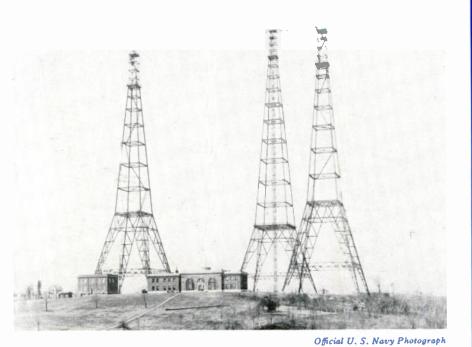
ROCEEDINGS OF THE I.R.E



AND WAVES AND ELECTRONS

1947

I.R.E. NATIONAL CONVENTION IN NEW YORK

March 3, 4, 5, 6 and 7

LANDMARK OF PIONEER RADIO DEVELOPMENTS The Towers of Station NAA at Arlington, Virginia.

December, 1946

Volume 34

Number 12

PROCEEDINGS OF THE I.R.E.

Microwave Relay System Noise Reduction in Mixers Sporadic E Ionization at Watheroo Directive Broad-Band Antenna Design Mode Separation in Coaxial Oscillators

> Waves and Electrons Section

The U. S. Naval Reserve Should I Become a Radio Engineer? Radio Proximity-Fuze Development Medium-Power Triode for 600 Mc. The Antennalyzer Electroencephalographic Technique

Functional Schematic Diagrams Abstracts and References

PART II—Annual Index

The Institute of Radio Engineers

FOR HIPERM ALLOY TRANSFORMERS The UTC Hiperm alloy audio transformers are specifically designed for portable and compact service. While light in weight and small in dimensions, neither dependability nor fidelity has been sacrificed. The frequency characteristic of the Hiperm alloy audio units is uniform from 30 to 20,000 cycles. These units are similar is uniform from 30 to 20,000 cycles. These units the similar in general design and characteristics to the famous Linear Standard audio Series.

UTC Hiperm Alloy Transformers Feature

True Hum Balancing Coil Structure...maximum neutrolization of stray fields.

Balanced Voriable Impedance Line . permits highest fidelity on every tap of a universal unit no line reflections or transverse couplings.

Reversible Maunting , permits abave chassis or sub-chassis wiring.

Alloy Shields . . . maximum shielding from induction pick-up.

Multiple Coil, Semi-Toroidal Cail Structure minimum distributed capacity and leakage reactance.

High Fidelity . . . UTC Hiperm Alloy Transformers have a guaranteed uniform response of $\pm 1.50B$ from 20-20,000 cycles.

FOR IMMEDIATE DELIVERY

From Your Distributor

Typical Curve for HA Series

A STATE			Second: 11 Impedc.r ce	+ 1 db from 30-20,000	Max. Level primary +22 DB 5 MA	18.60
Type No.	Application w impedance mike, kup, or multiple	125 200, 200,	60,000 ohms in		+22 DB 5 MA	23.95 21.25
-100 Lov pic lin IA-100X So	te to grid.	i-allay internal shield to 50, 125, 200, 250, 333, 500 ohms	120,000 ohms ov oll, in two sections	hum pickup.	+22 DB 5 MA	26.60 18.60
1A-101 F	o push-pull grids.	tri-olloy internal shield 50, 125, 200, 25 333, 500 ohms	0, 50, 125, 200, 2 333, 500 ohm	30-20,000 30-20,000	+22 DB 0	15.95
HA-101X HA-108	Mixing, low or multiple mike, pickup or multiple	8,000 to 15,000 ohms	135,000 ohm: 1.5:1 ratio,	s 20.00	0 +22 DB 1 MA	19.95
HA-106	line. Single plote to push- pull grids Single plate to multip	0 000 19	50, 125, 200 333, 500 of	00, 250, 30-20,0	00 +32 DB 5 M	18.60
HA-113	line. ault 89's or	10,000 ohms	300, 500	5, 10, 30-20, 5, 1.2	000	
HA-134 HA-13	2A3's to the Push-pull 2A3's to	5,000 ohms	i dudes or	ly a few of the	catalog.	
		11 : And	Tran	sform	er Corp. V YORK 13, N.Y. Y., CABLES: "ARLAB"	

EXPORT DIVISION: 13 EAST 40th STREET,

0

COMMUNICATION INDUSTRIAL RECTIFICATION **ELECTRO-MEDICAL EXPERIMENTAL** SPECIAL PURPOSE

A HUNDRED OTHERS ONE SOURCE FOR ALL TYP For a quarter century AMPEREX has been identi-

fied with creative research, laboratory approach, precision manufacture and helpful service in its chosen field-power tubes. As tube specialists deeply concerned with all modern developments, Amperex engineers are in a position to give detached counsel and information.

WRITE, AMPEREX APPLICATION ENGINEERING DEPARTMENT. AMPEREX ELECTRONIC CORPORATION

25 WASHINGTON STREET, BROOKLYN 1, NEW YORK IN CANADA AND NEWFOUNDLAND: ROGERS MAJESTIC LIMITED 11-19 BRENTCLIFFE RD., LEASIDE, TORONTO 12, ONTARIO, CANADA

PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS, December, 1946, Vol. 34, No. 12. Published monthly in two sections by The Institute of Radio Engineers, Inc., at 1 East 79 Street, New York 21, N.Y. Price \$1.25 per copy. Subscriptions: United States and Canada, \$12.00 a year; foreign countries \$13.00 a year. Entered as second class matter, October 26, 1927, at the post office at Menasha, Wisconsin, under the act of March 3, 1879. Acceptance for mailing at a special rate of postage is provided for in the act of February 28, 1925, embodied in Paragraph 4, Section 412, P. L. and R., authorized October 26, 1927.

this team stands

1914. World's first vocuum tube repeoter omplifier; designed by Bell Telephone scientists and mode by Western Electric for transcontinental telephony, was the start of modern electronic communications.

1919. These Western Electric amplifiers powered the mightiest sound system of its doy, used ot New York's "Victory Woy" Celebrotion ofter World Wor I. There were 113 loudspeakers in the system.

V7HEN Bell Telephone scientists designed and Western Electric manufactured the first vacuum tube repeater amplifier back in 1914, they opened a vast new frontier of communications and sound distribution. Up to that time, telephone communicationsboth by wire and radio-could cover only limited distances and produce relatively low volumes.

For more than 30 years, this team has produced ever better amplifiers for

almost every use-long distance wire and radio telephony, radio broadcasting, sound distribution systems, mobile radio, sound motion pictures, disc recording, acoustic instruments and radar.

Equipped with unexcelled tools of research, experience, skill and manufacturing facilities, the Bell Laboratories-Western Electric team will continue to design and build amplifiers outstanding in quality, efficiency and dependable performance.

- QUALITY COUNTS -

TELEPHONE LABORATORIES

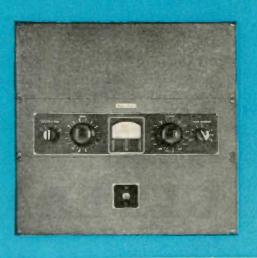
ring unit of the Bell System and the nation's largest

producer of communications equipment.


Proceedings of the I.R.E. and Waves and Electrons December, 1946

1922. The Western Electric 8A was the first commercial broadcasting amplifier. Today, 24 years later, some of these 8A's are still in use. This long life speaks volumes for the quality built into them.

1928. This ac operated amplifier, one of the first made, reduced maintenance costs and did away with cumbersome batteries and charging equipment. It was used to record some of the earliest sound motion pictures.


1934. Western Electric was an early leader in making compression type amplifiers to enable higher speech intensity between noise level and overload point. This equipment was used in overseas radiotelephony.

amplifiers for wired music and public address systems are small and light weight, yet deliver 20 watts. They are setting new standards of quality for music reproduction. 1942. This compact and powerful unit for battle announce systems is typical of Western Electric ampliflers designed during the war. It operated dependably when mounted a few feet from the largest guns. 1938. Negative feedback is another of Bell Laboratories' many contributions to amplifier design—now in general use. This amplifier for disc recording was able to supply as much as 50 db of feedback

1946. The 1126C is the latest design of Western Electric's popular level governing amplifiers. In operation it acts as a program-operated gain control to prevent overmodulation in AM or FM broadcasting. It immediately reduces gain when an instantaneous peak exceeds a predetermined level, slowly restores it when the peak is passed.

FOR 10-KW FM

RATINGS

NEW V-H-F

POWER TRIODE

6.3 v
250 amp
12,000 mhos
28.5 mmfd
20 mmfd
0.55 mmfd
110 mc
forced air
C power am-
it (key-down):
7,500 v
2 amp
12 kw
4 kw
ypical opera-
np) 6.4 kw

- High power output—see ratings!—yet forced-air cooled for convenience of installation.
- Frequency up to 110 mc at max plate input.

ORCED

- Ultra-modern in design and electrical characteristics.
- G-E Ring-Seal construction gives large terminalcontact areas.
- COMPACT and sturdy. Built to "take it" in hard station service.

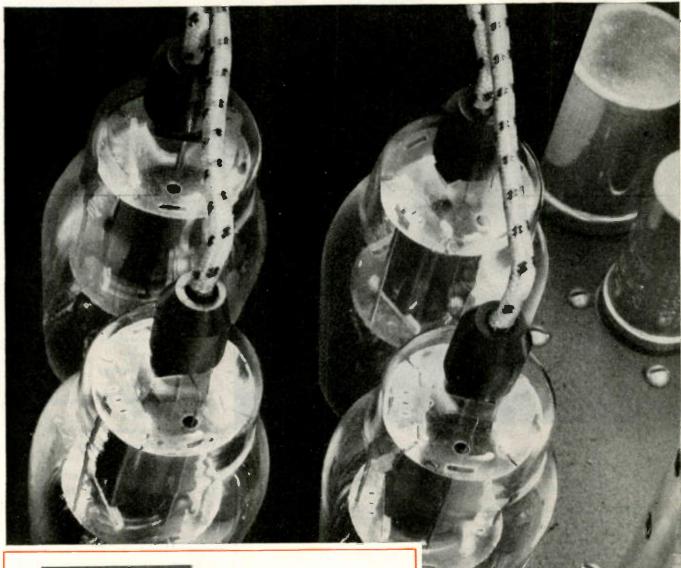
BROADCAST stations that prefer forced-air cooling, and builders of transmitters for this type service, both will welcome General Electric's Type GL-5518 triode—a NEW v-h-f tube with plenty of power, modern in every way, able to meet the exacting demands of FM with plusmarks for its performance.

A pair of GL-5518's, operating conservatively in a grounded-grid amplifier, will put out more than 12½ kw of power. Usually the GL-5518 needs no neutralization in grounded-grid circuits; but when required, a small amount of fixed neutralization suffices over a wide frequency band.

To these features should be added:

- 1. Extremely low lead inductance.
- 2. Minimum r-f losses due to silver-plating all external metal parts.
- 3. Topnotch electrical efficiency from generous ring-seal terminal-contact areas.

Let G-E tube engineers work with you to apply the GL-5518 to new equipment for the big FM broadcast market that favors air-cooling. Phone your nearby G-E office, or write *Electronics Department, General Electric Company, Schenectady* 5, New York.


Four 807's Push-Pull Parallel

▶ The Presto 88-A is a 50-watt amplifier designed specifically to drive the modern wide range magnetic recording head, such as the Presto 1-D. Its very ample output stage four 807's in push-pull parallel — provides adequate power at peak levels with a minimum of distortion. A selector switch provides a choice of :

1. Flat response 20 to 17,000 cycles per second, ± 1 db.


- 2. The NAB recording characteristic.
- 3. Rising characteristic for vertical recordings.

The Presto 88-A is ideal for the most exacting recording requirements.

For full specifications of the Presto 88-A, please write to the Presto Recording Corporation, 242 West 55th Street, New York 19, N. Y. To insure future delivery within a reasonable time, we suggest that you place your order on our priority list since orders are considerably in advance of production.

WORLD'S LARGEST MANUFACTURER OF INSTANTANEOUS SOUND RECORDING EQUIPMENT & DISCS

REVERE PHOSPHOR BRONZES OFFER MANY ADVANTAGES

14

S^{TRENGTH} – Resilience – Fatigue Resistance – Corrosion Resistance–Low Coefficient of Friction–Easy Workability–are outstanding advantages of Revere Phosphor Bronzes, now available in several different alloys.

In many cases it is the ability of Phosphor Bronze to resist repeated reversals of stress that is its most valuable property. Hence its wide employment for springs, diaphragms, bellows and similar parts. In addition, its corrosion resistance in combination with high tensile properties render it invaluable in chemical, sewage disposal, refrigeration, mining, electrical and similar applications. In the form of welding rod, Phosphor Bronze has many advantages in the welding of copper, brass, steel, iron and the repair of worn or broken machine parts. Revere suggests you investigate the advantages of Revere Phosphor Bronzes in your plant or product.

1-Plunger guide 2-Thermostat spring 3-Internal lock washers 4-Contact springs 5-External lock washers 6-Operating lever 7-Cap with integral springs in side 8-Retaining spring 9-Countersunk external lock washer 10-Pressure spring for capacitor 11-Five-contact spring 12-Contact spring for radio part 13—Pressure spring and terminal 14-Involute spring 15-Contact point for solenoid 16-Contact springs -made of Phosphor Bronze strip supplied by Revere

15

Mills: Baltimore, Md.; Chicago, Ill.; Detroit, Mich.; New Bedford, Mass.; Rome, N. Y.—Sales Offices in Principal Cities, Distributors Everywhere.

Listen to Exploring the Unknown on the Mutual Network every Sunday evening, 9 to 9:30 p.m., EST.

New Finch AM-FM Radio for receiving both sound and facsimile. Console model

New Finch AM-FM Radio for receiving both sound and facsimile. Table model

ORDERS PLACED NOW WILL BE GIVEN PRIORITY

Complete Finch Facsimile Broadcast Transmitter and Monitor Control Desk

FINCH TELECOMMUNICATIONS, INC. • Address all inquiries to Sales Office 10 EAST 40th STREET • NEW YORK 16, N. Y. Makers of Facsimile Broadcast Transmitting Equipment, Facsimile Home Recorders, Facsimile Duplicating Machines, and Finch Rocket Antenna for FM stations.

Proceedings of the I.R.E. and Waves and Electrons December, 1946

New Property Chart of alsimag

technical ceramic compositions SENT FREE ON REQUEST

WHAT ALSIMAG IS:

AlSiMag is the trade name of a large family of technical ceramic compositions. These composition's have different physical, electrical, mechanical and chemical characteristics. AlSiMag parts are custom made to specifications.

WHAT THE CHART TELLS:

The properties of the more frequently used AlSiMag compositions have been accurately determined and reproduced in chart form for quick reference.

ALSIMAG COMPOSITIONS NOT ON CHART:

Many special AlSiMag compositions have been developed to meet specific conditions. These are too numerous to chart. If chart indicates general characteristics of value, modifications to suit your special application may be available.

WHO NEEDS THE CHART:

Any designing engineer, production technician or purchasing agent will find chart helpful in his search for materials for unusual applications.

HOW TO GET THE CHART:

The AlSiMag Property Chart is sent free on request. Request as many copies as you need to cover your organization. Write to:

AMERICAN CORPORATION 44TH YEAR OF CERAMIC LEADERSHIP CHATTANOOGA 5, TENNESSEE

ENGINEERING SERVICE OFFICES: ST. LOUIS, Ma., 1123 Washington Ave., Tel: Garfield 4959 • NEWARK, N. J., 671 Braad St., Tel: Mitchell 2-8159 • CAMBRIDGE, Mass., 38-8 Brattle St., Tel: Kirkland 4498 • CHICAGO, 9 S. Clintan St., Tel: Central 1721 SAN FRANCISCO, 163 Second Street, Tel: Dauglas 2464 LOS ANGELES, 324 N. San Pedro St., Tel: Mutual 9076

Printed one side only, folded to file size. For use under desk glass or as a wall chart or in standard file.

ECTRICAL PROPERTIES OF ALSINIS CERAN

	ISIEEB ARE HOT LA	Tab	-	in Statistic		Apreside a							
HEOW, PLEASE CO	CHISULED ARE NOT LA CHISULET US FOR FURT CREALTION			A physically	a aligned		ALCOID THE	And and			4.43 e 14.00 4.		L.4.5.9
		PT.MI		The prov		Arabati ta	00 A perme -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				
102.00	Test U.* Mumber	1 1944							- in				ndarite to pro anter of Column prof B 1 pro-
Tom de Comm			26	26	27	2.0	26	21	2		28	211	2.8
Domini -		······································	394	0H 10.44	210	601 9.81	889 9150	046 05.1(1		10 9	26 9	96 19	175
Wine Marylen Cdy	9116 42 8 5	8-05 Wheel	8-15 1014		0F White	6-05 Butt	13-18 White	10-19 Gry Brand	10- 1 Wibe	e Whe	and the		al
Sultanag Tomprotors	CN 15 1	1 090 2 642	3 4m2 2 624	0 005 7 633	1 400	1.648	7 630 3 002	1 490 2 806	1 654 8 00.1	2 140	75 1 4 87 2 6	47 29	
Benerato In Hap	- 4	1 200	8 300 1 832	F 0007 F 832	1 000 7 8.02	1.000	1 400 2 552	P 250 2 282	1.350	1 20		x 10	10
Canadana Tamperahara Mandhana	And a Sector Sector	P 73	2.5	7.5	15	7.5	5 1a 10 °	7 -	6	6 10.7+10	6 0 8 8x 2	6 2~10	
Lange Carlicont 25 MB C of Throad Lynness 25 MB C Tanals Scooth	DISC 42 Like party	6.9610 6.2610 6.2610 8.2610 8.2610	7 Jac 10** 0 das 10** 70:000	10 25 10-4 E 300	2 900 h	0.08C	1210	2 8- 40	\$ 0.10	11 da 10 2 000 5	c [0)	c 3 500	8
Conference Strength	Des7 4/7 Lin per in .	na 15 500	H dec 20 upg	78 000 20 300	65 DDD P	0000 I	000 11 000 000 000 000 000 000 000 000	40 000 8 000	10 ode 6 000	20 000 7 000			
Revenues on Report 1, "and" Thermal Candycloury?	Charge Lock Line Ball 4/7 Lock Line g Cal. 1 pm. 75	45	\$	43			10	25	21	2.0	30	11	
Approximity Values	pro 's sec. a dag	<u>c</u>	86	90%	au a	14 1	004	003	-	005	005	3U	_
alog 60 cecter 4	MEP 421 Yells per sell	25	340	215	240 24	-	50	100	808	50	IN.	æ	
Interior 10 C 212 8	Ohn	2 1875 2 1618** 4 1618*	10010 \$	hall-3 3	> 10 * > > 10 * 50xx 0x 10 * 50xx		10 10	h lit i	a 18 ' Selo	2 10 · 0 5-10	54.10	* 12 4 Co 15	
- Norman - 500 C - 552 R Property - 700 C - 5202 R	contemptor contemptor	J.hap	60×10 6	6.10	5x16 1 2x10 5x16 1 2x10 5x16 1 2x10	7 75.1	10 96	1	6-10	4 5a 10 4 5a 10	5.00 H	24-11-	- 65
901 C 1 652 7		20010	3.12. 68	h10 25	10 2 10	5 fie d	0 350	10 - 31	01.10 0.30	1 20 70	2 81 15 2 51 10 This	33+1 50-15 5.9	1 %
Herby F Lat	the second second	61	50 4	1)	1 412 > 1.4	1111	5 14	111 1	045 191	0.852	780	6.5 1 146	> 18
NOU HE	P 41	19	57 3	8 5	E 62 5 62	95 34			Ē	56	36	- 51	5
- 1 1 MC		218 0	2 02 000 000		9 61	3.5			1	34		\$1 52	51
a lance and		0.00	621 xi 014 301 014 200		Auto	0025	004			0040	3045 0040	81	000
I ME ANT.	47		13 013	8	1000	05.30	001	30.		6033	0035	009	000. 308.
NO NG		107 M	NI 009	00/1	0019	810 814	6.30	QH		077	- 13		- 301
re Change Par 16	Parts par million	o 148 . h					18	014				055	
		s rec s h	60 , -i MB	- 130	And and a state of the state of	011	015	610 800		219	550 810	033 349 36	
in made to broom Alliana :	307 and in #-Ones	when farms			-210	011 - 102	015	605		219	022	349	001
to Alticles 34	207 and in 4-Capy	when farms			-210	011 - 102	015	605		019 115 100 4284May 35	022	545	201 301 100
ter Alfildad jan a hurde te bronze Giftildag 2 1 Alfildar 200 mette meterial conset in me	The and sp g col a	teritore factor ces that = 2	BTU L D	Ubica n dag P	- 280 6 . Par artist 187 max percety A ot: almospi	402 - 402 Mry shaders Maxim 12 MMAg 683 Mak Jose Lisa	olmarption Also availa the dense	J09 i m 18° to sbir th town state me		219 16 00 4284Max 35 1000000 35 1000000-3001	022 019 FMG and 251	549 36 Bits and a 7.6 min	201 301 100
ter Alfildad jan a hurde te bronze Giftildag 2 1 Alfildar 200 mette meterial conset in me	The and sp g col a	when farms	BTU L D	Ubica n dag P	-210	011 - 102 M7 shages man 12 MBMag 603 halk dras 12 an laft gra	olmarption Also availa the dense	J09 i m 18° to sbir th town state me		Albinerals Internet and Internet and Internet and Internet and Internet and Interne	022 019 116 and 211 11 6 Mar 2	549 36 Bit a strid w	GOT GOT HOP HAS
ter Alfildad jan a hurde te bronze Giftildag 2 1 Alfildar 200 mette meterial conset in me	The and sp g col a	ter bits a reast	BTC 2 00 V0 RL 1 Mr	Utable n dag F lich gew reachen	4 - 280 5 - Per antian 187 - marg percekt, A et absorpt a Mn mode BHetropen (271 - 102 MY shidors man 27 MhMag 403 huk 2res 21m 20 lafte gra fired	olisarption Also arada Ubr drear a 1	J09 i m 18° to sbir th town state me		Albinerals Internet and Internet and Internet and Internet and Internet and Interne	022 019 116 and 211 11 6 Mar 2	549 36 Bits and a 7.6 min	GOT GOT HOP HAS
ter Alfilden jur er hende te brutern gåttiddeg 24 Affolden 28 Nation finder 28 Nation finder and finder der mer Ward er Branell erwähnen.	The and so of coal a relative to a relative relative to a relative relative	Writer farter cr. there i a day C = 2 dar is the temp	BTC 2 00 V0 RL 1 Mr	Utable n dag F lich gew reachen	4 - 180 C . Per antian 1815 marg persety A et almorpt 3 Min mode	271 - 102 MY shidors man 27 MhMag 403 huk 2res 21m 20 lafte gra fired	olisarption Also arada Ubr drear a 1	J09 i m 18° to sbir th town state me		Albinerals Internet and Internet and Internet and Internet and Internet and Interne	022 019 116 and 211 11 6 Mar 2	549 36 Bit a strid w	GOT GOT HOP HAS
APACIAL 24 Annual Ann	The and so of old a control and so of old a so of old	Writer farter cr. there i a day C = 2 dar is the temp	BTC 2 00 V0 RL 1 Mr	Utable n dag F lich gew reachen	- 18 C - Dec order 197 marc percents - A ort-abacce ar-Aba mode be-Africana - A AL EXP/	211 - 102 MTF shagare mann 12 Milli Mag 403 halt 2rise 121a 20 Tarbat gra farvel ANSTO	DIS obserption Also avails the dense at 1 11 Allebia	109 i m 18' to shift at tors frade me		Albinerals Internet and Internet and Internet and Internet and Internet and Interne	022 019 116 and 211 11 6 Mar 2	549 36 Bit a strid w	ODT OCT HOC FA.N
en AREAs and a such to inverse databases a such to inverse databases a such to inverse databases a such to the such as a such to the such as a such to the such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a s	The land as find a contract of the land of the contract of the	orden farter orden farter a sing C = 2 siter fathe a result C = 0 C	BTC 2 00 V0 RL 1 Mr	Utable n dag F lich gew reachen	- 18 C. Per ordin 1973 may proved, and stabulger 19- Alto mode 19-Alto EXP/	211 - 102 Mry shadors maxim 12 MhMag 403 Mh 2ris 12ia 20 Table gro fered ANSIO	015 olmurpetan Also aratu Ute denou a 1 11 Alliata N	09 10 10' to rbir tr to rbir tr to rtade the 125 0 0	У щ Во ле	2H IS ICC ALRINGAC 25 HUMPERSING INFORMATION ALRING AND TALING AND INFORMATION INFORMAT	022 DH FHE and 211 Vice 1 Vice 2 DH Dr Indt, 1 DH Dr Indt, 1	549 36 Bit a strid w	ODT OCT HOC FA.N
en AREAs and a such to inverse databases a such to inverse databases a such to inverse databases a such to the such as a such to the such as a such to the such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a such as a s	The land as find a contract of the land of the contract of the	COLLER Derlar COLLER C	BTC 2 00 V0 RL 1 Mr	Utable n dag F lich gew reachen	- 18 C. Per ordin 1973 may proved, and stabulger 19- Alto mode 19-Alto EXP/	211 - 102 Mry shadors maxim 12 MhMag 403 Mh 2ris 12ia 20 Table gro fered ANSIO	015 olmurpetan Alio arain Ute denou a 1 11 Alifabilia	009 a to 18% for able on two affade to a 178 0 0	У щ Во ле	219 16 100 100 100 100 100 100 100 100 100	022 219 PHE and 211 Victor 2 Minute to Reserve to Reserve Reserve to Reserve to Reserve to Reserve to Reserve	349 Bita strong = 7 42 ments 10 44 ments 11 44 ments 11 44 ments 11 44 ments 11 44 ments	201 201 HOC
er hunden in hunden skillender j 4 Alfableg 20 miller 4 Alfableg 20 miller filter and an an an and an		orden farter orden farter a sing C = 2 siter fathe a result C = 0 C	BTC 2 00 V0 RL 1 Mr	Utables in dag F lich gew rejetion	A 180 C Per orden 185 max) provedu A or or observedu A 195 max) 195 max) 195 Mar Rade Be-Ardropen AL EXP/	911 102 Mry shapper many 12 MrhMag 403 In Jacks growthere AWSTO	015 obserption Also availe ubserption at Allester N	UP		295 16 16 16 16 18 100000000000000000000000	022 DH FM and 211 Victor 12 d Brits of the Brits Marks	59 .8 Bra med - 7 4 min er e e af	201 201 HOC
er Alfala Marine La Marine	The and point of real and the real of the	COLLEASE COLLEASE A Jung C - 2 A Jung C - 2 Autor da Uhr transp der Inden a resalted CA CA CA CA CA CA CA CA CA CA CA CA CA	BTC 2 00 V0 RL 1 Mr	laca o dag T kih anu THERM	- 18 - 199 - 1	ATT - 400 ATT shapes man TC MithMag 400 TC MithMag 4	015 obserption Also availe Up deser at Alleste N	009 I III 18° Lo IDDe UI Long IIII 18° IIII 18° IIIII 18° IIIII 18° IIIIII IIIIII IIIIIIIIIIIIIIIIIIII		295 16 16 16 100 100 110 110 110 110 110 11	02 DIN FIG and 211 Vice of Wice of Box Index Box Index Index Index Index Index Index Index Index Index Index Index I		201 201 HOC
ne Alfilda 24 index being solution of the sol		COLLEASE COLLEASE A Jung C - 2 A Jung C - 2 Autor da Uhr transp der Inden a resalted CA CA CA CA CA CA CA CA CA CA CA CA CA	INTERR	Ulaca s dag T sch anv resolution THERM	- 18 - 19- - 1	ATT shapes and the state of the	015 obserption Also availe Up deser at Alleste N	UP9 i m J0 ⁺ to ible un ion of the me u J25 O 0 of of of of of of of of of of		295 16 16 16 100 100 100 100 100 100 100 10	022 DH FM and 211 Victor 12 M bring to move to move to Ro Indu		201 201 HOC
Alting jan Alting which is have a Althouse the first set a Althouse a A	10 Audi go F edds 1 10 Audi go F edds 2 10 F edge 3 F edge 3	With farts (3) Link (3) Link (4) Link (4) Link (4) Link (5)		Ulaca s dag T sch anv resolution THERM	- 18 - 199 - 1	ATT shapes and the state of the	015 obserption Also availe Up deser at Alleste N	009 I III 18° Lo IDDe UI Long IIII 18° IIII 18° IIIII 18° IIIII 18° IIIIII IIIIII IIIIIIIIIIIIIIIIIIII		295 16 16 16 100 100 100 100 100 100 100 10	02 DH FNG and 211 Vice () Vice () Romat to Romat		201 201 HOC
Alting Jan States (1998) and (With farts (3) Link (3) Link (4) Link (4) Link (4) Link (5)		Ulaca s dag T sch anv resolution THERM	-18 -18 10- Par ordin 10- max 10- m	011 - 102 http://dockarses	OIS sharp ton Allo the draw I Allo seals I Allo Seals	009 1 m 10° Ke 1	T Yes	200 16 16 100 4.5kMar 35 100mm553m 1-18 Arr anstee A BTN recentled A BTN recen	02 019 FM and 21 FM and 21		201 201 HOC
Alting Jan States (1998) and (Pite Lad go e etc	Within factor (a) Lace (b) Lace (c)		Ulaca s dag T sch anv resolution THERM	-18 -18 10- Par ordin 10- max 10- m	011 - 102 http://dockarses	OIS sharp ton Allo the draw I Allo seals I Allo Seals	009 1 m 10° Ke 1	Yu Ba	219 16 100 4.38/Mar 25 1000000000000000000000000000000000000	0.2 D19 FMG and 211 Victor 5 di briane in month briane di briane d		201 201 HOC
b) Alling by a set of the set		Writer fortal (C) Larg - Larg C = 2 - Lar		Ulaca s dag T sch anv resolution THERM	-18 Pre-sense in-sense	011 - 102 http://dockarses	OIS obserption Alloo area if Alloo Area Conserved Alloo Area Conserved	UN IN		219 16 100 4.38/Mar 25 1000000000000000000000000000000000000	0.2 D19 FMG and 211 Victor 5 di briane in month briane di briane d		201 201 HOC
Defact All of Shares and Share		Writer fortal (C) Larg - Larg C = 2 - Lar		Ulaca s dag T sch anv resolution THERM	-18 -18 10- Par ordin 10- max 10- m	011 - 102 http://dockarses	015 sharefrime a s	or los		219 16 100 4.38/Mar 25 1000000000000000000000000000000000000	027 D19 T10 And 211 Vice 3 d brief and 201 d b		201 201 HOC
		Willin Rorad (C) Lang (C) Lang (Ulaca s dag T sch anv resolution THERM	-18 Pre-sense in-sense	PTI - 100 MTY sheaters may be a set of the set of th	OIS eduarprica Allos aradiu thr drive Allos aradiu C S DI A		Rick From	299 15 100 4.38-Ware 25 18-100 4.38-Ware 25 18-1000 18-1000 18-100 18-100 18-100 18-100 18-100 18-100 10	0.2 D19 FMG and 211 Victor 5 di briane in month briane di briane d		201 201 HOC
		Willin Rorad (C) Lang (C) Lang (Ulaca s dag T sch anv resolution THERM	-18 C. Per state Per state transmission ar the made De-Ministra AL EXP/ 	and a second sec	015 show processing show processing s	or los		299 15 100 4.38-Ware 25 18-100 4.38-Ware 25 18-1000 18-1000 18-100 18-100 18-100 18-100 18-100 18-100 10	027 D19 T10 And 211 Vice 3 d brief and 201 d b		201 201 HOC
Provide the lower is being the second sec		Willin Rorad (C) Lang (C) Lang (Ulaca s dag T sch anv resolution THERM	- 18 - 18 - Pro- order Pro-	ATT 1997	015 show promotion Also around 1 Also around 1 Also around 0 Also 0 Also	201 m 12 to 10 m 10	Rick From	299 15 100 4.38-Ware 25 18-100 4.38-Ware 25 18-1000 18-1000 18-100 18-100 18-100 18-100 18-100 18-100 10	027 D19 T10 And 211 Vice 3 d brief and 201 d b		201 201 HOC
				Ulaca s dag T sch anv resolution THERM	-18 -18 -19 entropy of the second s	ATT 1997	015 show processing show processing s	201 m 12 to 10 m 10	Rick From	299 15 100 4.38-Ware 25 18-100 4.38-Ware 25 18-1000 18-1000 18-100 18-100 18-100 18-100 18-100 18-100 10	027 D19 T10 And 211 Vice 3 d brief and 201 d b		201 201 HOC

trolled.

AMERICAN L

WHERE ALSIMAG IS USED:

AlSiMag technical ceramic campositions are

extensively used as insulators for electronic and electrical applications; as gas burner tips;

flame nozzle tips; far oil burner ignition insulators; spray nozzles; as thread guides for abrasive yarns; as extrusion or spinnerette heads in certain fibre or chemical processes; as cores

and inserts for precision castings; in work

holders for electronic heating devices-in short wherever electricity, heat, chemical or certain abrasive or friction conditions must be con-

PRESS WIRELESS EQUIPMENT TERMINAL EQUIPMENT "PACKAGED COMMUNICATION" PRESS WIRELESS FOR: VFSTK-2 Freq. Shift RECEIVING SYSTEM ANALYSIS CHART TRANSMITTING SYSTEM Keyer V FSTM-2 Freq. Shill Receivers RPW-2 General Purpow Point: to Point Rolling Talatype. (Frequency Shift) Transmitters VFSRK-2 Freq. Shill ▼ R6019B Dual Diversity TSOCF-1 50,000W RFT-1 Fixed Tuned Converter TPA30-1 30,000W Trans. Master Oscillator 2 to 4 Mc. 1. TYPE OF VT20CF-1 20,000W TIGAC TIGAC Receiver TMO.1 THEI Ext. Unit for 25,000 words pur Day T20CM-1 20,000W SERVICE TMO-1 1 10 12 Mc. Antenna T7.5CM-1 7,500W Multi-Coupler 2. ESTIMATED 5.000W Tone TSCM-1 Demodulator TRAFFIC TAT3CM-1 3,000W DCK-I Paris - Cairo RMO-3 Receiver Linear Tone 3. STATION 400W Master Demodulator T.4CM-1 PRL-2 LOCATIONS ISOW Oscillator Average Hot and Dry Tone Keyer T.ISCM-1 TKG-1 Channel Tone 4. CLIMATIC CTF-1 ww. CONDITIONS Filler Line Amplifier Approximately 1500 miles Compressor to NL-2 NOTE . NSMI Amphher NC-2 5. DISTANCE 6.11,13 MCS. Mocitor Amplifier AM-2 6. OPERATING Microphone ----Pre-Amplifier FREQUENCIES ME AP-2 M Available Ink-Tape 7 ITR-1 220 Volto, 50 Cycles Recorder 7. HOUSING Optical Tape 9 3 ors-2 Scanner 3 Phase RTP-SI Ratio Tape +ACKA6 Puller, SO cy. 8. POWER C Available Ratio Tape 0 Puller, 60 cy. RTP.61 VTP-11 Variable Tape 9. LANDLINES Puller, 50 60 cy. D None 10. EXISTING Facsimile Π EQUIPMENT Scanner FT-2 Rhombics Facsimile Page Recorder 11. ANTENNA FR-1 To Be Determined Photo-Fax REQUIREMENTS Transceiver PRT-1 12. PLAN OF OPERATIONS Whe (Sixned) Soles Engineer, Press Wireless FEE D 3 INTENNA -EPHONE C GRAPH 1 WATT 20 "Peeroe PLIFIER

Here's how we"pack" the PW package

EVERY potential radio communication system presents problems peculiar to its individual requirements. Each problem must be approached with the proper attitude and answered methodically in orderly sequence. The PW System Analysis Chart serves as a valuable aid to both the client and the sales engineer...it enables both to work out the problem efficiently.

Peek over the shoulder of a PW sales engineer as he makes his first contact with a prospective client. Notice that only the basic units have been selected ... those obviously essential, from the list of available PW equipment.

These basic units are then assempted together with whatever associated equipment is required to complete the proposed communication system. This system is engineered, from start to finish, by Press Wireless who for the past seventeen years has designed, built and maintained a globe-circling network of communication systems ... transmitting better than 80 percent of the world's press traffic.

PW builds its own equipment. It has been pretested on our own world-wide communication circuits. There is no guess work when you submit your communication problem to PW. You obtain... from one source, under one contract...all the factors of analysis, design, engineering, manufacturing and erection that go to make up a successful communication system.

Why not take advantage of PW experience *today* and let us assist you with your communication problem. PW "packaged" communication equipment is your logical answer.

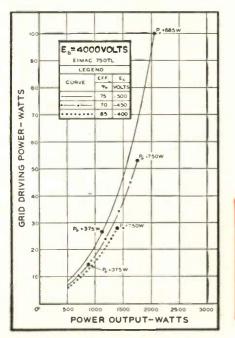
Please address inquiries, Dept. 708A, Press Wireless Manufacturing Corporation, Executive Offices, 1475 Broadway, New York 18, N. Y., U. S. A.

NC-2-40D

Beauty goes deep in the NC-2-40D. Deep inside the chassis parts of watchlike precision are assembled with painstaking care. Carefully designed mechanisms enable the controls to respond to your slightest touch. Thorough shielding helps circuits to develop the fine performance, stable operation and uniform response that you expect of a National receiver. We invite you to study the photographs above. They are pictures of quality.

NATIONAL COMPANY, INC., MALDEN, MASS.

IT'S TOUGH TO FIND A BETTER TRIODE THAN THE BIG, RUGGED EIMAC 750TL

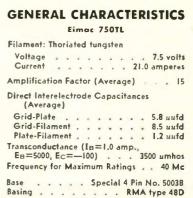

VERSATILE MEDIUM-MU TRIODE

The Eimac 750TL is a mediummu triode designed for high efficiency operation whether used as a modulator, oscillator or amplifier. This is an unusually versatile tube capable of many kilowatts of output.

Successful high frequency operation of this triode is assured by unusually low interelectrode capacitances, heavy leads, and a big tough cathode.

The chart below shows powergain characteristics of the 750TL.

As a Class-C amplifier, the Eimac 750TL will provide plate power output of 1750 watts with 4000 volts on the plate and only 53 watts driving power.


At frequencies below 40 mc, or as a Class-B modulator, the 750TL operates at high plate efficiencies, thus permitting r-f and a-f outputs of many times the plate dissipation rating.

3½ KILOWATT AUDIO OUTPUT

As Class-B modulators, a pair of Eimac 750TL's will produce a typical maximum-signal plate power output of 3500 watts, with only 30 watts grid drive.

THESE ARE RUGGED TUBES

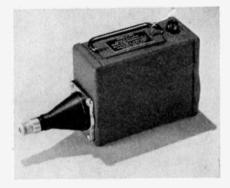
These big, powerful 750TL's are built for long, trouble-free service for a wide variety of uses. Many Eimac 750TL's installed months and years ago are still going quietly and efficiently about their business. Why not ask Eimac today for a price and data sheet giving full details of this versatile triode. Naturally, there is no obligation. Eitel-McCullough, Inc., 1298J San Mateo Ave., San Bruno, Calif. Export Agents: Frazar and Hansen, 301 Clay St., San Francisco 11, Calif., U. S. A.

Maximum Overall Dimensions:

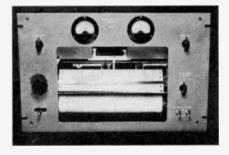
Length	٠							17.0 Inches	
Diamete								7.125 inches	
Net Weig								2.75 pounds	
Shipping	W	aig	ht	(A	ve	rag	e)	8.0 pounds	

Follow the Leaders to

Proceedings of the I:R.E. and Waves and Electrons December, 1946


NEWS and NEW PRODUCTS

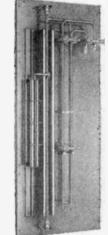
A coaxial resistor designed to dissipate all r-f power fed into it with low voltage standing wave ratio characteristics has been announced by Bird Electronic Corp., 1800 East 38 Street, Cleveland 14, Ohio. It is rated at 50 watts for continuous duty and is immersed in a liquid coolant.


It may be used as an impedance standard, a non-reactive termination to terminate r-f lines, a dummy antenna while tun-

ing up transmitters, and determination of transmission line losses. In conjunction with the slotted-line measurement of voltage standing wave ratios, it eliminates the usual necessity of stub tuners and matching transformers. Further data may be obtained from the manufacturer.

Dual Graphic Recorder

For recording simultaneously two records of the same or different phenomena, Sound Apparatus Company, 233 Broadway, New York 7, N. Y., has developed a graphic recorder known as the Twin-Recorder. Two synchronous motors are employed, one for the writing pens, and the other for driving the recorder at the two chart speeds.


This device conveniently records upon a single record such combinations of measurements as current and voltage, average and r.m.s. values, linear and logarithmic values, and duplicate records at the same time. These manufacturers have invited PRO-CEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

Iso-Coupler for FM Antennas

The many broadcasters now adding FM facilities may effect something more than a minor economy,

(that is, the price of another tower), if they are able to erect their FM antennas atop an existing AM radiator. This does, however, introduce the problem of feeding the FM power without short-circuiting the AM radiator at its frequency or causing cross-talk at the FM frequency.

Coupling equipment which properly isolates the two systems and feeds the FM antenna

across the base insulation of the AM tower has been developed and made commercially available by the E. F. Johnson Co., Waseca, Minnesota. This new unit, the ISO-COUPLER, rated up to and including 50 KW AM and 10 KW FM, will match 50-ohm lines from the FM transmitter and does not disturb AM tower impedance.

Gas Free Metals

The multiple advantages of high purity and freedom from gaseous inclusions can now be realized by utilization of high-vacuum techniques in many metal and alloy fields. A partial list of metals so treated by the Vacuum Metals Division of National Research Corp., 100 Brookline Ave., Boston 15, Mass., includes copper, nickel, iron, chromium, manganese, lithium, sodium, magnesium, calcium and zinc all of which are easily vaporized and produced in pure form.

Existing equipment permits melts from a few grams up to several hundred pounds capacity at pressures between 10^{-6} and 10^{-2} mm. Hg. Upon request, additional technical data and, in some cases, samples of vacuum treated metals may be obtained for experimental purposes.

G. E. Announces Two New Tubes

A new forced-air-cooled transmitting tube, Type GL-5518, for use as a class C radio-frequency amplifier and oscillator, and a three-electrode transmitting tube, Type GL-5C24, for service as class A and AB₁ audio-frequency amplifier and modulator have been announced by the Tube Division, Electronics Department, General Electric Co., Schenectady 5, N. Y.

New Chairman of Parts Association

Roy S. Laird, Vice President and Sales Manager of Ohmite Manufacturing Co., Chicago, was recently elected Chairman of the Association of Electronic Parts and

Equipment Manufacturers. Mr. Laird succeeds J. A. Berman of Shure Bros.

Les Thayer of Belden Manufacturing Co., was elected Vice-Chairman; Miss H. A. Staniland of Quam-Nichols was reelected Treasurer; and Ken C. Prince was re-elected Executive Secretary.

Miniature Cathode Tubes

Two new miniature cathode type R-F amplifier tubes, the 6BD6 and 12BD6 are now being produced by Raytheon Manufacturing Co., Newton, Mass. Designed to replace bulkier or obsolescent tubes, these new tubes are the electrical equivalent of the 6SK7 and 12SK7.

Outstanding features of these tubes, include a very desirable and practical remote cut-off characteristic, zero-bias operation without cathode resistors, proper operating characteristics with or without series screen-dropping resistor, and production of maximum useable stable stage gain, regardless of mutual conductance, at radio and intermediate frequencies.

(Continued on page 32A)

77 B ZL

Т

 (\mathbf{k})

9

2018 AF OSCILLATOR

201B AF OSCILLATOR Meets every requirement for speed, ease of operation, accuracy and purity of wave form in FM and other fields where high fidelity is important. Trequency range from 20 Cps to 20 Kc. Up to 3 watts observe into 600 ohm resistive than 1%. (Distortion not more than ½% at 1 watt out-part.) Frequency control is a targe illuminated, no-par-allax dial. Price \$190.00 FOB Palo Alto.

00

000

3308 DISTORTION ANALYZER

3308 DISTORTION ANALYZER Unusually valuable for measurement through the audio spectrum in broadcast, laboratory or production problems. Measures "total" distortion at any frequency from 20 Cps to 20,000 Cps, and will accurately make noise measurement of voltages as small as 100 mi-crovolts. Linear r-f detector makes possible measurement direct from modulated r-f car-rier. May be used as voltmeter for measuring voltage level, power output, amplifier gain; or serves as high-gain, wide-band stabilized amplifier with maximum gain of 75 db. Price \$375.00 FOB Palo Alto.

One year of -hpachievement

In one single year since the war's end, -hp-has brought you five important new precision instruments. All are now in use in laboratories, factories, electrical and electronic installations around the world. Each represents a vital contribution to the field of electrical measurement. Each is an example of how -hp- engineering anticipates the rapid strides of modern science. Soon -hp- will announce significant new

instruments to further broaden the field of electrical measurement. Meantime we are now able to make immediate delivery on most -hpinstruments. Send your order now!

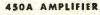
HEWLETT-PACKARD COMPANY 1304D PAGE MILL ROAD . PALO ALTO, CALIFORNIA

410A VACUUM TUBE VOLTMETER

Measures voltage over wide frequency range (from audio to micro range

00

wave regions) at high impedance. High input impedance and low shunt capacity makes possible testing video and VHF amplifier circuits without disturbing and VHF amplifier circuits without disturbing circuit under test. ac measurements: Six ranges, full-scale readings from 1 to 300 volts. Input impedance 6 megohms in parallel with 1.3 unit. Frequency response 20 Cps to 700 Mc, ± 1 db. de measurements: Seven ranges, full-scale readings from 1 to 1000 volts. Input im-pedance 100 megohms, all ranges. Resistance measurements: Seven ranges, mid-scale read-ings, 10 ohms to 10 megohms. Price \$210.00 FOB Palo Alto.


710A POWER SUPPLY

 710A POWER SUPPLY

 Ideal power supply for general, laboratory, or production use. Delivers any required voltage between 180 and 360 volts, with approximately 1% variation for output currents of from 0 to 75 ma. Maximum current 100 ma. Line voltage variation of ±10% causes less than 1% ±10% causes less than 1% to thange in output voltage. Total noise and hum output is less than .005 volts. Supplies up to 5 amps at 6.3 volts ac for heating filaments. Either positive or negative

 Either positive or negative terminal may be grounded. Price \$75.00 FOB Palo Alto.

A stable, wide-band, general purpose labora-tory instrument. 40 db or 20 db gain of un-usual stability, low phase shift. Frequency response flat within 1/2 db between 10 and 1,000,000 cycles. Input impedance 1 megohm shunted by 15 unid. Internal impedance less than 150 ohms over entire range. Fully oper-ated from 115 volts, 60 cycles AC power supply. Can be used with 400A Vacuum Tube Voltmeter to measure voltages as low as 50 microvolts. Price \$125.00 FOB Palo Alto.

low as 50 r Palo Alto.

Power Supplies • Frequency Standards • Amplifiers • Electronic Tachameters Frequency Meters • UHF Signal Generators • Square Wave Generators Naise and Distartian Analyzers • Audia Signal Generators • Attenuator Audia Frequency Oscillators • Wave Analyzers • Vacuum Tube Valtmeters

IRON SLEEVE CORES

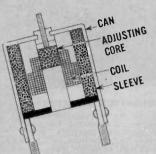


FIG. 1. Stackpole Pawdered Iran Sleeve and Care used far Diade Transfarmer (I-F); Antenna, Oscillatar, ar Filter Coils, etc.

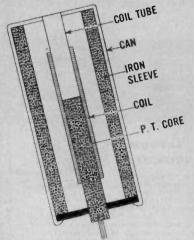
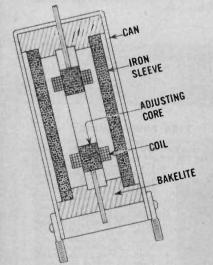
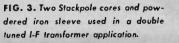
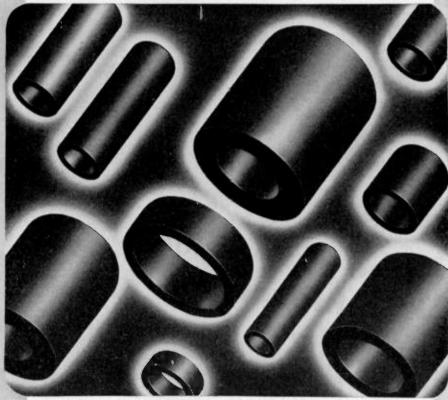





FIG. 2. Grade SK1 care and powdered iron sleeve (.790 O. D. $\times 11/2^{"}$ lang) used with permeability tuning in auto radio receiver.

The Modern Answer to Better Coils in Less Space

BY USE of Stackpole Sleeve Cores, much smaller cans of any material may be used to provide Q that is equal to or better than that of conventional coils and cans. Thus they pave the way to an exceptionally high order of tuning unit efficiency in greatly reduced size. A few of many design possibilities are indicated in the accompanying sketches.

Beside supplying additional electrostatic and electromagnetic protection over that provided by the can alone, sleeve cores result in making the can itself smaller, less critical and less costly. Inexpensive die cast lead cans, for instance, may be used instead of aluminum. In some cases, it may not even be necessary to use a can.

STACKPOLE CARBON COMPANY, ST. MARYS, PA. EXPORT: Stackpole Carbon Co., 254 W. 34th St., New York 1, N. Y., U. S. A.

ELECTRICAL BRUSHES AND CONTACTS (All carbon, graphite, metal and composition types) • RARE METAL CONTACTS • WELDING CARBONS • BRAZING TIPS AND BLOCKS • PACKING, PISTON, AND SEAL RINGS • CARBON REGULATOR DISCS • MOLDED METAL COMPONENTS, ETC.

* RICHARDSON MEANS Versatility IN PLASTICS -

Shake Hands with a Richardson Plastician!

He's one of many in the Richardson organization. They combine the best qualities of consultant ... engineer ... scientist ... salesman ... designer. If you have a problem in plastics, these men take the *problem* out of it ... for you.

> Richardson Plasticians form a flying squadron of skilled technicians. They are men whose varied educational backgrounds and practical industrial experiences equip them to utilize fully Richardson designing, molding, laminating, rubber-working and our own tooling facilities. It's a great team. No wonder our customers keep coming back for more.

INSUROK Precision Plastics

NEW YORK 6, 75 WEST STREET PHILADELPHIA 40, PA., 3728 NO. BROAD STREET CLEVELAND 15, OHIO, 326-7 PLYMOUTH BLDG. * DETROIT 2, MICH., 6-252 G. M. BLDG. Factories: MELROSE PARK, ILL. * NEW BRUNSWICK, N. J.

LOCKLAND, CINCINNATI 15, OHIO ROCHESTER 4, N. Y., 1031 SIBLEY TOWERS BLDG. MILWAUKEE 3, WIS., 743 NO. FOURTH STREET S. ST. LOUIS 12, MO., 5579 PERSHING AVENUE J. INDIANAPOLIS, IND.

*RESEARCH ... a continuous transformation of possibilities into practical ideas in plastics.

*DESIGNING ... Artistic visualization. Creative engineering. Practical planning for efficient plastics production.

* PRODUCTION ... Complete machine shop facilities for manufacturing dies, molds and tools.

*LAMINATING ... Sbeets, rods, tubes. Standard NEMA grades; over 700 special grades.

* MOLDING ... Rubber and bituminons plastics; and synthetic resin plastics... Beetle, Bakelite, Durez, etc.

FOR Higher VOLT-AMPERE RATINGS IN Smaller EQUIPMENT

Sprague CEROC 200, an inorganic ceramic class "C" wire insulation, paves the way for important engineering advancements wherever coils or other windings can utilize its ability to operate continuously at 200° C. Its advantages are such that it warrants careful investigation in connection with a wide variety of equipment.

SMALLER COILS FOR LARGER JOBS!

Wire insulated with CEROC 200 permits a substantial volt-ampere rating increase without a corresponding increase in space. As a result, midget-size coils can be wound to do man-size jobs.

IT'S FLEXIBLE!

Despite its ceramic nature, CEROC 200 is sufficiently flexible to permit wire insulated with it to be wound on conventional equipment with little or no change in most cases. It can safely withstand 16% elongation by bending.

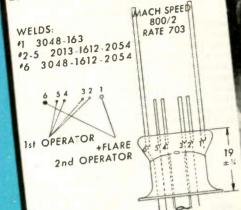
HIGH-TEMPERATURE ADVANTAGES

Applied to copper, nickel or other types of wire, CEROC 200 permits continuous operation at 200° C. Wound in coils, the thermal conductivity of Cerocinsulated wire is high. This assures much of the voltampere gain to be expected from high-temperature operation.

EXCEPTIONALLY HIGH SPACE FACTOR

Typical percentages of wire area to total cross-sectional area of insulated wire are 96% for CEROC, as against 59% to 69% for conventional insulations suitable for high-temperature applications. CEROC is only about ¹/₄ mil thick and is uniform throughout the length of the wire.

SPRAGUE ELECTRIC CO., North Adams, Mass.



WRITE FOR

CEROC BULLETIN

505A

STEM 35Z5GT-45Z5GT FLARE 19X24 42A1-A2 EXHAUST TUBE "18BX101MM

AUTOMATIC STEM-MAKER

GIVES YOU MORE AND BETTER TUBES

MAKING TUBES IS EASY ...

YOU KNOW HO

Making a radio tube stem is apparently easy. By gas flames, one merely seals stem wires and exhaust tube into a glass flare. High-speed production, however, raises problems of know-how. Expert adjustment of temperatures and timing is vital. To give you trouble-free performance, there must be absence of glass malformation, strains, cracks—air-tight wire seals—strict adherence to dimensions.

Two girls produce daily 5600 35Z5GT stems on the illustrated stem-makeressentially a rotating steel turret with 25 automatically indexing heads. Working as a team, they insert into a jig the 6 stem lead wires, and drop over them the glass flare. Each stem wire is fabricated of butt-welded nickel (for support), dumet (for glass seal), and copper (for connection). The exhaust tube is automatically inserted. Gas flames gradually melt and form the flare at 13 consecutive positionsat 2 positions, jaws press and seal stem wires into the flare.

Compressed air blows clear the exhaust tube inlet. The stem is lifted automatically into the rotating annealer. Strains vanish as distorted glass molecules resume normal positions. The annealed stem rolls onto the inspector's table. A stem former cuts, shapes, and nicks its wires to support the 35Z5GT's internal elements.

As you watch these intricate operations, you are impressed by controlled quality at high speed. Again you realize the know-how built into millions of Hytron tubes pouring out to you.

SPECIALISTS IN RADIO RECEIVING TUBES SINCE 1921

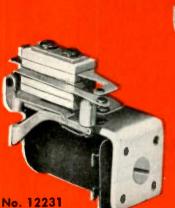
UNFORMED STEM

R

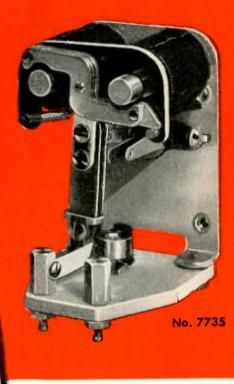
FORMEDSTEM

Announces a New High-Gm Miniature Pentode

Announcement of Raytheon type 6AH6 makes available a miniature cathode-type high-Gm pentode specifically designed for application in wide-band amplifiers. The availability of this tube makes possible space and weight reduction of television cameras, television receivers, radar amplifiers, and other multi-tube equipment.


The excellence of Raytheon design for type 6AH6 contributes several desirable performance features, including a plate family characterized by a sharp "knee" at very low plate voltages. Thus increased voltage output and reduced distortion are obtained compared to other tubes of equal transconductance. The low input and output capacitances also allow greater stage gain for a given band-width, and greater bandwidth for a given stage gain.

TYPE 6AH6 BULB: GLASS T-S½ CHARACTERISTICS Heater Voltage 6.3 volts Heater Current 0.45 amp Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	
BULB: GLASS T-SV: CHARACTERISTICS Heater Voltage 6.3 volts Heater Current 0.45 amp Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELD SHIELDED to Plate 0.030 max.	DESCRIPTIVE DATA
CHARACTERISTICS Heater Voltage 6.3 volts Heater Current 0.45 amp Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	TYPE 6AH6
Heater Voltage 6.3 volts Heater Current 0.45 amp Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD 10 Plate 0.030 max. 0.020 max.	BULB: GLASS T-S1/2
Heater Current 0.45 amp Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD 10 Plate 0.030 max. 0.020 max.	CHARACTERISTICS
Plate Voltage 300 volts Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	Heater Voltage 6.3 volts
Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	
Grid No. 2 Voltage 150 volts Cathode Resistor 160 ohms Plate Current 10 ma Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 9000 umhos Grid No. 1 Style 6AH6 BASE: MINATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELD SHIELDED to Plate 0.030 max. 0.020 max. 0.20 max.	Plate Voltage
Plate Current	
Grid No. 2 Current 2.5 ma Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current	Cathode Resistor 160 ohms
Plate Resistance 0.5 megohm Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	Plate Current 10 ma
Transconductance 9000 umhos Grid No. 1 Bias for 10 ua plate current 10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (μμf] WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	Grid No. 2 Current 2.5 ma
Grid No. 1 Bias for 10 ua plate current	Plate Resistance 0.5 megohm
10 ua plate current —7 volts TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (μμf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	Transconductance 9000 umhos
TYPE 6AH6 BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (µµf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	Grid No. 1 Bias for
BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (μμf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	10 ua plate current
BASE: MINIATURE BUTTON 7-PIN CAPACITANCES (μμf) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	TYPE AAMA
CAPACITANCES (µµt) WITHOUT Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	
Grid No, 1 WITHOUT SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	
Grid No. 1 SHIELD SHIELDED to Plate 0.030 max. 0.020 max.	
	to Plate 0.030 max. 0.020 max.
	Input 10.3 10.5
Output 2.0 4.0	


miniaturized RELAYS with Steatite Insulation

No. 11638

SHOWN OVERSIZE FOR CLARITY

Originally designed for use in aircraft equipment, these MINIATURE relays give completely dependable operation under extreme conditions of vibration, humidity and temperature.

The Steatite insulation and general construction of these relays makes them inherently suitable for switching circuits requiring permanently low leakage, for switching certain high frequency circuits, and for any application where a compact, light weight, yet sturdy relay is required. Particular attention has been paid to design of relays that will not "chatter" under vibration even in the un-energized position.

The antenna changeover relay shown is of unique design and provides the wide contact spacing and positive action necessary for this special purpose, for a weight of only 0.2 lb.

The other small relays are provided in the contact combinations illustrated at right, with maximum overall dimensions of 11/4" x 11/16" x 11/4" and a maximum weight of 0.07 lb.

A.R.C. NO.	RATED D.C. OPERATING VOLTAGE	D.C. RESISTANCE	CONTACT
11975	14	90	•
12232	28	300	•
11914	14	90	•
12231	28	300	
11638	28	300	
7735	28	112	

For price and delivery information, write

708 MAIN STREET

• Aerovox silvered-mica capacitors are designed for the most critical applications requiring precise capacitance values and extreme stability. Although otherwise similar in external construction and dimensions to the smaller molded bakelite units, they

are encased in molded XM low-loss red bakelite for immediate silvered-mica identification.

A silver coating is applied to the mica and fired at elevated temperatures. This insures not only a positive bond but permanent stability of the capacitance

with respect to time, temperature and humidity. Units are heat-treated and waximpregnated externally for ultimate protection against moisture penetration.

Ideal for use in circuits where capacitance must remain constant under all oper-

ating conditions. These capacitors are specifically designed for use in push-button tuning, oscillator padding circuits, fixed tuned circuits, and as capacitance standards, etc., where accuracy and stability are prime considerations.

Average positive temperature coefficient of only .003% per degree C.-a remarkably low value.

Excellent retrace characteristics; practically no capacitance drift with time; exceptionally high Q. Available in three types, 1000 v.D.C. test: Type 1469,.000005 to .0005 mfd.; Type 1479 (illustrated), .0001 to .001 mfd.; Type 1464, .00075 to .0025 mfd., and .001 mfd. in 600 v. D.C. test.

Standard tolerance plus

• Write for literature ...

minus 5%. Also available with tolerances of plus/minus 3%, 2% and 1%. Minimum tolerance for capac-

itances up to and including

10 mmf. (.00001 mfd.) plus/

minus 1/2 mmt. Minimum tol-

erance available for all other

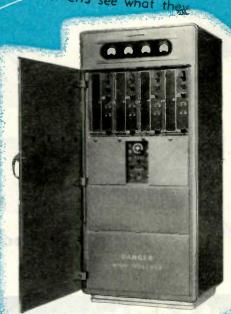
capacitances, plus/minus 1% or plus/minus 1 mmf., whichever is greater.

Bringing your birds Home to Roost Dependable communication between planes and airports Wilcox radio equipment. Its high perform-

ance is but one of many virtues. Ecoromy, convenience, easy maintenance and protection against frequency obsolescence are provided through extensive research, care-ful assembly, and thorough testing. Check the features of the Wilcox Type 99A Transmitter and see what the

Four transmitting channels, in the following frequency ronges: 125-525 Kc. Low Frequency 2-20 Mc. High Frequency 100-160 Mc. Very High Frequency Other frequencies by special graer

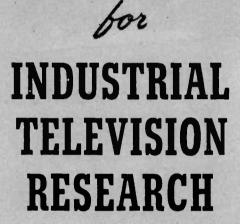
* Simultaneous channel operation, in following maximum combinations


3 Channels telegraph 2 Channels telephone Channel telephone, 2 Channel

* Complete remote control by a single telephone pair per operator

* 400 Wetts plus corrier power

REMOVABLE R.F. HEADS are prate tian automate frequency absolescence. Al connections to the transmitter are by means a plugs and receptacles. Instan removability means galick and easy maintenance.


WRITE FOR COMPLETE INFORMATION

WILCOX ELECTRIC COMPANY, INC KANSAS CITY, MISSCURI

HEADQUARTERS

If it's a cathode-ray tube, DU MONT has it!

CALLEN B. DU MONT LABORATORIES, INC.

YOU'VE EVERYTHING TO GAIN BY GETTING IN TOUCH WITH

FOR THE SPRINGS YOU NEED

Ask us to make your springs for you. Find out for yourself that we're pleasant people to do business with ... that we make your springs exactly the way you want them ... and that - here at Accurate - you receive intelligent cooperation, quality workmanship and on-time deliveries.

If you need engineering help, you'll discover that our engineers can quickly help you determine the right spring for your job. Perhaps our engineers can improve your product's performance through proper spring application. You can't lose.

ACCURATE SPRING MANUFACTURING CO.

3835 West Lake Street • Chicago 24, Illinois

urate.

Wire Forms • Stampings

Springs

If you design or build electronic equipment no smaller than a handy-talkie, no larger than a 50 KW transmitter there are JOHNSON components "your size." Many of the small parts above find application in circuits operating at battery voltages. The miniature socket for instance is a modification of a predecessor that floated down over Europe in a handy-talkie with the paratroopers. They're catalog items with the exception of the terminal boards which typify JOHNSON ability to manufacture special assemblies quickly, easily and economically. The miniature condenser is an inch and half overall, has .015" spacing, 12 mmf. maximum and 3 mmf. minimum capacity. On the large side of the condenser family are the pressurized nitrogen-dielectric condensers offering RMS voltage ratings to 30,000 V capacities to 10,000 mmf., and highest capacity to mounting space ratios. Similar comparisons might be made with the other JOHNSON components.

Between the large and small above there's a big JOHNSON line from which to choose. Check the list below for parts you need. You'll find them carefully designed, skillfully manufactured. For more information write department W today.

Johnson Products Include

C O . ,

Condensers • R. F. Chokes • Connectars • Pilot and Diol Lights Directional Antenna Equipment · Inductors · Q Antennas · Plugs & Jacks Braadcast Components Tube Sockets
 Insulators
 Hardware

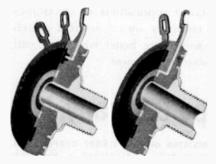
JOHNSON

Proceedings of the I.R.E. and Waves and Electrons December, 1946

26A

Ε.

• Seal up a stream of electrons in a vacuum tube...and you have a spacedefying genie that vitalizes industry ...and can save countless lives!


• As far back as 1930 the Sperry Gyroscope Company put electronics to work . . . introducing electronic control for the Sperry Gyro-Compass.

• From then on electronics was employed whenever it could extend the usefulness and performance of Sperry products—as in automatic pilots, gun fire control devices, navigation instruments, both aeronautical and marine. And in 1939, came the Klystron, "heart-beat" of Radar. • In war, Radar tracked out enemy plane, sub and ship positions, saving numberless lives by advance warning of hostile attack. And today, in peace, Radar brings new safety to mankind... plotting aerial and marine operations with pin-point accuracy, through peasoup weather and over vast distances. • Sperry pioneered in helping develop these and many other services for mankind. But "pioneering" isn't enough. And that's why Sperry research and practical applications of electronics go endlessly on . . . in that search for something better which we call product improvement.

Sperry Gyroscope Company, Inc.

EXECUTIVE OFFICES: GREAT NECK, NEW YORK • DIVISION OF THE SPERRY CORPORATION LOS ANGELES • SAN FRANCISCO • SEATTLE • NEW ORLEANS • CLEYELAND • NONOLULU Alreraft: Cyropilots • Gyrosyn Compasses • Attitude Gyros • Directional Gyros • Gyro-Horizons • Detonation Indicators • Automatic Radio Direction Finders • Instrument Landing Systems • Traffic Control Systems • Marine: Gyro-Compasses • Gyro-Pilots • Gyro-Magnetic Compasses • Incandescent Searchlights • Steering Systems • Radar • Loran Industrial: Rallroad Radio • Microwave Relays • Microline Test Equipment • Klystron Tubes • Strobodyne • Knockometer

The resistor element is molded as a single unit, with insulation, terminals, face plate, and threaded bushing. There are no rivets, welded or soldered connections.

During manufacture, the resistance may be varied over its length to provide any resistance-rotation curve. After molding, heat, cold, moisture, or hard use cannot affect it,

The Bradleyometer Resistor is solid-molded and thick ... not just sprayed film

The heart of an adjustable composition rheostat or potentiometer...like the Type J Bradleyometer ...is the resistor element. If it is a fragile, sprayed film, it cannot hold up satisfactorily under frequent operation, rapid climatic changes, or overload. But if it is a thick, solid-molded ring ... as in the Type J Bradleyometer...it has long, trouble-free life built into it. And its 2-watt rating has a big safety factor, too.

Type J Bradleyometers can be furnished in single, dual, or triple unit construction. Built-in switch is optional. Let us send you specifications.

Allen-Bradley Company, 114 W. Greenfield Ave., Milwaukee 4, Wis.

Proceedings of the I.R.E. and Waves and Electrons

ANOTHER "EVEREADY" SCOOP

No. 493

I-LB. BATTERY!

Designed for: photoflash devices (gas-discharge type); radioactivity measurement devices; multiplier-type photocells; small, lightweight insulation testers; and many other low-drain, high-voltage applications.

Again "Eveready" demonstrates its leadership in dry batteries by creating a powerhouse of 300 volts no larger than two king-size cigarette packs! This miniature high-voltage dry battery is unique. It makes "portable" photoflash and similar devices really portable. It opens up untapped possibilities for designing more compact, more salable equipment for all low-drain high-voltage applications.

Secret of this new battery is the famous flat-cell construction found exclusively in "Eveready" "Mini-Max" batteries...a revolutionary "Eveready" battery development that packs unheard-of power into small space. And this special construction means far longer life for the battery.

SPECIFICATIONS

COMPAN

300 VOLTS

Size: L-2 11/16", W-2 11/32", H (overall) - 3 15/16". Weight: 1 lb. Voltage: 300. Flush mounted pin jack terminals. Batteries can be used in series for even higher voltages.

FOR COMPLETE DETAILS of this new "Eveready" triumph, write for Battery Engineering Bulletin No. 4. Engineers at National Carbon Company, Inc., will be glad to assist you in the design of devices to take advantage of the light weight and compactness of this powerful battery.

The registered trade-marks "Eveready" "Mini-Max" distinguish products of National Carbon Company, Inc. 30 EAST 42nd STREET, NEW YORK 17, N. Y. Unit of Union Carbide and Carbon Corporation

UCC

MODERN!

THE K-TRAN is very small.

K-TRAN

THE K-TRAN equals the performance of old style I.F. Transformers many times its size.

THE K-TRAN is standard. At 455 KC or 265 KC, four types meet practically every need, eliminating the need for many different numbers.

MASS PRODUCTION COILS & MICA TRIMMER CONDENSERS 900 PASSAIC AVE. EAST NEWARK, N. J.

Amphenol is known, and relied upon, by amateurs and professionals in every branch of radio and electronics. The encyclopedic array of more than 8,000 different Amphenol components completely serves the entire range of frequencies in use today.

fonents!

Radio Electronic Arteries.

• * •

Amphenol engineers steadily are helping to pierce the veil of the unknown in the higher television and FM frequencies. They have been among the pace-setters in achieving the higher standards of mechanical efficiency and electrical correctness upon which progress in these fields depends.

Teamed with top-flight production facilities, Amphenol research has continuously developed new products to keep the Amphenol line of cables, plugs, connectors, fittings sockets, antennas and plastic components the most complete available from any one source in the world today.

Wherever you find electrons at work, you'll find Amphenol components recognized as the standard of performance.

AMERICAN PHENOLIC CORPORATION, CHICAGO 50, ILLINOIS

In Canada • Amphenol Limited • Toronto

AMPHENDL

COAXIAL CABLES AND CONNECTORS . INDUSTRIAL CONNECTORS, FITTINGS AND CONDUIT . ANTENNAS . RF COMPONENTS . PLASTICS FOR ELECTRONICS

cient

Choose

NEWS and NEW PRODUCTS

Pylon FM Antenna

A new cylindrical FM antenna, revolutionary in its simplicity of design and principal, providing higher gain height for

height than any previous antennas, has been developed and placed in production by the RCA Engineering Products Department, Radio Corporation of America, Camden, N. J.

Known as the "Pylon" antenna, this new FM radiator is a single-elemechaniment, cally-rigid, self-supporting structure. Unlike all previous types of FM antenna, this new antenna requires no additional means of support or mounting, nor are there any arms, loops or circular elements required with their attendant mounting and connection problems.

Because of this, it was pointed out, erection of the Pylon is extremely simple. All that is necessary is merely to bolt the bottom flange of the cylinder to the building,

tower or other supporting structure which provides the necessary elevation and where high gain is needed for an FM station, additional sections can be stacked on top of each other by merely bolting together.

Multi-Wire Connectors

Two new multi-wire connectors have been recently announced by Alden Products Company, 117 North Main Street, Brockton, Mass., and The Winchester Company, 6 East 46 Street, New York 17, N. Y. Both units are weather-proof.

The Alden unit is a locking-ring type providing cable strain relief by means of a special metal shell.

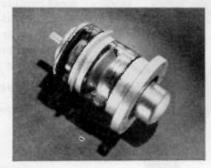
h The Monoblock unit of the Winchester Company is particularly adapted to limited space applications in two sizes of 12 and 18 contacts.

December, 1946

(Continued from page 14A)

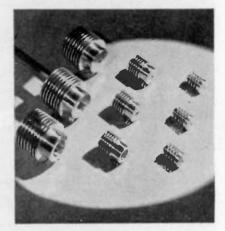
These manufacturers have invited PRO-CEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

Electronic Voltmeter


Instrument Electronics, 253-21 Northern Blvd., Little Neck, L.I., N.Y., announce their new Model 45 Electronic Voltmeter. The meter has a range of from .0005 to 500 volts at frequencies from seven cps to 1.6 Mc.

This meter is suitable for all voltage measurements in the vibration, audio, supersonic and broadcast frequencies bands, the manufacturer states. Line voltage variations from 105 to 125 voltages will vary the readings on the logarithmic scale by less than 1%, at all frequencies within the specified range.

G. E. Transmitting Tube


A new transmitting tube, triode type GL-9C24 has been announced by the Tube Division, General Electric Company, Syracuse, N. Y. Designed particularly for application in a grounded-grid circuit as a class B radio-frequency amplifier and a class C r-f amplifier and oscillator, the tube may be used in television and FM operation at the higher frequencies.

The anode is water-cooled and capable of dissipating five kilowatts. Actual 220megacycle tests under broad-band and synchronizing peak condition show a useful power output of 3.4 kilowatts at a DC plate voltage of 4000 volts.

Heat Dissipating Connectors

Eitel-McCullough, Inc., of San Bruno, Calif., announces that their HR Heat Dissipating Connectors are now available. These connectors are used to make elec-

trical connections to the plate and grid terminals of vacuum tubes, and, at the same time, provide efficient heat transfer from the tube element and glass seal to the air. The HR Connectors aid materially in keeping seal temperatures at a safe value, and are machined from solid dural rod.

Low Frequency "Q" Indicator

A completely self-contained "Q" indicator for use in the 50 to 50,000-cycle range incorporating a precision tuning condenser and a high stability vacuum tube type voltmeter of special design has been announced by Freed Transformer Company, Inc., 72 Spring Streeto, New Yrk, N. Y.

This new unit, No. 1030, will directly measure circuit "Q" with an accuracy of approximately 6% for its designed frequency range. A balanced voltmeter circuit assures stability of "Q" measurements and keeps to a minimum fluctuations caused by line voltage variations. (Continued on page 48.A)

Proceedings of the I.R.E. and Waves and Electrons Dece

AVR-22 AIRCRAFT RECEIVER

Less than half ATR size! Weighs only 21 lbs. complete. Designed to operate with Model AVA-62 Lop- antenna for aural direction finding.

AVT-49 AIRCRAFT TRANSMITTER

High-power output, per pound, per channel. Four pre-set frequencies. Weighs only 42 lbs. installec. Full 50-watt output.

AVR-21 AUTOMATIC DIRECTION FINDER

One-half the size, two-thirds the weight of similar equipment. You can have dual ADF operation for nearly the weight and size of existing single installations.

AVE-21

IT'S NEW!

ANOTHER COMPLETE AIRCRAFT RADIO SYSTEM by **RCA**...

Here it is! A complete radio communication and navigation system for use on scheduled or non-scheduled aircraft—from executive aircraft to transoceanic freighters.

RCA has designed and developed this new radio equipment to combine lightweight, smaller sizes, attractive styling, with highpower output, wide-range operation and low maintenance cost. This entire new family of RCA Aviation Equipment meets every requirement for CAA Type Certification.

Each unit of the equipment is engineered, styled, and manufactured as part of a complete, integrated aircraft radio system. Basic units, however, are self-contained and may be installed separately for independent operation.

Get all the details from your local RCA Distributor or write: Aviation Section, RCA, Camden, N. J.

AVIATION SECTION **RADIO CORPORATION OF AMERICA** ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N.J.

In Canada: RCA VICTOR Company Limited, Montreal

RCA <u>PREFERRED</u> TYPE POWER TUBES

QUICK-REFERENCE POWER-FREQUENCY TABLE

Type No.	Class	Maximum Input Power (Watts) CCS Unmodulated Class C Ratings at:											
		1.6 Mc.	7.5 Mc.	15 Mc.	25 Mc.	50 Mc.	75 Mc.	110 Mc.	150 Mc.	200 Mc.	250 Mc.	300 Mc.	600 Mc
9021	Triode	150000	1 50000	150000	105000								
9C22	Triode	100000	91000	80000	70000		-				1		
9C25	Triode	40000	40000	40000	40000	25000	25000	25000					
9C27	Triode	40000	40000	40000	40000	25000	25000	25000					
892	Triode	30000	22500	17000			-						
892R	Triode	18000	13500	10500									
889-A	Triode	16000	16000	16000	16000	16000	14000	11000	8000				
889R-A	Triode	16000	16000	16000	16000	13500	10000						
8D21*	Tetrode	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	
7C24	Triode	5000	5000	5000	5000	5000	5000	5000					
833-A	Triode	800	800	1800	1750	1500	1200						
6C24	Triode	1500	1500	1500	1500	1500	1500	1500	1500				
4-125A/4021	Tetrode	500	500	500	500	500	500	500	500	425	335		
8000	Triode	500	500	500	500	400	300						
813	Beam Power	360	360	360	360	300							
8005	Triode	240	240	240	240	195							
828	Pentode	200	200	200	200	160	130						
811	Triode	155	155	155	155	155	125						
812	Triode	155	155	155	155	155	125						
826	Triode	125	125	125	125	125	125	125	125	125	125	100	
829-B*	Beam Power	120	120	120	120	120	120	120	120	120	105		
8025-A	Triode	75	75	75	75	75	75	75	75	75	75	75	75
815	Beam Power	60	60	60	60	60	60	60	55	40			
807	Beam Power	60	60	60	60	60	50	40					
2E24†	Beam Power	40	40	40	40	40	40	40	33				
832-A	Beam Power	36	36	36	36	36	36	36	36	36	32		
2E26	Beam Power	30	30	30	30	30	30	30	25				
802	Pentode	25	25	25	25	20	16						

*Twin type—input values per tube for push-pull operation.

†Recommended only for highly intermittent applications. Input values are ICAS ratings.

TUBE DEPARTMENT

The accompanying table of ratings vs. operating frequency provides the design engineer with a simple and rapid means of choosing the most suitable RCA tubes to meet the power and frequency requirements of equipment in the design stages.

Technical Literature

Detailed data on all the types listed

are provided in the RCA HB-3 TUBE HANDBOOK. Technical bulletins covering tube types in which you are interested will be sent on request.

Application Engineering Service RCA tube application engineers will be pleased to cooperate with you in adapting these or any other RCA tube types to your equipment designs. Just write RCA, Commercial Engineering, Section D-18L, Harrison, N.J.

RADIO CORPORATION of AMERICA

BOARD OF DIRECTORS, 1946 Frederick B. Llewellyn Descident Edmond M. Deloraine Vice-President William C. White Treasurer Haraden Pratt Secretary Alfred N. Goldsmith Editor Hubert M. Turner Senior Past President William L. Everitt Junior Past President 1944-1946 Raymond F. Guy Lawrence C. F. Horle 1045-1047 Stuart L. Bailey Keith Henney Benjamin E. Shackelford 1946-1948 Walter R. G. Baker Virgil M. Graham Donald B. Sinclair 1046

Ralph A. Hackbusch Frederick R. Lack George T. Royden William O. Swinyard Wilbur L. Webb Edward M. Webster

Harold R. Zeamans

General Counsel

George W. Bailey *Executive Secretary*

BOARD OF EDITORS Alfred N. Goldsmith *Chairman*

.

PAPERS REVIEW COMMITTEE

Murray G. Crosby Chairman

PAPERS PROCUREMENT COMMITTEE

Dorman D. Israel General Chairman Edward T. Dickey Vice General Chairman

PROCEEDINGS OF THE I.R.E.

AND

WAVES AND ELECTRONS

Published Monthly by The Institute of Radio Engineers, Inc.

VOLUME 34

December, 1946

NUMBER 12

PROCEEDINGS OF THE I.R.E.

Bikini Observations and Their Significance	930
Browder J. Thompson Memorial	934
A Microwave Relay System Leland E. Thompson	936
Noise-Figure Reduction in Mixer Stages	942
Sporadic E-Region Ionization at Watheroo Magnetic Observatory 1938-1944	950
Design of Directive Broad-Band AntennasRichard Baum	956
Theory of Mode Separation in a Coaxial OscillatorPeter J. Sutro	960
Contributors to the PROCEEDINGS OF THE L.R.E.	963

INSTITUTE NEWS AND RADIO NOTES

National I.R.E. Convention 1947	964
Technical Committee Meetings	967
Sections	968
I.R.E. People	970

WAVES AND ELECTRONS

SECTION

OBCITON	
Dale Pollack, Chairman, Connecticut Valley Section, I.R.E	971
United States Naval Research Laboratory at Belleview, Washington, District of Columbia	972
The United States Naval Reserve Delbert S. Wicks	973
Should I Become a Radio Engineer?Robert B. Jacques	975
Radio Proximity-Fuze DevelopmentW. S. Hinman, Jr., and Cledo Brunetti	976
A Medium-Power Triode for 600 Megacycles	986
The RCA Antennalyzer—An Instrument Useful in the Design of Direc- tional Antenna Systems	9 92
Electroencephalographic Technique from an Engineer's Point of View. Walter G. Egan	1000
Functional Schematic DiagramsStuart H. Larick	1005
Contributors to Waves and Electrons Section	1008
Abstracts and References	1010
Section Meetings	50A
Membership	56A
Advertising Index	

Copyright, 1946, by The Institute of Radio Engineers, Inc.

EDITORIAL DEPARTMENT Alfred N. Goldsmith Editor

Helen M. Stote Publications Manager

Clinton B. DeSoto Technical Editor

Mary L. Potter Assistant Editor

William C. Copp Advertising Manager

Lillian Petranek Assistant Advertising Manager

Responsibility for the contents of papers published in the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS rests upon the authors. Statements made in papers are not binding on the Institute or its members.

Changes of address (with advance notice of fifteen days) and communications regarding subscriptions and payments should be mailed to the Secretary of the Institute, at 450 Ahnaip St., Menasha, Wisconsin, or 1 East 79th Street, New York 21, N. Y. All rights of republication, including translation into foreign languages, are reserved by the Institute. Abstracts of papers, with mention of their source, may be printed. Requests for republication privileges should be addressed to The Institute of Radio Engineers.

Bikini Observations and Their Significance*

HARADEN PRATT[†], fellow i.r.e., and ARTHUR VAN DYCK[‡], fellow i.r.e.

On rare occasions, events of transcendent importance are described in a paper of corresponding significance. The following presentation, prepared by two Past-Presidents of The Institute of Radio Engineers who were official United States scientific observers of Operation Crossroads, is a contribution of this unusual sort. It is most earnestly commended to the thoughtful attention of the readers of the -PROCEEDINGS OF THE I.R.E. and for such comments and actions by them as may further the aims which it outlines.

In view of the special circumstances surrounding this paper, The Institute of Radio Engineers grants permission to all publications in any language to reprint this paper in part or in its entirety, accompanied only by a simple acknowledgement of its source.-The Editor.

THE OBSERVERS of Operation Crossroads were accommodated on ships of the general communications type. Designed to carry large military, naval, and air staffs in amphibious operations, they provided ideal quarters for this purpose. The observers were of several kinds: scientific men from the United States and the United Nations, United States congressional representatives, officers of the United States War and Navy Departments, and representatives of the press. In spite of the size and complexity of Operation Crossroads, it was executed in most efficient fashion throughout, and the excellent handling of observers was but one example of the general effectiveness of the organization, which was under the able command of Vice Admiral Blandy.

The U.S.S. Panamint, to which we were assigned, arrived at Bikini lagoon on the morning of June 29 and immediately steamed to an achorage a short distance from Bikini Island by moving very slowly through the entire target array of some 72 ships. The sight was impressive in all respects. A mighty fleet was anchored row upon row on the azure waters of an immense tropical lagoon fringed with palm tree islands, waiting for the awesome test scheduled only two days away. Battleships, cruisers, carriers, destroyers, submarines, transports, and ships of other smaller types—even to a concrete drydock-were variously grouped around the target's bull's-eye to which the eye of the observer continually reverted, namely, the majestic battleship Nevada, conspicuous in bright orange paint and white turret tops and guns, the better to guide the bombardier on the fateful day.

It was obvious that these ships had been prepared for this special event since they were disposed in a pattern intended to reveal maximum information on damage at all distances. Their decks were fitted with all kinds of equipment and materials of war to be subjected to the explosion. Each ship had graduated scales painted on bow and stern so that settlement could be noted from time to time through observation from aircraft. Even the islands bore evidence of the vast preparation that preceded our visit, as several steel towers to accommodate cameras and other instruments were easily visible.

That afternoon we visited the Nevada, the Japanese battleship Nagato, and the carrier Independence, where we saw the large number of test specimens mounted on their decks. These included samples of clothing, food, armor plate, airport fuel trucks, medical supplies, airplanes, and hundreds of other items of military weapons and supplies. The Nagato, commissioned about 1921, was of particular interest with her war wounds of the two direct hits from aerial bombs, including the skip bomb that went right through the ship via Admiral Yamamoto's quarters.

Long studies of Bikini July weather indicated that perhaps as many as twenty days could elapse before a suitable one for the drop would arrive. Besides adequate visibility it was required that the wind blow in the same direction from sea level to 20,000 feet, so that radioactive products of the atomic fission would move away from all observers and not endanger them in the event of rain. However, on June 30 such weather was predicted for July 1, and the fleet of some 140 attending vessels steamed out of the lagoon, maneuvering during the night to be at their assigned locations for the big event at 8:30 the next morning.

We on the *Panamint* saw the blast from the bridge deck through very dark special goggles at a point about twenty miles from the Nevada. Not being able at this distance to see any of the target fleet, many of us were not looking directly at the correct spot and so missed the initial point of flash. By the time eyes had moved over, the burst had already become a disk somewhat larger than the sun and considerably brighter, a conclusion made possible by being able to glance at the sun several times before the ship's public-address system announced "bomb away."

The disk of intense light was immediately blotted out by the instantaneously formed luminous dome or hemisphere of incandescent gases which rested on the water, covering much of the target area. Quick loss of luminosity occurred, and with bare eyes we viewed the

^{*} Decimal classification: 623.452.9. Original manuscript received by the Institute, November 11, 1946. Paper presented in New York City, November 6, 1946, at a joint meeting of The Institute of Radio Engineers, The American Insti-tute of Electrical Engineers, and The Radio Club of America.

Mackay Radio and Telegraph Company, New York, N. Y.

[‡] Radio Corporation of America, New York, N. Y.

3

÷

majestic column of atomic cloud with its mushroom top rise and shoot several thousand feet skyward in a matter of seconds. We estimated that this structure rose to a total of some 38,000 feet, displaying from the start interesting shades of pinkish colors against a fleecy white. The yellowish aspect of previous atomic explosions, ascribed to dirt and debris, was, of course, absent at Bikini.

By eleven that morning, we had moved up to the reef and examined the target fleet through binoculars while seeing at the same time yellow-colored drone boats darting about picking up water samples to test for radioactivity. These boats were remotely controlled from a distant destroyer with air units observing and directing. Test results were favorable for certain parts of the lagoon and our ships took anchorage there soon after lunch. Here we were able to survey the fleet clearly and note the many wrecked superstructures. The outstanding spectacles were the Japanese cruiser Sakawa with a list, down at the stern, and a completely wrecked top, and the carrier Independence with bad fires which culminated toward evening in spectacular explosions leaving the ship a shambles. The Sakawa turned turtle and sank the next morning.

Interesting and spectacular as all these events were, the full realization of the enormous significance of what had taken place unfolded rather slowly during succeeding days as we visited and examined ship after ship. Lessened radioactivity enabled ships to be boarded 48 hours after the burst. Within a 3/4-mile radius, exposed wood was scorched black, crates and boxes were burned, and the Nevada's after deck, hit by the blast at an angle of about 25 degrees, was crushed down and blackened. Her funnels were pushed into her superstructure and the airplane crane on her stern bent double. It should be explained that, after striking bull's-eyes on many practice runs, the bombing plane had the hard luck, on the real drop, of missing the Nevada by some hundreds of feet, a sore disappointment to the Army Air Forces.

Conditions were the same on the *Arkansas*, and worse on the *Pensacola* which was within a half-mile radius. All these vessels' decks and superstructures were a mass of wreckage, with bent bulkheads, twisted railings, smashed doors, stacks down, antenna gear deformed or broken—not to speak of peeling paint from the heat wave and the damaged or burned-out specimens placed on their decks. The blast wave even penetrated below, wrecking furnishings and doing other damage in spots here and there. Many vital items were seriously damaged, such as bulkhead-mounted motor-control cabinets, the switches and other parts of which were broken loose and completely inoperative. Broken castings in quantity taught that naval ships of the future must avoid the use of metal fabricated in brittle forms.

It was unfortunate that our public was misled during

the weeks preceding the tests by statements appearing in the press forecasting dire results and the possible unleashing of forces of nature such as earthquakes, tidal waves, and volcanic eruptions. It must be remembered that the effects of explosions diminish very rapidly with distance, and while the atomic holocaust sank and wrecked vessels up to one-half mile, damage to ships beyond one mile was relatively light. Heat, blast, and wave action at Bikini Island three miles away left almost no visible traces. Even direct blast and heat damage from huge volcanic explosions such as Krakatoa and Katmai extended over only small areas. Certain excited spectators, therefore, had no logical basis for reporting disappointment because Bikini trees were not uprooted or because the blast at twenty miles did not blow them off their feet.

It must be remembered that, while five ships were sunk in the air test and about nine sunk plus two beached in the underwater test, conclusions as to the power of atomic bombs should not be based on the number of ships sunk. Obviously, if the whole fleet had been closely bunched most would have been sunk, whereas if widely dispersed not more than one such casualty would have occurred.

However, all these arresting phenomena, significant in their seriousness as they are, represent only the effect of heat and explosive action arising from the concentration of stupendous power at a single point. The effects of radioactive radiations, primarily neutrons and gamma rays, constitute the new feature which justifies the appellation of "Poison Bomb" as conveying the real meaning of this colossal development. Even though radiation diminished so fast after the first test as to enable ships to be safely visited a few hours later, it is doubtful whether more than a few could have survived aboard had the ships been manned when the bomb was dropped, even though the bulk of the crews might have lived long enough to render ships operative and resist postexplosion attack.

Any doubts as to the sweeping nature of the poison effect which may have existed were removed after the second atom bomb was exploded below the surface of Bikini lagoon. Millions of tons of sea water hurled skyward over one mile in a column almost one-half mile in diameter, and was heavily contaminated with the fission products estimated as equivalent to hundreds of tons of radium. In the first test these products distributed in the atmosphere and were dispersed by the winds. This death-laden water in the second test fell directly on all ships in the lagoon and engulfed some in waves 70 to 100 feet high. This resulted in radioactive products being washed down ventilators, pipes, funnels, and scuppers, in saturation of all topside hamper, and in penetration to hidden places such as circulating systems, pumps, and evaporators.

Even ships not in the target fleet became dangerously

contaminated by entering affected lagoon areas afterwards. Many of the surviving vessels are still uninhabitable and others present vexatious problems of reconditioning because of gamma rays coming from materials lodged in the scale and incrustations inside sea-water piping.

Much has been said as to whether the tests were necessary and their cost justified, even though the cost was less than the value of a single modern battleship. Our considered opinion is that the tests were indispensable. Aside from arguments that scientists might fairly well predict results, and apart from the tremendous value of the precise technical information acquired, the mere holding of the operation under controlled conditions with many observers from all walks of life was of incalculable value to all mankind because the impact of the atom bomb reaches human beings everywhere. And there is no substitute for actual results indisputably to drive home the facts.

The significance of the Bikini tests is clear and powerful. Nevertheless, it has been the universal experience of the United States observers, on returning from Bikini, that people with whom they have discussed the matter have been uncertain as to the significance of the tests and of the atom bomb generally. We have even found many people who are unwilling to talk or think about the subject, saying that it is just too horrible to contemplate. We would like to convince such people, and all people, that the atom bomb not only is horrible, but that it is so terrible that something must be done about it. That something is not to hide our heads in the sand—it is that we must insure ourselves against its use. And that means we must somehow prevent all war in the future.

The facts are very clear, and the best presentation may be merely to list them in simple language.

An atom bomb of the present type, exploding in the air, destroys everything within about one-quarter mile, does very heavy damage to one-half mile, and heavy damage to one mile. Beyond one mile, the degree of damage depends upon the character of structures. Windows and light structures will be shattered at several miles.

An atom bomb of the present type kills practically all the human beings within one-quarter mile, a very high percentage of those within one-half mile, and a great many of those within one mile or more.

The present-type bomb, bursting in the air over New York City, would blow out every window within one or two miles and would knock off most of the roof structures and brick and stone facings of buildings, particularly skyscrapers. Casualties from glass and falling debris would be high. Fires from short circuits, broken gas mains, and other causes would be numbered in hundreds.

The present-type bomb, bursting under the water in

New York City, would destroy subways, and would render uninhabitable for months an area of at least ten square miles. Each seaport city of the country would be similarly exposed.

The atom bomb is not the only new weapon of vastly increased destructiveness. The guided missile, like the German V-1 and V-2, is another.

The power and destructiveness of weapons has been increasing rapidly for the last 100 years. World War I saw the first wide use of high explosives.

World War II achieved vast destruction. Most people of the United States do not realize this. The people of London, Coventry, Rotterdam, Warsaw, Stalingrad, Berlin, Tokio, and Pearl Harbor *do* realize it.

World War II dislocated civilization, and might have almost completely wrecked it through destruction of so much of the economic structure of the world. Perhaps it actually has, because we do not yet see a definite path to peacetime normalcy, particularly in Europe and Asia.

A third World War will be vastly more destructive of both economic structures and of human beings. Since World War II was almost enough to destroy civilization, a vastly worse War III is certain to do so.

There is no defense against the atom bomb or against the guided missile, or, of course, against a combination of the two. Defense has never been perfect against any weapon. Against the atom bomb, unless the defense is perfect, it is no defense. Not one German V-2 missile was shot down of the many that approached London. If two or three of them had had atom bombs in them, London would have become an empty shell.

We have now reached that advanced state of civilization wherein we have made it possible for a few uncontrolled members of our society to destroy or to subjugate the rest of us, before we can do anything about it. The fact is that material development has reached a dangerously high level. We have been settling arguments by force from the beginning of man on earth, but usually the side of moral right has been able to marshal enough might to prevail sooner or later.

Now we have a new situation, and there is no protection left in material things. Forts and trenches have failed, the Maginot Line failed, the English Channel failed, the oceans have failed. New weapons pierce even the stratosphere.

All this has been said before. Indeed, it has been said so many times that the thought has become familiar and has lost its true meaning to many people. This complacency is dangerous. These facts mean that a revolution in human affairs has occurred. Hereafter civilization must struggle not to advance, but actually to survive. These are not mere words, they are elementary truths. All this should be obvious to everyone, and particularly to those men charged with the responsibility of government. There was a time, shortly after Hiroshima and Nagasaki, when leaders were alarmed, and earnestly and humbly sought for the right answer. But they quickly recovered from that lapse from diplomatic protocol, and today we see national and international leaders operating in the old-fashioned way, ignoring the new facts of life.

It is necessary now to avoid not only war, but the threat of war and the necessity of preparations for defense in war. Even these latter, without war itself, would largely destroy our free civilization because of the continuous state of a "war of nerves" existence, and the vast changes required in our economic life. Even a moderate degree of preparation for an atomic war would require huge changes in the American way of life.

In past centuries, despots have often declared sudden war on unwary and unprepared peoples. In our time, we have seen Germany do it twice and Japan once. They did not win merely because their tools were not equal to the job of subduing us before we were able, under the spur of our peril and our righteous wrath, to prepare defensive means and offensive retaliation. It took all the resources of Japan to carry out one Pearl Harbor at a time. Now it is different. Now despotic rulers, minded as were those of Germany and Japan, can overnight deal such crushing blows to another nation or nations that recovery and retaliation will be impossible.

Therefore, it is obvious that the only safety is in

means which will make it impossible for any nation to attack another.

The only possible safe policy for the future must be one which rests on the law and the conscience of man. Nations must be controlled, as we now control states, counties, cities, and individuals.

The people of *no* country want war. Then how do wars come about? In our time, as almost always in the past, they developed from the ambitions of rulers of countries. One of the greatest virtues of an effective democracy is that the actions of its governing group reflect more nearly the wishes of its people. If all rulers had tenure of office limited to a few years, perhaps the urge to war would be reduced toward the vanishing point.

The outstanding need of the moment is to explain these revolutionary facts and conditions to all peoples and rulers of the world. It will take skill and patience to give the required teaching, particularly in countries where the facilities for information dissemination are not good. It will be difficult, because so many have for so long paid so little attention to moral law and conduct among peoples. But it must be done, if life in the future is to be worthwhile, because there is no other way to avoid cataclysmic horror.

We must have world law and order. That is the simple significance of nuclear fission—and of Bikini.

Browder J. Thompson Memorial

In May, 1945, announcement was made of a plan to establish a memorial to the late Browder J. Thompson.¹ In accordance with this plan, arrangements were made to receive contributions to establish a memorial fund. This fund banquet of the I.R.E. Fourth Electron Tube Conference held at Yale University, New Haven, Connecticut, June 27 and 28, 1946.

Now that the memorial is established, the Committee that carried out the plan may be dis-

has subsequently been turned over to the Institute, which has gladly agreed to administer it and to employ the income therefrom to provide an annual award.

By October, 1945. contributions totaling over \$4100 had received,2 been and in November, a check of \$4000 for the Browder J. Thompson Memorial Fund was presented to the Institute.* In January, 1946, arrangements were completed to make the initial award at the summer **Electronics** Conference.4

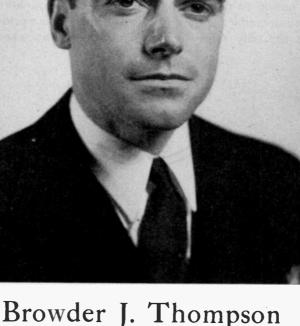
The first Browder J. Thompson Memorial Prize was presented to Dr. Gordon M. Lee⁵ during the

¹ PROC. I.R.E., vol. 33, pp. 336-337; May, 1945.

^a PROC. I.R.E., vol. 33, p. 902; December, 1945.

- * PROC. I.R.E. AND WAVES AND ELECTRONS, vol. 34, p. 43-W; January, 1946.
- PROC. I.R.E. AND WAVES AND ELECTRONS, vol. 34, p. 203-W; April, 1946.
- * PROC. I.R.E. AND WAVES AND ELECTRONS, vol. 34. p. 466; July, 1946.

