
APRIL · 1954

electronics

Precision Production to Military Requirements The manufacture of transformers and associated devices for military requirements has been a specialty of U.T.C. for the past fifteen years. Thousands of military designs are in present production . . . a few examples are illustrated above.

In this photograph you will find transformers, reactors, filters, high Q coils, and magnetic amplifiers. Types illustrated include units to MIL-T-27, JAN-T-27, and ANE-19.

If you have a tough problem in an Hermetic or Fosterized unit, U.T.C. is your logical production source.

United Transformer Co.
150 VARICK STREET NEW YORK 13, N. Y.

EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16, N.Y., CABLES: "ARLAB"

electronics

APRIL • 1954 A McGRAW - HILL PUBLICATION

MODEL SPEEDS ANTENNA DESIGN—All-brass 1/48-scale model of USS Mount McKinley is irradiated at scaled frequencies while rotating on model range at Navy Electronics Laboratory in San Diego, Cal. to find optimum positions for the many antennas (see p 162)

Figures of the Manth	4
Industry Report	5
Military Reliability of Electron Tubes	130
Capacitance Gage Checks Cable Sheath Thicknessby B. M., Wojciechowski	1.34
Portable Sync Generator for TV Broadcasting	138
High-Frequency Transistar Amplifiers	142
Electronic Air-War Game Simulates Missile Strikes	146
Signal Overload Relay for Television Receivers by C. Masucci, J. R. Peltz and W. B. Whalley	153
Ultrasonic Liquid Level Indicator Systems	156
Ship Models Predict Antenna Patterns	162
Sensitive Amplifier for Medical Research	164
Proctical Two-Stage Transistor Amplifiers	169
Frequency-Code Modulation System	172
Gated Marker Generatorby G. D. Jensen	177
Simple Time-Delay Relay	178
Designing Surface-Wave Transmission Lines	180
Measuring Transistor Temperature Rise	185
Time-Shared Amplifier Stabilizes Computers	188
Transistor Equations Using h-Parameters (Reference Sheet)by C. C. Cheng	191
Crosstalk 129 Electrons at Work 196 Production Techniques 242 New Products Plants and People 338 New Books 398 Backtalk 404 Index to Advertisers	

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, David A. Findlay, Assistant Editors; Mari lyn Wood, Gloria J. Filippone, Arlene Schilp, Editorial Assistants; Keith Henney, Consulting Editor; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; Fronk H. Ward, Business Manager; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; Charles Wardner, James T. Hauptli, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta

April, 1954

ELECTRONICS Member ABC and ABP Vol. 27, No. 4

Published monthly with an additional issue in June by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-1948), Founder. Publication Office, 99-129 North adway. Albany 1, N. Y.

Executive, Editorial and Advertising Offices: McGraw-Hill Building, 330 W. 42 St., New York 36, N. Y. Donald C. McGraw, President: Willard Chevalier, Executive Vice-President; Joseph A. Gerardi, Vice-President and Treasurer; John J. Cooke, Secretary: Paul Montgomery, Senior Vice-President, Publication Division: Ralph B. Smith, Vice-President and Editorial Director; Nelson Bond, Vice-President and Director of Advertising; J. E. Blackburn, Jr., Vice-President and Director of Circulation.
Subscriptions: Address correspondence to Electronics—Subscription Services—Subscription Services—Subscr

THE NEW MUIRHEAD-WIGAN DECADE OSCILLATOR

HIS precision laboratory oscillator, which covers a range of 1 to 111,100c/s with an overall frequency accuracy of $\pm 0.2\%$ or ± 0.5 c/s, employs the decade tuning system, by means of which the frequency can be set quickly and accurately on four decade dials and a range switch. This system of tuning ensures the highest possible frequency accuracy and stability. It also enables a given frequency setting to be repeated exactly, and permits the addition or subtraction of a fixed number of cycles per second, thus giving an incremental accuracy of an extremely high order. No other type of oscillator possesses all these advantages.

FEATURES

Frequency range: I-II, IIOc/s and IO-III, IOOc/s.

Frequency accuracy: $\pm 0.2\%$ or ± 0.5 c/s.

Hourly frequency stability: $\pm 0.02\%$ over most of range.

Maximum output: 2W into 8000 ohms above 20c/s.

50mW into 8000 ohms below 20c/s.

Harmonic content: 1% at 1W output.

Hum level: -80db relative to maximum output at 1000c/s.

Power supply: 95-125V, 60c/s; 90W.

Dimensions: $17\frac{1}{4}$ in, wide x $10\frac{1}{2}$ in, high x 13 in, deep.

Weight: 83 lb.

MUIRHEAD & CO. LIMITED . BECKENHAM . KENT . ENGLAND

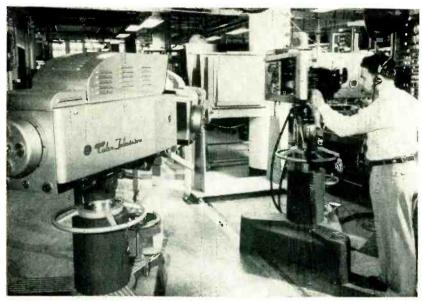
FIGURES OF THE MONTH

	Year Ago	Previous Month	Latest Month		Year Aao	Previous Month	Latest Month
RECEIVER	, <u>, , , , , , , , , , , , , , , , , , </u>	171011111		TV AUDIENCE	/ igo	MONTH	MONTH
PRODUCTION				(Source: NBC Research Dept.)	Jan. '53	Dec. '53	Jan. '54
(Source: RETMA)	Jan. '53	Dec. '53	Jan. '54				
			420,571	Sets III Use—total 2	1,234,100	26,973,000	27,666,000
Television sets	719,234 361,921	449,787 514,428	271.036				
Clock Radios	189,592	117,672	159,932	BROADCAST STATION	NS		
Portable sets	93,962	103,931	46,571	Source: (FCC)	Feb. '53	Jan. '54	Feb. '54
Auto sets	447,667	365,084	394,442	TV Stations on Air		-	
	,00.	202,001		TV Stations on Air	147 221	369 197	3 79 1 9 8
				TV Stris CF3—not on an	815	134	99
				AM Stations on Air.	2,409	2,524	2,529
RECEIVER SALES				AM Stns CPs-not on air	131	120	128
(Source: RETMA)	Jan. '53	Dec. '53	Jan. '54	AM Stns-Applications	252	165	154
			731,917	FM Stations on Air	611	555	554
Television sets, units	640,073	774,856	306,407	FM Stns CPs-not on air	20	19	19
Radio sets (except auto)	414,726	1,456,008	300,407	FM Stns-Applications	8	4	3
				COMMUNICATION A	UTHORIZ	ATIONS	
RECEIVING TUBE S	ALES			(Source: FCC)	Jan. '53	Dec. '53	Jan. '54
(Source: RETMA)	Jan. '53	Dec. '53	Jan. '54				
Receiv. tubes, total units		23,404,026	22,133,347	Aeronautical	35,323	42,455	42,314
Receiv. tubes, value	, ,	\$17,832,387	\$16,412,505	Police, fire, etc.	38,631 12,234	43,703 14,663	43,918 14,865
Pic. tubes to mfrs., units		644,287-r	557,681	Industrial	15,761	19,797	20,053
Picture tubes, value				Land Transportation	5,531	6,470	6,556
		,,,		Amateur	117,106	115,518	116,369
				Citizens Radio	1,892	5,439	5,492
				Disaster	90	254	256
SEMICONDUCTOR	SALES			Experimental	507	506	525
(Source: RETMA)	Dec. '52	Nov. '53	Dec. '53	Common carrier	1,037	1,430	1,479
			689,409				
Germanium Diodes	1,568,334	733,029	009,409	EMPLOYMENT AND F	AVPOLL	c	
				(Source: Bur. Labor Statistics)	Nov. '52	0ct. '53	Nov. '53
		-Quarterly Fig	ures ——	Prod. workers, comm. equip.	398.0	407.6	395.2
	V	Previous	Latest	Av. wkly. earnings, comm	\$65.99	\$66.97	\$67.43
INDUSTRIAL	Year	Quarter	Quarter	Av. wkly. earnings, radio	\$63.71	\$65.84	\$66.40
TUBE SALES	Ago	Quarter	Quarter	Av. wkly. hours, comm	41.5	40.1 -r	39.9
			0.1/50	Av. wkly. hours, radio	40.1	39.9 -r	40.0
(Source: NEMA)	3rd '52	2nd '53	3rd '53				
Vacuum (non-receiving)	10,582,110	10,320,720-r	9,434,082	STOCK PRICE AVERA	GES		
Gas or vapor	2,951,067	3,303,631-r	4,145,018	(Source: Standard and Poor's)	Feb. '53	Jan. '54	Feb. '54
Phototubes	566,234	706,055-r	510,686	Radio—TV & Electronics	304.5	273.4	281.7
Magnetrons and velocity	0.401.007	10 500 047	0.000 / 00	Radio Broadcasters	285.1	274.3	281.7
modulation tubes	8,491,301	10,523,247-r	9,822,600				204.0
Gaps and T/R boxes	1,698,259	1,683,637-r	1,554,000	p—prov	isional; r—re	vised	

FIGURES OF THE YEAR	1050 7		OR THE FIRST		
I Idolled of The TEAR	1953 Total	1953	1954	Percent Change	
Television set production	7,214,787	719,234	420,571	<u>41.5</u>	
Radio set production	1 3,368,556	1,093,142	8 7 1,981	-20.2	
Television set sales	6,375,279	640,073	731,917	+14.3	
Radio set sales (except auto)	7,064,485	414,726	306,407	-26.1	
Receiving tube sales	437,091,555	37, <mark>343</mark> ,081	22,133,347	-40.3	
Cathode-ray tube sales	7,582,835	988,316	557,681	-43.6	

INDUSTRY REPORT

electronics—APRIL • 1954


New York Subways Go Electronic

FASTEST subway train operation in the U. S. will result from an all-electronic traffic control system to be installed on the Flushing line of New York's IRT. The \$9,028,995 job will be handled by Union Switch who have a similar system in Stockholm, Sweden.

- ► What It Does—Features of the traffic-control system include train identification that will identify an approaching train, operate switches automatically and indicate to passengers on the platform the classification of the train.
- ▶ How It Works—Each train will be equipped with an inert coil tuned to a specific frequency. Each frequency represents a train classification. At points along the right-of-way at which the identification is to be made there will be a bridge, tuned to each of the identifying frequencies. As the train goes by, the coil unbalances its corresponding bridge.
- ► Speed—When the new traffic control system is completed, the tenmile Flushing Line will be operated from two control points instead of ten. Eventually, the whole line will be controlled from one point.

The new signal system will also allow the operation of 37 11-car trains an hour over the line against a maximum of 30 9-car trains at present. These two improvements should produce a 253% increase in passenger-carrying capacity per train

Stations along the line are being extended to accommodate 11-car trains. At present they only take trains of nine cars.

INITIAL shipments of commercial color cameras are made by RCA as . . .

Manufacturers Boost Color Output

RCA, GE and DuMont expand production plans to prepare to broadcasters for color

IN MARCH the pace of production activity for color tv station equipment increased when both RCA and GE announced deliveries of color camera equipment.

RCA has made delivery of several commercial color tv cameras and associated equipment to NBC and CBS. Production and shipment of the cameras will continue on a regular schedule against orders already received. These include orders from WKY, Oklahoma City; WBAP, Fort Worth; WBEN, Buffalo; WTMJ, Milwaukee; WCCO, Minneapolis; KTLA, Los Angeles; NBC and from CBS which recently increased its order to cover 12 com-

plete studio camera chains and associated equipment.

Each color camera chain includes the camera, an aperture compensator, rack-mounted control amplifier, shading generator, remote control panel, gamma corrector and master monitor and auxiliary switching unit.

► Coders—General Electric, which signed a patent license agreement for the right to manufacture and sell color apparatus developed by CBS, including the single-tube field-sequential color tv camera and the Chromacoder, also began deliveries in March. First camera went to CBS which has ordered four of the units.

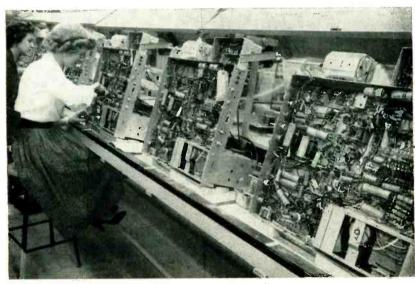
The company also announced plans to modify existing black-and-white cameras for use with the

INDUSTRY REPORT—Continued

Chromacoder. Although none for individual stations have as yet been converted, it is estimated that the cost for converting one camera, including the coder, is about \$46,000. Because one coder unit can handle any number of field-sequential cameras, a second camera could be converted and added for about \$6,000 additional. Four cameras converted and coder come to about \$64,000.

Three-tube color cameras cost \$66,000 each.

► Scanner—DuMont, which shipped its first Colorvision slide scan-


ner in December to CBS, announced that it has delivered approximately 10 scanners to equipment manufacturers as a video source for test purposes since that time.

The firm has no immediate plans for production of color cameras but is concentrating on film equipment. Introduction of 16-mm color equipment is planned for the NARTB meeting this year. Production plans for 35-mm equipment are underway.

It has been estimated that by the end of 1954 at least 180 stations of all networks will be able to broadcast color tv.

CBS-type color tv camera built by GE uses field-sequential disk. Chromacoder converts signal to NTSC color.

ASSEMBLY-LINE methods are used at Westinghouse as .

Production Begins on Color Sets

Westinghouse and RCA are now producing color sets on regular production basis

DURING March, two major tv receiver manufacturers, Westinghouse and RCA, announced commercial production of color tv receivers on an assembly line basis.

Westinghouse receivers are now being offered for immediate home delivery at 36 retail stores in New York City and 14 in northern New Jersey.

Suggested retail price of the set is \$1,295. The firm plans to market the sets in other major cities in the

near future.

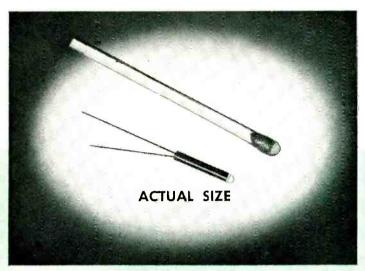
► Tubes—RCA's first commercial models of color tv receivers went into production in March, three months ahead of schedule at its Bloomington, Indiana plant. A tentative list price of \$1,000 has been set for the 15-inch open-face console model. The RCA production model has 36 tubes including picture tube.

The company also announced that the production of RCA tricolor picture tubes had reached a going rate of 2,000 a month, within a period of two months following FCC's approval of NTSC color.

Engineers Develop New Transistor Uses

Include audio and computer fields; new production processes appear

NEW USES for transistors include speech amplifiers built into hand microphones as well as terminal equipment and repeater amplifiers for rural carrier telephone systems. Circuits demonstrated recently indicate forthcoming application in electronic computers. Meanwhile development continues of transistors resistant to heat and moisture.


- ► Hand Mike—A junction transistor preamplifier built into a \$95 dynamic hand microphone has been announced. Use of the preamplifier achieves an overall output comparable to a carbon microphone but the unit is more directive and avoids hissing and frying sounds. The existing microphone bias powers the preamplifier without additional connection.
- ► Carrier Telephone—In Americus, Ga., AT&T has installed a rural carrier system that uses 300 transistors. The system covers 26½ miles and includes three terminal units and several repeater amplifiers. Use of transistors reduces the equipment size to 1/10

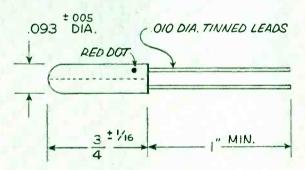
(Continued on page 8)

HIGHLY SENSITIVE...COMPACT IN SIZE!

SYLVANIA PHOTODIODE

ONTTA

The Sylvania 1N77A is a highly sensitive compact junction photodiode.


Its useful sensitivity covers the visible spectrum and extends into the infrared region where it peaks at approximately 1500 Angstrom Units.

Consider these advantages:

- 1 Hermetically sealed in glass.
- 2 Extreme stability in operation.
- 3 High sensitivity (5.0 volt peak to peak across a 100 k-ohm load).
- 4 Low dark current (500 μ a @ -50 volts).

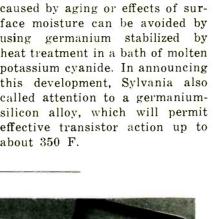
The high sensitivity and compact packaging of the 1N77A should provide the answer to many light-sensing application problems. Still more reasons why it pays to specify Sylvania.

DETAILED DRAWING

FOR FULL DETAILS about the complete line of Sylvania diodes write to Dept. 4E-1604 at Sylvania.

Sylvania Electric Products Inc.,

1740 Broadway, New York 19, N. Y.


In Canada: Sylvania Electric (Canada) Ltd., University Tower Bldg
St. Catherine Street, Montreal, P. Q.

LIGHTING . RADIO . ELECTRONICS . TELEVISION

and requires only 1/20 the power of an electron tube system.

- ► Computers—An eight-stage decimal counter using junction transistors was demonstrated at a West Coast computer show and the introduction of a completely transistorized electronic computer may take place later this year.
- ► Stabilized Germanium—Change

of transistor characteristics caused by aging or effects of surface moisture can be avoided by using germanium stabilized by heat treatment in a bath of molten potassium cyanide. In announcing this development, Sylvania also called attention to a germaniumsilicon alloy, which will permit effective transistor action up to about 350 F.

DEMAND is for more accurate fee collections as

Electronics Moves In On Toll Roads

Pennsylvania Turnpike orders new toll collection equipment; other roads may follow

EXTENT to which electronic equipment can be utilized on turnpikes is emphasized by plans to equip all terminals and interchanges on the 360-mile Pennsylvania Turnpike with electronic toll equipment in the fall of next year. The Ohio Turnpike, now under completion, plans to install similar equipment. With about 2,000 miles of toll highways completed or authorized in the U.S. and at least that many more miles planned, the nation's toll roads represent a sizeable potential market for specialized electronic equipment.

- ► Phototubes—Recently developed by IBM, the new toll collection and audit system to be used on the Penn Pike is a combination of phototubes, specially designed weighing platforms and toll recorders that make possible greater operating efficiency, increased revenue protection and more equitable vehicle classification...
- ► How It Works—When a vehicle pulls up to the toll booth the operator depresses a key on the toll recorder, shown above, corresponding to the number of axles he has

counted. If his count disagrees with that made by the phototubes. the toll recorder will lock. The operator may correct his error by depressing the proper axle key.

Axles are weighed separately as they pass over the weighing platform. Load cells and electronic storage units retain these weights and when the fare card is processed. the weight class is automatically punched into it.

► Recheck—At the exit interchange, equipment automatically reweighs the vehicle, comparing the weight class punched by the entrance recorder with the weight class determined by the exit classifier. It also reads the number of axles and the time.

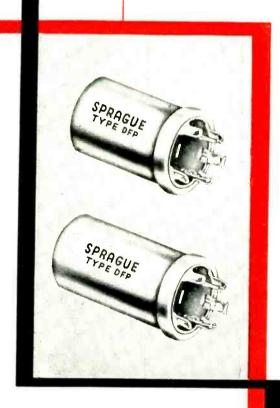
The toll equipment will compute all revenue, compile traffic density data, total charges by account number and quickly audit collectors' daily work reports.

Electronic Management Rated Excellent

Management Institute cites firms in electronics field for management excellence in 1953

TWENTY companies in the industry are among the 348 companies in the U.S. and Canada that have been found eligible for the designation "excellently managed", by the American Institute of Manage-

In all, the methods of 4,000 leading companies were evaluated by the Institute. Firms in the electronics field so designated are: AT&T, Burroughs, CBS, GE, IBM, McGraw Electric, Minneapolis Minnesota Honeywell, Mining, Motorola, NCR, Otis Elevator, Philco, RCA Sperry, Sprague, Square D. Sylvania, Thompson Products, Westinghouse Zenith.


▶ Ratings—When auditing a management, the Institute uses a point system for rating 10 key factors. Each factor has an optimum and

(Continued on page 10)

DEPENDABILITY

is why Sprague Type DFP Twist-Loks* are the *preferred*

ELECTROLYTIC CAPACITORS

Leading television set makers rely on Sprague as their major source for electrolytic capacitors.

Stability under maximum operating conditions plus outstandingly l-o-n-g service life are the engineering reasons for this preference.

From the business standpoint, it makes good sense to deal with a supplier whose quality of product is uniformly excellent and who has the largest production facilities in the industry.

And now a new plant is being completed to permit Sprague to accept an even larger portion of your requirements.

SPRAGUE ELECTRIC COMPANY
35 Marshall St., North Adams, Massachusetts

*Trademork

Sprague, on request, will provide you with complete application engineering service for optimum results in the design of equipment using electrolytic capacitors.

SPRAGUE

WORLD'S LARGEST CAPACITOR MANUFACTURER

minimum within which a company must come to be certified as excellently managed. The following table lists the ten factors with the minimum and maximum ratings:

Factors	Max	Min
Economic Function	400	300
Corp. Structure	500	375
Health of Earnings Growth	600	450
Fairness To Stockholders	700	525
Research and Development	700	525
Directorate Analysis	900	675
Fiscal Policies	1,100	975
Production Efficiency	1,300	975
Sales Vigor	1,400	1,050
Executive Evaluation	2,400	1,800

► Executive Evaluation—According to AIM this factor is most important. Some questions for evaluating this factor are: What executive personnel changes have occurred in recent years and why?

What program is followed in training promising executives? Have training programs been established on the top management level? How do executive salaries compare with the industry?

Progress Payments Clarified By Defense

FIRMS whose main business involves government orders can breathe more easily; advance payments on Defense Department contracts have been reinstated.

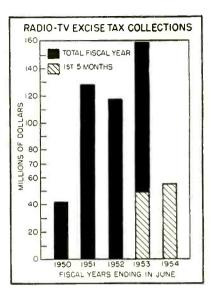
Contractors may now receive progress payments to cover up to 90 percent of direct labor and material costs or up to 75 percent of total costs of work done under undelivered portions of government contracts. This statement of policy by the Defense Department clears up the state of confusion which led to a stoppage of all progress payments in January 1954.

The confusion began during the Korean war. At that time, progress payments were made overly liberal; some contractors openly discussed profits already made on undelivered items. Consequently, the Defense Department asked for an investigation of progress payment policies. This was interpreted by department officials as drastic curtailment and in January, 1954, complete stoppage of progress payments was ordered.

Industry Wants Excise Tax Changes

RETMA presses for excise tax relief for monochrome sets, full exemption for color tv

DRIVE to persuade the Senate Finance Committee to revise the excise tax reduction formula approved by the House of Representatives and substitute a proportionate cut in all excise taxes and exemption for color tv is being made by the Radio Electronics Television Manufacturers Association.


The House proposal as it now stands would place a ceiling of 10 percent on all excise taxes except those on liquor and tobacco. The present 10 percent excise tax on all ty sets would remain unchanged.

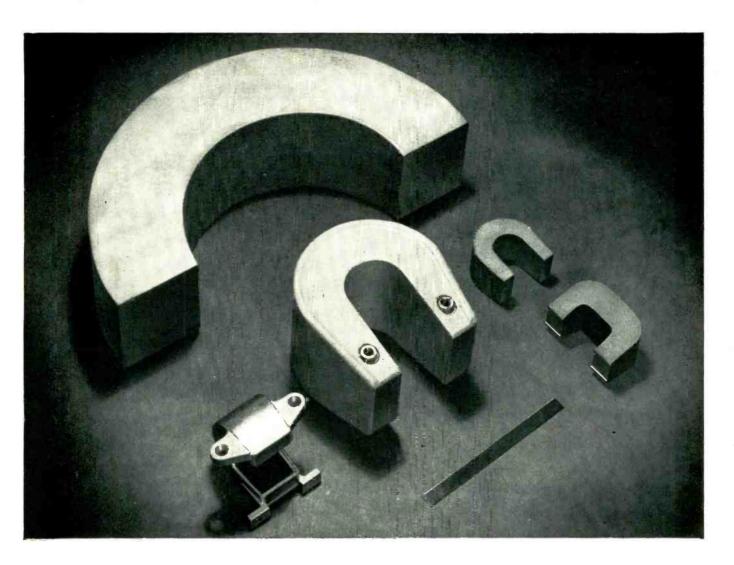
► Take—Excise taxes collected from the electronics industry in fiscal 1953 total \$159.3 million, the highest take from the industry on record. Collections for the first five months of fiscal 1954, which began last June, are above the 1953 amount.

The U. S. collects manufacturer's excise taxes on 20 categories of products. Radio and tv sets and parts excise totals rank sixth on the list, led only by gasoline and products of the automotive industry.

► Reduction—According to RETthe electronics industry agrees with the basic objective of the House bill to increase consumer purchasing power and stimulate production through excise tax reductions but believes it can be better achieved by broadening the base of products which will benefit from the tax cut. The House bill, the association says, will reduce the excise levy on many luxury products while a proportionate tax reduction would stimulate the production of many manufactured products.

By removing the 10-percent tax on color sets, Congress will follow the traditional policy of witholding taxes on new products and will bring about an immediate reduction in the price of color receivers,

RETMA points out. It estimates that if a proportionate tax reduction is followed, the present 10-percent excise tax on tv sets would be cut to 8 percent.


Packaging Electronics Is Big Business

Bigger tubes and sets have affected packaging expense; color may increase it

Cost of the average picture tube carton is only about 60 cents. But multiply it by the number of picture tubes that were produced in 1953 and it can be seen that packaging in the electronics industry is big business indeed. Approximately \$4 million was spent for picture tube boxes alone last year. Add to this the cost of cartons for complete tv and radio sets, receiving and industrial tube packaging and that for military equipment and the total cost of packaging for the industry in 1953 was a top expense item.

► Tubes—Cost is one main reason why set makers were quick to ship black and white tv tubes already installed in receivers when it was

(Continued on page 12)

PERMANENT MAGNETS and ASSEMBLIES for Magnetrons and Traveling Wave Tubes

The group of magnets illustrated above, weighing from a fraction of a pound up to 75 pounds, are indicative of the wide range of Arnold production in this field. We can supply these permanent magnets in any size or shape you may need, with die-cast or sand-cast aluminum jackets, Celastic covers, etc. Complete assemblies may be supplied with Permendur, steel or aluminum bases, inserts and keepers as specified . . . magnetized and stabilized as desired. • Let Arnold handle your magnetron and traveling wave tube permanent magnet requirements.

General Office & Plant: Marengo, Illinois DISTRICT SALES OFFICES . . . New York: 350 Fifth Ave.

Los Angeles: 3450 Wilshire Blvd.

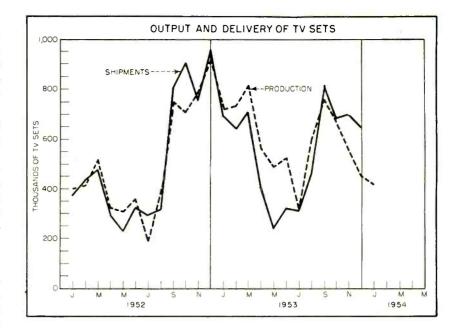
Boston: 200 Berkeley St.

Made to your Specifications

... ANY SIZE, SHAPE OR COATING REQUIRED

* We'll welcome your inquiries found that it could be done safely. Then tube makers were able to use larger cartons for factory use in which six picture tubes could be shipped. Only tubes for replacement sales needed individual cartons.

But color tv may bring back the practice of shipping picture tubes and sets in separate cartons to the final customer. A few companies have indicated that they plan to ship color sets that way, at least initially. Westinghouse, however, is shipping color sets with tubes already installed.


► Savings—More companies are employing packaging experts to concentrate exclusively on the operation. One electronics firm set up a packaging department to coordinate its entire packaging program and made savings of some \$1 million a year.

Another company, Federal Mfg., found that its military packaging costs reached \$1 million in 1953. This year it decided to become a package manufacturer in an effort to convert the expense into a profitable business.

Elevator Sales Go Up

LEADING manufacturers of elevators estimate that between 60 and 65 percent of all passenger elevators sales made in the past five years have been of the automatic type that uses electron tubes. Nearly 80 percent of all passenger elevator orders currently on the industry's books are reported to be of the automatic type and the percentage is seen increasing.

- ► Tubes—Total annual production of passenger elevators is roughly about 4,000 banks a year, according to one estimate. In some fully automatic elevators as many as 80 tubes are used per bank or shaft. In other types which are not traffic controlled, from 8 to 10 tubes may be utilized.
- ► Market—Tubes are moving into old elevators too. Companies which specialize in converting elevators to automatic operation do an increasing number of changeovers each year.

TV Shipments Surpass Output

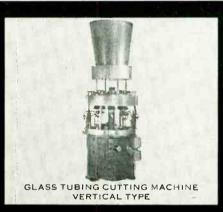
Set production in relation to deliveries indicate status of the industry's pipelines

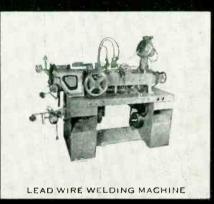
CHANGES in tv receiver distribution channels are indicated by the varying gap between set production and shipments to dealers. As is shown in the chart, monthly deliveries to dealers have dropped less since September, 1953 than have monthly production tallies.

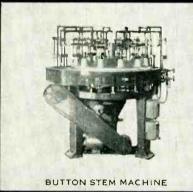
In December, the widest gap in two years indicated that over 200,000 more sets were shipped to dealers by manufacturers and distributors than were produced during the month. Set manufacturers and distributors were evidently loaded with inventory even before the drop in retail sales occured last year.

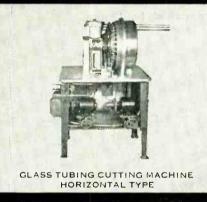
▶ Concern—The tv production cutbacks that were made during the final months of 1953 caused concern both in and outside the industry. But according to R. C. Sprague, chairman of the board of RETMA, the important fact that retail sales of sets were at virtually peak levels in 1953 has often been overlooked in the attention many people have given to output cutbacks which became necessary late in the fall to prevent further accumulation of inventories

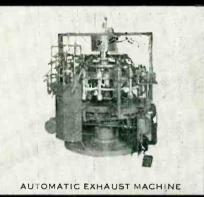
Sprague reminds that stocks of ty sets on hand at the beginning of last year were somewhat low in relation to normal demand and to the number of retail outlets; it was not until July or August that this condition was corrected. However, the drop in retail sales beginning in September was so sudden that there was overproduction for several months, with the result that November and December output had to be cut back fairly sharply, to bring total stocks down to the level of 1.9 million at the end of the year. Although this represents a substantial increase from 1.2 million a year earlier, it is not far out of line with a normal level of 1.6 to 1.8 million sets.


► Where—At the end of 1953, over 28.5 million tv sets had been shipped to dealers in the U. S., Hawaii and Alaska since 1946. Over 62 percent of the receiver shipments were concentrated in only eight states, all of which received over 1.25 million during the eight-year period. Leading this list was New York which received set shipments totaling 4.1 million units during the period.


The other states where tv set shipments to dealer totaled over a


(Continued on page 14)


wonders of the age?



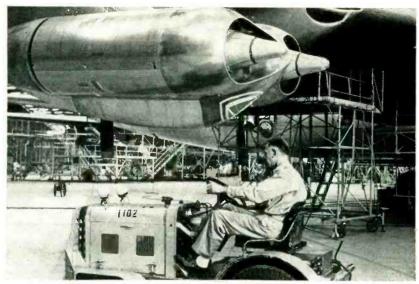
Built into the automatic machinery shown on this page is knowledge of every phase of electronic tube production...

Kahle's "6 Wonders" are engineered to mass-manufacture Sub Miniature Tubes so that the burden of "knowing how" to make the product falls upon the machinery itself instead of the manufacturer. Forty-six years of intimate contact with the design and construction of custom machinery together with a long history of pioneering successes in electronics and allied industries, produce the "know-how" in such combinations of machines as the models depicted above. Kahle executives have vast experience in the actual manufacturing of the end products which such machinery produces. This cumulative knowledge is built into the machinery to solve bottlenecks and gives a smooth uninterrupted flow of the finished products.

"Built-in know how" is what makes Kahle's name the password in the electronics and glass industries where production difficulties can be overcome with custom machinery.

Call on Kahle and learn how you can benefit from the company which enjoys the respect of the industry's leaders.

ENGINEERING COMPANY

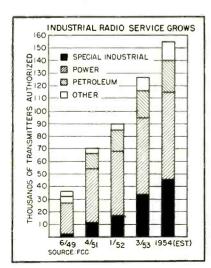

1310 SEVENTH STREET . NORTH BERGEN. N. J.

©иті

million units during the eight-year period were Pennsylvania, 2,647,072; California, 2,611,984; Ohio, 2,236,969; Illinois, 2,048,620; New Jersey, 1,462,698; Michigan, 1,386,-

542 and Massachusetts, 1,257, 588.

A total of 28.4 million sets went to dealers in the U. S. but 45,308 sets were shipped to Hawaii while 2,330 sets went to Alaska in '53.


AIRCRAFT PLANTS use two-way radio for materials handling as . . .

Industrial Radio Surges Upward

Special and low-powered industrial transmitters are gaining the lead

FACTORIES have become one of the most important markets in the industrial field for manufacturers of mobile radio equipment.

As indicated in the chart, the number of special and low-power

industrial transmitters authorized by the FCC for use mainly in plant areas has grown faster than all other services in the industrial classification. Manufacturing plants now rank second to utility companies as the industries number one market in this field.

There were 30,324 transmitters authorized in the special industrial field, as of March 1, 1953, comprised of 27,800 mobile station transmitters and 2,524 fixed transmitters. This represented an increase of 14,701 over the 15,615 transmitters authorized as of Jan. 1, 1952.

Authorizations for low-power industrial transmitters, all of which were mobile, increased during the period from 2,305 to 4,821. Both classifications nearly doubled their activity over the previous year's total. Extension of past rates of growth indicates that in 1954 special and low-power industrial authorizations may reach 40,000 and 6,000 respectively. Total transmitter authorizations in this classi-

fication may go as high as 150,000.

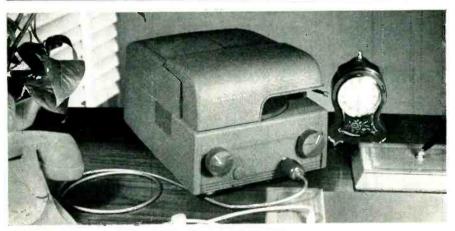
▶ Per Acre—Airframe manufacturers have found two-way radio useful in increasing the efficiency of materials-handling vehicles. They point out that the average airframe manufacturer uses more than 100 specialized vehicles for feeding assembly lines.

A Douglas aircraft plant which spreads over 110 acres, used 110 vehicles. North American, with a factory covering 230 acres, uses 195 vehicles. There are about 30 airframe manufacturers in business in the U.S., indicating the size of this market.

► Future—Total two-way radio sales in 1954 are estimated to approach \$40 million. The sales for Civil Defense, the leading market for such equipment in 1953, are expected to hold up this year.

That electronic manufacturers are aware of this growing business is underlined by the recent entry of DuMont into the field. The company has formed a mobile communications department to develop, manufacture and market mobile radio equipment. There are now more than 20 mobile and portable receiver and 35 mobile and portable transmitter manufacturers.

Specialized Computer Applications Increase


Modified input systems enhance computer utility; new design trends appear

ELECTRONIC computing equipment has been installed to calculate and record tolls on the Pennsylvania Turnpike. A computer has also been installed by the Census Bureau to read information recorded on census data sheets. Both are specialized computers rather than general-purpose machines.

An automatic tone transmitter that can feed data into a large computer by telephone lines is under study by the Air Force and a West Coast aircraft manufacturer. The transmitter may allow a computer to be operated from several points.

(Continued on page 16)

ISOLATION - NOISE SHOCK - VIBRATION - NOISE

For noiseless operation, smooth, faultless playback, and the ultimate in protection against vibration and shock, Soundscriber Corp. chooses Barrymounts to support their new transcription unit. One more instance of how Barrymounts

protect the performance of precision instruments. Ask for data on Type 372 Barrymounts.

COAST GUARD DIRECTION FINDER GUARDED BY BARRYMOUNTS — Where reliability of performance is really vital, sensitive electronic equipment must be protected from shock and vibration. Raytheon Manufacturing Company says: "We find that the high quality and effectiveness of these mountings help us assure the famed reliability and excellence of our own products." Ask for data on Type C-2000 Barrymounts.

ALL-METL BARRYMOUNTS PROTECT AIRCRAFT RADIO COMPASS — For safe, assured, brilliant operation, at extremely high altitudes and over a wide range of temperatures, Lear uses Barry ALL-METL vibration isolators to support the sensitive components of their "Executive" radio compass. They say: "We have chosen the Barry product because we feel it is a superior product from the standpoint of providing greater trouble-free life". Ask for data on Type M-44 Barrymounts.

INDUSTRIAL MACHINERY MOBILIZED BY BARRY-MOUNTS — For example: a production line of eight punch presses was shut down, moved 200 feet across the plant, and was producing parts again in a total elapsed time of 23 minutes. No lagging, no shimming, and no walking of the machines in operation — because they were mounted on the new Leveling Barrymounts. This is machine-tool mobility — a new idea to make new profits for YOU. Ask for "LOOK — NO LAGGING!"

The wide range of Barry products and the experience of Barry engineers can help you solve shock, vibration, and noise problems in any area of military or industrial activity. Call our nearby sales representative or write directly to us.

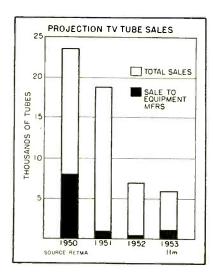
THE BARRY CORP.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

Atlanta Baltimore Chicago Cleveland Dallas Dayton Detroit Kansas City Los Angeles Minneapolis New York Philadelphia Phoenix Rochester St. Louis San Francisco Seattle Washington, D.C. Montreal Toronto Other computer design trends include use of transistors, improved tape handling and design of low-cost machines.

Logistic Research Inc. is a new name in the computer business. The West Coast firm backed by Axel Wenner-Gren, Electrolux Corp. head, has sold one compter to the Navy.


- Census—Designed by the National Bureau of Standards, the Census Bureau's machine is called FOSDIC—Film Optical Sensing Device for Input to Computers. The machine uses a phototube and cathode-ray tube to sense positioned marks on census data sheets and convert the information to electrical impulses. Input to the machine is from microfilm copies of data sheets while output is on magnetic tape that can be fed directly to a computer.
- ▶ Remote Input—Transmission of accounting data over telephone wires at 1,000 characters a minute is accomplished automatically by an IBM unit that senses holes in punched cards and converts the information to tone impulses. A West Coast plane maker is using a tone transceiver to tie one of its labs to the computing center.

Key to computer potential business is Douglas Aircraft experience. Five years ago the company devoted only 500 sq ft to its computing center. Today, 12,000 sq ft are occupied.

► New Firm—The Logistic Research computer is called ALWAC. The computer can be sold for \$48,000 and is designed for the small plant—under 500 employees.

The company is also at work on a magnetic drum that eliminates friction between reading head and magnetic surface. It claims the socalled air-floating drum will store more than 2,000,000 decimal digits.

▶ Design Trends—Two computer circuit designs introduced by IBM at a West Coast computer show are a decimal counter using eight junction transistors and an array of ferrite memory cores hooked up to do the work of a rotating drum. Next step—a completely tubeless computer without moving parts.

Projection Television Is Down But Not Out

Home set production is virtually non-existent but there is some activity

DECLINE of projection tv is indicated in total factory sales of projection tv tubes, shown in the chart. Although renewal sales have held volume up somewhat, the sales drop has been sharp. Last year's volume for the first 11 months was only 25 percent as large as that in 1950.

Despite the black picture that these statistics indicate, there is a bright spot in projection tv trends. During the first 11 months of last year, nearly 1,000 projection tv tubes were sold to equipment manufacturers, almost double the total amount sold to this market during all of 1951 and 1952. Some of these tubes went into theater tv equipment but indications are that most of them are being used by tv set manufacturers for research and development purposes.

► Color—One major set manufacturer, in discussing the future of color tv, predicted that it would speed up the development of projection tv and indicated that the firm is continuing its activities in the projection field. Other manufacturers agree that there seems to be a place for projection in the color picture and say that they are continuing to experiment with it. However, some companies feel that projection is still passé.

Financial Roundup

FINAL profit tallys for 1953 announced by companies in the electronics field show, on the whole, that 1953 was a banner year. Continued activity of some electronic manufacturers in security transactions indicates that further expansion is planned for this year.

The following firms made profit reports in the past month:

	Net Prolit			
	12 months 1953 1952 421,485,570 \$358,493,204			
Company	1953	1952		
AT&T \$		\$358,493,204		
Emerson 3m—195	449,231	899,516		
12 m-1953	3 2,988,432	2.262,556		
General Electric	165,727,889	151,719,905		
Magnavox 6 m		1,546,000		
Minnesota Mining		16.089,995		
Motorola Phileo	7,076,335	7,012.700		
Philco	13,068,000	11,491,000		
D.C.	*5,283,000			
RCA	35,022,000	32,325,000		
Stewart Warner	4,081,000	4.234,000		
Stromberg-Carlson		1,240,746		
Sylvania	9,536,181	6,960,625		
Western Electric	52.604.613	47.081,705		
Westinghouse	74,322,000	68,581,000		
*Proceeds from sal	e of WPTZ	to Westing-		

► Securities—Audio Devices filed with SEC covering 10,000 shares of common stock, (par 10 cents) to be offered at market (\$3.75) for the account of the selling stockholder.

Magnetics filed with SEC covering 250,000 shares of common stock to be offered at par (\$1 per share). Proceeds will be used to pay part of the cost of plant and equipment facilities.

Stromberg-Carlson registered with SEC covering 72,025 shares of convertible preferred stock (cumulative-\$50 par) to be offered to common stock holders at a rate of 1 preferred for 7 common. Proceeds will be used to repay \$1.1 million of notes payable to banks. The balance will go into general corporate funds.

Westinghouse registered two statements with SEC. One covered 483,190 shares of \$12.50 par common stock to be offered under the firm's restricted stock option plan to certain officers and other executives of the company. The other covered 200,000 shares of the \$12.50 stock to be offered under an employees stock plan to employees of Westinghouse and six specified divisions.

Plastic Wire & Cable offered its

(Continued on page 18)

42

0.1% ACCURACY from 30 c to 100 kc

The Type 1610-A Capacitance Measuring Assembly

consists of five well-integrated G-R instruments for the accurate measurement of capacitance and dissipation factor. Two or three-terminal measurements are possible.

In addition to its usefulness in electrical development and testing, the Capacitance Measuring Assembly finds wide application in the dielectrics laboratory and chemical research organization. The close relationship between capacitance and dissipation factor and the physical and chemical composition of a substance make this precision apparatus very useful for investigations in countless basic research problems.

This assembly is widely used in conjunction with the G-R Sample Holder to study dielectric properties of plastics and other insulating materials such as steatite, teflon, polystyrene, mica and others.

★ Effects of interfacial polarization at low audio frequencies and dipole polarization in polymers may be investigated.

★ Characteristics and effects of surface water films may also be studied.

*The Capacitance Measuring Assembly offers one of the best methods for measuring the Boella effect in high-valued resistors.

The five G-R instruments included in the Capacitance Measuring Assembly are assembled in a compact cabinet-rack complete with all interconnection provisions.

Type 1302-A Oscillator . . . supplies up to 80-milliwatts from 10 c to 100 kc.

Type 1231-BRA Amplifier and Null Detector . . . 100 μν input gives 10% meter deflection at midfrequency range.

Type 1231-P5 Adjustable Filter . . . has eleven fixed frequencies . . . with external capacitors, any resonant frequency from 20 c to 130 kc can be obtained.

Type 716-P4R Guard Circuit . . . makes possible accurate impedance determinations between two points of a three-terminal network.

Type 716-C Capacitance Bridge . . . measures $0.1~\mu\mu f$ to $1150~\mu\mu f$ from 30~c to 300~kc and to $1~\mu f$ at 1~kc . . . direct reading in dissipation factor from 0.00002~to 0.56 . . . basic direct reading accuracy is $\pm 0.2\%$ for capacitance and ± 0.0005 for dissipation factor; in substitution measurements, $\pm 0.1\%$ capacitance accuracy with correction chart supplied, and ± 0.00005 for dissipation factor.

Type 1610-A Capacitance Measuring
Assembly . . Complete and ready
for two or three-terminal measurements \$1930.00

Type 1610-A2 Capacitance Measuring Assembly . . . Without Guard Circuit, for two terminal measurements only . . . \$1335.00

★ Cha-acteristics of large inductors as well as resistors may be determined by substitution measurements. The unique Type 1690-A Di-electric Sample Holder is an ac-The sample holder's 2-inch di-

Since 1915

Manufacturers of
Electronic Apparatus

® for Science and Industry

The unique Type 1690-A Dieelectric Sample Holder is an acce serry unit readily attached to the bridge unknown terminals. It permits precise determinations of dielectric constant and distipation fector of practically any solid dielectric-material. The sample holder's 2-inch disameter electrodes are ground to optical flatness and are micrometer driven for highest accuracy. The instrument is rugged, completely shielded and useful to 100 Mc and higher.

Additional Price \$435.00

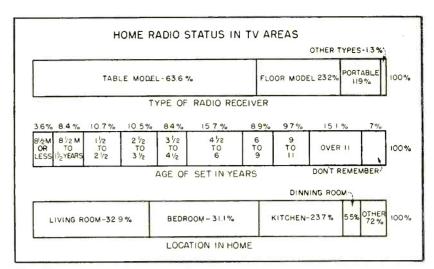
General Radio Company

275 Massachusetts Ave., Cambridge 39, Massachusetts 90 West Street 920 South Michigan Avenue 1000 Ncrh Seward Street NEW YORK 6 CHICAGO 5 LOS ANGELES 38 Admittance Meters & Amplifiers & Coaxial Elements Distortion Meters & Frequency Measuring Apparatus & Frequency Standards & Impedance Bridges & Light Meters Megohumeters & Modulation Meters & Polariscopes Precision Capacitors & Oscillators & U-H-F Measuring Equipment & Parts & Accessories & Signal Generators Wave Analyzers & Variacs & TV & Broadcast Monitors

Pulse Generators \(\frac{1}{2} \) R-L-C Decades \(\frac{1}{2} \) R-L-C Standards \(\frac{1}{2} \) Unit Instruments \(\frac{1}{2} \) Sound & Vibration Meters \(\frac{1}{2} \) Stroboscopes \(\frac{1}{2} \) Null Detectors \(\frac{1}{2} \) Motor Controls \(\frac{1}{2} \) Wave Filters \(\frac{1}{2} \) V-T Voltmeters

stockholders the right to subscribe for 21,952 shares of common (par \$5) at \$10.50 per share on a 1 new for 5 held basis. Net proceeds will be used for working capital.

Top Navigation Group Organizes For Action


Army, Navy, Air Force and Commerce to be represented on new board

AIR NAVIGATION Development Board (ANDB) will henceforth comprise persons at a high policy level from Army, Navy, Air Force and Department of Commerce. Chairman of ANDB may be selected from outside the government. The reorganized agency's charter makes it responsible for procurement, installation and operation of navigation and traffic control aids as well as research and development of new aids.

► Greasing the Wheels—Project funds for the Board's program will come from the participating departments, rather than solely from Commerce, as in the past. Responsibility and authority are now shared equally by the Departments of Defense and Commerce.

First major evaluation job will be on TACAN, a short-distance navigation system being pushed by the military. TACAN provides a pilot with the same type of continuous bearing and distance navigational information now available from the vhf omnirange and may later be useful in commercial flights.

▶ Personnel—Chairman of ANDB is Donald A. Quarles, assistant Secretary of Defense for research and development. Other members are Robert B. Murray, under-Secretary of Commerce for transportation; James N. Davis, special assistant for research and development for Secretary of the Army; James H. Smith, Jr., assistant Secretary of the Navy for air and Trevor Gardner, special assistant for research and development for the Secretary of the Air Force.

STATUS and characteristics of radio are shown as . . .

Stations Rate Radio In TV Areas

Survey of the radio picture shows that sets are more than holding their own

SET MANUFACTURERS who might have misgivings about the future of radio in tv areas can find valuable and reassuring market information on the subject in a survey made by Politz Research for 11 broadcasters.

As shown in the chart, the type of receiver owned by people in tv areas is predominantly the table model. However, floor models are still popular. The living room is still the radio room in most homes and bedrooms rank second. Age breakdown of receivers in tv areas shows that over 55 percent are more than 4.5 years old.

► Sales—The survey also indicates the importance of radio replacement sales as against second set sales in tv areas: 47.3 percent of all home receivers purchased in tv areas were bought as additional sets; 35.5 percent were bought as replacements because the previous set was no longer used, and 17.2 percent were purchased as the first set.

Over 26 percent of the people who were without operating home receivers had none because the set needed repairs or batteries; 16.2

percent had none because they couldn't afford it; 15.3 percent said they watched to instead and 12.8 percent reported that they had no use for it or didn't care for radio. A variety of reasons comprised the remaining percentage.

► Expectations — People were asked whether they expected to buy a radio receiver within the next few months. The survey, made early in 1953, showed that over 4 percent would, as an additional radio and 1.3 percent expected to, as a replacement. Total of 86.5 percent of all people surveyed did not expect to buy a set soon and 7.8 percent didn't know.

Crackdown Ordered on Illegal Diathermy

SHORT-WAVE medical diathermy machines have long been disruptive to radio communications (ELECTRONICS, p 19, Feb. 1936). More recently, they have caused interference to aircraft, police and television broadcast services.

Methods for reducing or eliminating danger and annoyance to other users of the radio spectrum are known. They include crystal

(Continued on page 20)

There's a RAYTHEON Pencil Tube for every service*

Look at the chart. Radiosonde, low Mu, high Mu — whatever characteristics you're looking for in a Pencil Tube may be found in Raytheon's line.

And every one meets RAYTHEON standards of Quality and Reliability

Raytheon is the pioneer and leader in the development and manufacture of special purpose tubes. Raytheon production, testing and inspection techniques, worked out over sixteen years of making millions of tubes, offer the soundest possible reason for specifying Raytheon Pencil Tubes.

control to keep emanations within a definite assigned band and shielding.

▶ Ignorance No Excuse — Until July 1947, the radio law had inadequate teeth to bite the offender. Since then, Part 18 of the Federal Communications Commission's rules have declared illegal all medical diathermy equipment that is not type approved, certified or licensed. Penalties are prescribed for offenders.

But since doctors and athletic directors may not even know of the existence of such a regulatory body as FCC, the Commission has been understandingly lenient. Now

it proposes to blow the whistle. In a sobering report, FCC cites just one instance in which inspectors tracked down an illegal machine in Miami, Fla.

Directional bearings were taken at primary monitoring stations in Kingsville, Texas; Grand Island, Neb.; Allegan, Mich.; Laurel, Md.; and Powder Springs, Ga. Signals were also traced by the secondary monitoring station in Muskogee, Okla. The illegal radiation was picked up in Oregon, Washington and California.

From now on, the Commission warns, it will issue cease-and-desist orders, seek injunctions or institute criminal proceedings.

Educators Examine Television Costs

WITH 30 educational tv stations expected on the air by the end of 1954, and prospects of more on the way, universities are scrutinizing the dollars and cents side of beginning operations.

The investments required, shown in the chart, are estimates made by 13 prospective operators. Costs vary widely because in many cases land and buildings are already on hand. Equipment costs, which include expenses such as labor, also vary because in some cases items such as towers are also on hand.

According to FCC Commissioner Doerfer, construction costs can range from \$100,000 to \$600,000. If a start is made from nothing, however, and a high-quality station is aimed for, the cost of construction and equipment can run at least \$500,000.

➤ Operations—Since educational stations will be nonprofit, operating cost is also important. Some estimates indicated that \$150,000 to \$200,000 a year will cover all of the reasonably chargeable costs. The University of Houston which has had a station in operation the longest, is now facing the problem of station operating expenses for its second year. Some observers foresee financial troubles ahead for educational tv because of the drain these costs will put on school budgets.

► Industry Help—Educators are receiving help from private industry in defraying costs. Emerson an(Continued on page 22)

Electronics Firms Study '54

As final reports on 1953 business are made, manufacturers reassess prospects for this year

CURRENT feeling of top management in the electronics industry about business prospects in 1954 is revealed in statements made by the presidents of seven leading companies as 1953 annual reports were announced.

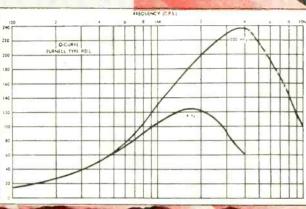
► Companies — Emerson's president Benjamin Abrams pointed out that although its sales in 1954 are expected to exceed 1953's, the firm may not be so fortunate insofar as profits are concerned. During 1954, prices will have to be maintained at the lowest possible levels to maintain the interest of potential purchasers of black-and-white receivers. This, of necessity, he said, must have an effect on profits.

President Ralph J. Cordiner of GE expressed the belief that the year will bring a more favorable earnings climate than the last several years even though sales for his company are expected to decrease somewhat from the 1953 peak. Defense business is expected to make up a lower percentage of the total business volume in 1954.

Magnavox president Frank Freimann holds an optimistic view for continuing good business during the final six months of the firm's fiscal year ending in June, 1954. He expressed the opinion that industry tv sales are likely to drop to a level somewhat lower than that achieved during the first six months.

Minnesota Mining top executives are hopeful that 1954 will be at least as good as the year just ended.

President Paul V. Galvin of Motorola forecast sales of 100,000 color tv sets in 1954 by the industry.


Sylvania officials expect competition will be increasingly intensive in the months ahead. However, they feel the company is better equipped and more effectively manned than at any previous time in its history.

Westinghouse president Gwilym Price expects a continued high rate of operation in 1954. He said the company's earnings will be effected by it's ability to maintain profit margins in the face of increased competition and that with this in mind reduction in costs and expenses had been stressed for the past year and will continue to be. Even if the level of general business activity for 1954 is moderately lower than in 1953 as has been predicted, the firm is planning for and aiming toward larger billings and profits in the coming year.

A New Level in Engineering is Achieved in the Functional Design of Toroidal Decades

This unique development permitting precision toroids to be combined in decade steps of inductance will appeal to all engineers who are familiar with the disadvantages of the ordinary type of inductance decade box.

All the decade units in the plug-in decade series are higher Q toroids such as are employed in the Burnell attenuation filters. They are guaranteed to a tolerance of 1% of the marked inductance and have extremely good stability of inductance vs. voltage and temperature.

OTHER RECENT Burnell ACHIEVEMENTS IN TOROIDS AND FILTER NETWORKS

SIDE BAND FILTERS

Our most recent engineering development in communications filters has already stirred the interest of the leading receiver manutacturers in the country.

The new side band filters which eliminate, for most applications, the necessity for expensive crystal filters are expected to accelerate the advancement of single side band communications.

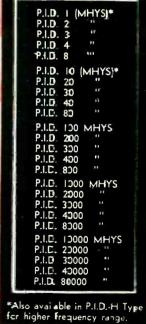
MINIATURE TELEMETERING FILTERS

In recognizing the need for miniaturization of the presently bulky telemetering equipment, our engineering staff has succeeded in reducing the size of telemetering filters to as little as 25 to 50% of the original volume.

SUB MINIATURE TOROIDS

Toroids for intermediate frequencies of 100KC to I megacrele. A wide variety of coils ranging in size from \(\frac{5}{8} \) inch provides h gh Q in the frequency range between audio and RF.

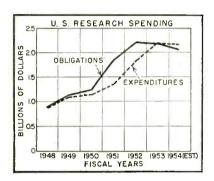
The tiny toroid about the size of a dime has been welcomed


by designers of sub miniature electronic equipment for the transistor, guided missile and printed circuit field.

Literature for all the above available on request

Write for new and enlarged 16 page catalog 102A

Exclusive Manufacturers of Communications Network Components


PLUG-IN DECADE COILS CAN ALSO BE DESIGNED WITH SPECIAL CHARACTERISTICS FOR SLIGHT EXTRA CHARGE. UNITS GENERALLY AVAILABLE FROM STOCK ARE AS FOLLOWS:

YONKERS 2, NEW YORK

nounced recently that \$90,000 of its \$100,000 educational tv grant is still available. KUHT-TV is the only station so far to receive a \$10,000 grant from the fund. KTHE-TV in Los Angeles is operating under a STA and will be eligible for a \$10,000 award from the firm upon issuance of a permanent license.

The University of North Carolina has received help from two firms in the form of \$50,000 in materials and labor on its tower, buildings and studio. Numerous private tv stations have donated use of their facilities for educational use.

U.S. Research Funds Seen Declining In '54

BUDGET estimates compiled by the National Science Foundation indicate, as is shown in the chart, that federal obligations and expenditures for scientific research and development will drop in fiscal year 1954 from those of previous years.

Research and development obligations for fiscal 1954 are estimated at \$2,074 million compared to \$2,187 million for 1953. Expenditures are estimated at \$2,187 million for 1954 compared to \$2,205 million in fiscal 1953.

With a decline in obligations for 1954 expected, a further decrease in expenditures in fiscal 1955 may result since the lag between obligations and expenditures has averaged about 9 months over the past several years. These estimates, which were revised, are still tentative since sev-

eral agencies plan further revisions in their programs.

▶ Defense—Department of Defense estimates constitute the largest portion of the totals for both obligations and expenditures.

Present figures indicate that in fiscal 1954 the department may obligate \$1,556 million, including a carry-over of \$142 million from previous years. Expenditures in 1954 by Defense are estimated at \$1,636 million.

Tungsten Supplies Up; Prices Drop

Government and domestic sources keep the electronics industry well supplied

Users of tungsten have had no trouble maintaining plentiful supplies of the metal for commercial products as well as government orders, despite the loss of China as a main source for the ore. Tungsten wire makers say that supply exceeds demand and new lower prices were announced by some suppliers.

Near-panic conditions prevail in the tungsten ore market. Good foreign tungsten ore is available as low as \$18 per short ton but even this pre-Korean price attracts no customers. Rumors that Russia had a surplus to sell added to the confusion. Now the U.S. no longer regulates internal or domestic use although exports are still controlled.

► Use—Total U.S. annual consumption of tungsten in 1949 was 5,210 short tons. Then, in 1950, after the Korean War had begun, it increased to 6,932. Consumption in current years has remained in that area

The electronics industry is by no means the largest consumer of tungsten. One tungsten wire manufacturer estimates that the entire industry accounts for no more than 5 percent of the total used each year. Biggest users in the electronics field are transmitting and industrial tube manufacturers and relay makers. The metal is also used in equipment for aluminizing tv picture tubes. Less than one penny's worth of tungsten is used in the average tube, a price that includes all labor and processing costs from ore to finished metal.

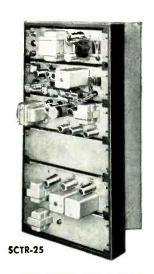
► Sources—The present ample supplies of tungsten in the U.S.

are due largely to effective stockpiling encouragement of domestic ore production and the handling of Korean sources of supply. The U.S. controls over 60 percent of the tungsten mines in Korea. Korea became the number one source of the metal after the war began and China, which had been first, dropped to ninth place. Twenty other nations and home producers have contributed to the U.S. tungsten stockpile.

Manufacturers Review Equipment Leasing

RECENT announcement by Emerson that it plans initially to lease color tv receivers to the public on a monthly fee basis has been responsible for some study of past and present equipment leasing arrangements.

► Tubes—Some time ago General Electric announced it would lease its high-power klystron tubes for uhf transmission to broadcasters. Since then over 30 leasing arrangements have been made. At a leasing fee of about \$2.50 per hour, stations can get three tubes, two for use and one spare. The fee also covers service on the tubes. The plan has worked well and it is now planned to sell the klystrons outright.


One of the early Univac computers, the installation at GE's Appliance Park, was leased by GE from Remington Rand for two years with an option to buy. With computer cost still high, leasing may continue for some time to come.

► Sets—Television sets have been rented before too. In 1948 during

(Continued on page 24)

Improve Your Communications Service With Hammarlund Selective Calling

ADD PRIVACY - SPEED - QUIETNESS - CONVENIENCE

FOR FIXED STATIONS

FOR INDIVIDUAL MOBILE UNITS

FOR FLEET CONTROL

Transmitter Unit FTC-1

Speeded operations, better manpower utilization, and elimination of confusion is achieved through the selective channeling of voice communications.

Hammarlund has available a wide range of tone-dialing and push-button operated systems for contacting fixed stations, individual mobile units, or fleets.

With the SCTR-25 fixed station equipment, for example, it is possible by means of coded audio frequency tone signals activated by a simple dialing operation, to selectively ring any single station on a system with as many as 126 stations. This is

particularly advantageous when there are a large number of individual telephones connected to the same speech transmission channel, such as with a long microwave radio relay network. The bell at each station operates only when that station is called.

Efficiency is increased for 2-way radio equipped individual or fleet mobile units when Hammarlund Selective Calling equipment is added, since confusion caused by today's overcrowded radio spectrum and skip-distance signals are eliminated. Each receiver is activated only when it is called.

For detailed information on Hammarlund Selective Calling systems, write to The Hammarlund Manufacturing Co., Inc., 460 West 34th St., New York 1, N. Y. Ask for Bulletin 57.

the political conventions, companies were formed for the sole purpose of renting sets.

Conelrad Plan Extended to Aviation Services

METHODS for denying navigational aid by radio stations while at the same time providing broadcast service have already been tested (ELEC-TRONICS, p 5, Nov. 1953). Having successfully disposed of this phase in a hypothetical defense against enemy aircraft, the Federal Communications Commission now proposes rules for the aviation serv-

► Alerting—Open to change until March 29, FCC's proposal would require all stations to maintain radio silence. Stations in communication with a CAA Air Route Traffic Control Center (ARTCC) can receive the alert by this channel. Other stations must provide a connection to a CAA circuit; keep a broadcast set (a-m, f-m or ty) continuously tuned in; monitor another station in contact with ARTCC or find some other method that will be approved by CAA.

Many stations in the aviation services will remain on the air, at least intermittently, for traffic control, Civil Defense or other approved activity.

Industry Shorts

- ▶ Regulation for licensees of lowpower industrial radio services (inplant communications) is proposed by FCC which would prohibit further use for dispatching vehicles on public highways or streets.
- ► Curtailment of 15-inch color tube production at GE was made because of indications that the future trend is going to be toward the larger sizes of color tubes.
- ► Colombia has signed contract with Du Mont and Siemens & Halske for the installation of the first tv station in Bogota, scheduled to open in June.
- ▶ Over half of the nation's tv

MEETINGS

APRIL 5-10: International Con-

vention of Soundtrack Recording, Paris, France.

APRIL 6-8: Radio Component
Show, Great Hall, Grosvenor House, Park Lane, London,

Eng. APRIL 15-16: RETMA Conference On Reliability of Electrical Connections, Illinois Institute of Technology, Chi-Illinois cago.

APRIL 12-14: International Symposium on Information Net-Works, IRE, ONR, AAF, Corps Signal sponsorship.

Engineering Societies Bldg., New York, N. Y.

APRIL 12-14: Eighth Annual
Frequency Control Symposium, Signal Corps, Berkeley-Cartaret Hotel, Asbury Park,

APRIL 12-17: Symposium On Electronics And Television, National Museum Of Science And Technology, Milan, Italy.

APRIL 19-20: Symposium on the Automatic Production of Electronic Equipment sponsored by Stanford Research Insti-tute and U. S. Air Force, Fairmount Hotel, San Fran-

APRIL 21-23. 1954: AIEE Conference On Feedback Control. Claridge Hotel, Atlantic City, N. J.

APRIL 24, 1954: Eighth Annual Spring Technical Conference, Cincinnati IRE, Cincinnati.

APRIL 27-29: AIEE Electronic Components Conference, Washington, D. C.

Mashington, D. C. AY 3-6: Spring Technical Meeting sponsored by URSI and IRE, National Bureau of Standards Bldg., Washington,

MAY 3-14: The British Industries Fair. London and Bir-

mingham. England.

May 4-6: The 1954 Electronic
Components Symposium, Department of Interior audito-

partment of Interior auditorium, Washington, D. C.
MAY 5-7: 1954: Third International Aviation Trade
Show, 71st Regiment Armory, New York, N. Y.
MAY 5-7: IRE Seventh Region

Conference & Electronic Exhibit, Multnomah Hotel. Port-land, Oregon.

MAY 7-8: New England Radio Meeting, IRE, Engineering

Sheraton Plaza Hotel, Boston,

MAY 10-12: The National Conference On Airborne Electronics, Dayton Biltmore tronics, Dayton Biltmore Hotel, Dayton, Ohio. May 17-20: 1954 Electronic

Parts show, Conrad Hilton Hotel, Chicago, Ill.

MAY 24-26, 1954: IRE, IAS, ISA, AIEE Conference On Telemetering, Morrison Hotel,

Chicago, Ill.

MAY 25-27: Eighth NARTB
Broadcast Engineering Conference, Palmer House, Chicago, Ill.

JULY 16-18: High Vacuum Symposium, Committee On Vacuum Techniques, Berkeley Carteret Hotel, Asbury

N. J. July 6-9, 1954: International Conference on Electron Microscopy, Joint Commission on Electron Microscopy of International Council of Scientific Unions, London, England.

JULY 8-12: British IRE Convention, Christ Church,

Oxford, England.

Aug. 24-Sept. 4: National Radio Show of Great Britain,
Earls Court, London, England.

Aug. 25-27: 1954 Western Electronic Show & Convention, Los Angeles, Calif.

SEPT. 1-16:Golden Meeting of the International Electrotechnical Commission, University of Pennsylvania, Philadelphia, Pa. SEPT. 13-24: 1954: First Inter-

national Instrument Congress And Exposition, Commercial Museum and Convention Hall,

Philadelphia, Pa.
SEPT. 16-18: Joint E
Tube Engineering (
General Conference, Electron Council, Chalfonte-Haddon Hall, Atlantic

City, N. J. SEPT. 1954: International Scientific Radio Union. Amsterdam. Netherlands.

SEPT. 30- Oct. 2, 1954: Second Annual International Sight and Sound Exposition, Palmer House Hotel, Chicago, Ill. Oct. 4-6: National Electronics

Conference, Hotel Sherman, Chicago.

Oct. 18-20: Radio Fall Meeting, Hotel Syracuse. Syracuse,

owners (56 percent) have had their sets two or more years, according to RETMA.

► Whirlwind computer at MIT was used by five Du Pont scientists to operate, on paper, a chemical reactor in a company plant hundreds of miles away. Study resulted in a

25 percent increase in the reactor's production rate.

Sheraton Hotels have entered the closed-circuit tv business and now offer business groups and associations a network of more than 28 hotels. An average cost per city using hotel closed circuits is \$1,200.

ARPAX C747 MIDGET

400 CYCLE CHOPPER

PROVEN PERFORMANCE in large volume production is your best guarantee of quality!

I note these facts...

- AIRPAX has built nearly 1/4 million choppers
- AIRPAX maintains an engineering staff constantly striving to improve choppers
- AIRPAX has ample capacity for large volume production of choppers
- And AIRPAX choppers have proven performance life and reliability

MIDDLE RIVER BALTIMORE 20, MD.



Weighs less than I oz.

SEVEN YEARS IN SERVICE

This Electronic Calculating Machine Is A Gant of Precision

◆ Mathematical robot with nearly 18,000 vacuum tubes does in hours what mechanical devices would require years to complete; built for war purposes, it has potentialities of interest to designers and engineers.

. . . and the large transformers were all furnished by

NOTHELFER 3 Phase Plate Rectifying Transformer 240/125 at 12½ KVA 125 All transformers designed for 40° rise.

NOTHELFER

THE Electronic Numeral Integrator and Computor shown above, designed and constructed in 1946 for the Ordnance Department, U. S. Army, at the Moore School of Electrical Engineering, University of Pennsylvania, is said to be the first all-electronic general purpose computor ever developed.

The design of the TRANSFORMERS among much other complex and expensive equipment, was limited by many unknown factors. However, this 3 Phase Plate Rectifying Transformer is representative of a typical installation by NOTHELFER, whose skill and experience has been instrumental in helping to solve many a difficult winding job.

NOTHELFER WINDING LABORATORIES

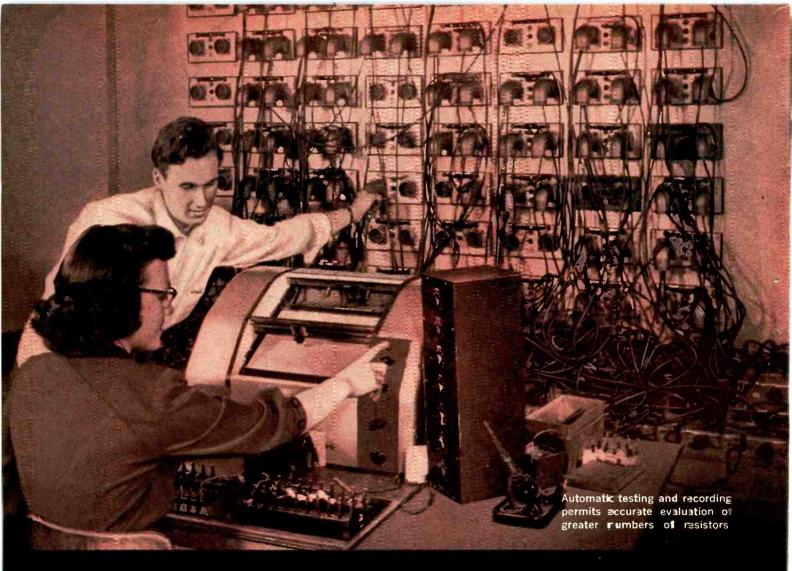
9 ALBERMARLE AVENUE • • TRENTON 3, NEW JERSEY

COMING IN SHARP AND CLEAR

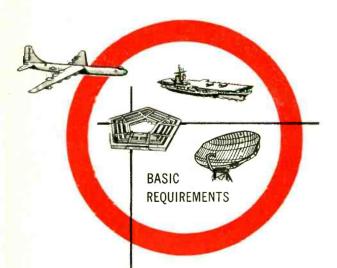
...OVER LEAD-IN COVERED WITH "BAKELITE" POLYETHYLENE

BAKELITE Polyethylene wire covering compounds provide constant impedance, low line loss and great resistance to weather. Where these outstanding materials are specified, you see *all* the picture the antenna picks up!

BAKELITE Polyethylene compounds have superior electrical and mechanical properties that permit smaller diameters in wire and cable—for easier handling, and for weight and space savings. They hold their toughness and pliability at -70 deg. C. . . . resist deformation in temperatures as high as 90 deg. C. BAKELITE Polyethylene is light, glossy-smooth—for easier pulling and stripping. It won't festoon. It resists oil, grease, alkalies, most strong acids, abrasion, moisture and mildew. A service life of several decades is indicated by tests with the black compound.


Learn how Bakelite Polyethylene can help you in your wire and cable problems. Complete technical data on request to Dept. UB-79. Ask for Kabelitems No. 48.

FOR LINE WIRE, SIGNAL SYSTEMS AND SERVICE DROP—wet or dry—the power factor of Bakellie Polyethylene (black compound) is only 0.004 at 25 deg. C.; dielectric constant is 2.5. Electrical properties of Bakellie Polyethylene Resin stay constant through a frequency range of 60 cycles to 50 megacycles. Temperatures in the vicinity of 90 deg. C. have little effect on electrical properties. Volume resistivity is so high it can be measured only by very sensitive instruments. Voltage breakdown resistance is excellent, even after long-term water immersion.



BAKELITE COMPANY, A Division of Union Carbide and Carbon Corporation 30 East 42nd Street, New York 17, N.Y.

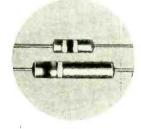
In Canada: Bakelite Company, Division of Union Carbide Canada Limited, Belleville, Ontario

ONLY IRC MAKES SO MANY JAN AND

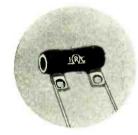
JAN and MIL Specifications are basic guideposts for electronic advancement, whether used as engineering reference points or as procurement standards. IRC's dual emphasis on mass production and frequent, accurate performance testing assures you of the highest performance standards at the lowest possible cost.

all equivalent to JAN or MIL specifications.

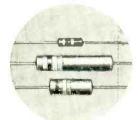
And all are standard units, available on excellent delivery cycle! If you manufacture end-equipment for the armed forces and must meet these specifications, or if you apply them as standards to your own requirements, depend on IRC for everything you need. For, manufacturing the widest line of resistors in the industry—127 different types in all—IRC is logically your best source of JAN and MIL type units.


JAN-R-29 specification

For all requirements of JAN-R-29 Specification, Amendment 4, IRC sealed precision Voltmeter Multipliers function efficiently even when exposed to the most severe humidity. Used with 1-milliampere DC instruments, they enable voltage measurements to be made up to 6000 volts. Send for


JAN-R-184 specification

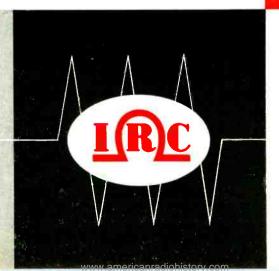
Unusually stable and inexpensive, IRC BW Wire Wounds meet JAN-R-184 Specification, Amendment 5, at 1/2 and 1 watt. Resistance element is uniformly and tightly wound on insulated core. Molded housing provides full insula-tion. Widely used in meters, analyzers, high stability attenuators, low-power ignition circuits, etc. Send for Bulletin.



MIL-R-26B specification

For high power dissipation, IRC Power Wire Wounds meet every commercial requirement of MIL-R-26B Specification, Characteristic G. Tubular, flat, fixed, adjustable, inductive, noninductive, lead, lug and ferrule types provide resistors for virtually any circuit. From 5 to 225 watts. Send for Bulletin.

MIL TYPE RESISTORS



MIL-R-11A specification

IRC Advanced BT Resistors meet and beat MIL-R-11A Specification, Amendment 2. Filament-type resistance element and other exclusive features afford extremely low operating temperature and superior power dissipation in a compact, light, fully insulated unit. Available at 1/4, 1/2 and 1 watt to MIL specification and 2 watts to commercial specification. Send for Bulletin.

Boron & Deposited Carbon Precistors . Power Resistors . Voltmeter Multipliers • Low Wattage Wire Wounds • Insulated Composition Resistors • Volume Controls •

Precision Wire Wounds • Ultra HF and HI-Voltage Resistors • Selen-ium Rectifers • Insulated Chokes • Hermetic Sealing Terminals •

rew

product

HERMETIC

sealing terminal

Overcomes limitations of other types of hermetic sealing terminals.

Molded KEL-F* body—chemically inert to organic solvents, acids, oils, fumes.

Rugged construction—tough and resilient: withstands constant vibration.

Type HS-1 Feed-Thru Terminals, provide assured hermetic sealing for electrical and electronic components. Exclusive IRC molding Technique bonds Kel-F* to metal in a superior seal. Designed to the sealing requirements of MIL-T-27. Send coupon for full data

*Trademark-M. W. KELLOGG CO.

INTERNATIONAL RESISTANCE CO.

403 N. Broad St., Philadelphia 8, Pa.

In Canada: International Resistance Co., Ltd., Toronto, Licensee

Send me data on

MF Voltmeter Multipliers, ☐ BW Resistors, ☐ Power Wire Wounds, ☐ Advanced BT Resistors,

HS-1 Terminals.

Company_

_Zone____State_

for Bridgeport Service

Reliability is built into many types of electrical and mechanical spring parts with Bridgeport Phosphor Bronze.

Product improvement through . . .

What do you look for in a spring material?

- 1. Resilience.
- 2. High fatigue resistance to withstand millions of flexing cycles.
- 3. High yield strength to withstand considerable deflection without taking a set.
- 4. Good corrosion resistance.
- Sufficient ductility for stamping and forming.
- Good electrical conductivity (if spring carries current).

BRIDGEPORT PHOSPHOR BRONZE

These properties are engineered into Bridgeport's Phosphor Bronze through proper melting practice, special casting techniques and controlled mill processing. The superior quality of Bridgeport's Phosphor Bronze means superior performance — in electrical applications such as switches, relays, capacitors and controls... in mechanical applications such as bellows, diaphragms and lock washers.

Call on Bridgeport's Metallurgical Laboratory for help with your metal specification problems. Contact your nearest Bridgeport office for service.

Mills at Bridgeport, Conn., and Indianapolis, Ind.
In Canada: Noranda Copper and Brass Limited, Montreal

BRIDGEPORT BRASS COMPANY

30 GRAND STREET, BRIDGEPORT 2, CONNECTICUT

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN S
SPECIFIC TUBE DESIGN SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY-TESTING SERVICE ·
COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN
SPECIFIC TO SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN
SPECIFIC TUBE DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · DOCAL LABORATORY-TESTING SERVICE ·
SPECIFIC TUBE DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY
SPECIFIC TUBE DESIGN SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE DESIGN SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · NON-STOP ORDER AND DELIVERY SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · SPECIFIC TUBE APPLICATION SERVICE · LOCAL LABORATORY

COAST-TO-COAST WAREHOUSING SERVICE · SPECIFIC TUBE APPLICATION SERVICE

With the new GL-6265, put high reliability in every socket! You can fill half your design needs with this one type!

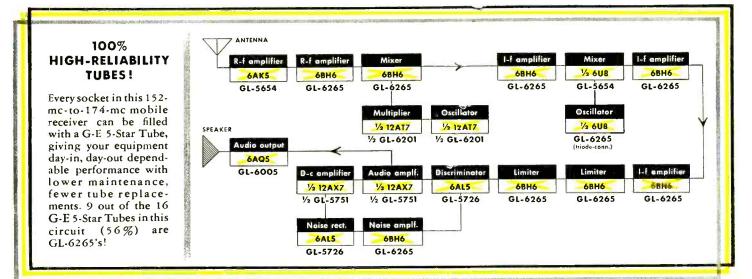
G-E DESIGN SERVICE brings you the versatile new GL-6265—which meets 45% to 65% of your tube needs, replacing Type 6BH6. Electrical differences from the 6BH6 are minor. There are only a very few cases in which any circuit adjustment will be necessary.

RELIABLE TUBES THROUGHOUT! No more breaks in your chain of high-reliability tubes! Now *all* your receiver sockets can have 5-Star types—every tube designed, built, and tested for maximum dependability. You can build and sell communications equipment that sets new standards of unfailing performance in the air, on the ground, wherever complete dependability is a "must".

BE FIRST TO OFFER receivers with General Electric 5-Star Tubes handling every stage from signal input to audio output!

Get all the facts about the new GL-6265! Wire or write today for Bulletin ETD-892 to Tube Department,

General Electric Company, Schenectady 5, New York.



NEW GL-6265

Sharp-cutoff pentode, for r-f or i-f amplification.

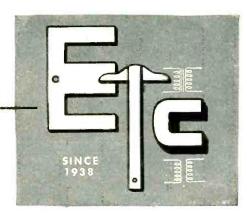
REPLACES 6BH6

"SPECIAL transformers?

... Oh, they're no problem with us. We let Electronic Transformer Company worry about 'em.''

That's right. When we tackle those tricky special transformer jobs we relieve our customers of the complete headache. We're prepared to do *your* worrying, too, because custom-designing, custom-building transformers is our sole business. Government and industrial companies throughout the country have depended upon us since 1938.

Behind ETC transformer quality are a thoroughly trained engineering staff and the resources of our fully equipped laboratory and production department. We carry the ball from the circuitry stage right down the line to pilot and production runs.


What have you on the board or in your mind? Please telephone or write us without obligation.

ELECTRONIC TRANSFORMER COMPANY

Transformers, Reactors and Filters Engineered to your Needs

209 WEST 25th STREET . NEW YORK 1, N.Y.

Telephone: WAtkins 4-0880

Welded Terminals

Proved by Years of Service

NOW AVAILABLE IN ALL

OHMITE® WIRE-WOUND RESISTORS

Provide a Perfect,
Permanent Connection
between Resistance
Wire and Terminal

WELDED RESISTANCE WIRE

All Ohmite resistors now have the resistance wire welded to the terminals instead of soldered or brazed. This provides a resistor with superior characteristics.

WELDED TERMINAL LUG

Another Ohmite resistor feature is the welded terminal band. The band is permanently held together around the resistor tube by means of welding, providing a strong, permanent fastening.

SEE NEXT PAGE

Now in All Sizes Welded Terminals O H

OHMITE® RESISTORS

PATENTED OHMITE PROCESS ASSURES **PERFECT WELDS**

Ohmite has perfected and patented a new welding technique, and has developed a method of testing every weld between the resistance wire and terminal. Thus, with every Ohmite resistor, you are assured of permanent terminal connections, unaffected by vibration or high temperatures.

PERFECT ELECTRICAL CONNECTIONS

The fusion of the metal in the resistance wire and terminal lug provides a perfect and permanently stable electrical connection. This is extremely important in eliminating noise in audio circuits or instability in other highly sensitive circuits.

HIGH-STRENGTH ALLOY TERMINALS

The terminals on Ohmite resistors are made of a special high-strength alloy, which has a coefficient of expansion that is properly related to that of the enamel, ceramic core, and wire. This keeps the terminal firmly anchored, and prevents cracking of the enamel.

The resistance wire is welded practically flush with the terminal, so there is no projection extending from the surface. Hence, the connection and terminal are as well covered and protected by the vitreous-enamel coating as the winding itself.

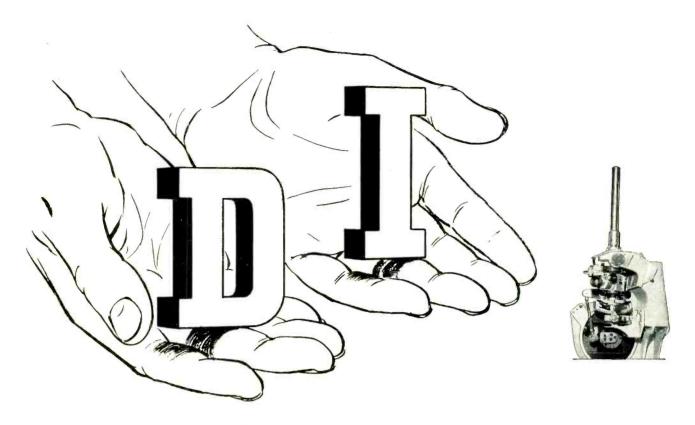
PROVED IN TEN YEARS OF SERVICE

Ohmite developed welded terminals more than ten years ago. Since that time, this construction has been gradually extended to cover the entire Ohmite line. Millions of these welded resistors have proved their reliability in the toughest kind of service.

WRITE on Company Letterhead for Catalog and Engineering Manual No. 40.

Be Right with

PUS THESE OTHER OHMITE FEATURES


Ohmite resistors provide other important advantages, too—a superior vitreous-enamel covering, which holds the winding rigidly in place, preventing "hot spots," and protecting the winding from moisture and fumes; strong ceramic core that is unaffected by cold, heat, fumes, or high humidity; and hot tinned terminal lugs for ease in soldering. For unfailing dependability, specify Ohmite resistors.

OHMITE MANUFACTURING CO.

3610 Howard Street, Skokie, Illinois (Suburb of Chicago)

OHMITE

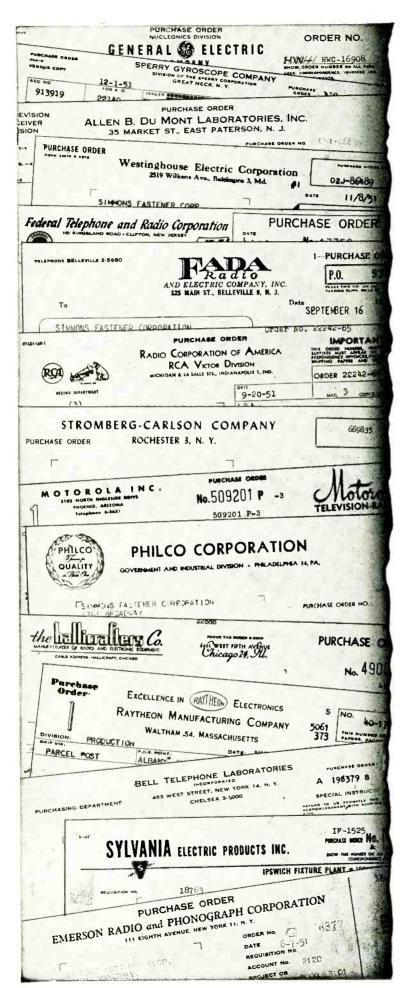
RHEOSTATS . RESISTORS . TAP SWITCHES

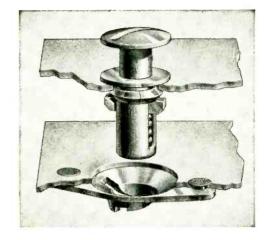
Skilled hands

Skilled hands—1500 pairs of them are busy every day at Daystrom Instrument—performing research, development and manufacturing tasks on a wide variety of precision electrical and mechanical instruments. Daystrom specialists are prepared and ready to analyze your requirements and translate them from drawing board to finished products—all within our own modern plant of 350,000 square feet. All development and manufacturing are achieved through advanced techniques. We are proud of the fire control and radar equipment we produce for our Army and Navy. Daystrom products include computors, gyros, servo amplifiers, electronic chassis, sheet metal cabinets, test equipment, gear assemblies, servo controls, radio and precision potentiometers.

Write today for our facilities report.

- * RESEARCH
- **★** DEVELOPMENT
- ★ DESIGN
- * PRODUCTION




DIVISION OF DAYSTROM, INCORPORATED

ARCHBALD, PENNA.

Affiliates:

American Type Founders, Inc., Elizabeth, N.J.; Daystrom Furniture Div., Olean, N.Y.; Daystrom Electric Corp., Poughkeepsie, N.Y.

For Electronics: Faster Assembly... Better Design

Why do leading electronic manufacturers order and re-order Simmons' QUICK-LOCKS in quantity? For good dollar-wise reasons:

IN ASSEMBLY-

- · No special tools are needed for installation.
- Flexible mounting takes care of curved sheets and misalignment.
- · Various material thicknesses can be handled.

IN DESIGN-

- Initial loads taken by helical spring. Increased loads carried on solid supports.
- 90-deg. rotation locks and unlocks fastener.
- · Stud is self-ejecting when unlocked.
- Stud is self-aligning. Makes mounting and demounting detachable panels simple.

QUICK-LOCK can help reduce your assembly costs and can add unusual advantages to your designs. Send for data and samples today.

SIMMONS FASTENER CORPORATION 1750 No. Broadway, Albany 1, New York

Fasteners that improve products and reduce assembly costs.

A CEC SADIC system gives you

In many research and development projects today, full scale structures or scale models are tested and re-tested hundreds of times with only slight changes in the test conditions. Where this occurs, as it does in aerodynamic wind tunnels or rocket and reaction motor static-test stands, a staggering amount of test data may be accumulated in analog form. Before this data can be evaluated by the test engineer it must be converted into digital—i.e., numerical—form. CEC's high speed, high accuracy SADIC digital data-

digitized test data

processing systems are unequalled for this purpose. Assembled from "building block" components to meet the precise requirements of the test project, they automatically convert analog voltages from thermocouples, pressure transducers, strain gages, etc., to digital form, with numerical readout on perforated tape,

with speed,
accuracy
and low cost

punch cards, or tabulators. Where large quantities of such test data have to be processed, automatic digital data conversion with a Consolidated SADIC system pays for itself many times over by eliminating the costly, laborious, time-wasting necessity for extracting thousands of points from an accumulation of analog plots. For full details send for Bulletin CEC-3002-X2.

Consolidated Engineering

CORPORATION

300 North Sierra Madre Villa, Pasadena 15, California

ANALYTICAL INSTRUMENTS
FOR SCIENCE AND INDUSTRY

Sales and Service through

CEC INSTRUMENTS, INC., a subsidiary with offices in: Pasadena, Atlanta, Chicago, Dallas, Detroit, New York, Philadelphia, Washington, D.C.

New Instruments and Components to Aid in Design and Reduce Costs

TECHNITROL

Unique Variable Pulser is Valuable Laboratory Aid

The Technitrol Variable Pulser is a reliable, versatile instrument which converts the output of a laboratory oscillator into a series of pulses.

One use has been as a low pulse rate device to study the response of components and networks to isolated pulses. Another use has been as a variable pulse rate source to study P.R.F. sensitivity. Still another use has been as a constant high frequency source for a temporary clock pulse generator.

Characteristics

- Wide range of frequencies from 2 cps. to over 2.0 mcs.
- Pulse characteristics optimized with rise and fall times approximately 0.04 μs. and 0.06 μs. respectively.
- Duration of pulse variable from 0.2 μs.
 to 5.0 μs. in steps of 0.1 μs.
- Accurate, stable pulse duration controlled by electric delay lines.
- Amplitude continuously variable without distortion from 0 to 45 volts.
- Trigger pulse precedes output pulse to synchronize oscilloscopes, etc.

Tiny Encapsulated Pulse Transformers Wound to Your Requirements

Technitrol Pulse Transformers are wound on ferrite cores and cast in resin to form a 3/4" sealed unit.

Type TE has 2-inch pigtail leads of No. 20 wire. Type TP has 7-pin plug-in for miniature tube sockets. Lends itself admirably to printed circuits where holes can be drilled in the circuit board, the transformer plugged into these and the pins soldered to the circuit leads on the side opposite the body of the transformer.

When writing for information Specify application and requirements

TECHNITROL

ENGINEERING COMPANY

2751 North Fourth Street
Philadelphia 33, Pennsylvania

Want more information? Use post card on last page

Very Compact Delay Lines Designed to Fit Your Need

A Technitrol Delay Line—with not more than 1/4" diameter and 61/4" length, or in a package—will be designed for your particular circuit application. A variety of mountings offers you a wide choice.

- Delay: 0.01 to 1.6 μs.
- Characteristic Impedance: 400 to 2500 ohms.
- Wide Frequency Response: 0.5 μ s. at 1200 ohms.

3 db down at 5 mcs 6 db down at 8 mcs 10 db down at 10 mcs

Continuing intensive research and development is expected to make available even greater band-widths,

· Linear Phase: to 9 mcs and beyond

The continuously wound Technitrol Delay Lines provide minimum pulse distortion and are extremely stable with temperature variations. A covering protects the winding from abrasion and mechanical damage.

April, 1954 — ELECTRONICS

ceramics and metal are permanently and accurately combined

The metal bands on the rotor shafts shown at the left, above, are concentric with the shaft to within 0.001 in.

Stupakoff

assemblies

precision Stupakoff ceramic-to-metal assemblies. Extensive experience in the field of electrical and electronic ceramics, thorough familiarity with methods of metallizing, and the use of modern precision manufacturing methods insure the high quality and uniformity of Stupakoff Assemblies.

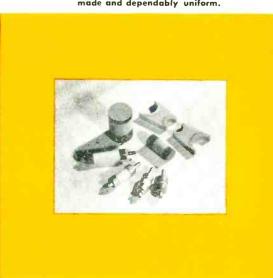
Among the assemblies made by Stupakoff are: rotor shafts, strain and spreader insulators, stand-offs and trimmers. Ceramic bodies are specially formulated for the intended service; metals

Your production procedure is simplified when you use high-

strain and spreader insulators, stand-offs and trimmers. Ceramic bodies are specially formulated for the intended service; metals used include silver, copper, brass, stainless steel and monel. Stupakoff's broad experience in this field insures the selection of a method of assembly best suited to meet service conditions.

A few types of Stupakoff Ceramic-to-Metal Assemblies are illustrated in the photographs on this page.

STUPAKOFF CERAMIC & MANUFACTURING COMPANY


LATROBE, PENNSYLVANIA

Small metallized ceramic parts are accurately made and dependably uniform.

Some of the larger types of Stupakoff metallized ceramic parts.

WIDE

FAST-PULSE GENERATOR

PG-200A Pulse Generator PGA-210 Range Extenders

SPECIFICATIONS

PULSE POWER

- Amplitude 100 volts open circuit
- Continuously variable over a range of -10 db
- 50 db attenuation in steps of approx.
 10 db
- Driving impedance 50 ohms or less
- Max. average current (50 ohms load)
 0.1 amp. for pos. pulses, 0.07 amp. for neg. pulses
- Max. recurrence rate at least 20,000 pps
- Max. duty cycle 50%, min. pulse interval (trailing edge to leading edge) approx.
 40 µs

PULSE WAVEFORM

- Rise and decay times 0.03 μs or less (10% to 90% amplitude)
- Crest and base line overshoots and ripple less than 5% of average pulse amplitude
- Duration calibrated 0.1 to 50 µs, accuracy below 5000 pps within 5% or 0.1 µs whichever is greater, accuracy above 5000 pps subject to additional 0.3 µs error, min, pulse width less than 0.05 µs (50% amplitude)

PULSE POSITION

- Delay after external sync signal fixed at approx. 10 us or adjustable from approx. 20 to 70 us
- Advance or delay with respect to sync out trigger calibrated 0.1 to 50 µs, accuracy below 5000 pps within 5% or 0.1 µs whichever is greater, accuracy above 5000 pps subject to additional 0.3 µs error

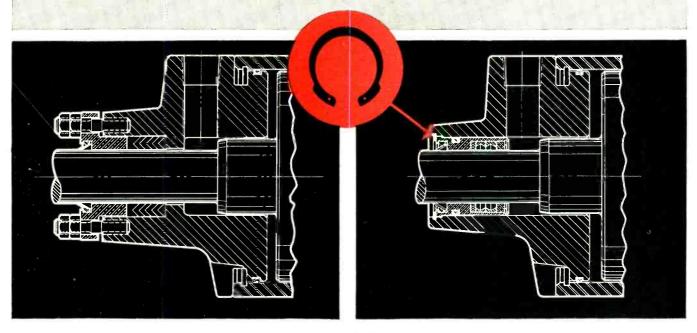
features

- DURATION AND POSITION .05 TO 1000 us
- RISE AND DECAY TIMES CONSTANT .03 us
- SINGLE PULSES TO 20,000 PER SECOND
- 100 VOLTS, 50 OHMS DRIVING IMPEDANCE
- CALIBRATED WIDTH, POSITION AND RATE
- TRIGGER OR SINE WAVE SYNCHRONIZATION
- NEGLIGIBLE INTERACTION OF CONTROLS

RANGE EXTENDER

- 19 additional time increments of 50 μs each
- Continuous calibrated coverage from 0.1 to 1000 μs, accuracy within 5%
- Plugs into top of Pulse Generator directly above position or duration control

SYNCHRONIZATION


- Externally by almost any 5 volt waveform from essentially 0 to 20,000 per
- Internal single pulses, power line freq. or adjustable from 20 to 20,000 pps
- Recurrence rate meter, accuracy within 5%
- Sync out trigger 50 volts, 1 μs duration

TELETRONICS LABORATORY INC.

54 KINKEL STREET, WESTBURY, LONG ISLAND, NEW YORK

Waldes Truarc Ring Saves \$2.84 Per Unit, Cuts Labor-Time and Materials in Hydraulic Packing Unit

OLD STYLE stuffing box required skilled worker to install packing rings one at a time, then adjust packing glands by trial and error. Disassembly was equally difficult, time-consuming and costly.

NEW Monopak Cartridge is smaller, lighter, streamlined and installed with one Truarc Retaining Ring. Disassembly and reassembly with new cartridge takes unskilled worker just 1 minute.

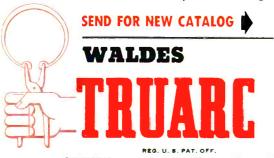
Hydraulic Accessories Company of Van Dyke, Michigan, uses a single Waldes Truarc Inverted Ring (internal series 5008) to hold Monopak Cartridge in cylinder head.

New design eliminates costly machining and saves $2\frac{1}{8}$ lbs. of material. Re-design with Waldes Truarc Retaining Ring reduces stuffing box diameter from $3\frac{1}{2}$ " to $2\frac{7}{8}$ ", and reduces length from $5\frac{7}{8}$ " to $4\frac{3}{8}$ ". Allows savings in assembly, adjusting and testing.

NEW DESIGN USING WALDES TRUARC RING PERMITTED THESE SAVINGS PER UNIT

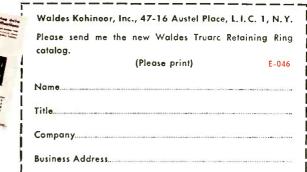
Chucking, facing and boring . . . \$.72

MACHINE TIME SAVED:


Drilling	and	l to	рр	ing	3	hol	es			l.	.18
Drilling	and	d co	oun	ter	bor	ing	3	hol	es	٠	.12
Assembling, adjusting, testing										.90	
MATERIA	L SA	VE	D:								
11/2 lbs.	casi	ire	on					4			.30
14 lb. br	onz	e			1				¥		.23
3 studs			¥								.36
3 nuts		4									.03
								T	ATC	L \$	2.84

Waldes Truarc Retaining Rings are precision-engineered...quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again. There's a Waldes Truarc Ring to answer every fastening problem.

Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.


For precision internal grooving and undercutting . . . Waldes Truarc Grooving Tool.

See the Waldes Truarc exhibit at the A.S.T.E. Show, April 26-30. Booth No. 424, Precision Hall.

RETAINING RINGS

WALDES KOHINOOR, INC., LONG ISLAND CITY 1, NEW YORK WALDES TRUARC RETAINING RINGS AND PLIERS ARE PROTECTED BY ONE OR MORE OF THE POLLOWING U.S. PATENTS: 2.392.947; 2.382.948: 2.441.6852; 2.420.921; 2.423.785; 2.441.846.; 2.453.165; 2.469.308; 2.593.081 AND OTHER PATENTS PERDING

Zone.....State.

ELECTRONICS - April, 1954

Want more information? Use post card on last page.

ARMSTRONG CORK CO.

BELL AIRCRAFT CORP.

NASH KELVINATOR

GENERAL ELECTRIC CO.

NAVAL RESEARCH LAB.

LOS ALAMOS
PROVING GROUNDS

SIKORSKY AIRCRAFT

WHO'S WHO IN INDOORS
RESEARCH, GOVERNMENT, EDUCATION?

Just send for Flexlab Catalog No. 187 covering our Flexlab Laboratory Equipment. It contains much valuable information plus an impressive list of Flexlab users... You will find yourself in the best of company when you have Standard design and build your next panel installation... Consultation without obligation.

"Custom Designed and Built"

ABERDEEN PROVING GROUNDS

RADIO CORPORATION
OF AMERICA

ATOMIC ENERGY COMMISSION

WESTINGHOUSE ELECTRIC CORP.

COMMONWEALTH EDISON CO.

LACLEDE GAS CO.

NAVAL AIR DEVELOPMENT STATION

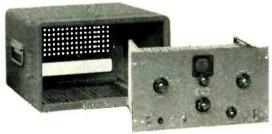
DISTRIBUTION SWITCHBOARDS . CONTROL BOARDS . TEST PANELS AND UNITS

PRECISION TIMERS . CHRONO-TACHOMETERS . PIPELINE NETWORK ANALYZERS

The STANDARD ELECTRIC TIME COMPANY

97 Logan Street • Springfield 2, Massachusetts

Another FIRST from -hp-!


Standard test instruments mounted exactly as you want them!

- all-metal cabinets
- relay rack
- end frames
- -hp- 100D Frequency Standard in streamlined metal cabinet now offered with -hp- instruments

Now you can buy -hp- instruments mounted any of three ways, and, later on, change to any other mounting you wish. This new versatility means greater utilization of your -hp- instruments, and can also increase the flexibility of your entire instrument setup.

Cabinets. -hp- instruments having the standard $10\frac{1}{2}$ " x 19" panel are now available in standardized -hp- AC 44 aluminum-and-steel cabinets. Equipped with sturdy carrying handles, these

cabinets give your -hp- instruments greater protection, better ventilation, and a clean, rugged, modern appearance. Either the separate back cover or the cabinet itself can be removed quickly and easily. Cabinets are finished in wrinkle grey matching the -hp- grey baked enamel panel faces. -hp- AC44 cabinets are now available with the following instruments when factory shipment is made: -hp- 100C,D, 202A, 202B, 205A,AH,AG, 206A, 212A. 330B,C,D, 520A, 522A,B, 624B, 650A and 712B. Model AC44 Cabinet, with instrument, \$15.00; separately, \$25.00.

End frames. To increase flexibility and convenience of -bp-instruments for bench use, -bp- Model 17 End Frames are offered. These frames are of heavy gauge aluminum, equipped with sturdy

carrying handles and finished in -hp- grey baked enamel. They fit all late model -hp-instruments with panel size $10\frac{1}{2}$ " x 19", and may be attached in moments. -hp- 17 End Frames, \$7.50 set.

Rack mounting. Many -hp- instruments are basically rack mounting and can be installed directly into 19" relay racks. Many other -hp- instruments can be equipped for relay rack mounting at slight additional charge. A complete list of instruments available for rack mounting will be sent on request.

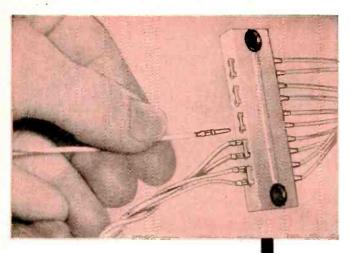
Smaller -hp- instruments, too, are now being delivered in new, streamlined cabinets. -hp-512A Frequency Converter, illustrated, shows the rugged, lightweight metal cabinet now offered with such instruments as -hp-200AB, 200CD, 410B and 715A.

Write today for bulletin listing all

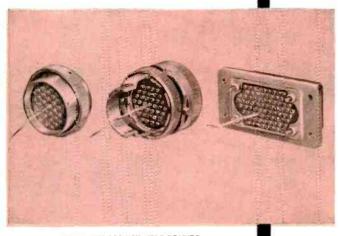
-hp- instruments now available with new
cabinets and other mounting options

HEWLETT-PACKARD COMPANY

2999A Page Mill Road • Palo Alto, California, U.S.A.


Field representatives in all major cities

Data subject to change without notice. Prices f.o.b. factory.


ATTEND THE I.R. E. REGION 7 CONFERENCE-TRADE SHOW

PORTLAND, OREGON • MAY 5, 6, 7

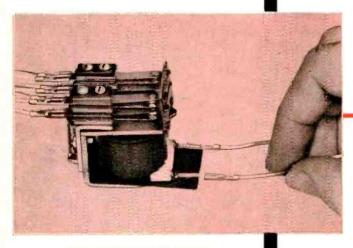

BASIC 10 CONNECTOR TAPER-BLOK WITH DUAL CONTACTS

Photo shows TAPER-PLOK with A-MP TAPER PINS in place. Strip measures only, 610" z 2" Blocks, made of NYLON 10001, can also be stacked to accommodate hundreds of circuits.

TAFER PINS FOR MULTIPLE CONNECTORS, AN AND OTHER TYPES

Amphenol, Cammon, Continental and Winchester Comnectors now are available with tapered receptacles for A-MP self-locking TAPER PINS. Saves over 80%, of your wire assembly time and provides uniformly higher quality connections at lower cost.

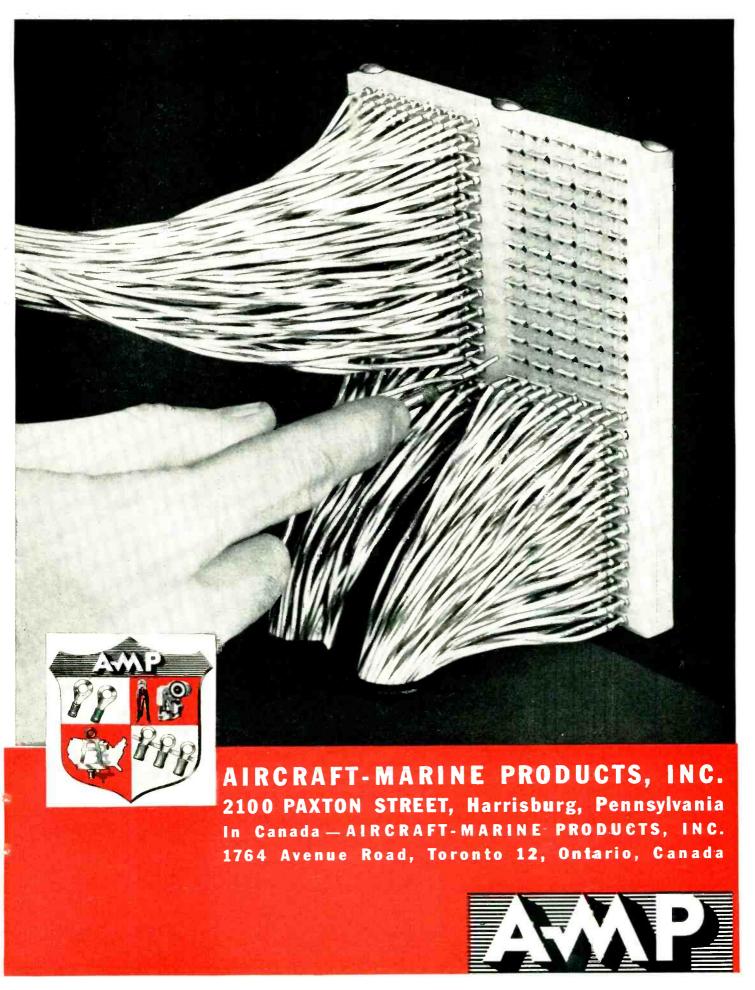
TAPER TAB RECEPTACLE APPLICA-

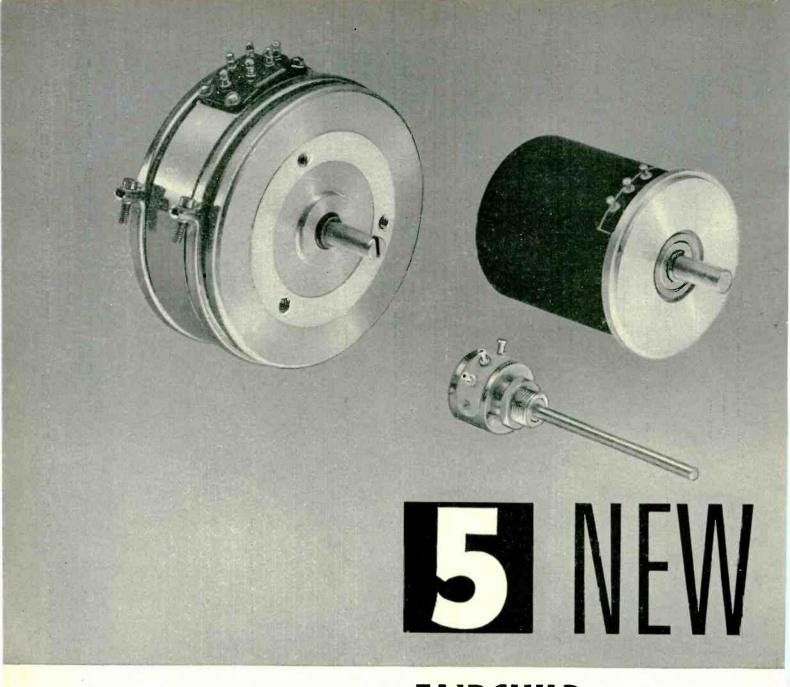
More and more flat tabs on relays, switches and other components are being tapered to receive A MP TAPER TAB RECEPTACLES. Fast easy assembly reduces costs and provides higher quality connections.

TAPER-BLOK

For AMP Taper Pins

(Wire Ranges: #26 to #16)


NEW TAPER-BLOK FOR A-MP'S TAPER PINS HELPS YOU SAVE SPACE AND WEIGHT, SPEEDS UP WIRING ASSEMBLY, SIMPLIFIES DESIGN, AND REDUCES COST!

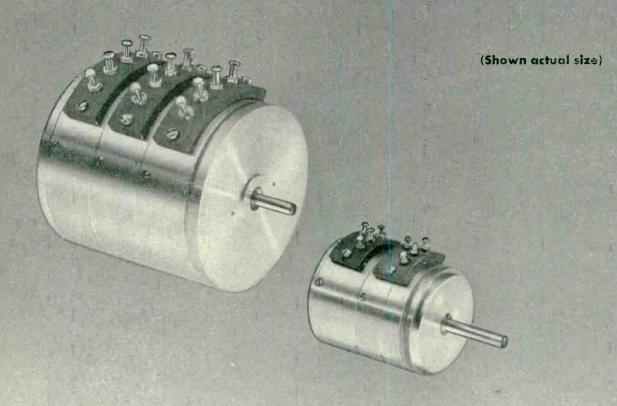

The TAPER-BLOK shown full size at the right has receptacles for 1000 connections, yet measures only 4" x 5" x 5%"! Receptacles are designed to receive A-MP self-locking Taper Pins which can be easily pushed in place with A-MP's CERTI-LOK measured energy insertion tool.

Extremely high contact pressure assures dependable, uniform, low resistance connections for electric and electronic circuits.

Assembled TAPER-BLOKS are available in 10 and 20 connector sizes with single or dual receptacles. TAPER-BLOK strips can be assembled by stacking to provide the number of connections required for your design. Write for specific information and latest prints.

AMP Trade Mark Reg. U.S. Pat. Off. ©AMP

5 More reasons why FAIRCHILD can meet

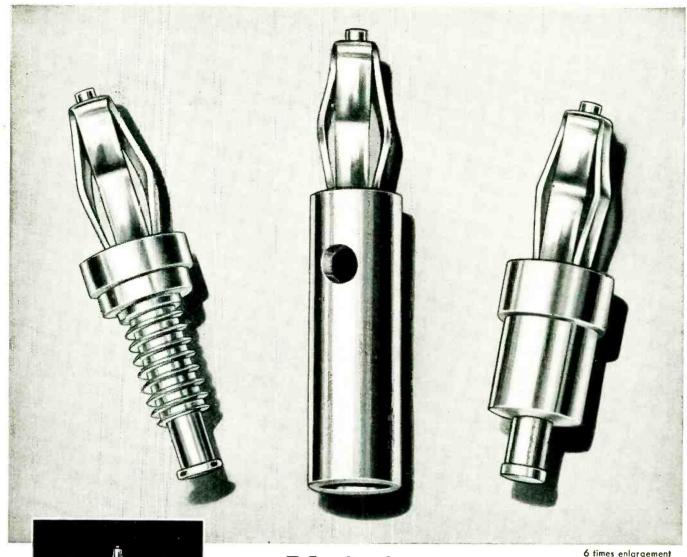

TYPE 753 — Sine-cosine potentiometer — Full sine-cosine function without mechanical cams and linkages—can be ganged up to 6 cups. 20,000 ohms per quadrant; linearity, ±0.5% peak-to-peak; 3" diameter, 1½" long from front of servo flange to rear of cup. Also available as straight sine function.

TYPE 745 –10-turn helical potentiometer – Meets rigid government requirements for humidity, salt spray, altitude, temperature, vibration, shock, sand, dust and fungus resistance. High electrical accuracy (linearity $\pm 0.025\%$); resistance range 100 to 300,000 ohms. 2" diameter, $2\frac{5}{5}2$ " long from front of servo flange to end of case. Mechanical and electrical rotation, 3600° ($+2^{\circ}$ – 0°).

TYPE 771—The FilmPot, metallic film potentiometer—Infinite resolution, high temperature operation (225°C). High wattage dissipation and exceedingly wide resistance range (100 to 200,000 ohms). Only ¾" in diameter and ½" long. Resistance element is precious metal deposited on an inorganic base. Available with servo flange or threaded bushing mounting.

POTENTIO IM ETERS

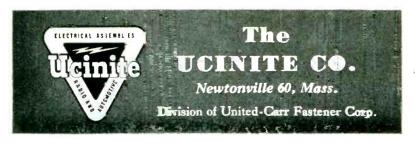
all your precision potentiometer needs


TYPE 754-2" linear potentiometer-Resistance range from 800 ohms to 100,000 ohms. High linearity (±0.15% standard). Internal clamp rings permit ganging up to 8 cups on single shaft without increasing overall diameter. AIA standard 2" servo mount. Depth is 1" with .594" added for each cup section ganged. Gold-plated terminals are easier to solder and have better resistance to corrosion.

TYPE 741-11/8" linear potentiometer—Internal clamp rings permit ganging up to 5 cups on a single shaft without increasing the over-all diameter. Resistance range 500 to 25,000 ohms; linearity ±0.5% standard. Electrical angle 350°. Only 11/8" in diameter and 11/8" long; starting torque is 0.25 oz.-in. The simplified slip ring construction and a one-piece paliney wiper give longer life and lower noise.

• Available immediately in sample quantities. Look to Fairchild for assistance in solving all your precision potentiometer problems. Fairchild has, or can make, a potentiometer to fit any requirement. For information write: Fairchild Camera & Instrument Corp., Potentiometer Division, 225 Park Avenue, Hicksville, L. I., N. Y., Dept. 140-45A1.

Ucinite Miniature Banana Pins


Actual size

Heavy resistance to torque is a big feature of Ucinite miniature banana pins. The springs are mechanically riveted over and the large area around the tip of the pin is bonded by solder.

Pins are available in a variety of types, for assembly by staking... with nuts and washers... with soldered tails... with multiple plug-in features. Springs are designed to fit .093 sockets.

Built to withstand rough usage, Ucinite miniature banana pins are available in cadmium, silver or gold plate.

For further information, call your nearest United-Carr representative or write directly to us.

Specialists in ELECTRICAL ASSEMBLIES, RADIO AND AUTOMOTIVE

Tailor-Made Fasteners in Volume Quantities

MINIATURE BATTERY CONNECTORS

For use with small "B" batteries; afford quick and positive polarized electrical connections and worthwhile space savings on such small equipment as portable radios of hearing aids.

FEMALE ANODE CONNECTORS

Made from cold rolled steel and plated to specification, this part provides the high voltage connection to a metal picture-tube strap, or allied connections.

FISHTAIL RATCHET PLATE

Made in a wide range of sizes to hold on smooth metal, diecast or plastic studs. For use on refrigerators, radio cabinets, washing machines and other products to hold medallions, nameplates, etc.

VIBRATOR GROUNDING FASTENERS

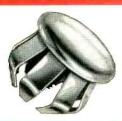
Holds 1 ½" dia. beaded or nonbeaded vibrator in any position to radio chassis. Vibrator Can grounded to frame. Holding prongs designed to hold several types of Cans.

RUBBER FOOT

Snap-in Rubber Foot-for Record Changers and Phonograph Mountings eliminates threaded member, lock washer and nut thereby speeding assembly time and reducing costs.

NYLON SNAP-IN NUT

Designed for the attachment of shelf supports or channels to porcelained sheet metal liners. Used with sheet metal screws they provide high pull-out values and no chippage.


Snap-in type for electrical appliances. Removable. Jewelad or ploin glass. Some plastic. Designed in a wide range of colors, shapes and sizes.

SHELF SUPPORTS

Plastic Shelf Supports designed to snap into porcelained hole. Driven pin expands Trimount section securing fastener without porcelain chippage. Variety of shapes and sizes.

PLUG BUTTONS

Made to smap into hole sizes 1/8" to 3". Can be embossed with ornamental or functional designs. Removable. Supplied with various finishes, in a variety of shapes and sizes.

TUBING AND WIRING

For use in electrical and hydraulic systems. Holds wires and tubing firmly, without chafing, under extreme vibration. Made in hundreds of sizes.

Designed to hold two or more thicknesses of material together. Easily installed by hand. Insure vibration proof attachment. Permanent or removable attachment. Wide variety of shapes and sizes.


Parts illustrated are representative of the thousands of difative of the thousands and ferent specialized fasteners and ferent specialized in volume

ferent specialized rasteners and allied devices designed and manufactured in volume by United-Carr and its subsidiaries for leading manufacturers of electronic equipment. United-Carr's ufacturers of electronic equipment wide and varied experience with special fastening wide and varied experience with special fastening problems in the automotive, aviation and appliance problems in the automotive, aviation and of technical fields provides an unequaled background of technical knowledge which may well be applicable to your special needs.

UNITED-CARR

FASTENER CORP.

CAMBRIDGE 42, MASSACHUSETTS

MICRO SWITCH

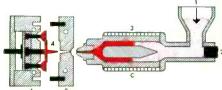
A DIVISION OF MINNEAPOLIS-HONEYWELL REGULATOR COMPANY FREEPORT, ILLINOIS

Better Things for Better Living

PROPERTY AND APPLICATION DATA ON THESE

PROPERTY AND APPLICATION DATA ON THESE VERSATILE PLASTIC MATERIALS: DU PONT NYLON, "ALATHON," "TEFLON," "LUCITE."

No 1


1954

Properties of Du Pont Nylon Provide Design Versatility

POINTERS ON PROCESSING OF DU PONT POLYMERS

Injection molding is one process for producing large quantities of plastic parts. A typical injection-molding assembly, shown in the diagram, operates as follows:

Parts marked A and B close and lock to form the mold; they move to contact part C which contains molten plastic. Measured quantities of the granulated plastic (1) are fed into the machine. The reciprocating ram (2) forces this material into the heating chamber (3), where the powder liquefies. Each forward motion of the ram (2) forces molten plastic into the closed mold (A plus B) where the plastic solidifies, and forms the molded part (4). Then the mold opens as shown in the diagram and the plastic part is ejected. In the meantime, the ram moves back, allowing more powder to feed into the machine, preparing it for another molding cycle.

The production rate depends on a number of variables, including the size of the part, and the number of identical cavities cut into the mold. If molded parts are small, dozens of them can be made at one shot, whereas large parts may be produced one at a time. Cycles (Continued reverse side, column 3)

Examples include coil forms, grommets, phone signal device, and wire jacketing

These coil forms show how Du Pont nylon can be molded into thin, intricate sections.

Du Pont nylon is well established for a wide variety of uses in the electrical field. Among the outstanding properties of nylon accounting for this acceptance are: good insulating characteristics; superior toughness and high temperature resistance (to 250°F.); strength in thin sections; and the ability to be formed into intricate pieces by injection molding.

Also of interest to electrical design engineers are nylon's abrasion resistance, good impact strength and resiliency. Many electrical parts have been redesigned for longer life by utilizing the unique combination of properties Du Pont nylon has to offer.

One proved application of molded nylon is for coil forms. Because nylon is tough and has strength in thin sections, compact and intricate designs are possible. Often, assembly steps are eliminated by incorporating various parts into the coil form itself. Magnetic cores and other metal inserts can be molded right into the nylon.

Another established use for Du Pont nylon is the strain-relief grommet. Toughness and resiliency of nylon allow the grommets to be snapped into position. The heat-resistance, strength and insulating properties of Du Pont nylon meet requirements of commercial electrical equipment. These

grommets carry the U. L. Seal.

A telephone interrupter cam
of Du Pont nylon is an interesting application. This cam regu-

Better Things for Better Living
... through Chemistry

PROPERTY AND APPLICATION DATA ON THESE

PROPERTY AND APPLICATION DATA ON THESE VERSATILE PLASTIC MATERIALS: DU PONT NYLON, "ALATHON," "TEFLON," "LUCITE."

No. 1

1954

(Properties of Du Pont Nylon, Con't) lates the timing of coded rings and busy-signals for phones. Rotating to actuate a leaf spring switch, the nylon cam helps provide the necessary signal. A single part replaces a complicated assembly; nylon gives better performance, and longer service life. Particularly valuable properties of nylon for this application are abrasion-resistance and resilience.

Du Pont nylon finds wide application as extruded coatings for wire and cables. Nylon is used as both primary insulation and as jacketing which covers other insulation. Nylon resists abrasion and attack by oil or gasoline. Nylon increases the service temperatures of some primary insulations and also retards volatilization of plasticizers from the primary insulations. Coatings in commercial use are from 3 to 15 mils thick. A thin coating is adequate because of the toughness of nylon. The coating is smooth, light in weight and flexible at low temperatures. Extrusion methods apply nylon at speeds as high as 1,000 feet per minute.

INVESTIGATE Du Pont plastic engineering materials in your product development programs

One of the family of these versatile engineering materials is often a key factor in product improvement or new product design.

The wide range of properties available with "Alathon" polyethylene resin, "Lucite" acrylic resin, "Teflon" tetrafluoroethylene resin, and Du Pont nylon are helping solve industrial design problems.

NEED MORE INFORMATION?

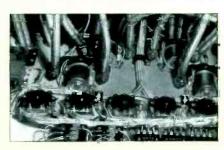
Clip the coupon for additional data on the properties and application of Du Pont plastic engineering materials.

Dielectric properties of "Teflon" aid designers of miniature circuits

Miniature circuits can develop high temperatures, which combined with an increased electrical load, may result in the failure of tiny parts. The problems of insulating components of miniaturized circuits were investigated by Microdot Division, Felts Corporation, S. Pasadena, California, in conjunction with their development of a complete line of miniature coaxial connectors and assemblies.

Coaxial connectors and cable are insulated with Du Pont "Teflon." These miniature-circuit ports are made by Microdot Division of Felts Corp.

The material which Microdot needed for the connectors and primary wire insulators had to have superior dielectric properties and heat-resistance. Durability and resistance to moisture were also essential.


Du Pont "Teflon" tetrafluoroethylene resin was chosen after extensive tests. "Teflon" is an excellent insulator. It has a dielectric constant of 2.0; the power factor is less than 0.05%, at frequencies as high as 30,000 megacycles. Exposure to arc leaves no carbonized path. The dielectric properties of "Teflon" remain constant at temperatures from -80°F to 500°F.

"Teflon" absorbs no water by ASTM Test 1)570-42.

Where resistance to high temperatures, good dielectric properties and durability are needed, Du Pont "Teflon" has proved its versatility.

Du Pont nylon useful in components of aircraft wiring systems

The properties of Du Pont nylon make this versatile engineering material particularly adaptable for aircraft electrical systems. Nylon is used for cable clamps, strain-relief clamp blocks, grommets, wire guides and support blocks, terminal blocks and similar devices. Du Pont nylon is specified for these applications because it is tough, resists abrasion and extremes of temperature; it has the necessary dielectric characteristics, can be molded readily into intricate shapes, and is

strong in thin sections. One type of airplane carries sixteen miles of cable jacketed with Du Pont nylon. Here, other properties of nylon are important—resistance to gasoline and high temperature, and lightness of weight.

Du Pont nylon is used continuously at temperatures (to a maximum of about 250°F.) Its heat-resistance permits component parts to be soldered without affecting the nylon.

Many manufacturing economies are obtained with nylon. Injection molding allows fast production of complicated shapes. Often a single part molded of nylon replaces an assembly of several parts. And because nylon can be molded around metal inserts, further design simplification is often possible.

(Injection molding, continued)

of 1 or 2 moldings a minute are not uncommon.

Here are some of the advantages of injection molding:

- 1. High rate of production
- 2. Economical production in quantity
- 3. Little or no finishing cost
- 4. Parts molded to close tolerances.

E. I. DU PONT DE NEMOURS & CO. (INC.)

Polychemicals Department
Room 224 Du Pont Building, Wilmington 98, Delaware

Please send me more information on the Du Pont plastic engineering materials checked:

Du Pont nylon; "Alathon"; "Teflon"; "Lucite". I am interested in the application of these materials for:

NAME

TITLE

COMPANY

STREET ADDRESS

CITY

STATE

TYPE OF BUSINESS

*"Alathon", "Lucite", "Teflon" are registered trade-marks of E. I. du Pont de Nemours & Co. (Inc.)

NOW, with our newly-completed plant facilities

compression-type are shipped from stock, in most cases

ilt to meet MIL-T-27 or Commercial Specifications

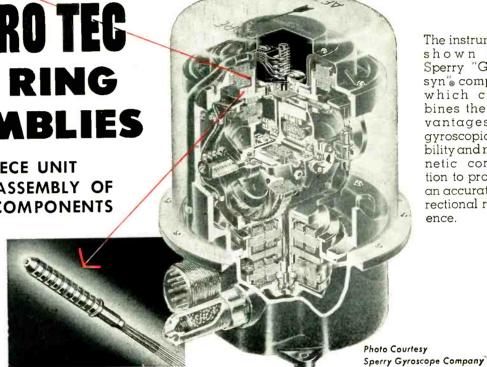
from assembly of bushings in cover to actual hermetic-sealing of your components

or prints for a money-saving "quote".

HELDOR MANUFACTURING CORPORATION

HELDOR BUSHING & TERMINAL CO., INC. 238 Lewis Street

Paterson, N. J.



ELECTRO TEG SLIP RING **ASSEMBLIES**

ONE PIECE UNIT REPLACES ASSEMBLY OF MULTIPLE COMPONENTS

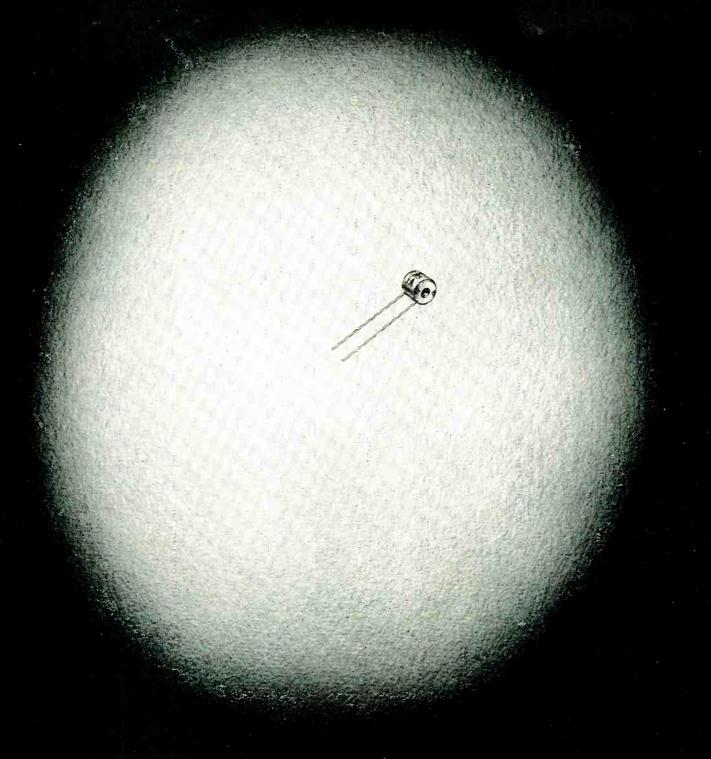
Offering Closer Tolerances, Absolute Uniformity and the Ultimate in Miniaturization:

- ONE PIECE, UNITIZED CONSTRUCTION
- ABSOLUTE MINIMUM FRICTION TORQUE
- DIAMETERS FROM .035" to 24.0"
- MINIMUM 1000 V.A.C. HI-POT INTER-CIRCUIT
- HARD SILVER RINGS PLATED TO PRECISELY MACHINED ONE-PIECE PLASTIC FORM
- SPECIAL SURFACE DEPOSITS PREVENT TAR-NISH, MINIMIZE FRICTION, BRUSH NOISE AND WEAR

The instrument shown is a Sperry "Gyrosyn o compass which combines the advantages of ayroscopic stability and magnetic correction to provide an accurate directional reference

-featuring SUPER DEPENDABILITY!

The Sperry "Gyrosyn" compass is an outstanding example of precision and dependability. Electro Tec is proud to furnish slip ring assemblies which are consistent with the high accuracy and unfailing performance of this instrument. In this application, as in hundreds of others, Electro Tec meets specifications with a degree of accuracy unattainable with built-up or molding methods of manufacture. This extreme precision plus the many other advantages that result from Electro Tec manufacturing techniques have resulted in leadership throughout the industry. For complete cooperation in applying Electro Tec "know-how" to specific problems call or write the Sales Engineering Department.



ELECTRO TEC CORPORATION

SOUTH HACKENSACK • NEW JERSEY

PRODUCTS OF PRECISION CRAFTSMANSHIP BY A NEW AND REVOLUTIONARY PROCESS *

RPC Type J resistors where subminiature requirements specify full size reliability and performance

Precision Wire Wound

Type JA ¼" diameter X ¼" ong. Maximum resistance 125,000 ohms. 0.10 watt.

Type JC ¼" diameter X ¾" ong. Maximum resistance 250,000 ohms. 0.15 watt.

Tolerance 1% standard, tolerances to 0.05% available. All resistors furnished with low temperature coefficient alloys.

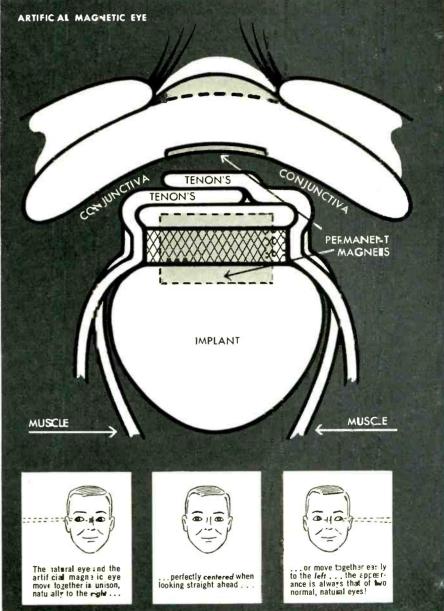
Special wire and impregnation available for greatly increased power rating.

RESISTANCE PRODUCTS CO.

714 Race Street · Harrisburg, Pa.

Consumer Market

Perpetual energy is at work all around us. Shown here are only a few of the many examples of permanent magnets at work—all of which add to the salability of the product.

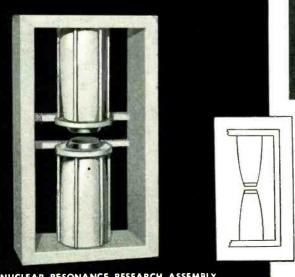

Artificial Magnetic Eyes —

An artificial eye looks practically normal if it moves in unison with the natural one. To achieve this, a New York doctor developed an implant wherein is imbedded an Alnico permanent magnet.

After removal of a diseased or injured eye, recti muscles, originally attached to the natural eye, are attached to an implant, thereby imparting motility to this implant. Further operative procedure requires that the implant be covered with layers of tissue (tenons and conjunctiva) in order that the implant may be completely buried.

A custom-fitted plastic artificial eye is then made which also has a very thin Alnico magnet. As a result of the attraction between the magnet in the implant and the one in the artificial eye, and also due to the shape of the artificial eye, the eye can then move in unison with the natural one, as motility is imparted from the recti muscles to the implant and, in turn, to the artificial eye.

Applications: Among other consumer products that rely on permanent magnets are can openers with a magnetic lid-lifter, and the thermostat used in your home.



Basic Research

Research—A highly specialized example of the use of permanent magnets in research is the nuclear resonance assembly shown on the left.

The Alnico V permanent magnets used in this assembly built for the University of Chicago by INDIANA produce a field of approximately 5,500 galass. The assembly not only is *much less cosdy* than the electromagnetic mode s but it also does not require much of the expensive equipment required to maintain a stable field.

Permanent Magnet

NUCLEAR RESONANCE RESEARCH ASSEMBLY

Can Work For You!

Perpetual Magnetic Energy...a Timeless Force...
is hard at work in many fields and in many
products...from Artificial Magnetic Eyes
to Nuclear Resonance Research!

You can't see it . . . smell it . . . or hear it. Nor can you taste it or feel it, but the "perpetual energy" of permanent magnets is at work for you in each one of these applications—and thousands more. Permanent magnets won't wear out. They can't be used up. They're a source of permanent energy instilled in your product "perpetually."

... Unlimited are the future possibilities of permanent magnets in new product designs. The field produced by the myriad of spinning electrons, the essence of permanent magnets, can work for you in these three ways; transformation of mechanical to electrical energy • transformation of electrical to mechanical energy • tractive effort. If you need a component to perform one of these three functions, INDIANA PERMANENT MAGNETS may be the solution to your design problem.

INDIANA provides you with the largest facilities in the world for the manufacture of permanent magnets and complete permanent magnet sub-assemblies. It will pay you to take advantage of INDIANA's wealth of experience, research leadership, and specialized engineering "know-how."

The Indiana Steel Products Co.

SALES OFFICES FROM COAST TO COAST—BOSTON • CHICAGO CLEVELAND • NEW YORK • PHILADELPHIA • ROCHESTER • LOS ANGELES

Write for
DESIGN MANUAL
NO. 4-A4
CAST CATALOG
NO. 11-A4
SINTERED CATALO

Electrical Industry

Permanent Magnet

Generators—A well-known application in the electrical field is the permanent magnet generator. This 15 kva, 120/208-volt, 400-cycle model incorporates 28 Hyflux Alnico V, bar-shaped permanent magnets.

Long service and minimum maintenance are two things sought by users of generators. Permanent magnets help to provide these qualities. Elimination of slip rings and commutators means no sparking or radio interference. And there's no heat from the field coils nor is excitation power needed.

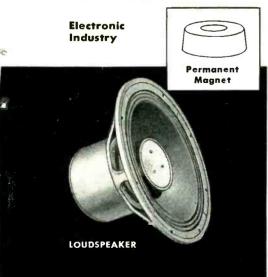
Applications: Magnetos, motors, gyroscopes.

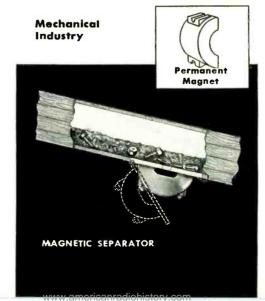
In 24 Hours—You can have INDIANA PERMANENT MAGNETS for your experimental work

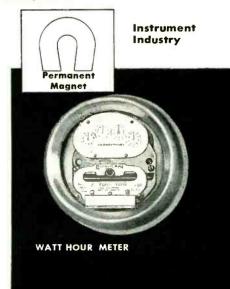
Loudspeakers—Typical of the applications in this field is this 15-inch high fidelity speaker which uses a 10½ lb INDIANA Hyflux Alnico V magnet to achieve a frequency range from 30 to 16,500 cycles per second! INDIANA Hyflux Alnico V provides an energy product of 5½ million BH Max or more, thereby assuring a magnetic field of high strength. Permanent magnets, in this case, are a functional necessity to this design—no substitute can do the job.

Applications: INDIANA magnets are consistently doing an outstanding job in many other typical products in this field such as focusing coils, ion traps, centering devices, radar, and guided missiles.

Magnetic Separators —There is almost an endless list of mechanical or holding applications. One of the more widespread, industrial applications is this permanent magnet separator, using three or more Hyflux Alnico V, U

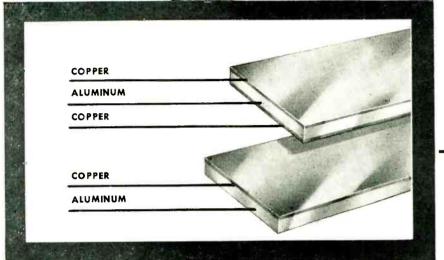

Here permanent magnets exert an effective pulling force through a distance of several inches ... permitting your product to do the job better and safer, insure uninterrupted production flow by snatching "tramp" iron from materials to be processed ... thereby preventing damage to machinery. And permanent magnets require no electrical power, no wiring ... hence, they never spark, eliminating a definite fire hazard.


Applications: Among the many mechanical applications are: magnetic conveyors, magnetic sweepers, magnetic chucks and clutches.


WattHour Meters—One of the hundreds of different instruments requiring permanent magnets is this single-phase, 15-amp, 240-volt rating for 3-wire services watt hour meter. It uses an Alnico 1, horseshoe-shaped magnet weighing only 0.2 lb.

Here, the high quality of this permanent magnet material provides the uniformity and stability of field so necessary for maintaining the initial accuracy of this meter over a long period of years.

Applications: Mass spectrometers, vibration pickups, galvanometers, medical instruments, speedometers, fluxmeters.



GENERAL PLATE ALCUPLATE®

(COPPER ON ALUMINUM)

Cut Costs 15 to 30%

ALCUPLATE Plus Features

- High Electrical Conductivity
- Excellent Heat Dissipation
- Soft-Soldering Surfaces
- Easy Fabrication
- Light Weight

A Few of the Many Products Made from General Plate ALCUPLATE

HEAT TRANSFER UNITS — ALCUPLATE provides ideal fin sections at reduced cost over solid copper fins. The copper surface permits soft soldering of the fins to the inbus

ELECTRONIC CHASSIS — Minimum weight combined with copper surface required for soft-soldering operations, electroplating, and low-resistance shield connections are advantages obtained by using ALCUPLATE.

COMPONENT CASES — ALCUPLATE is successfully drawn and formed into lightweight cases or cans and intri-

BUS BARS — ALCUPLATE provides high conductivity, light weight, solderability . . . and is lower in cost than solid copper bus bars.

ELECTRICAL TERMINALS — Small terminals and large pressure-type connectors use single-clad ALCUPLATE... alleviates galvanic corrosion which otherwise results from aluminum and copper junctions.

Manufacturers of various products are reducing costs by 15 to 30% or more over an equal area of copper or brass with General Plate ALCUPLATE... Copper clad on one or both sides of aluminum.

Here's how ALCUPLATE saves — by permanently bonding a thin layer of copper to thicker less expensive aluminum. You get solid copper performance at a lower cost over solid copper. This combination has practically the same physical and electrical properties as copper plus the light weight of aluminum.

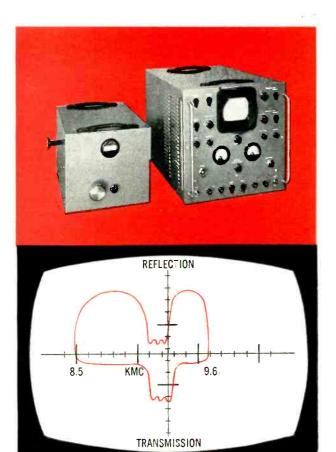
ALCUPLATE can be fabricated by stamping, drawing, spinning, and forming. Its malleability permits its use in the manufacture of many parts from work-hardened rather than annealed or dead soft materials.

ALCUPLATE is available in coils and flat cut lengths, copper clad on one or both sides of aluminum, 1/16" thick x 13" wide and under.

Technical Data Bulletin No. 702C gives full details. Write for a copy today.

You can profit by using General Plate Composite Metals!

METALS & CONTROLS CORPORATION GENERAL PLATE DIVISION


34 FOREST STREET, ATTLEBORO, MASS.

first of its kind

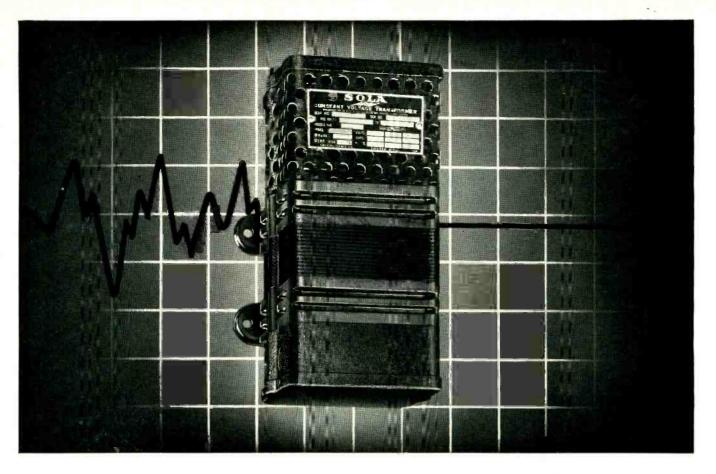
X-BAND SWEEP OSCILLATOR

10...saves
engineering
manhours

wide band -- 8500 to 9600 mc dynamic testing of microwave components and systems -- utilizing unique crt display

Now, for the first time, an instantaneous graphic display of the entire frequency range 8500 to 9600 MCS. This new Polarad X-Band Sweep Oscillator makes possible rapid, dynamic testing of microwave components such as TR tubes, antennas, crystal mounts, even complete microwave systems over a 1100 MC sweep at X-band. Eliminates laborious point-by-point testing methods. A unique display unit shows both reflection and transmission characteristics simultaneously, since two deflection amplifiers are utilized.

The X-Band Sweep Oscillator is an important instrument for laboratory and production line application. It gives one quick answer where formerly hours of checking were necessary. For further information, write to your nearest Polarad representative or the factory.


A Typical Scope Display (at left)
Shows transmission and reflection
characteristics of a double tuned cavity
under test. This is an example of how
the dynamic display reduces time required
to test X-band components and systems.
As a design tool in the laboratory, the
effects of electronic or mechanical changes
may be evaluated instantaneously.
As a production tool, "go" and "no go"
limits may be checked visually.

SPECIFI	CATIONS					
Frequency Range	8.5 to 9.6 KMC					
Output:	+ 12 dbm minimum int matched load					
Output Variation:	± 1 db maximum					
Sweeper Rate:	12 cycles per second					
Operating Voltage:	115 V ± 10%					
Input Power	400 watts					
Type of Output Connector	UG-52A-U					
Size of Control and Display Unit:	15% wide x 20% dec x 16% high					
Size of Sweeper Oscillator:	12 wide x 161/4" deep x 12" high					
Approx Wt of Control and Display Unit	135-lbs.					
Approx. Wt. of Sweeper Oscillator	55 lbs.					

Polarad ELECTRONICS CORPORATION 100 METROPOLITAN AVENUE, BROOKLYN 11, NEW YORK

REPRESENTATIVES Albuquerque + Arnprior, Canada + Atlanta + Boston + Chicago + Cleveland + Fort Worth + Kansas City + Los Angeles + New York + Philadelphia + San Francisco + Seattle + St. Paul + Syracuse + Washington, D. C.

Automatic, maintenance-free, instantaneous voltage stabilization

Static-magnetic constant voltage transformers are a practical and efficient solution for controlling input voltage to voltage-sensitive electrical and electronic equipment.

Sola Constant Voltage Transformers are widely used both as built-in components and as accessory units. They differ from regulators which depend solely upon saturation of core materials for their regulating action, or electronic types employing tubes. Sola Constant Voltage Transformers have the following characteristics:

- 1. Regulation within $\pm 1\%$, with primary voltage (transient or continuous) variations as great as 30%.
- 2. Response time less than 11/2 cycles.
- 3. No moving or wearing mechanical parts, nor vacuum tubes; requires no manual adjustments.
- 4. Completely automatic, continuous regulation.

- 5. Self-protecting against short-circuits on output.
- Current-limiting characteristics protects load equipment.
- 7. Can often be substituted in place of conventional non-regulating transformers.
- 8. Generally smaller than other types of regulators for similar duty.
- 9. Isolates the input and output circuits.

Forty-three Sola stock units are available in a wide variety of ratings, voltages and types. In addition, custom-designed units can be manufactured (in production quantities) to meet specific requirements.

The experience of the world's largest manufacturer of constant voltage transformers is available to you. We invite you to discuss your voltage stabilizing problems with a Sola Sales Engineer.

SOLA Constant Voltage TRANSFORMERS

WRITE FOR LITERATURE, Sola Constant Voltage Transformers are completely described in a 24 page manual. Write for a copy of 7D-CV-170 on your letterhead, please.

Transformers for: Constant Voltage • Fluorescent Lighting • Cold Cathode Lighting • Mercury Vapor Lighting • Luminous Tube Signs SOLA ELECTRIC CO., 4633 W. 16th Street, Chicago 50, Illineis, Bishop 2-1414 • NEW YORK 35: 103 E. 129h St., TRafalgar 6-6464 PHILADEIPHIA: Cammercial Trust Bldg., Rittenhouse 6-4988 • BOSTON: 272 Centre St., Newton 58, Mass., Bigelow 4-3354 CLEVELAND 15: 1836 Euclid Ave., PRospect 1-6400 • KANSAS CITY 2, MO.: 406 W. 34th St., Jefferson 4382 • Reps. in Other Principal Cities

Frequency 10 cps to 200 mc Interval 1 usec to 100 days Period 0 cps to 10 kc

measured instantly, automatically, directly by the revolutionary new...

-hp- 525A Frequency Converter

-hp- 525B Frequency Converter

-hp- 526A Video Amplifier

-hp- 526B Time Interval Unit

-hp- 524B ELECTRONIC COUNTER

Why buy more instrumentation than you need? The new all-purpose -hp- 524B Electronic Counter with Plug-In Units gives you precisely the frequency, time interval or period measuring coverage you want now. Later, you can add other inexpensive plug-in units to double or triple the usefulness of the Counter.

Model 524B offers direct, instantaneous, automatic readings requiring no calculation, interpolation or complex instrument set-up. It has high sensitivity, high impedance, and its operation is so simple and dependable it can be used readily by non-technical personnel. Resolution is 0.1 µsec, and accuracy is 1/1,000,000 ± 1 count. Construction throughout is of highest quality components in a compact militarized design.

The new Counter with Plug-In Units gives you more range, more convenience, smaller size and lower cost than any commercial instrument combination ever offered. With this one compact equipment, you readily measure transmitter and crystal oscillator frequencies, time intervals, pulse lengths, repetition rates, frequency drift; make high accuracy ballistics time measurements or high resolution tachometry measurements, or use as a precision frequency standard giving convenience and flexibility not provided in the usual primary standard.

Data subject to change without notice. Prices f.o.b. factory

BASIC COUNTER

The basic -hp- 524B Counter unit measures frequency from 10 cps to 10 mc with accuracy of \pm 1 count \pm stability, reading direct in kc; or measures period from 0 cps to 10 kc with accuracy of \pm 0.3% reading direct in seconds, milliseconds or microseconds. Eight-place registration, short term stability 1/1,000,000, display time variable 0.1 to 10 seconds. \$1,890.00

COUNTER WITH PLUG-IN UNITS

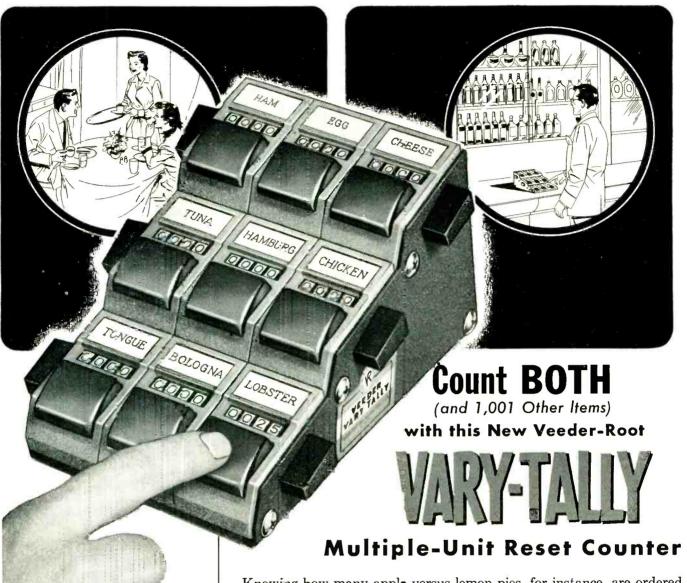
-hp- 525A Frequency Converter extends Counter's range to 100 mc, maintains accuracy, and increases Counter's video sensitivity to 0.1 volts through basic 10 cps to 10 mc range. \$225.00

-hp- 525B Frequency Converter like 525A but extends Counter's range to 200 mc at 0.25 volts sensitivity. \$225.00

-hp- 526A Video Amplifier increases Counter sensitivity between 10 cps and 10 mc to 10 millivolts for low level frequency measurement. \$125.00

-hp- 526B Time Interval Unit measures interval 1.0 μ sec to 100 days with accuracy of 0.1 μ sec \pm 0.001%, reading direct in seconds, milliseconds or microseconds. Start, stop triggering in common or separate channels, through positive or negative going waves. \$150.00 (Plugin units supplied in aluminum storage case).

Request complete details today from your -hp- Field Representative, or write direct


HEWLETT-PACKARD COMPANY
4998A Page Mill Road • Palo Alto, California, U.S.A.

ATTEND THE I. R. E. REGION 7 CONFERENCE-TRADE SHOW

PORTLAND, OREGON . MAY 5, 6, 7

Ham on Rye or Rye on Hand?

Knowing how many apple versus lemon pies, for instance, are ordered on a given day . . . or how many cases of what are in the cellar . . . helps a restaurant countrol, make plans, make profits. The same goes for a manufacturer or wholesaler seeking tighter inventory control . . . or for any of the following:

- Traffic Engineers
- Schools and Colleges
- Nurserymen and Florists
- State Fark and Forest Services
- Laborctories
- Milk Plants and Ice Cream Processors
- Researcher:
- Industrial Plants
- Textile Mills
- Inspection and Quality Control
- Jobbers, Wholesalers, Distributors

- Restaurants and Hotels
- Mail and Phone Order Departments
- Laundries and Linen Supply Houses
- Manufacturers of equipment for:

Order Control
Stock Control
Inventory Control
Traffic Control
Sales and Market Analysis

Laboratory Analysis
Payroll Preparation

• and What Do You Want to Count?

`The Name that Counts"

Arranged compactly on stands in tiers, the Vary-

Tally can be supplied in any of 66 combinations,

up to 6 banks high and 12 units wide, with a

minimum of 2 units wide. Write for news sheet

VEEDER-ROOT INC.

HARTFORD 2, CONNECTICUT

Chicago 6, III. . New York 19, N. Y. . Greenville, S. C. . Mantreal 2, Canada . Dundee, Scotland . Offices and Agents in Principal Cities

and prices.

Need a SPECIAL material?

LAVA • SILICON CARBIDE

ALUMINA (vitrified or porous) • CORDIERITE

STEATITE • ZIRCONIUM OXIDE • ZIRCON

MAGNESIUM SILICATE • ALUMINUM SILICATE

FORSTERITE • TITANIUM DIOXIDE

SEE OUR DISPLAY

BOOTH NO. 340

BASIC MATERIALS EXPOSITION

The Product
Development Show

CHICAGO MAY 17-20, 1954 Development of new, special purpose ceramic compositions is a regular part of our work. No matter what your requirements are, the chances are good that we have an AlSiMag composition that will do the job.

If you need a material with special characteristics or have a difficult design involving intricate shapes or close tolerances, give us your requirements. Let us show you what we can do.

53RD YEAR OF CERAMIC LEADERSHIP

AMERICAN LAVA CORPORATION

A Subsidiary of Minnesota Mining and Manufacturing Company

CHATTANOOGA 5, TENNESSEE

OFFICES: METROPOLITAN AREA: 671 Broad St., Newark, N. J., Mitchell 2-8159 • SYRACUSE, N. Y.: 204 Harding Place, Phone 9-0656 • CLEVELAND: 5012 Euclid Ave., Room, 2007, Express 1-6685 • NEW ENGLAND: 1374 Mass. Ave., Cambridge, Mass., Kirkland 7-4498 • PHILADELPHIA: 1649 N. Broad St., Stevenson 4-2823 • ST. LOUIS: 1123 Washington Ave., Garfield 4959 • CHICAGO: 228 N. LoSalle St., Central 6-1721 • SOUTHWEST: John A. Green Co., 6815 Oriole Dr., Dallas 9, Dixon 9918 • LOS ANGELES: 5603 N. Huntington Dr., Capital 1-9114

The Gates CC-1 all plug-in audio console is superlatively fine — commercially beautiful to look at — warmingly satisfying to operate — technically superb — functionally complete beyond expectation — and upholds the tradition of those that have long been associated with the very best.

There is indeed a lot of pleasure and contentment in the operation of a speech input console so quality filled—that behind the control panel are parts and workmanship that spell complete reliability and assurance that your audio quality and handling cannot be excelled—anywhere.

Your 240-page Gates master catalog, Pages 120-124, or speech input catalog DS-534, tells the CC-1 story. If your copy has been misplaced, only the asking will send another on its way to you.

This Console is on display at all GATES stock-carrying branches in ATLANTA, HOUSTON and LOS ANGELES.

Houston, 2700 Palk Avenue New York, 51 East 42nd Street

GATES RADIO COMPANY

Manufacturing Engineers Since 1922

Washington, D. C., Warner Bldg. Los Angeles, 7501 Sunset Blvd. New York, International Div., 13 East 40th St. QUINCY, ILL., U. S. A.

Atlanta, 13th & Spring Sts. Montreal, Canadian Marconi Co.

When it comes to electronics . . . experience is our single greatest virtue.

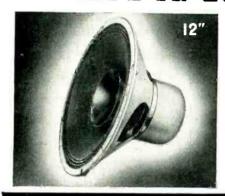
The average experience of our electronic engineers is more than ten years in this specialized field.

Their contributions to this fast-developing industry are attested to by our producing acoustical-electronic firing error indicators . . . portable, high-powered, 1kw-plus long-range transmitters . . . and one-man, multi-channel

UHF transceivers. If you have a problem which may be solved by the use of electro-mechanical, hydraulic, pneumatic or electronic equipment, let's talk it over.

"WE DISTRIBUTE A WIDE RANGE OF AIRCRAFT EQUIPMENT FOR A NUMBER OF AMERICA'S LEADING MANUFACTURERS. A NEARBY BRANCH WILL BE HAPPY TO SERVE YOUR NEEDS. DO MORE BUSINESS . . . REALIZE MORE PROFIT WITH AIR ASSOCIATES' EQUIPMENT."

J. E. Cashman PRESIDENT



SSOCIATES, INC.

TETERBORO, NEW JERSEY

MADE IN ENGLAND

AXIOM 150 Mk II

A 12-inch twin-cone full range high fidelity reproducer, with a power handling capacity of 15 watts.

BRIEF SPECIFICATION:

Frequency Coverage - - - 30/15,000 c/s Fundamental Resonance - - 35 c/s Flux Density - - - - 14,000 gauss Nett Weight - - - - 12lb. 13ox. (5'8 kg)

AUDIOPHILE NETT PRICE

\$43.50

AXIOM 22 Mk II

A 12-inch twin-cone high-power P.M. loudspeaker combining generous bass handling capacity with full range high fidelity reproduction.

BRIEF SPECIFICATION

Frequency Coverage 30/15,000 c/s Fundamental Resonance 35 c/s Flux Density 17,500 gauss Nett Weight 18 lb. 4 ozs. 8-3 kg.

AUDIOPHILE NETT PRICE \$65.00

AXIOM 80

A medium power FREE SUSPENSION high fidelity P.M. reproducer for the professional enthusiast.

AUDIOPHILE NETT PRICE

\$52.30

BRIEF SPECIFICATION

Frequency Coverage - - - - - 20/20,000 c/s Fundamental Resonance - - - - 20 c/s Flux Density - - - - - - - - - 20 c/s Nett Weight - - - - - - - - - 9lb. 6oz. (4.2 kg)

Exclusively distributed by:—

Goody Audio Centre Inc.,

235, West 49th St., New York 19, N.Y.

NORTH & MID-WEST:

Newark Electric Company,

223, West Madison St., Chicago 6, ILL.

WEST:

Hollywood Electronics,

7460, Melrose Avenue, Los Angeles 46, Cal.

SOUTH:

High Fidelity SSS,

606, Peachtree St., N.E., Atlanta, Ga.

CANADIAN SALES OFFICE: A. C. Simmonds & Sons Ltd., 100, Merton St. Toronto 12.

GOODMANS INDUSTRIES LTD., AXIOM WORKS, WEMBLEY, MIDDLESEX, ENGLAND.

THIS PRINCIPLE... 10,000 TIME IN SECONDS provides custom 700 1.000 1.100 1.200 fitted overload PERCENT LOAD protection...

With the HEINEMANN hydraulic-magnetic principle, you can have overload protection in circuit breaker or relay form precisely designed for your product.

First, you are not limited to the nearest "standard" rating—you specify the exact rating based on the normal running current of your

equipment.

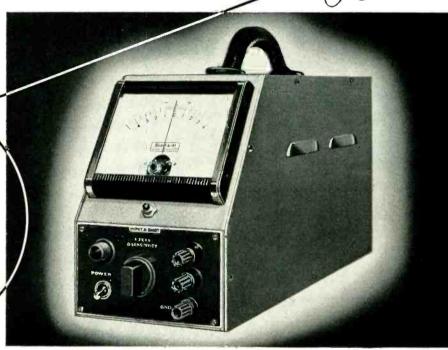
Second, you have a selection of time delay response curves. Your choice is based on normal inrush characteristics as well as the size and duration of overloads that should be permitted—specifically in your product.

Furthermore, since Heinemann Circuit Breakers and Overload Relays do not employ thermal elements, their ratings never change . . . de-rating for ambient temperature is never necessary . . . nuisance power interruptions never occur. Yet, on dangerous overloads or short circuits, they provide the fastest circuit interruption available.

Send for descriptive literature.

MORE INFORMATION? On circuit breakers (left), send for Bulletin SW; on overload relays (right) send for Bulletin 5101A.

HEINEMANN ELECTRIC COMPANY


97 Plum Street • Trenton 2, N. J.

)W-the modern successor

to the galvanometer

the new ElectraniK **Null Indicator**

electrical characteristics

INPUT IMPEDANCE

1500 ohms

CURRENT SENSITIVITY

0.6 x 10-9 amperes per millimeter

VOLTAGE SENSITIVITY

1 microvolt per millimeter

OPERATING VOLTAGE

115 volts, 60 cycles

If you use galvanometers, you'll be interested in the new ElectroniK Null Indicator. For here, at last, is the lab man's ideal d-c null balance detector . . . completely free from all the limitations of galvanometers.

It's easy to use—no "loss of spot" from excess signal; bridge balancing operation is simplified.

It's self-protecting—will take heavy over-loads without damage.

It's vibration-proof—undisturbed by nearby traffic or machinery.

It goes anywhere—needs no leveling or special mounting; plugs into 115-volt 60-cycle line; small case fits readily into experimental set-ups.

It's stable—holds steady zero after warm-up.

It's fast—indicates in less than one second; ideal for production testing.

It's sensitive—suitable for use with high precision measuring circuits.

The ElectroniK Null Indicator is priced within reach of any budget. It will be a valuable asset to your lab. Write today for complete information.

MINNEAPOLIS-HONEYWELL REGULATOR Co., Industrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa.

REFERENCE DATA: Write for Instrumentation Data Sheet No. 10.0-12.

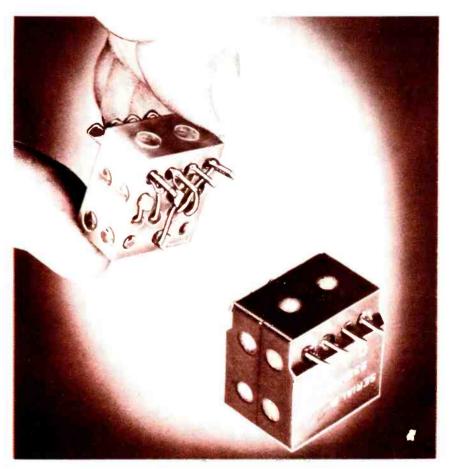
BROWN

INSTRUMENTS

First in Controls

FOR ELECTRICAL AND ELECTRONIC ENGINEERS

Published by TECHNICAL SERVICE, Chemical Manufacturing Division, The M. W. KELLOGG Company


APRIL-MAY 1954

Rectifier Molded in Kel-F® Plastic, Smaller Than a One-inch Cube ... Boasts 100-G Shock Resistance

Unmatched compactness, high electrical efficiency under severe conditions, and exceptional durability are advantages gained by using "Kel-F" trifluorochloroethylene polymer to insulate this double-bridge instrument rectifier. The size of the rectifier belies its 3-ma output from each of two 130volt rms full-wave bridges. Insulation of the many rectifier wafers and resistors in the unit is enhanced by the exceptionally high electrical resistance of "Kel-F". The high strength and stability of the molded fluorocarbon block also enable it to serve as a mount for parts, since the plastic is unaffected by high thermal and shock loads.

The parts of the rectifier are assembled in a block of injection-molded "Kel-F", which, in turn, is encased in plastic. The unit is made by International Resistance Company, Philadelphia, Pa., to specifications of the Raytheon Manufacturing Company, Waltham, Mass. Rectifier is employed in phase-comparator applications, has many other potential uses.

For further information ask for Application Report E-122

Magnetic Stirring Bars Sealed in Kel-F® to Stop Corrosion and Breakage

A vacuum-tested casing of "Kel-F" permits these metal bars to be used indefinitely to "mix" highly corrosive acids, alkalis, solvents and peroxides—at from minus 200°C to plus 200°C—without corrosion or breakage. The fluorocarbon "skin" cannot crack or chip. Non-porous and non-absorbent, the covering is virtually self-cleaning, can even be sterilized.

Three sizes of stirring bars are now made by the Arthur H. Thomas Company of Philadelphia. Pa., by sealing cylindrical permanent magnets into extruded tubing. Extruded from unplasticized "Kel-F" Grade 300 by the Plax Corporation of Hartford, Conn.

For further information ask for Application Report C-115

(SEE REVERSE SIDE)

TRIFLUORO CHLORO ETHYLENE POLYMERS

KELFE

KELF

MOLDING

KELF

FLUORO CHLORO CARBON PLASTIC

KELE

DISPERSION COATINGS

TRIFLUORO CHLORO ETHYLENE POLYMERS

KELE

OILS WAXES GREASES

TRIFLUORO CHLORO ETHYLENE POLYMERS

ELEK

DISPERSION COATINGS

OILS WAXES GREASES

Coil Connector of Kel-F[®] Boosts Actuator Motor Performance and Output, Simplifies Maintenance

Molding this coil connector for a miniature motor from "Kel-F" made possible the addition of a vital brake clutch, a sharp increase in output and the use of time-saving solderless terminals—without increasing the unit's size.

High insulation resistance of "Kel-F" under thermal cycling, allowed specification of a lighter connector for effective insulation over the temperature range of minus 65°F to 200°F without tracking or shorting. Exposed to high humidity, the plastic's zero water absorption prevents arcing or dissipation. Then non-wetting and smooth surface of the molded connector is fungus-inert.

The connector is injection molded from "Kel-F" unplasticized polymer by the United States Gasket Company of Camden, New Jersey. The Grand Rapids Division of Lear, Incorporated, manufacturers of precision aircraft instruments and electronic systems, uses this connector in a D.C. motor.

For further information ask for Application Report E-123

Molders & Fabricators of the Month

Leading molders, extruders and fabricators specialize in the production of materials and parts made of "Kel-F"...each month this column will spotlight several of these companies with their principal services and products.

Brilhart Plastics Corporation Mineola, N. Y.

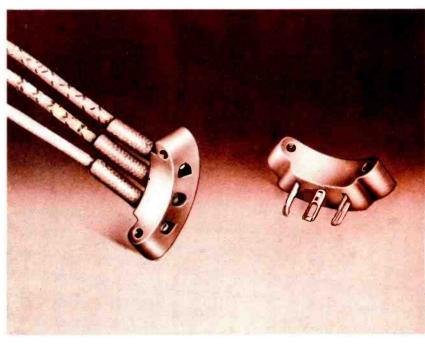
Injection, Compression & Transfer Molding

Electrical & Electronic Components Gaskets, Diaphragms & "O" Rings

Fluoro Plastics, Incorporated Philadelphia, Pa.

Compression & Transfer Molding Gaskets & "O" Rings; Valve Seats; Containers Electrical & Electronic Components

The Garrison Company Kenilworth, N. J.


Extrusion & Production Machining Electrical & Electronic Components Wire Insulation

Penn-Plastics Manufacturing Co. Glenside, Pa.

Compression & Transfer Molding Electrical & Electronic Components

Porous Plastic Filter Company Glen Cove, N. Y.

Porous Filters

Recent Significant Developments in "Kel-F"

Electronic Tube Caps boost performance of high-altitude communications equipment, removing interference from thermal cycling, high humidity.

Ashestos, Glass Fiber, other fillers being successfully incorporated in molded parts in high temperature, corrosive valve service, structural electrical members.

Float Bodies of "Kel-F" and powdered metal incorporated in flowmeter bodies machined of "Kel-F" for smaller, more accurate measuring devices for severe corrosives, liquid or gaseous.

Welding, by "hot gas" method being used in fabrication of corrosion-resistant feed hoppers.

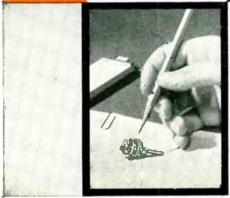
Visit the Kel-F POLYMER EXHIBIT at the Basic Materials Show May 17-20--Chicago, Ill.

For complete information regarding any item mentioned in DESIGN AND PRODUCTION NEWS, ask for detailed APPLICATION REPORTS, write

Technical Service CHEMICAL MANUFACTURING DIVISION

M. W. KELLOGG COMPANY

P. O. Box 469, Jersey City 3, N. J. or offices in Boston, Chicago, Dayton, Los Angeles and New York


It is the designers and specifiers who USE the ELECTRONICS BUYERS' GUIDE.

USAGE

OF THE "GUIDE" IS A PROVEN FACT!

Questions that arise at the breadboard . . .

Questions of product specs,

Questions of manufacturers . . .

Designers requiring immediate

and accurate answers to their questions

simply resort to the most efficient and expedient method

of getting those answers . . .

