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On the evening of December 20, 1915, a meeting of the
Boston Section was held at the Cruft High Tension Laboratory,
Harvard University. Professor J. C. Hubbard presented a
paper on ‘“The Effect of Distributed Capacity in Inductance
Coils.”” This paper was discussed by Professors George W.
Pierce, W. G. Cady, J. E. Ives, and A. E. Kennelly. At the
same meeting there were exhibits of radio apparatus by a number
of companies and individuals. The following companies were
represented: General Radio Company, W. J. Murdock Com-
pany, George S. Saunders and Company, the Clapp-Eastham
Company, and the American Radio and Research Corporation.
The private exhibitors were the following. Professor A. E.
Kennelly showed a ‘““Paul’’ 800-cycle telephone current generator,
a “Drysdale’ alternating current potentiometer, and a “Duddell”
oscillograph. Messrs. Fulton Cutting and Washington showed
a small transmitting set using ‘“Chaffee’”’ gaps operated on
500 volts D. C. Dr. E. L. Chaffee showed a Tesla coil operated
by two of his gaps together with a vacuum tube for showing the
spark characteristics. Professor George W. Pierce, in addition
to a number of instruments, showed his mercury arc oscillator
acting as a generator and also as a receiver. In the latter case
the signals from Arlington were recorded on tape. Mr. H. E.
Rawson showed a wave meter, and a receiving set with which
reception from the South San Francisco station was demon-
strated. The attendance was one hundred and forty-three.

SEATTLE SECTION

On the evening of September 4, 1915, a meeting of the
Seattle Section of the Institute was held, Mr. Robert H. Marriott
presiding. The organization of the Seattle Section was dis-
cussed by Messrs. Marriott, Cooper, Alexis Paysse (Secretary-
Treasurer of the Section), Wolf, and Milligan. The attendance
was twenty-six.

On the evening of October 6, 1915, a meeting of the Seattle
Section was held in the rooms of the Seattle Chamber of Com-
merce. Professor Osborne of the University of Washington
offered the use of rooms at the University to the Seattle Section.
This offer was formally accepted, with thanks. A paper on
“Radio Development in the United States from 1899 to 1915”
was presented by Mr. Robert H. Marriott. The paper was
illustrated by slides. Mr. Roy E. Thompson discussed the
paper; after which there was a discussion by a number of the
members on allied topics. The attendance was forty-two.
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On the evening of November 6, 1915, a meeting of the
Seattle Section was held at Denny Hall, University of Wash-
ington. Two papers were read by the Chairman, Mr. Marriott.
These were “The Effectiveness of the Ground Antenna in Long
Distance Reception’” by Mr. Robert B. Woolverton and “The
Use of Multiphase Radio Transmitters” by Mr. William C.
Woodland. A discussion followed. Mr. Robert H. Marriott
then outlined his plan for the investigation of “radio shadows,”
and the carrying out of this work was systematically begun.
The attendance was thirty-seven.



THE USE OF MULTI-PHASE RADIO TRANSMITTERS*

By
WirLLiaMm C. WoODLAND
(ENGINEER, PACEARD ELECTRIC COMPANY)

The production of radio frequency current from currents
of commercial frequency is a matter of great interest and useful-
ness. The fact that a pure sine wave is not necessary or even
desirable for radio purposes makes possible a great many ways
of dividing up audio frequency current so as to duplicate the
results obtained by radio frequency generators.

For example, it is possible to divide up audio frequency
3-phase currents into any number of intermediate phases, all
of which have equal wave peaks occurring successively. By
placing a separate radio transmitter in each phase, it would
seem possible to operate at almost any desired frequency.

Several advantages of multiphase current over single phase
current may be pointed out.

1. In an 8-phase, 60-cycle equipment the tone of the
spark would be equivalent to that given by a 480-cycle gen-
erator. The condensers, however, would operate on 60-
cycle current, which would allow the use of much larger
capacity and a lower voltage for the same total amount
of energy. The large condensers discharging at a com-
paratively low voltage would give short thick sparks of
low resistance, resulting in an improved efficiency. The
lower voltage would increase the life of both the condensers
and the transformers.

2. The reliability of the equipment would be increased;
because if a transformer or condenser should break down,
the message might be finished on the other phases with no
more trouble than a slight weakening in power; whereas on
a single phase equipment, the operator would be unable even
to advise his correspondent of the nature of the difficulty.

3. There would be some advantage in having to break
only 58 per cent. of the corresponding single phase current
at the key.

* Presented before The Institute of Radio Engineers, New York, Novem-

ber 3, 1915.
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4, Spare transformers and condensers could be carried
at less expense than with single phase equipment.

5. I will show a little later that it is possible to operate
multiphase equipments with very high power-factors and
leading current so that the generator voltage does not fall
on depressing the key.

6. When operating directly on 60-cycle, 3-phase current,
the efficiency is certainly very much improved.

My attention was first called to the use of multiphase current
for radio transmission in the early part of 1912, when it occurred
to me that by dividing up a 3-phase, 60-cycle current into a suf-
ficient number of intermediate phases, the results of the higher
frequency generators might be duplicated using only com-
mercial current.

I did not, at that time have in mind anything further than
placing a separate radio transmitter of the fixed gap type in
each phase, depending on it to discharge at the peak of the
wave independently of the other sets.

This plan did not meet with success on account of the fact
that the maximum point of the wave is not sufficiently definite
to secure the phases against interference with each other. I
found also that other investigators had carried the work up to
this point, but that all systems had been rendered more or less
inoperative because of the interference mentioned above.

All of these difficulties were overcome by the use of a rotary
spark gap in each phase which had for its purpose the definite
localizing of the point of discharge.

Eight (8) phase, five (5) phase, four (4) phase and three (3)
phase equipments of this description have been built with entire
success. :

In the remainder of this article, I shall describe more minutely
the 3-phase, 120-cycle, 3-kilowatt set shown in Figures 1 and 2.
The three transformers are each of 1 kilowatt rating, 120 cycles,
63.5 volts primary, and 7,500 volts secondary, and are star con-
nected on both sides. The open ends of the star primary go
direct to the generator and the other ends are closed on each
other thru the relay key when operating.

The condenser set consists of 9 banks, 3 condensers in series
on each of the 3 phases, each bank being of 0.035 microfarad
capacity, the effective capacity per phase being 0.0166 micro-
farad. The condenser phases are also connected in star relation
to each other.

The open ends of the condenser star go direct to the 3-phase
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spark gap, by means of which they are successively discharged
thru the helix.

While testing for phase order and rotation, the neutral of
the condenser set is connected to the transformer neutral and
each phase operated separately; but after the testing is done, the

F1GURE 1—Three-Phase Transmitter

results are improved by removing the neutral connection. The
shifting of the neutral serves to limit the short circuit current
of the transformers and makes operation possible with much
less inductance than is common.

The point above mentioned is worthy of a fuller explanation.

13
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Figure 2—Diagram of Connections for Three-Phase Transmission

In most radio transmitters operating on spark systems, the dis-
charge of the condenser acts as a momentary short circuit on the
transformer, and means have to be provided to prevent a power
arc from following the oscillatory discharge. On single phase
equipments, this is usually accomplished by using a limiting
inductance, which has to be capable of limiting the entire trans-
former output in order to be effective. On the multi-phase
system, however, a much smaller inductance can be used, since
the short circuit current is limited partly by the inductance of
the active transformer and partly by the shifting of the neutral
of the other two. The shifting of the neutral has a beneficial
effect since it serves to increase the voltage on the transformer
discharging next in order.

A transformer with series inductance short circuited on
single phase supply draws more than double the current that it
would if short circuited on a 3-phase star connection. The
best results have been secured with a power factor of 90 per
cent. leading; that is, the amount of inductance is less than
that required for 120-cycle resonance.

The rotary spark gap which is direct driven from the gen-
erator shaft is shown in Figure 3. Considerable range of input,
efficiency, and quality of tone is secured by shifting the point
at which the discharge takes place. It has been found best to
operate on the falling side of the wave, well over the peak, since
this gives the highest efficiency combined with the best tone.

14



Fi1Gure 3—Three-Phase Rotary Spark Gap

Ficure 4—Oil Break Relay Key
15



Advancing the point of discharge only increases the input without
effecting the output on the aerial.

Some form of relay key is desirable since there are a minimum
of 2 primary circuits to be closed simultaneously. The oil
break form shown in Figure 4 has been found very satisfactory
for this purpose. Complete efficiency tests are not available at
this time, but the set above described has radiated 14 amperes
on a 2,000-meter wave-length without exceeding its rating of
3 kilowatts.

September, 1915.

SUMMARY: The advantages of multi-phase over single-phase spark trans-
mitters are given; some of which are higher tone, lower condenser voltages,
greater reliability (because of spare phases in case of breakdown of one
phase), and smaller current broken at key.

A 3-phase, 120-cycle, 3-kilowatt set is then described i!z detail.
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CAPACITIES*

By
Fritz LOWENSTEIN

As the seat of energy of an electrical field is in the space
outside of the charged bodies we will consider the shape and
concentration of the field only, but not that of the body itself.
This distinction is necessary because capacities are usually
attributed to the bodies charged, whereas the energy is excluded
from that space which is occupied by the body. Considering
the space between two charged bodies as the only seat of energy,
the expression “charged body’ is best replaced by ‘‘terminal
surface” of the field.

Comparing geometrically similar elements of two geo-
metrically similar fields, the elementary capacities are pro-
portional to lineal dimensions. (See Figure 1.)

Ficure 1

Extending this law over the entire field by the integrating
process, we find that geometrically similar fields have capacities
proportional to the lineal dimensions of the terminal surfaces.
It is to be expected, therefore, that capacities expressed in
dimensions of terminal surfaces should be of lineal dimensions.

That the capacity is by no means a function of the volume of
the field or of the terminal body may be easily seen from Figure 2
where a field element is increased to double the volume by adding

* Presented before The Institute of Radio Engineers, New York, Decem-
ber 1, 1915.
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volume in the direction of the field lines and in a direction per-
pendicular to the lines. In the first case the capacity has been
decreased whereas in the latter case increased, altho in both
cases the volumetric increase is the same.

FIGURE 2

It is seen, therefore, that instead of being dependent on the
volume, the capacity is rather a function of lineal dimension
and therefore the maximum lineal dimension predominates.

An interesting example of this predominating lineal dimension
or “maximum reach” is given by the composite capacity of two
wires joining at one end under various angles, as shown in

Figure 3.
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When the angle is small the composite capacity is practically
the same as that of the single wire, since the addition of the
second wire has not increased the maximum reach. If the
second wire B be joined to A at an angle of 180 degrees, which
means in straight continuation of wire A the total capacity has
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oubled, as the maximum reach now is twice that of the single
wire. We notice also that by deviating wire B slightly from the
traight continuation of wire A, the maximum reach of the
system is not materially altered, from which one may correctly
conclude that turning the wire B thru an appreciable angle b
does not materially change the capacity of the system. On the
other hand a great change of maximum reach is produced by
variations of the angle when the two wires are approximately
perpendicular, and in fact the capacity of the total structure is
most sensitive to changes of angle between the two elements at
about 90 degrees. ,
In Figure 4, I have given a table of capacities per centimeter
of the greater lineal dimension of the different configurations.

C&321

C=201

P —————]

C101.
Fi1GuRre 4

In Figure 5 the wire AB is assumed to be moved by the
variable abscissae z, thereby generating a conducting sheet .
It is instructive to follow the variation of the capacity C,.

19



At z=0 the capacity is that of the wire C,,; as long as z
is small the capacity is practically constant because the width
of the sheet is small compared to the length A B and a change
of z does not involve a change of the predominating lineal
dimension; however, as z increases and finally becomes greater
than A B, it assumes the part of the predominating dimension,
- and, indeed, the graph shows the capacity then to be propor- -
tional to z.

A
///,.//// ]
. ////5////// ______ B

FiauRre §

Comparing the capacities of a sphere and of a wire, it is
found that the capacity of the sphere is only three or four times
as great as the capacity of the wire in spite of the million times
greater volume.

I have spoken of the capacities of a wire and of other bodies
instead of the capacity of the field simply because I do not wish
to distract attention from the familiar conceptions. Let me
analyze the field shown in Figure 6, having two concentric
spheres as terminal surfaces, and defining as ‘“volumetric energy
density”’ the energy contained in one cubic centimeter. As the
energy of a field element is made up of the product of potential
along the lines of force within that element and of the number
of lines traversing it, the energy of a cubic centimeter of electric
field is proportional to the square of the field density. Since the
field density diminishes as the square of the distance from the
center of field, the volumetric energy density diminishes with
the fourth power of the distance from the center. The diagram
to the left in Figure 6 shows the decrease of volumetric energy
density.

Of greater interest than the volumetric energy density is the
lineal energy density, which may be defined as the energy contained

20



FiGure 6

in a spherical layer of one centimeter radial thickness; and as
the volume of such layer increases with the square of the distance
from the center, the law follows from this fact, and from the
volumetric energy density law that the lineal energy density
decreases inversely as the square of the distance from the center.
Such dependence is graphically shown to the right in Figure 6.
The shaded surface below this curve represents the total energy
of the field and it is easily seen therefrom that the maximum
energy of the field is concentrated near the smaller of the two
spheres.

I have taken a simple case of a field with spherical terminal
surfaces to show that the concentration of energy lies near the
smaller terminal surface. Similar considerations can be applied
when substituting for this field radiating three-dimensionally,
a field of bi-dimensional radiation (as that occurring in the case
of long cylindrical terminal surfaces); where, as in this instance,
the bulk of the energy of the field is to be found near the smaller
one of the two terminal surfaces.

In Figure 7, I have shown a field with concentric termiral
surfaces (either spherical or cylindrical), and have increased the
scope of the field by reducing the size of the smaller terminal
surface without, however, changing either the total number of
field lines or the larger terminal surface. As the lineal energy
density is very great near the smaller terminal surface, such
addition of the field at that point must have materially increased
the energy of the field and the change in capacity to be expected
should be considerable. Infact, a considerable change in capacity
of a sphere is obtained by a change of its diameter.

If, in Figure 7 the larger terminal surface alone is changed,
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even materially, the total energy of the field will be increased
very slightly only; due to the fact, as we have seen, that the
energy density near the larger terminal surface is very small.
Such a small change in energy corresponds to only a small
change in the capacity of the field, from which we conclude:

F1GURE 7

In a field having two terminal surfaces of greatly different
size, a change of the smaller surface produces a great change in
capacity, whereas a change of the larger terminal surface affects
the capacity of the field only very slightly. The capacity of a
field is, therefore, almost entirely determined by the shape of
the smaller terminal surface.

That is why we may with correctress speak of the capacity
of a sphere, or any other body, without mentioning the size and
shape of the other terminal surface, as long as the assumption
is correct that such other termiral surface is of greatly larger
dimensions.

It may not be amiss to call your attention to the fact that
the increase of field energy as illustrated in Figure 7 is accom-
panied by a decrease in capacity. This relation may easily
be deduced from physical considerations, as well as from con-
sideration of the mathematical expression for the capacity

C= ¢ where ¢ =total field lines
322 W W =energy,
wherein the capacity is expressed as a property of the field alone.
I am tempted to introduce here the reciprocal value of capacity
and apply to it the term “‘stiffness of the field,”” as an increase
of energy would be followed by an increase of stiffness. I am,
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however, loath to mar any additional insight which may be
gained from these explanations by deviation from so familiar
a term as capacity.