The Institute of Radio Engineers hereby acknowledges receipt of \$5001.03 from friends of the late Browder J. Thompson.


Signed WILLIAM C. WHITE Treasurer Institute of Radio Engineers

banded. As a matter of record, the following statements showing the contributions to the fund and the manner of their disposition are presented. Any future contributions 'should be made directly to the Institute. Signed

R. R. LAW Secretary, Memorial Committee

Princeton, N. J. September 6, 1946

The Princeton Bank and Trust Company, Princeton, New Jersey, hereby certifies that a total of \$5001.03 has been deposited in the account "Browder J. Thompson Memorial Fund." Signed HANN M. THOMAS President, Princeton Bank and Trust Co.

1903-1944

This fund shall be administered by the Institute in accordance with the provisions outlined in the following specifications:

Specifications for the Browder J. Thompson Memorial Prize

In tribute to the late Browder J. Thompson, who gave his life in service to his country, friends have established a Memorial to commemorate his interest in science and his many contributions in the field of radio and electronics. In view of his long and intimate association with The Institute of Radio Engineers, contributions of friends were turned over to the Institute, which gladly agreed to administer the fund and to employ the income therefrom to provide an annual award.

This award shall be known as the Browder J. Thompson Memorial Prize. Its purpose shall be to stimulate research in the field of radio and electronics and to provide incentive for the careful preparation of papers describing such research. The award shall be made annually to the author or joint authors under thirty years of age at date of submission of original manuscript (in case of joint authorship, all authors shall be under thirty years of age at date of submission of original manuscript) for that paper of sound merit recently published in the Technical Publications of The Institute of Radio Engineers which, in the opinion of the Awards Committee of the Institute, constitutes the best combination of technical contribution to the field of radio and electronics and presentation of the subject. The Memorial Fund, accumulated from contributions of friends of the late B. J. Thompson, shall be turned over to the I.R.E. and administered by the Investments Committee of the Institute. The annual prize in any particular year shall consist of the approximate amount of the annual income received from this Fund. The Investments Committee of the Institute will determine from time to time the amount of the average annual income so as to avoid undue fluctuations from year to year due to variations in rate of income, defaults in interest payments, back-interest payments, etc. In case the Awards Committee finds that, in any one year, there is no author or paper meeting the requirements for that year's Award, the Award for that particular year may be postponed until such time as the Awards Committee determines upon a suitable recipient, or the income may be used for increasing the amount of the Award over a suitable period of years.

The foregoing specifications are intended to provide for the normal administration of the award. If there arise unusual conditions or emergencies such as those which would involve suspension of publication, delayed appreciation of the value of a particular contribution, or secrecy restrictions which make it impossible for an author to submit manuscript in a normal manner, the Awards Committee may, at their discretion, depart from a strict intrepretation of the conditions "recent" and "under thirty years of age at date of submission of original manuscript."

Furthermore, in the event that the specific provisions of this gift shall, in the opinion of the Board of Directors of the Institute, have become inapplicable to meet changed conditions of the future, the Board of Directors of the Institute may modify the provisions of the Award in such manner as to best carry out the spirit intended by those who contributed to the Fund.

Signed

F. B. LLEWELLYN

President, Institute of Radio Engineers

A Microwave Relay System^{*}

LELAND E. THOMPSON[†], SENIOR MEMBER, I.R.E.

Summary-A method of double-frequency modulation suitable for long-distance transmission of multichannel signals by means of radio-relay stations is described. Propagation, radio-frequency bandwidth, and radio-frequency power are discussed briefly. The signalto-noise ratio and distortion of the system are shown by theory and experiment. An experimental circuit between Philadelphia and New York is described and the results are given.

INTRODUCTION

THE DEVELOPMENT of microwave power generation and radiation during the war advanced so far that it now seems economically possible to transmit multichannel telephone and telegraph signals over long distances by means of relay stations spaced from 25 to 50 miles apart. Such services require a high degree of reliability. Interruptions due to interference and propagation failures should be entirely absent.

The microwave region from 2000 to 10,000 megacycles is particularly well suited for such transmissions. In this frequency range the received signal over a propagation path only slightly above grazing is near the free-space value.1 Interference from a station on the same frequency channel at a much greater distance away than the desired station, even under conditions of unusual propagation and without the help of the directivity of the antennas, is considerably reduced just because the distance to the interfering station is greater than that to the desired station. This is a more favorable condition than on lower frequencies where, for example, on 40 to 100 megacycles the received signal at a distance of 25 miles over a propagation path slightly above grazing would be considerably below the freespace value and an interfering signal from a greater distance may be so much nearer the free-space value that, with the same transmitted power, it is actually stronger than the desired signal under unusual propagation conditions.

This more favorable propagation characteristic of microwave frequencies together with sharply directional antennas provides a much greater opportunity to use the same frequency channel over and over again than was ever possible on lower frequencies.

It is well known that frequency modulation with a large deviation ratio provides a gain in signal-to-noise ratio at the expense of increased bandwidth.^{2,3} In other

words, for a given signal-to-noise ratio, less radiofrequency power is required than in an amplitudemodulation system, or in a frequency-modulation system with a low deviation ratio. In addition to the economy of a low-power system, there is the advantage of the greater possibility of using the same frequency channel over and over even in the same local geographical area, because of the interference-suppression effect of frequency modulation.

For example, assume that in a terminal station in a metropolitan area, which is the terminating point of several microwave relay circuits, each relay circuit is a two-way circuit and that each radiates from the terminal station in a different direction. All the receivers at the terminal station may use one common frequency channel and all the transmitters may use a second one. Interference between the different circuits would be eliminated by the directivity of the antennas and by the interference suppression of frequency modulation. With an amplitude-modulation system, or any system which would depend on the antenna directivity alone for interference elimination, such common use of one frequency channel would not be practical, at least not with the antenna designs in use at the present time. In this case, although the frequency band required for each of the circuits would be smaller, each circuit would require a separate frequency channel. Probably a total frequency spectrum greater than that used when all the circuits can operate on a common frequency channel would be required.

It is evident that bandwidth alone is not a measure of the "space" required by a particular system. The type of modulation and the amount of radio-frequency power used are of great importance in efficient use of the spectrum.

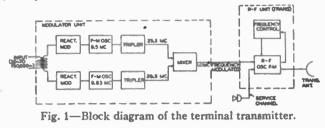
THE DOUBLE-FREQUENCY-MODULATION SYSTEM

The ability to modulate, relay, and demodulate a number of simultaneous signal channels without objectionable noise or cross talk is as important as the ability to generate and to radiate radio-frequency power. This system of modulation makes use of frequency separation of the various signal channels. The modulation range is from 30 cycles to 150 kilocycles. Any of the systems of channeling used on long wire-line telephone⁴ and telegraph⁵ systems may be used.

The intelligence or signaling band of frequencies is used to frequency-modulate or phase-modulate a subcarrier to 1.0 megacycle. The modulated subcarrier then frequency-modulates the radio-frequency carrier.

^{*} Decimal classification: R480×R310. Original manuscript received by the Institute, May 9, 1946; revised manuscript received, July 26, 1946.

[†] RCA Victor Division, Radio Corporation of America, Camden, New Jersey. ¹ C. W. Hansell, "Radio-relay-systems development by the Radio


Corporation of America," PROC. I.R.E., vol. 33, pp. 156-168; March,

^{*} Edwin H. Armstrong, "A method of reducing disturbances in radio signaling by a system of frequency modulation," PRoc. I.R.E., vol. 24, pp. 689-740; May, 1936.
 ^a Murray G. Crosby, "Frequency modulation noise characteristics," PRoc. I.R.E., vol. 25, pp. 472-514; April, 1937.

⁴ B. W. Kendal and H. A. Affel, "A twelve-channel carrier tele-phone system for open-wire lines," *Bell Sys. Tech. Jour.*, vol. 18, pp. 119-142; January, 1939.

⁸ F. B. Bramhall and J. E. Boughtwood, "Frequency-modulated carrier telegraph system," *Trans. A.I.E.E.* (Elec. Eng., January, 1900), vol. 61, pp. 36-39; January, 1942.

A pre-emphasis network is used to increase the deviation of the subcarrier to approximate linearity with increasing modulating frequency between 10 and 150 kilocycles, so that the signal-to-noise ratio on all of the channels will be the same. Below 10 kilocycles, preemphasis does not take place. Above 10 kilocycles the modulation is more correctly called phase modulation, since the deviation increases with modulating frequency.

The method of generating and modulating the subcarrier is shown in Fig. 1. Two oscillators are frequency-modulated by two reactance-modulator tubes. Each oscillator output is coupled to a tripler stage, and the outputs of the two tripler stages couple to a mixer stage. The plate circuit of the mixer stage is tuned to the frequency difference between the frequencies of the two input voltages. The input modulating voltage is fed in push-pull fashion to the grids of the reactance modulators. The output frequency swing of the 1.0-megacycle subcarrier is, because of the action of the tripler stages, three times the sum of the swings produced by the two modulators. The maximum frequency swing of the subcarrier is plus and minus 400 kilocycles.

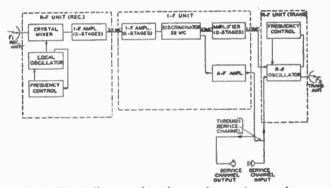


Fig. 2-Block diagram of a relay receiver and transmitter.

The microwave unit of the transmitter uses a reflex oscillator.⁶ A relatively low-power oscillator tube has been used in the experimental system. The modulated subcarrier is coupled to the repeller electrode circuit of the oscillator tube to produce the frequency modulation of the microwave carrier. The frequency swing is plus and minus 2.0 megacycles.

The frequency control consists of a high-Q cavity circuit which stabilizes the frequency of the oscillator by means of an automatic-frequency-control circuit.

At a relay station the signal is received by a superheterodyne receiver with an intermediate frequency of

⁶ J. R. Pierce, "Reflex oscillators," PROC. I.R.E., vol. 33, pp. 112-118; February, 1945. 32 megacycles and a bandwidth of 4 megacycles. Fig. 2 is a block diagram of a relay receiver and transmitter. The last limiter in the intermediate-frequency amplifier connects to a 32-megacycle discriminator which has a frequency range from audio frequencies up to about 1.5 megacycles. The frequency-modulated subcarrier output of the discriminator is amplified by a two-stage amplifier and limiter with interstage-coupling circuits broadly tuned to 1.0 megacycle. The output of this amplifier is coupled to the repeller-electrode circuit of the relay-transmitter oscillator and thus frequencymodulates the relay transmitter.

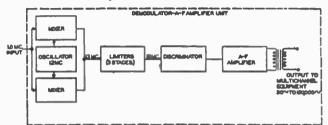


Fig. 3-Block diagram of the demodulator used at a terminal station.

At a terminal receiving station, the output circuit of the subcarrier amplifier connects to a second demodulator. The circuits of the demodulator are shown in block-diagram form in Fig. 3. By the use of an oscillator and a balanced mixer circuit, the 1.0 megacycle subcarrier is changed to a frequency of 13.0 megacycles. A three-stage limiter is used before the final discriminator, which operates at the center frequency of 13.0 megacycles.

The modulation characteristic of the transmitter oscillator as well as of the 32-megacycle discriminator need not be linear because the modulation applied to the oscillator and the output voltage of the discriminator are the subcarrier wave, and this is a frequencymodulated wave and not subject to any harmful effects by passing through nonlinear circuits.

A comparatively simple system of relaying is thus provided, since the relay-transmitter radio-frequency circuits contain a single tube, the reflex oscillator.

For successful operation and maintenance of a relay system consisting of a number of relay stations that are normally unattended, a means of communication from a terminal station to any relay station, and also between any two relay stations, is very desirable. A means of locating failures in the system from a terminal station is almost a necessity for prompt repair and servicing. This service channel is provided by frequency-modulating the transmitter oscillator directly with audio frequencies in addition to the subcarrier modulation.

At each relay station, this audio frequency is separated from the subcarrier at the 32-megacycle discriminator and then applied again to the outgoing transmitter oscillator. A microphone and headphone are connected in this circuit at each relay station. This service channel also provides the necessary circuit for the signals which locate failure. The radio-frequency circuit components of the experimental equipment are illustrated in Fig. 4. The antenna is shown at the top. The transmitter oscillator appears at the lower left. These components were de-

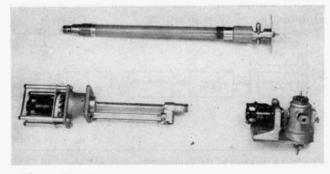


Fig. 4-Experimental radio-frequency circuit components.

signed for a frequency range of 3000 to 3300 megacycles. The concentric-line output of the oscillator tube is capacitance-coupled to a section of concentric line containing two sliding insulator sections, each a quarterwavelength long. By adjusting the position of the two insulators, the oscillator tube is matched to the transmission line and antenna. At the lower right in Fig. 4 is shown the receiver oscillator and mixer unit. The output of the oscillator tube couples to a quarter-wave concentric-line resonant circuit by means of a capacitance probe. A small loop couples the antenna to the resonant circuit across which the crystal rectifier is connected. The output terminal shown at the top of the unit connects to the intermediate-frequency amplifier.

SIGNAL-TO-NOISE RATIO

The received-carrier-to-noise ratio depends on a number of factors. First, the propagation path should be clear of any obstructions such as hills, trees, etc. The other factors determining the received-carrier-to-noise ratio are transmitter power, diameter of the antenna reflector, wavelength, distance, receiver bandwidth, and receiver noise factor. The value of the carrier-tonoise ratio may be calculated for these latter factors from the formulas given by Hansell.¹

With either frequency modulation or amplitude modulation the signal-to-noise ratio at the output of the receiver is not the same value as the carrier-to-noise ratio before the last detector; this is the case if the bandwidth of the intermediate-frequency-amplifier circuits is greater than twice the frequency-response range of the audio circuits. The signal-to-noise ratio is improved by a factor that is determined by the bandwidth reduction. In the case of amplitude modulation the equation for signal-to-noise ratio (S/N) is

$$\left(\frac{S}{N}\right)_{AM} = M \sqrt{\frac{BW}{2f_a}} \frac{C}{N}$$
(1)

where (BW) is the intermediate-frequency bandwidth, f_e is the audio-frequency bandwidth, M is the modulation factor, C is the carrier voltage, and N the noise voltage ahead of the last detector. When the frequencymodulation improvement factor³ is applied to (1), the equation for the signal-to-noise ratio with frequency modulation is

$$\left(\frac{S}{N}\right)_{PM} = \sqrt{3} D \sqrt{\frac{(BW)}{2f_a}} \frac{C}{N}$$
(2)

where D is the ratio between the frequency deviation and the highest modulating frequency.

The signal-to-noise ratio equations for the doublefrequency-modulation system are derived in the appendix. The equation for the first or audio-frequency channel is

$$\left(\frac{S}{N}\right)_{DFM} = \frac{\sqrt{3}}{\sqrt{2}} D_1 D_2 \sqrt{\frac{BW}{2f_a}} \frac{C}{N}$$
(3)

where D_1 is the ratio between the frequency swing of the carrier and the subcarrier frequency, and D_2 is the ratio between the frequency deviation of the subcarrier by the audio frequencies and the highest audio frequency of this channel.

The signal-to-noise ratio equation for the carrier channels above the audio channel, where the subcarrier is phase modulated, is

$$\left(\frac{S}{N}\right)_{FPM} = \frac{1}{\sqrt{2}} D_1 D_2 \sqrt{\frac{BW}{2f_a}} \frac{C}{N}$$
(4)

where D_{\bullet} is the ratio between the frequency deviation of the subcarrier by any one channel and the midfrequency of this channel and f_a is the band-width of this signal channel. It is assumed in all of the above cases that the carrier-to-noise ratio is above the threshold value and that the total frequency swing of the subcarrier by all of the signal channels does not exceed the linear range of the subcarrier modulator and demodulator.

DISTORTION

Cross talk in a multichannel modulation system depends on the distortion in the system. The sources of distortion in frequency modulation are the amplitude nonlinearity of the modulator and the demodulator as well as the nonlinear phase characteristics of the circuits between the modulator and the demodulator.

Measurements of the distortion in this system with the modulator connected directly to the demodulator are shown by the curve in Fig. 5.

The second source of distortion, nonlinear phase characteristics of tuned circuits, is an important factor in a relay system composed of a large number of relay stations. Both Roder⁷ and Jaffe⁸ show that this distortion

⁷ H. Roder, "Effects of tuned circuits upon a frequency-modulated signal," PROC. I.R.E., vol. 25, pp. 1617-1647; December, 1937.

⁸ David Lawrence Jaffe, "A theoretical and experimental investigation of tuned-circuit distortion in frequency-modulation systems," PROC. I.R.E., vol. 33, pp. 318-333; May, 1945.

is high, even in one circuit, when the frequency swing is near or greater than the bandwidth of the tuned circuit and when the modulating frequency is a high audio frequency. The distortion reduces rapidly with a reduction of frequency swing. However, distortion is still a serious factor when a large number of tuned circuits are used, as in a long relay system.

The nonlinear phase characteristic of the receiver intermediate-frequency-amplifier circuits will first be considered. The action of these circuits on the signal frequencies is of the greatest importance because of the relatively large number of such circuits in the system. It was determined in the experimental system that tuning all these circuits to one side or the other of resonance did not produce a measurable change in the over-all distortion. Also it was found that the over-all distortion did not change with the percentage modulation (or frequency swing) of the carrier. It was concluded that the intermediate-frequency-amplifier circuits are not an important source of distortion in this double-frequency-modulation system.

The subcarrier amplifier and limiter tuned circuits are a source of distortion. By making these circuits sufficiently broad in frequency response, a satisfactory phase characteristic can be obtained such that a large number of relay stations may be used. An advantage of such low-Q circuits is that they are relatively stable under normal changes of temperature and humidity, and thus make practical the use of phase-corrective networks should they be necessary in an extremely long relay system.

COMPARISON WITH SINGLE FREQUENCY MODULATION

It is reasonable to compare the signal-to-noise ratios of this system with a single-frequency-modulation system on the basis of equal transmission bandwidths and equal transmitted powers. Both systems can be designed for any given bandwidth and power, within practical limits.

Comparing (2) for frequency modulation with (3) for double frequency modulation, assuming equal bandwidths, power, and modulating frequencies,

$$\frac{\left(\frac{S}{N}\right)_{FM}}{\left(\frac{S}{N}\right)_{DFM}} = \frac{\sqrt{2}D}{D_1D_2}$$
(5)

gives the ratio of the signal-to-noise ratios of the two systems. Assuming values for D_1 and D_2 according to the system described, D_1 is equal to 2 and the ratio of D to D_2 is 5, since the maximum frequency swing of the subcarrier is 400 kilocycles and the maximum frequency swing for a frequency-modulation system with a bandwidth of 4.0 megacycles would be 2.0 megacycles. The single-frequency-modulation system has a greater signal-to-noise ratio by a factor of 3.5, or about 11 decibels.

In the case of the single-frequency-modulation system,

the modulation on the carrier passing through the intermediate-frequency circuits of the receivers is the signaling frequency. To maintain a sufficiently low value of cross talk due to nonlinear phase distortion, it is probable that the full peak-to-peak deviation equal to the bandwidth could not be used, and the signal-to-

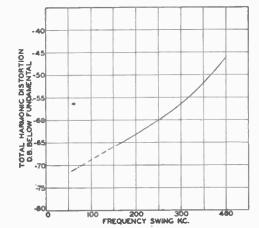


Fig. 5-Over-all distortion of the modulator and demodulator units.

noise ratio would therefore be reduced. Another factor to be considered in the single-frequency-modulation system (assuming relaying is accomplished without demodulation at the relay stations) is the frequency instability of the transmitters. The instability adds up along the system. That is, the frequency of the received carrier at the final receiver in the chain depends not only on the last transmitter, but on all of the transmitters and all of the receiver oscillators in the chain. A suitable allowance for frequency drift would reduce the permissible peak frequency swing.

While these results have indicated reasons for choice of the double-frequency-modulation system, it is difficult to make an exact comparison at the present time. The normal progress of development will make a more conclusive comparison possible in the future. However, the experimental results described below tend to confirm the correctness of these conclusions.

EXPERIMENTAL RESULTS

An experimental two-way circuit constructed between Philadelphia and New York City was placed in operation in April, 1945. The location of this circuit is shown on the map of Fig. 6. Two relay stations are used, one near Bordertown, New Jersey, and the other near New Brunswick, New Jersey, at a site named Ten Mile Run.

The photograph of Fig. 7 shows the tower with antenna reflectors at the Bordentown relay station. The Ten Mile Run station is similar. The towers are 100 feet in height. The experimental equipment was placed in the enclosure at the top of each tower. The design of later models permits the installation of most of the equipment at ground level, with the transmitter oscillator, receiver oscillator, mixer, and first amplifier located near the antennas.

The facilities for the installation of the terminal stations at both Philadelphia and New York were made available by the Western Union Telegraph Company, the Engineering Department of which organization cooperated in the field tests of the circuit.

The frequencies used in the experimental tests are near 3300 megacycles. Two frequency channels are

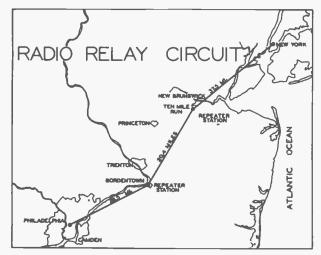


Fig. 6-Location of stations in the experimental circuit.

used for the complete two-way circuit. At each relay station the transmitters in both directions are on the same channel frequency, and the receivers in both directions operate on the other channel frequency.

The transmitter power is approximately 0.1 watt. The antenna parabolic reflectors are 4 feet in diameter. This dimension gives an antenna gain of about 30 decibels and an angular beam width of about 5.5 degrees at the half-power points. The antennas are dipoles fed by concentric transmission lines.

The propagation path between Philadelphia and Bordentown is sufficiently clear above hilltops to allow a geometrically unobstructed path above trees of normal height. The distance is 26.5 miles. The path of the link between Bordentown and Ten Mile Run is well above trees and other obstructions. The distance of this link is 20 miles. The propagation path between Ten Mile Run and New York is not sufficiently clear of the terrain to allow for trees and buildings near the center of the path. The distance is 37.5 miles.

The received-carrier-to-noise ratio was measured over each link of the circuit under normal weather conditions when the received signals were constant. The value of this ratio measured on the Ten Mile Run to New York link was 20. Between Ten Mile Run and Bordentown the ratio was 90, and between Bordentown and Philadelphia the ratio was 68.

To obtain an experimental confirmation of the signalto-noise ratio of (3), a measurement was made under the following conditions. The subcarrier circuit on the New York receiver was connected directly to the transmitter to form a relay station, so that a one-way loop circuit of 168 miles in length was obtained with the transmitting and receiving ends of the circuit in Philadelphia. Measurements were made at audio frequencies with a filter on the receiver output with a noise band of 15 kilocycles. A modulating frequency of 1000 cycles was used with a swing of 60 kilocycles on the subcarrier.

The signal-to-noise root-mean-square voltage ratio measured about 1000, or 60 decibels. From (3) the calculated value is 67 decibels, with the carrier-to-noise ratio of 20 obtained on the lowest signal link in the circuit. There were two such links of about equal strength and therefore 3 decibels should be subtracted from this

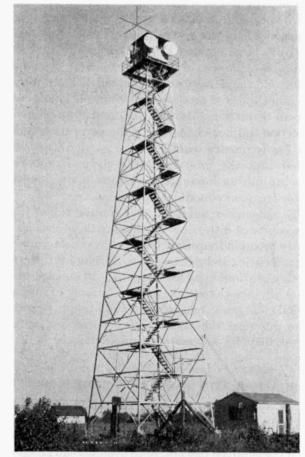


Fig. 7-Relay station near Bordentown, New Jersey.

calculated figure, giving a value of 64 decibels. The noise contributions of the links having the stronger received signals would be small by comparison and were neglected. Other tests made over a single link checked the theoretical value to about the same degree.

The distortion over the circuit, measured at a modulation frequency of 200 cycles and a frequency swing of 240 kilocycles on the subcarrier, was about 0.1 per cent, or 60 decibels below the audio signal. This is about the same value as was measured with the modulator unit connected directly to the demodulator and not going through the radio circuit, as is shown in the data of Fig. 5.

The distortion increased with modulating frequency, and at 5000 cycles and a frequency swing of 240 kilocycles, the distortion was 0.7 per cent. This measurement showed the effect of the nonlinear phase characteristic of the subcarrier circuits. Although the frequency swing of 240 kilocycles is very much more than would be used normally with a modulation component at 5000 cycles, the measurement indicated that such distortion can be serious at higher modulation frequencies.

In co-operation with the Engineering Department of the Western Union Telegraph Company, practical tests were made with the use of two carrier telephone channels, about 50 teleprinter channels, a slow-speed tape-facsimile channel, and an audio channel with a fidelity of 30 cycles to 10,000 cycles. This combined modulation extended to a frequency of about 50 kilocycles. Listening tests showed cross talk and noise to be at an acceptably low level. The operation of the teleprinter channels was satisfactory, with no errors noted during the period of the tests on the single printer that was used at the radio terminal.

Propagation records were made over this circuit for about nine months. Generally the results show quite satisfactory performance with the power of 0.1 watt. It is proposed to conduct further tests at greater distances. These tests may indicate that, with sufficient propagation path clearance, distances of 50 to 60 miles may be practical with this low value of power.

The noise level of the circuit was apparently determined entirely by receiver noise. Both terminal receivers are in locations where the noise level caused by electrical machinery is very high at the receiver intermediate frequency of 32 megacycles. Proper grounding and shielding of the intermediate-frequency circuits was necessary to prevent noise from being introduced directly into the intermediate-frequency amplifier.

CONCLUSION

From both a theoretical and a practical viewpoint, the system of radio relaying described is sufficiently promising for multichannel voice and telegraph communication to warrant further development and an extension of the test circuit. Such work is now in progress.

ACKNOWLEDGMENT

The author wishes to acknowledge the help of a large number of co-workers in the course of this work. The support and guidance of John B. Coleman and Donald S. Bond is particularly appreciated. The help of F. C. Collings and his group in the early development stage and of G. Gerlach and his group in the later field-test stage contributed materially to the development. The early experience in the microwave field of N. I. Korman and C. G. Sontheimer was of particular value in the course of this work.

The support and interest in the development shown by F. E. d'Humy and H. P. Corwith of the Western Union Telegraph Company is very much appreciated. In particular, the assistance of F. B. Bramhall, J. Z. Miller, and W. B. Sullinger, J. E. Boughtwood, and M. Cantor of the Engineering Department of that company contributed materially to the success of the tests.

2

APPENDIX

Consider the signal and noise at the first frequencymodulation detector in the receiver. If the frequency-

modulation peak-to-peak swing of the carrier by the subcarrier wave before detection is equal to the intermediate-frequency bandwidth, the amplitude of the subcarrier after detection is the same as the amplitude of the carrier ahead of the detector, if the efficiency of the frequency-modulation detector is 100 per cent. Crosby⁸ has shown that, if sufficient limiting is used, the efficiency of the detector does not change the output signal-to-noise ratio, both the signal and the noise being reduced with a detector of low efficiency. It is then permissible to assume an efficiency of 100 per cent.

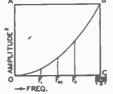


Fig. 8—Amplitude-modulation and frequency-modulation receiver noise-power spectra.

In Fig. 8, the rectangle OABC represents the average noise-power output of an amplitude-modulation detector, and the area OBC represents the average noisepower output of a frequency-modulation detector. Crosby³ has shown that the ratio of these two values of power is 3 to 1. This result is found by a comparison of the squared ordinate areas of the two noise-voltage spectra. Similarly, the area OBC compared to the area under the curve between F_1 and F_2 , is as the squared ordinate areas, and the power ratio is

$$\frac{\int_{0}^{(BW/2)} F^2 dF}{\int_{F_1}^{F_2} F^2 dF} = \frac{\left(\frac{BW}{2}\right)^3}{F_2^3 - F_1^3} .$$
 (6)

The subcarrier-to-noise root-mean-square voltage ratio following the first frequency-modulation detector, considering only noise between F_1 and F_2 , is then

$$\frac{C_{ss}}{N} = \sqrt{3} \ M \sqrt{\frac{\left(\frac{BW}{2}\right)^{3}}{F_{2}^{3} - F_{1}^{3}}} \frac{C}{N}$$
(7)

where C/N is the carrier-to-noise ratio in the intermediate-frequency amplifier ahead of the detector and M is the amount of frequency swing compared to the bandwidth and is equal to 1 at a frequency swing equal to half the bandwidth.

Following the second frequency-modulation detector, the signal-to-noise ratio improves over that ahead of the detector by the well-known factor $\sqrt{2}$ times the deviation ratio, and also because of a bandwidth reduction produced by the channel audio-frequency filter following the detector. The signal-to-noise ratio following this filter is

$$\frac{S}{N} = \sqrt{3} D_2 \sqrt{\frac{F_2 - F_1}{2f_a}} \frac{C_{eg}}{N}$$
(8)

where f_a is the audio band of the filter.

1946

Substituting (7) and (8)

$$\frac{S}{N} = 3MD_2\sqrt{\frac{F_2 - F_1}{2f_a}}\sqrt{\frac{\left(\frac{BW}{2}\right)^3}{F_2^3 - F_1^3}}\frac{C}{N} \qquad (9)$$

$$\frac{3}{N}D = \frac{M\left(\frac{BW}{2}\right)}{\sqrt{(BW)}}C$$

$$=\frac{1}{\sqrt{2}}D_{2}\frac{1}{\sqrt{F_{2}^{2}+F_{1}F_{2}+F_{1}^{2}}}\sqrt{\frac{(DN)}{2f_{a}}}\frac{C}{N}\cdot$$
 (10)

Equation (10) gives the signal-to-noise ratio of the first audio-frequency channel with a filter passing frequencies up to f_a . If F_1 and F_2 approach F_{sc} , the frequency of the subcarrier,

$$\frac{M\left(\frac{BW}{2}\right)}{\sqrt{F_{2}^{2} + F_{1}F_{2} + F_{1}^{2}}} = \frac{M\left(\frac{BW}{2}\right)}{\sqrt{3}F_{sc}} = \frac{1}{\sqrt{3}}D_{1} \quad (11)$$

where D_1 is the ratio of the deviation of the carrier by the subcarrier. Equation (10) then becomes

$$\left(\frac{S}{N}\right)_{DFM} = \frac{\sqrt{3}}{\sqrt{2}} D_1 D_2 \sqrt{\frac{BW}{2f_a}} \frac{C}{N} .$$
(3)

In the system described, F_1 is equal to 600 kilocycles and F_2 is equal to 1400 kilocycles, and the error in using (3) instead of (10) is

$$\frac{\sqrt{1.4^2 + 0.6 \times 1.4 + 0.6^2}}{\sqrt{3} \times 1} = \frac{\sqrt{3.16}}{\sqrt{3}} = 1.03.$$
(12)

It is not necessary to use a band-pass filter in the subcarrier circuits to eliminate noise components below F_1 and above F_2 , as these components produce noise in the receiver output circuits beyond the modulation range and are eliminated by the channel filters.

Similarly, the signal-to-noise ratio in any band of modulation frequencies between F_3 and F_4 at the output of the second frequency-modulation detector is

$$\frac{S}{N} = \sqrt{3} M_1 \sqrt{\frac{\left(\frac{F_2 - F_1}{2}\right)^8}{F_4^8 - F_8^8}} \frac{C_{so}}{N}$$
(13)

$$=\sqrt{3}\,M_1\frac{\left(\frac{1}{2}\right)}{\sqrt{F_4^2+F_3F_4+F_8^2}}\sqrt{\frac{F_2-F_1}{2(F_4-F_8)}}\,\frac{C_{sc}}{N} \tag{14}$$

where M_1 is the amount of frequency swing of the subcarrier compared to the bandwidth of the subcarrier circuits and is equal to 1 at a frequency swing equal to $(F_2 - F_1)/2$.

If F_3 and F_4 approach the mid-channel frequency, F_m ,

$$M_{1} \frac{\left(\frac{F_{2} - F_{1}}{2}\right)}{\sqrt{F_{4}^{2} + F_{3}F_{4} + F_{3}^{2}}} = \frac{M_{1}\left(\frac{F_{2} - F_{1}}{2}\right)}{\sqrt{3}F_{m}} = \frac{1}{\sqrt{3}}D_{3} (15)$$

where D_{3} is the ratio between the deviation of the subcarrier by the frequencies between F_3 and F_4 and the mid-channel frequency, F_m . Equation (14) then becomes

$$\frac{S}{N} = D_3 \sqrt{\frac{F_2 - F_1}{2(F_4 - F_3)}} \frac{C_{sc}}{N}$$
(16)

$$= D_{3} \sqrt{\frac{F_{2} - F_{1}}{2f_{a}}} \frac{C_{se}}{N}$$
(17)

where f_a is the bandwidth of any channel above the audio channel. The error introduced by the use of (15) is very small. For example, the error in calculating a channel of 4 kilocycles between 18 and 22 kilocycles would be 0.16 per cent.

Substituting equation (7) in (17) in the same manner as it was substituted in (8), it is found that

$$\left(\frac{S}{N}\right)_{FPM} = \frac{1}{\sqrt{2}} D_1 D_3 \sqrt{\frac{\overline{(BW)}}{2f_a}} \frac{C}{N} .$$
(4)

Noise-Figure Reduction in Mixer Stages*

M. J. O. STRUTT[†], SENIOR MEMBER, I.R.E.

Summary—This paper presents some aspects of random noise reduction in mixer stages connected with the application of proper circuit design and feedback, taking into account the intercorrelation of noise components. The noise figure of diode mixer stages is derived from their basic operational data. Conditions conducive to optimal gain are shown to be coincident with those of minimum noise, the diode's contribution approaching zero in the most favorable case. The noise of triode and multigrid mixer stages is shown to be reducible to the value for a comparable triode amplifier stage by the application of proper feedback. In some cases this reduction amounts to 15 decibels or more. Oscillator noise and push-pull stages are discussed.

T IS GENERALLY recognized that noise in mixer stages is in many cases relatively higher than in comparable amplifier stages at proper operation.1-8 This often prohibits the use of such mixer stages at the entrance of receivers aiming at a particularly high sensitivity. On the other hand, this use is often desirable from the point of view of receiver design, as it promotes

I. INTRODUCTION

December

^{*} Decimal classification: R261.51. Original manuscript received by the Institute, January 2, 1946; revised manuscript received, May 7, 1946; second revision received, September 4, 1946.

[†] Eindhoven, Holland.

¹ E. W. Herold, "Superheterodyne converter system considera-tions in television receivers," *RCA Rev.*, vol. 4, pp. 324–337; 1940. ³ E. W. Herold, "The operation of frequency converters and mixers for superheterodyne reception," PROC. I.R.E., vol. 30, pp. 84– 103. Echnogram 1042 103; February, 1942. ⁸ M. J. O. Strutt, "Mixing valves," Wireless Eng., vol. 12, pp. 59-

^{64;1935.}

Several definitions of noise figures have been proposed in recent years4-12 aiming at the provision of an adequate measure of the noise of reception stages. We shall make use here of a figure proposed recently by H. T. Friis^{6,10} and bearing a close relation to one proposed and used earlier by K. Fraenz,4,5 and by W. Kleen.8 It starts from the definition of the noise ratio at the output of a stage as the ratio of available noise power to available signal power. The noise figure F is then defined as the ratio of the noise ratio of the stage's output terminals to the noise ratio at the output terminals of the preceding stage.

A different relative measure, useful at radio frequencies, is the equivalent noise resistance of a stage.7,18,14 This is a resistance which, at room temperature, causes a noise voltage at its terminals, equal to the equivalent noise voltage at the stage's input terminals. The latter creates an available noise power at the output terminals of the now noise-free stage equal to that due to the real stage itself with its input terminals short-circuited. We shall refer to this noise resistance in section IV.

II. DIODE MIXER STAGES AT RADIO FREQUENCIES

Referring to recent publications on diode mixer stages11.16-17 we shall describe their operation, disregarding image and other spurious responses, by a set of fourterminal equations

$$I_{in} = S_0 V_{in} - S_1 V_{out},$$

$$I_{out} = S_1 V_{in} - S_0 V_{out}.$$
(1)

In (1), I in represents the input current of angular fre-

K. Fraenz, "On the limit of sensitivity at the reception of short waves and its attainability" (in German), Elek. Nach. Tech., vol. 16,

pp. 92-96; 1939.
⁶ K. Fraenz, "Measurements of receiver sensitivity at ultra-short waves" (in German), Zeit. Hoch. und Elek., vol. 59, pp. 105-112, pp.

waves" (in German), Zeit. Hock. und Elek., vol. 59, pp. 105-112, pp. 143-144; 1942.
H. T. Friis, "Noise figures of radio receivers," PROC. I.R.E., vol. 32, pp. 419-423, 729; July, 1944.
T. W. Herold and L. Mautner, "The signal-to-noise ratio of radio receivers," PROC. I.R.E., vol. 31, pp. 501-510; September, 1943.
W. Kleen, "Gain and sensitivity of ultra-short and decimeter wave reception valves" (in German), Die Telefunkenröhre, number 23, pp. 273-296; 1941.
D. K. C. MacDonald, "A note on two definitions of noise figure in radio receivers," Phil. Mag., vol. 35, pp. 386-395; 1944.
D. O. North and H. T. Friis, Discussion on "Noise figures of radio receivers," PROC. I.R.E., vol. 29, pp. 49-50; February, 1945.
H. Rothe and W. Kleen, "Electron Valves as Entrance-Stage Amplifiers" (in German), diode mixers, pp. 231-235, noise figures,

Amplifiers" (in German), diode mixers, pp. 231-235, noise figures,

pp. 330-336; Alcademischer Verlag, Leipzig, 1944, second edition. ¹³ M. J. O. Strutt and A. van der Ziel, "Reduction of the effects of spontaneous fluctuations in amplifiers for meter and decimeter waves" (in German), Physica (Hague), vol. 9, pp. 1003-1012; 1942;

waves (in German), *Instance* (Hague), vol. 2, pp. 1000 1011, 2121, vol. 10, pp. 823-826; 1943.
¹³ M. J. O. Strutt, "Modern Short Wave Reception Technique" (in German), Springer, 1939.
¹⁴ B. J. Thompson, D. O. North, and W. A. Harris, "Fluctuations "

in space charge limited currents at moderately-high frequencies, In space charge limited currents at moderately-high frequencies," RCA Rev., Part I, vol. 4, pp. 269-285; 1940; Part II, vol. 4, pp. 441-472; 1940; Part III, vol. 5, pp. 214-260; 1940; Part IV, vol. 5, pp. 371-388; Part V, vol. 6, pp. 114-124, 505-524; 1941. ¹⁰ E. W. Herold and L. Mautner, "Frequency mixing in diodes," PROC. I.R.E., vol. 31, pp. 575-581; October, 1943. ¹⁰ E. W. Herold, R. R. Bush, and W. R. Ferris, "Conversion loss of diode mixers having image-frequency impedance." Proc. I.R.E.

of diode mixers having image-frequency impedance," PRoc. I.R.E., vol. 33, pp. 603-609; September, 1945. ¹⁷ E. C. James and J. E. Houldin, "Diode frequency changers," *Wireless Eng.*, vol. 20, pp. 15-27; 1943.

quency
$$\omega_{in}$$
, and I_{out} the complex output current of angu-
lar frequency ω_{out} in the usual complex notation, while the
local oscillator's angular frequency is, $\pm \omega_{os} = \omega_{in} - \omega_{out}$.
Similarly, V_{in} and V_{out} are the complex input and out-
put voltages of angular frequencies ω_{in} , and ω_{out} , respec-
tively. If $\omega_{os} = \omega_{in} + \omega_{out}$, instead of (1) we obtain

$$I_{in} = S_0 V_{in} - S_1 V_{out}^*,$$

$$I_{out}^* = S_1 V_{in} - S_0 V_{out}^*,$$
(2)

the asterisks indicating conjugate complex values. The signs in (1) and (2) are connected with the positive directions assumed for the currents and voltages in Fig. 1.

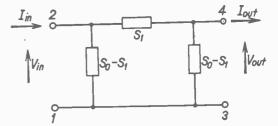


Fig. 1-Equivalent passive four-terminal network of a diode mixer stage at radio frequencies, its operation being described by equations (1) or (2).

At radio frequencies, the effects caused by electronic transit times being completely disregarded, S_0 and S_1 are real quantities related in a simple way to the diode's properties under normal operating conditions. Denoting the oscillator voltage acting in series with the diode by $V_{os} \cos \omega_{os} t$, the diode's admittance S is

$$S = S_0 + 2S_1 \cos \omega_{oot} + 2S_2 \cos 2\omega_{oot} + \cdots$$
 (3)

One predominant assumption is that the voltages V_{in} and V_{out} are small in amplitude with respect to the amplitude Vos. This basic expression (3) was introduced by the author in 1936.18 We shall use the convention $\omega_{os} = \omega_{in} - \omega_{out}$ and $\dot{\omega}_{in} > \omega_{out}$ corresponding to (1) for our further discussion.

The gain figure g of a diode mixer stage, being the ratio of available output power corresponding to ω_{out} to the available input power corresponding to ω_{in} , may readily be obtained from (1) as follows:

$$g = \frac{S_1^2}{|S_0 Z_{in} + 1|} \left| S_0^2 - S_1^2 + \frac{S_0}{Z_{in}} \right|,$$
(4)

 Z_{in} denoting the internal impedance of the signal source connected to the diode stage's input terminals, which is appreciable only in the vicinity of ω_{in} . The optimum gain is unity and this figure corresponds to the case $|S_0Z_{in}| \gg 1$ and $S_0 = S_1$. The latter condition obtains approximately if the diode is operated in class C.

The diode's spontaneous fluctuations may be ascribed to a constant-current generator of infinite internal impedance acting in parallel to the diode's terminals. The mean-square current $\overline{I_{f}}$ of this generator is

$$\overline{I_f}^2 = 4kT_c \alpha S \Delta f = 4kT_c Y \Delta f, \tag{5}$$

18 M. J. O. Strutt, "Diode frequency changers," Wireless Eng., vol. 13, pp. 73-80; 1936.

1946

k being Boltzmann's constant (1.38 10⁻²⁸ joule per degree Kelvin), T_e the cathode temperature in degrees Kelvin, α a multiplier equal to 0.5 in the exponential and to 0.64 in most of the space-charge-limited region of operation,¹⁹ S the diode's admittance as given by (3), and Δf the frequency interval under consideration. The abbreviation Y is used for αS . An equation similar to (3) holds for Y:

$$Y = Y_0 + 2Y_1 \cos \omega_{os}t + 2Y_2 \cos 2\omega_{os}t + \cdots$$
 (6)

The fluctuation amplitudes are proportional to

$$\sqrt{Y} = y_0 + 2y_1 \cos \omega_{os}t + 2y_2 \cos 2\omega_{os}t + \cdots .$$
 (7)

From (6) and (7) we obtain

$$Y_0 = y_0^2 + 2y_1^2 + 2y_2^2 + 2y_3^2 + \cdots,$$

$$Y_1 = 2y_0y_1 + 2y_1y_2 + 2y_2y_3 + \cdots.$$
(8)

We now consider fluctuation currents, the relatively small frequency intervals Δf of which are centered round $\omega_{out}, \omega_{os} + \omega_{out}, \omega_{os} - \omega_{out}, 2\omega_{os} + \omega_{out}, 2\omega_{os} - \omega_{out}, 3\omega_{os} - \omega_{out}, 3\omega_{os} + \omega_{out}, 4\omega_{os} + \omega_{out}, 4\omega_{out}, 4\omega_$

$$p\sqrt{Y}\cos(\omega_{out}t + a_0),$$

$$p\sqrt{Y}\cos\{(\omega_{os} + \omega_{out})t + a_1\},$$

$$p\sqrt{Y}\cos\{(\omega_{os} - \omega_{out})t + b_1\},$$

$$p\sqrt{Y}\cos\{(2\omega_{os} + \omega_{out})t + a_2\},$$

$$p\sqrt{Y}\cos\{(2\omega_{os} - \omega_{out})t + b_2\},$$
 etc.,
(9)

 p^{s} being an abbreviation for $8kT_{c}T_{o}\Delta f$. The phase-angles a_{0}, a_{1}, a_{2} , etc., are random and uncorrelated. These currents (9) may be ascribed to separate uncorrelated constant-current generators of infinite internal impedance acting in parallel to the diode's terminals. It may be useful to observe that an apparently different complete set of fluctuation components is obtained by considering intervals Δf centered round $\omega_{in}, \omega_{os} + \omega_{in}, |\omega_{os} - \omega_{in}|, 2\omega_{os} + \omega_{in}, |2\omega_{os} - \omega_{in}|$, etc. In fact, each of these frequencies may be identified with one particular frequency of the previous set, and hence no real difference exists.

The stage is now set for the evaluation of the noise figure of the diode mixer stage. Its calculation is simplified by short-circuiting the output terminals. The output noise ratio is then obviously equal to the meansquare fluctuation current corresponding to a frequency interval Δf centered around ω_{out} , divided by the signal current squared at ω_{out} , flowing through the said shortcircuit. Because of the random character of the fluctuation currents, the diode itself presents an average admittance S_0 to them (as in (3)). As mentioned before, Z_{in} has an appreciable value in the vicinity of ω_{in} and is zero at widely different frequencies. The fluctuation currents in the short-circuit lead connecting the output terminals 3 and 4 may be obtained from Fig. 2. First, we shall deal with the fluctuations due to the diode. Inserting the value (7) of \sqrt{Y} into (9), the first of the com-

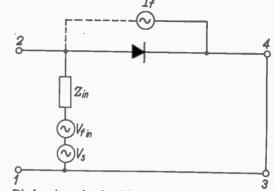


Fig. 2—Diode mixer circuit with short-circuited output terminals 3 and 4. The diode's fluctuations are ascribed to a constant-current generator I_{f} of infinite internal impedance. The signal and the input noise are ascribed to constant-voltage generators V_{s} and V_{fin} of zero internal impedance in series with the impedance Z_{in} connected to the mixer stage's input terminals.

ponents in the latter equations causes a fluctuation current $py_0 \cos (\omega_{out} t + a_0)$ in the output short-circuit lead. Furthermore, it causes a fluctuation voltage

$$-\frac{py_1}{S_0+\frac{1}{Z_{in}}}\cos(\omega_{in}t+a_0)$$

across the impedance Z_{in} . This voltage in turn causes a current

$$-\frac{py_1S_1}{S_0+\frac{1}{Z_{in}}}\cos\left(\omega_{out}t+a_0\right)$$

through the output lead. Both current components mentioned through this lead are completely correlated, as appears from their equal phases a_0 . The other component currents of (9) may be dealt with similarly. Thus, the second one results in an output fluctuation current at ω_{out}

$$\begin{pmatrix} py_1 - py_0 \frac{S_1}{S_0 + \frac{1}{Z_{in}}} \end{pmatrix} \cos(\omega_{out} t + a_1)$$

and the third one in a current

$$\begin{pmatrix} py_1 - py_2 \frac{S_1}{S_0 + \frac{1}{Z_{in}}} \end{pmatrix} \cos (\omega_{out} t - b_1), \text{ etc.}$$

The total mean-square diode fluctuation current through the output lead is obtained by squaring the individual currents mentioned, adding the moduli of all the squares, and averaging over one period $2\pi/\omega_{out}$. Assuming Z_{in} to be real: $Z_{in} = R_{in}$, the result is

¹⁹ A. J. Rack, "Effect of space charge and transit time on the shot noise in diodes," *Bell Sys. Tech. Jour.*, vol. 17, pp. 592-619; 1938.

Strutt: Noise-Figure Reduction in Mixer Stages

$$\overline{I_{fd}^2} = \frac{p^2}{2} \left[(y_0^2 + 2y_1^2 + 2y_2^2 + \cdots) \left\{ 1 + \frac{S_1^2}{\left(S_0 + \frac{1}{R_{in}}\right)^2} \right\} - 4(y_0y_1 + y_1y_2 + y_2y_3 + \cdots) \frac{S_1}{S_0 + \frac{1}{R_{in}}} \right].$$

Making use of (8), this equation yields

$$\overline{I_{fd}^{2}} = 4kT_{c}T_{c}\Delta f \left\{ \begin{array}{c} Y_{0} - 2 & \frac{Y_{1}S_{1}}{S_{0} + \frac{1}{R_{in}}} + Y_{0} & \frac{S_{1}^{2}}{\left(S_{0} + \frac{1}{R_{in}}\right)^{2}} \right\}.$$
 (10)

If the coefficient α in (5) is approximately constant under operating conditions, we have $Y_0 = \alpha S_0$ and $Y_1 = \alpha S_1$. Hence, in this case

$$\overline{I_{fd}^2} = 4kT_cT_c\alpha\Delta f \left\{ \begin{array}{c} S_0 - 2\frac{S_1^2}{S_0 + \frac{1}{R_{in}}} + \frac{S_0S_1^2}{\left(S_0 + \frac{1}{R_{in}}\right)^2} \right\}.$$
 (11)

The fluctuations of the signal source also contribute to the fluctuation current at the output. Let the fluctuations at the input be represented by a constant-voltage generator (see Fig. 2) of voltage V_{fin} , given by

$$\overline{V_{fin}^2} = 4kT_{in}R_{in}\Delta f, \qquad (12)$$

the frequency interval Δf being centered around ω_{in} . Its resulting fluctuation current through the output lead is I_{fr} :

$$\overline{I_{fr}^{2}} = \overline{V_{fin}^{2}} \frac{S_{1}^{2}S_{0}^{2}}{\left(S_{0} + \frac{1}{R_{in}}\right)^{2}} = 4kT_{in}\Delta f \frac{S_{1}^{2}S_{0}^{2}R_{in}}{\left(S_{0} + \frac{1}{R_{in}}\right)^{2}} \cdot (13)$$

Adding (10) and (13), the total mean-square fluctuation current through the output lead is obtained, at an interval Δf centered around ω_{out} .

Let the signal at the input be derived from a constant-voltage generator V_o (Fig. 2) of angular frequency ω_{in} . The signal current I of angular frequency ω_{out} through the output lead is

$$I = V_{o} \frac{S_{1}S_{0}}{S_{0} + \frac{1}{R_{in}}}$$
(14)

In the derivation of this equation we first calculate the voltage corresponding to ω_{in} at the terminals 1 and 2 of Fig. 2. As the circuit between 1 and 2, disconnecting Z_{in} , has the impedance $1/S_0$ at ω_{in} , the said voltage is $V_*S_0/(S_0+1/R_{in})$. By the conversion action of the mixer diode we obtain a current I corresponding to ω_{out} through the lead connecting the terminals 3 and 4 of Fig. 2, given by S_1 multiplied by the above voltage, which results in (14). Hence, the noise ratio at the output is, by (10), (13), and (14),

$$\frac{\overline{I_{fd}}^2 + \overline{I_{fr}}^2}{I^2},$$

whereas this ratio at the input is V_{fin}^2/V_s^2 . The noise figure F_m of the mixer stage is the ratio of these ratios:

$$F_{m} = 1 + \frac{T_{c}}{T_{in}} \frac{\alpha_{0}}{S_{0}R_{in}} \left\{ \frac{\left(S_{0} + \frac{1}{R_{in}}\right)^{2}}{S_{1}^{2}} - 2 \frac{Y_{1}\left(S_{0} + \frac{1}{R_{in}}\right)}{Y_{0}S_{1}} + 1 \right\}, \quad (15)$$

 α_0 denoting the ratio Y_0/S_0 . Since the gain is only unity under optimal conditions, the noise figure F_0 of the subsequent intermediate-frequency stage also contributes to the resulting noise figure F_r of a receiver with a diode mixer stage at its entrance. In this case we have, disregarding later stages,⁶

$$F_r = F_m + \frac{F_0 - 1}{g},$$
 (16)

g being the gain figure of the mixer stage (see (4)).

From (15) and (16), we may conclude that operational conditions causing optimum gain by (4) also cause a minimum value of F_m and of F_r if F_0 is given. These conditions are: $S_0R_{in} \gg 1$ and class C operation resulting in $S_0 \approx S_1$ and also $Y_0 \approx Y_1$. By these conditions, according to (15), F_m approaches unity, thus suppressing almost completely the diode's contribution to the over-all noise figure.

The reason for the indication of (9) as a "complete set of fluctuation components" will be apparent from the preceding analysis. In fact, these components, and they only, contribute toward the output fluctuation current at an interval Δf centered around ω_{out} .

At ultra-high frequencies the four-terminal equations (1) have to be replaced by

$$I_{in} = S_{in}V_{in} - S_{12}V_{out},$$

$$I_{out} = S_{21}V_{in} - S_{out}V_{out},$$
(17)

the admittances S_{in} , S_{12} , S_{21} , and S_{out} being in general *complex* and different from one another. If the diode circuit under operating conditions is regarded as a linear passive network, (17) should be the equations of a symmetrical four-terminal device, entailing $S_{12} = S_{21}$. As it contains an internal source of power constituted by the local oscillator, it need not, however, be passive at all frequencies and hence we may assume S_{12} to be different from S_{21} in the general case. The positive directions of currents and voltages may again be seen from Fig. 1, the admittances, however, differing from that figure. The equivalent circuit of (17) is shown in Fig. 3, the unsymmetrical character being expressed by the extra constant-current generator of current $I = (S_{21} - S_{12})V_{in}$, as shown. By a similar reasoning as used in

945

1946

the derivation of (15), we obtain in the present case a noise figure:

$$F_{\rm m} = 1 + \frac{T_{\rm o}}{T_{in}} \frac{P}{|S_{in}Z_{in}|},$$
 (18)

P being the present equivalent of α_0 multiplied by the expression between brackets in (15), its value remaining below a fixed upper bound if $|SZ_{in}|$ is increased indefinitely.

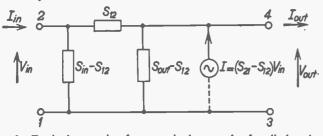


Fig. 3-Equivalent active four-terminal network of a diode mixer stage at ultra- and extremely high frequencies, its operation being described by equation (17).

From (18) and (16) we may judge the conditions favorable to a minimum over-all noise figure F_r . As P in (18) cannot in general be annihilated, the most effective means of reducing F_m resides in an increase of $|S_{in}Z_{in}|$. By using feedback, e.g., from an extra triode circuit, properly paralleled to Z_{in} , a considerable increase of $|S_{in}Z_{in}|$ may be obtained, generally accompanied by an increase of P_{in} . At the same time an increase of $|Z_{in}|$ will result in an increase of gain and hence, by (16), in a further decrease of F_2 . The unfavorable effect of dielectric and similar losses on the noise figure may also be minimized by the said feedback.

III. TRIODE AND MULTIGRID MIXER STAGES

We shall now consider mixer stages in which a triode, tetrode, or pentode is used, input signal voltage and

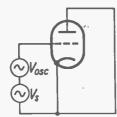


Fig. 4-Triode mixer stage, local oscillator and signal sources being represented by constant-voltage generators V_{***} and V_* active between cathode and grid.

local oscillator voltage both acting between cathode and control grid.³ As in the preceding section II, the output will be short-circuited as this makes no difference in evaluating the noise figure or an equivalent value, whereas it simplifies calculations. We shall consider Fig. 4. Denoting the transadmittance from grid to anode by S, this transadmittance is dependent on time as expressed by (3), if the oscillator voltage is $V_{es} \cos \omega_{es} t$. The signal voltage being $V_s \cos \omega_{in} t$, we obtain a current $I_{out} \cos \omega_{out}$ in the output lead connecting anode and cathode, given by

$$I_{out} = S_1 V_s, \tag{19}$$

 ω_{out} being $\omega_{in} - \omega_{os}$ as before. The value S_1 is often indicated as conversion transconductance. The current of angular frequency ω_{in} in the anode lead is

$$I_{in} = S_0 V_{\bullet}. \tag{20}$$

Besides currents caused by the signal, fluctuation currents flow through the anode lead. Of these we consider the fluctuations corresponding to a frequency interval Δf either centered around ω_{out} or around ω_{in} . We may again, as in the diode case, start from a complete set of fluctuation components, the mean-square fluctuation current in the anode lead being given by (5). Using (6) to (9), we obtain a mean-square fluctuation current corresponding to an interval Δf centered around ω_{out} , expressed by

$$\overline{I_{fout}}^{2} = 4kT_{c}\Delta f(y_{0}^{2} + 2y_{1}^{2} + 2y_{2}^{2} + \cdots)$$

= $4kT_{c}\alpha_{0}S_{0}\Delta f,$ (21)

 α_0 denoting Y_0/S_0 . Calculating the mean-square fluctuation current $I_{f_{in}}^{*}$ corresponding to an interval centered around ω_{in} , we again obtain the result (21). These results have, of course, been known before,^{1,13,20,21} the present discussion offering a new angle of approach in their derivation. From (21) and (19), the noise ratio in the anode lead pertaining to the angular frequency ω_{out} is found to be $4kT_cT_c\alpha_0S_0\Delta f/S_1^2V_s^2$, whereas from (21) and (20) we obtain for the noise ratio in the same lead, corresponding to the angular frequency ω_{in} , the expression $4kT_e\alpha_0S_0\Delta f/S_0^2V_*^2$. As, in general, $S_0 > S_1$, the second noise ratio is smaller than the first one. Instead of the said noise ratios we may also consider the equivalent noise resistances^{1-8,7,11,18,20,21,22} as being, respectively,

$$\frac{T_c T_c \alpha_0 S_0}{T S_1^2} \quad \text{and} \quad \frac{T_c T_c \alpha_0}{T S_0},$$

the second one being again, in general, smaller.

Now, by a suitable feedback from the output to the input, the noise ratio or noise resistance corresponding to an interval Δf centered around ω_{out} may be decreased and made to approach the above expressions, corresponding to an interval Δf centered around ω_{in} . The said feedback is assumed to be active in the vicinity of ω_{in} . Let the short-circuit condition at the output be only inappreciably altered by the feedback. If the signal voltage without feedback is V., and with feedback V_{\bullet} we have

$$V_* = V_{*0} + \beta S_0 V_*,$$

the impedance coefficient β expressing the feedback.

575; August, 1943.
²¹ M. J. O. Strutt, "Frequency changers in all wave receivers. The performance of some types," Wireless Eng., vol. 14, pp. 184–192; 1937.
²² M. J. O. Strutt, "High frequency, mixing and detection stages of television receivers," Wireless Eng., vol. 10, pp. 174–187; 1939.

December

²⁰ E. W. Herold and L. Malter, "General superheterodyne con-siderations at ultra-high frequencies," PRoc. I.R.E., vol. 31, pp. 567-

1946 Then

$$V_s = \frac{V_{s0}}{1 - \beta S_0} \,. \tag{22}$$

By the feedback a noise voltage V_{fin} is caused at the input,

$$V_{fin} = \beta(I_{fin} + S_0 V_{fin})$$
 or $V_{fin} = \frac{\beta I_{fin}}{1 - \beta S_0}$.

The total mean-square noise current in the anode lead with feedback and corresponding to an interval Δf centered around ω_{out} is

$$\overline{I_{f^2}} = \overline{(S_1 V_{fin} + I_{foul})^2} = \overline{(\gamma I_{fin} + I_{foul})^2}, \quad \gamma = \frac{\beta S_1}{1 - \beta S_0}$$

In the averaging process indicated by the horizontal dashes due account has to be taken of the correlation between $I_{f in}$ and $I_{f out}$. By (9) and (7) we obtain

$$\frac{I_{fin}}{p} = y_1 \cos (\omega_{in}t + a_0) + y_0 \cos (\omega_{in}t + a_1) + y_2 \cos (\omega_{in}t - b_1) + y_1 \cos (\omega_{in}t + a_2) + y_3 \cos (\omega_{in}t - b_2) + \cdots,$$

$$\frac{I_{fout}}{p} = y_0 \cos (\omega_{out}t + a_0) + y_1 \cos (\omega_{out}t + a_1) + y_1 \cos (\omega_{out}t - b_1) + y_2 \cos (\omega_{out}t + a_2) + \cdots.$$

Hence the averaging process yields, by (8),

$$\overline{If^2} = 4kT_c\Delta f\alpha_0 \left(\gamma^2 S_0 + 2\gamma S_1 \frac{\alpha_1}{\alpha_0} + S_0\right), \qquad (23)$$

 α_0 being again Y_0/S_0 and $\alpha_1 = Y_1/S_1$. From (23) and (22) the noise ratio corresponding to an interval Δf centered around ω_{out} is found to be

$$\frac{\overline{I_f^2}}{S_1^2 V_e^2} = \frac{4k T_e \Delta f \alpha_0 \left(\gamma^2 S_0 + 2\gamma \frac{\alpha_1}{\alpha_0} S_1 + S_0\right)}{\frac{S_1^2 V_{e0}^2}{(1 - \beta S_0)^2}} \cdot$$
(24)

Two limiting cases of (24) are of special interest. First, the case corresponding to $\beta = 0$. Obviously we reobtain the value found previously without feedback. Second, the case of critical feedback corresponding to $1 - \beta S_0 \approx 0$. Here only the first term within brackets in the numerator remains, and we obtain, as $\beta S_0 \approx 1$,

$$\frac{\overline{I_f^2}}{S_1^2 V_s^2} \approx \frac{4kT_c \Delta f \alpha_0 \beta^2 S_1^2 S_0}{S_1^2 V_{s0}^2} = \frac{4kT_s \Delta f \alpha_0}{S_0 V_{s0}^2}$$

which is obviously the noise ratio obtained previously for an interval Δf centered around ω_{in} . Thus, by proper feedback, a reduction of the output noise ratio and hence of equivalent noise resistance corresponding to an interval Δf centered around ω_{out} may be obtained. This reduction is only appreciable if S_1 is appreciably smaller than S_0 , which depends on conditions of operation. Ultimately, by proper feedback, the noise ratio of a triode mixer stage may always be made to approach the ratio corresponding to the same triode used in a radiofrequency amplifier stage at optimal conditions of operation.

The application of a similar method to.tetrode, pentode, or multigrid tubes used in mixer stages with both signal and local-oscillator voltage acting between cathode and control grid offers still greater possibilities of reduction of output noise ratio. In such stages the co-

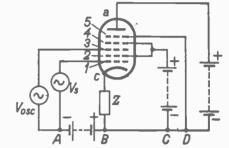


Fig. 5—Mixer stage incorporating a heptode mixer tube with separate screened grids for the local-oscillator voltage $V_{\bullet\bullet}$ and the signal voltage V_{\bullet} . The equivalent noise resistance may be reduced by the application of proper feedback, e.g., represented by a suitable impedance Z, as shown, in the proportion of, e.g., 1 to 30.

efficient α of (3) is considerably larger in the anode lead than in the cathode lead. Referring to Fig. 5, omitting Z and assuming the constant-voltage local oscillator V_{oo} in series with V_{oo} , the fluctuations in the lead from the anode a to the point D include partitioncurrent fluctuations¹⁴ due to the several grids of positive steady voltage, and hence are considerably larger than the fluctuations in the lead from the cathode c to the point B. Denoting the fluctuation current in the latter lead by I_{fc} , the fluctuation current I_{fa} in the anode lead may be decomposed into a part completely correlated to I_{fc} , and a second part, completely incorrelated to I_{fc} , thus:

$$\overline{I_{fa}}^2 = A_c^2 \overline{I_{fc}}^2 + \overline{I_{fp}}^3, \qquad (25)$$

the coefficient A_{ϵ}^{2} being <1 due to the interception of part of the electronic current by the electrodes of positive steady voltage. Now suppose we applied feedback from the said cathode lead up to the point B of Fig. 5 to the input, again expressed by an impedance coefficient β as before, without disturbing the short-circuit condition of the output lead appreciably. We shall again suppose the feedback to be active in the vicinity of ω_{in} . Then the mean-square fluctuation current in the cathode lead corresponding to an interval Δf centered around ω_{out} with feedback is given by (23), S and its components S_0 and S_1 (see (3)) denoting transadmittances from the control grid to all the subsequent electrodes of positive steady voltage taken together. The part $\overline{I_{f_{p}}}^{2}$ of (25) not being appreciably influenced by the said feedback, the total resulting fluctuation current centered around ω_{out} in the anode output lead with feedback is substantially obtained by inserting (23) instead of $\overline{I_{fe}}^2$ into (25). As to the output current due to the original signal voltage V_{so} at ω_{is} , this is given

December

by $A_{o}S_{1}$ multiplied by V_{o} of (22). Hence, the noise ratio in the anode output lead from a to the point D in Fig. 5 corresponding to an interval centered around ω_{out} is

$$\frac{A_{c}^{2}4kT_{c}\Delta f\alpha_{0}\left(\frac{\beta^{2}S_{1}^{2}}{(1-\beta S_{0})^{2}}S_{0}+2\frac{\beta S_{1}}{1-\beta S_{0}}\frac{\alpha_{1}}{\alpha_{0}}S_{1}+S_{0}\right)+\overline{I_{f_{p}}^{2}}}{\frac{A_{c}^{2}S_{1}^{2}V_{s0}^{2}}{(1-\beta S_{0})^{2}}}.$$
(26)

At critical feedback, βS_0 then approaching unity, this ratio obviously approaches the value $4kT_c\alpha_0\Delta f/S_0V_{s0}^2$ corresponding to the *triode*, equivalent to the lower part of the multigrid tube consisting of cathode, control grid, and an anode replacing the positive electrodes. As in (25) the second term on the right is often much larger than the first one (e.g., 2 to 4 times larger in pentodes and 10 or 20 times larger in multigrid tubes), a very substantial reduction of noise ratio, equivalent noise resistance, and noise figure may be obtained by the present application of feedback. As an example, an impedance Z is inserted in the cathode lead of Fig. 5, indicating a tank-circuit tuned to an angular frequency slightly below ω_{in} so as to present effectively a capacity at ω_{in} .

We have hitherto assumed the local oscillator and signal source both to be active between cathode and control grid. As an extension of the above discussion, it will now be assumed that the two voltages mentioned are active between the cathode and separate grids, as indicated in Fig. 5. In this case the transadmittance S_{e} from the control grid number 1 in Fig. 5 to all the subsequent electrodes of positive voltage taken together is independent of time under ideal conditions, as the oscillator does not become active upon the electron stream before it has passed grid number 2. We ignore electrons revolving around the wires of grid number 2. The noise ratio in the cathode lead remains in this case substantially unaltered by a feedback as considered above and the final noise ratio in the anode lead at critical feedback approaches $4kT_{o}T_{o}\alpha_{0}\Delta f/S_{0}V_{*0}^{2}$. Referring to equivalent noise resistances, the values corresponding to multigrid mixer tubes of the kind shown in Fig. 5 are often 50 to 100 kilohms^{2,21} and may, by proper application of the feedback mentioned, be reduced to a few kilohms, say from 80 to 3 kilohms in a particular case.

Instead of a feedback active at ω_{in} as discussed above, we might also try a feedback active at ω_{out} . It may be shown by a simple calculation along the above lines that the output noise ratio corresponding to an interval Δf centered around ω_{out} is not altered appreciably by such feedback in the case of a triode mixer tube, as in Fig. 4. But in the case of a multigrid tube, local oscillator and signal voltage being both active between cathode and control grid a reduction of the said noise ratio may be obtained by a feedback as mentioned. In fact, the noise ratio may be made to approach that of a triode *mixer* tube consisting of the cathode, the control grid, and the subsequent electrodes together acting as anode. The impedance Z in the cathode lead might in this case consist of a tank circuit tuned to a slightly lower angular frequency than ω_{out} so as effectively to present a capacitance at ω_{out} . This feedback may have advantages, as the angular frequency ω_{out} often remains fixed if ω_{in} and ω_{os} vary over a wave band. In the case of a multigrid tube circuit as shown in Fig. 5, the latter feedback cannot be successfully applied, however, as the cathode lead from c to B contains practically no signal-current components of angular frequency ω_{out} .

By the feedback connections as discussed, instability of the mixer stage in question might ensue. This may be avoided by a suitable extra feedback. Through the output lead a signal current of angular frequency ω_{in} flows, as well as a component of angular frequency ω_{out} . At critical feedback active at ω_{in} as discussed above, the noise ratio corresponding to an interval Δf centered around ω_{out} is substantially equal to that at ω_{in} . We may now apply a *negative* feedback, active at ω_{in} , from the anode output lead to the input in order to stabilize the mixer stage and thereby incur no increase of the acquired favorable noise ratio. A similar stabilization may be applied if feedback active at ω_{out} is under discussion.

The application of negative bias voltage to the control grid for volume-control purposes is, of course, detrimental to the feedback circuits discussed above, as S is thereby reduced considerably. Hence, different means of volume control have been devised, not impairing the desired noise reduction by feed back. Their discussion, however, lies outside the scope of this paper.

Care should be exercised in order not to introduce undue additional noise by the feedback under application. Unsuitable resistance elements in this feedback should, therefore, be avoided as far as possible.

The means aiming at a reduction of output noise ratio discussed above may in general be applied in the same way at ultra-high frequencies, e.g., used in television.²² Their proper understanding necessitates a preliminary discussion of fluctuation currents in a triode at ultra-high frequencies, being different from those at radio frequencies. At the latter frequencies these fluctuations may be ascribed to a constant-current generator of infinite internal impedance active between cathode and anode and supplying fluctuation currents corresponding to intervals Δf centered around ω_{out} , ω_{in} , and any other frequencies under discussion. At ultraand super-high frequencies, however, the fluctuations must be ascribed to two separate constant-current generators of infinite internal impedance, one active between cathode and grid while the other is active between grid and anode. The fluctuation currents supplied by these generators are completely correlated in the case of an ideal triode if they correspond to intervals Δf centered around the same frequency. The latter generator current is, however, delayed in phase with respect to the former, the phase angle being approximately $\phi = \frac{1}{3}\omega\tau_0 + \frac{2}{3}\omega\tau_1$ at not too high angular frequencies ω such that $\phi \ll 1$, τ_0 and τ_1 being the electronic transit times between cathode and grid and between grid and anode, respectively. Furthermore, at not too high frequencies the moduli of the said two generator currents are approximately equal^{7,12,23,24} and are both given by (5), S being the real part of the transadmittance from grid to anode at the frequency around which Δf is centered. By the action of these two generators, a fluctuation current equal to the difference of the generator currents flows through the grid lead of the triode.^{13,23,24}

IV. Oscillator Noise, Push-Pull Stages, and Image Response

In the preceding sections no account was taken of noise introduced into the mixer circuit by the local oscillator. The latter acts as a source of spontaneous fluctuations as well as of oscillator voltage.25 By the mixer operation these spontaneous fluctuations of voltage of angular frequencies centered around ω_{ee} and its multiples are partly converted to current fluctuations in the output lead of angular frequencies centered around ω_{out} . We may assume that the oscillator output presents no appreciable fluctuation voltage components corresponding to frequency intervals Δf centered around ω_{in} or ω_{out} if suitable high-Q tank circuits are utilized and if sufficient separation between these frequencies exists.² In order to minimize the fluctuations at the mixer output due to the local oscillator's noise voltage, it may be important to reduce the latter voltage as far as possible in comparison to the oscillator voltage proper. Conditions corresponding to a low ratio of noise to oscillator voltage at the oscillator's output in many cases coincide with those corresponding to a high efficiency figure of the oscillator stage, i.e., to a high ratio of oscillator power to direct supply power.25 Hence high efficiency in oscillator operation appears favorable from this point of view.

Another means of reducing the noise figure of mixer stages resides in an application of the push-pull principle. It has been recognized previously that the noise ratio of push-pull amplifier stages may be less than the corresponding figure of comparable single stages under suitable conditions. The same conclusion applies to push-pull mixer stages. The reason is that the output noise currents due to the two separate push-pull tube systems are completely uncorrelated, and hence the resulting mean-square noise current is obtained as the sum of the two individual mean-square currents due to the tubes, thus being twice the current squared due to

³⁹ D. O. North and W. R. Ferris, "Fluctuations induced in vacuum tube grids at high frequencies," PROC. I.R.E., vol. 29, pp. 49-50; February, 1941.
³⁴ M. J. O. Strutt and A. van der Ziel, "Methods for the compensa-

e.

²⁴ M. J. O. Strutt and A. van der Ziel, "Methods for the compensation of the effects of different types of shot-effects in electronic valves and attached circuits," (in German), *Physica*, (Hague), vol. 8, pp. 1– 22; 1941.

22;1941.
 ²⁹ Tsonge Shih, "Noise of electron tubes in self-excitation," (in German), Inst. of Tech., Dissertation, 45 pp., Dresden, Germany, 1937.

one tube system. The resulting signal current squared is, however, four times the signal current squared due to one tube system.

Fig. 6—Four push-pull diode mixer stages, ω_{eu} , ω_{in} , and ω_{es} indicating the output, input, and oscillator circuits, while R is a biasing resistance blocked by a suitable capacitance C. The circuits marked 4a and 4b differ only in the relative orientation of the diodes and so do the circuits marked 7a and 7b. The circuits marked a are not practically useful under common conditions of operation, but the circuits marked b are useful.

The application of the push-pull principle to mixer stages affords some interesting aspects. We shall refer in the first place to diode mixer stages. There being three voltages, input, oscillator, and output, eight possibilities arise.

Case Number	Input	Oscillator	Output
1	push-pull	push-pull	push-pull
2	push-pull	push-pull	single
3	push-pull	single	push-pull
4	push-pull	single	single
5	single	push-pull	single
6	single	push-pull	push-pull
7	single	single	push-pull \
8	single	single	single

The meaning of "single" is that the voltage in question is applied to the corresponding electrodes of both mixer tubes in shunt. Not all of these possibilities correspond to practically useful circuits. The relation between ω_{out} , ω_{in} , and ω_{out} is in general:

$$\omega_{out} = | m\omega_{os} \pm n\omega_{in} |, \qquad (27)$$

m and n denoting definite integral numbers out of a sequence, these sequences being:

Case numb		m	and	n	01	112	and n	
1	1, 3, 5,		0,2,	4, • • •	0,2	2,4 • • •	1, 3, 5 • • •	
2	1, 3, 5		1, 3,	5, • • •	0,2	2, 4, • •	• 0, 2, 4, • •	•
3	0, 1, 2	, 3, 4, • •	• 1,3,	5, • • •				
4	0, 1, 2	3,4, • •	• 0,2,	4, • • •				
5	0, 2, 4		0, 1,	2, 3, 4, •	• •			
6	1, 3, 5,	* * *	0, 1,	2, 3, 4,				
7	no out	put						
8	0, 1, 2,	3,4,••	• 0, 1, 3	2, 3, 4, •	• •			

Case number 4 is of little practical use since the output voltage is proportional to the square of the input voltage, whereas a linear relationship between these voltages is desirable. It is supposed in the above circuits that both diodes are applied in *parallel* orientation. We may, however, reverse one diode with respect to the other, thus obtaining eight more cases besides those discussed above. It is interesting to note that the cases 4 and 7 of the above table may be converted into useful circuits by the said reversal as is illustrated by Fig. 6, the diagrams marked b corresponding to the above tables and those marked a to reversed-diode cases. In case 4a of Fig. 6, the sequences of m and n in (27) are 1, 3, 5 \cdots and 0, 1, 2, 3 \cdots . In the case 7a they are as in the 'case 2 of the above table. A complete discussion of the sixteen possible push-pull diode mixer circuits mentioned lies outside the scope of the present paper.

With triode and multigrid push-pull mixer circuits we have eight basic possibilities, as in the above tables, if the tubes are applied in parallel and equal orientation. With a triode the orientation of the three electrodes may be permuted, thus creating at least 40 new cases besides the eight of the above tables. No mention has yet been made of image or indeed any spurious response of the mixer stages in question. Assuming that, e.g., image response is effectively equal to input response, as may occur in extremely high-frequency circuits, the noise ratio at the output is increased. Hence, responses of this kind are undesirable from the noise point of view as from most others.¹⁶ Relatively high intermediate frequencies are conducive to their reduction.

Additional References

- (1) M. Dishal, "Theoretical gain and signal-to-noise ratio obtained (1) M. Dinki, Understanding and disguided signal to hold and signal with the grounded-grid amplifier at ultra-high frequencies," PRoc. I.R.E., vol. 32, pp. 276-284; May, 1944.
 (2) M. C. Jones, "Grounded-grid radio-frequency voltage amplifiers," PRoc. I.R.E., vol. 32, pp. 423-430; July, 1944.
 (3) W. Kleen, "Grid-steering, cathode-steering and cathode-amplifiers," (in Gramon), Elect. Nach. Tech. 200 and 140 field.
- " (in German), Eleck. Nach. Tech., vol. 20, pp. 140-144; fiers. 1943.
- (4) M. J. O. Strutt, "The characteristic admittances of mixer valves at frequencies up to 70 mc./sec.," (in German), Elek. Nach. Tech., vol. 15, pp. 10-18; 1938.
 (5) M. J. O. Strutt and A. van der Ziel, "The diode as a frequency of the diode as a frequency of the diode as a structure of the
- changing valve, especially at decimeter waves," Philips Tech. Rev., vol. 6, p. 285; 1941.

Sporadic E-Region Ionization at Watheroo Magnetic **Observatory** 1938-1944*

H. W. WELLS[†], SENIOR MEMBER, I.R.E.

Summary—Characteristics of sporadic E(Es) at the Watheroo Magnetic Observatory, Western Australia, have been determined from continuous ionospheric recordings since June, 1938. Average diurnal curves show most frequent occurrence at night with maximum near midnight, local time, although there is a tendency for the most intense Es to occur during day hours. The seasonal features of Es already well established for the Northern Hemisphere have been confirmed for the Southern Hemisphere with a maximum of Es in local summer months. Annual trends show increasing values from 1938 to 1941 with decreasing values from 1941 through 1944. An upward trend is indicated for 1945, suggesting a minimum in 1944. This annual characteristic is significant in view of an apparent inverse relationship with sunspots in the Northern Hemisphere. Sepa-

I. INTRODUCTION

ONOSPHERIC records at Watheroo Magnetic Observatory during June, 1938, to December, 1945, have been examined to determine additional characteristics of sporadic E-region ionization (Es) (Figs. 1-8). For the purpose of this investigation, only the in-

* Decimal classification: R113.608. Original manuscript received by the Institute, January 17, 1946; revised manuscript received,

May 3, 1946. This investigation was initiated and accomplished through the cooperation and support of the Navy Department. † Department of Terrestrial Magnetism, Carnegie Institution of

Washington, Washington 15, D. C.

rate analyses were made of Es to determine 40- to 80-megacycle propagation conditions for a 1000-mile path in per cent of time for selected hours of November, 1941, which was the period of greatest Es activity. Results show 40-megacycle signals supported for 15 per cent of time, while 80-megacycle signals dropped to less than 1 per cent of time. As a test for solar origin of Es, the data were examined for recurrence tendencies in successive 27-day solar rotational periods. No pronounced recurrences of Es at 27-day intervals are apparent, from which it may be inferred that Es has no direct relationship with other recurrent solar phenomena such as sunspots and other centers of solar activity. Comparisons between Es and magnetic activity do not reveal any tendency of Es to be more prevalent during periods of magnetic disturbance.

tense type of *Es* giving several multiple reflections was considered. The "multiple" type of Es is defined in the Report of International Radio Propagation Conference (IRPL-C61) issued June, 1944, and the symbol fmEs identifies the phenomena defined above. These data include Es of the blanketing type as well as the partially transparent type with a high reflection coefficient, but do not include weak abnormal E echoes of the border or fringe type. The upper limit of Es was determined by the upper frequency at which the first multiple echo disappears.

	13 20 24 24 4 4 10 14 4 40 MS	10 20 24 4 8	20 27 00	IND EAST MERIDIAN HOURS	10 50 50 F
JANUARY	FEBRUARY	MARCH	JANUARY	FEBRUARY	MARCH
					E
JIBAR	MAK	JUNE (COMMENCEMENT OF RECORDING)	1/2 -20 2/	MAY	JUNE
Anr		Murt V(SPFCall Murt V(SPFCall Coo Murt Callorite Score 25 aut Callorite Score 250 aut	-13 PEC 01/1/2	AUGUST 258 MC 259 MC 250 MC	WUF VERPICAL WUF VERPICAL 000 MLE VERPICAL <28 MC 95 AC 250 MC 250 MC 250 MC 250 MC
OCTOBER	NOVEMBER	DECEMBER	75 0CTOBER	NOVEMBER	DECEMBER
1-Diurnal distributi	Fig. 1—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1938.	of total time, Watheroo, 1938.	Fig. 2—Diurnal distributio	Fig. 2—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1930.	of total time, Watheroo, 1
	FEBRUARY	19 50 50 50 50 50 50 50 50 50 50 50 50 50	ANUARY OF A	Izotast wendow of FEBRUARY	и илисти
APRIL	*	3/0/2	-73		3 <i>NN</i>
		Lectro			
Allon L		MAUF MAUF COMLE MCGPACE C23 MC 250 MC 250 MC 200		AUGUST 235 WE	ILE VERTICAL ILE VERTICAL ILE VERDENCE SEPTEMBER ME 25 MC SEPTEMBER
OCTOBER	NOVEMBER F	DECEMBER HTT	-M-OCTOBER	NOVEMBER	OECEMBER

Fig. 3—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1940.

Fig. 4—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1941.

18 20 24 4 9 MARRCH	June	END WERTCAL WERTCAL WEITENCE S MC S MC S FPT S FPT	CECEMBER	Fig. 6—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1943.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3//1/	 000 MALE WCOLVEL 2 23 MC 2 5 MC 2 23 MC 2 5 MC 2 20 MC 2 20 MC 2 20 MC 2 2 0 MC 2 2 0 MC 2 2 MC 2 MC	DECEMBER	
EBRUARY		100000 100000 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001 100000 100000 100000 100000 100000 100000 100000 100000 1	NOVEMBER	n of sporadic E in per cent of	16 20 24 2 8 8	MARY	AUGUST 23.00 23.00 23.00 23.00	NOVEMBER	
AAVUA PY	7/04/Y	20 MEN CENT 0	20 OCTOBER	Fig. 6-Diurnal distributio	A A A A A A A A A A A A A A A A A A A	 -12 -12 -20-16 -	32 H3d	-75 OCTOBER	
маяси		unt Leeun ount repriced coso unt repriced coso unt succes unc coso unt succes unc coso unt succes unc coso unc succes unc coso	DECEMBER	total time, Watheroo, 1942.	и 10 21 0 0	JUNE	Keroence Keroence Sawc Zowc Zowc	DECEMBER	
au can eraine hours hours f f f f f f f f f f f f f f f f f f au arv		Autoust 239 MC	NOVEMBER HILL	Fig. 5—Diurnal distribution of sporadic E in per cent of total time, Watheroo, 1942.	15 20 24 4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MARY	AUGUST 2.9 MC 2.5 MC 2.5 MC 2.9 MC	NOVEWBER	
JANUARY			ocroese for the second	ig. 5—Diurnal distribution	10 20 20 20 B	APRIL	Juc	OCTOBER	

Proceedings of the I.R.E. and Waves and Electrons

December

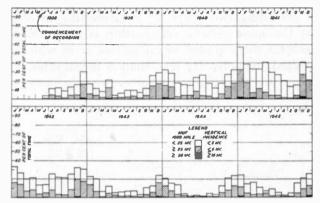
952

A typical occurrence of Es is illustrated in Fig. 9, as recorded with the automatic ionospheric recorder designed and constructed by the Department of Terrestrial Magnetism, Carnegie Institution of Washington. It is seen that Es completely masked the normal Fregion at frequencies up to 8.1 megacycles. Between 8.1 and 9.0 megacycles, Es is still sufficiently intense to return several multiple reflections, although recordings of the F region show that energy is penetrating through the Es region. In the present analysis, Es illustrated in Fig. 9 would be recorded as 9.0 megacycles.

Fig. 9-Ionospheric characteristics during sporadic E-region ionization, Watheroo, 8h 45m, January 22, 1939.

In the legends of Figs. 1 to 8 a factor of five was used in converting from vertical-incidence Es to approximate maximum usable frequency at 1000-mile range. For example, Es of 10 megacycles at vertical incidence is interpreted as supporting communications up to 50 megacycles at oblique incidence over a 1000-mile path. Specifically, these conditions maintain when the point of ionospheric reflection for the 1000-mile circuit is overhead.

The effectiveness of Es in supporting single-hop radio communications is limited to 1500 miles or less at zero vertical angle of radiation for E-region heights of approximately 100 kilometers.


II. DIURNAL CHARACTERISTICS

The diurnal characteristics of Es for each month from June, 1938, through December, 1944, are illustrated in Figs. 1 to 8. From the legend it will be noted that solid black represents Es of 10 megacycles or greater, shaded areas represent Es of 5 megacycles or more, and the unshaded areas represent Es of less than 5 megacycles. In terms of oblique-incidence radio wave propagation, the legend also indicates approximate maximum usable frequency (MUF) at 1000-mile distance. Data for each month are plotted for the 24hour period beginning at noon, 120 degrees east meridian time.

A general prevalence of Es during night hours with maximum occurrence near local midnight is clearly indicated, although there is a tendency for the more intense Es (in excess of 10 megacycles) to occur in the day hours.

III. MONTHLY AND SEASONAL CHARACTERISTICS

The monthly distribution of Es in per cent of total time is shown in Fig. 10. Local summer months (October

Monthly distribution of sporadic E in percent of total time, Fig. 10-Watheroo Magnetic Observatory, 1938-1945.

to February) of each year are characterized by frequent and persistent occurrence of Es. In general, the equinoctial periods as well as local winter months show minimum presence of Es. This long series of data now positively confirms characteristics of Es reported by Berkner and Wells¹ from analyses of 1935-1936 ionospheric recordings at Watheroo. The seasonal nature of Es in the Northern Hemisphere, with maximum in summer, minimum in winter, has been identified and discussed by a number of investigators.²⁻⁷

During June, 1938, to December, 1945, the maximum occurrence of Es was recorded in January, 1941, when it was present 57 per cent of total time. The maximum occurrence, however, of intense Es (in excess of 10 megacycles) was recorded in November, 1941. Further reference to Fig. 4 illustrates the diurnal distribution during these months. For example, Es was present 100 per cent of the time for 23^h and 24^h of January, 1941. The tendency of intense Es to occur in day hours, as already noted, is clearly demonstrated for both January and November, 1941.

IV. ANNUAL DISTRIBUTION

The annual distribution of Es is shown in Fig. 11;

¹ L. V. Berkner and H. W. Wells, "Abnormal ionization of the *E*-region of the ionosphere," *Terr. Mag.*, vol. 42, pp. 73-76; March, 1937.

^{1937.}
⁸ E. V. Appleton and R. Naismith, "Weekly measurements of upper-atmospheric ionization," *Proc. Phys. Soc.*, vol. 45, pp. 389–398; May, 1937.
⁸ S. S. Kirby, L. V. Berkner, and D. M. Stuart, "Studies of the ionosphere and their application to radio transmission," *PRoc. I.R.E.*, vol. 22, pp. 481–521; ibid., *Jour. Res. Nat. Bur. Stan.*, vol. 12, pp. 15–51. [anuary 1934] pp. 15-51; January, 1934. 4 J. P. Schafer and W. M. Goodall, "Kennelly-Heaviside layer

studies employing a rapid method of virtual-height determination," PRoc. I.R.E., vol. 20, pp. 1131–1148; July, 1932. J. A. Ratcliffe and E. L. C. White, "An automatic recording

J. A. Ratcliffe and E. L. C. White, "An automatic recording method for wireless investigations of the ionosphere," *Proc. Phys. Soc.* (London), vol. 45, pp. 399-413; May, 1933. "Some automatic records of wireless waves reflected from the ionosphere," vol. 46, pp. 107-115; January, 1934.
J. A. Fleming, "Report of ionosphere-investigation conducted at College—Fairbanks, Alaska, during the winter of 1933-1934," *Terr. Mag.*, vol. 39, pp. 305-313; December, 1934.
Y. Appleton, R. Naismith, and G. Builder, "Ionospheric investigations in high latitudes" *Nature* vol. 132, pp. 340-341. Sep.

vestigations in high latitudes," Nature, vol. 132, pp. 340-341; September, 1933.

there was a rapid increase from 1939 to 1941, followed by a rapid decrease from 1941 to 1943. Es in 1944 was only slightly less prevalent than in 1943. Es in 1945, however, shows an upward trend which is greater than the preceding two years. It is interesting to observe that the same general relationship is maintained between the three grades, or intensities, of Es which were analyzed; namely, (1) less than 5 megacycles, (2) 5

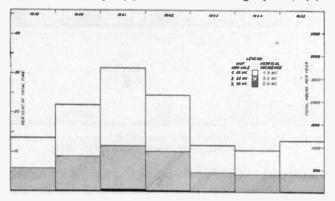


Fig. 11—Annual distribution of sporadic *E*, Watheroo Magnetic Observatory, 1939–1945.

megacycles or greater, and (3) 10 megacycles or greater. The downward trend since 1941 is particularly significant because it is contrary to trends in the Northern Hemisphere reported by the Interservice Radio Propagation Laboratory, National Bureau of Standards, which was suggestive of an inverse relationship between *Es* and sunspot numbers. These results at Watheroo indicate that no relationship with sunspot numbers, either positive or negative, holds for the Southern Hemisphere, since the sunspot numbers were decreasing from 1939 to 1944. In view of the important role played by *Es* in radio communications, it is very desirable that this apparently anomalous condition be clarified by additional data and analyses for other stations in both the Northern and Southern Hemisphere.

V. Propagation in 40- to 80-Megacycle Band, November, 1941

It has been mentioned that the most intense Es was observed in November, 1941. The data for that month were examined separately to determine per cent of total time supporting 1000-mile transmissions in the frequency range from 40 to 80 megacycles. Results are illustrated in Fig. 12 for the five-hour period, 10^h 00^m to 14^h 00^m, 120 degrees, east meridian time. The smooth curve indicates that Es supported 40-megacycle propagation for 15 per cent of the five-hour interval, dropping to 10 per cent at 50 megacycles, and tapering off to less than 1 per cent at 80 megacycles.

There is no indication in present trends of Es at Watheroo to suggest when similar intensities of Es may again be expected. A comparison of Es at Watheroo with Es at Washington, D. C., Ottawa, Canada, and College (Fairbanks), Alaska, suggests that Es at Watheroo is representative of Es in the temperate zone of the Northern Hemisphere. Although quantitative comparisons are not at present feasible because of data limitations, it is safe to state that Es at Watheroo when averaged over a number of years is less frequent than at College, Alaska, but more frequent than at Washington, D. C.

VI. TESTS FOR 27-DAY RECURRENCE

The association of Es with local summer months led to a suggestion by C. T. R. Wilson⁸ that Es was a result of the high electric fields of thunderclouds. This theory, however, became untenable as investigations¹ showed very low occurrence of Es in equatorial regions of high thunderstorm activity. Simultaneous ionospheric recordings and zenith auroral photographs made at College Observatory, University of Alaska, show Es whenever there is aurora overhead. However, the converse does not hold; that is zenith aurora is not observed whenever Es is recorded.

The search for an extraterrestrial source of *Es* naturally leads to the sun, which is the principal ionizing agency of the ionosphere. Bursts of solar ultraviolet radiation may be eliminated readily as a potential source of ionization because *Es* occurs during night as

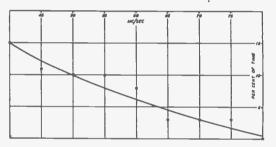


Fig. 12—Sporadic-*E* propagation, Watheroo Magnetic Observatory, November, 1941.

well as day. The slower-moving corpuscular radiation from the sun which is generally accepted as the primary cause of magnetic and ionospheric disturbances is therefore a probable source of Es, although the seasonal character of Es obviously cannot be explained on this basis alone.

Bartels⁹ has demonstrated the effectiveness of superimposed epoch diagrams in determining recurrence tendencies of magnetic activity for successive solar rotations. His research greatly strengthened theories that solar regions often remain active emitters of corpuscular streams for several months at a time and cause magnetic (or ionospheric) disturbances once during successive 27-day solar rotations when the streams sweep across the earth's path. Fig. 13 is an application of the same technique to the *Es* data for the period, June, 1938, to December, 1944. The shaded blocks indicate days when *Es* was at least 50 per cent greater than the

⁶ C. T. R. Wilson, "The electric field of a thundercloud and some of its effects," *Proc. Phys. Soc.*, vol. 37, pp. 32D-37D; February, 1925. ⁹ J. Bartels, "Terrestrial-magnetic activity and its relation to solar phenomena," *Terr. Mag.*, vol. 37, pp. 1-52; March, 1932. "Statistical methods for research on diurnal variations," *Terr. Mag.*, vol. 37, pp. 291-302; September, 1932. "Random fluctuations, persistence, and quasi-persistence in geophysical and cosmical periodicities," *Terr. Mag.*, vol. 40, pp. 1-60; March, 1935.

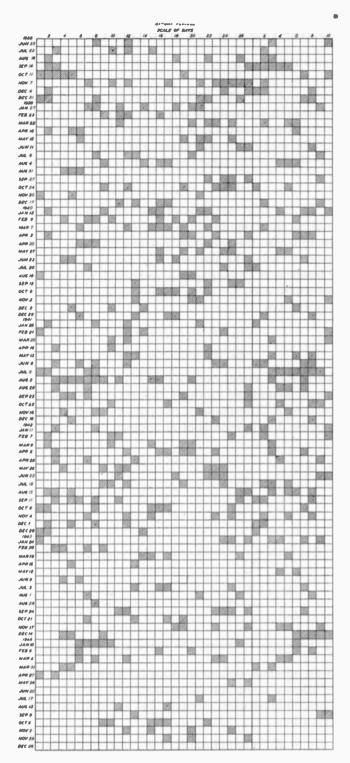


Fig. 13—Test for 27-day recurrence of sporadic E, Watheroo Magnetic Observatory, June, 1938, to December, 1944.

mean for each 27-day period. The date of the first day in each row is given at the left. A new row is begun after every 27 days, so that each vertical column is composed of successive dates which are separated by one solar rotation.

For sake of continuity, the horizontal lines of the block diagram extend through the first ten days of each successive cycle. This is a customary practice in recurrence tests in order to provide a sense of visual continuity for recurrences which happen near the end of each 27-day period.

Seasonal and annual trends have been eliminated from Fig. 13 by selection of the mean Es activity in each 27-day period as the reference level. In a diagram of this type a vertical column of shaded blocks indicates a sequence of Es of intensity 50 per cent greater than the mean for each period at exactly 27-day intervals. Diagonal columns indicate recurrences at slightly more or less than the 27-day interval depending upon direction of slope. Inspection of Fig. 13 shows that there are no outstanding recurrences. This is considered as significant, since magnetic activity during the same period is characterized by some outstanding recurrent disturbances which persisted for six, or more, solar rotations. Fig. 13, however, does indicate some diagonal groupings with a slope of about 45 degrees which may warrant some further attention, since they are suggestive of recurrences at 26-day intervals. Any further deductions must await the outcome of analyses to determine correlation coefficients.

VII. Es and Magnetic Activity

For purposes of determining whether or not Es was more prevalent during periods of magnetic activity, the Es data were separated into two categories, both of which had seasonal effects removed.

In the first case, 46 per cent of the days when Es exceeded the mean 27-day value coincided with days when magnetic activity was in excess of the mean value. In the second case, 52 per cent of the days with strong Es, as plotted in Fig. 13, coincided with days when magnetic activity exceeded the mean for the period. These figures certainly indicate no relationship between Es and world-wide magnetic activity. This conclusion, as based on the above data only, is somewhat surprising in view of the probability that Es is caused by solar corpuscular radiations. There is a great deal of evidence to support the theory that Es is a result of solar corpuscular radiation. As mentioned above, polar observations, including reports from College, Alaska, Observatory, have clearly associated Es with aurora overhead. Likewise, the relationship between aurora and magnetic activity is well established. Diurnal characteristics of Es in polar regions closely relate it with abnormal D-region absorption, indicating corpuscular origin of the abnormal ionization. Essentially, it seems that both effects are due to the same fundamental agency but sporadic Eresults when the ionization is formed in the E region, while complete absorption or polar radio blackout results when the ionization is formed at a slightly lower level. However, the absence of correlation between Es and magnetic activity does not necessarily deny the corpuscular origin of *Es* but may suggest that the local nature and limited extent of patches of Es are indications of minute and more or less random corpuscular streams which have no effect on the over-all magnetic field of the earth.

Proceedings of the I.R.E. and Waves and Electrons

Design of Directive Broad-Band Antennas

RICHARD BAUM[†], ASSOCIATE, I.R.E.

Summary-Mutual coupling between the individual antennas of a direction-finding system causes an asymmetry in their respective field patterns which prevents complete cancellation of radiation in the direction of the "null." Instead, it produces a radiation minimum combined with an error in direction. By a suitable arrangement of parasitic antennas the original symmetry can be restored and a correct and true null can be obtained.

INTRODUCTION

HIS PAPER deals with the design of directive broad-band antennas of the zero-shifting type used in certain direction-finding systems.

Such antennas consist of two radiating elements (for instance, two dipoles) which are excited with equal currents, but out of phase. Their combined radiation pattern then has one direction in which the field strengths of the individual antennas are exactly equal but opposite in phase, and thus cancel each other. The combined pattern shows a "null," the direction of which depends upon the phase of the antenna currents.

The frequency range considered is large, say two or three to one, with a middle frequency of several hundred megacycles. In this region a linear phase shift can easily be achieved, for instance by the introduction of an additional length of line into one matched feed line. The phase shift then becomes equal to the added line length in electrical degrees, or proportional to the frequency. Without mutual coupling between the elements the direction of the null becomes independent of frequency.

The current induced in one element by the other element because of coupling produces an additional radiation field, which disturbs the symmetry of the original field. It can be shown that the distortion prevents a perfect null and a correct direction indication.