Of course, this is in the ELECTRONICS BUYERS' GUIDE

where questions are daily answered, all year 'round

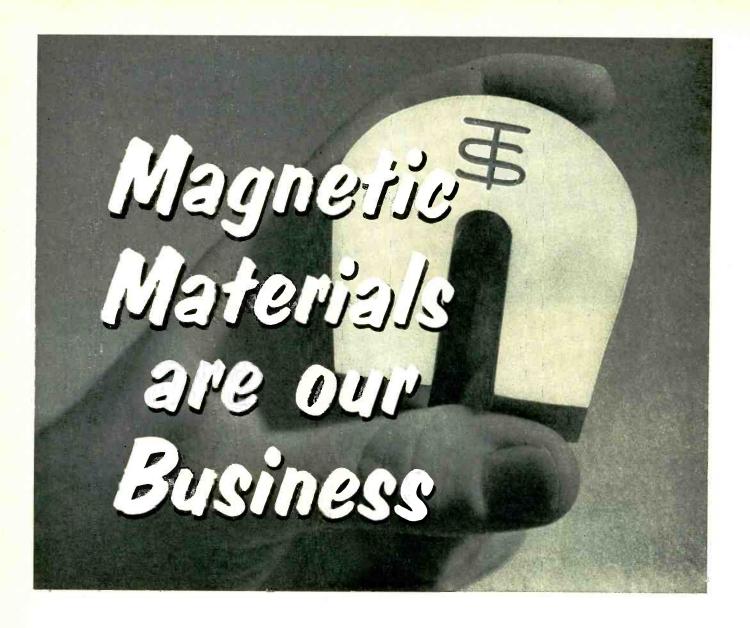
in a manner complete and accurate.

The "Guide" is the accepted product reference book

of the entire industry.

You, too, can profit by getting into the habit of looking it up in ...

The results of a survey, ELECTRONICS BUYERS' GUIDE QUESTIONNAIRE ON BUYING HABITS, will be available in booklet form soon. Here are facts and figures that prove usage of the "Guide" as a purchasing source by the men who do the specifying and buying. In this booklet you will find what they bought . . where they bought . . , how many times they bought. See printed evidence of the positive sales value of the "Guide." For your free copy, call your District Manager of ELECTRONICS or write to the Business Department of ELECTRONICS BUYERS' GUIDE.

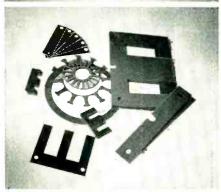


electronics BUYERS' GUIDE

A McGraw-Hill Publication

330 West 42nd Street, New York 36, N. Y.

...that's why it's smart business to buy from a specialist


Through more than 50 years of specialization in the development and production of magnetic materials, Thomas & Skinner has gained the skills and know-how that assures you the best in engineering assistance—the best in quality production...at prices

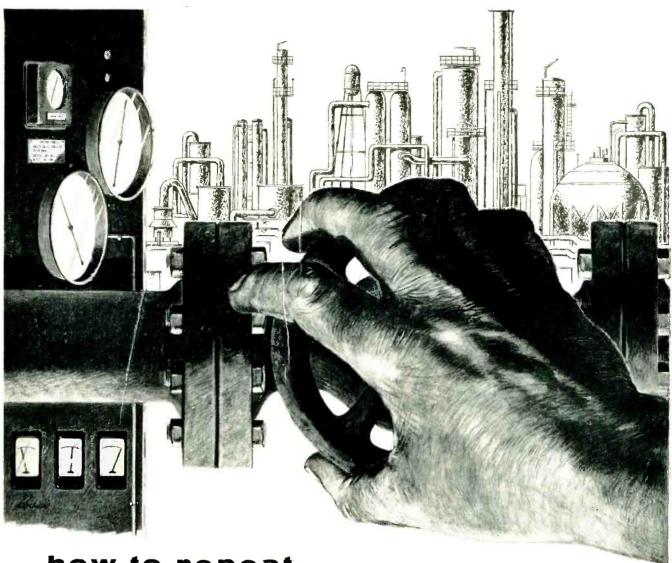
that may be lower than you are now paying.

It will, pay you to investigate the many advantages offered by Thomas & Skinner . . . specialists in magnetic materials . . . permanent magnets, electrical laminations, and wound cores.

Specialists in magnetic materials, Permanent Magnets, Electrical Laminations and Wound Cores

PERMANENT MAGNETS Whatever your needs — Alnico, cobalt, chromium—Thomas & Skinner can meet your specifications for either standard designs or special shapes. Typical of T&S advanced materials is Alnico 5Cb, offering an energy product of 5.70 million *nominal*. And typical of T&S advanced techniques is shell-molding, offering intricate shapes with tolerances as close as ± .005" without grinding or finishing.

ELECTRICAL LAMINATIONS Geared to high volume production, T&S uses the most modern equipment available to produce high quality laminations in quantity at the lowest prices possible. Rigid quality control is maintained through each phase of production—stamping—atmosphere annealing—every vital step in producing top quality laminations. For every type application, T&S can provide all grades, all gauges to meet your demands for standard or special laminations. T&S's OrthoSil is also available for applications requiring directional electrical characteristics with extreme high permeability and low core loss.


WOUND CORES You can save on both assembly costs and time—and reduce both size and finished weight—with "C" Type and Toroidal Wound Cores made from T&S OrthoSil. The directional magnetic characteristics and extremely rectangular hysteresis loop of oriented OrthoSil have proved advantageous on hundreds of applications, particularly in 400 cycle equipment at flux densities of 15,000 gauss and over.

Did you know... that you can now buy electrical laminations that are pre-tested with the certified reports sent to you with each shipment. Yes, Thomas & Skinner certifies that each order of laminations is tested and meets the most rigid specifications... you receive test figures for both core loss and exciting current at 10M gauss on each heat annealed. This means an additional savings to you since it eliminates the need for retesting on your part. Many of the leading transformer manufacturers specify T&S CERTIFIED LAMINATIONS. Perhaps you should too!

write today
for free
catalogs!

☐ Magnet Design — Bulletin 151 (for the design engineer)	
 Standard Magnets — Catalog SM-1252 (complete data with dimensional drawings) 	
☐ Alnico 5Cb — Bulletin 1253 (details on today's newest Alnico)	
Laminations — Bulletin L-752 (applications, specifications, value graphs)	Thomas Chir
☐ Wound Cores — Bulletin WC-353 (specifications, value graphs)	Thomas&Skir
Name and Title	
Сотрапу	STEEL PRODUCTS COMPAN
Address	1122 EAST 23RD ST

INDIANAPOLIS, INDIANA

how to repeat a master touch

an electronic answer to process control

"The master touch" by which a process achieves a perfect result may be a lucky combination of temperatures, pressures, agitation, timed feeding of ingredients and numerous other variables. But the desired results could be achieved every time — provided an exact process pattern could be fed to electronic controls.

Ampex recordings provide a "perfect memory" — Practically any chemical, metallurgical or manufacturing process can be "remembered" intact on magnetic tape by an Ampex Recorder. Any likely number of variables can be recorded concurrently and with high accuracy. They occupy parallel channels on a single width of magnetic tape; timing and synchronization are inherently perfect.

The Ampex playback can actuate any reaction
— From this magnetic tape, the process is "played back" as a pattern of electrical signals. These can

operate valves, thermostats or pressure controls and can run motors, adjust speeds or control any other necessary mechanical or electrical responses. Thus a magnetic tape can repeat any process sequence that previously achieved a successful result, controlling it more closely than even a standby operator.

Wherever you control a sequence of operations, magnetic tape may achieve important advantages. For further information, write today to Dept. **E-1447**

AMPEX CORPORATION
934 Charter Street • Redwood City, California
Branch offices: New York, Chicago, Atlanta, San Francisco and
College Park, Maryland (Washington, D.C. area).
Distributors: Radio Shack, Boston; Bing Crosby Enterprises, Los
Angeles; Southwestern Engineering & Equipment, Dallas and
Houston; Canadian General Electric Company, Canada.

Complete line of DISC CERAMICONS

HIGH VOLTAGE

HIGH VOLTAGE DISC CERAMI-CONS employ the same basic diameters that have been standardized in 500 volt Ceramic capacitors. Careful and detailed life testing has been accomplished over a long period of time to establish required dielectric thicknesses to assure conservative ratings in the high voltage line. Standard voltage ratings range from 1,000 through 6,000 Volts, D.C., Working.

TEMPERATURE COMPENSATING

TEMPERATURE COMPENSATING DISC CERAMICONS, in four sizes, offer all standard combinations of temperature coefficient and capacitance value. They are tested for conformance to Erie specifications for Tubular Ceramicons and meet all requirements for RETMA REC-107A Class 1 ceramic capacitors. They are available in capacity ranges up to 1940 mmf.

GENERAL PURPOSE

GENERAL PURPOSE DISC CERA-MICONS have low series inductance which assures efficient high frequency operation. They are made in sizes from 5/16" to 3/4" diameter, and in capacitance values ranging from 4.5 mmf to .02 mfd. ERIE VISC CERAMICONS are available in three classes, each having a wide range of capacitance values for the basic applications. These capacitors consist of flat ceramic dielectrics with fired silver electrodes. Lead wires are firmly soldered to the electrodes, and completed units are given a protective coating of wax impregnated phenolic. For complete description and specifications, write for catalogs and samples.

ERIE components are stocked by leading electronic distributors everywhere.

ERIE RESISTOR CORPORATION . . . ELECTRONICS DIVISION

Main Offices and Factories: ERIE, PA.

Sales Offices: Cliffside, N. J. . Philadelphia, Pa. . Chicago, Ill. . Detroit, Mich. Ashland, Ohio • Fort Wayne, Ind. • Los Angeles, Calif. • Toronto, Ontario

Manufacturing Subsidiaries:

HOLLY SPRINGS, MISS. • LONDON, ENGLAND • TRENTON, ONTARIO

ERI

Now!

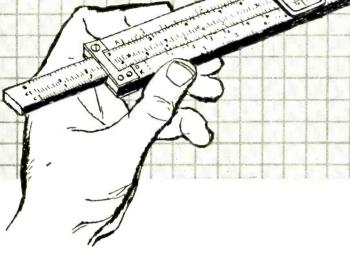
HI-PRECISION GEAR BOX

RATIOS FROM 20:1 TO 3125:1

A new miracle in engineering—the LINK *Hi-Precision* Gear Box—is ready now for use in servo-mechanisms, computers and many other instruments that demand exceptional performance and design simplicity.

This light weight, lifetime lubricated gear box is now being produced in quantity – with custom craftsmanship.

ADVANCED PERFORMANCE WITH THESE OUTSTANDING LINK FEATURES


- 1. Virtually Friction-free Less than .01 inch ounces of frictional torque at the input to the gear box.
- 2. Practically Backlash-proof—Repeated tests find less than 0.27° on a gear box of 500:1 ratio.
- 3. Low Inertia Aluminum gears, molecularly lubricated for a lifetime, help keep inertia down to less than 4.5 gram cm² on a 500:1 gear box.
- 4. Long Life Continuous performance tests of a 150:1 gear box for more than 1800 hours under 90 inch ounces of load at 3000 rpm assures dependable service.
- 5. High Torque Rated at 120 inch ounces off the slow turning shaft.
- **6.** Overall Dimensions $-3\frac{1}{2}$ " x $3\frac{1}{2}$ " x $2\frac{1}{2}$ ".

Manufacturers of the world-famous Link Trainers, servo-mechanisms, servo-amplifiers, graphic recorders, fractional h.p. wide range variable speed drives, spur gear differentials, friction and averdrive clutches, index dials, phase angle meters, ratio valtmeters, precision potentiameters and other special electronic devices.

engineers are critical people

We know, because we're engineers, too

Radio and TV stations, recording studios, commercial and industrial film studios, testing laboratories, program production organizations and a host of others have long needed a thoroughly professional, well designed, easily maintained tape recorder.

More than a year ago, Presto's top engineers were assigned to the development of such a recorder. Months later a test model was completed which not only met these specifications, but embodied a completely new principle of recorder design . . . unitized construction; the entire capstan drive is a separate, easily removed unit.

The instrument was designated "Model RC-11," and then a series of rigorous tests were begun. The RC-11 was run continuously for hours at a time under the most adverse conditions. These tests resulted in further improvements.

Finally, when we were satisfied that this was the finest tape recorder of its type that could be built, we tooled up and put it into production.

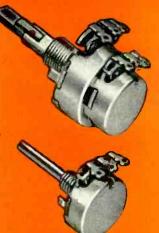
By reputation engineers are the most critical people on earth. (We know, because we're engineers, too.) And, some of the most qualified recording engineers who have seen and operated the RC-11 share one opinion . . . that here is the finest, easiest to operate, best performing tape recorder available today.

Export Division:
Canadian Division:

25 Warren Street, New York 7, N. Y. Walter P. Downs, Dominion Square Bldg., Montreal

PRESTO RC-II TAPE RECORDER

IN CONSOLE WITH 900-A3
AMPLIFIER

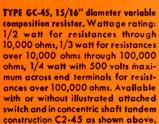

- Self-contained Capstan Drive Unit—3 motor drive.
- Three magnetic heads in metal enclosure.
- · Push button function switches.
- · Reel capacity to 101/2" diameter.
- Response: 50 to 15,000 cycles ± 2 db.
- Flutter: less than 1½% at 15"/sec,
- Signal to noise: 55 db. at 2% distortion.

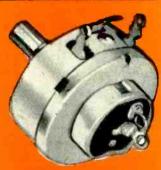
COMPLETE CIVILIAN LINE

Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities.

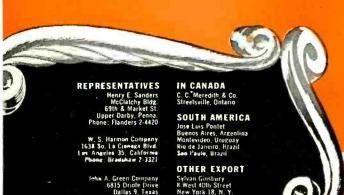
NEW HIGH QUALITY MINIATURIZED
"DIME-SIZE" CIVILIAN CONTROL—
Performance fully Equals Larger
Types.

TYPE 70, 3/4" diameter variable composition resistor. Wattage rating: .3 watt for resistances through 10,000 ohms, .2 watt with 350 volts maximum across end terminals for resistances over 10,000 ohms. Also available in concentric shaft tandem construction C45-70 as shown above.





TYPE GC-35, 1 1/8" diameter variable composition resistor. Wattage rating: 3/4 watt for resistances through 10,000 ohms, 2/3 watt forresistances over 10,000 ohms through 25,000 ohms, 1/2 watt with 500 volts maximum across end terminals for resistances over 25,000 ohms. Available with or without illustrated attached switch and in concentric shaft tandem construction C2-35 as shown above.



TYPE GC-252, 2 watt, 1 17/64" diameter variable wirewound resistor. Available with or without illustrated attached switch and in concentric shaft tandem construction C2-252 as shown above.

TYPE GC-25, 4 watt, 1 17/32" diameter variable wirewound resistor. Available with or without illustrated attached switch and in concentric shaft tandem construction C2-25 as shown above.

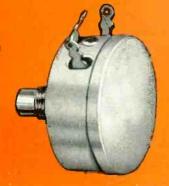
Typical concentric shaft tandem with panel and rear sections operating separately from concentric shafts (TYPE C45-70 ILLUSTRATED). Similar construction available tor all military resistors.

TYPE C45-70

NEW 38-PAGE ILLUSTRATED CATALOG-

Describes Electrical and Mechanical characteristics, Special Features and Constructions of a complete line of variable resistors for military and civillan use. Includes dimensional drawings of each resistor. Write today for your copy.


TYPE 45, (JAN-R-94, Type RV2) 1/4 watt, 15/16" diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94 including concentric shaft tandem construction. Attached switch can be supplied.


TYPE 35, (JAN-R-94, Type RV 3) 1/2 watt, 11/8" diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94 including concentric shaft tandem construction. Attached switch can be supplied.

TYPE 252, (JAN-R-19, Type RA20) 2 watt, 1 17/64" diameter variable wirewound resistor. Also available with other special military features not covered by JAN-R-19 including concentric shaft tandem construction. Attached switch can be supplied.

TYPE 25, (JAN-R-19, Type RA30) (May also be used as Type RA25) 4 watt, 1 17/32" diameter variable wirewound resistor. Also available with other special military features not covered by JAN-R-19 including concentric shaft tandem construction. Attached switch can be supplied.

COMPLETE MILITARY LINE

Immediate delivery from stock on 189 types including JAN-R-94 and JAN-R-19 types of variable resistors.

TYPE 65, (Miniaturized)
1/2 watt 70°C, 3/4" diameter miniaturized variable composition resistor.

TYPE 90
1 watt 70°C, 15/16" diameter varioble composition resistor. Attached
switch can be supplied. Also available in concentric shaft tandem
construction.

TYPE 95, (JAN-R-94, Type RV4)
2 watt 70°C, 11/8" diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94 including concentric shaft tandem construction. Attached switch can be supplied.

UNPRECEDENTED PERFORMANCE CHARACTERISTICS

Specially designed for military communications equipment subject to extreme temperature and humidity ranges.

-55°C to +150°C...aridity to saturation.

Burton Browne Advertising

(E)

CHICAGO TELEPHONE SUPPLY
Corporation

From "The House of Resistors" **

come ...

COST-REDUCING

CONTROLS

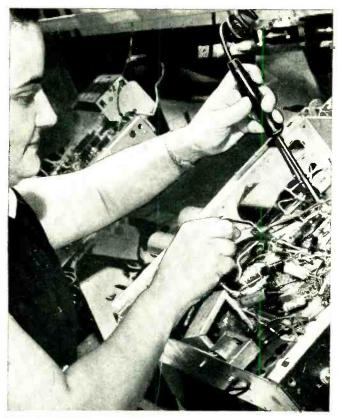

So you must get cost down in designing that assembly? That's just the time to enlist Clarostat's cost-saving talents and facilities. The same superlative engineering and production skill that accounts for the finest quality in controls and resistors, is also available for designing and fabricating cost-reducing components. Three typical examples are presented herewith. These are standard items, promptly available in any quantities, at marked savings. And for any extraordinary requirements, special controls and resistors can be developed, tooled-up and produced.

The original "Humdinger"
Series MH. Compact, rugged,
wire-wound control. Virtually
nillions in use. Fibre base holds
esistance winding. Movable arm and
shaft. 1-watt. 2 to 1000 ohms.

Latest "Humdinger" Series 39.

Metal-case mounted with rivels or screws. Mounting surface serves as cover. Semi-fixed setting by screwdriver slipped into rotor slot — no shaft 2-watt 4 to 5000 ohms.

Twist-Tab Mounted Series 47.
Eliminates usual bushing,
lockwasher, nut. Compositionelement control. Metal or plastic
shaft. Plastic shaft has rear
slotted protrusion, therefore
adjustable from front or rear.


**Trade Mark

CONTROLS and RESISTORS

CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE In Canada: CANADIAN MARCONI CO., Ltd., Toronto, Ont,

Want more information? Use post card on last page.

April, 1954 — ELECTRONICS

LIGHT-AS-A-PENCIL G-E MIDGET reduces operator fatigue, has longer-lasting Ironclad tip. The Midget solders like a pencil dots an "i."

EXTRA-HEAVY-DUTY G-E IRON with long-life calorized copper tip is ideal for soldering heavy-gage cans and armature windings.

You get lower costs, faster soldering with the complete line of long-life G-E irons

Select a soldering iron from General Electric's complete line for easier, faster, cost-cutting soldering. You can choose from 24 different irons with ratings from 25 to 1250 watts.

Long-life G-E Ironclad Copper Tips last up to *ten times as long* as ordinary tips. Ironclad tips combine the durability of iron and excellent heat-transfer of copper.

For Soldering Small Connections, you'll want to try the G-E Midget iron with easily interchangeable ¼-in., ½-in., and ¼-in. Ironclad tips. This 1¾-ounce, 25-watt iron reduces operator fatigue, makes pinpoint connections. And because the Calrod* heater is built right into the tip, you get maximum heat transfer, amazing heat recovery for an iron of this size.

For Medium-sized Jobs, try G.E.'s sturdy Lightweight iron. This high-speed iron *Reg. Trademark of the General Electric Co.

for continuous soldering takes plenty of hard use. Because the iron has a thin shank and interchangeable $\frac{1}{4}$ -in. or $\frac{3}{16}$ -in. Ironclad tips, you can solder tight joints without damaging small connections.

For the Bigger Soldering Jobs, General Electric has larger irons ranging from the 75-watt, ½-in. tip unit to the heavyduty 1250-watt, two-inch-copper-tipped model. With a G-E Calrod heater cast into the heating head, you get unusually quick heating and high efficiency.

Contact Your General Electric Sales Office or Distributor to solve your soldering problems. Start cutting costs and increasing production with long-life, high-speed irons from the complete General Electric line. And for more information mail the coupon at right.

	126, General Electric Co., dy 5, N. Y.
	-, -, 11.
Please se	nd me Bulletin GEA-4519[
	Soldering Irons.
Nome	
Company_	
Company_	The state of the s
Address_	State

GENERAL ELECTRIC

400.00 CYCLES

1,000

FREQUENCY STANDARDS

IN QUANTITIES

PRECISION WITH RUGGEDNESS

TYPE 2003. Temperature-compensated tuning fork with most of the circuitry sealed inside. Requires a miniature double triode and 6 pigtail components in your circuit.

TYPE 2007. Temperature-compensated tuning fork with ALL circuitry, including sub-miniature double triode, sealed inside.

FEATURES — Plug in

Interchangeable Shock-vibration resistant

Hermetically sealed

Light weight. (7 ounces)

Small size $(1\frac{1}{2}" \times 4\frac{1}{2}")$

Meets JAN-MIL specifications

WRITE FOR DESCRIPTIVE LITERATURE, TYPE 2003-7 OR SEND BRIEF OUTLINE OF REQUIREMENTS.

Also available in-

240 500

2,000 cycles

ACCURACY: 1 PART IN 50,000

Manufacturers of a wide variety of timing equipment used in such fields as Aviation, Navigation, Ordnance, Ballistics, High-speed Photography, Viscosity Measure-ment, Fluid flow, Nuclear Physics, Telemetering, Chemical Reaction, Radiation Counting, Computers, Facismile, Fire control, School and Industrial Research Laboratories. Accurate speed control.

American Time Products, Inc. New York 36, N. Y. 580 Fifth Avenue

OPERATING UNDER PATENTS OF WESTERN ELECTRIC COMPANY

IT PAYS TO ASK THE

BEVERLY HILLS, CAL.

S I Spraggins 373 South Robertson PHONE: Crestview 5-1544

PLAINVILLE, CONN.

Karl Dornish 105 Farmington Ave PHONE: Plainville 653

ATLANTA, GEORGIA

Floyd Fausett & Son 777 Pinehurst Ter., S.W. PHONE: Raymond 3104

CHICAGO 13, ILLINOIS

Allen Woods 3403 Broadway PHONE: Buckingham

CHICAGO 39, ILLINOIS

C. R. Booth Room 317 4000 W. North Ave. PHONE: Capital 7-2810

DEARBORN, MICHIGAN

J. E. Vollmer 24800 Winona Drive PHONE: Logan 1-6778

MINNEAPOLIS 4, MINN.

H. M. Richardson 9 East 22nd Street PHONE: GEneva 4078

These Stackpole sales engineering representatives can help you in many ways-from making cost-saving suggestions to providing engineering samples and helping you procure dependable, economical components to match your production requirements and scheduling. Write, wire or call the engineer in your territory next time you need any of the materials listed below.

Electronic Components Division

STACKPOLE CARBON COMPANY St. Marys, Pa.

FIXED AND VARIABLE RESISTORS

SPECIAL RESISTORS

LINE, SLIDE OR ROTARY-ACTION SWITCHES

IRON CORES All types and shapes

MOLDED COIL FORMS With or without iron core sections

CERAMAG* ferromagnetic CORES

Low Value FIXED COMPOSITION CAPACITORS

GLENSIDE (Phila.), PA.

J. R. Benge

25 South Faston Rd PHONE: Turner 1325 Donald G. Brown

KANSAS CITY 2, MO.

M. F. Bettis Room II 406 W. 34th Street PHONE: 0772-0773

BUFFALO 3, NEW YORK

R. W. Mitscher 487 Ellicott Sq. Bldg. 487 Ellicon Sq. 2. PHONE: Washington 2517

NEW YORK 1, N. Y.

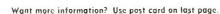
Joseph Sprung 254 West-31st Street Room 1104 PHONE: Longacre 5-1820

CINCINNATI, CHIO

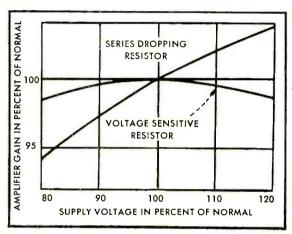
W. C. Laing 3253 Lambert Place PHONE: East 1435

CLEVELAND, OHIO

C. A. Hammer Standards Bldg. PHONE: Cherry 1-7600

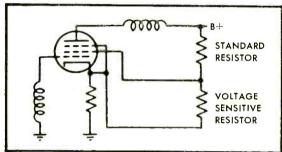

DALLAS 9, TEXAS

Edward F. Aymond 4310 Maple Avenue PHONE: Logan 5233


OAKVILLE, ONT., CANADA

W. T. Barron Box 126 PHONE: OAkville 2410

Stabilize Amplifier Gain with


GLOBAR TYPE BNR VARISTORS

SUPERIN

Variation of gain with supply voltage for 12SK7 pentode in circuit using linear resistors and voltage sensitive (nonlinear) resistors.

Circuit using voltagesensitive resistors has voltage divider returned to ground through cathode resistor.

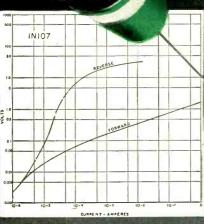
Varying supply voltages need not affect performance of pentode amplifiers. A GLOBAR® Type BNR Voltage Sensitive Resistor in the low potential section of the voltage divider—returned to ground through the cathode resistor, as shown in this circuit for a 12SK7—effectively limits gain fluctuations to within $\pm 0.2\%$ when supply voltage varies from -10% to $\pm 10\%$. The same supply variation in a conventional circuit, with a regular series dropping resistor, results in fluctuations up to $\pm 2.5\%$... more than 12 times as great.

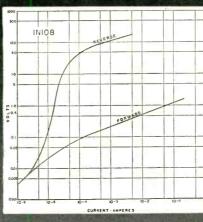
GLOBAR BNR varistors give similar stabilization with nearly all r-f pentodes—and some beam pentodes. Our engineers will work with you on any voltage stabilization problem you have... without obligation. Write Dept. EL 87-43, The Carborundum Company, Niagara Falls, New York.

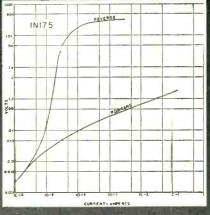
HOW YOU CAN USE GLOBAR TYPE BNR VARISTORS PRODUCT APPLICATIONS Television Receivers. Automatic picture-width control; surge Cathode-ray Oscilloscopes limitation to protect tubes. Communications Automatic signal-strength control; surge Equipment limitation to protect tubes. Relays, Solenoids, Vibrat-Reducing surge voltage peaks to limit ing Contact Devices, etc. arcing, insulation stresses. **Small Motors** Surge limitation to reduce arcing of contact points. Low voltage dévices Spark reduction to lower interference on radio and television. **Electronic circuits** Voltage stabilization; surge limitation; generation of unusual wave shapes, harmonics; DC control of AC resistance; volume compression.

Ceramic Resistors

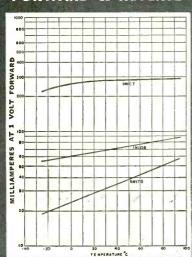
VOLTAGE SENSITIVE • CONVENTIONAL • TEMPERATURE SENSITIVE

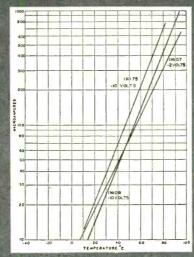

by CARBORUNDUM

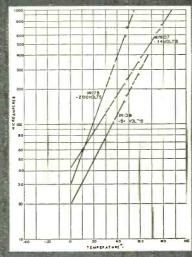

REGISTERED TRADE MARK


87-43

temperature & low voltage characteristics


UNION DIODES



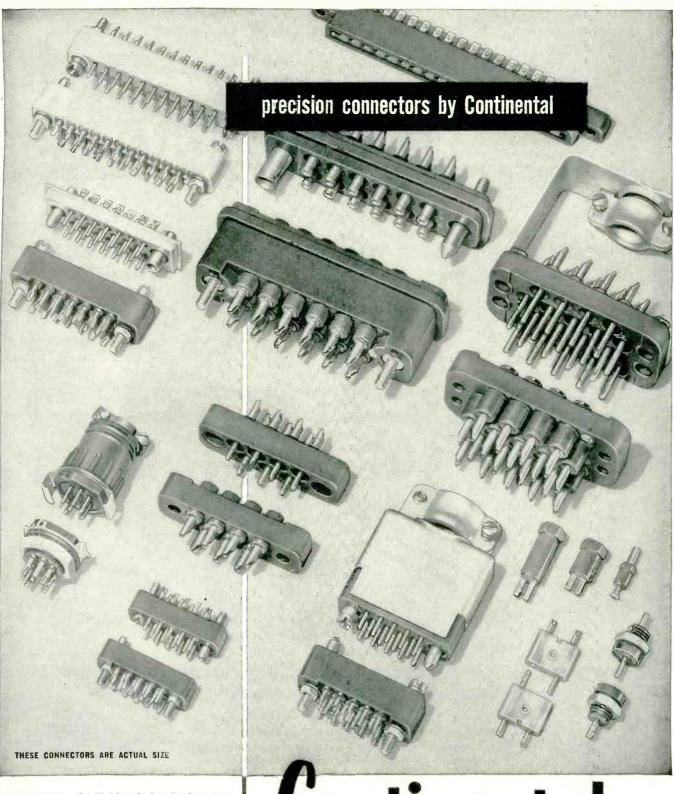


FORWARD & REVERSE CHARACTERISTICS OVER CURRENT & VOLTAGE RANGES

FORWARD & REVERSE CHARACTERISTICS UNDER TEMPERATURE CHANGES

CTUAL SIZE

Your inquiries are invited on the many uses of Union Diodes exclusive with National Union. You will find that Union Diodes have characteristics particularly useful to the circuit designer interested in small signal and pulse applications. For example, the turn-on and turn-off time of the 1N107 is equal or superior to most point-contact diodes.


The accompanying charts show the Union Diode's behavior with temperature variations. Also plotted, over wide ranges of voltage and current, are their fo ward and reverse characteristics.

Important to you is the fact that Union Diodes are produced by the electronics engineers who helped pioneer the original research and development leading to such devices.

NATIONAL UNION RADIO CORP.

HATBORO, PENNSYLVANIA

Series SM-20.....Sub-Miniature Rectangular Connectors
Series 20.......Miniature Rectangular Connectors
Series H-20.....Hermetical Seal Miniature Rectangular
Connectors
Series C-20.....Miniature Hexagonal Connectors
(Vibration Proof)
Series EZ-16.....Easy Release Power Connectors
(Spring Loaded contacts)
Series 16.....Rectangular Power Connectors
Series 14....Rectangular Power Connectors
Series PC.....Printed Circuit Connectors

Miniature Precision Stand-offs
SPECIAL DESIGNS—submit your connector problems to our engineering department.

Continental

ELECTRONIC SALES DIVISION DELIUR-AMSCO CORPORATION

Write Dept. EC-4, DeJur-Amsco Corporation 45-01 Northern Bivd., Long Island City 1, N. Y.

FIRST FOR Microscopic PRECISION OUR OBJECTIVE

TO MEET DESIGN NEEDS IN SMALL BEARINGS by providing design engineers in this country with precision bearings of improved performance through techniques capable of volume production at Microscopic tolerances and sizes.

A MICRO FIRST in improved performance. Precision RETAINER Bearings. In 1950, MICRO introduced retainers to the small bearing field. By separating the balls with retainers higher speeds and lower friction is possible. MICRO was also first to provide ground outer races.

THE MICRO FAMILY OF RETAINERS

ENLARGED 3 X

RIBBON RETAINER

CROWN RETAINER

METAL

MACHINED RETAINERS PHENCLIC PLASTIC

SPRING SEPARATOR

FIRST MICRO

NEW HAMPSHIRE BALL BEARINGS, INC.

PETERBOROUGH, N. H. **TELEPHONE 424** MICRO CIRCLE

THE NEW RIBBON R2 DOES NOT WIND-UP HANG-UP OR FALL OUT

For Easier Mounting, Simplified Design and Lower Machine Costs, Specify Micro Flange Type

Look to PHELPS REALISTIC APPROACH TO

PRACTICAL KNOWLEDGE of magnet wire application problems and trends.

CONTINUING INVESTIGATION of existing insulations to improve quality and performance.

EXHAUSTIVE TESTING and evaluation of new organic and inorganic insulation materials to determine fundamental properties and application possibilities.

ENGINEERING ASSISTANCE in selection and use of exactly right magnet wire for specific motor, transformer or coil.

SIZE SQUARE OR
RECTANGULAR FORMUAR

DATE

First for Lasting Quality—from Mine to Market

DODGE for a MAGNET WIRE RESEARCH!

Economical solutions to many varied and complex application problems!

The magnet wires pictured here illustrate the wide range of the Phelps Dodge line. Some of these wires—developed specifically by Phelps Dodge to answer special problems—suggest unlimited new applications for the future with overall savings to the user. Bondeze and Sodereze are examples of this kind of research.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

PHELPS DODGE COPPER PRODUCTS
CORPORATION

DATE

INCA MANUFACTURING DIVISION

FORT WAYNE, INDIANA

advanced A career in electronic development

Designers for Industry, Inc. is helping many well-known electronics manufacturers meet the "challenge of change" by providing a pool of technical talent unsurpassed by any product development organization.

Our 180-man engineering organization not only generates product ideas. We are also equipped, by experience and facilities, to carry the project through its various stages of development to a final, tested, pre-production model.

In the Electronics field, the DFI organization has built a particularly strong background in miniaturization and modular construction techniques. Some of the many types of development projects we handle are listed below.

Opportunities for unlimited advancement

are available at DFI for engineers who have proven records in electronics, electrical, electromechanical, hydraulic and mechanical engineering. Write for further information regarding opportunities in creative engineering work at DFI, as well as DFI employee benefits.

DFI development work in electronics includes:

COMMUNICATIONS

VHF, UHF, and HF Receivers Television Receivers VHF and UHF Transmitters Microwave Systems Mobile and Specialized Military Equipment

MISSILE GUIDANCE

Systems Servomechanisms

RADAR

Circuitry Servo Systems Display Systems Mechanisms Beacons Systems Fire Control

CONTROLS

Electromechanical Servomechanisms

COMPUTERS

Test Equipment Systems Planning Circuitry Servomechanisms Intricate High-speed Mechanisms

COMPONENT PARTS

Mechanisms Evaluation Programs Special Components

DESIGNERS FOR INDUSTRY, Inc.

2915 Detroit Avenue

CLEVELAND 13, OHIO

Incorporated 1935

Want more information? Use post card on last page,

April, 1954 — ELECTRONICS

COMPLETE METAL TO CERAMIC SEAL. Gas-tight ceramic cases with metalized ends permit solder seal to nickel pins.

MOISTURE PROOF. These new diodes exceed the requirements of JAN humidity specifications.

REQUIRED ELECTRICAL PROPERTIES. More than two years of development were necessary to perfect this combination of hermetic seal and superior performance.

MECHANICAL STABILITY. Platinum-rhuthenium whisker is welded to the germanium pellet.

LONG-LIFE. The elimination of moisture effects adds years to the life of your equipment!

Production quantities of hermetically sealed types 1N69, 1N70, and 1N81 are now available. Hermetically sealed commercial types are expected to be ready in a few months. Be sure to include them in your design planning now! For complete information write: General Electric Company, Section X444, Electronics Park, Syracuse, New York.

You can put your confidence in_

- A. Ceramic Case
- B. Solder
- C. Germanium Pellet
- D Weld
- E. Platinum-Rhuthenium Whisker
- F. Weld
- G. Solder
- H. Nickel Pin
- I. Weld
- J. Leaded Copper Clad Wire

Hermetically Sealed DIODES	1N69	1N70	1N81*
Peak Inverse Voltage	75	125	50
Continuous Operating Inverse Voltage	60	100	40
Min. Forward Current (MA) at + 1V	5.0	3.0	3.0
Max. Inv. Current (A.c) At — 50V At — 10V	850 50	300 25	10
AV Rectified Current (MA)	40	30	30
Peak Rectified Current (MA)	125	90	90
Surge Current (MA)	400	350	350

NEWS FROM OUR ADVANCED DEVELOPMENT LABORATORIES

• A four-terminal junction transistor has been developed having a region of negative output impedance. This switching device is unique in that two coincident trigger signals are required to turn it on. Thus two gating functions may be accomplished by a single transistor.

INSTRUMENT guide

FOR PRODUCTION MACHINES -

WESTON "per-cent load" ammeters and wattmeters make it

easy for operators to secure optimum production from lathes, milling machines, automatics, grinders, etc. Prevent overloading-reduce tool breakage - assure uniform quality with fewer rejects. Other scale calibrations also available.

FOR ELECTRONIC EQUIPMENT -

WESTON panel instruments are available in 11/2", 21/2", 31/2",

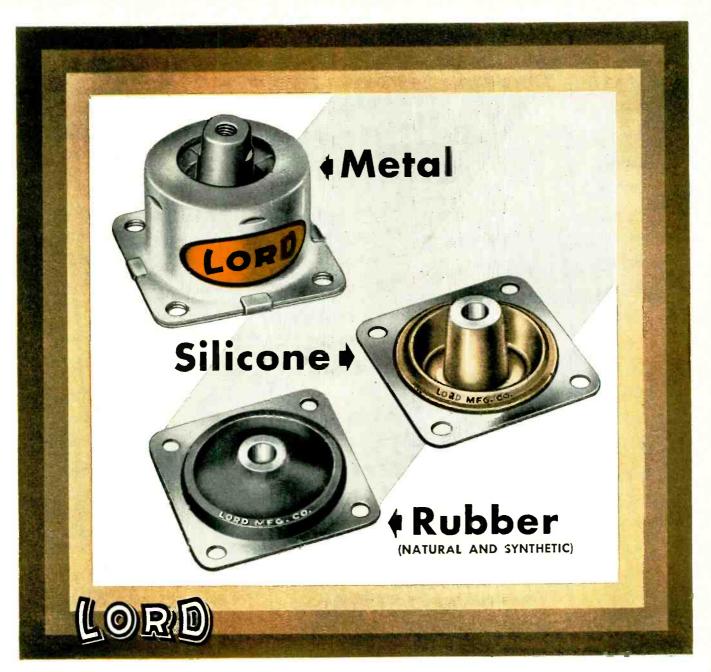
4½" and 5½" sizes in all required ranges and types, including d-c, a-c, rectifier and thermocouple types. Approved ruggedized and sealed instruments available in all types in 2½" and 3½" sizes. Special panel bulletins give complete information.

FOR RPM MEASUREMENTS -

WESTON electrical tachometer indicators are available with

scales calibrated in RPM, or any function of RPM, such as feet per min.-pieces per hour, etc. Indicators can be mounted remotely; and if required, more than one indicator can be operated from one generator. Special compact, lightweight a-c and d-c generators permit wide flexibility in mounting and connection arrangements. Directly indicate speeds from 1 RPM to 40,000 RPM or higher.

FOR TEMPERATURE MEASUREMENTS -


WESTON Bi-metal thermometers are rugged and dependa-

ble, and are readily adaptable for built-in needs. Available in angle and straight stem types, stem lengths from 2" to 72", scale lengths 3.40" to 9", ranges low as -100°F. and high as +1000°F. Corrosion resisting stainless steel stems - accuracy 1° of thermometer range.

Literature on any of the above instruments sent on request. WESTON Electrical Instrument Corporation, 614 Frelinghuysen Avenue, Newark 5, New Jersey.

ESTO Instruments

Recommends Materials Best Adapted to your Vibration Control Requirements

Metal—Natural Rubber—Silicone
—Neoprene—Buna S—Buna N—
and others are selected by LORD
Engineers to satisfy your specific en-

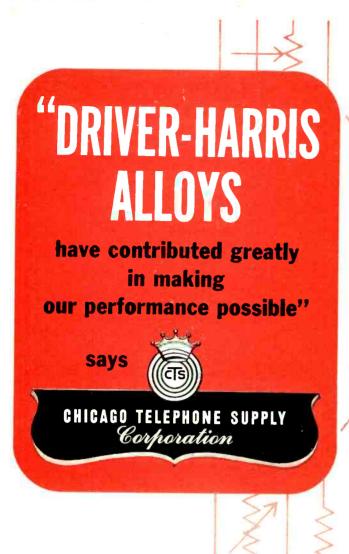
vironmental conditions and assure the most economical solution of your vibration control problem.

LORD research is constantly de-

veloping and evaluating new materials and processes to insure that the most complete line of vibration control mountings is at your disposal.

103 ANGELES 28, CALIFORNIA DALLAS, TEXAS
7048 Hollywood Blvd. 313 Fidelity Union
Life Building

PHILADELPHIA 7, PENNSYLVANIA DAYTON 2, OHIO
725 Widener Building 410 West First Street


DETROIT 2, MICHIGAN 311 Curtis Building NEW YORK 16, NEW YORK 280 Madison Avenue CHICAGO 11, ILLINOIS 520 N. Michigan Ave. CLEVELAND 15, OHIO 811 Hanna Building

LORD MANUFACTURING COMPANY . ERIE, PA.

Headquarters for VIBRATION CONTROL

Over 27,000 basic designs and their variations are already available from which to choose.

Chicago Telephone Supply Corporation has succeeded in accomplishing two things indeed difficult to combine, as summed up in their slogan "Specialists in Precision Mass Production of Variable Resistors." They manufacture the high quality variable resistors indispensable to radio, television, and military electronics. In fact, they are the world's largest producers of variable resistors.

To achieve this outstanding record, they concentrate their entire effort on variable resistors, they maintain close control over all manufacturing processes, and fabricate their own parts under close supervision from basic raw materials. Naturally, they make no secret of the importance to them of high quality materials.

States Chicago Telephone: "To make our raw material program effective, we have stressed the importance of dependable, quality-minded sources of supply. Driver-Harris is a supplier with these qualities, and Driver-Harris alloys have contributed greatly in making our performance possible. For many years we have been using Driver-Harris Nichrome*, Karma*, Advance*, and other D-H Alloy wires for our resistance windings, with excellent results. We can strongly endorse Driver-Harris' dependability and high quality products."

Nichrome, Advance, and Karma are at your service too, as are more than 80 other D-H alloys developed for application in the electrical and electronic fields. If a high degree of resistance and absolute uniformity of output are "musts" for your product, let us have your specifications. We'll be glad to make recommendations based on your specific requirements.

*T.M. Reg. U.S. Pat. Off.

Sole producers of Nichrome, Advance, Karma

Driver-Harris Company

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Louisville, Los Angeles, San Francisco In Canada: The B. GREENING WIRE COMPANY, Ltd., Hemilton, Ontario.

MAKERS OF THE MOST COMPLETE LINE OF ELECTRIC HEATING, RESISTANCE, AND ELECTRONIC ALLOYS IN THE WORLD

POWER SUPPLY

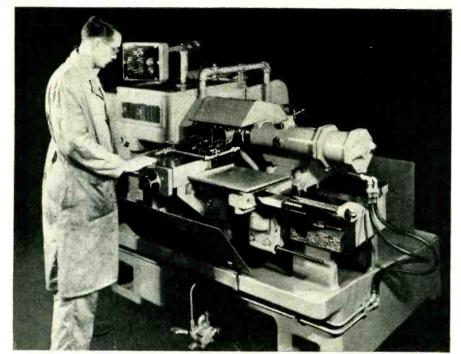
Model 240

MULTIPLE POWER SUPPLY

OUTPUT	VOLTS	CURRENT	REGULATION	RIPPLE
1	0-150 Bias	0-5 Ma.	*	5 Mv.
2	0-400	0-150 Ma.	0.5%	5 Mv .
3	0-400	0-150 Ma.	0.5%	5 Mv.
2 & 3 Parallel	0-400	0-300 Ma.	0.5%	5 Mv.
2 & 3 Series	0-800	0-150 Ma.	0.5%	5 Mv.
4	6.3 AC	10 Amp.	*	
5	6.3 AC	10 Amp.	*	

REGULATION: As shown in table for both line fluctuations from 105-125 volts and load variation from minimum to maximum current.

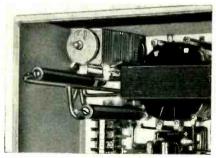
*Regulation Bias Supplies: 10 millivolts for line 105-125 volts, $\frac{1}{2}\%$ for load at 150 volts. ★All AC Voltages are unregulated.


LABORATORIES

131-38 SANFORD AVENUE . FLUSHING 55, N. Y.

INDEPENDENCE 1-7000

NEW POWER SUPPLY CATALOG AVAILABLE ON REQUEST. WRITE DEPARTMENT 789



FASTER STARTING AND STOPPING HELPS THIS AUTOMATIC LATHE TO PRODUCE MORE

General Electric Selenium Rectifiers Help Make This Lathe More Productive

Speeding up starting and stopping operations has increased the productivity of many of today's finest machine tools. In the Sunstrand automatic lathe pictured above, an electric brake and clutch combination starts and stops the machine spindle. Another electric brake provides a fast stop when the tool carriage is advanced to the work, or backed off to the unloading position.

D-C POWER to operate the electric brakes and clutch on this lathe is supplied by General Electric selenium rectifiers shown in the smaller photograph. Their high quality (see C.E.

D-C POWER for the lathe's clutch and brakes comes from this selenium recifier.

Hamann's article at right) makes G-E selenium rectifiers ideal for almost all machine tool applications.

TOP PERFORMANCE of G-E selenium rectifiers is the result of a unique "evaporation" process and careful inspection and testing. Besides providing stacks with exceptionally low forward voltage drop and low reverse leakage, this process assures greater uniformity of these characteristics among different stacks. These qualities last in service. On test in the laboratory, and on-thejob in almost every field of application, G-E selenium rectifiers are demonstrating their extremely slow aging.

OTHER APPLICATIONS for G-E selenium rectifiers include supplying power to operate d-c relays in various control circuits and as components in electronic equipment. A complete range of ratings is available in either open stacks or various types of sealed cases to meet special operating conditions. Contact your nearest G-E Apparatus Sales Office for complete information, or write Section 461-33, General Electric Company, Schenectady 5, New York.

You can put your confidence in.

GENERAL ELECTRIC

METALLIC RECTIFIER FACTS FOR ENGINEERS

Quality

by C. E. Hamann

One of the most overworked terms used in the selenium rectifier industry is "high quality." Every manufacturer claims "high quality" for his product. Every user wants "high quality" in the selenium components he buys because the quality of the end device can be no higher than that of the components assembled into it.

There are many yardsticks for measuring the quality of a selenium stack. Electrical characteristics, for example: low forward drop and low reverse leakage. Often one is sacrificed in favor of the other.

Which "yardstick" measures quality?

Real quality insures that both the forward and the reverse characteristics are good.

Uniformity of characteristics is another yardstick. If the characteristics vary from stack to stack the performance of the end equipment will be questionable.

Stability is another important standard in determining quality. The initial characteristics must be good, but they must stay good and not deteriorate with time and use.

Reliability is still another measure of quality. No matter how liberal the manufacturers replacement policy, frequent failures in the field are costly to the equipment manufacturer, and annoying to the equipment user.

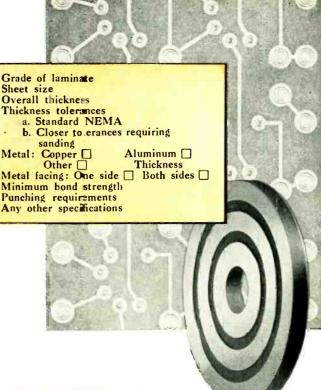
All of these yardsticks must be considered carefully in determining quality. To really earn the title of "high quality" a selenium stack must measure up to a high standard of performance by every one of these yardsticks.

C. E. Hamann

General Electric Company

Information Wanted... about your uses for

C-D-F METAL CLADS


Did you know that C-D-F supplies a full range of metal clad laminates in both Dilecto and Teflon grades? With mounting interest in printed circuits it pays to consider the respective advantages of these new C-D-F materials . . . it also pays to line up all the Information Wanted facts and discuss your specific application with your C-D-F sales engineer (Offices in principal cities). He's a good man to know!

Dilecto METAL CLAUS

Printed circuits depend upon stable, uniform core material and Dilecto has years of proven insulation service (Dilecto is a laminated thermosetting plastic made only by C-D-F from paper, cotton, glass or asbestos fabric base, or a mat base). Normally phenolic or melamine impregnating resins are used for METAL CLAD sheet stock. There are many grades of Dilecto, but only the better electrical grades are supplied with metal foil surfaces. Out-Standing is C-D-F grade XXXP-26, a hot punching grade with high insulation resistance, low and stable dielectric losses and excellent moisture resistance. Green color. New C-D-F Catalog GF-53 gives complete data on Dilecto grades. Write for your copy today.

Teflon METAL CLADS

Glass fiber cloth is first coated with Teflon resin and laminated into C-D-F GB-112T sheet stock. This base withstands high heat (200°C. maximum operating temperature) with the dissipation factor and dielectric constant extremely low over a wide frequency range. No adhesive film is needed to bond metal to the Teflon laminate, thus the inherently good electrical properties of the core material are maintained. GB-112T has practically zero water absorption, so a METAL CLAD with this core offers consistent high insulation resistance with excellent stability of dielectric loss properties.

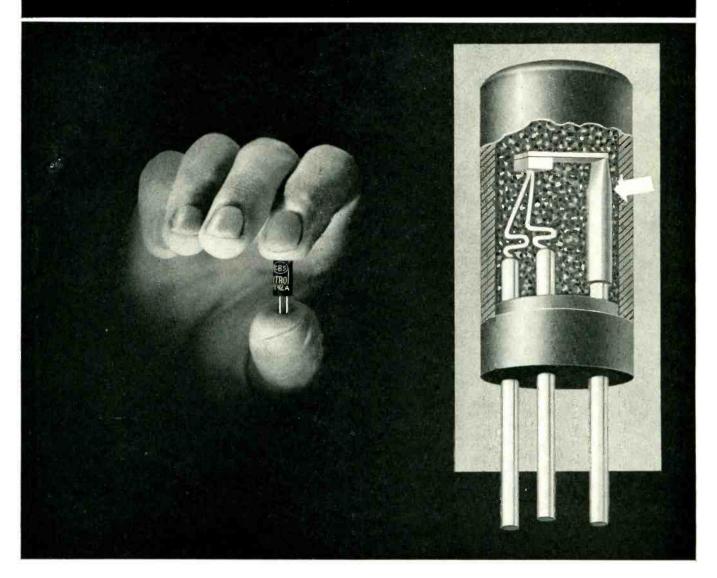
METAL CLAD Surfaces

Copper foil (usually .00135" or .0027" thick) is bonded on one or both faces of the sheet grade of Dilecto selected. The foil used is a special grade of electrolytic deposition copper particularly adaptable for cementing onto laminated materials. An adhesive film is placed between the metal and the Dilecto, and cemented during the pressing and curing cycle. When closer tolerances are required C-D-F sands the Dilecto to the required thickness before bonding. Aluminum, silver, or other alloys of various metals may be supplied.

Better Bond Strengths

One of the most important physical properties of a metal clad product is its peel strength, the pounds pull required to separate the foil surface from the core material. Working with years of laminating know-how, C-D-F has been successful in obtaining the following average test values for its METAL CLAD sheet stocks:

Lbs. pull per 1" width XXXP-26 plus .00135" copper XXXP-26 plus .0027" copper XXXP-26 plus .0015" aluminum ... 5 to 8 7 to 10 9 to 12 GB-112 Teffon plus .00135" copper .. 6 to 9


Sheet sizes: Dilecto grades — 38 x 38", 38 x 42" Teflon grades — 16 x 36"

THE NAME TO REMEMBER . . . FOR PRINTED CIRCUIT METAL CLAD STOO

Continental-Viamond Libre Company NEWARK 16. DELAWAI

Look what's happened to the "cat's whiskers"

A miracle that can hide behind your thumb-nail is the hottest electronics news in years. Modernized descendant of the Twenties' crystal diode with its cat's whisker, the transistor threatens to send many vacuum tubes the way of old head sets.

No matter which ultimately gets the nod—tube or transistor—Superior will be in there pitching. Superior seamless and Lockseam* nickel cathodes, anodes and grid cups are familiar to you in vacuum tubes. Now Superior tubing is going into transistors.

CBS-Hytron, a division of Columbia Broadcasting System,

Inc., uses Superior tubing for the L-shaped bracket that holds the germanium crystal in their PT-2A point-contact transistor. For this purpose they purchase tiny tubes—.032" I.D. x .003" wall. .193" long, drawn from seamless nickel. Added to the good welding, soldering and formability characteristics of the metal, Superior manufactures the brackets to the close tolerances CBS-Hytron must have.

Whether you are for the old or new order in electronics, if you need an idea or an analysis in small tubing, Superior is the first place to look. Superior Tube Company, Electronics Division, 2500 Germantown Ave., Norristown, Pa.

All analyses .010" to %" O.D.

Certainanalyses in Light Walls up to 2½" O.D.

SeamlessNickelAnode. Flattened one end. .500" O.D. x .025" Wall x 1.625" long. Seamless Nickel Cathode. Round, flanged oneend, 070"/.072" I.D. x .0025" Wall. .295" long.

Lockseam* Nickel Cathode. Round, tabbed, single bead, .045" O.D. x .0021" Wall, 27 mm long. Disc Cathode .121'' O.D. .312'' long. Many types of nickel cathodes—made in Seamless and lockseam* from nickel strip, disc cathodes, and a wide variety of anades, grid cups and other tubular fabricated parts are available from Superior. For information and Free Bulletin, address Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Narristown, Pa. *Manufactured under U.S. Patents.

92

"Put our Motor Experience to Work for You!"

"Here at Holtzer-Cabot, we have a superb team of motor specialists who can - and do - solve practically any motor problem that is given them.

"I've been connected with the motor business for nearly 30 years, yet every now and then our design and development engineers will come up with a motor innovation, adaptation or solution that makes me blink!

"Our sales representatives, too, are something to be proud of. They're men of long experience in motor application problems, they have a thorough knowledge of the business, and give customers sound advice and help.

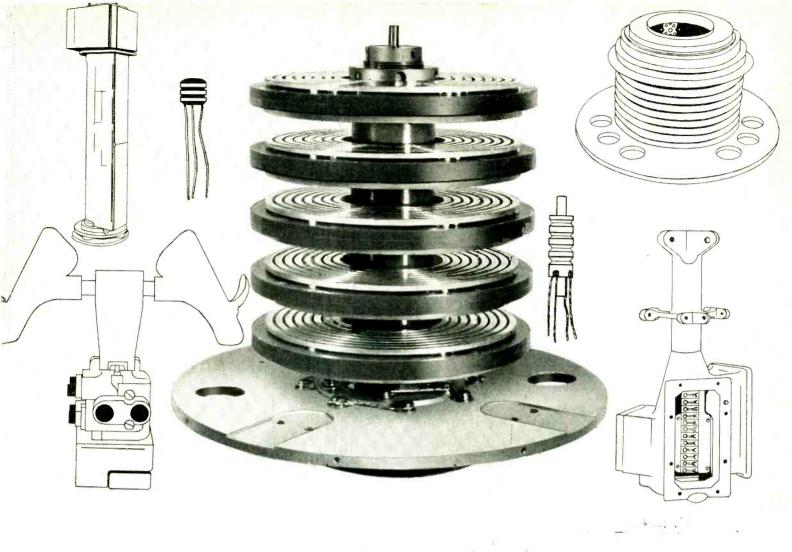
"If you have a problem in small-motor applications, take advantage of Holtzer-Cabot's organizational skill and depth of experience. The same engineering ingenuity and manufacturing excellence that have made Holtzer-Cabot the standard of high quality in motors and related electrical apparatus for 78 years are yours to command.

"Write, wire or phone. There is, of course, no obligation on your part by doing so. Your problem will get expert-

and prompt - attention."

NATIONAL PNEUMATIC CO., INC. AND HOLTZER-CABOT

125 Amory St., Boston 19, Mass. PHILADELPHIA · CHICAGO · NEW YORK · CLEVELAND Sales Service Representatives in Principal Cities throughout the Free World


Designers and manufacturers of mechanical. pneumatic, hydraulic, electric and electronic equipment and systems

MANUFACTURERS AND SERVICE MEN WHO SERVE BEST

Specify BCCCCIII
WIREMAKER FOR INDUSTRY

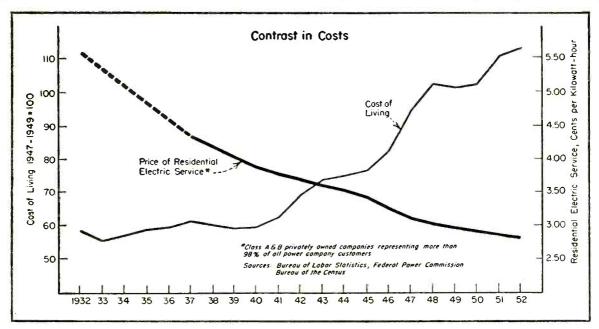
for ELECTROMECHANICAL INSTRUMENT COMPONENTS

For more than 12 years, P M Industries has specialized in designing, developing, and producing electromechanical instrument components of widely divergent natures. The principal concern has been with slip ring assemblies (from 8-foot, 500-ring assemblies down to miniatures for synchros, gyros, and resolvers), but PMI also maintains a contract manufacturing service, producing such devices as operator control assemblies for anti-aircraft directors, electrical winches, guided missile components.

The years spent solving problems imposed by a diversity of customer specifications have abundantly endowed PMI with experienced engineers and skilled technicians, backed up by complete laboratory and factory facilities. The combination may well be of value to you in helping solve troublesome component problems. Your inquires are invited and will receive prompt attention.

PM Industries, Inc., Stamford, Conn.

Design - Development - Production • Electro-mechanical Assemblies



A 20-YEAR RECORD...

The Electric Power Companies' Case for Public Confidence

An economic study of the record of the investorowned electric power companies of the United States over the past twenty years underwrites their claim to public confidence today. A key factor of this record is set forth by the chart in the middle of this page. This shows that while the cost of living as a whole has almost doubled, the average price of electric energy for residential use in the United States has been cut in half. performance of these companies during World War II, J. A. Krug, Director of the Office of War Utilities, said, "Power has never been too little or too late." The same can be said for the entire period of the past twenty years.

To be ready with enough power—on time—the electric power companies have expanded their production fourfold since 1933. This has required an investment of over \$17 billion in new

The average prices of industrial and commercial power also are much lower than they were twenty years ago.

Such a study confirms the record on other key accomplishments of the electric power companies during the past two decades.

They have not failed, either in peace or war, to meet the nation's rapidly expanding electric power requirements. In paying tribute to the

facilities. To raise the funds for this investment they have enlisted the participation of about 3 million direct stockholders. Through life insurance companies, banks and similar institutions, about 90 million Americans — more than half of the nation's total population — have become investors in electric power companies. By thus relying on private investment for their expansion, the power companies have provided their

plant and operating equipment without burden on the taxpayer.

In addition, the investor-owned companies have paid about \$12 billion in taxes to various governments – national, state and local – over the past twenty years. Unlike government-owned and -operated systems, they have received no public subsidies. When taxes and subsidies are taken into account, the rates for electricity charged by the investor-owned companies have been as low as, or lower than, those charged by government-owned and -operated systems.

Many Americans do not appreciate the job that the power companies have done over the past two decades. That is due, in part, to the public memory of financial abuses by some utility holding companies during the 1920's. This memory obscures a clear and unprejudiced view of the progress since those days. And some of the all-out advocates of reliance on government rather than on regulated private enterprise for the development of our power resources do their best to keep this memory of the past alive in the present.

An Impressive Case

Some special cases of electric power development may involve problems for which the investor-owned companies are unable to provide full solutions. This may be true, for example, of some large multiple-purpose projects that combine electric power generation with related developments such as the improvement of navigation, flood control and the irrigation of arid lands. Some of the economic and administrative problems imposed by such projects are not well adapted to effective handling by private enterprise. Flood control and the improvement of navigation, for example, usually involve the provision of much costly service over and above the cost of producing power.

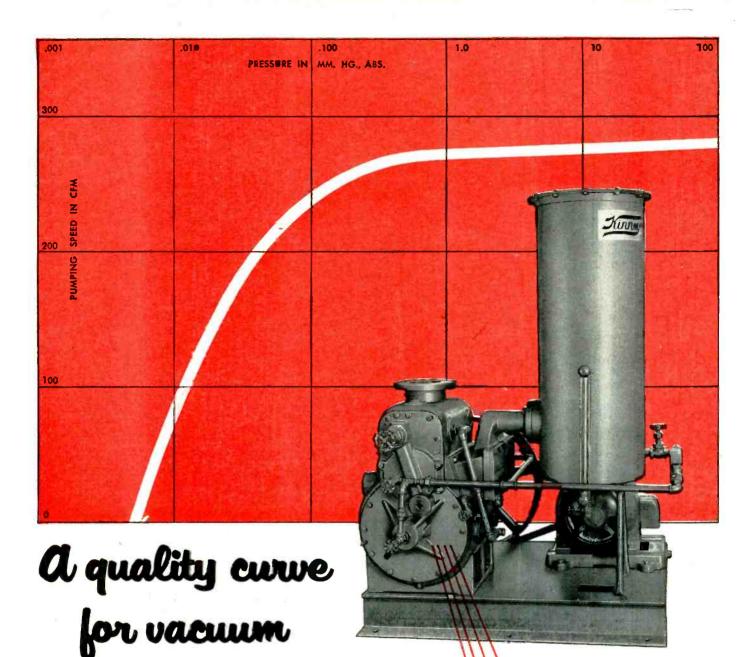
It is true, however, that in some cases development of the electric power side of multiple-purpose projects by private enterprise may well be more feasible than would appear from statements by some government power advocates. And the record indicates that even in those projects on which both the power generation and the other services are handled by public authority, it may well be desirable to have the investor-owned companies assume the transmission and distribution functions.

Our study of the record of the investor-owned and -operated companies over the past twenty

years has led us, of course, behind the statistics that bear on the wisdom of giving them a priority in the development of our power resources. It reveals that these enterprises are manned by people who, through lifetime experience, are peculiarly conversant with the needs of the communities they serve. They have given the consumer notably good service while conforming to standards set and enforced by public regulatory commissions. They have won the confidence of the investing public. By their nature and their experience they are competent to handle any power program that can be demonstrated to be economically sound.

The Paramount Public Interest

By their economic performance during the last twenty years, the electric power companies have earned the confidence of the public. By relying on these companies to meet its electric power requirements the public will fully protect its economic interest in ample and efficient service at fair prices.


That is where our study comes out. Our findings do not touch the political consideration that private operation of electric utilities under public regulation is a safeguard against further concentration of both political and economic power in a federal government that already commands too great a concentration. But if these findings make an economic case for preferring power development by tax-paying business as against power development by governmental agencies, they clear the way for an appeal to the paramount public interest in safeguarding our personal and political freedoms against the further encroachment of government.

This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nationwide developments that are of particular concern to the business and professional community served by our industrial and technical publications.

Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

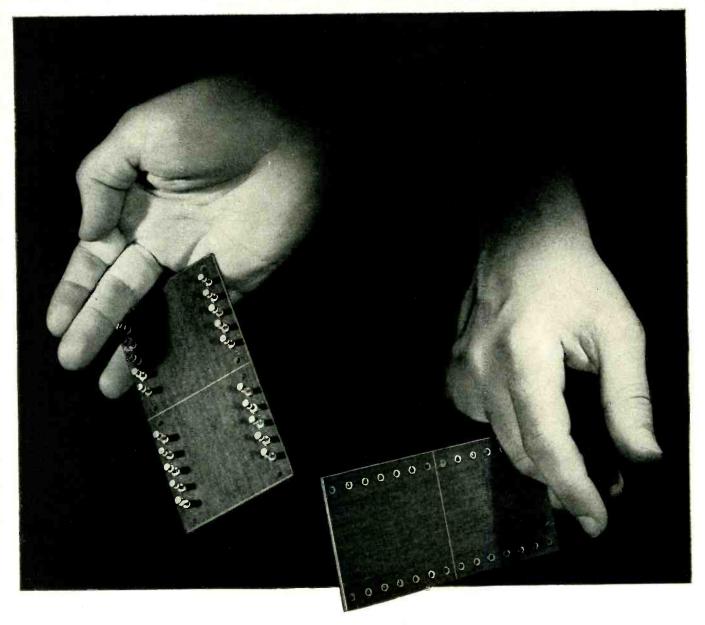
Donald CMCGraw
PRESIDENT

McGRAW-HILL PUBLISHING COMPANY, INC.

Here's the performance curve for the Kinney 311 cubic foot vacuum pump — Model DVD 14.9.18. Where high, fast vacuum is needed . . . in lamp works, power plants, cable impregnating operations, altitude chambers, coaters, and hundreds of other applications . . . this is the pump to pick. Model DVD 14.9.18 maintains high pumping speed in the low absolute pressure ranges . . , the reason why leading process companies depend on this vacuum pump for reliable, efficient operation.

Kinney district offices are staffed with competent vacuum engineers, ready to help you get the right vacuum pump for your needs. Send coupon for complete details.

Free air displacement of 311 CFM at 360 RPM — 15 HP motor.


Designed for easy accessibility of working parts.

Famous Kinney-perfected oil sealed pumping system...

Ask about special design for watervapor removal.

KINNEY MFG. DIVISION	
THE NEW YORK AIR BRAKE COMPANY 3565 WASHINGTON STREET . BOSTON 30 . MASS.	Name
	Company
Please send Bulletin V51B describing the complete line of Kinney Vacuum Pumps.	Address
Our vacuum problem involves	City

No cracks, please

You'll find no radial cracks in CTC terminal boards, or "cracked" rivet shanks on terminals. And there's a good reason for this.

Our swaging machines use tools that we designed ourselves in order to prevent just such damage. Terminals are fastened securely — and carefully. You benefit from a board that has no "weak spots" — that can give you the service you have a right to expect. And, of course, you also benefit from all the other quality control details that enable us to offer our customers guaranteed components — custom or standard. Coatings are smoothly applied — no wrinkles, no heavy deposits. C.T.C. terminals are made from certified stock that is free from defects. And the terminals themselves are guaranteed, even to the thickness of the coatings.

even to the thickness of the coatings.
This C.T.C. quality control is given
to all C.T.C. products including insulated terminals, coil forms, coils,
swagers, terminals and capacitors. For
all specifications and prices, write to

Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market St., San Francisco, California.

Terminal Board Data. CTC makes both standard boards and to your own specifications. Standard boards in cotton fabric phenolic, nylon phenolic or grade L-5 silicone impregnated ceramic. Custom made in cloth, paper phenolic, melamine, epoxy or silicone fibreglas laminates, imprinted as required and lacquered or varnished to specifications MIL-V-173 and JAN-T-152.

A wide variety of hardware is available at C.T.C.—all of it quality controlled and guaranteed for durability. This hardware includes terminal board brackets, standoff mounts, spacers, tube clamps, panel screws, thumb screws, dial locks, shaft locks, handles and handle ferrules.

CAMBRIDGE THERMIONIC CORPORATION

makers of guaranteed electronic components, custom or standard

Want more information? Use post card on last page.

NEW!

for convenient point-to-point wiring...

MINIATURIZED 5 AND 10 WATT WIRE-WOUND RESISTORS!

Here are two truly miniaturized self-mounting wire-wound power resistors to simplify your TV and industrial electronic production where space is a factor. They're ideal for point-to-point wiring, terminal board mounting, and processed wiring boards, where they fit in admirably in dip-soldered subassemblies.

Axial lead Blue Jackets are rugged vitreous enamel power resistors built to withstand the severest humidity performance requirements As for economy, these newest members of the Sprague Blue Jacket family are low in cost... eliminate need for extra hardware... save time and labor in mounting!

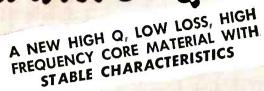
SPRAGUE

You can get these outstanding new Blue Jacket Resistors without delay in any quantity you require. Sprague Engineering Bulletin 111 gives full data on these and all other commercial Blue Jacket Resistors. Send for your copy.

SPRAGUE ELECTRIC COMPANY 35 Marshall Street, North Adams, Mass.

SPRAGUE TYPE NO.	WATTAGE	DIMENSIO L (inches)		MAXIMUM RESISTANCE
27E	5	11/8	5/16	17,500 Ω
28E	10	17/8	5/16	35,000 Ω

Standard Resistance Tolerance: ±5%


PIONEERS IN ELECTRIC AND ELECTRONIC DEVELOPMENT

NORTH ADAMS, MASSACHUSETTS

EXPORT FOR THE AMERICAS: SPRAGUE ELECTRIC INTERNATIONAL LTD., NORTH ADAMS, MASS.

Introducing ANNIE

An ideal Core Material for Antenna Rods, Filter Inductances, Loading Coils, RF Coils and all other Applications Requiring High Performance up to 30 Megacycles.

Ferramic "Q" is an exclusive development of General Ceramics Corp. It was created to overcome the instabilities that characterized previous high performance ferrites. Exhaustive tests prove that Ferramic "Q" is completely stable in respect to age, shock, vibration, temperature. In addition this new material features higher Q and lower losses than former materials at all frequencies up to 30 Megacycles. Cost-wise, Ferramic "Q" offers extremely favorable comparison with competitive materials. For complete details, call, write or wire today.

OUTSTANDING ADVANTAGES OF FERRAMIC "Q" ARE SHOWN IN COMPARATIVE CHARACTERISTICS OF IDENTICAL COILS WITH CORES OF FERRAMICS J AND N, AND THE NEW FERRAMIC "Q" MATERIAL

CUP CORE F-261

RING CORE F-108

ANTENNA ROD F-214 - 8" LONG

	1	C	Q
Ferramic J	154	165	50
Ferramic N	120	210	65
Ferramic Q	73	350	175

wite random wound. Cup cores maling sur-faces ground (no air gap), Inductance mea-sured in micro-henries, capacitance mea-sured in micro-micro-farads on Boontan

AND DESCRIPTION OF THE PERSON	E	C	Q
Ferramic J	90	280	60
Ferramic N	60	425	100
Ferramic Q	35	725	400

Coil consists of 25 turns #20 AWG S.F. wire wound uniformly on toroid. Inductance measured in micro-henries, capacitance measured in micro-herries on Boonton Model 260-A Q Meter. Frequency 1000 Kcs.

	E .	C	Q
Ferramic J	340	75	120
Ferramic N	270	95	160
Ferramic Q	210	120	350

Boonton 260-A Q mater-Fraquency 1000 Kcs

BASIC TOROIDAL MEASUREMENTS

Initial Permeability μ_0 (1Mc)	125 400 approx.
Loss Factor 1 (1Mc)	.000020 approx.
μ _Q Q (5Mc) (10Mc)	.000031 .000050
(20Mc) μ_0 vs Frequency	.000097 Good to
Characteristics Q vs Frequency	over 30 Mc Good to
Characteristics Curie Temperature (°C)	over 30 Mc 250
Temp. Coeff. of μ_0 (1Mc) %/°C (25°C to 70°C) Temp. Coeff. of Q (Same units as above)	+0.08 approx. -0.75
Saturation Flux Density Bs (gauss) at Hac = 25 oersteds	2900
Max. Permeability μ max	400 1.90
Coercive Force H _c (oersteds) Residual Magnetism Br	1050

TYPICAL ANTENNA ROD MEASUREMENTS

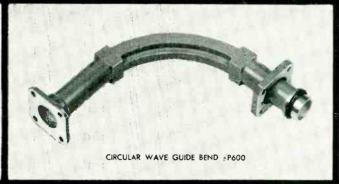
FREQUENCY	Q	C= mmf.
0.6	334	344
0.8	350	189
1.0	350	120
1.2	338	83
1.4	318	60

TEMPERATURE COEFFICIENTS

Antenna Rod No. F-214 (.330 x 8"). Standard Test Coil - Space wound solenoid 85 turns #26 AWG. Formex copper, occupying approx. 80% of length of rod and centered on rod. (Resonates at 1 Mc. with 120 mmf.)

$$TC = \frac{\%}{\mu_0} \frac{\Delta \mu_0}{\mu_0} (25^{\circ} \text{ to } 75^{\circ} \text{C})$$

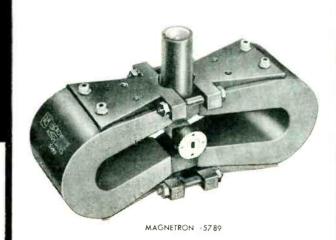
Temp. Coeff. of Rod +1.0 to +2.0Temp. Coeff. of Coil only=0



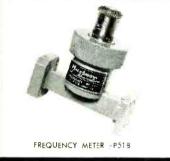
eneral CERAMICS and STEATITE CORP.

General Offices and Plant: KEASBEY, NEW JERSEY,

MAKERS OF STEATITE, ALUMINA, ZIRCON, PORCELAIN, SOLDERSEAL TERMINALS, LIGHT DUTY REFRACTORIES, CHEMICAL STONEWARE, IMPERVIOUS GRAPHITE, FERRAMIC MAGNETIC CORES



OW POWER TERMINATION #P540A WAVEGUIDE 90° TWIST #558



MAGIC "T" TUNER #P555

PLANNING MILLIMETER WAVE OPERATIONS?

If you are working in the millimeter region — or are exploring it — you may be able to save considerable design and production time by acquainting yourself with our extensive experience, facilities and products in this field.

Available to you right now are over 40 items — components and test equipment — ready for you to incorporate in your designs and benches. Components for use in the 35 kmcs. band include slotted lines, frequency meters, loads and a spectrum analyzer adapter. If you are working with high resolution radar systems, we can furnish the long-life 40 KW 5789 magnetron, the 1N53 diode, complete duplexers, balanced mixers, echo boxes and many other components such as bends and transitions for operating circular wave guide in the low attenuation TE_n, mode.

SEND FOR DATA Write for detailed specifications and catalog literature describing our millimeter components, magnetrons, TR and ATR tubes and silicon diodes.

If you have an interest in the millimeter waves, we would be pleased to give you the benefit of our experience to help you plan your operations in this region. MICROWAVE ASSOCIATES, INC., 22 Cummington Street, Boston 15, Mass., Telephone COpley 7-4441.



CONTINUOUS WAVE

F.M.

A.M.

SIMULTANEOUS F.M. and A.M.

F.M./ A.M. SIGNAL GENERATOR

TF 995 A

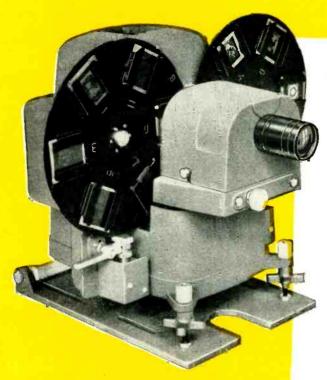
The Marconi Signal Generator Type TF 995A is a compact, transportable, a.c. operated instrument covering from 13.5 to 216 megacycles in four crystal-standardized ranges. It has an open-circuit output level variable, in 1-db steps, from a minimum of 0.1 microvolts to a maximum of 100 millivolts at 52 ohms, and 200 millivolts at 75 ohms. The output may be c.w., frequency modulated, amplitude modulated, or simultaneously both frequency and amplitude modulated. The modulation, obtained either from an internal 1000-cps oscillator or from an external source, is variable to maximum frequency deviations ranging from 25 to 600 kc for f.m., and to depths up to 50% for a.m.

Full data and prices of any of the items listed below will be mailed immediately on request: FM/AM SIGNAL GENERATOR TF 995A · UNIVERSAL BRIDGE TF 868 FM DEVIATION METER TF 934 · STANDARD SIGNAL GENERATOR TF 867 ALSO

VACUUM TUBE VOLTMETERS : FREQUENCY STANDARDS : OUTPUT METERS WAVEMETERS : WAVE ANALYSERS : Q METERS : BEAT FREQUENCY OSCILLATORS

MARCONI INSTRUMENTS

23-25 BEAVER STREET . NEW YORK 4


CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE

Managing Agents in Export: MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE, STRAND, LONDON, W.C.2

TF 995A

GRAY TELOJECTOR

STAR PERFORMER...

Complete Projection System

The New Gray 3B Telojector (2" x 2" Transparency Slide Projector) utilizes a single lens —permits superposing of two images on an optical axis . . . eliminates any need for external registration adjustment. The improved unit provides positive focusing of images on the camera tube with an uninterrupted sequence of slides for television commercials, news flashes and photographs or station and sponsors' identification

for TV commercials

Precision Projection

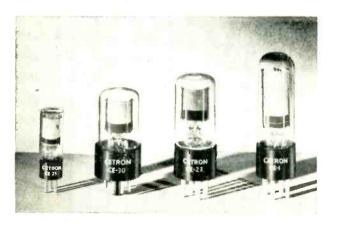
BETTER Commercials at LOWER COST

Yes . . . now you can use better 2" x 2" transparencies in uninterrupted sequence at lower cost. Important too, Gray Telojector is low in initial cost . . . ideal for budget-minded program directors. Telojector is compact, light weight, troublefree. Two turrets take up to 12 slides at one loading. Additional loaded turrets are substituted in a matter of a few seconds . . . providing unlimited continual sequence. Controlled locally at the unit or remotely at the master video console. Also, can be used with the Gray 35B Manual Control Box to produce superposition, laps, fades and slide changes at any desired rate.

AND DEVELOPMENT CO., Inc., Hilliard St., Manchester, Conn. Division of the GRAY MANUFACTURING COMPANY Originators of the Gray Telephone Pay Station and the Gray Audograph and PhonAudograph.

YOU ARE INVITED:

See the NEW, SINGLE lens Gray Telojector and complete line of TV—Broadcasting Equipment at Booth 297, I.R.E. Show, March 22nd-25th, Kingsbridge Armory, New York. If unable to visit I.R.E. Show write for illustrated, detailed information on the NEW, SINGLE LENS GRAY TELOJECTOR.


MALATONE ETRON

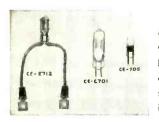
FOR LONG LIFE, UNEQUALLED PERFORMANCE AND LOW COST

The superb quality of Continental Electric Co. special purpose electronic tubes for industry, the armed services, and for the replacement market is the result of nearly a quarter century of development and production.

Through research, CETRON Tubes are opening new fields of application and improving efficiency in traditional circuitry at the lowest cost per operating hour.

Data sheets for all or any family of types are immediately available for your selection of applicable tubes. We welcome comparative tests in your own equipment. You may discover surprising improvements in performance at substantial savings in cost.

HEADLIGHT DIMMER VACUUM PHOTOTUBE CE-XR-692


Especially designed for automobile headlight dimming. New. Low Priced. Low microphonic noise levels. High sensitivity.

CETRON PHOTOTUBES

Continental manufactures a type for practically every electronic application. Makes more different types of photocells and special purpose photocells than any other manufacturer in the world.

CE-1-C	CE-B25V-C	CE-918
CE-1P23	CE-29-R	CE-919
CE-1P30	CE-30-C	CE-920
CE-1P32	CE-30V-C	CE-927
CE-1P37	CE-31V-C	CE-929.
CE-1P39	CE-34-R	CE-930
CE-1P40	CE-B36-C	CE-934
CE-1V-C	CE-64-R	CE-5581
CE-B22-C	CE-73-R	CE-5583
CE-B25-C	CE-91-R	CE-5653
	CE-1P23 CE-1P30 CE-1P32 CE-1P37 CE-1P39 CE-1P40 CE-1V-C CE-B22-C	CE-1P23 CE-29-R CE-1P30 CE-30-C CE-1P32 CE-30V-C CE-1P37 CE-31V-C CE-1P39 CE-34-R CE-1P40 CE-836-C CE-1V-C CE-64-R CE-822-C CE-73-R

LEAD SULFIDE

Continental Electric pioneered the early development of the Lead Sulfide Cell . . . a photoconductive rather than an emissive cell. Here are just a few of its applications;

- 1. Sound reproduction.
- 2. Infra-red photometry.
- Burglar Alarms, door-openers, etc., especially using infra-red radiation.
- 4. Tubulating machines.
- 5. Phonograph pick-ups.
- 6. Controls and counters.
- 7. Low temperature pyrometry,

CE-228/JAN3B28

Filament Volts.
Filament Amperes.
DC Ampere Outpu
Peak Inverse Valte

	2:5
	5.0
	0.25
	10000

CE-235A

TOMISTO ECO				
ilament Volts			. 2.	5
ilament Ampei	res .		25.0	Э
C Ampere O	utput.		. 15.0	0
Nom. DC Volte	ge			6
eak Inverse V	olts		. :	23
F235 Stiff Lear	41			

CE-329C

Heater Volts	14.0
Heater Amperes	2.55
DC Ampere Output	3.0
Operating Inverse Volts	500
Surge Inverse Volts	3000

Send for our 1954 catalog; contains complete technical data covering our complete line.

CONTINENTAL ELECTRIC CO

PHOTOTUBES • RECTIFIERS • THYRATRONS

(PARTIAL LIST)

CE-393A/JAN393A Mercury and Gas

Filament Volts	2.5
Filament Amperes	
DC Ampere Output	1.5
Peak Inverse Volts	1250
Peak Forward Volts	1250

CE-8/2A	
Filament Volts	50
Filament Amperes	7.1
DC Ampere Output	1.25
Nom. DC Voltage	2700
Peak Inverse Volts	10000

CIA

Filament Volts	. 2.5
Filament Amperes	. 6.5
DC Ampere Output	. 0.64
Peak Inverse Volts	. 340
Peak Forward Volts	. 170

CE-304

Mercu	r	У	Vapo:	

Mercury Vapo
Filament Volts
Filament Amperes
DC Ampere Output 12.5
Peak Inverse Volts 1000
Peak Forward Volts 1000

Filament Volts				2.5
Filament Amperes				7.0
DC Ampere Output.				1.5
Peak Inverse Volts				1250
Peak Forward Volts.				1250

CE-309/FG17

Mercury vapor	
Filament Volts	2.5
Filament Amperes	5.0
DC Ampere Output	5.0
Nom. DC Voltage	1250
Peak Inverse Volts	5000

CE-323B/ JAN323B	
Filament Volts	. 2.5
Filament Amperes	. 7.0
DC Ampere Output	
Peak Inverse Volts	
Peak Forward Volts	. 1250

C6J	
Filament Volts	
Filament Amperes20.0	
DC Ampere Output 6.4	
Peak Inverse Volts	
Peak Forward Volts	

CE-210A	
Filament Volts	
Filament Amperes	6.5
DC Ampere Output	
Nom. DC Voltage	230 800
Peak Inverse Volts	800

CE-203		
Filament Volts	, .	2.5
Filament Amperes	٠.	20.0
DC Ampere Output		15.0
Nom. DC Voltage		150
Peak Inverse Volts		500

CE-2W2

TV Color Circuits	
Filament Volts	2.5
Filament Amperes	5.0
DC Ampere Output	0.65
Nom. DC Voltage	7.50
Peak Inverse Volts	2500

CE-200		
Filament Volts	 	2.0
Filament Amperes		12.0
DC Ampere Output		6.0
Nom, DC Voltage		
Peak Inverse Volts.		300
DC Ampere Output Nom. DC Voltage		

CL-220						
Filament Volts						2.5
Fitament Amperes						3.1
DC Ampere Output		,				.020
Peak Inverse Volts.						20000

CE-205	
Filament Volts	2.0
Filament Amperes	12.0
DC Ampere Output	5.0
Nom. DC Voltage	250
Peak Inverse Volts	900

CE-221/4B25						
Filament Volts						2.5
Filament Amperes						17.0
DC Ampere Output			-0		,	6.4
Nom. DC Voltage.						20
Peak Inverse Volts.						72

CR-5	
ilament Volts	2.0
ilament Amperes	2.0
C Ampere Output	
Nom. DC Voltage	
Post Inverse Volts	900

CF 249C / JAN249C

CL 147 C/ 37 (1 12 77 C	
Filament Volts	2.5
Filament Amperes	
DC Ampere Output	0.64
Nom. DC Valtage	2000
Peak Inverse Volts	7500

CE-226/JAN4B26

Filament Volts	2.2
Filament Amperes	7.0
DC Ampere Output	
Nom. DC Voltage	
Peak Inverse Voits	375



CE-202B					
Filament Volts					2.5
Filament Amperes					20.0
DC Ampere Output					. 15.0
Nom. DC Voltage.					
Peak Inverse Volts.					. 900

CE-213A						
Filament Volts						2.5
Filament Amperes.						7.0
DC Ampere Output						2.5
Nom, DC Voltage.						
Peak Inverse Volts.	į.	į.	ě	,		5000

Air Sea Rescue?

The "Princess Victoria" was lost just over a year ago and with her, 133 lives. This disaster occurred only 20 miles from land but search aircraft found the location too late because there was no ship-to-air communication. Further tragedies may well be avoided by ships being able to talk direct to each other and to aircraft. The RM.200 V.H.F. transmitter and receiver has been developed to meet this need.

TYPE RM.200 Multi-spot channel marine V.H.F. radio-telephone operating from A.C. Mains and/or Batteries. Amplitude Modulation. Range: Ship-to-ship 25 miles; Ship-to-air over 100 miles.

Provides communication on the following INTERNATIONAL channels and 8 other channels.

121.5 Mc/s Aircraft Distress & Safety 156.3 Mc/s Marine Intership 156.6 Mc/s Marine Port Control

156.8 Mc/s Marine Safety & Calling

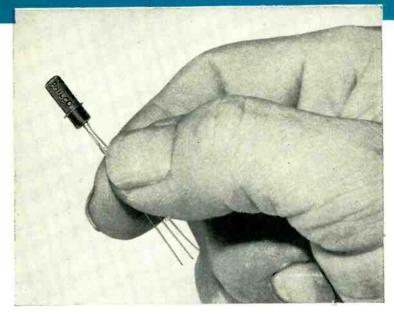
Price £210 Delivery, 4 months

REES MACE MARINE LTD.

GROUP OF COMPANIES

PHILCO ANNOUNCES A REVOLUTIONARY NEW TRANSISTOR

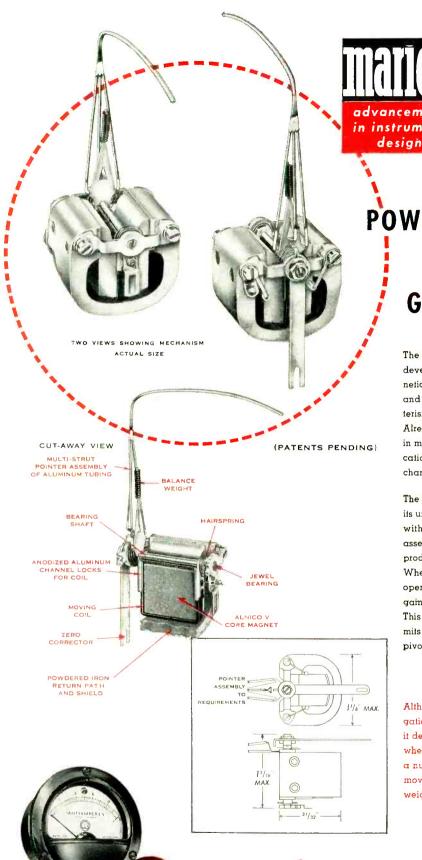
New Diffused Alloy Junction Type Has Amazing Advantages...


Philco now presents to industry a new diffused alloy junction transistor with uniformity of characteristics never before attained in production.

Design engineers will welcome the predictable performance of circuits incorporating this superior transistor.

At last, here is a transistor that will operate with the same high degree of excellence in massproduced units as in laboratory models—eliminating the need for individual selection of transistors or associated components to meet equipment specifications!

Now in production at Philco, this new transistor meets the high standards required for production applications. It is one of the smallest transistors


- Minimum size.
- Hermetically sealed, resistance-welded metal case . . . leads sealed in glass.

ever produced. Leads are fused in glass—the entire transistor is enclosed in a metal envelope—an instantaneous resistance weld hermetically seals the complete unit. Advanced processing techniques and new mechanical design features assure excellent characteristics and uniformity throughout the life of the transistor. Phone, write or wire Philco today for descriptive literature and specifications on this revolutionary transistor.

- Uniform characteristics.
- Designed to meet typical military environmental conditions.

POWERFUL MOVING COIL

MECHANISM HAS

GYRO-LIKE STABILITY

The Marion Type MEP-1 meter mechanism was designed to develop highest possible torque for a given volume of magnetic material. Its high torque, heavy eddy current damping and low relative inertia provide unusual performance characteristics simulating the stability of a gyro, in like environment. Already it is setting new and higher standards for reliability in moving coil indicating mechanism design for aircraft application, where the influence of vibration and rapid attitude changes on pointer indication are significant factors.

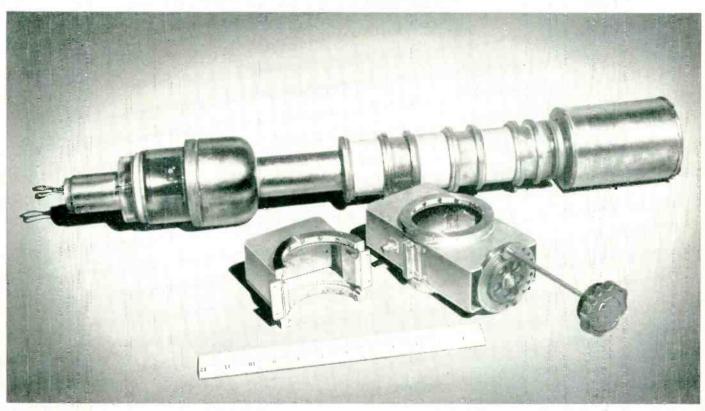
The gyro-like stability of the MEP-1 mechanism results from its unique mechanical design. An end-pivoted coil assembly, with a one piece bearing shaft and precise mechanical assembly operates in a self-shielded magnet structure which produces approximately 6000 Gauss in a single air gap. When the end-pivoted moving coil, of long turning radius, operates in a magnetic field of such strength, substantial gains in torque and eddy current damping are realized. This great torque, combined with relatively light weight, permits unit bearing loadings substantially lower (i. e. larger pivot and jewel radii) than heretofore normal.

MECHANISMS BY MARION

Although developed expressly for application in aircraft navigational instruments, many of the MEP-1 characteristics make it desirable for use as the sensitive element in control devices where it is required to initiate a control function. It is one of a number of Mechanisms by Marion that extend the field of moving coil mechanism application where previously size, weight or performance characteristics prevented their use

Marion Electrical Instrument Company, 401 Canal Street, Manchester, N. H.

marion model


MANUFACTURERS OF RUGGEDIZED AND "REGULAR" METERS AND RELATED PRODUCTS

Copyright 1954 Marion

Reg. U.S. Pat. Off.

Eimac Klystron Report X54.4

- 3 kw CW power output at 1400 mc
- Power gain of 1000 times
- L BAND KLYSTRON

Eimac X544 and external tuning boxes.

A power gain of 1000 times at 1200-1400mc in CW operation has been registered by the new Eimac X544 three cavity, cascade type klystron. With only three watts driving power the X544 delivers 3kw power output. This high power and high power gain is possible over a 200mc range through the exclusive Eimac feature of completing tuning circuitry external to the vacuum system. Other features of the Eimac X544 are a long life cathode, ceramic tube cavities, practical design and light weight.

The X544 is another Eimac advancement in klystrons

for higher power at higher frequencies. Other Eimac klystrons include high power amplifiers for UHF-TV and sturdy reflex klystrons for use in conditions of severe shock, vibration and sustained acceleration at frequencies to 9600mc.

• For further information contact our Application Engineering Department

EITEL-McCULLOUGH, INC.

MARK OF EXCELLENCE IN **ELECTRON-POWER TUBES**

Write for brochure listing Current Regulator Tubes with complete technical information about them.

The Victoreen Instrument Co.

COMPONENTS DIVISION: 3800 PERKINS AVE. • CLEVELAND 14, OHIO

IS YOUR RELAY REQUIREMENT DIFFERENT?

FAST OPERATE—FAST RELEASE—The Clare Type C relay will operate in from 0.005 to 0.04 second, depending on voltage applied, coil resistance, and contact assembly. Release time is from 0.006 to 0.020 second.

SLOW OPERATE—The Clare Type D Relay uses a low resistance copper slug to delay its operation. Operate time can be varied, from 0.01 to 0.1 second, by coil selection. Release time can be held low by heavy spring pressures and large residual settings.

SLOW RELEASE — The Clare Type E Relay uses a copper slug on the heel end of the coil to hold circuits operated from 0.05 to 0.3 second after the coil circuit has been broken. Operate time is from 0.01 to 0.04 second.

slow ACTING — The Clare Type H Relay uses dead-soft copper sleeve over coil core to delay buildup of magnetic flux so as to retard operation and release. Operate time may be from 0.01 to 0.05 second; and release time, from 0.03 to 0.3 second.

Type CMS relay has enclosed snap-action switch contacts, rated at 10 amperes, 125 volts a-c

These five CLARE RELAYS have successfully met thousands of difficult applications

 CLARE RELAYS are built to render the utmost satisfaction to the user whose relay requirements are above the average where extremely long life, and precise, reliable operation under severe conditions may be required.

Relays illustrated are all developments of the famous Clare Type C d-c Relay whose precision and dependability has been proved in thousands of military and industrial applications. They permit wide flexibility in design and construction to meet the most exacting requirements.

For full information on Clare relays, contact your nearest Clare sales engineer or write: C. P. Clare & Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: CLARELAY

• Write for Engineering Data Book

FIRST in the INDUSTRIAL FIELD

CLARE RELAYS

New Metal Lined by Good-Al

Now you can get ALL Good-All Capacitors ENCLOSED in METAL LINED TUBES impregnated with "Marbelite" plastic

Practically unaffected by humidity or climatic conditions. ● Eliminates troublesome field failures. ● Low.capacitance change with temperature. ● Thermo setting, hard-as-marble, "Marbelite"*plastic end-fill provides life-time sealing — eliminates costly pull-outs. ● Extremely durable. ● So Superior they are being used extensively by leading TV and Radio manufacturers of America.

Use GOOD-ALL METAL LINED CAPACITORS for every Requirement

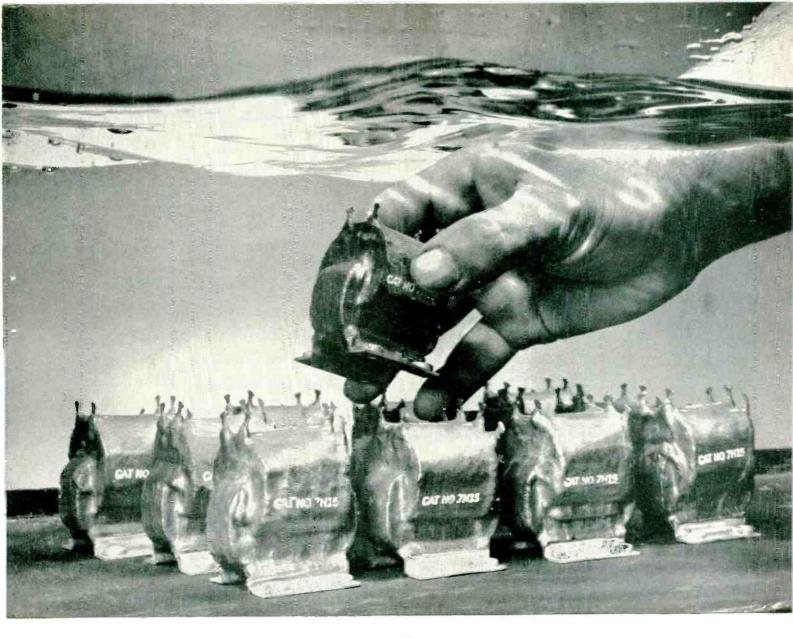
Type 503ML Enclosed "Marbelite" Capacitor is impregnated and sealed in hard-asrock thermo-setting plastic. -50°C to $+100^{\circ}\text{C}$ operating temperature. Popular priced.

Type 520ML Enclosed capacitor is impregnated in highest quality capacitor oil. -50°C to +85°C operating temperature. Designed to meet exacting specifications of ALL TV and Radio circuits.

Type 522ML Enclosed capacitor is impregnated in Miracle"X." (Same high quality impregnant used in more expensive hermetically sealed capacitors.) Extremely high insulation resistance. Capacity change less than 5% over operating range of -55°C to +125°C.

Write for complete catalog covering all types of Good-All long-life capacitors. Our engineers are always ready to work with you on any capacitor problems. We invite sample orders for your evaluation.

GOOD-ALL ELECTRIC MFG. CO.


114 W. FIRST ST., OGALLALA, NEBRASKA

PHONE 112 OR 113—CABLE ADDRESS "GOODALLA"

112

Want more information? Use post card on last page.

April, 1954 - ELECTRONICS

Westinghouse Fosterite® Transformers must pass this 4-hour underwater test

If you're looking for a small, open-type transformer, fully protected against moisture, check the line of Westinghouse Fosterite impregnated transformers. This four-hour underwater test proves the point:

All Fosterite-treated transformers are completely submerged in hot water at 60° Centigrade for two hours, after which they are "thermal-shocked" in cold tap water, and soaked there for an additional two hours. An electrical test is then applied, in which each transformer must show an insulation resistance reading of at least 2000 megohms. Fosterite has to be good!

This is just one of many severe tests to which

Westinghouse specialty transformers are subjected. They assure you of quality that will meet your requirements exactly... quality that stands up under extreme conditions.

Fosterite impregnated and coated transformers can be made available to meet your most stringent specifications. In addition to moisture protection, Fosterite makes drastic weight reductions possible ... as much as 30 to 50%, when compared to enclosed types.

Call your Westinghouse representative for further information, or write Westinghouse Electric Corporation, P.O. Box 868, Pittsburgh 30, Pa. J-70678

YOU CAN BE SURE...IF IT'S
Westinghouse

PROVEN

IN HUNDREDS OF CRITICAL APPLICATIONS EVERY DAY

QUALITY

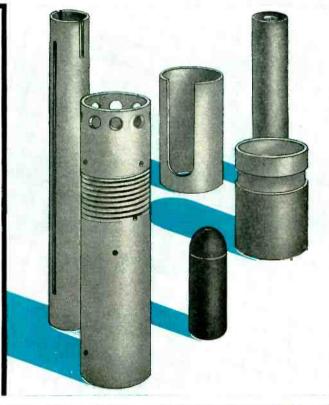
TO MEET UNLIMITED NEW APPLICATIONS

CLEVELITE*

LAMINATED PHENOLIC TUBING

Moisture Resistant
Mechanically Strong
High Dielectric Strength
Dimensional Stability
Low Loss Factor

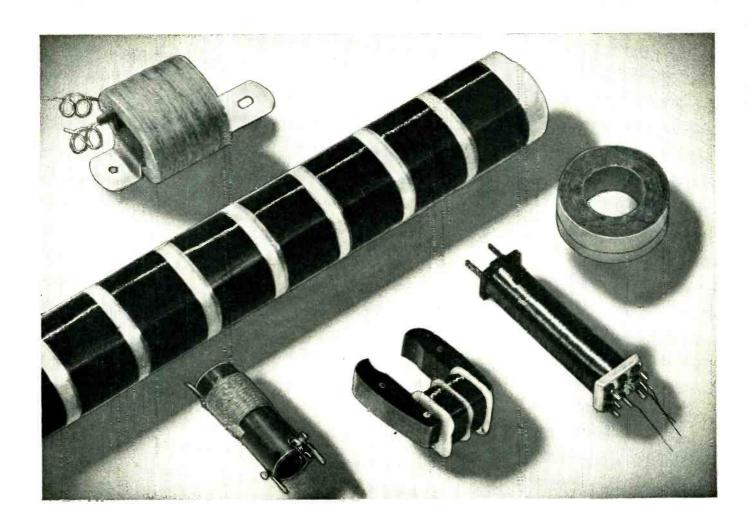
USE CLEVELITE


to make a good product better . . . and at lower costs!

SERVICE

Our Design and Production Departments are geared to customers' needs in every way. Deliveries are prompt!

WRITE to The Cleveland Container Company plant nearest you for a copy of our CLEVELITE brochure . . . of value to every Engineering Department.


* Reg. U. S. Pat. Off.

Why Pay More?
Why Good Quality

For Call Cleveland!

These coils saved winding costs

Each of these coils represents a sizable saving on coil winding costs because it was wound on Universal Coil Winders.

There are Universal machines for a broad range of coil specifications and production requirements — long or short runs. Users report increased output, a higher degree of accuracy, and greater operator satisfaction.

The coupon will bring you information on the complete line — plus any specific data you wish regarding your particular

coil winding requirements.

Also: be sure to visit the Universal Demonstration Room nearest you — in Cranston, R. I. or Chicago, Ill. You'll see winders in operation and have a chance to talk over your coil winding problems with a Universal sales engineer.

To arrange for a visit to the Demonstration Room, write to UNIVERSAL WINDING COMPANY, P. O. Box 1605, Providence 1, R. I., or 9 South Clinton St., Chicago, Ill.

FOR WINDING COILS
IN QUANTITY... ACCURATELY
... AUTOMATICALLY... USE
UNIVERSAL WINDING MACHINES

UNIVERSAL WINDING COMPANY

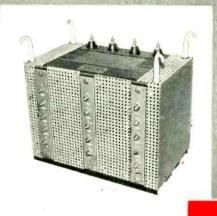
P. O. BOX 1605, PROVIDENCE 1, RHODE ISLAND

Please	send	me

- Condensed Catalog of Universal Winders
- Information on Universal Winders for coil types that meet my particular needs. I enclose specifications and production requirements.

ame......Title......

City.....Zone....State......



POWER AND FILAMENT TRANSFORMERS • FILTER REACTORS • MODULATION TRANSFORMERS • PULSE TRANSFORMERS • CHARGING REACTORS . . . NOW available to industry for applications which require the quality and superior performance characteristics of Moloney Transformers. Engineered to your specifications, tested to your specifications, performance to your specifications. Produced in any quantity . . . send your inquiry to us now for prompt attention.

Physical Characteristics: Per MIL-T-27 • Hermetically Sealed • Solder-sealed Bushings • Oil Filled Askarel Filled • Air Cooled; Class A, B and H.

Write for Bulletin SR-205 describing HiperCore Electronic Cores and Bulletin ST-3505 describing Specialty Transformers.

Moloney HiperCore Electronic Cores are available to manufacturers in any quantity in more than 1000 stock sizes or to your own special specifications.

ME54-8

MOLONEY ELECTRIC COMPANY

Manufacturers of Power Transformers • Distribution Transformers • Load Ratio Control Transformers • Step Voltage Regulators • Unit Substations • Electronic Transformers

SALES OFFICES IN ALL PRINCIPAL CITIES . FACTORIES AT ST. LOUIS 20, MISSOURI AND TORONTO, ONTARIO, CANADA

ENGINEERS

for STABILITY and PROGRESS

NOW IS THE TIME TO INVESTIGATE

estinghouse

For industrial stability, progress and professional recognition, investigate Westinghouse! The Westinghouse Electronics Division . . . located in Baltimore, Maryland, is expanding its operations in the development of highly specialized commercial and military equipment. There are some excellent opportunities for engineers from the B.S. to the PhD. level. Investigate today!

- Job stability
- Extensive facilities
- Opportunities for advanced study
- Association with competent technical leaders

SYSTEMS ENGINEERS

Systems Planning Systems Analysis Systems Evaluation

- Fire Control Systems
- Missile Guidance
- Radar
- Indicators

ANTENNA ENGINEERS

Applied Research Development

Design

- Fire Control Antennas
- Radar Antennas
- Microwave Plumbing Techniques

ELECTRONIC CIRCUIT ENGINEERS

Applied Research Development

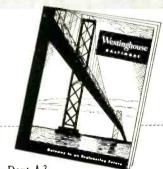
Design

- Fire Control
- Communications
- Radar
- Missile Guidance

COMPONENTS ENGINEERS

Evaluation Standardization Application

- Capacitors
- Resistors
- Switches
- Other Electronic Components


OR . . .

... if you have experience and education in communications, mobile radio, nuclear reactor instrumentation, technical writing, broadcast transmitters, high power audio amplifiers, high frequency heating application, servo mechanisms, magnetic amplifiers, etc., please apply.

If employed at your highest skill in a defense industry do not apply.

SEND TODAY

For your copy of "Gateway to an Engineering Future,' including complete description of Electronics Division operations and the pleasant living conditions in Baltimore-home of the division.

Mr. R. M. Swisher, Jr. Employment Supervisor, Dept. A-3 Westinghouse Electric Corporation 109 West Lombard Street Baltimore 1, Maryland

Please send me a copy of "Gateway to an Engineering Future."

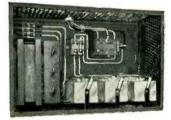
State_

Address_ Engineering Field_

YOU CAN BE SURE ... IF IT'S

ELECTRONICS DIVISION


BALTIMORE, MARYLAND


OTHER TYPES OF RECTIFIERS TOOK THEIR TOLL AT THE TOLL GATES

BRIDGED THE GAP!

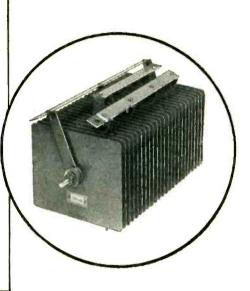
INSTALLATION AT TRIBOROUGH BRIDGE, 60 VOLTS OUTPUT, 45 AMPS. CONTINUOUS DUTY, OPERATING 24 HOURS A DAY, 365 DAYS A YEAR.

E NOINEERS working on New York's great Triburough Bridge had a problem: Existing rectifier installations controlling 22 toll lanes were not efficient. . . They were far too bulky for the current and voltages delivered. . . They generated too much heat.

The solution? Ralph M. Thompson of the Electronic Signal Company, Williston Park, L. I., to whom the contract was let chose and installed SELETRON Scienium Rectifiers built on aluminum ... and the problem ceased to exist! For SELETRON Scienium Rectifiers actually require no more than 1 5th the space needed for the old equipment; they have low internal heat losses, and afford much better voltage regulation.

The Triborough Bridge installation is typical of hundreds of other applications where "job-rated" SELETRON Selenium Rectifiers have paid off in top performance. They are available in a variety of assemblies to cover a wide range of currents and voltages.

Perhaps you have a tough rectification problem that SELETRON engineers can solve. Will you write and tell us about it naw? Our general catalog is yours for the asking, too. Just address Deat. E5.24


SELETRON & GERMANSUM DIVISION RADIO RECEPTOR COMPANY, INC.

Since 1922 in Radio and Electronics

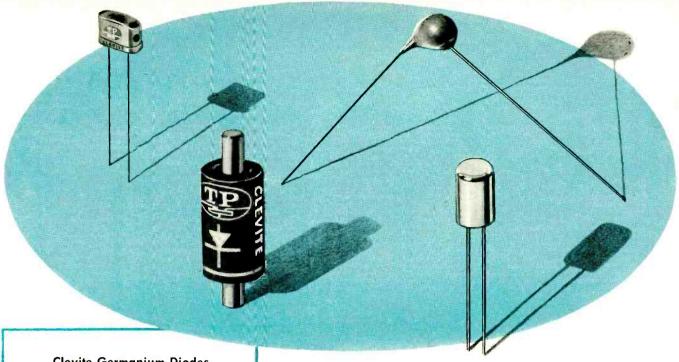
SALES DEPT 251 Wast 19th Street, New York 11, N. Y. HACTORY, 84 North 9th Street, Brooklyn

Speaking of long runs...

How's this for continuous performance!

Back in 1948 an ad we ran told how Seletron Selenium Rectifiers were operating successfully in a new installation on the toll lanes of New York's great Triborough Bridge.

Today after many years Seletron's hit performance still continues. As a result, additional installations have been made at other tunnels and bridges under control of the Triborough Bridge Authority. These rugged rectifiers are giving positive proof of their long-lasting dependability on the bridge and in hundreds of other diversified applications.


If you have a spot in your plans for selenium rectifiers, you need SELETRON. Write us now without obligation, won't you, or study our catalog in Sweet's Product Design File. We also manufacture germanium diodes and transistors.

Seletron and Germanium Division

RADIO RECEPTOR COMPANY, INC.

In Radio and Electronics Since 1922
SALES OFFICES: 251 WEST 19TH STREET, NEW YORK 11, N.Y., WATKINS 4-3633, FACTORIES IN BROOKLYN, N.Y.

Clevite Germanium Diodes

CA	R	T	RI	D	G	E	T	Y	P	E

	UARIK	000	-
1N34	1N65	1N98	1N147
1N34A	1N66	1N99	IN174
1N38	1N67	1N100	1N190
1N38A	1N67A	1N105	4A
1N48	1N68	1N107	4B
1N51	1N68A	1N108	4C
1N52	1N69	1N109	4D
1N54	1N70	1N110	4E
1N54A	1N72	1N111	4F
1N55	1N75	1N112	4G
1N55A	1N81	1N113	4H
1N55B	1N86	1N114	41
1N56	1N87	1N115	4J
1N56A	1N88	1N116	4K
1N58	1N89	1N117	4L
1N58A	1N90	1N118	4M
1N60	1N95	1N124	4N
1N63	1N96	1N132	
1N64	1N97	1N133	

"DIOMITE" BEAD TYPE

D1N34	D1N65	D1N108	IC
D1N34A	D1N69	D1N109	1D
D1N48	D1N86	D1N116	1E
D1N51	DIN88	DINI17	1 F
D1N54	D1N90	D1N118	1 G
DIN54A	D1N95	D1N174	1H
D1N56	D1N96	1 A	IJ
DIN56A	DIN107	1 R	

"MICROTEMP" DIODES

		5105	E 3
M1N38	M1N55B	M1N68A	MIN108
M1N38A	M1N58	M1N70	6A
MIN54A	M1N58A	M1N75	6B
M1N55	M1N63	M1N81	
MIN55A	MIN67	M1N107	

SPECIAL CASE TYPES

S1N39	1N188	1N189	5 B

For data sheets and complete information on CLEVITE transistors, diodes and transistor test sets, write Dept. E4.

Only Clevite Germanium Diodes

are available in 127 types!

Cartridge—Bead—Can—Special Case Types—For All Applications

Nowhere else can you get this wide range of diode types — suitable for so many applications! Basically point contact or junction crystal rectifiers. CLEVITE Germanium Diodes offer numerous advantages over conventional vacuum tube diodes — including extremely long operating life and no filament or heater power requirements.

CLEVITE DIODES Offer All These Features!

- Universal Lead Mounting
- 30 different pigtail lead mounting positions on cartridge types permit design versatility and easy installation — at no extra cost!
- Positive Electrical Stability through precious metal electro-bonding
- Advanced Hermetic Sealing
- Provides moisture resistance and wide ambient temperature range operation at full ratings
- Uniformly Low Inter-Electrode Capacitance
- Micro-sized Precision Tested Rugged

LOW COST — HUNDREDS OF APPLICATIONS

As Rectifiers — Detectors — Discriminators — Limiters — Multipliers - Modulators — Switches — and many new, important uses that are being discovered daily!

TRANSISTOR PRODUCTS, INC.

TELEPHONE: ALGONQUIN 4-0470 CABLE ADDRESS; TRANSISTOR CODES: UNITED TELEGRAPH-HOUSE

SNOW AND UNION STREETS, BOSTON 35. MASSACHUSETTS OPERATING UNIT OF CLEVITE CORPORATION

TRANSISTORS . DIODES . SEMI-CONDUCTOR MEASURING EQUIPMENT

is a word ADLAKE engineers don't understand!

Often, a problem that "can't be solved" is merely one which hasn't yet been brought to the right people. When such problems come in to ADLAKE relay engineers...problems requiring special relays for unusual installations...they promptly drop the "can't". For, if there is no ADLAKE Relay to answer a specific need, one will be designed and manufactured to fill it.

ADLAKE Mercury Relays have proved their ability to stand up under the most adverse conditions of temperature and moisture. Their time delay characteristics are fixed and non-adjustable...normal line voltage fluctuations or ambient temperatures from -38° to 200° F. have no material effect on these characteristics.

Yes, in chick incubators or diesel locomotives... wherever sensititivy and dependability are required...ADLAKE Relays can be counted on. Send for complete Relay catalog today...The Adams & Westlake Company, 1171 N. Michigan, Elkhart, Indiana. In Canada, write PowerLite Devices Ltd., of Toronto.

EVERY ADLAKE RELAY IS TESTED

---AND GUARANTEED

---TO MEET SPECIFICATIONS!

Type 1045 Quick-Acting Relay contact either normally open or normally closed.

THE Adams & Westlake COMPANY.

Established 1857 • ELKHART, INDIANA • New York • Chicago Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

Higher Ratings — to meet the demand for POWER-STATS with 20 ampere capacity.

Small Size — "pancake" coil design provides compact assembly for panel or bench mounting.

Easy, Versatile Installation — 3 sets of mounting holes to suit all needs — simple to change from bench to panel mounting — binding post type terminals provide for any method of connection.

Smoother Operation — self-lubricating nylon bearing shaft support. Hand-fitted knob.

Easy Service — simply remove plate block for easy access to brush assembly.

Rhodium Plate Commutator—assures smoother performance and longer life — contact surface forever free of oxides — uniform contact drop maintained — corrosion reduced — allows greater overload characteristics.

Single and three phase assemblies are offered for manually-operated and motor-driven duty in 120, 240, 480 volt rating. Write for Bulletin P354.

THE SUPERIOR ELECTRIC

204 CLARKE AVENUE, BRISTOL, CONN.

Manufacturers of Powerstat Variable Transformers

Stabiline Automatic Voltage Regulators

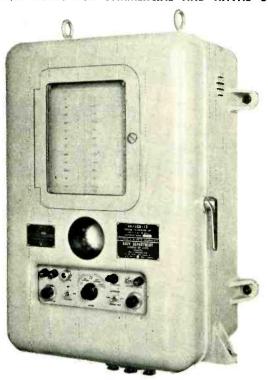
Variabox A-C Power Supplies

Powerstat Light Dimming Equipment Varicell D-C Power Supplies

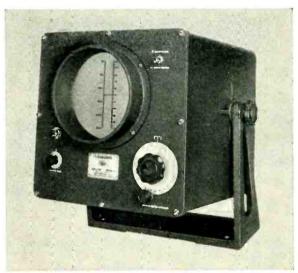
Superior 5-Way Binding Posts


A FEW OF MANY EDO SONAR EQUIPMENTS FOR COMMERCIAL AND NAVAL USE

EDO finest name in SONAR


Ingenuity of design, proven performance and superior range with accuracy are the main reasons why EDO is now regarded and recognized as the outstanding leader in the development of echo-ranging equipment.

From deep depth sounders for navigation, survey, and ocean bottom exploration to a wide variety of under water detection systems, Edo equipment has made its mark and proven its superiority.


That's why when you see the Edo flying fish emblem on a sonar equipment you can confidently recognize it as a product of brilliant engineering and masterful workmanship—reliable beyond question.

EDO SCANNING SONAR a typical example of a complex naval sonar system, developed and built for the U. S. Navy by Edo.

O TO 6000 FATHOM DEEP DEPTH SOUNDER in wide use with U. S. Navy (AN/UQN-lb) now available commercially (Model 185). Gives clear indication of depth on cathode-ray tube in two scales: $0-100~{\rm feet}$; $0-100~{\rm fathoms}$. Records continuously in three scales: $0-600~{\rm feet}$; $0-600~{\rm fathoms}$; $0-6000~{\rm fathoms}$. The finest deep depth sounder available. For complete details send for Model 185 brochure.

EDO FISHSCOPE. Most advanced fish finding device available today. Spots fish on cathode-ray tube in 0-250 fathom range, then magnifies any 10-fathom sector 25 times for clearer view. Commercial fishing boats equipped with the Fishscope report better than average hauls in far less time thanks to this Edo development. For full details send for Fishscope brochure.

EDO CORPORATION . COLLEGE POINT, L. I., N. Y.

Since 1925

main duty is to travel the country — and world — penetrating the plants, laboratories and management councils...reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.

THE MAN WE MEAN IS A COMPOSITE of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE MAN," another complete news service which complements the editorial section of this magazine—the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it"—"they" being all the industry's front line of innovators and improvers—and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you—giving a ready panorama of up-to-date tools, materials, equipment.

SUCH A "MAN" IS ON YOUR PAYROLL. Be sure to "listen" regularly and carefully to the practical business information he gathers.

McGRAW-HILL PUBLICATIONS

FREED

PRODUCTS OF EXTENSIVE RESEARCH

A.C. BRIDGES & ACCESSORIES

No. 1110A -INCREMENTAL INDUCTANCE BRIDGE

This bridge has an impedance range of one millihenry to 1000 henries in five ranges and can be extended to 10,000 henries through the use of externa resistance. The inductance values are read directly from a four dial decade and multiplier switch.

The inductance accuracy is within plus or minus 1% through the frequency range from 50 to 1000 cycles. For the largest multiplier at 1000 cyles, the accuracy of the bridge is decreased to 2%.

On the 1000 henries range, the D.C. is limited to 20 MA. On the 10 henries range the D.C. is limited to 200 MA. On all lower ranges, one ampere D.C. can be used.

No. 1150-UNIVERSAL BRIDGE

Offers a variety of five possible bridge circuits. A range of capacitance, inductance, impedance, and phase angle measurement can be made throughout the frequency spectrum from 20 cycles to 20,000 cycles. By using decade resistors in the variable arms the unknown can be measured to four significant figures. Operation is simple with terminals and controls arranged for convenience and ease of measurements.

Frequency range 20 cycles to 20,000 cycles. Inductor Range: 100 microhenries to 1000 henries. Capacitor Range: I micromicrofarad to I microfarad. Accuracy: 0.5% @ 1000 cycles. Condensers smaller than 0.001 mf should be measured by the substitution method.

No. 1180 - A.C. SUPPLY

A valuable laboratory instrument with continuous variable output from .1 volt to 100 volts at 60 cycles.

SEND FOR COMPLETE CATALOG OF TRANSFORMERS INSTRUMENTS

No. 1210A-NULL DETECTOR & VACUUM TUBE VOLTMETER

Provides simultaneous measurement of the voltage across the unknown and the balance of the bridge. Vacuum tube volt meter Sensitivity .1, 1, 10, 100 volts. Frequency range 20 — 20,000 cycles. Null Detector part of instrument same as Type 1140A.

No. 1170 - D.C. POWER SUPPLY

A stabilized Power supply primarily intended to be used as a D.C. supply for Incremental Inductance Bridge Type 1110A. Provides 4 continuously variable current ranges: 5 milliamps, 25 milliamps, 100 milliamperes, and 500 milliamperes. Mazimum Output voltage 270 V.D.C. Noise leve — 92 Db.

No. 1140-A NULL DETECTOR AMPLIFIER MODEL

A high gain null indicator for bridge measurements, providing visual null indications or aural indications when used in conjunction with headphones. The unit may also be used as a high gain amplifier for general labora-

FREED TRANSFORMER CO., INC. 1722 WEIRFIELD ST. (RIDGEWOOD) BROOKLYN 27, N.Y.

Other capacitors may look like C-D micas. Other capacitors may have the same voltage ratings. But there, the resemblance ends. Because only C-D's have the built-in extras that are the result of over 40 years of capacitor leadership. From the tiny Silver Mikes* to the largest heavy-duty power capacitors and Faradons*, you can be sure that C-D capacitors will not just meet your specified rating, but will have an extra margin of safety that assures consistent dependability. Engineering samples gladly sent on request. For your special design and application problems, use our Technical Advisory Service.

Cornell-Dubilier Electric Corp., Dept. K-44 South Plainfield, New Jersey.

THERE ARE MORE C-D CAPACITORS IN USE TODAY THAN ANY OTHER MAKE

CORNELL Capacitors

PLANTS IN SOUTH PLAINFIELD, N. J.; NEW BEDFORD, WORCESTER AND CAMBRIDGE, NASS.; PROVIDENCE AND HOPE VALLEY, R. I. Indianapolis. Ind.: Fuguay Springs and Sanford, N. C.; and Subsidiary, the radiart corporation, cleveland, Ohio

*(E)

126

Stop Troubles Before They Start... With Mallory Vibrators

The best time to do this is while your equipment is still in the design stage. Each element . . . the vibrator, transformer and buffer capacitor . . . must be carefully selected for balanced electrical characteristics if your power supply is to give top performance in service.

You can avoid vibrator power supply trouble by calling on the specialized knowledge and experience of Mallory engineers. Let them translate the power requirements of your equipment into a smooth operating, trouble-free design. You will save time and money and get the kind of performance you want.

Why call on Mallory? There are a lot of reasons . . . good ones. Our experience in this field is backed by an unmatched fund of engineering knowledge that started over 20 years ago when we produced the *first* commercial Vibrator. Our experience includes supplying more Vibrators for original equipment than all other makes combined.

That's not all. If you wish, we are equipped to design and manufacture complete power supply units...to your exact requirements...to meet your production schedules.

To save engineering time and reduce production costs, write us today. It is the best way to stop troubles before they start.

Expect more . . . Get more from MALLORY

Parts Distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:

Electromechanical—Resistors • Switches • Television Tuners • Vibrators
Electrochemical—Capacitors • Rectifiers • Mercury Batteries
Metallurgical—Contacts • Special Metals and Ceramics • Welding Materials

APRIL • 1954

CROSS TALK

► TWO SPRINGS . . . This report is written in California, where spring came early, with San Francisco singularly free of fog and Los Angeles temperatures well up in the eighties. By the time it goes to press we will be back in New York, and thus will see two springs for the price of one.

Most noticeable thing about farwestern industry in the past six months is a healthy tendency toward stabilization. Not so many new firms. Some consolidations. Subcontractors are suffering a little, principally because some prime contractors deem it desirable on many counts to do more of their own work. Business in general is good.

There is an air of urgency in the development of commercial electronic products by Coast manufacturers heretofore concerned chiefly with government business. Many have excellent pipelines into local aircraft, guided-missile and college research laboratories, so the result should be more of the highly specialized and only moderately competitive products for which the area is noted.

► DIP-SOLDER WIRING . . .

Where mechanized wiring seems desirable, but production runs are short, extension of dip-soldering

techniques may solve the problem. We saw some wiring just the other day that consisted exclusively of solder flowed in thin streams onto an insulating base and it seemed to fill the bill experimentally.

► CAGEY COLOR . . . In our travels the impression is growing that tube makers in general are playing it safe on color-television picture tubes, producing just enough 15-inchers to keep a foot in the door while at the same time watching the other fellow for evidence of larger sizes.

No one wants to be caught without color tubes if the market suddenly blossoms. Nor does anyone wish to be committed in production if competition finds a practical way to provide sizes comparable with monochrome types.

Guessing is complicated by the fact that one suggested tube type does not appear to lend itself too well to the larger sizes and presents some problems in brightness. Another, that does not seem to be too difficult to produce in larger sizes and presents a bright picture, is still in process of refinement. Some engineers feel that there may be still a third type somewhere in the woodpile but, if there is, it is well-shrouded in industrial secrecy.

► TAPE TRENDS ... The market for magnetic recording tape is expanding rapidly, with new applications showing up around every corner.

Movie producers have used a lot of it for some time, but the real news at the moment is the rate at which theater orders for stereophonic playback equipment are coming in. It is also becoming evident that tape recorders go nicely with home hi-fi equipment. Watch for new models aimed at this market by firms that have in the past concentrated upon professional users.

Doctors are digesting technical papers on tape, keeping up to date by listening instead of reading. (McGraw-Hill has done similar work in other fields.)

Tape is one of the keys to industrial automation. Several new firms have recently been set up to engineer automatic control into everything from "a peanut stand to a bank," and appear to be counting heavily upon it for programming.

Even in the geophysical field, where engineers are most reticent about divulging advanced techniques, there is evidence that the usefulness of conventional oscillographs is being extended through the use of magnetic tape.

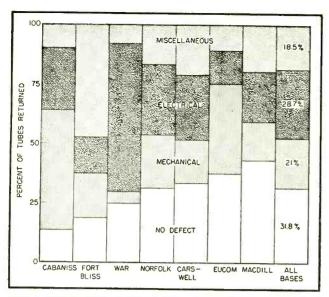


FIG. 1—Tubes returned fall into four defect classes: mechanical, electrical, miscellaneous including breakage and no defect

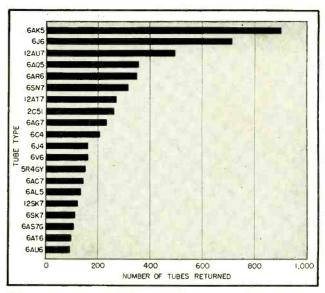


FIG. 2—Tube types 6AK5 and 6J6 lead the twenty tube types ranking highest in total number of returns for first quarter, 1953

Military Reliability of

Study of over 150,000 electron tubes used in military equipment reveals types most likely to fail and discusses common kinds of failure. Tells what equipment designers and tube manufacturers can do to increase electron-tube reliability

By E. R. JERVIS and J. SWAUGER

Aeronautical Radio, Inc. Washington, D. C.

have been launched by the armed services with a view to improving the reliability of more than 30 tube types. These types will be usable in more than $\frac{2}{3}$ of all sockets in present-day military equipment. The improved types are being developed to reach a goal of 95-percent survival in 1,000 hours operation in contrast with 80-percent in 500 hours for presently available tubes.

A large-scale surveillance project is under way to determine the status of military electron tube reliability before and after use of improved tube types, to discover causes of unsatisfactory performance and to suggest measures for improving reliability. Field stations at eight military bases collect re-

jected tubes from military equipment. The tubes, with available failure data, are forwarded to Washington and subjected to both engineering and statistical analyses.

In two years, 88,500 tubes removed as defective by military technicians have been collected. Over 62,000 tubes have been installed in controlled tests. Tubes under test include over 14,000 of the 22 improved tube types as well as many thousands of their JAN prototypes.

Most of the information to be discussed concerns performance of JAN tube types since the improved versions have been used only in limited numbers during the last two years. This article covers from Sept. 1951 through March 1953 and

includes data from over 44,000 tubes collected from 44 general equipment types.

Types of Defects

Tube returns have been classified in four general defect categories. Electrical defects include tubes rejected because of deterioration of performance caused by faulty processing during tube manufacture, end of normal tube life and environmental or operating conditions. Mechanical defects are physical defects in the structure caused by environmental conditions or weaknesses of tube construction. Miscellaneous defects include broken glass, noise, microphonism and defects caused by unusual environmental conditions or mishandling by main-

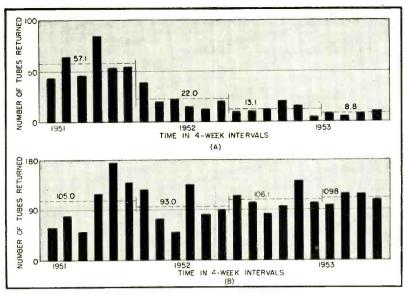


FIG. 3—Returns of 6AR6's from power supply of radar bombing system (A) and from complete system (B). Reduced failures are due to better ventilation

Electron Tubes

tenance personnel. The no-defect category includes tubes removed by maintenance personnel yet found upon laboratory examination to contain no mechanical or electrical defects.

As shown in Fig. 1, one third of all the tubes rejected from military equipment are not defective at all. An additional one sixth of the tubes were probably damaged during installation or maintenance. The remaining 50 percent are truly defective. However, $\frac{2}{3}$ of these failed only after progressive deterioration; they could have been located and removed before causing trouble. Therefore, only one out of every six tubes represents a failure such as would cause unpredictable equipment malfunction.

The equipment types installed at the different bases are similar. However, each base has a characteristic defect distribution pattern. These patterns reflect local operating procedure and maintenance practices.

Figure 2 is a ranking of the 20 tube types contributing the highest number of returns during the first quarter of 1953. While these tube

types constitute only about 10 percent of the types collected, they represent nearly half the total returns. Type 6AK5 alone contributed almost 10 percent.

Some tube types are numerous among those returned due to the large number in use. This group consists of old types such as the 6SN7, 6AC7, 6V6 and 6AG7 used in well-established equipment or newer tube types having wide application such as the 6AL5, 5R4GY and 6C4.

A second category includes tubes whose large return is due mainly to abnormal removals from some or all of the sockets in use. These include types 6AR6, 6AT6, 6J4,

12SK7, 6AQ5, 6AU6 and 2C51. With the exception of the 12SK7 these types are of relatively recent design and critical application.

Tubes in the third category—types 6AK5, 6J6, 12AT7, 6AS7 and 12AU7—show large returns due both to large socket populations and to abnormal removal from some of the sockets in use. The military services have already begun improvement projects on 17 of the 20 types listed in Fig. 2.

Type 6AK5

The only outstanding weakness revealed in the 6AK5 is the heater. Table I gives a quantitative comparison of the reliability of the 6AK5 and its improved versions, types 5654 and 6096. Comparison is made of mean removals from 100 sockets during 100 hours of operation when the tubes are replaced with new ones upon failure. The fourth column gives number of failures if all no-defect removals are eliminated; in column five, eliminating both no-defect and electrical-defect removals indicates unpredictable failures causing equipment malfunction.

Information was also obtained from commercial airlines on a number of 5654's made by different manufacturers.

Type 6J6

Tube type 6J6 is even more widely used than 6AK5 although the number of sockets under present surveillance is slightly less. Table II shows the defect distribution of all returns of this type and its improved versions during the first quarter of 1953. The no-defect category is larger for this type than for the overall average of all tubes from all bases. In returns of the improved type, electrical defects

SIX WAYS TO INCREASE ELECTRON-TUBE RELIABILITY

- Limit power dissipation in soft-glass tubes to keep bulb temperature below 200 C.
- Limit cathode temperature to values minimizing interface formation and sublimation of nickel material.
- Limit heater temperature to 1,400 K to prevent heater-cathode trouble and heater burnout during cycling surges.
- Control metallic deposits on insulating surfaces by proper design of parts and insulators and proper shielding and coating of insulating parts.
- Control dimensions to obtain proper fit of parts and reduce vibration.
- Control fabrication and assembly to reduce operational failures due to faulty workmanship

lead mechanical by two to one. A breakdown of the electrical defects is also given.

A common electrical defect is heater-to-cathode leakage, probably due to the unusual physical layout of the tube. A large amount of power—as much as eight watts—is dissipated between the cathode and plates, and the grids have a tendency to expand, usually toward the cathode.

A comparison of results obtained in some controlled tests is given in Table III. The figures are of the same order of magnitude as those for type 6AK5 and the improvement of the premium versions over the prototype is also similar. However, the 6J6 appears to be overrated. To improve its reliability, it may be necessary either to decrease its maximum rating or to redesign radically its mechanical structure.

A double triode such as the 6J6 has almost twice as many chances of failure as a single tube but the returns do not show double the number of failures. This indicates that double triodes, performing the function of two tubes, have higher reliability than two single tubes.

Double Triodes

Other double triodes, such as the 6SN7, 12AU7, 12AT7, 2C51 and their improved counterparts also show higher reliability than comparable single tubes.

The 12AU7 compares favorably with the 6SN7 if the most recent design of the 12AU7 is considered, Type 12AT7, on the other hand, shows high-tem-

perature operation in its heater and cathode. This is indicated by the large percentage of returns for heater-cathode leakage and insulation failures. The 12AT7 has had wide acceptance among circuit designers because of its high transconductance and low heater requirements in spite of the extreme design features used to obtain such characteristics. These design features are responsible for the defects mentioned and should outweigh the performance characteristics if reliability is considered.

The 2C51 is similar to the 12AT7, but except for some insulation failures does not show the same weaknesses to as great an extent. The 2C51 has an improved version in the type 5670.

Types 6V6 and 6AQ5

Tube type 6AQ5 has been studied in comparison with type 6V6 of which it is the miniature counterpart. Table IV represents the defect distribution for these two types and their reliable counterparts.

The 6V6 exhibits a larger percentage of electrical defects than of other defects and is much higher in this category than the 6AQ5. The 6V6 shows a larger proportion of returns with interface resistance while the 6AQ5 evidences a greater tendency to fail because of emission degradation.

The temperature of the 6AQ5 has been estimated to be 100 C above that of the 6V6 at maximum rating. The higher operating temperature may explain the faster emission

deterioration of this type, resulting from evolution of gas and poisoning of the emitting surface by ion bombardment.

Failures may occur either due to loss of emission properties of the cathode, interface formation, evaporation of materials, vibration or a combination of any of these, and by catastrophic changes such as gas discharge within the bulb, glass strains, and shorts and opens.

Deterioration Failures

The rate of decay of cathode emission is related to the residual gas in the envelope at the beginning of tube life. As time passes, the cathode absorbs some of this gas and is gradually poisoned. This process may be accelerated if additional gas is developed as a result of electrical overloading or high ambient temperature.

Formation of interface resistance occurs most frequently in tubes that operate for long periods of time in circuits requiring low current densities. Composition of the nickel sleeve affects the speed of interface formation but exhaust schedules and operating temperatures are also important.

The evaporation of metal from hot elements in tubes produces gradual deterioration in the insulating properties of the tube structure and low-resistance paths between electrodes resulting in noise or irregular operation. Methods for minimizing this effect are coating smooth surfaces with rough insulating material to increase the length of the leakage

Table I—Removals of Tube Type 6AK5 and Improved Versions from 100 Sockets During 100 Hours

Source	Tube type	Mean removals	95-percent confidence interval	All failures	Catas- trophic failures
Carswell AFB	6AK5	3.36	2.06-5.00	1.7	0.90
	6096	1.73	0.89 - 2.84	0.67	0.40
NOB Norfolk (air)	6AK5	4.87	3.24-5.45	3.08	2.05
	5654	1.90	1.69-3.14	0.71	0.47
	6AK5W	1.83	1.36-2.38	0.99	0.66
Commercial airlines					
Tube mfgr A, line	E 5654	0.21	0.07-0.43		
Tube mfgr A, line	D 5654	0.33	0.12-0.60		
Tube mfgr B, line	E 5654	0.17	0.05 - 0.38		
Tube mfgr B, line	D 5654	0.29	0.10-0.60		

Table II—Defect Distribution for Tube Type 6J6 and Improved Versions

	6,	16	6J6W, 6096, 6101		
Defect	number	percent	n <mark>umbe</mark> r	percent	
Mechanical	107	20	20	16	
Electrical	86	16	41	32	
No defect	213	40	55	43	
Miscellaneous	130	24	12	9	
Total	5 <mark>36</mark>	100	123	100	
Electrical defects only (6J6	and impr	oved version	ns)		
Degradation	135	.55			
Unbalance	37	15			
Heater-cathode leakage	76	30			
Total	2 18	100			

path, proper shielding of electrodes. elimination of getter material, use of nonevaporating getters and inactive alloys and limitation to minimum operating temperatures in all elements.

If tubes are operating under conditions of constant vibration and frequent shocks, gradual deterioration can occur as a result of the enlargement of the supporting holes in the mica spacers. Eventually the electrical output produced mechanical movement of the parts will overcome the useful output of the tube. Corrective measures include anchoring all elements firmly, using close tolerances on the mica spacers, processing the tubes at low temperature to prevent extreme expansion, using synthetic mica. Terratex or ceramics for spacers and redesigning the structure to obtain shorter electrodes and higher resonant frequencies for the elements

Some causes of destructive gas discharge pressures are over heating of an electrode until it releases sufficient gas to reach arc discharge pressures, heavy heatercathode leakages and slow air leaks.

If the glass envelope is not annealed properly or is subjected to unusual mechanical or thermal stresses it may crack. However, glass defects are infrequent where tubes are carefully handled.

The electrode most subject to shorts and opens is the heater. The operating temperature is one of the major reasons for failure. Low operating temperature for the heater is important to avoid burnout and to reduce heater-cathode leakage.

Only about 12 percent of all tubes collected had definitely identifiable mechanical defects. Of these, more than half were attributable to the heater or heater-cathode circuit.

Environmental Effects

High ambient temperatures, vibration and shock and abnormal supply voltage contribute to unreliability. Returns of tube type 6AS7G, and its reliable version, the 6080, from a voltage regulator used in a van-mounted fire control system illustrate this.

Operation in hot climates with the cabinet closed resulted in poor

Table III—Removals of Tube Type 616 and Improved Versions from 100 Sockets During 100 Hours Operation

	Tube type	Mean removals	95-percent confidence interval	All failures	Catas- trophic failures
Carswell AFB	6J6 6099, 6101	$\frac{7.0}{1.4}$	$\frac{5.2-9.1}{0.56-2.6}$	$\frac{2.8}{0.74}$	$0.67 \\ 0.38$
NOB Norfolk (air)	6J6	4.46	3.4-5.6	3.22	2.12
NOB Norfolk (ships)	6 J 6	1.86	1.3 - 2.5	1.39	0.67
	6101	2.2	1.0 - 3.8	1.55	0.66

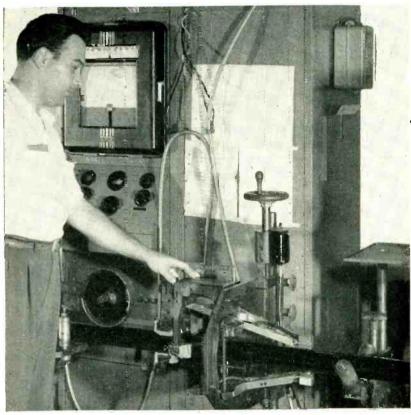
Table IV—Defect Distribution for Tube Types 6AQ5, 6V6 and Improved Versions

Defect	6A number	Q5 percent	6005, number	6095 percent	6V6, 6 6V6Y, 0 number	6V6TÝ
No defect	152	49	4	17	45	41
Mechanical	28	9	6	26	3	3
Electrical	79	25	4	17	51	47
Miscellaneous	57	17	9	40	10	9
Total	316	100	23	100	109	100
Defective tubes only						
Mechanical	28	17	6	32	3	5
Electrical	79	49	4	21	51	80
Miscellaneous	57	34	9	47	10	15
Total	164	100	19	100	64	100

reliability in both type 6AS7G and its reliable version, type 6080. Operation in hot climates with the cabinet open gave satisfactory results if improved type 6080 was used while operation in air-conditioned vans gave normal life expectancy for both improved and JAN tube types.

In the power supply of a radar bombing system, the power supply chassis was originally mounted in the nonpressurized part of the plane where there was inadequate ventilation; 6AR6 returns per socket were four or five times greater than the average for all other sockets of the system. During flights above 30,000 feet, bulb temperature reached 315 C.

The power supply chassis was transferred to the pressurized zone of the plane and more effective blowers installed. A temperature check in the relocated chassis showed an average bulb temperature of 181 C. Figure 3A shows the returns of tube types 6AR6 and 6098 for four-week intervals over a period of almost two years. The gradual decrease in returns from an average of 57.1 to 8.8 for each four-week period is readily noticeable. Figure 3B shows returns of all other tube types in the complete system during the same period, indicating that there was no comparable change in the aggregate returns.


Misapplications

Severe misapplications are readily detected and corrected and do not constitute serious reliability problems. More troublesome are misapplications that produce only slight hardships. These include use of a tube type at its maximum rating when there is available another type that could be operated at a more conservative rating; use of a type not actually designed for a particular application when a more suitable type is available; and use of several tubes in parailel to avoid the use of a larger tube.

BIBLIOGRAPHY

"Investigation of Electron Tube Reliability in Military Applications", ARINC Gen Rpt No. 1, GPO, Washington, D. C. P. T. Weeks, Reliability in Miniature and Subminiature Tubes, Proc IRE, 39, No. 5, p 499, May 1951.
G. H. Matson, S. Wagener, M. F. Holmes and M. R. Child, The Life of Oxide Cathodes in Modern Receiving Valves, Proc IEE, 99, Part III, p 69, March 1952.

Capacitance Gage Checks

Measuring setup on cable production line. Toroid-shaped metal electrodes are in small blocks at right, held against sheath by metal arms mounted at angle to cable

By B. M. WOJCIECHOWSKI

Test Set Development Engineer Western Electric Co. Kearny N. J.

POLYETHYLENE extruded over a metal jacket replaces the conventional lead sheath in a new telephone cable now in use by the Bell System. The cable core is covered with a metal jacket that may either be one thin layer of aluminum or layers of aluminum and steel.

To achieve the desired mechanical properties, the metal jacket is corrugated circumferentially. Between the metal layer and the plastic sheathing, a bonding viscous thermoplastic compound is applied to fill the depressions of the corrugations on the metal surface. The sheathed cable leaves the extruder at an essentially uniform speed, in the range from 30 to 80 feet per minute, under the pulling force of a capstan. After leaving the extruder, the cable is cooled in a

trough of water and, before reaching the testing position, dried with compressed air.

Measurement Difficulties

Some of the problems encountered in the manufacture of the new cable were related directly to the lack of reliable methods for measuring thickness of the plastic sheathing. Under manufacturing conditions where sheath thickness cannot be adequately controlled, excess material must be used to assure meeting minimum thickness requirements.

Before the new method was introduced, measurements were made by destructive testing of end samples. One or two circumferential strips were taken from each cable length and micrometer measurements were made on each strip, at four to eight points. Unfortunately, the actual sheath thickness varies in a random way along the cable length, even between points only a few inches apart. A method based on a few point measurements, extrapolating long-cable properties which are describable in statistical terms only, thus left much to be desired.

Choice of Method

For practical reasons as well as for anticipated lack of accuracy, measurements involving use of an x-ray machine were rejected. The success of an ultrasonic echo method would be doubtful, the main reason being the presence of corrugations and of an irregular layer of the filling compound under the polyethylene sheathing, obscuring delimitation of the reflecting boundary surface.

The capacitance method, at first, also had discouraging aspects. Only grounded capacitance measurements are involved, since the metal core cannot possibly be insulated from the corrugating and forming machinery. The required long-time capacitance-to-ground stability and accuracy of the measuring system were estimated to be of the order of 0.001 and and 0.003 and, respectively. Meeting requirements of this order, even under controlled laboratory conditions, presents some difficulties-and vet these requirements had to be met on a production line, on moving cable in the climatic and operational conditions prevailing in a large cable plant.

It was evident, therefore, that conventional grounded-capacitance

Cable Sheath Thickness

Grounded direct-capacitance method utilizing shielded impedance bridge gives accuracy of 0.003 inch in measuring and recording thickness variations in polyethylene sheathing extruded over corrugated metal jacket of new telephone cable

measurements would not be practical. For instance, a shielded cable connecting the probes with the bridge circuit alone could produce wider random capacitance variations than the capacitance increments under measurement. A new method of grounded direct-capacitance measurement using an impedance bridge was therefore developed.

Impedance Bridge Circuit

The bridge circuit shown in Fig. 1 has equal ratio arms magnetically coupled. An application of this type of circuit for capacitance measurements has been known for some time. Such a circuit is capable of performing in one balancing operation direct-capacitance measurements if the center point B of the transformer ratio-arms winding is grounded. For cable this is impossible because corner D of the bridge consists of the metal covering of the cable core, which is at ground potential. However, by connecting to corner B a shield that surrounds the A-D and C-D measuring arms, including cables and probes, three desirable results are achieved.

First, admittances from the measuring electrodes to the shield at *B* are not critical. These admittances appear across the transformer arms. As a result of a close magnetic coupling realizable between these arms, any loading effects across any one of them are symmetrically reflected at the *A* and *C* corners of the bridge, thus essentially not affecting its balance.

Second, stray admittances from the shield to ground appear across the opposite corners of the bridge (detector diagonal). Therefore, they also have no essential effects on the circuit balance.

Third, as a result of the shield at B, stray admittances to ground from the measuring electrodes and from the connecting leads can be reduced to insignificant quantities.

Performance of Bridge

The bridge arrangement measures capacitance quantities equivalent to direct capacitance, in a particular case where one of two measuring electrodes is grounded.

TO IO KC
SIGNAL SOURCE

2 X 50 JUF

300 Cs 300

JUNE
1000 OK
C
45 JUF
1000 OK
C
45 JUF
1000 OK
C
What is a signal amplifier
GROUNDED METAL
JACKET
POLYETHYLENE
SHEATH
PROBE
PROBE
PROBE

FIG. 1—Grounded direct-capacitance bridge circuit as used with two probes

Realization of the grounded direct-capacitance measurements is made possible by having within the measuring arrangement a three-electrode system in which stray admittances from the third (ungrounded) electrode to either of the measuring electrodes do not affect the fundamental balance condition of the bridge network.

Residual effective capacitances between the measuring electrodes and ground are reduced to a desirable minimum (actually below $1\mu\mu f$, including calibrating capacitor and balancing networks). Also, any adverse capacitance effects of the cables connecting the bridge to the measuring probes are practically eliminated, even though these cables are several feet long.

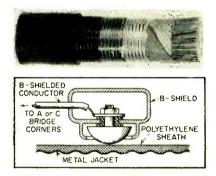
The calibrated grounded direct-capacitance range of the bridge extends over $0.32~\mu\mu f$ in either direction off the balanced center position. Any unbalances within the $\pm 0.25~\mu\mu f$ range can be read in increments of $0.005~\mu\mu f$ per division on the dial of capacitor C_s or on the recorder scale.

Covering such a limited capacitance range directly with an adjustable capacitor presents practical difficulties, hence a capacitor network was used to reduce electrically the range of the $2\times 50~\mu\mu f$ differential capacitor C_s to $2\times 0.32~\mu\mu f$. Use of such a network facilitates calibration and adjustability and greatly reduces the effects of mechanical instability of the variable capacitor. Similar networks serve for capacitance C_o and conductance residual-balance control G_o .

Stationary unbalances of the bridge network can be measured directly in a conventional manner by rebalancing the circuit with C_s . For unbalances rapidly varying in time, however, this null method could not be applied simply. Therefore, a proportional off-balance deflection method had to be used.

The circuit shown in Fig. 2 assures overall linearity between incremental capacitance unbalances and indicator deflections, so that variations in linearity no larger than 0.4 db over periods of several days and 0.2 db over several hours have been observed in the actual operating conditions.

Measurements with the bridge depend essentially on the calibrated capacitor Cs. To avoid necessity for frequent and quite elaborate calibration checking (within a few thousandths of a uuf) of this capacitor in a laboratory, a set of supplementary high-stability auxiliary standards has been provided in the test-set assembly. The capacitance values (1.05 μμf, 1.20 μμf and 1.35 uuf) of these capacitors are so chosen that differences between any pair of them can be compared directly with the calibrated capacitor in the bridge circuit.


Reliability of this system is based on a reasonably high probability that change in the calibrated value of any single capacitor will be revealed in the process of mutually comparing all four capacitors. The sensitivity of this method of ascertaining calibration accuracy at the operating position is actually higher than the sensitivity of the usually available laboratory equipment.

Capacitance Unbalance Discriminator

For eccentricity measurements and control of the sheathing process it is essential to register the direction of incremental deviations from an arbitrary level. The phase-sensitive discriminator in Fig. 2 provides this indication. The unbalance signal from the bridge is fed through feedback amplifier V_1 - V_4 and biased voltage limiter V_5 to the center tap of transformer T_1 in the discriminator circuit. The primary winding of this transformer is connected, through a continuously variable phase shifter, to the 10-kc signal source that also supplies the bridge circuit.

The d-c output from the balanced square-law discriminator stage is fed, through a time-delay network of approximately 50 milliseconds, to power amplifier stage V_{τ} and then through an attenuator to a zero-center recorder.

The voltage derived from the 10-kc power source across the secondary of T_1 is the reference potential which, by adjustment of the phase-shifter, can be oriented so as to be in phase with the signal resulting from the reactive unbalance of the bridge circuit. Since the bridge output signal resulting from small conductance unbalances is essentially perpendicular to the ca-

Cable construction and details of probe

pacitance unbalance signal, in this condition the circuit is not sensitive to limited unbalances of the real component.

At the operating sensitivity level, each of the 100 divisions of the recorder scale corresponds to 0.005 μμf, or approximately to 0.001 inch of the incremental sheath thickness. The role of the attenuator is two-fold; it provides control of the over-all sensitivity of the measurements (in steps of 0.2 db) and it introduces a substantial (over 20 db) attenuation into the d-c output signal path. This loss is compensated by an added gain within the feedback-controlled a-c amplifier preceding the phase discriminator. The net result of this a-c for d-c gain-trading is a considerable improvement of the over-all circuit stability since the range of random drifts, such as are usually generated within the phase-discriminator and its direct-coupled output stage, are materially reduced.

Measuring Probes

As has been mentioned above, two arms of the bridge circuit consist of a pair of admittances between the grounded metal core D of the cable and the probes sliding

FIG. 2-Unbalance signal amplifier and capacitance unbalance discriminator

on the surface of the plastic cable sheathing. These probes are connected to the A and C corners of the bridge with two shielded flexible conductors (each about 10 feet long) and are maintained mechanically in the testing position by the probe assembly.

In the design of the probes and their assembly, various difficulties had to be overcome. The probes operate on cables subjected to some unavoidable swings and vibrations while moving with speeds up to 80 feet per minute. The capacitance from either of these probes to the metal cable core, in equivalent conditions, should match each other within approximately 0.001 auf. This capacitance should not be appreciably affected by limited displacements of the probes with respect to the cable plane of symmetry, such as may occur in actual operating conditions.

Each of these probes is in the form of a cut-off segment of a This form of probe had various advantages, chief of which is that the capacitance from the probe to the cable core varies but little as a result of displacements and changes of position caused by the cable motion.

The probe electrodes, surrounded (except for the contacting face) by shielding, are mounted on mechanically balanced light aluminum arms. There may be one, two or four probes to an assembly, which can be turned over 360 deg around the cable axis. For eccentricity measurements two probes can be simultaneously used, having a spacing of 180 deg (for measurement of eccentricity across a diameter) or of 90 deg (for measurement of ellipsoidal eccentricity). Also, for eccentricity or direct thickness investigations and process settings one probe only may be used, with the other bridge measuring arm connected to an auxiliary standard.

Performance Data

The average capacitance from the probe element to the grounded metal core varies from 1.1 to 1.3 auf for cables measured. Incremental capacitance sensitivity for grounded direct-capacitance measurements, in normal operating conditions with the probes in contact

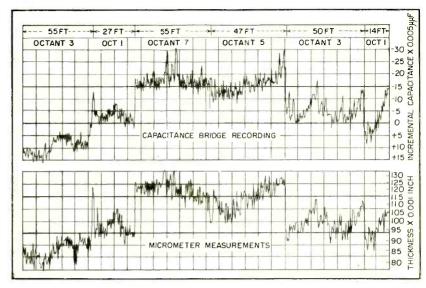


FIG. 3—Comparison of production-line recording with micrometer measurements of 248-ft length of Alpeth polyethylene-jacketed cable having 1,59-inch core thickness

with a cable sample, is of the order of 0.001 unf. Circuit stability and repeatability for periods over one hour duration is ±0.003 µuf.

Overall linearity of the unbalance indications, as read on the recorder scale within the range of $\pm 0.25 \,\mu\mu f$ off center-balance position, is $\pm (3)$ percent $+ 0.003 \, \mu\mu f$).

Moving or twisting the connecting leads has no effect on balance stability. Swinging of the cable under measurement, even beyond the limits encountered in actual working conditions, produces barely noticeable effects on the balance indication.

Production-Line Measurements

A typical example of a measurement performed on a cable section approximately 250-feet long is shown on Fig. 3. The upper curve represents a photograph of the recorder tracing. The lower curve was obtained by measuring actual thickness with a micrometer at 6inch intervals, plotting them on the nonlinear vertical scale following the capacitance-versus-thickness function.

From comparison of these graphs a few observations can be made. The recorder indications are continuous average readings based on an area having a definite width and a length of a few corrugation spaces, while the micrometer readings are point measurements taken at discrete distances at the bottom of the corrugation valleys in the polyethylene jacket. Despite this fact, the statistical character of both graphical results is closely similar. Assuming an average translation factor of 0.005 µuf per 0.001 inch and discarding tracing errors, the agreement for incremental measurements between both methods can be estimated to be of the order of 0.003 inch. This accuracy is ample for any practical purpose of incremental thickness control of cable sheathing.

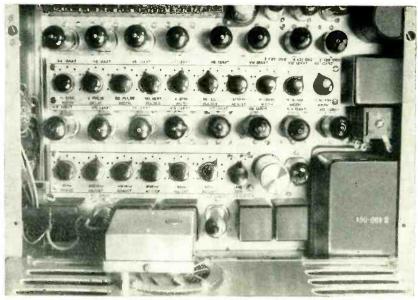
The author wishes to thank R. I. Neel, W. T. Eppler and D. T. Robb of the Western Electric Co. for assistance given in various phases of this work. Especial credit for checking accuracy of the new method belongs to J. L. O'Toole of the Bell Telephone Laboratories group at Kearny, N. J.

BIBLIOGRAPHY

R. P. Ashbaugh, Alpeth Cable Sheath, Bell Lab Record, p 441, Nov. 1948.
R. P. Ashbaugh, Stalpeth Cable Sheath, Bell Lab Record, p 353, Aug. 1951.
F. W. Horn and R. B. Ramsey, Bell System Cable Sheath Problems & Designs, Trans. 4IEE, p 1,811, 1951.
V. T. Wallder, P.

Trans AIEE, p 1,811, 1951.
V. T. Wallder. Polyethylene for Wire and Cable, Elec Eng, p 59, Jan. 1952.
H. G. Johnstone, U. S. Pat. 2,589,700,

1952.
J. G. Ferguson. Classification of Bridge Methods of Measuring Impedances, Bell System Tech Jrl. p 452, Oct. 1933.
C. H. Young. Measuring Inter-Electrode Capacitances, Bell Lab Record, p 433, Dec. 1946.


Hartshorn, "Radio-Frequency Meas-

urements by Bridge and Resonance Methods," John Wiley & Sons, New York, 1940.

A. C. Seletzky. Cross Potential of a 4-Arm Network, Elec Eng. (Trans), p 861. Dec. 1933.
B. M. Wojciechowski, U. S. Pat. 2.554,-164, 1951.

B. M. Wolciechowski, Continuous Incremental Thickness Measurements of Non-Conductive Cable Sheath. Bell System Tech Jrl. p 353. March 1954.

Rear-panel view of sync generator, left, and tube and adjustment side of chassis, right

Portable Sync Generator for TV Broadcasting

Miniaturized synchronizing pulse generator supplies standard RETMA signal at 4 volts negative peak to peak. Unit weighs only 20 lbs and is interchangeable with conventional television broadcast equipment. Built-in power supply is gas-tube regulated

PORTABILITY AND SIMPLIFICATION of television broadcast studio equipment may be achieved by use of the synchronizing pulse generator to be described.

The generator furnishes standard RETMA synchronizing signals at 4 volts negative peak to peak across 75 ohms. It is housed in a briefcase-sized cabinet that also contains its regulated power supply. The photographs illustrate the tube and adjustment side of the chassis and the rear panel of the generator. Figure 1 is a functional block diagram and Fig. 2 is the complete schematic.

Timer Section

The master oscillator and the 7-5-5-3 divider chain incorporate

five blocking oscillators each isolated by 1N51 germanium diodes. The timer generates the 31.5-kc and 60-cps trigger pulses to time the gates and multivibrators in the shaper section. All grid circuits in the timer section are connected through their respective time-constant controls to a +150-volt bus that serves as the afc line-lock path.

Tuned circuit $C_1 - L_1$ in the master-oscillator grid circuit is a resonant stabilizer for maximum frequency stability. Shock excitation of this resonant circuit by the grid-current pulse produces added potential at the desired resonant frequency resulting in a high degree of grid stability.

Point J at the cathode of the

master oscillator terminates at the rear-panel waveform selector switch providing a signal at the rear-panel switch point for scope observation. Points *A*, *B*, *C* and *D* in the grid circuits of the 7-5-5-3 divider provide the same function.

Line-Lock

The negative plate pulse and positive cathode pulses at V_{8A} are supplied to a balanced R-C network terminated in germanium diode clampers. The 6.3-volt 60-cycle reference from point Y in the power supply is injected at the junction, also designated Y.

When the 60-pps final divider output is in phase with the 60-cps line voltage, the equal-amplitude pulses occur at the instant the sine-

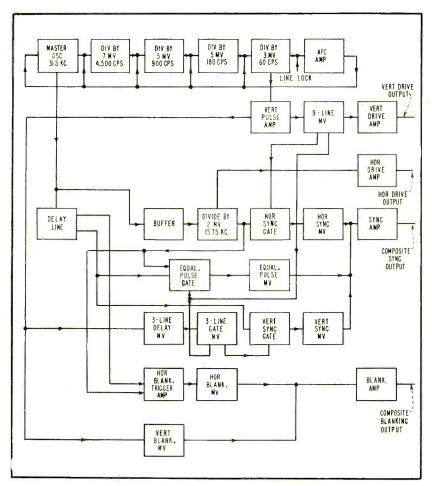


FIG. 1—Functional block diagram illustrates interconnection of stages

By HAROLD E. ENNES

Indianapolis, Indiana

wave reference is crossing its axis and the voltage appearing at the clamped grid of V_{ab} is zero.

If, however, the pulses occur early or late, the voltage rises or falls depending upon whether the positive or negative value of the act is clamped. Thus the pulses are caused to slide on the slopes of the sine-wave alternation until they coincide with the axis of the line voltage and the timer is locked with the line frequency.

Switch S_1 is open for the linelock position and V_{8B} serves as a d-c amplifier for the afc voltage fed to all grids of the timer section. Filter $C_2 - R_1$ smooths out current variations. The circuit comprising R_2 , C_3 and C_4 provides a time-constant for afc action to prevent instability from too-rapid action. With S_1 closed, automatic frequency control action is removed.

Synthesis of the output pulses is best described with the aid of the waveform diagram, Fig. 3. Italicized letters in text refer to waveforms shown in Fig. 3. All multivibrators are of the driven type and must receive enabling voltage from associated gate tubes.

Camera Drive

Camera driving pulses are delivered only to the camera chains and slightly precede the composite sync signal to compensate for interconnecting cable delay. Positive 31.5-kc trigger pulses A from V_{1A} cathode are fed to the horizontal-drive buffer amplifier V_{sn} and appear as

amplified negative triggers at the grid of V_{164} , the divide-by-two multivibrator. This section is driven to cutoff and drives V_{168} into conduction.

This condition prevails in the absence of further triggering for an interval determined by the gridpotential adjustment and circuit time constant. Adjustment of R₃ determines within limits the potential and time-constant of V_{16B} grid. With proper adjustment, alternate 31.5-kc pulses occur when $V_{\scriptscriptstyle 16A}$ is cut off and have no effect. Thus only 15.75-kc pulses B appear at the output. Different values of resistance and capacitance in the two grid sections result in asymmetrical pulses; the on time is less than the off time. Resistor R, adjusts the width to system standards, ½ to 1 times blanking width. The 1N63 clamps the pulses on the grid of the horizontal drive amplifier $V_{\scriptscriptstyle 10}$ at 9 volts assuring flat-topped pulses in the plate circuit.

Vertical Drive

Positive 60-cycle pulses from V_{3A} cathode amplified by V_{11B} appear as negative triggers at the grid of the on section of the 9-line multivibrator, V_{17} . The NUMBER-OF-EQUALIZING-PULSES control R_3 in the V_{17B} grid circuit determines the gating-pulse width for the vertical-equalizing and sync interval and automatically sets the width of the vertical-drive pulse. The positive pulses from the plate of V_{17B} applied to the grid of the vertical-drive amplifier V_{15} appear as standard negative-polarity pulses C at the plate.

Horizontal Sync

The horizontal-sync multivibrator V_4 is gated by the horizontal-sync gate V_{54} . The cathode of V_{54} is tied to the cathode resistor of V_{174} . In the period between fields when V_{47} is not triggered, V_{474} is cut off and the cathode potential is negative.

The grid of V_{54} receives delayed 31.5-kc trigger pulses from the delay line and 15.75-kc pulses from V_{10} . Since the grid of V_{54} is biased to -108 volts by the regulated power supply, only the 31.5-kc D triggers occurring at horizontal-pulse time are of sufficient ampli-

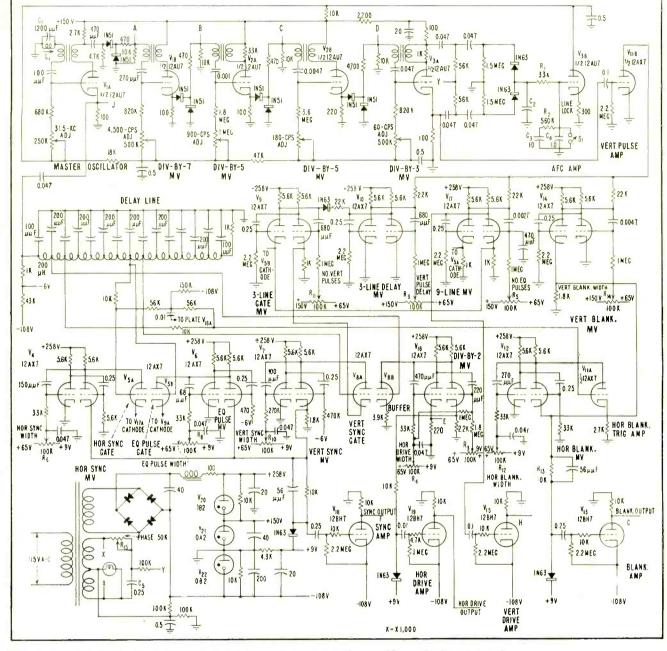


FIG. 2—Complete schematic shows how the 22 miniature tubes provide RETMA standard sync signal

tude to rise above cutoff level. The resultant negative 15.75-kc trigger pulses applied to the on section of the horizontal-sync multivibrator V_4 drive that section off and opposite section on. The narrow triggers are widened by the horizontal-sync control R_6 to standard horizontal-sync width. The cathode output pulses E feed through a common 10,000-ohm resistor to the sync amplifier stage V_{18} .

The horizontal sync multivibrator is gated off for the duration of the vertical interval. When the 9-line multivibrator V_{17} is triggered at the 60-cps field rate V_{171} is driven

on with its cathode going positive. With the horizontal-sync gate V_{54} cathode also positive, the gate is closed at the start of the vertical interval. The gate remains closed for the 9-line duration of the vertical-sync interval.

Vertical Sync

When the 9-line multivibrator V_{17} is triggered by a 60-cycle pulse, the cathode potential of V_{17B} falls in the negative direction. This point is common to both V_{94} the 3-line gate multivibrator and the equalizing-pulse gate V_{5B} . Since the cathode of V_{5B} is now negative,

the gate is on, F. The delayed 31.5-kc trigger pulses on the grid of V_{5B} are transferred as negative triggers to the grid of equalizing-pulse multivibrator V_6 . The on section of V_6 is driven to cutoff and triggers the other section on. The narrow triggers are widened to standard equalizing-pulse width by the EQUALIZING-PULSE-WIDTH control R_8 . Cathode output pulses G are fed to the same common 10,000-ohm load resistor as the horizontal sync, and hence to the grid of sync amplifier V_{18} .

At this point the first 3-line interval containing six equalizing pulses

is ended. Equalizing-pulse multivibrator V_0 is gated off, and the vertical-sync multivibrator V_7 gated on. This action involves four stages: the 3-line delay multivibrator V_{10} , the 3-line gate multivibrator V_{10} , the vertical-sync gate V_{84} and also the vertical-sync multivibrator V_7 .

The grid of the on section of 3line delay multivibrator V_{10} receives a 60-pps negative trigger simultaneously with that applied to the 9line multivibrator V_{17} . With V_{10B} driven to cutoff, the positive pulse on the plate holds the negative terminal of the 1N63 diode too far positive to allow conduction, hence prevents interaction between $V_{\mathfrak{p}}$ and V_{10} . During this time the cathode of $V_{\theta B}$ (3-line gate multivibrator), being common to the cathode of the vertical-sync gate V_{sd} , is of positive polarity and gates off the verticalsync multivibrator V_{τ} . This is the first 3-line interval of the total 9line interval.

With proper adjustment of the VERTICAL-PULSE-DELAY control R_{\bullet} in the V_{10} grid circuit, V_{10} returns to its nondriven state under control of its time-constant and grid potential. Tube V_{10B} returns to on, and the resultant negative plate pulse allows the 1N63 to conduct. The passed negative trigger drives multivibrator V_{0} . The V_{04} cathode goes positive gating off V_{6B} , the equalizing-pulse gate, and the V_{0B} cathode goes negative gating on V_{84} , the vertical sync gate.

Thus the equalizing pulses are shut off and vertical-sync pulses driven on. The 31.5-kc triggers on the grid of $V_{8,4}$ are passed as negative triggers to grid of the vertical-sync multivibrator V_{7} . The VERTICAL-SYNC-WIDTH control R_{10} widens the narrow triggers to standard vertical-sync width and the cathode output pulses H are combined in the common load and passed to the grid of sync amplifier V_{18} .

