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LIMITATIONS ON AMPLITUDE EqUALIZERS+ 

Herbert J. Carlin 
Microwave Research Institute 

of 
Polytechnic Institute of Brooklyn 

Abstract 

If an equalizer amplitude response curve 
is specified, it will be shown that the minimum 
flat loss obtainable with physical networks is 
determined.  This flat loss, or scale factor on 
the resnonse curve, is a function of the equal-
izer output terminating impedance which is 
arbitrary but prescribed, and the srecified 

tolerance on input mismatch. 

If the outrut impedance is rurely reactive, 
the limitations on maximum voltage transfer are 
obtained from a consideration of the open circuit 
impedance parameters of the system.  If power or 
voltage transfer to a load with finite real part 
is to be optimized, the scattering parameters of 
the system are used to determine the limits of 

performance. 

Examples will be given comparing the per-
formance of matched and lossless equalizers. 
In many practical cases the latter do not have 
substantially higher gain than the matched 

equalizer. 

Definition of Equalizer Problem  

The equalizer problem considered here 
concerns the transfer of voltage, current, or 
power from a prescribed generator with resistive 
internal impedance to a load whose impedance is 
a given function of frequency.  It is presumed 
that a real frequency function is specified 
which defines the shape of transfer gain char-
acteristic desired, and it is required to find 
a passive linear reciprocal equalizer network 
(a two terminal pair transducer, or two-port) 
which when placed between generator and load 
produces the specified gain shape and does so 
with maximum scale factor i.e. minimum flat loss. 
A gain characteristic which ideally is constant 
over a finite frequency band and zero elsewhere 
will be of major interest, and many of the 
results given may therefore be regnrded as 
generalizations of the concsrt of maximum 
"gain-bandwidth product".( 1,  

An additional specification is the toler-
ance on input mismatch.  It is only because the 
equalizer networks investigated here are not 
limited to the lossless case that this snecif-
ication can be set irdenendently of the others. 

This work was snonsored by Office of 
Naval Research under Contract Nonr-S39(05), 
Proj. Designation YR-075-216 

( Mary, 
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In most of the examples given below the extremes 
of a matched innut dissinative equalizer 
(zero mismatch) and a comnletely lossless 
equalizer (but not matched) will be compared. 

Various asnecte of the equalizer problem 
have been previously considered.  Bode( 1) dis-

cusses the limitations on "gain-bandwidth" 
product imposed by a lo9d with shunt capacitance 
when a lossless equalizer is used, and also 
gives some consideration to matched equal zers 
for vo tage transfer to a reactive loadk 2, . 
Fano(3i has treated the problem of optimum 
match of an arbitrary load with a lossleas 
network and La Rosa and Carlin( 4) (5. (0; have 
examined this rrpblem when the lossless restric-
tion on the matching network is removed.  Norde 7)  
has treated matched minimum rhase voltage 
equalizers for reactive loads.  Other work on 
snecial aspects of "gain-bandwidth" pro 4ct is 
too extsosive to be given here.  Wheeler ) and 

17:ansen: , are typical referennes. 

The nresent paper considers the general 
anproach to any equalization problem and stems 
directly from the references cited above.  The 
results presented on optimum voltage transfer 
to an arbitrary load (including the purely 
reactive load case) have not been given else-

where. 

II  General Arnroacb. To Equalization of an 

Arbitrary Load  

There are tvo basic restrictions which 
govern the design of an equalizer network. One 
of these is the general requirement of physical 
realizability on the overall network which 
includes both equalizer and prescribed load. 
The other is the total set of constraints 
specifically imposed by the load and this should 
be entirely indenendent of the equalizer net-
work.  If these constraints are satisfied, then 
when the overall network is synthesized, and 
the giver, load removed, the remaining circuit 
(the equalizer alone) Is physically realizable. 
The form in whicn tese restrictions are stated 
must be such as to explicitly (and Preferably 
in a simple way) involve the transfer gain 
function whose scale factor is to be maximized. 
The process of finding the optimum equalization 
is then to adjust the gain function within these 
general restrictions until the limits of 
physical realizabilitY are attained. 

The constraints which apply to the 
equalization of a load containing dissipation 
(the Purely reactive load case is considered 
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later)  are most readily obtained by represent-
ing the prescribed load over the infinite 

frequency spectrum as a nurely reactive 2-nort 
with fixed elements terminated in a unit resistor. 
(Hereafter the generator resistance will be 
presumed normalized to unity(10) (11).  This 
representation is always nossible and the single 
resistor is sufficient to account for all the 
power dissipated in the loae.  The "overall 
network" is now defined as the eoualizer plus 
the reactance two port portion of the loae. 

In order that the "overall network" be 
physically realizable, ).t must have an array of 
scattering coefficients 12) Sll (P), S22 (P)' 
S1 2(p) which form the matrix of a positive 
definite or semi-definite Hermitian form for 
Re p 7 0 (5) (6) (12) (13).  The algebraic 

exnression of this requirement gives the general 
set of realizability constraints previously 
referred to. 

The specific load constraints are obtained 
from the fact that at certain real and comnlex 
freouencies no tower can be transferred to the 
load no matter what equalizer network is used. 
These frequencies are the points on jw and in 
the ri!-,ht hand half of the p plane at which the 
reactive 2-port nortion of the load has zeros 
of transmis ,don.  At these frequencies the 
trans7,ission factor of the overall network 

(p)  must generally have a zero of 
transmission of order 2n if the load zero is 
of order n.  Further the reflection factor 
looking in at the back end of the "overall net-
work"  i.e.  S22  (p)  and generally its first 
2n-1 derivatives are comnletely determined by 
the reactance 2-tort portion of the load.  These 
pronerties follow from a consideration of the 
scattering equations for the cascade connection 
of a pair of two-norts(3), and constitute the 
"load constraints" referred to earlier.  It must 
be emphasized that load constraints are independ-
ent of the equalizer. 

The load constraints amount to the state-
ment that essentially the first 2n Taylor 
coefficients of the back end reflection factor 
of both load and overall network are equal in 
the series expansion about a load zero of trans-
mission. 

These requirements may be expressed in 
terms of the Cauchy formulas for the Taylor 
coefficients, and as a final result one obtains 
integral formulas for the logarithm of the 
amplitude of the back end reflection factor. 
If the overall network is specified so that it 
satisfies the general realizability requirements 
and in addition meets the limits on in I I 
imposed by the integrrl formulas, then a Ti(7,771 
the prescribed load can always be senarated 
from the overall network leaving a physically 
realizable equalizer 2-port.  A statement of 
these realizability conditions in the fexii of a 
theorem essentially as given by La Rosa ) (5) 

is as follows: 

Theorem 1  

The necessary and sufficient _condi-
tions that a scattering matrix [S(p)j 
(p . 4-4- jw) renresent an overall network 
comnosed of an equalizer in tandem with a 
prescribed lossless 2-port (the reactance 
2-port portion of the prescribed load) is: 

(a)  Matrix  IS] should be realizable 
i.e.  *T 
I -  S (it,,)  S( jut)  must be the 
matrix of a positive definite or semi-
definite hermitian form, with 1S1 symmetric 
and its elements rational functions of p 
with real ooefq.cients, and no ri-lit half 
plane poles.k 1-3) 

(b)  Right hand and boundary zeros 

of transmission of the load must appear in 
the transmission factor S12(p) of the 
overall network with at least the same 
multinlicity. 

(c)*  A set of integral restrictions 

1 

on ln  1  _ of the form 

S22 (jm) 

GO 

J.% f Os) 
1 

in  _I  
S-73 7 
22 

(1 

must be simultaneously satisfied at all the 
zeros of transmission of the load.  Each 
nth order zero contributes Fi integral 
equations with 

for a zero at zero or infinity 

N = 2n  for a zero on jm 

2n-no for a right hand zero on the 
real axis 

1411-2no for a conjugate pair of 
zeros in the right half plane. 

no is the order of any right half plane 
zero of load transmission coincident with 
a zero of back end load reflection factor, 
i.e. of the reactance 2-port portion of the 
load. 

This theorem can be applied in a direct 
and simple fashion to a variety of equalization 
problems involving a load containing dissipative 

elements.  Special consideration will be 

required for problems involving a purely re-
active load. 

* The weighting functions f1(u) are tabulated 
by Fanot3'.  The Ki are related to the Taylor 
coefficients of the load at the zeros of 
transmission and are also tabulated in the 
same reference. 
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III  rower Transfer Equalization 

The anplication of the theorem given in the 

preceding section requires a determination of 
the relationships between the transfer function 

which is to be ortimized and the reflection 
factor amPlitude of the overall network  
The integral equations can then be used to 
determine "gain-bandwidth" tyre of restri-tions 

on the equalizer.  Part (a) of the theorem 
contains the necessary informrtion for relating 

the reflection factor function  S22 (Jw)  to 
the equalization res7onse of the overall net-
work.  In the case of rower transfer from a 
generator with unit internal imnedance to a 

load (renresented in Darlington fnrm), 
insertion rower in at real frequen ies of the 
overall network normalized to the avnilahle 

generntor lover is 

PL 

PL is the -o..er :'elivered to tne  Is the 
nvell&-le gene rator rover (Iv ic . Vere 

t  .7enerptor oren-circuit voltn e) 
IS12(2  is the anrlitude of the Ntlt: Lt_ 
transmission coefficient of the overall network. 
Since this power trnnsfer function is an eler7ent 
of the scattering matrix, it is directly 
related to 1S 22 (j.a,1 by the general realiza-
bility constraints of part (a) of the theorem. 
La Rosa(5) (6 has shown that this nortion of 
the theorem leads to the following necessary 
reeuirement on 13 12 (Jm)1 for an equalizer w'Tich 
maximizes the eNtle factor of rower function 

when the shame is snecified. 

Is12(J-)12 = (1 - s22(j-) (1. 1,11(.?,01 ) 
Is22(J134(sii(J-1  (3 

In equation 3. Isii( Al is a specified 
input reflection factor amplitude functi -,n 
which sets the tolerance on bout 7ismatch. 

In the special case that the equalizer is 
lossless, IS11 (Jw) 1 = 1S22(JAI and equation 

3 becomes 
, IS12 (iie)1 2 . 1 - IS 22 (jm,1 2 

(lossless equalizer) 

In another special case where the input mis-
match is zero i.e.  311 (p) 1 0 equation 3 
reduces to 

IS (jw)1 2 = 1 - IS (J. 1  (5 
(matched eclualizer) 

Equations  3,4,5 give the desired re-

lati ns between IS22 Um/ and the power 

transfer functionIS12 (jw 12 . The integral 

equations, 1, may therefore be exnressed in 
terms of the power transfer function and solved 
to obtain the maximum scale factor.  The details 

of this procedure as well as examples are given 

in references 4,5, ,S.  The solution of the 
equations always gives a unique maximum-gain 
scale f:.ctor for a Prescribed shape of power 
transfer function and this cannot be exceeded 
by any physical equalizer.  In the case where 
the equalizer is to rroduce a flat pass band 
with zero in outside this bard, the solution 
for the scale factor is particularly simple 
and is found directly in terms of a minimum 
conetrnt value of 1S22(J /  . IS 2;7  over the 
prescribed band with  15 22  J.1)1  = 1 elsewhere. 
In this case it is interesting to compare the 
ontimum lossless and matched equalizers using 

equations 4 and 5 

S Ì (lossless) 10 log I  12   = 10 log(1+15 22 1) 

5 

Is I (matched) 121 
4(3 db.  (6 

since  ISi  1.  In any practical design of a 
flat rover equalizer IS?,1 is considera'nly less 
thnn one so thnt over a snecified band the gain 
of an ortinum nttched desi,-n is much closer to 
the in of an optimum lossless equalizer than 

the outsi e limit of 3 db. given by equation 6. 

ry  Voltage Transfer Equalization of aeneral  
Dissioative Load  

Integral constraints for voltage, 

transfer  

The theorem given in section 2 may be 
aonlied to the problem of voltage equalization 
provided the voltage transfer function can be 
related to the scatterini- coefficients of the 
overall network.  The voltage transfer function 

at real frequencies is taken to be 

( 7 

where IV2i  is the amplitude of the voltage 
anpearing across the load and 1Vil is the onen 
circuit (fixed) voltage amplitude of a norm-
alized generator with unit internal imnedance 

(pure resistance). 

The geLerator produces a voltage V' 2 

across the one ohm resistance in the 
Darlington representation of the load as a 
reactance 2-port terminnted in unit resistance 

as shown in fig. 1.  This voltage is related to 
V1 by the voltage scattering function 

of the overall network (fig.1).  Thus S12(p) 

V' 2 . S12  (n)  v1  (8 - 
--- 
2 

Since the nower at t'-e-innut to the load 

is the same as that delivered to the one ohm 
resistor in the Darlington renresentation 

IV? 12 go'") 1VI  12 (9 2 

where g(w) is the input conductance of the load. 
Combining equations 7,6 and 9 

2 =I V2 =  1S12 (jw) I 2 

1 V1 14  g(o) (10 



Since IS12 ( j'0)( 2 1 it is immediately 
clear that in any physical network 

2 

) (11 

In equation 10 g(m) is specified by the 
load alone and R is directly pronortional to 
Is12(iw)F  Thus a necessary requirerent for 
maximum voltage transfer is to maximize 
01 2(jm)lconsistent with the general theorem 
on realizability given earlier.  This is 
tEicomplished precisely as in the power transfer 
problem when 1S12(jm)I  and gS11(im)1 (prescribed) 
are related to Is22 (j ) by equations 3,4, and 5. 
The general equation for optimum voltage transfer 
may then be written as 

2  (1 - IS 22(jm)l)  (1  0 11 ( i'") )  e = 
4E(T) 

1322 (iw) l  IS11 (j ")) 1 

(12 

The lossless and matched cases are then given 
as 

2  1 
a  s (j. ")1 2 
1 22  1 
14 g(m) 

2 

= 1 - 14 
Is22 Owl 

(lossless)  (13 

(matched)  (14 

The integral equations for the latter two 
oases using equation I are: 

1 
2 

.0 

1   
ln (  dm 

I - 4e(,) g(„) ), 
= Ki (lossless)  (15 

f fi(,t))  la  (   
1 - 4,2(m) g(„)) 

• 

1 du) 

Ki (matched)  (16 

The weighting functions f4(m) and the 
parameters K1 are those tabulated in reference 

The only difference in form for the 
integral constraints in the two s-recial cases 
is the factor 1/2.  However, since e appears 
under the integral si gn the solution for maximum 
scale factor is generally formed from a trans-
cendental equation so that there is no direct 
relation between the voltage gain of lossless 
and matched equalizers even in the flat transfer 
case.  In this latter case 

2())  = { C2 m  m2 

0  0 \< m <  ,  4°0 

where C is the voltage gain constant to be 
maximized.The integrals 15 and 16 are then 

,  1   
f (m)  la 

- 4ce g(;)-

= X  (lossless) 

dm 

3. 

co2 

din 
1   

f (m) in (  . 
2 1- 14 g(m) 

= K  (mat7hed)  (19 

In effect the rroblem of a flat voltage 
equalizer reduces to the solution of a power 
trr.nsfer porblem where a non-flat mower gain 
curve share is specified. 

b.  Example - Flat Voltage Equali7er for 
R-L load 

As an examrle of a voltage equali7er 
rroblem consider the case of a load consisting 
of the series combination of coil L and resistor 
R.  The voltage transfer characteristic is to be 
a high nabs one snecified by: 

(?c. 

< x 
where X is a n)rmalized frequency variable and 
x, is its cut off value: 

x  = 

(21 

III  R  (22 

The load conductance is 

g(x) -  117.7  (23 

Since the load has only a simple zero of 
transrAssion at infinity the weighting function 
f(n) is ur 4y \and the integration constant K 
is given b2.A)) 

K <  r R (24 

The rossibility of attaining the equal 
sign in equation 24 is di-!tated by equation 11. 
If equation 23 is substituted in that equation 
then an upper bound is set on p2(x) for any 
value of x: 

R ( 1 + x 1 (25 
4 

The permissable value of voltage gain 
increases with x, and thus for flat response 

C2, R(1 + gl) c  c  (26 
•• 

(17  since the lowest Permissable gain occurs at 
cut-off.  The unper limit for K = r R can only 
be attained if the value of C req77 Wd in the 
integral equations does not violate 11q. 26.  The 
Integral relations given by Eq. lE and 19 become: 

(ig 

6 

At ln  71, + 1  
7c & + a2 dx  TT R  (27 



where 

171-2 

and  a2 = 1 - 4 C' 

I  Matched case 
A = 

Lossless case 

(2g 

(29 

For a 7( 0  integration of Eq. 27 gives 

n(1-a) In 
tan -1 X + 2a tan-1,4 C 

n/A  a2 

(30 

The equal sign is used in order to determine 
whether the value of a (hence C by Eq.2q) 
exceeds the limit of Eq. 26.  When A = 1, the 
only real solution for a2 in equation 30 occurs 

when ;  0.  In that case! 

a = a2 = C, c= (31 

The limit of Eq. 26 for Xc = 0 is also 

c = B , so that for flat transfer over 0  
the 7maximum value permitted by the integral 

constraint for a matched equalizer can be 
obtained and this flat gain is precisely the 
d.c. gain.  A lossless equalizer would give no  
Lein advantage, since the solution of Eq. 30 
with A = 1/2 results in a value of C exceeding 

that rem itted by Ei. 2o. 

For values of7Lc 70, negative values of a2 

are required to satisfy Eq. 3C.  Under these 
conditions the transcendental equation becomes: 

n-tge • ln Z PC +  

2  2 A:c — b 

= TT 

+ b 1n2/ c  b + 2 tan-1 ; 

2c ' 

Where 
b2  -a2 = 402 - 1 

For values of  0 .. Xc 1.9, the solution 
of Eq. 32 for C always exceeds that re mitted by 
Eq. 26 for both values of A (lossless and match.ed 

cases).  In this region, where the value of 
is small at cut-off, the optimum flat gain 

is given by Eq. 26 

(32 

C =I R (1  )  ..„‹, 1.9  

2 

and the lossless equalizer gives no advantage 
in gain over the matched equalizer.  For the 

medium range of 119 : c  the flat gain 
of a matched equalizer as obtained from Eq. 32 

(33 

(314 

7 

is less than that given by Eq. 26, while the 
gain of the lossless equalizer is still limited 
by Eq. 2o.  Finally for the high range 4.E5 < 
2Cc  ::0, both lossless and mntched equalizers 

have gains limited by the solution of Eq. 31. 

Wher gc is very large Eq. 32 is aprrox-

imated very well by: 

b2 + 1 = 2 + nZ e ,  771 

A 

(35 

'sing Eq. 33, the optimum gain in this 

case is 

C 
2 

1 _  nL  mc 
2 A 

= mL 
7,-71 

(36 

Thus as the load resistance becomes 

negligible compared to the load reactance at 
cutoff, the ratio of maximum flat gain of 
lossless (A  1/2) and matched (A = 1) 

equalizers becomes: 

2_(lossless) 
(int-Tic-7:1771C  (37 

The comparison of performance of lossless 
and matched equalizers for a flat high pass 
gain chrracteristic is summarized in graphical 
for. in Fig. 2.  The heavy line is the bound-
ing curve defined by Eq. 26, and the dashed 
curves show the maximum flat gain of the loss-

les= and matched equalizers as prescribed by 

the inte rel constraints. 

V  Voltage Transfer Egualizaticn of Reactive  

Load 

The case of optimum voltage transfer from 
a finite generator to a reactive load is an 
imrortant practical prol-,lem.  Eowever, the 
basic realizability theorem quoted in section 2 

is not readily aprlicable.  Accordingly this 

equalization problem will be treated in a some-
what different way though the general point of 
view outlined in Section 1 will still be used. 
The optimum voltage equalization of an arbitrary 
lossless termination has not been considered in 
any complete fashion elsewhere, so that some 
details of the derivation of the realizability 
criteria (general constraints plus load con-
straints) will be given here.  This will also 
serve to further illuminate the basis for the 
realizability theorem 1 of Section 2 since the 
two derivations parallel each other.  It will 
be seen that whereas the scattering coefficients 
were a natural tool for handling the equaliza-
tion of a dissipative load, the oren circuit 
impedance elements are more directly applicable 

to the reactive load problem. 



In Fig. ja a finite generator of voltage 
V1 and unit internal resistance is shown driving 
an equalizer terninated in an arbitrary react-
ance.  The amplitude ratio of output load 
voltage to open circuit generator voltage is 

Ii121,”) 
V1 

(general)  (jg 

where r  lis the amplitude of open circuit 
Z12 (40 

Eq. 41 is the major physical constraint in 
the equalizer nroblem since if this is satisfied 
the remaining two requirements can in general be 
met by suitable design of the actual equalizer 
network. 

a  The constraints of the load can be easily 
established by observing that the reactive load 
Impedance ZL(o)  is in pnrallel with the imped-

seen looking in at the back of the equalizer. 

transfer impedance of an overall network shown 
in Fig. 31), consisting of the equalizer shunted 
at the generator side by a 1 ohm resistor and at 
the output side by the reactive load. 

If the equalizer is designed to produce 
an input match, then the voltage ratio may be 
written as: 

1  V 12 (m) I  (matched 
2  equalizer)  

(38 

wherelZ, 0001  is the amplitude of the open 
circuit -transfer impedance of the matching 
equalizer plus lossless load. (Generator 
resistance is not included.) 

If the equalizer is lossless then in Fig.3b 
with excitation at the load side of the overall 
network, the power delivered here is equal to 
that dissipated in the 1 ohm shunting resistor. 
Thus 

= 1221 (w)  (  '1212("))12  R22(in) 

(lossless equalizer) 

(39 

where R22 (m) is the real part of the open circuit 
output driving point impedance of the overall 
network on jm: 

22 (m)  . Re  222 (jm) (4o 

Since the equalization functicns to be 
optimized (Eq. 37,39) involve the open circuit 

impedance parameters, the requirements on overall 
network physical realizability will be expressed 
in terms of these parameters.  The necessary 
and sufficient conditions that an open circuit 
impedance matrix correspond to a rhysical 2-port 
is that the matrix be positive real k)That is 

1111("0 R22(m) R122() ;' °, R11  (m).> 0 

(41 

The open circuit impedances have no poles 
in the right half plane. 

Impedance element poles 
simple and the residues 
at these poles satisfy 

a a  - a2  0 
11 22  12  a11  0 

on the boundary be 
of Z11 (p) and Z22  (p) 

ance 
Thus 

Z 22   = 22   z  Z1, 

z  + Z 
22  L 

( 1+2 

Z22 = z  Z  (43 22  L  

z  -  + Z 
22  L 

where Z22 is the back end open circuit driving 
point impedance for the equalizer plus load with 
the 1 ohm resistor at the input removed, and 222 
is a similar quantity for the overall network 
of Fig. 3b. (z 22 is backend equalizer impedance) 

Any zero of the reactive load must be simple 
and occur on jm.  Further if ZL is expanded in a 
power series at this zero, the first non vanish-
ing Taylor coefficient is positive.*  Insnection 
of Eq. 42 and 43 show that the back end imped-
ance Z22 or Z22  must vanish at this point and 
in the vicinity of the zero, pl. = jmi: 

Z22 (p) =222 (p) = ZL  = al(p-p1)  (44 

-0,1D1 

Equation 27 is in fact entirely independent of 
the equalizer and its input termination. 

The requirement that the back end impedance 
of the overall network be constrained by Eq .27 
can be expressed in integral form by using the 
Cauchy formulas for Taylor coefficients.  These 
take the form in the present instance of: 

1 
2 rr j 

flg(p) Z22 (p)  dp = ai  (45 

where the closed path of integration is along 
jm (avoiding by small semicircular indentation' 
any boundary poles) and is completed around the 
semicircle of infinite radius enclosing the 
right half p plane.  g1(p) are the weighting 
functions to select the annropriate Taylor 
coefficient of the loadiai. If the contributionS 
of the small indentations are accounted for, and 
gi(p) is modified slightly to be even in a along 
jm, Eq. 45 may be written in terms of R.92 (M) as 
follows: 
dm 

0,17 (m)  =  ° 
1  R  n a 

22 (zero at 
2  m  m2 

•  p =  (4 6 

fR (() dm =  ao  n2:bm  (zero at p 
22 

o  2  (47 

* This follows from Foster's reactance theorem(.15)  
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VI 

b   
m  2  22 

(m m  ml ) 

die = r al 

V-7-7 

(zero at p =  j(1) 

mm 4 , (48 

In every case bm is the residue of any Z22  
poles on jm and is always positive.  Such poles 

can only reduce the rermissable integration 
constant.  The only other possibility of reduc-
ing t,-a ri,ht hand sides of Eq. 46,47,4F is for 
Z?? (or 2,2) the equalizer to have a zero 
coincident with ZL.  Since these relati -ns must 
all be satisfied simultaneously by Z?2 (or 222 ), 

it may be necessary to introduce elements in 
the equalizer which cause coincident zeros and/or 
additional poles or jm.  Another roint which 
should be mentioned here is that referring to 

::(145.46r.4red4q are valid both for the equations 

Finally since any zero of the load is a 
zero of voltage transfer, the following 
physical realizabillty theorem may be stated: 

Theorem  

The necessary and sufficient conditions 
that a combined network consisting of a 
two port and a prescribed reactive termina-

tion be physically realizable is 

a)  The combined network must have a 
positive real oren circuit imredance 

matrix. 

b)  All zeros of the reactive load 

impedance must be contained in the 
op en circuit transfer impedance of 

the combined network. (The zeros 

are all simple.) 

c) The integral constraints given by 
Eq. 46,47,4F and summarized by the 

form 

ffi (w) R22 (m)"  dst = K 

must be simultaneously satisfied by 
the back end resistance of the combined 
network at each zero of the load. 

(49 

The similarity between this theorem and 

theorem 1 is obvious. 

Flat gain equalization of a reactive load  

a)Form of integral  constraints  

As an example of the application of theorem 
2, the case of flat voltage transfer for a pro-

totype low pass* equalizer defined by: 

p =iv2  I- 121-(- 1  C for 0$m  1 

1 V1 1  0 for 1< m $00 

will be examined. 

In the case of the matched equalizer 
condition a of theorem 2 leads to 

R22(-) g2("' .7/ c (Matched equalizer) 

This is obtained from equation 41 with 
1„  0<m cto • 

:7ow 
111 2(m)  Z (m) 

12 
COS 

(50 

(51 

(fp  8(m) )  (52 

Where tp is the minimum onase character-
istic of the combired network (eoualizer end 
load:, and d(m) any phase characteristic 
obtained with a tandem combination of unit 
voltage transfer networks, considered as nart 
of the equalizer (i.e. the latter need not be 

a minimum mhnse network.) 

The function qp(",) is directly found 
grarhically or-analytically from the share 
of the Z12(m) amplitude function and is not  (1%  
affe-ted by the scale factor on this function. 
a(-) is independent of 00 and is continuous 
with positive slope.k li If equation 52 is 
substituted into 51, it is clear that a 
necessary condition for maximum Z12 (e)  is 
that the equal sign be used.  Thue 

R  IZ (m)1 2 cos2 (If + 8) . R2 010 
??  12  12  (53 

This means that the combined matched equalizer 
load network will require no more than 1 resist-
01 4 14;Suppose thatIZ12(m)1  is represented as 

0 ,.4.5 m.S, 1 

where 

1z12(0)1 
1 < tu so 

(54 

k  a positive 
integer) 

C = 2 7:  (55 

As  k-oew ithe transfer characteristic 
defined by equation 54 approaches the gain 
shape given by equation 50 (it differs by the 

factor 1/2 . 

The minimum phase characteristic ,defined 

by equation 54 is well approximated*4br a)  

* Identical forms for the high pass and band 
pass oases are obtained by a similar analysis. 

"At this point there is a certain degree of 

non-rigority, but in the final evaluation of 
the integrals the exact dependance of phase on w 
is unimportant provided it is proportional to k. 

9 



LikflO  = 

IT 
k 

kir 

2 

0 < to < 1 • 

0 <' (u 4 00 (56 

Thus the integral equation 49 of theorem 
2 for the matched flat voltage equalizer is: 

1 

C2 
6/' f(m)  cos 2 (- 212  k + e(m))  dm 

+ C2 

1 

del 

f'60 
COB2  (  kr 

2  + 8(m)) dm . 

xi 

The second integral is easily seen to 
approach zero as  k —Pao  . Expanding the cosine 
term, the first integral may be written as: 

1 

f (m) dm + 1 

2 

CO8 2k  2m  1 
dim + - 

IT  2 

sin 2k —  dm 

1 

(f1(-) 008 2  

(fi(fu) sin 28(m)) • 

The second and third integrals in the 
above expression are merely kth order Fourier 
coefficients for a periodic function equal to 

(fi(m) cos 28(m))  or (fi(m)sin 28(m))  over 
a finite interval, hence these integrals go to 
zero as k becomes infinite.  The final rerre-

sentation of the integral constraint for a 

matched equalizer with the low pass flat 
voltage in of equation 50 is tnerefore: 
_ 2  1 

2 C  f(m) dm . Ki (matched case) 

Letting 

1 
f (m)  dm = Ai 

(57 

( 58 

equation 57 may then be written 

2 
K 

C  (Matched)  (59 
2 A. 

This equation is independent of whether 
minimum or non-minimum phase networkssre used. 

For a lossless equalizer,equation 39 may 
be used directly in connection with equation 
50 and placed into the expression of theorem 2. 
Thus the lossless equalizer with flat transfer 
characteristics given by equation 50 must 
satisfy: 

eo 

ff(i)  (m)dit, 

1 
2 f 

f(m)dm 

aeo 

f1(m) 1212 („01 2 dtt 

( 60 

or 
- 2 

=  K  (Lossless case)  (61 

Ai 

and the ratio of ontimum matched and lossless 
equalizer gains for the flat transfer case  
and reactive load is: 

(lossless) 

a (matched) 
-  r2-1  (62 

b) Example of a C -LC load. 

As an exam-le of the application of the 
material given above suppose it is required 
to desigp a flat voltage equalizer over the 
band I:4 m$1 for a three element load.  The 
load consists of a capacitor CI in shunt with 
a series circuit of coil L and condenser C. 

This load impedance has eros at n =00 
and p = + lei with ml .  1  . 

LC 
The Taylor coefficients at these zeros 

are: 
( p =Co)  a  = 

( P =  iml) al = 2E— 
Referring to equations 

neglecting the pole residue 

K = r a.. 
1 • 2 

IC =  n a1 

4 1,112 

For the zero 
function is unity 

Al = 

For 
function 

1 

1 

IT 

2 c' 

Ti L2 

2 

147 and 

terms: 

(63 

(614 

48 and 

(65 

(66 

at infinity the weighting 
and 

din = 1 (67 

, the weighting 
rsle f 717) :t   and 

(m2 _ 11,12 )2 

A2 j ̂ dm   

(,0 2_ "12)2 
1  +  1 

2m, 2(m12-1)  4,0 3 

.1n  1 1 

" Presumed outside of pass-band. 

(6g 
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Consider a smecific numerical case with 

L = 

C' . 1 
2 

Cr  1 
(69 

For these conditions the various constants 

may be evaluated to give: 

xl 

Al 

A.2 

TT  (70 

-12 0.35  .7" 
(71 

The only way to satisfy these constraints 
simultaneously is to reduce the value of Ki by 
using parasitic elements in the equalizer. 
This can be done for example by use of a shunt 

condenser across the equalizer output and in 
parallel with the load of value C" = 0.2.  As 
a result the maximum gain of this equalizer is 
not limited by the capacitance C', but by the 
series LC circuit and the maximum value of this 
gain for a low pass matched equalizer is 

C =1:17:7  (matched)  (72 
2.80 

and for a lossless equalizer the maxim = gain 

is 

(lossless) (73 

It is up to the designer to decide whether 
a matched input to the equalizer system is worth 
sacrificing for a 40 0/0 increase in gain. 

c.  Design of a finite equalizer network 

In the previous discussion ideal charact-

eristics were assumed for the equalizer 
amplitude response.  The voltage gain was pre-
sumed absolutely flat in the pass band, and the 
cut-off was taken as infinitely sharp.  In order 
to apply theorem 2 to the design of a finite 
network, a gain characteristic may be assumed 
in analytic form (i.e. an even rational function 
of m which is always positive).  The analysis 
in such a case involves determination of the R22 
characteristic and its substitution in the 
integral equations to determine the maximum 
gain scale factor.  To illustrate this proced-
ure a simple example will be given for the 
voltage equalization and match of a unit 
capacitive termination*.  A Butterworth type of 
low vise response is assumed for a matched 

equalizer 

IZ (m)I 12 

2 
(74 

* This example is taken from a thesis by 
L. Norde for the degree K.E.E. at the  (1) 
Polytechnics Institute of Brooklyn, June 1953. 

The amplitude of Z12 00 2 is down by 
at is . 1 which is considered the normalized 
cut-off frequency.  0 is a gain constant whose 
maximum value is to be determined by applying 

theorem 2. 

Equation 74 may be factored to give the 
open circuit transfer impedance Z1 2(p) of the 
required combined matched equalizer-load net-
work.  This function must have no right half 

plane roles. 

Z12 (p) 
p2 + F ip +1 

(7 5 

The impedance Z12 (p) has the zero of the 
load at infinity as prescribed by theorem 2 
because of the particular choice of amplitude 
function in equation 74. 

The real component of Z12(p) along p 

is  2 
FL12 (m) = C 

1 + m 

(7 6 

and applying equation 53 for the optimum 
matched equalizer 

a (m)  Ri2 (m) = C2 
22 

= jn 

(1 w2)2 

(1.7 ;7714 )2 

(77 
The complex impedance Z22 (p) may be 

obtained by expanding R22(w) In partial fractions 
as described on pages 204-205, of reference 1. 

The result* is 

Z22 (p)  = C2 
0. 53 p + p2 + 1.065 p + 1  

P + 2.82 p3 + 4p2 + 2.82 p+1 

(78 

This function has the load zero at 
infinity as Prescribed by theorem 2. 

The 
gives for 

Jr R22 die = C 2 

integral constraint (equation 47) 
unit capacitive load: 

so 
2 

f ( 1 - w2) 
• 

° ( 1 + w ) 

(79 

- 2 

If the definite integral is evaluated, the 

gain factor C is found to be 

or 

0 = 1.68  (80 

=  =  0.84  (matched case) 

(81 

* In general if the resulting Z22(p) function 
does not contain the required load zeros, it is 
necessary  form new rational functions for 

(possibly by the use of common 
numerator and denominator factors) until this 

requirement is satisfied. 



The maximum in for the completely ideal 
low pass characteristic (in the matched case) 
obtained from equation 59 is 

73 (ideal)  0.89 (matched case) (82 

so that the simple characteristic of equation 
74 is a reasonable compromise. 

The final matched equalizer plus load is 
specified by equations 75, 78 and 

Z11 (p) = 1 

The resultant network is shown in Fig.4 a. 
Observe that the load capacitance is removable 
leaving a physical equalizer, and only 1 
resistor appears in the network. 

The design of a loss less equalizer from a 
specified 02  characteristic which 

12(m)I 
satisfies theorem 2 is straightforward.  The 

equalizer network is merely synthesized from 
the back end as a reactance 2-port terminated 
in a 1 ohm resistor by the Darlington proced-
ure for the srecial case of an infinite 
impedance generator. 1°)  The 1 ohm resistor 
(input generator impedance) and load are then 
removed, and the remaining lossless network is 
the required equalizer. 

and* 

For the example of equation 74 with 
2 

2(")) 1 1 
1 + in4 

= R (w)  (83 
22 

The integral requirement gives 

ao 
2 

J c 
- 14 
1 + w 

= 2 0 .25 

dm = IT 
2 

1.19  (lossless 
equalizer) 

The network is shown in Fig. 4b. 

1.  Bode , H.W 

(84 
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SYNTHESIS OF RESISTIVELY - TERMINATED 
RLC LADDER NETWORKS* 

Er-Chun Ho and DeForest L. Trautman 
Department of Engineering 
University of California 
Los Angeles, California 

Many equalizer problems reduce to the design  Premultiplying 
of a network with specified transmission charac-  suitable A-functions 
teristics between given resistive terminations. In  (2)  are 
this note, we shall present a new technique by 
which one can synthesize a ladder network employ-
ing no ideal transformers to meet exactly the 
requirements of (a) a prescribed general minimum-
phase transmission function  I,:  (except within a 
constant multiplier) and (b)  arbitrarily given, 
finite, purely-resistive terminations RI. and R2 • 

The general characteristics of the synthesis 
problem under consideration may be represented by 
Figure 1. 

