100
100
250
150 | 85
85
85
85
85 | 1.66
1.66
1.66
- | 20
20
15
45
• 40 | 200
200
200
250
200 | -
-
-
55
20 | 25
25
15
8
10 | -
-
-
30 | 3.5
6.5
3.5 | 2
2.5
2
- | 0.5
0.5
0.75
0.25 | t≥=3.5 ns max
TI | | | 2N597
2N634A
2N635A
2N636A
2N705A | PH
GE
GE
GE
RA | pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
pnp,EM,ge | 11111 | 250
150
150
150
150 | 100
85
-
85
100 | 3.3
-
85
-
- | 45
20
20
15
15 | 400
300
300
300
100 | -
55
100
190
*40 | 5
6
6
6
3.0 | 15
-
-
8.0 | 111111 | -
-
-
-
50 | 0.085
-
-
-
0.20 | TI
TI | | LL 48 | 2N706
2N707
2N708
2N709
2N710A | FA
FA
SY
AI
RA | npn,PL,si
npn,DP,si
npn,DP,si
npn,P,si
pnp,EM,ge | | 1200
1w
360
- 0.3w
150 | 175
175
200
-
100 | 6.7
6.7
2.0 | *25
28
*40
*15 | 50
-
-
-
50 | 20
12
15
•75
•34 | -
.005
0.025
.001
3.0 | *5
5
6
*3.0
8.0 | .02
.02
-
- | -
25
-
50 | 0.6
-
0.40
-
0.50 | GI,TR,SY,NA,IND,TI,RCA,CL,PH
(Epitaxial, MO), GI, CL
Epitaxial, CL | | | 2N711A
2N725
2N781
2N782
2N784A | RA
SY
RA
RA
SY | pnp,EM,ge
pnp,DM,ge
pnp,EM,ge
pnp,EM,ge
npn,DP,si | 11111 | 150
-
-
360 | 100
100
100
100
200 | -
2
-
-
2.0 | 15
15
15
12
40 | 100
50
200
200
200
200 | *25-*150
20
*25
*20
25 | 1.5
3
3.0
30
0.025 | 6.0 | 0,1
-
-
20 | 120

20
35
15 | 0.55
 | GE
Epitaxial | | LL 49 | 2N794
2N795
2N835 | RCA
RCA
CL | pnp,DM,ge
pnp,DM,ge
npn,DP,si | - | 150
150
1.2w | 85
85
175 | 2.5
2.5
6.7 | 13
13
25 | 100
100
200 | 50
50
20 | 1
1
0.5 | 8
8
4 | -
0.02 | -
0.035 | - | | | | 2N849/
T/431
2N850/
T/431 | TI
TI | npn,EP,si
npn,EP,si | - | 1000
1000 | - | - | 15
15 | 30
30 | *20-*60
*40-*120 | - | - | - | - | 0.6
0.6 | | May 24, 1963 T73 | | | 200 | 100000000000000000000000000000000000000 | | | ,,,,, | BATHE | | | CULT | CTEALS | TICC | E LIEVA | UTCHING | | | |-----------------------|---|-------------------------------|---|---|--|---|--|----------------------------------|-----------------------------------|---|--------------------------------------|--------------------------------|--|---------------------------------|----------------------------------|--| | | 6.11 | - 11/4 | | | | MAX | . RATING | 2 | | CHARA | ACTERIS | LICS | SW | ITCHING | | | | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
**f _{ab}
(mc) | P _c
(mw) | т _і
(°с) | mw/°C | VCEO *VCBO | C (mo) | hfe
*hFE | (μ ₀) | Coe
*Cob
(pf) | t _r
(μsec)
*ton
(nsec) | ts
(µsec)
*toff
(nsec) | V _{ce(sat)} | Remarks | | LL 50 | 2N914
2N917
2N1119
2N1122
2N1122A | SY
AI
PH
PH
PH | npn,DP,si
npn,P,si
pnp,SAT,si
pnp,MA,ge
pnp,MA,ge | 1111 | 360
0.3w
150
25
25 | 200
-
140
85
85 | 2.0
-
1.3
0.63
0.63 | *40
*30
10
12
15 | -
50
50
50 | 30
*35
5.0
8 | 0.025
.0001
.001
5.0
5.0 | 6
*1.7
6.0
6.0
6.0 | 40
-
-
-
- | 20
-
-
-
- | 0.7
-
-
0.1
0.1 | Epitaxial, CL
SPR
SPR, GI
SPR, GI | | LL 30 | 2N1175
2N1175A
2N1213
2N1214
2N1215 | GE
GE
RCA
RCA
RCA | pnp,AJ,ge
pnp,MESA,ge
pnp,MESA,ge
pnp,MESA,ge | 11111 | 200
200
75
75
75 | 85
85
85
85
85 | | 25
25
25
25
25
25 | 200
200
100
100
100 | 80
80
-
-
- | 6 6 3 3 3 3 | 11111 | -
.015
.015
.015 | -
.05
.05 | | MO, TI
TI | | LL 51 | 2N1216
2N1217
2N1252
2N1253
2N1277 | RCA
GE
AI
AI
GE | pnp,MESA,ge
npn,AJ,ge
npn,P,si
npn,P,si
npn,GJ,si | 1111 | 75
75
2w
2w
150 | 85
85
-
-
150 | 1 - 1 - 1 | 25
20
•30
•30
•30 | 100
25
-
-
25 | -
40
*35
*45
20 | 3
.6
.10
.10 | -
*20
*20
- | .015
-
-
-
- | .05
-
-
-
- | 1111 | ті | | EE 31 | 2N1278
2N1279
2N1288
2N1289
2N1289 | GE
GE
GE
SY | npn,GJ,si
npn,BG,ge
npn,MB,ge
npn,AJ,ge | 11111 | 150
150
75
75
150 | 150
150
85
85
100 | -
-
-
2 | *30
*30
10
15
40 | 25
25
50
100
200 | 33
80
50
50
35-110 | .001
.001
2
2
0.1 | 11111 | -
-
-
Rise + I | -
-
-
all time = | -
-
-
1.5 usGC | TI
TI | | 11.50 | 2N1300
2N1301
2N1384
2N1404
2N1411 | RCA
RCA
RCA
TI
PH | pnp,DM,ge
pnp,DM,ge
pnp,DR,ge
pnp,AJ,ge
pnp,MA,ge | 11111 | 150
150
240
150
25 | 85
85
85
85
85 | 2,5
2,5
4
2.5 | 13
13
30
25
*5 | 100
100
500
300
50 | 50
50
50
-
*75 | 1
1
4
3
0.3 | 8
8
-
16
•3.0 | 11111 | 1111 | 11111 | TI
TI
MIL | | LL 52 | 2N1413
2N1414
2N1450
2N1473
2N1499 | GE
GE
RCA
SY
PH | pnp,AJ,ge
pnp,AJ,ge
pnp,DR,ge
npn,AJ,ge
pnp,MD,ge | 11111 | 200
200
120
200
30 | 85
85
85
75
85 | -
-
4
.75 | 25
25
30
40
*30 | 200
200
100
400
50 | 36
52
20
25-80
8.5 | 8
8
10
100 | -
-
-
-
•1.3 | 11111 | 11111 | 11111 | TI
MO, TI
GI
MIL | | | 2N1614
2N1683
2N1694
2N1708
2N1754 | GE
RCA
GE
RCA
PH | pnp,AJ,ge
pnp,DM,ge
npn,AJ,ge
pnp,MD,ge | 11111 | 240
150
75
1000
50 | 85
85
85
-
85 | 2.5
-
-
.83 | 40
13
20
25
*13 | 300
100
25
200
100 | 32
75
30
•20 | 25
1
0.6
-
1 | 8
-
-
1.5 | 11111 | 0.025 | 11111 | TI
GI, SPR | | LL 53 | 2N1808
2N1954
2N1955
2N1955
2N1957 | TI
RA
RA
RA | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 11111 | 150
375
375
375
375
375 | 85
100
100
100
100 | 2.5
0.2
0.2
0.2
0.2
0.2 | 25
60
60
60
60 | 300
1a
1a
1a
1a | 90
100
90
90 | 5
10
10
-
10 | 11 | 11111 | 11111 | 11111 | | | | 2N2002
2N2003
2N2004
2N2005
2N2006 | NA
NA
NA
NA | pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,AJ,si | 11111 | 250
250
250
250
250
250 | 175
175
175
175
175 | 1.67
1.67
1.67
1.67
1.67 | 30
30
50
50
60 | 100
100
100
100
100 | 1111 | .001
.001
.003
.0015 | 8
8
8
8 | (*11) | 11111 | 11111 | | | LL 54 | 2N2007
2N2175
2N2176
2N2282
2N2283 | NA
SSD
SSD
BE
BE | pnp,AJ,si
pnp,AJ,si
pnp,AJ,si
pnp,DAP,ge
pnp,DAP,ge | 11111 | 250
100
100
5
5 | 175
175
175
175
11 0
110 | 1.67
0.7
0.7
67
67 | 60
6
6
60
100 | 100
50
50
3a
3a | -
*80
*80
60 | *0.2
*0.2
*0.2
50
50 | 8
10
10
75pf
75pf | -
-
2.5
2.5 | -
-
1.5
1.5 | -
-
0.2
0.2 | | | | 2N2284
2N2368
2N2369
2N2378
2N2713 | BE
A1
A1
SPR
GE | pnp,DAP,ge
npn,P,si
npn,P,si
pnp,SP,si
npn,PE,si | | 5
1.2w
1.2w
150
200 | 110
-
-
140
100 | 67
-
-
1.3
2.67 | 200
*40
*40
*10
*18 | 3a
-
-
50
200 | 60
*40
*75
5.0
*30-90 | 50
.01
.01
0.001
0.5 | 75pf
*2.5
*2.5
6.0 | 2.5
-
-
-
85 | 1.5
-
-
-
85 | 0.2
-
-
-
0.30 | T0-18 | | LL 55 | 2N2714
4D20
4D21
4D22
4D24 | GE
GE
GE
GE
GE | npn,PE,si
npn,GD,si
npn,GD,si
npn,GD,si
npn,GD,si | 11111 | 200

- | 100
150
150
150
150
125 | 2.67
1.5
1.5
1.5
1.5 | *18
*40
*40
*40
*40 | 200
25
25
25
25
25 | 75-225
•15-50
•40-135
•120-250
•15-50 | 0.5
1
1
1
1 | -
*4
4
*4
*4 | 85
0.1
0.1
0.1 | 85
0.1
0.1
0.1
- | 0.30
1.5
1.5
1.5
1.5 | | | | 4D25
4D26
10B551
10B553
10B555 | GE
GE
GE
GE | npn,GD,si
npn,GD,si
npn,PE,si
npn,PE,si
npn,PE,si | | -
100
100
100 | 125
125
125
125
125
125 | 1.25
1.25
1.0
1.0
1.0 | *40
*40
*40
*40
*25 | 25
25
-
- | *40-135
*120-250
*30-120
*30-120
*20 | 1
1
50
0.5
0.5 | *4
*6
*6 | -
-
45
-
- | -
-
25
60
25 | -
-
0.25
0.4
0.6 | | | LL 56 | 108556
SST610 | GE
SSE | npn,PE,si
npn | 1.1 | 100
500 | 125 | 1.0
0,25 | *25
14v | 500 | *20-60
10,000 | 0.5 | *6
35pf | 1 1 | 25 | 0.6
1.5v | TO5 Package | These P-channel diffused silicon transistors embody all the desirable characteristics inherent in the field effect design—low input capacitance and high impedance. Use of an S-shaped
gate configuration contributes to the exceptionally low capacitance Tung-Sol's wide application experience with injection transistors and vacuum tubes—features of which are combined in the field effect transistor—is an important consideration for anyone seeking a competent source of this advanced semiconductor device Write for complete technical information. Tung-Sol Electric Inc., Newark 4, N. J. TWX: 201-621-7977 | | TYPIC | AL ELECTRI | CAL CHARACTERISTICS | (25°C) | | | | |--------|---|-------------------------------------|---|-------------|------|-----------|------------| | | TEST | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNIT | | 2N2386 | Drain Current
Forward Trans-
admittance | I _{DSS}
Y _{FS} | $V_{DS} = -10V, V_{GS} = 0$
$V_{DS} = -10V, V_{GS} = 0$
f = 1Kc | 1000 | 3.0 | 3000 | mA
μmho | | 2N2794 | Drain Current
Forward Trans-
admittance | I _{DSS}
Y _{FS} | $V_{DS} = -10V, V_{GS} = 0$ $V_{DS} = -10V, V_{GS} = 0$ $f = 1Kc$ | 1.5
1000 | | 5
3000 | mA
μmho | # 0.5 AMP INTERDIGITATED PASSIVATED SILICON PLANAR EPITAXIAL TRANSISTORS 2N2217 2N2218 2N2219 2N2220 2N2221 2N2222 (TO-5) (TO-18) In production quantities, General Instrument's new Interdigitated Silicon Passivated Planar Epitaxial Transistors feature high speed, high gain and excellent gain retention. For further details, call your nearest sales office, authorized distributor, or write to Applications Engineering, General Instrument, 600 West John Street, Hicksville, N.Y. # GENERAL INSTRUMENT SEMICONDUCTOR DIVISION General Instrument Corporation, 65 Gouverneur Street, Newark 4, New Jersey # HIGH LEVEL SWITCHING Generally types rated at one watt and above. In order of f_{ae} (f_{ab} or f_{τ} where noted). | | | | | , | | MA | X. RATI | NGS | | | CHARAC | TERISTI | CS | | SWITCH | ING | | |-----------------------|---|------------------------------|---|--|--|--|--|--------------------------------------|----------------------------------|--|--------------------------------------|-----------------------|---------------------------------|---------------------------------|---|--------------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
**fab
(kc) | P _c (w) | T _i
(°C) | w/°C | VCEO *VCBO | l _C (a) | hfe
*hFE | 1 _{C0} (ma) (*μa) | Powr,
Gain
(db) | Powr.
Out
(w) | t,
(μsec) | t _s
(μsec) | V _{ce} (sat)
(μα) | Remarks | | HL 1 | 2N1830
2N1831
2N1832
2N1833
2N2109 | WH
WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | 0.014
0.014
0.014
0.014
0.014 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | *50
*100
*150
*200
*50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 5
5
5
5 | | 8
8
8
8 | 3.0
3.0
3.0
3.0
1.3 | 0.87
0.87
0.87
0.87
0.4 | 0.4 | | | | 2N2110
2N2111
2N2112
2N2113
2N2114 | WH
WH
WH
WH | is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn | 0.014
0.014
0.014
0.014
0.014 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | *100
*150
*200
*250
*300 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 5
5
5
5 | 11111 | 4
4
4
4 | 1.3
1.3
1.3
1.3 | 0.4
0.4
0.4
0.4
0.4 | 0.4
0.4
0.4
0.4
0.4 | | | HL 2 | 2N2130
2N2131
2N2132
2N2133
2N2116 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 0.014
0.014
0.014
0.014
0.0145 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | *50
*1 00
*150
*200
*50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 5
5
5
5 | 11111 | 8
8
8
8
5.6 | 3.0
3.0
3.0
3.0
1.4 | 0.87
0.87
0.87
0.87
087
0.63 | 1.4 | | | | 2N2117
2N2118
2N2119
2N2123
2N2124 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 0.0145
0.0145
0.0145
0.016
0.016 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | *100
*150
*200
*50
*100 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 5
5
5
5 | 11111 | 5.6
5.6
5.6
6.4
6.4 | 1.4
1.4
1.4
1.5
1.5 | 0.63
0.63
0.63
0.74
0.74 | 0.63
0.63
0.63
0.74
0.74 | | | HL 3 | 2N2125
2N2126
2N1238
2N1239
2N1240 | ₩H
₩H
HU
HU | npn,AJ,si
npn,AJ,si
pnp,FJ,si
pnp,FJ,si
pnp,FJ,si | 0.016
0.016
0.8
0.8
1.0 | 250
250
1.0
1.0 | 175
175
200
200
200 | 2.22
2.22
-
-
- | *150
*200
15
15
35 | 30
30
0.5
0.5
0.5 | *10
*10
14
32
14 | 5
5
0.1
0.1
0.1 | 11111 | 6.4
6.4
-
- | 1.5
1.5 | 0.74
0.74
-
- | 0.74
0.74

- | | | | 2N1241
2N1242
2N1243
2N1244
2N1073 | HU
HU
HU
HU
BE | pnp,FJ,si
pnp,FJ,si
pnp,FJ,si
pnp,FJ,si
pnp,DJ,ge | 1.0
1.0
1.0
1.2
1.5 | 1.0
1.0
1.0
1.0
35 | 200
200
200
200
200
100 | -
-
-
1.5 | 35
65
65
110
*40 | 0.5
0.5
0.5
0.5
10 | 24
14
24
14
*20-6 | 0.1
0.1
0.1
0.1
2.0 | | 11111 | 11111 | 111111 | -
-
-
1.0 | DE | | HL 4 | 2N 1073 A
2N 1073 B
B-1085
OC22
OC23 | BE
BE
BE
AMP
AMP | pnp,DJ,ge
pnp,DJ,ge
pnp,DJ,ge
pnp,PADT,ge
pnp,PADT,ge | 1.5
1.5
1.5
2.5
2.5 | 35
35
60
10 | 100
100
100
75
75 | 1.5
1.5
1.0
- | *80
*120
120
*32
*40 | 10
10
10
1 | *20-6
*20-6
5a
150
150 | 2.0
2.0
2.0
30
30 | 111111 | 11111 | 11111 | 11111 | 1.0
1.0
0.75 | DE
DE | | | OC24
2N1518
2N1519
2N1520
2N1521 | AMP
DE
DE
DE
DE | pnp,PADT,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 2.5
4
4
4
4 | 10
70
70
70
70 | 75
100
100
100
100 | 1.2
1.2
1.2
1.2 | *32
*50
*80
*50
*80 | 1
25
25
35
35
35 | 150
15-60
15-60
17-18
25-100 | 30
100
100
100
100 | 11111 | 40
40
40
40 | 20
20
20
20
20 | -
7
7
7 | 0.3
0.3
0.3
0.3 | \$0
\$0 | | HL 5 | 2N1522
2N1523
2N297
2N297 A
2N618 | DE
DE
BE
CL
CL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 4
4
5
5
5 | 70
70
35
12
14 | 100
100
90
95
90 | 1.2
1.2
1.5
2.0
1.5 | *50
*80
50
*60
*80 | 50
50
5
5
3 | 25-100
25-100
-
- | 100
100
3
3
3 | 11111 | 40
40
-
- | 20
20
-
- | 7
7
-
- | 0.3
0.3
1.02
1.0
0.8 | SO
SO
BE, DE, MO, SO
MO, BE | | | 2N375
2N378
2N379
2N380
2N458 | CL
TS
CL
TS | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 7
7
7
7 | 50
5
50
50 | 95
100
85
100
95 | -
1.2
0.3
0.8
0.72 | *80
20
80
30
80 | 3
5
3
5
5 | 30
-
-
- | 3
0.5
5
0.5
1 | 11111 | 11111 | -
-
-
12 | 12.5 | 1.0
-
1
-
0.24 | MO,BE
BE
TS, BE
BE, CL
CL, BE | | HL 6 | 2N459
2N1011
2N2230
2N2231
2N2232 | TS
DE
WH
WH | pnp,AJ,ge
pnp,AJ,ge
si,LA,mn
is,LA,nnn
is,LA,nnn | 7
7
7
7
7 | 50
70
150
150
150 | 100
100
2.0
150
150 | 0.8
0.1
*50
2.0
2.0 | 60
*80
10
*100
*150 | 5
5
•400
10 | -
10
•400
•400 | 0.5
100
-
10
10 | 1111 | -
12
-
- | 5
3.5
12
12 | 2
2.2
3.5
3.5 | 0.3
2.2
2.2 | BE, CL
2N1011 Sig. C., MO, BE, CL | | ш. 2 | 2N2233
2N456 A
2N457 A
2N458 A
2N1038 | WH
DE
DE
DE
TI | npn,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 7
10
10
10
10 | 150
94
94
94
20 | 150
100
100
100
100 | 2.0
1.2
1.2
1.2
0.27 | *200
*40
*60
*80
40 | 10
7
0.065
7
3 | *400
-
-
-
33 | 1 0
0.065
0.065
0.065
50 | 1 | 14111 | 12
10
10
10 | 3.5
5
5
5 | 2.2 | TI, BE, CL
TI, BE, CL
TI, BE, CL
BE, KF | | HL 7 | 2N1039
2N1040
2N1358
2N1412
2N1970 | TI
TI
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 20
20
150
150
150 | 100
100
100
100
100 | 0.27
0.27
2
2
2 | 60
80
*80
*100
*100 | 3
15
15
15 | 33
33
-
- | 50
50
0.1
100
0.1 | 11111 | -
40
40
- | -
15
15
10 | 5
5
5 | 0.3
0.3 | BE, KF
BE, KF
TS, TI, RCA, MO, SO, BE
TS, RCA, MO, SO, BE
SO, MO | | | | N. S. | | fae | | MA | X. RATI | NGS | 49 | | CHARAC | TERISTIC | CS | | SWITCHI | NG | | |-----------------------|--|----------------------------
--|--|--|--|--|--------------------------------------|--|--|----------------------------------|-----------------------|--------------------------|-----------------------------------|---------------------------------|--------------------------------------|----------------------------------| | Cross
Index
Key | Type
No. | Mfr. | Туре | *f T
**f ab
(kc) | P c (w) | T _i
(°C) | w/°C | VCEO | I _С (а) | h _{fe} *hFE | l _{CO}
(ma)
(*μa) | Powr.
