

THE INTERNATIONAL JOURNAL FOR RECREATIONAL ELECTRONICS SEPTEMBER 1992 \$3.00 us CAMPA SA 00

EPROM EMULATOR II 23cm Transmitter-Receiver

Analogue Op Amp Integrator Circuits

Audio-Video Processor, Part 4

8051/8032 Assembler, Part 6

EPROM EMULATOR

RESET

INPUT

A0026840 William Kolasa 300 Sunset Rd Chester MD 2161

TAPTO KITS

Our high quality kits will provide you with educational projects. After you complete your kit, you will have a high-tech product that will provide years of reliable operation. Assembly instructions in English, French, Dutch and German. Over 100 kits available. Call or write for a full-line catalogue.

Mini FM transmitter with good frequency stability (100-108MHZ). Built-in pre-amp (5mV Sensitivity). Interfaces to all microphones. Requires 9-12 VDC. K1803 Universal Mono Pre-Amplifier \$7.95

Ideally suited as a microphone amplifier, signal matching of tuner or tape outputs.• Supply voltage: 10-30 VDC (stabilized)• Gain: typ. 40 dB• Adjustable output level• Frequency range: 20 Hz to 20 KHZ (+/- 3 db)• Maximum input voltage: 40 mV.

K2622 AM-FM Antenna Amplifier \$15.95

Do away with noisy signals! The K2622 gives you 22 dB gain where it's needed. DC supply direct or via the coax cable (50-75 Ohm impedance), metal box included.

K2637 2.5 Watt Mini Audio \$13.95

This small kit comes with a pre and power amplifier. No adjustments required. Short circuit protected. Power supply: 4,5 to 15 VDC• Input sensitivity: power-Amp: 150 mV (12V)• Pre-Amp: 20 mV (12V)• Max output 2.5W (4 Ohm, 12V)• Size: 42 x 32 x 27 mm.

\$69.95

K2666 Precision Stereo Vu-Meter

Extremely precise VU-meter• 2 x 30 LED's "flying dot" readout• dB-linear scale from + 6 to -6 dB (0.75dB per LED)• Steadily increasing scale partitions under -6dB• Peak measurements• No adjustments• Maximum error 0.5dB.

A compact kit that can be incorporated into many housings or into existing equipment• Power supply: 5VDC, 250 mA (regulated)• Read out: -999 mV to +99 mV, 1 mV resolution• Overload indication (positive and negative)• Linearity 0.1%• Input impedance: 100 Mohm.

K2653 Digital Voice Record/Playback \$61.95

Record your voice message on a IC and play it back! Short messages (10-12 seconds) can be repeated to welcome your guests in your home or store. Use your imagination. Tech data: Loudspeaker output: 2W at 4 Ohm• 9VDC regulated.

Reliable acoustic indication of radiation level. Excellent sensitivity to Gamma rays and high energy Beta rays. Battery operated (9V). Battery life exceeds 2 months in continual use and in normal natural radiation surroundings. Very compact: 99 x 54 x 25 mm. Light weight; assembled pcb weighs only 55 gr.

K2659 Moris decoder w/LC-display \$109.95

Decode Morse messages on your shortwave receiver. This decoder keeps up with the quickest signallers or automatic stations, and "notes" message on LCD.Alphanumeric LCD•1 line of 16 characters• decodes Morse at almost any speed.

Ľ,

K2651 Digital Volt Meter

\$39.95

This kit provides an easy-to-read display. Because of the simple power supply requirement and compact size of the kit, it can easily be incorporated into a variety of applications. Technical specs: Selectable to + 200 mV or - to + $2V \bullet$ Power supply: 8 to 15 VDC of 9V battery.

K4300 Audio Spectrum Analyzer \$99.95

Provides visual composition of an audio signal. Kit consists of two boards and attractive front panel with 10 frequency bands. Technical specs: 10 bands: 32, 64, 125, 500, 1K, 2K, 4K, 8K and 16 KHZ• Range: 20 dB (10 LED's, 2dB per LED)• Line input: adjustable from 100 mV to 2 V rms, impedance 100K• Power supply 2 x 9v transformer: 12-15VDC• Current consumption 0.75ADC max, 70mA in stand-by.

In next month's issue

- (among others): • Mains sequencer
- Flash EPROMs*
- 8051 SBC
- History of the valve
- Active antenna for the 10 kHz – 220 MHz band
- Pascal routines for measuring card
- 8051/8032 assembler course Part 7
- AF digital-to-analogue converter final part
- RDS demodulator

* It is regretted that, owing to circumstances beyond our control, this article has had to be postponed from the September to the October issue.

Front cover

- eff

The photograph shows the updated version of the EPROM emulator we published about three years ago. In the present circuit, conventional rather than surface-mount (SMD) components are used, since a number of readers, particularly those outside Europe and North America, have found difficulty in obtaining and handling SMD devices. The updated version has 64 Kbyte of RAM and is capable of emulating Types 2764 through 27512.

ELEKTOR ELECTRONICS USA (US ISSN 1051-5690) is published monthly except August at \$28 per year; \$50 for two years by Audio Amateur Publications, Inc., 305 Union St., Peterborough NH 03458 USA. Second class postage paid at Peterborough NH and an additional mailing office.

POSTMASTER: Send address changes to Elektor Electronics USA, Caller Box 876, Peterborough NH 03458-0876.

CONTENTS

EDITORIAL

An Open Letter to You

11

AUDIO & HI-FI

- 21 PROJECT: A.F. Digital-to-Analogue Converter-Part 2 Design hur T. Cischerte
 - Design by T. Giesberts
- 48 PROJECT: Audio-Video Processor—Part 4 (final) an ELV Design

COMPUTERS & MICROPROCESSORS

 PROJECT: EPROM Emulator II Design by B.C. Zschocke and N. Breidohr
 COURSE: 8051/8032 Assembler—Part 6 by Dr. M. Ohsmann

DESIGN IDEAS

53 Replace Your Paging System with a High-Powered Intercom by Charles Kitchin (Analog Devices, Inc., USA)

GENERAL INTEREST

- 41 PROJECT: Kerber Klock IV by R.J. ''Bob'' Kerber
- 45 Analogue Op Amp Integrator Circuits by Joseph J. Carr

RADIO, TELEVISION & COMMUNICATIONS

- **33 PROJECT:** 23cm FM Transceiver by T. Forrester, G4WIM
- 48 **PROJECT:** Audio-Video Processor—Part 4 (final) an ELV Design

MISCELLANEOUS INFORMATION

Electronics Scene 12; Advertisers' Index 58; Classifieds 58; Letters 58; Readers' Services 61; Terms of Business 62.

September 1992

Volume 2

Number 10

Audio frequency DAC - p. 21

23 cm FM transceiver - p. 33

Kerber Klock IV - p. 41

3

MENTION ELEKTOR WHEN ORDERING!

Reader Service #131

Reader Service #189

100% PURE SCANNING ACTION!

National Scanning Report is America's fastest-growing scanning magazine. That's because every issue of National Scanning Report offers the latest in:

* Law Enforcement

Communications

Fire and Rescue

* Listening Tips

* Railroad

* Federal

* Frequency Lists

* New Products

* Aeronautical

Emergency

Medical

From first alarm to final clean up, National Scanning Report is crammed with up-todate information written by and for the pros. National Scanning Report is your #1 guide to the scannerbands.™

Order your subscription today: \$17.50 gets you one year (six issues) plus a free custom frequency print-out for your county and more.

Weather Radio

3.50 UPS.

A complete guide. NOAA Weather Radio, VOLMET aviation weather. FAA, military, maritime weather services. Where to tune and what you'll hear. 125 pp. \$14.95 plus 2.00 book rate or

\$14.95 POSTPAID 1993 Passport!

New, 1993 edition. Offer expires August 15 . Don't wait! Order now . Get it first!

Never get lost on the scannerbands again! Handy, laminated, credit card-sized guide. Covers police, fire, EMS, marine and aero emergency, power & water, railroad, weather, more. Cash only. Include SASE.

MORE NEW PRODUCTS!

PULSAR ADVANCED DIGITAL CIRCUIT SIMULATOR SOFTWARE

Number One Systems Ltd.

This digital designer is easily among the best in the world, complete with fully programmable signal sources, a printable logic analyser display capable of catching glitches down to 1 picosecond, adjustable component models, and much more. It is designed to relate directly to existing methods of breadboarding and testing designs. You build your circuit from components held in the libraries and then drive it from pulse generators. displaying the results on a familiar logic analyser screen. Features include simulation speed of over 1000 gate states per second (12MHz 286); circuit complexity of over 1500 gate equivalents (640K RAM); maximum simulated events of over 40,000 gate states (640K RAM); timing resolution of 1 picosecond in over 250 hours; and 16-level subcircuit nesting. Reguires IBM PC/XT/AT/386/486 or compatible; minimum 512K RAM; VGA or EGA monitor; hard drive with MSDOS 3.x. Mouse or trackerball recommended. 9/24-pin dot matrix or LaserJet II compatible. From the United Kingdom. Supplied in both 31/2" and 51/4" disk sizes. Full documentation. Please allow five weeks for delivery.

	DUI CAD	ears on
SOF-PUL1B5GD Demo for IBM (us	PULSAR able as credit toward later purchase	\$7.50 of full package)
Purchasing option	is available:	

PULSAR 74HC ADD-ON LIBRARY SOFTWARE

for IBM

Number One Systems Ltd.

Package for PULSAR above contains more than 75 device models, including gates, open collector gates, flipflops, inverters, counters, decoders, monostables, retriggerable monostables, multiplexers, demultiplexers, comparators, latches, buffers, shift registers, bus registers, and bus transceivers. Supplied in both 31/2" and 51/4" disk sizes. Please allow five weeks for delivery.

SOF-PLA	PULSAR 74HC ADD-ON LIBRARY	\$115.00
	for IBM	

PULSAR 74HCT ADD-ON LIBRARY SOFTWARE

Number One Systems Ltd.

Same as above, for 74HCT. Please allow five weeks for delivery.

SOF-PLB PULSAR 74HCT ADD-ON LIBRARY \$115.00 for IBM

PULSAR screen.

Z-MATCH II SMITH CHART RF DESIGN SOFTWARE Number One Systems Ltd.

This package is the software implementation of the well-known paper Smith Chart developed by Philip Smith at Bell Laboratories in 1939. Over the past fifty years, the Smith Chart has become the standard analysis tool for RF engineers. Z-MATCH II retains all of the graphical advantages of the original chart while incorporating many features to eliminate repetitive calculation and to make the chart more accessible to the occasional user. Features include: high-resolution chart display, menuor command-line driven; linear and circular cursor movement; output to dot matrix printer; impedance or admittance charts; open circuit/short circuit points; normalized or actual parameters; rectangular or polar impedances; wavelength and actual distance; polar reflection coefficient; standing wave ratio; equivalent inductance or capacitance; characteristic impedance; frequency in use; dielectric constant or velocity factor; and network Q value. Requires IBM PC or compatible with minimum 256K RAM (384K for EGA and VGA displays); CGA, EGA, or VGA graphics adapter and monitor (preferably color); DOS 2.x. Math coprocessor usable but not required. From the United Kingdom. Supplied in both 31/2" and 51/4" disk sizes. Full documentation. Please allow five weeks for delivery.

SOF-ZMT1B5G	Z-MATCH II	\$375.00
	for IBM	

QUICKPLOT ADVANCED PEN-PLOTTER SCREEN DUMP UTILITY SOFTWARE

Number One Systems Ltd.

QUICKPLOT is a memory-resident program (TSR) for producing a graphics screen dump from a PC or compatible to an HPGL or compatible pen-piotter. It is ideal for producing instant plots from CAD programs, for generating HPGL output from packages lacking this facility, and for importing complex screen graphics into desktop-published documents. Unlike the built-in pen-plotter drivers in many programs, QUICKPLOT will plot the entire screen just as it is, including menus, error messages, and cursors-just the thing for preparing illustrations for advertising or instruction manuals. Supports over ten screen modes, from Hercules mono to CGA/EGA/VGA (but does not support DOS Text mode). Requires IBM PC or compatible; MSDOS 3.x; VGA, EGA, CGA, or Hercules approximately 55K of RAM when loaded. From the United Kingdom. Supplied in both 31/2" and 51/4" disk sizes. Full documentation. Please allow five weeks for delivery.

SOF-QPT1B5G QUICKPLOT \$110.00 for IBM

Z-MATCH II screen.

MORE NEW PRODUCTS!

BKT6

\$19.95

ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUCTION Ronald Wagner

This classic, once produced by TAB Books, is now published by Audio Amateur Press for the first time. Both a "how-to" book and an informative text on electrostatic speakers, it provides a step-by-step sequence for building full-range electrostatic speakers as well as acquaints the reader with their basic operating principles. The book also describes the important parameters of an electrostatic speaker and indicates how each affects performance. Intended for the audio amateur, musician, craftsman, or anyone else who is not only interested in this type of speaker, but would also like to obtain the very best in sound reproduction. Chapters include: How It Began; Electromagnetic Speakers; Speaker Measurements; Electrostatic Loudspeakers; Building a Full-Range Electrostatic Speaker; Frames and Ribs; Preliminary Assembly; Preliminary Speaker Testing; Stretching Frame; Final Speaker Assembly; Speaker Mounting Frames; Electronics for Electrostatic Speakers; Speaker Evaluation; and Commercial Electrostatic Speakers. (Because of rights difficulties, not included from original book is the Chapter 15 article by Malme.) Appendix with construction info, Index, Bibliography. 1987, 1992, 244pp., 71/2 × 91/2, softbound. IN PRODUCTION; PLEASE CHECK AVAILABILITY.

\$27.95

Keith Brindley

This completely revised and enlarged seventeenth edition of the invaluable standby is a great compendium of facts, figures, and formulae indispensable to the designer, student, service engineer, and all those interested in radio and electronics. The author's main criterion in choosing what to include was to ask himself, "What do / look up?" He thus has tried to include anything and everything of relevance to radio and electronics referred to in literature. A considerable amount of new material relating to recent developments in radio and electronics has been added, including new sections on batteries, cables, and connectors. In addition, all the broadcasting information (for the United Kingdom) has been updated. This is a pocket book, in a very handy size. United Kingdom, 1987, 201pp., 3³/₄× 7³/₄, hardbound.

DIGITAL AUDIO AND BKHN3 COMPACT DISC TECHNOLOGY \$49.95

Sony Service Centre (Europe)

Edited by Luc Baert, Luc Theunissen, and Guido Vergult, this is the definitive book on CD players and technology and is essential reading for audio engineers, students, and hi-fi enthusiasts. All modern and proposed sound transmission/storage systems use digital techniques, specifically pulse code modulation (PCM). This is a clear and easy-to-follow introduction which also includes a technical description of DAT (digital audio tape). BKHN3 is produced by Sony, using all of their resources and expertise as one of the forerunners in this field and co-inventor of the compact disc digital audio system. Contents include: Principles of Digital Signal Processing; Sampling; Quantization; A/D Conversion Systems; Codes for Digital Magnetic Recording; Principles of Error Correction; The Compact Disc; Compact Disc Encoding; Opto-Electronics and the Optical Block; The Servo Circuits in CD Players; Signal Processing; Digital Audio Recording Systems; PCM; Video 8; R-DAT; S-DAT; and DASH. United Kingdom, 1988, 253pp., 73/4 × 10, hardbound.

THE TAPELESS DIRECTORY

Yasmin Hashmi, Stella Plumbridge

BKSY1 \$39.95

BKT23

\$18.95

This valuable reference, now in its second edition, is the only independent source of information on over 70 tapeless audio recording and editing systems. It is divided into two parts: The first gives a comprehensive background to the technology, explaining terminology, operational procedures, and design strategies and including useful pointers for those considering investing in a system. The second part provides detailed information on the systems and is organized according to type. The data provided for the systems is in an easily comparable format and includes target market(s), operational and technical specifications, anticipated developments, and cost and supplier details for the USA and Europe. United Kingdom, 1991, 72pp., 8¼ × 113₄, softbound.

USING TIME CODE IN THE REEL WORLD II BKSR1

Jim Tanenbaum, C.A.S., with Manfred N. Klemme \$19.95 Time code, such as 50/60Hz Neopilot or FM sync, provides a way of maintaining the relationship between the sound recorded on audio tape and the image recorded separately on film or videotape. In addition, it provides an initial reference point without clapstick slates; in fact, it provides a continuous reference inherently, without edge coding or other external means. This manual, now in its second edition, will help the reader understand time code and know what standard to use for every possible application. Its level varies from elementary to somewhat advanced, but it develops each subject area in a comprehensible manner, sometimes including a touch of humor. It is assumed that the reader knows non-TC sound recording techniques and understands (somewhat) the operation of the Nagra IV-STC, Denecke TS-1 slate, and so forth. Index, Glossary, Bibliography. 1992, 110pp., 81/2 × 11, Velo bound with vinyl covers.

THE NEW STEREO SOUNDBOOK

F. Alton Everest, Ron Streicher

This book is a comprehensive, nontechnical guide to stereo sound principles and techniques, explaining all of the underlying facets of stereophonic perception, recording, and reproduction. The authors provide easy-to-follow experiments and all the diagrams, tables, and photographs the reader will require in order to modify and enhance his stereo system. Topics include the development of stereo from its earliest stages to the present; using microphones to achieve special stereo effects; recording binaural signals with the use of a dummy head; making a stereo signal from two or more mono signals; controlling sound reflections for optimal stereo listening; auditory spaciousness; multidimensional and surround sound systems; and much more. 1992, 296pp., 7 × 10, softbound.

DESIGN & BUILD ELECTRONIC POWER SUPPLIES BKT24 Irving M. Gottlieb \$17.95

Power supply technology has come a long way in the past few years, largely as a result of new techniques that allow higher switching rates with no significant loss in performance. This practical guide to modern power supply design and new construction techniques will bring the reader up to date on today's most advanced power supply clrcuits, components, and measurement procedures. The author includes full coverage of the older 20kHz power switch standard, as well as describes how new high frequency devices are reducing production costs and dramatically improving power supply efficiency, reliability, compactness, and volume. New advances covered include electronic and synchronous rectification; resonant-mode switching; sine-wave power supplies; current-mode control; IGBT power switches; MCT thyristors; and more. 1991, 163pp., 7×10 , softbound.

THE MODERN OSCILLATOR CIRCUIT ENCYCLOPEDIA Rudolf F. Graf

BKT27 \$12.95

This valuable reference contains an assortment of more than 250 ready-to-use oscillator circuit designs representing the latest engineering practices. Organized by application for easy reference, the circuits are in their original form to prevent transcription errors. Each entry includes a schematic and a brief explanation of how the circuit works. The author also lists the original source for each circuit in a section at the back of the book, making it easy for the reader to obtain additional information. Types covered include audio, burst, sine-wave, Miller, Colpitts, Wien-bridge, bias, multivibrator, crystal, RF, square-wave, Pierce, TTL, code, voltage-controlled, and function generators. 1992, 184pp., 7 × 10, softbound.

DAT: THE COMPLETE GUIDE TO DIGITAL AUDIO TAPE Delton T. Horn

Everything you need to know about the latest development in sound reproduction-digital audio tape-is clearly explained in this easy-to-understand book: what DAT is, how it works, and how it differs from competing analog and compact disc technology. After a brief overview of basic analog and digital recording concepts, the reader will find in-depth coverage of DAT techniques and equipment, manufacturer's information on available (and soon to be available) systems, and what the future holds for DAT technology. 1991, 254pp. 7 × 10, softbound.

BKT25

\$12.95

TROUBLESHOOTING AND REPAIRINGBKT26ELECTRONIC MUSIC SYNTHESIZERS\$16.95Delton T. Horn\$16.95

This illustrated manual is enjoying a growing audience among musicians who want to save money on repairs, as well as among technicians and hobbyists who want to learn more about the new generation of musical synthesis equipment. The author provides complete, step-bystep instructions for servicing or replacing all synthesizer components and circuitry, from that found in older analog devices to today's most advanced digital systems. Musicians will also find plenty of solid advice on how to refurbish old or unusable equipment and how to modify and expand existing setups. Entire chapters are devoted to MIDI circuitry, cabling, and other aspects of computer-controlled digital synthesis technology. 1992, 206pp., 7×10 , softbound.

OLD COLONY EASY ORDER FORM

QTY.	ITEM NO.	PRICE EACH	TOTAL			
				NAME		
				COMPANY		
				STREET		
				CITY	ST	ZIP
				DAYTIME TELEPHONE		
	ATALOG	SHIPPING	\$	PLEASE REMIT IN US DOLLARS	ONLY. PAYMENT BY:	
		TOTAL	\$			U VISA

	Shippir Destinatio	ng Char on and I	ge Accord Method Do	ding to esired (\$)	
	United States		Cana	da	Other	
Order Value	Surface	Air	Surface	Air	Surface	Air
<\$50.00 \$50.00-99.99 \$100.00-199.99 >\$200.00	3.00 4.00 5.00 6.00	7.50 15.00 20.00 30.00	5.00 7.50 15.00 25.00	7.50 15.00 20.00 30.00	10.00 20.00 30.00 40.00	20.00 30.00 40.00

STREET CITY ST ZIP DAYTIME TELEPHONE EASE REMIT IN US DOLLARS ONLY. PAYMENT BY: CHECK / MONEY ORDER MASTERCARD VISA MC OR VISA EXP. CLD COLONY SOLIND LAB PO BOX 243, Department E92 Peterborough, NH 03458-0243 USA 24-Hour Lines Telephone: (603) 924-6371 or (603) 924-6526 FAX: (603) 924-9467

Power 7 - 14 volts. @ 80ma. Low Light @ 2 Lux. Camera comes complet in metal case with 3 ft. plug & cable for video out and power. Camera is presently in use in R/C airplanes, helicopters, cars, tanks and robots. Camera output is NTSC or PAL, 240 line resolution with electronic iris. Full stock on hand. VHS video available for \$ 10. Satification Guarenteed!

All Cameras Factory New. For product information and ordering. Call 1 (800) 473-0538 FAX (714) 545-8041 **MICRO VIDEO PRODUCTS**

1334 So. Shawnee Dr. Santa Ana, California. zlp 92704

Reader Service #120

sou

Simply attach the **VT-75** microtransmitter to any 3V to 12V battery and you can hear every sound in an entire house over 1 mile away! Super-sensitive circuit on a single chip even picks up footsteps from across a large room. Tunable from 80 to 130 MHZ. Hear everything on any FM radio or wideband scanner tuned to the "secret" fre-

quency you select. Unlimited uses for security baby monitor, remote mic, etc. Not a toy. The VT-75 meets many U.S. Gov't Military Specs and with 100mW RF output, it is the smallest, most powerful miniature transmitter you Tournow HP oulput, it is the smallest, most powerful miniature transmitter you can buy. Easily assembled even by a youngster in only 5 minutes and performs so well that it is the only miniature transmitter available *anywhere* that comes with a **full unconditional moneyback guaranteel** Complete kit includes **VT-75** microtransmitter chip, miniature microphone, 9V battery connector and instructions - **\$49.95 + \$1.50** S&H or save- buy 2 for **\$45.00** each with free S&H! Call toll free or send money order, Visa, or MC acc't number for im-mediate shipping by U.S. Mail. COD's add **\$4**. Checks allow 21 days.

134th SMPTE Technical Conference and Equipment Exhibit (Including Media Integration) November 10-13, 1992 — Metro Convention Centre Toronto, Canada

LOOK BEYOND BROADCASTING **DISCOVER SMPTE'92**

TUTORIAL SEMINARS • HANDS-ON-WORKSHOPS TECHNICAL SESSIONS • EQUIPMENT EXHIBIT

All-Day Tutorial Seminars On Mon. November 9th "THE POST EXPERIENCE" Post-Production Techniques and "MULTIMEDIA WORLD" The integration of video and computer technologies.

Four Days of Technical Sessions November 10-13th "IMAGES IN MOTION-THE SECOND CENTURY" Examine the advances and developments in motion picture and television methodology.

Hands-On-Workshops November 10-13th "MULTIMEDIA PRODUCTION" "TELETRAINING AND LEARNING" "MULTIMEDIA COMMUNICATIONS" "INFORMATION ACCESS AND RETRIEVAL"

EOUIPMENT EXHIBIT

November 10-13th Discover advanced motion imaging equipment, prototypes, new product introductions and meet the industry's leading manufacturers and innovators.

EXPERIENCE THE SMPTE DIFFERENCE! If you want to look beyond broadcasting and see the linking of motion imaging and computer science, be sure to attend the 1992 SMPTE Conference and Equipment Exhibit. November 9-13 is the time, Toronto, Canada is the place.

Reader Service #177

CELLULAR TELEPHONE MODIFICATION HANDBOOK

How are hackers making

cellular phone calls for free?

- Techniques for decoding & changing cellular phones' NAMS & ESNS
- Where to buy programming devices
- The "roaming technique" scam!
- Chip supplier's phone numbers
- Instructions on how to change phone numbers on all models
- Cellular phone manufacturer's ESN codes

Complete Manual only \$79.95

M.O. or C.O.D. to **SPY Supply**

7 Colby Court Suite 215 Bedford, NH 03110 (617) 327-7272

Sold for educational purposes only

AN OPEN LETTER TO YOU

Many of you have taken the trouble to write some very nice comments about *Elektor*. Others have written to say what they don't like. I thank all of you who respond.

Frankly, however, we're having problems finding out about what you need, or would like to find, to pursue your electronics avocation. In the last issue we began including reader service cards, a convenient way to request information from advertisers. The cards also allow you to tell us about your needs and wants. We'd like to find just the sort of product lines and supplies that will help you build the wonderful projects crowding our pages month after month.

We're not just serving luncheon in *Elektor*—we're serving a gourmet banquet.

Obviously, if you're really going to benefit and enjoy all these tasty offerings to the full, you'll need hardware, parts, tools, and the like.

Please ask our vendors for anything you need. Don't be bashful or hesitant—even if the part is ''European.'' Don't jump to the conclusion that the part is unavailable just because it has a strange part number and isn't in your catalogs. It probably isn't there because no one has asked for it.

We are going to great lengths to put advance information in vendor's hands (and any vendor may receive such advance information just by calling our service department) via high-speed modem up to three months ahead of publication. These reports include not only the parts mentioned within our construction projects, but often sources of supply in Europe with telephone and FAX number for easy access.

Some of you write asking where you can find parts before reading the ad pages or our Old Colony Service Department ads.

Further, too many of you seem not yet to recognize that we live in "one world." First of all, electronics has a genuine international "esperanto" in our electronic symbols. Some of you would comment, probably that in *Elektor* we use a set of symbols that are not traditionally used in the United States. In our view that only makes us provincial. The rest of the world some while ago recognized that a resistor was no longer a little coil of resistive wire on a porcelain tube that was represented by a jaggy wiggle. But have you noticed that you can pick up a German or Japanese electronics periodical and understand quite a bit about what the circuitry does, just by reading the schematic?

I think most of us have not yet realized the full impact of the technologies we work with every day. It is a truism to say that we are "one world." But the barriers are falling and the distances are shrinking. I suppose in our minds it is too risky to order parts from a place to which we couldn't drive our cars if we wanted to.

If I order from my old friend David Longland from his wonderfully stocked establishment just south-east of Heathrow airport in England, I am not reaching all that much further afield than if I order from Los Angeles. The credit card and the FAX machine have literally shrunk the world insofar as electonic parts supplies are concerned.—E.T.D.

Editor/Publisher: Edward T. Dell, Jr. Editorial Offices: 305 Union St., P.O. Box 876 Peterborough, NH 03458-0876 USA Telephone: 603-924-9464 (National) or +1 (603) 924-9464 (International) FAX: (603) 924-9467 (National) or +1 (603) 924-9467 (International) Advertising: Maureen E. McHugh Telephone: (603) 358-3756 FAX: (603) 358-0157 Subscriptions: Katharine Gadwah Elektor Electronics USA Post Office Box 876, Peterborough, New Hampshire 03458 Subscriptions to Elektor Electronics USA are available ONLY in the fifty United States. Canada, Puerto Rico, the Virgin Islands and those Pacific territories administered by the

Published by Audio Amateur Publishing Group

United States of America. International Advertising: Uitgeversmaatschappij Elektuur b.v. P.O. Box 75 6190 AB BEEK The Netherlands Telephone: +31 46 38 94 44 FAX: +31 46 37 01 61 Elektuur BV Postbus 75 6190 AB BEEK The Netherlands Telephone: 011 31 4638 9444 Telex: 56617 (elekt nl) FAX: 011 31 4637 0161 Managing Director: M.M.J. Landman

Overseas Editions: FRANCE Elektor sarl Les Trois Tilleuis B.P. 59; 59850 NIEPPE

European Offices:

Editors: D.R.S. Meyer G.C.P. Raedersdorf GERMANY Elektor Verlag GmbH Susterfeld Strasse 25 5100 AACHEN

Editor: E.J.A. Krempelsauer GREECE Elektor EPE

Kariskaki 14 16673 Voula—Athena Editor: E. Xanthoulis Elektor Elektronikai folyoirat 1015 Budapest Batthyany U. 13. Editor: Lakatos Andras INDIA Elektor Electronics PVT Ltd Chhotani Building 52C, Proctor Road, Grant Road (E) BOMBAY 400 007 Editor: Surendra Iver

ISRAEL Elektorcal P O Box 41096 TEL AVIV 61410 Publisher M Avraham

KARACHI 5

Editor: Zain Ahmed

HUNGARY

NETHERLANDS Elektuur BV Peter Treckpoelstraat 2-4 6191 VK BEEK Editor: P.E.L. Kersemakers PAKISTAN Electro-shop 35 Naseem Plaza Lasbella Chawk PORTUGAL Ferreira & Bento Lda. R.D. Estef-83-ni, 32-1° 1000 LISBOA

Editor: Jeremias Sequeira SPAIN

Resistor Electronica Aplicada Calle Maudes 15 Entio C. 28003 MADRID Editor: Agustin Gonzales Buelta

SWEDEN Electronic Press AB Box 5505 14105 HUDDINGE Editor: Bill Cedrum

UNITED KINGDOM Elektor Electronics (Publishing) P.O. Box 1414 Dorchester DT2 8YH England Editor/Publisher: Len Seymour

Printed in the United States of America.