R I 

LADDER NETWORK 

(NO TRANSFORNERS) 

Figure 1 

Any rational function of  A  , regular at 
, having its poles restricted to the left 

half-plane and its zeros restricted to the left 
half-plane and on the j-axis is acceptable as :.. . 
(These poles and zeros need not be simple).  The 
constant multiplier of 'it is not always arbitrary, 
but subject to the physical restrictions on maxi-
mum power transfer through a passive network when 
the terminations are finite resistances, i.e., 

has a definite upper bound. 

; • .0 

The first step for achieving this realiza-
tion is to extract a suitable A-matrix (general 
circuit parameter matrix) from the given transmis-
sion function and terminations.  Then, a network 
having the characteristic specified by the ex-
tracted A-matrix is synthesized by a matrix fac-
torization procedure.  This approach has been em-
ployed by other investigatorsi-4 for the synthesis 
of losslese networks.  The more general RLC lad-
der development will be treated in this note.  The 
ladder development involving no ideal transformers 
requires an entirely different technique in the 
decomposition of the A-matrix. 

If we specify the RLC ladder network by the 
general circuit parameter matrix  1'.  ,then by 
network analysis, 

and  A„A„- A,2 Az, .1 (2) 

* Work supported in part by Office of Naval 
Research. 

111 

1  E A.  a k ° 
E, 

a constant  k to  '9 c, 
co nstructed from (1)  and 

A,2 •  /21-o )k  AIITR; 

E A2, •  -a k  Ji m  

(3) 

(4) 

(5) 

A /32._(Ap -ofk 
". 2R,  a  E,  (6) 

where  k and  a , also a constant, are to be 
determined later to insure the physical realizabil-
ity of the synthesized network. 

In developing this A-matrix into a ladder 
network, preliminary factorization of A11 is gen-
erally necessary.  Because All has the properties 
of  :!L  , it may always be factored into a prod-
uct  of a finite number of non-minimum resist-
ive positive-real functions, eq. (7), by appropri-
ately choosing a set of positive real numbers Cl 
C2 C3 • • • Cs • 

•±Ok L. 10(1 S•tal,K't_  
2  E, 2  m  

C( 11_ 

8. 
M̀ 3P , 

▪ 1  I LA2+ KA41,)(A•r,,(A. (,) 

. k ( )(Aci:+4A+1 
2k,k,k.  +C.)(k*c2)JJL  R*F2A+ ye 

[k,  [k. Ve] Lk, A,2",,÷,-.41[k.   

1:14 rk.  
.(akAJA,A2,,k,A,pk.A.)  (7) 

where Al A2 A3 . . . An represent the non-minimum 
resistive positive real functions and  a, k, k2 
k3 . . . kn  are constant multipliers to be chos-
en later.  In eq. (7), typical factorisation is 
shown for in  p . For the case  in > p , factors 
like  s,  are also included.  It should be 
noted  that surplus factors are intro-
duced only when needed. 

The ladder representation is now obtained 
by matrix factorization as follows: 

A 

A, 
• 1A.L, 

A I 

X 

a kA,  0 

akA, 0 

k5A, 0 

0 KA-, 

k.A. 0 

o a 

k,A2 0 

1 0 

0 1 

(8) 



where the product of diagonal matrices is the ex-
pansion of  . In equation (8), when 

and  are positive real functions (through pro-
per  choice of a and k ),the first and the last 
matrices are the canonical matrices specifying the 
simple shunt and series branches of a ladder net-
work respectively.  However, the diagonal matrices 
are not in the canonical form, thus further factor-
ization is necessary.  Typical procedure can be 
shown, without loss of generality, by assuming that 
the factorization of An  in eq. (7) terminates in 

two factors, that is 
a  (9) 

Expand the first diagonal matrix in eq. (8) ac-
cording to the following equivalent matrix product. 

k,A, 0  I  01 1 1  01 - 4 

0 kA •  It kik  I 0 I k•A.-I I 0  I (i°1  

Using equations (9) and (10), eq. (8) reduces to 

eq. (11) 

I A, A, 
• 

Au 

I 0 

I _ 1 
okA 

0 

0 

I 

I I 

0 I 

k,A, 0 

o 

I  0 
okAl I 

I t- ic 

0 

(10 

Observe that a triangular matrix can be 
moved through diagonal matrices to its right with 

the following modification, 

1 I xld, o H, 01 
oI 0  0 

d. 0 
I 

v (12) 

d 0  d2 0  Id. Ol I --7 4-- 3H 
▪ 0 khO  2,  I  GA: d. 0 aT, 0 

This maneuver plus multiplying together similar 
adjacent matrices yields from eq. (11) a matrix 
product, in eq. (13), having component matrices in 
realizable canonical form (when the various con-
stant multipliers are properly chosen) except the 
remaining diagonal matrix. 

'A A  1 0 1 1 1 01  

• A_L 
I   A2  A  0 1 1 0 kA - 1 A22  aA m,  

li31 

k,A2 0  I Aa_  1   [ 
x  I A, o kW, A Ai, 

O  k, A,  0  I 

Repeating the above procedure for the re-
maining diagonal matrix in eq. (13), the final re-

sult is obtained, 
I  0  01 

A, A, • 431 -4-  I i 

X 

• 

II 

O I 

I 0 

Y' 

k,A2-I  I 

z, 
0 I 

I 0 
Y, 1 

I 111  1 
kA -2 

O I  k,A, 

I k Ai) 
0  "  ' 12 2 

I z, 
O I 

I 0 
Y, 1 

I z, 
0 I 

1 

04) 

which is the A=matrix representation of a ladder 
network.  Further repetition of the above typical 
procedure will yield the complete factorization of 
eq. (8) into the canonical matrices representing 

the general ladder network in Figure 2. 

Figure 2 

Finally, we must choose the various constant 
multipliers such that all y's and z's are physi-
cally realizable.  By equations (3) to (5) 

L. Raa  -!--16-1't 
RI,(g- 2  E, 

,/1T.FR, k E0 

051 

('6) 

where  some constant.  From 
these  two equations, it is seen 
that the real parts of  -12-  and z7  can be 
made positive and as large as desired everywhere 
on the imaginary axis by Choosing  0 < a E 1 
and  0 < k . In view of equations (15) and (16) 
and the non-minimum resistive p.r. properties of 
Al A2 . . . An , all y's and z's can be made p.r. 
immittance functions by choosing appropriate  u, 
k,  k2 . . . kn . Each of these immittance func-
tions then may be realized by the procedure of 
Bott and Duffin5  and consequently the box in 
Figure 1 is replaced by a ladder network employ-
ing no ideal transformers, Figure 2.  The network 
in Figure 2 has R1 and R2 as given and 
as ppreressccrriibbeedd  except for an additional  con-
stant multiplier ;  which depends on the values 
of R1 and R2 , the choice of a and the upper 

bound of  I!_Li , .A./-
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EQUALIZATION OF VIDEO CABLES 

Philip W. Rounds 
Bell Telephone Laboratories 

Murray Hill, N. J. 

Summary 

This paper describes the equalization 
of local intracity video cables.  An 
analysis is made of cable performance at 
video frequencies, upon which the equali-
zation plan is based.  A network function 
is derived for approximating a straight-
line loss slope on a logarithmic frequency 
scale.  Using this result, a design pro-
cedure for fixed and adjustable cable 
equalizers is described. 

Introduction 

The local wire transmission of tele-
vision signals between studios, control 
rooms, transmitters, and long-distance 
offices is handled by the Bell System on a 
video basis over special 16-gauge, shielded, 
polyethylene-insulated pairs which may be 
included within the sheath of normal tele-
phone cables.  Figure 1 illustrates the 
physical construction of these pairs.  The 
lengths of the video links and the number 
of links that may be connected in tandem 
are such that a total cable distortion of 
several hundred db may need to be equa-
lized to an accuracy of better than .1 db. 
The equalization of cables to this preci-
sion requires a clear understanding of the 
nature of the cable performance, both as 
regards its nominal characteristics and 
the types of variation that may be encoun-
tered in service.  It also calls for an 
equalization plan flexible enough to take 
into account all the factors of variation. 
Furthermore the video band is logarith-
mically very wide, extending for more than 
5 decades from 30 cps to 4.5 mc.  An equa-
lizer design technique is needed which is 
suited to the wide-band approximation prob-
lem and which will lead to equalizer 
structures capable of yielding the desired 
performance in manufacture. 

Cable Characteristics  

Cable Terminations  

The loss of a cable section with 
arbitrary terminating impedances is equal 
to the sum of the cable attenuation and 
the reflection and interaction losses which 
are functions of the ratio of the cable 
image impedance to its terminations. 
Figure 2 shows the image impedance of the 
16-gauge video pairs of Figure 1. 
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Termination of these pairs in a pure 
resistance at each end leads to low-
frequency reflection and interaction 
losses which are not proportional to cable 
length and which ripple with frequency. 
These losses would be difficult or impos-
sible to equalize successfully.  Conse-
quently, in the system under consideration 
here, the terminals and repeaters have 
been designed to match the image impedance 
of the cable, thus eliminating the reflec-
tion and interaction losses.  Under these 
conditions, the total cable loss is equal 
to the cable attenuation and is therefore 
strictly proportional to cable length. 

Nature of Cable Losses  

The attenuation of a typical 1000-ft 
length of video cable is shown in Figure 
3.  In this figure, frequency is plotted 
horizontally and attenuation vertically, 
both to a logarithmic scale.  At low fre-
quencies the attenuation increases along 
a straight line corresponding to a square-
root-of-frequency increase.  At higher 
frequencies the attenuation also increases 
as the square root of frequency, but at a 
different level.  Between the two regions 
there is a smooth, or fairly smooth, tran-
sition.  The attenuation behavior in these 
regions may be associated with the resis-
tance losses in the 16-gauge conductors. 
At the low end of the scale, the distri-
buted capacitance and resistance in the 
cable are the contributing factors; at 
higher frequencies, the loss change 
results from an increase in the conductor 
resistance through skin effect.  In addi-
tion to the conductor losses, there is 
another increment of cable attenuation 
which increases approximately as the first 
power of frequency and leads to the rise 
in the curve at the extreme right of 
Figure 3.  The magnitude of the linear 
component in the figure has been grossly 
exaggerated for the sake of clarity.  For 
16 PSV cable, the actual value of the 
linear component is about one-tenth that 
indicated in the figure. 

Cable Loss Function 

With this picture of the cable per-
formance as a guide, an analytical expres-
sion has been found which is capable of 
representing the actual cable attenuation 
to good accuracy.  This expression appears 



as equation (1) below. 

A = K iT + kifl-A  (1) 
(f+fi 

where A = attenuation constant 
f = frequency 
K, kl, fl, f2, and A are constants 

The residual error using equation (1) in 
place of the actual cable data is shown on 

Figure 4. 

Cable Phase Function  

An accurate determination of cable 
phase as well as loss is important in video 
design, since the faithful transmission of 
television signals requires that the phase 
be held linear to a precision comparable 
with the required loss precision, counting 
one radian of phasenon-linearitY as equiva-
lent to one neper of loss distortion)-
Owing to the fact that the non-linear com-
ponent of the cable phase is less than 1% 
of the total phase, direct measurement of 
cable phase yields little significant 
information.  The existence of an analytic 
expression for the cable attenuation, 
however, allows the phase to be determined 
to an accuracy equivalent to the loss 
determination. 

The cable phase is taken as the mini-
mum phase' associated with the loss expres 
sion of equation (1), modified by the 
minimum phase corresponding to the loss-
correction factor of Figure 4.  Substitu-
ting the loss, A, of equation (1) in the 
minimum-phase integral 

2wc A-Ac 
°C J0 w2-wc2 

dw  (2) 

the corresponding phase is found to be 
(consistent units such as nepers and 
radians must be used) 

B=K ([1- 2../f (f2-fl)   [ 72 Ai l 

(  (f+f2)(47—+./TI)  f+fi 

+ k1 [tan (1-  ) A)i]  A 
(3) 

Although the phase given by the second 
term in equation (3) becomes infinite as 
A approaches zero, the non-linear compon-
ent remains finite.  The character of the 
non-linearity may be brought out by sub-
tracting a linear phase and writing the 
limit.  Thus 

lim (ki 

= - 1(1  f log f 

The minimum phase associated with the loss 
of Figure 4 may be obtained readily to 
sufficient accuracy by graphical,integra-
tion or by matrix multiplication,. 

Equalization Plan  

The loss shown in Figure 3 applies to 
a representative sample of 16 PSV cable. 
Other types of cable, or other samples of 
the same cable, might be expected to 
exhibit a similar loss pattern.  This has 
been found to be the case for the cables 
that have been examined.  In each instance, 
equation (1), with appropriate values of 
the constants, has been found to be cap-
able of describing the loss behavior to 
an accuracy comparable with that shown in 
Figure 4. 

From these facts a pattern of equali-
zation emerges.  By designing fixed blocks 
of equalization based on nominal cable 
characteristics, and further by providing 
adjustable equalizers at the receiving 
terminals of each video link to compensate 
for the effects of variations in the con-
stants of equation (1), it is expected 
that any type of cable likely to be 
encountered in service can be successfully 
equalized.  The fixed equalizers can be 
designed in suitable units to handle 
various lengths of cable.  Through the use 
of these fixed equalizers, any circuit 
length may be equalized to within one-half 
the size of the smallest unit.  The adjust-
able equalizers at the receiving terminal 
can be used to provide the final incre-
mental adjustment for length. 

Equalizer Configuration  

Following this plan of equalization, 
the fixed equalizers must be designed to 
high precision (in the order of .005 db) 
so that the requisite number of equalizers 
may be connected in tandem without exceed-
ing the overall distortion tolerances. 
The desired loss characteristic for a 20-
db equalizer is shown in Figure 5.  For 
equalizers having monotonically decreasing 
loss characteristics over such wide bands, 
the bridged-T configuration shown in 
Figure 6 has been found to yield good 
results.  The bridging arm consists of a 
resistance paralleled by resistance-capaci-
tance branches which reduce the bridge-
arm impedance, and consequently the equali-
zer loss, in a step fashion at successive 
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points along the working frequency band. 
The final resonant-frequency branch is 
added to bring the loss to zero just above 
the top useful frequency in order to con-
serve system gain by holding the total 
equalizer loss to as low a value as 
possible. 

Having selected the general configur-
ation of the equalizer, the remaining prob-
lem is to determine how many R-C branches 
are needed to obtain the required precision 
of match and how the elements are to be 
proportioned to secure the desired 
characteristics. 

Infinite Slope Approximation  

Selection of Loss Function 

As a guide in answering these 
questions and by way of laying a founda-
tion for the design procedure, we may con-
sider the idealized problem of approxima-
ting a slope of k x 20 db per decade 
extending from zero to infinity, as shown 
on Figure 7.  A characteristic of this 
sort may be approximated by an infinite 
network with a repetitive pattern of real 
zeros and poles of loss (corresponding to 
an R-C structure).  The loss expression 
takes the form of an infinite product. 

ee n 
n •OID 

P-P2n 

P-P2n-1 

where  6 = A 4- JB = loss and phase 
p = j2nf 
p2n  and n -2n-1 are negative real 

numbers 

(4) 

The corresponding loss is found by taking 
the logarithm of the absolute value of 
equation (4).  The resulting expression 
becomes 

loss in db = 10 log10  

oo 
10 logio  n 

n=-oo 

c'e (f2n  )2 

"L 
oo 

1+(f /f2n )2  

1+( f/f2n-1 )2  

where  f2n I P2 0171 

(5) 

To approximate the desired characteristic, 
the frequencies f2n and f2n- 1, correspond-
ing to the zeros and poles, are selected 
as shown in Figure 7 to make the asymptotic 
representation of the loss zig-zag about 
the desired infinite slope with a uniform 
period on a logarithmic frequency scale. 
The asymptotic representation consists of 
lines having slopes of 0 db per decade and 
20 db per decade alternately, with the 

points of transition being made at the 
frequencies f2n and f2 n..1. 

Determination of Loss Error 

The actual loss as computed from 
equation (5) will round the corners of 
the asymptotes.  It will thus ripple about 
the desired curve with the same period as 
the asymptotic representation but with a 
much lower amplitude of ripple.  The 
amplitude of the ripple will depend on 
the number of zero-pole pairs per decade 
of frequency, being smaller the greater 
the number of such pairs.  The problem, 
then, is to determine the amplitude of 
the loss ripple in terms of the number, 
h, of zero-pole pairs per decade. 

To avoid mathematical difficulties, 
this problem is approached indirectly by 
way of considering the minimum-phase ripple 
associated with the loss ripple of 
equation (5).  The justification for this 
procedure is that a sinusoidal loss ripple 
on a logarithmic frequency scale 

IAA = a[sin(2nh logio f)1 nepers  (6) 

is accompanied by a minimum-phase ripple 

AB • rtanh (.4343n2h)] arcos(2nh loglo f)] 

a[cos (2nhlogio f)] radians  (7) 

which is of approximately equal amplitude. 
The periodic loss ripple may be expressed 
as a sine series if the end points of the 
period are properly chosen.  For a slope 
of 10 db per decade (k = ±1/2), the loss 
ripple has even symmetry about the 
quarter-period points, so that the sine 
series contains only odd order terms.  In 
this case the shape of the phase ripple 
will be identical with the shape of the 
loss ripple, and equation (7) gives the 
exact relation between their amplitudes. 
Since the loss and phase ripples are in 
quadrature, it is sufficient to determine 
the phase error at the points where the 
loss error is zero and equate the maximum 
loss error to the phase error so obtained. 
For other values of slope, the relation is 
approximate. 

The minimum phase associated with the 
loss of equation (5) may be obtained 
directly from equation (4).  Thus 

oo 

B tan  ( -1  f/f2n)-tan-1 (f /f2n-1 ) (8)  
n=-co 

From the symmetry of the curves in Figure 
7, it can be seen that the loss error will 
be zero at the points where the asymptotes 
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intersect the line of desired infinite 
slope.  There are two such sets of points, 
one at f  (f2n)(f2n-1) and the other at 
f2 • (f2n)(f2n.1). illustrated by the 
points A and B In Figure 7.  The frequendes 
f2n and f2n-1 may be defined mathematically 
as follows.  As before, let k x 20 db per 
decade be the slope of the line to be 
approximated, and let h represent the 
number of zero-polepairs per decade.  (In 
Figure 7, k  -1/4 and h • 1).  For con-
venience we can, without loss of generality, 
choose the values of frequency for n  0 
such that (f0)(f_i) • 1.  Then 

(f2 ) (f2 _1) • 102n/h 

2n / 2n-1  10-k/h 

from which 

and 

and 

f2n  10 (2n-k)/2h  

f 2n-1  - 10 

For the first frequency, A, in Figure 

7, f • 1 and 

cc  _ 
B • 2  tan-1 10(2n k)/2h - 

n•-oc 

(2n+k)/2h 

-tan-1 10-(2n+k)/2 1 (9) 

For the w ond frequency, B, in Figure 7, 
f  10-1 / 4n and 

oc 
B • 2  [an-1  

n•-cx 

10 -(2n+l-k)/2h 

-tan -1 10 -(2n+1+k)/2 1 (10) 

By noting that tan-1  X  40 0 - tan-1 1/X, 
these formulas may be reduced to 

2 
tan 1 10k/2h - 

ci  tan-1  10- (2n-k)/2h 
n•1 

-tan-1 10-(2n+k)/2h, ] 

and 

[tan-1  10- 
(2n+l-k)2h 

(2n+1+k)/2h -tan-1  10- 1  (12) 

The numerical solution of equations 
(11) and (12) can be simplified by writing 
them in a form which will permit the vanes 
to be read from a table of log tangents. 
Thus 

arid 

B . 
2 

B 

(log tan) -1 (k/2h1-45 ° 

( 
E ((log tan) -1 [-(2n-k)/2h1 
n•1( 

-(log tan) -1 [-(2n+k)/2h1)  (13) 

cic ( 
((log 

2  n-o( 
tan) -1 (-(2n+l-k)/2h) 

-(log tan) -1 [-(2n+1+k)/2h1) (14) 

These series converge rapidly, so that 
their numerical solution is quite simple. 

Equations (13) and (14) give the 
phase at the points A and B respectively. 
The straight line being approximated is 
accompanied by a constant phase 2 of k x 
90 6. Using this result, it is possible 
to compute the phase error for various 
assumed values of h.  Finally, the phase 
errors can be converted into equivalent 
loss errors as explained previously. 

Curve of Loss Error  

This has been done for an assumed 
slope of 10 db per decade ( ±1/2) and the 
results plotted in Figure 8.  For the 
special value of 1±1/2, equations (13) 
and (14) give identical results.  For 
other values of k, equations (13) and (14) 
give ripples of unequal amplitude, indi-
cating that the phase ripples are alter-
nately large and small along the frequency 
scale.  Considering the larger amplitude 
only, it has been found by computation 
that this amplitude varies as sin(kx180°). 
Using this result along with the curve of 
Figure 8, it is possible to determine the 
complexity of network required to approxi-
mate an infinite slope to any desired 
precision of match. 
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Design of Fixed Equalizers  

Degree of Equalizer Loss Function  

The solution of this idealized problem 
does not give a direct answer to the prob-
lem in hand, since the desired equalizer 
characteristic as shown in Figure 5 is not 
a constant infinite slope, but rather a 
slope which is changing steadily through-
out the band.  The results can be used as 
a guide, however, in determining the pro-
per density, of zeros and poles, if the 
equalizer characteristic is viewed over a 
limited frequency range as a segment of an 
infinite slope and the density of critical 
frequencies determined accordingly.  This 
establishes the number of elements required 
to meet a desired precision of match.  To 
match the curve on Figure 5 to the accuracy 
required, a configuration of the complex-
ity of Figure 9 was found to be needed. 
The frequencies corresponding to the 
geometric mean of the zero-pole frequen-
cies are noted in Figure 9. 

Design Procedure  

The next step in the design is the 
determination of the element values which 
will give the precision of match which the 
preceeding theory indicates is possible. 
This problem might be handled in a variety 
of ways, but the availability of modern 
computing machinery makes the method of 
successive approximations appear the most 
effective and expeditious.  Experience 
has shown that, starting with an orderly 
array of zeros and poles, rapid conver-
gence on the desired result can be obtairel 
provided that the array remains orderly 
during each step of the successive approxi-
mation.  This concept of orderly array may 
perhaps be made more definite by tracing 
the actual steps in the equalizer design. 

First Approximation 

Considering the bridge arm of the 
equalizer shown in Figure 9, the shunt 
resistance is determined by the desired 
d-c loss of the equalizer.  Next, assuming 
that L in Figare 9 is zero, C is selected 
somewhat arbitrarily to make the equalizer 
loss correct at the top of the band, in 
this case at 4.5 mc.  After this is done, 
the lowest-frequency R-C branch is con-
sidered.  Its reactance is made equal to 
its resistance at the branch frequency and 
its impedance-multiplying factor is 
adjusted so that the combination of the 
R-C branch with the initial two branches 
will give the desired loss at the branch 
frequency.  This procedure is repeated 
successively adding one R-C branch at a 
time until each of the branches is 

included.  Finally the inductane L is 
added to produce a resonance at the point 
where the required equalizer loss as shown 
in Figure 5 passes through zero.  This 
establishes the first approximation in 
the design.  The orderliness of the array 
can be illustrated by plotting a series 
of points representing the reciprocal of 
the resistance in each R-C branch against 
the critical frequency in that branch, as 
shown in Figure 10.  These points fall on 
a smooth curve. 

Succeeding Approximations  

The next step in the design process 
consists of computing the loss of the 
equalizer with the assumed element values, 
and also computing the loss change with 
changes in each element.  With these data 
in hand, it is possible to arrive at a 
second approximation.  If care is taken in 
adjusting the parameters to retain a 
uniform pattern of values as shown in 
Figure 10, the process can be made to con-
verge very rapidly on a uniform-ripple 
type of characteristic.  The result 
obtained by following this process through 
five successive approximations is shown in 
Figure 11. 

Phase Equalization  

The problem of phase equalization may 
merit brief consideration.  If the attenu-
ation equalizers were to equalize the cable 
loss from zero to infinite frequency there 
would be no phase problem, since both equa-
lizers and cable are minimum-phase struc-
tures (ignoring a linear phase component 
in the cable) and the tandem combination 
would exhibit no phase distortion.  What-
ever phase distortion exists, therefore, 
is a result of the increasing loss of the 
equalized circuit above the working band. 
The magnitude of this distortion can be 
determined by adding the in-band cable 
phase to the computed equalizer phase. For 
each of the fixed equalizers, one all-pass 
phase section was found to be adequate to 
bring the phase distortion within tolerable 
limits. 

Design of Variable Equalizer 

Structure Used  

As a further example of the appli-
cation of the design technique described 
in the paper, we may consider the design 
of the variable equalizer used to provide 
the final incremental adjustment for cable 
length.  The desired loss characteristic 
for this equalizer is the same as that for 
the fixed equalizers.  Proportional vari-
ation of the characteristic is obtained by 
use of a constant-resistance form of one 
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of the variable-equalizer structures des-
cribed by Bode4 . The configuration of the 
equalizer is shown in Figure 12.  The two 
boxes in the figure are in themselves four-
terminal constant-resistance structures. 
If 9 denotes the transfer constant of these 
component networks, the overall performance 
of the equalizer can bc described by the 
approximate relation5,0  

0-A0 = pKe-2 T  (15) 

In this expression, 8 is the overall equa-
lizer loss and phase, Ao and K are con-
stants and p is a numerical factor varying 
from -1 to +1 as the control resistances 
are changed over their complete range from 
zero to infinity.  When p  0, the equa-
lizer loss is constant with frequency at 
the value Ao.  Other values of p will give 
proportionate changes in loss above and 
below this value as shown in Figure 13. 
Equation (15) permits the transfer constarts 
9, of the component four-terminal networks 
to be determined directly from the desired 
overall loss and phase, 8, of the complete 
structure. 

Design Procedure  

For the problem in hand, 0 was deter-
mined from equations (1) and (3), modified 
to give reasonable out-of-band performance. 
Rather than going into this procedure in 
detail, it may serve the purposes of this 
paper sufficiently well to note the type 
of transfer constant, 9, required to give 
an overall loss varying as the square root 

of frequency. 

In this case 

8-A0 =  jH 

Substituting in equation (15), 

e-2 T = IL (v? 

from which 

cp - 1- log e 4  - 1 loge (2f)-j 
2  (pK)  4   

or in units of db and degrees 

TT 

8 

(16) 

9 = constant - 5 logiof -j22.5°  (17) 

Equation (17) describes a network hav-
ing an infinite slope of 5 db per decade 
of the type previously considered.  An 
approximation technique for this type of 
network has already been described in which 
the amplitude of the approximation error 
may be determined in advance.  The only 
further step necessary is to relate the 

error in approximating T to the error in 
the overall equalizer characteristic 8-A0. 
This may be obtained by differentiation of 
equation (19 from which 

d(O-A0) 
  = -2 d9  (18) 
(0-A0) 

Thus an error of .1 db (.0115 nepers) in 
9 will produce an error of 2.3% in the 
overall loss of the equalizer.  Knowing 
the maximum loss swing of the equalizer 
and the desired tolerance in loss, require-
ments may be placed on the transfer con-
stant, T, of the component four-terminal 
networks in the equalizer.  The configur-
ation of the four-terminal networks will 
be generally similar to the configuration 
of the fixed equalizers. 

Problems of Construction  

Much of the attractiveness of the 
design method described here lies in the 
fact that the equalizer configuration can 
be selected in advance.  This permits an 
early evaluation of the problems of con-

struction. 

Physical inductors and capacitors are 
not ideal devices, but have associated 
with them dissipation and parasitic capaci-
tance and inductance.  It is important to 
choose an equalizer configuration which 
will allow the parasitic elements to be 
absorbed or at least will allow their 
effects to be minimized.  This is partic-
ularly true in the case of video equali-
zers where the large low-frequency ele-
ments must be made to function compatibly 
with the high-frequency elements through-
out the entire video band.  The configur-
ation of Figure 6 was selected with these 
factors in mind. 

In the bridge arm of the equalizer, 
the R-C branches are in parallel, a con-
dition which results in the minimum total 
capacitance.  Even so some of the low-
frequency branches require large paper 
capacitcrs.  The effects of dissipation 
and series inductance in these paper cap-
acitors is minimized, however, because 
they appear in series with large resis-
tances.  For the higher-frequency branches, 
small mica capacitors are used and the 
lead lengths kept short. 

In the shunt arm of the equalizer a 
series resistor is shown.  Part of its 
resistance may be combined with each of 
the R-L meshes by a transformation which 
results in a resistor appearing in series 
with each inductor.  This resistance value 
may then be identified with the winding 
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resistance of the inductor.  The series 
resistance available is not large enough 
to eliminate the need for magnetic-core 
inductors in the low-frequency branches. 
The distributed capacitance and high-
frequency dissipation in the magnetic-core 
inductors is tolerable, however, since 
they are shunted by a resistor of low value. 
The higher-frequency inductors are single-
layer solenoids and present no special pro-
blem. 

By taking advantage of the favorable 
configuration of Figure 6, and by using 
care in the mechanical layout of parts and 
wiring, the precision of the manufactured 
product can be made Consistent with the 
overall requirements for video system 
equalization. 
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APPLICATION OF A MINIMUM PHASE MATRIX TO 
ADJUSTABLE EQUALIZER DESIGN 

W. R. Lundry 
Bell Telephone Laboratories 

Murray Hill, N. J. 

SUMMARY  

A method for calculating the "minimum 
phase" associated with a given loss char-
acteristic by numerical methods is des-
cribed.  The process requires a matrix by 
vector multiplication which can be per-
formed on a high-speed computer. 

By successive applications of this 
process a relatively involved equalizer 
design problem is reduced to two simple 
problems. 

INTRODUCTION  

Recognition of the unique relation 
between the real lnd imaginary parts 
of the self- or transfer-impedance of 
"minimum phase" networks has led to a 
number of improvements in planning the 
equalization for transmission systems. The 
minimum phase matrix used herein was 
originally developed as a special tool for 
use in the analysis of a particular wide-
band carrier system.  Although a broad 
sketch of the method of calculating a 
minimum phase matrix is given, the primary 
objective of this paper is to show how 
minimum phase calculations can be used to 
simplify a design problem.  The example is 
based on a network structure which occurs 
frequently in equalization systems but has 
received very little attention in the 
literature.  The procedure depends on the 
free use of numerical methods and requires 
computing equipment comparable to the 604 
Calculator. 

I.  Minimum  Phase Relationships and their 
Calculation  

Minimum phase network functions, as 
a matter of definition, are those having 
all their singularities in the left half 
of the p-plane.  For such functions, an 
integral relating the real aQd the imagin-
ary parts can be calculated.'  In one 
form this relation is 

(wc)  2wc  r  2a( 1. dw  
O J w -WC 

(1) 

where p(wc) is the phase shift at a fre-
quency wc/2n and a(w) is the attenuation 
at the frequency u,/2n. 

In practical applications of this 
integral two difficulties arise.  The 
first has to do with the limits of inte-
gration.  The behavior of a circuit or a 
system in the neighborhood of infinity is 
always a matter for speculation and judge-
ment.  In many cases the behavior in the 
neighborhood of zero is equally uncertain. 
Fortunately, the denominator of the inte-
grand acts as a weighting function which 
makes the behavior of a(w) near the 
limits of integration relatively unimpor-
tant.  Assumptions based on good engineer-
ing judgement can be used in these regions 
without seriously affecting the accuracy 
of the calculation. 

The second difficulty arises from 
the need to know a(w) in a form which can 
be integrated.  Most design problems 
start with the statement of a desired loss 
characteristic in the form of curves or 
tabular iata.  Here difficulties can be 
avoided by the use of numerical methods 
which permit the evaluation of the inte-
gral without first solving an approxima-
tion problem. 

In the main, the present problem can 
be solved with a high order of accuracy 
by the use of Gregory's Method of numer-
ical integration.(3)  This method 
assumes, in effect, that the integrand 
can be matched by a polynomial of fixed 
degree and furnishes the coefficients 
required to calculate the integral as the 
sum of a series of products.  If the 
polynomial is of first degree, Gregory's 
method Fives the familiar trapezoidal 
rule.  Over a limited range near wc this 
method is inadequate because of the pole 
in the integrand.  This difficulty is 
avoided by assuming a polynomial match to 
a(w) and performing an exact integration 
over this interval to determine the Cauchy 
principal value. 

Enough has been said to indicate the 
general nature of the numerical methods 
used to calculate this integral.  In its 
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final form the phase is evaluated by using 
the formula 

j=1 ciiai = 1,2,...,M  (2) 

where pi is the phase at the ith frequency 
and ai Is the loss at the jth frequency. 
The constants Cij are independent of the 
particular loss characteristic involved. 
It should be noted that a different set of 
constants is required for each frequency 
at which phase is to be determined.  This 
is because both the denominator in the 
integrand of (1) and the Gregory coeffici-
ents determine the Cij and the former 
depends on wc. 

Equation (2) describes  j as equal to 
a matrix by vector product where the Cij 
are the elements of an MxN matrix and the 
al are the elements of an Nxl matrix or 
vOctor.  For brevity, the MxN matrix will 
herein be referred to as the "minimum 
phase matrix". 

II.  Machine Computation of Minimum Phase  

The elements of a minimum-phase matrix 
have been computed for a normalized arith-
metic frequency scale with j taking on all 
values between 1 and 63 and i ranging 
between 5 and 55.  This gives a total of 
more than 3000 entries.  Calculation of 
the minimum phase for problems of this 
magnitude becomes practical when there is 
available some large scale computing 
equipment such as the IBM 604 Calculator. 
With such equipment it is possible to have 
the matrix values stored on punched cards, 
to copy the loss data on the corresponding 
cards and then to perform the required 
multiplications at the rate of 100 a 
minute. 

It turns out that the capacity of the 
equipment is such as to permit the solu-
tion of 3 simultaneous problems at this 
same rate.  Multiplications are performed 
in the machine and punched on the cards 
containing the original entries.  The 
cards are then transferred to a tabulator 
which lists and totals them giving, at 
the end of each 63 cards, printed sums 
equal to the phase at one frequency.  The 
machine time required for the complete 
calculation of three problems is about one 
hour. 

III. Adjustable Loss Equalizer Design  

As an example of the application of 
the minimum phase matrix to design 

problems, consider an adjustable equalizer 
requirement as shown by Figure 1.  This 
Illustrates a type of loss characteristic 
which is frequently required in a long 
transmission system which may be carrying 
both telephone and television circuits. 
The solid curve indicates the desired loss 
characteristic at one extreme setting of 
the equalizer and the dotted curve is its 
mirror image about the reference loss, 
here indicated as zero.  An equalizer 
which can be adjusted continuously and 
linearly between these two curves is 
desired.  It will be noted that at one 
frequency there is a pivot point where the 
relative loss is zero for all adjustments. 

One of the best types of adjustable 
equalizer which can be used for this job 
is shown in Figure 2.  This consists of a 
2-terminal impedance composed of a resis-
tance in parallel with the input terminals 
of a 4-terminal network.  The 4-terminal 
network is required to have constant 
resistance image impedances at both pairs 
of terminals and is terminated at its out-
put end by an adjustable resistance.  By 
properly choosing the constants of this 
circuit the insertion loss can be 
expressed as 

a - ac + jP.Kpe-2(A+ JB)  (3) 

Here a and p represent the insertion loss 
and phase of the 2-terminal network with 
ac the reference value of a; K is a con-
stant dependent on ac; p is the reflec-
tion coefficient at the output of the 
4-terminal network whose image transfer 
loss and phase are designated A and B 
respectively.  This equation is a linear-
ized approximation to the exact express-
ion but is quite adequate for the usual 
design problem.(44(5),(6) 

Since only the loss characteristic, 
a-ac , was specified, the relation between 
the two terminal network loss and the 
image transfer constant of the 4-terminal 
network is expressed by the second equa-
tion of this figure.  It will be noted 
that the loss we are interested in 
depends on both the loss A and the phase 
B of the 4-terminal structure.  For 
example, the pivot point of the loss 
characteristic can be obtained either by 
making A very large or by making B equal 
to 45°.  The problem of choosing a 
structure to perform this job is sub- -

stantially more difficult than the usual 
problem of fixed equalizer design because 
of the dependence of the final result on 
both A and B.  Skill in the design art 
is acquired very slowly. 
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It is apparent from the structural 
form that the loss a-ao must be minimum 
phase (the insertion loss of any two ter-
minal structure is minimum phase).  This 
suggests that if we determine a value of 0 
which is consistent with the required loss 
characteristic, it will be possible to 
solve for A and B. 