Gain
(db) | Powr.
Out
(w) | t,
(μsec) | †ς
(μsec) | V _{ce} (sat)
(μα) | Remarks | | | 2N2226
2N2227
2N2228
2N2564
2N2565 | WH
WH
WH
KF
KF | ia, LA, nqn
npn, AJ, si
npn, AJ, si
ng, LA, qnq
gg, LA, qnq
gg, LA, qnq | 10
10
10
10
10 | 150
150
150
20
20 | 150
150
150
100
100 | 2.0
2.0
2.0
2.7
.27 | *50
*100
*150
*40
*60 | 10
10
10
3
3 | *100
*100
*100
*25
*25 | 10
10
10
*40
*40 | 11111 | 11111 | 8 8 | 3
3
-
- | 2.2
2.2
2.2
2.5
.5 | | | . HL 8 | 2N2566
2N2567
2N1809
2N1810
2N1811 | KF
KF
WH
WH | eg, LA, qnq
eg, LA, qnq
iz, LA, nqn
iz, LA, nqn
iz, LA, nqn | 10
10
14
14
14 | 20
20
250
250
250
250 | 100
100
175
175
175 | .27
.27
2.22
2.22
2.22
2.22 | *80
*100
*50
*100
*150 | 3
3
30
30
30 | *25
*25
*10
*10
*10 | *40
*40
5
5 | 1111 | 11111 | -
4
4
4 | -
1.3
1.3
1.3 | .5
.5
0.4
0.4 | | | 0 | 2N1812
2N1813
2N1814
2N2739
2N2740 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 250
250
250
200
200 | 175
175
175
175
175 | 2.22
2.22
2.22
2.0
2.0 | *200
*250
*300
*50
*100 | 30
30
30
20
20 | *10
*10
*10
*10
*10 | 5
5
5
15
15 | 11111 | 11111 | 4
4
4
9
9 | 1.3
1.3
1.3
2 | 0.4
0.4
0.4
0.4
0.4 | | | HL 9 | 2N2741
2N2742
2N2757
2N2758
2N2759 | WH
WH
WH
WH | n pn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 200
200
200
200
200
200 | 175
175
175
175
175 | 2.0
2.0
2.0
210
2.0 | *150
*200
*50
*100
*150 | 20
20
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | | | 9
9
9
9 | 2
2
2
2
2
2 | 0.4
0.4
0.4
0.4
0.4 | | | | 2N2760
2N2761
2N1816
2N1817
2N1818 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14.5
14.5
14.5 | 200
200
250
250
250
250 | 175
175
175
175
175 | 2.0
2.0
2.22
2.22
2.22
2.22 | *200
*250
*50
*100
*150 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
5
5
5 | 11111 | 11111 | 9
9
5.6
5.6
5.6 | 2
2
1.4
1.4
1.4 | 0.4
0.4
0.63
0.63
0.63 | | | HL 10 | 2N 18 19
2N 27 45
2N 27 46
2N 27 47
2N 27 48 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14.5
14.5
14.5
14.5
14.5 | 250
200
200
200
200
200 | 175
175
175
175
175
175 | 2.22
20
2.0
2.0
2.0
2.0 | *200
*50
*100
*150
*200 | 30
20
20
20
20
20 | *10
*10
*10
*10
*10 | 5
15
15
15
15 | | 11111 | 5.6
12
12
12
12
12 | 1.4
1.3
1.3
1.3
1.3 | 0.63
0.63
0.63
0.63
0.63 | | | | 2N2763
2N2764
2N2765
2N2766
2N1046 | WH
WH
WH
WH
T1 | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
pnp,AD,ge | 14.5
14.5
14.5
14.5
15 | 200
200
200
200
200
150 | 175
175
175
175
175
100 | 2.0
2.0
2.0
2.0
2.0 | *50
*100
*150
*200
100 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 11111 | 11111 | 12
12
12
12
12 | 1.3
1.3
1.3
1.3 | 0.63
0.63
0.63
0.63
1.0 | | | HL 11 | 2N1046A
2N1046B
2N1823
2N1824
2N1825 | TI
TI
WH
WH
WH | pnp,AD,ge
pnp,AD,ge
npn,AJ,si
npn,AJ,si
npn,AJ,si | 15
15
16
16
16 | 150
150
250
250
250 | 100
100
175
175
175 | 2
2
2.22
2.22
2.22
2.22 | 130
130
•50
•100
•150 | 10
10
30
30
30 | 20
10
•10
•10
•10 | 10
10
5
5
5 | 11111 | 111111 | 6.4
6.4
6.4 | 1.5
1.5
1.5
1.5 | 0.74
0.74
0.74 | | | W 12 | 2N 1826
2N 27 51
2N 27 52
2N 27 53
2N 27 54 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
16
16
16
16 | 250
200
200
200
200
200 | 175
175
175
175
175
175 | 2.22
2.0
2.0
2.0
2.0
2.6 | *200
*50
*100
*150
*200 | 30
20
20
20
20
20 | *10
*10
*10
*10
*10
*10 | 5
15
15
15
15 | 11111 | 11111 | 6.4
16
16
16 | 1.5
1.5
1.5
1.5
1.5 | 0.74
0.74
0.74
0.74
0.74 | | | HL 12 | 2N2769
2N2770
2N2771
2N2772
2N1611 | WH
WH
WH
DE | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
pnp,AJ,ge | 16
16
16
16
17 | 200
200
200
200
200
7.5 | 175
175
175
175
175
100 | 2.0
2.0
2.0
2.0
0.1 | *50
*100
*150
*200
*60 | 30
30
30
30
1.5 | *10
*10
*10
*10
*10 | 15
15
15
15
10 | 1111 | -
-
-
-
0.4w | -
16
16
16
3 | -
1.5
1.5
1.5
1 | 0.74
0.74
0.74
0.74
0.3 | | | HL 13 | 2N1612
2N1015
2N1015A
2N1015B
2N1015C | DE
WH
WH
WH | pnp,AJ,ge
npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si | 17
25
25
25
25
25 | 7.5
150
150
150
150 | 100
150
150
150
150 | 0.1
1.4
1.4
1.4
1.4 | *60
*30
*60
*100
150 | 1.5
7.5
7.5
7.5
7.5
7.5 | 8
8
8
8 | 10
10
10
10
10 | 11111 | 0.4w
-
-
-
- | 3
5
5
5
5 | 1
1
1
1
1 | 0.3
1.5
1.5
1.5
1.5 | AMF | | 112 13 | 2N1015D
2N1015E
2N1016
2N1016A
2N1016B | WH
WH
WH
WH | npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si
npn,FJ,si | 25
25
25
25
25
25 | 150
150
150
150
150 | 150
150
150
150
150 | 1.4
1.4
1.4
1.4
1.4 | *200
*250
30
60
100 | 7.5
7.5
7.5
7.5
7.5 | 8
8
8
8 | 10
10
10
10
10 | - | | 5
5
5
5 | 1
1
1
1 | 1.5
-
2.5
25
2.5 | STC, AMF
STC, AMF
STC, AMF | | HL 14 | 2N1016C
2N1016D
2N1016E
2N1971
151-04 | WH
WH
DE
WH | npn,FJ,si
npn,FJ,si
npn,FJ,si
pnp,AJ,ge
npn,AJ,si | 25
25
25
25
25
25
25 | 150
150
150
50
100 | 150
150
150
100
150 | 1.4
1.4
1.4
0.7
1.4 | 150
*200
*250
*80
*80 | 7.5
7.5
7.5
4
6.0 | 8
8
8
-
*11 | 10
10
10
0.02
10 | 11111 | 1111 | 5
5
5
8 | 1
1
-
2
2 | 2.5
2.5
-
0.6 | AMF | | 17 | 151-05
151-06
151-07
151-08
151-09 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 25
25
25
25
25
25 | 100
100
100
100
100 | 150
150
150
150
150
150 | 1.4
1.4
1.4
1.4
1.4 | *100
*120
*140
*160
*180 | 6.0
6.0
6.0
6.0
6.0 | *11
*11
*11
*11
*11 | 10
10
10
10
10 | 1 1 1 1 1 | - | 8
8
8
8 | 2
2
2
2
2
2 | 0.6
0.6
0.6
0.6
0.6 | | # Available ONLY from KEMET" 100v J-SERIES (POLAR TYPE) SOLID TANTALUM CAPACITORS ## 75 60 50 35 50 50 50 50 #### J-Series · Actual Size Microfarads: .0047 to 330 Temperatures: -80 to +125°C. 4 cases conform to MIL-C-26655A. 100v units presently available only in military cases A and B. #### LINDE/KEMET PRODUCTS for Electronics/Aerospace LINDE Laser/Maser Crystals • Sapphire • Rare Gases/Mixtures • Cryogenic Materials • Single Crystal Refractory Metals • Semiconductor Silicon • Silicon Monoxide • KEMET Barium Getters and Solid Tantalum Capacitors (Request Technical Data) #### 0.1 to 2.7 Microfarads Temperature Range: 100v at 85°C. • 67v at 125°C. KEMET was first to bring you high-voltage solid tantalums -50, 60, and 75 volts - three big contributions in $2\frac{1}{2}$ years! Now KEMET pioneers with true quantity production of 100-volt units—in hermetically sealed A and B case sizes conforming to Style CS12 and Style CS13 in MIL-C-26655A. These new 100-volt capacitors show the same resistance to shock and vibration, the same stability of electrical parameters with temperature change, and the same low levels of leakage current as the lower-voltage J-Series units. Also, the maximum dissipation factor has been reduced to 3%—the lowest ever—or one-half the usual J-Series m.d.f. Today's total J-Series provides microfarad values from .0047 to 330; working voltages of 6, 10, 15, 20, 35, 50, 60, 75, and 100 volts—offering standard E.I.A. values with ± 5 , 10, and 20% tolerances. KEMET is your assurance of maximum reliability, since KEMET controls the characteristics of tantalum powder from mine to finished product! For technical data on any member of the J-Series, write to: #### "THE SPECIALIST IN SOLID
TANTALUM CAPACITORS" Kemet Department, Linde Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland 1, Ohio. Telephone: 216-221-0600. #### **KEMET DEPARTMENT** LINDE COMPANY "Kemet," "Linde," and "Union Carbide" are registered trade marks of Union Carbide Corporation. HIGH RELIABILITY WIDE RANGE PERFORMANCE CIRCUIT MINIATURIZATION # SILICON NPN POWER TRANSISTORS A NEW GENERATION OF MINIATURE SILICON POWER TRANSISTORS FROM SSPI OFFERING SIGNIFICANTLY IMPROVED PERFORMANCE, "DESIGNED IN" RELIABILITY, AND REDUCED SIZE . . . AT COMPETITIVE PRICES. | | | Power | Volta
Ratin | _ | Operating | | | | | | Typical | | Switc | I Saturate
hing Time
oseconds | | |--------|---------|--------------|----------------|-------|-----------|-------------|-------|-------|-----|--------------------------|---------|-------|-------|-------------------------------------|------| | | 100 | Dissipation | | VCEO | Current | | Minii | mum h | 1FE | Maximum | fŧ | Ic= | 1A la | $=1_{B2}=100$ |)mA | | Type | Package | (Case Temp.) | Vcso | (Sus) | Range | VcE(sat)@Ic | 50mA | 1A | 5A | Ісво@Vсв | Мс | Delay | Rise | Storage | Fall | | 2N2849 | | 5W @ 125°C | 100 | 80 | Up to 5A | 0.4V @ 1A | 50 | 100 | _ | 0.1μA @ 80V | 80 | 20 | 40 | 350 | 50 | | 2N2850 | | 5W @ 125°C | 100 | 80 | " | 0.25V @ 1A | 25 | 40 | - | 0.1 _μ A @ 80V | 60 | 20 | 50 | 200 | 50 | | 2N2851 | 2 | 5W @ 125°C | 100 | 80 | " | 0.4V @ 1A | 25 | 40 | - | 0.1μA @ 80V | 60 | 20 | 50 | 200 | 50 | | 2N2852 | 10.5 | 5W @ 125°C | 100 | 80 | " | 0.4V @ 1A | 15 | 20 | _ | 0.1μA @ 80V | 40 | 20 | 60 | 150 | 50 | | 2N2853 | PANCAKE | 5W @ 125°C | 60 | 40 | " | 1.5V @ 5A | _ | 40 | 20 | 0.1μA @ 40V | 60 | 20 | 50 | 250 | 50 | | 2N2854 | PAN | 5W @ 125°C | 60 | 40 | " | 0.4V @ 1A | 50 | 100 | _ | 0.1μA @ 40V | 80 | 20 | 40 | 350 | 50 | | 2N2855 | | 5W @ 125°C | 60 | 40 | " | 0.4V @ 1A | 25 | 40 | _ | 0.1μΑ @ 40V | 60 | 20 | 50 | 200 | 50 | | 2N2856 | | 5W @ 125°C | 60 | 40 | " | 0.4V @ 1A | 15 | 20 | _ | 0.1μA @ 40V | 40 | 20 | 60 | 150 | 50 | | 2N2657 | TO-5 | 4W @ 100°C | 80 | 50 | " | 0.5V @ 1A | _ | 40 | 15 | 0.1μA @ 60V | 40 | 20 | 50 | 600 | 90 | | 2N2658 | TO-5 | 4W @ 100°C | 100 | 70 | | 0.5V @ 1A | - | 40 | 15 | 0.1μΑ @ 60V | 40 | 20 | 50 | 600 | 90 | All of the above types optionally available in any of the 4 packages shown. In addition to the above Preferred Types, the following Types are also available from SSPI: 2N497, 2N498 • 2N545, 2N546, 2N547, 2N548, 2N549, 2N551 • 2N656, 2N657 • 2N1052, 2N1054, 2N1055 2N1116, 2N1117 • 2N1714, 2N1715, 2N1716, 2N1717, 2N1718 2N1719, 2N1720, 2N1721 | | | | | fae | | MA | X. RAT | INGS | | | CHARAC | TERISTI | CS | | SWITCH | ING | | |-----------------------|--|---------------------------------|--|--|----------------------------------|--|--|--|---------------------------------|--|---------------------------------------|-----------------------|---------------------|-----------------------------|------------------------------------|---|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | *fT
**fab
(kc) | P _c (w) | T _i (°C) | w/°C | VCEO
*VCBO
(v) | 1 _C (a) | h _{fe} | l CO
(ma)
(*μa) | Pawr.
Gain
(db) | Powr.
Out
(w) | † _r
(μsec) | t _s
(μsec) | V _{ce(sat)}
(μα) | Remarks | | HL 15 | 151-10
152-04
152-05
152-06
152-07 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
si,LA,m,n
npn,AJ,si
npn,AJ,si | 25
25
25
25
25
25 | 100
100
100
100
100 | 150
150
150
150
150 | 1.4
1.4
1.4
1.4
1.4 | *200
*80
*100
*120
*140 | 6.0
6.0
6.0
6.0 | *11
*18
*18
*18
*18 | 10
10
10
10
10 | 11111 | 1111111 | 8
8
8
8 | 2
2
2
2
2
2 | 0.6
0.9
0.9
0.9
0.9 | | | 112 13 | 152-08
152-09
152-10
2N2310
2N2311 | WH
WH
WH
RA
RA | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,DD,si
npn,DD,si | 25
25
25
50
50 | 100
100
100
3
3 | 150
150
150
175
175 | 1.4
1.4
1.4
0.02
0.02 | *160
*180
*200
60
100 | 60
6.0
6.0
0.5
0.5 | *18
*18
*18
20
20 | 10
10
10
- | 111111 | 11111 | 8
8
- | 2
2
2
- | 0_9
0_9
0_9
- | Microbloc TO-46
Microbloc | | HL 16 | 2N2312
2N2313
2N2314
2N2243
2N2243A | RA
RA
RA
TI
TI | npn,DD,si
npn,DD,si
npn,DD,si
npn,PE,si
npn,PE,si | 60
60
80
100
100 | 3
3
3
2800
2800 | 175
175
175
200
200 | 0.02
0.02
0.02
16.0
16.0 | 60
100
60
80
80 | 0.5
0.5
0.5
1 | 60
60
40
*40-120 | -
0.003
.001
.001 | 11,10 | 117111 | -
-
.040
.040 | -
-
.100
.100 | -
0.2
0.2 | Microbloc
Microbloc
Microbloc | | HE 16 | RT697M
RT699M
RT1613M
RT1420M
2N1015D | RA
RA
RA
WH | npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si | 100
100
100
130
150 | 3
3
3
3
1.43 | 175
175
175
175
175
150 | 0.02
0.02
0.02
0.02
0.02
*200 | 60
120
75
60
7.5 | 0.5
0.5
0.5
0.5
*10 | 70
65
45
175
10ma | 0.003
0.01
0.001
0.003
25 | | 1444 | 11111 | 11111 | 11111 | Microblac
Microblac
Microblac
Microblac | | 111 17 | 2N1016A
2N1016B
2N1016C
2N1667
2N1668 | WH
WH
WH
AMP | npn,AJ,si
npn,AJ,si
npn,AJ,si
pnp,PADT,ge
pnp,PADT,ge | 150
150
150
200
200 | 1.43
1.43
1.43
30
30 | 150
150
150
90
90 | *60
*100
*150
- | 7.5
7.5
7.5
- | *10
*10
*10
6 | 10ma
10ma
10ma
90
50 | 30
30
30
0.1 | 111111 | - | 1.1 | | | AMP
AMP | | HL 17 | 2N1669
OC28
OC29
OC35
OC36 | AMP
AMP
AMP
AMP
AMP | pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge | 200
200
200
200
200
200 | 30
13
13
13
13 | 90
90
90
90
90 | | *80
*60
*60
*80 | 6 6 6 | 70
32
90
50
70 | 0,1
<100
<100
<100
<100 | 111111 | 111111 | 11111 | 11111 | 11111 | AMP | | | 2N418
2N420
2N420A
2N637
2N637 A | BE
BE
BE
BE | eg,LA,qnq
eg,LA,qnq
eg,LA,qnq
eg,LA,qnq
eg,LA,qnq | 400
400
400
400
400 | 60
60
60
60 | 100
100
100
100
100 | 1.2
1.2
1.2
1.2
1.2 | 100
65
90
60
90 | 4
4
15
6 | 60
60
60
45
45 | 1.0
1.0
1.0
1.0 | 11111 | 11111 | 15
-
- | 11111 | 0.5
1.7
0.5
0.7
0.7 | CL
CL
CL
CL | | HL 18 | 2N637B
2N638
2N638A
2N638B
2N456 | BE
BE
BE
TI | eg,LA,qnq
eg,LA,qnq
eg,LA,qnq
eg,LA,qnq
eg,LA,qnq | 400
400
400
400
430 | 60
60
60
60
50 | 100
100
100
100
100 | 1.2
1.2
1.2
1.2
1.2
0.67 | 100
60
90
100
40 | 6 6 6 5 | 45
30
30
30
30
30-90 | 1.0
1.0
1.0
1.0 | 11111 | . 1.1.1.1. | -
-
-
12 | -
-
-
12.5 | 0.7
0.7
0.7
0.7
0.7
0.24 | CL
CL
CL
CL
RCA, BE, CL | | | 2N457
2N671
2N2350
2N2350A
2N2467 | TI
PH
GE
GE
KF | pnp,AJ,ge
pnp,AJ,ge
npn,PE,si
npn,PE,si
pnp,AJ,ge | 430
700
-
-
- | 50
1
5
5
5 | 100
85
200
200
110 | 0.67
0.017
28.5
28.5
.07 | 60
40
*60
*60
*60 | 5
2
1.0
1.0
.5 | 30-90
100
2.5
2.5
*45 | 0.6
20
10myza
10myza
*40 | 11111 | 11111 | 12 | 12.5 | 0.24
0.35
0.25 | RCA, BE, CL
Infinite heat sink | | HL 19 | 2N2468
2N2469
2N2526
2N2527
2N2527
2N2528
2N2728 | KF
KF
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AD,ge
pnp,AD,ge
pnp,AD,ge
pnp,AJ,ge | 1 11 11 1 | 5
5
85
85
85
170 | 110
110
110
110
110
110 | .07
.07
1
1
1
2 | *100
*200
*80
*120
*160
*15 | .5
5
10
10
10
50 | *45
*45
*20/50
*20/50
*20/50 | *40
*40
3
3
3
*30 | 1111111 | 111111 | -
5.5
5.5
5.5
7 | -
1,2
1.2
1,2
1,2
8 | .1
0.5
0.5
0.5
0.5
0.75 | | | | | | | , | | MA | X. RAT | NGS | | | CHARAC | TERISTIC | cs | | SWITCHI | NG | | |-----------------------|---|--------------------------------|--|--|----------------------------------|--|--|--|---------------------------|---|---|-----------------------------|---------------------|--------------------------------|-------------------------------|-------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | 'ae *f T **f ab (mc) | P _c (w) | T _i
(°C) | w/°C | V _{CE0} *V _{C80} (v) | I _C (a) | h _{fe} *h | l CO
(ma)
(*μa) | Powr.