ISSN: 1051-5690

ALEPH AMP

Pass Laboratories' Aleph 0, a high power Asymmetric Class A amplifier, is the first in a series of audio power amplifiers employing single-ended or asymmetric Class A operation. Some of the Aleph 0's features include minimal parts in the signal path, folded cascode topology, full DC response, and a tiered regulated supply.

It uses twice the energy of conventional push/pull Class A designs, but promises a superior musical characteristic and to deliver more natural reproduction achievable.

Where push/pull Class A designs are biased at 1/2 peak output current, Asymmetric Class A must be biased at peak ouput, which is why the amplifier runs hotter and has a more modest power rating. While it will never leave Class A on a positive signal, an ordinary Asymmetric Class A design would clip at negative currents beyond the bias point. To address this, Pass Labs developed a proprietary "pull" element that allows a smooth transition to push/pull Class A operation at negative peaks in excess of 128W. Pass states that this design is capable of peak currents well in excess of 100A on both positive and negative peaks, and will operate with complete stability into impedances $< 1\Omega$ with any 0-90° phase angle of reactance.

For more information, contact Pass Laboratories, 21555 Limestone, Foresthill, CA 95631, (916) 367-3690, FAX (916) 367-2193. Reader Service #266

HYBRID TRANSCEIVER A HIT

Ten-Tec of Sevierville, TN reports that the Omni-VI hybrid transceiver has sold out its first and second production runs.

The unit combines crystal mixing, a microprocessor featuring sophisticated software control, and automatic notch filter using digital signal processing.

Contact Ten-Tec, Inc., 1185 Dolly Parton Parkway, Sevierville, TN 37862-3710; (800) 833-7373.

Reader Service #291

ELECTRONICS SCENE

GET WITH THE PROGRAM

Rigel Corporation introduced a training system for the 8031 family of microcontrollers. Connected to an IBM PC or compatible host, the R-31J/READS system allows writing, assembling, downloading, debuffing, and running applications software in the MCS-51 language. READS contains an editor, a cross-assembler, and host-to-board communications in a user-friendly, menudriven environment. Debugging functions include breakpoints, single-stepping, sourcelevel debugging, and inspecting and modifying external memory, internal registers, and special function registers. The MCS-51 instructions are included in the comprehensive on-line help system. All READS functions can be activated from the menus, or alternatively, by hot-key combinations. Software may also be written in BASIC when the R-31] is populated with Intel's 8052 BASIC chip.

You may either purchase the R-31J/READS complete for \$130 or in kit form for \$95 from Rigel Corporation, PO Box 90040, Gainesville, FL 32607 (904) 373-4629.

Reader Service #272

PORTABLE TRANSCEIVER

An incorrect price appeared in a previous run of the following announcement. Apologies go out to those inconvenienced by our error.—Eds.

MFJ Enterprises announces the Model MFJ-9020, a 5W 20-meter CW transceiver that covers 14.000–14.075MHz, has a superhetrodyne receiver, RIT, audio-derived AGC, and a built-in earphone jack. This transceiver, which fits easily in a briefcase, has an eight-pole crystal filter with 500Hz bandwidth, Vernier tuning, and operates from 12–15V DC.

The Model MFJ-9020 costs \$179.95. For details, contact MFJ Enterprises, PO Box 494, Mississippi State, MS 39762, (800) 647-1800. Reader Service # 243

A NEW LOOK

PC Boards' PCRoute (\$99), the autorouter for PC Boards Layout, now at version 4.0, uses two routing algorithms for typically 95% completion ratios. It has new graphics support, including Super VGA. PCRoute also has an improved, almost seamless interface with its companion program SuperCAD Schematic. PCRoute 4.0 still includes the Appliconbravo to PCRoute netlist translation, so it can be used with other schematic capture programs. Also included in this new version is via optimization. The program has a completely new look with all-new screens, including a pop-up window user interface, making PCRoute 4.0 easier to use. Call for an upgrade or further information. PCBoards, 2110 14th Ave. South, Birmingham, AL 35205, (800) 473-PCBS, FAX (205) 933-2954.

AUDIO REFERENCE GENERATORS

Tobin Cinema Systems (TCS) announces two Audio Reference Generators (ARG), the TCS ARG-440 and ARG-1000, to generate pure accurate crystal tone of 440Hz (A4 to musicians) or 1kHz. They also provide precision pink and white noise for audio tests or special uses. The ARG is useful for updating audio consoles in the video, film, and music industries. Each model has an accuracy of 10 parts per million (ppm) guaranteed; 3ppm (0.0003%) typical.

Outputs are electronically balanced 600Ω and deliver 0dBm, or may be used unterminated at +6dBu or unbalanced at 0dBu, or loaded for a signal level. The ARG set includes a calibrated circuit board, color-coded detachable 16-wire cable, wall supply, and mating DC power plug. The ARG may also be operated from any source of +12-+35V DC. Each costs \$150.

To order, contact Tobin Cinema Systems, 3227 49th Avenue SW, Seattle, WA 98116, (206) 932-7280.

Reader Service #263

FREE REPORT

Sonic Perceptions announces the availability of a report prepared by the staff of HEAD acoustics GmbH titled Computer-Aided Classification of Sound Effects Taking into Account the Pyschoacoustic Characteristics of Human Hearing. In handbook style, it offers a summary of calculations used to generate quantitative information about psychoacoustic parameters of sound, increasingly important for noise management from products and in the environment.

The report documents a new approach, describes procedures and examples and discusses theory. For a complimentary copy, send your request on letterhead to Sonic Perceptions, Inc., 28 Knight St., Norwalk, CT 06851, (203) 838-2650, FAX (203) 854-5702. *Reader Service #249*

MONOLITHIC SOLUTION

Analog Devices offers the AD7306 transceiver, a single-supply, multi-protocol which supports both RS-232 and RS-422. It is intended for systems which, when operating from a single +5V supply, must communicate with equipment using RS-232 and RS-422 protocols. This space-saving, 24-pin SOIC generates $\pm 10V$ internally using a charge pump voltage converter, which is efficient enough to operate using nonpolarized miniature 0.1μ F capacitors.

The AD7306 transceiver interfaces TTL/ CMOS signal levels and dual standard EIA RS-232/RS-422 signal levels. The RS-232 channels communicate at rates up to 100Kbits/ second and the RS-422 channels are suitable for high-speed communications up to 5Mbits/ second. It is specified over the 0-70 °C commercial temperature range. Pricing is \$3.75 (1,000s).

Contact Applications Engineering, Analog Devices, Inc., 181 Ballardville St., Wilmington, MA 01887, (617) 937-1428, FAX (617) 821-4273.

Reader Service #229

PORTABLE REAL-TIME ANALYZER

Scantek's Norsonic Type 840 single or dualchannel real-time analyzer is billed as a portable, laboratory-grade instrument.

It features Type 1 specifications, 80dB dynamic range, 1Hz-20kHz frequency analysis range in both channels, storage for 10,000 spectra, 3.5" floppy drive, external VGA output, and selectable polarizing voltages.

For brochure and prices, contact Scantek, Inc., 916 Gist Ave., Silver Spring, MD 20910; (301) 495-7738; FAX (301) 495-7739.

Reader Service #275

HERE AND BE HEARD

ICOM introduces the new IC-728 HF allband transceiver with high performance features such as triple conversion, tunable memories, receiver passband tuning, and a 100W transmitter with speech compressor. Triple conversion improves incoming signal quality and interference suppression. Passband tuning improves an operator's ability to capture signals they may have otherwise missed by cutting out nearby signals. The unit's speech compressor effectively increases the transmitter output signal strength, giving the extra punch needed to cut through heavy traffic. Direct digital synthesis, a microprocessorboosted tuning circuit, provides the channel selected instantly. DDS also improves carrierto-noise ratio by blocking interference, allowing the fast switching times needed for packet radio. Other features include 26 memory channels, three types of scanning, and plugin CW filters.

IC-728 HF Transceivers are available at Icom dealers for under \$1,100. Call ICOM's brochure hotline to obtain additional data: (800) 999-9877. ICOM America, PO Box C-90029, Bellevue, WA 98009-9029, (206) 454-8155, FAX (206) 454-1509.

Reader Service #256

WHERE TO LOOK

Analog Devices' new 56-page 1992 Amplifier Products Cross Reference Guide can help you locate the amplifier best suited to your needs. Divided into five sections, the guide includes ordering information, amplifier product selection trees, a complete cross reference table, military amplifiers, and sales and distributor information.

The products selection trees offer five separate amplifier product families (high speed, precision, low power, low noise, and instrumentation) and divides each type by performance characteristics and features. The guide also includes a section that lists standard military drawings, JAN QPL Class B and JAN QPL Class S products.

For details, contact Analog Devices Literature Center, 70 Shawmut Rd., Canton, MA 02021, FAX (617) 821-4273.

Reader Service #230

JOIN PACKET ACTION

MFJ Enterprises announces the MFJ-1271, a join packet which plugs into your Commodore 64/128's cassette port, and when coupled with a VHF handheld or HF singlesideband transceiver, acts as a high performance modem/TNC with DCD circuit and adjustable threshold control. It reduces noise susceptibility and increases your two-way contact/connect success, especially on HF bands. A DCD LED indicates when you are receiving signals properly. Other functions include remote packet operation, mailboxlike message forwarding, and Net/ROM emulation.

The MFJ-1271 costs \$49.95; accompanied by a one-year unconditional guarantee. Also available for \$5 is MFJ's Digicom/64 public software available as MFJ-1293.

For details, contact MFJ Enterprises, Inc., PO Box 494, Mississippi State, MS 39762, (601) 323-5869, FAX (601) 323-6551. To order toll-free call (800) 647-1800.

Reader Service #242

EPROM EMULATOR II

This is a revamped version of an EPROM emulator we published about three years ago. This time we propose to build the circuit with standard size components rather than SMA (surface mount assembly) components, which some of you have found difficult to obtain as well as handle. The present version of the emulator has a RAM of 64 KByte, and is capable of emulating 2764s up to and including 27512s. Also, by parallel connection of Centronics cables, extensions to bus widths of 16 bits or 32 bits are easier than before.

Design by B.C. Zschocke and N. Breidohr

A N EPROM emulator replaces the EPROM in a computer system (for which a program is to be developed) by a RAM that behaves like an EPROM. The ad-

vantages are well-known: the contents of the RAM can be overwritten as many times as you like, and the data transfer from the PC (running an assembler) to the target system is much faster. Errors in the object program are thus easily and quickly corrected, because it is no longer necessary to remove the EPROM, erase it, and reprogram it.

MAIN SPECIFICATIONS

- Emulates EPROMs 2764 through 27512
- Connected to Centronics port
- Auto-reset function
- 8-, 16- or 32-bit configuration
 No driver software required; use is made of existing system utilities (MS-DOS, Windows, ST and Amiga)

The data transfer from the PC to the emulator described here does not require special file formats like Intel-Hex, Tektronics or Motorola. Instead, standard system utilities can be used to output the previously prepared binary file via the Centronics port.

Application range

The present emulator replaces the byte-organized EPROMs with a capacity of 8 KBytes (2764) to 64 KBytes (27512). The now obsolete 2-KByte and 4-KByte EPROMs Types 2716 and 2732 may also be emulated with the aid of a specially prepared adaptor board. Up to four emulators may be connected in parallel to 'attack' systems with a bus width of 32 bits. The EPROM data may be furnished by any computer system with a Centronics port. The STROBE pulses supplied by the computer have four functions: (1) they indicate that the data is stable and valid; (2) they enable the emulator; (3) they clock three-state counters IC7, IC8 and IC9; and (4) they select a particular emulator in 16-bit or 32-bit systems.

The counter outputs address two RAM ICs with a capacity of 32 Kbyte each. The data applied to the input of the emulator is 'acknowledged', and copied directly into the RAM. The selection of the RAMs is accomplished via A15 of counter IC9, and one half of IC12. After the last byte has been stored in the RAM, the counter is switched to high-impedance output mode ('threestate'). The individual RAM addresses are then available for selection through the address buffer, and can be read via the data output buffer. The addressing of the RAM at this stage is accomplished by the host system, i.e., the computer system or (more generally) application circuit whose EPROM is emulated.

Circuit description

Essentially, the circuit consists of three blocks:

(1) A control section around IC10 and IC11, which serves to ensure the proper bus tim-

Fig. 1. Block diagram of the EPROM emulator.

ing on the Centronics interface, and generate a number of internal signals. This section also supplies the RESET signal for the application circuit (Auto-RESET). All signals are taken to the 'outside world' via open-collector buffers/drivers contained in IC13. One driver serves to generate the strobe signal.

(2) A byte selection circuit (IC7 and one half of IC12), which arranges the distribution of the received 8-bit data between parallel emulators in 16-bit and 32-bit applications. This circuit is required only if a 16-bit or 32-bit extension is envisaged.

(3) A RAM address and load address generator consisting of a counter (IC8 and IC9) that supplies the RAM addresses during loading, a latch (IC6) for intermediate storage of Centronics databytes, and drivers (IC3, IC4 and IC5) that interface to the EPROM socket in the application circuit. Depending on the mode of operation of the circuit (loading or emulating), either the counter/latch combination or the EPROM socket interface are in control of the EPROM addresses and data.

Fig. 2. This timing diagram should help you grasp the basic operation of the EPROM emulator. Note that both the positive and the negative edge of the STROBE signal are used.

Fig. 3. Circuit diagram of the EPROM emulator.

Since 64-K×8-bit RAMs are not easily obtained at reasonable prices, the present emulator is based on two 32-K×8-bit RAMs. These offer a total storage capacity of 64 KByte, and allow the emulator to mimic EPROMs up to and including the 27512. When smaller EPROMs are used, address lines A15 (27256), A15/A14 (27128) or A15/A14/A13 (2764) must be tied to ground via the appropriate jumpers (see Table 1).

Operation in detail

The Centronics standard stipulates that data must be stable for a certain time before and after the STROBE pulse. This ensures freedom of using either the leading or the trailing edge of the strobe signal to capture data from the printer's Centronics input. In the emulator, both edges are used.

At power-up, R7 and C7 provide a defined state. Bistables IC11a and IC11b are set, while bistables IC10a and IC10b are reset. IC11b clears all counters, and switches the circuit to the emulate mode. With reference to the timing diagram of the 8-bit version (Fig. 2), the negative edge of the STROBE signal triggers IC10b, and resets IC11a and IC11b. Next, IC11b switches the circuit to load mode, and actuates the RESET line. IC11a actuates the Centronics BUSY line, and the positive edge at its output causes the counter state to be transferred to the counter register, and the Centronics databyte to be transferred to the latch. Data and address are allowed to stabilize at the respective RAM inputs while the STROBE pulse lasts. The positive edge of the STROBE pulse triggers IC10a, and actuates the RAM WRITE signal and the Centronics ACKNLG (acknowledge) signal during the monotime of IC10a. The signal edge that marks the monotime sets IC11a, and so clears the BUSY signal. At the same time, the counter is advanced one state. The first byte has been stored in RAM, and the circuit is ready to receive the next byte. A byte received within the monotime of IC10b causes this monostable to be triggered again. Otherwise, the above cycle starts again on detection of the negative edge of the STROBE pulse. If no databyte is received during the monotime of IC10b, the circuit switches to emulate mode, clears the RESET signal, switches the counters to three-state, and resets them. At this point, the RAM addressing is taken over by the application circuit.

To prepare the circuit for use in 16-bit or 32-bit applications, IC7 and one half of IC12 divide the internal RAM WRITE and counter output signals. Depending on the jumper setting, either the each first, second, third or fourth byte is copied into the latch, while the counters receive an appropriately reduced number of clock pulses. The RAMs are switched via their CS (chip select) lines, with the aid of address line A15 and the other half of IC12.

At first glance, the outputs of IC10b and IC11b behave identically. Why, then, are

Fig. 4 **Track layouts (mirror** images) and component mounting plan of the PCB designed for the EPROM emulator.

COMPUTERS AND MICROPROCESSORS

EPROM EMULATOR II

COMPONENTS LIST

Do	eietore:	
ne:	1040	B1.B2.B4.B5.
0	10K22	D0-D10
4	4700	
1	47052	
	1001-0	
4	100825	R7;H9;H10;
		HII DIA DIA
2	7-way 10kΩ SIL	H13;H14
Ca	pacitors:	
Pite	ch 0.2 inch (5 mm):	
1	470µF 16V radial	C1
2	330nF	C2;C7
11	100nF	C3;C8-C18
1	1nF	C5
Pite	ch 0.1 inch (2.5 mm):	
1	100µF 16V radial	C4
1	2µF2 16V radial	C6
Se	miconductors:	
1	LED, green, 3mm	D1
2	62256 (<100ns)	IC1;IC2
3	74HCT541	IC3;IC4;IC5
1	74HCT574	IC6
3	74HC590	IC7;IC8;IC9
1	74HCT123	IC10
1	74HCT74	IC11
1	74HCT139	IC12
1	7407 (74LS07)	IC13
1	7805	IC14
Mis	scellaneous:	
1	12-way DIP switch b	lock,
	or 24-way pin heade	er block
	with jumpers	S1
1	40-way box header	K1
1	34-way box header	K2
1	40-way IDC socket	
1	34-way IDC socket	
1	IDC Centronics sock	(et
1	TO-220 style heateir	nk
1	Printed circuit hoard	910082
1	ABS enclosure: ann	rox

both used? The timing diagram shows an unexpected, rather unwelcome, quirk of the monostable, IC10b. At the (relatively long) monotime, the time between the triggering instant and the output actuation instant is not short enough. This caused problems in a number of prototypes. The trigger signal supplied by IC10b actuates IC11b instantly, while IC11b is de-actuated again by the negative edge of IC10b. Capacitor C6 may also cause trouble if it can not be discharged quickly enough by IC10. Increasing its value must, therefore, be done with care.

size 160×80×32mm

28-way DIL adaptor (see Fig. 5) Approx. 50cm 36-way flatcable

IC sockets

LED D1 lights when the computer feeds data into the emulator. The (active low) RESET signal is taken to the application circuit via connector K2. On completion of the load activity, the emulator releases the

S1:	1	2	3	4	5	6	7	8	9	10	11	12
8-bit		on	on									
16-bit		on		on								
32-bit	on			on								
Byte-#					0	1	2	3				
Power ext	ernal								on			
Power from	m EPRO	vi sock	et							on		
+5V on Ce	entroni cs	input								-	on	
BUSY on	Centronic	s inpu	t									on
			(Switch	I = OFF	when	not oth	nerwise	e notec	i)			
EPROM ty	/pe			Ju	mper A	13	Ju	mper A	A14	Ju	mper A	15
2764 (8 K	Byte)				off			off			off	
27128 (16	KByte)				on			off			off	

on

on

Table 1. Jumper settings for emulator bus width and EPROM type.

RESET line, and so re-starts the application circuit, which subsequently runs its new software contained in the emulator RAM.

27256 (32 KByte)

27512 (64 KByte)

The emulator is powered either by the application circuit (via S1-10), or by the onboard stabilizer (via S1-9), whose input is connected to a small mains adaptor with d.c. output. Whether or not an external power supply is required is, of course, dependent on the capacity of the target system's power supply. A power supply conflict may arise when the emulator is powered by the application circuit, and this is switched off, or powered down during reset, while the 'other side' of the emulator is connected to the PC (which is still on) via a Centronics cable. If this happens, the emulator is powered via the protection diodes in the Centronics interface of the PC. This results in a supply voltage of about 3 V, which is sufficient for the RAMs to retain their data, but not for the TTL circuits to operate properly. If, in this condition, the application circuit is switched on, the emulator may go into an undefined state, which may be ended by pressing a button connected between point 'S' and ground. A better solution, however, is to power the emulator

on

on

off

on

Fig. 5. Illustrating the construction of the home-made EPROM adaptor.

Fig. 6. Completed printed circuit board.

from an external source via IC14. The previously described power supply conflict may also damage the emulator, because the current sent into the application circuit via the EPROM socket may become so high that the driver ICs are destroyed.

Practical hardware

The printed circuit board designed for the EPROM emulator is a high-density doublesided, through-plated type, which is best purchased ready-made through our Readers' Services. Space is pretty tight on the board, so keep an eye on the pitch of the capacitors. Capacitor C11 is fitted at the solder side of the board, underneath IC1.

Pin header K1 is suitable for two types of connection: its pinning is compatible with a 25-way sub-D connector (allowing ready use of IDC-style connectors), as well as with a 36-way Centronics socket. When the latter is used, make sure to remove pins 4 and 6, or cut the relevant tracks. When a 25-way sub-D connector is used, it is, unfortunately, not possible to create a 'loop-through' connection for the supply voltage. To reduce cost, a 40-way IDC socket was used on the proto-

DOWNLOADING TO THE EPROM EMULATOR

PC/MS-DOS	COPY <filename> LPT1:/B</filename>	(/B for binary output)		
Amiga	COPY <filename> PAR:</filename>	(PAR:, not PRT:)		
TOS	On the ST it is sufficient to do shown on the desktop, and the should be noted, however, tha CR/LF sequence to each file. two bytes of a 32-Kbyte file ca a simple printer manager that sequence should not be too di C or BASIC.	uble-click on the filename en output to 'printer'. It at the TOS appends a This means that the last in not be used. However does not output the CR/LF ifficult to write in Pascal,		

type — a 26-way type (for connection to a sub-D plug) is, of course, also possible.

The 16-bit and 32-bit versions of the EPROM emulator require two or four complete circuits, respectively, which are driven by a common line, for instance, via four IDC-style Centronics plugs. The jumper settings on each board may be found in Table 1. The emulators are mutually synchronized via the ACK line on the Centronics interface. The BUSY line may be connected on one board only (S1-12). In case the emulators are to be powered by a single, external, supply, this is connected to one board only, from where the supply voltage is distributed via pin S1-11 on each board. On the board from which the supply voltage is distributed, S1-9 must be closed. On all other boards, S1-9 is open. S1-10 must be closed on all boards.

Software

As already mentioned, special software is not strictly required. The emulator RAM can be loaded with the aid of any system utility capable of outputting binary files in binary form, via the Centronics port. This means that the EPROM emulator can be used with any computer sporting a Centronics-compatible printer port.

Users of MS-DOS PCs may want to obtain version 2.0 of EPROMSIM, a program which is available on disk through our Readers Services as item ESS129. EPROMSIM supports EPROMs up to 64 KByte, and is capable of handling the following 'intelligent' file formats:

- Intel Intellec-8;
- Tektronix hexadecimal;
- Motorola.

Construction

When building the circuit, remember to remove pins 4 and 6 of the Centronics socket, if used. To ensure ready access, the DIP switch array is best mounted on IC sockets. Alternatively, you may want to fit the switches at the solder side of the board, and cut a clearance in the back panel of the enclosure. The LED wires may be extended to enable the LED to be fitted in a hole in the cover panel. Further constructional points that deserve your attention are the mounting of the Centronics input socket, and the strain relief on the flatcable to the EPROM adaptor.

The EPROM adaptor is home-made. As shown in Fig. 5, it consists of a piece of stripboard, two lengths of IC pin strip, a box header and two 28-way IC sockets. The flatcable from the EPROM emulator is fitted with a 28-way IDC socket. You may want to make one adaptor for each EPROM type, and wire jumpers A13, A14 and A15 appropriately, direct on the socket. Wires 29 to 34 of the flatcable are connected to the RESET generator on the emulator board, and may also be taken to the adaptor socket to create a RESET connection for the application circuit.

A.F. DIGITAL-TO-ANALOGUE CONVERTER PART 2

Design by T. Giesberts

BEFORE the construction is discussed, it have a look at the test results from our two prototypes. Note that both of them were K versions using Type 5534A opamps in the output filter and buffer section. The measurements were carried out with an Audio Precision System One analyser (with FFT option), while the signals were obtained from a number of special measurement-CDs (CD-1 from CBS; Test Sample 3 and Audio Signals Disc 1 from Philips; and Digital Test from Pierre Verany). For clarity's sake, all figures illustrating the measurement results pertain to one channel (the results of the other channel were, for all practical purposes, identical).

The -0.1 dB figure at 20 Hz (see Fig. 8) results from the effect of the servo control,

Fig. 8. Frequency characteristic.

Fig. 10. Linearity deviation for signals to –100 dB.

Fig. 12. The measured de-emphasis characteristics.

Fig. 9. THD+noise from 20 Hz to 20 kHz at full drive.

Fig. 11. Cross-talk over the audio range.

Fig. 13. Spectrum analysis of residual signals up to 80 kHz.

AUDIO & HI-FI

22

which acts as a high-pass filter. The 0.25 dB fall-off at 20 kHz is ensured by the analogue output filter. It would have been possible to straighten the curve here, but that would have meant a higher cut-off frequency and, consequently, worse suppression of the sampling frequency and worse phase behaviour in the pass-band (since a Cauer or Chebishev filter would then have to be used). The characteristic in Fig. 8 is virtually a Butterworth curve with a near-constant time delay in the pass-band up to 20 kHz.

The harmonic distortion (THD+noise) characteristic is shown in Fig. 9. At frequencies below 1 kHz, the distortion is identical to that specified by Burr-Brown for their K versions: -96 dB. Above 1 kHz, the distortion increases very slightly, owing to the effect of the number of samples per period and because frequencies above 20 kHz are suppressed (a sharp cut-off filter as, for instance, recommended by Philips for measurements above 20 kHz was not used).

The linearity deviation—see Fig. 10—was measured down to -100 dB (from -70 dB to -100 dB with dithering).

The cross-talk characteristic in Fig. 11 shows that the channel separation is excellent: -105 dB

at 20 kHz and -135 dB at 100 Hz indicate that the curve is virtually the same as the noise characteristic of the converter.

The de-emphasis characteristic in Fig. 12 does not show its accuracy with respect to the theoretical curve, but the deviation between the two was measured at <0.15 dB over the 20 Hz to 20 kHz frequency range.

Figure 13 shows the spectrum analysis over the frequency range up to 80 kHz. The 10 kHz test signal was effectively suppressed by a band filter, so that the residual products are clearly indicated. Note the 2nd and 4th harmonics of the test signal and the mixing prod-

Fig. 14. The printed-circuit board for the power supply section.

uct (78.2 kHz) of the test signal and twice the CD sampling frequency (2×44.1 kHz), since the analogue filter does not have an infinite roll-off.

Construction

It is advisable to read carefully through this section before buying any components, because the design contains some fairly expensive ICs. As far as the YM3623B and DF1700P are concerned, there is not much choice, because these devices are made in only one version. The PCM63P, however, is available in three grades: that without suffix is the cheapest, the PCM63p-J is next and the PCM63P-K is the dearest. Depending on the drive low-impedance loads (50 mA into 50 Ω) and is reasonably priced.

There is a good choice as far as the remaining opamps are concerned. According to our measurements, the most suitable are the NE5534A, the LT1115, the TLE2027 and the OPA627. Although the OPA627 is much faster than the 'ordinary' 5534 and, moreover, has FET inputs, we found, in our measurements, that there is very little difference between the two. However, in listening tests, a number of people preferred the OPA627 in the output section (the opampin the filter has less influence on the sound quality). Bear in mind that we are talking here of very small differences that become audible only on first class audio installations.

market area, the difference between the first

and the -K version can be £10-£15. The dif-

ference between these versions lies in the ac-

curacy (that is, without calibration). At 1 kHz

and full drive, the-K version has a THD+noise

figure of -96 dB; the -J version, -92 dB; and

IC₁₀ and IC₁₈ positions because of their off-

set voltage and low noise. Faster opamps are

larly suitable for use in D-A converters: good bandwidth (60 MHz at unity gain); high slew

rate (2000 V/ μ s) and short settling time (100 ns

to reach an accuracy of 0.1%). Moreover, it can

not recommended in the servo control.