The present paper describes an antenna system which adds additional parasitic fields in such a way as to restore the original symmetry of the radiation pattern. This is achieved essentially by an arrangement of two or more parasitic antenna elements in line with the original ones.

THE CONDITION OF SYMMETRY

In Fig. 1, A_1 and A_2 represent two antenna elements connected to two generators G_1 and G_2 by two feedlines F_1 and F_2 . The line drawn through A_1 and A_2 shall be called the baseline B. It is normal to the plane of symmetry S. The direction of a distant point P in the horizontal plane is indicated by its angle θ included with the plane S. The field strength at the point P due to antenna A_1 and A_2 is called E_{A_1} and E_{A_2} respectively.

If there were no coupling between the antennas, the field of each antenna would remain undisturbed by the presence of the other antenna. In the case of dipoles, for instance, it would be circular, as indicated by one of the circles C_1 and C_2 . If the generator voltages are of the same magnitude and phase, and if the two antenna elements are of the same physical dimensions, obviously

$$E_{A_1}(\theta) = E_{A_2}(\theta) = E_A(\theta); \qquad (1)$$

that is, the field patterns of the individual antennas would be the same in magnitude and phase.

In this case the radiation pattern E_{A1} can be made coincident with the pattern E_{A_2} by shifting it along the baseline B. This paper is restricted to those usual cases where each pattern, neglecting mutual coupling, obeys the law

$$\begin{bmatrix}
 E_{A_1}'(\theta) = E_{A_1}'(-\theta) \\
 E_{A_2}'(\theta) = E_{A_2}'(-\theta)
 \end{bmatrix}
 .
 (2)$$

Each pattern shows even symmetry with respect to a plane of symmetry through the antenna in question normal to B. The shape of the pattern itself as well as the phase distribution is of no importance.

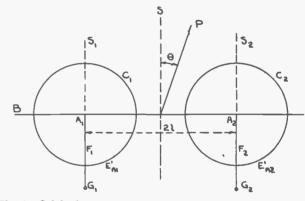


Fig. 1-Original symmetry. The mutual coupling is neglected.

If an antenna system satisfies (1) and (2) it satisfies the "original condition of symmetry."

The combined field strength $E_{P'}$ at a distant point P is given by

$$E_{P'} = E_{A_1}' \exp(j\beta l \sin \theta) + E_{A_2}' \exp(-j\beta l \sin \theta)$$
(3)

where

$$2l$$
 = distance between the two antennas

$$\beta = \frac{2\pi}{\lambda}$$
 = wavelength constant

If the two generator voltages are of the same magnitude but leading and lagging respectively by an angle ϕ with respect to pure phase opposition, the field strengths can be set

$$E_{A1}' = E_A' \exp(-j\phi)$$
$$E_{A2}' = -E_A' \exp(+j\phi)$$

^{*} Decimal classification: R325.31. Original manuscript received by the Institute, December 28, 1945; revised manuscript received, April 19, 1946; second revision received, June 18, 1946. † Raytheon Manufacturing Company, Inc., New York, N. Y.

which makes

1946

$$E_{P}' = 2iE_{A}' \sin \left[\beta l \sin \theta - \phi\right], \qquad (4)$$

The position of zero radiation is given by

$$\sin \theta_0 = \phi/\beta l. \tag{5}$$

If the feed lines are matched throughout the frequency range, then the phase shift ϕ can be produced by lengthening one of the feed lines and shortening the other by a given length l_F equivalent to an angle

$$\phi = \beta l_{F}$$

which introduced into (5) gives

$$\sin \theta_0 = l_F / l \tag{6}$$

thus making the position of zero field strength (called "null") independent of frequency. The position θ_0 of the null is seen always to be zero for zero phase shift, but its position for different phase shifts depends upon the antenna spacing l.¹

In order to obtain the required condition of (5), two assumptions have been made: First, that no coupling exists between the antenna elements; second, that (1) holds true. The latter is always the case if the "original condition of symmetry" is fulfilled. But what is happening if the mutual coupling may no longer be neglected?

The original field E_{A_1} of antenna A_1 then induces a secondary current in the antenna A_2 , which produces a secondary field E_{A_2} and vice versa, the field E_{A_2} of antenna A_1 induces a secondary current in antenna A_1 , which produces a secondary field E_{A1} ". The secondary fields again induce tertiary currents which produce tertiary fields, and so on, ad infinitum. The final current in each antenna is made up of the sum of the infinite number of induced currents plus the original current; thus it is quite different, in magnitude and phase, from the original one. The final field at the point P, is also obtained by superposition of all partial fields and will be different from the original field E_P' . In particular if the direction of P was originally a direction of zero field strength, because of a given phase shift $(\pi + 2\phi)$ between the generator voltages, this "null" will disappear and a definite field strength will take its place, unless the phase angle between the generator voltages is modified in such a way that the total currents in the antennas include the original phase $(\pi + 2\phi)$. Although this adjustment might be feasible for a particular frequency, or for a narrow frequency band, it becomes impracticable for the very wide bands in consideration.

Obviously, only if the nulls of the partial fields coincide with the null of the original field, will the null remain in the proper direction after superposition of all fields.

It will be shown that in the present arrangement of two radiators the nulls of the original (primary), the tertiary, and in general all partial fields of uneven order coincide with the original null; furthermore, that the nulls of all partial fields of even order coincide with themselves, but not with the original one.

Let E_{A_1}' and E_{A_2}' again denote the original fields and k be a complex constant. Because of the symmetry condition (2), the secondary fields are equal to each other and related to the original ones according to

$$E_{A_2}'' = \exp(k)E_{A_1}'$$

 $E_{A_1}'' = \exp(k)E_{A_2}'.$

But the same relationship holds true between the tertiary and secondary field, between the field of fourth order and the tertiary field, and so on. Thus the fields produced by antenna A_1 and A_2 are respectively:

$$E_{A1}' \qquad E_{A2}' \qquad E_{A2}' \qquad E_{A2}' \qquad E_{A1}'' = \exp(k)E_{A1}' \qquad E_{A2}'' = \exp(k)E_{A1}' \\ E_{A1}''' = \exp(2k)E_{A1}' \qquad E_{A2}''' = \exp(2k)E_{A2}' \\ E_{A1}'''' = \exp(3k)E_{A2}' \qquad E_{A2}'''' = \exp(3k)E_{A1}' \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

By adding all partial fields the total fields E_{A_1} and E_{A_2} due to antenna A_1 and A_2 become respectively:

$$E_{A_1} = E_{A_1}' / [1 - \exp(2k)] + E_{A_2}' \exp(k) / [1 - \exp(2k)]$$

$$E_{A_2} = E_{A_2}' / [1 - \exp(2k)] + E_{A_1}' \exp(k) / [1 - \exp(2k)].$$
(7)

The first summand in each expression is the sum of all partial fields of uneven order plus the original field. The second summand is the sum of all partial fields of even order. Introducing a phase angle $(\pi + 2\phi)$ between E_{A_1}' and E_{A_2}' as in (4), the total fields E_{A_1} and E_{A_2} become

$$E_{A_{1}} = \frac{E_{A'}}{1 - \exp(2k)} \left[\exp(-j\phi) - \exp(j\phi) \exp(k) \right]$$

$$E_{A_{2}} = \frac{-E_{A'}}{1 - \exp(2k)} \left[\exp(j\phi) - \exp(-j\phi) \exp(k) \right].$$
(8)

By superposition of both fields the combined field at a distant point P is

$$E_P = \frac{2jE_A'}{1 - \exp(2k)} \left[\sin(\beta l \sin \theta - \phi) - \exp(k) \sin(\beta l \sin \theta + \phi) \right].$$
(9)

The first summand is due to the original field plus the uneven-order fields and is seen to furnish nulls according to (5) at angles θ_0 given by

$$\sin \theta_0 = + \frac{\phi}{\beta l}$$

whereas, the second summand gives nulls at angles $\theta_0' = -\theta_0$ given by

$$\sin\theta_0' = -\frac{\phi}{\beta l} \,. \tag{10}$$

Thus the two statements are proved.

¹ Numerous examples of radiation patterns of a pair of dipoles are shown in F. E. Terman, "Radio Engineers Handbook," page 804; John Wiley Sons, Inc., New York, N. Y., 1943.

The combined field E_P is null only if

$$\exp (k) \sin (\beta l \sin \theta_0 + \phi) = \sin (\beta l \sin \theta_0 - \phi)$$

which leads to

$$\tan \left(\beta l \sin \theta_0\right) = - \frac{\tan \phi}{\tanh \left(k/2\right)} \,. \tag{11}$$

This formula shows that a null is obtained only if k is real and positive, which obviously is a very exceptional case, as k in general is a function of frequency dependent on the antenna spacing, dimensions, impedance, etc. But even in this case the position of the null is shifted from its original direction given by (5). Only in the case of zero phase shift ($\phi = 0$) will the null coincide with the original one.

Therefore expression (9) normally furnishes, instead of a perfect null, a direction of minimum radiation found by setting

$$\frac{\partial \left| E_{P} \right|}{\partial \theta} = 0,$$

which gives

 $\tan \left(2\beta l \sin \theta_0\right) = -\tan 2\phi \frac{\sinh r}{\cosh r - \cos s / \cos \left(2\phi\right)} \quad (12)$

where k is expressed by its real and imaginary components k=r+js.

Equation (11) can be expanded into the form

$$\tan \left(2\beta l \sin \theta_0\right) = -\tan 2\phi \frac{\sinh k}{\cosh k - 1/\cos\left(2\phi\right)} \cdot (11a)$$

Equations (12) and (11a) are identical for s = 0, that is, for real positive values of k. Equation (12) again shows that the direction of minimum radiation is different from the required value unless k equals $-\infty$ (no coupling).

The Distortion of the Original Symmetry , Due to Mutual Coupling

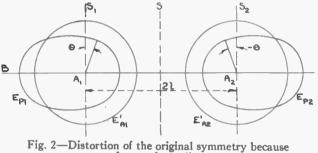
Consider now in Fig. 1 the field of antenna A_1 and antenna A_2 produced by the generator G_1 alone. Generator G_2 including feed line F_2 may be replaced by a suitable impedance Z_A connected between the terminals of antenna A_2 and equal to the impedance seen from the antenna A_2 looking into its feed line F_2 . From (7), with $E_{A_1}'=0$ and $E_{A_1}'=E_A$,

$$E_{A_1} = E_A / [1 - \exp(2k)]$$

$$E_{A_2} = E_A / [1 - \exp(2k)] \exp(k)$$
(13)

the total field at a distant point P is

$$E_{P_1} = \frac{E_A}{1 - \exp(2k)} \left[\exp(j\beta l \sin \theta) + \exp(k) \exp(-j\beta l \sin \theta) \right]$$
$$= E_A \frac{2j \exp(k/2)}{1 - \exp(2k)} \sin(\beta l \sin \theta - k/2). \quad (14a)$$


The same voltage E_A delivered by the generator alone, replacing F_1 and G_1 by an impedance Z_A , instead of G_1 obviously produced a field

$$E_{P_2} = E_A \frac{2j \exp(k/2)}{1 - \exp(2k)} \sin(-\beta l \sin\theta - k/2)$$
(14b)

from which a symmetry relation follows, with

$$E_{P_1}(\theta) = E_{P_2}(-\theta). \tag{15}$$

This condition is sketched in Fig. 2. Again, the original symmetry condition is represented by the two circles, whereas the present fields are distorted by coupling

1g. 2—Distortion of the original symmetry because of mutual coupling.

and represented by the two oval curves, which show mirror symmetry with respect to the plane of symmetry S. The distortion is due to the sine term and the constant k/2, in (14). It is evident that the two fields will not compensate in any direction. The disturbing

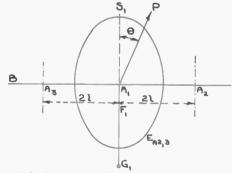


Fig. 3—The original symmetry is restored by a parasitic antenna A_3 .

effect of the unexcited antenna can be counterbalanced by an arrangement according to Fig. 3, in which a third parasitic antenna element A_3 is introduced on the baseline *B* at the same distance 2*l* of A_2 from A_1 but in opposite direction. This "dummy" again is loaded at its terminals by an impedance Z_A and is similar in all respects to antenna A_2 . The field of this arrangement obviously is different from the field of antenna A_1 alone, but it necessarily has the symmetry determined by (2) and may have, for instance, the form indicated in Fig. 3. Indeed the currents induced in A_2 and A_3 are in phase and their fields combine to a resultant field of the form

$$E_{A_{2,1}} \cong \exp(k') \cos(\beta l \sin \theta) \tag{16}$$

where k' is a complex constant. This field has the original symmetry, just as the field produced by antenna A_1 alone. If two such triple antenna systems are

joined together, a perfect null-shifting directional system is obtained, because (1) and (2) are fulfilled. Consider, for instance, the arrangement of four antennas as shown in Fig. 4, in which the two inner antennas are driven, the two outer antennas being dummies; and

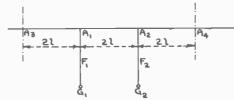


Fig. 4—Improved antenna system. As and As are parasitic elements.

where the distance between two adjacent antennas is the same and equal to 2*l*. The first system consists of antenna A_1 plus two dummies A_2 and A_3 ; the second system consists of antenna A_2 plus two dummies A_1 and A_4 . Unfortunately, this is not perfectly true, because A_4 cannot be neglected completely in the first system, nor can A_3 be neglected altogether in the second system. But their influence is small and of the second order because of their twofold distance from the respective driven elements. Thus a considerable improvement in performance over a system without dummies is achieved.

THE INFINITE PERIODIC ANTENNA SYSTEM

To be exact, the addition of the second system again introduces the pattern asymmetry since antenna A_1 has only one antenna at the left side and two on the right side; while antenna A_2 has two at its left side and only one at its right side.

The same number of antennas on both sides of each driven antenna in the directive system apparently can be obtained only by arranging an infinite number of identical antennas at equal distances on both sides and in line with the two driven center antennas. Thus one arrives at the conception of the infinite periodic antenna array. The direction of zero radiation of an infinite array follows the law of (5).

In practice it is not necessary to extend the array very far from the center. It was found that the addition of only one dummy antenna at each side considerably reduced the maximum directional error (from 8 to about 2 degrees in one special case). The addition of two dummy antennas on each side reduced the error to a magnitude comparable to other errors in the system and has been found sufficient for all practical applications. As expected, the quality of the "null" improves as the error in direction is reduced, and almost perfect zero radiation in the desired direction can be achieved at all frequencies.²

The implication in the design of an infinite periodic array is to start with the directional pattern of an infinite number of antennas with one driven antenna in

$$E = E_A(\theta) \sin \left[\beta l \sin \theta - \phi\right]. \tag{17}$$

As the whole problem was reduced to a problem of symmetry, the result can now be generalized:

1. Each antenna A_n need not be a single antenna, but may consist of a small system by itself, containing for instance one or more reflector elements; or it may consist of one or more antennas arranged in front of a metal shield. An infinite metal shield is indeed equivalent to a number of additional antennas, given by the images of the actual antennas.

2. The two antennas connected to the feed lines need not be adjacent to each other, but one or more dummies may be located between them.

3. Our considerations apply to any kind of antennas and are not restricted to dipoles. A general infinite array, therefore, may be described as follows (Fig. 5). (The letters A refer to identical antennas, which means antennas of the same physical size and shape and looking into the same impedance at their input point. All elements A would have the same radiation patterns and the same electrical characteristics if isolated in free space. The same holds true for the identical antennas B, for the antennas C, and so on.) The periodic system, consists of an infinite number of antenna elements A, B, C, D... arranged in space in a periodic recurrent fashion, as indicated in Fig. 5. The row of antennas has to be thought of as continued to the left and to the right ad infinitum.

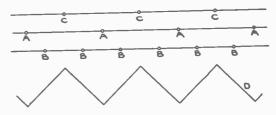


Fig. 5-Infinite periodic antenna system with screen.

Through any particular antenna A a plane S may be passed to make it a plane of symmetry for the whole system. In consequence the radiation pattern of this antenna will be symmetric with respect to S. The planes of symmetry through other antennas A are parallel to S. Any two of the antennas A then can be made the active (driven) antennas of the whole system. In Fig. 5, antennas C could be used as well as active antennas, but not antennas B, as no plane of symmetry for the whole system can be passed through B.

A possible screen D has to have the same conditions of symmetry. That is, the mentioned planes of symmetry have to be planes of symmetry of the shield as well. The images of all antennas produced by the screen then also fulfill the required symmetry conditions.

² It is important to note that from the standpoint of directivity no match of the antenna is required at its feed point; and that the results are true only if no coupling exists between feed lines and generators or receivers connected to them.

Theory of Mode Separation in a Coaxial Oscillator^{*}

Summary—The problem of separating the first and third modes of oscillation in a standard coaxial oscillator is considered. It is shown that the mode separation (the difference in the settings of one of the two resonant sections for the two modes) increases with the difference between the products of terminating capacitance and characteristic impedance for the two sections. The mode separation is seen to vary quite slowly as a function of frequency.

INTRODUCTION

COMMON type of high-frequency oscillator uses two sections of coaxial transmission line as resonant circuits. Each of these line sections resonates with the corresponding interelectrode capacitance which terminates one end of the section; the other end is terminated by a shorting plug whose position is adjustable. Fig. 1 illustrates the arrangement. For the sake of simplicity, a parallel-wire line has been drawn rather than a coaxial line; the theory, of course, applies to either.

Fig. 1

One of these sections, here called section (a), may be considered to determine the frequency of oscillation in accordance with the equation

$$\frac{1}{\omega C} = Z_0 \, \tan \frac{\omega l}{v}, \qquad (1)$$

where l is the length of section (a) to the shorting plug, Z_0 is the characteristic impedance of line (a), v is the velocity of propagation in this line, C is the interelectrode capacitance, and ω is the angular frequency at which the section resonates with the terminating capacitance C.

There is a series of angular frequencies which satisfy this equation for a given setting of the shorting plug. These are denoted by ω_1 , ω_3 , ω_5 , etc. Here ω_1 is such that the corresponding angular length of the section $\omega_1 l/v$ is an angle in the first quadrant; it is known, therefore, as the first mode of resonance. Similarly, ω_3 is the third mode, because its value is such that $\omega_3 l/v$ is a third quadrant angle, and so forth.

Section (b) (the other section) may then be considered to determine at which of these possible frequencies the apparatus actually oscillates, in accordance with the equation

This work was done in whole under contract No. OEMsr-411 between the President and Fellows of Harvard College and the Office of Scientific Research and Development, which assumes no responsibility for the accuracy of the statements contained herein.

† Columbia University, New York, N. Y.

$$\frac{1}{\omega C'} = Z_0' \tan \frac{\omega l'}{v'}, \qquad (2)$$

where ω is one of the angular frequencies of resonance discussed above, and the prime indicates a quantity for section (b) corresponding to the unprimed quantity of section (a) (i.e., C' is the interelectrode capacitance terminating section (b), Z_0' is the characteristic impedance of line (b), and so on). If (b) is not properly tuned, the oscillator delivers no appreciable power.

DERIVATION AND FORMULAS

Consider then the first and third modes of resonance resulting from a given setting of the length of section (a). The two frequencies are determined by

$$\frac{1}{\omega_1 C} = Z_0 \tan \frac{\omega_1 l}{v} \qquad \left(0 \le \frac{\omega_1 l}{v} \le \frac{\pi}{2}\right), \quad (1a)$$

$$\frac{1}{\omega_{\mathfrak{d}}C} = Z_0 \tan \frac{\omega_{\mathfrak{d}}l}{v} \qquad \left(\pi \le \frac{\omega_{\mathfrak{d}}l}{v} \le 3 \frac{\pi}{2}\right).$$
(1b)

For the apparatus to oscillate at the angular frequency ω_1 , the length of section (b) must be adjusted to a value h' such that

$$\frac{1}{\omega_1 C'} = Z_0' \tan \frac{\omega_1 l_1'}{v'} \qquad \left(0 \le \frac{\omega_1 l_1'}{v'} \le \frac{\pi}{2}\right).$$
(2a)

Similarly, if the oscillation is to be at the angular frequency ω_{3} , the length of section (b) must have the value l_{3}' , given by

$$\frac{1}{\omega_{\mathfrak{d}}C'} = Z_{\mathfrak{d}'} \tan \frac{\omega_{\mathfrak{d}}\mathfrak{l}_{\mathfrak{d}'}}{v'} \qquad \left(\pi \leq \frac{\omega_{\mathfrak{d}}\mathfrak{l}_{\mathfrak{d}'}}{v'} \leq 3 \frac{\pi}{2}\right). \tag{2b}$$

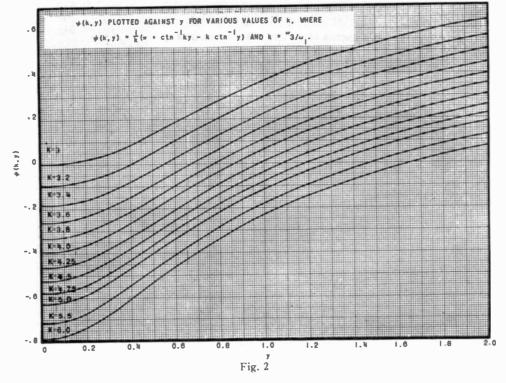
There is, of course, a series of values of l_1' which satisfy (2a). In practice, however, in order to keep the length of the section short, the lowest value is used, such that $\omega_l l_1'/v'$ is a first quadrant angle, as indicated above. The value of l_3' closest to this lowest value of l_1' is almost always the one such that $\omega_2 l_3'/v'$ is in the third quadrant. These are values considered here.

In order to avoid oscillations of an undesired frequency, l_1' and l_3' must be as different as possible. If l_3' is too close to l_1' it becomes very difficult to separate the two modes of oscillation. The problem, then, is to find the conditions on the line constants and terminating capacitances which make the difference between l_1' and l_3' as large as possible—that is, which maximize $|\Delta l|$, where by definition $\Delta l \equiv l_3' - l_1'$.

It must be remarked that an implicit assumption has been made in the foregoing: that the interelectrode capacitances C and C' do not vary when the mode is shifted. Since the frequency changes by a factor of three or more in going from the first to the third mode, generally this assumption is not strictly true; the equivalent terminating capacitance depends on end

^{*} Decimal classification: R355.912. Original manuscript received by the Institute, January 16, 1946; revised manuscript received, April 19, 1946.

effects in the line section, the precise method of loading the oscillator, and other factors which vary with frequency. The change in capacitance resulting from the frequency shift is usually fairly small, however, and although it may introduce some errors in the precise numerical results, it does not affect the qualitative general conclusions. Consequently it is neglected here.


The problem now is to solve (1a) and (1b) for ω_1 and ω_3 , whereupon l_1' and l_3' can be found easily from (2a) and (2b). In these equations, unfortunately, the angular frequency appears in the argument of a transcendental function as well as outside the function, and therefore it cannot be found directly. The following procedure, however, leads to a form of the equations for which general curves can be plotted. Define the following function of the arbitrary variable y:

$$\psi(k, y) \equiv \frac{1}{k} \left(\pi + \operatorname{ctn}^{-1} ky - k \operatorname{ctn}^{-1} y \right) , \quad (5)$$

maintaining the convention that $\operatorname{ctn}^{-1}y$ and $\operatorname{ctn}^{-1}ky$ are first quadrant angles when y is positive (the only case of interest here). Equations (3) and (4) can then be rewritten in terms of this function:

$$\psi(k, \alpha) = 0 \qquad (\alpha \equiv \omega_1 C Z_0), \qquad (3a)$$

$$\Delta l = \frac{v'}{\omega_1} \psi(k, \beta) \qquad (\beta \equiv \omega_1 C' Z_0'), \qquad (4a)$$

(3)

For the sake of brevity, define:

 $k \equiv \frac{\omega_3}{\omega_1}$ (thus $\omega_3 = k\omega_1$), $\alpha \equiv \omega_1 C Z_0$, $\beta \equiv \omega_1 C' Z_0'$.

Equations (1a) and (1b) then become $\alpha = \operatorname{ctn} \theta_1$ and $k\alpha = \operatorname{ctn} k\theta_1$, where $\theta_1(=\omega_1 l/v)$ is a first quadrant angle and $k\theta_1$ is in the third quadrant. Assume the convention that the inverse trigonometric function of a positive argument is an angle in the first quadrant. These equations can then be rewritten and combined to give $k \operatorname{ctn}^{-1} \alpha = \pi + \operatorname{ctn}^{-1} k\alpha = k\theta_1$, or

$$\pi + \operatorname{ctn}^{-1} k\alpha - k \operatorname{ctn}^{-1} \alpha = 0.$$

Similarly, (2a) and (2b) can be rewritten to give

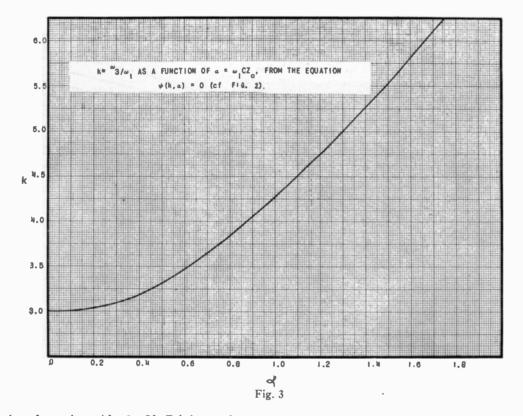
 $\pi + \operatorname{ctn}^{-1} k\beta - k \operatorname{ctn}^{-1} \beta = \theta_{\mathfrak{z}}' - k \theta_{\mathfrak{z}}' = (k \omega_{\mathfrak{z}} l_{\mathfrak{z}}' / v') - k (\omega_{\mathfrak{z}} l_{\mathfrak{z}}' / v'),$

or

$$l_{3}' - l_{1}' \equiv \Delta l = \frac{v'}{k\omega_{1}} \left[\pi + \operatorname{ctn}^{-1} k\beta - k\operatorname{ctn}^{-1} \beta \right].$$
 (4)

where $k \equiv \omega_3/\omega_1$, and $\Delta l \equiv l_3' - l_1'$. Equation (3a) is considered as determining k, and equation (4a) as determining Δl from k.

Fig. 2 is a plot of the function $\psi(k, y)$ against y for various values of k. From the intersections of these curves with the line $\psi = 0$, Fig. 3 was plotted as a solution to (3a). This figure shows that (3a) has no solution for k less than 3, since α must be positive. (The solution k = 3 corresponds to the condition where section (a) is terminated in a zero capacitance—that is, an infinite reactance.)


DISCUSSION AND CONCLUSIONS

It is clear from Fig. 2 that $\psi(k, y)$ is a monotonically increasing function of y which approaches a finite value as y goes to zero and another finite value as y approaches infinity. Fig. 3 indicates that k is a monotonically increasing function of α , going to the value 3 for $\alpha = 0$ and approaching infinity as α does. Now since ψ is monotonic and $\psi(k, \alpha) = 0$ is the equation determining k, in order to maximize the function $|\psi(k,\beta)|$ (to which $|\Delta l|$ is proportional) it is obviously necessary to make $|\alpha - \beta|$ as large as possible. In other words, one must make CZ_0 as different from $C'Z_0'$ as is practicable.

A brief calculation may illustrate this point. If $Z_0 = 50$ ohms and C = 4.1 micromicrofarads at a first mode frequency of 1000 megacycles, then one has $\alpha = (2\pi \times 10^9)(4.1 \times 10^{-12})(50) = 0.41\pi = 1.3$ (approximately). This gives, from Fig. 3, k = 5. Now if C' = 2.5 micromicrofarads and Z_0' is made 82 ohms, one obtains $\beta = 1.3 = \alpha$. A glance at Fig. 2 shows that $\psi(5, \beta) = 0$ for

pendent of frequency.

The foregoing argument, of course, is only a rough approximation, but it indicates that the mode separation Δl varies quite slowly with the frequency of the first mode. In almost every case a linear interpolation between the results of two calculations, one at either end of the frequency range to be covered, will be accurate enough for all practical purposes at any intermediate frequency. For maximum mode separation, the chief aim should be to maximize $|\mu|$; that is, to make the quantity $|CZ_0 - C'Z_0'|$ as large as is practicable. Whether CZ_0 is larger or smaller than $C'Z_0'$ is generally of little importance, and is usually determined by design

 $\beta = 1.3$, and therefore that $\Delta l = 0$. If Z_0' is made 25 ohms, however, one finds $\beta = 0.39$ and consequently $\psi(5, \beta) = -0.48$ in this case. If $v' = 3 \times 10^{10}$ centimeters per second, one has $\Delta l = (-0.48)(3 \times 10^{10})/(2\pi \times 10^9)$ centimeters = -2.3 centimeters, a large enough value so that there should be no trouble in keeping the modes separate.

At first glance it might appear that this solution would require a calculation like the above for every frequency in the range of interest. This is not the case. The definitions show that $\alpha - \beta \equiv \omega_1(CZ_0 - C'Z_0')$. The quantity $\mu \equiv CZ_0 - C'Z_0'$ is nearly constant with frequency. To a first approximation, the curves of Fig. 2 may be assumed linear and parallel, at least in the region near $\psi = 0$. Under this assumption, the value of $\psi(k, \beta)$ is proportional to the difference $\alpha - \beta \equiv \mu \omega_1$, no matter what the values of α and β are; hence ψ/ω_1 is proportional to μ . Equation (4a) then shows that, to a first approximation, Δl is proportional to μ and indeand construction considerations; when other criteria are lacking, it can be decided by referring to Figs. 2 and 3.

It should perhaps be remarked that the foregoing is concerned with the values chosen for CZ_0 and $C'Z_0'$ only from the point of view of mode separation. In the design of an actual oscillator, this criterion is only one of many considerations which enter into the selection of values for these quantites; among other important factors which must be considered at the same time are such items as physical size, circuit efficiency, frequency bandwidths, and so forth. Thus, although the mode separation increases directly with the difference in the CZ_0 products for the two coaxial-resonator systems, one is unwilling, in general, to go to extremes in this direction at the expense of other characteristics. As always, a balance must be struck between the various factors, and compromise values selected for the circuit constants on the basis of over-all performance.

Contributors to the Proceedings of the I.R.E.

RICHARD F. BAUM

Richard F. Baum (A'42) was born on August 18, 1911, at Most, Czechoslovakia. He received his E.E. degree in 1935 from the Technische Hochschule in Prague, and a radio engineer's diploma in 1939 from the Ecole Superieure d'Electricité in Paris.

He worked for several years in the field of power applications. From 1940 to 1941 he was a radio operator in the United States Signal Corps. Subsequently he worked as development engineer with the Industrial Instruments, Inc., Jersey City, New Jersey, on the suppression of radio interference in army vehicles. From 1942 to 1945, he was employed as senior engineer at the Federal Telephone and Radio Research Laboratories in New York, N. Y., and was engaged in the development of direction-finding systems. Since July, 1945, he has been a member of the microwave communication department at the Raytheon Manufacturing Company, Inc., in Waltham, Massachusetts.

- -

M. J. O. Strutt (SM'46) was born at Soerakarta, Java, in 1903. From 1921 to 1927 he studied at the University of Munich; the Institute of Technology at Munich; and the Institute of Technology at Delft, Holland. He was graduated from Munich in 1924, and received, from Delft, his degree

M. J. O. STRUTT

in electrical engineering in 1926, and the degree of Doctor of Technical Science, in 1927. During 1926 and 1927, Dr. Strutt served also as a member of the staff at Delft and as a patent engineer.

In 1927 he joined the Philips Lamp and Radio Company, Ltd., Eindhoven, Holland, participating in research on electroacoustics from 1930 to 1933. Later he was in charge of the research group on reception and ultrahigh-frequency tubes. In 1945 Dr. Strutt became an electronics consultant.

He is a member of the Royal Institute of Engineers at the Hague, the Dutch Radio Society, the Dutch Mathematical Society, and the Society for the Advancement of Physics and Medicine at Amsterdam.

•

H. W. Wells

H. W. Wells (A'36-M'36-SM'43) was born on January 13, 1907, at Washington, D. C. He received the B.S. degree in electrical engineering in 1928, and the E.E. degree in 1937 from the University of Maryland. Between 1928 and 1932, he was associated with the Westinghouse Electric and Manufacturing Company, the All-American Mohawk Expedition to Borneo, Heintz and Kaufman, and the Army Air Forces.

Mr. Wells has been a member of the scientific staff of the Department of Terrestrial Magnetism, Carnegie Institution of Washington, since 1932. His investigations both here and abroad have contributed materially to knowledge of the ionosphere, radio wave propagation, and related geophysical subjects.

He is a member of the Committee on Wave Propagation and Utilization of the Institute of Radio Engineers. His professional affiliations include the Washington Academy of Sciences, American Geophysical Union, and the Philosophical Society of Washington.

*

For a biography and photograph of Haraden Pratt, see the October, 1945, issue of the PROCEEDINGS OF THE I.R.E. A biography and photograph of Arthur Van Dyck appeared in the January, 1943, issue of the PROCEEDINGS.

PETER J. SUTRO

Peter J. Sutro was born on June 20, 1921, at New York City. He received the B.A. degree in physics from Harvard University in 1942. During the war, from 1942 to 1946, he was working on radar countermeasures as a research associate at the Radio Research Laboratory of Harvard University, which was operated under a contract with the Office of Scientific Research and Development. He has now resumed his studies in the physics department of Columbia University. He is a member of the American Physical Society.

٠.

Leland E. Thompson (A'35-SM'44) was born at Creighton, Nebraska, on September 18, 1905. He received the B.S. degree in electrical engineering from the University of South Dakota in 1929. From 1929 to 1930 he was employed in the radio-engineering department of the General Electric Company. Since 1930, Mr. Thompson has been associated with the Radio Corporation of America, RCA Victor Division, Camden New Jersey.

LELAND E. THOMPSON

December

National I. R. E. Convention 1947

It is estimated that many thousands of members of The Institute of Radio Engineers and professional engincers will gather in New York City for the Institute's five-day 1947 National Convention to be held on March 3 to 7.

The convention will publicize recent developments in the field of electronics, to the end that society will

benefit by the industry's research. Along with engineering progress, an understanding of important current developments should be offered to the public. With that, a social responsibility will have been met. The 1947 Convention's theme was voted to be "Electronics at Peace!"

Scheduled for sessions lasting four days are three major features—a Symposium of I.R.E. Technical Committees, including technical papers to be read on the latest developments in the field of electronics—commercial exhibits at the Grand Central Palace building at 46th and Lexington Avenue—and the Annual Banquet set for Wednesday evening.

The technical meetings and all social functions will be held at the Hotel Commodore, Lexington Avenue and 42nd Street.

All technical papers will be presented for the first time and none will have been published before in any form. Technical sessions will start on Monday morning, March 3.

Approximately one hundred and eighty manufacturers are expected to exhibit the concrete results of their engineering research from one o'clock Monday afternoon until Thursday evening at ten. The exhibits will be open each night until ten, except for Wednesday when the Banquet will be held at the Hotel Commodore. On Wednesday the Grand Central Palace will close at six. The exhibit of electronic equipment, parts, and materials will provide a meeting ground for visiting engineers desiring to discuss their mutual problems.

Thirty-six lectures, as well as demonstrations with sound equipment, a display of military radio devices, and a historical tube exhibit, will supplement the standard exhibits.

The Annual Banquet has been set for Wednesday

night, on which occasion a nationally prominent figure will address those assembled. In addition to a program of entertainment, there will be scheduled the presentations of the Institute Medal of Honor and the Morris Liebmann Memorial Prize, both awarded for distinguished service in the field of radio communications. The names of the new Fellows elected into the Insti-

> tute will be announced and the President of the I.R.E. will address the gathering.

Monday afternoon, the press is scheduled for a luncheon and a visit to the Grand Central Palace. There will also be a social gathering for those desiring to attend on Monday night.

Under the guiding hand of Mrs. F. B. Llewellyn, a special program is planned for the ladies of the Convention. All the plans have not been set, but it is expected that a tea will be held for the ladies at the new Institute building on Tuesday, in addition to other activities.

Officials and members of the General Committee for the Convention include: Chairman, James E. Shepherd; Vice-Chairman, Philip F. Siling; Secretary, Edna Harding; Committeemen, George W. Bailey, Austin Bailey, Stuart L. Bailey, B. E. Shackel-

ford, Edward J. Content, Elizabeth Lehmann, and J. R. Poppele.

Subcommittee chairmen in charge of the various activities are: Finance, F. R. Lack; Hospitality Registration, R. D. Campbell; Hospitality, E. Finley Carter; Women's Activities, Mrs. F. B. Llewellyn; Technical Program, Ernst Weber; Facilities, R. D. Chipp and John G. Preston; Printed Program, J. W. McRae; I.R.E. PROCEEDINGS, Helen M. Stote; Publicity, Virgil M. Graham; Exhibit Requirements, Dorman D. Israel; Exhibit Manager, William C. Copp; Hotel Arrangements, H. F. Scarr; Banquet, George McElrath; President's Luncheon, A. B. Chamberlain; Cocktail Party, Edmour F. Giguere; Acoustic Requirements, Leo L. Beranek; and Section Activities, W. O. Swinyard.

The 1947 National I.R.E. Convention may well prove to be one of the significant gatherings in the history of the Institute. For there will be assembled on that occasion the products of the war years . . . of this age of the electron . . . and now of the first year of peace.

Grand Central Palace Building Where Exhibition Will Be Held

Institute News and Radio Notes

Board of Directors

October 2, 1946

Report of the President. President Llewellyn gave an interesting and informative talk on his trip to the Sections from Montreal to the Pacific Coast and Texas at the October 2 meeting of the Board of Directors.

PROPOSED BYLAW, SECTION 55

The following is the modification of Bylaw, Sec. 55 as approved by the Board of Directors at the October 2, 1946, meeting.

"Sec. 55. The Executive Secretary is authorized to accept orders for annual subscriptions to, or individual copies of the PROCEEDINGS at the following rates, including postage:

Annual Subscriptions

	*	
	United	Other
	States	Coun-
	and	tries
	Canada	
Individual Nonmembers	\$12.00	\$13.00
Public Libraries	9.00	10.00
Colleges	9,00	10.00
Subscription Agencies	9.00	10.00
Institute Members, Addi-		
tional Subscriptions	7.50	8.50
Individual Co	pies	
Individual Nonmembers	1.50	1.60
Public Libraries	1.10	1.20
Colleges	1.10	1.20
Subscription Agencies	1.10	1.20
Institute Members, Addi-		
tional Copies	1.00	1.10

The motion for adoption of the proposed Bylaw Section 55 should include the provision for it to become effective January 1, 1947."

Nomination Petition

FOR DIRECTOR

As a result of a properly signed petition, in accordance with the constitutionally provided procedure, the name of William F. Diehl was added to the list of nominees for Director for 1947-1949.

CANADIAN AFFAIRS

At the September 4, 1946, meeting of the Board of Directors, R. A. Hackbusch called attention to the fact that the Toronto Section should sponsor the Winnipeg subsection and also that Canada, as one entity, should be a Region.

BUENOS AIRES SECTION

In reply to a request of the Buenos Aires Section, the Board of Directors at its September 4, 1946, meeting authorized that the section be permitted to manufacture its own emblems according to all Institute specifications, with the exception that silver may not be substituted for gold.

President Llewellyn Visits Montreal Section

At the September 3, 1946, meeting of the Executive Committee, G. W. Bailey read a letter from President Llewellyn. This letter was written after Dr. Llewellyn's visit to the Montreal Section and in it he mentioned comments of members of the Section on various policies of the Institute.

TELLERS COMMITTEE REPORTS

At the August 6, 1946, meeting of the Executive Committee, the reports of the Tellers Committee tabulating the results of the March 15, 1946, Constitutional Amendment Ballot and the May 8, 1946, Constitutional Amendment Ballot on the Regional-Representation Plan, were unanimously approved. The amendments stand adopted by the membership.

Readers of the PROCEEDINGS OF THE I.R.E. will be interested to learn that it is not planned to publish the WAVES AND ELECTRONS Section as a separate periodical but rather, for the present, to include it solely as a section of the PROCEEDINGS OF THE I.R.E. ---The Editor.

Appointment of I.R.E.

Assistant to the

EXECUTIVE SECRETARY

Elwood K. Gannett, newly appointed assistant to the executive secretary, began his association with the Institute on August 26, 1946.

BUENOS AIRES

Spring Meeting

On November 11 to 14, 1946, the Buenos Aires Section will hold a Spring Meeting. The Executive Committee has approved their plans and has requested that a full statement be submitted of the activities of the meeting for possible publication in the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS.

I.R.E. BOOTHS

The Institute of Radio Engineers had booths at the National Electronics and Television Exhibits, held at Grand Central Palace, New York City, October 10 and 11, 1946, and at the Rochester Fall Meeting, held at the Hotel Sheraton, Rochester, New York, November 11, 12, and 13, 1946. These booths were under the supervision of William C. Copp, Advertising Manager. The layout and printed material for distribution were submitted to the Executive Secretary for approval.

I.R.E. ACCEPTS MEMBERSHIP IN ARMY SIGNAL ASSOCIATION

The Institute of Radio Engineers has accepted the invitation of the Army Signal Association' to become an honorary group member of the Association.

Engineering Instruction in South Africa

The University of Witwatersrand, located in Johannesburg, South Africa, has been added to the approved list of schools of recognized standing.

CANADIAN RADIO

ENGINEERS COUNCIL

The London, Toronto, Ottawa, and Montreal Sections were represented at the June 25, 1946, meeting of the Canadian Institute of Radio Engineers Council which was held in Toronto, Ontario, Canada. At this meeting the following actions were taken:

The new Papers Committee was authorized to plan for "Tour Speakers" and urged to keep the Sections advised regarding these and the activities of Headquarters' "Speakers Bureau."

The report of the Council Education Committee, presenting the following summary of its activities since formation in 1942, was adopted:

A Student Night has been established and university students have been invited to participate. The best papers were selected from contributions and presented at a regular I.R.E. Meeting held near the end of the year. Prizes of \$15, \$10, and a year's student membership were given.

The Committee made a study of the needs of the radio engineering community with respect to advanced radio educational requirements. The results proved helpful to McGill University in planning its postgraduate evening courses in communications. A similar study is now being made for evening undergraduate studies.

A seminar group has been formed whose meetings review and discuss important papers published in the PRO-CEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS.

As a result of the Committee's efforts to stimulate interest in progressive ideas in education, Dr. Guillemin and Dr. Everitt have given addresses on the subject to the Montreal Section.

The Committee is circulating a questionnaire on the careers of communications and electronics engineers, in an attempt to discover the field where they are in greatest demand, as well as to determine what part of their formal education has been most useful to them. The results on a study of the replies will be made available to students and others who may find the information helpful,

December

and will be offered for inclusion in a booklet being prepared by the Canadian Journal of Professional Engineers and Scientists.

Some information regarding undergraduate studies which might lead to a degree of Bachelor of Communication Engineering has been prepared.

The Chairman of the Canadian Council of Professional Engineers and Scientists reported that there are now eleven national engineering and scientific organizations associated with it. This Council has presented briefs to the proper persons regarding improvement of labor regulations and salaries of engineers and scientists. The Chairman also reported that The Institute of Radio Engineers, as well as the Canadian I.R.E. Council, is represented on the Canadian Council of Engineers and Scientists. At the conclusion of this report it was voted that the Canadian I.R.E. Council continue to support the C.C.P.S. for 1946–1947.

The Chairman reported that collective bargaining had gained headway, with both the Quebec and Ontario Federations of Professional Emp'oyees showing a growing membership and increase in units making application for certification. Interest in the bargaining federations was expressed by the Council Members and an effort will be made to have the Section Chairmen placed on the mailing list for Federation News Sheets.

Mr. Hackbusch reported that the Headquarters Board of Directors always was sympathetic toward the Council and was watching its development with interest since the proposed Regional plan had been based very largely on the Council's setup.

Dr. F. S. Howes was re-elected chairman, and Mr. H. S. Dawson was elected vice-chairman of the Council for 1946-1947 Session.

The Standing Committees (Professional Status, Charter, Papers, and Education) will be continued, and a new one will be set up to deal with Membership and Admission Standards. One of the dutics of this Committee will be to study and report on what constitutes a "College of Recognized Standing" for membership purposes.

The Toronto Section will prepare a report on its experience in sponsoring the Winnipeg subsection for submission to Headquarters, and will make plans for sponsoring a subsection in Vancouver. Until a Subsections Manual can be prepared, subsections are advised to operate on the Sections Manual. Since there will be no Members at Large under the new Regional Plan, it was proposed that Toronto will sponsor members in the West until sections are established in Winnipeg and Vancouver. [These subsections have since been established.—The Editor.]

It is planned that all Sections hold their Annual Meeting not later than May 15 each year, and that all Sections, the Council Secretary, and Headquarters be notified of the new slate of officers immediately. With a view to maintaining the interest of past chairmen, it was suggested that a "Past Chairman's Committee" be set up in each section, this group to be called upon to advise the local executive, and that representatives on Headquarters Committees could be drawn from it.

DAVID SARNOFF RECEIVING THE "MAN OF SCIENCE" AWARD

MAN OF SCIENCE AWARD

The "Man of Science" award, offered by the magazine Science Illustrated, has been awarded to Brigadier General David Sarnoff (A'12-M'14-F'17). The announcement was made by James McGraw, Jr., president of the McGraw-Hill Company, publisher of the above magazine. The award, in the form of a gold medal and scroll, was given to General Sarnoff on September 30, 1946. It is presented to men who have "by their exceptional talents used science for the advancement of industry and culture." In particular, the award to General Sarnoff was based on his contributions in the upbuilding of the radio industry, his vision and imagination in developing research as a basic element in the progress of his company, and his unusual foresight in analyzing, at each stage, the long-term prospects of various branches of radio. The award scroll also states that he is a leader in the educational and cultural uses of radio and has endeavored throughout to maintain radio on a high level of service.

Engineering Societies Council

Organization of the Engineering Societies Council of New York, comprising delegates from the local chapters of engineering, scientific, and technical societies was recently completed. The Council is intended to enable the engineering profession to produce a better co-ordinated program in Greater New York in the public interest as well as that of the members of the participating organizations. It is the outgrowth of the Engineering Societies Committee on War Production, through whose efforts, at the request of the War Production Board, several successful clinics on technical problems were held during the war. The purposes of the new Council as outlined in detail in the constitution which has been adopted are as follows:

To provide a medium for co-operative action by the member societies on matters of mutual interest which are beyond the scope of the individual organization or which can be performed better by co-operative action.

To encourage interest and participation in public affairs which are scientific or technical in scope.

To cultivate greater appreciation by the public of the part which engineering, science, and technology contribute to human welfare.

To provide a means of more effective public service by the member societies of the Council.

To promote greater unification of the engineering profession and co-operate in a general program for the enhancement of the professional status of the engineer.

To promote co-ordination and integration of the inter-organization activities of the member societies.

To publish information of interest to the member societies.

To co-operate with organizations having similar objectives in other communities.

The names of the officers elected and the societies they represent are:

Chairman—H. C. R. Carlson, American Society of Mechanical Engineers.

Vice-Chairman-H. P. Wall, American Society of Safety Engineers.

Secretary-M. P. Davis, American Society for Testing Materials.

Treasurer—H. F. Dart, Institute of Radio Engineers.

Directors-O. B. J. Frazer, American Institute of Mining and Metallurgical Engineers; E. J. Lyons, American Institute of Chemical Engineers; W. F. O'Connor, American Chemical Society; C. S. Purnell, American Institute of Electrical Engineers; H. J. Ryan, American Society of Heating and Ventilating Engineers; and E. M. Sherwood, American Society for Metals.

The local chapters of other societies represented are:

American Society of Tool Engineers, American Welding Society, Illuminating Engineering Society, and the Society of Motion Picture Engineers.

I.R.E. delegates to the council are: H. F. Dart (A'20-M'26-SM'43), C. R. Keith (A'44), J. D. Schiller (A'45), J. E. Shepherd (A'36-SM'44), and E. M. Sherwood (A'37). J. L. Callahan (A'21-M'31-SM'43), M. D. Hooven (A'26), and W. A. Howard (A'44) are alternates.

HARRY F. DART

NOTICE

In the review of the book, "Design of Crystal Vibrating Systems," by William J. Fry, John M. Taylor, and Bertha W. Henvis, appearing on page 770 of the October, 1946, issue of the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS, it was stated that copies are obtainable free upon request to the Naval Research Laboratory, Office of Research and Inventions, Sound Division.

We are informed by the Naval Research Laboratory that the requests received for this book as a consequence of this notice are so numerous that they far outnumber the limited quantity originally released for public distributi . As a result, only requests from libraries are being honored, and it may not be possible to fill all of these. However, arrangements have been made for release of the book to the Office of Technical Services, Department of Commerce, Washington 25, D. C., which will supply photostat copies for \$12.00 per copy and microfilm copies for \$2.00 per copy. Orders should carry the identifying number PB No. 22410 and should be accompanied by a check payable to the Treasurer of the United States. Copies will be mailed about five weeks after receipt of the order.

ARMY SIGNAL

Association

Radar sets used during World War II will not constitute a satisfactory defense against guided missiles, according to Wilbur C. Brown (M'45), radio engineer in the Office of the Director of Engineering, Signal Corps Engineering Laboratorics. Speaking before members of the Army Signal Association at Fort Monmouth, N. J., Mr. Brown told of the Signal Corps phase of the guidedmissile program now undergoing continuing studies by the Army, Navy, industrial concerns, and university laboratories.

According to Mr. Brown, the Signal Corps is actively concerned with studies leading to means for warning and detection of guided missiles, including the location of launching bases; tracking the missiles in flight: developing of electronic countermeasures which will be effective against the offensive weapons; and investigating meteorological conditions in the upper atmosphere. The Signal Corps has also been assigned the responsibility for co-ordination of all communication systems to, from, and at the White Sands, N. M., area by the Ordnance Department, which is in nominal charge of the joint project. A radioteletype system is in operation from White Sands to Coles Signal Laboratory, Red Bank, N. J.

Mr. Brown revealed that the Signal Corps was co-operating closely with the Army Air Forces in the radar-warning aspects of the project, the existing methods for projectile flight plotting having proved unsatisfactory for guided missiles because of the speeds encountered. Studies are also being made of the frequencies best suited to track guided missiles of the size, shape, and speed of the so-called "V-2" type currently being tested.

Dr. Harold A. Zahl (SM'46), assistant director of engineering, Signal Corps Engineering Laboratories. reporting his experiences as Signal Corps observer at Operation Crossroads, stated that damage to Signal Corps equipment on ships in the target area ranged from complete to negligible. While results of the first test are yet to be evaluated, it was evident that redesign of wartime Signal Corps equipments, which included such items as the radar equipment SCR-584 and the vehicular radio set SCR-399, would be influenced by the results of the Bikini tests. Such redesign, he intimated, would involve protection against damage from explosion as well as shielding against radioactivity. Dr. Zahl, who returned to the United States immediately following the second test, or Test Baker, reported that the radioactivity was still too high when he left to permit any significant evaluation of the amount or type of damage resulting from the underwater blast. The extent of radioactivity in the various areas was broadcast by radio transmitters connected to Geiger counters and ionization chambers. Signal Corps personnel assisted in the construction of this equipment.

David Sarnoff (A'12-M'14-F'17), president of Radio Corporation of America, is national president of the Army Signal Association, for which one chapter has already been organized and others proposed for Fort Monmouth, Chicago, and Hollywood.

Minutes of Technical Committee Meetings

ANTENNAS

DateOctober 7, 1946
Place
New York City
Chairman P. S. Carter

Present

P. S. Carter,	Chairman
Harry Diamond	D. C. Ports
J. H. Duttera	M. W. Scheldorf
R. T. Holtz (for	S. A. Schelkunoff
J. E. Young)	J. C. Schelleng
R. B. Jacques	George Sinclair
C. H. Jones	P. H. Smith
W. E. Kock	J. W. Wright

Work was continued on definitions as submitted by various sub-committees. It was decided that no action should be taken on suggestions for revision of the 1939 I.R.E. definitions of antenna terms, since these terms apply to systems rather than antennas. This led to the question of whether or not there should be a Systems Committee. It was agreed that the subject of Methods of Testing would be on the agenda of the next meeting. The next meeting will be held in the Conference Room, Ordinance Lab., Bureau of Standards, Washington, D. C., on Monday, November 4, 1946.

ELECTROACOUSTICS

DateSeptember 20, 1946
Place
New York City
Chairman Eginhard Dietze

Present

Eginhard Dietz	e, Chairman	
P. N. Arnold	A. C. Keller	
S. J. Begun	G. M. Nixon	
R. H. Bolt	Benjamin Olney	
R. K. Cook	R. A. Schlegel	
J. E. Dickert	E. S. Seeley, Secre-	
M. J. Di Toro	tary	
Absent		

B.	B.	Bauer		H.	S.	Knowles
F.	L.	Hopper		H.	F.	Olson
		Н.	Η.	Scot	t	

The purpose of the meeting was to consider the definitions already submitted in order to produce a second draft of proposed definitions for further consideration. It was agreed that the objective of the committee will be to complete a dictionary presenting useful electroacoustic definitions. Standards and methods of calibration may be considered after the attainment of this immediate objective.

RADIO TRANSMITTERS Date.....July 9, 1946 Place.....McGraw-Hill Building, New York City

Chairman.....E. A. Laport

I Te	sent
M. R. Briggs	J. B. Knox
Cledo Brunetti	E. A. Laport
H. R. Butler	C. H. Meyer
Harry Diamond	R. L. Rohbins
R. B. Jacques	Robert Serrell
	Weir

Dranaul

The greater portion of the meeting was spent in going through the list of collated definitions to decide which ones were to be defined by this committee. The committee also found that it would be unable to get approval from JAN for release of tentative specifications on definitions for use with transmitters.

Research

DateJuly 10, 1946
PlaceMcGraw-Hill Building,
New York 18, N. Y.
Chairman

Present

W. L. Barrow	R. B. Jacques
R. M. Bowie	F. E. Terman
E. W. Engstrom	Julius Weinberger
H. T. Friis	L. C. Van Atta

The committee discussed furthering the scientific training of engineering students, possibly through the I.R.E. Education Committee. To aid in the co-ordination and direction of research, it was agreed that various I.R.E. technical committees might sponsor conferences of a nation-wide scope in specific fields of endeavor. It was further agreed that the committee should encourage publication of basic research papers in the PRO-**CEEDINGs** through the Papers Procurement Committee. It was also thought that, periodically articles of an editorial nature might appear dealing with the general trend in the research field. It was thought, too, that a survey of all existing research facilities should be made. It was agreed that the subject of publicizing the research achievements of the engineer should be kept on the agenda for future meetings.

STANDARDS

Date.....August 28, 1946 Place.....McGraw-Hill Building, New York City Chairman.....R. F. Guy

Present

R. F. Guy,	Chairman		
W. F. Bailey	E. K. Gannett		
M. W. Baldwin	(Ass't Sec'y I.R.E.)		
R. S. Burnap	L. B. Headrick		
P. S. Carter	L. C. F. Horle		
A. B. Chamberlain	R. B. Jacques (Tech.		
M. G. Crosby	Sec'y I.R.E.)		
Eginhard Dietze	E. W. Schafer		
Elsie Fisher,	H. M. Turner		
Secretary	H. A. Wheeler		
R. M. Wilmotte			

The Standards on Methods of Testing Frequency-Modulation Broadcast Receivers (Between 88 and 108 Megacycles) was examined and minor revisions were made. Discussion was entertained on the following: expressing input signals in terms of input voltage or available power, with the question referred to the Receivers Committee; the terms root-sum-square and root-mean-square and the terms quadratic sum and quadratic mean, with the question referred to the ASA; test methods for effects of downward modulation, for sets with built-in antennas, for effects of volume-control settings, and for inaccurate-tuning distortion; with the recommendation that these items be con-

١

1

SECTIONS

Chairman

H. L. Spencer Associated Consultants 18 E. Lexington Baltimore 2, Md.

Glenn Browning Browning Laboratories 750 Main St. Winchester, Mass

I. C. Grant San Martin 379 Buenos Aires, Argentina

H. W. Staderman 264 Loring Ave. Buffalo, N. Y.

T. A. Hunter Collins Radio Co. 855–35 St., N.E. Cedar Rapids, Iowa A. W. Graf

135 S. La Salle St. Chicago 3, Ill.

J. D. Reid Box 67 Cincinnati 31, Ohio

H. C. Williams 2636 Milton Rd. University Heights Cleveland 21, Ohio

E. M. Boone Ohio State University Columbus, Ohio

Dale Pollack 352 Pequot Ave. New London, Conn

R. M. Flynn KRLD Dallas 1, Texas

J. E. Keto Aircraft Radio Laboratory Wright Field Dayton, Ohio H. E. Kranz International Detrola Corp. 1501 Beard Ave. Detroit 9, Mich.

N. L. Kiser Sylvania Electric Products, Inc. Emporium, Pa. E. M. Dupree

1702 Main Houston, Texas

H. I. Metz Civil Aeronautics Authority Experimental Station Indianapolis, Ind.

R. N. White 4800 Jefferson St. Kansas City, Mo.

J. Bach Sparton of Canada. Ltd. London, Ont., Canada

Frederick Ireland 950 N. Highland Ave. Hollywood 38, Calif.

Atlanta	
December 20	

BALTIMORE

Boston

BUENOS AIRES

BUFFALO-NIAGARA December 18

CEDAR RAPIDS

CHICAGO December 20

CINCINNATI December 17

CLEVELAND December 26

Columnus January 10

CONNECTICUT VALLEY December 19

DALLAS-FT. WORTH

DAYTON December 19

DETROIT December 20

EMPORIUM

HOUSTON

INDIANAPOLIS

KANSAS CITY

LONDON, ONTARIO

I.OS ANGELES December 17 December

Secretary M. S. Alexander 2289 Memorial Dr., S.E. Atlanta, Ga. G. P. Houston, 3rd 3000 Manhattan Ave. Baltimore 15. Md. A. G. Bousquet General Radio Co. 275 Massachusetts Ave. Cambridge 39, Mass. **Raymond Hastings** San Martin 379 Buenos Aires, Argentina J. F. Myers Colonial Radio Corp. 1280 Main St. Buffalo 9, N.Y. R. S. Conrad Collins Radio Co. 855-35 St., N.E. Cedar Rapids, Iowa

D. G. Haines Hytron Radio and Electronic Corp. 4000 W. North Ave. Chicago 39, Ill.

P. J. Konkle 5524 Hamilton Ave. Cincinnati 24, Ohio

A. J. Kres 16911 Valleyview Ave. Cleveland 11, Ohio

C. J. Emmons 158 E. Como Ave. Columbus 2, Ohio

R. F. Blackburn 62 Salem Rd. Manchester, Conn.

J. G. Rountree 4333 Southwestern Blvd. Dallas 5, Texas

Joseph General 411 E. Bruce Ave. Dayton 5, Ohio

A. Friedenthal 5396 Oregon Detroit 4, Mich.

D. J. Knowles Sylvania Electric Products, Inc. Emporium, Pa.

L. G. Cowles Box 425 Bellaire, Texas

M. G. Beier 3930 Guilford Ave. Indianapolis 5, Ind.

Mrs. G. L. Curtis 6003 El Monte Mission, Kansas

B. L. Foster Sparton of Canada, Ltd. London, Ont., Canada

Walter Kenworth 1427 Lafayette St. San Gabriel, Calif.

Chairman L. W. Butler 3019 N. 90 St. Milwaukee 13, Wis. I. C. R. Punchard Northern Electric Co. 1261 Shearer St. Montreal 22, Que., Canada J. T. Cimorelli RCA Victor Division 415 S. Fifth St. Harrison, N. J. L. R. Quarles University of Virginia Charlottesville, Va. D. W. R. McKinley 211 Cobourg St. Ottawa, Canada Samuel Gubin 4417 Pine St. Philadelphia 4, Pa. W. E. Shoupp 911 S. Braddock Ave. Wilkinsburg, Pa.

C. W. Lund Rt. 4, Box 858 Portland, Ore.

A. E. Newlon Stromberg-Carlson Co. Rochester 3, N. Y.

S. H. Van Wambeck Washington University St. Louis 5, Mo.

David Kalbfell 941 Rosecrans Blvd. San Diego 6, Calif.

R. V. Howard Mark Hopkins Hotel San Francisco, Calif.

E. H. Smith 823 E. 78 St. Seattle 5, Wash

H. S. Dawson Canadian Association of Broadcasters 80 Richmond St., W. Toronto, Ont., Canada

M. E. Knox 43—44 Ave., S. Minneapolis, Minn.

F. W. Albertson Room 1111, Munsey Bldg. Washington 4, D. C.

W. C. Freeman, Jr. 2018 Reed St. Williamsport 39, Pa.

K. G. Jansky Bell Telephone Laboratories, Inc. Box 107 Red Bank, N. J. C. W. Mueller RCA Laboratories Princeton, N. J. H. E. Ellithorn 417 Parkovash Ave. South Bend 17, Ind.

W A. Cole 323 Broadway Ave. Winnipeg, Manit., Canada

Milwaukee	E. 91 M
Montrral, Quebec January 8	E. Ca 14 Mo
NRW YORK January 8	J. Co Ne
North Carolina-Virginia	J. 410 Ly
OTTAWA, ONTARIO December 19	W. 13 Ot
Philadrlphia January 2	A. RC Bla Ca
Pittsb urgh January 13	C. 52 Pi
Portland	L. 32. Po
ROCHESTER December 19	K. 11 Ro
ST. LOUIS	N. 15 St.
SAN DIEGO	Cl

January 7

SAN FRANCISCO

Seattlr January 9

TORONTO, ONTARIO

TWIN CITIES

WASHINGTON January 13

WILLIAMSPORT January 8

SUBSECTIONS

MONMOUTH (New York Subsection)

Ратисвтоя (Philadelphia Subsection)

SOUTH BEND (Chicago Subsection) December 19

Wואאופנק (Toronto Subsection)

Secretary T. Sherwood 57 N. Tennyson Dr. ilwaukee, Wis. S. Watters anadian Broadcasting Corp. 40 St. Catherine St., W. ontreal 25, Que., Canada R. Ragazzini olumbia University ew York 27, N. Y. T. Orth 01 Fort Ave. nchburg, Va. A. Caton A. Caton 2 Faraday St. tawa, Canada N. Curtiss CA Victor Division ldg. 8–9 amden, N. J. W. Gilbert Hathaway Ct. ttsburgh 21, Pa. C. White 36 N.E. 63 Ave. ortland 13, Ore. J. Gardner I East Ave. ochester 4, N. Y. Zehr 38 Bradford Ave Louis 14. Mo. yde Tirrell U.S. Navy Electronics Laboratory San Diego 52, Calif. Lester Reukema 2319 Oregon St. Berkeley, Calif. W. R. Hill University of Washington Seattle 5, Wash. C. J. Bridgland Canadian National Telegraph 347 Bay St. Toronto, Ont., Canada Paul Thompson 4602 S. Nicollet Minneapolis, Minn.

G. P. Adair
Federal Communications Commission
Washington 4, D. C.
S. R. Bennett
Sylvania Electric Products, Inc.
Plant No. 1
Williamsport, Pa.

Lloyd Hunt Bell Telephone Laboratories, Inc. Box 107 Deal, N. J. A. V. Bedford RCA Laboratories Princeton. N. J. J. E. Willson WHOT St. Ioseph and Monroe Sts. South Bend, Ind. C. E. Trembley Canadian Marconi Co. Main Street Winnipeg, Manit., Canada sidered for future revision of this report. The reports on *Cathode-Ray and Television Tube Classifications and Definitions*, and *Methods of Testing Vacuum Tubes* were approved with minor revisions. The report on *Television Definitions* was partially approved, as time did not allow the completion of work on criticized definitions. A meeting of all technical committees at the National Convention was proposed and found very desirable.

CHICAGO SECTION APPOINTMENTS

Alois W. Graf, chairman of the Chicago Section of The Institute of Radio Engineers, has announced the appointment of committee chairmen and vice-chairmen for the various committees of the Chicago section. These men, who are appointed for a period of one year, are as follows: Meetings and Papers: chairman, R. E. Samuelson, the Hallicrafters Company, vice-chairman, C. A. Petry, United Air Lines. Headquarters Relations: chairman, W. O. Swinyard, Hazeltine Research, Inc., vice-chairman, V. J. Andred, Andrew Company. Membership: chairman, R. M. Krueger, American Phenolic Corporation, vice-chairman, Karl Kramer, Jensen Radio Manufacturing Co. Publicity: chairman, H. S. Renne, Radio-Electronic Engineering, vice-chairman, E. O. Ross, A. C. Nielsen Company. Arrangements: chairman, R. P. Dimmer, Automatic Electric Company, vice-chairman, H. E. Armstrong, Doolittle Radio. Banquet: chairman, Cullen Moore, Galvin Manufacturing Corp., vice-chairman, R. T. Van Niman, Motrograph. Engineers Status: chairman, Chester Lytle, Consulting Engineer, vice-chairman, Mahlon Kenny, J. P. Seeburg Corporation. Special Events: chairman, Kenneth Jarvis, Consulting Engineer, vice-chairman, Karl E. Rollefson, Muter Company. Procedure: chairman, LeRoy Clardy, Swift and Company, vicechairman, Paul Smith, Galvin Manufacturing Corporation. Constitution & By Laws: chairman, Walter Schwalm, Zenith Radio Corporation, vice-chairman L. G. Nierman, University of Chicago. Education: chairman, C. S. Roys, Illinois Institute of Technology, vice-chairman, G. H. Fett, University of Illinois. Ways & Means: chairman, Alfred Crossley, Consulting Engineer, vice-chairman, Wm. Schlessinger, Electronic Development Laboratories. Historical Data: chairman, Elizabeth Kelsey, Zenith Radio Corporation, vice-chairman, Nathan W. Aram, Zenith Radio Corporation. Recording Secretary: Leo Killian, Raytheon Manufacturing Company.

Mr. Graf has inaugurated a new policy in the Chicago Section with respect to committee appointees. At the request of the appointee, a copy of the letter of appointment is sent to his superior or to anyone else he may designate. This serves to call attention to the appointment and to emphasize its importance. A greater understanding on the part of executives and "higher-ups" of the importance of committee work and the time required for such work is expected to result.

The officers for the Chicago Section for the coming year are: Alois W. Graf, Chairman; Karl Kramer, Vice-chairman; Don Haines, Secretary.

I.R.E. People

JOHN G. LEITCH

JOHN G. LEITCH

Since his return in December, 1945, from a four-year tour of active duty with the Navy, Commander John G. Leitch (A'32-M'36-SM'43), United States Naval Reserve, has been serving as director of construction for WCAU, Philadelphia, Pennsylvania. He has been supervising the planning of that station's new radio and television center.

Educated at the University of Pennsylvania, Commander Leitch's career in the commercial communications field began in 1918 with the Signal Corps in World War I. After the Armistice, he shipped with the Merchant Marine as a radio operator until 1922, when he became a radio inspector for the Marconi Company. From 1924 to 1928, he worked for the Government as a United States Radio Inspector, and in 1929, he joined the staff of WCAU, Commander Leitch served as chief engineer of WCAU and its short-wave station W3XAU until 1932, when he was appointed technical director of the station, a post which he still retains.

An officer in the Naval Reserve since 1927, Commander Leitch was called to duty in 1941 and successively served as communications officer, in-shore patrol and Naval Air Station, at Cape May, New Jersey; assistant district communications officer, fourth Naval district; officer in charge, United States Naval Station in Greenland; officer in charge, communications team, attack force for the Marshall, Mariana, and Gilbert Islands: staff communications officer on the U.S.S. *Pennsyl-*vania; staff officer C-in-C, in the Pacific; and on the staff of the Director of Naval Communications in Washington, D. C. Commander Leitch's service awards include the Victory Ribbon for World Wars I and II, the American Defense, Atlantic Theater, European Theater, Pacific Theater (3 stars), Navy Unit Commendation (1 star), Presidential Unit Citation (1 star), and the Commendation Ribbons.

A member of the Veteran Wireless Operators Association, Commander Leitch held a commercial first-class operator's license from 1918 to 1925, an extra-first-class license from 1925 to 1932, and a first-class radiotelegraph and radiotelephone license from 1932 to the present date.

•

THEODORE A. COHEN

Theodore A. Cohen (J'27-A'30-SM'44) has announced the formation of the Taco Engineering Company, located in Chicago, Illinois. The firm will specialize in electronic and electromechanical automatic-control equipment and processes. Founder and former vice-president and chief engineer of the Wheelco Instruments Company, Mr. Cohen was responsible for the development of Capacitrol and Flame-otrol products.

Holder of numerous patents and an author of technical articles, Mr. Cohen is a lecturer on electronic applications and design, electrical measurement, heat flow, and other allied subjects. He is a member of the

THEODORE A. COHEN

application committee on automatic control of the American Society of Mechanical Engineers, the committee on research and recommended standards of the Instrument Society of America, and a senior member of the Western Society of Engineers, the Electro-Chemical Society, and the American Society for Metals.

ψ

VICTOR H. FRAENCKEL

Victor H. Fraenckel (A'36), of the General Electric Company's research laboratory, has been awarded the Medal of Freedom by the War Department for his wartime services. In 1943 Mr. Fraenckel went to England as acting director of the American-British Laboratory to work on radio and radar. In 1944 he was made consultant to the staff of General Spaatz of the United States Strategic Air Force in Europe. Later he was scientific adviser to G-2 (Intelligence) on General Eisenhower's staff at Supreme Headquarters.

GEORGE MUCHER

George Mucher (A'36) has been named executive vice-president of the Kurman Electronics Corporation, which recently was acquired by the Clarostat Manufacturing Company.

ARTHUR E. HARRISON

Arthur E. Harrison (A'41-SM'45) has joined the faculty of Princeton University as assistant professor of electrical engineering. His work will include graduate courses and research on microwave vacuum tubes and ultra-high-frequency measurements.

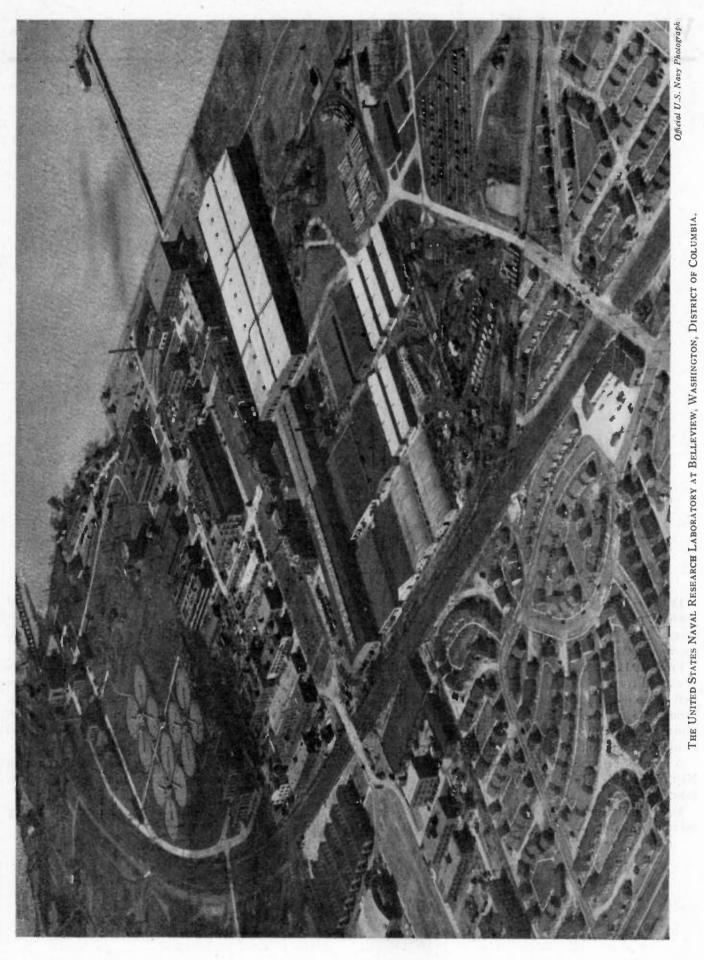
Dr. Harrison received the B.S. degree in electrical engineering from the University of California in 1936. From 1936 to 1939 he was a teaching Fellow at the California Institute of Technology, and received the M.S. degree in 1937 and the Ph.D. degree in 1940. He was engaged in research work for the department of mechanical engineering at the University of California during 1940. In May, 1940, Dr. Harrison joined the klystron laboratory staff of the Sperry Gyroscope Company at San Carlos, California, and has been engaged in klystron research and applications work at that company's engineering laboratories at Garden City, New York, since their organization in November, 1940.

Numerous articles on klystrons by Dr. Harrison have appeared in the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS and other publications, and he is the author of a book, "Klystron Tubes," which will be published early in 1947. His activities have also included talks before several I.R.E. sections and the National Electronics Conference, and participation in the first amateur communication by microwaves when the amateur bands were reopened following the end of the war. Dr. Harrison was chairman of the Papers Committee for the 1946 I.R.E. Winter Technical Meeting and has served on several other I.R.E. committees. He is a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.

ARTHUR E. HARRISON

Waves and Electrons Section

Dale Pollack


Chairman, Connecticut Valley Section, I.R.E.

Dale Pollack (J'30-S'35-A'38-SM'43), the new chairman of the Connecticut Valley Section of The Institute of Radio Engineers, was born July 26, 1912, in St. Louis, Missouri. He attended Columbia University school of engineering and, later, the Massachusetts Institute of Technology under Tau Beta Pi and Charles A. Coffin fellowships, receiving the D.Sc. degree in electrical engineering there in 1940.

From 1936 to 1939 Dr. Pollack was with the RCA Manufacturing Company in Camden, New Jersey, in the advanced transmitter development section, working on modulation problems. He joined the technical staff of the Bell Telephone Laboratories in Whippany, New Jersey, in 1940, where he engaged in radar systems development. From 1943 to 1946 he was associated with the Templetone Radio Manufacturing Corporation in New London, Connecticut, as chief engineer, and later as vice-president in charge of engineering. Dr. Pollack is presently engaged in independent consulting and development in frequency modulation, his special field.

A number of papers by Dr. Pollack have appeared in the technical periodicals. He is the author of a section in Keith Henney's "Radio Engineering Handbook," and co-author of a textbook on frequency modulation to be published.

Dr. Pollack, having served on various committees in his three years of membership in the Connecticut Valley Section, was vice-chairman last year. He is also a member of Sigma Xi and Tau Beta Pi.

The rapid development of the communications and electronics field, and its present and potential importance in times of peace and war, are clear to farseeing Governmental officers. The Institute of Radio Engineers has consistently endeavored to contribute to the advancement of this field. It is accordingly encouraging and stimulating to receive a message from Fleet Admiral Chester W. Nimitz, Chief of Naval Operations of the United States Navy. The readers of the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS will gain a clear picture of the importance of Naval contributions to this field and the desirability of further co-operation with the Armed Forces from the accompanying paper by Commander Delbert S. Wicks, United States Navy.—The Editor.

The United States Naval Reserve*

N August 31, 1945, scarcely two weeks after the surrender of the Japanese in Tokyo Bay, the United States Navy had reached a personnel strength of more than 3,400,000; of these, nearly 3,000,000 were Reservists on active duty.

As demobilization nears completion with Reservists returning to civilian status and more and more ships of the fleets being inactivated, the peacetime Naval Reserve organization is already activated and growing.

The present Naval Reserve was established by Congress under the public law known as the "Naval Reserve Act of 1938." This act divides the Naval Reserve into

four components: Organized, Volunteer, Merchant Marine, and Fleet Reserve.

The Organized Reserve is to be composed of trained Reservists in the numbers and skills that will be necessary immediately in the event of mobilization. These men and officers obligate themselves to attend weekly drills in Naval Reserve Armories and to perform an annual two-weeks' training period, usually at sea. They receive payment for these drills and the annual training duty.

The Volunteer Reserve is composed of the men and officers of the Naval Reserve, not members of other components, who are

* Decimal classification: R565×R070. Original manuscript received by the Institute, August 9, 1946.

Pictured above is the new gold lapel pin authorized by the Navy Department to denote members of the Naval Reserve not on active duty.

qualified or partially qualified for prescribed mobilization billets. While in the Volunteer Reserve they do not obligate themselves to attend drills or perform annual training duties.

The Merchant Marine Reserve is composed of those who follow the sea as a profession or are employed in connection with the seafaring profession.

The Fleet Reserve is composed of men and officers with prior service in the regular Navy who have enlisted

in or been appointed to the Naval Reserve and been assigned to the Fleet Reserve. They are in a nondrilling status and receive retainer pay.

Under the Naval Reserve Act of 1938, the Naval Re-

The rapid advancement of science in the electronics and communications fields during the war, which produced such devices as radar, loran, and sonar, continues in this postwar period. It is imperative that the United States Navy and the Naval Reserve keep abreast of this advancement and utilize it in maintaining a modern Navy and a properly trained Naval Reserve as part of our national defense.

Active participation of leading communications and electronics engineers in the Naval Reserve program will greatly benefit the Navy and this country, and The Institute of Radio Engineers is regarded as an agency likely to be of major assistance in this regard, as indeed it was to all branches of the Armed Forces during the war.

(W. ning

Fleet Admiral, United States Navy Chief of Naval Operations

serve is administered by the Secretary of the Navy as a component part of the United States Navy. In the Navy Department there is a flag officer with the title of Assistant Chief of Naval Operations (Reserve) and Director of Naval Reserves. The present and first officer holding this title is Rear Admiral John Gingrich, U. S. N. The Chief of Naval Personnel has been charged by the Secretary of the Navy with the direct administration of the Naval Reserve program for all personnel and training matters, and an Assistant Chief of Naval Personnel (Naval Reserve) has been appointed, with a staff for direct planning in connection with Naval Reserve matters. The Naval Reserve program in the field is conducted by the Commandants of the

[†] Commander, United States Navy, Bureau of Naval Personnel, Navy Department, Washington, D. C.

Naval Districts, who are assisted in each district by an officer with the title of District Director of Naval Reserve. The Chief of Naval Air Reserve Training conducts the Naval Air Reserve program.

The Organized Reserve within the Naval Districts is composed of brigades, battalions, divisions, and squadrons. The division is the basic unit of the Organized Reserve and normally comprises 200 enlisted personnel and thirteen officers. In a locality where there are two or more divisions to be formed, a battalion staff will be organized in command of these divisions, and in certain cities where more than one battalion will be formed, a Brigade Commander will be named to head the program. Squadrons are units of the Naval Air Reserve program.

The Organized Reserve ultimately may have armories in 250 cities, many of these armories being city- or stateowned buildings. In some 89 cities, Quonset-hut-type armories will be erected. This type of armory uses three of the largest Quonsets, with a framed building across the end of the huts to join them and furnish additional training space.

A total of 168 ships has been assigned to the Naval Reserve thus far, including destroyers, destroyer escorts, submarines, and numerous smaller craft. These ships are spotted along both the East and West Coasts, on the Mississippi River, and on the Great Lakes, to augment training facilities for the Reserve program.

A number of the divisions in the Organized Reserve will be formed for training of submarine personnel. Other divisions will be known as officer divisions and will train officer personnel only in connection with various specialities such as intelligence, electronics, supply, and similar subjects.

The Naval Air Reserve program, administered directly by the Chief of Naval Air Reserve Training and designed to keep the Reserve complement of the naval air arm-prepared for mobilization, trains both air and ground aviation personnel. Training subjects include gunnery, bombing, combat and formation tactics, instrument flying, and air navigation. Modern navy planes of most types are being used.

Electronics has a big share in Naval Reserve plans. Officers and enlisted men associated with the various phases of naval electronics are known as Electronic Warfare personnel. The term Electronic Warfare includes not only technical electronics but communications, antisubmarine warfare, combat-information-center organizations, and such related subjects as the guided-missile, infrared, and nuclear-physics programs. It is the policy of the Naval Reserve to promote the science of technical electronics as both the maintenance arm and as a research and development arm of naval electronic warfare.

Electronic Warfare personnel receive training in the Organized Reserve divisions along with the men and officers of other classifications and ratings. In the Volunteer Reserve, Electronic Warfare Companies and Platoons are formed for drilling on a volunteer basis. These volunteer units train Electronic Warfare personnel exclusively. Dependent upon appropriations, drill pay and annual training duty pay will be provided for members of these specialized volunteer units. Many of the Companies and Platoons will use the Armory facilities of the Organized Reserve. Wherever this is not convenient, they will have their own meeting places and necessary equipment. Electronic Warfare Companies may also be formed at various colleges and universities, but such units will not be a part of Naval Reserve Officers' Training Corps program.

The Electronic Warfare Company is normally composed of five officers and forty enlisted men, while the Platoon has one officer and up to nine enlisted men. In addition to their own equipment, which includes radio, radar, sonar, loran, test equipment, training devices, publications, and electronic laboratory equipment, Electronic Warfare personnel in both the Organized and the Volunteer Reserve will make as much use as possible of regular Navy facilities in furthering their training. Methods of training include classroom lectures by regular instructors and visiting lecturers, maintenance and operation of equipment in Naval Reserve shore facilities and on ships assigned to the Naval Reserve, assignment of laboratory problems and homework, extensive use of training films, synthetic training devices, recordings and correspondence courses, visits to laboratories (civilian and naval) and to certain manufacturing plants, and widest possible use of regular Navy activities. Competent men and officers of the Naval Reserve are required as instructors and consultants in the Naval Reserve training program. It is expected that many Naval Reserve officers who are electronic engineers will offer their services one or two evenings per week as Reserve instructors in their localities.

Through the office of the Assistant Chief of Naval Personnel (Naval Reserve) in the Navy Department, liaison will be maintained with such organizations as The Institute of Radio Engineers, the American Radio Relay League, electrical and electronic engineering departments of various universities and colleges, and manufacturers of electronic equipment. The advice and aid of these groups will be sought in formulating Naval Reserve policy regarding electronics and in providing visiting lectures.

The plans for the Electronic Warfare component of the Naval Reserve entail a large number of men and officers in training, in addition to Naval Reserve instructors and regular Navy personnel required for administration. With the highly technical training involved and the increasing complexity of naval applications, suitable training for sufficient numbers of Naval Reserve Electronic Warfare personnel becomes an ever more important and more difficult task. By providing armories and modern equipments in many communities throughout the United States of America, the Navy via the Naval Reserve expects to accomplish this important task satisfactorily.

Should I Become a Radio Engineer?*

ROBERT B. JACQUES[†], MEMBER, I.R.E.

Summary—A discussion of the problems facing the ex-servicemen and high school graduates who wish to enter the field of radio engineering, and some suggestions as to the procedure that might be followed.

HOULD I become a radio engineer?" This question is being asked by thousands of young men of college age, both those who have seen service in the armed forces and those who are just being graduated from high school. The answer, for those of you who are willing and able to spend the amount of time and perseverance required in obtaining the proper education, is "emphatically yes."

In the First World War the automobile and other mechanical devices became of paramount importance to the armed services. The demand for mechanical engineers was incredible. World War II has been rightly referred to as "electronic warfare." The advent of radar, with all its branches, the innumerable types of communications systems and radio-controlled projectiles created a demand for radio engineers and technicians that was astronomical in numbers compared to the need for mechanical engineers in the First World War. A further complication was added in that not only was there a great need for engineers and technicians to design and build electronic equipment but there were also needed tens of thousands of skilled technicians to operate the equipment in the field. Nearly anyone could learn in a few weeks to drive and service a piece of mechanized equipment, such as existed in World War I, but it took months and years of training to prepare a man for operating and servicing complicated radar and communications gear.

To provide for this situation, the armed forces established schools of nearly every level at various colleges and also at a great number of service posts. They then began to grind out the large numbers of engineers, technicians, and operators needed to keep the electronics equipment operating in the field. A continual battle developed between the military and industry for the services of personnel trained in any branch of the radio field. The armed services needed a great many men with college degrees to supervise and maintain the complicated pieces of electronic equipment then in use. On the other hand, industry could not produce the equipment without the help of men with college degrees in electrical engineering. As a result of this situation, many men were able to finish their schooling and obtain a degree only by signing up with the armed forces beforehand. In addition, a great many men who had previously never intended to enter the field of radio engineering were suddenly drafted and sent to various radio schools for training as technicians.

A great many problems arose out of all this. If the man who managed to finish school and obtain his degree in electrical engineering was then able to get employment in a draft-free engineering occupation, he was fortunate. He is now firmly en-

* Decimal classification: R070. Original manuscript received by the Institute, August 15, 1946. † Formerly, Institute of Radio Engineers, New York, N. Y.; now, Ohio State University, Columbus, Ohio.

trenched in the radio industry and is in an excellent bargaining position as his services are in great demand, primarily because of his three to five years of experience. On the other hand, the man who obtained his college degree and entered the armed forces, usually as an officer, is not in such a fortunate position. Although he may have had a year's additional training in an armed forces' radio or radar school, and several years' experience installing, supervising, and maintaining complicated electronic equipment in the service, he has not had the exact type of experience that the radio industry wants. By some companies he is considered as a newly graduated college man and may be started at the same level as college graduates who were not in the service. There should be no misunderstanding about the availability of jobs in the radio industry for these men. There are many jobs available that will use their skills to the utmost. However, they will not always start in at a level equal to their classmates who did not enter the services. The problem of either one of the above groups is not serious, since they are both accepted as radio engineers.

The man who was not able to finish college is in a less favorable position. True, he has had from one to three years of college training and perhaps another year of training under army or navy supervision, but he does not have a college degree in electrical engineering. In a great many instances he is fitted as a technician, immediately upon discharge from the services, and usually he can do a good job in that capacity. The openings for such men of technician level, however, are fewer as a general rule, as men of that level who worked for industry during the war have almost saturated the reconverting industry. One sure plan is open to men in this situation. If they are really interested in becoming radio engineers, they must take advantage of the GI bill and go back to school to finish their work toward a degree. Actually, the best opportunity for contact with industry occurs at the time of graduation from college, because industry has personnel men who make the rounds of the colleges at graduation time, looking for men to do specific jobs.

Another class of men is those who obtained degrees in branches of study other than electrical engineering and then entered the armed services in the radio field. These men had some extra training provided by the army and navy in the field of radar and communications and several years of experience in service in this field. Many of them like the field of radio so much that they wish to remain in it, but they may have difficulty obtaining a job at a level much higher than technician because of their lack of a degree in electrical engineering. These men should find a way to go back to college long enough to obtain the extra courses necessary for their degree. Usually it will not take more than a year and the benefits of a degree are certainly worth the effort.

For the man just graduating from high school the horizons are unlimited. It appears that the radio and electronics industry has only started to grow. The various new branches, such as television, frequency modulation, pulse modulation, radar and other forms of radiolocation, and industrial electronics, will continue to spread the radio industry into larger and larger fields. If the high-school graduate will enroll as soon as possible in the electrical-engineering school of a college or university, by the time he obtains his degree he will be in an excellent position to enter the radio industry. Reconversion will be over by then and the industry will be rolling in high gear. Job opportunities should be very numerous and it will be possible to choose a specific field of interest.

A great many men who were not able to finish college, whether they were in the armed services or not, have married or taken on other responsibilities. They feel that they cannot afford to go back to school because of lack of income. This is sheer nonsense. At some of our larger universities, as high as ten per cent of the students are married or have grave responsibilities and they manage to live very well. There is always part-time work to be had around a large university, either in the university departments or in business establishments near the campus. A resourceful individual can always find a solution to the problem.

Other men feel that they are too old to go back to school. Again, these men are wrong. A college degree is worth just as much at 35 years of age as at 22. Actually, it is worth more. Industry looks on an older man who obtains his degree as a valuable asset to their company; the very fact that he did obtain it shows diligence and perseverance in his chosen field.

We have talked about two classes of men. radio engineers, and technicians. It is difficult to draw a sharp line between the two. In general, a radio engineer is a man who can take responsible direction of design, development, and supervision of construction of radio or electronic equipment. The technician, on the other hand, usually does the construction and spade work for the engineer. It is possible to start as a technician and, by hard work and outside study, break over into the radio-engineering field, but it takes a very long time and the road is fraught with disappointment. In a great many cases technicians receive higher pay than beginning engineers, but the disparity does not last long, as the engineer usually rises rapidly to the higher income brackets. One point must be made very clear; without a college degree, a man must invariably start in industry as a technician, and he will find it very difficult to change his status to that of a radio engineer.

In conclusion, remember that the radio industry will not be saturated with good engineers for many years to come. If you really like radio and electronics, and are willing to work hard to obtain a place of engineering prominence in this field, the door is wide open. That door is the entrance to an accredited college or university which offers courses leading to a degree in electrical engineering and/or communications engineering.

Radio Proximity-Fuze Development*

W. S. HINMAN, JR.[†], senior member, i.r.e. and CLEDO BRUNETTI[†], senior member, i.r.e.

Summary-The general principles governing the design of radio proximity fuzes are presented. The paper deals primarily with fuzes for smooth-bore projectiles,¹ such as bombs, rockets, and mortars. Illustrations and descriptions of the various fuzes in this category. which were developed during World War II are given. Within security regulations, there is a reasonably detailed discussion of the performance and construction of fuze components, such as the oscillator, the amplifier, the antennas, the power supply, and the safety and arming mechanisms. There is also a brief description of production practices and problems and methods of inspection and quality control.

INTRODUCTION

TLECTRONIC arts are generally linked to intelligence, and the radio proximity fuze follows the pattern. Intelligence might be described as the ability to adopt or change a course of action according to the circumstances of the moment to give the most effective result without external influence. This sense, which is the prime feature of the radio proximity fuze, fulfills one of the dreams of the ordnance man and provides a fuze which increases weapon effectiveness manyfold. If a projectile can be made to explode at its closest approach to an airplane target, the effective size of the target is increased greatly; if a projectile can be made to explode above the ground, fragments are sprayed out over a wide area instead of either being buried in the ground at the point of contact or directed harmlessly upward.

The radio proximity fuze was developed to meet these requirements. It is an extremely small transmitting station with a receiver which detects any reflections of the transmitted wave. It works on the Doppler principle and operates whenever the amplitude of the reflected signals exceeds a predetermined value. There is the additional restriction that the velocity of approach must be such that the resulting Doppler frequency lies in the

¹ Distinction is made between the application to rotating and nonrotating projectiles. The difference lies principally in factors such as power supply, arming mechanisms, and physical structure. The first two are dependent primarily on the conditions of acceleration and motion. The physical structure is governed by the size and contour of the projectile.

relatively narrow frequency band for which the fuze was designed.

As certain specific details of fuze construction still fall under the heading of classified information, it is necessary to introduce some generalities in this paper in order to meet security regulations.

The impact of this new application of electronics on military science and tactics is enormous. It is the counter-weapon to airplanes and robots raiding ships or cities. It is a new offensive weapon for airplanes. When used against entrenched troops or troops on the march, it provides a new order of importance for the shell, bomb, or rocket with which it is used. Some of the foremost military leaders have said that it precluded troop movements in the open. Remembering that most military tactics depend upon the movement of troops and supplies for sudden attacks and quick support of defenses, one can begin to see the importance of the application.

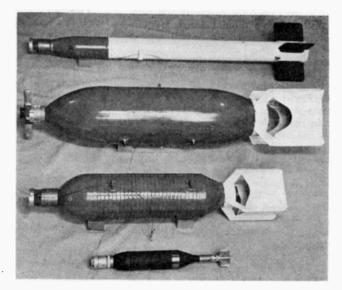


Fig. 1—Radio proximity fuzes mounted on projectiles. Top: 5-inch high-velocity aircraft-fired rocket with ring-type rocket fuze. Second from top: 500-pound general-purpose bomb with bar-type bomb fuze. Third from top: 260-pound fragmentation bomb with ring-type bomb fuze. Bottom: 81-millimeter mortar shell with streamlined ring-type fuze.

The work on proximity fuzes started in this country in August, 1940, under Office of Scientific Research and Development auspices. In the spring of 1941, in order to press the development with maximum efficiency, the Navy assumed responsibility for the development and procurement of proximity fuzes for rotating projectiles, such as antiaircraft and artillery shells, while the Army directed the development of fuzes for nonrotating projectiles, such as bombs, rockets, and mortars. This paper deals with the Army phase of proximity-fuze development. Some of these fuzes mounted on projectiles are shown in Fig. 1,

^{*} Decimal classification: R560.2. Original manuscript received by the Institute, February 25, 1946. This paper is based upon the work of the Fuze Development Staff, Ordnance Development Division, National Bureau of Standards, under the direction of Harry Diamond. The program was conducted under the sponsorship of the Army Ordnance Department_and Division 4, NDRC, and with the assistance of the Signal Corps. The radio fuze development and production programs were successful because of the high order of cooperation between military and civilian government agencies and the American manufacturers. The free exchange of information, even between normally competing manufacturers, contributed im-measurably to good fuze design and production. Principal manu-facturers of bomb, rocket, and mortar fuzes were Emerson Radio & Phonograph Corporation, Friez Division of Bendix Corporation, Phonograph Corporation, Friez Division of Bendix Corporation, General Electric Company, Globe-Union, Inc., Philco Corporation, Western Electric Company, Westinghouse Electric and Manu-facturing Company, The Rudolph Wurlitzer Company, and Zenith Radio Corporation. Principal tube manufacturers were General Electric Company, Raytheon Manufacturing Company, and Syl-vania Electric Products, Inc. † National Bureau of Standards, United States Department of Commerce, Washington 25, D. C.

The existence of an effective radio fuze was one of the best-kept secrets of the war. Scientists of all countries had the basic concept, but only the United States and her Allies were able to work from the concept to practical and effective operation and production, for the radio proximity fuze is a paradox. Simple in general theory, it is extraordinarily complex in the variety of applied arts which are combined in its practical aspects.

Much of the necessary engineering and development work was devoted to meeting exacting military requirements, such as: (1) the fuze must fit existing projectiles using the same fuze well as the mechanical fuzes, and it must not project more than approximately five inches beyond the well; (2) it must be capable of withstanding long storage conditions at high and low temperatures and of operating under these conditions; (3) it must not alter the ballistic characteristics of the projectile; and (4) it must meet other strict requirements relating to time of activation, safety, and performance.

The size limitations for radio proximity fuzes were fixed by military necessity. One might think that in the case of a five-hundred- or one-thousand-pound bomb a few extra cubic inches or an extra pound or two would not be important, but bombs and bomb bays were already designed and in use. A fuze projecting so far as to prohibit loading a fuzed bomb into the bomb bay would be useless. Ballistic tables for all bombs were available, and if the radio fuze affected the trajectory and changed the bombing tables appreciably, use of the fuze would be prejudiced. In the case of the smaller projectiles, such as the trench mortar, size and weight limitations were even more severe. One of the 81-millimeter mortar shells weighs approximately eight pounds, and unless the radio fuze is light and fairly well streamlined, the range of the mortar is reduced—a severe handicap to its military effectiveness.

Other basic difficulties are readily apparent. Mortar fuzes must withstand acceleration of 10,000 g. In the fuzes for bombs and rockets, the projectile vibrations caused by flight velocities approaching or exceeding the speed of sound required great rigidity in the design of the fuzes and their components. Some idea of the energy producing these vibrations may be had by considering conditions at terminal velocity. Air friction and turbulence prevent further acceleration and do work on the bomb, which work appears as vibration and heat. For a one-thousand-pound bomb at a terminal velocity of 1000 feet per second, the rate of energy dissipation is 1,000,000 foot-pounds per second, or 1356 kilowatts. Taking into account the desirable requirements of low cost and small size, and with the further realization that an extraordinary degree of electronic stability is needed for satisfactory operation, it is evident that the performance requirements for these electronic devices are very strict.

These restrictions required the development of new, very small and strong components. It is fortunate that "small" and "strong" go together. Weight is proportional to the cube of the linear dimension, while the sup-

porting area is proportional to the square of the linear dimension. Thus, reduction in size by a factor of 10 results in an object whose strength under acceleration is increased by 10. Resistance against centrifugal forces and bending moments is also greatly increased by a reduction in size. This is the reason that electronic components, generally considered delicate, can be constructed so as to withstand the high vibratory and accelerating forces which are developed in the various projectiles.

GENERAL DESCRIPTION

The radio fuze is essentially an oscillating detector. The operating signal is furnished by the combination of the wave reflected from the target with the voltage of the local oscillator. The time of travel of the radiated wave from the oscillator to the reflecting surface, or target, and back results in a phase difference between the transmitted and reflected wave. If the distance to and from the reflecting surface changes, the relative phase changes. When the oscillating detector is approaching the reflecting surface, the phase change appears as an increase in the frequency of the reflected wave, each returning wave front reaching the detector sooner than it would if the oscillating detector were stationary. Thus, the apparent distance between wave fronts is shorter and the frequency is higher.

The actual frequency of the returning wave (since it must go to, and return from, the target) is

 f_1 (the outgoing frequency) + 2 $\frac{\text{relative velocity}}{\text{wavelength}}$

and the "difference" beat frequency is

2 relative velocity

wavelength

The latter is the signal used to detonate the fuze when it approaches the reflecting target at a preselected velocity (hence beat frequency) and when it is close enough for the reflected wave to have sufficient amplitude.

At useful operating ranges of from 20 to 70 feet, the amplitude of the reflected wave seen by the detector is of the order of a small fraction of a volt. Amplification is necessary to make this voltage large enough to operate the detonator control circuit, usually a thyratron. A single-tube amplifier, whose pass band is designed to favor the reflected signal over spurious noise or other signals, is used to increase the amplitude of the detected beat frequency to several volts, enough to cause the standard control circuits to function.

A power supply and a mechanical safety arrangement to prevent premature operation of the detonator completes the primary components of the fuze.

VT fuzes are designed to certain over-all sensitivities which, obviously, involve both oscillator and amplifier design. Greater amplifier gain may completely compensate for a weak or inefficient oscillator detector, but if a weak oscillator is used without a commensurate reduction in the noise voltage (the peak rectified noise voltage at the detector output), the signal-to-noise rationis reduced.

