Electronic Design 21 oct. 11, 1970

Eying Europe's traffic flow by land, sea and air are growing numbers of electronic sensor systems. Automated highways, precision radars for aircraft

and ships, and computer-operated trains are among the innovations. Monitoring and control are being done via IR, closed-circuit TV and doppler devices. See p. 26.

Dale breaks metal film value barriers

Exclusive new LMF/HMF Resistors go as low as 1 Ohm... and as high as 50 Megohms!

Now you can use low-priced Dale Metal Film Resistors in more applications than ever. New LMF and HMF Series let you extend the use of high stability metal film parts to your lowest and highest resistance requirements. This Dale breakthrough gives you design and performance uniformity you've never had before. T.C.'s are no longer a problem —packaging is easier, too. The price: Competitive with the non-precision carbon film parts you previously had to use in low and high value situations. Check the specifications at right, then ask Dale for details on the industry's broadest and most useful line of metal film resistors.

Phone 402-564-3131 today or write:

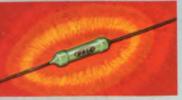
DALE ELECTRONICS, INC.

1300 28th Avenue Columbus, Nebraska 68601 In Canada: Dale Electronics Canada, Ltd A subsidiary of The Lionel Corporation

SPECIFICATIONS

RESISTANCE	T.C.	
LMF 1-9.9 ohms	HMF 100K-50M	150 PPM
5-30 ohms	100K-50M	100 PPM
10-30 ohms	100K-30M	50 PPM
15-30 ohms	100K-5M	25 PPM

Tolerance: 1% standard. Special tolerances and T.C.'s available.


Applicable Mil Specifications: MIL-R-10509 (Char. C, D, E), MIL-R-22684 (RL-07, RL-20)

Power Rating:

LMF – 1/10, 1/8, 1/4, 1/2 watt. HMF – 1/20, 1/10, 1/8, 1/4, 1/2, 3/4, 1 watt. Per Char. C & E 125° C rating, MIL-R-10509.

FLAME RETARDANT COATINGS

are standard on all Dale 1/10 thru 1/2 watt conformally-coated metal film resistors.

These resistors have excellent color stability when subjected to short time overloads and prolonged high temperature operation. They have withstood 100 times rated power for as long as 10 minutes without exhibiting flame.

If price and performance are important here's a 7 MHz value

This is a lab-quality, all-solid-state scope-at a price you'd ordinarily expect to pay for older vacuum-tube models.

Value - DC to 7 MHz bandwidth. This frequency range covers audio, video and most control circuit applications.

Value - 5 mV to 20 V per division deflection factor. Here is sufficient capability to pick up most electronic or electro-mechanical system outputs without distortion or need for additional amplifiers.

Value - Rock solid triggering with capabilities ordinarily found only in more expensive lab type oscilloscopes . . . triggered or recurrent sweep, single-sweep, and automatic triggering.

Value - Low drift, long-term stability. Field effect transistors virtually eliminate drift from temperature changes, shock or vibration. Longterm stability means less frequent calibration.

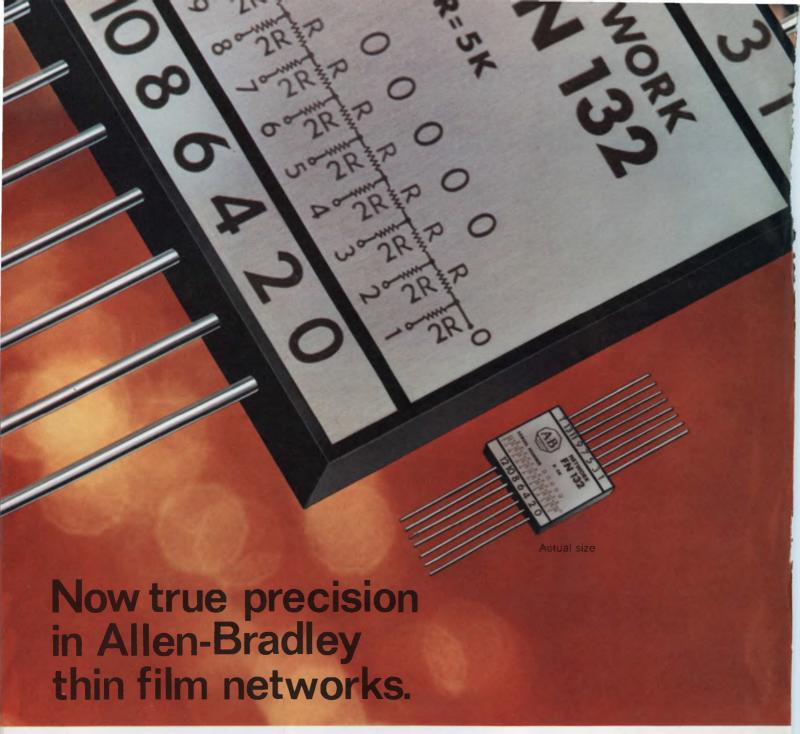
Value - Easy to use. Logical arrangements of controls, beam finder, auto-triggering make operation easy. Interlocking controls on sweep time and magnifier prevent readout errors.

Value - Easy-to-see display. Internal graticule, 8 x 10 cm CRT for measurement accuracy. Bright, small spot-size trace increases visibility and resolution.

Value - Available in single channel cabinet or rack versions (1215A or 1215B), or in dual-channel cabinet or rack versions (1217A or 1217B). Electrical characteristics are identical. Rack version is only 51/4" high. Panel on the cabinet version is about the size of this page.

Value - Price, 1215A/B, \$950; 1217A/B, \$1175. Add up the features, then divide by price and you'll find this is the greatest performance/ dollar value ever offered.

These 7 MHz oscilloscopes are new members of HP's growing family of low- and mid-frequency oscilloscopes. In addition to these new midrange scopes you have 500 kHz scopes in 14 models with your choice of: Single or dual trace, 100 μ V/cm or 5 mV/cm deflection factors, conventional display or variable persistence and storage, all in cabinet or rack versions.


If you're looking for accurate midfrequency measurements, ease of use, reliability-all at a low costhere's a real 7 MHz value!

Call your local HP field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304. Europe: 1217 Meyrin-Geneva, Switzerland.

HEWLETT (hd) PACKARD

OSCILLOSCOPE SYSTEMS

Resistance networks for A/D and D/A conversion, digital volt meters and numerical control systems demand extreme precision. Allen-Bradley can deliver. Precision that starts with a patented chromium-cobalt resistive material vacuum deposited on a substrate made to Allen-Bradley specifications. Precision based on exclusive computer drawn grids. Precision backed by extensive design and testing facilities. Precision on a continuing basis assured by Allen-Bradley's 14 solid years of experience.

Add the reliability of a single substrate, uniform temperature characteristics, much lower attachment costs and you see why AllenBradley thin film networks are the logical replacement for discrete precision resistors.

SELECTED SPECIFICATIONS

SELECTED	SPECIFICATIONS
RESISTANCE RANGE	1K ohms to 2 megs, standard 25 ohms to 50 megs, special (Single substrate range — 10,000 to 1)
TCR LEVELS -55°C to +125°C	± 25 ppm/°C ± 10 ppm/°C ± 5 ppm/°C
TCR TRACKING	\pm 5 ppm/°C standard to \pm 1 ppm/°C special
TOLERANCES	Absolute to ± .01% @ +25°C Matching to ± .005% @ +25°C
RESOLUTION	Line width and spacing to .0001 inch
ENDURANCE	Exceeds MIL-R-10509F Characteristic F

Procedure: MIL-STD-202D

Investigate the superiority of Allen-Bradley thin film networks. Write: Marketing Department. Electronics Division, Allen-Bradley Co., 1201 South Second Street, Milwaukee, Wisconsin 53204. Export office: 1293 Broad St., Bloomfield, N. J. 07003, U.S.A. In Canada: Allen-Bradley Canada Ltd., 135 Dundas Street, Galt, Ontario. Several standard networks are available through your appointed A-B industrial electronic distributors.

NEWS

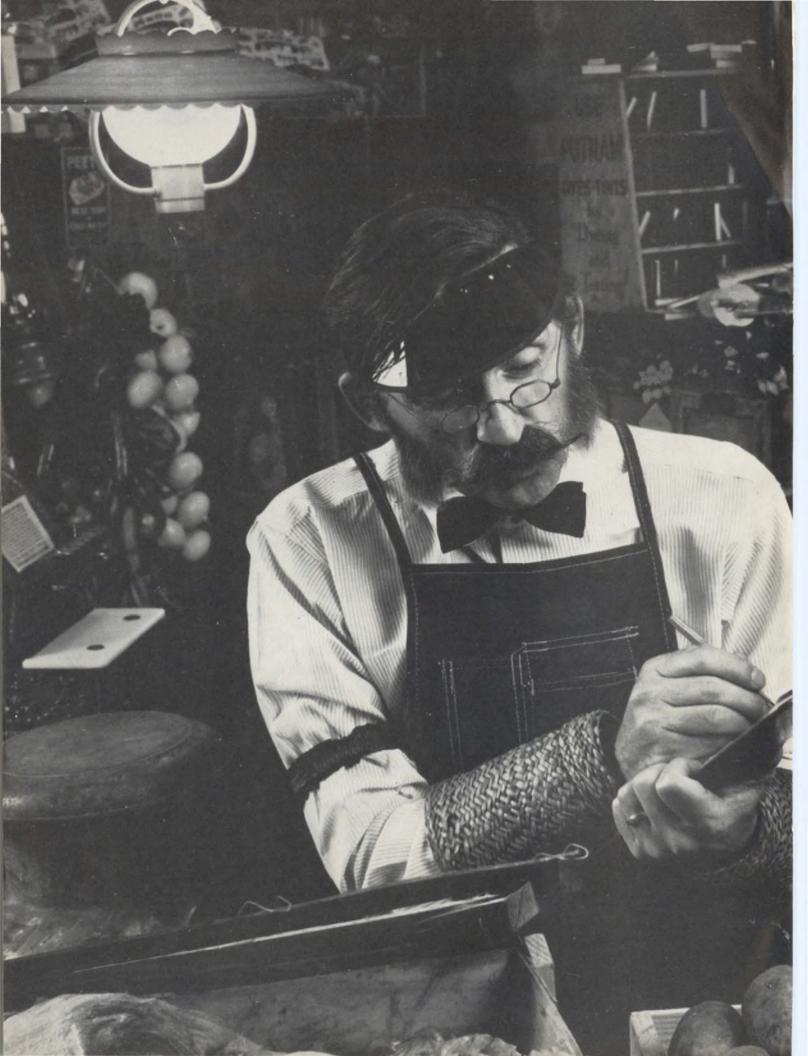
- 23 News Scope
- 26 **Europe travels electronically.** An on-the-scene glimpse at how the Old World controls and speeds land, sea and air transportation
- 32 **0.1¢-per-bit storage seen with new memory.** General Dynamics' magneto-acoustic method said to overcome limitations of planar models
- 34 Precision scale uses electronic feedback
- 46 'Magic wand' terminal to speed store sales
- 50 Technology Abroad
- 53 Washington Report

TECHNOLOGY

- 70 Try 'back-door' circuit analysis. Simply use an auxiliary feedback loop to set the input and let a computer do the calculations.
- Make very wide-range log amps easily by sequentially summing several basic log stages. Custom-tailored performance is no problem.
- 82 **Explore IC performance with a curve tracer.** It will display characteristics not found in manufacturers' specifications.
- Simplify function generator design. You can reproduce any periodic function by using sampling and ROM storage.
- How to succeed in spite of the slump. The experiences of two small firms may guide engineer and manager alike through the slowdown.
- 96 Ideas for Design
- 107 Product Source Directory: Low-Power Microwave Tube Oscillators

PRODUCTS

- 123 **Instrumentation:** Pulse generator system delivers 1 GHz outputs.
- 131 Data Processing: Programming unit patterns read-only memories.
- 137 Microwaves & Lasers: GaAsP LEDs span 630-690-mm wavelengths.
- 157 Microwards & East 3. days ELDS Spair 050 050 mm wavelengths.
- 126 ICs & Semiconductors 143 Packaging & Materials
- 134 Components 145 Tools & Engineering Aids
- 140 Modules & Subassemblies 162 Product Index


Departments

- 69 Editorial: Are trade restrictions really the answer?
- 13 Designer's Calendar 148 Annual Reports
- 43 Letters 150 Application Notes
- 60 Sidelights 152 New Literature
- 146 Evaluation Samples 157 Bulletin Board
- 147 Design Aids 160 Advertisers' Index

Information Retrieval Service Card inside back cover

Cover: Collage, depicting European travel, designed by Clifford M. Gardiner, art director.

ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York, N.Y. 10022. James S. Mulholland, Jr., President. Printed at Brown Printing Co., Inc., Waseca, Minn. Controlled circulation postage paid at Waseca, Minn., and New York, N.Y. Copyright © 1970, Hayden Publishing Company, Inc. 82,501 copies this issue.

Now there's a better way.

Our new DOS brings batch processing costs down to \$765 a month.

If you've been hanging on to old-fashioned ways because you thought a computer was too expensive, think again. Our new Disc Operating System brings the cost of computation and general purpose processing right down to where your budget lives.

With our new DOS, you'll easily create, check out and run your own programs. Use it for scientific calculations, business-accounting functions, information retrieval, inventory control, school administration — in fact, problemsolving of all kinds.

Anyone who can poke a typewriter key or pencil-mark a card can use our DOS. Because the assembly (or compilation), loading and execution of your programs are under the control of a teleprinter keyboard or batch input device.

On the other hand, if you're already batch processing with another system, give this a thought. Our DOS can probably do everything you're doing now — for about half the cost.

Because both the software and the hardware are fully modular, our DOS accommodates the needs of many different applications. Lets you vary the number of input/output devices. Add more core memory. Use a card reader as well as teleprinter. Add a line printer, paper tape punch, photo reader and magnetic tape. Other advantages include software protection and program segmentation. Plus automatic program retention so your programs can be easily reused.

Our basic DOS includes an 8K computer with direct memory access, 2.4 million-character disc, one teleprinter and one high-speed paper tape reader. Price is just \$35,600. Or \$765 per month on a five-year lease. And it's upward expandable for your future needs.

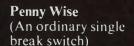
Get the full story by calling your local HP computer specialist. Or write Hewlett-Packard, Palo Alto, California 94304; Europe: 1217 Meyrin-Geneva, Switzerland.

DIGITAL COMPUTERS

INFORMATION RETRIEVAL NUMBER 4

Motorola's new age of FET pricing is here...

For a new generation of FET designs.


Now — in one bold stroke — you can add new performance and practicality to those new and existing designs you may have hesitated to take off the shelf because of FET prices ...more than 125 top Motorola MOSFET and JFET prices have been cut as much as 69%!

FET's have long been desirable as choppers and in RF-VHF designs but cost factors minimize their usefulness. No longer. Full maturity of manufacturing and testing technologies has led to very high yields and total production which no longer justifies previous price levels. The additional reliability of Motorola's exclusive silicon-nitride passivated MOS-FET's has generated such market acceptance that even many of these types are included in the action.

Our calculator shows just a few representative, reduced 100-up prices . . . for details on how you can join the new age of FET pricing, write Motorola Semiconductor Products, Inc., Box 20912, Phoenix 85036 or contact your nearest Motorola distributor.

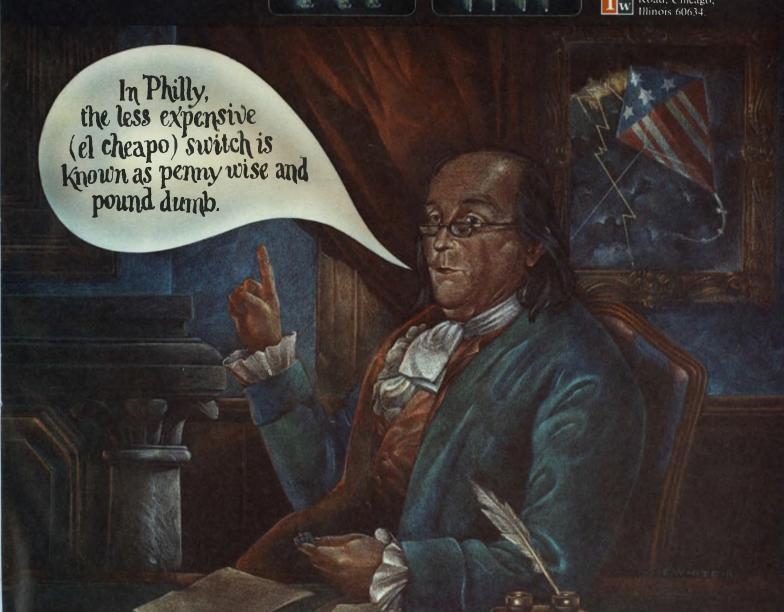
We'll send along a price list and a FET Selector/Cross-Reference Guide that will show you the best in FET's at the newest in economy!

- 1. Common
- 2. Two contact surfaces per circuit
- 3. One gap
- 4. Current-carrying stressed blade
- 5. Mechanical life cycle:
- 4 to 5 million
- 6. Single circuit control
- 7. Contact bounce: moderate to excessive
- 8. Mechanical parameters: fixed
- 9. Military approval:
- 10. Cost: initially it's moderate or perhaps even low, but...

Foolish Only in Its Absence

(Licon Butterfly Double Break Switch)

- 1. Unique (Patented.)
- 2. Four contact surfaces per circuit
- 3. Two gaps
- 4. Non-current carrying coil spring
- 5. 15 to 20 million
- 6. Double circuit control
- 7. Limited
- 8. Flexible
- 9. All but one
- 10. Moderate (for *actual* cost savings read 1-9 and the headline again).

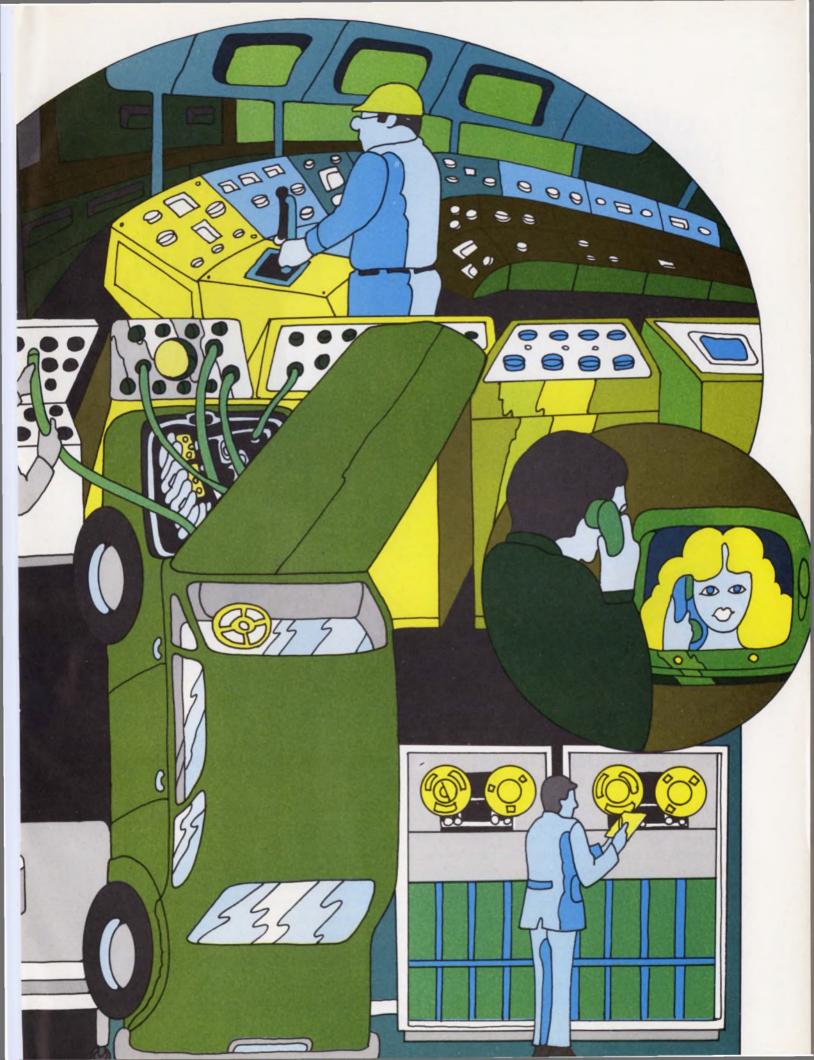


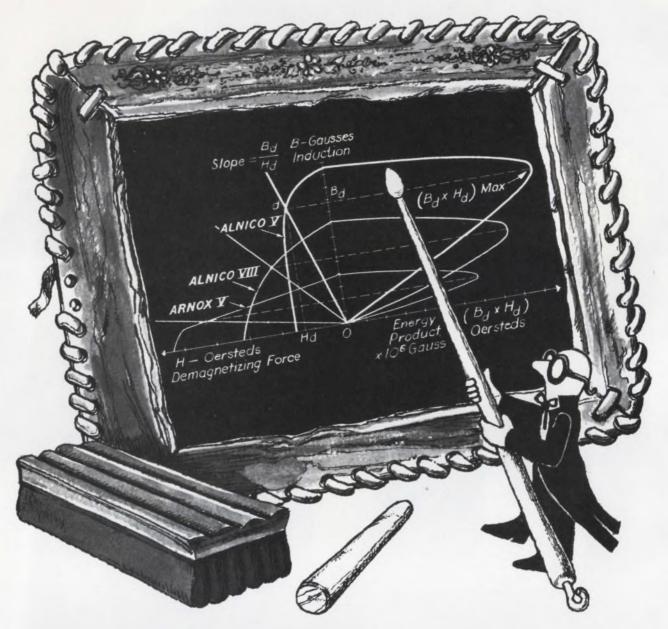
We make our Butterfly Double Break switches in sizes that range from subsubminiature (type 18 rated at 7 amps) up to heavy-duty industrial versions (the type 14,20 amp unit)—each with a wide variety of actuators and terminal variations.

The complete double break story—including sizes and ratings available—fills a book. A book that's yours free for the asking. Just circle No. 783 on the response card in the back of this magazine or write on your company letterhead to:

LICON

Division Illinois Tool Works Inc., 6615 West Irving Park Road, Chicago,




Good old Stackpole and the new electronic technologies. Who?

Stackpole. Producers of electrical/electronic componentry for over sixty years. First to the automotive industry. Then to the radio, home entertainment, appliance, railroad, chemical and, most recently, the aerospace industries. Five million quality components daily.

Electronics is fast becoming an important part of every industry. Automated production. Medical electronics. Computers. Education and communications. The needs are diverse. The qualifications demanding. Stackpole has the needed components. Rotary switches. Controls. Precise ferro-magnetic materials. Resistors and contacts. But more importantly, it has the capability to develop still more. Ours is a value approach. Quality products, reasonably priced, delivered on time and backed by service and experience.

Energy product.

Choose: Maximum in cast or sintered Alnico. Or as much as you need in Arnox ceramic. Both from Arnold.

Seeking a top-quality source of supply and service for permanent magnets for anything from mikes to meters to motors to magnetos? Arnold's the answer. Examples: Our cast Alnico magnets with maximum energy product per unit volume. Our sintered Alnico—same maximum energy product in homogeneous, close-tolerance magnets available in intricate shapes.

And our Arnox® hard ferrite magnets, made from non-strategic materials, with a variety of energy products, in non-oriented or highly oriented configurations.

Trust the Arnold reputation for the newest and the best in permanent magnets. At measurable cost savings, too. Call or write for the convincing details.

did youknow?

General Electric Volt-pac variable transformers help you vary voltage dependably...year after year,*

after year, after year, after year, after year, after year, after year, after year...

Send in this coupon for free bulletin giving complete details on Volt-Pac transformer features, ratings and application data; or see your GE sales representative today.

* Laboratory tested for over one million failure-free operations.

GENERAL & ELECTRIC

9	Section 413-34
1	General Electric Company
1	Schenectady, New York 1230

Please send me free bulletin GEA-8110 on Volt-Pac Variable Transformers.

NAME _____

COMPANY ____

TITLE

ADDRESS _

ITY STATE ZIP

a new monolithic op amp

with low bias current (15 nA), low drift (5 μ V/°C), low noise (0.8 μ V, p-p), and wide supply range (\pm 3 to \pm 20 Vdc).

two new hybrid multipliers

with $\pm 0.5\%$ linearity. No external components required. Miniature hermetically sealed package. Temperature range -55 to +125°C.

a new hybrid FET op amp

with ultra-low bias current (5 pA), low drift (5 μ V/°C), and fast slew rate (6V/ μ sec). Hermetically sealed TO-8 package.

...and you didn't think we made IC's!

These four new units join a rapidly growing family of Burr-Brown IC products. All have the high quality you've come to expect from Burr-Brown, quality that's assured in every processing step. In addition to the above, we have a POWER BOOSTER ($\pm 10~\text{V}$ @ $\pm 100~\text{mA}$) for use with any IC op amp, another series of HYBRID FET OP AMPS, and a series of low bias BIPOLAR OP AMPS . . . all in dual-in-line packages. We are also supplying HYBRID COMPARATORS and ACTIVE FILTERS.

Better get your Burr-Brown IC-PAK. For your copy of the Burr-Brown IC-PAK. containing complete information on all of our IC products, simply use this publication's reader service card or phone us.

BURR-BROWN

RESEARCH CORPORATION

International Airport Industrial Park • Tucson, Arizona 85706 TELEPHONE: 602-294-1431 • TWX: 910-952-1111 • CABLE: BBRCORP

Designer's Calendar

NOVEMBER 1970

S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Nov. 15-19

Engineering in Medicine & Biology Conference (Washington D. C.). Sponsors: AEMB, IEEE. William Maloney, Conference Coordinator, 1970 ACEMB, 6 Beacon St., Suite 620, Boston, Mass. 02108.

CIRCLE NO. 400

Nov. 16-18

Hybrid Microelectronics Symposium (Beverly Hills, Calif.). Sponsor: ISHM. Anthony Valachovic, IBM, East Fishkill, N. Y. 12533.

CIRCLE NO. 401

Nov. 17-19

Fall Joint Computer Conference (Houston, Texas). Sponsors: AFIPS, IEEE. L. E. Axsom, IBM Scientific Center, 6900 Fannin, Houston, Texas 77025.

CIRCLE NO. 402

Nov. 17-20

Magnetism & Magnetic Materials Conference (Miami Beach, Fla.) Sponsors: AIP, IEEE. F. B. Hagedorn, Bell Telephone Labs., Murray Hill, N. J. 07971.

CIRCLE NO. 403

Dec. 2-3

Conference on Display Devices (New York City). Sponsor: IEEE. Sam Stone, General Tel. & Elec., 208-20 Willets Pt. Blvd., Bayside, N. Y. 11360.

CIRCLE NO. 404

How To Solve Your Power Supply Problem-

28 VDC to 400 → 3¢ Model Q10D-115A-400Y Size 6" x 6" x 4" — Wt. 8.3 lbs. Output 100 volt amps

400 → to DC (Reg)
Model T3D-48.6A
Size 2¾" x 3" x 3¾" — Wt. 2.3 lbs.
Output 48 VDC at 618 ma

60 → to DC (Reg)

Model V6D-27.6A

Size 4½" x 6" x 4" — Wt. 10.3 lbs

Output 28 VDC at 2.1 amps

28 VDC to DC (Reg)
Model AK1D-1970A
Size 1½" x 2¾" x 3" — Wt. 1 lb.
Output 2000 VDC at 5 ma

NEW! Mil-Spec Quality Power Supply Modules for All Types of Power Conversion

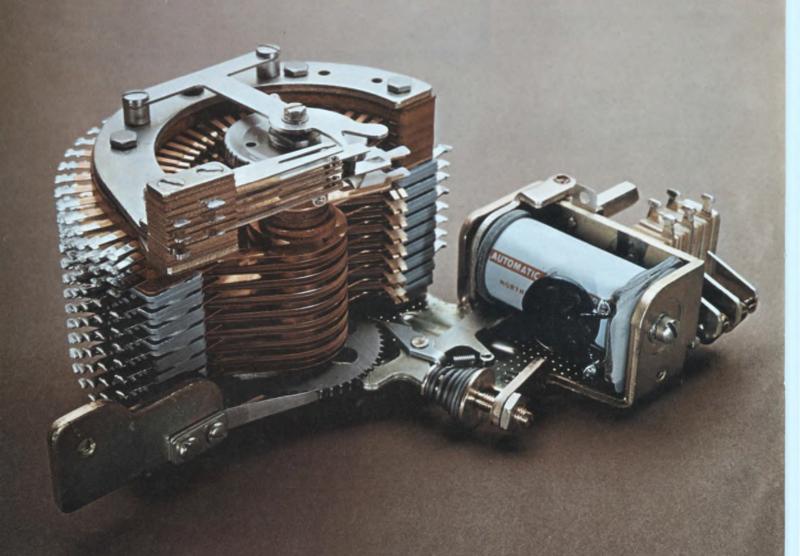
Abbott has a new line of power supply modules. They are built to meet military environment-MIL-E-5272C. All types are available with any output voltage you need from 5 volts to 10,000 volts DC—and DC to 400 \longrightarrow inverters with either 1ϕ or 3ϕ outputs.

DC to 400 \rightarrow , 3ϕ — This new inverter changes 28 VDC battery voltage to three phase power with outputs of 33, 66, and 100 volt amps, 400 cycles or 800 cycles, as well as output voltages of 115 VAC or 27 VAC. All three phases are indepently regulated at 1%. Also, 1ϕ output units are available with powers of 30, 60, 120 and 180 volt amps, 400 cycles or 800 cycles, at 115 VAC or 27 VAC. All of these solid state inverters are completely described on Pages 13, 26 and 27 of our new catalog.

60 → to DC — These modules are the smallest, lightest weight 60 → to DC power supplies we have seen. They are well regulated for line and load changes. Hermetically sealed for military environment they will operate to 160°F heat sink temperatures. They are available in any output voltage you need — 5 volts to 10,000 volts,

with power outputs of 5, 10, 20, 30, 60, 120, and 240 watt sizes as standard catalog listings. You will find them completely described with prices on Pages 2, 3, and 4 of our new catalog.

400 to DC (Reg) — Designed especially for 400 input power, this line of converters is available with any output voltage you want — 5 volts to 10,000 volts DC. Power outputs of 5, 10, 20, 30, 60, 120, and 240 watt sizes are standard. Well-regulated and hermetically sealed, these units are described on Pages 5, 6, and 7 of our new catalog.


DC to DC (Reg) — Some of these DC to DC converters are as small as a package of cigarettes and weigh less than a pound. Output voltages from 5 volts to 10,000 volts are all listed as standard models in our new catalog. Power outputs come in standard sizes from 5 to 240 watts. These converter modules feature close regulation, short circuit protection and hermetic sealing for rugged applications found in military environment. They are listed in order of increasing output voltage on Pages 8, 9, and 10 of our new catalog.

If you need a power supply module in a hurry please check pages 1727 to 1740 in your EEM (1968-69 ELECTRONICS ENGINEERS MASTER Directory). Most of the above units are listed there. Or, for a complete list of our power supply line please send for your FREE 36-page catalog.

abbott transistor

5200 W. Jefferson Blvd. • Los Angeles 90016 Area Code 213 • WEbster 6-8185

Reliability is a single-sided frame, a ball and a cricket room.

Our Type 45 rotary stepping switch is made to be forgotten. We build them to work hard, fast and long without constant fiddling or adjusting. They've got to be able to work in heat or cold, take bumps and grinds and still click-click along with close-spaced consecutive operations.

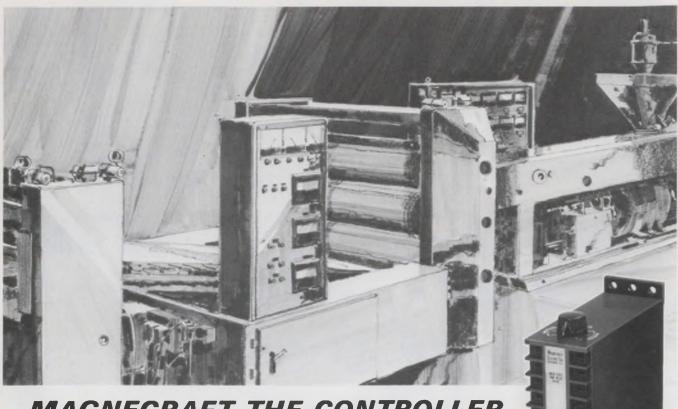
We start out really flat To

keep everything on
the level we start our
assembly with an
open-type, one-piece
frame. Thick and really
flat. Some manufacturers use
two thinner frames. But we found
that starting with a single thick frame
eliminates problems of matching the switch parts.
Everything stays in line. And a single-sided frame
takes a lot less room—the switch is only as wide
as need be.

A lube job that lasts a lifetime The entire wiper assembly rotates on a large-diameter stainless steel shaft around a full-length hub bearing. We lubricate this bearing and seal it during assembly. So throw away the oil can.

Then we supply a pinch that's just right Each pair of wipers is tension-adjusted during assembly. As they click around the bank levels on a flat plane, we want each pair to pinch the contact just the right amount. Too hard a pinch and the contacts will wear out quickly. Too soft a pinch will cause a poor connection. We teach our wipers to pinch just right.

Then comes our big
wheel The entire
wiper assembly is
turned by the ratchet
wheel. It's big and it's
strong and it has 52 flat
case-hardened teeth. Why
flat teeth? So when they mesh
with the teeth on the ratchet
wheel they mesh tight. No banging,
wiggling, or scraping. And as the teeth
wear, they just mesh deeper in the grooves.


Ball bearing anchor for good measure The armature assembly has to be securely fastened to keep it from wiggling up and down, or everything goes out of whack. So we choose a big stainless steel pin and secure it with wide bearings to the armature yoke. To make sure this pin never slips out of the yoke, we drill a hole in both ends. Then we force a steel ball bearing into these holes. This expands the walls of the pin into and against the walls of the armature and the whole assembly is anchored for life. We're the only ones that do it this way. So

Then into our cricket room Every single AE stepping switch goes to the run-in test room. Or, as we call it, the cricket room, because of the chirping noise all the switches we're testing produce. Here, every switch is tested 50 times a second for 45,000 operations. Then, and only then, are they ready for delivery to our customers.

we're the only ones that offer a lifetime fit.

Now that we've explained all the little things we do to make our Type 45 reliable, put it through your own tests. Industrial Sales Division, Automatic Electric Company, Northlake, Ill. 60164.

AUTOMATIC ELECTRIC

MAGNECRAFT THE CONTROLLER

Heavy duty time delay and power relays for rugged industrial applications

The Solid State (hybrid) Class 211M time delay relay is designed for heavy duty service requiring accurate time delay control with $\pm 5\%$ repeatability. This time delay relay makes use of hybrid technology combining solid state circuitry for the timing function with an electromechanical relay for DPDT 10 ampere output switching. This highly reliable relay operates on AC or DC, has an adjustable delay for either operate time or release time. The surface mounted molded plastic enclosure incorporates screw terminals. In stock for immediate delivery, this new relay costs less than \$29.00 in single quantities.

The Electromechanical Class 112M time delay relay comes in a package similar to the 211M. However, it utilizes a highly reliable precision air dashpot for the timing function, and an electromechanical relay for the 10 amp DPDT output switch. The designer will quickly recognize the inherent quality and simplicity in the design. Also in stock for immediate delivery, this time delay relay costs less than \$29.00 in single quantities.

The Class 99 is ideal for heavy duty industrial power relay applications. Occupies less than $2\frac{1}{2}$ " x $2\frac{1}{2}$ " x $2\frac{1}{8}$ " of space. Yet, it's capable of switching 115 volts at up to 50 amps. Available with a "Magnetic-Blowout" for greater arc suppression and increased DC switching. Class 99 power relays can be supplied with contact combinations from SPST to DPDT at ratings up to 50 amps and in Underwriters Laboratories Listings. In stock for immediate delivery and priced as low as \$5.66 in single quantities.

For your source of 512 different stock relays, write for Magnecraft's Catalog No. 271.

Class 99 Heavy Duty Power Relay

Magnecraft ELECTRIC CO.

5575 NORTH LYNCH AVENUE . CHICAGO, ILLINOIS 60630 . 312 282-5500 . TWX-910-221-5221

Now, Pixiepot precision 10-turn wirewound pots priced as low as \$3.25

Now, you can order new, improved Pixiepot 10-turn wirewound potentiometers directly from this data sheet at the lowest pot prices anywhere! For as little as \$3.25 (see price schedule), you get the world's smallest precision mini-pots for commercial and industrial applications, with all these special high performance features available: • High torque 2 to 8 oz. — in., • Custom bushing lengths, shaft configurations and lengths, • Any resistance within the range, • Linearity tol. \pm .1%, • Resistance tol. \pm .2%. Standard features include: • Newly developed superior high impact plastic housing, $\frac{4}{3}$ length and $\frac{7}{6}$ diameter size. • Gold-plated terminals, welded terminations and slotted stainless steel shaft with bushing mounting. Call your nearest Pixiepot distributor listed on the opposite side of this page for fast off-the-shelf delivery of standard models.

PRICE	LIST	FOR	PIXIFPOT	POTENTIOMETERS
FILLOR	-101	1 0/1	FIXILFUI	- OTENTIONE TENS

DESCRIPTION	1-9	10-24	25-49	50-99							10,000 UP	
Model 3253, Std. Res.	4.95	4.90	4.80	4.70	4.50	4.30	4.10	3.90	3.65	3.47	3.25	

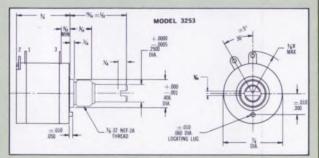
SPECIAL FEATURES (ADDITIONAL CHARGES)

±2% Res. Tol.	5.00	3.00	2.00	1.50	1.00	.75	.60	.50	.45	.40	.35
Hi-Torque (HT)	.95	.85	.75	.65	.60			-			
	_	_				.55	.50	.45	.40	.35	.30
Ind. Lin. ±0.1%	5.00	3.00	2.50	2.25	2.00	1.75	1.60	1.50	1.50	1.50	1.25
Shaft Lock	.50	.45	.40	.35	.30	.25	.25	.25	.20	.20	.20
Spec. Res. (1) M	in. quan.	3.50	1.60	1.05	.65	.30	.20	N/C	N/C	N/C	N/C
	10 pcs.										

(1) Any value between 100Ω and 100K other than standard values shown in table. For resistance values outside this range, contact factory.

SPECIFICATIONS

ELECTRICAL
Actual electrical travel (+10° -0°)
Normal resistance range100Ω to 100K
Extended resistance range
Resistance tolerance, standard±5%
special±2%
Power rating at 20°C derating to 0 at 85°C
End resistance within linearity tolerance or 0.10
whichever is greater
Linearity, independent, tolerance, standard±0.25%
special±0.1%
Equivalent noise resistance, max. (ohms) meas. per VRCI stds 100
Insulation resistance at 500 VDC, min. (megohms)1,000
Dielectric withstanding voltage (volts RMS)1,000
MECHANICAL
Total mechanical travel (+15° -0°)
Mechanical life, shaft revolutions, normal conditions500,000


Cups, max. number
Moment of inertia, approx. (gm-Cm ²)
Weight (oz)
Stop strength, static (oz-in)
Torque: Standard starting, Max. (oz-in)
Special (designated H.T.) (oz-in)
ENVIRONMENTAL
Temperature range, standard
Humidity and dust protection enclosed construction
Vibration
Shock

TYPICAL SPECIAL FEATURES AVAILABLE
Shaft lock • Any resistance within the range • High Torque • Resistance
Tol. ±2% • Linearity Tol. ±0.1%.

CUSTOM FEATURES AVAILABLE

• Bushing length • Shaft configurations and length

Pixiepots are also available in a combination package with Model 61 miniature turns-counting dials at one superbudget price! Example: 5,000...\$6.95

NOTE: Lock washer and hex nut supplied with each unit. Design details subject to change without notice. Certified Drawings available on request. Tolerances unless otherwise specified: Fractional: $\pm \frac{1}{3} \alpha''$ Decimal: $\pm 0.05''$ Angular: $\pm 1^\circ$

Talk to Duncan engineers direct for immediate answers to your special requirements. You can use this toli-free telephone number from anywhere in the nation: 800-854-3252. (California residents, call collect (714) 545-8261)

DUNCAN ELECTRONICS

SYSTRON .

2885 FAIRVIEW ROAD COSTA MESA, CALIFORNIA 92828

TYPICAL COIL CHARACTERISTICS FOR STANDARD RESISTANCES

Standard Resistance (Ohms)	Theoretical Resolution Nominal (%)	Max. Appl. Voltage (Volts DC)
100	.051	14
200	.042	20
500	.036	32
1K	.025	45
2K	.023	63
5K	.021	100
10K	.016	140
20K	.015	200
50K	.011	316
100K	008	447

All resistances shown are manufactured with resistance wire with temperature coefficient of .002%/°C (20 ppm) nominal.

HOW TO SPECIFY

When ordering a PIXIEPOT, indicate the model number, resistance, linearity tolerance and any additional special features. The letters "R" and "L" precede the resistance and linearity respectively.

II and E procede the resistance	and micarity	Toapec	tivery.	
Example:	3253	R1K	L.25	HT
Model Number				
Resistance (Standard Tolerance) ———		_		
Linearity Tolerance (±)		_		
Code letter St Shatt Lock / HT High T	OFFILE .			

°If the resistance tolerance is $\pm 2\%$ show the tolerance in parenthesis () after the resistance. E.g. R1K(2) designates a 1K resistance with a tolerance of $\pm 2\%$. For resistance values less than 1,000 ohms (1K), show the actual value omitting the letter "K". E.g. 3253R100L.25 is a 100 ohms resistance.

Call your nearest distributor for fast delivery of in-stock Pixiepots

DISTRIBUTORS

Akron Elect. Supply Co. Akron, Ohio 44306 (216) 762-8818

John A. Becker Elect. Co. Dayton, Ohio 45402 (513) 224-1071

Bodelle Co., Inc. Chicago, III. 60627 (312) 468-1017

Bodelle Co., Inc. Detroit, Mich. 48235 (313) 273-6920

Bodelle Co., Inc. Fort Wayne, Ind. 46815 (219) 485-3929

Mace Electronics Erie, Pa. 16505 (814) 838-3544

Radar Electric Co. Seattle, Wash. 98119 (206) 282-2511

Richey Elect., Inc. North Hollywood, Ca. 91601 (213) 877-2651 (213) 761-6133

San Diego, Ca. 92103 (714) 291-4955

Las Vegas, Nev. 89102 (702) 870-5996 Agents of Richey Elect

Solid State Electronics Dallas, Texas 75220 (214) 352-2601

Southwest Elect., Inc. Houston, Texas 77036 (713) 782-3060

Sterling Electronics Watertown, Mass. 02172 (617) 926-9720

Perth Amboy, N.J. 08861 (201) 442-8000 South Norwalk, Conn. 06854 (203) 853-3153

M. Leff Radio Parts Co. Braddock, Pa. 15104 (412) 271-2800

Terminal-Hudson Elect., Inc. Mountain View, Ca. 94040 (415) 969-9240

REPRESENTATIVES

FLORIDA & P.R.

Orbe, Inc. St. Petersburg, Fla. 33733 (813) 894-0687 Orlando, Fla. 32804 (305) 425-9004

METRO, NEW YORK & NO. NEW JERSEY

Sencor, Inc. Albertson, L.I., N.Y. 11507 (516) 747-1273 Montclair, N.J. 07042 (201) 783-5990

MIDWEST STATES Carlson Elect. Sales Co. Chicago, III. 60648 (312) 774-0277 St. Louis, Mo. 63141 (314) 991-0262

Exon Electronics Minneapolis, Minn. 55421 Tel: (612) 788-4111

MICHIGAN

Elko Sales Corp. Grosse Pointe Woods, Mich. 48236 (313) 884-7893 Grand Rapids, Mich. 49506 (616) 949-1451

SOUTHERN STATES Grady Duckett Sales Co. Atlanta, Ga. 30329 (404) 451-3529 Greensboro, N.C. 27420 (919) 273-4617

Huntsville, Ala. 35804 (205) 881-1213

WASH., OREGON, IDAHO & MONTANA

Reeve Mktng. Assoc. Seattle, Wash. 98133 (206) 542-5889

ARIZONA & UTAH Southwest e/m Eng., Inc. Phoenix, Az. 85020 (602) 944-1521

OHIO, KY. & W. PENNA. Rockford Cont. Ohio Dayton, Ohio 45414 (513) 278-7362(3)

Euclid, Ohio 44132 (216) 731-5250 Columbus, Ohio 43209 (614) 231-5890

TEXAS, OKLA. ARKANSAS & LA.

Kemp Engring. Co., Inc. Dallas, Texas 75220 (214) 357-6663

Houston, Texas 77023 (713) 928-5426

COL., WYOMING & NEW MEXICO

Waugaman Assoc., Inc. Wheatridge, Colo. 80033 (303) 423-1020

MID-ATLANTIC STATES Marktron, Inc. Rockville, Md. 20850 (301) 762-6210

Towson, Md. 21204 (301) 825-8222

S. NEW JERSEY & E. PENNA. Sencor, Inc. Philadelphia, Pa. 19152 (215) 342-0223

NEW ENGLAND STATES Gerber Sales Co., Inc. Waltham, Mass. 02154 (617) 891-8040 New Haven, Conn. 06515 (203) 777-6279

East Longmeadow, Mass. 01028 (413) 525-3059

NO. CALIF. (RENO) Jack Pyle Company San Mateo, Ca. 94402 (415) 349-1266

SO. CALIF. Factory Sales Office Costa Mesa, Ca. 92626 (714) 545-8261

UPSTATE NEW YORK

Reed Electronics, Inc. Rochester, N.Y. 14618 (716) 473-2767 Vestal, N.Y. 13850 (607) 748-7391

East Syracuse, N.Y (315) 463-8955 13057

INTERNATIONAL REPRESENTATIVES

AUSTRALIA

Rutherford Imports Pty. Ltd. E. Doncaster, 3109 848-3033

BELGIUM & LUXEMBOURG N. V. Nijkerk S.A. Brussels 2, Belgium 28.20.70 (2 1.)

CANADA

Aero Sales Eng. Co. Rexdale, Ontario (416) 743-9130 Ottawa, Ontario (613) 828-8560

ENGLAND Steatite Insulations Ltd.

Birmingham EDG 6961/2

FRANCE Radio TV Francaise E. Fenner
92 Neuilly-Sur-Seine, (Paris) 4450 Sissach
722-70-40 (061) 853385

GERMANY (WEST) Elektronik Bauelemente GMBH 46 Dortmund 1 (231) 528065

HOLLAND

Niikerk's Handelsonderneming N.V. Amsterdam (020) 428933

ISRAEL

STG Int. Ltd. 53459

Ingg. S. & Agostino Belotti Milano 54 20 51

JAPAN

Shoshin Shoji Kaisha Ltd. Tokyo (270) 5921-6

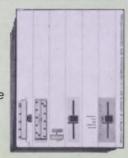
NEW ZEALAND

P. H. Rothschild & Co. Ltd. Lower Hutt 63-581

NORWAY

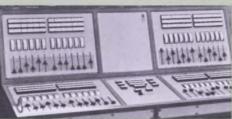
J. M. Feiring A/S Oslo 4 21 82 12

PORTUGAL Sociedade Comercial Romar Lda. Lisbon 672161

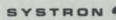

SPAIN REMA Leo Haag S.A. Madrid 3 253.40.03

SWEDEN ALLHABO 10028 Stockholm 49 224600

SWITZERLAND


Send today for free catalog with complete specs.

The Duncan KP 200 series precision slide actuated potentiometer provides users with a 23/4" linear travel featuring essentially infinite resolution at low cost. The KP 200 series also provides: • Single or dual resistive elements • Linear or audio tapers Standard tap positions All metal housing and


Slide actuated pots

complete electrostatic shielding. Primarily used in the broadcast and recording industries, special applications in SCR lighting controls and commercial sound systems also have been numerous.

Contact factory direct for information on Duncan faders call toll-free from anywhere in the nation: 800-854-3252. (California residents, call (714) 545-8261 collect.)

DUNCAN ELECTRONICS

DONNER

0

2865 FAIRVIEW ROAD 🗆 COSTA MESA, CALIFORNIA 92626 PHONE: (714) 545-8261 TWX 910-595-1128

Open up closed-circuit markets...

...with this new one-inch-diameter Plumbicon*

What a boost the entire CCTV industry would enjoy if existing cameras could operate well at significantly lower light levels and higher response speeds. That's exactly what this new Philips Plumbicon camera tube has to offer. Its one-inch-diameter makes it retrofittable into existing cameras now using vidicons. Developed originally to meet the exacting needs of live broadcast television, the Plumbicon won the industry's "Emmy" in 1967, as the year's most significant technological advance. Since then it has dominated its field-today it's in 9 out of 10 colour cameras in use throughout the world. When used in CCTV applications in medicine, industry, education or commerce - this superb tube makes practical many applications hitherto only theoretical. The very high sensitivity, low dark current and fast response mean greatly improved picture quality - even when the subject is poorly illuminated or moving rapidly. All of which means the Plumbicon can make existing CCTV equipment work better, can make CCTV colour a practical proposition...can open up vast new markets, not only for cameras, but for related equipment as well! Let's help you open up new opportunities!

* Registered trade-mark of N.V. Philips' Gloeilampenfabrieken Findhoven, the Netherlands Philips Electronic Components and Materials Division, Eindhoven, the Netherlands.

Manufactured, distributed and sold in the U.S. by Amperex Electronic Corporation, Electro-Optical Devices Division, Slatersville R.I.

PHILIPS

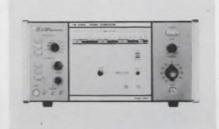
RIGHT ON THE MONEY
FOR PRINTED WIRING BOARDS
IN INDUSTRIAL, COMMERCIAL,
AND ENTERTAINMENT
ELECTRONICS

Sprague Type 196D Dipped Solid-Electrolyte Tantalex® Capacitors cool the performance/budget argument. Newly broadened line—now available in all popular 10% decade values between 0.1 μ F and 330 μ F. Voltage range: 4 to 50 vdc. Hard insulating resin coating is highly resistant to moisture and mechanical damage. Straight or crimped, long or short leads. Operate to 125 C with only $\frac{1}{3}$ voltage derating. Write for Engineering Bulletin 3545A.

Technical Literature Service Sprague Electric Company 347 Marshall Street North Adams, Mass. 01247

THE BROAD-LINE PRODUCER OF ELECTRONIC PARTS

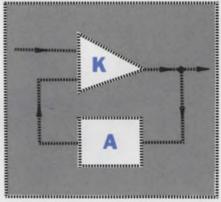
INFORMATION RETRIEVAL NUMBER 17


Highlighting

Europe is making a big push to speed its land, sea and air transportation by the use of electronics—from the remotely controlled highway signal shown above to computers, display and communication equipment.

Even underground—in subway systems—electronics is playing a growing role in controlling European traffic. News Editor Jack Kessler gives an on-the-scene glimpse of Old World transportation working in new ways.

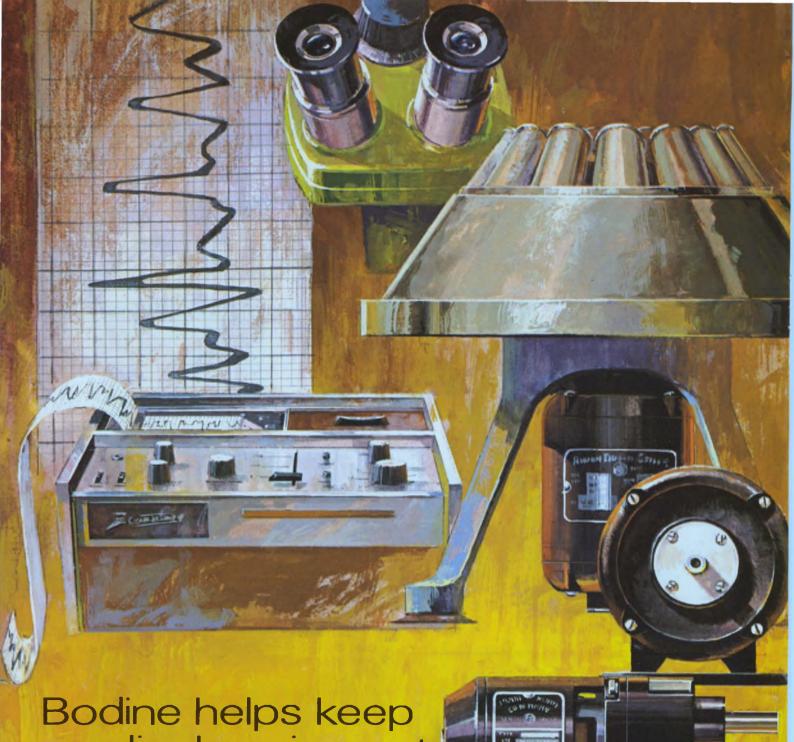
Page 26



A new pulse generator system comprised of a \$9800 mainframe and three plug-ins not only supplies high-speed ±2-V pulses with rise and fall times under 250 ps but clocks out at an amazing rate of 1000 MHz.

With its three complementary plug-ins, the new generator system can produce three types of output modes: programmable word patterns, pseudo noise sequences and continuous-pulse trains.

Either an external clock signal or the system's internal clock signal can be arbitrarily selected. The external signal is continuously variable over the frequency range of 100 to 1000 MHz.


Page 123

In many cases, circuit analysis can be simplified by approaching it in an unorthodox way. Choosing the output and then computing the input that caused it is an unfamiliar way to determine gain or attenuation, but it is a very useful technique when saturation or limiting of the output is possible.

This back-door approach is especially helpful when a computer-aided analysis program, such as CIRC or ECAP, is to be used. The computer performs the detailed computations, which may be more involved than in conventional analysis, but the results are more significant because the operating region of the output is determined in advance.