For a better conception of the slight change of capacity
caused by a considerable increase of the larger terminal surface,
I refer to Figure 7, where the difference of capacity is only
1 per cent in spite of the diameter of the larger terminal surface
being increased 100 per cent. It appears, therefore, that that
part of the capacity of an antenna which is due to the flat top is
not materially changed by its height above ground.

While considering the capacity of a flat top antenna to
ground, it must have occurred to many engineers, as it did to
me, that the statement to be found in many text books on electro-
statics is rather misleading: ‘“That the free capacity of a body
considered alone in space must not be confounded with the
capacity the body may have against another body considered
as a plate condenser.”” This statement is quite erroneous. As
the strength and direction in any point of a field is of single and
definite value, only one electric field can exist in a given space
at a given moment, and, therefore, only one value of capacity.
It is incorrect, therefore, to distinguish between free capacity
and condenser capacity. This clarifying statement is deemed
advisable, or at least permissible, in view of the quoted errors.

By speaking of the capacity of the field instead of that of the
body, no such erroneous thought is possible, and it is clear that
by free capacity of a body is meant the capacity of the field
whose smaller terminal surface is the given body and whose
larger terminal surface is one of vastly greater dimensions.
It is not essential that this greater terminal surface be located
at infinite distance, because of the fact that even if construed
as of ten times the lineal dimensions of the small surface the
change caused by removing it to an infinite distance would
result in a change in capacity of not more than one-tenth of
1 per cent.

At a time when I had not realized the singly determined
value of a field capacity, I considered a comparison between free
and plate capacity as shown in Figure 8, wherein to an upper

disc (of which the free capacity is gr)r was added another lower

disc, thereby forming a plate condenser. The problem arose in
my mind to determine the distance of separation of the two
plates so that the plate capacity would equal the free capacity
of the single disc. From the well-known formulas for the disc
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FiGure 8

capacity and plate capacity, it would appear that the two were
equal at a distance equal to d= gr, and I must confess that

I had quite a struggle to decide whether in speaking of the
capacity of the upper plate I would not have to add the two
capacities. While such a mistake need hardly be called to the
attention of the majority of engineers, I do not hesitate to make
mention of it for the benefit of even the few students who might
gain therefrom. .

The advent of the aeroplane has opened another field, for
radio communication. Whereas in the static field of an antenna,
one terminal surface is artificial and the other provided by the
surrounding ground, both terminal surfaces in an aeroplane
outfit have to be artificial and are, therefore, open to design.
The question arises in such a radio oscillator as to how much
may be gained in energy for each single charge by increasing
that one of the two terminal surfaces which consists of a dropped
wire. The arrangement is shown in Figure 9. It is evident that

&,

FiGure 9
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as long as the dropped wire is of smaller dimensions than the
electrostatic counterpoise provided on the aeroplane, an increase
in length of such dropped wire will materially increase the
capacity of the field and, therefore, the energy per charge (as
we may conclude by analogy from Figure7). As soon, however,
as the dropped wire is materially longer than the conductor
on the aeroplane it assumes the role of the larger terminal
surface of the field, and any further increase of its length will
not materially contribute to an increase of electrostatic capacity
nor of the energy per unit charge.

Figure 10 shows the function of the volumetric and lineal
energy density in a field whose smaller terminal surface is a long
cylinder. Such a field, radiating bi-dimensionally only, shows
an energy concentration not so accentuated as that found in the

s | s
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FiGure 10

tri-dimensionally radiating field; but considering the larger
terminal surface of a diameter ten times that of the smaller
surface, the capacity would only be changed 1 per cent by
increasing the larger terminal surface infinitely.

In all cases, therefore, where the larger terminal surface
does not come closer at any point than (say) ten times the
corresponding dimension of the smaller terminal surface, we
need not be concerned with the actual shape of the larger terminal
surface when we determine the seat of energy, the capacity and
the configuration of the field lines emanating from the smaller
surface. It will be seen, therefore, that from the flat top of an
antenna, lines emanate almost symmetrically both upwards and
downwards as though the larger terminal surface were one



surrounding the antenna symmetrically on all sides, in spite of
the fact that the ground is located entirely at the bottom of the
antenna. This is clearly illustrated in Figure 11.

By integrating the lineal energy density of a three-dimen-
sionally radiating field between the radius of the smaller sphere

/ N

H

Ficure 11

and that of the larger sphere, we can find the energy of such a
field; whereby the capacity is determined. The lineal energy

denslty follows the law of ;> and its integral is proportional

to :; and consequently the capacity of the field varies as r.

We have deduced, therefore, the capacity of a sphere from
properties of the field alone, considering the sphere as a terminal
surface only.

In deducing similarly the capacity of the wire from properties
of the field alone, we have to start with the bi-dimensionally
radiating field the lineal energy density of which follows the

law ; as we have seen. The integral of such function is of

logarithmic nature, as indeed is the capacity of the wire.

‘ I wish to call your attention to the fact that in a sphere
segments of the same projected axial length contribute equally
to the capacity of the sphere, as shown in Figure 12.

If a charge were made to enter a sphere and traverse the
sphere in the direction of a diameter, the sphere as a conductor
would behave like a straight piece of wire of uniform lineal
capacity. This fact was first recognized, to my knowledge, by

26



Fi1GURE 12

Mr. Nikola Tesla, and I expect to come back to the behavior of a
sphere as a conductor of radio frequency currents at some
later date.

The study of capacities of composite bodies is most in-
structive and conducive to a clear conception of capacity.
Let, as in Figure 13, a number of small spheres of radius be so
arranged as to cover completely the surface of the larger
sphere, the radius R of which be 100. If each one of the

Fi1Gure 13

31,400 smaller spheres could be counted at its full value of
capacity, the capacity of the composite body would be 31,400;
as a matter of fact, however, it is not more than radius R of
the larger sphere, that is 100. Indeed, the configuration of
the electric field F could not have changed materially by the
arrangement of the small spheres, and the capacity clearly
presents itself as a property of the configuration of the field
lying outside of the enveloping surface of the composite

structure.
27



Capacity may play a part in the conduction of electricity
thru liquids and gases. Let us assume a series of spheres in
lineal arrangement as shown on Figure 14.

As long as the distance between the spheres is great com-
pared to the diameter of the spheres, each sphere will retain its
full capacity as given by its radius. By decreasing the distance
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FiGure 14

between spheres the individual capacities of the spheres decrease,
because of the negative capacity coefficients. If such approxima-
tion be carried to the point of contact between the spheres, the
capacity of each individual sphere would be reduced to ap-

proximately 1 of the original capacity. If such a row of spheres
€

were conceived as freely movable, so as to enable each sphere to
make contact with a plate P, which is kept charged to a certain
potential, then the charges carried away by the spheres after
contact with the plate would be proportional to the full capacity
of each sphere as long as the spheres are far apart, and would

be only - = —_ —th part of such maximum charge when the

spheres are in contact. As we assumed the plate P to be main-
tained at a certain potential by an outside source of electricity,
the convection current represented by the departing charges
of the spheres would vary approximately in a ratio of 2.71 to 1.

In the passage of electricity thru an electrolyte, the molecular
conductivity has been found to be the same for all electrolytes,
and varying only with the concentration of the solution; the
molecular conductivity being approximately 2.5 times as great
in the very dilute solution as in the concentrated solution.

I wish to call your attention to the striking similarity between
the ratio of conductivity experimentally determined in elec-
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trolytes of small and large concentration and the ratio of con-
ductivity of the row of spheres where the spheres are far apart
or close together. I do not pretend at this moment that a

ALCOHOLS oeLECTRIC
— OH CONSTANY

{” O H-OH WATER 80
| CH;OH METHYL ALCOWOL 327
2 GH;OH ETHVL  » 265
3 GH-OH PROPVL - 228

4 GHOH BUTYL - -

DIELECTRIC CONSTANT

plausible modification of the theory of conduction thru elec-
trolytes and gases can be based on such a coincidence; and in
fact, assumptions would have to be made. For example, a
lineal arrangement of the ions in the direction of the static field
impressed on the electrolyte or on the gas must be assumed.

FORMIC ACID H=COU-H

aucn N
09 METHYL FORMIATE H-COO-CH, | 929
i’\‘& as ETHYL - H=COO-CH, 2 2.\,
Form 1S0BUTYL * H-CO0-CH, 4
'c Acio ESTERS 4 AMYL - M-COO-CH, 5 77
65 6.3
P—~ACETIC ACID ESTERS
ACETIC ACID CHz COO-H
ETHYL ACETATE CHyCOO-GH, 2
PROPYVL = CH; COO-GH, 3 63
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But the fact that such ratio in the case of the spheres is deduced
from geometrical considerations alone, coupled with the fact
that in electrolytes the same ratio follows from purely geometrical
considerations, is sufficient to warrant further thought. 1 do not
hesitate to bring this interesting coincidence to your knowledge,
with the hope that other physicists may carry on investigations
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in the same direction. I have said that the molecular con-
ductivity of electrolytes arose from geometrical considerations
only, and I think it advisable to call your attention to the founda-
tion of such a statement. While it is true that the conductivity
of different electrolytes varies considerably, it has been found
that the molecular conductivity is the same for all electrolytes.
The similar behavior, of the same number of molecules, in-
dependently of the weight of the molecule, therefore reduces the
phenomenon to a purely geometric basis.

SUMMARY: Considering that electrostatic energy is actually in the space
surrounding a charged body, the latter is called a “terminal surface.” It is
shown that capacity is predominantly a function of the maximum lineal
dimension of the terminal surface. The volumetric and lineal energy den-
sities in the field are defined and studied in a number of cases. It is proven
that the capacity between two terminal surfaces is greatly affected by chang-
ing the lineal dimensions of the smaller terminal surface, but not so for
changes of the larger. Certain current errors in connection with “mutual
capacity” are considered. -

The practical applications to a radio antenna and to aeroplane counter-
poises are given.

When a charge traverses a sphere, entering parallel to a diameter, the
sphere behaves as a conductor of uniform lineal capacity.

Applications of the theoretical considerations are also given in connec-
tion with the conductivity of concentrated and dilute electrolytes.
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DISCUSSION

John L. Hogan, Jr.: The computation of antenna capacity
has been a problem of great interest to radio engineers for a
good many years, and many methods have been proposed. As a
rule, the mathematical solution of the problem is not only
very complicated, but is likely to lead to results which are so
far from accurate that the labor of the computation is not repaid.
Measurement methods almost always involve the erection of
the antenna itself or of a substantially accurate copy of it, and
so are impracticable for many uses.

In design of station apparatus, whether for sending or receiv-
ing, it is convenient to be able to determine antenna capacity
quickly and easily, and for ordinary purposes an accuracy of
approximately 5 per cent is all that is required. In fact, even
rougher approximations than this will often satisfy the require-
ments, since possible variations can usually be compensated
for in the selection of instruments. I have not seen published
any simple method of computing antenna capacity which can
be solved quickly and easily, and yet which will give results

. within a reasonably close value of the actual measurements;
however, there is such a method in practical use.

For a number of years I have been collecting data which
interconnects the geometric and electrical constants of a great
many practical radio telegraph aerial systems, including those
of both ship and shore stations. From these I have been able
to secure an approximate relation between the area of the
aerial system and its effective capacity. For flap top antennas
of the usual form, the capacity is almost directly proportional
to the area plus a constant, and amounts to something like
0.00024 microfarads per thousand square feet plus 0.0004.
The linear relation, of course, is not sufficiently accurate for
close calculation, but may be used in securing a first approxima-
tion of capacity of medium sized antennas. For more accurate
results the capacity C, and area A, are related by the following
expression

C=pA*?

where p and ¢ are constants depending on the type of antenna.
An expression of this same form is useful for pre-determination
of capacity of umbrella antennas; for this purpose the exponent
g varies with the number of wires in the umbrella and the area
is measured as the surface of the cone which has the rib wires
as its elements. It is not ordinarily necessary to take into
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account the height of the antenna from the ground, for as a rule
this distance is too great to affect the result to any marked extent.
Closeness of grounded towers, etc., may have to be compensated
for, and if a large fan instead of a single wire is used as a lead-in,
its part of the capacity must also be added.

If T had realized that the paper and discussion tonight
would approach this matter of the practical pre-determination
of antenna capacities, I would have prepared some further
quantitative data in that connection. I hope that at some future
time I may present to the Institute complete information as
to this method of computing capacities.



A NULL METHOD OF MEASURING ENERGY CONSUMP-
TION IN A COMPLEX CIRCUIT"®

By
ALrrep S. Kuan

(ENGINEER, FRITZ LOWENSTEIN COMPANY)

In April, 1914, the problem arose of measuring the power
consumed in a chamber in which an electrochemical action took
place. The chamber was comparatively complex, having glass
and gas parts; and the chemical action would have been seriously
affected had terminals been introduced into the apparatus for
determining the constants of the different parts. It was also
determined that the properties of the device varied considerably,
but to an unknown extent, with slight changes of applied voltage
and of gas pressure. Furthermore, as part of the energy supplied
had to pass thru the glass, the use of direct currents was precluded.

Attempts to build a wattmeter showed that much additional
apparatus would be required to carry out the measurements
by the wattmeter method. When the problem rose again about
a year later, the following arrangement was adopted.

Across the secondary of the power transformer, two circuits
were placed in parallel. One circuit contains the reaction
chamber in series with a coil. The other circuit consists of a
variable capacity (a variable inductance sometimes), a variable
resistance, and a coil identical with the coil in the first circuit.
To each of the aforesaid coils is coupled a secondary coil, the
two secondary coils being identical. The coupling between
the primary and the secondary of one circuit is identical with
that of the other. The arrangement of circuits is shown in the
illustration.

If then the two secondary coils be connected in series with a
telephone or other suitable indicator, there will be no indication
of energy in the indicator when the currents in the two circuits
are equal and in phase. When such is the case, the power
consumption in the two circuits is the same. The power in the
artificial circuit may easily be measured and equated to the
power in the complex circuit.

* Communicated to the Editor, September 28, 1915.
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It may be mentioned that it is not necessary to use both
capacity and inductance in the balancing circuit. In addition
to the equivalent resistance, there need be only an equivalent
reactance factor:

This reactance may be made up of capacity, inductance, or both.

ENERBY
ABSORBING
DEVICE

t—————o— SOURCE OF POWER —o-

In measuring the power in the balancing circuit, watt-
meters of the ordinary types may not be used if the power
factors are very low. Thus, in the experiments mentioned power
factors as low as 5 per cent arose. As a rule, a high power
factor wattmeter may be used in such case provided current
potential transformers are available. This device is doubly
useful when working at high potentials and low power factors.

SUMMARY: A null method of measuring power absorption at low power
factors in complex circuits at any frequency is described.



THE DARIEN RADIO STATION OF THE U. S. NAVY
(PANAMA CANAL ZONE)*

By
Lieur. R. S. CRENSHAW
(U.S. N)

DARIEN Rapio StaTioN oF THE U. S. Navy

In its system of radio communication for the Canal Zone,
the Navy has maintained the high standard set by the Canal
in general in having thoroly modern equipment. The layout
comprises one coastal station at each end of the Canal for ship
to shore work, and one high power station for long distance
work.