IV.  Minimum Phase of 2-Terminal Structure  

Three minimum phase calculations were 
run for this particular problem.  Two of 
these furnish information on the phase of 
the network for different out-band loss 
behavior corresponding to reasonable 
engineering assumptions.  The other was 
used to obtain the low-frequencY phase 
behavior in finer detail than provided by 
the other calculations.  Collectively, 
they serve to emphasize the flexibility of 
the matrix through the use of different 
frequency normalizing constants for each 

case. 

For this particular design problem, 
loss information up to 20 mc was available. 
Although the equalizer need not follow the 
system loss characteristic above 8.5 mc, 
departures must be considered in the light 
of their effect on the phase below 8.5 mc. 
The system carries television signals and 
failure of the equalizer to compensate 
corresponding system phase distortion 
would have to be corrected by an assoc-
iated adjustable phase equalizer.  In the 
hope that this could be avoided, the 
minimum phase associated with the solid 
curve of Fig. 3 was calculated. 

A convenient choice of frequency 
interval for this calculation is 0.4 mc. 
That is, the ai correspond to loss values 
read from the curve at 0.4, 0.8, 1.2, ... 
20 mc.  This furnishes the first 50 values. 
A reasonable choice for the remaining 13 
is the constant value, -6.6 db, corres-
ponding to a constant loss of -6.6 db from 
20 mc to infinity.  These points serve to 
define the loss characteristic quite well 
over the higher part of the useful band 
(2 to 8.5 mc).  In the region below 1 mc 
the coarse granularity forces one to 
accept a compromise match to the curve 
such as is indicated by the dotted line 
designated II.  This will cause substan-
tial errors in the minimum phase calcula-
tion at the lower frequencies. 

An accurate determination of the 
minimum phase at low frequencies can be 
obtained by using ai read from the curve 
at 0.1 mc intervals as indicated by the 

curves designated I.  The last usable 
value, a63, will be the loss at 6.3 mc. 
For reasons which can be found in refer-
ence (2) the values used are dropped 
below the actual loss in the range 5 to 
6.3 mc. 

Finally, a case which is more likely 
to correspond to a practical equalizer 
design is computed.  This follows the 
solid curve up to 10.2 mc and dotted curve 
III from 10.2 to 12 mc.  This can be 
realized with a frequency interval of 0.2 
mc. 

A composite presentation of results 
of the three computations is given in 
Fig. 4.  Curves Ia and II together define 
the phase of the "best" equalizer, i.e., 
one which would surely compensate both 
the variable loss and phase of this 
system.  Curves Ib and III furnish a 
composite look at the phase of a more 
practical equalizer.  Curve Ib is derived 
by adding sufficient linear phase to Ia 
to produce an intersection with III at 
3.2 mc (again justified by reasoning given 
in reference (2)). 

V.  The 4-Terminal Transfer Constant 

The frequency band used for tele-
vision transmission over this system runs 
from approximately 4 to 8.5 mc.  Over 
this band the difference in phase between 
II and III of Fig. 4 is essentially 
linear.  Hence no loss of transmission 
quality can be charged to an equalizer 
having the phase shown by the upper curve 
of Fig. 4.  Therefore it was chosen as 
the basis for further design work. 

From the values of loss given and 
the values of phase shown on this curve, 
the transfer constant A + jfit of the 4-
terminal network was calculated by means 
of the formula 

A+.9 .■(1/2)[ln Kp-ln (a-ao+jB)]  (4) 

which follows directly from (3).  The 
results are shown in Figs. 5 and 6. 

The design of the 4-terminal network 
must realize* both A and B.  This can be 
reduced to (a) the design of a minimum 
phase loss equalizer and (b) the design of 
an all-pass network giving the phase not 

*An allowance of 1.7 db must be made for 
the term 41n Kp to insure the required 
adjustment range.  Additive constants do 
not affect the minimum phase computation. 
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realized in (a).  Two additional minimum 
phase calculations were made to determine 
an appropriate split-up.  Both, of course, 
follow the solid curve A of Fig. 5 but 
differ in the assumed out-band performance 
as indicated by the dotted lines IV and V. 
Only one normalized frequency interval, 
0.2 mc, was used for these cases.  The 
results are shown by dotted curves IV and 
V of Fig. 6. 

The difference between these curves 
and the required phase, B, is shown in 
Fig. 7.  The dots show the calculated 
phase of an all-pass section having a 
stiffness ratio b • 1.3 and a critical fre-
quency fc • 19.0 mc.  The agreement with 
curve IV is good and indicates that the 
design of a minimum phase structure follow-
ing the loss curves A and IV of Fig. 5 will 
solve the problem.  This is a conventional, 
fixed, loss equalizer design which appears 
to offer no unusual problems. 

VI.  Further Possibilities  

Although few experienced designers 
would be likely to need further reduction 
of the problem, it should be pointed out 
that the minimum phase matrix can be used 
in the design of the fixed equalizer. 

Assume that this is to be realized by 
a single, constant-resistance section of 
the bridged-T type.  The loss and phase 
are related to a 2-terminal impedance, 
R+jX, by the formula 

eA+jB = 1 + R + jX  (5) 

Since A and B are known, both R and X can 
be calculated immediately.  Values of R 

0 
Cl) 
0 
-J 

Fig. I 
Required loss of adjustable equalizer. 

multiplied by the minimum phase matrix 
give the "minimum reactance" associated 
with R and serve to resolve X into two 
parts.  One will be realized automatically 
when R is synthesized and the other must 
be realized with a purely reactive network. 
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Summary 

Methods are described for compensating a network 
to restore the original transient driving force, 
except for a possible time delay, and for cor-
recting parts of a transient where desired.  Pas-
sive networks can be used to reshape a transient, 
to add or subtract any desired waveform anywhere 
along the transient, or to trap out undesired 
overshoots.  The compensating network corrects 
the phase and amplitude characteristics of the 
network simultaneously. 

Introduction 

When a transient waveform is transmitted through 
a system it often happens that the transient out-
put does not have the shape desired and it be-
comes necessary to equalize the system to change 
the transient to the desired shape.  Two kinds 
of equalization will be discussed.  The first 
case will be an attempt to restore the original 
signal, with a time delay permitted.  The second 
case will be a method for changing a given tran-
sient to a desired one, which may be different 
from the original waveform. 

Restoring a Unit-Step Function 

If a tuned circuit has a very low Q, there will 
be a slight rise in the selectivity curve when 
the circuit is resonant to the driving force.  In 

Fig. 1 Shunt-Peaked Circuit 

Fig. 1 let the peaking coil L be added in series 
with the load resistor R.  The normalized impe-
dance of this circuit is 

Z =  1 + DLA   .  1 + DO 
R  1 + pRC + p2LC  1 + p + p2Q 

where ab RC = 1, p = ia/mb, and Q = (410L/R. 

If equation (1) is used to find the response of 
the network to a unit-step of current', the vol-
tage output is as shown by Fig. 2.  All curves 

(1) 

start out with unit slope, and the amount of 
overshoot is determined by the Q of the circuit. 
The highest Q can be without producing an over-
shoot is Q = .25.  The curve labeled Al (a) ls 
for the semi-infinite constant-slope filter. 4 

If the reciprocal of the operational form of 
equation (1) is taken, the response to a unit-
step function will be given by 

A(a)  1 1 + s + s20 4. 1 _ 
s  1 + sQ  s  1 + sQ 

8(a) + U(a) _ e-a/Q (2) 

where  8(a) is the unit-impulse function, U(a) 
is the unit-step function, and a = at. 
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Fig. 2 Unit-Step Response of 
Shunt-Peaked Filter 

The network having this response is shown by 
Fig. 3, 

41. 

L =1 

Rol C=0 

Fig. 3 Compensating Network 

and the voltage response to a unit-step of cur-
rent is shown by Fig. 4, for various values of Q. 
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There is a unit impulse at the origin followed by 
the exponential rise to the final value of unity. 

This means that any network which has a transient 
response to a unit-step function as shown by 
Fig. 4 can be cascaded with a system having the 
transient response of Fig. 2 to restore the origi-
nal signal, which was a unit-step function at the 
origin.  Since the operational forms of the two 
networks are reciprocals, it is evident that cas-
cading them produces an all-pass system with zero 
phase shift at all frequencies.  Since the net-
work has been compensated to restore one tran-
sient driving force, it will restore any other 

driving foree. 

0 4. 

0 

0 • 0 

a  ido 

4 

Fig. 4 Unit-Step Response of 
Compensating Network 

If, in addition, a network is cascaded with the 
above two which has a linear phase shift at all 
frequencies and no selectivity, the result will 
be an undistorted unit-step response but delayed 
in time by an amount equal to the phase shift in 
the delay system, at a given frequency, divided 
by that frequency.  In many applications such a 

delay is permissible. 

The network of Fig. 3 is quite simple and is 
easy to construct.  In a later section a general 
synthesis procedure will be given which will make 
it possible to synthesize any compensating tran-

sient. 

Eaualization of a Network to Obtain 
a Desired Transient  

If a system has the unit-step response shown by 
Fig. 2, it can be compensated to change the re-
sponse to a ramp function with arbitrary initial 
slope.  This compensating network is illustrated 
by Fir. 5. 

0  a  TIME 

Fig. 5 Compensating Network 

By equation (1) the operational form of the in-
put signal is 

Ai(a)  1   1  sQ   
• 1 + s + s2Q 

(3) 

where a = abt is the normalized time.  The opera-
tional form of the ramp function is obtained by 
taking the operational form of a linearly-
increasing driving force with slope 1/a and sub-
tracting another with slope -1/a but delayed in 
time by a = a.  The operational form of this out-

put response is 

A2(a) =  -1_  [1  _ e-as]  (4) 

as2 

The operational form of the compensating network 
is the ratio of the output operational form to 
the input operational form, or 

T( s) _ 1 + s + Qs2  

as (1 + Qs) 

.  [1.1.  _  I [1 _  e- 88 ] (5) 
a 1 + Qs 

For an example of this type of compensation, the 
curve labeled Q = 1 in Fig. 2 will be changed to 
a ramp function of varying slope, as shown by 
Fig. 6.  The first case, a = 1.0, will cause the 
curve to rise faster than 
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Fig. 6 Compensation to Give Ramp Function 

the original signal, but the other two, a = 1.5 
and 2.0 will decrease the initial rate of rise. 

The inverse Laplace transform of equation (5) will 
give the impulse response of the compensating net-
work.  This is shown, for the three values of a, 
by Fig. 7.  There is a positive impulse of 
strength 1/a at the origin, an exponential rise, 
and a negative impulse of strength 1/a at a = a, 

followed by an exponential decay to the final 
value of zero. 

The integrals of the curves of Fig. 7 give the 
unit-step response of the compensating network. 
The three curves, for a = 1, 1.5, 2.0, are shown 
by Fig. 8; all start out at 1/a and rise exponen-
tially until abt = a.  At this point there is a 
sudden drop of 1/a and an exponential rise to the 
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final value of unity.  These curves mean that if 
a network has the unit-step response shown by 
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Fig. 7 Impulse Response of Compensating 
Network 

Fig. 8, such a network will have just the right 
amplitude and phase characteristics to compensate 
the transient labeled Q = 1 on Fig. 6 and change 
it to the ramp function shown. 
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Fig. 8 Unit-Step Response of 
Compensating Network 

To illustrate a more general solution, the curve 
labeled Q = 1 of Fig. 2 will be compensated by 
removing the first overshoot, leaving the rest of 
the curve without change.  The new curve will be 
the curve OABCDE of Fig. 6. 

By means of the convolution integral, an integral 
expression for the solution can be obtained. 
Thus, if Ai(a) is the original transient, A3(a) 
is the unit-step response OABCDE of Fig. 6, and 
if h(a) is the impulse response of the compensat-
ing network, we have by the convolution integral 

A3(a) = j  Ai( X) h(a - X) (1)1/4 (6) 
.10 

where the unknown function h(a - X) is in the 
integrand. 

solution of the Integral EauatiOn for the 
;moulse Resoonse  

The interval up to point A of Fig. 6 was divided 
into a number of equal subintervals (say 10) and 
the response Al(a) was tabulated throughout the 
entire range at this interval.  These points were 
then tabulated on a strip of paper as shown by 
Fig. 9.  The unknown values of h(a - X ) will be 
put on the second strip later as shown.  When the 
two strips are moved along until they line up at 
a certain point a as shown (say a = 4) and the 
corresponding points are multiplied across, the 
resulting products are the successive points of 
the integrand of equation (6).  The Newton-Cotes 
numerical integration formulas can be used to 
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Fig. 9 Sliding-Strip Method 

evaluate this integra1. 3- 4 

To start the solution it should be noted that the 
curve of Fig. 6 is not to be changed for 
0  a  1.2092.  This means that in the solution 
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-0 08918(0 - 4 8368) 

Fig. 10  Impulse Response of 
Compensating Network 

for h(a) there is a positive unit-impulse at the 
origin, as shown by Fig. 10, and nothing further 
until a = 1.2092.  At point A there is a negative 
impulse of strength 0.5463 since there is a sud-
den change in the slope of the curve of this 

32 



amount At that point.  Following the negative im-
pulse the curve decreases smoothly from the value 
0.5463, which is the second derivative of the 
curve for Q= 1 at a = 1.20 42, to zero at the 
point C.  At point C there is a sudden change in 
slope of amount -0.0801, and the second deriva-
tive is +0.0801, so there is an impulse of this 
amount followed by a smooth decrease from +0.0891 
toward zero.  Fig. 10 shows the final curve. 

The initial part of the curve was obtained by as-
suming a power series expansion at a = 1.2092. 
The Newton-Cotes numerical integration formulas 
were used to integrate equation (6), with the un-

known ordinates of h(a - X) of Fig. 10 appearing 
in the formula.  Py setting up the integration 
formulas for one tabular interval, and again for 
one half the tabular interval, simultaneous equa-
tions were obtained for the unknown ordinates of 

Fig. 10.  Once the solution was started properly, 
the ordinates were entered on the sliding strip 
of Fig. Q.  Py using successively higher point 

tO 

4. 0 * 
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f_2 04 
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0 

a .  109/  41 • 4 IO U 
.t .   

4  7 1 
0  iko.1 

Fig. 11  Unit-Step Response of 
Compensating Network 

formulas it was then easy to extend the solution 
point by point since there was only one unknown 
ordinate in each formula.  This sequence of steps 
gave the complete curve of Fig. 10. 

The integral of this curve is the unit-step re-
sponse, shown by Fig. 11.  Any network that has 
this unit-step response will compensate the tran-
sient of Fig. 6 to give the corrected curve 

OAPCDE, if the original transient (C; = 1) is 

passed through it. 

Delay Line Synthesis of Transients  

If a distortionless transmission line, as shown 
by Fig. 12, is terminated at both ends with its 
characteristic impedance, any pulse that starts 
down the line will be propagated without distor-
tion and will not be reflected from the end.  The 
resistors Ro , R1, R2, etc., are large compared to 
the characteristic Impedance of the line and do 
not load the line.  When a unit-ste, of voltage 
is applied to the input, the output from resistor 
R.0 will be a step of voltage of height depending 
on the value of Ro. It can be .,plied to the up-
per bus, labeled -, or the lower one, labeled +, 

by the single-pole double-throw switch shown. 

DISTORT iONLISS,1:1111ASIIIISSION 

4050 iv(  COEFFICIENTS 

Fig. 12  Terminated Delay Line 

At the next point on the line the response will 
also be a step of voltage, delayed one unit of 
time, and the height will be determined by the 

setting of R1. 

Fly setting the successive k's and the polarity 
switches properly, it is possible to construct 
any given transient as a series of steps of volt-
age.  The approximation can be made as good as 
desired by taking enough steps or taps on the 

transmission line. 

T 

Fig. 13  Step Approximation 

As an example, suppose the response of Fig. 8 is 
to be synthesized.  As shown by Fig. 13 the re-
sponse car be approximated by a series of steps 

0, 1, 2, 3, etc.  If the taps on the delay line 
of Fig. 12 are properly chosen, and the resistors 
and polarity switches are set properly, the re-
sponse of Fig. 13 can be approximated with as 
many steps as desired.  Pecause of the limited 
total bandwidth of the line the discrete steps 
will tend to smooth out and a surprisingly good 
approximation can often be obtained. 

The oscillograms of Fig. 14 show several wave-
forms that were synthesized to show how the small 
steps disappear.  Figs. 14(a) and 14(b) show how 
straight-line segments can be approximated.  Care-
ful examination will show that there is a slight 
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(a) 

(c) 

irregularity along the sloping lines.  Fig. 14(c) 
shows how a pulse can be added in the middle of a 
square wave, without producing appreciable ring-
ing anywhere else.  Fig. 14(d) shows how to put 
several irregularities in the center of the 
square wave.  Figs. 14(e) and 14(f) show how the 
polarity of an added pulse can be changed merely 
by changing the polarity switches of Fig. 12. 

If the incoming signal, curve Al(a) of Fig. .6, is 
sent through a tapped delay line that is adjusted 

(b) 

rTh_f---, 

(e)  (f) 

Fig. 14  Oscillograms of Waveforms 

in accord with Fig. 13, the resulting transient 
output will be the ramp function of Fig. 6, A2(a). 
In this method it is not necessary that the origi-
nal step function, or the network that produced 
the response Al(0), be available at the point 
wilere compensation is applied.  The delay line 
simultaneously corrects the amplitude and phase 
of the network to produce the desired transient. 

Parallel Method of Compensation 

If the original signal and network are available, 

Fig. 15  Parallel Method of Compensation 

a tapped delay line can be used to compensate a 
transient, as shown by Fig. 15.  The error between 

the response of the network to the unit-step func-
tion and the desired response is computed.  The 
delay line is then adjusted with the circuits 
shown by Fig. 12, to produce a unit-step response 
corresponding to the compensation required.  The 
level and polarity setters are shown in the block 
diagram of Fig. 15. 

ea-
(a) 

sE>-

(e) 

n fl 

(b) 

C›-
(d) 

Fig. 16  Oscillograms of Trap 
Compensation 

Trap Method of Compensation 

If a transient overshoot, such as that shown by 
the portion of Al(a) between points A and C of 
Fig. 6, is to be removed, a trap can be used to 
ring at just the right time, with just the right 
amount, to remove the overshoot. 

Fig. 16(a) shows an oscillogram of the sweep re-
sponse of a low-pass filter, which is fairly flat 
to cutoff but which has a transient overshoot, as 
shown by the square-wave response of Fig. 16(b). 
If two parallel traps are placed in one or two of 
the cathodes of the tubes in the amplifier stages, 
or series traps are connected from the plates to 
ground, the transient overshoot can be removed. 
Fig. 16(c) shows the traps in place, but with the 
Q's too high.  Fig. 16(d) shows the traps properly 
adjusted, and Fig. 16(e) shows the resulting tran-
sient response.  The corner on the square wave can 
be made quite sharp if the two traps are adjusted 
properly. 

The first trap is tuned to a frequency correspond-
ing to the duration of the first overshoot.  The 
L/C ratio is adjusted to match the impedance of 
the filter so it cancels just the right amount of 
overshoot.  Since the cancellation will not be 
perfect the filter will eventually start to ring 
again.  A second trap is used to cancel this sub-
sequent ringing.  Additional traps can be used if 
more precise compensation is required. 
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Conclusions  

It is often possible to restore the original 
driving force in a system if a compensating net-
work is used which corrects the amplitude and 
phase of the system.  The system may be a network, 
or propagation paths, and may include transducers. 
The resulting over-all response must have constant 
gain at all frequencies and a phase shift propor-
tional to frequency at all frequencies. 

When a given transient response is to be corrected 
to give a different transient, a compensating net-
work can be used.  If the transient is passed 
through such a network it will modify the tran-
sient to give the desired output.  The original 
driving force and network need not be accessible. 

If the original driving force is available, it can 
be passed through a network in parallel with the 
uncompensated network, to produce a correcting 
transient response.  The two outputs are then 

added together. 

When a low-pass filter has a transient overshoot 
it can often be removed by placing rejection traps 
in the filter at just the proper frequency to can-
cel out the transient.  Two such traps will usual-
ly give very good suppression of the overshoot. 

All of these methods use passive networks only. 
No diode clippers or other active elements are 

necessary to shape the pulse in the network.  Rip-
ples can be added or subtracted at any part of the 
transient.  A very simple method of synthesis en-
ables the simultaneous correction of the amplitude 
and phase of the network by turning knobs and 
throwing polarity switches on a delay line. 
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THE GROUP THEORETICAL ASPECT OF LINEAR FOUR-POLE THEORY 

Wolfgang Gaertner 
Signal Corps Engineering Laboratories 

Fort Monmouth, New Jersey 

Summa  - A few basic relations are derived 
which show hot/ group theoretical concepts may be 
introduced into four-pole theory.  The possible 
prospectives of the new approach are pointed out. 

A. Introductionl 

This paper is essentially a suggestive one. 
Its purpose is to show how group theoretical con-
sideration  may be applied to four-pole theory 
which to the author's knowledge has not previously 
been done to any considerable extent2. The new 
approach to the well established field justifies 
itself not only ty the results of its derivations 
but also by adding to the understanding and insight 
and thus providing ideas and suggestions on how to 
handle certain problems.  Furthermore it will be-
come apparent that group theory may introduce an 
additional classifying principle into the extensive 
field of four-poles.  In some respects the problem 
resembles the group theoretical approach to the 
symmetry question in crystallography3.  If we can 
show that certain elements - in our case the four-
pole matrices - satisfy the group postulates, all 
the methods and theorems of group theory may be 
epplied to these elements. 

The task of systematically treating four-pole 
theory on the basis of the group concept is very 
big and in this short discussion we only want to 
make the first step by actually deriving a few 
basic theorems which will serve as a starting point 
for the whole development.  We also restrict our-
selves here to passive four-poles. 

B. Resistanceless Four-Poles in Cascade Arrangement 

We start by considering the cascade arrange-
ment of linear resistanceless four-poles at a given 
frequency. 

= OREM 14. 

The linear passive resistanceless four-poles  
form a group G with respect to cascade arrangement.  

We represent the four-pole by the matrix 

(11, 8;) 
C; 

where for simplicity we assume Bi and Ci / 0. 
Equation (1) represents the following relations: 

(1) 

V,= 4;14 - .8/4 
/,= C;V,- D; (2) 

The direction of the currents and voltages is as 
indicated in Fig. 1. 

v, f 
II 

Fig. 1 

If we define the vector 

s, 
and introduce the matrix 

44 - 
(/  0 

(3) 

('4) 

The cascade arrangement of the four poles Fl, F2, 
....Fn as indicated in Fig. 2 

Fig. 2 

is described by the equation 

64, 4 ; *F2 - • 

where the Fi stand for the matrices (1). 
Since the Fi are to represent linear passive re-
sistanceless four-poles we have the requirement 
that 

(5) 

Pe[ V, 4 4+ g 4 1 =0  (6) 

for any relation (2).  Let us see of what form A, 
B, C, and D must be to satisfy equation (6),  We 
know from an article by TELLEGEN and KLAUSS4 that 
(6) is  equivalent to 
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„ 4  * Z iz 

V  z Z 21 /1 - Z22 12 2 

vith Z11, Z22 imaginary and 

712, = - 

The asterisk (*) denotes the complex conjugate. 

We may transform(7) into (2) and find 

171  
VI 

1, 

Z., 
-7- V2 
L.21   721 

22 

7 2/ 

where (Z) stands for the determinant 

/z/ 
/z„ Z /2 

Z 21  z 22 

, real 

(7) 

(8) 

(9) 

= 

= 

= 

14,. 
D; 

(A „ Bg\ 
Dg) 

(Ai B,) Dil 
F and Fk have the same  form  as  equation  (11)  i 

= C; 

ICA CK 

where 

imaginary, 

B,) 

C; 

1  77— 
0; 
.  

/AL., \ 
CK 

g t‘:1 

A; D,- A ,DK 
C;1 C;' C Cg 
)21  Lnd  -11=( 

C 

(10)  C x are complex.  By multiplying equations 
(14) and (15) we get 

are purely 

are real, and 

(13) 

, 

and we assume that Z21  0. 

We see therefore that F must have the general form  or 

C  C 

/ 
with A/C, P/C imaginary, B/C real, C complex.  (12) 

These relations look a little different from the 
usual form since the reciprocity relation is not 
assumed.  To prove theorem I we have to show that 
the set of the matrices Fi form a group rith re-
spect to multiplication, which means that they have 

to fulfill the following postulates: 

a)  Every product of any two matrices and the acme 
of every matrix is a member of the set. 

b)  The associative law holds:  Fi(FkFl) = (FiFk)Fi 

c)  The set contains a unit matrix Fu for which Fu. 
Fi = FiFu = Fi for every matrix of the set. 

d)  Every matrix of he set has an inverse, Fx =f1, 

so that FiFx = FiFi- .Fu 

We now prove these four postulates. 

Proof of property a) If Fi and Fk are elements 
of the group then also Fl = Fi.Fk is also an ele-

ment of the group: 

fie = 

where now 

A; 
C; 

C; 

14; /1., 
C;  C. 

AK + 
CK  CK 
BK  B; DK 
ET(  C; CK 

AK + 
Cg  C 

C ; 

(16) 

2,1\ 
9c,- c, c; c„(117) 

* 

C K  cli 

is real, 

is imaginary, 
(18) 

is imaginary,and 

is real 

If we now reduce equation (17) to the form of 
equation (11), it follows that 

C  (AK  CI 

Cpe  /  ai 
\ 

(19) 

37 



and we see that in F1 

C; C;  C; 
1. Pj is imaginary,  

Be 11; D A P!)15 real, 
c  c; (20 

A;  D; - 

The inverse of a matrix 

r,-
its given by 

(4; 
C; 

.Cic, 4 is complex, 

8.%. 
G  c; 

D), 
is imaginnry, 

Therefore F1 is an element of the group defined by 
the invariance of (6). 

Proof of  _property b) The associative law holds 
for matrix multiplication in general and need not be 
demonstrated separately in this special case. 

Proof of property c) A unit element exists 

F., = 

such that 

(21) 

(22) 

and this is readily verified.  Since (21) cannot be 
put into form (11) the invariance of (6) has to be 
proven separately in this case.  (21) is the repre— 
sentation of 

= FL, 4/1 S2, (v .,1/;) 
/i   

or 

in which 

8; 
(28) 

D,-

ID; 

A 

(25) 

(26) 

(27) 

is imaginary, 

is real, 
13/ 

is imaginary, C,* 
Therefore F1-1  belongs to the group. 

The physical significance of the inverse element is 
clear from Fig. 4. 

equivalent to 
L _ _ 

Fig. 4 

With this the proof of theorem I is completed. 

(23)  We notice that the group G is infinite and non— 
commutative. 

the direct connection of the two pairs of terminals 

Fig. 3 

/2  
  t v2 

C.  Passive Linear Four—Poles Containing Resistors  

THEOREM II:  

The passive linear four—poles containinE re— 
sistors do not form a group with respect to cascade 
arrangement.  

We prove theorem II by a special example: 
Proof of property d) For every element Fi thre 

exists an inverse element Fi-1  such that  The general conditions for the Z matrix of a passive 
-/  -/  four—pole are = r,-

(24) 
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T)7,' , 
Z  roz÷Jrn 2) 

2 n /2 
where  )) 0, M 2 0, IT1,n72-r1 

We consider the four-pole 

with 

z = 
m, 
(  17 
t7  m2) 

m,> 0 , m2 > 0 , m 2-n2 > 0 

The corresponding F matrix is 

/m,  m,rne- n2 \ 
F =  n 

7 

n 
and its inverse 

F- (n  Ti 
"772-  - I 

m m2- n z , m) 

Transforming back to the Z matrix we obtain 

or 

Z = 

z 

But here 

(29) 

(30) 

treatment of the passive four-poles containing re-
sistors therefore has to be taken up together with 
the active four-poles, after the resistanceless 
four-poles are sufficiently investigated.  For the 
present purpose we consider the passive four-poles 

z = (m,÷dm,'  
n  ml ) -i-priz (38) 

(31)  as the sun of the matrices 

z = 
(32) 

Z  ZRe5  

• 

(j n l*J--f,j rnzi  n4.1-6 "7139)  2 

the second of which is the zero matrix if the net-
work does not contain resistors.  Then we divide 
the passive four-poles into an infinite number of 
classes containing infinitely many elements, each 

(33)  class having one and only one matrix Zo and all 
the matrices Zres  which satisfy the conditions for 
passivity.  This classification can still be works" 
out in more detail.  We chose the Zo as the repre-
sentatives of these classes and discuss in the fol-
lowing the group theoretical properties of these 
napresentatives.  In theorem I we have proven that 
they form a group.  Let us now consider its most 

(34)  important sub-group. 

( 

m 2 PI   

1i-4,712-n 2 1 - 87, 1172 - n 2 (35) 

n   m,   
m, m2- n2' M t rn2 -17  2 

M, 40, M240 

(36) 

D.  Passive Linear Four-Poles  
Satisfying the Reciprocity Relation 

THEOREM III:  

The passive linear resistanceless four-poles  
which satisfy the reciprocity relation form a sub-

group Cr of the Group G.  

If we calculAtelFilfrom (9) we get 

Z,, 
Ze, (40 

In the general case of passivity without resistors 

we have 

z,, = -  = 
(37)  Z2, =  n' 

in contradiction with the condition (30) for the 
passive four-pole.  Therefore theorem II is proven 
since we showed that for a special case no inverse 
element exists.  Physically this is a very plausi-
ble result.  It is impossible to restore the power 
lost in a four-pole containing resistors by means 
of a passive four-pole.  The group theoretical 
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(41) 

(42) 



where 0( is the complex conjugate of c‹- . The re—  has to be taken up together with the active four— 
ciprocity relation for the Z—mctrix requires that  poles, and that the passive resistanceless four— 

poles form a group of which the four—poles that 
satisfy the reciprocity relation constitute a sub— 

Z i2 = Z 2/  (43)  group.  We may also point out that there are many 
more relations among the four—pole matrices which 
became apparent during the preparation of this 

or  paper but could not be included due to limitations 
= —00( *  in time and space. 

o•C is imaginary and 

(44) E.  The Ideal Gyrator 

Now let us consider matrices of the general 
form Fi, the determinant of which has the value 

(45)  /Fi/ = - 
All that we have to sLow in addition to what has 
been shown in equations (13) through (28) is that 
the combination of two elements 

and  for which , A( 

/ Ft/ =/  / c / =i 

gives also the value 1 for the determinant 

(46) 

/icy'  (47) 

But it is a well known property of matrices that if 

then 

/r-,V /F//r/ 
which with (46) proves (47). 

The unit element 

/ 

0 

also satisfies (45) and the inverse element  or 
with the determinant 

(48) 

(49) 

0C* (52) 

This problem is of considerable interest since in 
connection with net—work synthesis the question has 
arisen, if the set of known four—pole elements is 
complete and its investigation resulted in the dis— 
covery of the ideal gyrator5.  We are going to de— 
scribe how the problem is attacked by group theory. 

We know already that four—poles which satisfy 
the reciprocity relation form a group with the de— 
terminant 

A-1/ = 
(45) 

It therefore becomes obvious that there must be at 
least one more element in addition to the classical 
four—poles which giver rise to a matrix of form 
(52).  To cut the discussion short we at once con— 
. sider the simplest case 

or 

and 

7 = 

(50) 

(51) 

exists.  With this, Theorem III is proven. 

So far we found that the group theoretical 
treatment of passive four—poles containing resistms 

4o 

From (54) 

- 

= 

B 
and the conditions for the passive Z—matrix 

Z 12 = —8  7  

(53) 

(54) 

(55) 

(56) 

- (57) 

(58) 



we ret 
- 

F7'7  (r2'. 

.43 

c. 

('7) 

2/ 

it follows thz,t B And  are real. 

'No thus -h !Ain 1:1 element 

T,- = 
o 
Kis; 

or its 7rore fLmilirr 7-matrix 

("5'  
7. -05 

(57) 

(63) 

(64) 

th( iueAl ,Trrtor. 5 

It c.:1 nou be shown thLt f,-)r the reali .:ation 
of the -..rt 7eneral passive resistanceless four-
pole n, alditional element is required. 

This is an interesting example which shows how 
by purely group theoretical reasoning we are led to 
a new four-pole element.  One may expect that the 
same procedure will lead to similar discoveries in 

the fields of active four-poles and multi-poles in 

general. 

F.  Illustrations of the Basic Principle  

In the preceding argument the basis for the 
group theoretical approach to four-pole theory was 
sketched and we now want to add a few examples of 
how the whole structure of the set of four-pole 
matrices may be investigated and classified by 

group theoretical reasoning. 

THFO MAIV:  

The ideal gyrators anti the ideal transformers form 

a sub-group Gg of G. 

The combination 
Fk with the gyration 

of two ideal gyrators Fi and 
resistances si and sk 

,- (0  5".1 
/   

0 -; Oj 
= 

0 

o S, 

SK 
(65) 

(66) 

an ideal trwnsformer of transformation ratio si/sk. 
The combination of an ideal transformer F1 and an 

ideal gyrator Fm 

F,„ = 
(0  Si 

gives s1 s\ 
s  

0/ 

(67) 

(68) 

an iderl gyrator.  The cascade arrangement of an 
even nurber of ideal gyrators gives an ideal trans-
former of transf-rmation ratio 

S  .5 3 • • • • (69) 

whereas an uneven number gives an ideal gyrator of 
the gyration resistance 

(70) 

52 -54  • 

5, • S3 S5 '   

The inverse element for 

141 

( 0  Si. 

5; 

(71) 



ia 

ri -I  

The unit element 

= 

5; 

/ 0 
0 / 

s, 
01 (72) 

(73) 

belongs to the group.  It may be shown that there 
exists a sub-group of rational gyration resistance. 
Further we see that the ideal gyrator transformer 
sub-group is infinite and is the direct product 
group of the cyclic sub-groups of order 2 generated 
by each individual ideal gyrator with the gyration 
resistance 

F 

= 

(74) 

(75) 

There are several more types of sub-groups of 
G which were omitted in the present discussion. 
We only want to mention one more: 

THE IDEAL TRANSFORMER SUB-GROUP 

Among the matrices with 

/F/ = 
we especially consider the matrices of the form 

F,. = 

(76) 

, a real,  (77) 

the ideal transformers the passivity of which can 
be proven directly.  We thus have 

THEOREM V: 

The ideal transformers form a group Gt which 
is a sub-group  of tilt_gxrator .::  transformer _sub-
group with the determinant. fal  1 and thus sat-
isfyiru the reciprocity relation. 

Proof: 

12 

F 

F; Fx 

(a; 

0 

0/ 

aAl 

a&  0 
0    ci;a,r1 

We see that Gt is commutative. 

The inverse element for 

= 

is 

(71) 

(7)) 

(3u) 

(81) 

(82) 

The unit element belongs to the group.  It can be 
shown that there exists a sub-group of rational 
transformation ratio. 

