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ANALOG DEVICES AND COMPUTING SISTEMS

A DEPENDENT VARIABLE ANALOG FUNCTION GENERATOR

C. ]. Savant, Jr.
University of Southern California Engineering Center

R. C. Howard
Bell Telephone Laboratories

Summary

The solution of nonlinear engineering design
problems demonstrates the need for a special
function generator. The generator described in
this paper satisfies this need. The basic com-
ponents of the unit are discussed and the forms
of functions which can be generated are shown.
It is concluded from tests on the system that the
function generator is a valuable aid in the handi-
ing of nonlinear design problems.

Introduction

The engineer need not look far in his work
to find a nonlinear problem. The mechanical en-
gineer knows that springs and dashpots are
linear in only small regions. Familiar stress-
strain diagrams, gas-expansion laws, and even
the simple pendulum cannot be described in all
regions by linear equations. The electrical en-
gineer is familiar with the saturation of iron-
core inductors, nonlinear vacuum tube character-
istics and curved torque-speed curves of servo
motors. These are just a few of the common
relationships whicih engineers usually linearize
in order to obtain a solution based on classical
linear theory. Practically all of the character-
istics of nature are nonlinear, and the lineariza-
tions commonly practiced are approximations,
valid only in restricted regions.

Mathematicians have attacked the second-
order nonlinear differential equation, and some
results have been obtained with iteration and
perturbation techniques (Cf. Ref. 1). Tne pro-
blem becomes unwieldy even for small nonline-

arities, and hence these methods are not satis-
factory for use by engineers. Since the conver-
gence of these methods often depends upon the
nonlinearity’s being small, the methods are not
even applicable when the nonlinearity is large.
Numerical integration can always be performed,
but tne labor involved in finding just one solution
is often prohibitive. Topological methods (Cf.
Ref. 2) have aided in the solution of second-order
systems, but little has been done with higher-
order equations by graphical techniques.

Both analog and digital computers have been
employed by engineers in the solution of non-
linear equations. In many of these solutions,
considerable time is expended in setting the
nonlinearity into the computer. Existing techni-
ques do not lend themselves to easy change of the
nonlinear function.

The need for a versatile arbitrary function
generator of a dependent variable is strongly felt
in feedhack control system design. For example,
consider a control system, the response of which
requires improvement. It may be possible to
better the performance if appropriate nonlinear
functions be added, either in the forward loop or
in the feedback path. In determining the nature of
this nonlinear function, one is not so concerned
with a high degree of accuracy as in the ease of
modifying one function into another in an attempt
to discover an optimum. The nature of the design
problem demands a highly versatile function
generator with only a reasonable accuracy (per-
haps 5%) required,

The arvitrary function generator discussed
in this paper satisfies the needs of the designer



in that the form of the permissible nonlinearities
can be changed by the setting of two knobs.

The present function generator boasts an-
other advantage. In many problems it may be
necessary to generate products of arbitrary
functions of two or more variables. The unit
described in this paper permits products of the
general form

[te]* e} [pe]”

where f(t), g(t), and h(t) may be the response
variables of a given problem or may be any
independent variables. The exponents o, 8, and
y may be either positive or negative.

Principles of Operation

The principle of operation of the multiplier
is based on the logarithmic function, which has
the following property:

a logaf(x) + B logag(y) + ¥ logah(z)
- 1oga {[{x)*[e(v))* [n(2)]"} W

where ‘‘a’’ is any number greater than unity.
Since summation is an easy operation with
electronic circuits, the logarithms of three
voltages can be added simply, and the taking of
the inverse logarithm of the sum results in the
product. Hence the difficult operation of analog
multiplication (or division) is performed easily
by adding voltages. Thus the first work centered
about the development of two electronic circuits
which have the required logarithmic and inverse
logarithmic characteristics. This development
resulted in two basic units: the log-taking ele-
ment (LTE), the output of which is the negative
logarithm of the input voltage, and the inverse-
log-taking element (ILTE), the output voltage
of which is the inverse logarithm of the input.
These two units plus necessary polarity invert-
ing equipment comprise the arbitrary function
generator of a dependent variable.