Throughout the development and production of VT fuzes, electrical stability in the presence of severe vibration was a prime problem. Although generally called an electronic fuze, the structural and mechanical design required a great deal of attention. Improper design might cause the fuze to operate spontaneously prior to reaching the target. A large part of the engineering and development work was directed toward obtaining the best performance possible, for the same bomb cannot be dropped twice. The work was directed along three general lines: (1) improvement of circuit stability; (2) reduction of tube microphonics; and (3) reduction of vibration introduced by unbalance in the high-speed generator.

Certain cardinal precepts were established early in the program. Shock mounting was not used because shock mounts have a low natural period with a multitude of harmonics. It was found preferable to make the parts "so rigid that there could be no relative motion," Of course, this really means that the natural resonances of all parts were placed out of the range of the signal frequencies at which the amplifier was responsive. It was accomplished by extremely solid and rugged mounting of all parts and by careful design of all components. Ideally, all parts should be made as a block so that the completed fuze would be literally as solid as a brick. This ideal condition was approached by cementing the oscillator components into cavities in a solid insulator in the form of a disk one-half inch thick, the assembly being tightly fastened to a suitable heavy metal casting. The amplifier was built on a light bakelite or fiber chassis and set into a cavity in the heavy casting. The cavity was then filled with a potting material so that all parts were held rigidly in place.

The mounting of the fuze to the projectile was particularly important. For a given vibratory force, acceleration is inversely proportional to mass, and the effective mass is greatly increased if the fuze is made a rigid part of the projectile. Considering the vibration of the rotating system, a firm mounting between the fuze and the projectile did much to reduce its amplitude.

Fig. 2 shows a cutaway view of one of the bomb fuzes and general circuit diagrams of the primary fuze subassemblies. A more detailed discussion of each of these subassemblies follows.

THE OSCILLATOR

The primary problems of oscillator design are radiofrequency sensitivity, stability, and size. Sensitivity is defined as the absolute change in detected output voltage per unit change in antenna radiation resistance. It may be represented by the following equation:

$$\Delta E = \frac{S \Delta R_A}{R_A}$$

where ΔE is the change in detected output voltage, S is the sensitivity, ΔR_A is the effective change in radiation resistance, and R_A is the radiation resistance, the antenna circuit being tuned to resonance. In the limit, the equation for sensitivity becomes

$$S = \frac{dE}{\frac{d\dot{R}_A}{R_A}} = \frac{dE}{d(\log R_A)}$$

The latter form of equation suggests a simple method of measuring the radio-frequency sensitivity. Measurements are made of detector voltage E for various values of radiation resistance R_A . The range of radiation resistance is selected to cover the values of all projectiles on which the fuze is to be used.

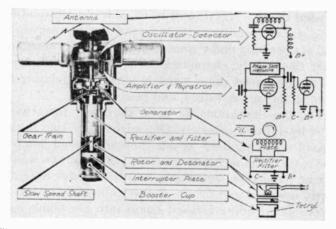


Fig. 2—Cutaway view of bar-type bomb fuze and circuit diagrams of primary fuze assemblies.

The next step is to plot the detector voltage against the log of the radiation resistance. The slope of this curve is $dE/d(\log R_A)$ and, therefore, is the radio-frequency sensitivity. Note that the unit of radio-frequency sensitivity is the volt, and, again, is interpreted as the number of volts change in detector voltage per unit of change of radiation resistance.

Any oscillating detector will have appreciable radiofrequency sensitivity for a reasonable range of radiation resistances. In a well-designed system, the oscillator is stable, and the sensitivity is high for radiation resistance values varying over a large range. This is an important factor in fuze design, since it allows use of the same fuze with a variety of projectiles, small and large. Class-C oscillators are generally used because this type gives high sensitivity with good stability and is largely independent of tube characteristics and radiation resistance.

In addition to considering the change in voltage in the presence of a change in radiation resistance, one must consider the absolute value of detector voltage E. For a given sensitivity, the lower we make the value of E, the lower will be the noise voltage. Any circuit which increases the sensitivity-to-noise ratio is to be preferred, even though the absolute signal voltage is low, for low signals are easily amplified.

Note, then, that the radio fuze does not require a detector which is sensitive in the usual sense; i.e., responsive to extremely weak signals. Efficiency is a better word; that is, we are interested in the *percentage* of the voltage developed by the oscillator that appears at the detector output when the oscillator approaches to a fixed distance from a given type of reflector. The higher the percentage, the more stable is the fuze.

THE AMPLIFIER

Fuzes have been designed to operate at distances up to 70 feet against aircraft and up to several hundred feet over ground. At these distances, the reflected signal is a small fraction of a volt. This low voltage does not provide a safe margin for controlling the gas relay (thyratron) used to detonate the fuze, and so it must be amplified to a reasonable working voltage. While this is the primary amplifier function, other considerations apply, without which satisfactory operation could not be attained.

The first of these is discrimination against microphonics and other stray noise. The Doppler frequency F lies in a rather narrow band for any individual fuze and projectile; that is,

$$F=\frac{2V}{\lambda},$$

where V is the relative velocity of the projectile and target and λ the wavelength, both in the same units. Bomb velocities, for instance, vary from about 400 to 1000 feet per second, depending on the altitude from which the bomb is dropped, while rocket velocities of projectiles used in World War II varied from 1000 to 1800 feet per second. Frequencies other than the corresponding Doppler frequencies play no useful role in the radio fuze, and every effort is made to reject them through the use of band-pass amplifier circuits.

The use of wind-driven alternators (described later) gives an additional reason for restricting the bandwidth of the amplifier. Many fuzes are required to be operative in less than a second, so that directly heated filaments must be used. By keeping the alternator frequency outside of the Doppler range, the frequency cutoff of the amplifier discriminates against the hum in the alternating-current filament supply to such an extent that filament center tapping is not needed.

Another consideration is the class of target. There are two general types—the ground, and the aerial target. The ground is considered to be a level plane, and the Doppler frequency is proportional to the vertical component of velocity. The aerial target as represented by the airplane has a complicated reflection characteristic whose reflecting power can be roughly compared with that of a tuned half-wave dipole, in so far as general characteristics are concerned. The actual reflecting power is determined by a series of field measurements.

To understand the factors affecting the optimum gain frequency characteristics of amplifiers, it is necessary to consider the directivity, or radiation characteristic, of the antenna. Nearly all radio fuze antenna systems are rather highly directional. Since the same antenna is used for transmitting and receiving, the sensitivity characteristic is the square of the radiation characteristic.

Projectiles approach the ground at a variety of angles and the fuze should not detonate the projectile at heights above ground which are sharply dependent on the angle of approach; a uniform burst height is desired.

Depending on the type of antenna, the gain versus frequency characteristic is adjusted to give a uniform height of function for the fuze for any angle velocity of approach to the target. The two most common antenna types are the *longitudinal*, employing the body of the projectile as the antenna,² and the *transverse*, employing a bar as a dipole disposed at right angles to the projectile axis (Fig. 1). Directivity envelopes for longitudinal and transverse excitation, i.e., for ring-type and bar-type fuzes, respectively, mounted on bombs, are shown in (a) and (b) of Fig. 3. Minimum radiation occurs, of course, on the axis of the antenna in each case, and maximum radiation is roughly at right angles to that axis.

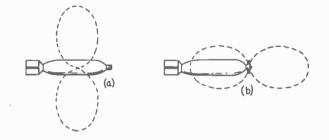


Fig. 3—Directivity envelopes for (a) longitudinal and (b) transverse excitation using, respectively, ring-type and bar-type antennas.

For the longitudinal type, it is obvious that the radiation is least for a vertical drop, and it reaches a maximum as the angle of approach with respect to the verti-. cal is increased. Now since the vertical component of velocity is highest for high-altitude bomb releases, the angle with the vertical is small, the radiation is low, and the Doppler frequency is high. For this condition, high amplifier gain compensates for the low power radiated toward the target. Conversely, for low-altitude bomb releases, the vertical velocity is low, the angle with the vertical large, and the Doppler frequency low. Here, less amplifier gain compensates for the higher power radiated toward the target. By proper design of the amplification characteristic, the height at which the fuzed projectile functions may be held quite uniform, regardless of the altitude of release. This will be treated in more detail later.

The second type, the transverse antenna, has a substantially constant radiation toward the ground for all except extremely low-altitude releases, where the angle of fall with respect to the vertical is very large. The amplifier for this type fuze has essentially constant gain over the corresponding range of Doppler frequencies. Fig. 4 shows representative gain versus frequency characteristics for the two types of fuzes.

The radio fuze for aerial targets presents problems in amplifier design that differ from those of the application

² Radio-frequency energy is end-fed to the body through the antenna ring or cap of the fuze.

over ground. The requirement is that the fuze must function at the optimum point as it *passes* the target. The fragments of an exploding projectile have two velocities—one caused by the projectile motion, and the other by the explosion. The greatest concentration of fragments is at right angles to the path of travel of the projectile axis (statically). The projectile velocity combines with the velocity generated by the explosion to cause the equatorial spray of fragments to move forward of the normal to the projectile. Thus, the optimum point for detonation is that where the line from the projectile to the target makes an angle of from 15 to 30 degrees with the normal to the trajectory.

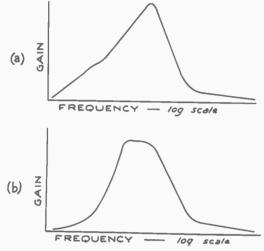


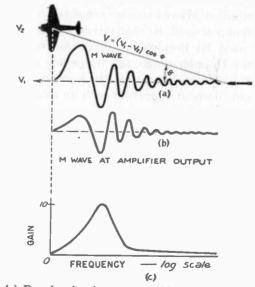
Fig. 4—Gain versus frequency characteristics for two types of fuzes. (a) Ring-type fuze. (b) Bar-type fuze.

The preferred type of antenna for aerial targets is that using longitudinal excitation, since radiationreaches the target only when the projectile approaches it. Consideration of the Doppler signal pattern, commonly called the M wave, as a fuze passes an aerial target will show the means of using the amplifier characteristic to control the burst point (Fig. 5(a)). Consider a projectile approaching an aerial target from a distance. The Doppler frequency depends on the *relative* velocity of the projectile and the reflecting target. For a target and a projectile traveling in the same direction,

$$F=2\,\frac{(V_1-V_2)}{\lambda}\cos\theta,$$

where V_1 is the projectile velocity, V_2 is the target velocity, and θ the angle between the projectile trajectory and the line connecting the projectile and the target. Thus, when the projectile is distant from the target, $\cos \theta \cong 1$, while at the instant of passing the target, $\cos \theta = 0$ (for an idealized point target).

As the projectile approaches the target, the Doppler frequency changes continuously from that corresponding to the difference of the projectile and target velocities to zero, being at all times proportional to $\cos \theta$. If the amplifier is peaked sharply at a frequency corresponding to some value of $\cos \theta$, the amplifier will be most sensitive at that frequency (or angle), and the fuze will be most likely to explode at the corresponding point on its trajectory, the exact point being influenced by the radiation pattern. A typical amplifier gain versus frequency characteristic is shown in Fig. 5(c).


The *M*-wave signal at the amplifier output is shown in Fig. 5(b). This is the *M* wave of Fig. 5(a) modified according to the amplifier gain for the varying frequency.

Most of the amplifiers use only one tube. The high degree of selectivity is shown in Fig. 4. It is obtained through the use of strongly regenerative-degenerative circuits. Noise or hum voltages large enough to overload the amplifier may appear at the input, but by feeding the corresponding out-of-phase voltage back from the output, the undesired voltages are bucked out and suppressed.

Conventional resonant inductance-capacitance circuits are used in combination with the feedback circuits to provide the flat-top band-pass characteristic needed for the transverse-excitation type of fuze. The practice of tuning the resonant circuit to the lower limit of the desired frequency band was widely used. Other types of circuits are, of course, possible, but space limitations and circuit complexity prejudiced their use.

RADIATION, REFLECTION, AND OPERATING RANGE

The distance at which a reflected signal is large enough to operate the radio fuze and explode the projectile is dependent on several factors, both internal and external to the fuze. The internal factors which control the height of function are radio-frequency sensitivity, over-all amplification, shaping of the amplifier, thyratron characteristics, and the time delays in all the electrical and explosive paths in the device. External to the

fuze, controlling factors include the radiation pattern of the projectile acting as an antenna, external geometry of the fuze-projectile combination, radio frequency, reflection coefficient of the target, geometry of the target, angle of approach, and the relative velocity of projectile and target.

Although the above factors present a most unwieldy number of variables, it has been possible by a combination of theory with laboratory and field experiments to arrive at formulas for computing burst distances with considerable accuracy. The general method of solution is the same for any type of target, provided some knowledge of the reflecting properties of the target is at hand. For an aerial target, the reflection coefficient, both in magnitude and phase, as a function of aspect angle, may be determined experimentally. Actually, however, the reflection coefficient of such targets varies so much with angle of approach and type of construction (i.e., metal, plastic, etc.) that average figures are assumed for various targets and used for all computations regarding this target. Thus, for example, a certain type of airplane might be equivalent in reflecting properties to five halfwave electric dipoles (i.e., the reflection was five times that of a tuned half-wave doublet oriented for maximum reflection).

Operating Heights Over Ground

In the case of a bomb approaching level ground at an angle, the first step in the calculation of height of function is to assume the earth to be an infinitely conducting plane. The signal reflected back to the bomb (which we shall call the driving antenna) is the same as that radiated by a mirror image of the bomb (or antenna) located as far below the conducting plane as the real bomb is above it. Thus, the field produced at the driving antenna by the image antenna is calculated in terms of current in the driving antenna, frequency, and geometry. To simplify the remainder of the derivation, the image antenna is now assumed to be a half-wave dipole and the voltage e induced in it by a given current in the driving antenna is calculated. Applying the reciprocity theorem, the same current at the center of the dipole gives the same induced voltage e at the feed-point of the driving antenna. Thus, the voltage induced in the driving antenna by the image dipole is found. If this voltage is multiplied by the ratio of the fields produced at the driving antenna by the image antenna and the image dipole, it will yield the true reflected voltage.

The field surrounding the antenna contains three components—the radiation field, the induction field, and the quasi-static field. For many practical purposes, only the radiation field need be considered. This simplifies the calculations and provides an easy working formula for determining operating heights. For the case of a bomb approaching ground at height h over terrain having a reflection coefficient n, the Doppler voltage detected by the fuze will be

$$e_{R} = \frac{knS}{h\beta_{3}} \phi(\theta) \text{ volts (root-mean-square)}$$
(1)

where

S = the radio-frequency sensitivity of the fuze

- $\beta_2 = \int_0^{\pi} \phi(\theta) \sin \theta d\theta$ (this expression may be computed readily by numerical integration)
- θ = the angle of the major axis of the bomb with respect to the vertical
- $\phi(\theta)$ = the directivity envelope (see Fig. 3).

Assume the input to the amplifier required to fire the thyratron is e_T volts (root-mean-square), measured at the Doppler frequency corresponding to the altitude at which the bomb is dropped.³ Inserting this value in place of e_R in equation (1) yields the height of function

$$h = \frac{knS}{e_T\beta_2} \phi(\theta) \text{ feet.}$$

All of the time delays in the fuze system total less than five milliseconds, so that at normal operating ranges and speeds they can be neglected without appreciable error.

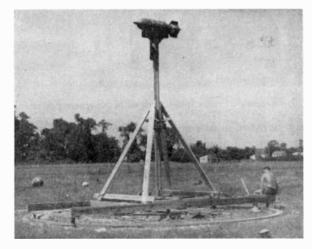


Fig. 6-Structure used for obtaining directivity envelope for proximity fuze.

A structure for obtaining a directivity envelope for a fuze mounted in a 500-pound bomb is shown in Fig. 6. Provision was made for continuous rotation of the structure. In the figure, the operator is reading the angular position on the ground protractor. The signal radiated by the fuze-bomb combination is picked up by a receiver located approximately 100 feet away. The intensity of the signal is measured for each angular position of the bomb.

THE POWER SUPPLY

In addition to the requirements of small size and reliable operation at substratosphere temperatures (-40) degrees centigrade) and tropical conditions (+60) degrees centigrade, high humidity), the principal requirements which had to be met in the design of a universal type of power supply for the rocket, bomb and mortar applications were that it must have long shelf life and be a permanent part of the fuze, i.e., should not have to be assembled to the fuze in the field.

* Frequency = $2V/\lambda$ cycles per second. $V = \sqrt{2g \text{ (altitude)}}$ feet per second.

1946

A careful study of all methods of power supply led to the selection of a wind-driven alternating-current generator with a suitable rectifier-filter system as the most practicable solution to the problem. Considerably more than the necessary power to operate such a device was available in the wind stream and, with proper mechanical design, could be harnessed without appreciably affecting the ballistics of the projectile. In fact, only a tiny fraction of the power available in the air stream was needed to supply the electrical energy for the fuze.

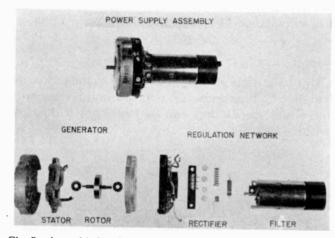
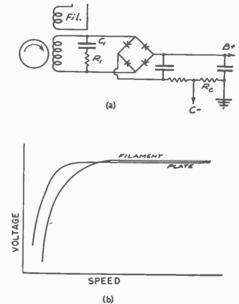
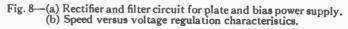


Fig. 7-Assembled and exploded views of generator power supply.

. The generator power supply not only met the requirements outlined above, but provided the additional feature of an exceptionally safe method of arming the fuze, to be described later. One of the power supplies used in the bomb and rocket fuzes is shown both in assembled and exploded views in Fig. 7.


The alternating-current generator consisted of a sixpole magnet rotating within a stator carrying the coils in which the voltage is generated. The rotor of this alternator was a simple cylinder approximately one inch in diameter and one-fourth inch thick. Composed of Alnico, it was magnetized in production by simply inserting it in a six-pole magnetizing fixture and sending a brief pulse of unidirectional current through the six coils on the fixture. For the stator, either a standard sixcoil, six-pole arrangement or a single-coil, six-pole winding, little used in modern practice but of a type described in literature dating back to 1896,⁴ was employed. Separate windings were used for the A and B supply. C bias was obtained from the rectified B voltage.


By properly shaping the amplifier-gain versus frequency characteristic, it was possible to use alternating current directly on the filaments of all tubes. A bridge rectifier was used for the plate and bias supply and filtered by means of a simple resistance-capacitance filter, as shown in Fig. 8(a). An extra resistor (R_e) inserted at the low-potential side of the B output provided the necessary C voltage. This allowed the C voltage to be a definite fraction of the B voltage and to vary in the same manner as the B voltage. Thus, some compensation was provided for variations in B voltage from generator to generator in production.

Voltage Regulation

The large leakage reactance of the high-voltage winding was made use of in achieving excellent voltage regulation with speed. In the various projectiles employed, speeds ranged up to 125,000 revolutions per minute, the higher speeds occurring in the turbine models. With care in design, the top speeds could be reduced to less than 100,000 revolutions per minute, but the range was still large. The normal open-circuit voltage of this type of alternator increases almost linearly with speed. The obvious step in obtaining good regulation was to raise the voltage at low speeds by resonating the leakage inductance with an external condenser. This was the method adopted. Using the shunt regulation components R_1 and C_1 , speed regulation characteristics similar to that of Fig. 8(b) were obtained. The plateau is reached at a speed below that at which the fuze is armed; that is, at which the fuze is ready to function electrically. The purpose of resistor R_1 was to broaden the resonance effect of C_1 and the generator leakage inductance, and thus limit the voltage at resonance to give constant voltage at all speeds above resonance.

By virtue of the inductive coupling between the A and B windings, the impedance reflected into the A voltage circuit, with the B regulation components and proper B load in place, was such as to provide an Avoltage speed-regulation curve similar to that of the B circuit.

Rectifier and Filter

Full-wave rectification was obtained by means of selenium rectifiers in the four arms of the bridge. In some applications, a voltage-doubler rectifier circuit was employed, allowing good performance with half the number of rectifier cells.

One of the important factors which helped to make

⁴ Edwin J. Houston, and A. E. Kennelly, "Electro-Dynamic Machinery for Continuous Currents," The W. J. Johnston Company, 1896, New York, N. Y.

possible the tiny generator-powered radio proximity fuze was the development of small selenium rectifiers. The rectifier itself, in one of the applications, was composed of ten cells, each about one-fourth inch in diameter.

Choice of the selenium rectifier was based on numerous considerations, including both the economical and the physical. Vacuum tubes would have provided a suitable solution to the problem of rectification; however. their cost and difficulties of production, including time, tools, and strategic materials needed, made it imperative that an inexpensive and easily produced substitute be found. Then, too, vacuum tubes draw filament power and in addition had to be made rugged. For example, in the trench-mortar application, the fuze is designed to withstand a setback force of 10,000 times that of gravity. This setback occurs as the shell is fired. Although the ruggedness necessary was accomplished in the design of the tubes, in order to obtain it special features of construction were necessary, with the attendant increase in cost and difficulty of production. It was felt that, wherever possible, substitutes for vacuum tubes would be desirable in a device of this type.

Both selenium and copper-oxide rectifiers were tested. The latter have especially desirable features and in the early stages of development appeared to be favorably adapted to the problem. In particular, they show a low reverse dynamic characteristic—that is, low conduction of current in the reverse direction. However, concentrated development on the selenium disk soon resulted in the obtaining of reverse characteristics which exceeded those of the copper-oxide rectifier. Also, the copper-oxide rectifier did not perform as well under the extreme ranges of temperature met in practice, especially at low temperatures, and full attention was soon focused on the selenium rectifier.

Method of Manufacture of Rectifier Cells

The exact method of manufacture of selenium cells is regarded as a trade secret. However, a general idea of the method may be told.

The cells are made on a base metal, such as steel, aluminum, etc. A large strip of metal is used and the individual cells are partially punched out, being held to the strip by 0.005-inch of metal which keeps the cells on that particular strip together throughout all the subsequent manufacturing procedure.

Selenium powder is applied to the strips, which are then baked under pressure at approximately 115 degrees centigrade. The strips are again put into an oven, this time without pressure, and held at a temperature of slightly over 200 degrees centigrade. Care is exercised, as this is very near the melting point of selenium. A shiny black appearance resulting from the first baking now changes to a crystalline grey. This practice is called annealing.

Following this, the cells are placed over a vapor of selenium dioxide. The material adhering to the selenium forms a thin layer and acts as a catalyst in the formation

of the barrier layer. Finally, the counter-electrode is sprayed on, a mask being used to prevent a short circuit at the cell edges. The cells are now electroformed by connecting them to a source of direct-current voltage.

The assembly of rectifier cells in their containers, shown in Fig. 7, met rigid microphonics tests.

Mechanical Drive System

Impellers of both propeller and turbine type were employed, the former on rocket and bomb fuzes and the latter on the mortar and also on one of the rocket fuzes. The propeller type was either molded of bakelite or stamped out of steel. The turbine type was die cast. The pitch was selected at a value which gave the best compromise between fast starting and low top operating speeds.

The extremely high rotational speeds at which the generators were operated introduced severe mechanical problems. Even with the small degree of unbalance in early models, strong vibration resulted, and bearings were destroyed in a relatively short time. The introduction of commercial ball bearings in place of the sleeve bearings originally used gave a material improvement in performance.

The rotor, in addition to possessing excellent magnetic properties, required special metallurgical design to withstand the high speeds without tearing apart. Vanes were also balanced. End play in the rotating system was kept to minute figures hitherto thought impossible in small devices designed for very high production rates. For the higher generator speeds more attention was given to balancing of the rotating system, and operation was so much improved that it was possible to return to the use of sleeve bearings.

SAFETY AND ARMING

The radio proximity fuze, when armed, is sensitive to any sort of motion or action in its neighborhood which will change the amplitude of reflected waves (at a rate at which the amplifier is responsive). One may cause the fuze to operate by waving a bakelite rod close to it, or by touching two wires together at a considerable distance from the fuze. Touching a metal pipe or any other ground or metal object may change the reflected signal enough to fire the fuze. For this reason, exceptional care must be taken to see that the fuze circuits are not completed until the fuze is well away from the firing or release point. A fuzed bomb or rocket must be many hundreds of feet away from the plane or the ground firing point before there is any possibility of the fuze functioning. Several safety means are employed.

(1) A thick metal plate, usually called an interrupter plate, is interposed between elements of the explosive train so that if the electric detonator is discharged prematurely, the main explosive charge cannot be set off.

(2) The electric detonator is disconnected from the power circuit.

(3) With generator-powered fuzes, there is no power available to set off the detonator until the projectile is moving through the air at a high rate of speed. Arming the fuze is accomplished through a gear train, driven by the same vane which drives the generator. Rotating the gear train removes the interrupter plate and connects the electric detonator. This occurs after the vane has made a preset number of revolutions corresponding to a fixed distance of air travel. The usual arming distance varies with type of projectile employed and may be as much as three or four thousand feet. Fig. 9 includes a breakdown of safety devices which, in the unit shown, are built into the power supply.

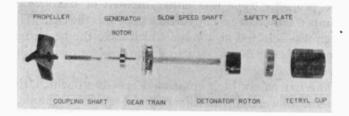


Fig. 9-Safety devices built into the power-supply assembly.

The detonator is set off-center in the detonator rotor, and its terminals are connected to contacts on the face of the rotor. When the fuze is not armed, the detonator is misaligned a number of degrees from a small hole in the interrupter plate. The hole is filled with tetryl, a material widely used in explosive train elements. The tetryl cup holds a larger charge of tetryl which is used to detonate the main explosive charge of the projectile. As the vane turns, the reduction gear train slowly turns the rotor by means of a slow-speed shaft. When the detonator is directly above the tetryl-filled hole in the plate, contact with the detonator leads is made; the rotor is released from the slow-speed shaft and locked in place, completing the arming of the fuze.

In using the bomb fuzes, an arming wire attached to the airplane is threaded through a metal pin on the fuze, which is arranged to block the fuze vane from turning. As the bomb is released the wire is withdrawn, the metal pin falls out, and the vane is free to turn and arm the fuze.

Rocket and mortar fuzes require other safety means. These fuzes have accelerating forces of from 10 to 10,000 times gravity at the moment of firing. Mechanical locks, which release the vane under the forces of acceleration, prevent arming of the fuze except when it is fired.

TUBES AND OTHER COMPONENTS

Much of the effort expended on radio fuzes was directed toward the development and procurement of small and rugged components. Chief among these were the tiny tubes, as no suitable tubes were available at the start of the war. Work was started with various tube manufacturers on improving the hearing-aid types of tubes, the initial steps being taken by the Navy shellfuze development group of the Johns Hopkins Applied Physics Laboratory. Tube work on the Army phase of the fuze program at the same companies was directed primarily toward developing tubes free from microphonics in the presence of severe vibration. Many new testing methods and procedures had to be developed, along with rigid manufacturing controls. As a result of this work, a very strong and stable line of inchlong tubes about 5/16 inch in major diameter were developed and produced in sufficient quantity to meet the heavy production requirements of the proximity fuzes. None of the production programs were ever delayed by lack of tubes.

For most of the other components, such as capacitors, resistors, and inductors, there was a continuous effort to reduce size and improve performance at extremes of temperature and humidity. Too much credit cannot be given to manufacturers of these items for the manner in which they engineered and produced the large quantities required.

Another important phase of the project was the development of suitable plastic materials for the nonmetallic parts of the fuzes. These parts included the nose cap, oscillator blocks, coil forms, and numerous housings for other components. Rigid mechanical requirements were imposed on the plastics by virtue of the severe strains to which the fuzes were subjected. In addition, those parts located in the high-frequency circuits had to have especially good electrical properties. These problems were solved by the close co-operation of plastics manufacturers.

PRODUCTION AND LABORATORY TESTING

Perfection is a prime requirement of ordnance items. A bombing mission may carry one or two dozen bombs in a round trip of as much as two thousand miles. Into the venture goes a bomber costing hundreds of thousands of dollars and a crew too valuable to reckon in money. For each fuze which fails to function, one bomb is lost to the mission and the whole mission may be jeopardized.

In order to assure the best possible fuze operation, a rigid system of production and field testing was instituted before release of the fuzes to the war theatres. Each fuze had to pass a comprehensive final test, and each subassembly was carefully checked prior to final assembly. Proper inspection on the line was of paramount importance. Usual production practices for electronic equipment could not be followed, for a device constructed to ordinary camera-model radio set specifications could hardly withstand firing in a rocket or mortar.

Special inspection agencies were set up by the Army Signal Corps or Army Ordnance Department in each area of production to further the rigid inspection system.

8

The assembly lines were either of the conveyor or the pass-along system. Every fifth or tenth operator was an inspector, and a defect in a subassembly could not go far without detection. After passing minute inspection, both mechanical and electrical, samples of units were selected from each lot produced and shipped to the National Bureau of Standards. There they were tested to exhaustion in the specially built Control Testing Laboratory. They were put through life tests, low and high temperature tests, temperature cycling from one extreme to another, humidity tests, salt-spray baths; and a very rude jolt test, after which they were required to perform properly. After packing in special hermetically sealed cans used for shipment overseas, the units were subjected to a packaging test. This was somewhat akin to being dropped off a truck and jostled around in every conceivable direction hundreds of times. Again the units were expected to perform properly after the test.

At the Control Testing Laboratory the sample units were disassembled and each subassembly and the principal components subjected to detailed analysis to determine potential sources of failure. Out of these tests came recommendations for improvement in design. A special production-engineering section was set up at the National Bureau of Standards to act as liaison between development groups, pilot production lines, control testing, and mass production plants. Valuable trade

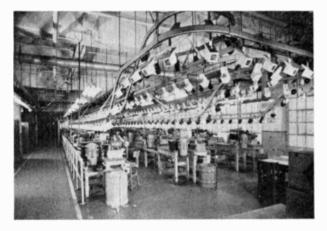


Fig. 10-Production line in a proximity-fuze plant.

secrets were exchanged freely among manufacturers in the common interest.

The production line of one of the modern fuze plants is shown in Fig. 10.⁵ This plant utilized an overhead conveyor system for passing units from the final assembly line to final test, thence into the packing room. A closeup of the conveyor system and a final test chamber is shown in Fig. 11. A fuze is within the chamber; the end of its power-supply assembly is seen projecting from the chamber face. A jet of high-pressure air drives the vane.

Throughout production, testing of completed fuzes remained the most pressing single problem, principally because of the difficulty of accurately simulating in a test fixture the actual conditions of a projectile in flight.

The final test chamber had to present both an electrical and a mechanical load to the unit. A dummy antenna was used to simulate the radiating body of the projectile. Mechanically, the fuze was screwed into a mount which simulated the mechanical condition when screwed into the nose of a bomb, rocket, or mortar. Thus mechanical resonances in the fuze were allowed to play their full part in generation of electrical noise. Not only was the electrical noise measured on final test, but other

* Courtesy of Emerson Radio and Phonograph Corporation.

parameters of oscillator, amplifier, and power-supply performance were determined, with close "go" and "nogo" limits. In this manner, uniform operation in the field was assured.

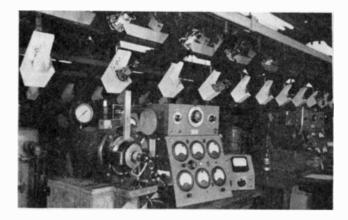


Fig. 11-Close-up of conveyor system and final test chamber.

Women operators were generally used to operate these stations. It is a distinct credit to them that they were by far the majority of the workers who built and tested these complex electromechanical devices.

A subassembly test station is shown in Fig. 12. This station was used to check the radio-frequency and audiofrequency performance of one type of bomb fuze. The fuze head is shown clamped in the reclining side of the cube-shaped metal box. With the side moved up in place so as to close the box, a radio-frequency load of approximately infinite impedance is presented to the oscillator. Any desired load may then be added by connecting a suitable radio-frequency resistor from the oscillator antenna lead to the side of the box.

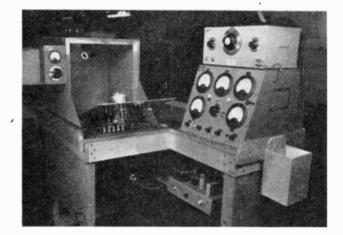


Fig. 12-Subassembly test station.

FIELD TESTING

Before any lot of fuzes could be accepted for shipment to the field of action, a sample had to pass an ordnance proving-ground test. In the case of bomb fuzes, they were tested in bombs dropped over land or water. The height of function was measured, and the lot accepted if the units operated within specified limits. The height test was not the only test. Numerous safety tests with and without high explosives were made to assure proper operation of the arming and safety devices.

Interesting proving-ground tests of a fuze for the Army $4\frac{1}{2}$ -inch rocket were carried out at the National Bureau of Standards proving ground at Fort Fisher,

Fig. 13—Proximity-fuze proving ground, with rocket firing tower at left and a simulated bomber at right.

North Carolina, near Cape Fear. In the first tests at that station, an attempt was made to use aerial targets held aloft by small barrage balloons. Testing difficulties were many, for a radio fuze is sensitive to its departure from ground as well as to its approach to ground. Furthermore, early rocket projectors and aiming mechanisms were crude and did not permit accurate sighting on a target swaying in a wind. It was then realized that, if the projectile could be fired with its trajectory parallel to a plane surface, free-space conditions would be simulated and fixed range conditions could be established. Such an arrangement is shown in Fig. 13. The rocket firing tower is shown at the left and a simulated bomber at the right. The latter was made of plain chicken wire supported on four telephone poles. As the rockets were fired approximately horizontally, variations in the terrain between tower and target would produce undesired voltage ripples in the output of the amplifier. To eliminate this imperfection, the ground below was leveled off with a bulldozer. In this manner the fuze, which is insensitive to reflections of constant phase, was unaware of the fact that it was not traveling in free space. In Fig. 13, a puff may be seen below the corner of the left wing where a rocket with a radio proximity fuze fired on passing the target. Smoke puffs were used in place of high explosives in the rocket to indicate the point of burst and avoid replacing the target after each shot. On passing the target, the rocket continued on into the waters of the Atlantic Ocean, which may be seen on the horizon.

In a treatment of this type, only a glimpse may be had of the large amount of testing that was carried out on the radio fuzes in proving in the design and quality of manufacture and determining the performance in the field. Thousands of acceptance tests were made at many proving grounds in this country, and innumerable operational tests were made here, in England, and on the continent. Added to this was the valuable information yielded by the enemy, who so obligingly supplied targets for numerous tests under actual battle conditions

A Medium-Power Triode for 600 Megacyles*

S. FRANKEL[†], senior member, i.r.e., J. J. GLAUBER[†], senior member, i.r.e., and J. P. WALLENSTEIN[‡], associate, i.r.e.

Summary—An air-cooled triode, the L600E, was developed to produce a peak pulse power of 25 kilowatts at 600 megacycles for radar operation. The water-cooled 6C22 was then developed to provide higher efficiency in continuous-wave operation at that frequency. The construction and characteristics of these tubes are described. In an experimental crystal-controlled transmitter the 6C22 has delivered 500 watts at 600 megacycles.

INTRODUCTION

HE LARGE peak power required by pulse radar systems demands vacuum tubes capable of delivering high peak emission currents at high voltages. The tubes usually are employed as oscillators, and the modulation, in the form of the pulses, is applied to the anode. The pulse is, thus, the envelope of several radio-frequency cycles. The radio frequency is determined by the oscillator circuit constants. The high instantaneous voltages that exist during operation make it desirable to avoid spacing insulators between tube electrodes and to lengthen the external glass paths as much as possible. At the same time, rigidity of the electrode structure must be attained.

Interchangeability of tubes in any equipment is necessary and applies not only to the electrical characteristics, but to the physical mounting of the tube in the circuit as well.

In addition, the tubes must maintain their original characteristics and the available thermionic emission must not decay appreciably over long periods of operation. Satisfactory life requirements have been met in pulse radar tubes employing either thoriated-tungsten filaments or indirectly heated oxide-coated unipotential cathodes.

L600E

As radar development proceeded, it was evident that higher frequencies and powers had much to offer in increasing accuracy and range. Consequently, the development of a tube capable of delivering peak pulse powers

^{*} Decimal classification: R339.2. Original manuscript received by the Institute, February 28, 1946. Revised manuscript received, July 29, 1946. Presented, 1946 Winter Technical Meeting, New York, New York, January 24, 1946.

[†] Federal Telecommunication Laboratories, Inc., New York, N. Y.

[‡] Formerly, Federal Telephone and Radio Corporation, Newark, N. J.

of 25 kilowatts at 600 megacycles was undertaken in the latter part of 1941. After several designs had been made and tested, a developmental tube known as the L600E proved most promising. Technical information on this tube is given in Table I.

The L600E consists of a bifilar thoriated-tungstenfilament emitter with its electrical center brought out to a pin terminal, a squirrel-cage-type grid, and a reentrant copper anode with a bayonet ring at its lower end to provide a simple means for securing and positioning the tube in the socket.

With anode modulation in a concentric-line-type oscillator circuit, 25 kilowatts of peak power output could be produced at 600 megacycles by a single tube. In one application, using grid modulation, 7200 anode volts, and 1.62 pulses per second, each of 200 microseconds duration, 7.3 kilowatts of peak power were developed at 600 megacycles and 33 per cent efficiency.

In high-frequency tubes, transit-time effects must be seriously considered. By decreasing interelectrode clearances, the deleterious effects of the long time of electron travel compared with the period of the applied potentials are reduced. Transit-time effects are also decreased when high anode voltages are employed. Thus, a tube which may operate at a given high frequency with good efficiency under pulse conditions where high voltages are employed, may exhibit very low efficiency in continuouswave operation at the same frequency because lower anode voltages must be employed.

TABLE I CHARACTERISTICS OF L600E

Filament	Thoriated
7. Hamene	Tungsten
Filament volts	6
Filament amperes	13.5
Amplification factor	20
Mutual conductance (ma./volt, $I_b=2$ amperes, $E_b=-100$ volts) Maximum anode volts (pulse)	10
Maximum anode volts (pulse)	25,000
Maximum anode dissipation (kilowatts)	.0.3
Capacitances $(\mu\mu f) C_{\mu\nu}$	<u>†</u>
Col	0.25
Cpl	0.25

One result of transit-time effects is that not all electrons emitted by the filament or cathode when the grid is positive reach the anode. Many emitted electrons return to the cathode space-charge region. This causes a decrease in anode current and power output. To increase the anode current, the filament or cathode must supply a larger quantity of electrons to compensate for those electrons which do not reach the anode. It is obvious that the emission capabilities of the filament or cathode must be much greater in high-frequency applications than in low-frequency applications. The emission required may be several times as great as in lowfrequency applications where transit-time effects are negligible.

6C22

While the L600E performed well as a pulse tube, it was unsatisfactory for continuous-wave operation. Employed as a continuous-wave oscillator in a concentricline grid-separation circuit with 1600 anode volts, the efficiency at 600 megacycles was only 10 per cent, although at 300 megacycles the efficiency was 40 per cent. Consequently, a design formerly known as the L600N, now designated as the 6C22, was developed.

Construction

With the exception of the filament terminals and screw-type water jacket on the anode, the 6C22 is similar in outward appearance to the L600E. It is shown with the jacket in Fig. 1 and a sectional view appears in Fig. 2.



Fig. 1-6C22.

Internally, it differs dimensionally from the L600E. The filament-wire diameter is 25 per cent greater and the number of turns has been increased by approximately 35 per cent. The grid-filament and grid-anode clearances were reduced by approximately 60 per cent.

The result of this reduction in clearances and increased filament surface area was a much higher perveance and a lower amplification factor. The additional surface area increased the available thermionic emission.

Filament

The helical bifilar thoriated-tungsten filament is made of 0.025-inch-diameter wire and has an active emissive surface area of 3 square centimeters. The filament ends and center lead are terminated in monel-kovar cup assemblies sealed to a molded glass flare. This construction has the advantage of great mechanical strength and resistance to impact at the seals.

A shadowgraph comparator with a magnification of 10 times is used to inspect the filament for alignment of the turns to minimize unequal grid heating.

Grid

The grid is of the squirrel-cage type, consisting of 32 wires, 0.008 inch in diameter, spot-welded to and supported by a low-inductance cone. After completion, the

1946

grid is cold-stretched on the welding mandrel and then hot-stretched in vacuum on a special fixture to relieve all stresses and equalize the tension in the cage wires. In addition, this procedure assures equal heating and expansion of the grid in operation. The grid is then inspected on the shadowgraph comparator for wire straightness.

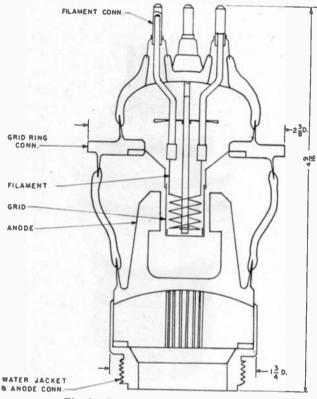


Fig. 2-Cross-sectional view of 6C22.

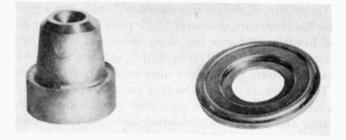


Fig. 3-Re-entrant anode and grid ring of 6C22.

Grid Ring and Anode

The grid ring and the anode are made of oxygen-free high-conductivity copper and lend themselves to fabrication by coining because of their unusual shape. The ring is coined from a washer $2\frac{1}{4}$ inches in outside diameter, 1 inch in inside diameter, and 3/16 inch thick. Under 250 tons pressure it assumes the shape shown in Fig. 3. The stubs are then trimmed so that they are 1/16 inch square, and the feather edges are formed from these stubs. The re-entrant anode is coined from 1-5/16-inchdiameter bar stock 2 inches long under 300 tons pressure to the shape shown in Fig. 3 and is then slotted on the water-jacket end. The feather edge is formed in the same manner as that of the grid ring, in a conventional machine lathe especially adapted for the purpose. The feather edges are carefully inspected for dimensions and flaws, after which the parts are cleaned and then glassed.

Assembly Procedure

The present bifilar filament is mounted on the tungsten leads of the molded flare, as shown in Fig. 4, and carburized. This assembly has the prebeaded grid ring sealed to it. Special fixtures are employed during this operation to assure axial and radial alignment of this ring with respect to the filament.

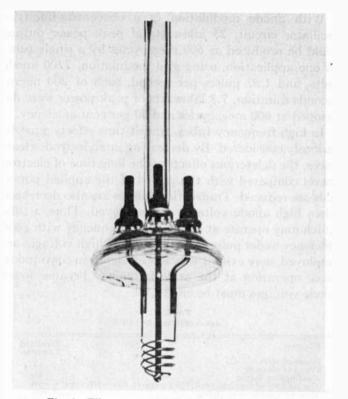
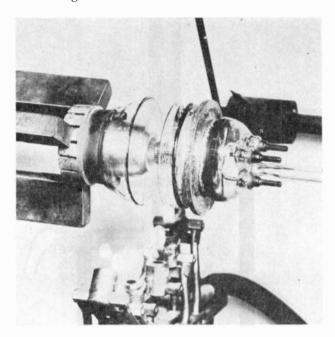
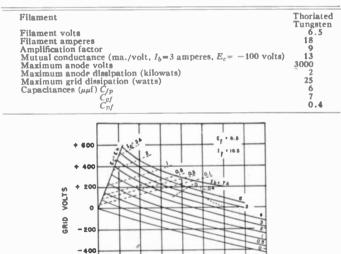


Fig. 4-Filament mounted on molded glass flare.

Fig. 5—Grid and filament assembly. The grid connecting ring and cone support may be clearly seen.

The grid is next assembled to its ring by means of a copper clamp ring and four flat-head steel screws. Before these screws are tightened, the grid is carefully aligned with the filament by again employing the shadowgraph. The resultant assembly is shown in Fig. 5. The anode, with glass of proper length and shape already sealed to its feather edge, is now joined to the glass skirt on the grid connecting ring after careful alignment with respect to each other. This operation is shown in Fig. 6.




Fig. 6—The glass-mounted anode, held by the jaws of the lathe chuck, and the filament-grid assembly are joined at the two glass surfaces.

During all sealing operations, an atmosphere of nitrogen gas is employed to prevent oxidation of the tube parts.

Characteristics

As a result of the care used in making and assembling the electrodes, the electrical characteristics are very uniform. They are given in Table II.

TABLE II	
CHARACTERISTICS OF	6C22

ANODE VOLTS Fig. 7—Constant-current curves of the 6C22.

1000

2000

3000

- 604

Constant-current curves are shown in Fig. 7. A typical curve of grid watts and primary grid current is shown in Fig. 8. A curve of current division between anode and

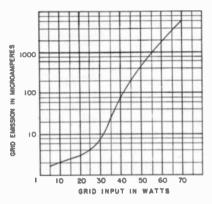


Fig. 8—Primary grid current plotted against grid input power.

grid for the same applied voltage on both electrodes is shown in Fig. 9. The average ratio of anode-to-grid current is 2.5 to 1.

A flow of water of 0.5 to 1 gallon per minute is necessary and sufficient to cool the tube in operation.

TESTS AND RESULTS

Typical operating conditions for oscillator and amplifier are shown in Table III.

TABLE III TYPICAL EXPERIMENTAL OPERATION OF 6C22

	Oscillator	Neutralized Inverted Amplifier
Frequency (megacycles) Anode direct volts Anode direct current (amperes) Grid direct current (amperes) Power output (watts) Driving power (watts) Dower gain Anode dissipation (watts) Efficiency (per cent)	600 1200 0.6 	600 1600 0.65 1040 500 190 2.6 —

Most of the recent studies of this tube have been made at 600 megacycles with continuous-wave operation. At this frequency it has been studied as an oscillator and as a neutralized amplifier in a grid-separation circuit. It has also been operated successfully as a doubler in the range from 240 to 480 megacycles and as

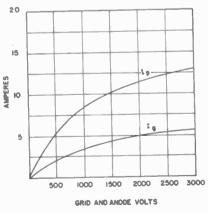


Fig. 9—Current division between anode and grid with the same voltage applied to both electrodes.

1946

Proceedings of the I.R.E. and Waves and Electrons

a tripler from 200 to 600 megacycles. The performance data under these operating conditions are given in Table IV.

	TAI	BLE IV			
TYPICAL	OPERATING	CONDITIONS	FOR	6C22	

•	Frequency	Frequency	Frequency
	Doubler	Doubler	Tripler
Input frequency (megacycles) Output frequency (megacycles) Anode direct volts Anode direct volts Grid direct volts Grid direct volts Grid direct volts Grid direct current (amperes) Power output (watts) Driving power (watts) Efficiency (per cent)	240 480 1500 0.540 810 -430 0.025 285 35	240 480 1700 0.640 1080 -430 0.025 360 	200 600 1100 0.275 -400 0.020 100 150 33

In all cases, the circuits used are of the coaxial type to assure uniform current distribution and thereby reduce losses to a minimum. This is desirable in any case, but with the 6C22 it is particularly necessary to protect the grid seal from over-heating caused by high current concentration.

A diagrammatic view of a test oscillator using an aircooled developmental version of the 6C22 known as the L600NR is shown in Fig. 10. A view of the experimental set-up with calorimeter load is shown in Fig. 11. Anode voltage and grid-bias voltage are brought in through quarter-wave chokes. The cathode circuit is pistontuned, while the anode is adjusted for "half-wavelength" open-line operation. Radio-frequency output is coupled to the load by means of a capacitive pickup and matching section.

A hollow brass cylinder, connected at one end to the grid ring, open at the other end, and commonly termed a "grid bell," is adjustable in length, and serves to determine the amount and phase of feedback from output to input circuits.

Cooling air is brought to the anode through a dielectric pipe which extends into the inner region of the

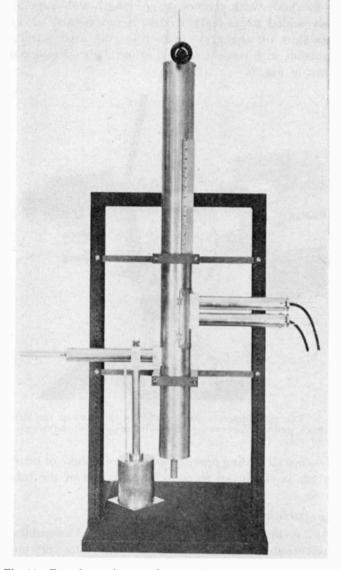
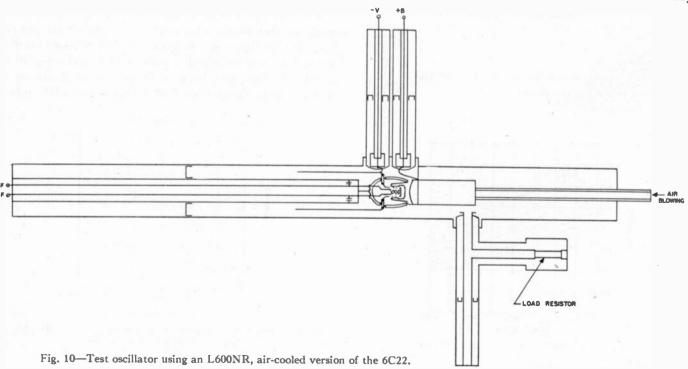



Fig. 11-Experimental setup of test oscillator with calorimeter load

anode-line cylinder. In the case of the 6C22, which is liquid cooled, two dielectric pipes of small diameter are used.

When operated as a neutralized grounded-grid amplifier, results are obtained as given in Table III. Neutralization may be considered to have a twofold purpose. The first purpose is to reduce regeneration to prevent oscillation or to eliminate feedback through the tube entirely. The second purpose is to reduce interaction between the amplifier output circuit and its driving circuit to a minimum.

At lower frequencies these conditions can be satisfied simultaneously by the adjustment of a single parameter, because the output terminals of the driver and the input terminals to the active elements of the grid-cathode structure can be considered electrically identical. At ultra-high frequencies, where the impedance in the tube leads prevents access to the active tube electrodes, this simplification is no longer valid. Consequently, in general, two separate adjustments are required.

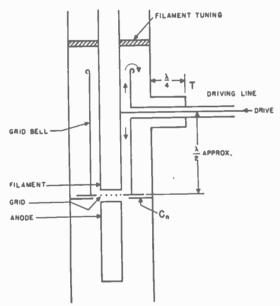


Fig. 12-Neutralization arrangement.

When these requirements, together with the desirability of coaxial-type structures, are taken into consideration, neutralization arrangements such as the example shown diagrammatically in Fig. 12 result. Here C_n is a comparatively large capacitance which permits a small amount of additional coupling between the input and output structures. Simultaneously, the length of the grid bell is adjusted so that the resulting feedback voltage is zero as determined by a null reading in a detector inserted in the driving line. In this manner, the two requirements for neutralization are satisfied.

The amplifier can deliver approximately 500 watts at 600 megacycles when driven either from a doubler or a tripler, or from another amplifier using the same type of tube. Fig. 13 shows a laboratory crystal-controlled transmitter delivering 500 watts at 600 megacycles. The cabinet on the left is an exciter with the following tube complement:

807 crystal oscillator and tripler (to 12.5 megacycles)
807 doubler (25 megacycles)
807 doubler (50 megacycles)
HK54 doubler (100 megacycles)
6C22 doubler (200 megacycles).

This exciter drives the 6C22 tripler, shown on the rack at the left, to deliver driving power to the 6C22 final amplifier (on rack at right) at 600 megacycles.

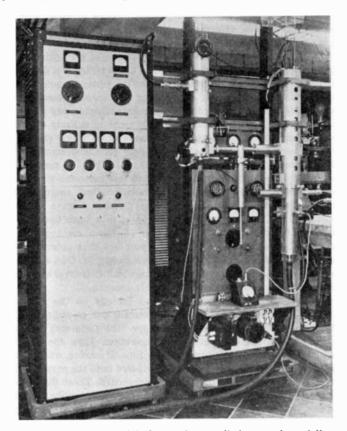


Fig. 13—Laboratory model of crystal-controlled transmitter delivering 500 watts at 600 megacycles. The excitor operates a 6C22 tripler at the left, which drives the final 6C22 amplifier at the right.

A neutralized water-cooled amplifier using a 6C22 has been grid-modulated satisfactorily in a television transmitter with video-frequency components up to 10 megacycles at a carrier frequency of approximately 500 megacycles. The synchronizing peak power output was 1 kilowatt.

Satisfactory life tests have been conducted on the 6C22 as a continuous-wave oscillator at 535 megacycles with 725 watts input, 35 per cent efficiency, for 500 hours.

Vibration tests in both the horizontal and vertical mounting positions show no failures up to 11 g, with 120 watts of filament and 20 watts of grid power applied during the test.

Acknowledgment

Acknowledgment is made of the contributions to this development by P. G. Chevigny, who originated the design of the tubes, and to G. Lehman for theoretical analysis of the tubes and circuits.

991

1946

The RCA Antennalyzer—An Instrument Useful in the Design of Directional Antenna Systems* GEORGE H. BROWN[†], FELLOW, I.R.E., AND WENDELL C. MORRISON[†], ASSOCIATE, I.R.E.

Summary-The equations for the radiation patterns of directional antenna systems are well known, but the arithmetical work necessary to secure a plot of the radiation pattern is tedious and timeconsuming. Several mechanical plotting devices to assist with the problem have been described in the literature. A brief review of a few of these instruments is presented. These mechanical devices yield the radiation pattern for a given choice of configuration and antenna constants. In general, however, the designer of a directional antenna for broadcast-station use knows the pattern required and is faced with the problem of determining the antenna configuration which will yield this pattern. The RCA Antennalyzer was developed to synthesize or to analyze. The instrument is entirely electrical, with no moving parts except the potentiometers which change the various parameters. Developed specifically for the design of directional antennas for broadcast use, the Antennalyzer, as constructed, will yield the radiation pattern of directional antennas which have as many as five towers or sources of radiation. Each source is characterized by four parameters: (1) the distance from a reference point; (2) the azimuth angle with respect to a base line; (3) the amount of current in the antenna; and (4) the phase angle of this antenna current. Thus the Antennalyzer has four potentiometers associated with each antenna, with one exception. One antenna is located at the reference point and carries unit current at zero phase. Hence, no controls are required for this antenna.

The radiation pattern is displayed directly on the face of a cathode-ray tube, either in polar or rectangular co-ordinates. The Antennalyzer may be used in two ways. The dials may be set to correspond to a given antenna configuration. Then the resulting pattern is observed on the cathode-ray tube. However, when a given pattern is the goal, the dials may be twiddled until the proper pattern is obtained. Then the dial settings are recorded. These dial settings tell where to locate the towers, as well as the current ratios and phase angles to use. With a little practice, this operation of analysis may be performed in a few minutes.

Metering devices are included in the Antennalyzer so that the ratio of maximum field intensity to root-mean-square field intensity is obtained. Some of the unusual circuit details are discussed.

I. INTRODUCTION

THE EQUATIONS used to determine the radiation patterns of directional antenna systems are complicated in form, and numerical calculation from these equations is tedious indeed. Everest and Pritchett,1 as well as Hutton and Pierce,2 have described mechanical calculators which will plot the radiation pattern for either a two- or three-element array. The machines described by these authors are entirely mechanical, a fact which seems to limit the treatment to not more than three towers. Williams³ uses some of

* Decimal classification: R221. Original manuscript received by the Institute, March 8, 1946. Presented, Washington Section, Washington, D. C., September 9, 1945. † RCA Laboratories, Princeton, N. J. ¹ F. Alston Everest and Wilson S. Prichett, "Horizontal-polar-pattern tracer for directional broadcast antennas," PRoc. I.R.E., vol.

 30, pp. 227-232; May, 1942.
 * William G. Hutton and R. Morris Pierce, "A mechanical calculator for directional antenna patterns," PRoc. I.R.E., vol. 30, pp. 233-236; May, 1942.
* H. Paul Williams, "A machine for calculating the polar diagram

of an antenna," Elec. Commun., no. 2, vol. 21, pp. 103-111; 1943.

the Hutton-Pierce Everest-Pritchett generating mechanisms in conjunction with a locked rotor transformer which has a three-phase primary and a single-phase secondary to produce an electromechanical calculator which handles up to five towers. There seems to be no fundamental limitation which would prevent the Williams apparatus from being extended to many more antennas. Williams obtains his results by a point-by-point method. Smith and Grove⁴ have constructed a calculator identical in principle with the Williams apparatus, but have incorporated a recording mechanism so that a direct plot of the equation is obtained.

December

Any one of these machines should be of great assistance to the engineer who is occupied with the problem of designing directional antenna systems. It should be realized, however, that these mechanisms really perform the operation of synthesis. That is, for a given configuration of antennas, fed with prescribed currents, the calculators yield the resulting radiation pattern. As the need for more complicated patterns for broadcast stations increased, it became apparent to the writers and their associates that something more in the nature of an analyzer would be extremely helpful. Our goal then became the development of a calculator which would permit the operator to observe the radiation pattern at all times, with controls so flexible that the parameters could be changed at will while the operator watched the changing pattern. Thus we hoped to solve the problem of analysis by adjusting the controls until the desired pattern was obtained. Then the design parameters of the directional antenna system which produced this pattern could be read directly from the calibration scales on the control dials. Our endeavors along these lines have resulted in the instrument which we have chosen to call the RCA Antennalyzer. The instrument to be described in this paper is entirely electrical and electronic, with the resulting radiation pattern appearing on the face of a cathode-ray oscillograph.

II. AN ANALOGY, THE BASIS FOR THE ANTENNALYZER

The ability to produce this electrical instrument depended on the fact that an electrical equivalent to the radiation equation was recognized. Before proceeding with a description of this equivalence, we shall review briefly the radiation-pattern equation. In Fig. 1, we have two antennas or sources of radiation, one at a point marked A and the other at a point marked B.

⁴ Carl E. Smith and Edward L. Gove, "An electromechanical calculator for directional antenna patterns," *Trans. A.I.E.E. (Elec. Eng.*, February, 1943) vol. 62, pp. 78-83; February, 1943.

The two antennas are considered to be identical. Antenna A is located at a reference point. We shall in this case use the east-west line through the reference point as a reference line. Then antenna B is located in the

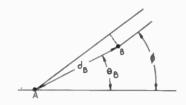


Fig. 1-Two antennas or radiating sources.

plane of the paper by a linear dimension d_B and an azimuth angle θ_B . The field, at a remote point which lies along a line having the azimuth angle ϕ , is then

$$\overline{F} = K \left(\overline{I}_A + \overline{I}_B \angle + \frac{2\pi d_B}{\lambda} \cos \left[\phi - \theta_B \right] \right) \quad (1)$$

where K is a constant which takes into account the height of the antenna as well as the distance to the measuring point. Since our calculator yields only the shape of the pattern, we need not concern ourselves with a detailed investigation of the nature of this constant. I_A is the current measured at some selected reference point in antenna A, while I_B is the current in antenna B measured at a corresponding reference point. The parameter λ is the free-space wavelength of the signal radiated from the antenna system. It may be observed that d_B/λ appears as parameter in the equation. Thus, we are free to measure the distances between antennas in terms of the operating wavelength.

We may then express the current in antenna B in terms of the current in antenna A.

$$\bar{I}_B = M_B \bar{I}_A \angle \alpha_B. \tag{2}$$

Substituting (2) in (1), we obtain

$$F = K\overline{I}_{A} \left\{ 1 + M_{B} \angle \left(\alpha_{B} + \frac{2\pi d_{B}}{\lambda} \cos \left[\phi - \theta_{B} \right] \right) \right\}$$
$$= K\overline{I}_{A} \left\{ 1 + M_{B} \cos \left(\alpha_{B} + \frac{2\pi d_{B}}{\lambda} \cos \left[\phi - \theta_{B} \right] \right)$$
$$+ jM_{B} \sin \left(\alpha_{B} + \frac{2\pi d_{B}}{\lambda} \cos \left[\phi - \theta_{B} \right] \right) \right\}.$$
(3)

The absolute value of (3) is then

The radical is the term which determines the shape of the pattern and is the quantity which interests us. When five antennas are used, we may, as before, place antenna A at the reference point. In addition, we may locate each antenna by the distance from the reference point and the angle between the reference line and the line drawn from antenna A to the antenna in question. The shape of the radiation pattern is given by the relation

$$\begin{cases} \left\{ 1 + M_B \cos \left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos \left[\phi - \theta_B \right] \right) \\ + M_C \cos \left(\alpha_C + \frac{2\pi d_C}{\lambda} \cos \left[\phi - \theta_C \right] \right) \\ + M_D \cos \left(\alpha_D + \frac{2\pi d_D}{\lambda} \cos \left[\phi - \theta_D \right] \right) \\ + M_E \cos \left(\alpha_E + \frac{2\pi d_B}{\lambda} \cos \left[\phi - \theta_E \right] \right) \right\}^2 \\ + \left\{ M_B \sin \left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos \left[\phi - \theta_B \right] \right) \\ + M_C \sin \left(\alpha_C + \frac{2\pi d_C}{\lambda} \cos \left[\phi - \theta_C \right] \right) \\ + M_D \sin \left(\alpha_D + \frac{2\pi d_D}{\lambda} \cos \left[\phi - \theta_D \right] \right) \\ + M_E \sin \left(\alpha_E + \frac{2\pi d_E}{\lambda} \cos \left[\phi - \theta_E \right] \right) \right\}^2. \end{cases}$$
(5)

We shall now direct our attention to a set of electriccircuit equations. From a source we obtain an alternating voltage

$$e_A = E_A \sin (\omega t). \tag{6}$$

This is a simple alternating voltage, varying sinusoidally with time at a frequency f, where $\omega = 2\pi f$. To be specific, we obtain this voltage in the Antennalyzer from a crystal oscillator with a frequency of 100 kilocycles. A second voltage is obtained from this same oscillator; thus it has the same frequency. We shift this second voltage through a fixed phase angle α and, in addition, we phase-modulate this voltage. The equation of the second voltage is then

$$e_B = E_B \sin \left(\omega t + \alpha + k \cos \left[\omega_0 t - \theta\right]\right) \tag{7}$$

where k measures the amount of phase modulation in radians. The phase modulation is done with an alternating voltage of frequency f_o ; hence $\omega_o = 2\pi f_o$. In the Antennalyzer, this frequency is 60 cycles. The 60-cycle source is phase-shifted through an angle θ degrees.

$$|F| = KI_A.$$

$$\sqrt{\left\{1 + M_B \cos\left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos\left[\phi - \theta_B\right]\right)\right\}^2 + \left\{M_B \sin\left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos\left[\phi - \theta_B\right]\right)\right\}^2}.$$
(4)

1946

Equation (7) is easily expanded to give the following result:

$$e_B = E_B \cos \left(\alpha + k \cos \left[\omega_0 t - \theta\right]\right) \sin \omega t + E_B \sin \left(\alpha + k \cos \left[\omega_0 t - \theta\right]\right) \cos \omega t.$$
(8)

We may maintain the magnitude E_B at a fixed value relative to E_A , and let

$$M = E_B/E_A.$$
 (9)

Substituting (9) in (8) and adding the result to (6), we obtain

$$e_A + e_B = E_A [\{1 + M \cos(\alpha + k \cos[\omega_0 t - \theta])\} \sin \omega t + \{M \sin(\alpha + k \cos[\omega_0 t - \theta])\} \cos \omega t.$$
(10)

Since the frequency f_o is small compared to the frequency f, we may use the following relation:

$$a \sin \omega t + b \cos \omega t = \sqrt{a^2 + b^2} \cdot \sin (\omega t + \tau)$$
 (11)

where $\sqrt{a^2+b^2}$ is the equation of the envelope. Then the equation of the envelope of (10) is

III. CIRCUIT DETAILS

1. The Method of Securing Wide-Angle Phase Modulation

Early in the work on the Antennalyzer it was decided that a useful instrument should permit us to move any tower to a point at least 21 wavelengths from the reference point. This meant that we should be able to phase modulate through an angle of ± 900 degrees; that is, the phase of the high-frequency sine wave should be advanced 900 degrees, brought back through zero phase, retarded 900 degrees, and finally returned to zero phase at a 60-cycle rate. A variety of phasemodulation schemes was considered and investigated. Because of inherent limitations or undue complexity, these various arrangements were discarded. It was not until the authors learned of a method of phase modulation which had been devised by Kell⁵ for an entirely different application that it seemed desirable to proceed with the instrument.

The method due to Kell is illustrated by the sequence shown in Fig. 2. Here the top row shows the saw-tooth

$$\sqrt{\left\{1 + M\cos\left(\alpha + k\cos\left[\omega_0 t - \theta\right]\right)\right\}^2 + \left\{M\sin\left(\alpha + k\cos\left[\omega_0 t - \theta\right]\right)\right\}^2}.$$
(12)

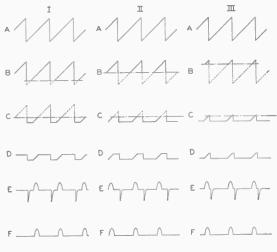

A comparison of (12) with the radical of (4) reveals that the expressions are identical, with the correspondence of parameters shown in Table I.

TABLE I

Directional Antenna	Electric Circuit of
System	the Antennalyzer
Antenna current ratio M	Ratio of voltages M
Phase angle between antenna	Radio-frequency phase angle α
currents α Tower spacing $2\pi d/\lambda$ Azimuth angle of tower θ	Phase-modulation angle k 60-cycle phase shift θ
Azimuth angle of measuring point ϕ	Instantaneous angle of modulating voltage ω

It may be observed that the correspondence between (4) and (12) is exact, so that the accuracy of calculation of the antenna patterns depends only on the degree of excellence with which we build our circuits. In the above detailed proof of the correspondence between the envelope of the combination of signals and the radiation pattern of a directional antenna system, we have limited the explanation to a two-element directional antenna. It is evident that we may add more terms similar to (7) to (10). The expansion from that point is straightforward. If five channels are used, it is seen that the envelope corresponds in form to (5).

If the signal described by (10) is put through a linear detector and the resulting output applied to the vertical deflection plates of a cathode-ray oscillograph, and a linear sweep signal synchronized with the 60-cycle source is applied to the horizontal deflection plates, we secure a plot of the radiation pattern in rectangular coordinates, with the angle ϕ as the abscissa. wave made from the 100-kilocycle sine wave obtained from the crystal oscillator. In row B the bottom part of the saw tooth is clipped off and discarded. It may be noted that the clipping level is different in each column. A fixed upper clipping level is then applied in row C, leaving the resulting pedestals as shown in row D. The width of the pedestals differs in each column, depending on the clipping level applied in row B. The pedestals of row D are then sent through a differentiating circuit to obtain the response shown in row E. Here the round positive pips are the result of the differentiation of the leading edge of the pedestals, while the sharp negative

⁶ Ray D. Kell, RCA Laboratories. United States Patent No. 2,061,734.

pips come from the straight back edge of the pedestals.⁶ These latter negative pips, which hold their position with time at all clipping levels, are discarded. The rounded positive pips shift along the time axis linearly with clipping level, as shown in row F. These impulses are next applied to the grid of a tube which has a circuit tuned to 100 kilocycles in its plate lead. Here the train of pips is changed to a continuous sine wave again. The phase of this sine wave is thus controlled by the clipping level. The phase is then varied at a 60-cycle rate, giving the desired phase modulation. The amount of swing depends upon the magnitude of the 60-cycle voltage applied. The fixed phase shift of the antenna currents is secured by applying a direct-current bias in series with the 60-cycle voltage.

An examination of Fig. 2 shows that, for ideal and perfect formation of the saw tooth as well as the differentiation, we might secure total phase shifts of almost 360 degrees; that is ± 180 degrees. Since we superimpose the fixed phase angle of the antenna currents on the swing of 900 degrees to take care of maximum tower spacing, we must secure a swing in either direction of 1080 degrees. We have chosen to provide a swing in either direction of only 120 degrees. Then the 100-kilocycle signal is passed through a frequency-tripling stage to raise the frequency to 300 kilocycles as well as to multiply the phase shift by three. This is followed by another tripling stage, so that the signal emerges with a frequency of 900 kilocycles and with nine times the phase deviation secured at the initial frequency.

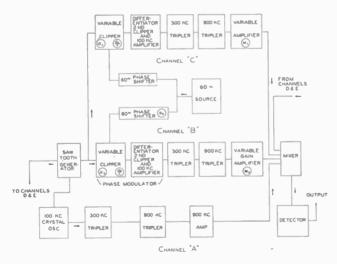


Fig. 3-Block diagram of the RCA Antennalyzer.

2. The Complete Antennalyzer

A block diagram of the Antennalyzer incorporating the Kell system of phase modulation is shown in Fig. 3. Since antenna A is placed at the reference point and is considered to carry a current of unit amplitude and zero phase, no controls need be provided for this antenna. Therefore, the 100-kilocycle signal is simply tripled twice in frequency and amplified before feeding into the mixer tube. The 60-cycle voltage is fed into the other four antenna channels through individual phase shifters, with an individual control of magnitude of the 60-cycle voltage provided directly after each phase shifter. The phase shift of the 60-cycle voltage is accomplished by



Fig. 4-The RCA Antennalyzer.

means of three potentiometers ganged together and arranged in capacity-loaded transformer circuits to secure a total possible shift of 360 degrees. These controls locate the towers as far as azimuth position is concerned. The magnitude controls of the 60-cycle voltage vary the tower spacings; that is, the magnitudes of the phase swings of the high-frequency signals.

As stated above, the phase angle of the antenna currents is controlled by adding a fixed bias in series with the 60-cycle voltage into the clipper tubes. The variablegain amplifiers used just ahead of the mixer tube are controlled by bias from suitable potentiometers, thus providing control of the current ratios of the antenna currents. In this fashion, we have been able to control all parameters by means of potentiometers which carry either direct or 60-cycle voltages. It is this ability to secure easy change of controls that makes the instrument so very flexible.

The 900-kilocycle signal passes from the mixer tube to a linear detector. Here the signal is rectified, and a signal which corresponds to the envelope of the highfrequency signal passes to the oscillograph where the pattern is displayed in rectangular co-ordinates. The RCA 327-A oscillograph is directly coupled to give a response to direct voltages. This is necessary to successful operation of the Antennalyzer, since without the direct-current response we would find the pattern shifting to equalize itself about the normal zero axis.

⁶ It is possible to obtain wave shapes which very closely approximate those drawn in Fig. 2(A, B, C, and D). If the leading edges of the pedestals of Fig. 2-D were differentiated perfectly, the positive pip of Fig. 2-E would be perfectly flat-topped. The stray capacitances of the circuits result in the rounded positive pips shown in Fig. 2-E. Since only the fundamental of this response is used in our later operations, it is not important to secure better differentiation.

With direct-current response, we always find the pattern in the proper relative position with respect to the zero axis. For example, when only antenna A is used the antenna system is omnidirectional, and we have only direct current coming out of the detector. With the oscillograph which responds to direct current we find the trace correctly displaced from the zero axis. If the oscillograph were of the conventional type, the trace would coincide with the zero axis.

The completed Antennalyzer and the oscilloscope are shown in Fig. 4. This instrument was constructed to take care of five towers. As previously mentioned, antenna A is at the reference point and carries unit current at zero phase, so it is not necessary to provide controls. In Fig. 4, the top row of dials controls the parameters of antenna B, while the next row controls the parameters of antenna C. The third row takes care of antenna D, while antenna E is handled by the bottom row. The column of dials on the extreme left controls the azimuth angles θ , while the next column of dials on the extreme right controls the current ratios M, while the next column handles the phase angles α .

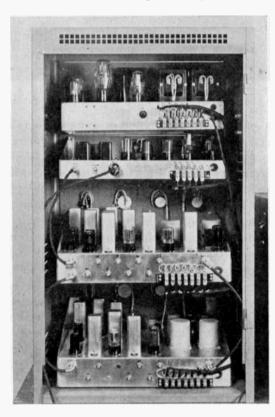


Fig. 5-A rear view of the Antennalyzer.

A rear view of the Antennalyzer is shown in Fig. 5. Fifty-two vacuum tubes of various types are used in the Antennalyzer to perform a variety of functions.

3. Displaying the Pattern in Polar Co-ordinates

To display the pattern in rectangular co-ordinates is by far the simplest procedure. However, many engi-

neers are used to looking at the patterns plotted in polar co-ordinates. To provide a polar pattern, the circuit of Fig. 6 was constructed.

At first glance, one might expect to use the output of the Antennalyzer with suitable phase shifters to secure the polar trace. It should be remembered that the output contains direct current in addition to a 60-cycle component, as well as numerous harmonics of the 60cycle voltage. Again returning to the simple example of a single tower, we wish to secure a circle on the oscilloscope with only direct current coming out of the Antennalyzer.

In Fig. 6 sine waves of voltage with a frequency of 60 cycles come in at the left. Since these are pure sine

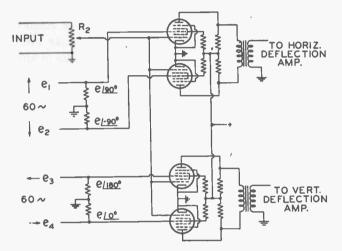


Fig. 6—The circuit used to give a polar plot.

waves, one pair of voltages is shifted 90 degrees in phase from the other pair by means of a simple resistance-capacitance circuit. The pairs of tubes are fed in push-pull by these voltages and the output circuits are arranged in push-pull. Then, with one output voltage fed to the vertical deflection plates and the other output voltage fed to the horizontal deflection plates and shifted 90 degrees in phase, a circular trace is obtained on the cathode-ray tube when no signal comes in from the Antennalyzer. In this condition, the tubes are biased to cutoff. If the tube characteristics were linear with sharp cutoff, we should then secure a point on the oscilloscope. The output of the Antennalyzer is fed to the resistor R_3 at the upper left-hand corner of Fig. 6. This resistor then feeds the pairs of tubes in parallel. With good balance, no signal from the Antennalyzer appears in the output circuits. This signal merely serves to control the characteristics of the tubes in a way that resembles modulator action. Because cutoff is not perfect and because the linearity and balance differ from the ideal, the trace which we secure on the oscilloscope is not perfect enough for computing purposes. No great effort has been made to improve the polar co-ordinate display since it was felt that, even with a perfect polar plot, information in the region of the null points would be hard to obtain. Consequently, more effort has been put on securing higher accuracy in the rectangular co-ordinate system. The justification for this reasoning will be displayed in the following discussion.

4. Measuring the Gain of a Directional Antenna System

When the designer has arrived at a pattern of the proper shape, he usually desires a knowledge of the scale factor to place on the plot. An exact determination involves a knowledge of the mutual resistances existing between the antennas.⁷ However, an approximate answer may be obtained quickly by plotting the pattern in polar co-ordinates and measuring the area of the pattern with a planimeter. A circle whose area is the same is then taken as the circle from a single antenna operated with the same power. The radius of this circle is the root-mean-square value of the horizontal polar diagram. This approximate relation may be obtained by measuring the peak value of the signal coming out of the Antennalyzer and then measuring the root-meansquare value of the same signal. The instrument panel used for this purpose may be seen near the top of the Antennalyzer shown in Fig. 4. The circuit used is given by Fig. 7. The signal from the Antennalyzer is fed to the input terminals shown in the upper left-hand corner of Fig. 7. First the signal is fed to the peak-reading volt-

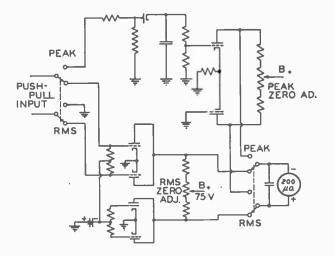


Fig. 7-The peak-root-mean-square voltmeter circuit.

meter, which consists essentially of a diode rectifier. The input signal is adjusted until the meter in the output reads full scale. Then the signal is switched to the input of the root-mean-square voltmeter. The output meter is switched to this voltmeter at the same time. Since the meter scale is calibrated with full scale equal to unity, the new reading is now the ratio of the rootmean-square signal to the peak signal.

The root-mean-square voltmeter is a square-law device. Since the output of the Antennalyzer contains a direct-current component as well as alternating-current terms, cross-product terms not properly included in the determination of the root-mean-square of the pattern are brought into the reading unless the complex circuit with push-pull input and push-push output is used.

IV. THE ANTENNALYZER IN OPERATION

The calibration of the instrument is readily accomplished. First, all antennas are turned off except for antenna A. In rectangular co-ordinates, this source then

Fig. 8—Horizontal radiation patterns of two antennas. $M_B = 1; \quad \alpha_B = 0 \text{ degrees}; \quad d_B / \lambda = 0.5.$

gives a straight horizontal line, displaced from the zero axis. Then the spacing control for antenna B is set to zero. This places antenna B so it coincides with antenna A. The current-ratio dial for antenna B is turned on and the current ratio and phase angle adjusted simultaneously until the horizontal line has reached a minimum position which should coincide with the zero axis. This means that the current in antenna B is exactly equal and 180 degrees out of phase with the current in antenna A. This adjustment then establishes the unity value point on the current-ratio dial, and locates the 180-degree point on the phase-angle dial. The phaseangle dial is then turned until maximum displacement is found for the horizontal line. This procedure locates the zero-degree point on the phase-angle dial: Next, with antenna B set at unit current and zero phase, the spacing dial is turned until a "figure 8" pattern with the minimums just reaching zero is obtained. This establishes the half-wave-spacing point on the dial. The calibration of the tower azimuth angle is easily obtained by turning this dial and suitably marking the dial as the pattern is marched across the scale. Reference to a chart

⁷ George H. Brown, "Directional antennas," PRoc. I.R.E., vol. 25, pp. 78-145 (equation (49)); January, 1937.

of patterns obtained with two towers assists in crosschecking quickly a number of calibration points.⁸

In Fig. 5, a number of vernier controls may be seen. For each main dial, there is a vernier on the back so that a check and adjustment on the calibration may be made at any time.

Fig. 8 shows a calculated polar diagram for two towers carrying equal and in-phase currents, when the tower spacing is one-half wavelength. This field pattern plotted in rectangular co-ordinates is also shown in the same illustration. The increase in detail of the display in rectangular co-ordinates is evident. Fig. 9 shows the trace on the Antennalyzer for the same set of conditions. Fig. 10 shows the calculated polar and rectangular trace

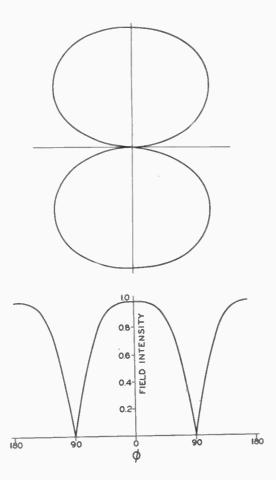


Fig. 10—Horizontal radiation patterns of two antennas. $M_B=1$; $\alpha_B=180$ degrees; $d_B/\lambda=0.5$.

for the same conditions as Fig. 8, except that the two currents are now 180 degrees apart in phase. Fig. 11 is the corresponding trace shown on the Antennalyzer. The polar plots of Figs. 8 and 10 fail to show the marked difference in behavior in the null points that are shown by rectangular traces.

Fig. 12 shows the configuration of antennas installed at Station WTAR, Norfolk, Virginia, several years ago.

* See Fig. 15 of footnote reference 7.

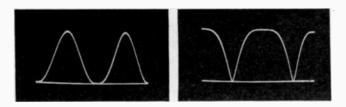


Fig. 9—The Antennalyzer Fig. 11—The Antennalyzer trace for the conditions shown in Fig. 8. trace for the conditions shown in Fig. 10.

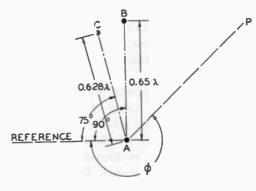


Fig. 12—The configuration of antennas used at WTAR, Norfolk, Virginia.

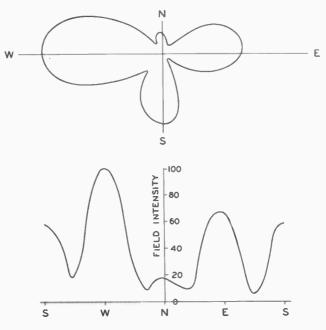


Fig. 13—The horizontal pattern of the WTAR array, plotted in both polar and rectangular co-ordinates.

The calculated horizontal radiation pattern is shown in Fig. 13, plotted in both polar and rectangular co-ordinates. The corresponding polar plot shown on the Antennalyzer is reproduced in Fig. 14, while Fig. 15 shows the same plot in rectangular co-ordinates.

In connection with the array shown in Fig. 12, the writers tried an experiment to see how much skill was required in the manipulation. The trace taken from Fig. 13 was marked on the face of the oscilloscope with

998

crayon. Then the services of an engineer who was entirely unfamiliar with the Antennalyzer were enlisted. In six minutes, he had manipulated the dials until the trace on the oscilloscope coincided with the crayon plane, and a line drawn from the base of antenna A to the measuring point makes an angle β with the horizontal plane, the quantity in (4) which establishes the shape of the pattern becomes

$$f(\beta) \sqrt{\left\{1 + M_B \cos\left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos\left[\phi - \theta_B\right] \cos\beta\right)\right\}^2 + \left\{M_B \sin\left(\alpha_B + \frac{2\pi d_B}{\lambda} \cos\left[\phi - \theta_B\right] \cos\beta\right)\right\}^2}.$$
 (13)

markings. He had, however, arrived at an antenna arrangement which differed from that shown in Fig. 12. It has been found that where a rather complicated pattern is desired, making necessary the use of three or more antennas, it is possible to find two or three configurations which all yield the same pattern.

It is interesting and instructive to spend some time varying the numerous controls at random to see the

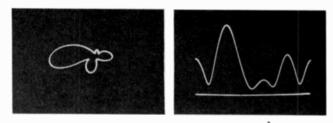


Fig. 14-The polar plot ob- Fig. 15-The rectangular cotained from the Anten-nalyzer for the WTAR arrav.

ordinate plot on the Antennalyzer for the WTAR array.

wide variety of patterns which may be obtained with combinations of three, four, and five antennas.

The writers have used the Antennalyzer to assist other engineers in the design of a number of directional antennas for broadcast use. This experience leads us to believe that the instrument is a valuable tool which removes most of the tedium from this wearisome problem. It is, of course, still necessary to calculate the final pattern, using the parameters established by the Antennalyzer, when extremely accurate results are desired. In fact, it is sometimes necessary to vary the parameters slightly and make several calculations. In spite of this bit of work, the Antennalyzer quite evidently reduces the time required for the problem from several days or even weeks to a few hours.

V. CALCULATION OF VERTICAL PATTERNS

In the previous discussion, we have talked only of radiation patterns in the horizontal plane. Equation (4) was restricted to this case. However, the Antennalyzer may be used readily to calculate vertical radiation patterns as well. If the point at which the field intensity is reckoned lies in space above the horizontal The quantity $f(\beta)$ in front of the radical is the vertical radiation pattern of a single antenna.9 If the antennas are very short, $f(\beta)$ becomes simply $\cos \beta$. When the antennas are each one-quarter wave tall,

$$f(\beta) = \cos\left(\frac{\pi}{2}\sin\beta\right) / \cos\beta.$$

To calculate the vertical pattern of a directional antenna from (13), we choose a value of ϕ and substitute numerous values for β . With the Antennalyzer, we first choose the angle ϕ . Then, with θ_B known, we find a quantity $(d_B/\lambda) \cdot \cos [\phi - \theta_B]$ and set the spacing dial to correspond to this new value. If more than two antennas are used, we make this calculation for each antenna and set the proper spacing dial to the new value. We next set all the azimuth or θ dials to zero. Then a plot of the radical shown in (13) is shown on the oscilloscope. We have not yet been able to devise a means of multiplying this radical by the quantity $f(\beta)$, so it is necessary to multiply the pattern by the proper $f(\beta)$ after the curve has been replotted on graph paper.

Another method of studying the vertical characteristics is to determine the way the pattern changes as ϕ changes through 360 degrees, at a given elevation angle. This plot might be termed the horizontal radiation pattern at a fixed elevation angle. We first choose a value of β . Then each tower spacing is multiplied by $\cos \beta$ to determine a new setting for each spacing dial. With the θ dials set at the true values, the trace on the oscilloscope is the radical of (13) as a function of ϕ . Again it is necessary to multiply the resulting trace by $f(\beta)$.

VI. CONCLUSION

A directional-antenna pattern calculator has been described which performs the functions of analysis and synthesis, and which handles arrays with as many as five antennas. No fundamental circuit relations prevent the extension to many more antennas. The instrument was limited to five antennas because it was felt that this number would take care of most broadcast-antenna problems.

⁹ George H. Brown, "A critical study of the characteristics of broadcast antennas as affected by antenna current distribution," PROC. I.R.E., vol. 24, pp. 48-81; January, 1936.

Electroencephalographic Technique from an Engineer's Point of View*

WALTER G. EGAN[†], ASSOCIATE MEMBER, I.R.E.

Summary-A fairly recent medical usage of electronic equipment is in the recording of the electrical activity of the brain. High-gain, high-fidelity amplifying equipment is used to record 50-microvolt. 2- to 40-cycle-per-second impulses from the brain. A brief summary of interpretation is made, particularly in reference to artifact. A new type of electrode is described which fulfills the criteria for good leads. Suggestions on the improvement of existing equipment are made, such as to improve calibration accuracy and recorder performance.

THE word electroencephalograph is derived from the Greek words ήλεκτρον, meaning amber, έγκέφαλοs meaning brain, and γράφειν, meaning writing. It may be translated into the phrase "an electrical writing of the brain," or colloquially, "brain wave," or "EEG." Brain waves have assumed more importance in recent years because of the extensive usage of the phenomenon by the U.S. Army Medical Corps and the Veterans Administration hospitals as an additional diagnostic measure in the determination of epilepsy, and in the determination of the location and extent of focal pathology such as brain tumors, brain abscesses, subdural hematomata, and generalized pathology such as encephalitis.

REQUIREMENTS

The requirements1 for an electroencephalographic machine may be summarized as follows: The weakest signal that should be detected is of the order of 15 microvolts. (Experimentally, this requirement should extend down to 5 microvolts, and if possible, lower.) The largest signal that normally should be recorded is about 100 microvolts, although, in experimental work, 1 millivolt should be recorded.

To find the order of magnitude of the generator impedance, Thevenin's Theorem may be applied to the brain. If the brain is considered to be a twoterminal network (between pickup electrodes), the magnitude of the electromotive force is generally of the order of 40 to 50 microvolts, and of frequencies between 2 to 40 cycles per second. The impedance in series with the electromotive force is mainly resistive, having a magnitude of between 700 ohms and 15,000 ohms. The lowest frequencies that should be recorded are about 2 cycles, but direct-current recording is undesirable because of the excessive artifact appearing with such a practice.

Artifact may be defined as "any artificial product, any structure or change that is not natural, but is due to manipulation."² The meaning of artifact with reference to electroencephalographic work is any tracing irregularity that appears which is not the exact reproduction of the electrical activity of the cerebral cortex.

The highest frequency for brain-wave work is about 35 cycles, but for action-potential and muscle-recording work, frequency response up to 70 cycles is sometimes desired.

Recorder impedance, at the low frequencies recorded, is mainly resistive, having a value of 3000 ohms. The deflection factor of the recorder is about 30 volts per inch.

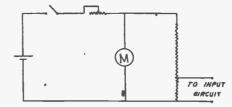


Fig. 1.-Suggested calibration circuit.

A calibrating circuit should be employed which indicates the reference value of the calibrating voltage, such as suggested by Fig. 1. This arrangement permits compensation for variations in calibration-battery voltage.

Microphonic voltage in the output should be less than the output from a 1-microvolt signal at the input.

The power-supply noise should be less than 1 per cent, although the power supply is not the primary source of noise.^{8,4} Resistor noise, shot effect, and flicker effect in the first stage of amplification are the greatest sources of noise.

The input circuit should be such as to pass frequencies as low as 1 cycle and up to 70 cycles. Capacitive input is usually used, as shown in Fig. 2. A selector system must be provided in the input in order that a choice of

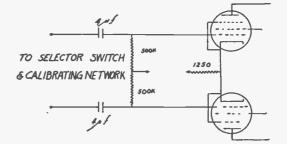


Fig. 2-Typical input circuit for bipolar recording.

⁸ W. A. Dorland, "The American Illustrated Medical Dictionary," W. B. Saunders Company, Philadelphia and London, 1944; twentieth edition, p. 147.

* C. J. Christensen, G. L. Pearson, "Spontaneous resistance fluctuations in carbon microphones and other granular resistances,

Bell Sys. Tech. Jour., vol. 15, p. 181; April, 1936.
 ⁴ F. E. Terman, "Radio Engineers Handbook," McGraw-Hill Book Company, Inc., New York, N. Y., 1943; first edition, p. 292.

^{*} Decimal classification: 621.375.628. Original manuscript re-ceived by the Institute, December 10, 1945; revised manuscript

ceived by the Institute, December 10, 1945, revised manuscript received, May 6, 1946. † Richmond Hill, New York; formerly, electroencephalographic technician at Walter Reed General Hospital, Washington, D. C. ¹ L. W. Max, L. Wiesner, and J. G. M. Bullowa, "Criteria for selection of EEG," Jour. of Laboratory and Clinical Medicine, vol. 283, pp. 1868-1871; December, 1943.

from 1 of 16 circuits, with respect to ground, may be made.

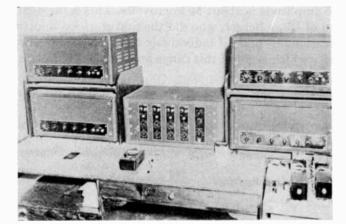
Control of low and high cutoff frequencies is desirable in experimental work, but for routine work it is unnecessary. The amount of distortion with any signal should be less than 5 per cent, and preferably under 3 per cent.

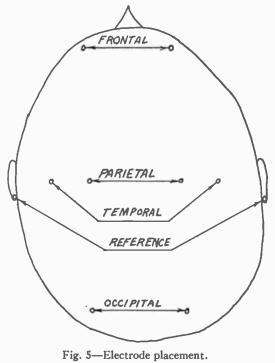
The selector system has the requirement of ease of selection of pickup electrodes, and a short-circui ing system is suggested in order to decrease amplifier transient time. The transient time is the time necessary before the amplifier reaches stability after a switch from one electrode to another is made by the technician.

During the war, portability of the equipment was a desirable feature which was not very well fulfilled by the army equipment. One electroencephalographic machine was installed in a 5-ton van truck in the European Theater of Operations, in order that EEG service could be brought to combat echelons of the Medical Corps in that theater. It would have been an aid to portability if the equipment had not been so bulky, and had been of more rugged construction. In addition, if it had had some power supply other than storage batteries, 45-volt B batteries, or 110-volt supply such as a gasolinedriven generator or motor-generator, portability and ease of operation would have improved greatly.

ELECTRICAL EQUIPMENT

The equipment employed by the army is a commercial amplifier using four independent channels, each channel having five stages of push-pull amplification (see Fig. 3). The circuits are conventional push-pull using low-microphonic tubes in the first stage of amplification and operated at low plate voltage to keep tube noise low. Wire-wound resistors are used in the first stage of amplification. The only outstanding difference from a




Fig. 3-Electroencephalographic amplifying equipment layout.

conventional audio amplifier, except for battery operation of the first two stages of push-pull amplification, is the value of capacitor used for coupling. The coupling capacitors used are 4 microfarads in value. A choice of three coupling capacitors is available in the fourth stage of amplification, in order to permit variation of the lowfrequency-response characteristic of the amplifiers. The high-frequency response of the amplifiers can be varied by a choice of by-pass capacitors across the output of the fourth stage of amplification. The last three stages of amplification are power-line operated. The recording oscillographs (see Fig. 4) are pen-ink types, recording

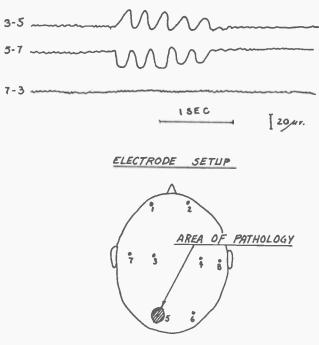
Fig. 4-Technician running an electroencephalographic record.

on a strip of paper four inches wide which moves at a rate of three centimeters per second in standard recording procedure. Damping of the pens is part electrical and part frictional, with the frictional damping adjustable. The frictional damping is applicable only for a single amplitude of deflection. A two-millimeter arc error is present on full pen deflection, because of the small inkwriter pen radius.

A standard procedure is employed in the army for the placement of electrodes. Where no focal pathology is involved, eight electrodes are placed on the scalp in four symmetrical areas of the hemispheres of the brain: frontal, parietal, occipital, and temporal (see Fig. 5).

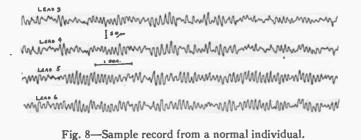
It is well known⁵ that the electrical activity of a point on the left side of the normal brain is simultaneous with that of a corresponding point on the right side, with respect to frequency, amplitude, and phase. In measurement of the electrical activity of a point on the brain, a reference point must of necessity be used. Its principal criterion for choice is freedom from electrical activity. The ear lobes are the usual points of choice.

In practice, the patient is placed within an electrostatic shield (see Fig. 6) which is grounded at one point. The patient may be sitting up or recumbent, in accordance with practice at the hospital. The patient is normally grounded by means of the ear-lobe electrodes, and


Fig. 6-Patient in position in electrostatistically shielded room.

push-pull (or monopolar) input is taken from ground to the scalp electrodes. If electrical interference, such as from elevators, motors, or other electrical equipment, is picked up, the technique is changed to the extent that the patient is left ungrounded and monopolar input is taken from the ears to the scalp electrodes.

In localization work (see Fig. 7), inputs are taken between electrodes on the scalp, without the use of the ears as reference points. The patient normally remains grounded unless electrical interference should dictate otherwise. This is termed bipolar recording.


For instance, in Fig. 7, area 5 (left occipital) may be considered as a source of electrical activity, assumedly due to some type of pathology. In the course of running a localization record, the electrode choice with the inputs being taken between leads 3 and 5, 5 and 7, and 7 and 3, would arise in normal procedure. This abovementioned recording choice would make use of only three channels of a four-channel amplifier. The fourth channel is left unused.

* F. A. Gibbs and E. L. Gibbs, "Atlas of Electroencephalography," Lew A. Cummings Company, Cambridge, Mass., 1941. Since electrodes 7 and 3 are most distant from the electrical activity, negligible activity occurs in this tracing. The tracing of area 5 with reference to area 3 will show the abnormal activity, and area 7 with reference to area 5 will show a similar abnormal activity; but considering the reference points, the activity will show up as a 180-degree phase shift or "phase reversal" in the tracings where the lead to the abnormal electrical activity is common.

Normal individuals have a dominant rhythm of $8\frac{1}{2}$ to 12 cycles per second with their eyes closed and a mental condition of complete relaxation (see Fig. 8). The average amplitude is about 50 microvolts. This is the definition of Hans Berger, who did the first work on humans. Occasionally normal individuals have an electrical activity which is out of this range and which is both low in

voltage and fast, and this also is considered normal. Any deviations from these rhythms are considered abnormal. The amount of variation from these frequencies is significant (see Fig. 9). Epilepsy has characteristic wave forms.⁶ The grand-mal type consists of waves of 12 to 35

⁶ E. L. Gibbs, F. A. Gibbs, and W. G. Lennox, "EEG classification of epileptic patients and control subjects," *Archives of Neurology* and *Psychiatry*, vol. 50, pp. 111-128; August, 1943.

per second of increasing amplitude to above 50 microvolts, this burst lasting more than one second, and also 12 to 35 per second having an amplitude below 50 microvolts, this burst lasting longer than three seconds. Either of these bursts must occur in a record previously free

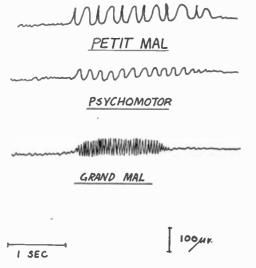


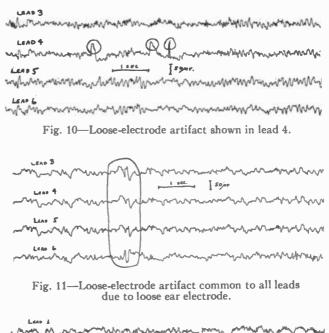
Fig. 9-Characteristic waves.

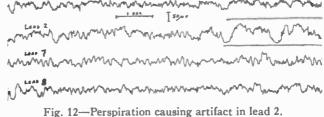
from such activity. The psychomotor type consists of high-voltage 6-per-second waves or irregular positive spikes in a record previously without such activity. (Contrary to engineering practice, positive is taken as downward, negative upward.) The petit-mal type is a 3-per-second alternating wave-and-spike pattern.

ELECTRODE PROBLEMS

Much investigation has been done on electrodes.^{5,7-14} Berger's original electrodes were silver wires inserted into the anesthetized scalp. More recently the practice was to use electrodes which were solder discs attached to the end of a fine piece of copper wire, such as No. 28 double-cotton-covered, with a tip jack soldered to the other end. The electrodes were attached to the scalp with collodion around the edge of the electrodes. The scalp area was first cleaned with acetone and then a thin layer of some form of commercial electrode paste was placed on the area. The electrode was then fastened with collodion around the edge of the electrode. This method has the disadvantage that the wires break off the elec-

7 H. L. Andrews, "New electrode for recording bio-electric potentials," American Heart Jour., vol. 17, pp. 599-601; May, 1939. A. Baudouin, H. Fischgold, and J. Lerique, "New liquid elec-


trode; application to study of human electrophysiology," Compt. Rend. Soc. de Biol., vol. 127, pp. 1221-1222; 1938. ^o C. W. Darrow, "Convenient EEG electrode," Proc. Soc. Exp.