G.  Concludin.g. Remarks: 

The preceding paper may serve as a starting 
point for a program of investigating circuit theory 
from the basis of group theory.  After discussing 
the passive four-poles and classifying them accord-
ing to the different sub-groups analogous consider-
ations will be applied to  active four-poles and 
2n-poles in general, as it is,felt that the group 
theoretical approach may prove useful in system-
atizing net-work theory.  At the same time con-
nections with the many existing theorems of four-
pole theory will have to be established.  Finally 
the frequency dependence of four-poles as reflectei 
in group theoretical language will have to be in-
vestigated and evaluated with respect to their caa-
tribution to the general problem of linear dIrcuit 
synthesis. 
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Introduction  

The specification of a linear system 
or network often takes the form of its re-
sponse in the time domain to a test func-
tion.  A common test function is the unit 
step or ramp function although there are 
many cases where the input function is an 
arbitrary function of time.  In any case, 
the determination of the response of the 
system is a relatively straightforward mat-
ter involving the solution of a set of lin-
ear differential equations.  However, while 
straightforward, obtaining numerical val-
ues for the response as a function of time 
is an involved and tedious task not read-
ily amenable to the use of desk calculators 
and similar computationalaids.  The alter-
native has been to apply numerical methods 
leading to numerical results which closely 
approximate the actual solution. 

The application of numerical methods 
to the solution of linear differential 
equations is not new l. It has also been 
recognized that the program for obtaining 
a solution can be described in terms of 
operational procedures2"' 7'8. What has 
been lacking in previous work, however, has 
been an interpretation of the methods being 
employed in terms of the physical problem 
as well as a simplified and orderly tech-
nique for setting up the problem by the 
average engineer.  By applying techniques 
which were developed primarily for the an-
alysis and synthesis of sampled-data feed-
back control systems, this order and rela-
tionship to the physical problem can read-
ily be established.  The technique of the 
z-transformation 4's or pulse transfer func-
tion° has been employed to solve problems 
in feedback control systems in which data 
is being sampled at one or more points. 
This established and direct approach is the 
one which has been applied in this paper to 
the numerical solution of linear systems. 

The z-Transformation  

In order to describe the z-transforma-
tion, reference is made to Figure 1 where 
a time function r(t) is sampled by means of 
a sampling switch S at equal intervals of 
time separated by a time T.  The output of 
the switch r*(t) is a sequence of pulses 
which may be represented for mathematical 
purposes as a series of impulses or delta 
functions whose areas are equal to the amp-

litude of r(t) at the respective sampling 
instants.  Thus 

+m 
r*(t) =  r(nT)6(t-nT) 

n= 

(1) 

The Laplace transform of the pulse se-
quence is given as 

[r * r(nT)  -nTs (2) 

It is noted that the Laplace transform of 
such pulsed functions always is in terms 
of E-nTs and it has become customary to 
replace this exponential by a new variable 
z = ers thus accounting for the name 
transform."  A very useful characteristic 
of these transforms is that the infinite 
series given in equation 2 may usually be 
expressed in closed form so that tables of 
z-transforms can be constructe e " in much 
the same manner as tables of ordinary 
Laplace transforms. 

One of the most useful properties of 
the z-transform is that it is possible to 
obtain the pulsed output of a linear sys-
tem by expressing a pulse transfer func-
tion G*(z) which relates the input and 
output z-transforms.  Schematically this 
is shown in Figure 2 where the output c(t) 
is sampled synchronously with the input to 
give a pulse sequence c*(t).  In terms of 
z-transforms, this relation is expressed 
as 

C*(z) = W*(z) R*(z)  (3) 

It is readily shown that W*(z) must be the 
Laplace transform of the sampled output 
c*(t) when the input r(t) is a unit im-
pulse.  The pulse transfer functions W*(z) 
can be expressed in closed form and tables 
of such transforms are available in stand-
ard works on sampled data systems 5".  An 
abridged table is given in Table I.  Thus, 
the process of obtaining the transform of 
the pulsed output of a linear system sub-
jected to a pulsed input is exactly anal-
ogous to that for continuous systems em-
ploying the ordinary Laplace transform. 
To obtain the output pulse sequence in 
the time domain, the z-transform C*(z) can 
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be inverted by contour integration, by ref-
erence to available tables or far more sim-
ply for the purpose at hand, by a process 
of simple long division.  This will be de-
monstrated later in an illustrative exam-

ple. 

Feedback systems can be treated by 
this technique by deriving relationships 
between the pulsed input and pulsed output 
for various configurations5.  One such con-
figuration which is of particular value to 
the application being discussed in this pa-
per is shown in Figure 3b.  The relation 
between the z-transform of the input and 
output is given by: 

RG*(z)   

1+ HBG*(z) 

where RG*(z) signifies the z-transform of 
R(s)G(s) and HBG*(z) the pulse transfer 
function corresponding to H(s)B(S)G(s).  It 
is noted in passing that the z-transforms 
corr esponding to R(s)G(B) or H(s)B(s)G(s) 
are not equal to the products R*(z)G*(z) 

and H*(z)B*(z)G*(z) respectively.  The 
whole transform R(s)G(s) or H(s)B(s)G(s) 
must be looked up in the tables.  Inversion 
of equation 4 yields the sampled output 
time function in response to an input r(t). 

Application of Method  

To Continuous Systems  

The application of the z-transform 
technique to the transient solution of a 
linear continuous system  will be illustra-
ted by applying it to feedback systems since 
this is where the most saving in complexity 
occurs.  The technique used is to replace 
the continuousaystem shown in Figure 3a with 
the sampled model of Figure 3h whose re-
sponse adequately approximates the actual 
response.  The system is assumed to be low-
pass so that the output c(t) or c(t) con-
tains but few high frequency comp ftents. 
The output is sampled by S at a frequency 
which is high enough to cause the error in-
troduced by the model to be small.  This 
requires a choice of sampling frequency at 
least twice the highest frequency component 
expected at the output. 

It is assumed that the frequency at 
which the systeMs freauency response is 
down approximately 40 db marks the highest 
expected output frequency.  At this fre-
quency, only the forward gain need be con-
sidered.  Therefore, as a general rule the 
sampling frequency should be chosen such 
that it is at least twice the frequency for 
which the forward gain is down approximate -

ly 40 db. 

The output c(t) in Figure 31) which is 
fed back to the input through the switch S 

(4) 

is a pulse sequence at the point x and 
bears little resemblance to the output 
which is fed back in the actual system. 
To reconstruct more closely the actual 
function fed back, an element B is intro-
duced.  B can be chosen to reconstruct 
the original fed back function to as high 
a degree of accuracy as desired.  However, 
to prevent undue and generally unwarranted 
complexity a simple element is introduced 
which reconstructs a polygonal approxima -

tion to the actual function by converting 
each pulse into a triangular generating 
function as shown in Figure 4.  This tech-
nique2'5 can be represented by a block 
described by a transfer function B(8). 
The requirement on B(s) is that its re-
sponse to a short pulse or, in the limit, 
an impulse of the same area, be a trian-
gle as shown in Figure 5a.  Such a re-
sponse is not physically realizable since 
it is initiated at a negative time but 
this is of no concern since the model is 
only mathematical in nature.  The combina-
tion of the sampling switch operating syn-
chronously with a period T and the triangle 
function generator B replace the direct 
connection which existed in the actual sys-
tem.  Any errors in computation resulting 
from use of the model are caused by the 
failure of this combination to faithfully 
reproduce the output c(t) in the feedback 

line. 

The transfer function of the triangle 
function generator is obtained by taking 
the Laplace transform of the triangle time 
function in Figure 5a.  It is observed by 
referring to Figure 5b that this impulsive 
response is the sum of three ramps, one 
advanced by the sampling time T and having 
a positive slope of 1/T, the second, a 
ramp at the origin having a negative slope 
of 2/T and third, a ramp delayed by a 
sampling time T having a positive slope of 
1/T.  The Laplace transform of these three 

components is 

45 

B(B) 
1  eTs  2  4. 1  c-Ta , (5)  

Ts2 Ts2 Ts2 

which becomes 

,Ts Ts%2 
B(s) =  (1 - e-  )  (6) 

Ta 2 

The Laplace transform of the loop 
gain of a feedback system or the cascaded 
gain of an open loop system is the prod-
uct of the transforms of the various com-
ponents.  Applying the z-transformation to 
these components as indicated in equation 
4 is an operation which yields the pulse 
transfer functions for which tables are 
available.  For transforms which contain 
only powers of B and exponential terms 



such as those in equation 6 the z-transfor-
mation is quite simple as shown by refer-
ence to Table I. 

Thus, if it is desired to obtain the 
response of a feedback system such as that 
of Figure 3a to a test function whose La-
place transform is R(s), the first step is 
to replace it with a model as shown in Fig-
ure 3b.  A choice of sampling frequency T 
is made using the guides previously de-
scribed.  The pulse transfer functions 
RG*(z) and HBG*(z) are then computed. These 
will generally be inithe form of a ratio 
of polynomials in z  . To obtain the out-
put of the model system at sampling in-
stants, substitution is made in equation 4 
and an inversion of the output z-transform 
C*(z) is carried out.  This may be done 
using standard inversion theorems but for 
this purpose, it is far more useful to first 
expand C*(z) into a power series in z by 
long division.  C*(z) is then in the form 

C*( z)  =  C o C 1 Z -1  C2 Z -2  4'  C 3 Z-3 

+ c4z-4 + c5 Z-5 +...cnz-n +..  (7) 

The magnitude of the output of the model 
system at sampling instants is simply the 
coefficient of each of the terms in the ex-
pansion at a delay corresponding to the in-
stant in question.  As an example,the out-
put at the fifth sample time is c5 in eq-
uation 7. 

Since the z-transform of the output 
pulse sequence C*(z) is the ratio of two 
polynomials in z, the process of expansion 
of C*(z) into a power series in z is car-
ried out by long division.  This may be 
done either by hand or by means of a desk 
calculator.  The process may be terminated 
whenever the desired number of points is 
obtained.  This procedure is clarified by 
means of the illustrative example which 
follows later.  An important advantage 
which results from this method of inversion 
is that it is unnecessary to obtain the 
roots of the denominator of C*(z) or C(s). 
This is generally the most time consuming 
operation in the inversion procedure for 
higher order feedback systems.  On the other 
hand, unless extensive tables of z-trans-
forms are available, the roots of the in-
ternal transfer functions G(s) and H(s) 
must be found.  In feedback systems, this 
is only a minor problem since the linear 
system generally consists of decoupled com-
ponents having relatively simple individual 
transfer functions.  In obtaining the re-
sponse of linear networks whose transfer 
functions can be expressed only in terms of 
higher order polynomials, however, the prob-
lem of obtaining roots still remains. 

Illustrative Example  

To illustrate the application of the 
technique, the response to a step func-
tion of the system shown in Figure 6a will 
be computed.  Following the rule of se-
lecting a sampling frequency at a value 
where the forward gain is about -40 db the 
convenient value of 1 sample per second 
is chosen.  The forward gain is -30 db at 
this frequency.  The sampling switch and 
triangle generator next replace the direct 
feedback path of the actual system as 
shown in the block diagram of the model 
in Figure 6b.  The Laplace transform of 
the sampled output, C*(z) is related to 
the input by the z-transform relationship 
given in equation 4.  The numerator of 
this expression, RG*(z) is the z-transform 
corresponding to the Laplace transform, 
R(s)G(s): 

RG*(z) [11 7r 
Ls2(8+1)]  s (81+1)J (8)  

From Table I this becomes (for T = 1) 

RG*(z) = 
z-1 

1-z - 

-1 -1 , 
z  (l-c )   (9) 

(1-z -1 ) (1-c -1 z-1 ) 

which upon substitution of values and sim-
plification becomes 

RG*(z) - 
-1 

Z  0.3679 + 0.2642z   
,  (10) 

1-z -1  (1-z -1 ) (1 -0 .3679z -- ) 

Similarly, the term HGB*(z) is the z-trans-
form corresponding to the Laplace trans-
form H(s)G(s)B(s): 

HGB*(z).3  s (1-E-8 )2 I 
Lss(8 + 1) 

which from Table I simplifies to 

HGB*(z) = z(1-z -1 )2 :1511.6  1 (12) 
s2 (s+1) 

which with further application of Table I 
and with the substitution of numerical val-
ues becomes 

HGB*tzi 1 .  0.1321 + 0.4198z-1+ 0.0802f-2  

(1-z -1 )(1-0.3679z -1 ) 

(13) 

Substituting the individual components from 
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equation 10 and equation 13 into equation 
4 and simplifying, the z-transform of the 
output sequence becomes 

C. (z) = 

0.3679z -1 + 0.2642z -2  

1.1321 - 2.0802z -1  + 1.3962z -2  - 0.4481z -s  

It is recalled that this expression 
is the Laplace transform of the output C 
taken at sampling instants only.  Inversion 
of equation 14 yields the values of the 
output at each sampling instant.  This is 
most conveniently done by expandiqg equa-
tion 14 into a power series in z  by means 
of simple long division.  By carrying out 
the long division with the aid of a desk 
calculator, the z-transform of the output 
pulse sequence is obtained: 

c(z)  0.3250z -1 + 0.8305z -2  + 1.125z 

+1.1721Z4+1.094z-s + 1.0111z-6  + 0.9718z -7  
+...  (15) 

The inversion of this expression into the 
time domain is simple since the heights of 
the output ordinates of the time function 
at each sampling instant is the coeffi-
cient of the corresponding term in z-n. 
These ordinates are plotted in Figure 7. 
For purposes of comparison, the curve for 
the actual response obtained from the 
exact solution of the differential equa-
tion is also plotted.  Correspondence of 
the two results in no case exceeds two per 
cent at sampling instants where both func-
tions are accurately known. 

It is to be noted that the example 
worked out above is a simple one which 
might be solved just as well without re-
course to numerical methods.  However, even 
this simple case demonstrates that at no 
time was it necessary to solve the charac-
teristic equation of the overall system for 
its roots and that the operations involveu 
are all simply handled on a calculating 
machine.  The use of z-transform tables 
furthermore makes procedures used in solv-
ing the problem analogous to those normally 
employed in solving similar time domain 
problems. 

Arbitrary Inputs  

The previous discussions centered 
about those cases where the Laplace trans-
form of the input function, R(s), is known 
explicitly.  Often, the input function is 
not so available but is given merely as an 
experimental curve or number series repre-
senting a curve which is not readily La-
place transformable.  In that case, the 

procedures outlined previously can be 
applied directly by using the number it-
self or sampled sequence in place of 
R*(z).  For instance, if an arbitrary 

(1 4)  function designated by r(t) were applied 
to the system, then the transform of the 
sampled function, R(z) would be merely 

r(o) + r(T)z  -L  + r( 2T)z-2 R•(z) = 

+  r(nT)z -n  +  (16) 

This cannot ordinarily be expressed in 
closed form but would be carried as a 
number series with as many terms as de-
sired in the expressions for the output 
sequence transform. 

For use in such cases, the computa-
tion models which more conveniently apply 
are shown in Figure 8 for the open and 
closed circuit cases respectively.  The 
triangle function generator is B(s) as 
before.  For the feedback case, the loca-
tion of the sampler and triangle generator 
shown here is not as desirable as that 
used with systematic inputs.  The reason 
is that it is desirable, from the viewpoint 
of accuracy, to place the sampler in a po-
sition where the high frequency content 
of the time function is minimal.  In the 
case of low-pass feedback systems, this 
generally occurs at the output of the for-
ward transmission path.  Nevertheless, the 
error introduced by the high frequency 
components of the sampler can be minimized 
by proper choice of the sampling frequency. 
For the cases shown in Figure 8, the z-
transforms of the output e(t) are given 

by 

c(z) = BO*(z) F(*(z) 

and 

C*(z) =  B0 (z) 11*(z) 
1+HGB*(z) 

(17) 

(18) 

respectively.  It is noted that R*(z) 
appears here as a separate component and 
that it can be inserted independently as 
a power series in z-1  of the form given in 
equation 16. 

Computation Errors  

One of the problems common to numer-
ical methods is that of determining the 
error introduced by approximating a dif-
ferential equation by & corresponding dif-
ference equation.  In cases under dis-
cussion, this resolves itself into the 
problem of ascertaining the error in the 
results introduced by a specified sampling 
frequency or, conversely, the determination 
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of the sampling frequency required to ob-
tain a specified error.  Explicit solutions 
for sampling frequency to obtain a speci-
fied error are not, in general, known. How-
ever, an approximate error can be easily 
obtained for various specific system con-
figurations, using the techniques previous-
ly described.  As an example an expression 
for the error in the system of the illus-
trative example will be derived. 

The definition of error can be best 
understood by referring to Figure 9.  Es-
sentially, the difference between the out-
put of the actual system and model system 
Dil e, the computation error.  The Laplace 
transform of this error is given by 

6(s) - c(s)  Cm(s)  (19) 

The Laplace transform of the sampled out-
put of the model, CA(s) can be expanded 
into an infinite series 5 

+oh 
1 

Cn (s+nico o)  it; Cm (s) (20) 

This approximation holds for the system 
considered here because the contributions 
of other than the central term of the ser-
ies, C(s), are small, since the sampling 
frequency is chosen to be high compared to 
the pass band of the system. 

Substituting the central term only in 
equation 19, there results for the system 
error 

6 611)::1  2112/1911L1  R(s)G(s)   

1 + G(s)  1 + 18( 00(8) 
(21) 

Simplifying this expression, and making use 
of the fact that 0(s) and B(s)G(s)/T are 
approximately equal, 

hir B(s) - 1] (0(012B(s) 

El + ocrof 
(22) 

The triangle function generator transfer 
function B(s) is given in equation 6 in 
terms of exponential operators.  If these 
exponentials are expanded into a power ser-
ies, equation 22 becomes 

6(s)  T2s2 

12 W(s)C(s) + T484  
36 0 

W(s)C(s)+... 

(23) 

where W(s) represents the overall trans-
mission function, 

w( 8) 

1+0(s) 
(20 

Consistent with the approximation made in 
equation 20 only the first term of equa-
tion 23 need be considered.  Thus a model 
for obtaining the approximate computation 
error in a low-pass feedback system is 
given in Figure 10.  The output of the 
triangle function generator, CB (s) is a 
polygonal approximation of the actual out-
put C(s) and, for purpose of error compu-
tation, differs from it only negligibly. 
Thus, it may be stated that 

c(a).1eC*(s)B(s)  (25) 

The Laplace transform of the error func-
tion then becomes 

B(s)W(s)C'(8)  (26) 

fr (z-2-z-1) c*ww*(z)  (27) 

where W*(z) is the pulse transmission func-
tion of the system. 

t_1 ::;T282 

Now if the original problem being 
computed was the response of the system 
to a unit step input, W*(z) can be found 
with acceptable accuracy by obtaining the 
first back difference of the approximate 
output already computed.  While a delay of 
about one-half a sampling interval is in-
troduced this is readily eliminated by 
shifting forward the first difference by 
one-half a sampling interval.  Thus, 

W* (z) -(1-z -1 ) C*(z)] (28) 

If this technique is applied to the 
illustrative problem given previously, the 
value of the error at sampling instants is 
shown in Figure 7.  The error can be com-
pared to an exact computation of error and 
it is noted that the results agree closely. 
At least insofar as the illustrative exam-
ple is concerned, the general rule of samp-
ling a low-pass system at a frequency at 
which the forward transmission is down ap-
proximately 40 db is a good one leading to 
errors in the order of a few per cent. 

Conclusions  

The physical interpretation of numer-
ical techniques for obtaining solutions 
described by linear differential equation 
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is a fruitful one.  It leads to an under-
standing of the effect of the sampling 
procedure on the solution.  In addition, 
the expression of numerical techniques in 
terms of the z-transform leads to a solu-
tion in terms of a sampled-data system 
analogous to the original continuous sys-
tem.  These sampled-data systems have been 
studied extensively and are in a state of 
development which makes their use by en-
gineers a straightforward procedure.  Thus, 
the numerical solution of the output of 
linear systems in response to either sys-
tematic or arbitrary input functions is a 
practical process comparable to convention -

al transform methods. 
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Table I 
Table of corresponding Laplace and z-transforms. 

Laplace 
Transform 

1r(s) 

z-Transform 
P• (z) 

u( T3)V(s) 

e-nTs 

1 

1 

82 

1 

as 

1 
s + a 

Tz - 1 

(1-z - 1)2 

T2z- 1(1+z - 1) 

2 (1-z - 1)3 

1 
-a  - 

1 -e 

z -1( 1-e  -aT) 
a 

(5 + a)  (1-z -1 ) (1-e  z ) 

a 

s2 + a2 

5 2  a2 1-2z -1 
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z_ sin aT 

1-2z -1 cos aT+ z -2 

1-z  cos aT   
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cos aT + z  
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Introduction  

The analysis of linear time varying systems 
is inherently more difficult than the analysis of 
constant coefficient systems.  There are two 
reasons for this.  In the first place the response 
of a linear time varying system is a function of 
two variables, namely the time at which a distur-
bance is applied, and the time at which the 
response is measured.  This is contrasted to a 
constant coefficient system when the response is a 
function of only one variable, the time difference 
between the application of a disturbance and the 
measurement of the response.  In the second place 
the response of a linear time varying system must 
usually be described by more complex functions 
than the exponential functions which describe the 
response of constant coefficient systems. 

The pencil and paper analysis of linear time 
varying systems is usually ruled out because the 
complex functions which are required to describe 
their response are either not known or not tabu-
lated.  For this reason and because of time con-
siderations the analysis of linear time varying 
systems is usually performed upon an analog com-
puter.  While the computer eliminates the diffi-
culties associated with complicated functions 
required to describe the response, it does not 
overcome the added complexity involved because the 
response is a function of two variables.  In this 
paper we will describe a technique which may be 
used to instrument a linear time varying system 
upon an analog computer which to a certain extent 
reduces the complexity associated with describing 
a system response which is a function of two vari-
ables. 

The Analysis of Linear Systems 

There are two basic methods of analyzing 
linear constant coefficient systems.  The first 
method uses the steady state response to a sine 
wave of various frequencies to describe the system. 
The second method uses the transient response to 
an impulse or step function to describe the system. 
Once either of these characteristics is known the 
response of the system to any arbitrary input may 
be determined. 

Either of these techniques may be used to 
analyze linear time varying systems.  However, the  tributed noise since in this case the probability 

transient response method is by 
when an analog computer is used 
There are two reasons for this. 
place the frequency response of 
varying system is a function of 
response of the system is to be 

far the simplest 
in the analysis. 
In the first 
a linear time 
time.  If the 
analyzed at more 

than one instant a variety of frequency response 
curves is  necessary.  In the second place an 
analog computer operates in the time domain 
and the obtaining of frequency response character-
istics, while possible, represents a long and 
tedious procedure.  In addition frequency response 
curves cannot be operated upon by the computer for 
further system analysis. 

The transient response method for linear time 
varying systems lends itself quite readily to an 
analog computer because a time varying system 
usually appears to be in the transient state.  In 
addition the impulse or step function responses 
which are used to characterize the system are 
functions of time and can therefore be operated 
upon by the computer for further analysis. 

The analysis of a system usually reduces to 
determining the response of that system to arbi-
trary driving functions.  The response of the 
system to initial conditions can be obtained by 
solving for appropriate equivalent driving func-
tions.  If the response of the system to an 
impulse is known, we may determine the response to 
an arbitrary input by using the convolution inte-
gral.  Let h_ 1(t,t 1) be the response of the system 
at time t to an impulse applied at time tl. The 
response 600 to an arbitrary driving function of 
f(t) is obtained froml 

ao  (1) 

90(t) = ff(ti)h...1(t,ti)dti 

Here f(t i) has been assumed to be a nonstatistical 
function.  In the case where we have white noise 
input with spectral density Wo, the standard devi-
ation of the output (0r),may also be obtained from 
the weighting function.' 

dr2(0 = 1/2 1'W0(t 1)[h-1 (t t 1)..]2dt 1 

CO  (2) 

In practice, we generally use normally dis-
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distribution of the input is not changed by the 
system and the response may be described by two 
simple parameters, the mean and the standard devi-

ation. 

If we attempt to use an analog computer to 
perform the above mathematical operations we run 
into some difficult).  The reason for this is that 
the integrating procedures described above are 
with respect to tl. the time at which the impulse 
is applied.  If our system is simulated upon the 
computer and an impulse introduced, the resulting 
weighting function is a function of t, (the time 
of measurement of the response) for a particular 
value of ti. The computer could be operated a 
number of times always introducing the impulse at 
a different time t1 and measuring the response at 

a particular value of t.  The weighting function, 
h(t.ti) could then a determined point by point for 
a particular value of t as a function of ti. This 

procedure is long and does not allow the computer 
to perform the integrations described in Equations 
(1) and (2), except on a greatly expanded time 

scale. 

The analog of a linear time varying system. 
therefore, does Ro1 provide us with the desired 
weighting function for easy system analysis.  More 
desirable would be a system which provides us with 
the impulse response as a function of the time at 
which the impulse is introduced.  This new system 
is called the atwint system. and its validity and 
instrumentation have been described by Limning and 

Battin. 3 

We will show how the adjoint system can be 
synthesized from the original system from the 
block diagram. using relations between various 
weighting functions.  Long mathematical argument 
is avoided, so that the physical nature of the 
problem becomes more apparent.  A short appendix 
contains a discussion of the mathematical aspects 
of the problem, but this material is not necessary 

to the development. 

Some Relations Between Weiahtina Functions  

We will need the relations developed below in 

the sections to follow. 

In the transient analysis of constant coeffi-
cient systems one is usually concerned with the 
response of the system to impulses, steps. ramps, 
etc.  Because superposition applies, it may easily 
be shown that the response to a step is the time 
derivative of the response to a ramp.  In addition 
the response to an impulse is the time derivative 
of the response to a step.  Similar characteristics 
may be shown to apply to linear time varyina  

systems. 

We call the response of a system to an im-
pulse or any of its derivatives or integrals. 
"weighting functions".  We first consider the 
system shown in Figure 1.  (u(t) is the unit step 

function). 

e, 

ti 

8. (t-t) u(t-t) 

h It t ) 

response  to  romp 

Figure 1 
Ramp Response 

Combining two ramps of magnitude 1/4 1.1, and 

separated by At i, we have the result shown in 

Figure 2. 

ei A 
1   

a  hift,1•11—  lt,t1.4-,t, ti 

At, 

Figure 2 
Step Response 

Now we go to the limit as ati, 0 . The input in 

Figure 2 then becomes a unit step. and if we call 

the response to this ho(t.t.1). we have 

= _1)111(t.ti)  h (t t ) 
o ' 1  bt 1 

Similarly, 

h (t  ) = _-aho(t.ti) = til(t.t 1)  
-I .t  -64  b t12 

It is interesting to note these derivative 
relations between the weighting functions are all 
with respect to tl, the time at which a distur-

bance is applied.  These relationships apply to 
all linear time varying systems.  It would now 
seem reasonable to look for some relationship 
between the weighting functions which is particu-
lar to the system to be analyzed.  If this can be 
done we may then formulate a differential equation 
with the desired impulse response as the dependent 
variable and the time at which a disturbance is 
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applied. tl, as the independent variable. 

Also of interest is the response of a time 
varying gain element to impulse and doublet 
functions.  We have summarized the results in 
Figure 3.  The result in Figure 3b follows from 
Figure 3a, if we differentiate input and output 
with respect to tl, a procedure justified by the 
superposition property of linear systems. 

8 (t-t.) 

(a) 

a 
—>-- a ti 

f (t) 

f (t )8 (t- t 

f(t ) 8' (t-t 
(120 

Figure 3 
Impulse and Doublet Response 

Time Varvinu Feedback System  

Consider the feedback system shown in 
Figure 4. 

a 
f (t) 

— 

Figure 4 
Time Varying Feedback System 

Here 1/p is the transfer function represent-
ing integration.  There are two integrations in 
the above loop and the system in general would 
have two initial conditions.  Let us determine the 
driving functions which are equivalent to a unit 
initial condition at point (B) at time tl. 

Suppose we have a S function at time t1 at 
the input: 

ei(t) = &(t-to 

It is easy to see that this particular input will 

(5) 

give an initial condition of magnitude f(t 1) at 
point (A) and nothing at point (B) 

Next consider a doublet at the input: 

0 i(t) =  -t 1) 

The output of the f(t) block is 

(6) 

f(t 1)6'(t-t 1) - f.(t 1)6(t-t 1) 

The input (6) produces an impulse of magnitude 
f(t 1) and an initial condition of magnitude 

4 .(t1) at point (A).  The impulse continues 
through the circuit to produce an initial condition 
of magnitude Kf(t i) at point (B) and magnitude 
-f(t 1) at point (A).  The input required to produce 
a unit initial condition at point (B) alone can be 
made up of a combination of (5) and (6) in the 
following manner. 

8 (t-t) 
-404— f (t)   

8'(t-td 

Figure 5 
Effects of Impulse and Doublet 

To obtain the desired unit initial condition at 
(B) we need, referring to Figure 5, an input of 

1 
ur-tir e(t-t1).  But this places at point (A) 

the initial condition: 

f°(t1)  1 _ _ 1(1.4r (t1)) 

Kf(ti)  IC  K  f(t1) 

Now this can be cancelled if we introduce a 6 
function at the input of magnitude 

f(t1) L K  f(t ) 
1 

Therefore, the total input required to place a 
unit initial condition at (B) is 

1 1  el (1413 -111 )  6(tlactl)ect-ti) uffir 

The response due to this input is 

(7) 
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(8) 

n  = 117111 111 4' 117_ 0 11111 .1. Lila h (t.t 1 ) 
'o  kf  lt 1(t i)  Kf  1  Kf 2(ti) 

-1   

A second and different way to put a unit 
initial condition at point (B) is to introduce a 
unit step function as shown in Step 1 of Figure 6. 

STEP I u (t-t.) 

STEP 2  

(some) 

STEP 3  

(some) 

Figure 6 
Second Input to Put Unit at (B) 

This input can be moved around the loop as in 
Steps 2 and 3 of Figure 6 without changing the 
output.  The net response. as shown in Step 3 is 

o = u(t-t 1) - ho (t t1 ) 

Now, since this response (9) is due to a unit 
initial condition at (8), as was (8). the two can 
be equated.  We call this the method of equivalent 
inputs.  The resulting equation is 

h (t ti)  h -2  '   + 

(9) 

(10) 

(t,ti)  f'(,t1)  h_ i(t.t i) 

Kf(t1 )  Kr-(1. 1)  A 

= u(t-t ) - h (t t ) 1  o  1 

or. collecting terms  (11) 

_ 1 35_ 1,1_1(t,t1) h_1(t.t1) 
K Zt 1  f(t 1 )  kf(t 1 ) 

+ ho(t.ti) 

= u(t-t1) 

We note in passing that (10) gives a relation 
between weighting functions, which can be used to 
find a third when two are already known.  Now. 
differentiating with respect to t1 and letting t2 

be the time of observation, (11) becomes 

(12) 

21-;-- PLA.!12. 1111 + 1. 1 4h_1(t2.t1)1 
Zt I  K bt 1 f(t ) 

- h_ 1(t2,t 1) = - 6(t2-t1) 

This is a differential equation with the impulse 
response function as the dependent variable and 
tl' the time at which an impulse is introduced as 

the independent variable.  The time of observation 
t2 is a parameter of the equation.  In order to 
put (12) into a form suitable for computer instru-
mentation, we make the change of variable. 

t = t2-t i 

where t is real computer time.  Then (12) becomes 

k 2 
I v  [..h_1(t2.t2 -t)-1 4. h (t 2J2 -t) 
ST%   ((t2-t)  ibt I  f(tr o 

+ b_ 1(t2.t2-t) = &(t) 

A block diagram of this equation is shown in 

Figure T. 

Figure 7 
Block Diagram of Adjoint 
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h-I(t2' t2 -t)-\ 

And. rearranging, we have finally the block dia-

gram in Figure 8. 

Figure 8 
Adjoiat System 



Comparing Figure 8 with Figure 4, we note the 
following: 

1.  The 
reversed. 

order of elements around the loops is 

2.  The time varying element in Figure 8 
starts with the value f(t2) which was its final 
value in Figure 4.  The argument, (t2- 0, decreases 
as time goes on. 

3.  The 
are reversed 
both systems 

positions of system inputs and outputs 
in the two figures.  The inputs to 
are impulse functions. 

4.  There is available in the system of 
Figure 8, the function h_1(t,,t2-0.  This is one 

of the weighting functions, But measured at t = t2 
for varying time of application of the impulse. 
This is a function which can be used in the way 
described in the introduction to find the response 
to a general input, or the mean square response to 
a statistical input. 

The properties listed above are those of the 
adjoint system described by Laning and Battin. 3 
The adjoint, therefore, has then been arrived at 
through a physical argument.  A mathematical 
discussion of the adjoint and an example of the 
method of drawing the block diagram for an adjoint 
system will be found in the appendix. 

It is interesting to plot representative 
weighting functions produced by the two systems. 
the original, Figure 4, and the adjoint. Figure 8. 
These might be as shown in Figure 9. 

Mi.2' tI) 

I >t 

t2 

hft2' tI 

h(t2' t2-t) 

Original  System  Adjoint  System 

Figure 9 
Typical Responses of System and Adjoint 

Conclusions  

The method discussed has led to a development 
of the adjoint system by a physical argument, 
avoiding the discussion of Green's functions and 
the like.  It may, therefore, provide more physical 
intuition in understanding the adjoint system.  The 
Equation (10) can be used to find other weighting 
functions graphically from ones already computed. 

The system used for illustration of the 
method can he changed to fit specific problems. 
However, the adjoint system can be drawn immedi-
ately, and the counterpart of Equation (10) found 
from it. 

The authors wish to thank R. K. Roney of 
Hughes Aircraft Company for his part in discussions 
relating to this work, and Barbara Pudewa for her 
help in preparation of the manuscript. 

Aooendix 

It has been shown3 that the adjoint system may 
be used to obtain the weighting function for a 
linear time varying system as a function of the 
time of application of the impulse.  In this 
appendix we will show for a simple system how the 
adjoint is obtained from the block diagram; how 
the equation for the adjoint system is related to 
that for the original system; and how the solu-
tions of the two system equations are related. 

Let us consider the servo with varying gain 
shown in Figure 10.  The input is an impulse 
function at time t1 

8 (t-t 1 

Figure 10 
Time Varying Servo 

The equation describing this system is 

1  dao go = 8(t-t 1) 
Kot dt 

The system could be simulated as shown in 
Figure 11. 

Kot 

8(t-t1) 

Figure 11 
Computer Block Diagram for Figure 10 

(13) 

le\ 

56 



In Figure 11, we define the impulse response as 

60(0 = h_ 1(t0. 1) 

Now the adjoint system is found from the original 

by: 

1.  Turning each element in the loop around, 
and reversing the direction of signal flow. 

2.  Letting the variation of time varying 

elements start from some time t2' and run backwards 
relative to their action in the original system. 

3.  Interchanging the input and output of the 
system.  The new input is Mt).  We will show that 

the output is h-1 (t2,t2-t). 

Following these rules, we have in Figure 12 
the adjoint system for Figure 11.  We will call 
the impulse response of this new system 00(t). 

Kolt2-11 

o t) 
6(t) 

Figure 12 
Adjoiut System for Figure 11 

The equation for the system in Figure 12 is 

d_ 
9o(t) = dt Ko(t2-t)  0(t) ] 

We change variable, x = t2-t, 90(t2-x) = 

eo(x,t2), and (14) becomes 

(x,t2 +iii0(x,t2) = S(x -t2) 
dx  Kox 0   

This equation is the adjoint* of 

_i.  11_ 1(x,t 1) + h_1(x,t1) = S(x-t 1) 

where we have used h-1 for the solution since the 

equation is the same as (13).  Now a property of 
the solutions of a pair of adjoint equations like 
(15) and (16)* is (under certain conditions on 
initial values which are satisfied here) 

-6 0(1. 11.5 2) = h-1 (5 2:§1 ) 

so that 

(x,t2) = h_1(t2,x) 
0 

or 

610(t2-x) = h_ 1(t2,x) 

Now, letting  x = t2-t, we have 

00(0 = h_ 1(t2,t2-t) 

which is the desired result. " 
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f (x) -- ii by (-) d  f (x) 
n  dx  --ff  n 

dx 

57 

h K   -1 (t,t 1) = K t exp(--2(t2 -t 12 )) 
o 1  2   

9 Ko   0(0 = K(t2-t) exp( r(t2 -2t2t)) 

iT (x.t2 ) = Kx exp( Ikl(x2-t22)) 
0   



INTERCONNECTION OF LINEAR TRANSBITERS',i 

Hern,2rt Kurss 
Microwave Research Institute, Polytechnic Institute of Brooklyn 

Brooklyn 1, New York 

Summary 

The analysis of a network whose internal 
structure is that of a linear graph is well known. 
In particular; the elimination of hidden meshes in 
a mesh analysis or hidden nodes in a nodal analysis 
has been amply discussed.  The point of this paper 
is to extract and extend the algebra involved and 
thereby solve more general problems such as the 
interconnection of multiport linear transducers 
where the linear graph characterization is either 
invalid or irrelevant. 