Linear - to - logarithmic Converter

The log taking element (LTE) is an electronic
converter whose output is the negative logarithm
of the input voltage. The circuit diagram of this
unit is given in Figure 1. The details of the LTE
have been reported in a previous paper (Cf. Ref.
3). The important fact to know in connection
with the LTE is that for positive input voltages

from 0.3 to 300 volts the output has the form:

—~logg €in

The output voltage varies over a range of -0.3 to
-30 volts with a logarithm base, a, of approxi-
mately 1.20.

The LTE units are interchangeable and a
drift stability of 75 mv hr. at the output is attain-
ed. The accuracy of the logarithmic function can
be verified by reference to Figure 2 where the
static characteristic is plotted on semi-logarith-
mic paper.

Inverse - log - taking Element

The underlying concept governing the opera-
tion of the inverse-log-taking element, hereafter
known as the ILTE, is simple, namely, use of a
high-gain amplifier with an LTE in the feedback
loop. The operation can best be understood from
a consideration of Figure 3. With the symbols
defined on the figure, one can readily write the
following basic equations of the circuit.

es + €in

2 - ()
€A =eo 3)
—logae, =¢eg (valid if ejp > 0) (4)

Combination of equations (2), (3), and (4) results
in the expression:

€= —logaeo +ein_ €o (5)
2 A

It A is very large, and positive, equation 5 re-
duces to

€o = expyej (6)
Equation (6) demonstrates tnat the output
voltage of the ILTE is proportional to the inverse

logarithm of the input voltage.

A more complete analysis shows that

€0 =expa{lein] [1 + (& + 28) In a]

1+2e, In a:” 7
1 +2e (1)
where
8 = drift voltage of amplifier referred to the
input.

A = drift voltage of LTE referred to the out-
put and A is large but not infinite.

From equation (7) approximate percent-error



expressions resulting from drift and insufficient
gain can be obtained as follows:

percent error from drift = E4

2100(A + 25)1na (8)
percent error from lack of gain = Eg
- 200
2exy g4l
A o na (9)

With nominal values A = 50 mv, &= 25 mv,
a =120, e0 =300 v, A =8000 substituted in
equations (8) and (9), the maximum possible
errors are

With appropriate adjustment of the final unit, E4
can be reduced considerably, and E, can be
eliminated completely. The drift oigthe ILTE has
been observed in operation to be about 1 volt per
hour with 3.0 volts out and 3 volts per hour with
300 volts out.

Polarity Inverting Problem: Input

From a purely mathematical point of view,
the logarithm of a negative number is complex.
When presented with negative input signals, the
electronic LTE, however, produces incorrect
output voltages since the LTE functions much
the same as an amplifier when the grid signal is
negative. The response of the LTE is propor-
tional to the logarithm of the input voltage for
positive applied voltages from +0.3 volt to +300
volts. For values less than 0.3 volt, the re-
sponse is no longer logarithmic. To avoid the
negative-signal difficulty, the system shown in
the block diagram of Figure 4 was developed.
The signs of all input signals are converted to
a positive sense and in this form are sent
through the LTE and the remainder of the com-
puter. At the output of the computer, the all-
positive signals and the all-negative signals
which are obtained at the output of a negative
gain amplifier are sent into the output polarity
inverter. A polarity senser is used to measure
the sign of the input and to switch electronically
the positive or negative signal to the output,
depending on the input polarity. The appropriate
sign of the resulting output has thus been re-
stored.

The input inverter unit operates much the
same as a full-wave rectifier. For varying in-
put voltages in the range -150 to +150 volts, the
output voltage is positive, ranging from 0 to
+105 volts. The gain is approximately 0.7, witi
a gain stability AA <€ 1/2 percent. The drift
voltage of the output is less than 0.3 volt.