Biol. and Med., vol. 45, pp. 301-302; October, 1940. ¹⁰ H. H. Jasper and H. L. Andrews, "Human brain rhythms: I. recording techniques and preliminary results," Jour. Gen. Psychol.,

 vol. 14, pp. 98-126; January, 1936.
 ¹¹ W. G. Walter, "Location of cerebral tumors by electroencephalography," *Lancet*, vol. 2, pp. 305-308; August 8, 1936.
 ¹² G. H. Ulett and F. B. Claussen, "Spring pressure contact electrode for use in EEG recording," *Science*, vol. 99, pp. 85-86; January 28, 1944.

 January 28, 1944.
 ¹³ H. V. Rice, "A suction type electrode for EEG," Canad. Jour. Research, Sect. E., vol. 23, pp. 19–21; April, 1945.
 ¹⁴ R. Cohn, "A new device for the application of scalp electrodes in EEG," Jour. Laboratory and Clinical Medicine, vol. 27, pp. 1344– 1345; July, 1942.

trodes very often, and the electrodes last less than a week without repairs when many patients are examined. A variation of this system, used at Mason General Hospital, consisted of fastening the frontal and ear-lobe electrodes by means of adhesive tape. The adhesive tape is not as positive a holder as the collodion, and generally produces loose-electrode artifact (see Figs. 10 and 11) which interferes with record interpretation. In warm weather loose-electrode artifact is especially present, because of perspiration on the part of the patient (see Fig. 12).

Still another variation used at N. D. Baker General Hospital consisted of the old type of solder-disc electrodes attached to No. 32 enameled wire. These were fastened to the scalp by means of a rather viscous electrode paste. Notwithstanding the ease of application, these electrodes were subject to frequent breakage (i.e., the solder discs had to be replaced), and also these electrodes caused artifact resulting from the slightest movement. Another type of electrode used is a bare copper wire, without a solder tip, with the copper wire bent around so as to touch the scalp, and having $\frac{1}{2}$ inch of the wire fastened with collodion. Because of electrode movement, high contact resistance, and drying of the electrode paste, this system is prone to produce artifact of the loose-electrode type. Headbands are used also, but because of the variation in head types, excessive adjustment time with varying electrode setups, and the electrode artifact of the movement type occurring with the headbands, they are not in general use. Occasionally needle scalp electrodes are used. Such an electrode consists of $\frac{1}{2}$ inch of hypodermic needle with a wire soldered to it. In addition to annoying the patient during insertion and becoming detached very easily, needle scalp electrodes also cause artifact of the electrode-movement type due to the oozing of the skin secretions around them.

It appeared at Walter Reed General Hospital that the most desirable electrode would be one which had a larger flexible wire, such as 13-strand, untinned, cotton-loomcovered copper wire. In addition, a cup in the electrode to hold additional electrode paste seemed desirable. In order to support the added electrode weight, a piece of gauze is placed over the electrode before the collodion is applied. A paste is used which is less fluid than commercial paste.¹⁵ Electrodes are made from sheet lead and soldered to the wire. In order to speed application, a stream of air from an air compressor is directed upon the drying collodion. A skilled technician can apply the conventional 8-electrode setup in twenty minutes. This type of electrode overcomes all of the previous undesirable electrode effects. The electrode resistances with this type of electrode (skin resistance permitting) may be kept as low as 500 ohms. In general, high electrode resistance (about 100,000 ohms) means that the electrodes are poorly applied, and slightly less voltage will appear at the input of the amplifiers.

Excessively long testing of electrode resistance with a volt-ohmmeter causes polarization of the electrodes, and adds to the amplifier transient time. The polarization also occasionally produces an electrode artifact, manifested by a swaying of the base line of the recorders.

Perspiration produces a base-line sway due to the dilution of the electrode paste (see Fig. 12). Therefore it is desirable to air-condition the shielded room in which the patient is placed, to minimize artifact. Care should be taken to keep air currents in the shielded room at a minimum, since any swaying of the electrode wires produce artifact.

In addition to artifact from electrodes, electrical activity from muscle (voluntary or involuntary innervation), which has a frequency of from 50 to 70 cycles per second, must be guarded against by having the patient completely relaxed. Occasionally muscle activity produces a "tik" or spike activity, and either of these types of artifact can lead to misinterpretation of the electroencephalographic record.

Artifacts appearing in frontal, parietal, and temporal electrodes occasionally results from eyeball movements, due to the corneal-retinal potential.

Another peculiar type of artifact is that caused by electrocardiac activity. It appears as spikes, usually negative, and may be recognized by its regularity, the spikes occurring at a frequency of about 70 times a minute when the patient is sitting up.

Yet another type of artifact is illustrated in Fig. 13. This occurred with a nearly discharged storage battery. Fluctuations of terminal voltage caused the swayingbase-line artifact. This storage battery, used for heater voltage in the first two stages of push-pull amplification, caused this exceptional base-line movement because it was old. Channel 4 was used as a control.

The interpretation of the resulting electrical activity of the brain is limited to gross distinctions of the waves appearing. Very fine distinctions cannot be made, especially at high amplification. Electrical interference

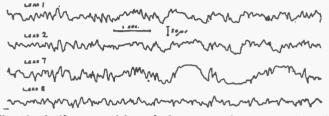


Fig. 13—Artifact caused by a faulty storage battery on channels 1, 2, and 3.

from switching-on of equipment and also amplifier tube and battery noise, and occasionally grounding of the moving element of the recorder due to overdriving, cause obscuring artifacts manifesting themselves as spikes.

Calibration of the amplifier is imperfect. The calibration voltage is obtained from a voltage divider across a dry cell. The voltage of the dry cell may vary from 1.6 volts to 1.3 volts, the latter value causing an 18 per cent error in calibration. There is no zero adjustment to compensate for any variation in dry-cell voltage. The only way to do this at present is to change the dry-cell.

CONCLUSION

The recording of the electrical activity of the brain is carried out by the use of five-stage push-pull amplifiers, normally consisting of four independent amplifying channels. Recording is monopolar for general work and bipolar for localization work. Electrodes are placed symmetrically in the frontal, parietal, temporal, and occipital areas. The criteria for good electrodes may be summed up as follows: (1) low electrode contact resistance; (2) freedom from artifact; (3) ease of application; and (4) length of service without replacement.

Electrodes are of primary importance in the production of a good record; therefore, painstaking application is of utmost importance. Artifact must be indicated on the record by the technician in order to eliminate the possibility of misinterpretation by the physician.

In addition, a voltmeter across the voltage divider with a meter-zero adjustment would increase calibration accuracy. Pen damping should be some sort of dash-pot arrangement with provision for elimination of arc error.

¹⁶ W. J. Turner and C. S. Roberts, "An adhesive, nondrying electrode paste," Jour. Laboratory and Clinical Medicine, vol. 29, p. 81; January, 1944.

Functional Schematic Diagrams*

STUART H. LARICK[†], MEMBER, I.R.E.

Summary-A carefully planned schematic diagram will simplify the study and servicing of electronic equipment. Whereas a conventional schematic merely shows the electrical components and how they are connected, a functional schematic will place these parts on the drawing in such a way as to delineate the circuits they build. This circuit concept versus component concept is the main thesis of this paper. It is expanded by considering major equipments as electrical structures built of circuits, and by treating components as having functions to perform in their circuits. These points are illustrated with functional drawings. Ideas and techniques are suggested which can make schematic diagrams more lucid.

INTRODUCTION

CAREFULLY planned schematic diagram will simplify the study and servicing of radio sets and other electronic equipment. Conventional schematics show the electrical components and how they are connected; they do not emphasize those components as being parts of circuits.

For instance, when several components are in one container, such as a two-section electrolytic capacitor, the conventional diagram will show them drawn next to each other. But components located near each other physically are often unrelated electrically, and when this system is used to describe more complicated sets a confusing and cumbersome drawing may result. The conventional schematic, then, often bows to the physical presentation and sacrifices a clear electrical picture.

Actually the schematic diagram should maintain continuity of electrical circuits, and a wiring diagram should indicate physical layout. If properly done, the wiring diagram will show the component as a unit and the circuit will be subordinated to the parts in it. The schematic diagram, on the other hand, will present the circuit as a unit, and when there is a conflict the component will be subordinated to it.

Such a diagram is a powerful aid in analyzing the equipment, whether the engineer or technician wants to locate trouble in the set or simply to study it. For, to understand how the equipment works, he must know how its circuits work; and to understand that, he must first know what parts constitute a circuit. If he can see clearly the entire circuit at a glance, he will not laboriously have to construct a satisfying mental picture from a confusing drawing.

The diagram can be made even more helpful if the drawing of parts in the circuit suggests the functions they perform. This functional presentation is another departure from the conventional schematic, since a component is not drawn merely because it exists in the set but because it performs a definite function there.

Once we realize that each component should, wher-

Decimal classification: R730. Original manuscript received by the Institute, December 28, 1944; revised manuscript received, May 6, 1946; second revision received, June 19, 1946.
 † The Larick Manufacturing Company, New York, N. Y.

ever possible, be shown in the light of the job it does in the circuit, planning a schematic is like building with blocks. Each circuit has a job to do in its stage; each stage performs a function in its section; while each section does its own job in the set. The radio set then has a definite electrical structure.

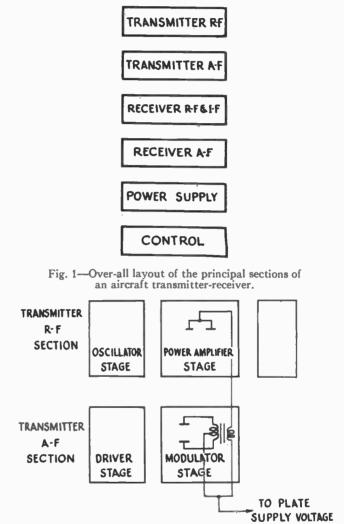


Fig. 2-Sections are broken down into stages. Alignment is maintained where one stage works into another.

BASIC PLANNING

To illustrate, consider an aircraft transmitter-receiver (Bendix RTA) with a built-in power supply and provision for remote-control operation. This set may be considered electrically to be composed of the following sections: transmitter, radio frequency; transmitter, audio frequency; receiver, radio frequency and intermediate frequency; receiver, audio frequency; power supply; and control. A logical arrangement of these sections is shown in Fig. 1. The sections in turn are made up of stages, which are broken down as indicated in Fig. 2.

Each stage of a section, taken as a unit in itself, is

usually centered about a vacuum tube or a group of tubes such as a push-pull or a parallel stage. The tube circuits (grid, cathode, plate, and possibly screen) then become the units of which the stage is composed. These units are blocked out on the drawing board. For example, the layout of the oscillator unit in the transmitter radio-frequency stage is given in Fig. 3.

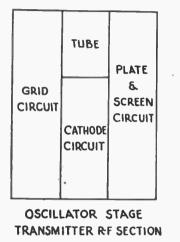
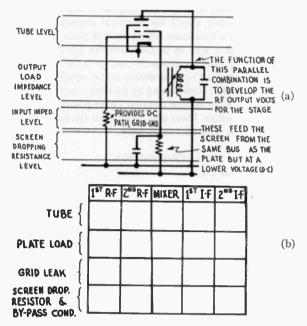


Fig. 3—The circuits which make up a stage are laid out in this general pattern.


Each stage follows the same general pattern, with its circuit blocks as nearly the same in size, shape, and position to that of the oscillator as possible.

UNIFORM ARRANGEMENT

With the spaces organized for the general structure of the sections, the stages, and the circuits, the components that make up the circuits are next laid out to complete the system to the smallest element. A consistent pattern is followed even in the arrangement of parts.

The alternating-current voltage-developing components are drawn at higher levels than the direct-current developing components, as Fig. 4(a) shows. Fig. 4(b) illustrates a complete grid layout for the RTA receiver radio-frequency and intermediate-frequency sections. Observe that components which do similar jobs are drawn on the same level. Thus, for instance, if the technician using the diagram identifies the tuned circuit in one stage, it is easy to locate it in any other stage because his eye travels in short, horizontal lines. The habit developed in the first stage to understand this element is simply repeated in the examination of the other stages. This technique has a sound psychological basis.

There are other techniques which may be employed. Fig. 5(a) shows the coil in direct line with the plate lead and the capacitor tacked to its side. Tracing through the circuit, the eye travels down the plate lead to the tuned circuit and tends to continue in the same straight line in which it is moving. The eye notes the coil first, and has to be diverted to see the capacitor. Hence, the coil occupies a more prominent place on the drawing than the capacitor. Fig. 5(b) shows the capacitor in the more prominent position. Electrically, however, the

coil and capacitor work together to perform a function

common to both. In fact, they make up another small

unit-the tank-and it is the tank which develops the

plate voltage. Therefore, this unit should be drawn

straight in line with the plate lead, as in Fig. 5(c).

Fig. 4—(a) The components that comprise the circuits are also arranged in a consistent manner. (b) Complete grid layout for RTA receiver radio-frequency and intermediate-frequency sections.

Compare this parallel combination with the commonly encountered cathode-bias resistor and capacitor. The bias resistor develops a direct-current voltage between cathode and ground. The capacitor helps the resistor to do its job more effectively by keeping the alternating-current components of the cathode current

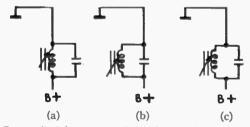


Fig. 5—Comparison in presentations of tank circuit. (a) Coil given undue prominence. (b) Capacitor given undue prominence. (c) Coil and capacitor correctly shown as an electrical unit.

from flowing in the resistor. Electrically, then, the resistance is the main element of the combination, while the capacitance is the supporting element. Hence, the combination is drawn to express this relationship, and again we use one of the artist's tools to direct the eye where we wish (see Fig. 6).

These few examples show some of the subtle devices which serve to make a schematic diagram lucid. The most forceful method, however, is to keep the circuit completely within a small area. This method is best illustrated by the control circuits, which, in a conventional diagram, are apt to ramble all over the drawing.

CLARIFYING FUNCTIONS

The typical control-circuit elements—relays, switches, motors, pilot lights; primaries of dynamotors—are all direct-current components and are energized by the aircraft battery. Each circuit starts at the plus terminal of the battery and may be considered to end at the minus (ground) side of the battery.

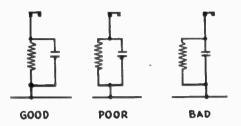
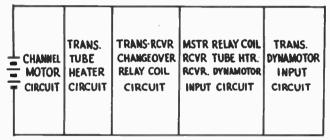



Fig. 6—In the cathode-bias circuit, the resistor is the main element and the capacitor a supporting element. The resistor is therefore given prominence.

The RTA has several such circuits, all connected across the battery; therefore, they are in parallel. To represent these parallel circuits on paper, two bus lines are drawn. Every complete control circuit will lie between the two horizontal lines; thus, a person can tell at a glance exactly what circuit the controls are in and what happens when a switch is closed. The RTA control circuits follow the plan outlined in Fig. 7.

(+) 24 VOLT D-C

(-) GROUND

Fig. 7—Typical control circuits are wired in parallel across a battery. Two horizontal bus lines are drawn, and the individual circuits lie between these lines.

In general, relay solenoids are in the control section, while the contacts they control are scattered throughout the set. At first glance, this arrangement looks like a serious drawback. It is turned to advantage, however, by making a separate drawing of the complete relay, and by including a word description of what it does and how it works. Figs. 8 and 9 show how relay K-101 of the RTA is drawn.

In remote-control equipment, the typical control-circuit section is probably the most valuable part of the functional diagram, because these circuits are the most difficult to describe by the more conventional means.

Strangely enough, the most obvious device for obtaining a clearer picture is usually overlooked—that of imparting as much information as possible in words and numbers. Some extremely helpful data are: (1) what each section is; (2) what each stage does; (3) typical voltages that may be measured at the tube sockets; (4) impedance values; (5) where long leads (when they must be used) come from and what they do; (6) labels of switch and relay positions. Drawing extra detail sketches, such as the relay details, often will make the schematic more understandable.

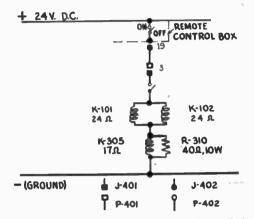
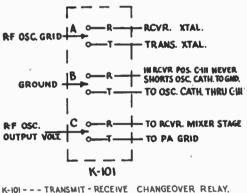



Fig. 8-Transmitter-receiver change-over relay coil circuit.

It is recognized that, in trying to draw consistent functional diagrams, there may be conflicts. However, this is a condition inherent in any design situation, and may be solved in the usual way—that is, by compromise. This is especially true of the more recent circuits. For instance, a component may have more than

K-101--- I KANSMIT "RECEIVE CHANGEOVER RELAY. NORMALLY IN RECEIVE POSITION. ENERGIZED IN TRANSMIT POSITION BY THE "PRESS TO TALK" BUTTON ON THE MICROPHONE. THIS ENERGIZES MASTER RELAY K-302 AND CLOSES K-302-A.

Fig. 9-A separate drawing is made of a complete relay. Above is relay K-101 of the RTA.

one function in a circuit, or it may act in several circuits. In such a case, it may not be possible to carry out the functional idea completely. It may only be possible to show one of the functions of that particular component.

This paper is not intended to lay down hard-and-fast rules of how to draw schematics, but rather to stimulate more thought about drawing them. Just as careful thought and planning are essential to a good chassis layout, so are they important to a good schematic diagram.¹

¹ Stuart H. Larick, "Taming the schematic diagram," Bendix Radio Engineer, vol. 1, pp. 19–23; October, 1944.

Contributors to Waves and Electrons Section

CLEDO BRUNETTI

Cledo Brunetti (A'37-SM'46) was born on April 1, 1910, at Virginia, Minnesota. He was graduated at the head of his class in electrical engineering at the University of Minnesota in 1932. Continuing with graduate work and as a teaching fellow and instructor, he obtained the first Ph.D. degree in electrical engineering granted at the University, From 1937 to 1941 he was on the faculty of Lehigh University as assistant professor of electrical engineering. In 1941-1942 he lectured on radio at George Washington University, evening classes. During the summers of 1939 and 1940 he was research associate in the radio section of the National Bureau of Standards. In May, 1941, he left Lehigh to work at the Bureau on the development of the radio proximity fuze. Later he became alternate chief of the electronics develop-ment section. In 1943 he organized and headed the production engineering section of the Ordnance Development Division. At present, he is chief of the pilot engineering section.

In 1941, Dr. Brunetti was recognized by Eta Kappa Nu as America's outstanding young electrical engineer. He is a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.

÷

WALTER G. EGAN

Sidney Frankel (A'37-SM'44) was born on October 6, 1910, in New York City. Rensselaer Polytechnic Institute conferred three degrees on him: the B.A. degree in electrical engineering in 1931, the M.A. degree in mathematics in 1934, and the Ph.D. degree in 1936. He was an instructor in mathematics from 1931 to 1933.

Dr. Frankel served as a sound-recording engineer with the Brooklyn Vitaphone Corporation from 1936 to 1937. In 1937 and 1938, he was an assistant engineer in the design and development of electronic flight instruments for the Eclipse Aviation Corporation.

He joined the Federal Telegraph Company staff at Newark, New Jersey, in 1938 as an engineer on the design and development of radio transmitters. In 1943, he was transferred to the Federal Telephone and Radio Laboratories, now the Federal Telecommunication Laboratories. At present he is engaged in the development of components for microwave systems. Dr. Frankel is a member of Sigma Xi.

SIDNEY FRANKEL

ф.

Walter G. Egan (S'42-A'45) was born at New York City on October 12, 1923. He studied electrical engineering at the College of the City of New York from 1941 until 1943, when he was called to active military duty from enlisted reserve corps status. He worked for the Bruce Engineering Company of New York at drafting in the summer of 1942. Just prior to entering the service, he worked part time for Dr. A. K. Apisdorf, of New York, as an electroencephalographic technician and in the design of electroencephalographic equipment.

Mr. Egan served in the Signal Corps as a central-office wire chief until December, 1944, at which time he was transferred to the medical corps to serve as an electroencephalographic technician. His assignments in this capacity were at Walter Reed, Wakeman, Beaumont, and Brooke general hospitals. He is a radio amateur and a member of the American Radio Relay League. He is at present resuming studies at college.

JOHN J. GLAUBER

John J. Glauber (A'27-SM'45) was born in New York City, July 31, 1903, and received the M.E. degree from Stevens Institute of Technology in 1925. From 1925 to 1927, he was associated with the U. S. Tool Company, Ampere, N. J., engaged in variable-condenser design. In 1927, he joined the Arcturus Radio Tube Company, Newark, N. J., as laboratory assistant, and was chief engineer from 1933 to 1936. He then joined the Westinghouse Lamp Company, Bloomfield, N. J., as a vacuum-tube development engineer, and in 1939 became development engineer for the National Union Radio Corporation, Newark, N. J.

Since 1941, Mr. Glauber has been associated with the vacuum-tube department of the Federal Telecommunications Laboratories, New York City.

W. S. Hinman, Jr. (SM'46), received the B.S. degree in electrical engineering from the Virginia Military Institute in 1926. He took the Westinghouse Student Engineering Course in 1926–1927 and was employed as radio engineer in the Westinghouse Plant at Springfield, Mass., during 1927–1928.

Mr. Hinman joined the staff of the National Bureau of Standards in 1928. As a

W. S. HINMAN, JR.

Contributors to Waves and Electrons Section

STUART H. LARICK

÷

born on September 13, 1915, at Sioux City,

Iowa. He received the A.B. degree in 1937

from Morningside College, and the B.S. de-

WENDELL C. MORRISON

gree in 1939 and the M.S. degree in 1940,

RCA Manufacturing Company at Camden, New Jersey, from 1940 to 1942. In 1942 he transferred to the RCA Laboratories at Princeton, New Jersey, where he is em-

ployed at present in the antenna research

section. Mr. Morrison is a member of

Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.

Mr. Morrison was employed by the

from the University of Iowa.

Wendell C. Morrison (S'40-A'41) was

member of the radio section, he assisted in the development of radio aids to air navigation for the Department of Commerce. This work included development of the present radio-range beacon system, of the glidebeam landing system, and of airplane ignition shielding, as well as some of the early work on aircraft radio compasses.

From 1936 to 1939, he was engaged in the development of a radiosonde system for automatically transmitting and recording atmospheric conditions of the upper air through the use of small free balloons. He is coinventor of the system in current use, particularly during the war. He is also coinventor of a parallel system, an automatic weather station operated as a robot in remote locations.

Mr. Hinman started work on the radio proximity fuze in late 1940. Through the war period he headed the engineering staff responsible for the development, design, and production of bomb, rocket, and mortar radio fuzes, and is now chief engineer of the ordnance development division of the National Bureau of Standards.

ROBERT B. JACQUES

Robert B. Jacques, (M'45) was born at Akron, Ohio, on December 22, 1911. He received the B.E.E. degree in electrical engineering from the Ohio State University in 1942. He was engaged at Ohio State University in research work on antennas and reflection cross-section measurements by means of radar from 1942 until 1944. He then undertook a project to measure the space-wave radiation patterns of a number of Signal Corps antennas using techniques developed at Ohio State University.

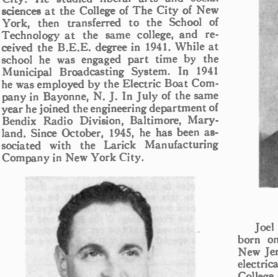
In February, 1946, Mr. Jacques joined The Institute of Radio Engineers' headquarters staff in the capacity of technical secretary. In September, 1946, he returned to the Ohio State University, where he is now engaged in research in the field of television. He is a member of the American Physical Society, and also a member of Tau Beta Pi and Eta Kappa Nu.

For a biographical sketch and photograph of George H. Brown, see the February, 1946, issue of the PROCEEDINGS OF THE I.R.E. AND WAVES AND ELECTRONS.

Stuart H. Larick (S'41-A'43-M'45) was born on September 7, 1918, in New York City. He studied liberal arts and social

JOEL P. WALLENSTEIN

Ioel P. Wallenstein (S'42-A'44) was born on October 11, 1922, in Elizabeth, New Jersey. He received the B.S. degree in electrical engineering from the Newark College of Engineering in 1942. In 1942, he joined the Federal Telephone and Radio Corporation, Newark, New Jersey, as a vacuum-tube engineer engaged in the development of high-power tubes. Since September, 1946, he has been engaged in the engineering consulting field.


Mr. Wallenstein is an Associate of the American Institute of Electrical Engineers and a member of Tau Beta Pi.

D. S. Wicks (M'45) was born at Providence, Rhode Island, on July 17, 1911. He received the B.A. degree in 1932 and M.Sc. in 1944 from Brown University.

Before the war he was a commanding officer in the Naval Communication Reserve of the First Naval District. Commander Wicks was called to active naval duty in July, 1940, and taught mathematics and navigation at the United States Naval Academy, Annapolis, for three years. He attended the Massachusetts Institute of Technology electronics school, and after a brief tour of duty at the Radiation Laboratory was made assistant head of radar design in the Navy Department, Bureau of Ships. In March, 1946, he became planning officer for electronics and communications in the Naval Reserve program under Admiral Gingrich.

D. S. WICKS

Abstracts and References

Prepared by the National Physical Laboratory, Teddington, England, Published by Arrangement with the Department of Scientific and Industrial Research, England, and Wireless Engineer, London, England.

Acoustics and Audio Frequencies	1010
Aerials and Transmission Lines	1011
Circuits	1012
General Physics	1013
Geophysical and Extraterrestrial Phe-	
nomena	1015
Locations and Aids to Navigation	1016
Materials and Subsidiary Techniques.	1016
Mathematics	1018
Measurements and Test Gear	1018
Other Applications of Radio and Elec-	
tronics	1019
Propagation of Waves	1020
Reception	1020
Stations and Communication Systems.	1021
Subsidiary Apparatus	1021
Television and Phototelegraphy	1022
Transmission	1022
Vacuum Tubes and Thermionics	1023
Miscellaneous	1024

The number at the upper left of each Abstract is its Universal Decimal Classification number and is not to be confused with the Decimal Classification used by the United

ACOUSTICS AND AUDIO FREQUENCIES 534.1

Approximate Methods for the Study of Sound Sources-P. G. Bordoni. (Alta Frequenza, vol. 14, pp. 225-226; September-December, 1945.) Abstract of a paper in Acta. Pont. Acad. Sci. (Vatican City) vol. 8, pp. 61-66; 1944.)

534.121.1 3158 The Fundamental Frequency of Vibration of Rectangular Wood and Plywood Plates-R. F. S. Hearmon. (Proc. Phys. Soc., vol. 58, p. 487; July 1, 1946.) Discussion of 1145 of May.

534.13 3150 Radiation Characteristics of a Rigid Sphere Having an Oscillating Shell-P. G. Bordoni. (Alta Frequenza, vol. 14, pp. 226-227; September-December 1945.) Abstract of a paper from Commentationes Pont. Acad. Sci. (Vatican City), vol. 8, pp. 505-525; 1944. The shell subtends an angle of $\pi/2$ at the center. Analysis shows that the device can (a) radiate an acoustic power that remains almost constant with changing frequency provided the radius of the sphere is less than a third of the wavelength; for higher frequencies the power slowly decreases; (b) produce along its axis an acoustic pressure increasing with frequency until it amounts to twice its initial value.

534.13:621.396.611.1 3160 The Equivalent Circuit of a Spherical Vibrator-G. Sacerdote. (Alta Frequenza, vol. 15, pp. 28-33; March, 1946.) A theoretical analysis of the specific acoustic impedance of a spherical vibrator of order n. The equivalent circuit consists of a ladder network with series capacitors and shunt inductors (with values in harmonic progression) terminated in a pure resistance.

534.43:621.395.613.32 3161 Carbon Phonograph Pickup-A. B. Kaufman and E. N. Kaufman. (Electronics, vol. 19, pp. 162-168; September, 1946.) A description of the preliminary design of a pickup based on the carbon-microphone principle.

States National Bureau of Standards. The number in heavy type at the top right is the serial number of the Abstract.

The Institute of Radio Engineers has made arrangements to have these Abstracts and References reprinted, exactly as they appear on these pages, on suitable paper, on one side of the sheet only. This makes it possible for subscribers to this special service to cut and mount the individual Abstracts for cataloging or otherwise to file and refer to them. Subscriptions to this special edition will be accepted only from members of the I.R.E. and subscribers to the Proceedings of the I.R.E. and Waves and Electrons at \$15.00 per year. Subscribers to this special edition will also receive an An-

nual Index to Abstracts and References as part of their subscription service. All others, who are not subscribers to this service, but who are either members of the Institute or subscribers to the Proceedings of the I.R.E. and Waves and Electrons may purchase the Annual Index for \$5.00. Subscriptions to the Index only must be received by the Institute not later than March 1, 1947. All subscriptions for the Abstract service and its Annual Index should be sent to Mr. George W. Bailey **Executive Secretary** The Institute of Radio Engineers, Inc.

1 East 79 Street New York 21, N. Y.

NOTE: The Institute of Radio Engineers does not have available copies of the publications mentioned in these pages, nor does it have reprints of the articles abstracted. Correspondence regarding these articles and requests for their procurement should be addressed to the individual publications and not to the I.R.E.

534.844/.845 3162 Absorption and Scattering by Sound-Absorbent Cylinders-R. K. Cook and P. Chrzanowski. (Jour. Res. Nat. Bur. Stand., vol. 36, pp. 393-410; April, 1946.) Expressions are developed for a normally incident wave, the surface of the cylinder having an assumed normal acoustic impedance. The theory predicts, and measurements in a reverberation room confirm, that cylinders may have coefficients greater than unity. Reverberation-room statistics are also developed for spherical absorbers.

534.88

Echo Depth Sounder for Shallow Water-G. B. Shaw. (*Electronics*, vol. 19, pp. 88-92; September, 1946.) A review of requirements, with a technical description of the Submarine Signal Company model 788A precision ultrasonic depth recorder suitable for hydrographic surveying. Recording range 75 feet, which can be set to cover any part of a total depth range from 3 feet to 250 feet. Accuracy ± 3 inches up to 50 feet, ± 6 inches for 50 to 125 feet, and 1 per cent for 125 to 250 feet. Compensating controls are provided for draft, squat, tide, elevation, and sound velocity. Magnetostriction transducers are used at 21.5 kilocycles. The transmitter is excited by an unusual capacitor-discharge system. Circuit diagrams of the driver and receiver are given.

534.88:534.321.9

3164 The "Sonicator"-(Radio Craft, vol. 17, pp. 752-793; August, 1946.) A horn-type loudspeaker unit at the focus of a parabolic reflector emits sound pulses of 100-microseconds duration once a second. The echoes are received on a crystal microphone near the focus of the reflector, amplified, and used to operate a neon light revolving once a second behind a transparent disk. The position of the flash on the disk gives the distance of the target, the direction is obtained by rotation of the reflector to give the maximum echo. The range is 550 feet down to 5 feet. An invention by L. Gould.

621.395.61

3165

Mechanical Impedance and the Classification of Microphones-S. P. G. Bordoni. (Alla Frequenza, vol. 14, pp. 218-224; September-December, 1945.) The distinction between pressure, gradient, and velocity microphones is indicated in relation to their mechanical characteristics, and, in particular, the effect of the surrounding air on the mechanical impedance of a diaphragm is considered.

621.395.61

3163

3166 Meet the Microphone-H. J. Seitz. (Radio News, vol. 36, pp. 28, 74; August, 1946.) A brief review of the characteristics and special uses of modern microphones of the capacitor crystal, and ribbon types.

621.395.625.3 3167 Theoretical Response from a Magnetic-

Wire Record-M. Camras. (PROC. I.R.E. AND WAVES AND ELECTRONS, vol. 34, pp. 597-602; August, 1946.) "This paper considers the effect of magnetic properties of a record wire on the output level and frequency response of a magnetic recording system. The amount of magnetic energy that can be stored at each wavelength determines the voltage output to be expected from a given translating head. Frequency response for a typical record wire is calculated according to derived relations, and compared with experimental data."

621.395.645.3 3168 Cathode Follower for Power Amplifier---Stevens. (See 3206.)

621.396.615.029.3 3169 Audio Oscillators-J. C. Hoadley. (Radio News, vol. 36, pp. 38-40, 98; August, 1946.) Two types of resistance-capacitance or Wien-

bridge oscillators are described, one using variable C and the other variable R for controlling the frequency. Circuit diagrams and constructional details are given.

621.396.667 3170

Tone Control Circuits-L. A. Wortman. (Radio Craft, vol. 17, pp. 763, 781; August, 1946.) Five simple resistance-capacitance circuits are given.

3171 786.6:621.383 Photoelectric Tone Generator-Greenlee. (See 3399.)

AERIALS AND TRANSMISSION LINES

621.392

Study of the Diffraction and Reflection of Guided Waves-J. Ortusi. (Ann. Radioélect., vol. 1, pp. 87-133; October, 1945.) A theoretical and experimental study of a plane H_{01} wave in a rectangular guide. The introduction defines the coefficients of reflection and transmission and the characteristic impedances. The analogy between a guide carrying a H_{01} wave and a lightly damped transmission line is indicated.

The thermocouple apparatus used for measuring the field intensity in the guide and the methods of measuring wavelength and the coefficients of reflection at an obstacle in the guide are described.

The impedance and reflection coefficient of a wire across the guide are calculated.

The theoretical treatment of diffraction is based on Kottler's presentation of Huyghens' principle (Ann. d. Phys. p. 456; 1923.). The following cases are analyzed: opening in a rectangular guide, sectoral horn, and a cylindrical mirror. Experimental investigation of the diffraction and reflection at the opening of a guide is described, and it is concluded that only for large apertures (a and $b > 2\lambda$) are Kottler's formulas of good accuracy.

The effect of a change of dielectric in a guide is analyzed, and its application to the measurement of dielectric constant and damping coefficient is described.

Obstacles in the form of a conducting disk with a small hole, a wire, and a change of curvature of the wave are considered in detail, using the impedance representation in conjunction with reflection and transmission coefficients. Corrections are given in Ann. Radio-Elect., vol. 1, p. 276; January, 1946.

621.392

The Theory and Experimental Behaviour of Right-Angled Junctions in Rectangular-Section Guides-J. T. Allanson, R. Cooper, and T. G. Cowling. The Experimental Behavior of the Coaxial Line Stub-J. Lamb. (Jour. I.E.E. (London), vol. 93, pp. 359-360; August, 1946.) Long summary of 2133 and 2134 of August.

3174 621.392 Ideas on Waveguides-Y. Rocard. (Rev. Tech. Com. Franç. Thomson-Houston, pp. 5-19; April, 1946.) An elementary survey of the velocity and field relations in a waveguide, and of the various modes of propagation. Reference is made to filters, mode separators, mode converters, detectors, diaphragms, and horns.

3175 621.392 The Relation Between Nodal Positions and Standing Wave Ratio in a Composite Transmission System-E. Feenberg. (Jour. Appl. Phys., vol. 17, pp. 530-532; June, 1946.) "Reflection generally occurs at a lossless transition region joining two uniform lossless lines. If the output line feeds into a matched load (no reflection) a standing wave ratio η_0 different from unity exists on the input side of the transition region. If the output line is terminated by a movable short circuit, a relation exists between the nodal positions on opposite sides of the transition section. The relation can be used to determine no thus dispensing with the need for a calibrated detecting system to measure this quantity.'

621.392

Transmission Line Phenomena at Audio and Radio Frequencies-H. Clark. (Trans. S. Afr. I.E.E., vol. 37, pp. 149-158; June, 1946, discussion, pp. 158-162.) An introduction to the theory of transmission lines based on the conception that free electrons in a conductor behave as the molecules of a gas, having random velocities when the conductor is isolated, but acquiring an additional drift velocity when a polarizing electromotive force is applied.

621.392: [534+535

3172

Extension of the Characteristic-Impedance Concept to Acoustics, Optics and to the Theory of Vibrating Strings-Bedeau. (See 3262.)

3177

621.392:621.317.33.029.64 3178 The Use of the Impedance Concept as Applied to Wave Guides-G. Williams and H. C. Bolton. (Phil. Mag., vol. 36, pp. 862-873; December, 1945.) The analogy between lines and wave guides is used to derive a wave-guide method for the measurement of properties of dielectrics at centimeter wavelengths. Expressions corresponding to the R, G, L, and C of a line system are given for both H and E waves, and the method for dielectric measurement is first illustrated by reference to a coaxial line. Applying the impedance concept leads to an expression for the dielectric constant in terms of the wavelength in air, the cut-off wavelength of the guide, and the wavelength in the dielectric-filled guide. The latter is obtained from probe measurements of the wave pattern in the guide, and gives experimental results in agreement with those given by other methods.

621.392.2+621.396.44]:551.574.7 The Effect of Sleet on the Propagation of Carrier Waves along High-Voltage Transmission Lines-Wertli. (See 3416).

621.392.21:621.315.1+621.396.664]:621.396. 3180

The Design and Use of Radio-Frequency Open-Wire Transmission Lines and Switchgear for Broadcasting Systems-F. C. McLean and F. D. Bolt. (Jour. I.E.E. (London), vol. 93, pp. 362-364; August, 1946.) Long summary of 2139 of August.

621.392.5

3173

3176

Simplified Treatment of Some Main Points in the Theory of Quadripole.-Guerbilsky. (See 3202.)

621.396.44+621.398]:621.315.052.63 3182 Carrier-Current Communication over High-Voltage Transmission Lines-Hancess. (See 3417.)

621.396.67

3183 Radiation Resistance of Loaded An-tennas-R. C. Raymond and W. Webb. (Phys. Rev., vol. 70, p. 114; July 1-15, 1946.) Experimental determinations have been made of driving-point impedances for antennas with various forms of metallic and dielectric loading. Resistances at resonance are compared with resistances calculated by the Poyntingvector method for assumed current distributions. For a given distribution the resistance is a function of only the length of the antenna in wavelengths. Measured current distributions fell between the curves for uniform and for sinusoidal distribution. Abstract of an American Physical Society paper.

621.396.67 3184 Determination of the Electric Intensity Near an Aerial Cage-J. C. Simmonds. (Phil. Mag., vol. 36, pp. 758-770; November, 1945.) Two methods are developed which enable the charge distribution and hence the electric intensity and corona voltage of an aerial cage to be determined. In the first, easily calculated up to a 6-wire cage only, the wires are assumed to be of diameter small compared with the distance apart, the charge distribution being evaluated in a determinant form. The other method is applicable when the cage is formed from a large number of wires, the distances apart being small compared with the cage diameter. Measurements on rubber-sheet models checked by the first method to within 5 per cent, and were then used to confirm the second method.

3185 621.396.67

Simple Transmission Formula-G.W.O.H. (Wireless Eng., vol. 23, pp. 235-236; September, 1946.) Discussion of the treatment by Friis (2282 of August) of the ratio of received power to transmitted power in terms of the "effective areas" of the aerials.

621.396.674 3186

Advantages of a Low-Impedance Loop for Broadcast Reception-F. Bedeau. (Rev. Tech. Comp. Franç. Thomson-Houston, pp. 59-71; January, 1944.) Comparison of the fields from electric and magnetic radiators of interference shows that a receiving aerial should be of the loop type to give the best signal-to-interference ratio. The reduction of antenna effect by balancing or screening the loop is essential for the best performance, and a single-turn loop, coupled by a suitable transformer to the input circuit of the receiver is the system recommended. The pickup factor (hauteur d'entrée) is analyzed for this system, and typical measured values in the bands 150 to 300 kilocycles and 600 to 1500 kilocycles are given. See also 3187 (Vladimir).

621.396.674

Low Impedance Loop Antenna for Broadcast Receivers-L. O. Valdimir. (Electronics, vol. 19, pp. 100-103; September, 1946.) Lowimpedance loops are easier to make and are less affected by age and humidity than the corresponding high-impedance loops. An account of the design of associated transformers is given, and curves show the conditions for maximum gain.

621.396.677

A Generalized Radiation Formula for Horizontal Rhombic Aerials: Part 2-H. Cafferata. (Marconi Rev., vol. 9, pp. 64-69; April-June, 1946.) Continuation of 1456 of June. The reflection factor of an imperfectly conducting earth and the general radiation formula for a perfect earth are derived, and the general equation for radiation from the array is set out. To be concluded.

621.396.677

3181

Dual-Rocket Antenna Characteristics-G. Hendrickson. (Radio, vol. 30, pp. 14-15; July, 1946.) Rocket antennas are described. They are longitudinally slotted cylinders, and the potential difference is applied across the slot. The radiation is similar to that from a large number of coaxial loops stacked one above the other. The radiation patterns and power gains are given for single and double rockets and for an array of two double-rocket antennas. For the latter it is 7.5 decibels.

621.396.677

Polar Diagrams: Experiments with a Half-Wavelength Receiving Aerial and a V-type Wire-Netting Reflector—J. S. McPetrie, L. H. Ford, and J. A. Saxton. (Alla Frequenza, vol. 14, pp. 119-122; March-June, 1945.) Long summary in Italian of 2612 of 1945.

621.396.677:621.398

A Simple Method of Controlling the Beam Antenna-E. Harris. (Radio News, vol. 36, pp. 60, 62; August, 1946.) A Wheatstone-bridge relay-operating circuit for the remote control of a rotating array.

621.315.052.63+621.317.083.7 3192

Télétransmissions par Ondes Porteuses dans les Réseaux de Transport d'Ènergie à Haute Tension [Book Review]-A. Chevallier. Dunod, Paris, 111 pp., 124 fig. (Wireless Engr.,

3188

3189

3190

3191

3202

3203

3206

3207

vol. 23, p. 259; September, 1946.) Deals with the protection of high-voltage networks by means of superposed high-frequency currents.

CIRCUITS

518.5:621.3 3193 Computation Problems in Circuit Design-Baker. (See 3365.)

621.314.2.029.5:621.396.621.54 3194 Two-Frequency I.F. Transformers-Thompson. (See 3430).

621.314.6

3195 A Note on Empirical Laws for Non-Linear

3196

3198

Circuit Elements and Rectifiers-D. B. Corbyn (Beama Jour., vol. 53, pp. 245-252; July, 1946.) A theoretical treatment leads to the deduction of specific parameters analogous to specific resistance or conductance. It is shown that limitations are imposed on the values which the index # (of the current versus voltage law) may take for either symmetrically or asymmetrically conducting elements such as rectifiers, and that # cannot, in general, be treated as a continuous variable.

621.318.7+537.228.1

Piezo-Electric Crystals and Their Use in Electrical Wave Filters-P. Scherrer and B. Matthias. (Brown Boveri Rev., vol. 31, pp. 316-322; September, 1944.) Crystals of potassium and ammonium phosphate can be used with advantage in lattice band-pass filters for 10 to 100 kilocycles. They can be artificially grown, they are more stable than Rochelle salt and give wider bandwidths than quartz crystals. The piezoelectric effect is explained using a mechanical model, and the insertionloss characteristic of a filter using potassium phosphate crystals is graphed.

621.392

3197 Balancing System-P. D. Andrews. (Radio, vol. 30, p. 16; July, 1946.) A circuit is described for connecting a push-pull source to an unbalanced load. The primary feature is a special capacitor having two ganged variable sections built so that the series value of capacitance remains constant. Summary of U.S. patent 2,380,389.

621.392.091

Simplified Method of Plotting-Attenuation Curves-L. S. Biberman. (Radio, vol. 30, pp. 12-13; July, 1946.) Attenuation characteristics of many circuits plot as straight lines and circular arcs on semi-log paper. Illustrations are given.

621.392.4

3199 Link-Coupled Coil Design-S. Sabaroff. (Communications, vol. 26, pp. 16-19, 45; August, 1946.) Analysis of a design procedure, assuming resistive loads. A nomogram is given.

621.392.43 3200 New Method of Impedance Matching in Radio-Frequency Circuits-G. Guanella. (Brown Boveri Rev., vol. 31, pp. 327-329; September, 1944.) Description of a transformer method depending on double-winding of coils, which can be used for impedance matching and for coupling symmetrical and unsym-metrical circuits. The matching remains substantially independent of frequency over a relatively wide range of the ultra-high-frequency region.

621.392.43

3201 Electric Filters built up from Choke Coils and Condensers for Frequencies up to 60 kc/s-K. Ehrat. (Brown Boveri Rev., vol. 31, pp. 329-330; September, 1944.) Mentions points to be observed when using powderediron cores, and gives attenuation curves for filters to pass 0 to 1000 cycles and 2.8 to 3.2 kilocycles.

621.392.5

Simplified Treatment of Some Main Points in the Theory of Quadripoles-A. Guerbilsky. (Ann. Radioélect., vol. 1, pp. 191-207; January, 1946.) The fundamental theorems of network theory are stated, and it is shown that, in general, three parameters determine any quadripole, while two are sufficient for a symmetrical quadripole.

Symmetrical quadripoles and the implications of Bartlett's theorem are discussed. Particular attention is devoted to the treatment in terms of lattice networks and their properties. An account of the asymmetrical quadripole is given, and its equivalence to a symmetrical quadripole followed by an ideal transformer is demonstrated.

Appendixes deal respectively with transmission lines, the mid-band iterative impedance of a narrow-band band-pass filter, and the approximate calculation of the propagation constant.

621.394/.395].645.3

Radio Design Worksheet No. 50-Note on Analysis of Push-Pull Amplifiers with Negative Feedback-(Radio, vol. 30, p. 20; July, 1946.)

621.394/.397],645.22 3204 Transient Response of Tuned-Circuit Cascades-D. G. Tucker. (Wireless Eng., vol. 23, pp. 250-258; September, 1946.) The response of an amplifier with N circuits, each with the same resonant frequency ω_0 , to a pulse of carrier frequency ω is evaluated by repeated application of Duhamel's integral. When $\omega = \omega_0$ the envelope of the output pulse is found in terms of a series equivalent to the incomplete gamma functions; when $\omega \neq \omega_0$ only the last (*Nth*) terms of the series gives the envelope. "A comparison of the responses of tuned-circuit cascades with those of underived band-pass filters shows that for equal component qualities in the two cases, two tuned circuits in cascade are approximately equivalent, for pulse transmission applications, to a single-section band-pass filter using 50 per cent more components.¹

621.395/.397].645:621.396.619

3205 Carrier-Frequency Amplifiers-C. C. Eaglesfield. (Wireless Eng., vol. 23, pp. 258-259; September, 1946.) An amendment to 1474 of June (Eaglesfield), suggested by van der Pol, concerning the influence of a linear 4-terminal network on a carrier with small amplitude or frequency modulation.

621.395.645.3

Cathode Follower for Power Amplifier-C. Stevens. (Radio News, vol. 36, pp. 52-54, 80; August, 1946.) Constructional details of an audio-frequency amplifier with a cathode-follower push-pull output stage.

621.396.24.029.63

Development Work in the Decimetre Wave Field-Schupbach and De Quervain. (See 3361.)

621.396,611

3208 Average Frequency Stability [with Deformation] of Cavity Resonators-K. F. Niessen. (Physica, 's Grav. vol. 9, pp. 145-157; February, 1942. In German.) For simplicity only deformations of a tensional form are considered. The axis of symmetry of the applied deformations is always chosen to be along one or other of the three principal axes of the cavity. One or two of these three deformations transform the original fundamental frequency to that of the deformed cavity while the other(s) lead to a higher frequency. The three new resulting frequencies are averaged. The fre-quency stabilities of the sphere and of the cube are very little different if the deformations satisfy the condition of constant surface area. The above is valid when only the linear terms in the frequency variation are taken into account. See also 3209 and 3210 below (Niessen).

621.396.611 3209

On the Frequency Stability of Certain Cavity Resonators in an Electric Circuit-K. F. Niessen. (Physica, 's Grav., vol. 9, pp. 539-546; June, 1942. In German.) In deriving the frequency stability of cavities it is necessary to consider, in addition to the absolute value of the frequency variation, the average of such values when several deformations are possible. A comparison of the cube and the sphere is in favor of the former (about twice as good) for the case of expansion in one of the three mutually perpendicular dimensions when the other two dimensions contract so as to preserve constant surface area. The same applies for a contraction in one dimension instead of an expansion. On the basis of these calculations it is supposed that, in general, the cube exhibits the least frequency deviation when the two cavities are subjected to small irregular deformations. See also 3208 and 3210 (Niessen).

621.396.611

3210

3211

Practical Remarks on the Frequency Stabilization of Spherical Cavity Resonators-K. F. Niessen. (Physics, 's Grav., vol. 9, pp. 768-772; July, 1942. In German.) In order to reduce the frequency variations due to the expansion produced by the heating of the walls of a cavity resonator, it is recommended that (a) the sphere be clamped between two diametrically applied supports whose apacing does not change with temperature; the electric dipoles must be radial at the supports; and (b) the sphere be clamped in a ring whose diameter is independent of temperature and the electric dipoles be arranged diametrically in the plane of the ring and in a radial direction. See also 3208 and 3209 (Niessen).

621.396.611.1

Characteristic Oscillations of Solid Conductors and Electromagnetic Cavities-P. Nicolas. (Ann. Radioflect., vol. 1, pp. 181-190; January, 1946.) The periodic osciliations of a solid body or of a cavity are studied for the case of any shape. It is shown that there are preferred modes of oscillation which lead to particularly simple relations between the fields and currents. There is generally no geometrical relationship between the current distributions corresponding to two different characteristic modes. In general, on any surface, there are no preferred co-ordinates which lead to simplified relations between the fields and currents. The current distributions corresponding to free oscillations are closely connected with the characteristic modes. When a hollow resonator or a solid conductor is used it is almost always in the vicinity of one of its frequencies of free oscillation. It can be assumed that one of the characteristic modes of distribution preponderates and that the properties mentioned applied to the whole current-system in practice. All these results have been obtained by starting from the reciprocity theorem of electromagnetism.

621.396.611.1:534.13

3212 The Equivalent Circuit of a Spherical Vibrator-Sacerdote. (See 3160.)

621.396.611.1.017

3213 D and Q-R. F. Field. (Gen. Radio. Exp., vol. 20, pp. 5-8; May, 1946.) Expressions for power losses in a reactor are given in terms of the storage factor Q, or its reciprocal D, the dissipation factor. Exclusive use of the latter is recommended, particularly where more than one source of loss is present.

December

621.396.615

Synchronization and Frequency Division-N. Carrara. (Alla Frequenza, vol. 14, pp. 134-160; September-December, 1945. With English, French, and Germansummaries.) A general theoretical treatment of a resonant circuit connected to a two-terminal negative-resistance element. The condition for oscillation is established, and the system is classified as real or complex according as the discriminant of the second-order differential equation for the system is positive or negative. The synchronization and frequency-division characteristics of these types are separately considered, and the optimum conditions of operation are deduced. Oscillograms of the synchronizing process in a "real" oscillator are given.

3214

3215

3216

3217

3218

621.396.615.029.63

Composite Tank Circuit for U.H.F.—P. L. Bargellini. (*Electronics*, vol. 19, pp. 115-119; September, 1946.) A description of circuita, each comprising a resonant transmission line inside a resonant cavity, for use with negativegrid triodes. The arrangement gives a greater maximum frequency of oscillation, greater stability and greater ease of coupling to the load than is obtained with an ordinary transmission-line circuit. For an earlier paper by the same author dealing with the same material, see Alla Frequenza, vol. 14, pp. 161-174; September-December, 1945.

621.396.615.1

Oscillator Power Relations-R. E. Burgess. (Wireless Eng., vol. 23, pp. 237-240; September, 1946.) "The amplitude and power relations are derived for a class of valve-maintained oscillators in which the source of power can be represented as a negative-conductance element which has a characteristic limited by a term proportional to a higher odd-power of the voltage. The analysis is based on the classical work of E. V. Appleton and B. van der Pol. The coupling conditions for obtaining the maximum output power from such a source are deduced and shown to differ fundamentally from the impedance-match conditions appropriate to linear systems. It is shown that the intrinsic oscillator-circuit losses are purely parasitic in the transfer of power to an external load-circuit, and there is no question of a resistance match.

"The response of such an oscillator circuit to a small external electromotive force having a frequency different from the oscillation frequency is considered. It is found that the circuit effectively has a positive conductance which is proportional to the excess negative conductance producing oscillation."

621.396.615[.11+.17

Low-Frequency Oscillator Using an Artificial Electric Line-M. Federici. (Alta Frequensa, vol. 14, pp. 175-182; September-December, 1945. With English, French, and German summaries.) A low-pass line having 100 sections (40 millihenry series, 0.01 microfarad shunt) with a cut-off frequency of 16 kilocycles is used as the feedback element of a triode circuit. The fundamental frequency of oscillation is 250 or 500 cycles according as the coupling transformer gives a phase shift of 0 or π . Oscillographic analysis of the wave form shows appreciable harmonic content. A four-section lattice network (130 millihenry series, 0.5 microfarad shunt) having a markedly nonlinear phase versus frequency characteristic shows that synchronization between the various constituent frequencies need not occur, e.g., in a typical case frequencies of 247 and 1400 cycles were present. The oscillator can, therefore, be used to produce complex wave forms for special purposes.

621.396.615.11

Two-Phase Resistance-Capacitance Oscil-

lator-G. B. Madella. (Alta Frequenza, vol. 14, pp. 5-10; March-June, 1945. With English, French, and German summaries.) The circuit uses a single-phase resistance-capacitance oscillator with a phase-shifter mechanically linked with the frequency control of the oscillator to give constant shift at all frequencies. It has the advantages of greater frequency stability and simplicity compared with the beat-frequency oscillator but does not provide such a wide frequency range. The model described has a range of 60 to 300 cycles and a range of 8:1 should be possible by the use of a larger variable capacitor. The distortion of the output voltage is less than 2 per cent.

621.396.615.17 3219 Wave Shaping Circuits—S. Fishman. (*Radio Crafi.* vol. 17, pp. 761, 793; August, 1946.) Simple explanation of the action of diode and triode limiters used as square-wave generators.

621.396.615.17:]621.317.755+621.397.331.2 3220

Current Oscillator for Television Sweep— G. C. Sziklai. (*Electronics*, vol. 19, pp. 120-123; September, 1946.) The inadequacies of previous saw-tooth current oscillators for magnetic deflection are reviewed, and the basic principles of the requirement are outlined. A circuit is described, with circuit diagrams, which gives a sweep of excellent linearity with adequate amplitude to give full deflection in a 12-inch 38-degree kinescope. Specifications of the oscillator transformer and dual filament choke are given.

621.396.619 3221 Class B Modulator Design—R. M. W. Grant. (*Marconi Rev.*, vol. 9, pp. 70-87; April-June, 1946.) A theoretical discussion of the design of the output filter generally used with high-power class-B modulators.

621.396.621.029.64 3222 Low Noise Microwave Video Receiver Design—Zable. (See 3407.)

3223

621.396.645

Design of Broad Band I.F. Amplifiers— R. F. Baum. (Jour. Appl. Phys., vol. 17, pp. 519-529; June, 1946.) A treatment of the problem for stagger-tuned stages, each consisting of a single-tuned circuit, with an extension to the case of stages containing two magnetically coupled circuits. "It is found that the figure of merit (Q_n) of the individual circuits should be related to the Q of a reference circuit according to:

$$Q/Q^n = \sin [(2m+1)\pi/2t] \cdot \frac{\omega_0}{\omega_{0n}},$$

 $m = 0, 1, 2, \cdots (t-1).$

Then, by proper tuning, either an oscillatory or a monotonic response may be obtained. The relative bandwidth BW/f_0 and the gain tolerance d_0 within the band determines the value of Q. The minimum number of stages for a given minimum attenuation in the cutoff region depends only on the gain tolerance and on the desired kind of response. Gain maxima (attenuation minima) appear at frequency deviations Δf_n^{min} from middle-band frequency f_0 given by:

$2\Delta f_n^{\min}/BW = \cos\left[(2m+1)\pi/2t\right].$

Their location depends only on the number of stages. The resonance deviation Δf_{0n} of the tuned circuits are proportional to Δf_{m}^{\min} with a proportionality factor F dependent on t and d_{e} . The circuit impedances are calculated from a prescribed gain or from the maximum attainable gain. A formula for the maximum gain bandwidth product is derived."

621.396.662.2

Tracking Permeability-Tuned Circuits— A. W. Simon. (*Electronics*, vol. 19, p. 138; September, 1946.) A brief account of the theory, with worked-out examples.

621.396.662.34:621.396.611.21 3225

Generalized Curves for the Design of the Two-Crystal Bandpass Filter—J. D. Brailsford. (*Marconi Rev.*, vol. 9, pp. 40-63; April— June, 1946.) Development of a design technique. The curves give the transmission loss of the filter used as an interstage coupling. The effect of crystal mismatching is taken into account, and a note is included on the use of mechanically coupled crystals.

621.396.665 3226 Surgeless Volume Expander—A. N. Butz, Jr. (*Electronsics*, vol. 19, pp. 140, 142; September, 1946.) Description of a circuit which balances out anode-current surges without recourse to push-pull operation.

621.396.667 3227 Tone Control Circuits—Wortman. (See 3170.)

621.397.813 3228 Theoretical Investigation of the Distortion of Television Signals in Valve Circuits—J. Huber. (Schweis. Arch. Angew. Wiss. Tech., vol. 11, pp. 115-127; April, 1945.) Conclusion of 901 of April.

GENERAL PHYSICS

53.081 3229 A Discussion on Units and Standards— (See 3341.)

531.3 3230

On the Process of Establishment of Oscillatory Systems with One Degree of Freedom— V. V. Kasakevitch. (*Compl. Rend. Acad. Sci.* (U.R.S.S.), vol. 49, pp. 486–489; December 10, 1945. In French.)

535.1 3231 Change of Frequency of a Light Wave by the Variation of its Optical Path—T. L. Ho and W. S. Lung. (*Nature* (London), vol. 158, p. 63; July 13, 1946.) A formula is derived and applied to various types of waves; application to material waves gives confirmation of the relation $E = h\nu$, and represents one type of energy change for photons. A more generalized formula is proposed which represents a second type of energy change, and which also explains the effect on frequency of a doubly refracting medium.

535.215+621.383 3232 Influence of Polarized Light on the Falling-

Off Effect of the Limiting Potential of Einstein's Photoelectric Law.—E. Marx. (Phys. Rev., vol. 69, pp. 523–529; May 1–15, 1946.)

535.34 3233 Nuclear Electric Quadrupole Moment and the Radiofrequency Spectra of Homonuclear Diatomic Molecules—B. T. Feld. (*Phys. Rev.*, vol. 70, p. 112; July 1-15, 1946.) Abstract of an

American Physical Society paper.

535.343.4+621.396.11.029.64+538.569.4 3234 The Absorption of Microwaves by Gases-

W. D. Hershberger. (Jour. Appl. Phys., vol. 17, pp. 495-500; June, 1946.) The full paper, of which an abstract was noted in 1336 of May. Fourteen gases including ammonia, dimethyl ether, various amines, and alkyl halides have shown strong absorptions at microwavelengths. Measurements of the absorption coefficient and permittivity of these at 1.25-centimeter wavelength and atmospheric temperature and pressure are given. The frequencies for maximum absorption are derived from absorption versus pressure curves. Data on the absorption

of several gas mixtures are given, and possibly molecular mechanisms are discussed. See also 3235, 3236, 3238, and back references.

535.343.4+621.396.11.029.64 3235 Expected Absorption in the Microwave Region by Water Vapor and Similar Molecules -R. M. Hainer G. W. King and P. C. Cross. (Phys. Rev., vol. 70, pp. 108-109; July 1-15, 1946.) "To predict microwave absorption it is necessary to determine all possible transitions [up to $J \sim 12$] between asymmetric rotor levels about one wave number apart.... Exact values of the energies and transition probabilitles of H₂O were calculated and the position and intensity of absorption in the microwave region determined." The work has been extended to D2O, HDO, H2S, H2Se, D2Se. See also 3234. Abstract of an American Physical Society paper.

535.343.4 + 621.317.011.5 + 621.396.11.029.64] :546.171.1 3236

The Inversion Spectrum of Ammonia-W. E. Good. (Phys. Rev., vol. 69, p. 539; May, 1-15, 1946.) The strong absorption band of NH₃ at 0.8 centimeter⁻¹ has been resolved into 28 sharp, widely separated lines, using a variable-frequency continuous-wave source. A graph of the frequencies and intensities of the lines is given, and the empirical expression for the frequencies compared with previous theoretical and experimental results. The lines were observed at about 0.1 millimeter of mercury pressure by inserting the gas in a wave guide between a frequency-modulated source and detectors connected to a cathode-ray display. A hyperfine structure is resolved at about 10⁻² millimeters of mercury pressure. For an abstract of an American Physical Society paper based on this work see Phys. Rev., vol. 70, p. 109; July 1-15, 1946. See also 2622 of September (Bleaney and Penrose), and back reference.

535.343.4+621.317.1.011.5+621.396.11.029.64] :546.171.1 3237

Ammonia Spectrum in the 1 cm. Wavelength Region-B. Bleaney and R. P. Penrose. The cross reference to this paper given in 2536 of September as "See 2662" should read "See 2622.

535.343.4+621.396.11.029.64]:546.171.1 3238 **Resolution and Pressure Broadening of the** Ammonia Spectrum Near One-cm. Wave-Length-C. H. Townes. (Phys. Rev., vol. 70, p. 109; July 1-15, 1946.) Twelve lines were resolved and examined in the band 22,840 to 25,046 megacycles at pressures less than 1 millimeter of mercury. Detailed examination of one line yielded a collision frequency of 1.7×10^8 seconds⁻¹. See also 3236 and back references. Abstract of an American Physical Society paper.

535.343.4:535.61-15:546.212.02 3239 The Infra-Red Spectrum of Heavy Water-

F. P. Dickey and H. H. Nielsen. (Phys. Rev., vol. 70, p. 109; July 1-15, 1946.) Abstract of an American Physical Society paper.

535.376

3240 Cathodo-Luminescence: Part 1-Growth and Decay Processes : Part 2-Current Saturation and Voltage Effects: Part 3—Discussion of Results—J. W. Strange and S. T. Henderson. (*Proc. Phys. Soc.*, vol. 58, pp. 369–383, 383–391, and 392–401; July 1, 1946.) Experimental results show that processes of exponential form occur widely in growth and decay of light output from inorganic phosphors. The simple theory relating to monomolecular or random-type processes fails to account for the complexity of the results. There is no definite evidence in favor of bimolecular decay, though nonexponential processes are found to be present in the growth at low current densities and in the decay at long times after excitation.

Measurements have been made of the light output from phosphors under steady electron beams at constant voltage and varying cur-rent density, and "current saturation" has been found to vary greatly in extent for different materials. Similarly the change of light output with varying voltage at constant current density shows different characteristics for different phosphors, but without the expected variation on changing the current density.

The interpretation of the experimental results is inadequate, due to insufficient knowledge of electron absorption in phosphors. There is some evidence of a new type of voltage absorption law.

536.4+536.5

A New Form of Chart for Determining Temperatures in Bodies of Regular Shape During Heating or Cooling-A. J. Ede. (Phil. Mag., vol. 36, pp. 845-851; December, 1945.)

537.122: [537.212+538.12

On a Free Electron Gas in Static Magnetic and Electric Fields-J. Lindhard. (Ark. Mat. Astr. Fys., vol. 33, part 1, section A, 17 pp; August 26, 1946. In English.) A theoretical paper.

537.221

Contact Potential Difference in Crystal Rectifiers-Meyerhof. (See 3465).

537.228.1

Forced Vibrations of Piezoelectric Crystals -H. Ekstein. (Phys. Rev., vol. 70, pp. 76-84; July 1-15, 1946.) "The vibrations of anisotropic bodies under the influence of sinusoidally variable volume forces and boundary stresses are investigated. The displacement components are represented as sums of a system of "zeroorder." solutions which solve approximately the free-vibration problem. By using Betti's theorem, the problem is reduced to a system of inhomogeneous linear equations which, for the free-body case, further reduces to the homogeneous system derived in an earlier paper. If the external forces are piezoelectric, the forces are no longer given explicitly because the electrical field distribution is known only if Maxwell's equations are solved simultaneously. However, if the pertinent piezoelectric constants are small, the field can be calculated approximately as if the crystal were not vibrating. The solutions can then be obtained by the above method, and the electric reaction of the crystal upon the driving system can be determined. As an example, forced vibrations of thin quartz plates between parallel electrodes are discussed."

For previous work by the author, see 523 and 3645 of 1945.

537.533.72+621.385.833

The Variation of Resolution with Voltage in the Magnetic Electron Microscope-V. E. Cosslett. (Proc. Phys. Soc., vol. 58, pp. 443-455; July 1, 1946.) A theoretical consideration of spherical and chromatic aberrations, diffraction error, and total error. The calculations indicate that there are definite optimum conditions of operation for a given lens.

537.56:621.396.11

Conduction and Dispersion of Ionized Gases at High Frequencies-H. Margenau. (Phys. Rev., vol. 69, pp. 508-513; May 1-15, 1946.) "The distribution in energy of electrons in a high-frequency electromagnetic field is derived by kinetic theory methods. By use of the distribution law, the current density and hence the (complex) conductivity are calculated as functions of electron density, pressure, and frequency of the field. The real part of the conductivity has a maximum for gas pressures, or frequencies, such that the mean free time of an electron is approximately equal to the period of the field. From the

conductivity, the dielectric constant of the medium, its index of refraction, and its extinction coefficient are deduced. The results are applicable in microwave researches and in ionosphere problems."

538

3241

3242

3243

3244

3245

3246

Unipolar Magnetic Charges (Poles)-F. Ehrenhaft. (Phys. Rev., vol. 70, p. 114; July 1-15, 1946.) Abstract of an American Physical Society paper.

538 114 Magneto-Resistance and Domain Theory-R. M. Bozorth. (Phys. Rev., vol. 70, p. 106; July 1-15, 1946.) "Changes in resistivity at saturation in longitudinal and transverse fields have been measured for alloys containing 40 to 100 per cent nickel, and these are compared with the changes due to tension." Abstract of an American Physical Society paper.

538.12 3249 A New General Theory of the [Magnetic] Coercive Field-L. Néel. (Compt. Rend. Acad. Sci. (Paris), vol. 223, pp. 198-199; July 22, 1946.)

538.14 3250 Magnetic Domain Patterns on Silicon-Iron Crystals—H. J. Williams. (*Phys. Rev.*, vol. 70, July 1-15, 1946.) Abstract of an American Physical Society paper.

538.247 3251 The Demagnetizing Factors for Ellipsoids-E. C. Stoner. (Phil. Mag., vol. 36, pp. 803-821; December, 1945.)

538.3:530.12 3252 Relative Nature of Electromagnetic Radiation-H.-P. Soh, M.-H. Wang, and S.-C. Kiang. (Nature (London), vol. 157, p. 809; June 15, 1946.)

538.32:621.385.832

3253 An Analysis of Electromagnetic Forces-A. Gronner. (Elec. Eng. vol. 65, pp. 300-302; June, 1946.) A letter commenting on 587 of March (Tripp) explaining the forces between electrons in parallel motion in terms of relativity theory. See also 2547 of September (Burgess: G.W.O.H.)

538,652

3254 The Effect of Transverse Magnetic Field on the Longitudinal Joule Magnetostriction Effect in Nickel-O. P. Sharma. (Indian Jour. Phys., vol. 19, pp. 202-209; October, 1945.) The effect predicted by Williams (*Phys. Rev.*, vol. 34, p. 289; 1912), that a transverse field would produce an additional change in length of a longitudinally magnetized rod is con-firmed experimentally.

539.3 3255 Impedance Representation of Tangential Boundary Conditions-G. D. Camp. (Phys. Rev., vol. 69, pp. 501-502; May 1-15, 1946.) The tensor formulation of an elastic system is given, and the method applied to the tangential impedance for the plane boundary of a viscous fluid.

548.0:547.476.3-162 3256

Structure and Thermal Properties of Crystals :-- Part 6-The Role of Hydrogen Bounds in Rochelle Salt-A. R. Ubbelohde and I. Woodward. (Proc. Roy. Soc. A, vol. 185, pp. 448-465; April 5, 1946.)

621.317.39:535.34

3257 The Measurement of Nuclear Spin, Magnetic Moment, and Hyperfine Structure Separation by Microwave Frequency-Modulation Method-Roberts, Beers, and Hill. (See 3347.)

621.317.39.029.64:537.312.62:546.815-1 3258

Superconductivity of Lead at 3-cm. Wave-Length-F. Bitter, J. B. Garrison, J. Halpern, E. Maxwell, J. C. Slater, and C. F. Square. (Phys. Rev., vol. 70, pp. 97–98; July 1–15, 1946.) Outline of experiments and equipment used at a wavelength of 3.2 centimeters. The lead sample was in the form of a resonant cavity, the Q of which was measured by taking resonance curves using the variable-frequency signal from a medium-wave generator mixed with the output from a stabilized klystron as the signal source. "The best indications ... indicate a conductivity at 4 degrees Kelvin of 10⁶ times as great as at room temperature.... The values of Q measured were of the order of 104

3259 621.384 The Stability of Synchrotron Orbits-Dennison and Berlin. (See 3466.)

621.384

The Racetrack: a Proposed Modification of the Synchrotron-H. R. Crane. The Stability of Orbits in the Racetrack-D. M. Dennison and T. H. Berlin. (Phys. Rev., vol. 69, pp. 542 and 543; May 1-15, 1946.)

621.385.82

3261

3262

3263

3264

3260

High-Frequency Discharge as an Ion Source-P. C. Thonemann. (Nature (London), vol. 158, p. 61; July 13, 1946.) A 10-milliangstrom current of positive hydrogen ions has been drawn from a high-frequency discharge and focused into a beam by a direct potential difference of 20 kilovolts. Use of a magnetic field may increase the current.

621.392: [534+535

Extension of the Characteristic-Impedance Concept to Acoustics, Optics, and to the Theory of Vibrating Strings-F. Bedeau, (Rev. Tech. Comp. Franç. Thomson-Houston. pp. 21-30; April, 1946.) A generalized treatment of characteristic impedance s arrived at independently of Schelkunoff's work (1740 of 1938). The s for a longitudinal sound wave is given by $\sqrt{\rho E}$ ($\rho = \text{density of medium}, E = \text{elas-}$ ticity), and, for a transverse sound wave, as for a vibrating string, by $\sqrt{\mu\tau}(\mu = \text{mass per unit length}, \tau = \text{tension})$. In electromagnetic units the characteristic impedance and velocity of waves in a transparent medium are equal. The application of these concepts to acoustical and optical problems is illustrated.

621.395.822:621.315.59

Electrical Contact Noise-M. H. Greenblatt, P. H. Miller, Jr., and L. I. Schiff. (Phys. Rev., vol. 70, p. 113; July 1-15, 1946.) A theory is given of the low-frequency noise observed in biased electrical contacts involving semiconductors, based on diffusion of impurities between semiconductor and interface region where large electric fields exist. Preliminary experiments give confirmation of the the theory on variation of noise power with frequency, back-bias current, and temperature. Abstract of an American Physical Society paper.

621.396.029.64

Elementary Physics of Ultra-Short Waves -P. Grivet. (Onde Éleci., vol. 26, pp. 135-148 and 188-203; April and May, 1946.) A survey of the special characteristics of centimeter waves and of the theory of their generation by triode and velocity-modulated tubes, with detailed description of typical tubes. The second section gives a general account of guided waves and of horn types of radiator. Appendices give more detail of the theory of electron beams, of dielectric losses, and of attenuation. In particular, a development of guided-wave phe-nomena in terms of the interference patterns arising from reflections from the walls of the guide is given. Bibliography of 55 items.

621.396.611

Electromagnetic Field in Cavity Resonators -M. Abele (Alla Frequenza, vol. 14, pp. 96-116; March-June, 1945.) With English, French, and German summaries.) A general analysis of the field inside cavities bounded by surfaces of revolution, neglecting dielectric and ohmic losses. Only those cases are considered in which no meridian plane is a nodal plane both for the electric and for the magnetic field. The location of the points of zero electric field is indicated, and enables the qualitative configuration of the field to be rapidly determined. The theory is applied to the behavior of a toric and of an almost cylindrical cavity at their fundamental modes.

621.396.822+537.525.5]:621.385

Noise and Oscillations in Hot-Cathode Arcs-J. D. Cobine and C. J. Gallagher. (Phys. Rev., vol. 70, p. 113; July 1-15, 1946.) Positive ions oscillate in two regions of the discharge, the · plasma, the potential minimum at the cathode; the disturbances appear as voltage variations between the electrodes. "Plasma" oscillations are usually below 400 kilocycles and "cathode" oscillations 700 kilocycles. Random noise depends on current, increasing rapidly as Townsend discharge changes into an arc. Noise voltage was investigated under various conditions by a probe technique. See also 3267. Abstract of an American Physical Society paper.

621.396.822+537.525.5]:621.385

Effect of Magnetic Field on Noise and Oscillations in Hot-Cathode Arcs-C. J. Gallagher and J. D. Cobine. (Phys. Rev., vol. 70, p. 113; July 1-15, 1946.) Oscillations in gas discharges discussed in 3266 above are affected by a magnetic field transverse to the normal flow of currents. Oscillations are transmitted to the electrodes by electrons velocity modulated by the plasma oscillations. A critical value of field suppresses oscillation and reduces noise to a minimum. Higher values give increased noise above 1 megacycle. Abstract of an American Physical Society paper.

621.396.822

Statistical Analysis of Spontaneous Electrical Fluctuations-Fürth and MacDonald. (See 3411.)

53:621.38

Traité de Physique Electronique [Book Review]-L. Chrétien. C. Chiron, Paris, 368 pp. (Onde Élect., vol. 26, p. 17A, June, 1946.) "The fundamentals...in popular form... Nothing essential is sacrificed.

GEOPHYSICAL AND EXTRA-TERRESTRIAL PHENOMENA

523.16:621.396.822 3270 Cosmic Radiations at 5 Metres Wave-Length-J. S. Hey, J. W. Phillips and S. J. Parsons. (Nature (London), vol. 157, pp. 296-297; March 9, 1946.) The intensity distribution of cosmic-noise power-flux at 64 megacycles was measured with a' radio receiver using a Yagi aerial system providing a beam width to half power of ± 6 degrees in elevation and ± 15 degrees in bearing. The results are presented in the form of a contour map. The contours are roughly asymmetrical with respect to the galactic equator. The main source is in the direction of the galactic center, a second peak is at radio active 2030 hours, declination +35 degrees in Cygnus. The intensity in the first peak is given as 13.2×10^{-21} $\Delta \nu \Delta \omega$ watts per square inch where $\Delta \nu =$ bandwidth in cycles and $\Delta \omega =$ solid angle in steradians.

523.16:621.396.822 Interstellar Origin of Cosmic Radiation at Radio-Frequencies-J. L. Greenstein, L. G. Henyey and P. C. Keenan. (Nature (London),

vol. 157, pp. 805-806; June 15, 1946.) Measurements of the intensity of cosmic electromagnetic radiation (see 1823 to 1826 of July and back references, and 3270 above) show good agreement with computed values based on the theory of radiation arising from free-free transitions by electrons in the field of protons, using the accepted figures for the number of protons and electrons.

523.165:523.3

3265

3266

A Lunar Effect on Cosmic Rays?-A. Duperier. (Nature (London), vol. 157, p. 296; March 9, 1946.) Harmonic analysis of average solar daily inequalities reveals the existence of a semi-diurnal variation, nearly opposite in phase to the semi-diurnal barometric oscillation. It is deduced that the moon may, by altering the height of the mesonproducing layer, affect the intensity of cosmic rays at ground level.

523 165

in the galaxy.

3273 Solar and Sidereal Diurnal Variations of Cosmic Rays-A. Duperier. (Nature (London). vol. 158, p. 196; August 10, 1946.) Analysis of observations over the last 3 years indicates a seasonal change in the intensity of cosmic radiation. The variation of the time of maximum intensity may also be taken as evidence of a sidereal variation. The maximum and minimum values of the solar variation, 0.77 per cent and 0.06 per cent respectively, may be correlated with the change of solar zenith distance. It is suggested that part of the cosmic radiation may originate in the sun and part

3274 523.165 The East-West Asymmetry of Cosmic Radiation at a Geomagnetic Latitude of 28°31' and an Estimation of the Difference of the Exponents of the Absorption Law for the Polar and the Equatorial Regions-F. Oster, S. L. Ch'u and L-Y. Lü. (Phys. Rev., vol. 69, p. 531; May 1-15, 1946.)

3275 523.7 General Magnetic Field of the Sun-T. G. Cowling. (Nature (London), vol. 158, p. 31; July 6, 1946.) Abstract of a paper in Mon. Not. R. Astr. Soc., surveying the various theories. The view that the material in the far interior of the sun is capable of permanent magnetization is considered worthy of further investigation.

523.74"1942.02/.03" 3276 Solar Eruption of February-March, 1942-B. Edlén. Nature (London), vol. 157, p. 297; March 9, 1946.) Reminder of the decreased cosmic-ray intensity, and the increased intensity of the 5694 angstroms line, produced on this occasion.

523.78: [551.51.053.5+621.396.11 3277 The Solar Eclipse of 1945 and the Propagation of Radio Waves-R. L. Smith-Rose. (Alla Frequenza, vol. 15, pp. 37-38; March, 1946.) Long summary in Italian of 1831 of July.

551.51.053

Meteorology of the Lower Stratosphere-G. M. B. Dobson, with A. W. Brewer and B. M. Civilong. (Proc. Roy. Soc. A, vol. 185, pp. 144-175; February, 1946.) Methods of measuring the amounts of water vapor, carbon dioxide, and ozone in the upper atmosphere are described, and the meteorological conditions at these levels discussed. Bakerian Lecture.

3278

3270

551.51.053.5

Detection of Rapidly Moving Ionospheric Clouds-H. W. Wells, J. M. Watts and D. E. George. (Phys. Rev., vol. 69, pp. 540-541; May 1-15, 1946.) Observations were made during the magnetic storm of March 25 and 26, 1946, with a new panoramic recording technique that

3272

3267

3268

enables the frequency range 1.5 to 20 megacycles to be swept in a time adjustable from 5 to 30 seconds. The ionospheric clouds were observed to move in from 800 to 900 kilometers down to 300 to 400 kilometers at a rate of 1 to 2 kilometers, and sometimes to move out again at a similar rate. "The principal effects of influx of the clouds are: (1) sudden changes in *F*-layer ionization; (2) rapid changes in *F*-layer heights indicating turbulence which is often progressive from high to low heights and from high to low frequencies; (3) rapid fluctuations of echoes at the lower frequencies with occasional temporary disappearance indicating high absorption."

The clouds are provisionally attributed to corpuscular ionization during magnetic disturbances, indicating a corpuscular contribution to F-layer ionization. An inaccurate account of these observations was noted in 2889 of October.

551.51.053.5

Geophysics of the Ionosphere-J. W. Cox. (Nature (London), vol. 158, pp. 189-191; August 10, 1946.) Report of a discussion at the Royal Astronomical Society. Appleton surveyed the present state of knowledge of the ionosphere layers and pointed out some of the outstanding problems. Mumford spoke on reciprocity of transmission and reception. Kirke described experiments on lateral deviation between Daventry and New Delhi, and also asked that attenuation on long routes and the influence of the gyromagnetic frequency should be further studied. Cox described the wartime work of the (British) Inter-Service Ionospheric Bureau. Hey spoke on solar noise and scatter bursts. Massey spoke on the processes of recombination and attachment.

551.51.053.5:523.746

The Ionosphere as a Measure of Solar Activity—M. L. Phillips. (Phys. Rev., vol. 70, p. 119; July 1-15, 1946.) Critical frequencies (f^{*}) of regular ionospheric layers vary as $f^{*}=F_1(t)+F_2(t)S$ where t is time of day, and S the sunspot number. Where ionospheric trends are well established, observations of critical frequency may be used to determine an ionospheric "sunspot number." Using F_{T} layer observations around local noon, the ionospheric "sunspot number" probably presents a more precise index of solar activity than the ordinary sunspot number. Abstract of an American Physical Society paper.

LOCATION AND AIDS TO NAVIGATION 534.88 3282

Echo Depth Sounder for Shallow Water-Shaw. (See 3163.)

534.88:534.321.9	3283
The "Sonicator." (See 3164.)	

621.396.677.1

The Mutual Perturbations of Two Loop Direction Finders—F. Penin. (Onde Élect., vol. 26, pp. 101-106; March, 1946.) It is shown that the minimum separation between two direction finders for freedom from errors within a given standard depends on the diameter of the loops, their type of winding, and effective Q values. In particular, it is shown that separation of two or three meters is adequate for the types of direction finder mounted in aifcraft.

621.396.9

Radar—E. G. Schneider. (PROC. I.R.E. AND WAVES AND ELECTRONS, vol. 34, pp. 528–578; August, 1946.) A comprehensive survey of the principles, problems, and techniques.

621.396.9

The Scientific Principles of Radiolocation— E. V. Appleton. (Alta Frequenza, vol. 14, pp. 230-232; September-December, 1945.) A long summary in Italian of 3777 of 1945.

621.396.9

An Introduction to Hyperbolic Navigation, with Particular Reference to Loran—J. A. Pierce. (Jour. I.E.E., (London), part III, vol. 93, pp. 243-250; July, 1946.) "Hyperbolic navigation is achieved when synchronized signals, having a known velocity of propagation are transmitted from at least three known points, and when the relative times of arrival of these signals are known and measured by a navigator." For loran, pulse transmitters, (frequency 1.70- to 2.00 megacycles) synchronized by ground-wave (standard loran) or sky-wave (SS loran), are at the known points.

The accuracy of standard loran is about 300 yards at short distances and about 1 mile in the ground-wave service area, 700 miles by day, 500 miles by night over sea. For sky-wave working at night the error is 1½ to 8 miles for ranges of 300 to 1400 miles. In SS loran the minimum average error of fix is 0.9 nautical miles due to variations in ionosphere heights. Low-frequency loran, at present under development, should have day or night range of at least 1000 miles but with lower accuracy than standard loran. Summary and I.E.E. discussion of a paper in PROC. I.R.E. AND WAVES AND ELECTRONS.

621.396.9

3280

3281

3284

3285

3286

The Loran System—(Alia Frequenza, vol. 15, pp. 48-52; March, 1946.) Long summary in Italian of 605 of March.

621.396.9

The Civil Application of Radar-E. G. Bowen. (Proc. I.R.E. (Australia), vol. 7, pp. 4-10; June, 1946.) A short account of applications to civil aviation, marine navigation, surveying, and meteorology. An airborne distance indicator is described for measuring range from an airport, with 2 per cent accuracy up to 120 miles at 8000 feet flying height. A multipletrack radar range (MTR) under development uses the Gee principle (see 3916 of 1945-Harley) but with ground transmitters 5 to 10 miles apart. An aircraft located to ± 20 yards relative to two radar beacons 200 miles apart can be used for the photographic surveying of an area of about 200,000 square miles. The importance to the meteorologist of scatter from raindrops is mentioned. For two previous lectures see 1854 of July and 2907 of October.

621.396.9(44)

On French Contributions to the Technique of Electromagnetic Detection [of Objects]—M. Ponte. (Ann. Radiolect., vol. 1, pp. 171–180; January, 1946.) Historical survey of radiolocation developments in France by the C.S.F. (Compagnie Générale de T.S.F.) and the S.F.R. (Société Française Radioélectrique).

In 1935 continuous-wave obstacle detectors on wavelengths of 80 and 16 centimeters were fitted to ships and installed at harbors giving ranges of about 5 kilometers on ship targets.

In 1936 to 1938 higher-power magnetrons and pulse-modulation technique were developed: peak power 10 watts at λ 16 centimeters with 6-microsecond pulses.

Later developments included increase of power to 4 kilowatts on λ 16 centimeters, use of 1-microsecond pulses, superheterodyme receivers with cathode-ray indication, and horn radiators. A system installed at Toulon in 1942 gave ranges up to 25 kilometers on large ships with an accuracy of 25 meters in range and 2 to 3 degrees in azimuth. Systems on λ 3 meters with a peak power of 25 kilowatts were also developed. The paper contains 18 photographs of the systems described.

621.396.9:621.396.932

Radio Aids for Ships-(Nature (London), vol. 157, p. 689; May 25, 1946. Engineering, (London), vol. 161, pp. 451-452; May 10, 1946.) International meeting, with demonstrations of war-time devices and their peacetime applications. See also *Engineer* (London), vol. 181, p. 527; June 7, 1946, for a fuller description of one of the new models.

621.396.9:621.396.932

The Electronic Navigator—T. Grover and E. C. Kluender. (Communications, vol. 26, pp. 30, 39; August, 1946.) Technical description of a 10-centimeter wavelength merchant-ship surface-search and navigational radar with range 200 yards, or less in favorable conditions to 30 miles. Plan-position indicator display is used, and bearings are indicated by a selsyn unit.

621.396.91

Static [Atmospherics] Direction Finder— H. L. Knowles. (*Phys. Rev.*, vol. 69, p. 546; May 1-15, 1946.) An apparatus developed for the United States Army Signal Corps. It consists of the usual crossed-loop aerials feeding twin amplifiers, with cathode-ray tube display, the orientation of the trace giving the azimuth of the incoming signal. The method of determining the position of the storm area by synchronized observations at three stations is discussed. Abstract of an American Physical Society paper.

621.396.931/.933].22.029.5

Better Direction Finder—E. D. Padgett. (Radio Craft, vol. 17, pp. 750, 805; August, 1946.) Description of the Simon radioguide, and its United States military version SCR-503-A. For a previous account see 1545 of June.

621.396.933 **3295**

All-Weather Flying—G.T.M. (*Electronics*, vol. 19, pp. 84–87; September, 1946.) A general review of available radio aids, giving an account of the state of progress towards their . adoption for civil flying in the United States.

621.396.933 3296 Aviation Radio-Newstand. (See 3425.)

621.396.933.23

Blind Approach System—D. Brice. (Aeroplane, vol. 68, pp. 165–167; February 9, 1945.) A general description of the standard beam approach and American radio range systems.

621.396.9 3298 Introduzione alla Radiotelemetria. [Book Review]--U. Tiberio, Editore Rivista Marittima Roma, 1946, 277 pp., 137 figs., 300 Lire. (Wireless Eng., vol. 23, p. 259; September, 1946. Alla Frequensa, vol. 15, pp. 62-64; March, 1946.) Introduction to radar.

MATERIALS AND SUBSIDIARY TECHNIQUES

533.5 3299 A Multiple High-Vacuum Valve—R. I. Garrod. (Jour. Sci. Instr., vol. 23, p. 191; August, 1946.) Design details of a tube to permit the simultaneous or independent exhaustion of four separate vacuum sections.

533.5 3300 Leaking and Controlling Small Quantities of Gas—A. S. Husbands. (*Jour. Sci. Instr.*, vol. 23, pp. 190–191; August, 1946.) A method of control of the gas pressure in discharge tubes using a fixed inlet leak (a porous steatite pellet), and a variable needle-type valve in the exhausting tube.

535.37 3301 Effect of Absorption on Decay of Infra-

Red Sensitive Phosphors—R. T. Ellickson and W. L. Parker. (*Phys. Rev.*, vol. 69, p. 534; May 1-15, 1946.)

3292

3293

3294

3297

3288

3289

3290

3291

535.371.07:537.531

Microsecond Phosphorescent Decay Periods of X-Ray Fluorescent Screens-F. Marshall. (Phys. Rev., vol. 70, p. 114; July 1-15, 1946.) Abstract of an American Physical Society paper.

535.376

Cathode-Luminescence: Part 1-Growth and Decay Processes: Part 2-Current Saturation and Voltage Effects: Part 3-Discussion of Results-Strange and Henderson. (See 3240.)

537.226

Dielectric Properties of Dipolar Solids-H. Fröhlich. (Proc. Roy. Soc. A, vol. 185, pp. 399-414; April 5, 1946.) "A quantitative theory of the dielectric properties of crystalline solids consisting of dipolar long-chain molecules is developed (one dipole per molecule). In these solids the dipoles are concentrated in dipolar planes. In the ground state the dipolar planes have a permanent polarization, but usually the polarizations of successive planes have opposite directions. The static dielectric constant rises with increasing temperature up to a critical temperature T_0 and then decreases. At T_0 the substance has a phase transition of the second kind. Comparison with experiments by Muller on a solid ketone lead to good agreement.

"For chains with an even number of Catoms matastable states with a permanent polarization are predicted, and a method to reach these states is discussed.

"The interaction between dipoles plays a predominant role at temperatures below T_0 . It is shown that Lorentz's or Onsager's methods are invalid in this temperature range.

539.23:546.74

Resistivity of Thin Nickel Films at Low Temperatures-A. Van Itterbeek and L. De Greve. (Nature (London), vol. 158, pp. 100-101; July 20, 1946.) As films thicker than 40 millimicrons cool towards liquid helium temperatures, the resistance passes through a minimum, the temperature at which this minimum occurs being higher the more nearly the thickness approaches to 40 microns.

539.234:535.87 3306 Thermally Evaporated Anti-Reflexion Films -S. Bateson and A. J. Bachmeier. (Nature (London), vol. 158, pp. 133-134; July 27, 1946.) The hardness of magnesium-fluoride films on glass is improved by vacuum-baking in preference to air-baking and depends on the type of source and the degassing procedure. It is not affected by length of baking time. Soft coat-ings are caused by "soft fluoride," i.e. lowvelocity molecules and may be eliminated by use of faster pumps and special pellet sources. A similar effect is observed when coating on two surfaces. See also 2598 of September (Bannon).

3307 541.64+679.51:05 Journal of Polymer Science-(Nature (London), vol. 157, p. 475; April 13, 1946.) Publication of new journal of high-polymer research.

546.23 Volume, Internal Energy, and Entropy of Amorphous and Crystalline Selenium-G. Borelius and K. A. Paulson. (Ark. Mat. Astr. Fys., vol. 33, part 1, section A, 16 pp; August 26, 1946. In English.) The values of these quantities and their differences ΔV , ΔU , ΔS , for the two forms of selenium are calculated from new determinations of the thermal expansion a and the heat capacity C. There are no real premelting phenomena in selenium, and in the glassy state (below 300 degrees Kelvin) a and C have nearly the same values for the amorphous and crystalline forms; it is, therefore, concluded that "the values of ΔV , ΔU and ΔS obtained in the range of the supercooled liquid from 300 to 494 degrees Kelvin are only dependent on the arrangement of the atoms in the liquid, which at each temperature, attains a state of instable equilibrium." These difference values should be of use for testing theories of the structure of the liquid state. For previous work see 3637 and 3638 of 1945 (Borelius et al. and Weibull).

549.514.1

3302

3303

3304

3305

3308

3309 Elastic Deficiency and Color of Natural Smoky Quartz-C. Frondel. (Phys. Rev., vol. 69, pp. 543-544; May 1-15, 1946.) An account of experiments on the effect of various types of radiation on the elastic properties of quartz indicated by changes in the frequency of piezoelectric oscillation. The radiation produces an exponential fall in frequency to a saturation value, accompanied by a smoky coloration proportional to the change in frequency. Natural smoky quartz possesses a similar elastic deficiency which can be removed together with the coloration by baking. The effect, which is of the order of 0.01 per cent of frequency, may be repeated reversibly by successive irradiation and baking. These results are relevant to the ascription of the origin of smoky quartz to natural radioactive radiation, but the effects of the artificial and presumed natural radiation differ in some respects. For instance natural smoky specimens have much smaller elastic deficiency in relation to the coloration than those irradiated artifically.

3310 549.514.1 The Breaking up of Single Crystals of Quartz-D. D'Eustachio and S. B. Brody. (Phys. Rev. vol. 69, p. 256; March 1-15, 1946.) Quartz wafers prepared by etching from wafers 75 to 100 microns thick are found no longer to be single crystals when they become thinner than 25 microns. Abstract of an American Physical Society paper.

549.514.1 Thermal Recrystallization of Quartz-D. D'Eustachio and S. Greenwald. (Phys. Rev., vol. 69, pp. 532-533; May 1-15, 1946.) A further report on quartz wafers, 25 to 30 microns thick, which, though prepared from single crystals, are no longer single crystals themselves. The wafers are polycrystalline, neighboring crystals being disoriented by one or two degrees. The single crystalline condition may be recovered by heating, and return to the polycrystalline state occurs if the specimen is bent a number of times round a cylindrical rod. For previous work see 3310 above (D'Eustachio and Brody).

3312 549.514.1 Preparation of Synthetic Quartz-N. Wooster and W. A. Wooster. (Nature (London), vol. 157, p. 297; March 9, 1946.) Spezia's method has been confirmed but found unsuitable for industrial production. In a new method, perfect but small crystals are produced by heating fused silica in a solution of sodium metasilicate.

621.314.2:621.395:621.316.974 3313 The Magnetic Screening of Telephone Transformers-Nucci. (See 3429.)

621.314.632:546.289 3314 The Photo-Diode and Photo-Peak Characteristics in Germanium-S. Benzer. (Phys. Rev., vol. 70, p. 105; July 1-15, 1946.) When certain germanium crystals are touched with a metal point the saturation current depends on the illumination level and temperature. The maximum photo-effect occurs at about 1.3 microns while for white light the sensitivity is several milliamperes per lumen. The peak in the current versus voltage characteristic may be eliminated by raising the temperature or level of illumination sufficiently; this behavior is reversible and may be applied in the design of a trigger photocell. Abstract of an American Physical Society paper.

3315

621.315.58.029.54/.64 3315 The Electrical Properties of Salt-Water Solutions Over the Frequency Range 1-4000 Mc/s-R. Cooper. (Jour. I.E.E. (London), part I, vol. 93, p. 358; August, 1946.) Long summary of 1880 of July.

621.315.59

The Energy of Impurity Levels in Semi-Conductors-B. Serin. (Phys. Rev., vol. 70, p. 104; July 1-15, 1946.) Abstract of an American Physical Society paper.

3317 621.315.61+537.226 Dielectrics in Theory and Application-

(Nature (London), vol. 158, pp. 121-124; July 27, 1946.) A report of discussions at meetings of the Royal Institute of Chemistry with the Institute of Physics, and of the Faraday Society. The former surveyed the fields of physical theory, chemical preparation and industrial applications; the latter dealt with surveys and original papers on the present state and immediate trends of physical-chemical and physical research. Two important contributions were concerned with the theory of the internal field of dielectrics, and with advances in high-frequency dielectric measurements

621.315.612

Ceramic Dielectrics-D. C. Swanson. (Phys. Rev., vol. 69, p. 546; May 1-15, 1946.) A study of the dielectric properties of certain ceramic alloys having dielectric constants of several thousand and resistivities of 10⁶-10¹⁵ Ω. The materials show marked change in electrical properties with change in temperature and applied voltage. Proper choice of the alloys will give almost any desired electrical property. Abstract of an American Physical Society paper.

621.315.612.4

Dielectric Constants of Some Titanates-P. R. Coursey and K. G. Brand. (Nature (London), vol. 157, pp. 297-298; March 9, 1946.) Addition of metallic titanates to a ceramic mix raises the permittivity to peak values as high as 44,000 at a temperature which is characteristic of the material. Solid solutions of two or more titanates exhibit similar properties, a mixture of two showing a linear relation between composition and the temperature of peak permittivity. Capacitors with positive or negative temperature coefficients of capacitance may be constructed with these dielectrics.

621.315.618.2.015.5:621.3.029.64

Lowering of Electrical Breakdown Field Strength at Microwave Frequencies Due to Externally-Applied Magnetic Field-D. Q. Posin. (Phys. Rev., vol. 69, p. 541; May 1-15, 1946.) Studies of 3-centimeter microwave breakdown of air gaps in a waveguide reveal the following effects: (1) a gap on the verge of sparking can be made to spark over by the approach of a permanent magnet; (2) a magnet with small pole face may produce a 20 per cent decrease in the breakdown field strength; (3) a magnet moved rapidly near the gap may lower the breakdown field strength by a factor of 2 or more; (4) no effect is produced by a magnetic field at right angles to the microwave electric vector; and (5) effects (2) and (3) are much diminished when broadface magnets are used. Various possible explanations of the effects are mentioned, but none appears entirely adequate.

3321 621.316.842+621.315.553 Resistance Materials for Standard Re-

3316

3318

3319

sistors-A. Schulze. (Arch. Tech., Messen, pp. T46-48; April, 1940.) Survey of electrical, thermal, and mechanical properties of manganin, isabellin (Cu-Mn alloy with Al) and novokonstant (Cu-Mn alloy with Al, Fe). Recommended technique for the construction of standard-resistance windings is described.

621.319.7:621.385

3322

3323

Potentiograms and Electron Trajectories in Electrostatic Fields-A. Pinciroli and M. Panetti. (Alla Frequenza, vol. 14, pp. 81-95; March-June, 1945. With English, French and German summaries.) A general review of methods for plotting electrostatic fields is given. The electrolytic tank is considered in detail with an examination of the sources of error. Experimental results for structures typical of tube electrode systems are described.

621.357.7:546.97

Purification of Rhodium Plating Baths-(Jour. Frank. Inst., vol. 242, pp. 64-65; July, 1946.) A note from the National Bureau of Standards on the impurities in rhodium phosphate plating baths that cause imperfect coatings. The addition of potassium ferrocyanide will precipitate the impurities which can then be filtered out.

621.793:546.74 3324 Nickel Plating on Steel by Chemical Reduction-(Jour. Frank. Inst., vol. 242, p. 64; July, 1946.) A short note from the National Bureau of Standards. "The deposition is brought about by the chemical reduction of a solution of a nickel salt with hypophosphites. The reaction is catalyzed by steel and nickel, and deposition of nickel occurs only on the surfaces of these metals."