Gain
(db) | Powr.
Out
(w) | t _r
(μsec) | t _s
(μsec) | V _{ce(sat)}
(μg) | Remarks | | | STC1103
STC1104
2N673
2N424A
2N1620 | STC
STC
PH
STC
STC | npn,DJ,si
npn,DJ,si
pnp,AJ,ge
npn,DM,si
npn,DM,si | 1.0
1.0
*1.1
2 | 85
85
1.0
85
85
| 200
200
85
200
200 | 0.425
0.425
-
0.4
0.425 | 60
100
•40
60
100 | 6
2
3
5 | 25-75
25-75
*100
12-60
15-75 | 0.025
0.025
*20
10 | 11111 | 11/11 | 11.131.1 | 1111 | -
0.3
- | Infinite heat sink
AMF
AMF | | HL 20 | 2N1701
2N1702
2N1768
2N1769
2N551 | STC
STC
STC
STC
TR | npn,DM,si
npn,DM,si
npn,DM,si
npn,DM,si
npn,DJ,si | 2
2
2
2
2
3 | 25
75
40
40
3 | 200
200
200
200
200
200 | 0.125
0.375
0.2
0.2
0.5 | 60
60
80
100
60 | 2.5
5
3
3 | 20-80
15-60
35-100
35-100
20-80 | 0.1
0.2
.015
.015 | 111111 | 11111 | -
-
-
1.2 | -
-
-
0.3 | -
-
-
-
0.9 | AMF | | | 2N552
2N1055
2N547
2N548
2N549 | TR
TR
TR
TR
TR | s, LO, nqn
is, LO, nqn
is, LO, nqn
is, LO, nqn
is, LO, nqn | 3
3
4
4
4 | 3
3
5
5 | 200
200
200
200
200
200 | 0.5
0.045
0.5
0.5
0.5 | 30
100
60
30
60 | 11111 | 20-80
20-80
20-80
20-80
20-80 | 1.2
0.001
1.2
0.5
0.5 | 11111 | 1111 | 1.2
-
0.7
0.7
0.7 | 0.3
-
0.2
0.2
0.2 | 0.9
-
3.0
2.0
1.5 | | | HL 21 | 2N550
2N1117
2N1116
2N1173
ST402 | TR
TR
TR
WE
TR | npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,AJ,ge
npn,DJ,si | 4
4
6
6
6 | 5
5
5
-
50 | 200
200
200
100
200 | 0.5
0.5
0.5
3.33
0.33 | 30
60
60
*35
*60 | -
-
0.2
3 | 20-80
40
40
80
30 | 0.5
0.04
1.2
0.004
20 | 111111 | 11111 | 0.7
0.7
0.7
-
0.25 | 0.2
0.2
0.2
-
0.5 | 1.5
1.5
3.0
-
6 | | | | ST403
2N1174
2N545
2N546
2N1052 | TR
WE
TR
TR
TR | npn,DJ,si
pnp,AJ,ge
npn,DJ,si
npn,DJ,si
npn,DJ,si | 6
7
8
8
8 | 50
-
5
5
5 | 200
100
200
200
200
200 | 0.33
3.33
0.5
0.5
0.5 | *45
*35
60
30
*60 | 3
0.2
-
- | 30
85
15
15 | 20
0.005
1.2
0.5
0.001 | 11111 | 11111 | 0.25
-
0.3
0.3 | 0.5
0.15
0.15 | 5
-
3.0
2.0
- | | | HL 22 | 2N1212
2N2229
2N1054
2N1208
2N1209 | TR
WH
TR
TR
TR | npn,DJ,si
is,LA,nqn
npn,DJ,si
npn,DJ,si
npn,DJ,si | 10
*10
12
12
12 | 85
150
5
85
85 | 200
150
200
200
200 | 0.27
2.0
.045
0.27
0.27 | *60
*200
*125
*60
*45 | 3000
10
-
5
5 | 12-60
*100
20-80
15
20 | 1000
10
.0004
1.0
2.0 | 11111 | 11.1.1 | 8
-
0.25
0.25 | 3 - | 3.5
2.2
-
3
3 | STC STC | | | 2N1250
ST401
2N1907
2N1908
2N1072 | TR
TR
TI
TI
WE | npn,DJ,si
npn,DJ,si
pnp,AD,ge
pnp,AD,ge
npn,DD,si | 12
12
*20
*20
*20
30 | 85
85
150
150
12 | 200
200
-
-
150 | 0.27
0.27
-
-
65 | 60
**45
100
130
75 | 5
5
20
20
1 | 15
20
*10
*10
13 | 1.0
2.0
0.3
0.3
0.1 | 11111 | 11111 | 0.25
0.25
-
-
0.05 | -
-
-
0.05 | 3
3
1.7
1.7 | STC US, MIL only | | HL 23 | 2N1041
2N498
2N978
2N1893
2N1984 | TI
FA
FA
FA | npn,AJ,ge
npn,DP,si
pnp,DD,si
npn,DP,si
npn,DM,si | 33
*50
*50
*50
*50 | 20
4.0
1.75
3
2 | 100
200
150
200
150 | 0.27
22.8
0.010
17.2
16.0 | 100
100
20

25 | 3
-
-
- | 33
*27
*40
-
40 | 50
*0.0004
*0.1
.0003
1.0 | E1-1-1 | 11111 | - (11111 | 111111 | 91111 | BE, KF
GI, TI
RA | | | 2N1985
2N1986
2N1987
2N1988
2N1989 | FA
FA
FA
FA | npn,DM,si
npn,DM,si
npn,DD,si
npn,DM,si
npn,DM,si | *50
*50
*50
*50
*50
*50 | 2
2.0
2.0
2
2 | 150
150
150
150
150 | 16.0
16.0
16.0
16.0
16.0 | 25
25
25
45
60 | 1111 | 4.0
100
50*
70
40 | 1.0
1.0
1.0
1.0
1.0 | 11-11 | | 11.11.11 | 1111 | 1, 1, 1, 1 | RA
RA
GI, RA | | HL 24 | 2N1991
2N656
2N657
2N912
2N1975 | FA
FA
FA
FA | pnp,DM, si
pnp,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | *50
*60
*60
*60
*60 | 2.0
4.0
4.0
1.8
3 | 150
200
200
200
200
200 | 16.0
0.0228
0.0228
10.3
17.2 | *30
60
60
60 | -
100
-
- | 40
*60
-
42
42 | .005*
*0.004
*60
.0003µа
.003µа | -
-
*0.0004
-
- | | 1,111 | 1 | -
-
-
-
.24 | TR
Microbloc | | | 2N1978
2N2102
2N2270
RT5202
RT5230 | FA
RCA
RCA
RA
RA | npn,DP,si
npn,PL,si
npn,PL,si
npn,DD,si
npn,DD,si | *60
*60
*60
60 | 30
5
5
5
2 | 200
-
-
175
175 | 0.17
-
0.033
0.013 | 40
120
60
175
30 | 10
10
0.5
0.5 | 40
*20
*35
50
50 | *0.001
-
-
0.001
- | 11111 | | 111111 | 11111 | 1111 | | | HL 25 | TA6200
2N526
2N1925
2N698
2N721 | FA
SY
GE
FA
FA | npn,DP,si
pnp,AJ,ge
pnp,AJ,ge
npn,DP,si
mp,DP,si | *60
64
64
*70
*70 | 4.0
225
225
3.0
1.5 | 200
100
85
200
175 | 0.0228
3
-
22.8
10.0 | -
*45
40
*60
35 | 500
500
-
- | *80
10
4
40
30 | -
-
.0003
*0.01 | | 3
-
- | 0.08 | - | - | GE, TS, MO, TI
MO, TI
TR, NA, GI,
TI | | | 2N870
2N911
2N1131
2N1409
2N1410 | FA
FA
FA
PSI
PSI | npn,DP,si
npn,DP,si
pnp,DP,si
npn,MS,si
npn,MS,si | *70
*70
*70
70
70 | 1.8
1.8
2
2.8
2.8 | 200
2 00
175
150
150 | 10.3
10.3
13.3
0.024
0.024 | 60
60
*50
30
45 | -
-
0.5
0.5 | 80
*70
*30
30
60 | 0.0003
*0.0003
*0.01
10 | -
-
7
7 | -
-
1
1 | -
0.08
0.06
0.042 | -
-
0.1
0.17 | -
-
0.8
0.8 | TI
HU, TI, TR
Power gain F=70mc RA
RA, GI | | HL 26 | 2N1889
2N1974
2N1987
2N696
2N717 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DM,si
npn,DP, si
npn,DP,si | *70
*70
*70
*80
*80 | 3
3
2
2
1.5 | 200
200
150
175
175 | 17.2
17.2
0.0016
13.3
10 | 60
60
40
*60
*60 | | *60
*70
50
*40
*40 | *0.0003
*0.0003
-
0.01
0.01 | | | -
-
0.08
0.08 | -
-
0.03
- | | TI
GI, RA
TR, SY, NA, TI, MH
GI, PSI, NA, RA,MH, TI, TR | | | | | | - | | M | AX. RATI | NGS | | | CHARACT | ERISTI | CS | | SWITCH | ING | | |-----------------------|---|-----------------------------|---|--------------------------------------|---------------------------------|--|--|--|---------------------------------|--|--|------------------------|---------------------|------------------------------|---------------------------|------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | * T ** f ab (mc) | P _c (w) | T _i
(°C) | w/°C | V _{CEO} *V _{CBO} (v) | I _C (a) | h _{fe} | 1 _{C0} (ma) (*μa) | Pawr
Gain
(db) | Powr.
Out
(w) | † _r
(μsec) | † _s
(μsec) | V _{ce(sat)}
(μα) | Remarks | | | 2N719
2N719A
2N722
2N1132
2N1252 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
pnp,DP,si
pnp,DP,si
npn,DP,si | *80
*80
*80
*80
*80 | 1.5
1.8
1.5
2 | 175
200
175
175
175 | 10
10.3
10
13.3
13.3 | *60
60
35
*50 | | *40
*40
*60
*60
*35 | 0.01
*0.0003
*0.01
0.01
*0.1 | 7 1 1 1 1 | | 0.08
-
-
-
0.08 | -
-
-
0.05 | 1111 | PSI, RA, GI, MH, TI, TR
GI, TI
TI
HU, TI, TR
TR, IND, PSI, TI, RA | | HL 27 | 2N1613
RT482
RT483
RT484
RT698M | FA
RA
RA
RA | npn,DP,si
npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si | *80
80
80
80
80 | 3
2
2
2
2
3 | 200
175
175
175
175
175 | 17.2
0.0134
0.0134
0.0134
0.02 | 50
20
40
40
120 | 0.5
0.5
0.5
0.5 | 80
50
40
70
40 | 0.0004
0.02
0.02
0.02
0.02
0.01 | 17
-
-
-
- | - 1 1 1 1 | 0.08 | 11111 | 11111 | RA, GI, TI, PSI | | | RT5151
RT5152
RT5203
RT5204
RT5212 | RA
RA
RA
RA | npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si
npn,DD,si | 80
80
80
80
80 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 0.013
0.013
0.013
0.013
0.013 | 45
45
40
30
60 | 0.5
0.5
0.5
0.5
0.5 | 60
60
-
70
70 | 11111 | 11111 | 1-1-1-1-1 | 11111 | 111111 | 11111 | | | HL 28 | 2N699
2N718
2N718A
2N720
2N720A | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | *100
*100
*100
*100
*100 | 2
1.5
1.8
1.5
1.8 | 175
175
200
175
200 | 13.3
10
- 0.01
10
0.01 | 80
40
50
80
100 | 1111 | 65
75
80
65
80 | 0.01
0.01
*0.0004
0.01
*0.0004 | 1 1 1 1 1 | 311311 | 0.08
0.08
-
0.08 | 111111 | 11111 | NA, TR, PSI, RA, US
NA, GI, PSI, RA, TI, TR
TI, RA
PSI, RA, NA, GI, TI, TR
GI, RA | | | 2N730
2N731
2N871
2N909
2N910 | TI
TI
FA
FA
FA | npn,MS,si
npn,MS,si
npn,DP,si
npn,DM,si
npn,DM,si | 100
100
*100
*100
*100 |
1.5
1.5
1.8
1.5
1.8 | 175
175
200
175
200 | 0.01
0.01
0.01
0.01
0.01 | 60
60
80
30
80 | 11111 | 30
60
130
150
100 | 0.01
0.01
0.0004
*0.01
0.005 | 11111 | 11111 | 0.11
0.11
-
- | 0.14
0.14
-
- | 0.9
0.9
-
- | FA
FA
TI
TR
RA | | HL 29 | 2N1060
2N1253
2N1420
2N1444
2N1711 | WE
FA
FA
WE
FA | npn,MS,si
npn,DP,si
npn,DP,si
npn,DM,si
npn,DP,si | 100
*100
100
100
*100 | -
2
2w
-
3 | 150
175
175
150
200 | 2
13.3
13.3
4
0.017 | 40
20
30
60
50 | 0.05
-
0.25 | 40
45
130
25
130 | *0.001
0.01
0.1
*0.002
*0.0004 | 111111 | 20 | -
80.0
- | 0,05
-
- | 11 11 | TR, IND, PSi,
RA, NA, GI, TI
GI, TI, RA | | | 2N 1890
2N 1972
2N 1973
2N 1983
2N 2315 | FA
FA
FA
RA | npn, DP, si
npn, DM, si
npn, DP, si
npn, DM, si
npn, DD, si | *100
*100
*100
*100
*100 | 3
2
3
2
3 | 200
175
200
150
175 | 0.017
0.013
0.017
0.0016
0.02 | 80
30
80
35
60 | -
-
-
0.5 | 130
150
100
140
70 | *0.000
*0.01
*0.005
-
0.003 | 11111 | 11111 | 11110 | 11111 | 11111 | TI, RA RA Microbloc, RA | | HL 30 | 2N2316
2N2317
2N869
2N915
2N916 | RA
RA
FA
FA | npn,DD,si
npn,DD,si
pnp,DP,si
npn,DP,si
npn,DP,si | 100
100
*150
*400
*400 | 3
3
1.2
1.2
1.2 | 175
175
200
200
200 | 0.02
0.02
0.007
0.007
6.9 | 120
75
25
60
25 | 0.5
0.5
-
-
- | 65
45
45
70
80* | 0.01
0.001
*0.0008
0.0003
0.002* | 11111 | 11111 | 111111 | 111111 | 11111 | Microbloc, RA
Microbloc, RA
CL, Epitaxial, RA | | | 2N947
2N2217
2N2218
2N2219
2N2220 | FA
MO
MO
MO
MO | npn,DP,si
npn,DDPL,si
n pn,DDPL,si
npn,DDPL,si
n pn,DDPL,si | *400
400
400
400
400 | 1.2
3
3
3
1.8 | 200
175
175
175
175
175 | 0.0069
5.33
5.33mw
5.33mw
3.33mw | *60
*60
*60
*60 | 11111 | *50
20-60
40-120
100
20-60 | *0.005
0.01
0.01
0.01
0.01 | 11111 | 11111 | 11111 | 11111 | 11111 | Epitaxial
Epitaxial
Epitaxial
Epitaxial | | HL 31 | 2N2221
2N2222
2N2787
2N2788
2N2789 | MO
MO
GI
GI
GI | npn,DDPL,si
npn,DDPL,si
npn,PE,si
npn,PE,si
npn,PE,si | 400
400
*400
*400
*400 | 1.8
1.8
3
3 | 175
175
175
175
175 | 3.33mw
3.33mw
5.33
5.33
5.33 | *60
*60
35
35
35 | 11111 | 40-120
100-300
*20-60
*40-120
*100-300 | 0.01
0.01
2na
2na
2na
2na | 111111 | 111111 | 20ns
20ns
20ns
20ns | -
40ns
40ns
40ns | -
.2
.2
.2 | Epitaxial
Epitaxial | | HL 32 | 2N2790
2N2791
2N2792
2N708
2N914 | GI
GI
GI
FA
FA | npn,PE,si
npn,PE,si
npn,PE,si
npn,DP,si
npn,DP,si | *400
*400
*400
*450
*450 | 1.8
1.8
1.8
1.2
1.2 | 175
175
175
200
200 | 3.33
3.33
3.33
6.9
0.007 | 35
35
35
15
20 | 11111 | *20-60
*40-120
*100-300
*50 | 2na
2na
2na
*0.004
0.0004 | 11111 | 11111 | 20ns
20ns
20ns
- | 40ns
40ns
40ns
- | .2
.2
.2
- | GI, CL, MO
CL, Epitaxial, MO | | 111. 32 | 2N2368
2N2369
2N1645
2N709
2N917 | FA
FA
WE
FA
FA | npn,DP,si
npn,DP,si
pnp,D,ge
npn,DP,si
npn,DP,si | *650
*650
700
*800
*800 | 1.2
1.2
6.0
1.0
0.3 | 200
200
100
200
200 | 0.0069
0.0069
80.0
0.005
0.00171 | 15
15
35
6.0
15 | 0.3 | *40
*70
20
*55
*50 | *0.1
*0.1
0.015
*.005
*0.0003 | 11,11 | 11,11 | 11,11 | 11,11 | 11,11 | | | HL 33 | 2N918
2N268A
2N497A
2N498A
2N656A | F.A
CL
GE
GE
GE | npn,DP,si
pnp,AJ,ge
npn,MS,si
npn,DM,si
npn,DM,si | *900
-
-
-
- | 0.3
14
1
1 | 200
90
200
200
200
200 | 0.00171
1.5
-
-
- | 15
80
60
100
60 | 3 | *50
-
12
12
30 | *0.0003
2
10
10 | 1111 | 11111 | 11111 | 111111 | 11111 | MO
BE, 20639A
TI
NA, TI
NA, TI | | IIL 33 | 2N657A
2N720A
2N1751
2N1813
2N1814 | GE
TI
BE
WH
WH | npn,DM,si
npn,PL,si
pnp,DAP,ge
npn,FJ,si
npn,FJ,si | 11111 | 1
1.8
-
250
250 | 200
-
110
175
175 | -
1250
2.22
2.22 | 100
120
80
*250
*300 | 25
30
30 | 30
*40.*120
50
10 | 10
5
15
15 | -
7
- | -
4
- | -
0.5
- | 11111 | 5.0
-
1.5
1.5 | NA, TI | May 24, 1963 T83 | | | | | , | | MA | XX. RATI | NGS | | | CHARAC | TERISTI | CS | | SWITCHI | NG | | |-----------------------|--|-------------------------------|---|-----------------|----------------------------------|---------------------------------|--|-----------------------------------|---------------------------------|---|---|-------------------------|------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------| | Cross
Index
Key | Type
No. | Mfr. | Type | *f T **fab (mc) | P (*) | T _i
(°C) | w/°C | VCEO *VCBO (v) | ار
(ه) | h _{fe}
*hFE | 1 CO
(ma)
(*μα) | Powr
Gain
(db) | Powr.