Polarity Inverting Problem: Output

The output polarity inverter, because of its
logical system, is more complicated than tke
input inverter. The heart of the inverter is a pair
of amplifiers; one iuverts the input siy.al, axd
the cther does not. The sensing part of the in-
verter allows only one amplifier to operate at a
time, thus controlling the polarity of the output.
Input signals applied to the sensing input termin-
als control the sensing circuit in such a manner
that the correct algebraic sign is restored to the
output. Consider, for example, the multiplication
of two voltages. If both input voltages have the
same polarity (i.e., both negative or both posi-
tive), then the output voltage should be positive.
If, however, the two input signals have opposite
signs, then the output voltage should be negative.
The sensing input terminals of the inverter are
connected at points in the circuit where the
signals to be multiplied have proper signs (i.e.,
before the input polarity inverter), and the
correct signs of the signals passing through the
output inverter are again restored.

Two switches, labeled input bias, are mount-
ed on the front and permit the use of the inverter
with only one applied signal. When only one
voltage is to be inverted, a positive or negative
constant voltage is applied to the other sensing
channel with the input bias switch,

Arbitrary Function of an Independent Variable

Although the computer finds its primary use
as an arbitrary function generator of a dependent
variable, the multiplier also can act as an arbi-
trary function generator of an independent vari-
able. In this latter application, the computer com-
petes both in accuracy and in versatility with the
existing arbitrary function generators. To dem-
onstrate a few of the driving functions obtainable
with the AFINV, the system shown ir the block
diagram of Figure 5 was set up. With this arrange-
ment the output of three log-taking elements are
summed and fed to the LTE. A linear sweep added
to a constant voltage E and E drives two LTE’s
yielding functions of the form

y; = A(t + a) and y, = B(t +b) (11)

The third LTE is driven with an audio oscillator
which provides a function

y = ¢ sin kt (12)

To prevent the LTE signal from becoming neg-
ative, the input polarity inverters are appropriate-
ly inserted. Only two inverters are necessary



since one signal is always positive. An output pol-
arity inverter is used to restore the correct sign
to the output signal which is displayed on an oscil-
loscope.

As connected, the nonlinear computer provides
multipilcations of the form

y = A(t + 2)7(t + b)®(sin kt)” (13)

If other functions g(t), h(t), and £(t), are supplied
to the LTE units, the more general function

y = A [gt)]*[n)]° [tt)])” (14)

is possible. Various functions of the form of Equa-
tion (13) are demonstrated in the oscillograms of
Figures 6 through 10, with the explanation included
on the figures.

Duffing’s Equation

In this section the differential equation of the
" form

X + cX + (ax + Bx®) = F coswt (15)

is studied. This equation occurs in several
different types of physical problems, for ex-
ample, the pendulum with an external periodic
force applied. The problem of a mass subjected
to a spring restoring force leads in general to an
expression of the form of equation (15). Satura-
tion effects in iron-core inductances and in
rotating machinery are other examples of physi-
cal problems which lead to this same expression,
Equation (15) is often called Duffing’s equation
since it was Duffing who first made significant
contributions to the harmonic solutions of this
equation,

Explicit solutions of an elementary charac-
ter are not known for the Duffing equation. In
fact, this simple-looking equation has a great
variety of periodic solutions alone for which the
mathematical theory has been investigated only
slightly. Almost nothing is known about the
nonperiodic solutions to this equation.

The computer solution of Duffing’s equation
is demonstrated in Figure 11, where the loop
analysis yields the analogous electric equation

L§ + Rq +(1-:q +kq" = E coswt (16)
Appropriate variation of the exponent adjustment
permits the choice of any desirable n. The
classical equation dictates an n of 3, but any

n > 1 demonstrates similar phenomena.

Oscillograms of Duffing’s equation are
demonstrated on Figures 12 and 13.