621.396.6(213)

3325 Deterioration of Radio Equipment in Damp Tropical Climates and Some Measures of Prevention—Healy. (See 3502.)

666.3+621.315.612 3326 The Scientific Basis of Modern Applications of Ceramic Raw Materials-W. Steger. (Chalmers Tekn. Högsk. Handl., no. 32, 23 pp.; 1944. In German.) A brief survey of the composition and properties of ceramics in use for technical applications, with some indication of process of manufacture. The materials considered are: (1) systems with one component: silicic acid, aluminium oxide, alkaline earth oxides, other highly refractory oxides, titanium dioxide; (2) binary systems: silicic acid-aluminium oxide, silicic acid-alkaline earth oxides other simple silicates, non-silicate oxide systems; and (3) ternary systems; silicic acid-aluminium oxide-alkali oxides, silicic acid-aluminium oxide-alkaline earth oxides.

666.3

The Evolution of Ceramic Technique in the Laboratories of the Compagnie General de Télégraphie sans Fil (C.S.F.). C.S.F. Processes for the Preparation of High Precision Ceramics -F. Violet and R. Lecuir. (Ann. Radioélect., vol. 1, pp. 152-159 and 242-255; October, 1945 and January, 1946.)

MATHEMATICS

512.37 3328 Approximating Formulae-W. Luchsinger. (Brown Boveri Rev., vol. 32, pp. 238-242; July, 1945.) Simple explanation of methods of fitting algebraic curves to experimentally determined data.

517.432

The Steady-State Operational Calculus-D. L. Waidelich: N. F. Riordan. (PRoc. I.R.E. AND WAVES AND ELECTRONS, vol. 34, pp. 579-580; August, 1946.) Discussion of 1276 of May (Waidelich).

517.942

On Stokes Functions-P. G. Bordoni. (Alla Frequenza, vol. 14, p. 227; September-December, 1945.) Abstract of a paper from Commentationes Pont. Acad. Sci. (Vatican City) vol. 9, pp. 87-113; 1945, which includes tables and graphs of the first, second, and third order functions useful in acoustical problems.

518.2

3331 Integration of sin²x dx/x-S. M. Christian. (Phys. Rev., vol. 69, p. 546; May 1-15, 1946.) Notice of the preparation of table of values of the definite integral, from 0 to x. Typical values are given for x in the range 0.5 to 11. Abstract of an American Physical Society paper.

3332 Nomograph Construction: Part 2-Charts with Complicating Factors or Constants-F. Schunaman. (Radio Craft, vol. 17, pp. 690, 719; July, 1946.) For part 1 see 2830 of October.

518.5

3333 An Improved Slide Rule for the Addition of Squares-B. H. Dawson. (Science, vol. 104, p. 18; July 5, 1946.) A modification of Morrell's method (2616 of September) using a pair of scales instead of a single scale. See also 2956 of October (Dempster).

518.61

On a New Method of Approximate Integration of Second Order Differential Equations-F. Rabinovitch. (Ann. Radioélect., vol. 1, pp. 134-151; October, 1945.) "This method, based on extrapolation, is a generalized extension of Adams' method for equations of the first order. It embraces as particular cases most of the classical methods of approximate integration, notably Störmer's. The new method is applied to the equation $d^2x/dt^2 = f(x) \sin t$ occurring in the study of the motion of a particle in an oscillating field of force. Formulas for approximate integration, and estimates of the resulting errors are given.

"The treatment concludes with a comparison of the new method and Störmer's for some numerical cases related to the problem of electron motion in a nonuniform high-frequency field." Corrections are given in Ann. Radioélect., vol. 1, p. 276; January, 1946.

519.283:53.08 3335 Experimental Data and 'Sufficient' Accuracy-H. A. Hughes. (Nature (London), vol. 158, p. 29; July 6, 1946.) Using the formula $\alpha = 0.6745 \sqrt{[\Sigma(x_n - M)^2/n(n-1)]}$ to obtain the most probable error α of the arithmetic mean of a series of π distance-measurements $x_1 \cdots x_n$ it was found that at least 7 observations were necessary to get M to within 2 per cent in one case. 10 was regarded as a safer minimum in general.

519.283:621.318.572

3327

3329

On the Statistical Treatment of Counting Experiments in Nuclear Physics-N. Hole. (Ark. Mat. Astr. Fys., vol. 33, part 2, section A, 11 pp.; August 30, 1946. In English.) Formulas are developed for the statistical distribution of the time intervals between impulses observed on counting apparatus, and the influence of the recovery time ("resolving power") of the counter is considered theoretically. The case of a pair of counters in cascade is also treated.

51(075):62

Engineering Mathematics. [Book Review] -H. Sohon. D. Van Nostrand Co. Inc., New York, 1944. (Jour. Appl. Phys., vol. 17, p. 536; June, 1946.) The book "is intended to strengthen the student in algebra and to provide him with certain mathematical tools which depend on the calculus." See also 2236 of August.

51(075):621.396

3338 Basic Mathematics for Radio Students. [Book Review]-F. M. Colebrook. Iliffe, London, 270 pp., 10s.6d. (Nature (London), vol. 158, p. 254; August 24, 1946; R.S.G.B. Bull., vol. 22, p. 45; September, 1946; Elect. Rev., (London), vol. 139, p. 144; July 26, 1946.) "[The author] has rendered a valuable service to students and engineers alike " " substantial gap in the literature for teaching potential engineers has been filled."

518.2:016

3330

3334

3336

3337

3339 An Index of Mathematical Tables. [Book Review]-A. Fletcher, J. C. P. Miller, and L. Rosenhead. Scientific Computing Service, London, 451 pp., 758. (*Elec. Rev.* (London), vol. 139, p. 388; September 6, 1946; *Proc.* Phys. Soc., vol. 58, pp. 491-492; July 1, 1946.) Aim is to provide "a working tool for the working scientist in a wide variety of investigations."

519.2(075.8)

Elementary Statistics. [Book Review]-H. Levy and E. E. Preidel. Ronald Press Co., New York, 1945, 184 pp., \$2.25. (Jour. Appl. Phys., vol. 17, pp. 535-536; June, 1946.) ... an introduction to more advanced texts, and, as such, should contribute to the growing use of statistical methods."

MEASUREMENTS AND TEST GEAR 3341 53.081

A Discussion on Units and Standards-(Proc. Roy. Soc. A, vol. 186, pp. 149-217; July 9, 1946.) A symposium of short papers by staff of the National Physical Laboratory on units and standards studied at the Laboratory. Each paper gives the main technical details and a short history.

621.316.842+621.315.553 3342 Resistance Materials for Standard Re-

sistors-Schulze. (See 3311.)

621.317.083.7 3343 Telemetering Equipments for the Transmission of Any Desired Measurements Over Long Distances-F. Jaggi. (Brown Boveri Rev., vol. 32, pp. 147-148; April, 1945.) A short account of a system using a variable audio frequency for remote indication.

621.317.1.011.5+621.396.11.029.64+535.343. 4]:546.171.1 3344

The Inversion Spectrum of Ammonia-Good. (See 3236.)

621.317.333.4 3345 Two Methods of Localising Cable Faults-J. M. Allan. (P. O. Elec. Eng., Jour., vol. 39, part 2, pp. 70-72; July, 1946.) A modification of the Varley test which nullifies the disturbing effects of varying induced currents, and a method of testing when no good wire is available.

621.317.334/.335]:621.315.2 3346

Measurement of Inductance and Capacitance of Conductors and Cables-O. Naumann. (Arch. Tech. Messen, pp. T63-65; June, 1940.) Survey of direct-current methods of measurement (Thomson comparison method, "shared charge" method, Sauty bridge), and of lowfrequency methods (Wheatstone bridge, Maxwell bridge, Geyger's compensation circuit, Wien and Wien-Wagner bridge and its derivatives, Felten and Guilleaume's impedance bridge).

621.317.39:535.34

The Measurement of Nuclear Spin, Magnetic Moment, and Hyperfine Structure Separation by a Microwave Frequency-Modulation Method—A. Roberts, Y. Beers and A. G. Hill. (Phys. Rev., vol. 70, p. 112; July 1-15, 1946.) Abstract of an American Physical Society paper.

3347

621.317.39.029.64:537.312.62:546.815-1 3348 Superconductivity of Lead at 3-Cm Wave-

Length-Bitter, Garrison, Halpern, Maxwell, Salter, and Square. (See 3258.)

621.317.4

Some Uses of the Magnetic Potentiometer for the Determination of Magnetization Curves upon Open-Circuited Specimens-T. A. Margerison and W. Sucksmith. (Jour. Sci. Instr., vol. 23, pp. 182-184; August, 1946.)

621.317.71/.72]:621.314.632

Moving-Coil Rectifier Instruments for A.C. Measurements: Part 1-Equivalent Circuit Diagram and Temperature Errors: Part 2-Frequency Error, Back-Current Error, Ageing Error and Waveform Error-K. Maier. (Arch. Tech. Messen, pp. T57 and T69-70; May and June, 1940.)

621.317.7

Electrical Measuring Instruments-F. E. Ockenden and D. C. Gall. (Jour. I.E.E. (London), part I, vol. 93, pp. 348-354; August, 1946.) A review of progress during the past decade, discussing the design and construction of industrial instruments and the wide applications of electrical and electronic instruments to scientific measurement.

621.317.725

An Electrostatic Generating Voltmeter for Measurement of Very Small E.M.Fs.—S. A Scherbatskoy and R. E. Fearon. (Phys. Rev., vol. 70, p. 96; July 1-15, 1946.) Short notes describing a null instrument having good longterm zero stability and "nearly complete immunity to mechanical or thermal abuse. Ionization currents of as low as 10⁻¹⁹ ampere "or better" can be measured.

621.317.75.087.5:522.5

On the Registration of the Exact Time of Each Exposure by Cinematographic Photography-K. G. Malmquist, H. Norinder and W. Stoffregen. (Ark. Mat. Astr. Fys., vol. 33, part 1, section B, 7 pp.; August 26, 1946.) In English.) The exact time of exposure of film is measured by means of a double cathode-ray tube. The method is of use for solar eclipse observations.

621.317.761

3354 A Standard-Frequency Generator for High-Precision Measurements-M. Boella. (Alla Frequenza, vol. 14, pp. 183-194; September-December, 1945. With English, French, and German summaries.) A laboratory equipment based on a quartz oscillator at 100 kilocycles giving a series of over 55,000 single standard frequencies between 10 kilocycles and 30 megacycles. The interval in this range varies from 3 kilocycles at the high-frequency end to 2 cycles at the low end. With an interpolating low-frequency meter the measurement of a radio frequency can be carried out to a precision not less than 104 times that of the interpolator.

621.317.79

3355 Constructing a Grip Dip Meter-H. Burgess (Radio News, vol. 36, pp. 50-51; August, 1946.) Constructional details of a test instrument comprising a variable-frequency oscillator with a mixer tube, and with a milliammeter connected in its grid lead. It can be used as a simple signal generator or frequency meter.

621.317.79:621.385.1 3355 Tube Checker Modernizer-H. A. Forter. (Radio Craft, vol. 17, pp. 753-803; August, 1946.) Constructional details of an additional panel which may be added to an existing tube testor to make it suitable for testing modern tubes.

3357

3358

3359

3360

3361

3365

621.317.79:621.396.621

Output Systems of Signal Generators-A. Peterson. (Gen. Radio Exp., vol. 21, pp. 1-8; June, 1946.) Discussion of errors in measurement, particularly at frequencies of 5 to 30 megacycles, due to the form of the output circuit and lead. Four arrangements are considered analytically in which the line is either (a) matched at both ends, (b) matched at the generator end, (c) matched at the load end, or (d) unmatched. The output electromotive force and impedance are presented in graphical form as a function of frequency.

621.317.79:621.396.621

The Transigenerator-R. E. Altomare. (Radio Craft, vol. 17, pp. 686, 722; July, 1946.) Constructional details of a simple transitron signal generator for the range 160 kilocycles to 8 megacycles.

621.392

621.396.24.029.63

3349

3350

3351

3352

3353

The Relation between Nodal Positions and Standing Wave Ratio in a Composite Transmission System-Feenberg. (See 3175.)

621.392:621.317.33.029.64

The Use of the Impedance Concept as Applied to Wave Guides-Williams and Bolton. (See 3178.)

Development Work in the Decimetre Wave Field-R. Schüpbach and A. de Quervain. (Brown Boveri Rev., vol. 31, pp. 292-295; September, 1944.) A general discussion of measurement techniques and screening, and a description of cavity-resonator couplings. Curves are given for a filter consisting of two inductively coupled resonators which are damped to give a Q of 350 and a coupling factor of 0.51 per cent.

621.396.611.21:529.786 3362 A Quartz Clock-Booth. (See 3388.)

621.396.611.21:621.396.615

3363 A 100 kc/s Quartz Frequency Sub-Standard and Harmonic Generator-E. W. Nield. (R.S.G.B. Bull., vol. 22, pp. 39-40; September, 1946.) An inductance-capacitance circuit tuned to the resonant frequency of the crystal is placed in series with the latter; this arrangement effectively cancels stray reactances which might otherwise impair stability. A 50 per cent change of supply voltage produces a fundamental frequency change of only a fraction of a cycle per second.

621.397.79:621.396.621 3364 Tracer Plus Power Supply-W. H. Watkins. (Radio Craft, vol. 17, pp. 756-791; August, 1946.) Wiring diagram and constructional details of an equipment suitable for servicing tests at radio frequency, intermediate fre-quency and audio frequency on radio receivers and sound equipment.

OTHER APPLICATIONS OF RADIO AND ELECTRONICS

518.5:621.3

Computation Problems in Circuit Design-G. T. Baker. (P.O. Elec. Engrs. Jour., vol. 39, part 2, pp. 58-63; July, 1946.) The fundamental processes of computation, when numbers are expressed on the binary scale, may be represented physically by the action of a simple two-position relay. Circuits are given which perform these operations, with extension to the decimal scale. The technique is illustrated by an application to time-measurement problems.

621.317.083.7 Telemetering Equipments for the Transmission of Any Desired Measurements Over Long Distances-Jaggi. (See 3343.)

621.317.39:537.221:544.8:669.018 3367 Sorting Alloys-N. F. Agnew. (Electronics,

vol. 19, pp. 124-125; September, 1946.) Short description, with a circuit diagram, of a device for the nondestructive identification of allovs. A piece of standard metal is rubbed against the metal to be tested, and the resulting triboelectric voltage is measured. The instrument is calibrated by reference to materials of known composition.

621.317.39:620.172.222 3368

The Electrical Measurement of Strain-S. C. Redshaw. (Jour. R. Aero. Soc., vol. 50, pp. 568-602; discussion, pp. 603-612; August, 1946.) Description of strain gauges in which mechanical strains produce variations in electrical parameters. Resistance-type gauges consisting of fine wire mounted on slips of paper cemented to specimens under test are found to be of most general use.

621.317.39:621.753.3

3369 Capacitive Micrometer-R. W. Dayton and G. M. Foley. (Electronics, vol. 19, pp. 106-111; September, 1946.) The principle used is that the change in capacitance between an electrode and the specimen examined is used to change the frequency of an oscillator, and hence, by means of a discriminator following a frequency converter and amplifier, to produce a proportional voltage for driving an indicator. Circuit diagrams of two such devices are given, and applications to the measurement of lathe-spindle movement and to dilatometers, manometers, roughness gauges, and hardness testers are described briefly. Design considerations and limits to the technique are discussed. Performance characteristics of typical instruments are given in tables. See also 2991 of October (Hayman), and 3370 below (Foley).

621.317.39:621.753.3:621.941 3370

Testing of Precision-Lathe Spindles-G. M. Foley. (Trans. Amer. Soc. Mech. Eng., vol. 67, pp. 553-556; October, 1945.) An account of an application of the equipment described in 3369 above (Dayton and Foley).

621.317.39.083.+621.316.7]: [533.275+536.5 3371

Recorder-Controller for **Temperature** and Humidity-V. D. Hauck, R. E. Sturm, and R. B. Colt. (Electronics, vol. 19, pp. 96-99; September, 1946.) Temperature is indicated by a temperature-sensitive resistor, and humidity by means of a hair hygrometer that controls the position of a contact on a resistor. The recorder (of which a simplified circuit diagram is given) scans eight pairs of remote measuring units every fifteen minutes. The resistors in each unit control a recorder or humidity-control devices through a self-balancing bridge. A general technical description of the device is given.

621.317.39.087.4:533.275

3372

Humidity Recording-P. E. Maier. (Elec. Ind., vol. 5, pp. 70, 102; July, 1946.) Description of an equipment for continuously recording the relative humidity of a gas. A dew-point mirror on a copper tube is observed with a photocell. When no dew is present, relays cause cooling water to flow in the tube and the flow stops when the dew forms. The temperature of the tube, therefore, hunts, with the dew point as maximum. The temperatures of the pipe and of the gas are measured with resistance thermometers that are connected in a circuit arranged to combine the readings to give the value of the relative humidity on a recording ohmmeter.

621.317.755:535.33:535.61-15 3373 "Instantaneous" Presentation of Infra-Red

Spectra on a Cathode Ray Screen-E. F. Daily and G. B. B. M. Sutherland. (Nature (London), vol. 157, p. 547; April 27, 1946.) The radiation is interrupted at 15 to 20 cycles, and falls on a thermistor bolometer after passing through the spectrometer. The output of the bolometer bridge is amplified, rectified, and applied to the Y plates. X-plate deflection is associated with the frequency scan. See also 3374 below (King, Temple and Thompson).

621.317.755:535.33:535.61-15

Infra-Red Recording with the Cathode Ray Oscilloscope-J. King, R. B. Temple. and H. W. Thompson. (Nature (London), vol. 158, pp. 196-197; August 10, 1946.) Brief description of an equipment similar to that used in 3373 above (Daly and Sutherland).

621.365.5

Medium Frequency Power in Industry-H. Fehlmann and V. Widmer. (Brown Boveri Rev., vol. 31, pp. 159-162; May, 1944.) Brief account of the consideration of an induction furnace plant, with considerations on the design of unipolar generators, for operation in the range 250 to 10,000 cycles.

621.365.92

Basic Factors in Dielecrtic Heating: Part 1-E. S. Winlund. (Elec. World, vol. 126, p. 80; August 3, 1946.) Formulas, with numerical examples relating minimum heating time, transfer efficiency, and required power, to the nature and thickness of the material to be heated and to generator frequency. First of three articles.

621.365.92 3377 Dielectric Heating-A. J. Maddock. (Jour. Sci. Instr., vol. 23, pp. 165-173; August, 1946.) A general review of the subject, including an outline of the theory and an account of useful applications.

621.38:6

3378 Industrial Electronics-(Engineer (London), vol. 182, pp. 54-55; July 19, 1946.) Some examples of thyratron and ignitron control devices shown at the British Thomson-Houston symposium. Particular attention is paid to motor control, voltage regulation, and resistance welding. For another account see Engineering (London), vol. 162, p. 68; July 12, 1946.

621.383:621.316.578:628.971.6 3379 Photoelectric Street Lighting Control-C. E. Marshall. (Electronics, vol. 19, pp. 134-136; September, 1946.) Description, with circuit diagrams, of a device for switching the lights according to the local degree of darkness. Features such as proper selection of time delays and operating thresholds are discussed in some detail.

621.385.833+537.533.72

3380 The Variation of Resolution with Voltage in the Magnetic Electron Microscope-Cosslett. (See 3245.)

621.385.833+537.533.72 3381 A Study of Distortion in Electron Microscope Projection Lenses-J. Hillier. (Jour. Appl. Phys., vol. 17, pp. 411-419; June, 1946.) "The origin of distortion...is dis-1946.) cussed and the serious nature of its effect on the measurement of particle size distributions is pointed out. Methods of measuring distortion are described. By means of first-order theory it is shown to be possible to correct distortion by the use of a two-element projection lens. The degree of correction obtainable is shown to be satisfactory for most practical purposes. A double gap projection lens polepiece and the correction of distortion obtained with it are described."

621.385.833+537.533.72 3382 A Zonally Corrected Electron Lens-D. Gabor. (Nature (London), vol. 158, p. 198; August 10, 1946.) A new type of lens to reduce spherical aberration in an electron microscope. uses a central wire surrounded by several annular electrodes. It is unsuitable as a microscope objective, but may be used to correct objectives. This lens also reduces depth of focus and may be useful for exploring objects in depths.

621.385.833

3374

3375

3376

Some Recent Development in the Field of Electron Microscopy-R. W. G. Wyckoff. (Science, vol. 104, pp. 21-26; July 12, 1946.)An account of the present position and future possibilities of electron microscopy for the examination of tissues, surface structure, and organisms of interest in bacteriology.

3383

621.385.833

3384 Electron Optics and Its Application to the Electron Microscope-P. Chanson. (Onde Élect., vol. 26, pp. 95-100; March, 1946.) A description of the general theory, with particular reference to the wave interpretation of highspeed electrons. The author concludes with a short note on the present advanced state of development of this subject in France. In particular, work at the Collège de France is pointing the way to a "proton microscope," with the possibility of magnifications up to 400,000 (see 2659 of September-Magnan, Chanson and Ertaud).

621.385.833 3385 Contour Fringes and Asymmetries of Electron Microscope Objectives-J. Hillier and E. G. Ramberg. (Phys. Rev., vol. 70, p. 113; July 1-15, 1946.) Abstract of an American Physical Society paper.

621.385.833 3386 Modifications of Specimens in Electron Microscopy-L. Marton, N. N. Das Gupta and C. Marton. (Science, vol. 104, pp. 35-36; July 12, 1946.) Stresses the necessity for obtaining independent evidence on the stability of specimens under examination.

621.385.833 3387 Frozen-Dried Preparations for the Electron Microscope-R. W. G. Wyckoff. (Science, vol. 104, pp. 36-37; July 12, 1946.) A method of preparation for obtaining specimens without distortion or shrinkage.

621.396.611.21:529.786 3388 A Quartz Clock-C. F. Booth. (P. O. Elec. Eng. Jour., vol. 39, part 2, pp. 33-37; July, 1946.) A general description of the principles, with details of equipment being produced by the British Post Office for the Royal Observatory.

621.396.931

3389 New Radio Warning Device Tested by Chicago and North Western-(Telegr. Teleph. Age, vol. 64, pp. 26, 27; August, 1946.) Note on a new "slow-tone" device, for use on trains, which broadcasts a series of high-pitched notes at four-second intervals, allowing voice communication at the same time.

623.26:621.396.9 3390 How Mine Detectors Work-E. Leslie. (Radio Craft, vol. 17, pp. 676, 721; July, 1946.) General description, with circuit diagrams, of one audio-frequency mutual-inductance type for detecting metallic mines.

786.6:621.383

3391 Photoelectric Tone Generator-L. E. Greenlee. (Electronics, vol. 19, pp. 93-95; September, 1946.) An account of the device de-scribed in 2668 of September (Campbell and Greenlee).

PROPAGATION OF WAVES

523.78: [551.51.053.5+621.396.11 3392 The Solar Eclipse of 1945 and the Propagation of Radio Waves-R. L. Smith-Rose. (Alta Frequenza, vol. 15, pp. 37-38; March, 1946.) Long summary in Italian of 1831 of July.

537.56:621.396.11 3393

Conduction and Dispersion of Ionized Gases at High Frequencies-Margenau. (See 3246.)

621.396.11 Study of the Propagation of Electromagnetic Waves in Mountains, Valleys, Fiords,

etc .-- B. Polié. (Onde Élect., vol. 26, p. 7A; March, 1946.) Abstract of a paper appearing in T.S.F. Technik, vol. 33, April, 1944, and in Jour. Télécomm., vol. 7, pp. 57-62; May, 1945.) Vilbig has suggested that a valley acts as a waveguide, only propagating waves below a critical wavelength. The author has tested the theory with sheet-iron models (scale about 1:500) at wavelengths 0.8 to 4 meters. There was a cutoff wavelength equal to twice the valley width except for polarization normal to the valley wall, when there was no cut off, but appreciable attenuation at all wavelengths.

621.396.11:551.51.053.5 3395 The Ionosphere and Short-Wave Broadcasting-T. W. Bennington. (B.B.C. Quart., vol. 1, pp. 29-32; April, 1946.) An elementary survey.

621.396.11.029.6:546.21-1 The Absorption of One-Half Centimeter Electromagnetic Waves in Oxygen-R. Beringer. (Phys. Rev., vol. 70, pp. 53-57; July 1 and 15, 1946.) "The apparatus employs a [1-centimeter] klystron oscillator, crystal-rectifier frequency-multiplier, wave guide absorption, path, and crystal detector. The measured values [for oxygen and oxygen-nitrogen mixtures] are in agreement with the theory of Van Vleck [unpublished reports] both as regards the absolute value of the absorption . . . and the dependence on pressure." The sharp peak of the absorption curve occurs very close to 0.5 centimeters wavelength, and at the peak gives rise to attenuations (at normal pressure) of about 67 and 15 decibels per kilometer for pure oxygen and air respectively.

621.396.11.029.64:535.343.4 Expected Absorption in the Microwave Region by Water Vapor and Similar Molecules -Hainer King and Cross. (See 3235.)

RECEPTION

621.396.619.018.41 3398 Frequency Modulation: Part 3-Courtillot. (See 3420.)

621.396.619.018.41

621.396.621

3399

The Mutual Effect of Two Frequency Modulated Waves in Limiters-P. Güttinger. (Brown Boveri Rev., vol. 31, pp. 296-297; September, 1944.) The frequency spectrum is calculated. It is shown that the audio frequency of only one transmitter remains. The audio frequency of the other transmitter and overtones and beat notes of the audio frequencies are absent. The disturbing element consists chiefly of beat notes due to the difference between the carrier frequencies and their harmonics.

621.396.621+621.396.61 3400 Inside the Handie-Talkie-Scott. (See 3449.)

3401 Some Radio Receiver Design Considera-

tions-P. P. Di Roberto. (Alla Frequensa, vol. 14, pp. 232-234; September-December, 1945.) Long summary of a paper in Boll. Inform. Comp. Gen. Elell., pp. 8-15; April, 1945.

621.396.621 3402 The Radio News Circuit Page-(Radio News, vol. 36, pp. 64, 71; August, 1946.) For previous parts see 2680 of September.

621.396.621

Radio Data Sheet 337-(Radio Craft, vol. 17. p. 691; July, 1946.) Servicing data for Emerson Radio Models 501, 502, and 504,

621 396 621 3404 Radio Data Sheet No. 338-(Radio Craft, vol. 17, p. 762; August, 1946.) Servicing data for General Electric Model 250 receiver.

621.396.621+621.396.61].029.62 3405 Transmitter-Receiver for Ham Beginners: Part 1-C. M. Sullivan. (Radio News, vol. 36, pp. 32, 140; August, 1946.) A description of the design and construction of a superregenerative receiver for use in the 144- to 148-megacycle band. The audio-frequency section is used as the modulator of the transmitter.

621.396.621+621.396.61].029.63 3406 2,700 Mc/s Transceiver-K.H. (See 3488.)

621.396.621.029.64 3407 Low Noise Microwave Video Receiver Design-W. J. Zable. (Radio, vol. 30, pp. 10, 32; July, 1946.) New design factors for a lownoise input circuit comprising a neutralized triode followed by a grounded-grid output tube are discussed. The analysis of a x network suitable for coupling to a crystal mixer is given.

621.396.621.54

Practical Radio Course. Part 47-A. A. Ghirardi. (Radio News, vol. 36, pp. 46, 111; August, 1946.) An account of multigrid mixers and converters. For previous parts see 2684 and 2692 of September and back references.

621.396.622.4.029.64:537.228.4 3409 Optical Microwave Detector-P. H. Miller, Jr., and B. Goodman. (Phys. Rev., vol. 70, p. 110; July 1-15, 1946.) A proposed device in which plane-polarized monochromatic light is modulated in passing through a Kerr cell in a resonant cavity and through an analyzer. The spacing of the sidebands so produced about the light frequency may be measured on an interferometer. The instrument is expected to have a sensitivity of 10⁻¹ watts, but means of improving this to 10⁻¹² watts are envisaged. Abstract of an American Physical Society paper.

621.396.645 3410 Design of Broad Band I.F. Amplifiers-Baum. (See 3223.)

621.396.822 3411 Statistical Analysis of Spontaneous Electrical Fluctuations-R. Fürth and D. K. C. MacDonald. (Nature (London), vol. 157, p. 807; June 15, 1946.) A recently developed statistical theory of electrical fluctuations such as shot effect has been found to give good agreement with experimental results.

621.397.62

Television Receivers-Monfort. (See 3447.)

STATIONS AND COMMUNICATION SYSTEMS

621.396:061.5

High-Frequency and Communications Engineering-(Brown Boveri Rev., vol. 32, pp. 7377; January-February, 1945.) A brief review of progress and work of the Brown Boveri Company in 1944 with special mention of stability tests on sets designed for aircraft communication purposes.

621.396.2

3403

3408

3412

3413

Mobile Relay Broadcasting-H. E. Ennes. (Radio, vol. 30, pp. 17-19, 30; July, 1946.) A pack transmitter is used at the scene of the broadcast. The transmission is picked up by a mobile unit and relayed to the nearest point that is linked to the studio by audio wire line. Detailed descriptions of the various equipments are given.

621.396.43 3415 Various Possible Applications for Beam Transmission-R. Schupbach. (Brown Boveri Rev., vol. 31, pp. 288-291; September, 1944.) Graphs give the maximum elevation of the ground permissible for a communication link on 75-centimeter wavelength, and a radio-telephone link using frequency modulation is described.

621.396.44+621.392.2]:551.574.7 3416 The Effect of Sleet on the Propagation of Carrier Waves along High-Voltage Transmission Lines-A. Wertli. (Brown Boveri Rev., vol. 31, pp. 362-366; November, 1944.) A short account of the experimental recording apparatus used on the Schwägalp-Säntis line together with photographs of the line and a typical record. No results are given.

621.396.44+621.398

Carrier-Current Communication over High-Voltage Transmission Lines-E. Hancess. (Brown Boveri Rev., vol. 31, pp. 335-339; October, 1944.) An outline of a system for a 10-kilovolt power line, with a description of the coupling units and protective devices, and a short consideration of the range and efficiency as limited by line noise and climatic conditions.

621,396.619.018.41

Frequency Modulation-P. Besson. (Onde Élect., vol. 26, pp. 239-256; June, 1946.) Conclusion of 2703 of September. See also 3419 and 3420 below (Matricon: Courtillot).

621.396.619.018.41

Frequency Modulation: Parts 1 and 2-M. Matricon. (Rev. Tech. Comp. Franç. Thomson-Houston, pp. 5-43; January, 1944.) An elementary survey dealing with general principles and the methods of generation of frequency-modulation waves. For part 3 see 3420 below. See also 3418 above (Besson).

621.396.619.018.41

Frequency Modulation: Part 3-E. P. Courtillot. (Rev. Tech. Comp. Franç. Thomson-Houston, pp. 3-24; October, 1945.) For parts 1 and 2 see 3419 above. This part deals with reception, including signal-to-noise ratio and distortion.

621.396.619.16

Pulse Modulating System-W. R. Greer. (Electronics, vol. 19, pp. 126-131; September, 1946.) Description of equipment similar to that described in 2315 of August (Kelleher) and back references.

621.396.712 3422 Studio Equipment: a New Design-H. D. Ellis. (B.B.C. Quart., vol. 1, pp. 21-28; April, 1946.)

621.396.712.004.5

Preventive Maintenance for Broadcast Stations-C. H. Singer. (Communications, vol. 26, pp. 33, 54; August, 1946.) A discussion of the facilities required for routine upkeep work, with advice on safety precautions. Third of a

series; for previous parts see 3055 of October and 2709 of September.

621.396.931.029.62

3424 A Method of Increasing the Range of V.H.F. Communication Systems by Multi-Carrier Amplitude Modulation-J. R. Brinkley. (Jour. I.E.E. (London), part I, vol. 93, pp. 360-362; August, 1946.) Summary of 2326 of August.

621.396.933

3414

Aviation Radio-G. Newstead. (Proc. I.R.E. (Australia), vol. 7, pp. 3-19; April, 1946.) A survey of the factors affecting the choice of frequency bands, the spacing of ground stations for communication purposes, navigation aids, and ground station design, with special reference to Australian conditions. Consideration is given to the effects at various frequencies of atmospherics, precipitation and man-made static, and of the ionosphere. Graphs show the variation of field strength with distance and flying height.

A description is given of the United States Civil Aeronautics Administration very-high-frequency (120 megacycles) radio range which provides course indication on a pointertype instrument with aural quadrant indication by the A-N system.

Problems discussed include operation of transmitters and receivers on sites remote from the airport and reception in proximity to the transmitter.

621.397.7

3417

3418

3419

3420

3421

3423

A Plan for Television Studios-P. Bax. (B.B.C. Quart., vol. 1, pp. 47-51; July, 1946.) The present studio arrangement at Alexandra Palace has several serious disadvantages. Improvements in design for a future station are discussed whereby the studios and the associated departments are arranged to form a segment of a circle, thus giving facilities for any subsequent expansion.

SUBSIDIARY APPARATUS

531.787 3427 An Accurate Bellowa Manometer-H. G. East and H. Kuhn. (Jour. Sci. Instr., vol. 23, p. 185; August, 1946.) Description of an instrument in which the expansion and contraction of bellows is transmitted to an optical lever. Pressure differences at any absolute value from vacuum up to several atmospheres

may be measured with a sensitivity of 5×10^{-4} millimeters of mercury. 621.3.085.22 3428

Meter and Instrument Jewels and Pivots-G. F. Shotter. (Jour. I.E.E. (London), part I, vol. 93, pp. 276-278; June, 1946.) Long ab-stract of paper published in *Jour. I.E.E.* (London), part II, vol. 93, February, 1946. For another abstract see 2738 of 1945.

621.314.2:621.395:621.316.974 3420

The Magnetic Screening of Telephone Transformers-P. Nucci. (Alla Frequenza, vol. 14, pp. 11-80; March-June, 1945.) With English, French and German summaries.) Screening for static and for low-frequency fields is investigated theoretically for magnetic and nonmagnetic materials. The screening effect is substantially independent of the shape and in some cases of the absolute dimensions of the screen; it increases linearly with screen permeability and with its thickness when this is small, and it also increases exponentially with the number of screens. The screening is expressed in terms of p = geometrical thickness versus penetration depth. If $p \gg 1$ the screening varies as e^p.

Experiments on single and multiple screens are described with particular reference to disturbing fields from main transformers. The screening effect follows the theoretical formulas

3425

qualitatively but is always smaller, probably due to uncertainty in the initial permeability and to decrease of the permeability with increasing frequency. The latter effect makes copper screens preferable above a certain frequency because of their higher conductivity.

Correction factors to the theoretical formula are given, enabling the attenuation of a screening system to be calculated with sufficient accuracy. The appendix contains a detailed mathematical treatment of screening applied to spherical, cylindrical, and multiple concentric screens.

621.314.2.029.5:621.396.621.54 3430 Two-Frequency I.F. Transformers-R. T. Thompson. (Electronics, vol. 19, pp. 142, 158; September, 1946.) Description of the construction and performance of transformers for use at 455 kilocycles and 8.3 megacycles.

621.314.5 3431 Modern Vibratory Power Converters-L. S. Distin. (P. O. Elec. Eng. Jour., vol. 39, part 2, pp. 53-57; July, 1946.) The principles of operation of rectifying and nonrectifying types, with a description of a rectifier type specially developed for service use.

621.314.6 3432 A Note on Empirical Laws for Non-Linear Circuit Elements and Rectifiers-Corbyn. (See 3195.)

621.316.5 3433 Circuit Interruption-R. W. J. Cockram. (Elec. Rev. (London), vol. 139, pp. 385-388; September 6, 1946.) A brief history of circuitbreaking techniques and detailed descriptions of two modern developments: (a) the microbreak switch; and (b) a modified form of the conventional tilting mercury switch.

621.318.323.2.042.15 3434 Brown Boveri Powdered-Iron Cores for Filter and Tuned Coils in Communications Engineering-E. Ganz. (Brown Bovers Rev., vol. 31, p. 331; September, 1944.) Figure-ofmerit Q is graphed against frequency (0-16 kilocycles) for various permeabilities of an annular core, and for different numbers of turns.

621.318.323.2.042.15:621.396.662.2 3435 Coils with Iron Dust Cores-I. Avanessoff. (Onde Élect., vol. 26, pp. 149-154; April, 1946.) An analysis of the losses associated with the cores, and a description of methods of measuring the components of these losses. It is shown that the performance of and the optimum frequency range for such coils can be calculated from a knowledge of the constructional details of the coil and the magnetic characteristics of the core. Experimental confirmation is given for a typical case.

621.319.51

Electrode Evaporation and the Electric Spark-F. L. Jones. (Nature (London), vol. 157, pp. 298-299; March 9, 1946.) An equation is given which shows that for minimum erosion the electrodes should be composed of a material with the highest boiling point, density, and thermal conductivity. Good agreement with experimental data has been obtained in the case of airplane-engine spark plugs.

621.384

The Racetrack: a Proposed Modification of the Synchrotron-H. R. Crane. The Stability of Orbits in the Racetrack-D. M. Dennison and T. H. Berlin. (Phys. Rev., vol. 69, pp. 542 and 542-543; May 1-15, 1946.)

621.384

Methods for Betatron or Synchrotron Beam

Removal-E. C. Crittenden, Jr. and W. E. Parkins. (Jour. Appl. Phys., vol. 17, pp. 444-447; June, 1946.) Two methods are discussed: one uses "a perturbing magnetic field to focus the electrons as they are made to leave the field of the accelerator by means of orbit expansion"; the other "makes use of a pulsed deflecting system where the deflecting field is applied during a time short compared to the period of revolution of the electrons.

621.384

Removal of the Electron Beam from the Betatron-L. S. Skaggs, G. M. Almy, D. W. Kerst, and L. H. Lanzl. (Phys. Rev., vol. 70, p. 95; July 1-15, 1946.)

621.384

The Stability of Synchrotron Orbits-D. M. Donnison and T. H. Berlin. (Phys. Rev., vol. 70, pp. 58-67; July 1-15, 1946.) Approximate solutions are obtained for the equations of motion of electrons in a synchrotron employing a frequency-modulated accelerating voltage. The electron orbits are shown to be stable. A numerical example is given.

621.396.66 3441 Broadcast Station Alarm System for Carrier and Program Failures-R. R. Taylor. (Communications, vol. 26, pp. 20, 55; August, 1946.) The circuit is given, and precautions to prevent actuation of the relays by momentary surges, etc., are detailed.

621.398:621.396.677 3442 A Simple Method of Controlling the Beam Antenna-Harris. (See 3191.)

TELEVISION AND PHOTOTELEGRAPHY

621.396.615.17: [621.317.755+621.397.331.2 3443 Current Oscillator for Television Sweep-

Sziklai. (See 3220.)

621.397

3444 First Facsimile Newspaper Printed in Air Transport's Cabin-(Telegr. Teleph. Age, vol. 64, pp. 12, 14; August, 1946.) Brief description of equipment which gives a reception rate of 500 words per minute, and which can be adapted to transmit and receive flight and weather information from aircraft in flight.

621.397(73) Apparatus and Standards for Television Broadcasting in the U.S.A.-D. G. Fink. (Alta Frequenza, vol. 15, pp. 40-43; March, 1946.) Summarized excerpts in Italian from 3955 of 1945.

621.397.611:621.383.8 3446 Television Pickup Tubes-Blanc-Lapierre and Chantereau. (See 3472.)

621.397.62

3436

3437

3438

3447 Television Receivers-R. A. Monfort. (Radio News, vol. 36, pp. 41-44, 150; August. 1946.) A discussion of some of the technical features, including aerial design, frequencymodulation sound channels, alignment of the video intermediate-frequency amplifier, the differentiating and integrating circuits in the synchronizing stages, and the use of test patterns.

621.397.813

Theoretical Investigation of the Distortion Television Signals in Valve Circuitsof Huber. (See 3228.)

3448

TRANSMISSION

 $621.396.61 \pm 621.396.621$ 3449 Inside the Handie-Talkie-R. F. Scott. (Radio Craft, vol 17, pp. 684, 724; July, 1946.) Description, with circuit diagrams, of the United States Army equipment SCR-536.

621.396.61

Broadcast Transmitter Designs as Determined by a Market Survey-M. R. Briggs. (Communications, vol. 26, pp. 11-14, 44; August, 1946.) An account of a survey of opinions and preferences of 91 station managers and operators.

621.396.61

3439

3440

3451 Special Transmitters for Wireless Broad-casting, Telephony, and Telegraphy-M. Dick. (Brown Boveri Rev., vol. 31, pp. 281-287; September, 1944.) Describes the mechanical layout, with the aid of photographs, of 10kilowatt transportable medium- and shortwave transmitters.

621.396.61:621.396.619.018.41 3452 Direct F.M. Transmitters-N. Marchand. (Communications, vol. 26, pp. 24, 54; August, 1946.) A typical transmitter is described consisting of an exciter unit employing a reactance-tube-modulated oscillator, frequency-multiplying stages, and radio-frequency class-C amplifier stages. The oscillator frequency is automatically stabilized by a two-phase motor in conjunction with a crystal. Part 8 of a series; for previous parts see 3105 of October and back references.

621.396.61:621.396.99 3453 Transmitting Stations for Police Forces and Fire Brigades-H. Labhardt. (Brown Boveri Rev., vol. 32, pp. 105-109; March, 1945.) A nontechnical description, with photographs, of the applications of short-wave and ultra-shortwave equipments.

621.396.61.029.56 3454

Flea Power Voice Transmitter-A. Β. Kaufman. (Radio News, vol. 36, pp. 35, 142; August, 1946.) Design and construction of a crystal-controlled single-tube transmitter of small size for operation in the 3-megacycle region. A pentode is used with suppressor-grid voice modulation.

621.396.61.029.58 3455 The "Monobloc" Short-Wave 15-kW Broadcast Transmitters Type TH 1417-M. Guérineau. (Rev. Tech. Compt. Franç. Thomson-Houston, pp. 31-36; April, 1946.) Detailed description of the mechanical and electrical design of a transportable and easily erected transmitter. At 95 per cent modulation the harmonic distortion is less than 2 per cent for 50 to 3000 cycles and 3.5 per cent for 3000 to 5000 cycles. The noise modulation is 55 to 60 decibel below the level corresponding to 80 per cent modulation at 800 cycles. The transmitter can operate on the broadcasting bands of 16, 19, 25, 31, and 41 meters.

621.396.61+621.396.621].029.62 3456 Transmitter-Receiver for Ham Beginners: Part 1-Sullivan. (See 3405.)

621.396.61.029.62 3457

Crystal Controlled 2-Meter Transmitter-W. D. Speight. (Radio News, vol. 36, pp. 36, 117; August, 1946.) Design and constructional details. A 7.2-megacycle crystal is used with one quintupler and two doubler stages feeding the final amplifier.

621.396.61+621.396.621].029.63 3458 2700 Megacycle Transceiver-K. H. (Electronics, vol. 19, pp. 104-105; September, 1946.) A short technical description of a portable (56 pound in two packs) highly directional telephone equipment, including a circuit diagram and sectional drawing of the cavity resonator used with the GL-446 lighthouse tube. Reliable range 30 miles.

621.396.61.029.64 3459 430 Mc with a 6F4-I. Queen. (Radio Craft, vol. 17, pp. 687, 724; July, 1946.) Con-

structional details of a coaxial-cavity amateur transmitter.

621.396.611.21:621.396.615 3460 A 100 kc/s Quartz Frequency Sub-Standard and Harmonic Generator-Nield. (See 3363.)

621.396.619 3461 Modulation: Part 1-Physical Basis [of Amplitude and Phase Modulation]-O. Henkler and R. Otto. (Arch. Tech. Messen, pp. T97-98; September, 1940.)

621.396.619 3452 Class B Modulator Design-Grant. (See 3221.)

621.396.619.018.41 3463 Frequency Modulation: Parts 1 and 2-Matricon. (See 3419.)

621.396.645.3 3464 [Short Wave] Transmitter Output Stage-H. D. Hooton. (Radio Craft, vol. 17, pp. 755, 799; August, 1946.) Constructional details of a neutralized push-pull radio-frequency amplifier designed to work from an exciter delivering 30 to 100 watts.

VACUUM TUBES AND THERMIONICS

537.221 3465 Contact Potential Difference in Crystal Rectifiers-W. E. Meyerhof. (Phys. Rev., vol. 70, p. 106; July 1-15, 1946.) The contact potential of (mainly) silicon-metal point contact rectifiers has been measured (a) by variation of direct-current contact resistance as a function of temperature, and (b) by the Kelvin method where the semiconductor and metal are not in contact. The poor correlation between the results from the two methods "is probably caused by layers on the semiconductor and metal which undergo changes in forming a contact." See also 1282 of May (Meyerhof and Miller). Abstract of an American Physical Society paper.

621.3.032.21:537.585 3466 Positive Ions from Thoriated Tungsten-G. A. Jarvis. (Phys. Rev., vol. 70, p. 106; July-1-15, 1946.) The specimen is prepared by heating to above 2600 degrees Kelvin, so as to reduce the thorium dioxide. It is then found "that the temperature dependence of positive thorium ion emission is similar to that for positive ions from pure metals." Simultaneous measurements made with a magnetic analyzer on the emission of thorium and tungsten positive ions as a function of temperature yield approximate values for the work functions. The growth of the thorium layer on a filament at 2000 degrees Kelvin has been examined. Abstract of the American Physical Society paper.

621.3.032.216:537.533.8

Secondary Electron Emission from Oxide-Coated Cathodes: Part 2-M. A. Pomerantz. (Jour. Frank. Inst., vol. 242, pp. 41-61; July, 1946.) Conclusion of 3107 of October. The apparatus and results are described in detail.

It is found that above a critical temperature, near that at which thermionic emission became appreciable, there was a time lagin the decay of the secondary emission after stopping the primary radiation. This is shown to be due to space-charge phenomena (see also 1482 of 1945-Johnson). The average energy of secondary electrons decreases as the target temperature is increased, so that the total energy of secondary emission remains roughly constant or tends to decrease although the total emission current rises. A qualitative explanation is suggested.

621.3.032.216:537.533.8

The Temperature Dependence of Secondary Electron Emission from Oxide-Coated

Cathodes-M. A. Pomerantz. (Phys. Rev., vol. 70, pp. 33-40; July 1-15, 1946.) "Experiments have been performed with three types of apparatus [see 3467 above]. Yield versus energy data reveal values of δ of 4 to 7 at room temperature with a more or less flat maximum at approximately 1000 volts primary energy. Extrapolation of data suggests yields exceeding 100 at 850 degrees centigrade, but the product of yield and average energy per secondary decreases with increase in temperature. The temperature dependence of the yield is discussed but no satisfactory explanation is found. Yields under pulsed and steady state conditions are in agreement and the secondary emission. except in the presence of certain space charge effects, follows the primary waveform.

621.314.632:546.289 3469 The Photo-Diode and Photo-Peak Characteristics in Germanium-Benzer. (See 3314.)

621.319.7:621.385

Potentiograms and Electron Trajectories in Electrostatic Fields-Pinciroli and Panetti. (See 3322.)

621.383.8:535.61-15 3471 Infrared Image Tube-G. A. Morton and L. E. Flory. (Electronics, vol. 19, pp. 112-114; September, 1946.) A description of the RCA 1P25 image converter. Electrons emitted by a photoelectric screen (cathode) sensitive to infra-red light are focused by an electron-lens on to a fluorescent screen of synthetic willemite. The cathode is made by depositing a base layer of silver on the glass of the tube, the layer is "completely oxidized and processed with additional silver, caesium and silver, with an appropriate thermal treatment." Application to various types of infra-red telescope is mentioned. See also 2661 of September and 2346 of August.

621.383.8:621.397.611 3472 Television Pickup Tubes-A. Blanc-Lapierre and J. Chantereau. (Rev. Tech. Compl. Franç. Tgomson-Houston, pp. 25-44; October, 1945.) Description of the principles of operation, construction, and characteristics of the emitron and superemitron types of camera. The paper concludes with a brief discussion of the advantages of "slow electron" tubes in which the collector anode is at zero potential.

621.385

Demonstration of a Water-Jet Analogue of the Reflection Klystron-W. J. Scott. (Proc. Phys. Soc., vol. 58, pp. 475-476; July 1, 1946.) The behavior of the electron beam in the electric field is simulated by a water jet under the influence of the gravitational field. The "bunching" action, as represented by the distribution of water globules, is clearly shown by stroboscopic photographs.

621.385

3467

3468

The Construction and Operation of Klystrons-E.D. Hart. (R.S.G.B.Bull., vol. 22, pp. 34-38; September, 1946.) Practical operating adjustments are described in some detail.

621.385 Errata: On the Possibility of Purely Elec-

trostatic Focusing in a Velocity Modulation Drift Tube-P. Guénard. (Ann. Radioélect., vol. 1, p. 276; January, 1946.) Corrections to 3878 of 1945.

621.385.1

Some Facts Concerning the Construction of Brown Boveri Small Tubes-A. Bertschinger. (Brown Boveri Rev., vol. 31, pp. 313-315; September, 1944.) A general description.

3477 621.385.16 Space Charge in Plane Magnetron-L. Page and N. I. Adams, Jr. (Phys. Rev., vol. 69,

pp. 492-494; May 1-15, 1946.) "The space charge equation for the plane magnetron is solved, the current is obtained as a function of the magnetic field, and the effect of the magnetic field on the distribution of potential and charge is discussed."

621.385.16 3478

Space Charge in Cylindrical Magnetron-Page and N. I. Adams, Jr. (Phys. Rev., vol. 69, pp. 494-500; May 1-15, 1946.) The space charge equation is solved for a system of two coaxial cylindrical electrodes, with a uniform axial magnetic field. Three forms of solution are obtained: (1) applicable near the inner electrode (cathode) for weak magnetic fields; (2) applicable at large distances from the cathode; and (3) applicable near cut-off. Curves illustrating the results are given.

621.385.16.029.62/.63

Split Anode Magnetrons for the 100-800 Megacycle Range-J. P. Blewett, D. A. Wibur, and L. D. Roberts. (Phys. Rev., vol. 70, p. 118; July 1-15, 1946.) Cathode back heating, anode dissipation at high frequencies, and escape of electrons from the anode structure at low frequencies limit the power output. A shielding process permits operation of small glass-enclosed magnetrons at powers greater than 1 kilowatt from 100 to 400 megacycles. Liquid cooling is used. Powers of 150 watts from 350 to 800 megacycles are obtained by mounting an internal loop in parallel with the external tank circuit. Abstract of an American Physical Society paper.

621.385.16.029.63

3470

Methods of Tuning Multiple-Cavity Magnetrons-R. B. Nelson. (Phys. Rev., vol. 70, p. 118; July 1-15, 1946.) The most successful of several methods tried involves simultaneous variation of inductance and capacitance of all cavities by a single tuning motion. Tuning ranges greater than 1.4 to 1 have been obtained with good efficiency throughout; for example, a magnetron tuning from 760 to 1160 megacycles delivering over 2 kilowatts continuous-wave operation at all frequencies is described. Abstract of an American Physical Society paper.

621.385.3

3473

3474

3475

3476

3481 Sealed-Off Transmitting Tubes and Their Production-F. Jenny. (Brown Boveri Rev., vol. 31, pp. 309-312; September, 1944.) A general description of the materials used and the methods of assembly, with characteristic curves for a 5-kilowatt air-cooled triode.

621.385.3

New Manufacturing Techniques for Transmitter Tubes-M. Matricon and J. Chantereau. The Standardization of the Components in the Manufacture of C.F.T.H. Transmitting Tubes-R. Montagne. Test Equipment for Materials in the Manufacture of Electronic Tubes-A. Laurent. Continuously Evacuated Demountable Transmitting Tubes-M. Matricon. (Rev. Tech. Comp. Franç. Thomson-Houston, pp. 5-17, 19-22, 23-32, and 33-39; April, 1945.) Another account of the same material by the same authors is given in 490 of February and 1110 of April.

621.385.832

3483 The Image Formation in Cathode-Ray Tubes and the Relation of Fluorescent Spot Size and Final Anode Voltage-G. Liebmann: H. MOSS. (PROC I.R.E. AND WAVES AND ELEC-TRONS, vol. 34, pp. 580-586; August, 1946.) Long discussion of 3030 of 1945 (Liebmann).

621.396.694 3484

The Calculation of Amplifier Valve Characteristics-G. Liebmann. (Jour. I.E.E. (London), part I, vol. 93, pp. 357-358; August, 1946.) Long summary of 2406 of August.

3479

621.396.822+537.525.5]:621.385 3485 Noise and Oscillations in Hot-Cathode Arcs-Cobine and Gallagher. (See 3266.)

621.396.822+537.525.5]:621.385

Eflect of Magnetic Field on Noise and Oscillations in Hot-Cathode Arcs-Gallagher and Cobine. (See 3267.)

621.396.822:621.385[.12+.18

A High Level Electronic Noise Source-J. D. Cobine and C. J. Gallagher. (Phys. Rev., vol. 70, p. 119; July 1-15, 1946.) Continuous spectrum from low audio frequencies to above 5 megacycles built in form of a gas discharge tube with cylindrical electrode structure. The root-mean-square voltage is substantially flat up to 1 megacycle and drops 18 decibels from 1 to 5 megacycles. Abstract of an American Physical Society paper.

MISCELLANEOUS

027:[5+6 3488 Science Librarianship-J. W. Hunt. (Science, vol. 104, pp. 171-173; August 23, 1946.)

058: [621.38+621.396

Electronics Buyers' Guide-The issue of June 15, 1946 contains (in addition to data on sources of supply) charts and tabulated information on the electromagnetic spectrum, frequency allocations, sound levels, graphical symbols, and solid-dielectric coaxial cables, and also an index to Electronics for 1936 to June 1946, and a bibliography of about 500 books on electronic and allied subjects.

347.771

3490 Patent Law Reform in Britain-(Nature (London), vol. 158, pp. 1-3; July 6, 1946.) Editorial on second interim report of the departmental committee on the Patent and Design Acts, dealing with the alleged abuse of monopoly rights, the grant of worthless patents, and the legal procedure for the determination of patent rights.

518.3

3491 Alignment Chart Construction-D. C. French. (Proc. I.R.E. (Australia), vol. 7, pp. 11-20; June, 1946.) A nontheoretical explanation.

519,283:519,24 A Simple Test of Significance-E. J. Williams, K. K. Schiller. (Engineering (London), vol. 161, pp. 496 and 568; May 24, and June 14, 1946.) Two letters discussing the test

proposed by "A. Mateur" (2427 of August). 621.3+537+538].081 3403

Electrical Units and the MKS System-H. P. Williams. (Elect. Comm., vol. 23, pp. 96-106; March, 1946.) An instructional review.

621.3 3494 I.R.E.-U.R.S.I. Convene-(Elec. Ind., vol. 5, pp. 75-77, 96; July, 1946.) Summaries of some of the papers read at the joint meeting held in Washington, D.C., in May, 1946.

621.3 3405 Electrical Progress and Development-H. W. Richardson. (Gen. Elec. Co. Jour., vol. 14, pp. 3-56; February, 1946.) Survey of work at British General Electric Co., including radio and communications, measuring instruments and batteries.

621.3(07)

3486

3487

3489

A Note on Electrical Engineers Trained [in United States schools] During the War-G. H. Fett. (PROC. I.R.E. AND WAVES AND ELEC-TRONS, vol. 34, pp. 481-482; July, 1946.)

621.3.027.3:016.5

High-Voltage Engineering-(Brown Boveri Rev., vol. 30, pp. 211-291; September-October, 1943.) This is a special high-voltage engineering number of the journal, giving 16 papers on the properties of insulators, breakdown phenomena, and high voltage laboratory equipment.

621.3.078:621.383

Step-Control of a Productive Process-W. Sommer. (Jour. Sci. Instr., vol. 23, pp. 150-154; July, 1946.) Photoelectric device employing a series of filters of varying density for controlling tolerances in mass production processes.

621.3.084(07)

Education in Instrument Technology. Report of a Discussion held by the Society of Instrument Technology in London on 8 November 1945-(Jour. Sci. Instr., vol. 23, pp. 161-163; July, 1946.)

621.38 3500 Electronics Exhibition-(Elect. Rev. (London), vol. 139, pp. 93-94; July 19, 1946.) A review of the electronic equipment for controlling industrial processes, high-frequency heating, etc., shown at the British Thomson-Houston Co. exhibition. For another account see Electrician, vol. 137, pp. 165-167; July 19, 1946.

621.385

3492

Demonstration of a Water-Jet Analogue of the Reflection Klystron-Scott. (See 3473.)

621.396.6(213)

Deterioration of Radio Equipment in Damp **Tropical Climates and Some Measures of Pre**vention-C. P, Healy. (Jour. I.E.E. (Australia), vol. 18, pp. 73-85; April-May, 1946.) The nature of moulds, their reproduction, and the preparation of cultures are described. Moulds will grow on almost any organic material, and even in the surface of many inert materials if there is enough organic dust to maintain growth. In such cases the surface may be pitted. A survey of tropical conditions leads to the design of a humidity chamber in which tropical conditions may be simulated. Methods

of inoculation of the equipment with mixed mould spores are described. Tests may also be carried out in petri dishes on small specimens and with particular moulds. The effectiveness of various fungicides, when incorporated in waxes, paints, etc., is discussed. The effects of mould on particular parts of equipment (connecting wire, laminated sheet, batteries, etc.) are considered, and methods of prevention or suitable substitutes recommended.

Humidity tests without moulds are outlined, and the effect on individual components considered. Preventive treatments are suggested for transformers, capacitors (paper and mica), ceramics, phenolic mouldings, and sheets. The use of moisture-proof equipment cases is mentioned. See also 809 of March (Collins, Gittoes, and Rowed).

621.396.621.004.67

Hospitalization for Radios-O. I. Sprungman. (Radio News, vol. 36, pp. 45, 151; August, 1946.) Details of a type of insurance under which a yearly premium is paid and servicing is free for the year.

621.396.97:7

3406

3497

3499

3501

3502

3504 The Search for a Radiophonic Art-I. Matras. (Onde Élect., vol. 26, pp. 228-238; June, 1946.) An essay on the aesthetics of broadcasting as a cultural medium, by the chief engineer of the French broadcasting system.

658.311.5

3505 The Selection of Engineering Personnel-F. Holliday. (Jour. Aero. Soc., vol. 50, pp. 240-261, discussion, pp. 262-274; April, 1946.) A lecture before the Royal Aeronautical Society.

778.142

3506 Microfilm-M. Sollima. (Rev. Tech. Compt. Franç., Thomson-Houston, pp. 1-20; July, 1945.) A general account, with particular note of cameras and reading apparatus developed by the French Thomson-Houston Company.

519,283:62

A First Guide to Quality Control for Engineers. [Book Review]---E. H. Sealy. H.M. Stationery Office, London, 1945, 38 pp., 1s. (Nature (London), vol. 157, pp. 475-476; April 13, 1946.) A guide to production engineers in the application of statistical methods of checking and testing in mass production.

551.5(021) 3508

General Meteorology. [Book Review]-H. R. Byers. McGraw-Hill Book Co., New York, 1944, 645 pp., \$5.00. (Jour. Appl. Phys., vol. 17, p. 535; June, 1946.) ". . . recommended to persons interested in modern developments in descriptive and synoptic meteorology.

Correction .- In the October abstracts, for Physica, Eindhoven read Physica, 's Grav.

1024

3503

BOARD OF DIRECTORS, 1946

Frederick B. Llewellyn President

Edmond M. Deloraine Vice-President

William C. White Treasurer

Haraden Pratt Secretary

Alfred N. Goldsmith Editor

Hubert M. Turner Senior Past President

William L. Everitt Junior Past President

1944–1946

Raymond F. Guy Lawrence C. F. Horle

1945–1947 Stuart L. Bailey Keith Henney Benjamin E. Shackelford

1946-1948

Walter R. G. Baker Virgil M. Graham Donald B. Sinclair

1946

Ralph A. Hackbusch Frederick R. Lack George T. Royden William O. Swinyard Wilbur L. Webb Edward M. Webster

•

Harold R. Zeamans General Counsel

George W. Bailey Executive Secretary

BOARD OF EDITORS Alfred N. Goldsmith *Chairman*

PAPERS REVIEW COMMITTEE Murray G. Crosby Chairman

● PAPERS PROCUREMENT COMMITTEE

Dorman D. Israel General Chairman Edward T. Dickey Vice General Chairman

PROCEEDINGS OF THE I.R.E.

(Including WAVES AND ELECTRONS Section)

Published Monthly by The Institute of Radio Engineers, Inc.

Index to Volume 34-1946

PART II—SUPPLEMENT TO PROCEEDINGS OF THE I.R.E. (Including Waves and Electrons Section) DECEMBER, 1946

Editorial Department

Helen M. Stote Publications Manager Clinton B. DeSoto Technical Editor

Mary L. Potter Assistant Editor

William C. Copp Advertising Manager Lillian Petranek Assistant Advertising Manager

The Institute of Radio Engineers, Inc. I East 79 Street New York 21, N.Y.

Copyright, 1946, by The Institute of Radio Engineers, Inc.

NOTE

The Journal of the Institute of Radio Engineers is officially known as the PROCEEDINGS OF THE I.R.E. The WAVES AND ELECTRONS section is to be re-garded solely as a portion thereof, and not as a separate publication.

TABLE OF CONTENTS

General Information.....Cover II

Contents of Volume 34	1
Chronological Listing	1
Index to Book Reviews	5
Index to Authors	6
Index to Subjects	7
Nontechnical Index	13
Awards	13
Committees	13
Constitution and Bylaws	13
Conventions and Meetings	13
Editorials	13
Election of Officers	14
Front Covers	14
Frontispieces.	14
Group Photographs	14
Institute of Radio Engineers	14
I.R.E. People	15

Nontechnical Index (continued)		
Laboratories		. 15
Miscellaneous		. 15
Obituaries		. 16
Report of Secretary-1945		. 16
Representatives in Colleges		. 16
Representatives on Other Bodies		
Resolutions		. 16
Sections		. 16
Standards—I.R.E.		. 16
Write-Ups		. 16
Back Copies	. Cov	er III
Proceedings Binders		
Membership Emblems	. Cov	er III
Current I.R.E. Standards	. Cov	ver IV
ASA Standards (Sponsored by the I.R.E.)	.Cov	ver IV

Contents of Volume 34 (continued)

GENERAL INFORMATION

The Institute

The Institute of Radio Engineers serves those interested in radio and allied electronics and electrical-communication fields through the presentation and publication of technical material.

Membership has grown from a few dozen in 1912 to more than eighteen thousand. There are several grades of membership, depending on the qualifications of the applicant, with dues ranging from \$3.00 per year for Students to \$10.00 per year for Members, Senior Members, Fellows, and Associates of more than five years' standing.

The PROCEEDINGS is sent to members of record on the date of publication. Standards Bulletins, as listed on Cover IV, are in stock and are available for those who wish to buy them at the cost shown opposite the name of the Standard.

The Proceedings

The PROCEEDINGS has been published without interruption from 1913 when the first issue appeared. Over 2600 technical contributions have been included in its pages and portray a currently written history of developments in both theory and practice. The contents of every paper published in the PROCEEDINGS are the responsibility of the author and are not binding on the Institute or its members. Text material appearing in the PROCEEDINGS may be reprinted or abstracted in other publications on the express condition that specific reference shall be made to its original appearance in the PROCEEDINGS. Illustrations of any variety may not be reproduced, however, without specific permission from the Institute.

The first issue of the PROCEEDINGS was published in 1913. Volumes 1, 2, and 3 comprise four issues each. Volume 4 through volume 14 contain six numbers each and each succeeding volume is made up of twelve issues.

In 1939, the name of the PROCEEDINGS of The Institute of Radio Engineers was changed to the PROCEED-INGS OF THE I.R.E. and the size of the magazine was enlarged from six by nine inches to eight and one-half by eleven inches.

Subscriptions

Annual subscription rates for the United States of America, its possessions, and Canada, \$12.00; to college and public libraries when ordering direct, \$9.00. Other countries, \$1.00 additional for postage.

PROCEEDINGS of the I.R.E., December, 1946, vol. 34, no. 12. Published monthly by The Institute of Radio Engineers. Inc., 1 East 79 St., New York 21, N. Y. Price \$1.50 per copy. Subscriptions: United States and Canada \$12.00 a year; foreign countries, \$13.00 a year. Entered as second-class matter October 26, 1927, at the post office at Menasha, Wisconsin, under the Act of March 3, 1925. Acceptance for mailing at a special rate of postage is provided for in the Act of February 28, 1925, embodied in Paragraph 4, Section 412 of the Postal Laws and Regulations, authorized October 26, 1927. Publication office, 450 Ahnaip Street, Menasha, Wisconsin, This issue of the PROCEEDINGS of the I.R.E. for December, 1946, is published in two parts. Part I is the PROCEEDINGS and Part II is a supplement to Part I and contains the Annual Index to Vol. 34. Index to Vol. 34.

Contents of Volume 34-1946

Volume 34, Number 1, January, 1946 PROCEEDINGS OF THE I.R.E.

Cumulative

Index Numi		Page
		2 P
2550.	1946, F. B. Llewellyn. A New Method of Amplifying with High Efficiency a Carrier Wave Modulated by a Voice Wave, Sidney	
2551.	T. Fisher	3 P
2552.	Robert A. Kirkman and Morris Kline Radio-Frequency Spectrum Analyzers Everard M	14 P
2553.	Williams. Principal and Complementary Waves in Antennas,	18 P
2554.	Probe Error in Standing-Wave Detectors, William	23 P
	Altar, P. B. Marshall, and L. P. Hunter Contributors to the PROCEEDINGS Explanatory Statement	33 P 45 P
	Volume 1, Number 1, January, 1946 Waves and Electrons	
	Waves and Electrons, Alfred N. Goldsmith	2 W
	Electronics and Communications, W. L. Everitt Benjamin E. Shackelford—Board of Directors, 1945–	3 W
2555	1947 Preparation and Publication of I.R.E. Papers, <i>Helen</i>	4 W
	M. Stole	5 W
	Identification and Simultaneous Voice, Andrew Alford, Armig G. Kandoian, Frank J. Lundburg,	
2557	and Chester B. Watts, Jr	9 W
	Evaluation of Television Images, Robert F. Graham	10 11
2558.	and F. W. Reynolds Problems in the Manufacture of Ultra-High-Fre-	18 W
	quency Solid-Dielectric Cable, A. J. Warner	31 W
	Institute News and Radio Notes Winter Technical Meeting	38 W
	Board of Directors	43 W
	Executive Committee	43 W
	Rochester Fall Meeting	43 W
	I.R.E. People	45 W
	Sections. Book Review: Elementary Electric-Circuit Theory, by Richard H. Frazier (Reviewed by F. Alton	47 W
2560	Everest). Book Review: Proceedings of the National Electron-	47 W
2300.	ics Conference, Published by the National Electron-	
	ics Conference, Inc. (Reviewed by Donald G. Fink).	48 W
	Section Territory Assignment	48 W
	Canadian Radio Technical Planning Board	49 W
	Notice to Sections.	49 W
	Contributors to WAVES AND ELECTRONS	49 W
	Volume 34, Number 2, February, 1946 PROCEEDINGS OF THE I.R.E.	
		10 5
	Society's Hopes for the Engineer, Haraden Pratt Transmission of Television Sound on the Picture Carrier, Gordon L. Fredendall, Kurt Schlesinger, and	48 P
2562.	A. C. Schroeder	49 P
	Lines, D. Rogers Crosby and Carol H. Pennypacker. An Analysis of Three Self-Balancing Phase Inverters,	62 P
	Myron S. Wheeler. Pulse Response of Thyratron Grid-Control Circuits,	67 P
	C. Herbert Gleason and Carl Beckman	71 P
2500	lich. Discussion, Nelson F. Riordan and D. L. Waidelich,	78 P
	(August, pp. 579–580)	
2300.	Antinoise Characteristics of Differential Micro- phones, Harold E. Ellithorn and A. M. Wiggins.	84 F
	Discussion on "Exalted-Carrier Amplitude- and	04 1
•	Phase-Modulation Reception," by Murray G. Cros-	
	by, (September, 1945, pp. 581-591); A. H. Taylor	
	and Murray G. Crosby	90 P

`	Volume 34, Number 2, February, 1946 (Con	t.)	
Cumu	lative		
Index			
Numb		Pa	ıge
13.	Correspondence: "'Historic First' Electronic Lec- ture," by Lee De Forest (March, 1914, pp. 18-30); Used Estemachical	01	D
2515.	Lloyd Espenschied Correspondence: "Phase-Inverter Circuit," by D. L. Drukey (October, 1945, p. 722); C. B. Fisher and	91	r
2480.	D. L. Drukey Correspondence: "Asymmetrical Butterfly Circuit," (Wide-Range Tuned Circuits and Oscillators for	92	Р
	High Frequencies, by Eduard Karplus, July, 1945, pp. 426–441); A. Landman Contributors to the PROCEEDINGS Advertising Index.	92 93 86	P
	Volume 1, Number 2, February, 1946		
	WAVES AND ELECTRONS		
	Donald B. Sinclair-Board of Directors-1946 Army and Navy Letters of Recognition, H. C. Ingles	52	W
2567.	and Joseph R. Redman	53	W
	of The Institute of Radio Engineers, Ralph A. Hackbusch	54	w
2568.	A Plea for the Scientific Method, Louis Hoffer	56	
2569.	Radio-Frequency Dehydration of Penicillin Solution, George H. Brown, R. A. Bierwirth, and Cyril N.	50	117
	Hoyler A Vacuum-Contained Push-Pull Triode Transmitter, Harold A. Zahl, John E. Gorham, and Glenn F.	58	w
2571.	Rouse	66	W
	Armig G. Kandoian Decibel Conversion Chart, Robert C. Miedke	70	
2312.	Institute News and Radio Notes Our New Home	76 78	
	Winter Technical Meeting Summaries	80	
	Awards	94	
	Board of Directors	96	
	Executive Committee	96	
	Sixth Annual Broadcast Engineering Conference	96	
	Radio Pioneers' Dinner	97	
	I.R.E. People	98	
2573.	Sections Book Review: Electronics Laboratory Manual, by Ralph R. Wright (Reviewed by E. D. McArthur)	102 103	
2574.	Book Review Lehrbuch der Funktionentheorie- Volumes I and II, by Ludwig Bieberbach (Reviewed	100	**
2575.	by Frederick W. Grover) Book Review: Electromagnetic Engineering, Vol. 1—	104	W
	Fundamentals, by Ronold W. P. King (Reviewed by J. R. Whinnery.	104	w
	Contributors to WAVES AND ELECTRONS.	104	
	Volume 34, Number 3, March, 1946		
SE	ECTION I—PROCEEDINGS OF THE I.R.E. SECT.	ION	
	Continuing Service, F. H. R. Pounsett.	96	Р
2576.	Reflex-Klystron Oscillators, Edward Leonard Ginzton and Arthur E. Harrison Correction (April, 1946, p. 209 P)	97	Р
2577.	The Transmission of a Frequency-Modulated Wave	114	D
2578	Through a Network, Walter J. Frantz	114	I

- 2581. Applications of Watrix Algebra to Filter Filter, 1. 145 P
 2514. Discussion on "Electron Transit Time in Time-Varying Fields," by Arthur B. Bronwell (October, 1945, pp. 712-716); L. A. Ware, H. B. Phillips, and Arthur B. Bronwell.
 151 P
 Contributors to the PROCEEDINGS OF THE I.R.E. Sec-

tion.....

.

152 P

Volume 34, Number 3, March, 1946 (Cont.)

Section II—Waves and Electrons Section Cumulative Index Number Page George R. Town-Chairman, Rochester Section. 108 W When Radio Engineer is "Big Boss," Orestes. H. Caldwell... 109 W 2582. Induction Heating in Radio Electron-Tube Manu-facture, Edwin E. Spitzer 110 W 2583. Fine Wires in the Electron-Tube Industry, George A. 116 W Espersen... 2584. A Three-Beam Oscillograph for Recording at Frequencies up to 10,000 Megacycles, Gordon M. Lee. 121 W 2585. Synchronizing Generators for Electronic Television, 2586. The Effect of Negative Voltage Feedback on Power-Supply Hum in Audio-Frequency Amplifiers, *Geoffrey Builder*. 128 W 140 W 2587. High-Voltage Rectified Power Supply Using Frac-tional-Mu Radio-Frequency Oscillator, Robert L. Freeman and R. C. Hergenrother..... Contributors to WAVES AND ELECTRONS Section.... 145 W 147 W Institute News and Radio Notes Outstanding Events of 1946 Winter Technical Meeting..... Board of Directors..... 149 W 154 W Executive Committee 155 W I.R.E. People..... 155 W 159 W Sections... 159 W Mathematical Tables Project, Arnold N. Lowan, Project Director, and a Technical Staff of Six Persons (Reviewed by John R. Whinnery)..... 160 W Volume 34, Number 4, April, 1946 Section I—Proceedings of the I.R.E. Section National Security and a Mechanism for Its Achieve- National Security and a International Security and a International Security and a International Security and Actional Security and Actional Security and Actional Security and Actional Security and Sec 154 P Ross Gunn, Wayne C. Hall, and Gilbert D. 156 P Kinzer. Part II-Aircraft Instrumentation for Precipitation-Static Research, Ramond C. Waddel, Richard C. Drutowski, and William N. Blatt.. Part III—Electrification of Aircraft Flying in Precipitation Areas, Ronald G. Stimmel, Em-161 P ery H. Rogers, Franklin E. Waterfall, and Ross 2591. The Effect of Rain upon the Propagation of Waves in 167 P 178 P 181 P 184 P 198 P 204 P ward Leonard Ginston and Arthur E. Harrison (March, 1946, pp. 97 P-114 P)..... 209 P Contributors to the PROCEEDINGS OF THE I.R.E. Sec-210 P tion..... Section II—Waves and Electrons Section Journals in Science, G. P. Harnwell. 162 W Virgil Miller Graham—Board of Directors, 1946.... 2596. Radio Progress During 1945, *I.R.E. Technical Com-*163 W 164 W mittees. 2597. Those New Frontiers, Paul A. Porter...... 2598. Frequency Service Allocations, Paul D. Miles.... 185 W 188 W 2599. Naval Wartime Communication Problems, J. O. 193 W Kinert. 2600. Address of Retiring President, William L. Everitt... 2601. Final Report of the National Patent Planning Com-195 W 198 W mission . . . 2602. Proposed Standards of the Radio Manufacturers As-198 W sociation . . .

Contributors to Waves and Electrons Section

200 W

Volume 34, Number 4, April, 1946 (Cont.)

Cumulative ''''''''''''''''''''''''''''''''''''		
Number	P	age
Institute News and Radio Notes Board of Directors Executive Committee. I.R.E. Committees. NAB Committees. RMA Committees. I.R.E. People. Sections. 2603. Book Review: A.S.T.M. Standards on Electrical In-	202 203 204 205 206 206 210	W W W W
sulating Materials (With Related Information), Prepared by A.S.T.M. Committee D-9 on Electrical Insulating Materials (Reviewed by Raymond F. Guy)	210	W
 2604. Book Review: Elementary Engineering Electronics, by Andrew W. Kramer (Reviewed by H. M. Turner. 2605. Book Review: Fundamental Theory of Servomecha- 	210	W
nisms, by LeRoy A. MacColl (Reviewed by F. X. Rettenmeyer)	211	W
2606. Book Review: Electron Optics and the Electron Mi- croscope, by V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and W. A. Vance (Reviewed by C. H. Bachman).	212	w
,		
Volume 34, Number 5, May, 1946 PROCEEDINGS OF THE I.R.E		
The Engineer's Social Responsibility, E. Finley Carte David Beach Smith—Chairman, Philadelphia Sectio	r. n,	214
1946 2607. An Introduction to Loran, J. A. Pierce 2590. Army-Navy Precipitation-static Project	••	215 216
Part IV—Investigations of Methods for Reducin Precipitation-Static Radio Interference, Gilbert Kinzer and John W. McGee	D.	234
Part V—The High-Voltage Characteristics of Al craft in Flight, Ross Gunn and James P. Parke	r-	241
Part VI—High-Voltage Installation of the Precip tation-Static Project, M. Newman and A.	oi- 0.	271
<i>Kemppainen</i>	 Т.	247
Friis. 2609. Nonlinearity in Frequency-Modulation Radio System	ns	254
Due to Multipath Propagation, S. T. Meyers 2542. Discussion on "Concerning Hallén's Integral Equation for Cylindrical Antennas," by S. A. Schelkunoff (D cember, 1945, pp. 872-878); Ronold King and S.	 on e- 4.	256
Schelkunoff Contributors to PROCEEDINGS OF THE I.R.E 2579. Corrections to "The Application of Modulation-Fr	 е-	265 269
quency Feedback to Signal Detectors," by <i>Geoffr</i> <i>Builder</i> (March, 1946, pp. 130 P–138 P) Institute News and Radio Notes	ey 	270
Board of Directors and Executive Committee Broadcast Engineering Conference Committees Second National Electronic Conference Regional-Committee Success is Assured I.R.E. People Sections.	· · ·	271 271 271 271 272 272 273 278
2610. Book Review: Network Analysis and Feedback Amp fier Design, by <i>Hendrik W. Bode</i> (Reviewed by <i>Millu</i> <i>Dishal</i>)	li- 7n	277
2611. Book Review: Radar, by Orrin E. Dunlap, Jr. (Review)	ed	277
by Loren F. Jones) 2612. Book Review: Television Programming and Productio by Richard Hubbell (Reviewed by Irwin A. Shane).	n,	278
2613. Book Review: Inside the Vacuum Tube, by John Rider (Reviewed by Harry C. Likel)	F	279
2614. Book Review: Table of Associated Legendre Function Prepared by <i>The Mathematical Tables Project, Arno</i> <i>N. Lowan</i> , Project Director, and a Technical Staff Seven Persons, together with Seven Supervisory ar Editing Assistants, and Conducted under the Sponso ship of the National Bureau of Standards, <i>Lyman</i> Briggs, Director and Official Sponsor of the Proje	is, Id of id r- J.	
(Reviewed by J. R. Whinnery)		280
(Reviewed by Ralph B. Austrian)		280

2616. Book Review: Encyclopedia of Substitutes and Synthetics, Edited by Morris D. Schoengold (Reviewed by Harold L. Brouse). 280

Volume 34, Number 5, May, 1946 (Cont.)

	Contraction of the state of the		
	WAVES AND ELECTRONS SECTION		
Cum	dative		
Indes			
Numl		Page	
A 1 007705			
	Moral Reflections, Floyd A. Firestone	281	
0.48	David C. Kalbfell-Chairman, San Diego Section, 1946	282	
2017.	I.R.E. War Participation, Harry C. Ingles Navy Radio and Electronics During World War II,	283	
2618.	Navy Radio and Electronics During World War II,		
	Jennings B. Dow.	284	
2619.	CBS Studio Control-Console and Control-Room Design,		
	Howard A. Chinn	287	
2620.	The Use of Liquid Dimethylsilicones to Produce Water-		
	Repellent Surfaces on Glass-Insulator Bodies, O. K.		
	Johannson and Julius J. Torok	296	
2621.	An Ionization Gauge of Simple Construction, Charles M.		
	Fogel	302	
2622.	Fogel Resonant-Cavity Measurements, R. L. Sproull and		
	E. G. Linder	305	
2623.	Cylindrical Shielding and Its Measurement at Radio		
	Frequencies, Alton R. Anderson	312	
	Contributors to WAVES AND ELECTRONS Section	323	
	Contributors to trates and Ebberrons occion	020	
	Volume 34, Number 6, June, 1946		
	PROCEEDINGS OF THE I.R.E.		
	There Is Always Room at the Top, W. C. White	326	
	Frank H. R. PounsettChairman, Toronto Section,		
	1946	327	
2624.	A New Angular-Velocity-Modulation System Employ-		
	ing Pulse Techniques, James F. Gordon	328	
2625.	A Current Distribution for Broadside Arrays Which Op-		
	timizes the Relationship Between Beam Width and		
	Side-Lobe Level, C. L. Dolph	335	
2626	High-Impedance Cable, Heinz E. Kallmann	348	
2627	A Study of Locking Phenomena in Oscillators, Robert	0.0	
	Adler.	351	
	Correspondence (November, 1946, p. 863) Z. Jelonek	001	
2628	Correspondence: "A Correction Formula for Voltmeter		
2020.	Loading," Raymond E. Lafferty	358	
	Contributors to Proceedings of the I.R.E	359	
	Institute News and Radio Notes	339	
		260	
	Chicago Section Engineering Conference	360	
	I.R.E. People	362	
	Sections	364	
	Institute Committees—1946	366	-
	Technical Committees-1946-1947	367	
	Institute Representatives in Colleges-1946	368	
	Institute Representatives on Other Bodies—1946.	368	

WAVES AND ELECTRONS SECTION

Joseph General-Secretary-Treasurer, Dayton Section,

- 1946..... 369 The Engineer and Social Co-ordination, H. I. Kohlhaas. 2629. Commercial Applications of Wartime Science, G. L. Van 370
- 371
- 2630. Some Broad Aspects of Specialization, E. Finley Carter.
 2631. Television Equipment for Guided Missiles, Charles J. Marshall and Leonard Kats. 372
- 375
- 2632. The Cathode-Coupled Amplifier, *Keats A. Pullen, Jr.*.. Contributors to WAVES AND ELECTRONS Section..... 402
- 406 2633. Abstracts and References from Wireless Engineer 407

Volume 34, Number 7, July, 1946 PROCEEDINGS OF THE I.R.E.

422

- 423
- 424
- Subsections in the I.R.E. Program, Harold E. Ellithorn. W. Cullen Moore, Chairman, Chicago Section, 1946....
 2634. The Image Orthicon—A Sensitive Television Pickup Tube, Albert Rose, Paul K. Weimer, and Harold B. Law
 2635. The 5RP Multiband Tube: An Intensifier-Type Cathode-
- Ray Tube for High-Voltage Operation, Irving E. Lem-pert and Rudolf Feldt..... 432 2636. The Radiation Field of an Unbalanced Dipole, William
- Kelvin 440
- 2637. The Effect of Grid-Support Wires on Focusing Cathode 444
- tance Frequency-Selective Networks, *Leonard Stanton* 2490. Discussion on "A New Type of Automatic Radio Direc-447

Volume 34, Number 7, July, 1946 (Cont.) Cumulative

Index	
Number	

141120	ier	rage
	tion Finder," by C. C. Pine (August, 1945, pp. 522- 528); H. Busignies and C. C. Pine	457
2639.	Correspondence: "Simplified Frequency Modulation,"	458
2515	George G. Bruck Correspondence: "Phase Inverter," by D. L. Drukey	400
2010.	(October, 1945, p. 722); E. F. Good	458
	Contributors to PROCEEDINGS OF THE I.R.E	459
	Institute News and Radio Notes	461
	Report of the Secretary—1945 Browder J. Thompson Memorial Prize for 1946	466
	Joint I.R.EI.E.E. Meeting Held by Radiotele- phone	467 469
2640.	I.R.E. People Book Review: Currents in Aerials and High-Frequency	409
	Networks, by F. B. Pidduck (Reviewed by John D.	
0441	Kraus)	473
2041.	Book Review: A Theoretical Survey of the Possibilities of Determining the Distribution of the Free Electrons in the Uncore the Older F. H. Budlack (Pa-	
	the Upper Atmosphere, by Olof E. H. Rydbeck (Reviewed by Newbern Smith)	473
2642.	Book Review: Electrical Coils and Conductors, by Her-	180
2612	bert Bristol Dwight (Reviewed by E. L. Hall)	473
2043.	Book Review: Electronics for Engineers, Edited by John Markus and Vin Zeluff (Reviewed by Russell A. Berg)	473
	Sections	474
	Technical Committees, I.R.E	474

WAVES AND ELECTRONS SECTION

	Professional Institutions and the Technical Press, Hugh S. Pocock. J. Griffiths Barry, Secretary-Treasurer, Princeton Sub-	479 480
2644.	section, 1946 A Note on Electrical Engineers Trained During the War, G. H. Fett.	481
2645.	Power Amplifiers with Disk-Seal Tubes, H. W. Jamieson and J. R. Whinnery.	483
2646.	Problems in the Design of High-Frequency Heating Equipment, Wesley M. Roberds	489
2647.	Amplifier-Gain Formulas and Measurements, Sylvester J.	500
2648.	Haefner. Contributors to WAVES AND ELECTRONS Section Abstracts and References.	506 507

Volume 34, Number 8, August, 1946 PROCEEDINGS OF THE I.R.E.

	The Real Economy in Engineering, Harold A. Wheeler, . Harold E. Ellithorn, Chairman, South Bend Subsection,	526
	1946	527
	Radar, Edwin G. Schneider	528
	Discussion on "The Steady-State Operational Calculus," by D. L. Waidelich (February, 1946, pp. 78 P-84 P); Nelson F. Riordan and D. L. Waidelich	579
2471.	Discussion on "The Image Formation in Cathode-Ray	
	Tubes and the Relation of Fluorescent Spot Size and	
	Final Anode Voltage," by G. Liebmann (June, 1945, pp. 381-389); Hilary Moss and G. Liebmann	580
2480.	Correspondence: "Who Invented the Butterfly Circuit?"	000
	(Wide-Range Tuned Circuits and Oscillators for High	
	Frequencies, by Eduard Karplus, July, 1945, pp. 426-	
	441), Harry Slockman.	586
	Institute News and Radio Notes	507
	I.R.E. People	587 592
2650	Sections Book Review: Fundamentals of Alternating-Current	342
2050.	Machines, by A. Pen-Tung Sah (Reviewed by Fred-	
	erick W. Grover)	594

WAVES AND ELECTRONS SECTION

	Electronics and the Research Physicist, Stanley V.	595
	Forgue Palmer McFadden Craig, Past Secretary-Treasurer,	343
	Philadelphia Section	596
2651.	Theoretical Response from a Magnetic-Wire Record,	597
2652.	212 W 1 VVII V WINI W V I I I I I I I I I I I I I I I I I	603

Volume 34, Number 9, September, 1946 PROCEEDINGS OF THE I.R.E.

Cumulative Index Number Page Gossamer, Knox McIlwain..... 622 Alfred N. Goldsmith. 2653. Universal Optimum-Response Curves for Arbitrarily 623 Coupled Resonators, Paul I. Richards..... 624 2654. The Universal Characteristics of Triple-Resonant-Circuit Band-Pass Filters, Karl R. Spangenberg 629 2655. Simplifications in the Consideration of Mutual Effects Between Half-Wave Dipoles in Collinear and Parallel Orientations, Kosmo J. Affanasiev..... Correction (November, 1946, p. 863) 635 2656. A Variation on the Gain Formula for Feedback Amplifiers for a Certain Driving-Impedance Configuration, Thomas W. Winternitz. 639 2657. Special Aspects of Balanced Shielded Loops, L. L. Libby 641 2658. Equalized Delay Lines, Heinz E. Kallmann. 646 2659. Note on a Reflection-Coefficient Meter, Nathaniel 1. Korman. 2660. Note on a Parallel-T Resistance-Capacitance Network, 657 Alfred Wolf... 659 2661. Correspondence: "Note on Critical Damping," Nelson Thompson. 2662. Correspondence: "Node-Pair Method of Circuit Analy-660 2663. Correspondence: "Elimination of Interference-Type Fad-661 ing at Microwave Frequencies with Spaced Antennas," 662 quencies," Leonard S. Schwartz 663 Contributors to PROCEEDINGS OF THE I.R.E..... 663 Institute News and Radio Notes 1946 National Electronics Conference 665 Sections. 666 Technical Committees, I.R.E..... 668 668 668 668 WAVES AND ELECTRONS SECTION Officers, Rochester Section, 1946..... The Future of Electronic Engineering, M. W. Smith... 669 670 2668. Naval Airborne Radar, Lloyd V. Berkner..... 671 2669. Abstracts and References..... 707 Volume 34, Number 10, October, 1946 PROCEEDINGS OF THE I.R.E. Instincts and Reason. Raymond F. Guy. Wilbur L. Webb, Board of Directors, 1946. 2670. The Equivalent Circuit for a Plane Discontinuity in a Cylindrical Wave Guide, John W. Miles. 2671. The Theory of Impulse Noise in Ideal Frequency-Modulation of Computer Data and William F. 726 727 728 lation Receivers, David B. Smith and William E. Bradley.... 743 752 Chinn ... 757 Contributors to the PROCEEDINGS OF THE J.R.E...... Institute News and Radio Notes 762 Institute News and Radio Notes..... 763 Rochester Fall Meeting 763 I.R.E. People. Institute Committees—1946. Technical Committees, 1946–1947. 764 766 767 Institute Representatives on Other Bodies-1946... 768 Institute Representatives in Colleges-1946..... 769 Sections. 7,70 2

013.		gn of Crystal vibrating Systems, by	
	William I Fry	John M. Taylor, and Bertha W.	
	77	11 TE LO TE DIA	
	Henvis (Reviewed	d by Karl S. Van Dyke)	770

Volume 34, Number 10, October, 1946 (Cont.)

Cumulative Index Number 2674. Book Review: Electron and Nuclear Counters, Theory and Use, by Serge A. Korff (Reviewed by John R. Ragazzini). I.R.E. Publication Problems and Author Co-operation.

WAVES AND ELECTRONS S	Section
A Gap in Engineering Education, A. 1	7. Loughren 773
H. S. Dawson, Chairman, Toronto Sec	tion. 1946
2077. Microwave Measurements and Test E	Couinments, F. J.
Gaffney. 2678. Stability and Frequency Pulling of Lo.	775
Oscillators, Jack R. Ford and N. I.	Korman
2679. The Inductance-Capacitance Oscillato	r as a Frequency
Divider, Ernst Norrman	
2080. A wide-Band Wattmeter for Wave Gu	ide. H. C. Early. 803
Contributors to WAVES AND ELECTRON	vs Section
2681. Abstracts and References	
Volume 34, Number 11, Nove	
PROCEEDINGS OF THE I	.R.E
Radio Industry Needs Well-Trained	Young Engineers.
Ray H. Manson Edward M. Webster, Board of Directo	82(
Edward M. Webster, Board of Directo	ors, 1946 827
2682. Metal-Lens Antennas, Winston E. Koo 2683. Measurement of the Angle of Arriva	k
William M. Sharpless	378
2004. Further Ubservations of the Angle of	Arrival of Micro-
waves, A. B. Crawford and William	M. Sharpless 845
2685. The Cathode Follower Driven by a Re	ctangular Voltage
Wave, Malcolm S. Mcllroy 2686. Ultra-High-Frequency Radiosonde D	Nirection Finding
Luke Chia-Liu Yuan	852
Luke Chia-Liu Yuan. 2687. Minimum Detectable Radar Signal an	d Its Dependence
Upon Parameters of Kadar Systems	Andrew V. Haeff 857
2688. Correspondence: "Effect of a Different	iating Circuit on a
 Sloping Wave Front," Leonard S. S. 2627. Correspondence: "Locking Phenomen by Robert Adler (June, 1946, pp. 35) 2517. Correspondence: "Emission-Limited M Brithin (October 1945, p. 724). 	chwartz
by Robert Adler (June, 1946, pp. 35)	1-358); Z. Jelonek 863
2517. Correspondence: "Emission-Limited 1	Diode," by Virgil
Correction to "Simplifications in the Mutual Effects Between Half-Way	Consideration of
linear and Parallel Orientations, <i>Ka</i>	e Dipoles in Col-
(September, 1946, pp. 635-639)	
(September, 1946, pp. 635-639) Contributors to the PROCEEDINGS OF	THE I.R.E
Institute News and Radio Notes	
2689. Book Review: Inductance Calculation	s by Frederick W.
Grover (Reviewed by W. D. George) 2690. Book Review: Circuit Analysis by Lab	86
by C. E. Skroder and M. S. Helm (H	Reviewed by I. D
Ryder). 2691. Book Review: The Radio Amateur's	
2691. Book Review: The Radio Amateur's	Handbook, 1946
Eultion, by <i>rieaaguariers</i> Statt of th	e American Kadio
Relay League (Reviewed by Harold 2692. Book Review: Most-Often-Needed	P. Westman) 865
grams, Compiled by M. N. Beitm	an (Reviewed by
H. C. Forbes). 2693. Book Review: Radio Sound Effects, t	
2693. Book Review: Radio Sound Effects, h	by J. Creamer and
W. D. Hojjman (Reviewed by W. R	. Pierson)
Sections I.R.E. People	

WAVES AND ELECTRONS SECTION

	TRATES AND ELECTRONS SECTION	
	New Sections of I.R.E., <i>Theodore A. Hunter</i>	870
	liam H. Radford, Vice-Chairman	871
2694.	Technical Co-ordination on an International Basis in	
	Communication and Allied Fields, E. M. Deloraine.	872
2695.	The American Standards Association-Our Colleague in	
	Standardization, William H. Crew.	874
2696.	Some Developments in Infrared Communications Com-	
	ponents, J. M. Fluke and N. E. Porter.	876
2697	A Wide-Band Directional Coupler for Wave Guide,	
2077.	H. C. Early.	883

Page

771

771

772

Volume 34, Number 11, November, 1946 (Cont.) Cumulative

Index Number	Page
2698. Periodic Variations of Pitch in Sound Reproduction by Phonographs, Ulrich R. Furst	
2699. The Effect of Q on Power-Amplifier Efficiency, Franklin	t .
F. Offner	
Homer A. Ray, Jr	
2701. Magnetron Cathodes, Martin A. Pomerants	903
Contributors to WAVES AND ELECTRONS Section 2702. Abstracts and References	
	/ • 4
Volume 34, Number 12, December, 1946	

PROCEEDINGS OF THE I.R.E.

2702.	Bikini Observations and Their Significance, Haraden Pratt	
	and Arthur Van Dyck	930
	Browder J. Thompson Memorial	934
2703.	A Microwave Relay System, Leland E. Thompson	936
2704.	Noise Figure Reduction in Mixer Stages, M. J. O. Strutt.	942
2705.	Sporadic E-Region Ionization at Watheroo Magnetic	
	Observatory 1938-1944, H. W. Wells	950
2706.	Design of Directive Broad-Band Antennas, Richard	
	Baum	956
2707.	Theory of Mode Separation in a Coaxial Oscillator,	
	Peter J. Sutro	960
	Contributors to the PROCEEDINGS OF THE LR F	063

Volume 34, Number 12, December, 1946 (Cont.)

Index Number	Р	age
Technical Committee Sections	ention 1947 Meetings	967 968
	~	

WAVES AND ELECTRONS SECTION

	Dale Pollack, Chairman, Connecticut Valley Section,	
	I.R.E	971
	United States Naval Research Laboratory at Belleview,	
	Washington, District of Columbia	972
2708.	The United States Naval Reserve, Delbert S. Wicks	973
2700	Should I Deceme - Dedie Frank 2 D. J. (D. 7	2.50

- 2709. 2709. Should I Become a Radio Engineer? Robert B. Jacques. 2710. Radio Proximity Fuze Development, W. S. Hinman, Jr., 975
 - and Cledo Brunetti ...
- and Cledo Brunetti.
 976

 2711. A Medium-Power Triode for 600 Megacycles, S. Frankel, J. J. Glauber, and J. P. Wallenstein.
 986

 2712. The RCA Antennalyzer—An Instrument Useful in the Design of Directional Antenna Systems, George H. Brown and Wendell C. Morrison.
 992

 2713. Electroencephalographic Technique from an Engineer's Point of View, Walter G. Egan.
 1000

 2714. Functional Schematic Diagrams, Stuart H. Larick.
 1005

 Contributors to Waves and Electrons Section
 1005
- Contributors to Waves and Electrons Section 1008
- 2715. Abstracts and References..... 1010

INDEX TO BOOK REVIEWS

Cumulative Ind

- A.S.T.M. Standards on Electrical Insulating Materials (With Related Information), Prepared by A.S.T.M. Committee D-9 on Electrical Insulating Materials (Reviewed by Raymond F. Guy): 2603 Circuit Analysis by Laboratory Methods, by
- C. E. Skroder and M. S. Helm (Reviewed by J. D. Ryder): 2690
- Dy J. D. Ryder): 2090 Currents in Aerials and High-Frequency Networks, by F. B. Pidduck (Reviewed by J. D. Kraus): 2640 Design of Crystal Vibrating Systems, by William J. Fry, John M. Taylor, and Bertha W. Henvis (Reviewed by Karl S. Van Dyke): 2673 Van Dyke): 2673

Notice of copies available, December, p. 967

- Electrical Coils and Conductors, by Herbert Bristol Dwight (Reviewed by E. L. Hall): 2642
- 2042
 Electromagnetic Engineering, Vol. 1—Fundamentals, by Ronold W. P. King (Reviewed by J. R. Whinnery): 2575
 Electron and Nuclear Counters, Theory and Use, by Serge A. Korff (Reviewed by John R. Ragazzini): 2674
 Electronic Equipment and Accessories, by R. C. Walker (Reviewed by G. L. Beers): 2675
- 2675
- Electronics for Engineers, Edited by John Markus and Vin Zeluff (Reviewed by R. A. Berg): 2643 Electronics Laboratory Manual, by Ralph R. Wright (Reviewed by E. D. Mc-Arthur): 2573
- Electron Optics and the Electron Micro-scope, by V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and W. A. Vance (Reviewed by C. H. Bachman): 2606

- Elementary Electric-Circuit Theory, by Richard H. Frazier (Reviewed by F. A. Everest): 2539
- Elementary Engineering Electronics, by Andrew W. Kramer (Reviewed by H. M. Turner): 2604
- Encyclopedia of Substitutes and Synthetics, Edited by Morris D. Schoengold (Re-
- viewed by H. L. Brouse): 2616 Fundamental Theory of Servomechanisms, by LeRoy A. MacColl (Reviewed by F. X. Rettenmeyer): 2605
- F. X. Rettenmeyer): 2605
 Fundamentals of Alternating-Current Machines, by A. Pen-Tung Sah (Reviewed by F. W. Grover): 2650
 High Vacuum Technique, by J. Yarwood (Reviewed by E. D. McArthur): 2665
 Inductance Calculations, by Frederick W. Grover (Reviewed by W. D. George): 2689

2689

Inside the Vacuum Tube, by John F. Rider (Reviewed by H. C. Likel): 2613

Lehrbuch der Funktionentheorie-Volumes

- Lehrbuch der Funktionentheorie-Volumes I and II, by Ludwig Bieberbach (Re-viewed by F. W. Grover): 2574 Mechanische Eigenschaften Quasi-elastis-cher Isotroper Körper, by Friedrich Popert (Reviewed by Walter G. Cady): 2667 Most-Often-Needed 1946 Radio Diagrams (Compiled by M. N. Beitman (Reviewed by H. C. Forbes): 2692 Network Analysis and Feedback Amplifier Design, by Hendrick H. Bode (Reviewed

- Design, by Hendrick H. Bode (Reviewed by Milton Dishal): 2610 Proceedings of the National Electronics Conference, Published by the National Electronics Conference, Inc. (Reviewed by D. C. Field, 2560 by D. G. Fink): 2560
- Pulsed Linear Networks, by Ernest Frank (Reviewed by Albert Preisman): 2588

- Quartz Crystals for Electrical Circuits, by Raymond A. Heising (Reviewed by W. G. Cady): 2666
- Radar, by Orrin E. Dunlap, Jr. (Reviewed by L. F. Jones): 2611
- Radio Amateur's Handbook, 1946 Edition by Headquarters Staff of the American Radio Relay League (1 Harold P. Westman): 2691 (Reviewed by
- Radio Sound Effects, by J. Creamer and W. B. Hoffman (Reviewed by W. R. Pierson): 2693
- Table of Arc Sin X, Prepared by The Mathe-matical Tables Project, Arnold N. Lowan, Project Director, and a Technical Staff of Six Persons (Reviewed by J. R. Whinnery): 2589
- Table of Associated Legendre Functions, Prepared by The Mathematical Tables Project, Arnold N. Lowan, Project Director, and a Technical Staff of Seven Persons, together with Seven Supervisory and Editing Assistants, and Conducted under the Sponsorship of the National Bureau of Standards, Lyman J. Briggs, Director and Official Sponsor of the Project (Reviewed by J. R. Whinnery): 2614
- Television Programming and Production, by Richard Hubbell (Reviewed by I. A. Shane): 2612
- Television Show Business, by Judy Dupuy (Reviewed by R. B. Austrian): 2615
- Television Simplified, by Milton S. Kiver (Reviewed by Albert F. Murray): 2676
- Theoretical Survey of the Possibilities of Determining the Distribution of the Free Electrons in the Upper Atmosphere, by Olaf E. H. Rydbeck (Reviewed by Newbern Smith): 2641

INDEX TO AUTHORS

Numbers refer to the chronological list. Light-face type indicates papers, bold-face type indicates discussions and correspondence, and *italics refer to books and book reviews*.