Type OP27 opamps are specified for the

The AD844, used in the IC₆ and IC₁₄ positions, has properties that make it particu-

the cheapest version, -88 dB.

Fig. 15. Printed-circuit mother board, shown here at 80% of true size.

WorldRadioHistory

PARTS LIST

Power supply board

Resistors: R1 = 68Ω

 $R1 = 08 \Omega \Omega$ $R2 = 1.5 k\Omega$

Capacitors:

C1 = 2200 μ F, 25 V C2, C4, C6, C8, C14, C16, C18, C20, C22, C24 = 100 nF C3, C7 = 10 μ F, 10 V C5 = 220 μ F, 25 V C9-C12, C25-C28 = 47 nF, ceramic C13, C19 = 2200 μ F, 35 V C15, C17, C21, C23 = 10 μ F, 25 V

Semiconductors:

D1, D2 = 1N4001B1, B2 = B80C1500IC1 = 7805IC2 = 7905IC3, IC4 = 7815IC5, IC6 = 7915

Miscellaneous:

Mains transformer. 2×9 V, 830 mA Mains transformer. 2×15 V, 500 mA Heat sinks for IC1, IC3–IC6 PCB Type 920063-1 (see Readers' services)

Mother board

 Resistors:

 $R1 = 75 \Omega, 1\%$
 $R2 = 100 \Omega$
 $R3 = 10 k\Omega$
 $R4 = 4.7 \Omega$
 $R5 = 18 k\Omega$
 $R6 = 270 \Omega$
 $R7, R25, R44 = 1 M\Omega$
 $R8, R14 = 2.2 \Omega$
 $R9-R13 = 470 \Omega$

 $R15 = 22 M\Omega$ R16, R17, R18, R35, R36, R37 = 47 Ω R19, R20, R38, R39 = $330 \text{ k}\Omega$ R21, R40 = 1 Ω R22, R41 = $1.5 \text{ k}\Omega$, 1% R23. R42 = $1.07 \text{ k}\Omega$, 1% R24, R43 = 475 Ω , 1% R26, R45 = $2.49 \text{ k}\Omega$. 1% R27, R46 = 931 Ω , 1% R28, R29, R47, R48 = $2.43 \text{ k}\Omega$. 1% R30, R49 = $2.74 \text{ k}\Omega$, 1% R31, R50 = 49.9 Ω , 1% R32, R33, R51, R52 = $6.81 \text{ k}\Omega$, 1% R34, R53 = $4.99 \text{ k}\Omega$, 1% $R54 = 10 \Omega$ $R55 = 47 k\Omega$ $P1-P4 = 100 \text{ k}\Omega$ multi-turn preset, vertical mounting (e.g., Bourns Type 3296Y) P5, P6 = 47 k Ω multi-turn preset. vertical mounting (e.g., Bourns Type 3296Y) Capacitors: C1 = 10 nF, ceramic

C2, C3, C19, C52, C79 = 100 nF C4 = 8.2 nF $C5, C6 = 10 \, pF$ C7. C10, C20, C53 = 4.7 µF, 10 V. radial C8. C11, C28, C30, C38, C39, C41, C43, C61, C63, C71, C72, C74, C76, C81-C84 = 47 nF, ceramic C9 = 15 nF $C12 = 100 \, pF$ C13. C14, C15, C46, C47, C48 = 47 pF* C16. C17, C18, C49, C50, C51 = 100 nF* C21, C22, C56, C58 = 10μ F, 10 V, radial C23, C25, C56, C58 = 10 µF, 10 V, radial C24, C26, C57. C59 = 100 nF, ceramic C27, C29, C40, C42, C62, C62, C73, C75 = 47 µF, 25 V, radial C31, C64 = 33 nF, polystyrene, 1% C32, C34, C36, C65, C67, C69 = 1.5 nF, polystyrene, 1% C33. C35, C37, C66, C68, C70 = 22 pF,

polystyrene (see text) C44, C45, C77, C78 = 2.2 μF, 160 V, MKP (= polypropylene) C80 = 220 μF, 6.3 V

Semiconductors:

D1-D5 = 3 mm LED, high efficiency D6. D8, D10, D12 = 1N4148 D7, D13 = BAT85 D9, D11 = zener, 3 V. 400 mW TI = BC546BT2-T5 = BS170T6 = BC517IC1 = 74HCU04IC2 = YM3623B (Yamaha) IC3 = 74HC239IC4 = DF1700P (Burr Brown) IC5. IC13 = PCM63P (Burr Brown) IC6. IC14 = AD844AN (Analog Devices) IC7, IC8, IC9, IC15, IC16, IC17 = NE5534A IC10, IC18 = OP27 IC11. IC19 = 7805 IC12, IC20 = 7905

Miscellaneous:

JP1 = 3-way header with jump link
K1 = audio socket for PCB mounting (gold-plated contacts preferred)
2 audio sockets with gold-plated contacts) for analogue outputs
Re1-Re4 = 12 V miniature relay
X1 = crystal. 16 MHz
PCB Type 920063-2 (see Readers' services)

* Surface mount type

When choosing opamps, pay particular attention to the stability in the analogue section. If the chosen type is not stable at unity gain (in our tests, that was only true of the 5534), each IC *must* be provided with a compensating capacitor: in case of the 5534, a 22 pF polystyrene type between pins 5 and 8. There is provision for these on the PCB and they are shown in the circuit diagram (Fig. 5). Details of these capacitors, and where to place them, can be found in the data sheets of opamps not mentioned here.

Commence the construction with the power supply board—see Fig. 14. The only thin g that needs to be noted here is that all regulators, except IC_2 , must be fitted on a heat sink.

The mother board—see Fig. 15— requires rather more work. It has been designed to ensure good separation of the analogue sections of the two channels. The top of the board contains an earth plane for all analogue components: this plane (for each channel) is connected to analogue earth in only one place.

Remember that capacitors C_{33} , C_{35} , C_{37} , C_{66} , C_{68} , and C_{70} are only required if Type 5534 opamps are used.

In some case, surface-mount design (SMD) capacitors are specified, because these types can be soldered (as they should be) very close to the associated IC pins.

If a distortion meter is not available, omit P_1-P_4 , R_{20} , R_{38} and R_{39} , because the MSBs of the converters then cannot be calibrated. Note that fitting these components and setting the potmeters to the centre of their travel may result in a worse performance than if the components had been omitted.

Presets P₅ and P₆ are optional and only required if it is felt that the output levels of the two channels should be absolutely equal. Even when these components are omitted, the output levels of the channels are within 0.25 dB of each other, although they may not be exactly, as preferred, 2.0 V r.m.s. The potmeters can, of course, set the level to exactly 2.0 V (if so, a 1 kHz, 0 dB, *digital* test signal must be used, *not* a digitized analogue signal: this is normally indicated on the test CD). Note that 23.7 k Ω resistors instead of the potmeters will keep the output level very close to 2.0 V.

The crystal should be insulated at its underside before it is mounted on the board.

Circuits IC_1 – IC_4 may be fitted in an IC holder, but IC₅ and IC₁₃ must be soldered directly to the board. This is not only to prevent bad contacts, but also because it ensures that these devices are as close to the earth plane as possible. In our opinion, it is best to solder all directly to the board; whence our advice at the beginning of this section. If you must (for experimental purposes), only IC₇–IC₉ and IC₁₅–IC₁₇ should be fitted in IC sockets, but these should be of prime quality (with gold-plated contacts). Note, however, that even such sockets show rapidly deteriorating contacts when the ICs are replaced frequently.

Before connecting the power supply board to the mother board, connect it to the mains and check that all voltage levels are as specified. If they are, connect the two boards together via not too long wires. Place jump lead JP_1 as far as possible from connection A. Solder some audio sockets to the digital input (between connection B and earth) and the analogue outputs. The input can then be connected via a coaxial cable to the digital output of, say, a CD player and the outputs, via a stereo cable, to the line inputs of an amplifier (or pre-amplifier). When the mains is switched on, all should be well.

If you wish to use the converter in this form and feel that you will not need a digital selector, optical inputs and outputs, and a digital tape output (which will be described in our next issue), you can install it in a suitable enclosure now. Otherwise, wait and see the next and final instalment.

Technical Da	ta	
---------------------	----	--

- Suitable for sampling frequencies of 32–48 kHz
- ×8 oversampling
- 20-bit D–A converters
- Integral de-emphasis circuit
- No capacitors in signal paths
- Servo control of d.c. setting in audio section
- Pseudo-passive GIC filter for suppressing sampling frequency
- Separate power supplies for analogue and digital sections

Dynamic range	>100 dB
Nominal input voltage, (digital input)	500 mV into 75 Ω
Nominal output voltage	2 V r.m.s.
Output impedance	50 Ω
Frequency range	20 Hz-20 kHz (+0 dB; -0.25 dB)
Signal-to-noise ratio	>115 dB
THD+noise (0 dB: 1 kHz)	<0.002%
Intermodulation distortion (60 Hz; 7 kHz; 0 dB)	<0.003%
Linearity deviation (signal levels to -100 dB)	<1 dB
Channel equalization	Within 0.1 dB
Deemphasis deviation	<0.15 dB

8051/8032 ASSEMBLER COURSE

PART 6: ANALOGUE SIGNAL PROCESSING AND STACK MANAGEMENT

The first subject in this month's instalment is processing analogue signals with the aid of our extension board. Next, we have a short discourse on stack management, which is quite important when it comes to dealing with subroutines. The two subjects form a basis for the next theme: interrupt processing, which is also introduced in this instalment. As usual, the programs discussed are contained on the course diskette, and can be tested straight away using the 80C32 single-board computer and its extension board (see part 3).

D-A conversion

Many microcontroller applications are geared to processing and generating analogue signals. The SBC extension board contains a D-A (digital-to-analogue) converter which is ideal for developing such applications. This course instalment aims at showing you how this D-A converter can be used, in conjunction with the comparators on the extension board, to measure analogue values.

Conversion principle

One way of converting an analogue voltage into a corresponding digital value is based on the 'ramp' principle, which is illustrated in Fig. 28. A ramp-shaped voltage is output via a D-A converter, and increased until a comparator output signals that the instantaneous value of the ramp is greater than the input voltage. The previous DAC output value is then taken to equal the input voltage. The ramp voltage is simply generated by increasing a register value from 0, and sending this value to a DAC. An example of a program that does so is XAM-PLE14.A51 on your course diskette. Since that is a relatively simple program, it will not be discussed here.

The main disadvantage of the ramp DAC principle is that it is relatively slow. In the worst case, at a resolution of 8 bits, the ramp value must be increased (and compared to the input voltage) no fewer than 255 times. Similarly, at a resolution of 12 bits, a maximum of 4,096 steps is required. Furthermore, each step should allow for the settling times of the DAC and the comparators. All in all, the ramp principle is too slow for many applications.

A faster DAC principle, which is also used in many DAC ICs, is called successive approximation. As shown below, it is

By Dr. M. Ohsmann

relatively simple to implement in software.

During the successive approximation, the bits of the value to be converted are determined one by one. This means that eight steps are required to achieve 8-bit resolution. A register is used to determine which bit is 'measured'. The individual bits of the analogue value that are already known are also contained in a register. The principle of operation and a corresponding software flow chart are given in Figs. 29 and 30, respectively. Initially, the approximation value is set to 0, and the register that stores the shift bit is set to 1000 0000₂. The approximation starts with bit 7. A conversion cycle consists of the following steps: first, a new DAC output value is determined. This value is the sum (here: logic OR) of the shift bit and the approximation bit set up so far. This value is output to the DAC, and compared to the input value with the aid of the comparator. If the input voltage is greater than the DAC voltage, the new approximation value equals the previously sent comparator value. This approximation value has a 'l' at the position of the shift

Fig. 28. Ramp A-D conversion principle.

bit. If the input voltage is smaller than the DAC voltage, the old approximation value is retained, which means that it has a '0' at the position of the shift bit. The above sequence determines the new bit in the approximation value. Next, the shift bit

Fig. 29. Successive approximation D-A conversion principle.

Fig. 30. Flow diagram of XAMPLE15, the successive approximation D-A converter.

****** LISTING of EASM	51 (XAMPLE15) *****
LINE LOC OBJ T	SOURCE
1 0000	; ****** FILE XAMPLE15.A51 ************************************
3 0000	P1 EOU 090H
4 0000	
5 0000	ORG 4100H ; start address of program
6 4100 7B 01 [1]	START MOV R3,#00000001B ; mask channel 1
7 4102 31 20 [2]	ACALL DACNV ; call DA converter
8 4104 31 44 [2]	ACALL BYTE ; Send Dyte and null character
10 4108 7B 02 [1]	MOV R3,#00000010B ; channel 2
11 410A 31 20 [2]	ACALL DACNV
12 410C 31 44 [2]	ACALL BYTE
13 410E 31 4A [2]	ACALL BLANK
14 4110 7B 04 [1]	MOV R3,#UUUUUUUB ; Channel 3 MCNI DACNV
16 4112 31 20 [2]	ACALL BYTE
17 4116 74 0D [1]	MOV A,#13 ; line feed
18 4118 31 4C [2]	ACALL CHR
19 411A 74 0A [1]	MOV A,#10
20 411C 31 4C [2]	ACALL CHR
21 4115 80 50 [2]	
23 4120 D2 91 [1]	DACNV SETB P1.1 ; for oscilloscope
24 4122 7E 00 [1]	MOV R6,#0 ; approximation value
25 4124 74 80 [1]	MOV A,#080H ; SHIFT-BIT
26 4126 80 09 [2]	SJMP SARLP2 ; jump into loop
27 4128 EF [1]	SARLPU MOV A,K/ ; get Shiri-bit
	RRC A : shift right, fill with 0s
30 4128 70 04 [2]	JNZ SARLP2 ; continue when SHIFT-BIT<>0
31 412D EE [1]	MOV A,R6 ; get result into A
32 412E C2 91 [1]	CLR P1.1 ; show end of conversion on scope
33 4130 22 [2]	RET
34 4131 FF [1]	SARLPZ MOV R/, A ; Save Shirt-Bit in R;
36 4133 90 00 00 [2]	MOV DPTR, #0C000H
37 4136 F0 [2]	MOVX @DPTR, A ; send to DA converter
38 4137 FC [1]	MOV R4,A ; mark sum for later
39 4138 7A 64 [1]	MOV R2,#100 ; settling time
40 413A DA FE [2]	SARWT DJNZ RZ,SARWT ; Walt
41 413C EU [2] 42 413D 5B [1]	ANI. A.R3 : select desired KOMP.
43 413E 60 E8 [2]	JZ SARLPO ; Bit=0 if Uin <udac, bit<="" do="" not="" set="" td=""></udac,>
44 4140 EC [1]	MOV A,R4 ; Bit=1 if Uin>Udac
45 4141 FE [1]	MOV R6,A ; approximation value: =sum
46 4142 80 E4 [2]	SJMP SARLPO
47 4144	; Monitor interface
40 4144	COMMAND EOU 030H
50 4144	MON EQU 0200H
51 4144	CCCHR EQU 001H
52 4144	CCBYTE EQU 003H
	; DYTE MOV COMMAND ACCBYTE
	LJMP MON
56 414A 74 20 [1]	BLANK MOV A, #' '
57 414C 75 30 01 [2]	CHR MOV COMMAND, #ccCHR
58 414F 02 02 00 [2]	LJMP MON
59 4152	
********** SYMBOLTABLE	(13 SYMDOIS)
SARLP2 -4131 0	SARWT :413A COMMAND :0030 MON :0200
CCCHR :0001 CC	BYTE :0003 BYTE :4144 BLANK :414A
CHR :414C	

- assembler; • a monitor EPROM (order code ESS 6091); • an IBM PC or compatible
- an IBM PC or compatible operating under MS-DOS, or an Atari ST with a monochrome display.

Appeared so far:

Part 1: Introduction (February 1992) Part 2: First 8051 instructions (March 1992) Part 3: Hardware extensions for 80C32 SBC (April 1992) Part 4: Flags, bit addressing, PSW, conditional jumps, logic operators (June 1992) Part 5: Arithmetic instructions (July 1992)

position is shifted to the right, and the next conversion cycle is run, until all bits are determined. In short, the bit to be determined is provisionally set, and compared to the input voltage. If this causes the approximation value to become too high, the bit is reset. If the approximation value is still too low, the bit is left set.

An A-D converter program

The program we are about to describe (Fig. 31) outputs the values of three input

Fig. 31. Listing of XAMPLE15.A51.

voltages in hexadecimal notation. D-to-A conversion on all three channels is made possible by a subroutine called DACNV, which reads the bit position of the relevant comparator output from register R3. DACNV returns the converted value in the accumulator. The main program begins at label START, and is relatively simple. The bit corresponding to the channel number (1 of 3) is set in register R3. Next, The conversion proper, DACNV, is called. A subroutine called BYTE arranges for the value supplied by DACNV to be output (in hexadecimal form) via the V24 interface. After all three values have been sent to the terminal, the program adds a carriage return/line feed (CR/LF) sequence, and a new conversion cycle is started.

28

The D-A conversion is a bit more complex. The approximation value is stored in register R6. The shift bit is contained in register R7, and also, occasionally, in the accumulator. The sum of the shift bit and the approximation value is stored in register R4. The conversion proper starts at label SARLP2, where the accumulator contains the shift bit, and R6 the old approximation value. First, the shift bit is saved in register R7 (line 34). The sum of R6 and the accumulator is formed in line 35, and subsequently sent to the D-A converter. This comparison value is contained in R4. A wait loop, SRWT, is inserted to allow for the settling time of the DAC. The comparator output states are copied into the accumulator in line 41. Comparator output selection is achieved by masking the accumulator contents with the bit in R3 (line 42). Depending on whether the selected comparator output supplies a '1' or a '0', the corresponding new approximation value is formed in R6. The jump to label SARLP0 prepares for the next conversion step. The shift bit is loaded into the accumulator, and shifted to the right (lines 28 and 29). If the result is an accumulator content of 0, the conversion is finished. If not, the program continues at label SARLP2.

To enable us to trace the conversion steps with the aid of an oscilloscope (or by listening to the loudspeaker), port bit P1.1 is set during the conversion time. Figure 32 shows the signal reproduced by a digital storage oscilloscope. On completion of the D-A conversion, the value in RT6 is copied into the accumulator.

The advantages of the successive approximation principle are evident: only eight loop iterations are required. A fast DAC, and equally fast comparators, enable an 8051 to achieve 8-bit conversion times of 250 μ s fairly easily. The corresponding sampling rate, 4,000 samples s⁻¹, is relatively high.

This program, like others discussed during this course, demonstrates the usefulness of subroutines. To understand how these are managed, it is necessary to have a look at the so-called stack, which is used by the 8051 to store certain data that serves to keep track of subroutine return addresses.

Fig. 32. A-to-D conversion waveform measured with an oscilloscope. Note the signal settling times.

Stacking it up

The stack pointer, SP (at SFR address 081H), points at an address in the stack range where the return addresses of subroutines and interrupt routines are stored. The stack pointer is contained in internal RAM, and is increased by one whenever a subroutine is called. Next, the first byte of the return address is written to the address pointed at by the SP. Next, the SP is increased by one, and the next address byte is stored. This little demonstration program

loaded with a new value right at the start of the program. When a program contains 'nested' subroutines, each of these requires two bytes of the available stack memory (which is contained in internal RAM).

The situation becomes even more complex when interrupts are programmed. Here, too, each return address calls for two bytes of storage capacity. Additional memory is required to hold saved SFRs, as well as all return addresses for subroutines called up by the interrupt program. The message is clear: make sure that you have

LINE	LOC	OBJ	Т		SOURCE
43 44	4118 411B	12 41 23 00	[2] [1]		LCALL UPROI NOP
47 48	4123 4126	12 4A BC 00	[2] [1]	UPROI	LCALL UPRO2 NOP
50	4ABC	85 08 44 	[2]	UPRO2	MOV 68,8

results in the following stack values:

SP before line 43:	07H
internal KAM address:	08 09 0A 0B 0C 0D
Contents before line 43:	FF FF FF FF FF FF
	(preloaded)
Contents after line 50:	1B 41 26 41 FF FF
	(2 addresses on
	stack)
SP after line 50:	0BH

After a reset, the stack pointer contains the value '7' (refer back to Figs. 5 and 8), so that the stack begins at address '8' in the internal RAM, and grows upwards. This means that the stack overwrites register bank 1, and, possibly, other banks also. Register bank 1 is therefore not available for general programming, unless the SP is

sufficient stack room at all times! Users of the 8052, 8032 or 80C32 may avail themselves of the additional 128 bytes of internal RAM contained in these controllers. You may do so by programming

MOV	SP,#080H	;upper RAM as
		stack

This gives a stack space of 128 bytes, which should be enough for most applications.

Saving data on to the stack

It often happens that a certain byte (SFR or accumulator) is to be put away safely, and retrieved a little later. This is achieved by

	(MS	B)						(LSB)
	EA	X	ET2	ES	ET1	EX1	ETO	EX0
Symbol		Posl	tion	Fu	nction			
EA		IE.	.7	dra Inti- Indi	ables errupt 1, lividual ttino o	all inte will be each ly ena r cleari	mupts ackno intern abled no its	. If EA = 0, no pwiedged. If EA apt source is or disabled by enable bit.
_		IE.	6	191	berved			
ELS		IE.	5	•n. ov: =	ables erflow 0, the	or di or cau Timer	sables oture i 2 inter	the Timer 2 nterrupt, If ET2 rupt is disabled
E\$		IE.	.4	en. Inte Inte	ables emupt. emupt	ordia HES No diaa	abies – 0, bled.	the Serial Por the Serial Por
ET 1		IE.	.3	en Ov Tir	ables erflow ner 1 i	or di Intern nterrup	sables upt. 1f rt hs di:	the Timer 1 ET1 = 0, the sabled.
EX1		IE.	2	en 1. dis	ables (If EX1 abled,	- 0,	bles E Extern	kternal interrup al Interrupt 1 k
E10		IE.	.1	en Ov Tir	ables erflow ner 0 i	or di Intern nterrup	sables upt. If sile di	the Timer C ETO = 0, the sabled.
EX0		IE.	.0	en 0. die	ables (If EXO abled.	- 0,	bles E Extern	kternal Interrup al Interrupt 0 k
							910	0109 - 6 - 17

Fig. 34. Functions of individual bits in the interrupt enable register, IE.

	(MSB)	(LSB)
. (X X PT2	PS PT1 PX1 PT0 PX0
Symbol	Position	Function
_	1P.7	reserved
—	IP.6	bevreen
PT2	IP.5	defines the Timer 2 interrupt priority level, PT2 = 1 programs it to the higher priority level,
P\$	IP,4	defines the Serial Port Interrupt priority level. PS = 1 programs it to the higher priority level.
PT1	ЮĴ	defines the Timer 1 Interrupt priority level, PT1 = 1 programs it to the higher priority level.
PX1	IP.2	defines the External Interrupt 1 priority level, PX1 = 1 programs it to the higher priority level.
PTO	IP,1	defines the Timer 0 Interrupt priority level, PT0 = 1 programs it to the higher priority level.
PXO	IP.0	defines the External Interrupt 0 priority level, PX0 = 1 programs it to the higher priority level,
		910109 - 6 - 19

Fig. 36. Bits in the Interrupt Priority register, IP.

the instructions

PUSH	ACC	;save accu on to stack
•••••		instructions in ;instructions in
POP	ACC	;fetch accu from stack

The PUSH instruction stores the indicated byte (direct addressing) on to the stack. Subsequently, the SP is automatically increased by one. The POP instruction fetches ('pops') the last PUSHed byte from the stack. Since storing (PUSHing) consumes stack space, the PUSH instruction should be used with care, since only limited space is available. The PUSH and POP in-

Interrupt	Interrupt address	Link Index	Link Jump	
IEO	0003H	1	4003H	
TFO	000BH	2	4006H	
IE1	0013H	3	4009H	
TF1	001BH	4	400ĈH	
RI+TI	0023H	5	400FH	
TF2+EXF2	002BH	6	4012H	

Fig. 33. Interrupt 'detours' contained in the system monitor program, EMON51.

structions are often used within subroutines to rescue SFRs, which are then available again unchanged at the end of a subroutine. sible to external events. Such an event might be the arrival of a measurement value that is to be processed as fast as possible.

Interrupts

Interrupts are used whenever it is necessary for a program to respond as quickly as posInterrupts from various sources can occur at any time during the program execution, which makes their programming and debugging complex, if not problem-

Fig. 37. 8051 interrupt control system structure.

WorldRadioHistory

atic. Beginners are, therefore, well warned against the many pitfalls that lurk in interrupt-controlled microcontroller systems.

30

The interrupt capabilities of the 8051 family are briefly discussed below. External interrupts are applied via IC input pins INT0 and INT1 (pins 12 and 13). On the 80C32 SBC, these two pins receive inverted signals that arrive via connector pins c3 and c5, and IC12. The user can select the interrupt mode beforehand: an interrupt occurs (1) on a signal edge only (positive edge on INT0), or (2) when INT0 = '1' (static logic level).

Further interrupt sources are Timer Flag0 and Timer Flag1 (TF0 and TF1), Receiver Interrupt (RI) and Transmitter Interrupt (TI). The 8052 and 8032 controllers have two more interrupt sources: Timer2 and external interrupt line EXF2. When an interrupt occurs, the processor executes a kind of LCALL instruction, which results in a jump to the address associated with the interrupt. Interrupt sources and associated addresses are listed in Fig. 33.

It will be noted that the interrupt addresses are normally in the memory reserved for EPROMs, and, therefore, not easily changed. Fortunately, the monitor EPROM (EMON51) provides so-called links, which are described in the file EMON51.DOC. The links allow interrupts to be called and relocated as required. For instance, the monitor causes interrupt IE0 to jump to address 4003H of the program memory, which is RAM. After a reset, the monitor loads this address with a jump to an internal interrupt routine. By calling the monitor subroutine LINK, you can change the jump address to point to your own interrupt. All that is required to set up this 'detour' is to have your interrupt address ready in the DPTR, and the index in the accumulator, before calling LINK. It should now be clear why we start our course programs at 4100H instead of 4000H: the lower page, 4000H to 40FFH, is used by the monitor.

The organization of the interrupts is arranged by the SFRs IE (interrupt enable; address 0A8H) and IP (interrupt priority; address 0B8H). Interrupts can be enabled or disabled selectively by setting or resetting the appropriate bits in IE, as shown in Fig. 34. Bits ITO and IT1 (see Fig. 35) determine whether the external interrupts are level-triggered (bit='0') or edge-triggered (level='1'). Both bits are contained in the timer-control SFR, TCON, at address 088H (ITO = TCON.0; IT1 = TCON.2). For a quick test, use the following little program (not on your course disk):

IE	EQU 08AH	new: interrupt enable SFR
;		
	ORG 4100H	program start; address
	MOV IE,#0FFH	;all interrupts
		on
FREVR	SJMP FREVR	
	FND	

Fig. 40. Timer operation in Mode 2.

Fig. 41. Timer operation in Mode 3.

WorldRadioHistory

RETI ;return from interrupt

Contrary to the RET instruction, RETI clears the bits that have triggered the interrupt. A practical example of interrupt programming is discussed together with the function of the timers.

Counters and timers

The 8051 has two counters that can be used to count events. When clocked with an internal signal, these counters may also be used as timers. Each timer is capable of working in different modes. The timer mode is programmed with the aid of an appropriate bit pattern in the associated SFR. Counter contents (states) can be read and preset via SFRs.

The SFR for timer mode control is called TMOD (SFR at 089H; not bit-addressable), while the SFR for timer control is called TCON (SFR at 088H, bit addressable). The function of the individual bits in these SFRs is shown in Figs. 35 and 38.

lower-order byte of The Timer/Counter 1 is addressable under the name TL1 at address 08BH. The higherorder byte is called TH1, and is found at address 08DH. The general mode of operation is determined by mode bits TMOD.4 and TMOD.5. When both are '0', the counter operates as a 13-bit counter. The interaction between the various bits and the external signals is shown in Fig. 39. The C/T bit allows you select between an internal timer clock (C/T = 0) and an external timer clock (C/T = 1).

The logic levels of the bits TR1, GATE, and the level at the INT1 pin, control when the counter ia actually operating. TR1, for instance, allows the counter to be switched on and off (provided GATE = 0). The TF1 flag is set whenever the counter changes from its maximum count to 0; in other words, when an overflow occurs. This flag can be interrogated by software, for instance, to trigger an interrupt. Note, however, that this requires bit 3 (IE3) in the interrupt register to be set.

When C/T = 0, the counter counts the quartz frequency divided by 12, i.e., 1 MHz in our case. In mode 1 (TCON.4 = 1; TCON.5 = 0), the counter counts exactly as in mode 0, but with a width of 16 bits.