Out
(w) | † _r
(μsec) | t _s
(µsec) | V _{ce(sat)}
(μα) | Remarks | | | 2N1837
2N1837 A
2N1841
2N1990
2N2243 | GE
GE
WE
FA
GE | npn,P,si
npn,P,si
npn,D,si
npn,DM,si
npn, PE,si | 1111 | 2
2.8
100
2
2.8 | 175
175
150
150
200 | 13.3
18.6
100
0.0016
16.0 | *80
*80
60
-
80 | 2.0 | *120
*120
25
40
2.5 | -
0.0001
- | | | | | 0.8
0.3
-
-
0.35 | GI, RA | | HL 34 | 2N2243A
2N2285
2N2286
2N2287
2N2288 | GE
BE
BE
BE
BE | npn,PE,si
pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge
pn pDAP,ge | 11111 | 2.8 | 200
110
110
110
110 | 16.0
1250
1250
1250
1250 | 80
60
100
120
40 | 25
25
25
25
10 | 2.5
50
50
50
50 | 5
5
5
5 | -
7
7
7 | -
4
4
4
4 | -
0.4
0.4
0.4
0.5 | | 0.16
-
-
-
- | | | | 2N2289
2N2290
2N2291
2N2292
2N2293 | BE
BE
BE
BE | pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge | 11111 | | 110
110
110
110
110 | 1250
1250
1250
1250
1250
1250 | 80
120
40
80
120 | 10
10
10
10
10 | 50
50
75
75
75 | 5
5
5
5 | 7
7
7
7
7 | 4
4
4
4
4 | 0.5
0.5
0.5
0.5
0.5 | 1111 | 11111 | | | HL 35 | 2N2294
2N2295
2N2296
2N2357
2N2358 | BE
BE
BE
BE
BE | pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge
pnp,DAP,ge | 11111 | 11111 | 110
110
110
110
110 | 1250
1250
1250
2000
2000 | 4 0
80
120
17 0
17 0 | 10
10
10
50
50 | 75
75
75
50
50 | 5
5
5
5 | 7
7
7
7 | 4
4
4
4 | 0.5
0.5
0.5
0.5
0.5 | 11111 | 11111 | | | | 2N2359
2N2389
2N2390
2N2393
2N2394 | BE
TI
TI
TI | pnp,DAP,ge
npn,PL,si
npn,PL,si
pnp,PL,si
pn pPL,si | 11111 | 2.0
2.0
1.2
2.0 | 110
-
-
-
- | 2000

-
-
- | 170
35
35
35
35
35 | 50
0.6
0.6
0.3
0.3 | 50
*;0.*120
*100.*300
*20.*45
*30.*90 | 5 | 7
-
-
-
- | 4 | 0.5 | | 1.5
1.5
1.5
1.5 | | | HL 36 | 2N2395
2N2396
2N2397
2N2410
2N2455 | TI
TI
SY
TI
SY | npn, PL,si
n pn, PL,si
npn, EP,si
npn, PE,si
pnp, EP,ge | 111111 | 2.0
2.0
300
2.5
150 | 200
-
100 | -
1.7
-
2.0 | 40
40
35
30
15 | 0.3
0.3
200
0.8
200 | *20.*60
*40.*120
25
*30.*120
40 | -
0.10
-
2.0 | -
2.5
-
3.5 | 25
-
30 | 20
-
60 | -
0.3
-
0.19 | 1.0
1.0
-
0.45
- | TO-51 co-planar | | | 2N2456
PADT50
RT5401
RT5402
RT5403 | SY
AMP
RA
RA
RA | pnp,EP,ge
pnp,PADT,ge
npn,si
npn,si
npn,si | 11111 | 150
16.5
0.7
0.7
0.7 | 100
75
200
200
200 | 2.0
-
-
-
- | 15
75
30
30
60 | 200
0.75
-
-
- | 40
-
6.0
6.0
5.5 | 2.0
-
0.1
0.1
0.1 | 3.0
-
-
-
- | 15
-
-
-
- | 65
-
-
-
- | 0.19
-
-
-
- | 2.5
2.0
3.0 | ft = 1000 mc | | HL 37 | RT5404
ST8014
TN51
TN52
TN61 | RA
TR
SSP
SSP
SSP | npn,si
pnp,DM,si
npn,PE,si
npn,PE,si
npn,PE,si | 111111 | 0.7
0.6
5
5 | 200
175
200
200
200 | -
-
-
0.004 | 60
20
60
60
60 | -
5
5
5 | 5.5
85
45
80
45 | 0.1
0.001
0.00002
0.00002
0.00002 | | - | -
0.08
-
- | 0.3
0.3
0.3 | 2.0
1.5
0.5
0.5
0.5 | 7/16 Hex
7/16 Hex
Pancake | | HL 38 | TN62
TN71
TN72 | SSP
SSP
SSP | npn,PE,si
npn,PE,si
npn,PE,si | 1111 | 5
5
5 | 200
200
200 | 0.004
0.005
0.005 | 60
60
60 | 5
5
5 | 80
45
80 | 0.00002
0.00002
0.00002 | - | | | 0.3
0.3
0.3 | 0.5
0.5
0.5 | Pancake
T0-5
T0-5 | T84 ## FIELD EFFECT In order of transconductance. | | | | | | | | С | BV DGO | | |-----------------------|--
--------------------------------|--|--|----------------------------------|---|-----------------------------|------------------------------------|-----------------| | Cross
Index
Key | Type
No. | Mfr. | Channel &
Construction | g m
(µmhos) | V p (v) | DSS (ma) | or
*C DG | *BV _{DGS} | NF
(db) | | FE 1 | 18A1
C620
C622
C624
2N2841 | GE
CT
CT
CT
SI | p,GD,si
n,A,si
n,A,si
n,A,si
p,DP,si | 30 min
75
75
75
75
90 | 1
10
10
10
0.8 | 0.05
0.1
0.1
0.1
-50 | 5
35
35
35
4 | -10
10
10
10
•20 | -
-
1.5 | | | 18 A2
C621
C623
C625
2N2606 | GE
CT
CT
CT
SI | p,GD,si
n,A,si
n,A,si
n,A,si
p,DP,si | 100 min
100
100
100
100
175 | 1
10
10
10
2 | 0.25
0.35
0.35
0.35
-0.17 | 5
35
35
35
4 | -10
10
10
10
10
•30 | -
-
1.5 | | FE 2 | C632
C633
C631
U-110
C610 | CT
CT
SI
CT | n,A,si
n,A,si
n,A,si
p,DP,si
n,A,si | 175
175
200
200
250 | 250
350
150
3
40 | 1.0
1.0
1.0
-0.31
0.6 | 23
23
23
4
35 | 250
350
150
•20
40 | 111 | | 122 | C614
2N2842
C611
18A3
XF600 | CT
SI
CT
GE
SIG | n,A,si
p,DP,si
n,A,si
p,GD,si
pn,DP,si | 250
270
400
500 min
500 | 40
0.8
40
1
2-3 | 0.6
-150
3.0
0.75
0.5 | 35
7
35
5 | 40
*20
40
-10
30 | 1.5 | | FE 3 | 2N2607
FE200
C612
C615
2N2843 | SI
AI
CT
CT
SI | p,DP,si
n,DP,si
n,A,si
n,A,si
p,DP,si | 525
600
650
750
800 | 2
10
40
40
0.8 | - 052
1.0
3.0
1.5
-450 | 7
•1.5
35
35
12 | *30
50
40
40
*20 | 1.5
-
1.5 | | 123 | 2N2386
2N2497
2N2500
2N2794
18A4 | TI, TS
TI
TI
TS
GE | p,DP,si
p,DP,si
p,DP,si
p,DP,si
p,GD,si | 1000 min
1000 min
1000 min
1000 min
1000 min | 8
5
6
-
2 | -3 max
-6 max
0.01
2.0 | 50
32
32
6
5 | 20
20
20
20
20
-10 | - | | FE 4 | C613
FG34
FG35
FG36
FG37 | CT
AI
AI
AI | n,A,si
n,DP,si
n,DP,si
n,DP,si
n,DP,si | 1000
1000
1000
1000
1000 | 40
20
20
20
20
20 | 3.0
10 | 35 | 40
50
100
150
200 | - | | 124 | XF601
FE300
2N2498
18A5
2N2608 | SIG
AI
TI
GE
SI | pn,DP,si
n,DP,si
p,DP,si
p,GD,si
p,DP,si | 1000
1250
1500 min
1500 min
1600 | 2-3
1 0
6
2
2 | 1.0
3.0
-6 max
5.0
-1.60 | -
*1.5
32
5
12 | 30
50
20
-10
•30 | 1.5 | | FE 5 | U-112
2N2844
18A6
C640
2N2499 | SI
SI
GE
CT | p,DP,si
p,DP,si
p,GD,si
n,A,si
p,DP,si | 1900
2000
2000 min
2000
2500 min | 3
0.8
2
35
8 | -3.0
-1000
12.0
4. 0
-15 max | 12
25
5
35
32 | *20
*20
-10
35
20 | 1.5 | | 163 | MM763
MM764
MM765
2N2609
C641 | MO
MO
MO
SI
CT | n,P,si
n,P,si
n,P,si
p,DP,si
n,A,si | 3000
3200
3500
3600
4000 | 2
3
6.5
2
35 | 2
4
10
-3.60
8.0 | 50
50
50
25
35 | 25
25
25
*30
35 | 1.5 | | FE 6 | C642
C643
C644
C650
C651 | CT
CT
CT
CT | n,A,si
n,A,si
n,A,si
n,A,si
n,A,si | 6000
9000
12000
— | 35
35
35
45
35 | 12.0
18.0
24.0 | 35
35
35
- | 35
35
35
45
35 | | | LEO | C652
C653 | CT
CT | n,A,si
n,A,si | - | 25
15 | = | - | 25
15 | - | HERE'S WHY . . . HOLDING POWER — atlee clips are specially contoured to flex under tension. Their grip actually increases as shock and vibration increases. PROVEN RESULTS — no visible shifting or twisting — no lead-breaking resonance - holding power unchanged by heat or constant use. COOLING EFFICIENCY - atlee clips, acting as heat sinks, approach within 10% of "infinity". PROVEN RESULTS — operation of transistor at maximum ratings without life ELECTRICAL INSULATION—atlee clips are available with Dalcoat B coating, an enamel combining twice the dielectric stength of Teflon with equal heat conductivity of mica. PROVEN RESULTS - proper electrical insulation from chassis and proper thermal behavior. SEND FOR TRANSISTOR APPLICATION TABLE - A comprehensive listing of atlee clips for specific transistor application. atlee corporation 2 LOWELL AVENUE . WINCHESTER, MASS. ON READER-SERVICE CARD CIRCLE 472 ## UNIJUNCTION Listed by type number. | Cross
Index
Key | Type
No. | Mfr. | Type | R BBO
(K) | η
(max) | ί
ΕΟ
(μα) |
 p
(μα) | V E (sat) | V _{EB2} | V
0B1
(v) | Remarks | |-----------------------|---|----------------------------|--|---|-------------------------------------|----------------------------------|---------------------------|-------------------------------|----------------------------|------------------|----------------------------| | UNJ 1 | 2N489
2N489A
2N489B
2N490
2N490A | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 6.8
6.8
6.8
9.1
9.1 | .62
.62
.62
.62
.62 | 12
12
0.20
120
120 | 20
15
6
20
15 | 5
4
4
5
4 | 60
60
60
60 | 3
3
3
3 | T!
T!
T!
T!
T! | | ORS 1 | 2N490B
2N490C
2N491
2N491A
2N491B | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 9.1
9.1
6.8
6.8
6.8 | .62
.62
.68
.68 | 0.20
0.02
12
12
0.20 | 6
2
20
15
6 | 4
4
5
4.3
4.3 | 60
60
60
60 | 3
3
3
3 | TI
TI
TI | | UNJ 2 | 2N 492
2N 492A
2N 492B
2N 492C
2N 493 | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 9.1
9.1
9.1
9.1
6.8 | .68
.68
.68
.68 | 12
12
.20
0.02
12 | 20
15
6
2
20 | 5
4.3
4.3
4.3
5 | 60
60
60
60 | 3 3 3 3 3 | TI
TI
TI | | ONJ Z | 2N493A
2N493B
2N494
2N494A
2N494B | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 6.8
6.8
9.1
9.1 | .75
.75
.75
.75
.75 | 1 2
0.20
12
12
0.20 | 15
6
20
15
6 | 4.6
4.6
5
4.6
4.6 | 60
60
60
60
60 | 3
3
3
3 | TI
TI
TI
TI
TI | | UNJ 3 | 2N494C
2N2646
2N2647
2N2840
2N2160 | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 9.1
9.1
9.1
9.1
12 | .75
.75
.75
-
80 | 0.02
12
12
1
1
12 | 2
25
25
10
25 | 4.6
2
2
 | 60
30
30
30
60 | 3
6
-
3 | | | 0143 3 | 2N2417
2N2417 A
2N2417 B
2N2418
2N2418A | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 6.8
6.8
6.8
9.1
9.1 | .62
.62
.62
.62
.62 | 12
12
0.20
12
12 | 20
15
6
25
15 | 5
4
4
5
4 | 60
60
60
60
60 | 3 3 - 3 | | | UNJ 4 | 2N2418B
2N2419
2N2419A
2N2419B
2N2420 | GE
GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 9.1
6.8
6.8
6.8
9.1 | .62
.68
.68
.68 | 0.20
12
12
0.20
12 | 6
25
15
6
25 | 4
5
4.3
4.3
5 | 60
60
60
60 | 3 3 - | | | 4 170 | 2N242OA
2N242OB
2N2421
2N2421A
2N2421B | GE
GE
GE
GE | n,si
n,si
n,si
n,si
n,si | 9.1
9.1
6.8
6.8
6.8 | .68
.68
.75
.75
.75 | 12
0.20
12
12
0.2 | 15
6
25
15
6 | 4.3
4.3
5
4.6
4.6 | 60
60
60
60 | 3
-
3
3 | | | 1411.5 | 2N2422
2N2422A
2N2422B
2N1671
2N1671A | GE
GE
GE
TI | n,si
n,si
n,si
pn,GJ,si
pn,GJ,si | 9.1
9.1
9.1
4.7-9.1
4.7-9.1 | .75
.75
.75
.4762
.4762 | 12
12
0.2
-12
-12 | 25
15
6
25
25 | 5
4.6
4.6
5.0
5.0 | 60
60
60
- | 3
3
-
- | | | 5 LNN | 2N1671B
2N2160 | TI
TI | pn,GJ,si
pn,GJ,si | 4.7-9.1
4.0-12.0 | .4762
.4780 | -0.2
-12 | 6
25 | 5.0
- | - | - | | #### AVAILABLE AT THESE DISTRIBUTORS #### FAST Binghamton, N. Y.—Federal Electronics P. O. Box 208/P1 8-8211 Philadelphia 23, Penn. Almo Industrial Electronics, Inc. 412 North 6th Street/WA 2-5918 Pittsburgh 6, Penn.—Radio Parts Company, Inc: 6401 Penn Avenue/EM 1-4600 Newton 58, Mass.—Greene-Shaw Co. 341 Watertown Street/WO 9-8900 New York 36, N. Y.—Harvey Radio Company, Inc: 103 West 43rd Street/JU 2-1500 Syracuse 11, N. Y.—Harvey Electronics-Syracuse, Inc: Pickard Drive, P. O. Box 185/GL 4-9282 Baltimore 1, Md.—Radio Electric Service Company 5 North Howard Street/LE 9-3835 #### SOUTH Birmingham 5, Ala. — Forbes Distributing Company, Inc. 2610 Third Avenue, South/AL 1-4104 West Palm Beach, Fla.—Goddard, Inc. 1309 North Dixie/TE 3-5701 Richmond 20, Va.—Meridian Electronics, Inc. 1001 West Broad Street/EL 5-2834 #### MIDWEST Detroit 3, Mich. — Glendale Electronic Supply Company 12530 Hamilton Avenue/TU 3-1500 Minneapolis 16, Minn.—Admiral Distributors, Inc. 5305 Cedar Lake Road, St. Louis Park/LI 5-8811 Indianapolis 25, Ind.—Graham Electronics Supply, Inc. 122 South Senate Avenue/ME 4-8486 Cleveland 1, Ohio—Pattison Supply Company Main Line Electronics Division 777 Rockwell Avenue/EX 1-4944 Chicago 30, III. — Merquip Electronics, Inc. 4939 North Elston Avenue/AV 2-5400 Cincinnati 10, Ohio—United Radio, Inc. 1308 Vine Street/CH 1-6530 Kansas City 11, Ma.—Walters Radio Supply, Inc. 3635 Main Street/VA 1-8058 #### WEST Dallas 1, Texas—Adleta Company 1907 McKinney Ave./RI 1-3151
Houston 1, Texas — Harrison Equipment Company, Inc. 1422 San Jacinto Street/CA 4-9131 Monrovia, Cal.—Lynch Electronics, Inc. 1818 South Myrtle Avenue/EL 9-8261/MU 1-2706 San Diego 1, Cal.—Radio Parts Company 2060 India Street, Box 2710/232-8951 Los Angeles 15, Cal.—Radio Products Sales, Inc. 1501 South Hill Street/R1 8-1271 San Jose 13, Cal.—Schad Electronic Supply, Inc. 499 South Market Street/298-0511 Denver, Colo.—L. B. Walker Radio Company 300 Bryant Street/WE 5-2401 Seattle 1, Wash.—C & G Electronics Company 2221-3rd Avenue/Main 4-4355 Albuquerque, N.M.—Midland Specialty Co., Inc. 1712 Loma Blvd., N.E./247-2486 Phoenix, Ariz.—Midland Specialty Co., Inc. 1930 North 22nd Ave./258-4531 Tucson, Arix.—Midland Specialty Co., Inc. 951 South Park Ave./MA 4-2315 Ask for a complete catalog Division of General Motors, Kokomo, Indiana | | Vcex | Vce | pEE | | Vo
Sa | | Vbe
Sat. | | |----------------|------------|------------|--------------------|---------|----------|--------|-------------|--------| | No. | Icex = 5ma | Sustaining | Ic=5A | Ic=10A | lc = 5A | Ic=10A | Ic = 5A | lc=10A | | 2N2580 | 400 | 325v | 10 min.