Page 70

Bodine helps keep medical equipment strong hearted...

Bodine fractional horsepower drives. Small. Quiet. A complete line designed to keep medical equipment and apparatus powered precisely, reliably, for a long, long time. Motors built with all the integrity you've designed into your product—that deliver as specified with fewer callbacks and service problems. If this is the kind of power you're looking for, you'll find no better source.

Over 3,500 standard specifications to choose from. Bodine also builds custom and special fhp motors to design requirements. Our engineers will be happy to help you pinpoint the right one for your specific application need. Mechanical organ, heart recorder, test unit, pumps—whatever your product, specify Bodine fhp drives. The power behind the leading products for some 63 years. Write for bulletin. Bodine Electric Company, 2500 W. Bradley Place, Chicago, Illinois 60618.

News Scope

OCTOBER 11, 1970

Laser makers are offering mass-production capability

NEW YORK CITY—After years of R&D and largely disappointing sales, the laser industry is moving to stabilize its beachhead in the electronics market by mass-producing products at low cost.

Two companies have announced the availability of mass-produced lasers at prices ranging from \$30 upward.

The announcements were made by RCA and Metrologic Instruments, Inc., at the Electro-Optical Systems Design Conference, held here Sept. 22-24. No recession was apparent at the show. The number of booths were up from 173 at last year's conference to 245—an increase of more than 34%. Lasers of all kinds—continuous wave, pulsed, tunable, solid-state and gas—dominated the exhibition.

The new, high-production line by RCA Electronic Components, Lancaster, Pa., included cw heliumneon lasers with 1-mW output at 6330 Å.

"A typical single-unit price for the 1-mW system is \$275," John H. Crowe, manager of laser marketing at RCA, told ELECTRONIC DESIGN. "But in high volume, the price can go as low as 30%."

Crowe said the new line had potential application in general research, surveying and alignment work, holography and metrology.

A 10-foot stack of operating, low-cost lasers was shown by Metrologic Instruments of Bellmawr, N. J. These were the company's Model 310 cw helium-neon lasers, radiating 0.5 mW at 6328A. The price, including housing and power supply, was quoted by C. Harry Knowles, president, at \$48 each in quantities of 1000.

He also pointed out that Metrologic had devised a cheap way to modulate the output by varying tube current. Response to date has been about 0.5 MHz.

Knowles sees a large market for his company's low-cost lasers in communications and data processing, as well as for use in the teaching of optics.

Rapid recent advances in infrared photodevice technology were also demonstrated, at the conference. Mullard, Ltd., of Southampton, England, and the Honeywell Radiation Center, Lexington, Mass., announced the availability of room-temperature $(300\,\mathrm{K}^\circ)$ cadmium mercury telluride cells, suitable for the 3-to-7 micron IR range.

And a room-temperature pyroelectric detector for CO₂ lasers and millimeter wavelengths was demonstrated by Laser Precision Corp., Yorkville, N. Y.

Luna 16 feat impresses Jet Propulsion Lab

The success of the Soviet Union's unmanned Luna 16 spacecraft in bringing back rock from the lunar surface brought mixed reactions from the Jet Propulsion Laboratory in Pasadena, Calif.—the moving force behind the United States' unmanned space program.

While conceding that the Russian feat was significant, Dr. William P. Pickering, director of the laboratory, noted that this country's Surveyor vehicle lifted off the moon and moved about 20 feet before setting down again, demonstrating the ability to fire from the earth rocket engines that are on the moon.

However, "one technical capability that the Russians demonstrated was getting the moon sample into the re-entry vehicle and hermetically sealing it," Dr. Pickering commented, adding:

"We need a balance between manned and unmanned missions. Manned missions provide the basic

Moon rocks from Luna 16 mission were hermetically sealed in a space-craft like this. Visible are twin capsules, in which the rocks were stored, three antennas and parachute lines. Test vehicle is shown above.

knowledge that allows us to send unmanned vehicles for more specific purposes."

IBM surprises industry with its new memory

The announcement last month by IBM of the first use of an all-monolithic (silicon bipolar) main memory came as a surprise to experts in the field. The new computer—the Model 145—may be an omen of what to expect in the future.

Dr. Henry S. McDonald, assistant director of the Communications Principles Research Laboratory at Bell Telephone Laboratories, Murray Hill, N. J., says he had expected semiconductor main memories in one or two years.

"The next benchmark," says Mc-Donald, "will be for the semiconductor memory to move up (to the IBM System 370 Model 165 and 155 series) as well as down the line—if there's going to be a Model 135 or 125."

The Model 145 has a main memory capacity of over half a million bytes—twice that of IBM's System 360, Model 40. The new memory has an access time of 540 ns; its basic machine cycle (the time it takes to perform 1 microinstruction) ranges from 202.5 to 315 ns.

In shifting from machines with combined ferrite core memories and very fast semiconductor cache buffers, IBM is the first to prove

News Scope CONTINUED

the economics and technology of semiconductor circuits: they not only increase performance but also cut memory space needs in half.

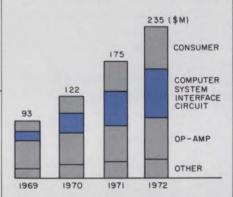
McDonald points out that, at about 128 bytes, the cost of complete semiconductor memory becomes competitive with cores plus semiconductor buffer memory systems. McDonald says, "It looks like IBM is able to produce a 500-ns transistor memory for about only twice the cost per bit that it can produce a $2-\mu s$ core.

Another innovation of the Model 145 is the ease of adding more memory by means of a pre-written disc cartridge. For example, it can hold all instructions needed to perform arithmetic to 34 decimal digits. The contents of the disc are loaded into the machine, and the standard 32,000 characters of control storage can be expanded to 64,000 by using a portion of main memory.

Monthly rental for the 145 will range from \$14,950 (112,000 characters of main memory) to \$37,330 (512,000 characters). Shipments will be scheduled by late next summer.

Cancer fighter shoots subnuclear particles

A new cancer weapon being developed at the Stanford University School of Medicine may prove several times more effective than radiation-therapy techniques now in use, according to Dr. Malcolm A. Bagley, head of the Division of Radiation Therapy.


A new large-scale superconducting linear accelerator that is near completion at Stanford will be used to shoot high-speed subnuclear particles called pi mesons through the body into a tumor, where they explode, destroying surrounding tissue.

The pi meson produces little tissue damage on the way in, but wherever it stops, it releases a great deal of destructive energy. To make sure that pi mesons will stop in a tumor, rather than elsewhere, said Dr. Bagley, their kinetic energy will be controlled as they enter the body, possibly by means of a shield that would slow them down.

The energy required to accelerate the pi mesons has been available only from extremely large accelerators that cost \$55 million or more. However, Dr. Bagley said that the new Stanford superconducting accelerator suggests the possibility of smaller machines that would cost one-tenth as much and thus could be built for hospitals and medical centers.

Swift growth seen for interface ICs

A rapidly climbing world market for interface integrated circuits to roughly \$80 million by 1972 is forecast by Jerry Robertson, manager of linear IC marketing in Texas Instruments' Components Group in Dallas.

Texas Instruments view of worldwide linear IC market (in \$ millions).

Robertson, who estimates that the U. S. Government alone spends \$100 million per year on circuits that form the interface between vacuum-tube, bipolar, and MOS equipment, sees a sweeping move by the industry toward standardization of interface ICs. The immediate field of use of the devices is computers and peripheral gear.

Even when plated wire or semiconductor memory begins to replace ferrite cores memories—in about two years, according to Robertson—interface problems, which involve changes in impedance, current or voltage levels, will remain. It is these problems that generate the increasing demand for the interface ICs.

GE plans big expansion of data-processing net

Although General Electric's dataprocessing service—described as the world's largest—is not yet in the black, GE has greatly expanded the scope and performance of its initial \$100-million investment.

In 1971, the company's data net will include three interconnected "supercenters," making data-processing services available to 150 cities in the U. S., Canada and—via Comsat satellite—to London. Expansion of the U. S.-based network to additional international cities is being evaluated, the company said.

Two new services will be offered. One will be a 24-hour-a-day, 365-days-a-year super-reliable service. The other, called, "interprocessing," will let customers exchange high-speed data between in-house computers and the GE network.

GE's supercenter in Cleveland is now operational, and by early 1971 the company will open supercenters in Los Angeles and Teaneck, N. J.

Boeing plans to sell electronic systems

Boeing Aircraft is going into the electronics business. The Seattle, Wash., company will not only manufacture electronics for its own aircraft but plans to market microelectronics and minicomputers as well.

An analysis of the make-or buy strategies of the aerospace industry convinced Boeing that the company must build electronics systems if it is to remain in the aerospace business.

Boeing has decided to develop guidance and control systems so they built a sizable, and very well equipped, microelectronics R&D facility. Now they're planning to turn to actual production of ICs for inside use and for the commercial market. In January, 1971, Boeing will offer a gyrator circuit and a line of noise-tolerant logic.

MAKE YOUR CONNECTIONS: FAST. With Molex standard and miniature connectors. They're easier to work with. Simplify wiring. Speed production. Save assembly steps. Make installation and servicing extra easy, too. This is why circuitry idea men everywhere are making connections with Molex. From one circuit to 104 or more. Production keyed and available in a variety of colors to meet design requirements. Molex has the

connector. Plus the design and engineering capability to solve the most complex wiring problems . . . fast. For a colorful free sample of the Molex connector write: Molex Incorporated, Downers Grove, Illinois 60515. Or you can make connections by calling (312) 969-4550.

... creating components that simplify circuitry

UTSIDE of London, on the M4 Motorway to Heathrow Airport, is the Heston Police Control Center—a facility for highway signaling and surveillance that exemplifies Europe's vitality in using electronics to control transportation. The electronics in the center include a computer, display and communication equipment.

The officer in charge moves a small joystick on his console and the picture on one of two TV monitors in front of him changes. He "zooms in" on a white sports car that has collided with a truck. The accident doesn't appear to be serious, but he presses a button

and speaks into a microphone:

"Tango two six. Tango two six. This is Motorway Police at Heston. Will you give your position?"

The patrol car reply comes from a speaker on the console. "This is Tango Two Six. I'm in Shepherton. Winton Road."

"There's been a traffic accident near you on M4. Can you help?"

Accidents happen, of course, even on highways that are monitored and controlled by electronics, but traffic police officers in Europe say there are significantly fewer collisions on the controlled highways, despite the fact that traffic flow is increased. And

when accidents do occur, help can be dispatched rapidly.

Underground—in subway transportation—in the air and at sea, electronics is also playing a growing role in controlling traffic.

Robert J. Gompert, director of the industrial division of Automatic Electric S. A. of Antwerp, Belgium, says that Europe's subway systems are already ahead of those in the United States.

"The Victoria Line in London," he told ELECTRONIC DESIGN, is completely automated. There is no need for a motorman—he is there for safety only. In Paris there is one line which is also completely

Europe travels electronically

By John N. Kessler, News Editor

An on-the-scene glimpse at how the Old World is controlling and speeding land, sea and air transportation—and moving ahead of the U.S. in some areas

automated. The Germans are also very advanced."

In Munich, a continuous inductive train control system developed by Siemens is being installed as the backbone of a highly automated subway line. A similar system is in operation in Hamburg. Control is based on the use of continuous conductor loops coupled by a coil to short sections of track. As the train wheel speeds over these coupling points, the train's position can be determined and control signals can be generated.

At airports the demand for radars to control ground traffic is reported rising steadily. And as computer. If anything is out of order, the computer writes a statement on a teleprinter, giving the location of the hardware.

Control of the system is in the hands of the traffic police operator, who types directions on the teleprinter. The computer checks the messages and routes them to the proper stations on the highway. The computer also produces time and space sequence signals for the police operator to use in slowing traffic to a safe speed.

The control room at Heston includes a map panel of the motorway under control. Signals in use are indicated by color lamps. Along

containers, with heaters and even window wipers. In good weather, the cameras provide a view of 17 miles of traffic controlled road.

Vehicle-detection loops, embedded at about half-mile intervals in the roadway, provide the computer with constant rate-of-flow information—from crawling to normal speed. This is highly useful at night to inform oncoming traffic of a blockage and to notify drivers to slow down, change lanes or leave the highway.

Forty-four emergency telephones along the road are connected to the control center. When the receiver Gregory describes the unit as

Britain's traffic control systems use remotely controlled signs, computers and closed circuit TV. Control for 900 miles of road is planned for '71-'72.

for marine developments, new radars by Decca are designed to track accurately from 15 yards to 48 nautical miles.

The traffic-control system on 17 miles of the M4 highway was designed, developed and installed by GEC-Elliott Automation Ltd., Borehamwood, Herts. The central part of the system is a GEC-Elliott Automation 903 computer with a basic store of 8000 18-bit words that can be expanded to 65,000 words. The other elements—signs, TV cameras, telephones and vehicle detection loops—are checked automatically every five minutes by the

the highway there are 20 traffic signs in each direction. Each of these is made up a matrix of 139 bulbs, arranged in a 13-by-11 format and enclosed in a weather-proof container. The signs are controlled from the Heston station and can be changed to indicate:

- Stop.
- Advised maximum speed.
- Lane clear.
- Lane closed.
- Change lanes.
- Leave motorway at next exit. Four TV cameras are mounted on overpasses above the highway. These are also in weatherproof

for one is picked up, a light appears on the controller's console, indicating the telephone box number. While answering a call from one of these telephones, a police officer can also use a TV camera to check the situation visually.

An experimental radar detector is undergoing tests at present. It is similar in function to conventional vehicle-detection loops in that it indicates the number of vehicles passing a point and their speed. But, according to Albert Gregory, sales manager for GEC-Elliott, "the radar can be buried in the road and requires no maintenance."

Ground radar like this is being installed at Orly Airport. Planes can be seen taking off on east-west runways. The radar operates at Ku band.

basically an experimental waveguide—"a cast-iron box fed by a Gunn diode." Signals, he says, are analyzed to get a doppler-effect reading. In this way, vehicle speed and traffic density on sections of the highway can be determined.

More road systems due

Next year and the year after, GEC-Elliott will begin installing a National Motorway Communications System of computer and traffic control centers for use throughout 900 miles of England and Wales. Computer-controlled traffic systems are also being installed in Munich, Frankfurt, Madrid, Barcelona, Lisbon and other cities in Europe.

Last spring the city of Berlin commissioned Siemens of Munich to try out a new electronic signalling system for traffic control on a five-lane arterial street. When the system is complete, 30 signals, mounted on overpasses, will be set up along a three-mile stretch. The signals will make additional lanes available in one direction by limiting the number of lanes in the

opposite direction. Traffic lights will be controlled by detectors embedded in the road. A central computer, fed with information from all the intersections, will be programmed to change the lights to achieve a desired traffic flow—for instance, to ease the flow into the city in the mornings and out of it in the evenings.

England is connected to the ancient Welsh city of Cardiff by the Severn Bridge, which spans the second greatest tidal fall in the world—32 feet between high and low tide. The Severn Bridge uses a computer toll-collection system, designed to prevent fraud by collectors and the public. The system uses a GEC-Elliott Arch 100 central processor with 4096 18-bit words. It calculates bridge traffic, tolls and the date and time of toll collections, and it also collects temperature information from four sensors on the bridge, so it can automatically alert drivers if freezing conditions exist on the road.

As a driver approaches the bridge, green arrows indicate which of the 10 lanes are open. Gates bar nonoperating lanes. There are

17 vehicle categories, ranging from motorcycles to six-axle trucks.

"The computer scans 24 inputs and interrogates 48 others as it processes each vehicle," reports J. G. Reeks, toll manager at the bridge. If there is a discrepancy between the fee paid and the number of axles counted, the computer sounds an alarm.

Inertial navigation for SST

The Anglo-French SST Concorde, despite headaches in development and production, is another example of Europe's determination to advance the application of existing technology to achieve better transportation facilities.

Because compasses are subject to magnetic fluctuations at supersonic speeds and cannot be relied on to indicate direction accurately, the Concorde's designers asked Ferranti in Edinburgh, Scotland, to develop an inertial navigation system.

Richard J. Thornborough, a former Royal Air Force pilot who now manages a marketing group at the British Aircraft Corp. in Filton, describes the essential advantage of inertial guidance in one sentence: "We used to fly rhumb line tracks at subsonic speeds using magnetic compasses, but now, with Concorde's inertial system, we have a small airborne computer that calculates the differences in heading and makes it possible to fly Great Circle routes."

British stress radar development

Britain, which once ruled the seas, still holds a leading position in the production and development of marine radars. Latest figures from Britain's Central Office of Information indicate that about three-fourths of all radar-equipped merchant ships in the world use British equipment.

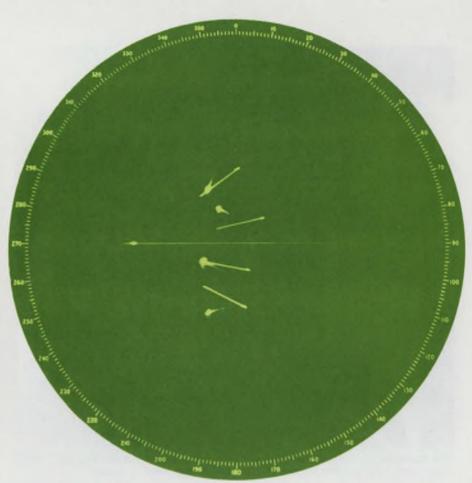
At Decca's Research facilities in Chessington, Surrey, Eric R. Ibbetson, head of the Marine Radar Laboratory, describes recent approaches to the design of Decca's marine radar for large ships. These radars, operating on the 10-cm wavelength, have a minimum range of about 15 yards and a maximum of 48 nautical miles.

The main effort, according to Ibbetson, has been to use solid-

state elements throughout.

In building new radars, Decca engineers are giving special attention to the following:

- Transmitter—Keeping the driving power down to 3 kW instead of the 10 kW required for previous radars.
- Modulator—Designing an allsolid-state unit (with the exception of the mechanical relays used for pulse-length selection) and using an SCR for modulating the magnetron at 50 ns—all without an increase in costs.
- Display—Obtaining a pulserepetition frequency high enough to get a bright display even when the radar is used with pulses as narrow as 50-ns.
- Oscillator—Replacing the klystron with a solid-state local oscillator and thus increasing the life of the unit and greatly reducing power requirements.
- Crystal mixer—Preventing the high-voltage spikes that get past the TR switch from damaging the crystal.


The result is anti-collision marine radar marketed by Decca since last year that indicates both the true and relative motion of as many as five ships (see photo). The radar operator assigns markers (short cursors) to nearby echo blips on the display. Each marker points toward the operator's ship, and once set, a marker remains at the same range and bearing, moving across the display with the user's ship.

A risk of collision exists if incoming ships travel down the markers on a constant compass bearing. If the echo blip moves off the line, there is no danger of collision, and the relative motion of the blip can be followed to insure that it stays on a safe course.

The radar has eight closely spaced range scales from 0.5 to 48 nautical miles, with true motion available between 0.75 and 24 nautical miles. The range speed is from 2 to 36 knots and a high-speed conversion kit can extend this to 72 knots. The motion markers can operate at 3, 6 and 12 miles.

Ground radar for airports

Increasing air traffic at Europe's international airports and the corresponding rise in ground

Anti-collision marine radar shows relative motion of as many as five ships. Each echo is assigned a marker pointed at operator's ship.

activity have created a market for radars to monitor runways and taxiways. Compagnie Radio Maritime of Paris and Decca Radar, Ltd., of London have just begun installing a Ku-band ground radar at Orly Airport, outside Paris.

The system, called Airfield Surface Movement Indication, is designed to provide a high-brightness, high-definition picture of all aircraft and vehicles from 0.5 to 2.5 nautical miles from the antenna. The high rotation rate of the antenna provides a flicker-free picture without afterglow, according to Decca.

Two displays are being installed at Orly. Dual transceivers will provide stand-by facilities and permit maintenance on one unit while the other is in operation; remote control of the transmitters and antenna will be possible from the control room.

The market for ground radars, according to Decca, will grow particularly in the next few years as aircraft are equipped for landings in Category II and Category III conditions—when the visibility is 100 to 200 feet and zero to 50 feet,

respectively. This will make it essential to know how to get planes to their docking facilities and the shortest way off the runway.

Automation speeds subway travel

In the new subway system being established in Brussels, it's possible for two men to handle the entire operation from a central control station, according to Gompert, the industrial division director of Automatic Electric S.A. At the central control is a lighted diagram of the system. The chief controller can follow the progress of all cars by observing the lights on the diagram.

A small, special-purpose computer, designed by Automatic Electric, continuously tracks each car. The braking of the cars, the dispatching system and all 34 power stations in the system are all automatically controlled.

Gompert says there as many as 5000 supervisory points, 1200 remote controls, 10,000 signal lights and 1000 miles of wire in the system. These are used to operate automatically:

The numbers of the next three trains are shown in lights in Brussels' newly automated subway. Passenger congestion in boarding is eased.

The Severn Bridge, connecting England and Wales, uses a computer-based toll collection system that also issues ice and fog warnings.

- Lighting in the station at 25 50 or 100%.
- Escalators that carry passengers from street level down into the station—and defrosting systems for the escalators.
- Emergency lighting in tunnels.
- Emergency traffic signaling in tunnels.
- A closed-circuit TV system for surveillance of each subway station—where the cameras can be remotely turned to observe the tracks, train or the platform.
- Power lines feeding the subway cars.
- Telemetry—to monitor continuously current voltage and power at points in the system.
- A data logger, which records possibly unsafe conditions on a paper tape.
- Route identification equipment for each car—so that passengers at the station can be alerted to impending arrivals several minutes before each train pulls in.
- Monitoring equipment for all signals—to make sure all are operating satisfactorily.

Automation like this achieves some very practical results-like preventing bunching up by passengers at station platforms. The idea is simple: Electronic sensors between stations read the route number of each subway train as it passes in the tunnel and flash the information ahead to an electronically controlled sign in each station. The sign gives the route numbers of the next three trains that are due to arrive. Passengers can wait on a upper-level platform until shortly before their train pulls in, then step down to a lower level leisurely and board the train.

The identification equipment is called KarTrack, and was developed in the U. S. by General Telephone and Electronics, Sylvania Div. It uses an electro-optic scanner installed at the side of the track. The scanner transduces optically coded data into electrical analog signals, which pass through a decoder that converts them to digital outputs.

Such simple electronic solutions to alleviate crowding and the anxiety of passengers at a subway platform have yet to be adopted by the world's largest subway system in New York City.

That #! *?!*! MIL-IVI-38510!

There, there, Signetics understands.

We not only understand MIL-M-38510, we can supply IC's to it. Right this minute.

Fact is, we've been using just about the same hard-nosed testing procedures it calls for, for better than five years.

Signetics S. U. R. E. program (Systematic Uniformity and Reliability Evaluation) includes practically all the Military Standard 883 tests plus a few more of our own.

So: send for our new Confidence Report on 38510/883 and for our new S.U.R.E./883 brochure.

And specify Signetics digital and linear circuits for your high reliability requirements.

You'll swear by them.

Signetics Corporation / 811 E. Arques Ave.. Sunnyvale, California 94086/A subsidiary of Corning Glass Works

0.1¢-per-bit storage seen with new memory

General Dynamics' magneto-acoustic method said to overcome limitations of previous planar models

Jim McDermott
East Coast Editor

Researchers have been striving for some time to perfect the magneto-acoustic memory—a kind of delay-line memory in which an ultrasonic pulse propagating down a metal line writes bits onto the line or reads them from it—because this approach holds promise of giving the same performance that

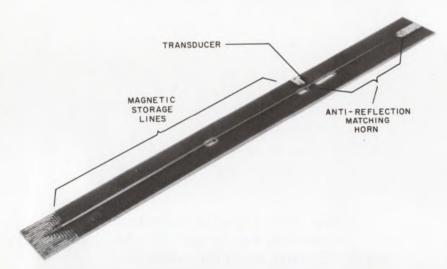
cores give at 10 times less cost.

But material uniformity, high pulse attenuation and high power requirements have stymied development of the magneto-acoustic memory.

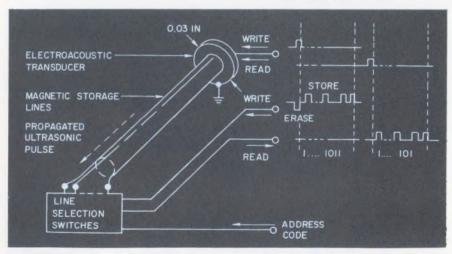
A new version developed by General Dynamics Electronics of Rochester, N. Y., is said to overcome the limitations. Invented by J. W. Gratian, one of the company's principal engineers, it stores

data in the form of magnetic states in thin, magnetostrictive film plated on wires ranging from 2 to 10 mils in diameter, depending on the configuration.

This wire memory has the potential, according to Gratian, of ultimately providing storage at a cost of 0.1 cent per bit. It also can provide faster access to data (typically 30 to 60 ns) than that provided by drums and discs (10 to 30 msec), or tape (seconds), the inventor says.


Other advantages of what he calls the ferro-acoustic-line memory include these: It provides nonvolatile storage of data as well as nondestructive readout. It is a serial type of memory that permits use of low-cost circuits for reading, writing and parity check.

The power required to write data into a single wire line in the General Dynamics version, says Gratian, is only about 100 mW for writing rates of several megabits per second. And the ultimate upper writing limit is on the order of hundreds of MHz.


Both the wire and the thin film stress-sensitive magnetic coating have been specially developed for the new memory, according to Gratian.

Present plans of General Dynamics call for in-house development of 32-kilobit modules as the building blocks for megabit systems. Each module is to be constructed of four submodules, the latter comprised of a transducer and 32 data lines plus clock and parity lines. Each of the 32 data lines will store 256 bits, thus providing a total of 8,000 bits.

The basic submodule consists of a piezoelectric transducer driving the storage media—a bundle of fine wire lines (see photo). The particular line in which data is to be witten or read out is selected by transistor switches. During write-in, the transducer converts the data bits to a series of ultrasonic pulses that propagate down the line (see figure).

General Dynamics' magneto-acoustic memory has 16 data lines that are driven by a piezoelectric transducer. The horn eliminates reflections.

Ultrasonic pulses impress information on the data lines or read it off from the bit locations in the stress-sensitive magnetic coating.

CELANESE NYLON. THE HEAD START MATERIAL.

Give your products a head start on top product design, performance and economics. With Celanese Nylon.

General Electric does. In GE hair dryers, for example, the resilience of Celanese Nylon gives coil bobbins the kind of snap-fit that holds parts together snugly. So assembly is simple, less expensive.

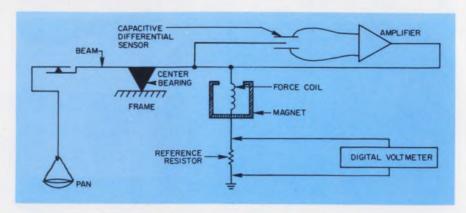
But of course there are lots of other reasons for choosing Celanese Nylon. Like the fact that it has U/L rating on electrical properties of 105° C. Or its great mechanical strength and toughness. Or its high dielectric properties, consistent from lot to lot.

so you can design more compact units with thinner walls. Or the fact that Celanese Nyuous process. So it's whiter in the pellet. Whiter in your product. Whiter through successive regrinds. And more

Maybe that's why retainer rings in GE hair dryers are also molded in Celanese Nylon. And why GE uses Celanese Nylon for gears and bushings and bobbins in their broad line of oscillating fans and heaters.

Give your products a good head start by writing for a copy of our brochure on electrical applications of Celanese Nylon. And a U/L lon is made in a totally contin- Yellow Card. Celanese Plas-

tics Company, Dept. N-502. 550 Broad St., Newark, N.J. 07102.



Precision scale uses electronic feedback

A precision electronic balance said to measure any weight from 10 micrograms to 200 grams in 7 seconds—with an accuracy of one part in 20,000-combines an electronic feedback network with standard analog techniques borrowed from the mechanical balance. It is made by Ainsworth & Sons, Inc., Englewood, Colo., and is used by the Bureau of Mines in Pittsburgh to weigh pollutants in the atmosphere of coal mines. According to James Smith, the company's vice president of engineering, a digital voltmeter displays the weight of the unknown object visually or in BCD form for interface with a computer, printer or tape recorder for permanent record.

Capacitive sensor is used

The Ainsworth electronic balance, like its mechanical counterpart, consists of a beam with center bearing and frame, but only one stirrup and pan for the unknown weight. In place of the second pan and known weights, it contains an electronic feedback system that consists of a capacitive differential sensor (shown here in simplified form), an amplifier and a force coil and magnet. When an

The Ainsworth electronic balance combines an electronic feedback network with standard analog techniques borrowed from the mechanical balance.

unknown weight is placed in the pan, the beam starts to move, changing the capacitance of the differential sensor and producing a current that is proportional to the change in capacitance. This current is amplified and sent to the force coil, restoring the beam to its position of equilibrium. The force current, which is proportional to the unknown weights, is measured by the digital voltmeter as a voltage across the reference resistor.

The instrument can be calibrated to read out a wide range of weights, either as weights or as numbers (for example, numbers of pins of a given weight), simply by changing the reference resistor. In this instrument the accuracy is limited by the precision of the digital voltmeter.

The instrument is accurate to one part in 20,000, according to Smith. If higher accuracy is required, he says, a second pan with known weights can be used, as in the mechanical balance, and the electronic feedback loop then measures the difference between the known and unknown weights. With this setup, an object can be measured to one part in 20 million.

A 'magnetic' vehicle for transit studied

A new rapid transit vehicle that can travel a foot above ground at over 300 miles an hour will be evaluated on a test track now being built by Stanford Research Institute, Menlo Park, Calif. Held on course by powerful magnetic forces, the vehicle is designed to be propelled by a linear induction motor. SRI researchers are confident that such a vehicle could whisk passengers between downtown New York and Washington, D. C., in about an hour—less than half the time it takes to make the

trip today by jetliner and taxi to and from the airports.

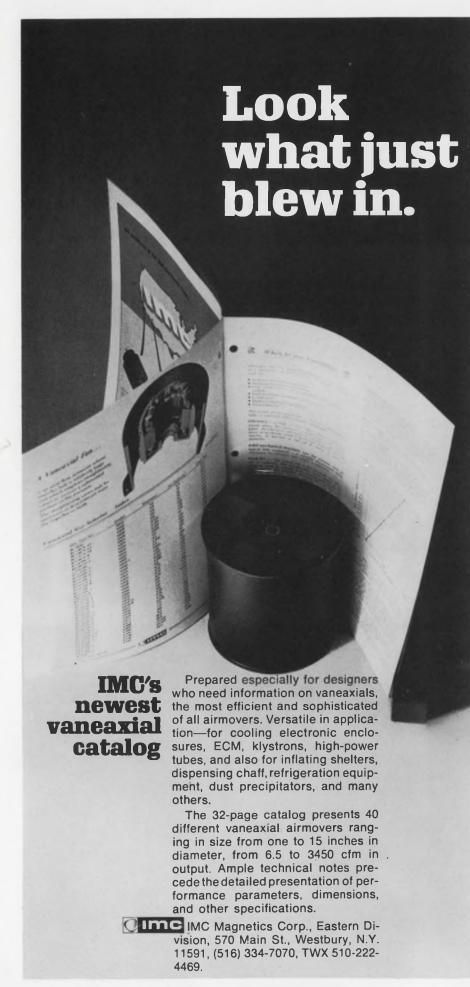
Key to the system are superconductor electromagnets on the vehicle that induce currents in an aluminum guideway causing a repelling force that lifts and guides the vehicle so that it can be pushed along at high speed without friction from the track. Superconducting electromagnets, when cooled to below about -450° F, can produce enormously powerful magnetic fields with a small amount of electrical energy. When in the

superconducting state, these magnets maintain their magnetic fields without constant additions of electrical energy. A small initial supply of electricity keeps circulating within the magnet as long as the temperature is kept below the critical level. Such low temperatures are attained by submerging the magnet in liquid helium.

The suspended vehicle could be propelled by jet engines, rocket motors, propellers or linear-induction motors according to Stanford Research Institute scientists.

Letters


Engineers—get out, this reader advises


Have you ever watched a good game of chess, a contest with a careful and crushing plan well executed to the last step-and then a blunder? Frustration abounds—the same frustration I felt after reading your editorial (ED 16, Aug. 2, 1970, p. 51), dealing with the economic plight that faces engineering and engineers. You accurately assessed the economy and considered the possible shift in national goals toward peace and away from war. I commended you for advising engineers to "reappraise their careers." The editorial was almost finished. I prepared myself for the closing brilliancy—and I read, "New skills may be necessary, or revised attitudes, or possibly even drastic measures, such as relocation."

A gloom of frustration, sprinkled with irony and amusement, settled over me. "New skills," meaning medical electronics, and "relocation," meaning some quixotic search for Shangri-la? Well, that is too much for this former engineer. Do you really believe that 25,000 engineers descending upon the medical field-with proper training, of course-could be absorbed? Probably 50 additional engineers would create a surplus. As for relocation—where? Engineers face a depression that is nationwide, ubiquitous and persistent. My suggestion is simply this: get out. Engineers have an average IQ placing them in the top 4.5% of the population. They can learn anything they set their minds to, so why not choose something in demand like law or business, instead of glutting a miniscule segment of the economy such as medical electronics?

I do hope the editors of ELEC-TRONIC DESIGN will pause, some day, as they flit among the moguls of industry, and scan the want ads of The New York Times or talk to some real live engineers out back behind the machine shop—and then

(continued on page 44)

LETTERS

(continued from page 43)

transfer what they see and hear into an editorial or article that really says something.

Jay Freeman

Digital Consultants
Flushing, N. Y. 11365
Editor's reply: We still feel the electronics industry suffers each time a competent, trained engineer leaves to enter another field.

Involvement rated above high pay

I am greatly disappointed to see the opinions expressed in your editorial for the Aug. 16, 1970, issue (ED 17, p. 69).

I feel that the prevalence of an attitude that "Uncle Sugar" should bear the cost of most technical advancement is more likely the cause of the lags you describe. Sure, money will buy technology, but more money does not buy proportionately more technology.

What this country probably lacks more is the interest, enthusiasm, and concern with problems that seem to need technical advancements for solution. How many engineers were attracted to the field by visions of higher-than-average income? And who was responsible for the large demands for engineers which in turn caused the attractively high salaries? That's right—DOD.

I would really like to see a program to encourage people to enter the scientific—or engineering, or whatever—field because they are interested, excited and concerned to the point of involvement with the field and the problems that need solving.

Finally, how much government support do you suppose R&D programs receive in Germany, France and Japan? I have always maintained that we in the U. S. could take a lesson from the Japanese on their industriousness.

William H. Nott

Design Engineer
Aircraft Equipment Div.
General Electric Co.
Binghamton, N. Y.
Editor's reply: The U. S. is currently spending about 1.6% of its gross national product on R&D.

This compares with:

1.4% for West Germany

1.5% for Japan

1.6% for France

2.3% for Great Britain

We're spending more dollars because our GNP is way ahead, but in Germany and Japan R&D is rising at a compound rate of 10% per year, while in the United States it's declining.

'Organic gardeners' fight pollution

In your editorial for the July 5 issue (ED 14, p. 51) you talked about solving some of the environmental-pollution problems with breadboard methods. Many of the ecology problems have already been solved on a small scale by an evergrowing group of dedicated people who have, since the early 1940s, seen the problem of our pollutionoriented society. These people are called "organic gardeners." They recycle plant and animal wastes into useful products, and they do not pollute the air, water or soil since they do not use pesticides. Their yields have always exceeded those of their neighbors who do not practice these conservation methods.

The breadboards for waste disposal are working, but what we need is a systems approach to the total problem.

Eugene D. Bednar

6139 Imogene Houston, Texas

Accuracy is our policy

The Centrim line of trimmer potentiometers from the Centralab Div. of Globe-Union Inc. consists of cermet units, not carbon units as stated in the Sept. 1 Product Source Directory (ED 18, p. 94).

In the Idea for Design, "Don't Neglect Cable Error in High Loss Measurements" (ED 16, August 2, 1970, pp. 66-68), an error was made in the calculation of R. (max). In about the middle of the text on p. 68, it is given as 3.0 $m\Omega$; it should have been 0.30 $m\Omega$.

Would you believe they'll do the job for a fraction of SMA prices?

Until now you've had to buy SMA connectors built to MIL specification. And pay the price. There just wasn't any other kind.

Johnson has changed that. With this new series of JCM miniature RF coaxial connectors. Up to 3 GHz you get the same electrical performance as with the expensive SMA types. Only we don't overbuild them. That way we don't have to charge as much for them.

We make 7 types—for panel and PC mounting and for flexible cable assemblies. All are interchangeable and intermateable with the standard, expensive SMA connectors. So you can use them without making any changes . . . and without compromising required performance. And JCM connectors accept virtually any size cable, so you don't have to stock a big variety. It's worth looking into, isn't it? All it costs is a stamp.

	nformation and test samples of your new low-cost CM connectors. Specify model #:
NAME	
5/844	TITL C

CITY

ADDRESS

STATE

INFORMATION RETRIEVAL NUMBER 24

'Magic wand' terminal to speed store sales

NCR device, part of customer-transaction system, bars errors in tallying prices and checking credit

John F. Mason News Editor

The race by a number of electronic companies to offer systems to speed up customer service in retail stores grew hotter last month with the announcement by National Cash Register of Dayton, Ohio, that it was ready to take orders for mid-1971 delivery for its 280 point-of-sale system. The system has already had a two-month run with "gratifying results," company officials say, in a Montgomery Ward store in Lima, Ohio.

Other companies readying electronic cash-register bookkeeping systems include the Friden Div. of the Singer Co., San Leandro, Calif.; Pitney Bowes-Alpex, Inc., Danbury, Conn.; and American Regitel Corp., San Carlos, Calif. Further down the pike are projects to provide systems to automatically check out and tally up totals for items in supermarket food stores.

The department-store market, NCR says, consists of 300 major chain-store corporations that now use approximately 300,000 cash registers. For a relatively small store, NCR states, a \$25,000 point-

NCR 747 tag printer for new pointof-sale information system automatically produces string-type, pinon and adhesive price labels.

of-sale system will do the job. A big store might need up to \$1-million worth of equipment. The cost depends on the number of terminals, the size of the computer and the use of optional equipment.

MOS-LSI aids development of 280

The 280 development was possible, NCR says, because of the availability of MOS-LSI technology. In the past, an electronic terminal was linked to a central system on which it was completely dependent. If the computer broke down, or was occupied by other users, the terminal had to wait. Now, with MOS-LSI circuitry enough memory storage capacity can be put into the terminal to make it function as a small, reliable, inexpensive computer itself.

One of the system's main attractions, NCR says, is its "magic wand"—resembling a pen light—that the clerk uses to read and transmit information on price tags, credit cards and identification badges. Since the clerk has no input to the transaction, human error is ruled out.

The wand also verifies credit, calculates the entire sale, and computes any applicable taxes or discounts. All of these operations are performed automatically, and transaction details are stored on magnetic tape for computer processing.

From the wand, the information goes to the NCR 280 data terminal, which has a 256-character magnetic core memory. The terminal has a small keyboard and a checkoff list that guides the salesman through the complete transaction, step by step. Data, such as that required by the store for inventory control, customer billing, sales audit, and such key management reports as departmental and salesclerk productivity, is captured on conventional magnetic tape in a data collector. As many as 48

terminals can be attached to the data collector.

Data taped in the collector can be forwarded periodically, either physically or by direct "on-line" wire transmission, to a central receiver or computer for processing. The system operates with NCR's Series 100 or 200 computers, or with similar computers made by any manufacturer. If the customer buys an NCR computer, software is provided.

The wand's design is based on fiber optics technology. A light from the tube illuminates color-coded bars on tags and other items. Colored light is then reflected back through a flexible cord of fiber optic bundles through filters that translate the code and send the data to the register.

A one-tone beep from the wand tells the clerk that the tag was properly read, another tone says to try again. The data is read correctly whether the wand is moved quickly or slowly across the tag. It can be read correctly in either direction because the color code, utilizing white, green and black bars, is reversible and orientation is not critical. Information from the tags is displayed to both the operator and the customer.

Hand-held "light wand" on fiber optic cable reads color-bar codes on articles bought in retail stores, automating and recording the sale.

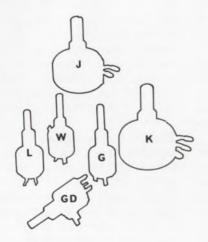
Programming: Choose either Ten independent, directly 128 or 256 step models addressable storage registers. for linear or conditional Automatic special functions: branching operations. ax, log₁₀/log₁₀ SIN/COS₁ Special punch card system SIN-1/COS-1, ×!, 1, allows programming without radians to degrees, tying up the calculator. single key $\Sigma \times$, $\Sigma \times^2$, N, Dynamic range of 10 -99 to 10+99 rectangular to polar conversion. Decimals printed in either Automatic entry Accessory card reader for preset or scientific notation. automatic entry of program of values for e and π . data, special functions and decision-making capability not shown on keyboard. Model 1665 shown. All MOS/LSI circuitry. Available with or The latest without programming. MOS/LSI technical calculators. As close to you as your telephone in over 350 cities. For the location nearest you call collect 800 243-6000* Monroe. The *In Connecticut: 800 942-0655 Calculator

Fight noise pollution

with this quiet family.

Hot Molding with Allen-Bradley's exclusive technique, gives these composition variable resistors an unusually low noise level. And importantly, this low noise level actually decreases in use. Under tremendous heat and, pressure the resistance track is molded into place. A solid element with a large cross-section is produced.

This important Allen-Bradley difference means better short-time overload capacity and a long operating life. Control is smooth, resolution almost infinite. These variable resistors are ideal for high frequency circuits. Why should you trust the performance of


your designs or your reputation to anything less than Allen-Bradley quality? Use the most thoroughly "field tested" (over 20 years) variable resistors available today. Quantity stocks of popular types J, G, W and GD available for immediate delivery from your appointed A-B industrial electronics distributor.

For information write: Marketing Department, Electronics Division, Allen-Bradley Co., 1201 South Second Street, Milwaukee, Wisconsin 53204. Export office: 1293 Broad Street, Bloomfield, N. J. 07003, U.S.A. In Canada: Allen-Bradley, Canada Ltd., 135 Dundas Street, Galt, Ontario.

SPECIFICATIONS

	TYPE J— STYLE RV4	TYPE K	TYPE G- STYLE RV6	TYPE L	TYPE W	TYPE GD
CASE DIMEN- SIONS	5/8" deep x 1-5/32" dia. (single section)	5/8" deep x 1-5/32" dia. (single section)	15/32" deep x 1/2" dia.	15/32" deep x 1/2" dia.	15/32" deep x 1/2" dia.	35/64" deep x 1/2" dia.
POWER at + 70°C	2.25 W	3 W	0.5 W	0.8 W	0.5 W	0.5 W
TEMPERA- TURE RANGE	−55°C to +120°C	−55°C to +150°C	-55°C to +120°C	-55°C to +150°C	−55°C to +120°C	−55°C to +120°C
RESIST- ANCE RANGE (Tolerances: ±10and 20%)	50 ohms to 5.0 megs	50 ohms to 5.0 megs	100 ohms to 5.0 megs	100 ohms to 5.0 megs	100 ohms to 5.0 megs	100 ohms to 5.0 megs
TAPERS	Linear (U), I	Modified Linear (S Clockwise Ex		lified Log (A), Cou ecial tapers availa		odified Log (B).
FEATURES (Many electrical and mechanical options available from factory)	Single, dual, and triple versions available. Long rotational life. Ideal for attenuator applications. Snap switches can be	Single, dual, and triple versions available. Long rotational life.	Miniature size Immersion- proof. SPST switch can be attached.	Miniature size. Immersion- proof.	Commercial version of type G. Immersion- proof.	DUAL section version of type G: Ideal for attenuator applications. Immersion- proof.

ALLEN-BRADLEY

attached to single and dual

Cool power

Model CP-5-5 Price: \$145.00

for IC logic

These new power modules from ERA provide cool performance, total protection for specialized use in IC, computer, telemetry, strain gauge and transistor applications.

The Transpac CP series is equipped with unique heat sinking for cool (71°C, free air) operation at high currents, protects itself and your equipment through built-in short circuit protection with instant recovery, adjustable current limiting and overvoltage protection.

A special burn-in test program at the factory assures reliability while compact silicon design saves space.

Send for catalog. Write today — before you design.

STANDARD MODELS

Output	(Current @			
VDC	50°C	60°C	71°C	Model	Price
3.6	3.2	2.8	2.5	CP-3P6-2P5	\$125.00
5	3.2	2.8	2.5	CP-5-2P5	\$125.00
3.6	6.5	5.7	5.0	CP-3P6-5	\$145.00
5	6.5	5.7	5.0	CP-5-5	\$145.00
3.6	13.0	11.4	10.0	CP-3P6-10	\$185.00
5	13.0	11.4	10.0	CP-5-10	\$185.00
3,6	22.0	19.5	17.0	CP-3P6-17	\$230.00
5	22.0	19.5	17.0	CP-5-17	\$230.00
3.6	32.0	28.5	25.0	CP-3P6-25	\$310.00
5	32 0	28.5	25.0	CP-5-25	\$310.00

ERA TRANSPAC CORPORATION

A Subsidiary of Electronic Research Associates, Inc. 67 Sand Park Road, Cedar Grove, N.J. 07009 (201) 239-3000

INFORMATION RETRIEVAL NUMBER 27

Technology Abroad

The British and Russians have agreed to cooperate in a five-year program to standardize their electrical equipment and compare optical, mechanical and radiation standards. The cooperative venture will employ gas lasers in efforts to improve the precision of linear measurements. Increased exchange of scientific information is a prime objective.

Exports of electronics products from South Korea totaled \$27,682,000 for the first seven months of 1970, according to the Korean Ministry of Commerce and Industry. A total of \$19,234,000 of the exports were by foreign companies operating in Korea. Of the remaining exports, \$6,663,000 was by local firms and \$1,785,000 was due to joint local and foreign enterprises.

A particle counter has been adapted at the Danderyds Hospital outside Stockholm for use with a computer to permit rapid measurement of airborne pollution. The system measures round-the-clock variations in the distribution of particulate matter in wards, operating rooms and laboratories. The counter, which can measure particles between 0.3 and 10 microns in size, was linked to a computer by the Royal Institute of Technology in Stockholm. It is hoped that this technique will eventually give an exact correlation between airborne particles thought to be carriers of disease and the incidence of disease.

A 24-channel community antenna television system is under construction in the luxurious Lomas de Chapultepec section of Mexico City. Built by a subsidiary of Communications Properties, Inc., of the United States, the CATV network will initially serve some 9000 homes, with later expansion planned to reach 7000 more. Two of the 24 channels will be reserved by the Mexican Government for educational television. At present there are five com-

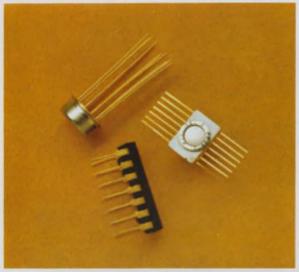
mercial TV stations and one educational in Mexico City serving an estimated 1.5 million homes.

Two new European facilities to formulate precious-metal compositions for thick-film microcircuits have been announced by the duPont Electrochemicals Dept., Wilmington, Del. One will be at Hemel Hempstead, England, in present duPont laboratories there that serve customers in the European Free Trade Association. The other will be established in West Germany by duPont Fotowerke ADox G.m.b.H. for customers in the Common Market.

A \$5.2-million Control Data 6700 Computer system has been ordered by Tel Aviv University in Israel to support research, faculty and administration programs, and also as an aid in student training. Scheduled for installation next month, the computer will be the largest in Israel.

A miniaturized tuning-fork watch movement, less than half the volume of standard Accutron movements in men's watches, has been developed at Bienne, Switzerland. The Mini-Accutron, designed by the Bulova Watch Co.'s Swiss research and development laboratories for women's watches, uses the same battery as the larger size but reduces the tuning-fork length from 1 inch to 5/8-inch. The new fork vibrates at 480 Hz, compared with the standard Accutron fork's 360 Hz. Use of the higher frequency is said to offset the decrease in accuracy caused by the size reduction. The new fork and electronics are packaged in a 3/4-inch-diameter movement.

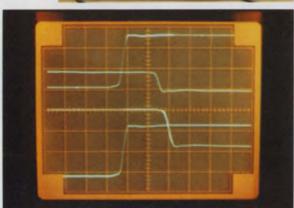
The French version of an electric, pollution-free vehicle was displayed at the German Industries Exhibition in Berlin last month. Shown were small cars suitable for use inside hospitals or at building sites and airports. The cars have a useful range of about 30 miles.


When you're adding a new "twist" to tornado tracking...

Symbolic representation of global weather as plotted by Burroughs ILLIAC IV computer.

bring ERIE in early.

Cyclone off Ceylon. 17-inch snow at Salem. Tropical storm in Trinidad. World-wide weather reports? No, forecasts! Made four days in advance...with the same accuracy as present one-day predictions. That's just one of the superscale jobs possible with the incredible new ILLIAC IV computer designed by the University of Illinois and built by Burroughs Corporation. Unlike conventional computers that process serially, ILLIAC IV utilizes parallel processing...crunching numbers on many matrix problems or differential equations simultaneously, and at super speeds. From the start, ERIE engineers have worked closely with Burroughs to develop the highly-sophisticated resistor/capacitor and resistor modules at the heart of ILLIAC IV. Proof, once again, that it pays to bring ERIE in early.


ERIE TECHNOLOGICAL PRODUCTS, INC. 644 West 12th Street, Erie, Pennsylvania 16512 (814) 453-5611

E-H the simple solution

If you want to simplify your testing operations to the point where a relatively untrained technician can make sophisticated tests with complete confidence and accuracy, E-H Research Laboratories, Inc., and its subsidiary, Automated Measurements Corporation, offer the simple solution.

First, take a look at the AMC Model 1100 Digital Readout Oscilloscope. It's the only four-channel, four-trace digital readout oscilloscope on the market. It was developed for the most versatile laboratory and benchtop applications, using remote sampling units to give you greater freedom in your testing operations. It has the capability for simultaneous viewing of four waveforms. And the digital display can show time accuracy to 1% f.s. and voltage accuracy to 1% f.s.

The ideal companion for the AMC Model 1100 is the **E-H 135 Pulse Generator**. It's fondly called the Universal Pulser because of its great versatility and capability of handling just about any pulser requirement you might have today and for some time to come. The E-H 135 is the only 50 MHz pulser available that has unattenuated baseline offset to \pm 5V into 50 ohms. It also features rise and fall times of from 3 ns to greater than 8 ms.

The two instruments mentioned above are just a sample of a complete line of E-H and AMC equipment available. So no matter how complex your testing problems are, get to the simple solution fast. Contact your E-H representative today.

E-H RESEARCH LABORATORIES, INC.

515 Eleventh Street • Box 1289, Oakland, California 94604 • Phone: (415) 834-3030 • TWX 910-366-7258 In Europe: E-H Research Laboratories (Ned) N.V., Box 1018, Eindhoven, The Netherlands, Telex 51116 In Japan: Iwatsu Electric Company, Ltd., 7-41, 1-Chome Kugayama Suginami-Ku, Tokyo 167, Japan

Washington Report DON BYRNE, WASHINGTON BUREAU

AF to help Lockheed but strengthen C-5A control

The Air Force and Lockheed are negotiating a reworking of the C-5A contract that could cut Lockheed's projected loss on the aircraft considerably but would also mean much tighter control by the Air Force, including supervision of plant activities, personnel and engineering changes. Air Force sources say the negotiations now going on could cut Lockheed's estimated loss of between \$500-million and \$600-million by almost half. Congress has approved a \$200-million "contingency fund" for Lockheed included in the DOD appropriations bill for this year, but the Air Force would have to get Congressional approval to spend the money. Critics have accused the Air Force of trying to bail out Lockheed, but the Air Force maintains it is saving the C-5A program not the company.

House and Senate to get separate computer system

The House of Representatives has decided that when and if it goes to computers it will do so alone. After several months of committee bickering and almost a month of floor debate, the House rejected a proposal that would have provided a joint House-Senate computer system for such badly needed services as legislative history and background of bills, past legislation and reference on pending bills. Both houses of Congress are now expected to pursue their own systems, and experts guess the spending may run as high as \$20 million in the House alone.

DOD plans to cut about 35,000 more jobs

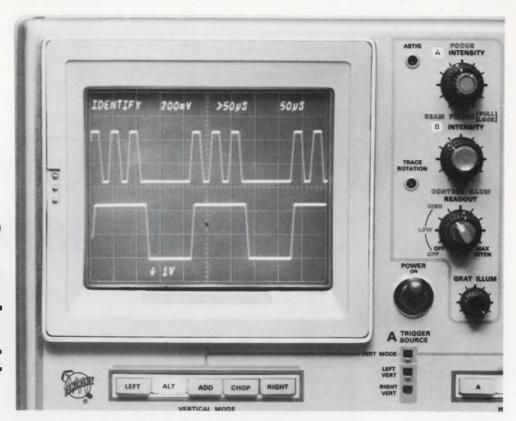
DOD officials are quietly letting government union leaders know that they can expect a cut of about 35,000 jobs within the next year or so. Cuts will come, say DOD officials, because of Congressional belt tightening: the DOD budget is expected to drop about 6% next year. Defense has already taken a job cut of 100,000 in the past year—about 10 per cent of the civilian work force. Although 100,000 jobs went by the board, only about 40,000 people were actually fired as the balance filled other jobs or took early retirement.

Comsat opposes setting a cable / satellite formula

The Communications Satellite Corp. has urged the Federal Communications Commission not to set any definite mix on future construction of submarine cables and communication satellites for overseas telecommunications services. COMSAT said that such an inflexible policy could hamper technological advancement and thereby diminish the public good.