With proper adjustment of the NUMBER-OF-VERTICAL-PULSES control R_{11} , the 3-line gate multivibrator V_{9} returns to its non-driven state at the end of 3 lines. The cathodes reverse their polarities. The vertical-sync multivibrator V_{7} is gated off by V_{8A} gate and the equalizing-pulse multivibrator V_{6} is again gated on by gate V_{5B} .

The 31.5-kc pulses on the grid of V_{5B} are amplified as negative triggers to the grid of equalizing-pulse multivibrator V_6 and the trailing six pulses are fed to sync amplifier V_{18} .

The 9-line multivibrator V_{17} is returned to its nondriven state gating off all vertical stages, and restoring horizontal-sync gate $V_{5.4}$ to on until the next 60-cycle vertical pulse.

The composite sync appears at the grid of sync amplifier V_{18} at positive polarity, is clamped at 9 volts by the 1N63 and the resultant clipped standard negative polarity composite sync I results at the output. Waveforms meet all RETMA specifications.

Composite Blanking

The blanking pulses must slightly precede their respective sync pulses to establish front porch.

Horizontal blanking pulses are derived as follows: 31.5-kc triggers from the delay line together with 15.75-kc triggers from the divide-by-two multivibrator V_{10} are applied to grid of the horizontal-blanking trigger tube V_{114} . Note that the 31.5-kc triggers are fed from a tap on the delay line allowing camera driving pulses to precede composite blanking but delaying composite sync from the start of blanking. Since V_{114} grid is biased to -108 volts, only those 31.5-kc triggers occurring at the time of the 15.75-

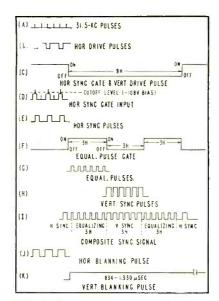


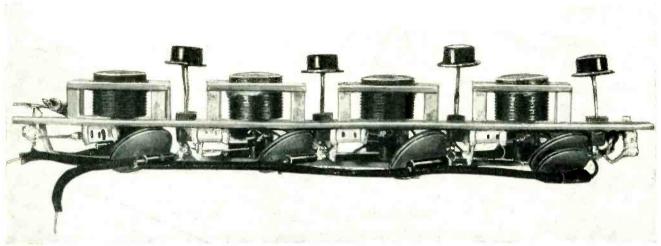
FIG. 3—Sync generator waveforms

kc pulses are of sufficient height to be passed as triggers for the horizontal-blanking multivibrator V_{12} . The cathode output pulses J adjusted in width by the HORIZON-TAL-BLANKING-WIDTH control R_{12} , are fed to the common load resistor R_{13} , hence to the grid of blanking amplifier V_{13} .

For vertical blanking, 60-cps negative triggers from V118 drive the vertical-blanking multivibrator V₁₄. The VERTICAL-BLANKING-WIDTH control R₁₄ is adjusted for proper blanking width and the cathode output pulses are combined with horizontal-blanking pulses K in common load resistor R_{13} and passed to the grid of blanking amplifier V_{13} . The horizontal-blanking pulses occurring during the vertical interval stand atop the long vertical pulses and are clipped by the clamp action of the 1N63 diode in the $V_{\scriptscriptstyle 13}$ grid circuit.

Since the amplitude of the pulses is much higher than 9 volts at this point, a flat-topped composite blanking signal results.

The standard negative-polarity blanking pulses at the plate of V_{13} yield 4 volts peak to peak across 75 ohms at the output.


Power Supply

The rectified voltage from the bridge-type selenium rectifier is gas-tube regulated providing -108, +9, +150 and +258 volts. The 60-cps lock-in circuit that provides afc voltage to hold the master oscillator precisely 525 times the power-line frequency derives its line-frequency reference from the filament winding at point Y through the phasor control R_{15} and phase capacitor C_{5} .

This phasing adjustment properly times the system with shutter-type film projectors by phasing the sync pulses relative to the shutter synchronous motor so that shutter opening occurs well within the interval of the vertical blanking pulse. Resistor R_{13} is adjusted in practice for elimination of banding effects from any associated film chain.

The author congratulates G. Fathauer of Dage Electronics Corporation, upon the design of the camera chain and thanks Dage for permission to publish this article.

High-Frequency

Four-stage 455-kc intermediate-frequency amplifier uses rate-grown npn junction transistors in cascade

Design equations for getting optimum performance from video and radio-frequency amplifiers are presented. Sample design of four-transistor 455-kc i-f amplifier is described in detail; i-f gain is 18 db per stage with 14-kc bandwidth

In the application of transistors to high-frequency circuits the low-frequency equivalent circuit must be modified since most of the parameters become complex. The finite input impedance of a transistor amplifier at high frequencies is an important factor along with the interaction between input and output.

The usual low-frequency equivalent-T circuit may be modified to apply at high frequency, as shown in Fig. 1, which shows the modified circuits for the grounded-base (A) and grounded-emitter (B) configurations. One important modification consists of the addition of the capacitor C_c across the collector resistance r_s . Additional important factors, not evident from these circuits, is that a is complex, and both r_a and C_a vary with frequency. To a lesser degree r_e and r_b are also frequency dependent. However, it is customarily assumed that these two parameters are constant and resistive up to about the alpha cutoff frequency f_{ao} .

If operations at only one frequency were involved, it would obviously be adequate to take the proper values of the equivalent circuit parameters at that frequency and insert them in the usual mesh equations, using the proper vector additions, multiplications and so on. For wide-band use, such as video and pulse amplifiers, this method is inadequate, hence a great deal of analysis has gone into attempts to derive high-frequency equivalent circuits which adequately reproduce the transistor over a wide frequency range.

The variation of α with frequency is a hyperbolic secant function of the parameters of the physical construction. This function can be approximated by the short-circuit current equation of a R-C distributed transmission line. Thus the ratio of output short-circuited current to input current is

$$\frac{i_o}{i_i} = \text{sech } \sqrt{j} \, \omega \, RC \tag{1}$$

and $\omega_{ao}RC = 2.43$.

A further approximation can be made by a low-pass R-C network. In this approximation, the expression for the variation of α with frequency becomes

$$\alpha = \frac{\alpha_o}{1 + j \,\omega \,RC} = \frac{\alpha_o}{1 + j \frac{\omega}{\omega_{cos}}} \tag{2}$$

since $\omega_{\alpha o} RC = 1$.

The variation of the effective value of collector admittance y_{22} can also be calculated by the following approximate equations

$$y_{2i} \cong \frac{1}{r_e} + j \omega C_e + \sqrt{\frac{j \omega C}{R}} \tanh \sqrt{j \omega RC}$$
 (3)

$$y_{22} \cong \frac{1}{r_c} + j \omega C_c +$$

$$\frac{\omega^2 C^2 R^2}{1 + (\omega CR)^2} + \frac{j \omega C}{1 + (\omega CR)^2}$$
 (4)

Of particular interest in the utilization of the grounded-emitter configuration, is the variation of b, the current ratio, with frequency. Recalling that b = a/(1-a), it is

Transistor Amplifiers

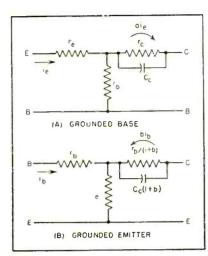


FIG. 1—Equivalent-T circuits

By W. F. CHOW

General Electric Company Electronics Laboratory Syracuse, New York

evident that the variation of a (which is approximately equal to alpha) will be reflected as an even greater variation in b, particularly due to the phase angle of a. The b cutoff frequency is approximately equal to $(1 - a_o) f_{ao}$.

Single Stage Equations

Before going into the study of high-frequency amplifier design, it is necessary to study the equations for input and output impedances, and for power gain. Only equations for the grounded-base and the grounded-emitter configuration are studied, because the grounded-collector configuration has been found to be relatively less effective as a small-signal high-frequency amplifier.

Using the circuits of Fig. 1, the established equations for input and output impedances and power gain can be applied. In the following equations the collector impedance z_{ϵ} includes both r_{ϵ} and C_{ϵ} .

The input impedance of the grounded-base amplifier is

$$z_i = r_e + r_b \left[-\frac{z_e (1 - a) + z_L}{r_b + z_e + z_L} \right]$$
 (5)

The output impedance is

$$z_e = z_c + r_b \left[\frac{r_e + z_g - az_c}{r_e + z_g + r_b} \right]$$
 (6)

where z_L and z_g are the load impedance and source impedance, respectively.

Due to the variation of z_c and a with frequency, the impedances z_t and z_o vary with frequency. For a constant z_L , the input impedance z_i of a junction transistor amplifier, as given by Eq. 5, will increase with frequency and appear as an inductive impedance. The effect of increasing the magnitude of z_L is to increase the magnitude of z_L and to decrease the phase angle.

For a point-contact transistor, the input impedance z, will appear as an impedance having an imaginary term which increases with frequency, and a real term which can be either positive or negative depending upon the load resistance. When the load resistance is large enough the input impedance given by Eq. 5 will have a positive real term which will increase with frequency. When the load resistance is small the input impedance given by Eq. 5 will have a negative real term, but this negative resistance will decrease with frequency and eventually become positive as frequency increases.

The output impedance z_o for a given source resistance is in general capacitive because z_o is strongly capacitive. The magnitude of the output impedance decreases with increasing signal frequency.

The power gain of a groundedbase amplifier stage is given by

$$PG = \left| \begin{array}{c} r_b + az_c \\ \hline r_b + z_c + z_L \end{array} \right|^2 - \frac{[z_L]_R}{[z_i]_R} \quad (7)$$

where $[z_i]_R$ and $[z_L]_R$ represent the real components of z_i and z_L respectively. The variation of power gain with frequency is approximately proportional to the square of the variation of a with frequency. Due to the change of input and output impedances, the actual power gain at high frequency is less

than the approximate relation $[a]^2$.

The input impedance of a grounded-emitter amplifier is

$$z_i = r_b + r_e \left[\frac{z_L + z_c}{r_e + z_L + (1 - a) z_c} \right] \quad (8)$$

For a given load impedance, this input impedance decreases with increasing frequency and is capacitive. For a given frequency, z_i decreases as the ratio of z_L/z_o increases.

The output impedance of a grounded-emitter amplifier is

$$z_{o} = (1 - a) z_{c} + r_{e} \left[\frac{r_{b} + z_{g} + az_{c}}{z_{g} + r_{b} + r_{e}} \right]$$
 (9)

In general, the output impedance decreases with frequency due to the decrease of z_e with frequency.

The equation for the power gain of a grounded-emitter amplifier is

$$PG = \begin{vmatrix} a z_c - r_e \\ \hline z_L + r_e + z_e (1 - a) \end{vmatrix}^2$$

$$= \frac{[z_L]_R}{[z_i]_R}$$
(10)

where $[z_L]_R$ and $[z_i]_R$ represent the real components of z_L and z_i . This power gain also varies with frequency and is approximately proportional to the square of the variation of b with frequency.

I-F and R-F Circuits

In the early application of pointcontact transistors to high-frequency amplification, the groundedbase configuration was generally used. The principle of duality was applied and the single tuned vacuum-tube amplifier circuit was found to correspond to a transistor amplifier employing a series resonant circuit as the interstage network.

In using the series resonant cir-

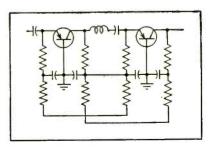


FIG. 2—Circuit showing series resonant coupling of transistors

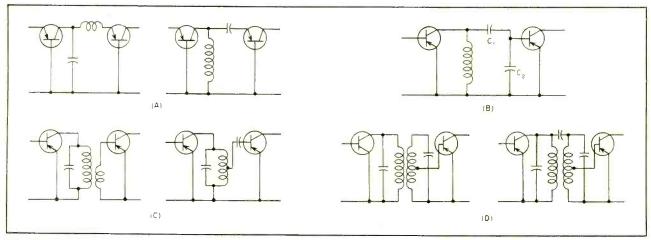


FIG. 3—Simplified circuits of available methods of coupling transistor stages

cuit as the interstage coupling network, the necessary condition is that the output short-circuit current amplification must be greater than unity. This implies that the point-contact transistor may be connected in either the grounded-base or the grounded-emitter connection, however, the junction transistor must be used in the grounded-emitter connection.

Figure 2 shows a series-resonant circuit used as the interstage coupling network between two point-contact transistor amplifiers. The input impedance z, is in series with the tuned circuit and becomes the load of the preceding stage. For a given transistor and a given operating condition, the input impedance of this amplifier stage can be calculated from the impedance equation. Since the resonant circuit is in series with the input impedance, the effective Q of this amplifier stage will be modified by z_i . The power gain per stage will be approximately equal to A^2 .

Besides the series-resonant circuit, the parallel-resonant circuit can be used as the interstage coupling network. However, when pointcontact transistors are used with a parallel-tuned coupling network, the short-circuit instability problem arises. Unless the circuit is so designed that there are sufficient positive resistances in the circuit to compensate for the negative resistance component of the input impedance, the amplifier will oscillate. In practice, when point-contact transistors are used with parallel-resonant coupling circuits as the interstage coupling network, the transistors are usually selected for short-circuit stability. With proper control of the operating point, one can usually obtain a stable amplifier using point-contact transistors. A stable point-contact transistor amplifier can also be obtained by inserting a resistance in series with the emitter (the grounded-base configuration is generally used), with about 3 to 6 db sacrifice of gain.

There are several practical arrangements for coupling two amplifier stages using a parallel-resonant circuit. They can be grouped into several classes as follows:

Direct connection—In this group the second amplifier is directly connected into the parallel-resonant circuit, either in series with the inductance or in series with the capacitance as shown in Fig. 3A.

Capacitive-coupling — In this group the second stage is connected to the junction of two capacitors as shown in Fig. 3B. These two capacitors are also the elements of the parallel-tuned resonant circuit and serve as an impedance transforming device.

Inductive-coupling—In this group the second stage is inductively coupled to the resonant circuit as shown in Fig. 3C. The secondary is not tuned and an impedance stepdown is normally provided to match the input impedance of the following amplifier stage.

Double-tuning—The above three groups use single-tuned circuits for the interstage coupling circuits. Double-tuned circuits employing

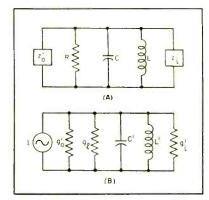


FIG. 4—High-frequency transistor equivalent circuits

either inductive coupling or capacitive coupling can also be employed, as shown in Fig. 3D. An impedance step-down is necessary where the input impedance is low.

In designing an interstage coupling network using parallel-resonant circuits, it is again necessary to consider the input and output impedances of each amplifier stage, since those impedances are in effect in parallel with the resonant circuit. Thus, the input impedance of the following amplifier stage will appear as the load of the preceding amplifier stage and the output impedance of the preceding amplifier stage will appear as the source impedance of the following stage. These impedance values will then be calculated by assuming that all the transistors used in this amplifier are practically identical.

In Fig. 4A a parallel-resonant R C L circuit is shown which is shunted by the effective output impedance z_{o}' and the effective input impedance z_{o}' . These two effective

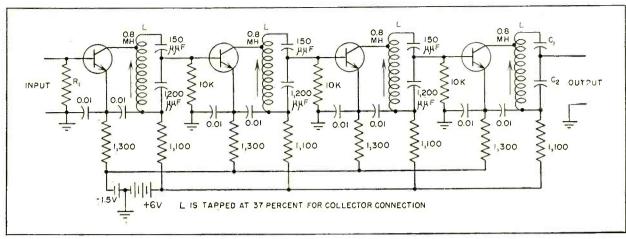


FIG. 5—Circuit diagram of 455-kc i-f amplifier having overall power gain of 58 db with 14-kc bandwidth. Battery current is 3.5 ma

impedances are the output impedance z_o and the input impedance z_i after the required impedance transformations. Let the reactive component of z_o and z_i be combined with the elements of the parallel-resonant circuit, as shown in Fig. 4B. The condition required for maximum power transfer from the preceding amplifier stage, through the interstage coupling network to the following amplifier stage, at resonant frequency is

 $g_i' = g_l + g_{\bullet}'$ (11) where g_i corresponds to the loss in the interstage coupling network. If the ratio of available power (less the loss in the coupling network) to the available power is defined as the power loss factor F_{\bullet}

$$F_{p} = \frac{g_{s'}}{g_{s'} + g_{l}} = \frac{1}{1 + \frac{g_{l}}{g_{s'}}}$$
(12)

The effective Q of such an amplifier stage will be determined by the total conductance and the inductance or the capacitance. Thus at resonant frequency $\omega_o = 2\pi f_o$

$$Q = \frac{\omega_{\circ} C'}{g_{\circ}' + g_{i} + g_{i}'} = \frac{\omega_{\circ}}{\Delta \omega}$$
 (13)

where $\Delta \omega$ is the bandwidth at the half-power points on the selectivity curve of this amplifier stage. Let the original unloaded Q of the parallel-tuned circuit be Q_o

$$Q_{\circ} = \frac{\omega_{\circ}C}{g_{l}} = \frac{\omega_{\circ}}{\Delta\omega_{\circ}} \cong \frac{\omega_{\circ}C'}{g_{l}}$$
 (14)

where $\Delta\omega_0$ is the bandwidth. Combining Eq. 11, 13 and 14 to obtain the required impedance matching conditions and at the same time obtain the required bandwidth yields

$$\Delta \omega = 2 \left(\frac{g_{\circ}'}{C'} + \Delta \omega_{\circ} \right) \tag{15}$$

or solving for g_a

$$g_{\bullet'} = \left(-\frac{\Delta \omega}{2} - \Delta \omega_{\bullet} \right) C' \qquad (16)$$

and

$$g_i{}' = \frac{\Delta \omega}{2} C' \tag{17}$$

From Eq. 16 and 17 the required impedance transformation ratios can be found for a given resonant-circuit unloaded Q and the required effective Q of the amplifier stage. It is found that normally both the output impedance of the preceding amplifier stage and the input impedance of the following amplifier stage must be stepped up in order to satisfy narrow band requirements.

Sample Design

An example of the design of an i-f amplifier will help to explain the principles discussed above. Assume that experimental npn rate-grown transistors are used, following average parameters; a equal to 0.9, $r_e = 30$ ohms, r_b about 100 ohms, $r_e = 1$ megohm and f_{aa} about 1 mc as measured at $I_e = 1$ ma and $V_e = 5$ volts. Average available power gain in the grounded-emitter configuration at 455 kc is 18 db per stage. The average input impedance of each stage is

$$z_i = 1/$$

$$\left(\frac{1}{200} + j \omega 1,600 \times 10^{-12}\right) \text{ ohms (18)}$$
and the average output impedance is
$$z_a = 1/(10^{-4} + j\omega 25 \times 10^{-12}) \text{ ohms (19)}$$

Using an inductance of about 0.8 mh and a Q_o of about 90, the capacitance C' required is about 150 µµf, if the desired overall effective Q of a four-stage amplifier is about 30. Therefore, the required effective Q of each stage is about 15. Using Eq. 16 and 17 the value of g_o' and g_i and the required output and input impedance transformation ratios are $g_{o}/g_{o}' = 7.3$ (21)and $g_i/g_i'=350$ The circuit of such an amplifier is shown in Fig. 5. The power loss in the coupling circuit is given by Eq.

If the inductance is reduced to $300 \mu h$ with the Q maintained at 90, the required C' is approximately $400 \mu \mu f$. If the effective Q of the amplifier is maintained the same, the output and input impedance transformation ratio become

12 and is approximately 1.74 db per

 $g_{"}/g_{"}' = 2.74$ and $g_{'}/i' = 132$. Using the circuit of Fig. 5 with

Using the circuit of Fig. 5 with 300-µh inductance, a 60-percent tap is required on the inductance, and the 1,200-µµf capacitance should be increased to 2,990-µµf. The power loss in the coupling circuit is about the same as before. In the actual experimental setup, a loss of 2 to 3 db per stage usually occurs. This is due to the nonuniformity of the experimental transistors and the mismatch in the actual circuit.

This work has been supported by the U. S. A. F. Air Research and Development Command, U. S. A. F. Air Material Command, Army Signal Corps and Navy Bureau of Ships, under Contract AF 33 (600) -17793.

Playing of game illustrates principles of modern warfare in which protection of own bases and industrial factories is as important as striking enemy targets

Electronic Air-War Game

A SIMPLE ELECTRONICS game using a dozen vacuum tubes can hardly be called a computer—but it can nevertheless illustrate some of the basic principles of modern military tactics.

The device is an analog of two industrial nations at war, the two sides being alike initially as in a chess game. That part of each side that simulates industry, with factories producing war munitions, provides two electrical potentials for use in furtherance of air operations against the enemy. One potential determines the rate at which a player can attack his opponent. The other potential simulates defensive capability and can be used by the player to protect one region or another of his industry.

Each player is provided with a target selector switch, a strike launching switch and a defense By L. I. DAVIS

Brigadier General United States Air Force ARDC, Baltimore, Md.

potentiometer that controls the placement of interceptors.

Eight targets are provided on each side. Six of the targets represent factories producing war munitions such as aircraft engines, bomber assembly plants and oil refineries. These targets differ from each other either in location, in vulnerability, in speed of recovery after attack or in the logistic times between production of goods and use of the goods by the simulated offensive or defensive potential. The other two targets are a composite target representing bomber or missile launching bases and a composite target representing defensive bases, such as interceptor

aircraft or guided missile bases.

Although this game is a simplified analog of a complex problem, that of two large nations at war, it does meet the following minimum characteristics as a simulator:

- (a) A simulation of the effect of launching and striking particular enemy targets, military as well as industrial.
- (b) A simulation of the effect of protecting one's own bases and industrial factories against enemy strikes.
- (c) A time scale of operations fast enough so that the duration of the war is not excessive, but not so fast that significant decisions, such as choice of targets, rate of attack and disposition of defense cannot be logically made during the course of the war.
 - (d) Indications to the players as

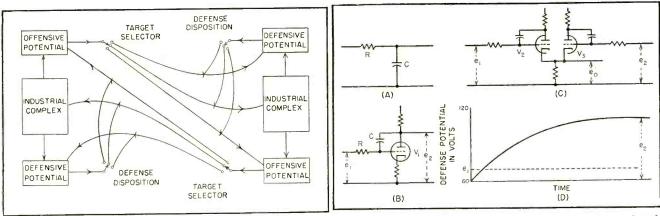


FIG. 1—Block diagram of game, illustrating strike and defense FIG. 2—Types of R-C charge and discharge circuits employed

Ten-tube circuit using multivibrators, R-C charge and discharge circuits and thyratrons simulates varying munitions-producing ability of an industrial complex during varying ratios of attack and defense chosen by players, who start with equal voltages. Meters and flashing neon lamps show progress of game and indicate winner

Simulates Missile Strikes

to the progress of the war in terms of strength of or damage to one's own forces, which strikes are intercepted, and which targets the enemy has attacked.

- (e) A definite indication of the end of the conflict and its winner.
- (f) Reliable operation, with a minimum of adjustment and maintenance.

General Design

The main elements of the game are shown in Fig. 1. The industrial complex produces two electrical potentials; one, which is called the offensive potential, determines the rate at which strikes can be launched at the enemy. These strikes can be directed at targets in the enemy industrial complex or against the enemy's force in being, such as his offensive bomber force. or his defensive interceptor force.

In the latter case the targets are the bases that enemy bombers and interceptors must use.

The second electrical potential produced by the industrial complex is the defensive potential. This can be used to defend against enemy strikes. Controls are provided to shift defenses from one part of the industrial complex to another, with consequent change in the probability of penetration.

In this particular game the industrial complex produces munitions at a rate that varies according to the stage of the war. The two sides start with undisturbed industries producing war munitions at equal rates. Damage to the complex as a result of enemy strikes results in decreased production rates.

At the start, with all targets at ground potential, the rate is at a maximum and of a value that can

sustain the size of the initial forces in being. As the war progresses, targets are attacked. Successive strikes charge the target capacitors to a level limited by the neon indicator bulbs. These attacks will cause the output potential to fall to zero at a rate determined by circuit time constants.

Several types of integrating or summing circuits are used to simulate the accumulation of goods as the result of production rates. The simple R-C circuit in Fig. 2A is adequate to represent the relation between production rate and goods on hand if the assumption is made that the goods on hand suffer depreciation or loss at a rate proportional to the amount on hand.

Longer characteristic times can be obtained by using a Miller integrating circuit as in Fig. 2B. Here the characteristic time is the product of RC and the stage gain of the tube. Scale factors must be applied to the voltages to obtain the production rates in terms of units per month, as well as to the final voltages to obtain goods on hand or forces in being.

It is unnecessary for the purpose of this game to assign specific numbers to the rates and quantities. Suffice it to say that ground potential at the target capacitors represents an industrial production rate that will maintain at constant level the defensive and offensive forces in being. Damage to specific elements of industry will reduce the force in being an amount proportional to the reduction in production rate.

Figure 2C illustrates how a single twin-triode such as a 6SL7 can take two voltages, delay them by means of plate-to-grid capacitors and input resistors and combine them through the common cathode to give an output in the same sense and proportional to the higher of the input values. If the inputs are the inverse of production rates, then the output corresponds to a combination that is limited by the lower rate. The output of the industrial complex could then rise with time as in Fig. 2D as it recovers from attack.

Circuit of Industrial Complex

Figure 3 gives the complete circuit diagram of the game. Eight targets are shown in the industrial complex, corresponding to the eight positions of the switch at the top of the diagram. Switch position 1 (Red side) provides a means of attacking the offensive potential or force in being. A strike consists of charging capacitor C_1 through neon indicating bulb N_1 . This charge, conducted through R_1 to the grid side of the plate-to-grid capacitor of V_{i} , will produce a discrete and immediate effect on the plate voltage of V_1 , which is the enemy's offensive potential. Attacks against target 8 will have the same effect on the plate voltage of V_a , which is the enemy defense potential.

Targets 2 and 7 represent factories producing munitions, such as aircraft engines. Strikes on target 2 charge C_2 , which dis-

charges through R_2 to C_3 ; eventually through R_{10} the voltage is combined in V_2 and V_3 with a voltage representing another munition. The output, limited to a level determined by the higher input grid of the combination, is fed to the final integrator through R_{20} and represents the rate at which aircraft and necessary gasoline and supplies are furnished to the bomber bases.

Targets 3 and 6, for bombers and interceptors respectively, are analogous to aircraft assembly plants. Targets 4 and 5 add together and combine with the output of the aircraft assembly plants. The circuit constants chosen give these targets rather short recovery times and, since they contribute to both offensive and defensive potentials, they might simulate gasoline and oil industry.

Figure 4 shows the effect of bombing target 3. As target capacitor C_3 is charged by the strikes, production rate Q_1 (complement of capacitor charge) falls rapidly to zero. If the production rate is kept at zero by repeated attacks, output of combining and limiting tube Q_2 will fall. The final output, the offensive potential, will fall as indicated by the curve for Q_s. Response is roughly second order, with time to the half-point about 180 seconds when bombed six times per minute. If a time scale is assumed such that 1 second represents 1 day, bombing target 3 will reduce the effectiveness of the enemy force in being by one-half in 6 months.

Launching Strikes

The voltage that represents offensive potential is used to control the rate at which strikes are launched at the enemy. By assuming uniformly potent unit strikes, the effect of the size of the force in being is simulated by making the strike launching rate proportional to the offensive potential. This approximation greatly simplifies the circuit design, because the plate potential of V_1 can be easily adjusted to 60 volts at the lower end of its excursion by cathode potentiometer P_1 in Fig. 3. This plate voltage, applied to a neon bulb through network R_{12} - C_{18} , produces a

sawtooth wave form with a steep negative front. At the upper end of the plate excursion, about 120 volts, the bulb will fire about once a second. At the lower end, it won't fire at all, representing a loss of offensive potential.

The waveform, differentiated by the coupling capacitor-resistor combination, is applied to the cathode of a small thyratron. When the grid of the thyratron is at the proper level, this pulse will cause the thyratron tube to ionize or fire, discharging C_{21} through neon bulb N_{11} and the variable resistance P_6 to the target capacitor selected by switch S_{14} .

Capacitor C_{21} is charged to 210 volts from B plus through R_{41} . The neon bulb N_{11} serves to block the flow of current to and from the target capacitor except when the thyratron fires. Variable resistance P_4 serves to limit the current discharge and is used as a fine control on target damage per unit strike.

The launching switch or key can be placed before or after the combination of C_{18} and N_{10} . Placed before the combination, the time required to charge the capacitor simulates a delay between launching a strike and arrival at the target. Placed after the combination (between C_{in} and the cathode of $V_{\rm p}$) the rate of flashing of $N_{\rm po}$ serves as a measure of the strength and readiness of the force in being. In most operations it will be desirable to launch at the maximum rate possible, in which case the key may be closed, leaving the hands free to manipulate fighter defenses and target selector switches.

Interception of Strikes

The grid of thyratron V_{\circ} is driven by the plate of cathode-coupled multivibrator (V_{7} and V_{8} in Fig. 3) through voltage-dividing resistors R_{40} and R_{46} . The cathode of V_{\circ} can be adjusted to the proper level by P_{5} . A negative pulse from the multivibrator drives the grid negative and prevents the negative pulse on the cathode from firing the thyratron. The negative signal on the grid represents interception of the strike and is accordingly controlled by the strength and dis-

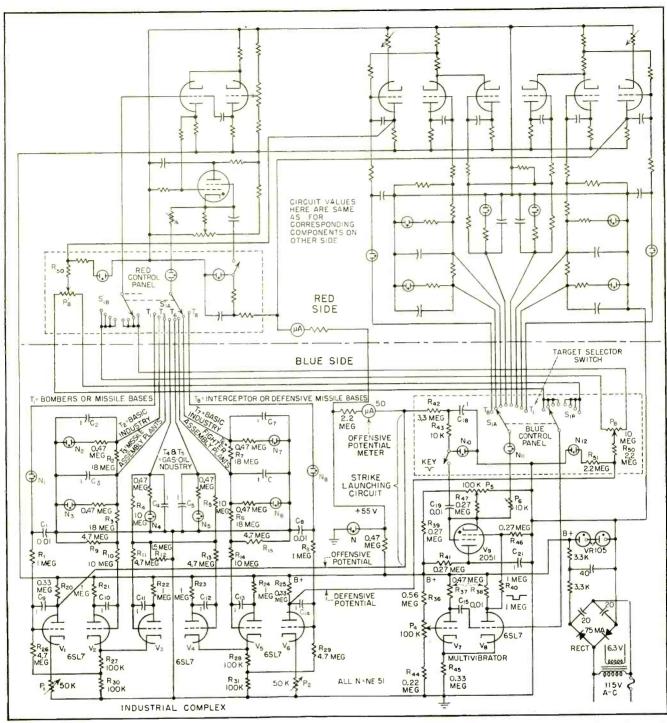


FIG. 3—Complete circuit of game. Since Red side uses identical components, order two of each identified part except those in power supply at lower right

position of enemy defenses.

The circuits that accomplish control of defenses are also shown in Fig. 3. Enemy defensive potential is applied to the moving arm of P'_s on the enemy control panel through R'_{50} . The ends of P'_s are connected to the second deck of gang switch S_{1B} , one side to the first four contacts and the other side to the other four.

The first deck of the gang switch

is the target selector switch of the friendly team. Accordingly, selection of targets 1, 2, 3 or 4 picks up the end of the potentiometer and places a resistance in the circuit that is determined by the setting of P'_{s} . The enemy defensive potential is thus connected to the multivibrator (V_{τ} and V_{s}) through R'_{so} and P'_{s} . This circuit resistance affects the percentage of time that V_{s} is conducting.

When V_s is conducting, the plate is at the lower level and the grid of the thyratron is too low to allow the tube to fire. This, then, is the intercept condition. On the other hand, when the enemy defensive potential is low (60 volts), the grid of V_s is below the cathode potential, and V_s is cut off. Under this condition the plate remains at a high level and the voltage impressed on the grid of the thyra-

tron is at such a level that a negative pulse on the cathode will cause it to fire.

The defensive potential furnished by the industrial complex varies between 60 and 120 volts. At 120 volts. with the circuit values indicated, the flip-flop will dwell about 50 percent of the time in the down or no-go position when the sole circuit resistance between defensive potential and multivibrator is R'_{50} . If the enemy guesses wrong and has placed his interceptors on the other side of the industrial complex (full potentiometer resistance in series with R'_{50}), the plate will dwell only about 15 percent of the time in the no-go position.

Element of Chance

For values of the defensive potential between 60 and 120 volts and for different settings of P's. the percentage of the time that the multivibrator will prevent the thyratron from firing is determined by the time required for the defensive potential to charge $C_{\scriptscriptstyle 15}$ through R'_{50} and P'_{8} . Here P_{\bullet} places the cathode of V_{τ} in the proper operating range and provides a fine control for adjusting the no-go dwell time. The multivibrator operates at about 20 cps as an average. This circuit provides a chance element that cannot be outguessed by manually closing the strike kev.

Displaying Progress

Inasmuch as this is a game intended for the entertainment of the players, means for displaying the progress of the contest are important. The neon bulbs at the target capacitors glow when the target is charged to the destroyed condition.

Neon bulb N_{10} flashes at a high rate when the offense is at a high level, and barely flashes when the striking force is low. Bulb N_{10} serves to indicate by its brightness the level of the defensive potential. Bulb N_{10} in the discharge circuit glows with an arc-type discharge each time that a launched strike penetrates the enemy defense. In addition, meters are provided to indicate to each side the level of its own offensive potential. These are 50-microampere $4\frac{1}{2}$ -inch movements with red and green markings at the

low and high levels. Less sensitive meters may be used with appropriate circuit changes.

Resetting Relays

Because of the long time constants, resetting of initial conditions would be lengthy but for the arrangement shown in Fig. 5. These relays were made up from four multicontact relays with 30volt coils. Connecting the four in series across the 117-volt line gives positive action. The grounding contacts are used to ground target capacitors C_2 through C_7 and the grids of V_2 through V_5 of each side. The remaining pairs of contacts short integrating resistors R₂₀ and R_{29} and their corresponding numbers on the other side. A tilt light is not necessary because the four relays with the 24 contacts close

450-volt paper bathtub-type capacitors or 600-volt oil-filled types can be used for target and integrating capacitors.

Neon bulbs vary widely in flash point and regulating level. Connect a 500,000-ohm potentiometer from B plus to ground, with a voltmeter between one side and the moving terminal. Place each NE 51 bulb

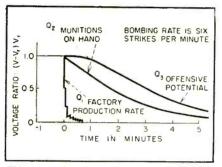


FIG. 4—Effect on offensive potential when attacked at bombing rate of six strikes per minute

with considerable racket.

The power supply is conventional. Selenium rectifiers supply about 280 volts to two VR 105 tubes that hold the B plus at 210 volts. The total drain is less than 10 ma, half of which is drawn by the VR tubes.

The panel arrangement used for the game is shown in Fig. 6 and in the photos. The two sides of the panel are identical except for facing meters and lettering in opposite directions.

Assembly Precautions

Balance and adjustment of a device of this type can be made simple by a few precautions and by logical steps in setting the potentiometers. First, although 10-percent resistors are used throughout, pairs of equal value should be selected for the corresponding

circuit elements of the two sides. This is particularly important for plate load resistors R_{20} and R_{25} , for dividing networks $R_{27}R_{30}$ and $R_{28}R_{31}$ and for the attenuating networks between the target capacitors and the vacuum tubes.

It is not necessary or desirable that targets within a complex be alike, but attenuating ratios such as $(R_{\rm s}/R_{\rm p})$ should be within 2 or 3 percent of the corresponding ratio in the other system. Either 450-volt paper bathtub-type capacitors or 600-volt oil-filled types can be used for target and integrating capacitors.

BLUE SIDE RED SIDE

RED SIDE

RESET SWITCH

C2, C3, GRIOS OF V2, V3,

FIG. 5—Relay arrangement used to reset all capacitor potentials quickly for start of new game

in turn across the voltmeter and pair up those that will flash and stabilize within 1 or 2 volts of each other.

Variations between targets on the same side are allowable, but the average effect should balance out. The two neon bulbs that determine launching rates (N_{10} and its mirror image) are critical and should be the best pair of the lot tested. The launching rate is a function not only of the input potential, resistance and capacitance, but also of the difference between the flash and stabilizing voltage of the neon bulb.

Another component that should be checked against its counterpart is target capacitor C_1 . This can be done beforehand with a capacitance meter, or later by counting the number of strikes necessary to

reduce the offensive potential from 120 to 60 volts. Another method is to use the neon tube and a resistor in a circuit similar to the strike launching circuit. Using the same resistance and bulb, different capacitors of the same nominal rating should cause the same discharge rate. If not, find a pair that do.

Adjustment Procedure

If the foregoing precautions are observed in construction, the main calibration and adjustment will proceed quickly. A vacuum-tube voltmeter is required and a cathoderay oscilloscope is desirable but not absolutely necessary. A convenient source of about 60 volts reference level is useful and can be quickly obtained with a 0.47-megohm resistor and a neon bulb connected to B plus. Connect this voltage source

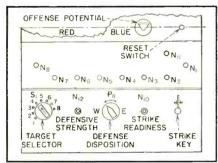


FIG. 6—Arrangement of controls, neon lamps and strike key on one half of front panel.

to the S'A switch terminal for target T_3 , charging capacitor C_3 to 60 volts. Short R_{10} and R_{20} with jumpers to eliminate the integration delays.

Adjust potentiometer P_1 to yield 60 volts on the plate of $V_{\scriptscriptstyle 1}$. Remove jumpers and note the change in plate voltage due to grid current through R_{20} . One or two volts change is permissible. Readjust P_1 until the plate voltage is 60 volts. Repeat the procedure on target T_6 , adjusting P2 to get 60 volts output from the plate of $V_{\mathfrak{s}}$. Make the same adjustments on the other industrial complex. Next, ground the targets by using the reset switch and note the upper levels of plate voltages of V_1 and V_6 on each side. They should be pretty well paired and close to 120 volts.

Next, adjust the multivibrators

that produce the square-wave blanking pulses to simulate interception of strikes. The cathode common to V_7 and V_8 should be very near 65 volts. Adjust P_4 so the tube does not oscillate when the enemy defense potential is at 60 volts, but does start to oscillate when the potential rises to 65 volts. This can be quickly checked with an oscilloscope. Lacking that instrument, a neon bulb or a voltmeter will show the state of the plate of V_8 and give a rough idea of the rate of oscillation.

Next, supply the multivibrator with 120 volts from the enemy defense potential. If the previous steps have been followed, this can be done by merely resetting the game. Turn Ps so that it adds no resistance to the circuit, the direction of turning depending upon the position of the target selector switch. Under these conditions, the square wave generated by the multivibrator should be about balanced; the plate of Vs should dwell in the high position as long as in the low position. Again a scope is desirable; but, after checking the two levels of the plate, a voltmeter can be used to determine the 50-percentgo/50-percent-no-go point. The ultimate test is to wait until all adjustments have been completed, then count the knockdowns per 100 strikes launched.

Thyratron Circuit Adjustment

To adjust the thyratrons with potentiometer P_5 , connect the voltmeter to the cathode, open the strike launching key, raise the cathode potential until the thyratron is well above the ionization point, then lower it until the tube fires under grid action alone. Note this voltage. Now raise the cathode about 5 volts above the noted level. Close the strike launching key with the target selector switch on some enemy target, preferably T_i since repeated bombing of that target will not affect the enemy defense potential. With fighter defenses (enemy) at 120 volts and the defense potentiometer providing maximum blanking width for the area of the target, $N_{\rm m}$ should flash only about half as often as N_{10} . Recheck the thyratron cathode by lowering its voltage until every strike pulse fires the thyratron, then by raising it until none get through. The proper setting is midway between the two values, which should be about 10 volts apart. Repeat all of the foregoing adjustments on the other side of the game. Set the series resistance $P_{\rm G}$ in the strike circuit to 1,000 ohms.

Final Balancing

The two systems can now be placed in opposition for final balancing. First, press the reset button two or three times to insure equal initial conditions. Check the launching rates at which N_{10} and its image flash. If the offensive potentials are equal and the components are matched, the rates should be close together. The difference in rate is best measured by timing the beats as the flashes synchronize, then fall out of synchronization. One beat in 30 seconds should be satisfactory.

Next, remove interception probability by connecting the potentiometer side of R_{50} to a source of 60 volts; do this on both sides. Now attack enemy target 1 at maximum launching rate. Note the number of strikes and the time required to reduce the enemy offensive potential from 120 volts to 60 volts. Repeat the process the other way, after resetting. If there is a marked disparity, check the matching of components. If they are close, adjust $P_{\mathfrak{g}}$ or its image until the number of strikes required is within one of equality.

Now release the defenses, reset, set the defenses to protect target 1 on each side, and close the strike launching switches simultaneously. Try this two or three times; if one side wins all the time and in less than 3 minutes, recheck the multivibrator setting.

Potentiometer P_4 can be used to control the width of the blanking pulses generated by the multivibrator. If an oscilloscope is not available, adjust P_4 or its counterpart until the probability of penetration is the same for each side. This may require making 100 trials a side and keeping track of the interceptions. If the two sides are close, so that the contests last longer than three minutes but one side consistently wins, adjust series resistor P_6 until

one side is as likely to win as the other.

This adjustment procedure may appear lengthy and the balance rather delicate, but it is essential because two systems are being placed in opposition and the difference between them integrated with respect to time. The two sides (when placed in opposition) produce a system that is as unstable as balancing a knife on its point. Any game of similar strategy on each side that lasts more than 6 minutes proves the game is well balanced.

Play of Complete Game

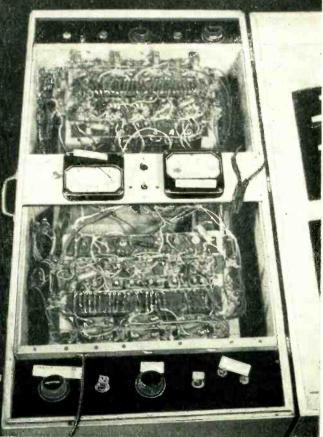
Assuming that adjustment and calibration have been completed, find a prospective opponent and start learning the game together. First, try the following three contests, resetting after each.

- (1) Red attacks T_1 and Blue attacks T_3 .
- (2) Red attacks T_{*} 90 percent of the time and T_{*} 10 percent, while Blue attacks T_{*} .
 - (3) Red attacks T_1 90 percent of

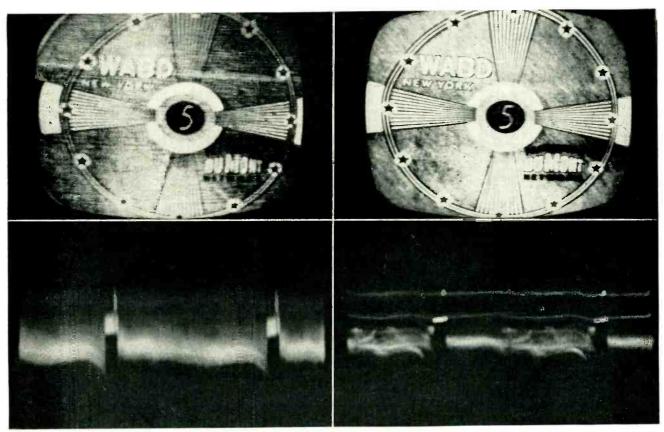
the time and $T_{\rm s}$ 10 percent, while Blue attacks $T_{\rm s}$ 50 percent and $T_{\rm s}$ 50 percent.

These plans of attack should illustrate that in this game the primary target to attack is the enemy offensive potential and the primary object to defend is your own offensive potential. By stretching the imagination, T_1 can be strategic bomber or missile bases; T_2 , some element of basic industry, say aluminum or steel plant; Ta, bomber or missile assembly plants; T_{i} and T_{b} , some essential commodity common to both offense and defense, such as gasoline and oil; T_{ij} , fighter assembly plants; T_{ij} more basic industry; and $T_{\rm s}$, interceptor or defensive missile bases.

Since some of the games may be long drawn out, it is useful to establish a criterion of winning. When one side is below 10 percent of its offensive potential and the other is twice as great and increasing, the contest can be declared at an end, the winner being the one with the greater offensive potential.


Another criterion might be to declare as winner the side that can keep the opponent's strike and defense neon bulbs from flashing.

Conclusion


The game as laid out in this design is meant to produce, with a minimum of parts, a device that will entertain players and illustrate a few basic principles in the employment of air power. The values chosen have little relation to the specifics of any engagement with a possible enemy of the United States. No attempt is made to simulate combat loss effects except to say that each side suffers losses in proportion to the amount of its force in being, the loss rate being the same on each side. Transportation, power and many other types of targets are not represented in the industrial complex. The important principles of war-offensive, concentration, mass and security-are illustrated and emphasized by the dynamics of an engagement speeded up many-fold.

Panel of game. More labels can be added, identifying types of targets represented by flashing neon lamps and switch positions

Game with cover lifted. Meters, one facing each player, show amount of voltage remaining to fight with

Received test pattern and video wareform, left, illustrates cross-modulation interference between channels caused by overdriving television receiver. Test pattern and waveform, right, show how the signal overload circuit corrects this condition

Signal Overload Relay for Television Receivers

Automatic circuit prevents overdriving tv receivers in strong-signal areas. Relay in r-f and i-f plate circuits releases when increasing age drops tube currents. Relay contacts open cathode circuit of cascode r-f amplifier, removing it from circuit to reduce gain

By C. MASUCCI, J. R. PELTZ and W. B. WHALLEY

Sylvania Electric Products, Inc. Bayside. New York

DESIGNERS of home television receivers have tended to design increasingly high sensitivity into their sets. Many receiver manufacturers use a cascode r-f amplifier in their vhf tuners followed by a mixer and three or four intermediate-frequency stages.

The increased gain available from these receivers augments the signals from transmitters that are radiating increasingly higher power and gives rise, in some areas, to the serious problem of overloading the receiver circuits. For example, in the New York area signal levels in

the order of 1.0 volt have been measured.

Two possible problems associated with this increased radiated power and high receiver sensitivities are the prevention of receiver overload in areas where all signals are high and the prevention of receiver over-

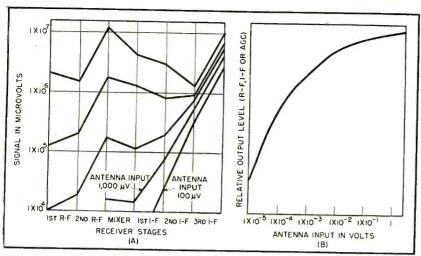


FIG. 1—Signal distribution for constant input (A), and typical stage performance (B)

load in areas where some signals are strong and some are weak.

This latter problem requires an automatic device that will reduce the receiver's sensitivity or gain for the strong channel and restore it on the weak channel. This unit, while not necessary, is also valuable for the first condition.

Overload Characteristics

Overloading in a television receiver manifests itself in numerous ways. A few examples are:

- (a) Cross-modulation interference between channels not necessarily adjacent. The received test pattern and corresponding video waveform shown at the left in the photograph illustrate this effect. The test pattern and waveform at the right show how the tv overload circuit to be described corrects this condition.
- (b) Noisy pictures in high-signal areas. This is a result of operating the i-f tubes beyond cutoff.
- (c) Loss of picture synchronization as a result of the compression of the sync information into the video.
- (d) Complete reversal of picture. Figure 1 is a graphical presentation of the signal voltages at various stages for fixed antenna input levels. As can be seen from the signal distribution throughout the receiver, there may be more than one point of overload as the input signal increases. Also, for each individual stage, the signal output increases up to a given level and then remains relatively constant for any

additional input signal. The point of flattening can be called the overload level for each stage. This figure also shows that agc cannot be used without considerable additional amplification to control overload.

System Considerations

A desirable automatic overload system should supply the necessary attenuation for strong signals in such a manner as to prevent grid rectification in the first r-f stage and should be removed when the signal decreases to a predetermined level. It is essential, however, that insertion of attenuation be at a signal strength other than that at which it is removed so that a given signal will not cause the system to chatter. Above all, from the standpoint of economy and reliability, the system should require a minimum of components and wiring.

Possible methods of reducing the sensitivity of a receiver include inserting a resistor attenuator in the antenna lead-in, inserting a resistor attenuator in the r-f tuner and inserting attenuation in the r-f

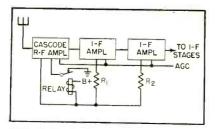


FIG. 2—Block diagram of receiver with overload circuit

amplifier by opening the cathode circuit.

The first method reduces the overall sensitivity of the receiver and precludes the satisfactory reception of weak signals.

The second method is good but expensive and requires individual field modifications.

Opening the r-f amplifier cathode circuit results in a marked decrease in gain and eliminates any possibility of grid rectification. This is the method that will be described in this article.

Some possible methods of controlling the point at which the gain reduction occurs in the receiver include use of a relay to open the r-f cathode by either the agc bus or a vacuum tube at the r-f grid and use of a modified t-r tube with a keep-alive voltage that can vary the reset.

Automatic Attenuation

The use of the first control method is preferable from the standpoints of simplicity, reliability and economy. Figure 2 is a block diagram of the method.

The relay coil is in series with the combination of the cascode stage and one or more i-f stages to utilize the d-c amplification of the age voltage. By placing the relay in the B+ side of the decoupling filters, its resistance and inductance have no detrimental effect on r-f and i-f operation. The spst contact of this relay is connected between ground and cathode of the cascode stage. Experiment has shown that, during warmup of the receiver the current drain of the i-f stages will close the relay and it will be held closed by the added cascode current.

As the signal strength increases, the agc voltage becomes more negative and the relay coil current decreases. As the overload point is approached, the decreasing relay current allows the contacts to open the r-f amplifier cathode, thus attenuating the signal and stopping the cascode amplifier current flow through the relay coil.

At this time the agc voltage decreases, thereby increasing the current through the i-f stages and relay coil. This increase, however, is not sufficient to close the relay again. If the signal decreases or the

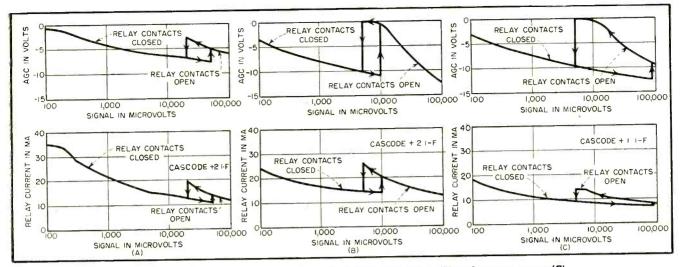


FIG. 3—Receiver overload control characteristics for medium range (A), wide range (B) and narrow range (C)

receiver is switched to a weaker signal, the further decrease in agc supplies sufficient current to actuate the relay, closing the cascode cathode circuit and allowing the receiver to operate with normal sensitivity. A quantitative analysis of this action is shown in Fig. 3A.

As the signal strength increases from 100 µv to the preset overload point of 50,000 µv, the relay coil current decreases from 33 ma to 11 ma and its contacts open, attenuating the signal a predetermined 29 db. This attenuation causes an agc voltage change from —7 v to —5 v that increases the relay coil current from 11 ma to 13.6 ma. This current, however, is insufficient to close the contacts

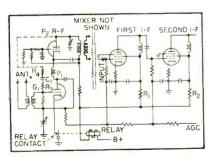


FIG. 4—Receiver overload control circuit

again and the relay remains open for this and any increased signal strength. When the signal decreases to less than 20,000 µv, the relay closes and gives normal receiver gain.

The flexibility of the system is seen in Fig. 3B and 3C. In the

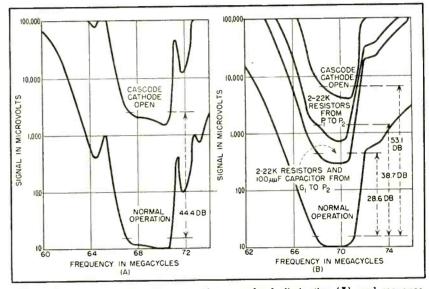


FIG. 5—Receiver response with and without overload elimination (A), and response with varying amounts of attenuation (B)

former, attenuation was inserted and in the latter, it was removed. Both adjustments can be made to predetermined signal levels by adjusting the relay.

Circuit Considerations

As is shown in Fig. 4, the circuit requires the addition of one relay and two resistors, R_1 and R_2 . The control point can be adjusted by choosing a relay that opens at a given current. The point at which the relay closes may be determined by the pole-to-armature spacing.

The receiver's overall bandwidth is affected very little by opening the cathode, as shown in Fig. 5A. The attenuation can be varied up to ap-

proximately 50 db by bridging the cascode amplifier with a suitable resistance or R-C network. Typical networks with their resultant attenuations are shown in Fig. 5B. This network can remain in the circuit at all times.

The lead length from the cascode cathode to the relay contacts should be as short as possible and is easily accomplished by mounting the relay on the tuner.

The assistance of R. Zitta of the physics laboratories, in making the many measurements required is acknowledged, as is the assistance of the Du Mont Television Network for the use of the channel 5 test pattern.

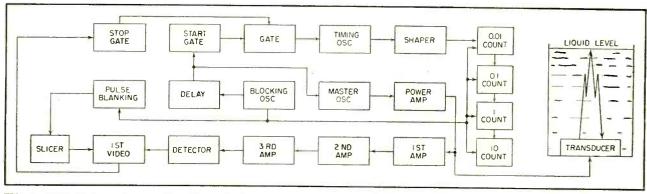


FIG. 1—Block diagram of manually calibrated ultrasonic gage, suitable for liquids having known, stable acoustical characteristics

Ultrasonic Liquid Level

Height of surface or interface is indicated remotely to hundredths of a foot on decade counters, by using a 400-kc sonar type transducer at bottom of tank. One system compensates automatically for changes in velocity of sound. Chief use is for fully automatic process control and inventory in petroleum refineries and chemical plants

ACCURATE liquid level measure-ments are a most important adjunct to fully automatic process control and inventory. Although hundreds of different types of level gages have been available, many large industries have found it expedient to depend on simple dip sticks and calibrated chains to obtain reliable readings. One reason for this is the inability of movingfloat systems to withstand continuous operation in the corrosive liquids found in industry. Another shortcoming has been the difficulty of accurately remoting level information obtained from sight gages.

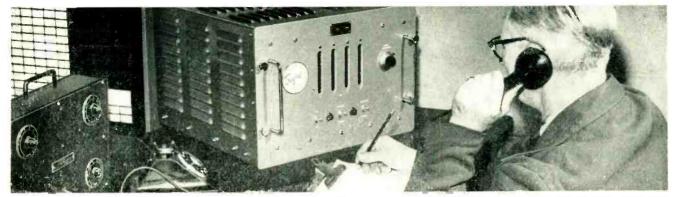
The basic requirements for a useful gage, in approximate order of importance, are accuracy, reliability and low cost. Accuracy requirements of $\pm \frac{1}{8}$ inch error in 50 feet are not uncommon in the petroleum industry where $\frac{1}{8}$ inch change in the level of a large gasoline storage tank represents a difference in inventory of several thousand dollars.

This paper describes two sonartype liquid level indicating systems which were designed to eliminate moving parts that sooner or later fail in rigorous industrial service.

By ROBERT L. ROD

Director of Electronic Research Bogue Electric Mfg. Co. Paterson, N. J.

One of the equipments is automatically calibrated to compensate for changes in the velocity of sound with temperature and in different liquids. The other equipment incorporates manual calibration facilities and lends itself to special measurement problems involving liquids of known and stable acoustical characteristics.


Some pertinent features of both new instruments are the complete absence of floats, linkages, synchros, potentiometers and similar moving parts, as well as static capacitance probes that have usually been associated with the level-sensing elements of most existing gages. No direct-current flow is present in or around the tanks being gaged or in the coaxial cables that form the only connection between the indicators and the tanks themselves. Alternating-current energy is far below that required to strike gasoline fumes under any open or shortcircuit conditions, and therefore

these systems are safe for use in explosive tank areas. Any number of tanks may be gaged economically by a common indicator which displays level readings directly in tens, units, tenths, and hundredths of a foot.

System Theory

In the usual case, sound pulses are directed up through the liquid to the surface by a common transmitting-receiving transducer, where they are reflected back as echoes. Round-trip time intervals are measured, and the data are converted to decimal readings corresponding to the levels in feet. Energy is also reflected back from interfaces existing between immiscible liquids, including many having practically the same specific gravity; hence, the sonic level indicators may be used to determine the locations of these lines of demarca-

Since digital information techniques are used, commercially available digital recorders and tape printers may be fed from the indicators over long distances. Inventory can be made automatic

Automatic setup for gaging two groups of petroleum tanks from office of plant superintendent. Control box at left switches tank units

Indicator Systems

from the data-taking stage to the printing of the actual level at some remote location such as the office of the plant superintendent.

From an electronic standpoint the fundamental operation of the two new systems closely resembles conventional sound-ranging techniques except that the operating frequency has been raised to 400 kc and the data presentation has been considerably improved and simpli-Echoes are returned from either air-liquid or liquid-liquid interfaces, the magnitudes being related to the specific acoustic impedances of the materials involved. The greater the difference in impedances, the stronger the returned echo. Interfaces between liquids and air reflect back practically all of the incident wave.

Manual Calibration

The block diagram in Fig. 1 illustrates the operation of the manually calibrated sonic liquid level indicator. A free-running blocking oscillator, operating at a repetition frequency of about 0.5 cps, synchronizes the equipment and establishes the frequency of the level readings. Output pulses from the blocking oscillator are applied to time interval measuring circuits to reset the previous level reading back to zero prior to the start of another cycle of operation a short time later. This delay, used to insure the completion of the resetting process, is achieved with a monostable multivibrator triggered by the astable blocking oscillator.

The trailing edge of the delay multivibrator output is used, after differentiation, to trigger the transmitter and start the time interval measuring circuits. These circuits are turned off again at the receipt of an echo pulse.

The actual transmitter consists of a pulsed master oscillator-power amplifier producing a 100-microsecond damped 400-kc sinusoid having a peak-to-peak amplitude of about 40 volts on the balanced twin-conductor coaxial cable to the transducer. Returning echoes pass over the same cable to a receiver consisting of a three-tube stagger-tuned band-pass amplifier followed by a detector and a video amplifier.

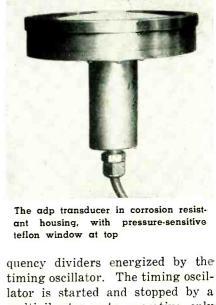
Indicator

Liquid level readings are displayed in decimal form to the hundredths place on four chain-connected decade counters. The highest frequency counter, which reads hundredths of a foot, is fed a series of sharp input pulses derived from a pulsed sine-wave timing oscillator that is started and stopped by a bistable timing gate multivibrator operative only in the interval between transmission and reception of an echo. Translation of the timeinterval measurement into level in feet is attained by manually adjusting the timing-oscillator frequency to a point where the period of each cycle corresponds to the time required for a sound pulse to travel 0.01-foot round trip through the particular liquid. Thus, each squared-up pulse fed to the first counter increases the level reading by a hundredth of a foot. The following three decades successively accumulate the carryover in the usual manner.

In water, sound travels 0.01-foot round trip in about 4 microseconds, the exact value depending upon the temperature and the degree of purity. This velocity corresponds to a correct timing-oscillator frequency of 250 kc. Other liquids require different frequency settings; the range required for commonly found liquids varies approximately 3 to 1, with water at about the center.

The counting interval is but a small part of the repetition period. The level readings, which are maintained for practically the entire time remaining before the start of another cycle of operation, thus appear continuous to the eye because of the persistence of vision. The counting itself is so rapid that it is all but invisible.

A pulse-blanking circuit is used to remove the amplified transmitting pulse appearing at the video amplifier. A slicer control is provided in the video stages to allow for selection of the desired echo above the general base-line noise.


Calibration may be accomplished by setting the level to a known height and manually adjusting the front panel selector control until the indicated reading is in agreement. Readings taken thereafter will be accurate to ± 0.01 foot providing the liquid temperature and composition remain constant. If, for example, the temperature changes, a series of calibration data may be taken for future use.

Automatic Calibration

Manual compensation is best suited to specialized applications that are not too frequently encountered in general industrial use. Automatic calibration is therefore a necessity in many cases. This is achieved with a closed servo loop system embodying a main pulsed transducer and an associated elapsed-time measuring circuit adapted to gage distance to a liquid surface (or liquid-liquid interface). In the same liquid is a similar calibrate system adapted to develop a series of spaced echo pulses from reflectors located at set intervals from a second transducer. calibrate system automatically modifies the operation of the main circuit section so as to obtain true level readings despite changes in the velocity of sound for any reason, including variations in molecular structure and temperature differences.

The circuits employed are shown in block diagram form in Fig. 2. The two transducers used per tank are each mounted at the bottom of separate stillwells which are, in effect, acoustic waveguides. calibrate stillwell is fitted with internal protuberances which reflect back echoes used for the calibration. The other stillwell serves no other function than to confine the sound pulses of the main transducer to a small part of the tank, and thus simplifies the placing of the tank elements with respect to nearby reflecting structural members. In filled tanks transducers may be at the top as in Fig. 3.

The transducers are pulsed in synchronism, and the echoes derived from the reflectors are compared in phase with similarly spaced pulses generated within the indicator itself by a series of fre-

quency dividers energized by the timing oscillator. The timing oscillator is started and stopped by a multivibrator gate operative only during the interval of time between transmission of a pulse by the main transducer and receipt of the corresponding echo.

Any difference in spacing between the two sets of pulses causes the timing oscillator to be shifted in frequency to reduce the spacing error to zero. Thus, this servo action automatically adjusts the timing oscillator to a frequency corresponding to the velocity of sound in any particular liquid.

Depending upon the size of the tank, reflectors are spaced either 4.00 or 8.00 feet apart starting from the first, or closest, reflector which is usually 2.00 feet away from the active face of the calibrate transducer. These spacings are ordinarily close enough to insure the adequate averaging of small differences in velocity which may be caused, for example, by heavier liquids settling to the bottom and by temperature gradients existing within the containers.

Synchronizing Circuits

Operation is synchronized to a free-running blocking oscillator which operates at about 15 cps. Each blocking oscillator output pulse resets the decade counters to zero, starts a resetting delay circuit multivibrator and energizes a pulse-blanking multivibrator which is used for gating out the undesired transmitted pulses which feed through the two receivers. At the termination of the resetting delay

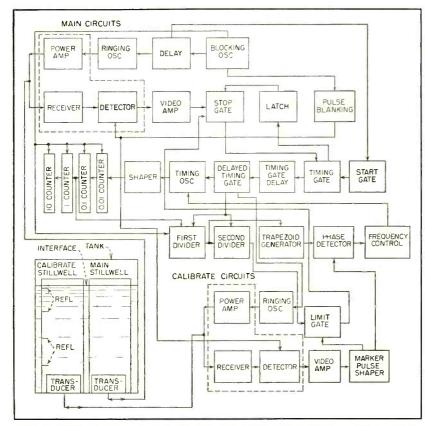
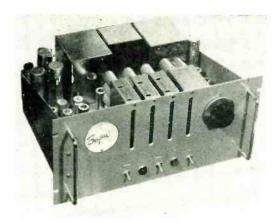
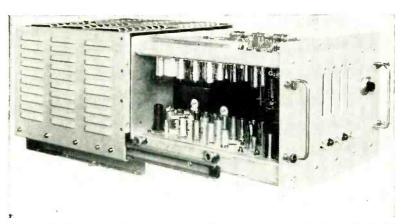




FIG. 2—Block diagram of automatically calibrated ultrasonic gage, using a separate transducer in a calibrate stillwell inside tank to measure distances between fixed metal reflectors. Associated calibrating circuits then correct for any variation in the velocity of sound in the tank

Manually calibrated system. Only other part is transducer in tank. Neon lamps of decade counter indicate height from 00.00 to 99.99 feet

Automatically calibrated system used with two transducers in tank. Calibrate circuits are in upper pan, and main circuitry is below. Chassis can be pulled out on roller slides as shown, for easy servicing of either pan

interval, the main transmitter, consisting of an exponentially damped ringing oscillator and a power amplifier, pulses the main system transducer for 100 microseconds. At the same instant the timing gate multivibrator is started and is turned off again the instant the returning echo arrives. The timing-gate output is delayed several hundred microseconds through a delay multivibrator and is reproduced in width at the delayed timing gate.

Actual on-off control of the timing oscillator is achieved by the delayed timing gate whose duration is exactly equal to the roundtrip transit time. The shaped output of the timing oscillator is applied to the highest frequency decade counter. This in turn drives the three lower-frequency decades to produce a reading in tens, units, tenths and hundredths of a foot.

The leading edge of the delayed timing gate is also used to trigger the pulsed calibrate transmitter, which is identical to that used in the main system. One or more echo pulses will subsequently be received from the calibrate reflectors, the number depending upon the level of the liquid. The echo pulse from the surface or liquid-liquid interface will also be received.

At low liquid levels only the first reflector will be illuminated by the transmitting pulse, as the remaining reflectors are effectively blocked by the interface. Conversely, a long series of reflector echoes will be returned when the tank is almost full.

In order to remove the unwanted

interface echo that follows the reflector echoes, the calibrate receiver output is passed through a coincidence stage which is gated on by the undelayed timing gate, which ends before the calibrate interface echo returns. The delay multivibrator delays the timing gate sufficiently for removal of this interface echo.

Error Voltage Circuits

The reflector echoes are then applied to a one-shot multivibrator that produces an identical series of sharp pulses free from amplitude and width variations. Both the unwanted transmitted and interface echo pulses have been removed prior to this stage, so that only pulses representing the reflectors are passed to the following phase detector.

This comparison stage is also supplied with a series of trapezoidal pulses which are synchronized to a submultiple of the timing oscillator frequency by the dividing action of the two highest frequency decades and one additional scale-of-two divider. The division is such that when the sonic indicator is in normal operation the reflector pulses fall in the middle of the sloping leading edges of symmetrical trapezoids spaced apart by the same distance as the reflectors themselves.

An output error voltage is obtained from the phase detector which is proportional to the spacing time difference between the two sets of pulses. This difference is a function of both the velocity of sound, which changes the time spac-

ing between returning reflector echoes, and the timing oscillator frequency, which directly sets the trapezoid period.

For a particular liquid, the velocity may be considered as a constant and the timing oscillator frequency as the variable. In this case the error voltage derived from the phase detector is applied to a frequency-controlling element in the timing oscillator. This changes the frequency by the correct amount and in the appropriate direction as necessary to equalize the spacing between the two sets of pulses. When the pulses are exactly in time coincidence, the timing oscillator frequency will correspond to the velocity for the liquid being gaged, and the readings will be precisely correct.

Timing Oscillator Circuits

Frequency control of the timing oscillator is achieved with a saturable reactor whose control winding is energized by a d-c amplifier fed from the output of the phase detector. The signal winding of the reactor is a part of the resonant circuit of the timing oscillator.

Coincidence between the reflected pulses and the trapezoids does not necessarily represent a zero error voltage. The reactor is held at a center frequency, usually representing the median velocity of sound through water, by a fixed bias on the grid of the d-c amplifier. Error signals may vary the control current of the reactor about this bias value over the full operating range of the amplifier.

Because of the wide frequency-

shifting capability of the timing oscillator servo loop, means must be provided to prevent reflector echoes and trapezoids from becoming incorrectly matched when the timing oscillator frequency falls considerably away from its normal operating point, as would be the case when the equipment is turned on or when the common indicator is switched to another tank. block diagram in Fig. 2 illustrates the location of a limit gate circuit that overcomes the possibilities of misalignment by first allowing only the nearest reflector at 2.00 feet to pass from the calibrate video amplifier to the phase detector circuits. The 2.00 foot reflector pulse is then compared with its corresponding trapezoid, and the resulting error voltage pulls the timing oscillator close to its correct frequency, a step that allows the following reflector pulses to pass through for comparison.

A simple coincidence amplifier is used as the limit gate, with reflector echoes applied to grid 1 and a suitable gating square wave applied to the suppressor grid. When the two inputs are misaligned by a sufficient amount the stop gate stage is prematurely energized by a pulse developed at the plate of the coincidence tube, and all further circuit functions involving the generation of trapezoids are terminated. The stop gate normally turns off the timing gate when the main interface echo is received. At coincidence, however, the limit gate output disappears, and normal circuit functions resume.

Repetition Frequency

The time constants in the R-C integrating network of the phase detector have been made considerably longer than the repetition period in order to obtain adequately smoothed d-c error voltage. Practical limitations on the maximum time constant obtainable with reasonably chosen components have necessitated the raising of the repetition frequency of the entire equipment to about 15 cps, as compared to the 0.5-cps figure found adequate for the manually calibrated system. At this high repetition rate the counting interval, encompassing the time required for a pulse to travel

the maximum measurable height through the liquid, becomes comparable in duration to the following wait interval. Unless provisions are taken to eliminate the flicker, the counter readings would be unreadable, being rapidly in motion for practically half the time. A simple gating circuit has been added to disable the neon glow indicator lamps of all four decade counters during the counting. This circuit does not affect the dividing action of the decades and eliminates the flicker by illuminating the lamps only during the wait interval prior to another complete cycle of operation.

Manual-Automatic Switch

The circuit of the timing oscillator and the following pulse-shaper amplifier is given in Fig. 4. In the manual position of the switch, the signal winding of the saturable reactor is disconnected from the cathode capacitors of the shock-excited timing oscillator, and an ordinary inductor shunted by a variable capacitor is substituted. The manual-calibrate switch also disconnects the B+ power from the calibrate receiver in the manual position.

In calibrate operation, the saturable reactor is reconnected in the circuit with its signal winding in the plate circuit of d-c amplifier tube V_{14} . The 6,800-ohm resistor and V_{1B} across V_{1A} act as limiters controlling the maximum frequency excursions permitted the timing oscillator. The resistor sets the minimum current and hence the lowest frequency, while diode V_{1B} determines the highest frequency. Discriminator output voltage is fed directly to the grid of V_{14} for frequency control.

The output of the pulse shaper, consisting of sharp negative-going pulses, is fed to the hundredths-place decimal counter which is a standard Berkeley unit.

Transducers

Both Rochelle salt and ammonium dihydrogen phosphate (adp) transducers are used in conjunction with the sonic level indicators. The former material, being both temperature-sensitive and temperature-limited to operation in liquids below 40C, is best suited to gaging

water at room temperature. For more rigorous applications an adp transducer 7 inches in diameter is

To protect the internal crystal array, the face is fitted with an acoustically transparent teflon window that is impervious to practically all corrosive liquids. Upper temperature limit of the adp unit is 130C, while half-power beamwidth is in the order of 5 degrees. The rear of the transducer incorporates a line matching transformer and optional provisions for resonating the capacitance of the crystal array when additional system sensitivity is required.

The basic manually calibrated equipment may be installed with only a single bottom-mounted transducer pointing upwards in a vertical fan-shaped cone approximately 10 deg wide, which must be free from reflecting supporting structures and similar objects. This is the simplest installation, although most applications require

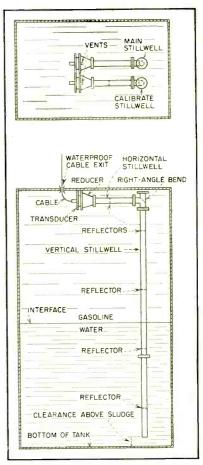


FIG. 3—Method of mounting transducers at top of continuously filled tank for monitoring gasoline-water interface

some additional means for confining the sound energy to an even more restricted part of the container. Stillwell pipe is frequently used to direct the sound energy up a narrow path to the interface and to prevent nearby objects, such as agitators, heating coils and braces from contributing echoes.

Stillwells

In the automatic system the use of stillwells has been made standard, since this type of assembly is ideally suited to supporting the acoustical reflectors used in the calibrate section. Holes are provided for introducing the liquid into the pipe so that inside and outside levels are equal. Small holes used for this purpose will reduce turbulence frequently found in large mixing tanks and will thereby stabilize the reading of the sonic indicator.

The stillwell pipe, which is acoustically treated internally, may also be mounted on the outside wall of a tank providing sufficient tap-off pipes are provided for equalizing levels. This type of installation facilitates transducer cleaning which may be required periodically when the system is used to gage thick gummy liquids.

A typical tank installation of the automatic system is diagrammed in Fig. 3. This application involved the gaging of an interface level existing in a tank completely filled with varying proportions of two immiscible liquids, water and gasoline. Two internal stillwells were used, one for the main system and the other for calibration. The

transducers were mounted at the top of the tank, pointed horizontally at right-angle reflectors several feet away. This arrangement reduced the minimum range of the equipment, which is ordinarily 2.10 feet, to approximately one-half the diameter of the stillwell pipe flanges or about 0.50 foot. The reducing sections couple the larger transducer radiating area to the smaller-diameter stillwell pipe. This installation was designed to be immersed in the tank, and holes were provided to allow the liquids to seep into the stillwells. An electrical modification to the indicator was necessary to subtract the added horizontal distance.

Application Data

Sonic liquid level indicators are also being used to gage more conventional petroleum storage tanks and similar large containers filled with corrosive and radioactive liquids. Both internal and external stillwell installations have been made, the choice depending upon particular local conditions.

One of the economic advantages of the sonic level indicators is the use of a common indicator in conjunction with a large number of transducer-equipped tanks. To facilitate tank-to-tank switching, a motor-driven remotely controlled rotary type switch was developed. This switch is specially designed to handle two-conductor balanced coaxial cable. Up to 24 positions may be selected from a remote control point by means of a seekingtype selector assembly energized from a conventional rotary control switch on the control desk.

The indicators may be arranged to deliver digital level data to commercially available tape printers for automatic inventory purposes. These recorders may be up to several thousand feet away from indicators without necessitating special data transmission accessories. The level information may be remoted even greater distances, if necessary, over conventional wire-radio transmission networks. The new equipments can thus satisfy the need for versatile gages capable of accelerating the trend to completely automatic process control and inventory, particularly in large refineries and chemical plants.

Particular credit for their contributions to these developments is due John A. Herbst, vice-president of Bogue Electric, as well as Lawrence Saper, E. Kohler, William D. Becher, S. Zitovsky, W. Wojtulewicz, and many other members of the Bogue research department.

The author acknowledges the assistance of Clevite-Brush Development Co. and Thompson Products Co. Members of the instrument departments of the Esso Bayway, New Jersey refinery and the Sarnia, Ontario refinery of Imperial Oil, Ltd., graciously assisted in conducting field evaluation tests of sonic equipment. Part of the work undertaken to produce the sonic liquid level indicators was conducted under Bureau of Ships Contract No. NObs-54478.

REFERENCE

(1) Robert L. Rod. Gated Lamp Decade, Electronics, p 170, Oct. 1952.

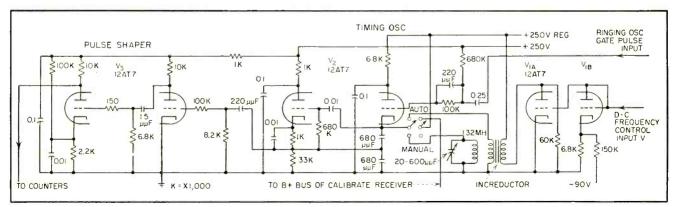


FIG. 4—Switching arrangement used in timing oscillator to provide optional manual calibration in automatic system

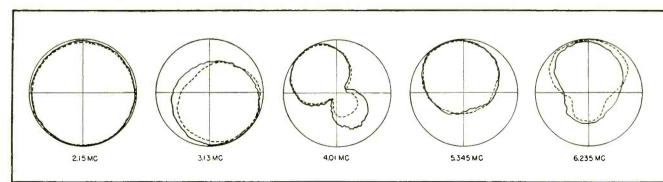
Scale model of USS Mount McKinley being tested at scale radio frequencies to determine directivity effects caused by ship's structure

Ship Models Predict

Scale replica vessels constructed from brass sheet and rotated on a 22-foot metal turntable are illuminated at scale frequencies by distant antennas. Shipborne scaled antennas connected to receiver and polar recorder predict full-scale propagation patterns

NE of the world's most unusual fleets sails on a specially constructed ocean of lead at the Navy Electronics Laboratory's Ship Model Range in San Diego, California.

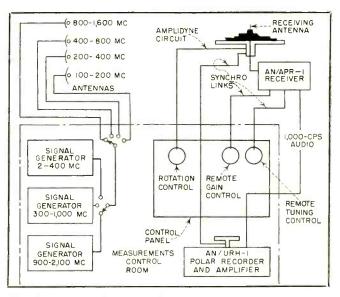
Every vessel in the force is a scale replica of a real U.S. Navy warship already at sea or on drawing boards for tomorrow. The vessels and the model range are used in continuing studies of ships' antenna systems. Thousands of dollars and man-hours are saved annually by the techniques developed


during and since World War II.

First approach to the antenna system study was to test and measure antennas on operating ships, a procedure painfully expensive in terms of ship availability as well as money. Furthermore, new ships need accurate forecasting for communcations design. The Bureau of Ships began in 1944 a complete shore-based ship model systems study. From 1945 to 1948 techniques and instrumentation were investigated on a series of preliminary facilities. Permanent plans

were ready by 1948. The present range and model laboratory has been in operation since 1950.

Valid results may be obtained from models, experience shows, if ship size and wavelength are scaled to the same value. It has been found that for frequencies greater than 2 mc the ship's structure usually has considerable effect on radiation patterns. Below 2 mc the structure is usually too small in terms of wavelength to affect patterns.


The primary factor influencing

Comparison of antenna patterns of actual ship and scale model

Control room shows positioning dials and recorder

Model antenna is illuminated by proper frequency

Antenna Patterns

directivity for vhf-uhf antennas, which are usually installed high on the mast, has been found to be nearby objects. A natural division of instrumentation has resulted. therefore, with one set of techniques for the 2-to-30 mc range and another for vhf-uhf. Complete ship models are made for the 2-to-30 mc studies. They are built usually to 1/48 scale (sometimes to 1/24) for ease in construction and to utilize available electronic equipment. Each model ship is made of sheet brass.

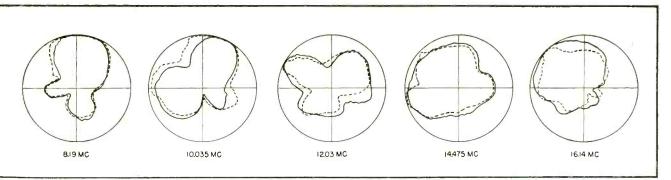
The ocean is simulated by a large, unobstructed, highly conducting ground plane. Center section of the plane is a flat metal turntable 22 feet in diameter. Surrounding it is a circular asphalt-concrete field, 160

By VAL SMITH

Head, Radio Antenna Systems

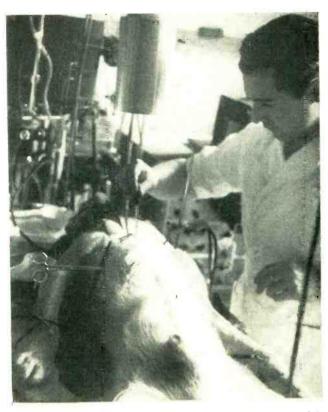
and C. M. HATCHER

Publications Editor


Navy Electronics Laboratory San Diego, California

feet in diameter, covered with a 0.008-inch coating of sprayed lead.

To record an antenna directivity pattern a continuous signal is sent to the model from a parabola at the edge of the field. The model antenna under test is connected to a receiver from which an audio output is obtained. The magnitude of the audio signal is used to control the deflection of a pen on a polar recorder, the turntable of which is rotated in synchronism with the


revolving model. Signal-strength amplitude is plotted as a function of bearing. This plot is a characteristic of the ship antenna and is applicable whether the antenna is used for transmitting or receiving.

Ground plane and turntable were designed to eliminate variances in directivity patterns caused by discontinuities within the field. Periphery of the field is sharply scalloped to reduce standing waves, which might be produced by reflections from the outer edge. The turntable was designed with an overhanging lip that turns within a mercury-filled trough in the ground plane. Discontinuities between the ship model and the turntable are eliminated by soldering the model to the turntable.

Dotted lines show 35-foot whip while solid lines are 1/24 scale

Electronic equipment (left) amplifies and records low-level nerve-current impulses picked up from animal on operating table (right)

Sensitive Amplifier

Nerve impulses of 5 microvolts are amplified and recorded in studies aimed at providing a better understanding of nervous-system behavior. Equipment incorporates several unusual features. A dozen techniques for ultrasensitive amplifier design are described

TIGHLY SENSITIVE audio amplifiers with broad band-pass characteristics play an important role in studying the functional behavior of the nervous system. The equipment to be described is used to amplify and record nerve-current Its specifications are impulses. listed in Table I. The design is especially useful in handling lowlevel audio signals that cover a wide range of both frequency and output level. The installation shown in the photograph has been in operation for several years at the electrophysiology laboratory of the National Polytechnic Institute in Mexico City.

By JOHN R. BECKWITH

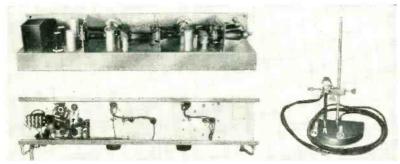
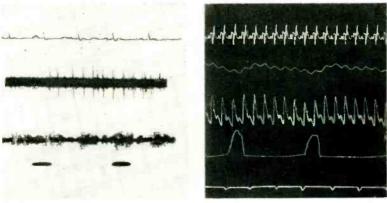

Raytheon Manufacturing Co. Chicago, Ill.

Figure 1 is a functional block diagram of the equipment. It consists of dual amplifier channels feeding a dual-beam oscilloscope equipped for motion photography. Monitoring is provided by both a speaker channel and a 5-in. cathoderay oscilloscope. The equipment also includes a third amplifier channel for electrocardiograph or electroencephalograph signals and appropriate sweep circuits for the recording oscilloscope.


The first stage is the most im-

portant portion of the amplifier. Referring to Fig. 2, this stage comprises V_1 and V_2 for one of the dual channels and V_{11} and V_{12} for the other. The channels are identical in every respect and each has four stages of amplification.

Each stage is built in a chamber by itself, as can be seen in the photograph. All components are chosen for their low noise characteristics. The coupling capacitors are high-voltage mica and the resistors for the first stage are all noninductive wire wound. Resistors R_1 and R_2 control the first stage and largely determine the performance and noise characteristics of the

Bottom and rear views of amplifier (left) illustrate special shielded construction. Tantalum electrodes (right) connect directly to nerves of organism under study

Oscilloscope traces (left) show electrocardiograph trace, nerve-current impulses and one-second time markers. Smoked-paper traces (right) record electrocardiograph signals, blood pressure, respiration and one-second markers

Table I—Requirements of an Amplifier for Studying Bioelectric Potentials

Sensitivity: 5 microvolts for full output (corresponding to a 3-in. displacement on a 5-in. cathode-ray tube having an accelerating potential of 5,000 v).

Input Capability: 5 microvolts to 100 millivolts.

Bandwidth: 10 cps to 25 kc.

Hum: Equivalent to a signal of 2 microvolts maximum.

Interaction: Not detectable from other amplifiers or devices connected simultaneously to the same nerve.

Recording Response: Zero inertia at

Monitoring Outputs: Aural and vis-

Number of Channels: Two for amplifiers and one for electrocardiograph or electroencephalograph.

Distortion: Less than one percent at 100 millivolts input and 50-percent output.

Power Source: All a-c operated, 50 or 60 cps.

Display: All signals must be available for either separate or simultaneous display

for Medical Research

amplifier. Their value is found experimentally and varies with different amplifiers and even with different tubes. The optimum value is in the order of 10,000 ohms when the amplifiers are to be connected to the nerve through special platinum or tantalum electrodes.

The insulation used in supports and sockets is of high quality glazed ceramic to reduce noise and afford good insulation. Resistors R_3 and R_4 furnish bias for V_1 and V_2 and also form part of the feedback circuit. Resistor R_5 is the common screen resistor. The screens are unbypassed to degenerate spurious signals appearing on only one of the push-pull grids.

The desired signal appears 180 deg out of phase at the screens, and bypass is not needed. For this same reason, the common connections at the cathodes of the following stages are left unbypassed.

Resistors R_6 and R_7 constitute the

plate load for the first stage and are brought to a wire-wound potentiometer used for balancing the plate voltages of the two tubes. This helps obtain indentical performance and good cancellation of in-phase voltages through screen action.

Two 0.05- μ f capacitors provide coupling to the second stage. Resistor R_0 is the hum and/or interference balance control. It is a 2-watt carbon composition poteniometer. A 470-ohm resistor provides bias for the second stage. Resistors R_{11} and R_{12} need not be wire wound since considerably more noise can be tolerated in this stage; they are 2-watt carbon composition units. A 50,000-ohm resistor balances plate voltages of V_3 and V_4 .

Negative Feedback

A network of R_{13} , R_{14} , R_{13} , R_{15} , and a 0.01- μ f capacitor provide variable feedback for one leg of the pushpull amplifier and for the other, R_{12} ,

 $R_{16, 17 \text{ or } 18}$ and their capacitor. This control is available on the front panel and assists in elimination of residual hum voltages with some loss of amplification.

Up to and including the third stage, V_5 and V_6 , the heater voltages are reduced one half by connecting the two tubes of each stage in series. A considerably lower temperature and activity level of the cathode is obtained, thereby materially reducing noise and hum in the tubes. The a-c field set up by the heater wires is so reduced that it can practically be disregarded provided that certain other precautions are observed.

Even though the 1620 tubes in the first stage are noted for low noise and hum and freedom from microphonism, they still must be selected for low noise and equal transconductance. All tubes must be selected in pairs.

The plate load for the third stage

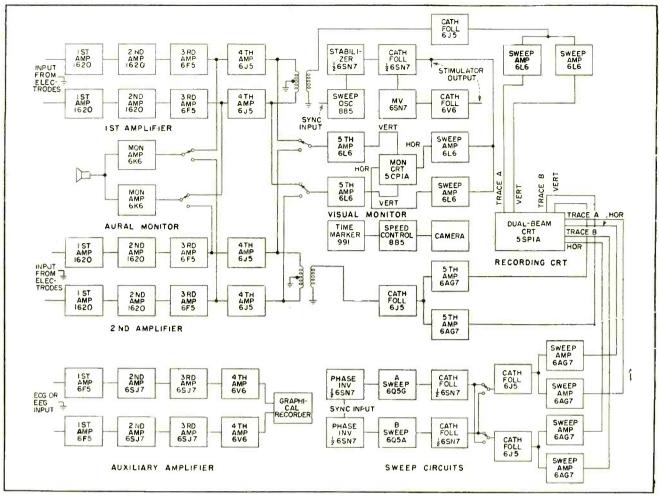


FIG. 1—Functional block diagram of complete equipment shows major units: amplifier channels, auxiliary amplifier and monitors

comprises R_{10} , R_{20} and R_{21} , the balancing potentiometer. Here connections are made to the aural monitor selector switch on the front panel. This switch selects the signals from either one of the amplifiers or any other source. Potentiometer R_{22} is the gain control for the aural monitor, which consists of two 6K6's in push-pull and a sensitive loudspeaker.

Tubes V_7 and V_8 in the fourth stage of amplification feed an output transformer which combines the push-pull signals to give an unbalanced output for connection to the dual-channel oscilloscope used for recording. Tuning of the transformer windings provides extended frequency range. Tuning is accomplished by inductance in the transformer and stray, tube and shielded

cable capacitances.

The outputs of the amplifiers are fed to the dual-channel recording oscilloscope. Recording is accomplished by attaching a moving camera to the oscilloscope and by letting the oscilloscope run without sweep. A sharp point is obtained on the screen for each channel on the same ordinate. A time signal is applied by means of a neon light that

TWELVE TECHNIQUES FOR DESIGNING ULTRASENSITIVE AUDIO AMPLIFIERS

Stringent performance requirements placed upon electronic amplifiers for neurophysiological research necessitate use of special fabrication and design techniques to reduce noise, hum and microphonism:

- ► Mica capacitors with high voltage ratings are used in the critical first stage of amplification.
- Noninductive wire-wound resistors also are used in the first stage. High-quality carbon composition units are used in subsequent stages.
- ► Glazed ceramic tube sockets and supports are employed for best insulation and lowest noise factor.
- ► Unbypassed screen and cathode resistors in push-pull amplifier stages degenerate spurious pickup while amplifying desired signals.
- Negative feedback through R-C network from plates of second stage to grids of first eliminates residual hum voltages.
- Filaments of push-pull amplifier stages are connected in series to reduce hum and noise in tubes.
- ▶ Amplifier tubes, type 1620, are hand-picked in pairs for low noise, hum and microphonism.
- Tube envelopes are washed in alcohol for degreasing and subsequently handled with cloth gloves.
- External light is excluded from tube compartments to avoid noise pickup or spurious modulation.
- Solder joints are made without flux to prevent leakage or noisy carbonized spots at connections.
 Heater leads are encased in steel tubing to afford both electrostatic and magnetic shielding.
- Chasses are fabricated from heavy-duty aluminum and each amplifier is housed in its own steel cabinet

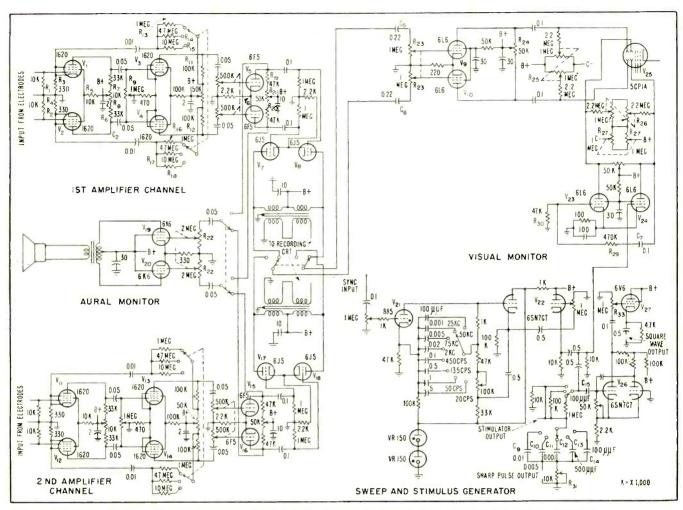


FIG. 2—Schematic diagram of dual amplifiers, aural monitor and visual monitor with stimulus and sweep generator

when excited projects a spot on the film. When the gain controls are opened and the camera started, records are obtained such as those shown. Visual monitoring is accomplished by a separate oscilloscope. Signals are obtained from the amplifiers at the plates of V_{τ} and V_{s} for one channel and from V_{17} and V_{18} for the other. These signals are brought through selector switch, coupling capacitors C_5 and C_6 and gain control R_{23} to the control grids of two 6L6's in push-pull. Resistor R_{24} is the common plate load, semivariable for adjusting plate currents. Display tube is a 5CP1A; R_{zz} and R_m are the vertical and horizontal positioning controls. Potentiometer R provides astigmatism control.

The horizontal circuit for the oscilloscope is also in part the nerve stimulator used in the experiments. It consists of a thyratron V_{el} used as a sweep oscillator with means for synchronization. An eight-

position switch controls the frequency from 2 cps to 2 kc. sweep circuit must be linearized particularly in the low-frequency ranges and V_{22} performs this function. The tube is a double triode and functions as a cathode follower for the sweep voltages. The sweep oscillator plate voltage is stabilized by two VR-150's. Tubes V_{23} and V_{24} are the sweep amplifiers. The exciting voltage is applied to the control grid to V_{24} and the voltage developed at the plate of this tube is reduced by voltage divider C_7 , R_{20} and R_{30} and applied to the control grid of V_{23} to obtain phase inversion.

Nerve Stimulation

From the sweep cathode follower the signal is coupled to an attenuator from which voltage is obtained for stimulating nerves. This voltage is differentiated by capacitors C_9 and C_{14} inclusive and variable resistor R_{51} so that sharp pulses may also be obtained. Capacitor C_{15} com-

prises a differentiating circuit together with the grid resistor. The pulse provided by this combination is applied to multivibrator V_{26} . This produces a square wave of varying duration at the exciting frequency. When the exciting pulse is of a repetition rate that exceeds the duration of the rectangular wave produced by the multivibrator, the oscillator will lock in at 2 or the frequency or any integral multiple and become a counter that will stay in synchronism with the applied signal. Cathode follower V_{zz} isolates the multivibrator from the output. Potentiometer R_{ss} controls the size of the output wave.

Sometimes it is advantageous to brighten only a certain part of the response to a certain stimulus. This can be accomplished by lowering the total brightness of the picture until it is barely visible and then applying the square-wave output to the grid of the picture tube. This wave will be in synchronism with the

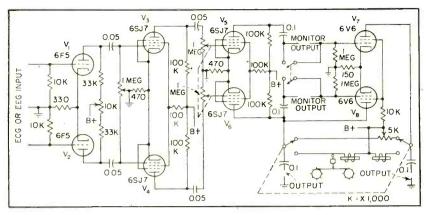


FIG. 3—Auxiliary amplifier is used to handle electrocardiograph or electroencephalograph signals

Connection should leave them comstimulus and the sweep. Several parts in the trace can be illumiundisturbed to prevent mechanical stimulus. The nerves nated when the multivibrator is run and electrodes must operate under at a higher frequency than the a continuous bath of serum to prestimulus. vent the nerves driving out and The leads for the electrodes are causing a major disturbance to the

flexible shielded cable terminating in coaxial connectors to be connected to the amplifier input. The electrodes consist of a short piece of lead shielding covering two insulated wires that terminate in tantalum or platinum hooks over which the nerve is placed. The separation between hooks is varied to meet different conditions. The lead conduit imparts ductibility to the end of the electrodes so they retain their shape once bent as required. This is an important feature, since nerves cannot be cut or strained during an experiment.

organism under study. An auxiliary amplifier of the same general characteristics as the main amplifiers but not of such high sensitivity and good frequency response, utilizing carefully picked commercial tubes, serves for recording an electrocardiogram on smoked paper. On the same paper is recorded respiration, arterial pressure, time signals and electromagnetic signals that point out when a certain stimulus or condition was changed or applied and re-

stored. Thus a complete record of

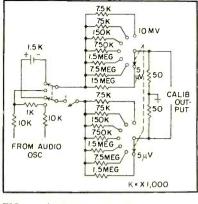


FIG. 4-Calibration circuit

the experiment is obtained. The schematic diagram of the auxiliary amplifier is shown in Fig. 3. The output of the third stage of amplification is broken by connectors so that the signal may be applied to either the visual or aural monitors or the output of the nerve-signal amplifier fed to the recording amplifier composed of V_7 and V_8 . Thus this signal may also appear on the smoked paper.

A calibrator shown in Fig. 4, is built as a separate unit so that any of the amplifiers may be calibrated and checked periodically at the following voltages: 10µv, 50µv, 100 μv, 500 μv, 1 mv and 10 mv. Operation of the calibrator is by a snap-action switch in series with the battery or a-c voltage from an audio oscillator. The output of the calibrator is available at low impedance and applied directly to the grids of the amplifier being calibrated.

The author thanks R. Alvarez-Buylla, chief investigator of the Dept. of Electrophysiology of the Instituto Politecnico Nacional in Mexico City, for his cooperation in numerous experiments and valuable suggestions.

BIBLIOGRAPHY

R. Alvarez-Buylla, Estudio Comparativo de las Acciones del Dial, Nembutal, Penatol, Cloralosa y Uretano Sobre Electrocardiograma, Presion Arterial, Respiracion y Actividad de las Zonas Reflexogenicas Cardioaorticas y Senocarotideas, Anal. Esc. Nal. Cienc. Bio., 6, p. 131, 1950.
R. Alvarez-Buylla, Estudio de la Actividad de los Quimiorreceptores del Seno Carotideo Sobre la Frecuencia Cardiaca, Anal. Esc. Cienc. Bio., 6, p. 175, 1950.
R. Alvarez-Buylla, Estudio Oscilografico de la Actividad Electrica de los Quimiorceptores del Seno Carotideo del Perro, Acta Physiol. Bio. Latinoamer., 2, p. 110, 1951.
R. Alvarez-Buylla, Influencia de la Actividad Electrica de los Actividad Electrica de los p. 110, 1951. R. Alvarez-Buylla, Estudio Comparativo

p. 110, 1951. R. Alvarez-Buylla, Influencia de la Ac-tividad de los Barorreceptores del Seno Carotideo Sobre la Frecuencia Cardiacas, Arch. Inst. Card. Mex., 21, p. 3, 1951.

STUDYING NERVE-CURRENT CONDUCTION

The human nervous system is a vast and intricate communications network. The brain is the control center and the nerves the cables that carry the signals. Incoming signals describe the functional conditions of the various body organs (kinesthesis) as well as external conditions determined by the sense organs. The brain then dispatches through the nerves electrical commands that cause the body organs to react to these

Nerve-current conduction is an ionization phenomena. It transmits signals at about the speed of 10 meters a second. One theory about how this ionization takes place states that nerve fiber is composed of calcium ions on one side of an insulating membrane and potassium ions on the other. A heavier insulating membrane surrounds the nerve. An unbalanced potential between the metals makes the intervening membrane partially conductive and this unbalanced condition is transmitted along the nerve as

The study of nerve-current conduction involves recording both the signal going to the brain and the response returning from it. Since nerve potentials are in the order of microvolts, electronic amplification must be employed. The amplifier must have exeremely high fidelity since nerve pulses occur at repetition rates of a few cycles while the pulses themselves contain frequency components of several kilocycles.

In addition this amplifier for neurophysiological research must be largely free from noise, hum and instability. Each amplification channel must be shielded from extraneous pickup either from adjacent amplifier channels or from the nerve stimulator used in the study

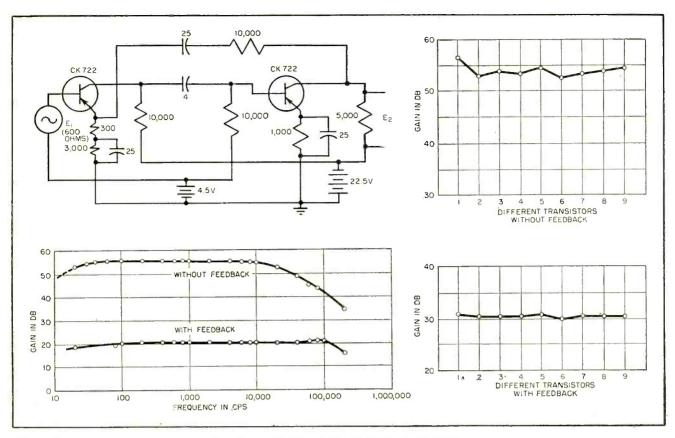


FIG. 1—Circuit and operating characteristics of grounded-emitter to grounded-emitter circuit

Practical Two-Stage Transistor Amplifiers

Effects of feedback and choice of cascading arrangement are discussed. Curves show capabilities of various configurations in experimental circuits using commercially available junction transistors. Transistor interchangeability is also considered

Two-stage resistance-coupled transistor amplifiers are finding increased application in the fields of communications and industrial electronics. Although requirements for various applications differ, it is generally desirable to choose a design that will provide maximum gain with impedance characteristics that permit use of simple coupling circuits.

Theoretical analyses show that of the nine configurations possible, using two transistor stages, four may be eliminated because of low

By ROBERT L. RIDDLE

Electrical Engineering Department Pennsylvania State College State College, Pennsylvania

gain when R-C coupling is used between stages. Two of the remaining configurations have limited usefulness because of low output impedance.

The remaining three configurations (grounded-emitter to grounded-emitter, grounded-base to grounded-emitter, and groundedcollector to grounded-emitter) have been tested experimentally with a variety of commercially-available transistors, with and without negative feedback. The results of these tests are presented in the accompanying curves to provide designers with comparative data for choosing an optimum circuit for a given amplifying job.

GE to GE

The grounded-emitter to grounded-emitter configuration has the greatest gain potential, as shown in Table I. This circuit is seen to have medium input and output im-

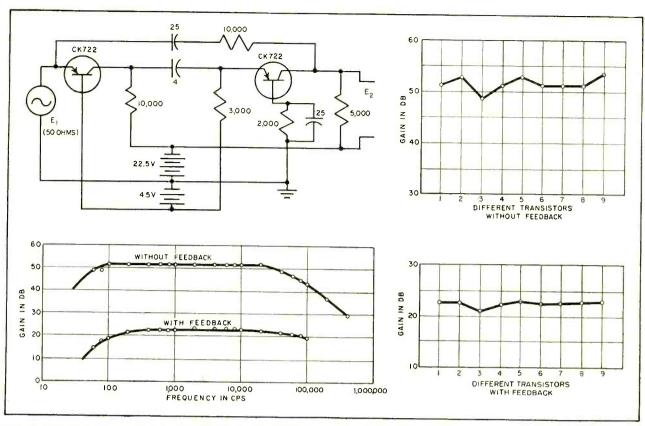


FIG. 2—Circuit and operating characteristics of grounded-base to grounded-emitter circuit

Table I—Theoretical Data for Two-Stage Transistor Amplifiers

Circuit	Gain	Relative Input Impedance	Relative Output Impedance	Gain in db
GE to GE	$\frac{R_L}{R_i} \left(\frac{\alpha}{1-\alpha}\right)^4$	med	med	67 db
GE to GC	$\frac{R_L}{R_i} = \frac{\alpha^2}{(1-\alpha)^4}$	med	low	51 db
GE to GB	$\frac{R_L}{R_i} = \frac{\alpha^4}{(1-\alpha)^2}$	m <mark>ed</mark>	high	35 db
GC to GC	$\frac{R_L}{R_i} \left(\frac{1}{1-a}\right)^4$	high	low	25 db
GC to GE	$\frac{R_L}{R_i} \frac{\alpha^2}{(1-\alpha)^4}$	high	med	50 db
GC to GB	$-\frac{R_L}{R_i} \left(\frac{a}{1-a}\right)^2$	high	high	30 db
GB to GB	$-\frac{R_L}{R_i}$ α^2	low	high	25 db
GB to GE	$\frac{R_L}{R_i} \frac{\alpha^4}{(1-\alpha)^2}$	low	med	52 db
CB to GC	$\frac{R_L}{R_i} \left(\frac{\alpha}{1-\alpha}\right)^2$	low	low	52 db

pedances, relative to the other configurations, and should provide a gain of 67 db for high- α transistors,

The grounded-emitter stage gives a phase shift of 180 deg from input to output, resulting in the input and output being in phase in a two-stage cascade amplifier. This results in relatively complicated degenerative feedback connections.

The experimental circuit used to check the GE-to-GE combination is shown in Fig. 1, along with curves showing frequency response with and without feedback and curves showing effect of using different transistors. In this circuit, input impedance was matched and the output impedance mismatched to obtain high gain-bandwidth product.

Shunt to series degenerative feedback was used. This required an unbypassed resistor in the emitter lead of the first stage. This resistor resulted in local feedback in the first stage, reducing the overall effect of the feedback.

The power gain in db was obtained by using the expression

gain in db = 10 log
$$\frac{E_{i^2}/R_L}{E_l/R_i}$$

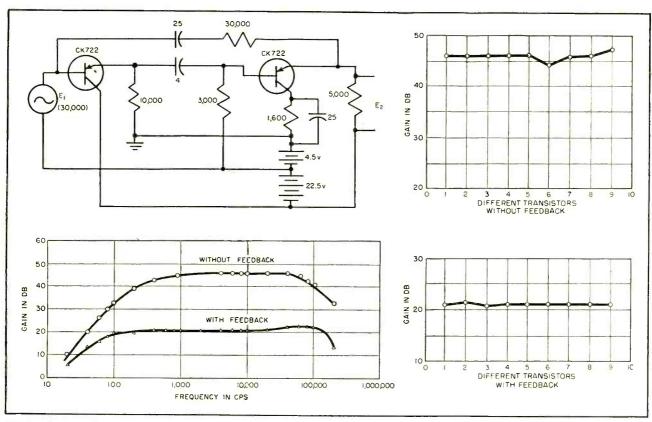


FIG. 3—Circuit and operating characteristics of grounded-collector to grounded-emitter circuit

where E_2 is the output voltage, E_1 the input voltage, R_L the load impedance and R_1 the input impedance.

Feedback resulted in a flat frequency response curve over three decades from 100 to 100,000 cycles and reduced the variation with change in transistors from 3 db to 1 db.

GB to GE

The circuit used for the groundedbase to grounded-emitter connection is shown in Fig. 2. In this circuit the input and output voltages are out of phase by 180 deg and therefore the feedback can be shunt-to-shunt feedback. eliminates the local feedback in the first stage that was present in the GE-to-GE circuit. This should have resulted in greater stability for the gain with feedback when transistors were changed. This was not the case and can be attributed to the impedance levels present at the input and output. A change in the output impedance resulting from a change in transistors in the second stage results in a greater change in the feedback loop here over that of the GE-to-GE circuit.

The gain from this circuit is not as high as in the case of the GE-to-GE circuit and the frequency response is not as good.

GC to GE

The final circuit tested was the grounded-collector to groundedemitter combination. The circuit and curves for this configuration are shown in Fig. 3. In this circuit, as in the GB-to-GE circuit the input and output voltages are 180 deg out of phase and shunt-to-shunt degenerative feedback may be used. This circuit, like the others, was designed to give a large gain-bandwidth product. As a result the maximum gain was slightly lower than that predicted in Table I. The frequency response is similar to that of the GE-to-GE circuit and better than that of the GB-to-GE circuit.

Variation of gain with changes in transistors was very good for this circuit. Without feedback it was 2 db and with feedback it was 0.2 db. The better performance of this circuit is produced by high input impedance and 180-deg phase shift which permits feedback effective over the entire circuit.

The equations given in Table I are approximate gain equations for the nine possible two-stage cascade amplifiers. These equations neglect interstage losses. In these equations R_L is the load resistance of the last stage and R_L is the input resistance to the first stage.

The impedance levels indicated in Table I are relative. The input impedance to a grounded-base stage is low in comparison to a grounded-emitter stage, and the input impedance of a grounded-collector stage is high in comparison to a grounded-emitter stage.

Some of the equations shown in Table I are similar, such as those for the GE to GB and GB to GE but the differences in R_{ι} and R_{L} result in the gains being different.

The GE-to-GE circuit gives the greatest overall gain without feedback but has less uniformity with change in transistors. The GC-to-GE circuit is most uniform in the latter respect, but it offers less overall gain without feedback.

The author wishes to thank R. G. Santilli and G. E. Romaine for their help in obtaining data presented in this article.

By H. B. SCHULTHEIS, JR.

Pacific Division
Bendix Aircraft Corporation
Los Angeles, Calif.

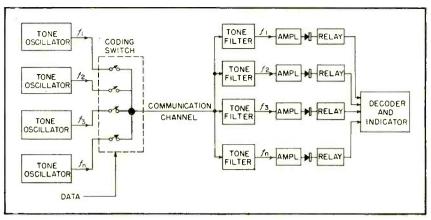


FIG. 1—Functional diagram of basic frequency-code telemetering system

Frequency-Code

Analog data is conveyed numerically by simultaneous transmission of audio tone pulses whose on and off states correspond to binary digits. Synchronization of transmitter and receiver is unnecessary; channel interruptions produce no cumulative errors

REQUENCY-CODE telemetering, using the equipment to be described, conveys analog information, such as shaft-rotation data, in digital form over either telephone lines or radio links with minimum vulnerability to noise and other common sources of error. The data are readily reconverted into easily interpretable form at the output.

Operation

The basic principles of the system are illustrated in Fig. 1. Shaft settings are converted into digital signals by a special multisection coding switch that selects oscillator tones corresponding to digits of the binary number giving degrees of shaft rotation. Complete binary numbers, each represented by a tone group, are transmitted successively in direct response to changes in input data.

At the receiver, the composite tone is analyzed by a group of bandpass filters each followed by an amplifier, detector and sensitive relay. The relays are connected in decoding circuits that convert the binary numbers into decimal data for display either on an indicator dial or lamp register.

Seven-Digit System

A simplified schematic of a complete seven-digit frequency-code telemetering system is shown in Fig. 2. Seven tones, representing the seven digits of a binary number, are generated by a group of Wien-bridge oscillators each employing a 12AU7 dual triode. The oscillators are tuned to different frequencies within the range 500 to 1,700 cps. The output voltage from each oscillator is fed to a wiper on a seven-track printed-circuit coding switch, which is attached to a rotatable shaft. The shaft can be turned and set to any desired angular position by a control knob. The knob is fitted with a pointer that sweeps a 360-degree gradnated scale. The rotatable coding switch and the oscillator assembly are shown in Fig. 3. The electrical contact pattern on the coding switch conforms to the minimum-error code (or Graycode) given in Table I.

In the seven-digit system, a maximum of 2⁷ or 128 binary numbers can be coded and transmitted, making it possible to divide the circular scale into 128 equal parts. Only 120 binary numbers are used, each representing a three-degree sector of the dial.

Coding Process

Each track of the coding switch consists of alternate conducting and nonconducting segments, corresponding to the 1 and 0 values of each digit in the binary number to be coded. Two additional tracks, each consisting of an unbroken conductive ring, are connected electrically to all the conducting segments on the seven tracks. The wipers that contact the eighth and ninth tracks serve as the common output terminal of the coding switch. Thus, for any of the 120 three-degree set-

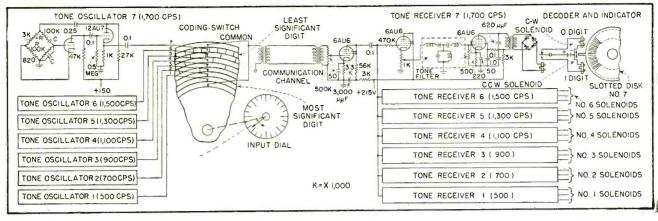


FIG. 2—Circuit of frequency-code telemetering system sending 2-unit binary code

Telemetering System

tings of the coding switch shaft, a distinct combination of tones appears as a complex a-c voltage at the output terminals of the switch. This composite signal is applied through a transformer to a telephone line at a level of 0.27 volt rms per tone.

The oscillators are of plug-in construction and are assembled on a common chassis with an unregulated power supply. Space is provided for up to ten oscillators. Temperature compensation of the oscillator frequency-determining circuits holds frequency drift to less than ± 4 cps within the temperature

range -20 to +80 C. Supply-voltage variations of -10 to +15 percent produce less than ± 1 -cps frequency shift.

Tone Receivers

The tone receiver assembly is shown in Fig. 4. Ten complete tone-receiving channels are provided, although only seven are used. The composite tone signal is passed through a single triode-connected 6AU6 preamplifier and then applied through isolation resistors to the input circuits of the individual tone channels.

Each channel consists of a 6AU6 triode-connected cathode follower, 600-ohm constant-K tone filter designed to pass only one of the tone signals, 6AU6 pentode amplifier, bridge rectifier and sensitive relay. Each filter has a 3-db bandwidth of 60 cps and adjacent-channel attenuation of 30 to 35 db.

Use of temperature-compensating capacitors in the filter tuned circuits prevents the 3-db points from drifting more than ± 8 cps within the temperature range -20 to +80 C. The sensitive relays have 1,000-ohm coils and are adjusted to

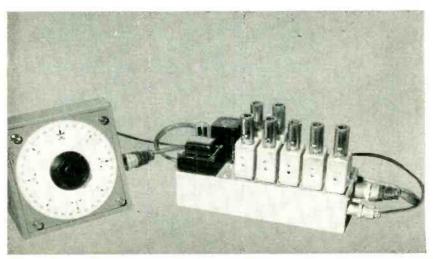
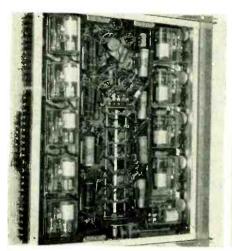
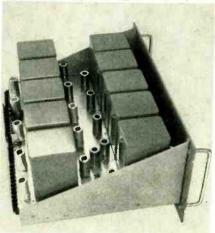




FIG. 3—Shaft-position coding switch and tone oscillator assembly. Open view of switch (right) shows binary-coding commutator rings

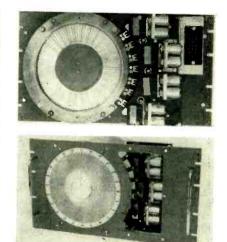


FIG. 5-Dial-type decoder and indicator

FIG. 4—Top and bottom views of tone-receiver chassis

operate when the rectified tone current reaches 2.6 ma.

Decoder and Indicator

The spdt contacts on each sensitive relay are connected to a pair of solenoids located in the decoder and indicator assembly shown in Fig. 5. The assembly contains seven pairs of solenoids, each corresponding to one digit of the incoming binary number.

The plungers in each pair of solenoids are connected mechanically to a projecting tab on one of seven circular code plates mounted on a common fixed center. Each code plate contains 120 radial slots spaced to conform with the 0 and 1 pattern of one digit of the minimum-error code. Each code plate is moved independently by its pair of solenoids between two stops that limit rotational motion to $1\frac{1}{2}$ degrees.

When a tone is present at the input of any channel, the corresponding relay is energized causing voltage to be applied to the 1 solenoid in the decoder assembly. In the absence of a tone, the relay is applied to the opposite, or 0, solenoid of the pair.

Dial Indication

A 1 signal causes the code plate to be held against its counterclockwise stop and a 0 signal causes it to be held against its clockwise stop. For any combination of code-plate settings, one continuous passage is opened through all the plates by mutual alignment of one group of radial slots. A 150-watt lamp

mounted in back of the assembly projects light through the open slit onto a graduated scale affixed to the front panel of the indicator.

The illuminated slot sweeps the scale in unison with the rotation of the transmitter coding-switch and the angular setting of the shaft is registered continuously by the light-slot indicator to an accuracy within $\pm 1\frac{1}{2}$ degrees. The indicator responds accurately to shaft-rotation rates in excess of 10 rpm.

Lamp Matrix

An alternate decoder and indicator, capable of direct conversion and display, is the numbered-lamp register. This unit is much simpler in construction than the slotted-plate decoder and is preferred where a circular display is not re-

quired. The circuit of a seven-digit 120-number lamp matrix is shown in Fig. 6. Relays RE_1 through RE_7 actuated by the sensitive relays in the tone-receiver assembly are divided into two groups, each of which is arranged in a transfer-tree circuit.

Relay Operation

Eight horizontal conductors, A through H, of a rectangular matrix are connected to the eight contacts of the third relay in the first group RE_3 and sixteen vertical conductors, 1 through 16, are connected to the sixteen contacts of the fourth relay in the second group RE_7 . The matrix has 8×16 or 128 crossovers, corresponding to the 128 numbers in the seven-digit minimum error code. At each crossover point a

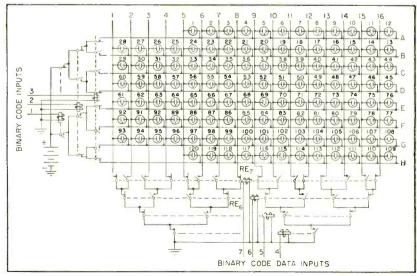


FIG. 6—Circuit of lamp matrix. Relay numbers correspond to binary inputs

neon indicator lamp is bridged between a horizontal conductor and a vertical conductor.

By numbering the lamps in a zigzag manner and with the relay contacts wired as shown, the 120 numbered lamps match the sequence of the minimum-error binary code. For example when the binary number 0000110 is received, one terminal of the source voltage is connected through RE_1 , RE_2 and RE_3 to horizontal conductor A, and the opposite voltage terminal is connected through RE_4 , RE_5 , RE_6 and RE_7 to vertical conductor 5 causing lamp No. 1 to light.

Multichannel Operation

Data sampling and distribution techniques permit multichannel operation with the frequency-code telemetering system. A block diagram illustrating the method of providing multichannel operation is shown in Fig. 7. A multipole commutator or stepping switch having one pole for each binary digit is inserted between the tone oscillators and the several angular-position coding switches.

The commutator applies the output voltage from the group of tone oscillators sequentially to the four individual data channel coding switches. The system illustrated is a four-channel, seven-digit system.

The seven oscillator output voltages are applied first to Coding Switch No. 1, then to Coding Switch 2 and so on repeating the cycle continuously. To allow the discrete

data samples to be identified and separated at the receiving station, a second group of tone oscillators is used to produce a designation code that is transmitted by another section of the commutator in synchronism with each quantity code. Since the designation code is also a binary code, the number of additional oscillators required for a multichannel system is 2^n where n is the number of different input sources to be telemetered. Two oscillators generate designation codes

Table I—Minimum-Error Binary
Code*

Decimal Number	Binary nu <mark>m</mark> bers		
	Natural binary code	Minimum error code	
$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	0000 0001 0010	0000 0001 0011	
2	0011	0010	
3	0100	0110	
4	0101	0111	
5	0110	0101	
7	0111	0100	
8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	

* Binary numbers are so arranged that adjacent numbers differ by only digit to avoid large errors due to coding ambiguities for the four data channels of Fig. 7.

The output signals from both groups of tone oscillators consist of a series of pulses, each pulse comprised of a combination of tones representing both the coding-switch position and the identification of the switch. This system may be classified as a pulse-frequency-code modulation or PFCM system. With the equipment described, the maximum sampling rate is about twelve binary numbers per second, making it possible to sample the output data of each of four coding switches at the rate of three readings per second from each switch.

Number Storage

When binary numbers representing different measurements are transmitted sequentially over a common system, it is usually necessary to prevent interruptions or discontinuities in the displayed output information. In this system, interruptions in the output information due to the data-sampling and distributing processes are prevented by a number-storage circuit inserted between the output-data distributor and each of the indicators.

Circuit Operation

Each indicator responds only to the binary data appearing in its respective number-storage circuit. In the absence of incoming data, each number-storage circuit holds the last binary number received, causing the indicator to remain locked at the desired position. Upon

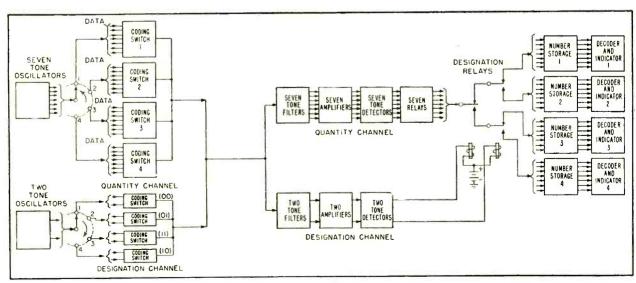


FIG. 7—Pulse-frequency-code modulation system showing four data channels

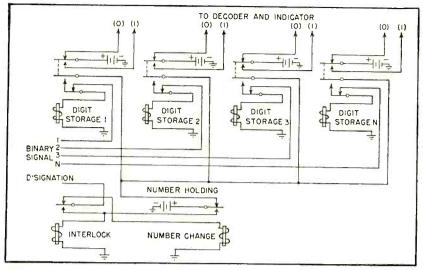


FIG. 8-Number-storage circuit for multichannel system

receipt of the predetermined function-designation code the last number held in the number-storage circuit is cancelled and the new incoming number assimilated and stored. The indicator then registers the new number.

Operating Threshold

Each number storage circuit consists of a set of slow-operate relays, one for each binary digit in the quantity code plus a number-change relay and an interlock relay. The number-change relay is actuated momentarily when the designation code corresponding to its particular information channel is received. A typical number storage circuit is shown in Fig. 8.

Data-sampling performed is either automatically as with a continuous-running commutator, upon demand.

With the latter method, a manually operated switch is added to each shaft-position coder to permit changing any one of the codingswitch settings and its corresponding remote indication without disturbing any of the other readings.

Performance

The only source of fixed error in the frequency-code telemetering system occurs in the conversion of angular shaft settings into binary electrical signals. Neglecting an occasional random error when transmitting in the presence of noise, transmission, decoding and display produce no errors. Resolution of one part in 256 (about 0.4

percent or 1.4 degrees) is readily obtained in an eight-digit frequency-code system using a coding switch five inches in diameter.

In a switch assembly of this diameter, slight mechanical imperfections may introduce errors as large as ± 0.2 degree. Hence the overall accuracy of an eight-digit system is such that the output indication will match the input shaft setting within ± 1 degree. The ultimate or potential accuracy has not been determined. However, if no limitations are imposed on the permissible diameter of the coding switch, accuracies of ± 0.4 degree (nine digits) and ± 0.2 degree digits) appear practicable.

The ability of the system to function accurately in the presence of noise depends to a large extent upon the operating threshold adjustment and the differential adjustment of the sensitive relays in the tonereceiver output circuits. There is sufficient gain to adjust the relays to an operating current threshold (2.6 ma) at least twice as great as the maximum noise current (1.3 ma) due to internal-system noise from all sources. Also there is sufficient gain to insure that the rectified tone signal applied to each relay is at least three times as great (7.8 ma) as the 2.6-ma threshold operating current, with nominal tone-receiver input voltage.

Average internal-system noise due to all causes is approximately 20 db below the operating threshold of the sensitive relays. The greatest amount of internal noise is con-

tributed by crosstalk, with noise due to intermodulation, oscillator harmonics, filter ringing and residual circuit noise contributing less in the order named.

Above the error threshold, amplitude variations as great as 30 db in the level of any tone or tone combination produce no change in output data. A signal-to-noise ratio of plus 1.5 db at the input to the tone receiver is adequate for errorfree system operation.

Approximately 24 cps of the 60cps bandwidth of each tone filter is reserved for cumulative frequency drift of the oscillator and filter. The remaining 36 cps is sufficient to accommodate transmission rates up to twelve binary numbers per second with no reduction in accuracy. This rate is equivalent to a shaft speed of three rpm in an eight-digit system, or six rpm in a seven-digit system. In operational use, transmission rates in excess of 20 binary numbers per second (10 rpm in a seven-digit system) have been attained with no discernible error or loss of data.

Service Experience

Over a period of one year, using telephone lines and vhf radio channels, the frequency-code telemetering system has proved dependable and accurate, requiring no repairs or replacement of parts and only occasional minor adjustment.

The frequency-code telemetering system and data-handling components described in this paper were developed under contract with the U.S. Navy Bureau of Ships, Electronics Design and Development Division.

BIBLIOGRAPHY

Borden and Thynell: "Principles and ethods of Telemetering," p 56 and p 65, Methods of Telemetering," p 56 and p 65, Reinhold Pub Corp. Moore, Jr., U. S. Patent 2,402,973, Jul.

Hayslett, U. S. Patent 2,502,786, Apr. Schmitt et al, U. S. Patent 2,556,556.

June 12, 1951.
Landon, Theoretical Analysis of Various Systems of Multiplex Transmission. RCA Review, p 336, June 1948.
Reeves, U. S. Patent 2,272,070, Feb. 3, June

1942.
Bayliss, A Ten-Channel Pulse-Code Telemetering System, *Electrical Engineering*, p 485, Nov. 1952.
Follingstad. An Optical Position Encoder and Digit Register, *Proc IRE*, Nov.

Goodall, Television by Pulse Code Modulation, Bell System Tech Jour, p 33, Jan.

1951.
Keister et al, "The Design of Switching Circuits", p 50, Van Nostrand Co. Oliver et al. The Philosophy of PCM, Proc IRE, p 1,324, Nov. 1948.

Gated Marker Generator

Marker train of 1-microsecond pips spaced 10 microseconds apart is initiated and stopped by negative-gate impulse. Spacing of continuous train of pulses is determined by two-way time of delay line connected across quaternary winding of blocking transformer

By G. D. JENSEN

Electronics Engineer
Navy Electronics Laboratory
San Diego, Calif.

In RADAR and oscillography a need is frequently encountered for means of generating a train of evenly spaced electronic markers whose start and stop can be accurately controlled by an external signal, usually a range gate or a sweep gate. These marks can then be used to facilitate time or distance measurements, check sweep linearity or calibrate sweep speeds.

Double Triode

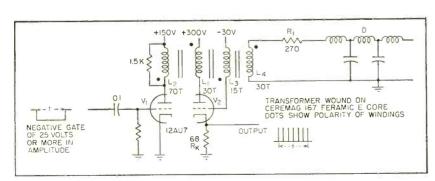
In the circuit described this effect is accomplished in a simple dual-triode arrangement. Results are comparable in accuracy and quality to other methods using three dual triodes. The gating is effected using the principle of core saturation in the blocking-oscillator transformer. Interpulse spacing is determined by the two-way delay time of the lumped-constant delay line D.

The circuit operates as follows. In the absence of an initiating gate, V_{\perp} is at zero bias and the current flowing through the tube

passes also through L_2 . This current establishes a saturation flux condition in the core of the blocking-oscillator transformer. The grid of the blocking oscillator tube V_2 being returned to a negative bias insures that it is cut off.

When a negative gate is received at the grid of V_1 current through it is rapidly cut off and collapse of the field in L_2 induces a positive voltage at the grid of V_2 by means of L_3 . When current starts to flow in V_2 , a regenerative process takes place that produces a sharp voltage pulse across R_K in the cathode of V_2 . This is the output point of the circuit.

The pulse of current through V_2 produces a similar pulse of voltage across the L_4 winding of the blocking-oscillator transformer. The impedance of the L_4 winding during the block is matched to the characteristic impedance of the delay line by resistor R_4 . This positive pulse travels down the delay line and is reflected back in the same


polarity by the open-circuit termination of the delay line.

When the pulse arrives back at L_4 , the grid of V_2 has returned to a cutoff condition. Polarity of the windings is such that the positive pulse at L_4 induces a positive pulse at the grid of V_2 and the oscillator blocks again. Thus when V_1 is cut off a continuous train of pulses is produced across R_{π} and their spacing is determined by the two-way delay time of the delay line.

Saturated Core

When the negative gate ends and V_1 conducts again, flux in the blocking-oscillator transformer core reaches a saturation condition. As the next reflected pulse arrives at L_4 it can produce no further change in the flux in the transformer and hence does not trigger V_2 . The circuit stays off until the next gate is received.

The delay line is built up of 14 sections with a delay of 0.358 microsecond per section. The pass band of 900 kc is just adequate for the application. Marker pulses appearing across $R_{\scriptscriptstyle K}$ are spaced 10 microseconds apart. The marks are 30 volts in amplitude and one microsecond wide at the base. Delay between the leading edge of the initiating gate and the first mark is less than 0.5 microsecond. The damping resistor across L_2 prevents ringing of the transformer-windings from interfering with operation of the circuit, which would otherwise occur.

Circuit of the blocking-oscillator marker generator includes double triode, fourwinding blocking transformer and open delay line

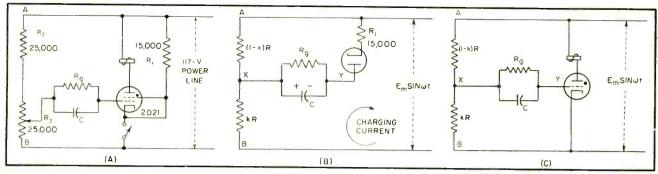


FIG. 1—Basic thyratron time-delay circuit (A), equivalent diode circuit when switch is open (B) and equivalent circuit when switch is closed (C). Timing interval is actuated by closing switch in thyratron cathode circuit.

Simple Time-Delay Relay

Time-delay circuit was originally developed as part of firing circuits of the rocket launchers shown here firing a salvo from a naval vessel

By EDGAR D. MORGAN

Electronics Engineer U. S. Naval Gun Factory Washington, D. C.

TIMING circuits utilizing thyratrons are quite common and widely used. Many of them however, require elaborate circuitry and regulated d-c sources.

The circuit to be described operates from an a-c power line and requires no auxiliary d-c supply. Its accuracy compares favorably with more complicated types and it uses no precision components.

The circuit is designed to actuate a relay at a given time interval after the closing of a switch. The schematic is given in Fig. 1A.

While the switch is open, capaci-

tor C is charged by the grid current of the thyratron. Upon closing the switch, the capacitor discharges exponentially. Unlike more conventional applications, however, an a-c waveform is superimposed upon this decaying voltage. The combination of these two voltages determines the instant of firing of the thyratron, allowing more accurate selection of the time of firing as determined by the setting of potentiometer R_* .

Grid Cycles

The switch position determines whether the grid circuit is being charged or discharged.

With the switch open, the cathode of the thyratron is connected through R_i to one side of the a-c line. The plate of the tube is connected through the relay to the same side of the line. Consequently, there is no possibility of the tube firing.

The grid is connected through R_s and C to an alternating voltage somewhere between the potential difference between points A and B. When B is positive with respect to A, the grid is at some positive potential and the subsequent grid current charges capacitor C. This is analogous to diode action and the corresponding equivalent circuit is shown in Fig. 1B.

In this circuit, voltage divider R_2 R_3 of Fig. 1A has been drawn as two equivalent resistors. That portion between the center arm of R_3 and point B has been indicated as kR and the total resistance between the center arm and point A as (1-k) R. As k varies between zero and one, every possible setting of R_3 is covered.

Resistance R_1 limits the peak charging current. If R_s is much larger than (1-k) R, the potential at point X with respect to point A is E_m (1-k) sin ω t. Neglecting the effect of R_1 , C will charge quickly to the peak value of this voltage on the positive half-cycles. If time constant R_sC is large compared with T, the period of the supply frequency, C will remain charged at a value of

$$E_{d-c} = (1-k) E_m \tag{1}$$

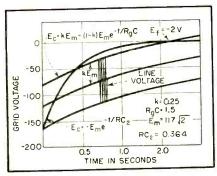


FIG. 2—Typical grid-discharge curve showing addition of waveforms

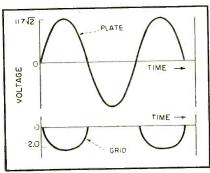


FIG. 3—Critical grid voltage curve for 2D21 with 117 volts rms applied

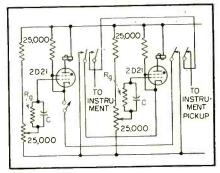


FIG. 4—Schematic diagram of sequence timer developed from basic circuit

Thyratron control circuit uses only a-c line power. Combination of grid waveforms permits more accurate time selection than can be obtained with conventional capacitor-discharge circuits. May be used for critical timing applications.

with polarity indicated in Fig. 1B.

When the switch in Fig. 1A is closed, the cathode of the thyratron is connected to point B and the plate and relay coil to point A. The circuit then assumes the form shown in Fig. 1C. The a-c potential at point X is now kE_m sinot with respect to point B. Capacitor C discharges exponentially through R_g . The sum of this exponentially decaying capacitor voltage and the a-c component forms the instantaneous grid voltage

$$E_{e} = k E_{m} \sin \omega t - (1 - k)$$

$$E_{m} e^{t/R_{g}C}$$
(2)

The thyratron fires when the positive peak value of this voltage reaches the critical firing potential, E_t , of the tube. Only the positive envelope of this voltage is of importance and

$$E_c = kE_m - (1 - k) E_m e^{-t/R_g C}$$
 (3) If E_o is set equal to E_f , the critical grid voltage, an expression indicating the time of firing after the closing of the switch is obtained. Thus

$$E_f = kE_m - (1 - k) E_m e^{-t/R_g C}$$
 (4)

$$e^{-t/R_{\mathfrak{g}}C} = - \frac{E_f - kE_m}{(1-k)E_m} -$$

or
$$t = R_o C \ln \frac{(1-k) E_m}{kE_m - E_f}$$
 (5)

The maximum value which k may assume is one making t=0. Setting t=0 in Eq. 4 and solving for k, or k_{\max} , as it may be called

$$E_f = k_{\text{max}} E_m - (1 - k_{\text{max}}) E_m$$

or
$$k_{\text{max}} = \frac{E_f}{2E_m} + \frac{1}{2}$$
 (6)

As E_f is normally close to zero, it may be assumed that $E_f=0$ and $k_{\rm max}$ may never exceed one-half. With $k=\frac{1}{2}$, the capacitor would charge initially to $-E_m/2$ and the a-c component which is superimposed would have a peak value of $E_m/2$. The grid voltage would then equal zero upon closing the switch and the thyratron would fire on the first positive cycle of the applied voltage.

General Considerations

A typical grid discharge curve is shown in Fig. 2. Values are given for 117 volts rms applied to a 2D21 thyratron connected as in Fig. 1A. Time constant $R_{\rm s}C$ has been chosen as 1.5 seconds and k as 0.25. A few cycles of line voltage are shown to indicate the envelope curves discussed previously. The critical grid voltage, $E_{\rm f}$, is approximately -2 volts.

A simple d-c exponential curve has also been plotted on the same graph. This curve was chosen with an initial d-c charge equal to the peak applied a-c value, and with an R-C time constant adjusted to give the same time delay as the composite curve.

The accuracy of the timing interval is determined in part by the slope of the grid-discharge curve at the critical grid potential.

Figure 2 indicates that the en-

velope curve has a steeper slope at the time of firing than the simple d-c exponential curve. This insures more precise selection of the timing interval.

As k decreases, the d-c potential becomes greater and the a-c potential smaller. Thus, when k=0, the circuit degenerates into a simple d-c grid control system.

In practice, the capacitor charges to somewhat less than the d-c voltage indicated making the actual time delay slightly less than that indicated by the equations.

Although the critical firing voltage, E_t , has been taken as a constant, it varies as the instantaneous plate potential varies. A graph of its value for a 2D21 is shown in Fig. 3. At the peak of the a-c cycle (when both grid and plate voltages are at their maximum positive values) E_t is constant at about -2.2 volts with 117 volts rms applied.

Applications

Figure 4 is the schematic diagram of a sequence timer based on this circuit. It is designed to complete the input circuits of a group of instruments at a chosen time and to open these same inputs at a selected later time. The initiating switch is actuated automatically by associated devices.

The circuit described in this article was developed by Willard L. Hayes of the U. S. Naval Gun Factory.

Designing Surface-Wave

Experimental data show optimum criteria for plastic-coated wire dimensions and launching horns. Surface-wave lines using polyethylene-coated wire have loss of 6 db per mile for a two-mile line at 250 mc. Recordings of propagation over 130-foot line at 2,000 mc indicate total loss of about 2 db

THE SURFACE-WAVE transmission line (SWTL) is a relatively new type of transmission line that employs a single conductor as the wave-conducting means. Early theoretical investigations, originated by Sommerfeld in 1899, suggested the possibility of transmitting electromagnetic waves along a single conductor without radiation loss. However, the existence of such waves had not been verified experimentally.

On the contrary, experience showed that waves on a single conductor suffered large attenuation by radiation and this radiation from long-wire antennas has been extensively used. From that observation and also from later theoretical investigations it was generally concluded that non-radiating surface waves along a single conductor are nonexistent. The true situation, however, has been cleared up only in the past few years, as described below.

A nonradiating wave mode on a single conductor does exist but. under normal conditions, it is excited so weakly that it cannot be observed for it is overshadowed by the radiating or long-wire wave. The nonradiating wave mode is brought about by the resistivity of the wire. A plain, perfectly conducting wire would not guide a nonradiating wave at all. The finite conductivity causes a reduction in the phase velocity of field, compared to the free-space velocity and it is this reduction in phase velocity that establishes conditions rendering nonradiating wave propagation feasible.

An ordinary wire, however, is a poor guide for a nonradiating wave

By GEORG GOUBAU

Coles Signal Laboratory Fort Monmouth, N. J.

in that the wave is easily upset by small bends and even by the normal sag of the wire. If phase velocity is reduced more, for instance by covering the surface of the wire with a dielectric layer, the nonradiating wave becomes stable and can be excited more easily and with much higher efficiency. A wire covered with a dielectric layer of proper thickness is the wave conductor actually used in the swtl.

Wave Development

The functioning of the swtl is best understood if it is compared with a coaxial line to which it is closely related.

Consider first a coaxial line filled with air as shown in Fig. 1A. Neglecting the effect of the finite conductivity, the guided wave is a transverse electric and magnetic wave that propagates with the velocity of light. If the space between inner and outer conductors is entirely filled with a dielectric material having a relative dielectric constant ϵ_i/ϵ (when ϵ = dielectric constant of air) the character of the wave is unchanged, but the velocity is reduced by the factor $\sqrt{\epsilon/\epsilon_i}$.

Assume that only part of the space is filled with the dielectric, so that the conductor is covered with a dielectric sheath (Fig. 1B). The velocity then has a value between that in free space and that in completely filled line. The structure of the electric field is basically changed in that the elec-

tric field has a longitudinal component. Field lines are curved as shown in Fig. 1B and some of them no longer reach the outer conductor. The conduction current in the outer conductor that, for Fig. 1A, has the same magnitude as the current in the inner conductor, is now reduced by the displacement current, caused by the longitudinal component of the electric field.

If the radius of the outer conductor is increased while the inner conductor and the dielectric sheath are unchanged, more return current is formed by displacement current. If the outer conductor is large enough, conduction current is practically zero. Thus, the outer conductor becomes unnecessary. The inner conductor with the dielectric coat is adapted to transmit the wave alone and there is no radiation if the considered wave mode is excited.

The preceding explanation immediately suggests a method for exciting this wave mode. Starting from a coaxial-line section, the inner conductor of which has a dielectric coat, the diameter of the outer conductor is gradually increased until it is so large it has no considerable effect on the field and thus becomes superfluous. In this manner the coaxial wave is gradually transformed into the surface wave. The termination or launcher of the swtl comprises a coaxial-line section the inner conductor of which is connected to a dielectriccoated wire. The outer conductor of this cable is continued by a metal cone. A sketch of a complete swtl is shown in Fig. 2.

It is known that the attenuation of coaxial lines having the same

Transmission Lines

inner conductor decreases with increasing diameter of the outer conductor because the transmitted power associated with a certain current increases with the crosssection of the field. Power dissipated in the inner conductor, being proportional to the square of the current, remains constant. Disregarding dissipation in the outer conductor and dielectric losses, the loss in coaxial lines having the same inner conductor decreases in inverse proportion to the impedance of the line. This results because impedance is the ratio between transmitted power and the square of the current.

Impedance of the swtl (if defined as power divided by current squared) usually lies between 200 and 400 ohms. Therefore, the loss in such a line is a fraction of that of an ordinary coaxial line having an inner conductor the size of the surface-wave conductor.

Compared with a two-wire line of the same impedance and the same size wires, the loss is about half, because dissipation occurs in only one wire rather than in two.

Radiation Loss

Such comparison of the loss in the swtl to that of a coaxial or a two-wire line is not quite fair as there is radiation loss inherently connected with the formation of the surface wave. This loss, which is substantially independent of the length of the line, depends on the design of the launchers and their physical size. There is not yet a theory developed that will reveal their most favorable shape; it is a matter of experience to design them with high efficiency. An efficiency of 90 percent is easily obtained and requires no special precautions. If the taper of the cone were infinitely small the diameter of the opening alone would determine the efficiency.

Total loss of the swtl therefore consists of two parts, the termination or launching loss and the loss of the dielectric-coated wire. The latter is composed of the conductivity loss in the conductor and the dielectric loss in the dielectric layer. The dielectric loss is usually small compared to the conductivity loss.

Because of the launching loss, which is usually in the order of 1 db for both terminations together and substantially independent of the length of the line, the swtl cannot compete with ordinary transmission lines if they are so short that their loss is only 1 db or less. For longer lines the launching loss becomes of little importance and the superiority of the swtl becomes apparent.

Application of the swtl is also limited with regard to the frequency range. The practical lower-frequency limit, which appears to be around 50 mc, is determined by the extension of the field. The clearance around the conductor required for undisturbed transmission and

(A)

OUTER CONDUCTOR

CONDUCTOR

FIELD
LINES

INNER CONDUCTOR

ODELECTRIC COAT

FIG. 1—Development of swil from air coaxial (A), solid-dielectric and air (B) and increased outer sheath diameter (C)

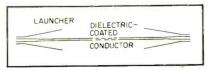


FIG. 2—Complete surface-wave transmission line

the size of the launchers both become inconveniently large. The practical upper-frequency limit has not yet been established.

Climatic Effects

Being an open waveguide, the swtl is subjected to weather conditions, but to a much lesser degree than an open two-wire line. To study weather effects continuous recordings were made at two frequency ranges, one around 250 mc and the other around 2,000 mc. Measurements in the 250-mc range were made with a line two miles long, having a loss about 6 db per mile.

There was no noticeable increase during rain. Dry snow also seems to have little effect. Once, when the line was covered with a layer of about 1 inch of wet snow an increase of approximately 3 db per mile was measured. During the recording period of two years, little experience has been gained as to the effect of ice formation. Layers of ice formed were too thin to cause a detectable increase of loss. The recording equipment used was subjected to ambient temperature variations and not stable enough to detect with certainty signal variations of less than 1 db.

Precipitation Effects

The recordings at 2,000 mc were made with an antenna feed line 130 feet long having a total loss of about 2 db. At this frequency the effect of rain was noticeable and occasionally an increase of the loss by one db was measured. Horizontally stretched lines are more affected because drops hanging on the line act at this frequency like little dipoles and cause radiation loss. The formation of ice is more serious; layers that had no influence on the two-mile line at 250 mc effected about 5-db increase in loss on the 130-foot line at 2 kmc.

The swtl, in contrast to twinleads, is practically unaffected by formation of a film of water on a layer of soot because the electric field is almost perpendicular to the surface. With twin lead such a layer forms a conductive bridge between the two conductors causing high attenuation.

A disadvantage of the swtl is its sensitivity to bends. If lines are properly designed, the loss caused by unavoidable bends at supporting points is negligibly small. Bends greater than 30 degrees should be avoided because they may cause a radiation loss of 0.5 db or more, depending on the reduction in phase velocity. Loss in a bend increases for small deflections approximately with the square of the deflection angle of the line. Conductors used for microwave lines should be prestressed to remove

kinks in the wire.

Supports of lines require as little material as possible. The experimental 2-mile line mentioned is suspended by nylon ropes fastened to telephone poles. Although this method of supporting the line is quite satisfactory and causes practically no distortion of the wave, more rigid methods are under study. If only a few supports are necessary, thin sticks of wood or other insulating materials may be used.

Designing the Line

Graphs used for swtl design, given in Fig. 3, 4, 6 and 9, pertain to polyethylene-coated copper wires. They can also be used if the dielec-

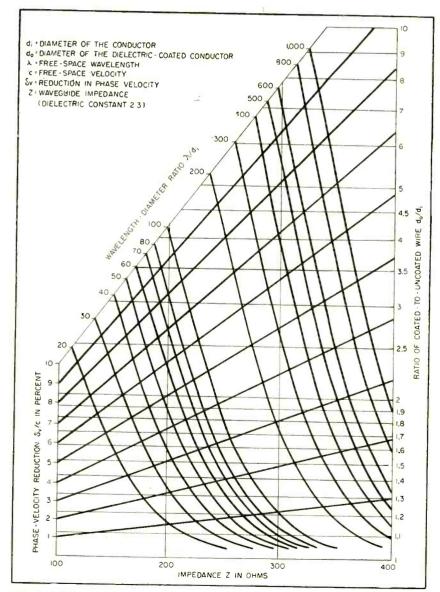


FIG. 3—Relationships among wire diameter, dielectric layer, phase-velocity reduction and impedance

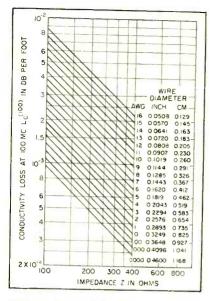


FIG. 4—Conductivity loss and impedance for various sizes of wire

tric coat consists of other materials. The corrections required in that case are indicated below.

Figure 3 shows the relation between the ratio d_{\circ}/d_{\circ} (d_{\circ} = diameter of the wire including the dielectric layer, d_{\circ} = diameter of the plain wire) and the impedance Z of the line, which is defined as the ratio between transmitted power and the current squared. One set of curves refers to various ratios λ/d_{\circ} (λ = free-space wavelength), the other set to various values of the reductions in phase velocity δ_{\circ} expressed in percentage of the velocity of light c.

Desirable Charcteristics

It is desirable to design the lines for high-impedance because loss decreases with increasing Z (see Fig. 4). On the other hand, the phase velocity should be reduced as much as is practical since the line is then less susceptible to bends. Furthermore, the extension of the field is smaller. Large Z and large δ_v/c are contradicting conditions. A compromise is necessary to obtain optimum performance.

In the microwave range, where λ/d_i is small, a high impedance can be obtained only if the reduction in phase velocity is small. In this frequency range the line is used primarily for antenna feeds where it can be strung directly between the transmitter or receiver and the antenna. Bends are therefore

avoided and a small δ_v/c is not objectionable.

It is still advisable to have a reduction in phase velocity of at least 1 percent otherwise layers of dust or water film would cause a large fractional increase of the effective thickness of the dielectric layer and have a considerable effect on line impedance and field extension.

In the uhf range, where λ/d_i is in the order of 100, the impedance can be made large even for a reduction in phase velocity of more than 5 percent; in that case the line is quite insensitive to bends and can be easily supported.

Wire Size

Loss in the swtl is primarily determined by the size of the conductor. Therefore it is advisable to determine first the approximate wire diameter required for a specified loss of the line. This size is read off Fig. 4, which shows the conductivity loss per foot $(L_c^{(100)})$ of various sizes of copper wire at the frequency $f_o = 100$ mc, as a function of line impedance. The conductivity loss L_c per foot at any other frequency f is given by the expression $L_c = L_c^{(100)} \sqrt{f/f_o}$ (1)

An assumption must be made about the impedance of the line. Average value of Z is 250 ohms and this value may be used for a first approach. If the resulting reduction in phase velocity is too high or the extension of the field too great the assumed value can be modified.

An antenna feed line in the frequency range from 450 to 900 mc might have a maximum permissible loss of 0.01 db per foot. Allowing 20 percent for the dielectric loss, conductivity loss should not exceed 0.008 db per foot at the highest frequency of f=900 mc. From Eq. 1, the maximum value of $L_c^{(100)}$ comes to 2.7×10^{-8} db per foot.

Assuming Z=250 ohms, the table on Fig. 4 shows that No. 14 AWG wire is adequate. According to the graph this wire has an $L_c^{\text{(100)}}$ value of 2.75×10^{-3} db per foot for Z=250 ohms.

The ratio λ/d_i for the highest frequency ($\lambda=33.3$ cm, $d_i=0.16$ cm) is then 204. Using Fig. 3, for Z=250 ohms the ratio $d_s/d_i=4$ and the reduction in phase velocity

 $\delta_v/c = 8.1$ percent. This reduction in phase velocity is high.

A ratio d_{\circ}/d_{i} of 3 and the same ratio λ/d_{i} would result in a δ_{v}/c of about 6 percent, which is adequate if the line is essentially straight. Choosing for d_{\circ}/d_{i} the value of 3, Z and δ_{v}/c for several frequencies within the considered band are determined. The result is plotted in Fig. 5.

The impedance varies between about 310 and 270 ohms and δ_v/c from 5.2 to 6.1 percent. Conductivity loss L_c within the frequency range of the wire is now determined with Fig. 4 using several of the values of the Z-curve obtained before.

Loss L_c is plotted in Fig. 5. Dielectric loss in the insulating layer is obtained from the curves in Fig. 6 showing this loss as a function of the δ_v/c for various values of Z.

It is interesting to note that the

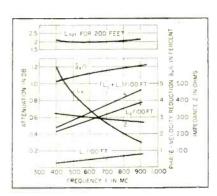


FIG. 5—Line characteristics for chosen parameters described in text

dielectric loss depends little on Z and almost entirely on the reduction in phase velocity. The curves in Fig. 6 pertain to a dielectric coat of brown polyethylene ($\epsilon_i/\epsilon=2.3$, power factor 5×10^{-4}) at a frequency of 100 mc. As indicated in the formula shown on the figure the loss L_i increases in proportion to the frequency. The dielectric loss of the line under consideration is plotted in Fig. 5 (curve L_i).

Total theoretical loss of the dielectric-coated wire is $L=L_c+L_1$. At 900 mc this loss is about 0.93×10^{-3} db per foot. Experimental investigations have shown that the measured loss is usually several percent larger than the theoretical loss, probably owing to reduced surface conductivity of the copper. There-

fore wire size 14 will just meet the requirements in this example.

While loss in the wave conductor can be predetermined accurately. this is not so for loss in the launchers. Considering the receiving horn, presumably that part of the wave energy is lost for reception that propagates beyond the radius of the horn opening. The energy entering the mouth of the horn is not entirely converted into the coaxialwave mode picked up at the end of the horn. Thus, loss consists of two parts; one part results from the limited size of the horn opening. The other part is a conversion loss that depends upon the shape of the horn. It is evident from the reciprocity theorem that the efficiency of a horn is the same for launching and receiving.

Horn Loss

The loss of a horn can be expressed in terms of an impedance by dividing this loss by the square of the current of the surface wave. That part of the loss impedance due to the size of the horn opening (Z_{ϱ}) can be calculated. The graphs shown in Fig. 7 have been prepared for determining Z_{ϱ} if the size of the horn and the reduction in phase velocity are given.

There is no theory as yet regarding conversion loss. However, if it is understood how this loss comes about, it can be kept small. To explain the causes of conversion loss, consider the launching process on a simple construction of a launcher shown in Fig. 8A. First, there is a discontinuity at X where the surface-wave conductor is attached to the center conductor of the coaxial-line section. If X is close to the mouth of the horn, the discontinuity causes a stronger excitation of the radiating or long-wire wave.

If X is close to Y where the horn

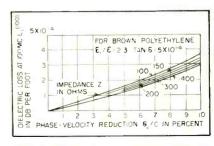


FIG. 6—Dielectric loss as a function of phase-velocity reduction

diameter is not much greater than the outer diameter of the coaxial section, the discontinuity may cause severe standing waves. Therefore, there is an optimum location for X, somewhere near the middle of the horn.

The coaxial wave, when expanded in the horn, tends to form spherical waves, as indicated in Fig. 8A, while the wave-front required at the mouth is plane, since the surface wave has plane phase surfaces. Also, the amplitude distribution of the expanded field at the mouth of the horn may not match that of the surface wave. This is particularly true if the horn diameter is too large and there is a possibility for the development of higher wave modes within the horn.

The best results were obtained with the launcher design shown in Fig. 8B. The coaxial section has large diameter and the inner conductor is tapered down until it approximately matches the diameter of the surface-wave conductor. The

horn consists of two sections with different tapers. The one that encloses the tapered inner conductor has a smaller taper than that enclosing the surface wave conductor. With such launchers a conversion loss of less than 0.1 db has been obtained.

The total launching loss of a surface-wave transmission line with properly designed launchers is not more than 1 db. Figure 5 contains a curve (L_h) showing the launching loss of both terminations together, as it is determined with the graphs of Fig. 7. The curve is based on a horn diameter of 12 inches. The surface-wave conductor is that of the preceding example.

Launching Loss

The conversion loss is not taken into account. Assuming a line length of 200 feet the total loss of the line over the frequency band from 450 to 900 mc is that shown in the upper curve of Fig. 5 (L_{ToT}) . Since the launching loss decreases

with increasing frequency while the conductor loss increases, the curve is almost flat over the entire frequency range.

Many different lines have been tested and their loss compared with the theoretically expected loss. It was found that the discrepancy was usually less than 20 percent, showing fairly good agreement.

If the dielectric coat on the wave conductor is not made of polyethylene but of another material, Fig. 9 may be used to determine the thickness of the coat that is equivalent to one of polyethylene. In this figure $d_{\mathfrak{o}}/d_{\mathfrak{t}}$ is the ratio of the diameter of the polyethylene-coated wire and that of the bare wire, d_{o}'/d_{i} is the equivalent ratio in case of dielectric coat having a relative dielectric constant ϵ_i'/ϵ as indicated at the various curves. The dielectric loss obtained from Fig. 6 is changed by a factor 2.6×10^{3} $\tan \delta' / [(\epsilon_1'/\epsilon) -1]$ where $\tan \delta'$ is the power factor of the dielectric material used.

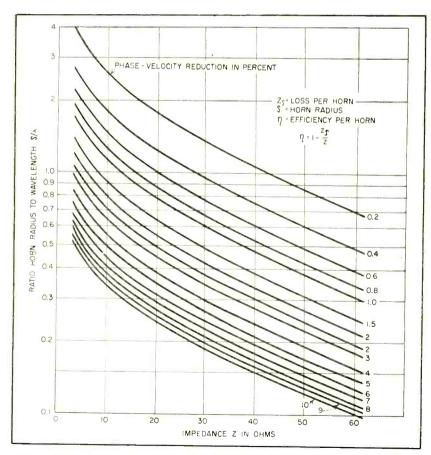


FIG. 7—Horn loss impedance related to dimensions. The curves show loss per horn when its size and reduction in phase velocity are known.

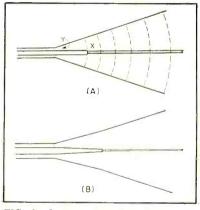


FIG. 8—Optimum launcher design employs tapered inner conductor

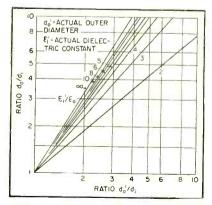


FIG. 9—Conversion chart for dielectric other than polyethylene

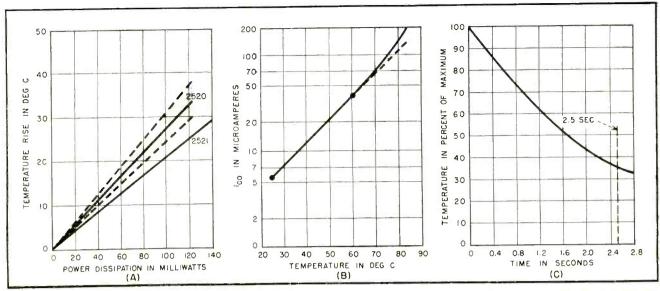


FIG. 1—Temperature rise with power dissipation (A) relates to corresponding change in reverse collector current (B). Themal time constant (C) illustrates need for rapid measurement

Measuring Transistor Temperature Rise

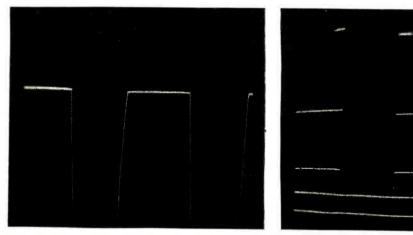
Rise in internal temperature at transistor junction may severely alter operating parameters. Test set described measures temperature rise with power dissipation indirectly by noting change in magnitude of reverse collector current with zero emitter current

APPLICATION of transistors is restricted by their maximum allowable internal temperature as is application of most electrical products. In the transistor, however, the immediate problem is excessive changes in operating parameters rather than destruction of insulation or permanent deterioration of performance characteristics. In fact, permanent deterioration due to temperature is not important below 110 C in diffused-junction transistors or 130 C in grown-junction types.

Parameter Changes

Variation in transistor parameters due to temperature rise may

By J. TELLERMAN


Arma Corporation Garden City, N. Y.

either alter a-c performance or change the d-c bias so severely in some circuits that the transistor may run away and destroy itself. This article presents a simple method of determining the approximate temperature rise in a transistor and shows how such knowledge may lead to more complete circuit analysis and more efficient utilization of transistors.

Curves of transistor parameter variations as a function of temperature have been prepared^{1,2} from which transistor circuit analyses at

different temperatures may be realized. These parameter versus temperature plots have been determined at the low dissipation of approximately 4.5 mw. To analyze transistor performance at higher dissipations, it is necessary to know the temperature rise at the junction, for it is the junction temperature that effects the magnitude of I_{co} , reverse collector current with zero emitter current; R_c , collector resistance; and A_1 current gain.

Consider a case where the maximum ambient temperature is 40 C and optimum power output is required. It is known also that beyond 70 C the I_{co} becomes excessive. Therefore the maximum power that

Base current waveform (left) describes half sine wave. Flat portion at top represents reverse collector current. Composite waveform (right) illustrates change of reverse collector current with power dissipation. From top to bottom the curves represent current at: 120 mw, 80 mw, 40 mw, 25 deg C level and zero level

can safely be dissipated will raise the transistor's internal temperature approximately 30 C. Figure 1A gives temperature rise as a function of dissipation for Germanium Products transistor samples in freely circulating air. This curve cannot be universally applied since different type transistors do not have the same thermal conductivities and different methods of mounting will provide variations in heat conduction. To utilize transistors efficiently a knowledge of the temperature rise per milliwatt dissipation for individual applications is desirable. This should be especially true in power transistor applications.

Measuring Temperature

Inserting a thermocouple into a transistor junction and thereby opening the unit changes its thermal conductivity. Also the thermocouple itself acts as a conductor in removing the heat. Thus, an indirect method of finding the temperature rise is the more reasonable solution.

The transistor parameter most sensitive to temperature variation is I_{co} . This I_{co} , which is usually of the order of a few microamperes, contains a constant and an ohmic component. The constant term is due to thermally generated minority carriers that diffuse into the junction and is an exponential function of temperature. The

ohmic component may be the result of surface leakage across the space-charge region or possibly of local defects in the germanium. Consequently I_{co} is directly affected by changes in the junction and in the immediate vicinity of the junction. By measuring I_{co} the magnitude of junction temperature is actually obtained.

Measurement Technique

The experimental procedure of obtaining temperature rise versus dissipation requires measurements of I_{co} first as a function of known temperature, then as a function of dissipation and finally correlation of dissipation with temperature rise.

The first step simply means applying a voltage E between the collector and base with the emitter disconnected and measuring the collector current while the transistor is exposed to different temperatures in an oven. Up to about 60 C, I_{co} follows very closely an exponential function and two points on semilog paper, as shown in Fig. 1B, will approximately define the I_{co} versus temperature function. Above 60 C, Ico usually rises more sharply but it is commonly not necessary for Ico measurements to be taken above that temperature. The I_{co} slope on the semilog plot may not only differ for different make transistors but even for transistors of the same make. To avoid

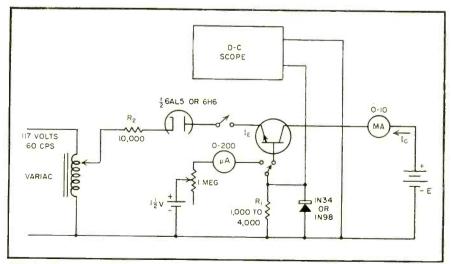


FIG. 2—Basic test set for measuring transistor temperature rise with power dissipation utilizes a d-c oscilloscope

excessive errors, it is advisable to obtain that slope for each transistor under measurement. Only those transistors should be selected to complete the temperature rise measurements for which I_{co} readings can be closely repeated at any one temperature. Aging or temperature cycling may sometimes be necessary to obtain stable I_{co} readings.

Reverse Collector Current

The next step is to measure I_{co} as a function of power dissipated in the transistor. Since the thermal time constants of most commercial transistors are of the order of only two to three seconds and internal temperature drops off exponentially as shown in Fig. 1C, to avoid excessive errors Ico must be measured within roughly 3 second after switching off the power source. Since opening the emitter circuit and then measuring I_{co} on a microammeter results in excessive time lag and requires special transientrecording equipment, the circuit of Fig. 2 is shown as an example of a simple experimental technique having negligible time-lag errors.

A half-wave rectified current I_{e} flows in the emitter of the transistor. The magnitude of the current can be controlled with the continuously variable input transformer. This causes a rectified current of roughly AI_{e} to flow in the collector circuit. The power dissipated in

the collector junction is essentially EI_c where E is the voltage source, which must be of the same magnitude used to obtain the I_c versus temperature plot, and I_c is the d-collector current read on the milliammeter. The diode in the base circuit minimizes the voltage drop across the base resistor insuring that the expression EI_c for power dissipated will be correct. Part of EI_c is dissipated in the base of the transistor but that portion is usually negligible.

During one half the time interval of the cycle the diode in the emitter circuit opens the emitter circuit so that I_{aa} flows through the collector and the base. Consequently the base current $(I_e - I_c)$ is a halfwave rectified current and on the d-c scope the flat portions of the cycle represent a voltage $I_{co}R_{i}$. The rise of level of the flat portions give the increase of I_{co} due to heating of the junction. The rise of I_{co} can be converted into temperature readings from the curve of Fig. 1B and a plot of power dissipation versus temperature change made.

VTVM-Chopper Circuit

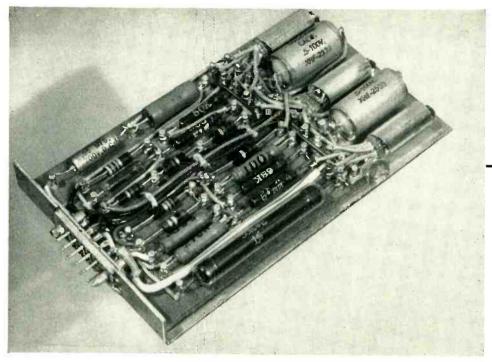
An alternative method of obtaining I_{co} as a function of power dissipation is shown in Fig. 3. Here a chopper and either a d-c or a-c vacuum-tube voltmeter substitutes for the scope. This circuit measures I_{co} somewhat more indirectly. The voltage across R_1 is a half-wave

1 MEG OR OR S% VTVM D-C OR A-C OR A-C

FIG. 3—Variation of test set has chopper and vacuum-tube voltmeter for direct-reading. Either an a-c or d-c vacuum-tube voltmeter may be used

rectified voltage and it is desired to obtain the rise of the flat portion of the wave which changes as a function of I_{co} . The chopping circuit excited by the same source as the emitter circuit has polarities as indicated and transfers about 85 percent of the flat part of the voltage, greatly attenuating the curved portion. Thus the chopping-circuit output should ideally be a square wave linearly changing with I_{co} .

This method is a little less accurate in its performance than the scope method because of the bridge drift in null voltage and the bridge's imperfect shorting action when clipping. A d-c vtvm that can read millivolt levels would be more desirable than an a-c vtvm in that the clipping bridge a-c null voltage, which is of the order of 10 to 15 millivolts, would not enter into any readings. The dissipation is essentially EI_c .


Experimental data compiled by the first method described with 10 Germanium Products type 2520's and 2521's is shown in Fig. 1A. The ends of the transistor leads were attached to a heavy terminal block and the units exposed to freely circulating air.

Various methods have been explored for reducing the temperature rise. A type 2520 with 1½ in. lead length was connected to a heavy terminal block. At 92 milliwatts dissipation in freely circulating air, a 26 C temperature rise above a 27 C ambient was observed. Upon applying a blower for several minutes the temperature rise reduced to 20 C.

Taping the transistor to a heavy piece of steel reduced the rise to 21 C. When the blower was in addition applied to the metal heat sink, the total temperature rise was only 19 C. Thus heat sinks or blowers permit an additional 25 to 30-percent power dissipation in the transistor with the same temperature rise as is shown when the transistor is just exposed to freely circulating air.

REFERENCES

 K. D. Smith, Properties of Junction Transistors, Proc NEC, 8, p 330, Oct. 1952.
 John S. Saby, Fused Impurity PNP Junction Transistors, Proc IRE, 40, No. 11, p 1,359, Nov. 1952.

Pulse amplifier uses three subminiature tubes. Shielded input lead and input grid lead are joined on insulated stand-off terminal at lower right of board to eliminate terminal board leakage

Time-Shared Amplifier

To maintain zero output for zero input in d-c amplifiers used in analog computers special techniques or auxiliary devices are usually employed to reduce drift.

The operational amplifier, circuit shown in Fig. 1, is a high-gain wideband d-c amplifier having a zero d-c output level for zero input. The short-circuit transfer impedances z_i and z_f of the input and feedback networks are frequently complex in nature.

Impedances are selected to give a desired transfer function according to the equation

$$\frac{E_{\text{output}}}{E_{\text{input}}} \cong \frac{Z_f}{Z}$$
 (1)

One of the most common methods of zero stabilization connects an inherently drift-free chopper-amplifier to the d-c amplifier input². The rectified and filtered chopper-amplifier output zeros the amplifier. Zero offset or drift is reduced by a factor approximately equal to the d-c to d-c gain of the stabilizing amplifier.

Motor-driven rotary sampling switches have been developed for commutating a single stabilizing amplifier among several operational amplifiers. The input section of the switch samples each summing junction in sequence. The output section of the switch is synchronized with the input, connecting the output of the stabilizing pulse amplifier to the individual amplifiers through low-pass filters.

R-C Amplifiers

If a simple resistance-coupled amplifier is employed as a pulse amplifier, interaction between the operational amplifiers may be caused by the time constants of the coupling capacitors in the pulse amplifier.

If one of the computer operational amplifiers is overloaded its summing junction frequently assumes a relatively large voltage. When the sampling switch contacts this junction, the pulse amplifier is overloaded and may be usable to recover in time to handle succeeding pulse samples from other summing junctions. A cumulative process results

in which all the operational amplifiers loose stabilization and saturate. It is then difficult to locate the amplifier at fault,

D-C Pulse Amplifier

A direct-coupled pulse amplifier suitable for application as a non-overloading stabilization amplifier is shown in Fig. 2 and in the photograph. It employs three subminiature tubes.