The Darien radio station is located just twenty-five miles

* Received for publication December 18, 1915. This paper has been cen-
sored by the Navy censors.
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south of Colon on the Panama Railroad. The railroad forms
the east boundary of the reservation which contains eighty-seven
and one half acres. The southwest boundary is the Canal itself
from which runs a channel twenty feet deep and seventy-five wide
into the center of the station plot. Those who may have visited
the Canal before the water was allowed to rise may remember
this site as being adjacent (to the southeastward) to the old
town of San Pablo. On the “relocation’ of ‘the railroad, the
nearest stop was Caimito Cabin at the North end of the dumps;
and the site was known variously as the San Pablo or Caimito
radio, or simply as Radio, in the early stages. Finally the
Department assigned the name Darien when, by request, the
Governor named the railroad stop here Darien. Until the name
was well known, mail frequently went stray to the southernmost
province of the Panama Republic, which is known as the Darien
section.

Work was started on construction in December, 1913, by the
Quartermaster Department of the Panama Canal. The site was
far removed from any of the Canal Zone towns and was mostly
jungle. A spur from the railroad was put in, laborers’ barracks
built; and, as it is unsafe to load cement in the open due to the
sudden rains, a cement shed was erected close to the spur. With
a hoisting engine on the hill, all material was hauled up a narrow
gauge road in De Cauville dump cars. This narrow gauge road
continued around the station site for the delivery of material
for the buildings and towers. The small locomotives, cars and
track were relics of the French construction days. Water for
the station was pumped to a tank on a hill by a Worthingston
pump, which obtained its steam from a boiler of an old Belgian
locomotive side-tracked for that purpose. Drinking water was
distilled at this pump station. This equipment supplied the
station until the arrival of the electric turbine pump. The Gatun
Lake water is now used and merely sterilized for drinking and
cooking purposes.

The dwellings on the site are the house for the Radio Officer,
cottage for the chief electrician in charge, and barracks for the
operators equipped to house seventeen men. Servants’ quarters
are also provided in the barracks building. Rations are com-
muted at a dollar a day per man, and a mess is run by the
operators. .

All the buildings are screened, including the porches. There
is such a large breeding area for mosquitoes about the site that
the cost would prohibit sufficient sanitation work to keep the
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mosquitoes down entirely, and the means adopted are (1) to
keep the screening as tight as possible; (2) each morning a san-
itary inspector makes the rounds, and catches the mosquitoes
inside the living quarters and office; (3) no containers are allowed
to collect water; in which there may be breeding on the station
site; (4) all drains are kept clear so no water stands in puddles;
(5) around the edge of the water the bank is kept skinned to
allow the small fish to eat the mosquito larvae (this means is
remarkably effective); (6) the force of five laborers allowed the
station is kept at work on the grounds to keep the jungle growth
cut down as well as possible. When one case of malaria appeared,
the whole station was put on a quinine diet for ten days, in
order to prevent an epidemic.

The other buildings of the station, with' the-exception of the
boat-house, are of concrete. The boat-house is of old form lum-
ber left over from the concrete work, and corrugated iron roofing
robbed from old, abandoned shacks on the site, one of which
was a distillery.

The power-house is sixty feet by thirty feet, and contains
the motor generators for the main transmitting set.

The main distributing and controlling switchboards are here,
with the auxiliary transformers. This building also houses the
machine tools, a small lathe, a drill press, milling machine, and
emery grinder, and is fitted with a five-ton overhead travelling
crane. All wiring is in conduit in wire trenches.

The operating building contains the arc room (where is located
the main transmitting set with its auxiliary electric controlling
devices), the receiving room and the office, besides a spare room
for an auxiliary sending set if needed later. The arc room and
the receiving room both have wire mesh embedded in their walls,
floor and ceiling, in order to prevent induction from the trans-
mitting set injuring the receivers. The building is fireproof,
which is necessary on account of the action of the continuous
oscillations used at such high voltage. The charging current
into iron in the vicinity of any live lead heats the iron quickly.
Some of the reinforcing had to be taken out of one concrete base
because the current jumped to it; and one wall 19 inches
(47 centimeters) away from the end of the helix heats so that
the hand cannot be kept on it after a twenty-minute run. The
reinforcement in this wall is merely metal lathing, but it is
directly in the field of the main helix.

The contract for the towers was let to the Penn Bridge Co.
which in turn sublet the fabrications to the Toledo Bridge and
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Iron Works, and the erection to Mr. J. O. Childers. In all three
towers there are about 1000 tons of structural steel. They are
600 feet (183 meters) high each; the feet form a triangle 150
feet (46 meters) on a side, and the tower tapers to a 10-foot
(3 meters) triangle at the top. An iron ladder runs up the out-
side of one leg on each tower, having rest platforms about every
50 feet (15.2 meters). .

When first erected there was considerable swaying in the bot-
tom long diagonals, but these and others above were stiffened
up by cross bracing, and now they are perfectly rigid. When
the antenna was hoisted and adjusted to the sag which would
give a pull of about 13000 pounds (5500 kilograms), the top of
each tower was pulled over only 4 inches (10 centimeters)
during hoisting, and settled back to 2 inches (5 centimeters)
when hoisting stopped. All the bend was in the upper 200 feet
(60 meters).

As mentioned earlier in this article, it was the first intention
to locate the towers on the tops of the hills, but on making the
actual location it was found that the thrusts (which come on to
the footings at the angle of slightly over sixteen degrees from
the vertical) would be nearly too parallel to the face of the hills
to give solid backing for the footings. They were finally located
so that all footings except one butt into the hills. In order to
do this, however, the footings were put on about the 120-foot
(36 meters) level instead of the 170-foot (52 meters). The sur-
face of Gatun Lake is normally at the 85-foot (26 meters) level.
The block for each footing is 16 feet (5 meters) deep and
20 feet (6 meters) square, heavily reinforced with old railroad
rail. Each block filled entirely the hole excavated for it without
back filling in order to have it bearing in undisturbed earth.
The distance between towers is: one and two, 897 feet (273
meters); two and three, 751 feet (254 meters); one and three,
969 feet (295 meters); the antenna covering about six acres.

The Darien Towers, being farther apart, and not so directly
beneath the antenna seem not to affect the capacity as at Arling-
ton. Darien evidently has a greater effective height than
Arlington.

The antenna was made at the New York Navy Yard and
shipped to Darien, each wire on a separate reel and tagged to
mark the points where other wire crossed. The cables are all
phosphor-bronze; the outside ones being 34-inch (1.9 centimeter)
diameter, the four strain cables thru the mast, 3g-inch (0.9 cen-
timeter) diameter, and the sixty-six radiating wires of regular
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antenna wire. The first 150 feet (48 meters) of the down land
of twenty-six wires is a fan and is then grouped by spacing
hoops to form the rattail. Each corner is insulated with the
Arlington type of Locke insulators with, however, two strings in
parallel, as the strain was too near the mechanical breaking
limit of the insulators. Lightning has already struck the antenna
twice without damage, because of the safety gap feature of these
insulators and the towers being grounded. An electric winch on
each tower furnishes the power needed for handling the antenna.
The feet of each tower are insulated.

The feet rest on 10 porcelain block insulators 11 inches (27.9
centimeters) high, having each three petticoats. Insulators are
also placed under the yokes, which secure to the anchor bolts
for taking the upward thrusts; and others are placed between
the footing and the channel irons projecting from the block to
take the side thrusts. However the arc “pulls”’ better with the
towers grounded; so they are operated in that condition by
being grounded thru large knife switches to the ground system
of the station.

The general ground conditions of this site are excellent, since
the Gatun Lake lies on three sides of it, with an arm reaching
into the center of the station plot. An artificial ground was laid
in addition to cover all the land as follows: 100,000 feet (30,000
meters) of annealed copper wire was laid in the shape of a grid
forming rectangles about 50 feet (15 meters) on a side. All inter-
sections were soldered; the ends of all wires, on reaching the
water’s edge were run 100 feet (30 meters) into the lake, and
the main ground plate and the ground plate for each tower are
tied into the large grid by busses reaching well out into it. This
ground system is buried about 4 inches (10 centimeters) for pro-
tection.

The main transmitting set was furnished by the Federal Tel-
egraph Company, and the arc generator is their type of the
Poulsen arec.

The signalling is done by short circuiting or opening a com-
pensating helix in series in the antenna circuit. The key for
accomplishing this contains 13 pairs of points mounted on a
yoke in parallel, so that each pair of points breaks only the
voltage due to one turn of the auxiliary helix. This yoke is on
the armature of a solenoid, the current controlling which is
broken in a strong magnet field; and the key is thus positive
and fast in action. The D. C. supply is protected from the
radio frequency current by having air core choke coils in both
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positive and negative lead to the machines. The arc field spools
are in the negative lead, and carbon rod protection in the power-
house guards further against high voltages getting into the D. C.
generators. This set gives Arlington a signal easily readable
thru all but the worst electrical storms.*

The arc can be controlled entirely from the operator’s seat;
the main generator voltage being controlled there, circuit
breakers closed or tripped, the arc struck and starting resist-
ance short-circuited. While running, the are is regulated to take
up the wear of the carbon by foot pedals, so that the operator
may not have to interrupt his sending. All circuits are elec-
trically interlocked so that on starting, the correct sequence
must be followed.

The regular receiving cabinets with tikkers, as used by the
Federal Telegraph Co., were provided with the outfit.

For short wave work, an oscillating audion detector is used
on one of the Federal Company’s cabinets.

Only government work is handled by this station, and at
present there is not enough of this to demand continuous watch
80 that schedules are run. The complement requires eight oper-
ators on watch, two at a time, a chief radio electrician in general
charge, a hospital steward of the Navy in charge of sanitation
and general health work, a yeoman (who is a clerk for the sta-
tion and for the Radio Officer), and a machinist. Five laborers
are employed on the grounds, which were high jungle when the

- station was built. The Radio Officer of the Canal Zone lives
here, having his office in that of the station. With excellent
telegraph and telephone service to all parts of the Isthmus, the
station, tho isolated, is in close touch with the Canal Govern-
ment. :

When the Navy Department decided upon the kind of set
and the general features of this station most of them were in
the experimental stage, and the excellent results obtained at
this station have been watched with keen interest and gratifica-
tion.

SUMMARY:: The buildings, sanitary arrangements, towers, ground connec-
tion, antenna, and some features of the transmitter and receiver of the
Darien radio station of the United States Navy are described.

. _*(The distance from Arlington to Darien is 1,900 miles (3,000 km.), prac-
tically due south.—EbITOR.)



FURTHER DISCUSSION ON “THE TRAINING OF THE
RADIO OPERATOR”

By
M. E. PackmanN
(INsTRUCTOR IN RADIO TELEGRAPHY, DODGE INSTITUTE OF TELEGRAPHY)
(See PROCEEDINGS OoF THE INSTITUTE OF Rap10 ENGINEERS, Vol. 3, Number
4, Page 311)

M. E. Packman (communicated, November 16, 1915): Mr.
Hogan’s proposed plan for training students in telegraph receiv-
ing thru the use of commercial receiving sets is of course a good
one, provided the student is sufficiently far advanced in radio
work to be capable of manipulating the instruments. However
this is not likely to be the case. It invariably develops that that
student who is the most adept in learning to copy telegraphic
signals is the slowest in learning to operate radio apparatus.
Under these conditions he would make very slow progress. As
an extreme case take the new student just out of an office, a
store or from a farm and imagine him successfully adjusting a
modern receiver in order that he could hear signals. It has been
our experience that it is highly desirable to differentiate between
the code practice and the theory and operation of radio equip-
ment. Considering this from another point of view, in a school
the size of ours where we have from fifty to eighty students in
the code work the greater portion of the time, the expense of this
number of tuners costing from two hundred and fifty to five
hundred dollars each would be entirely out of the question
amounting to an outlay of twenty-five or thirty thousand dollars
for receiving apparatus alone. Assuming that these tuners
would be “modern” for a period of five years it is quite evident
that the scheme is not feasible.

As previously mentioned, a plan somewhat similar to Mr.
Hogan’s arrangement is used for instruction purposes in con-
nection with the study of receiving apparatus. Two methods
which we use are shown in Figure 1 and Figure 2. In Figure 1,
a receiver is connected to a standard antenna, in the ground
lead of which is placed a coil of several turns wound on a rectan-
gular frame. In this last mentioned coil are induced oscillations
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from one or more wave meters excited with buzzers and operated
from an omnigraph or otherwise. By adjusting these wave
meters to different wave lengths it is possible to obtain any
degree of interference desired and the student can obtain all
the practice in making adjustments of his tuner to prevent the

Coupling Cor/ Rocesrer

Wave /Tekrs
FiGure 1

interference that is required for any condition of working.
This arrangement is probably preferable to the two arrange-
ments shown inasmuch as natural strays or induction are ob-
tained without special arrangements. Actual radio signals can
also be received at the same time. In Figure 2 an ordinary

Durmrrrry Aerral

Wave /Tefr
F1GURE 2

dummy aerial system is shown, in which the condenser has the
same capacity as an ordinary aerial and the inductance of the
loop is of such value that the dummy has any fundamental
desired.
"o method of producing artificial strays that I have used
1in Figure 3. A and B are leads to a power line. Risa
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current regulating rheostat, P a potentiometer arrangement
and I an electrolytic cell or interrupter. With proper adjust-
ment of the interrupter and the rheostat, a very irregular current
flows thru the cell. Connections to the receiving code circuits
are taken from the potentiometer, condensers being interposed.
With this arrangement an almost perfect imitation of strays

)
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>
>
>
>
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F1Gure 3

of any desired strength can be obtained. This arrangement
also permits of the generation of highly damped oscillations
which can be induced in any antenna system. This method of
producing artificial strays has an advantage over the scheme
of using an irregular notched wheel-interrupter in that there is
no regular sequence of characters such as would be obtained
with a contact moving over the same surface revolution after
revolution. Under normal conditions in the region of the
Great Lakes there are sufficient strays to render such arrange-
ments somewhat superfluous and hence they are not used in
our work to any extent. I might also answer Mr. Bucher's
remark regarding the necessity of artificial interference at this
time by stating that in this locality conditions are very different
from those in the vicinity of New York. Except at night, there
is very little interference from commercial stations and I have
found it desirable in our case to produce artificial interference as
outlined.

I note that both Mr. Sarnoff and Mr. Bucher take exception
to my statement that a deplorable condition exists in some
branches of commercial radio service. Many improvements
have been made during the last few years but there are still
some localities in which many changes will eventually be made

43



before the service can be comparable with that in other quarters.
Their remarks are apparently based upon a close observation
of conditions in and around New York, where, of necessity, the
service has been advanced to its highest efficiency. I am more
or less familiar with Mr. Bucher’s school and the methods that
he uses there, and know that the training he is giving his students
in the theoretical and practical work is thoro and adequate to
the demands of good service. In many respects the work is
similar to that in our institution which is, of course, quite natural.
There are, however, some differences especially in the code
work since only fairly well advanced students are admitted
whereas in our school students having no knowledge of teleg-
raphy or radio apparatus as well as advanced students are
enrolled under conditions suitable to all. Here in New York
the value of the skilled operator is appreciated and in this
particular district as well as possibly some others, efforts are
made to obtain such men for the service, but this cannot be said
of all districts. It has frequently been remarked to me, “We
don’t want our men to know too much about the apparatus’;
and it has frequently been suggested to me by officials of a com-
mercial company that technical training beyond that necessary
for a man to slip by the government examination is not neces-
sary and is, in fact, undesirable. When such a condition as this
exists it is not likely that well trained men will be earnestly
sought for operators’ positions on steamships or in land stations.
It is often the case that men who have had experience, no matter
how poor telegraphers they may be or how limited their knowl-
edge of radio apparatus, are placed in charge of ship or land
stations when men more fit in every way are available. This
I term a deplorable condition.