The operating subsidiaries of the International Telephone & Telegraph Co. supported the views of American Telephone & Telegraph Co., which

Washington Report CONTINUED


favored a 50-50 cable/satellite mix. The other two American international carriers—RCA Global Communications and Western Union International—urged more flexibility in cable/satellite mix. They agreed with AT&T, however, on the priorities for new cable projects in the next decade, especially citing the urgent need for another transpacific cable. In that regard both RCA and Western Union asked that the cable's construction be delayed until 1973-4 as AT&T had urged. Meanwhile, in other submarine cable developments AT&T filed an application for a construction permit for an \$8,400,000 cable system between the U. S. and the Bahamas. The system would have initial capacity for 360 circuits and eventually for 1380 circuits. It would be owned jointly by AT&T and the Bahamas Telecommunications Corp. WYI also asked the FCC for permission to participate in the construction and operation of a sixth transatlantic cable (TAT-6) proposed recently by AT&T. WUI said its requirements would be for 100 voice-grade circuits.

Unger nomination to FCC hits mysterious snag

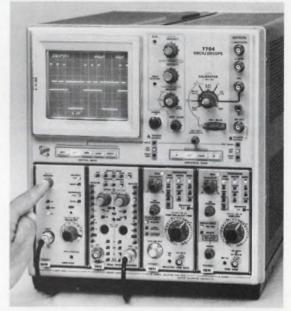
The nomination of Sherman E. Unger to the Federal Communications Commission has seemingly hit some sort of a snag. His 1968 income tax return is being audited. The White House and Unger said the audit was routine procedure, but there have been reports that the information the Internal Revenue Service was seeking might take a while to produce. One source quoted Unger as saying that, because of the delay and the length of the vacancy on the FCC, the White House might want to withdraw his name.

Capital Capsules: The House Committee on Science and Astronautics has prepared a report on the "Practical Returns from Space Investment." The report,

No. 91-1446, lists benefits in communications, weather forecasting, business management, medicine, education, aeronautics, and the home growing out of the space program. You can get a copy by writing to your Congressman. . . . DOD is expected to release requests for proposals to the industry in the next few weeks for a new heavy-lift helicopter. The helicopter is seen as a successor to the United Aircraft CH54 flying crane and will be used by the Army and Navy. . . . Defense is also setting up a computerized deserter information point in Washington for all the Armed services. . . . The Security and Exchange Commission will reopen hearings on just what information defense contractors must disclose to stockholders. The case grew out of the Lockheed C-5A contract when it was charged that some Lockheed officials sold off stock in the company on learning of the overrun problems of the aircraft. SEC started the investigation in July but recessed amid a dispute over what could be admitted as evidence in the hearing. Initial SEC investigation cleared company officials of any wrongdoing but said that the company may have failed to disclose adequately certain facts about the aircraft. . . . The General Services Administration is making final reviews on bids for a \$25 million computer purchase for the Internal Revenue Service. The purchase includes 10 computers and about 3,000 remote cathode-ray tube terminals.

Auto Scale-Factor Readout

means faster measurements with fewer errors


The New Tektronix 7000-Series Oscilloscope System has AUTO SCALE-FACTOR READOUT—just one of many new convenience features available only from Tektronix. Auto Scale-Factor Readout labels the oscilloscope graph with time and frequency; volts, amps, ohms and C (temperature); invert and uncalibrated symbols, and identifies the trace and its data. When magnified sweeps and the P6052 or P6053 10X probes are used, the readout is automatically corrected. Press either a probe-tip or front-panel switch, the trace shifts vertically and its deflection factor is replaced by the word IDENTIFY to associate waveforms with scale factors. Scale factors of inverted and uncalibrated displays are prefixed by invert (\downarrow) and uncalibrate (>) symbols. Now, you can forget the inconvenience of hand labeling photographs. With AUTO SCALE-FACTOR READOUT you look in only one place for accurate data. On the CRT where it's displayed automatically . . . with the waveforms!

New Convenience, a Wider Performance Spectrum, and Four-Plug-In Flexibility are just a few of the factors which make the New Tektronix 7000-Series Oscilloscopes a valuable addition to your measurement capabilities.

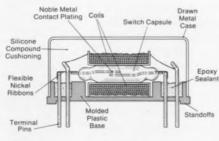
Prices of instruments shown: 7704 150-MHz Four-Plug-In Oscilloscope \$2500, 7A12 Dual-Trace Amplifier Plug-In \$700, 7A16 Single-Trace Amplifier Plug-In \$600, 7B71 Delaying Time Base Plug-In \$685, 7B70 Time Base Plug-In \$600. Four other 7000-Series Oscilloscopes are also available.

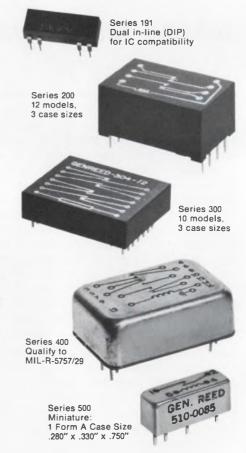
U.S. Sales Prices FOB Beaverton, Oregon

Available in U.S. through the Tektronix lease plan For information, call your local Tektronix Field Engineer or write: Tektronix, Inc., P. O. Box 500, Beaverton, Oregon 97005.

The Readout System responds to various functional instructions and is presently capable of generating up to 49 symbols. All of the symbols are not used by today's plug-ins.

Why call SIGMA for reed relays?


The acquisition of General Reed now gives us some unusual capabilities in the realm of reed relays. By manufacturing our own reed switches, we totally control the characteristics of this most important essential of any reed relay.


In fact, we have total control over the entire relay manufacturing process, starting with the selection of vacuummelt nickel/iron wire used to form the reeds, all the way through 37 subsequent steps. This includes our ability to change performance characteristics by varying contact plating materials as well as pickup and dropout levels. Such complete control gives you considerably more assurance that the final product will meet your special requirements.

In seven years of making many million reed switches, we've learned from experience how to achieve desired performance. This can be particularly useful when you need a non-standard type. For example, consider our spec. no. 63024: Form C; 250 \pm 50 μ sec operate and release times; thermal drift less than 6 μ v max.; electrostatic shielding for microamp signal levels. In the realm of specials like this, we consider ourselves experts.

Where a standard reed relay will do the job, we offer five series: up to 4 Form C and 6 Form A . . . 42 QPL types qualified to MIL-R-5757/29 . . . ultra-miniature and dual in-line types (DIP) for IC compatibility. Sigma Distributors across the country are stocked.

For application help, quotations on specials and technical bulletins, contact General Reed Division, 19 Walnut Avenue, Clark, N.J. 07066. Tel. (201) 382-7373.

INFORMATION RETRIEVAL NUMBER 31

IT'S NEW! IT'S NOW!

THE LOOK OF THE 21ST CENTURY IS HERE TODAY

Your product can achieve an individualistic look when housed in a standard cabinet.

The following points make SERIES TWO THOUSAND cabinetry your best buy today.

- All cabinets shipped ready for immediate use thus eliminating time and cost for assembly.
- Designer's colors royal blue . . .
 charcoal grev . . . precious gold
 . . . give the look of tomorrow
 to today's products.
- 3. Immediate delivery from stock at your local authorized Bud distributor. *
- 4. Priced below that "special fabrication" you have had to consider in the past.

Write for literature and the name of the nearest authorized SERIES TWO THOUSAND Distributor.

*If his stock has been temporarily depleted we will ship to him within one week of receipt of his order. NOW YOU CAN ELIMINATE COSTLY WAITING!!!

AS FAR AS JHAV

Poverty, prejudice, pollution, population . . . With all its problems, this is our world, too.

At NCR we design and build advanced computers and computer systems that have many uses. They help hospitals and doctors. They help children learn. They're an important weapon in fighting pollution. They help population planners. They help business and industry.

We think you can find a world of satisfaction working with NCR.

T. F. Wade, Executive and Professional Placement The National Cash Register Company, Dept. E-10 Dayton, Ohio 45409

We are an Equal Opportunity Employer M/F

Rugged, all solid-state, Kurz-Kasch LOGIC PROBE testers are designed for fast, accurate testing of logic levels in all types of integrated circuit systems. A simple readout system indicates "true", "zero", or "pulse" readings precisely through color-coded visual electronic readouts in the probe tip. Absence of Logic levels is indicated by all readouts remaining OFF.

Applications - Logic levels can be accurately tested in virtually any (DTL, TTL, RTL) IC system including desk calculators, business machines, N/C devices, computers or telephone systems. Power is derived from the unit under test allowing use in the field or in the lab.

Specifications:

Readout Light Red = Logic "1" Readout Light White=Logic "0" No Readout Light = "infinity"

High input impedance prevents loading of circuit under test. Size %16" dia., 6" long, 263/4" leads with pin terminals

A pulse detection feature is available on most models of LOGIC PROBE testers. A third readout is provided to display high speed pulse trains or a single cycle pulse of less than 50 nanoseconds on the standard Model LP-520. Overload protection to +50, -20 volts DC is also available.

Standard Probes-LOGIC PROBE testers are presently available in four standard models. MODEL LP-500 for use in testing 4.75-5.0 V DC logic systems. MODEL LP-510 for testing 4.75-5.0 V DC systems... includes overload protection to $\pm 50, -20$ V DC. MODEL LP-520 . . . for 4.75-5.0 V DC logic systems . . . includes overload protection and pulse detection features. MODEL LP-530 for testing of 12-15 V DC logic systems . . . includes overload protection to +50, -20 V DC.

Kurz-Kasch shrinks square wave generator to LOGIC PROBE size-Model LG-580 is a new shirt pocket size, all solid-state logic (square wave) generator for trouble-shooting, testing, or inspection of digital circuitry. Use it to ... set flip-flops ... run counters ... perform clock functions. A unique one-shot mode plus 100 Hz, 1 K Hz, 100 K Hz, and 1 M Hz signals are injected through the probe tip. The Model LG-580 is power lead reversal protected and is priced at \$79.95.

Special Probes-As a routine service, Kurz-Kasch will custom design Logic Probes to your specifications. Custom designs can include: both positive and negative logic levels from 5 to 30 volts . . . special pulse detection characteristics...floating or grounded cases...custom power supply requirements . . . power lead reversal protection . . . and your choice of logic crossover parameters.

Kurz-Kasch LOGIC PROBE testers provide all the information you need to quickly and accurately evaluate all logic systems . . . and they are the most economical logic testing instruments available. Standard Models range in price from \$39.95 to \$69.95. Write today for complete details on all standard and special Logic Probe testers.

1421 S. Broadway, Dayton, Ohio 45401.

*Patent #3,525,939 applies, others pending.

A MERCURY-WETTED RELAY THAT OPERATES IN ANY POSITION

Don't be fooled by the dual-in-line package. It's a Logcell® mercury-film relay that is completely compatible with DTL/TTL power driver IC's. It operates in any mounting position without contact bounce. And you can mount it into DIP-drilled printed circuit boards or DIP sockets without special handling. Other features include:

- . Long life tested to billions of cycles
- 2.5 millisecond speed
- Thermal noise less than 1 microvolt
- AC noise below instrumentation levels
- 10-6 to 1 ampere load switching range
- Open circuit resistance in excess of 10,000 megohms
- 0.05 ohms maximum contact resistance
- Available in bi-stable or mono-stable configurations

Logcell DIP relays open new vistas of switching system operation and packaging. For more information, write Fifth Dimension Inc., Box 483, Princeton, New Jersey 08540 or call (609) 924-5990.

FIFTH DIMENSION INC

A big market in our own backyard?

In nearly three weeks of traveling in Europe, last spring, News Editor Jack Kessler says he encountered virtually no delays that were not of his own making. Generally, it seemed to him that European transportation was better equipped, better maintained and better planned than comparable transportation in the U. S.

While electronics is not primarily responsible for these conditions, it is finding an increasingly important role in modern transportation systems.

Computer-controlled traffic systems have been installed in Munich, Madrid, Barcelona, Lisbon and Glasgow. By 1972 Britain will have 900 miles of traffic-controlled roads. European cities are automating their subway systems. The French-British SST Concorde is being built with inertial navigation systems. Maritime traffic is being automated with new harbor control radar. There are electronic toll collectors.

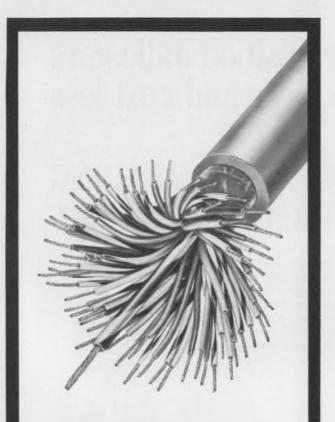
Mike East, of GEC-Elliott Automation, told Jack, "Every city with a population of 400,000 or more is a potential customer of our traffic-control systems."

The message Jack got was this: the U.S. has many cities of 400,000 or more; we have the components for electronic transportation systems.

"If electronics can do something to make transportation better, maybe we've got a big market in our own backyard," says Jack.

A control panel for electronic toll collection is examined by News Editor Jack Kessler, left, and Toll Manager J. G. Reeks at the Severn Bridge between Bristol, England, and Cardiff, Wales.

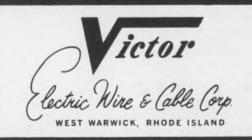
OUR ANGLE: angle position indicators that do more and cost less


SHOULDN'T YOU TAKE A NEW READING ON THIS COST-PERFORMANCE ANGLE?

NORTH ATLANTIC

industries, inc.

200 TERMINAL DRIVE, PLAINVIEW, NEW YORK 11803 cable: noatlantic / twx: 510-221-1879 / phone: (516) 681-8600



What do you need in Multi-Conductor Cable?

vill make it.

Get exactly what you need in multiconductor cable. We'll design and produce multi-conductor cable to meet just about any individual requirement.

We have the plant, the equipment, the personnel and the knowhow to solve your particular problem.

Leakproof Liquid Cooled Plates

Wakefield Type LCP aluminum cold plates can be used to cool most types of power transistors, rectifiers and high power resistors. Thermal resistance, plate to inlet water, is .27°C/W with devices mounted on 3" centers and water flow of 1.0 GPM. These Liquid Cooled Plates may be considered an integral portion of the high current bus work and may be run at higher current densities than open uncooled busing. The use of drawn copper tubing assures a leakproof system which will stand high pressures. 6" and 12" lengths are stocked by Distributors; other lengths up to 6' are available on factory order with or without hole patterns drilled to your specifications. With aluminum or copper tubing. Send for Bulletin LCP.

INFORMATION RETRIEVAL NUMBER 37

The LEM Instrument Corporation Model EDS-170 is a complete high-reliability position measuring system consisting of a unique absolute shaft encoder, a compact display and an interconnecting cable. NO ADDITIONAL EQUIPMENT IS REQUIRED.

The display accepts the BCD (8421) output of the encoder, translates and displays the position information in parallel decimal form on gas discharge tubes. All necessary power supplies and circuitry are built in. Auxiliary BCD outputs are available as are many other options and models.

All LEM encoders feature low torque and inertia, low noise, FAR FEWER BRUSHES, non-ambiguous output, and long trouble-free life. Request new data sheet.

Total Range: 00.00 to 99.99 revolutions Resolution: 0.01 revolution Encoder Starting Torque: 0.12 oz-in maximum Power Required: 115 V, 60 Hz, 10 watts max.

INSTRUMENT CORPORATION

Subsidiary of TWIN DISC, INCORPORATED 20 Sarah Drive, Farmingdale, New York 11735 Phone (516) 293-7240

INFORMATION RETRIEVAL NUMBER 38

ELECTRONIC DESIGN 21, October 11, 1970

You asked for it.

The New Electronic Printing Calculator from Toshiba

Remember when we asked you what your new electronic printing calculator should be like? Remember what you told us?

Give us an electronic calculator that prints on standard paper tape, vertically, like it should. Give us a way to show off credit balances and negative entries. In red? In red. Naturally, the machine should multiply and divide as well as add and subtract. It should have a memory. Make it compact so it doesn't take up space. Make it solid so it won't jiggle around when in use. And please... make it quiet.

Okay. To which we added a unique

short-cut called "Automatic Accumulation". And finally, a price that floors the competition! That was a pretty big order. But we filled it.

Thanks to your own ideas, you now have the most exciting, highest performing, competitively-priced electronic printing calculator on the market.

The new 1415P.

Now comes the most profitable part of all. Selling it.

Toshiba America, 477 Madison Ave. New York, N.Y. 10022.

212-758-6161.

In Touch with Tomo

WE WANT OUR NAME ON THE TIP OF YOUR TONGUE!

INFORMATION RETRIEVAL NUMBER 40

POWERTEC

SERIES POWER SUPPLIES

TO 12 AMPS

4 TO 26 VDC 3 TO 12 AMPS RIPPLE: 1 MVRMS SHORT CIRCUIT PROTECTED FOLD BACK CURRENT LIMITING OPTIONAL OVER VOLTAGE PROTECTION REGULATION: LINE ±0.25% LOAD ±0.25%

MODEL	PR	ICE	DIMENSIONS
MODEL	1-9	100	DIMENSIONS
2B5 - 3 AMPS 2C5 - 6 AMPS	\$24.95 \$44.00	\$19.50 \$36.00	4.8 W X 4 L X 1.8 D 4.8 W X 5.7 L X 2.8 D
2C5 - 12 AMPS	\$75.00	\$60.00	4.8 W X 9 L X 3 D

OEM CONTRACTS AVAILABLE

POWERTEC AIRTRONICS INC.

9168 DESOTO AVENUE CHATSWORTH, CALIFORNIA 91311 (213) 882-0004 TWX 910-494-2092

INFORMATION RETRIEVAL NUMBER 42

DEPENDABLE DURANT COUNT/CONTROL

Lowest cost per million counts of any comparable unit.

Speeds to 300 cps. *

In performance and design, Durant's Unisystem fills the need for fast, accurate count and control. There are two basic Unisystem series. available in optional splashand dustproof versions.

The 49600 Series starts its count at zero and adds to a variable predetermined number. When it reaches this number, two form "C" predeter-

mining contacts are actuated.

The 49800 Series starts its count at a variable predetermined number and subtracts. It actuates two form "C" predetermining contacts when the count reaches a fixed prewarn value, and two more when the count reaches zero.

All Unisystems give you a design that eliminates missed counts and retains preset and count values, even if power fails. Your choice of automatic or manual recycling. For full information, write for Unisystem Catalog, 622 N. Cass St., Milwaukee, Wis. 53201.

With accessory divide-by circuit.

A CUTLER-HAMMER COMPANY

In Europe: Durant (Europa) N.V. Barneveld, Netherlands

INFORMATION RETRIEVAL NUMBER 41

ELECTRONIC DESIGN 21, October 11, 1970

A Reminder...

A PRECISE MICRO-AMP REGULATED CONSTANT CURRENT SOURCE

9 Discrete Micro-amp Settings Plus Vernier Control

MICRO-AMP CONSTANT CURRENT SOURCE • 16-POSITION RANGE SELECTOR SWITCH • VERNIER CONTROL • REMOTE PROGRAMMING • VOLTAGE LIMITING

LABORATORY/SYSTEMS APPLICATIONS:

Resistivity Measurements PIV Testing

Diode Testing

Relay Testing

IC and Transistor Testing Capacitor Forming

	ОПТРИТ			RIPPLE		LE				
MODEL #	COMPLIANCE		CURRENT	REGULATION		0.4% OF SETTING +		SIZE	PRICE	
		FULL I	DERATED I		LINE	LOAD	NEG.	POS.		TO LONG
C 612 AM	0-100	100-260	1ua-100ma	0.15%	0.1%	0.5ua	0.1ua	3½ x 19 x 9¼	\$320.00	
C 630 CM	0-200	200-280	10ua-1A	0.15%	0.1%	4ua	4ua	8¾ x 19 x 15	962.00	
C 633 CM	0-300	300-420	2.2ua-300ma	0.15%	0.1%	0.5ua	0.1ua	51/4 x 19 x 15	500.00	
C 636 CM	0-600	600-730	2.2ua-220ma	0.15%	0.1%	1ua	0.2ua	8¾ x 19 x 15	700.00	

CALLTOLL FREE 800-631-4298

ELECTRONIC MEASUREMENTS INC.

405 Essex Road, Neptune, New Jersey 07753

You'll find it easier than ever before to attend FJCC...

PRE .

"Convenience" Key to Houston FJCC "Systems and Society" Conference Nov. 17 to 19.

This year the world's largest computer conference and exhibition will also be the most convenient. Houston's famous Astrohall will house an extensive technical program plus computer hardware, software, and services valued at over \$200-million.

Air conditioned busses will add to the convenience by shuttling you between your hotel or motel and the Astrohall. Special tours of NASA's computer complex have been planned with transportation provided. The conference committee has done everything possible to make your FJCC attendance pleasant and convenient — but there's one thing they can't do for you — PRE-REGISTER. These Advance Registration and Housing forms will allow you to avoid onsite registration. A confirmation card will be mailed to you as soon as your completed forms are received. (Hotel rooms will be assigned on a first-come basis.)

'70 FJCC Broadens Program Appeal

A unique feature of the FJCC technical program will be a Special Survey Session which explores new developments and industry trends and provides a broad, general view of where the industry stands and where it's headed. This Special Survey Session will allow specialists to keep abreast of developments in other fields and will give generalists a full industry overview.

In addition numerous technical sessions will cover the latest developments in hardware, software, systems and applications of major importance to the computer field and users of EDP systems.

Site of all FJCC exhibits and educational sessions is Houston's Astrohall, the world's largest single convention facility.

NASA TOUR HIGHLIGHTS FJCC ATTRACTIONS

The role of the computer in the successful Apollo moon flights and the dramatic rescue of Apollo 13 is a source of pride to the industry. Tours of NASA's Manned Space Flight Center have been scheduled which will take you into areas not usually open to the public, especially the Simulator Lab where space flights are "rehearsed" prior to launch. Such critical simulations made possible the safe return of Apollo 13.

Government Control and the Computer Industry — A panel will discuss existing and pending legislation which affects the computer industry. Congressman Jack B. Brooks, Dr. Herbert R. J. Grosch of the National Bureau of Standards, and representatives of computing equipment firms and user groups will participate.

Interfacing Computers and Education — A special session will explore the implications of bringing the computer into the educational process, with special emphasis on the reaction of students to computer aided instruction, training system users and integrating programming skills with competence in subject matter.

Ross Perot to Keynote Conference
— An internationally recognized computer leader, Ross Perot, will keynote the conference, addressing the theme . . . "Systems and Society".

Art, Vice and Games — An intriguing session will take a fresh look at the possibilities and limitations of computers by reporting on their unorthodox use in art, games and vice.

FEES

MEMBER OF:

1 ACM
1 IEEE
3 SCI
4 ACL
5 AIAA
6 AICPA
7 ASA
8 ASIS
9 ISA
10 SIAM
11 SID
12 SLA

□ Ncn-Member:

Full-Time
Student:
Texas
Bar-B-Q

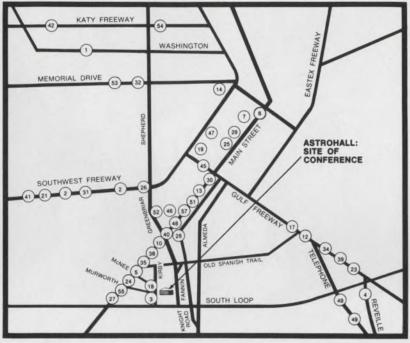
Luncheon

TOTAL:

\$40.00

\$7.50

\$8.00


(Check all applicable)

Avoid that last minute crush... fill in these forms and mail TODAY

FJCC Registration AFIPS Headquarters 210 Summit Ave. Montvale, N.J. 07645

REGISTRATION — 1970 FJCC FJCC Registration — AFIPS Headquarters 210 Summit Ave., Montvale, N.J. 07645				OCCUPATION (Check One Only Management/ Administration	
				2 Engineering	
NAME	Last	First	Initial	3 R&D	
COMPANY	-			4 Consultant	
				5 Teaching	
ADDRESS		-		6 Sales/Application Eng.	
				7 Systems & Procedures	
CITY-STATE			ZIP	8 Programming Application	
			9 Full Time Student		

REGISTER

Numbers not shown on above map are in Houston area and will also be served by conference busses.

HOTELS/HOUSTON	SINGLE	DOUBLE	TWIN	SUITE
1 ALAMO PLAZA	8	10	14	1-3 rm 25 up
2. ALBERT PICK MOTOR INN	15-16	19-20	19-20	2 m 38 up 3 m 75 up
3. ASTROWORLD HOTELS	14-26	16-30	16.30	40-up
4. CARROUSEL MOTOR HOTEL	12-16	15-18	16-18	4-Jr 2-2 rm , 30-up
S CHIEF MOTEL	16	22	25	
6. CONTINENTAL HOUSTON MOTOR HOTEL	13-15	17-19	17-21	
7. DOWNTOWNER MOTOR	12-13	15-16	18-19	
8. FIELD INN - KATY	14-17	18 21	20	3-2 rm , 33-up
9 FIELD INN - NORTH	17-19	21-24	21-24	12-3 rm . 24-2
10 GRANT MOTEL	10	12	14	
11. GOLDEN KEY INN	13-17	15-19	15-19	35 up
12. HELENA MOTEL	12	15	17	1-3 rm : 35
13 HOLIDAY INN - CENTRAL	11-15	15-17	15-17	
14 HOLIDAY INN - CIVIC	13	19	19	38-up
15. HOLIDAY INN - EAST	15	15-17	15-17	
16. HOLIDAY INN KATY	12-16	16-19	16-19	

HC	TELS/HOUSTON	SINGLE	DOUBLE	TWIN	SUITE
17	HOLIDAY INN — MIDTOWN	11 50 16	16-18	18	
18	HOLIDAY INN - S W 610	13-15	16	12	
19	HOTEL SONESTA	16 24	20.24	23	10-2 rm 65 110
20	HOUSTON AIRPORT INN	15	15	15	
21	HOUSTONAIRE MOTOR	14	17	18-26	32
22	HOWARD JOHNSON MOTOR LODGE - KATY	1.2	17	20	
23	HOWARD JOHNSON MOTOR LODGE - GULF	13-16	16-20		
24	KING MOTOR LODGE	14	20	20	
25	LAMAR HOTEL	13 50 24	17 50 24	20.25	11-Jr 25-45
					6 2 rm 30 60 4 3 rm 60 90 5 Exec 48 50
26	LA QUINTA MOTOR INN			16	5 2 ·m 20
27	LAS VEGAS MOTOR	12-13	15-16	17 50 - 23 50	1-2 rm 65 1-3 rm 85
28	MARRIOTT MOTOR HOTEL	16-21	21.26	21-26	35-up
29	MCKINNEY HOTEL	10-13-50	12-14 50	16 50	
30	MITCHELL INN	11	14	18	

нот	TELS/HOUSTON	SINGLE	DOUBLE	TWIN	SUITE
31	QUALITY COURTS MOTEL	12 50	16 50 -	15 50	1-Jr 1-2 rm 20 50
32	RAMADA INN — ALLEN	10-11	13	19	2-2 rm 30
33	RAMADA INN - EAST	13	15 50	15 50-	10 Jr., 1-2 rm
34.	RAMADA INN — GULF		18 50	18 50	2-Paol 19 50-up
35		14 50	16 50	19 50	
	RAMADA INN — MAIN RAMADA INN — S W	12 50 - 15	18	17 50-20	2 11 6 2 1-
					2-Jr., 6-2 rm. 2-3 rm., 30-up
37	RICE HOTEL	10 50 20	16 50 · 22 50	17 50-28	39-2 rm., 42-up
30	ROADRUNNER INN	9 50	9 50		
39	RODEWAY INN - GULF	10	12	15	
40	RODEWAY INN - MAIN	9 50	12	15	
41	RODEWAY INN - SW	11-13		15	2-Fam rm 25
	RODEWAY INN - KATY				2-2 rm , 16
42	ROYAL COACH INN			16	25-up
43	HOTAL COACH INN	18	25 26	25	28-Par. 40 9-Tur. surles: 40 5-Bi-fével: 55
	SAM HOUSTON HOTEL	7-8	9-10	12-14	
	SAVOY FIELD INN	16-19	20-23	22-23	6-1 rm 20-28 6-2 rm 35-up
46	SHAMROCK HILTON	14-30	20:36	20-36	2 rm 45-up 3 rm 80-up
47.	SHERATON LINCOLN	16-22	23-27	21-27	10-2 rm , 40-80
48	SHERATON DAKS MOTEL	12	14	18	30-up
49.	SKYLANE INN		12-16	14-18	5-2 rm , 22 50-2
50.	TEXAS STATE HOTEL	10	14	15	
51.	TIDELANDS MOTOR INN	16-18 50	18 50 20 50	22 50- 24 50	
52	TOWERS HOTEL	12-18	16-20	16-24	
53.	TOWN HOUSE MOTOR	8 50-16	11-18	12-22	5-2 rm , 24-30
54	TRAVELODGE MOTOR	10.50	14	15 50	
55	TWENTY NINE PALMS				
56.	VAGABOND MOTOR	9-10	12	14	
57.	WARWICK HOTEL	18-30	28-30	28-30	2-2 rm 64-240 3-3 rm, 90-275
58.	WHITE HOUSE MOTOR	16:20	20.22	25-30	3-3 rm., 90-275
59		8.50	9.50	11	
60	HOLIDAY INN - NASA				
eu.	HOLIDAY INN - NASA	12 25- 14 25	16 25 20 25	18.25-20.25	2-Jr., 2-2 rm. 1-3 rm., 32 50-u
61.	NASSAU BAY HOTEL	15	20	24-28	
62	RAMADA INN — NASA	12	14	16 50	Jr\$20 2 rm\$35 3 rm50
63	SHERATON KING'S INN	20	20	20	3-3 rm., 60-up
но	TELS/GALVESTON	SINGLE	DOUBLE	TWIN	SUITE
1.	FLAGSHIP HOTEL	18 75	21.75	21.75	
2.	GALVEZ HOTEL	17.50	21.50	21.50	
3	GAIDOS MOTEL	20 00	24	26	
4.		13-18	17-22	17-22	
	JACK TAR MOTEL	16	18	20	
6.	COMMODORE HOTEL				22
7.		11	14	16	
8	SEAWALL HOTEL	14	16		22
_			_	16-18	22
9	TREASURE ISLE HOTEL	12	16-20	16-20	44

NOW!

MAIL RESERVATIONS **TODAY** to:

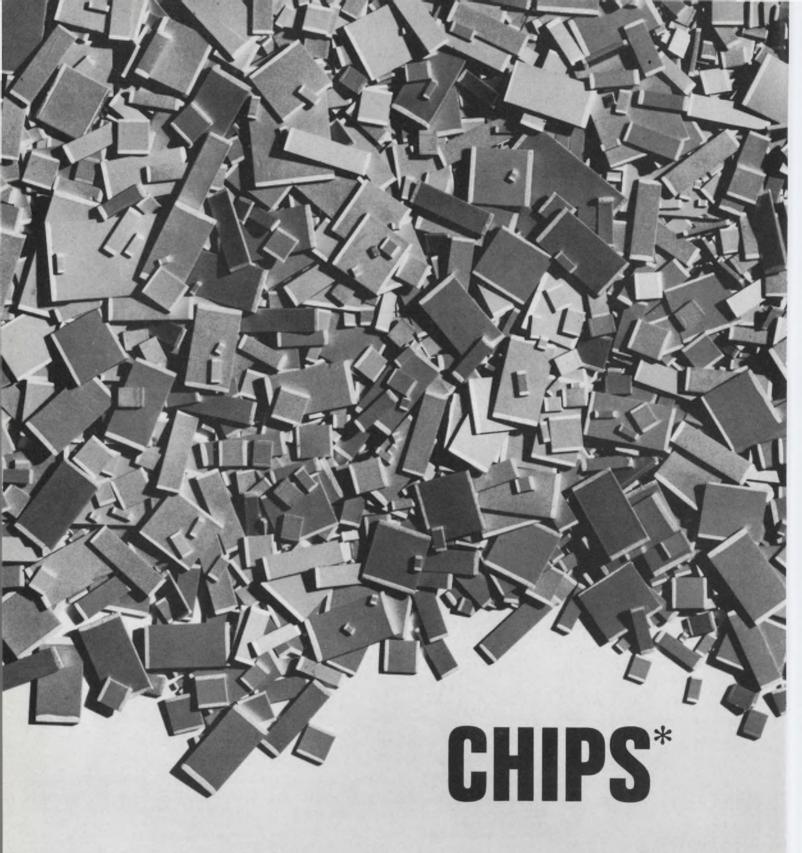
FJCC Housing Bureau **Housing Visitors & Convention Bureau** 1006 Main Houston, Texas 77002 USA

HOTEL RESERVATIONS — 1	970	FJCC
-------------------------------	-----	-------------

FJCC Housing Bureau - Housing Visitors and Convention Bureau 1006 Main; Houston, Texas 77002

Hotel Accommodations Desired: Desired: _Room(s) 1 person (single) Room(s) 2 persons (double) Room(s) 2 persons (twin) _Room(s) ___ persons (double-double) Suite(s) parlor and 1 bedroom Suite(s) parlor and 2 bedrooms \$. ROOMS WILL BE OCCUPIED BY: NAME (Please Print) ARRIVAL DEPARTURE HOUR — DATE HOUR — DATE CITY & STATE

Please designate those who will share same rooms. List additional names on separate sheet. Be sure to show arrivals and departure. Please cover the full period of your intended stay, as it may be difficult to extend the time actually reserved.


☐ I want to stay in Galveston.

INDIVIDUAL REQUESTING RESERVATIONS: PLEASE PRINT OR TYPE

Applicant

Firm Name

Street Address

*USCC CERAMOLITHIC® CHIP CAPACITORS FOR ANY HYBRID CIRCUIT DESIGN PROBLEM

SPECIFICATIONS: Capacitance range: 10pF to 3.3Mfd. Voltage ratings: 50, 100 and 200 WVdc. Dielectrics: W and NPO. Sizes: start with .050" X .050" X .040". End terminations: noble metal and special combinations. Meets all applicable requirements of MIL-C-11015 and MIL-C-39014.

Publisher

Hugh R. Roome

Editors

New York Office 850 Third Ave. New York, N.Y., 10022 (212) 751-5530

Editor: Frank Egan
Managing Editor: Ralph Dobriner
Managing Editor: Raymond D. Speer
Microelectronics, Steven A. Erenburg
Computers, Milton J. Lowenstein
Microwaves, Michael J. Riezenman
Management, Richard L. Turmail
News, John N. Kessler
Military-Aerospace, John F. Mason
New Products, Roger Allan
New Products, Lucinda Mattera
Copy, Marion Allen

Field Offices

Massachusetts Jim McDermott P.O. Box 272 Easthampton, Mass. 01027 (413) 527-3632

San Francisco Elizabeth de Atley Suite 6, 95 Main St. Los Gatos, Calif. 94022 (415) 941-3087

Los Angeles David Kaye 2930 Imperial Highway Inglewood, Calif. 90303 (213) 757-0183

Washington Don Byrne 1425 N St. NW Washington, D.C. 20005 (202) 667-6568

Editorial Production

Dollie S. Viebig Richard D. Grissom

Art

Art Director, Clifford M. Gardlner Assistant, William Kelly Rita Jendrzejewskl JoJo Miskimmon

Production

Manager, Thomas V. Sedita Helen De Polo Kathleen McConkey Leslie Stein

Circulation
Manager, Nancy L. Merritt

Information Retrieval

Peggy Long

EDITORIAL

Are trade restrictions really the answer?

Trade relations between the United States and Japan became somewhat heated after the breakdown in textile talks late this summer. The Japanese refused to impose voluntary quotas on their textile exports, contending that the U. S. industry has not been materially harmed. The U. S. textile industry, on the other hand, claims the loss of 65,000 American jobs, and is pushing hard for the imposing of quotas on imports from Japan.

Similar situations exist or are arising in other industries, including electronics, thanks to Japan's unique combination of technology, skilled labor, marketing aggressiveness and Government cooperation. But is the answer outright protectionism as some insist?

Quota restrictions and tariff hikes are two-way streets. And when a country uses them it must recognize that retaliation is a possibility. So, in spite of the over 600% increase in the importation of consumer electronic items from Japan in the past decade, and in spite of the many "dumping" charges against Japanese electronic items, considered thought is called for rather than precipitous action.

It has been estimated that in an all-out trade war the U. S. would lose three jobs based on exports for every one it regained by protectionism. This is surely not very sane economics for the nation as a whole, regardless of the good it may do for a few selected industries.

The message is clear. Electronics is becoming more and more a world market. And as this happens, the well-being and future of those involved in the industry will increasingly be subject to national and even international considerations. This will be difficult for many to accept, particularly when the individual's best interest does not coincide with the nation's. But if we are to remain true to our long-standing principles of liberalized trade, that's the way it must be.

FRANK EGAN

Try 'back-door' circuit analysis. Simply use

an auxiliary feedback loop to set the input and let a computer do the calculations.

In many cases, circuit analysis can be simplified by approaching it in an unorthodox way. Choosing the output and then computing the input that caused it is an unfamiliar way to determine gain or attenuation, but it is a very useful technique when saturation or limiting of the output is possible.

This back-door approach is especially helpful when a computer-aided analysis program, such as CIRC¹ or ECAP², is to be used. The computer performs the detailed computations, which may be more involved than in conventional analysis, but the results are more significant because the operating region of the output is determined in advance.³

Let's examine the analytic technique. To force the input to a circuit to be the value required by the desired output, an auxiliary operation amplifier must be inserted. Note that this op amp (Fig. 1), is present only as a computational aid and does not appear in the final circuit design. A loop is set up, with the amplifier to be analyzed in the feedback circuit around the auxiliary op amp. The output of amplifier A is thus the input to the op amp, and the output of the op amp is the input to A.

Define the terms

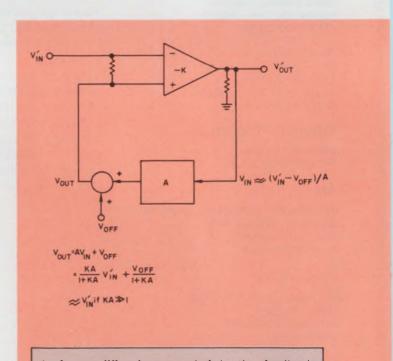
The input and output of the circuit to be analyzed are $V_{\rm IN}$ and $V_{\rm OUT}$, respectively. The circuit's gain (or attenuation) is A. The auxiliary differential op amp has a gain of -K, and its input and output signals are $V'_{\rm IN}$ and $V'_{\rm OUT}$. A spurious offset voltage, $V_{\rm OFF}$, may appear at the output of circuit A.

In Fig. 1, $V_{\rm IN}=V'_{\rm oUT}$. The closed loop gain is A'=K/(1+KA), and if the open loop gain |KA|>>1 and $V_{\rm OFF}=0$, then $A'\approx 1/A$. $V'_{\rm IN}$ determines $V_{\rm OUT}$ through the relationship:

 $V_{\text{OUT}} = V'_{\text{IN}}KA/(1+KA) \approx V'_{\text{IN}}.$

The difference between V'_{IN} and V_{OUT} is the error, $V_{\text{e}} = V'_{\text{IN}}/\left(1 + KA\right)$.

Donald B. Herbert, Member of Technical Staff, Xerox Data Systems, Inc., El Segundo, Calif. 90245


 $V_{\rm e}$ can be made as small as desired by proper selection of a value for K. Notes that KA must be inherently negative, for stability. If A is positive, -K must be chosen as shown; if A is negative, +K must be used.

The minimum value of K depends upon the magnitude of permissible error, the desired value of V_{OUT} and the magnitude of the gain A of the amplifier—that is,

$$K = (V_{OUT} - V_e)/AV_e.$$
 (1)

If the desired output voltage for a particular circuit is 1 V, with an acceptable error of 1 mV, and the nominal circuit gain is unity, then the minimum acceptable value of K is (1-0.001)/0.001 = 999. A good margin is provided if the K used is two to 10 times the minimum.

A more general type of analysis is possible if $V_{\text{OFF}} \neq 0$. Given the offset voltage shown re-

1. An amplifier is connected in the feedback loop around a differential op amp. This allows the engineer to set an output level and to determine the input that caused it to occur.

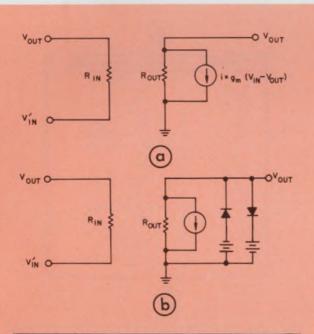
ferred to the output, what must the input $V_{\rm IN}$ be to set the $V_{\rm OUT}$ to a desired $V'_{\rm IN}$? The output voltage is again equal to the desired value when the open loop gain (KA) is much greater than unity. The input signal $V_{\rm IN}$ to the original circuit is then proper to cancel the offset and force the desired output. Closed-loop gain is inversely proportional to A as long as |KA| >> 1. Selection of a value for K is again dependent upon the acceptable error between $V_{\rm OUT}$ and $V'_{\rm IN}$. The minimum value is given by:

$$K = (V'_{IN} - V_{OFF} - V_e)/AV_e.$$
 (2)

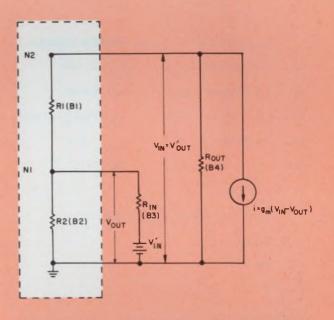
Assign model parameters carefully

The op amp with a gain of K can be modeled for computer-aided analysis if the controlled current source in Fig. 2 is used. This op amp model must be assigned an input resistance, $R_{\rm IN}$, an output resistance, $R_{\rm OUT}$, and a voltage gain of $g_{\rm m}R_{\rm OUT}$. The sign of the voltage gain is determined by the sign of $g_{\rm m}$ and the direction in which the assumed currents in the resistance elements are defined; negative gain is shown. Transconductance, $g_{\rm m}$, is used because many general-purpose programs, such as ECAP, have no provision for direct voltage transfer. Typical values for $R_{\rm IN}$, $g_{\rm m}R_{\rm OUT}$ and $R_{\rm OUT}$ are 1000M ohms, 1×10^{6} and 1 ohm respectively.

However, no larger value of $K = g_m R_{OUT}$ than is necessary should be used. Since $V'_{OUT} =$


 $K(V_{\text{OUT}}-V'_{\text{IN}})$, the larger the value of K, the smaller the difference $V_{\text{OUT}}-V'_{\text{IN}}$ for the desired V'_{OUT} . The computation of this difference may exceed the digit accuracy of a particular program when K is too large.

Small variations in V_{OUT} can result in relatively large variations in V'_{OUT} , so that a program using nonlinear diode and transistor models may require an excessive number of iterations to converge to a solution. Too large an op-amp gain tends to complicate convergence, because a small error in the calculation of a circuit variable can be amplified and returned as a very large change in the equation solutions. In severe cases convergence may be impossible.


Since a model is a mathematical abstraction, a nonlinear feedback equivalent circuit often will not be unique—that is, many solutions are mathematically possible. In general only one of the solutions is physically realizable. Therefore it is desirable to impose constraints that prevent nonrealizable solutions from occurring. One possible constraint is the diode limiter circuit in Fig. 2. The battery voltages limit the output to realizable levels for a specific circuit.

Voltage divider typifies method

A simple voltage divider (Fig. 3) demonstrates how a feedback loop works. Here, it is desired to set the output voltage to 1 V and determine the

2. The equivalent circuit of an op amp "a" does not provide for output limiting. The diodes in "b" prevent the occurrence of physically unrealizable solutions.

3. A voltage divider (R1-R2) is connected in the feedback loop around an op amp model (right). N1 and N2 are nodes, and B1, B2, B3 and B4 are branches for ECAP analysis.

range of required input voltages as a function of the tolerances of R_1 and R_2 . The problem, though trivial, provides a good example of how a circuit is drawn with the aid of a dependent current source.

A model in a feedback configuration is shown in Fig. 3. Here, the battery, in series with $R_{\rm IN}$, sets the desired output voltage. The transconductance across $R_{\rm OUT}$ develops a current out of node N2 proportional to $V_{\rm OUT}$. The voltage $V_{\rm IN}$ is related to the difference between the desired and the actual output voltage by the $g_{\rm in}R_{\rm OUT}$ product. When $R_{\rm OUT}$ is negligibly small, compared with the operational amplifier load, its voltage is

 $V'_{\text{OUT}} = V_{\text{IN}} \approx g_{\text{\tiny IN}} R_{\text{OUT}} \ (V'_{\text{IN}} - V_{\text{OUT}}).$ The output signal is:

$$V_{\text{OUT}} = \frac{g_{\text{m}} R_{\text{OUT}} R_2 / (R_2 + R_1)}{1 + g_{\text{m}} R_{\text{OUT}} R_2 / (R_2 + R_1)} \, V'_{\text{IN}}.$$

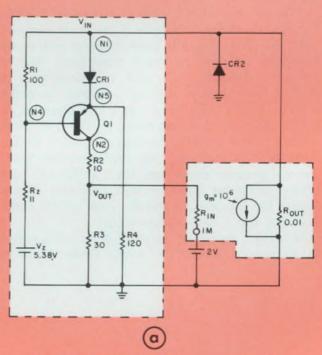
These equations simplify to

 $V_{IN} \approx V_{0UT} (R_2 + R_1)/R_2$

and $V_{\text{OUT}} \approx V'_{\text{IN}}$ when $g_{\text{m}}R_{\text{OUT}}R_2/(R_2 + R_1) >> 1$. for $R_{\text{I}} = R_{\text{B}} = 1$ K ohms, $R_{\text{OUT}} = .01$ ohm, $V'_{\text{IN}} = 1$ V and $V_{\text{e}} = .001$ V, the minimum transconductance value is:

 $g_m = (1 - 0.001)/(0.5 \times 0.001 \times 0.01) = 1.998 \times 10^5 \text{ mho } (K = 1998).$

Typical ECAP input data coding for the voltage divider with feedback is shown in Fig. 4.³ The op amp model is defined by B3, B4 and the transconductance T1, and its coding is a guide


DC ANALYSIS **Descriptive information** $R_1 = 1K \pm 10\%$ BI N(2,1),R=1E3(0.1) $R_2 = 1K \pm 10\%$ B2 N(1.0),R=1E3(0.1) N(1.0),R=1E6,E=-1 R_{IN} = 1M , V_{IN}' = 1 Volt **B3 B**4 N(2.0),R=.01 $R_{OUT} = .01 \Omega$ $GM = 1 \times 10^6$ B(3,4).GM=1E6 T1 WORSTCASE PRINT, VOLTAGES, CURRENTS, WORSTCASE **EXECUTE END**

4. **ECAP coding** of the circuit in Fig. 3 allows the computer to do all the calculations. The righthand column describes the ECAP entries and is not a part of the program.

for any similar ECAP problem.

The threshold circuit shown in Fig. 5 provides a more representative example of the computer analysis procedure. The objective is to ascertain the range of supply voltages, $V_{\rm IN}$, required to set the output threshold $V_{\rm OUT}$ at a dc level of 2 V. The input circuit is analyzed for the worst-case with the aid of CIRC.

An op amp model is connected to sense the threshold level and compare it with a dc refer-

Parameter	Value and tolerance
	Q1
IC SAT	10 MA
BSAT	1 MA
I _E	1 MA
VBE	0.8 ± 0.2 Volts
VCE (SAT)	0.25 ± 0.05 Volts
β	50, + 100 -25
Inverse β	1.0
1 _{CO}	0.0
	CR1 and CR2
I _{Ewd}	1 MA
V _D	0.8 ± 0.2 Volts
IRev	0.0
	Zener 1
1	20 MA
Vz	5.38 ± 10% Volts
RZ	11 Ω

5. A threshold circuit is at the left of "a" and the op amp model that closes the loop is at the right. Data for the semiconductor devices in the circuit is given in "b".

ence of 2 V. The difference or error signal is amplified and inverted by the gain of the op amp model and applied to the supply input as $V_{\rm IN}$. A diode, CR2, acts as a one-sided limiter to avoid a nonrealizable negative solution during computer solution convergence.

In addition a sufficiently large gain of 10 k is used to minimize the effect of circuit-gain variations.

The passive parameter value data are given

Descriptive information

Number of Nodes One Supply No Special Equations Res, Vrs, Cur, Diodes, Transistor 6.1.1.2.1 Supply 1 (Vin') = 2 Volts 25 Semiconductor Junction Temperature N1 , N4 R1 Node Connections 100,55,55 R1 Value and % Tolerance EN.SN **R2 Node Connections** 10.R R2 Value, Reuse R1 Tolerances N3.GD **R3 Node Connections** 30.R R3 Value, Reuse R1 Tolerances **R4 Node Connections** N5.G0 R4 Value 120.R R5 (Rout) Node Connections N1.GO -01 R5 Value R6 (Rin) Nade Connections N3.51 1E6 **R6 Value** N4.GD Vrs (Zener Model) Connections 5.38.D10.U10 Zener Voltage and % Tolerances N1.GO.R6.V GM Connections, Control Element, Control 1E6 GM Value N1.N5 **Diode 1 Node Connections** Diode 1 Forward Current, ID 1E-3 .8...6..1.0 Diode 1 Junction Voltage, Min, Max Diode 1 Reverse Current GD, NI, Cl Diode 2 Connections, Copy Diode 1 N4.N2.N5.CO.P Q1 Connections, Copy 0, PNP 10F-3 CSAT 1E-3 BSAT IE Active VBE @ IE Active -8...6..1-0 VCE SAT @ ICSAT and IBSAT 0.25,,0.2,,0.3

CIRC INPUT CODING

6. CIRC coding of the threshold circuit is listed in the lefthand column. The righthand column describes the entries and is not part of the program input data.

Beta Inverse

1ca

in Fig. 5a. The CIRC program has built in nonlinear models for diodes and transistors based on the ideal diode equation and the Ebers-Moll transistor equations. The input data for these models can often be obtained directly from manufacturer's data sheets. Figure 6 gives the CIRC coding of the circuit of Fig. 5.

The nodes 1 and 3 were worst-case analyzed with the following results:

	Minimum	Nominal	Maximum
NODE 1	6.424	7.428	8.444
NODE 3	1.99916	1.99926	1.99936

These solutions not only indicate the worst-case range of input voltages but also show the adequacy of the loop gain for setting the threshold—that is, the largest error between 2 V and node 3 potential is 0.84 MV.

While these examples have been entirely related to voltage considerations, the feedback technique is easily extended to handle voltage-to-current, current-to-voltage, and current-to-current input-output signals by proper modeling of the forward-loop amplifier. Other analysis programs besides ECAP or CIRC can be used with suitable modifications to the method.

References

1. McNair, R. D., "Computer Talks to the Circuit Designer," *Electronic Desgin*, Oct. 11, 1967, pp. 58-63.
2. IBM 1620 Electronic Circuit Analysis Program

2. IBM 1620 Electronic Circuit Analysis Program User's Manual, (ECAP), IBM Corp. White Plains, N. Y., February, 1965.

3. Berding, H. R., and Collins, T. E., "Reverse Monte Carlo for Computer-Aided Circuit Analysis," *EEE*, June, 1967, pp. 69-72.

1967, pp. 69-72.
4. Pottle, C., A Textbook Computerized State-Space Network Analysis Algorithm, Cornell University Report, September, 1968.

5. Herbert, D. B., "Simulate ICs with Analog Black Boxes," *Electronic Design*, Nov. 22, 1967, pp. 75-79.
6. Calahan, D. A., Computer Aided Network Design,

6. Calahan, D. A., Computer Aided Network Design, McGraw-Hill Book Co., New York City, 1968, pp. 16-21.

Test your retention

Here are questions based on the main points of this article. Their purpose is to help you make sure you have not overlooked any important ideas. You'll find the answers in the article.

- 1. Why must limiters sometimes be used at the output of the operational amplifier?
- 2. What establishes the minimum operational amplifier gain required? The maximum?
- 3. Why are the equations written in terms of transconductance (g_m) ?
- 4. What transistor model is used by CIRC?