40 max. | | 0.7v | | 1.5v | | | 2N2581 | 400 | 325v | 25 min.
65 max. | 10 min. | | 1.0v | | 1.7v | | 2N2582 | 500 | 325v | 10 min.
40 max. | | 0.7v | | 1.5v | | | 2 N2583 | 500 | 325v | 25 min.
65 max. | 10 min. | | 1.0v | | 1.7v | Union, New Jersey 324 Chestnut Street MUrdock 7-3770 AREA CODE 201 Detroit, Michigan 57, Harper Avenue TRInity 3-6560 AREA CODE 313 Palo Alto, California 201 Town & Country Village DAvenport 6-0365 AREA CODE 415 Santa Monica, California 726 Santa Monica Blvd. UPton 0-8807 AREA CODE 213 Syracuse, New York 1054 James Street GRanite 2-2668 AREA CODE 315 Right now. Available at all Delco through our sales offices. Chicago, Illinois 5151 N. Harlem Ave. 775-5411 AREA CODE 312 New from Delco Radio! Silicon power transistors with Vceo, Vcbo and Vces of 400 and 500 volts in two gain ranges. This new line of high power transistors permits never- before-possible simplification of design in a wide area of applications. ADI(ELIABILITY Radio distributors or Division of General Motors, Kokomo, Indiana Kokomo, Indiana 700 E. Firmin St. GLadstone 2-8211, Ext. 500 AREA CODE 317 #### HOW TO USE THE CROSS INDEX Types are listed in numerical sequence. EIA-registered types come first, followed by house-numbered types. The code following each type identifies its application category and the block of 10 types in which it is located. A3, for example, means the type can be found in the third block of the Audio section. Key to the letter codes is: A = audio and general purpose, P = power, HF = high frequency, LL = low-level switching, HL = high-level switching, FE = field effect, UNJ = unijunction. | | | | | | | | | | | | | 2N66) LL.28 | |----------|----------|----------|------------------------------|----------|---------------|-----------|-----------------|---------|------------|---------|-----------------|---------------------------| | 5 M 3 6 | A12 | 2N241 | A25, 31 | 2N343A | P2 | ZN 426 | LL14 | 2N498A | P3, HL33 | 2N574 | P73 | 2N662 LL 17 | | 2N35 | A12 | 2N247 | P34 | | P3 | 2N427 | LLZZ | 29,199 | HES4 | | P71 | | | 2N43 | A20 | 2N243 | A3 | 2N 343B | | | | 411.133 | 111-01 | 2N 574A | | 7N663 P 37 | | 2N43A | A23 | | | 2N344 | HF22 | 2N428 | LL27 | 2N501 | LL38 | 2N575 | P73 | 2N665 P40 | | | | 2N244 | A13 | 2N345 | HF22 | 2N428A | LL23 | 2NS01A | LL 38 | 2N575A | P73 | 2N669 P19,60 | | 2N44 . | A[1 | 2N247 | HF65 | 2N346 | HF30 | 2N438 | NF4, LL7 | 2N502 | HF49 | 2N576 | LLII | 2N670 LL2 | | 2N 44A | A15 | 2N250 | P40 | | | 2N438A | HF4, LL 47 | | HF49 | | | | | 2N78 | A43 | 2N251 | P40 | 2N3() | A2 | | | 2N502A | HF51 | 2N576A | LL 16 | 2N671 HL19 | | 2N78A | A43 | | | 2N348 | A2 | 2N439 | LL11,HF7,8 | 2N503 | | 2N578 | LLII | 2N673 HL 20 | | | | 2N255 | P 77 | 2N 349 | A) | 2N139A | HF7, LL47 | 2N 50 4 | HF65 | 2N579 | LL17 | 2N677 P50 | | 2N94 | HF2 | 2N255A | P27, 49 | 2N 350 | PIB | 28440 | HF11,1L20 | 2N 508 | P41 | 2N580 | 11.25 | 2N677A P50 | | 2N94A | HF6 | 2N256 | P27, 36 | | | 2N440A | HFILLL47 | 2N511 | P65 | | | | | 2N100 | LL15 | | | 2N350A | P49 | | P65 | | | 2N581 | HF9, LE 17 | 2N677B P50 | | | | 2N 256 A | P28, 49 | 2N351 | P19 | 2N41L | | 2N511A | P65 | 2N582 | HF15, L1,24, 27 | 2N677C P50 | | 2N102/13 | A4 | 2N257 | P35 | 2N351A | P49 | 2N442 | P65 | 2N511B | P65 | 2N583 | LL17 | 2N678 P51 | | 2N1C4 | A20 | 2N 265 | A41 | | | 28443 | P65 | 2N512 | P65 | | | | | 2N 109 | A26, 31 | 2N268 | P35, HL33 | 2N 356 | HF4,LL7 | 2N414A | HF1 | | P66 | 2N 58 4 | LL25, 27 | 2N678A P51 | | 2N L L 7 | A3 | 2N268A | | 2N356A | LL7 | | HF4 | 2N512A | | 2NS85 | LLII | 2N678B P51 | | | | | HL33 | 2N357 | HF7, LL 13 | 2N445A | | 2N512B | P66 | 2N 586 | L147 | 2N678C P51 | | 2N118 | A7 | 2N269 | LL 24, 46 | 2N 357 A | LL11 | 2N446A | HF7 | 2N513 | P66 | 2N587 | LL47 | 2N679 LL6 | | 2N118A | HF12 | 2N270 | A25 | | | 2N447A | HFII | 2N513A | P66 | | | | | 2N119 | A)7 | 2N274 | HF17 | 2N 358 | LL19, HF10 | 2N448 | HF7 | | | 2N588 | H.F47 | 2N695 HF50 | | 2N120 | A33 | | | 2N358A | L1.19 | | | 2N513B | P66 | 2N591 | A30 | 2N696 HF31, P8, HL26 | | | | 28/277 | P64 | 2N359 | A63 | 2N449 | HF9 | 2NS14 | P66 | 2N592 | AI1 | 2N697 HF32, P9 | | 2N122 | P18 | 2N Z7 8 | P64 | 2N 360 | A 39 | 2N450 | LLII | 2N514A | P66 | 201594 | Al3 | 2N698 HF31, P11, NL25 | | 2N 123 | LL,11,16 | 2N279 | A13 | | | 2N456 | HL18 | 2N514B | P66 | | | | | 2W128 | HF28 | 2N280 | A22 | 2 N 36 1 | A 30, 32 | | | | | 2N595 | A20 | 2N699 HF31, P9, HL28 | | | A8 | | | 2N 36? | A38 | 2N456A | P65, HL7 | 2N515 | HF3 | 2N596 | A27 | 2N6998 P15 | | 2N129 | | 2N281 | A30 | 2N3£3 | A23 | 2N457 | HL 19 | 2N516 | HF3 | 2N597 | LL17, 48 | 2N700 HF62 | | 2N 1 29 | HF2,8 | 2N 282 | A30 | | HF17 | 2N457A | P65, HL7 | 2M517 | HF3 | | | | | 2N 140 | HF10 | 2N 284 | A5 | 2N370 | | 2N458 | HL6 | 2N518 | LL 20 | 2N598 | LLI7 | 2N700A H F62 | | 28144/13 | A4 | 2N784A | A5 | 2N371 | HF18 | | P65, HL7 | | | 2N 599 | L L 26 | 2N702 HF33, LL37 | | 2N155 | P2) | | | 28372 | HF18 | 2N458A | | 2N519 | .LL6 | 2N600 | LL17,21 | 2N703 HF33,52,LL37 | | | | 2N 285 | A5 | 26/373 | HE18 | 2N459 | HLG | 2N519A | HF3, LL6 | 2N601 | LL 25 | 2N705 LL 39 | | 2N156 | P 27 | 2N 285A | P32 | | HF18 | 2N460 | All | 2N520 | LL7, 10 | | HF I6 | | | 2N158 | P27 | 2N292 | HF6 | 2N 374 | | 2N 46 I | A46 | 2N520A | HF7. LL 10 | 2NE02 | | 2N705A LL48 | | 2N 158 A | P27 | 2N293 | HF9 | 2N375 | HL6 | | P36 | | | 2N602A | MF14 | 2N706 HF31, 52, P3, | | 2N160 | A1 | | | 2N 376 | P19 | 2N 46 3 | | 2N521 | LL20 | 2N603 | H F 20 | LL36.48 | | | | 2N296 | P32 | 2N376A | P49 | 2N 46 4 | A12 | 2N521A | HF10, LL21 | 2N603A | H F20 | 2N706A HF52,65, LL42 | | 2N 160A | A1 | 2N 297 | HL5 | 28/377 | HF7, LL I4 | 2N465 | A20 | 2N522 | LL 27 | 2N604 | HF22 | | | 2N161 | A1 | 2N 297 A | P49, HL5 | | | 2N466 | A36 | 2N522A | HF15.LL27 | | | 2N706B HF52, LL42 | | 2N 16 LA | A1 | 2N298 | P49. HL 5 | 2N317A | L L 16 | | All | | | 2N604A | HF27 | 2N106C HF52,65 | | | | | | 2N378 | HLF | 2N467 | | 2N523 | LL 30 | 2NE09 | A | 2N706/46 HF52 | | 2N 163 | A2 | 2N301 | P23, 45 | 2N379 | P50, HLE | 2N 470 | A3 | 2N523A | HF17, LL30 | 2N610 | A | 2N706A/46 HF52 | | 2N163A | A2 | 2N301A | P23, 45 | 2N 38 0 | P50, HL6 | 2N471 | A3 | 2N524 | AL3 | 2N618 | HLS | | | 2N167. | LL 19 | 2N 306 | A12 | | | 2N471A | HF9 | 2N524A | A12 | | | 2N106B/46 HF52 | | 2N167A | LL46 | 2N307 | P24 35 | 2N 38 1 | All | | | | | 2N624 | HF65 | 2N706C/46 HF52 | | | | | | 2N382 | A19 | 201472 | A3 | 2N525 | A20 | 2N627 | P50 | 2N706/51 HF52 | | 2N 168 | HF9 | 2N307A | P26 | 2N 383 | A17 | 2N472A | HF9, A4 | 2N525A | A15 | 2N628 | P50 | | | 2N168A | HF9 | 2N312 | H F65, L L 6 | | HF32 | 2N473 | HELI | 2N526 | A26. HL25 | | P50 | | | 2N 169 | HF9 | 2N315 | LLII | 2N 384 | | | HEII | | | 2N629 | | 2N706B/51 MF53 | | 2N 169A | A44 | | | 2N 385 | HF6 | 28474 | | 2N527 | A34, 36 | 2N630 | P50 | 2N706C/51 HF53 | | | | 2N 31 5A | LLII | 2N 385A | LL8 | 2N474A | HF12 | 2N527A | A31 | 2N631 | A43 | 2N707 HF1, S0, P3, LL48 | | 2N173 | P64 | 2N316 | LL23 | 2N 388 | LLIG.HF9 | 2N475 | HF12 | 2N529 | AE | 2N6 32 | 82A | | | 2N174 | P64 | 2N316A | 11.23 | | | 2N475A | A9 | 2N530 | A10 | | | 2N707A LL 42 | | 2N 174A | P46 | 2N317 | LL28 | 2N 388A | LL11, 26, 46, | | HF15 | | | 2N633 | A28 | 2N708 HF57, 59, 66, P5, | | 2N 175 | A29 | | | | HF6,15 | 2N 17b | | 2N531 | A12 | 2N634 | HF7 | LL40, 48, HL32 | | | | 2N317A | LL28 | 2N 389 | P47 | 2N477 | HF15 | 2N532 | A15 | 2N634A | LL48 | 2N708-46 MF57 | | 2N176 | P19,49 | 2N 319 | A15 | 2N 389 A | P47 | 2N 42P | HF12 | 2N533` | A18 | 2N635 | LL23 | | | 2N178 | P17 | 2N 320 | A23 | 2N193 | HE27 | 2N479 | HF12 | 2N534 | A38 | | | 2N7C8/51 HF57 | | 2N 186 A | A10 | 2N321 | A25, 34 | 4 | | | HF12 | | | 2N635A | LL 48 | 2N709 HF62, 63, P3, | | 2N187A | A17 | | | 2N394 | LL 19 | 2N479A | | 2N535 | A38 | 2N636 | LL27 | LL 48, HL 32 | | | | 2N 322 | A20 | 2N 39 5 | LL10, HF6 | 2M480 | HF12 | 2N535A | A38 | 2N63GA | LL25, 48 | 2N109/46 HF62 | | 2N188A | A26 | 2N 323 | A26, 30 | 2N 396 | LLIG, NF9 | 2N480A | A19 | 2N535B | A38 | 2N637 | HL18 | | | 2N 189 | A10 | 2N324 | A36 | | | 2N481 | HF4 | 2N536 | LL6 | | | 2N109/51 HF62 | | 2N190 | A17 | 2N32E | P16 | 2N 396A | LL 11, 16 | | | | | 2N637A | HL I8 | 2N7C9A NF63 | | 2N191 | A26 | | | 2N397 | LL20,23,HF13 | 2N482 | HF5 | 2N537 | LL42, HF63 | 2N637B | ML18 | 2N709A/46 HF63 | | | | 2N327A | LL2, 3 | 2N 39B | LL46 | 2N 48 3 | HF7 | 2NS38 | P35 | 2N638 | HL 18 | 2N709A/51 HF63 | | 2N192 | A31 | 2N328A | LL 2, 3, 6 | 2N 39BA | A29. | 2N484 | HF12 | 2N539 | P35 | 2N638A | HL18 | | | 2N 193 | HF? | 2N 329 | LL1.23 | | P32 | 2N485 | H F8 | | P35 | | | 2N710 HF47, LL40 | | 2N194 | HE3 | 2N 329 A | LL1,23 | 2N 399 | | | HE13 | 2N540 | | 2N638B | HL18 | 7N710A LL 48 | | 2N194A | HF3 | | | 2N399A | LL47 | 2N186 | | 2M541 | HF14 | 2N639 | P47 | 2N711 LL40 | | | | 2N 330 A | A11 | 2N+00 | P32 | 2N489 | LIND | 2N542 | HF14 |
2N639A | P42 | 2N711A LL40, 49 | | 2N 207 | A37 | 2N 331 | A14, 23, LL3 | 5M401 | P28 | 2N 489 A | UNJI | 2N542A | HF14 | 2N639 B | P42 | | | 2N207A | A38 | 2N322 | A3 | 2N404 | LL 23 | 2N4898 | UNJI | 2N543 | HE14 | 2N640 | HF20 | 2N711B LL40 | | 2N207 B | A38 | 2N332A | A3 | 2N+04A | LL8 | 28490 | UNII | | A36 | | | 2N714 LL17 | | 2N211 | HF3 | 2N 333 | A2 | | AI5 | | | 2N543A | | 2N641 | H F 20 | 2N715 MF40 | | 2N212 | NF6 | | | 2N405 | | 2N490A | ILIND | 7N544 | HF65 | 2N642 | HF21 | 2N716 HF40 | | | | 2N 333A | A3 | 2N 106 | A10, 16 | 2N490B | UNII | 2N545 | HL22 | 2NG13 | LL31 | 2N717 HF66 P6 HL26 | | 2N213 | A31 | 2N 334 | 8A | 2N407 | A29 | 2N490C | UN31 | 2N 546 | HL22 | 28644 | LL37 | | | 2N213A | A46 | 2N334A | A7 | 2N 408 | A25, 29 | 2N 49 I | UNII | 2N547 | HL21 | 2N645 | LL31, 35 | 2N718 HF66, P6, HL 28 | | 2N214 | A25 | 2N335 | A)7 | 2N 409 | H F8 | | UNJ) | | | | | 2N718A HF66, P7, HL28 | | 2N215 | A20 | | | | | 2N491A | | 2N548 | HL21 | 2N647 | A30 | 2N719 HF66, P7, HL27 | | | | 2N335A | A17 | 2M410 | MF8,65 | ZN4918 | UNJ1 | 2N549 | KL21 | 2N649 | A29 | 2N719A HF66, P7, HL27 | | 2M217 | A26, 31 | 2N335B | LL46 | 2N 411 | HFIL | 2N492 | UNJ2 | 2N 550 | HL21 | 2N650 | AZZ | | | 2N218 | HF8,64 | 2N 336 | A33 | 2N413 | HFI | 2N492A | UNJ2 | 2N551 | HL 20 | 2N650A | A22 | 2N770 HF66, P7, HL 28 | | 2N219 | HF11 | 2N 336A | A34, LL46 | 2N413A | HEI | 2N492B | UNJ? | | HL21 | | | 2N720A HF66, P8, HL28, 33 | | 2N220 | A78 | | | | | | | 2N552 | | 28651 | A34 | 2N721 P6, HL25 | | | | 2N 337 | LL78 | 2N414 | LL31, HF8 | 2N 49 2 C | UNJ2 | 2N553 | P40 | 2N651A | A34 | 2N722 P6, HL 27 | | 2N 228 | A25 | 2N 337 A | LL 32 | 2N414A | HF6 | 2N493 | UNJ2 | 2N554 | P37 | 2N652 | A42 | | | 2N 229 | A11, P64 | 2N 338 | LL31 | 2N414B | HEIL | 2N493A | UNJ2 | 2N555 | P37 | 2N652A | A42 | 2N725 LL49 | | 2N231 | HF65 | 2N 3.29 | P2 | 2N416 | HEIL | 2N493B | UNJ2 | 2N556 | LL47 | | | 2N726 A11 | | 2N232 | HF15 | | A5 | | | | | | | 2N653 | A22 | 2N727 A14 | | | | 2N 339 A | | 2N417 | LL28, HEIS | 2N494 | UN12 | 2N557 | LL47 | 2N654 | A34 | 2N778 HF42 | | 2N233 | NF65 | 2N 340 | P2 | 2N418 | HEIS | 2N49:A | UNJ2 | 2N 558 | LL47 | 28655 | A42 | | | 2N233A | HF] | 2N340A | A5 | SH419 | P42 | 2N494B | UN13 | 2N559 | LL39, 45 | 2N656 | HF38, P14, HL24 | 2N729 HF42 | | 2N234A | P31 | 2N341 | P2 | 2N420 | HL18 | | | | | | | 2N730 HL 29 | | 2N235A | P31 | | A5.P2 | | | 2N494C | UNJ3 | 2N560 | LL35 | 7N656A | P3,HL33 | 2N731 HL29 | | | | 2N341A | | 2N420A | HL18 | 2N495 | HF17 | 2N564 | All | 2N657 | HF39, P14, HL24 | 2N734 A16 | | 2N235B | P3) | 2N 342 | P2 | 2N422 | A23 | 2N 496 | L L 28. 87 | 2N566 | A27 | 2N657A | P3, HL33 | | | 2N 236 A | P31 | 2N342A | P2 | 2N 424 | P17 | 2N497 | HF38, P14 | 2N568 | A38 | 2N658 | . F3,RE33 | 2N735 A30 | | 2N736B | P34 | 7N342B | P2 | 2N424A | HL 20 | | P1 HL 33 | | | | | 2N735A HF33 | | 2N 240 | LL 46 | 2N342B | P2 | | | 2N497A | | 2M570 | A13 | 2 N659 | LL21 | 2N7 36 A 39 | | (H 24U | E L 46 | 7N343 | PZ | 2N425 | LLE | 2N 49B | HF38, P14, HL23 | 2N 57 2 | A44 | 2N660 | LL25 | 2N736A A36 | | | | - | | - | | | | | | - | | A30 | | | | | | | | | | | | | | | | 2N736B HF33 | 2N915 HFSS, 68, PS, HL30 | 2N1046A HL11 | ZNI183A PI7 | 2N1357 LL24 | 2N1529A P54 | 2N1670 AB | |--|--|------------------------------------|---|---|---------------------------------------|--| | 2N738 A16, H F22
2N739 A30, H F22 | 2N916 HF2, 50, 57. | 2N1046B HL11 | 2N1183B P17 | 2N1358 HL7 | 2N1530 P54 | 2N1671 UNJ5 | | 2N739 A30, HF22
2N739A HF33 | P 5, 80, HL 30
2N917 A23, H F63, | 2N1047 P37
2N1047A P37 | 2N1184 P17
2N1184A P17 | 2N1358A P68
2N1358M P53 | 2N153GA P54
2N1531 P54 | 2N1671A UNJS
2N1671B UNJS | | 2N740 A39, HF22 | LL 50, HL 32 | 2N1047B P37 | 2N1184B P17 | 2N1359 P53 | 2N1531A P54 | 2N1672 A32 | | 7N740A HF33 | 2N918 A23, HF64, | 2N1047C P37 | 2N1185 A45 | 2N1360 P53 | 2N1532 P55 | 2N1675 P63 | | 2N741 HF56
2N741A HF56 | LL 45, LL 33
2N920 HF33 | 2N1048 P37
2N1048A P4, 37 | 2N1186 A22
2N1187 A35 | 2H1362 P54
2N1363 P54 | 2N1532A P55
2N1533 P55 | 2N1676 MF71
2N1677 HF17,71 | | 2H742 A18 | 2N921 HF34 | 2N1048B P38 | 2N1188 A42 | 2N1363 P54
2N1364 P54 | 2N1534 P55 | 2N1677 HF17,71
2N1678 A18 | | 2N743 HF54, 57, 66 | 2N922 HF34 | 2N1048C P38 | 2N1190 A18 | 2N1365 P54 | 2N1534A P55 | 2N1683 LL53 | | 2N743/46 HF54
2N743/51 HF54 | 2N923 A8
2N924 A21 | 2N1049 P38
2N1049A P38 | 2N1192 A32
2N1193 A44 | 2N1370 A35
2N1371 A35 | 2N1535 P55
2N1535A P55 | 2N1684 HF71
2N1685 LL19 | | 2N744 HF54, 59, | 2N925 A6 | 2N1049B P38 | 2M1194 A45 | 2N1371 A35
2N1372 A14.70 | 2N1535 P55 | 2N1685 LL 19
2N1690 P.39 | | 66,LL44 | 2N926 A16 | 2N1049C P38 | 2N1195 HF63, LL43 | 2N1373 A14, 20 | 2N1536A P55 | 2N1691 P39 | | 2N744/46 HF55
2N744/51 HF55 | 2N927 AS
2N928 A16 | 2N1050 P38 | 2N1196 HF21
2N1194 HF27 | 2N1374 A26, 35 | 2N1537 P55
2N1537A P56 | 2N1592 P12 | | 2h745 LL21 | 2N928 A19, HF28, 41, 68 | 2N1050A P38
2N1050B P38 | 2N1194 HF27
2N1198 LL20 | 2N1375 A26, 35
2N1376 A33, 37 | 2N153/A P56
2N1538 P56 | 2N1693 P17
2N1694 LLS3 | | 2N746 LL28 | 2N929A HF34 | 7N1050C P38 | 2N1202 P35 | 2N1377 A37 | 2N 1539 P 56 | 2N1700 P15 | | 2N747 LL31 | 2N930 A40, HF28, 41, 68 | 2N1051 A8, LL8 | 2N1203 P35 | 2N1378 A44 | 2N1S39A P56 | 2N1701 H1.20 | | 2N748 LL31
2N750 HF20 | 2N930A HF34
2N934 HF20 | 2N1052 HL22
2N1054 HL22 | 2N1204 HF69, LL43
2N1204A LL43 | 2N1379 A45
2N1380 A15, 39 | 2N1540 P56
2N1540A P56 | 2N1702 HL20
2N1703 P46 | | 2N751 HF13 | 2N935 A4 | 2N1055 HL21 | 2N1206 P4.63 | 2N1381 A15, 39 | 2M1541 P56 | 2N1704 P41 | | 2N753 HF67 | 2N936 A13 | 2N1056 LL3 | 2N1207 P4,63 | 2N1382 A35 | 2N1541A P56 | 2N1705 A41 | | 2N754 HF21
2N755 HF21 | 2N937 A28 | 2NIQS) LL2 | 2N1208 HL22 | 2N1383 A24 | 2N1542 P56
2N1542A P56 | 2N 1706 A37 | | 2N756 A4 | 2N938 A5
2N935 A13 | 2N1058 HF6
2N1059 A25 | 2N1209 HL22
2N1210 P43 | 2N1384 LL52
2N1385 LL45 | 2N1542A P56
2N1543 P57 | 2N1707 A37