Since there is no blocking capacitor at the amplifier input, grid cur-

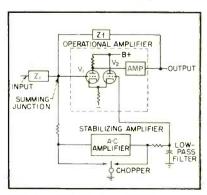


FIG. 1—Operational amplifier using chopper-driven a-c amplifier to provide stabilizing signal

By DEAN W. SLAUGHTER

Research Engineer Jet Propulsion Laboratory California Institute of Technology Pasadeua, California

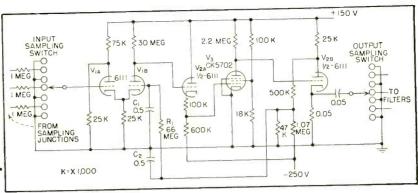


FIG. 2—Direct-coupled amplifier circuit has starved input stage to limit grid-current draw on operational amplifier summing junctions. Resistors are 1-percent deposited-carbon type. A 5-rpm, 60-contact Applied Science Corp. switch is used for input-output sampling

Quick recovery d-c amplifier furnishes zero- point stabilization to 30 operational amplifiers used in analog computer. Interaction between amplifiers can be held to less than 2 millivolts by circuit and filter design techniques

Stabilizes Computers

rent is drawn by the input tube $V1_{\rm A}$. This current flows through the resistor used to isolate the summing junctions from the switch contacts. The resulting voltage drop is equivalent to an error input signal of that amount. To reduce grid current to a negligible value, a starved input stage is employed.

Starved Input

The input stage has a heater voltage of 5 volts instead of the usual 6 volts, a plate voltage of 35 volts and a plate current of 5 microamperes per section. The input stage employs a cathode-coupled circuit so that net phase reversal through the pulse amplifier is 180 deg, as required. The gain of this stage is 8 or 9.

A cathode follower $V_{2,1}$ couples the starved amplifier into the pentode amplifier stage V_n to avoid loading effects. The output stage V_{2n} is also a cathode follower.

The overall gain of the pulse amplifier is about 1,500. With this much gain in a direct-coupled am-

plifier, some way must be provided to prevent the last stage from being driven to cutoff by drift in the operating point of the first stage. Amplifier d-c gain is reduced to about 20 by d-c negative feedback to the grid of V_{LR} . Pulses that the amplifier is designed for are amplified at full gain because they are eliminated from the feedback path by the filter $C_1R_1C_2$.

The filter causes a small amount of pulse overshoot. Since the overshoot generated by a given pulse sample is still decaying when the next channel is sampled, overshoot can cause interaction between operational amplifiers unless it is held to a negligible value.

The amount of overshoot is directly proportional to d-c feedback through the filter and inversely proportional to the filter time-constant. If d-c gain is made less than 20 by feedback, overshoot will be excessive. If the filter is too large, the amplifier will be slow to recover from a temporary loss of supply voltages.

To assure adequate pulse riseand-fall times, the amplifier should be laid out and wired to avoid excessive wiring capacitance. A d-c filament supply is essential for V_1 . The supply voltages must be regulated to maintain about 45 volts at the output cathode. If different supply voltages are used, the d-c feedback circuit components must be altered.

Output Low-Pass Filters

A 5-rpm switch is used for sampling. Each of the two poles of this switch has 60 shorting-type contacts. Every other contact is intended to be grounded, providing 30 amplifier channels.

A filter suitable for shorting-type operation is shown in Fig. 3. The following design considerations exist: At the beginning and end of each sample, the filter input is shorted to ground momentarily. It is essential that signal pulses appear at the amplifier output only when the output coupling capacitor C_1 is connected to a filter, never

when C_1 is grounded. For reliability, there should be a short period of time at the beginning and end of each pulse before C_1 is ungrounded or grounded. However, during these times, filter capacitor C_2 discharges back through the near-zero output impedance of the pulse amplifier. The effect is the same as that obtained by shorting the filter input to ground. In fact, the two phenomena may be lumped together so far as their effect upon the rectification efficiency is concerned.

A further design consideration involves internal leakage resistance between switch contacts. By the time the switch is ready for cleaning, resistance to ground at the filter input may be as low as 20 megohms. This resistance is denoted by R_1 in Fig. 3.

Values for Timing

As shown in the switch-contact timing diagram, Fig. 4, the timing parameters are:

 $t_1 = \text{time for one switch revolution or}$ cycle

= single pulse length

= total filter discharge time = $(t_6 +$ $t_7 + 2t_8$), in general less than t_2

= rectification efficiency =

d-c voltage recovered pulse amplitude

Rectification efficiency, considering the effect of the discharge time t_3

$$E_1 \cong \frac{t_2}{t_2 + t_3} \tag{3}$$

Regarding the effect of leakage resistance R_1 , capacitor C_2 of Fig. 3 discharges through R_2 and R_1 for a very long time t_1 and charges through R_a for a relatively short time t_2 . Rectification efficiency, considering this parameter alone, is

$$E_2 \cong \frac{1}{R_2 - \frac{t_1}{t_2} - t_1} \tag{4}$$

Net rectification efficiency is somewhat better than the product of E_1 and E_2 . Efficiencies on the order of 50 percent are usual. Since the pulse-amplifier gain is 1.500, a d-c to d-c gain of 750 is obtained from the stabilizing circuit.

To obtain sufficient filtering, a second low-pass filter section R_3C_3 (Fig. 3) has been added. When a double-section filter is used $R_{\circ}C_{\circ}$ must be much smaller than R_3C_3 to

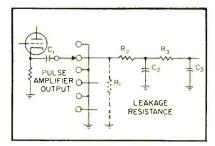


FIG. 3-Filter circuit used in output of stabilizing amplifier. Leakage resistance R_1 across contacts can be as low as 20 megohms when switch is in need of

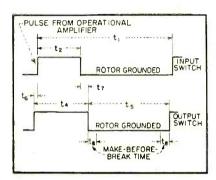


FIG. 4-Time relationships for stabilizing-amplifier input and output switch

prevent damped oscillations when subjected to transients. Time constants of 6 milliseconds and 30 seconds for R_2C_2 and R_3C_3 , respectively, have been found satisfactory.

When an operational amplifier is overloaded. the low-pass filter charges to some large voltage. When the overload is removed, several seconds are required for this filter to discharge and for the amplifier to regain its stabilized zero. This phenomena is typical of any type of stabilizing circuit using continuous balancing.

A recovery time of 20 to 30 seconds is typical.

Recovery time can be improved if clamping diodes are added at the individual filters to prevent the filter from charging under overload conditions.

An improvement factor of 5 is easily realizable.

System Performance

With any of the stabilizingamplifier inputs grounded through a 1-megohm resistor, the d-c voltage at the corresponding output filter due to rectified noise is less than 100 millivolts. This value is equivalent to about 100 to 200

microvolts of noise at the stabilizing-amplifier input.

The following data are given for a unity-gain inverting amplifier, that is, one having equal pure resistances for Z_i and Z_j of Fig. 1. A high-quality d-c operational amplifier with regulated power supplies was employed for the tests. With no signal input, noise output is about 1 millivolt peak-to-peak. The d-c drift is not more than a few tenths of a millivolt over periods of several days. Time required for the amplifier to regain a stabilized zero after a severe and prolonged overload is 20 to 30 seconds. A recovery time of 4 or 5 seconds can be obtained if filter clamping is used.

Channel Interaction

To measure freedom from interaction under normal conditions, signals of a varying character were fed into a gain-of-ten summing amplifier ($Z_t = 100,000 \text{ ohms}$; $Z_t = 1$ megohm) with amplitudes equal at least to its maximum signal-handling capability. Another gain-of-ten summing amplifier was stabilized on an adjacent channel. Signal voltage at the output of this amplifier due to interaction did not exceed 2 millivolts. When amplifier gain was reduced to unity, interaction was negligible.

Some interaction does exist under overload conditions. When the summing junction of the first amplifier reaches 30 volts, the output of the adjacent amplifier may become offset as much as 30 millivolts. This is due to an energy transfer at the input sampling switch. It is apparently a result of dielectric absorption, not resistive leakage. This phenomenon occurs even with highquality insulating materials because of the enormous difference between signal levels at the adjacent contacts. Some improvement could perhaps be obtained by locating a grounded guard ring around each contact.

REFERENCES

(1) J. R. Ragazzini, R. H. Randall and F. A. Russell, Analysis of Problems in Dynamics by Electronic Circuits, Proc IRE, 35, p 444, May 1947.

(2) E. A. Goldberg, Stabilization of Wide-Band Direct Current Amplifiers for Zero and Gain, RCA Rev, 11, p 296, June 1950.

1950. (3) W. E. Ingerson, Drift Compensation in D-C Amplifiers for Analog Computers, paper presented at IRE National Convention, New York, 1951.

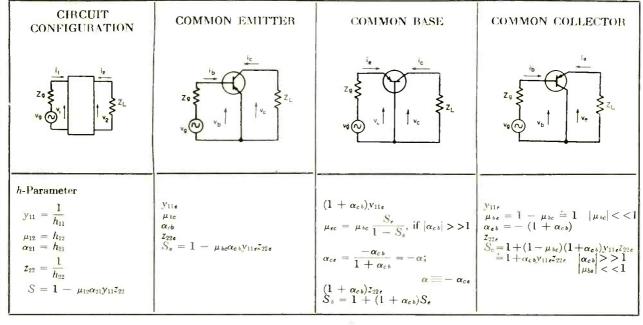
Transistor Equations Using h-Parameters

Equations based on four h-parameters of base-input common-emitter circuit permit rapid calculation of operating characteristics for other circuit configurations, using easily obtained measurements

Simplification of transistor circuit calculations and measurements result from specifying the four-terminal network with input current i_1 and output voltage v_2 as independent variables and output current i_2 and input voltage v_1 as dependent variables. The h-parameters are thus introduced, and circuit equations become

$$v_1 = h_{11}i_1 + h_{12}v_2 = \frac{1}{y_{11}}i_1 + \mu_{12}v_2$$

$$i_2 = h_{21}i_1 + h_{22}v_2 = \alpha_{21}i_1 + \frac{1}{2\alpha_0}v_2$$


where h_{11} , h_{12} , h_{21} and h_{22} are the

By C. C. CHENG

RCA Victor Division Radio Corporation of America Camden, New Jersey

four h-parameters and $y_{11}=1/h_{11}$ is defined as the short-circuit input admittance, $\mu_{12}=h_{12}$ the reverse open-circuit voltage gain, $\alpha_{21}=h_{21}$ the forward short-circuit current gain, and $Z_{22}=1/h_{22}$ the open-circuit output impedance. These parameters are comparatively easy to measure and show directly the funda-

mental properties of the transistor, such as current gain. The fundamental parameters selected in this paper are the four h-parameters of the base-input common-emitter circuit. They are $y_{11e}=1/h_{11e}$, $\mu_{bc}=h_{12e}$, $\alpha_{cb}=h_{21e}$, and $Z_{22e}=1/h_{22e}$. All the circuit equations summarized in the following table for three basic circuit configurations are in terms of these four h-parameters so that application engineers can use them directly whenever the transistor h-parameters are specified.

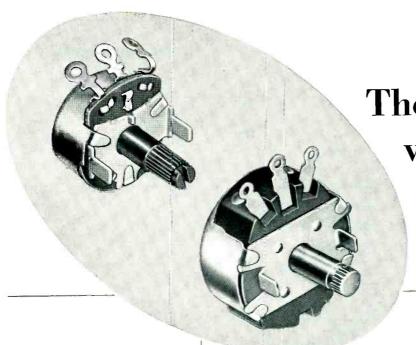
(continued on p 192)

Transistor	Equations	Using	h-Parameters-
_	-1-0-1-0-1-0	O DIA 19	TI-I GIGIIIC (CIS-

(Continued	from	ם	191

(Continued from p 191)			
CIRCUIT CONFIGURATION	COMMON EMITTER	COMMON BASE	COMMON COLLECTOR
Z-Parameters $z_{11} = \frac{S}{y_{11}}$ $z_{12} = \mu_{12}z_{22}$ $z_{21} = -\alpha_{21}z_{22}$	S_{c} y_{11c} $\mu_{bc}Z_{22c}$ $-\alpha_{c}bZ_{22c}$	$\frac{S_b}{(1+\alpha_{cb})y_{11e}} \stackrel{\cdot}{=} \frac{S_e}{y_{11e}}$ $\frac{S_e}{y_{11e}} - \mu_{bc}z_{22e}$ $\alpha_{cb}z_{22e}$	$\frac{S_c}{y_{11e}} \doteq \frac{1}{y_{11e}} + \alpha_{cb} z_{22e}$ $(1 - \mu_{bc}) z_{22e} \doteq z_{22e}$ $(1 + \alpha_{cb}) z_{22e} \doteq \alpha_{cb} z_{22e}$
$Y ext{-Parameters} \ y_{12} = - \ \mu_{12}y_{11} \ y_{21} = \alpha_{21}y_{11} \ y_{22} = rac{S}{z_{22}}$	$-\mu_{bc}\text{Y11}e$ $\alpha_{cb}\text{Y11}e$ S_e Z_{22e}	$ \begin{aligned} &= \frac{S_e}{z_{22e}} \\ &-\alpha_e \delta y_{11e} \\ &= \frac{1 + (1 + \alpha_{eb})S_e}{(1 + \alpha_{eb})Z_{22e}} \stackrel{\cdot}{=} \frac{S_e}{z_{22e}} \end{aligned} $	
	COMMON EMITTER	COMMON BASE	COMMON COLLECTOR
Other Parameters $lpha_{12}=rac{1}{lpha_{21}}igg(1-rac{1}{S}igg) \ \mu_{21}=rac{1}{\mu_{12}}igg(1-rac{1}{S}igg)$	$\frac{1}{\alpha_{eb}} \left(1 - \frac{1}{S_e} \right)$ $\frac{1}{\mu_{bc}} \left(1 - \frac{1}{S_e} \right)$		$lpha_{be} = rac{-1}{1 + lpha + rac{1}{y_{11e}z_{22e}}}$ $\mu_{eb} = rac{-1}{1 - \mu_{bc} + rac{1}{(1 + lpha_{cb})y_{11e}z_{22e}}}$
Input Impedance = $Z_{\rm in}$ = $\frac{1}{y_{11}} - \frac{\mu_{12}\alpha_{21}}{1 + \frac{Z_L}{z_{22}}} Z_L$	$Z_{ ext{in}} = rac{1}{y_{ ext{11e}}} - rac{\mu_{bc}lpha_{eb}}{1 + rac{Z_L}{z_{22e}}} Z_L \ = rac{1}{y_{ ext{11e}}} - \mu_{bc}lpha_{cb}Z_L; Z_L < < z_{22e}$	${Z}_{ ext{in}} = rac{1}{(1 + lpha_{cb}) {y}_{11e}}; {m{Z}}_L \! < \! < \! {z}_{22e}$	$Z_{ ext{in}} = rac{1}{y_{11\epsilon}} + (1 + lpha_{\epsilon b}) Z_L;$ $Z_L < < z_{22\epsilon}$
	$Z_o = rac{1}{z_{22e}} - rac{1}{Z_g - rac{\mu_{be}lpha_{eb}}{J_{\Pi e}}} \ \dot{z}_g - rac{1}{y_{\Pi e}} \ \dot{z}_g < rac{1}{y_{\Pi e}}$		$Z_o = rac{Z_{22e}}{1 + lpha_{cb}y_{11e}Z_{22e}} \ \mu_{bc} < 1, \; a_{cb} > 1$
Voltage Gain = K_V = $\frac{-y_{11}Z_L}{S - \frac{Z_L}{z_{22}}}$ = $-\frac{y_{11}Z_L}{S}$, if $Z_L << z_{22}$		$K_{V} = \frac{-y_{11e}Z_{L}}{S_{e} + \frac{1}{1 + \alpha_{eb}} - \frac{Z_{L}}{z_{22e}(1 + \alpha_{eb})^{2}}}$ $= \frac{-y_{11e}Z_{L}}{S_{e} + \frac{1}{1 + \alpha_{eb}}}$	$K_V = \frac{-v_{11} Z_L}{1 + \alpha_{cb} v_{11c} Z_{22c}}$
			(Continued on p 194)

www.americanradiohistory.com


Transistor Equations Using h-Parameters-

(Continued from p 192)

	COMMON EMITTER	COMMON BASE	COMMON COLLECTOR
Current Gain = K_1 = $\frac{\alpha_{21}}{1 + Z_L}$ z_{22}	$K_{t} = \frac{\alpha_{ch}}{\frac{Z_{L}}{1 + z_{22c}}}$	$K_i = \frac{-\alpha_{cb}}{1 + \alpha_{cb} + \frac{Z_L}{z_{22r}}}$	$K_i = \frac{-(1 + \alpha_{cb})}{1 + \frac{Z_L}{Z_{22e}}}$
Power Gain = $K_p = 4R_\theta R_L$ $\begin{bmatrix} \frac{\alpha_{21}}{\left(Z_\theta + \frac{1}{y_{11}}\right)} \left(1 + \frac{Z_L}{z_{22}}\right) \\ -\mu_{12}\alpha_{21}Z_L \end{bmatrix}^2$	Γ ~. Τ'	$\begin{aligned} \mathcal{K}_{p} &= 4R_{y}R_{L} \\ &\left[\frac{\alpha_{eh}}{\left(Z_{y} + \frac{1}{(1 + \alpha_{eh})\gamma_{11e}}\right)}\right]^{2} \\ &\left(1 + \alpha_{eh} + \frac{Z_{L}}{Z_{22e}}\right) + \frac{S_{e}Z_{L}}{\gamma_{11e}Z_{22e}}\end{aligned}$	$\begin{bmatrix} K_p = 4R_gR_L \\ \frac{1 + \alpha_{cb}}{\left(Z_g + \frac{1}{y_{11c}}\right)\left(1 + \frac{Z_L}{z_{22c}}\right)} \\ + \alpha_{cb}Z_L \end{bmatrix}^2$

Equations listed above are applicable to both high and low-frequency operation. For the low-frequency case only, substitute g_{11} , α_{cbo} , μ_{bco} , r_{22} , and S_{co} for y_{11} , α_{cb} , μ_{cb} , z_{22} , and S_{c} respectively as shown in the equations that follow

Matched Input Resistance = $R_{im} = \frac{\sqrt{S_o}}{g_{11}}$	$R_{im} = rac{\sqrt{S_{co}}}{y_{ m tte}}$	$R_{im} = \frac{\sqrt{S_{eo}}}{g_{11e}} \frac{1}{\sqrt{1 + \alpha_{ebo}}}$	$S_{co} = 1 + (1 + \alpha_{cbo})$ $= \alpha_{cbo}g_{11e}r_{22e}$ $R_{im} = \frac{\sqrt{S_{co}}}{g_{11e}}$
Matched Output $\text{Resistance} = R_{om} = \frac{r_{22}}{\sqrt{S_o}}$ $\text{Ratio } \frac{R_{om}}{R_{im}} = \frac{r_{22}}{r_{11}} = \frac{r_{22}g_{11}}{S_o}$	$R_{om} = rac{r_{22e}}{\sqrt{S_{eo}}}$ $rac{R_{om}}{R_{om}} = rac{r_{22e}g_{11e}}{S_{eo}}$	$R_{om} = \frac{r_{220}}{\sqrt{S_{eo}}} \sqrt{1 + \alpha_{e,bo}}$ $\frac{R_{om}}{R_{im}} = \frac{r_{220}q_{11e}}{S_{eo}} (1 + \alpha_{e,bo})$	$R_{om} = rac{r_{22e}}{\sqrt{S_{co}}}$ $rac{R_{om}}{R_{im}} = rac{r_{22e}g_{11e}}{S_{co}} \stackrel{\cdot}{=} rac{1}{lpha_{cbo}}$
Matched Voltage Gain = $K_{Vm} = \frac{-\alpha_{21o}g_{11}r_{22}}{S_o + \sqrt{S_o}}$	$K_{V_m} = rac{-lpha_{e^{S_0}} g_{11e^{\Gamma_{22e}}}}{S_{eo} + \sqrt{S_{eo}}}$	$K_{Vm} = \frac{\alpha_{ebo} (1 + \alpha_{ebo}) g_{11e^{r_{2}te}}}{1 + (1 + \alpha_{ebo}) S_{eo}} + \sqrt{1 + (1 + \alpha_{ebo}) S_{eo}} + \frac{\alpha_{ebo} g_{11e^{r_{2}te}}}{S_{eo}} + \sqrt{\frac{S_{eo}}{1 + \alpha_{ebo}}}$	$K_{Vm} = rac{(1+lpha_{cbo})g_{11}$, σ_{22} , $\sigma_{co} + \sqrt{S_{co}}$
Matched Current Gain = $K_{im} = \frac{\alpha_{21o}}{1 + \frac{1}{\sqrt{S_o}}}$	$K_{im} = \frac{\alpha_{cho}}{1 + \frac{1}{\sqrt{S_{eo}}}}$	$K_{im} = \frac{-\alpha_{cbo}}{(1 + \alpha_{cbo}) \left(1 + \sqrt{\frac{1}{\alpha_{cb} N_{co}}}\right)}$	$K_{im} = \frac{-(1 + \alpha_{cbo})}{1 + \frac{1}{\sqrt{S_{co}}}}$
Matched Power Gain = $K_{pm} = \frac{g_{11}r_{22}\alpha_{21o}^2}{S_o\left(1 + \frac{1}{\sqrt{S_o}}\right)^2}$	$K_{pm} = rac{g_{11r}r_{22e}lpha_{ebo}^2}{S_{eo}\left(1 + rac{1}{\sqrt{S_{eo}}} ight)^2}$	$K_{pm} = \frac{g_{11} e^{r_{22} \epsilon \alpha_{e,b,n}^2}}{S_{en}} \left(1 + \sqrt{\frac{1}{\alpha_{e,b} S_{en}}}\right)^2$	$K_{pm} = rac{g_{11} \sigma r_{22} \sigma (1 + lpha_{cbo})^2}{S_{co} \left(1 + rac{1}{\sqrt{S_{co}}} ight)^2}$

These tab-mounted variable controls can trim your assembly costs

Looking for cost-cutting ideas? Mallory bushingless tab-mounted controls, either carbon or wire-wound, may be just what you need. They save you money in several ways:

Easier mounting:

just twist the tabs, and the control is installed on the chassis. Extra built-in stabilizing points increase rigidity of mounting . . . prevent rocking.

No hardware needed: you save the cost of a lock washer and nut, besides obtaining a less expensive control.

Ideal for service adjustments in television receivers, these controls afford the high standards of Mallory performance at economical price. Both earbon and wire-wound types are available in choice of ratings, with or without attached switch. The carbon controls offer additional economies: an optional phenolic shaft at lower cost than steel, and a rotational stop that gives the effect of a fixed and variable resistor in a single unit.

For complete information, write today for the new Mallory Technical Bulletin.

Specifications:

Carbon Controls

Wire-Wound Controls

Resistance: 200 ohms to 10 megohms

3 to 15,000 ohms

Tolerance: +30% standard; $\pm20\%$ available

+10% (closer tolerance on request)

Wattage: Linear: 1/2 watt 2 watts

Size:

Other tapers: 1/4 watt 15/6" dia., 17/32" deep

11964" dia., 5/8"-.640" max.

Tapers:

Linear, logarithmic,

Linear (standard): others on request

Shaft:

reverse logarithmic

Steel

Mounting:

Steel or phenolic Two mounting lugs on 7/16" radius

Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:

Electromechanical—Resistors • Switches • Television Tuners • Vibrators Electrochemical - Capacitors • Rectifiers • Mercury Batteries Metallurgical—Contacts • Special Metals and Ceramics • Welding Materials

Expect more...

from MALLORY

Get more

ELECTRONS AT WORK

Edited by ALEXANDER A. McKENZIE

Rawinsonde Probes Troposphere196	Matching Resistors at A-C200
Automatic Goniophotometer Measures	Air-Sea Rescue System204
Gloss196	Mixture Consistency Recorder210
Monitor Measures Intensity of Radio-	Transducers for Ultrasonic Drilling214
active Concrete198	Pulse Power Supply for Precipitators. 218
Test Voltage Reference198	Printed Electrostatic Generator222
Television Aids Turbine Control200	CRO Measurement of Beat Frequencies 224
Atom Smasher to Fight Cancer200	Pertinent Patents

4	A ST

Rawinsonde Probes Troposphere

Signal Corps personnel at Fort Monmouth, N. J. release sounding balloon equipped with parachute and radiometerograph. Radar antenna at right follows the free balloon to show wind velocity and direction while radio sounding equipment sends back signals to indicate altitude, temperature and relative humidity. Although most equipment released on east coast is lost over the Atlantic, the parachute protects individuals and ocean craft from injury

Automatic Goniophotometer Measures Gloss

A TYPE OF GLOSS known as distinctness-of-image gloss (DIG) controls the sharpness of images seen in a reflecting surface. Measurement of this characteristic has been obtained with an instrument that scans rapidly over a small range of angles centered on the angle of specular reflection. By electronic means, the maximum slope of the

goniophotometric curve is measured by a meter deflection. Results with the instrument correlate well with judgements of trained observers.

The mechanical layout of the device is shown in Fig. 1. Light from lamp S passes through a slit and is reflected from test sample X to pass through simple lens L and then imaged on motor-driven disk

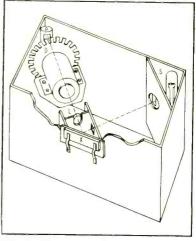
OTHER DEPARTMENTS

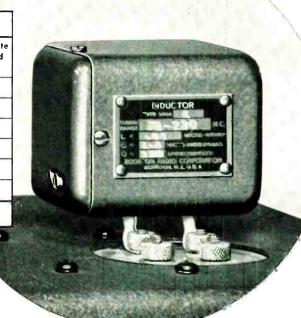
featured in this issue:

D. Transmitted light falls on phototube P. Output is amplified and differentiated before going to voltmeter equipment where rectified d-c is registered on a microammeter.

Figure 2A represents the function and its time derivative for a perfect reflector. Fig. 2B shows the typical curves for a glossy paint sample. Distortion of the curves caused by varying frequency response is not sufficient to affect results seriously.

Circuit of the experimental equipment, shown in Fig. 3, indicates that the photocurrent develops a voltage across the tapped resistor in the photocathode circuit, a portion of which is selected and amplified by the first type 6AU6 tube. Output is either attenuated by the $R_{\rm a}$ - $R_{\rm p}$ network by closing the switch in the right direction or differentiated




FIG. 1—Mechanical detail of the goniophotometer. Test sample is placed at X. Reflected light passing through rotating shutter D is received by phototube P

NEW Q Meter Inductors for measurements up to 260 mc!

INDUCTORS Type 590-A—accessories to Q Meter Type 190-A

TYPE 590-A INDUCTORS					
Туре	Inductance µh	Capacitance µµf	Approximate Resonant Freq. mc	Approximate Q	Approximate Distributed C µµf
590-A1	0.05	8.0 — 95.0	70 — 230	320	1.5
590-A2	0.1	10 — 100	50 — 160	350	1.8
590-A3	0.25	8.0 — 80.0	30 — 100	310	2.3
590-A4	0.5	7.5 — 80.0	25 — 70	340	2.4
590-A5	1.0	7.5 — 65.0	20 — 50	300	2.9
590-A6	2.5	9.0 - 25.0	20 — 30	300	2.9

PRICE: \$10.00 each F.O.B. BOONTON, N. J.

Q METER Type 190-A

This new 190-A Q Meter measures an essential figure of merit of fundamental components to better overall accuracy than has been previously possible. The VTVM, which measures the Q voltage at resonance, has a higher impedance. Loading of the test component by the Q Meter and the minimum capacitance and inductance have been kept very low.

SPECIFICATIONS-TYPE 190-A

FREQUENCY RANGE: 20 mc. to 260 mc. RANGE OF Q MEASUREMENT:

Q indicating voltmeter 50 to 400 Low Q scale 10 to 100 Multiply Q scale 0.5 to 3.0 Differential Q scale 0 to 100 Total Q indicating range 5 to 1200

PERFORMANCE CHARACTERISTICS OF INTERNAL RESONATING CAPACITANCE: Range—7.5 mmfd. to 100 mmfd. (direct reading). POWER SUPPLY: 90-130 volts — 60 cps (internally regulated).

Type 190-A Price: \$625.00 F.O.B. Factory

Inductors Type 590-A are designed specifically for use in the Q Circuit of the Q Meters Type 170-A and 190-A for measuring the radio-frequency characteristics of condensers, resistors, and insulating materials. They have general usefulness as reference coils and may also be used for periodic checks to indicate any considerable change in the performance of the Q Meters.

Each inductor Type 590-A consists of a high Q coil mounted in a shield and is provided with spade lugs for connection to the coil terminals of the Q Meters. The shield is connected to the lugs which connect to the Low Coil terminal in order to minimize any changes in characteristics caused by stray coupling to elements or to ground.

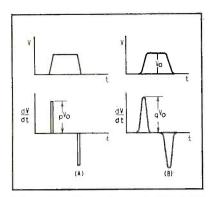


FIG. 2—Function and time derivative for perfect reflector (A) and for glossy paint sample (B)

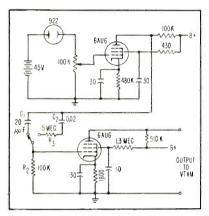
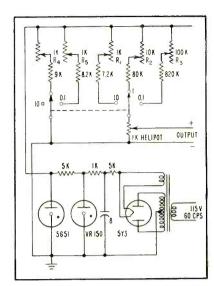


FIG. 3—Basic circuit of the gloss-measuring device, in the left position, the phototube signal is differentiated

by network C_1R_2 by closing it to the left.

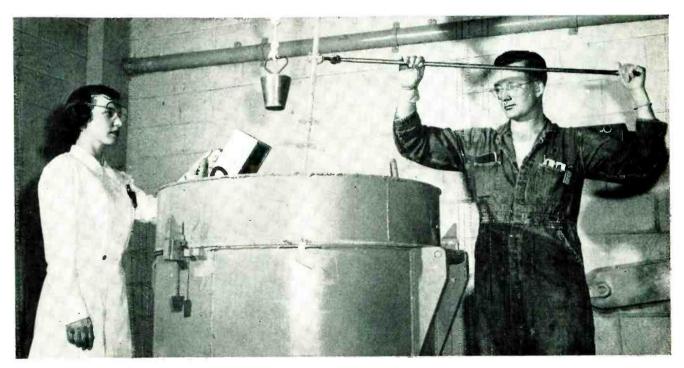

Output from either network is amplified by the second 6AU6 and the resultant voltage measured by the vacuum-tube voltmeter.

In making measurements, a suitable standard of gloss is inserted (such as a flat, polished piece of black glass or a front-coated aluminum mirror), the vtvm set to zero and the lamp voltage increased until the differentiated voltage reaches a certain amplitude. The standard is replaced by the sample, the lamp voltage readjusted and the value of DIG read on the meter.

A description of the instrument and its use, published in the Canadian Journal of Technology, has been abstracted here by permission of one of the authors, W. E. K. Middleton of the National Research Council, Ottawa, Canada.

Test Voltage Reference

More versatile than the usual standard cell, an adjustable voltage reference for which the circuit is shown in the diagram gives 0.1, 1.0 and 10 volts full scale with an



Circuit of the adjustable voltage reference employing two gas tubes

accurary of 0.5 percent of full scale, the voltage being continuously variable.

Output from the rectifier is maintained constant at 150 volts by means of the type VR150. A second voltage regulator, type 5651 maintains a very stable voltage across its terminals of 87 volts.

Calibration resistors R_1 , R_2 and R_3 are used to set the scales accurately. Resistors R_4 and R_5 maintain

Monitor Measures Intensity of Radioactive Concrete

Research technician at left checks activity near opening of hollow concrete cylinder as operator inserts tube of chemical solution that decomposes at a known rate for calibration purposes. Block was constructed at Argonne National Laboratory of cement and radioactive fission products from nuclear reactor and will be used in Department of Food Technology, M.I.T.

LIQUID-LEVEL GAUGE **WEARS 7 LEAGUE BOOTS**

Taking inventory was an oil-industry headache until the Shand & Jurs Company of Berkeley, California developed its Electronic Precision Remote-Reading Tank Gauge System...relying on HELI-POT* precision potentiometers for translating critical measurements into voltages which are transmitted to an indicator located miles away.

Tank-gauging starts with a float riding on vertical guides. A perforated metal tape runs up from the float...over a sprocket-wheel...and down to a counterweight.

The sprocket-wheel, through a gear train, drives two HELIPOTS. The shaft of the first ... a Model A, 10-turn unit...rotates 3600° as the float moves from the bottom of the tank to the top. The shaft of the other...a Model F, continuous-rotation unit... makes a full turn for each foot the float moves.

The voltage outputs of the two HELIPOTS are conducted to the remote station where either can be fed to the circuit of a Brown Instrument Co. self-balancing Wheatstone bridge.

The voltage of the Model A HELIPOT is read directly in feet ... that of the Model F HELIPOT in 1/8" increments. Inventory of any number of tanks can be made quickly... by successively switching the outputs of their HELIPOTS into the circuit of the indicator.

Operating on a tank containing petroleum vapor, the HELIPOTS must be housed in an explosionproof chamber. To overcome the problem of moisture condensation. the HELIPOTS operate completely immersed in oil...which enters the HELIPOTS themselves through holes in their housings. Condensation is drained periodically from the bottom of the chamber. Identical HELIPOTS, laboratory-tested while similarly immersed, showed negligible wear of coil or slider contact after 2 million revolutions.

Application Data ... For complete details on this and other applications, write for Data File No. 402

*T. M. REG. U. S. PAT, OFF. 314

HELIPOT makes a complete line of single-turn and multi-turn precision potentiometers, and turnscounting DUODIALS. Many models are regularly carried in stock for immediate shipment.

Helipot Corporation/South Pasadena, California Engineering representatives in principal cities a division of BECKMAN INSTRUMENTS, INC.

a constant drain from the power supply when switching to the 1 and 0.1-volt ranges.

Information on this circuit has been furnished by General Precision Laboratory, Inc.

Television Aids Turbine Control

TELEVISION VIEWING screen (top center) in newly installed control room of giant Reuter power plant in West Berlin, Germany, enables operator to watch distant turbines and other machinery.

Matching Resistors at A-C

By Conrad Josias

Engineer
Airborne Instruments Laboratory, Inc.
Mineola, N. Y.

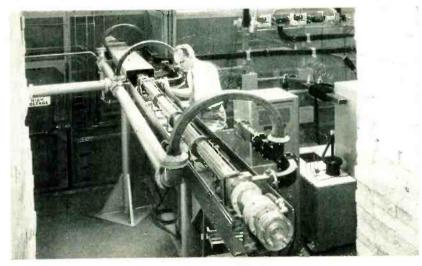
To control the quality of noninductive wirewound resistors in production and to select them for applications presents a problem in instrumentation. A matching technique has been developed that uses inexpensive equipment for tests that can be performed by unskilled operators.

A bridge system utilizes two very low-impedance legs in the form of an accurately centertapped computer reference transformer. The technique is reciprocal in nature so that by using relatively coarse components (onepercent carbon resistors), it is possible to bridge-select a transformer having an excellent phase characteristic and a center tap not more than 0.01 percent in error. The transformer introduces no amplitude error in the ratio match. However, it is necessary to take into account the inherent quadrature voltage that appears at the null point of the bridge resulting from imperfect phase qualities of the

Test set and auxiliary equipment used in selecting matched pairs of resistors

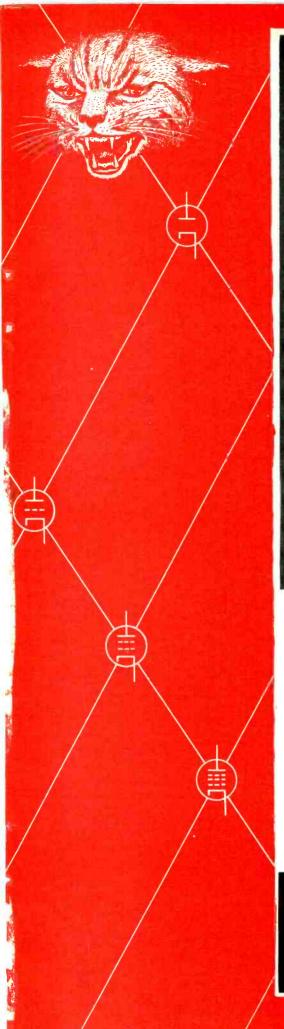
transformer under test.

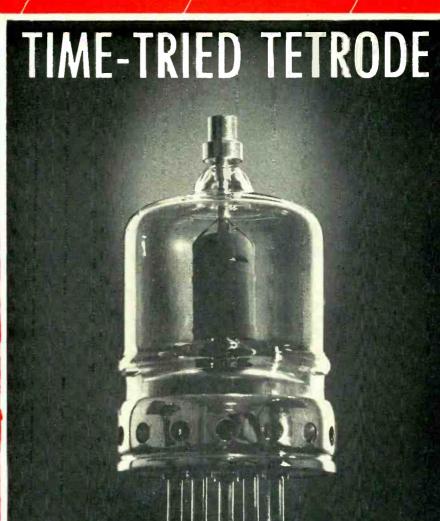
When the unknown pair of resistors R_1 and R_2 , to be matched are nominally equal, the equipment operates as a 1-to-1 bridge as shown in Fig. 1A. At the null as indicated by the meter


$$R_{\scriptscriptstyle 1}/R_{\scriptscriptstyle 2} \equiv 1 + \epsilon$$
 where

$$\epsilon = [(R_{xt} + R_{xs}) - (R_{yt} + R_{yz})]/2$$
 R_{t}

and subscripts X1 and Y1 indicate the values for null with the reversing switch in its first position, the X2 and Y2 indicate the values for null with the switch in its second position. The accuracy with which resistors were to be matched by this bridge was such that $\epsilon \gtrsim 0.0001$.


The reversing switch eliminates the amplitude error from the transformer and permits the use of non-precision resistors for R_x and R_y . For ϵ as low as 0.0001, carbon potentiometers and a multimeter can be used.


Should the meter measurement of the potentiometers be in error by 10 percent, an actual ratio of R_1/R_2 = 1.0001 might be measured as

Atom Smasher to Fight Cancer

Microwave linear accelerator built by High Voltage Engineering Corp. will be installed at Argonne Cancer Research Hospital. It is based upon designs from Stanford University and develops 50 million volts. Powered by two special klystrons, this linear accelerator launches bursts of electrons onto traveling radar waves. As electrons travel a 16-foot waveguide they reach a speed approximating that of light and weigh 100 times more than when they started. At the end of the guide, the high-voltage electrons pass through a thin aluminum window to be used for cancer research

LOS GATOS 4D21/4-125A

MODERN in every respect—with exclusive Sintercote black-body high-dissipation anode and emission-free grids—the Los Gatos 4D21/4-125A provides a new source of supply for a widely-applied tetrode type. Check Los Gatos for your requirements in other types with emphasis on long service life.

LEWIS and KAUFMAN, Ltd.

LOS GATOS 1

CALIFORNIA

Export Representatives: MINTHORNE INTERNATIONAL CO., INC.

15 Moore Street, New York 4, N. Y.

Cable: Address "Minthorne"

E AVA

AMPHENOL Components

stamped with the quality trademark-

miniature

165 Series

The new amphenol 165 series miniature AN-type connectors average about 1/3 the weight of standard ANs but retain the many features initiated by AMPHENOL in the larger connectors. The 165 series are the latest AMPHENOL contribution to the continuing program of miniaturization of components for instrumentation.

microphone connectors

AMPHENOL QWIK Microphone Connectors are the newest, the most efficient and certainly the most attractive connectors ever offered for audio applications. They are available in 3 or 4 contacts and feature tough construction coupled with fine materials. Contacts are plated with gold over silver finished bronze.

cable

ALJAK coaxial cable has been designed by AMPHENOL to permit a wider scope to cable applications in critical electronic equipment. Waterproof and semi-flexible, ALJAK is made with a tough aluminum jacket over extruded Teflon or polyethylene dielectric. The cable has very low attenuation as well as a smaller o.d. than equivalent RG type cables.

For further information about all of these AMPHENOL component write and request the special literature which has been prepared.

AMERICAN PHENOLIC CORPORATION

chicago 50, AMPHENOD illinois

 1.0001 ± 0.00001 , which is a workable accuracy. With this 1-to-1 measurement, if components of the same construction are used, it is possible to match resistors up to about a megohm without difficulty in reactive mismatch.

For matching resistor pair R_1 and R_1 , where a > 1, the bridge shown in Fig. 1B is used. Assuming an ideal transformer, perfectly balanced in phase and amplitude $a = 1 + (1/b) + (R_2/R_1)$

Leg bR_2 is a bank of equal resistances. By paralleling various numbers of these resistors, the test set can be arranged to measure a wide variety of ratios. In one model of the test set, shown in the photograph, a row of toggle switches controls the number of standard resistors paralleled to form bR_2 .

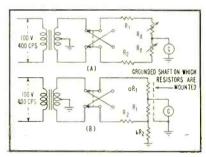
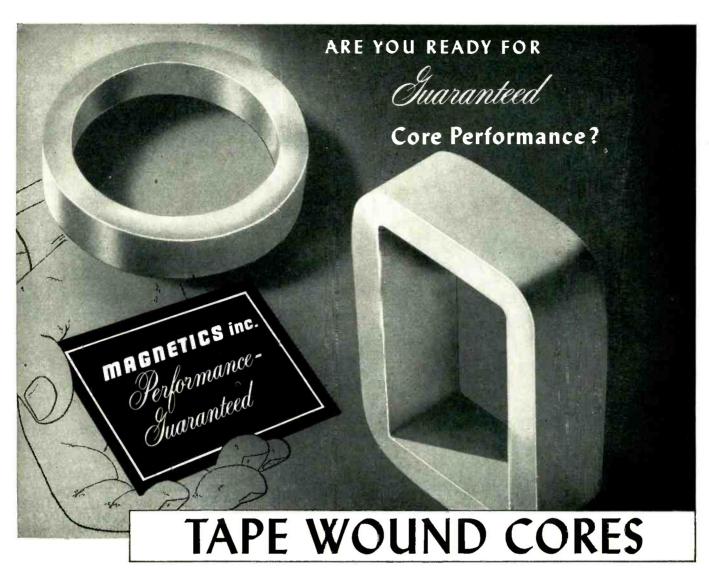
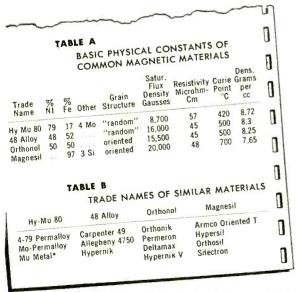



FIG. 1—Comparison bridge (A) for nominally equal resistors and generalpurpose ratio-measuring bridge (B) for nonequal resistors

By using this mode of operation, the term 1/b becomes an integer whereas in Eq. 2 the term 1/b need not be an integer. For a workable bridge, a balancing resistor R_x must be inserted somewhere and new equations evolved. Utilizing the reversing switch and R_x in series with any of the four legs, the measured ratio a, in each case, as determined by the position of the null is given in Table I where $R_x = (R_{xx} +$ R_{x_2})/2 and the subscripts have the meaning as before.


With resistor ratios from 2 to 7 (not necessarily integral) it is often possible to keep measurement inaccuracies below 0.01 percent. Ratios approaching 10 are often difficult to measure to better than 0.05 percent, however.

Proper reactive balances must be obtained to achieve accurate measurement of resistance ratios. Should the null contain excess quadrature

Are you ready for a revolutionary concept in the electrical and electronic industry—the Magnetics, Inc. "Performance-Guarantee" on Tape Wound Cores. Guaranteed

to meet your specifications, and sold at standard prices; these Cores mean truly economical production of high permeability magnetic devices in your plant.

Typical of the unusual scope of the material contained in Catalog TWC-100 are Tables A and B, reproduced from Page 4 of "Performance-Guaranteed Tape Wound Cores."

GET THE COMPLETE STORY

A wealth of new and unusual material on Tape Wound Cores is available to you in Catalog TWC-100, "Performance-Guaranteed Tape Wound Cores." Tables A and B of the catalog, reproduced on this page, present a striking illustration of material not to be found compiled together elsewhere.

Data and descriptive details on high permeability materials . . . factory core matching . . . free engineering design services . . . pages of characteristic graphs and tables . . . are yours for the asking. Simply write on your company letterhead.

DEPT. E-7, BUTLER, PENNSYLVANIA

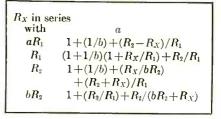
for Heiland Recording Oscillographs

Heiland presents a new line of subminiature galvanometers and a new concept in the design of magnet structures.

Check these Quality Features

✓ Small-size, Compact
✓ Rugged Construction

Extremely Stable Extended Frequency Range


Many additional features are incorporated to provide flexibility, reliability and ease of operation in all applications. Complete specifications will be released in the near future. Write or wire for complete details on Heiland Recording Oscillographs, Amplifiers and Bridge Balance Units.

Heiland Research Corporation
130 EAST FIFTH AVENUE DENVER 9, COLORADO

voltage, the balance setting of R_x will be far from accurate.

For some low-resistance resistors that are slightly inductive, paralleling high-impedance noninductive windings sometimes produces the desired capacitive effect. After the resistors are mounted on the bridge, capacitance can be trimmed to obtain a balance minimum of the proper magnitude, thereby completing the ratio test. A capacitor is added in parallel to the appropriate bobbin making the pair ready for installation.

Table I—Equations of Matching Ratio for Series Combinations of R_{χ}

The capacitive trimming has made possible the measurement of resistance at a-c. At the same time the trimming has compensated for distributed capacitance and resistor standards in the bridge. Final trimming is accomplished in the amplifier itself which has a different array of parasitic capacitance than the bridge. The trimming is finished when the phase of the null voltage is aligned with the phase of the input.

Air-Sea Rescue System

A RADIO SEARCH system using a cathode-ray indicator to show the location of the person in distress also provides for two-way communication when the rescuing plane or ship draws near the position.

The equipment carried by wrecked personnel consists of a radio-beacon transmitter with antenna, speech modulator and receiving unit. The unit uses two tubes, one for beacon and one for voice transmitter-receiver.

To use the transmitter the wrecked person removes the protective cover from the rolled self-erecting, flexible metal-tape antenna. The length of the antenna is 62 percent of 243-mc wavelength,

ELECTRONICS - April, 1954

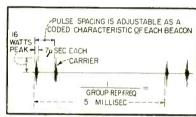
Want more information? Use post card on last page.

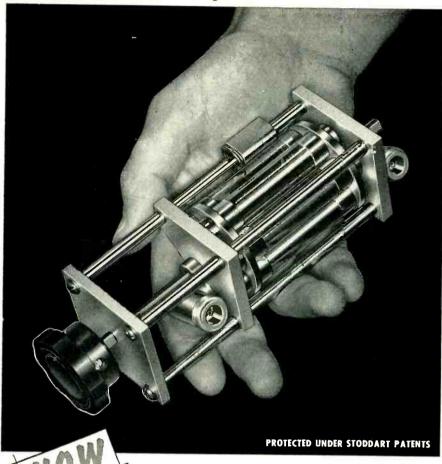
205

mum for land and sea operations. When operating as a beacon the equipment transmits a coded 243mc pulse generated in an optimized squegging oscillator controlled to provide groups of pulses at a low pulse-repetition frequency. tails of this pulsing are shown in Fig. 1. Each beacon has a different pulse spacing making it possible for the rescuer to tell them apart. The peak power output of ap-

proximately 16 watts gives the beacon unit a maximum range of 66 miles to a rescue aircraft at 10,-000 feet altitude, and 6 miles to a rescue ship with a 30 to 40-foot receiving antenna. These ranges are, of course, also determined by sensitivity of the rescue receiver. Battery capacity is adequate to maintain this signal for 20-hours continuous duty.

which has been found to be opti-




FIG. 1—Pulse group signal transmitted by SARAH rescue equipment. Spacing of pulses in group is variable from 15 to 300 μsec

When the wrecked person is within visual or audible distance of the spotting or rescue aircraft or ship, he can operate a three-position switch to transmit voice. Modulation is by pulse-repetition-frequency variation of a 12,000-pps signal.

Battery capacity is adequate for 19 hours of beacon operation and 1 hour of voice transmit-receive operation.

With the selector switch in the receive position, amplitude modulated c-w from rescue craft can be received by means of a superrengenerative receiver with a squegging rate of about 30 kilocycles. The carrier frequency is 243 meg-

The receiver presents a cathoderay indication of the search area during the search phase shown in Fig. 2. Any beacons within the region covered by the receiving antenna appear as spikes on a ver-

Precision Attenuation to 3000 mc!

TURRET ATTENUATOR featuring "PULL-TURN-PUSH" action

FREQUENCY RANGE:

dc to 3000 mc.

CHARACTERISTIC IMPEDANCE:

CONNECTORS:

Type "N" Coaxial female fittings each end

AVAILABLE ATTENUATION:

Any value from .1 db to 60 db

<1.2, dc to 3000 mc., for all values from 10 to 60 db

<1.5, dc to 3000 mc., for values from .1 to 9 db

ACCURACY:

 $\pm 0.5~\mathrm{db}$

POWER RATING:

One watt sine wave power dissipation

Send for free bulletin entitled "Measurement of RF Attenuation"

Inquiries invited concerning pads or turrets with different connector styles

STODDART AIRCRAFT RADIO Co.,

6644-A Santa Monica Blvd., Hollywood 38, California • Hollywood 4-9294

Now...a 30-inch Contour Projector with Kodak's Advanced Optical Design

Ever since the first Kodak Contour Projector was built six years ago, engineers have asked for a 30-inch model with the same advanced optical refinements.

Now the new Kodak Contour Projector, Model 30, answers industry's need for a precision measuring instrument to handle large parts quickly, conveniently.

If yours is one of the hundreds of companies already using optical gaging methods, you'll want to learn how the new "Model 30" can boost efficiency in present operations. If you are not making use of optical gaging, you'll want to learn how the Model 30 makes its use far easier and more economical than ever before.

For complete details of the Kodak Contour Projector, Model 30, write to:

EASTMAN KODAK COMPANY

Special Products Sales Division Rochester 4, N.Y.

the KODAK CONTOUR PROJECTOR

Check these outstanding features of the Kodak Contour Projector, Model 30:

Self-Contained Normal Surface Illuminator. Built-in 1500-watt light source provides maximum surface illumination to inspect surface details, recesses, and blind holes.

Kodak Magnification Selector. Lens turret provides choice of magnifications at the flick of a switch.

Par-Focalized Kodak Projection Ektar Lenses. Six specially designed lenses provide magnifications from 10× to 100×. No refocusing necessary when you change magnification.

Uniform Work Area At All Magnifications. Kodak's unique relay lens system gives you a uniform 8-inch clearance between the part and optical system regardless of magnification selected.

Bright Screen Image. The 500-watt light source for shadow projection provides sharp, easy-to-read screen image across the full 30-inch diameter.

Built-In Helix Table. Worktable rotates 15° off center for compounding helix angles.

Direct-Reading Rotary Screen. Graduated to 2' of arc. Angular measurement is read directly from a dial without vernier. Dial may be zeroed, eliminating lost time in aligning protractor ring.

64-5q.-In. Measuring Area. Eight-inch horizontal and eight-inch vertical table provides an area of 64 square inches for direct measurement. Worktable measures 26" x 8".

Uni-Strut Assembly. Provides maximum rigidity. Projection lenses and mirrors sturdily mounted on a single member.

Compact Design. Floor space required for the Kodak Contour Projector, Model 30, is approximately 1/5 less than that required for other 30-inch projectors.

See the Kodak Contour Projector, Model 30, at the Tool Show, Booths 307 and 311.

Rodak

tical reference trace of a c-r tube. By time sharing methods, a right and left antenna on the aircraft are arranged to display beacon spikes either to the right or left of the vertical reference trace. Directional information is thereby obtained. The right and left antenna patterns are inclined forward, and overlap ahead to provide a means for homing on the beacon.

When the first rules from a hear

When the first pulse from a beacon is received a linear vertical trace is initiated on the cathode-ray

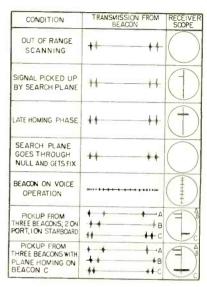
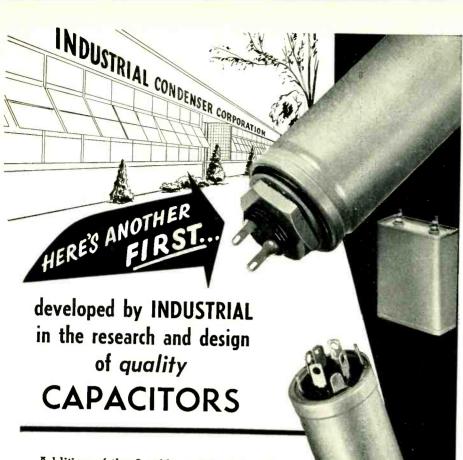



FIG. 2—Beacon-unit transmission, and indications on receiver crt for various operating conditions

tube. The second pulse deflects the trace either to the right or left, depending on which antenna has received the signal. Since the beacon pulses are transmitted with a fixed. characteristic time spacing of group pulses, succeeding pulse groups rewrite the spike at the same place on the cathode-ray tube. The time-sharing frequency being about 30 cycles per second and the group-repetition frequency being about 200 groups per second, each spike is rewritten approximately 3 times in its half of the time-sharing cycle

As the aircraft flies over the beacon, the beacon signal will suddenly vanish, due to the vertical radiation pattern characteristic of the beacon antenna. By this method a fix is obtained. The width of the null will naturally vary with the altitude of the homing antenna.

When the beacon is switched for voice transmission, the cathode-ray presentation indicates a number of

Addition of the 8 mfd. and dual 4 mfd. (600 vdc.) and dual 2 mfd. (1000 vdc.) makes Industrial's series of small case size inverted single-stud-mounting tubular oil-filled capacitors one of the most extensive in its class. Similar important units of the same type in the 600, 1000 and 1500 v. range keep this line fully abreast of new electronic demands.

Whatever your requirements may be, you'll find the answer in Industrial's complete line of oil, wax, electrolytic, Stabelex® and special capacitors.

We are not just engaged in the manufacture of electronic components—we are specialists in the research, design and development of quality capacitors. Our experienced engineering staff is ready to serve you. Send now for full information, including illustrated catalogs.

Ultra-Stable Microwave Oscillator

MODEL 804

The LFE Model 804 Microwave Oscillator provides a source of bighly stabilized in many measurements, or surrowave measurements. SWD The LFE Model 804 Microwave Oscillator provides a source of highly stabilized other applications where a high degree of stability is required, such as Q measurements, or in microwave measurements, or in m other applications where a high degree of stability is required, such as Q measurements, SWR in measurements and general narrow band design work. A dial accurately Liminated Linear Lin measurements and seneral narrow band design work. A dial accurately calibrated directly frequency is an important feature. The main elements of the unit are a klystron oscillator, requency is an important Jeanne. The main elements of the unit are a klystron oscillator, a feedback as stabilizing mentor loop which consists of a calibrated dual-mode reference cavity, a mentor loop which consists of a calibrated dual-mode reference cavity, a feedback as stabilizing mentor loop which consists of a calibrated dual-mode reference cavity, a feedback as stabilizing mentor loop which consists of a calibrated dual-mode reference cavity, a feedback as stabilizing mentor loop which consists of a calibrated dual-mode reference cavity. a stabilizing menitor toop which consists of a calibratea auat-mode reference cavity, a feedback the oscillator.

Amplifier and a self-contained fower supply. Means are provided for modulating the oscillator.

Specifications

1 Mc per division Frequency Stability

Short Term Deviation - less than one Long Term Drift - negligible after complete warm-up

Modulation

Can be modulated 25% when stabilized 100% modulation possible when stabilization is removed

Power Output 80 - 100 milliwatts Output flange - UG 40/U

Power Consumption 160 watts

12-7/32" x 19" front panel, 19-1/4" deep, cabinet or rack mounting

Weight 100 lbs.

For complete information, see your LFE engineering representative or write-

BORATORY for ELECTRONICS, INC.

75-3 PITTS STREET . BOSTON 14, MASS.

MAGNETOMETERS . COMPUTERS . SOLID DELAY LINES PRECISION ELECTRONIC EQUIPMENT . OSCILLOSCOPES

New!

PY TYPE

ENCAPSULATED

RESISTORS

Stable...Small... Light-weight...

Shallcross "P" Type Encapsulated Resistors are ideal for installation where stability, dependability, and minimum size and weight are a must. These radically new resistors offer the performance advantages of hermetically-sealed steatite resistors at less cost.

Because of the unique Shallcross method of encapsulating windings, "P" type resistors have greater maximum resistances, longer leakage paths, and higher wattage ratings.

Shallcross "P" type resistors are available in six MIL-R-93A lug-type styles and five axial lead styles with wattage ratings ranging from .500 to 3.5 watts. All styles meet and exceed JAN-R-93A, Characteristic A.

Complete information on sizes, ratings, and test results of Shallcross "P" type precision wirewound resistors is available in Engineering Bulletin L-30. Write for your copy today.

SHALLCROSS MANUFACTURING CO.

522 Pusey Avenue, Collingdale, Pa.

Sharman SS

equally spaced spikes produced by the 12,000-pps unmodulated carrier.

When the beacon goes on receive, the cathode-ray screen displays a number of small readily identifiable spikes indicating that the wrecked person is ready for voice reception.

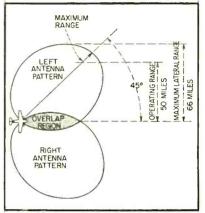


FIG. 3—Pattern of antennas on search plane. Overlap region in center is used for homing on beacon

The aircraft search and homing antenna is an elementary parasitic type having a driven dipole and one director. It has a directivity pattern as shown in Fig. 3. The overlapping of the right and left lobes from the two antennas makes homing possible since when the beacon is within a few degrees of dead ahead, spikes are shown on both sides of the crt vertical trace. When the spikes are exactly equal in length, the aircraft is headed directly for the beacon.

Aboard a rescue vessel a servo positioned Adcock homing array is employed.

Mixture Consistency Recorder

THE POWER required to drive a mixer agitator is a function of the consistency of the mixture. By installing power-measuring equipment on a mixing or blending operation, it is possible to use the power measurement to regulate and record the consistency of the mixture.

The equipment consists of two components, a three-phase transformer-thermal converter assembly and an electronic potentiometer recorder.

The transformer and thermalconverter assembly generate a d-c potential directly proportional to

MACHLETT 2C39A

Preferred Choice of Equipment Manufacturers,

Military and Commercial Users

New Standard for Electrical Uniformity The ML-2C39A sets the highest standard of electrical uniformity for UHF planar triodes.

Close tolerance parallelism between electrodes prevents uneven heating at high frequencies, minimizes arcing.

Uniquely processed grid, mechanically stable at high temperatures, assures frequency stability over broadest range of operating conditions.

Machined emitter surfaces with extremely uniform oxide deposit assure optimum cathode emission as well as freedom from uneven, grid distorting, heat.

400% More Rugged

Average strength of the ML-2C39A is over 400% greater than any other 2C39A, as measured in torque and pry tests.

Unmatched Reliability

Quality in design, materials, and production techniques build superior reliability into the ML-2C39A.

Final inspection includes r-f oscillation in both test oscillators, and prototypes of field equipments, to assure tubes of high power output and long, trouble-free life.

Electrical Characteristics of ML-2C39A* Heater voltage, 6.3 volts Amplification factor, 100 *Manufactured to JAN specifications.

Grid-plate capacitance, 2.0 uuf Maximum frequency, 2500 mc/sec Transconductance, 22,000 umhos Useful power output, 12-35 watts

Also made by Machlett to highest quality specifications: ML-381 for pulsed applications (3500 V peak; 3 microsecond

pulse; ½% duty cycle) and the ML-322 clipper diode.

For complete specifications and operating data, write to: MACHLETT LABORATORIES, INC. . SPRINGDALE, CONN.

Over 55 years of electron tube experience!

THE CALIDYNE STORY

★ Six years ago it was only an idea.

Then, a little company was formed to harness the destructive force of vibration and put it to constructive uses.

The word "Calidyne" was coined. It combined "calibrate" and "dynamics" and implied the "measurement of a dynamic force" such as vibration. The beginning was humble and at first management itself constituted the only "employees." Progress was slow and the future doubtful.

★ By 1951 the company had become known and recognized. A demand developed for its products and expansion began in earnest. In 1953 Calidyne moved out of various obsolete buildings and consolidated operations in one modern, streamlined, sunlit structure of its own. Today the company consists of one hundred and twenty highly skilled people.

★ Calidyne's primary interest is to develop
a complete line of vibration test and measurement
equipment. Of this line Calidyne's custom-built Shakers
are now the best known. They are produced
in many sizes to meet individual requirements and are
used for shake-testing (vibrating) various objects (assemblies,
machines, vacuum tubes, etc.) to see what effect vibration
will have on them in actual service. Many product
manufacturers now find that they fill a very basic need. Perhaps
you should investigate them too?

MAKERS OF SHAKER SYSTEMS FOR VIBRATION-TESTING YOUR PRODUCTS

CALIDYNE

120 CROSS STREET, WINCHESTER, MASSACHUSETTS

SALES REPRESENTATIVES:
NEW YORK (Long Island)
G. C. Engel, Rector 2:0091
NEW JERSEY
G. C. Engel, Ridgewood 6:7878
PHILADELPHIA, PA.
G. C. Engel, Chestnut Hill 8:0892
CLEVELAND, OHIO
M. P. Odell Co., Prospect 1:6171
DAYTON, OHIO
M. P. Odell Co., Oregon 4441

WASHINGTON, D. C. F. R. Jodon, Inc., Woodley 6-2615 CHICAGO, ILLINOIS Hugh Marsland Co. Ambassadar 2-1555 DALLAS, TEXAS John A. Green Co., Dixon 9918 WAITHAM, MASS. Robert A. Waters, Inc. Waltham 5-6900

Waltham 5-6900
HOLLYWOOD, CALIFORNIA
G. B. Miller Co., Hollywood 9-6305
SEATILE, WASH.
G. B. Miller Co., Lander -3320

ALBUQUERQUE, NEW MEXICO
G. B. Miller Co.
Albuquerque 5-8606
SAN FRANCISCO, CALIF.
G. B. Miller, Lytell 3-3438
MINNEAPOLIS, MINN.
H. M. Richardson and Co.
Geneva 4078
ARNPRIOR, ONTARIO, CANADA

ARNPRIOR, ONTARIO, CANADA Measurement Engineering Limited Arnprior 400 NEW HAVEN, CONN. Robert A. Waters, Inc. Fulton 7-6760 the power consumed by the motor. This emf is applied to the electronic potentiometer, which continuously records it.

The transformer and thermalconverter consists of heaters, thermocouples and a network of transformers for both potential and current input as shown in Fig. 1. Although heat generated in a resistance is proportional to the square of the current flowing through it,

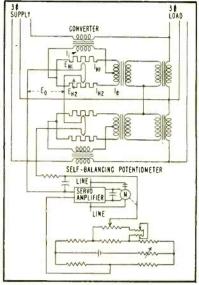


FIG. 1—Circuit of dough-consistency recorder. Thermocouples measure power consumed by three-phase motor driving agitator to indicate consistency

the output of this device is a linear function of the power being measured. This is accomplished by using a circuit that provides for cancellation of all squared terms leaving only a term proportional to the product of the in-phase voltage and current. In Fig. 1, the output to the potentiometer is equal to $E_{m_1} - E_{m_2}$. (1)

Thermocouples with output linear with temperature will generate voltage that will be a constant K times temperature T.

$$E_{H1} = K_1 T_{H1} (2A)$$

$$E_{H2} = K_1 T_{H2}. (2B)$$

Heat generated in a resistance is proportional to the square of the current flowing through it.

$$T_{H1} = K_2 I_{H1}^2 \tag{3A}$$

$$T_{H2} = K_2 I_{H1}^2 \tag{3B}$$

Combining the two sets of equations

$$E_{H1} = K_3 I_{H1}^2 (4A)$$

$$E_{H2} = K_3 I_{H2}^2 \tag{4B}$$

The current flowing through the

Winchester Electronics

MINIATURE and **SUB-MINIATURE**

ELECTRICAL CONNECTORS

The Accepted Standard for QUALITY • COMPACTNESS • RUGGEDNESS LIGHT WEIGHT . DEPENDABILITY

These are the precision Connectors you saw featured at the I.R.E. SHOW, Connectors long established as the finest in the electrical connector art. These and many others ... or completely new designs...are quickly available to you...for long and dependable troublefree service.

SERIES

"QRE"

Many features are covered by our Patents: Nos. 161900, 162792, 2411861, 2466370, 2513080, 2526325, 2532538, 2633482 and 2659872.

Wire or write for catalog of other types or advise your special requirements.

Winchester Electronics, Inc. Products and Designs Are Available Only from Winchester Electronics, Inc.

Winchester ectronics

WEST COAST BRANCH: 1729 Wilshire Boulevard, Santa Monica, California

GLENBROOK, CONN., U.S.A.

heating elements is the algebraic sum of the current from the current and potential transformers.

$$I_{H1} = I_e + \frac{1}{2}I_i$$
 (5A)

$$I_{H^2} = I_e - \frac{1}{2}I_i$$
 (5B)
Squaring Eq. 5

$$I_{H_1}^2 = I_e^2 + I_e I_i + \frac{I_i^2}{4}$$
 (6A)

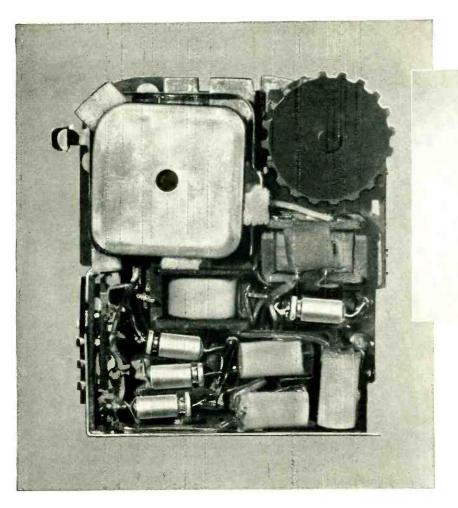
$$I_{Hz^2} = I_{e^2} + I_{e}I_i + \frac{I_{i^2}}{4}$$
 (6B)

Combining Eq. 4 and 6

$$E_{H1} = K_3 \left(I_{e^2} + I_{e} I_i + \frac{I_{i^2}}{4} \right)$$
 (7A)

$$E_{H^2} = K_3 \left(I_{e^2} - I_{e}I_i + \frac{I_{i}^2}{4} \right)$$
 (7B)

Combining Eq. 1, 7A and 7B


$$E_o = 2 K_3 I_e I_i \tag{8}$$

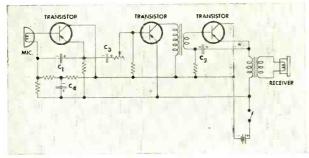
The recorder used is the Brown electronic strip-chart potentiometer. The input circuit differs slightly from that used in a millivoltage measuring instrument in order to eliminate the rapid power fluctuations caused by the mixing arms entering and leaving the mixture. The resultant record is a graph of consistency.

Transducers for Ultrasonic Drilling

A PRACTICAL limit to the maximum cutting rates obtainable from a transducer used for ultrasonic drilling is set by the danger of fatiguing the material of the transducer under high alternating stresses set up in it. However, by careful design of transducer-to-drill bit couplings it is possible to produce more intense vibrations at the tip than those obtainable at the transducer face. This is achieved by using a step-up velocity transformer in the form of a tapered stub of metal. If properly designed, large oscillatory amplitudes, many times those at the transducer face, can be obtained at the free end. It is then feasible to operate the transducer at extremely low power levels and still obtain large motions at the drill.

To obtain maximum drilling rates, the tool must be made to move with as large an oscillatory amplitude as possible, the velocity at the tip being much less important than the displacement. This means that a low operating fre-

Four G-E Micro-miniature Tantalytic capacitors easily fit into small space provided in this new all-transistor hearing aid. Man above adjusts volume control.


Other applications now being investigated:

WALKIE-TALKIES
WRIST RADIOS
PAGING SYSTEMS

How Tantalytic Capacitors Are Used In Miniaturized Hearing Aids

Four G-E Micro-miniature Tantalytic capacitors are used in this new all-transistor hearing aid. These high-capacitance, small-size units are necessary due to the low-impedance characteristics of transistors, as compared with the vacuum tubes formerly used. Ceramic and paper dielectric capacitors cannot supply sufficient capacitance in the small size desired, according to hearing aid design engineers.

Pictures, circuit diagram, application information courtesy Sonotane Corp.

Simplified schematic diagram of Sonotone all-transistor hearing aid, showing location of G-E Micro-miniature Tantalytic capacitors.

Operating at a battery voltage of 2.5 volts, this hearing aid uses two units rated at 2 microfarads each for by-pass, C_1 and C_2 (see diagram). They give a low-impedance signal path from the source to the input of the transistor. Two 1-microfarad units, C_3 and C_4 , are used for coupling and filtering respectively, where their low leakage current of .18 microamperes/uf/volt at 25 deg. C is especially important.

G-E Micro-miniature Tantalytics can be obtained in ratings up to 20 volts, or, up to 8 uf in a $\frac{5}{16}$ -in. long by $\frac{1}{8}$ -in. dia. case size, higher capacitance in a $\frac{1}{2}$ -in. long by $\frac{1}{8}$ -in. dia. case size. Capacitance tolerance is -0% to +100%.

For more information about G-E Micro-miniature Tantalytic capacitors, contact your G-E Apparatus Sales Office or write for bulletin GEA-6065 to General Electric Company, Section 442-15, Schenectady 5, New York.

GENERAL ELECTRIC

Communication Engineers

with
experience
in
the
fields

Systems Engineering

Digital Techniques

Circuit
Development

Electromechanical Development

Equipment Engineering

Advancements in the fields of wave propagation, translation of information, communication theory, circuit techniques and equipment miniaturization have created a number of new openings for qualified engineers in the Hughes Advanced Electronics

Laboratory.

THE COMPANY

Hughes Research and Development Laboratories, located in Southern California, form one of the nation's leading electronics organizations. The personnel are presently engaged in the development and production of advanced electronics systems and devices.

AREAS OF WORK

The communication group is concerned with the design and development of unique radio communication systems and with exploiting new radio communication techniques. People whose interests lie in the fields of propaga-

How to apply

tion phenomena, antenna systems. network theory, magnetic recording, digital techniques, and intricate electromechanical devices are needed in this program.

THE FUTURE

Engineers who enjoy a variety of problems requiring originality and ingenuity find the proper environment for personal advancement in these activity areas. Widespread future application of advanced communication techniques will enable the Hughes engineer to take full advantage of his experience as the Company expands commercially.

Write today, giving details of qualifications and experience. Assurance is required that relocation of the applicant will not cause disruption of an urgent military project.

Hughes
RESEARCH AND DEVELOPMENT LABORATORIES

Scientific and Engineering Staff CULVER CITY, LOS ANGELES COUNTY, CALIFORNIA quency is an advantage since the lower the frequency the lower the input power required to produce the same amplitude. However, from the viewpoint of convenience in operation there is an advantage in keeping the frequency ultrasonic. The most efficient practical vibrator is a magnetostriction transducer resonant at around 20 kc.

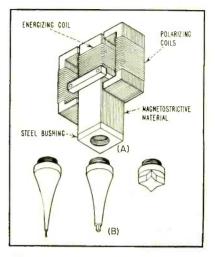


FIG. 1—Magnetostrictive transducer (A) and velocity step-up transformers (B) for obtaining high-amplitude oscillations from low-power oscillator

Figure 1 illustrates the essential features of an ultrasonic-drill transducer. The transducer consists of a stack of nickel laminations. A steel bushing tapped to serve as a tool holder is attached to the lower end of the stack. The transducer is clamped rigidly at its center and the upper half carries the energizing coil wound on a form, which, to avoid mechanical damping, does not make physical contact with the transducer.

A signal at the resonant frequency of the transducer is applied from a conventional oscillator and amplifier combination. Output from the amplifier is matched to the transducer load, which can be varied by adjusting the number of turns of wire on the energizing coil. In addition to the alternating drive field a d-c polarizing, field is required. This signal should be large enough to give a flux density approaching saturation of the transducer material. This is most conveniently obtained by completing the magnetic circuit of the transducer by means of high-permeability laminations close to, but not

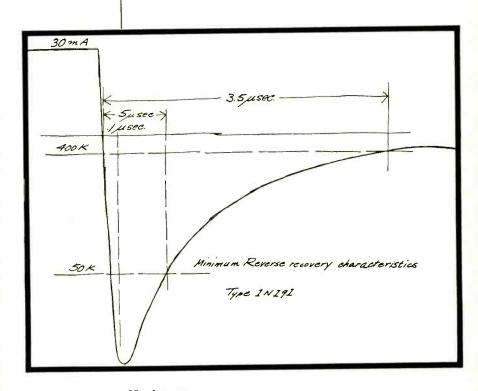
216

Hughes Diodes for Computer Applications

Types 1N191 and 1N192

The reliability of Hughes
Germanium Diodes in many types
of computer applications has
been recognized in the field for
some time. Their performance—
frequently under severe
operating conditions—continues
to add to this reputation.

Now, as part of the continuing program to meet the expanding requirements for computer components, Hughes announces the registration of Diode Types 1N191 and 1N192. Both are selected for their outstanding performance in computer service.


These computer type diodes, like all Hughes diodes, are designed to ensure extremely high moisture resistance...thermal stability...electrical stability...subminiature size...thorough dependability. These features mean long life with minimum maintenance.

Recovery Time
- Characteristics
at 25° Centigrade

Type~1N19150 K Ω @ 0.5 μ sec and 400 K Ω @ 3.5 μ sec maximum.Type~1N192

50 K Ω @ 0.5 μ sec and 200 K Ω @ 3.5 μ sec maximum.

To measure pulse recovery for both types, diodes are pulsed at 30 mA in the forward direction and then a back voltage of -35 volts is applied.

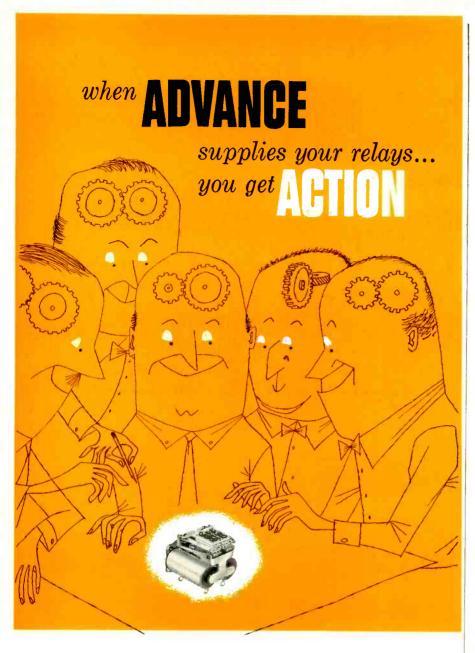
Maximum Back Current

at 55° Centigrade

.025 mA @ -10V and .125 mA @ -50V. Type~1~N192

.05 mA @ -10V and .25 mA @ -50V.

If you need special computer type diodes, chances are that we can furnish them on a production basis—because we are constantly producing and providing many types to meet literally hundreds of electronics and communications applications. Among these are high forward conductance, low-voltage diodes, used for certain computer applications. Write for new descriptive brochure.


SEMICONDUCTOR Sales Department

Hughes

Aircraft Company Culver City California

NEW YORK CITY CHICAGO

Action on Standard Items. Choose from a wide variety of in-stock relays, available for immediate shipment from Burbank or Chicago. Light-weight, small and precision-built, ADVANCE relays stand up under rugged service. They're specified by major manufacturers the country over.

Action on "Specials." When you need a specially designed relay, ADVANCE will work closely with your engineers to determine accurately what's needed... develop it in minimum time. You'll find us ready to cooperate with you on any relay problem.

Action on Producing Relays. There's manpower here to build your relays right...on time...and at the lowest prices consistent with top quality. It's our aim to help keep your production rolling...your products operating dependably. Whatever your relay problems—call ADVANCE for action.

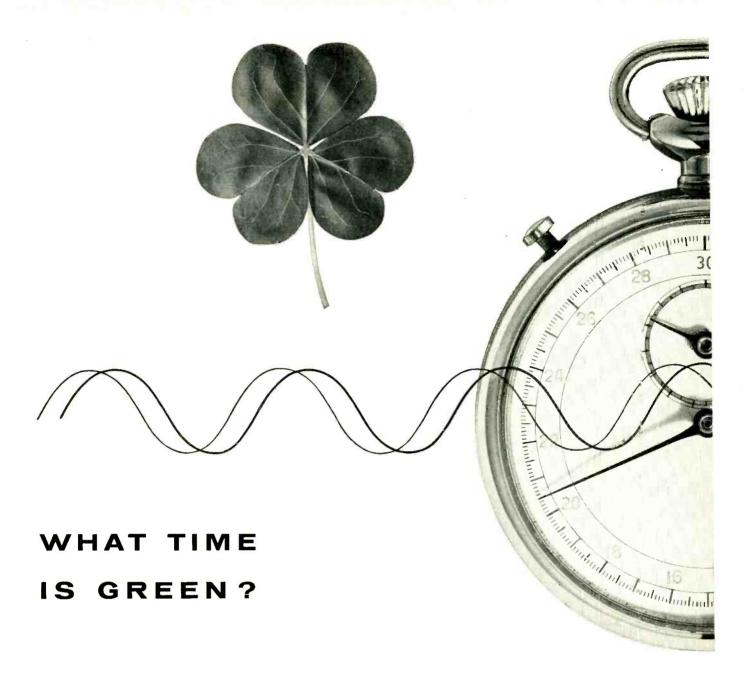
ADVANCE ELECTRIC AND RELAY COMPANY

2435 NORTH NAOMI STREET, BURBANK, CALIFORNIA

Sales Representatives in Principal Cities of U. S. and Canada

Want more information? Use post card on last page.

touching, the transducer.


Vibrations obtained at the transducer face are amplified by transmission down an exponentially tapered brass stub acting as a resonant velocity transformer. The drilling tip is screwed or soldered to the end of the stub. For efficient operation, the tip must be about the same size as the end dimensions of the stub. Consequently, to accommodate a large range of sizes it is convenient to provide a range of matching transformers having different transformation ratios and different end diameters as shown in Fig. 1B.

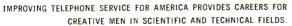
Cutting rate is roughly proportional to the square of the oscillatory tip amplitude and therefore proportional to the electrical power supplied, so that by driving the transducer harder proportionately greater drilling speeds may be obtained. This article has been abstracted from a paper entiled "A High-Frequency Reciprocating Drill" by E. A. Neppiras, in the Journal of Scientific Instruments, March 1953.

Pulse Power Supply for Precipitators

IN ELECTRIC precipitators maximum particle collection is obtained when the electrical forces acting on the particles are made as large as possible. Collection efficiency depends on both the magnitude and the shape of the applied voltage wave. Maximum operating voltages are limited by sparking in the precipitator. Steady voltage has a relatively low sparking value and is unsuited for most precipitator applications. Both full-wave and half-wave unfiltered or pulsating rectified voltages have higher sparking values and are much more stable in operation but their characteristics are arbitrarily limited by the 60-cycle alternating voltage from which they are derived. The pulse method, on the other hand, is designed so that both the duration and frequency of the current pulses supplied are subject to precise adjustment and control.

The pulse equipment comprises a high-voltage high-power pulse

In color television, the colors on the screen are determined in a special way. A reference signal is sent and then the color signals are matched against it. For example, when the second signal is out of step by 50-billionths of a second, the color is green; 130-billionths means blue.


For colors to be true, the timing must be exact. An error of unbelievably small size can throw the entire picture off color. A delay of only a few billionths of a second can make a yellow dress appear green or a pale complexion look red. To ready the Bell System's television network for color transmission, scientists at Bell Telephone Laboratories developed equipment which measures wave delay to one-billionth of a second. If the waves are off, as they wing their way across the country, they are corrected by equalizers placed at key points on the circuit.

This important contribution to color television is another example of the pioneer work done by Bell Telephone Laboratories to give America the finest communications in the world.

To keep colors true in television, signals must be kept on one of the world's strictest timetables. Equalizers that correct offschedule waves are put into place at main repeater stations of the transcontinental radio-relay system.

BELL TELEPHONE LABORATORIES

in Southern California

OFFERS HIMSTRY

PLENTY OF SKILLED LABOR

Looking for a new plant site?

Then check on the large reservoir of skilled, semi-skilled and technical workers who own their homes in the Long Beach area.

Thousands of them came here during the war for defense jobs. They liked Long Beach so well they stayed to work in other growing industries. Many others are moving here daily.

Favorable climate, superior living and working conditions, year-round recreational advantages, and generally lower costs of living all contribute to a relatively contented, efficient and dependable labor supply.

Probably no other area offers such a concentration of desirable labor. And they'll be glad to work for you in Long Beach because, although they live here, many of them now work far from home.

Other Advantages

There are at least 11 other reasons for locating your plant in Long Beach. Transportation, tax, utility and insurance savings; low-cost land values, construction and operation; and good housing facilities are a few of the profit-making factors.

Write today for complete information — yours for the asking. Naturally, all inquiries confidential.

CHAMBER OF COMMERCE • DEPARTMENT OF INDUSTRY

200 East Ocean Boulevard, Long Beach 2, California

generator, capable of supplying high-voltage pulses of the order of 100 µsec duration at a frequency of several hundred pulses per second, which in turn may be commutated to as many as four or more precipitator sections. The method provides higher peak voltages and increased precipitator efficiency with inherent current-limiting action during precipitator spark-over.

The basic circuit is that of the line-type pulser in which energy is accumulated in a capacitor over relatively long periods and then discharged rapidly into the load, so that the output consists of a series of uniformly spaced high-power pulses.

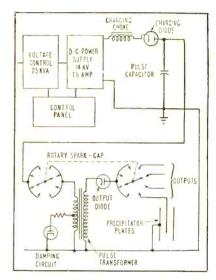
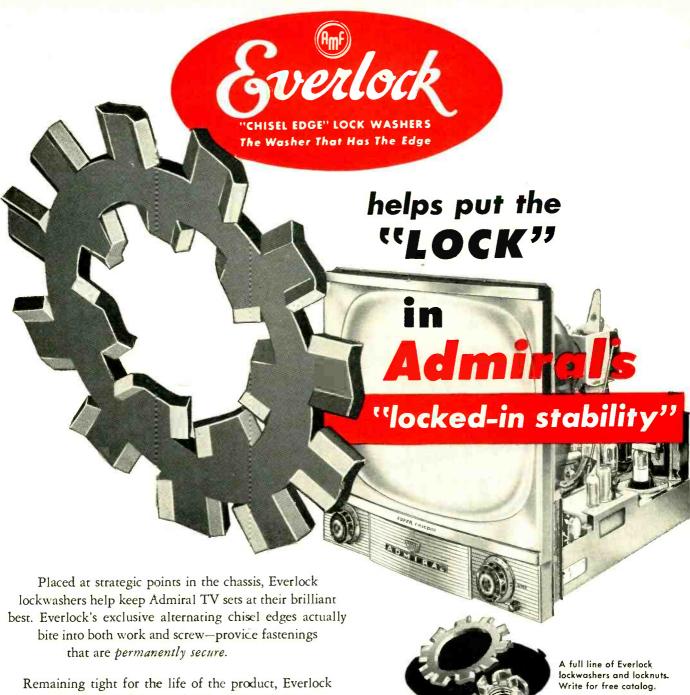



FIG. 1—Pulsed power supply for electrostatic precipitator. Rotary spark gap distributes pulses to a number of precipitator plates

A schematic diagram of the pulser set is shown in Fig. 1. The set is rated at 70-ky peak voltage, 300-milliampere average current. 15-kw average power, 480-cycle pulse frequency, and 150-microsecond pulse duration. Four commutated outputs are provided which permit operation of four separate high-tension precipitator sections from one set. The electrical operation of the pulser is characterized by an over-all efficiency of about 70 percent, and by a flexibility of power output, pulse frequency, and pulse duration. Pulse frequency is varied by means of a variable speed motor driving the rotary spark gap. Precipitator sparking is reflected in the pulse circuit by a momentary increase in the pulse discharge current, but with proper adjustment

lockwashers, locknuts and lock terminals help to safeguard many of America's foremost products.

If permanent, vibration-proof fastenings are part of your production picture, remember—with Everlock, you can fasten it and forget it. In sizes and materials to meet any specifications.

Write for information or contact your nearby Everlock respresentative.

"EVERLOCK" IS THE REGISTERED TRADEMARK OF THOMPSON-BREMER & COMPANY

520 North Dearborn Street . Chicago 10, Illinois

SUBSIDIARY OF AMERICAN MACHINE & FOUNDRY CO., NEW YORK.

Kenneth D. DeLanoy

Dayton 3, Ohio

Oscar P. Martin Lakewood 7, Ohio

J. M. Murphy Manchester, Connecticut

Russell T. Brosius Philadelphia 3, Pa.

Sam T. Keller J. Ramsey Reese, Inc. New York 7, New York Detroit 1, Michigan

W. L. Barth, Jr. Chicago 34, Illinois

C. W. McNeil Houston, Texas

Leonard F. Berg St. Paul 14, Minnesota

Thom Lundeen Moline, Illinois

Forrest Moschner St. Louis, Missouri

A. J. Murphy DeWitt, New York Richard C. Dudek Beverly Hills, California

P. L. Robertson Milton, Ontario, Canada

Sam T. Gleaves Louisville 5, Kentucky

1 1 McIntosh Atlanta 6, Georgia

Donald G. Teeling Indianapolis 44, Ind.

Oregon Indus. Factors Portland 1, Oregon

ELECTRONICS - April, 1954

Want more information? Use post card on last page.

Performance bonded for keeps

Centralab metallized ceramics combine electrical and physical properties of both materials

Centralab does remarkable things with ceramics. Forms can be molded, pressed, extruded, turned or machined. Metallizing ceramics by pressing, or plating opens many new electronic and industrial applications:

- Tens of thousands of condenser shafts complete with ball races, rotor bars, feed-thru bushings, hermetically sealed parts, complex machined units have been delivered since 1937.
- Designers can count on very close tolerances, finish, bearing surface and conductivity of metal parts combined with JAN-specified characteristics of ceramic materials, including:
- High dielectric strength 240 volts per mil.
- Less loss at high frequency loss factor at 1 MC .007.
- High mechanical strength 18,000 psi, modulus of rupture.
- Harder than quartz—7.5 Mohs'
- Impervious to moisture or acids (.005%).

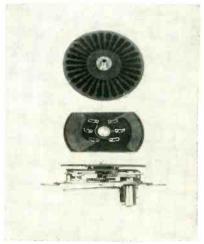
Put Centralab's 26 years of ceramic experience to work for you

- Thousands of different ceramic formulas are "ready to go" to solve your particular problem.
- Large staff of ceramic and electronic engineers available for consultation.
- All parts 100% tested in most modern, mechanized production facilities available anywhere.


Got a special ceramic problem that needs solving? Call on Centralab.

Standard items are available at your local (CRL) distributor—see Catalog 28 or JAN Bulletin 42-181.

A Division of Globe-Union Inc.


914 E. Keefe Avenue • Milwaukee 1, Wisconsin
In Canada: 804 Mt, Pleasant Road, Toronto, Ontario

Industry's greatest source of standard and special electronic components

this produces little or no effect in the charging circuits.

This article has been abstracted from "Electrostatic Precipitator Pulse Power Supply" by H. J. White, Electrical Engineering, March 1953 p 236.

Rotor (top) stator (center) and reciprocating drive mechanism (bottom) for the miniature electrostatic generator used in nuclear radiation detector

Printed Electrostatic Generator

ALPHA SURVEY METERS using the air proportional counter can be operated from a storage capacitor power supply. The probe requires 2,000 volts at a current of not more than 10⁻¹² ampere. Such a capacitor used in a Navy radiation survey instrument requires occasional recharging to make up leakage loss of about 100 volts.

To avoid use of special batteries or a power supply that would add complexity to existing electronic equipment, a miniature electrostatic source of high voltage has been developed by the National Bureau of Standards. Operation of the generator depends upon the ability of one charged body to induce a charge on another body close by.

The generator consists of a stator of two field plate conductors and a rotor with a number of pairs of conducting sectors. Printed circuit techniques are used to apply conducting areas to the flat insulating plates of the rotor and stator.

Several sets of brushes transfer electrical charge between the components of the system and the capacitor. The attached reciprocal

C-A-C for PRECISION . QUALITY . DELIVERY...

TYPES	Q max.	Freq.
MP206	140	14 KC
MP848	185	35 KC
MP608	170	60 KC
MP073	265	250 KC

MP930 MP395 160 225 8 KC 25 KC

Q max. 210 TYPE MP254

TOROIDS

MP (Molded Plastic) units are the result of a long development program. CAC MP toroids have repeatedly passed all tests for MIL-T-27, Grade 1, Class A without exception. Most compact design-may be stacked - mounted by center bushing - absorbs mounting pressures - sturdy silver plated terminals - arrangements available up to 5 terminal connections - standard inductance values listed below shipped from stock—special inductances and configurations supplied promptly on request.

STOCKED VALUE TABLE

MP206	MP84	8	MPS	930	MP395 MP25			
IND. PART. No.	IND. PA	ART. No.	IND.	PART. No.	IND.	PART. No.	IND.	PART No.
5.0 MH MP-206-1— 6.0 MH MP-206-2— 7.2 MH MP-206-3— 8.6 MH MP-206-3— 8.6 MH MP-206-5— 10 MH MP-206-6— 110 MH MP-206-6— 111 MH MP-206-6— 112 MH MP-206-6— 113 MH MP-206-6— 113 MH MP-206-10— 114 MH MP-206-11— 115 MH MP-206-11— 116 MH MP-206-11— 117 MH MP-206-13— 118 MH MP-206-13— 119 MH MP-206-13— 119 MH MP-206-14— 120 MH MP-206-18— 120 MH MP-206-19— 130 MH MP-206-19— 130 MH MP-206-13— 130 MH MP-206-22— 131 MH MP-206-23— 130 MH MP-206-33— 130 MH MP-206-31— 130 MH MP-206-33— 130 MH MP-206-35— 240 MH MP-206-37—	2.4 MH A 3.0 MH A 4.3 MH A 4.0 MH A 4.0 MH A 6.0 MH A 12 MH A 12 MH A 12 MH A 12 MH A 15 MH A 15 MH A 16 MH A 17 MH A 17 MH A 18 MH A 19 MH A 19 MH A 10 MH A	AP-848-1 — AP-848-2 — AP-848-3 — AP-848-4 — AP-848-5 — AP-848-6 — AP-848-7 — AP-848-10 — AP-848-11 — AP-848-12 — AP-848-13 — AP-848-14 — AP-848-15 — AP-848-16 — AP-848-16 — AP-848-17 — AP-848-18 — AP-848-18 — AP-848-18 — AP-848-19 — AP-848-19 — AP-848-10 — A	5.0 MH 6.0 MH 7.2 MH 8.6 MH 12 MH 12 MH 12 MH 13 MH 20 MH 24 MH 30 MH 36 MH 72 MH 86 MH 100 MH 120 MH 120 MH 120 MH 120 MH 120 MH 120 MH 150 MH 150 MH 150 MH 150 MH 150 MH 150 MH 100 HY 1.20 HY 1.50 HY 2.00 HY 1.50 HY	MP-930-1 - MP-930-2 - MP-930-5 - MP-930-1 - MP-930-6 - MP-930-1 - MP-930-1 - MP-930-13 - MP-930-13 - MP-930-14 - MP-930-15 - MP-930-17 - MP-930-18 - MP-930-19 - MP-930-19 - MP-930-19 - MP-930-19 - MP-930-19 - MP-930-22 - MP-930-23 - MP-930-33 - MP-930-33 - MP-930-33 - MP-930-34 - MP-930-34 - MP-930-35 - MP-930-37 - MP-930-37 - MP-930-37 - MP-930-38 - MP-930-39 - MP-930-30 - MP-930-40 - M	5.0 MH 6.0 MH 7.2 MH 8.6 MH 10 MH 11 MH 12 MH 11.5 MH 11.5 MH 24 MH 36 MH 43 MH 50 MH 72 MH 120 MH 120 MH 120 MH 120 MH 130 MH 130 MH 143 MH 150 MH 1	MP-395-1 — MP-395-2 — MP-395-5 — MP-395-5 — MP-395-6 — MP-395-10 — MP-395-11 — MP-395-12 — MP-395-13 — MP-395-14 — MP-395-15 — MP-395-17 — MP-395-17 — MP-395-17 — MP-395-22 — MP-395-22 — MP-395-22 — MP-395-22 — MP-395-24 — MP-395-25 — MP-395-25 — MP-395-26 — MP-395-27 —	20 MH 24 MH 30 MH 36 MH 50 MH 72 MH 86 MH 120 MH 150 MH 175 MH 200 MH 240 MH 300 MH 300 MH 430 MH 500 MH 1.00 HY 1.75 HY 2.00 HY 2.40 HY 7.20 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 1.50 HY 2.00 HY 2.40 HY 2.00 HY 2.40 HY 3.60 HY 3.60 HY	MP 254-1 — MP 254-4 — MP 254-5 — MP 254-5 — MP 254-7 — MP 254-11 — MP 254-11 — MP 254-11 — MP 254-12 — MP 254-14 — MP 254-15 — MP 254-16 — MP 254-18 — MP 254-18 — MP 254-19 — MP 254-21 — MP 254-31 — MP 254-40 — MP 254-41 — MP 254-41 — MP 254-43 — MP 254-44 —

IN ORDERING...

Add suffix "A" to above numbers for clear bushing Add suffix "B" to above numbers for tapped bushings Replace "MP" prefix with "HS" for metal encased toroids (see back page for description).

Accuracy... High Load Capacity... Adaptability... Freedom from Trouble... Long Life... Flexibility . . . these are some of the qualities of ACCO TRU-LAY PUSH-PULL FLEXIBLE CONTROLS that have made it possible to improve the operation of literally hundreds of mechanical products (list on request). Full description of this versatile REMOTE CONTROL is given in our DATA FILE available for your further study.

ACCURACY is inherent in the basic design, and in the standards of quality and precise dimension that control the manufacture of TRU-LAY PUSH-PULL CONTROLS. These are precision products, not gadgets.

VERSATILITY of this fine remote control can best be illustrated by citing some of the jobs it handles well . . . HOT jobs on jets and industrial furnaces . . . COLD jobs down to -70° F. . . . WET jobs (the conduit can be completely immersed) .. DIRTY jobs ... ABRASIVE jobs ... CORROSIVE jobs . . . HEAVY, TOUGH jobs up to 1,000 lbs input . . . LIGHT

DUTY jobs . . . REMOTE jobs 150 feet or more from the control point . . . these units are frequently and successfully used in conjunction with electric, hydraulic and air controls are thoroughly effective under almost any operating condition.

"SOLID as a rod but FLEXIBLE as a wire rope" aptly describes TRU-LAY PUSH-PULL CONTROLS. This flexibility provides positive, remote action whether anchorages are fixed or movable . . . it damps out noise and vibration—protects delicate instruments...it permits ease of handling and shipping even when assemblies are 100 or 150 feet long .. it avoids the risk of damage always present with solid tubular controls that must be preformed to position . . . and flexibility greatly simplifies installation of controls by reducing the number of working parts and by making it possible to snake around obstructions. . .

> ... rather than this complex (and expensive) series of linkages

this simple and

ADAPTABILITY to all sorts of mechanical situations explains, in large measure, the wide-spread application of TRU-LAY PUSH-PULLS. Standard anchorages, fittings and heads have been designed that meet requirements on approximately 80% of the installations. Simple

modifications of these standards, or minor changes in your own design, cover almost every special situation. Our engineers have the know-how on such matters.

to give you

effective assembly

FREEDOM FROM TROUBLE and LONG LIFE are assured even under exceptionally adverse operating conditions because of such things as . . . full protection of the flexible, inner, working member by the tough

flexible conduit . . . lubrication of the inner, working member for life during assembly . . . seals that keep moisture, dust and other foreign matter out of the unit . . . cold swaging of fittings that makes them integral parts of the control unit. (Full construction details in our DATA FILE). We have never heard of a TRU-LAY FLEXIBLE PUSH-PULL CON-TROL wearing out in normal service.

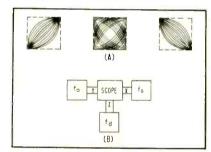
Whether your interest is in a single application of this versatile PUSH-PULL CONTROL, or in its inclusion as a component of the product you manufacture, the six booklets and bulletins in this DATA FILE will answer your further questions, and will also provide you with the means of defining to us the application you may be interested in.

WRITE for a copy, without obligation

AUTOMOTIVE and AIRCRAFT DIVISION AMERICAN CHAIN & CABLE

601-B Stephenson Bldg., Detroit 2 2216-B South Garfield Ave., Los Angeles 22 · Bridgeport 2, Conn. ELECTRONS AT WORK

driving system (illustrated) enables the rotor to be driven at speeds as high as 6,000 rpm.

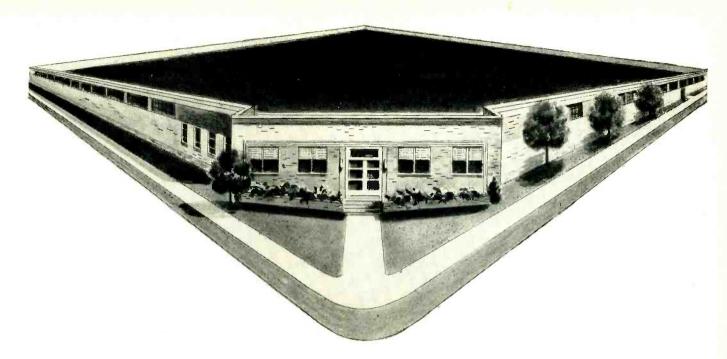

Unique polarity of output voltage is established by means of a small external bias voltage to precharge the generator. This voltage is readily available from associated electronic equipment.

The unit illustrated, which is about three inches in its widest diameter, will charge a 0.02-uf capacitor to two kilovolts in about 15 seconds using only hand power.

CRO Measurement Of Beat Frequencies

By GEORGE PRELL Special Devices Division Askania Regulator Company Chicago, Ill.

THE METHOD described here is essentially a combination of common Lissajous and beat frequency techniques using an oscilloscope for detection and display. If a signal of fixed frequency f_s is applied to the horizontal plates and a signal of unknown frequency f_0 is applied to the vertical plates a meaningless shaded rectangular pattern will result unless the frequencies have some rational relationship.



Oscilloscope patterns (A) obtained by applying a difference frequency to the Z axis as in (B)

If an interpolation signal of frequency f_D equal to the difference $|f_s - f_o|$ is applied to the Z axis with sufficient amplitude to blank the picture during the negative half cycle, a stationary pattern will result whose shape depends on the phase relationship between f_D and $|f_s - f_o|$. By this method, the frequency f_0 may be measured to an accuracy limited only by the accuracy of f_8 and f_D and the patience of the observer in detecting movement of the pattern.

This method was used to measure the bandwidth of a tuned circuit at 4,000 cps, and resulted in a considerable increase in accuracy over the

here's what's behind the

crystal that's so far ahead

The Midland Factory shown above is the world's largest plant devoted exclusively to producing crystals for frequency control. It is equipped with the finest and most complete production and testing machinery ever developed for this purpose. Here Midland pioneered development of crystals for color television, and is now ready for full-scale production.

All this is important to you for just one good reason: Every Midland crystal you use has been produced by such advanced techniques and under such rigid quality controls that you can be sure it will prove its completely reliable quality under every operating stress.

Midland Critical Quality Control extends through every step of crystal production, and includes precise angular control by X-ray. Uniform accuracy is maintained to the millionth part of an inch.

Whatever your Crystal need, conventional or highly specialized, When it has to be exactly right, contact

MANUFACTURING COMPANY, INC.
3155 Fiberglas Road, Kansas City, Kansas

WORLD'S LARGEST PRODUCER OF QUARTZ CRYSTALS

Are your High-Cycle Alternator requirements *special?*

AMERICAN ELECTRIC REVOLVING FIELD ALTERNATORS

CAPACITY RANGE—15 KVA to 40 KVA (in stock). Up to 75 KVA on special order.

FAST RECOVERY - Better than .2

LOW VOLTAGE OVERSHOOT - Less

TOTAL HARMONIC CONTENT - Under 5% on unbalanced 3-phase loads.

These characteristics apply to general uses. Where applications are specific, even better characteristics can be developed.

Where lowest possible maintenance, combined with excellent wave form characteristics are required, it's hard to match American Electric's Inductor-Type Alternators. But occasionally special requirements arise which may be better served by American Electric's Revolving

Field Alternators.

EXCITER REGULATING SYSTEM

Employs American Electric's trouble-free, direct-connected, highcycle Inductor Alternator-which has no commutator, slip rings, brushes, springs, etc. Output is rectified and exciter-regulated by either electronic or magnetic amplifier means, then returned to the rotating field of the main alternator.

American Electric Revolving Field Alternators are available in STATIONARY and PORTABLE TYPES, open and totally enclosed models, for all laboratory, production and testing applications.

Write for details and quotations outlining requirements.

Also Manufacturers of Also Manufacturers of High Frequency Inductor Alternators, Miniature Electric Motors, A.C. Industrial Motors, Motor Driven Blowers & Fans

MANY MODELS

FIELD ENGINEERING REPRESENTATIVES:

TRAVCO ENGINEERING COMPANY—Silver Spring (Md.) • Boston • Buffalo • New York City • Chicago • Dallas • Kansas City • Wright Field • Minneapolis • Seattle • Montreal • Toronto • JOE DAVIDSON & ASSOCIATES, Los Angeles.

Want more information? Use post card on last page,

Lissajous method with a tunable oscillator.

PERTINENT PATENTS

THE DIVERSITY of the electronic technique is demonstrated in the wide range of applications from which the patents, listed below, have been selected.

Audio Amplifier

A recent British patent 688,273 for "Improvements in or Relating to Vacuum Tube Amplifiers" has been granted to W. H. Coulter of Chicago, Ill.

The improvements are in what have now become known as singleended push-pull amplifiers.

The circuits of the invention for which the British patent was granted are shown in Fig. 1.

In the circuit of Fig. 1A two amplifier tubes are connected in series across a source of power. Coulter has proposed a terminology for these tubes that clearly sets forth which tube is involved in any discussions of such circuits.

The upper tube, having its plate connected to the B+ terminal is termed the free-anode tube and the lower tube having its cathode connected to the B- terminal as the free-cathode tube. The output load is connected between the junction of the series connected tubes and the B- terminal.

As is generally known, the principle of operation of the singleended push-pull amplifier employs signals applied in push-pull to the the series-connected of amplifiers. The invention here discloses means of applying signals in push-pull to the two grids of the series-connected amplifiers while the output is single ended at the junction of the series tubes.

A single-ended signal is applied to the free-anode amplifier. A potentiometer R, connected across the input circuit is employed to permit applying an attenuated signal to a triode phase-inverter stage so that it, in turn, drives the free-cathode amplifier with a signal 180 deg out of phase with that driving the free-anode amplifier. The phaseinverter cathode is returned to ground on B- through a potentiometer R_2 . The resistance of R_2 is

4811 Telegraph Road,

Los Angeles 22/

California

Put your finger on

EXTRA DEPENDABILITY

by specifying...

CHESTER means dependability plus in wires and cables for every electronic and electrical application. The compounds used in all CHESTER Wire and Cable constructions are made in the CHESTER plant. Thus, complete control over selection of raw materials and manufacturing techniques, provides full control of quality... your assurance of uniformity in every foot of conductor bearing the CHESTER label!

JAN-C-76 WIRES* SRIR, SRHV,

105°C, 90°C, 80°C, APPROVED, 120°C*

SHIELDED WIRES & CABLES

FLEXIBLE CORD

TV LEAD-IN WIRES

INSTRUMENT WIRES

COMMUNICATION WIRES & CABLES TO SPECIFICATION

COAXIAL CABLE

LACQUERED AND NYLON WIRES

SPECIAL WIRES & CABLES TO SPECIFICATIONS

*Solid colors or spiral marking

ASK POSTY FOR the New Chester Literature. Complete data on wires and cables for electrical and electronic wiring.

Request yours, today!

CHESTER CABLE CORP.

CUSTOM CONSTRUCTIONS

CHESTER • NEW

CBS TELEVISIDE Century Lighting Inc. ELECTRONS, INCORPORATED 127 SUSSEX AVENUE NEWARK 3. N. J. Hundreds of our Inert Cas Thyratrons control Century Lighting Inc's exectronic dimmers of C.B.S. TV aty Hollywood

very much greater than the load impedance so as to have no appreciable effect on the load. Adjustment of R_2 is made to cancel the degenerative effect of the free-anode amplifier due to any signal voltage appearing across the load. When R_1 and R_2 are properly adjusted, signals on the grids of V_2 and V_3 are exactly equal and of opposite phase relation.

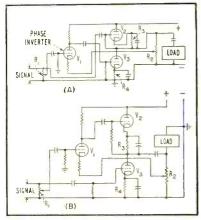
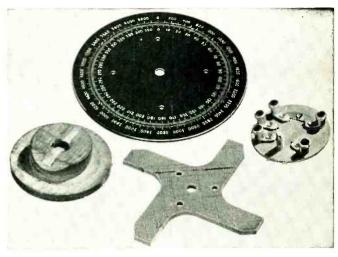


FIG. 1—Basic circuit of the series-tube amplifier (A) and alternative circuit (B) with R_2 across load only

Figure 1B shows the circuit in which the signals fed to top and bottom tubes of the same amplifier are reversed. Resistor Re in Fig. 1B is across the load only. In Fig. 1A, R_z is across both the load and output blocking capacitor. In Fig. 1A it can be seen that R_2 is essentially in parallel with the free-cathode tube, whereas in the circuit of Fig. 1B it is essentially in parallel with the load. While independent cathode-bias resistors R_3 and R_4 are shown for each of the series connected amplifier tubes, bias may be obtained by other means.

The inventor points out that the circuits are useful in class-AB and class-B amplifiers because the capacitor in the load circuit supplies current during cutoff.


The major advantage of singleended push-pull amplifiers such as that disclosed in this invention is their utility in directly driving load speakers of low impedance without need for an output transformer.

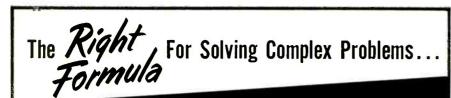
A U. S. patent 2,659,775 has been issued to Coulter for the same invention under the title "Amplifier Circuit Having Series-Connected Tubes." In Fig. 2 the basic additional circuit patented is shown and below, the circuit including an


Do you have any of these problems?


1. Looking for a thin, flexible insulating material that will not break down under extremely high temperatures? ISOMICA [®] Flexible Plate, Class B and Class H, built-up from continuous mica sheets, gives superior electrical and thermal insulation for coil wrappings and similar applications.

2. Need a material with special mechanical, thermal and insulating properties? LAMICOID®—a laminated plastic made with various fillers—gives you the properties you need for antenna parts, coil forms, tube sockets, switch gear and relay parts, panels, motor and transformer parts, and dozens of other uses.

3. Need accurately punched mice stampings for filament, grid and plate supports? MICO produces mice stampings to extremely fine tolerances. Whenever you need precision-fabricated mice of the highest quality, call on MICO. We have 60 years of experience in this field.


4: Looking for precision-made fabricated parts? Let us solve your problems with parts fabricated from LAMICOID®—a thermosetting plastic—strong as metal, lighter than wood. We are fully equipped with the latest machinery and can provide you with the best possible service.

Whatever electrical insulation material you need—Class A to Class H—MICO makes it best. We manufacture it, cut it to size, or fabricate it to your specification. Send us your blueprints or problems today.

Offices in Principal Cities In Canada—Micanite Canada Ltd., Granby, Quebec

3AMICOID® (Laminated Plastic) • MICANITE® (Built-up Mica) • EMPIRE® (Varnished Fabrics and Paper) • FABRICATED MICA • ISOMICA

HUBBELL Interlock connectors + New magnetic decision elements!

Magnetic Decision Elements, designed by Minnesota Electronics Corp. and developed in collaboration with the U. S. Naval Ordnance Laboratory, White Oak, Silver Spring, Md., are basic computer blocks for building the entire arithmetic, program, control, and memory sections of any digital computer.

Hubbell Interlock connectors were selected to provide a low contact resistance for each block, necessary for accurate results in computations. Automatic locking ... quick disconnect feature makes possible rapid cascading in any desired performance pattern. Plugs cannot disconnect accidentally from blocks, yet can be quickly disconnected when intended.

... Another example of Hubbell Interlocks's many applications in the field of electronics. Our development laboratory will cooperate with your engineers to adapt Interlock for your specific applications.

For Further Information, Write Dept. A:

HARVEY HUBBELL, INC.

Interlock Dept., Bridgeport 2, Conn.

HUBBELL INTERLOCK DEVELOPMENTS

Types A, B, C & S Plugs and Connectors • Flexible Terminal Strips

Test Prod Kits • Laminated Terminal Strips

input connection incorporating a split secondary transformer is shown.

These circuits are probably familiar to audio enthusiasts as the single-ended push-pull amplifier.

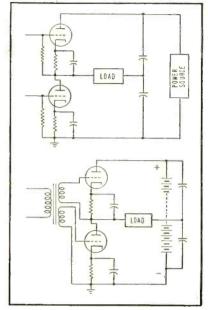


FIG. 2—Basic additional circuit of series-tube amplifier and split-secondary input transformer (below)

Basically, what is involved in the U. S. patented circuits in addition is the arrangement of a load circuit at the midpoints of both the series tube connection and the plate power voltage connection.

The signal applied to the upper tube between its grid and cathode is of opposite phase to that applied between grid and cathode of the lower tube. Hence, there is a pushpull input signal and single-ended output load.

TV Synchronizing

For those who have watched television programs wherein speakers are seen simultaneously on both coasts of this country engaged in conversation with the image of each of them occupying half the tv screen, it has seemed only short of miraculous that the sync generators are kept in step. It is even more remarkable when special effects such as lap dissolves and video wipes are effected between the local and remote stations.

A patent recently issued to R. C. Abelson of Chattanooga, Tennessee, for a "Synchronizing System" describes a means for synchronizing the local and remote sync genera-

RM-840 A-C Relays 8 Normally open & 4 normally closed contacts.

Type BX-44 A-C Relays 4 Normally open & 4 normally closed contacts.

Relays For 3-wire gauge type thermostats with slowmoving contact elements.

Type BA Thermostat

rent Relays For pilot controls, like oil burners or stokers, which can handle only small relay coil currents.

Type CL Low Coil Cur-

Hum-free Permanent Magnetic Type Relay Requires no coil current to keep contact closed.

Hum-free Latch Relays For quiet applications.

Bul. 849 Pneumatic Timers Adi. 1/6 sec to 3 minutes.

Bulletin 709 Magnetic Starters Sizes up to 300 hp, 220 v; 600 hp, 440-550 v.

Builetin 848 Dashpot Timers Adjustable from 2 to 30 seconds.

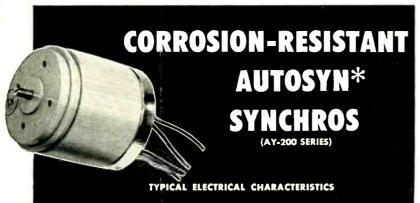
Large A-C Contactors For applications up to 900 amperes-600 volts.

CONTACTORS · RELAYS · LIMIT SWITCHES · TIMERS

for Electronic Laboratories and Production Lines

Bulletin 802 Precision Limit Switches Wide Assortment of Types & Ratings.

Bul. 802T Oiltight Limit Switches Large variety of types.



They are handy reference guides for electronic and plant engineers who design testing and automatic production equipment. Write for bulletins. Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.

ON COMPONENTS **∂QUALITY** €

Eclipse-Pioneer

	Type Number	Input Voltage Nominal Excitation	Input Current Milliamperes	Input Power Watts	Input Impedance Ohms	Stator Output Voltages Line to Line	Rotur Resistance (DC) Ohms	Stator Resistance (DC) Ohms	Maximum Error Spread Minutes
Transmitters	AY201S-26	26V, 400~, 1 ph.	125	0.6	40+j230	11.8	12	5.8	15
Control Transformers	AY201S-25	From Trans. Autosyn	Dependent Upon Circuit Design				40	10.2	20
Differentials	AY231S-25	From Trans. Autosyn	Dependent Upon Circult Design			14	10.2	30	
Resolvers	AY221S-25	26V, 400~, 1 ph.	70	0.4	108+j440	11.8	50	11.4	24

TYPICAL	ELECTRICAL C	HARACTERISTICS
		THE RESERVE THE PARTY OF THE PA

	Type Number	Input Voltage Nominal Excitation	Input Current Milliamperes	Input Power Watts	Input Impedance Ohms	Stator Output Voltages Line to Line	Retor Resistance (DC) Ohms	Stator Resistance (DC) Ohms	Maximum Error Spread Minutes
Transmitters	AY503-4	26V, 400~, 1 ph.	220	2.5	45+j100	11.8	23.0	11.0	24
Receivers	AY503-2	26V, 400~, 1 ph.	220	2.5	45+j100	11.8	23.0	11.0	75
Central	AY503-3	From Trans. Autosyn	Dep	endent Up	on Circuit Desi	170.0	46.0	24	
Transformers AY503		From Trans. Autosyn	Dec	endent Up	on Circuit Desi	550.0	188.0	30	
Differentials	AY533-3	From Trans. Autosyn	Dependent Upon Circuit Design			93.0	45.0	30	
	AY523-3	26V, 400~, 1 ph.	55	0.6	290+j490	11.8	210.0	42.0	30
Resolvers	AY543-6	26V, 400~, 1 ph.	11	0.12	900+j2200	11.8	560.0	165.0	30

Available for all applications is the new, corrosion-resistant AY-200 Series of Eclipse-Pioneer Autosyn Synchros (1.431" dia. x 1.631" lg.). Where space and weight are prime considerations, Eclipse-Pioneer offers the AY-500 Pygmy Autosyn Synchro Series (0.937" dia. x 1.278" lg.) with corrosion-resistant models available in sample quantities. Whatever your synchro requirements may be, our long experience, modern facilities and advanced production techniques can work to your advantage. For full details, write Department C.

*Registered trade-mark Bendix Aviation Corporation

ECLIPSE-PIONEER, Division of TETERBORO, N. J.

Export Sales: Bendix International Division, 285 E. 42nd St., New York 17, N. Y.

tors of tv broadcasting equipments. Patent 2,655,556 is assigned to Radio Corporation of America.

In Fig. 3 is shown a schematic and block diagram of the circuit involved where the present invention is applied to conventional tv sync generator systems. Here it can be seen that a master oscillator at 31,500 cycles is utilized through various count-down devices to provide the 15,750-cps horizontal and

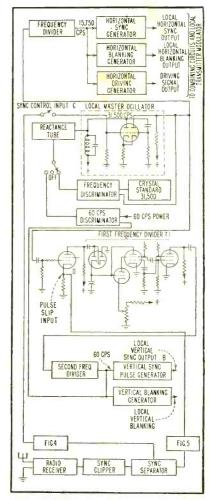
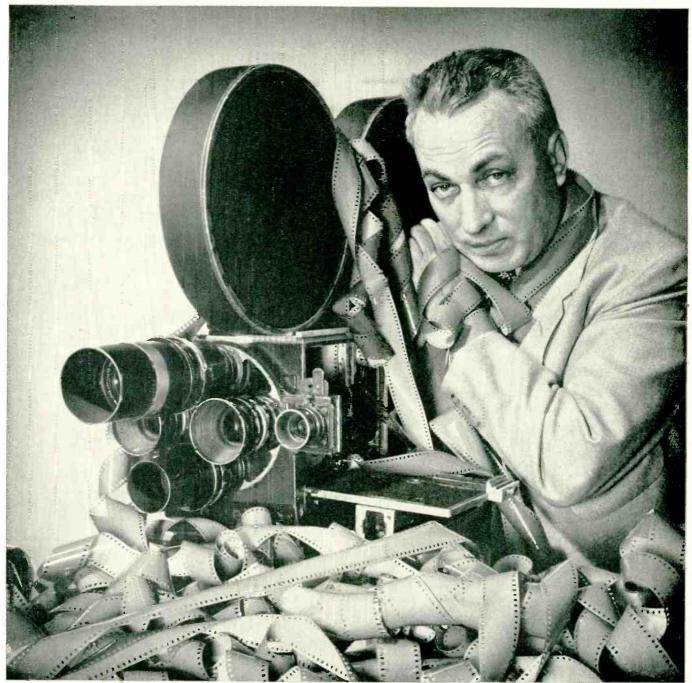



FIG. 3—Elements of the synchronizing generator remote control

60-cps vertical synchronizing signals. A frequency controlling means for the 31,500-cps oscillator is shown. The control may be from a crystal frequency standard or from the 60-cycle power line. Additionally there is an input of terminal C for the sync control signals provided in the practice of this invention

In Fig. 4 and Fig. 5 are shown the sync gating circuits through which remote sync signals and local sync signals are mixed and gated to be fed to and control the 31,500-

Emile Montemurro, Midwest Manager of Fox Movietone News, tells how:

He handles 300 reel problems a day!

"Old news is no news," says veteran newsreel cameraman Emile Montemurro.

"We've been getting the news to theaters and TV stations all over the U. S. — news that's hot and fresh — by using Air Express. We've relied on them for over 25 years.

"Air Express handles some 300 shipments a day for us. They go all over the country, coast to coast. With new TV

stations opening and using our newsreels, that figure will soon reach 600 a day!

"Other air services would cost us more than Air Express, we've found. Besides, you cannot duplicate the excellent personal attention Air Express gives every shipment."

It pays to express yourself clearly. Say Air Express! Division of Railway Express Agency.

GETS THERE FIRST via U.S. Scheduled Airlines

cps generator and what is termed the slip-pulse input circuit of the first frequency divider for the 60

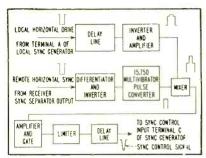


FIG. 4—Sync gating circuits (see Fig. 3)

cycle generator chain. The blocks of Fig. 4 and 5 represent fairly familiar circuitry for the tv engineer.

Figure 6 is a plot of a series of waveforms to illustrate the vertical signal control operation. Here it can be seen that at (A) the local

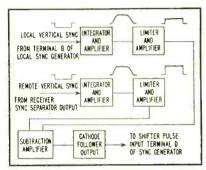


FIG. 5-Sync gating circuits (see Fig. 3)

and remote vertical signals are not coincident. The condition here shown is as the signals appear at the output of the subtraction amplifier of Fig. 5. The local pulse is the slip-pulse signal. It is applied at point D of Fig. 3. The amplitude of the local or slip pulse is made great enough to substantively interfere with the master-oscillator pulses being applied to the first frequency

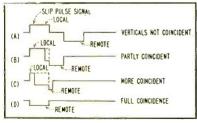


FIG. 6-Progression of sync coincidence

divider so as to require an appropriately greater number of pulses to reach the firing threshold of the first 7-to-1 frequency divider. Thus the dividing ratio will be altered to

MECHANICAL ELECTRICAL

Series or shunt wound Unidirectional or reversible High starting torque Low starting current Low RF interference Armature and field windings

TORQUE IN THEH DUNCES

Completely enclosed Adaptable for any mounting Laminated field poles Stainless steel shaft Two precision ball bearings Mica insulated commutator Varnish impregnated and baked Permanent end play adjustment

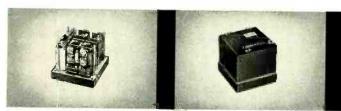
applications, the characteristics of its performance

can readily be modified

for a variety of new uses.

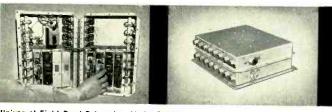
1600 FRAME MO	Series	Shunt		
Watts Output, Int.	(max.)	22		
Watts Output, Con.	(max.)		5	
Torque at 8500 RPM	(in. oz.)	3		
Torque at 5800 RPM	(in. oz.)	4.5	1	
Lock Torque	(in. oz.)	12	3	
Volts Input	(min.)	5	5	
Volts Input	(max.)	32	32	
Shaft Diameter	(max.)	.250"	.250"	
Temperature Rise		50°C.	40°C.	
Weight		12 oz.	12 oz.	

Eicoz, Inc. 1501 W. Congress St., Chicago 7, Illinois DYNAMOTORS-INVERTERS-ELECTRONIC CONTROLS-ALTERNATORS-MOTORS

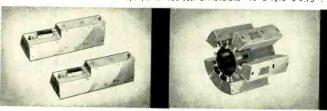


Complete Telemeter PACKAGE

RY


BENDIX - PACIFIC

These compact, rugged FM/FM telemetering packages are available for many types of applications. Numerous models of plug-in subcarrier asciilators and associated components are available as standard equipment to provide for maximum versatility and efficiency.


Compact Four Band Telemeter, Models TATP-3 and TATP-4

These packages, each incarporating four plug-in subcarrier oscillators, when used with a power supply and RF transmitter, form a compact, rugged system for telemetering various functions. Each package contains its awn voltage regulator and calibration reloys. The packages moy be combined to form an 8 or 12 band system. Each package measures approximately 4.5" in each dimension and weighs approximately 3 pounds including oscillators. Standard power supplies are available for operating up to 3 packages and a 2 watt RF transmitter. The model TATP-3 operates in any 4 of the RDB bands below 22 kc; the TATP-4 in any 4 of the bands from 22 kc up.

Universal Eight Band Telemeter, Model TATP-2

Operates on any eight RDB bands from 1.7 to 70 kc permitting any combination of 8 resistance, voltage or inductance type measurements to be made by merely plugging in the proper subcarrier oscillators. The unit has provisions for mounting a model TXV-13 crystal controlled transmitter. Cannectors are provided for a minimum of eight remotely located pickups. Standard power supplies are ovailable for operation from 6, 12, 28 VDC or 115 VAC 400 cps power sources. Dimensions—14"x 12.4"x 4.75".

Cylindrical Telemeter Configuration, Model TJW-1

These pockages are built up of individual 30° wedge shaped components which plug into a cylindrical mounting ossembly, Model TJW-1. As mony as 10 subcarrier oscillators or other components can be installed into a 6.5" circular opening, 5.5" long. A center opening, opproximately 1.5" in diometer, can be utilized for cables and pressure lines. A two-watt crystal controlled RF transmitter is also available for mounting in this configuration.

Write for Complete Information

PACIFIC DIVISION . Bendix Aviation Corporation

11600 Sherman Way, North Hollywood, California

East Coast Office: 475 5th Ave., N.Y. 17

Horizontal Components

CYLINDRICAL CONFIGURATION

Wedge Shaped Components

Export Division: Bendix International 205 E. 42nd St., N.Y. 17 Canadian Distributors:
Aviation Electric, Ltd., Montreal 9

RADAR

SONAR

HYDRAULICS

TELEMETERING

ELECTRO-MECHANICAL

ULTRASONICS

EDGE-LIGHTED PANELS

meet all requirements of specifications MIL-P-7788 and AN-P-89

Produced by the "Lackon" process, the photographic reproduction method which incorporates the better features of all other panel and dial processing methods. The "Lackon" process combines simplicity, flexibility, adaptability, reproducibility, accuracy and economy.

Regardless of whether your interest is in general appearance, uniformity of lighting, legibility, wear or weather resistance, long life or economy — it will be to your advantage to investigate the best.

May we furnish additional information and make available our engineering and lighting experience?

Write Dept. E-4.

UNITED STATES RADIUM CORPORATION
535 Pearl St. New York 7, N. Y.

bring the local and remote vertical pulses into coincidence as seen at (B), (C) and (D) of Fig. 6.

The inventor points out that the control of horizontal synchronization is readily accomplished through various comparator and discriminator techniques.

Velocity Measurement

A novel system for "Velocity Measuring by use of High Energy Electrons" has been awarded U. S. patent 2,637,208. The inventor is G. L. Mellen of Framingham Center, Mass. The patent is assigned to National Research Corp. of Middlesex County, Mass.

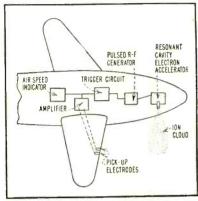


FIG. 7—Supersonic velocity device installed in aircraft

For the measurement of the velocity of objects moving at supersonic speeds specialized apparatus is required. In this invention an ionized gas is projected into the atmosphere from a forward portion of a vehicle or missile. The gas is detected by devices at a rearward portion of the vehicle. The method is clearly shown in Fig. 7 in block diagram form as installed in an aircraft.

The system may also be used to

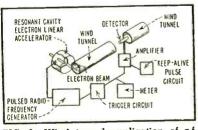


FIG. 8—Wind tunnel application of r-f velocity indicator

determine the equivalent velocity of a stream of air in a wind tunnel as shown in Fig. 8.

The method of operation of the system may be seen from the dia-

STANDARD TYPES DIRECT FROM STOCK PLUS SPECIAL DESIGNS BUILT TO REQUIREMENTS

5594

Chatham specializes in the development of general and special purpose tubes for both electronic and industrial applications. Many of the tubes originally developed by Chatham to fill a specialized need, now number among the most widely used tubes in the industry. For complete information on Chatham tubes – either stock items or types built to your requirements - call or write today.

Rugged half-wave Xenon filled rectifier. Operates in any position. Ambient temperature range -75° to +90°C. Inverse peak anode voltage 10,000, average current .25 amps. Filament 2.5v., 5 amp.

Ruggedly built, half-wave Xenon filled rectifier, Ambient temperature range -75° to +90°C. Inverse peak anode voltage 10,000, average anode current 1.25 amp. Filament 5v.,

VC-1258 MINIATURE HYDROGEN THYRATRON

for pulse generation. Handles 10 kw peok pulse power.

for voltage regulation. Features high plate dissipation, hard glass envelope.

6394 TWIN TRIODE

Similar to 6336 except 26.5 volt heater instead of 6.3 volt heater.

5594 XENON THYRATRON

Operates over wide ambient temperature range -55°C to +90°C.

CHATHAM ELECTRONICS CORP.

Executive and General Offices: LIVINGSTON, NEW JERSEY Plants and Laboratories: NEWARK and LIVINGSTON, NEW JERSEY Benney grams. Referring to Fig. 9, a cloud of ions is created in a chamber through which the gas to be ionized flows. The ionization time of the gas will be considerably less than the transit time of the ion cloud from the point at which the ions are projected into the medium to the point of detection.

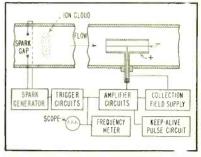


FIG. 9-Ion cloud is created by spark and detected by ionization chamber

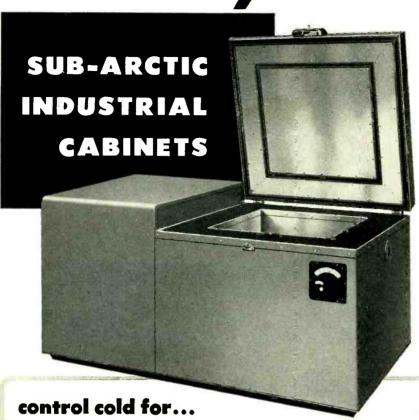
The ions are created by an electric spark from a spark-gap discharge. The detection of the ions is accomplished with a form of ionization chamber. The ion current created in the ionization chamber is amplified. The amplified current is triggered in synchronism with the spark generator.

The inventor gives the following formula with which the velocity of a missile may be determined

 $V = 60/88 \, FD$

when V = velocity in miles per hour

D = distance in feet between the point of ion cloud ejection and the point of ion detection


F =frequency in cycles per second of creation of the ion cloud. (Sparking trigger frequency)

The remainder of the circuit elements suggest the operation of the system to be similar to the frequency modulated vhf terrain clearance indicator wherein the Doppler effect is employed and the resulting frequency difference between arrival time of the detected signal and transmitted signal is converted to distance. In the present invention the resultant indication is velocity.

Coin Counter

Patent 2,652,136 has been issued to J. F. Morrison, assignor to Rowe Mfg. Co. of Whippany, N. J. for an "Electronic Coin Totalizer".

The invention describes a means

MFTAI TREATING

Quick-Aging Stabilization Stress Equalization Shrink-Fitting Hardening Super-Hardening Tool Steel

RESEARCH & PRODUCTION TESTING

Products Metals Rubber **Plastics** Electronic Equipment Instruments Lubricants Cameras

to determine Characteristics Tensile Strengths Magnetic Conduction Brittleness Contraction Viscosity Corrosion Longevity

PLUS STORAGE & PRESERVATION of Chemicals, Biologicals, and Serums

Tenney Sub-Arctic Industrial Cabinets are adaptable to all these important applications-wherever low temperature refrigeration with constant control, rapid pull-down, reliability of operation, and minimum maintenance are essential to operations. There are 28 models available in standard and special units in 1, 4, 6, 9, and 12-cu. ft. capacities, either air- or water-cooled. And for low temperature points, there is a range of six ratings: -40, -80, -100, -120, -150, and -170° F.

> For features, specifications, and optional equipment, write for Sub-Arctic Bulletin.

Dept. A, 1090 Springfield Rd., Union, N. J. Plants: Union, N. J.; Newark, N. J.; Baltimore, Md. Los Angeles Representative: George Thorson & Co.

Engineers and Manufacturers of Automatic Environmental Test Equipment

3455

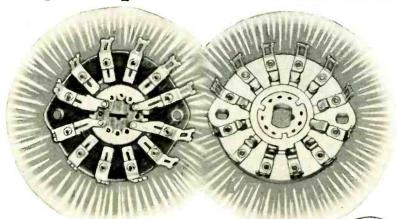
ACTUAL SIZE

Now . . . long-awaited silicon junction diodes are available; developed by Texas Instruments, a leading transistor manufacturer.

Operating temperatures up to 150°C are safe, offering a new degree of design freedom!

junction

New . . . extremely low back current characteristics, as low as 0.001 microamps at rated voltage. Glass-to-metal hermetic seals, of course. For more detailed information on these new silicon junction diodes — and on other new TI semiconductor products — write today.



TEXAS INSTRUMENTS

INCORPORATED

COOL TAMON AVENUE DALLAS 9. TEXAS

Bright spots for idea men!

You're never at a loss for the right type of switch when you design with Centralab

Better product performance? You bet! There are plenty of good reasons for the popularity of either Steatite or Phenolic insulation:

- Steatite insulation is Centralab's best always supplied in JAN L-5 grade. Extremely low loss at high frequency (1MC .007). Dow-Corning (200) treated to eliminate surface moisture. 100% quality-controlled by CRL from basic powders to finished section.
- Phenolic insulation—only high grades used.
 NEMA grade XXXP. MIL grade P3115B.
- Available in standard (1⁷/₈" dia.) or miniature size (1¹/₂"). Sub-miniature (1¹/₈").
- Standard or special switching combinations
 2 to 12 positions to 6 poles per section.
- Single or multiple sections. Also dual concentric miniature types.
- Indexing: 30° or 60° (standard or miniature); 90° (standard only).
- Shorting or non-shorting types.
- All hardware heavily cadmium-plated. Clips and contacts silver-plated spring brass. Solid silver alloy contacts available.

Centralab's staff of switch experts are the industry's most qualified "answermen"

- Centralab switches have been called the prototype of all selector switches in use today.
- Centralab has complete facilities for the design and volume production of custom switches.
- Widest variety of standard switches available from any manufacturer.

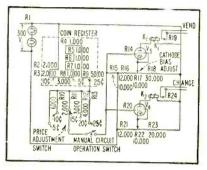
You name the switch . . . Centralab will deliver!

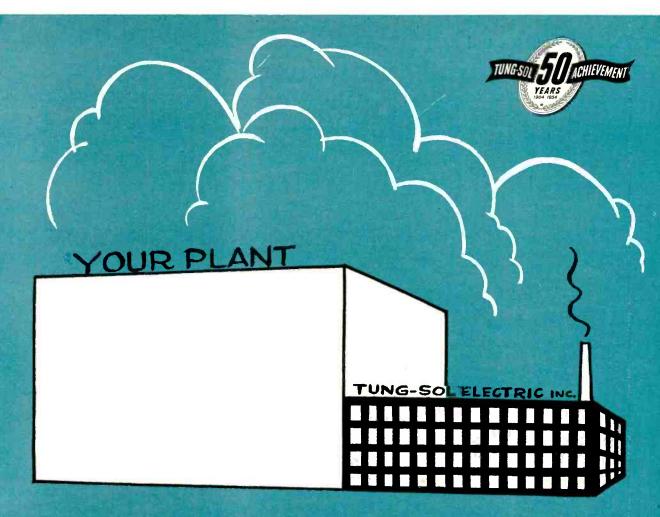
Centralab

A Division of Globe-Union Inc.
914 E. Keefe Avenue • Milwaukee 1, Wisconsin
In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

of determining the required change to be dispensed by a vending machine and controlling the equipment to deliver the correct change along with the vending of the merchandise.

The circuit of this device is shown in Fig. 10. In the coin register, resistors R_2 and R_3 (2,000 ohms each) are arranged to be short-circuited by dimes. Resistors R_4 , R_5 , R_6 , R_7 , R_8 (1,000 ohms each) are arranged to be short-circuited by nickels. Resistor R_9 (5,000 ohms) is short circuited by a 25-cent piece.




FIG. 10—Coin counter operates by shorting thyratron bias

The resistance values are such that any combination may add up to the resistance equivalent of R_{\circ} thus reducing the total resistance in series by the cumulative values of the resistances short-circuited by the coins in the register up to a value corresponding to 25 cents.

Dropping coins into the register short circuits appropriate resistors to a parallel connection across R_{15} resulting in a bias change on thyratron V_3 to trigger the thyratron and close relay K_1 . This operates the vend mechanism when the correct amount, as required by the setting of the price adjustment switch, has been deposited in the coin register.

Thyratron V_4 is set up in parallel with thyratron V_5 to initiate a change-making cycle if the amount deposited in the coin register is greater than the price set by the price adjustment switch. Tube V_4 will not operate if the correct amount is inserted but V_5 will operate. If an insufficient amount is inserted neither V_5 nor V_4 operates. Settings of bias potentiometers R_{17} and R_{22} determine the operating conditions for each of the tubes V_5 and V_4 .

—N.L.C.

Our plant becomes an extension of your plant

Our engineering and manufacturing facilities can make our plant a vital extension of your plant. We make nothing but electron tubes—no sets—no equipment. We are completely independent, so we are in a position to keep your plans in strict confidence—to work with you with as much loyalty and secrecy as if we were in your own organization.

TUNG-SOL ELECTRIC INC. Newark 4, N. J.

Sales Offices: Atlanta, Chicago, Columbus, Culver City (Los Angeles), Dallas, Denver, Detroit, Newark, Seattle.

TUNG-SOL MAKES All-Glass Sealed Beam Lamps, Miniature Lamps, Signal Flashers, Picture Tubes, Radio. TV and Special Purpose Electron Tubes and Semiconductor Products.

Production Techniques

Edited by JOHN MARKUS

Elevated Instrument Railway Aids Calibration of Multimeters	242	Flocking Waveguide StandsLifting Aids for Large Picture Tubes
Automatic Cycling Machine For Socket and Plug Life Tests		Setscrew Fittings For Pipes Speed Plant Alterations
Air-Driven Hand Drill Serves as Winder for Single-Layer Coils	244	Molding Tube Stems With Powdered Glass
Quick-Leveling Mounts For Production Machines	246	Switching Production Heads Gives Plant Savings
Grid Stretcher Self-Stacking Plastic Trays		Three-Size Turret Jig
Automatic Tip-Off Machine	252	minals
Polishing Copper Laminates For Etched Circuits		Etched I-F Coils Welding Techniques For Gold-Plated
Cotter Pins Serve as Insulator Terminals	4	Grid Wire
Potting-Wax Centrifuge	260	Tubes
Moving TV Tube Dies With Fork Lift Truck		Screen-Bake Over for Picture Tubes. Inline System For Aluminizing Picture
Tube Socket Holder		Tubes

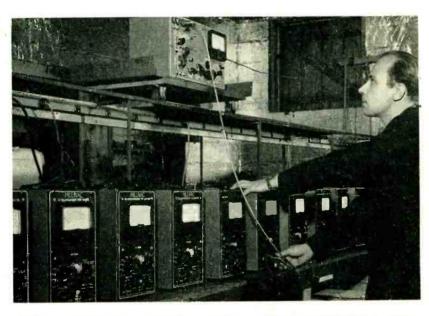
OTHER DEPARTMENTS

featured in this issue

268

272

273


275

For 279

282

Page
Electrons At Work196
New Products292
Plants and People338
New Books398
Backtalk404

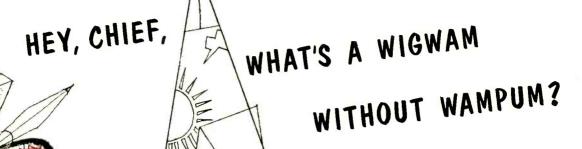
Elevated Instrument Railway Aids Calibration of Multimeters

Method of using master standard on carriage running on overhead rails. Multimeters on bench are calibrated one after another

FINAL METER calibration for a batch of multimeters is expedited by placing the master calibration standard on a trolley cart which runs on overhead rails along the entire length of the production bench. The instruments to be calibrated are placed side by side on the bench and all set to the same range. The technician adjusts the calibration standard to the proper value, feeds the calibration signal into the first meter and adjusts it, then pushes the carriage to each other meter in turn and repeats the procedure.

The calibration standard and the meters are then switched to the next range and the carriage is pushed down the line again step by step for calibration. This technique is used in the Schenectady, N. Y. plant of Millivac Instrument Corp.

Automatic Cycling Machine For Socket and Plug Life Tests


To HELP evaluate characteristics of multi-pin plugs and sockets used in packaged equipment composed of plug-in units, an automatic cycling machine was devised by production service engineers of Lenkurt Electric Co., San Carlos, Calif. to cycle various plug and socket combinations through thousands of insertions and removals.

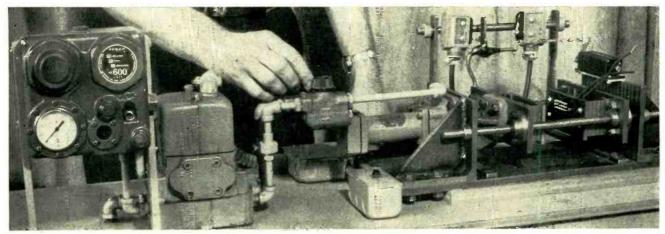
Design of telephone carrier equipment with all units made on a

plug-in basis is a departure from previous manufacturing methods where all carrier equipment was rack mounted and interconnected with fixed rack wiring and soldered terminal-block connections. Some means was necessary to assure the design and applications engineers that repeated insertion and removal of the plug-in units would not result in system failure through wear or damage to the multi-pin plugs

and sockets used in their equipment.

The plug and socket to be tested are mounted on special plates which can be adjusted to provide proper mating (or misadjusted if desired to determine the effects of misalignment). The plug mounting is fixed on the end of a compressed-air-operated piston and moves towards the socket on two guide rods. Length of the piston stroke is determined by two Micro Switches

Whether it's shells or beads — or good old American dollars, for that matter — you just can't operate successfully without showing a profit. That's why so many progressive companies depend on Kester quality and performance to insure maximum results in production at the lowest possible cost. And we'll bet Kester Solder can mean more "wampum" in your "wigwam," too!


An engineered adaptation can be made to your specific requirements with Kester "44" Resin, "Resin-Five" or Plastic Rosin-Core Solder... varied core sizes or flux-contents are available in many different diameters.

KESTER

SOLDER COMPANY

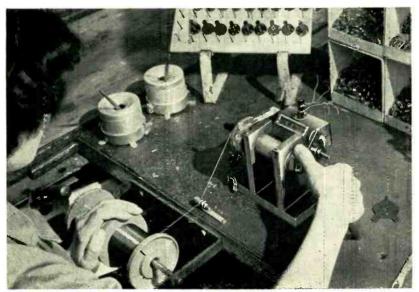
4204 WRIGHTWOOD AVENUE, CHICAGO 39, ILLINOIS NEWARK 5, NEW JERSEY • BRANTFORD, CANADA

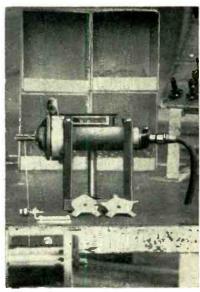
Life-testing multi-pin plug and socket, mounted at right end of cycling machine. Knobs being adjusted by engineer control time of stroke. Extension pipe on moving socket support trips snap-action switches, mounted on overhead rods, to actuate solenoid valves under man's right hand and give reversal of air cylinder operation

which control a valve directing compressed air to either side of the piston. Separate adjustable check valves control the piston speed in each direction so the cycling time can be varied from about 1/20 to 2 cycles per second.

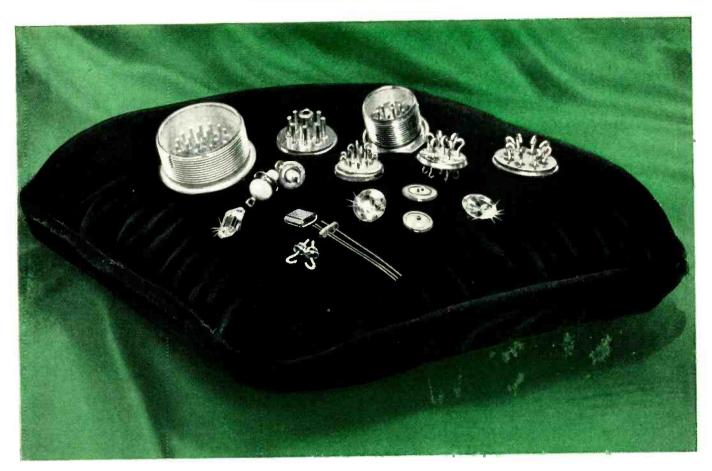
When a plug and socket combination is being tested, a series circuit is connected through plug pins and socket sleeves so a continuous measurement of resistance can be made over any number of cycles. Gradual wear then shows as a gradual change in resistance, while any mechanical damage will normally show as an abrupt resistance change. In addition, wear can be determined by accurate measurement of plug pin diameters before and after testing.

The automatic cycling machine has proved valuable to engineers in making acceptance tests of plugs and sockets. In addition, it is used to analyze rack wiring methods to help prevent socket damage due to sleeve misalignment caused by improper tensions from the rack wiring.


The machine has also been used in testing wiring for tendency to fail after repeated bending either in a cable harness or at the point of attachment to a connection lug. For these tests the accurately determined length of the stroke is used to produce flexure through a controlled angle.


Air-Driven Hand Drill Serves as Winder for Single-Layer Coils

AN ORDINARY air drill mounted horizontally on a simple bench stand provides smooth power for producing layer-wound coils having 30 to 40 turns each. The coil-holding arbor in the chuck of the drill is


easily changed for running another type of coil form. A counter just behind the drill indicates the number of turns wound, and is easily reset to zero after each operation by depressing a lever. The technique is used for winding i-f coils of television receivers in the plant of E. K. Cole Ltd., Southend-on-Sea, England.

The air-driven hand drill gun employed is made by Desoutter

Air power winds i-f coils. Punched steel spiderweb gages on bench provide correct spacing between coils on form

Gems of Precision Engineering

GLASS-TO-METAL VACUUM SEALS COMPETITIVELY PRICED

These glass-to-metal vacuum seals are quality products manufactured from glass and metals carefully selected for their closely matched expansion coefficients. Thermal shock tests are performed on every seal during the hot tin dipping operation which is conducted at the extreme temperature of 530° F. This plating procedure insures clean parts which will solder readily whether heating is accomplished by hot plate,

soldering iron, hot strip, or soft flame, AND WITHOUT DANGER OF BREAKAGE DUE TO THERMAL SHOCK.

Experience, selected materials, engineering skill, and controlled manufacturing combine to make Constantin vacuum seals leaders for their sturdiness, long life, and excellent electrical performance.

Seals are available in both High Compression and Kovar to hard glass types.

MULTI-PIN CON PLUGS A wide variety of standard sizes and configurations available. Leaders in the field specify CON-STANTIN CONNECTORS for their ruggedness and reliable performance.

MULTI-PIN HEADERS Vacuum tight, glass-tometal sealing makes CONSTANTIN HEADERS ideal for use in products demanding a stabilized atmosphere, and protection from temperature extremes and climatic conditions.

TRANSISTOR MOUNTS
Constantin glass - to - metal vacuum sealed transistor mounts are available as a standard line in various sizes and configurations.
Other types may be fabricated to your design specifications.

TERMINALS

Available in all combinations of hooks, eyes, tubes and pierced flats. Precision built and especially noted for sturdiness and high electrical performance.

CONDENSER END SEALS
Manufactured to assure a
stabilized atmosphere under any conditions, these
seals are excellent for capacitors, filters, delay lines,
and precision resistors.

Also manufacturers of —

CRYSTAL HOLDERS

VACUUM COATING EQUIPMENT

L.L. Constantin & Co.

MANUFACTURING ENGINEERS

Rt. 46 and Franklin Ave., Lodi, N. J.

Bowser Technical Refrigeration pioneered the development and man-

Bowser Technical Refrigeration pioneered the development and manufacture of environmental test equipment.

Bowser's complete engineering staff is available (at no obligation) to help in solving YOUR difficult test problems. Design engineers and production facilities are available to construct test equipment to meet your specialized requirements.

Typical of Bowser's standard test chambers are the Laboratory

Unit and Walk-In Room shown above.

The Laboratory Unit has a temperature range from $+200^\circ$ F to -100° F, relative humidity range from 20% to 98%, altitude from sea level to 100,000 feet.

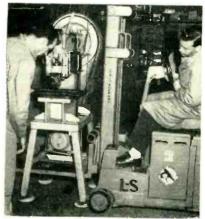
Standard Walk-In Rooms simultaneously produce altitude to 100.000 feet, temperature range from -100° F to $+200^\circ$ F, relative humidity from 20% to 98%.

Bowser also builds explosion chambers, sand and dust chambers, humidity simulation units, and environmental simulation chambers to meet any desired specifications.

Write for free descriptive bulletins or request a Bowser field engineer to consult on YOUR environmental test problem.

PRODUCTION TECHNIQUES

(continued)


Bros. Ltd. of The Hyde, London NW 9, England. A gear was added to the gun shaft to mesh with an identical gear on the turns counter, giving a 1 to 1 ratio. Starting and stopping is achieved with a pushbutton on the right-hand side, adjacent to the air supply hose.

A small bracket attached to the bench between the winding arbor and the wire reel holds a sewing-machine type of tensioning device. This is useful for providing winding tension needed for close-wound coils and for preventing the wire from flying when it is snipped off a finished coil.

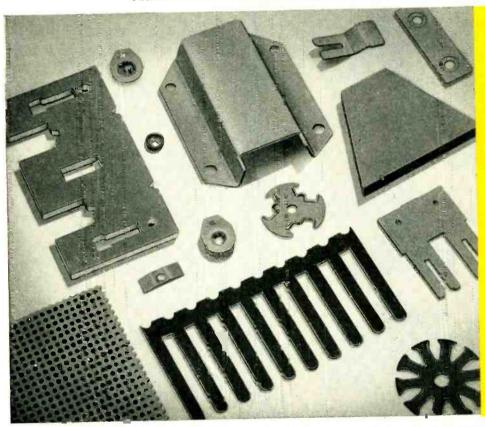
Quick-Leveling Mounts for Production Machines

Punch presses, grinders and other machinery involved in the production of electronic equipment and components can be moved to new locations on any type of plant floor and set up ready for use in a few minutes by using Leveling Barrymounts in place of conventional floor anchor bolts. In one demonstration, an assembly line of eight heavy machines was moved and connected to power and air systems in only 24 minutes.

The new mounts also serve to absorb machine vibration, permitting use of punch presses in areas not having reinforced concrete floors. The mounts rest directly on the floor, and are leveled with a few turns of a wrench. Cost is about \$50 per set of four mounts capable of supporting six tons each. Once on a machine, the machine can be

Method of using fork lift truck to move punch press equipped with leveling mounts

TAYLOR Commercial Grade Vulcanized Fibre


is tough, lightweight, abrasion resistant . . . excellent for bending, punching, stamping and forming . . . resistant to organic solvents, oil and gasoline . . . has excellent electrical characteristics.

Want to make something of it?

Make it into insulating plates, upset washers, arc barriers, terminal blocks, switch and appliance insulation, cases, face plates for golf clubs . . . or any other electrical or mechanical component that can benefit from the unique properties of this versatile material.

Make it in red, gray, black, or special colors.

Make it from sheets or rolls with these specifications:

SPECIFICATIONS

Thickness

.005" to 1" Range:

Pressed and Finish: calendered

To 3/16" thick Punching:

Sheet Size: 56" x 90"

Roll Width: 56" for thicknesses of

.005" through .060". Coils to 3/16" for thicknesses of .005" through .090"

PROPERTIES

Mechanical

Flexural Strength

(Lengthwise) 12000 psi min. (Crosswise)

Tensile Strength

7500 psi min. (Lengthwise)

5500 psi min. (Crosswise)

Compressive Strength

20000 psi min. (Flatwise)

Izod Impact Strength

3.5 Ft.-Lbs./inch

(Lengthwise) 2.9 Ft.-Lbs./inch (Crosswise)

Electrical

Dielectric Strength

(1/32" thick) 250 min.

Short Time Test

(1/8" thick)

175 min. 100

Arc resistance, seconds

Make it from turned rods. Diameters from 1/8" to 1" with ground or buffed finish.

Make it easy for yourself when you're buying vulcanized fibre. Call your Taylor engineer . . . he will be glad to work with you . . . help select the correct grades to fit your needs -Commercial, Bone, Super White, Abrasive and Built-up. Also ask him for samples of Taylor Laminated Plastics . . . Phenol, Silicone and Melamine Laminates . . . suited for a variety of your product requirements.

Taylor Fibre Company, Norristown, Pennsylvania — La Verne, Calif.

TAYLOR Laminated Plastics Vulcanized Fibre

WAVELINE MICROWAVE...

instruments

Such as impedance measuring units incorporating the last word in precision . . .

or impedance matching devices to facilitate laboratory measurements...

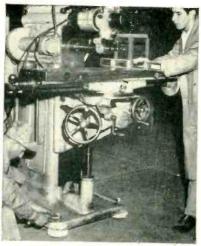
and Components

Whether they be custom built, special assemblies for experimental, and laboratory work...

or components to be incorporated in radar or communication systems...

because...

Years of experience supplying microwave instruments to meet the most exacting measurement needs of industry have established Waveline as the unchallenged precision leader in the field.


New expanded facilities insure even greater plant flexibility, faster deliveries on both catalog units and special assemblies.

Write or wire today for the address of the nearest Waveline field sales engineer who is always ready to give immediate and personal attention to your microwave problems.

Technical data on microwave instruments sent on request.

CALDWELL, NEW JERSEY

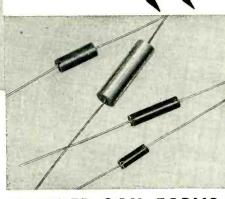
Method of leveling machine by adjusting bolt on mount

moved with a lift truck as often as desired for maintaining efficiency of production despite frequently changing product designs. A disabled machine can be quickly replaced, without a long halt in operation of the line. Repairs can then be made at leisure in a more permanent central tool room.

With all modes of vibration absorbed, walking of machines becomes impossible and there is hence no need for fastening machines to floors. In addition, the plant noise level is reduced, with corresponding increase in worker efficiency. The mounts are manufactured by Barry Corp., Watertown, Mass.

Grid Stretcher

A HAND-OPERATED stretching mandrel has been developed by Amperex Electronic Corp. for precise shaping of wound grids for their type 5894 twin tetrode. The operator pushes a grid over the forward projecting split mandrel and rotates the hand crank half a turn. The



Method of loading grid on mandrel

FERRICORES

MOLDED COIL FORMS

Moldite's famed precision production facilities

are now devoted to 3 major types of electronic components

—to give the industry a superlative core or coil form

for every electronic application.

Through years of continued engineering and research Moldite has produced cores of guaranteed dependability, economy, quality and uniformity. Our customers' smooth running production lines tell the story best.

Specify a Moldite core specially designed and precision made for you, with absolute uniformity from first to last.

Robert T. Murray 614 Central Ave. East Orange, N. J. Jerry Golten Co. 2750 W. North Ave. Chicago 22, III. Arnold Andrews
521 Cumberland Ave.
Syracuse, N. Y.

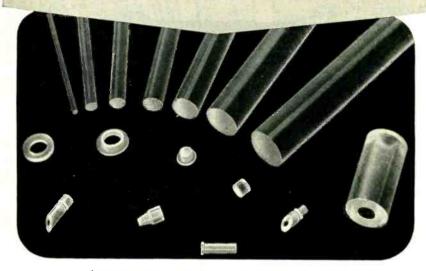
Perimuth-Coleman & Assoc. 1335 South Flower Los Angeles, Cal.

Jose Luis Ponte Cardoba 1472 Buenos Aires

MAGNETIC IRON CORES

FERRITE CORES

MOLDED COIL FORMS
(iron and phenolic)


MAGNETIC IRON CORES
FILTER CORES
THREADED CORES
SLEEVE CORES
CUP CORES

Samples promptly submitted upon request for design, pre-production, and test purposes

NATIONAL

COMPANY
1410 CHESTNUT AVE., HILLSIDE 5, N. J.

STANDARD LENGTHS OF 6-8 FT. **ASSURE LOW MACHINING COST**

For low cost production machining of coaxial spacers, connector beads, stand-off insulators and many similar UHF components. POLYPENCO Q-200.5 is available now in centerless ground rod with diameters up to 1" and lengths of 6 to 8 feet.

LOOK AT THESE DIELECTRIC PROPERTIES!

- Dielectric Constant: only 2.4 to 2.5
- Dissipation Factor: 0.0002 at 30 mc (remains practically constant over entire frequency range)
- Dielectric Strength: about 350 volts per mil

Get the full facts on POLYPENCO Q-200.5. Write for technical bulletin.

CHECK THESE OTHER FEATURES

- Dimensionally stable up to 400° F
- Rigid and transparent
- · Easily machinable on standard metalworking equipment
- Good mechanical strength
- Chemically resistant

POLYPENCO Q-200.5

nylon and teflon

stock shapes, finished parts

also available to your specifications

The POLYMER CORPORATION of Penna. . Reading, Penna.

*Trademark for Du Pont tetrafluoroethylene resin

(continued)

Turning crank to stretch grid

crank actuates an eccentric cam which pushes a tapered pin between the two halves of the mandrel to spread them apart the desired distance. The crank is then moved one-half turn backward to release the pressure so the shaped grid can be easily slid off. Springs bring the mandrel halves together when the pin is retracted.

Self-Stacking Plastic Trays

COMPONENTS for magnetrons and other microwave tubes are protected from damage during handling or storage by using special molded plastic trays having individual recesses for each part. As an added advantage, the number of parts in either filled or unfilled trays can be counted at a glance. Removable inner trays of the plastic trays are interchangeable, so that the same standard pans can be used for many different types of parts. Wires running inside each pan at the top serve as supports when nesting the pans to prevent them from jamming into each other.

Smaller parts are stored in clear

Tube parts in plastic handling trays

* BLILEY TYPE BH6A

* BLILEY TYPE BCS-1A

* CUSTOM-BUILT OSCILLATOR ASSEMBLY

* BLILEY TYPE SDL-15

* BLILEY TYPE TCO-1A

CRYSTALS - MILITARY AND COMMERCIAL

SOLID ULTRASONIC DELAY LINES

CRYSTAL OVENS

FREQUENCY STANDARDS

CUSTOM ASSEMBLIES

COLOR TV CRYSTALS

BLILEY ELECTRIC COMPANY

UNION STATION BLDG., ERIE, PENNSYLVANIA

3XP RAYONIC CATHODE RAY TUBE provides a brilliant and sharply-defined trace and high deflection sensitivity at medium anode potentials. When comparing 3RP operating at 1000 volts second anode against 3XP operating at 2000 volts, the results are astonishing. For the same spot size, 3XP light output is improved by a factor greater than 4, vertical deflection sensitivity improved by a factor of 2, while the horizontal sensitivity remains unchanged. Because 3XP is enclosed in a short envelope and has half the inter-electrode capacities of the 3RP, the tube lends itself admirably to high frequency video work as well as for low repetitive operation.

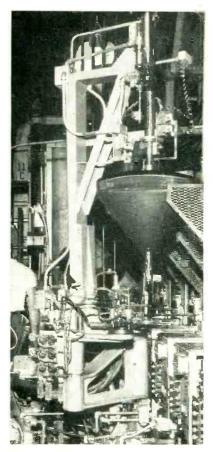
TECHNICAL DATA

The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitivity, unit line brightness, line width, static voltage requirements and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table below. These tubes are available in P1, P2, P7 and P11 phosphors. 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tubes.

TUBE		PHYSICA	L DATA	ST	TATIC VOLTAGE DEFLECTION			LIGHT	
	Face	Length	Base	А3	A2	A2 Max.	Vert	Hor	OUTPUT**
3JP1	3′′	10''	Med Diheptal	3000	1500	2000	111	150	352
3MP1	3′′	8′′	Sm Duodecal		750	2500	99	104	33
3RP1	3′′	91/8"	Sm Duodecal		1000	2750	61	86	44
3SP1	1.5x3"	91/8"	Sm Duodecal		1000	2750	61	86	44
3XP1	1.5x3''	87/8''	Loctal		2000	2750	33	80	218

*Deflection in volts per inch.

**Light output of an element of a raster line (one mm long and not exceeding .65mm in width) in microlumens.


All heaters 6.3 V AC, .6 AMP.

plastic boxes with hinged covers, available in hardware stores with various sizes of inner partitions. Tubular parts are stored on plastic pegs set into a plastic tray or sheet.

These material-handling techniques are used in the Hicksville, N. Y. plant of Amperex Electronic Corp. The large trays are molded economically from a new Boltaron plastic material that can be formed in simple wood molds.

Automatic Tip-Off Machine

Tip-off machine has raised tube after completing seal. As next step, tube is swung forward so operator can remove it for transfer to overhead conveyor

THE DELICATE process of sealing off the glass tubulation of television picture tubes has been mechanized in General Electric's tube plant at Electronics Park, Syracuse, N. Y. After the exhaust machine has completed its index, the automatic tipoff unit swings into position with a live-vacuum suction cup directly above the bulb to be tipped. Pre-set fires adjust themselves to the proper position on the glass tubulation and, as it is heated to the soft-

Borg 901 Series 10-turn and 931 Series 3-turn Micropots are built to the same superior advanced design-principles that have set the new standard for precision multiturn potentiometers.

THE GEORGE W. BORG CORPORATION

Janesville, Wisconsin

Magnecord Complete slot loading

the only professional tape recorder with every needed feature

- Interlocked pushbutton controls
- 15,000 cps response at 71/2"
- Lowest flutter rate obtainable
- Full remote operation
- Automatic tape lifter
- Instantaneous stop and start
- · Positive, direct-drive timing
- Interchangeable head assemblies
- Mounts in console, rack, or case

Feature for feature, the all-new Magnecord M80 is the finest professional tape recorder ever built for its price! The M80 is lighter, more compact, easier to operate and maintain than any comparable recorder, yet brilliantly superior in every performance specification! It is the outstanding choice for your precision recording requirements!

For full details, see the Magnecord distributor listed under "Recording Equipment" in the classified telephone directory. Or write:

Magnecord, INC.
DEPT. E-4 225

225 WEST OHIO STREET CHICAGO 10, ILLINOIS

ening point, the tube is raised. stretching the tubulation. Application of further heat cuts the tubulation and forms the final vacuum

The tipping equipment then swings away from the exhaust machine, carrying the tube to position for removal by the operator. After manual removal of the tube, the machine is ready for the next cycle. Safety interlocks prevent improper sequential operation of the complex equipment.

Polishing Copper Laminates for Etched Circuits

A ROTARY scrub brush in a modified drill press arrangement is used with extra fine pumice and water to prepare copper-clad plastic sheets

Polishing copper-clad plastic sheet with rotary scrub brush in drill press arrangement that is free to move horizontally as well as vertically

for conversion to etched com-The mounting arrangement permits moving the rotating brush horizontally in all directions so as to cover the entire surface of the sheet. Vertical pressure on the brush is applied conventionally with a drill press lever working against a spring. A belt drive is used for the motor, to achieve speed reduction along with flexibility of move-

The polishing operation, which takes about 30 seconds per sheet, is used to remove oxides and adhering foreign material, clean the copper

Announcing another outstanding DESIGN ACHIEVEMENT by Federal

CHECK THESE FEATURES-

SINGLE-CRYSTAL GERMANIUM—the finest for reliable performance

MOISTURE-PROOF—vacuum-sealed, all-ceramic construction to provide stable characteristics

EVERY DIODE TESTED for all characteristics, including oscilloscope tests for hysteresis and non-linearity

COMPLETELY INSULATED CASE

POLARITY clearly identified

HEAT SINKS protect during soldering

SMALL SIZE (-1/4" diameter, 1/2" long)

FLEXIBLE LEADS for easy mounting

NO FILAMENT—no heater power drain or

LOW SHUNT CAPACITY (average 1 mmf.)
SELF-HEALING for temporary overloads
NO CONTACT POTENTIAL

WITHSTANDS adverse temperature and humidity cycling

"SINGLE-CRYSTAL-STABILIZED"

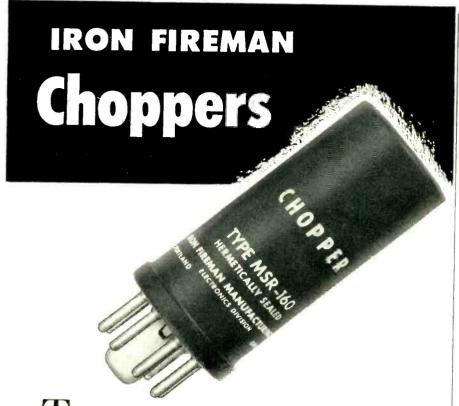
... precision-made and vacuum-sealed to provide a new high in performance for germanium diode applications!

Product designers! Now it's Federal's new single-crystal-stabilized diodes . . . bringing to you high-quality single-crystal germanium for the utmost in reliable performance, combined with a construction to provide stable operation over long hours of use.

Federal "S-C-S" Diodes are vacuum-sealed . . . solidly encased in a non-porous ceramic that firmly bonds both ends to case and leads, resulting in *moisture-proof* construction.

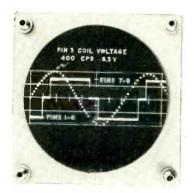
Federal "S-C-S" Diodes withstand repeated temperature and humidity cycling—without adverse effect on their electrical characteristics. Their small size, fully insulated case and flexible leads permit fast, easy mounting in all types of equipment.

Get all the facts about Federal "S-C-S" Diodes . . . a notable contribution to diode progress . . . insuring tens of thousands of hours of dependable performance!


Federal Telephone and Radio Company

SELENIUM-INTELIN DEPARTMENT

100 KINGSLAND ROAD, CLIFTON, N. J.


In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P. Q. Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

For details on Federal
"S-C-S" Diodes, write
to Dept R-113

The new choppers developed by Iron Fireman's instrument specialists give outstanding performance in a wide range of electronic applications. They embody the integrity of design and quality of manufacture which have made Iron Fireman products trusted wherever they are used.

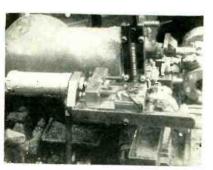
At right is illustrated a typical Iron Fireman Chopper operation as it would appear on an oscilloscope when a sine wave alternating current is impressed on the coil.

Look at these Features:

- Exclusive new design
- Low noise pick up
- Minimum contact bounce
- High contact rating
- Long life
- Wide frequency response

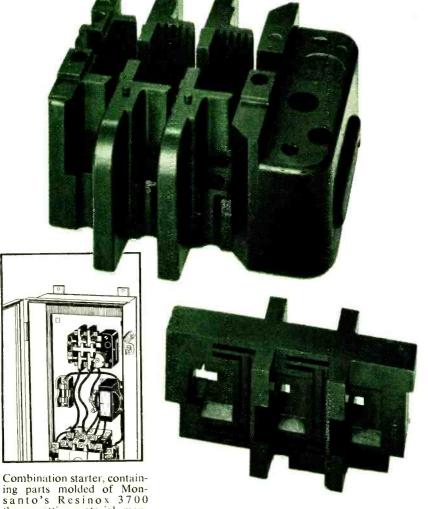
For more information on choppers, as well as high speed relays and sensitive relays, write to:

Iron Firema 2800 S. E. 9th Ave., Portland 2, Ore.


and leave a fine rough surface for coating with a photographic emulsion. High-quality fiber brushes costing approximately \$7 each are used to prevent undesired scratching. When the cleaning operation is carried out continuously, a brush lasts about a third of a day.