Mr. Sarnoff is quite right in his statements that experience
is requisite for the highest efficiency, but the experience that a
man acquires in a year or two on a ship fitted with a set of
antiquated apparatus where he handles possibly one or two mes-
sages a week is not comparable with the experience that he
obtains in a good school where he has modern apparatus to work
with and every facility for mastering the technicalities of the
radio service. Under the present methods of examinations for
operators’ licenses, it is a very simple matter for any telegrapher
to secure a license, and provided he is in the employ of a com-
mercial company during three months of the last six months of
the life of his certificate, he will be issued a renewal license
without examination thus making it necessary for him to be
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actually engaged in radio service only three months in two
years. During the life of his license he has no reason to endeavor
to make himself more proficient or even to maintain whatever
proficiency he may have had at one time. On the other hand,
if operators were selected with care, and were examined from
time to time by their employers as is done by other commercial
institutions, there would be every inducement for them to make
themselves as proficient as possible.

The plan followed by the Marconi Company of sending all
new men out for a number of trips as second operator is, of course,
a good one and one that would be expected. In many cases
this is not possible hence it is the function of the radio telegraph
school to meet the conditions of commercial service as nearly
as possible. To facilitate this and gain the desired end, there
must be the closest harmony between the commercial com-
panies and those schools upon whom they depend for their
operators. Every facility for properly training these men should
be extended to such institutions, both as regards new apparatus
and traffic methods.






THE IMPEDANCES, ANGULAR VELOCITIES AND
FREQUENCIES OF OSCILLATING-CURRENT
CIRCUITS*

By
A. E. KENNELLY

INTRODUCTION

It is the object of this paper to disclose a simple yet powerful
proposition, recently discovered by the writer, which applies to
transient currents, charges, discharges, or temporary disturb-
ances, in electric circuits. This proposition, which is believed to
be new, may be briefly stated in the following terms: The
impedance of any closed circuit or group of circuits, to free
oscillations, is zero.t The angular velocity, or velocities, of the
oscillations are such as will bring about this condition.

SmaPLE REsISTANCELESS OSCILLATING-CURRENT CIRCUITS

The simplest type of oscillating-current circuit consists of a
condenser in series with a reactor of negligible resistance, as
indicated in Figure 1. It is known that the angular velocity of
the free oscillations in this simple resistanceless circuit is such as

p. =12, = :F‘FJ'\/&I' p=tz==% iz.f\/l

-  wattsZ
c

Fiaure 1—Simple Resistanceless Oscillating-Current Circuit of
Capacitance and Inductance

- *Presented before the Institute of Radio Engineers, New York, No-
vember 3, 1915. Manuscript received 30th August, 1915.
+ See, however, a paper by George A. Cam beil in “Trans. A. I E. E.,)”

April, 1911; on “Cisoidal Oscillations,” Vol. , part Iw:ige 902, to
wﬁich paper the attention of the present writer has been since this
paper was set in type.

(The notation used in this paper is tabulated at the end of the paper.—

Ep1TOR.) .



makes the total reactance zero.* Thus, if [ is the inductance of
the reactor in henrys, ¢ the capacitance of the condenser in
farads, @ the angular velocity of free oscillations thru the circuit,
in radians per second, and j =V - 1; then the reactance of
the reactor_at this velocity will be jl ® ohms, that of the con-

denser ]71— ohms, and the total Yéaction of the circuit .will be
w

jlo+ J% ohms. Equating this total reactance to zero, we
w .

obtain: Ljo+ 2 =0 tohms £ (1)
C.Jw
(jo)le+1=0 *. ‘numeric £ (2)
. 1 radians\?
2_ _ 21 radians
(4 ) le (second) £ ()
. .1 radians
== — “ovaens
I '1\/ le second O
Selecting the positive sign, the reactance of the reactor is:
. ‘l
a=JjAl- =3l Z (5
X, J\/c jlo ohms £ (5)
And that of the condenser is:
.| 1
= — - = -— h
X, J\/c jew ~ ohms £ (6)

Thus, a condenser of 0.01 microfarad (c = 107%), is con-
nected in series with a reactor of 0.01 henry or 10 millihenrys
(I =107%). The angular velocity of the free oscillations of this
circuit is. @ = 10° radians per second. The reactance of the
reactor will then be j1000 ohms, and that of the condenser
— 71000 ohms, making the total reactance zero.

It is furthermore known that if we count time ¢ in seconds
from a suitable epoch, either the instantaneous voltage of the
condenser, or the instantaneous current in the reactor, may be
represented by the instantaneous projection Op, of a vector
O P, Figure 2, on a straight line of reference X’0 X, the vector re-
volving with the angular velocity @ radians per second, and there-
fore describing in time ¢, a circular angle XO P = ¢/** radians;
where ¢ is the Napierian base 2.71828. . . . Knowing the
angular velocity ®, we can thus predict the electrical condition
of the system at any assigned subsequent instant.
_,_"Eibiiography (6) page 375.

t The angle sign Z attached to the unit of an equation indicates a complex
quantity or “‘plane vector.” By this means the use of special vector symbols

in the equations is dispensed with. They are to be interpreted vectorially,
or treated as complex quantities.
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Figure 2—Vector Revolving with Angular Velocity w. Its Projection Op
indicates either the instantaneous voltage or the instantaneous current in
System of Figure 1, according to the position of the Reference Line X'0 X

The coefficient jw of ¢, in the angular expression of the
characteristic radius vector e*7*!, is thus the characteristic
angular velocity for the oscillations of the system. The imaginary
quantity jo indicates oscillation, and is significant of angular
velocity in a circle. The double sign indicates that either direc-
tion of rotation is possible, and that their sum* is equivalent to
a sinusoidal quantity. But suppose that the coefficient of ¢ in
the general case is denoted by n, so that n is a generalized
angular velocity, which may be either real, imaginary or complex;
and so that e is the characteristic angular exponential of the
system at time ¢ seconds, which determines the voltage or current
then existing. Moreover, let us suppose that the impedance
offered by an inductance ! henrys to an electrical discharge of
angular velocity =, is In ohms, in general a complex quantity;
while the impedance offered by a capacitance ¢ farads to the same

is cln ohms. Then, for the case already considered of a simple

resistanceless circuit containing a condenser and reactor in
series, if the total impedance is to be zero, we have:

Int+ L= ohms £ (7)
cn
or n?.lc=—1 numeric Z (8)
- .1 dians
and n= :iz\/_l —ti = ra
) le ‘1‘\/ le second 4 (9)

But this is precisely the coefficient of ¢ which we have found to
exist in the simple resistanceless oscillating-current circuit.

According to the above assumptions, therefore, which we
shall proceed to justify, an inductance of ! henrys offers an
impedance of In ohms, to any generalized alternating current
of generalized angular velocity n radians per second, of the type

* The sum of two oppositely directed rotations having the same frequency
is well known to be a sinusoidally varying quantity in a straight line.
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a + j 0, where a is a real quantity, which may be regarded as a
hyperbolic angular velocity, or uniform angular velocity in a
hyperbola, expressible in hyperbolic radians per second;* while
jo is an “imaginary” angular velocity, which may be regarded
as a circular angular velocity, or uniform angular velocity in a
circle, expressible in circular radians per second. Similarly,
the above assumptions lead to the conclusion that a capacitance

of ¢ farads, offers an impedance of 0—11-' ohms to any generalized

angular velocity of »n radians per second. A pure resistance
of r ohms, with negligible inductance or capacity, continues to
offer an impedance of r ohms to oscillations of any angular
velocity.

It will be noticed that in the case of any simple and sustained
alternating current of angular velocity j @ circular radians per
second, the assumption above stated reduces to the well known
proposition that the impedance of an inductance ! henrys isjlw

ohms; while that of a capacitance c farads is —clt_a ohms. These

impedances, whose sum is, in general, finite, then obey all the
laws of direct-current resistances, following the rules of complex
quantities. This proposition concerning sustained oscillations
was discovered by the writer in 1893, and was first published by
him in that year,{ forming the basis of our ordinary complex
algebra of the alternating-current circuit, in general use at the
present day.

The new proposition, here presented, may be looked upon
as an extension of the writer’s earlier proposition, from sustained
alternating currents or oscillations, to unsustained oscillations.
From an algebraic standpoint, the value of n is extended from
the pure imaginary quantity j @, to the complex quantity a + j w.
Altho in engineering practice, sustained oscillations, or simple
alternating currents, form the rule, and unsustained oscillations,
or transients, form the exception; yet, from a physical point

* (It can be readily shown that, just as

get =coswt +jsinwt
80 also et = cosh at + sinh at.

There is therefore an analogy between the hyperbolic cosine (cosh) and the
hyperbolic sine (sink) and their corres?onding trigonometric functions. Tables
and charts permitting the ready use of the hyperbolic functions in engineering
calculations have been published by Professor Kennelly, “Tables of Complex
Hyperbolic and Circular Functions” and ‘“‘Chart Atlas of Complex Hyperbolic
anE Circul;u' thct'ions,”.Harvard University Press, Cambridge, Mass., 1914.
—EDITOR. '
t Bibliography (2).
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of view, the unsustained oscillations of complex angular velocity
may be regarded as the general case, and the proposition of 1893,
for sustained oscillations, reduces to a mere particular instance
of the new proposition.

UNSUSTAINED OSCILLATIONS OF REAL ANGULAR VELOCITY
ConNDENBER IN SiMPLE CIRcUIT WITE NON-INDUCTIVE RESISTANCE

Let a condenser of capacitance ¢ farads, be connected in a.
simple circuit with resistance r ohms and negligible inductance
as indicated in Figure 3. Let n be the angular velocity of the

Pe=12,= —12X 10° p, =?z = 1* X 10° watts.
105

G ¢

Figure 3—sSimple Circuit_of Capacitance and Resistance

discharge, as yet undetermined. Then, by assumption, 1 will
cn

be the impedance of the condenser, to this angular velocity, iri
ohms. The remaining impedance in the discharging circuit will
be the resistance r ohms. The total impedance in the circuit

will then be c_lr_; +rohms. But, by assumption, this total

impedance of the circuit during free discharge must be zero: or

1
STr=0 ohms (10)
1
whence n=-— hyps. per second (11)

That is, the angular velocity n of discharge is a negative real
quantity, which may be regarded, therefore, as a negative angular
velocity in a hyperbola, expressible in hyperbolic radians per
second or, by abbreviation, in hyps. per sec. The angle described

- I3 . L !
in ¢ seconds of discharge will then be nt or —t hyps., which is the
cr
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well known exponent of the discharge factor of the system, such
that if U is the initial potential difference at condenser terminals,
in volts, just before closing the circuit, the potential difference

u remaining after ¢ seconds, is
L

u=Ue=Uc ¢ volts (12)

As an example, we may consider a condenser of ten micro-
farads (¢ = 107%), charged to a potential difference of 500 volts
(U =500), and allowed to discharge thru a non-inductive
resistance of one megohm (r = 10%). Then n = — 0.1 hyp. per
second. The hyperbolic angle described during 5 seconds
would be — 0.5 hyp. and the voltage across the condenser,
remaining at that time, would be 500¢~%% = 303.3 volts, the
instantaneous current 0.3033 milliampere, and the instantaneous
dissipated power 0.092 watt. The impedance offered by the
condenser during discharge is — 10° ohms, or one megohm
negative. We may regard a negative resistance (— r) in a dis-
- charge element as involving a dissipative absorption of power
into the circuit of — 12r watts, under an instantaneous current
strength of ¢ amperes. This is just equal to the dissipative
liberation of power out of the circuit of -4 ??r watts, in heat or in
electromagnetic radiation. In any discharging oscillation sys-
tem, the instantaneous sum of the negative or absorbed powers,
and the positive or liberated powersis zero; or )'7,2z, = 0 watts;
where 7, is the instantaneous current in the oscillation impedance
2, of branch n. In general, the instantaneous power 1,22, is a
complex quantity. The real component is dissipative power.
The imaginary component is reactive or non-dissipative power;
i. e., the power of storing energy. In the case considered, the
instantaneous power absorbed into the circuit from the dielectric
of the condenser is — 0.092 watt, and the instantaneous thermally
liberated power in the resistance r is 4 0.092 watt.

The same conditions apply to the sustained oscillations of
alternating-current circuits; but with « = 0, negative real
components of impedance and power do not present themselves.

ReacToRr IN SiMPLE CircuiT WITH NON-CONDENSIVE RESISTANCE

If a reactor of inductance ! henrys, (Figure 4) is connected
in a simple discharge circuit of total resistance r ohms, with
negligible side-capacitance, then, according to assumption, the
impedance of the reactor to any generalized angular velocity =,
will be In ohms, and the impedance of the remainder of the
circuit will be r ohms; so that the total discharge impedance
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p=12z=—1X10* p, =1z =X 10® watts. -
0.1h

G G

Figure 4—Simple Circuit of Inductance and Resistance

will be In 4+ r ohms. If now the value of n so adjusts itself in
free discharge that this sum total reduces to zero,

In+r=0 ohms 2 (12a)
whence n=-"= hyps. (13)
l sec.

The angle described in ¢ seconds of discharge will be nt or

—'-'l—t hyps. which is the well known exponent of the discharge

!_e
factor ¢~ 7 of the system, such that if I is the initial current in
the reactor just before discharge, the current remaining after ¢

seconds is
ré

i=Ie=1e"7 amperes (14)

Thus, if a reactor of inductance 100 millihenrys (I = 0.1)

- discharges thru a total resistance of 100 ohms (r = 100), with an
initial current of 2 amperes, the angular velocity of discharge
will be n = — 1000 hyps. per second. The hyperbolic angle
described in 0.5 millisecond will be — 0.5 hyp. and the current
flowing at that instant will be 2¢~%5 = 1.213 amperes. The dis-
charge impedances of the reactor, assumed resistanceless, will
be In= —100 ohms. The instantaneous rate of dissipative energy
absorption from the reactor’s magnetic field into the circuit is
—1007% = — 147.2 watts, and the corresponding rate of dis-
sipative energy liberation from the circuit in the resistor r is
+1002?= + 147.2 watts. This power is affected with a damping

2r¢
factor ¢ !. There is no reactive power component and
therefore no oscillatory storage of energy.
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HyrerBoLIC ANGLES AND THEIR EXPONENTIAL SyMBOLS

We have seen that our proposition leads to the deduction
that the discharges of either condensers or reactors, thru simple
resistances, involve real negative values of n; or what may be
represented as uniform angular velocities in a hyperbola. We
may consider briefly the geometry of this representation.