As a preliminary the framework of trans-
ducer theory is outlined. (Figure 1).  The novel 
feature beyond the customary treatmentl is the 
partitioning of the analytical variables into two 
sets suggestively denoted as concealed variables 
and accessible variables.  Whereas the transducer 
constraints are imposed upon the entire assemblage 
of analytical variables it is only the accessible 
variables which directly participate in determining 
the observables 2 . The natural occurrence of con-
cealed variables and indeed the motivation for the 
accessible-concealed terminolcgy is illustrated by 
the interconnection of transducers. (Figure 2). 

It is essential, at this point, to develop 
methods by which one can modify the constraints 
and variables of a transducer in an unobservable 
manner.  In particular those methods (Figure 3) 
which exploit the aforementionec partitioning are 
accorded special attention.  The discussion of 
these latter methods was previously initiated3 and 
is supplemented here. 

A simple but basic type of constraint is the 
vanishing of a single dependent variable.  Jets of 
such constraints, hereafter referred to as con-
cealed constraints, are removed by the Campbell 
(elimination of concealed circuits) formula , the 

• 
This work was performed for AFCRC under Contract 
AF-19(604)-890. 

I_  AN ALY TIC A L  VA RI A B L E S 

TRANSDUCER 

CONSTRAINTS 

F  (  Xc 

ACCESSIBLE 
VARIA BLES 

IL  OB S E R VA BLE S  

Xo f[xj 

Fig. 1 - Transducer behavior. 
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Yron (partitioned matrix) reduction formula, or a 
variant of Cramer's rule.  (Figure 4) (For details 
see reference 3).  It is then shown how problems 
with arbitrary but linear constraints are reduci-

ble to problems with concealed constraints.  Indeed 
the general case can be so reduced by an im-
bedding procedure which rerards the simultaneous 
occurrence of dependent and independent vari-
ables as a sinrle vector in a hirher dimensional 
space (Figure 5) (A variant of this scheme in 
which the imbedding is done symmetrically was 
employed by r.P. Reed4 in his nodal analysis of 
a linear graph when the branch impedances no-
ssess mutual inductance.)  However, the general 
imbedding, though foolproof, may yet involve 
needless computational complications and hence 
it is wisest to use matrix algebra as an ad-
junct to or replacement of the inIedding pro-
cedure.  For example the impedance-transducer 
connection of impedance-transducers is reduced 
to concealed type constraints when one writes 
the connecting equations in a judiciously im-
bedded form and merely adds this to the un-
connected performance equations.  (Firure 6) 
The same device suffices for the interconnection 
of scattering matrices (Figure 7).  Finally the 
use of matrix multiplication, typified by the 
Kron connection "tensor", is discussed. 
(Figure P) 
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rELIMINATION1 

N CONSTRAINTS} ---•  --' 
2N VARIABLES 

Fig. 3 
Unobservable "concealed variable" operations. 
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Fig. 5 - General reduction to the special case. 
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DYNAMIC CHARACTERISTICS OF FOUR-TERMINAL NETNORKS 

W. W. Happ 
Sylvania Eleotrio Produots, Inc. 
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Abstract 

A set of six anti-oommuting symbols is used 
to establish systematioally relationships 
between dynamic charaoteristios of four-terminal 
networks.  Numerous examples are given, several 
from transistor oirouits.  The method is parti-
oularly useful in conjunction with signal flow 
graphs. 

1.  Dynamdo Characteristios:   Notation 

A set of dynamic characteristics of the 
form ( x/21 y) z can generally describe the per-
formance of a non-linear network over a suitably 
small region of operation.  A four-terminal net-
work, as shown in Fig. 1, IMDOOSS an interdepend-
enoe between the four basio variables, El, E2, 

12, whi,-11 may be interpreted as input and out-
put voltage and the oo:resoonding currents.  Thus 
x, y, and z in the expression (a ,va y) t can be 

any of the four basio variables, yielding 41 or 
24 dynamio ch raoteristios.  Of these, 12 are 
listed in Table 1, the remaining 12 are obtained 
by interchanging subscripts 1 and 2. 

Relationships between dynamic oharaoteristios 
can be obtained rapidly and systematioally 

(i)  1,7 defining an anti-oommuting symbol, 
called the deviation of x with respect to y, 

(X, y)  -(Y: x) (1.1) 

(ii)  by expressing dynamic characteristics 
as ratios of two deviations: 

•x)  a) 
Y/ z  Or, z) (1. 2) 

As an example, oonsider the product of two 
dynamic charaoteristios.  From (1.1) and (1.2) 
one obtains in the terminology of Table 1: 

zoo y00 .(E lf II)(II,I2).(I1,E1)  ASO 
12  11  T cyrycffiTril (ff17 7  -11 

Thus, the 24 dynamic characteristics of a four-
terminal network can be expressed as ratios of 
six deviations: 

(EvEz)(E1,1 1)(E1,1 2)(E2,1 1)(Ez,I 2)(I 1,I 2) 

Table 2 lists z, y, g, h, a, and b circuit 
parameters by stating the network equations in 

terms of deviations as defined by (1.1) and (1.2). 
The corresponding flow graph shows 

(1)  The partial derivative, i•g* Ell" 
(ZEL/aI l)I0 , marked by an arrow. 

(ii)  The independlint variable or souroe, 
marked (e), e.g. I. 

The dependent variable or sink, marked 
(o), e.g. R. 

The network equation, " ' El " zll 
+ z1 f I?, an equation being equivalonE 
to an  hhee  arrows terminatin& at one 
point. 

In addition Table 2 shows that the notation 
defined by (1.1) and (1.2) leads to a concise 
formulation for the followingt 

Passive network (EI,I 1)•(I 2,E2)  (1.3) 
Symmetrioal network (EI,I 27.(II,Ez)  (1.4) 
Uniqueness 
(F1, 11)(E2, 12)+(I 1,E2)(EI,I 2)+(E2,11)(II,I 2)=0 

(1.5) 

The uniqueness condition (1.5) states 
z, y, g, h, a, b parameters represent 
physical network, hence (1.5) is used 
verting from one set of parameters to 
and was used in obtaining the oirouit 
in Table 2. 

that the 
the sans 
when con-
another 
determinant 

The purpose of the investigation is: 

(i)  to derive rigorously equations (1.1) 
to (1.5). 

(ii)  to examine those properties of the 
(x,y) symbols which are relevant to the analysis 
of four-parameter networks. 

(iii)  to demonstrate the usefulness of the 
method of deviations by examples, partioularly 
in conjunction with the flow graph technique. 

2.  Derivation of Basic Relationships Between 
Dynamic Characteristics  

The deviation of x with respect to y is 
here defined as 

(x,y) 

It follows that 

(Y1 a?  
(x, z) 

2fx1 
"k2iti (2.1) 

(1.2) 

which is independent of t.  The parameter t may 
remain unspecified as far as calculations of 
dynamic, characteristics are concerned.  Also from 
(2.1) 

(x,x)  0 

(xy,z)  x(y,z) + y(x,z) 

41. 

(2.2) 
(2.3) 

If a functional relationship between x, y and z 
exists, 

f (x,y,z)  0  (2.4) 

Denoting partial differentiation of f with rospeot 
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to x as fx, we have from (2.1) and (2.4). 

(x,$) fx+ (y,$) fy + (z,$) fy .. 0 

let s assume the values x, y, z oonseoutively, 
then the three equations (2.5) are not independ-
ent, and the determinant D3 vanishes, where 

D3 .  (x,x) (y,x) (z,x) 

I 

(x,y) (Y,Y) (z,y) 
(x,z) (Y,z) (z,z) 

Taking (2.2) into a000unt, we have 

D3 . 0 if (x,y) . -(y,z) 

To show that (1.1) is not only a sufficient but 
also a neoessary oondition for (2.4), we may 

oompute from (1.1) and (2.3) 

(z,xy) . y(z,x) + x(E,y)  (2. 7) 

Setting z . xy, we have from (2.2) and (2.3) 

(2.6) 

(2.6) 

(1.1) 

(xY, xY)  xY [(x.Y)  (y,x)]  (2.8) 

whioh is satisfied if, and only if, (1.1) holds. 

Several interpretations of the parameter t 

and of the concept of deviation are possible: 

(a)  The deviation may be regarded as the 
response (or fluctuation) of x due to a stimulus 
(or drive) t with the variable y held constant. 
Thus (x,y) is equal in magnitude but opposite 

in sign to the fluotuation of y with x kept oon-
stant under the same drive t, namely (y,x). 

(b)  A geometrical interpretation of (2.1) 
is possible by co nsidering a surface in the x, 
y, t soaoe.  The direction and the soale of that 
coordinate "axis" must be adjusted to satisfy at 

all points the relation 

since 

The dimension of eaoh quantity in (2.9) and (2.10) 

should be oarefullY noted.  For the purpose of 
oomputation it is rarely necessary or desirable 
to specify t.  Indeed the arbitrary nature of t 
in the deviation (x,y) is similar to the arbit-
rary nature of s in (1) 00y)8 when a set of 
mutually dependent partial derivatives arc all 

in the s plane, such that the above expression 
beco mes a function of x and y only. 

(o)  Alternatively, the deviation of x with 
respect to y may be defined as the determinant 

(-11 )  . 1 
Y t 

(2.9) 

(2.1)  gives  (t 0E)  • 1 and (t,y)  1 (2.10) 

(x,y) 

where r and s are arbitrary funotions which are 
similar to t in (2.1) and which may remain un-
specified when evaluating dynamic characteristics. 
This definition already implies (1.1) and 
(r,$) . 1  (2.12) 

Most of the recent work 1,2,3,4,5,6 on dy-
namic characteristics or 'small signal' circuit 
parameters of active four-terminal networks has 
been done in connection with equivalent circuits 
for transistors, hence several applications of 
this technique to transistor circuits will be 

given. 

Anti-oommuting symbols similar to the 
deviation (x,y) have been used for "small 
parameter" systems in thermodynanios7,8, oeles-
tial dynamios 9,  1° and quantum dynamios11 ,12 
where the symbol (x,y) is frequently referred to 
as Jaoobian, Poisson bracket or Perturbation. 
The term deviation appears more appropriate 
since a fluctuation of x at constant y is 
measured by the mean deviation or by the 
standard deviation of x from it equilibrium 
value.  In the case of dyna mic characteristics 
of circuit elements, it is also sometimes con-
venient to think of the deviation (x,y) as the 
RMS deviation of x from its equilibrium value 
as a result of a small test signal applied to 

the circuit. 

3.  The Four-Terminal Network:  Uniquefless 

Any four-terminal network is subjeot to a 

requirement of uniqueness; namely, given any 
two of the basic variables, there must be one, 
and only one, value for each of the other two 
basic variables.  This requirement corresponds 
to the 'equation of motion' in mechanics and 
to the 'equation of state ' in thermodynamic's. 

Thus if we assume that there are four basic 

variables as shown in Fip:. 1 these are not in-
dependent but related by an equation 

F (El, E2,  Il 12) . 0 

Differentiating F with respect to t at constant 

s, we obtain 

F (E 6 )+ 21 F (E 8 ) a!  11)+ 2-E I T  6).0 

ZE1 19  2"2  29  ail l' aI2 2'  (3.2) 

Let s equal El, E2, I, I, consecutively.  The 
four equations (3.2) are Independent if the 

determinant 

where 

D2 / 0  (33) 

(81,E0,;E1,5 5,4)21'12), 
D2  (E2,E W E2,D 2' "29 '1/ -̀20-2 ' 

(I i,E1)(I I,E2)(II,I1)(Ii ,I 2) 

(1 2,E1)(12,E2)( 12, 11)( 12,1 2) 

Evaluating the determinant with the help of 

(3.1) 

(3.4) 

(2.11) x(E1,12)+ 01,E1)(I ,I 2) (3.5)  

(1.1), one obtains 'I'D  (E1,E2) 01,I2)+(E2,I 1) 

Since the four basic variables El,E2,1 1,12 are 



oonneoted by two relations, or oonstrainte, D2 
must have a double zero and hence 

D • 0  (1.8) 

This is the uniqueness condition. 

It is instructive to examine the alternative 
definition of the deviation as given by (2.11). 
Substituting (1.2) into (2.11) yields 

(x,Y) 

xis) cy.a)  
(r,$)  (r,$) 

.(2L E.). 
(11, r) 

cy, r)  
(s, r) (3.6) 

Clearly (1.5) and (3.6) are equivalent under the 
normalization 

(r,$) = 1 

4.  The Passive Network:  Reoiprooity 

Table 2 shows that the oondition for a 
passive network oan be stated concisely in terms 
of deviations as 

(2.12) 

(Ev il) • (1 2, E2)  (4.1) 

This reciprocity condition does not hold in 

oirouits with active elements, such as vacuum 
tubes or transistors.  In thermodynamics a 
similar reciprocity requirement exists, namely 
the Seoond Law of Thermodynamics, and in 
Mechanics, a reoiprooity requirement 000ura in 
Newton's Law of Action and Reaction.  Analogous 
quantities and laws are oompared in Table 3. 
Although the reoiprocity oondition has been 
experimentally well confirmed, its theoretical 
foundation has been a source of error and oon-
fusion.  A summary and critical discussion of 
this problem was given by deGroot13 , who 
contrasts satisfactory and unsatisfactory deri-
vation of the reoiprocity relation and remarks 
that "it seems rather amazing that one can arrive 
in so many incorrect ways at the oorreot answer" 
and shows "how one oan get correct answers with 
inoorreot methods".  Since numerous derivations 
of the reoiprocity relations given in the 
literature are based upon methods oritioized 
by deGroot, a proof is here presented which is 
based upon the Prinoiple of Least Dissipation14  
and which follows closely the work of deGroot13  
and Onsager15 . 

The power dissipated in a four-terminal net-
work is 

P a El I + E2 12 (4.2) 

also, for a passive network, P is a minimum or 

(12 
BE2 ) 21  " 0 when II . 0 or 12 • 0  (4.3) 

Noting that P is a function of El and E2 

we can evaluate (4.3) with the aid of Table 2 
and we obt9in, after differentiation and sub-
stitution from Table 2, 

(4.4) 

Alternatively using deviations we have from (4.3) 
and Table 2 

(p, El) ' E1 (E  I1)+(E2' I2) (4. 5) 

henoe, if P is a minimum, (4.1) follows at onoe. 
Similarly, If P is a funotion of El and 

. 0  when 12 

henoe 

0 or E., • 0 
•••• • 

Using deviations, (4.6) yields 

(F, II) •1 1  (EI,I 1)+(E2,I 2) 

similarly, if P is minimum, (4.1) follows at 
once. 

(4. 0 

(4.7) 

(4.8) 

When dealing with dynamic charaoterietios 
of passive networks, it is frequently advantageous 
to recognize symmetry properties of the system. 
Equ. (1.1), (1.3), and (1.5) remain invariant, 
if each of the four basic variables El,E2,1 1,12 
take the plaoe of another in a certain allowed 

sequenoe.  This allowed sequence is given by the 
rotation of the square, Fig. 2, about any of its 
axes of symmetry, provided that the voltages El 
and E2 ohange sign if the stationary dotted line 
is crossed by one of the voltages. 

5.  Equivalent Dynamio Characteristios  

It is often possible and desirable to re-
pleoe 'pertain dynamic oharaoteristios by others. 

Frequently it is necessary to investigate the 
validity of such substitution.  As an example 
consider 

(l eo  y00)  y150  . (y40)2 

11  11  22  21 ) (5.1) 

Nriting this in the notation of Tablel with the 
aid of (1.2) gives 

(I1,E2)  (I1,I )  (I2,I 1) . (1 2,E2)2 

(T5 72-)  ( 7 4)  (E-2 71-) (7 E7 2 

and after cross multiplication 

(II,I2)(E2,E1)+( 4,62)(E1,12)+(I 2,E2)(E2,I 2).0 

which is equivalent to (1.3) and (1.5).  Hence 
(5.1) is true for passive (or oompensated) net-
works, but does not hold for active networks. 

Using the analogue thermodynamic quantities 
of Table 3, (5.1) gives Rankin's equations re-
lating the specific heats, while the mechanioal 
analogues of Table 3 give the relation between 
group and phase velooities, if substituted into 
(5.1). 

More insight into the relationships between 
dynamic oharaoteristios can be gained by the 
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effeotive rc of signal flow graphs.  This 
technique/1°,17 is extensively used in the analysis 
of servomechanisms and has recently been applied 
to circuit analysis.  The basio rule 1st  a point 
represents a dynamic variable, which is determin-
ed by the arrows terminating at that point.  As 

an example consider 

I -e° E  Ys°  E2 
in 11  1  12  2 
in Fig. 3b  El 4. A  12 

Source or generator (G) and sink or load (0 are 
frequently omitted in drawing the flow diagram. 
If Fig. 3a and Fig. 3b represent equivalent 
circuits of the same set of currants and voltages, 
the resulting transmission between points must 

be the same, thus: 

in Fig. 3a 

( 2)  . TOO . ASO yiS0 

E2  E1 12  11  11 

eo . yoo Tio Aso 

'VII) 22  11  11  21  11 
(5.4) 

so 
Eliminating All yields 

(v so  ea ) y e°  yS0 ylSO 
In  11  22  21  12  (5.6) 

Clearly (5.5) reduces to (5.1) if the oirouit 
satisfies the reciprocity relation (1.3). 
Similar relationships oan now be derived effort-

lessly by rotation of the square in Fig. 2. 
Consider, for instanoe the substitution. 

E1 1  it2 

4  4 
E2 12 

so so 
(41 - Yr2) z11 - Al; 41 

Sinoe there are innumerable similar rel.tions 

between dynamic oharaoteristios, no attempt will 
be made to summarize or tabulate these.  Rather, 
the aim of this investigation is to present a 
few typical examples which exhibit the power and 
direotness of the method of deviations in con-

junction with flow graphs. 

6.  Dynamic Charaoteristios of Devioes: Examples  

To investigate dynamic charaoteristios of 
devices, it is convenient to distinguish three 
types of four-terminal oirouit elements.  (For 
eaoh type of device an illustrative example is 

given in Table 4.) 

(1)  aotive elements, suoh as  he transistor. 
Generally all 24 dynamic oharaoteri eios oan be 

oomputed.  From an energy point of vi 'w, an 
active element is equivalent to a passive element 

plus an internal source of energy. 

(ii)  unilateral elements, suoh as the vaouum 
tube.  These are aotive elements in which the 
signal flow occurs only in one direotion.  Feed-

(5. 6) 

back is absent and not all deviation can be 
computed.  It is usually possible, however, to 
convert a unilateral element into an aotive net-
work by the appropriate use of additional passive 

elements to provide feedbaok. 

(iii)  passive elements, such as the trans-
former.  Energy is dissipated inside the system 

in accordance with the principle of Least 
Dissipation,  as no internal sources of energy 
are present.  Feedback and feedforward oompensate 
each other, as will be seen presently and net-
works are therefore often referred to as com-

pensated networks. 

The flow graphs shown in Table 4 are intend-
ed as an aid in visualizing the functional 
relationships between voltages, currents and 
dynamic oharaoteristios of the device.  It is 
always understood that these relationships are 

known at the outset of the analysis and that 
they are meaningful.  The task is then to use 
the appropriate method for extracting from the 
flow graph the desired solution, which in our 
oase is the evaluation of dynamic oharaoteristios. 

The problem of co nstructing a flow graph 
from known dynamic characteristics leads frequent-
ly to several alternative solutions for the 
same device.  The desired form of the flow graph 
depends on how we perceive the pertinent function-
al relationships between the dependent and in-
dependent variables of the device.  The follow-

ing examples will illustrate this. 

(i)  The Transistor. Table 5 shows the 
conventional wiring (oirouit) diagram and the 

corresponding flow graph.  While co mparati vely 
little information is obtainable from the former, 
the flow graph permits straightforward evaluation 
of the dynamic oharacteristios.  For instance, 
when the emitter is grounded and the load is 
connected to the oolleotor, as shown in the 
seoond oolumn of Table 5, three paths lead from 

Io to Vo. Hence 

aVo (V2,  r rm  

Cif; 1 II, ifT,--ri)  0 r E 

Sinoe all parameters in the flow graph are 

resistances, it is oonvenient to set (I1, 2 )  1 
and to enter the value of (I 1, V2) in Table 5. 
Similarly the other three deviations can be 
evaluated by following the flow path from eaoh 

souroe to each sink.  Finally (VI, V2) must be 
co mputed from (1.5).  Thus Table 5 oontains in 
oonoise form all 24 dynamic characteristics for 
each of the six possible oircuit oonneotions of 

the transistor. 

Table 4 includes the flow graph of a 
junction transistor as described by Ryder18 . In 
this particular case it was found desirable to 
describe the performance of the device in terms 
of six parameters.  We can readily evaluate the 
flow path from each source to each sink, for 

instance 

(E1,E2)  rt rb (1-d) provided (Ii,E1)•1 
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An interesting alternative de nription of 
the junction transistor due to Chu " makes use 
of the similarity of minority oarrier diffusion 
in a transistor and signal propagation in a 
transmission line.  Table 5 gives the flow dia-
grams:  The generalized base width 0 of the 
transistor corresponds to the generalized length 

of the transmission line.  Indeed the flow graph 
will describe a transmission line, if Zo * Z , 

which is the characteristics impedanoe of a 
(Passive) transmission line.  For the transistor, 
Zo ZE P these equivalent oharaoteristio im-
pedanoes oan be expressed in terms of design 
parameters (base width, diffusion constant, 
frequency, eto.) of the transistor. 

The references listed at the head of each 
oolumn in Table 4 contain a detailed explanation 
of eaoh parameter shown in the corresponding flow 
graph.  A physical interpretation of these 
parameters is therefore not attempted here. 

(ii)  The Vacuum Tube. Table 4 includes two 
examples of the vaouum tube as a oircuit element. 
Flow graphs and deviations are given in each 
oase.  Some deviations oannot be computed when 
the vacuum tube is connected as a unilateral 
active element, i.e. when a signal in the output 
circuit will not affect the input circuit. 
Numerous other examples of flow diagrams for 
vacuum tube oirouits are given by Mason16 . 

(iii)  Energy Converters. The transformer 
is given as an example of an energy con verter in 
Table 4 with the corresponding deviation. 
Additional examples are presented in Table 6. 
Energy converters contain no internal source of 
energy and henoe must obey the reciprocity rela-
tion (1.3).  In some applications it is ',refer-
able to define the direction of current flow as 
the direction of energy flow, this means replao-
ing 12 by (-12) in Fig. 1, and changing (1.3) 
into (E1, Ii) * (E2, 12)  (1.3*) 
(1.4) into (El, 123  (E2, Ii)  (1.4*) 
This convention was used in Table 6.  The 
uniqueness oondition (1.5) remains invariant. 

The funotional relationship between variables 
of the device are often perceived as a closed 
ohain of dependency, consider for instance, the 
(d.c. shunt) generator in Table 6.  The torque 
(T) in the armature depends upon the sneed (N), 
the current delivered (I) is determined by the 
torque (T) and in turn affects the back - emf (E). 
The chain of dependency is closed by the -- often 
linear -- relationship between E and W.  The 
funotional relationship E-8-fi may be considered 
as feedback while the other link between the 
meohanioal and eleotrioal system, T-4.4, is 
referred to as feedforgard, the reference direc-
tion is that of energy flow in the device.  By 
writing out the equations that correspond to a 
feedback flow graph, and bv solving these equa-
tions in terms of dependent and independent 
variables, it is always possible to convert a 
closed ohain into an open chain and vioeversa. 
It is, therefore, incorrect to speak of a devioe 
as "containing" feedback; as pointed out by 
Mason16 , "feedback is only present if we peroeive 
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a close ohain of dependenoe:  The relationship 
between dynamic characteristics and feedback 
parameters is discussed in the following seotion. 
fiith the aid of the metIod of deviations, 
techniques will be develoned to express four-
terminal networks in terms of feedback parameters 
or, vioeversa, to eliminate feedback parameters 
from a network. 

7.  Techniques for the Analysis of Four-Terminal  
Flow Graphs  

Some of the results of this seotion are 
tabulated as follows: 

Table 

Table 

Table 

7:  Elementary Operations - Two Terminal 
Flow Graphs 

8:  Equivalent Junctions - Three Terminal 
Flow Graphs 

9 and 10:  Equivalent Four-Terminal Flow 
Graphs 

A number of techniques have proven helpful 
in the analysis and synthesis of flow graphs, 
these techniques are mainly based upon the 
elementary operations defined in Table 7. 

A.  Path Inversion 

Reoalling that each point or junction 
represents an equation, it is useful to distingUhh 
between two types of junctions shown in Table 8. 

(i)  contributive jun:tions, such as 

a  + b 12 13 

(ii)  distributive junctions, such as 

a I1  b I2 * I3 

(7.1) 

(7.2) 

Junctions conneoting more than three vari-
ables can always be replaoed by a series of oon-
tributive and distributive junctions.  (7.1) 
and (7.2) must remain invariant under permissible 
transformations;  An example of a permissible 
transformation is the inversion of path between 

and I2 in Table 8, (i), (ii), (iii), and (iv). 
SInoe any path may be considered a sequence of 
distributive and oontibutive junctions, we can 
interchange a dependent variable and an independ 
exit variable by inverting a complete path oonneot 
ing these two variables.  A  conversion of this 
type is shown in Table 9, column 2.  This flow 
graph is obtained from the "g" parameters in 
Table 2 by inverting the path from El to I. 
Noting that Wz il  * gli , it follows from the 
path inversions shown In Table 8, that there is 
a ch ange of sign at the contributive junction, 

g12"'-g12, but no change of sign at the distrilum 
tive junction, g21- g21.  Other equivalent flow 
diagrams with mixed or hybrid parameters can be 
obtained by repeated path inversion and are 
listed in Table 9. 

B.  Symmetry Inversion  

Frequently it is possible to invert a flow 
pattern on the basis of its symmetry properties. 



An examination of Table 5 will reveal that the 
right side and the left side of the table are 
mirror images of each other, provided that sub-
scripts 1 and 2 are interchanged upon reflection. 

Similarly Table 2 follows from its first row, 
if we replace consistently the following symbols. 

z  y  g -40-11 -I.- a -0- b 
E  I1 -0- I -.0-E -o-E 
,1  1 „.  .1  -  y 

I  E2 - V 1  E2 2 -"PPE1-0-Ea 

1   1  1  2  1 
I 2 -4, E2 2 -9-E2 2 -0-I 1 

By applying these symmetry considerations to 
Table 9 and Table 10, we oan increase sixfold 
the number of tabulated equivalent flow graphs. 

C.  Cascade Conversion 

It is understood that flow is possible only 
in the dirsotion of the arrow.  A Ets.21 will now 
be defined as one assigned route from a source 
(independent variable) to a sink (dependent 

variable) and it is numerically equal to the 
product of all its branches (dynamic oharaoter-
istios).  The transmission from given source 
to a given sink is defined as the sum of all 
paths between these given points.  Thus, two 
distinot types of transmission exist. 

(I)  Cascade Transmission oonsists of a 
finite nuMber of paths and is defined as the sum 
of all paths from source to sink provided that 
no individual path traverses any junction more 
than once.  In Table 8, (v) and (vii), the 
cascade transmission from I to 12 is a + be. 
In Table 8, (ix) and (xi), the cascade trans-

mission from I1 to I2 is be. 

(ii)  Feedback Transmission consists of an 
infinite number of paths, and is the sum of all 
paths oonneoting a given source to a given sink. 

In Table 8, (ix) and (xi), there are N ptths 
from II. to I2 each contributing ob (O W.  Thus 
the feedback or total transmission is the sum 

of all paths 
ce ob ob 27. ob (abo)14=  ' — 
N-0  1-abo 

where R is the return differenoe2°  of a given 

path which is defined as: 
return differenoem cascade transmission  

total transmission 

(7.3) 

(7.4) 

Cascade conversion consists of replacing 
paths in parallel by a single path.  Conversion 
of Fig. 3(a) to Fig. 3(b) is an example.  By 
this method the deviations listed in Table 9 
can be computed rapidly from the corresponding 

flow diagrams.  For instance for column 2 in 

Table 9, we have 

'22 " g22  g21 '11 g12 

D. Feedback Conversion  

Any part of a given path which can be 
traversed by the flow more than once is referred 

to as a "loop".  The total transmission onoe 
around the loop is defined as the loop trans-

mission.  For a given loop we have 

Loop transmission + return differenoe  1  (7.6) 

The return differenoe in (7.5) refers to a 
specific loop m and it is denoted by R.  If a 
branoh or a junction of a path is traversed by 
the feedbaok flow of the loop, then the return 
differenoe R of the path is sum of the return 
differenoes of all loops touched by that path. 

R  4  Rm (7.6) 

If, however, a loop links another second loop, 
the second loop must be replaced before evaluat-

ing the first. 

In Table 10, the return differenoe of the 
loop in column 1 is given by 

(E2,I 2) cE1,10  (E1,E2) 
R-1  (210'2) (E2,1 15  , 

(I1,1 2) 

(21P I) 

which was obtained with the aid of (1.5).  From 
column 1 in Table 10, we obtain 

oasoade transmission from Ii to 

total transmission 

(E1,E2) 
El is 077E7 

(2 1,E 2)1  
from I to E, i 

1  -8  19 2 

which is equivalent to (E1,I2) 

(177 7 

Rapid evaluation of flow graphs with feed-
baok, such as those given in Table 6, is thus 
readily achieved.  The most oommon forms of 
feedbaok flow graphs with the oorresponding 
deviations are listed in Table 10. 

8.  Logerithmio Teohni ves  

Dynamics oharaoteristios have been expressed 
as the ratio of two deviations in accordance 
with the definition (1.2).  On the other hand, it 
is possible to express impedanoes and admittanoes 

of passive networks as a ratio of two polynomials 
in ta, the frequency impressed upon the network. 
It is, therefore, permissible to equate each of 
the six deviations of a network to a polynomial 
in  . Indeed it can be shown that the power 
of tie polynomial in 61 depends upon the elements 
that co uple the two variables correlated by the 
deviation, while the magnitude of.the ooefficients 
of this polynomial depend upon the magnitude of 
the co upling elements.  This association between 
the deviation of two variables on the one hand 
and a frequency oharaoteristio on the other hand, 
has a very practical application.  It permits us 
to describe the complete frequency response of 
all dynamic oharaoteristios of a network by a 
est of at most six 'log-magnitude' versus 'log-

frequenoy' ourves. 

As an example consider the transformer as 
analyzed by Mishkin21 , for which the deviations 
are given in Table 4.  No generality is lost by 
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taking the windings in the primary (Ni) and in 
the secondary (N2) as unity.  Using the notation 
of Table 4 and denoting the magnetic reluctance 
by 1/Lm, we obtain, 

(21,11)  (12,22)  Zm Lints) 

(1 1,22)  Zm+Z2 . R2 (1+1C 24 

(21,1 2)  Zm+Zi  R1 (1+ t lb)) 

(21,22) . R1 R2(1+T31d) (1+T e) 

where T2  1/i42 (Lm + L2)/R2 

Ti  1/4)1 (Lm + L')/R1 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

Let Tm2 Lm2/111 R2 and T3 . 1/4a3,  1/4.114 

substitution of (8.1) to (8.4) into (1.5) yields 

and 

+ T2  r3 +T4 

T 1 T 2 - T m2 T 3 T 4 

This simply means that W1 and 441, are always 
'sandwiched' between w 3 and w4*  That is, if 

1. 1 ". 2 

then I-3 >ri,t, 2)•t• 4 or (034 44)1444 24.w 4. 

Note that (21,11) . 1 if  b.). 1/Lm on account 
of (8.1).  From the break frequenoies, the 
asymptotes to the frequency response have been 
plotted in Fig. 4.  By division of any two 

deviations shown, any desired dynamic character-
fstios is obtained as a function of frequency. 

Another useful logarithmic teohnique in 
oonjunotion with deviations is to reolaoe the 
basio variables in Fig. 1 by their logarithm. 
The uniqueness relation (1.5) remains invariant 
under this substitution and a set of 'logarithmic' 
dynamic, oharaoteristios can be oomputed.  Simi-
larly (1.5) remains invariant, if a set of 
variables is replaoed by their respeotive ex-
ponentials, and an alternative set of dynamic 
oharaoteristics results.  Indeed, the 
"sensitivity" of a variable x at const ant y can 
be expressed as (x,y) A-.(ln x,y) or equally well 
in terms of (in x, in y). 

The methods developed in the previous 
seotions to analyze dynamic oharsoteristios of 

networks can, therefore, be applied with equal 
validity to obtain relationships between the 
sensitivities of the oircuit parameters of a 
network. 

9.  Synthesis of Four-Terminal Networks  

Several ways of adding of two or more four-
terminal networks are possible, for instance 
following combination of n!tworks are frequently 
used: 

in 
in 
as 
in 

series 
parallel 
feedback elements 
cascade 

The method of deviations may be used to 
advantage to compute the dynamic oharaoteristios 

of a oombined (or synthesized) network from the 
dynamic characteristics of its components. 

As an example consider network A which was 
obtained by combining in cascade networks B and 
C.  The dynamic characteristics of each network 
are: 

A: (21,12);(21,23);(21,13);(11,23)1(Ii,I3)1(F3,I 
B: 

C: (Ei,Ii):( 2;,E;);(Ei,I;);(1 2,E3);(1 2,I :(2.0 3) 

On cascading B and C to form A, the output from 
B had to equal the input to C, thus E2 and 12 
were eliminated in forming A.  The probl,/m now 
facing us is to express the deviations of A in 
terms of the deviations of 8.  The solution can 
be written down by inspection, for instance 

(21,23).(21,22)(23,I 2) - (21,1 2)(23,22) 

(E2, 12) 

which follows directly from the uniqueness 

conditions (1.5) and demonstrates the advantage 
of this method over matrix and other methods 
in computing dynamic oharaoteristics of combined 
networks. 

10.  Generalization:  The Multi-Terminal Netnork  

Consider a network with n independent 
voltages and n independent currents.  To establish 
a more powerful notation, the case n.2 is first 
briefly reviewed. 

n.2  Let the voltages and currents 21,22,11,1 2 
of a four-terminal network have a one-to-one 
oorrespondenoe to the variables k,j,m.r taken 
in any order.  If ('a x/e y),  (x,z)/(y,z), the 
network equations of Table 2 can be written 

(al ) k  cr• a l..c.1 4 
m (k,j)  (j,k)  (10.1) 
(k,j,m,n  21,E2,I 1,12) 
that is, any one-to-one oorrespondenoe between 
the two sets of .).ariables is allowed, giving 
six sets of two equations each.  Differentiating 

m at constant m and differentiating n at constant 
m yields, 

(m,n) (j,k)  ▪ (m,k) (i,n)-(m,j) (k,r)  (10.2) 

Consistency requires (x,Y)"-(5,,i)  (10.3) 

For a passive network (21,I 1).(I 2,E2)  (10.4) 

For a symmetrical network (21,12).(II,22) (10.5) 

n.3  If (Bz/21y) u,v  (z,u,v)/(y,u,v) 
Then the network equations of a six-terminal 
network become: 

1  (,j,k) - (j,k,i)" (ic:1,J) 

giving twenty sets of three equations each. 

(1,m,n,i,j,k.21,22,23,11,1 2,I 3) 

(10.6) 
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again any one-to-one correspondence between the 
two sets of variables is allowed, giving twenty 

sets of three equations each. 