Cotter Pins Serve as Insulator Terminals

SILVER-PLATED cotter pins inserted in insulating bushings are staked into chassis holes with a punch press for use as mounting terminals and connection points, by means of a technique developed in the television receiver plant of E. K. Cole Ltd., Southend-on-Sea, England. The pin terminals take considerably less chassis space than conventional Bakelite panel terminals with soldering lugs and riveted mounting brackets. The pin terminals also reduce overall labor and material costs, as all terminals on a chassis can be staked in one operation. The reduced size allows a better distribution of component parts, which in turn makes assembly and wiring operations easier.


The first step in production is machining the insulating bushing on a Brown & Sharp 00G automatic lathe. The insulating material used is a synthetic resin bonded fabric known as Carp Brand Tufnol, made by Ellison Insulators Ltd., Perry Bar, Birmingham 22B, England, but any other high-quality insulating material will serve the purpose.

After the bushing is automatically turned and formed, it is picked up by a transfer arm on the machine and moved into line with a small hole through which a cotter

Automatic lathe for machining bushings and inserting cotter pins. Air cylinder at left drives in pins. Magazine feed for pins rises vertically at right

How would you handle this electrical parts problem?

Arrow-Hart solved it with new RESINOX 3700

thermosetting material, manufactured by Arrow-Hart & Hegeman Electrical Co.

> Arrow-Hart & Hegeman Electrical Company of Hartford, Conn. needed a strong, stable, electrical-grade material with high arcresistance for important parts of their combination starter shown here. They specified Monsanto's new thermosetting molding powder, Resinox 3700. Result: Complete satisfaction!

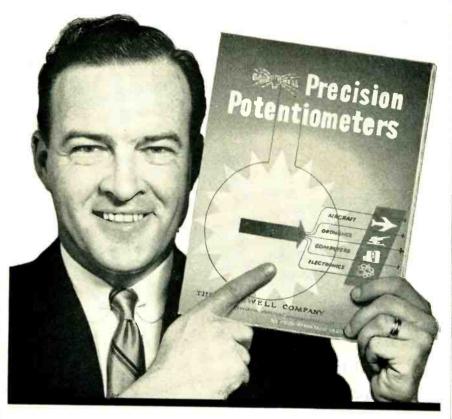
> Resinox 3700 is the ideal all-around material for magneto ignition, motor control and electronic circuits, and other electrical applications.

- It combines high arc-resistance with outstanding dimensional stability. Eliminates undesirable after-shrinkage.
- It has excellent moldability and relatively good impact resistance, plus good transfer molding properties.
- It offers superior heat resistance.

Perhaps Resinox 3700 is exactly what you need to solve an electrical equipment problem. Write today for full information! Resirax: Reg. U. S. Pat. Off.

SERVING INDUSTRY WHICH SERVES MANKIND

MONSANTO CHEMICA	L COMPANY,	Plastics	Division.	Room	2502.	Springfie	ld 2,	Mass.
Please send me cor	nplete inforn	nation on	Monsant	o's new	Resin	ox 3700	arc-re	sistant
material.								


Name & Title

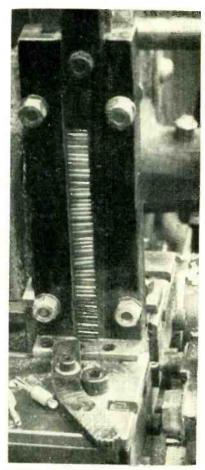
Company

Address

City. Zone, State

New Booklet on Gamewell Precision Potentiometers

CONTENTS


- Methods of Manufacture
- Windings Available
- Linear Potentiometers description condensed specifications
- Non-Linear Potentiometers description condensed specifications
- Special Applications
- Glossary of Terms Used
- Information Required with Orders

For your copy of this new Gamewell Precision Potentiometer booklet, just send us a note on your company letterhead. Your copy will be mailed immediately, at no obligation to you.

THE GAMEWELL COMPANY • Newfon Upper Falls 64, Massachusetts

Manufacturers of precision electrical equipment since 1855

Details of magazine feed for pins

pin is automatically fed by an airoperated pluger. The transfer arm then moves past the ejector blade, releasing the pin and bushing assembly so it drops into the delivery chute.

The cotter pin is driven in with a tight friction fit so it cannot drop out later. The complete cycle time for making one terminal is 4.25 seconds. The air cylinder of the plunger that drives in the pin is operated by a roller valve which is tripped by a special cam on the main cam shaft of the lathe.

As the first step in staking the terminals to a chassis, the operator loads the pin and bushing assemblies into the bottom tool of the staking fixture, points upward. The chassis is next dropped over this fixture and the press is operated. The top tool consists of hollow punches with staking points that close up the chassis metal around the Tufnol bushings. No difficulty is encountered in placing the chassis over the terminals because the punched holes are appreciably larger then the bushings. The swag-

Guec to replace TUBULAR CERAMIC and MICA condensers at Lower Cost! RMC RMC 890 300 019 RMC RMC 470 560 275 200 100

				r (0 D.a	3/4 Ula.	
TC	1/4 Dia.	5/16 Dia.	1/2 Dia.	5/8 Dia.		101 -150 MMF
P-100 NPO N- 33 N- 75 N- 150 N- 220 N- 330 N- 470 N- 750 N-1400 N-2200	1 - 3 MMF 2 - 12 2 - 15 2 - 15 2 - 15 3 - 15 3 - 15 3 - 20 5 - 25 15 - 50 47 - 75	4- 9 MMF 13- 27 16- 27 16- 27 16- 30 16- 30 16- 30 21- 40 26- 56 51-100 76-120	10- 30 MMF 28- 60 28- 60 28- 60 31- 60 31- 75 31- 75 41- 80 57-150 101-200 121-200	61- 75 MMF 61- 75 61- 75 61- 75 76-100 76-100 80-120 151-200 200-250 201-275	76 - 100 MMF 76 - 100 76 - 120 76 - 140 101 - 150 101 - 150 121 - 200 201 - 280 251 - 330 276 - 470	101.150 121.150 141.150 151.190 151.190 201.240 281.350 331.560 471.560

The design of Type C temperature compensating

The design of Type C temperature compensating DISCAPS has stood the test of more than four vears of volume production.

Now universally specified as a money-saving replacement for tubular ceramic and mica capacitors, Type C DISCAPS are available in a wide range of capacities and temperature coefficients for many applications. They feature smaller size, lower self inductance, and greater dielectric strength. Rated at 1000 working volts, Type C DISCAPS assure trouble-free performance on VHF or UHF applications. Their lower initial cost and greater mechanical strength permit a cost and greater mechanical strength permit a substantial lowering of production costs.

If you have a design problem requiring a standard special type of ceramic capacitor why not let

RMC engineers solve it for you.

SPECIFICATIONS:

2./8 Dia

POWER FACTOR: Over 10 MMF less than .1% at 1 megacycle Under 10 MMF less than .2% at 1 megacycle

7/8 Dia.

WORKING VOLTAGE: 1000 V.D.C.

TEST VOLTAGE (FLASH): 2000 V.D.C.

CODING: Capacity, tolerance and TC stamped on disc

INSULATION: Durez phenolic-vacuum waxed

INITIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 meaohms

AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms

LEADS: No. 22 tinned copper (.026 dia.)

TOLERANCES: ±5% ± 10% ± 20%

These copacitors conform to the RTMA specification for Class 1 ceramic condensers.

The capacity of these capacitors will not change under voltage.

SEND FOR SAMPLES

DISCAP CERAMIC CAPACITORS

RADIO MATERIALS CORPORATION

GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.

DISTRIBUTORS: Contact Jobbers Sales Co., 146 Broadway, Paterson 1, N. J.

DEPENDABLE . . . DURABLE . . . EFFI-CIENT. Since 1894 American Beauty Electric Soldering Irons have been the standard for performance for all soldering irons.

NOW... American Beauty gives you precision production soldering with the new BANTAM—a light, sturdy, quick-heating soldering iron with small-diameter tip.

HEAVY-DUTY ELEMENT-IN-TIP-3438

A different, more efficient electric soldering iron than any on the market. An iron designed especially for heavy-duty or production-line use. It embodies a new type of heat application with the element permanently-embedded in the tip.

TEMPERATURE REGULATING STAND 475

Set the thermostat at the desired temperature—your iron will be ready to use without waiting.

WRITE FOR DESCRIPTIVE LITERATURE

SINCE 1894-ALWAYS DEPENDABLE

American Electrical Heater Company American Beautic Moores

BANTAM—3120 3/6" TIP

30-WATT

HEAVY-DUTY

TEMPERATURE

REGULATING

STAND-475

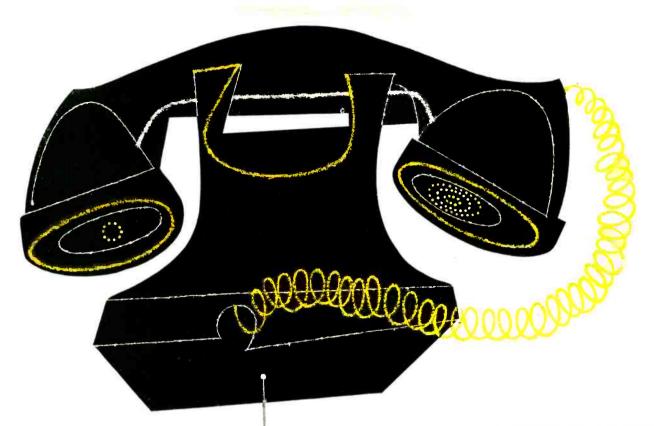
YEARS YOUNG

NO. 140-H

DETROIT 2, MICHIGAN

Inserting terminal pins in bottom tool of staking fixture

Removing chassis after all terminal pins have been locked in position with one staking operation


ing operation closes up this space to give a tight and rigid terminal mounting.

This method cuts the cost of terminals approximately in half as compared to the older technique of bolting terminals in position.

After assembly of the pins on the chassis, the legs are spread open as much as desired. The cotter pins used are long enough so that up to three wires can be soldered on each leg during the wiring of a television receiver. Additional connections can also be made to the head of the pin on the top of the chassis if desired. These pin heads also serve as convenient test terminals for troubleshooting during servicing of the receiver.

Potting-Wax Centrifuge

METAL cans containing capacitors and resistors embedded in potting wax are spun at high speed in a centrifuge at the Hawthorne Works of Western Electric Co. This procedure was introduced to eliminate

CRUCIBLE

provide maximum energy . . . minimum weight

No matter what your permanent magnet application may be - galvanometer, speedometer, television or telephone - you'll find that Crucible alnico magnets have a consistently higher energy product. This means more energy from a smaller magnet.

Since alnico alloys were first developed, Crucible has been a leading producer of this superior type of permanent magnet. And Crucible alnico permanent magnets are made by the nation's foremost specialty steelmaker.

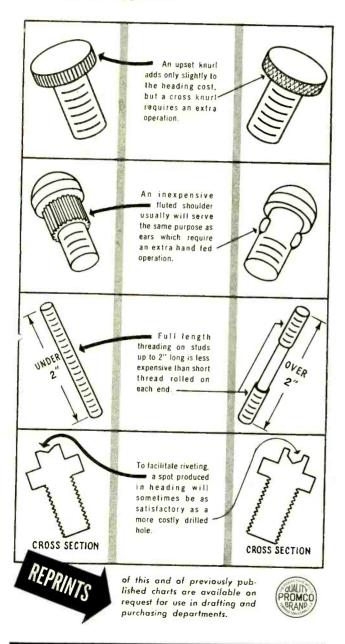
For alnico magnets that are unsurpassed in quality - call Crucible.

CRUCIBLE

first name in special purpose steels

54 years of Fine steelmaking

ALNICO PERMANENT MAGNETS


CRUCIBLE STEEL COMPANY OF AMERICA, GENERAL SALES OFFICES, OLIVER BUILDING, PITTSBURGH, PA.

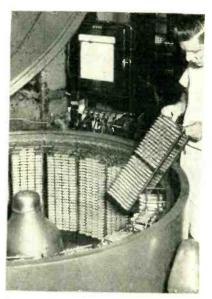
SQUEEZE PENNIES

OUT OF

UPSET SPECIALS COSTS

Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

MACHINE SCREWS AND SPECIAL FASTENERS ARE OUR BUSINESS


OUR CATALOG

THE PROGRESSIVE MANUFACTURING COMPANY

50 NORWOOD ST., TORRINGTON, CONN.

PRODUCTION TECHNIQUES

(continued)

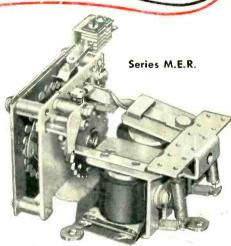
Loading racks of potted components into centrifuge. Cover at upper left is lowered before starting machine

the voids or cavities that formerly developed in the wax during shrinkage after cooling.

Spinning the cans in the centrifuge under a blast of hot air binds the wax together and eliminates cavities, thereby giving more dependable electrical networks. Savings in reprocessing costs and improved reliability of components combine to give an annual saving estimated to approach \$100,000.

Moving TV Tube Dies With Fork Lift Truck

MALE and female dies for stamping stainless steel television tube shells, weighing 2,500 and 4,000 pounds respectively, are loaded into and removed from their press in the plant of the United Specialties Co. in Chicago with a Towmotor fork lift truck equipped with a special unloading device. This new material-handling technique is saving 65 percent of the time it formerly


Using lift truck to move male half of picture tube shell die. Finished shells can be seen in background

These high precision standard Guardian Steppers afford positive selection and control of multiple circuits in Business Machines, Counting Devices, Totalizers, Computers and a vast array of similar products at low cost. Applications include: automatic circuit selection; automatic sequence selection of circuits; automatic sequence cross-connection of circuits.

SERIES M. E. R. GUARDIAN MIDGET ELECTRICAL RESET STEPPER

Keeps the reset magnet open, allows the ratchet to reset freely on a pulse of 10 milli-seconds. Stepping magnet releases lock mechanism on first step to ready unit for recycle. Standard unit has one disk with one finger rotating counter-clockwise. Two fingers available. Up to 21 of total 24 points on disk are active. Rated at 10 steps per second. Voltage ranges: 6 v. to 115 v. A.C., 60 cycles, or 6 v. to 110 v. D.C. Auxiliary small combination contact switches can be mounted on ratchet or on either magnet. New 3-point mounting for easy installation.

Series M.A.S.

SERIES M. A. S. STEPPER

A compact dependable Add and Subtract unit. Up to 27 active points on total of 30. Rated at 10 steps per second. S.P.D.T. contact switch can be mounted on any ratchet position or on either magnet. Available to operate on 6 v. up to 115 v. A.C., 60 cycles, or from 6 v. 110 v. D.C.

SERIES M-120 STEPPER

Up to 3 position contact combinations are available on the Guardian Series M-120 Stepper. 24 point ratchet employs case hardened steel construction to assure long life precision operation. Contact combinations in 3 standard ratings: 1.5, 10 and 12 amps. at 115v., 60 cycles, noninductive. Voltage range: 6 v. to 115 v. A.C., 60 cycles; or 6 v. to 110 v. D.C. intermittent duty.

Series M-120

Unite for catalogs featuring Guardian Steppers, Relays, Solenoids, Switches, Solenoid Contactors and Hermetically Sealed Controls.

GUARDIAN GELECTRIC

1625-D W. WALNUT STREET CHICAGO 12, ILLINOIS

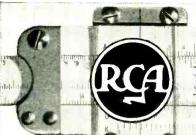
Want more information? Use post card on last page.

LINE OF RELAYS SERVING AMERICAN INDUST

took two men to set up the dies. With the aid of the truck, the two die setup men can have the press ready for use in about 2 hours, as compared to 6 hours formerly required.

The same technique is used for removing the dies, by simply reversing the direction of the unloader and using two cables to pull the dies onto the forks. Removal now takes about $\frac{3}{4}$ hour, as contrasted with $2\frac{1}{2}$ hours before. The LT-72 Towmotor truck and the unloader are made by Towmotor Corp., Cleveland, Ohio.

Tube Socket Holder


STANDARD octal tube sockets with attached turrets are supported in a specially designed three-position holder during subassembly work at Ampex Electric Corp., Redwood City, Calif. The base of the holder is a piece of sheet metal bent at an angle of 45 degrees and nailed to a block of wood. The socket holder itself is bolted to the slanting face of the base, and has a detent mechanism that permits rotation and

MULTIPLE-CONTACT PLUG RECEPTACLE UNITS FOR SECTIONALIZING CIRCUITS

• For panel-rack or other sectionalized circuits, Lapp offers a variety of plugand-receptacle units, some of which are shown here. Any number of contacts can be provided (in multiples of twelve). Male and female contacts are full-floating for easy alignment and positive contact. Contacts are silverplated, terminals tinned for soldering. Polarizing guide pins are provided where desired. Insulation is steatite, the low-loss ceramic . . . non-carbonizing even under leakage flashover resulting from contamination, moisture or humidity. Write for complete electrical and mechanical specifications of available units or engineering recommendations for an efficient component for your product. Radio Specialties Division, Lapp Insulator Co., Inc., 112 Sumner St., Le Roy, N. Y.

idminal antar<mark>intent i terr</mark>ance delle dein

from the RCA Tube Division

New Vidicon for TV Film Cameras

RCA-6326 is a small camera tube utilizing a photo-conductive layer as its light sensitive element and as its fight sensuive element and offering 600-line resolution. With it you can televise motion-picture you can weeve monon-production film with an average high-light min with an average night-ngnt illumination of only 100-300 foot-candles on the tube face—and canuses on the tube race—and transparencies and opaques with a constant illumination of approxiconstant munimation of appromately 10 foot-candles on the

(RCA-6198 Vidicon is for Industrial TV) tube face.

New Multiplier Phototube for Fast-Coincidence Scintillation Counters

Among the features offered by the RCA-6342 are its small spread in electron transit time are its small spread in electron transit time and its relative freedom from after-pulses. It and its relative freedom from after-pulses. It offers a "head on" design with flat face which oners a nead on design with hat face which allows excellent optical coupling between the anows excellent optical coupling between the cathode and the phosphor crystal. In addition, camoue and the phosphor crystal. In addition, it has a focusing electrode to permit optimizing the magnitude, uniformity, or speed of the the magnitude, uniformity, or spread response in critical applications.

New Color-TV Image Orthicon

RCA-6474/1854 Image Orthicon is a television camera tube intended for use in color-TV cameras utilizing the method of simultaneous pickup of the studio or outdoor scene to be televised.

Features of this Image Orthicon include: exceptional sensitivity, a spectral response exceptional sensitivity, a spectral response approaching that of the eye; and an ability to translate colors very accurately. Because it operates on a substantially linear signal-output characteristic, it can produce signals for pictures having natural tone values and accurate detail.

(length 15½") (diameter 3")

New Beam Power Tube for UHF!

RCA-6448 is a beam power tube featuring a coaxial electrode structure. The tube is intended for operation as a grid-driven power amplifier to provide high gain at a griu-uriven power ampinier to provide night gain at frequencies up to 1000 Mc. Sync-level power output is 115 Kw at 500 Mc in color or black-and-white TV operation—and 12 Kw at 900 Mc. RCA-6448 also features water-cooled electrodes, and a multi-strand thoriatedtungsten filament for economical operation, high emission capability, and long life.

RCA-"Headquarters" for

Tricolor Kinescopes, Receiving Tubes, Components, Power Tubes, Pickup Tubes, and Test Equipment for Color-TV-Voltage Regulator Tubes

Thyratrons Magnetrons TV Camera Tubes Rectifier Tubes

Cathode-Ray Tubes Vacuum-Gauge Tubes Transmitting Tubes Germanium Diodes

	(diameter 1178	Transistors
RCA ALLOWS		RCA Tube Division Commercial Engineering, Section Harrison, N. J.
18	目	Please send me technical of Multiplier Phototube, RCA-6343 Beam Power Tube, RCA-6448
	مارکس مارکس	None

RCA Tube Division Commercial Engineering, Harrison, N. J.	Section	D-19-R

data on:

☐ Film-Camera Vidicon, RCA-6326 ☐ Image Orthicon, RCA-6474/1854

City_

RADIO CORPORATION of AMERICA ELECTRON TUBES

HARRISON, N. J.

Zone_

State

Precision Attenuation

Standard push-button Attenuators are the symbol for precision attenuation at very high frequencies. As the only accurate instruments of their kind they are in great demand for research work and regular service the world over.

Four models are now available, ready for building into your own equipment. Each is designed to handle inputs of up to 0.25 watt.

0-9 db	0-90 db
	1
/	

	CHARACTERISTIC	CIMPEDANCE
MODELS AVAILABLE	75 ohms	50 ohms
0-9 db in 1 db steps 0-90 db in 10 db steps	Type 74600A Type 74600B	Type 74600E Type 74600F

Standard push button ATTENUATORS

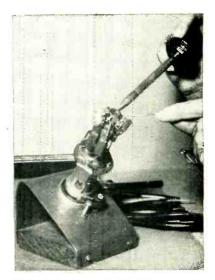
D.C. Adjustment - Accuracy

0-9 db models: The insertion loss error will not exceed 0.05 db for any setting.

0-90 db models: The insertion loss error for the 90 db setting will not exceed 0.3 db. For other settings this limit falls linearly to a value of 0.06 db at the 10 db setting.

High frequency performance

0-9 db models: At 50 Mc/s the insertion loss error for the 9 db setting will not exceed 0.15 db. For other settings this limit falls linearly to a value of 0.05 db for the 1 db setting.

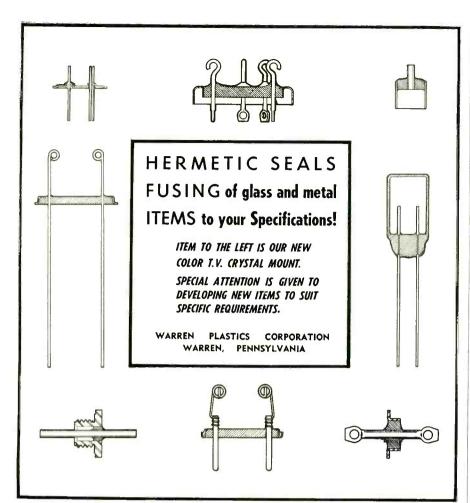

0-90 db models: At 50 Mc/s the insertion loss error will not exceed 0.1 db per step.

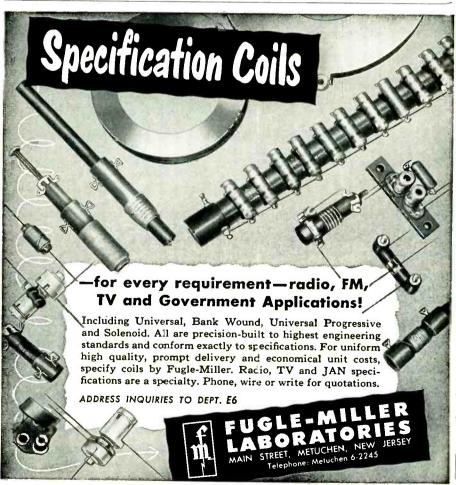
N.B. All insertion errors are relative to zero db setting.

Calibration charts for frequencies up to 100 Mc/s for the 0-9 db models or 65 Mc/s for the 0-90 db models can be supplied, if required.

Standard Telephones and Cables Limited

ENGLAND LONDON TRANSMISSION DIVISION


Method of using socket holder



Finished turret in holder, showing how indentations in top plate provide clearance for grounding terminal lugs of socket. The entire holder is mounted on shaft going through slanting base, for rotation past detent spring in foreground

locking of the turret in any of three positions for maximum convenience during assembly work.

A socket assembly is inserted by pushing the socket down through the punched metal top plate after orienting the socket mounting lug with the cutouts in the plate. Pushing downward against the springloaded central column permits rotating the entire socket slightly, so that the threaded inserts of the flanges click into smaller indentations to lock the socket in position. Other indentations in the top plate provide clearance for the grounding

THE DURO-POCKET STAMP

THE PIN & PEG

NEW! ENGRAVED Vinylite INSPECTION STAMPS

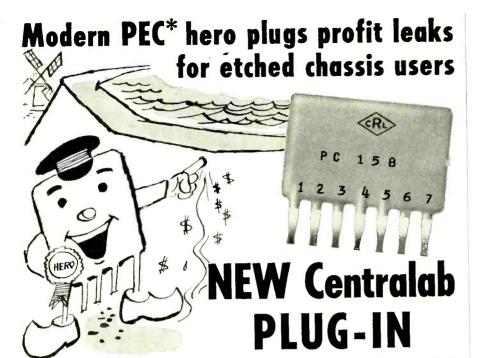
Are better than <u>rubber</u> 3 ways

ENGRAVED Vinylite IS ACID-PROOF

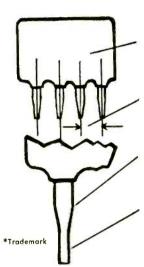
Acid etching inks, used for permanent stamping on metal and all non-porous surfaces will eat away at rubber.

Vinylite resists this action—gives longer life by far!

ENGRAVED Vinylite STAMPING GIVES RAZOR-SHARP IMPRESSIONS EVERY TIME


Opaque inks will clog shallow rubber stamp faces rapidly. Our deep-molded engraved VINYLITE stamp faces have more than three times the depth of ordinary rubber stamps. Markings always remain super sharp . . . an important advantage since this mark is a permanent record of your inspector's approval.

ENGRAVED Vinylite HAS CUSHION-LIKE RESILIENCE


Our VINYLITE molding process includes a timed curing that imparts to this versatile plastic all the elasticity of rubber. Resilient VINYLITE resists abrasive action, conforms to irregular surfaces . . . and lasts much longer!

Engraved Vinylite stamp faces are adaptable to any marking device. They can be used to stamp on every surface, metal, wood, fabric, paper, plastic, etc.

KRENGEL MANUFACTURING CO., INC.	
Dept. 1C, 227 Fulton St., New York 7, N.Y. CO 7-571	4
Please check the fallowing:	
Free Vinylite Sample Please have salesman call for appointment	
NAME	
COMPANY	
STREET	
CITYZONESTATE	

Printed Electronic Circuits now available with exclusive, fast-soldering tapered tab leads

Plug-in PEC's are 100% standardized ... for your immediate production use

- 30 STANDARD PEC PLATES PC-156, illustrated, contains 3 resistors, 4 capacitors. Eliminates 8 parts, 9 extra soldered points. Simplifies circuit board pattern. Cuts down size and cost of circuit board.**
- STANDARDIZED FOR FASTER LOCATING uniform tabs spaced .172" ctr. to ctr., or multiples of .172" ctr. to ctr. Uniform leads are .344" long, and .045 -.049" wide at base.
- STANDARDIZED FOR AUTOMATIC CENTERING twin taper tabs jam-fit in holes to hold plate away from chassis for above and below soldering. No accidental
- STANDARDIZED FOR POSITIVE SOLDERING tab ends shaped flat to facilitate accurate soldering. Terminals fit 1/16" dia. (round) or 1/16" x 1/16" square holes. One shot of a solder-gun or dip soldering completes the job.

Who but Centralab would you expect to introduce "firsts" like Plug-in PEC's . . . Centralab is the industry's only thoroughly experienced PEC engineering and production source.

**Need 100 or 1,000,000 Plugin PEC's? Centralab has 'em! Write for Bulletin EP-40 for complete details.

Standard PEC's with wire leads are available at your local CRL distributor — see Catalog 28.

Centralab

A Division of Globe-Union Inc. 914 E. Keefe Avenue • Milwaukee 1, Wisconsin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

Industry's greatest source of standard and special electronic components

terminal lugs on the socket. Removal of a finished unit is achieved by pushing the assembly down and rotating counterclockwise, just as for removing a bayonet-base lamp.

Flocking Waveguide Stands

FLOCKING of bases for waveguide stands cut job time to one fifth of that previously needed for glueing on felt pads and turned out a neater job, in the Palo Alto, Calif. plant of Hewett-Packard Co.

A silk screen setup was devised to apply the adhesive-not glue, but ordinary kitchen enamel the same deep green color as the flock. The enamel works well in the silk screen and gives a richer color to the felted base. While the paint could

Silk screen permits quick, even application of green kitchen enamel as flocking base on bottom of waveguide stand. Enamel works well in silk screen, gives rich color to the green flock

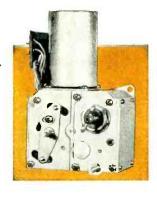
Four flocked stands come out after 15-20 sec agitation in standard flocking box. Note snap-on holding fixture

COLLINS AUTOTUNES* AND AUTOPOSITIONERS

Precision re-positioning devices for application in electronic and industrial equipment requiring accurate multiple channel pre-set control

THE Collins Autotune has long been the basis for both remotely and directly controlling automatic tuning of high quality, military and commercial communication equipment. It is also applicable to the design of many other industrial and electronic equipments. Variable pre-set positions are chosen by the operator — when once set, the Autotune automatically returns to the selected position with an accuracy unmatched by any other means.

Collins AUTOTUNE SYSTEM COMPONENTS —


for variable pre-set positioning of multiple shafts incorporating several Autotunes driven by one motor.

Singleturn Autotune Head

Collins PACKAGED AUTOTUNE

automatic repositioning device suitable for many applications in industrial control and radio equipment . . . positions one shaft or multiple shafts.

Multiturn Autotune Head

Autotune Control Unit

Collins AUTOPOSITIONER —

for use where up to 20 or more pre-determined fixed positions are needed. Both packaged and individual Autopositioners are available.

For complete information on Collins Autotunes and Autopositioners, contact the nearest Collins office. You will receive prompt attention.

Reg. U.S. Pat, Off.

COLLINS RADIO COMPANY Cedar Rapids, Iowa

11 W. 42nd Street, NEW YORK 36 1930 Hi-Line Drive, DALLAS 2 2700 W. Olive Avenue, BURBANK

... BE ASSURED OF DEPENDABLE QUALITY!

The Services of our Engineering Department are Available on Request, WRITE TODAY!

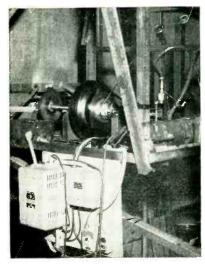
Automatic Electric MFG. co.

62 STATE STREET . MANKATO, MINN.


be applied by hand, the silk screen does a faster, evener job.

The stands are slipped on holding fixtures in the standard flocking box, four at a time, for an agitation period of 15 to 20 seconds using the longest fibred flock available ($\frac{1}{16}$ inch).

Lifting Aids for Large Picture Tubes


A COUNTERBALANCING lifting aid fitted with a live vacuum suction cup aids operators in handling 27-inch all-glass picture tubes weighing 45 pounds each, in the Syracuse, N. Y. plant of General Electric Co. The equipment relieves the operator of heavy work, allowing him to concentrate on guiding the bulb into and out of the processing equipment.

Counterbalancing is achieved in one setup by running the lifting cable up over pulleys to a power unit consisting essentially of a variable-speed electric motor driving a fluid transmission. This ar-

Lifting aid employing single vacuumpowered suction cup in conjunction with counterbalancing system employing motor-driven fluid transmission. Thumb of operator is on trigger button which is pushed to release vacuum after picture tube has been transferred to a rack or a conveyor cradle

rangement automatically applies the required lifting force to counterbalance the load being handled. The power unit is located on a platform suspended from the ceiling. Also on this platform is the vacuum pump for the suction cup. The lifting cable and control wiring feed out to a boom and then down to the desired operated point. The fluid transmission is the conventional automotive type, modified for belt drive from an electric motor on

Under-ceiling platform supporting motor-driven counterbalancing units and vacuum pump. Lifting cable runs from drum on fluid transmission upward over pulleys to a boom (not shown) which swings over operator's working area

one side, with the cable drum on the other side.

A trigger button releases the vacuum to permit removal of the suction cup. An electric cable coming down along with the vacuum hose goes to a switch near the trigger button, used for starting and stopping the lifting button that automatically counterbalances the weight of the picture tube. This vacuum lifting aid was made by the Equipment Development Works, General Electric Co., Schenectady, N. Y.

In another setup for 27-inch tubes, lifting is done with a commercial air motor hoist made by Ingersoll-Rand, available from mill supply houses. Here two suction cups are used, to minimize the swinging of the picture tube as it is raised. A separate three-way control valve held in the operator's right hand is connected to the lift-

Announcing a complete line of Deposited Carbon Resistors HERMETICALLY SEALED

.25 watt to 2 watt ratings

Mepco presents a complete line of **Hermetically Sealed** deposited carbon resistors with ratings from .25 watts to 2 watts.

These are not the usual varnish coated types. Instead, they are completely sealed in steatite housing, which assures positive moisture protection.

Also available are resin coated types manufactured to MIL-R-10509A, glass enclosed and helium filled high stability types, and high frequency rod and disc units.

Write for complete information. Fill-in and mail the coupon today.

MEPCO,	INC.
New Jersey	Please send me information on Mepco deposited carbon resistors. Please send me information on Mepco wire wound resistors. NAME
	STREETSTATE

THREAD PRECISION AND UNIFORMITY INSURED WITH CRAMER TIME CONTROL

The threading accuracy of this Steinle Roll Threading Machine is directly related to the highly dependable Cramer Timers which govern the roll slide movements. This carefully predetermined slide travel must be extremely accurate in order to insure thread precision and uniformity.

The Cramer TE Timer, at left, controls the time of dwell of the roll slide in its forward position, while the one at right dictates the exact loading interval. A simple adjustment of either timer permits slowdown or speed-up of the action. Cramer-controlled threading operations on the Steinle machine

have been speeded to 40 complete cycles per minute without sacrifice of thread accuracy. There has never been a report of timer failure.

The Steinle Machine is widely used by aircraft manufacturers and others who require extremely accurate threads. Cramer Timers are specified as original equipment for these machines due to their unusually high standards of accuracy and dependability.

If you have a time control problem, Cramer can help you. Write for complete information or technical advice.

The overall accuracy of the Type TE (inclusive of setting) is within 2%, with repeat accuracy within 1/2 of 1%. The unit is Underwriters' Laboratories listed for use in industrial control equipment.

A "look inside" will show you why you can always depend on Cramer for outstanding performance. Check the "inside" facts, today.

SPECIALISTS IN TIME CONTROL

the R. W. CRAMER CO., INC.

BOX 3, CENTERBROOK, CONNECTICUT

Lifting aid using air motor hoist and two ordinary vacuum cups that do not require a vacuum line. The three hoses control the air-type hoist motor overhead. At right is the vacuum-type spinning chuck

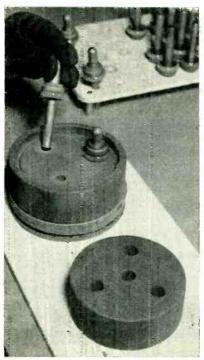
ing unit with three lengths of rubber hose. One hose supplies air to the valve, one is for up and one is for down. Fingertip valves on the control bleed air into the cups to release the picture tube. When attaching the cups, the operator needs to apply only a slight pressure to make them grip the glass; no vacuum line is employed with the cups in this instance. Fingeractuated levers just above the cups operate tiny valves that bleed air into the cups to release the picture tube.

A single vacuum cup serves in conjunction with four rubbercovered positioning rods to hold the picture tube at a downward angle while it is being rotated by an electric motor through a gear reduction box when applying a conductive coating to the inside walls. The vacuum is applied to the suction cup through a rotating fitting. The operator releases the vacuum with a foot pedal while holding the tube with both ends, when transferring the tube from the spinning chuck to the wood fork on which it rests temporarily while he attaches the air motor hoist fitting.

Setscrew Fittings for Pipes Speed Plant Alterations

COMMERCIALLY-AVAILABLE Nu-Rail alloy fittings make it possible for regular plant maintenance crews at General Electric's picture-tube plant at Electronics Park, Syracuse, N. Y., to erect fencing, guard rails and similar units, using regular pipe for the horizontal and vertical members.

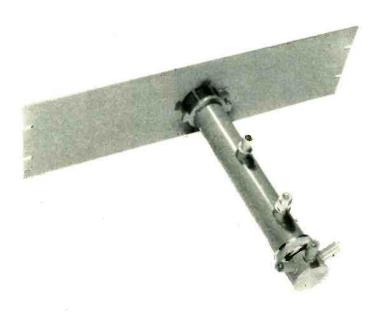
The fittings are made in many


Top fitting for post of pipe fence surrounding picture tube storage area

standard designs by Hollaender Mfg. Co., Cleveland, Ohio, to be used at corners, cross-overs, floor flanges, stair-railing mountings and other installations. Pipe lengths are held in position by set screws which permit rapid changing when necessary.

Molding Tube Stems with Powdered Glass

HEAVY STEMS for Amperex type 6333 10-kw triodes are now produced with integral sealed-in copper terminals by means of a powdered glass technique developed in this firm's Hicksville, N. Y. plant.


The first step in the molding tech-

Loading terminals in mold

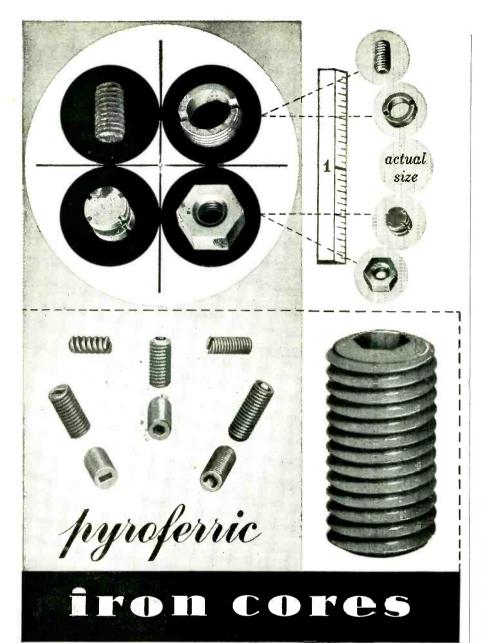
Amerac's new...

KLYSTRON CAVITY OSCILLATOR

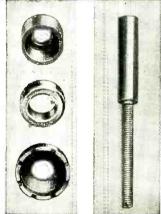
The type 198 Klystron Cavity Oscillator is a signal source designed to accommodate the Sylvania 6BL6 and 6BM6 Klystrons. Utilizing both tubes and two modes of operation, it is possible to generate a CW signal tunable over a frequency range from 1KMC to 4KMC. For the exact frequency range of each tube in either of its modes, as well as power output, consult the Sylvania specification sheets for 6BL6 and 6BM6 Klystrons. It is possible to gain full performance from these tubes in the type 198 Cavity Oscillator because the precision machined component parts of the best quality materials available have been held to exacting requirements of accuracy.

FEATURES

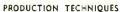
- A tuning accuracy in the center frequencies of ± 1 MC, made possible by the precision machined tuning mechanism incorporating a Root counter for ease of calibration and observation.
 - A quick release tube socket assembly, making tube changing a simple operation.
 - A standard rack panel machined for secure attachment of the cavity, assembling neatly into your equipment.
 - Silver plated conducting surfaces providing high radio frequency surface conductivity; Rhodium flash preventing corrosion.
 - Female type N coaxial output connection.


Overall size, including panel, is 19" wide, 51/4" high, 12" deep. Finish is smooth gray or black lacquer on cavity, with nickel plate trim, and gray or black baked wrinkle enamel on panel.

Shipped with tubes, if desired, at extra cost.


Amerac Incorporated

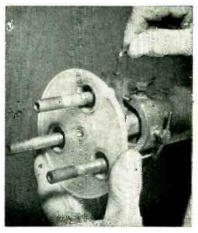
116 TOPSFIELD ROAD
WENHAM, MASSACHUSETTS

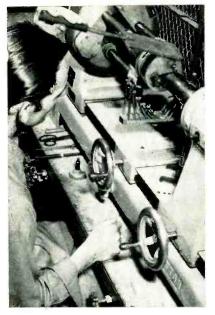


PYROFERRIC IRON CORES are scientifically manufactured, under strictest quality controls to close electrical and mechanical tolerances.

PYROFERRIC services are available for the engineering of your core production requirements... your letterhead request will bring you M.P.A. Data Sheets and tables which give complete information including recommended sizes and tolerances, as well as a cross-referenced index of manufacturers' material designation.

(continued)


Pouring powdered glass in mold


Leveling powdered glass

nique involves loading the heavy solid copper terminals in the combination graphite and ceramic mold for the stem. These terminals have previously been coated with glass in the region where they are to pass through the stem. The glass exhaust tubulation, with a spring inside to prevent it from collapsing, is then inserted in the center hole of the mold.

A measuring cup is now filled exactly level with powdered glass that has previously been prepared by grinding the required grade of

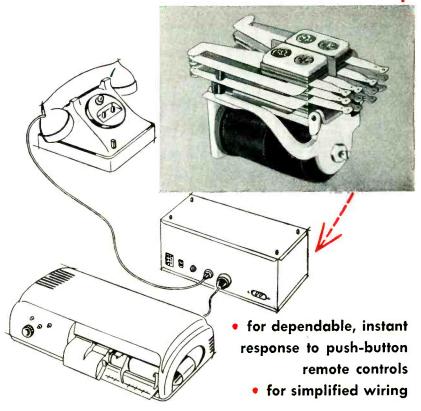
Locking finished stem on tailstock arbor of glass-blowing lathe

Sealing stem to envelope on lathe, with operator using paddle to true up the seal while glass is soft

glass. This powdered glass is carefully poured into the mold and distributed evenly around the terminals with the aid of an artist's brush. The mating top cover of the mold is now placed over the terminals and the mold is placed in an oven for heating sufficiently to fuse the glass.

The completed stem, after cooling, is locked in position on the tailstock of a Litton Industries model HSA standard glass-blowing lathe. The glass envelope is mounted on the headstock arbor and fused to the molded stem in a conventional manner with gas flames.

Switching Production Heads Gives Plant Savings


By BENNO BORDIGA

Director of Manufacturing
Olympic Radio & Television, Inc.
Long Island City, N. Y.

THE PROBLEM of occasional interdepartmental friction on various levels of production in the Long Island City plant of Olympic Radio & Television, Inc. was largely solved by an experiment called "Operation Switch". This involved switching department heads for two days, to give each a deeper insight into the problems of the others.

At one of the regular monthly staff conferences, the idea was outlined. It was emphasized that this

Dictaphone Telecord central dictation system uses **STERLING RELAYS**

Complete remote control of the recording machine, assured privacy, and a substantial reduction in the required number of connecting circuits are made possible by Dictaphone's use of 12 relays in the Telecord control unit, plus one in each dictation instrument. To maintain high standards of quality and performance, Dictaphone uses standard Sterling Type GS Relays to fit exactly the needs of its circuits.

Whatever your product's requirements for relays, standard or special, it will pay you to submit your specs to Sterling!

General Specifications Sterling Type GS Relays

COIL—Single or double wound up to 220 volts D. C. • SPRING ASSEMBLY—Up to 10 springs per pile-up, in any arrangement • CONTACTS—All types up to 3/16" diameter • RESIDUAL—Adjustable screw • OPERATE TIME—.005 to .050 sec. • RELEASE TIME—.010 to .100 sec. • MOUNTING—2 or 4 #8-32 or #6-32 tapped holes • DIMENSIONS—2½"x 1½"x 1-1/16" maximum • WEIGHT—6 to 10 oz.

They're relays YOU can rely on!

STERLING ENGINEERING COMPANY, Laconia, N. H.
Subsidiary of

AMERICAN MACHINE & FOUNDRY COMPANY
New York
AMF Products are better...by design

STER	RLING	S EN	IGINEERI	NG	CO.
54	Mill	St.,	Laconia,	Ν.	Н.

Please send your 28-page Sterling Relay catalog to

NAME

POSITION_____

ADDRESS_____

NEW Berkeley 1 MEGACYCLE1 MICROSECOND

Universal Counter & Timer

Four extended-range precision instruments at the size and price of one! Drives digital printer, IBM card punch converter, or digital-to-analog converter!

Berkeley's new Model 5510 Universal Counter and Timer provides the functions of counter, time interval meter, events-per-unit-time meter and frequency meter in one compact instrument. It will:

- (1) Count at speeds to 1,000,000 counts per second.
- Count events occuring during a selectable, precise time interval.
- Measure time intervals in increments of 1 microsecond over a range of 3 microseconds to 1,000,000 seconds.
- Determine frequencies and frequency ratios, from 0 cps to 1 megacycle.
- Provide a secondary frequency standard (stability, 1 part
- Operate directly into (a) the new Berkeley Model 1452 single-unit printer, (b) Berkeley digital-to-analog converter, or (c) Berkeley data processer driving IBM card punches, electric typewriters, or teletype systems.

CONDENSED | SPECIFICATIONS

Input Sensitivity: 0.2 v. rms (Freq. meas.); 1.0 v. peak to peak (other functions)

Input Impedance: 10 megohms shunted by 35 mmf. Time Bases: 1 mc; 100, 10, and 1 kc; 100, 10 and 1 cps. Gate Times: .00001, .0001, .001, .01, 0.1, 1.0 and 10 seconds Crystal Stability: 1 part in 10% (temp. controlled)

Display Time: 0.2 to 5 seconds

Accuracy: ± 1 count, ± crystal stability

Power Requirements: 117 v. (± 10%), 50-60 cycles, 400 watts Dimensions: 2034" wide x 101/2" high x 15" deep; panel, 834" x 19" Price: Model 5510, \$1,100.00 (f.o.b. factory).

Available for prompt delivery. Wire or write for technical bulletin, application data (see opposite page); please address dept. G4-1

Berkeley division

BECKMAN INSTRUMENTS INC.

was not being done to belittle or show up inefficiencies in any department, but rather to get a fresh approach to dormant problems which might have existed for some time. Conferences would be held between each foreman and his stand-in after the experiment, in order to discuss on a close and friendly basis their various findings.

Initial Planning

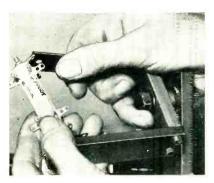
After successfully selling the idea to the department heads, top management was skeptical but cooperative. The day before the actual experiment, a conference was called and each department head was instructed to have a two-hour conference with his stand-in in order to acquaint him with the proper functioning of his new department.

On the day of the actual switch an air of excitement prevailed throughout the organization. Each new man tackled his assignment with enthusiasm. During the afternoon, another short conference was held and a general appraisal of the situation was obtained. The success of the experiment can be measured best by the fact that most of the men involved asked for an extension of the experiment in order to study the problem much more closely.

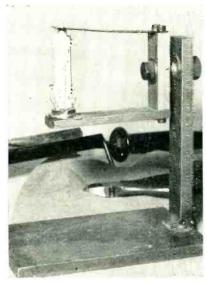
Final Evaluation

Three days after the two-day experiment, a general conference was called to evaluate results. The most apparent result was a complete physical clean-up of the plant, since no department head wanted his section to appear in an unflattering light.

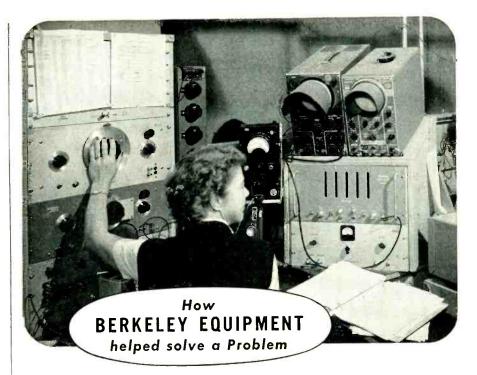
In addition, many problems which had just been pushed aside from week to week were aired. Many evesores to which department heads had grown accustomed were rediscovered by their stand-ins. maintenance staff was busily occupied for the next six-week period in an effort to catch up with the many maintenance problems which were thus discovered.


The total expense involved in this experiment, which by the end had received the enthusiastic approval of everyone, was a negligible cost

of conference time, which would amount to approximately 8 hours per man involved. Against this is an estimated saving of \$50,000 per year occurring from production-line suggestions made by those seeing departments in a new light on a king-for-a-day basis.


Since the experiment, a new spirit of understanding and cooperation has prevailed amongst department heads, who now view each other's problems with renewed respect. Numerous requests have been made to continue this experiment on a semi-annual basis.

Three-Size Turret Jig


Use of a spring-steel leaf as one holding member on a rotating jig permits use with the three most common sizes of turrets attached to tube sockets. To insert a unit for subassembly work, the operator sets the socket end into a drilled recess in the rigid member of the

Inserting empty turret in jig

Turret in position on jig

for Lenkurt Electric Co., San Carlos, Calif.

PROBLEM: Increasing speed and accuracy in determining characteristics of filters and meshes at production-line test stands. Required: determination of frequency to an accuracy of \pm 1 cycle.

SOLUTION: Use of a BERKELEY EPUT (Events-Per-Unit-Time) Meter to determine frequency, displaying results in direct-reading digital form, with an accuracy of ± 1 cycle.

RESULTS: Frequency checks are now made in 30 seconds, as against 5 to 10 minutes formerly required. Previous high possibility of error now virtually negligible. Substantial reduction in training required for test stand operators.

May we help solve your problem? If it involves faster, more accurate, easier and simpler ways to measure frequency, flow, pressure, velocity, rpm., time intervals, viscosity—or high speed counting and counting plus pre-set control—chances are that BERKELEY can help you solve it. Complete data sheets covering many applications in these fields are yours for the asking—check the handy coupon below and mail it now!

M-22

Berkeley		N INSTRI	UMENTS INC.
Dept.G-4, 2200 Wright Ave., Richmond, Calif. Please send me application data sheets checked	i (-	□ Velocity
Name		COUNTING	
Address		CONTROL OF:	
CityState		□ Packaging a	and Batching

mc Coy PRESENTS ...

(shown

actual size)

TWO NEW ANSWERS TO "TOO OLD" PROBLEMS McCOY "McMITE" SUB-MINIATURE
CRYSTAL M-20

The McCoy M-20 "McMite" is a Subminiature hermetically sealed unit which delivers the same performance as a regular sized crystal, yet takes up just one-fifth the space formerly required.

The M-20 "McMite" Subminiature crystal meets Military characteristics and performance requirements for fundamental operation above 10 mc and overtone operation above 15 mc without any sacrifice of sta-

bility or dependability.

Now available for engineering and production quantities.

> FREQUENCY RANGE 10.0 mc to 110 mc

(OCTAL) (LOCTAL)

2/2

CRYSTAL OVENS

MO-1 (OCTAL)

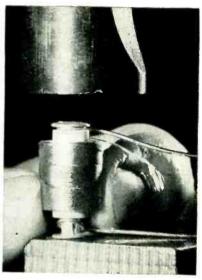
.018"DIA.

Hermetic or gasket seal. Holds 1 or 2 McCoy M-1 (HC-6/U) crystal units. Temperature: 65°C to 85°C (adjustable). Sta-

bility: ±5°C from nominal. Ambient Ranges: -55°C to 5°C below nominal. Power: less than 6 watts. 6, 12 or 24 volt operation.

MO-1L (LOCTAL) see description MO-1

One or the other of these McCoy Ovens is the answer to the problem of maintaining close temperature control in all transmitting and receiving equipment mobile, railway, marine and aircraft



Write, wire or call us for full information on these or any other of your crystal requirements.

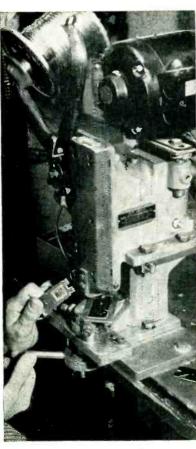
ELECTRONICS COMPANY MT. HOLLY SPRINGS, PA. holding jig, then bends up the spring leaf and brings it down over the projecting center bolt of the turret.

The metal upright of the jig is welded to a heavy metal plate serving as a weighted base. A small coil spring is placed on the pivot bolt between the upright and the rotating arm, to provide sufficient friction for holding the assembly in a desired position while permitting easy change of position. This simple jig is used in the Redwood City, Calif. plant of Ampex Electric Corp.

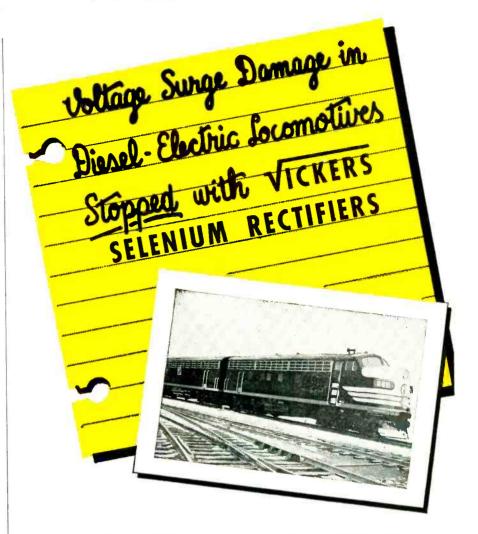
Snap-In Mounts Serve as Resistor Terminals

Pressing snap-in terminal into ceramic sleeve of finished coil on arbor press after first placing eyelet of formed lead over Tri-mount. Terminals are applied one at a time to insure accurate positioning

CHANGEOVER to a multiple winder for resistor coils necessitated use of leadless ceramic forms. This created the problem of adding terminals to the forms, as those previously used came fitted with leads.


The problem was solved in the plant of Hewlett-Packard Co., Palo Alto, Calif. by pressing United Carr Tri-mounts through eyelet leads into the ends of the ceramic form after winding, to serve as terminals. The terminals are pressed into the forms with the aid of an ordinary hand-operated arbor After winding ends are cleaned and wrapped around the

terminals and leads, the joints are made permanent by dip-soldering.


Although changeover from oneat-a-time winding to the four-coil multiple winder increased setup time and involved the extra terminal-mounting operation, the new machine cut over-all time per component in half.

Staples Serve as Conductors for Etched I-F Coils

Connections to inner ends of etched coils for 40-mc video i-f components are made at high speed and low production cost with a stapling machine to which has been added a sliding two-position anvil unit. The electric-motor-driven machine, made by New Jersey Wire Stitching Machine Co. of Camden, N. J., draws wire from an overhead reel and converts it into staples that are driven through previously punched

Applying conductors to back of etched if coil strip with stapling machine. One staple has already been applied, and operator has swung anvil around to correct position for other staple

PROBLEM

New diesel-electric locomotive designs required control circuits able to withstand highly repetitive "make-and-break" service, with minimum maintenance. Unless protected from high-voltage surges, characteristic of this type service, contactors would require too-frequent maintenance and replacement as a result of arc damage.

SOLUTION

Vickers engineers designed selenium rectifier "safety valves" to fully protect the circuits. Dependable Vickers Rectifiers absorb the voltage surges, safeguarding vulnerable equipment. Vickers experience in producing quality rectifiers, and in engineering rectifiers to product problems, helps keep the diesels rolling.

In hundreds of applications, Vickers Selenium Rectifiers provide the economical, dependable solution to circuit protection and DC supply problems. When your plans for product development or improvement call for improved circuitry, consult experienced Vickers rectifier engineers. There's no obligation.

VICKERS ELECTRIC DIVISION

A UNIT OF THE SPERRY CORPORATION
1801 LOCUST ST. • ST. LOUIS 3, MISSOURI

IN STOCK NOW!

CHICAGO

hermetically sealed

400 CYCLE

7RANSFORMERS

TRANSFORMERS

that meet MIL-T-27:
that meet specifications

CLASS B* specifications

*85° Ambient-40° Rise.

These rugged, compact transformers have been designed in close cooperation with organizations directly concerned with the development of standards for aircraft communication, guided missile and related equipment. They are engineered to meet future, as well as current requirements for 400 cycle power supplies.

POWER TRANSFORMERS (All primaries 105/115/125 V., 380-1000 cycles)

HIGH VOLTAGE A.C. Volts	SECONDARY D.C. Ma.	RECTIFIER Volts	FILAMENT Amps.	OTHER Volts	FILAMENTS Amps.	CATALOG NUMBER
270-0-270	55	5.0	2	6.3 CT	2	4PHC-55
335-0-335	70	5.0	2	6.3 CT	3	4 PHC-70
375-0-375	120	5.0	3	6.3 CT	4	4PHC-120
440-0-440	165	5.0	3	6.3 6.3 6.3 6.3	7.5 3 3 0.6	4PHC-165
450-0-450	200	5.0	2	6.3 6.3 6.3	4 4 0.6	4PHC-200A
550-370-75-0- 75-370-550	300	5.0	6	6.3 CT 6.3 CT	5	4PHR-300

FILTER REACTORS

(henries)	MAXIMUM D.C. Ma.	D.C. RESISTANCE (ohms)	INSULATION VOLTS RMS	CATALOG NUMBER
2.0	55	160	2,500	4RH-255
2.0	70	240	2,500	4RH-270
2.0	120	105	2,500	4RH-2120
2.0	165	80	2,500	4RH-2165
2.0	200	77	2,500	4RH-2200
2.0	300	49	2,500	4RH-2300

FILAMENT TRANSFORMERS (All primaries 105/115/125 V., 380-1000 cycles)

SEC. VOLTS	SEC. AMPS.	INSULATION VOLTS RMS	CATALOG NUMBER
6.3 CT	3	2,500	4FH-63
6.3 CT	5.5	2,500	4FH-65
6.3 CT	10	2,500	4FH-610
6.3 CT	20	2,500	4FH-620

Write for Chicago Bulletin #32 listing more complete specifications on these units, specially designed for 400 cycle, high-temperature operation.

the World's Toughest Transformers

CHICAGO STANDARD TRANSFORMER CORP.

3501 ADDISON STREET . CHICAGO 18, ILLINOIS

holes in the etched copper-clad plastic sheet.

A rotating two-position anvil, manipulated by a lever under the bench, permits precise application of staples in two different positions on strips having two coils. The staples serve to bring the inner lead of each coil out to the edge and connect it there to printed conductors going past the coils to the printed terminals of the unit. The stapling technique eliminates etching of conductors on both sides of the strip.

After stapling, each strip is held face up over a vertically mounted soldering iron, with the back of each staple resting in turn on the iron. Solder is applied to the clinched ends of the staples on the etched side, connecting staples to conductors securely.

Welding Techniques for Gold-Plated Grid Wire

THE OPERATION of winding grids for type 5894 twin tetrodes in the Hicksville, N. Y. plant of Amperex Electronic Corp. required development of special welding techniques for the 0.00024-inch gold-plated wire used.

The first step involves placing molybdenum grid rods in the grooved corners of the copper mandrel, which is designed to hold the rods in position automatically. The grid wire is now anchored at one end of the mandrel and the winding machine is started. A glass rod with a fine center hole is mounted

Welding nickel band around ends of grid on mandrel of winder

Using roller electrode to weld grid winding to moly rod

on the feedscrew-driven guide to give the required spacing between turns. Pulleys and an intricate automatic tensioning system maintain essentially uniform winding tension to minimize breakage of the delicate wire during winding.

After the winding has been completed and anchored, a nickel strap is welded around each end of the grid to the four rods, using a flow of nitrogen gas at the weld to stop oxidization of the nickel. The copper mandrel serves as the other electrode for welding. Spot welding is used here, with a pressure switch built into the hand-held welding electrode to start the electronic timer automatically each time the

Method of rocking roller electrode over grid for welding wires

- PHASE SHIFT COMPENSATION
 - NEGLIGIBLE DISTORTION
- . HIGH VOLTAGE OUTPUT LEVEL

a general purpose laboratory power amplifier featuring low distortion, low noise and excellent phase characteristics throughout the frequency range from 50 cps. to 50 kc. A choice of four outputs available to match various loads (5, 25, 200 or 1200 ohms). The 511A Power Amplifier is especially useful as a test driving source for tachometers, synchros, small motors, choppers, electro-mechanical devices and, with an audio frequency signal generator, as a power oscillator.

At rated frequencies and gain settings the overall phase shift is small. A special feature is the phase compensation circuit which permits the overall phase shift to be maintained at a constant value with varying gain. Harmonic distortion and intermodulation distortion are low. Output voltage up to 120 volts into a 1200 ohm load. Operates into loads varying from pure resistance to pure reactance.

The flexible system of phase shift control makes the 511-A Power Amplifier ideal for use in conjunction with phase measuring equipment as a power source in the investigation of phase characteristics of transmission lines, transformers, filters or equalizing networks, saturable reactors, magnetic amplifiers, and in acoustical measurements

SPECIFICATIONS:

Output Characteristics and Gain (for 0.5% max. allowable harmonic distortion):

OUTPUT SELECT	OR E out Max.	Voltage		P out Max.
(Front Panel Co	ntrol)	Gain	Optimum Load	out
Position 1	8 volts	1.4	5 ohms	12.8 W
Position 2	18 volts	2.8	25 ohms	13.0 W
Position 3	55 volts	8.0	200 ohms	15.1 W
Position 4	120 volts	21.0	1200 ohms	12.0 W

INPUT IMPEDANCE: 100 K ohms shunted by approximately 10 uuf.

Frequency 8 Power

Oscillator

511-A

FREQUENCY RESPONSE: At 10 watts or less output, essentially flat from 50 cps to $30~\rm kc$, down $0.5~\rm db$ at $50~\rm kc$. At $10~\rm to$ $16~\rm watts$, essentially flat from $50~\rm cps$ to $30~\rm kc$, down $1.0~\rm db$ at $50~\rm kc$.

HARMONIC DISTORTION: At 10 watts or less output, less than 0.5% total harmonic distortion (rms). At 10 to 16 watts output, less than 1.0% total harmonic distortion (rms)

PHASE SHIFT: $1.0^{\circ} \pm 1.5^{\circ}$ from 50 cps to 10 kc.

Phase shift may be compensated at any single frequency to remain constant for all gain settings. Phase shift may also be made zero for a single frequency and a single gain setting.

INTERMODULATION DISTORTION (rms): Less than 0.5% from 50 cps to 15 kc for difference frequency of 150 cycles.

OUTPUT REGULATION: $\pm 5\%$ of rated output voltage from optimum load to open circuit on all ranges.

HUM AND NOISE: Less than 15 mv, with input shorted.

TECHNOLOGY INSTRUMENT CORP.

533 MAIN ST., ACTON, MASS., ACton 3-7711

Speeding Electronic Progress

through CRYSTAL

RESEARCH

The new JK-G9A extends the advantages of glass enclosed crystals to the mediumfrequency range between 1200 kc and 5000 kc, providing a superior crystal for many applications in VHF and UHF equipment, frequency standards and monitors, and other precise requirements. The crystal operates in a vacuum, free of contamination and protected from its environment. The unit has excellent mechanical ruggedness. The crystal plate is custom designed for each application and is capable of performance far beyond previously available types. The unit may be designed for maximum stability over a wide temperature range, or temperature controlled in the JKO7E oven. Approximate height, above chassis, 2.375". Maximum dia. of octal base, 1.260". Consult us on specific applications.

electrode is pressed against the nickel strip. Either two or three cycles of current are used for welding.

Next, a continuous-duty roller welder segment is rocked over each of the four moly rods in turn to weld the gold-plated grid winding to the rods. Here also a stream of nitrogen is directed at the weld from a glass tube taped to the roller electrode. The flexible welding cable for the roller is encased in rubber tubing to prevent contact with the winding machine, since the mandrel is against the other electrode.

Both types of electrodes are frequently dipped into a pan of alcohol during use, to keep them cool and clean.

Cement Adhesion Tester For Receiving Tubes

By W. P. KOECHEL
Director of Quality Control
Tung-Sol Electric Inc.
Bloomfield, New Jersey

A LARGE percentage of radio receiving tubes utilize cement to fasten the glass to the base. The quality department must have complete assurance that any day's batch of cement is acceptable. For this reason, random samples of the tubes are subjected to an 18-hour im-

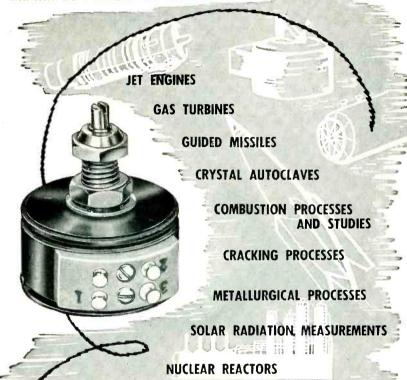
Setup for torque-testing tube bases to determine adhesive qualities of cement. Brass block on tester has hole arrangements for six different types of bases

TYPE

3579,545 KC

Setup for testing top-ccp cement. Torque is applied by weight on rod just back of tube

mersion test in water at 50 C. After immersion in the water the tubes are subjected to a torque test to determine the adhesive qualities of the cement. The device used to torque-test tube bases consists of a pivoted socket on which is attached a fulcrum with a weight at the end. The tube base is inserted into the pivoted socket, and the operator (wearing a leather glove) then twists the glass envelope of the tube until the fulcrum is horizontal. At this point the



Top-cap torque-tester used on production line. Cap is rotated counterclockwise while inserting in hole, then rotated clockwise. This causes an offcenter roller inside, spring-pushed in a clockwise direction, to wedge between the cap and the hub for gripping the cap-

. . . ideal for calibration, balancing, bias adjustment and similar functions in circuitry of Thermocouples, Pyrometers, Bolometers, or Strain Gauges making accurate measurements in high ambient temperature.

Typical operations where the high temperature characteristics of this potentiometer are most useful are in association with instrumentation of:

The ambient temperature range is -55° C to $\pm 145^{\circ}$ C. Stability is assured by preaging through temperature cycling. Rugged construction resists deterioration due to shock, vibration, humidity, salt spray, and corrosive atmosphere. High resolution permits precise setting.

SPECIFICATIONS:

Standard Resistance Values: 100, 200, 500, 1,000, 2,000 and 5,000 ohms. Other values to $25,000\Omega$ available upon request.

Rated Temperature Coefficient of Resistance Wire: .00002 parts per °C. Dielectric Strength: Units tested for 1000 V. DC breakdown for 5 seconds.

Dissipation: 2 watts at temperatures up to 80°C., derated linearly from 80°C to zero

Ganging: at 145°C. Sections of

Sections may be combined in ganged assemblies on a single shaft. Onepiece stainless-steel clamp-ring permits precise phasing among ganged

sections.

Mounting: Threaded bushing. Shaft locking device provided.

Write now for detailed specifications.

TECHNOLOGY INSTRUMENT CORP.

533 MAIN ST., ACTON, MASS., ACton 3-7711

lower priced FOCOMAG USES SINGLE FERRITE MAGNET

Another HEPPNER First

- Lower priced, compact. Cuts receiver costs. Uses only ONE ferrite magnet (an exclusive feature).
- Superior focusing more uniform field. The sintered ferrite is extremely uniform throughout. Focuses all tubes up to 27".
- Completely shielded. No harmful external field.
- Extended focus range has very fine adjustment to exact focus.
- Built-in centering device.
- Flexible nylon adjusting shaft eliminates breakage.
- Picture positioning lever. You specify mounting arrangement.

Lower your set costs with this NEW FOCOMAG. Write today for further information.

HEPPNER

Round Lake, Illinois (50 Miles Northwest of Chicago)

SPECIALISTS IN ELECTRO-MAGNETIC DEVICES

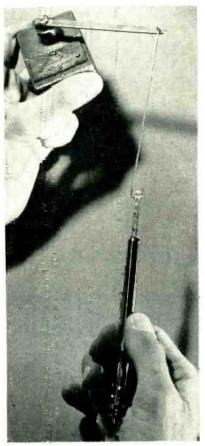
Representatives: John J. Kopple 60 E. 42nd St., New York 17, N. Y.

James C. Muggleworth 506 Richey Ave., W. Collingswood, N. J.

Ralph Haffey R. R. 1, U. S. 27, Coldwater Rd., Ft. Wayne8, Indiana

Irv. M. Cochrane Co. 408 So. Alvarado St., Los Angeles, Calif.

Inside of top-cap torque gage, showing how stiff flat spring bearing against gear provides friction equivalent to desired torque. Screw threaded through housing of gage bears against spring and can be adjusted to change torque


base is being subjected to a torque of 30 in.-lb. If the base should come loose at any intervening point, the fulcrum immediately drops back, but an idler indicator remains stationary, indicating on the scale at which point the base came loose.

A similar device is used to torque-test the top-cap cement of a tube. The scale here is calibrated up to 6 in.-lb.

As a quick test on the production line a different torque test device is used. The operator merely inserts the tube cap into the opening and gives the tube a few turns. In so doing, the top cap is subjected to exactly 2 in.-lb of torque.

Inside this device is a gear which is fastened to the same shaft that holds the chuck, along with an adjustable spring which engages with the gear and creates friction. Depending on the spring adjustment, a wide range of torque values may be obtained.

To calibrate this torque device, a small stud (the same diameter as the tube cap) has attached to it a fulcrum exactly 4 inches long. At

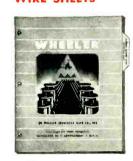
Method of using spring scale to calibrate top-cap torque gage. Flat lever arm has stud shaped like tube top cap, fitting into hole in gage

the 4-inch point there is a small hole which permits engagement of a calibrated spring tension tester. The scale of the spring tension tester is read during calibration at the particular moment when the fulcrum arm slips. Thus, to get 2 in.-lb of torque the spring on the side must be adjusted so that the fulcrum slips at the precise moment that the scale reads 8 ounces.

Screen-Bake Oven for Picture Tubes

A WOVEN-WIRE conveyor belt moves television picture tubes through a 103-foot oven used in DuMont's Clifton, N. J. cathode-ray tube Temperatures inside the oven can be as high as 600F for baking the screens inside the tubes.

At the loading end of the oven, tubes with freshly coated screens are placed on supports made from iron rods, to which are attached small blocks that serve as rests. The



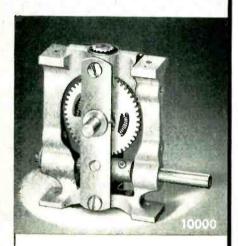
Today, with many new types of insulation available . . . new standards and specifications .. new test and quality control procedures . . . Wheeler's 43 years of experience as magnet wire manufacturing specialists may be very helpful in deciding the best type of wine to use for your particular applications.

Wheeler, as a division of The Sperry Corporation, has developed an engineering staff exceptionally skilled in the magnet wire needs of precision electrical and electronic equipment manufacturers, with special emphasis on the smaller wire sizes and close control of electrical specifications. Production-wise, our exceptional facilities carry through from raw copper wire to the finished, insulated and tested product . . . under one roof and under one high standard of quality control every step of the way.

Your problems in Magnet Wire may safely be entrusted to our experts . . . whether standard or special . . . and including completed coils, transformers and other wire-wound components. We welcome your inquiries.

SEND FOR NEW MAGNET WIRE SHEETS

We will be glad to send you this practical engineering data tolder. Just give us an outline of your standard or special needs.


MAGNET WIRE COILS COMMUNICATIONS **EQUIPMENT TRANSFORMERS**

MAKES THESE PRODUCTS A Specialty

THE WHEELER INSULATED WIRE COMPANY, INC. Division of The Sperry Corp. • 1101 EAST AURORA ST., WATERBURY 20, CONN.

13WH53

Designed for Designed for Application

The No. 10000 WORM DRIVE UNIT

One of our original Designed For Application products, tried and proven over the years. Rugged cast aluminum frame may be panel or base mounted. Spring loaded nickel plated cut brass gears work with polished stainless steel worm to provide low back lash. ¼'' diameter stainless steel drive and driven shafts. Available in two ratios, 16:1 and 48:1. Specify ratio in ordering.

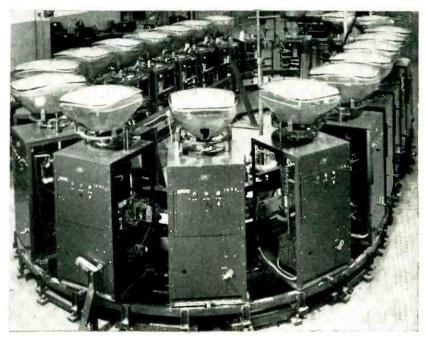
JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY

MALDEN

MASSACHUSETTS

blocks are covered with an insulating and protective coating to minimize scratching of the tubes.


Strips of asbestos hang from the doors of the oven to form a curtain that serves to hold the oven temperature practically constant even though tubes are continually moving in and out.

Tubes are unloaded from the conveyor manually by an operator wearing asbestos gloves and are placed on an overhead conveyor for further cooling during transit to the next operation in the plant.

Unloading picture tubes after passage through Lehr screen-bake oven developed and built under the direction of Kenneth A. Hoagland

Inline System for Aluminizing Picture Tubes

Complete 20-tube aluminizing system. In left foreground is the floor-mounted dog which trips the kick switch on each cart to change from rough pumping to the final fine pumping with the diffusing pump

AN ELECTRIC locomotive pulls 20 aluminizer carts around an oval track in the new inline system developed by Consolidated Vacuum Corp., Rochester, N. Y. for aluminizing tv tube screens. The carts will accommodate 21-inch, 24-inch or 27-inch tubes. Production rate for a 20-cart machine is approximately 100 27-inch tubes per hour, with still higher rates for smaller tubes.

The carts are coupled together in much the same way as the cars of a railroad train, except that the last car is coupled to the head of the locomotive to form an endless train. Heavy coil springs combined with

a few links of large roller-type chain provide shock-absorbent couplings that minimize jolts during startup.

Each cart is an aluminum casting mounted on rollers, supporting a complete vacuum pumping and aluminizing system. This means that a cart can be removed at any time for repair without interfering with production.

The locomotive cart has an electric motor that works through a reducing gear box to drive a pinion which engages the oval-shaped rack located at the bottom outer edge of the machine. Normal operating

April, 1954 - ELECTRONICS

AIR-SPACED ARTICULATED

offer a unique combination of

- **FRACTIONAL CAPACITANCE**
- HIGH **IMPEDANCE**
- **MINIMUM** ATTENUATION

ALONG WITH

- **EXCEPTIONAL** FLEXIBILITY
- LIGHT WEIGHT

38 STOCK TYPES

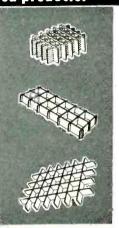
FOR ANY OF YOUR STANDARD OR SPECIAL APPLICATIONS

A few of the very low capacitance types are:

Capacitance μμ F/ft.	Impedance ohms	O.D.
4.1	252	1.03"
4.6	229	1.03"
4.8	220	0.64
5.4	197	0.64"
5.5	184	0.44"
6.3	171	0.44"
6.3	173	0.36"
7.3	150	0.36
	4.I 4.6 4.8 5.4 5.5 6.3 6.3	μμ F/ft. ohms 4.I 252 4.6 229 4.8 220 5.4 197 5.5 184 6.3 171 6.3 173

WE ARE SPECIALLY ORGANIZED TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS

SPOT DELIVERIES FOR U.S. BILLED IN DOLLARS - SETTLEMENT BY YOUR CHECK CABLE OR AIRMAIL TODAY



138A CROMWELL RD., LONDON, S.W.7 **ENGLAND**

CABLES: TRANSRAD LONDON

Pre-assembled partitions...made to exact specifications ... for manufacturers of Radio, Electrical and Electronic components and allied products.

artitions for rotective ackaging

WRITE, PHONE or WIRE for QUOTATIONS on YOUR REQUIREMENTS

martition corp.

Manufacturers of Cardboard Partitions

19-21 HEYWARD ST. BROOKLYN 11, N. Y. Telephone: TRiangle 5-4033

NOW ... SOLVE YOUR HIGH VOLTAGE PROBLEMS with BETTER EQUIPMENT

Our years of experience gives you MAGNATRAN Heavy Duty High Voltage products . . . built

for longer life and rugged performance

WITH

← NEW UNITIZED RECTIFIERS

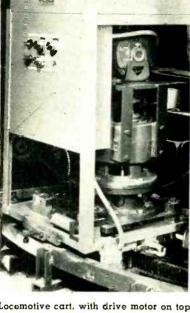
For high voltage D.C. sources...lower initial cost ... minimum upkeep ... convenient - ready to connect to AC. line and D.C. load . . . compact - requires minimum floor space.

Plate Transformers . Filament Transformers . Filter Reactors . Modulation Transformers . Distribution Transformers . Pulse Transformers . Testing Transformers . Precipitation Transformers . General Pur-34 KW 17,000 V.D.C. pose Transformers . Hi-Voltage Transformers.

Askarel Immersed Filter Reactor 50,000 Volt Test

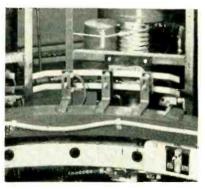
WRITE FOR DETAILED INFORMATION

MEETS STANDARDS OF AIEE-NEMA


SYNONYMOUS EXPERIENCE NAME

MAGNATRAN INCORPORATED TRANSFORMERS AND ELECTRICAL EQUIPMENT

246 SCHUYLER AVE., KEARNY, NEW JERSEY

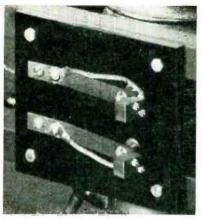

Locomotive cart, with drive motor on top of gear box. Pinion at bottom meshes with teeth of large oval rack to give positive motion without slippage

speed is approximately 44 feet per minute, but this can be varied to provide the proper cycling time for any particular size of tube.

Electric power for the motors that drive the vacuum pumps on the carts is picked up by a trolley on each cart running in a Bulldog power duct. This duct is arranged in an oval just inside the path taken by the carts.

Power for the filaments that vaporize the aluminum is applied after pumpdown by means of a bus bar arrangement that is mounted on an oval steel frame directly over the power duct. Each cart has two contact brushes that slide over the bus bars as the cart moves through the vaporizing portion of the cycle.

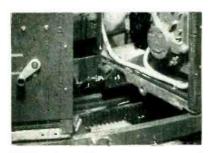
The cycle starts with rough


Method of mounting power bus bars on frame over power duct, for energizing the aluminum vaporizing filament on each cart in turn as they move past

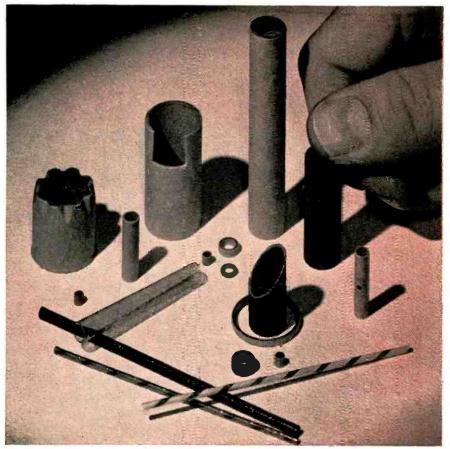
NEW TELEPHONE PITMAN 3-7500

NEW ADDRESS

LAMB'S ROAD . PITMAN, N. J.



Brush mounting arrangement used on each cart for taking power from aluminum-vaporizing bus bars


pumping for 5 to 6 minutes on the mechanical pump alone. By the end of this period, the cart has moved to a point where a stationary dog on the machine actuates a lever that valves in the diffusion pump for about 5 minutes of fine pumping. Finally there is breaking of the vacuum, requiring about 1½ minutes. The remaining time in the cycle is used by the operator to unload each tube, replace the filament and load in a new tube on the cart. One man can handle the entire machine.

Each eart has one compound Kinney mechanical pump having a capacity of about 5 cfm, one Consolidated Vacuum booster type diffusion pump with a capacity of approximately 100 liters per second at 5 microns, a water pump and the necessary switches and valves. The vacuum pumps are secured directly to the body of a mechanically-operated bellows-sealed valve which closes off the diffusion pump during the rough pumping. This valve body also provides the recep-

Details of coupling arrangement used between carts. At left is roughing-holding switch that is actuated by a stationary dog to turn on the diffusion pump at the correct time in the cycle

insulating, rivet and screw manufacture of:

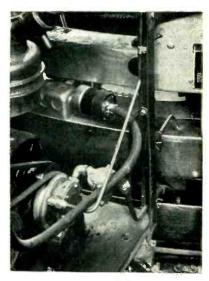
Stone's Electrical Insulating insulators, spacer bushings, or tubes are used as core or shaft liner and protector sleeves, in the

FRAC. H. P. MOTORS . RELATES . SOLENOID SWITCHES . TRANSFORMERS FLUORESCENT LAMP STARTERS . COMMUTATORS . ELECTRIC BLANKETS ELECTRIC CORD SETS . INDICATOR LIGHTS . VOLTAGE REGULATORS . ELECTRIC MEASURING EQUIPMENT . INCANDESCENT LAMPS . ELECTRIC TRAIN SETS

You CAN Save Money and STILL Get Quality!

ANY OF the hundreds of America's leading manufacturers who are Stone's customers know this to be true.

They have found that Stone's 126-year-old heritage has paid off for them. This rich industrial background has enabled Stone to perfect more accurate methods of manufacture and to improve its mass-production techniques with the result that genuinely superior products are produced at low cost.


Stone specializes in smalldiameter, spiral-wound insulating tubing from 3/64" to 1" ID. Larger sizes are available, of course. All Stone tubes are custom made, yet mass produced, and can be furnished in hidielectric kraft, fish paper, and plastic films in various wall thicknesses and lengths. They can also be formed, notched, punched, printed, dipped or impregnated with a variety of waxes and resins.

We suggest that you get in touch with our nearest representative or write directly to us. In either case, you will find an organization ready and able to serve you with unsurpassed service . . . the kind that has made us one of the world's largest small-diameter paper tube manufacturers.

STONE PAPER TUBE COMPANY

INCORPORATED

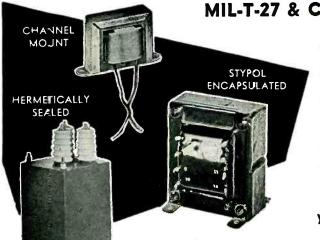
900-922 Franklin Street, N. E., Washington 17, D. C.

Cooling water from diffusion pump is drawn from gutter at bottom and is discharged into the upper gutter. Water pump is alongside electric motor at left. Above the gutters is the power duct from which the carts obtain line voltage a-c through chain-towed trolleys

tacle for the neck of the cathode-ray

Cooling water for the diffusion pumps is supplied by a vane-type pump on each cart, driven by the vacuum pump motor through speedreducing belts and pulleys. The pump draws water from one gutter that surrounds the machine and discharges it to another gutter directly below it. The gutters are located below the power duct, just inside the route of the cart.

Changing of filaments is made easy by mounting an alligator-type clip at the top of each filament post for holding the replaceable tungsten filament from which the aluminum is vaporized.



Method of installing replaceable filament from which the aluminum is vaporized. At right of filament is circular cam which operates valve over diffusion pump when it moves over a dog on the frame of the system

STERLING

A DEPENDABLE SOURCE FOR

TRANSFORMERS MIL-T-27 & COMMERCIAL

- Pulse
- Audio
- Power
- Filter Choke
- Filament
- RF Coils

Custom Built to your Specifications

WE SOLICIT SAMPLES AND SHORT RUN PRODUCTION 297 North 7th St., Brooklyn 11, N. Y.

RESISTORS

TYPES CX & BX FEATHERWEIGHT!

WIRE WOUND

DESIGNATION

WIRE WOUND

for CIRCUIT DESIGNERS

SEALED IN MOLDED BAKELITE PLUS LIGHTWEIGHT

The dependable resistive elements that combine positive sealing with the important advantage of lightweight. Melded Bakelite core reduces weight by one-half compared to ceramics. Positive seal effectively protects the winding against harmful climatic conditions. Additional IN-RES-CO fea tures include long life stability, hard soldered connections to terminals and extra-sturdy, vibration proof terminal leads. Both CX and BX Resistors include space-saving terminal supported axial terminals of tinned wire.

IN-RES-CO TYPE CX NON-INDUCTIVE RESISTOR

IN-RES-CO TYPE BX NON-INDUCTIVE **RESISTOR**

ASK FOR THE NEW RESISTOR HANDBOOK -

Contains complete data an resistors for every purpose and their recommended applications. Please make request an company letterhead

INSTRUMENT RESISTORS CO.

COMMERCE AVENUE

UNION NEW JERSEY

APPLICATION-DESIGNED RESISTORS FOR ELECTRONICS AND INSTRUMENTATION

New components, designs and techniques for the Electronics Engineer

Solving the problems of high 0 voltage and corona suppression for Color TV

New Alden #220 FTSC 20-pin connector with highvoltage leads completely sealed in polyethylene.

HEAVY JACKET OF MOLDED POLYETHYLENE

Alden High Voltage Anode Cables to handle 20,000 to 30,000 volts. Of polyethylene with integrally molded tube cap of his temperature Nylon with extended sleeves; Hi-v. Disconnect completely sealed and with long leakage surface; phosphor bronze Anode Clip. Wide variety available.

Adapting electronic designs to Plug-in Unit Construction

comes slide-in units with single accessible check point for all in-out leads.

Plug-in Packaging Components 0 for starting plug-in design from

scratch ALDEN PLUG-IN PACKAGE

up to 20-pin

ALDEN BASIC CHASSIS

Here are standard components of tremendous flexibility to assemble your circuitry into plug-in units, and end up with equipment all mounted as illustrated. Will accommodate tremendous variety of circuitry.

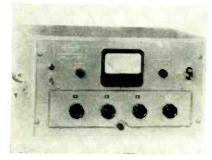
To mount your circuitry in compact vertical planes

Alden standard components, to mount your circuitry in compact vertical planes as illustrated here, consist of Prepunched Terminal Card, Miniature Staking Terminals, Card-mounting Sockets.

Tell us your area of interest and we'll send Spec. Sheets and details.

4127 N. Main St., Brockton 64, Mass.

NEW PRODUCTS


Edited by WILLIAM P. O'BRIEN

Control. Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Fifty-Seven Products and Fifty-One Bulletins Reviewed

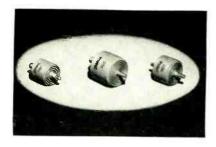
SIGNAL GENERATOR

provides decade selection

DECADE INSTRUMENT Co., Box 153, Caldwell, N. J., The Decalator 100-1 signal generator provides decade selection of 9,000 predetermined crystal-controlled frequencies, in 100-cps steps over the range from 100 kc to 1 mc. Its functional electrical and mechanical design permits instant selection of any desired frequency in its range. Frequency selection is accomplished by a series of easy-to-read windowtype dials that display the unit's output frequency directly in kc. Two banks of crystals control the output of the device, having short-

term stability of 5 cps and overall accuracy within 0.025 percent. Output voltage is 3 v maximum, into 600 ohms, with a total harmonic content of less than 3 percent at

OTHER DEPARTMENTS


featured in this issue:

Page
Electrons At Work196
Production Techniques 242
Plants and People338
New Books398
Backtalk404

any frequency. Signal generator output measurement characteristics are obtained through the use of an output meter followed by a step-by-step attenuator calibrated in fractions of full-scale meter readings. An agc circuit maintains the output level within 1 db. A heavy-duty electronically regulated power supply maintains overall stability under adverse power-line conditions.

FILTER CAPACITORS

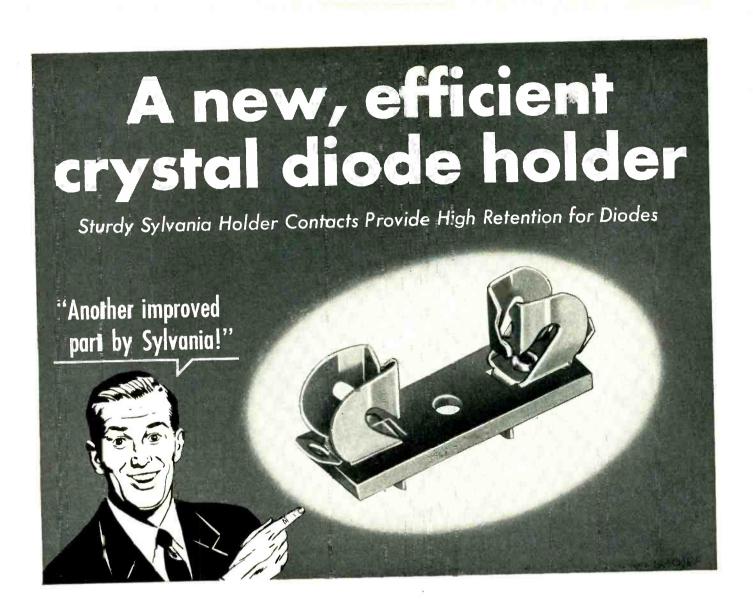
are molded ceramic units

SPRAGUE ELECTRIC Co., 35 Marshall St., North Adams, Mass. The new molded ceramic h-v filter capacitors will find broad usage in the filter circuits of modern tv receivers and c-r instruments. These capacitors, molded in moisture-resistant, non-inflammable thermosetting plastic, are available with 15 different

terminal combinations to meet practically every mounting requirement. Standard rated capacitance is 500 µpf. Maximum operating temperature is 85 C. Type 702 C capacitors, rated at 25,000 v d-c, withstand a dielectric test potential of 35,000 v; type 701C, rated at 30,000 v d-c, a test potential of 40,000 v. Minimum insulation resistance under standard test procedures at 25 C is 10,000 megohms.

TV COUPLER

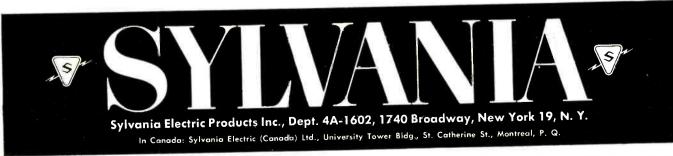
utilizes a transformer with h-f core


TELE-MATIC INDUSTRIES, INC., 1 Joralemon St., Brooklyn, N. Y. Model AM-74 coupler operates two tv sets from one antenna on all vhf channels on either 72 or 300-ohm line. It is an inductive coupler incorporating an efficient transformer with a special high-frequency core. This maintains a constant impedance over the entire band and a minimum of loss as compared to a resistance network coupler. The

Add-A-Set coupler isolates the antenna and receivers by the use of individual windings of the transformer and, therefore, inter-receiver action is minimized.

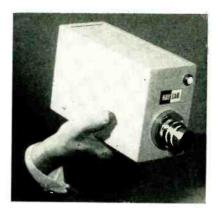
TV CAMERA SYSTEM features unitized design

KALBFELL LABORATORIES INC., 1090 Morena Blvd., San Diego 10, Calif. A new tv camera system featuring unitized design consists of camera,



Here's a brand new, extremely efficient Crystal Diode Holder designed for you by Sylvania.

The contacts retain diodes with terminal leads ranging from .078 to .125 diameter, with ease of insertion and withdrawal. The centerline of retention is specially located at sufficient distance from the surface of the mounting plate to allow installation of large diam-


eter Crystal Diodes. Mounting plate is made of laminated phenolic and the contacts can be furnished in either phosphor bronze or brass with silver plating. Eyelets are made of nickelplated brass.

For detailed specification sheets concerning this improved diode holder or any other Sylvania part write to Sylvania today!

LIGHTING · RADIO · ELECTRONICS · TELEVISION

camera control and synchronizermonitor. The camera is constructed so that all operating adjustments can be performed remotely. It is ideally suited for installations in inaccessible locations. Its light weight and compact size make it useful for field and remote pickup operation in commercial broadcasting. Plugin construction of camera control components provides ease of maintenance. Camera and camera control can be used separately to pro-

duce a noninterlaced picture. Broadcasters may supply horizontal and vertical driving pulses and standard blanking pulses to these two units through back-chassis connectors. Interlaced pictures are produced when the camera and camera control are used with the synchronizermonitor. The monitor tube is large enough so that no additional receivers are required for practical operation. All controls are readily at hand for front-panel adjustment.

RACK-MOUNTED FAN

cools electronic cabinets

McLean Engineering Laboratories, P. O. Box 531, Princeton, N. J. A rack-mounted, self-contained unit is offered for cooling electronic cabinets. The assembly is a single unit with the filter located inside the case. Two fans, mounted side by side, provide maximum air with

minimum panel height. The cooling fits the standard 19-in. electronic rack and pressurizes the cabinet with filtered air, preventing dust from entering through cracks and joints of the cabinet. The fan assembly is rack mounted the same as any chassis and the filter is replaced from the front by merely removing the stainless steel grille.

IMPEDANCE MATCHER

covers 400 to 900 mc

LINEAR EQUIPMENT LABORATORIES, Brightwater Place, Massapequa, L. I., N. Y. A new impedance matching device for the purpose of transforming the output impedance of an unbalanced source of voltage, such as a signal generator, noise generator or sweeper, to a balanced 300-ohm output is provided in the U-1, U-2 transformer-balun combination. Covering the 400 to 900-

me portion of the spectrum, the units are specifically designed to facilitate measurements in the uhf-

tv band. Model U-1 transformer transforms a 50-ohm unbalanced source to 75 ohms unbalanced over the 300 to 900-mc range with an swr of less than 1.15. The U-2 balun transforms a 75-ohm unbalanced source to a 300-ohm balanced impedance over the 400 to 900-mc range with an swr of less than 1.2. Overall swr of the combination from 400 to 900 mc is less than 1.2. Terminations are available for calibrating the transformer or transformer-balun combination.

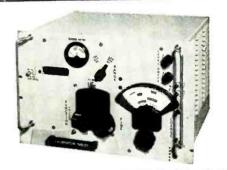
MAGNETIC AMPLIFIER

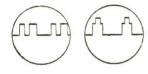
is a low-level d-c device

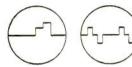
POLYTECHNIC RESEARCH & DEVELOPMENT Co., INC., 55 Johnson St., Brooklyn, N. Y. Type 806 low-level magnetic amplifier features high sensitivity. It will operate from input signals as low as 200 μμw and will provide an output of 0.05 w of reversible polarity to a 50-ohm load. A power gain of approximately 300,000 can be obtained. The unit is completely self contained and requires no additional rectifiers or power supply. It oper-

ates from 115 v, 60 cycles, single phase. Two feedback windings are provided and may be connected externally.

PULSED RECTIFIER for color ty receivers


RADIO CORP. OF AMERICA, Harrison, N. J. The 3A3 is a half-wave vacuum rectifier tube of the glass octal type designed for use as a rectifier of high-voltage pulses produced in the scanning systems of




FOR THE NEWEST and BEST in ELECTRONIC EQUIPMENT

FREQUENCY METERS

Three frequency meters accurate to 0.001% cover ranges from 10 to 2000 MC. Model LA-5 covers the 10 to 100 MC range, LA-6, 100 to 500 MC and LA-61 500 to 2000 MC.

PULSE GENERATOR-MODEL LA-592D

A double-pulse generator with wide range control, excellent pulse shape. Eliminates necessity for many instruments usually required in an electronics laboratory.

OSCILLOSCOPE-MODEL LA-239C

The new and improved Lavoie oscilloscope offers wider frequency range, greater sensitivity and faster rise time. The Lavoie Camera Adapter may be added quickly and without modification.

At The I.R.E. Show

BE SURE TO SEE

LOW Cost Marine

Radar by Lavoie

BOOTHS 400-401-500

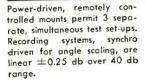
Production Road, Opposite Components
and Electronics Aves.

PRECISION CRYSTAL OVEN 75° or 85° C

Maintains crystal temperature to within 0.025° C at normal room temperature—to within .15° C over outside range from -40° F to 150° F. Available for HC 6 or HC 13 crystal units.

Lavoie Laboratories, Inc.

MORGANVILLE, NEW JERSEY


here's antenna resolution

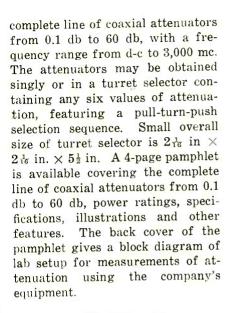
"ON TARGET"

Highly Directive, high power (20-watt) transmitter with 18-ft. parabolic antenna, furnishes signal source.

at Gabriel's Antenna Test Pattern Range

FOR PRECISE RESOLUTION of your antenna problem, typified by final check-out on this 2200-foot Test Pattern Range, Gabriel offers—

- Integrated Facilities for your requirements from basic idea through production.
- Research and development...pilot or full-scale production...to exact specifications of industry or defense.

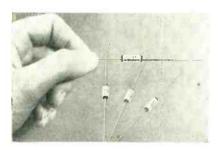

For example: Large scale production of critical search-warning radar... and the major share of the nation's production of Microwave Antennas, designed and built by Gabriel... are "proved out" on this range.

IF your target is successful resolution of an antenna project ...
IF your problem lies in the frequency range 33 to 33,000 mc ... WRITE
OR PHONE — A Gabriel Antenna Specialist will talk over your needs,
review specifications, make recommendations. Call him today.
NOrwood 7-3300

Gabriel Electronics Division

Formerly Workshop Associates Division

The Gabriel Company . 200 Endicott Street, Norwood, Mass.


AIRCRAFT SWITCHES are environment-proof

MICRO SWITCH, division of Minneapolis-Honeywell Regulator Co., Freeport, Ill., announces a new series of environment-proof switches designed for use in exposed locations in aircraft. They feature a hermetically sealed, split-contact switching unit enclosed in an aluminum housing. Their performance remains constant regardless of changes in atmospheric conditions. Six mounting holes in the housing are arranged to permit mounting the switch from either side. Drain holes allow drainage of any moisture that might collect within the housing. The bottom plate of the housing is easily removed for wiring or replacement of the basic switching unit. Typical dimensions are $6\frac{3}{4}$ in. \times $3\frac{5}{8}$ in, \times 1 in. Operating force is 9 lb and the total plunger travel is 3 in. Four different conduit connectors are available.

TRANSFORMER for color synchronization

ELECTROMETRIC, INC., Woodstock, Ill. A new color tv horizontal output transformer designed for use with a single 6DC6 driver and to work into an 11.8-mh yoke is now available. Type CTV515 reproduces all pulses required for color synchronization, including keyed agc, afc and peaking for horizontal driver circuit. High voltage is produced for focusing, beam acceleration and beam deflection. It delivers 20 ky regulated out of 3-tube voltage doubler with 750 µa maximum load.

TINY CAPACITORS in thirty-five varieties

CORNELL-DUBILIER ELECTRIC CORP., South Plainfield, N. J., has developed a line of compact subminiature Tantalum electrolytic capacitors. Size is kept to $\frac{9}{16}$ in. long and $\frac{3}{16}$ in. in diameter. The units are well suited for application in transistor circuits. They cover an operating temperature range from -55 C to +85 C and have considerably lower leakage current than other electrolytic types. The wound foil construction results in excellent frequency characteristics. Thirty-five

Since Teflon first became available, "John Crane" has successfully engineered its application to solve innumerable and widely varying problems. Typical of this is the development of packings and other products for handling corrosive liquids and gases. Other important examples include production of electronic parts of high dielectric strength and low loss factor for vhf. uhf, and microwave insulation; also in the employment of its anti-stick

characteristics in the handling of adhesive materials.

These and other application developments are closely tied with "John Crane's" fabricating technique, which has resulted in Teflon products of the finest uniformity, controlled density, product purity and accurate dimension.

Product Purity

Accurate Dimension

Teflon is available in rods, tubing or sheets or in special molded and machined forms such as bellows, "C-V" Rings, braided packings, valve discs, electrical parts, washers, dough sheeting rolls, heat scaling jaws and countless other forms. Glass, carbon or graphite filled Teflon is also available.

Consult "John Crane" on your requirements. Send for 12-page illustrated catalog, *The Best in Teflon*, containing important data and suggested applications. Crane Packing Company, 1802 Cuyler Ave., Chicago 13, Ill.

*DuPont trademark

CRANE PACKING COMPANY

Stock ty

"Lubricated for life" bearings.
 Stock types available with "LADDER," "T," "H," "L" and potentiometer configurations up to 32 steps.

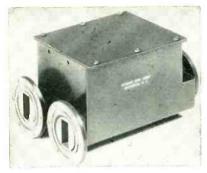
QUIET . . . extremely low switch noise level . . . ideal audio mixer

Send for Bulletin A-2 for specifications and prices.

TRIP, exceptionally long life.

controls.

Representatives:


BEEBE ASSOCIATES
1155 Waukegan Road, Glenview, Illinois
BURLINGAME ASSOCIATES
103 Lafayette Street, New York City
HARRISON J. BLIND
1616 Cord Street, Indianapolis 24, Indiana
G. M. HOWARD & ASSOCIATES
734 Bryant Street, San Francisco 7, California

HYCOR SALES COMPANY of California

11423 VANOWEN STREET NORTH HOLLYWOOD, CALIF.

varieties are available ranging in capacitance from 0.01 μf to 8.0 μf , and from 3 to 150 v d-c, in both polarized and nonpolarized types.

WAVEGUIDE SWITCH features simple design

BOGART MFG. Co., 315 Siegel St., Brooklyn 6, N. Y. Especially designed for switching of commercial microwave relay transmitters and receivers, model 4426 waveguide switch is an electrically operated spdt section of RG-50/U waveguide. A unique design employs insertion of an attenuator card into the disconnected member automatically, providing a termination for the switched member as well as increasing the isolation between arms to better than 60 db; vswr is less than 1.10 over a 17-percent bandwidth and the entire unit is operated by a momentary pulse of 115 v, 60 cycle power. Insertion loss through the connected member is less than 0.1 db. The simplicity of design makes the unit ideal for scaling to larger and smaller waveguide sizes.

R-F AMPLIFIER of the broad-band type

WESTLABS INC., P.O. Box 1111, Palo Alto, Calif. Model 24 broad-

band amplifier utilizes a travelingwave tube to provide high gain over the 2,000 to 4,000-mc frequency range. The small-signal gain averages 35 db, and the saturation output power, 30 mw. Maximum noise figure is 20 db or less. The unit is completely self-contained, including regulated power supplies and traveling-wave tube focusing structure. The amplifier is housed in a case of JAN aircraft equipment dimensions ($4\frac{7}{8}$ in. wide \times $7\frac{5}{8}$ in. high \times 19% in. deep), and is directly usable as either a laboratory tool or a system component. Primary supply requirements are 108 to 122 v at 1 ampere, 50 to 800 cycles.

TRANSISTORS are point-contact type

AMPEREX ELECTRONIC CORP., 230 Duffy Ave., Hicksville, L. I., N. Y., has available two new point-contact transistors. One is the type OC50 designed for amplifying purposes, and the other is the type OC51 designed primarily for switching operations. Both are useful in computers, and telephone and communications systems. They feature complete uniformity of characteristics and reliable performance by maintaining extremely tight manufacturing tolerances, both physically and electrically. A 30-page booklet discribing the transistors and containing information on the theory and circuitry of the devices is available.

TRIODE-PENTODE for use in color tv

RADIO CORP. OF AMERICA, Harrison, N. J. The 6AN8 is a general-purpose, multiunit tube of the 9-pin miniature type containing a medium-mu triode and a sharp cut-off pentode in one envelope. It is in-

STANLEY ARMOR CLAD

soldering tip is ready for more.

These two tips started useful life resemblance is gone and the copper together on the same soldering

tip is through. The Stanley Armor production line. 3,000 joints later all Clad, however, is ready for more.

This is only one reason why Stanley Armor Clad Soldering Tips belong on your irons. Here are some others:

- 1. Saves money on overall cost.
- Saves time on maintenance no filing -1/10 the tip changing.
- 3. Better work from uniform tip length and unvarying heat.
- 4. 41 sizes and shapes screw or plug type to fit all kinds of electric soldering irons.
- P.S. Stanley Electric Soldering Irons now available with replaceable heating element.

Call your Industrial Supply Distributor for Armor Clad Tips, or write Stanley Tools, 108 Elm Street, New Britain, Conn. Your name and address plus "Armor Clads" on a postcard will bring you a 36-page booklet - "Expert Soldering" by return mail. We'll include a folder showing the complete line of Stanley Armor Clad Soldering Tips and Electric Soldering Irons. Do it today.

THE TOOL BOX OF THE WORLD

HARDWARE . ELECTRIC TOOLS . STEEL STRAPPING . STEEL

Ruggedized and aged

"RELIABLE" DOUBLE TRIODE

Do you have an aircraft or industrial application that requires utmost dependability in increasing or controlling alternating voltages or powers ... in changing electrical energy from one frequency to another . . . or in generating an alternating voltage?

If so, specify the Red Bank RETMA 6385 "Reliable" Double Triode. For it is specially ruggedized to perform at top efficiency longer, even under operating conditions of severe shock and vibration. And, as further assurance of its extra reliability, each RETMA 6385 is factory-aged with a 45-hour run-in under various overload, vibration and shock conditions. such as it might meet on the job.

Whether you need tubes as amplifiers, mixers, or oscillators, it will pay you to investigate the superior, longerlasting performance qualities of the Bendix Red Bank RETMA 6385.

RATINGS

Heater voltage—(AC or DC)** Heater current Plate voltage—(max.)	0.50 amns.
Max. peak plate current (per plate) Max. plate dissipation (per plate)	25 ma
Max. peak grid voltage	+ 0 volts
Max. heater-cathode voltage	300 volts
(Plate and heater voltage may be applie ously.)	d simultane-
*To obtain preatest life expectancy from	hinks avoid

designs where the tube is subject to all maximum ratings simultaneously.

'Voltage should not fluctuate more than ±5%.

PHYSICAL CHARACTERISTICS

Base	Miniature button 9-pin
Bulb. Max. over-all length	T-61/2
Max. seated height	115/16 in.
Wax. diameter	% in
Mounting position	160° C

AVERAGE ELECTRICAL CHARACTERISTICS

Heater voltage, Ef 6.3 volts	
Heater current, I _f 0.50 amps.	
Plate voltage, Eb. 150 volts	
and voitage, Le. —Z.U VOITS	
Plate current, 1 _b 8.0 ma	
Mutual conductance, gm 5000 µmhos	
Amplification factor, µ	
Cut-off voltage - 10 volts	
Direct interelectrode capacitances (no shield)	
Plate-grid (per section)	
Plate-cathode (per section) 1.1 µµf	
Grid-cathode (per section) 2.4 µµf	
Plate-plate 0.1 uuf	

Manufacturers of Special-Purpose Electron Tubes, Inverters, Dynamotors and Fractional HP D.C. Motors

DIVISION OF

EATONTOWN, N. J.

West Coast Sales and Service: 117 E. Providencia, Burbank, Calif. Export Sales: Bendix International Division, 205 E. 42nd St., New York 17, N. Y. Canadian Distributor: Aviation Electric Ltd., P.O. Box 5102, Montreal, P.Q.

tended for diversified applications in color tv receivers. The triode unit with its relatively high zerobias plate current is useful in lowfrequency oscillator, sync-separator, sync-clipper and phase-splitter circuits. The pentode unit with its high transconductance may be used as an i-f amplifier, video amplifier, age amplifier and reactance tube. The basing arrangement and internal construction are designed so that coupling between the triode unit and the pentode unit is virtually eliminated.

SIGNAL GENERATOR is constant-amplitude type

TEKTRONIX, INC., P.O. Box 831, Portland 7, Oregon. Type 190 constant-amplitude signal generator generates sine waves in the frequency range of 350 kc to 50 mc. Output amplitude varies less than 2 percent from 350 kc to 30 mc; less than 4 percent from 30 mc to 50 mc. Frequency is continuously variable in 6 ranges, with frequency indication accurate within 2 percent. Output amplitude is continuously variable from 4 my to 10 v peak-topeak in 10 ranges, with amplitude indication accurate within 10 percent. Output impedance is 52 ohms. The unit is convenient for checking the high-frequency response of video amplifiers.

ANALOG COMPUTER is a self-contained unit

MID-CENTURY INSTRUMATIC CORP., 611 Broadway, New York 12, N. Y. The MC-400 is a portable, highly accurate (0.1 percent) analog computer designed to meet the requirements of a laboratory test instrument or of a mathematical machine for the solution of differential equations. It consists of 12 chopperstablized amplifiers and 16 ten-turn potentiometers for handling linear operations, and 4 vacuum-tube diodes, 2 relay amplifiers, and 1 servo for simulating nonlinear performance. Dimensions are 52 in. \times 24 in. imes 27 in. The unit is completely selfcontained. It has been applied to a wide variety of problems, the results of which are available on request.

METER CASE with built-in stand

TRIPLETT ELECTRICAL INSTRUMENT Co., Bluffton, Ohio, has available a Neolite case to house its three models of volt-ohm-milliammeters, numbers 630, 630-A and 630T. The

• Wire-to-Wire

• Printed Circuits

Here is an all-new production tool expressly designed to make small and miniature soldering simpler and surer than ever before. It is so fast that some joints can now be soldered in less than 1 second!... so much lighter and easier to handle than soldering irons or guns that a woman can use it all day long without fatigue! Check this unique combination of features against your job requirements:

GETS INTO SMALL, TIGHT SPOTS because of smaller electrode pencil.

NO HEAT DAMAGE—instant resistance heating makes sound joints before resistors, condensers, printed circuits, terminal fibre, etc., can be damaged. Pinpoints the heat!

NO "COLD FLOW JOINTS"—resistance principle requires that metal be heated before the solder will flow. Tap switch adjust heat as needed.

*SAFE—soldering pencil uses harmless (6v) voltage and high amperage from separate step-down transformer.

LESS FIRE HAZARD—electrodes are hot only when in use.

LESS REPLACEMENT COST—only low cost electrodes to buy.

SOLD THROUGH LEADING DISTRIBUTORS

EVERY SMALL JOB

-2 sizes of double carbon, single carbon with
ground clamp, double metallic. May also BE USED
AS SOLDERING IRON


-two sizes of chisel

tip irons.

TIPS FOR

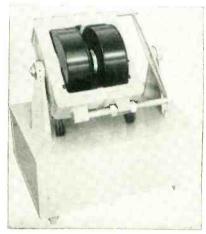
MAIL FOR FURTHER DATA

į	IDEAL INDUSTRIES, Inc. 1055 Park Avenue, Sycamore, Illinois
New Art	Please send catalog data on NEW IDEAL THERMO-TIP.
	NAME
	COMPANY
	CITYZONESTATE
i	ADDRESS
-	

Is the equipment which you are designing susceptible to malfunctioning caused by r-f currents conducted through power lines? Will your equipment interfere with other equipments operated off the same power line?

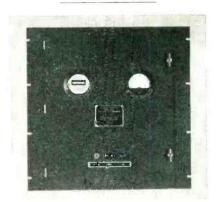
A prominent electronics manufacturer facing these problems called on Sprague for help with r-f test equipment which was already in production. Specifications for a single filter to do both jobs were established by the manufacturer's engineers working closely with Sprague Field Engineers. The required insertion loss characteristics were set at more than 60 db from 14 to 40 kc and more than 80 db from 40 kc to 200 mc; line voltage drop was limited to one volt max. at 1.5 amperes at 400 cycles.

Sprague engineers designed this "impossible" dual circuit line filter in a case only $3\frac{1}{6}$ " x $2\frac{1}{6}$ " x $2\frac{1}{6}$ "! This filter not only outperforms units previously designed by others in efforts to solve the problem but also occupies only two-thirds the cubic space.


Once a custom tailored design such as this has been completed and accepted by a Sprague customer, either production quantities or small runs are readily supplied with equal facility.

Let Sprague help you with your radio interference problems without obligation on your part. Write, wire, or phone the Sprague Electric Company, 11325 Washington Blvd., Culver City, California (TExas 0.7491) or North Adams, Massachusetts (MOhawk 3.5311).

case is constructed with a built-in stand that rests the unit at a convenient 45-deg angle when in use. It also has a back compartment that contains sufficient room to store an instruction book, leads, the stand and small tools. For carrying, the case has a firm handle.

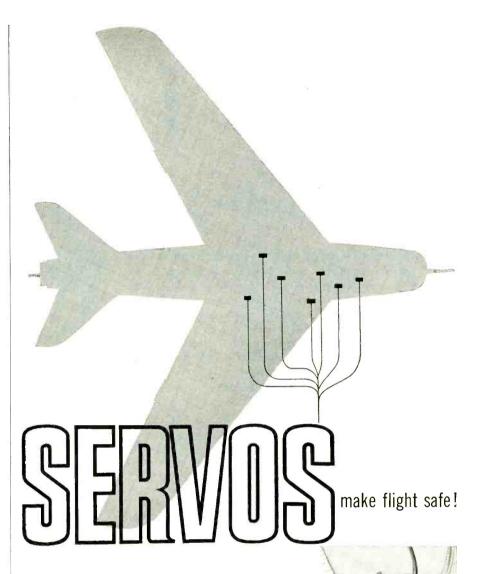


LAB ELECTROMAGNET is multipurpose unit

VARIAN ASSOCIATES, Palo Alto, Calif. A remarkable range of field values and configurations is featured in the 6-in. model V-4007 multipurpose laboratory electromagnet. It features changeable pole caps for uniform or high field work, an adjustable gap that provides a gap range from 1 in. to 6 in. and a dolly mount that gives complete mobility without loss of rigidity in operating positions. The magnet yoke angle can be easily changed to provide a variety of positions for working access. Precise machining and accurate alignment assure a high degree of field uniformity. Also announced is a matching model V-2200 regulated magnet power supply that provides


(continued)

highly stable d-c for operation of the V-4007 electromagnet.


POWER SUPPLY is frequency stabilized

MARYLAND ELECTRONIC MFG. CORP., College Park, Md., has solved the problem of operating electrical devices requiring a very accurate source of 60-cycle power. The unit illustrated is the type M-2027 50-w frequency stabilized power supply. Electrical characteristics are: input frequency range, 50 to 70 cycles; power input, 655 v-a; output impedance, 1,000 ohms; output voltage, 115 or 230 v.

COMPONENT HOLDER made of spring steel

ATLAS E-E CORP., Bedford Airport, Bedford, Mass., has developed a new component holder for holding tubular capacitors, one and two-watt resistors, miniature and sub-miniature tubes. It is designed to provide superior rigid mounting for conditions of heavy shock and vibration where space is limited as in airborne electronic apparatus and guided missiles. Made of cadmium-plated spring steel, the component holder provides a 180-deg contact surface—against a normal

Miniaturized muscle men perform exacting control tasks on signal from electronic amplifiers!

Another example of Oster precision quality motors for avionics and for other closed-loop control systems.

Oster Avionic Products conform to military specifications for altitude, high and low temperature, life, shock, vibration, humidity, fungicidal treatment and salt spray.

You can depend on Oster quality in rotating components for automatic control.

Insure dependability . . . specify **Oster**

3

Other OSTER Avionic Products include:

- Special motors: Servos, Synchros, Drive Motors, Blowers and Fans.
- Synchro generators, control transformers, transmitters, differentials, receivers and resolvers.
 Two-speed synchros and reference generators.
- · Tachometer generators.
- Aircraft actuators, both linear and rotary.

MECHANICAL ENGINEERS
 ELECTRONICS ENGINEERS

• ELECTRICAL ENGINEERS

- X-RAY ENGINEER
- PHYSICISTS
- AERODYNAMICISTS
 - MATHEMATICIANS

DEFENSE PROGRAM. Sandia Corporation is engaged in the development and production of atomic weapons—a challenging new field that offers opportunities in research and development to men with Bachelor's or advanced degrees, with or without applicable experience. Here you can work with able colleagues, eminent consultants and superior facilities on advanced projects of high importance — and also build a permanent career in a rapidly expanding field with a company that recognizes individual ability and initiative.

SOUTHWEST. Located in the historic Rio Grande Valley at the foot of the Sandia Mountains, mile-high Albuquerque is famous for its climate—mild, dry and sunny the year around. A modern, cosmopolitan city of 150,000, Albuquerque offers unique advantages as a place in which to live. Albuquerque's schools, churches, theaters, parks, and modern shopping facilities afford advantages of metropolitan life—yet hunting, fishing, skiing and a multitude of scenic and historic attractions may all be found within a few hours' drive of the city. New residents have little difficulty in obtaining adequate housing.

ENJOY THESE OTHER IMPORTANT ADVANTAGES.

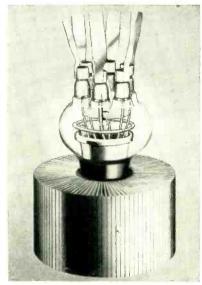
These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates Sandia Laboratory under contract with the Atomic Energy Commission. Working conditions are excellent, and salaries are commensurate with qualifications. Liberal employee benefits include paid vacations, sickness benefits, group life insurance, and a contributory retirement plan. This is not a Civil Service appointment.

Make Application to:

PROFESSIONAL EMPLOYMENT
DIVISION C

SANDÍA

SANDIA BASE


ALBUQUERQUE, NEW MEXICO

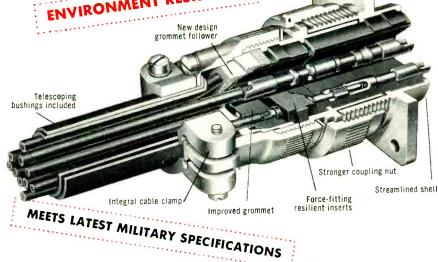
120 deg in most clips—the full length of the component. It comes in the following component diameter sizes: 0.175 in., 0.195 in., 0.235 in., 0.261 in., 0.312 in., 0.375 in., 0.390 in., 0.400 in., 0.562 in., 0.670 in., 0.750 in., 1.00 in. and 1.125 in. with lengths to 2 in.

MOUNTING BRACKETS for E-Z release connectors

DEJUR-AMSCO CORP., 45-01 Northern Blvd., Long Island City 1, N. Y. Black anodized die cast aluminum precision mounting brackets are now available for Continental's series EZ16 easy release connectors. These brackets provide a simple, economical means for mounting the connectors while insuring the free floating action that is necessary to take advantage of the connector's self-aligning feature.

POWER TRIODES with 3 and 6-kw output

FEDERAL TELEPHONE AND RADIO Co., 100 Kingsland Road, Clifton, N. J., has introduced two new 3 and 6-kw


output power triodes for use in new equipment designed for the electronic heating, broadcasting and communications fields. The F-6366 is a three-electrode industrial oscillator with 3-kw output and filament characteristics of 11 v, 29 amperes. The F-6367 is a threeelectrode 6-kw tube designed for use as a modulator, amplifier and oscillator and having a filament voltage of 13 v and filament current of 36 amperes. Both tubes feature thoriated tungsten helical-type filaments and kovar grid and filament seals, contributing to ruggedness and more dependable operation. Maximum d-c plate voltage ratings of 5,500 v for the F-6366 and 6,200 v for the F-6367 apply up to 30 mc.

EMCOR SYSTEM of electronic enclosures

THE ELGIN METALFORMERS CORP., Elgin, Ill., has introduced a new standard line of flexible enclosures designed to meet custom requirements at up to one-fifth the cost of custom construction. The new line, known as the EMCOR system, is designed to meet specific requirements wherever medical, computing, research, integration, transmission, supervisory data, remote facsimile, radio and tv control equipment requires an enclosure, group of enclosures or complete control system. Construction is of heavy-gage steel. The system consists of a basic console assembly frame—21 in. wide \times 48 in. high \times 21 in. deep-with standard RETMA and WE mounting holes on entire front, top and back. Over 80 lineal inches of insert panel space is available over frame. Provision is made

Streamlined Shell
Approximately 25% lighter
than previous design.

Stronger Coupling Nut Improved strength features.

New Grounding Lugs Integral; convenient.

Integral Cable Clamp Space saving, fewer parts.

New, lighter polychloroprene...or
Cannon's new exclusive
premium Silcan 63, optional,
featuring resilience, increased
tensile strength, and longlasting dimensional stability.

Closed-entry socket contacts, machined from solid high-conductivity copper alloys, silver-plated; hand tinned solder pots.

> Telescoping Bushings Standard Equipment

Grommet Grommet Follower Insulator Mating

No moisture condensation trap

The Cannon AN-"E" Connector grommet provides positive seal against the rear of the resilient insulator. Mating surfaces of resilient insulators of connectors are sealed by compressing the insulators 3/32" during mating.

AN-"E" Connectors have
3 times the flushover value of similar connectors, sealed.

An important feature for high altitude and other applications.

Just what you've been waiting for!

The new high quality, streamlined, simpler, smaller, and lighter Cannon AN-"E" meets today's military specifications (MIL-C-5015A ASG) with improved connector performance. Completely sealed from cable to cable. A multi-service unit designed to meet your moisture condensation, flashover, corona, and vibration problems.

Write for "AN-E" Bulletin . . . TODAY!

Refer to Dept. 120

CANNON ELECTRIC COMPANY, 3209 Humboldt St., Los Angeles 31, California. Factories in Los Angeles; East Haven; Toronto, Canada; and London, England. Representatives and distributors in all principal cities.

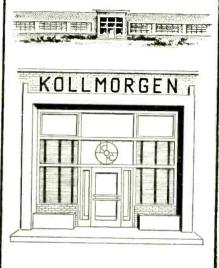
GANNON ELEGIRIC

Want more information? Use post card on last page, 308

for ease of wire installation via standard knockouts distributed over top shelf, base and side of unit. Provision is also made for a key, jack and auxiliary control panel.

METER for small-value readings

TEKTRONIX, INC., P.O. Box 831, Portland 7, Oregon. Type 130 LC meter is a direct-reading unit for small values of inductance and capacitance in components and circuits. It has 5 ranges: 0 to 3, 0 to 10, 0 to 30, 0 to 100, and 0 to 300 μh or μμf, accurate within 5 percent of full scale. It features coarse and fine zero-adjust controls and an illuminated 4-in. meter. The type 130 is also convenient for component testing, sorting and color code checking on a production basis. Weight is 9 lb.



H-V L-F LITZ CABLE for 20 to 400-kc region

U. S. PLASTIC ROPE Co., 2581 Spring St., Redwood City 10, Calif. Specialized Litz cables for applications of high voltage in the 20 to 400-kc region are being wound on dielectric cores of rope-like construction,

OPTICAL SYSTEMS

INDUSTRIAL PERISCOPES

DESIGN DEVELOPMENT MANUFACTURE

For nearly half a century Kollmorgen has designed, developed and manufactured precision optics and optical systems for industry and the military.

We have the engineering "knowhow", the design personnel and the manufacturing capacity to help you solve your optical problem.


Plant: 347 King Street . Northampton, Mass.

New York Office 30 Church Street New York 7, N.Y.

Want more information? Use post card on last page.

April, 1954 - ELECTRONICS

formed from a variety of plastic films. Diameter limitations of the production equipment are $\frac{1}{8}$ in. core diameter minimum, 2 in. maximum. Typical cables produced have included copper conductors of 33 and 38 gage laid on the core with a spiral of 3 turns per ft. A maximum of 125 multiconductor strands can be applied. Conductors of Nylon-enamel insulated wire can be made individually continuous to very rigid specification requirements.

ELECTROPLOTTER is ±0.1 percent accurate

BENSON-LEHNER CORP., 2340 E. Sawtelle Blvd., West Los Angeles 64, Calif., has available the new Electroplotter that plots on any type paper up to 11 in. \times 17 in. from a variety of input data such as analog or digital computers, punched card machines or manual keyboard. In the latter case, a high speed 10-key keyboard with numerical verifier provides for plotting rates at about 35 points per minute. Pen traversing speed is 18 inches per second. Accuracy is ± 0.1 percent. The plotter has several special features among which are automatic symbol printing, independent zero and scale controls for each axis, selectable incremental advance when required and vacuum table for holding paper.

A-C GENERATOR is wind turbine driven

HOLTZER-CABOT TELEPHONE EQUIP-MENT DIVISION of National Pneumatic Co., Inc., 125 Amory St., Boston 19, Mass. A new wind turbine-driven generator serves as

Stoddart NM-30A . 20mc to 400mc

Commercial Equivalent of AN/URM-47

PRINTED CIRCUITRY... Modern printed circuits offer many advantages over conventional wiring, lighter weight, more compact units and freedom from many of the troubles normally encountered in conventionally-wired electronic equipment. Vibration becomes even less of a problem with printed circuits, adding to the many portable features already available with Stoddart equipment.

ADVANCED DESIGN... Specialized engineering and modern production techniques have produced one of the most advanced instruments for the accurate measurement, analysis and interpretation of radiated and conducted radio-frequency signals and interference ever manufactured. Designed to laboratory standards, rugged, and with matchless performance, the versatile NM-30A is an outstanding example of modern instrumentation. Its frequency range includes FM and TV bands.

SMALLER SIZE... A wider frequency range and higher standard of performance is incorporated into an equipment whose size is one-third that of any similar equipment ever manufactured.

SENSITIVITY... Sensitivity ranges from one to ten microvolts-per-meter, depending upon frequency and antenna in use.

APPLICATIONS... Field intensity surveys, antenna radiation pattern studies, interference location and measurement for checking radiation from virtually any mechanical or electrical device capable of generating or radiating radio-frequency signals or interference.

Stoddart RI-FI* Meters cover the frequency range 14kc to 1000mc

VLF

NM-10A, 14kc to 250kc Commercial Equivalent of AN/URM-6B. Very low frequencies. HF NM-20B, 150kc to 25mc
Commercial Equivalent of
AN/PRM-1A, Self-contained
batteries. A.C. supply optional.
Includes standard broadcast
band, radio range, WWV, and
communications frequencies.

UHF

NM-50A, 375mc to 1000mc Commercial Equivalent of AN/URM-17. Frequency range includes Citizens band and UHF color TV band.

STODDART AIRCRAFT RADIO Co., Inc.

6644-A Santa Monica Blvd., Hollywood 38, California • Hollywood 4-9294

Koiled Kords* permit EASY SERVICING of In-a-Door or Sliding Units...

A six inch section of KOILED KORDS retractile cord will extend to more than two feet when pulled and when released will retract immediately to its original neat, compact, spring-like shape. KOILED KORDS solve the problem of carrying current to movable units without having a long trailing cord to foul in the mechanism. They make it possible to retain electrical contact between units when they are pulled out for servicing, facilitating trouble location and correction.

KOILED KORDS extend as needed without looping, dangling or tangling.

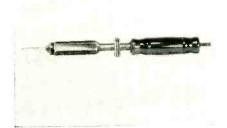

KOILED KORDS are compact, neat, attractive, built to withstand continued flexing.

KOILED KORDS are available on special order to your specifications in multi-conductor types up to 37 conductors. Stocked types include 2, 3, 4 and 5 conductor #23 AWG communications cords and 2, 3 and 4 conductor Underwriters' Laboratories approved SO, SJO and SV-neoprene jacketed power cords. KOILED KORDS can be supplied in 48 inch mandrel lengths or prepared into cord sets for attachment to equipment.

WRITE FOR KOILED KORDS APPLICATION BULLETIN SHOWING MANY USES.

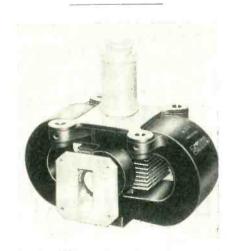
Box K, New Haven 14, Conn.
*KOILED KORDS is the trademark of Koiled Kords, Inc.

a source of power for use with transistors in unattended microwave relay stations. It meets power output requirements—based on operation of the generator in a wind velocity of 5 mph—of 1 w, 50 cycles, at 100 rpm. Equipped with heavy-duty sealed ball bearings, the generator is built in a 9 in. diameter frame to permit the mounting of a wind turbine on the generator and bell. Although of permanent-magnet construction, the advanced design eliminates cogging, and starting torque is held to within 4 oz-in.



TWISTED TAB CONTROL features economy in cost

CLAROSTAT MFG. Co., INC., Dover, N. H., has announced the series 47 twisted tab control that eliminates the usual bushing, lockwasher and nut, thus effecting marked economy in the cost of the control. The unit is mounted by inserting the tabs through slots in panel or chassis, and twisting them to secure the control in place. The control is available with or without switch, in resistance values from 500 ohms to 5 megohms; 0.5-w rating; choice of tapers and taps; and all types of metal or plastic shafts, including,


(continued)

if desired, a rear protruding slotted shaft.

SOLDERING IRON for fast production lines

HEXACON ELECTRONIC Co., 130 W. Clay Ave., Roselle Park, N. J., has added to its line an electric soldering iron for use on fast production lines where greater soldering speed is required from an iron with a small-tip diameter, and where lower tip replacement cost is a factor. The new iron is plug-tip type, rated at 100-w, but with 4-in. tip instead of the conventional 3in. diameter tip. It reaches and maintains a temperature considerably beyond the 100-w 3-in. tip iron and its large reservoir of heat speeds the soldering operation. Because less copper is used there is a saving of more than 50 percent in the tip replacement cost.

MAGNETRON uses new techniques

MICROWAVE ASSOCIATES, INC., 22 Cummington St., Boston 15, Mass. The 4J52 magnetron used in airborne radar equipment has been redesigned to incorporate several

THE ONLY

COMPLETE LINE OF

GENERATING & TESTING EQUIPMENT

COLOR TV

In color TV instrumentation, one name stands out—TELECHROME. No wonder, for only TELECHROME has had more than three years of experience producing Color TV generating, testing and broadcasting equipment for America's foremost TV manufacturers, broadcasters and laboratories.

Complete equipment for generating color bars; creating encoded and composite pictures from transparencies; color signal certification; transmission, reception, monitoring, and analysis of color pictures — literature on these and more than 190 additional instruments for color TV by TELECHROME are lawailable on requests

DELIVERY 60 DAYS

The Nation's Leading Supplier of Color TV Equipment

88 Merrick Road Amityville, N. Y.
AMityville 4-4446

STOP RF LEAKAGE ON THE DRAWING BOARD ... WHEN YOU DESIGN METEX ELECTRONIC WEATHERSTRIPPING INTO YOUR EQUIPMENT

YOU GET ITS POSITIVE SHIELDING EFFECTIVENESS -AT MAXIMUM OVERALL ECONOMY

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.

In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.

To get the best results and lowest production costs, design with Metex Electronic Weatherstripping, available in 3 basic forms:

- Continuous lengths in various cross sectional shapes with or without fin for attachment.
- 2 Die-formed shielding gaskets, and
- 3 Sealing gaskets where the knitted wire gasket is combined with a sealing medium.

For detailed information on METEX ELECTRONIC PRODUCTS, write for FREE copy of Metex Electronic Weatherstrips" or outline your SPECIFIC shielding problem - it will receive our immediate attention.

Each of these is made in various sizes and shapes which are readily adaptable to practically any equipment. The resiliency can be varied where necessary to meet specific requirements.

METEX ELECTRONIC

WEATHERSTRIPPING

types of electronic and

For shielding on all

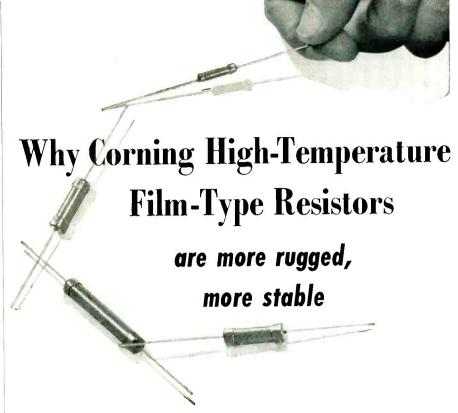
electrical equipment

Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets, dielectric heaters, etc.

new improvements while retaining physical and electrical interchangeability. For improved stability and life under all conditions, particularly with long pulses, the oxidecoated cathode has been replaced by the new Philips dispenser-type cathode. This cathode is fabricated from tungsten impregnated with barium aluminate and is practically indestructible operating over a wider temperature range than the oxide type. A bifilar winding heater is used reducing tube noise. All of the glass in the tube being replaced by ceramic allows the tube to be baked out at considerably higher temperatures, insuring gasfree operation throughout life in addition to increasing its mechanical strength. The anode is of strapvane type, known to be very reliable under steep pulse conditions. The waveguide output transformer of the tube has been designed for the center of anticipated load conditions.

CRYSTAL is hermetically sealed

JAMES KNIGHTS Co., Sandwich, Ill., has introduced a new crystal in its G-9 series, available with flexure mode crystals from 4 to 80 kc. The new crystal provides rugged, precise frequency control at temperatures in the -40 to +70 C range. The crystals have a high ratio of capacities $(C_{"}/C)$ resulting in a high degree of isolation from associated circuitry. This unit provides a practical means of close frequency control in a range not covered by any other single type of crystal. The crystals are hermetically sealed in an evacuated glass holder for maximum protection and freedom from contamination to assure that their precise frequency accuracy will be maintained.


TIME DELAY RELAY is hermetically sealed

THE A. W. HAYDON Co., 232 N. Elm St., Waterbury, Conn., has in production a new line of hermetically sealed time-delay relays. Designed to take up less space than previously required, they can be supplied with 50, 60 or 400 cycle a-c or governed or standard d-c motors. Close accuracy and low power consumption are featured. The unit is enclosed in a lightweight aluminum hermetic housing, 21 in. in diam-Basic length for a single switch unit is 215 in. Governed or filtered motors, special or extra switches increase this dimension Three-stud or flange slightly mounting is available. Electrical connection can be made with a glass seal header or AN connector. Weight of the unit is about 1 lb.

ULTRASONIC UNIT measures metal thickness

SPERRY PRODUCTS, INC., Danbury, Conn. A portable, ultrasonic in-

The answer lies in the way we make them. The base material is a special heat-resistant glass that not only has excellent temperature and electrical characteristics but is tough enough to withstand real abuse.

The film material, too, is entirely new for resistors. Fired in at red heat, it becomes an integral part of the glass form. And it's so stable it can be cycled from near absolute zero to red heat with little effect in its electrical properties.

Silver bands are fired in for terminations that have low resistance and low noise characteristics. And silver plated end caps are expansion fitted over the silver terminations to give a silver-to-silver contact that is both electrically and mechanically sound.

Then, a silicone varnish is baked onto the resistor which completely reduces the risk of entrapped moisture, gives better protection against external moisture and humidity and abrasion. The unit can be rubbed with a nail file without materially affecting its electrical characteristics.

It all adds up to this. If you want a high-temperature resistor that's electrically stable, mechanically rugged, then investigate Corning Type S Resistors. They can be operated at ambient temperatures up to 200°C. and at higher power levels to save space. The thin film construction and inherent stability provide excellent high-frequency characteristics. Normal resistance tolerance is 2%.

Get the details by sending the coupon below.

-NEW LOW PRICES -

We've recently made a radical reduction in prices for Corning High-Temperature Resistors. Now you can use them in applications where price was previously prohibitive.

CORNING GLASS WORKS DEPT. EL-4, CORNING, N. Y.

	ase send me information on.	
	CORNING (High-Temperature) Type S Resistors,	CORNING (Accurate Grade) Type N Resistors,
П	CORNING Load Resistors.	

Name	Title
Campany	***************************************

Want more information? Use post card on last page.

Nature Made Their Properties... Fansteel Made Them Practical!

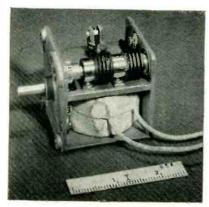
he valuable properties of tungsten, tantalum and molybdenum usually make it self-evident whenever one of these metals is the best possible material for a given application. However, the most practical and economical method of fabricating parts is a never-ending problem.

Here, at Fansteel, we *make* refractory metals; from raw ore to finished ingot, bar, rod or sheet. In working with hundreds of other engineers on their fabrication problems, we have learned a lot about forming these metals—about stamping, bending, deep drawing, machining, forging, brazing or welding them.

If you use Tungsten, Molybdenum or Tantalum components, we can probably fabricate them for less money than you can—with less rejects, less scrap loss, and with a fixed price per unit. We'd like to discuss it with you.

We have some very interesting and informative booklets on Tungsten, Tantalum and Molybdenum. Write for your free copies today.

Let FANSTEEL insure your cost control of refractory metal components



Fansteel Metallurgical Corporation

42501C

NORTH CHICAGO, ILLINOIS, U.S.A.

strument for measuring the thickness of steel sheet where only one surface is available, for checking the continuity of bonds, and for testing raw stock for laminar defects, has been announced. Known as the Reflectogage and using high accelerating voltages and slow sweep speed, it gives visual indications of steel thickness from 0.014 to 0.400 on a flat-face, no-parallax crt with directly adjacent calibration tape. The tape is made proportional to screen size so as to give maximum reading space and is cranked into position for any one of the six available testing ranges. Tolerance markers appear as a downward square step on the screen baseline and are adjustable in both width and position. Accuracy of readings is protected by a built-in voltage regulator.

ELECTRIC MOTOR has high starting torque

THE VIKING TOOL & MACHINE CORP., Two Main St., Belleville 9, N. J., has developed a small electric motor that will be extremely useful wherever low speed, high starting torque is required, such as aircraft actuators, remote controlled rheostats and power switches, and indexing devices of all types. Present models operate on 115 v a-c, but the motor can be provided with different coils for other operating voltages. It will operate efficiently over a wide range of frequencies as well as pulsating d-c. The unit combines the feature of having its starting torque equal to its running torque, with instantaneous stopping when power is turned off. Units are now available delivering over 6 inch-pounds of torque at 30 rpm and operating satisfactorily over a

temperature range of -60 to +500 F.

TINY RELAY exceeds military specs

SPECIALTY ELECTRO-MECHANICAL Co., INC., 6819 Melrose Ave., Los Angeles 38, Calif., has introduced the miniature 10-ampere, dpdt relay. It is designed for quality, dependability and vibration immunity that exceeds military specifications. It is made for adaptability with coil resistance up to 80,000 ohms. The unit will operate over a sensitive range as low as 50 mw to 2 w. Mounting plate is drawn and formed of to in. steel. The relay measures 1.625 in. diameter, 2.187 in. height and 1.856 in. mounting dimension between 2 holes.

MARKER GENERATOR and signal generator

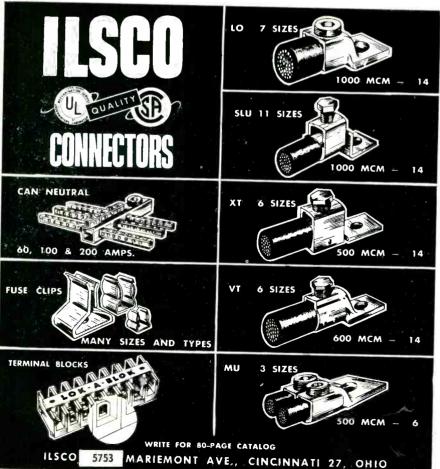
THE TRIPLETT ELECTRICAL INSTRUMENT CO., Bluffton, Ohio. Model 3436 is a new uhf marker generator and signal generator with the following features: uhf all fundamentals on channels 14 to 83 (470 to 900 mc); no harmonics for confusion; a large dial with uniform frequency graduations; and 13 in. of long easily readable scale. The r-f output average is 0.3 v. Output

BALLANTINE

STILL THE FINEST IN ELECTRONIC VOLTMETERS

PRICE ... \$210.

- Measures 1 millivolt to 100 volts over a frequency range from 10 to 150,000 cycles on a single logarithmic scale by means of a five decade range selector switch.
- Accuracy: 2% at any point on the scale over the ENTIRE RANGE.
- In ut Impedance: 1/2 megohm shunted by 30 mmids.
- Generous use of negative feedbook assures customary Ballantine stability.
- Output jack and output control mit voltmeter to be used as a flat high rain (70DB) amplifier.
- Available a cessories per at range to be extended up to 10,000 volts and down to 20 microvolts.
- Available Precision Shunt Resistors convert witmeter to microammeter covering range from 1 to 1000 microamperes.


For additional information on this Voltmeter and Ballantine Battery Operated Voltmeters, Wide-Band Voltmeters, Peak to Peak Voltmeters, Decade Amplifiers, Inverters, Multipliers and Precision Shunt Resistors, write for catalog.

BALLANTINE LABORATORIES, INC.

100 FANNY ROAD, BOONTON, NEW JERSEY

impedance is 150 and 300 ohms. It has a piston-type attenuator. The unit especially needed in fringe areas provides a reliable signal source to compare gain of uhf receivers and converters.

POWER SWITCH has variety of applications

CLAROSTAT MFG. Co., INC., Dover, N. H., is making available the series AE power switch to electronic equipment manufacturers to be used as an integral part, such as push-pull or rotary switches in record changers, and many other applications where a switch of this type is adaptable. The series AE switch is UL approved and rated 1 ampere at 250 v, 3 amperes at 125 v a-c or d-c. It is available in spst, spdt or dpst. It measures in in diameter.

MICROPHONE STAND has safety air cushion

ATLAS SOUND CORP., 1451 39th St., Brooklyn 18, N. Y. Prevention of accidental or sudden slippage of the microphone stand's telescoping section is assured with the MS-25 microphone stand that features a safety air-lock cushion. The telescoping section is always cushioned on air so that the escape of air permits only a slow quiet collapse of the stand if the clutch holding adjustment is insufficiently tightened or accidentally released. Thus the stand cannot suddenly crash down and cause a blast of sound to be fed to the amplifier. The MS-25 has a height adjustment of 37 in. to 66 in., and a base diameter of 17 in. The tube terminates in a § in.-27

carefully machined thread. Weight is 24 lb.

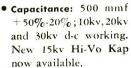
CRT SHIELDS are magnetic type

MULTI-METAL WIRE CLOTH Co., INC., 1350 Garrison Ave., New York 59, N. Y., is producing standmagnetic cathode-ray-tube shields for the 2-in., 3-in. and 5-in. tube sizes. Early delivery is assured on these low-cost Mu-metal and Nicoloi stock shields which formerly required three and four months for delivery. These shields can be furnished with light hoods. retainers and plexiglass windows. Write for literature and quotations.

SIGNAL EQUALIZER does not upset impedance

TELE-MATIC INDUSTRIES, INC., 1 Joralemon St., Brooklyn, N. Y., has introduced the automatic signal equalizer designed for locations where the signals from the l-f channels cause overloading and the h-f channels are not strong enough to tolerate any attenuation. AT-25 equalizer provides maximum attenuation on the l-f channel, and minimum attenuation on the h-f channel, without upsetting the impedance of the tv receiver. Once in-

withstand continuous overload up to twice rated voltage


Centralab Hi-Vo Kaps are the industry standard for virtually ANY high voltage or TV application ... plus a complete line for color TV.

- Exclusive CRL Ceramic-X assures high mechanical and dielectric strength. Electrodes permanently bonded to ceramic body.
- Insulation resistance initial 10,000 megohms, minimum; after humidity 5000 niegohnis, minimum.
- Low leakage Pattern reduces corona and lengthens leakage path.

 Variety of terminal connections - rod, slotted, internal thread, external thread.

15 kv 10 kv Power Factor - 1% maximum. After humidity 2% max.

- All processes controlled from basic powders to finished product.
- More than 150 engineering specialists available for consultation.
- Modern production facilities in 7 convenient-to-you plants.

The only complete line of standard and special ceramic capacitors.

Note: Standard items are available at your local (CRL) distributor — see Catalog 28.

A Division of Globe-Union Inc. 914 E. Keefe Avenue • Milwaukee 1, Wisconsin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

electronic components

Want more information? Use post card on last page.

Pick 'DIAMOND H' RELAYS

Shown Actual Size

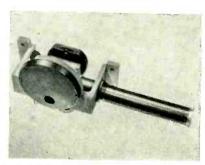
Vibration resistance range of "Diamond H" Series R Relays has been more than doubled, extending now from 0 to well over 1,000 cycles per second at 15 "G's."

Continuing engineering developments such as this are constantly broadening the adaptability of Series R Relays for a wide variety of applications . . . guided missiles, jet aircraft, fire control and detection, radar, communications, high speed camera, geophysical and computer apparatus . . . and similar applications requiring positive operation under critical conditions.

Hermetically sealed, miniature aircraft relays, Series R devices are basically 4PDT, but are also available in DPDT and 4PDT with two independent coils, either or both of which will operate the unit. Available with all standard mounting arrangements, including ceramic socket for interchangeability. Their design permits unusually compact grouping and provides a firm bond between relay and chassis. See us for special arrangements.

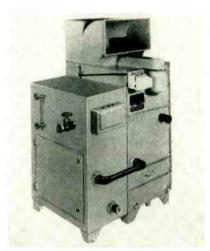
In their field still the smallest and lightest, (1.6 cu. in., 3.76 oz.) combining highest operating shock resistance (to 50 "G" and higher), widest temperature range (-65° to +200° C.) and greatest ability to break high currents and high voltages, Series R Relays consistently operate over 400,000 cycles without failure at 5 A. and go 3,500 or more under 30 A. at 30 V., D.C., resistive. They carry voltages up to 300 D.C. at 4/10 A. for more than 400,000 cycles. With low

contact loading, life expectancy is 10 million cycles or better.


Operating time is 10 ms, or less; drop out time 3 ms. or less. Coil resistances up to 35,000 ohms are standard; to 50,000 ohms available for special units. Sensitivity approaches 100 mw. at 30 "G" operational shock resistance. Inter-electrode capacitance is less than 5 mmf. contacts to case—less than 2½ mmf. between contacts, even with plug-in type relay and socket.

Designed to meet all requirements of USAF Spec. MIL-R-5757B, they far surpass many. Bulletin R-150, giving basic performance data under varying conditions, is yours on request. Our engineers are prepared to work with you to develop variations to meet your specific requirements. Tell us your needs.

THE HART MANUFACTURING COMPANY

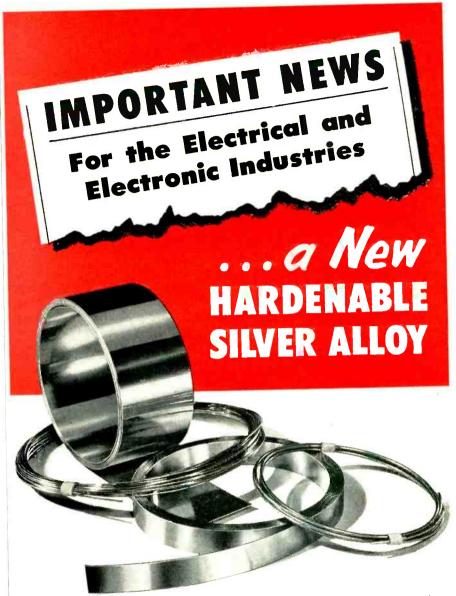

202 Bartholomew Avenue . Hartford, Connecticut

stalled, the unit does not require switching or manipulation of the controls.

PHOTOMETER for star measurement

L. C. EICHNER INSTRUMENTS, 19 Sebago St., Clifton, N. J., has produced a new type of photoelectric photometer which is mounted on astronomical telescopes for direct measurement of star magnitudes. instrument measures brightness and color of stars to an accuracy of one part in a thousand. Measurements are made by sensitive electrical equipment after starlight is converted to an electric current by a photoelectric cell. The photometer is mounted directly on the telescope's plate holder and employs the same adjustments as those used for photographic plates.

HEAT EXTRACTOR is new package type


MAYER REFRIGERATING ENGINEERS, INC., Lincoln Park, N. J. A new package-type heat extractor, while primarily designed to provide recirculated cooling water for transmitter tubes, will find other indus-

trial uses for supplying cooling water to machine jackets, oils and coolants. This equipment employs the evaporation cooling principle and will supply cooling water as low as 86 F with a 75-deg wet bulb condition. The range of capacities is from 36,000 Btu per hr to 465,000 Btu per hr with entering water temperatures from 90 F to 160 F. Volume of cooling water is from 20 to 150 gpm. Full automatic temperature controls are included to deliver constant temperature cooling water, regardless of atmospheric temperatures or conditions. The whole unit is completely assembled, wired and piped in a compact form. Field installation consists only of running electric power to a prewired panel, external cooling and plumbing, piping and airduct connections. Overall dimensions of the unit are 44 in. wide by 31 in. deep by 61 in. high.

RECORD CHANGER handles three sizes

BIRMINGHAM SOUND REPRODUCERS LTD. of Old Hill, Staffs, England, has introduced the 1954 Monarch automatic record changer. It retains the regular features without any basic alterations. It includes the "Magidisk" selecting 7-in., 10in., and 12-in. records intermixed in any order, as well as high-fidelity dual stylus cartridge ultra-rapid record change and other features. One of these is a simple centralized control. The sapphire styli in the turnover cartridge are easily replaceable and the cartridge is designed to cut record wear down to a negligible degree. With all working parts well protected against humidity and dirt, the unit is suitable for all climates. The Monarch auto-changer has a 4-pole motor that features smooth power and

Important Properties of SILVER-MAG-NICKEL

- ✓ Oxidation Hardenable
- ✓ High Electrical
 Conductivity 70%
- ✓ High Thermal Conductivity
- ✓ Hardnesses to 70 — Rockwell 30 T
- ✓ Tensile Strengths to 70,000 psi
- ✓ Corrosion Resistance
 Like Fine Silver
- ✓ Hardness Unaffected by Silver Brazing

SILVER-MAG-NICKEL is its name. As you receive it, it is soft and ductile, like fine silver. Fabricate your most intricate parts, then oxidation harden them and this new alloy will hold its temper permanently. This hardness is not disturbed even when subsequent elevated temperatures are encountered.

SILVER-MAG-NICKEL has excellent thermal and electrical conductivity. Its corrosion resistance is equal to that of fine silver. It is available in wire and strip in thicknesses down to .002".


Have you an application where SILVER-MAG-NICKEL can be used to advantage? See the list of properties to the left. Write giving full details of your potential application. Our engineers will be glad to discuss these properties with you.

HANDY & HARMAN

General Offices: 82 Fulton St., New York 38, N.Y.
DISTRIBUTORS IN PRINCIPAL CITIES

OFFICES and PLANTS
BRIDGEPORT, CONN.
PROVIDENCE, R. I.
CHICAGO, ILL.
CLEVELAND, OHIO
DETROIT, MICH.
LOS, ANGELES, CALIF.
TORONTO, CANADA
MONITEAL, CANADA

- AIRCRAFT
- MOBILE TWO-WAY
- LAW ENFORCEMENT
- TAXI
- RAILROAD
- **BROADCAST**
- AIR FORCE
- ARMY SIGNAL CORPS
- NAVY
- HOBBY MODELS
- AMATEUR
- **TELEVISION**
- **PIPELINE**
- MARINE
- INDUSTRIAL

Consult our Research and Engineering Laboratory.

IT IS AT YOUR SERVICE

One of the Oldest Manufacturers of Crystals in the United States.

ORDERS PROMPTLY FILLED

SCIENTIFIC RADIO PRODUCTS, INC.

215 South 11th St., Omaha, Nebr., U.S.A.

Want more information? Use post card on last page. 320

still uses the turntable rubber mat. The unit is available for operation on 100 to 125 v and 200 to 250 v; frequency, 50 or 60 cycles as required.

SERVOBOARD on component parts basis

SERVO CORP. OF AMERICA, 20-20 Jericho Turnipke, New Hyde Park, N. Y. The Servoboard is a set of standard precision mechanical parts, including gears, shafts, bearings, hangers and mounting plates, which, when coupled to the necessary motors, tachometers, synchros, potentiometers and amplifiers, rapidly builds a flexible experimental mechanical assembly of a servo system, computer or regulator. It was developed as an aid to the design of servomechanisms by providing means for quickly synthesizing the electromechanical parts of the control system.

SCALING UNIT used for particle counting

BERKELEY SCIENTIFIC, division of Beckman Instruments, Inc., 2200 Wright Ave., Richmond, Calif. Model 2200 automatic scaling unit is a high speed instrument for automatic counting of electrical pulses obtained from nuclear particle detection equipment. It consists of an input pulse height discriminator, an electronic scaling channel with 1paired pulse resolution, mechanical register, time clock and automatic control circuitry. High voltage is not supplied in this instrument. The scaling channel consists of 4 plug-in decimal counting units including one model 706A and three model 705A's. Count indication is entirely direct reading. Maximum counting speed is 100,000

ACME STAR COMPOUND

FOR

MIL-T-27. GRADE 1 CLASS A **TRANSFORMERS**

A Raytheon transformer molded with Acme Star Compound

NOTE THESE OUTSTANDING **ADVANTAGES:**

- Non-toxic
- Non-corrosive
- Eliminates Voids
- Thorough impregnation
- Simple one-phase molding process
- Tenacious adhesion to metal
- Assures complete moistureproof seal

Acme Star Compound also passes Specification MIL-C-16923 (Ships), Compound, Embedding (Electronic Equipment), Type C.

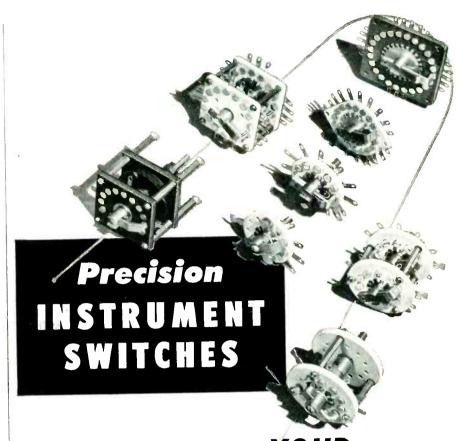
Exterior cases are not required, as the compound alone provides protection.

ACME WIRE CO. NEW HAVEN, CONN.

MAGNET WIRE . COILS VARNISHED INSULATIONS INSULATING VARNISHES

Want more information? Use post card on last page. April, 1954 - ELECTRONICS

per second. A four-digit mechanical register is used and provision is made for driving an external relay in parallel with the register.


H-V INSULATION for internal wiring

INDUSTRIAL DIVISION OF MINNEA-POLIS-HONEYWELL REGULATOR CO., Wayne & Roberts Ave., Philadelphia 44, Pa., is manufacturing a moisture-proof h-v insulation for internal wiring of the company's electronic instruments. This thermoplastic material is impervious to moisture and thus is recommended for use where high humidity conditions prevail. Insulation comes in 10 base colors. Where tracers are required the insulation is white with two identically colored helical stripes to identify the base color and a third stripe to show the tracer color. Input circuit wiring will be solid white covered by colorcoded rayon braid.

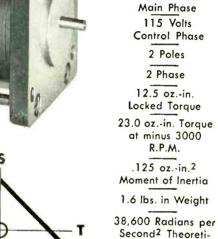
PLASTIC REEL for magnetic tape

AUDIO DEVICES, INC., 444 Madison Ave., New York 22, N. Y., has announced a new and improved 7-in. plastic reel for magnetic sound recording tape. The reel has a 2}-in. hub that provides essentially the same accuracy of timing and freedom from tension stresses as the previous 23-in. hub, but its additional tape storage space eliminates the danger of the outer turns slipping off the reel. It holds the full 1,200 ft, of tape with ample capacity for adding long leaders at both ends and between selections on the reel. The reel flanges have larger solid web areas, providing more space for labeling and giving greater protection to the rolled tape. Raised edges around the rim

STOCK MODELS FOR YOUR JOB

There's nothing like stock models of Shallcross Instrument Switches for cutting equipment cost and design problems. For over 20 years Shallcross has made scores of basic switch types with countless variations for practically every electric-electronic application. Single or multi-deck types having up to 60 non-shorting positions are regularly produced. Contact resistance less than 0.001 ohm is a feature of many types. Several unique switches-usually 'Special items' with other manufacturers can quickly be supplied by Shallcross from stock. For a fast solution to any problem involving rotary switches, write to SHALLCROSS MANUFACTURING CO., 522 Lincoln Avenue, Collingdale, Pa.

Shallcross


Servo Motors
meeting JAN environmental
requirements need not be expensive!

DIEHL

"HI-AC-CEL" Low Inertia A. C. Servo Motors

Priced at only \$30.00

SPECIFICATIONS:
Diehl Number:
FPE 25-79-1
10 Watts
Maximum Output
115 Volts

cal Acceleration

This newly designed Diehl "HI-AC-CEL" Servo Motor affords high response and is suitable for a broad range of military and industrial servo-mechanism applications.

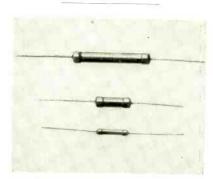
FEATURES:

- 1. Cogging (Slot effect) is Negligible
 - 2. No Single-Phasing
- 3. Speed-Torque curve extends into the negative speed range at approximately the same slope.

Diehl "HI-AC-CEL" Servo Motors are obtainable in ratings from 5 to 25 watts output with standard 115 volt control phase windings and also with high impedance control phase windings. All ratings can be furnished with either A.C. or D.C. integrally mounted tachometer generators.

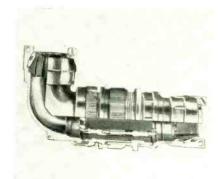
Our wealth of experience in producing quality motors is at your service to help you select the unit best suited to your specific requirements. Copy of Technical Manual No. EL-0454 describing Diehl Servo Motors and related equipment is yours for the asking.

Other Available Components:


D.C. SERVO SETS • RESOLVERS
MINIATURE PERMANENT MAGNET D.C. MOTORS

DIEHL MANUFACTURING COMPANY

Electrical Division of THE SINGER MANUFACTURING CO.
Finderne Plant, SOMERVILLE, N. J


Atlanta Baltimore Baston Chicago Detroit New York Philadelphia Worcester

and flange openings give increased strength and rigidity with minimum weight, and also serve to keep the large clear plastic flange surfaces from becoming scratched or marred in normal handling.

STABLE RESISTORS in deposited carbon type

Dale Products, Inc., Columbus, Neb., has introduced its new commercial grade deposited carbon stable resistors in tolerances of 1, 2, 5 and 10 percent. Standard resistance ranges in the 1-w size are from 1 ohm through 5 megohms; in the 1-w size, from 1 ohm through 10 megohms; in the 2-w size, 5 ohms through 100 megohms. A new tough silicone coating has been developed which seals the stable precision element and protects it from physical abrasion without the addition of protective sleeve.

CONNECTOR is environment resisting

SCINTILLA MAGNETO DIVISION, Bendix Aviation Corp., Sidney, N. Y. Type E environment-resisting electrical connector illustrated was developed to meet the high-altitude performance requirements of today's airplanes. It was designed to

protect sensitive electronic circuits from thermal shock, surface condensation and extreme vibration. Convenience of assembly is an important feature of this E connector. The space between insert and grommet provides an ample working area for all assembly and welding operations. The connector is completely serviceable since individual wires can be removed or repaired with the connector in place.

COLOR TV COILS KIT contains 32 items

ELECTROMETRIC, INC., Woodstock, Ill., has announced a new color tv coils kit containing 32 items for use with shadow mask tubes. Included are a new distributed constant delay line, a new horizontal output transformer, horizontal dynamic-converging and dynamic-focusing transformer, horizontal dynamic-convergence phase control, width control, linearity control and a complete set of i-f, video and color information circuit coils.

ADAPTER for tube testers

SUPEREX ELECTRONICS CORP., 23 Atherton St., Yonkers, N. Y., is marketing an adapter that can be used with any make tube tester and all picture tubes. Simplicity of operation is the keynote. One end plugs into the present tube tester (of any make or model), and the other end hooks into the picture tube, without removing the latter from the tv cabinet. Any tube, new or old, from 10 in. to 30 in., can thus be checked for electrostatic or magnetic shorts. Overall length is 49½ in.

CONTROLLERS provide automatic testing

Tinius Olson Testing Machine Co., 1022 Easton Rd., Willow Grove, Pa., has announced a line of automatic testing controls. The controllers are designed for production testing, proof testing, yield strength by the extension under load method, stress cycling (load),

PROVIDING SIMPLIFIED GEAR SHIFTING LEVER

A design engineer wanted to provide single-lever gear shifting for a duplex 10-speed truck transmission. He wanted to position a "flipper" on the shift that would control a selector valve supplying air and vacuum to the power cylinder of the shift. The control linkage between these components had to be simple in construction, economical from the standpoint of material, and had to permit easy movement of the shift lever. That's why the designer chose—

THE LOW-COST SOLUTION AN S.S.WHITE REMOTE CONTROL FLEXIBLE SHAFT

The use of one self-contained S.S. White flexible shaft assured smooth, positive, and dependable operation while readily conforming to the various positions of the shift. The shaft was easily installed,

needed no alignment, and required no adjustments after installation. Even though your needs may be different, you'll realize great time and moneysaving advantages by using S.S. White flexible shafts on your own remote control applications. Our engineers will be glad to cooperate with you in working out details.

Write for the Flexible Shaft Handbook...

It contains 256-pages of data and facts on how to select and apply flexible shafts. We'll send it to you free, if requested on your business letterhead.

NEW YORK 16, N. Y.

THE SUblite INDUSTRIAL DIVISION
DENTAL MFG. CO. Dept. E, 10 East 40th St.

Western District Office . Times Building, Long Beach, California

throughout the East Coast and found this sector the most suitable from every aspect for his company.

York
esentative
furniture
n its then
ory there.
was selling
week dooryear had
art and full

ng nights he n baby table new features ife easier for bies. By Ocproduced his then quit the help

LOST ONE MACHINE SHOP

...for the modification of servo system components...

growing chain dep sory store centrally lo gasoline sta tery brands. The first st to locate plan throughout the proport automobile markets an tion charg program, existing plan spent \$20,000, said. It now ha tery plants 1930. The seco was !

are now buying the components for servo systems from several manufacturers, you are probably wasting time, labor, machinery, and material, modifying the various units for better coordination. And you still end up with only the inferior performance that such a hodge-podge delivers.

Transicoil experience proves that you can save the time and trouble of secondary operations and end up with a better system by merely using assemblies made up of matched Transicoil components. The units comprising these assemblies are designed and constructed to work with each other for optimum efficiency, top performance, and actually cost less when assembled than the total purchase price of individual components acquired from several sources.

If you are now purchasing servo components from several manufacturers, a serious talk with Transicoil will pay you dividends in lower costs and a better system. But if you require only one component, you can be sure of optimum performance from the Transicoil units you specify.

H-V PROBE LEAD extends d-c voltage ranges

and crosshead cycling.

strain (unit deformation) cycling

RADIO CITY PRODUCTS Co., INC., 152 W. 25th St., New York City, N. Y., has brought out a new high-voltage multiplier probe lead for extending the d-c voltage ranges of model 655 peak-to-peak v-t voltmeter. It comes complete with multiplier resistor and terminations and is of the heavy-duty type with safety barrier. It multiplies the scale used by 100.

Literature___

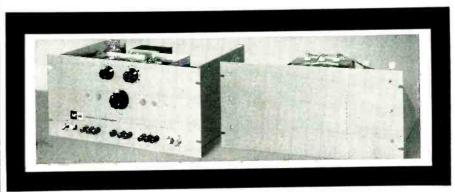
High-Gain Audio Input Tube. Kingdom Products, Ltd., 23 Park Place, New York 7, N. Y., has published a single-sheet bulletin presenting the Emitron 2729, a voltage amplifying pentode that is expressly designed for the first stages of high gain audio amplifiers. Included are a typical circuit, operating data and characteristics chart. An illustration, dimensional diagram, ratings and operating conditions are also given for the KT66 power amplifier tube.

Thyrite. General Electric Co., Schenectady, N. Y. Bulletin GEA-4138C deals with Thyrite, a non-linear resistance material in which the current varies as a power of the applied voltage. The material described has found important applications in the electric-power, communications, and electronic industries. Included are photographs, tabular data, characteristics charts and circuits. A supplement to the bulletin contains a page of information to be filled in for special applications.

Precision Stainless Steel Wire. Fort Wayne Metals, Inc., 3211 MacArthur Drive, Fort Wayne, Ind. As an aid to present and potential wire users, the company has announced a new specification form that gives product design, engineering and purchasing departments a definitive means to

specify wire requirements. new form covers all known stainless steel wire subjects, and is designed both to suggest uses and to simplify buyer procurement problems. The rapidly lengthening list of uses which makes such a form extremely valuable includes electronic shielding, industrial brushes, minesweeper cable, nonmagnetic stainless steel wire, spiral-four cabling, magnetic recording wire, suture wire, filters and spiral thread inserts. Standard or custom specifications can be listed on the new forms.

Photoelectric Controls. The Autotron Co., Box 722-H, Danville, Ill. A recent catalog describes general-purpose, fail-safe, high speed and ultrasenitive photoelectric controls with electronic timers and safety relays. The controls described have light sources with straight beams, wide selection of pin-point beams, and adjustable focus beams. They are also available with beam intensity adjustment, dual filament lamps and safety relays.


Wattmeters. Sensitive Research Instrument Corp., 9-11 Elm Ave., Mt. Vernon, N. Y. Volume 20, No. 4 of "Electrical Measurements" covers the selection and use of wattmeters. It deals with questions which a purchaser must ultimately answer, such as: What is the supply voltage?; do I need a low power factor wattmeter or can I use a standard 50-percent P-F model?; how much current does the load take?; and what ranges of voltage. current and power do I need? The 8-page illustrated booklet gives technical specifications.

Mechanical Measurements With Electronic Counters. Hewlett-Packard Co., 395 Page Mill Rd., Palo Alto, Calif. Proven techniques for making common mechanical measurements quickly and accurately with electronic counters are described in Vol. 5 No. 1-2 of the H-P Journal. The issue discusses techniques for measuring operating time of high speed clutches, rpm on very high speed shafts, stability of rotation, electrical relay operating times and

ONLY KAY LAB MULTI-PURPOSE

ABSOLUTE DC POWER SUPPLIES

PROVIDE STABILITY REGULATION CALIBRATION

These units are absolute sources of D. C. voltage independent of line voltage and output load variations. The output voltage is constantly compared against the internal standard cell and thus, absolute calibration and stability with reference to the cell is insured.

SEND NOW FOR FREE DETAILS AND NAME OF NEAREST REPRESENTA-TIVE.