50,,25,,150

0

SN54/7491A 8-Bit" SN54/74L91 8 Bit SN54/7442 **BCD-to-Decimal Decoder*** SN54/7494 4-Bit (Parallel-In, Serial-Out)* SN54/7443 Excess-3-to-Decimal Decoder* SN54/7495 4-Bit Universal* SN54/7444 Excess-3-Gray-to-Decimal Decoder* SN54/74L95 4-Bit Universal* BCD-to-Decimal Decoder/Driver* 5-Bit (Dual Parallel-In/Out)* SN54/7445 SN54/7496 SN54/7446 BCD-to-7-Segment Decoder/Driver*(30V) SN54/74L98 4-Bit Data Selector/Storage Register BCD-to-7-Segment Decoder/Driver*(15V) SN54/74L99 4-Bit Universal SN54/7447 SN54/74164 8-Bit Serial-In, Parallel-Out* SN54/7448 **BCD-to-7-Segment Decoder*** 8-Bit Parallel-In. Serial-Out* BCD-to-7-Segment Decoder* SN54/74165 SN54/7449 Synchronous Parallel-Load 8-Bit SN54/74166 SN54/74141 BCD-to-Decimal Decoder/Driver* SN54/74198 Universal 8-Bit Parallel-In/Out, Left/Right SN54/74145 BCD-to-Decimal Decoder/Driver* SN54/74199 8-Bit Parallel-In/Out, J-K Inputs SN54/74154 4-to-16-Line Decoder/Demultiplexer* SN54/74155 Dual 2-to-4-Line Decoder/ Demultiplexer SN54/74156 Dual 2-to-4-Line Decoder/ Demultiplexer (O-C) SN54/74150 16-Bit Data Selector* SN54/74151 8-Bit Data Selector* SN54/7475 Quad Bistable Latch* SN54/74152 8-Bit Data Selector SN54/74153 Dual 4-to-1-Line Data Sel./Multiplexer® SN54/7477 Quad Bistable Latch* SN54/7481 16-Bit RAM* SN54/7484 16-Bit RAM, Gated Write Inputs* SN54/7490 Decade⁴ 256-Bit ROM, Custom Programmed* 64-Bit RAM* SN54/7488 SN54/74L90 Decade SN7489 Divide-by-12° SN54/7492 SN54/74100 Dual Quad Bistable Latch SN54/7493 4-Bit Binary* SN54/74170 4-by-4 Register File (Buffer Memory) SN54/74L93 4-Bit Binary Synchronous 4-Bit Decade* SN54/74160 Synchronous 4-Bit Binary* SN54/7480 Gated Full Adder* SN54/74161 Fully Synchronous 4-Bit Decade Fully Synchronous 4-Bit Binary SN54/7482 2-Bit Binary Full Adder* SN54/74162 SN54/7483 4-Bit Binary Full Adder* SN54/74163 SN54/7485 4-Bit Magnitude Comparator SN54/74190 Synchronous 4-Bit Up/Down Decade, SN54/74L85 4-Bit Magnitude Comparator* 1-Line Mode Control* SN54/74191 Synchronous 4-Bit Up/Down Binary,

SN54/7486 Quad 2-Input Exclusive-OR* SN54/74L86 Quad 2-Input Exclusive-OR* SN54/74H87 4-Bit True/Complement* SN54/74181 4-Bit Arithmetic Logic Unit, Function Generator* SN54/74182 Look-Ahead for Arithmetic Logic Unit* SN54/74H183 Dual Carry-Save Full Adder

New circuit introduced 1970 * Multi-source product

1-Line Mode Control* SN54/74192 Synchronous 4-Bit Up/Down Decade* SN54/74193 Synchronous 4-Bit Up/Down Binary* SN54/74196 Asynchronous Presettable Decade* SN54/74197 Asynchronous Presettable Binary*

SN54/74180 8-Bit Parity Generator/Checker

These represent the latest development in TIL integrated circuits. A totally new technology, TI's Schottky-clamped TTL circuits combine the high speed of unsaturated logic and the low power of TTL saturated logic: 3 ns at 20 mW. Here's a brand-new list of recently announced devices. For more information on this fastest TTL family, circle 191 on the Reader Service Card.

SN74S00	Quad 2-Input Positive NAND Gate
SN74S01	Quad 2-Input NANO Gate, Open-
	Collector Outputs
SN74S04	Hex Inverter
SN74S10	Triple 3-Input NAND Gate
SN74S11	Triple 3-Input AND Gate
SN74S20	Dual 4-Input Positive NAND Gate
SN74S22	Dual 4-Input NAND Gate, Open-
	Collector Outputs
SN74S112	Dual J-K Negative-Edge Triggered
	Flip-Flop, Separate Preset, Clear
	and Clock
SN74S113	Dual J-K Flip-Flop, Separate Clock
SN74S114	Dual J-K Flip-Flop, Common Clock

SSI/TTL (CIRCUITS:				
		SN54/7460	Dual 4-Input Expander*	SN54/74H55	Expandable 2-Wide 4-Input
SN54/7400	Quad 2-Input NAND Gate*	SN54/7470	J-K Flip-Flop*		AND-OR-INVERT Gate*
SN54/7401	Quad 2-Input NAND Gate, Open-	SN54/7472	J-K Master-Slave Flip-Flop*		Dual 4-Input Expander*
	Collector Output*	SN54/7473	Dual J-K Master-Slave Flip-Flop*		Triple 3-Input Expander*
SN54/7402	Quad 2-Input NOR Gate*	SN54/7474	Dual D-Type Edge-Triggered Flip-Flop*	SN54/74H62	4-Wide 3-2-2-3-Input AND-OR Expander
SN54/7403	Quad 2-Input NAND Gate, Open-	SN54/7476	Dual J-K Master-Slave Flip-Flop,		J-K Flip-Flop with AND-OR Input*
	Collector Output*		Preset and Clear*		J-K Master-Slave Flip-Flop*
SN54/7404	Hex Inverter*	SN54/74104	Gated J-K Master-Slave Flip-Flop*	SN54/74H73	Dual J-K Flip-Flop, Separate Clock*
SN54/7405	Hex Inverter, Open-Collector Output*	SN54/74105	Gated J-K Master-Slave Flip-Flop*	SN54/74H74	Dual D-Type Edge-Triggered Flip-Flop*
SN54/7406	Hex Inverter Buffer/Driver, Open-	SN54/74107	Dual J-K Master-Slave Flip-Flop,	SN54/74H76	Dual J-K Flip-Flop, Preset and
	Collector High-Voltage Output		Preset and Clear*		Clear Inputs*
SN54/7407	Hex Buffer/Driver, Open-	SN54/74110	Gated J-K Master-Slave Flip-Flop,	SN54/74H78	Dual J-K Flip-Flop, Preset and
	Collector High-Voltage Output		Data Lockout		Clear Inputs*
SN54/7408	Quad 2-Input Positive AND Gate*	SN54/74111	Dual J-K Master-Slave Flip-Flop,	SN54/74H101	J-K Flip-Flop, AND-OR Inputs
SN54/7409	Quad 2-Input Positive AND Gate*		Data Lockout	SN54/74H102	J-K Flip-Flop, AND Inputs
SN54/7410	Triple 3-Input NAND Gate*	SN54/74121	Monostable Multivibrator*	SN54/74H103	Dual J-K Flip-Flop, Separate Clock Inputs
SN54/7412	Triple 3-Input NAND Gate, Open-	SN54/74122	Retriggerable Resettable	SN54/74H106	Dual J-K Flip-Flop, Preset and
	Collector Output		Monostable Multivibrator*		Clear Inputs
SN54/7413	Dual 4-Input NAND Schmitt Trigger*	SN54/74123	Dual Retriggerable Resettable One-Shot*	SN54/74H108	Dual J-K Flip-Flop, Preset and
SN54/7416	Hex Inverter Buffer/Driver, Open-				Clear Inputs
	Collector High-Voltage Output		SPEED SSI CIRCUITS		OWER SSI CIRCUITS
SN54/7417	Hex Buffer/Driver, Open-	SN54/74H00		SN54/74L00	Quad 2-Input NAND Gate*
	Collector High-Voltage Output	SN54/74H01	Quad 2-Input NAND Gate,	SN54/74L01	Quad 2-Input NAND Gate, Open-
SN54/7420	Dual 4-Input NAND Gate*		Open-Collector Output*		Collector Output
SN54/7423	Expandable Dual 4-Input	SN54/74H04		SN54/74L02	
	Positive NOR Gate with Enable	SN54/74H05	Hex Inverter, Open-Collector Output*	SN54/74L03	Quad 2-Input NAND Gate, Open-
SN54/7425	Dual 4-Input Positive NOR Gate		Triple 3-Input NAND Gate*		Collector Output
	with Enable*	SN54/74H11		SN54/74L04	
SN54/7426	Quad 2-Input High-Voltage	SN54/74H20		SN54/74L10	Triple 3-Input NAND Gate*
	Interface NAND Gate*	SN54/74H21	Dual 4-Input AND Gate*	SN54/74L20	Dual 4-Input NAND Gate*
SN54/7427	Triple 3-Input NOR Gate*	SN54/74H22		SN54/74L30	Single 8-Input NAND Gate*
SN54/7430	8-Input NAND Gate*		Collector Output*	SN54/74L51	Dual 2-Wide 2-Input/2-Wide
SN54/7432	Quad 2-Input OR Gate*	SN54/74H30			3-Input AND-OR-INVERT Gate*
SN54/7437	Quad 2-Input NAND Buffer*	SN54/74H40	Dual 4-Input NAND Buffer*	SN54/74L54	2-2-3-3-Input AND-OR-INVERT Gate*
SN54/7438	Quad 2-Input NANO Buffer with	SN54/74H50		SN54/74L55	
	Open-Collector Output		AND-OR-INVERT Gate*	SN54/74L71	R-S Master-Slave Flip-Flop*
SN54/7440	Dual 4-Input NAND Buffer*	SN54/74H51			J-K Master-Slave Flip-Flop*
SN54/7450	Expandable Dual 2-Wide 2-Input		INVERT Gate*	SN54/74L73	
	AND-OR-INVERT Gate*	SN54/74H52		SN54/74L74	Dual D-Type Edge-Triggered Flip-Flop*
SN54/7451	Dual 2-Wide 2-Input AND-OR-INVERT Gate*	CHEATANTO	Input AND-OR Gate*	SN54/74L78	Dual J-K Master-Slave Flip-Flop,
SN54/7453	Expandable 4-Wide 2-Input	SN54/74H53	Expandable 4-Wide 2-2-2-3-	0.10 1/14210	Common Clear and Clock*
	AND-OR-INVERT Gate*	00154/344554	Input AND-OR-INVERT Gate*		The state of the s
SN54/7454	4-Wide 2-Input AND-OR-INVERT Gate*	3N54/74H54	4-Wide 2-2-2-3-Input AND-OR-	Now eigewid	introduced 1970 - #Multi-course product
			INVERT Gate*	New circuit	introduced 1970 *Multi-source product

Looking for low-cost solutions to high-performance design problems?

You'll find a lot of new ones in TI's 54/74 line —still your broadest choice of state-of-the-art TTL integrated circuits.

If you're going to design the best equipment for your customers, you need the best tools available. Design after design has proven TTL the top logic tool from a standpoint of circuit efficiency and cost effectiveness.

Not for your state-of-the-art system? Look again. A lot has happened in the last few months. Enough to justify a careful review of your latest logic diagrams and product plans.

Take another look at the TTL leader-TI's 54/74 family.

MSI choice and complexity. Begin with the opposite page. Here, to help you reduce package count, simplify designs and improve performance, is an unmatched array of catalog MSI functions. The line has just about doubled in the past nine months and there are still more to come of ever-increasing complexity.

SSI back-up in depth. But in using TTL/MSI, you need the substantial back-up of versatile SSI circuits.

Check the opposite page again.

Four speed/power choices. Within TI's big TTL family, you have a selection of four speed/power ranges to help optimize your designs. There are 1 mW per gate low power circuits, standard- and high-speed circuits plus the revolutionary new Schottky-clamped TTL functions which attain speeds of 3 ns at 20 mW.

Complete compatibility. Even with this wide choice, you avoid compatibility problems. All members of TI's Series 54/74 family are designed to work together—saving you both design and component costs.

And TTL logic is also most economical on the basis of cost-perfunction...in whatever package types you need: ceramic and plastic DIP or flat pack.

Ready availability. Not only has TI significantly increased its TTL production capacity, but we maintain large factory inventories (averaging more than 150,000 MSI parts alone) in all three packages and in both temperature ranges. More than 100 authorized distributor locations stock full inventories of TI's TTL circuits...representing an additional stock, in the field, of more than 300,000 MSI parts.

And if your system requires multiple sources, you'll find more of TI's 54/74 line is backed up by other reputable semiconductor suppliers. It makes good business sense. (Asterisks on opposite page indicate multiple-source devices.)

The time is now to consider TTL for today and tomorrow. The decisionmaking facts are in our new MSI brochure, CB-125.

For your copy, circle 189 on the Reader Service Card or write Texas Instruments Incorporated, P.O. Box 5012, M.S. 308,

Dallas, Texas 75222. Your authorized TI Distributor has copies, too.

TEXAS INSTRUMENTS

Make very wide-range log amps easily

by sequentially summing several basic log stages. Custom-tailored characteristics are no problem, either.

Logarithmic video amplifiers are becoming more widely used in radar direction finders, crystal video receivers and many other applications in which a large dynamic range is needed. And this growing popularity has created a demand for a simple, straightforward technique for the design of good wide-range amplifiers.

The sequential current-summing approach does an excellent job of filling this need. It allows custom design of the amplifier's logarithmic characteristic to compensate for imperfections in other components. In addition, any desired accuracy and range can be obtained by simply using a sufficient number of stages.

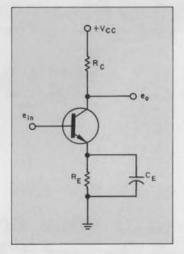
Before getting into the design procedure, let's take a quick look at the operation of a basic single-polarity log stage and then briefly review the sequential current-summing approach.

Transistor junctions are log elements

The basic single-polarity log stage of Fig. 1 provides logarithmic gain to within ± 0.75 dB over a 20-dB range. The collector current of the stage is given by

$$I_{\text{C}} = I_{\text{S}} \left[\text{exp (mV}_{\text{BE}}) \right] \qquad (1)$$
 where I_{S} is the diode saturation current; $m = q/\eta KT$ (q is the electronic charge, η is a diode constant approximately equal to unity, K is Boltzmann's constant and T is the absolute temperature); and V_{BE} is the transistor base-emitter voltage.

Both the base-emitter voltage and the collector current of the transistor are made up of two components—a quiescent (bias) component and a component caused by the input voltage e_{in} . If a subscript, Q, is used to denote quiescent values, we can write:


$$I_{co} = I_s \left[\exp \left(mV_{BEO} \right) \right] \tag{2}$$

and

$$I_{c} = I_{cQ} \left[exp \left(me_{in} \right) \right] . \tag{3}$$

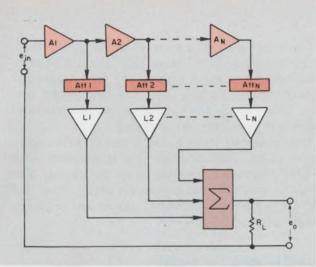
For negative input voltages, the output voltage is given by

Richard S. Hughes, Senior Electronic Engineer, Code 40203, U. S. Naval Weapons Center, China Lake, Calif. 93555.

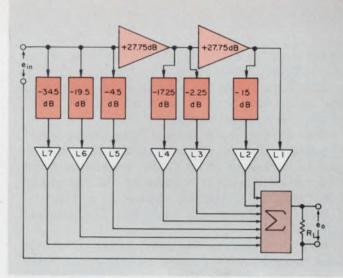
1. The basic log stage provides an excellent approximation to a logarithm over about a 20-dB range.

$$e_o = I_{eq} R_e \left[\frac{\exp(me_{in}) - 1}{\exp(me_{in})} \right] , \qquad (4)$$

which provides an excellent approximation to a logarithmic function over about a 20-dB range. For $I_{cq}R_c=0.1$ V, and $T=27\,^{\circ}\text{C}$, the center of the logarithmic region is about 32 dB below 1 V (-32 dBV).

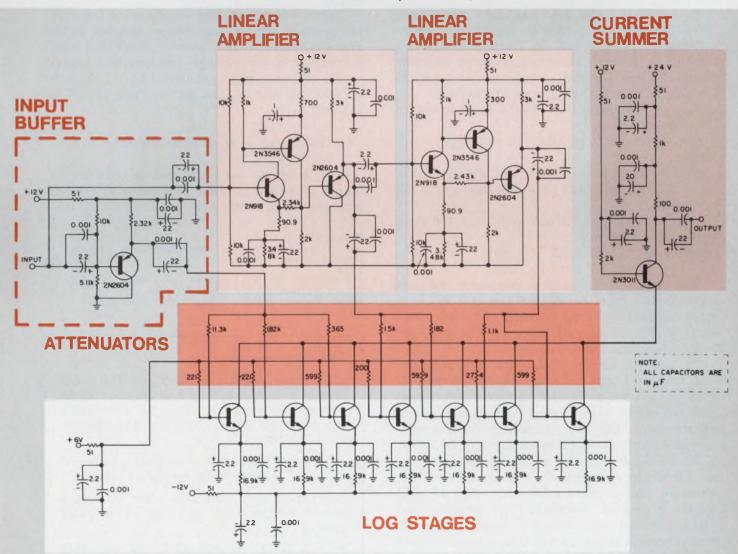

To build a logarithmic amplifier with a dynamic range greater than 20 dB, it is merely necessary to combine several basic log stages. Separate linear amplifiers (or attenuators) are used to phase in the log stages over their appropriate ranges as the input voltage increases. The individual output currents are summed in a common load to produce the extended-range response (Fig. 2).

The exact number of log stages needed to cover a given dynamic range depends upon the required accuracy. If each stage covers 20 dB, the accuracy is ± 0.75 dB. For a 17-dB range, the accuracy improves to ± 0.5 dB, and a 15-dB range yields an accuracy of ± 0.3 dB.


The design procedure is simple

Once the amplifier's accuracy and the upper and lower limits of the input signal are specified, the design of the log amp is straightforward. Here is a recommended procedure:

Step 1: Choose the dynamic range to be cover-



2. Wide-range operation is obtained by cascading several log stages. The linear amplifiers, A_1 through A_N , and the attenuators phase in the log-amp stages in sequence. The output currents pass through R_L to produce e_o .

3. Considerable savings can be realized by eliminating several of the linear amplifiers. Here, two amplifiers and six attenuators are combined to provide seven output levels spaced exactly 15 dB apart.

4. This log amp covers 105 dB with seven 15-dB log stages. The transistors in the log stages are all 2N929s. Note that the collectors of all of the log transistors are connected to sum their output currents.

ed by each log stage, D_s. This is determined by the accuracy requirement.

Step 2: Calculate the number of log stages that will be needed, N. N is the total dynamic range of the input signal divided by D_{B} .

Step 3: Specify the desired output slope (compression ratio), S, of the amplifier. S, which is usually measured in mV/dB, determines what the maximum output voltage of the individual log stages, $e_{o\ max}$, must be, since $e_{o\ max} = SD_s$.

Step 4: Choose I_{cq} and R_c . The product $I_{cq}R_c=e_{o\ max}$.

Step 5: Calculate the total linear gain that must precede each log stage. Note that this is the sum of the gains (in dB) of all the linear amplifiers and/or attenuators preceding the log stage in question. The gain preceding the nth stage is given by:

 $G_{\rm n}=-32-D_{\rm s}/2-$ (n-1) $D_{\rm s}-e_{\rm in\ min}.$ Note that $e_{\rm in\ min}$ is the minimum expected input signal in dBV.

It's easier done than said

To see how easily this procedure works out, let's design a single-polarity log amp to cover a dynamic range of 105 dB, starting at a lower limit of -95 dBV. An output slope of approximately 6.7 mV/dB and an accuracy of ± 0.3 dB are desired. Using the suggested procedure:

Step 1: We choose $D_{\rm s}=15~{\rm dB/stage}$ to obtain the desired accuracy.

Step 2: N = (105 dB)/(15 dB/stage) = 7 stages.

Step 3: Since S = 6.7 mV/dB, we know that $e_{o \text{ max}} = (6.7 \text{ mV/dB})$ (15 dB/stage) = 100 mV/stage.

Step 4: Let $I_{cq}=1.0$ mA and $R_c=100~\Omega$ so that $I_{cq}R_c=100$ mV.

Step 5:
$$G_L = -32 - 7.5 - (-95) - (n-1)$$
 15
= 55.5 - (n-1) 15 dB.

This means that the gain preceding the first log stage, L_1 , must be 55.5 dB and that the gain must decrease by 15 dB for each additional stage until, finally, the seventh stage must be preceded by an attenuation of -34.5 dB.

To save on construction costs, the amplifier just described was built as outlined in Fig. 3. Five of the seven linear amplifiers have been assigned zero gain and have thus been eliminated. Furthermore, the two remaining linear amplifiers are identical—each has a gain of 27.75 dB.

Of course all seven log amps are identical, and the attenuators are merely voltage dividers. So, although the complete schematic (Fig. 4) may appear somewhat complicated, it actually contains only two basic amplifier designs, each repeated several times. In addition, a common-base summing amplifier (Q_1) has been used to minimize the Miller feedback capacitance.

The linear gain stages are complementary feedback video amplifiers. Since they are designed to handle negative input pulses, the first transistor of each pair is an npn type and the second is a pnp. Thus, both turn OFF when driven and saturation problems are avoided.

The measured output rise time for this amplifier is 70 ns. Replacing the log transistors with 2N918s improved the rise time to 25 ns. The actual measured compression ratio was 6.5 mV/dB, which is in excellent agreement with the design value of 6.7 mV/dB.

Custom-tailoring the amplifier

In some applications it may be desirable for the response of the log amp to differ from a perfect logarithmic function to compensate for an imperfection in another component. For example, if the output of a crystal detector forms the input to the log amp, it may be desirable to have the amplifier compensate for the crystal's deviation from a square-law response at high signal levels.

This can easily be done by changing the emitter resistors of the log stages that are active over the portion of the dynamic range that needs correction. If the voltage compensation needed over a certain range is found to be $V_{\rm c}$, then the collector current of the active stage should be changed to

$$I_{cq}' = (I_{cq}R_c + V_c)/R_c.$$

This change can be effected by changing R_E to

$$R_{E}' = R_{E}(I_{CQ}/I_{CQ}')$$
.

This technique has been used to linearize the output of a crystal radar receiver over a 60-dB dynamic range.²

References:

1. Hughes, Richard S., "New Log Amp Cascades to Desired Range," *Electronic Design*, Oct. 25, 1969, pp. 86-89.

2. Hughes, R. S., "Logarithmic Video Amplifiers," Naval Weapons Center NWC-TP 4869, Jan. 1970, U. S. Naval Weapons Center, China Lake, Calif. 93555

Test your retention

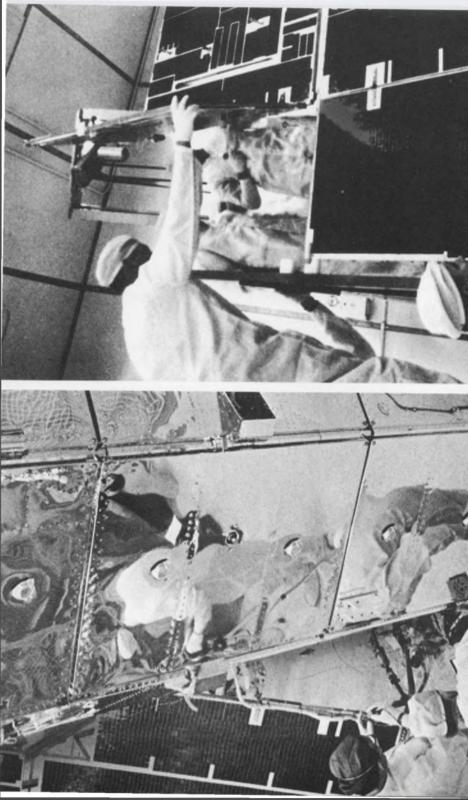
Here are questions based on the main points of this article. Their purpose is to help you make sure you have not overlooked any important ideas. You'll find the answers in the article.

- 1. How are the accuracy and the number of stages of a logarithmic amplifier related?
- 2. What factors determine the maximum output voltage that each log stage must produce?
- 3. How is the amount of linear gain that must precede each log stage calculated?

Handy by virtue of its operating convenience and its small size, Triplett's Model 310 V-O-M is no miniature when it comes to rugged capability on the job.

With outstanding readability from 0.05 to 1200 V DC in 5 ranges at 20,000 ohms per volt . . . 0.05 to 1200 V AC in 5 ranges at 5,000 ohms per volt . . . 5 ohms to 20 megohms in 4 ranges . . . 10 μ A to 600 mA DC . . . 0.1 to 300 A AC with the optional Model 10 clamp-on adapter . . . the Model 310 can handle practically every electrical measurement you'll need to make. Accuracy on the DC ranges is 3%—4% on AC.

For all its conveniences and features, this great Triplett instrument . . . the World's most popular miniature V-O-M is only \$44 suggested USA user net. If you'd rather have a high voltage range of 600 V (AC and DC) and an AC sensitivity of 15,000 ohms per volt, ask for the Triplett Model 310-C at \$56 suggested USA user net. See them both at your local Triplett distributor or, for more information, call him or your Triplett sales representative. Triplett Corporation, Bluffton, Ohio 45817.



The World's most complete line of V-O-M's . . . choose the one that's just right for you

- 1. Hand size V-O-M with provision for attaching AC clamp-on ammeter.
- 2. 20,000 Ohms per volt DC sensitivity 5,000 AC.
- 3. One selector switch minimizes chance of incorrect settings and burnouts.

Shown actual size

When the Goddard Space Flight Center wrote their specs for a hardcopy printer, they wound up with a choice of one.

They didn't mean to. It just turned out that way. Because of all the printers around, the Gould 4800 was the only printer which could give the Goddard people all they asked for. Speed Goddard asked for 1000 lines per minute. The 4800 will whip out 4800. Silence Goddard planned to put their printer right in their on-line control room. And weren't about to put up with a noisy impact printer. With the Gould 4800, they don't have to. It's electrostatic. And very quiet. Printout Width Goddard wanted a full 80 columns wide. The Gould 4800 provides it. On convenient 8½" wide paper. The Goddard people also were impressed by several other important factors: alphanumerics and graphics — the Gould 4800 delivers words and pictures, simultaneously, direct from computer

output; permanent paper — special, high-contrast, won't curl, get

yellow or brittle . . . you can write on

it with anything; reliability — smooth, guiet, impact-free operation means less wear and tear on parts, less maintenance, little downtime; versatility — Gould 4800 generates wide variety of fonts, from smallest matrix on up, in many weights, sizes and faces. It can be integrated into a console set-up (see Goddard installation photo on opposite page) or used independently as shown below. One more thing: The Gould 4800 is priced at or below printers that can't come close to the performance. So the Goddard people not only got guite a lot more than they bargained for. They also got quite a bargain. Talk to your computer people about the Gould 4800. Then talk to us about a demonstration. We're ready whenever you are. Gould Inc., Graphics Division, 3631 Perkins

Gould Inc., Graphics Division, 3631 Perkins Avenue, Cleveland, Ohio 44114.

→ GOULD

Gould 4800. The next generation of high-speed printers.

Explore IC performance with a curve tracer.

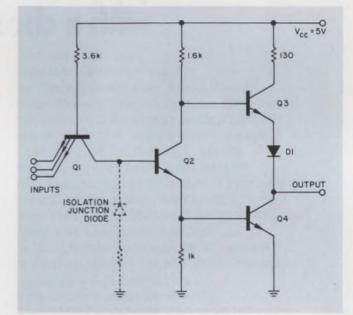
It will display characteristics that are not found in manufacturers' specifications.

Although the curve tracer^{1,2} is well known as a useful test instrument for displaying the characteristics of diodes, transistors and discrete semiconductors, few engineers realize that it can also be used to display the important characteristics of integrated circuits. With this useful technique, the circuit or system designer can obtain a graphical display of the characteristics required to use ICs in a system.

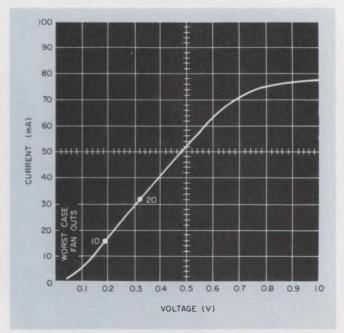
Determine fan-out capability

The output impedance of a logic circuit (in its ONE or ZERO state) is important because it determines the circuit's fan-out capability (the number of gates that can be driven). The output impedance of most logic circuits is extremely nonlinear, but data sheets usually specify only the impedance at one point.

The curve tracer can be used to display the IC's total characteristics, including all of its nonlinearities. The current into and out of the circuit is displayed as a function of the output voltage.


The basic components of the curve tracer that are used are:

- The collector sweep voltage—a 60-Hz full-wave rectified sweep-voltage source.
- The horizontal and vertical amplifiers, which display the currents or voltages at various points in the circuit.


In this test setup the normal circuit supply voltage $V_{\rm cc}$ is applied from an external power supply, and the collector sweep voltage is used to drive the output.

When the polarity switch of the collector sweep voltage is selected as positive, the impedance of the gate for positive currents (into the device) is displayed on the curve tracer's CRT. A negative polarity displays the impedance for negative currents (out of the device).

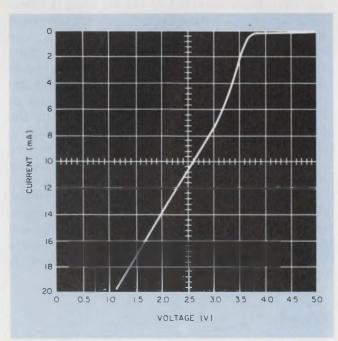
A typical TTL NAND gate circuit is shown in

1. A typical TTL NAND gate was chosen to demonstrate the use of the circuit tester for ICs. The technique can easily be extended to other circuit families.

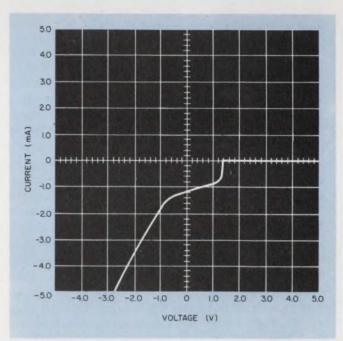
2. Output impedance for the ZERO level of the TTL gate (Fig. 1) has a linear slope corresponding to $R_{\rm sat}$ of the output transistor (Q4).

John A. DeFalco, Senior Engineer, Computer Control Div., Honeywell, Inc., Old Connecticut Path, Framingham, Mass. 01701.

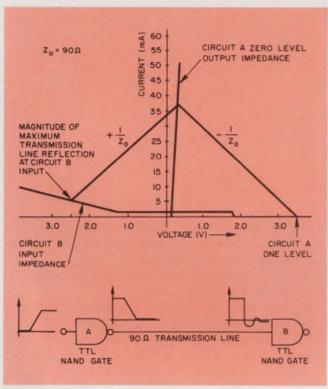
Fig. 1. The TTL family was chosen as an example, but the circuit technique is easily extended to any other circuit family. When all of the inputs are in the ONE state, the output is in the ZERO state. The ZERO-level output impedance is shown in Fig. 2 where the linear slope corresponds to the collector resistance, R_{sat}, of the output transistor.


The value of the output ZERO level for any value of positive load current (into the device) can be determined from this curve. For example, the output ZERO voltage is seen to be 0.47 V with a load current of 50 mA. Note that for currents above 70 mA, the ZERO-level impedance becomes nonlinear. This nonlinearity occurs because the base current being supplied to the output transistor can no longer keep it saturated.

For use in designing with this logic circuit, Fig. 2 can also be marked in units of fan-out. In this way the circuit designer has a graphical display of the increase in the ZERO-level voltage he must give up to use this circuit for various


fan-outs. The designer, therefore, has a graph at his disposal that is marked in terms of either current or fan-outs and output voltage, and the relationship between the various parameters is easily seen.

Digital circuits have a completely different output characteristic in the ONE level. A typical ONE-level output impedance curve for a TTL gate is shown in Fig. 3. This curve is obtained in the same manner as the ZERO-level impedance, but in this case one input is grounded. The output voltage is seen to be about 3.5 V, or the supply voltage, 5 V, minus the V_{be} drop of Q3 and the diode drop of D1 (Fig. 1). The output voltage decreases as the current out of the device is increased. This output characteristic is especially useful in determining the ONE-level output voltage when supplying a particular current to a load.


In Fig. 3, if the gate were required to supply 12 mA to a load device, it could do so while maintaining an output voltage of 2.4 V. Lines

3. The ONE-level output impedance curve shows the voltage drop caused by $V_{\rm b\mu}$ of Q3 and the diode drop of D1 of the TTL gate (Fig. 1).

4. The input impedance curve of the TTL circuit indicates that the driving circuit must be able to sink 1.2 mA if its ZERO state has a 0-V output.

5. Transmission-line reflections can be predicted by plotting input, output, and transmission-line impedances. The ZERO-level output impedance is used for the plot.

with slopes corresponding to various load impedances can be drawn on the output characteristic, and the current and voltage present when driving a particular load impedance can be easily read from this characteristic. Again, using Fig. 3, the output voltage is seen to be 3.1 V when driving at 500-ohm load, which requires 6.2 mA.

Input impedance is also important

In using any logic circuit, the designer must be aware of the loading effect one circuit has on another. For TTL circuits this loading effect is nonlinear because the loading varies depending on the input voltage to the load circuit. The curve tracer can display this complex characteristic by driving the circuit input with the collector sweep voltage. If the sweep polarity switch is positive, the input impedance for positive currents is displayed. The negative sweep polarity position displays the input characteristic for negative voltages.

A typical TTL input characteristic is shown in Fig. 4. The area in quadrant one, for positive currents and voltages, corresponds to the gate being ON and represents the loading presented to a gate that is in the ONE level. By changing the Y-axis current scale to a more sensitive region, this current can be read quite accurately and is normally less than $50~\mu\text{A}$. Note that this current must be supplied from the previous cir-

cuit. Below 1.5 V the load current becomes negative and the previous circuit becomes a sink for this current. If the driving circuit had an ideal ZERO-state level of 0 V, it would have to sink (from Fig. 4) a current of 1.2 mA.

For negative input voltages, the characteristic shows a break at 0.8 V and then a linear slope for further increases in negative voltages. This break occurs because the collector-substrate isolation junction of Q_1 begins to conduct. The slope of the input impedance characteristic in this region is important because it determines the kind of reflections that can be developed when one TTL circuit drives another through a long unterminated transmission line.

Predict transmission-line reflections

The curve-tracer plots of output and input impedance are used in conjunction with a graphical technique to predict the transmission-line reflections that, unless controlled, can often cause a system to malfunction. The technique requires plotting of the input, output, and transmission-line impedance on a current-voltage diagram (Fig. 5).

The first step is to plot the circuit's ZERO-level output impedance (from Fig. 2) and the input impedance (from Fig. 4). The current direction for input impedance has changed sign because, relative to the gate that is driving the transmission line, this current is now positive.

The next step is to read the ONE-level voltage at zero current from Fig. 3 and enter it on the graph. From this point a line with a slope equal to the negative reciprocal of the transmissionline impedance $(-1/\mathbb{Z}_0)$ is drawn until it intersects the circuit output-impedance characteristic. From this intersection draw a line with a slope of +1/Z until it hits the input-impedance characteristic curve. The voltage and current read at the intersection of the $+1/Z_0$ and the input impedance curve are the voltages and currents at the first transmission-line reflection. Only the first (and usually most important) reflection is shown in Fig. 5. Subsequent reflections can be obtained by continuing the procedure of drawing lines with $-1/Z_0$ and $+1/Z_0$ slope from the input characteristic reflection point to the output characteristic reflection point. Every other intersection corresponds to a reflection at the far end of the transmission line. Note that the complete output impedance characteristic is required in order to plot the later reflections.

References:

- 1. Instruction Manual, Type 575 Curve Tracer, Tektronix Inc., Beaverton, Ore.
- 2. Instructional Manual, Type 6200B Curve Tracer, Fairchild Instrumentation, Mountain View, Calif.

C-LINE ZENERS 19°

surge protection doesn't cost youmore...

and it's nice to know it's there.

For the same prices as plastic devices, you can get up to 5 times greater surge protection. In fact, you can use C-line 1 and 5 watt zeners instead of conventional 10 and 50 watt chassis mounted types. And for far less money. Unitrode's unique fused-in-glass construction assures you of monolithic, void-free zener diodes with permanently stable electrical characteristics. And they'll withstand voltage surges high enough to make them hot enough to glow. They're in stock now, ready for immediate delivery. (1 watt ratings as low as 19¢ in 100k lots.) Can you afford not to use them? For fast action, call Sales Engineering collect at (617) 926-0404 Unitrode Corporation.

UNITROD Equality takes the worry out of paying less.

Unitrode Corporation		
Inquiry Processing Dept.	0B, 63 Atlantic Ave., Bosto	n, Mass. 02110
☐ Please send ¢-line zer with complete specifi	her samples in \square 1 watt, \square cations.	5 watt rating
NAME	TITLE_	
COMPANY		
ADDRESS		
CITY	STATE	ZIP

Simplify function generator design

You can reproduce any periodic function by using sampling and ROM storage.

Designing digital sinusoidal function generators for data-processing systems can be a trying experience. Many approaches place severe hardware constraints on the system or result in accuracies that degrade with time (see box). But there's a better way to do it.

With the hardware now available, an accurate, economical digital-function generator can be designed simply. The method relies on the repetitive nature of the function and uses ROMs for storage rather than for generating the function each time it is required. A very important point to remember is that these techniques are suitable for generating any cyclic function, not just sinusoids.

Consider the design of a sinusoidal generator with a 70-dB signal-to-noise ratio (S/N) at the sampling instants.

Simplified approach to the problem

A sampled function can be described as a collection of digital words that represent the magnitude of the function at the sample points. A sinusoid has a cyclic property that makes it a very interesting candidate for sampled systems. The cyclic property means that sampled values will repeat each cycle; and if the sample points are chosen wisely, they will repeat each half-cycle with a sign change. Furthermore, a repeat of the sample values will occur each quarter-cycle if the look-up order is mirror-imaged about 90° and 270°.

The important property is that these sample values do repeat and thus can be stored in a memory for recall rather than being generated each time they are required by a feedback structure.

Memory size is governed by the number of sample points desired to describe the function (number of data words) and the accuracy to which each point must be defined (number of bits per data word). Unlike recursive structures

that produce time-degraded outputs, the memory locks in the accuracy of any point and reproduces that accuracy every time it is called up. This reduces the number of bits required for a given accuracy to that set by the least significant bit value (LSBV) of the data word.

Programmable or variable frequency is another characteristic desired for more utility. If a sine function is represented by 2048 sample points and a system clock is used to set sample time intervals, T, then the frequency of the reproduced sine wave will be 1/(2048 T). This assumes looking up each sample point stored. Different output frequencies with the same sample time, T, can be produced by looking up every Mth sample point. This results in stepping through the function samples in fewer but larger increments, giving a higher output frequency. The frequency thus becomes M/(2048 T).

With the cyclic waveforms stored in memory, it remains to develop a means of addressing the memory in the right sequence to reproduce a sine wave of the right frequency.

Generate the angle address

Since all the values of $\sin \omega_o T$ occur between 0 and $\pi/2$ only one quadrant of values need be stored in memory. Every other value of $\sin \omega_o t$ between $\pi/2$ and 2π is equal to that of some angle in the first quadrant. Using the read-only memory storage for these value simplifies referring the angles to a first-quadrant equivalent.

Input addresses to ROMs can be defined any way the user chooses for a particular desired output. This freedom of choice of address vs output when specifying a read-only memory allows the use of convenient address values. The output values are already specified as being $|\sin \omega_0 T|$. For $\sin (0)$ the address is chosen to be $0_1 0_2 \ldots 0_n$. This address increases with the increasing angle, but $\sin \omega_0 T$ comes back to its original value of $\omega_0 T = 2\pi$. If the angle address is stored in an n-bit accumulator register, the state $00 \ldots 0_n$ can represent a completely empty or completely full register since the two are equivalent. The angle π can be represented by a half-full register, $100 \ldots 0_n$. Thus $\pi + \pi$ would

D. F. Elliot and A. D. Sypherd, Members of the Technical Staff, Autonetics Div., North American Rockwell, Dept. 521, Mail Code HB10, P.O. Box 4173, 3370 Miraloma Ave., Anaheim, Calif. 92803.

Don't do it this way

Some seemingly simple and straightforward approaches to the design of digital sinusoidal function generators should be avoided because round-off errors that increase with time are likely to result.

Suppose, for instance, we must implement a function generator whose output is $sin(n\omega_0T)$, where n is the number of the sampling interval, ω_0 is the oscillator frequency and T the sampling period. One design that might be considered is shown in Fig. A.

The problem with this system is that roundoff occurs at each sampling interval in the multiplication of the signal s_n by $2 \cos(\omega_0 T)$. This round-off can be considered as a scaled reference, $r_n \sin(\omega_0 T)$, fed back to the input at the nth sampling interval. Since round-off is usually random, these feedbacks represent random reference signals of small amplitude. Nevertheless, they do not satisfy the requirement of having a zero reference signal for the time greater than zero.

Over a long period of time, the random reference signals caused by round-off, even though small, begin to affect the total output. The output is noisy and grows more so with time.

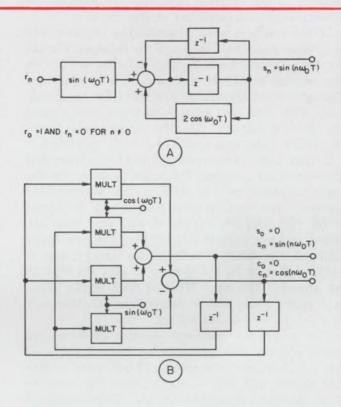
Suppose the round-off errors, which produce the reference inputs at each sampling interval, are independent random variables with a mean value of zero and a mean square value of (LSBV)²/12, where LSBV is the least significant bit value. Then at the nth sampling interval, the mean square noise (MSN) output for the mechanization is given as follows:a

$$MSN = \frac{(LSBV)^2}{12} \frac{n}{\sin(\omega_o T)} \tag{A} \label{eq:MSN}$$

Note the MSN output is proportional to the number, n, of the sampling interval.

A second digital mechanization (Fig. B) results from the matrix equation

$$\mathbf{z} \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \cos\left(\omega_{o}\mathbf{T}\right) & \sin\left(\omega_{o}\mathbf{T}\right) \\ -\sin\left(\omega_{o}\mathbf{T}\right) & \cos\left(\omega_{o}\mathbf{T}\right) \end{bmatrix}$$


$$\begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{bmatrix}$$

$$(B)$$

In Eq. B, e₁ and e₂ are noises generated by the combined effect of round-off or truncation of the two digital multiplications required to determine both x and y. At the nth sampling interval we have, for the mechanization of Fig. B.

$$MSN = \frac{(LSBV)^2}{12} \, n. \tag{C}$$

While the noise in the output of the second

mechanization is decreased by a factor of $1/\sin(\omega_0 T)$ with respect to the first mechanization, the MSN still increases with time.

A previous article describes a highly accurate method of generating sin A using read-only memories (ROMs) given an angle A in the first quadrant. Letting A = N + H where N is the number of whole degrees and H the fractional degree in hundredths, the identity

$$\sin(N+H) = \sin(N)\cos(H) + \cos(N)\sin(H)$$

was used to generate sin A. Generation of each of the four components on the right-hand side of Eq. D required only 2648 bits of ROM to give an error of less than 2-15. However, for the sinusoidal function generator application, additional hardware is required, before applying the trigonometric identity, to reduce $n\omega_0T$ to an equivalent first quadrant angle and to determine sign $[\sin(n\omega_0T)]$. Extensive additional hardware is required to perform the multiplications and additions indicated by Eq. D and to affix the sign. Memory size increased an order of magnitude, and hardware requirements more than doubled for complete mechanization of the identity equation.

References

a. Rader, C., and Gold, B., "Digital Filter Design Techniques," *Proc. IEEE*, Vol. 55, No. 2, February, 1957, pp. 149-171.
b. Hamel, A., "Slash ROM sizes with Equivalent Functions," *Electronic Design*, Vol. 17, No. 4, 1969,

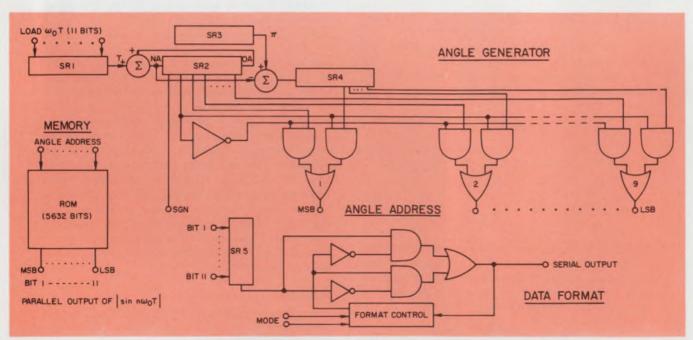
pp. 66-74.

cause an overflow in the register, but the remaining address would be $00...0_n$ representing 0 or 2π . This overflow technique also presents a pattern to the address that can be decoded for picking sign and quadrant of the angle.

If the angle is π or greater, the register will be greater than half full, and the most significant bit (MSB) will be a 1. This tells us we are in the second half-cycle and the sign is negative. The next most significant bit identifies the quadrant. The first two most significant bits mean: 00—first quadrant, 01—the second quadrant, 10—third quadrant, and 11—fourth quadrant.

Figure 1 shows a circuit devised to perform this first-quadrant referral for angle look-up. In the angle address section, SR2 is the accumulator register. The look-up step size or ω_0 T is loaded in by SR1 and the values of SR1 and SR2 are added and put back in SR2 to give the new angle address. The MSB of SR2 is the sign bit and is used further on in the system to affix the sign to the answer. The next MSB of SR2 is the quadrant select code, and it determines whether ω_0 T or $\pi - \omega_0$ T will be looked up.

The read-only memory section receives the angle address and provides an output value of $\sin \omega_{\rm o}t$. For this example a 12-bit word length was chosen (11 bits + sign); thus the memory must store one quadrant (1/4 \times 2048 samples) of 11-bit data words or 11 \times 512 = 5632 bits. This would require six 1024-bit ROMs.


Memory output is an 11-bit parallel word with the sign bit coming from the address register. Format is signed magnitude. If other formats are desired such as serial, two's complement, or one's complement, a little additional logic will easily convert the data.

Determine the generator S/N ratio

We wish to determine the S/N for the digital sinusoidal function generator using a ROM that has $2^9 = 512$ entries of 11 bits each. Since the entries are for angles equally spaced between 0 and $\pi/2$ radians, there are $(\pi/2) \times 2^{-9}$ radians between entries.

Suppose our requirements are satisfied by a family of sine waves of such frequencies that there is always an exact entry in the ROM for the angle, A. This assumption restricts the smallest increment of angle A to be $\pi/2 \times 2^{-9}$ radians and guarantees that we can always look up $|\sin A|$ in the ROM. The value of $|\sin A|$ and the MSB of angle A determine $\sin A$ as previously discussed. Under these assumptions, the only sources of error in the generation of $\sin (n\omega_o T)$ are: (1) round-off of the entry stored in memory, and (2) variations in the period, T.

Consider first round-off errors. One bit of each 12-bit word must be allotted for sign, leaving 11 bits for accuracy. While $|\sin A|$ varies from 0 to 1, the bits representing it vary from 0 to $2^{11} + 2^{10} + \ldots + 2^0 = 2^{12} - 1 = 4095$. Assuming that the last bit is rounded, it is accurate to $1/2 \times 2^0 = 2^{-1}$. Suppose this round-off error is uniformly distributed between -1/2 and 1/2. The average value of a random variable uniformly distributed between -a and a is zero, and the mean square value is 1/3 a. Thus, the mean square noise power, N, due to roundoff is given by

1. Round-off errors do not increase with time in this simplified sine-wave generator. The angle generator section reduces the angle generated to a first quadrant

equivalent. Thus the memory section need contain only one quadrant of values for look-up. The data-formatting section is optional for serial outputs.

$$N = \frac{1}{3} \left[\frac{1}{2} \right]^{\frac{n}{2}}.$$
 (1)

The signal power, S, in a sampled sine wave is given by

$$\begin{split} S &= \sum_{n=1}^{M} B^{2} \sin^{2} (n\omega_{o}T) \cong B^{2} \overline{\sin^{2} \omega_{o}t} \\ &= \frac{B^{2}}{2} \cong 2^{23} \end{split} \tag{2}$$

where B = 4095 is the maximum amplitude and M is the number of samples obtained from the oscillator. Therefore, at the sampling instants the signal-to-noise power ratio at the digital oscillator output is

$$\frac{S}{N} = \frac{2^{23}}{\frac{1}{3} \left[\frac{1}{2}\right]^2} = 3 (2^{25}) \approx 80 \text{ dB}.$$
 (3)

Consider now the noise introduced by randomness in the sampling period, T. This randomness would be introduced, for example, by clock frequency drift. Suppose the time intervals by which pulses are perturbed about their mean position is subject to a Gaussian probability distribution with a mean value of zero and a standard deviation of σ . Suppose the power spectral density of a single pulse occurring at time t = 0is $G(\omega)$, where ω is angular frequency in rad/sec. Then the signal-to-noise power ratio, due to variations in pulse spacing, is given approximately²

$$\frac{S}{N} = \frac{\int_{-\infty}^{\infty} \exp(-\sigma^2 \omega^2) |G(\omega)|^2 d\omega}{\int_{-\infty}^{\infty} \{1 - \exp(-\sigma^2 \omega^2)\} |G(\omega)|^2 d\omega}$$
(4)

In the present case $G(\omega)$ is given by

$$G(\omega) = \frac{1}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$$
 (5)

where δ is the Dirac delta function. Substituting Eq. 5 into Eq. 4 and evaluating gives

$$S/N = \frac{\exp(-\sigma^2 \omega_0^2)}{1 - \exp(-\sigma^2 \omega_0^2)}$$
 (6)

For $\sigma^2 \omega_0^2 \ll 1$, we can make the approximation exp $(-\sigma^2\omega_0^2)=1-\sigma^2\omega_0^2$ which gives us

$$\frac{S}{N} \cong \frac{1 - \sigma^2 \omega_0^2}{\sigma^2 \omega_0^2} \cong \frac{1}{\sigma^2 \omega_0^2} . \tag{7}$$

Suppose the oscillator period, To, is nominally given by $T_o = 10T$. Then

$$\frac{S}{N} = \frac{1}{\sigma^2 \left[\frac{2\pi}{10T}\right]^2} = \left[\frac{T}{\sigma}\right]^2 \left[\frac{100}{2\pi}\right]^2 \tag{8}$$

Suppose finally that $T = 1000(\sigma)$. Then

$$\frac{S}{N} = \frac{10^{10}}{4^2} \approx 84 \text{ dB}. \tag{9}$$

Assuming that the noise powers due to round-

off and randomness in the sampling period are additive, the S/N is better than 78 db. It is readily seen that Eq. 3 can be generalized to give

$$\frac{S}{N} = 3(2)^{2b+1} \tag{10}$$

where b is the number of bits mechanized including sign.

Change the frequency increment

The minimum angular increment, $\Delta \omega_0 T$, by which $\omega_0 T$ can be changed is $(\pi/2) \times 2^{-9}$. Consider a low-frequency communication system employing a sampling interval, T =128 μ s, and an angular increment, $\Delta\omega_0 T = \pi \times 2^{-10}$. Then from $\Delta\omega_{\rm o}T=2\pi\Delta fT$ we have

$$\Delta f = \frac{2^{-11}}{128 \times 10^{-8}} \cong 2^{-18} (2^{10})^2 = 2^2 = 4 \text{ Hz.}$$
 (11)

Note that Δf is determined by the minimum angular increment, $\Delta \omega_0 T$, and by the sampling period, T. The value of Δf can be made smaller by making $\Delta \omega_o T$ smaller, which requires more bits in the angle generator. We could then increase the ROM capacity to guarantee a look-up for every possible angle or simply look up the closest angle and accept an equivalent degradation in S/N. The maximum value of T is constrained by the well-known sampling theorem, which requires that the highest frequency be sampled at least twice per cycle. It is apparent. then, that a trade-off must be performed between minimizing hardware expense and minimizing the frequency increment to optimize design of a sine generator that must be finely tuned.

The engineer furthermore has the option of increasing the number of bits in the words containing the angle, A, and the angle, π -A. Thus he may obtain as fine a resolution, Δf , as he desires. As the bit length of A is increased, the ROM capacity may be increased and/or the angle rounded before looking up |sin A| in the ROM. When both the angle A and the stored values of |sin A| are rounded, the S/N may be computed, using appropriate expressions.

Extension of the design presented to other cyclic functions should be obvious. Any periodic function can be reproduced using the sampling technique and ROM storage. Custom-programmed ROMs³ provide new possibilities for low-cost, programmable, multifunction generators.

References

1. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York,

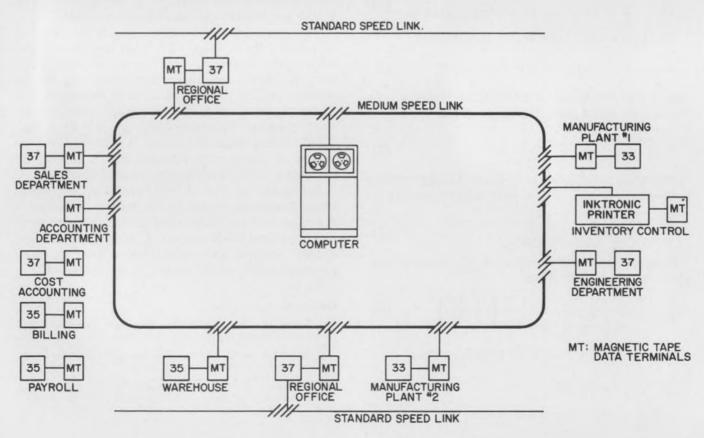
1965.
2. MacFarlane, G. G., "On the Energy-Spectrum of an Almost Periodic Succession of Pulses," Proc. IRE, Vol. 37, No. 10, 1949, pp. 1139-1143.
3. Sypherd, A. D., and Salman, N. D., "Automatic Laser Encoding of Semiconductor Read-Only Memories," Proc. National Electronics Conference, Vol. 24, 1968, pp. 202-202. 206-209.

...try a Teletype® 37 ...and look into mag tape!

We don't have a crystal ball. And rarely resort to mystic means in recommending what terminal should be used for a particular data communications application.

Some of the things, we at Teletype look at, that make the job a little easier are these:

Distribution Volume
Urgency of message Language
Frequency of use Accuracy


The diagram below demonstrates how you can fit a number of Teletype termi-

nals into a system based on function and usage requirements. Magnetic tape makes the speed and language of various terminals compatible. In this hypothetical case we use one computer program, one major line control procedure, one computer port, one type of data set per link. And deliver greater data through-put per on-line dollar. Using terminals that offer the best capabilities within each station's communication situation.