Van der Pol’s Equation

Consider as the next example an equation
which arises in numerous oscillator and
multivibrator applications, the equation due to
Van der Pol. When normalized, this equation
has the form

X-pl-xHx+x=0 (17)

For comparison purposes, this expression is
solved by both topological and computer methods.

In order to have a direct compaison with
computer results, the phase trajectories are
constructed by the method of isoclines. By

taking x = y and substituting in the differential
equation, one obtains

y=pl-x?y-x (18)

The isoclines, found by setting A = dy/dx = con-
stant, are given by the equation

_ X

y _P—(l“ x5 A (19)

1f is taken as unity, equation (19) simplifies

to

y=—%x 20
(1-21)-x (20)

The equation of the family of isoclines (equation
20) is plotted for various values of A on Figure
14, where also is shown the phase trajectories.
As one should expect from this equation, there
exists a limit cycle (Cf. Figure 14). This cycle
is due physically to the fact that the sign of the
damping force changes as x is greater or less
than 1. Hence for x 1 the system builds

up, whereas for x 1 the system damps down,
culminating in a stable-limit cycle or oscillation.

The solution of this problem on the computer
is gréatly simplified if one multiplies equation
(17) by dt and integrates from 0 to t:

t t t
Ja‘% (%) dt — Pog (1- xz)d‘d—’: dt + oS xdt=C

g—? -P(x—¥)+ostx dt =C (21)

The computer analog of equation (21) is shown in
the block diagram of Figure 15, where the loop
equation yields



d .43 )
Dopl-8) + fra=o (22)
L)
As in the case of Duffing’s equation, the computer
is able to establish any exponent in the nonlinear
term, but for the sake of comparison with the
classical expression, the cubic exponent was
used. The similarity of the calculated phase
trajectory of Figure 14 and the computer tra-
jectory of Figure 16 demonstrates the good com-
parison between topological and computer
solutions.
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AUTOMATIC ITERATION ON AN ELECTRONIC ANALOG COMPUTER

Louis B. Wadel
Chance Vought Aircraft, Incorporated
Dallas, Texas

Abstract

An electronic analog computer is employed for
automatic solution of ordinary differential equa-
tions whose computer solution depends upon the
application of an iterative process. Three types
of equations falling into this category are noted,
and a simple example of each is given. A computer
solution procedure aspplicable to each example is
outlined, with some circuit diagrams included.
Also described is the use of a multi-pole
stepping-relay to effect the iteration procedures
required. Illustrative results are presented.

Introduction
Definition

Automatic iteration is defined as the re-
peated solution of a basic differential equation,
a procedure in making variations in parameters or
initial conditions being followed automatically
by the computer such that these settings depend
upon the results of the previous solution(s), and
such that a pre-specified result is obtained as
the limit solution.

Examples

Noted below are three cases, together with an
example of each, which require iterative solution
when an electronic analog computer is employed.
The examples have been chosen simple enough to
permit straightforward manual solution for
checking purposes. Also,.they demonstrate the
automatic handling of a search for an initial con-
dition, for an additive constant, and for a
multiplicative constant.

(A) A split boundary condition problem:

X « 02x «0.0lx = 0 (1)

Find x(O) and x (1), given x(0) = 50 and x(10)=0.

(B) An implicit problem:

o @
X + X = 12.5 « O.l04f x(t) exp (-0.2 t)dt (2)
Find x (1), given x(O) = x(0) = 0.
(C) A minimization problem:
X+ 2k Xex=0 (3)

@ .
Find k such that J = j; x2 dt s minimized,

given x(0) = 40 and x(0) = O.

Find also the corresponding J and x(t).

13

Philosophy

The iteration process is as follows: (1)
Assume and set into the computer an arbitrary
"starting value" for the unknown parameter or ini-
tial condition; (2) solve the resulting differ-
ential equation; (3) observe the "error" ---
i.e., the difference between the desired result
and the actual result; (4) based on this error,
obtain a "corrected" value for the unknown para-
meter or initial condition; (5) solve the modi-
fied differential equation; (6) observe the new
error ... Continue the sequence of operations
until the corrections become negligible.