SPECIFICATIONS:

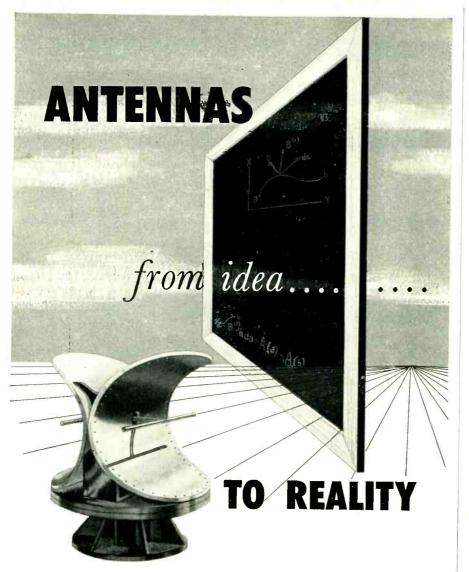
Long Time Stability; 100 parts per million
Short Time Stability; 50 parts per million per hour
Output Impedance; under 0.1 ohms
Output Hum and Noise; under 0.5 millivolt
Load Regulation Factor; .01%
Line Regulation Factor; .01%
Response Time; 1.0 milliseconds
Bias Supply; 0 to 150 volts

STANDARD POWER SUPPLIES

			Output l	Filame	nt	Overan		Output
		,	Valtage	Currer	nt Di	mensio	ns	Voltage
Model	Range	Current	Control	Amps	. W	н	U	Cal.
30C-15	10-300V	150 ma	. VB	3	19x	8-3/4x2	0-1/4	0.1%
30C-25				5	19x	8-34x2	0-1/4	0.1%
30C-50				10	19x1	7-1/2×1	3-1/4	0.1%
30C-100		1 amp.	VΒ	10	19x1	7-1/2x2	20-1/4	0.1%
50C-25				5	19x	8-3/4 x 2	20-1/4	0.1%
50C-25								0.1%
								0.1%
50C-100		1 amp.	∨B	10	TYX.	20-74X	CU- 74	0.170

OUTPUT VOLTAGE CONTROL

VA Output variable in one valt steps variable between steps by a potentiometer.


VB... Output variable in ten volt steps adjustable between steps by a potentiometer.

Fixed voltage and constant current models available.
Voltage and current calibrators available.

PRECISE ELECTRONIC INSTRUMENTS

Kalbfell Laboratories Inc., 1090 Morena Blvd., San Diego 10, Calif.

The keynote of superior systems planning is careful unit design. The Antenna, a vital link in many systems, requires a combination of creative genius and practical design talent.

Pickard & Burns, Inc. offers an antenna service unique in its completeness. Experienced engineers transform performance requirements into a design concept, then to physical reality which often involves not only laboratory models but pilot or full scale production.

From VLF through the millimeter region, the well-equipped laboratories of P & B are constantly serving the requirements of industry and the military for new and challenging antenna design.

Without obligation you are cordially invited to visit our facilities, and we would welcome an opportunity to discuss any antenna problem you may have.

For further information concerning our organization, its services and products, write for our brochure.

PICKARD & BURNS

INCORPORATED

240 Highland Avenue, Needham 94, Mass.

phase delay in l-f devises such as servomechanisms. It also indicates how electronic counters may be applied to measurement of pulse interval or pulse duration, linear velocity, flow, distance expressed in time, viscosity and the timing of photographic and other highspeed mechanical equipment. Schematic and circuit diagrams illustrate appropriate mechanical and electronic setups for performing the measurements. Waveform drawings and oscillograms show how phenomena measured by a counter appear when studied visually.

Electromagnetic Controls. Automatic Switch Co., Orange, N. J., offers a pamphlet outlining their services and products for use on the power side of electronics systems. The pamphlet, titled "When Normal Power Fails," discusses items designed and constructed to RETMA standards and covers such controls as automatic transswitches, engine-generator starting units, differential relays, time delay relays and complete control panels. Information is given on such related subjects as: current surge tests, adequate lighting, relay protection and auxiliary equipment for engine generator controls. Write for publication No. 528.

Corner Console Enclosure. James B. Lansing Sound, Inc., 2439 Fletcher Drive, Los Angeles 26, Calif., has issued booklet No. 34, a 4-page instructional folder on its rearloaded folded horn corner console enclosure. Well illustrated with photographs and schematic drawings, it depicts eight separate and distinct constructional steps from raw material to the finished product: from the component assembly to the installation of the grille cloth.

Wire and Cable Catalog. Lenz Electric Mfg. Co., 1751 N. Western Ave., Chicago 47, Ill., has available a most elaborate catalog providing description and complete specifications on the company's entire line of hookup and lead wires and cables for the electronics field. All Lenz wire and cables

are fully illustrated, so that the catalog will prove very useful to electronic engineers and purchasing agents.

TV Replacement Guide. Thordar-son-Meissner, Mt. Carmel, Ill. Flybacks, peaking coils, horizontal syncs, focus coils, deflection yokes, width controls, vertical outputs and ringing coils are among the components listed in the recently published tv replacement guide. The 32-page booklet features schematics, diagrams, catalog material and replacement listings for approximately 6,000 tv models.

Magnetic Recording Folder. Logistics Research, Inc., 141 So. Pacific. Redondo Beach, Calif. A 4-page illustrated pamphlet on Airfloating, a new principle in magnetic recording of information, is now available. The pamphlet describes experimentation known as Project Halo, which is said to have eliminated the biggest barrier to widespread application of modern automatic computing equipment in business, manufacturing and science.

Cyclo-Monitors. Counter & Control Corp., 5213 W. Electric Ave., Milwaukee 14, Wisconsin. A new 34-page engineering data catalog describes the augmented line of Cyclo-Monitors-electric control devices that incorporate a spdt switch and a predetermining counter The 3 basic models illustrated in the catalog pick up the count from a rotating machine member, a reciprocating member or an electric impulse from a sensitive switch or photoelectric cell. A number of new specialized types of Cyclo-Monitors are described for the first time. The catalog includes typical cycle diagrams, dimension drawings, photographs, performance ratings and other detailed information on these controls.

Transistor Literature. The Glenn L. Martin Co., Baltimore 3, Md., has published a 54-page booklet entitled "Guide to Transistor Literature." The transistor papers cited in this compilation number well over four hundred. A subject index is included. The entries

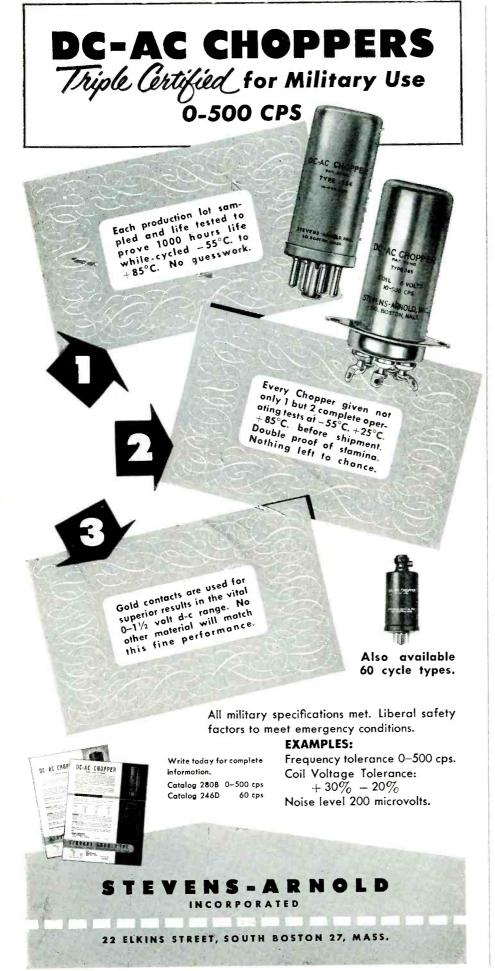
Preformed Contact Finger Stock is an ideal electrical weather stripping around doors of equipment cabinets as well as being excellent for use with VHF and UHF circuitry. Silver plated, it comes in three widths $-\frac{17}{16}$, $\frac{3}{3}$ and $1\frac{7}{16}$ inches.

Variable vacuum capacitors come in three models, are lightweight, compact, eliminate the effects of dust and atmospheric conditions and have low inductance. Also available are eight types of fixed vacuum capacitors.

Air-system seckets, designed for Eimac tube types 4-400 A, 4-1000 A, 4X150 A, and 4X150 D, simplify cooling and assure adequate air-flow to various seals. The 4-400 A socket can also be used with the 4-125 A and 4-250 A

radial-beam power tetrodes if desired.

HR heat dissipating connectors provide efficient heat transfer from the tube element and glass seal to the air while making electrical connections to plate and grid terminals. Precision machined from dural rod, HR connectors come in ten sizes to fit most of Eimac's internal anode tubes.


High Vacuum Rectifiers come in eight models, are instant heating, have radiation-cooled pyrovac* plates and can be operated in a variety of rectifying and voltage multiplying circuits. Also available are four types of mercury-vapor rectifiers.

* An Eimac trade name.

• For further information write our Application Engineering department

EITEL-MCCULLOUGH, INC. SAN BRUNO CALIFORNIA Export Agents: Frazar & Hansen, 301 Clay St., San Francisco, California

highly versatile new 150 series system.

Shock and Vibration Isolators. The Barry Corp., 807 Pleasant St.. Watertown 72, Mass. Product bulletin 538 presents detailed technical and application information on the series 670 and series 297. The units described are designed to reduce shock and noise caused by impact-type machines, and vibration and noise caused by heavy rotating and reciprocating machines. Isolators discussed are available in seven load ratings, covering the range from 500 to 4,400 lb per unit isolator. Included are data on dimensions and loads. installation procedures, variation of natural frequency with load, percent isolation of vibration for various frequencies and applied loads, and performance under shock.

Short Slot Hybrid Junctions. Microwave Development Laboratories, Inc., 220 Grove St., Waltham 54, Mass. Bulletin HJ-1 describes special features, gives electrical and physical characteristics of a line of short slot hybrid junctions that have found wide application in high-frequency radar and communications. Some applications are illustrated and described.

Microwave Bolometers. NARDA-Nassau Research & Development Associates, Inc., 66 Main St., Mineola, N. Y. A two-page color bulletin provides technical data on the N-821B bolometer, including resistance and sensitivity characteristics. Data are also included on the X-band frequency meter (Model 810) including a photograph of the unit.

Measurement Techniques and Instrument Operation. Sierra Electronic Corp., 1050 Brittan Ave., San Carlos 2, Calif. Five technical bulletins recently offered contain description, operation, application and measurement techniques for new instruments. Bulletin 101 covers directional couplers in the 10-kc to 3-mc range; bulletin 102—a line fault analyzer for locating telephone, telegraph and power line faults

½ to 200 miles distant; bulletin 103—model 121 wave analyzer for study of complex waveforms between 15 and 500 kc; bulletin 104—wideband directional couplers and crystal detector for power, vswr and match measurements from 30 to 1,500 mc; and bulletin 105—the model 141 wattmeter for r-f power measurement between 2 and 30 mc.

Power Rectifiers. McColpin-Christie Corp., 3410 W. 67th St., Los Angeles 43, Calif., has issued bulletins AC-54 and AC-54-1 on two lines of power rectifiers for aircraft use. The Stavolt rectifiers discussed are automatic voltage regulated types, and are engineered for applications requiring closely regulated d-c voltage. The Rectodyne manually controlled rectifiers covered are for applications requiring moderately stabilized d-c voltage, for 28½-v aircraft systems. Among features in both are the small, compact size and light weight. A new greatly simplified circuit is another important development.

Stamping Manufacturers. Pressed Metal Institute, 2860 E. 130th St., Cleveland 20, Ohio, has published a booklet containing an alphabetical listing of the facilities and services of all member companies. End products manufactured and sold by members of the institute are listed and numbered for reference to the page on which they can be found. The directory also contains suggested terms and conditions of sale for the pressed metal industry.

Flexible Coaxial Cable. Andrew Corp., 363 E. 75th St., Chicago 19, Ill. Bulletin 70-A illustrates and describes the type HX-O Heliax, a new ¾ in. diameter r-f coaxial cable combining flexibility approaching that of solid dielectric cables with the high transmission efficiency of air dielectric cables. Complete technical characteristics are given.

Microminiature Tanalytic Capacitors. General Electric Co., Schenectady, N. Y. Bulletin GEA-6065 deals with microminiature Tanaly-

New, Improved Consolidated 7-300 recording galvanometers

unequalled for performance and quality

Products of a long range research program, CEC's new 7-300 series galvanometers incorporate better balancing techniques, new construction materials and a completely redesigned suspension system. The new 7-300 galvanometers are entirely new in design but fit all existing oscillographs, bringing increased control over linearity, sensitivity, damping, balance and stability. Smooth top-post rota-

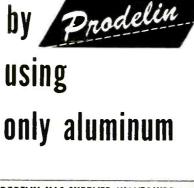
tion allows effortless, precise location of galvanometer light-spots on the record. Bodies are precision machined from solid stock for maximum

strength, stability and ruggedness. Brasstipped pole pieces, brazed in place under a hydrogen atmosphere, permit easy installation without forcible snapping into the magnetic block. Fourteen models give the new 7-300 series complete coverages of frequency ranges from 0 to 3000cps. For helpful information on the theory and use of galvanometers in general and for complete specifications on the superior 7-300 series, let us send you a copy of Bulletin CEC-1542-X2.

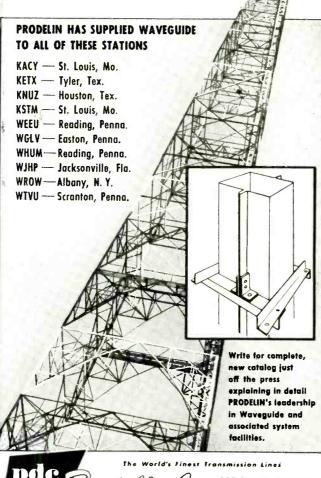
With bodies machined from solid stock and pole pieces brazed into place under hydrogen atmosphere, CEC's new 7-300 series galvanometers provide extreme ruggedness and dust-free closure.

Consolidated Engineering

CORPORATION


300 North Sierra Madre Villa, Pasadena 15, California

ANALYTICAL INSTRUMENTS FOR SCIENCE AND INDUSTRY


Sales and Service through CEC INSTRUMENTS, INC., a subsidiary with offices in: Pasadena, Atlanta, Chicago, Dallas, Detroit, New York, Philadelphia, Washington, D. C.

In Waveguide,
PRODELIN is
preeminent...
with all
products
field-proven...
conserve power
in UHF-TV. Call
on PRODELIN
to assist you
in all phases
of this
important new
development.

tic capacitors for low-voltage d-c applications. Included are an illustration and a diagram showing dimensions and tolerances. Ratings, specifications, application and prices are given.

Electrostatic Voltmeter. Sensitive Research Instrument Corp., 9 Elm Ave., Mount Vernon, N. Y. Volume 20, No. 9 of Electrical Measurements illustrates and describes the company's electrostatic voltmeter and its associated peak voltage adapter. Listed are full scale values, lowest readings, code words and prices.

High-Vacuum Rectifier. CBS-Hytron, Danvers, Mass., has prepared a series of design rating charts and curves defining the performance of its 5AW4 high-vacuum rectifier under a wide variety of operating conditions. The tube described is rated for continuous tv service. It has an A-frame construction for greater ruggedness. a heavy-duty 20-w filament for greater emission, and other engineering features that give it durability. It provides greater maximum average and peak currents, and it is also conservatively rated to provide large safety margins.

Heavy-Duty Transformer Winders. Geo. Stevens Mfg. Co., Inc., Pulaski Rd. at Peterson, Chicago 30, Ill., has released a catalog page describing its new model 147-AM heavy-duty transformer coil winder. Technical data are given on the types of coils wound, coil sizes and wire sizes handled, winding speed, motor equipment, set-up time, the instant reset automatic counter, the positive stopping magnetic brake, mounting and other features. The machine is also pictured.

Precision Potentiometers. Helipot Corp., 916 Meridian Ave., So. Pasadena, Calif. An eight-page illustrated technical paper, "Computing with Servo-Driven Potentiometers" examines linearity and loading effects in analog systems and shows how errors may be eliminated. Practical circuit techniques are discussed, including re-

ization for PRODUCT DEVELOPMENT COMPANY, INC

Kearny, New Jersey

striction of potentiometer range, preloading, and unloading with feedback amplifiers.

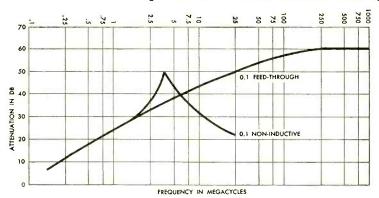
High-Vacuum Rectifier. Lewis and Kaufman, Ltd., 50 El Rancho Ave., Los Gatos, Calif. A new data sheet describes the Los Gatos brand 3B24W high-vacuum rectifier. The sheet illustrates the tube, provides outline dimensions and general characteristics. Average plate characteristics for this ruggedized half-wave rectifier are shown graphically for full-filament and half-filament operation.

Connector Bulletin. DeJUR-AMS-CO Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. The single-page technical sales bulletin No. 4 covers the series C-20 one-piece molded inserts hexagonal vibration-proof connectors. The connectors discussed insure constant reliability and performance under all conditions. Illustrations, description and specifications are given.

Hermetic Seal Bushings and Term-Heldor Mfg. Corp., 238 Lewis St., Paterson, N. J. A complete line of MIL-T-27 and special transformer cases as well as compression-type bushing assemblies for hermetic sealing are illustrated and fully described in a new combined catalog. Complete with full engineering data, specifications and dimensional drawings, the illustrated bulletin covers the company's standard and nonstandard MIL-T-27 cases, hermetic seal bushing assemblies and assembly service.

Curie Temperature Alloys. International Nickel Co., Inc., 67 Wall St., New York 5, N. Y., has available bulletin A-167, featuring 6 pages, with 17 charts and illustrations. It contains data on the Curie temperature (the temperature at which a magnetic alloy becomes nonmagnetic) of many alloys and shows how this phenomenon is of importance. Four basic applications where the Curie temperature must be known are in devices that require: (1) strong magnetic properties over a wide temperature range; (2) a nonmag-

CORPORATION OF AMERICA


SC 114

FEED-THRU

SUPPRESSION CAPACITORS

Tobe feed-thru suppression capacitors provide simple, easily applied means of obtaining high attenuation of radio interference. Connected in series with any single line carrying radio interference, these three-terminal capacitors provide attenuation that increases with frequency, far beyond the point at which conventional "non-inductive" capacitors become self-resonant. The style

F1 unit shown is contained in a hermetically sealed, grounded, metal case with provision for single-hole mounting thru a bulkhead. Other mounting and terminal styles are available. These units will carry up to 250 amperes at voltages up to 4000 v.d.c. Detailed performance characteristics and data on specific applications will be founded as a second

netic alloy having strength and other desirable properties as provided by nickel and iron; (3) special expansion alloys used for glass-to-metal seals, bimetals or in precision instruments; and (4) magnetic properties of the alloy to change with temperature, used for instrument compensation and the like. Some specific applications are given.

Power Supplies. Allied Engineering Div., Allied International Inc., Connecticut & Richards Aves., South Norwalk, Conn., offers its newest bulletin on power supplies for voltage regulation. The 8-page, 3-color catalog presents 5 standard models, including a miniature unit measuring 8 in. \times 5 in. \times 5½ in. overall. Clear illustrations and factual engineering specifications are given for each type of supply. The specifications provide information on input voltage requirements, voltage and current outputs, percent regulation, ripple, ambient temperature operating range, standard meters supplied and complete mechanical specifications. Included in the literature is a detachable specification sheet for those wishing price quotations on custom-built power supplies.

Measuring Phase Shift. Technology Instrument Corp., 531 Main St., Acton, Mass. Laboratory Report No. 8 featuring "A Method of Measuring Phase Shift through a Computing Magnetic Amplifier Using the Type 7000-A Primary Phase Standard" is available upon request. An additional feature deals with the measurement of small angles in the vicinity of zero degrees with the type 320-AB phase meter.

Vibration Isolator. The Barry Corp., 807 Pleasant St., Watertown 72, Mass. Product bulletin 537 presents detailed technical and application information on the series 262 and 633 Barrymounts for light industrial applications. Included are data on dimensions and load ratings, installation procedure, variation of natural frequency with load, and percent efficiency of isolation. Both series are designed to isolate vibration and noise caused by motors or

motor-driven equipment applying static loads of 30 to 260 lb to each unit isolator. Isolation of 60 percent to 85 percent of structureborne vibration is obtained at 20 cps (1,200 rpm), and 95 percent or better at 1,800 rpm.

Oscillograph Tubes. National Union Radio Corp., Jacksonville Road and Summit Ave., Hatboro, Pa. A recent data sheet announces the new 8CP type 82-in. oscillograph tubes. The six types described are electrostatic focus and electrostatic deflection tubes, differing only in the characteristics of the fluorescent screen. Other features are a zero first anode current electron gun and high voltage post accelerator electrode. data sheet gives complete electrical and mechanical characteristics.

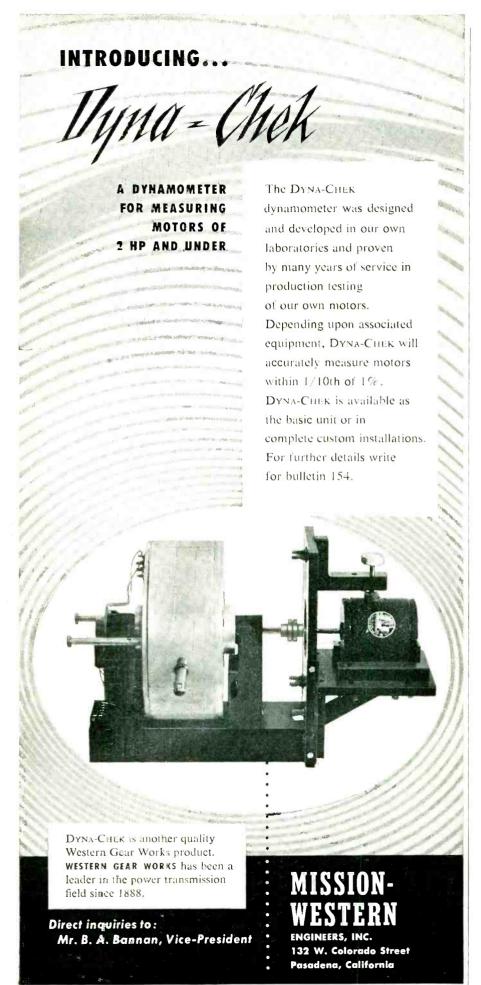
Differential Pressure Potentiometer. Bourns Laboratories, 6135 Magnolia Ave., Riverside, Calif. A 2-page data sheet No. 508 gives complete technical information on a new diaphragm bellows-type differential pressure potentiometer in standard ranges from 0-to-1 to 0-to-30 psi. Included are photographs, an outline drawing, a temperature-vs-deviation graph and complete detailed specifications covering such information as linearity, hysteresis, resolution and the effects of vibration and acceleration.

Picture Tube Selector. Allen B. DuMont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N. J., has made available the picture tube selector, a pocket-size, slide-rule device that solves most picture tube replacement problems. It gives complete electrical values, basing, and important physical features for 36 major replacement picture tube types. Over 100 other tube type listings are indexed according to interchangeablity with the basic types.

Communications Receiver. Hammarlund Mfg. Co., 460 W. 34th St., New York 1, N. Y., has announced a 2-color-, 4-page bulletin describing in detail the designs, specifications and operating procedure of its newest communications receiver, the HQ-140-X. The folder

Connectors Meet All Government Specifications

ALL ORDERS DELIVERED PROMPTLY


Manufacturers of Highest Quality **Connectors**

- 1 A1-11022—High voltage quick disconnect plug similar to, but does not mate with BNC, Weatherproof. Teflon insert. For use with RG-59, 62, and 71/U cable. Constant impedance of 50 ohms. Operating voltage—5 kilovolts. Operates satisfactority to 10,000 megacycles.
- 2 UG-154/U—A1-11070—Type LC Plug for use with RG-17/U cable. Fifty ohm impedance. Weatherproof. Five kilovolt rating. It may be used with RG-19/U cable at a rating of 10 kilovolts.
- 3 UG-21D/U—A1-11072—Improved Type N Plug. Mates with standard type N and Improved Type N Jacks. For use with RG-8, 9, 9A and 10/U cable. Weatherproof. Performance is good to 10,000 megacycles. Nominal impedance—50 ohms. May be used with 70 ohm cable if impedance matching is not important.
- 4 MX-554/U—A1-11039—Type BNC Termination. Mates with BNC Receptacles and jacks. Weatherproof. Furnished at any desired impedance. Operating frequencies same as standard BNC.
- 5 A1-11047—High voltage quick disconnect right angle adapter. One male—one female end. Similar to, but does not mate with, BNC series. Weatherproof. Teflon inserts. Constant impedance of 50 ohms. Operating voltage—5 kilovolts. Operates satisfactorily to 10,000 megacycles.
- 6 UG-355/U—And UG-356/U—A1-11006 Klystron Coupler. The UG-355/U couples two type N Jacks to a 726 C Klystron. The UG-356/U couples two type N Jacks to a 2K29 Klystron.

7 UG-37A/U — A1-11032 — Ceramic insert, pressurized, high voltage receptacle. Weatherproof. Operating voltage—15 kilowatts. Flash over does not break down insulation. May be operated with high temperatures with no break down in pressure seal.

ALLIED INDUSTRIES, Inc

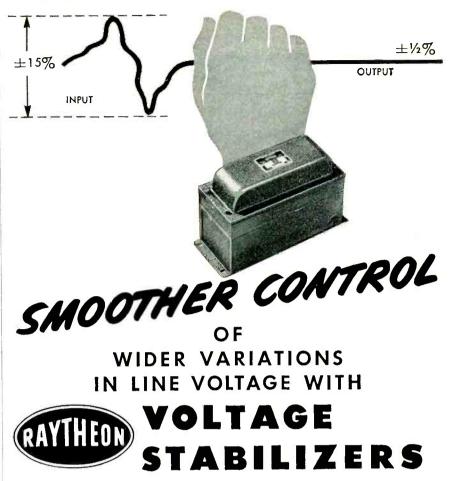
2500 WOODLAND AVE. LOUISVILLE 10, KY.

pictures in detail, also, the layout, construction and physical design of the receiver, which is built for both amateur and professional use. The HQ-140-X covers the frequencies from 540 kc through 31 mc in six bands. Bandspread dial calibrations are for the 80, 40, 20, 15 and 10-meter bands.

Leveling Mounts. Barry Corp., 1100 Pleasant St., Watertown, Mass., has available a brochure dealing with its new leveling Barrymounts. The brochure outlines such advantages of the new LM-3 and LM-5 series as the installation and leveling of heavy machines without bolting or shims, increased plant mobility, reduced maintenance costs and lessening of the noise level.

Relay Data File. Price Electric Corp., Frederick, Md., has compiled a handy relay data file containing specifications and photographs of 42 relay types. The file serves as a convenient reference for both commercial and military relays and is no larger than an ordinary file folder. There are no loose sheets or attachments; all information being printed on the body of the folder itself. Information provided includes contact arrangements and rating, coil data, dimensions and weight. Requests for copies of the folder should be made on company letterhead.

High Impedance Input Instrument. Minneapolis-Honeywell Regulator Co., Wayne & Windrim Aves., Philadelphia 44, Pa. Data sheet 10.0-14 describes the Electronik high impedance input instrument that can be used with source impedances varying from 0 to 50,000 ohms, without serious impairment of sensitivity, speed of response or damping. No d-c preamplifier is required. The instruments described are available for spans of 2 my or greater. or 10 my or greater.


Liquid Level Indicator Systems. Bogue Electric Mfg. Co., 52 Iowa Ave., Paterson, N. J., has available an 8-page booklet describing the operations of liquid level indicator systems using ultrasonic pulses. The bulletin, No. S-68, de-

scribes the systems, which use no moving parts but nevertheless accurately indicate liquid levels in petroleum, chemical and pharmaceutical processing and storage tanks within ±0.01 ft. Included in the booklet is information on the application engineering and diagrams describing typical installations in different types of storage tank.

Mercury Switches. Micro Switch, a division of Minneapolis-Honeywell Regulator Co., Freeport, Ill., has published a 12-page, 2-color catalog No. 90 covering standard designs of mercury switches for use in a-c or d-c industrial and commercial switching applications that provide low force and tilt motion. It covers five families of switches, classified as protected, heavy duty, general use, small and sensitive mercury switches. In all, 29 catalog listings are included. The catalog gives complete information on each switch, including dimensions, description, electrical rating, differential angle, lead wires and the type of application that each switch is suited for. A complete section on technical data and application aids is included. Another section pictures and describes typical applications.

Pulse Networks. Corson Electric Mfg. Corp., 540 39th St., Union City, N. J. Pulse capacitor and pulse network design and production facilities are described in a 2-color bulletin. The single $8\frac{1}{2}$ × 11-in. sheet also illustrates typical company units, shows a typical installation (in a 10-megawatt test modulator), reproduces on oscillograph of a typical Corson waveform and discusses deliveries and ordering information.

Amplifier System. Heiland Research Corp., 130 E. Fifth Ave., Denver, Colo., has available the 5-page illustrated bulletin 107 with complete information and specifications on the model 119 amplifier system. It presents detailed descriptions of the various features, operation and applications of the 5,000-cps carrier-type amplifier system for static and dynamic recording.

Smooth output from a wider range of input voltages is just one example of how Raytheon Voltage Stabilizers excel other makes. All models are compact, light in weight and ruggedly built with no moving parts to wear out.

Standard catalog models rated from 15 to 2000 watts are carried in stock by 125 parts distributors from coast to coast... can be built into your equipment or used as an accessory. Custom engineered units from 5 to 10,000 watts are also available for military or commercial applications.

Write for complete information and performance data.

Excellence in Electronics

RAYTHEON

MANUFACTURING COMPANY

EQUIPMENT SALES DIVISION

WALTHAM 54, MASSACHUSETTS DEPT. 6270A DISTRICT OFFICES: BOSTON, NEW YORK, CLEVELAND, CHICAGO, NEW ORLEANS, LOS ANGELES (WILMINGTON), SAN FRANCISCO, SEATTLE INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

RAYTHEON PRODUCTS INCLUDE: WELDPOWER* welders; Voltage stabilizers (regulators); Transformers; Sonic oscillators for laboratory research; Standard control knobs; Electronic calculators and computers; Radio, television, sub-miniature and mercial purpose titles and other electronic miniature and special purpose tubes and other electronic equipment. *Reg. U. S. Pat. Off.

TESTS PROVE 10 POINTS OF RAYTHEON SUPERIORITY

- 1. Deliver accurate AC voltage within ±1/2%
- 2. Stabilize output with more precision
- 3. Regulate better at full load
- 4. Hold up better under over-load
- 5. Better no-load to full-load regulation
- 6. Accept wider input voltage range 7. Less voltage change as units heat up
- 8. Less change in output as frequencies fluctuate
- 9. Smaller, lighter, more compact, no moving parts
- 10. Cost less to operate

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

Industry associations name new officers . . . Manufacturers announce further plant expansions . . . Engineers and executives are promoted . . .

Western Electronic Show Board Meets

THE 1954 WESCON board of directors held its first official meeting in Los Angeles. The Western Electronic Show and Convention, sponsored jointly by WCEMA (West Coast Electronic Manufacturers' Association) and the Los Angeles and San Francisco sections of IRE, will take place in Los Angeles August 25-27. Seated around the table are, left to right: R. A. Huggins of Huggins Labs;

W. E. Noller of Lynch Carrier; T. P. Walker of Triad Transformer, vice-chairman; Jeanne W. Jarrett, recording secretary; W. D. Hershberger of the University of California at Los Angeles, chairman; C. F. Wolcott of Gilfillan, vice-chairman; L. B. Ungar of Ungar Electric Tools, secretary-treasurer; Mal Mobley, Jr., business manager; N. E. Porter of Hewlett-Packard and J. H. Landells, Westinghouse.

RETMA Conference Plans New Industry Actions

CULMINATING a three-day industry conference in New York City, RETMA took steps to facilitate the elimination of tv set radiation, to urge Congress to exempt color tv from excise tax and to support a research program in educational tv.

R. C. Sprague, RETMA board chairman, was authorized to appoint a committee to establish

procedures and facilities, after consultation with FCC, so that set makers can eliminate sources of twinterference.

President Glen C. McDaniel and the tax committee were authorized to renew their efforts to eliminate or reduce the wartime excise tax on tv sets and to make a special plea for temporary exemption of

OTHER DEPARTMENTS

featured in this issue:

Page
Electrons at Work196
Production Techniques242
New Products292
New Books398
Backtalk404

color tv sets in line with the customary waiver on new products and industries.

The radio-tv industry committee, under Max F. Balcom, tactily approved a proposal that tv manufacturers provide equipment for an educational research project at New Jersey State Teachers College at Montclair. The project, which has the support of the Ford Foundation, is designed to develop proper techniques for effective use of tv in school classrooms.

Reports on the outlook for military requirements for electronic equipment were made at the meeting. Present indications are that government spending for electronic military products in the fiscal year 1955-56 will be higher than expenditures in this field during the current fiscal year.

The problems retarding the growth of uhf broadcasting were discussed. It was the consensus of set division executive committee members that the growth of uhf is not being hampered by the shortage of either receiving or transmitting equipment.

The RETMA board adopted a resolution complimenting the FCC on its speedy handling of new tv station applications, including uhf, and its adoption of the NTSC color tv proposal. Earlier, the dissolution of NTSC was announced by its chairman W. R. G. Baker of GE. Referring to the work of the NTSC. Dr. Baker said: "For the second time engineers and scientists of the tv industry and allied fields have given freely and unselfishly of their time and efforts to create successfully a new service for the American public. The first NTSC created

BIRMINGHAM SOUND REPRODUCERS LTD. OLD HILL, STAFFS. ENGLAND

the standards for black-and-white tv. The present NTSC, after 3 years intensive work, has made possible the introduction of color tv."

In a letter to all of the members and alternates Dr. Baker said: "I would like to thank each member of the organization for the great effort they put behind this work. Especially do I appreciate your cooperation and understanding which to no small extent has made pos-

sible the outstanding results of the second NTSC."

In another action, RETMA filed a statement with the Senate Committee on Labor and Public Welfare supporting the President's recommendation for a secret strike ballot after a strike or work stoppage has started. According to the statement, RETMA supports a strike vote amendment to the Labor-Management Relations Act

because it would give recognition to the rights of individuals. The post strike vote is advocated in the statement because "in most instances no clear cut issue on which to vote could be presented to the employees prior to a strike". Also "employees could hardly be expected to hamstring their representatives and weaken their bargaining position by announcing through a vote that the possibility of a strike was cut."

Du Mont Aligns Communication Division

Managers of the recently formed communication products division of DuMont Laboratories have been appointed. Executives of the mobile communications department, shown discussing sales and merchandising plans, are, left to right: Fred M. Link, director of operations for the department and formerly president of Link Radio; C. J. Harrison, department sales manager and previously marketing manager for the transmitter division; Herbert E. Taylor, Jr., manager of the communication products division and formerly manager of the transmitter division; and Robert E. Kessler, assistant division manager.

In the division's new tv transmitter department, James B.

Tharpe, formerly sales manager of the tv transmitter division, was named national sales manager. He joined the firm in 1947 as an engineering consultant to the transmitter sales department and in 1949 was appointed sales manager.

Named to aid Tharpe in the new setup is Kenneth F. Petersen, who was appointed marketing manager of the department. He joined WABD as maintenance engineer and later became supervisor of technical facilities for WPIX.

Others appointed to the new transmitter department are Charles E. Spicer, sales operations manager; Lewis C. Radford, eastern district manager; Herbert Bloomberg, central district manager; R. J. Myers, western district manager and T. B. Moseley, southern district manager.

According to the company, sales of station and studio broadcast equipment have more than tripled from 1952 to 1953. Shipments to broadcasters in the past year were 167 percent greater than in 1952.

New Committee Names Officers

A CONFERENCE COORDINATING COM-MITTEE, which was established by six trade associations within the electronics industry to coordinate regional conferences run by sales representatives, has designated Russ Diethert, national president of The Representatives, as its chairman and S. L. Baraf of United Transformer as its co-chairman.

The six associations which participated in the committee are the National Electronic Distributors Association, West Coast Electronic Manufacturers Association, Radio Electronics Television Manufacturers Association, Eastern Group of the Sales Managers Club, Association of Electronic Parts and Equipment Manufacturers and The Representatives of Electronic Products Manufacturers.

Hi Fi Institute Is Organized

THE HIGH FIDELITY INSTITUTE of the Electronic Industries, a nonprofit association to promote the interests of the high-fidelity indus-

Advanced Flybacker Cuts Down Test Time

RCP Model 123 Provides Fast, Reliable Check of Flyback Transformers and Yokes

Designed for speedy testing of the horizontal output circuits in all TV receivers, the Flybacker is the latest design to come from the laboratories of the Radio City Prod-

The RCP Flybacker is reasonably priced at only \$39.75

ucts Co., 152 W. 25th St. New York

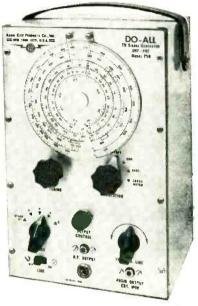
Extremely sensitive, the Model 123 Flybacker immediately shows up a shorted turn in a flyback transformer or yoke.

All tests can be carried out with the components in place in the TV receiver. Flyback transformers and yokes in stock can be checked for opens, shorts, etc. Flybacker tests are also applicable to inductive windings on any transformer, choke speaker, solenoid, relays, etc., where the impedance is not relatively low. In fact, the instrument may be used as a proportional AC ohmeter.

Easy to Operate

Minimum of connections necessary. All you do is remove flyback plate caps—set switches—apply leads and then read meter. The leads and then read meter. slightest change in inductance due to a shorted turn or the effect of intermittents shows up on meter immediately as "BAD".

Extra features provide added efficiency:


- Three "GOOD BAD" Scales.
- One Scale For Yokes.
- Tests Low and High Impedance Yokes.
- Direct Reading Numbered Scale.

• Tests while components are in TV receiver.

 Tests high impedance sections of all transformers.

First introduced in December of last year, the instrument was an immediate success. Users everywhere have heaped praise upon its efficiency and advanced design.

Signal, Marker, and Pattern Generator Com-TV "Do-All" bined in

The RCP Model 750 is priced at only \$79.50

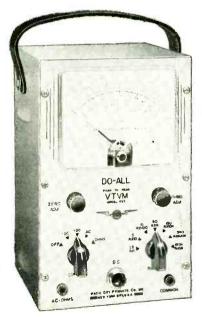
In the "DO-All" TV Signal Generator Model 750, the Radio City Products Co. has combined, in one instrument, the facilities of a signal generator, marker generator, and pattern generator for both UHF

Versatile in concept, the RCP Model 750 can check, test and align front ends, IF's, sound and pix traps, linearity, syncs, sweeps, positioning, focus and deflection. Designed for portable or bench use, the Model 750 reflects the finest in construction and appearance. It is handsomely finished in an attractive brushed aluminum panel with a steel carrying case.

The superior design of the RCP Model 750 provides for the following advantages:

 Inductuner insures accuracy of within ½ of 1% over the entire range of 9Mc to 900 Mc.

• All VHF frequencies are on


fundamentals.

RF's and IF's are clearly calibrated on a large etched aluminum dial.

Steady horizontal bars, vertical bars and crosshatch individually produced on all channels.

Perfected Peak-to-Peak Measurement Achieved With VTVM "DO-ALL"

New circuit developments inherent in the RCP Model 655 provide for the efficient and accurate measurement of complex waveshapes. It

RCP Model 655 provides for the accurate measurement of complex waveshapes.

gives a true reading measurement of complex and sinusoidal voltages with necessary peak-to-peak or RMS value read directly for analysis of waveforms in video, sync and deflection circuits.

Versatility of measurement, built into each Model 655, serves a variety of industrial applications in the service of vibrator power supplies, AC generators and all equipment utilizing any type of waveform or DC.

The range and the coverage available with the RCP Model 655 provides a multitude of advantages. For example, peak-to-peak AC measurements of from .2V to 4200V on 7 ranges; AC RMS measurements of .1V to 1500V on 7 ranges; DC measurements of from .02V to 1500V on 7 ranges; RESISTANCE measurements of from .2 ohms to 1,000 megohms on 7 ranges.

Considering the many advantages available, the price—only \$59.50beats any competitive product on the Market. Of high impedance design, the Model 655 makes use of an electronic balanced push-pull circuit and peak-to-peak rectification. The result is an absence of circuit loading, waveform error or frequency distortion.

For further information write Dept. E-4, Radio City Products Company 152 West 25th Street, New York 1, N. Y.

now...TEFLON* with Certified performance

$\begin{tabular}{ll} Conformance to specifications assured\\ in {\it FLUOROFLEX}^{\rm @-T} \ rod, \ sheet, \ tube \end{tabular}$

Resistoflex will certify each shipment of "electrical grade" Fluoroflex-T products on six vital physical and electrical properties. Qualification tests are performed on all incoming Teflon powder to determine whether it will yield rods, tubes and sheets which are in conformance with specification AMS-3651 "Polytetrafluoroethylene." Processing under a quality control and inspection system approved by the USAF under MIL-Q-5923 specification maintains the identity of each lot of material through all stages of manufacture—from virgin powder to finished product.

An affidavit accompanies each shipment attesting to its conformance with AMS-3651. Certified test reports of the actual properties of any shipment will be furnished whenever they are requested.

Be sure of optimum performance in Teflon by specifying electrical grade Fluoroflex-T. Remember, too—Fluoroflex-T products are non-porous and stress-relieved. This means better dimensional stability, less costly machining and fewer rejects. For more details, write or phone...

*DuPont trade mark for its tetrafluoroethylene resin. ®Resistoflex trade mark for products from fluorocarbon resins.

RESISTOFLEX

corporation

Belleville 9, N. J.

try, was organized in Los Angeles. Its purpose is to work for uniformity of technical standards for the high-fidelity industry, new and increased markets, the establishment of equitable trade practices, effective promotional methods and generally to promote welfare of this industry.

Jerome J. Kahn of Chicago was named temporary commissioner of the group to launch the program outlined by it and to serve in a liaison capacity in the industry. Pending permanent organization of the group, he will serve without pay. Temporary headquarters of the institute will be in Chicago.

The six-man provisional board of governors includes: C. A. Hansen of Jensen, L. Carduner of British Industries, E. Berlant of Berlant Associates, G. Yarbrough of American Microphone, J. H. Cashman of Radio Craftsmen and W. O. Stanton of Pickering.

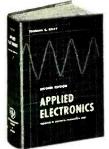
TV Academy Presents Award To NTSC

L. Hoffman, president of Hoffman Radio, left, accepted the TV Academy's "Emmy" award to the National Television System Committee for the compatible color tv system. Ed Sullivan, master of ceremonies, lauded the tv industry for "contributing more than a million man-hours to bring color tv to the American people."

The Representatives Membership Climbs

THE Representatives of Electronic Manufacturers recently added seven new members from Canada, one from Honolulu and 21 from

Designers of original equipment now specify silicone rubber parts if they must undergo extreme temperature changes or if they require constant dielectric properties. Insulators, bushings, grommets and other small units are in continuous mass-production in our plants. Prompt quotations on receipt of your sample or blueprint.


MINNESOTA SILICONE RUBBER CO.

5724 West 36th Street • MINNEAPOLIS 16, MINNESOTA

Affiliated with Minnesota Rubber & Gasket Co.
OFFICES IN PRINCIPAL CITIES

MICHIGAN

Now ready . . . Applied

ELECTRONICS

2nd Edition

A Publication in The Principles of Electrical Engineering Series, M. I. T.

By TRUMAN S. GRAY
The Massachusetts Institute of Technology

The 2nd edition of this classic work retains the purpose and much of the plan of the first edition. The major aims in its revision have been: to improve and clarify details; to bring the coverage up to date; and to include new developments such as semiconductor rectifiers and transistors.

It first explains the physical phenomena which form the fundamentals of electronics. Then it tells how the phenomena combine to govern the characteristics, ratings and limitations of electronic devices. Final chapters deal with various applications of electronics in different branches of electrical engineering.

Applied Electronics presents a clear picture of the subject, starting from elementary facts and principles. For those who have already gained a basic knowledge, its foundational treatment and practical illustrations and problems will provide a useful means for further study and reference.

1954

882 pages

Illus.

\$9.00

Introductory CIRCUIT THEORY

By ERNST A. GUILLEMIN
The Massachusetts Institute of Technology

Here are all the basic concepts and interpretations you need to keep up with the modern approach to advanced problems involving circuit theory. Complete with valuable graphic interpretations and computation aids.

1953

550 pages

Illus.

\$8.50

Mail for Your ON-APPROVAL

Copies Now
JOHN WILEY & SONS, Inc. 440 Fourth Ave., New York 16, N. Y.
Please send me the book(s) checked below for FREE examination. Within ten days I will either return the book(s) and owe you nothing or will remit the price(s) indicated, plus postage.
Applied Electronics, 2nd Edition, \$9.00 Introductory Circuit Theory, \$8.50
Name
Address
CityZoneState
SAVE POSTAGE! Check here if you ENCLOSE payment, in which case we pay postage. Same return privilege. (E-44)

1950

130°F.

BELOW

\$1950

IN A CLASS BY ITSELF

MILLIVAC MV-17C 100 MICROVOLTS to 1 KV-DC.

TIME PROGRESSES-SO DO WE

MILLIVAC INSTRUMENT CORPORATION

P.O. BOX 997,

SCHENECTADY, NEW YORK

various regional chapters, bringing membership to 439 seniors, 200 associates and 1 honorary for a grand total of 640 members.

The New York chapter is the largest single unit of the organization. It recently topped the 100 mark in total membership.


Chicago has the second largest chapter with 96 members.

Phileo Appoints Two Chief Engineers

WILSON P. BOOTHROYD was appointed chief engineer of the advance development laboratory for Philco's tv and radio division. Harris O. Wood was named chief engineer of the tv division of the company.

Boothroyd has been in charge of Philco's engineering and development laboratory for the past four years. He is known for special research on microwave communication and television involving synchronizing circuits and color ty.

Wood has been in charge of the company's tv receiver design since 1951. During World War II he achieved an outstanding record at Philco in the design of radar and electronic equipment for the government, the company said. He was recently appointed chairman of the tv receiver committee of RETMA.

Raytheon Plans Electronics Laboratory

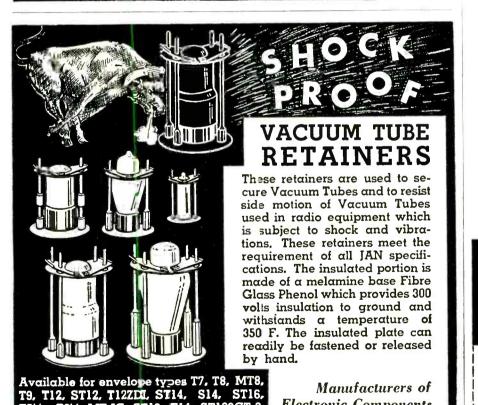
TENTATIVE plans for the construction of a large electronics engineering and research laboratory in Wayland, Mass., 20 miles from Boston, were announced by C. F. Adams, Jr., president of Raytheon.

The plans are conditioned upon the completion of satisfactory arrangements with the officials of the town of Wayland and suitable fi-

ALL ED world's largest distributor of

ELECTRON TUBES FOR INDUSTRY

IMMEDIATE DELIVERY FROM STOCK


ALLIED stocks for quick shipment the world's largest distributor inventory of special-purpose electron tubes. We specialize in supplying the needs of industrial, broadcast, governmental and other users. To save time, effort and money-phone, wire or write to ALLIED for fast expert shipment.

Refer to your ALLIED Catalog for all electronic supplies. Write today for a FREE copy of the complete 268page 1954 ALLIED Catalog.

ALLIED

100 N Western Ave. Dept. 11-D-4, Chicago 80, Ill.

JAMES IPPOLITO & CO.. INC. 401 CONCORD AVENUE, BRONX 54, N. Y.

For your most

EXACTING REQUIREMENT

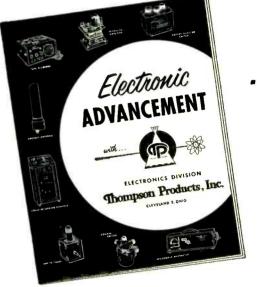
INYL SLEEVING

The more exacting your requirements in vinyl sleeving,

the more reason to buy from Resin Industries. Precise compounding and meticulous workmanship assure strict adherence to specifications. Rigid quality control guarantees uniformity; and prompt, understanding service eliminates purchasing headaches. That's why Resinite is the largest supplier of vinyl sleeving to the aircraft industry. Send the coupon today for samples and prices.

315 Olive St. • Box 1589 • Santa Barbara, Calif. SPECIALISTS IN VINYL SLEEVING AND TUBING FOR THE AIRCRAFT, ELECTRONICS AND PHARMACEUTICAL FIELDS

Resin Industries, Inc. Box 1589, Santa Barbara, Calif.
Please send samples and prices of sleeving as follows:


Name	
Firm	
Address	
City	ZoneState

Electronic Components

T51/2, T61/2, MT-IC, ST19, T14, ST128CT-9.

THIS BOOK DOESN'T

but it's full... of ideas <u>you</u> can use

SUCCESSFUL developments in the electronics field depend mainly on three things: ideas . . . experience . . . facilities. This book is full of all three.

Just a short request on your letterhead... or the coupon below . . . will bring this valuable book in the mail to you at once.

Thompson Products, Inc.

ELECTRONICS DIVISION • 2196 CLARKWOOD ROAD, CLEVELAND 3, OHIO

Thompson Products, Inc. Dept. E, Electronics Division 2196 Clarkwood Road, Clevelo	ınd 3, Ohio
Please send me a copy of Ele	ctronic Advancement.
Name	Title
Company	
Address	
City	Zone_State
	702

nancing. Company officials have been meeting representatives of the town to explore the possibility of re-zoning land for use as a site for the proposed laboratory. Options have been obtained on about 73 acres. It is expected that the plant will be occupied under lease.

Plans call for an initial building to be erected in two stages, to provide about 110,000 sq feet of floor space, with a possibility of additional sections in the future to total up to 300,000 sq ft of floor space. About 400 engineers and related personnel will occupy the first section, 400 in the second and eventually possibly 1,500, if and when the whole building is completed. Actual construction on the site, if approved, will begin shortly after the financial arrangements are completed and options are taken.

"This project," Adams said, "was initiated to provide increased space for our expanding engineering program which includes both commercial and governmental projects." He said that a gradual consolidation of the firm's research and engineering into a single location, instead of conducting them in many scattered areas, has been considered for some time.

In Chicago, Harold W. Beveridge has been named manager of Raytheon's equipment division operations. Beveridge has been with the firm for 9 years. He has had engineering experience with Laurentian Forest Protective Association, National Research Council of Canada, Naval Research Laboratory, and in other fields. He holds patents on mercury delay lines, beacon systems, high-speed digital computer memory systems and radar equipment.

Beveridge will be responsible for all development and production work carried out in Raytheon's equipment division plant in Chicago. This building formerly housed the special products department of the tv and radio division.

Motorola Makes New Personnel Appointments

HENRY MAGNUSKI has been named associate director of research in Motorola's communications and electronics division and will be tech-

PRECISION ** ATTENUATOR

Model AT-120 0 to 1000 MC

Small, rugged ladder attenuator achieves attenuation accuracy and low vswr from dc to uhf. Suitable for all signal and sweep generators in this frequency range.

Care in design assures maximum flexibility in mounting, drive, and types of input and output connections.

Easily adaptable for inclusion in different types of test equipment and in laboratory and production test applications.

MAXIMUM STEPS

Ten (eleven contact positions)

ATTENUATION RANGE

Up to 120 db total

OUTPUT IMPEDANCE

50 or 75 ohms nominal

INPUT IMPEDANCE

100 or 150 ohms nominal 50 or 75 ohms optional

INPUT AND OUTPUT VSWR

1.1 to 1000 mc at 50 ohms

Quick delivery on Standard Models. Prompt attention given to special requirements.

PAT, PENDING

OPHAR

WAXES

COMPOUNDS

Zophar Waxes, resins and compounds to impregnate, dip, seal, embed, or pot electronic and electrical equipment or components of all types; radio, television, etc.

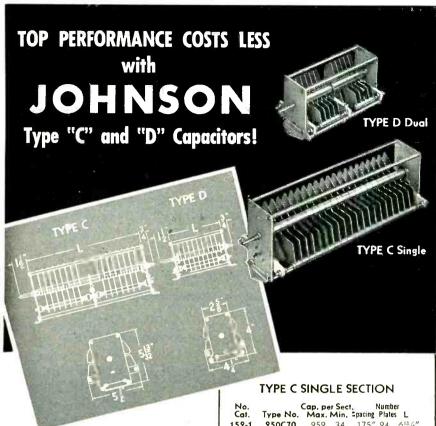
Cold flows from 100°F. to 285°F.

Special waxes non-cracking at -76°F.

Compounds meeting Government specifications plain or fungus resistant.

Let us help you with your engineering problems.

ZOPHAR MILLS, INC. 112-130 26th Street, Brooklyn 32, N. Y.


1.E.R.C. tube clamping shields solve electron tube heat and vibration problems. Temperature reduction is made possible by conducting heat directly from bulb to the chassis or heat sink providing greater reliability.

International

WRITE TODAY! For complete information send inquiries to International Eectronic Research Corporation, 175 West Magnolia Boulevard, Burkank, Calif.

electronic research corporation

Tough, and of rugged construction, JOHNSON Type "C" and "D" capacitors are reliable, yet simply manufactured. Designed for use in medium power RF equipment, their functional engineering permits rapid, accurate assembly; resulting in lower construction costs and a lower sales price. The finest materials available today are used in the fabrication of JOHNSON Type "C" and "D" capacitors, and have been thoroughly tested and found ideally suited for their application.

CONSTRUCTION

Heavy aluminum end frames, .051" plates and 5/16" tie rods assure extreme rigidity. Rotor contacts are laminated phosphor bronze. Dual models have center rotor contact for electrical symmetry. Low-loss Steatite insulators are located outside the most intense RF

Mounting brackets furnished for normal or inverted mounting. End frames drilled and tapped for panel mounting, special brackets or mounting of accessory components.

SPECIAL TYPES

Variations from standards such as special capacitances, ball bearings, dynamically balanced rotors, stainless steel shafts and right angle drive duals can be furnished in production quantities.

140.		cap, pe	er Sec	t, Namuei
Cat.	Type No.	Max.	Min,	Spacing Plates L
152-1 152-2 152-3 152-4 152-5 152-6 152-7 152-8 152-9	250C70 500C70 250C90 350C90 50C110 100C110 250C110 50C130 100C130	252 496 245 337 51 103 251 51 102	34 56 45 63 19 30 66 24 42	.175" 24 6 ¹³ 6" .175" 47 12 ³ 16" .250" 31 12 ³ 6" .350" 43 14 ³ 52" .350" 17 8 ¹ 22" .350" 11 8 ¹ 22" .500" 10 7 ¹ 16" .500" 21 13 ¹¹ 2"
	TYPE C	DUA	L SI	ECTION
152-50 152-50 152-50 152-50 152-50 152-50	1 200CD45 2 300CD45 3 200CD70 4 300CD70 5 150CD90 7 50CD110 9 100CD11 0 50CD130	290 198 305 147 50 0 103	21 26 27 37 30 18 32 24	.125" 15 819 6" .125" 21 105 6" .175" 19 123 6" .175" 29 1653 " .250" 19 1427 2" .350" 8 105 6" .350" 17 1655 2" .500" 10 1427 2"

152-502 300CD45	290	26	.125"	21	105 16"
152-503 200CD70	198	27	.175"	19	123 16"
152-504 300CD70	305	37	.175"	29	1625 32"
152-505 150CD90	147	30	250"	19	1427/32"
152-507 50CD110	50	18	.350"	8	105/6"
152-509 100CD110	103	32	.350"	17	1625 32"
152-510 50CD130	51	24	.500"	10	1421/82"
TYPE D S	ING	LE S	SECTI	10	1

452.0	400000	00	4.4	000//	0 020 7 //
153-2	100D35	99	14		8 22952"
153-4	250D35	252	24	.080"	20 425/2"
153-6	500D35	496	36	.080"	39 625/6"
153-7	100D45	104	19	.125"	19 425/32"
153-8	150D45	146	23	125"	17 425/32"
153-9	50D70	51	17	.175"	7 229/32"
153-10	70D70	72	18	.175"	11 425 32"
153-11	100D70	98	23	.175"	15 4242"
153-12	150D70	151	31	.175" 9	23 613 16"
153-13	250D70	244	45	.175"	37 10%6"
153-14	350D70	351	62	.175"	53 1311/2"
153-15	50D90	53	20		10 425/2"
153-16	70D90	73	25	.250"	
153-17	100D90	99	30	.250" 1	19 711,16"
153-18	150D90	149	43	.250" 2	29 10 16"

TYPE D DUAL SECTION

153-501 100DD35	95	13	.080" 8 425%"	
153-502 150DD35	147	15	.080" 12 518 "	
153-503 200DD35	202	19	.080" 16 7116"	
153-504 300DD35	291	24	.080" 23 915%"	
153-505 500DD35	496	38	.080" 39 13112"	
153-506 150DD45	155	24	.125" 18 915/2"	
153-507 200DD45	198	27	.125" 23 123 16"	
153-508 50DD70	52	15	.175" 8 513 16"	
153-509 70DD70	72	17	.175" 11 711,6"	
153-510 100DD70	97	22	.175" 15 915,32"	
153-511 150DD70	151	31	.175" 23 13" 32"	
153-513 50DD90	52	10	.250" 10 91532"	
153-514 100DD90	97	30	.250" 19 142732"	

F. JOHNSON COMPANY

INDUCTORS, SOCKETS, INSULATORS, PLUGS, JACKS, DIALS, AND PILOT LIGHTS

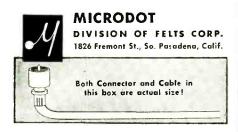
SECOND AVENUE SOUTHWEST . WASECA, MINNESOTA

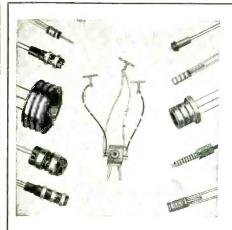
Henry Magnuski

nical consultant on all products manufactured by the division.

Magnuski is credited with developing the firm's "Walkie-Talkie." AN/CPN-6 radar beacon and the first 1,000-mile private microwave system in the U.S. He developed the basic circuits of the company's Sensicon receiver for two-way radio communication systems as well as a vhf cavity resonator.

Before his promotion, Magnuski had been chief engineer of the microwave research department and later chief engineer of the communications and electronics division's research department. He was educated in Poland and was chief engineer in charge of military communications equipment for the Polish State Radio & Telephone plant before coming to this country in 1939. He joined Motorola in 1940.


Also in the communications and electronics division, Lloyd P. Morris has been appointed chief engi-


Lloyd P. Morris

See that your products are design competitive... feature Microdot advantages. Order Microdot Kit #553 today ... and save valuable experiment time by having the precise parts you need for multistage tests. Satisfaction is assured. Simply clip this advertisement to your letterhead with P.O. or check for \$60. Mail to address below.

Miniature and Sub-Miniature

SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS

and other
Electro-Mechanical Components

PRECISION MADE TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

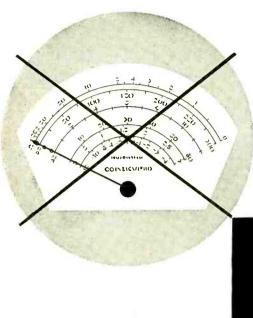
Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 • 216 East 45th Street • New York 17, N.Y.

Simple...Easy to Operate...Economical Standardization of Unit Makes This New Low Price Possible.

Maximum economies can be obtained only by use of correct frequency and power combinations when applying the techniques of induction heating to manufacturing processes.


It is significant that only Scientific Electric in the present market, can offer you a selection of frequencies depending on power required, in wide power range. 2-3½-5-6-7½-10-12½-15-18-25-40-60 KW (all units above 60 KW are considered custom built). This means that electronic heating equipment produced by Scientific Electric is tailored to your needs... fitted perfectly to the task entrusted to it, enabling you to keep your initial investment in equipment to a minimum while affording you all the proven advantages of electronic heating.

Write now for complete information or send samples of work to be processed. Specify time cycle for your particular job. We will quote on proper size unit for your requirements.

DESIGNERS AND MANUFACTURERS OF HIGH FREQUENCY AND HIGH VOLTAGE EQUIPMENT SINCE 1921

\$1535.

10

The Digitester \$1185.00

Telecomputing's new digital instrument

measures resistance, voltage and current with push-button speed

The versatile Digitester serves as a combination digital volt-ohm-milliampere meter, gives you 0.1% accuracy and .8 second speed. In addition, readout is in decimal numbers instead of analog form.

Wide measuring ranges are an important advantage of the Digitester. You can measure up to 10 megohms, 1000 volts, or 1 ampere. Maximum accuracies (lowest scales) are $\pm .01$ ohms; $\pm .00001$ volts; $\pm .01$ microamperes.

Operation does not involve any manual adjusting or balancing. You simply press a panel button to get decimal readout.

A digital ohm meter called the Digitohm is also available at \$985.00. It measures resistance with the same speed, accuracy and wide range as the Digitester.

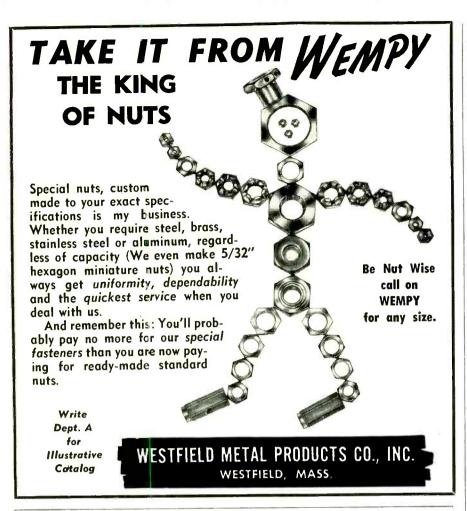
Specifications on the Digitester and Digitohm will be sent you upon request. Please address inquiries to Preston W. Simms, Dept. E-4.

TELECOMPUTING CORPORATION

BURBANK, CALIFORNIA . Washington, D. C.

neer of a new service, the national radio systems consulting service. His primary duties will be advising on engineering design of complex, co-ordinated vhf point-to-point and 2-way radio systems for customers. He joined the firm in 1940 and har served as chief systems engineer since 1947.

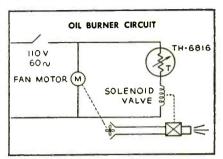
Leonard G. Walker was promoted to power utility product engineer and acting product manager



Leonard G. Walker

in the communications and electronics division. As product manager, he has engineering, marketing and production responsibility extending from engineering concept of equipment to successful installation of the system. Walker's group handles power line carrier. audio frequency carrier, supervisory control, power line coupling networks and related devices. Prior to his new assignment, he was chief

Harold A. Jones



THERMISTORS

provide

TIME DELAY

Carboloy® Thermistors in the electrical control of an oil burner, delay opening of solenoid valve until combustion chamber is ready to receive properly aerated oil. A mechanical timer was eliminated, and the cost of the unit reduced.

The resistance of Thermistors –unlike metals – changes negatively with temperature increases. Their inherent thermal inertia makes them ideal for signalling and warning devices and controls. Thermistors are available in two grades and in rod, disc or washer form, in a wide variety of sizes.

The Carboloy Engineering Appraisal Service will work with you on specific applications involving Thermistors. Send coupon, today, for literature.

Current-Time Curve

"Carboloy" is the trademark for the products of the Carbolay Department of General Electric Company

DEPARTM 11139 E. 8 M	RBOLOY INT DF GENERAL ELECTRIC COMPANY Le Street, Detroit 32, Michige e technical information
Carboloy The	
	mistors.
Carboloy The	mistors.
Carboloy The	mistorsPosition

Engineers Who "Go with Gilfillan" Stay with Gilfillan

Microwave Transmitter and Receiver Engineers Urgently Needed Now!

There are many reasons why outstanding engineers build careers at Gilfillan.

With 7 plants located in Southern California, Gilfillan is big enough for every phase of engineering, production and final test—yet not so large an engineer gets lost. You have the satisfaction of following your work through.

Work is interesting. Ideas begin here. We have long range commitments, including designing equipment for all 3 military services, dealing with advanced or unsolved techniques; and working with problems in coming civilian fields.

You will be given assistance, yet initiative is encouraged. You will have unusual freedom and recognition. You will be paid according to ability, not seniority.

Send for our Gilfillan brochure today. It can be the first step in discovering the all-around, satisfying, permanent career you want. Address your request to R. E. Bell, Dept. E4, Gilfillan Bros., 1815 Venice Blvd., Los Angeles 6, Calif.

In GCA, Radar and Electronics

Research, Design and Production...

The FIRST Name is

systems engineer for power utility products. Before joining the firm in 1951, he was electrical engineer for the Idaho Power Co. in Boise.

Harold A. Jones was named executive assistant to the national sales manager of Motorola Communications & Electronics, Inc., a wholly owned subsidiary of the parent company. He will assist the national sales manager in sales and promotion management of all communications products distributed through the subsidiary. Direct factory distribution is made through ten regional sales offices.

Jones has been with Motorola since 1946, and since 1949 has headed its technical information center, a post he will continue to hold.

Ketay Readies New Manufacturing Plant

Installation of equipment is underway at Ketay Manufacturing's new 43,000 sq ft plant in Commack, Long Island, N. Y.

Production equipment includes stamping facilities for 3 million pounds of lamination materials per year. Special facilities for corrosion-proofing materials will be provided. The plant will produce electronic and electromechanical devices, airborne electronic devices and flight instruments.

CBS Names Christensen And Mintz

THE APPOINTMENT of John W. Christensen as vice-president and chief engineer of CBS Laboratories was announced by Peter C. Goldmark, recently named president of the Labs. Seymour Mintz was

Ability to solve . . . Capacity to produce

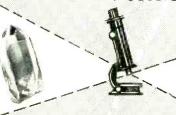
SEND YOUR Printed Circuit PROBLEMS

TO WILMAR!

Wilmar has both ability and capacity to develop and manufacture printed circuits to solve your electronic design problems. Modern facilities are available to you for special, small-scale problems or the massproduction of dependable units. Your inquiry on Wilmar's ability to serve you or on a specific design problem will receive prompt attention!

Advantages of Wilmar Printed Circuits!

- Save space, assembly time; cut errors
- Minimum of wiring labor costs
- Components easily accessible
- Cut inspection time
- Uniform wiring; faster soldering
- Improved reliability



Write, Wire or Phone TODAY!

Get the facts right now about Wilmar Printed Circuits.

2715 E. 14th ST. . KANSAS CITY 27, MO.

At KEYSTONE, specially developed X-Ray production processes hold this angle to extremely small tolerances that meet the most rigid specifications!

KEYSTONE QUARTZ CRYSTALS

Now serving, the world over, in military and commercial frequency control applications . . . have established a solid reputation for reliability.

From rough quartz to finished plug-in unit, Keystone high-precision production techniques and numerous hand operations—make possible exact quality control not obtainable by ordinary methods. Choose Keystone "Performance-Tested" Crystals wherever top reliability is a must!

Consult with us on your specialized design problems, at either your plant or ours. Crystal brochure on request to Dept. E-4

NEW! COLOR TV CRYSTALS Available! Write for Information.

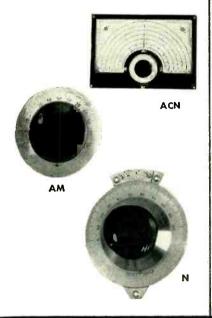
KEYSTONE ELECTRONICS COMPAN 114 Manhattan Street

Stamford, Connecticut

he's working

THIS FELLOW IS TRAINED IN YOUR BUSINESS. His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils . . . reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.

THE MAN WE MEAN IS A COMPOSITE of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized


AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE MAN," another complete news service which complements the editorial section of this magazine - the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it" - "they" being all the industry's front line of innovators and improvers-and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you - giving a ready panorama of up-todate tools, materials, equipment.

SUCH A "MAN" IS ON YOUR PAYROLL. Be sure to "listen" regularly and carefully to the practice business information he gathers.

McGRAW-HILL PUBLICATIONS

POPULAR **NATIONAL** DIALS

For years, National dials have been the popular choice of amateurs, experimenters and commercial users because of their smooth, velvety action, easily-read scales, and quality construction. Many dials, like the N and ACN dials shown, can be specially calibrated or supplied with blank scales for commercial application. Write for drawings and prices.

NEW TYPE FWT **BANANA PLUGS**

Moulded of mica-filled bakelite in accordance with JAN specifications, this new type is styled for easy gripping. Leads can be brought direct from the prongs or through the holes at the base of the plug. Top of plugs are designed to receive additional plugs. Prongs and screws are nickel-plated brass. Write for drawings and specifications.

Write for drawings

John W. Christensen

named president of CBS-Columbia.

Christensen joined the firm in 1946 and participated in the development of color tv projects, including the field sequential system and the CBS Chromacoder.

During the war, he was associated with Radio Research Laboratories of Harvard University in the development of vhf and uhf antennas, receivers and directionfinding systems for aircraft and guided missiles. For his contributions in these fields he received citations from the War Department and the Navy. In 1941 and 1942 he was a member of the engineering staff of KSL in Salt Lake City. Mintz was formerly vice-president and advertising director of Admiral. He was associated with the company for ten years. Previously he was with Montgomery Ward.

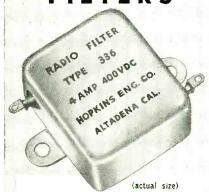
CBS-Columbia also announced that Carmine Masucci has been appointed to the engineering staff as a senior project engineer assigned to the advanced development department. He was formerly a member of the engineering department

Seymour Mintz

Now - HIGH LINEARITY

POTENTIOMETERS

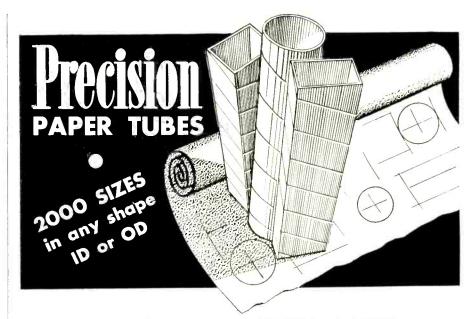
Precision Wire Wound For Better Performance


- 1. Low Temp. Coeff. Windings
- 2. Precious Alloy Contacts
- 3. Aluminum Alloy Bodies
- 4. Rugged Terminals
- 5. Max. Rotational Life
- 6. Environment Proof

Minimum diameters — dual, triple or quadruple assemblies with independent phasing and optional mounting provisions.

Write today for further information

Sub-miniature Radio Interference FILTERS


- ✓ Highest efficiency
- Small, lightweight to save space
- For high temperature and altitude operation
- ✓ High attenuation

Filters custom designed to meet your requirements!

Phone, write, wire us TODAY!

2082 Lincoln Ave., Altadena, Calif. Phone SYcamore 8-1185 • Offices in Washington, D. C. and Detroit, Mich.

Whatever your specific needs, depend on PRECISION PAPER TUBES to meet all requirements. Spirally wound under pressure, PRECISION PAPER TUBES are subjected to rigid tolerance control to insure strict adherence to specifications and provide maximum winding space. PRECISION PAPER TUBES possess 15 to 20% greater strength, yet are light in weight.

possess 15 to 20% greater strength, yet are light in weight.

Made from the finest dielectric kraft or fish paper, phenol impregnated, acetate or combinations, PRECISION PAPER TUBES afford high insulation, heat dissipation and moisture resistance. Available in any size, shape, I.D., O.D.—any quantity.

Write for Arbor List of over 2000 sizes . . . Send specifications for free sample.

PRECISION PAPER TUBE CO.

2041 W. CHARLESTON ST.

CHICAGO 47, ILL.

Plant No. 2: 79 Chapel St., Hartford Conn. Also Mfrs. of PRECISION Coil Bobbins

THE NEW ELECTRONIC CHOPPER

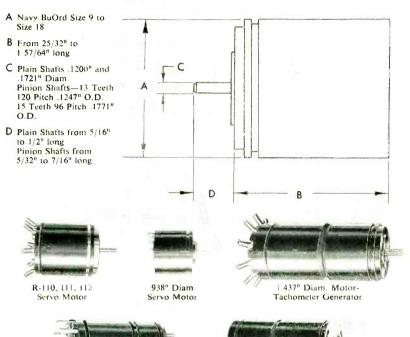
all electrical!

all electrical!
no moving parts!

- LIFE-3000 HOURS MINIMUM
- CASE SIZE-1/8 x 1/8 x 2
- WEIGHS ONLY 1.6 OUNCES
- . HIGH INPUT IMPEDANCE

The completely new design of this Avion Chopper provides for 100% electronic operation . . . achieved by modulation of D.C. voltages by alternate illumination at line frequency . . . of the photoconductive element in a voltage divider.

Compact, light, and durable, this unit is ideal for conversion of D.C. and A.C. in the fields of servomechanisms, computing devices; D.C. null measurement circuits, and other electronic control systems.


Send for complete data on this new Avion product OTHER AVION PRODUCTS

Altitude & Air Speed Control Units © Electronic Invertors © Frequency Converters Magnetic Memory Systems © Miniature Plug-In Amplifier Units © Power Supplies Voltage Regulators © Replaceable Subminiature Amplifier Assemblies © Signal Generators

Kearfott developed Servo Motors

... in production

Shown Approx. 1/2 size

1/16[®] Diam. Motor-

Characterized by very low rotor inertia, low time constants and high stall torque, Kearfott Servo Motors are available for your most exacting requirements. Unitized housing and stator construction makes possible optimum performance under extreme environmental conditions.

For either 26 or 115 volt, 60 or 400 cycle excitation, stall torque values range from .30 to 3.5 oz.-in. Geared Servo Motors in the same diameters can be provided with reduction ratios ranging from 10:1 to 300:1. Various Motor-Generator combinations provide ½ to 3.1 volts per 1000 R.P.M. with linearity, over a speed range of 0-5400 R.P.M., of 1% for damping or .1% for computing purposes.

Send for Bulletin describing Servo Motors of interest to you.

1 1/16" Diam

KEARFOTT COMPONENTS INCLUDE:

Gyros, Servo Motors, Synchros, Miniaturized Vacuum Tube and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.

Midwest Office: 188 W. Randolph St., Chicago 1, Ill., West Coast Office: 253 N. Vinedo Ave., Pasadena, Calif.

A General Precision Equipment Corporation Subsidiary

of Sylvania, and holds a number of electronic patents.

The firm also announced that it inaugurated the first of a series of 35-hour color tv training seminars for selected distributor personnel. They will cover basic color principles, the Colortron tube, signal transmission, basic circuitry, components and installation-maintenance procedures.

Gertsch Named President of WCEMA

E. P. GERTSCH, owner and president of Gertsch Products of Los Angeles, was selected president of the West Coast Electronic Manufacturers' Association for 1954.

Gertsch was one of the founders of WCEMA and has been an active leader in the association since its birth 11 years ago. He has served on the board of directors as vice-chairman of the Los Angeles Council in 1952 and as chairman of the first WCEMA scholarship committee. He was recently elected chairman of the 1954 executive committee for the Los Angeles Council.

Prior to organizing his own company, Gertsch held management positions with Hoffman Radio, Air Associates and RCA.

Cornell Builds New Engineering Center

Construction has begun on Cornell University's new \$1.6 million electrical engineering center. It will house the school of electrical engineering and will provide advanced facilities for instruction and research in communications, illumination, servo-mechanisms, elec-

MANUFACTURERS OF

Electronics

EQUIPMENT

requiring immediate factory space, in units of any size, and skilled experienced workers for branch operations are urged to investigate the specialized facilities in

LAWRENCE

MASSACHUSETTS
(Research Center of America)

write to:

GREATER LAWRENCE CITIZENS COMMITTEE FOR INDUSTRIAL DEVELOPMENT

Lawrence, Massachusetts

Mark your own symbols, numbers, lettering, on your small parts, tools, identification and name plates . . easily, simply, quickly . . . tracing from a master with the GREEN ENGRAVER.

Widely used in electronic and plastic fields, in machine tool shops and wherever permanent marking is needed. The GREEN ENGRAYER engraves equally well on metals, plastic, wood, hard rubber and glass.

Fact-filled folder on request . . . showing how economies in costs, labor and time are achieved with the GREEN ENGRAYER.

✓ Routs ✓ Models ✓ Profiles ✓ Engraves
Etching attachment and other special equipment for industrial uses are available.

[↑]

363 PUTNAM AVE., CAMBRIDGE, MASS.

EASY-TO-READ
RUGGED

RUGGED
DEPENDABLE
Sole
RU

Selling

Agent

for YOU ...
THE BENEFITS OF
50 YEARS'
EXPERIENCE

1904 HOYT 1954 ELECTRICAL INDICATING INSTRUMENTS

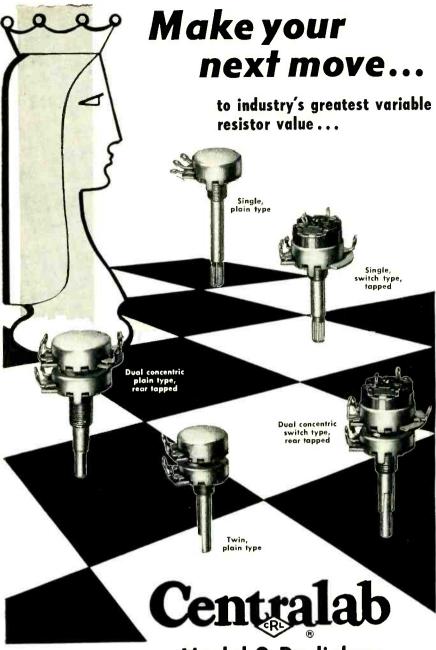
For your particular requirements, HOYT Panel and Portable Meters provide superior service at reasonable cost: Voltmeters - Ammeters - Microammeters . . . Moving-Coil, Repulsion or Rectifier Types . . . Suppressed Zero and Differential Meters . . . all carefully designed and accurately made. Write today for literature and prices on the HOYT Meters you need.

BURTON-ROGERS COMPANY
42 CARLETON STREET
CAMBRIDGE 42, MASS., U.S.A.

LAMPKIN LABORATORIES, INC.
Bradenton, Florida

ance. SMALL SIZE—less than 13" wide, less

than 14 lbs., apiece.


LAMPKIN LABORATORIES, INC. INSTRUMENTS DIVISION BRADENTON, FLORIDA

Without obligation, please send medata on Lampkin meters.

_ State _

Name ______Street _____

Want more information? Use post card on last page.

Model 2 Radiohm®

SPECIFY Centralab Model 2 Radiohms — it's a move in the *right* direction to new production simplicity . . . new, finer performance. Model 2's are only ¹⁵/₁₆" in diameter, and rated at ½ watt. You get lower noise level, longer life, more value for your money.

Imagine the larger variety of uses in TV, radio, sound and test applications. Available in two switch ratings — 5 amps @ 125 volts a-c and 8 amps @ 125 volts a-c. There are six different switching combinations for real flexibility and greater circuit simplification.

For complete technical data, write for Bulletin 42-164.

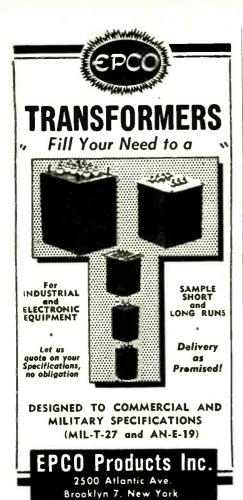
Centralab

A Division of Globe-Union Inc.
914 E. Keefe Avenue * Milwaukee 1, Wisconsin
In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

trical machinery and other phases of electronics and power.

The building will be named for Ellis L. Phillips of Plandome, Long Island, N. Y., a Cornell engineering graduate of the class of 1895, former president of the Long Island Lighting Co. and founder of the Phillips Foundation of New York which granted the funds.

The center features a large sound-proof, echo-free chamber for work in acoustics and audio research, along with specialized labs for work in electronics, vacuum tubes, transistors, tv and radar. A computing section will house the McIlroy pipeline network analyzer developed at Cornell and a Westinghouse network analyzer for studying power systems. The roof will be used for research with antennas and other equipment.

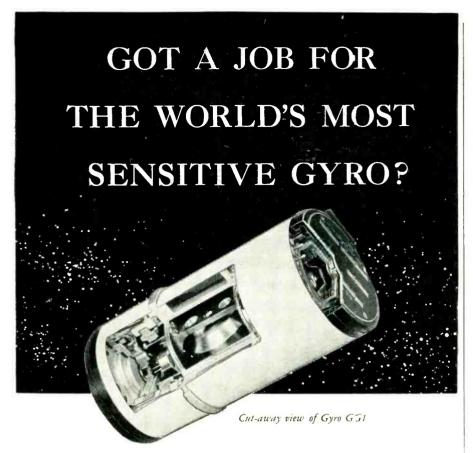

Completion of Phillips Hall, which is expected in one year, will enable the school to consolidate activities now being carried on in five buildings. The high-voltage, ionosphere and radio astronomy laboratories will continue at their present sites.

Air Associates Elects Sereno Vice-President

CHARLES A. SERENO has been elected vice-president and general sales manager of Air Associates, electronic and mechanical products divisions.

The new officer held executive engineering posts for five of his seven years with the company. During this time, he directed the reestablishment of the electronic equipment division at Orange,

IF IT'S NEW ... IF IT'S NEWS ... IT'S FROM ELCO


Now at last, it is possible for you to assemble your own connectors when you want them, the way you want them, with Elco's Varicon Connector Kit. Yes, from America's quality manufacturer of sockets, shields and connectors comes this sensational Kit containing all parts needed for almost

any type of miniature connector, with any number of circuits. Variations in arrangement of contacts at time of assembly makes possible the use of more than one connector, with the same number of contacts, but with different polarity. As for Varicons, they're the famous miniature connectors with identical male and female components; high current and voltage rating; low resistance, low capacitance. Your finished connectors will be precision connectors of high quality, appearance, practicability and versatility. Kits are available in general purpose phenolic black or in colors; low-loss mica; or alkyd. Sold exclusively through jobbers. Moderate price. Order your Varicon Connector Kit at once.

For Name of Nearest Jobber, Write or Phone ELCO Corporation 190 W. Glenwood Ave., Phila. 40, Pa.; GArfield 6-6620

THAT cylinder you see above should soon be causing a lot of excitement, now that we're permitted to take the security wraps off.

Its name is the Honeywell Integrating Gyro, called HIG for short. To date we've made over 10,000 of these amazing gyros.

Their moving parts rotate in a fluid on a gimbal that is jewel-mounted. Because of this nearly frictionless mounting, the HIG can measure things as minute as a speed 1/100th that of the hour hand on a watch.

And it's so rugged it can do such precision jobs even after being used as a hammer to drive a nail.

Up to now, major uses of the HIG have been in missile guidance systems and in radar stabilization and fine control systems. You may have a very different application of the HIG in mind. If so, we'd like to hear from you. The address is Honeywell Aero Division, Dept. 658 (E), Minneapolis 13, Minn. We'll be glad to send full details—on the HIG, and on our full gyro line as well.

Besides the HIG, Honeywell, a leader in gyro production, manufactures Vertical Gyros, Cageable Vertical Gyros and damped and undamped Rate Gyros - all available on a mass production basis to industry.

Specifications of Honeywell Integrating Gyro GG1

Pickoff Resolution: Better than 0.00001 radians of arc.

Pickoff Sensitivity: 34 mv/milliradian with 100 ma. excitation at 400 cps.

Angular Momentum: 100,000 gm cm2/sec.

Rotor Speed: 12,000 rpm. Gimbal Travel: \pm 6.0 $^{\circ}$

Transfer Ratio $\frac{Om_{Pos}}{Input Angle}$ Ontput Angle

Characteristic Time Constant: 0.0028 seconds.

Spin Motor Power Requirement: 10 volts, 400 cps, three phase, 0.65 amperes per phase.

Weight: less than 3 lbs.

Dimensions: length 6"; diameter

Honeywell

aeronautical Controls

N. J., and worked on the development and design of products.

He also directed engineering at Air Associates' aircraft products division in Teterboro, N. J. as chief engineer. He headed the development of a-c and d-c motors, electromechanical actuators and hydraulic components for systems.

Sereno was appointed chief engineer over all production divisions in March, 1953.

Seventeen More Companies Join RETMA

Admission of 17 electronics firms to membership in RETMA brought the association's membership to an all-time high of 373. The new members are:

Products. Philadelphia: The Bank of New York, New York; C-B-C Electronics, Philadelphia; Cubic Corp., San Diego; Davis Electronics, Burbank; Hydro-Aire (subsidiary of Crane Co.), Burbank; Kay-Townes Antenna, Rome, Ga.; Kline Iron and Metal, Columbia, S. C.; Litton Industries, Los Angeles; Phen-O-Tron, New Rochelle, N. Y.; Plamondon Magnetics. Chicago: Precision Electronics, Franklin Park, Ill.; Saffran & Arnold Electronics, Toledo, Ohio: Telechrome. Amityville. N. Y.; Thomas Associates, Los Angeles; Tristao Manufacturing, Kansas City, Mo. and Unitek Corp., Pasadena, Calif.

Ford Names Buchhold And Slawson

THEODOR BUCHHOLD, formerly chief of the guidance and control branch of the guided missile development division of Redstone Arsenal, has joined Ford Instrument as staff consultant to the vice-president for engineering. He will specialize on research and development projects.

Dr. Buchhold developed magnetic amplifier circuits used in electronic instrumentation and designed electric locomotives and automatic controls and regulators.

During World War II he was professor of electrical engineering at the University of Darmstadt and consulting engineer to Brown, Boveri and Co. of Mannheim, Ger-

WIDE SELECTION OF RELAY TYPES..

Sensitive from .010 watts. Hi temperature and temperature compensated. Fast operate or time delay. Frequency tuned (vibrating reed type).

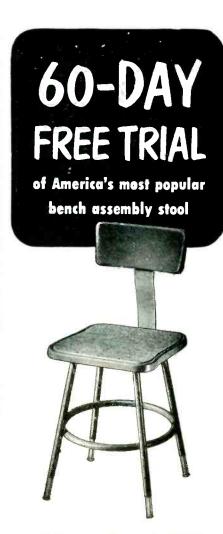
Designed to meet or exceed MIL R 5757B

Vibration: Withstands to as high as 20 Gs to 1000 cycles per second. Temperature range: -65° to 200°C. Life: Into the millions of operations. Open or hermetically sealed. Optional plugin or solder terminals. Variety of mounting arrangements. High contact current.

SEND FOR CATALOG AND ENGINEERING DATA

NEOMATIC INC.

9010 BELLANCA . LOS ANGELES 45, CALIF. . OREGON 83814



THE HEYMAN
ORGANIZATION
WITH 25 YEARS
STAMPING
EXPERIENCE
HAS MODERN
PRESS CAPACITY
FOR OVER

2,000,000 FINISHED STAMPINGS PER DAY.

ASK FOR BULLETIN 33

A tired worker costs MUCH more than a good chair

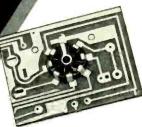
- 4-way adjustable backrest
- Scroll shaped posture seat
- Tamper-proof tubular all-welded construction
- Adjustable height ranges from 17" to 25" or 24" to 32"

Now test Royal's famous No. 515 stool in your own plant without cost or obligation. See why the country's top firms choose it for superior versatility and durability. Write for free trial stool today!

metal furniture since '97

Royal Metal Manufacturing Co. 175 North Michigan Avenue, Dept. 2104, Chicago 1

Factories: Los Angeles - Michigan City, Indiana


Factories: Los Angeles • Michigan City, Indiana Warren, Pa. • Walden, N. Y. • Galt, Onlario Showrooms: Chicago • Los Angeles • San Francisco New York City • Authorized Dealers Everywhere

MAIL TODAY		
Royal Metal Mfg. C Dept. 2104, Chicago		N. Michigan Ave.
□ We want to test your out obligation. Send□ Please send your ne	short	tallmodel.
Name		
Address		
City	Zone	State

Among recent additions to the METHODE line are a number of innovations and improvements whose worth has been quickly recognized by electronic designers and producers.

> The following are a few of the new accessories which have already found high production app ications.

Tube Socket for Printed Circuits

Miniature, octal and noval units with simple, time-proven design features providing reinforced mechanical spring contact with printed conductors, easily supplemented by solder dip operations. Insulators are heat resistant black phenolic and hardware is cadmium plated copper base alloy. Available with or without tube shield terminals, ground straps, and jumper

"Twist-On" type of tube shield and base, which can be mounted separately or in combination with molded sockets, as illustrated. Projecting lugs on shields provide direct ground to chassis under screw pressure and a reliable shock and vibration proof mount.

With softer alloy tube pins resulting from material conservation measures, the wiping action of METHODE laminated miniature socket contacts provides uniform withdrawal of tubes without breakage, stress or damage to pins

Industry may look to METHODE for further electro-mechanical develop-ments to assist in meeting the problems of increased complexity of new radio, television and communications equipment. Consultation is invited o viring device applications which involve large production requirements will meet an industry-wide need.

METHODE Manufacturing Corp.

2021 West Churchill Street • Chicago 47, Illinois

District Sales Offices:

Indiana, Ohio, Michigan V. C. Macnabb Indianapolis R. L. Colfax Fort Wayne

California, Arizona
W. S. Harmon Los Angeles

New York State
M. P. Andrews Fayetteville (Syracuse)

Pennsylvania, Southern New Jersey
D. T. Cooper Glenside (Philadelphia)
New York City, Northern New Jersey
G. A. Boeck Mountain Lakes, N. J.

Texas, Oklahoma E. F. Aymond Co. Dallas Tulsa New England
Garber Sales Co. Boston New Haven Washington, Maryland, Virginia
J. W. Whitfield Washington, D. C. Canada Kelly-Heenan Co. Toronto

Overseas Export
Sylvan Ginsbury
8 West 40th Street, New York, N. Y.

Theodor Buchhold

many. During this period he contributed to the development of the V2 guided missile.

In 1946 Dr. Buchhold left Germany to join the missile group in Fort Bliss, Texas which included top rocket and missile experts from the Peenemuende laboratories. In 1950 the group moved to Redstone Arsenal, Huntsville, Alabama.

Kenneth Slawson has been appointed assistant to the president of Ford Instrument and is concerned with general administrative problems. He started with the firm in 1928. In 1946 he was appointed manager of E. G. Staude Manufacturing, another Sperry division. As a result of the recent sale of Staude to the Bryant Chucking Grinder Corp. he returned to Ford

Kenneth Slawson

LECTRO **PROXIMITY** PICK-UP SYSTEM

Proximity Actuated Transducer produces constant electrical output independent of speed or motion

No mechanical contact with exciting metal

It consists of Model 4910 Proximity Pick-Up transducer, cable and Model 4901 control unit. Produces DC voltage of constant amplitude when any metallic mass is near the pick-up. Output voltage remains constant while exciting metal is close to pickup and drops to zero when removed. Rise and delay time of voltage is extremely fast producing a definite snap action.

Write now for engineering information and specifications!

ELECTRO PRODUCTS LABORATORIES

4501-J N. Ravenswood Ave., Chicage 40 Canada: Atlas Radio Ltd., Toronto, Ont.

Actuates electronic or electro-mechanical devices for:

- Counting parts.
- Indicating position.
- Indicating distance traveled.
- Detecting presence of metal.
- Indicating rate of travel.
- Sequence timing devices.
- Operating from 0 to over 12,000 times a minute.

FREE BULLETIN

INTRODUCES ANOTHER MINIATURE 2-INPUT AUDIO MIXER

FOR USE WITH RECORDERS AND AMPLIFIERS USING JONES TYPE CONNECTORS.

Made to fit recessed connections such as used by Webcor tape recorders.

THESE FEATURES HAVE MADE "MINI-MIX" THE POPULAR MIXER

- Ideal for use with Tape, Wire or Disc Recorders; Amplifiers, Musical instru-ments, etc.
- Weighs only 3 ounces-small size.
- · Connects directly to equipment.
- Minimum lead lengths inside shielded housing minimizes "stray pick-ups". Gain control knobs located directly "in
 - line" with inputs eliminate confusion in selection.

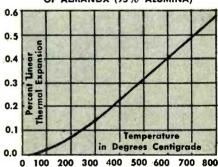
Attractive brown finished case-nickel plated accessories.

Part No. 310 'Mini-Mix''

Phone Jack in-puts with Phone Plug output fit-ting standard jacks.

VISIT US AT THE 1954 ELECTRONICS PARTS SHOW MAY 17-20 CONRAD HILTON HOTEL, CHICAGO

Part No. 320 Mini-Mix" Microphone con-nector input and output mating with standard


1332 N. Halsted St.

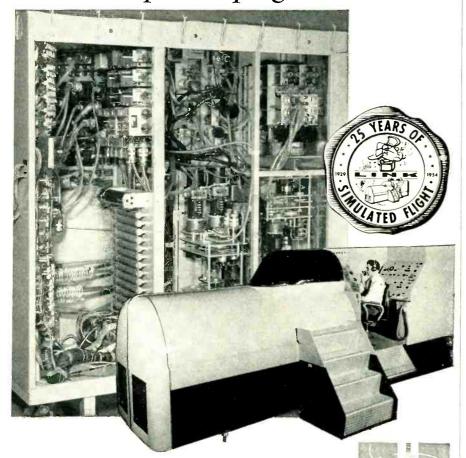
ENGINEERED

At temperatures that would melt elements like Titanium (1800° C.) or Platinum (1773° C.) FRENCH-TOWN ALMANOX, 95% Alumina Ceramic, will not begin to soften -not until the temperature hits 1927° C.

Even the softening temperature of 1649° C. for FRENCHTOWN #7873, 79% Alumina, far exceeds the melting points of Chromium, Iron, Cobalt, Nickel and other metals.

LINEAR THERMAL EXPANSION OF ALMANOX (95% ALUMINA)

Not only the remarkable heat resistance of Alumina Ceramics but low thermal expansion (like that of Almanox shown above) presents wide design possibilities whether for mechanical, electrical or electronic applications.


For complete information, send for this bulletin on Design Principles and chart of electrical and mechanical properties of FRENCHTOWN ENGINEERED CERAMICS.

365

PHALD

hooks up with progress.

in Simulated Flight with

LINK

The highly complex electronic systems of the LINK B-47B jet flight simulator shown here with the basic C-11B jet trainer are classic examples of LINK'S progressive approach to modern flight training. PHALON hook up wires have an important role in these electronic systems and in other key wiring operations which have made the famous LINK TRAINERS synonymous with the latest and the finest in simulated flight.

When the requirement is dependability in insulated wires, cables or cord sets, look to PHALO

PHALO PLASTICS CORPORATION

CORNER OF COMMERCIAL ST. • WORCESTER • MASS.

Insulated Wire and Cables — Cord Set Assemblies

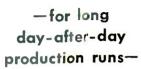
John E. Nelso:

gion which includes 21 states and part of Pennsylvania.

For the past year, he has been product manager for industrial and transmitting tubes in Schenectady. In that capacity he directed the planning and coordination of all the company's industrial and transmitting tube development. He joined GE in 1942 on the company's test engineering program, following nine years with the U.S. Department of Agriculture. In August, 1942, he joined the engineering section and later served as section leader responsible for the design and development of thyratrons and control ignitrons. In 1946 he was named sales manager for industrial and transmitting tubes. In 1951 he was named acting product manager for industrial and transmitting tubes and in 1952 was appointed product manager,

The tube department also formed a replacement tube southeastern sales region and appointed C. Bryon Farmer as regional sales manager.

Creation of a new field sales organization for GE germanium products was also announced. Six men were named as sales and applications engineers for the items to manufacturers of electronic equipment. They are: L. L. Emmel, C. J. Goodman, J. B. Jolly, H. F. Hodsdon, V. J. Huntoon and A. C. Oeinck.


Hallicrafters Builds New TV Set Plant

A \$1.5 MILLION factory is being built in Chicago for Hallicrafters. The new plant will be used for ex-

Specify MEYERCORD DECAL Transfers

for difficulthighly-specializedapplications

Meyercord Laboratory and Production Experience —PLUS Unexcelled Service—to Serve You Better!

Sometimes we are too prone to tell our friends about the spectacular achievements of Meyercord in solving those "impossible" decal transfer applications. .. like the new E-51 aircraft decals that resist up to 900 degree temperatures of jet engines, as well as the ravages of strong solvents and aircraft fuels. Specialized decal applications are a mighty important part of our business. .. but we're still first and foremost in the business of supplying standard Meyercord nameplate and identification decals. Whether you make typewriters, appliances, electrical conduit...

any product that is turned out on longtime production runs, be sure to investigate the advantages of Meyercord decal uniformity, fine quality and unbeatable service on your production line.

Send for This Manual of MEYERCORD DECAL NAMEPLATES

Shows hundreds of uses for durable, washable decal nameplates...as trademarks, instruction charts or diagrams—in any size, colors, or design. The Meyercord Nameplate Manual is FREE... but request it on your business letterhead, please.

THE MEYERCORD CO.

World's Largest Decalcomania Manufacturers

DEPT. S-303, 5323 WEST LAKE STREET
CHICAGO 44, ILLINOIS

This FREE BOOK will show you

dozens of ways to save with electric heating units

Contains Such Valuable Information as:

- How to determine wattage requirements
- Specific heat tables for solids, liquids, gases
- Heat loss tables
- Energy charts for heating air & water

PLUS how to select and apply Watlow's complete line of Strip, Cylindrical, Ring, Cartridge, Tubular and Immersion Heaters to meet your particular needs.

SEND for Your Copy Today!

SINCE 1922 — DESIGNERS AND MANU-FACTURERS OF ELECTRIC HEATING UNITS

ELECTRIC MFG. CO. 1390 FERGUSON AVE.

SAINT LOUIS 14, MO.

Want more information? Use post card on last page.

This Motor
Runs on Only
75 MILLIONTHS

of a watt

What's this to you?

Just this—

Perhaps RAM can also help YOU when you need a component to do a job electrically, electro-mechanically or electronically.

This small, versatile, highly flexible factory specializes in special-purpose devices designed, developed and manufactured to your order — either short runs or production quantities.

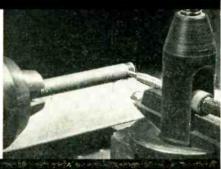
When you need this kind of help—CONTACT

Servicing the Air Force, Navy and civilian industry, in some cases the seemingly impossible has been accomplished to save our customers thousands of dollars.

Send for new Brochure K54—illustrating devices that have solved problems for others.

1102 Hilton Road Ferndale DETROIT 20, MICHIGAN Telephone Lincoln 4-7220

SWhite


"AIRBRASIVE" UNIT WORKS WHERE OTHER METHODS FAIL

..for cutting hard, brittle materials

for controlled removal of deposited surface coatings...

...for shaping fragile crystals

The "Airbrasive" method has proved successful on many jobs considered to be "impossible" to do by conventional means.

The process — which produces a cutting effect by the impingement of an ultra high-speed stream of finely graded abrasive particles... can be used for a variety of precision operations on hard, brittle

materials including cutting, drilling, scribing, film removal and light delicate deburring.

We'll be glad to demonstrate the Unit to you at either our New York or California Office. Or, if you prefer, we'll conduct tests on your samples and advise you as to the suitability of the "Airbrasive" process to your needs.

BULLETIN 5307 has full details on how the "Airbrasive" Unit operates as well as full details on its application and use. Send for a copy.

THE Sibhite INDUSTRIAL DIVISION

DENTAL MFG. CO.

Dept. EB 10 East 40th St.
NEW YORK 16, N. Y.

Western District Office • Times Building, Long Beach, California

to his present position.

Robert Armstrong has joined the quality control division as assistant to its director, C. E. Ellis. He was formerly with Electrol as utility manager. Previously he was associated with Arma, Pioneer Instruments and the Aluminum Company of America.

Daven Promotes Head Engineers

J. P. SMITH, JR., formerly chief engineer of the Daven Co., has been promoted to director of engineering.

J. P. Smith, Jr.

Walter Voelker

Walter Voelker, formerly of Day & Zimmermann, Leeds & Northrup and Bell Labs, has been appointed chief engineer of the company.

GE Names Managers For Tubes and Germanium

JOHN E. NELSON was appointed central regional manager for GE equipment tube sales. He will direct all equipment tube sales and commercial engineering activities in the re-

AER - O-

COM

A-100

DUMONT MILCAPS

GLASS-TO-METAL HERMETICALLY
SEALED SUBMINIATURE CAPACITORS

MEETS THE OPERATING
REQUIREMENTS OF MILITARY
SPECIFICATIONS MIL-C-25A

MILCAPS are subminiature paper capacitors hermetically sealed in tinned brass tubular cases. Perfect enclosure of the impregnated paper sections is achieved by the use of glass-to-metal solder seal terminals. MILCAPS are recommended for all applications where size is a primary consideration . . . and are available in any one of the following impregnants: Stabilized Halowax (85° c): Mineral Oil (85°c: or Duroil (125° C).

DUMONT-AIRPLANE & MARINE INSTRUMENTS, Inc.

OFFICE 15 William Street New York 5, N. Y.

FACTORY
Clearfield
Pennsylvania

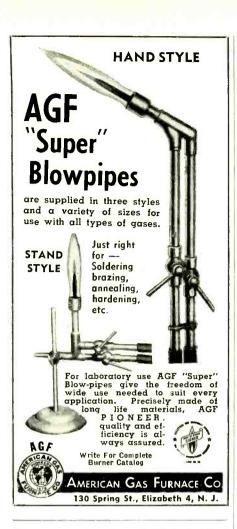
panded tv manufacturing, warehousing and as a central shipping point for all of the firm's products. It will have 200,000 sq ft of floor space and will provide employment for an additional 1,000 people when completed in mid-July.

All administrative offices and the production of communications equipment, high-fidelity instruments and standard and short-wave home radios will continue in the main company plant in Chicago.

The new plant brings total space used by the company for manufacturing and storage to 422,000 sq ft. The new plant is expected to streamline and consolidate the firm's operations and at the same time allow for greater production.

Ryder Named Dean At Michigan State

JOHN D. RYDER, head of the electrical engineering department at the University of Illinois, has been named dean of the school of engineering at Michigan State College, effective July 1, 1954. He succeeds Dean Lorin G. Miller who retired July 1, 1953.


Dr. Ryder worked with GE in the development of electronic equipment. Later, he became supervisor of the electronic section of the Bailey Meter research laboratory in Cleveland. Two dozen patents reflect his work there.

In 1941, Dr. Ryder became assistant professor at Iowa State College and in 1944, as full professor, he was placed in charge of electronics courses. In 1947, he became assistant director of the Iowa Engineering Experiment Station. He became professor and head of the electrical engineering department at the University of Illinois in Sept., 1949.

Federal Telephone and Radio Plans Expansion

FEDERAL Telephone and Radio plans to expand its operations generally, to have a more diversified line of products and, although it has heavy military commitments, to make a larger proportion of its production available to commercial customers.

To make space for the expansion, the manufacture of monocolor ty

BACK ISSUES

Whatever you do with this magazine after you've clipped pertinent articles or advertisements, please don't destroy it.

Churches, Boy Scouts, civic and veterans' organizations will welcome all the wastepaper you have. They can get

a good price for it. Increase

contribution to American mo-

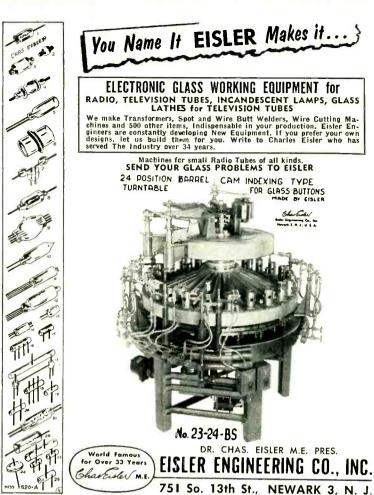
bilization by saving paper of

all types-whether in maga-

zine form or not. Since the

Korean War began, there's

been a great increase in the


demand for products manufactured from wastepaper.

ganization. Chances are they

have scheduled pick-ups.

Save it for your favorite or-

And, you can make a direct

10 mc DECADE Scaler

O.1 Microsecond Resolution SPECIFICATIONS Model 412

INPUT CIRCUIT:
POLARITY: Positive pulses only.
AMPLITUDE: Minimum amplitude of 5
Volts required at low counting rates,
increasing to 10 volts minimum at
the maximum counting rate.
REQUIRED RATE OF RISE: Minimum

IMPUT IMPEDANCE: Greater than 5000 ohms.

RESOLVING TIME: 0.1 #sec.

MAXIMUM ACCEPTABLE UNIFORM RATE:
10mc or 10° counts/second, no lower limit on counting rate.

SCALING FACTOR: Decade Scale of 100 Neon light interpolation.

OUTPUT:

POLABLITY: Positive or Neostive pulso.

Complete literature on request Dept. LD-4

ELECTRICAL & PHYSICAL INSTRUMENT CORP.

TUNER STRIPS, SOCKETS and BRACKETS for UHF Our extensive design and production facilities are available for developing your special requirements and applications. Representatives in principal cities throughout U.S.A. Call or write for samples and information. OReg

METAL and BAKELITE STAMPINGS TERMINAL BOARD ASSEMBLIES

INDUSTRIAL HARDWARE Mfg. Co., Inc.

LAMINATED TUBE SOCKETS

DUO-DECAL SOCKETS ANODE CONNECTORS

INTERLOCK PLUGS

TERMINAL STRIPS

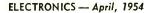
WIRED ASSEMBLIES

"INDUSTRIAL"

Electronic Components

Precision engineered electronic components and connecting devices for all your

needs

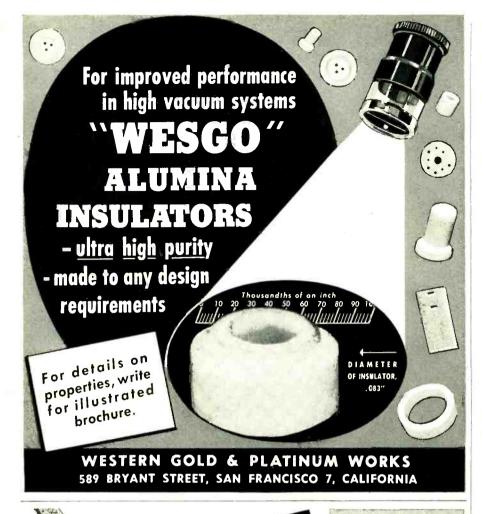


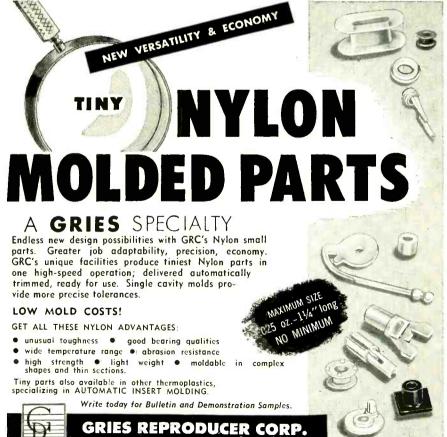
of 10 volts per $\mu sec.$ INPUT IMPEDANCE: Greater than 5000

OUTPUT:
POLARITY: Positive or Negative pulse selected by front panel switch.
PULSE CHARACTERISTICS: Triangular pulse of approximately 1 µsec rise time, 4 µsec width and 50-60 volt amplitude.
POWER REQUIREMENTS: 105-125 volts, 50-60 cycles, approximately 175 watts.

10-1/2" x 19" x 13" deep

42-19 27th Street, L.I.C. 1, N. Y




put

to work

their funds.

HERE'S WHY:

picture tubes has been discontinued. The area formerly devoted to this operation will be used mainly for greater production of power vacuum tubes for broadcast and industrial markets. The manufacture of magnetrons will be stepped up substantially.

The company plans expansion of its line of germanium diodes, selenium rectifiers and magnetic amplifiers. Other features of the company's expansion program include cable products, a line of low-band vehicular mobile radio, new pulse time modulation microwave equipment and new railroad electronic equipment.

Federal's distributor organization is now being extended and strengthened and a program of local warehousing has started.

Weston Names Lamb and Gilbert

THE Weston Electrical Instrument Corp. has appointed Frank X. Lamb vice-president and Roswell W. Gilbert as assistant to the president.

Lamb will retain his former title of chief engineer and will take on additional responsibilities in super-

Frank X. Lamb

vision of mechanical and electrical engineering activities. He joined the firm in 1921 and served as a design, project and liason engineer. He was resident engineer for the company, assigned to the Nippon Electric Co. in Japan, from 1937 to 1939.

Gilbert, in addition to his new post, will continue to serve as director of research. He joined Wes-

151 Beechwood Ave., New Rochelle, N. Y.

Phone: New Rochelle 3-8600

All parts actual size

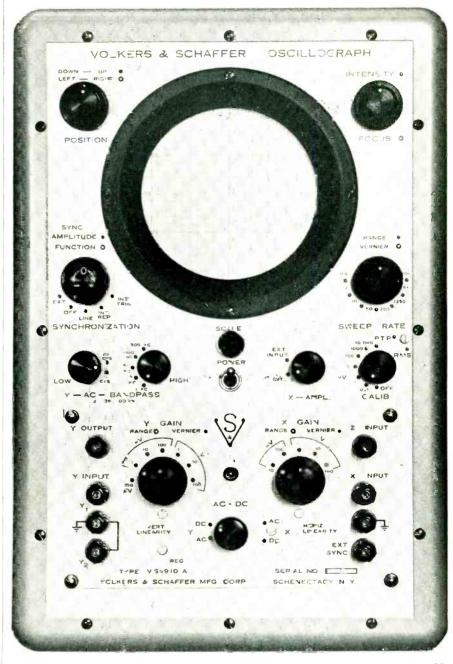
Roswell W. Gilbert

ton in 1934 as a research engineer and since has specialized in the development of ultra sensitive devices including combination electromagnetic and electronic types. The holder of 24 patents, he has served as both division chief and laboratory director.

RETMA Plans Connection Conference

PRELIMINARY plans for a conference on reliability of electrical connections to be held April 15-16 at the Illinois Institute of Technology in Chicago were announced by RETMA's engineering department.

The conference, which will be divided into four sessions and a demonstration period, will be devoted to a study of methods of connecting to the terminations of wires and cables to produce equipment free from difficulties caused by loose and broken connections.

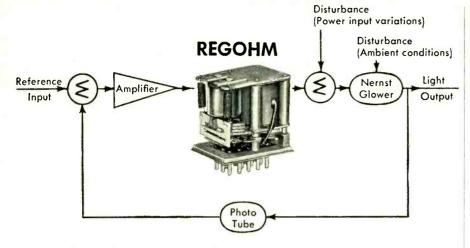

Aimed at project engineers and production superintendent as well as the inspection personnel of electronic equipment manufacturers, the conference will be participated in by representatives of the Aircraft Industries Association and aircraft manufacturers engaged in producing electronic apparatus.

Volkert Completes Plant Expansion

JOHN VOLKERT METAL STAMPINGS has added 12,000 sq ft of floor

10 pV/CM - 1cps to 500Kc. 700pV-d.c.

A NEW MILESTONE IN OSCILLOGRAPH HISTORY


The astonishing performance of this new oscillograph is based on the successful combination of 4 distinctive design-features: Heavy overall feedback (including d.c.), DC-heated electronically regulated filaments, "the starved" amplifier circuit, originated by Dr. W. K. Volkers, and gas-diode coupling in a new circuit.

WRITE FOR FULL INFORMATION

VOLKERS & SCHAFFER

BOX 996

SCHENECTADY, N. Y.

Regohm keeps radiation energy constant for new infrared spectrometers

Since infrared analysis must be able to record changes as slight as 1 part in a million of a chemical substance, the energy source must be kept constant. The above block diagram shows how Regolum does this for a Perkin-Elmer Infrared Spectrometer.

In most applications, Regolun directly senses what it controls. Here, however, Regolun serves as a power amplifier. A photo tube acts as the sensing device. Its output is electronically amplified, using a balanced DC amplifier to raise the power level of signal and eliminate the effects of drift.

The photo tube is constantly sensitive to changes from the Nernst glower by delivering current output proportional to changes in radiation. Output from the Reference Balanced Amplifier changes above and below fixed voltage.

Reacting to milliwatt output changes in the amplifier, Regohm produces large changes in power input to the Nernst glower. Hence, the Regohm circuit adjusts for all variations in source intensity, counteracting disturbance from power input changes and ambient temperature conditions. Regohm's dashpot stabilizes the control system.

Electric Regulator takes pride in the fact that high performance alone was the reason for P-E's choice of Regohm for equipment that is the "Cadillac" in its field.

7 Reasons why Regohm can simplify your control problem

- 1. Regohm is small in size—It is compact, light-weight, position-free.
- 2. Regohm is a high-gain power amplifier—Milliwatt variations in signal energy control energy changes millions of times greater.
- 3. Regohm's isolated signal and control circuits

Assembling a Perkin-Elmer Infrared Spectrometer

eliminate impedance matching problems—Signal coils may have ratings from 0.01 to 350 amperes. Control resistance range unlimited.

- 4. Regohm will correct system instability—A reliable, sturdy dashpot aids system damping.
- 5. Regohm's effect can be calculated in advance—lts response is independent of rest of servo system.
- 6. Regohm assures continuous control-In "closed loop" systems a high-speed averaging effect occurs.
- 7. Regohm has long life—Plug-in feature simplifies replacement when necessary.

Regohm can be applied to your control system or regulation problem. Our engineering and research facilities are always at your service. Write for Bulletin 505.00, analyzing Regohm's characteristics and applications. Address Dept E., Electric Regulator Corporation, Norwalk, Conn.

CONTROL COMPONENT IN: Servo systems • battery—chargers • airborne controls • portable and stationary generators • marine rador • inverters • locomotive braking systems • mobile telephones • guided missiles • signal and alarm systems • telephone central station equipment • magnetic clutches • railroad communication systems • magnetic omplifiers.

Newly enlarged Volkert plant

space to its plant in Queens Village, L. I., N. Y., bringing total plant area to more than 30,000 sq ft.

A new building has been constructed to house executive offices, a conference room, an apprentice training section, the production welding department and a new finishing room. The warehousing and shipping departments have been modernized and enlarged. A specially-built room has been set up with vaporized degreasing and Honite finishing equipment. Storage capacity at the plant has been tripled with the installation of storage racks having a capacity of 750,-000 pounds.

Sylvania and Stanford Plan Project

An "Honors Cooperative Program In Electronics", designed to aid outstanding college seniors who are interested in doing graduate work in electrical engineering combined with full-time electronics employment, has been planned by Sylvania and Stanford University.

Each student selected will receive a full year of graduate work and an M.S. degree from Stanford in two calendar years. Students will be employed in research and development work in Sylvania's Mountain View, Calif. laboratories, which are a short distance from Stanford at Palo Alto. All participants will be allowed the time necessary to attend regular classes at Stanford.

Men selected will be on a reduced working schedule of 35 hours per week at Sylvania labs but will receive full salary based on the standard 40-hour work week. In addi-

ENGINEERS

ELECTRONIC:

Minimum of five years experience in circuit design with primary emphasis on pulse circuitry and high frequency RF technique.

MECHANICAL:

Minimum of five years experience in packaging electronic equipment as well as in mechanical design of small electro-mechanical devices.

This company, engaged in the field of telemetering, developing, and producing transmitters, receivers, data treating equipment and special electronic and electro-mechanical devices, offers permanent positions with liberal benefits including paid vacations, sick leave, bonus, insurance plan, etc.

APPLIED SCIENCE CORP. OF PRINCETON

P. O. Box 44, Princeton, N. J.

Plainsboro 3-4141

It's "TREATMENT" that makes **DANO** your Best Bet for Coils

DANO's battery of vacuum impregnating tanks and heat controlled ovens for curing varnish impregnations is al-

ways at your service. Yes, Dano coils and Dano customers are always treated in the manner that makes your production pay dividends.

- Form Wound
- Paper Section
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
 Cotton Inter-
- wedye
- Coils for High Temperature Application

Send us samples or specifications with quantity requirements for our recommendations. No obligation!

Also, Transformers Made To Order

THE DANO ELECTRIC CO.

MAIN ST., WINSTED, CONN.

CHECK LIST

COMPONENTS FOR THE ELECTRONIC INDUSTRY

✓ CONNECTORS (AN Types)

- RECEPTACLES
- PLUGS
- CAPS
- CABLE CLAMPS

Pressurized — Waterproof High Voltage — Capacitor

CONNECTORS (RF Types)

- UHF BNC BN
- PULSE and TRIAX PULSE
 TYPES

✔ RACK & PANEL Types

- Special DT
- DTGSDTKS
- OT HIGH VOLTAGE
- DT MINIATURE

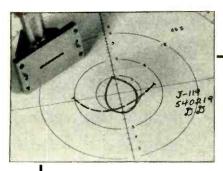
New 1954 Layout Bulletin Available

CABLE ASSEMBLIES

- STANDARD MOLDEDSPECIAL
- SPECIAL
- RIGHT ANGLE
- COAXIAL

MISC. COMPONENTS

- VIDEO JACKS—PLUGS
- SHORTING PLUGS
- SPECIAL JACKS—FEED THRU
- SWITCH BOOT
- SEALING-GASKETING DEVICES
- POLARIZED CONNECTORS
- UHF MOBILE ANTENNA
- ROTARY SHAFT SEALS
- CABLE CLAMPS


Write for

Catalog!

H. H. BUGGIE, Inc.

726 STANTON STREET TOLEDO 4, OHIO

MICROWAVE DEVELOPMENTS

Wheeler Laboratories is an engineering organization offering consulting and engineering services in the fields of radio and radar.

In designing microwave components, impedance plots on circle charts of reflection coefficient are our constant guide in understanding and making best use of waveguide circuits such as the resonant iris shown above.

At present, Wheeler Laboratories includes a staff of twenty engineers under the personal direction of Harold A. Wheeler, a group of designers, and a model shop. Regular additions to the staff are continuing in order to keep pace with our expanding program of work.

Inquiries are welcomed regarding specialized problems in microwave design; a brief summary of our work is available on request.

Wheeler Laboratories, Inc.

122 Cutter Mill Road, Great Neck, N. Y. HUnter 2-7876

STAINLESS fasteners in STOCK

All types and sizes of screws (slotted, Phillips, socket, hex head), bolts, nuts, washers, rivets, keys and pins

- Over 9000 items in stock means immediate delivery from one source
- New Garden City plant now operating at top speed and quality
- Unsurpassed facilities for quantity fabrication of specials
- A staff of seasoned engineers always available for consultation
- Pioneers in the manufacture of stainless steel fasteners

WRITE NOW FOR FREE COPY OF 96 PAGE FASTENER MANUAL PLO

SCREW PRODUCTS COMPANY, INC.

GARDEN CITY NEW YORK

tion, as part of the firm's educational assistance policy, each student will be reimbursed for 50 percent of his tuition fee upon the satisfactory completion of each quarter's work.

In the parts division of the company, Albert Lederman was appointed engineering specialist and section head in a new mechanized circuits department for application of stamped and printed circuits.

Lederman was previously a technical representative for the firm in Washington, D. C. He has served as secretary of the Panel on Electron Tubes of the Research and Development Board for the Department of Defense and served with the Conference Committee on Electron Tubes for Computers in Atlantic City in 1950.

Feldmann Elected President Of National Union Radio

C. Russell Feldmann was elected president of National Union Radio. He is also chairman of the board, a position he has held since 1946. He succeeds Kenneth C. Meinken, who resigned.

"National Union's company policies and current program of expansion into new fields of electronics will continue unchanged," Feldmann said.

Huntoon Named Physics Director For NBS

ROBERT D. Huntoon was appointed associate director for physics of the National Bureau of Standards. The Bureau's organization now provides for four associate directors.

Dr. Huntoon, formerly director of NBS Corona, Calif. Labora-

tories, has also been designated acting chief of the NBS electronics division and of the bureau's central radio propagation lab.

As director of the Corona labs. which are now being operated by the Defense Department, he was responsible for a research and development program that included guided missiles, electronic ordnance devices, digital computers and infrared measurements. He joined the NBS staff in 1941 and was one of the principal NBS scientists concerned with the design and development of the proximity fuze. He was appointed chief of the NBS electronics section in 1945 and directed fundamental research on electronic circuits, control devices and other electronic ordnance components. In 1947 he became assistant chief of the atomic and radiation physics division and chief in 1948. During this period he also served as coordinator of atomic energy commission projects at NBS. During 1940 and 1941 he was a research physicist in the tube division of Sylvania.

Ralph A. Lemm has been appointed technical director of the Naval Ordnance Laboratory, Corona, California succeeding Dr. Huntoon.

Other recent promotions at NOL-Corona include the designation of four division chiefs: H. K. Skramsted, missile systems division; F. S. Atchison, physical science division; H. A. Thomas, fuze division and G. R. Sams, missile evaluation division.

The new Naval Ordnance Laboratory was formed last fall by transfer of the Corona Laboratories of the National Bureau of Standards to the Navy Bureau of Ordnance,

RCA Victor Division Appoints Conrad & Chiei

ANTHONY L. CONRAD has been appointed manager of the RCA missile test project in the government service division of the RCA Service Co.

Frederick Chiei has been appointed manager of the technical operations section in the division, the post formerly held by Conrad.

Conrad joined the company as a

AVAILABLE for IMMEDIATE DELIVERY...

FTL-30A SLOTTED LINE

THE UTMOST IN
PRECISION
... for VHF-UHF
IMPEDANCE
MEASUREMENTS

in the range of 60 to 1000 megacycles per second Accuracy ± 2%

The FTL-30A also covers—with slightly reduced accuracy—the 1000 to 2000 megacycle range. It is a coaxial line 250 centimeters long . . . having a surge impedance of 51.0 ohms \pm 0.5 ohms.

Special design features include: extremely rigid construction ... high sensitivity and selectivity due to efficient probe tuning ... end connectors adapted to use of Type N connectors... full utility down to 60 megacycles.

For complete details, write for Brochure FTL-30A

Federal Telecommunication Laboratories

A Division of International Telephone and Telegraph Corporation
500 WASHINGTON AVENUE NUTLEY, NEW JERSEY

INCREMENTAL INDUCTANCE

quickly - simply - accurately

The new Type 1002-A Incremental Inductance Bridge combines outstanding features of compactness, ease of operation, accuracy, and wide range of measurement. A visual balance indicator allows measurements to be made in a few seconds, even in noisy locations. Maximum sensitivity at the balance point greatly increases the accuracy of balance. Only a single balance control is used, with cathode ray tube indication.

Inductance can be measured from one to 200 henries. Direct current through the reactor under test is accurately controllable from one to 500 ma. depending on the resistance of the coil windings. The effect of a change of do on the inductance value is immediately measurable, by simple re-balancing. The inductance is measured at a constant frequency of 120 cps.

For design and test work on iron-core inductors, filter chokes, transformers, and plate reactors, this compact and self-contained instrument is unsurpassed.

Write today for technical details and price information.

WATERS MANUFACTURING, inc.

Waltham 54, Massachusetts APPLICATION ENGINEERING OFFICES IN PRINCIPAL CITIES

MINIATURE Wire-POTENTIOMETERS

that don't NEED incoming check

Problem: To find a potentiometer that -

- Dissipates 3 watts continuously at 80° C, through 50,000 ohms total resistance.
- Occupies no more space than absolutely necessary.
- Weighs as little as possible.
- · Maintains accurate resistance settings, over a wide range of temperatures.
- Will not require YOU to do production-control checking for the manu-

- Precision wire-wound construction.
- Three watts continuous, to 80 degrees C.
- Resistances from 10 ohms to 50,000 ohms.
- Diameter ⁷/₈", depth ³/₈".
- Weight about ½ ounce per section multiple ganging easily provided.
- Temperature coefficient of resistance 0.00002 parts per degree C.
- Individually checked through a production quality control system that guarantees you full performance from EVERY unit in your order.

WATERS MANUFACTURING. inc. Waltham 54, Massachusetts

APPLICATION ENGINEERING OFFICES IN PRINCIPAL CITIES

Write today for technical details and price information.

tv service technician in 1946. He was promoted to manager of a factory service branch where he served until 1947. From 1947 to 1949, he was engaged in personnel work and systems engineering at RCA Service Co. headquarters. Then he served as manager, tube quality control group, and later manager, technical operations section. In 1953, he received the RCA Victor Award of Merit, the firm's highest award for salaried employees, for his work in the guided missile field.

Chiei also joined the company as a tv serviceman, serving in that capacity from 1947 until 1950, when he was made a field engineer in the government service division of the company. From 1951 until his present appointment, he served as manager, engineering group, in the field operations section of the division

The engineering products division of RCA held a fourth color tv technical training program. A total of 101 broadcast engineers attended including 22 engineers from NBC, 15 from CBS, 13 from AT&T and 50 from independent broadcasting stations. It raised to more than 300 the total number of broadcasters given training in theory and operations of new color tv broadcast equipment.

The company also held its 19th black-and-white tv technical training program. A total of 56 broadcast engineers and consultants, including 9 foreign tv engineers, attended the clinic.

Admiral Corp. Makes New Moves

HARRY HANSON has been named chief designer for Canadian Admiral Corp. He has been directly connected with production design for the past 8 years.

Since 1945, Hanson has been supervisor of cabinet engineering at RCA in Ontario, Canada. Previously he was at the head office in Montreal. Starting with 12 drafting experience, gained general production experience from 1939 to 1945.

In the U.S., Admiral announced

UNDER MIL-E-5272 TESTS for extreme temperatures
humidity-salt spray-vibration
ferchen wire-wound trimmer potentiometers

Micro-miniature Series AP 1/2

- Two watts continuous at 80° C.
- Resistances from 10 to 20,000 ohms.
- Diameter 1/2 inch, depth 1/2 inch.
- Temperature coefficient 0.00002/degree C.
- Weight 1/4 ounce.
- Sealed well enough to permit potting.

Series AP 11/8

- Four watts continuous at 80° C.
- Resistances from 10 to 100,000 ohms.
- Diameter 11/8 inch, depth 1/2 inch.
- Weight less than ¾ ounce.
- Temperature coefficient 0.00002/degree C.

All Aerohm potentiometers are individually checked through a quality-control system that guarantees you full performance from every unit in your order.

Series AP 11/8

For Originality LOOK TO KIELLE QUARTZ CRYSTALS -

XCELITE, Incorporated (Formerly Park Metalware Co., Inc.) Dept. C Orchard Park, N. Y.

For HAM and GENERAL USE • Guaranteed

Low Frequency-FT-241A for

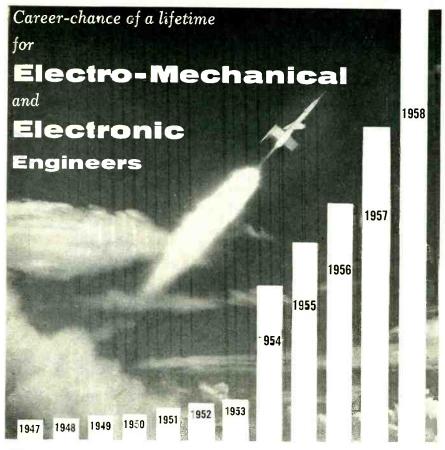
SSB Lattice Filter etc.,	.033	IA	F 1-1/10
	ked in	SCR	BC-610
Channel Nos. 0 to 79	, 54th	522	2 Banana
Harmonic and 270 to	389.	14" P	Plugs
72nd, Harmonic. Listed	helow	3 S	4 SPC
72nd, Harmonic, Eister	ongies	73 3	7.
by Fundamental Frequ	cucical	1	
fractions omitted.			
370 393 414 436 498 520	400 461	5910	2030 2290 3232
370 333 414 437 700 522	440 462	6370	2045 2300 3237
372 394 415 437 501 522	441 463		
374 395 416 438 502 523			
375 396 418 481 503 525	442 464		2065 2320 3322
376 397 419 483 504 526	444 465	6497	2082 2360 3510
3/6 39/ 419 403 304 320	445 466		2105 2390 3520
377 398 420 484 505 527			
379 401 422 485 506 529	446 468		2125 2415 3550
380 402 423 486 507 530	447 469	6610	2131 2435 3570
381 403 424 487 508 531	448 470	7350	2145 2442 3580
381 403 424 487 506 551	450 472		
383 404 425 488 509 533			
384 405 426 490 511 534	451 473	7390	
385 406 427 491 512 536	452 474	7480	2258 3035 3995
385 406 421 431 312 330	453 475		
386 407 429 492 513 537			
387 408 430 493 514 538	454 476		2280 3202
388 409 431 494 515	455 477	7930	2282 3215
388 403 431 434 313	457 479		
390 411 433 495 516			
391 412 434 496 518	458 480	į .	
392 413 435 497 519	459	1	

49¢ each. 10 for \$4.00 | 99¢ each. . 10 for \$8.00

Foundation coils and condenser for 80 meter VFO or exciter—Less xtals. — 98¢

See article by W3PPQ in March '54 CQ

520 Tenth St., N.W. - Wash., D. C. Dept. E


Carry-Through Printed Circuits

- speed production
- eliminate hardware with I.C.I.
- L.C.1. carries the pattern of the printed circuit through the holes to the other side to maintain efficient continuity.
- NO hardware . . . with resulting excellent economies plus speeded-up production and more useable space. In a one square foot area of a printed circuit board .125" thick, 150 holes .020" in diameter can be successfully plated through.
- I. C. I.'s unparalleled experience and engineering staff are at your disposal. Write, detailing your requirements for specific help and a copy of our thorough, new technical brochure which explains our research, design and conversion services.
- I.C.I. also handles complete sub-assemblies as shown.

115 ROOSEVELT AVENUE BELLEVILLE, NEW JERSEY

Your career can go up

with Lockheed's expanding Missile Systems Division

- Outstanding career opportunity comes rarely in a man's life. But such an opportunity exists now for Electro-Mechanical and Electronic Engineers in Lockheed's Missile Systems Division.
- Recently formed from other Lockheed engineering organizations, the Missile Systems Division is in a stage of dynamic expansion. For Electro-Mechanical and Electronic Engineers of ability, experience and initiative this is an unparalleled opportunity for advancement and achievement. A number of present openings are on a high executive level.

The openings are for

ELECTRO-MECHANICAL ENGINEERS

with circuit or servomechanisms experience (aircraft or missile experience preferred)

ELECTRONIC ENGINEERS

experienced in any or all of the following fields: Micro-Wave Techniques. Electronic Components, Circuit Design, Flight Instrumentation

In addition to outstanding career opportunities, the Lockheed Missile Systems Division offers you excellent salaries commensurate with your experience, generous travel and moving allowances, and a better life for you and your family in Southern California.

Coupon is for your convenience

Mr. L. R. Osgood . Dept. E-M-4

LOCKHEED MISSILE SYSTEMS DIVISION

7701 Woodley Avenue . Van Nuys, California

Dear Sir: Please send me information on the Missile Systems Division.

my name

my field of engineering

my street address

my city and state

plans for the construction of a million dollar consolidated warehouse on a 10-acre tract of land in Leyden Township, Ill. The new 152,-000 sq ft structure will eliminate the use of seven warehouse locations in the area. It is scheduled for completion in June, 1954.

Television and radio receivers produced in Admiral plants in Chicago, Harvard, McHenry Bloomington, Ill., as well as raw materials, will be stored in the new building, thereby simplifying and expediting shipments of mixed carloads to distributors.

The company also announced that it held a color tv training school for company field engineers and distributor service engineers. Each prospective student was given a color perception test before starting the course. Any service personnel found to be color-blind will confine their future service activities to black-and-white tv, it was said.

Burndy Engineering Names Engineers

AT Burndy Engineering, I. F. Matthysse, formerly chief design engineer, has been appointed assistant chief engineer and W. F. Bonwitt, who was previously chief of planning engineering, has been appointed chief administrative engineer.

Matthysse has been in the engineering department of Burndy for 25 years, during which he has been engaged in the design of electrical connectors and cable limiters. A total of 14 patents have been granted to him and 12 patent ap-

I. F. Matthysse

SPEED UP

AUDIO WAVE FORM ANALYSIS

PANORAMIC LP-1 SONIC ANALYZER

Many engineers find that Panoramic's LP-1 expedites their entire measurements program. LP-1 analyzes sound vibrations and electrical waveforms quickly, conveniently, accurately. Designed to eliminate the tedious problems commonly associated with audio wave form analysis, the Panoramic technique provides valuable visual information in seconds!

visualizes frequency and amplitude
of waveform components between 40 and
20,000 cps; magnifies small portions of
spectrum for detailed analysis; displays
easily photographed; scans spectrum in
1-second; analyzes changing and static
phenomena.

It will pay you to investigate the many unique advantages of LP-1.

- SPECIAL APPLICATIONS
- Investigations of closely spaced sound and vibration frequencies. Harmonic analysis of waveforms having low frequency fundamentals. Spectrum analysis requiring constant band width.
- Panoramic's LP-1 offers scores of unique advantages; it will pay you to check their application to your problems; write today for complete specifications.

WRITE

for Complete Specifications

10 South Second Ave., Mount Vernon, N. Y.
Phone: MOunt Vernon 4-3970

Want more information? Use post card on last page. ELECTRONICS — April, 1954 PLANTS AND PEOPLE

(continued)

W. F. Bonwitt

plications are still pending.

Bonwitt joined Burndy in 1938 and has been occupied largely in heading the firm's testing, research and quality control programs.

GPL Subsidiary Acquires Computer Company

LIBRASCOPE of Glendale, Calif., a subsidiary of General Precision Equipment Corp., acquired the Minnesota Electronics Corp. of St. Paul, manufacturers of digital computers and components. The Minnesota firm recently developed "subminiature magnetic decision elements" that consist of electronic units such as diodes, resistors, and related components pre-packaged in small plastic cubes. When used in proper combination they are said to provide flexibility and simplicity in computer design and construction. For special applications such as airborne computers they replace units of approximately ten times their size, the company said.

Librascope plans use of the elements in its computers. It is understood that Minnesota Electronics will continue to operate with present management and personnel.

Avien Forms New Electronic Firm

CONTROL LABORATORIES has been formed by Avien, manufacturers of aircraft fuel management systems and other aeronautical products.

President of the new company, which will be associated with Avien, is Stanley J. Smith, recently director of engineering and development at Simmonds Aerocessories.

R. J. Levine, formerly director of

Your career can go up

with Lockheed's expanding Missile Systems Division

- Recently formed from other Lockheed engineering organizations to prepare for the era of automatic flight, the Missile Systems Division offers a few Research Engineers the career opportunity of a lifetime.
- For Research engineers of ability, experience and initiative, this is an unparalleled opportunity for advancement and achievement.
- The positions now open call for experience in airborne weapons systems problems such as: weapons design, system evaluation, guidance methods, sub-system requirements and operational problems.
- In addition to outstanding career opportunities, the Lockheed Missile Systems Division offers you excellent salaries commensurate with your experience, generous travel and moving allowances, and a better life for you and your family in Southern California.
- Coupon below is for your convenience.

Mr. L. R. Osgood Dept. E-MRE-4
LOCKHEED MISSILE SYSTEMS DIVISION

7701 Woodley Avenue, Van Nuys, California Dear Sir: Please send me information on the Missile Systems Division.

my name

my field of engineering

my street address

my city and state

Want more information? Use post card on last page.

12 NEW FEATURES

- 1) "Law Naise" 20 KC IF Amplifier
- 2) Amplified Wavemeter Indication
- 3) Dauble Range Sweep 2 to 20 CPS
- 4) Extended Frequency Response
- 5) DC Filament Supply for Klystron
- 6) Longer Persistence CR Tube
- 7) Visual Viewing Filter
- 8) Flat Face Cathode Ray Tube
- 9) Special Illuminated Scale
- 10) Improved Display Linearity
- 11) Impraved High Speed Retrace
- 12) Improved Sweep Intensification

PLUS ALL THE
OUTSTANDING FEATURES OF
VECTRON'S MODEL \$A20
INCLUDING:

Large Clear 5" Oscilloscope Pattern Standard Bezel to accept Camera or Hood Minimized Controls for Maximum Operating Convenience

Double Conversion for Maximum I. F. Stability Regulated Klystron Oscillator Power Supply Easy Access for Adjustment or Maintenance

plus Your Choice of 12 INTERCHANGEABLE R. F. HEADS for S, L, C, X and K BAND

For full details and specifications Write today for Bulletin SA25

Electronic and Electro-Mechanical Equipment

VECTRON FOR DESIGN AND MANUFACTURE OF:
Precision Electronic Components
Electronic Networks and Filters
Complete Electronic Systems
Variable Frequency Yower Supplies

Want more information? Use post card on last page.

PLANTS AND PEOPLE

(continued)

Stanley J. Smith

Robert J. Levine

engineering at Avien, has been appointed vice-president of the new corporation and elected to the board of directors.

"The new company," L. A. Weiss, president of Avien, stated, "is planned to be a development facility specializing in the electronic control and servomechanical fields for aeronautical and other industries."

Smith is an inventor in the aircraft instrument field and particularly in the field of fuel quantity gages, in which he is credited with a large number of key patents.

Other officers of Control Laboratories, to be located in Valhalla, N. Y., will be L. A. Weiss, vice-president and H. H. Myers, secretary-treasurer.

Volkers & Schaffer Opens New Division

THE Volkers & Schaffer Manufacturing Corp. has been established by Volkers & Schaffer, Inc. to manufacture and promote the "Starved Direct Coupled Amplifier," a highly sensitive oscilloscope which incorporates the starved am-

have you thought about Florida for plant location?

Florida offers decided advantages to manufacturers in certain fields of electronics such as . . .

Tubes
Resistors
Coils
Expensive Transformers
Light weight electromechanical components
Specialized instruments

Key personnel, engineers and good production workers are available, employee morale is high and the labor climate is excellent. More than 1,965 new residents move to Florida every week.

and equipment

Florida's sunny year-round good weather assures reduced construction, plant maintenance and heating costs.

Florida is strategically situated for serving Southern and Latin-American markets.

In Florida you pay no state income taxes, no state ad valorem tax, no state inheritance tax.

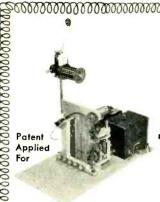
Florida already has well established electronics research and development facilities—with room for more.

A MANUFACTURER SPEAKS

Quoting the president of a Florida electronics company:

"We are firmly convinced that our firm could not have made the strides it has made in the last three years in any other state in the Union."

For further information write: Industrial Development Division, State of Florida, 3306C Caldwell Building, Tallahassee, Florida.


you'll always

do better in

Want more information? Use post card on last page.

April, 1954 - ELECTRONICS

NEW MODEL "M" COMBINES THE SPEED AND FLEXIBILITY OF THE HARDER MODEL "L" WITH FAR GREATER RANGE OF WIRE RANGES

This new, improved Model "M" winds toroidal coils "M" inside dia. and smaller, to 3" outside dia. and larger, in wire sizes #20 solid or stranded, to #44, with winding speeds 1000 tpm on small wire and reduction to 250 tpm on larger wires. Single layer close spaced windings readily accomplished with larger wires. Multifilar windings of same or different size wires made without pre-twisting or cementing and without tangling.

write for free information today!

DONALD C. HARDER CO.
3338 INDIA STREET, SAN DIEGO 1, CALIF.

3338 INDIA STREET, SAN DIEGO 1, CALIF.

UNLIMITED OPPORTUNITIES for **Electrical Engineers and Physicists to** do Digital Computer Engineering

HERE IS THE KEY TO YOUR FUTURE ...

Engineering Research Associates

DIVISION OF Remington Rand

1902 West Minnehaha Avenue, Dept. E-00, St. Paul W4, Minnesota

OUT-OF-STOCK DELIVERY

Beginning May, 1954

Designed to rigid Navy specifications, this dependable, lightweight microphone features long-life, high output, and all-position response. Incorporates use of long-life detent switch. Cord is reinforced by a rubber protector for maximum flexure life. Available also with coil cord on made-to-order basis.

HANGER STYLE 035

Designed for use with Style #044

Roanwell handheld microphone. Made of hardened steel, finished in cadmium plate, Resilient heat-treated

spring grip holds microphone securely, prevents vibration.

WRITE FOR COMPLETE DATA

ROANWELL CORPORATION

27 SIXTH AVE., BROOKLYN 17, N. Y.

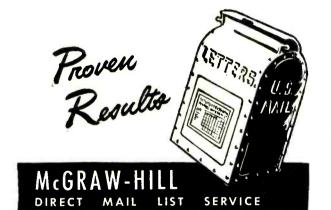
for PROVEN RESULTS specify

McGRAW-HILL

Mailing Lists

You can save time, avoid needless expense, increase your results by having McGraw-Hill Lists do your mail advertising job!

Three quarters of a century of practical experience is made available to you when you turn your direct mail jobs over to McGraw-Hill. And these seventy-five years of leadership in the development and perfection of lists assure you the maximum results at the lowest cost per order or inquiry.


Those who are acquainted with mailing lists know that year-after-year acceptance of lists does not come by chance or luck. Accepted lists, like McGraw-Hill's, hold their places by merit alone. Nor does success one day guarantee success the next. Vigilant eyes must constantly add new names, delete, change, check, recheck, etc. Inferior lists are dropped as soon as shortcomings are noticed . . . "good lists" yield to better lists.

For seventy-five years expert list users have preferred McGraw-Hill by long odds. No matter how few names you use—whether your business is large or small—the best lists, McGraw-Hill Lists, are the most economical in the long run.

The world-wide reputation McGraw-Hill has earned as builders of the finest mailing lists was born of constant research in our office and in the field—constantly adding

new names . . . developing new markets, new avenues of revenue for direct mail list users.

McGraw-Hill Mailing Lists are built—and constantly maintained—to provide, as accurately as humanly possible, com-

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGraw-Hill lists that best cover your market.

When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today.

No obligation, of course.

M	cG	raw	Hill	Pub	lishing	Co.,	Inc.
---	----	-----	------	-----	---------	------	------

DIRECT MAIL DIVISION

330 W. 42nd Street, New York 36, N. Y.

Direct M 330 West	42nd	St	ree	t,	N	ev	V	Y	OF	k	3	6,	1	V.	3	Ľ.		-														
Please se cover my				. 1	ıo	e	U	,		ш	aı	11.	Πě	5	11	9	L	11.	110	or	II.	ıa	LI	0	n	τ	n	aı	E.	W	11	. 1
Name				٠.	٠.		4		٠,						T	'it	le			5		v									,	
Company	111.			٠.	٠.					٠.			٠,							•		٠	, .					٠.	104			
Address													٠.					٠								٠.				٠,		
City and	Stat	e	٠.	٠.		٠.	٠										, .									٠.		٠,		. ,		•
Product	or Se	ervio	e,	٠.	٠.	٠.		٠.				,				,				,								٠.		. ,		
,																																

DUAL-TRACE APPLICATIONS

The Tektronix Type 535 Oscilloscope and Type 53C Dual-Trace Plug-In Preamplifier make a combination superior to a dual-beam oscilloscope in most applications. Because both waveforms appear on the same time base, accurate time comparisons are assured. Flexibility provided by independent positioning, sensitivity, and polarity inversion controls makes almost any sort of waveform comparison easy. The one exception is the observation or recording of two simultaneous transients of less than a millisecond duration. For this a dual-beam instrument is more practical.

Two typical dual-trace applications with the Type 535 and Type 53C are the comparisons of amplifier grid and plate voltage waveforms, and network input and output waveforms.

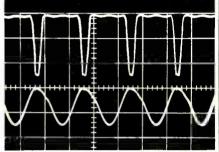
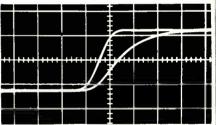



Plate and grid voltage waveforms af a class C amplifier working into a resistive load. Traces may be brought tagether for closer comparison.

Output of an RC network superimposed on the input pulse. Both waveforms appear on the same 0.04 $\mu sec/cm$ sweep, accurately measuring the risetime deterioration caused by passage through the network.

MAIN OSCILLOSCOPE FEATURES

600,000,000 to 1 Sweep Range — $0.02~\mu sec/cm$ to 12 sec/cm, continuously variable. Calibrated — 0.02 $\mu \text{sec/cm}$ to 5 sec/cm, accurate within 3%.

10 KV Accelerating Potential — Brighter display at low repetition rates.

Flexible Sweep Delay - 1 usec to 0.1 sec, jitter free, incremental accuracy within 0.2% of full scale Type 535 Oscilloscope - \$1300 plus price of desired plug-in units.

DUAL-TRACE PLUG-IN PREAMPLIFIER

Type 53C Specifications

Two Identical Amplifier Channels

Frequency Response — DC to 8.5 mc.

Risetime — $0.04~\mu sec$. Sensitivity — 0.05~v/cm to 20~v/cm calibrated, continuously variable to 50 v/cm.

Electronic Switching

Triggered — actuates alternate sweeps. Free-running rate - 100 kc, approximately. Type 53C Dual-Trace Unit - \$275.

OTHER PLUG-IN PREAMPLIFIERS

Type 53A Wide-Band DC Unit—\$85. Type 53B Wide-Band High-Gain Unit-Type 53D High-Gain Differential Unit - \$145.

Prices f.o.b. Portland (Beaverton), Oregon,

Please write for complete specifications, 831A, Portland 7, Ore.

Cable: TEKTRONIX Want more information? Use post card on last page.

ELECTRONICS — April, 1954

PLANTS AND PEOPLE

plifier circuit invented by W. K. Volkers, vice-president of the company. President of the new manufacturing division is Roy B. Hoag.

Radio Receptor Names Mendel

RALPH MENDEL was appointed vicepresident in charge of the engineering products division of Radio Receptor. He joined the company in 1948 and for the past few years has been manager of the division. Prior to 1945 he was with RCA International.

Sprague Appoints New Plant Manager

ROBERT L. PARRIS was named manager of the new plant of Sprague Electric, now under construction at West Jefferson, N. C.

The new plant, which will manufacture capacitors, will open late this spring. It is the sixth branch plant to be established by the concern.

Parrish, who has been associated with the main plants of the company for some time, was formerly senior chemical engineer with Abbott Laboratories.

Printed Circuit Firm Begins Operations

THE OPENING of Insulated Circuits, a new printed circuit manufacturing company, took place in Belleville, N. J.

Officers of the firm are: R. A. Curran, president; Louis Eisenstein, vice-president and treasurer; Max Eisenstein, secretary and G. H. Ogens, sales manager.

The 7,500 sq ft plant has facili-

Insulated Circuits plant

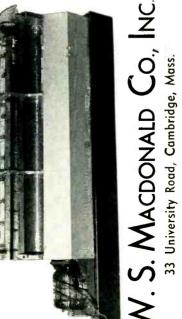
(continued)

be reviewed 4 additional types from fixed heads for fast access Special applications will lower and higher speeds AGNETIC STORAGE DRUMS Available:

600,000 bit capacity

8 inch diameter

RPM


for bulletin 182-3

Write 1

upon request

Single moving head 575-1750 500 tracks

38 inches long

Want more information? Use post card on last page.

for miniaturized precision-instrument components

the ideal resistance wire for

fixed and variable resistors of high ohmage — resistance boxes and bridges — voltmeter and wattmeter multipliers — and other miniature wire-wound units.

Where space is at a premium and performance is a "must" — these outstanding qualities of Jelliff Alloy 800 will assure that your products conform to the tightest specs.

High resistivity, 800 ohms/cmf — Low Temperature Coefficient, ±20 ppm per °C—Non-Magnetic—Highly Stable Electrically and Mechanically — Diameters from 0.0009" to 0.0056" — Bare, enameled or oxidized, or insulated with silk, Nylon or cotton — Solders and Winds easily.

For Complete Data Address Department 17

THE C. O. JELLIFF

<u>Manufacturing corp. Southport, conn</u>

MIDGET TELEPHONE TYPE RELAYS in hermetically sealed containers

Surface mounting, open type, Series 80 Relay size: 115/32" l. x 5/8" w. x 125/64" h. Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications.

Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.

Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR BULLETIN MTR.6

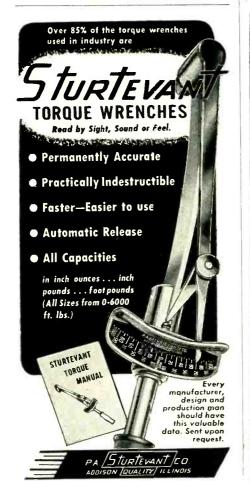
PLANTS AND PEOPLE

(continued)

ties for production and assembly of printed circuits without sub-contracting. Plant personnel and facilities are being increased to implement construction and to accommodate additional sub-assembly contracts.

Ward Products Names Engineering Director

THE WARD PRODUCTS CORP., division of Gabriel, announced the appointment of William H. Rickards to the newly created position of director of engineering. He will expand antenna engineering facilities for the firm. His most recent affiliations were with the Radiart Corp. and Cleveland Electronics. His work in recent years has been in the design and development of tv and automotive antennas.


Indiana Steel Names Two Executives

JAMES R. IRELAND, formerly staff assistant to the vice-president in charge of research and engineering for Indiana Steel Products, has been appointed assistant director of research. He will have direct responsibility for all research, including that to be done under a new contract with the Air Force for basic and applied research on magnetics.

Before coming to Indiana Steel, Ireland served seven years as chief engineer for Thomas & Skinner Steel Products Co.

James G. Richmond was named

Miniature Tap Switches

Series 12 For Military Series 5000 For Commercial

Both Models

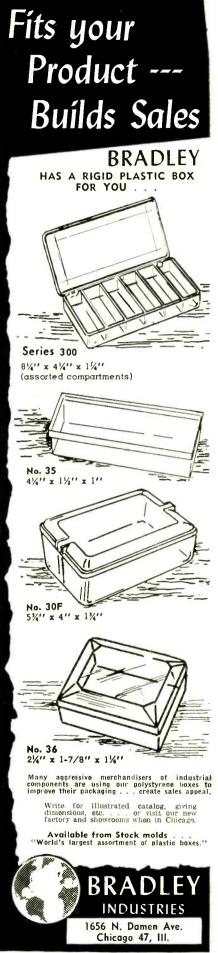
- 1 to 6 Decks
- Up to 10 Positions Per Deck
- Minimum Space Required
- Rated 1 amp., 115 v., A.C., Non-Inductive

La Grange, Illinois Phone: Fleetwood 4-1040

assistant manager of the manufacturing division and will be responsible to the vice-president in charge of manufacturing for all functions of the division. Before joining the company as a staff assistant in 1953, he was employed by International Harvester as materials controller.

Breitwieser Elected Lear Vice-President

CHARLES J. Breitwieser, who recently joined Lear as director of engineering, was elected a vice-president of the company. He is also manager of the general development and engineering division.


Previously he was with P. R. Mallory & Co. as director of engineering in charge of its central engineering laboratories. Prior to joining Mallory, he was with Convair for over 9 years as chief of electronics and research laboratories, responsible for the electronics and guidance section, guided missile flight test section, engineering test laboratories and the missile and airplane instrumentation section.

Micamold Radio Elects Executive Vice-President

J. GERALD MAYER, attorney and senior partner in the law firm of Mayer, Rigby and Seeley, has been elected executive vice-president of Micamold Radio of New York City.

Mayer, an engineer and attorney, was associated for a number of years as an engineer with Western Electric. He was the World War II chief of the contract termination

Want more information? Use post card on last page.

April, 1954 — ELECTRONICS

DESIGN . .

A recent development in sensing elements provides the basis for a new and better approach to problems in measurement and control. V E C O THERMISTORS have an extremely high negative temperature coefficient of electrical resistance. Their small size and extreme sensitivity to thermal changes offer engineers a circuit element to utilize in new applications, and for the improvement of older methods.

BEADS . WASHERS . DISCS . RODS

SOME PRACTICAL USES:

Time delay • Cas analysis • Volume limiting • Surge protection • Vacuum manometry • Flow measurement • Temperature control • Temperature measurement • Temperature compensation Oscillator stabilization • and many new applications being developed.

VECO THERMISTOR
DATA BOOK

VECO GAS ANALYSIS CELLS

employ Veco glass-coated Thermistors as sensing and reference elements (no open wires, therefore no corrosion).

\$5 cash or money order will bring you the VECO Experimentors' THERMISTOR-VARISTOR Package, No. 168. 7 items and application circuitry—value over \$15!

ENGINEERING CORPORATION
MANUFACTURERS OF:

Springfield Road, Union, N. J. Tel. Unionville 2-7150 Want more information? Use post card on last page. organization in the office of the

Chief of Signal Officer and since that time has been counsel to various electronic industry groups.

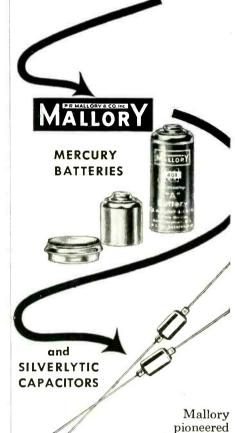
A. P. Hirsch, president of Micamold, said that the step was taken in line with a policy of expansion both with respect to facilities and products.

Armour Research Names Disney

VIRGIL H. DISNEY was promoted to manager of the electrical engineering research department at Armour Research Foundation of Illinois Institute of Technology.

Disney joined the foundation staff in 1949, serving first as supervisor of the electronics section. He was promoted to assistant manager of the electrical engineering department in 1951.

Before coming to Armour, Disney was a project engineer with Sperry Gyroscope. He was with Curtiss-Wright from 1946 to 1947, serving as assistant section head of research. From 1943 to 1946 he was a project engineer for C. G. Conn. In 1942-43 he taught in the engineering and science management war training program at Illinois Tech, and from 1937-1942 he was an electrical engineer for American Can.


Beltone Makes Research Grant

A GRANT of \$1,000 to the audiology department of Northwestern University for electronic research equipment was announced by Sam Posen, chairman of the Beltone In-

DESIGNED

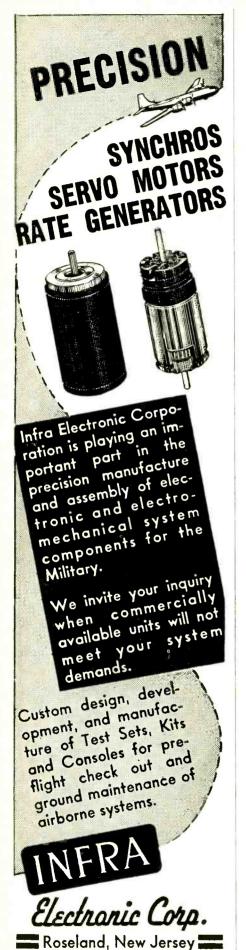
Especially for

TRANSISTOR CIRCUITS

transistor power supplies with a special line of Mercury Batteries that deliver the constant-current, constant-voltage necessary for the best performance of transistor circuits. In addition, Mallory Batteries offer unusually long shelf life and high ratio of energy to size and weight.

Tiny, specially-developed Mallory Silverlytic Capacitors also meet every requirement of low voltage transistor applications.

For complete data, write or call P. R. MALLORY & CO. INC., Indianapolis 6, Indiana.


Available NOW

IN PRODUCTION

QUANTITIES

Want more information? Use post card on last page.

Manufacturers of Precision Synchros

Want more information? Use post card on last page.

stitute for Hearing Research in Chicago.

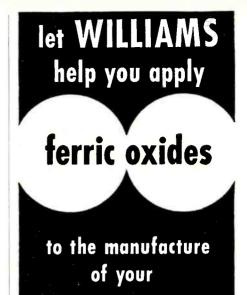
The equipment will be used in current studies aimed at improving techniques of clinical testing of hearing loss.

Designers For Industry Names Engineers

RECENT promotions and additions were made to the staff of Designers For Industry. Franklin L. Eger joined the firm on the technical survey staff as senior field investigator and Dante J. Domizi as senior project designer in electronics engineering.

Recent promotions include P. N. Bredesen to assistant project manager, electronics; and H. G. Gilbert, E. Holasek, E. F. Mazur and G. J. Prusha to project designers, electronics

Ampex Names Read Assembly Head


STANLEY N. READ has been named superintendent of assembly operations by Ampex Corp. Before joining the firm he was engaged in the installation of manufacturing plants and management controls. He brings to his new position more than 16 years of administrative experience in the engineering and production of communication equipment for Magnavox, Centralab, Kellogg Switchboard and other firms.

Aerovox Division Names Whitton

RAYMOND WHITTON has joined the Burbank, Calif. factory of Cinema Engineering, a division of Aerovox. He will head the tool and die design department.

Whitton has been in the field a score of years, most recently as tool maker and shop foreman for West Coast Engineering and previously with the U. S. Navy ordnance plant as a tool maker and tool designer. An enlarged tool-design department has been installed in Cinema's new Burbank facility.

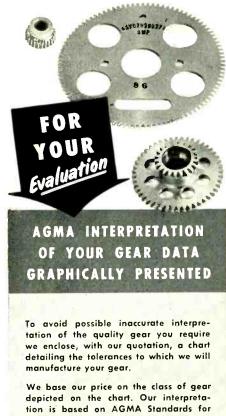
John A. Oliver has joined the division as a staff engineer. He had been with Hughes Aircraft for the past three years in research analytic activities and previously,

FERRITES

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than 99% Fe₂O₃. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.

Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams & Co., Easton, Pa.



We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical Information.

Want more information? Use post card on last page.

April, 1954 — ELECTRONICS

FOR MARKING...

PLASTIC . METAL GLASS . PAPER RUBBER . CERAMIC CARDBOARD

in such products as Resistors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, etc., etc.

THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED

ON THE

REJAFIX MARKING MACHINE

Why not send us samples of your products? They will be test-printed and returned to you for your examination!

● REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.

POPPER & SONS INC. 300 FOURTH AVENUE NEW YORK 10, N.Y.

YOU can improve the performance, life and reliability of your circuits . . . eliminate costly equipment maintenance and replacement part costs by using ATLAS Magnetic Amplifiers for:

- Low level amplification
 Regulated DC power supplies
- Motor drive controls
- 4. Thermocouple and photocell to relay applica-

We welcome inquiries. Send sketches of your circuit and list desired performance characteristics . . . we'll do the rest.

CONSTRUCTION TYPES:

- Hermetically sealed
- Fosterite
- Scotch Cast
- Open types

ATLAS ENGINEERING CO., Inc.

3 EDGEWOOD ST., ROXBURY, MASS.

6718

Dexter MACHINE PRODUCTS, INC. CHELSEA, MICHIGAN, Box 328

Phones: Detroit WE 3-1694—Chelsea 2-1791

fine-pitch gears.

USE US FOR FAST **FOOT WORK**

Modern research makes things change fast. Your very size of production concentration may hamper the "dexterity of your foot work."

We, being smaller, with all around experience, may be able to aid you in quick movements to keep up with progress.

Use us for mobility.

CONRAD & MOSER

Workers in Aluminum, Brass, Steel & Plastics

DESIGNING ENGINEERING . MANUFACTURING MECHANISMS . MACHINES PARTS . TOOLS . DIES . MOLDS STAMPINGS . CASTINGS MACHINING . SHEET METAL ENCLOSURES & CHASSIS 1/8 to 1/8 NAVY SPEC ALUMINUM SPOT WELDING AND HELIARC WELDING.

2 Borden Ave. Long Island City 1, N.Y.

Want more information? Use post card on last page.

for ten years, was at Oak Ridge, Tenn, in various projects and capacities.

Varian Elects Three Directors

JAMES B. DU PRAU, Theodore Moreno and Emmet G. Cameron were elected to the board of directors of Varian Associates.

Du Prau is vice-president and assistant to the president of Columbia-Geneva Steel Division of U.S. Steel and a member of their board of directors.

Dr. Moreno is manager of tube design and improvement at Varian, He has been with the company since 1951.

Cameron is works manager in charge of the firm's San Carlos, Calif. plant.

Directors reelected were: R. H. Varian, president; H. M. Stearns, executive vice-president and general manager; S. F. Varian, vicepresident for engineering; R. M. Leonard, secretary; E. L. Ginzton, F. P. Farquhar, David Packard, D. G. McAllister, G. D. Merner and C. V. Heimbucher.

The company reported that its high-power amplifier klystron, designed and built for GE, is now in use in over 24 uhf tv stations. The Varian nuclear induction magnetometer, developed for Byron Jackson Co., was recently announced and is a portable device for the location of subterranean or undersea mineral bodies by detection of variations in the magnetic field of the earth.

New Research Lab Is Established

TECHNIQUES, a new electronics research and development laboratory. has been established in Goleta, Calif.

The firm occupies approximately 1,200 sq ft of space in Building 120 at the Santa Barbara, Calif., Airport. The company presently has a military subcontract with Goodyear Aircraft on radar design and a direct commercial contract with Goodyear on computer design.

For the present, the company consists of two engineers, Carl A. Wiley and Ben. R. Gardner, presi-

EXACT PROPORTION!

GIANNINI

SYNCHRONOUS MOTORS

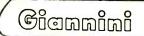
CUSTOM-DESIGNED

When it's imperative that speed correspond exactly with supply frequency, Giannini designed motors are unmatched. More than that, these rugged instruments perform under extreme environmental conditions-and are being precision manufactured to meet exact physical dimensions, frequency response, impedance characteristics and mechanical dynamics.

GIANNINI

HYSTERESIS MOTORS

Custom-designed to start and synchronize high inertia loads quietly and smoothly ... independent of line and load fluctuations ... and operate at various synchronous speeds by switching.


GIANNINI

SALIENT POLE MOTORS

Custom-designed to synchronize in particular shaft angular positions at minimum noise level. Especially well suited for framing, registering or similar applications.

May we cooperate in the design and development of your projects involving synchronous motors and other rotary electro-magnetic devices?

Special problem? Further information? Please write:

G. M. GIANNINI & CO., INC. Electro Mechanical Division East Orange, New Jersey

Want more information? Use post card on last page.

April, 1954 - ELECTRONICS

390

dent, both of whom have had extensive experience in the field.

Reliance Plans Plant Addition

THE Reliance Electric and Engineering Co. plans a new 90,000 sq ft plant addition to its Ashtabula, Ohio division. The addition will increase plant and office area to a total of 220,000 sq ft. The company's new line of a-c motors will be built at the plant.

Robertshaw-Fulton Makes Plant Moves

CONSTRUCTION began on a new 237,000 sq ft plant in Long Beach, Calif. to house the Grayson Controls Division of the Robertshaw-Fulton Controls Co. The new \$2.5

Proposed Robertshaw-Fulton plant

million plant will employ about 2,400 people with an annual payroll in excess of \$7 million.

Construction of a \$500,000 addition to another California plant of

Thomas H. Jeffers

- the Counter

YOU'VE BEEN WAITING FOR!

BY SODECO GENEVE

Write for Bulletin 21

- Instantaneous reset . . . to zero at a touch of the button
- Compact . . . flush-mounting plate measures only 1-5/16" x 1-3/16" counter is only 4-3/8" deep
- Fast . . . standard models count up to 10 impulses/sec. (Special models available with speeds up to 25 impulses/sec.)
- Half-numbers . . . show when coil is energized
- 3, 4, or 5 digit models

RUGGED ECONOMICAL ACCURATE

LANDIS & GYR, INC.

45 West 45th Street . New York 36, N.Y.

STANDARD SIGNAL GENERATOR

MODEL 65-B

> RANGE 75 KC to 30 MC

Individually Calibrated Scale

OUTPUT: Continuously variable, .1 microvolt to 2.2 volts.

OUTPUT IMPEDANCE 5 ohms to .2 volt, rising to 15 ohms at 2.2 volts.

MODULATION: From zero to 100%. 400 cycles, 1000 cycles and provision for external mcdulation. Built-in, low distortion modulating amplifier.

POWER SUPPLY: 117 volts, 50-50 cycles, AC.

DIMENSIONS: 11" hig 1, 20" long, 10%" deep, overall.

WEIGHT: Approximately 50 lbs

Catalog on request

MEASUREMENTS CORPORATION
BOOMTON NEW JERSEY

MANUFACTURERS OF Standard Signal Generators

Pulse Generators

FM Signal Generators

Square Wave Generators

Vacuum Tube Voltmeters

UHF Radio Noise & Field Strength Meters

Capacity Bridges

Megohm Meters

Phase Sequence Indicators

Television and FM Test Equipment

Want more information? Use post card on last page.

FIRST CHOICE FOR PRECISION MADE TRANSFORMERS

Precision is two-fold in Acme Electric transformers. Exact mechanical dimensions facilitate installation in limited space. Unvarying electrical characteristics provide for dependable performance.