Using Teletype magnetic tape data terminals, combined with various Teletype keyboard send-receive sets, you obtain

some unique system flexibility. And the on-line time saving aspects of operation are really dramatic. Magnetic tape data terminals can keep data flowing on-line at up to 2400 wpm.

In the example shown, the manufacturer has linked sales, engineering, accounting and inventory control departments to a central office computer. As well as manufacturing plants, warehouse and regional offices. He's covered all critical data points with a common medium speed link, using a variety of terminals. Magnetic tape data terminals make it possible.

DATA COMMUNICATIONS

equipment for on-line, real-time processing

Routine aspects of the system are maintained in standard speed links. Branch offices are tied into the regional office terminals on standard speed networks. Regional offices batch routine branch office data on one magnetic tape. Transmit the data to the central office processor at one time. Saving a number of additional computer port requirements.

Since data generated at manufacturing plants is urgently needed, but volume is low, low-cost model 33 terminals are used here. The warehouse data volume is higher, but not complex, so a heavy-duty model 35 is working here.

Volume requirements are heaviest in the accounting department. Cost accounting, payroll, billing and invoice payment functions generate data all day long. Here magnetic tape is prepared off-line at various terminals. And an on-line stand-alone magnetic tape terminal is used to transmit data to and receive data from the central processor.

Sales and engineering departments are equipped with Teletype 37 terminals. But for different reasons.

model 33 series: An extremely low-cost 100 wpm terminal line. Uses ASCII. The most widely used terminal in time-sharing systems today.

Inktronic® data terminals: A unique electronic, solid state terminal. Prints up to 1200 wpm. Forms characters through electrostatic deflection (no typebox). ASCII compatible.

This terminal offers engineering people some unique format flexibility. Half-line and full-line forward and reverse line feed can be used to communicate complex equations and engineering formulae to the processor. It is possible to add special graphic engineering symbols to the normal compliment of letters, numbers and punctuation marks found in the typebox (up to 32).

The sales department uses the model 37 for order processing. It has on-line vertical and horizontal tab set control, and form feed platen (optional) which makes data transmission and reception on multiple copy business forms easy and economical.

At the inventory control point, this manufacturer has an urgent need to obtain printed page copy of large volumes of inventory items. Magnetic tape is used to feed data to the processor and a Teletype Inktronic® KSR set receives data and prints page copy on-line up to 1200 words per minute.

As you can see, Teletype's modular terminal design allows you to use vari-

model 35 series: A rugged, heavy-duty line of 100 wpm terminals. Uses ASCII.

magnetic tape data terminals: Use compact reusable tape cartridges. Operate on-line at up to 2400 wpm, and connect "locally" to lower speed Teletype terminals using ASCII.

ous units as building blocks to meet the most demanding system needs. Teletype also has the station and error control accessories necessary for more efficient and economical data communications operations. Since cost is a very important part of the mix, Teletype offers greater terminal capabilities on a price/performance basis than any other manufacturer.

If you're involved in designing a teleprocessing, time-sharing, remote batch or computer switched system; looking into a multi-point private line, point-topoint private line or switched data communications network; talk to Teletype about terminals. For ideas, equipment and understanding, you'll find no better source. Anywhere.

Teletype data communications equipment is available in send-receive capabilities of up to 2400 words per minute. If you would like specific information about any of the equipment described here, write: Teletype Corporation, Dept. 89-16, 5555 Touhy Ave., Skokie, III. 60076.

model 37 series: One of the most versatile heavy-duty terminal lines going. Generates all 128 characters of ASCII. Operates at 150 wpm. Prints in upper and lower case.

StuntronicTM accessories: Electronic solid state terminal logic devices offering many control options. Such as, automatic station control, error detection and correction capabilities.

Teletype is a trademark registered in the U.S. Pat. Office

How to succeed in spite of the slump.

The experiences of two small surviving companies may help engineer and manager alike direct their firm through the slowdown.

Richard L. Turmail, Management Editor

The statement made by a professional football lineman that, if he didn't react properly to events around him, he would be at their mercy, can easily apply to the small electronics company in the event of a business slump.

When business is sluggish, large firms automatically cut back on employees and/or salaries as a precaution against going into the red. But the more financially vulnerable small companies have a much shorter lead time to bankruptcy and must fight for their very survival.

Two small Massachusetts-based companies encountered two separate but related problems during the current slump: one discovered that 75% of its business was being booked and delivered within a month, giving it little time or capital to maneuver; the other found that its customers didn't have enough money to buy its products—at a time when it was attempting to establish a product line. Although neither company has found the final answer for its dilemma, they have managed to survive. How they did it should be of service to the manager and engineer who have a stake in a small company.

All chiefs and no Indians

Trump-Ross Industrial Controls, Inc., a small producer of rotary pulse generators in North Billerica, Mass., was reaching for its second \$1-million annual sales income plateau when the general economy began to lag.

The company's British-born president, Dennis Trump, told ELECTRONIC DESIGN that in May, 1970, he had noticed that 24% of his business was being booked and delivered within the same month, compared to the norm of about 14% turnaround in January.

"By June," Trump said, "our one-month turnaround business had reached 75%."

The company was forced to lay off 17 employees out of 52, including three engineers. It is operating with a skeleton staff, rather than go out of business. According to Trump, the firm had not extended itself. It had been nursed along at a reasonable pace, expanding only when nec-

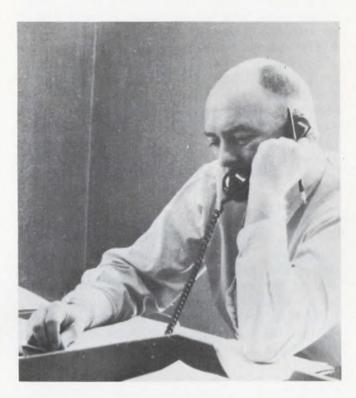
essary, and only when profitable.

"It doesn't take Indians to organize a company," Trump said. It took only two chiefs, Trump and his partner, Edward Ross, along with a secretary, to start the company on little more than the knowledge that there was a need for low-cost encoders.

"Ed and I each contributed \$10,000 (total capitalization is now at \$100,000), and Ed handled the marketing of a plastic typing coder I designed that could be sold at a low price," Trump said. When they had earned enough to afford a sales manager, they hired one, and when profits warranted it, they hired an engineering manager. Trump said that by that time they had a small staff of employees, one of whom they promoted to production manager and sent to industrial management school.

"When we reached \$1 million in sales," Trump said, "all departments were covered."

How to parlay a company


How Trump-Ross has been able to ride out the economic storm, and, according to its president, "service the encoder industry better than most," is due to two main factors: the company's ability to communicate and to organize people.

The company maintains close communication among all its managers on a weekly basis so that each one knows what the other is doing for a customer of mutual interest.

"One golden rule," Trump said, "is that we don't discuss the engineering aspect of any product at these meetings. That's important because our customers' needs are very different. We have to relate to each one on a personal basis concerning the pricing and application of his product." Trump added that lately they've had to discuss the user's credit as well. Of its thirty or so customers, the company discusses an average of six at each meeting.

Another way the company has attempted to improve communication is by its "record of telephone inquiry" form. This is divided into three sections: "Inquirer," "Applications Under Consideration" and "Action." A similar sheet has been run off for "Personal Contacts."

President Trump of Trump-Ross in N. Billerica, and President Bragg of I/O Systems in Natick.

As for the company's ability to organize people, Trump's staffers claim he comes by it naturally. As one of them observed: "He has a feeling for hiring people who are compatible and who aren't afraid to make decisions."

Trump himself says that if he doesn't hire people who can make some decisions on their own, he would find himself swamped by detail work and would fail to develop as a manager.

As every good manager knows, if employees are to be organized properly, they must first be motivated properly.

"We're slightly paternalistic here," Trump said, "because of the extra incentives we offer our employees."

These incentives include:

■ Pay for non-absentees: It goes to the employee who hasn't missed a day's work in a year.

■ No time clocks: Production people are put on the same status as office personnel. The company claims the honor system has improved employee morale.

• Bonuses: Extra time off or extra pay is given to employees for solving problems.

"What's most important," one of Trump's managers said, "is that the president must set the example for everyone to maintain a quality operation that's profitable. And he does."

An exhausting job, particularly in light of the

fact that new business isn't exactly knocking down the door these days.

Producer gambles on library cards

I/O Systems of Natick, Mass., is a tiny electronics company (\$25,000 sales in 1969) engaged in the development of input-output systems and subsystems for use in digital computers and other digital data-processing systems.

Until the business slump, the company's president and founder, John Bragg, was developing two product lines, which were being marketed to business and industrial users. One of these lines adds graphic capabilities to time-sharing terminals; the other is a line of data-preparation and transmission units.

"The products are pretty much a luxury purchase," Bragg said. "They make an operation easier, but they are not absolutely vital, and our customers don't have the money to buy them, now."

To survive the cutback, Bragg is directing his company to develop input-output systems and subsystems that will make its customers' equipment more versatile. According to Bragg, there's little competition in the applications area because most of the large companies have laid off their systems and logic engineers.

Bragg maintains a staff of 15, including one

engineer, one technician, and two production people. All systems work is turned around within a month.

"We work on two or three jobs at one time," Bragg said, "and the operation is simplified by the use of a library of functions."

The company uses cards to accomplish most of the design functions that are required to complete a digital interface. Its engineer studies the specifications that the customer requires and calls upon the library to put together the system. The library is comprised of 25 to 30 cards, including data receivers; buffers; programmers (sequences); and output (transmitters). The engineer may have to design one card at either end of the system, but the rest of it he can fill from the library.

"We force the input to suit our library, and we force the output to fulfill the specifications," Bragg said. "Most design engineers would redesign the cards each time they had to create a system, but we gain time with the library and it has certainly saved us during the slump."

Besides developing the card library, Bragg utilizes the following set of rules in managing his company:

- 1. Clearly define the chain of authority (not command).
- 2. Institute an open-door policy, but feed back down the chain so that authority cannot be bypassed.
- 3. Give your managers full authority relevant to responsibility.
- 4. Review decisions closely but do not overrule them except when absolutely necessary. In that case inform the responsible person that he is to make the change himself to preserve the chain of authority.
- 5. Give reasons for your decisions whenever it is appropriate, to provide character and policy guidance to others down the chain and develop company operating philosophy.
- 6. Provide challenge at all levels by delegating responsibilities according to each person's potential capacity; then monitor closely.
- 7. Develop and cross-train managers to permit promotions rather than in-job raises.
- 8. Do not promote company loyalty but encourage its development by offering a future of personal progress.
- 9. Prepare your replacement to take over smoothly when you advance.

Consultant notes five major classic management blunders

There are almost as many management errors as there are employees, systems and good intentions. Some of the mistakes that plague management however, are more serious than others, especially during times of business slowdown. We asked David W. Brown, president of Technical Marketing Associates, Inc., a management consultant firm in Concord, Mass., what the most common technical management mistakes are and how they can be avoided. According to Brown, there are five basic "classic blunders" that company management is heir to. His observations follow:

- 1. Reluctance to plan. Some executives find it difficult to analyze their own companies objectively. The best course, in time of trouble, would be for the president of the company to call in a cool, hard-nosed outsider who will give him an objective viewpoint.
- 2. Failure to generalize. When management talks to a customer about a new product, it's a mistake to speak of the product in specific terms. Because the market is always changing, the company will have to apply a new set of standards to the product for each change that comes along. It's better to establish common general criteria for a product, rather than specific data that will soon become obsolete.
- 3. Duped by fashionable methods. Company acquisitions, dependence on aerospace business

and installation of a stock option plan are a few of the management methods that have, in the past, become so fashionable that many companies have adopted them regardless of suitability. Perhaps it would be more profitable for your firm to build its own plant, develop its own business, and find other ways to motivate its employees.

- 4. Failure to anticipate the market. Some businesses, like furniture, rarely have to anticipate and/or forecast the market they're in. The electronics industry changes daily, and the best way to figure the competition is to hire a marketing expert to do it for you every day.
- 5. Failure to recognize product obsolescence. When your big users start telling you what they want you to build, they don't want to pay you for creativity anymore. You can either become a low-overhead manufacturer, or you can replace your product with an up-to-date model.

The over-all blunder of many company managements is the failure to set priorities that will insure the company's success. Most R&D failures, for example, failed at the point of conception because the company didn't know whether to sell the product or use it for window dressing. Too often a company gambles on the success of one product. Others fail because they don't have the engineering capability to meet their future needs. Management often doesn't give its engineers guidelines that will take the company where it wants to get.

The new PDP-8/e: Its own mother wouldn't know it.

The PDP-8/e is a radical departure in computer design. There's no back panel wiring — everything plugs into the OMNIBUS,™ even the CPU. In any order. It's completely flexible; you buy only what you need. And if you need more later, just buy it and plug it in. And the PDP-8/e is easier to interface and easier to maintain than old-style computers.

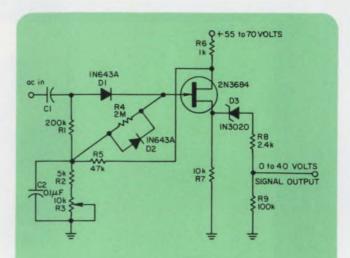
We've made a few other changes. Easier programming. 1.2 μ sec memory cycle time. 15 added instructions. 256 words of read-only memory. 256 words of read/write memory.

Yet there's no generation gap between the PDP-8/e and the rest of the PDP-8 family computers in 7500 world-wide installations. They all use the same peripherals (over 60 of them). They're all program and interface compatible, they all have extensive applications and documentation. PDP-8/e was born with a silver software package in its mouth.

The basic 4K machine sells for less than \$5000. With teletype, less than \$6500. Quantity discounts available.

Digital Equipment Corporation Maynard, Mass. 01754 (617) 897-5111

Ideas For Design


Use a self-adjusting method for forward-biasing diodes

Forward biasing provides diodes with the necessary potential to function as linear rectifiers. This clearing potential varies with temperature and from diode to diode even within a fixed family type. The self-adjusting circuit presented has little temperature dependance and will work properly with a wide variety of silicon and germanium diodes.

A bridge-type circuit is used with a second diode, D_2 , to provide a current reference and a negative peak clamp (see diagram). The bridge circuit divides the dc bias into a current sufficient for full conduction of diode D_2 and a current slightly less than is necessary for full conduction of diode D_1 . A major difference between this circuit and conventional forward-bias methods is the relative independence of the value chosen for the bias source.

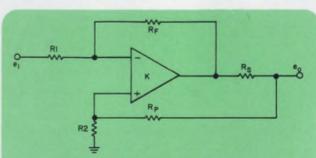
The only critical components are input capacitor C_1 , which should be kept as small as possible, and R_1 , which should be less than 10% of the load impedance.

A 2N3684 FET in a follower configuration was selected for output coupling becasue of its high input impedance and low noise, low drift and large voltage swing. Bias voltage is supplied by the drain resistor with the intention of providing a drift-correcting feedback loop. The dynamic range was found to exceed 86 dBV, when a scope

Linear rectification over a wide dynamic range is achieved with this self-adjusting forward-biasing circuit. The FET provides low-noise output coupling.

probe was connected at the source. The frequency response is good up to 2 MHz without peaking or neutralization.

Output low-pass can be provided by the use of a small gate-to-drain capacitor. For an input of 600 kHz, 470 μF was used, but it is not indicated in the figure. This method of low-pass is recommended since it does not interact with the zener diode at the output.


Donald Savage, Naval Air Development Center, P.O. Box 397, Forrest Grove, Pa. 18922.

VOTE FOR 313

Improve amplifier efficiency with positive feedback

Power-transfer efficiency is limited to 50% if the conventional approach is followed to match source and load impedances in power-amplifier applications. But if both positive and negative feedback are used, the efficiency can be raised to 85%.

Normally, negative feedback is used to give the amplifier a very low output impedance. Then a series line impedance is added to obtain the desired match. With the approach described the load is presented with a matched source ($\pm 5\%$), even though the series matching resistance is only one-sixth of the value that would normally be used.

1. The physical output impedance, $R_{\rm s}$, is transformed to an equivalent resistance of $6R_{\rm s}$ by using both positive and negative feedback.

Helipot Trims Price & Profile

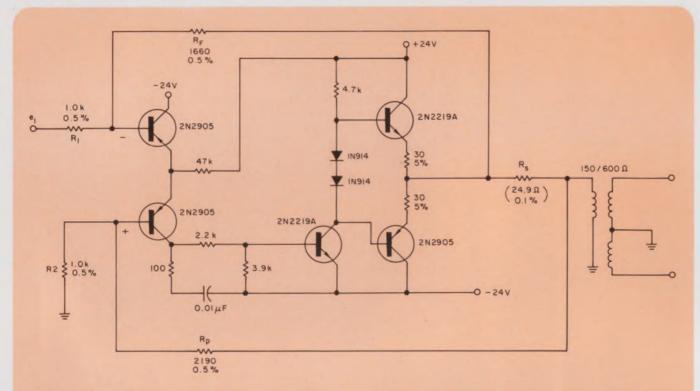
89PR100K

The new Helipot Series 89 industrial cermet trimmers feature:

Low Cost:

\$1.35 each in 1-9 quantities; less than \$1.00 in quantities over 1,000.

Low Profile:


Maximum height of .250 inches allows for closer p-c board stacking.

Series 89 trimmers with two different pin spacings are available "off-the-shelf" from 17 locations across the country.

Beckman*

INSTRUMENTS, INC.
HELIPOT DIVISION
FULLERTON, CALIFORNIA

INTERNATIONAL SUBSIDIARIES: AMSTERDAM; CAPE TOWN; GENEVA; GLENROTHES, SCOTLAND; LONDON; MEXICO CITY; MUNICH; PARIS; STOCKHOLM; TOKYO; VIENNA.

2. Adding positive feedback enables this circuit to deliver 0.5 W with a power efficiency of 85%,

much better than the 50% efficiency obtained with conventional techniques.

The circuit of Fig. 1 uses both positive and negative feedback to transform a physical $R_{\rm s}$ to an equivalent output resistance of $6R_{\rm s}$. In this case, the ac power lost in the matching resistance $R_{\rm s}$ is only 17% of the power that is delivered to the load.

In terms of the design parameters

$$\begin{split} & \mathbf{G} = \frac{\mathbf{K}}{1 + (\sigma - \beta) \, \mathbf{K}} = \frac{1}{\sigma - \beta} \, \mathrm{if} \ (\sigma - \beta) \, \mathbf{K} \! > \! 1, \\ & \mathbf{R}_o = \frac{(1 + \sigma \mathbf{K}) \, \mathbf{R}_s + \mathbf{R}_1}{1 + \mathbf{K} \, (\sigma - \beta)} \\ & = \frac{\mathbf{R}_s}{1 - \frac{\beta}{\sigma}} \, \mathrm{if} \ (\sigma - \beta) \, \mathbf{K} \! > \! > 1 \, \mathrm{and} \, \mathbf{R}_1 < \! < \! \sigma \, \mathbf{K} \mathbf{R}_s \end{split}$$

where

K = closed-loop gain

G = open-loop no-load gain

 σ = negative-feedback factor = R_1/R_1

R₁ = open-loop output resistance of amplifier

 R_s = matching resistance

R_o = closed-loop output impedance

 β = positive-feedback factor

$$=\frac{R_1+R_f}{(R_2+R_p)R_f}$$

Once the closed-loop gain and output impedance are specified, it is easy to determine the requirements of the other components. Figure 2 is the circuit that will provide a voltage gain of 10 (20 dB) with an output impedance of 150 ohms.

The $\pm 5\%$ impedance match is obtained with resistances having the tolerances shown. These values are obtained by trimming. The closed-loop gain is flat within ± 0.5 dB from dc to 200 kHz.

Roland J. Turner and Richard W. Spencer, General Atronics Corp. 1200 E. Mermaid Lane, Philadelphia, Pa. 19118.

VOTE FOR 314

Use this pnpn latch to make a stable frequency divider

By using a pnpn latch as an equivalent programmable unijunction transistor, any engineer can easily make a stable frequency divider. The trigger point of the latch (Q_3 and Q_4) is determined by the voltage division ratio of R_6 and R_7 plus V_{be} of Q_3 . In general, the pnpn trigger point is

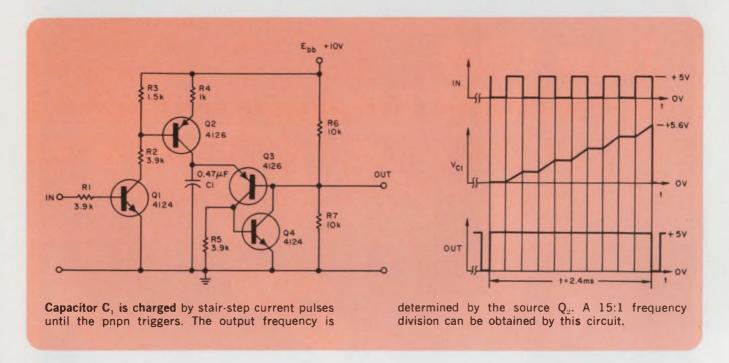
$$E_{\text{\tiny TR}} = V_{\text{\tiny beQ3}} + (E_{\text{\tiny bh}}R_{\text{\tiny 7}})/(R_{\text{\tiny 3}}\!+\!R_{\text{\tiny 7}}).$$

In this case the trigger point is 5.6 V.

The output time constant (frequency) is set

8-70

...optimized for bandwidth, ruggedness, and power gain


A new TRW series of four ruggedized UHF transistors makes 40 watts of output power available across the full 225-400 MHz band. The lineup can be varied to meet precise input and output requirements.

Ruggedized for performance under severe mismatch condi-

tions, these 24-28 volt "building blocks" provide high uniformity, reduce or eliminate variable circuit elements...and cost less. And the 1.5 W. 2N5773, 8 W. 2N5774, 20W. 2N5775, and 40 W. 2N5776 are all available for immediate delivery from any TRW distributor.

For applications assistance, contact TRW Semiconductor Division, 14520 Aviation Blvd., Lawndale, Calif. Phone: (213) 679-4561. TWX: 910-325-6206.

TRW

by the current output of constant current source Q_2 , capacitor C_1 and the pnpn's trigger point. It is given by

$$T = (C_1 E_{TR}) / (I_{2}D),$$

where D = duty cycle of input pulses. For square waves, D = 0.5.

 Q_1 is an interface switch that supplies constant-voltage pulses to Q_2 at the input pulse rate.

These voltage pulses are converted to current pulses by Q_2 . The current pulses charge C_1 in stair-step fashion. When the trigger point of the pnpn is reached, the latch conducts and C_1 is discharged, and the cycle starts again. Division ratios of 10 or 15 or easily obtained with good stability.

Charles A. Herbst, Dumont, N. J.

VOTE FOR 315

Determine the series inductance of noninductive resistors

Precision wire-wound resistors often are required when circuit stability is a critical factor. In addition to resistance, the wire-wound units can possess series inductance and shunt capacitance.

If an attempt is made to measure the inductive effect on an impedance bridge, extremely high errors can result. This is primarily due to the small ratio of inductance to resistance. If a square-wave comparison test is used, the resolution is still poor enough to result in large errors.

Because of the difficulties of these two methods, a test was developed using inductive coupling with a reference coil. This method increased the accuracy of measurement by effectively eliminating the series resistance and, in addition, eliminating the effect of the shunt winding capacitance.

The inductive coupling method, as used to

check a $20-\mu H$ inductance limit for a noninductive 1.925-K resistor, follows:

- 1. Make a $20-\mu H$ air core reference coil by winding 60 turns of #28 insulated copper wire on a 1-M Ω 1/4-W composition resistor of approximately 1/8-inch diameter. Measure the exact value of the coil on an inductance bridge.
- 2. Make a 5-turn, close-wound, self-supported drive coil of #18 copper wire with an inside diameter of approximately 1/2 inch (large enough to fit over the resistor under test). Connect this coil to a low-voltage filament transformer secondary. Connect the primary through an autotransformer to a 115-V 400-Hz sine-wave supply.
- 3. Set the autotransformer to give a current of 5 A through the drive coil.
- 4. Place the $20-\mu H$ reference coil inside the drive coil and connect it to a high-impedance ac

Al Si Base

POLISHED SUBSTRATES

Better Surface, Better Control on Dielectric Constant

AlSiBase® substrates with ground, polished surfaces are available in sizes to 5" x 5" with surface quality which sets new standards. Smaller sizes such as 1" x 1" are available with ground surfaces of less than one microinch, intermediate sizes as low as 2 microinches or better, and larger substrates 10 microinches or better.

The substrates are ground for thickness and flatness control with a remarkably uniform surface. The basic ceramic is a specially processed AlSiMag® 772 which is a 99.5% alumina ceramic

composition with superior strength and electrical characteristics. When required, the dielectric constant variation may be maintained at a level of $\pm 1\%$ or less. Many of these substrates are being used in microwave technology.

This is the first time that volume deliveries of ceramics of this quality have been commercially available. Our technical staff with specialized experience will be glad to make suggestions if you will outline your requirements. Prototypes in many shapes can be supplied to your specification without tooling.

CODE IDENT. NO. 70371

American Lava Corporation

3M

PHONE 803/682-3215 • LAURENS, SOUTH CAROLINA 29360, U.S.A. PHONE 615/265-3411 • CHATTANOGA, TENNESSEE 37405, U.S.A.

A SUBSIDIARY OF

69th YEAR OF CERAMIC LEADERSHIP

For service, contact American Lava representatives in Offices of Minnesota Mining and Manufacturing Company in these cities (see your local telephone directory): Boston: Needham Heights, Mass. • Chagrin Falls, O. • Chicago: Elmhurst, III. • Dallas, Tex. • Indianapolis, Ind. • Laurens, S. C. • Los Angeles, Calif. • Metropolitan New York: West Caldwell, N. J. • Up-State New York and Canada: Phoenix, N. Y. • Orange, Conn. • Philadelphia, Penn. • St. Louis: Lee's Summit, Mo. • Salem, Va. • S. San Francisco, Calif. • Tempe, Ariz. • International: c/o American Lava Corporation, Chattanooga, Tenn. 37405, U.S.A., TELEX 558432

voltmeter or oscilloscope. Set the measuring instrument to a range that will indicate the 16-mV peak-to-peak signal induced into the reference coil by the drive coil. This deflection is the voltage due to inductance of the 60-turn reference coil.

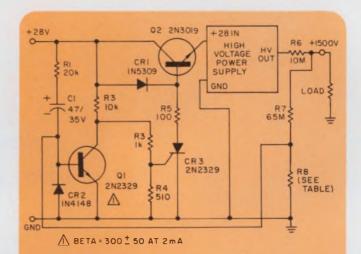
5. Replace the reference coil with the resistor under test and with the 5 A remaining in the drive coil, again note the voltage on the voltmeter or oscilloscope. The new deflection will be directly proportional to the noncompensated turns.

The effective inductance in the resistor will be proportional to the square of the turns ratio. For example, a resistor with a 32-mV pk-pk voltage will have 2 \times 60 turns or 120 turns. The inductance due to these turns will be 4 \times 20 μH or 80 μH . Since the current drawn by the high-impedance voltmeter or oscilloscope is almost negligible, the resistance of the resistor under test has little effect on the reading. For more precise measurements, the drop due to the impedance of the measuring instrument can also be considered in the final calculation.

Frederick J. Lingel, BLH Electronics, Inc., 42 Fourth Ave., Waltham, Mass. 02154.

VOTE FOR 316

Protect high-voltage supplies against load breakdown


A silicon-controlled rectifier (SCR) circuit that senses very small changes in high-voltage power-supply output currents can be used for circuit protection. Current changes of 2 μ A can turn off the input voltage to the high-voltage power supply.

Sensitivity of the circuit depends on the value of R_s (see diagram). When +28~V is applied to the input, capacitor C_1 charges through R_1 , applying a positive voltage to the base of Q_1 . Q_1 is turned on, the collector voltage is low and the SCR cannot fire.

During the time that Q_1 is held on by the RC time constant of R_1C_1 , the high-voltage supply will reach its maximum output. The current from the high-voltage supply, through R_7 and R_8 , will develop a positive voltage across R_8 that will hold Q_1 on. With R_8 set at 30 k Ω , an additional current of 2.5 μ A will cause a drop across R_8 , which in turn will cause a proportional drop across R_8 . The voltage across R_8 will then be insufficient to hold Q_1 on, thus causing the collector voltage to rise. More of the current through R_2 then flows through R_3 and R_4 , producing a voltage across R_4 sufficient to turn on the SCR, CR_3 .

With the SCR turned on, Q_2 is off as its base is held near ground. To reset the circuit, the +28~V on the input must be interrupted for a short time. Current-limiting diode, CR_1 , limits the current through the SCR to 3 mA. Diode CR_2 clips the negative spike caused by C_1 when the +28~V is interrupted.

The table shows the values of R₈ needed to shut

An increase in load current is sensed by this circuit. Protection of the high-voltage supply is accomplished by turning Q_2 off in case the load shorts out. The table gives the values of R_8 for several load-current levels.

off the high-voltage power supply for various increases in output current.

LOAD CURRENT	RB
2.5 μΑ	30 k
20 μΑ	32 k
40 µA	40 k
60 µA	52 k
80 да	62 k
100 μΑ	109 k

C. M. Cornell, Electronics Engineering Dept., University of California, Lawrence Radiation Lab., P.O. Box 808, Livermore, Calif. 94550.

VOTE FOR 317

Electronic equipment is constantly running the risk of being "zapped" ... by lightning, short circuits, switching of inductive components, etc. These ceramic gas filled arresters, from Signalite, offer maximum protection against voltage surges. They are low priced (under \$1.00) . . . reduce maintenance and down time... withstand shock and vibration. Some of the more vital statistics are listed, but for complete details, contact Signalite.

Guaranteed 50 discharges . . . 200 typical

Fast response . . . 40 kv/nsec. wavefront

High temperature capability with true follow-on capability

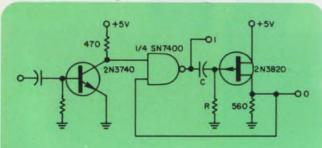
Rugged ceramic construction . . . no glass

Low cost...under \$1

AVAILABLE UPON REQUEST

Detailed Data Sheet... on Signalite Subminiature Low Voltage Ceramic Gas Filled Surge Arresters.

DIVISION OF GENERAL INSTRUMENT


1933 HECK AVE., NEPTUNE, N.J. 07753 (201) 775-2490

320

The Broadest Line of Spark Gaps In The World ... are described in the Signalite "300" Spark Gap brochure ... including definition of terms, characteristics of gap operation and application information.

Low-cost one shot is capable of long delays

Two transistors and one NAND gate make a low-cost, flexible monostable multivibrator capable of long delay and high duty cycle. With the FET as the timing element (see diagram), R can

The high input impedance of the FET in this monostable multivibrator permits delays to be long, with a large R and a small C.

be quite large (over 10 M Ω), and long delays are possible with low values of C. Delay time is approximately 0.6 RC, but this varies with the saturation resistance of the FET.

A positive step or pulse triggers the delay, with the input time constants set for reliable triggering. The circuit is capable of approximately 98% duty cycle, at rates up to 100 kHz. The input transistor can be omitted if a narrow (less than 60% of the delay) negative pulse is available for triggering.

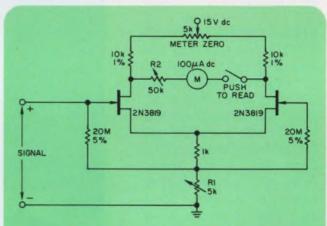
Ralph Tenny, P.O. Box 545, Richardson, Tex. 75080.

VOTE FOR 318

Two FETs make a sensitive suppressed-zero voltmeter

High input impedance and zero suppression are achieved in a differential dc voltmeter by connecting two FETs back to back. The low end of the meter range is adjusted, by variable resistor $R_{\scriptscriptstyle 1}$ in the return supply lead, which creates a bias to set the lower mark on the scale. The high end of the desired scale is set by the 50 $k\Omega$ pot, $R_{\scriptscriptstyle 2}$ connected in series with the meter.

A push-to-read switch is included in the circuit because, with no input, or with voltages above or below the desired range, the meter needle will peg either up or down scale.


A meter-zero pot is included to correct for

minor circuit variations due to the component tolerances. This pot is set during calibration to adjust the meter needle to the left-hand scale mark with no input applied; it should not need further adjustment.

The original circuit was set for a range of 1:35 to 1.6 V to measure the voltage of mercury cells. This circuit can also be used for a meter for other voltage ranges. The unit is calibrated by using a DVM to set the high and low points.

J. Agnew, Vicon Instrument Co., Colorado Springs, Colo. 80901.

VOTE FOR 319

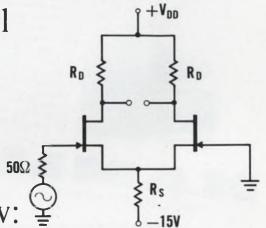
Differential connection of FETs provides for high impedance and suppressed zero in the voltmeter, M. R_1 and R_2 set the low and high ends of the range.

VOTE! Go through all Idea-for-Design entries, select the best, and circle the appropriate number on the Reader-Service-Card.

SEND US YOUR IDEAS FOR DESIGN. You may win a grand total of \$1050 (cash)! Here's how. Submit your IFD describing a new or important circuit or design technique, the clever use of a new component or test equipment, packaging tips, cost-saving ideas to our Ideas-for-Design editor. You will receive \$20 for each accepted idea, \$30 more if it is voted best-of-issue by our readers. The best-of-issue winners become eligible for the Idea Of the Year award of \$1000.

IFD Winner for June 7, 1970

Anthony C. Caggiano, Design Engineer, RR # 1, Box 35 L, Ridge, New York. His idea "Schmitt Trigger Program Uses Standard Resistor Values" has been voted the Most Valuable of Issue Award.


Vote for the Best Idea in this Issue

DUAL FETS for DIFF AMPS from Siliconix

Does your diff amp design call for low noise, low distortion, high input Z and wide dynamic range? (1.) Try this long tailed pair arrangement, (2.) use a Siliconix dual and

(3.) get the performance below:

DEVICE	$+V_{DD}$	R _D	Rs	VOLTAGE GAIN	BANDWIDTH 3 dB	DIFF V ₀ (Vp-p)		
TYPE	(V)	$(K\Omega)$	$(K\Omega)$	(dB)	(MHz)	1% THD	2% THD	
2N5519	30	60	39	26	0.25	10	13	
U235	30	39	20	30	0.6	10	16	
U257	20	5.6	3.6	25	6.0	4.5	5.5	

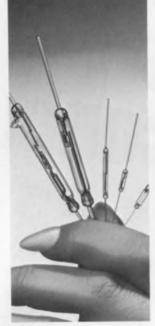
Other applications include
Phase splitters
Push-pull drivers
Unbalanced-to-balanced
transformation
Etc. For complete data and
applications assistance, write or call any of the
offices below.

New York: Sy Levine (516) 796-4680 New England: Al La Croix (617) 769-3780 Ft. Worth/Dallas: Charlie Williams (214) 231-8151 St. Louis: Jim Spicer (314) 291-3616

St. Louis: Jim Spicer (314) 291-3616

Minneapolis: Ed Koelfgen (612) 920-4483

Southern California: Dave Ferran (213) 420-1307


Northern California: Chuck Brush (408) 246-8000

2201 Laurelwood Road • Santa Clara • California 95054 Telephone (408) 246-8000 Extension 201 • TWX: 910-338-0227 In Europe: Siliconix Limited, Saunders Way, Sketty, Swansea, Great Britain

INFORMATION RETRIEVAL NUMBER 55

YOU PAY FOR HAMLIN RELIABILITY.

JUST ONCE.

Hamlin reed switches cost a few pennies more. But it pays off. A reed switch failure can cost hundreds of times the price of the switch. Hamlin reduces the chance of failure to almost zero with rhodium contacts, assembly in white rooms, the industry's most effective hermetic seal, 100% electrical inspection-features that will make you glad you specified Hamlin even after millions of closures You can choose from 2,000 switches-3/10 to 660 watt-and get Hamlin reliability in every one And you pay for it only once. Write Hamlin, Inc., Lake Mills, Wis. 53551. Or call 414/648-2361.

INCORPORATED

INFORMATION RETRIEVAL NUMBER 161

REED SWITCH SPEEDS

WITH NO CONTACT **BOUNCE.**

Hamlin's miniature. mercury-wetted switches offer all the advantages of high-speed, reed switches with the low contact resistance and high-power capacities of mercury switches. Precise, "on-off" actuation makes mercury-wetted switches ideal for applications where contact bounce cannot be tolerated. Available in form A (100 VDC) and form C (28 VDC). Useable length as low as .835." Write for catalog. Hamlin, Inc Lake Mills, Wis. 53551 Or call 414/648-2361


% actual size

INCORPORATED

INFORMATION RETRIEVAL NUMBER 162

20 MILLIWATTS CONTROLS UP TO 25 AMPS WITH THE SOLID-STATE

106

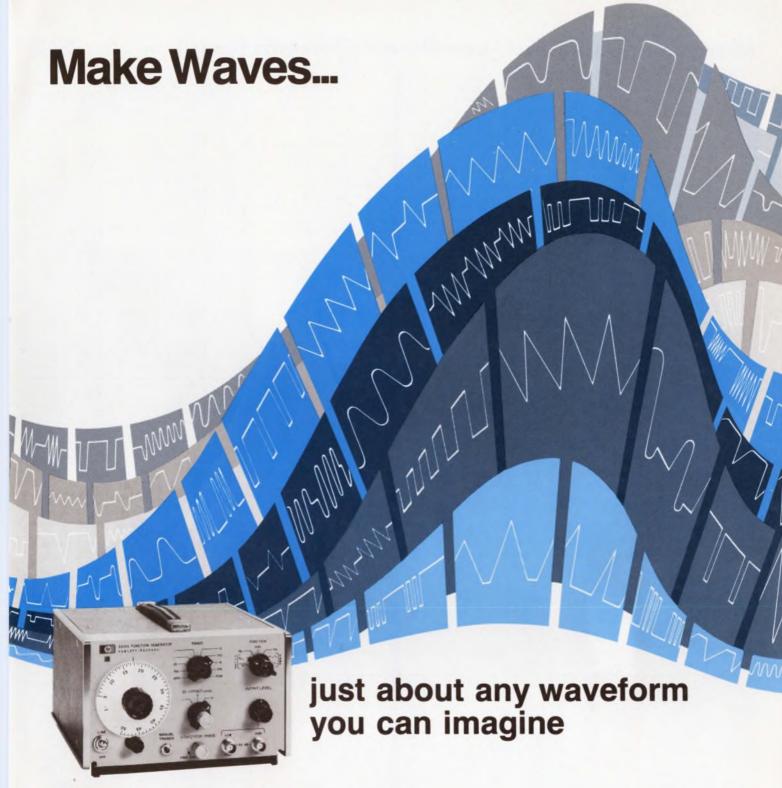
Control-Pak operates on I.C. logic without amplification. Handles as much as 25 amps with arcless, bounceless switching. And it's fast—operates in a millisecond, releases within ½ cycle. No noiseelectrical or acoustical. Zero switchline for minimum RFI and EMI. Control-Pak controls inductive. capacitive, high-inrush and resistive loads. And it's completely encapsulated. Fumes, dirt and moisture that can ruin ordinary relays can't hurt Control-Pak. It's tough, too-resists shock and vibration-has no moving parts to wear or require replacement. So Control-Pak units keep right on functioning for millions of operations without maintenance. For more information, write Hamlin Electronics, Inc., 3066 West Clarendon, Phoenix, Arizona 85017. Or call, 602/277-4834.

ELECTRONICS, INC.

Product Source Directory

Low-Power Microwave Tube Oscillators

The low-power microwave tube oscillators in this Product Source Directory are divided into four groups—klystrons, planar triodes, magnetrons and backward-wave oscillators. The tubes are arranged in ascending order by upper frequency limit and then alphabetized by manufacturer. All tubes listed in this directory are


continuous-wave devices with a maximum output power of approximately one watt.

Manufacturers are identified by the abbreviations shown in the Master Cross Index below. The following abbreviations are used in the tables: ina—information not available; n/a—not applicable; req—price on request; typ—typical.

Abbrev.	Company	Information Retrieval No.
Beam Tube	Beam Tube Corp. 11 Beach St. Milford Mass. 01757 (617) 473-0660	450
EEV/CEI	English Electric Valve Co., Ltd. Calvert Electronics Inc. 220 E. 23rd St. New York, N.Y. 10010 (212) 679-1340	451
GE	General Electric Co. Electric Components Div. Tube Dept. Microwave Tube Operation 1 River Rd. Schnectady, N.Y. 12305 (518) FR 4-2211	452
Gencom	Gencom Div. Vanan/EMI 80 Express St. Plainview, N.Y. 11803 (516) 433-5900	453
ITT	ITT Electron Tube Box 100 Easton, Pa. 18042 (215) 252-7331	454
Klystronics	Klystronics, Inc. Mid-Monmouth Industrial Park Box 534 Eatontown, N.J. 07724 (201) 542-6800	455
MCL	Microwave Cavity Laboratories, Inc. 10 N. Beach Ave. La Grange, III. 60525 (312) 354-4350	456
Metcom	Metcom, Inc. 76 Lafayette St. Salem, Mass. 01970 (617) 744-8400	457
MET/IEC	Mullard Electron Tubes International Electronics Corp. 316 S. Service Rd. Huntington Station, N.Y. 11746 (516) 694-7700	458
Mictron	Mictron Inc. Div. of KMS Industries, Inc. Sarasota, Fla. 33578 (813) 955-4259	459

Abbrev.	Company	Information Retrieval No.
Nippon	Nippon Electric New York Inc. 200 Park Ave. New York, N.Y. 10017 (212) 661-3420	460
OKI	OKI Electronics of America, Inc. 500/506 S.E. 24th St. Ft. Lauderdale, Fla. 33316 (305) 523-7202	461
Raytheon	Raytheon Co. Microwave & Power Tube Div. Microwave Tube Operation 190 Willow St. Waltham, Mass. 02154 (617) 899-8400	462
RCA	RCA Commercial Engr. 415 S. 5th St. Harrison, N.J. 07029 (201) MU 5-3900	463
Siemens	Siemens Corp. 186 Wood Ave. S. Iselin, N.J. 08830 (201) 494-1000	464
Sperry	Sperry Rand Corp. Electron Tube Div. Gainsville, Fla. 32601 (904) 372-0411	465
Thomson	Thomson-CSF Electron Tubes, Inc. 50 Rockefeller Plaza New York, N.Y. 10020 (212) 245-3900	466
Tripp	Tripp Research Corp. 841 Warrington Ave. Redwood City, Calif. 94063 (415) 365-2828	467
Varian	Varian Assoc. Electron Tube & Device Group 611 Hansen Way Palo Alto, Calif. 94303 (415) 326-4000	468
M1	Watkins-Johnson Co. Stewart Div. 3333 Hillview Ave. Palo Alto, Calif. 94304 (415) 326-8830	469

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
Raytheon Thomson Thomson Raytheon Klystronics	RK5981 KRA1080 KRA1081 726C ZV1011A	1.245-1.460 1.7-2.0 1.7-2.7 2.7-2.96 0.500-3.0	n/a ina 6.5 min n/a ina	70 typ 170 min 35 min 140 typ 50 min	ina ina ina ina ina	absw ac ac absw	req req req req		BV217 VA-225B, 225C		45	80 min 80 min 20 min 20 min	1.6 1.6 1.5 0.1 min	ab abe ab	123 123 179 req
Thomson Thomson Klystronics EEV/CEI Sperry	6BM6 5837 ZV1010 K3067 2K-41	0.55-3.0 0.55-3.0 0.700-3.0 2.95-3.225 2.76-3.41	ina ina ina 20 10 min	50 min 50 min 28 min 40 typ 50 min	ina ina ina ina ina	ac ac	req req req req	Sperry Sperry Gencom Nippon Varian Klystronics		8.0 5.0-8.2	n/a 6 45 30 35	8 min 40 min 25 typ 30 min 700 min 60 min	ina ina ina 1.1 0.15 ina	abdkz abdkz ac ab a	req req 123 req req
EEV/CEI Nippon Raytheon Ihomson	K3033 2K54C 2K29 2K28	2.65-3.7 3.650-3.900 3.4-3.96 1.8-4.0	30 ina n/a 20 min	100 typ 400 min 110 typ 80 min	ina ina ina ina	ab absw ac	111 req req	Raytheon Varian Varian	QKK753 VA-264 VA-225 (series)	7.75-8.4 7.1-8.5 7.5-8.5	25 15 25	150 typ 80 min 700 min	0.5 0.3 0.2	a a	req req req
Sperry Nippon Nippon Nippon Raytheon Gencom	2K-42 2K54A 2K54DA 4V27 2K56 CV2116	3,3-4,2 4,050-4,300 4,250-4,350 3,600-4,350 3,84-4,46 1,8-4,5	35	250 min 400 min 30 min 80 min 100 typ 23 typ	ina ina 1.2 ina ina ina	ab ab c absw ac	req req 140 req req	Varian Sperry Sperry Varian EEV/CEI Sperry Varian	VA-244F SRX-4953 SRX-4954 VA-272A K359 SRX-4595 VC-722D	8.5 8.5 8.5-8.7 8.1-8.75	30 n/a n/a 30 55 65 min 65	700 min 8 min 40 min 500 min 90 typ 500 min 500 min	0.15 ina ina 0.5 min 2.0 ina 0.5	a abdkz abdkz a def abhk ak	req req req req req
Raytheon Raytheon Gencom Gencom Varian Sperry Klystronics Raytheon Raytheon Klystronics	2K22 QKK1313 CV6071 R9559 VA-221H 2K-43 TK69/6584 QKK412 RK6115A TK80/6584	5.1-5.9 5.1-5.9	n/a 25 45 45 25 15 min 35 n/a n/a 35	115 typ 30 min 35 typ 35 typ 20 min 250 min 70 min 90 typ 100 typ 85 min	ina 0.5 ina ina 0.6 ina ina ina ina ina ina	absw ac ac ab absw absw	req req req req req req req req req	Sperry Varian Varian Varian Varian	BLK-029 VC-721A VC-722A	8.8 8.8 8.8 8.8 8.8 8.8	35 50 min 65 min 50 min 45 23 40 65 65	90 typ 750 min 500 min 450 min 450 min 700 min 500 min 500 min 500 min	ina ina ina 0.66 min 0.66 0.5 0.5	def abhk abhk abhk a a a ak a abhk	req req req req req req req req
Klystronics Varian Varian Klystronics Nippan Nippon Nippon Raytheon Varian	VA-118A VA-119A ZV-1009/ 7049 6V211 6V23 6V200 QKK549	5.4-5.9 5.4-5.9 5.4-5.9 1.5-6.0 5.985-6.285 6.225-6.325 6.225-6.325 5.925-6.425	50 50 25	150 min 100 min 35 min 50 min 25 min 300 min 100 min 150 typ	ina ina ina ina ina ina ina ina 1.5 1.0 0.8 0.5 0.9	а а а а а а а а а а а	req req req 179 224 230 req req	Varian EEV/CEI MET/IEC EEV/CEI Sperry Varian Metcom Sperry EEV/CEI	VC-722C K391A YK1042 K342 SRX-4594 BL-815A MXK-61 SRX-4772 K3020A	8.82 8.8-8.885 8.1-8.9 8.5-9.0 9.1 9.147 8.75-9.15 9.25 8.74-9.26	65 40 40 35 50 min 20 ±10 n/a 40	500 min 90 typ 60 typ 70 typ 400 min 20 min 500 min 10 min 45 typ	0.5 1.0 ina 0.75 ina 3 ina ina	ak ef a f abhk a an abdkz	req 200 req req req 320 req
Nippon Nippon Varian Varian Varian Varian Sperry Nippon Raytheon Nippon	68L6 6V26AMR 6V26AR VA-113 6V212 X-26E/6460 VA-244A 2K-44 7V213 QKK531 7V214	1.6-6.5 6.100-6.500 6.100-6.500 5.925-6.575 6.285-6.585 5.3-6.6 5.8-6.6 4.89-6.69 6.505-6.705 6.575-6.875 6.705-7.005	55 35 15 40 28 30 15 min 40 25 40	25 min 100 min 100 min 50 min 25 min 700 min 250 min 250 min 150 typ 25 min	1.6 1.2 ina 1.5 ina 0.15 ina 1.5 0.5	ab ab ab a ab ab ab	157 95 req 157 req req 157 req 157		SRX-4771 VA-272B, C, D K391 K3007 YK1041 TV2223 K311 YK1040 K59-40 K300 K302		30 30 32 40 17 min 30 35 30 30 30	10 min 500 min 40 typ 40 typ 60 typ 60 min 45 typ 55 typ 40 typ 30 typ 30 typ	ina 0.5 min ina 0.7 ina 1 min ina ina ina ina ina	e e u ab	req 185 200 req 255 req 157 157
Nippon Nippon Raytheon Varian Nippon Varian Raytheon Raytheon Nippon	2K26 2K26(LD) QKK532 VA-114 7V215 VA-244B RK5976 RK5976 5976 5976(LD)	6.250-7.060 6.250-7.060 6.875-7.125 6.575-7.175 6.955-7.255 6.5-7.3 6.2-7.425 6.2-7.425 6.250-7.425 6.250-7.425	50 25 15 40 18 min n/a 25 55	80 min 80 min 150 typ 50 min 25 min 25 min 125 typ 150 typ 80 min 80 min	1.6 1.6 0.5 ina 1.5 0.250 min ina 0.5 1.6	ab abe absw absw ab	req req req 157 req req req req	Sperry MET/IEC Nippon Thomson EEV/CEI EEV/CEI Nippon EEV/CEI	SRX-4955 K59-20 VA-203H TV203H K3003 K3020 K3077 9V54 K3078/ 6975	9.5 8.702-9.548 9.250-9.550 9.25-9.55 9.35-9.55 9.35-9.55 8.200-9.600 8.5-9.6	50 70 min 40 40 45 40 37	8 min 25 typ 12 min 40 min 55 typ 45 typ 50 typ 250 min 35 typ	ina ina ina 1 min 2.25 2.25 ina ina	abdkz s ab ab e e f ab f	req 381 req 98 110 req 392 req
MET/IEC Sperry Nippon Nippon Beam Tube Raytheon Varian	KS7-85 SRX-4950 LD-588 7V216 6236 QKK623 VA-115	6.5-7.5 7.5 7.050-7.550 7.255-7.555 3.8-7.6 7.125-7.65 7.175-7.725	40 ina 25 15	100 typ 8 min 80 min 25 min 125 min 150 typ 50 min	ina ina 1.6 1.5 ina 0.5	s abdkz ab ab ac	req req 62 157 req req	Klystronics Mystronics Mystronics	2K25 TK62/6116 TK76/6940 TK106/ 8460 TK115/ 6116	8.5-9.6 8.5-9.6 8.5-9.6	35 45 45 35 45	20 min 20 min 20 min 20 min 20 min	ina ino ina ina		red red red red
Raytheon Gencom Varian	QKK752 R9687 VA-244C	7.125-7.75 6.8-7.8 7.1-7.8	25 16 18 min	150 typ 70 typ 20 min	0.5 ina 0.150min	oc a	req req	Mystronics MET/IEC	7787	8.5-9.6 8.5-9.6	35 57.5	20 min 43 typ	ina ina	t	rec

HP's 3310A is the function generator that gives you seven different waveforms—in three different modes—in one inexpensive package.

In its basic form, the 3310A gives you a continuous output of square waves, sine waves, and triangle waves — plus positive and negative ramps and pulses—for only \$595.

By adding HP's new Option H10 (only \$140), you can generate each of these seven waveforms in two other modes—single-cycle and multiple cycle "bursts." These "bursts" can be triggered either manually or

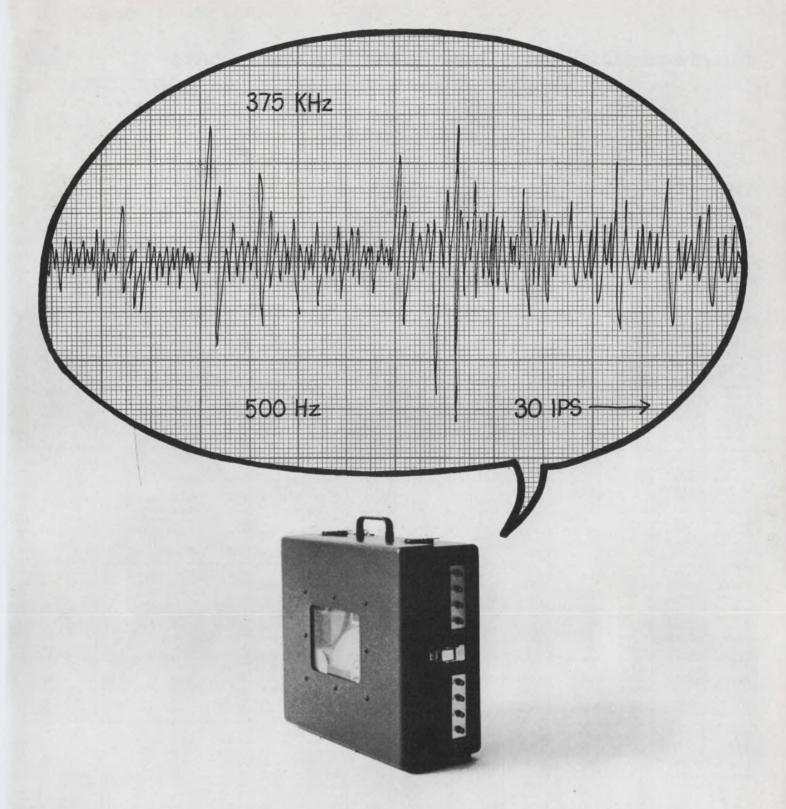
by an external oscillator; starting-point phase can be varied by $\pm~90^{\circ}.$

With or without Option H10, the 3310 gives you a choice of ten frequency ranges—from 0.0005 Hz to 5 MHz—and an output voltage range from 15 mV pk-pk to 15 V pk-pk into 50Ω load. Dc offset of ± 5 V into 50Ω load is also standard.