Differentiating 1 at constant m and n and 

differentiating m at constant 1 and n, we obtain, 

(i fifk)(1,m,n)'( 10,k)( 1,n,n)+(1,k,i)( j,m,n).4.  
4.(1,i,j)(k,m,n)  (10.7) 

Consistenoy requires 

(x,y,$)=-(2,y,x) for adjacent symbols  (10.8) 

For a passive network (E1,I I,E3)=(I2,E2, 63) 
(E1,1 1,T 3)=(I2,E2,I3) 
(1,2,3 oyolio)  (10.9) 

For a symmetrical network (E 1,1 2,1 3)= 0 2,E1,I 3) 
(E1,I,,E3)=(I2,E1,E3) 
(1,2,  cyclicI  (10.10) 

_TIETEE21 Express Mi2=(Ii,E1,13)/(E2,E1,I3) in 
terra of derivatives having (E1,E,,E 0 as independ-

ent variables.  From (10.7) ana (IO.g) 

(I D E1,Ii)(E1,1,Ei) .(E3,E1,I3)( II,E 1,E 2)+  

Dividing both sides by (E1,E2,E 3) twice yields 

M12 L33 =L12 L33 -L12 L32 

Where  L33  ' fl(I  ,E 1,E )/(E  E E ) 
3 

Lle (I l,E 3P c1 ) 29c '3P '1/  
L13 =(i i,E1,E2)/(E3,E1,E2) 
L32 "(1 3,E3,E1)/(E2,E3,E1) 

The result required is thus:  M12'Ll2-( 1,131,32/L33) 

A summary of relations between L parameters and 
M parameters with the corresponding flow graphs 

is given in Table 11. 

n)w3  The number of network equations correspond-

ing (10.1) and (10.6) are given by (2 n):/(n:) 2 
sets of n equations each.  The number of dynamic 
charaoteristios will thus be n2 (2 n):/(712) 2 or 
2,24,180, 1120, 6300, for n=1,2,3,4,5 respeotive-

ly. 7..xtension of the method given above to net-
works with n)03 is straight forward and, although 
the oaloulation becomes exceedingly tedious, it 
presents a oonsiderable saving in time over 
solving the equations explioitlY by oonventional 

methods.  The oase of n=4 finds application in 
the theory of therreeleotrio and thermomagnetio 
effeots 13 , but such an analysis is considered 

beyond the soope of this paper. 

Summary  

A mathematioal technique is developed for a 
eystematio and rapid analysis of the functional 
relationships between variables (voltages and 
ourrent) of a network.  For the four-terminal net-
work six anti-commuting quantities, referred to 
as 'deviation' are defined so that eaoh 'deviation' 
oorrelates any two variables of the system. 
Elementary rules for a 'calculus of 'deviations' 
are developed and are represented graphioally by 
flow graphs, i.e. diagrams exhibiting the topologi-

cal properties of feedback systems. 

Conditions for (i) uniqueness, (ii) 
reciprocity, (iii) symmetry and (iv) stability 
of a network are derived using the oaloulus of 
'deviations' and are in part based on arguments 
adapted from recent developments in thethermo-
dynamics of irreversible processes, power 
dissipation taking the place of entropy production. 
Other analogies between electrical networks 
and thermolynamio systems as well as mech anical 

systems are used to show that concepts from 
circuit theory (such as feedback or reciprocity) 
and the techniques (in particular, thosedeveloped) 
can be used to advantage in other fields of 

engineering. 

with the aid of the oaloulus of deviations, 
relationships between dynamic' characteristics, 
including hybrid parameters and feedbaok 
parameters, are investigated systematioally. 

Numerous examples pertaining to passive, 

unilateral and active (in particular transistors) 
networks illustrate the power and directness of 
these techniques.  The method is also useful 
in conjunotion with logarithmic techniques, in 

the synthesis of two or more networks and in 
the analysis of 'multi-terminal' networks. 
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Table 1 

Open-Circuit and Short-Circuit Parameters 

Dynamics 
Characteristics 

Impedanoe:  Z Admittanoe: Amplification:  A 

:Jriving 
point: 

Z11 

Transfer: 

Z12 

Driving 
point: 

Y11 

Transfer: 

Y12 

point: 

All 

Transfer: 

Al2 

Open Circuit 

(superscript co) 

Current Constant 

I Z 21 

V e I. I 
i 12 

(zii\ 
va81.42 

Short Circuit 

(superscript so) 

Voltage Constant 

aEo 
k 

E2 

Table 3.  Analogues  

Networks Thermodynamics Mechanics 

Voltap,e El 

Voltage E2 

Current 11 

Current 12 

Absolute Tempernture T 

Itbsolute Pressure P 

-ipeoifio Entropy S 

Specific Volume V 

Ener u H 

Momentum P 

Time Coordinate T 

Displacement Coordinate 

Uniqueness 

E2  f(21, Ii) 

Reoiprocity 

This Paper 

(El, II)  (1 2, 22) 

Principle of 
Least Dissipation 

-;quation of State 

°  f(V, T) 

Reversibility 

Maxwell's Eluations 

(T, s) . (V, p) 

Thermodynamic 
Equilibrium 
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Equation of Motion 

Q  f(H,T) 

Action and Reaction 

Hamilton's Equations 

(H, T)  (Q, P) 

Principle of 
Least Aotion 



Table 2 

StandPrd Circuit Parameters for Four-Terminal Network 

Network Equations 
Flow Graphs 

41Independent V,Iriable 
0 Dependent Variable 

Passive 
Network 

Symmetrical 
Network 

, 

Circuit 
Determinant 

E1  (F 11 11) '.1.'  II + ----- Ei E2 

z12 = Z21 

, 1,1 1). 0 2,E2) 

ZII . z22 

(2.1,1 0= 0 1,22) 

IzI• z11222-z12z21 

1,, (E1,E,) 
.-.'  T___.) 

( 1,1 2 

-.!-' -.S  I 
(11,1 2)  02,I 1) 2 

E -(E2 'i2) I + (E2 '/O, 12 
zn 

z  z 12  -21 

I22 

2 (77i) 1  (12,11/  

I 12 

Ii (,il' EZ.)2 + (i l' El) 
E E2 

Y12 ' Y21 

,EI,I1)"(I2,E2) 

Yll ' Y22 

(21,I 2)m(I I,22) 

IY/' 3'11 3122-Y12Y-21 

 (I  I ) 
lyl- _1L64 

A  ( E1, E 2)  1  (772 7.) E 2 

(12,22)  (I 2,21) 
12 

Yil Y12 

(7,77i) E, + (S E )  E2 

I 
Y12  Y2I 

I   
(F 1 "2 ) 

921 
E 

g12 ' -g21 

(21,I1)•(I2,22) 

Id • 1 

(21,I 2)=(I1,22) 

Igl' gl1e22-gl2g21 

(11, 22) Igl. 

11  4. (;1,:1) , 
12 

E2 

(7177i i)2.1  ( 2, 4) 

E. (22,I 2)E + (221E1) 1 
2  1 

g 1 
 922  

(21,12) (,1 7 7) ci w c) 2 

I 
gI2 

1 

h12 

h12 " - h21 

(21,I1)•(I2,22) 

Ihl • 1 

;,21,I 2). 0 1,22) 

ihl= h11 h22 -h12 h21 

Ihl. (21,1 2) 

E .(E lt E2),  4 (E1,11) E 
1 (1 1,2E) 1 (7 7T)  2 

1 .(12,22)11  4. (I2,I1) E2  
2 

/ 
II 
h22  

( 1,22)  

arTE D  (22,1 1) I, 1 
1121 
Oil 

E la,  . 1 

(E1,1 1)-(I2,22) 

all ' -a 22 

(21,I2). 0 1,E2) 'al- 

lal' all a22-a l2a21 

(ED I ) 
(737 4) 

El. (El' I2)E2 + (I1, 22) 12 
E2 

(7 27Ti)  (77-gi) 

Ile (11,1 2)  (11,22) 1 
E2 + 

a 

021 
(T __72.7_1 2 

( c Ti)  ' 29 2' 
I 12 

022 

1:11, 
E   

thi • 1 

(21° I1)•(I 2' 22) 

1) 11  "  .13 2 2  Ibl. 

(210 I2)•(I 10 22)  Ibl.   

- 

bilb22- 1/121)21 

(12,22) 

(E r ) 

)  (2,, 11) 1 (E„ I1,   +  4  

22  " -1.--  El 
E2 

1 
(21,1 1)  (T TED 

(12,11)  0 2,21) 
Iom  81 +  Il 

b,2 

b2i 

'.' (157,17)  (Ii,E1  
12 

b22 
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Table 4.  Flom Graphs for D691089 

Device 

Referenoes 

n Dia r 

Subsoripts: 

1 - input 
2 - output 
0 - ground 

Flow Graph  

Equivalent Variables 

11 - 12 

E1 - E2 

Subscripts 

Circuit Conneotions 

Remarks 

IP - 18 
Ep Es 

Transformer 
Admittance  Impedanoe 

Mishkin (21) 

12 

EllpE2 

IP - 18 
EP - Es 

p - primary oircuit 
s - seoondarY circuit 
in - magnetic oirouit 

1 

-7 ms 
Z2 

Z1 

.41ft 

ZiZeZ1Z,m+Z2Z11 

0  1  2 

in  P  3 

0  1  2 
•  p  $ 

Im - magnetomotive foroe 

Em - flux linkages 
ZIm  - generalized reluotanoe 
N - transformer winding 

N1  N2 . 1 

Triode 
Ground Grid  Ground Cathode 

Knausenberger 

2,41  tZ  Z. 

E 

I  — 'p 
Eck - Ep 

g - grid 
p - plate 
o - oathode 

1 

(Zg+Zo)(1+1x)+Zp 

Zg 

Z (1410 

ZgZp+Z eo (1+AIO 

0  1  2 

I - I 
Eg - E p 
s  p 

Y Y 
P g 

Yg+Ygzo(Yp+gm) 
• -Y 

-gm 

1+Zo(Yp+gm) 

O  1  2 
o  g  p 

AL - voltage amplification 
gm - mutual conductance 
Y - plate conduotanoe 

Junction Transistor 

Ryder (18) 

4 
1 2 

It - 10 
Ee - Eo 

b - base 
o - oolleotor 
e - emitter 

go 

rb gel-bo+'-to 
1 

go( rib+ rt )-(1040 +1Abo) 

a 

re +rb (1.+a) 

0  1  2 
b  e  a 

Chu (19) 

IE - 10 
Et - Eo 

Y Yo tanh 0 t  

Yo/oosh 0 

YE 

Yo 

Y/oosh 0 

ta nk 0 

0  1  2 
b  E  o 

- voltage amplification 
a - current amplification 
- majority ourrent base resistanse 

go - collaotor conductance 
Equivalent characteristic impedances: 

Z0=1/Y0 
Zel/Y 



Table 5. 

Flow L'raphs of Equivilent rA.re !its for tr.? ir4rsist r 

(TI,I 2 ,.1  ( VI, V2) • rb rr re - rb 

,irin.7 Diagram 
Subscripts 

1 - source 
2 - load 

0 - ground 

1  0  2 
E  b  o 

I, 

2 

:2 

A 

, 

-  --• 
2 

: -111. 

A 

:  

A  A 

Circuit 2onneetion 1  0  2 
b  E 

1  0  2 1  0 1  0  2 
o  f  b 

1  0  2 
b  E 

Flow )iac:ram 
s''Ibseriots 

b - base 
K - emitter 
c - oolleotor 

b  .  , 

•••;;;;-•-V-V".-

0„.;•&"„„ri," 04 1.0  

Ileviations 

r - rm 

rb + rE 

r  +re - rm 

ro 

r • r 

T o + re - rm 

rr -r0 

ro - r 

re • r 

rb • re 

rc 



Table 6. Fnergy r'onverters 

Generator Motor Pump Transmission Line Fleotroma+netio &we Thermoelectric Effect 

1,‘ ts 

••••• I 

tc. 

s. 

T-Generator Torque 

W-Angular Speed 

I-Armature Current 

E-Baok EMF 

G - Generator 

L - Load 

I-Armature Current 

E-Back EMF 

T-Motor Torque 

W-Angular Speed 

M - Motor 

L - Load 

T-Torque of Pump 

a-Angular Speed 

4-Flow(ft3/seo/rad) 

F-Pressure(lb/ft2) 

M - Prime Mover 

L - Load 

E-voltage at sender 
(S) 

I-current at sender 

(s) 
Es-voltage at 

receiver (S.0) 
Is-current at 

reoeiver (So) 

S - Sender 

Ss - Receiver 

E-electric field in Tx-temperature 
3  gradient 

H-magnetic field in TS x-heat flow 

Es-electric field inEx-voltage gradient 
S. 

H.-magnetic field inIx-carrent flow 
Ss   

S - Stationary 
System 

Ss-Moving System 

H - Heat Source 

L - Electrioal 
Load 

B - friction and inertia 

Z - armature impedance 

K - Generator constant 

Z - armature imped-
anoe 

B - friotion and 
inertia 

K - Motor constant 

B - friction and 
inertia 

Z - leakage(ft5/1b/ 
sea)   

K - Flow oonst,tnt 

Z - oharacteristic 
impedanoe 

- (attenuation 
constant x length 
of line) 
cosh20 + sinh20=1 

o - velocity of 
light 

v-relative velocity 
of S with respect 
to Ss 

s tanh (v/o) 

G - electrical 
conductivity 

rK - thermal 
conductivity 

E-thermoeleotric 
power 

T - temperature 



Table 7.  No-Terminal Flow Jra_phs:  Elementary Operati ons  

MULTIPLICATION 
a  b  ob 

Ow— 

ADDITION a + b 

RECIPROCAL 

ao 
1  N  1 
'  o  1 - o 

R  N=O 

a-1 

46-

ab/R 

Table 8.  Three-Terminal Flow Graphs: Equivalent Junctions  

Contributive Junction Distributi ve Junction  • 

PATH 

INVERSION 

ol,• b y I, 

1, 

0  In> 

r, 

IL..  I  12 
 —as— 

ca,• 

lib  1/0  b 

I M12  17 7-12 

13  13 

( IV) 

CASCADE 

CONVERSION 
== 

(V)  (VI) (m) 

vR 

R • - obc 

FEEDBACK 

CONVERSION 
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(x) 

1, 
bc 

12 

(xI)  (XII) 



Table 9.  Hybrid Parameters For Four-Terminal Flow Graphs  

flmjsm212 
Junctions: 

C) Contributive 

40 Distributive 

e 'Multiple 

E .  F 2 

....Tz  , y e.- 

,..1  !  4g„ 

..._J  41 

E  E: 
.6 •  .4.:, I. 

,i  4,,„ 

s- i •:9-  4,- 

' •  FE 
I.- ..•  .71  . .1 

,,,,t  t,„ 

4  ir; -'i:- 

E 
.1T , 

"1  l'” 

s•- i- 4.„ ;  -('~c,- 

e. 

,  • •°' 

•-i:*- it,---•, ;• 

E  E , 

.-  ..- ••••-•  -•b y 

.,  T. .71 

(1 1,1 2) 

(E1,I 2) 

(I l' E1) 

(E2,I 2) 

(Ii,E2) 

(E 198 2) 

1 

Ell 

El2 

Ellg21 

g22 12g21 

211622 

1 

zil 

-E llgi2 

g21 z11 

g22-g 21 111g12 

z11 622 

1 

h11-h 12 t22h2A. 

h 12-z 22 

-z22 h21  

t22 

h11 t22 

1 

h114-s 12h 21 

a 
12 

-z22 h21 

g-22 

h11 s22 

1 

t11 

a12-2 11a22 

s21 

- a22z21 

"12E21 

1 

-1)22 E12  

t12 

b12 -b11 z12 b22 

212 b11 

-t12 b12 

Table 10.  Feedback Parameters for Four-Terminal Flow Graphs 

Flow Gra.h 

... 

.,1  4,„ 

"1  , 

.1 *  *I. 

, I ,.  
'f, 

,  -6 

•••• i  qrs. 

A , 

11  ;-4.. 

•-•  

-. 4  •'::  ;.:. 

I 

.2 

L -a 

..11, 

"4 .,,,, 

....- -,L-.--..'  ---- ,8--.11 

-.. 

9.  
Junctions: 

0 Contributive 

•  Distributive 

erMultiple 

(I 1' 12) 

(El' I2) 

(II,E1) 

(E2,I 2) 

(Ii,E2) 

(E1,E2) 

1-g21h12  

h11 

g22 h12 

hllg21 

g22 

h11  g22  

- 1-  hi.,v12g2z-52E_L  1-  i-

h11 

-h11 y12 g22 

../3225'2] hll 

g22 

h11 g22  

b, 2-v L 22a12Y11 

-b12-v a-22 12 

a12 

b12 

-a l2Y11b12  

-et12 b21 

— 1-h  z1z- 22v- 12 

hll 

-g22712h11 

-h  R 21-22 

g22 

h,,g 
LL 22 

1441115'12g21 

hll 

-g 22Y12h11 

g21h11 

g22 

h11 g22 

1-h21 g12 

h11 

-gl2h11 

-h 21g22 

g22 

h11 g22 
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Table 11.  

Relations between two sets of dynamic oharaoteristios for 
oircuit with three currents and three voltages. 

Independent 
Variables • 

E1  E2  E3 E2  E3 1 

Dependent 
Variables 0 Ii I2 13 Ii 12 13 

L - Parameters 

1,11'(I1,E2,E3)/L 

Lle(I 1P E32 E1)/L 

L13 -(IDEI,E2)4 

L21 *(I 2' E2' E3)/L 

L22-( 12,E 3,E 1)A 

L2 r(1 2,E1,E2)/L 

L3 r(13,E2,E3)/L 

1,52.(I 3,E3,E1)/L 

L33..(1 3,E1,E2)/L 

Lm(E1,E2,E3) 

L„ 

L33 

M - Parameters 

M11.(II,E2,1 3)/M 

M12 -(I1,13,E1)/M 

1413 ..(I I,E1,E2)/M 

M21'( 12,E2,13)/M 

M22 •(I2, 3, E1),4M 

M23.(1 2,E1,E2)/M 

Mzi.(E3,E2,I3)/M 

m32-(E3,i 3,E1)/m 

M33 ..(E3' EI' E2)/M 

M--(E1,E2,E3) 
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Summary  

A method is presented for realization of any 
minimum-phase transfer function in a c-r (i.e., 
constant-resistance) ladder.  Such networks have 
applications similar to those of conventional RIC, 
c-r bridged-T's but possess the advantages of more 
flexibility in design, fewer elements, and often 

less loss. 

C-r networks using two pole and zero arm 
immittances are particularly easy to design.  Then 
simple formulas can guide the designer to networks 
without unnecessary elements.  Straight-forward 
techniques are presented for realization of the 
arm immittances.  The realization process is 
facilitated by rules for making RIC continued-
fraction expansions by "forward" and "reverse" 

division. 

Introduction  

We shall first outline techniques which 
taken together provide an organized system for 
realizing any second-order immittance function 
without the use of coupled coils.  Herein, the 
term, "second-order immittance", will be used to 
refer to any impedance or admittance function 
having two poles and zeros.  As Bode shows, 1 such 
immittances can be used as basic building blocks 
in the synthesis of "constant-resistance" net-
works having transfer functions of arbitrary com-
plexity.  In the latter part of this paper a 
constant-resistance network which is apparently 
new will be described. 

Three Classes of Second-Order Immittances  

Any second-order immittance function can be 

expressed in the form: 

202  F(p)  + ap + b  
=  2 

p + ep + d 

where E5  15 25 and d are constant coefficients 
and Is Ihe complex frequency variable p=aw+ 
Brune shows that for such an immittance to be 
realizable in a passive network, F(p) must be 
what he calls a positive-real (abbreviated p-r) 
function.2 It can be town that for this rela-
tively simple case the conditions for p-r charac-

ter may be reduced to: 

A.  Al]. non-zero coefficients must be real 
and positive. 

B.  Re F(jw)  0 for all p = jou. 

(1) 

(2) 

SOME TECHNIQUES FOR NETWORK SYNTHESIS 

by 

George L. Matthaei 
Division of Electrical Engineering 

University of California 
Berkeley, California 

It can also be shown that 
fied, condition B will be 

b - ae + dg / 2 

if condition 
satisfied if 

ifiTo71 . 

A is satis-
and only if 

(3) 

The ease with which any given F(p) can be 
realized depends very much on the nature of its 
Re F(jw) characteristic.  In general, we may 
divide p-r, F(p) functions into three classes: 

Class I. he Ftjwil  occurs at w = 0 as 
shown in Fig. 1.  F(p) cig he shown to be a p-r, 
Class I function if p-r condition A is satisfied 

and 

b  .  ad - be > d 
g > while gd  b e • 

Class II.  Re F(jw)l.in  occurs at w =az. as 
shown Ln Fig. 2.- F(p) cair15; shown to be a p-r, 
Class II function if p-r condition A is satisfied 

and 

(4) 

(5) g < - while u..;   = e • 
a - ge 

Class III. Re F(jw) kin  occurs at a finite 
value of w as shown in Fig.-3:  F(p) will be a 
p-r, Class III function if:  p-r condition A is 
satisfied, while (3) is satisfied, while (4) and 
(5) are not. 

Some special cases are often of interest.  If 
in (1) b = 0, and condition A is satisfied then 
either (3) or (4) will yield 

2  (6) 
g  e • 

In this case if (6) is satisfied, F(p) is a Class 
I function which satisfies (2) with an equal sign 
at w = O.  Herein we shall refer to immittance 
functions that satisfy (2) with an equal sign at 
some frequency w as "minimum real part" functions. 

If g • 0 in (1) and condition A is satisfied, 
then either (3) or (5) will yield 

e . 
a 

In this instance if (7) is satisfied, F(p) 
p-r, Glass II, minimum real part function. 

When  F(p)  EE LL.12, 
ep 

F(p) is a reactance function and will be p-r if 
and only if p-r condition A is satisfied.  Eq. (2) 
is satisfied with an equal sign for all jw in this 
case, thus (8) is simultaneously a Class I, II, 
and III function. 

(7) 

is a 

(8) 
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The general one-pole and -zero function 

F(p) 
ep + d 

also needs only to satisfy p-r condition A in 
order to be p-r.  This function can never be Class 
III, but will be Class I if ale > b/d and Class 
II if ale < b/d. 

Continued Fraction Expansions  

The input impedance function of the ladder 
network of Fig. 4 may be represented by the con-
tinued-fraction.expansion 

Zin  a 21 + 1 

1 

3 + 1 
Y, + ... etc. 

Also the input admittance of the network in Fig. 5 
may be analogously represented by 

(9) 

Yin  Y1 +  1   (11) 
2, +  1 

Y3 + 

etc. 
Some kinds of immittances are very easily realized 
in these forms by making a continued-fraction 
expansion by use of what shall herein be referred 
to as forward and reverse division. 

Let 

- 
qnPn qn -113n 1 

F(p) a  k 
q 1p + q 

hkp + hk_ipk -1  +  + hip + ho 

be an immittance of arbitrary complexity.  We 
shall define forward division as long division 
carried out in the manner indicated by: 

hkp k +  + p + ho)qnp n +  +qip + go  .(13) 

Similarly reverse division will be defined as long 
division carried out in the manner indicated by: 

ho + hip +  + nkpk Igo + gip +  + qnpn .(14) 

It should be noted that for (12) to be p-r, the 
highest powers in the numerator and denominator 
polynomials cannot differ by more than one, and 
likewise for the lowest powers. 

An important kind of continued-fraction ex-
pansion can be made by use of the following oper-
ations involving forward and reverse division: 

1.  If go > 0 but ho a 0, then F0(p) has a 

pole at the origin, and it can be removed by one 
step of reverse division.  The result will be of 
the form 

F (p) - go 4-  
hip 

(15) 

where F1 (p) will not have a pole at the origin 
and will be p-r if F0(p) is p-r. 

2.  If qo a 0, but 110 > 0, then F0(p) has a 

zero at the origin.  In this case the function is 
inverted to make the zero at the origin become a 
pole and then operation 1 is applied to remove 
the pole.  In this case the result is of the form 

1   1   
Fo(p) a 

1/F0(p)  ho 
+ F2(p) 

cillp  

(16) 

where F2(p) will not have a pole at the origin and 
(10)  will be p-r if F0(p) is p-r. 

3. If terns go and /10 are present and F0(p) 
is a Class I p-i- function, then a step of reverse 
division will remove a constant equal to 
Re F(jw)I nin.  a Re F(jO) a F(0), and the remainder 

function F3(p) will be a minimum real-part p-r 

function.  The result is of the form 

F0(p)  1212 + F3(p) . 

If F0(p) is not a Class I fUnction but its re-

ciprocal is, reverse division may be applied to 
1/F0(p) to give 
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(17) 

Fo(p) =  1  a  1   (18) 
1/F0(p)  h0 

+ F3A  (p) 
go   

The remainder function F3(p) or F (p) will have 
3A 

a zero at the origin so can be broken down further 
by operation 2. 

4. If n = k + 1, then F0(p) has a pole at 
infinity which can be removed by forward division 
to give 

qnp 
F0(p) a —hk  F(p) • (19) 

Fit(p) will not have a pole at infinity and will be 

p-r if F(p) is p-r. 

5. If n = k - 1, then F0(p) has a zero at 
infinity.  In this case the function is inverted 
to make the zero a pole, and then operation 14 is 
applied to give 

F0(p) a  1 
hkp 

F5(P) 

(20) 

F(p) will not have a pole at infinity and will be 
p-i- if F0(p) is p-r. 

6.  If FA(p) is a Class II function and n = k, 
then a step or forward division will remove a 
constant equal to Re F0(jwInin  a Re F(j ) a F(ø"), 

and the remainder function F6(;) will be a minimum 
real-part function.  The result is of the form 



qn 
F0(p) F6(P) 

nk 

mainder is easily seen to be Class I. 

(21)  division (operation 3): 

1 

If F0(p) is not Class II but its reciprocal is, 
forward division may be applied to 1/F0(p) to give 

F0 (p) a   hk 
+ F (p) 

qo 6A 

1 (22) 

The remainder function F6(p) or F6A (p) will have a 
zero at infinity so can be broken Uown further by 

operation 5. 

By use of these six operations numerous 
inrittance functions can be completely broken into 
a continued fraction of simple p-i' terms.  These 
terms can then be identified as series impedances 
or shunt admittances of a ladder network in ac-
cordance with eq. (10) or (11).  Many readers will 
recall that Cauerts continued-fraction method for 
synthesis of RC, RL, and LC immittancep utilizes 
what amounts to these sane operations. 4 Not so 
widely recognized is the fact that these operations 
are also helpful for synthesis of RIC networks. 
The necessary condition which makes it possible to 
completely expand an immittance this way is that 
after each step of forward or reverse division, 
the remainder function or its reciprocal must be 
a Class I or II p-i' function.  If the remainder 
function and its reciprocal are both Class III, 
additional techniques must be introduced in order 
to break down the remainder function. 

Synthesis of Second-Order Immittances  

The simplest network which can represent a 
second-order immittance will be determined by the 
properties of the given immittance and will vary 
considerably.  The realization methods about to be 
described provide a straight-forward approach for 
realizing any second-order p-r function. 

Type A Realization 

Any Class I or II F(p) can be realized 
quickly by making a continued-fraction expansion 
by use of forward and reverse division.  Such 
realizations will be referred to as Type A reali-
zations.  Consider the example: 

2o2 + 5p + 2  
F(p) =  2 (23) 

p + 2p + 2 

Eq. (4) shows this to be a Class I function. Ap-
plying reverse division (operation 3) gives 

F(p) a 1 + 

2 

+ 2p + 2 ' 
(211) 

where the remainder is a Class I function with a 
zero at the origin.  By inversion and reverse 

division (operation 2): 

1   
F( P) 1 2  4/3 + p 

3P  3 + P 

As indicated in connection with eq. (9), the re-

(25) 

By reverse 

F(p) a 1 +   (26) 

- + 4/9 + 7 r 
3p 

3 + p 

Inverting the remainder and dividing gives 

F(p) a 1 +  2   

(Tr;  4/ 9 

1 1 
( F  9)  P  7, 

.  (27) 

If F(p) is construed to be an impedance, we may 
associate (27) with (10) and Fig. h, and the net-
work will be as shown in Fig. 6A.  If F(p) were 
an admittance, we should associate (27) with (11) 
and Fig. 5 to get the "reciprocal" network to that 
of Fig. 6A. 

If the remainder of (25) is inverted it will 
become Class II.  A different realization can be 
obtained by performing this inversion and then 
finishing the expansion by use of forward-division 
operations.  The result is 

F(p) a 1 
1 

2 

3P 
1 

1 + 

5 

1 

1 

(28) 

Fig. 6B Shows the corresponding network if F(p) is 

an impedance. 

Type A realizations will require no more than 
five elements.  Some will require less; for ex-
ample function (8) needs only two elements. 

Type B Realizations  

Some F(p) are Class III as they stand, but 
beco me Class I or II when inverted.  The function 
1/F(p) will be Class I if 

ad - be 2.12 
g< b/d  and 

gd - b  a ' 

while it will be Class II if 

g >b/d  and  
a - ge  g 

To get a network, we may start with 

F(p) a 
1/F(p)  ' 

and then expand 1/F(p) just as in a Type A reali-
zation.  Due to (31), what would normally be the 
first term of the expansion will be missing.  This 
simply means that the network of Fig. h mould have 
Z1 a 0 while Fig. 5 would have Yl missing. 

1 

(29) 

(30) 

(31) 

"Type B" realizations also require no more 
than five elements.  It is interesting to note 
that in some cases where F(p) is Class I or II, 
1/F(p) will be Class II or I, respectively.  In 
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such instances there will often be a total of four, 
distinctly different, five-element equivalent cir-
cuits of which two can be obtained by the Type A 
method and the other two by the Type B. 

Type C Realization  

If neither F(p) nor its reciprocal is a Class 
I or II function, then the Type A and B procedures 
fail.  Any Class III function can be realized by 
Brune's method, but his method requires unity-
coupled coils in order to realizR a Class III 
function of the form of eq. (1). 4 If unity-
coupled coils are to be excluded, the simplest 
procedure appears to result from breaking the 
Class III function into the sum of a Class I, 
minimum real-part function plus a Class II, mini-
mum real-part function.  This gives 

2 gp  +t p  (a - t)p + b 

p + ep + d  * p 2 + ep + d 

It can be shown that both terms in (32) 
p-r if p-r condition A is satisfied and 

gd/e  t  a - b/e . 

Consider the example 

F(p) 

p 2  L tp  4.  7 
F(p) . 

In this case (33) can be satisfied on both sides 
by an equal sign if t = 1/2.  Eq. (32) becomes 

2 
p  0.5P 3.5p + 7  

F(p) = 0  + 6 (35) 
p' + 2p + 1  p' + 2p + 1 •  

The two terms in (35) can be expanded in continued 
fractions to give: 

(32) 

will be 

(33) 

(34) 

1  1   
1   1   .  (36) 

+ 71-7:1  3.5 P *  1 
-0  (1/7) 

Eq. (36) represents two ladder networks connected 
together.  If F(p) is construed to be an im-
pedance, the realization is as shown in Fig. 7. 

Observe that Fig. 7 represents two, three-
element ladders connected in series.  In most 
cases it will only be possible to satisfy (33) 
with an equal sign on one side.  Then one of the 
ladders will have four elements while the other 
will have only three.  In general it will be 
found that this type of realization will require 
no more than seven elements.  It can be shown that 
if F(p) fails to qualify for Type C realization, 
then 1/F(p) also fails to qualify. 

Type D Realization  

If F(p) satisfies p-r condition A and eq. 
(3), but doesn't satisfy the conditions for Type 
A, B, or C realization, then what will herein be 
called a Type D realization appears to be neces-
sary if unity-coupled co ils are to be avoided. 
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The first step in this realization is to subtract 
a constant o<  (see Fig. 3) from F(p) so that the 1 
result will be a minimum real-part function Fl(p). 
The constant o<  can be found by finding the 1 
smallest root ac- k  o< 1 of 

(U2 - 4d2 )  k2 + (4 02 + 4bd - 21.1W)  k 

+ (1012 - /4gdb) = 0 

Which will satisfy 

W c< kli  N, 
xk  2g - 2 cl ic 

where 

(37) 

(38) 

W = b - ae + dg, 

and  U = 2d - e2 , 

the a, 21,  d, and z parameters being those of 
(1).  If there are two 0( k roots of (37) that 

satisfy (38), then the larger one is a( 2 in Fig. 
3 while the smaller one is co< 1. The frequency at 

Which the minimum or maximum o? Re F(jw) occurs 
can be found from 

' 41-5 c  (39) 

where wi will be the frequency of the minimum 

point and at will be the frequency of the maximum; 

xk for k = 1, 2 being given by (38). 

Now the minimum real-part function F'(p) may 
be expressed as 

Fqp)  F(P) - 0< 1 (40) 

gl  2 + a,p b , 

p2 + e'p + do 

Application of either forward or reverse division 
to (41) will giVe a non-p-  r remainder; so instead, 
from (41) we shall form the equivalent function 

Fs(p) Fl(p) C(pp + K)  
= 

+ K) 
j p2  j w1 2 

p3 + (el + K)p2 + (d1 + 

where 

K • 
d' - cull2 

Ke Op + 

(42) 
evp3  (at + g'K - J)P2 (b ' * a'K)P  

p3 + (e' + K)p2 + (d , + Ke Op + dIK 

e' 4)12 
bIK 

and  J 
U i 

Both terms of (42) are p-r; the first having a 
zero at infinity, the second having a zero at the 
origin, and both having zero real part at mi. The 

circuit is now obtained by expanding both terns of 
(42) in continued-fraction expansions, starting 



the first term with inversion and forward division 
(operation 5) and the second term with inversion 

and reverse division (operation 2). 

Fig. 8 shows a realization for the impedance 

F(p) a Z(p) • 1.1 p2 2  • 
+ 0.813 p + 0.29394 

p + 2p + 2 

Note that for this impedance case, 0( 1 is real-

ized as a series resistance and the continued-
fraction expansions are realized as two ladders 
connected in series.  It is interesting to note 
that this same network can be obtained by the 

method of Bott and Duffin. 5 The technique de-
scribed herein, however, has the advantage of 
eliminating the work of finding the real, positive 
root of a third-degree polyno mi al .3  Type D reali-
zations will require no more than nine elements. 
If (43) had been an admittance, the structure 
would have taken the form of a conductance and two 
ladders all connected in parallel. 

The Ranges of Realization 

To give a better insight into when these 
different kinds of realization are possible, Fig. 
9 illustrates the various ranges of zero locations 
of F(p) eq. (1), when the poles are located at 
p • -2 ± jl.  Only the second quadrant of the p-
plane is shown since no zeros can occur in the 
first or fourth quadrants and the second and third 
quadrants are symmetrical with respect to the real 
axis.  With these given poles, F(p) will be p-r if 
it has a real, positive constant multiplier and 
the zeros occur in conjugate pairs such that the 
second-quadrant zero lies within the outer curved 
contour.  If the zero lies within the cross-
hatched region marked AI (45 deg. cross-hatch 

lines falling from left to right), then the 
function is Class I and can be realized with a 
Type A realization.  If the zero is in the ATI  
region (45° cross-hatch rising from left to right), 
F(p) is a Class II function and Type A realization 
is again possible.  Note that the region of Type B 
realization (horizontal cross-hatching) over-laps 
the Type A region in places.  Where they overlap, 
both F(p) and its reciprocal are Class I or II 
functions; and where they do not overlap, either 
F(p) or its reciprocal is a Class III function. 
If the second-quadrant zero lies within the outer 
contour but outside of the regions of Type A or B 

realization, then both F(p) and its reciprocal are 
Class III p-r functions. 

The region of Type C realizability overlaps 
all of the region of Type A realization and part 
of the region of Type B realization; however, 
since more elements are required for Type C, one 
would probably want to use it only when the zero 
lies in one of the unshaded regions marked C.  The 
region of Type D realization overlaps part of the 
region of Type C realization and part of the 
region of Type B; but again since Type D reali-
zation requires the most elements of all, it would 
usually be undesirable unless the second-quadrant 
zero lies in one of the vertically cross-hatched 
regions marked D.  If F(p) has simple zeros on 

(143) 

the real axis, any of the Type A, B, C, or D 
realizations may be possible depending on the 
relative locations of the zeros.  It is inter-
esting to note that the boundaries of the various 
regions of realization in Fig. 9 all have geo-
metric symmetry with respect to the circle about 
the origin which passes through the poles. 