ACME ELECTRIC CORPORATION

314 WATER ST. . CUBA, N. Y.

West Coast Engineering Laboratories: 1375 W. Jefferson Blvd., Los Angeles, California In Canada: Acme Electric Corp. Ltd. 50 Northline Road, Toronto, Ontario

SMALL PARTS PLATED with: plati-

num, gold, silver, solder, etc., such as ● Electrical connectors, and contacts ● "Tinkertoy" components.

NARL'S CONTINUOUS PROCESS ELECTROPLATING EQUIPMENT and CONTROLS ASSURE ACCURATE WIRE and STRIP PLATING of PRECIOUS and BASE METALS and ALLOYS.

Continuous WIRE PLATING to:

- Maintain low contact resistance at high temperatures
- Improve adhesion of insulation
- Reduce secondary emission Protect against corrosion
- Lubricate dies

Continuous STRIP PLATING to: • Increase life of blanking and stamping dies • Lower finishing cost.

CONSULT NARL now for information and suggestions on how PLATING can IMPROVE the QUALITY of YOUR WORK, and STEP UP YOUR PRODUCTION.

Research • Development

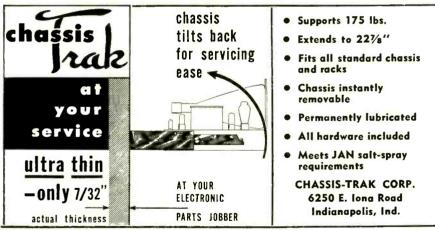
Want more information? Use post card on last page.

the company began recently.

The firm also announced that Thomas H. Jeffers was named to the new position of assistant general manager of the Anaheim division and an assistant vice-president of the firm. T. T. Arden continues as general manager of the Anaheim division.

Jeffers was formerly chief engineer at Anaheim, which is one of eight of the company's divisions.

Lackman Joins Chester Cable


JOHN LACKMAN was appointed extechnical ecutive director Chester Cable Corp. He has been employed in the technical department of E. I. DuPont de Nemours and also worked with major wire

Chester Cable recently completed its fourth major plant expansion in the past five years.

University Of Michigan Sets Control Courses

THE COLLEGE OF ENGINEERING of the University of Michigan planned two intensive courses in automatic control. The first is scheduled for June 14-19, the second for June 21-23, 1954. The courses are intended for engineers who wish to obtain a basic understanding of the field but cannot spare more than a few days for the purpose. The aim of the courses is to make it easier to learn by a coherent presentation of the fundamentals of modern automatic con-

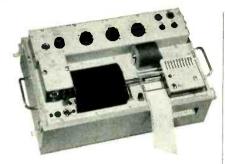
GENERAL MAGNETICS INC.

has openings for

ELECTRICAL ENGINEERS

With at least three years experience in design and development of MAGNETIC SERVO AMPLIFIERS & VOLTAGE REGULATORS.

A chance to grow with a young and progressive company. Salary and advancement commensurate with ability. State education, experience and salary requirements.


Address all inquiries to:

GENERAL MAGNETICS INC.

135 Bloomfield Ave.

Bloomfield, N. J.

FOR HIGH SPEED RECORDING OF VOLTAGE LEVELS

Use the Bruel & Kjaer Level Recorder

BRUEL & KJAER MODEL BL-2304

With this precision instrument you can make high speed recordings of signal level variations. The level of A.C. voltage from 20 to 200,000 cycles per second is accurately recorded. It simplifies recording frequency response curves for microphones, loud-speakers, filters, amplifiers, hearing aids, and other audio equipment. It is useful in recording reverberation decay curves, noise levels, and electrical voltage levels.

With this recorder you have a choice of nine recording speeds and ten chart speeds. Recording accuracy is within 1%. Calibration is made quickly with an internal standard signal.

For complete specifications on this and other Bruel & Kjaer instruments, write Brush Electronics Company, Dept. K-4, 3405 Perkins Avenue, Cleveland 14, Ohio.

ACOUSTIC AND TEST INSTRUMENTS

Bruel & Kjaer instruments, world famous for their precision and workmanship, are distributed exclusively in the United States and Canada by Brush Electronics Company.

BL-1012 Beat Frequency Oscillator

BL-1502 Deviation Test Bridge

BL-1604 Integration Network for Vibration Pickup BL-4304

BL-4304 Vibration Pickup

BL-2002 Heterodyne Voltmeter

BL-2105 Frequency Analyzer

BL-2109 Audio Frequency Spectrometer

BL-2304 Level Recorder

BL-2423 Megohmmeter and D. C. Voltmeter

BL-3423 Megohmmeter High Tension Accessory

BL-4002 Standing Wave Apparatus BL-4111 Condenser Microphone

BL-4120 Microphone Calibration Apparatus and Accessory

BL-4708 Automatic Frequency Response Tracer

BRUSH ELECTRONICS COMPANY ERIES

formerly
The Brush Development Company.
Brush Electronics Company
is an operating unit of
Clevite Corporation.

Want more information? Use post card on last page. 394

PLANTS AND PEOPLE

(continued)

trol and to provide a comprehensive set of notes to serve as a framework for further study. The role of analog computing methods will be emphasized.

Micromax Company Changes Its Name

THE Micromax Company of Brooklyn has changed its name to Computer Instruments Co. in order to describe the nature of its line of products. The company is manufacturing electronic computer and servomechanism components. Its manufacturing plant will remain in Brooklyn and facilities will be expanded. All Micromax personnel will be retained, according to the firm.

Union Electric Acquires TV Products Company

UNION ELECTRIC & MANUFACTURING of Jersey City, N. J. acquired all the resources of TV Products Co. of Paterson, N. J., manufacturers of television yokes and transformers.

The merger of the two companies was in line with Union Electric's policy of expansion of volume and curtailment of overhead so as to better meet a competitive market.

Scintilla Magneto Changes Its Name

THE Scintilla Magneto division of Bendix Aviation has dropped "Magneto" from its name and is now known as "Scintilla Division", "Magneto" was deleted from the Scintilla name as it is no longer descriptive of the size and scope of the division's operations.

New Magnetic Recording Company Organized

MAGNE-TRONICS, a New York corporation, has been formed to operate in the audio visual fields and promote magnetic tape sound recording and reproduction. The company will distribute musical tapes with playing times of from two to eight hours.

P. L. Deutsch heads the new company as president and J. F. Hards, formerly vice-president of

hocus pocus is all right, BUT...

KNOW-HOW GETS RESULTS!

Magic tricks may be a little out of our line . . . but tricky transformers are right up our alley! Take the time our chief engineer, (we call him Merlin) fooled the alchemists of a well known equipment manufacturer. They thought it impossible to develop prototypes of 14 different transformers in just a few short weeks. (Others tried and failed to meet their rigid equipment specs plus MIL-T-27.) Without sleight-of-hand, ADC designed and delivered 14 sets of samples which received full qualification approval—and production quantities were delivered right on schedule.

Magic? Not really, though our success almost cost us a good secretary. Seems our customer, convinced that Merlin was a wizard, sent him a book on parlor tricks. After reading it, Merlin wanted to see if sawing a woman in half was as easy for him as designing and building transformers, filters, reactors and chokes to your specification.

We have a catolog, and who hasn't? But ours is unique—designed to help you select and specify iron care components for your particular circults.

(ADC)

AUDIO DEVELOPMENT COMPANY

Write for it today!

2833 13th Avenue So., Minneapolis, Minn.

Want more information? Use post card on last page.

April, 1954 — ELECTRONICS

(continued)

Audio Video Tape Libraries, is vice-president. Hards is also president of the Magnetic Recording Industry Association.

Weid Named Melpar Vice-President

ARTHUR C. WEID has been appointed vice-president of Melpar, subsidiary and central research lab of Westinghouse Air Brake. He has been chief engineer for Melpar since 1951 and executive assistant to the executive vice-president and general manager since 1952. After joining Melpar in 1947, he became project engineer in charge of the engineering development of microwave systems and other electronic and sonar devices.

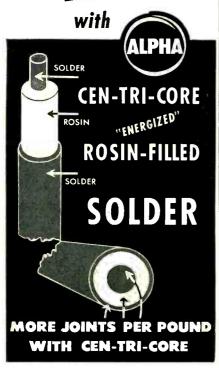
He worked at Columbia University's Airborne Instrument Laboratory. During the post-war period, when the lab became an independent commercial organization, Weid was director of military engineering projects.

Waveline Appoints Chief Engineer

JOHN M. DEL VENTO has been named chief engineer of Waveline of Caldwell, N. J. He is enlarging the staff of the engineering department and plans to accelerate the firm's research and development programs.

Prior to joining the company he served in various capacities in the field of microwave research and development with organizations such as Federal Telecommunication

Are You Throwing Away S S EVERY YEAR?


\$ because of

PRODUCTION STOPPAGE

COSTLY REJECTS

These Facts Will Save YOU Plenty...

NO VOIDS*
LESS WASTE

Exclusive Features

- * guarantees against rosin voids or skips
- eliminates cold joints and rejects
- available in eight core sizes
- solders to plated or oxidized parts
- simultaneous "wetting flow" and take
- surpasses federal specifications for non corrosiveness and purity
- thin walls insure rapid heat transfer and faster fluxing action

for further information

ALPHA METALS, INC.

59 Water St., Jersey City 4, N. J.

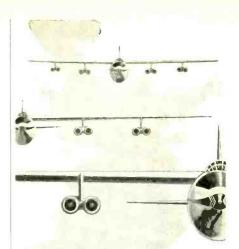
Specialists IN SOLDER For Over 50 Years Want more information? Use post card on last page. 396

PLANTS AND PEOPLE

(continued)

John M. Del Vento

Labs and National Union Radio. He specialized in uhf and microwave at the University of Illinois and Brooklyn Polytechnic. During World War II he served with the Air Force in navigation and radar instruction.


New York Central Names Electronics Engineer

THREE appointments in the communications department of the New York Central were announced. Richard P. Corporon joins the Central as electronics engineer succeeding A. Auerbach, who has resigned. Roy A. Calendine, chief telephone and telegraph inspector at Detroit, became general plant supervisor at New York and William B. Anderson, commercial traffic supervisor at Detroit, was named communications traffic supervisor at New York.

Prior to his present appointment, Corporon was associated with Western Electric and was communication engineer of the Indiana and Michigan Electric Co. He was an engineer in the transmitter design section of RCA and was design and test engineer in guided missiles for Bendix Aviation. In his latest position he was manager of development engineering for Penn Controls of Goshen, Indiana.

Dean Electronics Moves To Bronx

DEAN ELECTRONICS Co. has moved from Brooklyn to the Bronx, N. Y. The new quarters will permit the firm to produce radio and high-fidelity units in addition to their line of phonographs.

New "Universal Series" Gyro is available in Free, Directional and Vertical types, and in composite Gyro sets for sensitivity in three planes.

Features fast, remote caging that positively locks the gimbals in their normal erected position; remote uncaging; torque-motor erection; and unrestricted 360° rotation of both gimbals. AC or DC rotors, and synchro or potentiometer outputs are optional. Reduced drift rate, greater life expectancy, and improved resistance to environmental shock, acceleration and vibration are incorporated in a 4" dia. x 5" unit. Write for complete engineering information.


GYRO SETS AIRBORNE INSTRUMENT DIVISION

G. M. GIANNINI & CO., INC. PASADENA 1, CALIF. • EAST ORANGE, N. J.

Giannini

Want more information? Use post card on last page.

April, 1954 — ELECTRONICS

31½" high, 18¾" wide, 27" long.

LAB DOLLY MODEL

- . . . with 8 power outlets (1500 watts, 110 VAC) and a 10 foot heavy duty extension cord.
- Ball Bearing Swivel Rubber Tired Casters.
- Constructed of Aluminum. Features 2
 Shelves for Equipment and a pan for test leads, notebooks,
- Recommended by Laboratories wherever used.

Price **4950**

FOB Louisville, Ky.

TECHNICAL SERVICE CORP.

1404 W. Market St.

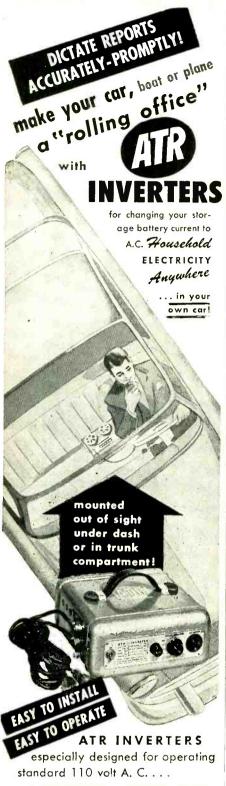
Louisville 3, Kentucky

YOU CAN'T SHAKE'EM LOOSE!

BUT YOU CAN COOL 'EM OFF ...

With BIRTCHER

KOOL KLAMPS


BIRTCHER KOOL KLAMPS will help keep your subminiature tubes COOL... and hold them firm and secure, regardless of how they are shaken, or vibrated.

KOOL KLAMPS are made of a specially developed heat treatable alloy 991/2% pure silver of high thermal conductivity.

KOOL KLAMPS under certain conditions are able to reduce bulb temperatures as much as 40° C. KOOL KLAMPS have proved of particular value in miniaturized electronic equipment.

Where heat conditions are less critical, beryllium copper KOOL KLAMPS are available.

The BIRTO	HER CORPORATION 4371 Valley Blvd. Los Angeles 32, California
	Dept. E-4-4
	Please send Bulletin which describes and illustrates Kool Klamps in detail.
Company .	
Attention of	
City	State

- TAPE RECORDERS DICTATING MACHINES
- for
 - EXECUTIVES
- OUTDOOR MEN
- SALESMEN
- REPORTERS
- PUBLIC OFFICIALS
 FIELD INSPECTORS
- POLICEMEN

- · DOCTORS
- FIREMEN
- . LAWYERS, ETC.
- See your jobber or write factory

√ NEW MODELS √ NEW DESIGNS √ NEW LITERATURE "A" Battery Eliminators, DC-AC Inverters, Auto Radio Vibrators

AMERICAN TELEVISION & RADIO CO. Quality Products Since 1931 SAINT PAUL 1, MINNESOTA, U. S. A.

Want more information? Use post card on last page.

NEW BOOKS

High Fidelity Techniques

By John H. Newitt. Rinehart Books, Inc., New York, 512 pages, \$7.50.

MR. NEWITT, it seems to this reviewer, has written a book full of excellent material which, however, does not take into account the real needs of his intended audience. Any writer on high fidelity has of course a serious problem in aiming his material effectively at some sizeable segment of the potential readership, spread as that readership is over such a wide spectrum of technical competence, from rank layman to practicing engineer. Mr. Newitt says in his introduction that he is writing for:

- (1) the practicing engineer who doesn't know audio but wants to improve his home system;
- (2) prospective constructors of home sound systems who need guidance on choice of equipment;
- (3) the radio serviceman who wants to do custom sound work;
- (4) recording studios and public address operators concerned with installing high-quality equipment;
- (5) professional audio technicians, engineers, and home receiver designers "who desire a concise working reference to the noteworthy developments in the art."

In this reviewer's opinion readers in the five categories listed by Mr. Newitt, and particularly the last, will not find the book detailed enough in the engineering sense, nor indeed, sufficiently up to date, to serve as a guide to the most advanced practice in audio. This is all the more a pity because the author clearly has an unusually broad understanding of the subject and highly valuable practical experience.

The faults of the book can be generalized, with some unfair simplification, as (1) a lack of enough quantitative data to raise the various discussions above the level of description; much of it is a qualitative "more of this-less of that" which is of no help to the contructor; and (2) a failure to take his audience seriously enough. first is partly a result of the second, of course. Apparently Mr. Newitt

MAGNETIC-AMPLIFIER CIRCUITS

Just Published!

This practical treatment of fundamental principles, characteristics, and applications logically develops the various kinds of hasic and more complex magnetic amplifier circuit arrangements without extended mathematical considerations. Descriptive and graphical methods are used to give qualitative and quantitative interpretation of essential facts. Material is systematically classified according to circuit functions so you can compare and select solutions best suited to your special problem. By William A. Geyger, U. S. Naval Ord. Lab. 277 pp., 135 illus., \$6.00 Just Published!

PROBABILITY AND INFORMATION THEORY WITH APPLICATIONS TO RADAR

Just Published!

Shows in easy stages how the theory of probability applies to electronics, communication, and particularly radar. Using basic mathematics, it discusses the theory of probability distribution, mathematical description of waveforms, Shannon's information theory, applications of inverse probability to problems of signal and noise, etc. By P. M. Woodward, Telecomm. Research Establishment, Malvern, England, 128 pp., \$4.50

TELEVISION BROADCASTING

Practical manual for radio engineers, operations personnel, and others interested in the technical aspects of television broadcasting. Covers in detail the equipment, facilities, and techniques involved in the running of a television studio-topics such as lighting, staging, television recording, and color television equipment. Gives a valuable insight into the whole field without the use of complex mathematics. By Howard A. Chinn, Columbia Broadcasting System. 688 pp., 346 illus., \$10.00

ELECTRONICS FOR COMMUNICATION **ENGINEERS**

RNGINEER

Saves research time and effort on electronic problems in communications. Its 252 articles from Electronics contain a wealth of design equations, charts, nomocraphs, tables, etc. Covers amplifiers—antennas—audio—cathode-ray tubes—components—electronic music—filters—measurements—power supplies—propagation—pulses—receivers—transmission lines—transmitters, Edited by John Markus and Vin Zeluff, Assoc. Editors, Electronics, 624 pp., hundreds of illus, \$10.00

-	SEE	THESE	BOOKS	10	DAYS	FREE	•	
	A of nave	H:II Das	LC 25	00 W	42 54	NVC/2	41	

McGraw-Hill Book Co., 330 W. 42 St., NYC(36)
Send me book(s) checked below for 10 days' examination on approval. In 10 days I will remit for book(s) I keep, plus few cents delivery, and return unwanted book(s) postpald. (We pay for delivery if you remit with this coupon—same return privilege)

Geyger-MAG. AMP. CIRCUITS-\$6.00
Woodward-PROB. & INFORM. THEORY WITH
APPLICATIONS TO RADAR -\$4.50
Chinn-Television Broadcasting-\$10.00

☐ Marku			١.		ın	r-	-1	3)	Ĺ.	E	С		Ю	0	R	O	0	1	١.	M			E	(1	G	K	S		
(Print) Name																						,-							
Address		,																			-	-		-					

Company

Position This offer applies to U. S. only

Want more information? Use post card on last page.

has missed the extent to which the classes of readers he is addressing have been exposed, in this year 1954, to the basics of audio.

There is a lot on the plus side. Mr. Newitt is very good on speakers, baffles and horns. He has notably wise things to say about constructing amplifiers at home, about price-versus-quality choices, about the ancient triode and tetrode battle, about listener tests and on many other points.

For this reviewer the best section of the book is Chapter 12, on the general planning of custom sound installations. Anybody in this business, or going into it, ought to read this chapter, which is full of good sense obviously based on experience.

With some deletions, the book could serve as an excellent "Basic Audio", intended for readers less demanding technically than those he has tried to reach. The coverage of the book is complete, as far as general topics is concerned, including the psychological factors in listening to reproduced sound, the basics of hearing and acoustics, the various components of the reproducing chain, a whole chapter on distortion, special high fidelity circuits, tuners, record players, magnetic recording and the abovepraised chapter on custom installation work.—R. S. LANIER.

Television Broadcasting

By Howard Chinn. McGraw-Hill Book Company, Inc., first edition, 700 pages, 1953, \$10.00.

This book by one of the industry's experts is a contribution which seems likely to be an enduring reference. Any engineer engaged in either technical television operation or the engineering design of television broadcasting facilities will find it a valuable tool, both for study and for reference. The subject is not approached from the theoretical or mathematical view-The book is simply and point. clearly written, but at the same time it presupposes a good working knowledge of the fundamentals of communication engineering. It is not for the beginner; and the person who is seeking merely conversational knowledge in this field

TERMALINE DIRECT READING R. F. WATTMETERS

(DUAL RANGE)
MODEL 611—0-15 and 0-60 Watts
MODEL 612—0-20 and 0-80 Watts
IMPEDANCE—511/9 Ohms

Models 611 and 612 are popular instruments in research and design laboratories, vacuum tube plants, transmitter manufacturing plants, and in fixed and mobile communication services.

They are ruggedly built for portable use, and are as simple to use as a D.C. voltmeter. The power absorbing load resistor is non-radiating, thus preventing transmission of unwanted signals which interfere with message traffic in communication services.

Frequency range: 30 to 500 MC (30 to 1,000 MC by special calibration)

Impedance: 51.5 OHMS-VSWR less than 1.1

Accuracy: Within 5% of full scale

Input connector: Female "N" which mates with UG-21 or UG-21B. Adapter UG-146/U is supplied to mate with VHF plug, PL259.

Special Scale Model "61s" are available as low as ½ watt full scale, and other models as high as 5 KW full scale.

Catalog Furnished on Request

NEELY ENTERPRISES Hollywood • San Francisco Albuquerque

EARL LIPSCOMB ASSOCIATES Dallas • Houston

factory and service tests!

MODEL 130

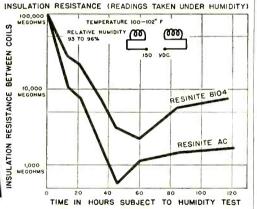
Features continuous frequency coverage in one band; at least one volt output into 75 ohms; wide sweep; blanked signal on return sweep provides a reference baseline.

SPECIFICATIONS

Freq. Range: 450-900 mc. Sweep Width: 0-40 mc min. Sweep: 60 cycle, sine wave. Output: (1.) 0.1-1.0 volts

(2.) 0.01-0.1 volts approx.

MODEL 100C


Designed to give precision performance over a single tuning range (27-230 mc). Negligible leakage; low spurious outputs; no auxiliary frequency changer unit required.

Write for specifications and catalog on complete line of measuring equipment. See our demonstration at the New York I. R. E. show Booth 166.

вох LONDON, CONN NSTRUMENT

Tests conducted on .253 I.D. x GIVES YOU THE HIGHEST .283 O.D. tubes used on coil forms for television receivers. INSULATION RESISTANCE OF ANY

RESINATED PRODUCT

Performance data—compiled from laboratory tests, actual field operations and reports from manufacturers—prove the outstanding operating characteristics of Resinite. In volume resistivity... low moisture absorption ... excellent thermal properties... low power factor... and resistance to voltage breakdown... Resinite outperforms all other resinated products.

Resinite Coil Forms are available with inside or outside threads-slotted, punched or embossed. Special three-row threaded design permits axial pressure in excess of 25 lbs. Torque controllable to + or -1 inch oz.

Write today for full details and technical information

CORPORATION ISION OF PRECISION PAPER TUBE

2035E West Charleston Street, Chicago 47, Illinois 79 Chapel St., Hartford, Conn.

will probably be better served by other less comprehensive texts. This book is for the professional. and the professional will appreciate the thorough, authoritative, matterof-fact style. The illustrations are well done, the type is easy to read. and the entire book is remarkably free from errors.

In the preface the author explains the organization of chapters with regard to the order in which the various topics are taken up. The stereotyped convention of starting in a studio, with camera and microphone considered first, and continuing with subsequent chapters on various portions of the system as traversed by the signal in conventional order, has been modified without losing continuity. The first chapter deals with the fundamentals of a television system, and as the successive chapters are studied in turn, the progression is one which provides a good unity to the entire book. On the other hand, any one chapter is complete if read separately.

The book contains a wealth of practical information based upon the actual operating and engineering experience of a large television network, much of which has not been published heretofore. The sections on lighting, communication facilities, switching systems and facilities and practices related to the audio portion of television broadcasting are especially noteworthy. The information on surveying and operating remote pickups should be invaluable to television broadcasters just entering this field. A great deal of practical, detailed information on the design and installation of television broadcast facilities is included. Anyone who has wrestled with video crosstalk in a multiple studio plant will appreciate the section dealing with the problem of ground connections in unbalanced video transmission

The thoroughness with which the entire subject has been treated constitutes something of a challenge to the reviewer to find any omission worthy of note. It might be pointed out, however, that no treatment is included on the long-light- application-cycle type of intermittent pro-

for stapling, severe forming and fabricat-

very high dielectric properties under ex-

very high dielectric properties-com-

pletely immune to electrolytic corrosion.

treme humidity.

RESINITE "AC"

RESINITE 104

Want more information? Use post card on last page.

NEW HORIZONS

Today's horizons in electronic engineering are limited only by the vision of the individual himself. To those qualified men who desire to stand on the constantly changing frontiers of electronic development, we offer a chance to pioneer and grow with a soundly-established, yet young and progressive company.

Electronics Field Engineers

Local & Field Assignments Available

At least 5 years' experience in any one of these fields: Servo Mechanisms; Special Weapons; Microwaves; Antennas; Circuit Design; Flight Simulators; Radio Propaga-tion; Electronic Computers and Communi-

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar, Flight Simulators and allied electronic equipment in the field.

Salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile

STAVID ENGINEERING, INC.

Personnel Office, 312 Park Avenue Plainfield, N. J.-PLainfield 6-4806

ULTRA-HIGH PRECISION POLYSTYRE CAPACITORS

as low as 0.1% tolerance in most values

CAPACITANCE AVAILABLE—0.05 to 10.0 MFD. VOLTAGE AVAILABLE—100 to 400 VDC INSULATION RESISTANCE—10° MEG./MFD. **TEMP. COEFF.—**100 P.P.M. per °C (—20° to 140°F) DIELECTRIC ABSORB.—.015%

DISSIPATION—.0002

Special Values to Close Tolerances—Our Specialty

SOUTHERN ELECTRONICS CO.

239 W. Orange Grove Avenue, Burbank, Calif.

Check YOUR

with **VECTRON'S New VFS200** Variable Frequency Power Supply

V Does your specification call for a wide range of input power frequency?

V Does it require Servo Amplifier operation at plus or minus 20% of normal frequency?

V Does your Motor Generator power source have harmonics which cause inaccuracies?

V Does need of special power frequencies delay your production or testing?

25-2000 Cycles - to 200 V.A.

Write today for further information

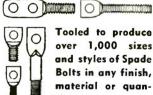
EITEL McCULLOUGH. INC

COMMON STOCK **BOUGHT - SOLD**

QUOTED

Prospectus on Request

Schwabacher & Co.


Established 1919 **INVESTMENT SECURITIES**

Members

NEW YORK STOCK EXCHANGE SAN FRANCISCO STOCK EXCHANGE and OTHER LEADING EXCHANGES

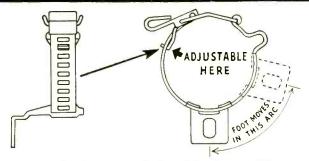
600 MARKET STREET SAN FRANCISCO 4, CALIF.

Tooled to produce over 1,000 sizes and styles of Spade Bolts in any finish, material or quan-

Specialists in Designing and Manufacturing All Purpose Fasteners. Terminals and Mounting Lugs.

OTHER PRODUCTS:

Simplex


Wire Strippers and Cutters

TOOLS AND DIES METAL STAMPINGS WIRE SPECIALTIES

REPLACEMENT TIPS for Electric Soldering Irons

Send samples or specifications for quotations.
Descriptive bulletin on request.

VENCO MANUFACTURING CO. 1133 W. Hubbard St., Chicago 22, Ill., U.S. A.

Augat Adjustable Tube Clamps are 3 ways more dependable!

- 1. Made of 18% nickel silver for greater fatigue value, tensile strength and durability.
- 2. Available in an endless variety for standard and special type tubes.
- 3. Rigidly tested; meets all requirements of government specifications.

STYLE	#													DI	AMETER-INCHES
1001						1	,					,			2.185 - 2.250
1002			12							,					1.250 - 1.377
1003						4									1.593 - 1.703
1004				4	>				٠		٠				1.862 - 2.000
1005	4.1									•			٠		1.125 - 1.250
1010		* "										٠			1.062 — 1.375 1.150 — 1.375
1022											1.0	10.0			1.130 - 1.373

Write today for Catalog and Samples

AUGAT BROS. INC. 31 PERRY AVENUE . ATTLEBORO, MASS.

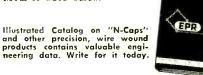
INTRODUCING

HERMETICALLY

SEALED

Sub-Miniature

NM-2 Precision Wire Wound


Resistors

A remarkable new sub-miniature addition to the famous "N-Cap" line of precision wire wound resistors. Measures a mere ¼" x ¼". Power rating .1 watt. Values up to $60K \pm .1\%$.

Hermetically sealed to withstand rugged environmental conditions.

"N-Caps" also available in all standard MIL-R 93A sizes.

Illustrated Catalog on "N-Caps"

EASTERN PRECISION RESISTOR CO.

Richmond Hill 18. New York

jector for television film transmission, and the use of background projection or process shots has not been included—the latter perhaps because it is considered to be in a special effects category.

There is a final chapter on color television broadcasting equipment. and considering the fluid state of the color television art at the time the book was written, perhaps it might better have been omitted. In any event, a treatment of color television broadcasting as thorough as that given to monochrome would certainly call for a separate volume. These shortcomings are minor indeed, however, in the light of the over-all excellence of this significant contribution by Mr. Chinn to the literature of our profession.— ROBERT E. SHELBY, National Broadcasting Co.

Data and Circuits of Television Receiver Valves

By J. JAGER. Philips Technical Library. Elsevier Press, New York and Houston, 1953, 228 pages. \$4.50.

THE MAJOR part of this book is a catalog of receiving tubes and picture tubes suitable for television receivers. The tubes described are of Dutch manufacture and carry the Philips designations. While many of the tube types are very similar to American types there is no way of establishing such correspondence in the book, the only alternative being a point-by-point comparison of the socket connections, dimensions and electrical characteristics with those of tubes described in other catalogs. On this account the book is not likely to be of interest or use to American engineers, although it should be very useful to the large and growing corps of television engineers in Europe who operate within the Philips orbit.

The latter part of the book consists of about 70 pages of elementary circuit description, such as intercarrier sound and stabilized synchronization. Here also the circuit designs are tied to specific tube types carrying the Philips designations. Also described are typical tuner units, scanning yokes, output transformers and focusers carrying Philips catalog numbers. This book forms a part of the Philips Techni-

Miniature BEARINGS!

Roller Bearings

as small as
0.4724" OD
an RMB first

- For heavy radial loads
- Separable raceways for easier assemblies
- Shielded against contamination
- Sizes from 0.4724"OD to 1.0236"OD
- Available now

Bring your Miniature Bearing Problems to RMB

A complete line of over 250 miniature and instrument bearings including pivot, radial and roller types are available for prompt delivery. Experimental quantities from stock.

Write for catalog 13, or see our catalog in Sweet's Files.

INCORPORATED

45 West 45th St. • New York 36, New York Want more information? Use post card on last page.

ELECTRONICS - April, 1954

cal Library, and is put up in the impeccable style of that series. Its content, however, is closer to the commercial catalogs and application notes issued by American tube companies.—Donald G. Fink, *Philoo Corp.*, *Philadelphia*, *Pa*.

THUMBNAIL REVIEWS

Data for X-ray Analysis, Volume 1, Charts for Solution of Bragg's Equation; Volume 2, Tables for Computing the Lattice Constant of Cubic Crystals, by W. Parrish, B. W. Irwin, and M. G. Ekstein, Philips, Eindhoven. Distributed in U. S. by North American Philips Co. Inc, Mt. Vernon, N. Y. Charts and graphs aimed at simplifying X-ray crystallographic analysis.

Research Operations in Industry. Edited by David B. Hertz and Albert H. Rubenstein. Columbia University, 1953, 453 pages, \$8.50. Papers delivered at the third annual Conference on Industrial Research, June 1952, plus selected papers from the first and second conferences.

Television Tube Location Guide. Howard W. Sams & Co., Inc., Indianapolis, Ind., 1953, Vol. 4, \$2.00. Gives 173 diagrams showing locations of tubes and fuses in late model television receivers, along with tube failure check chart for each receiver.

Receiving Tube Substitution Guidebook, Supplement No. 2. By H. A. Middleton. John F. Rider Inc., 480 Canal St., New York 13. N. Y. 48 pages, 8½ x 11, 1954, \$.99. Contains 134 tv picture tube and 190 receiving tube substitutions.

Leaders in American Science. Edited by Robert C. Cook, Box 150, 110 Seventh Ave., Nashville, Tenn., 852 pages, 6 x 9, 1954, \$12.00. Contains biographies of over 13,500 men of science, 1,600 photos, plus a 36-page list of distinguished scientists by field. Nicely produced and useful.

Transistor Research Bulletin, Vol. 1, December 1953. National Scientific Laboratories, 2010 Mass. Ave., N. W., Washington 6, D. C. To be published every alternate month on a subscription basis. No price given. Initial issue contains articles on new semiconductors, dynamic operation transistor test set, small-area junction diodes, German transistor and diode developments and a three-page bibliography of pertinent material.

Industrial Electronics. By R. Kretzmann. Philips; Eindhoven; distributed by Elsevier Press Inc., 155 East 82 St., New York 28, N. Y., 250 pages, 1953, \$5.50. General principles of electronics as applied to modern industry.

TV Troubleshooting. By Robert G. Middleton. John F. Rider, Inc., 480 Canal St., New York 13, N.Y., 156 pages, 8½ x 11, 1954 \$3.90. Contains pages 8½ x 11, 1954, \$3.30. Vol. 2, containing material not found in Vol. 1.

MULTIPLIER PHOTOTUBES by DU MONT

Twelve-dynode multiplier phototubes—a line exemplified by the 3-inch Type K1213 and the 5-inch Type K1209 shown here — are now offered by Du Mont for those applications where extremely high gain is required — or where optimum signal-to-noise ratio, at conventional gain is a major consideration.

Among the features contributing to the excellent operating characteristics of the 12-stage multiplier phototubes are the specially designed dynodes which assure maximum electron collection, and a new basing in which all leads are widely separated, reducing leakage current, and hence noise.

Naturally, these new tubes provide the same excellent cathode-sensitivity, stability, and low dark current that characterize Du Mont's widely accepted 10-stage multiplier phototubes.


For additional information write to:

Technical Sales Department

Allen B. Du Mont Laboratories. Inc.

760 Bloomfield Ave., Clifton, N. J.

Want more information? Use post card on last page.

BERNDT-BACH, 7373 Beverly Blvd., Los Angeles 36, Calif.

MANUFACTURERS OF SOUND-ON-FILM RECORDING EQUIPMENT SINCE 1931

INFORMATION

EISLER MANUFACTURES COMPLETE EQUIPMENT

WELDERS FOR SPOT & WIRE BUTT
RADIO, TV TUBE EQUIPMENT & REPAIR UNITS
INCANDESCENT, FLUORESCENT MFG. EQUIPMENT
NEON SIGN MAKERS EQUIPMENT, GLASS LATHES
ELECTRONIC EQUIPMENT, VACUUM PUMPS, Etc.
Wet Glass SLICING & CUTTING MACHINES for Lab Use
TRANSFORMERS, SPECIAL & STANDARD TYPES

EISLER ENGINEERING CO., INC.
751 So. 13th St.

Newark 3 N I

SOUND RECORDER

Have you problems in

Metal to Glass Seals?

NAME IT . . WE'LL MAKE IT! TERMINALS

HEADERS END SEALS . . SPECIAL ITEMS

OUALITY PRODUCTS CO. Charles St., Providence, R. I.

Shorted Turn Indicator

6751 BRYN MAWR AVE.

TEST EQUIPMENT REPAIRED

Contractors to U. S. Government

Repairs and calibration by skilled craftsmen on all makes of Meters, Testers, V.T.V.M.'s, Scopes, etc. Prompt service. All work guaranteed. For immediate estimate send instrument by P. P. Ins. to DOUGLAS INSTRUMENT LABORATORY

Electrical Instrument Repairers 176 NORFOLK AVENUE ROXBURY 19. MASS

Precision

BLACK ANODIZING

Specializing in black anodizing, both sulphuric and chromic, on all alloys and castings.

All other colors as well.

GOVERNMENT CERTIFIED

Contact us for special service.

HENRY and MILLER INDUSTRIES, INC. 675 Garfield Ave., Jersey City, N. J. HEnderson 4-4200

use this CONTACTS SECTION

to

- PROMOTE NEW USES
- PROMOTE NEW USERS
- GET NEW SALES OUTLETS
- REACH ALL BUYING INFLUENCES
- **EFFECTIVELY** ** **ECONOMICALLY**

BACKTALK

Acknowledgment

DEAR SIRS.

THE SERIES of articles, "Transistors: Theory and Application," that appeared in consecutive issues of ELECTRONICS, from March 1953 to January 1954, was made possible by wholehearted cooperation of a number of our fellow workers.

We wish to acknowledge most gratefully the assistance of the many personnel of the Evans Signal Laboratory, as well as of the Signal Corps Engineering Laboratories in general, during the many phases of the preparation of this series. Particular acknowledgment is due to Mrs. H. L. Owens and Miss D. Coblenz for the typing; to members of the Solid State Devices Section, Thermionics Branch, for consultation; and to Dr. H. Zahl and Lt. Col. W. M. Van Harlingen of SCEL HQ for guidance and encouragement. Thanks are especially due to the clearance personnel, both at SCEL and Washington, D.C., for their expeditious handling of security details.

ABRAHAM COBLENZ
HARRY L. OWENS
Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey

Engineer Imports

DEAR SIRS:

I AM A professional engineer (B. E., Sydney University) who wishes to establish permanent residence in the United States of America.

About twelve months ago I made application to be admitted to the U.S. under the immigration quota. I am informed that it will still take a considerable time for my turn to come. Meanwhile employers in the U.S. are desperately in need of engineers. I understand from a report in Electronics (December 1952, p6) that these matters could be materially speeded up if an intending employer petitions on my behalf the Department of Immigration and Naturalization. I am most anxious to contact an employer who would be prepared to act for me in this manner.... Such action would help reduce the shortage of professional engineers.

> D. A. ASHFORD New South Wales, Australia

Professional Services

ALPHA ENGINEERING LABS

TROUBLE-SHOOTING SPECIALISTS Waveguide tube twisting, bending and forming. Broaching. Tooling design, improvements and methods.

ANDRE TEMPE P. O. Box 107

Phone Budd Lake, N. J. Hackettstown 340

ANNIS ELECTRIC RESEARCH LABORATORY, INC.

CONSULTING - RESEARCH - DEVELOPMENT AND DESIGN OF RADIO AND ELECTRONIC EQUIPMENT Antennas, Wave Propagation, Information Storage, Computers, Impedance Matching and Variable Speed A-C Motors, 12 140145 S. Netl St. Champaign, III.

W. J. BROWN

Registered Prof. Engr. Connecticut, Ohio, England

ELECTRONIC CONTROL SYSTEMS Consulting - Research - Development

INTERNATIONAL CLIENTELE
71 Gurley Road Stamford 4-4876 Stamford, Conn.

CODETYPER LABORATORIES

PRINTED CIRCUITS, EMBEDMENT CELLS
AND MINIATURIZATION ENGINEERS

Redesign your standard product using cost and labor saving Printed Circuits. We perform all engineering and supply you with Master Plates for your production. Reasonable, fast service, 550 Fifth Avenue, New York 19.

CROSBY LABORATORIES, INC.

Murray G. Crosby & Staff

Radio - Electronio

Research Development & Manufacturing Communications, FM & TV Robbins Lane, Hicksville, N. Y.

Hicksville 3-3191

EDGERTON, GERMESHAUSEN & GRIER, INC.

Consulting Engineers

Research Development and Manufacture of Electronic and Stroboscopic Equipment Specialists in High-Speed Photography Boston 15, Mass

160 Brookline Avenue

Eldico of New York, Inc.

Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and

Donald J. S. Merten & Engineering Staff 44-31 Douglaston Pkwy Douglaston, N. Y.

Bayside 9-8686

ELECTRONIC RESEARCH

ASSOCIATES, INC.
"TRANSISTORIZE" YOUR PRODUCT!

Complete Service in consulting, research, development, and production on Transistor circuitry, products and instrumentation.

North Caldwell, N. J.

Caldwell 6-6729

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment

Engineering - Design - Development - Production Pioneers in Frequency Shift Telegraph

Garden City . Long Island . New York

When time

is

short . . .

put the solution of your problems up to a specialized Consultant whose professional card appears on this page. His broad experience may save you months of costly experimentation.

ELECTRONICS

330 West 42nd St., New York 18, N. Y.

HANSON-GORRILL-BRIAN INC.

Products & Mfg. Development

ELECTRICAL - ELECTRONIC HYDRAULIC - MECHANICAL

Glen Cove, N. Y.

One Continental Hill

Glen Cove 4-7300

HIGHLAND ENGINEERING CO.

William R. Spittal & Staff

DESIGN, DEVELOPMENT AND MANUFACTURE OF TRANSFORMERS, CHOKES, ETC. FOR THE ELECTRONIC, INDUSTRIAL & ALLIED FIELDS

Main & Urban, Westbury, L. I., N. Y. WE-7-2983

HOGAN LABORATORIES, INC.

John V. L. Hogan, Pres. Applied Research, Development, Engineering

Est. 1929. Electronics, Optics, Mechanisms, Fac-simile Communication. The Circle Digital Computer, Electro-sensitive recording media, Instrumentation.

155 Perry Street, New York 14. CHelses, 2-7855

INTERFERENCE MEASUREMENT LABORATORY

Interference Study per Government Specifications Shielded Space for Interference Investigation Field Surveys for F.C.C. Certification of Induction and Dielectric Heating Equipment

1844 Utica Avenue Brooklyn 34, New York Navarre 8-1248

THE KULJIAN CORPORATION

Consultants . Engineers . Constructors

Electronic Control Specialists

Utility . Industrial . Chemical

1200 N. Broad St...

Phila 21, Pa.

Measurements Corporation

Research & Manufacturing Engineers Harry W. Houck Martial A. Honnell John M. van Beuren

Specialists in the Design and Development of Electronic Test Instruments Boonton, New Jersey

NEW ROCHELLE TOOL CORP.

FOR CERTIFICATION OF INDUCTION AND DIELECTRIC HEATING EQUIPMENT IN ACCORDANCE WITH F.C.C. RULINGS

Mobile Test Unit Available Entire U. S. New Rochelle, New York Phone NE 2-5555

NIAGARA ELECTRON LABORATORIES

CONSULTATION - DESIGN - CONSTRUCTION MFG. THE THERMOCAP RELAY

Specializing in solution of problems of electronic and electro-physical instrumentation for the research of analytical laboratory. Industrial plant problems also invited.

Andover, New York Cable Address: NIATRONLAB

MAURICE I. PARISIER & CO.

Communications Expert

International Engineering Consulting RADIO BROADCASTING & COMMUNICATIONS

Planning & Installation Supervision

Communication Equipment for Armed Forces 1475 Broadway New York 36, N.Y. Longacre 4-5434 Offices: Paris-Buenos Aires — Sac Paulo-Bombay

PICKARD AND BURNS, INC.

Consulting Electronics Engineer

Analysis and Evaluation of Radio Systems

Research, Development and Production of Special Electronic Equipment

240 Highland Ave.

Needham 94, Mass

ALBERT PREISMAN

Consulting Engineer

Television, Pulse Techniques, Video Amplifiers, Phasing Networks, Industrial Appliances

Affiliated with
MANAGEMENT-TRAINING ASSOCIATES 3308-14th St., N. W.

Washington 10, D. C.

JOSEPH RACKER COMPANY

Radar Consultants & Editors

Technical Manuals

140 Nassau Street New Worth 4-1463 Research and Development New York 38, N. Y.

ROTRON RESEARCH CORPORATION

Research and Development

Fluid Dynamics and Heat Transfer. Exclusively Electronic Applications

Cooling Problems, Heat Exchangers, Fans, Turbines and Pump Designs

Woodstock, N. Y.

Phone 2468

THE TECHNICAL MATERIAL CORPORATION

Communications Consultants

Systems Engineering General Offices and Laboratory

700 Fenimore Rd., Mamaroneck, N. Y.

WHEELER LABORATORIES, INC.

Radio and Electronics

Consulting—Research—Development R-F Circuits—Lines—Antennas

Microwave Components—Test Equipment Harold A. Wheeler and Engineering Staff

Great Neck, N. Y.

HUnter 2-7876

YARDNEY LABORATORIES, INC.

Research - Design - Development

Electro-Chemical Generators of Energy

105 Chambers Street New York 7, N. Y.

Worth 2-5500

CLASSIFIED SEARCHLIGHT SECTION ADVERTISING

EMPLOYMENT . BUSINESS .

OPPORTUNITIES . EQUIPMENT—USED or RESALE

UNDISPLAYED RATE

\$1.80 a line, minimum 3 lines. To figure advance payment count 5 average words as a line. POSITION WANTED undisplayed advertising rate is one-half of above rate, payable in advance.

BOX NUMBERS count 1 line additional

INFORMATION

DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).

EQUIPMENT WANTED OR FOR SALE Advertisements acceptable only in Displayed Style,

DISPLAYED-RATE PER INCH

The advertising rate is \$16.10 per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request AN ADVERTISING INCH is measured 7/8 inch

vertically on one column, 3 columns-30 inches -to a page. ELECT

Send NEW ADVERTISEMENTS to N. Y. Office, 330 W. 42 St., N. Y. 36, for the May issue closing April 2nd. The publisher cannot accept advertising in the Search-light Section, which lists the names of the manufacturers of resistors, capacitors, sehostats, and potentiometers or other names designed to describe such products.

PROGRESSIVE ENGINEERS LOOK WEST

Qualified Electronic and Electro-Mechanical engineers find happy association with a Western electronics pioneer and leader.

- DESIGN
 - DEVELOPMENT
- Commercial and military projects. Radar, DME, Communications, Noise, Test Equipment including color
- PRODUCTION

T.V.—Many others with real interest & challenge.

Relocation expenses—excellent working conditions—Central location. Scheduled reviews & advances. Fine insurance plan. Move should not disturb urgent military projects.

Send complete resume with income history & requirements to engineering employment mgr.

TMan LABORATORIES, Inc.

3761 SO. HILL ST.

LOS ANGELES 7, CALIF.

(A Subsidiary of Hoffman Radio Corp.)

MICROWAVE **SERVO ENGINEERS**

Must have BSEE plus experience in design and fabrication of airborne systems. Excellent opportunity for qualified men. Ideal living conditions on the sunny San Francisco peninsula.

DALMO-VICTOR CO.

1414 El Camino Real San Carlos, Calif. LYtell 3-3131

lectronics

An old established sales-engineering

importing company, wishes to represent

1 or 2 additional non-competitive factories in France. Can furnish finest U. S. references. Our Principal is now

here to negotiate. Only large, well

established manufacturers please write

FRANCE

DIVISION HEAD DEVELOPMENT

Well established precision watch parts manu-facturer entering field of industrial electronic

DEVELOPMENT

and
PRODUCTION

have knowledge of market and sales potentials.

EXSENTIAND KNOWLEDGE AND ACTUAL
EXPERIENCE IN PROPOSED PRODUCTS MOST
ESSENTIAL Location Metropolitan New Jersey.

9-1900, Electronics
330 W. 42 St., New York 36, N. Y.

EXECUTIVE PHYSICIST

Many years experience in research and development of a large variety of electronic tubes. Familiar with sendconductor devices.

Available as consultant or for permanent position,

PW-2006. Electronics 330 W. 42 St., New York 36, N. Y.

ENGINEERING AND SALES REPRESENTATIVES AVAILABLE

Established and expanding organization desires to represent additional manufac-turers in the Maryland, Virginia and Dis-trict of Columbia area.

ANSFLL ENGINEERING COMPANY
8641 Colesville Road Silver Spring, Md.

MANUFACTURERS

Box 396; 1474 B'Way., N. Y. 36

Aggressive sales organization in Middle Atlantic States can provide representation for additional electronic or electrical equipment or parts.

MACLEN CORPORATION Manufacturers Representative 3226 Ninth Street, N.E. Washington 17, D. C.

ESTABLISHED MANUFACTURERS REPRESENTATIVE

Rome, N. Y. including Griffiss AFB has opening for one or two additional clients in electrical-electronic field. Engineering and legal backgrounds.

WRIGHT ASSOCIATES 127 W. Liberty St. Rome, New York

Manufacturers' Representatives wanted

By rapidly expanding component manufacturer (Electronic Hardware, Turret reminals and Terminal Boards). Write stating present line and territory

RW-1998. Electronics 330 W. 42 St., New York 36, N. Y

REPLIES (Box No.): Address to office nearest your NEW YORK: 330 W. 42nd St. (36) CHICAGO: 520 N. Michigan Ive. (11) SAN FRANCISCO: 68 Post St. (4)

POSITIONS VACANT

OPENINGS IN Guided Missile and Rocket Development Program. Need qualified personnel in the fields of engineering, mathematics, physics, chemistry, ballistics. Opportunity for self expression and extension of present scientific knowledge. Write or send application on Standard Form 57, Which can be obtained at your Post Office, to Commanding General, Redstone Arsenal, Huntsville, Alabama: Attn: Luther Adams, Civilian Personnel Division.

SWITCH ENGINEER wanted with considerable experience in design and manufacture of high quality rotary switches. Address reply to Box P-1841, Electronics.

ELECTRONICS OR insulation engineer with successful sales experience to sell Mycalex glass-bonded mica. Excellent opportunity for creative selling. Mycalex Corporation of Amer-ica, Clifton, New Jersey.

LARGE INDUSTRIAL instrument manufacturer has openings for Service Engineers in New York and Philadelphia. Opportunity for advancement to Sales Engineering after two or three years service. Intensive four months' factory course will be offered. P-2080, Electronics.

SELLING OPPORTUNITY OFFERED

INDUSTRIAL REPRESENTATIVES wanted for Manufacturer of Molded Radio, Television, Instrument knobs, and Plastics. Most teritories open. Please send resume of lines carried and areas covered to box RW-1968, Electronics.

POSITIONS WANTED

PHYSICIST EXPERIENCED in developing electronic and mechanical instruments. Currently managing small development company. Desires position of engineering or engineering and management responsibility. 12 years experience. PW-1791, Electronics.

AUSTRALIAN PROFESSIONAL communica-tion engineer desires to immigrate. Aged 31, experienced in system development and circuit design of carrier telephone equipment, also wartime radar. Potential employers please con-tact PW-1858. Electronics.

BORON CARBON Resistance Films: Chemical Engineer with experience desires position in process development or improvement of same or similar products, PW-1963, Electronics.

BUYER, ELECTRONICS and instruments. 2 yrs. exp. AEC contractor, 4 yrs. U.S. Navy electronics, master's degree, write Box PW-Electronics.

ENGINEER, AUTOMATON Factory Systems.
Machinery, Components, parts feeders, transfers, controls. PW-2090, Electronics.

BUSINESS OPPORTUNITY

Executive will invest \$25,000 to \$75,000 with services in Profitable Business, preferably hard goods, distribution or wholesale: have office space in N.Y.C. BO-1927, Electronics.

PLANTS AND PROPERTIES

Industrial Building Gastonia. N. C., 52,500 sq. ft. mill construction, wired, sprinklered, steam heat, rail siding. For lease. Write Gastonia Industrial Diversification Commission, Box 823-E, Gastonia, N. C.

For Engineers ...

Clear Horizons ahead

. . . at Goodyear Aircraft Corporation

BUILD YOUR CAREER and help build tomorrow's world with the pioneer and leader in lighter-than-air craft. There's a clear, bright future at Goodyear Aircraft for engineers with talent, aptitude and ambition.

FORCEFUL, CREATIVE THINKING is the key to Goodyear's progressive research and development programs in missiles, electrical and electronic systems, servomechanisms, new special devices and fiber resin laminates. Design and development engineering opportunities are many and varied . . . are now available to capable and imaginative men and women in the field of airships, aircraft and aircraft components.

POSITIONS ARE OPEN in several fields with salaries based on education, ability and experience.

Physicists

Mechanical engineers

Aeronautical engineers

Civil engineers Welding engineers Electrical engineers

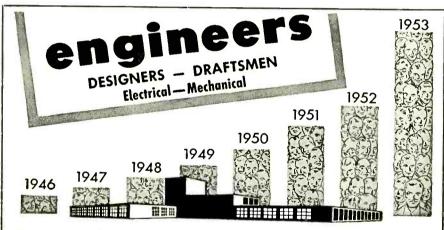
Here are 5 reasons why you will want to come with us if you are a . . .

mechanical engineer

mechanical designer

electrical engineer

Physicist


Metallurgist

 You can get in "on the ground floor" in the field of electronic computers and associated equipment for use in business machines. This means excellent opportunity for advancement.

- 2. You can plan your future with a longestablished, highly successful Company.
- You will receive a good salary, plus substantial "fringe" benefits.
- You and your family will enjoy Dayton . . . a clean, progressive city with outstanding school facilities.
- You will find NCR a friendly place to work, with employee morale at a high level.

Act at once. Write today to Employment Manager, Department A, describing your education and experience.

THE NATIONAL CASH REGISTER COMPANY, Dayton 9, Ohio

Do YOU belong in this picture of progress?

EXCEPTIONAL project diversification — military and commercial — enables MELPAR to offer you individual recognition, rapid advancement and ground-floor opportunity with a progressive company.

Experience desired in one or more of these or allied fields: Data Handling Equipment (magnetic cores, magnetic recording equipment, analogue to digital conversion, shalt digitizers) • Flight Simulation (servomechanisms, pulse circuitry, electronic cabling) • High Frequency Antennas • Audio and Video Circuit Design • Small Mechanisms Design • Mechanical Packaging of Electronic Components • Heat Transier and Thermodynamics • Design of reciprocating compressors, hot gas generators and diesel engines

If you qualify and wish to join this successful, growing organization, write now for further information about a personal interview in your area.

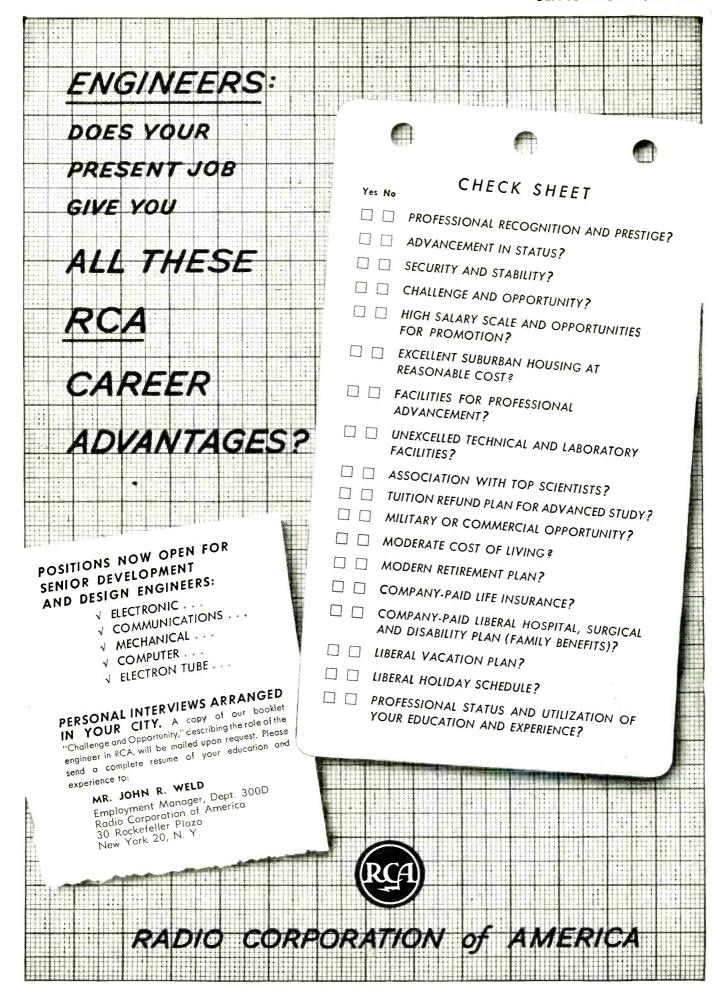
Address: Personnel Director, Dept. E-4.

440 Swann Ave., Alexandria, Va. 10 Potter Street, Cambridge, Mass.

A SUBSIDIARY OF THE WESTINGHOUSE AIR BRAKE COMPANY

HIGHLY QUALIFIED ENGINEERS DESIRED BY Digital Computer Laboratory at Massachusetts Institute

to design and develop high-speed electronic digital equipment involving vacuum-tube and magnetic-core circuitry.


of Technology

Openings are also available for outstanding candidates to work on use of high-speed digital computers to control large physical systems. This involves study of control requirements of the whole system, reduction of them to a simple pattern of control instructions, and translation of the pattern into computer code. Position requires appreciation for physical systems, ingenuity, and imagination. Training in computer principles provided as necessary.

Persons from other fields wishing experience in digital computers for industrial and military uses are encouraged to apply. Positions carry opportunity for advancement. Salary appropriate to candidate's experience and training. Address:

DIGITAL COMPUTER LABORATORY, MIT

211 Massachusetts Avenue Cambridge 39, Massachusetts

M. I. T.

LINCOLN LABORATORY

Staff research positions available for exceptional electrical engineers with advanced training or experience in pulse circuitry and microwave applications.

Please reply to:

Personnel Department, P. O. Box 390, Cambridge 39, Mass.

CAREER OPPORTUNITIES for ENGINEERS

Desiring the challenge of interesting and diversified projects-

Wishing to work with congenial associates and modern equipment and facilities— Seeking permanence of affiliation with a leading company and steady advancement— Will find these in a career here at GENERAL MOTORS.

Positions now are open in ADVANCED DEVELOPMENT and PRODUCT DESIGN.

COMMERCIAL AUTOMOBILE RADIO

MILITARY RADIO, RADAR AND ELECTRONIC EQUIPMENT ELECTRONIC COMPONENTS

INTRICATE MECHANISMS such as tuners, telemetering, mechanical linkages, controls, etc.

ACOUSTICS—loud speakers, etc.

Inquiries invited from recent and prospective graduates as well as experienced men with bachelors or advanced degrees in physics, electrical or mechanical engineering.

Salary increases based on merit and initiative.

Vacations with pay, complete insurance and retirement programs.
Relocation expenses paid for those hired.

All inquiries held in confidence and answered—WRITE or APPLY to DELCO RADIO DIV. GENERAL MOTORS CORP. Kokomo, Indiana

DESIGN ENGINEERS

The Pacific Division, Bendix Aviation Corporation has openings for design engineers in development of radar, sonar and telemetering offering excellent opportunities for growth with the corporation and the opportunity to live in Southern California. Positions are open at several levels.

Please Address Inquiries to

W. C. WALKER
ENGINEERING EMPLOYMENT MANAGER

ENGINEERING EMPLOYMENT MANAGER
11600 Sherman Way North Hollywood, California

ENGINEERS

SYSTEMS RADAR SERVO COMPUTER

BACKGROUND: Responsible positions open for top level development and project engineers with practical and research experience in:

Advanced Electronic Circuits
and Systems
Microwave Radar
Microwave Receivers
and Transmitters

Requirements emphasize advanced analytical and/or management experience on highly complex electronic and electro-mechanical systems.

Kindly send resume and

The W.L.MAXSON COSP. 460 W. 34th St., NEW YORK 1, N.Y.

ELECTRONIC ENGINEERS

for design & development work with a young progressive company

- √ digital techniques
- √ computers
- √ radar

SEND RESUME OF EXPERIENCE AND EDU-CATION, WITH SALARY REQUIREMENTS, TO

Electronic Engineering Company of Ciliconic 180 SOUTH ALVARADO STREET, LOS ANGELES, 37, CALIFORNIA DIJIKIER 2, 7353

an Opportunity

is offered for intelligent, imaginative engineers and scientists to join the staff of a progressive and self-sustaining, universityaffiliated research and development laboratory. We are desirous of expanding our permanent staff in such fields as electronic instrumentation, missile guidance, microwave applications, design of special-purpose electronic computers, and in various other applied research fields of electronics and physics.

Salary structure and benefit programs are on a par with industry. In addition, there are many tangible advantages, such as our self-sponsored internal research policy, of interest to men with ingenuity and

CORNELL AERONAUTICAL LABORATORY, INC.

BUFFALO 21, NEW YORK

Bendix Aviation Corporation

YORK Division ...

This NEW division of our nationally-famous corporation has openings for

FNGINEERS PHYSICISTS

Top-flight men in advanced fields of electronic research, development and product engineering are needed for challenging work under ideal conditions in our new, modern plant.

You benefit at Bendix York from our location in the heart of a beautiful suburban area, from high wages, paid vacations and holidays . . . and excellent opportunities for advancement.

Openings at all levels.

Write, Wire or Phone Department Y-1

AVIATION CORPO YORK DIVISION

Phone: York 5521

York, Penna.

SPECIAL OPPORTUNITIES FOR SENIOR ENGINEERS

Convair in beautiful, sunshiny San Diego invites you to join an "engineers" engineering department. Interesting, challenging, essential long-range projects in commercial aircraft, military aircraft, missiles, engineering research and electronics development. Positions open in these specialized fields:

Electrical Design Mechanical Design Aerodynamics Structural Design Structure Weights

Servo-mechanisms Thermodynamics Operation Analysis System Analysis

Generous travel allowances to those accepted For free brochure, write Mr. H. T. Brooks, Engineering Dept. 900

IN BEAUTIFUL

DIEGO

3302 PACIFIC HIWAY SAN DIEGO 12, CALIFORNIA

ENGINEERS, EE

- Responsible position involving design and development of H.F. pulse magnetic recording components and systems.
- Also engineers for R.F., I.F. and microwave projects.

Small enough to grow . . . Large enough to be stable . . .

These are just two of the advantages of working for Kollsman. In this friendly organization you'll work with intriguing problems concerning the design and development of America's finest aircraft instruments. You'll find the most modern facilities, available, and a conveniently located plant in a quiet residential area only 20 minutes by subway from the heart of New York. Not to be overlooked are the generous beneits including paid life, hospitalization, surgical, accident and health insurance.

Please submit resumes to: Employment Manager

KOLLSMAN Instrument Corp.

80-08 45th Ave., Elmhurst, L. I., New York Phone: NEwtown 9-2900

ELECTRONICS ENGINEER

TV YOKE DESIGN

RCA's Tube Division has a career opportunity for an electronics engineer with BSEE degree and 4 or more years design experience on kinescope deflection components. Familiarity with yoke manufacturing techniques desirable. Liberal company-paid benefits program.

Please forward resume of experience and salary progression to:

Mr. Robert A. Wallace

Engineering Personnel

RADIO CORPORATION OF AMERICA

Camden, New Jersey

DEVELOPMENT **ENGINEERS**

FOR:

Design Engineering, Practical Research. Investigations of Theories, Functional Analysis

An interesting challenge for senior design engineers to work directly with top project supervisors helping through the prototype stage new developments in:

- **Automatic Control Instruments**
- Electronic Navigational Aids
- Magnetic Amplifiers
- Airborne Armament Systems
- Guided Missile Controls
- Computing Equipment

For these jobs we are interested in men with two or more years experience in electro-mechanical work related to the above fields or in men with superior scholastic records in physics; electrical, electronic or mechanical engineering.

YOU'LL LIKE WORKING AT FORD INSTRUMENT

- Not too large, not too small
- Stable but progressive company
- N. Y. C. location with all its additional varied opportunities
- Above-average fringe benefits
- · Pension Plan
- Nine Paid Holidays
- Two Weeks vacation with pay
- Tuition assistance for further related studies

Our policy of permanency of positions and continuity of service does not allow us to employ engineers unless there is a clear and definite need for them projected years into the future. And we promote from within. If you can qualify, we urge you to contact by mail, or if in N. Y. C. phone:

Mr. P. F. McCaffrey, Stillwell 4-9000, Extension 416

FORD INSTRUMENT COMPANY

Division of the Sperry Corporation

31-10 Thomson Ave., Long Island City, N. Y. (20 minutes from the heart of New York City)

Wanted:

Manufacturer's Representatives for

Electronic Instruments

A young, progressive instrument manufacturer on the West Coast seeks an aggressive sales organization capable of handling its line of electronic digital data recording systems and process control instruments. Protected territories are open throughout the United States and Canada. Write, stating present lines and territory now covered to Box

RW-2065. Electronics 330 W. 42 St., New York 18, N. **Y**

EMPLOYMENT . . EQUIPMENT . . . BUSINESS

OPPORTUNITIES

Whatever your need think "SEARCHLIGHT" FIRST

Transformer

Engineers

COLLINS RADIO COMPANY

has openings in Dallas, Texas, for qualified electronic engineers experienced in design and development of radio transformers and components.

Applicants must have B.S. in Electrical Engineering, Electronics, or Physics, and at least two years experience in magnetics or electro-magnetics including high permeability steel applications.

Employee benefits include air conditioned plant, free insurance, liberal vacations, and company-paid retirement benefit plan.

Qualified applicants write giving educational and experience resume to:

JOHN D. MITCHELL

Dir. of Industrial Engineering

COLLINS RADIO COMPANY

Texas Division

1930 Hi-Line Drive Dallas 2, Texas

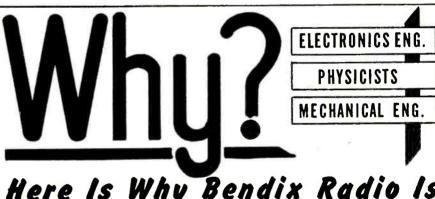
IMAGINATION

Got more than your share? Like to have the freedom to use it, with commensurate recognition? Then, you've come to the right ad!

That is, if you're an electronic or mechanical engineer with practical experience in the electronic industry.

tical experience in the electronic industry.

We need engineers with imagination. We're growing and going


you're just in time to go with us. You'll enjoy the job plus the advantage of pleasant living conditions in a large, modern city . . . without the disadvantage of big city pressure.

without the disadvantage of big city pressure.

The man to contact is Arthur E. Harrison, Vice-President of Engineering. The time is now! You'll never regret it!

wilcox

Aviation Communications and Navigation Fourteenth & Chestnut, Kansas City 27, Mo.

Here Is Why Bendix Radio Is The Place For YOU To Work

Challenging work in The development of:

Radar (Airborne and Ground)

Auto Radio and Test Equip.
Airborne & Mobile Comm. Equip.
Missile Guidance Systems
Computer Applications
Research & Development

(Incl. Transistors and Printed Circuitry)

Excellent salaries.

Semi-annual work reviews with advancement on merit.

Modern, air-conditioned plant located in beautiful suburban area with ample housing, good schools, attractive shopping centers, major league sports.

Numerous employee benefits.

Call, wire or write Mr.L.H. Noggle, Dept. J

Bendix Radio

DIVISION OF BENDIX AVIATION CORPORATION BALTIMORE-4, MD. Phone VAIley 3-2200

DIGITAL COMPUTER **ENGINEERS**

The Bendix Research Laboratories need competent engineers for the development of special-purpose digital computers. This program involves all phases of planning and construction, including both logical and circuit design. Applicants should have experience with electronic circuity and an interest in the with electronic circuitry and an interest in the general subject of digital data-handling systems. Experience in the digital computer field is desirable.

Good opportunities for professional growth are offered by this laboratory, whose staff of scientists is active in fields such as radar, computers, servo-mechanisms, and nucleonics. Advanced study at local universities is encouraged and supplemented by special company-sponsored courses.

Please send brief resume to:

Personnel Director

BENDIX AVIATION CORPORATION RESEARCH LABORATORIES

4855 Fourth Avenue

Detroit 1, Michigan

WHITE-RODGERS ELECTRIC CO.

ARMAMENT **ENGINEERING** DIVISION **NEEDS**

ENGINEERS

for

RESEARCH. DESIGN.

DEVELOPMENT

of MISSILE GUIDANCE SYSTEMS AUTOMATIC FLIGHT FORMATION SYSTEMS and ASSOCIATED COMPONENTS

To formulate dynamics and computer equations, and to design and develop experimentally electro-mechanical computers and instrument servo-mechanisms

SEND RESUME TO EMPLOYMENT MANAGER 1201 CASS AVE. ST. LOUIS 6, MO.

WANTED!

Quartz crystal manufacturing plant needs electronic engineer with varied experience in circuit design and application. Physics background helpful, Salary commensurate with experience. Write giving details of education and experience.

PAN-ELECTRONICS CORPORATION

901 West Peachtree St., Atlanta, Georgia

WANTED

ALWAYS BUYING

SMALL AND LARGE LOTS OF

Screws-Nuts-Bolts-Washers Rivets-Lugs-Evelets. Etc.

and any & all types of Radio TV, ELECTRONIC HARDWARE, PARTS etc.

LOUIS E. GANCHER CO.

468-472 WEST B'WAY - NEW YORK 12, N. Y.
"IN RADIO SINCE 1921"

URGENT

Will Buy BC348R Reciver @ \$75.00 BC348H—K and L Receivers \$70.00 Ship via EXPRESS C.O.D., subject to inspection to

H. FINNEGAN 49 Washington Ave., Little Ferry, N. J.

WANTED - BC-221 Heterodyne Frequency Meters

Any quantity, any model—we will pur-chase for cash, pro-vided only that each unit is complete with original Calibration Book, tubes, crystul and cabinet.

Large numbers needed. Write, wire or telephone

Weston Laboratories, Inc. MASSACHUSETTS

WILL BUY

WILL BU I
ART13/type T47A \$200.00; ART13 type T47
\$150.00; BC348 unmodified \$65.00; BC348 modified
\$50.00; APN9 \$200.00; ARC3 complete \$350.00;
R77 Receiver \$200.00; ARC3 complete \$350.00;
\$60.00; BC342 \$60.00; ship via Express C.O.D.,
subject to inspection to
H. FINNEGAN
49 Washington Ave. Little Ferry, N. J.

IF there is anything you want that other readers can supply-OR . . . something you don't wantthat other readers can use-Advertise it in the SEARCHLIGHT SECTION

"An Unexcelled Opportunity For Professional Growth ...

ELECTRONIC **ENGINEERS & PHYSICISTS**

IN RESEARCH AND DEVELOPMENT

GUIDED MISSILES • RADAR • SOLID STATE PHYSICS • VACUUM TUBES • ELECTRONIC NAVIGATION • TELEVISION • MICROWAVES • ANTENNAS • RADIO • COMPUTERS • TRANSISTORS •

> DIRECT INQUIRIES TO: THE EMPLOYMENT DEPT.

CAPEHART-FARNSWORTH

CORPORATION FORT WAYNE, INDIANA

QUARTZ CRYSTALS!

Available NOW! In frequencies from 100 to 10,000 Kc.
MOUNTED IN FOLLOWING TYPES HOLDERS

Bendix MX-9E	CR-5 B/U	FT-249
Billey AR4-W	CR-5U	FT-500
Billey AR7-W	CR-6 B/U	G.E. 103
Billey FT-164	CR-6U	G.E. G-43
Bliley FT-171-B	CR-8U	J.K. Type F
Bliley MC-7	DC-8	Motorola FMT
Billey MC-72	DC-9	Piezo AA9G
Bliley MO-2	DC-10	Piezo CR-4 B/U
Bliley SR-5	DC-11-A	Premier FT-164
BSD-180-G	DC-15	Premier PL-217
Collins 1-C	DC-26	RCA AVA 10J
Collins 1-D	Franklin DC-35	RCA MI-8412A
Collins 1-G-1	FT-171	RCA MI-8412B
Collins TCS	FT-241-A	RCMA R-1
CR-1A	FT-243	

TEST EQUIPMENT

TEST EQUIPMENT

Clean Merchandise At Bargain Prices!

Measurements Corp. 78-B Test Set with original
Calibration Chart. BC-1066A Radio Receiver. High
Frequency Field Intensity Meter
Calibrator 620-A
15-35/AP
15-362 TS-428 (XM-2) PCM
15-488 (VM-2) PCM
15-488 (VM-2)

ELECTRONIC COMPONENTS

PLECTRONIC COMPONENTS

APG Low Altitude Altimeter. Complete with all components. New. In Original box.

BC-800. With BC-1145 Control Box. New.

ARC-5 Components. 0-73/URT Oscillator.

APQ-13 Junction Box. SCR-274-N Components.

BC-1333 Marker Beacon. TPS-3 Indicator.

MN-26L Radio Compass Receiver.

WRITE FOR PRICES ON ALL ABOVE ITEMS.

STATE QUANTITIES DESIRED.

U. S. CRYSTALS, INC. 805 S. UNION AVE. LOS ANGELES 17, CALIF.

TUBES:

Industrial Receiving Transmitting

SPECIALISTS IN JAN & RUGGEDIZED TYPES

Fully Guaranteed

5702 5702 W A

Standard	Brands	Only

	OA2	.85	3C21 5.00	304TH 7-75
	OA3	1.05	3C23. 6.75	304TL 7.75
	OB2	.85	3C24/24G95	313C 4.00
	OC3	.90	3C45 11.50	316A80
ı	OC3W	3.65	3DP1 2.80	TR317 14.75
	OD3		3E29 11.50	323B. 8.25
ı	OD3W	3.65	3FP7 1.75	338A 28.50
	1B24	9.00	3GP1 2.70	359A. 4.50
	1B24A	27.50	3HP14 6.60	388A 1.50
п	1B26	2.20	AR22 7.50	394A 3.00
ı.	1B27	11.50	4B22 7.50 4B25 8.00	GL414 120.00
	1B42	8.00	4B32 11.00	GL434A 14.00
	1B47	12.00	4C35 19.25	GL446A 1.10
	1B63A	45.00	4J32220.00	GL464A 9.50
	1P21	49.50	4J36140.00	471A 2.20
	1P23	2.50	ELC5B 3.50	532 3.50
	1P28	9.00	5BP1 3.35	KU627 17.00
	1P40	1.55	5BP4 3.35	700 A 19.95
	1P41	2.80	5C22 45.00	700B 19.95
	1P42	5.00	5D21 12.00	700C 19.95
	1Y2	6.50	5FP7 1.50	700D 19.95
	1Z2	3.20	5J29 11.50	701A 6.50
	2B22	2.25	5LP5 17.00	702A 1.75
	2C33	4.50	5LP5 17.00 5R4GY 1.20	C03A 4 50
	2C40		5R4WGY. 4.93	704A
	2C43	14.95	6AC7W 3.25	
	2C44	.98	WE6AK5 1.25	706B 18.50
	2C51	4.85	6AK5W 1.65	
	2C53	13.50	6AL5W 3.00	
	2D21	1.20	6AQ5W 3.50	Complete
	2D21W	2.50	6AR6 2.70	
	2J21	6.50	6AS6 1.90	Line of
	2122	5.00	6AS6W 3.25	Receiving
	2J26	13.00	6AS7G 3.50	TUBES.
	2J31	20.00	C6J 7.25	
	2J37	12.00	6F4 3.50 6H6WGT 4.85	Write for
	2J40	32.00	6H6WGT . 4.85	Quotes.
	2J50	20.00	6.75	2.0103.
	2J51	250.00	6J6W 1.50	
	2J54	62.95	6K4A 5.50	7000 10 50
		95.00	6L6WGA 8.45	706C 18.50
	2J61	30.00	7AK7 7.00	707A 5.00
	2J62	25.00	7C3085.00 9C24250.00	707B 9.25 708A 3.50
		20.00		
	2K23	11.50		
	2K25	27.50	15R50 FG17 6.50	713A
	2K28	25.00	FG17 6.50 FG27A 15.00	715B 4.00 722A. 1.50
	2K29 2K30	24.00	25Z6WGT. 4.85	722A. 1.50 723AB 18.50
	2K30	320.00	28D7 1.40	123AB 18.50
	2K33	1/5.00	FG32 14.00	728AY, BY, CY,
	2K33A1	180.00	FG33 23.00	DY, EY, or FY
	2K341		35T 3.50	2., 2., 01.1
	3B24	4.00	35T 3.50	

GL434A 14.00 GL446A 9.50 471A 2.20 532 3.50 KU627 17.00 700A 19.95 700B 19.95 700C 19.95 701A 6.50 702A 1.75 603A 4.50 704A 8.55 705A 1.90 706B 18.50	
Complete Line of Receiving TUBES.	
Write for Quotes.	

Complete Line of Receiving TUBES. Write for Quotes.	5551 60.00 5557 8.50 5588 14.00 5559 21.50 5560 28.00 5594 9.00 5632 12.15 5634 4.50 5636 7.50
706C. 18.50 707A. 5.00 707B. 9.25 708A. 3.50 709A. 2.65 713A. 90 715B. 4.00 722A. 1.50 723AB 18.50	5638 3.00 5639 12.00 5640 12.50 5641 8.00 5642 1.20 5643 8.00 5644 12.00 5645 7.50 5646 7.50 5647 5.51
728AY, BY, CY, DY, EY, or FY QUANTITIES— Write for Price	5651WA 5.85 5654 1.65 5656 9.25 5670 3.25 5676 1.15 5686 3.00
800 1.50 805 3.20 829B 12.50	5687. 2.75 5691. 9.50 5692. V 8.25

832A 7.50	5702WA 4.50
837 95	5702WA 4.50
838 3.25	5703 1.20
865	5703WA 3.50
866A 1.75	5718 5.00
872A 3.50	5719 5.50
884 1.85	5720 23.00
885 1.65	5725 1.50
921 1.85	5726 3.25
922 1.60	5/44 2.00
954	5749 2.15
955	5750 2.50
956	5751 2.95
959 1.75	5763 1.50
966 1.50	5783 6.00
1612 2.00	5787 4.25
1614 1.95	5814 1.85
1616	5825 12.75
161935	5829 2.75
1620 6.20	5837110.00
1625	5840 6.00
1632	5844 2.00
1633	5881 2.50
1636 2.50	5901 6.50
1641 2.00	5902 11.00
2050 1.85	5910
2050W 5.95	5915 1.20
5545 35.00	5932 8.50
5550 39.50	5937 24.00
5551 60.00	5948795.00
5557 8.50	5949 185.00
5588 14.00	5956 60.00
5559 21.50	5957 60.00
5560 28.00	5958 60.00
5594 9.00	5959 60.00
5632 12.15	5964 1.45
5634 4.50	5995 6.00
5636 7.50	6005 3.50
5638 3.00	6072 5.50
5639 12.00	6095 write
5640 12.50	6096 write
5641 8.00	6097 write
5642 1.20	6098 write
5643 8.00	6099 write
5644 12.00	6101 write
5645 7.50	6111 9.00
5646 7.50	6112 9.40 6130 13.35
5647 5.50 5651 2.25	6130 13.35 6135 2.75
5651 2.25	6135 2.75 6146 4.85
5651WA 5.85	6146 4.85 6163 3.25
5654 1.65	
5656 9.25	6187 2.50 6201 5.00
5670 3.25	6201 5.00 6336 11.00
5676 1.15	6394 12.50
5686 3.00	8001 5.50
5687 2.75	801175
5691 9.50	8013A 3.95
5692 ▼ 8.25	8020 2.00
5693 7.00	8025 5,25

FG33. 35T... FG105. FG172 215A... 249C... 250TH 250TL. 274B...

120 Liberty St. New York 6, N. Y. REctor 2-1297 - 8


180.00 140.00 4.00 11.00 3.50 2.75 4.95 10.25 3.70 2.00

2K30... 2K33... 2K33A... 3B24... 3B24... 3B25... 3B26... 3B28... 3B29... 3B21... 3CP1...

liance Special

COAXIAL CONNECTORS

A full line of JAN approved connectors in stock

NEW COAXIAL CABLES Jan approved

UG-85/U UG-87/U

	Price per		Price per 1000 ft.
RG5/U*	\$140.00	RG22/U*	\$150.00
RG6/U	180.00	RG22A/U	285.00
RG7/U*	85.00	RG24/U	675.00
RG8/U*	100.00	RG26/U	
RG9/U*	250.00	RG-29/U*	50.00
RG9A/U	330.00	RG3#/U*	300.00
BG10/U	240.00	RG35/U	900.00
RG11/U*	100.00	RG41/U*	295.00
RGIIA/U*	150.00	RG54A/U	97.00
RG12/U	240.00	RG55/U*	110.00
BG13/U*	216.00	RG57/U*	325.00
RG17/U	650.00	RG58/U*	60.00
RG18/U	900.00	RG58A/U*	70.00
RG19/U	1250.00	RG59/U*	60.00
RG20/U	1450.00	RG62/U*	75.00
RG21/U*	220.00	BG77/U*	100.00

Add 25% for orders less than 500 feet.
*No minimum order—other 250 minimum

FIXED COMPOSITION RESISTORS

Type EB ½	W	10%								v		. 5¢	ea.	\$4.00	per	C
EB 1	W.	5%	١.									.10¢	ea.	8.00	per	Ĉ
Type GB 1	WI	10%.										. 86	ea.	6,00	per	C
GB P	W	5%.			į.			,				160	ea.	12,00	per	C
Type HB 2	w:	10%.					ì		ď			11¢	ea.	9.00		
HB-2V														18 00		

AVAILABLE IN ALL STANDARD RMA VALUES

POSTAGE STAMP MICAS
Available in All Standard RMA Values

PLAIN		SILVER	
5 mmf to 910 mmf	5¢	5 mmf to 910 mmf	100
.001 to .0013 mfd	80	.001 to .002 mfd	20d
.0015 to .0056 mfd			50¢
.0062 to .0091 mfd	20¢	.01 mfd	95 é
.01 mfd	280		

AIRCRAFT GENERATORS

OUTPUT—115 VAC 10.4 AMPS 800-1400 CY 1 PH. PLUS
30 VDC 60 AMPS.

OUTPUT 30 VDC 15 AMPS 2500-4500 RPM 9" L x 5"
DIA SPLINE SHAPT 36 x 1 ½" WT 16 lbs. ... \$15.50

OUTPUT 28 VDC 140 AMPS 2500-4500 RPM ... \$38.50

STORAGE BATTERIES

BB-54 Willard 2 volt 20 amp. hrs. built in charge
indicator 4 x 3 x 51/2 high—BRAND NEW \$1.95 ea.
100 lots\$1.75 ea. 1000 lots\$1.50 ea.
BB-212/U 2 volt 40 amp. hrs. 6\% x 2\% x 4\% high
BRAND NEW
NT-6 6 VOLT 3.5 AMP Hrs. 3 x 1-34 x 2-34"
\$1.95 ea

ALL BATTERIES SHIPPED DRY

PULSE TRANSFORMERS

UTAH 9262 3 windings-peak 200 VDC Current 10 MA. Turns Ratio 1-1-1 Impedance Variable 0-5000 olim \$12.50 ea.

MANY OTHER PULSE TRANSFORMERS IN STOCK DATA UPON REQUEST

W.E. D-150734

PHASE SHIFT CAPACITOR

75 to 2.75 minfd 4 stators—single rotor—continuously variable phase shift 0-360 deg. \$22.50 ea.

TERMS — Cash with Order or 25% Deposit — Balance C.O.D. Net 10 Days to Rated Accounts. All Prices are Net F.O.B. Our Warehouse.

	PRECISION RESISTORS						
at	Barge	ain Pric	esWi	re Wou	nd Spool	Type	
16	watt 1	% tolera	ince W	N3 or ea	ual Only 3	5∉ ea.	
.250	5	14.98	125.	723.1	7000	32.7K	
.334	7.4	16.37	130	750	7500	32.89K	
.502	9.1	25	147.5	855	8000	33.3 K	
.557	10.48	30	180	1000	8500	35 K	
.627	10.84	16	210	2193	8800	35.89K	
.760	11.1	52	220.4	2200	10K	36K	
1	11.25	55.1	235	2250	12K-2%	37K	
1.01		62.54	260	2500	14.82K	40K	
1.53	12.32	75	270	2850	15K	46K	
2.	13	79.81	298.3		15.75 K	47K	
2.04	13.02	87	301.8	4000	16.7K	50K	
2.5	13.15	90	366.6	4451	17K	59 K	
3.	13.3	97.8	400.	5000	20 K	59.15 K	
3.5		105.8	414.3	5900	25 K	79.01K	
4	13.89	123.8	705	6500	30 K	125K	
	1 watt	1% tole	erance V	VW4 or I	Equal 45¢	ea.	
.861	5.21	75	800	2200	8000	35 K	
1.01	12	82	1100	3300	9000	40K	
2.55	20	120	1250	4800			
2.58	28	150	1750	6000	12K-29		
3,39	38	250	2000	6800	20 K	80 K	
5.1	50	270		7000	25K		
		425					
					Equal 60¢		
100K	128K	150K		320K	500K	600K	
120K	130K		250K	_			
1 watt				or Equal		65∉ ea.	
84K-2	% 52	2K-1%	645K-	1% 7	00 K-1 %	1 meg-5%	

1 MEG 1 WATT 1% WW5 \$1.50

SOUND POWERED HANDSET

Brand New TS-10 Type—includes 5 ft. cord. USES NO BATTERIES OR EXTERNAL POWER SOURCE \$9.48 ea.

SOUND POWERED HEAT & CHEST SET vy Type M Head and Chest Set. For Work Requirer Free Use of Hands. Heavy Duty—Consists of adset with 2 Phones and Chest Mike. Includes 20. Rubber Cord. BIRAND NEW. EACH \$13.88 me as above except used exc. condition. Each \$5.95

	OIL FI	LLED	CONDENSE	RS	
MFD	V.D.C.	Price	MFD	V.D.C.	Price
5.2	50	\$0.89	0.5	2.000	\$1.65
6	400	.85	8	2,000	7.95
3 x 3	400	1.00	12	2,000	8.95
1	600	.55	0.25	3,000	2.52
0.5-0.5	600	.40	0 5	3,000	2.40
2	600	.69	2	3.000	4.50
4	600	1.65	2	4,000	7.95
8	600	1.85	0.01	5,000	.95
10	600	3.25	1	5,000	4,88
4 x 3	600	2.50	0.03-0.03	6,000	1.50
4	1,000	1.59	1	6,000	9.95
1	1,000	.69	0.02-0.02	7,000	1.55
2	1,000	.95	0.1	7,000	1.79
3	1,000	1.70	0.1-0.1	7.000	5.95
1	1.500	1.45	0.1	7,500	2,25
0.02	2,000	.65	0.075-0.075	8,000	6.50
0.1-0.1	2,000	1.30	0.15-0.15	8,000	6.95
0.1-0.5	2,000	.95	0.25	20,000	19.95

		LED AC			
MFD	V.A.C.	Price	MFD	V.A.C.	Price
7.5	220	\$1.95	15	440	\$5.25
20	220	3.95	1	660	2.95
1	236	.49	2	660	3.50
4	236	1.60	3	660	3.60
8	236	1.95	4	660	3.75
3	330	1.45	5	660	3.85
4	3 3 0	2.25	6	660	4.2
20	330	6.75	8	660	4.50
25	330	7.50	0.2	750	.65
4 4	375	2 15		.00	

High Current Filament Transformer

RAYTHEON PLATE TRANSFORMER

RAYTHEON PLAIE IKANSFORMER
TYPE U8355A
PRI. 110V/220V/440/60 cs.
SEC #1 300V @ 4 AMPS. SEC. #2 300V @ 4 AMPS.
1780 RMS TEST, 9%"x9½"x8½" HIGH.
\$19.95

Choke 10 hy 400 MA 90 OHMS HERMETICALLY SEALED 51/4 x 41/2 x 4H.

\$4.88

MERKLE-KORFF GEAR REDUCTION UNITS

MERKLE-KORFF GEAR REDUCTION.

Precisjon gears. #RM-10 ratio 103-1 input shaft 3/16 output 3/16 \$3.95 ea. #RM-11 ratio 296-1 input shaft 3/16 output 1/4 \$3.95 ea. 10 MA DC METER 3" rd DeJur #310.

1 MA DC METER 3" rd DeJur #310.

1 MA DC METER Fan type 4" scale.

5 AMP AC METER 4" rd JBT #422.

500 MA DC METER 2½" rd G.E.

500 MCROAMP DC METER 2½" rd G.E.

500 MICROAMP DC METER 2½" rd SUN.

AT-4/ARN-1 ALTIMETER ANTENNA NEW.

RT-7/APN-1 ALTIMETER EXC. USED.

WE D 171584 MERCURY RELAY.

AT-48/UP 3 CM HORN ANTENNA.

INVERTER 6VDC to 110'AC 60 CY 75W.

IN34 CRYSTAL

1 RPM TIMING MOTOR HAYDON 115 VAC.

8 RPM TIMING MOTOR HAYDON 115 VAC.

8 RPM TIMING MOTOR HORN AN 15 CY \$1.95 RG 8/U COAX CABLE New Gov't Surplus 100 Ft -\$5.95 RG 8/U COAX CABLE New Gov't Surplus 100 BC-221 FREQ. METER uncalibrated. VERNIER DRUM for RC-221 0-50 180°. VERNIER DRUM for RC-221 0-100 380°. VERNIER DIAL for BC-221 0-100 380°. DAVID COMPANY OF THE STATE OF THE PRECISION POT 500 ohm 6 watt DeJur #260.

PRECISION POT 6000 ohm 6 watt DeJur #260.

PRECISION POT 6000 ohm 8 watt Muter #314A.

PRECISION POT 5000 ohm 8 watt Muter #314A.

PRECISION POT 5000 ohm 8 watt Muter #314A.

PRECISION POT 5000 ohm 12 watt DeJur #271-TSET SCREWS Allen 4-40 x ½".

SET SCREWS Allen 4-40 x 3/16".

SET SCREWS Allen 4-40 x 3/16".

SET SCREWS soluted 8-32 x 3/16".

SET SCREWS soluted 8-32 x 3/16".

SET SCREWS duare head 8-32 x 5/16".

SET SCREWS duare head 8-32 x 5/16". \$2.25

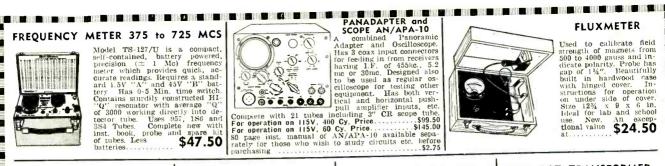
SELSYN MOTORS

50 V 50 Cv. High Torque. Connect in Series. Por Use On 110 V. 60 Cv. Approx 3-% dia. x 5-% L. Like New ONLY \$12.95 PAIR Army Ordnance Type C-78248 115V. 80 Cy. Transmitter. Approx. 3-% dia. x 5-% L. Like new. EACH \$27.50

DIFFERENTIAL Used \$4.95 115 V., 60 Cycle New \$9.95

ALU	MINUM	CHA	SSIS	etche	d fini	sh
Size, Inch	105	Price	Size.	Inches		Price
				2 x 3		
			10 - 1	4 x 3,		2.40
7 - 7 - 9		99¢	10 A 1	7 x 2		2.28
7 4 0 7 0		330	10 X 1	1 X 2		2.28
7 x 9 x 2.		1.08	10 X 1	7 x 3		2.56
7 x 11 x 2.		1.20	ll x l	7 x 2		2.37
7 x 13 x 2.		1.26	11 x 1	7 x 3		3.00
7 x 15 x 3.		2.04	12 x 1	7 x 3,		3.18
7 x 17 x 3		2.10		7 x 2		
8 x 17 x 2		1.89	13 x 1	7 x 3		3.36
8 x 17 x 3		2.27	13 + 1	7 x 4		3.80
ALUMI	NUM A	AINIB	OXES	etch	ed f	inish
	W H	Price	L	W	н	Price
2 3/4 2	1/8 1 5/8	57¢	6	5	4	\$1.11
3 1/4 2	1/8 1 5/8	57¢	7	5	3	1.25
4 2	2 3/4	76	8	6	3 1/2	1.81
	1/8 1 5/8	60¢	10	2	1 5/8	90-
	1/4 2 1/4	79¢	10	6		
	1/4 1 1/4	79¢	12	2 1/2	2 1/4	
	1/4 2 1/4	81¢	12	7	4 .	2.65
5 4	3	90¢	17	5	4	3.11
5 1/4 3	2 1/8	850				

A COMPLETE LINE OF CAD. STEEL CHASSIS IN STOCK. SEND US YOUR INQUIRIES WRITE FOR BARGAIN BULLETIN


ANCE merchandizing co.

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

FREQUENCY METER 375 to 725 MCS

Model TS-127/U is a compact, self-contained, battery powered, precision (± 1 Mc) frequency meter which provides quick, accurate readings. Requires a standard 1.5V "A" and 45V "B" battery Has 0-5 Min, time switch. Contains sturdily constructed HI-Q" resonator with average "Q" of 3000 working directly into detector tube. Uses 957, 186 and 384 Tubes. Complete new with inst. book probe and spare kit of tubes. Less \$47.50 \$47.50

SCOPE AN/APA-10

Used to calibrate field strength of magnets from 500 to 4000 gauss and indicate polarity. Probe has gap of 1½". Beautifully built in hardwood case with hinged cover. Instructions for operation on under side of cover. Size 12½ x 9 x 6 in. Ideal for lab and school use. New, An excepuse. New. An exceptional value \$24.50

MOTOR GENERATORS

MOTOR GENERATORS

2 KVA O'Keefe and Merritt. 115DC to 120AC. 50 cv., 1 Ph., Export Crated. New ... \$149.50 MOTOR GENERATOR, TYPE CGU-2 Unit of U. S. Navy TCK-7 Transmitter Motor; 2 H.P. 230V. D.C., 10 amps. Generator: 1800V. D.C., 0.4 A, 500V. D.C., 0.35A, 115V. D.C., 1.5A, 12 V. D.C., 2.A. 3480 R.P.M. Self excited.

D.C., 2A. 3480 R.P.M. Sen Exercise. Brand new including spare armature. \$169.50 ALLIS-CHALMERS 230DC to 115AC. 60 cy., 1 Ph., 1.25 KVA. . . . \$225.00

INVERTERS

485V New \$22.50 G.E. J8169172. Input: 28DC. Output: 115, 400 cy., 1 Ph., 1.5KVA. New \$32.50 G.E. 5AS1315511A. Model 218J. Input: 28DC. Output: 115, 400 cy. 1 Ph., 1.5 KVA. Regulated. New \$88.50 Elcor. 74DC to 110AC, 60 cy. 1 Ph. at 2.4 Amps. New \$39.50

DYNAMOTORS

Navy type CA10-211444. Input: 105 to 130VDC. Output: either 26VDC at 20 amps. or 13VDC at 40 amps. Radio flatered and complete with line switch. New \$88.50

Type PE94CM. For SCR-522 Brand new in overseus cases. Has wide band input and output filters. \$19.50

AMPLIDYNES

5AM21JJ7. Input 27 VDC @ 15 A. Output 60 VDC @ 2.5 4600 RPM. New \$22.50 5AM31NJ9A. Input 27 VDC @ 44 A. Output 60 VDC @ 8.8 A., 7500 RPM. New \$23.50 Output 60 VDC @ 8.8 A., 8300 RPM.
Output 60 VDC @ 8.8 A., 8300 RPM.
\$12.50

SMALL D.C. MOTORS

4000. H.P. 0.5. New St. Oster E-7-5. 27.5DC. 1/20HP, 36901 Shunt Wound New Dumore Co. type ELBG. 24VDC. gear ratio. For type B-4 Intervalon

New 400 CY. BLOWERS Westinghouse Type FL. 115V. 400 cy., 6,700 RPM. Airflow 17C.F.M. New. \$3.95

SYNCHROS

Ford Inst. Co. Synchro Differential Generator. Mod. 3 Type 5SDC. 99/90V. 400 cy. Ord. Dr. 173020. New. \$12.50 Armor. Synchro Differential Generator. Type 6DG. New \$29.50 Hobart Mfg. Co. Synchro Differential Generator Type XIX 115V. 60 cy. New. \$4.95. 5F, 5C. 5CT also in stock.

D.C. SELSYN MOTOR

Step by step type for use with potentiometer in D.C. Selsyn Control Systems. Bendix—Type CAL 14810 (MK1 Mod 0). 70 Volts DC input. \$8.95

AN-APR-1 RECEIVERS tuning units. Excellent condition. \$195.00

METER SPECIALS

METER SPECIALS

G.E. Type D0-50, 3" Sq. Scale reads
0-3 D.C. Basic Mov. 10 MA. F.S.V.=3.
New Price \$2.45
G.E. Type D0-50, 3" Sq. Scale reads
0-3/0.9 V. D.C. Basic Mov. 10 MA.
F.S.V.=3. New Price \$2.45
G.E. Type D0-50, 3" Sq. Scale reads
0-80 Amps. D.C. and F.S.V.=050.
New Price \$2.45
G.E. Type D0-50, 3" Sq. Scale reads
0-80 Amps. D.C. and F.S.V.=050.
New Price \$2.45
G.E. Type D0-50, 3" Sq. Scale reads
0-100 Amps. D.C. and F.S.V.=050.
New Price \$2.45

SCR-522 EQUIPMENT

Complete BC-624C receivers and BC-625AM Transmitters including mounting racks, plugs, connectors, dynamotor, Brand new equipment with instruction manuals.

RADAR SETS

RADAR SETS

MODEL SQ. Portable radar set, 10CM.
Operates on 90-130 volt. 60 cy., 1 Ph.
"A" "B", and "PPI" presentation.
Complete with tech manual and full set
of operating spare parts.
MODEL SG-1. Consists of complete
equipment including Radar TransmitterReceiver CRP-43AAR-3. Range and
Train Indicator CRP-55ABC-3, Control
Amplifier CRP-50AAT-1, Motor Dynamo-Amplifier (Amplidyne) Ce-2JAAJ
and Antenna Assembly CRP-66ABJ-1.
MODEL ASG-1 Radar unit consisting of
transmitter and converter assembly CRP-4CZ.
Mounting Base GPR-10ABE, etc.
Spare Parts available for Model SQ and
SG-1 Radar. Spare Parts SG-1 Radar.

RADAR ANTENNAS

pe SO-1 (10CM) assembly with re-ctor, waveguide nozzle, drive motor Type SO-I

etc.
Type SO-3 (3 CM.) Surface Search type type 50-3 (3 CML) Surrace Search type with reflector, drive motor, etc., but less plumbing. New in original cases.

Type S0-13. (10CML) Complete assembly with 24" dish, dipole, drive motor, gearing, etc.

MISC. RADAR EQUIPMENT
Modulator Units for SO-11(CUZ-50AGD)
Pulse Timer units for SD-5
Transmitter-Receives units SO-13
Spare Parts for SC-1
Spare Parts for SQ
Marker Oscillator crystals in holders

O-1 Antenna R.F. Nozzle Assemblies (RF502)

(RF502)
SO-1 Antenna Reflector Assemblies (RF503)
SO-1 Antenna Reflector Assemblies (RF503)
SO-1 Antenna Reflector Assemblies (RF503)
SO-1 Antenna Waveguide Resonance Chamber Assemblies (RF515)
SO-1 RF Coupling Waveguide to Transmitter (Z304)
SO-1 RF System and duplexing cavity (RF201) with V2004

0-1 RF System and duplexing cavity (RF301 with V309)

Radar Repeater Adapters
NAVY TYPE CBM-50AFO
A repeater unit for video signals and trigger pulses designed to work in conjunction with standard Navy radar equipments wherein movision is made for operation of remote P.P.I. sets. This adapter provides four video and trigger pulse lines for operating one or more remote P.P.I. contral installations, 115 Volts. 60 cycles A.C. Dimensions are 31½ x 21 x 15 in... New \$97.50

G. E. BATTERY CHARGER Charges 54 Cell Battery

Charges 54 Cell Battery
at from 1 to 10 ampere rate
Input 115V, 60 ev. 1 Phase.
The model 61C89F16 Copper Oxide battery charger consists of a transformer, a
secondary reactor, a copper oxide rectifying element, a ventilating fan, control
circuits and auxiliary equipment necessary for proper operations. Transformer
tapped for various supply voltage. Eicht
secondary taps for adjusting changing
rate Built into meta, cabinet. Metered,
Complete with spare fan and fuses.
New in original packing cases. Shipping
weight approx. 305 lbs.
Price ...\$149.50

REPAIR PARTS FOR BC-348

(Models H, K. L. R)
Also BC 224 Models F. K.. Coils for ant. r.f., det., osc. J. F., cw. osc. xtal filters, 4 gang cond., front panels, dial assemblies, vol. conts. etc. Write for complete list and free diagram.

CONDUCTOR CABLE

G. E. SERVO AMPLIFIERS

Used in R29 planes for Central Station Fire Control Systems R2, B3 and B4. Used to drive Amplidyne 5AM31NJ9A and Control Motor 5BA501J2A listed in 1st column. New less tubes. \$29.50

PARABOLOIDS

17 ½" diameter, spun magnesium dishes, 4 inches deep. Reinforced perimeter. Two sets of mounting brackets on rear, Opening at apex for waveguide dipole assembly 1½ x 15%.

Brand New Per Pair \$12.50

TUBE SPECIALS

IN21B	\$1.95	3BP1	\$3.25 1.85
1B24 2J62	23.50	7BP7	2.95
2J531	4.50	861	9.50

SAWTOOTH POT

Continuous winding 2 rotating and two take off brushes varies voltage to linear sawtooth wave. W.E. No. KS 15138.

025 MFD. 50,000 VOLTS D.C.

HIGH VOLT OIL CAPS

Price 522.50 34.50 34.50 6.95 67.50 19.50 67.50 49.95 13.75 MFD. Volts
.001 50 KV
.025 50 KV
2 x.025 50 KV
.135 7.5 KV
.2 50 KV
.25 15 KV
.25 20 KV
.25 50 KV 1.OMFD 7500 VOLTS D.Ç.

SPECIAL! 1.0 MFD. 7500 VDC capacitor. Cat. No. 26F681. \$9.75

MICA CAPACITORS A **(B)**

High voltage Transmitting types, thousands in stock. Wide selection of sizes types & ratings. All new and made by & ratings. All new and made by anufacturers. Write for complete

SWEEP GEN CAPACITOR COAXIAL TYPE

SYNCHRO CAPACITORS

.6-.6-.6 mfd Mark 12, Mod. 2, type 1C \$1.75 10-10-10 mfd Mark 1, Mod. 2, type 3C \$5.65

HIGH POT TRANSFORMER

Westinghouse. Pri: 115, 60 cy. Sec: 15,-000V C.T., @ .060Å, C.T. ungrounded. Excellent for high-potting tests. Size 0.4 1211 x 8½W x 9½W. v 9½D. Weight 67 lbs. Fully enclosed steel case. Price. ..\$29.50

PULSE TRANSFORMERS

KS-9563 Supplies 3500V peak from 807 tulbe \$3.95 High Reactance Trans. G. E. Type Y-3502A—60 cy. Voltage 1120-135, Ind. H. V. winding 135 by. Output: Peak 22.8KV. Cat. 8318065G1. \$39.50

60 CYCLE TRANSFORMERS

60 CYCLE TRANSFORMERS
G. E. Step-Down. 6KVA. Pri: 230/460.
Sec: 115/125. 60 cy. Size: 20" x 11" x 3½". Weight 225 lbs. Navy grey finish. integral junction box and mounting brackets
Plate Trans. Raytheon U-5815. Pri: 440/220. 60 cy. 3 phase. Sec: each phase 131,0V @ 0.67A test 6000V. \$110.00
Plate Trans. Pri: 115V., 60 cy. 1 Ph. Sec: 1470V. C.T. @ 1.2A tested at 5500V. RMS. Raytheon. Size 12½ x 10 x 10 in. Shipping wt: 150 lbs. New. Price.

400 CYCLE TRANSFORMERS

400 CYCLE TRANSFORMERS

Auto. KVA. 9458—520P Volts 460/345/
230/115 New. G.E. Cat. 80G184
Weight 22 Ibs.
Fil. In: 0/75/80/85/105/115/125. Out:
5V3A/5V3A/5V3A/5V3A/5V6A/8.3V0.5A No.
7249010
Plate. KS9560 800 cy. Pri: 115V. Sec:
1350-0-1350 at. 057A Elecstat slid.
Wt. 2.3 Ibs.
Plate & Fil. KS9555, Pri: 115V. Sec:
930-0-930 and three 6.3V windings.
Fil. KS9553. Pri: 115V. Sec: 8.2V1.25A
/6.35V1.5A Elecstat Shid. Wt. 0.5 Ibs.
(6.35V1.5A Elecstat Shid. Wt. 0.5 Ibs.
Plate & Fil. Pri: 0/80/115V. Sec: 2.95

\$2.90 Plate & Fil. Pri: 0/80/115V, Sec: #1= i200 V DC @ 1.5MA. Sec: #2=400V DC @ 130MA. Fil Secs: 6.4V4.3A/ 6.35V, 8A (Ins. 1500V) 5V2A/5V2A.

Plate. Thordarson T46889 500 cy. Pri: 105/120. Sec: 2800-0-2800. 7KV Inc. 15KVA \$29.50

REACTORS

K\$9589 Retard. 411Y @ 100MA...\$1.00 #2C2270/R2 For Kever Unit BC409.\$3.75 Multi-Choke 3 by @ .275A 70 ohms, 17 by @ .125A 200 ohms, 17 by. @ .125A 200 ohms 7 % x 6 % x 3 % . \$6.95

30-10,000 CYCLE MODULATION TRANSF.

For RCA, Type 250-K Broadcast Transmitter (M1-7242) P to P Primary Imp. 15,000 ohms. Secondary Load 5,030 ohms. Size 11¼x9½x13". Wt. 143 lbs. New. \$49.50

ALTITUDE INDICATOR

Type ID-14A/APN-1. Brand New in original cartons. Special......\$2.95

FREQUENCY STANDARD

Complete self contained dual 100/1000 ke crystal, nultivibrator and harmonic amplifier. Calibrates with WWV and prodes 1000, 100, and 10 ke cheek points from 100 to 45,000 kc. 115V. 60 cycles. New with instructions. \$2395

TERMS: Rated Concerns Net 30, FOB Bronxville, New York. All Merchandise Guaranteed. Prices Subject to Change.

PHONE: BRONXVILLE 2-0044 ELECTRONICRA INC.

Cable Address: Electraft, N.Y.

27 MILBURN ST. BRONXVILLE 8, N. Y.

STRICE ON ALL ELECTRONIC NEEDS

MODULATION and DRIVER TRANSFORMERS

Both Units Only Modulation trans. 815 class AB2-56 Watt Driver, Modulator. \$4.95

I.F. TRANSFORMERS YOUR CHOICE! 95€

30 MC Silver Slugged T-104-35-110 MC 10 MC 1st. I.F. FM 10 MC 2nd. I.F. FM T109 5 MC DISC. 50KC & 150KC J.F. Coils 60 MC I.F. Trans Fixed

VACUUM SWITCH

Mognetic Type \$1.95

15300 V Contacts 30 Amp Operates with DC Coil Spdt DONUT ANTENNA \$995

144 MC TO 156 MC MC

FIL TRANSFORMER \$495

Volt 10 mps RMS est 35 Kv 0 Cy 115 A.C. Uses 72A Tube

WILLARD BATTERY \$265 Volt Wet

FULL WAVE
METER RECTIFIER
For use with
0-1 MA Meter
9: 95¢ SQUIRREL CAGE **BLOWERS**

R.E.L. V.D.C. 12 or 24-40 Watt Max. \$495

TYPE FL 5V—400 Cycle 5700 R.P.M. Vestinghouse Electric. \$3.95

 \mathcal{O}

BUTTERFLY CONDENSERS

YOUR CHOICE \$495

A Freq. Range 76 to 300 Can be used with 955 MC. Tube,

Type B Freq. Range 300 to 1000 MC. Can be used with 368 AS Tube.

MOTOR \$275

7500 RPM Will Run Series

Permeabilit TUNER \$495

7500 RPM
Will Run Series
or Shunt
28 V.D.C.
Size 2 ½2′X1 ½2″X
5 MC If, Freq
456 KC

GO-9 XMITTER

FREQ 3-18 MC & 300 600 KC Only

Band Switching 100 Watt Output Brand New. Operates 110 Volt-800 Cycle. Less Tubes.

C. R. T. TUBES | Microphone 253A 3AP1.\$4.95

3BPI . 5.95 5BPI 5.95 9LP7

MC 49¢ Transformer C410 with PL54 Plug. Low to High Im-6.95 pedance .

Model S-1

BOMBSIGHT

Made By SPERRY MFG.

LIMITED SUPPLY!

Contains over 100 Precision Bearings. Ground Optic Lenses, Gears, Motors. 100

BRAND NEW!

Only \$3.95

BK

22K

RELAY

Used with SCR-269F-Change Over. Contains 28 Volt Step Relay, 5 Deck, 6 Position Switch. 12V D.P.S.T.

DIRECTIONAL GYRO

For A-5 Automatic

Only \$7450

M-1 Directional Gyro. Made by Sperry Mfg. Brand New!

PHONOGRAPH CRYSTAL Ceramic Type

Made by Sonotone Mfg. 1.4 Volt out-put. Sapphire Needle, 50 to 14,000 cycle Freq. Re-sponse Hi Fi. Special

Only \$735

FIL TRANSFORMER

\$195 at 16 AMPS. \$195 2.5 v. at 1.75 amps.

POTTER and OVERLOAD RELAYS

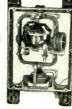
\$195 current 10ma. 60 Cy. AC Coil S.P.D.T.

TRANSMITTING & RECEIVING TUBES

814	\$2,69	931 A	\$3,95
15E 304TL	\$1.50 \$6.50	931 A 3C24 872 A 8020	\$2,69 \$1,19

5245 GRAND RIVER Detroit 8, Michigan Phone TYler 8-9400

IGNITION COILS PRI. 150v. Condenser. Discharge SEC. 15,000 \$1.29 Volt.


of V

ARTIFICIAL HORIZON **GYRO**

MADE BY G-E

\$2450

Sealed in Original Factory Container.

OIL CONDENSERS

MFD. VDC. Price 5000 \$4.95 3000 3,95 2500 1.95 6000 6.95 6000

> RCA OUTPUT TRANSFORMER

\$195

P.P. 6L6's 25 Watt

PRI 5000 Ohms Output. Sec. = 1 500 Ohms Sec. = 2 600

Ohms sidetone. 15 to 15,000 cy. Flat Hi Fi special.

MAIL COUPON TODAY

Gentlemen:

Please send me your FREE Bulletin listing many other ELECTRONIC SPECIALS.

City.....State....

TERMS: Cash with order or 25% DOWN—BALANCE C.O.D. NET 10 DAYS RATED ACCOUNTS ALL PRICES NET F.O.B. DETROIT Merchandise Subject to Prior Sale

COMPLETE LINE OF RECEIVING TUBES GUARANTEED BRAND NEW	UBE SPECIALS!!	STANDARD BRANDS ONLY	WRITE FOR OUR NEW BULLETIN
OA2	34Å 34Å 34Å 350 375Å 320.58 677. \$52.25 7. \$551. \$62.50 \$WE-399Å 4.70 \$798 1.470 \$WE-81V FEED 4.70 \$WE	20DY 95.00 905. 3.50 581. 212A .95 913. 11.25 5582. 212A .95 913. 11.25 5582. 212A .95 913. 11.25 5583. 213A .95 319. 11.25 5583. 213A .95 319. 11.95 5584. 213A .95 319. 11.95 5584. 213A .95 21. 1.95 5582. 214B .1.25 922. 1.95 5582. 214B .1.25 925. 2.16 5593. 224B .1.95 926. 2.16 5593. 225A .1.95 926. 2.16 5593. 226A .1.56 927. 1.85 5610. 226B .45.00 9272. 2.57 5611. 226B .45.00 9214. 3.5 5623. 230A .25.00 9314. 3.5 5623. 230A .1.95 935. 3.9 5623. 230B .1.75 935. 3.9 5623. 230B .1.75 935. 3.9 5636.	\$\begin{array}{c} 1.5 & 333 & 4.4 & 4.70 & 4
1841	"X" BAND ACCESSORIES AT-48/UP Pick Up Horn Antenna\$9.95 Type "N" Mating Connectors available UG-81/U Waveguide to Co-ax Adapter\$12.95 UG-163/U Adapter\$2.85 SYNCHROS Size 1, 3, 5, 6, 7 and 8 generators, motors, control transformers, differential generators, and differential motors in stock. AY-101D 5F M C-69406-1	100 1.30 1.200 4.3 5.674 101 10.95 1290 -90 5.675 11 3.60 1291 57 5685 11 4.4 25 1294 69 5686 124 3.50 1239 -37 5687 11 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1225.00 0226 1.25 98.00 8025 6.25 14.50 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 4.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 1.15 1.60 8025 8025 8025 8025 8025 8025 8025 802
2042 23.75	AY-130D SN X C-78249 ITT 6DG 211F1 C-78410 IT 6G 211F1 C-78410 IT 6G 211F1 C-78410 IT 7G C-44968-6 C-78435 IT 7G C-44968-6 C-78435 IT 7G C-44968-6 C-78351 IT 7G C-44968-6 C-78351 IT 7G C-44968-6 C-78351 IT 7G C-44968-6 C-78455 IT 7G C-44968-6 C-78457 IT 7G C-44968-6 C-79357 IT 7G C-44968-6 C-79357 IT 7G C-44968-6 C-7	521 19.50 1642 65 7750 575 204.718 1645 19.50 575 204.718 1645 19.50 66 49.51 1855 6.50 6770 66 135 1904 14.80 6771 66 15 1904 14.80 6771 66 15 1904 14.80 6771 66 15 1904 14.80 6771 66 15 1904 14.80 6771 66 15 1904 14.80 6771 67 15 1904 14.80 6771 67 15 1904 14.80 6771 67 15 1904 14.80 6771 67 15 1904 14.80 6771 67 15 1905 1706 67 17 17 17 17 17 17 17 17 17 17 17 17 17	2.43 1 M 21.6 1.6 2 1.2
2 φ LOW INERTIA SERVO MOTORS Diehi FPE-25-11—75V 60 cy11 Amp 4 Watts. Each. KOLLSMAN—45 Voit 60 cycle 4 watts 1500 RPM—new Notestand Proceedings of the service of the sear. PIONEER—10847-2-A 26 voit 400 cycle with 40:1 reduction gear. Minn Honeywell type—115V 60 cy. 13.5W—Brown Inestrators—16750-1 162 RPM: 76750-2 54 RPM: 76750-3 27 RPM. Any Type.	9262 9318 9336 9336 9336 9336 9336 9336 9336 933	COAXIAL CON 83-1AC	\$.45 83-225P
OIL FILLED CONDENSERS MFD VDC Price 2 400 5.59 30 2500 514.75 5.5 400 1.65 32 2500 15.80 1.6 600 7.95 31 3000 3.40 2.2 600 R'd 1.65 2 4000 7.95 4 600 R'd 1.65 2 4000 7.95 4 600 R'd 1.75 2 5000 12.50 6 600 R'd 1.75 2 5000 12.50 6 600 R'd 1.75 2 5000 12.50 8 600 R'd 1.85 5.01.03 600 2.95 8 600 R'd 1.85 5.01.03 600 12.50 8 600 R'd 1.85 5.01.03 600 12.50 8 600 R'd 1.85 5.01.03 600 12.50 10 600 3.25 1.1 7500 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.01.03 600 7.85 10 600 1.35 5.00 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6	G.E. 5BA10AJ65—27.5 VDC .66A 2.35 RPM 8 cz-ft Torque \$27.50 G.E. 5BA10F118—24 VDC .51A 9.5 RPM 10 cz-ln Torque \$22.50 G.E. 5BA10F119—24 VDC .51A 56 RPM 12 cz-ln Torque \$22.50 G.E. 5BA10AJ41—PM 24 VDC .55A 140 RPM 12 cz-ln Torque \$22.50 G.E. 5BA10AJ41—PM 24 VDC .55A 140 RPM 10 cz-ln Torque \$22.50 G.E. 5BA10AJ52—27 VDC .7A 145 RPM 14 cz-ln Torque \$19.50 D#lco 5069230—PM 27VDC 145 RPM \$19.50 D#lco 5069230—PM 27VDC 145 RPM \$19.50 G.E. 5BA10AJ51—27 VDC 160 RPM .522.50 G.E. 5BA10AJ51—27 VDC 160 RPM .522.50 G.E. 5BA10AJ8—27 VDC 250 RPM .72A 8 cz-ln Torque \$19.50 D#lco 50697127—PM 27.5 VDC 250 RPM .72A 8 cz-ln Torque \$19.50 D#lco 5067127—PM 27.5 VDC 250 RPM .\$22.50 G.E. 5BA10AJ8—27 VDC 250 RPM .\$22.50	UG-17/AP	90 UG-191/AP 191/10 2 10 11 15 15 16 17 17 17 2 10 17 17 17 17 17 17 17 17 17 17 17 17 17
1.1-5 2000 .95 .25 50 57 57 57 57 57 57 5	TACHOMETER GENERATOR Elinco type PM-1M, DC Tachom- eter Generator—New	RC-5/U 5120.00 RG-7/U 180.00 RG-7/U 85.00 RG-7/U 85.00 RG-8/U 100.00 RG-94/U 330.00 RG-94/U 240.00 RG-11/U 100.00 RG-11/U 120.00 RG-11/U 220.00 RG-11/U 220.00 RG-11/U 250.00 RG-11/U 150.00 RG-11/U 150.00 RG-11/U 150.00 RG-11/U 150.00 RG-11/U 150.00	Type Price Per M Ft 1G-22/U \$150.0 1G-24/U 2850.0 1G-24/U 550.0 1G-34/U 300.0 1G-34/U 300.0 1G-34/U 300.0 1G-35/U 900.0 1G-35/U 970.0 1G-35/U 370.0
LECTRONIC RESEAR 715-19 ARCH ST. Telephones - MARK	PHILA. 6, PA.	ADD 25% TO PRICE SHOWN F 500 FEET. Terms 25% cash with order All prices net F. O. B. wa subject to change without not	

EQUIPME NICATIONS

IN STACK

MICROWAVE COMPONENTS

"S Band," RG48/U Wavequide

POWER SPLITTER for use with type 726 or any 10 CM Shepherd Klystron. Energy is fed from Klystron antenna through dual pick-up system to 2 type 'N' connectors. \$22.50 EACH DIRECTIONAL COUPLER Broadwith std flanges, Navy #CABV47AAN-2 (as shown)

with Std nanges, Navy # CABV4 (AAN-2 (as shown) \$37.50
LHTR, LIGHTHOUSE ASSEMBLY. Parts of RT39
APG 5 & APG 15, Receiver and Trans. Cavities w/assoc. Tr. Cavity and Type N CPLG, To Rever. Uses 2C40, 2C43, 1R27, Tunable APX 2400-2700
MCS. Silver Plated. \$32.50
BEACON LIGHTHOUSE cavity p/o UPN-2 Beacon 10 cm. Mfg. Bernard Rice, each. \$32.50
MAGNETRON TO WAVEGUIDE Coupler with 721-A Duplexer Cavity, sold plated. \$45.00
721A TR BOX complete with tube and tuning plung-each. \$12.50
McNALLY KLYSTRON CAVITIES for 707B or 2K28. \$4.00 Menally Klystron Cavities for 707B of 2K28

WAVEGUIDE TO 76" RIGID COAX "DOORKNOR"
ADAPTER CHOKE FLANGE SILVER PLATED BROAD BAND \$32.50

ASIAA AP-10 CM Pick up Dipole with "N" Cables \$4.50

OAJ ECHO BOX, 10 CM TUNABLE \$22.50

HOLMDELL-TO-TYPE "N" Male Adapters, W. E. = D167284

F. AMP. STRIP: 30 MC, 30 d.b. gain, 4 MC Bandwidth, uses 6AC78—with video detector, A.F.C. less tubes

[PS tubes AMTENNA AS21/APN-7 in Lucito Ball

X Band-

Type "N" feed. \$22.50

ANTENNA, AT49A/APR: Broadband Conical, 3003300 MC Type "N" Feed. \$12.50

"E" PLANE BENDS, 90 deg. less flanges. \$7.50

\$22

POLYROD ANTENNA, AS31/APN-7 in Lucite

RG 52/U WAVEGUIDE HORN FEED, Mounted at end of 1' run. Designed to be used with dish reflector. \$15.00 VSWR Measuring Section. Consisting of 6' straight section, with 2 pick-up. Type 'N' Output Jacks, Mounted ½ Wave apart. \$8.50 I' x ½' waveguide in 5' lengths, UG 39 flanges to UG40 cover ended in 5' lengths, UG 39 flanges to UG40 cover ended to be used to use the use of the use Pressure Gauge Section.

Pressure Gauge, 15 lbs.

S2.70
Directional Coupler, UG-40/U Take off 20db, \$17.50
TR-ATR Duplexer section for above.

\$8.50
Waveguide Section 12° long choke to cover 45 degree (wist & 24.5 readus of degree).

Waveguide Section 3 ft. long silver plated with choke flange.

\$4.50
Rotary joint choke to choke with deck memory joint choke with deck memo Rotary Joint chose to those \$17.0

90 degree elhows. "E" plane 24% radius. \$12.50

Microwave Receiver, 3 CM. Sensitivity: 10-13u Watts.

Complete with L.O. and AFC Mixer and Wareguide

Input Circuits, 6 I.F. Stages give approximately 120

DB. gain at a bandwidth of L7 MC. Video Bandwidth: 2 MC. Uses latest type AFC circuit. Complete with all tubes, including 723A/B Local Oscillator. \$175.60

11/4" x 5/8" WAVEGUIDE

ADAPTER, waveguide to type "N", UG 81/U, p/o TS 12, TS-13, Etc. \$14.50
ADAPTER, UG-163/U round cover to special bit, Flange for TS-45, etc. \$2.50 ea.

VSWR SECTION 6"L, with 2-type "N" pickups mounted ¼ wave apart. 57.50 GG 98B/APQ 1312" Flex. Sect. 1½" x %" OD. \$10.00 X Band Wave GD 1½" x %" 0.D. 1/10" wall aluminum per ft. 756 Slug Tuner Attenuator W.E. guide, gold plated 36.50 Bi-Directional Coupler. Type "N" Takeoff 25 dh. coupling. BI-Directional Coupler Type "N" Takeoff 25 db. Coupling Coupling Coupling Type "N" Takeoff 25 db. S27.95 BI-Directional Coupler UG-52 Takeoff 25 db. S24.95 Waveguide-to-Type "N" Adapter Broadband 522.50

1/2" X 1/4" W.G.—1.25 CM.
APS-34 Rotating joint. Sag 50
Right Angle Bend E or H Plane, specify combina-
tion of couplings desired
45° Bend E or H Plane, choke to cover \$12.00
Mitered Elbow, cover to cover\$4.00
TR-ATR-Section, Choke to cover\$4.00
Flexible Section 1" choke to choke
"S" Curve Choke to cover\$4.50
Adapter, round to square cover
Feedback to Parabola Horn with pressurized win-
dow\$27.50
90° Twist

JAN WAVEGUIDE FLANGES

UG 39/U\$1.10	I UG 51/U\$1.65
UG 40/U\$1.25	UG 52/U\$3.40
UG 40A/U\$1.65	UG 52A/U\$3.40

Į		IN	210CK-	_
ı	AIA	APS-4	APT-4	SJ-1
ı	APA-9	APS-6	MKIV	TAJ
ì	APA-10	ASD	MKX	TBK
ı	APN-3	ASH	RC1 45	TBL
ı	APN-7	BG	RC148	SCR520*
1	APN-9*	DAST	SQ-1	SCR521
ı	APS-9	DBS†	SQ-8	SCR518
ı	APS-3	APT-9	SG-1	

* COMPONENTS. † LORAN EQUIPMENT

	— I E 2 I	2F12
TS-10	TS.12	TS-159
TS-36	TS-56	TS-268
TS-47	TS-34	TS-270

MAGNETRONS

				_
_	Freq.	Peak Power	Duty	
Type	Range (MC)	Out (KW)	Ratio	Price
2J21A	3345-9405	50		58.75
2322	3267-3333	265		7.50
2J27	2965-2992	275	.002	19.95
2J31	2820-2860	285	.002	24.50
2J32	2780 2820	285	.002	28.50
2338*	3249-3263	5		16.50
2J39*	3267-3333	8.7		24.50
2J48	9310-9320	50	.001	24.50
2J49	9000 9160	50	.001	59.50
2356*	9215-9275	50	.001	132.50
2J61+	3000-3100			
2J62†	2914-3010	35	.002	34.50
		35	.002	34.50
3J31	24-27KMC	50	.001	85.00
4J34	2740-2780	900		125.00
5J23	1044-1056	475	.001	49.00
700B	690-700	40	.002	22,50
700D	710-720	40	.002	39.75
706EY	3038-3069	200	.001	32.50
706CY	2976-3007	200	.001	32.50
725-A	9345-9405	50	.001	Write
730-A	9345-9405	50	.001	24.50
4J38	3550-3600	750	.001	169.45
	kaged with ma	gnet.		200.40

t—Tunable over indicated range. KI YSTRONS

	VE 131	VO142	
723A		2K25/723A/B	\$27.50
723A/B	19.50	417-A (Sperry	() 17.50

70 WATT MAGNETRONS

These tubes provide a simple, rugged, inexpensive source of C.W. energy. An inexpensive power supply is all that's required.

CHARACTERISTICS:

Heater: 6.3 v, 3.8 A. Anode V. 1250 V. Pk. Input: 200 Watts Power out: 70 W. CW Anode current: 125 ma. Av. input: 100 W

Each tube is packaged with an integral magnet, and is tunable over the range shown below:

TYPE RANGE (MC.) QK 60 2840-3005 QK 62 3135-3330 TYPE RANGE (MC.) QK 612975-3170 Price \$85 ea.

400 CYCLE TRANSFORMERS

(All Primaries 115V. 400 Cycles)						
Stock	Ratings	Price				
352-7102	6.3V/2.5A	1.45				
M-7472426	1450V/1.0MA, 2.5V/-75A, 6.4V/3.9A, 5V/2A, 6.5V/-3A, P/O 1D-39/					
352-7039	APG-13 640VCT @ 380MA, 6.3V/.9A, 6.3V6A	4.95 5.49				
702724	5V/6A 9800/8600 @ 32MA	8.95				
K59584	5000V/290MA, 5V/10A	22.50				
KS9607	734VCT/.177A, 1710VCT/.177A	6.79				
352-7273		6.79				
332-1213	700VCT/350MA, 6.3VO.9A, 6.3V 25.A					
352-7070	6.3V/.08A, 5V/CA 2×2.5V/2.5A (2KV TEST) 6.3V/2.25A,	6.95				
332-10/0	2x2.5V/2.5A (2KV TEST) 6.3V/2.25A,					
350 7400	1200/100/750V. @ .005A 1140/1.25MA,2.5V/1.75A,2.5V/1.75A	7.45				
352-7196	1140/1.25MA, 2.5V/1.75A, 2.5V/1.75A					
250 7470	-5KV Test	3.95				
352-7176	-5KV Test 320VCT/50MA,4.5V/3A,6.3VCT/20A,					
D. C. C. C.	2X6.3VC1/6A	4.75				
RA6400-1	2.5/1.75A, 6.3V/2A—5KV Test	2.39				
901692	13V 9A	2.49				
901699-501	2.77V @ 4.25A	3.45				
901698-501	908V75MA, 100V/.04A	4.29				
Ux8855C	900VCT/.067A, 5V/3A	3.79				
RA6405-1	800VCT/65MA, 5VCT/3A 700VCT/806MA5V/3A, 6V/1.75A	3,69				
T-48852	700VCT/806MA5V/3A, 6V/1.75A	4.25				
352-7098	2500V/6MA, 300, VCT, 135MA 1100V/50MA TAPPED 625V 2.5V/5A	5.95				
KS 9336	1100V/50MA TAPPED 625V 2.5V/5A	3.95				
M-7474319	6.3V/2.7A, 63.V/.66A, 6.3VCT/21A	4.25				
KS8984	27V/4.3A, 6.3/2.9A, 1.25V/.02A	2.95				
52C080	650VCT/50MA, 6.3VCT/2A, 5VCT/2A	3.75				
32332	400VCT/35MA, 6.4V/2.5A, 6.4V/.15A	3.85				
68G631	1150-0-1150V	2.75				
80G198	6VCT/.00006 KVA	1.75				
302433A	6.3V/9.1A. 6.3VCT/6.5A, 2.5V/3.5A,	4.85				
KS 9445	2.5/3.5A 592VCT/118MA, 6.3V/8.1A, 5V/2A	5.39				
KS 9685	6.4/7.5A, 6.4V/3.8A, 6.4/2.5A					
	ALL CT	4.79				
70G30G1	600VCT/36MA	2.65				
M-7474318	2100V/.027A	4.95				
352-7069	2-2.5V Wdgs, at 2.5A, Each Lo-Cap.					
	22Kv Test	5.95				
352-7096	22Kv Test 2.5V1.79A, 5V/3A, 6.5V/6A, 6.5V/					

THERMISTORS

	The state of the s
D-164699	Bead Type DCR: 1525-2550 Ohms @ 75 Deg. F. Coefficient: 2% Per Deg.
	Fahr, Max. Current 25 MA AC/DC S2.50
D-167332	Bead Type, DCR is 1525-2550 Ohms.
	Rated 25 MA at .825-1.175 VDC 1.35
D-167613	Disk Type DCR:355 Ohms @ 75 Deg.
	F. P. M. 2.5%, 1 Watt 1.35
D-166228	Disk Type 7120 Ohms @ 60°F. 4220
	Ohms @ 80°F. 2590 Ohms @ 100°F,
	1640 Ohms @ 120°F 1.35

10 CM R.F. HEAD

Complete R.F. Head and Modulator delivers 50 KW Peak R.F. at 3000 MC. Pulser delivers 12KV pulse at 12 Amp. to magnetron of .5. 1. or 2 microsec. duration at duty cycle of 001. Unit requires 115V. 400-2400 Cycles, 1 Phase @ 3.5A. Also 24-28 VDC @ 2A. External sync. Pulse of 120V Reg'd. Brand New. Complete with schematic and all tubes...\$375.00

PULSE NETWORKS

PULSE EQUIPMENT

PULSE EQUIPMEN

IIT. MOD. 3 HARD TUBE PULSER: Output Pulse
Power 144 KW (12 KV at 12 Amp). Duty Ratlo:
.001 max. Pulse duration: 5, 1.0, 2.0 microsec. Input voltage: 115 v. 400 to 2400 cps. Uses: 1-71R.
4-89-R, 3-72's, 1-73. New. ... Less Cover—\$135
PS-3 PULSE MODULATOR. Pk. power 50 amp. 24
KW (1200 KW pk): pulse rate 200 PPS. 1.5 microsec. pulse line impedance 50 ohms. Circuit series
charging version of DC Resonance type. Uses two
705-A's as rectifiers, 115 v. 400 cycle input. New
with all tubes ... \$49.50

PULSE TRANSFORMERS

RAYTHEON WX 4298E: Primary 4KV., 1.0 USEC.
SEC: 16KV-16 AMP. DUTY RATIO: .001 400
CYCLE FIL. TRANS. "BUILT-IN". \$42.50
W E C 0: KS 9948; Primary 700 ohms; Sec: 50 ohms,
Plate Voltage: 18 KV. Part of APQ-13. \$12.50

Biflar: I.3 Amp. 11as 542.59
K-246I-A, Primary: 3.1/2.6 KV—50 ohms (line). Secondary 14/11.5 KV—1000 ohms Z, Pulse Length: I usec @ 600 PPS. Pk. Power Out: 200/130 KW. Biflar: 1.3 Amp. Fitted with magnetron well \$39.75

UTAH X-151T-1: Dual Transformer, 2 Wdgs. per section 1:1 Ratio per sec 13 MH inductance 30 ohms. UTAH X-151T-1: Dual Transformer, 2 Wdgs. per section 1:1 Ratio per sec 13 MH inductance 30 ohms DCR . \$7.50
UTAH X-150T-1: Two sections, 3 Wdgs. per section 1:1:1 Ratio, 3 MH, 6 ohms DCR per Wdg. \$7.50
68G711: Ratio: 4: Pri: 200V Sec. 53V, 1.0 usec Pulse @ 2000 PPS. 0.016 KVA. \$4.50
TR1049 Ratio: 2:1 Pri: 220 MH, 50 Ohms. sec. 0.75
11. DCR 100 Ohms. \$6.75
K-904695-501: Ratio 1:1, Pri. Imp. 40 Ohms. Sec. Imp. 40 Ohms. Sec. 2000 PPS. 0.016 KVA. \$4.50
FRIUS & 2000 PPS. 0.016 KVA. \$4.50
FRIUS & 2000 PPS. 0.016 KVA. \$5.50
FRIUS & 2000 PPS. 0.016 FRIUS PPS. \$5.50
FRIUS & 2000 PPS. \$5.5

6.4/7.5A, 6.4V/3.8A, 6.4/2.5A

4.79

600VCT/36MA

2.65
2100V/.027A

2.2.5V Wdgs. at 2.5A, Each Lo-Cap., 2KV Test
2.5V1.79A, 5V/3A, 6.5V/6A, 6.5V/
1.2A, D/O BC800

4.75

MODEL MCG BATTLE AMPLIFIER

Entire unit consists of 2- 250 watt amplifiers mounted in a 7 ft. rack, together with tube check device. alarm signal generator, and distribution panel. Both amplifiers return variable volume compression. Output stage consists of P-P parallel 895. Used, but in excellent condition, complete with all tubes; operates

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY, 25% DEPOSIT WITH ORDER, BALANCE C.O.D. RATED CONCERNS SEND P. O.

131 Liberty St., New York 7, N. Y. Dept E-4 Chas. Rosen Phone: Digby 9-4124

	TRANSFORMERS
CT-479 7000V/.01 /17,800 CT-138 520-0-520	18A (2 X Ind. V. Test) 2.5V 0 V. Test 0 V. Test 0 V/500 MA, 6.3V/3A, 6.3V/ 2 X 5V/3A
Comb. Transfor	mers 115V/50-60 cps Input
CT-013 450-0-450 3.5A 5V	V @ 200 MA, 10V/1.5A, 2.5V V/3A 6.25V @ 5MA, 26V @ 4.5A
2x2.5V/ 2T-071 110V	V @ 200 MA, 10V/1.5A, 2.5V V/3A 6.95 A, -625V @ 5MA, 26V @ 4.5A /3A, 6.3V @ 3A 9.95 .200A 33/.200, 5V/10, 2.5/10 4.95
T-403 350VCT T-931 585VCT T-456 390VCT	.026 A 5V/3A
CT-442 525VCT	75 MA 5V/2A, 1 CT/2A,
	10V/.08A,2.5VCT/6A,6.3VCT/
-	200MA, 6.3V/8A, 6.3V/5A. 6.49 0V/.085A, 5V/3A, 6V/2.5A. 3.49 stormers 115V50-60 cps input
	Rating Each
T-157 4V/16A, FT-101 6V/.25A T-924 5.25A/2	, 2.5V/2.75A 2.95 .79 1A, 2x7.75V/6.5A 14.95
FT-824 2x26V/2 10A 6 FT-463 6.3VCT	14. 2x7.75V/6.5A 14.95 2.5A, 16V/1A, 7.2V/7A, 6.4V/ 8.95 1/1A, 5VCT/3A, 5VCT/3A 5.49 1.5A, 6.5V/6.85A, 5V/6A, 5V/
T-38A 6.3/2.5A	A.2x2.5V/7A 2.79
FT 650 2.5V/10 Plate Trans PT 175 550-0-5	A,2x2.5V 7A 2.79 A-3KV TEST LO-CAP 7.50 formers, 115V 60Cy Input 50VAC (400VDC) @ 150MA 56.30
PT 175 550-0-5 PT 157 660-0-6 VAC PT 158 1080-0-	60 VAC (500VDC) or 550-0-550 (400VDC) at 250 MADC 8.70
Plus 150M	500-0-500 VAC (400VDC) at IADC Simult. Ratings 10.80
PT 159 900-0-9 800 V PT 167 1400-0-	A.3 AV TEST LO-CAP
PT 168 2100-0-	.2100 VAC (1750VDC) or 1800-
	2900 VAC (2500VDC) or
2385- 300M	-0-2385 VAC (2000VDC) at 1A48.00
	GE #M-7470689 Input: 115 V, 60 Cycle, Single Phase
	710V
W.	1 WDG 1700V Primary Rated .0377KVA
	Construction \$24.75
FIL	TER CHOKES
Stock CH-187 Swing	Description Price g. 4-16H, 150MA, 210 ohms, V Test 53.90
CH-189 Swin	g, 4-16H, 250MA, 125 onms, V Test
CH_CEC117. 0_6	g. 3-14H, 300MA, 80 ohms, V Test. 6.90 60H/.05-400MA, 10KV Test 14.95
CH-366 20H/. CH-322 .35H/ CH-141 Dual	/350MA—10 Ohms DCR
	Test 4.69
DC CH-119 8.5H	/125 MA 2.79 120H/17 MA 2.35
CH-69-1 Dual CH-8-35 2/.5H CH-776 1.28H	120H/17 MA 2.35
CH-69-1 Dual CH-8-35 2/.5H CH-776 1.28H CH-344 1,5H	120H/17 MA 2.35 4/380 MA/25 Ohms 1.75 4/130 MA/75 ohms 2.25 4/45MA/1200V Test 2.35 4/45MA/1200V Test 1.75
CH-69-1 Dual CH-8-35 2/-5H CH-776 1.28H CH-344 1.5H/ CH-43A 10H Y CH-366 20H/ CH-999 15HY CH-445 0.5 H	120H/17 MA
CH-69-1 Dual CH-8-35 2/5H CH-776 1.28H CH-344 1.5H/ CH-366 20H// CH-999 15HV CH-445 0.5 H V.T CH-170 20.5 CH-533 13.5H	120H/17 MA 4/380 MA/25 Ohms 1.7 4/130 MA/75 ohms 2.2 4/45MA/1200V Test 2.3 4/15MA 850 ohms DCR 1.7 300MA 6.9 4/15MA 400 ohms DCR 6.9 4/200 MA, 32.2 OHMS, 3000 1.1 1.1 1.1 1.1 1.1 1.0 1.1 2.7 2.7 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
CH-69-1 Dual CH-8-35 2/5H CH-776 1.28H CH-344 1.5H CH-346 20H // CH-999 15HY CH-445 0.5 H V.T CH-170 20.5 CH-533 13.5H	120H/17 MA
CH-69-1 Duals CH-8-35 2/,58 CH-776 1.28h CH-776 1.28h CH-43A 10H Y CH-364 20H // CH-450 0.5 H V.1 CH-453 13.5h CH-533 13.5h CH-533 IN-FU	120H/17 MA 1/380 MA/25 Ohms 1.7* 1/130 MA/75 ohms 2.2* 1/45MA/1200V Test 2.2* 1/15MA 850 ohms DCR 1.7* 300MA (15MA 400 ohms DCR 1.7* 1/200 MA, 23.2 OHMS, 3000 1.1* 1.1* 1.10 AMP DC, 13.5KV INS 29.99 YNAMOTORS 1.1* 1.3* OUTPUT TS AMPS VOLTS AMPS 65.7 56.7 3170 S6.7*
CH-69-1 Duais CH-8-35 2/,5sh CH-776 1.2sh 1.2sh CH-344 1.5sh CH-45A 10sh V-1.4sh CH-366 20sh V-1.4sh CH-365 1.5sh V-1.4sh CH-170 2x0.5 CH-533 13.5sh CH-533 13.5sh CH-533 13.5sh CH-533 2x6 CH-53	120H/17 MA
CH-69-1 Duals CH-8-35 2/,584 CH-776 1.284 CH-43A 10HY CH-43A 20H / CH-989 15HY CH-445 CH-533 13.54 CH-533 13.54 CH-533 13.54 CH-533 13.54 CH-533 13.54 CH-533 27 CH-533 27 CH-534 27 CH-545 27 CH-54	120H 17 MA 1/380 MA /25 Ohms 1.7* 1/130 MA /75 Ohms 2.2* 1/45MA /1200V Test 2.2* 1/15MA 850 Ohms DCR 1.7* 300MA 32.2 OHMS 300* 1/1/300 MA 32.2 OHMS 300* 1/1/300 MA 32.2 OHMS 2.3* 1/1/300 MA 32.2 OHMS 2.3* 1/1/300 MA 32.5 OHMS 300* 1/1/300 MA 32.5 OHMS
CH-69-1 Duals CH-8-35 2/,584 CH-776 1.28h CH-376 1.28h CH-43A 10H Y CH-366 20H // CH-999 15H Y V.T. CH-170 CH-533 13.5h CH-533 13.5h CH-533 2.8h CH-53	120H/17 MA
CH-69-1 Duals CH-8-35 2/,58 CH-776 1.28h CH-43A 10H Y CH-43A 10H Y CH-45 0.5 H CH-533 13.5h CH-533 13.5h CH-533 13.5h CH-533 12.5h CH-533 13.5h CH-5	120H/17 MA 1/380 MA/25 Ohms 1.17 1/380 MA/25 Ohms 2.24 1/45MA /1200V Test 2.25 1/45MA /1200V Test 1.67 300MA 350 Ohms DCR 1.7 300MA 32.2 OHMS 3.00 1/15MA 400 Ohms DCR 1.9 1/200 MA 32.2 OHMS 3000 1/15MA 400 Ohms DCR 1.9 1/200 MA 32.2 OHMS 2.7 1/35MA 400 Ohms DCR 1.9 1/200 MA 32.2 OHMS 2.7 1/35MA 400 Ohms DCR 1.9 1/200 MA 32.2 OHMS 2.9 1/200 MA 32.2 OHMS 3.9 1/200 MA
CH-69-1 CH-176 L-28h CH-43A 10H Y CH-43A 10H Y CH-45 CH-533 15- CH	120H 17 MA 1/380 MA/25 0hms 1.7* 1/130 MA/75 0hms 1.7* 1/130 MA/75 0hms 1.7* 1/130 MA/75 0hms 1.7* 1/130 MA/75 0hms 1.7* 1/130 MA 850 0hms DCR 1.7* 1/130 MA 32.2 0HMS, 3000 1/1/130 MA, 32.2 0HMS 2.7* 1/130 MA, 25 0HMS 2.7* 1/1 1.0 AMP DC, 13.5KV INS 29.9* YNAMOTORS 1T AMPS VOLTS AMPS 6.2* 330 170 56.7* 7 540 250 3.7* 17 540 250 3.7* 17 540 250 3.7* 17 5 285 075 3.9* 18 275 110 8.9* 10 300 260 6.9* 150 010 14 5 5 19 1000 350 250 6.9* 19 1000 350 22.5* 2 8 220 08 12.9* 5 12 2 300 200 82.5* 5 12 2 300 200 85.5*
CH-69-1 Duals CH-8-35 2/,584 CH-776 1.284 CH-43A 10H V CH-43A 20H V CH-999 15H V CH-453 13.54 CH-533 13.54 CH-533 13.54 CH-533 2.75 CH-533	120H 17 MA 1/380 MA/25 0hms 1.17 1/380 MA/25 0hms 1.17 1/380 MA/25 0hms 1.22 1/45MA 1/200V Test 2.22 1/45MA 1/200V Test 1.93 1/15MA 850 0hms DCR 1.93 1/200 MA 32.2 0HMS, 3000 1/1/380 MA, 25 0HMS 2.7 1/15MA 800 DCR 1.93 1/200 MA 32.2 0HMS 2.99 1/200 MA 32.2 0HMS 2.99 1/200 MA 32.5 0HMS 2.99 1/200 MA 32.2 0HMS 2.99 1/2
CH-69-1 Duais CH-8-35 2/,584 CH-776 1.284 CH-43A 10HY CH-43A 20H / CH-999 15HY CH-445 0.5 H CH-170 20.5 CH-533 13.5 P TYPE DM 416 14 DM 33A 28 BD AR9 3 28 BD AR9	120H/17 MA
CH-69-1 Duals (CH-89-1) CH-776 1.28H (CH-43A 10H V CH-43A 10H V CH-443A 10H V CH-443A 10H V CH-445 (CH-999 15H V CH-445 1.5 H CH-170 240.5 (CH-533 13.5 H CH-170 240.5 (CH-533 27 CH-533 27 CH-53 2	120H 17 MA
CH-69-1 CH-43A 10HY CH-43A 10HY CH-43A 10HY CH-43A 10HY CH-45A 10HY CH-533 13.5h CH-170 20H/ CH-533 13.5h TYPE VOL DM 416 14 DM 33A 28 BD AR 93 28 BD AR 93 28 BD AR 94 28 BD AR 95 24 DA-3A* 28 BD 69‡ 14 D-402† 13 SP 175 18 DM 25† 12 ‡ Less Filter PE 94-C, Brand PE-218H: Inpu 350/500 cy 15 PE-286: Input: cy, 500 volt-a	120H 17 MA
CH-69-1 Duais CH-69-1 CH-8-35 2/-5H CH-776 1.28H CH-344 1.5H CH-434 10H Y CH-445 0.5 H CH-170 270.5 CH-533 13.5H CH-733 13	120H/17 MA
CH-69-1 Duais CH-69-1 CH-8-35 2/-5H CH-776 1.28H CH-374 1.5H CH-445 0.5 H CH-445 0.5 H CH-533 13.5h CH-533 13.5h CH-533 13.5h CH-533 13.5h CH-533 13.5h CH-533 28 D AR 93 28 D AR 93 28 D AR 95 28 D A	120H 17 MA

RELAYS RELAYS

MINIATURE RELAYS

ARC 3 & ARC 5 RELAYS

55251 (K403, K405) Telechron; 24VDC; SI ⁵ ST; n.o. (1A); 300 ohm; #R174
55340 (K203) Price; 24VDC; SPST n.o., (1A); 300
00111; -110 55342 (K206, K213) Telechron; 24VDC; (2A's); (1C); 300 ohm; Anti-Capacity Arms; Low Loss Bakelite Insulation; -1171
55476 (K101) Clare: 12-24VDC; Co-Axial Antenna Relay: SPDT (1C): 275 ohms; #R4218.95
55526 (K109, K116) Cook; 24VDC; (1A, 1C); 300 ohm; Ceramic Insulation; #R107
55528 (K107) G. E.: 12VDC: 6PST n.o., (6A's);
55531 (K106) Cook: 12-24 VDC; 12-32 Cook: 195 ohm: #R405
THE PARTY OF THE PARTY P
55836 (K406) G. E.: 24VDC; Double Make (2A); 300 ohm; ERU08G . L.25 55837 (K401, K402) RBM; Same as #RIOSG;
55837 (K401, K402) Allied: Same as =R108G;
23012-0 RBM: 24VDC; SPDT; 250 ohms: #R172 1.50
6385 ARC: 12-24 VDC; SPST n.o. (1A), 10 Amp Contacts; 200 ohm; #R218
7251 ARC; 24VDC; SPDT; (1C); 300 olun; #R406 1.50
7252 ARC: 24VDC; DUST n.o. (2A); 300 ohm; #1354
7252 ARC: 24VDC: DFSt 1.0. (2.7). #R354

FEDERAL & WESTERN ELECTRIC TYPE E SENSITIVE RELAYS

Number	Coll Rating	Contact Arrangement	Stock No.	Price Each	10 for
runa a a	800	2A, 1B, 1D	R 756	1.75	15.00
UE2CG		1A, 1C	R 757	1.25	11.25
UE2EB	250 1500	3A, IC, 1D	R 758	2.25	20.00
UR2JL		2A, 1B, 1C	R 759	1.75	15.00
UR2YD	650	1C, 2A, 1B	R 760	1.75	15.00
UR2YC	400/400		13 761	2.25	20.00
UH4AL		3A	R 762	1.75	15.00
U1243	2000	ic	R 763	1.25	11.25
UR2TR	100	ič	B 764	1.25	11.25
UIPS	800	3C, 1A	R 765	2.25	20.00
UR2TL	1200	2A, 1B	R 766	1.75	15.00
UE2KN	150/150	2A	R 767	1.25	11.25
UR4HM UR2S	1.8	2A	B 768	1.25	11.25
	1500	1C, 2D, 2A, 1B	R 769	3.00	25:00
UR2SH	100	1A	B 770	1.25	11.25
UE2HR UR2XK	1500	1C, 1D, 3A, 1B		3.00	25,00
	1500	3B, 1C, 2A	R 772	3.00	25.00
UR2GC	1500	2C, 3A, 1B	R 773	3.00	25.00
UR2DG UT2AZ	700	1C	B 774	1.75	15.00
	700	2A	R 775	1.75	15.00
UT2B4	1500	2C, 2A, 1D	B 776	3.00	25.00
UR2HX UE2B	700	213	11 777	1.75	15.00
	1500	4A, 1B, IC, 1D	H 778	3.00	25.00
UR2YE	1000	2A, 1B, 1C	R 779	2.25	20.00
UE2KX 7040MT	100	1C	R 780	1.25	11.25
			B 781	3.00	25.00
UR4LK I	400	1C, 3A	B 782	2.25	20.00
UR2KX	1000	2C, 2D, 1A	R 783	2.75	22.50
URAJP	10	1C	R 784	1.25	11.25
UR2RE	1000	64	R 785	3.00	25.00
UR4E	200	1C, 1A	R 786	1.50	12.50
UE4BE	1000	ic	B 787	1.50	12.50
D166042	500/500		R 788	1.50	12.50
UH4AK	1500	2C, 2D, 2A	B 789	2.75	22.50
UR2XH	800	1C. 2A	B 790	1.50	12.50
UT2B	1800	2A	B 791	1.50	12.50
UE2A	1500	2B, 2D, 1A	R 792	2.75	22,50
UR2TG UB2XC	100	2A	B 793	1.50	12.50
	500	2A	13 794		12.50
7040HA					-
A-Norm Throw; I	nally Op O — Mak	en; B—Normal e Before Break	ly Close	ed: C-	Double

TERMS:—All prices F.O.B. Our Plant. Rated Firms Net 10 Days: All Others Remittance with Order,

Merchandise returnable within 10 days for full credit.

Orders Under \$10 Remit-tance With Order. Plus Approximate shipping charges (overage will he returned)

COMMUNICATIONS EQUIPMENT CO.
131 Liberty St. Dept. E-4 New York City 7, N.Y.

WANTED

ARC-1, 3, ART-13, BC-342, 348, APS10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 ETC. All SCR, BC, AN, TS. ALL TUBES.

MOBILE RADIO SCR-508

The Public Property of the Article Property of the Property of

SCR-291A

VE REMOTE PPI INDICATOR

This is a remote PPI indicator "7 in." screen for use with any Radar for remote viewing. Contains all indicating circuits and is driven by the main Radar. Input 115v 60 cyc. POR

AN/APN-3 SHORAN EQUIPMENT

This equipment is used for navigation, surveying, and automatic blind bombing. Operates in conjunction with AN/CPN-2 ground-beacons. Operating frequency of this equipment is 290mc. The accuracy is plus or minus 10 feet up to its range of 300 miles. We can supply bombing computers, if desired we can supply APN-3 spares. AN-CPN-2 ground-beacons also available.

SCR—536 HANDI TALKIE
Freq. range 3.7-5.5mc crystal controlled battery operated handitalkie. The range of this equipment is approximately 2 miles. We can supply these sets to your specified freq. within its range. Completely reconditioned and guaranteed. Large quantity available. POR

87-17 124th STREET Richmond Hill 18, New York Phone Virginia 9-8181-2-3

AN-GSO/1A SPEECH SCRAMBLER

AN/TPL-1

SCR-522

Airborne Transceiver, Freq. 100-156 Mc. This unit is crystal controlled 4 channel. Power output approx. 10 watts. Consists of: BC-624 Receiver, BC-625 Transmitter, FT-244 mount, BC-602 control box, PE-94 dynamotor, antenna, plugs......\$137.50

AN/TPQ-2 K-BAND GROUND RADAR

AM7 ITU-2 A-DAND UNUND MADAK

Very late model set. Used to plot trajectory of artillery and mortar shells and to
enable counter battery fire with extreme
accuracy. This Radar is so accurate and
sensitive it will pick up movements of personnel on the battlefield. It can also be
used to measure height of cloud cover for
weather forecasting. Mfg: WESTERN ELECTRIC. Write

Prices FOB NYC. Rated firms open account. Prices subject to change without notice CABLE: Radalab, NY TELETYPE: NY-4-4361

AN/APR-4

ECHO BOX

TRANSMITTER

AN/PPN-1 REBECCA GROUND BEACON

BEACON
This equipment operates on 215 mc and is used in conjunction with AN/APN-2 or SCR-729. Provides a signal enabling the aircraft carrying the APN-2 to home on it. This equipment is completely portable and operates from a 12 volt battery. Complete installations avail.

POR
AN/APN-2 and SCR-729 equip. avail.
BC-348R CAA and Military approved model.
POR

AN/APT-5 300-1200 mc transmitter 80 output. \$1000-3100 mc receiver \$169.50 mc POR AN/APR-5 1000-3100 mc receiver \$169.50 mc . POR AN/APS-10 3cm airborne Radar . POR

BC 610 TUNING UNITS TU 49 New.....9.75

ECIAL PURPOSE TUI 1B24.... 6.75 | 3DP1... 9.50 | RX-91

1 PO7 44 00	3DF1 2.30	KX-21 7.50	328A 4.00	709A 1.75	832A 7.50
1B27 11.00	3E29 9.00	RK-23 2.00	329A 7.50	715A 3.00	833A 28.50
1B32 1.25	3EP1 4.00	RK-62 2.00	348A 7.50	715B 4.00	836 2.50
1B42 7.25	3GP1 2.50	RK-72 1.00	349A 7.50	715C 16,50	837 1.00
2AP1 5.50	4B27 7.50	RK-73 1.00	350A 4.00	719A 15.00	838 2.75
2C33 2.25	4C27 10.00	F-128A 75.00	352A 15.00	721 A 1.75	846125.00
2C39A 13.50	4E27 13.75	HK-154 5.00	354A 15.00	723A/B. 12.00	849 20.00
2C40 5.75	4J34 75.00	VT-158 30.00	355A 15.00	724A 1.50	860 2.00
2C44 1.00	4J35125.00	FG-190 9.50	F-375A 12,50	724B 1.75	861 13.50
2D21 1.00	5BP1 3.00	HF-200 13.50	393A 6.50	725A 4.00	866A 1.00
2E22 1.75	5BP4 3.00	C-202 12.50	394A 2.00	726A 7.50	869B 55.00
2J21A 6.50	5CP1 3.75	204A 25.00	417A 7.50	726B 35.00	
2]26 10.00	5D21 11.00	205B 1.00	GL-434A. 12.00	726C 35.00	872A 9.00
2J27 9.25	5FP7 1.00	F-207100.00	446A 1.00	728CY-GY 13.50	878 1.25
2J31 19.00	5FP14 7.00	217A 3.50	446B 3.00	802 3.00	884 1.00
2]32 20.00	5JP1 13.00	WL-218. 25.00	450TL 37.50	803 3.00	885 1.50
2J33 20,00	5JP4 13,00	250R 5.00	WL-460. 12.00	805 3.00	892R250.00
2J34 18.00	5JP11 35.00	251A100.00	464A 7.00	807 1.25	902-P1 7.50
2,36 75.00	5J30 23.50	253A 6.00	WL-468. 20.00	808 1.50	913 10.00
2J38 8.25	5]32 60,00	267B 7.00	527 15.00	809 2.50	918 2.00
2J56 75.00	5R4GY 1.00	271 A 5.75	WL-530 10.00	810 9.75	923 1.00
2J61 28.50	C6A 7.50	274B 2.00	WL-531 4.75	811 2.50	931 A 3.75
2K25 19.75	C6L 5.50	276A 7.50	559 1.00	812 2.50	959 1.50
3AP1 5.00	6BL6 50.00	282A 7.50	631-P1 4.75	813 10.00	CK-1006 . 1.50
3BP1 3.00	6BM6 60.00	283A 3.75	700A-D. 8.50	814 2.75	1614 1.50
3B22 2.25	6C21 15.00	286A 6.50	701 A 4.00	815 2.75	1624 1.00
3B24 3.75	6G4 4.75	304TH 6.75	702A 1.50	822 17.50	2050 1.25
3B24W 7.50	6]4 4.75	304TL 5.00	702B 2.50	826 1.00	ZB-3200125.00
3B25 3.50	7BP7 3.00	307A 2.00	705A 1.00	828 9.00	8002R 85.00
3B26 2.75	9GP7 7.50	310A 3.00	706AY-GY 25.00	829A 6.00	8012 1.75
3B28 4.00	9LP7 3.00	311A 5.25	707A 5.00	829B 9.00	8013 2.00
3C23 6.75	12DP7 12.50	313C 3.00	707B 8.75	830B 2.00	8020 1.00
3C24/24G 1.00	12GP7 13.50	323B 9.75	708A 2.50	832 6.50	8025 3.00 PD 9365 FO 00
		1	2.50	0.50	PD8365 50.00

- · Prices do not include transportation
- Usual terms apply
- western engineers

ELK GROVE, CALIFORNIA GEORGE WHITING, OWNER

- Unconditional guarantee extended
- · Subject to prior disposition

TELEVISION CAMERA

Mfr. R.C.A. Type MIT. R.C.A. TYPE
CRV-ATK or ATJ
For training
and experimental
work in the instruction of TV
techniques. Televistudios

adapt it for movie pick-up chain, titles, slides and test patterns. SCANNING: vertical 40-60 FPS. horizontal 13.500-15.800 C.P.S. VIDEO AMPLIFIER: Use 1846 conoscope... six stage amplifier and clipper. CAMERA DIMENSIONS: 124" x 104" x 25". WEIGHT! 49 lbs. Used, good condition..... \$295.00

SINE-COSINE GENERATORS

(Resolvers)

(Resolvers)

Diehi Type FJE-43-9 (Single Phase Rotor). Two stator windings 90° apart, provides two output sequel to the sine and cosine of the angular rotor displacement. Input voltage 115 volts, 400 cycle......\$30.00 ea. Diehi Type FPE-43-1 same as FJE-43-9 except it supplies maximum stator voltage of \$20 volts with 115 volts applied to rotor......\$25.00 ea.

VOLTAGE GENERATORS (RATE)

\$17.50 MIDGET D.C. VOLTAGE GENERATOR ALNICO

400 CYCLE 3-PHASE

GENERATOR

120 Volts, 11.7 amps and 28 VDC @ 14.3 amps.

Mfg. by HOMELITE , equipped with dual
V-belt pulley \$275.00

SYNCHRONOUS SELSYNS

110 volt, 60 cycle, brass cased, approx. 4" dia. x 6" long. Mfg. by Diehl and Bendix.

Quantities Available. Quantities Available.
REPEATERS
TRANSMITTERS

AUTOSYN MOTOR TYPE 1

SYNCHROS

Cycle

REPEATER, AC synchronous 115 V., 50 Color.

C-78803 \$\frac{1}{2}\$. \$\frac{1}\$. \$\frac{1}{2}\$. \$\frac{1}{2}\$. \$\frac{1}{2}\$. \$\frac{1}{2}\$. \$\frac{1}{2}\$. \$\frac{1}{

PANORAMIC ADAPTER Model AN/APA-10

Immediate Delivery ALL EQUIPMENT FULLY GUARANTEED

All prices net FOB Pasadena, Calif.

INVERTERS

10563 LELAND ELECTRIC

Output: 115 VAC; 400 cycle; 3-phase, 115 VA; 75 PF. Input: 28.5 VDC; 12 amp.....\$59.50

PIONEER 12117

OUTPUT: 26 volts; 400 cycles; 6 volt amperes, 1-Phase, INPUT: 24 VDC; 1 amp.....\$25.00 ea.

ALTERNATOR, CARTER

PE 218 LELAND ELECTRIC

PE 109 LELAND ELECTRIC

Output: 115 VAC, 400 cyc; single phase; 1.53 amp; 8000 RPM. Input: 13.5 VDC; 29 amp.......\$65.00

MG 153 HOLTZER-CABOT

Input: 24 V. DC. 52 amps; Output: 115 volts — 400 cycles, 3-phase, 750 VA. and 26 Volt — 400 cycle, 250 VA. Voltage and frequency regulated.....\$95.00 ea.

PIONEER 12130-3-B

12116-2-A PIONEER

10285 LELAND ELECTRIC

Output: 115 Volts AC. 750 V.A., 3 phase, 400 cycle, 99 PF, and 26 volts, 50 amps, single phase, 400 cycle, 40 PF, input: 27.5 VDC, 60 amps, cont. duty, 600 RPM. Voltage and Frequency regulated.....\$95.00

10486 LELAND ELECTRIC

Output: 115 VAC; 400 Cycle; 3-phase; 175 VA; .80 PF. Input: 27.5 DC; 12.5 amp; Cont. Duty. \$90.00 ea.

PIONEER 10042-1-A

94-32270-A LELAND ELECTRIC

Output: 115 Volts: 190 VA: Single Phase: 400 Cycle: 90 PF. and 26 Volts: 60 VA: 400 Cycle. 40 PF. Input: 27.5 Volts DC 18 amps cont. duty, voltage and freq. regulated \$95.00

PIONEER 12147-1-B

MG 149F HOLTZER CABOT

OUTPUT: 26 VAC @ 250 VA; 115V @ 500VA; Single Phase; 400 cycle. INPUT: 24 VDC @ 36 amps. \$69.50

EICOR CLASS "A" NO. 1-3012/08-7

HAZELTINE PULSE GENERATOR MODEL 1017

MODEL 1017

Electrical Characteristics: Pulse Freq: initiating and sliding pulse-external. Pulse Width: initiating and sliding pulses, 10 microseconds. Pulse Amplitude: initiating and sliding pulses, plus 150 volts. Sliding Pulse Delay: variable over full trace length. Sweep Duration: 50, 200, and 1000 microseconds. TUBES: 16-6817; 3-61AG7; 3-61AG; 2-615 gt; 2-68N7 gt; 1-51U G; 1-68K7; 1-6YGG; 1-991; 1-9002. Power Input: 110-125 volts, 60 cyc. single phase; batteries none, Dimensions: 13½" x 20½" x 23". Weight 35 lbs. PRICE . \$149.50

1 MFD, 25,000VDC CAPACITORS Mfg. by Cornell-Dubilier TYPE 25100 \$59.50 ea.

ALNICO FIELD MOTORS

ALNICO FIELD MOIORS

(Approx. size overall . 3%" x

1½" diameter) #5069600: 27.5

DELCO #5069230: 27.5 VDC: 145 rpm. \$15.00

PM Motors Delco Type #5069371: 27.5 volts: DC

Alnico Field; 10.000 R.P.M.; dimensions 1" x 1" x 2" long; shaft extension ½" diameter 0.125". \$15.00

PIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, complete with tubes. \$22.50

AC CONTROL MOTOR

A. C. SYNCHRONOUS MOTOR Type RBC 2505;

Volts 115; Cycles 60; RPM 2; Mfg. HOLTZER

CABOT ELECT. Approx. size: 25%" x 25%" x 25.00 ea.

400 CYCLE MOTORS

400 CYCLE MOTORS

EASTERN AIR DEVICES #133 Synchronous Motor
115 Volt: 400 cycle. \$17.50
PIONEER: TYPE CK5 2 Phase: 400 cycles. \$25.00 ea.
EASTERN AIR DEVICES TYPE 149A: 115 V: 0.1 A;
EASTERN AIR DEVICES TYPE 149A: 115 V: 0.1 A;
AIRESEARCH: 115V: 400 CYC. \$17.50 ea.
AIRESEARCH: 115V: 400 CYC. \$18.00 ea.
EASTERN AIR DEVICES TYPE JM6B: 200 VAC;
1 amp: 3 phase: 400 cycles, 6000 RPM. \$12.50 ea.
EASTERN AIR DEVICES TYPE JM6B: \$10.00 ea.
1 amp: 3 phase: 400 cycles, 6000 RPM. \$12.50 ea.
AIRESEARCH: AC induction, 200 V: 3 Phase, 400
Cycle, 2 II.P: 11.000 RPM: 8 amps. \$79.50 ea.
AIRESEARCH: AC induction, 200 V: 3 Phase, 400
Cycle, 2 II.P: 1.000 RPM: 1.5 amps. \$79.50 ea.
AIRESEARCH: AC induction, 200 V: 3 Phase, 400
Cycle, 2 II.P: 1.000 RPM: 1.5 amps. \$79.50 ea.
Cycle, 2 II.P: 6500 RPM: 1.5 amps. \$79.50 ea.
Electric Motor: PNT—1400—A1—A Setal No. 207, 208 V. 400 Cycles, 3 Phase Kearfott Co., Inc.
\$17.50 ea.