Let the rectangular codrdinate axes O X, OY, Figure 5, be

" J
14
4
*
s
™
(4
[y 4
(P N
“ <

o £ \
Ficure 5—Rectangular Hyperbola with Successive Equal Increments of
Hyperbolic Angle and Their Exponential Projections

the asymptotes of the rectangular hyperbolacb A B C D. Let
this hyperbola have the axis 0AA’ and pass through the point
A, whose coordinatesare z = 1,y = 1. Then let a radius vector
Ob, starting from the position OA, move with center O over the
curve in the positive direction, so as to include an assigned
hyperbolic angle g, defined by the area of the sector OAb, these
angles being marked off in Figure 5 along the curve. The
ordinate Ob’ of the extremity of the vector Ob, is known to be
¢’ units in length. Inthe case presented, § = 0.5 hyp., andO b’ =
%5 = 1.649. In this sense, the value of € may be said to define
the hyperbolic angle §. Similarly, if starting from the initial
position OA, the radius vector moves over the curve in a negative
or clockwise direction, so as to occupy successively the positions
OB, 0C, O D, which include respectively — 0.5, — 1.0,and — 1.5
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hyps., the corresponding ordinates OB’, OC’, O D’, measure
€795, ¢=19 and ¢~ !® units. An exponential ¢~ ° in this sense
defines projectively a negative hyperbolic angle — 8. As, there-
fore, a radius vector OB moves over the hyperbola with uniform
hyperbolic velocity + n hyps. per second, describing equal areas
in equal times, the ordinate of the moving extremity of the
radius vector follows the exponential ¢*"‘ units of length.
Conversely, the expression ¢~"* may be interpreted geometri-
cally as defining a radius vector which moves over a hyperbola
with a uniform negative hyperbolic angular velocity — n hyps.
. per second. The quantity — n is often called a ‘“damping
constant’’ and the expression ¢ ~"‘ a damping factor, or damping
coefficient; but the conception of » as an angular velocity seems
better adapted for our present purposes.

CIRCULAR ANGLES AND THEIR EXPONENTIAL SYMBOLS

It is well known that the exponential quantity ¢® defines
the position B (Figure 6) of a point situated in a plane, and on a

B 4

/
’,

1

T

\ ’
A 4

N ,
N
N .
.
C - .--

rd
F1aure 6—Representation of the Exponential €8

————

circle A B C of unit radius, which -is at a distance of 8 units of
length from A, the initial point on the circle. It therefore like-
wise defines the number of circular radians 8, which the radius
vector OB has described in its rotation or rotations, about the
center O, from the initial position 0 A. The exponential ¢ thus
defines the total circular radians described in passing from OA
to OB. Consequently the exponential ¢/™* may be interpreted
geometrically as defining a radius vector which moves over a
circle of unit radius with a uniform circular angular velocity n
circular radians per second.

CoMPLEX ANGULAR VELOCITIES AND THEIR EXPONENTIAL SYMBOLS

Since e(* =79 = g* 2 )¢ e*I*!, it follows that the exponential
el*2+i“} may be interpreted as representing the product of two
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angles, each increasing uniformly with time, one a plus or minus
hyperbolic angle, and the other a plus or minus circular angle.
Or, we may interpret it as a radius vector rotating in a plane
with uniform circular angular velocity = o circular radians per
second, the radius vector at the same time changing in length,
in projective accordance with uniform hyperbolic angular
velocity = a hyperbolic radians per second. The path of such a
moving point is known to be an equiangular spiral. Such
angular velocity may be described as complex, being defined by
the complex quantity (=% « = j @) radians per second.

Proor oF OscILLATION IMPEDANCE THEOREMS

The following considerations will probably suffice to establish
the three propositions: (1) that the oscillation impedance of an
inductance ! henrys is I n ohms; (2) that the oscillation impedance
of a capacitance ¢ farads is 1/(cn) ohms; (3) that the total
oscillation impedance of a circuit or path to free oscillation is
zero.

(1) Let pure inductance of ! henrys, assumed devoid of either
resistance or capacitance, carry an instantaneous oscillating
current of ¢ amperes, which obeys the law

i=1Te" amperes Z (15)
where I is an initial current at time¢ =0and n = — (et jw),a

generalized angular velocity. Then the instantaneous back
emf. of self induction, opposed to the current, is:

—ey=—l—=—Ine""=—1Ini volts Z (16)

The instantaneous driving emf. which is therefore necessary to
overcome this back emf. is:

l ag=Int volts Z (17)
i

The instantaneous apparent resistance offered by the inductance
at its terminals is then: :

Z=—2=In ohms £ (18)

(2) Let a pure capacitance of ¢ farads carry the same in-
stantaneous oscillating current ¢, above considered under (1).
Then the instantaneous back emf. of condensance, opposing
the current, is: '

_ec-_-_lfidt=——l—-le”‘=—L volts £ (19) ‘
c cn cn
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The instantaneous driving emf. to overcome this is:

1
“=_. volts Z (20)
The instantaneous apparent resistance of the capacitance is
then:
7 =%= =1 ohms £ (21)
) i c¢n
(3) At any instant the total driving emf. of disturbed energy
must be equal to the total back emf. in the circuit, including r1
drop in the circuit. Otherwise the unsatisfied driving emf.
would create a greater current than actually flows at the instant
considered. That is, at each and every instant,
t.32=0 volts £ (22)
where ¢. 3’z signifies the vector sum of all the oscillation imped-
ances drops in the circuit, including simple ohmic drops of the
type t r volts.
Dividing (22) by 2, we obtain:
3z=0 volts Z (23)

Or the sum of all the oscillation impedances in the path of the
current 7 is zero at every instant.

In any closed loop of an oscillating-current system, the total
instantaneous emf., including ¢r drops, must be zero; or, if 2,
is the oscillation impedance of conductor n carrying instantaneous
current ¢, and forming part of a closed loop, X7,z = 0 volts.
In the case of sustained oscillations, or impressed alternating
currents (« = 0), this reduces to the extended complex or two-
dimensional form of Kirchoff’s loop-voltage law* first published
by Steinmetz in 1893.

CasE OF A SIMPLE CIRCUIT OF CAPACITANCE, INDUCTANCE AND RESISTANCE

We may now proceed to consider more complicated cases
of unsustained oscillations. In Figure 7, the reactor of induct-
ance [ henrys is in series with a total resistance of r ohms (includ-
ing that within the reactor) and the condenser of capacitance
¢ farads. If n is the generalized angular velocity of unsustained
oscillation, the condenser will have an impedance of 1/(c n) ohms,
and the reactor an impedance of In ohms. Equating the total
impedance to zero, we have:

gl;‘+r+ln=0 ohms z (24)

* Bibliography (3).
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or nd.cl4+ncr+1=0 numeric £  (25)

2 hyp. radians
b __r i\/ L) _1  hyp.radians
whence n 21 (& . second (26)
r . (1 r\? radians
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Fiaure 7—Condenser and Resistive Reactor. Periodic and
Ultraperiodic Cases
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2
according as <2Ll) is greater or less than c—ll In the former case,
the discharge is ultraperiodic, and the angular velocity wholly
hyperbolic.f In the latter case, the discharge is periodic, and

the angular velocity is partly hyperbolic and partly circular.

In the intermediate condition, with % = \/é, the discharge is

2

aperiodic. If we denote r/(21) by @, and \/ ‘ll —(-2'-l) by o,
then, in the periodic case,
- radians
- secend

As before, the dual sign of the circular angular velocity j @
indicates that either direction of rotation may be adopted, and
the sum of two opposite rotations gives rise to a sinusoidal
quantity.

n=—a:l:jw 4 (28)

The quantity of electricity, ¢ coulombs, in the condenser
at any instant ¢ seconds from the beginning of the discharge is
known to be:

g=Ac(-etiot L Bel=e—iat . coulombs (29)

where A and B are arbitrary constants depending upon the initial
conditions. This general and well known result was first
published in 1853* by Lord Kelvin, from an analysis based
on energy relations. It is evident that the impedance equation
(24) leads directly to the angular velocity of discharge. The

oscillation frequency isf = 22 cycles per second, and the damping
T

constant — a.

As an example, let ¢ = 4 X 10~ ¢ farad, ! = 0.1henry,and r =
200 ohms. Then n = — 1000 =% j 1224.75 radians per second, and
the frequency of oscillationisf = 1&;4—?7—5 = 194.92 cycles per sec-
ond, accompanied by a damping constant of 1000; or a damping
factor of €~1%%  The discharge impedance, or oscillation im-
pedance of the reactor, assumed resistanceless, is — 100 &= j 122.48
ohms, and that of the condenser 1/(cn) = — 100 ;122.48
ohms. If theresistance r = 0; or were entirely removed from the
circuit, the angular velocity would, by (9), become sustained

+ Bibliography (5).
* Bibliography (1).




at n = 3;1581.1 radians per second, the impedance of the
reactor = j 158.11 ohms, and that of the condenser = j 158.11
ohms. The frequency would then be sustained at 1581.1/(27) or
251.65 cycles per second. If this frequency were sustained by an
independent alternator or impressing source, only the upper
signs would be applicable under international notation; i. e.,
the reactor’s impedance would be + 7 158.11 and the condenser’s
impedance —j 158.11 ohms. The dual signs presenting them-
selves in the solutions of free oscillations may be attributed
to the absence of an independent source of impressed current.
Either the condenser or the reactor may become the source of
discharges, and either direction of current the direction of
reference. With this understanding, the dual signs of imaginary
(circular) angular velocities need give rise to no ambiguity or
uncertainty,

If the resistance r of the circuit were increased to say 500
ohms, then (26) would apply, and n = — 2500 == 1936.5 radians
per second = — 563.5 or — 4436.5 hyps. per second. There are
thus two hyperbolic angular velocities present, and two damp-
ing factors, ¢ ~%6%% and ¢~4436.5¢  The impedance of the reactor
to the lower angular velocity is shown in Figure 7, to be — 56.35
ohms, and that of the condenser —443.65. At the higher velocity,
these values interchange, the reactor taking — 443.65, and the
condenser — 56.35 ohms. In the complete analysis of this ultra-
periodic case, it is optional either to assign a certain share of the
discharge to each independent hyperbolic angular velocity:
or to combine them into the single hyperbolic angular velocity
1936.5 hyps. per second, associated with the damping factor
€= 2800t The results in either case are the same.*

CoMBINATION OF CONDENSERS AND REACTORS IN SERIES CIRCUIT

If a circuit contains a plurality of condensers in simple
series with a plurality of reactors and resistances, the angular
velocity of disturbance in the circuit is readily found.

Let C1,CyCs . . . be the respective capacitances in the
circuit (farads).

Let 1, 5,1, . . . be the respective inductances in the circuit
(henrys).

Let i, r, 73 . . . be the respective resistances in the circuit
(ohms).
Let the capacitance-reciprocals, or elastances, of the condensers
be found, 8, = 1/ci, s2 = 1/cs, 53 = 1/¢5 - - - These may be ex-

* See Bibliography (6), Page 411, for a more detailed analysis of this case.
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pressed in darafs. Then the total elastance of the circuit is

S =38 +8+s+ - - darafs. The total inductance is
L=L+5L+1l+ - henrys, and the total resistance
R=r,4+r+r+ - - - ohms. Then the oscillation impe-

dance of the total elastance is ;—3 ohms, that of the total induc-

tance L n ohms, and of the total resistance B ohms.

Consequently ;—5: +Ln+R=0 ohms £ (30)

3 .
whence, asin (27), 7 = _51% + J\/% '(2%) Z:‘:;‘;';’? Z (31)
assuming that the resistance R is less than 24/LS ohms;
i. e., that the disturbance is oscillatory; otherwise the roots of
(30) are real, as in (26).

As an example let S = 25 darafs; L = 0.1 henry; R = 200
ohms; then n = — 1000 = j 1224.75 radians per second.

OSCILLATION ANGULAR VELOCITY OF RESISTANCELESS DISCHARGING ELEMENTS
IN PARALLEL

The simplest case of discharging elements in parallel, produc-
ing oscillations, is perhaps that indicated in Figure 8. A dis-
charging element may be defined as an element capable of con-
taining electromagnetic energy, and therefore capable of having
the amount of its energy content disturbed. A discharging
element may therefore be a reactor of inductance ! henrys,
which may contain magnetic energy of 1i2/2 joules, when traversed
by a current of ¢+ amperes. It may also be a condenser, of
capacitance ¢ farads, which may contain electric energy of ce?/2
joules, when charged to a potential difference of ¢ volts. The
oscillations here considered may be those accompanying either
an increase, or a decrease of energy in any element; i. e. ac-
companying either charge or discharge; but discharge is the
easier phenomenon to analyze; because in charge, a final steady
state has ordinarily to be superposed upon that transient state
of disturbance which is the immediate subject of discussion.
We may, therefore, confine our discussion to cases of discharge,
with the understanding that the results apply also, with reversal
of currents and powers, to cases of charge, if the subsequent
steady state is independently superposed.

In Figure 8, let a number of condensers of capacitances
¢, €3, €3 . . . farads, respectively, be cannected in parallel to
common bus-bars BB’, bb’. Let any number of reactors be also
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F1Gure 8—Parallel Connection of a Number of Discharge Elements, with
Negligible Resistance

connected in parallel to the same bars, and let the resistance
of each and all the elements of the circuit be negligibly small.
When reactors of inductances Ui, L, l; . . . henrys are con-
nected in parallel, it is convenient to use the reciprocals of these
values 71 = 1/l, %3 = 1/ly, %3 = 1/ls, . . . for arithmetical pur-
poses. These reciprocal inductances may be called ductances, for
want of a better term. A ductance may be expressed in (henrys) 71;
or, as Karapetoff suggested, say, in yrnehs. An inductance of
0.1 henry is therefore a ductance of 10 yrnehs. The total
ductance of a number of ductances in parallel is then their
numerical sum, just as the total capacitance of a number of
capacitances in parallel is their numerical sum.

It is evident that the system of Figure 8, assumed resistance-
less, is equivalent to a single condenser of capacitance C = ¢; +
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¢2+ ¢s + farads, in simple series with a single ductance
E =9+ 734 73+ yrnehs. The case of Figure 8 thusreduces to
that of Figure 1, with C in place of ¢ farads, and 1/E in place of
! henrys. The discharge impedance of the combined condenser
is then 1/(C n) ohms, and that of the combined ductance n/E
ohms. Consequently

1, n_ V4

Cn +E 0 ohms £ (32)
and nC+E=0 yrnehs (33)
or n==z=% j\/ lg radians/sec. Z (34)

which result is in agreement with (9), and is almost self-evident
in view of (9). Our proposition states, however, that the dis-
charge impedance of the system to any element must be zero.
Consider the element ¢, as having its energy suddenly disturbed,
and as discharging thru the rest of the system. The discharge
impedance of ¢; is 1/(cin) ohms. That of the remaining con-
densers is 1/(C — ¢;))n ohms, and that of the ductances n/E
ohms, as already considered. The remaining condensers are in
parallel with the ductances, and their joint impedance must
be taken in relation to ¢;; so that

n 1
X —
1 B nCoc)_ g ohmsz (35)
an Q ___“]_
E n(C _‘CJ)
. 2
from which n? = —I—? (xz;in:ﬂ) Z (36)
E radians
. \/
or n J —y Z (37)

This is the same result as was reached in (34). It means that
the angular velocity of discharge oscillations is the same in
each individual condenser as in the system as a whole; so that
there is one and only one oscillation frequency f = n/(j2%)
cycles per second. Moreover, this frequency is such that the
impedance of the system is zero, taking each condenser in
turn as the main path of discharge.