In mode 2, the counter works as an 8-bit counter (the count value is contained in SFR TL1), which, on overflow, is reloaded with the value contained in TH1. (8-bit auto reload). This mode is illustrated in Fig. 40. In mode 3, the counter is simply halted.

In the system monitor, EMON51, Timer I is used as a baud rate generator. It can not be used for other purposes, unless you have no need for the serial interface.

Timer/Counter 0 operates largely like Timer/Counter 1; only the bits and SFRs

START INTT0 every 250µs 4 chain INT Q decrease COUNT1 initialize timer no COUNT1 IRFT = 0every 250 x 100µs COUNT1: = 100 COUNT2 := 40 COUNT1:= 100 POST := 0decrease COUNT2 Ŧ start TIMER enable interrupts no COUNT2 IRET = 0 SNEW yes every 250 x 100 x 40µs = 1sec send COUNT2 := 40 WAIT POST = 1 no POST := 1 ÷ **POST** := 0 IRET 910109 - 6 - 25

Fig. 42. Flow diagram of the seconds pulse generator program.

Assemble and run this program, and see what happens if you generate an interrupt by applying a + 5 V pulse to connector pin c3 or c5. Can you explain what happens?

The 8051 has a low and a high interrupt priority level. An high-priority interrupt can interrupt the routine of a low-priority interrupt. Interrupts can be assigned a priority level by setting the appropriate bits in the interrupt priority SFR — see Fig. 36. Figure 37 shows an overview of the interrupt control system. It also shows the sequence followed to finish interrupt routines, when requests are received simultaneously (polling sequence).

Interrupt routines

When an interrupt occurs, and the 8051 is programmed to respond to it, the program

jumps to the routine that belongs with the interrupt. To make sure that the 'interrupted' main program can continue without problems when the interrupt routine is finished, the interrupt routine must not contain instructions that change the registers used by the main program. This is usually ensured by PUSHing the SFRs right at the start of the interrupt service routine, and POPping them back again on return to the main program. To protect registers R0 to R7, the register bank is swapped. This requires a clear-cut subdivision to be defined of the register banks with the associated program levels, at the earliest stage of program development. Add to that the possible complications caused by the register banks and the stack, and it is readily seen that errors may creep in at any stage, and not come to light after a good deal of debugging.

are different. The main difference is, however, that Timer 0 can also be used in mode 3 (TCON.0 = 1; TCON.0 = 1). In this mode it operates as two independent 8-bit counters/timers, as illustrated in Fig. 14. Note that the second 8-bit timer uses a couple of bits that actually belong to Timer 1. This means that these bits can not be used for Timer 1 when Timer 0 is programmed to operate in mode 3. Finally, the 8032 and 8052 processors have a further timer: Timer 2.

32

After this fairly large chunk of theory, we feel that it is time to turn to practice again. We have in mind a simple clock that operates under interrupt control, and leaves a signal for the main program every second. The main program waits for this signal to transmit an asterisk (*) via the serial interface. The program may be used as a basis to develop a digital clock that controls time-related functions (such as sounding a melody on your birthday).

Interrupt-controlled clock

We will first discuss the interrupt routine proper. The flow chart is given in Fig. 42, and the assembly code listing in Fig. 43 (program XAMPLE11 on your course diskette). The routine starts at label INTT0. Unfortunately, it is not possible to generate a one-second clock signal with a single timer. Even when we divide the internal clock with a 16-bit counter, the maximum time between two overflows is $65,536 \ \mu s$, or about 0.065 s. We therefore adopt a different approach.

We use an interrupt rate of 4 kHz, which means that 250 µs elapse between two interrupts. This is simple to achieve by setting Timer 0 to auto-reload mode (mode 2), using 256-250 = 6 as the reload value. The flow chart shows that the interrupt routine counts up to $40 \times 100 = 4000$ with the aid of two sequentially arranged count bytes (COUNT1 and COUNT2). The variable COUNT1 counts down starting at 100. When it reaches 0, COUNT2 (which starts at 40) starts to count down. When COUNT2 reaches 0, a total of 250×4000 µs has elapsed, and the subroutine leaves 'POST' in the mailbox of the main program. The presence of POST is signalled by a bit.

Main program

The most difficult task of the main program is the correct initialization of the SFRs for the counter and interrupt control. First, the counter mode is loaded, and the mode-2 reload value is set (lines 25, 26 and 27). Note that Timer 1 must be left to operate in mode 2 to enable it to function as the baud rate generator. Next, the counter variables are set up. In lines 31, 32 and 33, the counter is started, and the interrupts are enabled. The rest of the main program is a simple loop. Starting at label NEW, the program first sends an asterisk via the serLINE LOC OBJ T SOURCE 1 0000 ; FILE XAMPLE11.A51 2 0000 ; 3 0000 IE EQU 0A8H 4 0000 ACC EOU OEOH 5 0000 6 0000 7 0000 EQU EQU EQU PSW ODOH TCON TMOD TLO THO 088H 089H 08AH ; new : Timer/Counter Control 7 0000 8 0000 9 0000 10 0000 EQU EQU 08CH : 250+100+40 microsec = 1 sec , TOvalu EOU 250 250 microsec for TIMER 0 no. of loops for COUNT1 no. of loops for COUNT2 11 12 0000 TIME1 FOU 100 13 0000 TIME2 EQU 40 13 0000 14 0000 15 0000 16 0050 17 0051 18 0052 19 0053 ORG 050H ; via MONITOR RAM COUNT1 ; Software COUNTer 1 ; COUNTer 2 ; 1 means 1 sec has lapsed, else 0 1 1 1 DS DS COUNT2 POST DS 19 0053 20 0053 21 4100 22 4103 23 4105 24 4108 25 4108 org Mov Mov 4100H DPTR,#INTTO A,#2 COMMAND,#ccLINK

 90
 41
 34
 [2]

 74
 02
 [1]

 75
 30
 40
 [2]

 12
 02
 00
 [2]

 75
 8C
 06
 [2]

 75
 8A
 06
 [2]

 75
 89
 22
 [2]

 [2] [1] [2] [2] [2] START ; chain interrupt routine MOV COLL LCALL MON MOV TH0,#256-T0valu ; *256-T0valu ; MOV every 250 microseconds one interrupt from TIMER0 both COUNTers MODE2 2 preset software COUNTer THO, #256-TOVALU TLO, #256-TOVALU TMOD, #022H COUNT2, #TIME2 COUNT1, #TIME1 POST, #0 MOV [2] [2] [2] MOV MOV MOV no post start TIMER0 switch TIMER0 interrupt on [1] [1] [1] [1] NEW SETB TCON.4 TCON.4 IE.1 IE.7 A,#**' COMMAND,#ccCHR MON A,POST WAIT POST #0 SETB interrupts or send asterisk SETB 0.0 MOV [1] [2] [1] [2] MOV LCALL MOV WAIT ; wait ; for POST ; get POST ; repeat JZ MOV POST, #0 [2] [2] SJMP NEW [2] INTTO PUSH PSW ; save PSW ACC COUNT1, IRET1 COUNT1, #TIME1 COUNT2, IRET1 COUNT2, #TIME2 PUSH (2) [2] [2] [2] [2] [2] [2] [2] [2] decrement software counter 1 reload when 0 is reached and decrement software counter 2 reload when 0 is reached and leave POST after storage MOV DJNZ MOV POST, #1 ACC PSW MOV IRET1 POP [2] RETI ; end of inte MONITOR INTERFACE of interrupt MONITOR command memory location MONITOR jump address COMMAND EQU 030H 0200H ; MON EOU CCLINK EQU Interrupt chaining 040H CCCHR EOU 001H ; send character END SYMBOLTABLE (22 symbols) :00A8 ACC :00E0 :0089 TL0 :008A :0064 TIME2 :0028 IE PSW TH0 :00D0 :008C :0088 TMOD TIME1 TOvalu COUNT2 :00FA :0051 COUNT1 :0050 POST INTT0 :0052 START IRET1 :4100 NEW : 4123 WAIT :412B :0030 MON :0200 COMMAND CCLINK :0040 ccCHR :0001

Fig. 43. Listing of the seconds pulse generator program, XAMPLE11.

ial interface. Next, it waits for POST in the loop that starts at label WAIT. The presence of the seconds pulse is signalled by the variable POST being unequal to 0. When the POST is fetched, the variable is reset to 0 before looping back to the start of the main program.

Next time

The next course instalment will tackle the serial port of the 8051. The application will be software for a simple MIDI sequencer. In addition, we will show you how to connect an LC display to the 80C32 SBC.

Assignments

An interesting assignment to work on after studying the material presented here would be to design a program that reads the input voltages at all three analogue inputs of the extension board, and outputs the digitized values via the serial port, say, every minute. If you find that too easy, have a go at outputting decimal values multiplied by certain correction factors.

Another idea is to program a software window comparator that sends an 'OK' message to the terminal when the voltage at analogue input 2 of the extension board is between the voltages at inputs 1 and 3.

PREVIEW

Audio Amateur

issue 3, 1992

- Philips 960 Digital Processor Modification, Part II
- Balanced Line Design
- MOSFET Modification: The Dyna ST-120
- Building Techniques
- Product Reviews:
- AK100 Sound Retrieval System

23-CM FM TRANSCEIVER

This transceiver was designed in response to a need for a simple, easy to build, self-contained radio for use through the local 23-cm (1.3-GHz) repeater, as either a mobile or a fixed station. The design draws heavily on circuitry and techniques employed in 900-MHz portable phones, modified to suit amateur needs. It is hoped that this design will prove of interest to others and create more activity on this largely underused band.

By T. Forrester G4WIM

Unit operation

As the design is primarily intended for mobile working, the controls have been kept to a minimum whilst maintaining features required for efficient operation.

The prototype combined the transceiver on/off with the channel select switch in order to save front panel space. The design permits diode programming of up to 5 channels; this number could obviously be increased by using a larger diode matrix or some form of memory. A toggle switch selects either simplex or repeater working. For the latter function a tone burst button is provided which also keys up the transmitter.

There are conventional volume and squelch controls and sockets for external microphone and speaker, as required. The prototype was slightly modified to be compatible with the ICOM HS51 mobile headset. Details of this modification are available on request from the author.

Circuit operation

Figure 1 shows the simplified overall block diagram, high-lighting the most important areas of the design. Figure 2 shows the detail of the receiver circuitry. The incoming signal passes through the aerial change-over relay which is a 960-MHz strip line type having good isolation and an insertion loss of less than 0.5 dB at 1.3 GHz. The RF pre-amplifier (TR9) is a low-noise Avantek GaAs FET, so ensuring excellent sensitivity. The pre-amplifier feeds a ready-made three- stage heli-

cal filter (FL3) to heavily attenuate the image response 90 MHz below the receive frequency. Following the helical filter is a low noise MMIC (IC17) providing a further 13 dB of gain and 50- Ω output impedance to drive the SBL1-X diode ring mixer (D8). This mixer is operated slightly above its maximum frequency rating, but experience has shown that the conversion loss increases only slightly and is amply compensated for by the preceding low-noise amplifiers.

The local oscillator signal, which is 45 MHz below the desired receive frequency, is supplied by a synthesizer, see below.

The output of the mixer is passed to the first IF amplifier (TR12). This stage is a low-noise grounded gate FET amplifier whose input impedance is approximately 50 Ω , so providing the diode ring mixer with a reasonable load.

The drain load of TR12 is tuned and loaded to match the following 45-MHz crystal filter. Likewise, the second IF amplifier (TR13) has a tuned and loaded input circuit to match the output of the filter. The 45-MHz IF signal is now at a sufficiently high level to be further processed by IC6.

The 45-MHz signal applied to pin 18 of IC6 is mixed down to an IF frequency of 455 kHz, where it is demodulated and filtered before being passed on to the audio power amplifier (IC5). IC6 also provides the

mute function (Fig. 3).

Referring to Fig. 5, on transmit, TR1 is turned on, so that the relevant transmitter sections are powered, and the simplex or repeater transmit offsets are added in to IC1 through to IC3: see the notes on programming below for further details.

The output signal at the collector of TR1 is used to operate the PIN diode switch within the VCO, so routeing the signal from the receive mixer to the RF power amplifier module (PA1). It also powers the microphone stages (TR4 and TR5), activates the varactor diode used for FM transmit (D15) and turns on TR6, so operating RL1 which in turn provides bias for PA1 via TR7. The receiver front end is powered down as TR8 is turned off.

By selecting a jumper between either pins 1 and 2 or pins 2 and 3 on PL6, it is possible to run the final stage of the power amplifier from either 8 V or 13.8 V. The latter supply level generates 2 watts of RF output as opposed to 1 watt.

The heart of the frequency synthesizer uses a Motorola MC145152P2 (Fig. 4) and a 64/65 prescaler combined with some simple logic to provide 25-kHz channel spacing, 6-MHz down shift for repeater access and a 45-MHz offset required for the receiver local oscillator.

The VCO and buffers make extensive use of surface mount parts to create a compact VCO which is very rugged and practically

Fig. 1. Block diagram of the transceiver.

immune to vibration.

The pre-scaler (IC13) is a dual-modulus +64/+65 type controlled by the modulus control output of IC11. IC11 is run at 8 V to ensure reliable operation, while IC13 needs to run off 5 V. Level shifting between these two ICs is provided by R83, C45 and D5. This combination also minimizes overall modulus control delay between the two ICs, a critical factor when using dual-modulus prescaling at these very high frequencies.

The loop filter around IC10 needs little comment, and is designed to the Motorola data sheet, attenuating the 25-kHz reference frequency to below –55 dBc. This level of attenuation, while not perfect, is more than adequate for a low-power radio such as this. IC10 is powered from the main 13.8 V supply, filtered by R21 and C53, so providing maximum available output swing.

The reference for the synthesizer is generated by XL1 and TR3. An external reference oscillator was employed as it was possible to design a oscillator with a better frequency stability than using the internal circuits of IC11. At 1.3 GHz, stable frequency generation is a must for reliable communication.

During the transition from receive to transmit, the synthesizer is unlocked for approximately 100 ms until it settles on its new operating frequency. As there is no circuitry to detect synthesizer unlock and disable the RF power amplifier, a carrier momentarily sweeps on to frequency. While this situation is not ideal, it was thought that the extra circuitry involved did not merit being included given the low power output and level of band occupancy.

If any constructor wishes to disable the RF power amplifier while the synthesizer is unlocked, the author can supply the necessary details.

Finally, IC4 provides a simple 1750-Hz tone access for repeater working.

Programming

Since the synthesizer has to generate three possible frequencies for each channel, i.e., receive LO, transmit simplex and transmit re-

peater, the data presented to IC11 has to be modified according to the mode in use.

Assuming that the unit is receiving on 1297.125 MHz, the LO must be on 1297.125 MHz–45 MHz i.e., 1252.125 MHz. Also, since we are working with a channel spacing 25 kHz, the LO frequency must be scaled down (i.e., divided) by a factor 1252.125 MHz/25 kHz = 50085.

This factor of 50085 needs to be further reduced before it is programmed into the 'A' and 'N' counters of IC11. Since we are using a divide-by-64 prescaler, the 'N' count for IC11 is the integer 50085/64 i.e., 782, the remainder of 37 is used for the 'A' count.

So, to operate on 1297.125 MHz the 'N' count is 782 and the 'A' count is 37. Because we only need to cover the 1297 MHz to 1298 MHz section on the band on receive, it is possible to hard-wire some of the higher-order control lines of IC11. A close check on all the required codes reveals that binary weights 512 and 256 can be permanently held true. This means that from a control aspect 'N' of 782 is reduced by 768 to 14,

Fig. 2 Circuit diagram of transmit power amplifier, and receiver. Note: SMA = surface mount assembly.

WorldRadioHistor

Fig. 3. Block diagram of MC3359 low-power narrowband FM IF (courtesy Motorola).

thereby reducing the number of lines that need to be manipulated. The actual number range becomes 13, 14 or 15 when covering 1296 MHz to 1298 MHz, and is accounted for automatically in the adders (IC2, IC3 and IC4).

To operate at 1291.125 MHz 'transmit' (repeater input for 1297.125 MHz), the synthesizer has to be shifted up by 39 MHz i.e., the count has to increase by 39 MHz/25 kHz=1560. Converting this to 'N' plus 'A' format gives 'N'=24 and 'A'=24.

If, instead, transmit on 1297.125 MHz was required, then 45 MHz would need to be added, i.e., the count has to increase by 45 MHz/25 kHz=1800. Converting this to 'N' plus a format gives 'N'=28 and 'A'=8.

By comparing the above bit patterns required for these two offsets, it becomes apparent that, on transmit, only the '4' weight needs to be changed in the 'N' count, and the '16' weight in the 'A' count, to select either simplex or repeater transmit. All other weights are required regardless of which transmit mode is chosen.

The addition of either of these two offsets to the receive base numbers is easily accomplished by binary adders IC1, IC2 and IC3.

So, to recap, to calculate the numbers -

and hence diodes — required for a given channel:

1. Calculate the RX local oscillator (LO) frequency (F_{sig} –45 MHz).

2. Scale down this frequency by a factor (RX LO Freq./25 kHz).

3. Convert to 'N' plus 'A' ('N' overall/64='N'; remainder='A').

4. Subtract 768 from 'N'. This result should be either 13, 14 or 15 when programming receive frequencies between 1296 and 1298 MHz.

5. Convert 'A' (remainder from 3. above) to binary, i.e., 1, 2, 4, 8, 16, 32.

6. Insert diodes from the selected channel number to the binary weights required to program the given 'A' and hence the desired frequency. When fitting the diodes, ensure that they all 'point' towards R3.

The lines on the silk screen around the diode matrix area show where diodes need to be inserted to program the following frequencies to the associated channel.

Channel 1: 1297.125MHz (RM5) Channel 2: 1297.000MHz (RM0) Channel 3: 1297.075MHz (RM3) Channel 4: 1297.150MHz (RM6) Fitting no diodes at all would cause the radio to operate on 1296.200 MHz, and could be useful for monitoring SSB activity.

To make the radio more flexible, a small add-on PCB is being designed which will replace IC1, IC2 and IC3. This circuitry will allow any repeater shift to be programmed, listen on input, and will also permit the use of thumbwheel or similar switches. The programming data will be held in an EPROM mounted on the PCB.

Construction

It is easiest to fit all the surface mount parts first (on the track side of the PCB). A steady hand, a pair of tweezers and some patience are very necessary to make sound joints. Take time to make sure that the VCO section in particular is well put together as eventually it will be covered by a metal box making subsequent repair less easy. A close-up of the VCO area is shown in Fig. 8.

Note that C93 and C94 are mounted through the PCB after their holes have been cleared out with a 1.5-mm drill (to remove the through hole plate). This ensures that the source leads of TR9 are effectively by-passed to the ground plane.

After all the surface mount parts have been fitted, proceed with the remaining resistors and capacitors, followed by the rest of the ICs. Take care not to make any shorts between component leads and the ground plane.

Finally, fit the Molex connectors, relay, crystals and IC16 bolted to a good heatsink. Do not at this stage fit the RF power amplifier.

Before applying power for the first time check that the board has been correctly assembled and that there are no obvious wiring faults.

Testing and alignment

The transceiver is built on one high-quality through-plated, silk screened, solder resisted PCB of about 127 mm \times 185 mm,

Fig. 4. Block diagram and pinout of MC145152P synthesizer IC (courtesy Motorola).

WorldRadioHistory

23-CM FM TRANSCEIVER

37

which is designed to fit inside a standard die cast box or similar case. The PCB and a number of components to build the transceiver are available from the author.

It is possible to align and test most of the PCB without installing it in its case. Only when the RF power amplifier is to be tested does the unit need to be installed in its case.

It is assumed that the unit has been diode programmed to the desired set of frequencies.

Make all the connections as shown in Fig. 6, and turn the unit on. The supply current should be circa 250 mA with the receiver muted. If the current is vastly more or less, there is probably a fault.

Adjust C78 for a voltage of between 4 V and 5 V on pin 6 of IC10. If necessary, slightly adjust the height of L9.

Turn off the power, and place the VCO cover on the PCB. Mark where the signal tracks would short to the cover. File these areas slightly (0.5-mm clearance is plenty). Carefully place the VCO cover box on the PCB and turn on the power. The voltage on

Fig. 6. External connections diagram.

WorldRadioHistory

COMPONENTS LIST

* means surface mounted part. ! means Cirkit part number.

Resistors:

5% 0.25-W NK3 Type unless otherwise stated. * = Chip resistor, 5% RC01 type.

R1;R2;R35;R37= 4kΩ7 R3 = 47kQ SIL $B4 = 100k\Omega$ R5;R6;R14;R20;R27;R29;R40; $R48:R83 = 2k\Omega 2$ $R7 = 1k\Omega 5$ R8;R13;R16 = $22k\Omega$ $R9 = 27k\Omega$ $R10;R12;R45;R59;R61 = 10k\Omega$ $R11:R30:R47 = 330k\Omega$ $R15 = 33k\Omega$ $R17;R28;R33;R62 = 1k\Omega$ $R18 = 2k\Omega$ preset $R19:R21:R43 = 100\Omega$ $R22;R23;R24;R25 = 18k\Omega$ $R26;R34;R84 = 15k\Omega$ $R31 = 12k\Omega$ $R32 = 82k\Omega$ R36;R89 = $5k\Omega$ preset $R38 = 22\Omega$ $R39;R54 = 120\Omega$ $R41;R51 = 56\Omega$ R42;R72;R85;R86 = 2kΩ2 chip * $F_{44} = 680\Omega$ $R46 = 470\Omega$ $R49;R50 = 56k\Omega$ $R52 = 27\Omega$ R53 = 2700 $R55:R57 = 4k\Omega7$ $R56 = 68\Omega$ R58 = $10k\Omega$ preset $R60 = 180\Omega$ R63 = 39k Ω chip * R64 = 4kΩ7 chip * R65;R68;R77 = 10kΩ chip * R66 = not fitted R67;R75;R78;R79;R80 = 82Ω chip * $R69;R73 = 1k\Omega$ chip ' $R70 = 10k\Omega \log.$ pot $R71 = 330\Omega$ chip * $R74; R76 = 470\Omega$ chip * $R81;R82 = 22\Omega$ chip R88 = $10k\Omega$ lin. pot

Capacitors:

pF chip * capacitors are 0805 size, nF chip * capacitors are 1206 size. All capacitors are subminiature, 0.1" radial fitting types unless otherwise noted.

C1:C11 = 4.7μ F 16 V C2:C3:C49:C50 = 22nF C4:C5:C25:C26:C43:C44:C46:C53:C54:C58: C60:C65:C84:C101 = 47μ F 16 V C6 = 100μ F 16 V C7:C9:C10:C16:C17:C18:C20:C36:C37:C41: C47:C48:C59 = 100nF C8:C13:C14:C38:C45 = 1nF C12 = 150pF C15 = 22pF C19 = 22nF 0.2^a C21 = 330pF C22 = 680 pFC23 = 68pFC24;C29-C35 = 4.7nF C27 = 10pFC28;C61 = 12pF C39;C40;C102 = 100nF chip * C42 = 1000µF 16 V axial C51;C52 = 470nF 0.2" C55 = 100nF 0.2" C56 = 470 pFC57 = 4.7 nFC62 = 25pF trimmer C63 = 470pF chip * C64:C66:C67:C70;C71;C72;C74-C77;C83;C85-C90;C92-C97 = 47pF chip * C68 = 1nF chip 1 C69 = 100pF chip * C73 = 10pF chip C78;C91 = 2pF trimmer C79;C81 = 1pF chip * C80 = 2.2pF chip * C82 = 0.6pF chip * C98.C99;C100 = 33pF chip *

Note: C93 and C94 are fitted through the PCB after the holes have been drilled out by a 1.5-mm drill. Necessary to remove the through hole plating.

Semiconductors: TR1:TR2:TR7 = BC477TR3:TR5:TR8 = BC109 TR4;TR6 = BC107 TR9 = ATF13484 * TR10 = BCW33 * TR11 = BFR92 * TR12 = J310 TR13 = 3N201 IC1;IC2;IC3 = CD4008 IC4 = CD4011IC5 = ULN3718M IC6 = MC3359 IC7:IC9:IC12 = 78L08 IC8 = 78L05IC10 = TL081 IC11 = MC145152P2 IC13 = MB501L IC14;IC15 = MSA0304 * IC16 = 7808IC17 = MSA0635 * PA1 = M67715 (Mitsubishi) D1-D4;D6;D7;D17;D18;D19 = 1N4148 D5 = 4.7∀ zener D8 = SBL1-XD9 = 1N5408 $D10 = BAS19^*$ D11-D14 = BA585 PIN * D15:D16 = BB811 * D20 = 5.6V zener D21 = 3.9V zener Programming diodes 1N4148 types as required.

hductors: L1 = 35-01842 ! L2;L3;L4 = 35-00291 ! L5 = see below L6 = 0.22μH SC30 L7;L8 = 0.1μH *

WorldRadioHistory

L9 = see below L10 = 0.47µH SC30

L5 and L9 are pieces of 22 SWG tinned copper wire soldered 1.5-mm above the PCB on the track side between the relevant pads.

Miscellaneous:

XL1 = quartz crystal 3.2 MHz XL2 = quartz crystal 44.545 MHz FL1 = filter 455D2 FL2 = filter 45M15A FL3 = filter 17-12109 ! PL1 = 10-way Molex PL2;PL3 = 2-way Molex PL4 = 5-way Molex PL5 = SMA coax socket PL6;PL7;PL8 = 3-way Molex RL1 = 175 051 (Farnell) S1 = single pole momentary action S2 = single pole 5 way S3 = single pole change over S4 = PTT (usually part of microphone assembly) Semi-rigid coax for for RX LO and TX drive connections.

Note: S2 could be 2-pole 6-way, the second pole being used as the power switch, as per prototype. Sockets as required for external microphone,

speaker and power connectors.

Hardware:

4 off Tapped 8mm high pillars. 1 off RF power amplifier mounting block 50×15×6mm aluminium. 1 off Diecast box 220×150×55mm minimum size.

VCO cover 70×53×6mm (internal dimensions) made from 0.5-mm brass or similar.

Cirkit PLC are at Park Lane, Broxbourne, Herts EN10 7NQ, England. Telephone: (0992) 444111. Fax: (0992) 441306.

For PCBs and component sets, contact the author:

Mr. T. Forrester, 12 Lime Close, Hartwell, Northants NN7 2PS, England.

Latest issue PCBs are 'Rev. C'. On these, R62, R60, R61 and R59 become surfacemount assembly (SMA) parts. This PCB also has provision for a PIN diode antenna changeover, and DC FM for 9,600 baud Packet Radio.

Fig. 7. Suggested mounting of RF power amplifier module. Do not use heat-sink compound on module or copper tape.

pin 6 of IC10 will have increased by about 1 V. This is normal. Turn off the power and tack solder the cover in place every 10 mm or so for the time being.

Turn on the power and set the reference oscillator to 3.2 MHz using C62.

Lift the receiver mute and align the receiver by tuning to a strong local signal. Peak C91 and FL3, followed by L4, L3 and L2. Tune L1 for best recovered audio. Check that the mute action is smooth and positive.

If a signal generator is available, the mute should lift at less than 0.15 μV and have a SINAD of 12 dB or better.

If necessary, adjust the reterence oscillator using C₆2 to ensure that the receive signal is correctly tuned. If everything is operating all right so far, solder the VCO cover firmly in place, to further reduce any residual microphonic effects.

Referring to Fig. 7, install the PCB in its case on 8-mm pillars. Next, solder the RF power amplifier to the PCB ensuring that copper tape is used to bond the base of the module to the ground plane of the PCB (see drawing in Fig. 7). Make sure that the power module and IC16 are well 'heatsinked' to the case. Insert a link on PL6 to select either high or low power. Connect an RF power meter to PL5, and select transmit. The current should be circa 1.1 A for 2 W output on high power, and about 800 mA for 1 W output on low power.

Fig. 8. Close-up of the VCO area of the PCB. This part of the circuit is normally enclosed by a metal cover.

Set the microphone gain (R89) midway. Next, using a deviation meter or off-air signal report, adjust R58 for a peak deviation of about 5-kHz.

Set R₃₆ initially midway, then press the tone button and adjust R₁₈ for 1750 Hz. Readjust R₃₆ for approximately 3-kHz peak tone deviation.

If all is well the radio is now ready for use and should give very good mobile performance when used with a suitable aerial, typically an Alford slot as most repeaters and base stations use horizontal polarisation.

Conclusion

The prototype has been in use by the author for some time now and has proved to be adequate for both base station use and mobile operation. Obviously, owing to the unit's relatively low power and higher propagation losses at 1.3 GHz when compared to, say, 432 MHz, the range attainable is less than that available on lower frequencies. However, as a general guide it seems that when a 23-cm repeater is co-sited with a 70cm repeater (for instance, GB3NH and GB3CN), the 23-cm repeater is accessible by a mobile from locations where the 70-cm repeater is accessible on a handheld. This assumes that the 23-cm mobile is using a half sized Alford slot aerial providing circa 5-dBi of aerial gain.