2N1708 LL53 | | 2N756A A4, 6 | 7N910 A28 | 2N1060 LL31, HL79 | 2N1211 P43 | 2N1395 HF18 | 2N1544 P57 | 2N1709 H F18, P23 | | 2N757 A7
2N757A A7, 13 | 2N941 A23
2N942 A23 | 2N1065 HF17
2N1066 HF39 | 2N1212 HL22
2N1213 LL50 | 2N1396 HF35
2N1397 HF39 | 2N1544A P57
2N1545 P57 | 2N1710 HF18, P23
2N1711 HF71, P12, HL29 | | 2N758 A8 | 2N943 A46 | 2N10G6 HF39
2N10G7 P15 | 2N1214 LL50 | 2N1397 HF33
2N1398 HF70 | 2N1545A P57 | 2N1714 P19 | | 2N758A A8, 26 | 2N944 A46 | 2N1068 P19 | 2N1215 LL50 | 2N1399 HF70 | 2N1546 P57 | 2N1715 P19 | | 2N758B HF33
2N759 A17, HF23 | 2N945 A46
2N946 A46 | 2N1059 P40 | 2N1216 LL51 | 2N1400 HF70 | 2N1546A P57
2N1547 P57 | 2N1716 P19 | | 2N759A A17,29 | 2N947 HF57, P5, HL31 | 2N1070 P40
2N1072 HL23 | 2N1217 LL51
2N1218 P16 | 2N1401 HF70
2N1401A HF70 | 2N1547A P57 | 2N1717 P19
2N1718 P20 | | 2N759B HF33 | 2N955 HF64,68 | 2N1073 P42, 52, HL 4 | 2NI219 LLI3 | 2N1402 HF50 | 2N1548 P57 | 2N1719 P20 | | 2N760 A34, HF23 | 2N956 HF23 | 2N1073A P42,52,HL4 | 2N1220 LL6 | 2N1404 LL9,52 | 2N1549 P58 | 2N1720 P20 | | 2N760A A34, HF23
2N760B HF33 | 2N957 A28, HF9, 45, 48, P2
2N960 HF50, 60, | 2N10738 P42, 52, HL4
2N1084 P62 | 2N1221 LL13
2N1222 LL7 | 2N1405 HF60
2N1406 HF60 | 2N1549A P58
2N1550 P58 | 2N1721 P20
2N1727 P41 | | 2N761 A9 | 68, LL40 | 2N 1085 P62 | 2N1223 LL7 | 2N140) NFS6 | 2N 1550A P58 | 2N1723 P41 | | 2N762 A22 | 2N961 MF50,60. | 2N1086 HF10 | 2N1224 HF18, 34 | 2N1409 HF39, HL26 | 2N1551 P58 | 2N1724 P41 | | 2N768 HF67, LL38, 45
2N769 HF67, LL45 | 68, LL40
2N962 HF50, 60, | 2N1086A HF10
2N1087 HF10 | 2N1225 HF35
2N1226 HF18,34 | 2N1410 HF39, HL26
2N1411 LL36, 52 | 2NISSIA P58
2NISS2 P58 | 2N1726 HF42
2N1727 HF42 | | 2N779A LL44 | 69, LL 40 | 2N1090 HF8,LL15 | 2N1228 LL4 | 2N1412 HL7 | 2N1552A P57 | 2N1728 HF42 | | 2N779B LL44 | 2N963 H FE 1 | 2N1091 HF14, LL24 | 2N1229 LL4 | 2N1412USN P68 | 2N1553 P58 | 2N1742 HF71 | | 2N780 A34
2N781 HF67, LL-19 | 2N964 HF50,61,
69,LL40 | 2N1094 H F63, LL 45
2N1095 A2 | 2N1230 LL4
2N1231 LL4 | 2N1413 LL57
2N1414 LL52 | 2N1553A P.58
2N1554 P.59 | 2N1743 HF71
2N1744 HF71 | | 2N782 HF67, L.L.49 | 2N964A HF61 | 2N1096 A2 | 2N1232 LL4 | 2N1417 HF12 | 2N1554A P59 | 2N1745 HF71 | | 2N783 MF67
2N784 MF67 | 2N965 HF51,61, | 2N1097 A27 | 2N1233 LL4 | 2N1418 HF13 | 2N1555 P59
2N1555A P59 | 2N1746 HF43 | | 2N784A HF54, LL40 | 69, LL41
2N966 MF51,61, | 2N1058 A21
2N1099 P67 | 2N1234 LL2, 5
2N1238 LL5, HL2 | 2N1420 HF35, 39,
P9, HL29 | 2N1556 P59 | 2N1747 HF47,71
2N1748 HF35 | | 2N784A/46 HF54 | 69, LL41 | 2N1100 P67 | 2N1239 LL5. HL3 | 2N1425 HF19 | 2N1556A P59 | 2N1748A HF35,41 | | 2N784A/\$1 HF54 | 2N967 HF61 | 2N1101 A12 | ZNIZ40 LL5, HL3 | 2N1426 HF19 | 2N1557 P59 | 2N1749 HF35 | | 2N789 LL14
2N790 LL17 | 2N568 HF53
2N969 HF53 | 2N1102 A12
2N1114 LL16 | 2N1241 LLS, HL4
2N1242 LLS, HL4 | 2M1427 HF35, LL33
2M1428 HF17 | 2N1557A P59
2N1558 P59 | 2N1750 HF18
2N1751 HL33 | | 2N791 LLZ2 | 2N970 NF53 | 2N1115 HL21 | 2N1243 LL5, HL4 | 2N1429 HF17 | 2N1558A P59 | 2N1752 HF38 | | 2N792 LL17
2N793 LL24 | 2N971 HF53 | 2N1117 HL21 | 2N1244 LL3, HL4 | 2N1431 A33 | 2N1559 P60
2N1559A P60 | 2N1754 LL53 | | 2N794 LL 19 | 2N972 HF53
2N973 HF53 | 2N1118 HF15
2N1118A HF15 | 2N1247 A5,36
2N1248 A8,42 | 2N1432 A15
2N1437 P28 | 2N1559A P60
2N1560 P60 | 2N1755 P20
2N1756 P20 | | 2N795 LL49 | 2N974 NF53 | 2N1119 LL29,50 | ZN1249 A5 | 2N1438 P29 | 2N1560A P60 | 2N1757 P20 | | 2N797 HF64, LL45 | 7N975 HF54 | 2N1120 P40 | 2N1250 HL23 | 2N1439 A4 | 2N1561 HF61, P11 | 2N1758 P20 | | 2N799 LL9
2N800 LL9 | 2N976 LL45
2N978 P6, HL23 | 2N1121 HF10
2N1122 LL50 | 2N1251 A31
2N1252 HF31, P9, | 2N1440
A5
2N1441 A11 | 2N1562 WF61, P11
2N1564 A16, HF5, | 2N1759 P20
2N1260 P20 | | 2NB01 1.L8 | 2N979 HF34 | 2N1122A LL50 | LL51, HL27 | 2N1442 A21 | 24, 45, P12 | 2N1761 P21 | | 2N802 LL8 | 2N980 HF34 | 2N1131 P9, HL 26 | 2N1253 HF35, P9. | 2N1443 A32 | 2N 1565 A31, HF5. | 2N1762 P21 | | 2NB03 LL12
2NB04 LL12 | 2N982 HF60
2N983 HF60 | 2N1132 P9, HL 27
2N1136 P42 | 2N1254 LL33 | 2N1441 HL29
2N1446 A13, LL7 | 24, 45, P12
2N1566 A2, 18, HF5, | 2N1768 HL20
2N1769 HL20 | | 7N805 LL21 | 2A984 HF55 | 2N1135A P42 | 2N1755 LL36 | 2N1447 A21, LL8 | 24, 45, P6, 12 | 2N1779 LL33 | | 2N807 LL25 | 2N985 HF51, LL41 | 2N1136B P42 | 2N1756 LL33 | 2N1448 A29, L1.9 | 2N1566A A36 | 2N1780 LL9 | | 2N808 LL 25
2N815 LL 12 | 2N987 MF34
2N988 HF1, P3 | 2N1137 P43
2N1137A P43 | 2N1257 LL 36
2N1258 LL 33 | 2N1449 A35, LL13
2N1450 HF70, LL52 | 2N1572 A16, HF24
2N1573 A31, HF24 | 2N1781 LL9
2N1782 HF71 | | 2N016 LL12 | 2N989 HF1. 48, P3 | 2N1137B P43 | 2N1259 LL36 | 2N1451 A21 | 2N1574 A39, HF24 | 2N1783 HF72 | | 2N817 LL7 | 2N990 HF28 | 2N1138 P43 | 2M1261 P36 | 2N1452 A29 | 2N1584 A7 | 2N1784 HF72 | | 2N818 LL7
2N819 LL12 | 2N991 HF28
2N992 HF28 | 2N1138A P43
2N1138B P43 | 2N1262 P36
2N1263 P36 | 2N1465 P29
2N1466 P29 | 2N1586 A7
2N1587 A7 | 2N1785 HF40
2N1786 HF40 | | 2N870 LL12 | 2N993 MF30 | 2N1139 LL.37 | 2N1264 HF69 | 2N1469 HF4 | 2N1588 A7 | 2N1787 HF40 | | 2N821 LL21 | 2N994 HF69 | 2N1141 HF63 | 2N1265 P11 | 2N1471 A43 | 2N I 589 A24 | 2N1788 HF42 | | 2N822 LL21
2N823 LL20 | 2N995 HF45, P5
2N996 HF45, P5 | 2N1142 HF62
2N1143 HF61 | 2N1266 HF69
2N1273 A24 | 2N1473 LL52
2N1474 A12 | 2N1590 A24
2N1591 A24 | 2N1789 HF42
2N1790 HF42 | | 2N824 LL9 | 2N998 HF23 | 2N1141 A27 | 2N1274 A24 | 7N1474A A13 | 2N1592 A43 | 2N1808 LL10,53 | | 2N825 LL12
2N826 LL12 | 2H1008 A4, LL28
2N100EA LL28 | 2N1145 A21
2N1146 P32 | 2N1215 LL1
2N1276 LL31 | 2N1475 A28 | 2N1593 A13
2N1594 A43 | 2N1809 P76.HL8 | | 2NB28 HF67, LL42 | 2N1008B 1L29 | 2N1146A P32 | 2H1277 A7, LLS1 | 2N1476 A30
2N1477 A21 | 2N1605 LL9 | 2N1810 P76, HL8
2N1811 P76, HL8 | | 7N878A HF57, LL 42 | 2N1009 A17 | 2N1146B P32 | 2N1278 A18, LL51 | 2N1478 HF10, LL19 | 2N1605A LL9 | 2N1812 P76, HL9 | | 2N829 HF57, LL42
2N834 HF50, 59. | 2N1010 A16
2N1011 P36, NL6 | 2N1146C P32
2N1147 P32 | 2N1279 A33, LL51
2N1280 LL18 | 2N1479 P14
2N1480 P14 | 7N1609 P17
2N1610 P17 | 2N1813 P76, HL9, 33 | | 2N834 HF30, 39,
67, LL44 | 2N1012 LL13 | 2N1147A P32 | 2N1281 LL21 | 5N1480 P14 | 2N1611 HL12 | 2N1814 P76, HL9, 33
2N1816 P76, HL10 | | 2N834:46 HF59 | 2N1014 P40 | 2N1147E P33 | 2N1282 LL26 | 2N1482 P14 | 2N1612 P18, HL13 | 2N1817 P77, HL LO | | 2NB34.'51 HF59
2NB35 HF50, 58, 59, | 2N1015 P66, HL13
2N1015A P66, HL13 | 2N1147C P33
2N1149 A3 | 2N1284 LL18
2N1288 LL51 | 2N1463 P33
2N1484 P33 | 2N1613 HF35, P12, HL27
2N1614 LL53 | 2N1818 P77, HL 10
2N1819 P77, HL 10 | | LL 44, 45 | 2N1015B P67, HL 13 | 2N1150 AB, 10 | 2N1289 LL51 | 2N1485 P33 | 2N1615 P14 | 2N1823 P77, HL11 | | 2N835/46 H F59
2N835/51 H F59 | 2N1015C P67, HL13
2N1015D HL13, 16 | 2N1151 AB
2N1152 A17 | 2N1294 P28
2N1295 P28 | 2N1486 P33 | 2N1616 P44 | 2M1824 P27, HL11 | | 2N839 HF21 | SW1012E HE 13, 16 | 2N1152 A17
2N1153 A34 | 2N1295 P21
2N1299 LL51 | 2N1487 P43
2N1488 P43 | 2N1618 P44
2N1619 P47 | 2N1825 P77, HL11
2N1826 P77, HL12 | | 2N810 HF21 | 2N1016 P67, ML13 | 2N1154 A2 | 2N1300 LL52 | 2N1489 P44 | 2N1620 P79, HL20 | 7N1830 P77, HLI | | 2N841 H F Z8
2N842 LL 32 | 2N1016A P67, HL 13, 17
2N1016B P67, HL 13, 17 | 2N1155 A2
2N1156 A3 | 2N1301 LL52
2N1302 HF4, LL0, 10 | 2N1490 P44
2N1491 HF48 | 2N1623 A6
2N1624 HF10 | 2N1831 P77, HL 1
2N1832 P77, HL I | | 2NB43 LL35 | 2N1016C HL14,17 | 2N1157 P73 | 2N1303 LL10 | 2N1492 HF49 | 2N1631 HF21 | 2N1833 P78, HL1 | | 2N844 HF32 | 2N1016D P67, HL 14 | 2N1157A P62 | 2N1304 LL18 | 2N1493 HF51 | 2N1632 HF?1 | 2N1837 HF40, HL34 | | 2N845 HF32
2N846A LL44 | 2N1016E HL 14
2N1017 LL 29 | 2N1158 NF69
2N1158A HF69 | 2N1305 LL18
2N1306 LL23 | 2N1494 HF70 | 2N1633 HF20
2N1634 HF20 | 2N1837A H F 48, H L 34 | | 2N849-11-430 HF67, LLL49 | 2N1017 ELEG
2N1018 A41 | 2N1158A HF69
2N1159 P60 | 2N1305 LL23 | 2N1494A LL43
2N1495 LL39 | 2N1634 HF20
2N1535 HF21 | 2N1838 HF18
2N1839 HF48 | | 7NES T1-431 MF68, LL 49 | 2N1021 P67 | 2N1160 P60 | 2N1308 LL27 | 2N1496 LL39 | 2N1636 HF72 | 2N1840 HF4, 44 | | 2N851/TI-422 HF68
2N852/TI-423 HF68 | 2N1022 P67
2N1023 HF39 | 2N1162 P52
2N1167A P52 | 2N1309 LL27
2N1313 LL23 | 2N1499 LL52
2N1499A HF30, 43 | 2N1637 HF22
2N1638 HF20 | 2N1841 HF72, HL34
2N1864 HF40 | | 2NB58 LL25 | 2N1024 HF1 | 2N1162A P52
2N1163 P52 | 2N1313 EL23
2N1314 P23 | 2N1499A HF30, 43
2N1500 HF43 | 2N1639 HF22 | 2N1864 HF40
2N1865 HF72 | | 2MB59 LL25 | 2N1025 HF2 | 2N1163A P52 | 2N1316 LL26 | 2N1501 P36 | 2N1640 LL2 | 2N 1866 M F72 | | 2N860 LL25
2N861 LL30 | 2N1076 HF3
2N1027 HF6,LL9 | 2N1164 P52
2N1164A P53 | 2N1317 LL26
2N1318 LL26 | 2N1502 P36 | 2N3641 LL3
2N3642 LL5 | 2N1867 HF72 | | 2H862 LL25 | 2N1028 LL9 | 2N1165 P53 | 2N1319 LL14 | 2N1504 P29
2N1505 NF29, P11 | 2N1645 HF63, HL 32 | 2N 1868 H F7 2
2N 1886 P 39 | | 7NB63 LL30 | 2N1031 P51 | 2N1165A P53 | 2N1326 P28 | 2N1506 HF29, 46, P11 | 2N1646 HF70 | 2N1893A HF5, 45, P13 | | 2N864 LL30
2N865 LL33 | 2N1031A P51
2N1031B P51 | 2N1166 P53
2N1166A P53 | 2N1335 HF28, P10
2N1336 HF28, P10 | 2N1506A HF5, 45, P11, 13
2N1502 ME40 LL 37 | 2N1647 P39
2N1648 P39 | 2N1894 P47 | | 7N869 PS, HL 30 | 2N1031C P51 | 2N1166A P53
2N1167 P53 | 2N1336 HF28, P10
2N1337 HF29 | 2N1507 HF40, LL37
2N1511 P46 | 2N1648 P39
2N1649 P39 | 2N1895 P48
2N1896 P48 | | 2N870 HF23, P8, HL26 | 2N1032 P52 | 2N1167A P53 | 2N1339 HF29, P11 | 2N1512 P46 | 2N1650 P39 | 2N1897 P48 | | 2N871 HF23, P8, HL29
2N902 LL14 | 2N1032A P51
2N1032B P52 | 2N1168 P60
2N1169 LL10 | 2N1340 HF29, P11
2N1341 HF29, P11 | 2N1513 P46 | 2N1651 P63 | 2N 1898 P48 | | 2N903 LL 18 | 2N 1032C P52 | 2N1169 LL10
2N1170 LL10 | 2N1341 HF25, P11
2N1342 HF4, 45, P11 | 2NIS14 P46
2NIS15 HF70 | 2N1652 P63
2N1653 P63 | 2N1899 HF15, P63
2N1900 HF17, P64 | | 5M901 LL22 | 2N1034 LLI | 2N1172 P17 | 2N1344 LL14, 23 | 2NIS16 HF29 | 2N1654 A14 | 2N1901 HF17, P64 | | 7H905 LL18
7H906 LL74 | 2N1035 LL1
2N1036 LL2 | 2N1173 A23, HL21 | 2N1345 LL24 | 2N1517A HF29 | 2N1655 A6 | 2N1902 HF16 | | 2N907 LL31 | 2N1036 LL2
2N1037 LL1 | 2N1174 A24.HL22
2N1175 LL50 | 2N1346 LL24
2N1347 LL18 | 2NIS18 HLS
2NIS19 HLS | 2N1656 A14
2N1657 P41 | 2N1903 HF16
2N1904 HF16 | | 2N908 LL32 | 2N 1038 HL7 | 2N1175A LL50 | 2N1348 LL13 | 2N1520 HL5 | 2N1658 P24 | 2N1905 P41 | | 2N909 HL29
2N910 HF23, P8, HL29 | 2N1039 HL7
2N1040 HL7 | 2N1176 A18 | 2N1349 LL21 | 2N1521 HLS | 2N1659 P24 | 2N1906 P41 | | 2N911 HF23, P8, HL26 | 2N1041 HL23 | 2N1176A A18
2N1176B A18 | 2N1350 LL18
2N1351 + LL18 | 2N1522 HLS
2N1523 HLS | 2N1660 P47
2N1661 P47 | 2N1907 HF16, P68, HL23
2N1908 HF16, P68, HL23 | | 2M912 HF23, P8, HL24 | 2N1047 P.78 | 2NE177 HF41 | 2N1352 A30 | 2N1524 HF19 | 2N1662 P47 | 2N 1917 A21 | | 2N914 HF55,59,68,PB0
2N914446 HF59, | 2N1013 P28
2N1014 P28 | 2N1178 HF41
2N1179 HF41 | 2N1353 LL0
2N1354 LL10 | 2N1525 . HF19 | 2N1666 P23 | 2N1918 A24 | | LL50, ML37 | 2M LO45 P28 | 2N1179 HF41
2N1180 HF34 | 2N1354 LL10
2N1355 LL18 | 2N1526 HF19
2N1527 HF19 | 2N1667 HL 17
2N1668 HL 17 | 2N1919 A46
2N1920 A46 | | 2N914/51 HF60 | 2N1046 HL11 | 7N1183 P17 | 2N1356 LL19 | 2N1529 P54 | 2N1669 HL17 | 2N1921 A46 | May 24, 1963 #### How Sylvania checked "purple plague" and boosted reliability What you see above represents a victory over an insidious cause of semiconductor device failure - a problem faced by the whole industry-the "purple plague." On the left, the blotches are a goldaluminum-silicon alloy formed by reaction between the gold wires and aluminum base areas of the chip. Accelerated by high temperatures, this reaction increases series resistance and weakens the leads bad news when reliability is essential. Sylvania engineers departed from standard industry practice and developed a technique of bonding aluminum wires to aluminum, illustrated at the right. After long testing at worse-than-actual conditions, the clean Sylvania junctions confirm: no chemical reaction, no purple plague at the chip-a big step forward that means greater system reliability. All Sylvania epitaxial planar devices now benefit from this victory. The broad, integrated capabilities that made it possible are being applied constantly to the improvement of Sylvania semiconductors. Semiconductor Division, Sylvania Electric Products Inc., Woburn, Massachusetts. # SYLVANIA GENERAL TELEPHONE & ELECTRONICS # **NEW PHELPS DODGE ELECTRONIC ALLOY** PD-135 is Phelps Dodge's new copper base alloy with high conductivity, excellent ductility, and retention of high strength at elevated temperatures. Developed with an oxygen free copper base, PD-135 is controlled by Phelps Dodge throughout every step of casting, and fabrication into rod, bar, wire, and strip forms. Heat-treatable PD-135 is particularly suited for applications requiring extensive cold working and upsetting. PD-135 is completely free-flowing, and cold forms to truest tolerances. A heat-treatable alloy, PD-135 does not lose its high strength characteristics after exposure to high temperatures. PD-135 is sold in minimum mill quantities of 500 lbs. per size. For complete information, including performance data, on this noteworthy new alloy, send for Brochure K. Just write Phelps Dodge at the address below. COPPER PRODUCTS CORPORATION 300 Park Avenue, New York 22, N.Y. ON READER-SERVICE CARD CIRCLE 475 Transistors and allied products have been included for your convenience in the Transistor Data Chart section of the magazine. The Reader-Service numbers