Adler, Robert, 2627, 2627 Affanasiev, K. J., 2655 Alford, Andrew, 2556 Altar, William, 2554 American Radio Relay American Radio Relay League, 2691 Anderson, A. R., 2623 Applegarth, A. R., 2585 A.S.T.M. Committee D-9, 2603 Austrian, R. B., 2615

R

Bachman, C. H., 2606 Bateman, Ross, 2663 Baum, Richard, 2706 Baum, Richard, 2706 Beckman, Carl, 2564 Beers, G. L., 2675 Beitman, M. S., 2692 Benham, W. E., 2517 Berkner, L. V., 2668 Berg, R. A., 2644 Bieberbach, Ludwig, 2574 Beirwirth, R. A., 2569 Blatt, W. N., 2590 Bode, H. W., 2610 Bradley, W. E., 2671 Brittain, V. M., 2517 Bronwell, A. B., 2514 Brouse, H. L., 2616 Brown, G. H., 2569, 2712 Bruck, G. G., 2639 Brunetti, Cledo, 2710 Builder, Geoffrey, 2579, 2586 Busignies, H., 2490

C Cady, W. G., 2666, 2667 Camras, Marvin, 2565 Carter, E. F., 2630 Chinn, H. A., 2499, 2619 Crawford, A. B., 2684 Creamer, J., 2693 Crew, W. H., 2695 Crosby, D. R., 2562 Crosby, M. G., 2500

D Deloraine, E. M., 2694 Dishal, Milton, 2610 Dolph, C. L., 2625 Dow, J. B., 2618 Drukey, D. L., 2515 Drutowski, R. C., 2590 Dunlap, O. E., 2611 Dupuy, Judy, 2615 Dwight, H. B., 2642

Eaglesfield, C. C., 2499 Early, H. C., 2680, 2697 Egan, W. G., 2713 Eisenberg, Philip, 2499 Ellithorn, H. E., 2566 Espenschied, Lloyd, 13 Errorren, C. A. 2583 Espersen, G. A., 2583 Everest, F. A., 2559 Everitt, W. L., 2600

Feldt, Rudolf, 2635 Fett, G. H., 2644 Fink, D. G., 2560 Fisher, C. B., 2515 Fisher, S. T., 2550 Fluke, J. M., 2696 Fogel, C. M., 2621

Forbes, H. C., 2692 Ford, J. R., 2678 Frank, Ernest, 2588 Frankel, S., 2711 Frantz, W. J., 2577 Frazier, R. H., 2559 Fredendall, G. L., 2561 Freeman, R. L., 2587 Früs, H. R., 2608 Fry, W. J., 2673 Furst, U. R., 2698

G G Gaffney, F. J., 2677 George, W. D., 2689 Glauber, J. J., 2711 Ginzton, E. L., 2576 Golay, M. J. E., 2580 Good, E. F., 2515 Gordon, J. F., 2624 Gorham, J. E., 2570 Graham, R. E., 2577 Groom, Bryan, 2499 Grover, F. W., 2574, 2650, 2689 Gunn, Ross, 2590 Guy, R. F., 2603

H Hackbusch, R. A., 2567 Haeff, A. V., 2687 Haefner, S. J., 2647 Hall, E. L., 2642 Hall, W. C., 2590 Harrison, A. E., 2576 Harrison, C. W., Jr., 2595 Hastings, A. E., 2578 Heising, R. A., 2666 Heim, M. S., 2690 Henvis, B. W., 2673 Hergenrother, R. C., 2587 Herold, E. W., 2593 Hillier, J., 2606 Hinman, W. S., Jr., 2710 Hoffer, Louis, 2568 Hoffman, W. B., 2693 Hoyler, C. N., 2569 Hubbell, Richard, 2612 Hungins, W. H., 2662 Hunter, L. P., 2554

Ingles, H. C., 2617 I.R.E. Technical Committees, 2596

Jacques, R. B., 2709 Jamieson, H. W., 2645 Jelonek, Z., 2627 Johannson, O. K., 2620 Jones, L. F., 2611

K Kallmann, H. E., 2626, 2658 Kandoian, A. G., 2556, 2571 Katz, Leonhard, 2631 Kelvin, William, 2636 Kemppainen, A. O., 2590 King, A. P., 2591 King, R. W. P., 2542, 2575 Kinzer, G. D., 2590 Kirkman, R. A., 2551 Kiver, M. S., 2676 Kline, Morris, 2551 Kock, W. E., 2682

Korff, S. A., 2674 Korman, N. I., 2659, 2678 Kramer, A. W., 2604 Kraus, J. D., 2640 L Lafferty, R. E., 2628 Landman, A., 2480 Larick, S. H., 2714 Law, H. B., 2634 Lee, G. M., 2584 Lempert, I. E., 2634 Libby, L. L., 2657 Liebmann, G., 2471 Likel, H. C., 2613 Linder, E. G., 2622 Lundburg, F. J., 2556 MacColl, L. A., 2605 Markus, John, 2643 Marshall, C. J., 2631 Marshall, P. B., 2554 Massell, Edward, 2499 Massell, Edward, 2499 Mathematical Tables Project, 2589, 2614 McArthur, E. D., 2573, 2665 McGee, J. W., 2590 McIlroy, M. S., 2685 Meyers, S. T., 2609 Miedke, R. C., 2572 Miles, J. W., 2670 Miles, P. D., 2598 Morrison, W. C., 2712 Morton, G. A., 2606 Moss, Hilary, 2471 Mueller, G. E., 2592 Murray, A. F., 2676 N National Electronics Conference Inc., 2560 National Patent Planning Commission, 2601 Newman, M., 2590 Norrman, Ernst, 2679 0 Offner, F. F., 2699 P

P Parker, J. P., 2590 Pennypacker, C. H., 2562 Phillips, H. B., 2514 Pidduck, F. B., 2640 Pierce, J. A., 2607 Pierson, W. R., 2693 Pine, C. C., 2490 Pomerantz, M. A., 2701 Popert, Friedrich, 2667 Porter, N. E., 2696 Porter, P. A., 2597 Pratt, Haradan, 2702 Preisman, Albert, 2588 Preisman, Albert, 2588 Pullen, K. A., Jr., 2632

Radio Manufacturers Radio Manufacturers Association, 2602 Raggazzini, J. R., 2674 Ramberg, E. G., 2606 Ray, H. A., Jr., 2700 Rettenmeyer, F. X., 2605 Reynolds, F. W., 2557 Richards, P. I., 2581, 2653 Rider, J. F., 2613 Riordan, N. F., 2565

Roberds, W. M., 2646 Roberts, Shepard, 2594 Roberts, W. van B., 2499 Robertson, S. D., 2591 Rogers, E. H., 2590 Rose, Albert, 2634 Rouse, G. F., 2570 Rydbeck, O. E. H., 2641 Ryder, J. D., 2690

S Sah, A. Pen-Tung, 2650 Schelkunoff, S. A., 2542, 2553 Schlesinger, Kurt, 2561 Schneider, E. G., 2649 Schoengold, M. D., 2616 Schroeder, A. C., 2561 Schwartz, L. S., 2664, 2688 Shane, I. A., 2612 Sharpless, W. M., 2683, 2684 Skroder, C. E., 2690 Smith, D. B., 2671 Smith, Newbern, 2641 Spangenberg, K. R., 2654 Spitzer, E. E., 2582 Sproull, R. L., 2622 Stanton, Leonard, 2638 Sproull, R. L., 2022 Stanton, Leonard, 2638 Stimmel, R. G., 2590 Stockman, Harry, 2480 Stote, H. M., 2555 Strutt, M. J. O., 2704 Sutro, P. J., 2707

Taylor, A. H., 2500 Taylor, J. M., 2673 Thompson, L. E., 2703 Thompson, Nelson, 2661 Torok, J. J., 2620 Turner, H. M., 2604

Vance, W. A., 2606 Van Deusen, G. L., 2629 Van Dyke, K. S., 2673

v

W Waddel, R. C., 2590 Waidelich, D. L., 2565, 2565 Walker, R. C. 2675 Wallenstein, J. P., 2711 Ware, L. A., 2514 Warner, A. J., 2558 Waterfall, F. E., 2590 Watts, C. B., Jr., 2556 Weimer, P. K., 2634 Wells, H. W., 2705 Westman, H. P., 2691 Wheeler, M. S., 2563 Whinnery, J. R., 2575, 2589, 2614, 2645 Wicks, D. S., 2708 Wiggins, A. M., 2566 Williams, E. M., 2552 Winternitz, T. W., 2656 Wolf, Alfred, 2660 Wright, R. R., 2573 Wright, R. R., 2573

Y

Yarwood, J., *2665* Yeh, Chai, 2637 Yuan, L. C.-L., 2672, 2686

Z Zahl, H. A., 2570 Zeluff, Vin, 2643 Zworykin, V. K., 2606

INDEX TO SUBJECTS

This listing includes technical, sociological, economic, and general papers. Numbers refer to chronological list.

A Abstracts and References: 2633, 2648, 2652, 2669, 2681, 2702, 2715 Acoustics (See also Microphones and Loudspeakers): 2596 Airborne Radar: 2649 Aircraft: 2590 Instrumentation: 2590 Precipitation Static Research: 2590 Interference: 2590 Precipitation Static: 2590 Precipitation Static: 2590 Aircraft Radio: 2556, 2596, 2607, 2631, 2649, 2668 Airborne Radar: 2649 Altimeters, Radar: 2668 **Direction Finding: 2596** Instrument Landing: 2596 Navigation: 2607 Loran: 2607 Pilotless: 2607 Radar: 2649 Range: 2556 Sector Identification: 2556 Simultaneous Voice: 2556 Ultra-High-Frequency: 2556 Television: 2631 Guided Missiles: 2631 Allocations, Frequency: 2598 American Standards Association: 2695 Amplifiers, Amplification (See also Vacuum Tubes): 2515, 2550, 2586, 2626, 2632, 2645, 2647, 2649, 2656, 2699 Audio Frequency: 2586 Negative Voltage Feedback: 2586 Power-Supply Hum: 2586 Bootstrap: 2649 Carrier Wave: 2550 Modulated: 2550 Cathode-Coupled: 2632 Cathode Follower: 2649 Chireix: 2550 Disk-Seal Tube: 2645 Doherty: 2550 Efficiency: 2699 Effect of Q: 2699 Feedback: 2656 Gain Formula: 2656 Gain Formulas: 2657, 2656 High-Efficiency: 2550 Intermediate-Frequency: 2649 Measurements: 2647 Phase Inverter: 2515 Power: 2645, 2699 Efficiency: 2699 Effect of Q: 2699 Radio-Frequency: 2649 Ultra-High-Frequency: 2649 Disk-Seal Tube: 2645 Video-Frequency: 2626, 2649 High-Impedance Cable: 2626 Voice-Wave: 2550 Amplitude Modulation: 2500 Exalted Carrier Reception: 2500 Analysis, Spectrum: 2552 Angular-Velocity Modulation: 2624 Pulse Techniques, Use of: 2624 Annual Review: 2596 Antennalyzer: 2712

Antennas: 2542, 2553, 2571, 2595, 2596, 2608, 2625, 2636, 2649, 2655, 2657, 2663, 2672, 2682, 2686, 2700, 2706, 2712 Adcock: 2672, 2686 Antennalyzer: 2712 Arrays: 2595, 2625, 2655, 2700 Broad-Band: 2706 Directive: 2706 Broadside: 2595, 2625, 2655 Beam Width: 2625 Mutual Impedance: 2655 Optimized Relationships: 2625 Side-Lobe Level: 2625 Three-Element: 2595 Calculator: 2700 Collinear: 2655 Mutual Impedance: 2655 Parallel: 2655 Beam Width: 2649, 2668 Calculator: 2700 Directional Arrays: 2700 Cylindrical: 2542, 2553 Hallén's Integral Equation: 2542 Principal Waves in: 2553 Corner Reflector: 2686 Design: 2706, 2712 Antennalyzer: 2712 Directive: 2706 Broad-Band: 2706 Diffraction Types: 2649 Dipole Arrays: 2649 Dipoles: 2655 Mutual Impeance: 2655 Directional: 2595, 2686, 2700 Adcock: 2686 Antennalyzer: 2712 Broadbank: 2706 Broadside: 2595 Calculator: 2700 Corner Reflector: 2686 Theory: 2595 Three-Element: 2595 Direction-Finder: 2672, 2686 Adcock: 2672 "H": 2672 "H": 2672 Horn-Lens: 2682 Horns: 2649 Lenses: 2649 Loops: 2657 Shielded: 2657 Metal Lens: 2682 Mutual Impedance: 2655 Non-Conical: 2553 Complementary Waves in: 2553 Principal Waves in: 2553 Principal and Complementary Waves in: 2553 Radar: 2649, 2668 Radar Scan: 2649 Radiation Field: 2636 Unbalanced Dipole: 2636 Radio Circuit Formula: 2608 Reflectors: 2649, 2668 Spaced: 2663 Fading Elimination: 2663 Transmission Formula: 2608 Ultra-High-Frequency: 2571, 2663 **Dipole: 2571**

Antennas (Cont'd.) "Electric-Magnetic": 2571 Discone: 2571 Loop: 2571 Coaxial-Feed: 2571 "Electric-Magnetic": 2571 Wire Lens: 2682 Antinoise Microphones: 2566 Differential: 2566 Characteristics: 2566 Arrays: 2625, 2655 Broadside: 2625, 2655 Beam Width: 2625 Mutual Impedance: 2655 Optimized Relationships: 2625 Side-Lobe Level: 2625 Collinear: 2655 Parallel: 2655 Mutual Impedance: 2655 Arrays, Antenna: 2700 Calculator: 2700 Army-Navy Precipitation Static Project: 2590 A-Scan: 2649 Assymmetrical Butterfly Circuit: 2480 Audion: 13 Authors, Suggestions to: 2555 Automatic Frequency Control: 2649 Atomic Bomb Tests: 2702 Attenuators. Attenuation: 2677 Microwave: 2677 Wave Guide: 2677

B

Band-Pass Filters: 2654 Triple-Resonant Circuit: 2654 Beacons, Radar: 2649 Beam Width: 2625 Bikini Tests: 2702 Observations: 2702 Significance: 2702 Bolometer: 2677 Bootstrap Amplifier: 2649 Bridge: 2677 Thermistor: 2677 Broad-Band Antennas: 2706 Directive: 2706 Broadcasting: 2499, 2619, 2712 Antennas: 2712 Antennalyzer: 2712 Calculator: 2700 Control-Console Design: 2619 Control-Room Design: 2619 Listening Tests: 2499 Sound-Intensity Preferences: 2499 Tonal-Range Preference: 2499 Studio Design: 2619 Broadside Arrays: 2595, 2625, 2655 Beam Width: 2625 Mutual Impedance: 2655 **Optimized Relationships: 2625** Side-Lobe Level: 2625 Three-Element: 2595 Theory for: 2595 B-Scan: 2649 "Bups" Antenna: 2649 Butterfly Circuit: 2480 Assymetrical: 2480

C Cable: 2558, 2626 Ultra-High-Frequency: 2558 Coaxial: 2626 High-Impedance: 2626 Caesium-Vapor Lamp: 2696 Calculator, Antenna Pattern: 2700 Calculus: 2565 **Operational: 2565** Steady-State: 2565 Steady-State Operational: 2565 Canadian Council, I.R.E.: 2567 Carrier Communication: 2550 High-Efficiency: 2550 Cathode Emission, Focusing: 2637 Effect of Grid Supports: 2637 Cathode Followers: 2632, 2649, 2685 Rectangular Wave: 2685 Cathodes: 2701 Magnetron: 2701 Cathode-Ray Tubes: 2471, 2584, 2596, 2635 Image Formation: 2471 Intensifier-Type: 2635 5RP Multiband Tube: 2635 Three-Beam Oscillograph: 2584 Cavity Resonance, Resonator: 2551, 2596, 2622, 2649, 2677, 2707 Electric Field: 2551 Magnetic Field: 2551 Measurements: 2622, 2677 Frequency: 2622 Q: 2622 Shunt Resistance: 2622 Modes: 2551 Barrow: 2551 Mieher: 2551 Transverse Electric: 2551 Radar Transmitters: 2649 Centimeter Waves: 2591 Propagation: 2591 Effect of Rain: 2591 Charts: 2572 Decibel Conversion: 2572 Circuit Analysis (See also Transmission Lines): 2480, 2577, 2578, 2596, 2627, 2653, 2654, 2658, 2662, 2670, 2685, 2688, 2697, 2699 Amplifiers: 2699 Radio-Frequency: 2699 Effect of Q: 2699 Power: 2699 Effect of Q: 2699 Band-Pass Filters: 2654 **Butterfly Circuit: 2480** Assymetrical: 2480 Cathode Follower: 2685 Rectangular Wave: 2685 Coupled Resonators: 2653, 2654 Optimum-Response Curves: 2653 Delay Lines: 2658 Differentiating Circuit: 2688 Effect of Sloping Wave Front: 2688 Equivalent Circuit: 2670 Wave Guide: 2670 Plane Discontinuity: 2670 Networks: 2578 Resistance-Capacitance: 2578 Parallel-T: 2578 Network Transmission: 2577 Frequency-Modulated Wave: 2577 Node-Pair Method: 2662 Oscillators: 2627 Locking: 2627 Phase Inverter: 2515 Resistance-Capacitance: 2688 Differentiation: 2688 **Triple-Resonant Filters: 2654**

Circuit Analysis (Cont'd.) Wave Guide: 2670, 2697 Directional Coupler: 2697 Plane Discontinuity: 2670 Equivalent Circuit: 2670 Circuit Diagrams: 2714 Circuits: 2480, 2596 Butterfly Circuit: 2480 Coaxial Cable: 2626 High-Impedance: 2626 Coaxial Lines: 2680 Wattmeter: 2680 Wide-Band: 2680 Coaxial Oscillator: 2707 Mode Separation: 2707 College Training: 2709 Collinear Arrays: 2655 Mutual Impedance: 2655 Communication: 2596, 2599, 2694, 2696 Infrared: 2696 Light-Wave: 2696 Naval: 2599 Technical Coordination: 2694 Concentric Cable: 2626 High-Impedance: 2626 Conjugate-Image Impedances: 2594 Console, Studio: 2619 Control Room, Broadcasting: 2619 Conversion Methods: 2593 Phase-Reversal Modulation: 2593 Converters: 2593 Phase Reversal: 2593 Corner Reflector: 2686 Countermeasures: 2618 Couplers, Directional: 2697 Coupling Circuits: 2646 Induction Heating: 2646 C-Scan: 2649 Crystal Detectors: 2596 Crystals (Piezoelectric): 2596 Cylindrical Antennas: 2542 Hallén's Integral Equation: 2542 Cylindrical Shielding: 2622 Measurement: 2622 Production Testing: 2622 Cylindrical Wave Guide: 2670 Plane Discontinuity: 2670 Equivalent Circuit: 2670 D Damping: 2661

Decibel Conversion Chart: 2572 DeForest, Dr. Lee: 13 Delay Lines: 2658 Equalization: 2658 Dehydration: 2569 Radio Frequency: 2569 Penicillin Solution: 2569 Detectors: 2579, 2596 Crystal: 2596 Modulation-Frequency Feedback: 2579 Diagrams: 2714 Functional Schematics: 2714 Differential Microphones: 2566 Characteristics: 2566 Antinoise: 2566 Differentiating Circuit: 2688 Effect of Sloping Wave Front: 2688 Diode: 2517 Emission-Limited: 2517 Dipole: 2571 "Electric-Magnetic": 2571 Directional Antennas: 2700, 2706, 2712 Broad-Band: 2706 Calculator: 2700 Design: 2712 Antennalyzer: 2712

Directional Couplers: 2677, 2697 Wide-Band: 2697 Direction Finders: 2672, 2686 Adcock: 2672, 2686 "H" Antenna: 2672 Radiosonde: 2686 Ultra-High-Frequency: 2686 Very-High-Frequency: 2672 Disk-Seal-Tube Amplifiers: 2645 Disk-Seal Tubes: 2649

E

Echo Boxes: 2677 Education: 2568, 2630, 2644 Engineering: 2568 Scientific Method: 2568 Specialization: 2630 Wartime Training: 2644 E-Laver Ionization: 2705 Electric Field: 2636 Unbalanced Dipole: 2636 Electroacoustics: 2596 Electroencephalographic Technique: 2713 Electron-Image Tube: 2696 Emission, Focusing Cathode: 2637 Effect of Grid Supports: 2637 Emission-Limited Diode: 2517 Emission, Thermionic: 2701 Engineering: 2641, 2694, 2709 Technical Coordination: 2694 Training: 2644, 2709 Wartime: 2644 Equalization: 2658 Delay Lines: 2658 Exalted-Carrier Reception: 2500 F Facsimile: 2596 Fading: 2663 Elimination with Spaced Antennas: 2663 Federal Communications Commission: 2597, 2598 Frequency Allocations: 2598 Feedback: 2579, 2586, 2656 Audio-Frequency Amplifiers: 2586 Power-Supply Hum 2586 Detectors: 2579 Modulation-Frequency: 2579 Gain Formula: 2656 Field: 2636 Radiation: 2636 Unbalanced Dipole: 2636 Filament Wire: 2583 Filters: 2580, 2581, 2654, 2660, 2696 Band-Pass: 2654 Band Width: 2654 Frequency Response: 2654 Insertion Loss: 2654 Frequency-Descriminating: 2660 Infrared: 2696 Low-Pass: 2580 Dispersionless Lag Line: 2580 Parallel-T: 2660 Frequency-Discriminating: 2660 Resistance-Capacitance: 2660

Parallel-T: 2660 Theory: 2581 Matrix Algebra: 2581 Fractional-Mu Tube: 2586 Frequency: 2551, 2598, 2622, 2677, 2678 Allocations: 2598 Measurement: 2551, 2622, 2677 Microwave: 2677 Resonant Cavity: 2622 Ultra-High-Frequency: 2551

Oscillator: 2678

Frequency (Cont'd.) Pulling: 2678 Stability: 2678 Frequency Allocations: 2598 Frequency Conversion: 2593 Phase-Reversal Modulation: 2593 Frequency Divider: 2679 Inductance-Capacitance: 2679 Frequency Modulation: 2561, 2577, 2596, 2609, 2624, 2639, 2671, 2677 "Click" Noise: 2671 Distortion: 2609 Impulse Noise: 2671 Measurements: 2677 Microwave Test Set: 2677 Multipath Propagation: 2609 Amplitude Nonlinearity: 2609 Network Transmission: 2577 Frequency-Modulated Wave: 2577 Oscillator Circuit: 2639 Pick Circuit: 2639 "Pop" Noise: 2671 Pulse Techniques, Use of: 2624 Reception: 2671 Impulse Noise: 2671 Sound on Television Carrier: 2561 Theory: 2671 Impulse Noise: 2671 Frequency-Selective Networks: 2638 Resistance-Capacitance: 2638 Parallel-T: 2638 Frontiers, Engineering: 2597 Fuze, Proximity: 2710

G

Gain Formula, Amplifier: 2647, 2656 Gating: 2649 Gauge, Ionization: 2621 Gee: 2649 Gee-H: 2649 Getters: 2583 Glass, Water-Repellant: 2620 Grid-Control Circuits: 2564 Thyratron: 2564 Pulse Response: 2564 Grid Wire: 2583 Grounded-Grid Amplifier: 2632 Guided Missiles: 2631

Ħ

Hallén's Integral Equation: 2542 Hard-Tube Modulators: 2649 Heater Wire: 2583 Heating Electronics: 2646 Coupling Circuits: 2646 Design: 2646 Height Finders, Radar: 2649 Hum, Power-Supply: 2586 Hyperbolic Navigation: 2607 Hyperbolic Surveying: 2607

Identification: 2618, 2649, 2668 Friend or Foe: 2649, 2668 Image Orthicon: 2634 Impedance: 2677 Bridge: 2677 Microwave: 2677 Measurement: 2677 Microwave: 2677 Impedance Matching: 2646, 2649 Induction Heating: 2646 Radar: 2649 Impulse Noise: 2671 Frequency-Modulation Receivers: 2671 Theory: 2671

Indicators: 2649, 2668 Radar: 2649, 2668 Induction Heating: 2582, 2646 Coupling Circuits: 2646 Design: 2646 Electron-Tube Manufacture: 2582 Infrared Communication: 2696 Filters: 2696 Radiators: 2696 Caesium-Vapor Lamp: 2696 Tungsten Lamp: 2696 Receivers: 2696 Electron-Image Tube: 2696 Phosphor-Button Receiver: 2696 Photocell Receiver: 2696 Institute of Radio Engineers: 2555, 2567, 2600, 2617, 2694, 2695 Canadian Council: 2567 Instrumentation: 2590 Aircraft: 2590 Precipitation Static Research: 2590 Instrument-Landing Systems: 2649 Radar: 2649 Insulators, Insulation: 2620 Liquid Dimethylsilicones: 2620 Organosilicone Compounds: 2620 Silicone: 2620 Water-Repellant Glass: 2620 Interference: 2663, 2668 Fading: 2663 Use of Spaced Antennas: 2663 Radar: 2668 International Coordination: 2694 Interrogator: 2668 Inverters: 2563 Phase: 2563 Self-Balancing: 2563 Ionosphere: 2705 Sporadic E-Region: 2705 Watheroo Observations: 2705 Ionization Gauge: 2621 Jamming, Radar: 2668 J-Scan: 2649

K

Klystron: 2567, 2649 Reflex Oscillators: 2576

T.

Lag Line: 2580 Lens Antennas: 2682 Lighthouse Tubes: 2645, 2649 Light-Wave Communication: 2696 Linear Arrays: 2625 Beam Width: 2625 **Optimized Relationships: 2625** Side-Lobe Level: 2625 Lines: 2658 Delay: 2658 Distortion: 2658 Equalization: 2658 Liquid Dimethylsilicones: 2620 Listening Tests: 2499 Sound-Intensity Preference: 2499 Tonal-Range Preference: 2499 Locking: 2627 Loops: 2571, 2657 Coaxial-Feed: 2571 "Electric-Magnetic": 2571 Shielded: 2657 Ultra-High-Frequency: 2571 Loran: 2598, 2607, 2618, 2649 Lorhumb Line: 2607 Low-Pass Filter: 2580 Dispersionless Lag Line: 2580

M "Magic-T" Bridge Duplexer: 2649 Magnetrons: 2649, 2701 Cathodes: 2701 Multicavity: 2701 Magnetic-Wire Recording: 2651 Frequency Response: 2651 Output Level: 2651 Manometer: 2621 Manufacturing: 2558, 2582, 2583 Solid-Dielectric Cable: 2558 Ultra-High-Frequency: 2558 Vacuum-Tube: 2582, 2583 Fine Wires: 2583 Induction Heating: 2582 Manuscript Preparation: 2555 Mapping, Radar: 2649 Matching Impedances: 2594 Conjugate-Image Method: 2594 Mathematics: 2565, 2581 Calculus: 2565 **Operational: 2565** Steady-State: 2565 Matrix Algebra: 2581 Filter Theory: 2581 Steady-State Operational Calculus: 2565 Matrix Algebra: 2581 Filter Theory: 2581 Measurements (For specific measurements see limiting terms): 2554, 2584, 2622, 2623, 2628, 2632, 2635, 2647, 2658, 2659, 2661, 2677, 2680, 2687, 2698 Amplifier Gain: 2647 Attenuation: 2677 Damping: 2661 Frequency: 2677 Impedance: 2677 Lines: 2658 Delay: 2658 Microwave: 2677 Bench Oscillators: 2677 Directional Coupler: 2677 Impedance Bridge: 2677 Signal Generators: 2677 Spectrum Analyzers: 2677 Thermistor Bridge: 2677 Wave Meters: 2677 Oscillograph, Projection: 2635 Probe Error: 2554 Power: 2677, 2680 Wattmeter: 2680 Wave-Guide: 2680 Radar: 2687 Sensitivity: 2687 Radar Performance: 2677 Recording: 2698 Reflection Coefficient: 2659 Resonant Cavity: 2622 Frequency: 2622 Q: 2622 Shunt Resistance: 2622 Resonant Resistance: 2632 Cathode-Coupled Oscillator: 2632 Shielding, Radio Frequency: 2622 Cylindrical: 2622 Sound Reproduction: 2698 Standing-Wave Detectors: 2554 Standing Waves: 2677 Super-High-Frequency Oscillograph: 2584 Three-Beam Oscillograph: 2584 Transmission Line: 2659 Reflection Coefficient: 2659 Ultra-High-Frequency Oscillograph: 2584 Voltmeter Loading: 2628 Correction Formula: 2628 Wattmeter: 2680 Wave-Guide: 2680

10

Measurements (Cont'd.) Wave Guide: 2680 Wattmeter: 2680 Wow: 2698 Micro-H: 2649 Micro-oscillograph: 2584 Microphones: 2566, 2596 Antinoise: 2566 Differential: 2566 Characteristics: 2566 Microwave Early-Warning Radar: 2649 Microwaves (See also Ultra-High Frequencies and Super-High Frequencies): 2683, 2684, 2703 Angle of Arrival: 2683, 2684 Propagation: 2683, 2684 Angle of Arrival: 2683, 2684 Measurement: 2683, 2684 Relay System: 2703 Millimeter Waves: 2592 Propagation: 2592 Effect of Rain: 2592 Missiles, Television-Guided: 2631, 2704 Mixers: 2593, 2619, 2632, 2649 Cathode-Coupled: 2632 Crystal: 2649. Noise-Figure Reduction: 2704 Phase-Reversal: 2593 Mode Separation: 2707 Coaxial Oscillator: 2707 Modulator, Modulation (See also Detectors, Transmitters): 2624, 2649 Angular-Velocity Modulation: 2624 Pulse Techniques, Use of: 2624 Radar: 2649 Hard-Tube Modulators: 2649 Pulse-Network Modulators: 2649 Multipath Transmission: 2609 Frequency-Modulated Signals: 2609 Multivibrators: 2624, 2632, 2649 Circuits: 2632, 2649 Cathode-Coupled: 2632 Modulation, Use in: 2624 Angular Velocity: 2624

N

National Patent Planning Commission: 2601 Naval Reserve, United States: 2708 Navigation: 2556, 2607, 2649 Beacons: 2649 Gee: 2649 Instrument Landing: 2649 Loran: 2607, 2649 Radar Beacons: 2649 Radio Range: 2556 Sector Identification: 2556 Ultra-High-Frequency: 2556 Navy, United States: 2599, 2618, 2708 Airborne Radar: 2618 Naval Reserve: 2708 Wartime Communications: 2599 Wartime Radio and Electronics: 2618 Networks (See also Circuit Analysis and Filters): 2577, 2578, 2594, 2638, 2653, 2654, 2660, 2670 Coupled Resonant Circuits: 2653, 2654 Band-Pass Filters: 2654 Band Width: 2654 Frequency Response: 2653, 2654 Insertion Loss: 2654 Optimum-Response Curves: 2653 Frequency-Discriminating: 2660 Resistance-Capacitance: 2660 Frequency-Selective: 2638 Resistance-Capacitance: 2638

Networks (Cont'd.) Matching Impedances: 2594 Conjugate-Image Method: 2594 Parallel-T: 2638, 2660 Frequency-Discriminating: 2660 Frequency-Selective: 2638 Resistance-Capacitance: 2638 Resistance-Capacitance: 2578, 2638, 2660 Frequency-Selective: 2638 Parallel-T: 2578, 2660 Analysis: 2578 Frequency-Discriminating: 2660 Transmission: 2577 Frequency-Modulated Wave: 2577 Wave Guide: 2670 Equivalent Circuit: 2670 Plane Discontinuity: 2670 Node-Pair Circuit Analysis: 2662 Noise Reduction: 2704 Mixers: 2704

0

Oboe: 2649 **Operational Calculus: 2565** Steady-State: 2565 Optimized Relationships, Arrays: 2625 Optimum-Response Curves: 2653 Organosilicone Compounds: 2620 Oscillators, Oscillations (See also Vacuum Tubes): 2576, 2587, 2627, 2632, 2639, 2646, 2677, 2678, 2679 Coupling: 2678 Fractional-Mu Tube: 2587 Frequency-Divider: 2679 Inductance-Capacitance: 2679 Frequency Modulation: 2639 Frequency Pulling: 2678 Inductance-Capacitance: 2679 Frequency Divider: 2679 **Induction Heating: 2646** Coupling Circuits: 2646 Design: 2646 Loaded: 2678 Frequency Pulling: 2678 Stability: 2678 Loading: 2678 Locking: 2627 Locking Phenomena: 2627 Microwave: 2677 "Pull-In": 2627 Radio-Frequency Power Supply: 2587 Reflex Klystron: 2576 Resistance-Capacitance: 2632 Cathode-Coupled: 2632 Stability: 2678 Synchronization: 2627 Unstabilized: 2678 Frequency Pulling: 2678 Stability: 2678 Oscillographs: 2584, 2635 10,000-Megacycle Recording: 2584 Projection: 2635 Three-Beam Oscillograph: 2584 Ultra-High-Frequency Oscillograph: 2584

P

Papers, Preparation of: 2555 Parallel-T Networks: 2638 Frequency-Selective: 2638 Patent Planning Commission Report: 2601 Pattern Calculator, Antenna: 2700 Penicillin: 2569 Dehydration: 2569 Radio-Frequency: 2569 Phantastron: 2649 Phase Inverters: 2515, 2563 Self-Balancing: 2563 Analysis: 2563 Phase Modulation: 2509, 2624 **Exalted-Carrier Reception: 2500** Pulse Techniques, Use of: 2624 Phase-Reversal Modulation: 2593 Phonograph Reproduction: 2698 Pitch Variations: 2698 Wow: 2698 Phosphor-Button Infrared Receiver: 2696 Pickups: 2649 Frequency-Modulation Circuit: 2639 Pickup Tubes: 2596, 2634 Image Orthicon: 2634-Piezoelectric Crystals: 2596 Pitch: 2698 Variations in Reproduction: 2698 Plan-Position Indicator: 2649 "Potato Masher": 2668 Power Amplifiers: 2645 Disk-Seal Tubes: 2645 Ultra-High Frequency: 2645 Power, Measurement: 2677 Microwave: 2677 Power Supplies: 2587 Radio-Frequency: 2587 Fractional-Mu Tube: 2587 PPI: 2649 Precipitation Static: 2590 Presidential Address: 2600 Probe Error: 2554 Proceedings of the Institute of Radio Engineers: 2555 Papers, Preparation of: 2555 Progress in Radio: 2596 Projection Oscillograph: 2635 Propagation of Waves: 2591, 2592, 2596, 2608, 2609, 2649, 2683, 2684 1- and 3-Centimeter Region: 2591 Effect of Rain: 2591 6-Millimeter Waves: 2592 Effect of Rain: 2592 Angle of Arrival: 2683, 2684 Anomalous Propagation: 2649 Atmospheric Absorption: 2649 Frequency Modulation: 2609 Multipath Distortion: 2609 Ground Reflection: 2649 Guided: 2596 Ionospheric: 2596 Microwave: 2683, 2684: Angle of Arrival: 2683, 2684 Multipath Propagation: 2609 Frequency Modulation: 2609 Tropospheric: 2596 Radar: 2649 Radio Circuit Formula: 2608 Proximity Fuze: 2710 "Pull-In": 2627 Pulling, Oscillator: 2678 Pulse: 2561, 2585, 2596 **Generator Circuits: 2585** Modulators: 2596 Tubes: 2596 Sound Transmission: 2561 On Television Carrier: 2561 Synchronizing Generators: 2585 Pulse-Network Modulators: 2649 Pulse Repetition Frequency: 2649, 2668, 2687 Pulse Response: 2564 Thyratron Circuits: 2564 Grid-Control: 2564 Pulse Techniques: 2624 Angular-Velocity Modulation: 2624

R Radar: 2618, 2649, 2668, 2677, 2687 Airborne: 2668 Altimeters: 2668 Computers: 2668 Design: 2668 Evolution: 2668 Fire Control. 2668 Functions: 2668 Identification: 2668 Air Traffic Control: 2649, 2668 Antennas: 2649, 2668 Bandwidth: 2687 Beacons: 2649 Bombing: 2649, 2668 Computers: 2668 Electronic Techniques: 2649, 2668 Gee-H: 2649 Identification: 2649, 2668 Indicators: 2649, 2668 Intercept: 2668 Jamming: 2668 Measurements: 2677, 2687 Echo Boxes: 2677 Performance: 2677 Micro-H: 2649 Minimum Signal: 2687 Pulse Repetition Rate: 2687 Modulators: 2649, 2668 Navigation: 2649 Night-Fighters: 2668 Oboe: 2649 Principles: 2649, 2668 Pulse Length: 2687 Pulse Repetition Rate: 2649, 2668, 2687 Radio-Frequency Techniques: 2649, 2668 Receivers: 2687 Bandwidth: 2687 Search: 2668, 2687 Shoran: 2649 Signal Sensitivity: 2687 Systems: 2649, 2668 Testing: 2668 Training: 2668 Transmitters: 2649, 2668 Wave Propagation: 2649 Radiators, Radiation (See also Antennas): 2636 Unbalanced Dipole: 2636 Radio-Frequency: 2699 Efficiency: 2699 Effect of Q: 2699 Radio Manufacturers Association: 2602 Proposed Standards 2602 Radio Navigation: 2607 Loran: 2607 Radio Progress: 2596 Radio Proximity Fuze: 2710 Radiosonde: 2686 Direction Finding: 2686 Radomes: 2668 Range-Height Indicator: 2649 Range, Radio: 2556 Sector Identification: 2556 Simultaneous Voice: 2556 Ultra-High Frequency: 2556 "Rat-Race" Bridge Duplexer: 2649 Receivers, Reception (See also Amplifiers): 2500, 2596, 2664, 2671, 2687 Exalted Carrier: 2500 Frequency Modulation: 2671 "Click" Noise: 2671 Impulse Noise: 2671 "Pop" Noise: 2671 Radar: 2687 Sensitivity Specification: 2664

Recorders, Recording (See also Measurements, and Propagation of Waves): 2651, 2698 Magnetic-Wire: 2651 Frequency Response: 2651 Output Level: 2651 Pitch Variations: 2698 Reproduction: 2698 Pitch Variations: 2698 Wow: 2698 Wow: 2698 Recording Oscillograph: 2584 Rectangular Wave: 2685 Driving Cathode Follower: 2685 Reflection Coefficient Meter: 2659 Reflectometer: 2659 Reflex Klystron: 2576 Oscillators: 2576 Relay: 2703 Systems: 2703 Microwave: 2703 Relay Networks: 2703 Microwave: 2703 Research: 2597 New Frontiers: 2597 Resistance-Capacitance Networks: 2578, 2638, 2660 Frequency-Selective: 2638 Parallel-T Networks: 2578 Analysis: 2578 Resistors: 2562 Radio-Frequency: 2562 Transmission-Line: 2562 Resonators, Resonance: 2551, 2596, 2622, 2649, 2653, 2677 Cavity: 2622, 2649, 2677 Measurements: 2622, 2677 Radar Transmitters: 2649 **Optimum-Response Curves: 2653** Responsor: 2668 RHI: 2649 Ridge Wave Guide: 2697 S Schematic Diagrams: 2714 Scientific Method: 2568 Search Radar: 2649, 2687 Servo Controls: 2649 Radar: 2649 Shielded Loops: 2657 Shielding, Radio-Frequency: 2622 Cylindrical: 2622 Measurement: 2622 Production Testing: 2622 Shipborne Radar: 2649 Shoran: 2649 Side-Lobe Level: 2625 Signal Corps (United States Army): 2617 Silicones: 2620 Solid-Dielectric Cable: 2558 Manufacturing: 2558 Sonar: 2618 Sound Intensity: 2499 Listener Preferences: 2499 Sound on Television Carrier: 2561 Sound Reproduction: 2596, 2698 Phonographs: 2698 Pitch Variations: 2698 Wow: 2698 Specialization: 2630 Spectrum Analyzers: 2552, 2677 Continuously Tuned: 2552 Microwave: 2677 Radio-Frequency: 2552 Resolving Power: 2552 Spectrum, Frequency: 2598 Sporadic E-Layer Ionization: 2705

Stability: 2678 Oscillator: 2678 Standardization: 2596, 2602, 2695 American Standards Association: 2695 Proposed Radio Manufacturers Association Standards: 2602 Standing-Wave Detectors: 2554 Probe Error: 2554 Static: 2590 Precipitation: 2590 Aircraft Interference: 2590 Studio Control-Room Design: 2619 Superheterodyne: 2593 Frequency Conversion: 2593 Phase-Reversal Modulation: 2593 Super-High Frequencies: 2591, 2683, 2684 Angle of Arrival: 2591, 2683, 2684 Effect of Rain: 2591 Measurement: 2683, 2684 Surveying, Hyperbolic: 2607 Switching Devices: 2649 Radar: 2649 Synchronization, Oscillator: 2627 Т Technical Co-ordination: 2694 Television (See also Propagation of Waves, and Vacuum Tubes): 2557, 2561, 2585, 2596, 2631, 2634 Cathode-Ray Tubes: 2596 Duplexing: 2561 Frequency-Divider Chain: 2585 Guided Missiles: 2631 Image Evaluation: 2557 Image Orthicon: 2634 Image Synthesis: 2557 **Optical Simulation: 2557** Pickup Tubes: 2596, 2634 Picture Carrier: 2561 Sound on: 2561 Signal-Synthesis Circuits: 2585 Sound: 2561 Picture Carrier: 2561 Sound Transmission: 2561 Television Carrier: 2561 Synchronizing Generator: 2585 Thyratron: 2564 Grid-Control: 2564 Pulse Response: 2564 Thermonic Emission: 2701 Thermistor Bridge: 2677 Tonal Range: 2499 Listener Preference: 2499 Training: 2644, 2668, 2709 Engineering: 2709 Radar: 2668 Wartime: 2644 Transit Time: 2514 Transmission Lines: 2562, 2596, 2649, 2657, 2658, 2659, 2677, 2680 Delay: 2658 Equalization: 2658 Measurement: 2658 Measurements: 2658, 2677 Radar Systems: 2649 Radio-Frequency: 2562 Resistors: 2562 Reflection Coefficient: 2659

Measurement: 2659

Ultra-High-Frequency: 2649

Transmit-Receive Boxes: 2649

2596, 2608, 2664, 2699

Transmitters, Transmission (See also Oscilla-

tors, Propagation of Waves): 2570.

Shielded Loops: 2657

Wide-Band: 2680

Wattmeter: 2680

11

12

Transmitters, Transmission (Cont'd.) Amplifiers: 2699 Efficiency: 2699 Effect of Q: 2699 Power-Output Specification: 2664 Push-Pull Triode: 2570 Vacuum-Contained: 2570 Radio Circuit Formula: 2608 Transponder: 2668 Turntable, Phonograph: 2698 Effect of Irregularities: 2698

U

Ultra-High-Frequencies (See also Propagation of Waves): 2558, 2570, 2576, 2581, 2596, 2645, 2663, 2664, 2683, 2684 Amplifiers: 2645 Disk-Seal Tube: 2645 Power: 2645 Angle of Arrival: 2683, 2684 Measurements: 2683, 2684 Antennas: 2596 Cable: 2558 Design: 2558 Manufacturing: 2558 Solid Dielectric: 2558 Disk-Seal Tubes: 2645 Electron Tubes: 2596 Fading Elimination: 2663 Spaced Antennas: 2663 Oscillators: 2576 Reflex Klystron: 2576 Propagation: 2683, 2684 Angle of Arrival: 2683, 2684 Measurement: 2683, 2684 Receivers: 2596 Spaced Antennas: 2663 Specifications: 2664 Receiver Sensitivity: 2664 Transmitter Power Output: 2664 10,000-Megacycle Oscillograph: 2584 Three-Beam Oscillograph: 2584 Transmitters: 2570, 2596 Tubes: 2570 Wave Propagation: 2596 United States Army: 2617 Signal Corps: 2617 Institute of Radio Engineers Participation: 2617 United States Navy: 2599, 2618, 2708 Airborne Radar: 2668 Naval Reserve: 2708 Wartime Communication: 2599 Wartime Radio and Electronics: 2618

V

Vacuum Manometer: 2621 Vacuum Tubes: 2471, 2514, 2517, 2550, 2570, 2576, 2582, 2583, 2587, 2593, 2596, 2634, 2635, 2637, 2645, 2647, 2649, 2656, 2701, 2711 Vacuum Tubes (Cont'd.) Amplifiers: 2645, 2647, 2649, 2656 Cathode Follower: 2649 Feedback: 2656 Gain Formula: 2656 Gain Formulas: 2647 Measurements: 2647 Anode Dissipation: 2550 Cathode-Ray Tubes: 2471, 2596, 2634, 2635 Image Formation: 2471 Image Orthicon: 2634 Intensifier-Type: 2635 Multiband Tube: 2635 Spot Size: 2471 Cathodes: 2701 Magnetron: 2701 Diode: 2517 Emission-Limited: 2517 Disk-Seal Tubes: 2645, 2649 Emission-Limited Diode: 2517 Focusing Emission: 2637 Effect of Grid Supports: 2637 Fractional-Mu Tube: 2587 Radio-Frequency Power Supply: 2587 Gas Tubes: 2596 Image Orthicon: 2634 Klystron: 2576, 2649 **Oscillators: 2576** Lighthouse: 2645, 2649 Magnetrons: 2649, 2701 Cathodes: 2701 Multicavity: 2701 Manufacturing: 2582, 2583 Fine Wires: 2583 Getters: 2583 Heaters: 2583 Induction Heating: 2582 Oscillator: 2576 Reflex Klystron: 2576 Phase-Reversal Converter: 2593 Phototubes: 2596 Pickup Tubes: 2596 Power: 2711 Very-High-Frequency: 2711 Power Amplifiers: 2645 Pulse Modulator Tubes: 2596 Push-Pull Triode: 2570 Transmitter: 2570 Reflex Klystron: 2576 Oscillators: 2576 Television Pickup Tubes: 2634 Image Orthicon: 2634 Transit Time: 2514 Triode: 2711 Medium Power: 2711 600-Megacycle: 2711 Very-High-Frequency: 2711 Triode, Push-Pull: 2570 Transmitter: 2570 Ultra-High-Frequency: 2576, 2645 Very-High-Frequency: 2711 Wires: 2583

Very-High-Frequencies: 2711 Vacuum Tubes: 2711 Medium-Power Triode: 2711 600-Megacycle: 2711 Video-Frequency Amplifiers: 2626 High-Impedance Cable: 2626 Voltmeters: 2628 Loading, Correction Formula: 2628

W

Water-Repellant Glass: 2620 Watheroo Observatory: 2705 Sporadic E Ionization: 2705 Waves: 2550, 2551, 2553, 2683, 2684 Amplification: 2550 Antennas: 2553 Complementary: 2553 Principal: 2553 Meters: 2551, 2622, 2677 Propagation: 2591, 2592, 2596, 2608, 2609, 2649, 2683, 2684 1- and 3-Centimeter Region: 2591 Effect of Rain: 2591 6-Millimeter Waves: 2592 Effect of Rain: 2592 Angle of Arrival: 2683, 2684 Anomalous Propagation: 2649 Atmospheric Absorption: 2649 Frequency Modulation: 2609 Multipath Distortion: 2609 Ground Reflection: 2649 Guided: 2596 Ionospheric: 2596 Microwave: 2683, 2684 Angle of Arrival: 2683, 2684 Multipath Propagation: 2609 Frequency Modulation: 2609 Tropospheric: 2596 Radar: 2649 Radio Circuit Formula: 2608 Sectional Separation: 2550 Wave Guides: 2596, 2649, 2670, 2677, 2680, 2697 Attenuators: 2677 Directional Couplers: 2677, 2697 Wide-Band: 2697 Plane Discontinuity: 2670 Equivalent Circuit: 2670 Ridge: 2697 Slotted Section: 2677 Squeeze Section: 2677 Standing-Wave Measurements: 2677 Wattmeter: 2680 Wide-Band: 2680 Wavemeters: 2551, 2622, 2677 Cavity: 2677 Coaxial-Line: 2677 Resonant Cavity: 2622 Wire Recording: 2651 Frequency Response: 2651 Output Level: 2651 Wow: 2698

NONTECHNICAL INDEX

Awards

Awards March, p. 155 W BROWDER J. THOMPSON MEMORIAL PRIZE-1946 (Recipient) Lee, G. M. July, p. 466 FELLOW DIPLOMAS—1945 (Recipients) (Awarded 1946) Acknowledged by J. A. Stratton April, p. 203 W Breit, Gregory February, p. 94 W Busignies, H. G. February, p. 94 W Chinn, H. A. February, p. 95 W Eckersley, T. L. February, p. 94 W Evans, W. C. February, p. 95 W Hansell, C. W. February, p. 94 W Kirke, H. L. February, p. 94 W McArthur, E. D. February, p. 95 W Osborne, H. S. February, p. 94 W Rockwell, R. J. February, p. 95 W Samuel, A. L. February, p. 95 W Slepian, Joseph February, p. 94 W Stratton, J. A. February, p. 95 W Correction, May, p. 276 Swinyard, W. O. February, p. 95 W Tuve, M. A. February, p. 95 W MAN OF SCIENCE AWARD (Recipient) Sarnoff, David December, p. 966 MEDAL OF HONOR-1946 (Recipient) Hartley, R. V. L. February, p. 94 W Morris Liebmann Memorial Prize—1945 (Recipient) Goldmark, P. C. February, p. 94 W

Committees

Board of Directors December, p. 965 Board of Editors April, p. 203 W Building-Fund February, p. 96 W March, p. 154 W Code of Ethics March, p. 154 W Convention Policy May p. 271 May, p. 271 July, p. 478 Edison Centennial July, p. 478 Editorial Administrative July, p. 466 Education April, p. 203 W Founder Members May, p. 271 July, p. 478 Industrial Electronics May, p. 271 July, p. 478 International Liaison April, p. 203 W I.R.E.—RMA January, p. 43 W National Association of Broadcasters April, p. 205 W

Committees

(continued) Navigation Aids May, p. 271 July, p. 478 Nomination Petition for Director December, p. 965 Office-Quarters March, p. 155 W Papers Procurement March, p. 155 W Personnel June, pp. 366–367 October, pp. 766–768 Radio Manufacturers Association Engineering Department April, pp. 206 W-207 W Tellers January, p. 43 W February, p. 96 W December, p. 965 **Constitution and Bylaws** CONSTITUTION Article II, Sec. 6 Student Status February, p. 96 W Proposed Amendment Regional-Representation Plan February, p. 96 W April, p. 202 W Article VI, Sec. 4, Paragraph 1 April, p. 202 W Article VI, Sec. 5 April, p. 202 W Proposed Revision Article II, Sec. 9 March, p. 154 W Article V March, p. 154 W Article V, Sec. 5 March, p. 154 W Article VI, Sec. 7 March, p. 154 W **BYLAWS-AMENDMENTS** Adopted Sec. 27 February, p. 96 W Sec. 57 February, p. 96 W Proposed Revision Sec. 22 March, p. 154 W Sec. 46 March, p. 154 W Sec. 49 March, pp. 154 W-155 W Sec. 53 March, p. 155 W Sec. 54 March, p. 155 W Sec. 55 December, p. 965 Constitutional Amendments

Conventions and Meetings

Westman Amendment

January, p. 44 W

Broadcast Engineering Conference, 1946 January, p. 43 W February, pp. 96 W-97 W May, p. 271 Chicago Section Engineering Conference June, pp. 360-361 Electronics Conference—1946 Electronics Conterence—1946 April, p. 203 W May, p. 271 I.R.E. Electron-Tube Conference—1946 April, p. 204 W I.R.E.-U.R.S.I. Meeting—1946 February, p. 96 W April, p. 204 W

Conventions and Meetings (continued) Midwest Intersection Conference-1946 Regional-Committee Success Is Assured

May, p. 272 1946 National Electronics Conference September, p. 665 National I.R.E. Convention-1947 December, p. 964 Rochester Fall Meeting-1945 January, p. 43 W October, p. 763 Television Broadcasters Association Conference and Exhibition July, p. 466 Winter Technical Meeting-1946 Program and Highlights January, pp. 38 W-42 W Summaries of Technical Papers February, pp. 80 W-93 W Outstanding Events March pp. 140 W-153 W March, pp. 149 W-153 W Correction May, p. 276 Winter Technical Meeting-1947 April, p. 203 W

Editorials

Proceedings Bowles, E. L. National Security and a Mechanism for **Its** Achievement April, p. 154 P Browder J. Thompson Memorial December, pp. 930, 931 Carter, E. F. The Engineer's Social Responsibility May, p. 214 Ellithorn, H. E. Subsections in the I.R.E. Program July, p. 422 Guy, Raymond F. Instincts and Reason October, p. 726 Llewellyn, F. B. 1946 January, p. 2 P Manson, R. H. Radio Industry Needs Well-Trained Young Engineers November, p. 826 McIlwain, Knox Gossamer September, p. 622 Pounsett, F. H. R. Continuing Service March, p. 96 P Pratt, Haraden Society's Hopes for the Engineer February, p. 48 P Smith, M. W. The Future of Electronic Engineering September, p. 670 Wheeler, H. A. The Real Economy in Engineering August, p. 526 White, W. C. There Is Always Room at the Top June, p. 326 Waves and Electrons Caldwell, O. H. When Radio Engineer Is "Big Boss" March, p. 109 W Everitt, W. L. **Electronics and Communications** January, p. 3 W Firestone, F. A. Moral Reflections May, p. 281 Forgue, S. V. Electronics and the Research Physicist August, p. 595

Editorials (continued) Goldsmith, A. N. Waves and Electrons, A Publication of the I.R.E. January, p. 2 W Harnwell, G. P. Journals of Science April, p. 162 W Hunter, T. A. New Sections of I.R.E. November, p. 870 Ingles, H. C. Army Letter of Recognition February, p. 53 W Kohlhaas, H. T. The Engineer and Social Co-ordination June, p. 370 Loughren, A. V. A Gap in Engineering Education October, p. 773 Pocock, H. S. Professional Institutions and the Technical Press July, p. 479 Redman, J. R. Navy Letter of Recognition February, p. 53 W **Election of Officers** January, p. 43 W

Front Covers

Everitt, W. L. President, 1945 January Llewellyn, F. B President, 1946 Ianuary Radar Antenna Portable Radar Equipment Designed for Beachhead Operations by U.S. Marine Corps February Threadless Sewing Machine Electronic Technique Enables the Pro-duction of Seamless Fabric Joints March **Electronic Archer** Steel Crossbow Shoots Arrow to Draw Quartz Filaments 1/30,000 of an Inch in Diameter for Electron-Microscope

Calibrations April

Antenna Atop Manhattan Skyscraper

- Seven-hundred feet above New York's Streets a Two-bay Circular Antenna Carries Frequency-Modulation Pro-grams to Metropolitan Listensers May
- Antenna of the Eighth Air Forces Microwave
- Early Warning at Grey Friars, East Anglia, Shown As It Was Controlling the Eighth Air Force Fighter Planes on the Day of the Dutch Airborne Invasion
- June The Complicated Art of Transmitting-Tube
 - Assembly. In a Vertical Lathe for Sealing the Anode Assembly, with a Three-Column Vi-bration-Reducing Support, Inert Gas Is Introduced to Maintain Cleanliness

- July Radar Sword Beaten Into Ploughshare Radar: Powerful Implement of War Finds Peacetime Use as Navigational Guide on the American Great Lakes
- August Sonar—Underweater Sound Echo-Ranging-Listening System. The Driver-Oscillator Portion of the As-
- sembly (upper left) Excites the Pro-

Front Covers (continued)

jector (center) Through the Driver Amplifier (upper right). The Tell-tale Echo, Picked Up by the Projec-tor, Is Fed into the Receiver-Indicator Portion of the Unit at Upper Left

September

- The Gap Narrows in the Electromagnetic-Wave Spectrum. Infrared Beam Projectors Illuminate
 - Night Scene; Photoelectrically Produced Electrons Excite Fluorescent Screen to Produce Visible Image, Then Magnified Optically. Above: Rifle for Repelling Night Infiltrations by Enemy. Below: Beam Projector and Viewer as Separate Unit— A Device of Possible Peacetime Applica-tion
 - tion

October

- Hertzian Experiments Modernized Schools will Demonstrate Electromagnetic-Wave Phenomena by means of an Oscillator-Radiator and an Indicating Receiver November
- Landmark of Pioneer Radio Developments. The Towers of Station NAA at Arlington, Virginia December

Frontispieces

PROCEEDINGS Ellithorn, H. E. August, p. 527 Goldsmith, A. N September, p. 623 Moore, W. C July, p. 423 Pounsett, F. H. R. June, p. 327 Smith, D. B. May, p. 215 Webb, W. L. October, p. 727 Webster, E. M. November, p. 827 WAVES AND ELECTRONS Barry, J. G. July, p. 480 Browning, G. H. November, p. 871 Craig, P. M. August, p. 596 Dawson, H. S. October, p. 774 General, Joseph June, p. 369 Graham, V. M. April, p. 163 W Kalbfell, D. C. May p. 282 May, p. 282 Officers, Rochester Section, 1946 September, p. 669 September, p. soc Pollack, Dale December, p. 971 Radford, W. H. November, p. 871 Shackelford, B. E. January, p. 4 W Sinclair, D. B. February, p. 52 W Town, G. R. March, p. 108 W **Group Photographs**

Admiral Kelly Presents Medal to Com-mander Van Dyck May, p. 276 David Sarnoff Receiving the "Man of Science" Award

Group Photographs

(continued) I.R.E. Members at A.I.L.

- July, p. 477 L. J. Pacent Presents Gavel to W. L. Everitt at Radio Pioneers' Dinner
- February, p. 97 W Major General H. C. Ingles Presents Medal for Merit to Brigadier General David
- Sarnoff June, p. 363 Midwest Intersection Conference May, p. 272 Peacetime Radio Production

February, p. 101 W Radio Pioneers' Dinner

February, p. 98 W Some Members of Canadian Radio Technical Planning Board at Meeting in Montreal

April, p. 209 W Some Sections' Representatives Who At-tended the 1946 Winter Technical Meeting March, p. 149 W

Institute of Radio Engineers

Annual Meeting

January, p. 43 W Browder J. Thompson Award

January, p. 43 W April, p. 203 W Memorial Fund

January, p. 43 W Memorial Prize-1946 (Recipient)

Lee, G. M.

July, p. 466 Memorial (Editorial)

December, pp. 930, 931 Budget, 1946

March, p. 154 W Co-operation and Liaison Between I.R.E.

and Foreign Societies January, p. 43 W Visiting Engineers April, p. 208 W Duplicate Publication of Papers

January, p. 43 W Gannett, E. K., Assistant to the Executive

Secretary December, p. 965

I.R.E. Booths

- December, p. 965 I.R.E.-I.E.E. Co-operation
- The Institution of Electrical Engineers England)
- January, p. 44 W F. B. Llewellyn, I.R.E. Representative April, p. 202 W Journal I.E.E.

- April, p. 203 W F. B. Llewellyn Attends Convention in London

June, p. 363

PROCEEDINGS FOR I.E.E. MEMBERS

- July, p. 466 int I.R.E.-I.E.E. Meeting Held by Radiotelephone During 1946 Mid-Joint winter Technical Meeting July, pp. 467–468 Jacques, R. B., Technical Secretary March, p. 155 W Morris Liebman
 - Memorial Fund
 - March, p. 155 W Memorial Prize (Recipient) Goldmark, P. C.

 - February, p. 94 W
- **New Building**
- Our New Home February, pp. 78 W-79 W
 - Fifth Avenue at 79th Street March, p. 155 W
- Postponement of Dues
- February, p. 96 W

December, p. 966 1

I.R.E. People

(continued)

Pounsett, F. H. R., April, p. 209 W Powell, E. L. (Meritorious Civilian Service Awards), October, p. 764 Pray, G. E., April, p. 209 W Preisman, Albert, July, p. 470 Prince, D. C., July, p. 469 Quance, F. R., February, p. 98 W Quinn, R. B. (Meritorious Civilian Service Awards) October. p. 764 Awards), October, p. 764

Ramp, R. L. (Meritorious Civilian Service Ramp, R. L. (Meritorious Civilian Service Awards), October, p. 764 Read, C. T., August, p. 588 Reich, H. J. January, p. 45 W Reinartz, J. L., July, p. 470 Reyling, P. M., April, p. 208 W Rice, H. E., May, p. 274 Rider, J. F., July, p. 470 Runyan, C. R., Jr., March, p. 157 W Rush, W. A., August, p. 588 Russell, C. M. (Meritorious Civilian Service Awards), October, p. 764

Russell, C. M. (Meritorious Civilian Service Awards), October, p. 764
Samuel, A. L., June, p. 364
Sarnoff, David, April, p. 209 W, June, p. 363, July, p. 471, December, p. 966
Schaefer, J. B., March, p. 155 W
Schantz, J. D., June, p. 362
Schmit, D. F., July, p. 471
Schwartz, H. H., August, p. 589
Scott H. H., May. p. 275

Scott, H. H., May, p. 275 Seely, Samuel, November, p. 869 Selvidge, Harner, November, p. 868 Shea, R. F., August, p. 587 Sherman, Herbert, October, p. 765

Shea, R. F., August, p. 587
Sherman, Herbert, October, p. 765
Sigmon, L. C., January, p. 46 W
Slepian, Joseph, July, p. 472
Smith, D. B., April, pp. 207 W-208 W
Smith, J. E., July, p. 469
Southworth, G. C., July, p. 469
Spriggs, J. O. (Meritorious Civilian Service Awards), October, p. 764
Stephens, T. C., May, p. 274
Sweeney, C. P., March, p. 155 W
Tatum, F. W., April, p. 208 W
Terman, F. E., July, p. 469
Timmings, G. H., November, p. 869
Towne, A. E., March, p. 157 W
Trevor, J. B., Jr., August, p. 591
Tuve, M. A., May, p. 275, July, p. 469
Van Dyck, A. F., May, p. 276
Wagener, Winfield, July, p. 471
Waterman, Peter, August, p. 594
Watson, K. M. (Meritorious Civilian Service Awards), October, p. 764
Webb, W. L., August, p. 590
Wellman, Bertram, July, p. 470
Wilmotte R. M., February, p. 99 W

Webb, W. L., August, p. 390 Wellman, Bertram, July, p. 470 Wilmotte, R. M., February, p. 99 W Wood, J. A., August, p. 588 Wright, J. H., May, p. 275 Wulfsberg, A. H., May, p. 274 Zottu, P. D., February, p. 100 W, August, p. 588

Laboratories

The United States Naval Research Laboratory at Belleview, Washington, D. C. December, p. 972

Miscellaneous

Airborne Instruments Laboratory July, pp. 477–478 Allied Military Government and Allied Commission in Italy February, p. 77 W American Standards Association American Standards Asso March, p. 155 W July, p. 466 August, p. 594 Army Signal Association December, p. 967 Attention, Authors September, p. 724 October, p. 763

Institute of Radio Engineers (continued) Postwar Publication Fund April, p. 203 W July, p. 466 Proceedings of the I.R.E. and Waves and

Electrons An Explanatory Statement January, Insert facing pp. 46 P-1 W March, p. 153 W January, 1946, Copies July, p. 468 August, p. 591 December, p. 965 YEARBOOK

January, p. 43 W

I.R.E. People

Adams, Kipling, May, p. 275 Albright, R. B., August, p. 590 Alger, P. B., May, p. 276 Allen, H. E., August, p. 590 Altmayer, John, April, p. 206 W Armstrong, E. H., January, p. 46 W Arnold, P. N., August, p. 594 Bagnall, V. B., March, p. 156 W Bailey, G. W., June, p. 362, August, p. 589 Ballou, H. A., November, p. 868 Bender, L. B., November, p. 868 Bennett, R. D., May, p. 276 Beranek, L. L., August, p. 589 Black, J. G., April, p. 206 W Bondy, H. A., August, p. 587 Bonney, R. B., July, p. 472 Boucheron, P. H., October, p. 764, (New Farnsworth Radio Center), October, p. 766 Adams, Kipling, May, p. 275 766 700 Bowles, E. L., April, p. 207 W Bown, Ralph, August, pp. 589–590 Brace, F. R., March, p. 157 W Bradley, W. E., May, p. 276 Brimberg, Murray, October, p. 764 Brown, A. S., July, p. 470 Brunet, Meade, April, p. 209 W, November, p. 868 p. 868 Burrell, M. W., October, p. 765 Buss, R. R., May, p. 274 Byrnes, I. F., May, p. 274 Carter, E. F., January, p. 45 W, August, p. 589 Case, N. P., January, p. 45 W, July, p. 472 Chamberlain, A. B., March, p. 156 W, June p. 363 chamberlain, P. L., February, p. 101 W
Chamberlain, P. L., February, p. 101 W
Chertok, S. L., July, p. 472
Chipp, R. D., November, p. 868
Chubb, L. W., March, p. 158 W
Cohen, T. A., December, p. 970
Colpitts, E. H., March, p. 158 W
Conroy, J. M., February, p. 98 W
Content, E. J., October, p. 766
Crago, P. H., February, p. 99 W
Cramer, L. F., March, p. 158 W
Crom, G. C., Jr., July, p. 472
Cummings, B. R. (See Schantz), June, p. 362, (New Farnsworth Radio Center), October, p. 766
Dart, H. F., December, p. 967
Dempster, Burgess, July, p. 472
de Pasquale, R. H., March, p. 156 W
DeSoto, C. B., June, p. 365
Dinger, H. E. (Meritorious Civilian Service Awards), October, p. 764 Chamberlain, P. L., February, p. 101 W Dinger, H. E. (Meritorious Civilian Servi Awards), October, p. 764
DuBridge, L. A., January, p. 43 W
Duffendack, O. S., April, p. 206 W
DuMont, A. B., March, p. 158 W
Easton, I. G., May, p. 275
Eaves, A. J., November, p. 869
Engstrom, E. W., April, p. 209 W
Espersen, G. A., April, p. 206 W
Ewald, E. R., July, p. 471
Fernandez, Manual, February, p. 101 W
Finch, W. G. H., May, pp. 273, 274
Fleming, J. J., August, p. 594
Florance, H. C., May, p. 274
Fraenckel, V. H., December, p. 970

(continued) (continued) Franke, Fritz, July, p. 471 Frazier, H. S., March, p. 156 W Fredendall, B. F., March, p. 156 W Fritschel, E. H., May, p. 275 Gleason, R. J., January, p. 45 W Goldmark, P. C., February, p. 101 W Gollhofer, P. J., February, p. 102 W Gow, F. C., November, p. 866 Graham, V. M., August, p. 589 Grossman, Henry, February, p. 101 W Graham, V. M., August, p. 389 Grossman, Henry, February, p. 101 W Grover, F. W., August, p. 587 Guarrera, J. J., January, p. 46 W Gubin, Samuel, May, p. 274 Gunzbourg, P. M., August, p. 590 Hackbusch, R. A., April, p. 209 W, July, p. 471 4/1 Haines, D. G., July, p. 470 Haller, G. L., May, p. 273 Hammond, J. W., February, p. 100 W Hanna, C. R., February, p. 101 W Harrison, A. E., December, p. 970 Hatfield, L. N. November, p. 866 Hacher, P. 765 Hecht, Bernard, October, p. 765 Hector, L. G., August, p. 587 Hierath, D. C., August, p. 590 Hollywood, J. M., November, p. 868 Hierath, D. C., August, p. 590 Hollywood, J. M., November, p. 868 Horbach, Stephen, November, p. 866 Howard, R. V., March, p. 157 W Howes, F. S., October, p. 765 Hungerford, E. A., Jr., August, p. 591 Jaffe, D. L., February, p. 100 W Janes, A. W., August, p. 591 Jett, C. O., July, pp. 471-472 Johnson, J. K., February, p. 103 W Jolliffe, C. B., April, p. 209 W Kaar, I. J., February, p. 101 W Kahn, Louis, July, p. 470 Kaufman, Jack, February, p. 99 W Kees, A. A., March, p. 157 W Kellerman, K. F., November, p. 869 Kelly, M. J., August, p. 590 Klein, M. P., March, p. 157 W Knight, C. R., October, p. 765 Knowles, H. S., February, p. 100 W Knutson, H. C. I., August, p. 591 Koch, J. W., February, p. 99 W Kornetz, N. S., March, p. 158 W Kramer, Karl, June, p. 362 Kraus, J. D., July, p. 472 Leitch, J. G., December, p. 970 Lemmon, W. S., March, p. 156 W Lindsay, M. H. A., April, p. 208 W Llewellyn, F. B., June, pp. 362, 363 Longfellow, R. C., August, p. 587 Lindsay, M. H. A., April, p. 208 W Liewellyn, F. B., June, pp. 362, 363 Longfellow, R. C., August, p. 587 Lynch, A. H., November, p. 869 Lyon, John, May, p. 274 Lyons, Claude, February, p. 100 W Mathes, R. E., May, p. 273 Mayer, R. H., August, p. 587 McGonigle, W. J., June, p. 362 McMullen, F. C., February, p. 100 W McRae, J. W., August, p. 588 Melloh, A. W., August, p. 588 Melloh, A. W., August, p. 591 Mezger, G. R., March, p. 158 W Middlebrooks, J. L., October, p. 765 Mitchell, T. H., April, p. 209 W Monfort, R. A., August, p. 587 Mountjoy, Garrard, May, p. 274, Oct Mountjoy, Garrard, May, p. 274, October, Mountjoy, Garrard, May, p. 274, October, p. 766 Mucher, George, December, p. 970 Munzer, L. F., October, p. 765 Murray, J. W., April, p. 209 W Neely, N. B., February, p. 100 W Nicholas, E. A. (New Farnsworth Radio Center), October, p. 766 Odarenko, T. M., October, p. 764 Ogilvie, A. R., February, p. 98 W Owen, C. H., January, p. 46 W Packard, L. E., May, p. 275 Page, E. C., February, p. 99 W Pannill, C. J., May, p. 274 Patton, P. B., October, p. 765 Platts, G. F., November, p. 869

I.R.E. People

16

Miscellaneous (continued) Canadian Radio Technical Planning Board January, p. 49 W Organization Chart January, Insert facing p. 47 W Collective Bargaining for Engineers (List Available) August, p. 590 Engineering Instruction in South Africa December, p. 965 Engineering Societies Council December, pp. 966, 967 I.R.E. Accepts Membership in Army Signal Association December, p. 965 I.R.E. Publication Problems and Author Co-operation October, p. 772 Joint Electron Tube Engineering Council January, p. 44 W National Bureau of Standards Revises Classification of Radio Subjects July, p. 468 New Patent Publication July, p. 468 New Scientific Department at Harvard University July, p. 468 Nontechnical Radar Broadcast February, p. 77 W Nuclear Research September, p. 724 Philips Research Reports October, p. 769 Prospective Authors (Reprints Available) July, p. 478 August, p. 590 September, p. 724 November, p. 862 RMA Parts Subcommittee October, p. 763 Radio Pioneers' Dinner February, p. 97 W Radio Technical Planning Board January, p. 43 W July, p. 466 *RCA Review* Resumes Publication *RCA Review* Resumes Publication July, p. 468 Radio Wave Propagation September, p. 724 Standardization of School Scund Facilities August, p. 591 Subscription Prices September, p. 668 October, p. 763 November, p. 868 December, p. 965

Miscellaneous

(continued) Veteran Wireless Operators Association April, p. 203 W Westinghouse Centennial Forum Activities September, p. 724 Weston Engineering Notes August, p. 594

Obituaries

Anderson, L. C. March, p. 158 W Braillard, Raymond August, p. 594 Curtis, A. M. March, p. 158 W Davis, F. M. April, p. 205 W Engholm, B. A. February, p. 104 W Hutchens, R. D. July, p. 478 Powers, R. A. July, p. 478

Report of the Secretary-1945 July, pp. 461-465

Representatives in Colleges June, p. 268 October, p. 769

Representatives on Other Bodies

June, p. 368 October, p. 768

Resolutions

Heising Resolution April, p. 202 W Readmission of Former Members April, p. 202 W

Sections

GEOGRAPHICAL Buenos Aires July, p. 468 December, p. 965 Chicago June, pp. 360–361 December, p. 969 Cleveland February, p. 77 W Columbus March, p. 155 W

Sections

(continued) Houston April, p. 203 W Milwaukee April, p. 203 W North Carolina-Virginia August, p. 594 Section Territory Assignment January, pp. 48 W-49 W Map showing new territorial boundaries January, Insert facing p. 46 W Winnipeg Subsection July, p. 466 MISCELLANEOUS Canadian Affairs December, p. 965 Canadian Radio Engineers Council December, pp. 965, 966 Notice to Sections Transfers and Admissions to Higher Grade Membership January, p. 49 W President Llewellyn Visits Montreal Section December, p. 965 Williamsport Annual Meeting October, p. 763 Standards-I.R.E.

Tentative I.R.E. Standards July, p. 478

Write-Ups

Bernard Waldman Talks on Atomic Power April, p. 212 W
Counterradar Technique (O. G. Villard, Jr.) May, p. 271
Electronics in War and Peace (C. N. Kimball) February, p. 77 W
Frequency-Modulation Inductive-Tuning Reception (Paul Ware) July, p. 468
Poll on Public Response to Color Television (P. C. Goldmark) August, p. 594
Radar Countermeasures (Stanford University) May, p. 271
Radio Industry's War Production January, p. 44 W
Recent Developments Favor Early Television Expansion (E. W. Engstrom) August, p. 591

Back Copies

The Institute endeavors to keep on hand a supply of back copies of the PROCEEDINGS for sale for the convenience of those who do not have complete files. However, some issues are out of print and cannot be provided.

All available back issues of the PROCEEDINGS OF THE

January (a reprint)

1913 Vol. 1

I.R.E. are priced at \$1.50 per copy to individual nonmembers; \$1.10 per copy to public libraries, colleges, and subscription agencies; and \$1.00 per copy to Institute members. Price includes postage in the United States and Canada; postage to other countries is ten cents per copy additional.

1913-1915 Volumes 1-3 Quarterly

1914 Vol. 2 No copies in stock 1915 Vol. 3 No copies in stock

1916-1926 Volumes 4-14 Bimonthly

1916	Vol. 4	No copies in stock	1922	Vol. 10	All 6 issues	
1917	Vol. 5	No copies in stock	1923	Vol. 11	February, April, June, October, December	
1918	Vol. 6	No copies in stock	1924	Vol. 12	August, October, December	
1919	Vol. 7	No copies in stock	1925	Vol. 13	April, June, August, October, December	
1920	Vol. 8	April, June, August, October, December	1926	Vol. 14	All 6 issues	
1921	Vol. 9	All 6 issues				

1927-1938 Volumes 15-26 Monthly

1927	Vol. 15	May, June, July, October, December	1933	Vol. 21	All 12 issues
1928	Vol. 16	February to December, inc.	1934	Vol. 22	All 12 issues
1929	Vol. 17	April, May, June, November	1935	Vol. 23	All 12 issues
1930	Vol. 18	April to December, inc.	1936	Vol. 24	January to March, inc.
1931	Vol. 19	All 12 issues	1937	Vol. 25	February to December, inc.
1932	Vol. 20	January, March to December, inc.	1 938	Vol. 26	All 12 issues

1939-1946 Volumes 27-34 Monthly

New Format-Large Size

ber, inc.
Jer, mc.
ber
ber

Proceedings Binders

Sturdy binders of blue Spanish-grain fabricoid with gold lettering, which will serve either as temporary transfers or as permanent holders for the PROCEEDINGS may be obtained in the large size only (1939 to date) at the following prices: \$2.50 for plain; \$3.00 for Vol. Noor your name imprinted; \$3.50 for Vol. No. and name imprinted. Postage is prepaid in United States or Canada; postage to other countries, 50 cents additional.

Membership Emblems

The I.R.E. emblem is available to members in three useful forms; the lapel button, the pin, and the watch charm. Each is of 14-karat gold, enameled in color to designate the grade of membership.

Grade	Background Color
Fellow	Gold
Senior Member	Dark Blue
Member	Light Blue
Associate	Maroon
Student	Green

The lapel button has a screw back with jaws which grip the cloth of the coat. These are priced at \$3.00 each. The pin, at \$3.50 each, is provided with a safety catch. The watch charm, enameled on both sides and equipped with a suspension ring for attaching to a watch charm or fob, is \$5.50.

Prices on emblems are the same for all grades of membership and include Federal tax, postage, and insurance or registered-mail fee.

Remittance should accompany your order. Please do not send cash except by registered mail.

THE INSTITUTE OF RADIO ENGINEERS, INC. 1 East 79 Street, New York 21, N. Y.

Current I.R.E. Standards

In addition to the material published in the PROCEEDINGS, Standards on various subjects have been printed. These are available at the prices listed below.

		Price			Price
	Standards on Electroacoustics, 1938 Defini- tions of Terms, Letter and Graphical Sym- bols, Methods of Testing Loud Speakers. (vi+37 pages, 6×9 inches).	\$0.50	- 101	(11 10 pages, 03 x 11 menos) the territorial	\$0.20
	Standards on Electronics: Definitions of Terms, Symbols, 1938. A Reprint (1943) of the like-named section of "Stand- ards on Electronics, 1938." (viii+8 pages, 8½ x 11 inches)	\$0.20	5D)	Standards on Radio Wave Propagation: Measuring Methods, 1942. Methods of Measuring Radio Field Intensity, Methods of Measuring Power Radiated from an Antenna, Meth- ods of Measuring Noise Field Intensity. (vi+16 pages, 8½ x 11 inches).	\$0.50
2Ь)	Standards On Electronics: Methods of Test- ing Vacuum Tubes, 1938. A Reprint (1943) of the like-named section of "Stand- ards on Electronics, 1938." (viii+18 pages, 8½ x 11 inches).	\$0.50		Standards on Radio Wave Propagation: Definitions of Terms Relating to Guided Waves, 1945. (iv+4 pages, 8½ x 11 inches)	\$0.20
3a)	Standards on Transmitters and Antennas: Definitions of Terms, 1938.		6a)	Standard on Facsimile: Definitions of Terms, 1942. (vi+6 pages, 8½ x 11 inches)	\$0.20
	A Reprint (1942) of the like-named section of "Stand- ards on Transmitters and Antennas, 1938." (vi+8 pages, 8½ x 11 inches)	\$0.20	6b)	Standards on Facsimile: Temporary Test Standards, 1943. (iv+8 pages, 8½ x 11 inches)	\$ 0.20
3b)	Standards on Transmitters and Antennas: Methods of Testing, 1938. A Reprint (1942) of the like-named section of "Stand- ards on Transmitters and Antennas, 1938." (vi+10	\$0.50	7)	Standards on Piezoelectric Crystals: Recom- mended Terminology, 1945. (iv+4 pages, 8½ x 11 inches)	\$0.20
4a)	pages, 8½ x 11 inches) Standards on Radio Receivers: Definitions of Terms, 1938.	40.50		Standards on Television: Methods of Testing Television Transmitters, 1946. (vi+14 pages, 8½×11 inches)	\$ 0.75
	A Reprint (1942) of the like-named section of "Stand- ards on Radio Receivers, 1938." (vi+6 pages, 8½ x 11 inches)	\$0.20		Normas Sobre Receptors de Radio, 1938.* A Spanish-language translation of "Standards on Radio Receivers, 1938," by the Buenos Aires Section of the Institute of Radio Engineers. (vii+64 pages, 6 x 9	
4b)	Standards on Radio Receivers: Methods of Testing Broadcast Radio Receivers, 1938. A Reprint (1942) of the like-named section of "Stand- ards on Radio Receivers, 1938." (vi+20 pages, 8½ x 11 inches)	, \$0.50		* Not carried in stock at I.R.E. Headquarters in New York. Obtainable only from Señor Domingo Arbó, Editor of Revista Telegrafica, Peru, 165, Buenos Aires, Argen- tina.	stpaid)

ASA STANDARDS

(Sponsored by the I.R.E.)

ASA1) American Standard: Standard Vacuum-Tube Base and Socket Dimensions. (ASA C16.2-1939.) (8 pages, 7⁴/₈ x 10[§]/₈ inches)...... \$0.20 ASA3) American Standard: Loudspeaker Testing. (ASA C16.4-1942.) (12 pages, 7¹/₄ x 10¹/₈ inches)..... \$0.25

ASA2) American Standard: Manufacturing Standards Applying to Broadcast Receivers. (ASA C16.3-1939.) (16 pages, 7[‡] x 10[‡] inches)..... \$0.20 ASA4) American Standard: Volume Measurements of Electrical Speech and Program Wayes.

gram Waves. (ASA C16.5-1942.) (8 pages, 7¹/₄ x 10⁵/₈ inches)...... \$0.20

PRICES ARE NET AND INCLUDE POSTAGE TO ANY COUNTRY. INCLUDE REMITTANCE WITH ORDER AND ADDRESS.

THE INSTITUTE OF RADIO ENGINEERS, INC.

1 East 79 Street, New York 21, N. Y.

SOLVE DIFFERENT RESISTANCE PROBLEMS

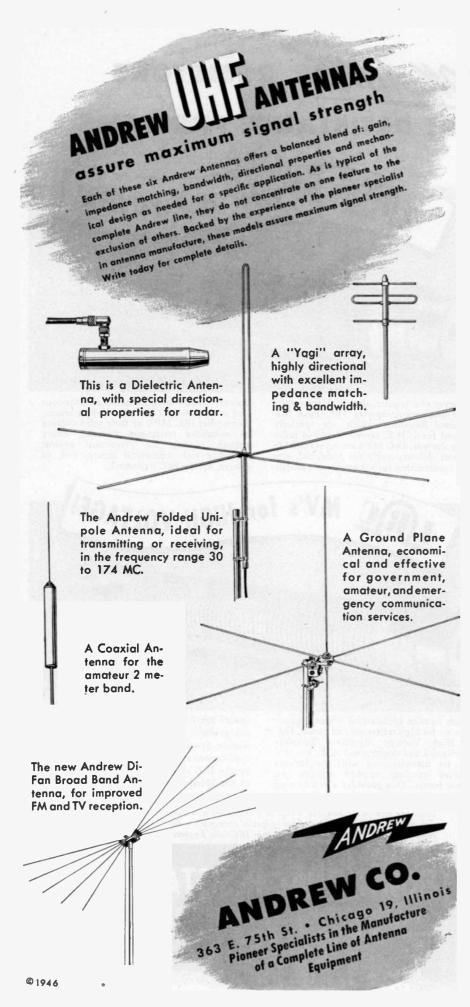
Whenever you require ultra high frequency power dissipation, specify IRC Type MP Metallized Resistors, which are specially designed for U.H.F. service. Used in radar during the war, IRC MP's are now available on short delivery cycle for industrial use. Their construction suits them for transmitter

dummy loads, rhombic antenna verminations and many similar high power spplications. Remember IRC MP's by their solid coating of metallized resistance material, heavy varnish coating for protection against humidity and mechanical injury, and, of course, by the IRC trademark.

MP's for H. F. POWER!

In high voltage applications where requirements are for high resistance and power, IRC MV High Voltage *Metallized* Resistors are designed and constructed to do the job. They are manufactured with the famous metallized coating applied spirally on ceramic forms. This provides a conducting path of extensive effective length. Turns are

spaced mechanically to allow uniform voltage gradient throughout the length of the resistor. Special size resistors for high voltage applications are available. Identify IRC MV's by the IRC trademark, the "striped" effect of the spiral filament and the special protective coats of varnish.


Note: On both MP's and MV's lugs or ferrules are available as well as colloidal silver ends for the application of special terminals. • For specifications and complete engineering assistance contact your IRC Sales Engineer or write Dept. 10L.

INTERNATIONAL RESISTANCE CO

401 N. BROAD ST., PHILADELPHIA 8, PA. In Canada: International Resistance Co., Ltd., Toronto, Licensee

Proceedings of the I.R.E. and Waves and Electrons

Atlanta

"Charting the Course of the Institute of Radio Engineers," by F. B. Llewellyn, President of the Institute of Radio Engineers, Inc.; September 27, 1946.

BALTIMORE

"Transmission Lines for Radio Frequencies," by C. R. Cox, Andrew Company; September 24, 1946.

BOSTON

"Electronics at Bikini," by D. G. Fink, Executive Editor of *Electronics*; October 24, 1946.

BUENOS AIRES

"Noise Levels," by F. Malvarez; July 12, 1946. "Iron Cored Reactors with Direct Current," by R. McLoughlin; July 26, 1946.

BUFFALO-NIAGARA

"Ultra-High- and Very-High-Frequency Antenna Systems," by A. G. Kandolan, Federal Telecommunication Laboratories; October 16, 1946.

CEDAR RAPIDS

"The Phasitron Frequency-Modulation Tube." by L. Findley, Collins Radio Company; October 16, 1946.

"Permeability Tuning," by F. N. Jacob. Aladdin Radio Industries; October 16, 1946.

CHICAGO

"Radar and Microwaves." by J. O. Perrine, Bell Telephone Laboratories; October 4, 1946. "Cosmic Static," by G. Reber; October 18,

1946.

"The Panalyzer as an Engineering Tool." by J. Heller, Panoramic Radio Corporation; October 18, 1945.

CINCINNATI

"Duo-Inductor," by John Reinartz, Radio Corporation of America; October 12, 1946.

"Comparative Performance of Frequency Modulation and Amplitude Modulation," by Sarkis Tarzian: October 15, 1946.

"Description of Converter, Receiver, and Transmitter," by Mr. Valdettaro and Mr. Weigel; October 15, 1946.

COLUMBUS

"Staff Organization at I.R.E. Headquarters," by R. B. Jaques, Ohio State University; October 4, 1946.

"Human Engineering," by Melvin Evans; October 25, 1946.

"Ancient Musical Instruments," by M. E. Wil son, Ohio State University; October 25 1946.

CONNECTICUT VALLEY

"Reflex Oscillators," by J. C. McNally. Bell Telephone Laboratories; September 26, 1946.

DALLAS-FT. WORTH

"Design Considerations for Precision Master Oscillators," by T. A. Hunter, Collins Radio Company; October 8. 1946.

DAYTON

"Adventures in Research," by Phillips Thomas, Westinghouse Electric Corporation; September 26, 1946.

Inspection Trip of Ohio Bell Telephone Company; October 10, 1946.

DETROIT

"Modern Developments in Wire Recorders, "by Mort Neff, WiRecorder Corporation; October 18, 1946.

(Continued on page 36A)

Impromptu Discussions about Miniature Tubes

"... we'll get your trains running, Junior, but I want to tell Uncle John why the pentagrid tube is used in more than 90% of all receivers... it's because the superheterodyne circuit outperforms all others, you know, and the pentagrids give you 'sure-fire' frequency conversion.

"And they are better, too. You know, the failure of the oscillator will gum up the work of a converter. Well, these TUNG-SOL BE6's are designed with 60% greater oscillator capability than big tubes. Furthermore, lower interelectrode capacitance, and shorter lead lengths permit stable oscillation well over 100 megacycles.

"Although only a minor improvement in conversion transconductance is designed into the BE6's, they tolerate wider variations in both oscillator and R. F. circuit designs and still come up with top performance. They maintain the typical negative input impedance of the pentagrid construction so useful at moderately high frequencies. Coupling between signal and oscillator grids is just as easy to neutralize.

"As modulators the BE6's are on their 'home grounds,' for either single, balanced, or reactance modulation circuits. As mixers, with separate excitation, their high frequency performance is excellent. The two control grids in one structure give you a lot of other circuit variations. As low level audio amplifiers, it is feasible through use of the 're-entrant' type of circuit to get higher gains than you usually get with one tube.

"Sure, TUNG-SOL has a corps of service engineers. They will be glad to tell you how you can get better results with the BE6's ...consultation with them is always confidential

... yes, Junior, we know they are your trains—we'll have them running in a minute but..."

TUNG-SOL

vibration-tested

ELECTRON TUBES

TUNG-SOL LAMP WORKS INC., NEWARK 4, NEW JERSEY Sales Offices: Atlanta • Chicago • Dallas • Denver • Detroit • Los Angeles • New York Also Manufacturers of Miniature Incandescent Lamps, All-Glass Sealed Beam Headlight Lamps and Current Intermittors

at <u>ARNOLD</u> THERE IS NO CEILING ON QUALITY

We are not satisfied merely to offer you magnets which come up to the proposed R.M.A. standards . . . this is our minimum requirement. A quality floor below which we refuse to go.

Nor are we satisfied that ordinary production and inspection methods offer you adequate quality protection . . . we *individually* test each Arnold magnet in a loud speaker structure before shipment.

Another "individual touch" which has contributed to winning industry-wide customer acceptance for Arnold magnets is our established minimum standard of 4,500,000 BHmax for Alnico V material.

Over five million Arnold loud speaker magnets of the R.M.A. type have been produced since V-J Day under these quality safeguards. Continued adherence to them assures you of long-lived, dependable product performance.

In the mass-production of magnets, the Arnold "individual touch" does make a difference. Let us give you the whole story.

147 EAST ONTARIO STREET, CHICAGO 11, ILLINOIS

Specialists in the manufacture of ALNICO PERMANENT MAGNETS

(Continued from page 34A)

HOUSTON

"The Design of Oscillators," by T. A. Hunter, Collins Radio Company; October 11, 1946.

LONDON

Trip to Royal Canadian Air Force Radar and Communications School at Clinton, Ontario; October 15, 1946.

"Radar Antennas," by G. A. Miller, National Research Council; November 1, 1946.

Los Angeles

Charting the Course of the I.R.E.," by F. B. Llewellyn, President, The Institute of Radio Engineers, Inc.; September 12, 1946.

"Waves and Wavelets," by August Hund; October 20, 1946.

"The Behaviour of Dielectrics Over Wide Ranges of Frequency, Temperature, and Humidity," by R. F. Field, General Radio Company; October 20, 1946.

"High Frequency Circuits," by R. F. Walz, Air Associates, Inc.; October 20, 1946.

"Electronic Warfare," by F. E. Terman, Stanford University; October 20, 1946.

MILWAUKEE

"Research and Thinking," by J. W. Lawrie, Schlitz; September 12, 1946.

MONTREAL

"Radar Antennas," by G. A. Miller, National Research Council; October 9, 1946.

NEW YORK

"Magnetic Deflection of Kinescopes," by Kurt Schlesinger, Columbia Broadcasting System; October 2, 1946.

"Pulse-Type High-Voltage Supplies for Television Cathode-Ray Tubes," by J. R. Banker, Allen B. DuMont Laboratories; October 2, 1946.

NORTH CAROLINA-VIRGINIA

"Welcome to I.R.E.," by G. W. Bailey, Executive Secretary, Institute of Radio Engineers, Inc.; October 11, 1946.

"The Phasitron," by R. P. Watson, General Electric Company; October 11, 1946.

"A Very-High-Frequency Buoy Automatic Weather Station," by W. E. K. Middleton, National Research Council; October 8, 1946.

"A Very-High-Frequency Buoy Automatic Weather Station," by L. E. Coffey, Department of Transport: October 8, 1946.

"C.B.C. Operations," by N. R. Olding, Canadian Broadcasting Corporation; October 29, 1946.

PHILADELPHIA

"New Television Field Pickup Equipment Employing the Image Orthicon, (Design Considerations)," by J. H. Roe, Radio Corporation of America; October 3, 1946.

"New Television Field Pickup Equipment Employing the Image Orthicon (Operations)" by E. C. Wilbur, National Broadcasting Company; October 3, 1946.

PITTSBURGH

"Radio-Frequency Spectrum Analysis," by W. E. Good, Westinghouse Research Laboratory; September 9, 1946.

ST. LOUIS

"Lighthouse and Phasitron Tubes." by R. P. Watson, General Electric Company; October 17. 1946.

(Continued on page 38A)

Ottawa "A Very-High-Frequency Buoy Automatic

Commercial airlines and owners of executive type planes have found that the Collins 18S-1 gives them the dependable long range communication they want. They are able to establish and maintain firm contact with ground stations, even under adverse conditions.

The 18S-1 delivers more than 100 watts of power on any of twenty crystal controlled frequencies. The receiver section, of superheterodyne design, also has twenty crystal controlled frequencies. Frequency range is 2.7-12.0 mc. After the equipment has been pretuned to desired channels, all frequency selection is automatic. Remote control is provided.

A single 11/2 ATR unit cabinet contains the

transmitter, receiver, and dynamotor power supply. The receiver operates directly from the 28 volt d-c power source. Weight, including shockmount, is 60 pounds.

Other models:

The 185-2 includes CW facilities.

The 185-3 includes CW facilities and has a frequency range of 2.7 to 18.0 megacycles.

The 180K-1 antenna loading unit efficiently transfers the power output from an 18S to any standard commercial fixed antenna. Remote controlled, pretuned operation for ten channels is provided. Nominal input impedance is 50 ohms. Weight 12 pounds. Size $12^{"}$ w, $7\frac{1}{2}^{"}$ h, $10\frac{1}{2}^{"}$ d.

IN RADIO COMMUNICATIONS, IT'S . . .

COLLINS RADIO COMPANY, CEDAR RAPIDS, IOWA

11 West 42nd Street, New York 18, N.Y.

458 South Spring Street, Los Angeles 13, California

Now Contributes to the "BEAUTY" of Phonograph Reproduction

NYLON

FOR almost the same reasons that women demand Nylon hose, Astatic utilizes Nylon in the construction of a new and improved Crystal Phonograph Pickup Cartridge. Nylon provides strength, stability and cushioning qualities that Astatic Engineers found ideal in the matched Nylon Chuck and Nylon Needle which give to this cartridge characteristics possessed by no other cartridge made. Use of this new phonograph pickup cartridge assures manufacturers and owners alike that the quality of reproduction remains constant, regardless of needle replacements, because the needle is matched to the cartridge and is the only needle that can be used with it.

> Descriptive folder is available

(Continued from page 36A)

SAN DIEGO

"Charting the Course of the I.R.E.," by F. B Llewellyn, President, The Institute of Radio Englneers, Inc.; September 10, 1946.

TORONTO

"Television." by K. R. Patrick, RCA Victor Corporation; October 7, 1946.

WILLIAMSPORT

⁶Cathode-Ray Tubes—Deslgn and Development,⁸ by W. A. Dickinson, Sylvania Electric Products, Inc.; October 9, 1946.

SUBSECTIONS

MONMOUTH

"Testing Repeaters with Recirculated Pulses," by A. C. Beck and D. R. Ring, Bell Telephone Laboratories; September 18, 1946.

"Radar Echoes from the Near-by Atmosphere," "y M. W. Baldwin, Bell Telephone Laboratories; September 18, 1946.

PRINCETON

Symposium on Amplitude Ignoring Frequency-Modulation Detectors:

"General Survey," by M. G. Crosby, Paul Godley Consulting Engineers; October 9, 1946. "The Ratio Detector," by S. W. Seeley, RCA In-

dustry Service Laboratory; October 9, 1946. "Single Stage Frequency-Modulation Detec-

tor," by W. E. Bradley, Philco Corporation; October 9, 1946.

The following transfers and admissions were approved on November 6, 1946:

Transfer to Senior Member

Ballard, R. C., Bakers Basin Rd., RFD #4, Trenton, N. J.

Burley, F. E., 1117 Magnolia St., Winston-Salem, N. C.