Similarly, taking any one ductance, say 7;, as the main path
of discharge, this element only having its energy suddenly dis-
turbed; then its impedance is n/7, ohms, and that of the remain-
ing ductances, in parallel, n/(E — 7,) ohms.
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Consequently

n x _1_
nyE-m nC_, ohms £ (38)
no_n 1
E — 71‘1 nC
. E radians\?
2 =
from which n c (secon d) Z (39)
. . |E radians
apf
or " J C second < (40)

again the same result as in (34) and (37). There is thus one and
the same oscillation frequency in all branches of the system.
If resistances are injected into the various branches, this simple
relation is destroyed, and altho the same principles and method
of procedure apply, the result is usually an equation of the nth
degree, for n discharging elements, giving on solution, n roots,
every one root corresponding to the angular velocity of each
discharge element, considered in turn as the main path. The
number of distinct oscillation frequencies is, however, usually
distinctly less than n; because each pair of conjugate complex
roots gives rise to but a single oscillatory frequency.

If we take as an example the following values:— ¢;=3 X 107¢,
cg=2X IO_G, ¢ =5X%X 10_5, C= 10_‘, N =20, e = 100, 1/} =40,
E = 160; then n = == 54000 circular radians per second, and the
oscillation frequency f = 4000/(27) = 636.6 cycles per second.
The impedances and admittances of the various elements at this
frequency are indicated in Figure 8, just as if the frequency
were independently sustained in an alternating-current circuit.
It may be observed that the total admittance of the branches
of the system is zero, and this we shall find to be a general
law, whether resistances are present in the various branches, or
not.

CONDENSER, REACTOR, AND RESISTANCE, IN STAR CONNECTION

We may next consider the case represénted in Figure 9, of

a condenser, reactor and non-inductive resistance in star con-
nection; or, what is of course the same, connected in parallel
between bus-bars. Here we have two discharge elements and an
inert or energyless resistance leak, all in parallel. It is optional
to consider either discharge element as the main path and the
two others, in joint connection, closed on it. Let ¢ be the ca-
pacitance in farads, I the inductance in henrys containing a
resistance of r ohms, and ¢ the conductance of the leak in -
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(3

Figure 9—Fleming’s Case of & Condenser ¢ Shunted by a Leak g and .
Discharging thru a Reactor I

mhos.” Then taking the condenser as the main path, we obtain:—

i1 ohms Z (41)
cn 1

g+‘r+ln
whence nlcl+n(cr4+gl)+ (1 +gr) =0 numeric £ (42)

e (r 8\ 1+0r_<..r_ .0_>’ radians
and n <2l+2c) J cl 2l+2c second£(43)

= — -—t- l =+ ; _]; —_ L — 9 2 1]
<2l+2c) NG <2z 20) 4 (44)
Formula (44) was derived by Fleming, from a different method,

in 1913.* If we prefer to take the reactor as the main path of
discharge: then

1
ln+r+c—m—0 ohms £ (45)

whence n2cl+n(cr+gl)+(149g7) =0 numeric £ (46)
which is identical with (42) and therefore leads to the same
result.

In view of the practical instance cited by Fleming, no ex-
ample of this case needs to be discussed arithmetically.

Two ResiSTIVE REACTORS AND A CONDENSER, IN STAR OR PARALLEL
CONNECTION
In the case presented in Figure 10, we have three discharge
elements in parallel, two of them reactors of I, and l; henrys,

* Bibliography (7). o
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ry and rs ohms respectively, and the third a condenser of ca-
pacitance ¢ farads.. It is a matter of indifference which element
we take as the main path of discharge; but taking the condenser
element, we have:

1, (nthn) X (rnthn) _
cn  (ri4+Ln) 4+ (ritlan) 0 ohms Z (47)
whence
afn, m 1,1 r:_fa) ntr_
mtw <h+ls>+"<cll+cz,+zlt. toun 0
radians\?
second) 4 (48)

a cubic equation having one real and two complex roots. There
. are thus three values of the angular velocity n, which, sub-
stituted in (47), will enable that equation to hold. The real
value may be regarded as pertaining to the discharge from one
reactor thru the other, and thru the resistance r; 4 ry, in their
circuit. The two conjugate complex values may be regarded
as pertaining to the discharge from the condenser into a certain
single resistance and inductance, equivalent to the pair of parallel
reactors.

As an example, we may take ¢ =-107¢ farad, r, = 100 ohms,
i = 0.25 henry, r; =200 ohms, Iy = 0.25 henry. Then (48)
becomes

radians)' (49)

n? 4+ 12007 4+ 8.32 X 10°n + 4.8 X 10° = 0 (
second
This equation may be solved by the use of an auxiliary hyperbolic
angle in the well known manner; but it is easy to find the roots
by first plotting the value of (49), as ordinates, against arbitrarily
selected values of n, as abscissas, in the regular way, as indicated
in Figure 11, which shows that the graph passes through the
zero line of ordinates near n= — 600. A few more arithmetical
trials, close to this value of n, will give a more nearly correct
value of — 603.02. This is the numerical value of the real root.

Dividing (49) by (n + 603.02), we obtain as the quotient:

H 2
n? + 596.98n + 7.96 X 10° = 0 <’ad“’“s> Z (50)
. second
an ordinary quadratic equation, of which the solution is:—
n = — 208.49 & j 2805.5 radians ;)
second

This equation gives the two remaining complex roots of (49).
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If the condenser were disconnected from the system, leaving
the two reactors connected thru r, 4+ 7, = 300 ohms, we find, by
(13), that their free angular velocity would be n = — 600 hyps.
per second; so that the presence of the condenser merely modifies
this to — 603.02. Again, if the two resistances were removed
(r; = r3 = 0), leaving the condenser in series with the reactor,
we find, by (9), that the free angular velocity would be n = £ j
2828.4 radians per second. The presence of the resistances
reduces this to — 298.49 % j 2805.5.

The system of Figure 10 in the example considered, thus
dissipates disturbance energy in two different modes. One is
a non-oscillatory discharge of — 603.02 hyps. per second, or
accompanied by a damping factor of ¢~%%°% This is the dis-
charge between the two reactors, slightly modified by the pres-
ence of the condenser. The other is an oscillatory discharge
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of angular velocity — 298.49 = ;2805.5 radians per second,
having a frequency of 2805.5/(27) = 446.5 cycles per second,
accompanied by a damping constant of 298.49, or a damping
factor of ¢~ 284 This damped oscillatory discharge is be-
tween the condenser and the joint ductance, as modified by the
presence of the resistances.

It is shown in Figure 10 that at n = — 603.02, the condenser
has an impedance of — 1658.3 ohms, one reactor — 50.754
ohms, and the other + 49.246. Taking the admittances, or
reciprocals of these quantities, the condenser has — 0.60302
millimhos, one reactor — 19.703 millimhos, and the other
+ 20.306. The sum of these admittances is zero.

Similarly, at n = — 298.49 = j2805.5 radians per second,
Figure ‘10 shows' that the sum of the three branch admittances
is zero. We may proceed to establish this proposition generally.

TreE ZSUn OF THE OSCILLATION ADMITTANCES ABOUT ANY BRANCH PoINT 18
ERO

In Figure 12, a number of branches, to ground or common
connection, meet at the point © Each branch may contain a

/
,
c

G

w,c

G

F1aure 12—Group of Oscillatory Impedances meeting at a Knot Point O
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plurality of discharge elements, or resistances, or sub-branches.
Then let the discharge impedance of these branches be 2z, 2, 2

. etc., each being formed on the understanding that an
inductance has In ohms, and a capacitance 1/(c n) ohms, n being
the subsequently determined generalized angular velocity. Then,
in order that the total discharge impedance in the path of any
one branch, say z;, shall be zero, we must have:

2+ 1 =0 ohms £ (52)

1.1 1
ptata e
or if y1=1/2, ya=1/2, ys=1/2, ys = 1/2,. . are the re-

spective discharge admittances,
1

zl+yz+ys+y4+--_0 ohms £ (53)
whence Vit ys+ ya+ == mhos £ (54)
or ntyv+ys+uyt =0 “ (85)
or Yy=0 “ (56)

This relation must hold for each and all values of » which may
satisfy (52). It applies not merely to a subdivided circuit:
but also to a single undivided circuit; such as that in Figure 7,
if any available point P be selected as a branch point of two
branches. Knot-point cases* may often be solved advantage-
ously by using this rule.

A number of less simple oscillating-current networks have
been worked out by the methods here presented, and checked
by independent means. No discrepancies have yet been found.

InpucTiveLy CourLEp Circuits

If two circuits are inductively coupled by a mutual in-
ductance p henrys, as in Figure 13, the primary having constants
¢y, L, 11, and the secondary c¢s, l, 73, it was shown by the writer
in 18931 that the impedance 2’;s ohms of the primary ecircuit
to sustained oscillations in the presence of the closed secondary
circuit, is:

. 2
2p=12— ‘("i%u) ohms £ (57)
2
state:iTgsutgéll?:s cise presented in Figure 10, with equation (47), may be
1 1
C"+rl—+'ll"';+m=0 mhos £ (56a)

which reduces to (48).
{Bibliography (4).
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Ficure 13—Pair of Inductively Connected Oscillatory Circuits and the
Equivalent Single Primary Circuit

where 2’; is the impedance of the primary circuit with the
secondary circuit open, z’; the impedance of the secondary
circuit with the primary circuit open (ohms £), and  is the
angular velocity of the impressed alternating current, in radians
per second. Knowing the impedance of the primary circuit
from (57), the current in that circuit to any impressed alternat-
ing emf. is immediately obtained. The emf. induced in the
secondary circuit is then found by multiplying the primary
current with — #j @ ohms.

The corresponding rule for free oscillations of generalized
angular velocity n radians per second is:

(nn)* _
2
8o that, considering the primary circuit as the discharging cir-

cuit, with zero oscillation impedance, z;3 must be equated to
Zero; or:

21s=2 — 2 — »2nl Ys ohms £ (58)

2
z,—i"'hl) =0 ohms £ (59)

is the condition for determining n, it being understood that z,
is the impedance of the primary circuit to angular velocity =,
when the secondary circuit is open, and 2z; the impedance of the
secondary circuit to angular velocity n, when the primary circuit
is open.

The proposition may be proved as follows:

Let the instantaneous oscillating current ; in the primary
circuit follow the law

= I, amperes Z (60)

where n is a generalized or complex angular velocity, and I,
the initial value of the primary current when ¢t = 0. Then the
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instantaneous induced emf. in the secondary circuit will be
e = —-p%‘»= —pnl e = —pn1, volts Z (61)
and if the oscillation impedance of the secondary circuit is 2z

ohms, the instantaneous secondary current strength will be
la=-"=—"——= —pni1Ys amperes Z (62)

The instantaneous emf. induced in the primary circuit by the
rate of change in secondary current will be

—e = — p‘;——;’ = uin?iy, volts £ (63)
The instantaneous driving emf. in the primary circuit, needed to
overcome — e; will be

ey = — pinliy Yy, volts £ (64)

The instantaneous impedance in the primary circuit due to the
reaction of the secondary will be

zn=e‘= —pnty = —

1
h
a result which includes (57), when 2 = 0 and n = j .

e

rin

ohms £ (65)

GENERAL CONSIDERATIONS

An equation in n of the second degree can be satisfied either
by two real roots (— a;, — a;, non-oscillating angular velocities)
or by a pair of conjugate complex roots, of the type (— @+ jw),
entailing one oscillation frequency. An equation in n of the
third degree, or of any odd degree, indicates at least one real
root — a,, which can ordinarily be evaluated in the manner
exemplified by Figure 11. The remaining two roots, if conjugate,
represent one oscillation frequency. Similarly, an equation in =,
with lowest terms, and of the fourth degree, may indicate the
presence of two independent oscillation frequencies, and an
equation of the sixth degree, three oscillation frequencies. An
inspection of the oscillation system connection-diagram may
help in forming a judgment as to the number of independent
oscillation frequencies present.

In view of the close analogy which exists between the arith-
metics of electric oscillations in oscillatory-current circuits, and
of small mechanical oscillations in mechanically vibrating sys-
tems,* it is evident that the rules above discussed apply, in
general, also to mechanical oscillation-systems, provided the

* Bibliography (8).
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elastic forces are proportional to the corresponding displace-
ments and the frictional forces to the first powers of the
velocities. *

In the case represented in Figure 13, the full expression of
(59) yields an equation of the fourth degree in n, with two pairs
of conjugate complex roots, corresponding to two oscillation
frequencies and damping constants. The complete solution of
this fourth-degree equation is, in general, very tedious; but full
results for engineering purposes may be obtained by abbreviated
methods. The detailed discussion of oscillation frequencies in
mutually coupled circuits calls however, for a separate paper,
and need not be continued here.

CONCLUSIONS

(1) The oscillation impedance of a circuit traversed by free
electric oscillations is zero.

(2) The oscillation impedance of a pure resistance is equal to
its ohmic resistance.

(3) The oscillation impedance of a capacitance ¢ farads, to
angular velocity 7, is 1/(cn) ohms £. In other words, its oscilla-
tion admittance is ¢n mhos Z.

(4) The oscillation impedance of an inductance of ! henrys, to
angular velocity n, is In ohms Z.

(5) The oscillation impedances of the elements of a circuit or
system of circuits follow the laws of resistances in such circuits
when traversed by continuous currents, subject to the rules of
complex quantities, or of plane-vector arithmetic.

(6) The impedance of a circuit, or system of circuits, to sus-
tained oscillations, or impressed alternating currents, is a par-
ticular case under the general laws abovestated, (¢« = 0, X' z = 0).

(7) Any free oscillation in a circuit, or system of circuits,
selects such an angular velocity, n radians per second, as will
reduce its total impedance to zero.

(8) A generalized angular velocity n is a complex quantity
containing a real and an imaginary component. The real com-
ponent is the damping constant, and may be regarded as the
projection of a hyperbolic angular velocity. The imaginary
component is & circular angular velocity, of 27 times the oscilla-
tion frequency. Its projection, on an axis of reference, gives a
sinusoidal quantity.

* Since the printing of this KI per, the author’s attention has been directed
to a statement by Mr. H. W. Nichols, which indicates that certain mathe-
matical propositions concerning mechanical oscillations, bearing closely on
this matter, are already known to physicists.
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(9) The sum of the oscillation admittances of the branches
of a multiple oscillation circuit, at a knot point, is zero.

(10) The oscillation angular velocities of mutually coupled
circuits can be expressed in terms of their mutual impedances.

(11) The sum of the instantaneous oscillation-impedance
drops (IX'%,2,) around any closed loop in an oscillation system
is zero. In the case of sustained oscillations, i. e., alternating
currents, with @ = 0, this reduces to Steinmetz’s extension of
Kirchoff’s law into two dimensions.

(12) The instantaneous power of discharge in an oscillation
impedance z is 1?2z watts Z, the phase angle of the instantaneous
current ¢ being taken as zero. Negative power values signify
powers absorbed into the circuit. Positive values signify powers
liberated out of the circuit. Real components signify dissipative
powers. Imaginary components signify non-dissipative and
transformed or reactive powers. The same conditions apply
to the sustained oscillations in alternating-current circuits, ex-
cept that with @ = 0, negative real components do not present
themselves.

(13) The total instantaneous discharge power in an oscillation
system (X'%,%2,) is zero.

(14) The share of oscillating current which a discharging
element delivers to any one of a group of oscillation admit-
tances in parallel is proportional to the oscillation admittance
of that path, computed according to the rules of complex
quantities or plane vectors.
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LIST OF SYMBOLS EMPLOYED

A,B

a

B
CG=ca+ec+a+

c
€y, Cs, C3

7, %8, 73

e
— €, 6
—e,
— ¢

e=271828. . .
f=w/2%

G

Integration constants of initial electric
quantity (coulombs).
Projected hyperbolic angular velocity;
(hyps. per sec.) or damping constant.
Circular angle described by a rotating unit
radius vector (radians).