SERVO MOTOR 10047-2-A; 2 Phase; 400 Cycle, with 40-1 Reduction Gear \$17.50

DELCO #5069625 27 VDC; 120 RPM; Governor controlled \$22.50 EMERSON 175: 12 Volt DC; 1/6th HP: 10 amp; 3800 RPM; Approx. size: 24½" x 5" ... \$9.95 ea. 3800 RPM; Approx. size: 24½" x 5" ... \$9.95 ea. 3800 RPM; Approx. size: 24½" x 5" ... \$9.95 ea. 3800 RPM; Approx. size: 12½" x 5" ... \$15.00 DELCO #5068750: 27 VDC; 11.75 rpm. \$15.00 DELCO #5068750: 27 VDC; 160 RPM; bullt-in reduction gears ries reversible motor 1/50th HP; 10 ... \$12.50 ea. J. OSTER; series reversible emotor 1/50th HP; 10 ... \$7.00 ea. approx. size 1½" x 3½" salioAl37: 27 volts, DC; 5 amps. \$ oz. inches torque: 250 RPM, shunt wound; 4 leads; reversible controlled to the size of the amps. 8 02. Interestible 4 leads: reversible GENERAL ELECTRIC DC MOTOR Mod. 5BA10AJ-64. 160 r.p.m.; 65 amp; 12-oz.-in. torque 27V DC. \$12.50 \$12.50 21/4 H.P. MOTOR—Mfg. LEECE-NEVILLE Co: Type 1454-MO; 24VDC; 4000 RPM: 100 amp.....\$35.00

115 VOLT GENERATORS

Brand new Eclipse generators:
115 VAC: 9.4 amp: 1000 wats;
single phase; 800 cycles, 24004200 rpm, DC output is 30 volts
at 25 amp. Unit has spline drive
shaft and is self-excited \$29.95

MICROPOSITIONER

Barber Colman AYLZ 2133.1 Polarized D.C. Relay: Double Coil Differential sensitive, Allneo P. M. Polar-ized field, 24V contact; 5 amps; 28 V. Used for re-note positioning, synchronizing, control, etc. \$12.50 ea.

BLOWER
Eastern Air Devices, Type J31B: 115 volt: 400-1200
Cycle: single phase; variable frequency; continuous
duty; L. & R. #2 blower: approx. 22 cu. ft./min.
\$15.00

BLOWER: Mfg. John Oster: Type C2A-1B: 27 VDC; .63 amps: 1/100 H.P.; 7000 RPM; Series Wound\$9.95 ea.

BLOWER ASSEMBLY

115 Volt, 400 Cycle, Westinghouse Type FL. 17CFM, complete with capacitor. New\$12.50 ea.

TEST EQUIPMENT TS-45/APM
For measuring relative output power and transmitted freq. of radars and adjusting receivers. Components of the set are a thermistor-type power meter, coaxial line-type freq. meter, a 723A oscillator, attenuator, and a choice coupling. Set is designed for continuous wave operation, with jack provided for external pulsing.

Electrical Characteristics: Freq. Range ... Airborne X Band. Accuracy: Freq. Meter plus or minus 5 mc.; Power Meter plus or minus 1.5 db. (relative only). Signal input: rf power; minus 10 to plus 37 dbm. Signal Output: C. W. av. power 10 mw (plus 10 dbm). Attenuator: Calibrated, adjustable 0-30 db loss. Power: 110-130 volts, 60-2490 cycles, 55 wats. TUBES: 1-723, 1-694. 2-6275G, 1-6SLIGT, 1-VR-150-30. Batteries: None. Mechanical Characteristics: 10° x 9½" x 8". Weight: 18 lbs.

PRICE \$295.00

Sales Company

BOX 356-X EAST PASADENA STATION PASADENA 8, CALIFORNIA

SAVES YOU MORE IN '54!

Check your needs on this list of specially priced aircraft and electronics equipment.

COMPARE PRICES! COMPARE VALUES!

TEST EQUIPMENT

TS-11\$45.00	1E-19\$200.00
TS-34 300.00	1.222 89.50
TS-47/APR . 225.00	I-139A 12.50
TS-50/U 14.95	1-183A Frequency
TS-89 32.50	Meter 17.50
TS-100 85.00	I-185A Oscillator
TS-101 7.50	24.50
TS-126 75.00	BC-221 Meter 89.50
T5-131 14.95	BC+1287A
T5-184 45.00	(S Band) 125.00
TS-268 37.50	LM 85.00

FLUX METER

500-4000 Gauss—Brand new \$27.50 in lab hardwood cases

APS 13 COMPLETE 420 MC RADIOPHONE

when converted with our easy-to-follow schematics and in-structions. Range in most cases equal to 2 meters. Fine for short-distance communication, ranches, farms etc. \$4.95

\$14.95 value

Complete with RF sections, conversion booklet, and 30 MC I.F. strip, less tubes, dynamotor.

TRANSMITTERS	&	R	E	C	E	۱۱	/	ERS
ARC-3 complete, certified								\$850.00
BC-640 and BC-639, RA-	42.							750.00
AN/TRT-1 Mine trans				٠.				100.00

3.040 allu DC-039, NA-42	
N/TRT-1 Mine trans	100.00
RT-13	350.00
C-797 ground stas	900.00
R-284	100.00
C-1333 Marker Recvrs., certif	75 00
C-733D CAATC	35.00
0-348	145.00
Z-1 Compass, new	20.00
Q-8 Search-Jam Equipment Receiver	Trans
mitter Control Box (less tubes and blo	wer)
mitter control box (1005 tabes and blo	# OF 00

ASB-7 Transmitters—Complete with tubes. Fin for 420 MC and TV relay work. 7.9!
ARB Receivers—Minor parts missing. 12.9!

FIRST TIME EVER! RCA Surplus TV CAMERA!

only \$295

Complete with 1848 iconoscope and 6-stage video amplifier and elipper. Per-fect for use in movie pickup chains and for training and experimental work. UNBEATABLE BARGAIN! Write for complete information!

TS 45/APM X BAND SIGNAL GENERATOR

Only \$250.00 Now available from HARJO at a price every small lab, school, and service shop can afford!

RADAR EQUIPMENT

			•			
APS-4 Comp	lete	Rad	ar	Set.	 	\$550.00
SN complete					 	400.00
MD-12/ AP	2-13	with	ı tı	ibes.		25.00
125/115-2						75.00
R65/APN-9						700.00
AN/PPN-I (Eure	ka)				50.00
AN/PPN-2	Eure	ka)			 	75.00
201		-			 	

POWER SUPPLIES **INVERTERS**

MG-149F Rotary converters, certif:	49 50
RA-34 Hi-voltage for BC-191 etc	149 50
RA-62 Hi-voltage for SCR-522	125.00
Pincor IKIIX Rotary conv	
(110DC in-110AC out)	10.00

HIGH VOLTAGE POWER SUPPLIES—110 v. 60 cy. in. 1250—1500 v. at 350 ma. out. Heavy duty potted transformers oil condensers relay controlled. Compl. in eclosed case, orig. made for navy radar use. Excellent for transmitters and lab use. Precedless than cost of parts.

Ship. wt. 100 lbs. \$22,50

FIELD **TELEPHONES**

EE-108, TP-3 (type) Sound Power Field Tel-ophones. Excel-lent, checked out. \$29.50

-4 Harjo Sales Co. paid for your surplus equipment. Write today. Immediate reply.

4109 Burbank Blvd., Burbank, Calif., P. O. Box 1187, Magnolia Park Sta. Cable: Harjo Phone: ROckwell 9-2411

TUBES
DuMont 3GPI Cathode Ray Tube. New, hoxed
701A Kilowatt Screen-Grid transmitting tube, Just right for that new final AM or SSB. New \$3.95

MEGACYCLE METER Model 59
2.2 to 400mc. A lab instrument at a real price! \$95.00

CERAMIC CONDENSERS \$1_{ppd}
Kit of 100 asstd. Brand new, standard brands. \$10 value.

MICRO SWITCHES, new 4 for \$1.00 \$2.95

SCOPE TRANSFORMERS \$2.95 Prim. 110 v. 60 cyc. Sec. 3500 v. 25 ma. 10 KV ins. Shipping wt. 15 lbs. POWER TRANSFORMERS 704

FB for grid dip kits, test equip., etc.

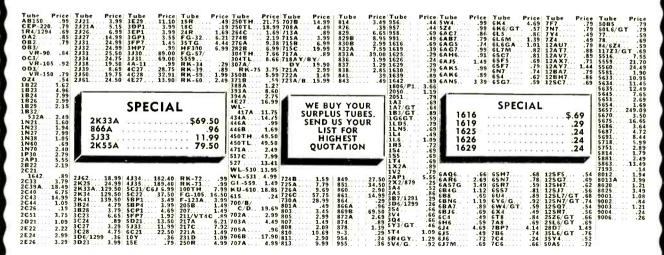
WILLARD 6-VOLT BATTERIES
\$1.29 4 for \$5.00

1-inch Bullseye and Dial-Lite Sockets 39¢ ea.
Candleabra Type (removed for new equip.)
220 v. Candleabra bulbs to fit above 19¢ ea.
7 for \$1.00

PORTABLE WATT METER Kit contains brand new standard watt meter, and heavy duty lahtype case with handle, Complete with instructions, \$50 val. \$9.95 3-1N. Black Dialface 0.750 ma. . . . \$4.50 500-0.500 micro. . . . \$6.50

METER BARGAIN—0.1 MA Full Scale 3-inch Aircraft Instrument Type. Simple conversion sheet furnished. Check this price. You can't afford to miss it: \$1.49 (3 for \$4) ppd.

MORE CASH


Thousands more items in stock. Prompt replies to all inquiries. All shipments F.O.B. Warehouse and subject to prior

FREE! WRITE FOR NEW HARJO CATALOG

FAY-BILL DISTRIBUTING CO.

LARGEST SURPLUS TUBE DEALER IN THE COUNTRY

STANDARD BRAND TUBES - 50% to 90% OFF LIST

DÍSTRÍBUTING CO. DEPT. EI

418 Broome St., N. Y. 13, N. Y. Telephone CAnal 6-8404

All boxed and fully guaranteed. Special quantity discount—10% on 100 or more of same type. Minimum order \$5.00. Thousands of other types in stock . . . Send us your requirements. F.O.B. New York. 25% deposit with order or if paid in advance save C.O.D. charges. Rated firms net 10 days. Prices subject to change without notice.

RADIO-RESEARCH INSTRUMENT CO.

10 CM. "S" Band

10 CM. "S" Band
F-28/APN-19 BEACON FILTER CAVITY.
2700-2900mc. Max. 1.5-db loss at ctr.
freq. over band, 3db at 15 mc band ends.
Meets full JAN spec. Gov't source insp.
available. Fully calibrated to above spec.
\$42.50. Uncalibrated, guaranteed \$28.50.
COAXIAL MIXER. Xtal. detector assy
designed for beacon revrs. Trombone tuned
input. "N" fittings. 2 types available-feed
thru or take off to xtal. \$17.50
LIGHTHOUSE CAVITY. For 2C40 tube,
Tuneable 2700-2900mcs w/suitable adj. of
grid cyls. Can be freq. modulated. \$25.00
STANDARD - REFERENCE CAVITY
2650-3050mc. Invar tuning center conductor of % wave-ligh. 50 ohm coax "N"
input output conn. Inc./sec. stability.
Loaded Q betwn 650 and 3000 w/xmsn loss
5 to 5 of bd adjustable. Unloaded Q apx
6000. Concentric xmsn type resonator.
Tuning mech. lock. \$28.50
CRYSTAL MOUNT. %" std coax. "N"
fittings. Holds any 1\times 12 type xtal. Incl.
impedance march tuner. \$17.50
FEEDBACK DIPOLE %" coax for parabola. 11%" o.a. \$14.50
MIXER BLOCK WP.U. 1000. "N" fitting.
\$8.50
ECHO BOX. "S-207/UP, 2700-2900mc.

*8.50 ECHO BOX. TS-207/UP, 2700-2900mc, micro adj. \$64.50

10 CM. WAVEMETER

2700-3000mc. Hi-Q coaxial transmission type, N fittings, micrometer head, 3mc. absolute accuracy, w/calib. curve. Factory new \$86.50

Pulse Components

KS-9613 Miniature, perm. core. Z ratio 1:1:1 \$5.00 145EWP AND 132AWP low volt pulse xturr. \$5.50 each

145EWP AND 132AWF low vote bals.

Thir: \$5.50 each
D168983 Network 125 ohm, herm sid, \$3.50
LV PULSE 50-4000kc, 120-2350 ohm, term core \$6.50

PULSE CONN. UG180/type rubber insert, male chassis mt. w/12" cable D166389

male chassis mt. w/12" cable D166389 \$2.00 UG38/type male cable mt. \$5.00 UG38/type female w/mtg fig. air to oil

\$5.50 High Voltage Pulse Transformers. G.E. Types 95G2023, K2748A, K2759

Antenna Drives

COMPLETE. 12:pm clockwise, rotation, 115V 60 cy GE motor, incl sine potentioneter & bearing indicator. \$137.50 (GEAR.MOTOR ASSY. Gear speed 95.5, gear ratio 9 to 1, motor speed \$60 shurt, d, 6 amp. volts, 250A-125F cont duty.

\$64.50 each MOTOR DRIVE ASSY. 115-VDC motor 1/20 hp. 1725 rpm. Gear box 172 rpm, 11 in. lbs. torque, cpld to 9 in. step down gear. \$35.00

SCR 584 1-K sect. High speed Rotary Joint. \$35.00

Accessories

Accessories

PARABOLIC REFLECTOR 4ft. dia. RCA
hi gain dish \$84.50
VARIA. COND. 4 gang. 7 to 144 mmf/
sect. Ball brg. shaft. \$3.25
PATCHING CABLE. Male type "N" ea.

end 3ft. \$2.50 COMPLETE STOCK 400 CY. TRANSFOR.

Frequency Shift Comparator

AN/URA-8A Frequency Shift Convertor Comparator. Compares and selects best of two convertor outputs for maximum opera-tion. New with Tubes. Recent production. Includes Mounting Rack. \$135.00 ea.

3 CM. "X" Band

CRYSTAL MOUNT. Holds any IN23 type xtal. I" x 3/6" guide std coax output, UG40 ifg input, \$15.00
DIRECTIONAL COUPLER. Uni dir, 20db. type 'N' output, UG30ffg. to UG40chk. JAN type CG-178/AP. \$25.00
WAYEGUDE. Std. RC-52/V0 sharp internal corners. Any lgth up to 12 ft. \$1.93 per ft. \$1.25 per ft. FLEXIBLE SECTION, Apx 6". UG39 figs.

\$10.00 TR-ATR SECTION. Duplexer assy w/ UG-39 to UG40 run, iris cplg, cplg to 1B24 txpe TR tube, ATR cavity 724 type component. w/tuning slugs. SO-3 Radar component.

88.50 ROTARY JOINT. TG40 choke to choke, w/mounting, plate for easy installation. 360 deg. rotary coupling for lab or high speed scanner. \$12.00

All material guaranteed surplus.

A complete variety of circumate plumbing is available in most bands incl. tost accessories and radar she will be seen to the complete the most bands incl. tost accessories and radar MENTS. We pride ourselves in our ability to serve the microwave industry. A prompt reply is given to all inquiries. Immediate Delivery.

Telephone: JUdson 6-4691

550 FIFTH AVE., NEW YORK, N. Y.

TEST EQUIPMENT

Spectrum Analyzer, Model TSN-4SE-8500-9600 MC. calibrated linear below cut-off attenuator, calibrated frequency meter, tuned mixer, 4 L.F. stages, 3 video stages, overall gain 125 db., regulated power supply.

Spectrum Analyzer, same as above but modified for 100 to 1000 MC frequency range.

modified for 100 to 1000 MC frequency range.

X Band VSWR Test Set. TS-12, complete with linear amplifier, direct reading VSWR meter, slotted waveguide with gear driven traveling probe, matched termination and various adaptors, with carrying case.

R. F. Pover Meter—1 to 600 MC 0-15 and 0-60 Wait scales. May be used as dummy load for 0 to 1000 MC,—100 W maximum, VSWR less than 1.1 from 0 to 600 MC. less than 1.3 from 600 to 1000 MC. X Band Pick up Horn, AT48/UP with coax fitting.

fitting. TS-45/APM-3 Signal Generator 8700-9500

TS-45/APM-3 Signal Generator \$700-9500 MC, 110V 60-800 eps.
TS-35A/AP X Band Signal Generator, pulsed, calibrated power meter, frequency meter, calibrated attenuator, 110V 60-800 eps.
30 MC L.F. Strip, Video and Audio Amulifier and 115 volt 60-2600 eps Power Sunply Bandwidth 10 MC, new, part of CDB Powersity

SPR-2 receiver.

High Pass Filter F-29/SPR-2. Cuts off at
1000 MC. and below: used for receivers

Calibrated S Band Power Meter

TS-110 S Band Echo Box 2400 to 2700 MC..

Portable, 8 Band Signal Generator Cavity with cur-off attenuator, 2300 to 2950 MC, 2C10 Tube, with modulator chassis.

off attenuator, 2200 to 2950 MC, 2C10 Tube, with modulator chassis.

VD-20K Voltage Divider for measuring high video nulses, 20 KV max, ratio's 1:10 and 1:100, transmission flat within 2db, 150 cns to 5 MC.

Waveguide Below Cut-off Attenuator Light-ation 30-100 db.

TAA-16 Tuned Linear Audio Amplifier, 300 to 8:000 cns, output meter reads direct in VSWR or Power DB. Regulated nower supply, 110V 60 cns.

FPM 3 N Band Power and Frequency Meter, frequency meter \$500 to 9:00 MC, accuracy ± 4 MC absolute, ± 0.5 MC on frequency difference up to 60 MC. Calibrated attenuator 0-20 db, power measuring range, 1 to 1000 MW, pulsed or CW without external attenuator, video detector, self-contained hattery powered, adaptors.

T85/APT 5, 300 to 1600 MC, 40 watt noise modulated transmitter. 110-330 MC Oscillator Butterfly.

80-300 MC. Mixer Butterfly with socket for 955 (used as diode)

400-800 MC. Oscillator Butterfly with 703 tube mounted on it. Field Intensity Meter, RCA 308A, 120 to

S Band Signal Generator—2K28 Klystron, self-pulsed or ext, triggered.

Mark 5, "S" Band Signal Generator—2.4 to 3.4 KMC 2C40 Oscillator, Motor

X Band Receiver, tuneable, waveguide input 9200-9600 MC.

put 5200-5600 MC.
QX Checker, Boonton, Type 110.-A.
Synchroscope—Sylvania Model 5.
Synchroscope—Model P4.
D.C. Amplifier—TS 580/U-GR Model 716
A.M.

Hetrodyne Frequency Meter-GR616C, 100 to 5200 KC. Noise Distortion Analyzer—H.P. Model

Sweep Speed Calibrator, 200 KC, 1 MC, 5

Sweep Speed California, 200 KC, 1 Sic, 5 MC.

Tuning Units P/O APR-4 TN16 30-80 MC, TN17 80-306 MC, TN18 300-1000 MC, TN19 1000-2200 MC, TN54 2200-4000 MC, AN/APR 1 Receiver, used with above tuning units. 110 V 60 cycle.

Measurements 75 Standard Signal Generator. Calibrated output, 124 to 510 MC.

Rotary Joints, % Coaxial. S Band. Antenna. Coaxial, pressurized. S Band. Can be used with parabolic reflector. Microvolter—Ferris Model 10B + 10C. Frequency Standard—James Knight Co. 1, 5 and 10 MC check points.

F. M. Text Set—X Band, with wavemeter and wattmeter, 110V 60 cycle AC.

Recording Ammeter—Esterline Angus 0-5MA.

Angus 0-5MA.

TS-36-8.5 to 9.6 KMC Power Meter .1—1000 MW.

TS-33-8.7 to 9.5 KMC Frequency Meter and Video Detector.

K Band—slotted line, gear driven travel-

ing probe.

K Band—Attenuator 27 to 34 KMC.

K Band-Low Power Dummy Loads. 1

Watt.
TS-13/AP Consists of Signal Generator
"Na" Band. Wavemeter + wattmeter.
TS-155 Test Set for S Band radar—uses
2C40 oscillator, self-contained, power
monitor, self-pulsed 115V 60-800 cycles.

Impedance Bridge—Type TBX-1BR 8.5 to 9.6 KMC—CRT Indicator.

S Band directional couplers 31/2" wave-

S Band Coaxial to Waveguide door know transition 1 % coaxial to 3 ½ waveguide. S Band Low power waveguide termina-

CN 29 S Band Coaxial Attenuator, Type N Connectors, 20 db.

Model P 142 Signal Generator 1200-4000 mc—with wavemeter and wattmeter.

mc—with wavemeter and wattmeter.

High Power U.H.F. Attenuator 100-Watts
20 db, 30 db or 40 db, 51.5 OHMS impedance, type N connectors, dissipates
100 watts of power, uses tapped load resistor as above, frequency range 1-700
Megacycles.

P M 12 Peak reading power meter 50 KW maximum, 2-700 Mc. can be used for dummy load up to 100 Watts average

TPS-52-PB S Band Attenuator, variable, %" coaxial with type N adaptors.

HIGH POWER DUMMY LOADS

X Band. 11/4" x 5/8" guide, choke or plain flange, dissipates 350 watts average power continuously in still air. VSWR less than 1.15 between 7 and 10 KMC, weight 51/4 pounds.

X Band, ½" x 1" guide, choke flange, dissipates 250 watts average power continuously in still air, VSWR less than 1.15 between 8.2 x 12.4 KMC, weight 31/4 pounds.

1.15 between 8.2 x 12.4 KMC, weight 3¼ pounds.

X Band, 1½" x 5%" guide, plain flange, dissipates 200 watts average power continuously in still air, VSWR less than 1.15 between 7-10 KMC, weight 3½ pounds.

X Band, 1½" x 5%" guide, plain flange, dissipates 250 watts average power continuously in still air, weight 2 pounds 4 ounces.

tinuously in sun un, normal ounces.

S Band, 11/2" x 3" guide dissipates 1,500 watts average power in still air, VSWR less than 1.15 between 2.5 to 3.7 KMC, choke flange, weight 13 pounds.

TS 231 X Band Dummy Load 7-10 KMC Max VSWR 1.1, dissipates 200 Watt average power in still air.

TS 108 X Band Dummy Load 9300 MC, Max VSWR 1.15.

X Band, High power attenuator 8-12 KMC, 250 watts dissipation Fixed attenuation from 6-50 db.

L Band Coaxial Dummy Loads, 500 Watts Dissipation 1½ coaxial.

Coaxial Dummy Load—DC to 300 MC 1000 Watts in still air, type N Input connector, VSWR less than 1.2.

TS 235 Coaxial High Power Dummy Load "L" Band—11/2" coaxial.

High Power Dummy Load-3 inch coaxial. TS 338 S Band, dummy load—2.5 D 3.7 KMC, Maximum VSWR 1.1 dissipates up to 700 watts in still air.

NIBUR SALES CORPORATION

P. O. Box 811

Red Bank, New Jersey

Telephone: Red Bank 6-5810

Perhaps you did not realize that Weston Laboratories, Incorporated provides a complete package when it comes to fulfilling your foreign requirements. We provide, in addition to equipment of your choice, complete instructions, α normal complement of accessories and complete export packaging at no additional charge. Little wonder that we have been contacted by so many of you in the past six months. If you require Military type test equipment, let us know your needs for immediate answer.

AN-APA-10 AN-APR-1 AN-APR-1 AN-TSM-4 AN-TSM-4 AN-UPM-13 AT-67 AT-68 AT-48 BE-67 BC-271* BC-271* BC-439 BC-439 BC-439 BC-638 BC-638 BC-638 BC-939 BC-938A BC-949/A	BC-595-TU BC-1060A BC-1060A BC-1206A BC-1201A BC1236/A BC-1257/7 BC-1287A 1-48 1-49 1-56 1-61B 1-83A 1-86A 1-95A 1-96A 1-97A 1-96A 1-106A 1-116	1-117 1-122 1-126 1-130 A 1-134 B 1-135 1-137 A 1-140 A 1-145 1-147 1-157 A 1-157 A 1-168 1-177 1-168 1-178 1-178 1-196 A 1-196 A 1-196 A 1-198 A	1-212 1-222/A 1-223/A 1-225 1-223 1-245 1E-216 1E-36 1F-12/C 1S-185 1S-189 LAD LAE-2 LAF LM* LU-2 LU-3	OAW P4 P4E SG-8/U TAA-16WL TS-11ARR TS-3AP/AP TS-10A/APN-1 TS-11/AP* TS-11/AP* TS-11/AP* TS-11/AP* TS-11/AP* TS-14/AP TS-16/APN TS-18/AP TS-19 TS-24/APM-3 TS-24/APM-3 TS-26/TSN-1* TS-27/TSM	TS-32A/TRC-1 TS-33/AP TS-35/AP TS-35/AP TS-35/AP TS-35/APM-3 TS-35/APM-3 TS-35/APG-4 TS-35/APG-4 TS-35/APG-4 TS-35/APG-4 TS-35/APG-4 TS-35/APG-4 TS-35/APG-4 TS-35/APG-1 TS-36/U TS-62/AP TS-63/	TS-89/AP* TS-90* TS-90* TS-95/AP TS-96/TPS-1 TS-98/AP TS-100/AP TS-101/AP* TS-101/AP* TS-110/AP* TS-110/AP* TS-110/AP* TS-110/AP* TS-110/AP* TS-111/CP* TS-111/CP* TS-111/AP* TS-127/AP* TS-128/AP* TS-124/AP* TS-143/CPM TS-144/TRC-6 TS-144/AP*	TS-148/UP* TS-153 TS-155 TS-159-TPK TS-164/AR TS-170/ARN-5 TS-171/UR TS-171/UR TS-171/UR TS-171/UR TS-182/UP TS-188/UR TS-189/UR TS-189/	TS-218/UP TS-220/TSM TS-226A TS-230B TS-232/TP N-2 TS-239B TS-250/APN TS-251 TS-263 TS-263 TS-263 TS-270A TS-268* TS-270A TS-285/GP TS-285/GP TS-297* TS-303/AG TS-303/AG TS-311/FSM-1 TS-323 TS-324/U TS-328	T5-338 T5-359A/U T5-363/U T5-377/U T5-377/U T5-418 T5-419 T5-421/U T5-453/U T5-450/U T5-505 T5-505 T5-505 T5-505/U T5-617/U T5-617/U T5-620/U T5-620/U T5-620/U T5-638/U T5-458/U T5-458/U T5-458/U T5-458/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U T5-617/U
A CONTRACTOR					1				

$oldsymbol{\mathcal{U}}$ LABORATORIES, INC.

HARVARD, MASS.

Tel: HARVARD 250-AYER 300-TWX HARV 193 Cable: WESLAB

LOOK! FABULOUS LOW PRICES - EVEN FOR RADIO SHACK 0C3/VR-105 .79 0D3/VR-150 .69 .78

1.11

.69 .95

.49

7.50 1.50 2.75 9.95 1.50

4.95 5.95 6.50

...... 8.9519.9549.50

... 2.50

2J5049.50 2J5565.00

3D6/1299 ... 39 3EP1 ... 3.50 3FP7 ... 1.69 3GP1 2.50

3JP12 ... 4.50 4B22/EL5B 3.50 4B25/EL6CF 3.50 EL/C5B 3.50 EL/C6A 3.50 4J36 ... 95.00 4J37 ... 95.00

.....12.50

TASGT

2AP1

2C40

2J21 2J21A

2134

2X2 2X2A

1822 1824 1824 7.95 1827 9.95 1832/532A 1.75

1N21 1N22 1N27

Industrial, Receiving, Special-Purpose

New 1954 electronic parts mailorder catalog! Better than ever! FREE!

			724A 1.25 724B 1.50
			725A 5.50
71A45		6AG779	726A 9.95
QK-7250.00		6AJ595	80175
RK-72/CRP72 .85		6AJ649	803 3.10
FG-90 2.50		6B6G55	805 2.50
100TH 7.50		6C655	807 1.35
VR-10579		6C8G55	810 9.95
112A ,39		6H6	811 2.10
211/VT4C79		6K7	813 8.95
227A 3.50		6SC7	814 2.25
274B 1.95		6SH7GT59	815 3.00
EL-302.5 1.00		6SH759	816 1.10
304TH 9.95	•	7C4/1203A 39	826
GL-316A 1.69		7E5/120169 7E6 45	830B 1.95
350A 2.95			832 6.95 832A 7.95
371A 1.95		10Y 79	838 2.50
388A 1.95		12A6 69	866A 1.00
394A 2.50		12C859	872A 1.95
WL-417A12.50		12J5GT40	884 1.00
GL-434A12.50		12SF740	902P1 4.50
GL-446A 1.50		12SJ7GT40 14H7 49	954
464A 3.95			CK-108945
CK-501X59 532A 1.95			957
GL-60535.00			1616
WL-653B45.00		RK-25 2.10	1619
7P-65335.00	PRICES	23D445	1624 1.00
705A 1.50	64/1/44	FG-27A 4.90	1625
706AB12.50		30SP 39	1629
706AY 16.50	BBBB	45SP35	1655/6SC7 .75
707A 6.50	DROP	53A 1.00	184650.00
721A 1.50	DITO!	QK-5950.00	205179
723AB . 14.95	DDOD	QK-6050.00	8005 4.25
7-370	DROP	QK-6150.00	900195
		Ţ 0130.00	900285
			900399
			900439
			900634

<u>KADIO SHACK</u>

CORPORATION 167 Washington St., Boston 8, Mass.

APRIL SPECIAL 304TH \$9.95

LARGE QUANTITIES 24 Volts D.C. RELAYS

Rating 1 Amp. to 250 Amp.

Leach # 5058-CDW-G Leach # A957-7220-A Leach # 1027-BF Leach # 1227-B2A Leach # 1254-2L Leach # 1257 Leach # 2024-188 Leach # 7108-D24 Leach # 7202-24 Leach # 7210-24 Guardian # B9-32439 Guardian # G33557 Guardian # 34464 Guardian # 35901 Guardian # 35901 Guardian # B8-34056 Guardian # B2A Leach # 5058-CDW-G17 Guardian # 188-34056 Guardian # 182A Hart # 184-694-R10 Hart # 188-694-R15A Auto-Lite # 188-WSL-4002 Auto-Lite # 188-WSL-4001 Auto-Lite # 188-WSL-4005 Cutton Harman = 194-6005 Auto-Inte # B1-WSG-4005 Cutter Hammer # B4-6041H17C Cook Electric # 114 Advance # 1713 Chapin # RE-800-1-10 Square D # B2A RMB # B2A Cook F0 # 114 Cook Electric # 114 M & H # 405437BH

Inquiries invited! Write and tell us of your requirements. Descriptive literature prices available upon request.

MARITIME SWITCHBOARD

Instrument & Accessories 336 CANAL STREET, NEW YORK 13, N. Y. WOrth 4-8216 (7)

5BP1

5D21 5FP7

SAVE ON TUBES BRAND NEW TUBES GUARANTEED TUBES

OA3/VR75 1.10 OA5 3.50 OB2 1.10 OB3/VR90 1.00 OC3/VR105 90 OD3/VR150 85 1B22 1.75	2534 25.00 4C27/CV9210 2536 89.00 4C35 17 2549 195.00 4E27 14	50 5JP2 19.95 55 5JP4 22.50 00 5JP5 27.50 50 5J23 29.50 50 5J26 99.50 50 5J29 10.00	217C 4.95 221A 1.95 250R 8.95 250TH 16.50 250TL 15.00 FG258A 149.50 274B 2.75 300B 5.95	706 AY 27.50 706 BY 27.50 706 CY 27.50 706 CY 27.50 706 CY 27.50 706 FY 27.50 706 GY 29.50 707 B 13.55 708 A 3.95	809 2.95 811 2.90 811 A 3.50 812 2.95 813 9.95 828 9.95 829 7.00 829B 9.95 832A 8.50 836 3.45	2051 1.00 55116 5.50 5611 115.00 5633 8.95 5637 4.00 5639 8.95 5637 4.00 7643 write 5646 8.95 5651 2.50
18247.00 18262.30 182711,00	2J61 29.50 2J62 25.00 2K22 17.50 2K23 19.95		LUS WANTED ghest Prices!		837 1.45 838 3.98 849 24.50 851 49.50	5654 1.75 5656 14.95 5657 200.00 5670 3.50
1835	2K255 20.00 2K26 55.00 4J26 .95 2K28 25.00 4J27 .95 2K33A 95.00 4J28 .95 2K34 139.50 4J29 .95 2K41 125.00 4J30 .99 2K41 125.00 4J30 .99	.50 5J33 18.50 .50 5MP1 4.50 .50 5NP1 4.95 .50 5R4GY 1.50 .50 5R4WGY 1.60 .50 C6L/5528 6.50	304TH 7.95 304TL 7.95 307A/RK75 3.75 310A 3.95 310B 8.95 316A 1.25	713A	852 17.50 860 3.50 861 15.00 865 98 866A 1.30 869B 55.00 872A 2.75	5672 1.29 5676 1.29 CK5678 1.00 5687 3.75 5693 4.25 5694 2.60 5702 2.95
1N34A 79 1N38 1.50 1N44 1.10 1N47 4.50	2K48. 99.50 4J34. 99.2X2A 1.40 4J36. 129	7,25 0,50 6AL5W 1.75 6BF7 2.50 6BL6 69.50 6BM6 69.50	327A 4,50 328A 3.95 336A write 337A 6.00 349A 8.50	719A 24.50 720BY 149.50 5" DUAL		5704 2.50 5718 6.00 5719 8.95 5750 3.10 5787 6.00
1N55 2.75 1N63/K63. 2.39 1N69 .59 1P28 7.75 1P29 2.00 1P36 2.75 1P39 1.20 1Z2 2.75 VS-9 7.50 2AP1 7.50	SPECIAL Vacuum Capacitor 50 mmfd. 15,000 v. \$7. 12 mmfd. 32,000 v. \$10. 50 mmfd. 32,000 v. \$12. 100 mmfd. 20,000 v. \$14.	6 6C21 24.50 6F4 3.50 6J4 5.25 6SU7GTY 2.75 50 12DP7 16.95 12GP7 25.00 12HP7 13.50 50 15E 1.75	393A 5.95 394A 3.50 417A 8.50 434A 12.00 446A 1.19	SPE	CIAL! cy face. Valued is tube has been illitary use. C17 OF	5767 4.95 5814 2.25 5844 4.50 5876 14.95 5902 8.95 5905 12.50 5907 9.00 5908 9.00 5916 9.00 5913 4.95
2AS15 4.25 2BS2 2.25 2C21/1642 6.9 2C36 29.50 2C39 12.50 2C39 17.50 2C40 17.55 2C40 14.55 2C42 14.60 2C43 14.95 2C44 89	3BP1 3.50 4157 29 3BP2 2.45 4.125A 2 3B23 4.05 4X150A 3 3B24 4.75 4X500A 7 3B25 2.75 C5B 3 3B26 3.50 SAP1 3B28 5.95 5BP1	DA2 wite 9.50 35TG 5.95 9.50 FG57/5559 15.00 2.00 RK60/1641 2.25 5.00 RK72 95 5.00 RK73 95 3.50 75T 6.99 2.95 75TL 8.95 3.25 83V 1.10 4.95 FG95/5560 22.50	450TH 44.00 450TL 44.00 WL456 59.50 464A 10.95 CK512AX 1.40 WL530 16.95 CK536AX 95 GL562 write	721A 2.95 722A 1.95 723A 9.95 723A/B 12.00 724B 2.75 725A 4.50	889R-A 175.00 891R write GL893A 295.00 922 1.25 931A 4.95 935 5.50 955 49 957 49	5972 4.50 6005 2.75 6026 2.25 6110 8.95 6111 9.50 6121 9.95 6201 4.50 8005 4.95 8012 1.95
2C46 17.50 2C51 3.85 2C52 3.75 2D21 1.15 2D21W 2.49 2E24 3.30 2E26 3.25 2E31 1.40 2E35 1.40 2J26 12.50	3C23 7,50 5BP4 3C24/24G 1,50 5CP1 3C97 3,75 5CP1A 1 3C31/C1B 2,50 5C22 3 3C33 9,95 5CP7 3C45 11,75 5D21 3E99 9,50 5FP7 3FP7 1,95 5FP14 3GP1 2,49 5HP1	3.25 ML-100 write 7.50 100TH 7.5 4.50 HF120 9.99 7.50 FG104 29.55 9.50 VT-127A 2.7 1.95 FG172 29.5 7.50 HF200 write 3.95 WL200 write 3.95 YL200 write 3.95 YL200 write	WL616 . 99.50 GL623 write KU627 . 17.50 WL-651 . 59.50 WL655/65739.00 E660 write 700/B/C/D.16.50 703A 2.93 703A 1.50	726B 40.00 730A 20.00 802 2.95 803 3.75 804 10.95 805 3.25 807 1.65	959 1.50 (K1005 69 6 CK1006 1.95 6 CK159 149.50 6 1616 90 1619 39 5 1625 39 1629 39	8020. 1.25 8025. 4.75 8025.A. 5.95 9001. 1.15 900298 9003. 1.50 900469 9005. 1.50
2)2712.50	3HP7 2,95 5HF4	WRITE FOR F	REE CATALOG!	-27-32		

All Prices F.O.B. Los Angeles, subject to change without notice. Minimum order \$5.00. Orders for \$5.00 should be prepaid in full.

ELECTRONICS Dept. EC 7552 Melrose Ave Los Angeles 46, California Thousands of other types in stock. Send us your requirements. RECEIVING TUBES? We carry a complete line in stock. Standard brands only!

For Aircraft, Boats, Cars and Workshops, Gives White or Red Light. Unit pulls out 6 feet from self-rewind reel. Any Voltage, Mounts Any-where, Small Bakelite case 3 x 31/4 x 41/4.

CAPACITOR SPECIALS

2J1F3

SELSYNS BRAND NEW

RELAYS — SWITCHES — SWITCHETTES BLOWERS — ALL TYPES — IN STOCK

NEW YORK ELECTRONICS

218 Fulton St., N. Y. 7, N. Y. Rector 2-4137

K-RK-ARC-UG-PL-AN

CONNECTORS

In Stock for Immediate Delivery

Connector_Corporation

137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-2513

New York Phone: LExington 2-6254

WE BUY AND SELL GOVERNMENT SURPLUS

electronic components, units, wire, etc. Your Inquiries Invited

LAPIROW BROS.

1649 Hoffner St. Cincinnati 23, Ohio Kirby 1285

GLASS TUBING

PYREX - NONEX - URANIUM BULB & CYLINDERS WRITE FOR FREE MONTHLY LIST

HOUDE SUPPLY COMPANY
PHONE KEYPORT 7-1286
M. R. #1 Box 86X Keyport, N. J.

NEVER BEFORE AT THIS PRICE

Frequency 125 - 20 000 kg Input 12 or 24V DC .6 or .3 Amp and

120-475V 5-20 MA

LM FREQUENCY METER

HETRODYNE MODULATED Complete With Calibration Book While They Last \$4950 ONLY

TG-10 KEYER

c

Automatic Code Training Keyer, originally used for class instruction. Includes a pushpull 6L6 amplifier, variable speed synchronous drive motor and rewind. Tube complement 3-6SJ7, I-6SN7, I-5Y3. Dimensions: 25"x19"x11" \$2450

Limited Quantity

FREQUENCY STANDARD

Input: 110v 60cy - AC Intervals:10kc & 200kc

TubeComplement: 1-5U4, 2-6SJ7, 2-6N7. 2-6L6. An accurate crystal controlled, multi-vibrator test set for checking frequencies up to 30mc BRAND NEW . \$2950

Precision Test Equipment

World's Largest Stock IMMEDIATE DELIVERY

SIGNAL GENERATORS TS 13-AP I-72 I-196 TS 35-AP 1-96 I-208 TS 45-AP I-122 LAF TS 120-UP I-130

Measurements No.78 Ferris No.18B RANGE CALIBRATORS TS 5-AP TS 19-AP TS 10 TS 102-AP

FREQUENCY METERS
BC 221 LM TS 174 POWER METERS TS 33 TS 36 TS 125 I 203

ECHO BOXES TS 62 TS 110 TS 61 TS 207 DELAY LINES

TS 59 AP OSCILLATORS
70 BC 376 BC 638
Hewlett Packard 200 B D TS 170

OSCILLOSCOPES **TS 34** TS 100 Dumont 208-224-241

SPECTRUM ANALYZERS
TS 148 Marconi TF 8 Marconi TF 890.1

MISCELLANEOUS

TS 12.AP TS 89-AP TS 16-APN TS 118-AP IE 36 TS 32-TRC-1 TS 184A AP I 56

TS SLAPG TS 251 I 95 TS 56 AP TS 268-U I 100 TS 78-U IE 19 I 139A AN-UPM 1

ASSOCIATED INDUSTRIES CABLE ADDRESS Armie LOS ANGELES 6855 TUJUNGA AVENUE NORTH HOLLYWOOD, CALIF.

REDUCED PRICES

TYPE AYLZ 3055S MICROPOSITIONER

Barber - Colman. Polorized d-c relay. Double coil differential current sensitive. 50 volts max. per coil. Alnico (P.M.) Field. Use for remote control, positioning etc.

SA-437\$6.75

PIONEER PRECISION AUTOSYN

Pioneer Type AY-101D Transmitter of Control Transformer for controlled servo circuits. 26 volts 400 cycles single

phase. Weighs 5 oz.

SA-24 \$14.50

We also have in stock Type AY201-3B, AY231-3B, AY-131D and AY223.

DIEHL PM MOTOR

Type FD6-21 27.5 volts d-c single shaft with speed of 10,000 rpm WE No. KS-15098L01. Ideal for

models, blowers, etc.

SA-433\$6.75

P.M. MOTOR AND RATE GENERATOR

Precision motor generator with ball bearings. 115 volts d-c on the motor. We have various models with the following generator outputs: .6 volts/M, 3 volts/M, 9 volts/M, 4.5 volts/M. Please specify which generator output you desire. Motor speeds approximately 7500 rpm.

SA-427 \$24.50

1500 VA INVERTER

GE - 5AS131-NJ3 (PE-118) Input 26 VDC at 100 amps. Output 115 v. 400 cy. 1 ϕ at 1500

VA. PF 0.8 W.E. Spec. Ks-5601L1.

SA-286 \$14.50

PRODUCTS CO. INCORPORATED

1086 Goffle Rd. Hawthorne, N. J. HAwthorne 7-3100

REVERSIBLE GEARED-MOTOR

Delco-PM-Permanent Magnet Alnico Field Motor

#5071895 1/4" SHAFT or 11/16 GEAR ... \$17.50 #5069600. \$18.50

Clamps to hold motor: \$1.50 ea. GRAIN OF CORN LAMPS

28 VOLTS #328 #321

10 for \$3.00 100 for \$25.00

#318 3V AMBER OR CLEAR

10 for \$1.80 100 for \$15.00

LM32 LM32 10 for \$4.50 Bausch & Lomb 10 for \$6.50 XTENSION SOCKET ON CORD TRANSFORMER FOR LM 32

#326 21/2 Volts

10 for \$3.00

REDMOND Powerful 5" Blower or Ventilator 115 volts AC 60 cycles 18 waits. For Kitchen - Laborator, Heat or Cold or Chemicals ... \$8.95

Ford Spark Coil by Delco-Remy 1/2"..... SMALL BLOWER OR AGITATOR FOR COOLING T.V. ETC.

A Miracle Switch that will not leave you Dark. Delayed Action Light Switch....

Round Elapsed Time Meter.....

\$13.75

MARKTIME 5 HOUR SWITCH

A 10 amp. timing device. Pointer moves back to zero after time elapses. Ideal for shutting off radios and TV sets when you go to bed. Limited supply at this special PRICE... \$4.90

Also available in 15 min., 30 min., 1 hr. at \$5.90

10 Seconds to 24 Minutes Timer

A hand wound electric TIMING SWITCH, Pointer moves back to ZERO and shuts off RADIO—TY—Electric Mixer—Photographic Devices—Time Delay etc. Furnished with Calibration Chart and Pointer Knob, Biggest bargain we ever had \$1.25

TELECHRON Motors RPM

Genuine

3 R.P. Hr. 2.85 1 R.P. 2 HP. 2.80 1 R.P. 12 Hr. 3.25 Laboratory Special 1 of Each Above. \$25.00

HAYDON SYNCHRONOUS TIMING MOTOR

110v. 60 cycle 30 RPM... \$2.60 110v. 60 cycle 1 RPM.... \$2.85 230V (LRPM 1.00 1.00

ALL PRICES F.O.B. N. Y.

64F Dey St.

New York 7, N. Y.

All types for industrial and experimental applications. Tubes, cables and compo-

MEDICAL SALVAGE CO., INC. 217 E. 23rd St. New York 10, N. Y. Murray Hill 4-4267

We STOCK for IMMEDIATE SHIPMENT one of the MOST COMPLETE inventories of SPECIAL-PURPOSE, TV, & RADIO TUBES. We offer fully guaranteed, STANDARD BRANDS at the LOWEST PRICES, consistent with HIGHEST QUALITY. SPECIAL ATTENTION to EXPORT ORDERS.

Value	,									е Туре	Price
083/VF-90	Type	Price	Туре	Price	Type Price		Price				
082 VR-90		5 .95	2K30/410R	320.00	5TP4	101-F (WE)					
081/VR-90. \$2 24334 155.00 ELSCF 7.95 102-6 / WE 2.20		.85		150.00			2.00				
061 VR-105	OB3/VR-90	.82		155.00	EL6CF 7.95	102-F (WE)				1000 T (LAN)	
1827 1.20	OC3/VR-105					104-D (WE)					
1832 1-98 222 - 33 6-46-48 139 HY-1148	1B22				6C21(JAN) 24.95	VU-111					
1835. 8.00 B25. 3.50 CAT 1.50	1 R 3 2 / 5 3 2 A					HY-114B	.50				
18672					6AF4 1.50	C-120	9.00				
1862	1042						3.00				
1N22-B							8.00				
1N22 - A								GL-471-A 2.20			
1N34-A 7.8 3C24/24G 1.00 6G12 5.90 182/15 2.50 CV 177 22.00 CM 501LX 1.25 726CV BY CV 51.50 1622 6L5M 1.53 11.44 400B 1.50 3C33/C1B 3.50 6EN7 5.78 MY 1.532 3.50 BY EV. and WRITE 1626 3.20 11.44 400B 1.50 3C33/C1B 3.50 6EN7 5.78 MY 1.532 3.50 BY EV. and WRITE 1626 3.20 11.44 11.50 BY EV. and WRITE 1626 3.20 11.50 BY EV. and WRITE 16	11421 B				CCSC/5915 1 10			WL-481A 4.30		5 1620	
11844/00B	1 N 23 P				6E4 3 20			CK-501LX 1.25			
1.144 1.00B	1N23-B								728AY, BY, CY-		
1	1N34-A					211 VTAC			DY, EY, and		
1 M84	1 N4E /400 C				65N7 78			WL-531 5.00			
1NS4	11445/400							WL-532 3.50	801A		
1 N N S	1N48				. 1023 33.00				803		
1 N N N N N N N N N N N N N N N N N N N	1N54				-					5 2050	
1228	1N54-A							M DODA 6175		5 5516	
1228	1N69			6.50	General Electric I	DY 333		M 7874 — 71731		5 W L-5552	
1228	1N70					R A 232				n WL-5553	
122. 3.20 3 FF7. 1.75 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P2	1P23		3DP1A		MANUAL COURT		2.35	UUUT Ea.		5 WL-5550	
122. 3.20 3 FF7. 1.75 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P1 5.70 3GP1 2.70 24P2	1P28				■ V / V A 5 / 93	245A	120.00			15 5636	5.75
287 2.00 3 3 2.70 2.	1P40		3EP1	4.75	DOLLA TOTAL			In Original		5 3637/5 D917A	3.00
24P1	1Z2				O' DI'S DEa.	249-C	3.95	Cartons of 100 oa			7.95
2221 ANN 2.00 3191 3.50 250 1.1 ANN 32.00 25		5.70					19.95	Curtons of 100 cu.		5 5642	1.00
2014 (AN) 15 00 3131 75.00 77.30 85.00 FG271/5551 55.00 GL-559 1.15 814 3.50 5646 1.75 2051 3.75 4825/EL6CF 7.50 317.1 12.50 275-A(WE) 5.59 GL-552 75.00 816 1.30 5646 1.32 2052 3.75 4825/EL6CF 7.95 10(special) .85 Hg. 1.1 1.1 1.5 10 304-TH. 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	2B22					250 I H	33.00			5 5643/5N949	8.00
2638 (JAN) 19.08 3431	2C39(JAN)	22.50									7.75
2C44			3J31			2/1-A		01 550 1 15			7.75
A	2C44				7C30 85.00	F G 271/5551					
2652. 3.75 4852/ELCF. 1.55 10TI Ctall. 935 700-TH(JAN). 1.7.75 WL KU\$27. 19.80 828. 9.95 5676 1.15 225. 1.170 4832. 4.170 4832	2C51/396A		4B22	7.50							3.25
2D21. 1.07 4828/CE 225 3.95 101L7 1.55 304L1AN. 4.75 WL 6298 11.70 829/8298 14.50 5693 6.20 2244 1.75 4825 2.95 14.50 5693 6.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.65 1.20 2.20 2.20 4.20 2.20 2.20 2.20 2.20 2	2C52	3.75	4B25/EL6CF	7.95	10(special) 85						1.15
2224. 1.70 4832. 9.50 12GP/. 11.00 384-LUJAN, 6.70 WL-6328 26.00 WL-833A 19.00 5694 2.50 22625 3.23 4C27 12.72 12.55 12.00 R-17 4.00 20.00 A. 3.75 WL-635 11.00 837 9.50 5791/sN980D 5.50 21.22 12.65 3.40 4C3A 3.25 WL-635 11.00 8791/sN980D 5.50 21.22 12.	2D21	1.07	4B28/CE-225	3.95		304-TH(JAN)					6.20
225.5 3.25 46.27 12.75 15.47 4.00 30.5.4 3.00 4.00 57.19 (SNS80D 5.50 2.50 2.50 3.40 46.35 2.00 57.19 (SNS80D 5.50 2.50 3.40 46.35 2.00 4.25 0.4 25	2E24	1.70	4B32		12GP7 10.00			W L 629 11.70			
2256 3.40 4C35 2.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4	2E25	3.25	4C27		15R,	305-A				00 5719/SN980D	
2E30					FG/DR-17 4.00						
2217 2130 4-250A 30.25 KY31A 13.53 311-A 5-38 KL-272A 34.28 WL-272A 34.29 WL-2445 13.50 5726 1.50 21727 1.50 4-250A 31.20 218.20	2E30	2.20	4-65 A	20.00							
2122. 5.00 4-250A 41.25 KX.11A 3.00 T31E-A1 14.75 WL-KU1676. 52.25 851 59.95 5732 3.95 2126 3.95 4212 570 4022 81 50.00 5022 81 50.00 5022 81 5020 81 50	2J21/2J21A	6.50	4-125A	30.25							
2226 13.00 4D22/578 18.50 23D4 18.50 18.51 14.10 WL_677.00 52.25 86.0 2.25 CK_5744 1.25 2127 9.70 4E27/578 2.00 35P7 13.00 775 322 4.40 700 A 19.95 86.5 9.5 CK_5744 1.25 2127 9.70 4E27/578 2.00 4D27/578 2.00 4D27	2,122	5.00	4-250 A								
2277 9.70 4E27/257B 34.00 28DT 1.50 327A 3.50 770A 3.55 865 2.55 CL5748 1.90 2731 20.00 4352 20.00 3517 JAN 3.55 326A 4.90 770B 1.90 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8	2,126	13.00									
2331 20.00 4332 220.00 35TS (JAN) 1.13 328 A 4.00 700-B 13.35 866A 1.25 5750 2.00 13.35 22.00 4335 14.00 50-T 3.55 350A 4.00 700-B 13.35 866A 1.25 5750 2.00 13.35 13.00 14.00 50-T 3.55 350A 4.00 700-B 13.55 874 9.5 5751 2.95 12.35 12.	2,327	9.70	4E27/257B		28 D 7 1.50						
2437 22.00 4155 145.00 331A 4.55 355A 4.00 700 D 19.95 874 .95 5751 2.95 2137 12.00 4165 19.95 875 875 2.95 2137 12.00 4165 19.95 875 875 2.95 2137 12.00 4165 19.95 875 875 2.95 2137 12.00 4165 19.95 875 875 875 875 875 875 875 875 875 87						328 A		700A			
2334 18.50 4137 195.00 1534 3.35 353A 4.00 701A 56.00 884 1.50 5763 1.30 2137 12.00 4163 195.00 RWS-8H60 5.15 353A 5 10 702A 1.175 885 1.65 5780 WE 350.00 1939 12.50 4163 195.00 RWS-8H60 5.15 353A 5 10 702A 1.175 885 1.65 5780 WE 350.00 1939 12.50 4163 195.00 RWS-8H60 5.15 378-AWE 2.00 703-A 4.50 WL-891 281.54 5784 WE 350.00 1939 12.50 1939	2,32	22,00	4J36					700 B 19.95			
2437 12.00 4 163 6 A 135.00 MRS 3 160 151 353 A 5 15 702A 1.75 885 1.65 5780 WE 350.00 2130 1230 4 1520 4 1	2.134	18.50	4J37								
2319 12.50 4PR60A 90.00 WL-5K60 51.50 318-A-SWE 250 703-A 4.50 WL-891 281.54 5784 5.00 2140. 312.00 4XISOA 48.00 QK-65 61.50 317-A-WEE 2.00 704A .85 WL-892R 155.00 5795(WE) 350.00 1250 1250 1250 1250 1250 1250 1250 12	2J37	12.00						701A 6.60		CE 5780 (W/F)	
2240. 32.00 4X150A 48.00 QR -61 60.00 373-A WE 2.00 703-A 38 WL 892R 195.00 5795 WE 350.00 2150 18.35 58P1 3.00 VR -65 1.50 372-A WE 2.02 710A 88.00 WL 892R 195.00 5812 15.00 2151 250.00 58P4 3.00 QR -72 250.00 387-A WE 2.02 710A 8.00 5812 15.00 2151 250.00 58P4 3.00 QR -72 250.00 387-A WE 2.02 710A 8.00 5812 15.00 2154 B 30.00 58P4 1.75 2154 B 35.00 58P4 1.75 2154 B 35.00 58P4 1.95 RKR -73 8.00 58P4 1.75 2154 B 35.00 58P4 1.95 RKR -73 8.00 58P4 1.75 2154 B 35.00 58P4 1.95 RKR -73 8.00 58P4 1.75 2155 65.50 5FP7 1.19 FKR -73 8.00 58P4 1.75 2155 65.50 5FP7 1.00 58P4 1.95 RKR -73 8.00 58P4 1.75 2155 65.50 5FP7 1.00 58P4 1.95 812 2.00 58P4 1.95 2155 65.50 5FP7 1.19 FKR -73 8.00 58P4 1.95 2155 65.50 5FP7 1.19 5P4 1.95 812 2.00 5P5 1.95 812 2.00 5P4 1.95 812 2.00	2.139	12.50	4PR60A					702A 1./5			
2450	2340	32.00	4X150A			373-A(WE)			W L-871 201.		
2151 250.00 58P4 3.00 QK-72 250.00 382-A-We 7.75 105B-AC 18.50 902P1 9.00 5814 1.75 2154-B 95.00 5021 11.90 RKR-72 30 333-A 7.50 706EV 27.50 918 2.20 5803 4.75 2154-B 95.00 5021 11.90 RKR-73 3.90 303-A 7.50 706EV 27.50 918 2.20 5803 4.75 2155 65.50 5FP7 1.26 818 2.90 912 11.85 5829 2.75 2165 2.90 912 11.90 818 2.90 912 11.80 5829 2.75 2165 2.90 912 11.80 5820 6.00 912 11.80 5820 6.00 912 11.80 912 912 912 912 912 912 912 912 912 912			5BP1	3.00							
2154 6 2.95 5C22 44.95 RKR-72 .90 393-A 7.75 706E-X 18.50 902P 918 2.20 5803 2.75 2155 8 95.00 5D21 11.90 RKR-73 .90 394-A 2.50 706EV 27.50 918 2.20 5803 2.75 2155 65.50 5FP7 1.25 81 .95 403A/6AKS 1.50 707A 5.00 921 1.85 5829 2.75 2156 2.50 5JP1 10.00 82 .85 403B/5591 6.95 707B 25.00 922 1.60 5840 6.00 2162 25.00 5JP2 11.50 83 1.11 404A/5847 write 708A 3.50 927 2.20 5848 6.00 2162 25.00 5JP2 11.50 83-V 1.00 407A/WE 3.50 709A 2.00 954 35 5878 1.40 2162 2162 2162 2162 2162 2162 2162 216			5BP4								
2154-B 95.00 5D21. 11.90 RKR-73. 90 334-A 2.50 705EV 2.50 35E 3.50 305E 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75			5C22	44.95					30ZP1		
2155 65.50 5FP7 1.25 81 .95 4033/6AKS 1.50 10/A .3.00 92 1.6.3 32.0 6.00 2161 29.50 51P1 10.00 82 .85 4038/5591 6.95 7078 25.00 92 2.1.60 5840 1.50 2162 25.00 51P2 11.50 83 1.11 4044/5847 write 708A 3.50 927 2.20 5840 1.50 2162 25.00 51P2 11.50 83-V 1.00 4074/WE .3.50 709A 2.00 954 35 5870 35.00 21623 11.40 5130 29.50 98-R 5.50 4084/WE 2.50 CK-710 .95 595 .45 5948/1764 395.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00 51P7 22.00 C-100E 2.50 416A/WE write 71412 2.00 355 .45 5948/1764 37.00 21628 25.00			5D21	11.90							
2161 29.50 51P1 10.00 82 81 4038/5531 5.93 1044 23.50 327 2.20 5844 1.50 2162 25.00 51P2 11.50 83 V 1.10 4044/564 1.50 2162 25.00 51P2 11.50 83 V 1.10 4044/564 1.50 2162 25.00 51P2 11.50 83 V 1.10 4044/564 1.50 2162 25.00 51P2 25.0		65.50									
2162 25.00 51P2 11.50 83 1.11 404A/5847 write 708A 2.50 924 2.20 36.30 1.50 21.70 2.00 2.00 95.4 2.50 2.00 2.00 95.4 3.50 709A 2.00 95.4 3.50 3.50 709A 2.00 95.4 3.50 3.50 709A 2.00 95.4 3.50		29.50				403B/5591					
2K22 19.50 5129 11.95 83-V 1.00 407A(WE, 3.50 709A 2.00 955 45 5948/1764 335.00 24.33 11.40 5130 29.50 98-R 5.50 408A(WE) 2.50 CK-710 .95 955 45 5948/1764 335.00 24.32 25.00 5197 22.00 C-100E 2.50 416A(WE) write 7H12 2.00 955 45 6021 7.75											
2K23. 11.40 5130. 29.50 98-R 5.50 408A(WE) 2.50 CK-710 39 355 43 5793 100 27.75 2K28. 25.00 51P7 22.00 C-100E 2.50 416A(WE) write 7H12. 2.00 355 45 6021 7.00 2 7.75											
2K28. 25.00 5JP7. 22.00 C-100E. 2.50 416A(WE). write 7H12. 2.00 955 45 6000 2.00		11.40	5.130	29.50							
2K29 23.00 5R4GY 1.45 100-TH (JAN) 4.95 417A/5842 write 713A	2 K 28	25.00	5JP7								
	2 K 29	23.00	5R4GY	1.45	100-TH (JAN) 4.95	41/A/5842	write	/13A	331		2.50

SELENIUM RECTIFIERS

FULL-WAVE BRIDGE TYPE					
(Continuous)	18/14 Volts	36/28 Volts	54/42 Volts	130/100 Volts	
1 Amp. 2 Amps. 2½ Amps. 4 Amps. 6 Amps. 10 Amps.	6.75	\$2.15 3.60 4.20 7.95 9.00 12.75 16.25	\$3.70 6.00 12.95 13.50 20.00 20.50	\$8.50 10.50 13.00 25.25 33.00 44.95 49.00	
20 Amps 24 Amps 30 Amps	13.25	25.50 32.50 38.05	38.00 45.00	87.50 95.00	
26 Amps	25.00	48.50			

NEW RECTIFIER CHOKES 4 Amps....07 Hy....6 ohm... 12 Amps....01 Hy....1 ohm... 24 Amps....004 Hy....025 ohm.

NEW RECTIFIER TRANSFORMERS RI: 115 V., 60 cycles in. EC: 9, 12, 18, 24, and 36 Continuous Ratings......

We Build other Selenium Rectifiers, Transformers and Chokes to your specifications.
Buy from the Direct Source for Quick Delivery.

FILTER CAPACITORS

TUBE CARTONS Colored Cartons With New Safety Partitions. . . . r-Gloss Red and Black Carton is the Most Dis-ive Box Available Today. Super-Gloss Red and Black Ca tinctive Box Available Today. SIZE Miniature (6AU6, 6AL5, GT (6SN7, 6W4. (6AU6, 6AL5, etc.) (6SN7, 6W4, etc.) (1B3, 6BQ6GT, etc. (5U4G, 6BG6G, etc. LARGE GT.

Terms: F O B-N Y C-25% Deposit with order-or send full remittance to save C O D charges-Well-Rated Firms (D. & B.) Net 10 days-All merchandise guaranteed. CABLE BARRYLECT. N. Y.

AUTHORIZED DISTRIBUTORS FOR EIMAC, WESTINGHOUSE (WL), CBS-HYTRON (CBS), CETRON and LEWIS & KAUF-MAN TUBES

ELECTRONICS CORP. 136-C LIBERTY ST. N. Y. 6, N. Y.

CRAMER SYNCHRONOUS TIMER

Normally open or closed circuit. ½ RPH Synchronous Motor. Time cycle 60 Min. One contact opens or closes on the hour interval. Can be wired to repeat cycle. Dial can be mounted, for elapsed time indication.

The Regular Price of Timer \$350 is \$19.50—Our Sale Price is

10 for \$32.50 100 for \$300.00

GE SELSYNS 2J1G1 \$5.50 each

Lamps, MAZDA #318 3 volt Min. lamp 100 for \$21.00 10 for \$2.50

SWITCHES - RELAYS - MOTORS - BLOWERS IN STOCK

B & B DISTRIBUTORS 222 Fulton St., NY 7, NY RE-2-0432

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to 4,000 Mc.; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact—the aristocrat of lab receivers in this range. Write for data sheet and quotations.

range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment, including microwave, aircraft, communications, radar; and laboratory electronics of all kinds. Keleket alpha scalers and chambers, dosimeters and other nucleonics now in stock. Quality standards maintained.

SPECIAL TUBE BARGAINS: 723A/B S10.00; 2K25 S15.00; 416A, 88.50; 417A S8.00; QK-60, QK-61 Tuneable CW Package Magnetrons (2800-3025, 2975-3200mc) S50.00; 5657, S150.00; 3C22 S65.00; 446A, 10 for S8.50; 64K5, 10 for S7.50.

ENGINEERING ASSOCIATES

434 PATTERSON ROAD

DAYTON 9, OHIO

AIRCRAFT ELECTRONICS

ARC—1's, ART—13's, RTA 1B's, BC348's AND COMPONENT PARTS FOR ABOVE

WRITE OR CALL FOR BULLETIN

MERRICK ELECTRONICS

166-08 DOUGLAS AVE.

JAMAICA, N. Y.

RE 9-5960

	• • • •	•••	DENS		
MFD	V.D.C.	Price	MFD	V.D.C.	Price
1	1000	50.32	4	800	.75
1	6000	7.50	5-5	400	.70
2	600	.45	7	600	1.05
2 2	1000	.55	10	600	1.10
3-3	600	.85	. 25	600	.22
4	1000	.80	. 25	6000	.75
4-4	1000	1.10			

BATHTUB CONDENSERS

MFD	V.D.C.	Price	MFD	V.D.C.	Price
. 05	600	50.19		600	.24
.0505	600	.22	1	400	.25
.11	600	.20	1	600	.28

HEADSETS	Excellent	BRAND
HS-23 high impedance	\$2.95	\$4.75
HS-33 low impedance HS-30 low imp (featherwt)		5.75 2.45
H-16/U high imp (2 units).		4.95
CD-307A cords, with PL55		1.19
and JK26 jack. 8' long.		1.19

BC-221 FREQUENCY METERS conditioned. PERFECT! Com-\$129.50

SELSYN 2J1G1

wiring for 110 V 60 eycle included. New, tested, Price

DYNAMOTORS

Type	Lo	put	O	E)	cellent Used	Brane
DM-32A	28V	1.1A	250V	.05A.	\$4.90	\$7.5
DM-33A	28V 28V	5 A. 7 A.	575V 510V	.16A .25A	2.25	3.9
DM-34D	12V	2.8A.	220V	.080A.	14.50	
DM-40	14V	3.4A.	172V	.138A.		7.9
DM-28	28V		224V	.07A.	3.95	6.9
DM-21	14V		235V	.09A.	6.85	16.5
PE-73	28V	#20A.	1000V	.350 \.	9.50	12.5
PE-86	28V	1.25A	. 250V	.060A.	2.95	5.5
PE-94A	28 V	10A.	300V 150V	.200A. .101A.	7.50	11.5
PE-94C	28V	• 10A.	300 V 150 V	.200A. .101A.	10.00	12,7
PE-98	14V	₹21A.	300 V 150 V	.200A. .101A.	22.50	37.5
PE-101	13V 26V	12.6A 6.3A, 9	400 V V AC.	.135A. 1.12A	3.75	4.8
PE-103	6V 12V		500V 500V	.160A.	27.50	44.5
PE-104 (Vibrator)		1A. 5A.	84V 51V	.09A.	12.50	14.5
DM-414 (v filter)	HV	2.8A.	1.4V 220V	.400A. .080A.		12.5
PS-225 (w lilter)	28V	3.2A.	375 V	.150A.		10.5
EICOR D D-401	ynam 27V	6.05A.		.200 A . C 2.2A .		9.9
PE-135AX filter)	(wit 24V	12A.		.200A.		34.50
GN-39-F 1 (16" L, 8	4.6V 8″ dia	25 A.	IERAT 1000V .)	OR .350A .		39.50
PE-206 In: 28V I	C—	-Lela				
Out: 500V			A. 1 P		9.75	12.50

PE-218 Inverter—Leland-Wincharger—GE. In: 28V DC—92A. Out: 115V 380/500 Cyc. 1500VA. I Ph. 16.50 24.50 INTERPHONE AMPLIFIER

Easily converted to an ideal Inter-Communications set for office, home or factory. Original. Complete with tubes. New... \$4.75

WILLARD 6-VOLT MIDGET STORAGE BATTERY

3-amp hr. BRAND NEW. $35/8'' \times 1.13/16'' \times 23/8''$. Uses standard electrolyte. \$2.65

WILLARD	2-Volt	Storage	Battery
20 AMP. HR. Brand New			\$2.69

1-QUART	ELECTROLYTE For Above.	A 1 A
Enough	For TWO CELLS. BOTTLE	\$1.4

7-Prong 2-Volt VIBRATOR, For Portable And FARM SETS (GE LB530). \$1.49

Please include 25% Deposit with order—Balance C.O.D. MINIMUM ORDER \$3.00. All Shipments F.O.B. Our Warehouse N.Y.C.

CONTINENTAL RADIO COMPANY

Phone COrtland 7-4605 51 Vesey St. . New York 7, N. Y.

CONDENSERS

10 mfd.—600 v \$98

Three term, bot. mtg. channel type. Dims. 33/4"x21/2"x2". Two 5 mfd. sections rated 400 V at 72 deg "C". 1800 V test. Meets commercial specs. for 600 V operation up to 40 degs "C". Ideal for filter or power factor application. Repeat sales prove this rugged high quality condenser to be of outstanding value. Carton of 24, weight 42 lbs. Large qua. available \$.89

4 mfd.—600 v Type TLA \$1.45 Brand New-Orig. Cartons-41/2 x 11/2.

1	mfd.—	-6 k	ν.					\$7	.9	5
1	mfd.—	-25	k٧			ì	\$	59	.5	0

16 mfd.—600 v.....\$1.75 Dual 8 mfd oil filled cond. hermetically scaled and packed. Tobe type PT-SC-11 measuring 334"x23%"x25%". Stud mntg. centers 2". Plugs into standard four prong socket.

Mfd.	Volts	Price	Mfd.	Volts	Price
.0016	15 K V	55.75 5.95	2	600 V	.5979
0023	16 K V 005-	5.95	0.000.00000000000000000000000000000000	1000 V	.85
015-	10KV	4 75	2	1000 V T	LA 1.29
012	25 K V	4.75 22.50 5.25 17.90	2	2000 V	1.69 2.80 3.95 5.80 7.95 12.50 32.95 59.50 P.U.R.
	10 K V	5.25	2	2500 V	3.95
02 025-	20 K V	17.90	2	3000 V	5.80
025-	025- 50 K V 7500 V 16 K V 10 K V 5 K V 7500 V 12 5 K V 1500 V 2500 V		2	4000 V 5000 V 7500 V 12.5 K V 32 K V 600 V 4000 V 4000 V 4000 V 600 V	7.95
03	7500V	35.00	2	5000V	12.50
0.3	IBKV	15.95	2	12 5 E V	59.50
035	10 K V	12.95	2	32 K V	P.U.R.
05 05	5KV	2.49	2-2	600 V	1.25
05	7500 V	2.95	3	600 V	11.95 .35 1.05
1	1500 V	15.55	3-3	40001	11.95
i	2000 V	.49	3-3-3	400 V	1 05
. 1	2500 V	1.39	4	600 V	1.25
. 1	3000 V	1.89	4	600 VTL	A 1.45
1	5000 V	1.95	4	600VTL	AD 1.40
1	7500 V 7500 V 10 K V	3.50	4	1500 V	2.95
1	10 K V	9.50	4	2000 V	4.35
. 1	10 K V	12.95	4	2500V	5.95
l l	12 K V 12 K V	14.95	4	3000 V	7.55
1	7500 V 7500 V 10 K V 10 K V 12 K V 12 K V 25 K V	29.50	4	4000 V	13.95 24.95 52.50
11	2000 V 7500 V	.98	4	5000 V 7500 V	52 50
1- 1 5- 15	7500V	3.50	4-4-4	600 V	2,40
515	90000	1.95	5	330V A C	1.75
2	10 K V	10.95	5	600 V	1.75
1 2	15 K V 4000	2 85	5	1000 V	1.25 A D 1.40 1.95 2.65 5.95 7.55 24.95 52.50 2.40 1.75 1.75 1.95
25	2000 V	1.35	6	1500 V 330 V A C 600 V	1.75
25	2500 V	1.29	6	600 V	1.85
25	6000 V	1.75	6	1000 V 1500 V	2.49
25	4000 V 3000 V	3.25	6	1500 V	3.65
25	15KV	15.95	7	2000 V 600 V	1 45
25	20 K V	19.95	÷	800 V	1.99
25	32.5 KV	59.50	8	800 V 500 V	1.35
1-1 1-1 15-15 22 25 5-25 25 5-5 5-5 5-5 5-5 5-5 5-5	15KV 20KV 32.5KV 50KV 2000V	85.00	8	600 V	2.25
4	10 K V	19.95	8	600 V R 6 660 V A C 1000 V	1.79
5	1500 V	1.20	8	1000V	3.25
5	2000 V 2500 V	1.85	8	1500 V	4.25
5	2500 V	2.20	8	1000V 1500V 2000V	7.25
5	3000 V 1000 V	2.39	8 8 8 8	600 V 500 V	1.75
5	5000 V	4.15	10	600V	2.25
51	2000 V	.90	10	600V 660VAC	5.90
51 55 55	600 V	.69	10	1000 V 1500 V	4.55
55	1000 V 25 K V	.69	4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6	1500 V	6.25
O .	25 K V 400 V	33.30	10	6000 V	99.50
	500 V	.59	12	1500 V	6.75
	1000 V	.69	12		6.95
	1500 V	1.35	15	330 V A C	3.95
	2000 V 2500 V	1.95	12 12 15 15 15 15 15	330 V A C 440 V A C 600 V 1000 V	4.95
	3000 V	3.35	15	1000 V	5.25
	5000 V	6.85	15	1500 V	6.35
		8.25	15	5000 V	63.50
	7000 V	12.60	16	1500 V	8.95
	10 K V	49 60	20	220 V L C	3.83
	15 K V 15 K V	49.50	20	800 V 330 V A C	4.69
	7000 V 7000 V 10 K V 15 K V 16 K V 20 K V	\$5.00 4.90 4.90 15.93 1.99	12 12 15 15 15 15 15 15 15 16 20 28 28 38 38	330 V A C 1000 V 330 V A C 4000 V	59—782990 2.82900 2.82

25 KW 3 phase 60 cy. diesel gen. Control panel, bats., etc. Specially priced & guaranteed.

SEE MARCH ISSUE FOR

Mica conds., trans. rcvng. Channel, bath-tub & tubular oil conds.

ALSO

Micro sws., relays, rheostats & "J"
potentiometers

Condensers of all types in any quantity, also other standard components. Top prices.

Write: -- ART HANKINS, Owner

MONMOUTH RADIO LABS.

BOX 159

OAKHURST, N. J.

We will Beat All Competition

Airlines and Governments-Please note, all equipment meets CAA or government specifications.

RT-18 (ARC-1) Transceiver 495.00

ARC-3 (Complete

installation) 975.00 AM-26/AIC Amp. 19.50 R-5/ARN-7 R.D.F. 245.00 BC-639 Receiver 245.00 BC-640 Transmitter 895.00

We will Beat All Competition

BC-611 Handy Talkie

	110.00
BC-348 Receiver	110.00
BC-221 Freq. Mtr.	99.50
ID-60/APA-10 Ind.	145.00
CRT-3 Dual Channel	75.00
BC-733D Receiver	34.50
APN-9 Loran	850.00
TS-251 Lorgn Test	650.00

We will Beat All Competition

TS-45/APM-3 X Band Signal Generator 375.00

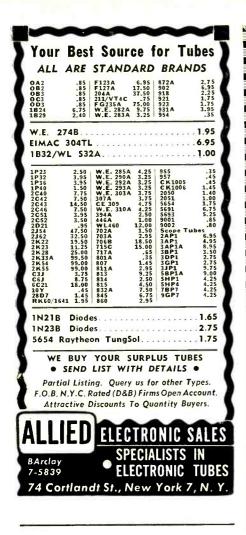
IE-36 Test Set 49.50 TS-35/UP Test Set 495.00 M-299 Mike Adaptor 3.95 AN-104B Antenna AS-27A Antenna 27.50 MG-153 Inverter 115.00

We cut MC-124 and MC-215 Flexible Shafts to any desired length-CAA or government specifications.

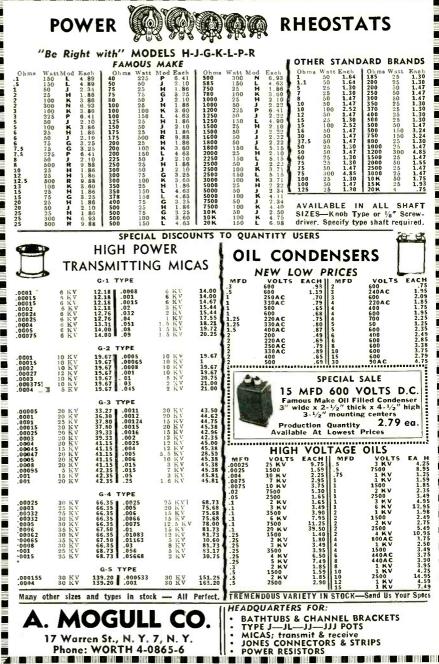
52.50

MG-149F Inverter

Check our prices for Selsyns, instruments, coax and cannon plugs—radar test equipment - aerial and photographic equipments -radio mounts, antennas.

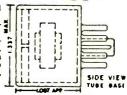

Send for FREE catalogues on

Communication Equipment
Inverters - Dynamotors
Radio-Radar Test Equip.
April 1 Photosophis Posts


EQUIPMENT WANTED

Semler Industries, Inc.

6853 Lankershim Elvd , North Hollywood, Calif.



PULSE TRANSFORMER Tube base plug in type Here are precision made, high quality compact pulse transformers wound on hypersil cores. They are built in octal bakelite tube bases and can be adapted to many uses. They are completely impregnated and sealed. SUGGESTED USES Blocking Oscillator, Multivibrator and Scope Circuits. -Wherever Accurate Timing and Triggering are necessary. -Unexcelled in circuit applications for generating low power and low voltage pulses. -Can be used in circuits utilizing repetition rates from 0 to well over 1 MC and pulse widths ranging from .05 Microsecond up. TYPE UX 7350

Each Coil-50-T#36E Max. DC Res. Ohms

1 & 8= 4.02Ω 2 & 7=4.542Ω 3 & 4=2.357Ω 5 & 6=2.185Ω

Price \$4.50 each

Cramer Electronics, Inc.

811 Boylston St., Boston 16, Mass. CO 7-4700

RECEIV	ING IType		WES	PECIAL	17 F		RF	CEIVING	TRANSMIT-	Type	Type	
Type	No.	Price		ISIVELY		uki			L PURPOSE		Price No.	Price
No.	Price 6X4	.36	EXCL	/31 V EE 1		LOWIST WILL			L PURPUSE	836	3.95 1644	.80
0Z4	\$.54 6X8	.74			AT		OLESALE PRIC			837	1.40 1851	.180
1A7	49 784	.44					nd description—se the advantage of				4.80 2050	1.39
1AX2	.61 7L7	.59									. 1.30 7193	.55
1B3	.67 12AT6	.39	any other unli	sted types.	Minimum ord	er \$10. Please Inc	lude 25 % denosit w	with order ADI	NTIONAL DISCO	o order 842		2.50
1L4	.45 12AT7	.64	On orders for	325 or more	e, deduct 3 % s individually b	Prices subject to	change without no	tice. All prices	F.O.B. our Ware	house, 843	1.20 8013A	3.80
1LN5	.59 12AU6	.39 .69		Type	IType	Type	1 Type	Type	1T.m.	845 849	5.90 8014A	.79
1R5	48 12AV7			No.	Price No.	Price No.	Price No.	Price No.	Price No.	Price 857B	28.95 8019	1.70
154 1T4	.58 12AX4GT	.59		2F22	1.19 2K22	22.50 3C31	3.39 6K4	3.50 328A	6.50 714AY	17.50 860	151.10 8020 6.85 8025A	2.90
104	40 1400	.59	AND SPECIA	L 2E30	2.30 2K23	10.95 3C33	9.40 12L8GT.	1.30 350A	10.00 715A	4.95 861	22.50	4.50
105	48 12BA7	.65	PURPOSE	2E31	1.25 2K25	28.19 3D21A	7.95 12SY7	1.10 350B	5.65 715B	6.50 864	.85 Crysta	1
1X2A	63 12BZ7	.63	Туре	2E43	. 1.29 2K28	27.40 3D22	13.50 15E	1.85 357A	14.50 715C	17.50 865	1.20 Diode	
3A5	93 12C8	.34		e 2J21A	15.50 2K29	22.50 3E29	10.95 15R	.89 371B	1.90 717A	.58 866A	1 46	_
304	.48 12K8	.58		2J22	. 11.50 2K33	215.00 4X150A	34.50 FG17	3.80 388A	. 1.45 719A	4.10 869B	65 00 INZ	1.29
3\$4	.48 12K8GT	.85	VR75\$.9	9 2 J26	. 26.95 2K39	130.00 4B26	6.50 24G	1.30 394A	. 4.95 721A	2.50 872A	3.10 IN21A	1.70
3V4	.51 12SA7GT	.64		55 2 J27	29.50 2K41	125.00 4C27	24.95 26A6	2.95 417A	. 12.50 723A/B	19.50 874	1.30 1N22	2.30 1.75
5Y3GT	.36 12SF7GT	.69	OB3/	2 J31	24.00 2K45 28.50 2K50	145.00 4C28	. 34.00 FG27A	8.10 434A	12.50 724A	3.50 878	3.50 1N23	1.95
5Z3	44 12SH7	.75	VR90	2 133	26.60 2K54	340.00 4C35 198.00 4E27	22.50 35T 17.40 100TH	3.40 446A	2.40 724B	1.90 884	1.80 IN23A	2.70
6AC7	.00	.62	000)	18 2 134	23.50 2K55	197.00 4 131	98.50 100TL	9.85 446B 17.25 450TH	3.40 725A 49.00 726A	9.50 885	1.40 IN23B	3.50
6AF4	.89 125K/G1 .46 12SL7GT.	.49		2 136	98.00 2K56	175.00 4138	98,50 203A	8.95 450TL	44.00 726B	9.50 889RA 43.00 954	189.50 1N34	.65
6AG5	.73 12SQ7GT	.56		39 2 137	12.50 2Y3G	1.99 4 152	195.00 204A	95.00 471A	2.70 726C	62.00 955	.34 1N35	1.95
6AT6		.59		30 2J38	17.50 2X2	.39 5C22	37.50 211	2.21 529	24.00 730A	23.00 956	0E 11943	1.95
6AU6	40 14/40			0 2 139	9.50 2X2A	1.15 5D21	14.50 221A	.49 530	9.50 800	2.95 957	24 IIV45	1.80
6AV6	37 25BQ6GT	.75		39 2 J40	34.00 3B22	2.40 5J29	11.50 242C	9.95 531	5.50 801A	.39 958A	er IIN47	3.95
6AX4	.55 25L6GT.	.39		9 2 J48	. 24.00 3B24	4.60 6AK5W	. 1.75 249C	4.50 532A	3.50 802	4.10 991	60 IN48	.60
6B8	.85 25Z6GT	.38		0 2 J 49	84.00 3B24W	7.11 6AR6	2.85 250TH	18.50 673	12.00 803	2.90 CK1005	.60 1N51 1N54A	.49
6B8G	.53 32L7GT.	.98		0 2J50	90.00 3B25	3.49 6AS6	1.75 250TL	17.50 700A	24.00 804	9.90 1280	1.10 INICOA	1.10 1.65
6BA6	.40 35W4	.37		0 2J51 5 2J55	225.00 3B26	3.65 C6 J 5.95 6C21	9.50 304TH	7.90 701A	6.90 805	2.90 1608	5.70 1N60	.60
6BE6	.37 35Y4	.45	1B35 7.8		145.00 3C22	79.00 6D	23.90 304TL 2.65 307A	7.50 703A 4.80 705A	4.70 806	23.00 1613	.82 IN63	2.50
6BZ7	.89 35Z3	.43	1B63 A 49.0		44.00 3C23	7.29 6D4	2.65 316A	2.50 706AY	1.50 808	2.50 1616	1.95 TN64	.57
6C5	39 35Z5GT	.48		9 2 1 6 2	44.00 3C24	1.75 614	4.95 323B	6.51 707B	14.50 814	2.50 1619 3.80 1624	1.70 1N69	.89
6CD6	1.10 45Z3	.42	1D21 . 3.801				form us of your ex			3.90 1625	20	
6D6	69 50B5		2C3459		ward our best of		IOTHI US OF YOUR EX	cess tune invent	826	.89 1626	19 Cathode	
6F8G	.99 50C5	.44	2V39A 29.95		THE DEF BOST OF	,			829	7.80 1629	44 Tubes	
6J6	49 50L6GT.	62	2C40 6.95	12				e25	829B	10.10 1630		\$5.50
6N7	.98 66	40	2C43 15.95		ECTRON	THE WE	OFECATER	TAIC III	830B	2.50 1631	1.40 5BP1	3.95
6SH7GT	.50].0		2C44 89	42	ECIKUN	TUBE WH	OLESALERS	, IIVC.	832	7.50 1632	.65 5BP4	5.95
6SL7GT.	.49 58 .45 70L7GT		2C46 11.50 2C51 3.66		RECEIVING .	TRANSMITTING	S SPECIAL PU	RPOSE	832A	9.90 1633	.89 5CP1	5.95
6U7G			2C51 3.66 2D21 1.09	+2	140 DUANE ST	REET . NEW YO	PRK 13, N. Y. • P	hone: BArclay 7	7616 833A 834	39.00 1634	1.10 7BP7	7.45
6U8	.59176	.43]	2021. 1.03[1834	5.80 1641	.79	

TRANSMITTER

TA-2J-24

High powered crystal controlled, long-range transmitter. Frequency range: 300-600 Ke and 29-15 MC. Eight separate channels are provided. Now. Send for complete literature.

OSCILLOSCOPE SPECIALS!

DUMONT		į					#224	3	in.	\$149.50
DUMONT						į.	#208		in.	225.00
DUMONT									in.	87.50
R.C.A					÷				in.	87.50
BROWNIN	G						#P4E	5	in.	195.00

Measurements Corp

FREQUENCY METER
Prequency range: 125 Kc. to 20 mc. With audio
modulation and calibrated hand book. Complete with tubes and crystal, including 2 new
regulator tubes. Like new condition....\$49.50

→ FOLLOW ARROW TO GET HIGHEST PRICES FOR YOUR NEW AND USED RADIO GEAR! what have you to sell? WRITE TODAY!

7est Equipment RECEIVERS-TRANSMITTERS

New Catalogue No. 113 Lists Inventory of Aircraft, Industrial and Military Elec-tronics Equipment. Now off the Press. Send for Your Copy Today!

ARROW SALES INC.
Hailing Address: P. O. BOX 3876-E. N. HOLLYWOOD, CALIF.
Office-Warehouse: 7460 VARNA AVENUE, N. HOLLYWOOD, CALIF.
POplar 5-1810 • Stanley 7-6005 • Cable Address: ARROWSALES

SPECIAL SALE!

ALL brand new in original cartons

7,000 5BP1's 100 . . . 5AP1's 100 . . . 720 DY's 300 808's

AN/APR4 new and used receivers . . .

Tuning Units TN-16-17-18

Write for prices on all above . . . NEW CATALOG AVAILABLE . . . WRITE TODAY!

ELECTRONICS

Dept. EL, 2430 S. Michigan Ave. Chicago 16, III. PHONE: CAlumet 5-1281-2-3

4 PDT RELAY

26.5 VDC midget 425 ohm \$2.95

Above frame also in:—
280 ohm @ \$2.75, 19.
280 ohm @ \$2.75, 19.
24c 7 ohm @ \$1.95, DPDT: 12 vdc, 120 ohm @
\$1.95, DPDT 6 vdc, 18 ohm \$1.95, BPST N.O.
double break 10 A cont. 5.3 vdc 15 ohm \$1.05

double break 10 A cont. 3.3 vtc 13 ohm \$1.95

RELAY 3 PDT 24 vtdc 250 ohm Clare Type K. \$2.75

CONNECTOR 15 pin Amphenol #26-151 ... 69
250 WATT output xformer WE #K99496 ... 9.95

S BAND CONVERTER Navy CG-46ABW ... 39.50

ISOLATION XFORMER 35 watts 115v. & 6.3 2.45

SYNCHRO MOTOR 1 FS 115/90 v 400 cycles 14.95

MOTOR 400-1800 cyc. 115v EAD J31C ... 9.95

SILVER TRMR ERIE TS2a 1.5-7, 4-30, 7-45 ... 32

LINK MOBILE XMTRS =25UFM 30-40 MC. 49.50

TRANSISTOR or 5 pin submni socket ... 13

PL-144 SO-124 PL-68 AN-3106-10s-2s, 83-1H.

Variable Frequency electronic generator 1400 watt

output 300-3500 cy. 220/60/in. CML #1400.

CONDENSERS in stock: hathtus from ... 24 400v to 2

mfd—600v. upright oils (CP65 pyranols, YAB, etc) from 3x.1-600v to 1 mfd 600v. Large oils from ... 1-7500v to 1 mfd 2-000v. Also mica. silver mica. variables, trimmers. Write for Bulletin.

EMPIRE ELECTRONICS COMPANY

409 Avenue L, Brooklyn 30, N. Y. Cloverdale 2-4000

TRANSMITTERS-RECEIVERS, ETC.

Wilcox CW-3D: Hallierafter R44/ARR5; SX-25; S-27: BC-499A-B: BC-500B: BC-904; Collins 32RA: BC-614 Speech Amplifier: R85/TPL-1 (incl. 2K41 Klystron)

POWER SUPPLIES

RA-105A, PE-117, PE-94B-C, RA-58

RECORDER REPRODUCER-AN/UNQ-1B

TEST EQUIPMENT

TS 559/FT, TS 59/APN-1, TS 10/APN

CHESTS OF SPARES

TDE, TCP. TAJ. TBM, RAK, SA, PPI

BATTLE ANNOUNCING EQUIP. & SPARES

MP-22 Mast Base: TCP (RMCA 8012) m/g 115 v: Inverters, 115 DC-AC, 60 C, 150 W: PN 31A Control Panels

TRANS-WORLD ELECTRONICS CO.

41 Union Square, New York 3, N. Y. WAtkins 9-1079

All Sales FOB Our Warehouse N. Y. C.

INSTRUMENTS and METERS

RADAR TEST UNIT, Echo Box, 150-240 MC, 115 Volt AC, Liebel-Flarsheim Co. TEST SET for IMC Block Mica Elect. Qual., Boonton Radio # 130, AWS C 75.3 Cap. ARCHER. TEST UNIT, 1-176.

INDICATOR ID-101/MIRN-3, st. # 3F2877

101

S39.50

TEST SET TS-32A/FIRC-1

SERVO POT. S-167500. st. # 6583808. W.El. \$39.50

FREQUENCY METER. 58-62, 100-130V. JBT

21FX, 2½" case.

FREQ. METER. 55-65, 100-150V. Fratim. 3½"

Case.

S14.50

ELAPSED TIME METER. 110 volt 60 cycle. registers to 9,999.9 and repeats. Cramer IRT-2H. 3½"

rd ense. \$13.50

ELAPSED TIME METER. 200-240 Volts 60 cycle. to 9,999.9 hrs. and repeats. Cramer RT-3H 3"

square case.

S13.50

DC MICROAMMETER. 0-50. Electrotech # 350.

AVS type MIC34W056DCUA. 3½" case. \$8.50

DCMA. 0-500. SC type IS-122. st #3F222. GE.

2½" bl sc. \$6.50

RF Amp. 0-3. for Navy XMTR. Weston 507. 2½"

case. black scale. \$7.50

DCMA 0-200. for TCS XMTR. Weston 506. \$8.50

RF AMP. 0-8. SC type IS-89. GE DW-44. 2½"

case, black scale. \$7.50

Items Brand Nave and Guaranteed Net FOB ware-house. Send for additional listings. details.

AVIONIC ASSOCIATES

AVIONIC ASSOCIATES

124 Birchwood Road Paramus, N. J. Rldgewood 6-6336

SPECIAL 2K33A...\$185.00 ea. Brand New in Original Cartons

EMELTONE ELECTRONICS CO.

71 W. Broadway - N. Y. 7, N. Y. Phone REctor 2-1696

4	SPE	CIAL
I	QK-250 QK-249 QK-182	\$110.00 each
b		

Crystal Diodes

SPECIAL	PURPOSE	TUBES
---------	----------------	--------------

Receiving Tubes

Kece	iving	labe
Klystrons,	Magn	etron

Crystul L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23		CDEC					E	THE			_	
Standard	Bro	nds Onl	y	SPEC		IL P	U	(PU3		TUBE	3	Klystr	ons,	Magnetrons
CRYSTAL DIG		OC3-VR150	2.50			J26	125.00	350 A	8.00	730 A	35.00 4.50	956	.55	5718 5.80 5719 11.00 5720 18.75
1N21B 1N21C	2.00	1B22 1B23	7.00	2J51 25 2J55	0.00 5	R4GY	1.50	357A	19.00	802	2.10 4.00 4.00	958 958 A 1616	1.00 1.50	5722 6.25 5725 3.90
1N22 1N23	1.70	1B24	12.00 3.50 3.00	2K23 2	20.00 6	AK5	2.00 1.00 3.25	371 A	.85 .85 3.00	803 804 805	16.00	1619	6.00	5726 2.00 5734 16.00
1N23A 1N23B 1N25	2.25 2.85 5.25	1B27 1B29 1B32	2.75 3.25	2K26 10	00.00 6	AR6	2.75	393A	9.95	807	1.65	1624	2.25 1.50	5751 3.25 5763 1.50 5794 12.00
1N26 1N27	8.00	1B35	9.00	2K33A 18	35.00 C	AS7G	7.00 22.00	417A	12.00 13.95 2.50	809 810	2.25 3.50 11.50	1625 1626 1630	.30 .25	5814 2.50 5840 9.00
1N28 1N31 1N34	4.25 6.00	1B63A C1B	60.00 6.00 28.00	2K41 15	50.00 6	C21 C24	55.00	450TH	50.00	811 811A	2.95 3.75	1631	1.40	5863 14.00 5879 1.65 5881 3.00
1N34A 1N35	2.20	1P28	2.00	2X2	.60 1 .95 1	10 Y	.80 .65	471A	73.00	812 813 814	3.50 11.50 3.75	1633 1641 1655	1.00 2.25 1.25	5881
1N38 1N39	1.30 3.00 11.50	2C26A 2C34 2C30	.60 .60 20.00	3B22	5.50 1	LSE	1.70 2.00 1.25	527 530. 532A	15.00 16.00 3.50	815	4.50	1665	1.30	5904 8.00 5992 13.50
1N41 1N43	12.00	2C39A 2C402C40	21.00 10.00	3B25	5.50 F	F G - 17	8.00	375A	7.00	826	1.50 12.00	5516	7.20 80	6005
1N44 1N48	1.50	2C43	17.50 1.50 30.00	3B27	4.50 3	F627A	7.50 6.00 2.00	602 604 614	9.00 7.75 7.50	829B 830B 832	12.75 4.00 7.00	5517 5527 5527	46.00 65527	6098 5.50 6099 2.50
1N51 1N52 1N54	1.37 .90	2C46	9.00	3C31	6.00- I	RK65	32.00 13.00	700 A 700 B	24.00	832A	9.50	5559	35.00 18.50	6100 1.00 6101 2.25 7193 .65
1N58 1N60	1.25	2C53	13.00	3C45	L8.00 F	G-172	11.50 25.00	700C	26.00 5.80 5.50	834 836 837	13.00 3.75 1.45	5563	27.00 44.00 2.25	7193 7.10 8008 7.10 2.00
2AP1	8.00	2E22 2E24 2E26	2.50 3.00 2.40	4X100A 4	10.00	211 Sp	1.25 30.00 9.00	705A	1.90	838. 843.	3.95 1.25	5582	2.65	8013A 3.00 8019 4.00
3AP1A	12.00 6.00	2E27	3.50	4-150 A 3 4-250 A 3	30.00 2 38.00 2	249C	7.00 6.50	708A 714AY	16.00	851	10.00 55.00	5634	11.00 11.50 12.75	8020 2.25 8025 3.90 9001 1.20
3CP1-S1	6.00	2121 A 2J22. 2J26.	10.50 10.00 20.00		10.00 2	250R 250TH	12.00 22.00 20.00	715B 715C	9.00 29.00	852 860	19.00 3.25 26.00	5635 5636 5638	6.00	9002
3GP1 5BP1 5CP1	5.50 4.50 6.00	2)27	20.00 30.00	4B25	8.50 2	252A	28.00	717A	1.20 28.00	864 866A	1.65	5645	12.85 2.50	900430 9005 2.10 900640
5FP7	2.90 5.20	2J32. 2J33.	25.00 25.00	4C27	38.00 3	258B 304T H	10.00 8.00 8.00	721A 721B 723A/B	4.00 9.50 20.00	869B 872A 876	90.00 3.50 1.35	5654 5672 5675	2.80 1.40 17.00	Above listing is only partial. Inquire if
5LP1	7.00	2J34	25.20 110.00 15.00	4E27	16.50 3	307 A	3.25 2.50	724 A 724 B	3.00	878 884	1.75	5676	1.30 1.20	your items are not listed.
0A2 0A3-VR75	1.00	2J38	24.00 15.00	4.152	0000. 3	327 A	8.00	725A	10.00	931A	6.00	5683	1.25 9.50 4.50	ATT. EXPORT- ERS & FOREIGN
OB2	1.80	2142	38.00 150.00	5D21	14.50 3	329A	8.50 45.00	726B	49.00 69.00	954	.67	5686 5687 5702	4.00	AGENCIES Special prices for
PRICES SUE	BJECT	CASH PAI	E D FOR	ALL ITEMS					RITE,	WIRE OR PH	IONE	5703 5704	1. 90 2.75	quantities. We ship

TELEPHONE RELAYS

CLARE, TYPES C D & E COOKE, AUTOMATIC—ELECTRIC

ALL TYPES of COILS and PILE-UPS Send Us Your Specs, for Our Quote

CLARE TYPE C STANDARD SIZE SENSITIVE TELEPHONE RELAYS

	Coil	Contacts	Will Close at	Price
1)	6500 ohms	1C	4 MA	\$2.50 ea.
	6500 ohms	1B-1C	3.5 MA	2.75 ea.
	6500 ohms	2A	4 MA	3.00 ea.
	6500 ohms	2A-1B	4 MA	3.00 ea.
	6500 ohms	5A	5 MA	3.25 ea.
	6500 ohms	5A-2D	5 MA	3.50 ea.
	CLAI	RE TYPE	G HALF SIZE	ve
		INFALFF	PHONE RELA	13
	Coil	Contacts	Will Close at	Price

5 MA 4 MA 5 MA 4 MA 6 MA 6500 ohms 5800 ohms 5800 ohms 4850 ohms 3600 ohms 4850 ohms 3300 ohms \$2.50 ea 2.50 ea 2.50 ea 2.50 ea 2.00 ea 2.00 ea 1.50 ea 2A 3A 2B-1C 1C 1C 1A (None) Il above Relays may be used for continuo operation on 110V. D.C.

OTHER TYPE C TEL. RELAYS
1300 ohms 2A-1B 24 or 48V
1300 ohms 1B 24 or 48V OTHER TYPE G TELEPHONE RELAYS
1300 ohms 1A-1C 24 or 48V 52.50 ea.
400 ohms 1A 24V 1.65 ea.
500 ohms 1D 24V 1.65 ea.
200 ohms 1A 24V 1.50 ea.

CONTACT SYMBOLS

A=Norm. Open B=Norm. Closed D=Make Before Break

CLARE TYPE A Tel. Relay. Coil—110 Volts A.C. 60 cy. Contacts—3PDT (3 form C) Price—\$3.50 ca. Signal Wheelock Relays #KS9665 Coil—2,000 ohms Contacts—1A, 1B, 1C Oper. at 9 Ma Price—\$2.75 ca. MINIATURE TEL. RELAY. 300 ohm. 24 volt SPDT \$1.65 ea. | VE Prong CR-2791 G.E. Plug In Relays, C-103C25 2200 ohms SPDT 4.5 MA. . \$4.00 ea. C-104B28 700 ohms SPDT 6 MA. . \$3.00 ea. FIVE

ALLIED BJ6D36 MINIATURE RELAYS 1V. 260 ohms DPDT \$1.25 ea. 4V. 100 ohms DPST NO 1.00 ea.

Clare SK-5032 (Herm, Sealed) Plug-In Relays, Coll -30 ohms 6 volts Contacts—DPDT. Price \$4.00 ea.
SIGMA TYPE 5F SENSITIVE RELAYS. Has two 70 ohm coils. Contacts—SPDT....Price—\$3.00 ea.

Electronic Supply Co. 105-07 225 St. Queens Village, N. Y. HOllis 4-5033

CONTINUOUS DUTY LOW VOLTAGE **POWER SUPPLY** PE-204A

Designed for use with telephone repeater EE-99-A to supply plate, screen and filament power from a 12 volt battery, manufactured by the Radiart Corp, small and compact. All components overrated for dependable long life. Spare vibrator and fuses included. Output voltages:

4.3 V DC @ 50 MA; 4.3 V DC @ 50 MA; 45 V DC @ 0.5 MA; 45 V DC @ 0.5 MA; 85 V DC @ 5 MA; 85 V DC @ 5 MA. Input: 12 V DC @ 580 MA.

Adaptable for transceivers pendable low-voltage requirements.

All New In Original Cartons. PRICE EACH-\$15.00

MICROPHONE, WESTERN ELECTRIC

SEARCH RECEIVER ARD-2

Measures RF signals from 80 to 3000 MCS. and pulse rates from 50 to 8000 cycles. Designed as direction finder and frequency meter for U S Navy Aircraft. Includes:

ANTENNA DETECTOR CMD-66AFH-Variable length antennas, diode detector and silver plated tuning stub with cali-

MPLIFIER CMD-50ADC — Three stage pulse amplifier, trigger circuit, pulse rate counter circuit and audio amplifier, visual signal indicator, rectifier power supply operative on 115 Volts AC 60 to 2400 cycles current, regulated. AMPLIFIER CMD-50ADC

TEST OSCILLATOR-CMD-60ABG - Cavity frequency of 400 cycles with selection of four pulse repetition rates.

ALL CABLES AND FITTINGS, ACCESSOR-IES AND SHOCK MOUNTED RACK for immediate installation, plus two Technical Manuals.

SPARE PARTS — Steel chest includes spare Tubes and components.

New Price each-\$375.00

Complete Stocks of Radiotelephones, Transmitters, Receivers, Communication Accessories and spare parts.

y......

TWX NY-1-223

COMMUNICATION DEVICES COMPANY

2331 Twelfth Ave. Cable: Communidev

New York 27, N. Y. Tel: ADirondack 4-6174

FOR SALE Mercury Vapor Rectifiers

New 869B made to Jan requirements at less than 1/2 price. Only \$55,

ELECTRONICS INCORPORATED

Broad St. Wellesley Hills, Mass. 92 Broad St.

FOR SALE

HEADSETS, HS-30/U REMOTE CONTROL UNITS, RM-29 ANTENNA EQUIPMENT, RC-173 DYNAMOTORS, DY-12 DYNAMOTORS, DM-32A DYNAMOTORS, DM-36 DYNAMOTORS, PE-86

VICTOR-BERNARD INDUSTRIES, INC. 1511 N. 26th St., Phila. 21, Pa.

WHY SEARCH? **AARON HAS IT!**

Call Gene Morasco, Sr. WA. 1-9188

AARON ELECTRONIC SALES

6025 Mt. Elliott Detroit 11, Michigan

CARRIER EQUIPMENT

Western Electric CF-IA 4-channel carrier telephone

terminals.

EE-101-A 2-channel 1000/20 cycle carrier ringers.

CFD-B 4-channel carrier pilot regulated telephone terminals complete with four channels 1000/20 cycle ringing.

CFD-B 4-channel pilot regulated telephone repeat-

ers.
C-42-A V. F. telegraph in from 2- to 12-channel terminals.
FMC I or 2 channels carrier telephone terminals, automatic regulation, duplex signaling each channel. Carrier frequencies above 35 KC. Ideal for adding channels above type "C".
Complete engineering and installation services offered.

RAILWAY COMMUNICATIONS, INC.

Raytown, Missouri Telephone: FLeming 2121

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT **HYDRAULICS**

RADIO & ELECTRONIC SURPLUS 13933-9 BRUSH STREET Detroit 3, Mich. TO 9, 3403

LOOK HERE!

WILCOX CW-3 Receiver with coils. Brand new in original cartons. \$45.00 TBW-RBM equipment—complete systems —Signal Generator—GR-804B 8-330 mc

MARINE Transmitter Receiver 65 watt Northern Radio with power supply.

FIL. TRANSFORMER—tapped at 8-9-1011-12 volts 5 amps. \$4.95
5000 MFD-50V. Electrolytic cond. \$2.95
BARRY MOUNTS 896-6G. ..each \$.30
DYNAMOTOR ZA/USA .0515 output 500 v.
50 ma. input 12/24v. 4/2 amp. in original sealed packing \$4.25
CABLE 250 ft. reels. 4 cond. #17. \$12.00

25% with COD orders fob Hempstead ALGERADIO ELECTRONICS CO. 147 Front St. Hempstead, N. Y.

Transmitters: BC-610-E, ART-13, TCS-12 Receivers: BC-312, BC-342, BC-348, TCS. Frequency Meters: BC-221, LM. New equipment and components by Hammar-lund, Harvey Wells, E. F. Johnson, & National.

ALLTRONICS Box 19, Boston 1, Mass. Richmond 2-0048, 2-0916

HYDRO-ELECTRIC SERVO ACTUATORS

From A-5 Autopilot, with 1/4 HP 27.5 VDC II A. Delco motor, 2—1500 ohm valve act, coils, over 60 ft-lbs torque max, on large dia, cable drum. USE POR. Machine Tool Actuator; Steering Engine for Remote Controlled Boats, Autos, Cars, Planes NEW SURPLUS....\$22.50 EACH WITH DATA CAPT. JOE, 1804 Market St., PHILA. 3, PA.

Ouick ANSWERS to your business problems...

ISCELLANEOUS business problems are daily being solved quickly and easily by the use of the Searchlight Section of McGraw-Hill publications.

The Searchlight Section is classified advertising; you can use it at small cost, to announce all kinds of business wants of interest to other men in the fields served by these publications. It is the regular meeting place of the man with business needs and the men who can fill those needs.

When you want additional employees, want to buy or sell used or surplus new equipment, want additional products to manufacture, seek additional capital, or have other business wants—advertise them in the Searchlight Section for quick, profitable results!

Classified Advertising Division

McGRAW-HILL PUBLISHING CO., INC. 330 West 42nd Street, New York 36, N. Y. SEARCHLIGHT (Classified Advertising)

SECTIONS are found in these McGRAW-HILL **Publications**

American Machinist Aviation Week Business Week **Bus Transportation** Chemical Engineering Chemical Week Coal Age Construction Methods & Equipment

Electrical Construction & Maintenance

Electrical Merchandising Electrical Wholesaling

Electrical World

Electronics

Engineering & Mining Journal

E. M. J. Metal Mineral Markets

Engineering News-Record

Factory Management & Maintenance

Fleet Owner

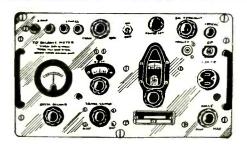
Food Engineering

National Petroleum News

Nucleonics

Petroleum Processing

Power


Product Engineering

Textile World

Welding Engineer

NEW YORK'S RADIO TUBE 💥 EXCHANGE

TYPE PRICE OA2. \$1.00 OA3. 1.00 OB399 OB3. 1.00 OB396 OD396 OD3	TYPE PRICE 2131 24.00 2132 39.00 2133 32.00 2133 30.00 2134 36.00 2138 8.95 2139 8.95 2139 8.95 2140 29.00 2142 155.00 2142 55.00	TYPE PRICE 3C24 1.50 3C34 2.75 3DPI 2.75 3DPI 10.80 3DPIA.52 10.80 3EPI 5.80 3EPI 5.50 3FP7 5.80 3HP7 5.00 4A21 2.75 3GP1 5.60	TYPE PRICE 5BP1. 3.95 5BP24. 12.00 5BP24. 13.95 5CP1. 7.50 5CP7. 6.95 5CP7. 41.00 5D21. 18.00 5D21. 18.00 5FP7. 1.95 5FP1. 27.50 5JP2. 19.50 5JP2. 19.50	TYPE 203A 7.50 211 7.55 217 12.00 244C 10.00 244A 9.50 249C 4.25 250TH 19.95 250TH 2.75 304TH 10.00 304TL 10.00	TYPE PRICE 464A. 7,50 471A. 1,25 527. 18.00 WL530 23.00 WL531 22.50 WL532 1,75 WL533 15.00 HK654 35.00 700A/D 10.00 701A 4.50 703A 3.95	TYPE 802 3,95 802 3,95 803 5,95 805 4,95 807 1,50 808 1,95 809 2,95 810 10,50 811A 3,75 812A 3,95 813 13,75	TYPE PRICE 954 35 955 50 956 75 957 25 958A 60 959 2.25 E114A 25 1280 35 1500T 135.00 11K1554 75.00 1603 5.00 1612 1.50
1B27. 12.50 1B32. 2.95 1B38. 35.00 1B50. 23.00 1B51. 7.50 1B56. 35.00	up 1	TERR	IFIC SLA			CES	1613. 1.25 1616. 1.25 1619. 45 1622. 1.50 1624. 1.75 162535
1B:00 35.00 1B:00 35.00 1N:21 1.75 1N:21k 1.75 1N:21k 1.75 1N:21k 1.95 1N:22k 1.95 1N:23 1.95 1N:23 1.95 1N:23 1.95 1N:23 1.95 1N:23 1.95 1N:23 1.95 1N:25 1.95 1N:25 1.95 1N:25 1.95 1N:25 1.95 1N:26 6.75 1N:27 3.50 1N:26 4.75 1N:27 3.50 1N:28 1.25 2B:22 1.75 2C:24 1.25 2B:22 1.75 2C:24 1.25 2C:24 1.20 2C:24	2155 150.00 2156 110.00 2156 33.00 2161 35.00 2162 35.00 2162 35.00 2K 22 15.00 2K 22 15.00 2K 25 27.50 2K 26 61.00 2K 28 35.00 2K 28 35.00 2K 28 35.00 2K 28 35.00 2K 33A 95.00 2K 33 140.00 2K 41 135.00 2K 41 25.00 2K 55 275.00 2K 55 125.00 2K 55 125.00 2K 55 125.00 3AP1A 10.00	4B26 5.40 4C27 22.59 4C28 35.00 4B27 16.00 4J25 150.00 4J27 150.00 4J27 150.00 4J27 150.00 4J28 150.00 4J31 150.00 4J31 150.00 4J31 150.00 4J33 150.00 4J33 150.00 4J34 150.00 4J35 150.00 4J35 150.00 4J36 150.00 4J37 150.00 4J37 150.00 4J36 150.00 4J37 150.00 4J37 150.00 4J38 150.00 4J39 150.00 4J31 150.00 4J31 150.00 4J32 150.00 4J33 150.00 4J35 150.00 4J37 150.00 4J38 150.00 4J39 150.00	C6A 11.00 C6J 7.50 7BP7. 5.00 7DP4. 9.00 12AP4. 50.00 12AP4. 50.00 12BE. 1.75 1SR . 75 NE16. 59 20-4. 75 KY211 8.00 HK24G 1.50 25T . 295 4S Special 35 RK39 2.75 HF50 1.75 VT52 . 35 RK72 1.00 RK72 1.00 RK72 1.00 RK72 1.00 RK72 1.00 FG95 19.95 FG105 20.00	307A 3.50 310A 4.50 310B 4.95 3111A 6.50 312A 3.50 322A 3.50 327A 3.75 328A 6.75 350A 10.00 357A 15.00 357A 15.00 357A 15.00 357A 15.00 357A 15.00 358AS 4.95 371B 1.50 388A 1.80 393A 7.50 393A 7.50 394A 15.00 417A 15.00 417A 15.00 4446B 3.95 450TL 45.00	704A 1.95 705A 1.75 706AY/FY 25.00 707A 9.75 707B 15.00 7114AY 18.00 7115A 4.59 7115B 9.00 7115C 22.50 7117A 1.50 7118AY/EY 30.00 719A 22.50 720AY/GY 150.00 722A 1.50 725A 1.50	815 6.25 816 1.43 829 11.00 829B 15.00 829B 25.00 830B 2.00 832A 9.50 833A 45.00 834 75.00 834 75.00 836 1.50 860 3.50 860 3.50 860 3.50 860 1.50 860 8.75 860 8.75 870 870 870 870 870 870 870 870 870 870	162625 1851180 2000T150.00 2050180 20511.00 Various 5000 and 6000 series of new production 80122.00 8012A2.50 80133.00 8012A2.50 80191.75 8020180 80253.75 PD836596.00 90011.25 900290 90031.25 900435 90052.75 900625 Thousands of other tubes

NEW TS-147 C/UP TEST SET Hard-to-get X-Band SIGNAL GENERATOR Now Available

Test Set TS 147 C/UP is a portable Microwave Signal Generator designed for testing and adjusting beacon equipment and radar systems which operate within the frequency range of 8500 MC to 9600 MC.

MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles.

Will Check Frequency and Operation of various X Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and Q or resonant cavities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Other test equipment, used checked out, surplus

TSK1/SE K Band Spectrum Analyzer
TS3A/AP Frequency and power meter S Band
RF4A/AP Phantom Target S Band
TS12/AP VSWP Tork Set for Y Rand

TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TS14/AP Signal Generator

TS33/AP X Band Power and Frequency Meter TS34/AP Western Electric Symchroscope

T35/AP X Band Signal Generator TS36/AP X Band Power Meter

1-96A Signal Generator TS45 X Band Signal Generator TS47/APR 40-400 MC Signal Generator TS59/AP Frequency Meter 400-1000MC TS100 Scope

TS102A/AP Range Calibrator TS108 Power Load

TS110/AP S Band Echo Box TS 25/AP S Band Power Meter TS 26/AP Synchroscope

TS'26/AP Synchroscope TS\47 X Band Signal Generator TS270 S Band Echo Box

TS174/AP Signal Generator TS175/AP Signal Generator

TS226 Power Meter TS239A-TS239C Synchroscope TF890/1 X Band Spectrum Analyzer 834 General Radio Frequency Meter

SURPLUS EQUIPMENT

APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver APS 3 and APS 4 Radar APR4 Receiver and Tuning Units APR5A Microwave Receiver APT2-APT5 Radar Jamming Transmitter

MINIMUM ORDER 25 Dollars

YOU CAN REACH US ON TWX NY1-3235

Cables: TELSERUP

SPECIAL

Wide Band S Band Signal Generator 2700/3400MC using 2K41 or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. CW or Pulse Modulated, externally or internally.

Large quantities of quartz crystals mounted and unmounted.

Crystal Holders: FT243, FT171B others. Quartz Crystal Comparators.

North American Philips Fluoroscopes Type 80. Large quantity of Polystyrene beaded coaxial Cable.

Y ELECTRONICS, INC.

135 LIBERTY STREET NEW YORK 6, N. Y. Phone Worth 4-8262

RECORDER, SIGNAL GENERATOR-AMPLIFIER, & Voltage REGULATOR

RECORDER, SIGNAL GENERATOR—AMPLIFIER, AND VOLTAGE REGULATOR UNIT of BC-968 TRAINER—Used for assimulated Radar identification when used with BC-412 Scope. Signal Generator generates various AC wave forms. Recorder was used to record difference in scope and generator wave forms as guided by operator. 110 Volt 60 cyclo operation—with Manual, Shipping Weight. 270 lbs. Complete Unit. NEW: \$59.50 OR AVAILABLE AS SEPARATE ITEMS: SIGNAL GENERATOR—AMPLIFIER: Can be admisted for various wave forms, 110 Volt 60 cyclo operation. Voltage regulated supply 300 Volt 106 MA. 6.3. 5 A.: 5 Volt 3 A. Power Supply. 15 Tubes: 1/746, 3/7A8, 3/TET, 3/TN7, 1/543GT, and 4/VRI 150. With Tubes and Manual.

\$19.95

With Tubes and Manual. \$19.95
With Tubes and Manual. \$19.95
HP Gear Head Motor, Veeder Counter, \$19.95
Pen, etc. and with Manual. \$19.95
CONSTANT VOLTAGE REGULATOR—115 V. 69 \$14.95

SOUND POWERED HEAD AND CHEST SET

TRANSFORMERS—110 V. 60 Cycle Pri. 5 VOLT CT-25A-10,000 V. Ins. OPEN FRAME—3" x 5" x 4-½" . \$7.95 Sec. Two 12 V. 4 A Winding—gives 12 V. 8 A OPEN FRAME—12 V. 4 A St. 55.95 Sec. 24 V. 4 A . \$1.50 Sec. 24 V. 1 A . \$1.95 Sec. 24 Volt 6 Amps . \$5.95

BLOWERS:

115 Volt 60 cycle BLAWER (pictured) — approx. 100 CFM Dis. 2½" intake: 2" outlet. Quiet running. Motor size: 2½"x3'4". NEW — Not Gov't. surplus. \$8.95 Order No. 10939.... \$8.95 DUAL BLOWER — Same as R

Order No. 1C939 DUAL BLOWER WER — Same as RN-520 above, except assembly in each side of motor. Order has blower assembly in each side of motor. Order No. 1C886 No. 1C886 Sta.95 COMPACT TYPE — 108 CFM, motor built Inside squirrel case, 4-½" Intake: 3-%" x 3" Dis. Complete size: 4-½" W. x 9-%" II. x 8-½" D. Order No. 2C067 FLANGE TYPE—140 CFM, 3-½" Intake: 2-½" Dis. Complete size: 8-½" W. x 7-½" II. x 6-%" D. Order No. 1C807 Sta.95 Sta.9 Complete size: 8-1/2" W. x 7-1/2" II. x 6-3/4" D. Order No. 10807 TWIN -275 CPM 4-1/2" Intake: 3-1/2" x 8-1/10" Dis. Complete size: 11-3/4" W. x 9-5/2" II. x 8-1/10" D. Ko. 2009

MINIATURE **BLOWERS:**

VDC; Oblong Outlet x %". Dual 20 CFM. 95. Single 10 CFM.

ANTENNA EQUIPMENT

MAST BASE—INSULATED:
MP-22 MAST BASE—Insulated spring
action Direction of Dracket can be
becomed or aised easily. Receives as at
sections of the price \$2.95
MP-8-33 MAST BASE—Insulated \$3.95
MP-S-33 MAST—Insulated by with
heavy coil spring and 5" dia. insulator
Requires 2" hole for mounting. Weight:
\$1.85

\$1.85 9 lbs. \$5.95
MP-48 BASE—Insulated type base with heavy coil spring. Requires 1%" mounting hole. Weight: 11 lbs. \$6.95
coil spring: 7" dia. insulator; requires 1%" hole for mounting. Weight: approx. 10 lbs. \$8.95

MAST SECTIONS FOR ABOVE BASES:

Tuhular steel, copper, coated, painted in 3 ft. sections, screw-in type. MS-53 can be used to make any length with MS-52-51-50-19 for taper. Any section. @ 50c each. Larger Diameter Section: MS-54 \$1.25

COAXIAL CABLE & CONNECTORS:

CD-1071 CORD—With PL-259 Plugs each end. Removeable Vinylite Covering over Plugs, 50 ohm coax. 2 Ft. long. Price: 59c Each—Or Lots of 10 @

50c Ea.

PL-259—Plug ea. end & 32"—RG-54/U—58 ohm.50c
UG-21/U—Plug ea. end & 32"—RG-11/U75 ohm.50c
UG-22/U—with 4" Coaxial Cable.

50c
RG-8/U (SPECIAL) 51.5 ohm. Same size as RG-8/U. Prices: 1 to 100 ft. @ 8c ner ft.—100 to 500 ft.
@ 7/2c per ft.—500 to 1000 ft. @ 7c per ft.—1000 ft.
RG-34/U—71 ohm, 145 ft. length.

\$15.00

NEW-LOW-LOW PRICES

274-N COMMAND EQUIPMENT:

BC-454 Rec. 3 to 6 MC. Used: \$10.

BC-455 Rec. 6 to 9 MC. Used: 9.

BC-458 Trans. 5.3 to 7 MC. Used: 9.

BC-456 Modulator Used: 2.

FT-220 3 Rec. Rack. Used: \$1.50. New: 2.

FT-220 3 Rec. Shock. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 2.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1.

BC-450 3 Rec. Cont. Box. Used: \$1.50. New: 1. 2.50 DM-33 Dynamtr F/Modulator & Trans.. Used

MOTORS: 24 VDC Reversible

MOTOR — 3.7 RI'M, 40 lb.
Torque Motor Size: 5-½" x x 4-1/32" x 3-5/16". Shaft size: 21/32" x 5/16". Also operates 24 VAC. Phileo No. 441-1098
27.5 VDC — 6000 RPM. 1.5 02. in. Shaft Size: 1-½" x 4". Motor Size: 2-½" x 1-½". No. 5069-267.

Motor Size: 2-½" x 1-½". No. 5069-267.

Motor Size: 4" x 3-½". Air Assoc. No. EE-763. \$6.95
BV VDC—1-176 HP—3500 RPM. Shaft Size: ½" x ½".

Motor Size: 3" x 3". E. No. 5 PN38HA10... \$8.95
BV VDC—1/35 HP—2200 RPM. Shaft Size: 1-½" x ½".

Motor Size: 3" x 3". 4". Ehectrolux No. 18870
3". Motor Size: 3" x 3". 4". Ehectrolux No. 18870
3". Motor Size: 1" x ½". Eherson No. 186-0412—1"rice \$5.95
GFAR HEAD for above motor. Ball Bearing Geared

Shaft Size. 1 A 24.

GEAR HEAD for above motor. Ball Bearing Geared Shaft. 10 to 1 reduction. Price. \$5.95

COMBINATION: Motor & Reduction Gear. \$10.00

21 VAC OPEN FRAME—20 RUM Double Shaft Back Gear Motor with Disengage Clutch. Shaft size 1-½"

55.95 Gear Motor with Disengage Clutch. Shart size: 1-½" 23/16".

3/16".

3/16".

3/16".

\$1.00 PEN FRAME—3 RPM Back Gear Motor. Shart size: \$6" x 3/16".

Natt size: \$6" x 3/16".

Notor: 4" L. x 2-½" Dh. GE Motor only 51.6 Motor only 51.6 Motor. 4" L. x 2-½" Dh. GE Motor only 51.6 Motor. 4" L. x 2-½" Dh. GE Motor only 51.8 Motor. 4" L. x 2-½" Nh. GE Motor only 51.8 Motor. 4" L. x 2-½" X 1-½".

4" X ½" CYCL 1.6 Motor. 4" Notor size: 2" ½" x 1-½".

510 VDC 1/20 HP. 1550 RPM. Motor size: 4" x 2-½".

Shaft size: 1" x 3/16". Redmond #1.55. 1":10: 34.95

6 VDC 1/20 HP. 4000 RPM. Motor size: 4" x 2-½".

Shaft size: 1" x 3/16". Redmond #1.55. 1":10: 34.95

12 VDC 1/30 HP. 4500 RPM. Motor size: 3" x 2-½".

Shaft size: 1" x 3/16". Dolco #5047520.

S4.95

A.C. INDUCTION MOTOR—115 Volts: 60 cycles: 1.9

RPM—Torque 6z. In. 75: Watts—9: with variable Multiple Disc Goder Wheel and Micro Switch mounted on Bracket Assy. Holtzer Cabot Motor Type RWC 2505. 2505
GEARED HEAD MOTOR—Heavy Duty, 24 VDC 8
Amp. 2-½ Ib. Torque: 100/200 RPM. Shaft size: 5/16* x 17. Right Angle Drive. \$8.95

INVERTERS:

FREE SURPLUS CATALOG

Full of Real "BUYS" Send for your FREE copy now!

ADDRESS DEPT. E All Prices Are F.O.B., Lima, Ohio 25% Deposit on C.O.D. Orders

132 SOUTH MAIN ST LIMA, OHIO

INDEX SEARCHLIGHT

APRIL, 1954

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

PROFESSIONAL SERVICES	405
EMPLOYMENT	
Positions Vacant406	
Selling Opportunities Offered 406,	412
Positions Wanted	406
Selling Opportunities Wanted	
or of opportunities wanted	100
DOLLED	
EQUIPMENT	
(Used or Surplus New)	
For Sale	.138
WANTED	
Equipment	414
ADVERTISERS INDEX	
Aaron Electronics Sales	434
Algeradio Electronics Co	434
Allied Electronics Sales	431
Alltronics	434
Ausell Engineering Co	406
Arrow Sales, Inc.	432
Associated Industries	428
Avionic Associates	
Avionic Associates	432
Barry Electronics Corp	429
Bendix Aviation Corp., Pacific Div	410
Bendix Aviation Corp., Research Labora-	
tories	414
Bendix Aviation Corp., York Div	411
Bendix Radio Div. of Bendix Aviation Corp.	413
B & B Distributors	429
Blan	428
	720
Capehart-Farnsworth Corp	3115
	415
Capt. Joe	434
C & H Sales Co	423
Chase Electronic Supply Co	433
Collins Radio Co	413
Communications Equipment Co420,	421
Communications Devices Co	433
Compass Communications Co	437
Connector Corp. of America	427
Continental Radio Co	430
Convair	411
Cornell Aeronautics Laboratory Inc	411
Cramer Electronics Inc	431
Dalmo Victor Co	406
Delco Radio Division General Motors Corp.	410
Electronic Engineering Co. of California	410
Electron Tube Wholesalers Inc	
Electronicraft Inc.	
Electronics Inc.	
Emeltone Electronics Co	
Empire Electronics Co	
business Associates	420

436

Engineering Associates..... 429

TO THE **ADVERTISERS**

APRIL, 1954

SEARCHLIGHT SECTION (Classified Advertising) H. E. Hilty, Mgr.

1 III THICK CONTROL OF THE PROPERTY OF THE PRO	136 124
	114
	112
	114
Goodyear Aircraft Corp	407
	424 418
	406
	427
JSH Sales Corp	427
Kollsman Instrument Co	412
	427
	419
	431
Liberty Electronics Inc	435
Maclen Corporation	406
Martime Switchboard Co	426
Maxson Corp., W. L,	410
Medical Salvage Co	428
Melpar. Inc	408
Merrick Electronics	429
Milgray Electronics Inc	415
M. I. T408,	410
Mogull Co., A	431
Monmouth Radio Labs	430
National Cash Register Co	408
New York Electronics	427
Nibur Sales Corp	425
Pan-Electronics Corp	414
Radalab	422
Radio Corporation of America409,	412
Radio & Electronic Surplus	434
Radio Research Instrument Co	425
Radio Shack Corp	426
Railway Communications Inc	434
Reliance Merchandizing Co	416
R. W. Electronics	432
Servo-Tek Products Co., Inc.	
"TAB" Trans-World Electronics Co	
V	404
Universal General CorpU. S. Crystals, Inc	
Victor-Bernard Industries	433
Western Engineers	422
Weston Laboratories Inc	
White-Rodgers Electric Co	
Wilcox Electric Inc	
Wright Associates	406

COMPASS COMMUNICATIONS CO.

A Division of COMPASS ELECTRONICS CORP.

A WELL-INTEGRATED ORGANIZATION WITH FACILITIES AND TRAINED PERSONNEL FOR—

- DESIGN, MODIFICATION, PRODUCTION, AND TESTING OF COMMUNICATIONS AND RADAR EQUIPMENT

 SUPPLY AND DISTRIBUTION OF ALL TYPES OF EQUIPMENT AND TUBES
- WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

THIS MONTH'S SPECIAL OFFERS

TS-69/AP FREQUENCY METER, Range 340-1,000 mcs. Uses 0-200 microammeter; Excellent \$75.00

1,000 mcs. Costs 1 575.00 cellent 575.00 cellent 58.—RADAR—10 cm—Compact, light and portable, ranges of 5 and 20 miles. Uses 5CPI scope. Operation is from 115 volts, 60 cycle, but we can supply converter for de operation.

\$850.00 ea

ANTENNA ASSEMBLY—Reflector is a light-weight parabolic cylinder, Ass'y has both man-ual and motor drive. Ideal unit for labs, class-room demonstration, smal craft, etc. \$99.50 ea

APQ-13—Very late model airborne radar set, complete and new. One only at...\$2,950.00 SCR-\$45—Complete radar set, less vehicle, antenna and power plant, pretty fair condition, sold as-is at....\$1,375.00

MOTOR GENERATORS CONVERTERS

INVERTERS DYNAMOTORS

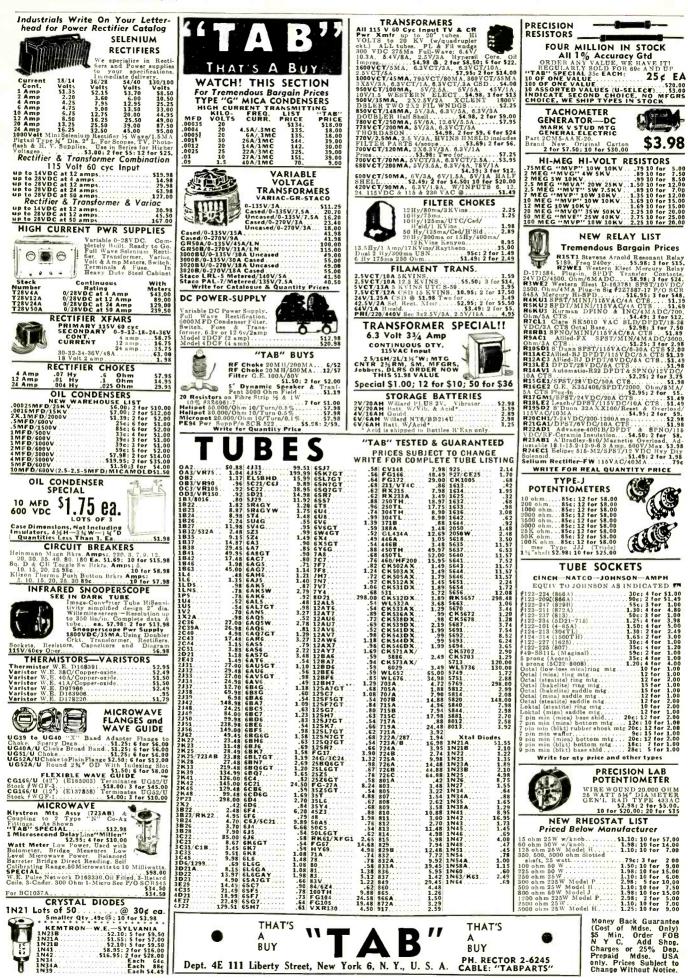
We Have One of the Largest Stocks of Electrical Conversion Equipment in the East, including All Types of Rotating Machinery and a Variety of DC and AC Magnetic Starters and Controllers from 100 Watts to 100 Kilowatts

MOTOR GENERATOR, in 115 vac, out 220-250

vatis. Type CC-21991—Wt. 148 lbs. Input 115 volts dc @ 5.7 amps, 0.625 hp. Output 115 volts ac, 1 ph, 60 cycles @ 3.04 amps, 1800 rpm, 0.85 pf, 40°C temp. rise, sep, excited. Filtered Spt. Output 115/160 @ 108.5 amps: 395.00 WESTINGHOUSE ELECTRIC GENERATOR — 10 KVA—AC. Output 115/1/60 @ 108.5 amps: 80 pf; 60°C; cont. duty 1800 fpm, sep. excited, 125 dc. DC generator Output 125 volts dc @ 8 amps. This generator is mounted on bed plate with room for motor mounting. It can be driven by any mechanically coupled motor, dc or ac or other drive \$459.00 MOTOR GENERATOR 800-1D — input 24-28 volts dc. Output 115 v. 800 cycles at 10.5 amps. Small and compact. \$29.50 M.209—Holtzer-Cabot—Filtered. Input 115/1/60. Output 115 volts, 36, 233 cycles; at 0.4 amps and 24 volts dc at 6.5 amps. 3500 rpm \$125.00 M.219—Holtzer-Cabot—Inverter \$49.50 MG-149—Holtzer-Cabot Inverter ... \$49.50 2J1F1 SELSYN—115-57.5v. 400 cycles \$4.45 SF, 5G—SYNCHRO—115 v, 60 cycles \$30.00 POWER UNIT TYPE 23—Rotary transformer, filtered. Input 24 vdc. Output 6.3 volts at 2 amps and 200 volts at 30 ma. \$19.50 And, of course, PE-73, PE-94, PE-98, DM-25, -28, -32, -33, etc.

SPECIAL PURPOSE and TRANSMITTING TUBES Write for Other Items & Unlisted Prices

This Is A Sa	mple Listing •	Write for	Other Items &	Unlisted Prices
Tube / Price 01A write 01A write 0C3 51.60 0D3 1.55 C1A 6.00 C1B 7.00 C5B 2.93 C6A write C6F 12.55 C6J write 10Y .94	Selling Tube# Price 2 2156 145.00 0 2161 55.00 0 2162 55.00 0 2162 write 0 21422 write 0 21425 26.00 0 21425 35.00 0 21425 30.00 0 21436 write 0 21435 write 0 21445 100.00	Tube # Price 4J29 175.00 4J30 write 4J31 175.00 4J33 190.00 4J34 195.00 4J42 225.00 4J51 300.00 4J52 285.00 5J23 write	Tube # Price 415GL 37.50 446A 2.00 446B 3.75 450TH 45.00 450TL 45.00 705A 3.25 706A-GY 45.00 707B 12.50	Tube # Price 833A 39.50 836 3.95 837 1.45 843 -50 851 45.00 861 25.00 861 25.00 861 25.00 865 1.25 874 1.50
VR-92 .44 1B22 .3.9 1B23 10.0 1B24 write 1N23B 2.5 2B22 4.9 2B26 3.7; 2C40 18.0 2C44 1.2; 2C43 25.0 2D21 1.7; 2D29 2E22 3.7	APPLY TO ALL WERE CHANG	15% RED TUBE PRIC TOO LA E THIS CO	TE TO	889R 195.00 891R 210.00 892 150.00 892 150.00 2X2879 1.05 1616 2.75 1619 .75 1624 2.00 1625 .65 1626 .75 1629 .65
2121 17.5 2122 17.5 2126 27.5 2127 27.5 2131 27.5 2132 27.5 2133 35.0 2134 writ 2136 100.0 2138 49.5 2142 75.0 2142 75.0 2149 65.0 2150 75.0	0 2K54. 150.00 0 2K55. 100.00 0 3B24. 5.40 0 3B27. 10.00 0 3B28. 5.00 0 3C31. 5.75 0 4C27. 25.00 0 4C27. 25.00 0 4C27. 17.50 0 4C27. 17.50 0 4J25. 175.00	5J26 125.00 5J29 write 6C21 2.9.00 100TH 9.00 204A 60.00 211 1.00 250TH 30.00 250TH 30.00 304TH 9.75 304TL 9.75 304T 5.00 339A 35.00 371B 2.50 388A 2.75 5 FOB Our Warehous	715B. 17.50 717A 1.50 720 write 720DY 90.00 721A 3.75 723A 25.00 724B 6.50 725A write 730A 45.00 807 1.65 813 9.00 829A 12.00 832A 10.00	1642 3.50 2050 2.00 5611 100.00 8012 4.25 8014A 55.00 8020 3.50 8025 7.00 9001 1.20 9002 1.00 9003 1.20 9003 1.50 9005 1.90 9005 1.90 9006 .50


OUR EXPORT DEPARTMENT AVAILABLE FOR SPECIAL SERVICE TO OVERSEAS CUSTOMERS

393 GREENWICH STREET

NEW YORK 13, N. Y.

All phones: BEEKMAN 4-6509

Cable Address: COMPRADIO, N. Y.

Dept. 4E 111 Liberty Street, New York 6, N. Y., U. S. A.

INDEX TO ADVERTISERS

Acme Electric Corp	392
Acme Wire Co	320
Adams & Westlake Company	120
Advance Electric & Relay Co	218
Aerohm Corporation	377
Aeronautical Communications Equip-	
ment, Inc.	367
Air Associates, Inc.	61
Airborne Accessories Corp	439
Aircraft-Marine Products, Inc42	
Airpax Products Co	25
Alden Products Company	291
Allen-Bradley Co	231
Allen Co., Inc., L. B	404
Allen Manufacturing Company	393
Allied Industries, Inc.	335 345
Allied Radlo Corp	
Allmetal Screw Products Co., Inc	374
Almo Radio Company	367 396
Alpha Metals Inc	
Amerac, Inc.	273
American Chain & Cable	224 226
American Electric Motors	260
American Electrical Heater Company	369
American Gas Furnace Co	59
American Phenolic Corporation	202
American Television & Radio Co	398
American Time Products, Inc	76
Ampex Corporation	68
Applied Science Corporation of Princeton	373
Arnold Engineering Co	11
Atlas Engineering Co., Inc.	389
Audio Development Company	394
Augat Bros., Inc.	402
Automatic Electric Mfg. Co	270
Avion Instrument Corporation	
€	
The American	
Bakelite Company, a Div. of Union Car- bide & Carbon Corp	27
Ballantine Laboratories, Inc	315
Barry Corporation	
Belden Manufacturing Company	
Bell Telephone Laboratories	
Bendix Aviation Corporation	
Eclipse-Pioneer Division	232
Pacific Division	235
Red Bank Division	
Berkeley Div., Beckman Instruments,	
Inc	
Berndt-Bach, Inc.	
Bird Electronic Corporation Birmingham Sound Reproducers Ltd	
Birmingham Sound Reproducers Ltd Birtcher Corporation	
DIFTCHER Corporation	2 14 7
Intila Electric Co	
Bliley Electric Co	251
Boesch Manufacturing Co., Inc	251 441
Boesch Manufacturing Co., Inc	251 441 197
Boesch Manufacturing Co., Inc	251 441 197 253
Boesch Manufacturing Co., Inc	251 441 197 253 246
Boesch Manufacturing Co., Inc	251 441 197 253 246 386

Burke & J	ames,	In	c.												349
Burneil &	Co							,	,						21
Burton-Ro	gers C	o,													357
Bussmann	Mfg.	Co				,		٠			×	×			513

Calidyne Company, The	212
Cambridge Thermionic Corporation	98
Cannon Electric Co	307
Carboloy Dept. of General Electric Co	351
Carborundum Company	78
Centralab Division of Globe-Union, Inc :	222,
240, 268, 317.	358
Chassis-Trak Corp.	393
Chatham Electronics Corp	237
Chester Cable Corp	227
Chicago Standard Transformer Corp	280
Chicago Telephone & Supply Corp72	, 73
Cinch Manufacturing Co	193
City of Long Beach, Chamber of Com-	
merce	220
Clare & Co., C. P	111
Clarostat Mfg, Co., Inc	74
Cleveland Container Co	114
Cohn Corp., Sigmund	399
Collectron Corporation	349
Collins Radio Company	269
Communications Accessories Co	223
Conrad & Moser	390
Consolidated Engineering Corp35,	331
Constantin & Co., L. L	245
Continental Connectors, DeJur Amsco	
Corp	80
Continental-Diamond Fibre Co	91
Continental Electric Co104,	105
Cornell-Dubilier Electric Corporation	126
Corning Glass Works	313
Cosmic Radio Corp	397
Coto-Coil Company	
Cramer Co., Inc., R. W	272
Crane Packing Co., John	
Cross Co., H	
Crucible Steel Co. of America	
Cunningham, Son & Co., Inc., James	373

Dale Products Inc	316
Dano Electric Co	373
Daven Co., The3rd Co	over
Daystrom Instrument, Div. of Daystrom,	
Inc	33
Diehl Mfg. Co	322
Designers for Industry, Inc	84
Dexter Machine Products, Inc	389
Douglas Instrument Laboratory	404
Driver-Harris Company	88
Dumont Airplane & Marine Instruments, Inc.	368
Dumont Laboratories, Inc., Allen B	403
duPont de Nemours & Co. (Inc.) E. 1.48A,	48B

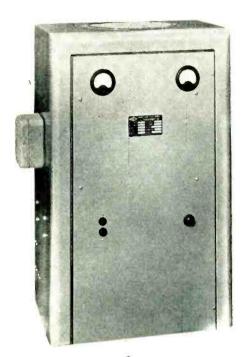
New heart for servo systems

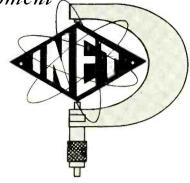
Airborne's saturable reactor

This toroid, produced in our plant as part of a magnetic amplifier, was developed by our Control Engineering group. It is typical of the custom design work they do.

Designed for a flight control system utilizing artificial "feel," our magnetic amplifier depends neither on fragile vacuum tubes nor delicate relays. It is simple, and when fixed in a thermosetting compound, impervious to shock. Also important, it is Airborne engineered for Airborne-actuated control systems.

If you have a problem in the control system category, call on us. For information on Airborne Actuators, see our literature in the I.A.S. Aeronautical Engineering Catalog.


HILLSIDE 5, NEW JERSEY


Want more information? Use post card on last page.

Buggie and Company, H. H. 373

Precision DC Power Supply

for Electronic Equipment

Efficient, closely regulated selenium rectifiers for all types of computers, business machines and other electronic equipment.

Low initial cost...low maintenance, units have no moving parts or vacuum tubes.

Compact, completely self-contained, protected . . . magnetic amplifier controls . . . fully regulated DC power supply.

Optional steel cabinets for floorstanding, wall or caster-mounted. Output ratings from 5 to 500 VDC at 5 to 200 Amps continuous.

Complete engineering specifications available upon request. DIVISION OF LEACH CORPORATION

4441 Santa Fe Ave., Los Angeles 58, Calif. Telephone LOgan 8-4771

New Catalog answers O-ring questions

You'll find complete installation dataand the answers to most O-ring questions -in the new O-ring catalog 9-B given free by Minnesota Rubber. No matter how tough your O-ring problem, rest assured that Minnesota Rubber will find the best answer at the lowest possible cost.

Minnesota Rubber is the world's largest manufacturer of O-rings. Many are used today in the finest electrical systems. Write today for complete details. Don't forget to request your free catalog 9-B, "O-rings."

Minnesota Rubber and Gasket Company

3630 Wooddale Avenue, Minneapolis 16, Minnesota, Dept. 311, Phone Mohawk 9-6781

Eastman Kodak Co., Special Products	
Sales Div.	207
	122
	234
	404
Eitel-McCullough, Inc. 109,	
Eleo Corporation	359
	351
Electric Regulator Corp	372
Electrical Industries, Div. of Amperex	***
	103
Electrical & Physical Instrument Corp	369
Electro-Measurements, Inc.	395
Electro Products Laboratories	365
Electro Tec Corp	50
Electronic Transformer Co	32
Electrons. Inc.	358
Elly Electronies Corp	367
Engineering Research Associates, Div. of	
Remington Rand, Inc	381
Epco Products, Inc.	359
Erie Resistor Corporation	69
Establish Commun & Bustonmant Comp. 41	4 5
Fairchild Camera & Instrument Corp. 41	
Fansteel Metallurgical Corp	
Federal Telecommunication Laboratories	
Federal Telephone & Radio Corp	
Freed Transformer Co., Inc	125
Frenchtown Porcelain Company	365
Fugle-Miller Laboratories	267
Gabriel Electronics Div., Gabriel Co	298
Gabriel Electronics Div., Gabriel Co Gamewell Company	
Gamewell Company	258
Gamewell Company	258 215
Gamewell Company General Electric Co. Apparatus Dept	258 215 85
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62 385
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62 385 103
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62 385 103 357
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62 385 103
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 396 352 112 62 385 103 357
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 352 112 62 385 103 357 370
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 352 112 62 385 103 357 370
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 352 112 62 385 103 357 370
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 352 112 62 385 103 357 370
Gamewell Company General Electric Co. Apparatus Dept	258 215 85 31 300 100 329 393 352 112 62 385 103 357 370

Eastern Precision Resistor Co...... 402

										*	3
,										4	3
ý										×	3
					,						2
									4	4	3
							,				3
											2
	V	y	y	y	y	y	y	v	y	y	Y

Heldor Mfg. Corporation	49
Helipot Corporation, a Div. of Beckman	
Instruments, Inc	199
Henry & Miller Industries, Inc	
leppner Manufacturing Co	284
lewlett-Packard Company41	
Ieyman Manufacturing Co	361
Iopkins Engineering Co	386
lughes Aircraft Company	216
Lycor Sales Co. of California	
(deal Industries, Inc	303
dsco Copper Tube & Products, Inc	
ndustrial Condenser Corp	
ndustrial Development Div., State of	
Florida	380
ndiana Steel Products Co52	
Industrial Hardware Mfg. Co., Inc	369
net Div. of Leach Corporation	410
nfra Electronic Corp	388
nstrument Resistors Co	
Insulated Circuits, Inc	377
nternational Electronic Research Cor-	
peration	
International Rectifier Corp	96
ppolito & Co., Inc., James	
ron Fireman, Electronics Div	
Jelliff Mfg. Corp., C. O	348
Kahle Engineering Co	325
Kartron	404
Kearfott Company, Inc	356
Kellogg Company, M. W64A,	$64\mathbf{B}$
Kepco Laboratories	89
Kester Solder Company	243
Keystone Electronics Company	
Kinney Mfg. Div., New York Air Brake Company	97
Knights Company, James	282
Keiled Kords, Inc	310
Kollmorgen Optical Corp	308
Kringel Manufacturing Co., Inc	
Laboratory for Electronics, Inc.	
Lampkin Laboratories Inc	357

available from Pyramid

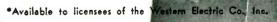
The security of experience.

Pyramid has more experienced personnel (in years of actual designing and manufacturing of capacitors) than any other manufacturer.

The control of specially designed facilities. Pyramid is the only manufacturer of capacitors whose plants were planned and built specifically for the entire manufacturing process of capacitors from drawing board conception through reception of raw materials, fabrication, packaging and shipment.

The guarantee of one standard.

All Pyramid capacitors are one quality, made of the same quality materials demanded by rigid military specifications. Pyramid capacitors have a low leakage factor due to the non-hygroscopic insulating material used on all production. Pyramid delivers the best at no premium.


A complete line of capacitors—full ranges in all ratings and

ELECTRIC COMPANY

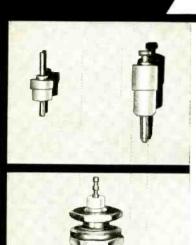
1445 HUDSON BOULEVARD . NORTH BERGEN, N. J., U.S. A.

Model SM-A designed especially for winding of subminiature sized coils. Finished windings up to 1" O.D. to as small as 1/16" nominal hole size. Wire range #34 through #44 AWG. Speed variable.

Designers and Builders of coil winding machinery, special machinery and equipment. Write for brochure.

WORLD'S MOST VERSATILE
WINDING MACHINES

BOESCH
MANUFACTURING CO., INC.
DANBURY, CONN.


 Landis & Gyr, Inc.
 391, 403

 Lapp Insulator Co., Inc.
 264

Lewis & Kaufman, Ltd..... 201

feed-through insulators

Miniature, Teflon insulated. Sturdy—shock and vibration proof. Enable quick easy miniaturization. Unexcelled electrical properties for high frequency, high temperature, high voltage use. Unaffected by a wide range in ambient temperatures, pressure altitudes and humidity. Press-fit fastening requiring no additional hardware.

THREADED BODY TYPE

Metal body fits through bed-plate and is fastened by hex nut. Terminal which passes through hollow body is spaced by Teflon plug. Combines excellent insulating properties of Teflon with mechanical ruggedness unusual in miniature insulator design.

GASKET TYPE

Moisture-proof and oil-proof Teflon insulated sealed units utilizing silicone rubber "O" Rings. Withstand thermal and mechanical shock, vibration, extreme ambient temperatures and climatic conditions. Easy to assemble and disassemble.

HERMETIC SEAL TYPE

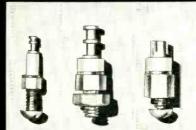
Provide a fluorocarbon-metal fused seal permitting the Teplon insulators to be soldered directly to the deck. This seal is capable of holding a vacuum for sustained periods and of withstanding mechanical and thermal shock, vibration, high and low ambient temperatures and extremes of climate.

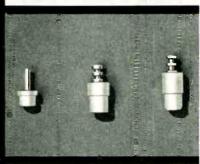
TEFLON sheets and a complete line of Rods, Bars, Cylinders, Tubing—are available for all electrical and electronic requirements.

Lockheed Missile System Division378,	379
Lord Mfg, Co	87
MacDonald Co., Inc., W. S	383
Machlett Laboratories, Inc	211
Magnatian Incorporated	287
Magnecord Inc.	254
Magnetics Inc.	203
Mallory & Co., Inc., P. R 128, 195,	387
Marconi Instruments	102
Marion Electrical Instrument Co	108
McCoy Electronics Company	278
McGraw-Hill Book Co	398
Measurements Corporation	391
Mepco, Inc.	271
Metal Textile Corporation	312
Metals & Controls Corp., General Plate	
Div.	54
Methode Manufacturing Corp	362
Meyercord Co., The	363
Mica Insulator Co	229
Mico Instrument Co	385
Microdot Div. Felts Corp.	349
Microswitch, a Div. of Minneapolis- Honeywell Regulator Co	18
Microwave Associates Inc	101
	225
	286
	344
Minneapolis-Honeywell Regulator Co.	
Aero Div.	360
Industrial Division	64
Minnesota Rubber & Gasket Co	440
Minnesota Silicone Rubber Co	343
Mission-Western Engineers, Inc	336
Moloney Electric Company	116
Monsanto Chemical Co., Plastics Div	257
Muirhead & Co., Limited	3
National Company, Inc.	354
	249
National Pneumatic Co., Inc., & Holtzer-	
Cabot Divisions	93
National Union Radio Corp	79
Neomatic Inc.	361
New Hampshire Ball Bearings, Inc	81
New Hermes Inc	375
New London Instrument Co	4 00
North American Research Labs, Inc	392
Nothelfer Winding Laboratories	26
	2 B
Ohmite Mfg. Co32A, 3	
Ohmite Mfg. Co32A, 3	
Ohmite Mfg. Co	305
Ohmite Mfg. Co	3 <mark>05</mark> 379
Ohmite Mfg. Co	379 287

Link Aviation. Inc...... 70

Phelps Dodge Copper Products	Corp.,
Inca Manufacturing Div	82, 83
Pickard & Burns, Inc	326
Phileo Corporation	107
P M Industries, Inc	95
Polarad Electronics Corp	55
Polymer Corp. of Penna	250
Popper & Sons, Inc	389
Precision Apparatus Co., Inc	444
Precision Paper Tube Co	355
Presto Recording Corp	71
Prodelin, Inc.	332
Progressive Manufacturing Co	262
Pyramid Electric Company	411
Pyroferric Co	274


Quality	Products	Co	404


Radio City Products Co., Inc 341
Radio Corp. of America 265, 4th Cover
Radio Materials Corporation 259
Radio Receptor Co., Inc 118
Railway Express Agency, Air Express
Div 233
Ram Meter, Inc 363
Raytheon Manufacturing Co
Rees Mace Marine Ltd 106
Resin Industries, Inc 345
Resinite Corporation, Div. of Precision
Paper Tube
Resistance Products Co 51
Resistoflex Corporation 342
Roanwell Corp 381
Royal Metal Mfg. Co 361


Sandia Corp	306
Sangamo Electric Company	328
Schwabacker & Co	401
Scientific Electric, Div. "S" Corrugated	
Quenched Gap Co	349
Scientific Radio Products, Inc	320
Servo Corporation of America	333
Shalleross Manufacturing Co 210,	321
Sigma Instruments, Inc.	296
Signal Engineering & Mfg. Co	384
Simmons Fastener Corp	34
Sola Electric Co	56
Sorensen & Company, Inc	2
Southern Electronics Company	401
Sprague Electric Company9, 99,	304
Stackpole Carbon Company	77
Standard Electric Time Co	40
Standard Piezo Company	359
Standard Telephones & Cables Ltd	266
Stanley Tools, Div. of Stanley Works	301
Stavid Engineering Inc.	401
Sterling Engineering Co	275
Sterling Transformer Corp	

Chemelec

stand-off insulators

SCREW, STUD OR RIVET TYPE

These Teflon insulated miniature stand-off insulators are designed for operation in pressure altitudes from 0 to 80,000 ft., ambient temperatures from minus 110°F to plus 500°F. Voltage breakdown after 95% humidity at 160°F is greater than 5,000 V-DC at sea level. Water absorption is zero.

COMPRESSION TYPE

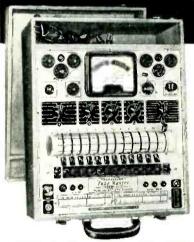
TEFLON Insulator body is compressed into mounting holes, making these miniature stand-off insulators self-fastening, requiring no additional hardware and speeding economical assembly. Electrical and physical characteristics are similar to insulator type mentioned above.

WRITE FOR NEW CATALOG

Bulletin No. EC-1153, a 12-page catalog on the complete line of Chemelec Stand-off and Feedthrough Insulators-plus special electronic components and assemblies is yours for the asking. Write for your copy.

Ask, also, about precision molded and machined TEFLON and KEL-F parts and special assemblies to customers' specifications.

You KNOW Your **Tubes Are Tested**


when you use the

PRECISION SERIES 10-12 Electronamic TUBE PERFORMANCE TESTER with 12 ELEMENT free-point Master Lever Selector System

To test modern tubes for only one characteristic will not necessarily reveal overall performance capabilities. Tube circuits look for more than just Mutual Conductance or other single factor.

single factor.

In the Precision Electronamic Circuit, the tube PERFORMS under appropriately phased and selected individual element potentials, encompassing a wide range of plate family characteristic curves. This complete Path of Operation is integrated by the indicating meter in the positive PERFORMANCE terms of Replace-Weak-Good.

MODEL 10-12-P: in sloping, portable hardwood case with tool compartment and hinged removable cover. Size 13\% x 17\% x 6\%"....\$107.50 Also in counter or rack-panel mounts.

- * Facilities to 12 element prongs.
- * Filament voltages from 3/4 to 117 volts.
- ★ Tests Noval 9 pins; 5 and 7 pin acorns; double-capped H.F. amplifiers; low power transmitting tubes; etc. Regardless of fil-ament or any other element pin positions.
- ★ Isolates each tube element regardless of multiple pin positions.
- ★ Dual short check sensitivity provides for special purpose tube selection.
- ★ Battery Tests made under dynamic load conditions.
- ★ Built-in Dual-Window, geared roller chart. ★ 41/2" Full Vision PACE Meter.

See Model 10-12 and other Precision electronic test instruments at leading radio parts distributors. Write for new, 1954 catalog.

Precision Apparatus Co., INC. 92-27 HORACE HARDING BLVD. - ELMHURST 12, N.Y.

Export: 458 B'way, N.Y.C., U.S.A. Cables: MORHANEX In Camada: Atlas Radio Corp. Ltd., Toronto, Ontario

Want more information? Use post card on last page.

Stevens-Arnold Inc	330	Waldes Kohinoor, Inc
Stoddart Aircraft Radio Co., Inc 206,	309	Warren Plastics Corp 267
Stone Paper Tube Co., Inc	590	Waterman Products Co., Inc 252
Struthers-Dunn Inc	288	Waters Manufacturing Inc 376
Stupakoff Ceramic & Mfg. Co	37	Watlow Electric Mfg, Co 363
Sturtevant Co., P. A		Waveline, Inc 248
Sun Parts Distributors Ltd		Wenco Manufacturing Co
Superior Electric Company		Western Gold & Platinum Works Inc 370
Superior Tube Company		Westfield Metal Products Co., Inc 351
Switcheraft, Inc.		Westinghouse Electric Corp113, 117
Sylvania Electric Products, Inc	, , , ,	Weston Electrical Instrument Corp 86
		Wheeler Insulated Wire Co., Inc 285
		Wheeler Laboratories, Inc
		Wiley & Sons Inc., John
		Williams & Co., C. K
		Wilmar Manufacturing Co., Inc
		Winchester Electronics Inc
Taylor Fibre Co	247	
Technical Service Corp	397	
Technitrol Engineering Co	36	
Technology Instrument Corp281,		
Tektronix, Inc.		
Telechrome, Inc.		
Telecomputing Corporation		Xcelite. Inc
Teletronics Laboratory, Inc		
Tenney Engineering, Inc.		
Texas Instruments, Inc. Thomas & Skinner Steel Products Co	400	
Inc	, 67	
Thompson-Bremer & Co., Sub. of Amer-		
ican Machine & Foundry Co		
Thompson Products, Inc		Zophar Mills, Inc
Tobe Deutschmann Corporation		
Trad Television Corp		
Transicoil Corporation		
Transradio, Ltd.		
Triad Transformer Corp		
Tru-Ohm Products Div. of Model Engi-	,,,,,	
neering & Mfg. Inc.	205	PROFESSIONAL SERVICES 405
Tung-Sol Electric, Inc.	241	PROFESSIONAL SERVICES
		•
Ucinite Company, Div. of United Carr	4.0	
Fastener Corp.	46	
Union Carbide & Carbon Corp., Bakelite Company	27	
United-Carr Fastener Corp.	17	
United States Gasket Co	143	
U. S. Radium Corp.		
United Transformer Co2nd Co		SEARCHLIGHT SECTION
Universal Winding Co	115	(Classified Advertising)
		H. E. HILTY, Mgr.
		SEARCHLIGHT ADVERTISERS INDEX
		436-437
Varflex Corp.	127	
Varian Associates		
	W (31)	
Vectron, Inc		
Vectron, Inc. Vecder-Root Incorporated	401	This index is published as a convenience to the
	58 401	This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors

or omissions.

Volkers & Schaffer Mfg, Corp...... 371 Vulcan Electric Co...... 389

electronics reader service

FOR ADVERTISEMENTS IN THIS ISSUE ONLY

For additional information on any <u>advertisement</u>
READERS MUST DESIGNATE PAGE NUMBER and ADVERTISER'S NAME

This free service is designed to provide readers with a simple method of obtaining more detailed information on products or services advertised in ELECTRONICS. The two business reply postcards below (perforated for easy tear-out) are for your use and must be completely filled out according to the sample shown on the right and the instructions given below under "HOW TO ORDER". Each individual request is separated and sent to the manufacturer concerned. The information asked for is essential so that manufacturers can promptly and correctly address their replies to your request.

Please note sample with correct fill-in on the right.

Request for "Ad" Information, Page No. 1.58. Advertiser & Warwick, Inc. Your Name Henry Wriothesley Title Electronic Engineer Company Lings Company, Unc. Co. Address 161 avon It., Stratford, U.J. E-8

HOW TO ORDER

Please read these instructions carefully. They provide a simple method which, if followed, will bring you the information you desire.

- 1. There are two business reply postcards on the right. Each one divided in four parts, thus providing space for eight individual requests.
- 2. Each request must be made separately and the required information must be completely given for each one. This is important, for these cards are cut apart and sent to manufacturers. Therefore, each one must have ALL the necessary mailing and addressing information.
- 3. This service applies only to the advertisements that appear in this issue. It does not apply to any part of the editorial content.
- 4. Please print as neatly as possible.
- 5. Use ink, as pencil is apt to smudge with handling.
- 6. Tear out complete postcard, even if all four portions are not used. Drop in the mail—no postage required.

PLEASE NOTE:

In the event this copy of ELECTRONICS is passed along to other members of your company, please leave this sheet in for their convenience. This assures everyone in your plant the opportunity to fill in their requests. When the round is completed, cards can then be detached.

GIVE ALL REQUIRED INFORMATION FOR EACH REQUEST YOU MAKE

ELECTRONICS - April, 1954

THESE CARDS VOID AFTER APRIL 30

Request for "Ad" Information, Page No	Request for "Ad" Information, Page No
Advertiser	Advertiser
Your Name	Your Name
Title	Title
Сотрайу	Company
Co. Address	Co. Address
	E-4-4
Request for "Ad" Information, Page No	Request for "Ad" Information, Page No
Advertiser	Advertiser
Your Name	Your Name
Title	Title
Company	Company
Co. Address	Co. Address
E-4-4	E-4-4
Request for "Ad" Information, Page No	Request for "Ad" Information, Page No
Advertiser	Advertiser
Your Name	Your Name
Title	Title
Company	Company
Co. Address	Co. Address
E-4-4	E-4-4
Request for "Ad" Information, Page No	Request for "Ad" Information, Page No
Advertiser	Advertiser
Your Name	Your Name
Title	Title
Company	Company
Co. Address	Co. Address
E-4-4	E-4-4

An electronics service designed FOR THE CONVENIENCE of READERS and MANUFACTURERS

FOR THE READER . . .

ELECTRONICS fundamental policy has always been to supply its readers with all the pertinent and timely industry news. The ELECTRONICS Reader Service supplements this policy by offering the reader an easy and effective means of obtaining complete, up-to-the minute data on equipment, components, materials, instrumentation and allied products and, of maintaining at his fingertips comprehensive, practicable information on products and services in the industry.

THESE CARDS VOID AFTER APRIL 30

FIRST CLASS PERMIT No. 64 (Sec. 34.9, P.L.&R.) NEW YORK, N. Y.

BUSINESS REPLY NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

—POSTAGE WILL BE PAID BY—

ELECTRONICS

330 West 42nd Street

READER SERVICE DEPT.

READER SERVICE DEPT.

New York 36, N. Y.

FIRST CLASS PERMIT No. 64 (Sec. 34.9, P.L.&R.) NEW YORK, N. Y.

BUSINESS

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

-POSTAGE WILL BE PAID BY-

ELECTRONICS

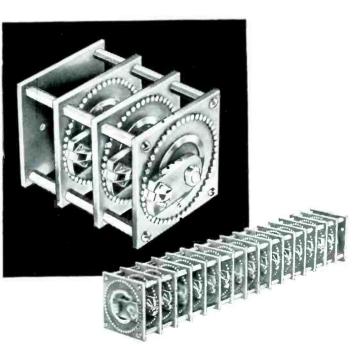
330 West 42nd Street

New York 36, N. Y.

In every issue of ELECTRONICS there's complete coverage of the month by month development of manufacturers products. Some of these items will be of particular interest to specific design and plant engineers, buyers, executives and others of our readers. They will want to make further inquiry concerning the products advertised. ELECTRONICS Reader Service makes it easy for them to obtain in readily accessible and usable form the information they desire.

FOR THE MANUFACTURER

This Reader Service has also been designed as an aid to manufacturers who advertise in ELECTRONICS. Many of those manufacturers are desirous of placing the complete news of their product as well as their technical bulletins and catalogs in the hands of those members of the electronic industry . . . including design, electrical, and production engineers, researchers, physicists, executives and purchasing agents who have a particular interest in, or represent a potential buying power for, their products. The Reader Service assures advertisers in ELEC-TRONICS the most effective method of achieving that purpose.



New Switch

SWITCHES

DAVEN

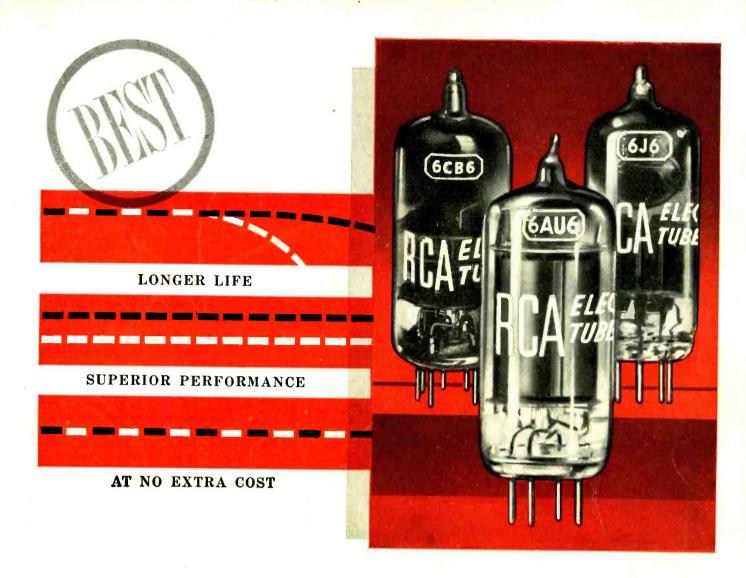
DAVEN not only supplies switches from its hunreds of standard units, but can also effect quick changes from standard units to special switches by using components at hand.

As a result, you are able to select, from thousands of variations, the right switch for your particular requirements.

And . . . here's a new switch for problems that defy solution with standard components. If your prototype is that of an unusual piece of equipment and requires a switch not yet developed, DAVEN will engineer it for you.

This is a service which DAVEN is singularly well qualified to perform by reason of its skilled engineering staff and exceptional facilities. For more than a generation, DAVEN has built up a Development Department that is second to none in solving difficult switch problems.

Furthermore, because only DAVEN has the patented "knee-action" rotor, units can be produced with a greater number of switch positions and poles in a smaller space than was ever possible before.


THE DAVEN co.

191 CENTRAL AVENUE NEWARK 4, NEW JERSEY

Why not call on DAVEN today to assist with your development project, especially if you need switches that must render maximum performance in minimum space.

Write for your copy of DAVEN's new, 28-page brochure on SWITCHES.

Built-in features make RCA Receiving Tubes your best buy

The peak performance you get from RCA tubes costs you no more. And—you can rely on their built-in quality for dependable service. Here's why...

RCA works closely with equipment designers—knows firsthand the design objectives of modern receiving tube circuits. RCA makes full use of this knowledge in constantly improving the tube types of interest to you—the equipment manufacturer.

RCA-6J6 features...

- pure-tungsten heater for improved life
- —special cathode material to help maintain tube characteristics throughout life of tube

 individual adjustment of each tube mount for increased uniformity of characteristics of each triode unit.

RCA-6CB6 features.

- -improved design of Grid-No. 2 for cooler operation and longer life
- -special controls on materials and processing for improved uniformity of plate cutoff and for reduced variations in characteristics when heater voltage fluctuates.

RCA-6AU6 features...

- double-helical heater for extremely low hum level
- inverted pinched cathode to reduce possible motion of tube elements, thus reducing microphonics.

Get the benefits of superior circuit performance. Reduce your factory-line rejects, and "in-warranty" failures. Specify RCA receiving-type tubes. They cost no more—actually cost less in the long run.

For technical information on RCA tubes, write RCA, Commercial Engineering, Section D19Q, Harrison, N. J. Or call your nearest Field Office.

(EAST) Humboldt 5-3900 415 S. Fifth St., Harrison, N. J.

(MIDWEST) Whitehall 4-2900 589 E. Illinois St., Chicago 11, Ill.

(WEST) Madison 9-3671 420 S. San Pedro St., Los Angeles 13, Cal.