Depending upon the particular problem, the
starting value for the unknown parameter or ini-
tial condition, and the relation set up between
the observed error and the correction made, the
required solution may be approached as a limit or
the computer solutions may diverge from the true
solution. Thus, while it is desired that the com-
puter automatically carry out all the steps of the
iteration process, a Judicious choice of starting
value and of correction procedure may at times be
essential and will in all cases result in more
efficient problem solution.

Computer Controls

The three basic states of an electronic ana-
log computer are (1) RESET, (2) OPERATE, and
(3) HOLD. In RESET, variables and their deri-
vatives are fixed at their "initial conditions”.
When OPERATE is executed, the problem solution
begins. If HOLD is executed, the solution is
frozen at whatever conditions exist at the moment
of execution. A return to OPERATE from HOLD
causes the solution to proceed again from the
stopping point. The computer may be RESET at any
time. Change from one basic state to another is
effected by relays which control internal con-
nections of the integrating units.l In conven-
tional problems, all computer units are in the
same basic state at the same time. To solve dif-
ferential equations by iteration, however, it is
necessary to provide for the separate control of
certain units.

Split Boundary Conditions

Circuit Qperation

The basic computer circuit for the solution
of equation (1) is shown inside the dashed boundary
of Figure 1, and will be referred to as "Unit M".
The other elements of Figure 1 constitute the
iteration control elements, and consist of an



Integrator G and a convergence control Potentiom-

eter P. The iteration cycle is as follows:
State Unit M Integrator G
1 RESET HOLD
2 OPERATE HOLD
3 HOLD OPERATE
4 HOLD HOLD

From the starting state, State 1, the system is
switched to State 2, and Unit M OPERATES for ten
seconds, since x(10) has been specified. The
system then passes to State 3, during which the
output of Integrator 2 is automatically HELD at

the value x(10); this is the solution "error”,
since it was specified that x(10) be zero. Inte-
grator G OPERATES for the duration of State 3 and
therefore this error, multiplied by the setting of
Potentiometer P, drives Integrator G during State 3.
The result is that the output of Integrator G is
increased by the product of the solution error and
the convergence factor "m'", where "m" is the nega-
tive of the product of the setting of Potentiom-
eter P and the time duration of State 3. Inte-
grator G is returned to HOLD for State 4, a buffer
state. (A buffer state is a state included solely
to ensure proper sequencing of relay contacts.)
Unit M is then restored to RESET --- State 1.
Integrator 1, whose output is -x(t), now has a
corrected initial condition as supplied by Inte-
grator G, and the program is repeated.

In the foregoing description, it was assumed
that the starting value chosen for %(0) was zero.
However, any other starting value can be utilized
by setting the proper initial condition on Inte-
grator G before the system is first placed in
State 1.

This method of obtaining corrected values of
x(0) has the following properties:

Iterative Approach
to True Solution

o n

Convergence Factor "m

m >0
O>m>-0.1e
-0.1le>m>-0.2¢
-0.2e >m

monotonic divergence
monotonic convergence
oscillatory convergence
oscillatory divergence

Control Mechanization

From an equipment point of view, the mechani-
zation of the L-State program outlined above re-
duces to the problem of energizing relays ac-
cording to a prescribed time pattern. In our
equipment, each integrator has two relays which,
in combination, control the state of that inte-
grator:

State/Relay X Y
RESET Energized Energized
OPERATE Unenergized Unenergized
HOLD Unenergized Energized

In terms of relays, then, the iteration routine
may be expressed as

State Unit M Integrator G
X-Relays Y-Relays X-Relay Y-Relay

1 Engzd Engzd Unengzd Engzd

2 Unengzd  Unengzd Unengzd Engzd
3 Unengzd Engzd Unengzd Unengzd

L Unengzd Engzd Unengzd Engzd

Note that the X-Relay of Integrator G is always
unenergized in the above program; therefore only
three independent controls are required.