Sum of capacitances in parallel (farads).

Capacitance of a condenser (farads).

Capacitances of individual condensers
(farads).

Sign of differentiation.

Sum of pure ductances in parallel (yrnehs).

Ductance, or reciprocal of a pure inductance
(yrnehs).

Ductances of individual pure reactors
(yrnehs).

Instantaneous emf. of a discharging element
(volts £).

Instantaneous primary and secondary in-
duced emfs. (volts £).

Instantaneous back emf. of a capacitance
(volts £).

Instantaneous back emf. of an inductance
(volts £).

The Napierian base (numeric).

Oscillation frequency (cycles per second).
In drawings, the symbol for a farad.

In drawings, the symbol for a ground con-
nection, assumed perfect.
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D>

I,

ll, l’) ll
M

n=—(axjo)
Pe; D1, Pr

7T = 3.14159. . .
q

R=r+4+r+r+

r
S=8+8+s8+
s=1/c

81)82; 83

\

t
U
u

X, = l‘o

Conductance of a leak (mhos).

In drawings, the symbol for a henry.

Hyperbolic angle (hyperbolic radian or
hyp.).

Initial current strength (amperes £).

Initial primary current strength (am-

peres £).
Instantaneous current strength (am-
peres Z).
Instantaneous primary and secondary

currents (amperes £).

Sign of “imaginary’’ quantity.

Sum of individual inductances in series
(henrys).

An inductance (henrys).

Individual inductances (henrys).

Mutual inductance between two circuits
(henrys).

A generalized complex angular velocity
(radians per second Z£).

Instantaneous powers in a capacitance, in-
ductance, or resistance (watts £).

(Numeric).

Quantity of electricity in a condenser
(coulombs).

Sum of a number of pure resistances in
series (ohms). '

A pure resistance (ohms).

The sum of individual elastances in series

(darafs).

Elastance of a condenser of capacitance c
(darafs).

Elastances of individual condenser
(darafs).

Sign of summation.

Time elapsed from an epoch, or original
condition (seconds).

Initial difference of potential across a dis-
charging condenser (volts).

Instantaneous difference of potential across
a condenser (volts).

Reactance of an inductance to sustained
angular velocity @ (ohms).
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X, =1/(cw) Reactance of a capacitance to sustained
angular velocity @ (ohms).
z,y Rectangular Cartesian coordinate of a
point in a plane (cm).
y = 1/z Admittance of an impedance z (mhos £).
yh In drawings, a symbol for yrnehs.
y:» Admittance of a secondary oscillation cir-
cuit (mhos £).
Y1, ¥s,¥s Individual admittancesinparallel (mhos £).
2z An oscillation impedance (ohms Z).
2), 23,23 Individual oscillation impedances (ohms £).
2;,%'y Oscillation impedance of a primary circuit
with the secondary open or removed
(ohms Z).
25, z's Oscillation impedance of a secondary cir-
cuit with the primary open or removed
(ohms £).
219,2'13 Oscillation impedance of a primary circuit
with the secondary closed or present
(ohms £).
z, Oscillation impedance of a capacitance ¢
(ohms Z£). .
2, Oscillation impedance of an inductance !
(ohms Z).
2, Oscillation impedance of a resistance r
(ohms).
Q In drawings a symbol for ohms.
U In drawings a symbol for mhos.
@ Circular angular velocity (radians per
second). .
Z Angle sign appended to a unit, indicating
the existence of a complex quantity or
plane vector.

SUMMARY: Corresponding to the usual angular velocity (27T times the fre-
quency) of an alternating current is the generalized angular velocity of an
oscillating current. The generalized velocity is a complex quantity; the real
portion determining the damping constant, the imaginary portion the fre-
quency of the current. The author shows that the oscillation impedances of
resistances, inductances and capacities are formed in the same way from gen-
eralized angular velocities as from the usual angular velocity. The oscilla-
tion impedance of any circuit or system of circuits is found by the usual law
of resistances for continuous currents, due regard being paid to the rules of
complex quantities. It is then shown that free oscillations of any system of
circuits select such angular velocities as to reduce the total oscillation impe-
dance to zero. A number of cases of parallel and series oscillating circuits
are treated by this method with much simplicity. The total oscillation ad-
mittance at a knot point is shown to be zero, as also is the sum of the instan-
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taneous oscillation-impedance drops around a closed loop. The instan-
taneous discharge power in any oscillation impedance is readily derived and
shown to be zero in a pure oscillation system. The problem of coupled cir-
cuits is given a preliminary treatment by these methods.
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DISCUSSION

J. A. Fleming (communicated): In reference to the paper
of Dr. A. E. Kennelly, I may mention that for about ten years
_past I have been accustomed to give to my students in lectures
a proposition which is very nearly identical with the one which
forms the basis of his paper.

I have usually put the matter as follows:

If a circuit has capacity (C) and inductance (L) in series and
is submitted to a simple periodic E. M. F. having a frequency
n and pulsation or angular velocity p =27 n, then the circuit is
non-inductive for a frequency equal to the natural frequency
of the circuit.

I have also been accustomed to employ the idea of a complex
angular velocity or complex pulsation P in connection with
damped oscillations. '

In teaching the elements of alternating current theory, the
students are, of course, taught that the quantity L p, called the
reactance, is of the dimensions of a resistance and can be meas-
ured in ohms and that the product of this quantity and the
current (I) is called the reactance voltage LpI. They also

1
Cp
“captance” is a quantity of the dimensions of a resistance and

learn that the quantity which I have always called the

that the product of captance and current C_Ip is of the dimensions

of an E. M. F. and is measured in volts.
Hence for a circuit of ohmic resistance R and reactance L p

and captance 1 the resultant vector impedance is

Cp
. 1
R+j (L p— C—p>
and the size of this vector is
1 2
e (o-7;)
Accordingly, if the frequency is such that Lp—i =0, the

Cp
circuit is non-inductive. But the natural frequency is given by

the condition P=Tzc-,, which is identical with the above con-
dition for non-inductivity. I think that this equality is, how-
ever, only exact if we can neglect the resistance of the circuit
in comparison with its reactance.
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A generalised proof of the proposition may be obtained as
follows: Maxwell showed in his ‘““Treatise on Electricity and
Magnetism,” Vol. II, that the equations which Lagrange es-
tablished for the dynamics of mechanical systems could be
applied to electrokinetic systems with certain modifications
in the meaning of the symbols.

The Maxwell-Lagrange equations are as follows: If T is
the conserved energy of the system and H is the rate of dissi-
pation of energy in the system, and if z is any current in any
mesh or circuit in which the impressed electromotive force
is E, then we have

d (dT\,6 1dH
dt‘<dx>+2d:c~E e e e e (1)

If the system has an electromotive impulse given to it, and
if it is then left to itself, there is then no impressed E. M. F.,
and, therefore, the time of free oscillation must be given by
solving the above equation for p or n when the left hand side
is equated to zero. Hence the free period is obtained from

the equation:
d (dT\ ,1d H
() a0 - - @

Now the dissipation function, H is a quadratic function
of the currents. If R isthe resistance of the circuit then H = R z?

and ;(Z—I: = Rz- Hence for a single circuit of resistance
R, the equation (1) takes the form

d (dT

;i‘t <E>+R3—E . . . . . (3)
Hence the condition for the circuit being non-inductive is

%<%>=0 e e (4)

If R is small, the condition (4) is nearly the same as the
equation (2) which determines the free frequency. In other
words, if the resistance is small or negligible compared with
the reactance, then the circuit is non-inductive for a frequency
equal to its natural frequency of oscillation.

Let us take as an example the simple case of a condenser
of capacity C in series with a coil of resistance R and inductance
L. Let n be the frequency of the impressed E. M. F., and
p=27nn. Then the energy function T is

1, eyl
Lx+20 (5)

T=
2
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where z is the current at any instant and ¢ is the charge in the

condenser at the same instant. But z=:% because the coil

is in series with the condenser. Moreover z is independent
of ¢. Hence we have

da(dT\_,dz ¢ | |
dt<d:c>_Ldt+C (6)
and H=Rz?
1d H
therefore 3q, —Rz - o - (7)
Equation (1) becomes then
dz ¢ I
Ldt+C+Rz_E (8)
The circuit is therefore non-inductive if
dz  q_
Ldt-I-C_0
. dz =
or if Ld—t2+6—0 e e e (9)
Also the frequency is derived from the equation
dz dz =
Ld_t’+Rm+5—0 C e e e e (10)
for a solution of the above is z=¢™ where m is found from
R 1
2 it _ = . e . .« e
mi+ pmt s =0 (11)
or m=——§:l:'\/—l——l?—
2L INLC ™ 4L
=a+jp.

This gives the solution of (10) in the form
z=¢"*{A cos Bz+Bsin Bz}
from which it follows that the frequency is

1 1 R?
n= 5_7; L_C - m T S (12)
or if R is negligible
: 1 1
n= —— or 2z~ . .« e e e 13
2=vic © PTLe (13)
If, however, z is a simple periodic current, then Zit? = —p’z,

- =1 =l
and equation (9) becomes p?*L = c or p ic
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Hence if the applied frequency is the same as the free frequency
the circuit is non-inductive.

The mechanical equivalent of this proposition is as follows:
A mechanical system having inertia and elastic constraints
acts as an inertia-less system towards applied impulses having
a frequency equal to its free oscillations.

This can be proved as above shown from Lagrange’s equa-
tions. This is merely another form of the principle of resonance,
viz., that very large displacements can be produced by infinitely
small impulses, if these latter are applied at intervals exactly
equal to the free frequency of oscillation of the system.

I may say also that I have long been accustomed to make
use of the conception of a complex pulsation or angular velocity,
and to explain to students that the expression ¢ %* represents:

(1) An undamped simple periodic oscillation,
(2) A dead beat motion, or
(3) A damped oscillatory motion,

according as P is a real, imaginary, or complex quantity; and
have used this idea to calculate the frequency of the oscillations
in a condenser circuit having in it inductance and a leaky con-
denser.

(See my “Wireless Telegraphists’ Pocket-Book of Notes,
Formulae and Calculations.””—The Wireless Press, Ltd., London,
page 165.)

Problems connected with damped oscillations in circuits
having resistance are easily treated by assuming that the currents
and voltages are proportional to the real part of the expression
e/P! where P=(p+j) and p=27zn and a=nd, where J is the
decrement per complete period.

It is worth noticing that the expression €¥*is an operator
-which when applied to a vector a+j 8 causes that vector to
rotate thru an angle p¢ and at the same time to shrink in size
in the ratio of 1:¢7%,

The free extremity of such a vector pivoted at one end
therefore describes a logarithmic spiral and the projection of
the free end on a line moving uniformly parallel to itself gives
us the decrescent wavy curve which graphically denotes a damped
oscillation.

Arthur G. Webster (communicated): Professor Ken-
nelly’s paper is, like all of his contributions, extremely clear and
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helpful to the student. He is one of a group of engineering
teachers who have the gift of making difficult things seem easy,
and of presenting clear directions for the solution of problems.
I am sorry to say, however, that these gentlemen do not always
make it plain as to what is new, and what is merely put in a
new way. Since in the first paragraph of his paper Professor
Kennelly states that he believes his proposition to be new, and
later that a particular case was discovered by him in 1893, I
take the liberty of making a few historical observations: The
proposition with which this paper is concerned appears explicitly
in a paper by Heaviside (to whom the notion of impedance is
due) published in 1884, and is found in Vol. I of his ‘“Electrical
Papers”’ (page 415, equation 137). The whole matter is treated
in his paper on ‘“Resistance and Conductance Operators,”
published in 1887, and found in Vol. II, page 355, in an extremely
general manner.

I am free to say that it has always seemed to me that it is
not enough to know that a thing is so, but that one should know
why it is so, and that rather than put off the student with these
apparently simple methods it would be better to advise him to
learn the small amount regarding differential equations that
would enable him to understand how these problems are really
to be handled. The reason for the simplicity of all these matters
is that the differential equations involved are all linear with
constant coefficients, and as has been known since the time of
Cauchy all such equations may be solved by exponential func-
tions, since these functions preserve their form on differentiation.
That is the reason for the appearance of the function €™’
Now, since it seems to be thought by many persons in this coun-
try that the application of the complex variable or rotating
vector to the study of alternating currents was invented by
Mr. C. P. Steinmetz, I will say a few words on that matter.
The formula ¢®=3sinf-+jcos was given by Euler about
a century and a half ago. When the complex diagram was in-
troduced by Argand in about 1800, or by Wessels a little earlier,
it became evident that the real part of ¢, that is coswt,
could be used to represent any harmonically varying quantity.
I find such use by Cauchy in 1821 in optics, where we have os-
cillations, and all thru his works he makes great use of this
imaginary exponential. But lest it be said that this is not elec-
tricity, I may say that Helmholtz, in a paper on the telephone,
published in 1878, uses the imaginary exponential to represent
sustained vibrations. But the method of solving all cases of
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oscillations in nets containing any sort of apparatus is given by
Maxwell in his great paper on “A Dynamical Theory of the
Electromagnetic Field,” published in 1864, in which he applies
the method of Lagrange to electric circuits. Now Lagrange
solved all these problems in his “Mécanique Analytique,” pub-
lished in 1788, and the equations can be seen on page 375 of
Vol. I. So this is really the age of the theorem.

Without going into Lagrange’s method, let us apply the simple
method of action and reaction to the problem of two coupled
circuits. We know that the electromotive force necessary to
fill a condenser ¢ with a charge ¢ is gc. But if the charge comes

from a current I, we have q=fI dt. Also the back electro-
motive-force from a coil of inductance L is L%; and if there
is an influencing current I; the effect of that is M %%’- If there
is resistance, we need to overcome the electromotive force R I.
Putting all together, we need

E,= CJI;dt+R;I;+L;

Now treating the other circuit in the same way, we need
E,—CJI,dt+R,I,+MdI’ ‘”’

Suppose that there is no electromotive force lmpressed in the
second circuit, E; =0, and that there is a simple harmonic E. M. F.
in the first. This can be represented by the real part of E ¢**
and, for very simple reasons, we may take as a solution the real
parts of I,=A &*' I,=B¢&’*', Now since differentiation of the
exponential multiplies it by j @ and integration divides it by the
same, we find, dividing out the ¢**,

(]_“ +Ri+j "’In) A+joMB

dI, dI;

+M

+L1

0=joMA +<j—-— +R,+j wL;)B
(0C2

So that our problem of calculus has disappeared, and we have
merely algebra. We have now arrived at the state treated by
Professor Kennelly. If we eliminate B we get

E 72wt M2

A= R e -—
- +Ra+joln

-z
A joC )
JaC



which is the impedance of the first circuit, influenced by the
second. Now if there is no impressed E. M. F. in the first circuit
either, we have E=0, and since A is not zero, Z=0, which is
Heaviside’s equation. The method is perfectly general, and
is described in my book on “Electricity and Magnetism,” §241,
as well known at the time of publication, 1897. The method
of elimination of the constants A, B is perfectly general, and
leads to Lagrange’s equation for the periods, as described by
Kennelly.