for the products can be circled on either the Reader-Service card in the main section or the special one in the back of this Data Chart. #### Paired Transistors Experimental products Saturation voltage for model XT999, a monolithic NPN and PNP pair, is 0.3 v for $I_c\!=\!10$ ma and $I_b\!=\!1$ ma. An FET pair, model X-600, provides gms of approximately 1000 μ mhos and has a pinch-off voltage of 2-3 v. P&A: \$84-\$95; 4 weeks. Mfr: Signetics Corp. ON READER-SERVICE CARD CIRCLE 500 #### **Transistors** Silicon planar Eighty-one types are manufactured in the Leaf configuration. Collector saturation voltage is 0.2 v at $I_{\rm C}=150$ ma dc, $I_{\rm B}=15$ ma dc. Beta linearity is $h_{\rm FE}=65$ at $I_{\rm C}=0.5$ amp dc and 30 at 1 amp dc. Price: \$1.05-\$25.50 (100-999). Mfr: Bendix Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 501 #### Silicon Transistors Diffused mesa High-collector voltages, low-saturation voltages, fast-switching speeds and relatively fast betas are claimed for types 2N389, 2N424, 2N1015, etc. Diffused-mesa construction is said to have improved a present line of 41 silicon power transistors. Price: \$1.05-\$25.50 (100-999). Mfr: Bendix Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 502 #### **Photo-Transistors** High sensitivity Sensitivity radiation system range is 50-200 μ a/mw/cm² for type 2N2452. Sensitivity illumination system range is 2.6-10.3 μ a/ft-c. Unit is designed as a companion to type 2N986. P&A: \$27 (1-99); 4 weeks. Mfr: Fairchild Semiconductor. ON READER-SERVICE CARD CIRCLE 503 #### **Power Transistors** 150-w dissipation A tight two-to-one $h_{\rm FE}$ ratio (50-100 at 3 amps) makes types 2N1539 through 2N1543 useful for power amplifier applications with critical stability requirements. The 150-w dissipation rating is said to be the highest available in the TO-3 diamond package. P&A: \$2.10-\$10.40 (1-99); stock. Mfr: Texas Instruments Inc., Semiconductor-Components Div. ON READER-SERVICE CARD CIRCLE 504 #### Silicon Transistors Interdigitated "I" geometry Collector breakdown voltages of 75 v min and typical total switching time of < 90 nsec are available in types 2N2787-2N2792. Noise levels as low as 0.5 db are offered in types 2N929 and 2N930, which are available singly, or as duals and matched duals. Mfr: General Instruments Corp. ON READER-SERVICE CARD CIRCLE 505 #### **FETs** Planar-diffused silicon P-channel UNIFETS have two different geometries with a 1.1 to 1 ratio of g_m to I_{DSS} and 6 v max pinch-off voltage. Storage temperature range is -65 to +200 C. Maximum gate-drain breakdown voltage of 20 v is guaranteed at $I_G=1~\mu a$. Price: \$9.50-\$11.50 (over 100). Mfr: Siliconix, Inc. ON READER-SERVICE CARD CIRCLE 506 #### Silicon Transistor Planar epitaxial The 1.6 Gc type 2N2808 has an ac current gain of 5 at 200 Mc. It can be used as an rf amplifier to 500 Mc and as an oscillator to 1.6 Gc. Power gain is 20 db measured at 200 Mc; collector-to emitter voltage is 6 v, and collector current is 2 ma. Mfr: Raytheon Co., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 507 #### **Power Transistors** Breakdown voltage to 100 v Fall time of types MP721A/B/C is 0.7 μ sec at 8 amps collector current for TV flyback circuits. The epitaxial-base germanium units have a saturation voltage of 0.3 v, max, at 10 amps. Mfr: Motorola Semiconductor, Inc. ON READER-SERVICE CARD CIRCLE 508 # THE NEW CASE FOR RELIABILITY # The industry's standard for silicon power transistors— now in a double ended case! In response to customer demand, Westinghouse nowmakes available its field-proven silicon power transistor in a new double-ended case. Performance, reliability and construction features are the same as have been successfully used in Westinghouse military type transistors for the last-three years. Over 5 megawatts of 30 ampere transistors are now serving in military and industrial applications. The new double-ended transistor, 2N2757 series, comes in voltage ratings to 250 volts, current ratings to 30 amperes, and a variety of gain classes. # Rock top transistor for highest power ratings The 250 watt, 300 volt 2N1809-2N2109 series in the rugged "rock top" case features the highest power dissipation ratings available in silicon transistors. # Conventional case for convenient mounting The 2N2739-2N2754 series (formerly Type 109) offers the convenience of a low mounting profile. Dissipation ratings to 200 watts, currents to 20 amperes. # New procurement specifications Procurement specifications on each of the above units are available in military format for designers and reliability engineers. These specifications outline electrical and environmental capabilities under standard Mil-spec conditions. Write for a free copy today on your company letterhead: Westinghouse Semiconductor Division, Youngwood, Pa. You can be sure...if it's Westinghouse. We never forget how much you rely on # Westinghouse On reader-service card circle 476 May $24,\ 1963$ #### **Power Transistors** Meet MIL-S-19500/102 Ratings of 150 w and 7.5 amp are available for these silicon devices. Type USN 2N1016Bm is rated at 100 v, and type USN 2N1016CM is rated at 150 v. Guide: Insert bold-italic line **P&A:** \$32.55-\$43.35 (100 or more). Mfr: Westinghouse Electric Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 509 #### **Transistor Tester** Pulse testing Test parameters up to 500 v and 25 amps are provided by the TACT unit. Pulse duration can be varied from 100-500 μ sec and 1-5 msec, and repetition rate from 2-100 pps. Test conditions are determined in a digital manner by prepunched and Mfr: Texas Instruments Inc. ON READER-SERVICE CARD CIRCLE 510 #### **UHF Transistor** Low noise Noise figure of the TA-2333 at 450 Mc is 4 db. Rf amplifier gain is 15 db, typical. Collector-to-base voltage is 30 v, min; collector-to-emitter, 20 v, min; total dissipation at 25 C free air, 200 mw. P&A: \$35 (1-99); stock. Mfr: Radio Corp. of America. ON READER-SERVICE CARD CIRCLE 511 #### **Power Transistors** Vhf units Power outputs up to 5 w at 200 Mc are provided by the 70 and 140 v series 100. In the 200 series, model SN230 features power outputs of 5 w at 130 Mc, and model SN231 features 10 w at 130 Mc. Price: \$95-\$145 (1-49). Mfr: National Semiconductor Corp. ON READER-SERVICE CARD CIRCLE 512 #### Silicon Transistors 90-nsec switching Interdigitated "I" geometry is featured in these diffused-silicoa devices. Types 2N2787-89 are available in the TO-5 case, and types 2N2790-92 are available in the TO-18 case. Collector breakdown voltages are specified at 75 v min; collector-to-emitter ratings exceed 35 v. Typical frequencies exceed 300 Mc. Mfr: General Instruments Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 513 #### Heat Sink Printed-circuit board Natural convection unit is said to provide the maximum ratio of heat dissipation to volume occupied. It is claimed that the model 2704 substantially increases transistor performance by optimizing the effect of heat transfer coefficient available in free convection. Both the TO-5 and TO-9 transistor ca cases can be accommodated. Mfr: Astro Dynamics, Inc. ON READER-SERVICE CARD CIRCLE 514 #### **Switching Transistors** 25-amp Diffused alloy power types 2N2636-38 switch clamped inductive loads in microseconds at peak powers of 100, 1500 and 2000 w. Switching times range from 1-5 μ sec. Units can switch 25 amps at collector-emitter voltages of 40, 60 and 80 v. P&A: \$26.25-\$38.25; stock. Mfr: Bendix Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 515 #### Silicon Transistors Medium-power vhf Power output is 3.2 w, min, at 125 Mc. Types 2N2781, 2N2782 and 2N2783 can be used as drivers to reactive multiplier chains to achieve up to 2-1/2 w power in the Kc range. P&A: \$39.90-\$75; stock. Mfr: TRW Electronics. ON READER-SERVICE CARD CIRCLE 516 # does it all! # ALgonquin 4-9000 (BOSTON) #### **SEMICONDUCTORS** - MICROCOMPONENTS - TUNNEL DIODES - SILICON RECTIFIERS - TRANSISTORS AUTHORIZED RCA DISTRIBUTOR #### DeMambro 1095 COMMONWEALTH AVE., BOSTON WORCESTER • SPRINGFIELD • PROVIDENCE, R.I. • MANCHESTER, N.H. ON READER-SERVICE CARD CIRCLE 477 #### Transistor Holder Teflon insulated The component is mounted on the shoulder of the Teflon bushing in model RTC-304T. It has a major diameter of 0.325 in. and a minor diameter of 0.290 in. Three through-hole lugs are provided on a 0.200 in. pitch circle for TO-5 type JETEC headers. Mfr: Sealectro Corp. ON READER-SERVICE CARD CIRCLE 517 #### **Voltage Tester** 3 µsec current duration The time factor of the test, rather than the amount of current applied, is limited by model 1901A voltage breakdown tester. The duration of current avalanche through the test specimen is limited to 3 μ sec. Selector switches on the front panel determine the range (1 or 4 Kv) and the amount of ohmic current flow (10 μ a, 100 μ a or 1 ma). Mfr: Microdot, Inc. ON READER-SERVICE CARD CIRCLE 518 #### **Transistor Heat Sink** TO-5 and TO-9 packages Conduction-cooled 1103 series is available in three finishes: uninsulated, electrically insulated and black anodized. Threaded two-piece construction tightens to grip both sides of transistor weld flange. Mfr: Thermalloy Co. ON READER-SERVICE CARD CIRCLE 519 # SPRAGUE LOGIC TRANSISTORS GIVE SUPERIOR LATCH-UP PROTECTION! *based on guaranteed ratings! # For Guaranteed High Voltage Operation at High Speeds, **Investigate Sprague ECDC® and MADT® Transistors** | वि | Type
No. | ft
(typical) | BVCES
(minimum) | BVCEO
(minimum) | |-------|-------------|-----------------|--------------------|--------------------| | | 2N2795 | 450 mc | 25 volts | 15 volts | | | 2N2796 | 450 mc | 20 volts | 12 volts | | | 2N984 | 350 mc | 15 volts | 10 volts | | | 2N979 | 150 mc | 20 volts | 15 volts | | TO-18 | 2N980 | 150 mc | 20 volts | 12 volts | | CASE | 2N2048† | 250 mc | 20 volts | 15 volts | (†TO-9 Case) For additional information on Sprague High Voltage
Logic Transistors, write to the Technical Literature Service, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts. Trademark, Philco Corp. SPRAGUE COMPONENTS TRANSISTORS CAPACITORS MAGNETIC COMPONENTS RESISTORS MICROCIRCUITS INTERFERENCE FILTERS PULSE TRANSFORMERS PIEZOELECTRIC CERAMICS PULSE-FORMING NETWORKS TOROIDAL INDUCTORS HIGH TEMPERATURE MAGNET WIRE CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS **ELECTRIO WAVE FILTERS** 'Sprague' and '@' are registered trademarks of the Sprague Electric Co. 45T-105-63 This is the micropower transistor—a new silicon epitaxial planar device that offers higher efficiency at microwatts or milliwatts. As a switch, or as an amplifier, the type 2N2784 offers capabilities beyond any now available! Typical: 1 KMC bandwidth—higher beta level at microamperes, with reduced falloff beyond 10 milliamperes. This performance stems from advanced device design and refined photolithographic techniques plus Sylvania's exclusive skills in epitaxial technology. Unusually small # Fastest silicon switch available: new 1 KMC Epitaxial construction, new 3-stripe configuration, and small size, produce new high switching speed (T_{on} +T_{off} = 12 nanoseconds) with low saturation voltages (typically 0.2 volts). junction sizes and spacings, low capacitances, result in improved frequency response for both switching and applifier applications. The Sylvania 2N2784 and the 2N709 and 2N709A, which are members of the 2N2784 family, are all avail- able in your choice of three packages—the TO-18, TO-46 "pancake," and the new TO-51 co-planar package. For more information, see your Sylvania salesman or write to Semiconductor Division, Sylvania Electric Products Inc., Woburn, Mass. # Sylvania epitaxial planar transistor 2N2784 ON READER-SERVICE CARD CIRCLE 479 | | SYMBOL | CHARACTERISTICS | 2N
Min | 12784
Max | 2i
Min | N709
Max | 2N
Min | 709A
Max | TEST C | ONDITIONS | |-----|--------------------------|---|-----------|--------------|-----------|-------------|-----------|-------------|----------------------|---| | | hFE | DC Current Gain | 40 | 120 | 20 | 120 | 30 | 90 | Ic=10mA | V _{CE} = 0.5V | | | hre | DC Current Gain | 20 | | 15 | | 15 | | lc = 30mA | V _{CE} = 1.0V | | | hfE (-55°C) | DC Current Gain | 10
.70 | | 10 | | 10 | | I _c =10mA | V _{CE} =0.5V | | | V _{BE} (sat) | Base Saturation Voltage | .70 | .85 V | .70 | .85 V | .70 | .85 V | Ic = 3.0mA | $I_8 = 0.15 \text{mA}$ | | - 1 | V _{CE} (sat) | Collector Saturation | | | | | | | | | | | • | Voltage | | .26 V | | .30 V | | .30 V | lc=3_0mA | $I_B = 0.15 \text{mA}$ | | | Cop | Output Capacitance | | 3.0 pf | | 3.0 pf | | 3.0 pf | IE=0 | $V_{CB} = 5.0V$ | | | CTE | Emitter Transition | | 20 1 | | 00 1 | | | | | | | 1 | Capacitance
Collector Cutoff Current | | 2.0 pf | | 2.0 pf | | 2.0 pf | lc=0 | VEB=0.5V | | | I _{CBO} (150°C) | Collector Cutoff Current | | 5mμA | | 50mμA | | 5mμA | I _E =0 | V _{CB} =5.0V | | | BV _{CBO} | Collector to Base Break- | | 5.0 μA | | 5.0 μA | | 5.0 μA | I _E =0 | $V_{CB} = 5.0V$ | | | DACRO | down Voltage | 15 | | 15 | ٧ | 15 | V | L-10 A | 10 | | | V _{CEO} (sust) | Collector to Emitter | 15 | V | 13 | | 13 | ٧ | I _C =10μA | 1E=0 | | 1 | . (50 (9231) | Sustaining Voltage | 6.0 | V | 6.0 | ٧ | 6.0 | ٧ | I _c =10mA | I ₈ =0 | | | | Cootaming voltage | 0.0 | ٧ | 0.0 | | 0.0 | • | (pulsed) | 1g – U | | | BVEBO . | Emitter to Base Break- | 51 | | | | | | (purseu) | | | | | down Voltage | 4.0 | V | 4.0 | V | 4.0 | V | l _c =0 | I _E =10µA | | | Ts | Charge Storage Time | 7.0 | • | | | | | | | | | | Constant | | 5.0 ns | | 6.0 ns | | 6.0 ns | Ic= 81= 82 | =5.0mA | | | $t_d + ,$ | Turn-on Time | | 0.0 113 | | | | | | | | | | $(V_{BE(0)} = -1.0V)$ | | 9 ns | | 15 ns | | 15 ns | I _c =10mA | i _{B1} =2rnA | | | $t_s + \varepsilon$ | Turn-off Time | | 9 ns | | 15 ns | | 15 ns | I _c =10mA | i ₈₁ =I ₈₂ =1.0mA | | 1 | 11 | Gain-Bandwidth Product | 1000 | mc | 600 | mc | 800 | mc | Ic=5.0mA | V _{CE} =4.0V | SUBSIDIARY OF GENERAL TELEPHONE & ELECTRONICS STEEL STEE NEW CAPABILITIES IN: ELECTRONIC TUBES • SEMICONDUCTORS MICROWAVE DEVICES • SPECIAL COMPONENTS • DISPLAY DEVICES # How to design transistorized communications equipment MEDIUM POWER VHF TRANSISTORS # 2N1506A • 1 watt • 70mc @ 28V • 10db gain Ideal transistors for application in drivers and final amplifiers of telemetry transmitters to 2W, final amplifiers for mobile radio applications in the 140mc range, and as multipliers from 40 to 200mc. 1/2 Watt - 174mc Sonobuoy Circuit This circuit employs PSI 2N2656 and 2N1506A transistors to achieve high power for Sonobuoy applications. Outputs to 2 watts can be obtained by adding additional stages; the oscillator circuit is at the designer's discretion. This circuit is indicative of the increased design flexibility offered by PSI 2N2656 and 2N1506A silicon RF transistors. HIGH POWER VHF TRANSISTORS # 2N2781 • 5 watts • 30mc @ 28V • 12db gain Use this series as final amplifiers in communications equipment, 2 to 5W telemetry equipment and mobile radio designs. 