Crane, R. E., 463 West St., New York 14, N. Y. Crawford, A. L., Jr., 428 Montgomery Ave., Haver-

ford, Pa. Dillingham, H. C., Electrical Engineering Depart-

ment, College Station, Texas Donnelly, A. V., 1826 Bever Ave., S.E., Cedar

Rapids, Iowa Fish, P. E., 419 W. 119 St., New York 27, N. Y.

Frey, A. R., 3911 Cloverhill Rd., Baltimore 18, Md.

Gross, E. E., Jr., General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass.

Haubert, A. A. H., 1 rue Voltaire, Antony, Seine, France

Jones, H. L., University of New Mexico, Box 152, Albuquerque, N. M.

Mead, M. S., Jr., 1410 Regent St., Schenectady, N. Y.

Messer, H. G., Byington and Company, Avenida do Estado 4667, Sao Paulo, Brazil

Miller, G. K., Box 2175, Houston 1, Texas

Mueller, G. E., 463 West St., New York 14, N. Y. Nordstrom, B. H., 19 Raynold Rd., Mountain

Lakes, N. J.

Rockwood, G. H., Jr., 120 Canoe Brook Pkwy., Summit, N. J.

Trainor, H. M., c/o Chief Engineer, G.P.O., Pretoria, South Africa

(Continued on page 40A)

BUILT IN TWO PARTS

A. C. Coil Assemblies available for 6 v., 12 v., 24 v., 115 v. D. C. Coil Assemblies available for 6 v., 12 v., 24 v., 32 v., 110 v.

Two basic parts—a coil assembly and a contact assembly-comprise this simple, yet versatile relay. The coil assembly consists of the coil and field piece. The contact assembly consists of switch blades, armature, return spring, and mounting bracket. The coil and contact assembly are easily aligned by two locator pins on the back end of the contact assembly which fit into two holes on the coil assembly. They are then rigidly held together with the two screws and lock washers. Assembly takes only a few seconds and requires no adjustment on factory built units.

Contact Assemblies Single pole double throw Double pole double throw

On Sale at Your nearest jobber NOW!

Series 200 Relay

See it today!... this amazing new relay with interchangeable coils. See how you can operate it on any of nine different a-c or d-c voltages—simply by changing the coil. Ideal for experimenters, inventors, engineers.

TWO CONTACT ASSEMBLIES

The Series 200 is available with a single pole double throw, or a double pole double throw contact assembly. In addition, a set of Series 200 Contact Switch Parts, which you can buy separately, enables you to build dozens of other combinations. Instructions in each box.

NINE COIL ASSEMBLIES

Four a-c- coils and five d-c coils are available. Interchangeability of coils enables you to operate the Series 200 relay on one voltage or current and change it over to operate on another type simply by changing coils.

Your jobber has this sensational new relay on sale now. Ask him about it. Or write for descriptive bulletin.

GUARDIAN 1628-P W. WALNUT STREET A COMPLETE LINE OF RELAYS SERVING AMERICAN INDUSTRY

Series 58 rheostats and potentiometers, available in single, dual and triple section units (as here shown). Available with attached power switch.

Series 42 multiple-unit wirewound controls, available in as-semblies from 2 to 18 sections in tandem and operated by a single shaft.

Series 43 midget wire-wound controls in single, dual and triple section units. Available with attached power switch.

*

*

Series MH or the famous "Hum-dinger" extra-compact rheostat or potentiometer. Wire winding held in grooved fibre base. Body only 9/32" deep.

Widest selection of resistance values, taps, tapers, terminals, shafts, etc.

* You can entrust your wire-wound control problems to Clarostat, with complete confidence, because: (1) Clarostat has wire-winding experience second to none in the industry; (2) Clarostat has outstanding winding equipment designed, developed and built by its own engineers; (3) Clarostat spent two decades perfecting wire-wound rheostats and potentiometers; (4) Above all, Clarostat has an enviable reputation to maintain. Therefore, try Clarostat with those wire-wound control problems or requirements.

★ Write for CATALOG

(Continued from page 38A)

Weldon, J. O., 1605 Connecticut Ave., N.W., Washington 9, D. C. Wilkie, H., 3243 Ridge Ave., Dayton 5, Ohio

Admission to Senior Member

Bond, D. S., Alden Park Manor, Germantown, Philadelphia 44. Pa.

- Dalgleish, J. W., Pye Ltd., St. Andrews Rd., Cambridge, England
- Dallin, E. B., 84 Oakland Ave., Arlington 74, Mass. Giordano, A. B., 85-99 Livingston St., Brooklyn 2, N. Y.
- Hastings, C. E., 117 Hampton Roads Ave., Hampton, Va.
- Hutter, R. G. E., 35-05 Parsons Blvd., Flushing, L. I., N. Y.
- Johnson, M. R., General Electric Co., Thompson Rd., Syracuse, N. Y.
- Kellogg, W. M., Box 286, Park Ave., Morristown, N. I.
- MacIlvain, K. M., The Vincentia, Cross Highway, R.F.D. #1, Westport, Conn.
- Sen, W. J., 824 Grand Ave., Dayton 7, Ohio
- Shea, T. E., Western Electric Co., Inc., 403 Hudson St., New York 14, N. Y.
- Sivers, C. H. v., 124 State St., Brooklyn 2, N. Y.
- Surdin, M. M., Commissariat a L'Energie Atom ique, 41, Avenue Foch, Paris 16e, France Warren, W. J., 902 Hilmar St., Santa Clara, Calif.

Transfer to Member

- Andrews, R. W., 716 Lincoln Ave., Williamsport, Pa.
- Baker, C. R., 1114 Trafalgar St., London, Ont., Canada
- Biddle, W. G., 249 E. Peach Orchard Rd., Dayton 9. Ohio
- Boll, R. W., R.F.D. #2, Crestwood, Madison 5, Wis. Borkowski, C. J., 3911 Main St., Eggertsville 21, N.V.
- Brennecke, C. G., Electrical Engineering Department, North Carolina State College, Raleigh, N. C
- Cheadle, J. N., 928 N. Eighth Ave., Brookings, S. D.
- Dennis, F. L., c/o Barclays Bank, Nicosia, Cyprus Dickey, D. W., Butler Hall, 88 Morningside Dr., New York 27, N.Y.
- Ellis, I. M., Park Ave., Laurel Springs, N. J.
- Felton, L. E., Box 692, Litchfield, Conn.
- Frank, J. P., Jr., 226 N. Second St., Danville, Ky. Hachemeister, C. A., 2722 Newkirk Ave., Brooklyn 26, N. Y.
- Hansen, T. A., 733 N. Washington St., Park Ridge, **I**11.
- Hoskins, L. C., 324 Cumberland Ave., Saskatoon, Sask., Canada

Jacobs, A. J., Box 1775, Johannesburg, South Africa Jacobsen, H. V., 48 E. 91 St., New York 28, N. Y. Jarrard, J. O., 2509 Indiana St., Kansas City 1, Mo.

- Jones, W. J., 319 Convent Ave., New York 31, N. Y. Kamphoefner, F. J., 911 Central Ave., San Fran-
- cisco 15, Calif. Knochel, R. F., 602 Wyatt Ave., Lincoln, Ill.
- Krauss, H. L., Dunham Laboratory, Yale University, New Haven, Conn. Lisle, J. R. D., R.C.A. Victor Company, 1001
- Lenoir St., Montreal, Que., Canada Martin, S. A., Jr., Box 2180, Houston 1, Texas
- McCormick, R. E., 3466 Carrollton St., Indianapolis, Ind.
- McGlone, J. M., 5929 N. Paulina St., Chicago, Ill. McNicol, R. W. E., Physics Department, University of Queensland, Brisbane, Queensland, Australia
- Miller, F. E., 3122 S.E. 73 Ave., Portland 6, Ore. Podbielniak, T., 8728 Colesville Rd., Silver Spring, Md.

(Continued on page 42A)

Reinhart, A. G., Maplewood Ave., Atlantic Highlands, N. J.

and provides for a minimum of maintenance

• A prominent construction company executive says: "The forethought in engineering

and workmanship of fabrication greatly facilitates the ease and speed with which Truscon Radio Towers can be erected."

Typical of the Truscon Radio Towers being erected for new and modern requirements is the self-supporting structure illustrated at the left. Installed at Alliance, Ohio, it is 175 feet high, supports an FM antennae, and will serve a 5,000 watt FM station.

Also realizing that maintenance is of prime importance to the broadcasting station owner, Truscon designs its towers with a minimum number of field-bolted connections. Over a period of years, these features assure a constant saving in maintenance expense, due to the small number of joints to inspect and bolts to tighten.

Tall or small ... AM or FM ... every type of radio tower need is met by Truscon engineering and manufacturing services. Truscon Radio Towers are triangular in cross section and are built entirely of heavy steel members with most shop assembled connections made by means of electric arc-welding.

Experienced Truscon engineers will be glad to help solve your radio tower problems.

> Manufacturers of a Complete Line of Self-Supporting Radio Towers . . Uniform Cross-Section Guyed Radio Towers . . . Copper Mesh Ground Screen . . . Steel Building Products.

TRUSCON STEEL COMPAN

YOUNGSTOWN 1, OHIO

Subsidiary of Republic Steel Corporation

WHEN RADIO

Blaw-Knox engineered, designed and fabricated towers for radio stations even before the pioneer days of home-made crystal sets.

Our accumulated engineering knowledge and experience enables us to assume complete responsibility for the radio towers which you will need to carry out your station's expansion program.

BLAW-KNOX DIVISION

OF BLAW-KNOX COMPANY

2037 Farmers Bank Building Pittsburgh 22, Pa.

(Continued from page 40A)

Serniuk, W., 210 Harrison St., Nutley, N. J.

- Stahl, J., 88 W. 197 St., New York 63, N. Y.
- Thompson, O. I., 105 N. Parkway, Prospect Heights, Ill.

Upham, S. W., 143 Forest Hill Dr., Syracuse 6, N. Y.

Admission to Member

- Audet, H. A., Canadian Broadcasting Corporation, 1440 St. Catherine St. W., Montreal 25, Que., Canada
- Brown, R. L., 37 Maple St., Lexington 73, Mass.
- De Andrade, W. C., International Training Administration, Inc., 1419 H St., N.W., Washington 5. D. C.
- Gamache, L., Galvin Manufacturing Corp., 4545 Augusta Blvd., Chicago 51, Ill.
- Garon, A. J., 2302 James St., Syracuse, N. Y. Gilbert, R. W., Weston Electrical Instrument Corp., Newark 5, N. J.
- Hall, J. B., 303 Osgoode St., Ottawa, Ont., Canada Hastings, D. J., 59 Goldman St., Florida, Transvaal, South Africa
- Hers, J., 12 Nelson Ave., Georginia, Roodepoort, South Africa
- Hin, T. K., 238 Burmah Rd., Georgetown, Penang, Malaya
- Huntley, W. F., 62 Highland Ave., Somerville 43. Mass.

Hussey, E. E., 12 Cleaves St., Wollaston 70, Mass.

- Jacoby, D. L., 65 E. 96 St., New York 28, N. Y.
- Jaques, A. T., 601 Yuma St., S.E., Washington 20 D.C.
- Johnson, F. L., 201 Rodney Rd., Ridley Park, Pa.
- Johnson, G. R., 26 Horton St., Malverne, N. Y.

Kaufman, S., 3705 Bellaire Blvd., Houston 5, Texas

- Kiser, W. L., 74 Hendrick Ave., Glen Cove, L. I., N. Y.
- Knox, A. A., 4403 N. Francisco St., Chicago 25, Ill. Levy, R. J., 1203-160 St., Whitestone, N. Y.
- Li, N. F. C., 9 Seymour Rd., Hongkong, China
- Lockwood, M. D., W. Fresh Pond Rd., Northport, L. I., N. Y.
- Long, R. E., 521 Corona Ave., Dayton, Ohio
- Lurie, W. B., c/o Nemenyi, 630 Gramatan Ave., Mount Vernon, N. Y.
- Marcy, H. T., 5 Eugene St., Staten Island 9, N. Y. Moran, W. F., Ing. Carlos M. Maggiolo 438, Monte-

video. Uruguay, South America Oswalt, A. K. 1103 Abbott Dr., Texas City, Texas Palmer, C. C., 253 Humble Bldg., Houston 2, Texas Phillips, T. A., 1317 E. Granada Rd., Phoenix, Ariz. Richheimer, R., Garay 431, Buenos Aires, Argentina Rife, C. J., Bell Aircraft Corp., Box 1, Buffalo 5, N. Y.

- Sabeff, S. S., 824 Lancaster St., Albany 3, N. Y.
- Schmalbach, S., 4521 Lowell St., N.W., Washington 16. D. C.
- Schoenberger, W. J., 520 Wiltshire Blvd., Dayton 9, Ohio
- Schott, O. A., 4224 Elmer Ave., Minneapolls 16, Minn.
- Sebring, P. B., Ordnance Research Laboratory, Pennsylvania State College, State College, Pa.
- Seddon, S. W., 4407 Airway Rd., Dayton 3, Ohio

Senter, C. H., 214 N. Pine St., Albuquerque, N. M. Shultz, J. H., 403 E. Market St., Jeffersonville, Ind. Strawbridge, R. B., 936 W. Third St., Williamsport, Pa

Tudor, E. C., 317 S. 16 St., Herrin, Ill.

- Uleman, T., 2000 Grant Bldg., Pittsburgh 19, Pa. Vogeley, C. E., Jr., 209 Knox Ave., Pittsburgh 10, Pa.
- Waters, R. A., 621 Main St., Waltham 54, Mass. Wisner, R. M., 1818 Sixth Ave. W., Seattle 99,
- Wash. Wolzien, E. C., 3028 Wisconsin Ave., N.W., Wash-
- ington 16, D. C. (Continued on page 44A)

П

10

Ш

Unusual Sensitivity-.001 volt Million-to-one Range-.001 to 1000 volts High Input Impedance for Truer Reading

The RCA WV-73A Audio Voltmeter

026

... a sound investment in test equipment

VOI TO

The RCA WV-73A Audio Voltmeter will accurately measure a-c voltages over wide ranges of frequency and amplitude far beyond the limits of ordinary a-c voltmeters. Response is excellent over the entire range of 20 cycles to 20 kc.

Applications range from measuring the electrical conductivity of switches to determining slight variations in light intensity for photo-tube work. It is sensitive and accurate enough to be used for calibrating service instruments. This instrument has a linear decibel scale and an overlapping logarithmic voltage scale. Accuracy is the same at all points on the scale.

OFF O

PHONES

You can use the WV-73A to determine the response of audio systems and to locate sources of frequency distortion. It also serves as a high-gain a-f amplifier with near-perfect fidelity.

Write to Dept. 67-L, for your copy of the bulletin containing complete specifications and information on what this new instrument can do.

TEST AND MEASURING EQUIPMENT **RADIO CORPORATION OF AMERICA** ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N.J.

In Canada: RCA VICTOR Company Limited, Montreal

over a wide frequency range with an overall accuracy of 2%. Single logarithmic scale makes readings especially easy. Unaffected by changes in line voltage or by tube replacement. Can be used as a high gain (70 DB) amplifier - frequency range flat from 10 to 150,000 cycles.

Send for Bulletin 10

BALLANTINE LABORATORIES, INC. BOONTON, NEW JERSEY, U. S. A.

(Continued from page 42A)

Admission to Associate

Ackerman, M., 2157 Holland Ave., New York 60, N.Y.

Alsberg, D. A., 463 West St., New York 14, N. Y. Andrews, W. J., Box 1513, Springfield, Mass.

Anweiler, H. L., 8909 Lawn Ave., Brentwood 17, Mo.

Aron, C. L., 8 Clairwood Mans., Webb St., Yeoville, Johannesburg, South Africa

Arthur, G. M., 15 Warren St., Fitchburg, Mass. Atkinson, J. M., 525 N. Camden Dr., Beverly Hills, Calif.

Barnabel, A., 208 Joliet St., San Antonio 2, Texas Batterson, C. C., 4413 Rusk Ave., Houston, Texas Bennett, H. W., 149-04-45 Ave., Flushing, L. I., N. Y.

Bernier, J. A., 82 Rich St., Gardner, Mass.

Braverman, M., 526 W. 111 St., New York 26, N.Y. Brown, I. J., 53 Legion Dr., Kenmore 17, N. Y.

Brown, M. N., 156 Osborn Rd., Aberdeen, Md.

Brown, R. M., Box 324, Aylmer, Ont., Canada

Buck, J. D., 99 Hempstead Ave., West Hempstead, N. Y.

Byrnes, J. F., 137-40 Laurelton Pkwy., Rosedale 10. L. I., N. Y.

Cain, J. D., 23804 Cliff Dr., Bay Village, Ohio

Chanes, H., 386 S. Second St., Brooklyn 11, N. Y.

Cohen, N. L., 258 Barrow St., Jersey City 2, N. J.

Collins, V. R., 96 Bayview Ave., Jersey City 5, N. J.

Coon, M. A., 405 Flower City Park, Rochester 13, N. Y.

Couzens, D. T., 411 W. Park Ave., Angola, Ind.

Crawford, C. S., 4215 16 St., N.W., Washington 11, D. C.

Cronan, W. C., Box 7227, Seamen's Mail Unit, San Francisco 1. Calif.

Crouch, J. B., 34 B Glenwood Rd., Baltimore 21, Md.

DeWolf, L. R., 3219 Grand Ave., Huntington Park 8. Calif.

DeYoung, B., 124-126 W. State St., Ithaca, N. Y.

Dinning, D. McP., 17b Sutton St., Cocoa, Fla. Dodd, C. L., 213 W. 21 St., New York 11, N. Y.

Dorman, J., 3081-36 St., Long Island City, N. Y. Drake, J. B., IV, 610 Park Ave., New York, N. Y.

Drew, W. B., 2 Center St., Suffern, N. Y.

Ellis, D. G., 7459 N. Newell Ave., Portland 3, Ore. Esterson, M., "The Risings," Galleywood Rd., Great Baddow, Essex, England

Evry, A. A., 7005 Limekiln Pike, Philadelphia 38, Pa.

Felker, J. H., Bell Telephone Laboratories, Whippany, N. J.

Fernandez, J. A., McBurney Y.M.C.A., 215 W. 23 St., New York 11, N. Y.

Finkelstein, S. M., 3620 Bedford Ave., Brooklyn 10, N. Y.

Fishbein, M., 1512 Union St., Brooklyn 13, N.Y.

Fornari, R. P., 49 Norden St., Staten Island 4, N.Y. Frangoulis, S. 1., 2574-47 St., Astoria 3, L. I., N. Y.

Gannett, E. K., 41 Lake Dr., Mountain Lakes, N. J. Gill, D. M., Engineering Department, G. P. O., Hongkong, China

Giolitto. A. P., 836 Illinois Ave., Rockford, Ill.

Glick, J., 1460 Bryant Ave., New York 60, N. Y.

Greene, B. F., 234 Lake St., Brighton 35, Mass.

Gruber, P., 600 W. 146 St., New York 31, N. Y.

Haile, B. C., Jr., 25-21 Court, Hermosa Beach, Calif.

Hall, G. B', 34 High Cross ,Rd., Poulton-Le-Fylde Blackpool, Lancashire. England

Hauk, G. L., 1532 Sunset Cliffs Blvd., San Diego 7, Calif.

Hatfield, G. I., 1611 Mahantongo St., Pottsville, Pa Hedge, L. B., 2921 S. Buchanan, Fairlington, Arlington, Va.

Horseman, T. E., 2615 S.E. Salmon St., Portland 15 Ore

(Continued on page 46A)

An Outstanding Success!

RC-11 STUDIO CONSOLE

The Most Versatile Unit of its Kind...Easily Controlling Two Studios, Announcer's Booth and Nine Remote and Two Network Lines.

FIRST UNVEILED at the I.R.E. Show last winter, this remarkable Raytheon Console has won a unique place in its field—commanding the attention of studio engineers and managers as few items of broadcast equipment ever have!

It provides *complete* high-fidelity speechinput facilities for the modern station—with all the control, amplifying and monitoring equipment contained in a single compact cabinet. It easily handles any combination of studios, remote lines or turntables—broadcasting and auditioning simultaneously, if desired, through two high quality main amplifier channels. It makes it a simple matter to cue an oncoming program and pre-set the volume while another program is on the air.

Note the sloping front and backwardsloping top panel, giving maximum visibility of controls and an unobstructed view into the studio. Note the telephone-type, lever action, three-position key switches, *eliminating nineteen controls* and reducing operational errors to a minimum.

The beauty of this console, in two-tone metallic tan... the efficient, functional look of it... will step up the appearance of any studio, and yet blend easily with other equipment. And the low price of this Raytheon Çonsole will **amaze you**.

7517 N. Clark Street, Chicago 26, Ill.

Inquire at ence! Write or wire to:

RAYTHEON MANUFACTURING COMPANY

Broadcast Equipment Division

Compare THESE OUTSTANDING FEATURES WITH ANY OTHER CONSOLE

1. SEVEN built-in pre-amplifiers-more than any other console-making possible 5 microphones and 2 turntables, or 7 microphones, on the air simultaneously.

2. NINE mixer positions-more than any other console-leading to 5 microphones, two turn-tables, one remote line and one network line.

3. NINE remote and two network lines-more than any other console-may be wired permanently.

4. TELEPHONE-TYPE lever-action key switches used throughout – most dependable, trouble-free switches available. No push buitons.

5. FREQUENCY RESPONSE 2 db's from 30 to 15,000 cycles. Ideal speech input system for either AM or FM.

6. DISTORTION less than 1%, from 50 to 10,000 cycles.

7. NOISE LEVEL minus 65 db's or better. Airplane-type four-way rubber shock mounting eliminates outside noise and operational "clicks."

8. ALL FCC REQUIREMENTS for FM transmission are met.

9. DUAL POWER SUPPLY provides standby circuit instantly available for emergency use.

10. POWER SUPPLY designed for mounting on desk, wall or relay rack.

11. INSTANT ACCESS to all wiring and components. Top hinged panel opens at a touch. Entire cabinet tilts back on sturdy full-length rear hinge.

RAYTHEON

Excellence in Electronics

Devoted to Research and Manufacture for the Broadcasting Industry

You've got a hard-working, unbeatable team in the Jackson Service Lab: the Dynamic Tube Tester Model 636, Test Oscillator Model 640, and the Condenser Tester Model 650-A-three fine instruments mounted on one panel for convenient use and good looks.

Angled front ponel for visibility and attractive appearance.

Extro occessory ponel machined for easy installation of any special test fea-tures you wish to add. A "custom-built" feature at no extra premium.

Two convenience outlets and moster switch on front panel. Each lab completely wired ready for use. Also four A.C. outlets for installed instruments.

Interchangeable ponels-Standard relay rack size panels, a feature originated by Jackson in the first service labs.

Fluorescent lighting (optional). Each unit has mounting provisions for the Jackson Fluorescent Lab Lamp.

Service Lob Rock finished in grey and morocco and supplied with trim strips.

Dimensions: 20" wide, 313/4" high, 161/2" deep.

Start today to equip your shop with modern Jackson instruments.

JACKSON ELECTRICAL INSTRUMENT COMPANY, DAYTON, OHIO

(Continued from page 44A)

Johnson, G. L., Jr., 4701 W. Fulton St., Chicago 44, 111.

- Keyser, J. R., Jr., 1601 Bedford Ave., Lynchburg, Va
- King, H. E., 905 Cooper St., Camden, N. J.
- Kohut, M., 1205 Washington St., Farrell, Pa. Kotadia, K. M., P. O. Himatnagar, (Gujarat) Idar
- State, India
- Krcik, J. F., 36-63-34 St., Long Island City 1, N. Y.
- Larrea, J. R., 916 Martin Garcia, Buenos Aires, Argentina
- Leifer, M., Sylvania Electric Pruducts Inc., 34-10 Linden Place, Flushing, L. I., N. Y.
- Lewis, E. W., 41 Regent Rd., Malden, Mass. Lindner, F. A., c/o R.O.U., 1440 Broadway, New
- York, N. Y. Lowery, H. R., 401 Franklin Ave., Valparaiso, Ind.
- Manahan, M. J., 4461 W. 61 St., Los Angeles 43, Calif.
- Mainieri, A. J., 25 de Mayo 360, San Isidro (Pcia de Buenos Aires), Argentina
- Mansion, D. D., Ave. Huergo 1167, Buenos Aires, Argentina
- Martin, R. E., 621 W. 172 St., New York 32, N. Y. Meehan, J. D., 539 W. Fulton St., Long Beach, N. Y.

Mercader, R. L., 358-50 St., La Plata, Argentina

- Meyer, H., 345 W. 70 St., New York 23, N. Y. Mitchell, T. G., Thorn Acres, R.F.D. #4, Niles, Mich.
- Mullenger, K. E., 17 Front St., Schenectady, N. Y. Natrajan, R., Y.M.C.A., 215 W. 23 St., New York 11. N. Y.
- Nelkin, A., 5447 Avondale Place, Pittsburgh, Pa.
- O'Connor, D. G., 6823 Ridge Blvd., Brooklyn 20, N. Y.
- Ohlinger, P. M., Portsmouth, Iowa
- Onativia, R. A., Cia Standard Electric, Ave. Tomkinson 1700, San Isidro, F.C.C.A. Pcia **Buenos** Alres, Argentina
- Osborn, W. C., Box 771, Dixon, Calif.
- Parchment, E. D., c/o London Gramaphone Corp.,
- 16-18 W. 22 St., New York, N. Y. Patel, R. V., c/o RCA Institutes, 75 Varick St.,
- New York, N. Y. Patton, W. L., 5225 Wilshire Blvd., Los Angeles 36, Calif.
- Peetz, G. E., Jr., 127 Orris St., Munhall, Pa.
- Pendrill, E. M., 29A Epsom Rd., Morden, Surrey, England
- Poritzky, S. B., 5210 Garfield, Kansas City 4, Mo. Ravenscroft, H. A., 143 Howard St., Petaluma, Calif.
- Reed, H. Z., 9 Sycamore Ave., Takoma Park 12. Md.
- Ritz, W. A., 3505-37 St., Mount Rainier, Md. Rockwell, W. S., c/o Graybar Electric Co., 1010 Rockwell Ave., Cleveland 14, Ohio
- Rodriguez, F. V., Box 15, Hato Rey, Puerto Rico Rose, F. H., c/o Allis-Chalmers Manufacturing Co.,
- 650 Harrison St., San Francisco 7, Calif. Rosenberger, T. A., 506 Delannoy Ave., Cocoa, Fla.
- Sammon, A. C., 144 E. 40 St., New York 16, N. Y.
- Santerre, R. E., 208 Bank St., Elkhart. Ind.

Savalli, F. P., 150 Wilson Ave., Brooklyn 21, N. Y. Seidman, G., 4 S. Pinehurst Ave., New York 33,

N. Y. Shaffer, C. V., Box 432, Gainesville, Fla.

Shamblin, H. D., 3859 Kumquat Ave., Miami 33, Fla.

Sherline, M. J., 130 W. 64 St., New York 23, N. Y. Silver, M. H., Box 847, Eau Gallie, Fla.

- Smeltzer, J. C., R.F.D. #1, Box 156, Clinton, Md.
- Sosolik, F. J., 1111 E. 23 St., Bryan, Texas
- Soteriou, C. J., 143 Rea Ave., Hawthorne, N. J. Spool, S., 116-65 Farmers Blvd., St. Albans 12,
- N.Y. Stephens, G. F., 27 Monroe Place, Brooklyn 2, N. Y.
- Stewart, F. L., 4215 16 St., N.W., Washington 11, D. C. (Continued on page 48A)

Proceedings of the I.R.E. and Waves and Electrons

BACK OF THIS LINE OF RECTIFIER TUBES 50 YEARS OF HIGH-VOLTAGE EXPERIENCE

OW internal drop, long filament life, and rugged mechanical construction characterize the Machlett line of high-voltage rectifier tubes. Machlett has devoted half a century to the design and manufacture of high-voltage electron tubes, and this long experience is reflected in today's Machlett rectifiers. Thus they incorporate such other assurances of long useful life as complete outgassing, ability to withstand high electrostatic stresses, and high plate dissipation to minimize the danger of back or secondary emission. In all Machlett tubes the glass envelopes are specially processed and minutely inspected to eliminate conditions that might lead to punctures.

For whatever purpose required—electrostatic precipitation, paint spraying, detearing, high-voltage testing of dielectrics and cables, or for research work requiring a reliable source of high-voltage D-C, there is a Machlett High-Voltage Rectifier designed and built to assure long, reliable performance.

Machlett Rectifiers are available up to 200 kv inverse, and in addition to a complete line of air-cooled tubes, there are types for oil-immersion designed for use in modern shockproof housings. The Machlett catalog, containing detailed descriptions and technical data, will be sent on request. Machlett Laboratories, Inc., Springdale, Connecticut.

-8-3-	
ML-5575/	100
Filament Voltage	20.0 volts
Filament Current	24.0 amperes
Maximum Peak Inverse Voltage Peak Anode Current	
Internal Drop I _b =1.0 Amp E _f =20.0 Volts	550 volts
MACHL	ED
APPLIES TO RADIO AND I ITS 50 YEARS OF ELECTROP	NDUSTRIAL USES N TUBE EXPERIENCE

ULTRA MODERN DESIGN

cuts feedback to the minimum

(Continued from page 46A)

Strum, R., 8317-21 Ave., Brooklyn 14, N. Y. Sunde, D. H., 1614 N. Queen St., Arlington, Va.

Sussenguth, C. E., Cia Standard Electric. Ave. Tomkinson 1700, San Isidro, F.C.C.A.,

Pcia Buenos Alres, Argentina Swarthe, E., 5118 Harold Way, Los Angeles 27, Calif.

Swartzlander, G. W., 1220 Stilwell Ave., Fremont, Ohio

Tedder, P. M., Box 2462 University Station, Gainesville, Fla.

Trompeter, E., 7061 W. 81 St., Los Angeles 44, Calif.

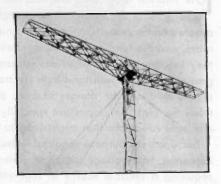
Tuma, G., University of Oklahoma, Norman, Okla. Underwood, B. H. J., 16 Pequegnat Ave., Kitchener, Ont., Canada

Upton, D. J., 135 W. 93 St., New York, N. Y.

Walker, R. E., Dawson St., Mason, Ohio

Wasserman, I. E., 3455 Knox Place, New York 67, N. Y.

Winston, C. B., 3717 E. Fourth St., Davton 3, Ohio Wilts, J. R., 717 Home Park Blvd., Waterloo, Iowa Wissemann, H. J., 415 Sunset Ave., Dallas 8, Texas Wright, J. J., 9141 S. LaSalle St., Los Angeles 44, Callf.


Yeutter, L. D., 10721 Mansel Ave., Inglewood, Calif.

News-New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your 1.R.E. affiliation. (Continued from page 32A)

Rotary Beam Antenna Support

The new Trylon Rotary Beam Antenna Support made by the Wind Turbine Company, West Chester, Pa., offers amateurs an easily installed fully dependable unit for 4-element, 20-meter array. Of lightweight, stainless steel, spot-welded construction the support has an overall length of 19' 2" and weighs only 31 pounds exclusive of the mounting assembly. Ball bearing design provides full and easy 360° traverse and the unit is adaptable to either manual or motor drive.

The beam attaches easily to any supporting tower. It is stated that the support can be moved without difficulty from one location to another and can be erected with no tool other than a screwdriver. (Continued on page 62A)

THE TURNER 34X

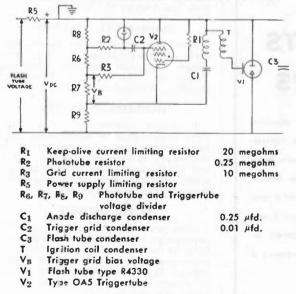
Semi-Directional **Crystal Microphone**

Here's functional styling that serves both beauty and performance. The ultra modern design of the Turner 34X combined with Turner precision engineering results in a semi-directional unit with remarkably low feedback characteristics. Equipped with a high quality crystal, its response is smooth and even with a variation of only ± 5DB from 30 to 10,000 cycles. Ideal for both voice or music pickups, the Turner 34X is a perfect mate for your quality recording, call system, and P.A. equipment. Ask your dealer or

TURN TO TURNER FOR THE FINEST IN ELECTRONIC EOUIPMENT Licensed under patents of the Brush Development Company

SPECIFICATIONS

· Moisture proofed crystal


· Blast and mechanical shock

TRIGGERTUBE... SYLVANIA'S NEWEST

—made specifically for electronic relay applications ...

HEIGHT - 1%" DIAMETER - 34"

PHOTOCELL TRIPPING CIRCUIT For electronic flash tube

HERE'S a new 5-element, inert-gas filled, internally triggered cold cathode relay tube designed for operation up to 1000 vclts on the anode, with a positive pulse on the control or trigger grid—a tube made specifically for triggering.

Its cathode structure is similar to that utilized in the well-known 1D21, SN4 type strobotron tubes which are mostly used for stroboscopic applications. This cathode design is characterized by its ability to furnish extremely high instantaneous peak currents—hundreds of amperes.

However, the design of the new Triggertube varies in that the delay time—time required to initiate the arc—as well as the deionization time, is greatly reduced as compared with previous triggering tubes. In addition, since this tube has been especially designed for trigger applications applications which do not utilize the light flashes produced by the arc—it can be ideally utilized wherever stable characteristics and low switch current are important.

For example: electronic flash equipment in which externally triggered flash tubes can be readily controlled by a hand trip switch, built-in shutter synchronizing switches, or by a photocell.

Write address below for full specifications.

The OA5 is idensed under the tube patents of Edgertan, Germeshausen and Grier, but no license is implied under their circuit patents.

AIRCRAFT CORPORATION

old established firm has openings for the following technical personnel:

Engineering Technical Writer—B.S. Degree in Aero Engr. or Mech. Engr. Experience in report writing necessary.

Industrial Engineer-25 to 30 years old with 3 to 5 years experience in Administrative Engineering with Industrial Organization.

Two Electrical Engineers or Physicists-M.S. Degrees or better preferred. One with at least four years experience in research or development of television or microwave receivers, the other with equivalent experience on microwave antennas and/or systems.

Two Applied Physicists—M.S. or Ph.D. Degrees, one with at least 3 years experience in Electronics and/or Instrument Design, the other with equivalent experience as an experimental physicist with high vacuum experience.

Two Mathematicians—M.S. or Ph.D. Degree with five years experience in Research and Development Problems."

Reply to Box 446 The Institute of Radio Engineers, Inc. 1 East 79th Street

New York 21, N.Y.

ENGINEER EXECUTIVE

We need a top-flight executive to direct the engineering efforts of our young, expanding electronic manufacturing organization.

Box 447 The Institute of Radio Engineers 1 East 79 St., New York 21, N.Y.

WANTED PHYSICISTS ENGINEERS

Engineering laboratory of precision instrument manufacturer has interesting opportunities for graduate engineers with research, destgn and/or development experience on radio communications systems, electronic & mechanical aeronautical navigation instruments and ultra-high frequency & microwave technique.

WRITE TO BOX 935 EQUITY ADVERTISING AGENCY 113 W. 42nd St., New York 18, N.Y.

The following positions of interest to I.R.E. members have been reported as open. Apply in writing, addressing reply to company mentioned or to Box No....

The Institute reserves the right to refuse any announcement without giving a reason for the refusal.

PROCEEDINGS of the I.R.E.

I East 79 Street, New York 21, N.Y.

PHYSICIST

With MS or Ph.D. degree, and training in both nuclear physics and electronics. Write in detail, stating qualifications, to Personnel Office, RCA Laboratories, Princeton, N.J.

INSTRUCTORS

To teach Radio Engineering. Must have BS in EE or Physics, or equivalent; 5 years experience in commercial electronics work. Knowledge of microwaves desirable. Write, giving full details regarding education and experience, to Personnel Department, Spartan School of Aeronautics, Tulsa, Oklahoma.

PHYSICISTS AND ELECTRICAL ENGINEERS

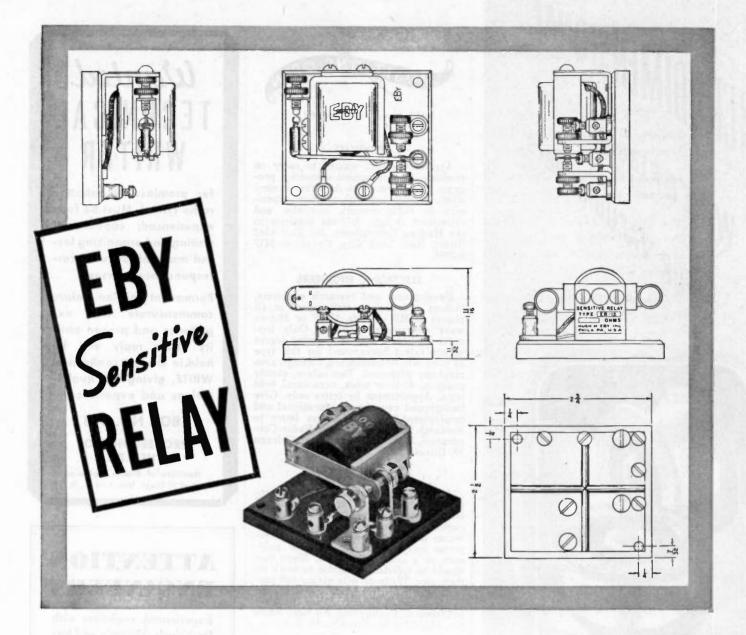
Unusual opportunities in recently organized research group for work in broad fields of radio, radar, telemetering, servomechanisms, and gyroscopes. Excellent openings for experienced physicists with good training in fundamentals. Please reply, giving experience and education including transcript of college record, to: Engineering Personnel Office, North American Aviation, Inc., Municipal Airport, Los Angeles 45, California.

TRANSLATORS-PART-TIME

Foreign language articles, papers, patents, etc. Qualified readers state languages, technical subjects. Accurate Translation Service, 711 Woodward Building, Washington 5, D.C.

ENGINEERS-PHYSICISTS

Prominent communications development organization in Metropolitan area has openings for men experienced in microwave systems development; UHF and VHF transmission, receiver and antenna circuits; and electro-mechanical design. Write details Box 444.


PATENT ENGINEER

Good pay while you learn. An unusual opportunity for a young electrical engineer or physicist to receive intensive training as a patent solicitor for a substantial Texas corporation. Give details of experience, education, draft status, salary expected. Box 445.

PHYSICIST-METALLURGIST

For fundamental development and research in metals used in electron tubes. Work requires a high degree of theoretical background as well as practical experience. Location near metropolitan area with ample facilities available for extensive research. State complete resume of experience and background. Box 440.

(Continued on page 52A)

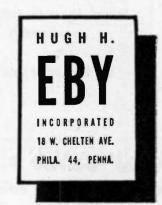
APPLICATION:

The EBY sensitive relay is designed for direct current (full or half-wave rectified) control circuits where the available power for operation is relatively small. Its low power consumption for positive operation makes it ideal for installation in photoelectric control equipment, vacuum tube amplifier circuits and to protect delicate contacts of sensitive control instruments.

MAGNETIC CIRCUIT:

The EBY sensitive relay, because of the advanced design of the armature, and by the use of a high quality, special steel alloy in the magnetic circuit, has the outstanding features of low power requirement for positive action and its unusually high speed of response.

COILS:


The EBY sensitive relay can be supplied with five different coil sizes covering most of the operational needs in sensitive relay control applications. The standard coil values are: 300, 1000, 2500, 5000 and 10,000 ohms resistance. The relay is rated at 11.25 milliwatts for positive operation; however, it can be adjusted for less when needed. The coils will safely carry 2 watts.

CONTACTS:

Contacts, single-pole, double throw, are of coin silver and are rated to carry 2.5 amperes at 115 volts A.C., or 0.5 amperes at 115 volts D.C. The contact air gap and spring tension are adjustable for critical applications,

BASE:

Molded phenolic.

Wires drawn to .0D04" diameter

Ribbon rolled to .0001" thickness

Special Alloys for individual requirements

WRITE for list of stock alloys

(Continued from page 50A)

PHYSICIST

Applied physicist wanted to carry on research in government-sponsored program. Prefer man with doctorate in electronic physics and with practical experience in radio circuits, acoustics, and instrument design. Address inquiries to the Haskins Laboratories, 305 East 43rd Street, New York City. Or phone MU 5-7956.

ELECTRONIC ENGINEERS

Development and research engineers, seniors and juniors, well versed in all phases of RF circuits. VHF or Microwave experience desirable. Only topnotch applicants with engineering degree or equivalent background for this type of work will be considered. Chicago area residents preferred. Top salary, steady position, 40-hour week, occasional field trips. Appointment by letter only. Give background experience, educational and employment history. Address letter to Research Division, Belmont Radio Corporation, 5921 W. Dickens Ave., Chicago 39, Illinois.

RADIO ENGINEERS

Air King has openings for graduate engineers with Senior experience on AM and FM broadcast receiver design. Applicants must be schooled in measuring techniques and capable of establishing competent specifications for Vendors' guidance on a quantitative basis. Right men should be sufficiently capable to work on their own. Write or wire giving full particulars of experience, salary desired, etc. to Mr. Frank A. Hinners, Vice President in Charge of Engineering, Air King Radio Co., 1523-63rd St., Brooklyn 19, N.Y.

COIL DEPARTMENT HEAD

Experienced in set-ups, winding, impregnation and testing home receiver type RF and IF coils and chokes, wanted by television and radio manufacturer in New York area. Give experience and salary expected. Box 442.

ENGINEER-EXECUTIVE

We need a top-flight executive to direct the engineering efforts of our young, expanding electronic manufacturing organization. Box 447.

ENGINEERS

Prominent Aircraft Company, Eastern United States, needs men with following qualifications: Experienced engineers with Bachelor's, Master's, Doctor's degrees in Electrical Engineering, Physics, Mathematics. At least two years experience in design and development of radar and television systems, automatic computers, servomechanisms, target seekers, etc., required. Positions open for preliminary and detail design, research, and development of guided missiles under Army and Navy contracts. Starting salary commensurate with experience. Address Box 441.

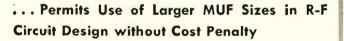
(Continued on page 54A)

52A

for prominent Manhattan radio school. Must be fully experienced; capable of writing and organizing lesson material for radio correspondence courses.

Permanent position. Salary commensurate with experience and proven ability. Your reply will be held in strictest confidence. WRITE, giving full qualifications and experience.

BOX NO. 443


PROCEEDINGS OF THE I.R.E. (Institute of Rodio Engineers) I East 79 Street, New York 21, N.Y.

ATTENTION ENGINEERS

Experienced engineers with Bachelor's, Master's, or Doctor's degrees in Electrical Engineering, Communications, Radio, Physics, Mathematics. At least two years experience in design and development of radar and television systems, electronic navigational systems, automatic computers, servomechanisms, etc., required. Specialists in High Frequency transmitters, receivers, antennas, aircraft electronic components particularly desired. Starting salary commensurate with experience. Exceptional opportunity for the right men. Write Mc-Donnell Aircraft Corporation. Lambert-St. Louis Municipal Airport, Box 516, St. Louis (21) Missouri.

December, 1946

G.E. OFFERS Lectrofilm Capacitors at New Low Prices!

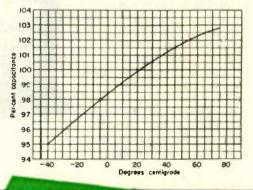
Here's a capacitor price reduction that really means something to circuit designers: G-E offers all listed ratings of casestyle 65 Lectrofilm* blocking and by-pass capacitors at one new price, approximately half of the previous level. Similarly, all listed ratings of case 70 designs are offered at one new, low price!

This means that you no longer have to place cost ahead of good circuit design. It means that you now have complete freedom to use either *high* or *low* capacities in R-F blocking and by-pass applications—without paying a premium for higher capacity!

General Electric's development of Lectrofilm, a new capacitor dielectric, and the advanced methods used in manufacturing these capacitors have resulted directly in these new low prices. Lectrofilm capacitors are now the answer to new circuit economies, better circuit designs, lower over-all equipment costs.

Write for Bulletin GEA-4295A, Apparatus Dept., General Electric Company, Schenectady 5, N.Y. *Reg. U.S. Par. Off.

NEW LOW PRICES OF G-E LECTROFILM CAPACITORS†

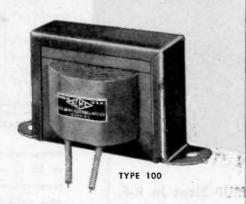

					Cap Muf	Rated D-c Voltage
Quantity Case 65	110 9	10 to 99	100 to 999	1000 or more	.0001 .001 .01	3000 3000 1000
Net Price	6.50	4.90	3.90	3.25	.1	500
Quantity Case 70	1 to 9	10 to 99	100 to 999	1000 or more	.0001	5000 5000
Net Price	8.45	5.85	4.55	4.25	.01 .1	2000

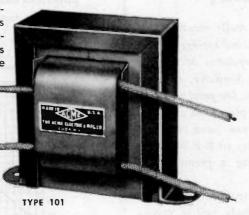
†Prices to manufacturers purchasing Lectrofilm Capacitors for use with their product will be supplied on inquiry.

RATINGS	AT	HIGH	TEMPERAT	URE
---------	----	------	----------	-----

Ratings are based an 25 C ambient	Ambient Temp. C	Per Cent Rated D-c Volt.	Per Cent Rated Super- imposed RMS Sine Wave Current
temperatures. For	25 30	100	100
ather ambient tem-	35 40	98 97	85
peratures the fallaw-	45 50	96 95	75 70
ing derating factors	55 60	94 93	60 50
must be used:	65 70 75	92 91 90	45 35 15

Good Capacitance-temperature Characteristics at law cost




G-E Lectrofilm Capacitors for Radio and Industrial Electronic Equipment

HOW MANY VARIATIONS Are there to a STANDARD DESIGN

Acme Electric transformers are designed to basic standards to which variations can be adapted to exactly meet the requirements of the application. For example, Mounting Type 100 is for horizontal mounting while type 101 is for vertical mounting, yet both are basically identical. And in either case, one or both mounting legs may be turned down for side mounting to save space. The number of leads or terminals may also be varied to comply to the electrical specifications desired. All things considered, Acme transformers made from standard parts to special specifications are available in hundreds of ratings and to exactly the physical dimensions, design and electrical characteristics you require. Acme **TransformerEngineers** will be glad to assist you by designing transformers to improve the performance of your product. Bulletin 168 gives more details.

ACME ELECTRIC CORPORATION 44 Water St. CUBA, N.Y.

ENGINEERS (SENIORS)

ELECTRICAL. Several positions open for men with UHF experience.

MECHANICAL. Several positions open for men with radar design experience. Allen B. Du Mont Laboratories, Inc., 2 Main Avenue, Passaic, N.J.

SOUND-POWERED ENGINEER

Sound-powered telephone engineer wanted. Experienced in design of soundpowered telephone equipment. EE graduate or physicist with minimum 4 years' design experience in this field. Up to \$6000. Long established Connecticut manufacturer. Box 439.

ENGINEERS-TECHNICIANS

Expanded guided missile research, manufacture, and experimentation require long term services of a new development group in the Electronics Department. Positions open for graduate engineers, physicists, and experienced technicians. Masters and Doctors degrees desirable for better positions. Educational background in mathematical-physics, electronics, aerodynamics preferred. Work will be on broad aspects of electronic servo mechanism control systems. Salaries \$2500-\$8000, commensurate with ability. Location Farmingdale, Long Island. Communicate with A. E. Sutton, Pilotless Plane Division, Fairchild Engine and Airplane Corporation, 184-10 Jamaica Avenue, Jamaica 1, N.Y.

RADIO ENGINEER

Needed for extensive laboratory development work in circuit detailed investigation and design of RF components. Must have experience in experimental radio or allied techniques. Write to: Employment Department, The F. W. Sickles Company, Chicopee, Mass. Give full particulars as to experience, salary desired, etc.

ASSOCIATE PROFESSOR OF ELECTRICAL ENGINEERING

Man with MS in Electrical Engineering with specialization in electronics to take charge of Electronics Option. Teaching experience required. Industrial or military experience desirable. Salary \$3200 to \$3600, for nine month school year, depending on age and experience. Write: Department of Electrical Engineering, North Dakota Agricultural College, Fargo, North Dakota.

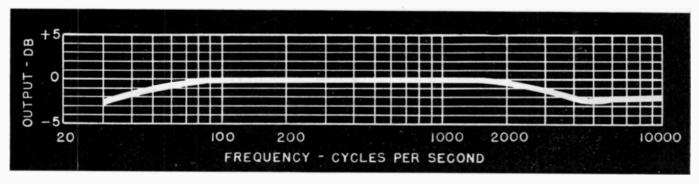
(Continued on page 56A)

SOUND EQUIPMENT-precisionized-mechanically and electronically-for finer performance

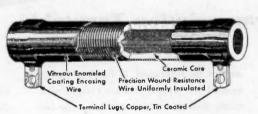
Unit 524 Transcription Turntable

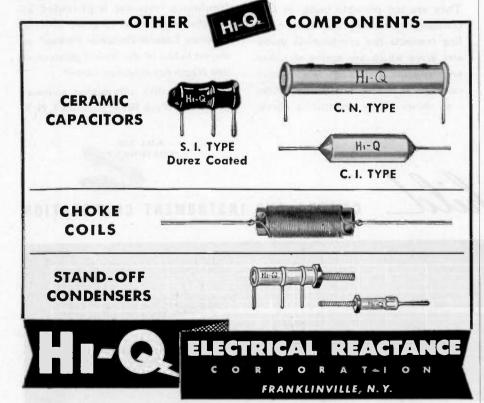
Fairchild is now in a position to accept additional orders for the NEW Unit 524 Transcription Turntable on a 30-day delivery basis.

Here again, Fairchild has anticipated the needs of FM with the Unit 524 Transcription Turntable. It's completely new. It offers 'WOW'-free performance without turntable noise, rumble or vibration for either FM or AM recorded broadcasts; for dubbing from disc to disc, or to film; and for laboratory uses where extraneous noise and distortion cannot be tolerated. It has been engineered for wide dynamic range, minimum distortion content and wide frequency range—to keep the record alive!


The drive and turntable have been newly designed for cabinet installation. They are not portable units set in a console. A vibration-proof rubber coupling connects the synchronous motor and drive which are spring mounted and precision aligned in a single heavy casting — at the bottom of the cabinet — as shown in the illustration above. 'WOW'-free operation is assured at either 33.3 or 78 rpm by a carefully maintained evenness of speed. Splitsecond timing is guaranteed by the positive Fairchild direct-from-the-center turntable drive. 30 to 10,000 cycle frequency response is provided by Fairchild's patented 25 gram 'floating' pressure Lateral Dynamic Pickup—as shown below in the typical production line frequency-response curve!

For complete information address: 88-06 Van Wyck Blvd., Jamaica 1, N. Y.




CAMERA AND INSTRUMENT CORPORATION

Sturdy construction (as shown in the accompanying diagram) is but one characteristic of Hi-Q Wire Wound Resistors. The others are precision winding, wide range of types, sizes and ratings and quantity production. Standard units are available in capacities from 5 to 200 watts with outside dimensions of $5/16'' \times 1''$ to $1-1/8'' \times 12''$ and resistance values up to 100,000 ohms. Where required, special units are engineered to specific jobs.

* * Positions Wanted By Armed Forces

Veterans

In order to give a reasonably equal opportunity to all applicants, and to avoid overcrowding of the corresponding column, the following rules have been adopted:

The Institute publishes free of charge notices of positions wanted by I.R.E. members who are now in the Service or have received an honorable discharge within a period of one year. Such notices should not have more than five lines. They may be inserted only after a lapse of one month or more following a previous insertion, and the maximum number of insertions is three per year. The Institute necessarily reserves the right to decline any announcement without assignment of reason.

ENGINEER

BEE, Cooper Union. Age 24, married. Radar training Harvard-M.I.T. 26 months signal corps radar officer. 10 vears licensed radio amateur, class "A" license. Interested research or development on radar or communications equipment, New York City or vicinity. Julian D. Hirsch, 18 Edgewood Park, New Rochelle, N.Y.

ENGINEER

BS-EE. Graduate study. Age 25, married. 3 years civilian development experience in MAD, receivers, and radar. Present duty: radar equipment development. Available January 1, 1947. Box 54W

PRACTICAL ENGINEER

Technician, with general knowledge of radio engineering principals. Fifteen years radio work, mostly broadcast construction and maintenance. Age 37. Desires work as assistant to experienced professional engineer. Box 55W.

ELECTRICAL ENGINEER

BS-EE, University of Kansas, 1942. Age 25, single. One year experience design of HF and VHF portable radio equipment. Forty-five months Signal Corps experience with telephone and teletype insideplant equipment and multi-channel VHF radio link equipment. Box 56W.

COMMUNICATION ENGINEER

Commander USCG, graduate U. S. Coast Guard Academy 1933. MS in Communication Engineering Harvard 1942. Varied radio and electronic experience. Desires position in the Boston area. Available December. Box 57W.

ENGINEER

Master of Electrical Engineering, age 37, single, desires suitable position in international engineering sales. Fluent French, German, Italian; some Spanish. Good appearance and personality. Foreign fields preferred. Box 58W.

(Continued on page 58A)

Proceedings of the I.R.E. and Waves and Electrons

December, 1946

NULL DETECTOR

SHERRON

MODEL SE-518

The new Sherron R.F. Null Detector is designed to be used with R.F. Bridges and other impedance measuring devices, such as the twin "T" network. Both generator and detector are included, and are housed in the same cabinet. The unit may be used as a signal generator to provide power at 1 MC or as a sensitive detector at the same frequency.

The Detector is equipped with a Cathode Ray indicator so that its response to changes of signal level is instantaneous. The use of visual indication permits this unit to be operated in noisy locations where aural indications may be useless.

The Detector has a logarithmic response so that the gain is high for a weak signal, and large signals can be handled without overloading. Thus, an input of 25 microvolts gives noticeable deflection—while a signal of more than 1 volt will not overload the Amplifier.

SPECIFICATIONS:

FREQUENCY 1 MC

HARMONIC j 2nd down more

POWER § 115 Volts-60 Cycle

than 100 db

120 Watts

SUPPRESSIONS

CONSUMPTION

SHERRON ELECTRONICS CO.

Division of SHERRON METALLIC CORPORATION

1201 FLUSHING AVENUE, BROOKLYN 6, NEW YORK

West Coast Sales Office: Mechanics Institute Building, 57 Post Street, San Francisco, Calif.

Positions Wanted

(Continued from page 56A)

ENGINEER

BEE, age 23, single, 2 years industrial experience, 1 year UHF research. Desires position New York City or environs, preferably in UHF field. Available January. Box 59W.

ENGINEER

BEE. Some graduate work. Age 26. 4 years Field Engineer Signal Corps. 1 year design electrical test equipment and redesign surplus property. 1 year coordina-tor field activities, test and instrumentation new fire control radar U. S. Army. Prefer East. Box 60W.

RADIO OR SALES ENGINEER

Bowdoin, M.I.T., Corpus Christi Navy electronics training, four years officer, aviation electronics duties. R.C.A. Insti-tute Technology, manufacturing and broadcasting experience. Project Engi-neer M.I.T. Radiation Laboratory. Box 61W.

ELECTRONIC DEVELOPMENT-INSTRUCTOR

BEE 1943, Cooper Union, UHF grad-uate theory. Studying N.Y.U. evenings. 1 year civilian experience UHF development. Organized and instructed army radar school. Civilian radio instructing. Desires part time instructing, research or development. Box 40W.

BEGINNING ENGINEER

BS in EE, Tufts College. Age 22, single. 1 year experience in the installation and maintenance of teletype equipment in the Navy. Box 41W.

SALES ENGINEER

Completed Navy Officer Radar course at Bowdoin College and M.I.T. Member of Tau Beta Pi, Eta Kappa Nu, Age 23. Desires position with Mid-West firm along lines of engineering administration or sales engineering. Box 42W.

ENGINEER

BEE 1943. Former Naval officer. Two years Navy experience special supersonics equipment. One year civilian experience, design of electronic marine equipment. Particularly interested in rocket research or development. Box 43W.

JUNIOR ENGINEER

BS in Engineering, majored in electri-cal. Desires position in New York area in communications or UHF field. Age 23. Ensign USNR (inactive) Box 44W.


PRACTICAL ENGINEER

BS in EE, Illinois Institute of Tech-nology, final tested, as U.S.N. inspector, all types radar at Western Electric Com-pany, Chicago, 1941-44. As Lt. (j.g.) in-stalled GCA fixed blind landing radar unit in Florida. Ham 12 years. Hold commer-cial phone 1st. Age 28, married. Details on request. Box 45W.

MEASUREMENTS CORPORATION

FM SIGNAL GENERATOR MODEL 78-FM

RANGE: 86 to 108 megacycles OUTPUT: 1 to 100,000 microvolts Individually Calibrated Dial

PULSE GENERATOR MODEL 79-B

RANGE: 50 to 100,000 cycles In three ranges PULSE WIDTH: 0.5 to 40 microseconds **OUTPUT: 150 volts**

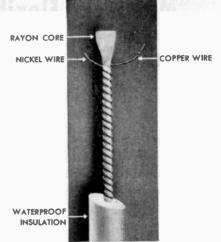
Terminal Board

Guaranteed Materials and Workmanship CAMBRIDGE THERMIONIC CORPORATION 456 Cancord Avenue, Cambridge 38, Mass

A little-known property of Nickel keeps temperatures right in the SIMMONS ELECTRONIC BLANKET

Acting as the temperature-sensitive element in an electronic control is a new use for Nickel.

Here's how the job is carried out in the Simmons Electronic Blanket:


In the embedded gridiron pattern of heating wires is 355 feet of fine Nickel wire. Acting as a "feeler," it constantly measures blanket temperature.

If temperature falls below a chosen level, the decreased resistance of the Nickel wire instantly transmits a signal to the control box. There, electronic tubes amplify the signal, making it strong enough to actuate a relay that sends current through the heater wires. Once the chosen temperature has been restored, signals from the "feeler" wire similarly shut off the current.

Nickel was selected for this job because its coefficient of electrical resistivity is higher than that of any other commercial metal--.0043-.0050 (68-212°F.). But, as so often occurs when Nickel or Nickel Alloys are used, there were contributing advantages. Nickel offers fatigue resistance (needed to withstand repeated flexing). Nickel is rustless and corrosion resisting (important, since the blanket must be washable). Nickel is both workable and strong (the "feeler" wire is only 0.0037" in diameter).

Remember to investigate Nickel and INCO Nickel Alloys whenever you need metals with a combination of hard-to-find properties.

THE INTERNATIONAL NICKEL COMPANY, INC. 67 Wall Street, New York 5, N. Y.

THE HEATING ELEMENT

Shown above is the hesting element of the Electronic Blanket made by the Simmons Company. Floating in channels inside the blanket, it is composed of two conductors, each insulated from the other by enamel and both covered by an over-all jacket of waterproof plastic insulation. One conductor is the heating wire. The other conductor, consisting of 355 feet of fine Nickel wire, acts as a "Feeler" and constantly measures blanket temperature.

Nickel plays an important role in the control box, too. For, with 3 electronic tubes used, there are jobs that can be done only by Nickel...jobs like the anodes, grids, supporting rods and lead-ins, which require Nickel's great thermal endurance, strength and corrosion resistance.

ALLOYS MONEL* . "K" MONEL* . "S" MONEL* . "R" MONEL* . "KR" MONEL* . INCOMEL* . MCKEL . "L" MCKEL* . "Z" MCKEL*

NICKEL

*Reg. U. S. Pat. Off.

Positions Wanted

(Continued on page 58A)

ENGINEER

3½ years EE. Age 31, married. Varied and colorful Naval radio career. Radiotelegraph 1st and Radiotelephone 1st class licenses since 1940. Prefer joining small progressive concern. Box 46W.

ELECTRONICS ENGINEER

BEE 1943. Army radar officer, trained M.I.T. Desires research development or testing in electronics New York area. Age 25. Henry L. Pernick, 1120 Wyatt St., Bronx 60, New York.

NAVAL OFFICER

Age 28, married. Three years Naval radar, Chief Petty Officer. First class radiotelephone and telegraph since 1939. Experienced in transmitter maintenance both FM and AM. Box 30W.

SALES OR SALES ENGINEER

Coast Guard electronics officer, age 27, five years military experience, pre-war electronic sales. Excellent sales record in industrial field since discharge. Will go anywhere in United States or foreign. Box 32W.

ELECTRICAL ENGINEER

BS in EE, graduate work at University of Pennsylvania. Three and one-half years civilian experience in design, development, and production of radio, radar, and electronic equipment. Radio engineering or production engineering position desired. A. F. Driesman, 2169 Pacific St., Brooklyn 33, N.Y.

ENGINEER

BEE 1943, some postgraduate work. 1½ years ciivlian experience in design and construction of electronic instruments for ballistic measurements. U. S. Army Ordnance; 1½ years abstracting German technical documents. Available October. Box 33W.

TWO-WAY RADIO AND MICROWAVES

Well-known highly experienced engineer, investor and author on two-way radio and microwaves. Long successful record pre-war and in Navy. Available for topflight technical or administrative position in field engineering, sales, research or production. Minimum salary \$7200. Any location. Box 28W.

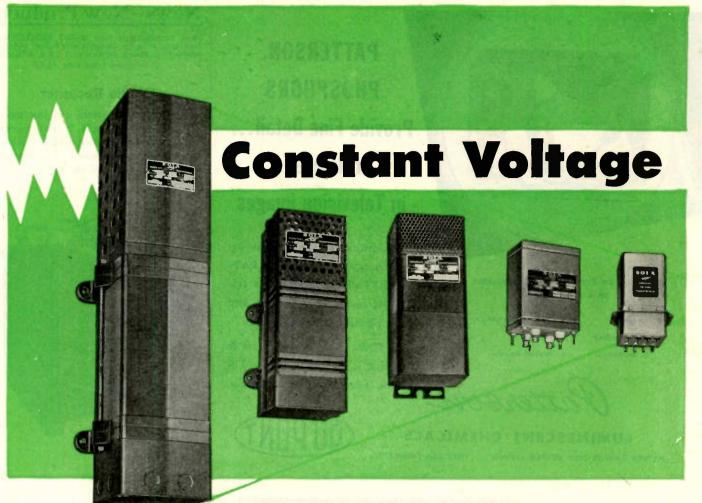
ENGINEER

Living in South Africa, diploma Professor Barkhausen (Dresden); AM. (S.A.) I.E.E. seeks position with American manufacturing concern. Box 29W.

To make Micro-Waves behave ... "Moldlock" Flexible Wave Guides

"MOLDLOCK," one of the three basic types of American Flexible Wave Guides, consists of a full, four-wall interlocked tubing made from silver laminated bronze or tinned bronze strip, with precision bronze flanges and covered with a molded synthetic jacket.

"Moldlock" is designed for mechanical installations where considerable misalignment must be compensated for, or where vibration or difficult bends and twists are problems.


The "Moldlock" type, the Vertebra type, and the newer Seamless Wave Guide mate electrically and mechanically with common sizes of rigid guide, and provide for operation at wave lengths from 20 to 11/4 Cm. We will gladly aid in selecting the most appropriate type, based on specific requirements of the installation.

Further information on request.

American Metal Hose ANACONDA

THE AMERICAN BRASS COMPANY • AMERICAN METAL HOSE BRANCH General Offices: Waterbury 88, Connecticut Subsidiary of Anaconda Copper Mining Company

46358

Let's face the fact.. CONSTANT VOLTAGE IS YOUR PROBLEM

When wide and violent voltage disturbances strike your equipment, do you realize what happens—

- -to costly filaments and tubes?
- --- to precision parts?
- -to sensitive, balanced circuits?
- -to over-all efficiency?
- -to customer good-will?

Constant Voltage is your problem. You specify on your label the voltage at which your equipment will perform at peak efficiency and without damage. But, unless you provide that voltage as a "built-in" component it will never be consistently available.

A SOLA Constant Voltage Transformer can be "built-in" without saddling your equipment with prohibitive costs. In fact, there are many instances where it has been accomplished at an actual saving over original design estimates, through the elimination of other costly components and drastic reductions in anticipated service calls during the guarantee period.

There are 31 standard types of SOLA Constant Voltage Transformers available in capacities

Constant Voltage

RANSFORMERS

ranging from 10VA to 15KVA. If none of these prove suited to your requirements, special units can be custom-designed to your exact specifications.

Write for Bulletin KCV-102 Here you'll find the answer to a problem that confronts every manufacturer and user of electrical or electronic equipment.

PATTERSON PHOSPHORS ARE AVAILABLE IN A WIDE RANGE OF

1. Colors 2. Grain Size

Model

2450

ELECTRONIC

TESTER

- 4. Types of Excitation 5. Afterniow
- 3. Brilliance
- 6. Special Blends

Patterson

LUMINESCENT CHEMICALS

BETTER THINGS FOR BETTER LIVING ... THROUGH CHEMISTRY

PATTERSON

PHOSPHORS

Brilliance...

in Television Images

put energy characterizes PAT-

TERSON PHOSPHORS - for tel-

evision, radar, oscilloscopes and

E. I. du Pont de Nemours &

Co. (Inc.), Patterson Screen Division, Towanda, Pennsylvania.

other electronic instruments.

There's never been a tester like this!

Here's a tester with dual voltage regulation of the power supply DC output (positive and negative), with line variation from 90 to 130 Volts. That means calibration that stays "on the nose"! That means broader service from a tester that looks as good as the vastly improved service it provides. This model includes our Hi-Precision Register which extraode a class the provides are provided to the set of the Resistor which outmodes older types. Detailed catalog sheets on request. Write today.

ELECTRICAL INSTRUMENT CO. BLUFFTON. OHIO

News–New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 48A)

Studio Recorder

The Fairchild Camera and Instrument Corporation, Jamaica, N. Y., announces its No. 523 Studio Recorder, designed to meet the exacting requirements of commercial recording studios and the radio industry

for instantaneous or wax recordings; and of the sound film industry for dubbing sound from disk to film. The table accommodates 18-inch flowed wax masters, acetate, or thicker wax masters. The positive 331/3 rpm drive assures accurate timing with its synchronous motor-which also makes the A.C. line the only interlocking device needed for dubbing sound.

Fairchild's No. 541 magnetic cutterhead, microscope and mount, in combination with the precision-built lead screw mechanism, develops uniform cutting at any pitch from 80 to 160 lines, either in-out or out-in.

10 Watt Monitoring Amplifier

A high fidelity 10-watt monitoring amplifier for AM or FM use is now being manufactured by Raytheon Manufacturing Company's Broadcast Equipment Division of Chicago. Designed for all monitoring, audition, recording and playback applications, the Raytheon model RM-10 is also well suited for use in a transcription playback booth because of its high gain, low distortion and excellent frequency characteristics.

This new unit is designed for standard relay rack or cabinet mounting and requires only 10} inches of vertical panel. The amplifier and heavy duty power supply are mounted on a common vertical chassis. The frequency response is substantially flat from 30 to 15,000 cycles.

(Continued on page 64A)

ACTUAL SIZE 1 MF, 200 WVDC

ODAY's trend to ultra-compact electronic designs strides forward with this remarkable, new Solar development in truly tiny paper capacitors.

SOLITE* Capacitors, utilizing a unique, revolutionary self-healing metallized paper construction, occupy approximately one-third to onefourth the volume of equivalent conventional multi-paper capacitors. There is a similar saving in weight.

A comparison of typical ratings in tubular types tells its own story:

Dimensions in inches									
Capacitance WVDC		SOLITE		Cony. Design		Weight in Ounces			
(mf)		Length	Diem.	Length	Diem.	SOLITE	Cenv. Design		
0.1	200	*	3/8	15/8	1/2	0.08	0.32		
0.5	200	11/8	15/2	2	11/16	0.13	0.75		
1.0	200	11/1	17/2	21/2	13/16	0.26	1.15		
1.0	400	21/8	11/16	21/2	1	0.69	1.75		

SOLITE* Capacitors are available in both nonmetallic and metallic housings in standard d-c voltage ratings up to 400 volts. SOLITE* Capacitors are also supplied for alternating current applications.

Pilot quantities of SOLITE* Capacitors may be had immediately. Solar is prepared to discuss delivery schedules of production quantities for your use in those specific applications where you can take best advantage of this important new advance in the capacitor art.

Full details of SOLITE* Capacitors may be obtained on letterhead request from: Solar Manufacturing Corporation, 285 Madison Avenue, New York 17, N.Y.

"WHEN SPACE IS TIGHT, USE SOLITE"

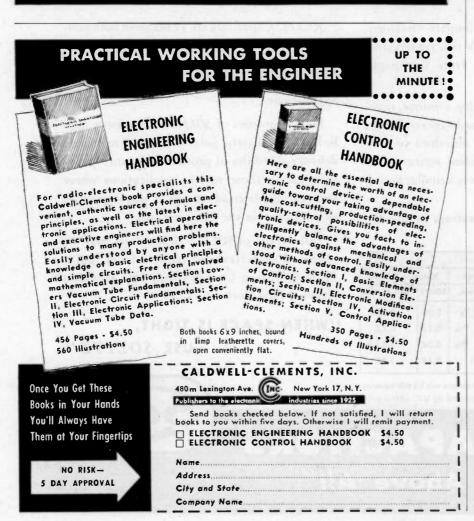
* Trade Mark

† Based on aluminum foil construction, Lead foil capocitors will be still heavier.

Solite Capacitors are fully protected by U.S. letters patent and patents pending.

PACITORS **Quality Above All"**

- Measures capacities from 1 to 230 Micro-Micro-Farads by direct substitution.
- **2.** This capacity is measured at the end of a shielded cable, thereby eliminating connection errors.
- 3. Wiring capacity in an amplifier may be measured without disconnecting the load resistor. Condensers as small as 1 MMF may be measured when shunted by a 1500 ohm resistor.


KALBEELI

Write for Bulletin No. 4 D.

1076 MORENA BLVD. . SAN DIEGO 10, CALIF.

LABORATORIES

News-New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 62.A)

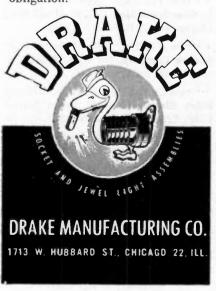
Electronic Counters

Both the Radio Corporation of America, Camden, N. J., and the Potter Instrument Co., 136-56 Roosevelt Avenue, Flushing, N. Y., have announced the release of electronic counters for industrial and scientific

counting. The RCA unit (pictured above) may be utilized to measure velocities and accelerations for intervals up to one second in steps of one micro-second, or to count at speeds as high as 1,000,000 per second.

The Potter Instrument unit (pictured below) will count at a rate of 12,000 per minute. This instrument incorporates a pre-setting device and either single or dual predetermining channels.

It is pointed out by both manufacturers that these electronic counters are particularly suited for operations too fast for conventional counters and find wide industrial applications in processes such as packing pills, starting or stopping operations after a predetermined count, and controlling the length and spacing of the fasteners on slide fasteners.


(Continued on page 65A)

WHAT TYPE OF Jewel Assembly **DO YOU NEED?**

No matter what type or size of Jewel Light Assembly you need, chances are we can produce it for you quickly, more satisfactorily, and at lower cost! Here, every facility is available for high speed quantity production . . . speedy, efficient, economical service. Drake patented features add greatly to the value and dependability of our products.

You'll like the friendly, intelligent cooperation of our engineers. Let them help you with signal or illumination problems. Suggestions, sketches, cost estimates or asking for our newest catalog incur no obligation.

News-New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 64A)

Capacitor Plastic Film Wrap

A new plastic-film inner wrap for dry electrolytic capacitors to retard evaporation of the electrolyte and serve as a barrier against contamination from salts from the cardboard housing has recently been developed by the Celanese Products Corpora-

tion and Solar Manufacturing Corporation, 285 Madison Ave., New York 17, N. Y. Increased operating life is claimed for Solar Types DS, DT and DH dry capacitors which utilize this new type of construction.

Tone Compensating Attenuator

Essentially a ladder network designed so that the frequency characteristics follow the hearing response curves of the human ear, Type LAC-720, tone compensating attenuator has been designed by The Daven Company, 191 Central Avenue, Newark, N. J. By proper external connections it is possible to obtain six different Attenuation vs. Frequency curves from the "human-ear type of response" to a flat frequency response. When the unit is wired for a flat frequency response it functions as a straight ladder of 2.5 db per step.

It is suggested by the manufacturer that this new tone compensating attenuator will find applications in psychological and physiological testing and experiments in hearing perception, and in research and development in the study of music appreciation.

(Continued on page 66A)

TELEVISION -IT'S HERE!

(Quoting-Television Broadcasters Association)

Here's Your Opportunity to "get in on the ground floor" and prepare for great opportunities ahead.

NOW-for the First Time, CREI Offers A Complete, Streamlined Home Study Course in PRACTICAL

TELEVISION ENGINEERING

Here is the basic, practical type of engineering training that will qualify you for a "key" job in the expanding Television industry. Sooner or later you must face Television-as a problem, or as an opportunity. You can't rest on your past radio experience. But you can use it as a firm foundation upon which you can add greater knowledge and ability with the help of this new CREI home study course. It costs you nothing but a few minutes' time to get complete details. Write at once for FREE DETAILS of the Television Engineering Course.

CAPITOL RADIO ENGINEERING INSTITUTE

Dept. PR-12, 16th and Park Road N.W. Washington 10, D.C.

Just Off the Press MAIL COUPON FOR COMPLETE FREE DETAILS And Outline of Course

PR-12 Capitol Radio Engineering Institute 16th and Park Road N.W., Washington 10, D.C.
Gentlemen: Please send me complete details de- scribing the new CREI home study course in Practical Television Engineering. I am attaching a brief résumé of my experience, education and present position.
Name
Street
City Zone State
I am entitled to training under the G. I. Bill.
lember of National Home Study Council—Nationa Council of Technical Schools—and Television Broadcasters Association

Men

* POWER ** BURN' mainin C.C. Littelfuse precision-built fuses are so inexpensive that every manufacturer can effectively protect his product and reputation at relatively small cost. Complete range of types and sizes for instruments, small motors, radio and electronic circuits, automobile, aircraft and marine instruments, and all types of electrical equipment. For complete information on these and other Littelfuse quality products, send for Catalog No. 9 . . . just off the press. METER-BACK MOUNT-ING for BAG fuses. Mounts direct on one ING for BAG tuses. Mounts direct on one meter binding post and wire connects to screw terminal of Mounting. Overall length only 1 ½". 8AG FUSE. "Quicker than a short circuit." Precision designed and built. Note bridge-type con-struction which protects the del-icate filaments in fuses of very low fractional amperage. FUSE EXTRACTOR POST for BAG fuses. Finger operated. Also available with screw-driver slot knob. A quicker, safer, simpler method for mounting and chang-ACUIT P ing fuses. LITTELFUSE Incorporated

4775 N. RAVENSWOOD AVE. CHICAGO 40, U.S.A. NTE-T-LITE • SWITCH-LITE • IGNITION FRITZ • NEON INDICATORS • SWITCHES • CIRCUIT BREAKERS • FUSES, MOUNTINGS AND ACCESSORIES

News-NewiProducts

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 65A)

Recent Catalogs

•••• On Graphic Recorders and Accessories, by Sound Apparatus Co., 233 Broadway, New York 7, N. Y. Catalog No. 1.

••••On Advanced Courses in Powder Metallurgy (lecture and laboratory), by College of Engineering, New York University, New York 53, N Y.

•••• On Vacuum Indicating and Recording Instruments, by George E. Fredericks Co., Bethayres, Pa. Bulletin No. R101.

••• On Photoelectric and Electronic Controls, by Photoswitch, Inc., 77 Broadway, Cambridge 42, Mass. Bulletin 504.

••• On Multiple Drilling and Tapping Equipment, by Ettco Tool Co., 594 Johnson Ave., Brooklyn 6, N. Y. Bulletin No. 31.

•••• On "School Sound Systems"—a compilation by the U. S. Office of Education of what equipment schools may obtain, what specifications schools should insist upon, and architectural helps for designers of modern school buildings. The booklet is published by the Radio Manufacturers' Association, 1317 F St., N.W., Washington 4, D. C.

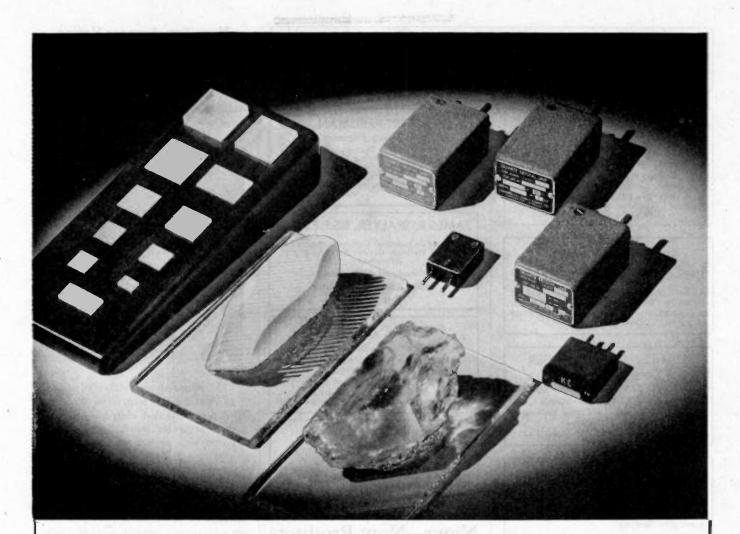
••••On Types and Characteristics of Microphones (Catalog No. 155) and Crystal Phonograph Pickups (Catalog No. 156), by Shure Brothers, 225 West Huron St., Chicago 10, Ill.

••••On Multiple Contact Terminal Blocks, by Cannon Electric Development Co., 3209 Humboldt St., Los Angeles 31, Calif. Catalog No. Y6-1.

•••• On Fiberglas Insulating Tubing, by Bentley, Harris Mfg. Co., 1002 Bentley St., Conshohocken, Pa. Bulletin No. P-14.

•••• On Fractional Horse-Power Gears, by Gear Specialties, 2635 W. Medill Ave., Chicago 47, Ill. Bulletin No. 1046.

•••• On FM-TV "Di-Fan" Antenna, by Andrew Company, 363 East 75 St., Chicago 19, Ill. Bulletin No. 45.


•••• On Crystal Controlled Oscillator, by Bliley Electric Co., 227 Union Station Bldg., Erie, Pa. Bulletin No. 32.

•••• An INDEX to Radio Service Diagrams, by Supreme Publications, 9 So. Kedzie Ave., Chicago 12, Ill.

••• A MANUAL on Cathode-Ray Oscillographs, by Allen B. DuMont Laboratories, Inc., 2 Main Ave., Passaic, N. J. Manual No. 274.

•••• On Thermosetting Silicone Resin, by Dow Corning Corp., Midland, Mich. Bulletin No. DC-2103.

(Continued on page 68A)

THE high degree of precision and dependability of all CRECO crystal units has been proven by the many "Repeat orders" we have received from all communications fields.

The expansion of our crystal manufacturing facilities enables us to supply the ever increasing demand for high quality units. We are in position to make rapid delivery, not only of our standard units, but also special types custom made to fit your specific requirements.

We welcome inquiries for crystals in any quantity, size or frequency and invite requests for assistance in solving your crystal problems.

- Write today for your free catalog -

COMMERCIAL

HOLLYWOOD

603 Porter Building Kansas City 2, Mo.

RA

CO.

Radio Consulting Engineers

Frequency Measuring

EQUIPMENT

"Where Accuracy Counts We Win"

Professional Cards

New Ten-Ampere Variac

Coinciding with the capacity of #14 copper wire leads, a new group of Variacs, rated at 10 amperes with a 15-ampere maximum, has been announced by General Radio Company, 275 Massachusetts Avenue, Cambridge 39, Mass.

The manufacturer states that these V-10 Variacs deliver from 60 to 100% more KVA per pound than older models due to a more favorable distribution of copper and iron, with low-loss core material.

Electronic Vacuum Gage

BIG-9240

A radically new vacuum measuring gage, designed for operations requiring continuous and accurate measurements of reduced pressures as low as 0.1 micron, is in production and will be available soon, it was announced by the Scientific Instrument Section, Radio Corporation of America, Camden, N. J.

Made virtually indestructible through the use of non-burn out elements, the new instrument has proven its dependability by four year's operation as a component of the RCA Electron Microscope. This gage, designated as type EMG, has now been developed as a separate, easily portable unit, designed especially for modern vacuum systems in which rotary pumps are used to back oil diffusion pumps.

(Continued on page 69A)

News–New Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 68A)

Plant Expansions

• • • At New York, N. Y., by Newark Electric Co., 115 W. 45 St., New York 19, N. Y., totaling 20,000 square feet, for warehouse facilities.

· · · At Anaheim, Calif., by General Electric Co., (Chemical Department), Pittsfield, Mass., totaling 35,000 square feet, for the production of Glyptal alkyd resins.

Helical Potentiometers

Immediate delivery is promised by the Van Dyke Instruments Company, Tarzana, Calif., of their new light-weight, linear, wire-wound resistor of the helical type. Linearity of the completed resistance is maintained by electronic control during the winding process and the use of low temperature coefficient resistance wire.

Due to its small size and light weight the potentiometer is especially adapted to aircraft instrumentation, electronic calculators and similar applications. Five and ten turn units are standard and units having odd numbers of turns can be supplied.

Chicago Two-Way Radio **Taxis**

The first two-way radios to be used in Chicago taxi cabs were put in operation recently by the Veterans' "Flash" Cab Company. This equipment was made and installed by the Galvin Manufacturing Corporation.

Both the Motorola transmitter and receiver in the new sets are crystal-controlled, the crystal used being already compensated for changes in temperatures, so that it is always on frequency regardless of weather conditions. Another feature is the use of tuned lines in the receiver instead of the customary "lumped" circuits.

All drivers are being instructed to report by radio all fires, accidents, and other emergencies sighted during their rounds. In this way, it is thought that such emergencies can be reported to the fire and police departments in shorter time.

(Continued on page 72A)

TWIN POWER SUPPLY

Electronically **Regulated** for Precise Measurements

Two independent sources of continuously variable D.C. are combined in this one convenient unit. Its double utility makes it a most use-

FURST

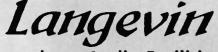
ful instrument for laboratory and test station work. Three power ranges are instantly selected with a rotary switch:

- 175-350 V. at 0-60 Ma., terminated and controlled independently, may be used to supply 2 separate requirements.
- 0-175 V. at 0-60 Ma. for single supply. 175-350 V. at 0-120 Ma. for single supply.

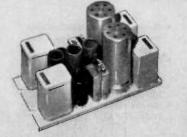
In addition, a convenient 6.3 V.A.C. filament source is provided. The normally floating system is properly terminated for external grounding when desired. Adequately protected against overloads.

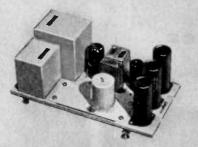
 Output voltage variation less than 1 % with change from 0 to full load.

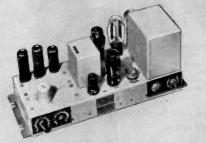
- Output voltage variation less than 1 V. with change from 105 to 125 A.C. Line Voltage.
- Output ripple and noise less than .025 V.


Twin Power Supply Model 210 Complete \$115.00 F.O.B. Chicago Dimensions: 16" X 8" X 8" Shipping Wt. 35 lbs. (Other types for your special requirements)

ELECTRONICS


800 W. North Avenue, Chicago 22, Illinois




Broadcast Audio Facilities

... featuring the Langevin Type 111-A, Duol Preliminary Amplifier; gain 47 DB; output level + 16 DBM; input impedance 30/250/600 ohms; output impedance 600 ohms. This amplifier can be used also as a booster...

... In addition, the Langevin Type 102-A Program Amplifier is available from stock; goin 55 DB; output level +28 DBM; input Impedance 30/250/600 ohms; output impedance 600 ohms. This unit has provisions for decreasing the gain to 45 or 35 DB...

... in order to provide for the broadcoster's monitoring focilities, Langevin is ready to ship the Type 108-A Amplifier; gain 43 or 63 DB; output level +43 DBM (20 watts); input impedance 600/25,000 ahms; output Impedance 8/500 ahms...

...olso available for immediate shipment are the Longevin Type 201-B Rectifier and Type 114-A AC, DC Manitar Amplifier, a 4 watt unit.

INCORPORATEO Sound Reinforcement and Reproduction Engineering

Grand Central Palace Obtained for 1947 Radio Engineering Show

By good fortune, a change in schedules has made the Grand Central Palace at 46th Street and Lexington Avenue available to The Institute of Radio Engineers for sessions and exhibits of the National Convention, March 3-6, 1947. Greatly improved exhibit facilities and additional session halls will result from the change in plans.

Nearer Headquarters Hotel

The Palace is only four short blocks north of The Hotel Commodore, in which the banquet and largest sessions will be held. It can be reached by tunnels with only one street to cross. Both places are on Lexington Avenue.

No Limits on Exhibits

Exhibitors were sharply limited at the Armory by lack of space. The Palace provides not only enough space for all exhibitors without ration restrictions, but also room for at least two technical session halls of 450 seats each on the third floor. Some exhibitors have doubled and tripled the size of their exhibits on being advised of the change. No firm with an exhibit of interest to engineers will be barred by lack of space.

I.R.E.'s Largest Show

Already 152 manufacturers have reserved space for exhibits. More than 27,000 square feet of exhibit space was needed, and the 34th Street Armory could provide only 14,400. The area which will be taken at Grand Central Palace will nearly double that of exhibits at the Hotel Astor in January 1946. The Radio Engineering Show provides the radio-electronic industry a genuine service in bringing engineers and manufacturers together. The exhibits at the 1947 Show will highlight the gains of wartime research in post-war radio engineering equipment and products. The exhibits are for engineers and home radios will not be shown.

Improvements for Visitors

Aisles from ten to thirteen feet wide, four stairways, elevators, large checkrooms and all the advantages of New York's finest exhibition building will serve the convenience of engineers attending the Convention and visiting the exhibits. With sessions and exhibit hours extended to four days, Monday, March 3 through Thursday, March 6, it is expected that our engineers will have more time to visit the exhibits and attend the technical sessions that interest them.

Improvements for Exhibitors

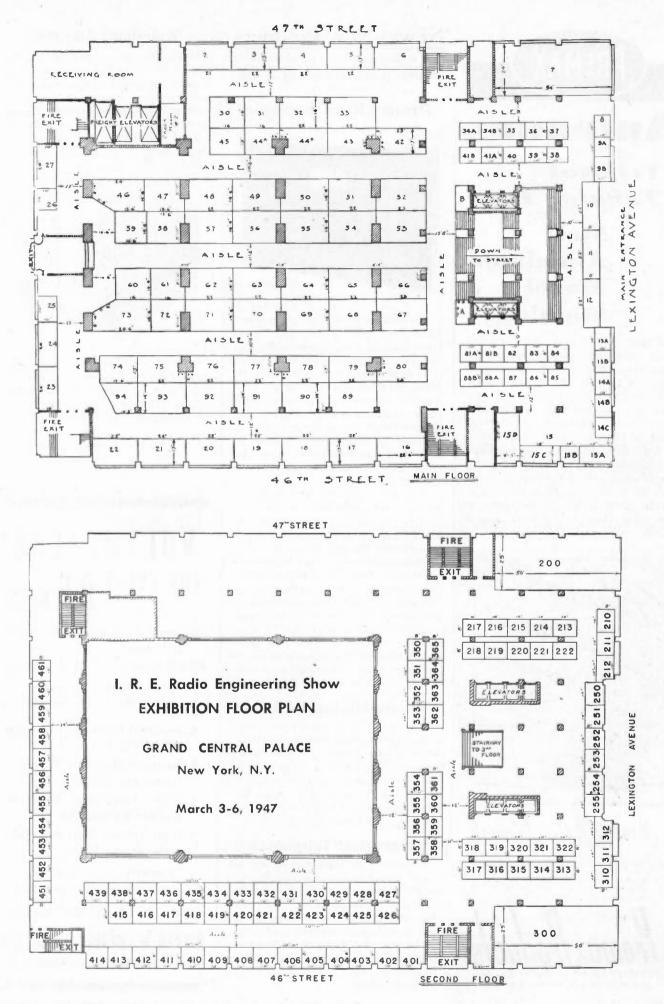

At Grand Central Palace, exhibitors get three full days to set-up exhibits, and three days for removal. The receiving platform is able to handle six trucks at a time, and is on a private alley. Three large freight elevators will handle exhibits going to the second floor without delay. The I.R.E. Exhibits Management is providing adequate manpower for moving cases to and from the booths. Cases will be stored right in the building during the Show. A Plan Book for exhibitors is available giving full details if you will write to Mr. Wm. C. Copp, I.R.E. Exhibits Manager, 303 West 42nd Street, New York 18, N. Y.

Exhibit space rents at $3.12\frac{1}{2}$ per square foot for regular units and 4.00 for preferred locations. A floor plan is available on request, in larger scale than the one shown on the facing page.

Watch "Proceedings" for News

Additional data on the 1947 Convention will appear in the January issue, and a preliminary program of papers and news of speakers in the February Issue. Out-oftown members can register for hotel space now by writing to the New York Convention and Visitor's Bureau, 233 Broadway, New York City. The basic reason for choosing the March 3 to 6 dates was to obtain better hotel accommodations for our out-of-town visitors. A mailing to all I.R.E. members giving program information and banquet ticket order form will be made in January.

Those wishing to submit papers for technical sessions may address Prof. Ernst Weber, c/o The Institute of Radio Engineers, 1 East 79 Street, New York 21, New York.

Proceedings of the I.R.E. and Waves and Electrons December, 1946

711

INDEX AND DISPLAY ADVERTISERS

Section Meetings
Membership
Positions Open
Positions Wanted
News-New Products
Exhibition Information
Radio Engineering Show Floor
Plan

DISPLAY ADVERTISERS

Accurate Spring Mfg. Co.	.25A
Acme Electric Corporation	
Aerovox Corporation	.22A
Aircraft Radio Corp.	.21A
Allen-Bradley Company	.28A
American Brass Company (Met	al
Hose Branch)	. 60A
American Lava Corp.	. 9A
American Phenolic Corp.	.3IA
Amperex Electronic Corp.	
Andrew Co.	
Arnold Engineering Co.	
Astatic Corp.	
Automatic Mfg. Corp.	
Ballantine Labs., Inc.	44 A
Alfred W. Barber Laboratories	
Bell Telephone Laboratories 2	
Blaw-Knox Co.	
W. J. Brown	
Caldwell-Clements, Inc.	64A
Cambridge Thermionic Corp	58A

Capitol Radio Engineering Insti- tute
Drake Mfg. Co
Hugh H. Eby, Inc.51AStanley D. Eilenberger68AEitel-McCullough, Inc.13AElectrical Reactance Corp.56A
Fairchild Camera & Instrument Corp
Finch Telecommunications, Inc. 8A F. T. Fisher's Sons
F. T. Fisher's Sons
F. T. Fisher's Sons
F. T. Fisher's Sons

Jackson Electrical Inst. Co	
David C. Kalbfell	
Langevin Co. Littelfuse, Incorporated	70A 66A
Machlett Laboratories, Inc. Frank Massa Robert E. McCoy McDonnell Aircraft Corporation Measurements Corp. Mycalex Corp. of America	.68A .68A .52A .58A
National Carbon Co., Inc. National Company, Inc. National Vulcanized Fibre Co. Newark Electric Co., Inc.	. 12A . 73A
Albert Preisman Premax Products Press Wireless Mfg. Corp 10A, Presto Recording Corp.	.72A 11A
Radio Corporation of America 32B, 32C, 43A, Radionic Equipment Co. Rauland Corp. Raytheon Mfg. Co. Revere Copper & Brass, Inc. Richardson Company Rowe Industries	76A .74A .73A .45A .6A .17A
Sherron Electronics Co. Sola Electric Company Solar Mfg. Corp. Sperry Gyroscope Co., Inc. Sprague Electric Company Stackpole Carbon Co. Sylvania Electric Products, Inc.	.61A .63A .27A .18A .16A
Tech Labs. Triplett Electrical Inst. Co. Truscon Steel Co. Tung-Sol Lamp Works, Inc. Turner Co.	.41A .35A
United Transformer CoCo	ver II
James R. Walker Western Electric Company 24 Harold A. Wheeler Wilcox Electric Company, Inc Paul D. Zottu	.68A .23A

When projection lenses are available, you can project the oscillogram in a well-lighted room with perfect visibility, as in this unretouched photograph. Note open w ndow. PHOTOGRAPHS, PROJECTIONS, HIGH-SPEED TRANSIENTS ARE

DU MONT Type 247-A CATHODE-RAY OSCILLOGRAPH

Modified from the Type 247, this new Du Mont Type 247-A is such a startling success that phenomena hitherto totally invisible can now be easily seen. Such modification extends the range of the instrument tremendously in the field of transient studies or high-speed photographic applications.

The modification utilizes the new Type 5RP Cathode-Ray Tube operable at voltages up to 30 KV, producing sufficient brilliance for direct projection, if required.

Other features are: automatic beam blanking; choice of single or continuous sweep; sweep rates available from .5 cps to 50,000 cps; Z-axis amplifier with choice of output polarity; soundly engineered electrical and mechanical design.

Further details on request.

LABORATORIES, INC

GALLEN B. DU MONT

RCA Victor "Eye Witness" television receiver shown above, gives you 52 square inches of picture brilliance.

A referee's eye view of every play - by Television!

You feel as though you were right there at the game-when you see it through RCA's brilliant television.

Football fans as far as 250 miles away from the stadium have enjoyed watching many of the big games this fall through NBC telecasts. And football fans become television fans when they see how closely the camera follows the ball.

At the game, the sensitive RCA Image Orthicon television camera sees every line plunge, kick, pass and run. It may be a cloudy day or the sun may go down but you still enjoy the *bright sharpness* of the RCA Image Orthicon camera. On the screen of your RCA Victor home television receiver none of that bright sharpness is lost.

For after you've tuned in the game, the new RCA Victor "Eye Witness" Picture Synchronizer automatically "locks" the picture in tune with the sending station eliminates any distortion—assures you of *clearer*, *steadier* pictures.

For television at its best, as pioneered at RCA Laboratories, you'll want the receiver that features the most famous name in television today - RCA Victor.

Radio Corporation of America, RCA Building, Radio City, New York 20, N.Y.

RCA Image Orthicon television comera-developed at RCA Laboratories-makes close-ups out of long shots. It enables television to go anywhere by freeing it from the need for strong lights or sunshine.

RADIO CORPORATION of AMERICA

every time we do this stunt-A Manufacturer Cuts His Production Costs!

Bending over backwards for our customers is part of C-D's service. Actually though, designing a special type capacitor may not be so stremuous a job for us. Not because your capacitor problem is a breeze. It simply comes easier to us, than to most other manufacturers, to bend ourselves to specialized tasks.

For, in the course of designing and manufacturing over 1/4 of a million different types of capacitors, our engineers have gathered a wealth of information, experience, or call it "know-now" that speeds the solution to every problem they handle. And the sooner your requirements are met... the more perfect the design — the greater are your savings. Typical of the many problems C-D engineers have successfully licked are the capacitor types shown below.

If your plans call for anything in capacitors, consult with our engineers. Catalog of standard types available on request.

Cornell - Dubilier Electric Corporation, South Plainfield, New Jersey. Five other plants in New Bedford, Prov dence, Worcester and Brookline.

CORNELL-DUBILIER world's largest manufacturer of CAPACITORS

MICA · DYKANOL · PAPER · ELECTROLYTIC CAPACITORS

CAPACITOR #1. This capacitor unit was designed for a manufacturer of motors. Mounts directly on motor shaft. **CAPACITOR** #2. Designed for spark suppressor applications in home appliance equipment. An inexpensive dependable unit for competitively priced mixers, juicers, grinders, etc.

CAPACITOR #3. Standard paper tubular capacitor adapted for automobile ammeter, oil pump, radio noise filter applications, etc.

TEN PARTS PER MILLION

Where the ultra refinement of temperature control is not required, the G-R Type 815 Precision Forks have more than sufficient accuracy for use both in the laboratory and in the field. They are supplied in frequencies of 50, 60 and 100 cycles with a calibration accuracy of ten parts per million. They make excellent low-frequency standards.

Stock for the forks is low-temperature-coefficient stainless steel, received by us in bars. A sample fork is made from each bar and the coefficient of the stock is obtained after a protracted temperature run.

The forks are then machined in our shops. When measured to one millicycle, the unmounted fork is about 2 cycles below its nominal frequency. After this initial measurement, the excess material is milled from the end of the tines and a second frequency check is made. Occasionally the forks must be milled a second time.

Two adjustable loading screws are placed in holes drilled and tapped in the end of each tine. The fork is then assembled and the temperature coefficient of the outer tine screw is obtained. If necessary, excess material is removed from the outer tine screw. The screws are adjusted so that the frequency is within $\pm 0.001\%$ of its nominal value. The voltage coefficient of frequency is obtained; it averages about 0.005%. Output voltage and harmonic content are then measured.

When orders are received the forks are returned to the standardizing laboratory, given a half-hour run and the frequency is measured at a driving voltage of exactly four volts. With each fork a calibration certificate is supplied to show: the frequency to within $\pm 0.001\%$ at a stated temperature between 70 and 80 deg. F.; the temperature and voltage coefficients of frequency.

TYPE 815-A	50-CYCLE FORK	175.00
TYPE 815-B	60-CYCLE FORK	185.00
TYPE 815-C	100-CYCLE FORK	185.00
TYPE 815-P1	Transformer (for use between	
	the fork and relatively high-im-	
	pedance loads)	6.95

AT THE MOMENT WE HAVE A SMALL STOCK OF THESE FORKS