From such considerations as arise from the definition of
impedance by the equation E=Z I, it follows at once that im-
pedances in series are additive, and in parallel their recip-
rocals are additive, and this gives the application of Kirch-
hoff’s two laws, which is far older than Steinmetz.

With regard to Professor Pupin’s experimental method, it
is exactly the application of this theorem, that is, if we neglect
the resistances. If not, the values of n given by the period
equation can never be purely imaginary, and thus the impedance
for the actual current can not be exactly zero, but as Professor
Pupin says the difference is very small in practise. I have made
a remark on this in my book, page 499.

In conclusion, I cannot let pass the opportunity to criticise
Professor Kennelly’s practise of printing the units in the margin,
as I consider it a cardinal principle in writing formulae that the
formula should be true whatever the units. Fancy writing

s=vt feet

when the formula is equally true for miles, centimeters, or
what not, all the units being properly taken.

Joseph G. Coffin (communicated): I have read Professor
Kennelly’s article with great interest, and also with surprise.
Professor Kennelly has no doubt discovered a simple yet power-
ful proposition, but I am surprised that he has not discovered
that it is not new and that it is known to many of us. I shall
merely refer to Perry’s “Calculus for Engineers,” (1897), pages
231-261, a work not mentioned in his article and with which
he seems to be unfamiliar. I refer especially to pages 236 and
237 where may be found the words:

“In any network of conductors we can say exactly what is
the actual resistance (for steady currents) between any point A
and another point B if we know all the resistances r,, 7, etec.,
of all the branches. Now if each of these branches has self-
induction I, etc., and capacity ki, etc., what we have to do is
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to substitute r,+1, 0+ ﬁ instead of r; in the mathematical
1

expressions, and we have the resistance right for currents that
are not steady.”

The following is a direct demonstration of the theorem,
based upon Perry’s statement and well-known mathematical
results; which may be of interest to others as the standpoint
is somewhat different.

In any network of linear conductors in which steady currents
are circulating, two laws, well known as Kirchhoff’s laws hold.

1. At any point where two or more conductors meet (branch
point), the sum of the currents all taken as flowing into (or out
of) that point is zero. This means merely that there is no
accumulation of electricity at any such point.

2. Around any (closed) circuit of the network taken at random
the sum of the Rt drops is equal to the sum of the impressed
E. M. F.’s in that circuit.

These two rules of great importance are expressed by the
equations Yi=0 (1)

YRi=Je (?)

For variable currents these equations still hold at any instant,

and hence at all instants, provided there is added to the ohmic

drop, R1i, the back E. M. F.’s due to self-induction, L:—E, and
the back E. M. F.’s due to charges on condensers, f%i_t’ and

the back E. M. F.’s due to mutual induction, M Z——:
For example, the integro-differential equation for the current
in a single circuit containing R, L and C in series is
1+ rit ] [idr=e @3)
where ¢, any given function of the tune, is the impressed E. M. F.
on the circuit. In all cases of any importance, e is the expo-
nential function E ¢™'; as it is well known that e=0, e=E €™,
e=Esinwt and e=E ¢ *'sinw! are obtained by making E=0,
m=n, m==%jw and m= —a=xjw respectively.
The important thing then is the solution of equation (3)
when e=Ec™ where m can be real, purely imaginary or complex.
Taking the case of free action, let e=0. Equation (3) becomes

d? A B
La—t+Rl+EJ 1dt=0
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or {L;}+R+éf( )dt}i=0 )

It is well known that, assuming

i=¢", (5)
where 7 is as yet an undetermined constant, real, purely imaginary
or complex, we obtain
1
Cn
as the condition that n must satisfy to make (5) a solution.

If one wishes to call the expression on the left of (6), the
impedance of the circuit, there is certainly no objection.

To understand Perry’s symbolic resistances, consider the
equation for the current thru an ohmic resistance R; it is

Ri=e. )
One may say that R operating on ¢ gives the E. M. F.; or

Ln+R+ - =0 (6)

that Ili operating on e gives the current.

The equation for the current in a circuit containing an in-
ductance L is
di
L d—i =e. (8)

Note: Let us abbreviate, as does Perry, by letting

d _
L()=00); ®)

Equation (8) is then

Lli=e. (10)
This means that differentiating 7 with respect to the time and
multiplying by L gives a result always equal to the impressed
E.M.F.e.

By comparison with equation (7), one may say that L @
operating on ¢ is a result equal to the impressed E. M. F. L@ is
therefore analogous to a resistance and may be called the symbolic
resistance due to L.

The equation for the current in a circuit containing a capacity
C is given by

._nde
‘L—C‘d—t =Cle (11)

or by g=fidt=Ce. (12)
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So that we see not only that symbolically

(%01:=e’ (13)
but that % means integration with respect to the time. One
may say that C~'1_0 is the symbolic resistance due to C. % is

called the inverse operator to 0.
From this point of view, (4) may be written

L0i+Ri+5%=e

or (L 0+ R+ 5%) i=e (14)
One may say finally that
1
L 0+R+b—5

is the symbolic resistance due to L, R and C in series.*
Considering equations (1) and (2), it is now seen that they
become for varying currents
3i=0 (15)

and ¥ <L0+R+C—10>i=:e, (16)

putting aside the consideration of mutual induction for the
moment. .

Equations (15) and (16), the generalized Kirchhoff equations,
which are well known, give the solution in the following manner.
Deduce the resistance around any chosen circuit or between
any two points of the network, in terms of the resistances
R,, R, etc., of the separate branches as if there were merely
ohmic resistances; in the resulting expression, replace R,, Rs,
etc., by the symbolic resistances

d 1
L1a+Rl+af( ) dt
or by L1 0+R1+C‘,L0r etc.
1

It is easily seen that the symbol 6 always obeys the following
laws in combination with ¢ (to the first power only), and with
a and b (constants). .
(0+d)i=0i+ds
0 (11+12) =0 i] +0 1:2 Distributive Law.
ai=ab1 Commutative Law.
__‘gPerry, bottom of page 236.
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and if 0 0+ is written 6%¢{= ‘—;:: , ete., it is easily seen that

"o i=0"tmq Index Law.
When any quantity obeys these laws, that quantity enters into
expressions in combination with 7’s and constants exactly as do

ordinary algebraic quantities.
For instance, it is easy to see that

(0+a) (6+b)i=[02+(a+b) 6+ab]i
or that (6+a) (6+b)  is the same thing as
(6+4b) (6+a), ete.

It follows from this that the expression obtained when the R’s
are replaced by the <L 0+R+ CL0> ’s may be simplified, and the
result will be

Hi(LRCO)i=f;(LRCO)e, (17)

where f; and f, are polynomials in # with constant coefficients.
In the case of free action e=0 and (17) becomes

(d, 0™ +d 0™+ - - - - - +dp_y0+d,)i=0 (18)

It is well known since the time of Euler that the solution
of (17) is made up of two parts: (a) the solution when e=0,
i. e. of (18), plus (b) a particular solution of (17). The first part
is the natural or free action of the system left to itself and the
second is the forced part.

At present, consider the free action of the system, i. e. of (18).

The well-known method is to assume a solution of the form

i=et (19)
where n is as yet an undetermined constant which may be real,
purely imaginary or complex.

There results on substitution of (19) in (18) since

Oi=0c=ne=n1

0™ i=n™1,
that is 6™ =n"™ when applied to an exponential function.
(a,n™+ayn™ ' - - - - - +apm_1n+a,)i=0 (20)

which shows that if » has for its value any of the m solutions
of the algebraic equation

an™"+ - - - - - +a,=0 (21)

then i=A Ay +A, e (22)

satisfies (18) because each term on the right satisfies it separately.
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This is the general solution as it contains m arbitrary constants.
In general, there will be real roots either positive or negative
and imaginary roots either pure or complex, the latter always
occurring in conjugate pairs. )

The A’s in (22) are arbitrary constants. In any particular
case, they are determined by the initial or final state, of the
system, which are supposed to be known. As a matter of fact,
it can be shown that the real roots in any electrical case are
always negative, and that the real parts of the imaginary roots
are always negative.

For every real root (—n,) (excepting equal roots), there is a
solution of the form

’I:1=Ix g—m! (23)
For each pair of conjugate complex roots (always in pairs),
ng=—a+jw Y
ng=—a—jo (G=v'-1)

there is a solution
tg=A, & —¢+j“)‘+Aa & —¢—i~)¢’
which by means of Euler’s equation,
e**=cosz t jsinz
reduces to
i=Ie *'sin (wt+¢) (24)

where I and ¢ are constants determined l_)y the initial conditions.
Solution (23) is a decaying current and (24) a damped

harmonic oscillation of period 27 ; (24) is a sustained harmonic
w

oscillation if @=0; i.e. if 72 and n, are purely imaginary.

Now equation (21) is the result of placing the impedances,
R
Cn’ )
treated as resistances in the circuit of the network equal to
zero; hence the theorem. The whole thing is a case of Kirchhoff’s
Laws, and properties of the exponential function.

Consider the case exemplified in Figure 12 of Professor
Kennelly’s paper. The points G are in reality a single point,
so that the problem is one in which there are a number of circuits
connected in parallel between O and G.

By Kirchhoff’s law, the sum of the currents entering O is
zero

Ln+R+ ete.,

=0
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Also the Ri drop in each branch is the same hence
R] 1:1 = Rz Lz = Rz ia, ete.

If we call L» the admittance, = A, we may write

R
. R
A, A, JA

But as Y'¢=0, then must
YA=0;
which is Professor Kennelly’s statement.
In the case of two mutually inductive circuits, Figure 13, the
equations of Kirchhoff give

Ri%H+M0Oiy=e,
MOu+R,1,=0,

where the R’s stand for L+ R+ CLO =7

From the second equation
0

14=—T’..

Substituting in the first

Mz 0\ .
(R;——E->z—e.
If e=0, we obtain

M2 6?
Bi— R, =0
Mint (Preceding article,
or Z- Z 0 Equation 59)

as the condition to be fulfilled by 8, i. e. n, for the free action

of the primary of such a system.

These methods of solution have been familiar to me for at
least sixteen years, and are the result of applying the matter
in Perry’s “Calculus’ to these problems.

Professor Perry was interested more particularly in the result
when e=E sin wt, as free action has become of more importance
only since radio work has become important.

But he has distinctly stated the case for free action in the
cited pages of his book. It is an extremely powerful method
and the most satisfactory one for the solution not only of the
free action in any network but for the case where the network
has alternating currents impressed upon it.
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H. W. Nichols (communicated October 22, 1915): We owe
most of our practical methods of treating electrical circuit
problems to Heaviside, who originated in 1887 (“Phil. Mag.,”
December, 1887, and ‘‘Electrical Papers,” Volume II, pages
355 to 374 and elsewhere) as a special case the so-called ‘“‘complex
method”’ of treating alternating current problems, later popular-
ized by Steinmetz and others. Unfortunately his papers are
hard to read, a remark on which his own characteristic comment
was that ‘“they were even harder to write.”

It is, however, a fact which has been discovered by many
later investigators that most apparently new methods in circuit
problems are really all in the book, and this method just described
is no exception, being very clearly stated in the paper above cited
(page 371 fi. of the “Papers’).

It is also in common use by some telephone engineers, and
we find it again stated explicity in a paper by G. A. Campbell
(A. I. E. E,, April, 1911, page 902) in the words:

“The characteristic feature of free oscillations is that,
thruout the part of the network over which the oscilla-
tion extends, the driving point impedance is equal to
zero. This follows from the fact that as the driving
point impedance is equal to the impressed electromotive
force divided by the current, it vanishes when the electro-
motive force vanishes, provided the current does not
Xanish. The criterion for free oscillations is therefore

=0.

“The solution of this equation contains all the pos-
sible values of the time coefficient p. Each possible
oscillation is aperiodic or not, according as p is purely
imaginary or not; p cannot be real for any actual system,
since energy must be dissipated in any oscillation which
may occur in such a system.”

One has only to read the Heaviside paper of 1887 and the
ones referred to in it to see displayed the whole theory; but since
engineers do not usually read Heaviside, it is doubtless of service
to have him interpreted, and for that reason we are indebted
to Dr. Kennelly for his interesting paper.

A. E. Kennelly (communicated): In dealing with the
impedance of the simple alternating-current circuit with sus-
tained oscillations of a frequency imposed by the generator,
the impedance can only occupy one half of the plane; namely,
that on the positive real side of the axis of imaginaries. That is,
the impedance can only be 4+ R=%jX ohms, where R is an es-
sentially positive resistance, and jX a reactance either plus
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or minus. It is known, however, that by the aid either of electro-
magnetic induction (transformer action), or of the virtual
impedance of a synchronous E. M. F., such as that of a syn-
chronous motor, it is possible to invade the other half of the
impedance plane, and to secure, in the steady state of operation,
a representation of * negative resistance (— R). Asa consequence,
however, of the reasoning set forth in the paper here presented,
the negative half of the impedance plane is assigned to the
impedance of inductances and capacitances during oscillations;
so that the whole of the impedance plane comes into service in
dealing with the simple alternating-current circuit, one half
in the sustained oscillations, and the other half in unsustained
or transient oscillations.

Since the paper was communicated, a new book by Professor
Fleming (‘“The Wireless Telegraphists’ Pocket-book of Notes,
Formulae and Calculations’”) has reached this country. The
date of the book’s going to press is, however, earlier (May, 1915).
The book contains passages relating to oscillatory frequencies
bearing closely on the matters presentedt in the paper; so that
in tracing the history of the development of the propositions
presented in the paper, the publications of Professor Fleming,
including that cited in the Bibliography must certainly be taken
into account.

Without belittling any scientific authority, or dlsparaglng
any kind of scientific work, it should be pointed out that the
- knowledge which requires determinants, differential equations,
and a maze of symbols for its expression is not the kind of
knowledge which can be readily apprehended and applied
by the engineer. - Propositions may be stated in such broad
general terms as to possess no appreciable meaning in particular.
Thus, the law of the conservation of energy may in a certain
sense cover and include all future discoveries in physics. If the
propositions set forth in the paper have been made known in
prior publications, it is amazing how little use has been made
of them up to this time.

The statements cited by Mr. Joseph G. Coffin from Professor
Perry’s admirable “Calculus for Engineers” are directed to
forced or sustained oscillations; altho we can now see that they
may also be used in connection with free or transient oscillations.

*D. C. and J. P. Jackson’s ‘‘Alternating Currents and Alternating-Cur-
rent Machinery,” Macmillan Co., 1913 (page 238).

t See the section on “Time Period of Electric Oscillations in Circuits
Having Inductance Resistance and Capacity "’ (page 120), and the chapter
(VII) on “High-Frequency Cymometer Measurements’” (page 166).
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On page 238, the remark is made “In all this we are thinking
only of the forced vibrations of the system,” and on page 239—
“We are now studying this latter part, the forced part only.
In most practical engineering problems the exponential terms
rapidly disappear.”

In regard to Professor Webster’s criticism on the use of
marginal units, it is undeniable that in pure mathematics,
dynamics and physics, such units constitute needless limitations
to the equations, perhaps hampering rather than helping the
reader. But in mathematics applied to engineering, the insertion
of the units greatly assists the reader. In this paper, most of the
equations are complex or plane-vector equations; but a few are
simple scalar equations. The danger of confusing vectors and
scalars is avoided by the use of the marginal unit. What engineer
bas not wasted ill-spared hours, over technical papers, in striving
to discover the formula units connoted but concealed by the
writers?
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