With Option H10, the 3310A can be used in frequency-response and transient-response testing, as a waveform converter, for generating phase-coherent waveforms, and as a frequency multiplier or divider,

INFORMATION RETRIEVAL NUMBER 57

among other things. Applications include testing television and communications systems, radar systems, and analog or digital circuits.


For further information on the 3310A and Option H10, contact your local HP field engineer, or write to Hewlett-Packard, Palo Alto, California 94304. In Europe: 1217 Meyrin-Geneva, Switzerland.

090/41

HEWLETT hp PACKARD

SIGNAL SOURCES

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
MET/IEC	KS9-40B	8.5-9.6	40	35 typ	ina	t	req	Metcom	MXK-22	10.0-10.25	±15	100 min	ina	a	145
Metcom	6975/	8.5-9.6	<u>+</u> 10	20-30	ina	ac	145	Varian	BLK-008	10.0-10.25	20	150 min	1 .	a	req
1!	MXK-21 VA-203B	8,500-9,600	45	20 min	1.5	ab	403		TV210C 2K39	10.03-10.28 7.5-10.3	15 min	20 min 250 min	l min ina	ab	req
Nippon perry	SRX-4244		50 min	150 min	ina	ab(1)	req	Sperry Varian	VA-272J	10.1-10.3	30	500 min	0.5 min	a	req
perry	SRX-4245		50 min	150 min	ina	ab(1)	req	EEV/CEI	K3073	10.1-10.4	40	60 typ	ina	f	req
homson	6975	8.5-9.6	30 min	20 min	1 min	ab	req	Sperry			30 min	20 min	ina	ab	req
homson	TV217C	8.5-9.6	40 min	20 min	1.5 min	ab	req	Varian			30	25 min	1	a	req
homson	TV217CH TV2217H	8.5-9.6 8.5-9.6	40 min 40 min	30 min 20 min	1.5 min 1.5 min	ab ab	req	Varian Varian			30 30	20 min 50 min	2.0	a	req
homson /arian	VA-201B	8.5-9.6	20	40 min	0.5	a	req	Varian	6314	0.5-10.5	50	30 11111	2.0	ď	104
Varian	VA-203B/	8.5-9.6	30	20 min	1.0	а	req	Varian		9.0-10.5	30	500 min	2	а	req
	6975 VA-203J	8,5-9.6	30	20 min	1.0			Varian	VC-708	9.0-10.5 10.518-	50 25	500 min 55 min	0.7	ab	168
Varian Varian	VA-2033 VA-217C	8.5-9.6	40	20 min	1.5	0	req	Nippon	11410	10.532	2	22 mm	0.7	ab	100
/arian	VA-217H	8.5-9.6	25	500 min	0.2	a	req	EEV/CEI	K3069	10.525	Ina	100 typ	ina	F	125
/arian	VA-265	8.5-9.6	40	600 min	ina	a	req	Thomson	TV2218	10.525	40 min	500 min	0.5 min	ab	req
EV/CEI	K351 KS9-20A	8.5-9.655	35 min	30 min	1.3 min	de	700	Varian	VA-218, 2188	10.525	ina	55 min	ina	ak	req
MET/IEC Nippon	2K25	8.5-9.66	50	35 typ 20 min	ina ina	s ab	req	EEV/CEI	K3074	10.50-10.55	20	25 typ	ina		req
Raytheon	2K25	8.5-9.66	n/a	40 typ	ina	absw	req	Varian		9.5-10.6	ina	200 min	ina	(3)	req
Thomson	6116(a)	8.5-9.66	45 min	20 min	ina	ab	req	Varian	VA-524	9.5-10.6	ina	200 min	ina	d (3)	req
EEV/CEI	K335	9.555-9.685	30	25 typ	ina	g	req	MET/IEC	YK1044	10.1-10.6	40	60 typ	ina	u	req
Varian	VA-272E, F		30	500 min	0.5 min	a	req	Varian		10.6	ina	150 min	ina	ak	req
perry			n/a	500 min	ina	dkz (3)		Varian	VC-703A	10.6	30 50 min	150 min	ina	abh	req
/arian	V-55D BLK-019	9.79 8.5-9.8	40 ina	450 min 90 min	0.5	a	req	Sperry	SRX-4550	10.625	DU min	150 min	ina	abn	req
∕arian ∕arian	X-13C	7.0-10.0	25	50 min	ina	a	req	Nippon	10∨54	9,400-	50	100 min	0.9	ab	392
homson	TV152C	8.0-10.0	ina	15 min	ina	ab	req			10.700					
Metcom	6310/	8.5-10.0	<u>+</u> 15	15-40	ina	a	95	Varian Varian		10.25-10.7 10.3-10.7	20 30	100 min 500 min	i na 0,5 min	a	req
Metcom	MXK-14 6312/ MXK-15	8.5-10.0	<u>+</u> 15	15-40	ina	a	95	EEV/CEI	L K3076	10.5-10.7	30	60 typ	ina	f	req
Metcom	6314/	8.5-10.0	<u>+</u> 15	15-40	ina	a	95	EEV/CEI	K361B	10.675-10.7	35	50 typ	1.5		req
	MXK-16							EEV/CEI	K357	10.66-10.72	30	12 typ	ina		130
Metcom	6315/ MXK-17	8.5-10.0	±15	30-50	ina	a	95	EEV/CEI	K3066 K361	10.66-10.72		15 typ 50 typ	ina 1.5	h	req 130
Metcom	6316/	8.5-10.0	±15	15-35	ina	a	95	Thomson	TV210B	9.6-10.8	20 min	30 min	1 min	ab	req
	MXK-18							Varian	VA-210B	9.6-10.8	20	30 min	1.0	a	req
Metcom	6781/ MXK-11	8.5-10.0	<u>+</u> 15	15-40	ina	а	135	Nippon	LD-788	10.400-	60	450 min	1.2	ab	req
Metcom	MXK-12	8.5-10.0	<u>±</u> 15	15-40	ina	a	95	Thomson	TV2215	10.84-10.86		120 min	0.4 min	ab f	req
Metcom	MXK-19	8.5-10.0	±15	15-35	ina	am	225 245	Raytheon Varian	QKK1022 VA-2871	10.5-10.9	ina ina	125 typ 500 min	ina ina	a	req
Metcom Metcom	MXK-32 MXK-38	8.5-10.0 8.5-10.0	±15 ±15	75-320 15-200	ina ina	а	195	Varian		10.7-10.9	30	500 min	0.5 min	a	req
Raytheon	RK6310	8.5-10.0	ina	40 typ	ina	f	req	Beam Tube	ZK48	4-11	ina	20 min	ina	ac	req
Raytheon	RK6312		ina	40 typ	ina	f	req		ZV1011/	4.0-11.0	6	20 min	ina		req
Thomson	6781	8.5-10	20 min	15 min	ina	ab	req	nics	8052						
Varian	BL-803/ 6781	8.5-10.0	20	40 min	3	a	req	Nippon	5721	4.000- 11.000	30	20 min	ina	С	req
Varian	BL-807	8.5-10.0	40	50 min	2	a	req	Metcom		7.1-11.0	<u>+</u> 15	100 min	ina	a	275
Varian	BL-825	8.5-10.0	40	500 min	2	a	req	Varian		7.5-11.0	ina	100 min	ina	0	req
Varian	BL-847 V-58,58C	8.5-10.0 8.5-10.0	30 40	50 min 500 min	3 ina	0	per	Metcom Varian		8.5-11.0 9.5-11.0	±15 50	15-40 500 min	ina ina	a	300 req
Varian Varian	V-38,38C V-157	8.5-10.0	40	50 min	ina	0	req	Sperry	SRX-4957		n/a	8 min	ina	obdkz	req
Varian	V-260/	8.5-10.0	30	25 min	3	a	req	Varian	BLK-010	11.0	30	50 min	3	a	req
Varian	6310 V-270/	8.5-10.0	30	25 min	3	a	req	Beam Tube Thomson	6390 TV242	6.7-11.05 8.5-11.1	ina 40 min	60 min 500 min	ina 0 .5 min	ac ab	req
Varian	6312 VA-153/	8.5-10.0	43	10 min	1.5	a	req	Varian		8.5-11.1	40	500 min	0.5	a	req
	6315							Sperry	SRX-4840	10.9-11.1	30 min	20 min	ina	ab	req
EEV/CEI	K324	9.0-10.0	30	45 typ	ina		255	Varian		10.9-11.1	30	500 min	0.5 min	a	req
EEV/CEI Thomson	K337 T∨232	9.0-10.0 9.2-10	24 27 min	45 typ 155 min	0.75 0.5 min	f ab	300 req	Varian Metcom		9.5-11.2 9.8-11.2	40 <u>+</u> 15	230 min 70 min	ina ina	a	req 145
Varion	VA-232	9.2-10.0	27 min 27	155 min	1.25	a	req	Varian		9.8-11.2	20	500 min	1	a	req
Sperry	SRX-4956	10.0	n/a	16 min	ina	abdkz	req	Nippon	11V651	10.700-	55	450 min	1.2	ab	426
Thomson	TV262	8.45-10.05	ina	65 min	ina	ab	req		71.100	11.200	50 .	400	0.50	,	
Varian	V-262	8.45-10.05	ina	65 min	ina	a	req	Thomson		11.2	50 min 50 min	400 min 400 min	0.50 min 0.50 min	ab ab	req
MET/IEC	YK1043 VA-272G,	9.3-10.1	30	60 typ 500 min	ina 0.5 min	u	req	Thomson Varian		8.2-11.5	40 min	200 min	ina ina	ab	req
			55 min	500 min	ina ina	ab	req	Varian	BL-849	10.5-11.5	32	70 min	3	a	req
Varian Sperry	SRX-5300	9.9-10.1	I DO MIN	JOO MIN											

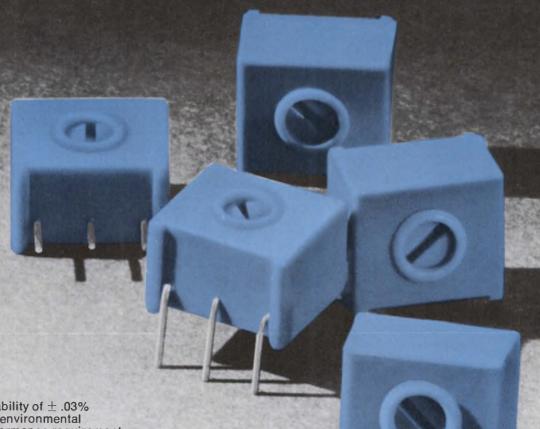
No other 28-lb. data recorder can make that statement.

Now available, our new 417 WB speaks wideband to the tune of 374.5K Hz at 30 ips. Of course it's not the only recorder that meets IRIG specs for wideband Group II. But it's the only one that weighs less than 50 lbs. (The 417 WB's 28 lbs. also includes its carrying case and self-contained battery, by the way.) And it's the only one small enough to fit under an airplane seat.

So, when you have to hit the trail for data, let the new 417 WB take a load off your back. And off your mind. It needs less maintenance and fewer adjustments than any other portable recorder. It ignores bumps, jolts, vibrations and odd

mounting angles. It normally draws only 25 watts of power. It records on seven channels. And it matches large rack machines for accuracy.

But that's just a taste. For the full 417 WB story and spec sheet, write Mr. Fred Romer, Dept. 412-10, Lockheed Electronics Company, Plainfield, New Jersey 07061. Or call him at (201) 757-1600. He, too, speaks wideband.


Lockheed Electronics

A Division of Lockheed Aircraft Corporation

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
Varian Nippon	8LK-006 11V53	10.0-11.7	20 43	500 min 20 min	1 1.1	a ab	req 538	Nippon	13∨66	12.500- 13.500	50	400 min	0.8		504
Nippon	11V53A	11.700	45	80 min	0.75	ab	381	Varian Thomson	VA-92H TV2716	12.0-13.6 10.7-13.7	40 15 min	175 min 10 min	ina 0.75 min	a ab	req
Nippon	11∨54	11.700	43	30	1.1	ab	381	Varian	A B C VA-237F	12.7-13.7	25	250 min	0.250	a	req
Nippon	11V54A	11.700	45	150 min	0.75	ab	392	Varian	EM-1114,		25	200 min	ina	a	req
Nippon	11V64	11.700	45	200 min	1.0	ab	392	Metcom Sperry	MKK-29 SRU-4941	13.0-14.0 14.0	+15 n/a	40 min 10 min	ina ina	an abdkz	175
Raytheon	QKK826	11.700	35	140 typ	1.0	ub.	req	Sperry EEV/CEI	SRU-4942 K3101M		n/a 50	60 min 80 typ	ina ina	abdkz	req
Raytheon	QKK878	10.7-11.7	35	500 min	0.35	cs(6)	req	Varian	VA-246	11.0-14.4	50	400 min	0.5	a (9)	req
Varian Varian	VA-237E VA-287S	10.7-11.7	30 ina	250 min 500 min	0.4 ina	a	req		(series)						
Varian	VRX-	10.7-11.7	30 min	100 min	0.65 min	a	req	Varian	VA-286	12.4-14.4	45	300 min	0.5	a	req
Nippon	7204A, B 11V652	11.200-	55	450 min	1.2	ab	426	Sperry	(series) SRU-4472		50 min	450 min	ina	ab	req
Thomson	TV246	11.700	60	450 min	ina		req	EEV/CEI	K3101	14.405 12-14.5	50	80 typ	ina		645
Beam Tube Gencom	5721 CV2346	2-12 3.0-12.0	ina 15	100 min 45 typ	ina ina	ac	req	Nippon	13∨92	12.400-	65	30 min	1.1	ab	336
Gencom	R5222 R9689	3.0-12.0	15 8	45 typ 100 typ	ina ino	ас	req	Varian	VA-92B (series)	12.4-14.5	50	140 min	ina	a	req
Gencom Gencom	R9696	7.0-12.0	20	170 typ	ina	ac	req	Gencom	R9624	12.4-15.0	60	100 typ	ina	ab	req
Varian Varian	V-53B V-53B,53€	10.65-12.0	25 25	40 min 40 min	ina ina	ak a (8)	req	Varian	VA-240C	12.4-15.0	20	450 min	2.0	a (7)	req
Sperry	SRX-4958	12.0	n/a	8 min	ina	abdkz	req	Raytheon	QKK1399		35	25 min	1.0		req
Sperry MET/IEC	SRX-4959 YK1090	12.0 10.5-12.2	n/a 35	16 min 400 typ	ina ina	abdkz	req	Nippon	15∨66	15.196 14.400-	50	350 min	1.2	ab	504
MET/IEC Varian	YK1091 V-54	10.5-12.2 10.5-12.2	35 30	400 typ 50 min	ina ina	u	req	Varian	VA-237G	15.400 14.4-15.4	45	250 min	0.250	a	req
Varian Varian	V-54 V-154	10.5-12.2	30 30	400 min 50 min	ina ina	a	req	Varian	VA-39B, 39C	10.0-15.5	ina	20 min	ina	a	req
Raytheon	QKK869	11.7-12.2	35	140 typ	1.0		pen	Klystro-	TK113	15.4-15.6	30	15 min	ina		req
Raytheon Varian	QKK879 BL-814	11.7-12.2	35 20	500 min 150 min	0.35	cs (6)	req	Sparry	SCU-408	15.6	5 min	200 min	ina	k (3)	req
Varian	X-13	8.1-12.4	ina	100 min	ina	a	req	Sperry	SRU-4439		40 min	40 min	ina	abk	req
Metcom Nippon	MXK-26 10V13	8.12-12.4 8.200-	+15 ina	100 min 110 min	ina ina	ab	250 314	Sperry Varian	VA-240G		100 min ina	500 min 700 min	ina ina	ab	req
Raytheon	QKK1048	12.400	ina	150 typ	ina	f	req	Sperry	SRU-4470 MKK-24	15.95-16.05 15.8-16.2	40 min +10	300 min 20 min	ina ina	ab	req 450
Varian	VC-709 LD-561	10.5-12.4	30 50	500 min 100 min	ina 1,25	ab	req 364	Sperry Varian	SRU-210 VA-94B	15.8-16.2 15.8-16.2	50 min 50	20 min 20 min	ina 1.3	ab (2)	req
Nippon		12.440				00		Sperry	SRU-5110	16.22	n/a	6 min	ina	abk	req
Nippon	12∨66	11.700-	50	350 min	1.0		448	Gencom Sperry	R9525 SRU-4435	13.5-16.5	60 65 min	100 typ 15 min	ina ina	ab (2)	req
Nippon	LD-656	12.000- 12.700	44	100 min	0.7	ab	364	Varian Metcom	VA-94M MKK-24A	16.0-16.5	50 +10	20 min 20 min	1.3 ina	a	req 525
Raytheon	QKK822 QKK978	12.2-12.7 12.2-12.7	35 35	140 typ 500 min	1.0	(4)	req	Sperry	SRU-4432	16.44-16.56 16.4-16.6		40 min	ina	ab (2)	req
Raytheon	SRU-4940	13.0	n/a	10 min	ina	cs (6)	req	Sperry		16.43-16.67	55 min	30 min	ina	ab (2)	req
Sperry Varian	EM-1114A,		25	200 min	ina	a a a	per	Sperry	SRU-4195	16.3-16.7	60 min	60 min	ina	ab	req
Raytheon	1.114C QKK877	12.7-13.25	35	140 typ	1.10		req	Sperry Sperry		16.4-16.7 16.65-16.75	50 min 40 min	50 min 250 min	ina ina	ab ab	req
Metcom Metcom	MKK-12 MKK-16	13.3	n/a n/a	15 min 5 min	ina ino	0	450 450	Sperry Sperry	SRU-410 SRU-4198	15.2-16.8	40 min 40 min	15 min 250 min	ina ina	ob (1)	req
Metcom	MKK-37	13.3	n/a	1 min	ina	a	575	EEV/CEI	K3102	14.5-17.0	75	45 typ	ina		645
Varian	VC-103 (series)	13.325	125	290 min	1.5	o	per	Sperry	B SRU-55 A	15.0-17.0	40 min	15 min	ina	ab	req
Varian Sperry	VC-716A SRU-4473	13.325 13.315-	150 70 min	800 min 300 min	1.0 ina	a ab	req	Sperry Sperry	SRU-216 SRU-5240	15.0-17.0 15.0-17.0	45 min 60 min	15 min 15 min	ina ina	ab ab	req req
Sperry	SRU-4474	13.335	100 min	100 min	ina	ab	req	Metcom Sperry	MKK-26 SRU-4430	16.0-17.0 16.0-17.0	+10 65 min	20 min 30 min	ina ina	a ab (2)	525 req
Sperry	SRU-4475	13.335 13.315-	115 min	450 min	ina	ab	req	Sperry Varian		16.0-17.0 16.0-17.0	50 min 40	25 min 15 min	ina 1.3	ab (2)	req
		13.335						Varian	VA-2750	16.0-17.0	60	20 min	4.0	a	req
Sperry	SRU-4501	13.315- 13.335	70 min	20 min	ina	ab (2)	req	Varian Sperry	VC-712A SRU-410	16.0-17.0 15.5-17.1	45 15 min	15 min 2 min	1.3 ina	ab (1)	req req
Sperry	SRU-4476	13.275- 13.375	125 min	290 min	ina	ab	req	Sperry Sperry		15.5-17.1 15.5-17.1	15 min 45 min	12 min 250 min	ina ina	ab (1) ab (1)	req
Sperry	SRU-4500	13.245- 13.405	50 min	40 min	ina	ab	req	Sperry EEV/CEI		16.5-17.2 16.0-17.3	50 min 75	50 min 45 typ	ina ina	ab (2)	req 645
Nippon	13∨64	12.500-	45	300 min	1.0	ab	426	Sparry		17.35-17.45		250 min	ina	ab	req

We've upped the line to 7 pin spacings without upping the price.

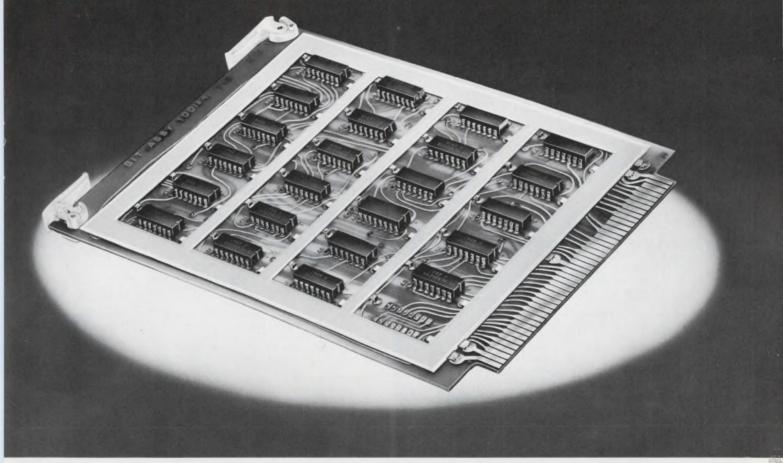
CTS cermet industrial trimmers still 50° each.

Setability of ± .03% and environmental performance requirements of characteristic C of MIL-R-22097D plus:

- 1.5% average equivalent noise resistance
- 0.5% average CRV
- ½ watt @ 70°C
 TC ± 150 ppm/°C

Now you can choose from an expanded line of compact CTS Series 360 single-turn cermet trimmers. Seven pin spacings: .150"—.125"—.100" in both top and side adjust, plus TO-5 arrangement in side adjust only. (TO-5 style at extra cost.) All available from your CTS Distributor, still at the lowest cost in the industry: just 50¢ each: CTS of Berne, Inc. Berne, Indiana 46711. Phone: (219) 589-3111.

in 50,000 quantity for \pm 20% tolerance. Add 4¢ for 10% tolerance. Comparably low prices for smaller



Your CTS Answer Man stands ready to fit our expanded trimmer line into your application.

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
Sperry Sperry Sperry Sperry Sperry Sperry Sperry Varian Varian Gencom	SRU-4194 SRU-419 SRU-4191 SRU-2163 SRU-4438 SRU-4196 R9676 VA-308 (series) VA-309 (series) R9626	15.0-17.5 15.5-17.5 15.5-17.5 16.5-17.5 16.5-17.5 17.1-17.5 12.4-18.0 14.0-18.0 15.0-18.0	50 min 30 min 40 min 100 min 50 min 40 min 60 50	80 min 150 min 150 min 500 min 30 min 300 min 300 typ 800 min 250 min	ina	ab ab ab ab (2) ab ab	req req req req req req req	EEV/CEI EEV/CEI Sperry Beam Tube OKI OKI OKI Gencom Gencom OKI Sperry	35V10 35V11 35V12 R9674 R9546 36V12	33.5-36.0 33.5-36.0 35.9-36.1 32-37 32-37 32-37 32-37 26.5-37.5 32.3-37.5 33-38	60 60 75 min ina 100 90 90 70 77 90 50 min	250 typ 30 typ 50 min 200-600 75 typ 220 typ 650 typ 200 typ 650 typ 200 min	ina ina ina ina 1.7 2.0 1.9 ina ina ina	ab (2) ab ab ab ab ab ab ab	req req 114 695 107 131 req 132 req
Varian OKI Sperry Sperry Varian OKI Sperry OKI Sperry Gencom	VA-311 (series) 17V10 SRK-4650 SRK-4660 V-40B, 40C SOK-2922 V253 (series) 20V10 SRK-4642 R9622	15.0-18.0 15.5-18.5 18.45-18.55 18.3-18.7 15.0-21.0 21.6 15.0-22.0 18-22 21.9-22.1 18.0-22.5	50 45 80 min 80 min ina 10 min 40 45 70 min 60	20 min 100 typ 500 min 500 min 20 min 500 min 1500 min 1500 min 1500 typ 30 min 100 typ	1.5 0.5 ina ina ina 2.0 0.6 ina ina	a b ab ab a k (3) a b ob (2) ab	req 485 req req req 515 req req	Varian Gencom Beam Tube OKI OKI Varian OKI OKI Beam Tube OKI	40V10 40V12 VA-302 (series) 45V10 45V12 45BT/A	26.5-40.0 35.0-40.0 37-42 37-42 37-42 40.0-45.0 42-48 42-49 43-51 43-51	90 85 ina 90 100 50 100 ina ina 150	300 min 60 typ 200-700 90 typ 500 typ 100 min 85 typ 250 typ 150-600 200-800 80 typ	ina ina ina 2.3 2.5 ina 3.0 3.0 ina ina 4.5	a ob ab ab ab ab ab ab	req 114 885 135 req 925 138 119 119
Sperry OKI Gencom Sperry Varian Klystronics Sperry Sperry Sperry Sperry Sperry	SOK-2921 22V10 R9621 SRK-4640 VA-98 (series) TK50 SRK-4780 SRK-4641 SRK-4781 SRK-4762	23.8 20-24 22.0-24.0 23.95-24.05 23.6-24.4 23.5-24.5 23.5-24.5 24.0-25.0 25.7	50 70 60 min	500 min 165 typ 100 typ 100 min 100 min 15 min 400 min 225 min 400 min 75 min	ina 0.5 ina ina ina ina ina ina ina	k (3) ab ab ab (2) a ab ab (2) ab ab (2) ab	req 525 req req req req req req	OKI OKI Beam Tube OKI OKI OKI OKI OKI OKI	47V11 47V12 50BT/A 50V10 50V11 55V10 55V11 55BT/A	43-51 43-51 46-54 46-54 46-54 52-58 52-58 51-59 57-63	120 120 ina 140 145 140 190 ina	160 typ 220 typ 200-800 60 typ 160 typ 65 typ 150 typ 150-400 65 typ	3.5 3.5 ina 4.5 4.5 5.2 5.0 ina	ab ab ab ab ab ab	119 142 114 103 135 108 139 132
Sperry OKI OKI Gencom Gencom Varian Varian Varian Gencom OKI	SRV-5270 24V10A 24V11 R9602 R9675 EM-1138 (series) EM-1188 (series) VA-282 (series) R9729 28V12	30,4-30,6 22-26 22-26 22,5-26.0 18,0-26.5 18,0-26.5 18,0-26.5 18,0-26.5	75 min 50 50 60 60 60 60 40 68 75	100 min 250 typ 600 typ 100 typ 250 typ 200 min 500 min 450 min 70 typ 600 typ	ina 0.8 0.5 ina ina ina ina ina 0.6	ab (2) ab ab ab a a a a ab	req 525 950 req req req req 1175	OKI Beam Tube Beam Tube MET/IEC Beam Tube OKI OKI Varian	60V12 60BT/A 65BT/A YK1010 70BT/A 70V10 70V11A VRE- 2101A	57-63 55-65 60-70 67-73 65-75 65-75 43-80	150 ina ina 100 ina 140 165 100	200 typ 80-200 60-130 100 typ 60-130 65 typ 180 typ 500 min	5.2 ina ina ina ina 5.5 ina	ab ab u ab ab ab	186 176 231 req 238 199 245 req
Beam Tube OKI OKI OKI Sperry Gencom Sperry Gencom Varian Varian	308T/A 30V10 30V11 30V12 5RV-4400 R9518 5RV-4405 R9651 VA-97B V-283 (series)	27-32 27-32 27-32 27-32 31.9-32.1 27.8-32.2 32.9-33.1 31.2-33.7 32.6-34.0 26.5-35.0	ina 70 75 70 50 min 68 50 min 70 60 50	200-600 75 typ 225 typ 600 typ 75 min 80 typ 20 min 60 typ 10 min 300 min	ina 0.7 0.65 0.65 ina ina ina ina ina	ab ab ab ab(2) ab ab(2) ab ab	1144 585 995 1240 req req req req	Varian Varian Varian Varian Varian	VRE- 2102A VRE- 2103A VRE- 2103B VRE- 2104A VRE- 2105A	43-80 43-80 43-80 43-80	100 100 100 100 100	350 min 150 min 150 min 50 min	ina ina ina ina ina	a a a	req req req req
Varian Sperry Sperry Gencom Varian EEV/CEI EEV/CEI MET/IEC OKI OKI	VA-312 (series) SRU-5250 SRU-5130 R5146 VA-97 K035 K065 KS35-50 33V10 34V12	26.5-35.0 34.0-35.0 35.0 34.2-35.5 34.0-35.6 34.1-35.6 31-36 31-36 31-36	50 90 min n/a 70 60 60 60 60 100 95	100 min 10 min 10 min 90 typ 10 min 30 typ 30 typ 100 typ 75 typ 600 typ	ina	ab (2) abkz(2 ab a		Beam Tube OKI OKI OKI Varian OKI Varian	75BT/A 80V10A 80V11 90V10 90V11 VRB- 2114A 100V10A 100V11 VRB- 2111A	70-80 75-85 75-85 85-95 85-95 90-100 95-105 95-105 80-110	140 180 180 280 100 250 300 150	40-120 40 typ 150 typ 30 typ 90 typ 50 min 25 typ 80 typ 400 min	ina 4.0 5.0 6.0 20.0 ina 8.0 20.0 ina	ab ab ab ab ab ab a	242 235 290 245 290 req 267 445 req

The white "Mini Bus" on this board cuts cost and noise like you wouldn't believe!

Here's why.

The Mektron® Mini/Bus is a small, voltage-distributing busbar. With V_{cc} and ground return in the bus, not the board, high-density packaging is accomplished without multilayer board construction. *There's* cost-cutting!

And that little bus has so much more capacitance than you could ever get in the board itself, ICs can't be clobbered by surges in line voltage. Also, the capacitance bonus keeps your logic circuitry from being faked out by system transients. Noise-cutting like that means better, more reliable equipment.

Want more details? Design help? Mini/Bus prices? Ask the people who pioneered laminar bus. Us.

Microwave Oscillators, Low-Power Klystrons (cont.)

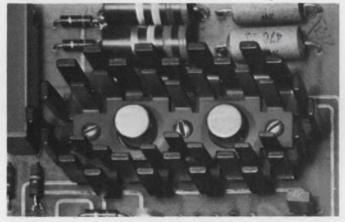
134

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
Varian	VRB- 2112A	80-110	150	200 min	ina	a	req	Varian	VRT- 2121A	110-141	150	100	ina	a	req
Varian	VRB- 2113A	80-110	150	75 min	ina	a	req	Varian	VRT- 2125A	110-142	150	10 min	ina	a	req
Varian	∨RB- 2113B	80-110	150	75 min	ina	a	req	Varian	VRT- 2122A	140-170	150	50 min	ina	a	req
Varian	VRB- 2115A	80-110	150	10 min	ina	a	req	Varian	∨RT- 2122B	140-170	150	50 min	ina	a	req
OKI MET/IEC	120V10 DX237	107-122 110-124	350 200	10 typ 40 typ		ab u	3850 req	Varian	VRT- 2124A	140-170	150	25 min	ina	a	req
Varian	VRT- 2123A	110-140	150	25 min	ina	a	req	Varian	∨RT- 2124B	140-170	150	25 min	ina	a	req
Varian	VRT- 2123B	110-140	150	25 min	ina	a	req	Varian	VRY- 2131A	170-220	150	10 min	ina	a	req

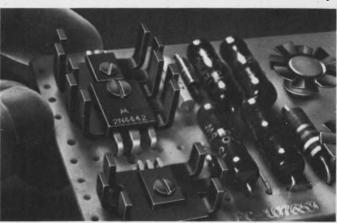
Microwave Oscillators, Low-Power Planar Triodes

135

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
RCA	6562/5794A	1.68-1.692	n/a	600 typ	n/a	v	req	RCA	A15314	0.9-3.4	n/a	250 typ	n/a	v	req
RCA	7533	1.68-1.692	n/a	575 typ	n/a	v	req	RCA	A 15235	3.05-3.4	n/a	100 typ	n/a	V	req
RCA	A15227	1.85-2.2	n/a	600 typ	n/a	v	req	MCL	7200	4.15-4.55	n/a	5-30	n/a	w	300
RCA	A15229	2.15-2.5	n/a		n/a	v	req	MCL	9015	4.15-4.55	n/a	2-30	n/a	w	250
RCA	A15231	2.45-2.8	n/a	300 typ	n/a	v	req	MCL	7014	5.25-6.05	n/a	5-30	n/a	w	300
RCA	A15233	2.75-3.1	n/a	120 typ	n/a	v	req	MCL	5024	8-10	100	100-200	1	(5)	1000

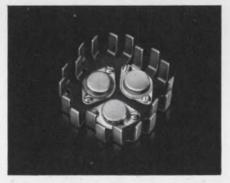

Microwave Oscillators, Low-Power Magnetrons

136


Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)		Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
Varian Mictron Varian Varian Mictron Varian Varian Varian GE	EM-1089 .5P.24S EM-1300 EM-747 EM-1151 1P.5-1S EM-1310 EM-1313 EM-1092 ZM-6085		200 250 800 250 500 500 700 600	15 min 500 max 100 min 50 min 50 min 1000 max 100 min 300 min 300 min 36–114	0.19 0.23 0.3 0.7 0.47 0.436 0.6 0.7 0.9	i di (7) i i di di (7) i i	req 900 req req 900 req req req req	Mictron Varian Varian Varian GE Varian Varian Varian Varian Mictron Varian	EM-1320 EM-1166 EM-1165	2.0-3.0 2.0-4.0	1000 1000 900 880 1500 1187 1500 1000 2000 1500	1000 max 100 min 50 min 50 min 300 min 36-114 500 min 100 max 500 min	0.87 1.3 ina 1.3 1.3 1.66 1.2 1.3 1.74 2.2	d; (7) i d; i i i i d; i i i i i	900 req req req req req req req req req
Mictron GE	.5P.5-15S ZM-6051	0.5-1.5 1.000-2.000	1000	500 max 100-398	0.61	dj (7) †j	1100 req	GE Mictron	ZM-6087 1C4-65	2.507- 4.310 4.0-6.0	1803 2000	36-114 1000 ma×	2.88	īj dj (7)	req 1300

Tips on cooling off hot semiconductors

As power levels go up and up and package size shrinks, circuit designers are keeping semiconductors cool with IERC Heat Sinks/Dissipators. Reducing junction temperature gives many benefits: faster rise and fall times, faster switching speed and beta, fewer circuit loading effects and longer transistor life and circuit reliability.


Thermal mating of matched transistors, such as these TO5's shown on a dual LP, maintains matched operating characteristics. The LP's unique multiple staggered-finger design (both single and dual models) maximizes radiation and convection cooling, results in a high efficiency-to-weight and -volume ratio.

Power levels of plastic power devices such as X58's, MS9's, and M386's can be increased up to 80% in natural convection and 500% in forced air when used with PA and PB Dissipators. PA's need only .65 sq. in. to mount; PB's 1.17 sq. in. Staggered finger design gives these light-weight dissipators their high efficiency.

T05's and T018's in high density packages can be cooled off with efficient push-on Fan Tops that cost only pennies. T-shaped, need no board room, let other components snuggle close. Spring fingers accommodate wide case diameter variations. Models for R097's, R097A and D-style plastic devices also.

High power T03's, T066's, T06's, T015's, etc. can be operated with much more power when used with HP's. These compact, lightweight staggered finger devices accommodate from one to four TO3's. Provide the same heat dissipation as an extrusion that's three times heavier and one-third larger.

Heat problems? IERC engineers welcome the opportunity to help solve your heat dissipation problems. As the world's largest manufacturer of heat sinks/dissipators for lead and case mounted semiconductors, they can come up with a practical, low cost solution.

Free four-page Short Form Catalog. Send for your copy today.

Heat Sinks/Dissipators | IERC

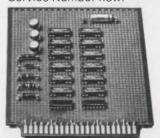
Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
WJ ITT Varian WJ	SE223 F-2508 VA-183M OD1-2	0.5-1.0 1.0-2.0 1.0-2.0 1.0-2.0	500 1000 1000 1000	30 min 100 typ 100 min 50 min	ina 1.11 0.2	×	req 1360 req req	Varian WJ WJ	SE2118	3.7-8.3 3.7-8.3 5.2-8.3	4600 4600 3100	20 min 15 min 10 min	1.0 ina ina	×	req req req
M1 Aariau M1 M1 M1	SE214A SE219 OD1.5-2.5 VA-186M OD1-2.6 SE214	1.0-2.0 1.4-2.5	1000 1100 1000 1600 1600	100 min 100 min 50 min 50 min 50 min 30 min	ina ina ina 0.2 ina ina	y × y	req req req req req	Siemens ITT Varian Varian Varian Varian Varian		8.5-9.6 8.5-9.6 8.5-9.6	2700 2100 1100 1100 1100 1100 1100	100 typ 50 typ 50 min 30 min 60 min 30 min 40 min	ina 3.72 3.0 11.0 3.0 11.0 8.0	x x x x	req 1815 req req req req
ITT WJ ITT Tripp Varian Varian WJ WJ	F-2507 WJ2002 F-2513 F-2509 TR520 VA-184M VA-184T VA-435M OD2-4 SE213	1.8-2.8 1.4-2.9 1.3-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0	1000 1500 2700 2000 2000 2000 2000 2000 2000 2	100 typ 50 min 25 typ 100 typ 100 min 50 min 100 min 50 min 30 min 40 min	2.22 ina 1.17 1.33 0.85/2.5 0.5 0.5 ina ina	× × × y	1360 req 1750 1360 req req req req req	Sperry Varian WJ ITT WJ WJ WJ WJ	VA-443M WJ2048 F-2547 OD7-11 WJ2001-10 WJ2042 WJ818-1	4.5-10.0 9.0-10.0 5.2-10.4 5.5-11.0 7.0-11.0 7.0-11.0 7.0-11.0 7.0-11.0 6.5-11.5	5500 1000 5200 5500 4000 4000 4000 4400 4400 5000	10 min 50 min 30 min 40 min 10 typ 15 min 25 min 30 min 30 min 10 min	ina 1.0 ina 4.32 ina ina ina ina ina ina	x (4) x x y x y	req req req req req req req req req
M) M) Aurian M) Aurian M)	SE215A SE310 WJ2018 WJ2024 WJ2051 TR521 VA-184F SE215 WJ2014-10 WJ2014	2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 2.0-4.0 1.7-4.2 1.7-4.2 1.7-4.2 3.6-4.3 2.0-4.5	2000 2000 2000 2000 2000 2500 2500 2500	75 min 50 mln 70 min 50 min 30 min 30 min 40 min 30 min 375 min 50 min	ina ina ina ina ina 0.75/2.7 0.5 ina ina	x x	req req req req req req req req	WJ ITT Sperry ITT Tripp Varian Varian WJ	(series) WJ2033-2 F-2554 SBX-2980 F-2520 TR541 VA-173M VA-450M SE209	7.0-11.5 6.0-12.0 8.0-12.0 8.0-12.0 7.0-12.4 7.0-12.4 7.0-12.4 7.0-12.4 7.0-12.4 7.0-12.4	4500 6000 4000 4000 5400 5400 5400 5400	40-130 10 min 10 typ 15 min 20 typ 40 min 40 min 20 min 10 min 25 min	1.0 ina 2.39 ina 2.69 2/7 1.0 ina ina	x (4) x x	req req req req req req req req req
WJ EEV/CEI ITT Varian Varian WJ WJ WJ ITT WJ	(series) F-2556 VA-187M VA-436M SE310-3 WJ2013 WJ2038 F-2517	2.0-4.5 2.4-4.5 2.6-5.2 2.6-5.2 2.6-5.2 2.6-5.2 2.6-5.2 2.6-5.2 3.7-5.5 2.6-5.6	2500 2100 2600 2600 2600 2600 2600 2600 1800 3000	50 min 90-400 10 typ 70 min 50 min 20 min 50 min 25 min 50 typ 50 min	ina 1.0 3.51 0.5 0.5 ina ina 2.73 ina	×	req req req req req req req 1275	ITT Tripp Varian Varian Varian Varian Varian Varian Varian Varian Varian	VA-161M VA-173T VA-173TA VA-175M VA-175T VA-450C	8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4	4400 4400 4400 4400 4400 4400 4400 440	25 typ 50 min 20 min 20 min 80 min 100 min 80 min 100 min 40 min 15 min	2.38 2.7/7.2 3.0 3.0 1.0 1.0 1.0 1.0 3.0	x x x x x x	1360 req req req req req req req req
M) Aariau M) M) M) M) M) M) M)		5.4-5.9 5.4-5.9 5.4-5.9	2200 500 500 500 3000 3000 3250 3250 3600 3580	30 min 400 min 100 min 50 min 20 min 40 min 40 min 40 min 40 min	ina 1.0 3.0 ina ina ina ina ina ina ina	y x x y x	req req req req req req req req	Varian WJ WJ WJ WJ Varian WJ	SE209A9 WJ313 WJ2001-1 WJ2006 WJ2008-2 WJ2026 WJ2027 VA-461M	8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.0-12.4 8.2-12.4	4400 4400 4400 4400 4400 4400 4400 440	50 min 20 min 50 min 50 min 50 min 80 min 20 min 20 min 10 min	1.0 ina	x x y	req req req req req req req req
ITT Tripp Varian Varian Varian WJ WJ WJ WJ	F-2555 TR530 VA-160M VA-185M VA-440M VA-441M OD4-8 SE211A WJ304 WJ2015	4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0	4000 4000 4000 4000 4000 4000 4000 400	10 typ 50 min 50 min 100 min 20 min 50 min 10 min 30 min 20 min 60 min	2.29 2/5.9 0.5 1.0 0.5 1.0 ina ina ina	x x x x	req req req req req req req req	WJ Varian Varian WJ WJ Sperry Varian WJ	VA-177M VA-472M OD10-15 \$E220 WJ2059	10.0-15.0 10.0-15.5 10.0-15.5	5500 5500 2000 3000	20 min 10 min 50 min 20 min 10 min 10 min 25 min 20 min 50 min 10 min	ina 1.0 1.0 ina ina ina ina ina ina ina ina	x x y x (4)	req req req req req req req req
Wl Wl Wl Wl Wl Wl Varian	WJ2019 WJ2025 WJ2030 WJ2034 WJ2045 WJ2047 WJ2050 F-2510 TR531 VA-185F	4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.2 3.7-8.3 3.7-8.3	4000 4000 4000 4000 4000 4000 4000 4200 4600 46	30 min 20 min 50 min 60 min 50 min 50 min 30 min 25 typ 20 min 50 min	ina ina ina ina ina ina 2.15 1.6/6.4	x x x	req req req req req 1360 req req	WJ Sperry Tripp Varian Varian WJ WJ WJ	TR560 VA-162M VA-470M	12.4-18.0 12.4-18.0	5600 5600 5600 5600 5600 5600 5600	10 min 20 min 30 min 50 min 20 min 10 min 10 min 20 min 40 min	ina ina 2.3/8.5 4.0 40 ina ina ina ina ina	(4) × × y	req req req req req req req req

Clare's new PRME DIP relay: Europe was its proving ground

True electrical and physical compatibility with DIP-packaged IC logic families plus the Clare Picoreed capsule.

France. Italy. Germany. Belgium. The Netherlands. This microminiature sealed-contact relay has been built by Clare International, and has proved itself over most of Europe in data process and process control applications. The users? Some of the biggest names over there. Now Clare's new PRME DIP Relay is ready for you.

Check its credentials. Electrically and


physically compatible with DIP-packaged IC logic families. Drive the 5-volt model directly from most DTL/TTL standard gates without power NANDS or external driver/buffers. Total DIP package compatibility also. That means IC DIP dimensions, epoxy molding, automatic machine insertability.

And here's a big plus: The PRME is built around Clare's own Picoreed capsule, basis for the inherent reliability of Clareed relays.

Some other points. Available for 5, 6, 12 and 24-V dc operation. Operates within 500 μ seconds, releases within 100 μ seconds. Sensitivity: 35 mW with ICs – 45 to 130 mW with other circuit types. Switch 500 mA, 100 V, 10 VA max; carry 2.0 A max. Internal

diode-coil suppression and electrostatic shield options.

Care to know more about the new Clare relay that is already a sensation on the Continent? Circle the Reader Service Number now.

C. P. Clare & Co. Chicago 60645 and worldwide. A General Instrument company.

Microwave Oscillators, Low-Power BWOs (cont.)

138

Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)		Price (\$)	Mfr	Model	Operating Frequency Range (GHz)	Electronic Tuning Range (MHz)	Output Power Min-Max (mW)	FM Modulation Sensitivity (MHz/V)	Notes	Price (\$)
WJ WJ Varian Varian WJ WJ WJ Varian	WJ2028 WJ2043 WJ2056 VA-162F VA-178M VA-482M OD15-22 WJ2054 WJ2064 VA-163M	12.4-18.0 12.4-18.0 12.4-18.0 10.0-20.0 15.0-22.0 15.0-22.0 15-22 15-22 18.0-26.5	5600 5600 10,000 7000 7000 7000 7000 7000 7000	20 min 30 min 40 min 5 min 10 min 5 min 5 min 5 min 5 min 25 min	ina ina 3.0 4.0 4.0 ina ina ina 5.0	x x x x x y	req req req req req req req req req	Sperry Siemens OKI OKI OKI OKI OKI OKI	WJ2058 SBV-4370 RW040 BA47F BA47H BA50H BA54H BA55B RW060 BA60H	26.5-40.0 34-40 26.5-42 43-52 45-52 48-55 51-55 50-59 40-61 54-62	13,500 6000 25,500 9000 7000 4000 9000 21,000 8000	10 min 20 min 60 typ 150 typ 600 typ 600 typ 700 typ 120 typ 2 typ 600 typ	ina	x (4) r q q r	req req 3705 6185 6185 6555 4445 req 6555
Varian WJ WJ Varian Varian Varian WJ WJ	VA-480M SE218 WJ311 WJ2057 OD18-27 VA-490N VA-164M VA-490M SE222 SE312	18.0-26.5 18.0-26.5 18.0-26.5 18.0-27.0 34.0-36.0 26.5-40.0 26.5-40.0 26.5-40.0	8500 8500 8500 8500 9000 2000 13,500 13,500 13,500	10 min 20 min 5 min 20 min 5 min 20 min 10 min 5 min 10 min 5 min	5.0 ina ina ina s.0 5.0 5.0 ina ina	x y x x x	req req req req req req req req	OKI Siemens Sperry Siemens	RW075 SBE-4023 RW080 SBF-4221 C010-1 C010 C009 C006EA	50-63 54-65 50-75 70-86 60-90 86-98 290-300 290-310 320-350 480-520 570-630	13,000 11,000 25,000 16,000 30,000 12,000 10,000 20,000 40,000 60,000	5 min 120 typ 5 typ 2-5 1 typ 3-7 200-1000 10-80 3-30 3-30 3-30	ina ina ina ina ina ina 20 40 20 35 30	(4) r (4) (4)	req 4995 req req 21,00 20,00 19,50 19,50

- Reflex-type klystron Integral cavity
- Ь.
- External cavity
- d. Low noise
- Low drift
- f. Rugged
- Micrometer tuning
- Long life
- h. Extremely high FM modulation rate Voltage-tuned magnetron
- i. Fixed tuned
- Insulated tuner m.
- Dielectric tuning n. Differential screw tuner р.
- Water cooled q.
- Air cooled
- Probe output

- Integral waveguide tuning
- U.
- ٧.
- Waveguide output Pencil Tube Mechanically tuned
- x. Fully shielded y. Solenoid focused Fully shielded
- y. Solenoid facused
 z. Stabilized cavity
 (1) Constant reflector voltage with tuning
 (2) Fixed reflector voltage
 (3) Two-cavity klystron
 (4) Permanent-magnet facused
 (5) Includes varactor multiplier
 (6) Control electrode
 (7) Pulsable
 (8) Gap tuner
 (9) Trimmable

Man discovers something better.

Some guys are never satisfied with their mates. They're always looking for something new. Something a little more ... uh ... reliable.

And preferably, something with a little less resistance.

Well look no further.
The newest
Malco-Mate
was specifically
designed for
the guy who wants
something better.
It's DIP-MATE.

The most advanced, most reliable dual-in-line circuitry interconnection system available.

The not-so-secret secret of Dip-Mates is the newly designed fork type contact plus the low resistance ground and power connections. Now you can plug in thin DIP leads and maintain a consistently reliable connection. In Dip-Mates, the base plate functions as the ground while a thin, insulated aluminum power plate is attached under the module board.

The new Dip-Mate design keeps thermal problems to a

minimum by air cooling both the top and bottom of the plugged-in package. And on the wrapost side, a low profile interconnection design allows for a maximum area available for wire wrapping.

But let's get to the best part. Dip-Mates are the most versatile dual-in-line (MSI and LSI, too) connectors because they can be used as both a flat I.C.

board or in a cubic
configuration using
a mother plate
with daughter
plates inserted at
right angles. In fact,
you can even
stock spare
modules.
Not only
does
this
configuration
save gobs of space,

but it lets you add as many modules as you need. Reliably.

To make it even more tempting,

INFORMATION RETRIEVAL NUMBER 64

Dip-Mates used in the cubic configuration can have built-in heat sinks installed, so you can stuff the entire mating system into a tiny space without

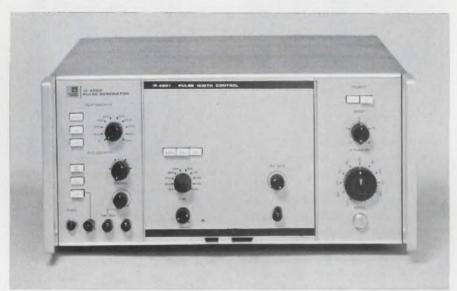
worry. And Dip-Mates accept everything from the standard 14-pin I.C. up to an infinite number of contacts. Almost.

Naturally, you can order Dip-Mates to meet your unique design specifications. In fact, we'll even provide wire-wrap for you. Or, you can order any of our off-the-shelf Dip-Mates in standard configurations. And even not so standard configurations.

If you're looking for a new mate that can offer you some very interesting variations, discover Dip-Mates. They're something better.

We solve your mating problems.

MALCO MEG COMPANY INC


5150 WEST ROOSEVELT ROAD CHICAGO, ILLINOIS 60650 (312) 287-6700

Send for your free copy of Dip-Mates Exposed.

A Guide To Reliable Mating.

New Products

High-speed +2-V generator clocks out at a 1-GHz rate

Takeda Riken Industry Co., Inc., Nichimen Co., Inc., 60 Broad St., New York, N. Y. Phone: (212) DI4-3456. P&A: \$32,000; 120 days.

Supplying high-speed ±2-V pulses with rise and fall times under 250 ps, the TR-4200 series pulse generator system comprised of a \$9800 mainframe and its three plug-ins bursts forth with an amazing clock rate of 1000 MHz.

With its three complementary plug-ins, the new generator system can produce three types of output modes: programmable word patterns, pseudo random noise sequences and continuous pulse trains.

Either an external clock signal or the system's internal clock signal can be arbitrarily selected. The external signal is continuously variable over the frequency range of 100 to 1000 MHz. An agc circuit is available at the external clock-signal input to ensure a broad dynamic input range.

Another important feature of the new pulse generator system is that the offset position of the output base line is fixed, regardless of the output pulse amplitude, which is adjustable to ± 2 V.

When varied in its output-amplitude range of ± 2 V, the base line

contains less than 10% of distortion which includes overshoot and sag characteristics.

The generator can be delayed in output by internal incremental adjustments of 100 ps over the range of 100 ps to 2.5 ns. This can be extended up to 20 ns by externally attaching a coaxial cable.

Two synchronization output signals are available. One is a 50-MHz count-down signal and the other is a 0.5-V pk-pk signal.

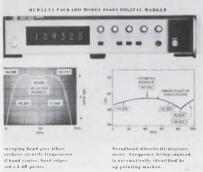
The TR-4201 is the continuous-pulse plug-in whose frequency range is 100 to 1000 MHz. It provides output pulse width over the range of 400 ps to 2.5 ns and is capable of generating pulse bursts. Its output is of a return-to-zero mode. Cost is \$3900.

The TR-4202 is the word generator plug-in with a frequency range of 100 to 1000 MHz. It can supply 15-bit words or 9-bit words which are switchable. Cost is \$8500.

The TR-4203 is the pseudo random noise plug-in with a frequency range of 100 to 1000 MHz. Its maximum period-length sequence pulse train is selectable from 2^9-1 to $2^{15}-1$ bits. Output is of a non-return-to-zero mode and cost is \$9800.

CIRCLE NO. 250

Three-digit multimeters have \$179 price tag



Numeric Laboratories, 329 S. Greenwood Ave., Palatine, Ill. Phone: (312) 359-5985. P&A: \$179, \$195; stock.

Series 300 three-digit multimeters with 1% accuracies include the \$179 model 350 which measures dc voltage and current and resistance and the \$195 model 351 which measures dc and ac voltage and current, and resistance. Both models feature 10% overrange, include an automatically-positioned decimal point and sample at a rate of 60/s.

CIRCLE NO. 251


110-MHz 6-digit marker is a 15-MHz counter

Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. P&A: \$1100; 45 days.

Five variable markers, that can be set anywhere in the range of 0.1 to 110 MHz with a 6-digit counter read-out, now come in one package along with a 15-MHz counter, all for \$1100. Model 8600A digital marker functions with the 8610A 110-MHz sweep generator and with any swept display to produce five frequency markers.

Benchtop X-Y recorder plots X-t functions

Leeds & Northrup Co., Sumneytown Pike, North Wales, Pa. Price: \$1570.

The Speedomax XL 683 benchtop X-Y recorder converts instantly into an X-t recording device with optional selection of 1, 2, 3, or 10 chart speeds. Chart travel is horizontal as the X function drives the recorder pen across the chart while the Y function drives the low-inertia chart beneath the pen. Chart span is 250 mm on each axis. A pushbutton chart-advance system automatically positions the Y-axis for the next plot.

CIRCLE NO. 253

Optical-power system is a mere \$1100

Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. P&A: \$1100; 60 days.