Synthesis of a Constant-Resistance Ladder  

Let us now consider the design of a ladder 
network having a constant-resistance input and a 
prescribed, minimum-phase transfer function.  We 
shall stipulate that the network is to be driven 
by a generator with a one-ohm internal resistance, 
and the ladder impedance is to match this.  The 
transfer function may be written as 

T(p) • A_ H1  • AlTm(p) • Input Voltage  
1 H2   Output Voltage 

where Hi and H2 are polynomials, Al is a constant, 

and Tm(p) will be defined later.  We shall tempo-
rarily stipulate that T(p) is a non-minimum real 
part p-r function; however as we shall see, this 
stipulation is easily removed. 

If the generator has an internal resistance 
of one ohm and the network has an input resistance 
of one ohm, then the zero-impedance voltage gener-
ator in a Thevenin equivalent circuit will see the 

resistance: 

Z  a 2 • 2 — • 1 + 1-11. 
Hi 

in Ml  "3. 
Here one should note that the zeros of an im-
ped ance will be natural modes of vibration if it 
is driven by a zero-impedance generator; the poles 
will be natural modes of vibration if the im-
pedance is driven from an infinite-impedance 
source.  Introducing Hi into both the numerator 

and denominator of (45) will give the circuit 
natural modes of vibration corresponding to the 
zeros of Hi when Z  is driven by either a zero in 
internal impedance source or an infinite internal 
impedance source.  It can be shown that the zeros 
of (44) will be natural modes of vibration, hence, 
specifying (45) in the way that we have will give 
(44) the proper zeros. 
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and 

-1/1 

1)2 • Re 

Now let us define 

H2 (Y0 I 
::> 0  (46) 

min. 

>  0 .  (47) 

MB3C. 

Both -V 2 will be greater than zero 
1   

since T(p) was stipulated to be a non-minimum real 
part p-r function.  Now the function (45) may be 
expressed as the continued fraction 



Zin • 1 + 
}(2"1 

(K2Hi - H2 ) 

1 
(K2H1 - KiK2H2) 

H2 
+(KiK2 ) 

1 1 + Z * 
1 y 2 4. GL 

where each term of the expansion will be p-r if K1 

and K2 are constants such that 

(148) 

0 < K1  1 

a  K2and   
2 

(14 9) 

(So) 

(Si) 

A circuit for expansions (48) and (49) is shown in 
Fig. 10.  The transfer function of this circuit 
has the zeros of (414) due to (45). The frequen-
cies of infinite loss (poles of eq. (4h)) are 
caused by the signal being shorted out by the 
shunt branch Y2 at frequencies corresponding to 

the zeros of H2. The series branch Z, serves as 

what Guillemin and others have called a "zero-
shifting" branch, a9d it will not cause any points 
of infinite loss. 3,°  Thus the points of infinite 
loss will be determined by the poles of Y2; and 
these are the same as the poles of (44), as they 

should be.  From such reasoning it can be seen 
that the network in Fig. 10 has the transfer 
function (44), at least within a constant multi-
plier.  By carrying out the synthesis in a similar 
but dual manner, the constant-resistance network 
in Fig. 11 is obtained.  This network also has the 
transfer function (44) within a constant multi-
plier. 

Since the input impedance of the transmission 
network in Fig. 10 (or in Fig. 11) is a constant 
resistance, the impedance level of one section of 
this type can be adjusted so that its input will 
serve as the proper constant load resistance for 
another section.  In this manner any number of 
such simple sections can be designed separately 
and then cascaded together to give a ladder net-
work whose transfer function is the product of 
the section transfer functions (or the product of 
the section transfer functions within a constant 
multiplier, depending on how the transfer function 
is defined).  Thus as with other constant-resist-
ance networks, 1 the realization of a complicated 
transfer function can be greatly simplified by 
carrying out the realization in small parts.  It 
should be noted that the transfer function for 
each component section must be a non-minimum real 
part p-r function, but the overall transfer func-
tion need not be p-r! The process then is to 
select poles and zeros for each section of the 
ladder so that the section transfer functions 
will be non-minimum real part p-r.  If it sho uld 
be impossible to factor the overall transfer 
function into a complete set of p-r factors, ad-
ditional factors of the form (p - p,)/(p - p ) 

1 

can always be introduced so as to make p-r factor-
ization possible.  Thus any minimum phase transfer 
function can be realized within a flat loss factor 
in a constant-resistance ladder. 

If the overall transfer function is factored 
so that each section transfer function has either 
one or two poles and zeros, then the branch 
mittances of the sections will have only one or 
two poles and zeros and the synthesis techniques 
previously mentioned can be used to carry out the 
design in a straight-forward manner. 

Ladder and Bridged-T Flat Loss Comparison 

Since these networks will often have unequal 
terminations, let us define our transfer function 
in terms of the voltage available at the load 
conductance G (or resistance RL).  Thus, 

E2 

g Avail.  7FT  L Avail.  GL  Avail. 
g  p (52) 

where Pg Avail, is the available power of the 

generator, Eg and Rg are as defined in Fig. 10, 

PL Avail, is the power available at the load, and 

EL Avail  is the voltage which this generator 

would cause across the given load GT. if the gener-
ator and load were perfectly matched by an ideal 
transformer.  From (52), 

1   
EL Avail. 

g V g L 

It appears logical to define the transfer function 
then as 

EL Avail. , T(p) • E 

• (53) 

(514) 

the ratio of the available load voltage to the 
delivered load voltage.  Eq. (54) is essentially 
an input over output ratio as is (44).  Since the 
delivered load voltage cannot exceed the available 
voltage, 

IT401  . EL Avail. I > 
- 1 .  (55) EL 

Any transfer function (54) that satisfies (55) with 
an equal sign at soae steady-state frequency jce is 
a minimum,lose transfer function. 

Let us define 

T(p) • _± 
H2 

(56) 

as a minimum-loss transfer function.  Then A1 in 
(414) is a constant factor equal to or greater than 
one, which indicates the flat loss of the network. 
For the networks of Figs. 10 or 11, Al is computed 
to be 

K2 

u l — K1  (57) 

+32 



The smallest value for A (and the least flat loss)  mum-loss transfer function is 
will be obtained when ( ) and (51) are satisfied 

wi th equal signs to give:  TAl m(p)  (glpp2 :  bep + d) . EEL Avail.  2  (63)  

11 min. " A 
112 

1 

(58) 

Since any minimum-phase transfer function 
which can be realized in one conventional constant-
resistance bridged-T section can also be rvalized 
in one constant-resistance ladder section, 1 the two 
have about the same realm of application, and it 
appears relevant to compare their attenuation 
factors.  The smallest attenuation factor for the 
conventional constant-resistance bridged-T is 

computed to be: 

1 

A2 1 min.  -1/ 
• (59) 

Since transfer function (56) has no flat loss, fram 
(50) and (51) it can be seen that both p i and 

li/2 must be no greater than one.  Hence tRe 
ladder Allmim.  will always be less than the bridge-

A2Imin. 
except when both methods of realization 

give minimum-loss transfer functions, i.e. except 

when Ali min  " A2Imin.  1.  

Some Practical Considerations  

Let UB assu me that the poles and zeros of a 
complicated transfer function are to be factored 
into groups and then realized in a chain of con-
stant-resistance ladder sections.  Let us suppose 
further that each section is to contribute two 
poles and zeros to the overall transfer function. 
It may be possible to group the poles and zeros 
so that most or all of the section transfer func-
tions are Class I or II p-r functions.  Each 
section that has a Class I or II transfer func-
tion will have a second-order, Class I or II im-
mittances in both arms, and considerably fewer 
elements will-STrequired than if Class III im-
mittances were involved. 

Let us suppose 

2 + ap + b  
an (Input/Output) ratio  (60) 

p2 + ep + d 

has been factored out to be realized as one sec-
tion of the ladder.  It can be shown that if (60) 
satisfies eqs. (4), then (60) and all of the arm 
immittances in Figs. 10 and 11 will be Class I 
functions.  Then the corresponding minimum-loss 

transfer function (56) is 

2 + b 
T in ( p  d  aP  

b  p2 ep  d/ 

for which 

-r,1 • -'2 • 1 . 

If (60) satisfies eqs. (5), then (60) and 
the arm immdttances in Figs. 10 and 11 will all 
be Class II functions.  The corresponding mini-

EL Avail. (61) 

(62) 

for which 

-il l - 1)2 • 1 .  (64) 

Note from (58), (62), and (64), that if (60) is a 
Class I or II function, the section will require 

no flat loss. 

If (60) is Class III, the multiplier required 
in order to form the minimum-loss transfer func-
tion Tm(p) can be determined as described in the 
Appendix.  This is of interest for pre-determining 
the flat loss of the section, but it is not a 
necessary step in the design procedure.  Defining 
(60) as Hl/H2, the values of (46) and (47) can be 
determined by applying eqs. (37) and (38) to (60) 

and its reciprocal.  The values of  il l and  
obtained would not be the same as those computed 
from Tm(p), and eqs. (57) to (59) would no longer 

hold, but the resulting network would be the same. 
If (60) is Class III, at least one of the arm imr 
mittances will be Class III. 

Let us realize the Class I, p-r, minimum-

loss function 

• 

T ( )  2.759 p2 + 6.897 P  5.000 
m p • 

p2 + 4.000 p + 5.000 

2.759(p + 1.25 + j 0.5)(p + 1.25 - j 0.5) (65) 

(p + 2 + j 1)(p + 2 - j 1) 

If in the design, (50) and (51) are satisfied with 
equal signs, the arm immittances will be minimum 
real-part functions, and the network will have no 
flat loss.  Doing this and using the configuration 
in Fig. 10, the network is as shown in Fig. 12. 
It is interesting to note that this circuit uses 
only eight elements (excluding terminations) in 
order to realize the transfer function (65), while 
a convention al constant-resistance bridged-T would 
use ten, and a constant-resistance lattice would 

use sixteen. 

If any of the branch immittances used are 
two pole and zero Class III functions and if (50) 
and (51) are satisfied with equal signs, either 
Type D realizations or impractical Brune reali-
zations with unity-coupled coils will be required. 
The branch immittances would be minimum real-part 
functions and Type D realization would require 
eight elements for each Class III immittance.  If 
eqs. (50) and (51) are satisfied by the inequality 
signs, then the branch immittances will not be 
minimum real-part functions.  By doing this it 
will be possible sometimes to obtain Type C reali-
zations (usually 7 elements), or Type B reali-
zations (usually five elements) for the Class III 
immittance branches.  Of course the price for the 
reduction in number of elements is additional flat 

loss. 
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If some cases the designer may wish to ac-
count for coil and condenser dissipation.  If the 
circuit resulting when (50) and (51) are satisfied 
with an equal sign cannot be adapted to this, by 
using the inequality signs (thus increasing the 
flat loss) it will usually be possible to modify 
the realization to account for coil and condenser 
dissipation. 

In some cases this method of synthesis will 
give unequal terminations.  It Should be noted 
that if the configuration in Fig. 10 gives a rise 
in impedance level from input to output, the cir-
cuit of Fig. U. will yield the identical transfer 
function (54) with a drop in impedance level from 
input to output.  Thus if a chain of sections with 
unequal terminations are to be connected together, 
SOMO control can be exerted over the impedance 
levels at the ends by choosing between the sec-
tions of Fig. 10 and Fig. 11, or by using some of 
each. 

When transfer functions are defined as in 
(54), then the overall transfer function for a 
chain of constant-resistance sections is exactly 

T(p) • Ti(p)  T2(p)  T(p)  ,  (66) 

where the Tk(p) are the transfer functions of the 
individual sections.  One might at first think 
that if all of the component sections have mini-
mum-loss transfer functions, then T(p) would also 
have a minimum-loss transfer function.  However, 
note that this is true only when the magnitudes of 
the individual transfer functions all have the 
value one at the same frequency p  ju.  For this 
reaeon the designer will sometimes introduce extra 
loss by realizing a complicated transfer function 
in a chain of simple sections rather than in one 
complicated section.  The design simplicity ob-
tained will usually be worth the price, however. 

A somewhat more complete discussion which 
indicates how the equations in this paper were 
derived will be found in Reference 7. 

Appendix 

Suppose that we have a Class III function 

T(p)  B(  IJSLIJa) 
+ ep + d 

where 25 15 and d are known but B is to be  , 
determined so that the minimum value of ITn(y)N 
is one.  The correct value of B can be determined 
by examining several trial values.  The first is 

A possible third and fourth value may be obtained 
by forming the polynomial in Q: 

(C2 - 4b2)Q2 + (2DC + 4b2 + 4d2 

where C 
lecting 

(D2 - 4d2) - o , (70) 

2b - a2 and D  e2 - 2d; and then se-
roots Q = Qk which satisfy 

(QkC + D) 
Yk (real, 

“ Q1-7 7-17  
positive) .  (71) 

For each Qk that satisfies (70) and (71) there is 
a trial value 

B  )1-(71-c- • 

The desired value of B is the largest value ob-
tainable from (68), (69), or (72).  Eq. (68) will 
be valid when ITm(yo)1„4. . 1 occurs at the origin, 

(69) when it occurs at ii hnitor, and (72) when it 
occurs at 

+yak = 

(72) 

!J AR, •  (73) 
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AN ITERATIVE METHOD 

FOR 

R C LADDER NETWORK SYNTHESIS * 

R. E. Scott and N. DeClaris 
Research Laboratory of Electronics and Department of Electrical Engineering 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

T ri n s 4 
An iterative procedure is described for  i=1  II) 

synthesizing R C ladder networks from their pole 
and zero positions.  Criteria for convergence are 
developed and an example is given. 

The iterative procedure for network synthesis 
starts with a given set of poles and zeros.  A 
network topology is chosen by inspection, which 
yields the required zeros and provides enough 
flexibility to determine the poles.  Arbitrary 
element values are assumed and then each tuned 
circuit is "relaxed" in turn to give a correct 
resonance at one of the poles.  For the general 
R L C circuit it is sometimes difficult to pick the 
correct network topology by inspection, and no 
general proof of the convergence has yet been 
offered.  For the R C case where all the poles and 
zeros are on the negative real axis, the network 
configuration is known to be a ladder and hence the 
first difficulty is overcome.  It can also be shown 
that if the relaxation is carried out in a pre-
scribed way the process must converge. 

The principal advantages of the iterative 
method over any of the conventional ones lie in 
the added flexibility which it gives the designer 
in the choice of the form of the network, and in 
the numerical simplicity of the computations 
which are self-checking at every stage in the 
procedure. 

The Properties of P C Ladder Networks  

The pertinent properties of R C ladder net-
works are summarized in the following theorems. 

Theorem I:  

The transfer impedance of an R C two-terminal-
pair network is of the form, 

Z12 (s) = K 

7121 r( s 4  1=1  () 

where all the aiis are real, distinct, 
positive anu the 04's occur in complex 
pairs.  Furthermore n  

and 
conjugate 

Corollary 1  

If the R C network is of the form of a :Anglf 
ladder then both ai and pi are real, distin,A 
and positive. 

Theorem II  

The driving point impedance of an R C net-
work is of the form, 

Z11 (s) = 12f(s  hi) 

122 T(s  (21) 
where a and b4 are real, distinct and positive 
and form an alte rnating sequence when arranged 
according to the order of their ascending magni 
tude beginning with ai and m=n or m=n41. 

Theorem III  

The sum of two polynomials with real and 
negative zeros which alternate along the real 
axis of the complex plane fo rms another poly-
nomial whose zeros are also real and alternate 
with the zeros of the above polynomials. 

Theorem IV  

All the pules of a transfer impedance of 
a two-terminal-pair network are contained in the 
driving point impedance viewed from any pair or 
terminals. 

This work was supported in part by the Signal Corps, the Air Materiel Command, and the Office of 
Naval Research. 

**There is an additional condition for the constant multiplier K.  However, no use of this condition 
is made in this paper. 
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Iterative Procedures for RC Ladder Networks  

A convenient procedure for realizing R C 
ladder networks consists of the following: 

1. Arrange the zeros and poles in sequences 

of ascending order of magnitude and associate 
poles and zeros in pairs. 

2. If the pole lies to the left of the zero 
it will be realized by a type 1 section.(see Fig.1) 
If it lies to the right it will be realized by a 
type 2 section. (see Fig. 2) 

3. Assume arbitrary values of the elements in 
the complete network. (Note: the shunt R's are 
redundant elements which give the flexibility 
required for a general case.) 

4. Iterate the shunt R's one by one.  Adjust 

the residues of the R C circuits to keep the 
Lagrangian energy functions negative at all the 
poles.  This last condition is necessary to keep 

the resistors all positive. 

The Series and Shunt Component Sections  

The series section is shown in Fig. 1.  Let 
Zo and Zi be the driving point impedances of two 

R C networks.  In particular let, 

(3) 
1 71(s+pi ) 
1=   

Z - 

1=1'  4ii 11(s+ni) 

with the additional condition that qi<ni. 

After a few algebraic manipulations one 

obtains: 
TI.(s+ni) 1 (s+a) 17 (s+q  ) 
_  (4) 

Z11  1-[(s+m ) RI  (s+a) TV(s+P)+aR2T-C(s+q) i 

where: 

CI = 
1 

R2C 

In accordance with Theorem III, 

(s+a)17(s+p)+aR2T(s+q) = KTT(s+di) 

where there is at least one d = do, such that 

da) a 

The exact location depends upon R2. Finally 
the poles of Z11 (s) are determined from the 

polynomial 

7 (s+d) 7(s+m)+Ri1 7(s+n1)7(s+d)+11(s+q) 7(s+m) 

(s+a)] 
(7) 

It can be shown that the above polynomial has 
real zeros a one of which is a > a the exact 
location depending upon Ri. Itocan be stated 
therefore that a pole a ts constrained by Ri 
to give aa>a.  The choice of R2 is arbitrary, 

and can be used to control the nature of the 

energy functions. 

A similar analysis will show that for net-
works of the type shown in fig. 2 R1 constitutes 
the constraint on a pole aa such that, 

a 
ao< 

where 
. 1 
R2C 

with R1 setting the impedance level. 

(8) 

Convergence  

For the transfer function of an R C network 
the system equations take the form 

Aij  x + y = Cij  x  (9) 

where 
= Xi  IS  = Kronacker 

ij Delta 
(10) 

and x and y are the desired voltage and current 

functions. 

Or 

This equatiOn can be written as 

x + y = 0 
ij 

IA .ij  - x!i\ S = Oi = 0 (12) 

where  is the unit matrix. 

It must be pointed out that due to its 
special form the matrix Ai has only the diagonal 
elements and elements adjacent to the diagonal. 
The element C44  is independent of s and further - 

more there exi t pi such that 

= 0  i = 1, 2, . . . n (13) 
ij 

Since the determinant 
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Au(s) I 
is of a polynomial in n power of s the Oi are 

the only possible roots and 

1 Aij (P i) + Cij  1= Ki 

where Ki is a real number. 

Equation 14 in expanded form constitutes n 
systems of n simultaneous and interrelated 
equations whose elements Cij  are necessarily the 

same in all systems. 

(14) 



In the iterative method an arrangement is 
made by which all the elements of the matrix (Aid 
in Eq. 13 are known with the exception of the  4 
element a4i (diagonal).  A first guess of these 
elements ts made and one computes the error Xi as 
follows 

= Alb )  X  

II ) 

(15) 

were ai(0 i) is the determinant of the matrix and 
11 0) is the co-factor of the element aii'  A 
new matrix is written for which: 

a  = 1+1  ai - X i (16) 

The superscript denotes the order of iteration. 
After n iterations (n being the total number of 
poles or n+1 the number of rows of the matrix Ai)  

(n) = 

and 

(n)  =a  (o) X (1) 
i Aj.   11 -1 

n+1 
rT 
i=2 

a(o) (1)  ai2 -1 i 
2 

il  Xi  ai-1 0-1 i-1 

(17) 

n+1  2 
(n)  (o)  (1) 1--r a (0) -X (1) - 21=1,i A  =  -X  i 

(0) — TT  (18) 11  22  2  i=3  ii  i 

a.. being the first guess element value.  There-

a(o) .4 (1) 2 

x(2) ._  11  1   [a(o)_x(1) _ a12 
1  43 )_4 1)  22  2  a(o) 4 (1 

11  1 

or: 

2 
(2)  (0)  (1)  al2 

X1 = all  - X1  - 
22  X2 

but, 
2 

x(1) = [a (o) _ 212  all1 = 
1  22  a(o) 

a22I 
11 

and 

2 
a12 

a11 - 
'2/22 

a(o)2  2  (o)  2 

12   al2  „ ,(1)  al2 
a(o)_x(1)  7.77- -  T r-] 
22  2  22  22 

• • • • 

(19) 

or 
(o)  2 

(1) _ a' 
X2  - 22  - al2 

for 

'112 

'122 

(o) (a  ) 
033  33 11 1 

2 
a22  al2 

011  033111 

the process converges since 

4 2)  >  xil) 

Example 

Given the transfer function 

Z12 (s) = ( . s+1) (s+3) 

find the network. 

It is obvious that 
(°)  2 

x(2) = x(1) (a 12  ) 
1  2  a(o) 

22 

The higher terms omitted since 

a(o)  (o) 
22  al2 

Now 
a(0) (0)2 

(1)  12 -a 12 /0 17 )4 11)  
X2  - for s=-02 (24) 

033  

(25) 

(.'€) 

(23) 

The poles and zeros arranged in a sequence 
of ascending order are: 

poles:  -1  -3 
zero: 00 

The pole (-1 ) is associated with the zero (20) 
(0) and the pole (-3) with the zero at (00). 
Note that both section types must be used. 
And the network takes the form shown in Fig. 3. 

Suppose that 4C1 = C2. (Arbitrary condition.) 
(21)  As a first choice let: 

(22) 

The above values of elements a.. are computed for 
ij 
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1 C2 = 1  R2 = 

Match the impedances for s = -1 at the section 
ab.  That is, 

Z1(-1) = -Z2(-1) 

or 

R = -(-3) = 3 1 



Now match the impedances at section cd, for  References 

S = -3. 

Y3(-3)  =  Y4(-3)  

1 = p 
R2  = “2 = 12 

Going back to section ab and with s = -1 

23 
7 

At section cd for s = -3 

1 
; = -( -3.97') R2 = .253 

For s = -1 at section ab 

R1 =.-(-3.664) = 3.664 

After a few iterations 

Ri = 3.33 

C2 = 1 
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Fig. 1 - Series element network type I. 
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NETWORKS TERMINATED IN RESISTANCE 

AT BOTH INPUT AND OUTPUT 

By Louis Weinberg 
Hughes Research and Development Laboratories 

Culver City, California 

Abstract 

In this paper a lattice with a resistive ter-
mination at both input and output is realized. Any 
physically realizable transfer function--impedance, 
admittance, or dimensionless voltage ratio--may be 

realized by the method presented.  The method used 
may be based on either of two previous procedures 
that realized open-circuited lattices.  If the 
given transfer function has a numerator of lower 
degree than its denominator, then an even more 
practical termination may be obtained at both in-
put and output, namely, one that has a shunt cap-
acitance in addition to the resistive termination. 
The lattice arms contain no mutual inductance and 
may always be designed to have no pure inductances, 
that is, every inductance present in an arm has an 
associated series resistance. 

Introduction 

The problem of realizing a general transfer 
function by a lattice network is an important one 
in modern network deslrn, and has been treated in 
a number of papers.' -' Only one' of the available 
procedures, however, demonstrates how to obtain 
the practical and desirable form of lattice that 
has resistance terminations at both input and out-
put. Here a different method is presented for real-

izing a general transfer impedance, transfer admit-
tance, or dimensionless voltage ratio as a lattice 
terminated at both ends in resistance. No mutual 
inductance is necessary for realizing the lattice 
arms and every inductance may be designed to pos-
sess an associated series resistance, so that in 
building the network lossy coils may be used. Fur-
thermore, it is often desirable from a practical 
point of view to obtain a network with a shunt ca-
pacitance at the input and output terminals; it is 
clear that the physical realization of such a net-
work requires that the numerator of the transfer 

function be of lower degree than the denominator. 
When this condition holds, the method of this pap-
er achieves the desired capacitance at both input 
and output terminals. 

The first part of thF pethod may use either 
one of the two procedures"/' for realizing an open, 
circuited lattice.  The procedure explained in 
this paper starts with the technique of partial 

fraction expansion 0 it will be clear to the reader 
how the other methods may be similarly adapted. 
Only a brief summary of the partial fraction meth-
od is given in order to establish definitions and 
necessary formulas; for further details the reader 
is referred to the reference. 

After the realization of the open-circuited 
lattice it is necessary to remove a constant from 
each of the lattice arms.  To show this is always 
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possible a discussion is given of the variation 
along the j axis of the real part of the lattice-
arm driving-point functions.  Then the explanation 
of the synthesis procedure is completed and an il-
lustrative example is worked out. 

Realization of Open-Circuited Lattice  

It was previously shown  4 that a general trans-
fer impedance, which can always be written within 
a multiplicative constant in the form 

E2  p(s) 
7  (1) Z12  TI  71777 

sm-1  ais+ao  sni + am-1   

n sn-1 
s +  . + b1s+bo 

, (m  n+l) 

may be realized as the open-circuited lattice shown 
in Fig. 1 for which 

1 
Z12  =—(Z -Z ) . 

2 b a 

If the poles of 712  are simple and its numera-

tor is of lower degree than the denominator, the 
partial fraction expansion of the impedance of each 
of the lattice arms has the form 

n kµ 

Z • µ.1 s-s 
(3) 

Considering complex conjugate poles as combined 
into one term, we find that each of the partial 
fraction terms has the significant positive real 
characteristic, that is, the terms are separately 
realizable by inspection.  Thus the two types of 
terms that occur are given by 

and 

k1 

z1  s- sl 

a1 

k2  ic2 
z 
2  s-s2  s- 82 

a2+42 a2-.V2  
"°2—J4)2  "°2+,10a2 

5 



2d2(s+d2) 

=  , 
S +C2s+ s21 

where a' a1, d2 d2' ando2 are real and positive 

constants, and d2 is not greater than 202. These 

terms are immediately realizable in the forms shown 
in Figs. 2 and 3, and the complete lattice has arms 
containing a series connection of such networks. 

When rn=n one or both of the expansions for 
the lattice arms contains a constant term, and when 
m=n+1 at least one of the arms will contain a pole 
at infinity.  Corresponding to these terms a series 

resistance and a series inductance, respectively, 
will be present in the lattice arms.  For a Z12  

that possesses multiple poles the method of reali-

zation explained in reference L introduces a con-
stant term  into each of the lattice arms.  We 
shall see that this precludes obtaining a shunt 
capacitance at both input and output even when m<n; 
however, the method of reference 5 permits the de-
sired capacitance to be obtained for this case. 

Variation of the Real Fart of Z 

1 
We now show that the real part of Y = 7 for 

s= ja), denoted hereafter by Re[Y(ju)1, has no zeros 
for all real values of ca including infinity, where 
Z renresents the form of the driving-point imped-
ance of each of the lattice arms; that is, the lat-
tice arms have nonminimum-conductive driving-point 
admittances.  As a result a conductance may always 
be removed from each of the lattice arms without 
destroying the positive real quality of its driv-

ing-point function. 

Since z1 and z2, given respectively in (Wand 

(5), represent driving-point impedances, their real 
parts along the j axis are never negative.  It is 

furthermore clear from inspection of (4) that the 
real part of z1 is nonzero at the origin and de-

creases monotonically to a zero value at infinite 
frequency.  Oimilarly, for terms of the form of z2, 

inspection of (5) shows that Re[z2(iw)] is also 

finite and nonzero at the origin and has a zero 
value at infinite frequency, though its intermed-
iate variation is not monotonic.  It, too, posses-
ses no zero in the real part for finite frequen-
cies.  If we consider the given Z12  as a proper 

fraction with simple poles, then each of the lat-
tice arms is of the form given by (3) and the real 
part of Z is the sum of the real parts of the two 
types of terms considered above.  Suppose we now 

write 

7 = 
ml+fl l 

' 
e 2 

where mi and n1 represent respectively the even 

and odd parts of the numerator, while m2 and n2 

play the same roles fur the denominator.  Merl 

(6) 

- n_ n_ 

Re k A m, 1  12 'd 

1112 -11 2  s=ja) 

and the above reasoning yields the conclusion that 
the numerator (m1m2 - nly  possesses no zeros for 

real a) and is therefore always positive.  The to-

tal function Re[Z(jw)1 has a zero at infinity. 
1 

As for the admittance Y= ' its real part is given 7 
by 

1  m1m2  n1n2 
Re[Y(ica)] -  2  2 

ml  nl S=ja) 

(7) 

(8) 

from which we note that it  as the same numerator 

as he[Z(jw)].  Therefore Re[Y(jc..)1 is always posi-
tive and nonzero except possibly at infinite w. 
But it is also nonzero at infinity, for the degree 
of the denominator will be greater than that of 
the numerator in (6) only when Z possesses no other 

terms except one or more of the form of z2 in each 

of which the constapt d is equal to 2o.  oince it 
is always possible " to make d less than 20, we 
may state the conclusion:  the Re[Y(jw)1  is always 
positive and nonzero for all (finite and infinite 

real) values of a). 

Restricting the discussion to a proper frac-
tion containing only simple poles represents no 

loss in generality,for the same conclusion applies 
in the other cases.  If multiple poles are present 
in the given transfer impedance Z12 , a term whose 

real part is positive and nonzero for all (..) is add-
ed to the lattice arm impedances.  If in Z12  the 

degree of p is equal to the degree of q, a constant 
is added to one or both of the lattice arm imped-
ances.  Finally, if the degree of p exceeds that 
of q, none of the transfer functions is physically 
realizable with a resistance termination at both 

input and outuut, as is demonstrated below. 

It has been shown3 that a transfer voltage 

ratio is not physically realizable if the degree 
of its numerator is greater than the degree of its 
denominator, that is, if a pole at infinity is 
present.  But we desire networks terminated in re-

sistance at both input and output.  For such net-
works the same rational function within a constant 
multiplier represents the transfer voltage ratio, 
the transfer admittance and the transfer impedance. 
Thus all three types of transfer functions are 
unrealizable in the form of the desired network if 
the degree of the numerator exceeds that of the 
denominator.  Another way of seeing this is to 
note that if an open-circuited lattice is synthe-
sized whose transfer impedance is given by such 
an improper rational fraction, then at least one 

of the impedances of the lattice arms must hove a 
pole at infinity.  Consequently a conductance can-
not be removed from the corresponding admittance 
because its real part will have a zero at infinite 

frequency. 
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Completion of the Synthesis Yrocedure  



The open-circuited lattice that has been de-
rived may now be converted to the desired form.  We 
have seen that the real part of each of the lattice-
arm admittances will have one or more positive non-
zero minima;  we now determine the smallest minimum 
of both admittances and denote them respectively by 
Ga and Gb. It is then possible to obtain an equiv-

alent lattice 5 by removing from each of the arms a 
conductance of value less than the smaller of Ga 

and Gb and placing it in parallel with the input 

and output terminals of the lattice.  This trans-
formation, shown in Fig. 4, thus yields the desired 

E2 
resistance terminations for Z12  E1. To obtain K. -- 

12 
and Y12  T. .  requires merely an application of 

1 
Theveninis theorem to the input;  this yields the 
network of Fig. 5 for which: 

and 

y 
12  El 

GE2 

E1 

▪ GK 

▪ G2Z12 

E2 
K 

GE2 

(9) 
1 

. GZ12  the point at which the curve is closest to the j 
axis.  To each of the zeros and poles of Yi we may 

I2  now add the positive cons tan t,w hi ch is  chosen  less  

than or equal to this minimum distance, without 
destroying the positive real quality of Yl. Then, 

30 

represents the locus on which the admittance has a  " 
zero real part.  For example, working with the 
series arm, 

Yli Ya + (Ga - G) 

u1(c) w) 

u2(o 'w) 

we obtain the curve 

+ jvl(o,w) 

+ jv2(o,w) 
• 

Re [ 1= 0 

= ulu2 + viv2 f(o,w) = 0.k12) 

Considering o as an implicit function of w given 
by f(o,w) and evaluating the derivative 

ti.3) 

(10) 

It is clear from the above equations that the 
constant gain factor achieved for the transfer vol-
tage ratio is directly proportional to G.  This 
makes it desirable, if one is interested in gain, 
to remove as large a conductance as possible from 
the arms.  However, one may be more interested in 
using low-Q coils for the realization of the lat-
tice arms, which problem we discuss below;  in this 
case it is necessary to retain a large conductance 
in each of the lattice arms. 

For realizine the remainder of the lattice 
arms, that is, the admittances Y; and Yt; in the 

network of Fig. 5, we may use the Bott-and-D uffin 
procedure. 6 This yields a network containing pure 
inductances but no mutual inductance.  However, we 
desire that every inductance possess an associated 
series resistance;  to achieve this we substitute 
a new variable (s-h) for s before using the Bott-
and-Duffin method, that is, we make use of the tech-
nique of predistortion introduced by Darlington.7 

Predistortion requires that for each arm ad-
mittance we first determine the equation of the 
curve in the left half of the complex plane that 
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we find the smallest minimum vaJ..ue of o, that  

after realization of the arm by the Bott-and-ruf-
fin procedure, the network obtained is corrected 
for the predistortion:  for every L a series com-
bination of L and a resistance of Lh ohms is sub-
stituted, while every C is replaced by a parallel 
'combination of C and a conductance of Ch mhos.  A 
similar procedure is followed for the diagonal arm. 

Finally, if the given transfer function is a 
proper fraction, it is clear that the admittances 
of both of the ,l.aitice arms will nossess a pole 
at infinity and a corresponding shunt capacitance 
in their network representations.  Ihus, a capaci-
tance may be removed from each of the arms yield-
ing an equivalent lattice with a shunt capacitance 
at the input and output terminals. 

The steps in the synthesis procedure may n)w 
be summarized as follows: 

1.  Realize the given function as an open-
circuited lattice by the method of reference 14 or 
reference S. 

2.  Obtain an equivalent lattice with a shunt 
conductance at the input and output terminals.  If 
the degree of the numerator of the given transfer 
function is lower than that of the denominator, 
also remove a shunt capacitance from each of the 
lattice arms. 

3. Predistort each of the remaining lattice 
admittances as explained above.  Then realize each 
arm by the Bott-and-Duffin procedure, after which 



the networks 
tortion. 

obtained are corrected for the predis-

L.  If necessary use Thevenin is theorem on the 
innut to obtain the viven type of transfer functiom 

Illustrative Example 

demonstrate the complete procedure, we 
the nonmLnImum-phase voltage ratio 

To 
reaiize 

E2 s2- s - 12.14 

" El  10s 2 + h6s + 60 

as a resistance-terminated lattice. 

First we represent the above function as the 

transfer imnedance of an open-circuited lattice. 
Using the method of reference h we find 

s2 + 6s + 10 
Zb = 

5s2 + 23s + 30 

Z = 
a  2 5s  + 23s + 30 

7s + 22.h 

The serie  inl:edance Za is immediately realizable 

by insrection as 

1 5  7.6 
7 =  + 1 + 
a 

Upon attemstinv to rerove a conductance of one 

b 
from Y we obtain the positive real  remainder  

•   

4s 2 + 17s + 20 
Yb - 1 = 

s2 + 6s + 10 

Now applying Theveninis theorem to the input 
of the lattice thus obtained, we finally realize 

the lattice sl-bwn in Fig. 7. 

Conclusion 

Any realizable transfer voltage ratio, trans-
fer admittance or transfer impedance may be real-
ized by the method presented in this paper as a 
lattice terminated in resistance at both its input 
and output terminals.  No mutual inductance is 
necessary and each inductance has an associated 
series resistance so that low-c coils may be used 
in building the network.  When the transfer func-
tion is a proper fraction, then a shunt capaci-
tance may be obtained at both the input and output 

terminals. 
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terminated lattice of Fig. 4. 
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Realization of the admittance 
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Fig. 7 

Lattice network characterized by 
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APPROXIYATINC BAND-PASS ATTENUATION AND PHASE FUNCTIONS 

V. H. Crinich 
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Stanford, California 

Abstract 

A pr6blem that often arises in synthesis is to 
obtain transfer functions that give an approxi-
mation to assigned attenuation and phase functions 
over a stated frequency interval.  In this paper 
approximation in two different senses is discussed: 
(1)  derivative matching (Taylor), and (2) nearly 
equal-ripple (quasi-Chebyshev).  The first type is 
used as an intermediate step in the second. 