Another interesting aspect of 23-cm mobile working is the reduction in mobile 'flutter' when moving even at fairly slow speeds, compared to 'flutter' observed on the lower frequencies.

Generally, 23-cm repeaters are always in beacon mode when not actually in use as a repeater. This means that the receiver mute would be permanently lifted when monitoring a repeater/beacon leading to unnecessary idents and noise being received. To overcome this drawback, some repeaters are fitted with a sub-audible tone which is only superimposed on the repeater transmit carrier when the repeater is accessed, and the mute is lifted on its receiver. Typically, the tone would be between 60 Hz and 250 Hz at a deviation of less than 1 kHz. A receiver monitoring the repeater which has a tone mute set to the same frequency (123 Hz for GB3CN) would now only respond to voice traffic passing through the repeater, so ignoring unwanted AFSK idents. If there is enough interest, a compatible tone mute circuit may be developed for this design.

The author can supply high quality PCB's (plated through, solder resist, and silk screened), plus parts or kits of parts as required. (Exact prices yet to be determined and dependent upon demand).

If required it is proposed to supply the VCO and synthesizer sections assembled and tested, leaving only receiver and ancillary parts to the constructor. This approach may be more attractive to those amateurs who feel that surface mount techniques are perhaps beyond them!

KERBER KLOCK IV

Musical grandfather clocks are still very popular in many households. This article describes how electronics have been applied to build a microprocessor-based digital clock with twelve different melodies which are selected by the user.

By R. J. 'Bob' Kerber

THE construction of the enclosure can be at the discretion of the user. For those interested in woodworking projects, the electronics could be housed in a mantle clock or carriage clock made of solid walnut, cherry, or whatever. Other materials could be metal, plywood, paneling, or anything else that comes to mind. This article describes the author's enclosure, which uses clear plastic. A clear enclosure is not only an interesting conversation piece but is a unique method of displaying one's handiwork. The enclosure is 7.5 inch wide, 5.5 inch high and 4 inch deep (approx. 191 × 140 × 102 mm).

The Kerber clock plays a melody on the quarter hour, similar to a grandfather clock. There are 12 preprogrammed melodies, which are user selected by a rotary switch on the front panel. At 15 minutes past the hour, a quarter of the melody will be played. At half past the hour, half the melody will be played, and so on, until the entire melody is played on the full hour. Almost any melody can be preprogrammed into the clock at the request of the user — contact the Kerber Klock Ko. for details.

Circuit description

At the heart of the circuit (Fig. 1) is a Motorola 6802 microprocessor. The 6802 has its own internal clock and driver, requiring only an external crystal. It also has 128 bytes of on-chip RAM, which is nice as long as no more RAM is needed because it does not require external RAM with additional address decoding circuitry.

A 51-k Ω resistor and a 4.7- μ F capacitor provide a power-on RESET to pin 40 of the CPU. A 4-MHz crystal oscillator is used to provide an external clock frequency to run the processor. The 60 Hz (or 50 Hz) mains frequency is shaped by a 74HC14 inverting Schmitt trigger gate. This frequency is used to run the clock when there is mains power. A 1.2-k Ω resistor monitors the transformer secondary voltage for a power failure. If the mains power fails, the clock switches to another 60 Hz (or 50 Hz) source: the 6840,

whose timing signal is gated through to the NMI\ (non-maskable interrupt) pin of the 6802. The NMI\ is used for timing the digital clock and the length of the tones in the melodies.

The IRQ\ (interrupt request) line of the CPU is used for multiplexing the 7-segment LED displays. A 74HC14 gate functions as an oscillator operating at about 2.8 kHz.

A 2532, 2732 or 2764 EPROM stores the machine language program that tells the processor what to do. If a 2532 is used, a jumper wire is required from E1 to E2, and one from E3 to E4. If a 2732 or 2764 is used, a jumper wire is required from E2 to E3, and one from E4 to E5. The jumpers are required owing to these devices having different pins for the same signals. When a 2764 is used, a 28-pin socket is required. The 2532 and 2732 devices can use either a 24 or 28-pin socket. When a 28-pin socket is used, the 24-pin device is inserted in the bottom set of holes (the top is pin 1), as shown on the component location diagram.

Address decoding starts with the 74LS138. Valid memory address (VMA) and the E clock are 'ANDed' through a 74LS00 gate at pin 3 to provide a logic low signal VMA*E\. Address line A15 and VMA*E\ enables the 74LS138 to recognize A14, A13 and A12, which causes the appropriate output to go low when true. For example, when signals A15, A14, A13 and A12 are all high, pin 7 (F000) goes low, enabling the EPROM.

Address E000 from address decoder pin 9 is not used. The letters 'N.C.' in the circuit diagram indicate 'no connection'. Address D000 from pin 10 enables the 6840 PTM (programmable timer module). The PTM is designed to provide variable time intervals. It has three 16-bit binary counters, three corresponding control registers, and a status register. These counters are under software control, and are used to generate frequencies for the melodies, the alarm, and a 60-Hz frequency used to keep the clock going when on battery backup.

Address C000 (pin 11) is not used.

Address B000 from 74LS138 (pin 12) is used to interrogate the switches inputting to the 74LS244-2, while address A000 from pin 13 interrogates the switches inputting to the 74LS244-1. Switch interrogation occurs 60 times a second (i.e., every 16.67 ms). The 5.6-k Ω resistors pull the inputs of both 74LS244s logic high unless a particular switch pulls that input low. When the processor addresses a switch decoder, it reads the information supplied by the decoder via data lines D7 through D0. The bit combination read back determines what happens. For instance, if switch Sa is in the CAL position, data line D1 instructs the processor to display the date.

Address 9000 from 74LS138 pin 14 is used to determine which of the six display digits, the AM LED or the ACO solid-state relay (SSR) is to be selected. When pin 14 goes low, it causes the data on the data bus (D7 through D0) to be latched into the 74LS374-2 octal D-type flip-flop, and to appear at its output. The ULN2001 is a highvoltage, high-current, Darlington transistor array. An alternative part, the ULN2003,

Fig. 1. Circuit diagram of the Kerber Klock.

may be used, provided the seven 1.2-k Ω input resistors are replaced with #22 AWG solid wire.

Address 8000 from 74LS138 pin 15 determines which display segments including the decimal point (DP) are to be tuned on. A low level on pin 15 causes data to be latched into the 74LS374-1, and to appear at the outputs. The 75491-1 and 75491-2 are quad LED segment drivers. The eight ½-watt resistors limit the current through the LED segments, thus determining the brightness level. Too large a resistor will make the displays dim, while too small a resistor could burn them out.

Power supply

The rectifier circuit is a full-wave bridge type using four 1N4001 diodes to rectify the 12.6-V a.c. secondary voltage of the mains transformer. A 2200- μ F capacitor, C1, is used to smooth the rectified voltage, which is about 15 V d.c. The rectified voltage is fed to the 5-V regulator, the loudspeaker driver, and the NiCd rechargeable batteries. The centre tap of the transformer provides a secondary voltage, which is filtered by a another 2200- μ F capacitor, C2.

A 20- Ω , 3-watt resistor is inserted in the 7805 input voltage line to take some of the heat away from the regulator, and provide current limiting to trickle-charge the NiCd batteries. Diode 1N4001 (CR5) prevents battery current from flowing back through the 20- Ω resistor on power failure. The V_p voltage is backed up by NiCd batteries. On battery back-up, the displays will go dark, but the internal circuitry will keep track of the correct time, so that when AC power returns, the correct time will be displayed. The V_s voltage is not required upon loss of power.

Features and functions

The Kerber Klock has two display modes: 12-hour (12:00:00) or 24-hour (00:00:00). Either option is selected by the switch marked 12 HR/24 HR. When in the 12-hour mode, an LED below the tens-of-hours digit will turn on, indicating the time is AM. Switching between 12 HR and 24 HR position changes the display instantly.

The calendar is displayed for two seconds every ten seconds. The date is displayed in the form MM:DD:YY, where MM is the month, DD is the day and YY is the year. The correct number of days is displayed for any particular month. Leap year is calculated by dividing the year by four. If it divides evenly, 29 days are displayed for February, if not, 28 days are displayed.

To disable displaying the date, turn the right-hand rotary switch to the CAL position, and push the SNZ (snooze) button. When the rotary switch is turned back to RUN position, the date will not be displayed. To return to displaying the date, repeat the procedure. A reboot of the system will also cause the date to be displayed.

The alarm is a true 24-hour alarm. When

the clock time equals the preset alarm time, and the ALA switch is up, the alarm will sound. The alarm will sound for one minute unless it is terminated by putting the ALA switch down, or by pushing the SNZ button (which will turn the alarm off for 10 minutes). The SNZ button may be pushed as many times as desired, until the alarm is disabled by the ALA switch. The alarm volume can be set by pushing the SNZ button with the ALA switch up.

The AC outlet (ACO) on the right side of the case is an accessories outlet which can control small appliances rated up to 3 A (300 W) maximum. It can be used to turn off a radio and/or a light automatically after you go to sleep, and turn them on in the morning when the alarm comes on. There is a 99-hour and 59-minute counter which can be set in one-minute increments. The ACO is a down counter, and will stay on for the preset time period as long as the ACO switch is up. The ACO will turn on at the alarm time if the ACO and ALA switches are up. Putting the ALA switch down will turn off the alarm but not the ACO.

The melodies are selected by combining the left-hand rotary switch, Sc, with the MEL SEL toggle switch. With MEL SEL in the up position (1-6), melodies one through six are selected by Sc. With MEL SEL in the down position (7-12), melodies seven through twelve are selected by Sc. Any melody can be played on demand by pushing the SNZ button with the ALA switch down. The standard version of the Kerber Klock IV is preprogrammed to play the following melodies:

- 1. Westminster Chimes
- 2. London Bridge
- 3. Somewhere My Love
- 4. The Way We Were
- 5. Love Me Tender
- 6. Strangers In The Night
- 7. More
- 8. The High And The Mighty
- 9. Misty
- 10. Jingle Bells
- 11. Oh! Susanna
- 12. Everybody Loves Somebody

Setting the time (CLK)

Rotate the right-hand rotary switch (Sa) to the CLK position. This will freeze the clock time on the display (HH:MM:SS). Put the SEL DIG (select digit) toggle switch in the up position. A lit decimal point indicates the digit that is ready to be changed. Put the SET DIG (set digit) toggle switch in the up position. The digit with its decimal point lit will start to increment at a 2-Hz rate. Seconds will be reset to 00. Put the SET DIG switch down when the desired number is displayed. Put the SEL DIG switch down and back up to move to the next digit. Set the desired number using SET DIG as done before. Do this for the other digits.

Setting the calendar (CAL)

Rotate switch Sa to the CAL position. This

WorldRadioHistory

will freeze the date on the display (MM:DD:YY). Put SEL DIG in the up position. A lit decimal point indicates the digit that is ready to be changed. Put the SET DIG (set digit) toggle switch in the up position. The digit with its decimal point lit will start to increase at a 2-Hz rate. Put the SET DIG switch down when the desired number is displayed. Put the SEL DIG switch down and back up to move to the next digit. Set the desired number using SET DIG as done before. Do this for the other digits, and rotate Sa to RUN position. Note that the time of day was not affected while setting the date.

Setting the alarm (ALA)

Rotate Sa to the ALA position. The procedure for setting the alarm time is the same as that for setting the time of day. If in the 12hour mode, be sure the AM LED is on for AM alarm setting. Rotate Sa to RUN position after the alarm time is set correctly.

To set the alarm, put the ALA switch in the up position. Note that the decimal point of the digit above the ALA switch will come on. This allows the user to tell, in the dark, that the alarm has been set. Set the ALA VOL as desired while pushing the SNZ button. When the time of day is the same as the alarm setting, the alarm tone will sound for one minute unless the ALA switch is put down, or the SNZ button is pushed. The SNZ button turns the alarm tone off for 10 minutes.

Setting the AC outlet (ACO)

Rotate Sa to ACO position. The procedure for setting the counter is the same as that for setting the time of day, except the hours can be set to 99. Putting the ACO switch up will turn on the SSR, which puts mains voltage on the AC outlet on the right side panel of the clock, and start the counter counting downward. When the ACO counter reaches 00:00:00, the AC outlet will turn off. The decimal point above the ACO switch will be lit.

Construction

The construction of the clock is set out in great detail in the manual supplied by the Kerber Klock Ko. The manual also contains the component mounting plans of the two printed circuit boards, a detailed parts list, and a components source list. Prices of a number of items used to build the clock, as well as parts kits, EPROM listings, preprogrammed EPROMs, etc., are indicated on the order form which you can obtain from

Kerber Klock Kompany R. J. 'Bob' Kerber 36117 Hillcrest Drive Eastlake, OH 44095 U.S.A. Telephone (216) 946-3898

Finally, make sure to state 50 Hz mains or 60 Hz mains when ordering or asking for details.

ANALOGUE OPAMP INTEGRATOR CIRCUITS

HOW THEY WORK, HOW TO DESIGN THEM AND WHAT MISTAKES ARE MADE

INTEGRATION is the mathematical process of finding the area under a curve. While the mathematics of integration are beyond the scope of this article, the underlying concept is not. If you want to find the area under a time varying voltage, then you might apply the mathematics of integral calculus to arrive at a number.

Alternatively, you might use an analogue integrator circuit. The same circuit can also be used to find the time average of a varying voltage.

In Fig. 1 a time-varying voltage signal represents a pressure transducer output. In this particular case, the signal is the output of a human arterial blood pressure transducer used in medical electronics (any other example would also suffice). Notice that the pressure/voltage varies with time from a low non-zero value ('di-astolic') to a high peak value ('systolic') between times T1 and T2 (which represents one cardiac cycle). If we want to know the mean arterial pressure (MAP), we would want to find the area under the curve, as shown by the formula in Fig. 1.

Before discussing the circuit, let us first mention the math notation. The \int symbol indicates that the integration process will be applied on the pressure signal, P, over the time interval T1 to T2. The 'd t' indicates that the integration takes place with respect to time. The mean arterial pressure over the T2-T1 interval, also denoted by P-bar, is the integral of the voltage signal representing the pressure. From this illustration we can see that the integrator serves to find the time-average 'mean' value of an analogue voltage waveform — it does not have to be a blood pressure signal.

Passive *R*-*C* integrator circuits

Perhaps the simplest form of integrator and differentiator circuits are made from simple resistor (R) and capacitor (C) elements, as shown in Fig. 2. You may recognize this circuit as a passive low-pass filter. The R-C low-pass filter (integrator) has a -6 dB/octave falling characteristic frequency response.

By Joseph J. Carr

The operation of the integrator is dependent upon the time constant of the *R*-*C* network (i.e. $R \times C$). In most cases, we want the integrator time constant to be long (i.e., >10×) compared with the period of the signal being integrated. We can cascade several integrators in order to enhance the effect, and also increase the slope of the frequency response fall-off,

although only at the expense of severe signal amplitude loss.

Active op-amp integrator circuits

The operational amplifier makes it a lot easier to build active integrator circuits. Fig. 3 shows the standard operational am-

Fig. 1. Blood pressure vs. time curve. P is a time varying voltage from a pressure transducer.

Fig. 2. Passive resistor-capacitor (*R-C*) integrator circuit.

plifier version of the Miller integrator circuit. An IC operational amplifier is the active element; a resistor is in series with the inverting input and a capacitor is in the feedback loop. The output voltage of the integrator circuit is dependent upon the input signal amplitude and the R-Ctime constant. The transfer equation for the Miller integrator is:

$$U_{\rm o} = \frac{-1}{RC} \int_{0}^{t} U_{\rm in} \, \mathrm{d}t + K \tag{1}$$

Where:

 $U_{\rm o}$ and $U_{\rm in}$ are in the same units (volts, millivolts, etc.); *R* is in ohms (Ω);

C is in farads (F);

t is in seconds (s);

K is a constant in volts (same units as U_0 and U_{in}).

The expression of Eq. [1] is a way of saying that the output voltage is equal to the time-average of the input signal, plus some constant K which is the voltage that may have been stored in the capacitor from some previous operation (often zero). Alternatively, K may represent an offset error voltage in either the input signal or the operational amplifier itself and therein is found a problem with textbook integrator circuits.

Fig. 3. Miller opamp integrator circuit.

Fig. 4. Practical Miller opamp integrator circuit.

Practical Miller integrator circuits

The circuit shown in Fig. 3 is classic, and appears in textbooks and magazine articles. Unfortunately, it also does not work very well (or at all in some cases) because of the offset voltage problem (a demon K!). These circuits are too simplistic because they depend upon ideal input signals that are symmetrical about zero volts, and the properties of 'ideal' operational amplifiers. Unfortunately, the real kind-you-can-go-buy opamps fall far short of the ideal device that was in the mind of the textbook writer. In real circuits we find that integrators saturate very shortly after turn-on.

The problem with the opamp integrators was driven home to me when I worked in a medical school/hospital bioelectronics lab, and had to build an electronic integrator for one of the customers of our electronics laboratory. When I used a Type 741 operational amplifier, the output voltage saturated within milliseconds after turn-on. In fact, saturation came so fast that I initially thought the opamps were bad. The problem was that the input bias currents of the opamp (which are zero in ideal devices) create a high enough output voltage to fully charge the capacitor in the feedback loop very rapidly.

There is another problem with this kind of circuit, and it magnifies the problem of saturation. This circuit has a very high gain with certain values of R and C. Let us pick an example and see what this gain can mean. The voltage gain (A_v) of this circuit is given by the term -1/RC (¹) so what is the gain with a 0.01-µF capacitor (certainly not a 'large' capacitor in conventional wisdom) and a 10,000-ohm resistor (note: 0.01-µF is 10^{-8} farads)? The gain is calculated as follows:

$$A_v = -1/RC$$

 $A_v = -1/(10^4 \text{ ohms})(10^{-8} \text{ farads})$
 $A_v = -1/10^{-4}$
 $A_v = -10^4 = -10,000$

With a gain of -10,000, a + 1-volt DC signal applied to the input will try to produce a - 10,000 volt output. Unfortunately, the operational amplifier's negative output potential is limited to a range of -5 to -20volts, depending upon the device selected and the applied V- power supply voltage. For this case, the operational amplifier will slew to saturation very rapidly! If we want to keep the output voltage from saturating, then we must either keep the R-Ctime constant under control, or prevent the input signal from rising too high (not good!). If the maximum output voltage allowable is 10 V, then the maximum input signal is 10 V/10,000, or 1 mV. Obviously, the best solution is to keep the *R*-*C* time constant within bounds.

When I built my first analogue integrator, and found that 741 devices were not suitable, I turned to high-cost premium grade opamp devices. At that time, a premium 725 device cost \$15, and it suffered the same problems as the 741. The only difference between the \$15 premium opamp and the \$0.50 741 device is that on the \$15 opamp the output saturated slowly enough for me to watch it on an oscilloscope or voltmeter — about four seconds — instead of nearly instantaneously. Unfortunately, this was still not acceptable.

Applying a waveform to the input of even the premium op-amp integrator allowed me to see the output waveform rise up the screen of the oscilloscope and disappear off the top of the screen!

How to solve the problem

Fortunately, there are some practical design tactics that will allow us to keep the integration capability, while getting rid of the problems. A practical integrator is shown in Fig. 4. The heart of this circuit is a BiMOS operational amplifier, Type CA3140, or its equivalent BiFET type (the CA3130 or CA3160 will also work; Type CA3240 is a dual CA3140 with the same pin-outs as an LM1458). The reason that this device works so well is that it has a low input bias current (having a MOS-FET input circuit with a 1.5×10^{12} - Ω input impedance). When I tested close to a dozen different opamps for the circuit the CA3140, which cost only about two dollars, they out-performed devices costing ten times as much.

Capacitor C1 and resistor R1 in Fig. 4 form the integration elements, and are used in the transfer equation. Resistor R2 is used both to discharge C1 to prevent DC offsets from either the input signal or the opamp itself from saturating the device; its value should be 10 to 20 M Ω . Resistor R2 also limits the gain at low frequencies. The 'RESET' switch is used to set the capacitor voltage back to zero (to prevent a 'K' factor offset) before the circuit is used. In some measurement applications, the circuit initializes by closing S1 (or a relay equivalent) momentarily.

Because of R2 in the circuit we must place a constraint on the transfer equation: the equation is valid only for frequencies greater than or equal to F in Eq. [1]:

$$F = \frac{10^6}{2 \pi R_2 C}$$
(2)

Where: *F* is the cut-off frequency in hertz (Hz); R2 is in ohms (Ω); *C* is in microfarads (μ F).

There is a compensation resistor, Rc, between the non-inverting input of the operational amplifier and ground. This resistor cancels the effects of input bias current and improves thermal drift performance $(^2)$. It has a value equal to the parallel combination of R1 and R2:

$$R_{c} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$
(3)

There may still be a minor drift problem, so potentiometer P1 is sometimes added to the circuit to cancel it. This component adds a small countercurrent to the inverting input through resistor R5. To adjust this circuit, set P1 initially to mid-range. The potentiometer is adjusted by shorting the V_{in} input to ground (or setting V_{in} = 0), and then measuring the output voltage. Press S1 to discharge C1, and note the output voltage should go to zero and stay there. If it does not, then turn P1 in the direction that counters the change of V_0 after each time S1 is pressed. Keep pressing S1 and then making small changes in Pt until you find that the output voltage stays very nearly zero, and remains constant, after S1 is pressed (there will be some long-term drift normally).

If drift becomes important, and the output voltage range can be limited to less than ± 5 V, it is possible to make the CA3140 operate in a low-noise mode. Remember to use the 8-pin metal can package type, rather than the more common 8-pin miniDIP, and place a expandable heatsink (the kind made for TO-5 metal transistor packages) on it. Limit the DC power supplies to ± 5 V.

Conclusion

The Miller integrator circuit is based on the operational amplifier. With proper selection of the opamp, and a couple circuit precautions, the Miller integrator will work well in signals processing circuits.

Notes (tech. ed.):

1. Strictly speaking, the gain is given by the term $-1/\omega RC$, where $\omega = 2\pi f$. However, since we are dealing with near-DC signals here, ω will be very small, which allows the simpler term to be used with impunity.

2. If the signal source is AC-coupled: I_{BIAS} of the CA3140 is about 50 pA, so that an offset of 0.5mV is introduced with R_{C} =10M Ω . This offset, in turn, causes a noise voltage of about 400nV/ \sqrt{Hz} .

PREVIEW Speaker Builder
Issue 5, 1992
Brother Jon Part II: Construction
 The Simplex Speaker
 Non-Optimum Box Design Spreadsheet
 Acoustic Resistance Tuned
• The Danielle Part II:
• An Electronic Counter for Coil Winding

FREE CATALOG TEST INSTRUMENTS & HARD-TO-FIND TOOLS

Packed with over 10,000 quality products for testing, repairing, and assembling electronic equipment. A full selection of test instruments, power protection equipment, precision hand tools, tool kits, soldering supplies, and much more. Products are shown in full color with detailed descriptions and pricing. All products come with a 100% satisfaction guarantee. SAME-DAY shipment program.

In a hurry to receive your catalog? Call (800) 225-5370

In Massachusetts call (508) 682-2000

Contact East, Inc., Dept. R496 335 Willow St., No. Andover, MA 01845

Reader Service #76

Reader Service #73

AUDIO-VIDEO PROCESSOR TYPE AVP300 – PART 4

An ELV design

THE audio-video processor is constructed on four printed circuit boards: potmeter board, measuring 314.5×159.5 mm (Fig. 9), mother board, measuring 330×198 mm (Fig. 10), intermediate board, 232×198 mm and the switches board, 145×35 mm (both in Fig. 11).

There are no special comments regarding the components, but the following points should be borne in mind.

- All ceramic capacitors, the four SCART connectors, the ten shift potmeters and the four push-button switches must be mounted as close to the board as possible.
- The 15 LEDs must be mounted so that their tops protrude 23 mm through the board.
- Soldering pins ST₃₀₃ and ST₃₀₄ and headers STL A' and STL B' must be soldered at the track side of the intermediate board. If the pins of the headers just do not protrude through the board, there is just enough room to solder them.
- The mains transformer must be fastened with four M4×6 nuts and bolts before its connections are soldered.
- Voltage regulators IC₅₀₁ and IC₅₀₂ must be fitted to a common heat sink, which is then fitted lying down on to the board. Here again, bolt the heat sink down before soldering any connections.

- Resistor R₆₂₆ is normally a wire link. In some cases, however, it may be required to keep the regulating speed of the phase-locked loop (PLL) to which R₆₂₆ belongs down. This is so if, for instance, the processor is used purely as a multi-standard decoder. In that case, R₆₂₆ should be 820 kΩ. If the processor is used in conjunction with a video recorder, it is advisable, however, to use the higher speed of the PLL.
- The terminal wires of all components should be cut as short as feasible.
- In a number of locations, the MKT capacitors are very close together; take care that the non-insulated ends of these components do not touch each other.

The mother board of the audio-video processor built in the Elektor Electronics laboratory was found to have no earth connections for a number of components since it had been forgotten to drill the relevant holes. This deficiency is easily overcome by scratching away the solder mask in these locations and solder the relevant component terminal directly to the earth plane at the component side of the board.

When all components have been mounted and soldered, check carefully that there are no bits of solder across tracks. The size of a metric bolt or screw is defined by the letter M followed by a number corresponding to the overall diameter of the thread in mm, the \times sign and the length of the bolt or screw, also in mm. For instance, an M4×6 bolt has a thread diameter of 4 mm and a length of 6 mm. The overall diameter of the thread in the BA sizes is: 0 BA = 6.12 mm; 2 BA = 4.78 mm; 4 BA = 3.68 mm; 6 BA = 2.85 mm; 8 BA = 2.25 mm.

Wiring

Wiring is in many instances perhaps the wrong word: often two boards are soldered together without any wires. For instance, the switches board is pushed upright over the SCART connectors into the recesses in the mother board. Corresponding tracks of the two boards are then simply soldered together. It is advisable to start by connecting the outer two tracks first in such a way that the switches board sticks out about 1.5 mm over the mother board.

A cable containing three individually screened wires should be used to connect terminals W, B and G on the mother and switches boards. The three screens should be soldered to sol-

Fig. 9. Component layout of the potmeter board.

der pin A. On the switches board, connect the wires directly to the relevant terminals of switch S_{201} .

The boards are interconnected by lengths of flatcable between terminals points A–F as shown below.

- A 5 cm long, 13-way; 2 connectors.
- B 5 cm long, 16-way; 2 connectors.
- C, D 10 cm long, 13-way; 1 connector.
- E 10 cm long, 17-way; 1 connector.
- F 10 cm long, 14-way; 1 connector.

The six lengths can be made from a 25 cm

COMPONENTS LIST

Potmeter board

```
Resistors:
R101, R240, R505 = 560 Ω
R11 = 10 k\Omega preset
R116, R117, R122, R126, R130, R131 =
   10 kΩ shift potmeter, mono, linear
R119 = 100 \ k\Omega
R120 = 27 k\Omega
R121 = 68 k\Omega
R123 = 820 k\Omega
R124 = 220 k\Omega
R125 = 680 k\Omega
R127 = 180 k\Omega
R128 = 15 k\Omega
R129, R230 = 56 k\Omega
R229, R432-R435, R466, R467 = 47 kΩ
R231 = 100 \Omega
R232 = 10 k\Omega
R241, R242 = 1.2 \text{ k}\Omega
R262-R264, R418, R419, R453, R454 =
   1 k\Omega
R415, R430, R431 = 47 kΩ, shift pot
   meter, stereo, linear
R416, R451 = 1 M\Omega
R417, R452 = 100 \text{ k}\Omega
R438 = 47 k\Omega shift potmeter, mono,
   linear
R439-R441, R456, R457 = 47 kΩ preset
R503, R504 = 100 \text{ k}\Omega
Capacitors:
C142, C506, C508, C509, C513 =
   100 nF, ceramic
C143-C146, C221 = 2.2 µF, 16 V
C415, C447, C502 = 10 nF
C416, C448 = 100 nF
C427-C430, C503 = 1 µF, 16 V
Semiconductors:
D101-D104, D201-D204, D207, D208,
   D401-D404, D505 = LED, 5 mm, red
D205, D206 = 1N4148
IC102, IC503 = 4049
IC202 = 4040
IC203 = 4011
IC403, IC407 = 4001
IC408 = 4053
Miscellaneous
TA201, TA401, TA402, TA501 = push-
   button switch
```

long, 32-way piece of flatcable: they are easily separated with a pair of scissors. Four of the 'cables' are terminated into a connector at only one end; their free ends should be soldered to the track side of the potmeter board. The connectors are press-on types that can be fitted to the 'cables' by clamping them on to the cable in a vise.

The connections ST_{203} – ST_{303} and ST_{204} – ST_{304} can be made with lengths of circuit wire about 35 mm long. This is best done when the boards are already interconnected by flatcable and the intermediate board is 'hinged' upwards as shown in Fig. 12.