Accurately measuring both total power and power density of optical radiation in the μv visible and IR regions with a single probe, the model 8330A/8334A optical-power meter system costs only \$1100. Radiant flux resolution is 5 nW to 10 mW, irradiance resolution is 50 nW/cm² to 100 mW/cm², and radiance resolution is 5 nW/cm²/steradian to 10 mW/cm²/steradian.

CIRCLE NO. 254

Display oscilloscope lowers cost to \$425

Telonic Industries, Inc., 21282 Laguna Canyon Rd., Laguna Beach, Calif. Phone: (714) 494-9401. P&A: \$425; stock.

The model 121 low-cost 11-in. screen display oscilloscope features vertical-input operation of dc to 15 MHz and horizontal-input operation of dc to 1 kHz for a \$425 price. Ac or dc input coupling is used and sensitivity is 1 mV/division and 100 mV/division for vertical and horizontal inputs, respectively.

CIRCLE NO. 255

Wideband analyzer is -100-dBm sensitive

Systron-Donner Corp., Microwave Div., 14844 Oxnard St., Van Nuys, Calif. Phone: (213) 786-1760. P&A: \$5950; 90 days.

The new model 761 calibrated spectrum analyzer operates in the 10-MHz to 40-GHz range with -100-dBm sensitivity. It is also capable of operating up to six hours from a Ni-Cd battery pack. Calibrated scan widths are featured from 100 kHz to 500 MHz with 5 i-f bandwidths ranging from 1 kHz to 1 MHz.

CIRCLE NO. 256

Wheatstone bridge checks 0.08 Ω to 60 k

Norma Instruments of Vienna, Freed Transformer Co., Inc., 1718 Wierfield St., Brooklyn, N. Y. Phone: (212) 386-1300. P&A: \$98.50; stock.

The 1802-30201 Norma slidewire Wheatstone bridge is a portable dc resistance-measuring instrument operating between 0.08 Ω and 60 k Ω with a six-position multiplier switch. The bridge has an 8-1/4-in. scale and is accurate to $\pm 0.5\%$ except at the extreme ends of the scale where it is accurate to $\pm 2\%$.

CIRCLE NO. 257

Calibrated analyzer displays X-Y functions

Kruse Electronics, 790 Hemmeter Lane, Mountain View, Calif. Phone: (415) 967-2299. P&A: \$690; 60 days.

The model 7000 calibrated X-Y CRT display with three linear and logarithmic plug-in vertical amplifiers allows the convenient analysis of a wide range of rf and microwave frequencies. Horizontal amplification is 1 V/cm, response is dc to 300 kHz and input impedance is 10 k Ω . Vertical amplification is controlled by plug-ins that provide calibrated displays.

The industry's chameleon.

HONEYWELL INTERNATIONAL: Sales and service offices in all principal cities of the world.

offers options like extended overtravel, extra long life, and low operating force. This, plus a wide temperature tolerance (-100° F to specials of +600° F), make it the "standard" throughout industry. It also reduces costly

downtime. Even better, it's inexpensive and readily available. For more information on the adaptability of the V3 contact your MICRO SWITCH Branch Office or

Authorized Distributor. Or write for Catalog 50.

REEPORT, ILLINOIS 61032

A DIVISION OF HONEYWELL

NEW from BULOVA... **DC Servo Amps** 2.5w to 2,500w

Here's a line of servo amps packaged for flexibility and priced for system saving. It's another example of Bulova's unique capability in producing quality servo products at a price lower than you can make or buy.

Available from 2.5 w to 2.5 Kw -Styled in flat pack, modular or rack mount - to meet industrial or mil-spec — able to operate from AC or DC — to include power supply when required.

FEATURES:

- Adjustable Gain
- Current Limiting Voltage or Current
- Feedback Wide Bandwidth
- Low Cost

DCA Series

DCAR Series

DESIGNED TO DRIVE:

- DC Torque Motors
- Low Inertia Motors
- DC Servo Motors
- Deflection

Don't miss out on this Bulova Servo Special. For new applications or old . . . for help in planning new servo systems . . . for the lowest price on DC Servo Amps . . . Look to Bulova! Call (212) 335-6000, or write -

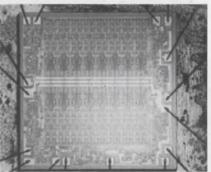
Electronic Division of Bulova Watch Company, Inc. 61-20 Woodside Avenue (212) 335-6000 Woodside, N. Y. 11377

Bulova also offers a complete line of AC servo products, including servo amplifiers, modulators and demodulators, plus a line of power supplies.

INFORMATION RETRIEVAL NUMBER 66

ICs & SEMCONDUCTORS

Pnp 120-V transistors switch on in 300 ns

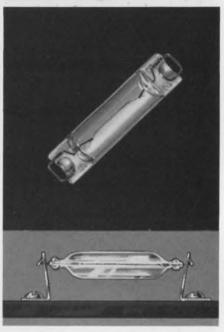


Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. Phone: (415) 962-3563. P&A: \$9.75, \$12.75; stock.

Operating from high voltages, four pnp small-signal transistors switch on in 300 ns and turn off in 1 μs. The 2N3494 and SN3495 are TO-5 units, while the 2N3496 and 2N3497 are TO-18 units. The 2N-3495 and 2N3497 provide a minimum collector-to-emitter voltage of 120 V. The 2N3494 and 2N3496 have a minimum collector-to-emitter voltage of 80 V.

CIRCLE NO. 259

64-bit random memory accesses in 35 ns



Radiation Inc., Microelectronics Div., Melbourne, Fla. Phone (305) 727-5412. P&A: \$25.60; stock.

Organized as a 16-word by 4-bit array with full decoding, a new 64bit bipolar random-access memory accesses in 35 ns. It operates over a temperature range of -55 to +125°C and dissipates 6 mW/bit. It is compatible with DTL and TTL and features an open-collector output for wired-OR expansion in the word dimension. Write pulse width is 25 ns and packaging is in a 16-pin dual in-line case.

CIRCLE NO. 260

Pulling down he cost of ument

For a high-reliability light source, the Tung-Sol baseless cartridge lamp is about as simple as you can get. Elimination of cemented-on bases removes two potential failure sources while lowering cost. There are no anchors to generate noise and no soldered connections. Design permits use of an inexpensive clip-type mounting bracket which achieves low silhouette. Can be supplied in 6 v. and 12 v. types. Complete information and application assistance available. Write for catalog A-21. Tung-Sol Division, Wagner Electric Corporation, 630 W. Mt. Pleasant Avenue, Livingston, N.J. 07039; TWX: 710-994-4865, Phone: (201) 992-1100; (212) 732-5426.

TUNG-SOL® BASELESS CARTRIDGE

TUNG-SOL-WHERE BIG THINGS ARE DONE WITH SMALL LAMPS

® Trademark TUNG-SOL Reg. U.S. Pat. Off. and Marcas Registradas

INFORMATION RETRIEVAL NUMBER 67 ELECTRONIC DESIGN 21, October 11, 1970

MOS decade counters strobe and reset

Plessey Co. Ltd., Microelectronics Div., Cheney Manor, Swindon, Wiltshire, England.

Two new integgrated p-channel MOS decade counter circuits, the MP123B and MP124B, provide output strobe and counter resets and have four master slave flip-flops connected as decade counters. The MP123B generates a BCD downcount and the MP124B includes decoding gates to give decimal outputs. A negative logic convention is used. Both devices come in TO-5 or dual-in-line cases.

CIRCLE NO. 261

MOS adaptive logic gate checks optical patterns

Integrated Photomatrix Ltd., Teknis Inc., 93 South St., Plainville, Mass. Phone: (617) 695-3591.

When interconnected, the MC901 MOS adaptive loggic gate can be taught to recognize different optical patterns or to alternatively serve as a sequence generator. The new gate, which is TTL compatible, enables all the logic functions of four binary inputs to be realized with respect to one output of 65,520 bits by recognizing the required output for each of the 16 binary input patterns. Several of the new devices may be used together to provide several input adaptive gates.

CIRCLE NO. 262

16-bit momery chip includes logic too

Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. Phone: (415) 962-3563. P&A: \$75; stock.

The MuL4102 is a bipolar 16-bit random-access associative memory that combines logic circuits and memory cells on the same silicon chip. Featuring a 35-ns match time, it is organized into four 4-bit words, each with its own address line. It is designed to signal a match whenever data at it its inputs corresponds to data stored.

CIRCLE NO. 263

the Giant Killer...

New Heath EU-70A...

\$565^{.00*}

ASSEMBLED & TESTED

- Solid-state
- Triggered
- X-Y

- Dual trace
- DC-15 MHz
- •15" deep
- •8x10 cm flat face CRT
- Send for the free EU-70A spec sheet... and watch the giants fall

EU-70A PARTIAL SPECIFICATIONS: Frequency Response: DC-15 MHz, down 3 dB. Rise Time: 24 nsec. Time Base: Triggered with 18 calibrated rates, 0.2 usec/div to 100 msec/div in 1, 2, 5 sequence. Sweep Magnifier: X5, accuracy ±5%. Triggering: Internal – Channel 1; Channel 2; Channels 1 / 2. External. Line. Adjustable. + or – slope. AC or DC coupled. Triggering Requirements: Internal – triggers from Channel 1, Channel 2 or Channels 1 / 2 X-Y mode capability. 8x10 cm grid, edge lighted. Dimensions: 10½" W x 12½" H x 15" D.

NEW FREE 1971 CATALOG!

The latest edition, with many new, exciting kit-building projects... over 300 kits for stereo/hi-fi, color TV, electronic organs, guitar amplifiers, ham radio, marine, educational, CB, home &

dio, marine, educational, CB, home & hobby. Mail coupon or write Heath Company, Benton Harbor, Michigan 49022.

	HEATHKIT'
HEATH COMPANY, Dept. 520-26 Benton Harbor, Michigan 49022	a Schlumberger Company
☐ Rush my new Heathkit Catalog ☐ Enclosed is \$, plus shipping.
Please send model(s)	
Name	

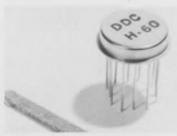
Address.

City_____ State.____ Zlp_

Prices & specifications subject to change without notice.

"Mail Order Prices; F.O.B. Factory EK-290"

Resettable TTL multi is dual retriggerable

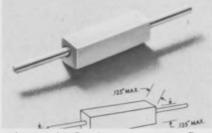


Texas Instruments Inc., 13500 N. Central Expressway, Dallas, Tex. Phone: (214) 238-2011. P&A: \$4.72 to \$16.12; stock.

Featuring dc triggering from high and low-level active inputs, the SN54/74123 TTL multivibrator exhibits dual-retriggerable resettable operation. It has an overriding direct clear input and a fanout of 10 for both positive and negative output pulses. Power dissipation is 100 mW and propogation delay is 21 ns.

CIRCLE NO. 264

Differential op amp settles in 1/2 μs



DDC, Div. of Solid State Scientific Corp., 100 Tec St., Hicksville, N. Y. Phone: (516) 433-5330. P&A: \$125; stock.

Featuring an offset voltage of 2 mV, which can be externally trimmed to zero by use of a $50\text{-}\mathrm{k}\Omega$ potentiometer, the H60 differential FET-input operational amplifier settles to 0.01% in $1/2~\mu\mathrm{s}.$ Other specifications include a $200\text{-}\mathrm{V}/\mu\mathrm{s}$ slew rate, a $25\text{-}\mathrm{MHz}$ unity-gain bandwidth and $100\text{-}\mathrm{dB}$ open-loop dc-voltage gain.

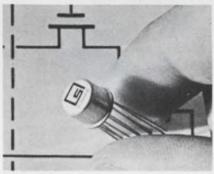
CIRCLE NO. 265

Silicon rectifiers accept 10 kV PIV

Electronic Devices, Inc., 21 Gray Oaks Ave., Yonkers, N. Y. Phone: (914) 965-4400.

The new DR series of low-cost fast-recovery high-voltage silicon rectifiers range in voltage ratings from 3000 to 10,000 V PIV at a current rating of 25 mA. Each rectifier measures only 0.437-in. long by 0.125-in. square and has 0.2-in.-long leads. Avalanche characteristics include a maximum reverse-recovery time of 300 ns and a peak surge current of 1 A.

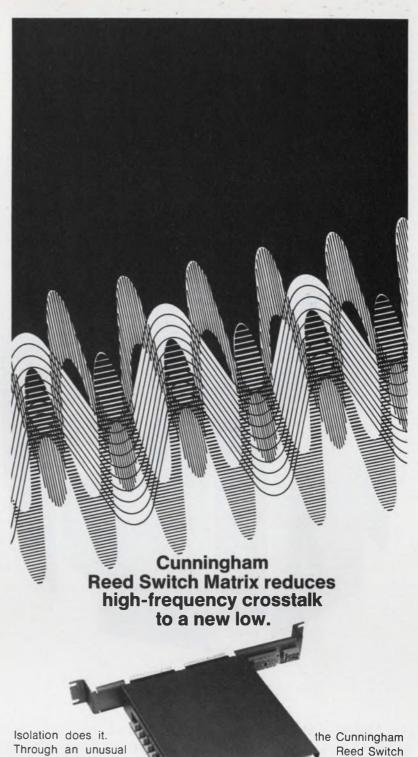
Npn power transistors rate 400 V at 3 A



Sensitron Semiconductor, 221 W. Industry Court, Deer Park, N. Y. Phone: (516) 586-7600.

A new series of silicon npn highvoltage power transistors, STS-1131 to STS-1134, offer collectorto-emitter voltages as high as 400 V and collector currents up to 3 A. Collector-emitter voltage ratings range from 225 V for the STS-1131 to 400 V for the STS-1134. Current gain at 3-A ratings is a minimum of 18 and a maximum of 60.

CIRCLE NO. 267


Fast MOS register shifts at 3-MHz rate

Signetics Corp., 811 E. Arques Ave., Sunnyvale, Calif. Phone: (408) 739-7700. P&A: \$4; stock.

A new MOS dual 100-bit static shift register, the N2010K, operates at shift rates ranging from dc to 3 MHz. It has a typical propagation delay of 200 ns and a maximum of 250 ns. Two external 28-V clock phases as well as a -14V-dc and a -28 V-dc supply are required for operation. A third phase is generated on the MOS chip.

CIRCLE NO. 268

"sandwich" design, matrix-mounted reed switches are sealed.

shielded and separated from their controls, achieving maximum open circuit isolation and negligible crosstalk.

The matrix is ideal for interconnecting video channels, broadband data switching, test systems for nano-second digital pulses, telemetry equipment for multiple data channels, antenna switching, and medical data monitoring.

Proven reliability up to 100 million operations. The whole story about

Matrix's excellent signal characteristics, 100% random access, computer compatibility, single package design and dual coaxial connectors for multiple expansion is told in Data Sheet

No. 500. Write or phone Cunningham Corporation, 10 Carriage St., Honeoye Falls, New York 14472. Phone (716) 624-2000.

Cunningham Corporation

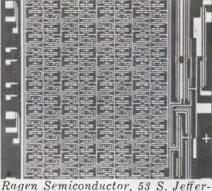
SUBSIDIARY OF GLEASON WORKS

INFORMATION RETRIEVAL NUMBER 72

MOS 64-bit register dissipates but 1μ A

Atlee's delta-wave configuration keeps components 80°C cooler than other inserts.

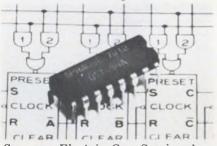
Atlee has a complete line of full-contact heat dissipating inserts for cooling many types of electronic components.


Made of beryllium copper to provide unexcelled heat conduction. Provide cooling when used inside cans or castings or are interlocked to form a circle and slid over the component.

Exclusive delta-wave design proves more effective

than that of any conventional insert because more than 80% of the surface contacts the flat area of the delta. Particularly effective when forced air systems are used. Available with or without finish, cut to any length, or in rolled uncut form. Write today for complete information and samples. Atlee Corporation, 2 Lowell Avenue, Winchester, Massachusetts 01890.

son St., Whippany, N.



son St., Whippany, N. J. Phone: (201) 887-4141. Availability: stock.
Operating from dc to 25 MHz, a new MOS 64-bit shift register array with serial input and output exhibits ultra-low power dissipa-

tion of less than 1 μ A of current drain over the range of 5 to 16 V, in the static mode. Other features of the MS612 are a single-clock input with a capacitance only 5 pF, use of a single power supply and operation from -55 to $+125^{\circ}$ C.

CIRCLE NO. 269

Four-bit MSI register eases data input

Sprague Electric Co., Semiconductor Div., 551 Marshall St., North Adams, Mass. Phone: (413) 664-4411.

The new US7494A four-bit MSI parallel-inupt serial-output register features 2-input OR-gate presets for individual bits, a 2-input OR-gate preset for all bits in parallel, serial input and all-bit clear. Input data may be entered in parallel or serially and transfer of information into the output occurs during the clock's positive transition. The new IC comes in a 16-pin dual-inline package.

Portable field programmer patterns read-only memories

Spectrum Dynamics, Inc., Box 23699, Fort Lauderdale, Fla. Phone: (305) 566-4467. P&A: \$945; 6 wks.

Able to establish patterns on read-only memories, the model 402 portable IC-memory programmer provides an accurate and economical means of electronically programming off-the-shelf read-only memories, in the field.

Programs are first worked out for each word on supplied truth-table cards. The cards are then aligned with programming switches on the model 402 programmer and a master IC memory is then manually programmed.

Additional devices can then be automatically programmed and verified at a rate of 400 ms word. Initial programming and verification for the first master memory takes 30 minutes.

If we assume 50% programming of logic states ONE, a typical 64-word eight-bit memory can be completed in just 30 seconds. The advantage is that once a user programs a master memory, any off-the-shelf memory can be accurately programmed in the field in only seconds.

The 402 programmer has an address capacity of 512 words maximum, selectable as 64, 128, 256,

and 512 words. Output capacity is 8 bits.

Interchangeable socket assemblies are available on the 402 programmer for 24-pin dual-in-line, 24-pin flatpack and 16-pin dual-in-line packages. Eight spring-return switches allow the operator to correct bit information before programming.

Display is on a seven-segment three-digit word counter that displays 20 words per second or single words with manual up-down control via a three-position lever switch.

Access points are available for all inputs and outputs such as voltage supply and ground points for manual testing on monitoring.

A rear-panel 50-pin connector provides coupling for automatic programming methods using card or tape readers, or for dynamic device testing.

Built-in features of the model 402 include a 5-V dc collector supply source, an insert switch for disabling all pins on both master and unprogrammed memories, a function selector that allows parity checks in both automatic and manual modes and a word-capacity switch that prevents the over and under-programming of memories.

CIRCLE NO. 271

a little about pots.

When space is limited, buy the Weston ¼-inch trimmers. The 566-569 Series is a new ¼-inch round, single-turn, CERMET, commercial, trimming potentiometer rated at 0.50 watts at 70°C.

The main features are:
small size
¼-inch round
wide resistance range
10Ω to 1 meg
low-cost
only \$1.11 in 500 quantities,
with substantial reductions in
larger quantities
temperature coefficient
±100 ppm/°C, maximum
delivery from stock

You have two configurations to choose from. The Models 566-567 are ¼-inch round top adjust, with PC pins base mounted. The Models 568-569 are side adjust with PC pins edgemounted. To provide a model for your design, several pin arrangements are available.

For samples, or complete details, call 717-876-1500 or write Weston Components Division, Archbald, Pa. 18403, a Schlumberger company.

WESTON

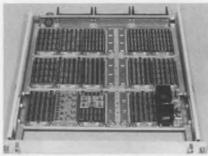
INFORMATION RETRIEVAL NUMBER 74

Our D servomotor is mad with power.

That's our SU-680D-29 permanent-magnet D-C servomotor. We call it our D motor for short. It's small, rugged and powerful. It delivers 12.7 watts of continuous power output at 8600 rpm and is a natural for any servomechanism that requires a prime mover. It has a high repeatability-to-time ratio which makes it immensely stable, a 0-10,000 rpm speed range and a high acceleration Torque/ Inertia. Torque peaks at 15 ozin., 2 oz-in. continuous at 8600 rpm. It measures only 11/8 inches in diameter and weighs just 81/4

SERVO-TEK PRODUCTS COMPANY 1086 Goffle Road, Hawthorne, New Jersey 07506.

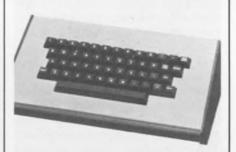
SERVO-TEK PRODUCTS COMPANY


For full details write for our interesting technical sheets and get mad with power yourself.

INFORMATION RETRIEVAL NUMBER 75

DATA PROCESSING

Computer-system cards make logic design easy



Standard Logic Inc., 1630 S. Lyon St., Santa Ana, Calif. Phone: (714) 835-5466. Availability: stock.

A new approach in computer-aided design hardware known as C.A.S.H. (Computer Automated Systems Hardware) provides the logic systems designer with hardware flexibility when using dual in-line packaged ICs, MSI and discrete components. With C.A.S.H.'s modular DIP card assemblies, the designer can mix and match the exact number of 14, 16 and 24-pin DIPs which his system requires.

CIRCLE NO. 272

Solid-state keyboard has bounce-free output

TEC, Inc., 6700 S. Washington Ave., Eden Prairie, Minn. Phone: (612) 941-1100.

A new 47-key contactless solid state opto-electronic keyboard features a bounce-free output and data strobes. It combines optical code generation and solid-state logic to detect and amplify the data bits and is DTL/TTL compatible. Sixty-five ASCII-character codes are generated. Options include two-key roll over, repeat, shift-lock and bit parity features.

CIRCLE NO. 273

Data Sheets on Request:

101 Flexible light guides
102 Optical fibers
103 Omni reader, 12 channel
104 Flexible image bundle
105 Miniature bulb
106 Omni sensor
107 Light distributor
108 Optical tachometer

INFORMATION RETRIEVAL NUMBER 76
ELECTRONIC DESIGN 21, October 11, 1970

Calculator with program works statistical data



Cintra, Inc., sub. of Physics International Co., 1089 Morse Ave., Sunnyvale, Calif. Phone: (408) 734-3630. P&A: \$3780; 60 days.

A new programmable calculator, the statistician 911, performs statistical calculations and solves many mathematical problems. It can obtain factorials for any unknown integer value from zero to 69 without any programming. Independent accumulation of any unknown value in the display can also be accomplished.

CIRCLE NO. 274

BCD-to-decimal decoder interfaces instruments

Addo-X Inc., 437 Madison Ave., New York, N. Y. Phone: (212) 758-9171.

Designated the 47-1321-00, a new decoder converts BCD numbers to decimal digits to make possible the direct feed of information from measuring instruments to digital printers. It allows an operator to take any system using old converters, and by means of direct plug-in components, to get printed output and accumulation. Its capacity is 8 BCD positions and 12 decimal positions.

CIRCLE NO. 275

a little more about pots.

When you need a wide range of resistance with high resolution in a %-inch Squaretrim® buy Weston's CERMET 546-548 Series. These 25-turn trimming potentiometers are rated at 0.50 watt at 85°C with a temperature coefficient of ± 100 ppm/°C maximum, from -55°C to +150°C. Prices are as low as \$3.81 each in quantities of 500 units, with substantial reductions in larger quantities. Delivery is from stock.

The 520-523 Series is a NEW, ½-inch commercial, rectangular trimming potentiometer. Models 520 and 521 are wirewound units and Models 522 and 523 are CERMET. All models are rated at 0.3 watts at 85°C. Write for samples.

The 561-562 Series are $\frac{1}{4}$ -inch square, multiturn, wirewound trimmers designed to meet MIL-R-27208 Style RT26. The main features are: small size; excellent resolution; a temperature coefficient of ± 50 ppm/°C maximum; low cost, only \$4.40 each in quantities of 500, lower prices in larger quantities. Delivery is from stock. MIL qualification is in process.

For samples or complete details please call 717-876-1500 or write Weston Components Division, Archbald, Pa. 18403, a Schlumberger company.

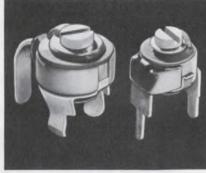
WESTON

10% OFF Call Now

All of the high quality DPM's listed below are specially priced with a 10% discount in quantities of 1-9. If you call or write within 7 days as a result of this ad (you must mention this publication), you will receive a 10% discount card good for one month.

 $3\frac{1}{2}$ and $4\frac{1}{2}$ digits

If you require specials for OEM applications such as ratiometers, comparators, or customs (mechanical/electrical) we would like to quote it and give you the best price.

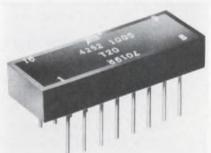

Take off 10% from these Published 1-9 Prices

31/2	digit	Model 510	Unipolar	\$195.	Now	\$175.50
31/2	digit	Model 520	Autopolarity	\$225.	Now	\$202.50
41/2	digit	Model 720	Autopolarity	\$370	Now	\$333.00

☐ I need complete specifications and information. Send literature! ☐ Send me a 10% discount card. No obligation, It's good for 30 days. Model: ☐ 510 Quantity ☐ 520 ☐ 720
Name
Title
Company
Address
City
State Zip
Datascan Inc. 1111 Paulison Avenue, Clifton, New Jersey 07013

COMPONENTS

Miniature trimmers span 1.7 to 50 pF



Johanson Mfg. Corp., 400 Rockaway Valley Rd., Boonton, N. J. Phone: (201) 334-2676. P&A: 18¢ to \$1.90; stock.

The 9300 series of low-cost microminiature rotary ceramic trimmer capacitors span a capacitance range of 1.7 to 50 pF. Outstanding features include their linear tuning as well as their high resistance to shock and vibration. A wide range of temperature coefficients and dielectric strengths of 250 V are available.

CIRCLE NO. 276

Tiny pulse transformer is housed in a DIP

Bourns Pacific Magnetics Corp., 28151 Highway 74, Romoland, Calif. Phone: (714) 657-5195.

The model 4252-1005 is a miniature pulse transformer that is encased in a 1 by 0.385 by 0.2-in. 16-pin dual-in-line case and meets the requirements of MIL-T-21038 Grade 7 specifications. Its features include an insulation resistance of $10^{+}~\Omega$, an operating temperature range of 0 to $70^{\circ}\mathrm{C}$ and pulse inductance of 150 $\mu\mathrm{H}$. Leakage inductance is 1 $\mu\mathrm{H}$.

CIRCLE NO. 277

Adhesive thermistor measures up to 500°F

Fenwal Electronics Inc., 63 Fountain St., Framingham, Mass. Phone: (617) 875-1351.

Type H49 surface sensor is a fast-response thermistor assembly which is adhesive mounted for control or measurement of surface temperatures up to 400°F, and up to 500°F on special order. Its typical applications include industrial measurement and control of temperature in electronic equipment processes, and virtually any industrial application where surface temperature is a critical process control factor.

CIRCLE NO. 278

Silver-ribbon fuses protect semiconductors

Carbone-Ferraz, Inc., Box 324, Rockaway, N. J. Phone: (201) 627-6200.

Protistor cartridge fuses are fusible elements made of 99.99%-pure silver ribbon. When properly applied, they will carry rated circuit currents indefinitely without aging or deteriorating. Standard fuses are available in 26 models rated at 250 V (70 to 1000 A) and 26 models rated at 600 V (70 to 550 A). All are designed to operate at a temperature of 250°C or less.

CIRCLE NO. 279

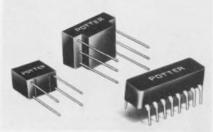
(201) 478-2800

lots more about pots.

When you need a trimming potentiometer to meet *any* configuration, you can depend on WESTON to supply the right unit. Volume production of ¾-inch rectangular pots, the 530-533 Series enables Weston to supply these models at the lowest prices in the industry. We'll supply them in wirewound with a temperature coefficient of ± 70 ppm/°C maximum, or CERMET with a T.C. of ± 100 ppm/°C, maximum. Prices are as low as \$1.09 each in quantities of 500 units, with substantial reductions in larger quantities. Delivery is from stock.

Then, too, it's hard to beat our ½-inch 701 Series Squaretrim® potentiometer available with either commercial or military specs. Prices are as low as \$1.85 each in quantities of 500 units.

When you want a small, single-turn, wirewound Squaretrim® potentiometer, order the 501-505 Series. Prices are as low as \$1.95 each in quantities of 500 units.



Buy them all from WESTON.

For samples or complete details on any or all of these units, call 717-876-1500, or write Weston Components Division, Archbald, Pa. 18403, a Schlumberger company.

Pulse transformers come as dual-in-lines

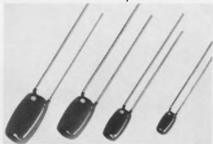


The Potter Co., 500 W. Florence Ave., Inglewood, Calif. P&A: 50¢ to \$1; 4 wks.

Ranging in inductance from 10 μH to 100 mH, a new line of lowcost pulse transformers is available in both conventional and dual-inline package configurations. Units have turns ratios from 1:1 to 10:1 with up to four windings each. Special types are available for use in computer systems which feature high permeability and temperature stability.

CIRCLE NO. 280

Trimmer potentiometers slim cases to 1/4 in.



TRW Inc., Electronics Group, 1100 Glendon Ave., Los Angeles, Calif. Phone: (213) 477-6061. P&A: \$1.31; stock.

The 170 Pillpot series of trimming potentiometers features infinite-resolution metal glaze (cermet) elements in a 1/4-in.-round case. The series has a resistance range of 10 Ω to 1 M Ω and a standard temperature coefficient of ±100 ppm/°C over a temperature range of -55 to +150 °C. Standard resistance tolerance is $\pm 20\%$ and power rating is 1/2 W at 85°C.

CIRCLE NO. 281

Low-cost capacitors retail from 15¢

Dickson Electronics Corp., Box Scottsdale, Ariz. Phone: 947-2231. Price: 15¢ to (602)

Series GS dipped solid-tantalum capacitors feature rugged plug-in lead construction at costs as low as 15¢. They operate at full-rated voltages from -55 to +85°C. Capacitances range from 0.47 µF at 50 V through 330 μF at 6 V. Four cylindrical cases are available, ranging from 0.175 to 0.4 in. in diameter by 0.35 to 0.75 in. high.

CIRCLE NO. 282

ARITECH VOLTAGE CONTROLLED FILTERS

can help you

solve problems in radar, telemetry, voice coding, signal conditioning, data acquisition, plus many other areas.

VCFs allow you to electronically shift cut-off frequency without affecting the shape of the response. They are compact, stable, and extremely reliable.

Our standard VCFs — now in stock — are 4-pole Butterworth, 24 dB/octave, either high-pass, low-pass, or band-pass.

Cut-off Frequency Range Tuning Ratio

0.1 Hz to 20 kHz 50:1

Tuning Voltage Module Size

0 to 5 VDC 0.75" x 2.15" x 2.15"

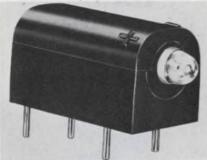
Quantity prices for some versions — under \$80.

See us also for custom active filters.

130 Lincoln St., Brighton, Mass. 02135 Telephone: (617) 254-2990

FOR EXCELLENCE IN **ROTARY SWITCHES SPECIFY GRAYHILL**

- 15°, 30°, 36°, 45°, 60° or 90°
 - Angle Of Throw
- 2 To 24 Positions Per Pole
- Ratings Up To 15 Amps.
- 1 To 6 Poles Per Deck
- 1 To 12 Decks
- Diameters 1/2" To 21/4"
- Shorting Or Non-shorting Contacts
- **Explosion Proof**
- Military Or Commercial Styles
- Single Or Concentric Shafts
- Solder Lug Or Printed Circuit Terminals Switch And Potentiometer Combinations
- **Key Lock Option**
- Homing Rotor (Bridging And Shorting) Option
- Spring Return Option
- **Power or Signal Switching**
- Isolated Position (Pull-To-Turn) Option
- **Adjustable Stop Option**

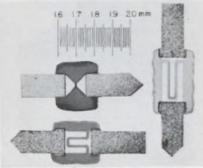


For your Grayhill **Engineering Catalog** offering complete technical data — contact

565 Hillgrove Avenue LaGrange, Illinois 60525 Area Code 312, Phone 354-1040

the Difference Between Excellent and Adequate

GaAsP LED sources cover 630 to 690 mm

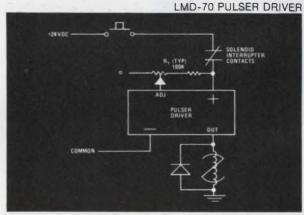


Solar Systems Inc., Box 128, 8124 N. Central Park Ave., Skokie, Ill. Phone: (312) 676-2040. Price: \$4, \$2.

A new gallium-arsenide-phosphide light source features a maximum spectral emission region between 630 and 690 mm. Two configurations are offered: one for PC boards that is solderable by conventional methods; and a panelboard type with Tinnerman attachments. Forward current is 50 mA. Luminance is 1250 foot-lamberts.

CIRCLE NO. 283

Beam-lead p-i-n diodes lower capacitances


Texas Instruments Inc., 13500 N. Central Expressway, Dallas, Texas. Phone: (214) 238-2011. P&A: \$10; stock.

Three new 30 by 10-mil beam-lead p-i-n diodes, MD90, MD100 and MD101, provide low reversebias capacitances ranging from 0.02 to 0.12 pF. They are silicondioxide passivated and exhibit maximum series resistances of 8, 5 and 4 Ω , respectively. Each diode can be used in stripline circuits and each has a maximum breakdown voltage of 40 V.

CIRCLE NO. 284

Fast custom design hybrid microelectronics

...like a 7 amp pulser driver

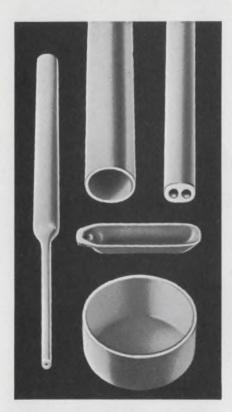
Typical Application and Connection Diagram

Typical Specifications	
Operating voltage range	12 to 35 VDC
Maximum surge current	
(20 msec. max.)	7 amp
Time interval (max.)	200 msec.
Timing accuracy	±20%
Maximum case temperature	175° C

Our people designed this hybrid pulser and SCR driver circuit to control long interval stepping rates for stepping switches or solenoid/interrupter switch combinations.

The time interval is controlled by external resistance. It is useful for driving light loads, or heavy loads at low speed or intermittent duty.

We're equipped to give you fast design and prototype service on any custom hybrid microelectronics package. Our engineers will come to you, if that's what you need.


You'll find our delivery dependable and our production standards among the highest in the industry.

The circuit described above is now stocked. Ask for catalog sheet. Or, for the whole story on our capability, write for brochure, "Custom Hybrid Microcircuits."

Specialists in hybrid microelectronic circuits

LEDEX MICROELECTRONICS, LEDEX INC.
123 Webster Street, Dayton, Ohio 45401 phone (513) 222-6992

REFRACTORY PRODUCTS...

In addition to its famous lines of Vitreosil® and Spectrosil® fused quartz products, Thermal American is now supplying a line of crystalline oxide refractory ware and cement for use by industry and laboratories. These products are designed for high resistance to heat, low reaction with metals and chemicals, low porosity, high thermal conductivity, and good mechanical strength.

Included in the complete 16 page catalog with a separate price list is a selector chart providing instant technical, mechanical and application data for refractory products of Aluminous Porcelain, Recrystallized Alumina, Zirconia and Magnesia. Write for your copy.

INFORMATION RETRIEVAL NUMBER 83

MICROWAVES & LASERS

Photomultiplier tube responds beyond 900 nm

EMI Electronics Ltd., Hayes, Middlesex, England.

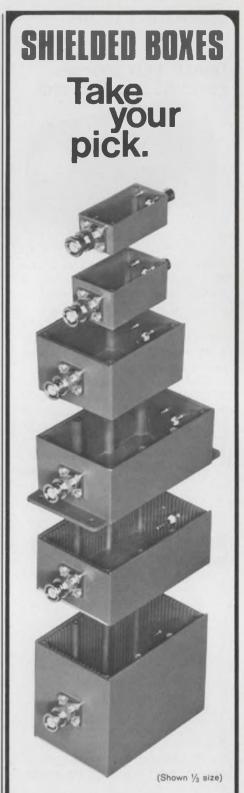
Type 9659B photomultiplier tube with an extended S-20 photocathode provides infra-red response extending to beyond 900 nm with a quantum efficiency of 2.5% at 800 nm. The new tube has a borosilicate window and is also available with a fused silica window as type 9659QB for ultra-violet response to 165 nm. Both versions have the same low dark-current and highgain characteristics.

CIRCLE NO. 285

Fast photomultiplier has 100-mA density

Instrument Technology Ltd., Nuclear Product Co., Inc., 6660 Variel Ave., Canoga Park, Calif. Phone: (213) 887-1010.

Tracing of single-pulse lasers on real-time oscilloscopes is made possible by a new high-speed gated photomultiplier with a current density at the anode of 100 mA. Its dynode arrangement enables transit time spread to be reduced to give a rise time of only 0.7 ns. Under pulsed conditions, photocurrent may be 100 μ A, which improves the signal-to-noise ratio.


CIRCLE NO. 286

Search-and-lock unit centers on 60-MHz

Varian, Solid State Div., 611 Hansen Way, Palo Alto, Calif. Phone: (415) 326-4000.

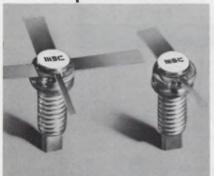
The ITF-4 solid-state search-and-lock automatic frequency-control unit for systems employing varactor-controlled devices features a center frequency of 60 MHz. Other characteristics include a pkpk discriminator bandwidth of ± 8 MHz, a required input signal level at ± 1 dB of 0 dBm, minimum input pulse width of 0.1 μ s and sensitivity of 3 V/MHz. The unit operates from -40 to $+70^{\circ}$ C.

CIRCLE NO. 287

The newly expanded line of Pomona Shielded "Black Boxes" now comes in six different sizes; in cast or extruded aluminum; some slotted to accept circuit boards; in a broad choice of connector combinations or no connectors. There's bound to be one to meet your requirement. Write for complete information in our General Catalog.

1500 E. Ninth Street . Pomona, California 91766

Energy-beam emitters project up to 20 in.



Chicago Miniature Lamp Works, 4433 N. Ravenswood Ave., Chicago, Ill. Phone: (312) 784-1020.

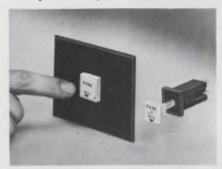
Series CM20 beam emitters project narrow cones of infrared and luminous energies over distances of 7 to 20 in. The minimum energy across the target for the CM-20-8-01 at 7 in. is 20 foot-candles and for the CM20-9-01 at 14 in. it is 15 foot-candles. The emitters consume only 850 mW of power. Operating voltage is 2.5 V nominal with a current drain of 0.34 A.

CIRCLE NO. 288

One-GHz transistors deliver up to 20 W

Microwave Semiconductor Corp., 100 School House Rd., Somerset, N. J. Phone: (201) 469-3311. P&A: \$150, \$75, \$50; stock.

A new line of 1-GHz transistors feature both ruggedness and high performance. The MSC1020 delivers 20 W at 1 GHz and has 8.2-dB gain. The MSC1010 handles 10 W at 1 GHz and has 8.2-dB gain. The MSC1005 supplies 5 W at 1 GHz with 10-dB gain. All feature low input Q and are packaged in common-base grounded-stud cases.


CIRCLE NO. 289

The mouse south that soured.

This tiny curved connector (No, it's not warped!) is the very critical little mouse that helps make the mighty Hawk missile soar.

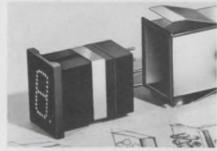
Square-cap fuse holders snap into panels

Littlefuse, Inc., 800 E. Northwest Highway, Des Plaines, Ill. Phone: (312) 787-7700.

Two new series of low-profile square-cap fuseholders snap into chassis panels without mounting hardware. The holders project only 3/16 in. above the panel and snap into a 5/8-in.-square mounting hole in chassis thicknesses from 1/32 to 1/8 in. Two series are available: the 348000 for standard and pin-type 3AG fuses and the 378000 for 8AG fuses.

CIRCLE NO. 290

Dc power amplifier gives out 25 W



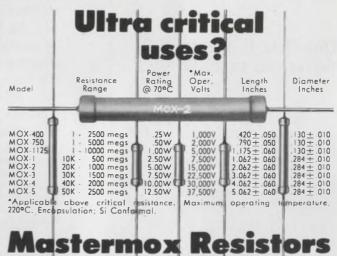
Bulova Watch Co., Inc., Electronics Div., 61-20 Woodside Ave., Woodside, N. Y. Phone: (212) 335-6000.

Designed to mount on PC boards and to drive dc torque and servo motors, model DCA25 power amplifier supplies output power of 25 W. All electrical connections are made at its pin-type terminals and it meets the requirements of MIL-E-5400 and MIL-STD-704. Other features include current limiting, a wide bandwidth, a differential input and variable gain.

CIRCLE NO. 291

Fiber-optic readout has a 1-in. face

Master Specialties Co., 1640 Monrovia, Costa Mesa, Calif. Phone: (714) 642-2427 .Availability: 2 to 3 wks.


A new large-character fiberoptic readout series features a one-inch face size, individually replaceable lamps and plug-in crimp-type terminals. Series 904 readout, allows relamping from the front panel and utilizes 40-mil-dia fiberoptic characters to transmit light to a 1-in.-high by 3/4-in.-wide readout face in a 0.64-in.-high by 0.32-in.-wide pattern.

CIRCLE NO. 292

INFORMATION RETRIEVAL NUMBER 87

Mastermox Resistors are still the best answer.

10K ohms to 10,000 Megohms Resistance

Mastermox resistors bring new accuracy to ultra-precision applications. Advanced metal oxide glaze construction. More watts per cubic inch means twice the performance in equivalent space. Stable? To new limits! Use Mastermox resistors to obtain new performance highs.

Send for Mastermox brochure.

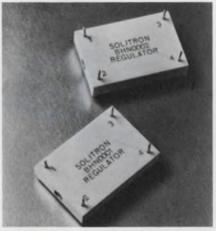
DMA 536

VICTOREEN INSTRUMENT DIVISION
10101 WOODLAND AVENUE · CLEVELAND, OHIO 44104
EUROPE: ARNDALE MOUSE. THE PRECINCT. EGHAM, SURREY ENGLAND · TEL: EGHAM 4887

VICTOREEN

INFORMATION RETRIEVAL NUMBER 88

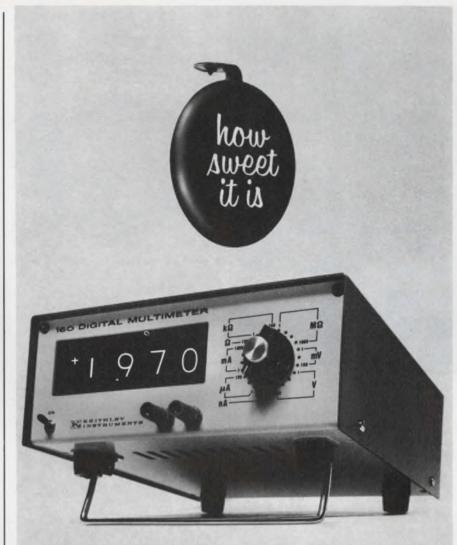
PC power supplies are field repairable



Lambda Electronics Corp., Route 119, Melville, N. Y. Phone: (516) 694-4200. Price: \$35 to \$65.

Lambda-Paks are a new line of PC-board-mountunencapsulated able ac-to-dc regulated power supplies that are fully repairable in the field. Features include continuously adjustable voltages, multi-voltage ratings, foldback current limiting and an input-voltage range from 105 to 132 V ac. Ten models range in output voltage from 3 to 30 V dc at 900 mA.

CIRCLE NO. 293


Hybrid regulators slash prices to \$5

Solitron Devices, Inc. 256 Oak Tree Rd., Tappan, N. Y. Phone: (914) 359-5050. P&A: \$5; 2 wks.

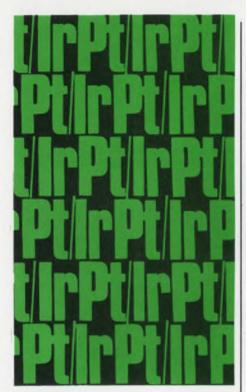
Two new series of hybrid voltage regulators, BHN0001 (5 to 8-V range) and BHN0002 (8 to 30-V range), feature low costs of \$5 each in 100-piece lots. Other features include output current to 1 A, user-adjustable voltage outputs, the use of silicon semiconductors and small plastic housings measuring only 1 by 1-1/2 by 0.31-in.

CIRCLE NO. 294

...measure 1µv to 1000V and enjoy multimeter convenience

Here's the sweetest little performer around in a low-priced, 31/2-digit dc multimeter. A new entry

fielded by Keithley, leader in low voltage measurements, the Model 160 sweetens its fantastic \pm 1 μ V sensitivity with \pm 0.1% accuracy, true input impedance of 10 megohms, $\pm 1 \mu v/day$ stability and high ac rejection.


As an ammeter, it stands alone handling \pm 0.1 nA to \pm 2 amperes full scale, with \pm 0.2% accuracy. Similarly, as an ohmmeter, this versatile performer spans a resistance range from 0.1 ohm to 2000 megohms full scale measured using 2terminal leads.

Wide capability in measuring voltage, current and resistance make the Model 160 useful on every R & D and production test bench. Convenience features are numerous. A display rate of two readings per second with 100% overranging. When overloaded, the display blanks the last 3 digits for no-error interpretation. Two front panel input terminals handle all functions. Choice of grounded or floating operation. And lots of other sweet features. Includ-

ing a low price of \$545.

See how sweet it is. Call your Keithley Sales Engineer or contact us direct for details. Get a free "how sweet it is " button, too. (Great for the kids.) Keithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139. Or telephone 216/248-0400. In Europe: 14, Ave. Villardin. 1009 Pully, Suisse. I Prices slightly higher outside the U.S.A.

KEITHLEY

Iridium Platinum

Iridium Platinum is probably the best known alloy in the Platinum metal family. By varying the Iridium content from 5% to 40%, a very wide range of physical and electrical properties is obtained.

Diameters available range from rod sizes down to 0.0005" and, in some alloys, to 0.0002". With alloys high in Iridium, fantastic tensile strength can be obtained particularly in the smaller diameters. All of the alloys have excellent corrosion resistance and are not affected by any single acid.

Resistivity, temperature coefficient and tensile strength graphs are available. Write for complete data.

Sigmund Cohn Corp.

121 S. Columbus Ave. Mount Vernon, N.Y. 10553 (914) 664-5300

INFORMATION RETRIEVAL NUMBER 90

Dc power amplifier provides 250-W output

Melcor Electronics Corp., 1750 New Highway, Farmingdale, N. Y. Phone: (516) 694-5570.

Up to 250 W of dc output power is available from the model 2044 amplifier that requires only a single 28-V supply. It has a built-in inverter supply for operation of internal preamplifiers. Output current limiting is factory set at 12.5 A and can also be adjusted externally if required. Full-power bandwidth is 1 kHz and packaging is in a 3 by 5-1/2 by 6-in. case.

CIRCLE NO. 295

Crystal oscillator stabilizer to 2 × 10⁻⁷

Bulova Watch Co., Inc., Electronics Div., 61-20 Woodside Ave., Woodside, N. Y. Phone: (212) 335-6000.

Containing a voltage regulator and optimized compensation networks, the TCSO-2 temperature-compensated crystal oscillator features a frequency stability of $\pm 2 \times 10^{-7}$ over the temperature range of -40 to $+75^{\circ}\mathrm{C}$. The new oscillator operates over the frequency range of 3 to 5 MHz and ages at a rate of $\pm 1 \times 10^{-8}/$ week. It is packaged in a four-cubic-in. case and weighs only 5 oz.

CIRCLE NO. 296

High-voltage modules handle 25 kV

Advanced High-Voltage Co., Inc., 8635 Yolanda Ave., Northridge, Calif. Phone: (213) 886-3334. P&A: from \$65; 4 to 6 wks.

Series HVA modules are compact high-voltage sections with outputs up to 25 kV. Inputs are 20 to 40 V at 15 to 40 kHz. All units are encapsulated and are coronafree. They feature output sampling for closed-loop regulation and can be used without regulating circuitry because of their inherent low internal impedances.

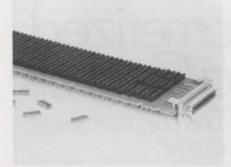
CIRCLE NO. 297

Sample-hold modules increase storage times

Analog Devices, Inc., 221 Fifth St., Cambridge, Mass. Phone: (617) 492-6000. P&A: \$95, \$120; stock.

Two new sample and hold modules, models SHAIII and SHAIV, feature a hold-to-sample ratio of 10,000:1, 10~mV/s droop, and 0.01% hold accuracy for 100-ms hold periods. The former has a maximum transient amplitude of $\pm 7~\text{V}$ and requires $100~\mu\text{s}$ to settle within 1~mV of the final output value. The latter has a $\pm 200\text{-mV}$ maximum transient and settles to within $\pm 1~\text{mV}$ in only $10~\mu\text{s}$.

Instrument cases use Formica



W. A. Miller Co., Inc., Mingo Loop, Oquossoc, Maine. Phone: (207) 864-3344. Price: from \$45.

Utilizing a laminating procedure of Formica/wood/Formica with waterproof epoxy glue, WAMCO custom-built instrument cases are available in a multitude of Formica colors and patterns. They are resistant to moisture and abrasion, easily cleaned and are unaffected by most solvents and alcohol. All critical dimensions are held to a 1/64 in, tolerance.

CIRCLE NO. 299

High-density backplane houses 101 DIPs

Data Technology Corp., 1050 E. Meadow Circle, Palo Alto, Calif. Phone: (415) 321-0551. P&A: \$178; stock.

A new high-density IC backplane accommodates 101 dual-in-line packages (92 14-pin and 9 16-pin). The model 4401, complete with wire-wrap sockets and a 50-pin I/O connector, is fabricated from 3/16-in. copepr-clad G-10 epoxy. It features a ground plane area on one side and a voltage plane on the other. It measures 14.65 by 3.95 in.

CIRCLE NO. 335

FINALLY ...

a better source for those mobile, avionics, and marine RF Power building blocks

Now you have a better source for these critical RF Power devices . . . all electrically and mechanically identical to your present source, based on competitive evaluation . . . and available off-the-shelf. These ballasted emitter devices offer optimum performance reliability and operational versatility in mobile, avionics and marine communications systems:

2N5589 3.0 W @ 175 MHz, 12.5V 2N5590 10.0 W @ 175 MHz, 12.5V 2N5591 25.0 W @ 175 MHz, 12.5V 2N5641 7.0 W @ 175 MHz, 28V 2N5642 20.0 W @ 175 MHz, 28V 2N5643 40.0 W @ 175 MHz, 28V

In addition to its standard line of RF power devices, SSS offers a complete customer assistance service on RF Power chains technically evaluated to meet your specific requirements — over and above those of standard published

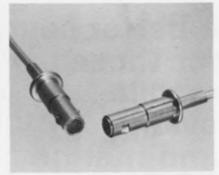
GET THIS NEW SOURCE APPROVED NOW

It will make meeting your program quirements as easy as A.B.C.

SOLID STATE SCIENTIFIC INC.

MONTGOMERYVILLE, PENNA. 18936 ■ 215-855-8400

Aluminum heat sinks increase dissipation

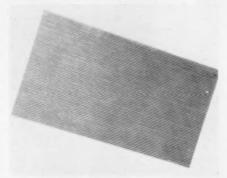


Precision Dipbraze Tor, Republic Corp., 14715 Arminta St., Van Nuys, Calif. Phone: (213) 786-6524.

When cooled by natural air convection, the model 1722B 6-in.-long heat sink will handle two 50-W devices at a temperature of 73°C. When fan-cooled at 40 ft³/minute, the model 1722A will handle the same two 50-W devices with a temperature rise of 12°C. The new heat modules are mounted on racks or panels by means of bolts. Standard finish is aluminum.

CIRCLE NO. 336

Coaxial connectors shrink in size



Microdot Inc., Connector Div., 220 Pasadena Ave., S. Pasadena, Calif. Phone: (213) 682-3351.

Four of the new Ridgelok series $50-\Omega$ coaxial connectors occupy the same area required for two $50-\Omega$ BNC-type connectors. The new three-piece connectors utilize the Twist/Con contact system which assures perfect contact alignment with extremely low engaging forces. When in the locked position, they are uncoupled by pulling back on their outer housings.

CIRCLE NO. 337

Tunnel structures enhance memories

Ansley Div. of Thomas & Betts Corp., Old Easton Rd., Doylestown, Pa. Phone: (215) 345-1800. P&A: \$26; 2 wks.

Standard tunnel structures are available for plated-wire memories. They are fabricated of Kapton and FEP Teflon with tunnels on a 0.015-in. or 0.025-in. pitch for 5-mil plated wire. Maximum standard tunnel-structure widths are 250 tunnels on a 0.025-in. pitch or 425 tunnels on a 0.015-in. pitch. Lengths are 11, 16, 21, and 26 in.

CIRCLE NO. 338

TIME CODE INDEXING THINK DATAMETRICS

Datametrics offers the most complete line of off-theshelf Time Code Equipments for Airborne, Spaceborne, Underwater, and ground applications.

Our Application Engineering group is at your prompt service to review your timing problems and to offer our optimum solution.

DATAMETRICS DIVISION

127 Coolidge Hill Road, Watertown, Mass. 02172 (617) 924-8505

INFORMATION RETRIEVAL NUMBER 92

Customerized Timing Controls

We design and build them betterfaster-at less cost.

If your product requires a custom timing control it will pay you to let us build it for you. That's because it's a specialty of the house . . . since 1949.

Whether your projected controls are simple or complex, we have the hardware, we have the experience. So why not tell us what you need by writing or phoning us (201-887-22001. Ask for Systems Development Department.