The relay control system employs a synchro-
nous motor and cam arrangement, which causes an
electric pulse to be generated once per second (by
other gearing, or by the use of multiple cams,
other intervals can be obtained). These pulses
step a 6-pole 26-throw stepping-relay. Thus, up
to six quantities can be controlled independently
over an iteration cycle of 26 intervals (26
seconds if one-second pulses are used to drive the
stepping-relay). A state will consist of one or
more intervals. In the present problem the dura-
tion of only State 2 must be adjusted accurately.
The duration of the other states can be set arbi-
trarily at an integral number of seconds, and
hence integral stepping-relay intervals. The
duration of State 2 happens to be integral number
of seconds (ten), so that exactly ten intervals of
the stepping-relay are covered. If a non-integral
duration were required, the problem time-scale
could be altered slightly to result in an integer
for machine duration of State 2, or else external
timing devices might be employed. (Somewhat dif-
ferent control schemes have been discussed else-
where.2,3)

All contact points are brought out to the
front panel of the programming unit, so that any
sequencing pattern can be established by con-
necting the proper terminals together and patching
voltage to points as required. Provision for ex-
ternal stepping signals has also been made, as it
may be desirable in some problems to have the
stepping done by non-time-based signals. The con-
nections made for the problem under discussion are
indicated in Figure 2.

A plotting-board is convenient to use for
plotting automatically the successive results of
an iterative process, because a superimposed pres-
entation of the individual solutions can be ob-
tained. It was advantageous to use a fourth pole
of the stepping-relay to control the pen-lift
relay so that the pen was lifted from the plotting
surface while the pen slewed between States 4 and L

Figure 3 depicts the results of solving equa-
tion (1) according to the procedure outlined, with
the convergence factor "m" set at various values.
Figure 3a demonstrates monotonic divergence; 3b,

monotonic convergence; 3c, oscillatory convergence;

it



and 34, oscillatory divergence. The correct solu-

tion is shown as a dashed curve.
Implicit Term

The computer diagrsm for equation (2) is
shown in Figure 4. The elements necessary to solve
the basic equation are included within the dashed
boundary and are collectively dencted "Unit M".
The only element required for iteration control is
Integrator G, shown outside the dashed boundary.
The iteration sequence is identical with that of
the previous problem, although the durations of
the individual states are not the same as before.

The desired starting value F, for the defi-
nite integral is set into Integrator G as its ini-
tial condition before the system is first placed in
State 1. When State 2 is begun, Unit M solves
equation (2) for the first time, yielding x,(t).
Simultaneously, calculation of the definite inte-
gral, "F", is performed by Integrator 4 of Unit M.
(Since the upper limit of integration is infinity,
the integration is in actual practice carried out
over an interval large compared with the five-
second time constant of the exponential term)
During State 3, the output of Integrator 4 of Unit
M, now on HOLD, is proportional to the corrected
value F; of F. 1In this problem a correction or
"error" voltage does not explicitly exist in the
circuit, it being more convenient to compute the
corrected value itself rather than an increment to
be added to the previous value of F. Integrator G
is on OPERATE for State 3; its output therefore
assumes the value 0.104 Fy, the negative of the
output of Integrator 4. Both Unit M and Inte-
grator G HOLD for State L, a buffer state. The
system is next returned to State 1 for another
iteration cycle; this time, x;(t) and Fp are com-
puted. The process will converge.

None of the states is of critical time dura-
tion, and thus an integral number of stepping-
relay intervals is satisfactory for each state. A
period of twenty-two seconds was used for State 2,
which theoretically requires infinite time.

Figure 5 shows the first few solutions x(t) as ob-
tained from the computer.

Minimization Problem

The computer procedure used for solving equa-
tion (3) is rather crude in concept. A starting
value ko, for k is chosen, the equation is solved
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