Initial tests

Figure 12 shows the preferred positioning of the boards for the first test and adjustments. Flatcables E and F cannot yet be connected. Make sure that that the 'hinged upwards' intermediate board cannot touch the switches board.

When the power is switched on, the relevant LED should light. With a voltmeter, check the output voltage of the voltage regulator: negative to heat sink and positive to the pin furthest away from the transformer. If the measured voltage differs more than 5% from the specified one, there is a fault somewhere, which must be rectified before further work can be done.

Next, replace the mains fuse by an ammeter set to the 1 A a.c. range. With power on, the meter should read 600–800 mA. If the current is appreciably higher, check the correct operation of T_{501} .

Correct reaction of the LEDs to the electronic switches indicates that the control signals to these switches are all right. The LEDs that indicate the video standard behave like a running light: as long as no standard is recognized, the decoder continues scanning.

Adjustment

Although no special test equipment is required if operation on only one television standard is required (the test card received on a TV receiver or video recorder is then sufficient), a test pattern generator is required for multi-standard operation. This generator should provide PAL, SECAM and NTSC 3.58 MHz signals. NTSC 4.43 MHz requires no adjustment, since that is included in the PAL calibration.

Connect a TV receiver with video input, or, preferably, RGB inputs, to one of the outputs of the audio-video processor and apply the test signal to one of the inputs, but not to an S-VHS one.

Set all potmeters in the video section on the potmeter board to the centre of their travel.

Set the switch at the extreme left of the switches board (RGB out) in accordance with the input of the used TV receiver (left = RGB; right = CVBS). Set the other switches, starting with the one adjacent to the RGB out switch as follows: right, left, right, right, left.

If all is well, the receiver should show some sort of test pattern. Adjust R_{616} (line synchronization) until the picture is stable and

WorldRadioHistory

then set it to the centre of the range over which stability is obtained. The edges of the picture are determined by the flyback pulse. Adjust the width of this pulse with R_{621} until the picture is centred on the screen. If you have an oscilloscope, this pulse may be measured at pin 6 of IC₆₀₂: ideally, it should be 12 µs. At the same time, check the shape of the sandcastle pulse at pin 7 of IC₆₀₁.

If all is well, the screen should now show a good black-and-white picture; if not, there is a fault that must be rectified before further work can be done.

The chroma filter is best calibrated with a SECAM signal (4.286 MHz), because its Q factor is then optimum. Connect pin 27 of IC₁₀₁ to the +12 V line (which sets the decoder to SECAM) and apply a SECAM signal to one of the inputs. Adjust L₂₀₂ for optimum colour reproduction (if a monitor with a composite video input is used, adjust L₂₀₂ for optimum quality). If an oscilloscope is available, adjust L₂₀₂ for minimum amplitude of the signal at pin 15 of IC₁₀₁. If only a PAL signal is available, connect pin 28 of IC₁₀₁ to the +12 V line and carry out the procedure as described.

Continuing with the SECAM signal, adjust L_{101} until the red and blue in the picture have the same brightness. Then adjust the receiver for a black-and-white picture and set the grey of the picture as desired with R_{102} .

If an oscilloscope is available, adjust L_{101} until the level of the black signal at pin 3 of IC₁₀₁ is the same as that of the sync signal. Lastly, adjust R_{102} until the level of the black signal at pin 1 of IC₁₀₁ is the same as that of the sync signal.

Remove the +12 V line from pin 27 of IC_{101} and connect it to pin 28 of this IC. Also, strap ST₁₀₁ to ST₁₀₂. Connect an oscilloscope to pin 1 or pin 3 of IC₁₀₁, apply a PAL signal to one of the inputs (not S-VHS), and adjust C₁₁₆ until the drifting of the colours is a minimum.

Then, replace the PAL signal by an NTSC 3.58 MHz (also called NTSC/M) signal, shift the +12 V line from pin 27 to pin 26 of IC_{101} and adjust C_{117} until the drifting of the colours is a minimum.

If an RGB receiver or monitor is used, the screen should now show a faultless colour picture. If a CVBS signal had to be used, this may not be so, because the encoder has not yet been calibrated.

Remove the link between ST₁₀₁ and ST₁₀₂ and the +12 V line from pin 26 of IC_{101} , and set the RGB out switch to CVBS. Apply a PAL signal to one of the inputs and set C₃₁₆ to the centre of the range over which the picture is in colour. Then, set the 4.43/3.58 MHz switch to 3.58 MHz, apply an NTSC/M signal to one of the inputs and set C₃₁₉ to the centre of the range over which the picture is in colour. Note that the band filters in the encoder have already been calibrated during manufacture.

Finally, adjust L_{203} and L_{204} (band-stop filters) for minimum cross-luminance interference. If an oscilloscope is available, connect it across R_{206} and adjust these inductors until the residue of the colour subcarrier on the luminance signal is a minimum.

Fig. 10. Component layout of the mother board.

Fig. 11. Component layout of the switches board (left) and intermediate board.

Assembly

Commence with assembling the upper part of the enclosure, the front panel and the pot-

COMPONENTS LIST

Mother board

Resistors: $R103 = 680 \Omega$ R104, R220, R223, R259, R501 = 4.7 k Ω R105, R106, R219, R224, R256, R261, R308, R333, R334, R338-R340, R425, R601, R613, R615, R617-R620, R622 = 10 kΩ R107, R110 = $3.3 \text{ k}\Omega$ R108, R210, R213, R301 = 18 kΩ· R109, R243 = $6.8 \text{ k}\Omega$ $R112 = 1 M\Omega$ R113-R115, R201-R205, R239, R247, R305, R313, R317–R320 = 75 Ω R118, R255, R610 = $1.2 \text{ k}\Omega$ R132, R257, R322, R323, R328, R329, R331, R332, R335-R337, R344, R612 = 1 kΩ R207, R208, R211, R212, R214, R215, R251, R324, R326, R345 = 47 k Ω R209, R216, R260, R605 = 270 Ω R217, R218 = 39 k Ω R221, R222 = 330 Ω R225-R228, R233, R234, R244, R248, $R253 = 22 k\Omega$ R235, R237, R254, R502 = 270 Ω R236, R606 = 2.7 k Ω R245, R246, R249, R250, R302 = 56 k Ω R252, R330 = 27 k Ω R258, R307, R311, R325, R327, R346, $R347 = 15 k\Omega$ R303, R304, R309, R312 = 220 Ω $R306 = 47 \Omega$ R310, R625 = $8.2 \text{ k}\Omega$ R314–R316, R341–R343 = $1.8 \text{ k}\Omega$ R424, R611 = 100 k Ω $R602 = 1.5 k\Omega$ $R603 = 820 \Omega$ $R604 = 150 \Omega$ $R607 = 2.2 M\Omega$ $R608 = 1.5 M\Omega$ R609, R623 = $3.9 \text{ k}\Omega$ $R614 = 82 k\Omega$ $R624 = 470 \text{ k}\Omega$ $R626 = 820 k\Omega$ R102 = 470 Ω preset R616, R621 = 25 k Ω preset

Capacitors:

C101, C147–C149, C234, C314, C504, C507, C510, C512, C514, C515, C518, C613 = 100 nF, ceramic C102, C106 = 15 pF C103–C105, C212, C213, C227, C302 = 150 pF C107, C108, C122, C138, C307–C309, C324–C328, C614 = 100 nF C109, C110, C220 = 220 pF C111, C112, C123, C607 =10 nF C113, C121, C126, C127, C134 = 330 nF C114, C115, C128–C133, C136, C137, C139, C141 = 22 nF meter board. Make sure that no parts of the enclosure touch any components on the board. Fasten the board to the upper half of the case with six self-tapping screws. Next, fit two M4 bolts in the appropriate holes in the front of the enclosure; do not tighten these too much. Finally, fasten the front panel to the board with seven insulated screws and one

STL A, STL C, STL D = 13-way header for

STL1, STL B = 16-way header for PCB

AUDIO-VIDEO PROCESSOR TYPE AVP300 - PART 4

PCB mounting

mounting

C116, C117, C316, C319 = 2-40 pF trimmer C118, C119, C202, C207-C209, C304, C610, C612 = 1 nFC120 = 47 nF C124, C301, C306, C317, C322, C323, C505, C511 = 10 µF, 16 V C125 = 22 nF, ceramic C135, C222-C226, C230 = 22 µF, 16 V C140, C606 =4.7 µF, 16 V C201, C203-C205, C601 = 47 µF, 16 V $C210 = 2.2 \, pF$ C211, C320 = 33 pF C228 = 68 pF C229 = 120 pF C231 = 2.2 µF, 16 V C303, C310--C313 = 470 µF, 16 V $C315, C318 = 10 \, pF$ C321, C517 = 100 µF, 16 V C329, C604 = 100 pF C501 = 2200 µF, 40 V C602 = 470 nF C603, C608 = 220 nF C605 = 680 nF C609 = 3.9 nF C611 = 8.2 nF

Semiconductors:

D209-D217 = 1N4148 D501-D504, D506-D509 = 1N4001 ZD501 = zener, 5.6 V, 400 mW ZD502 = zener. 6.8 V, 400 mW T501 = BC327 T201-T212, T302-T304, T307, T308, T401, T601 = BC548T301, T305, T306 = BC558 IC101 = TDA4650IC103 = TDA4660 IC104 = TDA3505 IC201, IC404 = 4052IC301 = TPE1378A IC302 = 4053IC501 = 7812IC502 = 7805IC601 = TDA1180P IC602, IC603 = 4528 IC604 = 4070

Miscellaneous:

L101, L202–L204 = 10 µH $L201 = 51 \,\mu H$ Q101 = crystal 8.85724 MHz Q102 = crystal 7.15909 MHz Q301 = crystal 4.43 MHz Q302 = crystal 3.58 MHz BFP301 = 3.58 MHz band-pass filter BFP302 = 4.43 MHz band-pass filter VZ101 = 330 ns delay line VZ301 = 180 ns delay line BU201, BU202 = SCART socket for PCB mounting BU203 = S-VHS socket BU204 = BNC socket BU402-BU405 = audio socket SI501 = fuse holder and 800 mA fuse

Mains transformer 240 V to 15 V, 12 VA, with integral mains cable Flatcable and connectors (see text) Heat sinks (2) for IC501 and IC502 Intermediate board **Resistors**: $R206 = 75 \Omega$ R321 = 82 Ω R401–R403, R408–R410 = 47 k Ω R404, R411 = $3.3 \text{ k}\Omega$ R405, R412 = 100 k Ω R406, R413 = $12 \text{ k}\Omega$ R407, R414, R427, R428, R443-R445, $R447 - R449 = 10 k\Omega$ R420-R423. R436, R437, R458, R459 =10 kΩ

=10 kΩ R442 = 2.2 kΩ R446, R450 = 47 kΩ R460, R461 = 56 kΩ R462, R463, R468, R469 = 470 kΩ R464, R465 = 120 Ω

Capacitors:

C206 = 47 μ F, 16 V C401, C404, C407, C408, C411, C414, C454, C455 = 1 μ F, 16 V C402, C406, C409, C413 = 100 pF C403. C410, C449–C453, C458, C459 =10 μ F, 16 V C405, C412, C456, C457 = 22 pF C431, C432 = 2.2 μ F, 16 V C433, C434, C437, C438 = 56 nF C435, C436 = 15 nF C439 = 100 μ F, 16 V C440, C516 = 100 nF, ceramic C441, C442 = 4.7 μ F, 16 V C443–C446 = 100 nF

Semiconductors:

BU205 = 8-way DIN socket
BU301, BU302 = SCART socket for PCB mounting
BU303 = S-VHS socket
BU401, BU410 = 3.5 mm stereo jack socket
BU406-BU409 = audio socket
STL A' = 13-way header for PCB mounting
STL B' = 16-way header for PCB mounting
STL E' = 17-way header for PCB mounting
STL F' = 14-way header for PCB mounting

Switches board

Resistors: R238 = 82 Ω

Miscellaneous:

S201, S202, S301–S304 = slide switch, 1 change-over contact metal one (for earth connection). If the board bends even slightly, the M4 bolts are too tight.

Fit the intermediate board to the mother board with four bolts and spacers. Fit an M4×30 bolt and a 25 mm spacer to the centre front of the mother board; an M4×35 bolt and 30 mm spacer to the centre right of this board; and two M4×40 bolts and 35 mm spacers right at the back of the board. The remaining holes in the board can be ignored here: they are intended for a possible extension connected to STL₁. Fit the BNC socket to the back panel and connect this to ST₂₀₁ and ST₂₀₂ (earth) via two short lengths of circuit wire.

Invert the enclosure so that its top rests on the workbench and insert a centring rod into each of the four fixing holes at the corners of the underside. Fit the assembled mother board, intermediate board and rear panel to the bottom of the enclosure with M5 bolts, nuts, washers and 60 mm and 15 mm spacers (as appropriate)—see Fig. 13. As soon as the length of the flatcables allows, connect them to the relevant board.

Next, fit the front panel—after removing the ring nuts from the jack sockets. When the front panel is seated firmly, fasten the ring nuts back on to the sockets. Then, fit the knobs to the potentiometers.

Finally, fasten the bottom of the enclosure on to the four M5 bolts with suitable washers and nuts, and fit four anti-slip feet.

Fig. 12. With the prints hinged away from each other, all calibration points are easily accessible.

Fig. 13. The completed audio-video processor less front panel and most of the enclosure.

WorldRadioHistory

DESIGN IDEAS

The contents of this article are based solely on information supplied by the author and do not imply practical experience by *Elektor Electronics*

REPLACE YOUR PAGING SYSTEM WITH A HIGH POWERED INTERCOM

By Charles Kitchin (Analog Devices Inc., USA)

A cursory look through an electronics supplier's catalog quickly reveals that, although there are many commercially available paging systems, high power paging systems which also function as intercoms are virtually non existent. Businesses, factories, noisy industrial environments, and summer camps are just a few examples of where just such a system is needed. The ability to page over a wide area, using a large number of remote speakers, while also having the ability to listen to any one (or all) of the areas covered by these speakers, makes this type of system extremely useful.

UNLIKE the common paging system, an intercom provides two-way communications — through its master station it can both 'talk' and 'listen' to individual remote stations or zones of stations. The master can keep in touch with many different work stations widely isolated from one another, thus allowing centralized control and communication over large areas. This can be more than simply a matter of convenience. Since the master station can be readily called in an emergency, lives may be saved.

In the 'talk' mode, an intercom provides the usual paging function. In the 'listen' mode, it can monitor any or all of the stations. With a multi-station intercom system, normal standby mode has the master station (or office) listening to all the stations, any of which can then call the office individually if necessary. Once a remote station has alerted the master station (by yelling at the loudspeaker), the master can switch over and communicate with that one station alone.

With any intercom system, special attention is needed to ensure that the system can adequately monitor the remote stations under conditions of strong electrical noise. In general, the larger the total number of stations in the system and the greater their distance from the master station, the weaker the signal level and the greater the difficulty in discerning a signal out of the background noise. It is usually necessary to use shielded interconnect wiring between stations and to employ an instrumentation amplifier in the listen circuitry of the master station to cancel out as much noise as possible.

Equally important is the type of public address speakers used. The physical size of the speaker horn directly affects the sensitivity of the system: the larger the horn, the greater the speaker output both as a speaker and when used as a microphone. Public address speakers with 12" diameter or larger horns are well suited for intercom work; smaller speakers, such as the common 5" horn variety work well as paging speakers but are generally poor when used as microphones in the listen mode. The 12" speakers, with their larger horns, provide a great deal of acoustical gain when used as microphones. Note that, regardless of type, the metal frames of the speakers need to be grounded to minimize noise pickup.

Circuit operation

Figure 1 is a schematic of the main portion of a practical high powered intercom system. This particular intercom has survived over three years use, controlling the operations of a 200-acre summer camp. It still functions perfectly despite being operated 18 hours a day during periods of blistering heat and occasional thunder and lightning storms. Note that, unlike some intercoms, no power or electronic circuitry is required to operate the remote units, they are simply public address horn loudspeakers which function both as speaker and microphone.

The system has four main subsections: the 'listen' section for monitoring the remote

stations; the 'talk' section for public address to page through all the remotes, or to talk to them individually. A third subsection functions to select, via relays and switches, which speakers will be connected to the system at any given time. Finally, the power supply section supplies the correct voltages to power the various active devices.

'Listen' or monitoring section

The 'listen' section consists of only two amplifiers: an AD524 instrumentation amplifier (IA) and a 'bullet-proof' 10-watt power opamp, the LM675. The AD524 IA cancels any signals which are common-mode (i.e., the same on both speaker wires), yet amplifies signals which are differential (i.e., not the same on both speaker wires). Since noise is random, it is mostly common mode and will be cancelled; the signal, however, is applied across the wires (differentially) and will be amplified. Since the common mode rejection of this amplifier is around 80 dB, the noise (theoretically) should be reduced 10,000 times. In reality, though, not all noise is common-mode, yet the improvement in signal to noise is still dramatic. Note that grounding either of the speaker lines (not the shield but the lines) removes all commonmode cancellation. Therefore, care should be taken when adding new speakers and lines that they be connected properly. The AD524 has two resistors between each of its inputs and ground, which provide a DC ground return in the event that all speaker switches are shut off. The two capacitors connected in

ELEKTOR ELECTRONICS USA SEPTEMBER 1992

Fig. 2a. Schematic of the simple 20-watt power amplifier.

Fig. 2b. Schematic of the 35-watt power amplifier.

parallel with the resistors serve to roll-off some of the high frequency noise and also make the system far less susceptible to radio frequency (RF) interference. The low pass filter at the output of the AD524 serves the same purpose.

The output of the in-amp connects to a 'listen' volume control and from there to an LM675 power opamp. The output of the LM675 connects through a capacitor to a small (4") 'listen' speaker. The LM675 has no extra protection, other than through its supplies, since it is widely considered to be a 'burn-out-proof' amplifier.

The 'talk' or paging section

In the 'talk' section, IC1, an AD743 low noise opamp operating at a gain of 140, serves as the microphone preamplifier. This raises the 5-10 mV microphone output level to ap-

A HIGH-POWER INTERCOM SYSTEM

proximately 1 V. Mixer amplifier IC2a allows either the amplified microphone output or a high level (0.5 V to 1 V) music input to be broadcast over the system. Output driver amplifier IC2b provides additional gain so that there is ample voltage to drive the power amplifier to its full output level, if desired. Note that all three of these operational amplifiers are used **only** for the paging or 'Talk' function.

55

The power amplifier

In this design, the power amplifier, which drives the intercom speakers located throughout the system, may be any physically small amplifier capable of delivering 20 watts or more. One alternative to building the power amplifier would be to use a 40watt VMOS power module. Using the module will greatly simplify construction, but will add about \$50.00 to the total circuit cost. Two 'home brew' power amplifiers will be discussed next.

The performance of a monolithic IC power amplifier may be greatly improved by placing it within the feedback loop of an operational amplifier (opamp). This composite amplifier will then have both the low distortion, low offset performance of the precision op-amp and the high current driving capability of the IC power amplifier.

The simple composite amplifier circuit of Fig. 2a delivers 20 watts r.m.s. into an 8- Ω load with a total harmonic distortion (THD) of less than 0.003% and a maximum offset voltage of 1 mV or less. In this circuit, an LM1875 power opamp is connected inside the feedback loop of an AD711 precision BiFET.

Since they are operating within the same loop, a phase lead network, consisting of capacitor C1 and resistors R3 and R4, provides the necessary compensation to stabilize the response of the AD711 and the LM1875.

The 1- Ω , 0.2- μ F *R*-*C* damper network shown between the LM1875's output and ground is necessary if the amplifier is driving an inductive load such as a loudspeaker. For simple resistive loads, the network may be omitted.

Note that if a power amplifier with a single-ended output is used (in this case either the simple 20-watt amp or the commercial VMOS module), pin 7 of the talk/listen relay should be grounded and only one output fuse and fuse holder are needed.

A second circuit, that of Fig. 2b, operates at an overall gain of 60 and provides 35 watts r.m.s.into 8 Ω with less than 0.0035% THD at 1 kHz. The circuit consists of two non-inverting composite amplifiers, 'A' and 'B', in a bridge or differential output connection. Amplifier 'C' is a d.c. servo amplifier that nulls-out any d.c. voltage appearing across the load by making the d.c. offset of the two amplifiers equal.

Amplifier 'D' inverts the input signal 180 times so that the output of amplifier 'B' is non-inverting with respect to the circuit's input. The low input impedance of a high gain inverting composite amplifier makes it

difficult to drive. This is why two non-inverting composites were used, with one of them driven with a simple op-amp inverter.

An analog VU meter monitors the output level delivered by the power amplifier. A potentiometer located on the back top panel of the intercom sets the meter sensitivity. Eight diodes and one resistor protect the meter from overloads and from the powerdown surge of the power amplifier.

'Talk/Listen' function selection

As shown in the schematic of Fig. 1, a 12-V relay switches the intercom from its normal 'listen' function to its 'talk' mode. Note that contacts 8, 11 and 9 select whether or not the input to the power amplifier is to be driven or grounded. Contacts 5, 6, 7, 4, 1 and 3 switch the speakers from the input of the 'listen' section (the IA) to the output of the 'talk' section (the power amplifier). The relay allows two switches to be used: a 'push to talk' and a 'music normal'. Of course, both switches perform exactly the same function but one of them is a momentary contact, while the other is a normal toggle switch. Apart from the convenience of allowing music to be played, having two switches which serve the same function greatly increases system reliability. The switches are

extensively protected by MOVs (metal oxide varistors).

Remote station speaker switches

Figure 3 shows how the remote speaker switches are wired. Note that the contacts of the zone switches are wired in parallel with the contacts of the individual speaker switches. The zone switches are highly reliable 12-pole relay switches whose construction is similar to that of a telephone lever switch.

Power supply section

The final section is the power supply. To (help) protect against lightning, the a.c. power line is both fuse (1 Amp slow) and MOV protected. Two power transformers are used: a multi-winding transformer and one with a single winding. A 48-V centertapped winding on the multi-winding transformer connects to a large (10-A/1000-V) bridge rectifier. The + and – outputs of the bridge, which here is functioning as two full wave rectifiers, are applied to filter capacitors through small series resistors (these resistors limit the initial turn-on current through the capacitors and thus protect the bridge rectifier).

The ±25-V outputs power the power ampli-

fier. Each 25-V power supply also has its own 15-V supply system consisting of a series 15-V regulator. The \pm 15-V outputs power the opamps, the in-amp, the LM675 listen amplifier, and the opamps in the composite power amplifier.

A second bridge rectifier (this time actually operating as a bridge) is fed by two series-connected 6.3-V filament transformers (only one half of the second transformer is used). Their 9-V a.c. output feeds a second bridge rectifier whose output is filtered by a 2,000 μ F capacitor. Because its value is substantially less than that of the main filter capacitors, there is no need for a surge protection resistor. The 12-V output powers all the speaker line lamps and the 12-V talk/listen relay.

Intercom operation

This intercom system has been specifically designed to be as 'fail safe' as possible. The front panel switching uses standard toggle switches rather than the usual (and unreliable) ganged push button switches. The system is divided into two different 'zones'. This was done for two reasons: two zones allow paging half the stations rather than the entire system at one time. Also, the cost and complexity of an 'all speakers' on /off switch was prohibitive. Note that, in all cases, indicator lamps show which speakers are being listened to (or being talked to).

Figure 4 shows the location and function of the intercom's controls. On the top panel there are two knobs, an output meter, and the main power switch. The left control sets the 'listen' volume; this should be set at a comfortable listening level. When different speakers are selected, this control will need to be moved up or down somewhat to maintain the same volume. Note that, unlike the previous system, the listen control does not affect the 'talk' volume in any way.

The knob to the right of the 'listen' control is the 'talk' volume control. This sets the output level applied to the speakers when the push-to-talk button is pushed — the output level meter to the right of the control indicates this level. When 'talking', the talk level control should be set about mid-position, and the operator of the intercom should watch the output level meter when speaking. The operator should adjust his (or her) distance from the microphone (or talk softer or louder) to keep the average output level about mid-scale on the meter. Note that if the level is too high (i.e., the meter reading is mostly in the red zone on the right side of the meter) the speaker volume will be too loud and probably will be distorted as well. Speaking too softly (very little or no indication on the meter) means that your transmission will not be heard. The power on/off switch turns on or shuts off all power to the intercom.

Remote station selection

The next area to explain concerns the switches and lights located on the sloping front panel. As Fig. 3 shows, in this system, there

Fig. 4. Intercom front panel controls.

are 10 speaker switches numbered 1 to 10, two 'zone' switches labeled 'zone A' and 'zone B', a push to talk switch, and a normal/music switch. There are also 10 speaker indicator lights and one large, red "talk" light.

Each speaker switch controls one speaker line which may have one, or several, speakers connected to it. The speaker indicator lights show which speaker lines have been switched on. Note that there are five switches on the top row (switch numbers 1 through 5) and another five on the bottom row (switches 6 through 10). Switching on zone switch 'A' is exactly the same as turning on speaker line switches 1 through 5; like-

wise, switching on zone switch 'B' is exactly the same as turning on speaker line switches 6 through 10. Switching on both zone switches will turn on all the speaker switches in the system.

57

A nice feature of this system is that when a zone switch is turned on, all the speaker indicator lights in that zone will go on as well, indicating that it has switched on these speakers. Note that, because they switch on the same speakers, the zone switches may be used if one or more of the speaker line switches fails. Or, if 1 of the zone switches fails to work, the five speaker line switches can be turned on simultaneously to perform the same function.

Through the use of a relay, the push to talk switch 'rewires' or changes the intercom from a listening station to a high power public address (PA) system. The red talk light indicates that you are now paging one or more speakers at a time. Just as with listening, the speaker line switches (and zone switches) select which speakers have been selected. The normal/music switch is electrically identical to the push to talk switch except that it is the type of switch that stays on or off — this allows you to play music over the intercom (you could sit there holding your finger on the push to talk switch, but most people have better things to do with their time).

Again, if the push to talk switch fails, the normal music switch may be used in its place until repairs are made.

Note that each speaker is (and must be) equipped with a '25-volt' line transformer; this increases the speaker's 8- Ω impedance to around 159 Ω (depending on which transformer tap is used). Note, however, that if even one speaker is connected without a transformer, the whole system will fail to work (because almost all the power will go into that one 8- Ω speaker).

On the back panel

Figure 5 shows the recommended back panel connections to the intercom. Note that shielded wire is recommended for connecting the remote speakers to the master station; the shielding helps to reduce hum and noise when the intercom is used in the 'listen' mode.

Glass Audio	
issue 4, 1992	

- Designing 40W Class-A Triode
- 65W OTL Power Amp
- Low Dropout Filament
- Voltage Regulator
- Tubes vs. Transistors

CORRECTIONS

58

Plant warmer (June 1992) Resistor R_c was omitted from *Fig. 2*. The correct diagram is shown below.

Audible fluid level indicator (July 1992) Owing to a printing error, the diagram in this article is incorrect. The right diagram is shown below.

Inductance-capacitance meter (March 1992) The value of R_{16} and R_{17} should be 39 Ω , not 30 Ω as shown in the parts list.

Video enhancer (July 1992)

Preset P_2 is best adjusted for a signal level of $2V_{pp}$ at the collector of T_2 . Output transistor T_3 may run fairly hot: this is normal. The third paragraph of the text on page 73

The third paragraph of the text on page 73 should read: The frequency characteristic of the signal at the base of T_3 is shaped by P_1 , R_6 and C_8 , and is, therefore, to a certain extent under the control of the user (with P_1).

8751 emulator (March 1991)

The features list in the first column on page 53 should read:

- download, modify, and upload 8751 programs without having to erase and program an 8751.
- put breakpoints in programs.
- display register and memory contents.

- . . . etc.

FM tuner-Part 3 (May 1992)

In the PSU parts list on page 54, R_{301} should be 150Ω , 1%, not $150k\Omega$, 1%.

Mark 2 QTC 80/40 loop antenna (July 1992) The frequency ''3800kHz'' mentioned twice under 2.40-metre band (page 90) should have read ''7300kHz''.

INDEX OF ADVERTISERS						
All Electronics Corporation 4 Baylin Publications 10 BG Micro CV III Contact East 47 Deco Industries 9 Kelvin Electronics 9 LNS Technologies 9 MBI CV IV	Software 61 Project Pro 47 SMPTE 9 Spy Supply 9 Tanner Electronics 5 Tapto Corporation CV II TECI 4					
Meadowlake Corporation 10 Micro Video Products 9	Analog Devices, Inc. 13					
Mouser Electronics 4 National Scanning Report 5	MFJ Enterprises, Inc. 12, 13					
OLD COLONY SOUND LAB	Pass Laboratories 12 PC Boards 12					
EIT Elektor Item Tracer 10	Rigel Corporation 12					
Front Panel Foils 61	Sonic Perceptions, Inc. 13					
New Products 6–8 Printed Circuit Boards 61	Ten·Tec, Inc. 12 Tobin Cinema 12					

ELEKTOR ELECTRONICS CLASSIFIED ORDER FORM

RATES

75 cents per word. Deduct 10% for a 6x contract. \$10.00 minimum for charge card orders.