2 Watt - 265mc Telemetry Circuit Originally designed and engineered at PSI, this circuit applies a PSI PT720 as an oscillator, 2N2656 as a buffer, 2N1506A for the driver stage and a 2N2781 for the final, to deliver a conservative 2 watts at 265mc. This application is one of the first telemetry designs available using low cost, off-the-shelf units instead of state-of-theart devices. #### **New PSI RF transistor application notes and bulletins:** • Summary of the State of the Art in the practical use of Communications Transistors • Citizens Band Transmitter • VHF Transistor Oscillator • Radio Frequency Applications, Types PT900 and 2N1900 • 50W, 30mc Amplifier • Class C—100 Watt—20 Megacycle Power Amplifier • Class C—100 Watt—10 Megacycle Power Amplifier • Class C—100 Watt—3 Megacycle Power Amplifier • 1W, 1Kmc Transmitter • 240mc PCM Transmitter • 5W, 30mc Power Gain Test Circuit • Inverter Design • Switching Application, Types PT900, 2N1899, 2N1901 • Pulse Driver for Inductive Elements and Magnetic Memories, Types PT900, 2N1899, 2N1901 • 3W, 125mc Amplifier • ½W Citizens Band Transmitter • 100W, 100mc Amplifier • 5W, 70mc Amplifier • 10W, 100mc Oscillator #### **NEW RF TRANSISTOR APPLICATION LITERATURE** #### ... Application ENGINEERING Assistance! It is now possible to design all solid state communications equipment at costs comparable to, or below, vacuum designs . . . this new PSI application literature will help show you how! If you don't find literature listed on the back of this card covering your specific field of interest, contact your nearest PSI sales office and discuss your specific communications equipment design problem with one of our sales engineers. Let our experienced application engineering section show you the reliability, economy, equipment size reductions and ruggedness you can obtain when you SPECIFY PSI for all your RF transistor needs. (If the postal return card has been removed from your copy of this publication, write on your company letterhead. The application literature listing has been repeated on the back of this card for your convenience. PSI SERVES THE COMPLETE COMMUNICATIONS SPECTRUM... From low-level, low-noise oscillators and amplifiers to advanced high-power, high-frequency devices, PSI has the communications transistor your designs require. For the past five years, PSI has dedicated the major part of its transistor development and engineering efforts towards optimizing capabilities of silicon transistors in all communications equipment. Today PSI is a leading producer of RF transistors for high reliability space communications equipment in such projects as Mariner, OAO, Ranger, Relay, and Explorer. Realizing that component cost is a major factor in communications equipment design, PSI has had, as an early objective, the pricing of high performance RF devices at levels which will hasten the era of all-transistorized communications systems in many new fields. Call PSI today to discuss your particular communications equipment design problems. Let PSI application engineering show you how you can design transistorized communications equipment on a vacuum tube budget through lower overall component costs due to lower voltage operation, lack of heater equipment, smaller power supplies, and greater efficiencies. # on a vacuum tube budget! HIGH POWER HF TRANSISTORS # 2N1900 • 100 watts • 10mc @ 60V • 10db gain The PSI 2N1900 series is ideal for commercial, marine, and military PRC and VRC designs from 2 to 12mc, as 10 amp switchers in power conversion applications, and amplifiers in VLF transmitters up to 5KW. 100 Watt-10mc Amplifier for PRC, VRC and Marine Radio This economical design employs optimum heat sinking to provide a substantial reduction in size over 100 watt tube amplifiers. This design employs a PSI 2N1900 in a reliable, cold-welded package to deliver 100 watts out at 10mc with greater than 10db gain. LOW POWER/LOW NOISE UHF TRANSISTORS 2N2656 • 50mW • 100mc @ 10V • 10db gain Apply these low noise figure units to your oscillator designs up to 50mW. These transistors also provide optimum performance in low to medium-level class A and B buffer amplifiers by delivering up to 200mW RF power with over 50% efficiency. 14520 AVIATION BLVD., LAWNDALE, CALIF. • OS 9-4561, OR 8-0561 TWX: 213 647-5113 • Cable Address: PSISOCAL ON READER-SERVICE CARD CIRCLE 480 Bickson is the first to offer 9 voit, 500 mm, silicon difficed-junction temperature compensated zener reference diodes to meet the requirements of MIL-2-23500/156A (Narc). USN Types 19935B, 19937B, 1993BB, and 19939B offer temperature coefficients of .01, .002, .001. and .0005% °C. Modest quantities are immediately available for your critical military applications. Dickson also offers the industry's broadest line of standard
temperature compensated zener reference diodes. The following types are presently available from steck, to JEDEC specifications: INH29 1N1530-30A 1N2765-70A 1N821-27A 1N1735-42A 1N3154-57A 1N935-39B 1N2163-71A 1N3580-84B 1N941-45B 1N2620-24B 1N4057-85A For complete information contact your authorized Dickson Representative, or write, wire or phone Mr. Jack Nancarrow, Dickson Electronics, P. O. Box 1387, Scottsdale, Arizona. Phone code 602, 946-5357. 248 Wells Fargo Avenue, Scottsdale, Ariz. **Transistor Package** Integral beryllia base Packages of 5/8 in. and 3/4 in. diam, for devices in the 12-20 amp range, with two, three or four leads are included in this line. Glass-to-metal seals are said to be eliminated by the package, whose lower beryllia surface provides a direct path from the semiconductor material to a chassis or heat sink. Mfr: National Beryllia Corp. ON READER-SERVICE CARD CIRCLE 520 #### Silicon Transistors 6000 w peak NPN silicon power units have voltage ratings of 50-200 v. Typical saturation resistance of series 2N1830 and 2N2130 is 0.035 ohms. Minute gain is 10 at 25 amps collector current. Dissipation is 250 w; peak power capability is 6000 w. Operating temp range is -65 to +175 C. Price: \$105-\$198 (100+). Mfr: Westinghouse Electric Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 521 #### **Heat Dissipators** Horizontal or vertical Designed for TO-8 or studmounted semiconductors, Series 9021 units dissipate heat at the rate of 6 C/w. They employ an extruded parallel fin design and may be used in either a vertical or horizontal position. **P&A:** \$0.50-\$0.95; stock. Mfr: Augat Inc. ON READER-SERVICE CARD CIRCLE 522 #### Transistor Holder Teflon-insulated Providing 4 connections on a 0.200-in. diam pitch circle, the RTC-400T-L2 features lugs extending 0.070 in. below the Teflon body for circuitry connections. The major diameter is 0.325 in. and the minor diameter is 0.290 in. Over-all socket height is 0.225 in. and unit may be used on chassis thicknesses up to 0.093 in. Mfr: Sealectro Corp. ON READER-SERVICE CARD CIRCLE 523 #### **Transistors** Power switching Switching up to 1200 w in μ secs is afforded by these 10-amp, diffused alloy, power transistors. They feature a high cutoff frequency, $f_{ab}=1.5$ Mc; and low saturation voltage, $V_{ces}=-0.5$ v dc, max at $I_c=5$ amp, $I_B=-0.5$ amp. Series 2N2288-2290 are germanium pnp type units. Mfr: Bendix Semiconductor. ON READER-SERVICE CARD CIRCLE 524 #### **Industrial Transistor** Mesa construction Germanium epitaxial type TIX-316 has an h_{fe} of 35 min at 1 Kc, h_{fe} of 4.0 at 100 Mc; $R_b{'}C_c$ is 15 psec, max; C_{ob} is 3.0 pf, max; and NF is 4.5 db max at 200 Mc. The device is packaged in a four-lead TO-18 case. P&A: \$2.93; 3 weeks. Mfr: Texas Instruments Inc., Semiconductor-Components Div. ON READER-SERVICE CARD CIRCLE 525 #### **Transistors** Silicon unijunction Useful in oscillators and timing circuits, types 2N2646 and 2N2647 feature maximum peak point emitter current of 25 μa (inter-base voltage = 25 v) and maximum valley point current of 18 ma (interbase voltage = 20 v, R_{B2} = 100 ohms) at 25 C. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 526 #### Germanium Transistors Diffused-alloy PNP types 2N2285 through 2N-2287 feature collector-emitter breakdown voltages of -30 to -80 v dc, min. Saturation voltage $(V_{\text{CE(S)}})$ is -0.65 v dc, max. Units are capable of switching up to 1600 w in 1-5 μ sec. Mfr: Bendix Corp., Semiconductor Div. ON READER-SERVICE CARD CIRCLE 527 12.4 to 200 volt temperature compensated zeners DICKSON immediately available from This Dickson TC zener series, the broadest ever developed for high valtage circuits, represents an ideal combination of performance, size, stability, and reliability. The rugged DURAPAK* high temperature, vacuum-molded package, exclusive with Dickson, provides a hermetic seal of the highest quality. Units meet or exceed environmental requirements of MIL-S·19500 and have passed 1000 hour storage lifetests at temperatures of 150°C. Economical, too! Lower voltage units cost about 40% less than conventional devices. Higher voltage units offer substantial savings over small devices used "in series". They are available from your nearby Dickson distributor. Callhim, today, for immediate delivery FOR COMPLETE TECHNICAL INFORMA-FIGN, write: Mr. Frank Malley, Dickson Electronics, P.O. Box 1387, Scottsdale, Arizona. * trademark of Dickson Electronics Corp. DICKSON ELECTRONICS CORPORATION 248 Wells Fargo Avenue, Scottsdale, Ariz. #### Digital Modules Operate to 120 C Nine basic circuit cards are offered in 1 and 10 Mc versions. Power required is ± 12 v dc. Logic levels are 0 and 6 v dc. Card dimensions are 4-1/4 x 5 x 1/16 in. Mfr: Engineered Electronics. ON READER-SERVICE CARD CIRCLE 531 #### **Transistor Heat Sink** Beryllium copper For use with the TO-8 transistor, models 211, 213 and 215 feature a featherweight cooler which is said to provide rigid contact of large areas. Special tapered installation tools are available. Mfr: Wakefield Engineering, Inc. ON READER-SERVICE CARD CIRCLE 528 #### Silicon Transistors High-power vhf Two 50-Mc power devices, types MM800 amd MM799, have a guaranteed power gain of 7 db at 15 w output. Model MM801 is a medium power amplifier/driver with a power gain of 10 db for a 3.5 w power output at 50 Mc. Mfr: Motorola Semiconductor Products, Inc. ON READER-SERVICE CARD CIRCLE 529 #### **Transistor Heat Sink** Convection cooled Model 2211 dissipates approx 1 w at 150 C. It fits all TO-5 and TO-9 cases, regardless of case diameter. Dimensions are 5/8 in. in diameter by 5/16 in. high; total weight is 0.056 oz. Price: \$0.18 ea (+100), \$0.10 ea (+1000). Mfr: Thermalloy Co. ON READER-SERVICE CARD CIRCLE 530 #### **Planar Transistors** 15-pf collector capacitance A minimum current transfer ratio of up to 3 is available with types 2N910-912 and 2N1973-74. The series is designed for use in high frequency amplifier circuits. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 532 #### Silicon Transistors Npn planar Minimum current transfer ratio of types 2N1189 and 2N1890 is up to 3.0 at 25 C. Units are designed for high frequency amplifier and oscillator circuits. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 533 #### **Transistors** Planar passivated TO-5 size differential amplifiers, types 2N2480/80A offer maximum voltage differentials of 5-10 mv. At 25 C, the collector-to-emitter voltage is 5 v and the collector currents are $100~\mu a$ and 1 ma. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 534 #### **Chopper Transistors** Double-emitter types Breakdown voltage of types 3N74 through 3N79 is $BV_{\text{E1E2}} \pm 18 \text{ v}$ min at $I_{\text{E}} \pm 10 \ \mu\text{a}$). Emitter currents are as low as 2 na at $\pm 15 \ \text{v}$ and offset voltages are $\pm 50 \ \mu\text{v}$ for specified conditions with temperatures from $-25 \ \text{to} + 100 \ \text{C}$. Mfr: Texas Instruments Inc., Semiconductor-Components Div. ON READER-SERVICE CARD CIRCLE 535 #### **Kovar Tab Transistor** Npn silicon planar Maximum collector leakage current for types 11B554-556 is 25 μ a at 25 C. Units are silicon planar versions of TO-5 types 2N1613, 2N1711 and 2N1893. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 536 #### Silicon Transistor High frequency Interdigitated epitaxial planar device, type 2N2865, has a neutralized power gain of 18 db; oscillator output is 55 Mw at 500 Mc. Specifications include an NF of 4.5 db max at 200 Mc and an $R_{\rm b}'$ $C_{\rm c}$ of 15 psec max. Mfr: Texas Instruments Inc., Semiconductor-Components Div. ON READER-SERVICE CARD CIRCLE 537 #### **Chopper Transistors** Five-terminal devices Planar epitaxial passivated types 2N2356/56A feature a collector leakage and emitter leakage current of 10 μ a, max. At 25 C, either collector-to-base voltage is 25 v. Mfr: General Electric Semiconductor Products Dept. ON READER-SERVICE CARD CIRCLE 538 #### **ELECTRONIC DESIGN'S TRANSISTOR READER-SERVICE CARD** #### Reprints Available | Electronic Design's Eleventh Annual Transistor Data Chart (1963) | 549 | |--|-----| | "Designing A Bootstrap Emitter-Follower Amplifier" | 546 | | "Generating Linear Waveforms With Field Effect Transistors" | 547 | | "Four Ways to Pair Field-Effect With Conventional Transistors" | 548 | #### Manufacturers' Specification Sheets and Application Notes | Amelco | 400 | Fairchild | 408 | National | 416 | Solid State Products | 425 | |--------------|-----|--------------------|-----|-------------------------|-----|----------------------|-----| | AMF-Leland | 401 | General Electric | 409 | PSI | 417 | Sperry | 426 | | Amperex | 402 | General Instrument | 410 | Philco | 418 | Sprague | 427 | | Bendix | 403 | Honeywell | 411 | RCA | 419 | Sylvania | 428 | | Clark | 404 | Hughes | 412 | Raytheon | 421 | Texas Instruments | 429 | | Clevite | 405 | Industro | 413 | Silicon Transistor | 422 | Transitron | 430 | | Crystalonics | 406 | Kearfott | 414 | Siliconix | 423 | Tung-Sol | 431 | | Delco | 407 | Motorola | 415 | Solid State Electronics | 424 | Westinghouse | 433 | #### Transistor and Allied Product Information | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | | | 474 | 470 | | | | | | _ | | | _ | _ | _ | | | | | | 470 | 4/1 | 412 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 |
500 | 501 | 502 | 503 | 504 | 505 | | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | | Name | Title | |-----------------|---------------| | Company | | | Company Address | CityZoneState | FIRST CLASS Permit No. 725 New York, N. Y. BUSINESS REPLY MAIL No Postage Stamp Necessary If Mailed In U. S. POSTAGE WILL BE PAID BY #### **ELECTRONIC DESIGN** 850 THIRD AVENUE NEW YORK 22, NEW YORK SUPERIOR MICRODIODE PACKAGING: # (ACTUAL SIZE) WITH PLANAR* RELIABILITY - SMALL sandwich construction no whisker. - STRONG true hermetic seal. No pressure contacts. - MECHANICAL STRENGTH stud-to-cathode and stud-to-anode solder-down. - VERSATILE replacement type for any of 276 silicon diodes. A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION 545 WHISMAN RD., MOUNTAIN VIEW, CALIF. YORKSHIRE 8-8161 - TWX-415-969-9165 # AUTOMATIC TRANSISTOR TESTER/SORTER FAIRCHILD SERIES 200 - Pulse testing for high current tests - Completely programmed with four plastic punched cards - Tests 1500 transistors per hour 24 tests per device - Tests may be programmed in any order The high-speed, automatic classification and sorting capabilities of the Series 200 give this tester a wide variety of applications for both users and producers of transistors. It performs any combination of 24 standard tests—or a single test up to 24 times—on a go/no-go basis. The tests may be programmed in any order through an easy-to-use punch card system. Test rate: 1500 transistors per hour! Pulse testing techniques eliminate junction heating effects to ensure accurate high current tests. Each tested transistor is automatically placed in the appropriate sort bin. The Series 200 also features automatic detection of incorrect programming and performs an equipment self-check test during each test sequence. Write for data sheet and free demonstration. Fairchild offers the widest selection of equipment in the industry. FAIRCHILD SEMICONDUCTOR (INSTRUMENTATION)