SINGER INDUSTRIAL TIMER CORP.

Industrial Timer Corp., U.S. Highway 287, Parsippany, N.J. 07054 201/887-2200

Cordless power handle works hand tools

Jensen Tools and Alloys, 4117 N. 44th St., Phoenix, Ariz. Phone: (602) 959-2210. Price: under \$45.

There is no need to get twisted up with or trip over messy power cords when you use the new Pierce Cordless Power Handle for powering small work tools. It weighs only 8-1/2 oz and is controlled by a built-in switch. Power takeoff is provided at each of its ends for clockwise and counterclockwise rotation. No-load handle speed is 4000 to 5000 rpm and maximum power is 5 in.-oz.

CIRCLE NO. 339

Portable rework center facilitates IC repairs

Pace Inc., 9337 Fraser St., Silver Spring, Md. Phone: (301) 587-1696. P&A: \$785; 10 days.

A new portable rework center facilitates the rework, repair and modification of electronic assemblies and modules including microelectronic circuits. Called the PRC-150, it permits the restoration of assemblies and modules without degradation. A power source provides pneumatic, mechanical and electrical modes of operation which can be combined in sequences.

CIRCLE NO. 340

Now you can squeeze your 5V/20A power supply down to fit your microcircuitry.

INFORMATION RETRIEVAL NUMBER 94

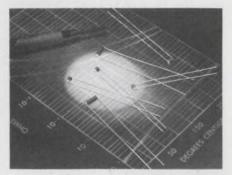
If you overpower our DC torquers you won't overwhelm them.

We have a new family of DC torquers—cased and uncased—which can be supplied with almost any feedback elements you might choose. Like potentiometers. Synchros. Tachometers. And more.

For their torque-to-size ratio, these units are as small as you'll find anywhere. But they can take it real big.

Even if you should accidentally give them momentary over voltages of 150%, you won't degrade them beyond their already tight specifications.

We also produce a large range of other DC rotating devices. Size 8 and 9 pm DC motors. Limited rotation DC torquers. Inside out DC torquers. Many types of feedback elements. A whole family of electromagnetic indicators.


When you need DC rotating devices, don't spin your wheels. Come to the source. Kearfott.

Write for our brochures today. Kearfott Division, Singer-General Precision, Inc., 1150 McBride Avenue, Little Falls, New Jersey 07424.

SINGER KEARFOTT DIVISION

INFORMATION RETRIEVAL NUMBER 95

Evaluation Samples

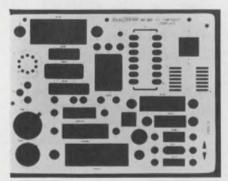
Thermistors

A free sample of new low-cost square disc and bar thermistors is available. These thermistors are made with a manufacturing process that yields low costs and provides thermistors that have uniform physical and electrical characteristics in small sizes for compatibility with miniature electronic assemblies. In nominal quantities, these tiny thermistors can cost as low as 15ϕ each. Cal-R, Inc.

CIRCLE NO. 341

Keyboard buttons

The new type 56 keyboard buttons are two-shot molded to provide keyboard designers with attractively sytled buttons with legends that will not wear out or discolor. They are available in standard colors of light or charcoal grey, black, blue, yellow, green, brown, beige, white and red, for both legend and body. Custom colors are also available in addition to free samples. Licon Div. of Illinois Tool Works, Inc.


Design Aids

Inductance slide rule

A unique slide rule enables circuit designers to determine inductive reactance and resonance values instantly. Simply set the values of known parameters in the appropriate windows of the slide rule and then line up inductance and capacitance values on the sliding scale. Resonance or inductive reactance values are read directly on the slide rule's face. The new slide rule costs only \$2. Vanguard Electronics.

CIRCLE NO. 343

PC drafting templates

Four new drafting templates for components contain the most commonly used symbols in printed-circuit design. These include the model 320 with a 4:1 ratio and 0.06-in. thickness, costing \$8; and the model 320A with a 4:1 ratio and 0.03-in. thickness, costing \$6.50. Also included the are model 321 with a 2:1 ratio and 0.06-in. thickness, costing \$6.50; and the model 321A with a 2:1 ratio and 0.03-in. thickness, costing \$5. Rapidesign, Inc.

CIRCLE NO. 344

Computer Labs has delivered hundreds of analog-to-digital converters with 7-bit and 8-bit words at 10 MHz rates; or 4 bits at 25 MHz; or 9 bits at 5 MHz (and aperture time of 0.2 ns)! You can get yours with a matching D/A in 3-5 weeks.

for tomorrow's technology today

1109 South Chapman St. / Greensboro, North Carolina 27403 / (919) 292-5427 / TWX 510 922-7954
INFORMATION RETRIEVAL NUMBER 96

Annual Reports

DEVICES, INC

Gulton Industries, Inc. infonics

Diebold Computer Leasing, Inc.

Ampex Corp., 401 Broadway, Redwood City, Calif.

Communications, leisure and entertainment products, computers, educational technology.

1969: net sales, \$296,319,000; net earnings, \$13,702,000.

1970: net sales, \$313,582,000; net earnings, \$12,237,000.

CIRCLE NO. 345

Diebold Computer Leasings, Inc., Park/80 Plaza East, Saddle Brook, N. J.

Leasing of computer systems and equipment.

1968: revenues, \$12,813,000; net income, \$1,098,000.

1969: revenues, \$30,947,000; net income, \$1,441,000.

CIRCLE NO. 346

Electronic Micro Systems, Inc., 1672 Kaiser Ave., Santa Ana, Calif.

Data acquisition, opto-electronics and semiconductor switches.

1968: sales, \$74,048; net income, \$4,051.

1969: sales, \$150,711; net income, \$20,858.

CIRCLE NO. 347

ESB Inc., 2 Penn Center Plaza, Philadelphia, Pa.

Batteries and power systems for consumer, industrial and scientific applications.

1969: sales, \$248,358,000; net income, \$7,834,000.

1970: sales, \$288,751,000; net income, \$11,091,000.

CIRCLE NO. 348

Gulton Industries, Inc., 212 Durham Ave., Metuchen, N. J.

Computer and data systems, power sources, instruments, capacitors, music systems.

1969: net sales, \$92,201,813; pre-tax earnings, \$5,144,536.

1970: net sales, \$104,288,585; pre-tax earnings, \$5,405,804.

CIRCLE NO. 349

IMC Magnetics, Corp., 570 Main St., Westbury, N. Y.

Turret lathes, stepper and drive motors, solenoid valves, blower, centrifugal and propeller fans.

1969: sales, \$9,082,768; net income, \$462,503.

1970: sales, \$9,246,131; net income, \$423,180.

CIRCLE NO. 350

Infonics, Inc., 1723 Cloverfield Blvd., Santa Monica, Calif.

Magnetic-tape cassettes and cassette duplicators and adapters.

1968: net sales, \$322,479; net earnings, \$40,098.

1969: net sales, \$1,082,363; net earnings, \$92,472.

CIRCLE NO. 351

Potter-Englewood Corp., 5801 S. Halsted St., Chicago, Ill.

Capacitors, filters, delay lines, electrical supplies.

1969: net sales, \$41,689,657; net income, \$530,287.

1970; net sales, \$49,109,847; net income, \$808,920.

CIRCLE NO. 352

Siliconix Inc., 2201 Laurelwood Rd., Santa Clara, Calif.

Microwave semiconductors, silicon wafer processing, mercury and silver-cadmium batteries.

1968: net sales, \$7,048,524; net income, \$846,263.

1969: net sales, \$9,216,154; net income, \$737,130.

CIRCLE NO. 353

Solitron Devices, Inc., 256 Oak Tree Rd., Tappan, N. Y.

Rf and power transistors, diodes, MOS read-only and random-access memories, linear ICs.

1968: sales, \$24,261,108; earnings, \$5,962,227.

1969: sales, \$30,054,228; earnings, \$6,973,052.

CIRCLE NO. 354

Varo, Inc., Garland Bank Building, Garland, Tex.

Vending machines, high-voltage rectifiers, pattern generators.

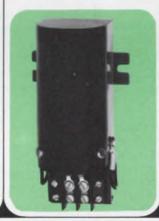
1969: operating revenues, \$54,-864,811; earnings, \$2,183,727.

1970: operating revenues, \$46,-263,496; earnings (loss) (\$2,046,-830).

up-to-date "clocking" solves your advanced LOAD TIMING/CONTROL

Precision timing and control of high current (mercury displacement) load switching requires advanced, reliable components and circuitry. Where nanoseconds, seconds, minutes, or even hours must be controlled, precision solid-state circuitry must be employed to insure maximum dependability. ADLAKE now offers two new timing devices, plus a unique solid-state bistable relay designed for precise and reliable control. These versatile products will find applications in circuits ranging from the most simple electro-mechanical apparatus to highly sophisticated computers.

PULSE LATCH


The Pulse Latch is a solid-state bistable relay of advance design which controls loads in excess of 3 amps (8-200 Volts). Positive input pulses as narrow as 100 used to the same terminal will alternately latch the two outputs. Switching rates as high as 2 kHz are attainable depending on output loading

The Pulse Latch is unaffected by shock or vibration and is internally supressed against voltage transients. Many standard models are available. Pulse Latches to accommodate your particular load, voltage, and switching parameters can be built on special order

HYBRID TIMER

For the first time, an economical timer to handle 35 amp loads for the full timing period (no derating necessary). No need for a costly additional driven relay for high currents. Inputs up to 220 VAC and/or 200 VDC are time delayed from 50 msec. to over 2 minutes. ±5% accuracy under all load conditions in an operating temperature range from -30 to 200°F. Fixed or adjustable timing periods in excess of 15 minutes available special. Wide variety of combinations of "On", "Off", "Delay", "Instant Close or Open", with N.C. or N.O. switching.

DC-DC TRANSFER **TIMER**

Provides positively controlled. delayed dc output from dc input -timing interval is 10 msec. to 10 minutes. Timing period can be fixed (external resistor) or adjustable (external poten-

Output timing accuracy is within ±2.5% at recycle times as low

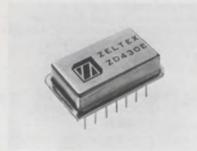
as 20 msec. Operating temperature range is -30 to 170°F

Selection of screw-type, PC, or quick connect-disconnect terminations minimize your production line problems. N.O. delay operate mode standard; N.O. quick operate-delayed release on special order. Solid-state AC or input/output isolation available special

Specify ultra-reliable solid-state ADLAKE Timers and Control components for critical timing and heavy current load switching applications.

us help you?

Won't you let Our engineering applications specialists have modern answers to your most frustrating power timing and switching problems.


THE ADAMS & WESTLAKE COMPANY

A SUBSIDIARY OF ALLIED PRODUCTS CORPORATION

1025 North Michigan Street, Elkhart Indiana, 46514

Here's The First
Of Our New

μ verters

8-BIT D/A CONVERTER

- . 14-Pin Hermetic Dip
- Completely Self-contained
- . ½ LSB Linearity
- . ±10V Buffered Output
- DTL, TTL Compatible
- . ±0.1% Output Stability

\$40

The Model ZD430E is only one of our new series of "µverters" — a complete line of hybrid/monolithic conversion products in 14-pin, hermetically-sealed DIP's. Completely self-contained our hybrid D/A Converter includes internal reference, thick-film ladder network, current switches, and compensated, short-circuit-proof output amplifier.

Other ZELTEX "µverters" include: A/D Converters with choice of successive approximation or staircase conversion: Four channel Analog Multiplexer featuring MOSFET switches and drivers; and a Track/Hold Amplifier with internal hold capacitor and input buffer.

See us for your signal conditioning requirements too! We have a complete line of operational, instrumentation and programmable hybrid/monolithic amplifiers.

"See our complete catalog in the 1970-71 eem"

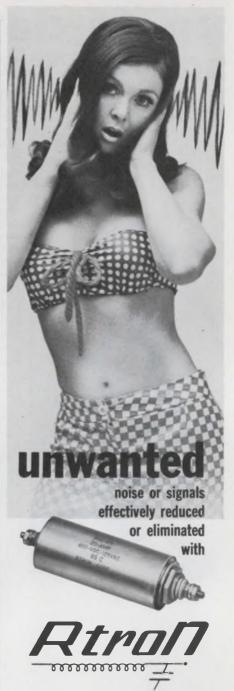
Application Notes

True-rms measurements

A detailed discussion on the advantages of true-rms measurements is given in an eight-page application note. It tells why true-rms measurement techniques accurately measure signals that contain very high distortion, such as square waves, pulse trains and signals that contain noise. Graphs show the effects of distortion on measurements by average-resonding instruments. Several examples are given of signals that can only be measured accurately with true-rms converters. Hewlett-Packard.

CIRCLE NO. 356

Kilo-watt amplifiers


A four-page article includes an interesting discussion on Class S or switching-mode kilo-watt solid-state amplifiers. It illustrates typical circuits and discusses the behavior of solid-state amplifiers with reactive loads. The problems of current and voltage spikes are discussed along with current-limiting, load-matching and power-control factors. Typical waveforms are shown for voltages and currents across resistive and inductive loads. Instruments, Inc.

CIRCLE NO. 357

Ceramic sealing

The basic processes occurring in ceramic-to-metal sealing are tutorially presented in a technical article. Explained in detail are the various concepts of sealing processes, seal geometries and typical electro-optical applications such as xenon and alkali-metal sapphire arc lamps and optical windows. Two types of processes are given attention: the moly-manganese and the active metal processes. The article includes illustrations, microphotographs of seals, and performance curves. ILC Laboratories, Inc.

CIRCLE NO. 358

Cylindrical Style Interference Filters

that reduce or eliminate unwanted noise or signals. Small size, light weight, maximum attenuation. Voltage current or insertion loss characteristics required, determine physical size. Maximum isolation of terminals and high frequency performance are assured by threaded neck design for bulkhead mounting. Feed-thru capacitor circuitry conservatively rated for both military and commercial applications.

Send us your specifications.

Ask for catalog and complete details.

Dept. E-10

Rtron corporation
P.O. Box 743 Skokie, Illinois 60076
Phone 312 • 327-4020

INFORMATION RETRIEVAL NUMBER 99
ELECTRONIC DESIGN 21, October 11, 1970

Active filters

Technical insights required in choosing between Butterworth, Bessel and Tchebyscheff filter designs are provided in a new six-page foldout application note on active filters. It discusses the fundamental principles of the three filter networks mentioned and presents the pros and cons of highpass, and low-pass types. It also includes bandpass as well as bandreject versions. One page contains a collection of valuable idealizedresponse curves for Butterworth, Bessel and Tchebyscheff filter networks. The curves show attenuation, phase-shift and step-response characteristics for low-pass and high-pass types. They also include bandpass and band-reject responses. Analog Devices, Inc.

CIRCLE NO. 359

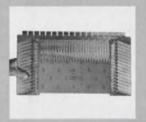
Filter analysis

A nine-page application abstract describes a computer program that enables time-sharing users stationed at desk-side remote terminals to select a filter transfer function such as Bessel, elliptic, Butterworth-Thomson and ultraspherical from a comprehensive list. Geometries such as low-pass, bandpass, high-pass and band-reject models can also be selected in a similar manner. Remote Computing Corp.

CIRCLE NO. 360

Timing circuits

Typical circuits and performance data on high-capacitance energystorage devices is given in a new application note. One circuit shown is a simple free-running multivibrator that is capable of cycle times up to several million seconds, by simply using presently available energy-storage devices. Also shown are many variations in this circuit's design to provide time delays, pulse generation and electronic timing. Gould Ionics, Inc.


CIRCLE NO. 361

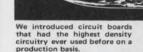
WE'VE GOT A BETTER WAY TO MAKE PRINTED CIRCUITS!

To avoid the necessity of a multi-layer circuit board for a process computer. we produced this highdensity dual-inline doublesided board with a 6 mil line width and 8 mil line spacing. Ask us . . . we've got a better way to make printed circuits!

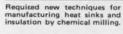
This 3-layer circuit board was designed to be as economical as most doublesided circuit boards...for the Control Data 7600 Computer. Ask us ... we've got a better way to make printed circuits!

Not all multi-layer circuit boards are small. Although some of our circuits measure a fraction of an inch, double-sided circuit board produced for a memory system measures 18" x 22". Ask us . . . we've got a better way to make printed circuits!

Our circuit boards were on Apollo, LEM, and seis. experiment. Sequential laminating, extra-fine line width and spacing, plated slots and edges.


Again, top reliability was re quired and delivery on-time was made to the customer.

Developed new technique to produce circuit boards with produce circuit more reliable holes


C5

New industry technique was used to produce multilayer cir-cuit boards with an internal

Reliable circuit boards in high volume at low cost were pro-duced for this project.

Developed new technology for sequential laminating multi-layer circuit boards with alum-inum backbone.

This design and production experience can work for you . . . CALL US NOW.

CONTROL DATA CORPORATION CIRCUITS DIVISION 7800 COMPUTER AVENUE

MINNEAPOLIS, MINN. 55435 PHONE: (612) 927-5681

Now you can save space and improve reliability by mounting an Acopian mini-module power supply directly into a printed circuit board. Sizes start at 2.32" x 1.82" x 1". Both single and dual outputs are available. And the duals can be used to power op amps or for unbalanced loads. Other features include:

- Choice of 58 different single output modules ranging from 1 to 28 volts, 40 ma to 500 ma
- 406 combinations of dual output modules with electrically independent, like or different outputs in each section
- 0.02 to 0.1% load and line regulation, depending on model
- 0.5 mv RMS ripple
- Prices as low as \$39 for singles, \$58 for duals

Do you have the latest Acopian catalog? It lists over 82,000 AC to DC power modules for industrial or MILspec applications. For your copy, write Acopian Corp., Easton, Pa. 18042, or call (215) 258-5441. And remember, every Acopian power module is shipped with this tag...

New Literature

Semiconductors

An 80-page transistor and diode catalog listing a complete line of discrete off-the-shelf products is now available. These include diodes, dual transistors, communication devices and specialty diode products. Fairchild Semiconductor.

CIRCLE NO. 362

Gages and sensors

Developed to serve as a basic guide to the theory and application of semiconductor gages and sensors, this 16-page manual provides details on gage factors, resistivity, linearity, hysterisis, strain range and basic gage construction. Kulite Semiconductor Products, Inc.

CIRCLE NO. 363

Trimmer pots

A newly published compact and comprehensive six-page catalog illustrates and lists in a single table the latest additions to a line of off-the-shelf trimming potentiometers. Weston Components Div., Weston Instruments, Inc.

CIRCLE NO. 364

Toroidal coils

A 16-page catalog describing MIL-type toroidal coils, molded rf chokes and environmental test facilities is now available. J. W. Miller Co.

CIRCLE NO. 365

Records timetable

How long must you keep important records? Answers are given in an eight-page folder which lists the proper government authorities and the specified time the law demands for the retention of over 165 office records. Listed too, are the kinds of material records may appear on, such as paper, film or plastic and even light metals. Electric Wastebasket Corp.

CIRCLE NO. 366

Plastic packaging

In four pages, a new catalog provides detailed technical information on plastic packaging systems designed expressly for encapsulation of semiconductor devices. Furane Inc.

CIRCLE NO. 367

Photomultiplier tubes

Specification details of over 140 photomultiplier tubes are contained in a 64-page publication. The introduction describes the operation of photomultiplier tubes, the parameters involved and factors influencing the selection of tubes. EMI Electronics.

CIRCLE NO. 368

IC analysis

Actual sections from detailed analyses reports of packaged integrated circuits have been combined into an informative article on the details of what's really on the inside of integrated circuits. Integrated Circuit Engineering Corp.

CIRCLE NO. 369

A/d and d/a converters

A short-form 16-page catalog sumamrizes a line of a/d and d/a conversion, signal-conditioning and display products. Analogic.

CIRCLE NO. 370

MSI ICs

A new comprehensive 100-page handbook is divided into three sections describing MSI complexarray ICs. The section on general design characteristics provides information necessary to allow reliable system design while the section on electrical characteristics gives specific test limit and test condition information for use in device evaluation for 21 MSI ICs. A third section on parameter measurement information provides complete dc and ac measurement methods and procedures. Sprague Electric Co.

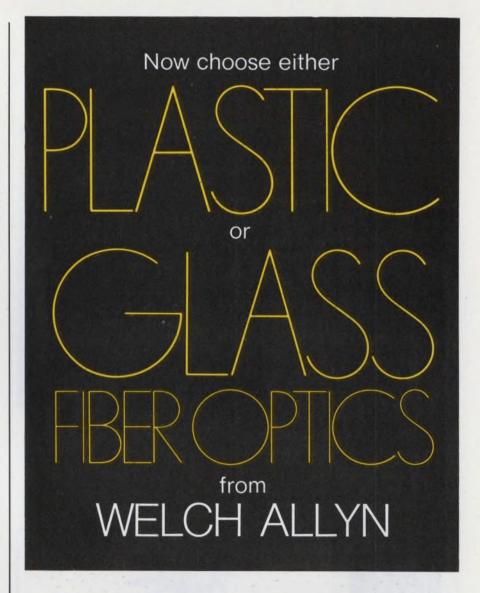
CIRCLE NO. 371

Business courses

A six-page pamphlet outlines a unique home-study course that trains you to manage a company with simulated on-the-job experience. The pamphlet includes information about how the course prepares you to move ahead in your job by teaching fundamental financial management methods. Management Games Institute.

CIRCLE NO. 372

TV distribution line


An informative 32-page booklet, "Systems and Products for TV Distribution," includes numerous specifications tables and application notes, systems antennas and accessories, head-end equipment, distribution equipment and components and installation aids. Jerrold Electronics Corp.

CIRCLE NO. 373

Rf transmission line

A comprehensive, 44-page guide to the selection of flexible and semi-flexible rf coaxial cable discusses all the parameters which must be taken into account in the construction of a cable for a particular application. Time Wire and Cable Co.

CIRCLE NO. 374

For minimum cost (as in disposable products) or for maximum bundle flexibility, check the advantages of fiber optics assemblies or systems made with Welch Allyn's newly developed plastic fibers.

For high precision work, where infra-red light transmission is important, or where fiber optics are exposed to high heat, our glass fibers are normally still preferable.

COORDINATED FIBER OPTICS/LAMP SYSTEMS

Glass or plastic, your fiber optics system will have maximum optical performance with custom-built, precision Welch Allyn miniature lamps.

Ask us about your glass or plastic fiber optics assemblies or lamp/fiber optics systems.

Welch Allyn, Inc., Skaneateles Falls, N. Y. 13153 Tel (315) 685-5788
INFORMATION RETRIEVAL NUMBER 103

Everything's clearer with the flat one!

Letters! Digits! Symbols! Equations! All varieties of data are displayed as undistorted images on Zenith Flat-Face Metal CRTs. Ideal for light pen operations, alphanumerics and analog presentations they're even available with a rear port for optical chart projection. When you need CRTs, face up to the flat one. Write for details.

ZENITH RADIO CORPORATION

THE RAULAND DIVISION

5616 W. JARVIS AVE. • CHICAGO, ILL. 60648 • 312-647-8000

INFORMATION RETRIEVAL NUMBER 104

Schrack's NEW MINIATURE STEPPING SWITCH, Type RTM, is the smallest stepping switch available on the market today. Only 1/4 the size of comparable steppers, it combines high performance with economy of space and cost.

The RTM is equipped with 2 x 10 or 2 x 12 gold-plated contacts and mates with our socket which meets standard printed circuit spacings. Unique hold-down spring enables mounting in any position.

Write for free catalog today. Schrack also manufactures all types of relays, stepping switches and accessories. Catalogs upon request.

1 41/64"L x 13/16"W x 15/16"H

NEW LITERATURE

Chip capacitors

A catalog describes a new generation ceramic chip capacitor designed for hybrid circuit use. The capacitor contains a unique copper barrier layer in the end termination that prevents silver scavenging or leaching during solder reflow assembly operations. Union Carbide Corp.

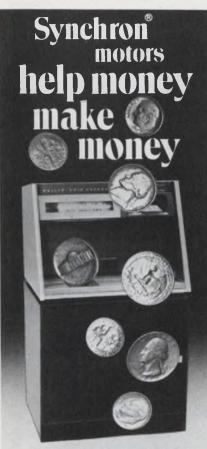
CIRCLE NO. 375

Soldering handbook

A 64-page catalog presents over 300 off-the-shelf terminals and features a comprehensive 18-page soldering standards handbook. The handbook offers a fully illustrated and detailed text on terminal soldering quality assurance and workmanship standards. United Products Co.

CIRCLE NO. 376

Sensitive tapes


A four-page brochure lists complete electrical and mechanical properties of 42 pressure-sensitive tapes. Also included with the literature is a postpaid reply card offering samples for evaluation. The Connecticut Hard Rubber Co., a Hitco Co.

CIRCLE NO. 377

Emi shielding

A 28-page short-form catalog covering shielding materials, gaskets and components is now being offered. The catalog is fully illustrated and contains all necessary ordering information, full specifications and extensive part number tabulations. Metex Corp.

CIRCLE NO. 378

In the vending business, a would-be customer with dollar bills and no coins might just as well be flat broke. Unless there's a bill changer around. Like this one made by Rowe International

Feed it a dollar bill and. presto! Instant alchemy That useless paper is turned into spendable change.

The acceptance of the bill provides a signal which is transformed into multiple pulses in a Hansen-actuated electromechanical pulse chopper. Impulses are then sent to a memory unit and the payoff is actuated. The major reason why Hansen motors are specified:

Dependability Contact your Hansen man and find out how Hansen dependability can help you.

Manufacturing Company, Inc. Princeton, Indiana 47570

HANSEN REPRESENTATIVES: CAREY & ASSOCIATES. Houston and Dallas. Texas; R. S. HOPKINS CO., Sherman Oaks., Calif; MELCHIOR ASSOCIATES, INC., San Carlos, Calif., THE FROMM CO. River Forest, III., JOHN ORR ASSOCIATES, Grand Rapids, Mich.; H. C. JOHNSON AGENCY, INC., Rochester, N.Y.; WINSLOW ELECTRIC CO., Essex. Conn., Villanova, Pa., and Teaneck, N.J. EXPORT DEPARTMENT: 2200 EXPORT DEPARTMENT: 2200 Shames Drive, Westbury, N.Y. 11590

Ferrites

Ferrite applications, including inductors, transducers, filters, shielding devices, transformers and magnetostrictive devices are described in a 16-page brochure. Ceramic Magnetics, Inc.

CIRCLE NO. 379

Optical measurements

A 16-page illustrated catalog of radiant-energy measurement instrumentation describes a full line of optical test equipment and accessories for the detection and digital display of absolute radiometric, photometric and thermal measurements of both cw and pulsed phenomena. Cintra, Inc.

CIRCLE NO. 380

Power converters

An eight-page condensed catalog describes the features, specifications, modifications, and mounting dimensions for miniature and subminiature power conversion equipment. Arnold Magnetics Corp.

CIRCLE NO. 381

Components

Seventy-six pages of a new catalog are devoted to thorough listings of industrial, military and commercial capacitors, resistors and transistors. Sprague Products Co.

CIRCLE NO. 382

Connectors

A 23-page catalog describes a new microminiature printed circuit connector and a series that offers emi shielding. ITT Cannon Electric.

CIRCLE NO. 383

Versatile

Economical Series G Relays Offer These Features:

- Wide switching capability— Low level to 450 VA. Voltages up to 5000 V DC.
- Low coil power to 50 mw—
 High IR—to 10¹⁴ ohms.
- Electromagnetic and/or Electrostatic Shielding.
- Dry Reed or Hg wet switches. Vertical mounting available
- for limited board space-Series VR mounts in .4" square.

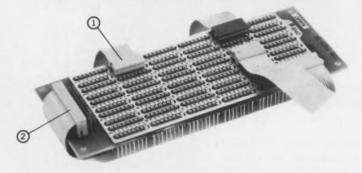
Three sizes available: Series MG-Miniature Series SG-Standard Series CG-Compact

Top unit: Form B Bottom unit: Form A, will switch 5000 V DC @ 50 watts.

You're also sure of outstanding reliability with Series G relays, thanks to their rugged construction features:

Welded switch leads. Unitized nylon bobbins. Coil leads terminated under wrap to eliminate open coils.

DOUGLAS RANDALL, INC.


6 Pawcatuck Ave., Pawcatuck, Conn. 02891 (203) 599-1750 A Division of Walter Kidde & Co., Inc.

INFORMATION RETRIEVAL NUMBER 106

INFORMATION RETRIEVAL NUMBER 107

FLAT CABLE -**PLUG ACCESSORIES**

Greater flexibility in Prototyping and Packaging. Plugs come unassembled, unique contact design eliminates cutting, stripping, soldering or crimping. Permits installation of plugs at ends of cable or any desired bussing location with a fast and simple press operation. Assembly tool available.

1. 14 & 16 Pin Plug – Used for interfacing, input-output connections and testing. May also be used for cable termination into P.C. board. Pins are on .100" centers and .300" between rows.

2. 26 Pin Plug - Designed for input-output connections on standard Augat panels. May also be used for interfacing and testing. Pins are on .100" centers and .100" between rows. Header Assembly also available, mates with plug.

Request I.C. folder

TEL: 617/222-2202 31 PERRY AVE., ATTLEBORO, MASS. 02703

INFORMATION RETRIEVAL NUMBER 108

RACK MOUNTED

General purpose and laboratory power supplies. Both regulated and unregulated models. 1 KV to 500 KV.

High Power CONSTANT CURRENT and SERIES REGULATED

For heavy duty industrial applications and laser sources.

ELECTROSTATIC FLOCKING SYSTEMS

Automated electrostatic flocking equipment for continuous webs, flat panels, walls and 3 dimensional

MINIATURE ENCAPSULATED MODULES

For OEM display supplies and photomultiplier applications. 400V to 30,000V

Write or call for detailed technical literature

SPELLMAN HIGH VOLTAGE ELECTRONICS CORP.

Our third decade of leadership in high voltage technology. 1930 Adee Avenue Bronx, New York 10469 212/671-0300

INFORMATION RETRIEVAL NUMBER 109

NEW LITERATURE

Circuit modules

A comprehensive folder contains electrical and mechanical descriptions on 17 new circuit modules, packaging accessories, and companion power supplies. Computer Products, Inc.

CIRCLE NO. 384

Ac instruments

A collection of ac measuring instruments for laboratory and industry are discussed in a new bulletin. Included are large portable voltmeters, specialty current transformers, ac potentiometers and many other instruments. James G. Biddle Co.

CIRCLE NO. 385

16-bit computer

Featured in a new 20-page brochure is a 16-bit computer system. The multi-register architecture, instruction format and addressing structure of the system is described. Data Computer Systems,

CIRCLE NO. 386

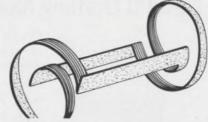
TWTs

A nine-page booklet describing the latest advances in travelingwave tubes for space communications has been made available. Described is the present state of TWTs and developing trends, including discussions of measured life performance, electrical characteristics, and developments. Hughes Electron Dynamics Div.

CIRCLE NO 387

Bulletin board

of product news and developments


Tektronix, Inc., has entered the N/C (numerical control) field with the unveiling of its 1701 and 1702 machine-control units. The 1701 is a two-axis unit and the 1702 is a three-axis one. Both interface with type 611 and 601 storage monitors for quick tool path checkout. They provide and accept necessary signals for controlling a typical machine tool.

A new product from Dest Data Corp., of Sunnyvale, Calif., improves the legibility of television images. Called the VRE100, the new product increases clarity of detail in a horizontal band across the monitor in a monochrome CCTV system. The enhanced area may be between 10 and 20% of the picture's vertical height and can be moved by operator control. A vertical magnification ratio of 2:1 is also possible within the enhanced area, permitting operators to read or identify information which is marginal or often illegible in normal operation. Price is under \$1200.

CIRCLE NO. 388

Price reductions of 50% have been announced on Advanced Micro Devices' 723 IC voltage regulator and 741 IC frequency-compensated operational amplifier in die forms. The new price for 100-piece lots or more in mixed quantities is \$1.50.

CIRCLE NO. 389

Rolamite, Inc., of San Francisco, Calif. has developed a new process for making electric coils. The new process involves the parallel winding of inductors, thereby offering the first viable means for producing low-cost electrical coils by using thin laminates to replace copper wiring. A flat laminate belt holds the conductor pattern in a rectangular configuration which is topologically twisted and rolled to form the coil from the two-dimensional laminate used without deforming the materials.

A new software program has been announced by Tri-Data Corp., of Mountain View, Calif. for users of PDP-8 computers. Designated as the P-100A software package, it provides users with magnetictape versions of the programs normally supplied by the PDP-8 manufacturer, the Digital Equipment Corp. It consists of RIM and binary loaders, a CartriFile diagnostic program, an ASCII papertape-to-CartriFile utility program, an assembler, an editor, an I/O subroutine and a program library generator, all on magnetic tape. The program's price is \$250.

CIRCLE NO. 390

A new miniature three-wire reversible-step servo motor whose rotor automatically returns to zero-degree position when power is interrupted has been developed by Haydon Switch & Instrument, Inc., of Waterbury, Conn. Series 31700 motor accomplishes this feature by having only one angular position of equilibrium when no power is in its winding.

CIRCLE NO. 391

Another
unique quality
of Electro Cube
is to pack
more into a
small package
reliably

electro cube capacitors

Our new 50 Volt metallized polycarbonate capacitors, with .00008 gauge film, make conventional units look like elephants. If space is a problem, ask. We'll help. Electro Cube, Inc., 1710 South Del Mar Avenue, San Gabriel, California 91776. (213) 283-0511.

Electronic Design

ELECTRONIC DESIGN'S function is:

- To aid progress in the electronics manufacturing industry by promoting good design.
- To give the electronic design engineer concepts and ideas that make his job easier and more productive.
- To provide a central source of timely electronics information.
- To promote two-way communication between manufacturer and engineer.

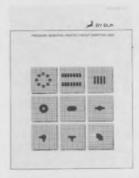
Want a subscription? ELECTRONIC DESIGN is sent free to qualified engineers and engineering managers doing design work, supervising design or setting standards in the United States and Western Europe. For a free subscription, use the postfree application form inside the back cover. If none is included, write to us direct for an application form.

If you do not qualify, you may take out a paid subscription for \$25 a year in the U.S.A., \$35 a year elsewhere. Single copies are \$1.50 each.

If you change your address, send us an old mailing label and your new address; there is generally a prepaid postcard for this inside the back cover. You will have to requalify to continue receiving ELECTRONIC DESIGN free.

The accuracy policy of ELECTRONIC DESIGN is:

- To make reasonable efforts to ensure the accuracy of editorial matter.
- To publish prompt corrections whenever inaccuracies are brought to our attention. Corrections appear at the end of the Letters column.
- To refuse any advertisement deemed to be misleading or fraudulent.


Microfilm copies are available of complete volumes of ELECTRONIC DESIGN at \$19.00 per volume, beginning with Volume 9, 1961. Work is now in process to complete the microfilm edition of Volumes 1-8. Reprints of individual articles may be obtained for \$2.00 each, prepaid (\$.50 for each additional copy of the same article) no matter how long the article. For further details and to place orders, contact the Customer Services Department, University Microfilms, 300 North Zeeb Road, Ann Arbor, Michigan 48106; telephone (313) 761-4700.

Want to contact us? If you have any comments or wish to submit a manuscript or article outline, address your correspondence to:

Editor
ELECTRONIC DESIGN,
850 Third Avenue,
New York, N.Y. 10022.

Design Data from

New PC Drafting Aids Catalog

The By-Buk 1970-71 catalog of pressure sensitive printed circuit drafting aids is now available. With thousands of ideas to promote accuracy and efficiency in printed circuit master artwork layouts. Featured are new artwork patterns for: TO cans, multi-pads, dual in-lines and flat packs. Also the most comprehensive listings of conductor line tapes, pads, donuts, connector strips, elbows, corners, etc. Available in opaque black, transparent red and transparent blue materials. Send for your free catalog and samples.

By-Buk Company 4326 W. Pico Blvd. Los Angeles, California 90019 (213) 937-3511 CIRCLE NO. 171

Plastic Parts

CUSTOM production to your specs from patented, low-cost tooling. Any size, any quantity in Nylon, Delrin, other thermoplastics. Let us quote. We have 20 years experience.

STANDARD gears, racks, bearings, sprockets, pulleys, washers, insulators, many other components available quickly from stock tools. Over 2,500 items described in our 48 page catalogue. Write today for a free copy.

CIRCLE NO. 172

Nylomatic
28 Nolan Ave., Morrisville, Pa. 19067

How To "Design-Your-Own" Precision Power Supply In Minutes.

Trio Laboratories, Inc. 80 Dupont Street Plainview, N.Y. 11803

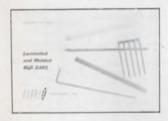
Super/reg® miniature, pre-packaged, precision power regulators (series and shunt types) make possible design/fabrication of **custom** power supplies with virtually no engineering time or effort. Data Sheets S201A, S202A, S204 show how just a front end of raw DC or a transformer with rectifying diodes and filter capacitor — and a heat sink mounting area — are all that are needed. Single or multiple outputs easily accommodated. 104 models provide wide range of voltage levels, maximum layout flexibility, low output Z(0.01% regulation), temperature compensation 0.01%/°C, 125°C operation, output adjustability ±10%, short circuit protection.

CIRCLE NO. 173

Manufacturers

Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-ServiceCard (Advertisement)

PEM Captive Nuts for Circuit Boards



PEM® broaching-type KF fasteners solve special captive fastening problems involving panels and components of relatively brittle materials such as glass laminates, epoxy and other circuit board materials. A PEM KF fastener tightly grips a non-ductile material as its interference-fitting shank is squeezed into a pre-drilled hole. Pushout resistance and torque characteristics are excellent. Installation forces are low. PEM KF fasteners are available in thread sizes .086-56 through .250-20 for use in non-ductile materials too thin for threading.

PENN ENGINEERING & MANUFACTURING CORP.

Doylestown, Pa. 18901

Bus Bars For Noise Reduction

A 16 page Technical Bulletin is now available, describing a new concept in power or signal distribution. Basic mechanical and electrical design principles, along with descriptive pictures and diagrams, are included in this bulletin. These compact buses can replace bulky cable harnesses and repetitive wiring for computer or modular application. This method of construction satisfies the demanding requirements of low inductance and resistance of high speed, solid state systems, while controlling electrical noises.

Send For Free Sample CIRCLE NO. 175

Eldre Components, Inc. 1239 University Avenue

Rochester, New York 14607

BISHOP CIRCUIT ZAPS

PRE-ETCHED, PRESSURE-SENSITIVE C O P P E R COMPONENT PATTERNS FOR INSTANT PC BOARDS. Circuit Zaps® are 1 ounce copper circuit components patterns, pads, and conductor paths. precision-etched on 5 mil (.005") glass epoxy base material, backed by a special pressure-sensitive adhesive. Circuit Zaps® completely eliminate the artwork, photography, photoprinting, touch up, etching, stripping, and other time-consuming steps in PC board development. Circuit Zaps® provide maximum flexibility.

Now you can save time and money in making designs, proving theories, checking circuits and densities — for all prototype PC work.

Write today for the FREE **TECHNICAL BULLETIN 1003** with FREE SAMPLE.

Bishop Graphics, Inc. 7300 Radford Avenue

North Hollywood, California 91605 (213) 982-2000 Telex: 674672

CIRCLE NO. 176

Electronic Design

Advertising Sales Staff
Keith Aldrich
Sales Manager

New York 10022
Robert W. Gascoigne
Samuel M. Deitch
Daniel J. Rowland
850 Third Avenue
(212) Plaza 1-5530

TWX: 867-7866

Philadelphia 19025

Mort Sullivan
P.O. Box 126

Dresher, Pa.

(215) 884-6880

Boston 02154
Joseph F. Palmer
1268 Main Street
Waltham, Mass.
(617) 894-2700

Chicago 60611
Thomas P. Kavooras
Berry Conner, Jr.
200 East Ontario
(312) 337-0588

Cleveland
Thomas P. Kavooras
(Chicago)
(312) 337-0588
(call collect)

Los Angeles 90303
Stanley I. Ehrenclou
Jerry D. Latta
2930 Imperial Highway
Inglewood, Calif.
(213) 757-0183

San Francisco 94022
Arthur R. Shields, Jr.
95 Main Street
Los Altos, Calif.
(415) 941-3084

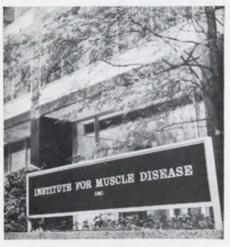
London W. 1
For United Kingdom and Holland
Brayton C. Nichols
44 Conduit Street
Tel: REGent 4714

Verviers, Belgium
For Continental Europe
Andre Jamar
1, Rue Mallar, 1
087) 253.83 Telex 41563

Tokyo

Haruki Hirayama
Electronic Media Service
5th Floor, Lila Bldg.,
4-9-8 Roppongi
Minato-ku
Phone: 402-4556

Cable: Electronicmedia, Tokyo



ELECTRONICS CORPORATION

TWX 710-581-4930

INFORMATION RETRIEVAL NUMBER 111

What chemical events take place within living muscle tissue? How does muscle work? Why does it waste away in diseases like muscular dystrophy?
At the Institute for Muscle Disease, answers to these questions are being sought on a broad scientific frontranging from the study of single muscle fibers to an exploration of the body's complex metabolic pathways. The Institute, a tower of hope to millions suffering from disorders of the neuromuscular system, is sponsored by

MUSCULAR DYSTROPHY ASSOCIATIONS OF AMERICA, INC.

1790 Broadway, New York, N.Y. 10019

Advertisers' Index

Advertiser	Page
Abbott Transistor Laboratories Incorporated Acopian Corporation Adams & Westlake Company, The Alco Electronic Products, Inc	152 149 28, 140 130B , 48, 49 136 10 130 156
Beckman Instruments, Inc., Helipot Divis Bishop Graphics, Inc. Bodine Electric Company Bud Radio Company, Inc. Bulova Servo Products Electronic Division of Bulova Watch Company Burr-Brown Research Corporation By-Buk Company	22 57 on
CTS Corporation Celanese Plastics Company Clare & Co., C. P. Cohn Corp., Sigmund Computer Labs Concord Electronics Corporation Control Data Corporation Cunningham Corporation	33 119 142 147 160
Dale Electronics, Inc. C Datametrics Division, CGS Scientific Corporation Datascan, Inc. Digital Equipment Corporation Douglas Randall, Inc. Duncan Electronics, Inc. Durant Digital Instruments, A Cutler-Hammer Company	144 134 95 155
E-H Research Laboratories, Inc. ERA Transpac Corporation Eldre Components, Inc. Electro Cube, Inc. Electro Fiberoptics Corp. Electronic Design Electronic Measurements, Inc. Erie Technological Products, Inc.	50 159 157 132 66, 67
FMC Corporation Fifth Dimension, Inc.	60
General Electric Company	161
Hamlin, Inc. Hansen Manufacturing Co., Inc. Heath Company Hewlett-Packard I, 4	106 155 127
IERC Division, International Electronic Research Corporation IMC Magnetics Corporation Industrial Timer Corporation	
Johnson Company, E. F.	45
Keithley Instruments, Inc.	141

Advertiser Page
1.EM Instrument Corp. 62 Ledex Microelectronics, Ledex, Inc. 137 Licon, Division Illinois Tool Works, Inc. 7 Lockheed Electronics, A Division of Lockheed Aircraft Corporation 111
3M Company Scotchpar 64 Magnecraft Electric Company 16 Malco Manufacturing Company, Inc. 122 MicroSwitch, A Division of Honeywell 125 Molex, Incorporated 25 Monsanto Company Cover III Monroc, The Calculator Company 47 Motorola Semiconductor Products, Inc. 6
National Cash Register Company, The
Penn Engineering and Manufacturing Corp
RCA Electronic Components and Devices Cover IV RtroN Corporation 150 Rogan Brothers, Inc. 128 Rogers Corporation 115 Rohde & Schwarz 130C
Schrack Electrical Sales Corp. 154 Sercel 130D Servo Tek Products Company 132 Sigma Instruments, Sigma Instruments, Inc. 56 Signalite Division of General Instruments 103 Signetics Corporation 31 Siliconix Incorporated 105 Singer-General Precision, Inc. Kearfott Division 146 Solid State Scientific, Inc. 143 Spellman High Voltage Co. Inc. 156 Sprague Products Company 20 Stackpole Carbon Company 8, 9 Sylvania Electric Products, Inc. Electronic Components Group 35 thru 42
TRW Semiconductor Division of TRW, Inc. 99
Teletype Corporation 90, 91 Texas Instruments Incorporated, Components Group 74, 75 Thermal American Fused Quartz Co. 138 Toshiba America 63 Trio Laboratories, Inc. 145, 158 Triplet: Corporation 79
Tung Sol Division, Wagner Electric Corporation
Victor Electric Wire & Cable Corp
Wakefield Engineering, Inc. 62 Welch-Allyn, Inc. 153 Wesco Electrical Company, Inc. 43 Weston Instruments, Inc. Components Division 131, 133, 135
Wheelock Signals, Inc.161Zeltex, Inc.150Zenith Radio Corporation154

...take our lead. General Electric has the facilities and advanced techniques to provide butt weld combinations of copper, nickel, Dumet, tungsten, molybdenum, nickel-iron-cobalt alloys, nickel clad copper, copper clad iron, and others. Available in wire diameters from .008 to .100 in. with many length and material combinations. Take advantage of GE's experience in producing billions of lamp, electronic tube and semiconductor lead wires every year. Minimum order of 100,000. Product data sheets on request. General Electric Company, Lamp Metals & Components Department, 21800 Tungsten Road, Cleveland, Ohio 44117. Tel: (216) 266-3472.

GENERAL 8 ELECTRIC

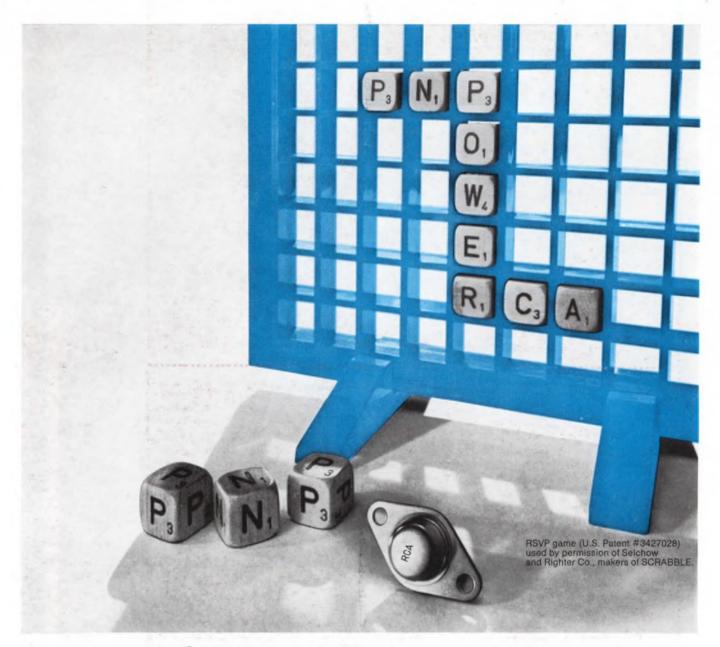
INFORMATION RETRIEVAL NUMBER 112

"IT'S GOOD BUSINESS
TO HIRE THE HANDICAPPED."

ISN'T THAT A GREAT IDEA, SNOOPY?

THE PRESIDENT'S COMMITTEE ON EMPLOYMENT OF THE HANDICAPPED, WASHINGTON, D. C.

Product Index


Information Retrieval Service. New Products, Evaluation Samples (ES), Design Aids (DA), Application Notes (AN), and New Literature (NL) in this issue are listed here with page and Information Retrieval numbers. Reader requests will be promptly processed by computer and mailed to the manufacturer within three days.

Category	Page	IRN
Components buttons, keyboard (ES) capacitors, tantalum capacitors, trimmer coils, toroidal (NL) connectors (NL) ferrites (NL) filters (AN) filters (AN) filters (NL) fuses, silver gages (NL) inductors (NL) potentiometers potentiometers potentiometers (NL) resistors (NL) sensor, surface sensors (NL) thermistors (ES) timing circuits (AN) transformer, pulse transformers, pulse trimmers (NL) tubes (NL)	146 136 134 155 155 151 155 134 155 136 152 146 151 134 155 136 152 155	342 282 276 365 383 379 360 379 279 363 379 281 364 278 363 341 361 277 379 280 364 368
Data Processing calculator decoder, BCD hardware, computer keyboard, solid-state keyboard buttons (ES) programmer, memory	133 133 132 132 146 131	274 275 272 273 342 271
ICs & Semiconductors counters, MOS decade diodes (NL) filters (AN) filters, active (AN) gages (NL) gate, MOS logic IC analysis (NL) ICs, MOS (NL) memory, random-access memory, random-access multivibrator, TTL op amp, FET packaging (NL) rectifiers, silicon register, 4-bit register, 4-bit register, 4-bit semiconductors (NL) sensors (NL) transistors (NL) transistors, pnp transistors, power	127 152 151 151 152 127 152 128 128 128 128 130 130 130 129 152 152 152 152 152 152 152	261 362 360 359 363 262 369 371 260 263 264 265 367 266 270 269 268 362 362 362 362 362 362
Instrumentation analyzer, network analyzer, spectrum bridge, Wheatstone generator, pulse marker, digital	124 124 124 123 123	258 256 257 250 252

Category	Page	IRN
measurements (AN) measurements (NL) optics (NL) oscilloscope, display power meter, optical recorder, X-Y	150 155 155 124 124 124	356 380 380 255 254 253
Microwaves & Lasers amplifiers (AN) antennas (NL) cable, rf (NL) coils, rf (NL) connectors (NL) diodes (NL) diodes, light-emitting diodes, p-i-n emitters, beam optics (NL) shielding, emi (NL) transistors, microwave tube, photomultiplier tube, photomultiplier tubes, (NL) TV equipment (NL) search-and-lock unit	150 153 153 152 155 152 137 137 139 155 154 139 138 138 152 153 138	357 373 374 365 383 362 283 284 288 380 285 286 368 373 287
Modules & Subassembl amplifier, power amplifier, power amplifiers (AN) circuits, timing (AN) converters (NL) converters, a/d (NL) converters, d/a (NL) filters (AN) filters, active (AN) high-voltage modules holders, fuse oscillator, crystal power supplies, PC read-out, fiber-optic regulators, voltage sample-and-hold modules	140 142 150 151 155 152 152 151 151 142 140 141 140	291 295 357 361 370 360 359 297 290 296 293 292 294
Packaging & Materials backplane, IC cable, (NL) cases, instrument connectors (NL) connectors, coaxial gasketing, emi (NL) heat sinks, aluminum packaging (NL) PC templates (DA) sealing (AN) structures, tunnel tapes (NL)	143 153 143 155 144 154 154 150 144 154	335 374 299 383 337 378 336 367 344 358 338 377
Tools & Engineering Aid analysis, IC (NL) courses (NL) filter analysis (AN)	152 153 151	369 372 360

Category	Page	IRN
handbook (NL) handle, power rework center slide rule (DA)	154 145 145 146	375 339 340 343
soldering (NL) tapes (NL) templates (DA)	154 154 147	375 377 344
New Literature		
cable, rf capacitors capacitors, chip coils, toroidal connectors converters, a/d converters, d/a converters, business ferrites gages IC analysis ICs, MOS optics packaging, plastic records resistors semiconductors sensors shielding, emi soldering handbook tapes, pressure transformers transistors trimmers tubes TV equipment	153 155 154 152 155 155 155 155 155 155 155 155 155	374 382 375 365 383 370 381 379 363 367 367 363 378 379 382 378 379 382 378 379 382 378 379 382 379 379 382 379 379 379
Application No	tes	
amplifiers, kilo-watt filter analysis filters, active measurements, rms sealing, ceramic timing circuits	150 151 151 150 150 151	357 360 359 356 358 361
Design Aids slide rule, inductance templates, drafting	147 147	343 344
Evaluation San	10108	342
thermistors	146	341

You Win With RCA P-N-P Power... New 2N5954 Family (2N3054 Complement)

This new RCA p-n-p transistor has the qualifications that can make winners of you and your designs. The 2N5954 is a silicon power unit in a hermetically-sealed TO-66 package. Complementing the 2N3054 (already widely known in sockets in military, industrial, and commercial equipment), the 2N5954 features controlled second-breakdown ratings. To be sure, each transistor is individually tested to meet specified parameters before it is shipped.

The new 2N5954 family with its multiple epitaxial structure and emitter ballasting techniques add up to a traditionally rugged RCA power device...giving you the design capability to achieve high performance levels in your equipment. One of three new RCA p-n-p types now offered for switching and amplifier applications, 2N5954 (or its family types, 2N5955 or 2N5956), together with its n-p-n complement, provide bi-directional control and phase inversion advantages.

P-n-p/n-p-n complements are particularly advantageous if you're trying to cascade four or five stages. In a power supply design, for example, the use of complementary types can eliminate voltage build-up that would be encountered if cascaded n-p-n, or cascaded p-n-p types were employed.

Check the chart on these new types. For more information, consult your local RCA Representative or your RCA Distributor. For technical data, write: RCA Electronic Components, Commercial Engineering, Section 57J-11/UT8, Harrison, N. J. 07029. In Europe: RCA International Marketing S.A., 2-4 rue du Lièvre, 1227 Geneva, Switzerland.

	VCBO	VCEX (sus)	VCER (sus)	VCEO (sus)	1c	P _T (W)
Type No.		(V)	(V)	(V)		@ $T_C = 25^{\circ}C$
2N5954	85	85	80	75	-6	40
2N5955	70	70	65	60	-6	40
2N5956	50	50	45	40	-6	40