HOW TO COUNT WORDS

Definition of a word: A scries of letters with a space before and after. Count words, not letters. Hyphenated words count as one word (i.e. first-rate).

HOW TO SUBMIT YOUR AD

Type or print your ad clearly on form. Check the category you wish your classified to appear under. Indicate number of insertions. Enclose check with order or include credit card number and expiration date.

Mail to:

Elektor Electronics, Classifieds, PO Box 876, Peterborough, NH 03458.

No ads will be taken over the telephone. No questions taken over the phone. Prepayment must accompany ad. No Billing.

	tegories (please check just one) Audio for Sale Books & Periodicals Business Opportunities Cable & Satellite Conferences, Fairs, Seminars Components, Parts & Supplie		Computer Computer Computer Education Home Aut Cits	Hardware For Sale Software For Sale Systems For Sale comation		Optoelectronics Plans & Schematics Professional Services Radio Communication Security Test Equipment Video	5	Clubs Wanted To Buy Ads in these two of free to subscribert mailing label to forn tion. Limit 50 words	eategories are b. Attach your m for verifica-
1	<u> </u>		4	5	8	7	8	9	10
11	12 13		14	15	16	17	18	19	20
21	22 23		24	<u>25</u>	28	27	28	29	30
31	32 33		34		36	37	38	39	40
41	42 43		44	45	46	47	48	49	50
	Please run this ad	times.	MC	MISA				EXP.	DATE
	Advertisement will be insert evallable issue.	ted in first	NA	ME			C	COMPANY	
	Check/Money order enclosed	đ	STREET						
	Please charge to my Master C	Card/Visa	C	ſŶ			5	ST ZIP	
			PH	ONE NUMBER					

WorldRadioHistory

COMPONENTS, PARTS & SUPPLIES

ELECTRONIC COMPONENTS Wanted: Capacitors, resistors, diodes, transistors, semiconductors, ICs, relays, conn, LEDs, etc. Military, Industrial types needed. Top \$\$\$ paid. For information call/fax/mail your excess component lists. *ELECTRONIC MATERIAL INDUSTRIES*, 10153½ Riverside #194, Toluca Lake, CA 91602. (818) 842-5953, FAX (818) 845-3613. T9/92

COMPUTER HARDWARE

NEW AND SLIGHTLY used but guaranteed Radio Shack items: Computer hardware, sofiware, books, "force-feed," etc. 20% to 80% off. Write for what you want. If we don't have it, we'll try to get it. WERNER L. JORDAN, 10 N. Morley St., Baltimore, MD, 21229. (301) 566-5388. (Please send \$2 for list). T9/92

CIRCUIT BOARDS ETCHED and drilled for as low as 70¢ cents per square inch. *JM ELECTRONICS*, Dept. E, Box 150454, Altamonte Springs, FL 32715-0454 or (407) 767-8196. T9/92

BOOKS & PERIODICALS

VIDEOCIPHER II/Satellite/Scanner/Cable/Amateur/Cellular/Repair Manuals, Modification Books & Software. Catalog—\$3. *TELECODE*, PO Box 6426-EK, Yuma, AZ 85366-6426. T1/93

 PHOTOFACT FOLDERS.
 Individual folders, not sets, #1

 to
 #1400, \$5;
 #1401
 to
 #2800, \$7.
 Sent first-class

 postpaid.
 Also books, CB, AR, MHF, VCR, etc.
 A.G.

 TANNENBAUM, PO Box 110, E. Rockaway, NY 11518,
 (516)
 887-0057.
 T9/92

SHOCKING PHREAK OFFERS: Computers, electronics, telephones, energy. Hundred books, software, hardware services. Catalog \$4. CONSUMERTRONICS, 2011 Crescent, Alamogordo, NM 88310-0537, (505) 434-0234. T10/92

HEATHKIT NOSTALGIA. History in pictures and stories of and by the people involved. Compiled by K8TP. 124 pages. \$9.95, postpaid (plus tax in WA). HEATH NOS-TALGIA, 4320 196th S.W., Slot B-111, Lynnwood, WA 98036. T10/92

KENWOOD & ICOM Service Bulletins. 175 + pages covering all models, \$33.95 Catalog—\$3. CODs, (602) 782-2316 / FAX (602) 343-2141. *TELECODE*, Box 6426-EK, Yuma, AZ 85366-6426. T10/92

Reader Service #178

KITS

VOICE CHANGER, change your voice from man to woman, or child to adult and vice-versa. 16 stages of change with 8 being normal. Kit comes complete with PC Board. Operates on 9V. Kit \$39.95, assembled \$49.95 + \$3.50 S/H. Send payments to JM ELECTRONICS, Dept. E, Box 150454, Altamonte Springs, FL 32715-0454. T9/92

POOR MAN'S Spectrum Analyzer monitor receiver kit. 2 to 1,500MHz. Basic kit only \$78. Now available with switched resolution filters, tracking generator and direct digital frequency readout. Works with ANY scope. Send SASE for details. SCIENCE WORKSHOP, Box 310-EE, Bethpage, NY 11714. T10/92

NECTA IS HERE

KITSI FREE catalog of fantastic electronic products that you can build. Microprocessors, test instruments, digital speech and more! *LNS TECHNOLOGIES*, 20993 Foothill Blvd., Suite 307E, Hayward, CA 94541-1511. T9/92

KITS, SOUND, LIGHT and high tech. Send for free catalog. JM ELECTRONICS, Box 150454, Dept. E, Altamonte Springs, FL 32715-0454. T9/92

ELECTRONIC KITS and components. Free catalog call CAL WEST SUPPLY (800) 892-8000. T9/92

CRYSTAL SETS. Complete kit, includes PC board, parts, plans. Remit \$19.95 plus \$4.00 shipping. XTAL SET SOCIETY, RR 1 Box 129A, Lawrence, KS 66044. Teacher's guide, lesson plans, \$9.95 optional. SASE for information. T10/92

TEST EQUIPMENT

 CABLE TEST CHIPS.
 S-A 8550,
 S-A 8500-310,
 311,

 320,
 321
 (specify)-\$33.95.
 S-A 8580/338-\$69.95.

 TOCOM
 5503/07
 VIP-\$33.95.
 TELECODE,
 PO Box

 6426-EK,
 Yuma,
 AZ 85366-6426.
 T10/92

ER-4 PHOTO ETCH™ kit lets you copy art from this magazine onto your PC board, includes everything but exposure bulbs. Shipped UPS to your street address for \$43.00. ER-19 EXPOSURE BULB SET FOR ER-4, Contains 3400*K reflector flood and 4800*K loop wave LIV lamp for ordinary 120V socket.

address for \$43.00. ER-19 EXPOSURE BULB SET FOR ER-4. Contains 3400*K reflector flood and 4800*K long wave UV lamp for ordinary 120V socket. Shipped UPS to your street address for \$18.45. FREE CATALOG of dry transfers and PC supplies. Write or phone DATAK, 55 Freeport Blvd., Sparks, NV 89431. 702:359-7474 FAX: 702:359-7494

Reader Service #50

MISCELLANEOUS

WANTED: K/X/KU/KA/MILLIMETER band handheld radars, Gunn oscillators, Feedhorns, detectors. Also Mac-Intosh, IBM-PC equipment, peripherals, software. John Williams, 2011 Crescent, Alamogordo, NM 88310, (505) 434-0234. T10/92

PLANS & SCHEMATICS

FLAME SPEAKER. Finally, a speaker with no moving parts! Omnidirectional sound, with higher frequency response than conventional loudspeakers. No diaphragm or voice coil. Plans, \$10. *ELECTROMAN*, PO Box 24474, New Orleans, LA 70184. 11/92

Reader Service #15

COMPUTER SOFTWARE

2800 + IBM SHAREWARE PROGRAMS. Free disk catalog. Specify disk size. GSEL SHAREWARE DISTRIB-UTORS., 3870 LaSierra Ave. #134E, Riverside, CA 92505. T9/92

RACK AND CHASSIS BOXES									
BAC	V DI		-c		CHA	SSI	SE	юх	ES
			23	PEATURES:	MODEL	W	D	н	PRICE
MODEL 1RUS 1RU7 1RU10 2RU5 2RU7 2RU10 3RU7 3RU7	H 1.75 1.75 3.50 3.50 3.50 5.25 5.25	D 5 7 10 5 7 10 5 7 10	PRICE 29.40 31.50 33.60 31.50 33.60 35.70 39.90 42.00	EASY TO FABRICATE SHIPPED (FLAT) ALL MAIN PANELS ARE FLAT FRONT AND REAR ARE CLEAR BRUSHED ANCOLZED. TOP, BOTTOM AND THE END PANELS ARE BUACK BRUSHED	MC-1A MC-2A MC-3A MC-3A MC-5A MC-6A MC-6A MC-8A	408468468	3 3 4 4 7 7 7	222333444	\$15,75 17 85 19,95 17,85 19,95 22,05 19,95 22,05 24,15
3RU10 5.25 10 44.10 ANODIZED. NOT SHOWN									
VISA / MC REVENUES AND MASTERCARD OPDER DIRECT FROM THE SECOND DAY AIR \$1000 NEXT DAY AIR \$2000									
		ESI 015	COM II 4249 (0	NC. 2100 WARD DRIVE HE DRDERS)800-634-34 3400 FAX 702-565-4	NDERS 157 (TE 1828	DN, H	NV L	AL	HELP)

These Elektor Electronics USA back issues are still available.

Oct 90 Medium Power AF Amp
Dubbing Mixer Guitar Tuner = Microprocessor Controlled Telephone Ex-change = Speed Control for 3-Phase AC Motors = Digital Car Engine Lock/Alarm = Sound Generator an ELV Design = Phase Meter = 400W Laboratory Power Supply S-VHS/CVBS-to-RGB Converter Pt 1 = Tuned UHF TV Preamplifier = Measurement Techniques = Negative Resistance = In Quest of Panagram =

Nov 90 Stereo Bridge Amplifier with TDA7370 an SGS-Nov so Stereo Bridge Amplifier With TDA/3/0 an SGS-Thompson Application = Dubbing Mixer EV7000 Pt 2 = Medium Power AF Amplifier Pt 2 = Active Mini-Subwoofer Pt 1 = Programmer for 8751 = 1-of-N Decoder = Smoke Detector = PT-100 Thermometer = In Quest of Panagram Pt 2 = 400W Laboratory Power Supply Pt 2 = S-VHS/ CVBS-to-RGB Converter Pt 2 = Solar-Powered MW Radio Directed Concentence Mater Digital Capacitance Meters

Oec 90 Active Mini-Subwooler Pt 2 Phase Check for Audio Systems Chopper-Stabilized Operational Ampli-fiers Line Pulse Fundamentals In Quest of Panagram Pt 3 = Introduction to Metal Transmission Lines = PC: Controlled Videotext Decoder Pt 1 = Droitwich Timebase = Milliohmmeter = Measurement Techniques Pt 2 = Sup-plement of 51 Short Projects =

plement of 51 Short Projects ■ Jan 91 The Complete Preamplifier Pt 1 ■ Multifunction Measurement Card for PCs Pt 1 ■ 8031 Single Board Computer ■ Advanced Input Stage for a Left/Right Revolu-tion Counter (design idea) ■ In Quest of Panagram Pt 4 PC-Controlled Videotext Decoder PC-VT7000 Pt 2 ■ Error Detection and Correction ■ 23/24-cm FM ATV Receiver (a review) ■ Silde Potentiometers in the Video Mixer-an update ■ Interval Control for Camcoders—an update ■ Measurement Techniques Pt 3 ■ A Simply Elegant L-C-R Bridge ■ Logic Analyzer Pt 1 ■ SWR Meter for 1.5-70MHz ■ 1.5-70MHz

Feb 91 OUT OF STOCK

Mar 91 OUT OF STOCK Mar 91 The Complete Preamplifier Pt 2 = Headphone Amplifier = 8-Channel Audio/Video Switch (design idea) = MIDI-to-CV Interface—some additional notes = Computer-Controlled Weather Station Pt 1 = Electronic Exposure Timer = Central-Heating Controller Pt 2 = PC-ECAP Circuit Simulator = 2-Meter Band Converter = Radar Detector = Measurement Techniques Pt 5 = PC-Controlled Semicon-ductor Tester Pt 1 = ductor Tester Pt 1 =

Apr 91 Preamplifier for Moving Coil Pick-up = 8-Bit I/O Interface for Atari ST = Digital Research DOS 5.0 Brings Back Your Memory = Intel/Techtronix-to-Hexdump Con-verter Program for PCs = MIDI Program Changer = Dim mer for Halogen Lights = Surf Generator = 6-Meter Band Transverter = AM/FM Receiver = Logic Analyzer Pt 3 = Wattmeter = PC-Controlled Semiconductor Tester Pt 2 =

Wattmeter = PC-Controlled Semiconductor Tester FL2 = May 91 DC-to-DC Converter = Preamplifier for Moving-Magnet Pick-Up = 8032/8052 Single-Board Computer = Universal I/O Interface for IBM PCs = Versatile Pulse-Width Modulator (design dea) = Speed Control for Large DC Motors = Laser Pt 1 = Recthier Calculations = Battery Tester = Video A/D and D/A Converter Pt 1 = Wideband Active Rod Antenna = Augmented A-Matrices = Conduc-tance Meter = tance Meter

Switch with TV Remote Clock for Atari ST \equiv Laser Pt 2 \equiv Light Switch with TV Remote Control \equiv Stepper Motor Board Pt 1 \equiv Light Transmitter-Receiver \equiv Universal NICd Battery Charger \equiv Variable AC Power Supply \equiv Video A/D and D/A Converter Pt 2 \equiv The QTC Loop Antenna \equiv Logic Analyzer Pt 4 \equiv Digital Phase Meter \equiv

Jul/Aug 91 Automatic Power Off for Audio Equipment Multi-Function I/O for PCs

1 Mbit Adapter for EPROM JulAug 91 Automatic Power Off for Audio Equipment Multi-Function I/O for PCs = 1Mbit Adapter for EPROM Programmer = Video Enhancement for Acorn Archi-medes = Angled Bus Extension Card for PCs = Change-Over Switch for C64 Control Port = Keyboard Change-Over Switch = Communication Busses = Microprocessor Supply Regulator = PC Interrupt Handler = 8088 Single-Board Computer = Time-Code Interface for Slide Con-troller = Would You Be an Inventor? = Solid-State Light-Sensitive Switch = Pulse Generator with One 4066 Voltage-Controlled Current Source = Electronic Reversing Circuit for Model Trains = Fault Signaling Circuit = Automatic Cycle Lights = Bounce-Free Switch = Time Delay with One 555 = Switch for Central-Heating Pump = House Telephone = Darkness-Sensitive Switch = Switch-Off Delay for Battery Supply = Windscreen Wash/Wipe circuit = Ielephone Extension = Temperature-Compen-sated Current Source = Sequential Control = Car Battery Montor = Varigated LED = Programmable LED Indicator Universal Test Probe = Stave Flash Trigger = Universal Timer = 50Hz Band-Stop Filter = Momentary Action Push Button = Teeth-Cleaning Timer = One-Shot Solid-State Relay Timer = Laser Pt 3 = Stepper Motor Board Pt 2 = Modern LED Clock = Battery Charger = Presettable

Shunt Regulator . Automatic Battery Charger I . Shunt Regulator
 Automatic Battery Charger I
 Super Voltage Regulator
 Automatic Battery Charger II
 Super Voltage Regulator
 Automatic Battery Charger II
 Super Voltage Regulator
 Sheter for Short-Wave Rectifiers
 Synchronization Separator
 Field Strength Meter
 Remote For Digital Multimeters
 Precision
 Rectifier for Digital Voltmeters
 Semiconductor Tester
 Digital LED Voltmeter
 Wein Bridge with Asymmetrical
 Supply
 Measuring Electrolytic Capacitors
 LED VU
 Meter
 Triggered Sawtooth Generator
 Binary Loganthmic Ladder Network
 Logic Analyzer Pt 5
 Sen
 91
 Remote Control ICE
 M/S01
 Peak

Sep 91 Remote Control ICs MV500 and MV601 = Peak Indicator for Loudspeakers = ZAP51: an 87C51 Program-mer = Plotter Driver = Keyboard Circuit (design idea) = Asymmetrical to-Symmetrical Converter = Central Converter Locking Control = Time-Code Interface for Slide Control = A Cheap, Efficient, Strategic Fire Alarm = Build the Opti-calock = Fiber Optics Pt 1 = Understanding the EDIF Stan-dard = Measurement Techniques Pt 6 =

Dard
Measurement Techniques Pt 6
Dot 91 Switch-Mode Voltage Regulators LM2575/LM2577
Digital Compact Cassette
Upgrade for MCS BASIC-52
V1.1 Pt 1
Audio Spectrum Shift Techniques
ComputerControlled Weather Station Pt 2: Electronic Hygrometer
Four-Terminal Networks Pt 1
Build the Opticalock Pt 2
Fiber Optics Pt 2
AM Broadcast Receiver
A Review of
Coding Theory
50MHz 8-Bit DAC
Measurement
Techniques Pt 7
Digital Function
Computer
1

Techniques Pt / ■ Digital Function Generator Pt 1 ■ Nov 91 Class A Power Amplifier Pt 1 ■ A Simple Watch-dog Circut ■ Upgrade for MCS BASIC-52 V1.1 Pt 2 Relay Card for Universal I/O Interface ■ Product Model-ling ■ Four-Terminal Networks Pt 2 ■ The Cipher Machine ■ Timer for Central-Heating Systems ■ Dissipation Limiter ■ 24-Bit Full Color Video Digitizer ■ Experimental Quadri-form Ferrite Transmit/Receive Antenna ■ Measurement Techniques Pt 8 ■ Digital Function Generator Pt 2 ■ Dec 04

Dec 91 Amplification/Attenuation Selector
Digital Tape Dec 91 Amplification/Attenuation Selector = Digital Tape Counter = Microprocessor Programmable Universal Ac-tive Filters = CMOS Dimmer = REF 200 = Single-Chip Power Line Supply = Power-On Delay = Class A Power Amplifier Pt 2 = On-Off Delay for Valve Amplifiers = Overload Indicator = Electronic Power-On Delay = Protec-tion Against Direct Voltage = Mouse/Joystick Switch for Amiga = RS232 for Sharp Pocket Computers = 6-Digit Coded AC Power Switch = Musical Christmas Present Universal Time Switch = Sate Solid-State Relay = Con-nect-4 = Automatic Blower Fan Control for Cars = VOX Ac-tuator for Baby Alarm = Universal Power-On Delay = BCD Rotary Switch = Gentle Halogen-Light Switch = Variable Lator for Baby Alarm e Universal Power-On Delay BCD Rotary Switch = Gentle Halogen-Light Switch = Variable Time Switch = Auto Power On-Off for Bicycle Speedome-ter = Disco Running Lights = Telephone Buzzer as Switch = Bedside Light Timer = Video Camera Timer = Switching Clock from Parking Timer = LED Indicator for Tempera-ture Logger = Slave Power Line On-Off Control Mark = Water Level Control = Voltage Regulator for Cars = Fast Switching Gate = Horse Simulator = Digital 555 = In-telligent Power Switch = Review of the Heath GC-1000 Clock & Battery Tester = 9V NICd Battery Charger = Relay Fuse = FSK/RTTY Decoder for PCs = Alexander Graham Bell = Wideband Antenna Ampilitier = A Simple and Adaptable Logic = Sine Wave Converter = Temper-ature Measurement Techniques = HCT Crystal Oscillator = Audible Tester = Digital Function Generator Pt 3 = Pulse Shaper = Shaper .

Jan 92 Build a Compact Disk Player
Mini Z80 System
Prototyping Board for IBM PCs
Exploring Negative
Resistance: The Lambda Diode (design idea)
Computer-Controlled Weather Station P1 3: Windspeed and Direction Meter
NE602 Primer
A Direct Conversion Radio
Universal RC5-Code Infra-Red Receiver
Cochlear Implants
Fast, Precise Thermometer
Low Frequency
Counter

Counter ■ Feb 92 Dual-Output, Switch-Mode Regulator ■ Capaci-tors in AF Circuits ■ RAM Extension for Mini Z80 Systems ■ V2C Interface for PCs ■ 8051/8032 Assembler Pt 1 ■ PWM Temperature Controller ■ Why Use Lithium Cells? ■ The Living Computer ■ Direct Digital Synthesis-DDS ■ Indoor/Outdoor Temperature Indicator ■ Switch-Mode Power Supply ■ Improving Portable Radio Performance ■ RC High-Pass Filter for Active Antennas ■ Audio/Video Switching Unit ■ Greater Capacity in Submarine Optical Cables ■ Measurement Amplifier ■ Mini Square-Wave Generator ■ Generator

Mar 92 AF Drive Indicator = 8051/8032 Assembler Pt 2 Centronics Line Booster = ADC/DAC and I/O for I²C Bus = 8751 Emulator = MIDI Data Transfer = A 555-Based Ramp Generator = Measurements on Power Supplies The Flat-Top 80 Antenna = FM Tuner Pt 1 A Symmetrical Route Switch for Electronics = Induc-tance/Capacitance Meter =

PRICES Regular	sues (publishe sues (all othe	nd in Jul/Aug Prs)	and Dec)	\$6 \$4	Remit in US S on US bank Prices include postage.
i enclose Check/N	loney Order or Ma	Plea	se send	me:	
MASTERCARD/VISA		EXPIRE DATE			
NAME					
ADDRESS					
CITY	ST	ZIP	Attech	blank sheet if	necessary
ELEKTOR ELECTRONICS USA	PO Box 876, Peter	borough, NH 034	58-0876 (603) 924-946	4 FAX (603) 924-9467

DON'T SWEAT IT! THE LATEST ISSUE OF

can be found at:

Tri-Tek 9014 N 23rd Ave 11 Phoenix AZ Abeltronics

9155 E Archibald

Cucamonga, CA

Berwyn, IL Lakeland Electronic Supply 202 W Pleasant Street

Purchase Radio Supply

Tel Van Electronics

Dearborn Heights, MI

Gateway Electronics

22344 Van Born

8123 Page Blvd

Future Electronic

440 East Main Cross

Technical Books

Tanner Electronics

1301 W Beltline Rd

Equipment Bank

Cody Books Ltd.

Amateur Radio

RP Electronic Co

2113 W 4th Ave

Vancouver, BC

CANADA

5963 Corson Ave #145

St. Louis, MO

Parts. Inc.

Findlay, OH

33 NW Park

Portland OR

Carrollton, TX

Electronic

323 Mill St

Vienna, VA

1122 Fir Ave Blaine, WA

Supply Co

Seattle, WA

Ste 105

Powell's

Angola, IN

327 E Hoover Ann Arbor, MI

BB & W Electronics

2137 S. Euclid Ave,

All Electronics 905 S Vermont Ave Los Angeles, CA

All Electronics 14928 Oxnard St Van Nuys, CA

Electronics Plus 823 Fourth Street San Rafael, CA

Gateway Electronics 9222 Chesapeake Dr San Diego, CA

Henry Radio 2050 S Bundy Dr Los Angeles, CA

HSC Electronic Supply 4837 Amber Lane Sacramento, CA

HSC Electronic Supply 3500 Ryder St Santa Clara, CA

Video Suppliers 14526 Crenshaw Blvd Gardena, CA

Centennial Electronics, Inc. 2324 East Bijou Colorado Springs, CO

Gateway Electronics 2525 N Federal Blvd Denver, CO

Tapco Engineering 1639 47th St NE Cedar Rapids, IA

RIM Electronics 4204 Overland Rd Boise, ID

If you prefer home delivery use the handy subscription card enclosed.

READERS SERVICES

All orders, except for subscriptions, should be sent to Old Colony Sound Lab: by mail to PO Box 243, Peterborough NH 03458-0243; Visa/ MasterCard charge orders by FAX to (603) 924-9467 (24 hours) or by voice 8-4 weekdays to (603) 924-6526 or 6371. Please use the form opposite for all orders. All prices are postpaid to customers in the fifty states except for books. Please add \$2.00 for the first book and 75¢ for each additional book ordered. Cana-dians, please add \$4.50 US for the first book, and 75¢ for each additional one. Outside North America, please add 20%. Cana-dians may expect Canadian duty charges on shipments of any items except books and subscriptions.

SUBSCRIPTIONS Subscriptions can be provided anywhere in the United States and its territories as well as Canada by sending mail subscriptions to Elektor Electronics USA, PO Box 876, Peterborough NH 03458-0876. Visa/MasterCard orders may be telephoned directly to (603) 924-9464 between 8 and 4 on business days and to our machine recorders at other hours and on weekends. Orders may be FAXed at any time to (603) 924-9467. US subscription rates: \$28 for one year (11 issues); \$50 for 2 years. Canadian rate: \$38.80 for one year. Student rate to full-time, registered students, \$15 per year (photocopy of student ID required).

-

- di

PAST ISSUES

Back issues of the British Elektor from July/ August 1987 onward are available from Worldwide Subscription Service Ltd., Unit 4, Gibbs Reed Farm, Pashley Road, Ticehurst TN5 7HE, England, United Kingdom. Single copies are \$4.50 surface mail, \$7.50 airmail. Back issues of *Elektor Electronics USA* from October 1990 onward (except 2/91) are available from Old Col-ony for \$4 postpaid, \$6 for July/August or December double issues

PAST ARTICLES Photocopies of articles from the British Elektor from January 1979 onward are available from Old Colony Sound Lab for \$5 each (multi-part articles: \$5 per part); \$6 in Canada, Indexes are available. Send a stamped (50¢), self-addressed business-size envelope to Old Colony, at the address above, for EACH YEAR desired. A complete s of indexes for 1979–91 is available for \$7.50 postpaid. Also available postpaid: Digital model train (13 parts)......\$15.00 BOOKS

amplifier

NICAM decoder

LC meter

PROJECT

Multifunction measurement card for PCs

MIDI control unit (1 x 27C64)

(1 × 2764)

Darkroom clock

(1 × 27128)

power supply

Autonomous I/O

sunshine recorder

telephone exchange

changer (1 × 2764) Logic analyzer (IBM interface)

(1 x PAL 16L8) MIDI-to-CV interface

Multifunction I/O

for PCs (1 × PAL 16L8)

(1 × GAL 16V8) Stepper motor board

Amiga mouse/ joystick switch

(1) (1 × 16L8) 4-megabyte printe

system disk FM tuner (1 x 27C256)

(1 × 27C64)

Connect 4

buffer (1 x 2764) 8751 emulator incl.

(1 × 8751)

Four-sensor

(1 x 27128) P-controlled

(1 x 27128) MIDI program

Digital model train

Slave indication unit

for I.T.S. (1 × 8748H) EPROM emulator

(1 x 8748H) Microcontroller-driven

controller (1 x 8751) Video mixer (1 x 2764) 5861 20.00

920012-F 19.50 920035-F 14.00

EPROMS/PALS/MICROCONTROL

The following Elektor books are currently avail-								
able from Old Col	ony Sound:							
301 Circuits			\$12.50					
302 Circuits			\$12.50					
303 Circuits			\$15.90					
304 Circuits			\$19.95					
Data Sheet Book	2		\$16.50					
Databook 3			\$17.95					
Databook 4			\$17.95					
Databook 5: Appl	ication Note	S	\$17.95					
Microprocessor D	ata Book		\$17.90					
SH	ELF BOXE	s						
Blue heavy-duty I	ektor vinyl	shelf be)X					
(holds 6 issues) .			\$6.00					
w	ALL CHAR	г						
PC Connectors (1	/92)							
	\$3 postp	paid; 2/	\$5; 5/\$10					
FRON	T PANEL F	OILS						
PROJECT	No.	Price \$	Issue					
Video mixer	87304-F	33.00	1-4/90					
The complete preamplifier	890169-F	15.00	3/91					
All solid-state	890170-F1	33.50	12/89					
oreamolifier	890170-F2	18.50	1/90					
LF/HF signal	890183-F	18.50	12/89					
tracer								
Q meter	900031-F	23.00	4/90					
Budget sweep/	900040-F	20.00	5/90					
function generat	or							
High current	900078-F	28.00	2/91					
h _{FF} tester								
400W lab	900082-F	35.00	10-11/90					
power supply								
Variable AC PSU	900104-F	28.00	6/91					
Universal battery	900134-F	11.00	6/91					
Milliohmmeter	910004-F	28.00	12/90					
Wattmotor	910011-F	16 50	4/91					
Picital obaco	910011-F	20.00	6/01					
meter	910040-F	20.00	0/91					
Timecode	910055-F	15.00	9/91					
interface								
Digital funct, gen.	910077-F	18.00	10/91					
4-megabyte printer buffer	910110-F	19.50	6/92					
Economy PSU	910111-F	18.00	12/91					
CD player	910146-F	20.50	1/92					

INY SOUND LAB	ORDER	FORM	TELEPHONE CH (603) 924-63 Answering machine I FAX: (603) 924-9
		SHIPPING ADDRESS IE	

OLD PO BOX PETERBI	COLONY SOUND LAB ORDER	FORM	TELEPHONE CI (603) 924-6 Answering machine FAX: (603) 924-6	HARGE ORDERS 1371, 924-6526 before 9 a.m., 1487, 24 hours
CUST	OMER ADDRESS	SHIPPING ADDRESS IF DIFFE	RENT	
NAME		NAME		
STREET	& NO.	COMPANY		
CITY	STATE ZIP	STREET & NO		
MAGIC	NUMBER (FROM SUBSCRIPTION LABEL)	CITY	STAT	TE ZIP
PAYM	ENT METHOD FOR CHARGE CARD ORDERS UN	IDER \$10, PLEASE ADD \$2.		
	HECK MONEY ORDER		ID	
CARD	NUMBER	EXPIRES_	1	
AUTH	ORIZED SIGNATURE	DAYTIME I	PHONE	
Qty.	Part Number and De	escription	Price	Total
		D COLONY CATALOGI	1	
BEC. NON	AUSE OF THEIR SPECIAL NATURE, ORDERS ICANCELABLE AND NONRETURNABLE, EXCEP	FROM THIS PAGE ARE PT IN CASE OF DEFECT.	SUBTOTAL SHIPPING	
	PLEASE ALLOW 4-6 WEEKS FOR D	ELIVERY.	IUIAL	L
Measure	ament 910144-F 15.00 2/92 EMON51 (8051	6091 34.00 2/92 8051/8032	assembler 1661	13.00 2

)144-F	15.00	2/92	EMON51 (8051 assembler course)	6091	34.00	2/92
012-F	19.50	3/92	(1 x 27256)			
1035-F	14.00	5/92	Multipurpose 280 card:	6111	10.00	6/02
CROC	ONTRO	LLERS	(2 x GAL 16V8)	0111	19.00	0/92
No	Drice	lagua	Multipurpose Z80 card			
110.	S	19900	BIOS	6121	26.00	6/92
561	17.50	2/91	(1 × EPROM 27128)			
			8751 programmer (1 × 8751)	7061	70.50	11/90
570	20.00	6-7/90	DISK		5	
			PROJECT	No	Price	lesue
572	33.50	2-5,7/89-	THOULOT		S	10000
693	19.60	4/90	Digital model train	109	11.50	2-5,7/89-
505	10.50	2/90				4/90
700	30.00	3/88	Logic analyzer for	111	20.00	10/89
1)			Atari ST (b/w only)			
701	30.00	12/89	Computer-controlled Teletext decoder	113	20.00	10/89
702	95.00	5,6,9/88	Plotter driver (Lewetz)	117	11.50	5-6/88
			FAX interface, IBM PC	s 119	14.00	6/90
			RAM extension for	123	10.00	//69
704	95.00	12/88	EPBOM simulator	129	11.50	12/89
5961	20.00	1.4/90	RS-232 solitter	1411	11.50	4/90
5921	20.00	6/90	Centronics ADC/DAC	1421	11.50	5/90
			Transistor	1431	13.00	5/90
			characteristic plot-			
5941	26.00	10/90	BOM-conv for BASIC	1441	13.00	9/90
			Multifunction	1461	13.00	2/91
5961	26.00	4/91	measurement card for PCs			
5971	14.00	1-2.4/91	8751 programmer	1471	13.00	11/90
		,	PT100 thermometer	1481	13.00	11/90
			Logic analyzer			
5981	26.00	2/91	software, incl. GAL		22.00	0101
5991	14.00	7-8/91	Atari	1501	33.00	6/91
			Plotter driver (Siitsma)	1541	19.00	9/91
6001	14.00	12/91	PC-controlled weather station (1)	1551	13.00	3/91
			PC-controlled weather	1561	13.00	10/91
6011	14.00	6/91	station (2)			
			I/O interface for Atari	1571	13.00	4/91
6041	26.00	6/92	Tek/Intel file converter	1581	13.00	4/91
0.001	co oc	0.000	B/W video digitizer	1591	19.00	7-8/91
6051	50.00	3/92	DTC for Atori ST	1611	13.00	9/91
6061	34.00	6/92	24-bit color extension	1631	19.00	11/01
0001	04.00	0/92	for video digitizer	1001	13.00	11/31
6081	26.00	12/91	PC-controlled weather	1641	13.00	1/92

	8051/8032 assembler course (IBM)	1661	13.00	2/92
	A-D/D-A and I/O for I2C bus	1671	13.00	3/92
	8051/8032 assembler course (Atari)	1681	13.00	2/92
l	AD232 converter	1691	13.00	4/92
	GAL programmer (3 disks)	1701	19.00	5/92
1	Multipurpose Z80 card	1711	13.00	6/92
	EPROM emulator II	129	11.50	9/92

9/90

PRINTED CIRCUIT	BOARDS	
PROJECT	No.	Price
MAY 1992		\$
1.3-GHz prescaler	914059	8.50
Compact mains supply	920021	12.50
FM tuner PSU (3)	920005-2	15.00
GAL programmer	920030	19.00
NICAM decoder	920035	25.50
UNE 1002		
4-menabyte printer buffer	910110	32.00
I ² C display	920004	8.00
FM tuner (4)		
mode control board	920005-3	9.50
synthesizer board	920005-5	18.50
Guitar tuner	920033	17.00
Multipurpose Z80 card	920002	34.50
HILV/AUGUST 1992		
12VDC to 240VAC inverter		
main board	920039-1	19.00
power board	920039-2	11.00
Audio DAC (1)	920063-1	14.50
Optocard for universal	910040	22.00
PC I/O bus		
FM tuner (5)		
keyboard/display	920005-4	6.50
S-meter	920005-6	6.50
HS232 quick tester	920037	8.50
water pump control for	924007	12.50
Simple newer system	924024	9.50
Wide-band active	9241024	5.50
telescopic antenna	324,02	0.00
	010000	17.00
Audio DAC (2)	910082	32.00
AUGIO DAG (2)	920003-2	32.00

station (3)

TERMS OF BUSINESS

PRICING

Prices, except as noted, include shipping in the continental USA. The minimum order is \$10. A \$2 service charge will be added to orders of less than \$10. Prices are subject to change as our costs change. WE RESERVE THE RIGHT TO MAKE PRICE CHANGES WITHOUT NOTICE

TELEPHONE ORDERS

Telephone orders are welcome between the hours of 9:00 a.m. and 4:00 p.m. EDT, Monday-Friday. Orders for parts are to be made on the ORDER FORM provided. Payment for telephone orders is by MC/VISA only. Our TELEPHONE ORDER NUMBER IS (603) 924-6371 or 924-6526. Our answering machine for MC/VISA orders during non-business hours is (603) 924-6371. FAX: (603) 924-9467 (24 hours).

PAYMENT

All remittances MUST BE IN US FUNDS DRAWN ON A US BANK. Payment for telephone orders must be made by MasterCard or VISA. Mail order payment may be made by MC/VISA, money order, cashier's check or personal check. If payment is made by personal check, allow up to 2 weeks for clearance before order is shipped. Should check be returned for any reason, there will be a \$10 charge.

SHIPPING

Unless noted, freight is prepaid by Old Colony. All orders shipped USPS first class mail or by UPS. Allow two to three weeks for delivery. Please inquire about appropriate funds for special handling (UPS next day or second day). UPS requires a street address. If you cannot receive UPS delivery, please include an extra \$2 for insured service via Parcel Post. We cannot accept responsibility for safety or delivery of uninsured Parcel Post shipments. Absolutely no COD shipments.

BOOKS, RECORDINGS, CDs, and SOFTWARE The shipping/handling charge for the US is \$2.00, plus 75¢ each additional item. In Canada, please add \$4.50 for the first item, 75¢ each additional. For orders to be shipped outside North America, add 20% to the total order to cover shipping. No returns. According to the Connecticut Dept. of Revenue Services, Regula-tion #27, Section 12-426-27, in order to sell software to residents of Connecticut, we must register with the department as well as collect taxes for the state from the purchaser. We regret to inform customers that we will not sell software to anyone from Connecticut.

5

Ł

BOOKS FROM ELEKTOR ELECTRONICS USA

301 CIRCUITS

This book follows the theme of the first in this series, 300 Circuits (now out of print). It con-tains over 300 assorted circuits first published in the 1979, 1980, 1981 summer issues of Elektor Electronics.

The circuits range from the simple to the more complex and are described and explained in straightforward language. The book is a comprehensive source of ideas and construction projects for anyone interested in electronics.

ISBN 0-905705-12-2 BKAA11 Price \$12.50

302 CIRCUITS

The popularity of this book is shown by its having been reprinted no fewer than three times. It offers a selection of the most interesting articles from the 1982, 1983, 1984 summer issues of Elektor Electronics.

In it you will find circuits for audio and video; car, cycle, and motorcycle; home and garden; receivers and aerials; hobbies and games; measuring and testing; oscillators and generators; current sources and power supplies; microcomputers and music electronics; and a miscellany of other interesting subjects.

ISBN 0-905705-25-4 BKAA12 Price \$12.50

303 CIRCUITS

Like its predecessors, 303 C/RCU/TS offers a comprehensive collection of practical ideas, concepts, and developments in the gamut of electronics. Unlike its predecessors, the book is arranged in 11 subject sections to make it easier for the reader to find that long-sought circuit.

In well over 300 pages, the book offers 32 Audio and Hi-Fi projects; 14 circuits for Car In well over 300 pages, the book oriers 32 Audio and HH-I projects; 14 circuits for Car and Bicycles; 43 Computer & Microprocessor circuits; 11 Electrophonic projects; 24 HF and VHF circuits; 16 circuits for a number of hobbies and pastimes; 54 projects for Home and Garden; 29 Power Supply circuits; 29 circuits for Test and Measurement equipment; nine TV and Video projects; as well as 42 Design Ideas.

ISBN 0-905705-62-2 BKAA13 Price \$15.90

304 CIRCUITS

The latest in *Elektor's* famous "300" series, BKAA18 contains 304 innovative circuits and descriptions broken down as follows: 36 audiol/video, 19 high frequency, 36 hobby, 36 home and garden, 9 music/electrophonics, 32 computer/microprocessor, 19 generator/oscillator, 33 test and measurement, 30 power supply, 13 car electronics, and 41 miscellaneous. Arranged by subject for ease of use.

ISBN 0-905705-34-3 BKAA18 Price \$19.95

DATA SHEET BOOK 2

Like its predecessor (now out of print), this book offers concise, relevant, and rapidly ac-cessible information, which is both practical (e.g., the pin-out of a device) and informative. The book contains data on integrated circuits as well as on discrete transistors and diodes. Moreover, it gives an introduction to fast (HCMOS) devices and a review of the new sym-bolic logic as laid down in British Standard BS3939: Section 21 (IEC Standard 617-12).

The final part of the book deals with a number of computer chips, such as memory devices (including programming information for these) and I/O circuits. This section also includes data on a number of non-digital discrete and integrated devices, such as op amps, as well as on some microprocessor peripherals (e.g., the 6522 VIA, the 6580 ACIA, and the 8355A PPI).

ISBN 0-905705-27-0 Price \$16.50 BKAA14

DATABOOK 3: PERIPHERAL CHIPS

This book lists the most important design data of peripheral chips whose type numbers and functions relate them unambiguously to a microprocessor in the same family. All listed devices form part of families based on widely used microprocessors or microcontrollers. Their most evident application will therefore be in conjunction with the associated microprocessor. This should, however, not be taken to mean that a peripheral cannot be used in another application. Far from it, as witness the familiar type MC146818A real-time clock and the type MC6845 cathode-ray tube controller. It deserves a place on the bookshelf of anyone concerned with the design, maintenance and servicing of microprocessor-controlled electronic equipment. ISBN 0-905705-30-0

BKAA15 Price \$17.95

MICROPROCESSOR DATA BOOK

This book has come about because of a need by Elektor Electronics engineers, technicians, and editorial staff of a ready reference work on the most important microprocessors. This implies that it does not only contain information on the latest devices, such as the transputer, but also on older, well-established types, such as the Z80 and the 6800.

A general description, hardware block schematic, software structure, DC characteristics, and instruction sets are given for over 70 microprocessors. To prevent the book from becom-ing unwieldy (and to keep costs down), timing diagrams and AC characteristics have, however, been omitted. The detailed information on all manufacturers mentioned will, however, enable any additional information to be obtained quite readily.

Included in the book are, among others, the 68000 series; the 6502 family; the Z80, 8080, and 8085; Intel's 8086, 80186, 80188, 80286, and 80386; the NS32XXX series, and the IN-MOS transp

ISBN 0-905705-28-9 BKAA16 Price \$17.90

DATABOOK 4: PERIPHERAL CHIPS II

This further volume in Elektor Electronics' Microprocessor Data Book series deals with general peripheral chips that, at least as far as their type-coding is concerned, do not belong to a specific family of microprocessors. There are so many of these, however, that only a portion of them can be dealt with in one book. Those contained in this collection have been chosen of them can be dealt with in one book. Those contained in this collection have been chosen carefully on the basis of their practical application and frequency of use. Complete data are given for coprocessors from the 80 series (AMD, Cyrix, ITT, Intel, Weitek); real-time clocks from MEM, OKI, Statek, National Semiconductor, and Dallas Semiconductor; transmitters and receivers of serial interfaces RS232, 422, 423, 485 from Motorola, Newport Components, Maxim, Texas Instruments, National Semiconductor, Dallas Semiconductor, and Linear Technology; UARTS, DUARTS, and QUARTS (i.e., programmable ICs intended for data transfer); and the CS8221 set of ICs from Chips & Technology that are used in a great number of PC mother boards (also included is the data sheet of associated software LIM 4.0 for the management of the Extended Memory System). Anat from the actual data the book contains much other useful information, such as com-

Apart from the actual data, the book contains much other useful information, such as com-parisons between and second sources for all important IC families; addresses of manufac-turers and their representatives; and overviews of all peripheral chips (including many that could not be included in this book) that are available from various manufacturers. ISBN 0-905705-32-7

BKAA17 Price \$17.95

DATABOOK 5: APPLICATION NOTES

This book presents a series of application notes and design briefs that cover a wide variety This book presents a senes or application notes and design brens that cover a wide variety of subjects. Apart from a number of applications related to specific components, the book also includes articles on basic design theory and the practical use of certain components. For example, there is an article reprint from Advanced Micro Devices that provides informa-tion on programming the motion of a stepper motor with the aid of a PAL (programmable array logic). Similarly, an article reprint from Motorola presents an overview of protocols and conventions used for serial communication between computers.

The application notes complement the theoretical sections by discussing the use of components related to current electronics technology. In a number of cases, this technology is ahead of the practical application, and the product is so new that an application note has not yet been published by the manufacturer—for examples, Analog Devices' description of a Continuous Edge Graphics (CEG) digital-to-analog converter (DAC), and that of a NICAM (near instantaneous companding audio multiplex) decoder chip developed by Micronas of Finland. Given the complexity of the practical circuits that could be developed on the basis of these ICs, all the relevant data sheets are included for easy reference. The book also includes a short list of manufacturers' logos that should be helpful in identifying unknown components, as well as a worldwide address list of manufacturers and distributors/repre-sentatives for the products which are discussed.

ISBN 0-905705-33-5 BKAA24 Price \$17.95

SPECIALS!

BKAAZ/1 BKAA11, 12, 13, 18: all 4 for \$49.00 (Save \$11.85!) BKAAZ/2 BKAA14, 15, 16, 17, 24: all 5 for \$74.95 (Save \$13.30!) BKAAZ/S Complete Elektor library: all 9 for \$114.95 (Save \$34.15!)

These books are all available direct from Electronics USA through the Readers Services, from a number of bookshops and electronics retailers in the US and Canada, and from selected bookshops throughout the world. Special prices are those of EEUSA only.

	SPECIALS		SII	PER RILYS		AX (21	14) 271- TEY	2462 T TO SE			
MA	X232	2.30	001	DIME				1 10 31	CEUN DU	Anu	
14	38		SSI-202 Dec	coder	2.25	PC/X1	COMPAT	IBLE. MAI	KE YOUR C	OMPUTER	TALK!
DE	25-(Solder Cup) M/I	= 2/1.00	8870 Decod	erator	2.25	. CF	\$69	95	C. Contraction		
	25-Rt. Angle PC BD 9-Rt. Angle PC BD.	. F55 M/F .35	5089 Genera	ator	2.10	RUT	φυυ	3	- 20	Same metering	-
	EANS		THE \$2	5 NETWOR	IK	× ۲۰×	SSEMBLED &	TESTED	100	-a ¹	
	12VDC - Brushl	286	Try The 1st	Truly Low Cost	LAN		& HANDLI	IG			
Ma	Inufactured by Comm	nonwealth	Connect 2 c	or 3 PCs, XTs, A	Ts				· · · · · · · · · · · · · · · · · · ·	9-1	
	8" Wire Leads - 15	OMA	• Uses senal cable	ports and 5 wire		A VERY	POWERFUI	AND AM	AZING SPEE	CH CARD. L	JSES THE
	3%" Square - 1" T This size commonly	hick used in	 Runs at 115 Runs in bac 	i K baud kground, totally		GENERA CTS256/	AL INSTRUM A-AL2 TEXT	IENTS SPO TO SPEECI	0256-AL2 SPE H CONVERTE	ECH CHIP	AND THE
	computer power su	pplies.	transparent	device, any file, a		THIS B	DARD USES	ONE SLO	T ON THE	MOTHERBO	ARD AND
	ISPLAY DEV	ICES	time Needs only	14K of ram		STAND	ALONE ENVI	RONMENT	(EXTERNAL	POWER SUP	PLY) WITH
			Skeptical:	We make bellev	ers!	ALMOST USE THI	F ANY COMI E BOARD IT	PUTER THA	AT HAS A RS CESSARY TO	232 SERIAL) SEND ENGI	PORT. TO LISH TEXT
FLA GRA	PANEL LCD					TO THE 1500 BY	RS232 INPL	IT ON THE	BOARD. THE	BOARD IN	CLUDES A
EPS	ON EG-7004S-AR	matic lype	 Low cost - \$75 	per LAN, not per node	el T	TO SEN	D DATA TO	THE BOARD	THE SAME	AS YOU WOI	ULD SEND
Bulli displa	In drivers - 4 bit TTL interface ying numerics, graphics, alpha	- Cepeble of ibetics, special	Hardware Indep ARCNET, P	endent network arailel, and Serial port		FILES T	HAT WILL	MAKE YOL	IR COMPUTE	R GREET Y	OU WITH
Viewin	characters, grephs, charts, and gerea 10-7/18" x 4-5/8". Overall	pallerns. 11-3/8" x 8-1/16"	Serial Speed per second	6500(XT)-8500(AT)	bytes	DEMON	STRATION S	SOFTWARE	AND A LIBP	RARY BUILD	ING PRO-
1	4 pins for signals and power (Compiele 27 page many	5V, -12V). Jal	Parallel Spe per second	ed: 8000(XT)-29000(A*	T) bytee	GRAM / DOCUM	ARE INCLUE	DED ON A	5% INCH PO MATICS ARE	2/XT DISKET ALSO INCLU	ITE. FULL JDED.
-	\$19.95 6/\$100.0		econd • Use any PC/XT	ieed: 40000 plus bytes 7/AT/386 mix, even lap	olops	FOR IN	FORMATION	I ON A LO	OW COST SI	PEECH SYN	
	1.2" 5x7 Matrix Displi	a ci	and PS/2 mach Connect up	ines to 254 computers, car	n mix	PACKET	T.M.1.				, ou , liee
	This Red Orange Matrix (Can Be	Arcnet)	methods (Serial, Para)	itel.		STAND AL	ONE POWER	SUPPLY	\$ 1 Q 99	
	Two Matrix Orlentation-C	athode	 Share any device Runs in the bar 	ce, any file, any progra skground, totally trans	am iparent		ADD \$2.50 S	HIPPING & H.	ANDLING	15	
	"Moving Message" Sig	ins.	 Low memory or Typically on 	verhead ily 28K is needed, but	witt	S	FATIC R/	\M	EPF	IOM SPE	CIAL
- 31	.19 Ea., 8/\$6.95, 100,	\$75.00	Works with more lift, Microsoft	at software, including	OBASE	2016-2K)	(8 200 n.s	1.00	We boug	ht a large qu	uantity of
1.50		1 6041 60	WORD, LOT AUTOCAD.	TUS 123, Windows 3, Word Perfect, all com	pilers.	21L02-1	25674 500 n 350 n.s.		2708s, 2 2764s, 2	716s, 2532s 7128s, 272	s, 2732s, 256s and
LSO	1 .14 LS122 .35	LS241.60 LS242.65	• Works with DO	s 2.0 to DOS 5.0 and	DR-	2102AL-4 2111-1 2	4 L.P. 450 n. 56X4 500 n.s	s	27512stro	om a comput	ter manu-
LS0 LS0	2 .14 LS123 .45 3 .14 LS124 1.35	LS243 .50 LS244 .55	DOS 3.1 or • Open network,	greater is preferred programmer API prov	ride d	2112A-2	14 74 200 -	2.50	boards. W	e removed t	hem from
LS0	4 .14 LS125 .30 5 .14 LS126 .35	LS245 .55	Example for you can sup Full space of	r low-level link module sport special hardware	25 — -	2114L-3 2125A-2	1KX1 70 n.s	1.70	them, and	now we offe	er the sav-
LSO	8 .14 LS132 .35	LS253 .40	CABLES & ARCN	ET CAROS	A75	2147 4K) 6116P-4	(1	1.95	tion guara	iu. Complete anteed.	e satisfac-
LSI	0 .14 LS136 .28	LS258 .45	AVAILABLE PL	EASE CALL	\$75.	6117		1.20	2708	Your Choice 1.2	0 10/8.00
LS1	2 .20 LS139 .35	LS259 1.00 LS260 .40	- SU	JUNEIS		62256 32	КХ8	5.75	2716	1.7	5 10/15.00
LS1	3 .25 LS145 .75 4 .30 LS148 .35	LS266 .30 LS273 .75	6 Pin	14/1.0		DY	NAMIC F	AM	2732		0 10/17.50
LS1	5 .20 LS151 .35	LS279 .30	8 Pin 14 Pin	13/1.0 13/1.0		2108-4 8	КХ1	1.50	2764	3.00	0 10/17.50
LS2	1 .16 LS154 .85	LS283 .35	16 Pin	13/1.0	00	2118-4 1 4027-4K	6KX1-5Volt X1-250 n.s.		27256	3.5	0 10/30.00 5 10/40.00
LS2	6 .14 LS155 .50	LS290.70 LS293.50	20 Pin	13/1.0	00	4116-16	(X1-250 n.s.			8000/80	000
LS2	7 .20 LS157 .30 8 .15 LS158 .25	LS298.65 LS2991.00	22 Pin 24 Pin	13/1.0 8/1.0	00	4116 16	(X1-150 n.s.		8031	2 95 82	51 1 10
LS3	0 .14 LS160 .25	LS322 1.30	28 Pin	7/1.0	00	4164 150) n.s	9 or 9/3.50	80C32 12	3.95 82	53-5 1.75
LS3	3 .25 LS162 .45	LS348 .75	40 Pin E	7/1.0 3UY \$10	00	4164-100) n.s.	1.40	8035	1.00 82 1.00 82	54 1.80 55 1.50
LS3	7 .24 LS163 .36 8 .24 LS164 .45	LS353 1.00 LS357 .80	GET \$1.00	- FREE CHOI	CE	TMS441 4464-150	6-16K X 4-150) n.s	n.s. 2.75	8085	1.55 82 1.55 82	55-5 1.75
LS4	2 .35 LS165 .60	LS363 .75	84 Pin PL		39	4464-120) n.s	1.45	8087 8	7.50 82	59A 1.85
LS5	4 .20 LS169 .90	LS365 .30	650	00/6800		4464-80	n.s	1.45	8087-1 16	7.50 82 7.50 82	10.95 10.95 10.95
LS5	5 .20 LS170 .45 3 .33 LS173 .60	LS366 .28 LS367 .35	6502 2.	00 6821	1.00	41256 15	50 n.s. 1.2 20 n.s. 1.30	5 or 9/9.95 or 9/10.99	8088 8088-2-	2.20 82 3.25 82	79 2.25 84 1.49
LS7	4 .22 LS174 .35 5 .25 LS175 .35	LS368 .30	6520 1. 6522 2.	25 6845P 70 6845S	2.20	41256 10	00 n.s. 1.30	or 9/10.99	8155 8156	2.25 82	86 3.50
LS8	3 .30 LS181 1.25	LS374 .45	6530 3.	00 6850	1.75	41256-8	orn.s. 1.30 On.s	1.85	8202A	8.00 82	88 3.50
LS8	6 .20 LS191 .45	LS375 .35 LS377 .75	6545 2.	10 6860	3.95	1 Meg -	100 n.s	4.40	8212 8214	1.25 85 2.00 87	30 3.00 41 7.00
LS9 LS9	0 .35 LS193.65 2 .30 LS194.40	LS378 .80 LS390 .80	6551 2. 6800 1	40 68681 40 68409EP	3.00	414256-	80 n.s. 256 x	4 4.60	8216	1.25 87	42 7.00
LSS	3 .25 LS195 .52	LS393 .75	6802 2.	50 68A40	4.00	SIPPS	& SIMMS A	AILABLE	8228	1.75 87	49 7.00
LS9	6 .33 LS196 .55	LS599 1.00 LS541 1.20	6803 3. 6805 2	00 68A54 95 68B09	3.00		IEE CHIP	SEI	8237-5 8243	2.80 87 1.75 80286-8	55 7.00 3 PLCC 8.50
LS1	07.28 LS221.50 09.20 LS240.50	LS645 75	6809EP 2.	75 68B10	2.00	40.450	B.G. SPECI	AL	8250	2.95 80287-8	8 125.00 10 135.00
Liei	12 .25	LS670 .80	6809P 2.	50 63845	4.95	16450	, 1488, 1489	- \$6.95	(16550) 1	3.00 V-20-10	MHZ 6.50

- 12

- 24

2/14/92

Reader Service #34

The world's smallest 12-band receiver.

Rundig

Includes digital clock, travel alarm, headphones, deluxe travel pouch, three "AA" batteries, and Grundig guide book. Measures approximately 3¹/₂" x 5⁵/₈" x 1¹/₄" and weighs a mere *14 ounces*!

The world is at your fingertips with... The Grundig World Band Receiver

Remarkans an

Announcing a revolutionary breakthrough in world-band radios...from Grundig, the leader in German shortwave electronics. This miracle of miniaturization is not sold in U.S. stores or catalogs—only Willabee & Ward has it!

50

80

Tune in to events around the globe. The RK-709 is the world's smallest 12band receiver-AM, FM, FM Stereo (with headphones, included), and all 9 major shortwave bands. Small enough to fit into a pocket briefcase, or purse, yet big on features. Telescoping antenna pulls signals from anywhere in the world. Listen to legendary BBC newscasts-the best in the world. Hear what Radio Moscow is saying about Yeltsin, or the American elections. Listen to the Voice of America for news from home when you travel abroad. Follow a crisis or breaking story wherever you are and no matter where it's happening: Baghdad, Barcelona, Beijing or Los Angeles.

120

You don't have to pack a travel alarm, either.

You won't need it — this is better. The RK-709 wakes you with the radio or its ingenious "Humane Wake System" — the tone begins softly and gathers volume until you wake up! The digital alarm clock features a sleep timer that turns off the radio 10 to 60 minutes after you turn in!

Only \$159! Payable in monthly installments.

The Grundig RK-709 is only \$159 (plus \$7.50 shipping/handling), payable in convenient monthly credit card installments. Includes deluxe carrying pouch, three "AA" batteries, and stereo headphones. One year warranty, 30 day money back guarantee. Order today.

Don't be confused by other 4, 5, 7, or 9 band radios. Grundig's RK-709 is today's best buy on a real 12 band receiver.

CALL TOLL-FREE: 1-800-367-4534 Ext. 623-253

Willabee & Ward 47 Richards Avenue Norwalk, Conn. 06857 CALL TOLL-FREE: 1-800-367-4534 Ext. 623-253 Please send me Grundig RK-709 World Band Receiver(s). For each receiver, charge 4 installments of \$41.63* to my credit card: MasterCard VISA Discover Am. Ex.	400 500						
Credit Card # Exp. Date	70						
Name							
PLEASE PRINT CLEARLY							
Address							
City/State/Zip	80						
Signature							
(All orders subject to acceptance.)							
□ I prefer not to pay by credit card and will pay by check. Enclosed is my check for \$159* plus \$7.50 shipping/ handling, a total of \$166.50 for each receiver.							
*Any applicable sales tax will be billed with shipment.							
Phone orders normally shipped next business day.							
160 170°							

150