An existing method using Chebyshev polynomial 
series gives nearly equal-ripple approximations to 
an assigned attenuation function in both the "low-
pass" and "band.pass"intervals. 1 This method can 
be used to approximate phase alone or phase and 
attenuation simultaneously but only in the low-
pass interval.  By stressing the concept of con-
formal mapping this method can be extended to the 
hand-pass case. 

This paper gives the extension for obtaining 
the solution to these problems (approximation of 
phase alone or simultaneous phase and attenuation) 
in the band-pass interval.  The procedure uses an 
elliptic function conformal mapping.  In the cases 
of all-pass linear phase or linear phase coupled 
with constant attenuation the nearly equal-ripple 
approximations are shown to be simply related to 
the Taylor approximation. 

I.  Introduction 

In applying network theory to practice, we 
usually find that the work is divided into these 
three well-known parts:  (a) studying the demands 
placed on the network function in the light of 
what is physically realizable, (b)  finding an 
approximation to these demands that will yield a 
physical and economical network and (c)  realizing 
the network in terms of its structure and element 
values.  In this paper the methods discussed are 
useful in the approximation problem, part (b), 
when the demands, part (a), are made in terms of 
the usual steady state characteristics over the 
"band-passflinterval. 

For the case where the specified interval 
includes zero frequency, the low-pass case, the 
approximatilm problem has been fully treated by 
Darlington.' Approximation of band-pass attenvation 
functions can also be accomplished by this tech-
nique.  However, this method is not applicable to 
approximating bend-pass phase or the simultaneous 
approximation of band-passattenuation and phase.* 

If the bandwidth ratio is sufficiently close to 
unity, i.e. the narrow band case, the low-pass 
techniques may be applied to band-pass problems 
by the usual low-pass to band-pass transfor-
mation methods.  If the bandwidth ratio is too 
large then the methods described in this paper 
can be used. 
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The types or senses of approximation that we 
consider are two:  first, the Taylor, and second, 
the quasi-Chebyshev approximations.  The Taylor 
arproximation is mainly useful as a means for 
getting the second type, the quasi-Chebyshev 
approximation.  In the Taylor or power series 
approximation a single point on the frequency axis 
is selected at which the value of the network 
function and as many derivatives of it as possible 
are set equal to the corresponding values in the 
prescribed function.  Thus, by means of derivative 
matching we get a "maximally-flat" error curve 
that represents the difference between the pre-
scribed function, say 7, and the approximating 
network function, say y. 

In the true Chebyshev, or equal ripple apirox-
imation, the maximum magnitude of the error curve 
in the useful (non-zero) frequency interval is 
made a minimum.  As a result of this, the error 
curve ripples about zero with positive and nega-
tive peak values that are all equal in magnitude. 
Instead of trying to find an exact solution (which) 
has been obtained for a few special functions) we 
seek a certain type of nearly ecual-ripple solution 
that we shall refer to as a ouasi-Chebyshev approx-
mation in this paper.  me may define this type as 
a solution obtained by the following method. 

The prescribed function y is expanded into a 
series of functions where the individuel functions 
E. oscillate about a constant value in an ecual-
mpple fashion.  Thus 

co 
y = lE I:1E  (1) 

o 
Then a network or approximating function y is 
obtained in which  CO 

=  a E. 
(2) i = o 

and wherein as many aiare set equal to the corre-
sponding i as possible. 

For the low-pass interval an  for band-pass 
attenuation functions, the functions Ei are 
Chebyshev polynomials.  For the approximation of 
band-pass phase or phase and attenuation, this 
paper presents methods where the functions Ei turn 
out to be a set of elliptic functions. 2 

However, instead of defining the quasi-  - 
Chebyshev approximation in this manner, which 
becomes too complicated for the bandpass case, we 
can use the following alternate definition that 
applies to both the low-pass(Chebyshevpolynomial 
series method) and band-pass cases.  The definition 
proceeds as follows: 

The useful interval of freouencies along the 
co-axis in the p-plane is transformed into a circle 
in another plane related to the p-plane by a con-



formal mapping.  vith the center of this circle 
as the expansion point a Taylor (power) series 
expansion is made which gives the desired network 
transmission function 7 on the circumference of 
the circle.*  The approximating network function 
y is then constructed that me.ches as many coeffi-
cients as possible of the Taylor series of 7 in 
this transformed plane.  As a convenient intro-
duction for the hand-pass problem, we briefly review 
Parlington's work with this later definition in 

mind. 

II.  Conformal Yappings-Attenuation And  
Phase Invariant Transformations  

If a conformal mapping is made relating the 
p-plane to another plane, say the c-plane, then 
the attenuation and phase functions in the p and 
c-planes have the same values at the point p and 
the corresponding point in the c-plane. 2 This 

concept is used when mappings which have certain 
helpful symmetries are utilized in a particular 

problem. 

In the type of conformal mapping used here, 

the set of singularities from the p-plane are 
mapped into another plane where the original set 
of singularities is increased into two or more 
sets.  These sets are always symmetrical about 
some line in the mapped plane.4 Removing one or 
more of the sets of these singularities results 
in a simplification of the synthesis problem. The 
resulting attenuation and phase functions are 
still readily related to the original and hence 
we refer to this removal process as an attenuation 

and phase invariant transformation. 

II.A.T.o1J-Tass Interval r.appinrs and Transformations 

"e can illustrate the above by first consider-
ing the mapping used by Parlington for the low-pass 
case shown in Fig. 1.  Here the p-plane (with its 
useful interval extending from -1 to +1 along the 
wraxis) is transformed over into the Z-plane by 

the relation 

P =  - 1/Z).  (3) 

Thus, the useful interval lies along the circum-
ference of the circle of unit radius centered on 
the origin of the Z-p]ane.  "e then use the 
further napping from the Z-plane to the v-plane 
where Z =  Here the useful interval is re-
peated periodically along thelr-axis, the axis of 

imaginaries in the '..1-plane. 

Figure 2 shows examples of network singulari-
ties in the p-plane which are to be transformed 
into the Z and '.4-planes.  In Fig. 2(a) the ration-

al function R(p) is the actual network function. 
If only attenuation is-to be considered, the"power" 
function R(p) R(-p) in Fig. 2(h) contains only 
information relating to attenuation with zero phase 
along the co-axis.  If only phase is under consid-
eration, the "all-pass" function, R(p)/R(-p), is 
useful since attenuation is constant along the 

w-axis. 

Figure 3(a) shows the singularities in the 
Z-plane that result from transforming from the 
p to the Z-plane the singularities shown in Fig. 
2(b).  Figure 3(h) shows the result after the 
singularities are mapped into the W-plane.  We 
now note that removal of all the singularitiea in 
the left half-plane of the W-plane only effects 
the attenuation by reducing it to one-half of its 
initial value.  This transformation or removal of 
singularities introduces an extraneous phase 
function along the y-axis.  This phase is not 
to be confused with the phase function of the 

original network transfer function shown in 
Fig. 2(a).  The remaining singularities in the 
"-plane are now mapped back into the Z-plane. 

The transfer and transmission functions that 
are obtained after the removal of the singulari-
ties are referred to as the LTsilli ml functions. 
All the singularities are now external to the unit 
circle,  IZI = 1, -as shown in Fig. 3(a).  This 
clearing out of singularities from the circle, 
IZI = 1, is an important step since it allows us 
to expand the reduced attenuation function into a 
mower series about the origin in the Z-plane with 
;-!surance that the power series will converge in 
the unit circle.  Since the singularities of 
'ip. 3(c) are symmetrical about the axis of imag-
inaries in the Z-plane, the power series expansion 
for the reduced transmission function contains 

only even order terms in Z. 

Figure 4 pertains to the phase invariant 
transformation.  Figure 4(a) is the result of 
transforming singularities from Fig. 2(c) into 

the Z-plane.  These singularities are then mapped 

into the W-plane as shown in Fig. 4(b).  There we 
note that removal of the left half-plane sin gu-
larities only reduces the phase by a factor of one-
half everywhere along the useful interval.  After 
this removal of singularities there is an extran-
eous attenuation obtained at the useful interval. 
These right half-plane singularities are now mapped 
over into the Z-plane as in Fig. 4(c).  Again the 
unit circle is clear of singularities and a power 
series expansion about Z = 0 is in order.  The 
singularities of Fig. 4(c) are anti-symmetrical 
about the imaginary axis of the Z-plane and the 
power series expansion for the reduced transmission 
function contains only odd order terms in Z. 

A transfer function is expressed as a rational 
fraction in terms of 'Mich the numerator and 

denominator factors are poles (natural modes) 
and zeros.  The corresponding transmission 
function is obtained by taking the logarithm of 

the transfer functdon. 
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As Darlington shows power series expansions 
for the assigned attenuation and phase functions 
can be readily obtained.  Network functions can 

then he found so that in terms of Z-plane analysis 
the assigned and network power series have iden-
tical coefficients up to a certain degree set by 
the number of sin gularities in the network function. 



Figure 5(a) shows the result of multiplying 
the transfer functions contained in Fig. 3(c) and 
Fig. 4(c).  The transmission function that results 
from taking the logarithm of the rational fractions 
in Fig. 5(e) contains both even and odd terms. 
Since we know that in the power series for the 
transmission function of Fig. 5(a) the even (odd) 
terms evaluated along the useful interval give true 
attenuation (phase) the extraneous term can be 
ignored.  Hence the rational function shown in 
Fig. 5(a) clan be used in lieu of that shown in 
Fig. 5(b) which contains all the singularities 
transformed from the p-plane. 

We can restate the ideas in the above para-
graph in the following manner.  (The following 
method is more useful since it can be extended to 
the case of attenuation and phase invariance in 
the band-passinterval.)  First we may consider 
that the assigned attenuation and phase,  + jp 
are due to an infinite network (reference 1, p. 640 
footnote).  On removing the sin gul arities of this 
network that lie in the unit circle of the Z-plane, 
we have the resulting reduced transmission function 

4 j"7" along the useful interval in the Z-plane.* 
The reduced network that corresponds to the actual 
network with the unit circle clear of singularities 
is found so that its transmission function "u" + 
rp" approximates "u" + ;op in the Taylor sense 
at Z - C.  Thus on reconstructing the entire 
(actual) network function we end up with the quasi-
Chebvshev approximation of u + j , since the 
extraneous terms are removed. 

II.B.Band-PassInterval Nappings and Transformations 

In the hand-pass case we require different con-
formal mappings and further attention must be given 
to the attenuation and phase invariant transfor-
mations that are used.  Figure 6 shows the geom-
etry of the mapping that we use in the following 
discussion. 5 

For the hand-pass case the useful range con-
sists of two intervals along the co-axis.  These 
have been normalized so that we are intere Opd in 
frequencies that satisfy the relationship Vk' <lcul 
• 1/*-1 . If we always make sure that the network 
functions we deal with have with every complex 
singularity its complex conjugate, then considera-
tions relating to the attenuation and phase An the 
interval for plus frequencies will automatically 
give the proper values for the negative frequency 
interval.  Thus, in what follows, we shall refer 
to the useful int,,rval along the plusuo-axis as 
the useful interval. 

In order to 
into a circle we 
function mapping 

transform the useful interval 
use the intermediate elliptic 
in the w-plane 

p =  tn(w,k).  (4) 

The quote marks are used to indicate the 
presence of extraneous phase and extraneous 
attenuation which occur on evaluating the 
reduced functions along the useful interval. 
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Thus, in the w-plane we have an infinity of rec-
tangular "cells," of dimension 2K by 2K', extend-
ing into both directions.  One cell is shown in 
Fig. 6(b).  Corresponding to each cell is one 
Reimann surface of the p-plane.  By means of the 
exponential function mapping, 

.m 

z = e ,  (5) 

the horizontal straight lines representing the 
useful interval in the w-plane are mapped into 
circles concentric about the origin in the z-plane. 
In what follows the annulus that has the inner and 
outer radius q and q-1 , respectively is referred 
to as the unit annulus.*  This is shown in 
Fig. 6 (c). 

Figure 7 pertains to the attenuation invar-
iant transformation for the band-pass case.  In 
Fig. 7(a) we show a typical transfer function in 
the p-plane being modif1 ,-d for the situation where 
we are interested in attenuation only.  Thus the 
singularities are symmetrical about the wl-axis. 
The singularities are mapped into the w-plane 

7(b)J and at this point we see that if we 
remove all singul arities above the horizontal 
line w = jK , the attenuation will he reduced 
everywhere along the line w = jK 1 by a factor of 
one-half, but it will still have the same func-
tional form.  'hen we further map these sin gu-
larities into the z-planeLFip. 7(c)J the circle 
of radius a centered on the origin of the z-plane 
is now free of singularities.  Hence, we can, as 
in the lowpass case, expand the attenuation into 
a power series and obtain a representation along 
one mapping of the useful interval, namely, the 
circle of radius q in the z-plane.  As before, 
an extraneous phase term has been introduced, hut 
since we see that reconstructing the entire 
function gives the true attenuation function, it 
Can be ignored.  The singularities inside the unit 
annulus give a contribution to the attenuation 
am that is evaluated along the circle of radius q. 
UA W a power series representation we can write 

a  = Rei a.z. 
(1)  1 

i=1 (7) 
If we investigate the attenuation contributed by 
the singularities that are outside the circle of 
radius q, we find that the contributions due to 
the singularities in successive annuli all add. 
Hence, if we call the term in the attenuation due 
to the poles and zeros in the annulus, which has 
inner and outer radii a  2 and q-'2, respec-
tively  uty),we can express their contribution to 
the attenuation as 

u  = Re:E 1 a.(q 2Z) i (8) 
Thus, the total attenuation due to all sinpu- - 
larities between radius q and infinity can he 
written in the following fashion: 

co  co  a. z 
a = ReicTe (v)  = Re:E. . 

1=1 1-q 2i 

The parameter q is defined by 

= e  K . 

(c) 

(6) 



We next consider the problem of phase in the 
bandpass case.  Here we use the "all-pass" function 
shown in the p-plane in Fig. F(a).  Mapping these 
to the w-plane  FiF. 8(b) , we can again remove 
all singularities above the horizontal line 
w = j1V and obtain a reduction of phase slope in 
the useful interval by a factor of one-half.  We 
are concerned with phase slope instead of phase 
since a closer investigation shows that now the 
average phase over the interval is not under our 

control.  4 We again map the remaining singulari-
ties into the z-plane where we can write out the 
phase contribution due to the unit annulus in 
Fig. F(c) in the following manner: 

(1) = Ite f=1 °i5 i 

Summing up the contributions due to all rings, 
where the -vth annulus gives the contribution 

= (.4 ;4+1 ae lti biLq 2tv-1) z 1 

r(1)) 

we have the following relation for the total phase: 

co  Jo u . 

= E  = Re  1 

Again, we note that due to these removal of singu-
larities effects, the resulting transmission 
function has both a phase and an extraneous atten-

uation. 

In order to be able to apply the same for-
mulae that are used in band-pass Taylor approxi-
mations, a further mapping is useful.  This 
relates the a-plane of Fig. 9 to the z-plane by 

the transformation* 

1 - z 
S = j 

1 + z 

(10) 

(11) 

(12) 

(13) 

"e note that if we consider the area inside the 
two circles to be "cut-out" of the s-plane (con-
sider only the portion of the z-plane that is 
the unit annulus as being of interest) then there 
is a one-to-one correspondence between the s-Flane 
and the p-plane.  Furthermore, the quadrants are 
in the same order in both planes, which is helpful 
in studying realizability. 

Moreover, since the coefficients for U(1  ond 1. 

0()can be readily obtained from those of:  
the unit annulus branch of the transformation need 
only be considered.  Hence, in place of expanding 
in terms of z, we can expand our desired functions 
in a power series about the points s = jl.  The 
useful interval becomes a circle of radius 
2q/(1-92) centered on the point s = j (1 4 q2)/ 

(1 - q2). 

* The overall mapping relation between the p 
and s-planes can be written in the one 

formula 

With respect to simultaneous attenuation end 
phase invariance we can rephrase the last para-
graph of Section II. A in terms of the s-plane 
analysis.  First the singularities of Figias) 
Fives the attenuation 1...(1)' the real part of which 
corresponds to u m along the useful interval. 
Similarly in Fig10(b) we obtain the phase j"0(1)", 
the imaginary part of which is je(1)along the. use-
ful interval.  We again introduce the concept of 
the infinite network that produces the assigned 
transmission function U. and T in the useful inter-
val.  Carrying out the removal of singularities of 
the infinite network so that the unit annulus end 
its various mappings becomes clear of singulari-
ties results in the transmission function 11 (1)" 
4 i"(1)". Matching coefficients for the power 
series of "(1)" + J.0(11, and ',Ear 4 itiTS(1)" at the 
point s = jl gives the ouasi-Chebyshev approxi-
mation in the band-pass case Las in Fig. 10(c)j. 

III.  Taylor Approximations For Eand-Pass 
Attenuation And lbase Functions  

In this section we study hand-pass Taylor 
approximation techniques that must be used to 
obtain bandpass quasi-ChebYshev approximations. We 
limit ourselves to discussing all-pole transfer 
functions.  However, other transfer functions can 

be handled by sim il ar methods. 2 

Po a first step we write out the assigned 
phase  in a Taylor series about the pointLa= 1. 

Thus 

7 '70 ' 71 (w-l)  p2  
+  (15) 

The expression of the reciprocal of the network 

transfer function in terms of p is 

ea + jp = 4- et p + e2p2 +  = Pn(p).  (16) 

Splitting Fn(p) into its even and odd parts we 

then have 

tan 0 - 
Odd[Fn(p)1   214.J1 
j.Eveh Lrn(i.,)]  E(1))  D(x) 

(17) 

where we have let p =jw  andco-1 = x. 

As an example let us consider the case n = 2. 

Hence 
e1x + e2   

tan p - _ x- - 2x + e, - 1 • 
-  

If we write  = (To) 4- (01x p,x2 +.4and 
making use of the trigonometric identity concern-
ing the tangent of the sums of two angles, we 

have 

p  tni(j a,r)lni(j+s)/(j -a)J,k3  (14) 
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tan p 

To +  x +  x2 + 0(x3) 
1  2   

1 - topix + p4x + 0(x3) 

where  to = tanpo andU(Lme#ns terms of order x3 
and higher.  (In case Po = we can rewrite our 
equation in terms of the cotangent.) 

Now both tan  and tent?) could be expanded 
into power series in x and as many of the coeffic-
ients of like powers of x could be set equal in 
order to get the Taylor approximation.  In place 

(18) 

(19) 



where Do = D(x) at (x) = 

of this operation which gives nontractable equa-
tions for the coefficients of the polynomial, 
Pn(p), we keep the forms shown in Eq. 18.  FL'nce 

7  7  7   e1x + e 2  to+ pix + p x2 + 0(x3) (2n)  

-x2 - 2x + e2 - 1  1-Topl x +T2 x4 + 0(x3) 
where Smeans approximates.  Cross multiplying and 
equating coefficients of like powers of x gives a 
set of linear equations in term of the polynomial 
coefficients, el and e2 . 

If the phase P. and phase slope pi are speci-
fied at band center ( = 1), the error is of 
order x2 and the coefficients are 

2 
o 

el - 

e - 1 - - 
Pi - Fo(1 To7 2  .1) 

For certain applications, either ;0 or Ti is not 
specified.  In this case,the error term may be 
raised to the order of x'.  The coefficients are 
found oy.solving the following set of equations: 

- t0 (1 - T.0171) 

2 
2T o 

(21) 

el - to(e2 - 1) + 0 0 

(1 - 1,0711)e l - Ti(e2 - 1) + 210 = 0 
(22) 

- - -to(02 + pde l - 02(e2 - 1) + 2p1+ to = 0 

For a solution the determinant formed by the co-
-3fficients of el  , e2-1 and the remaining column 
must be zero.  Hence 

2 
(01 + 202)to +(1-201 )to +(f l-p2)to-201 = o.(23) 

If we insert the specified values we can 
3olve for the real solutions oLthe unspecified 
phase term, that is, fort() or pl. . For each solu-
tion we must further test for realizability, etc. 

If neither70 nor -111 are specified, as in de-
lay equalizer design, it may be possible to match 
one more term.  Methods for handling this case arr 
discrssed in reference (2). 

For the case where phase and attenuation are 
to be considered, we write 

e2u . 11,n(p) 12  N2 4. D2 . D2(1  4. tan20),  (24) 

Thus 
eu = 

cos 
On lettingu = uo + ulx + 
following expression, 

eu-ao cos p0 

sin 0 
O. 

; • 
2 

u2x +.•, 

Expanding the exponential e  and equating 
it to the right-hand side of Equation (2') we can 
equate like coefficients of x and obtain a set of 
linear equations for the coefficients ei . 

We must necessarily specify coefficients of 
the power series expansion of the phase up to the 
highest specified coefficient desired in the at-
tenuation characteristics.  On combining this set 

we have the 

of linear simultaneous equations due to attenuation 
specifications with the set due to phase demands, 
a solution for tLe coefficients eIcan be obtained. 

For certain applications po or pi or po and 
pi are not specified.  In these cases, techniques 
similar to those in phase only approximations can 
be used to increase the accuracy of the approxi-
mation at the expense of additional computations. 

It should be stressed at this point that the 
major difficulties in getting quasi-Chebyshev 
solutions lie in the Taylor part of the problem. 
The numerical work is straightforward in the case 
all phase terms are specified, but when higher 
order matching is desired by leaving po or 
unspecified, the required computational work ln-
creases rapidly since real roots nf auxilary 
polynomials such as in Equation (2?) must he foil d. 

IV. Examples of Quasi-Chebyshev Approximation 

As a recapitulation we shall design a wide-
band abase discriminator (a phase-difference net-
work in which the phase difference varies linearly 
with frequency) that is to be R-C realizable. 2 

One proceeds in the following manner: 

1.  Translate the data into the commensurate 
Taylor approximation. 

2.  Set up the simultaneous equations relat-
ing the coefficients of the network poly-
nomial to the phase slope and the mid-
band phase.  Since the phase slope is 
unspecified, we first obtain the auxilary 
polynomial in  land solve for its real 
roots. 

3.  Solve the set of linear simultaneous 
equations for the n coefficients of the 
network polynomial. 

4.  Find the polynomial that gives an R-C 
realizable network. 

5.  Solve for the roots of the polynomial in 
the s-plane. 

6.  Transform the singularities from the 
(25)  s-plane to the p-plare by means of the 

relations given in Eq. (14). 

In order to do step (1) for a linear all-pass 
phase difference in the useful interval, we first 

(26)  set 2p = 2kcw.  Then from the transformation of 
Eq. (4) Lsee Fig. o'b)j we can write for the useful 
interval 

Letting 

we have 
1 
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(27) 

(28) 

_ a  21r  ..(ip   ( - (i) i (29) 
an(u,k) +  1 rk'   035( 4). .c- 1 + q 

'  i=1   
Since the constant term is not under control, 

we henceforth omit it.  Hence by means of the re-



lationships given in the appendix one obtains 

f 211k0o 
(1) = i. kl A.  

ap 

converti ng to the variable z where 

gives  2ako 1 .  ..,  ,_ 
P(1)  h k' 

where we understand that the phase invariant 
formation is to be applied.  Hence 

-  _ 2gko 
oi - AFT  • 

coE (4). 

z = qe 

For the one-half, all-pass phase in the 

write -  2 
1/2 p(1) = po + pi x + p2 x 

Leaving To unspecified we have by 

in Eq. (30), _ 
TT O 

131 =  

Ti - 0, i > 1, 
which completes step (1). 

Equations (34) and (35) contain the interest-
'alp, result that the reduced phase in the s-plane 
is a Taylor approximation to linear phase at s  j 

Hence any band-pas. Taylor approximations for 
linear phase can be reused to get a quasi-Chebyshev 
approximation in the p-plane.  To do the work of 
step (2), we substitute in the equations given in 
Section III.  Letting  i3D = 45°, we solve for the 
real roots of the polynomial in Pq.  The values ob-
tained are  pl + ).3090  and + 0.8090.  Solving 
for the values of el and e2 (step 3), we find that 

= +Q.3090  gives a R-C realizable network (step 

4) with el = -1.236 and e2 = -0.236.  This has 
roots at s . -0.1681 and s  1.4040 (step 5). 
Transforming these points back through the z and 
w-planes to the p-plane (step 6), we have for the 
bandwidth ratio l/k'  5.76 (modular angle 0 . 
rocts at p  -0.142 and  1.485.  In the "all-pass" 
phase-difference function the opposite type of 
singularities occurs at the point p = +0.142 and 

-1.435. 

Figure 11 shows the final result obtained in 

the desiFn of a wiee-band phase discriminator. 

The lower curve &lawn is the deviation from a 

lirear phase characteristic. 

next consider the quasi-Chebyshev approxi-
mation to an ideal filter.  ( a(-,) =constant and 
pc.) = 7  Using the results in the appendix, 
Enuatlons (316 - 38) we find that for 71 - U0 = J, 
remuires that Ki =  = 0 . Hence by Equation (/ ) 
we find that the Ui for the intermediate Taylor 
approximation of U. are also zero.  Thus, the band-
pass quasi-Chehyshev approximation to an ideal 
filter can be obtained directly from the results 
of a Taylor approximation to an ideal filter since 
our preceding example has also nhown that linear 
phase in one approximation remnins linear in the 

other. 

Applying the method to the case where the net-
wlrk function is an all-pole function with 4 poles 

gives the result shown in Fig. 12.  Although the 
Taylor approximations in this case guarantee only 

(30)  an error of the order of the third degree in phase, 
the quasi-ChebYshev phase approximation has an 
error of the fourth degree (i.e., there are four 
points of zero deviation from linear phase).  This 

(31)  is due to the fact that the fourth order term is 
much larger than the third order term in the Taylor 

trans-  approximation, and this effect is carried over into 
the quasi-Chebyshev approximation. 

(32)  Figure 13 c'7ows a quasi-Chebyshev approxima-
tion to a linear phase characteristic.  The net-

s-plane we  .aork function is an all-pole function with 4 
natural modes.  Various methods proposed for sue-

+ . .  cessive apProximation techniques could be used to 
further improve these solutions if the ripple 

the relationship  errors were considered excessive at any point. 

(34) 

(35) 

V.  Conclusions  

A technique has been shown for approximating 
an arbitrary phase or phase and attenuation charac-
teristic in theband-passinterval.  A nearly equal-
ripple (quasi-Chebyshev) solution is obtained. 
The t-chnique described requires the use of (1) 
conformal mappings that put the useful frequency 
interval onto a circle, (2) certain attenuation 
and phase invariant transformations, and (3) a 

Taylor approximation. 

Although one of the mappings is done by means 

)is elliptic functions, the elliptic function ma-
nipulations are of minor importance in the numer-
ical aspects of the problem.  Rather the familiar 
Taylor series approximation is the part wherein 
most of the computation lies.  As a result, the 
band-passquasi-Chebyshev technique of approxima-
tion is a useful method for obtaining a solution 

to many synthesis problems. 
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In order to determine the coefficients for 
expansions in the various planes the follow-
formulae pertaining to attenuation and phase 

used. 

The assigned attenuation is first expanded 
iito a Fourier series in terms of the variable y 

.:here 4 = (111)/K.  Hence 

-a =::E  
For many functions the corresponding Fourier 
series expansions in the y variable have been 
given. 6 If the desired functions have no simple 
analytical expres7ions, then trigonometric inter-
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and hence 

polation methods can always be used. 7 

The attenuation in terms of the. -plane co-
efficients can be written for z = cie° as 

ql 

Hence 

• - 
2:   

21  ict . 
1 - q 

• = -(qi - q-i )  . 

(37) 

(38) 

For phase the analogous relationships are 
....-  S. qi 

p =2.di cos t. ..s. .Z _1 
1+ q2i 

01 = (qi + q-i )31. 

COS 1.4. 
(3') 

(40) 

In order to get the coefficients for the Tay-
lor series expansions at the point s = jl, we have 
the following relationship where yolorresponds to 
either u(1) or  

7  7 Y(l)  (z) = icii i cos 4 =2",, z  (41) 

where the second eaual sign assumes that attenu-
ation and phase invariance have been considered. 
Now let  - 1 = x and furthermore let 

Y( 1) (z 0(1) = Y1(1)  (x).  (42) 

If we expand y4 )(x)into a power series 

(43) E- 1 
Y (1) (x)  = di x ' 

It can be shown that the following relationships 
hold between the E and the d coefficients: 2 

la) 

0 - PLANE  1- PL ANE 

OVEAL 

lb) 

Fig. 1 
Conformal mappings for the low-pass interval. 
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Fig. 2 
Network functions in the p-plane. 
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Fig. 3 

Attenuation invariant 
transformation in the Z -plane. 

W- PLANE 

(c) 

Fig. 4 
Phase invariant transformation in the Z -plane. 

Fig. 5 
Attenuation and phase invariance in the Z.-plane. 
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Fig. 6 

Band-pass mappings. 
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Fig. 7 
Band-pass attenuation invariant transformation. 
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Fig. 8 
Phase invariance in the Z-plane. 
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Fig. 9 
The geometry of the s-plane. 
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Fig. 10 
Attenuation and phase invariance in the s-plane. 
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Fig. 11 
Wide-band phase discriminator phase response. 
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AN APPLICATION OF MODERN NET WORK 
SYNTHESIS TO THE DESIGN OF CONSTANT-TIME-DELAY 

NET WORKS WITH LOW-Q ELE MENTS 

Leo Storch 
Hughes Aircraft Company 
Culver City, California 

Sum mary 

The design of lu mped-constant delay 
networks has been do minated by image-para-
meter filters, with particular attention de-
voted to linearizing their phase-angle versus 
frequency curve in the case of the m-derived 
or more co mplex sections.  This type of de-

sign is characterized by the assumption that 
all reactors are lossless and by the cascade-
connection of several alike sections in order 
to obtain a desired over-all bandwidth-delay 
product.  lhe low-pass filters usually turn 
out to be of the bridged-T type with negative 
mutual inductance, a capacitor in the bridge 
ar m, and maybe added shunt capacitors across 
input and output ter minals.  They appear to 
have poor pulse and square-wave response on 
account of an additional high pass band with 
an uncontrolled phase characteristic.  Refer-
ences 1 to 4 will orient the reader in this 
field, with no slight intended to the numerous 

papers not mentioned here. 

With the advent of modern network syn-
thesis, a more flexible approach has become 
feasible.  One can afford to concentrate on 
the over-all transfer function and to synthe-
size subsequently a suitable network reali-
zation, rather than being limited to adapting 
one of the relatively small nu mber of tract-
able network sections to a specific application 
and achieving the desired over-all effect by 

cascading several sections on an image-i m-
pedance basis.  In Part I of this paper, a 
realizable low-pass approxi mation of the ideal 

distortionless delay operator ke -Pt o (to = de-

lay time) will be discussed.  It is a "best" 
approxi mation in the sense that it produces 
"maxi mally flat" delay in the frequency do-
main and accordingly a rather sym metrical 
impulse response in the time domain, which 
is centered about t = to and approaches the 
Gaussian curve in the limit.  This transfer 
function will be synthesized in Part II of the 
paper in the for m of a passive low-pass 
ladder network.  A resistor will be associated 
with each reactor, which can be chosen to 
correspond to a rather low Q at the reference 
frequency w  =L • These resistive ele ments  

t 0  
are taken into account as part of the synthesis 
procedure, so that their presence causes 
merely a fixed loss but no distortion of the 
desired transfer function.  In Part III, the 

circuit for the ninth-degree approxi mation 
(Figure 6) is used as an illustration of the 
method and oscillogra ms of its square-wave 
response (Figure 7) are co mpared with those 
of a conventional bridged-T network of com-
parable delay-bandwidth product (Figure 8) but 
approxi mately twelve times as much coil 

weight and volume. 

Part I: A Realizable Low-Pass Approxi mation 
of the Ideal Delay Transfer Function 

ke -pt 

An ideal delay network would produce an 
output which is exactly like the input but 
shifted along the time axis in the positive di-
rection by to, the desired delay time.  A net-

work which had the property that fout(t) 

= f.  would have to possess e-Pto as a 
in(t-to) 

transfer function and a  6 -function at t = to 

an impulse response.  This follows from a 
theore m in Laplace transfor m theory, that if 

f. 
in(t) 

as 

.  where f  0 when 
F in(p)-1  in(t) 

t <0, then fout(t) = fin(t-to) if, and only if, 

X -I 

.  L 
fo  F 0 t(t)  in(p) 

e-pt c]  
[F out(p)1 

and fro m th  definition of "transfer function" 

Fout(p) 
as Tr- -  • 

in(p) 

what, an ideal distortionless delay network is 
characterized by the transcendental transfer 

function ke -Pt o, since the positive real con-
stant "k" is responsible merely for a fixed 
gain or loss without introducing distortion in 
its usual meaning6. The prominent property 
of a distortionless delay network is the linear 
relationship of phase-angle versus real fre-
quency (p = jw) for the infinite range 0‹ w <co. 

But a finite, linear, passive, lumped-con-
stant network is never associated with a trans-
fer function outside the class of rational func-

P, 

tions of p =  + jw and expressible  as T  -  , 
(P)  (P) 

Relaxing this require ment so me-
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a  a  a 

T N (p)  Cr—  N 
MP) P QN(1\ 

17.) 

N a p r 

rZ• 

where the coefficients are positive integers 

(2N- r):   
a - 
r  2N-r r: (N-r): 

•  • 3  5 • --- (2N-1-2 0 1  (12) 

and in particular 

(2N):  _ ,  3 
d  = 
o   5 • 7 • --- (2N-1). 

QN(p)  It may be reassuring to co mpare 

with the McLaurin series of eP, i.e. , eP 
00 

r= 

ao 

1  r 
p . If ar in (12) is expanded, then 

it is seen that (r >1) 

ar  (N-1) (N-Z) (N-3) .... (N -r + 1) 

ao  r: (N-1-) (N-1) (N- 2-3) .. (N---2--) 

Since both the nu merator and the deno minator 

ar  1 
contain "r" ter ms, —ao ___• —r! as N —soo, so 

that 
QN(p) 

 a  equals the McLaur in series of eP 

in the limit.  Two questions are likely to arise 
in the reader's mind:  (a) why not use the 
straightforward McLaurin series in the first 
place;  (b) how would the properties of a net-
work synthesized on the basis of the McLaurin 
series differ fro m those of a network based on 
(11) and (12).  These questions can be fore-
stalled by the si mple state ment that a poly-
no mial for med from the first N ter ms of the 
McLaurin series of eP is not a Hurwitz poly-
no mial when N is larger than 4. 15  Therefore, 
it is not eligible as the deno minator of a 
realizable transfer function for N larger than 
4, which includes the majority of applications. 

3.  Delay and Loss Properties of TN(p)  

The study of the amplitude and phase 
characteristics of the transfer function (11) 
and the choice of a suitable N are greatly 
si mplified by taking advantage of the relation-
ship between Bessel polyno mials and the 

r—r— 
spherical Bessel functions F2Tc Jt(y  4. 112)  (x) , 

for which reasonably co mprehensive tables 
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have been published 16 . In this context, it is 
necessary to deal with real frequencies, i.e. , 
p = jwto = ju.  Inas much as it can be shown' 7 
that 

ju 
Y  = J  e  [.. N 1)J-N-1/2(u) 

ju 

and since Q (ju) YN(1u) by (10) and (11), 

F   
therefore, 

TN(ju)  = 

a  . e -ju 

uN+1 1-741.7  El )N -N-1 /2(u) 
- 

(2N): 
where a -  as in (12). 

°  2 • N: 

N+1 /2(u] 

(14) 

One is now in the pleasant position of being 
able to study and explore the properties of the 
transfer function merely by looking up values 
in published tables and multiplying the m by 
uN+1 

rather than having to devote time and 
energy to the nu merical evaluation of N'th 

degree polyno mials.  Expression (14) has the 
additional merit of displaying explicitly the 
distortion with respect to the ideal delay opera-

tor e-ju . Fro m 

T N(ju) Ae 

= (Distortion factor) • e-ju = (Ad ) • e-ju, (15) 

it follows that phase distortion as measured by 
the angle of lag•" e " with respect to the ideal 
value of "u" radians is given by 

e = tan -1  jN+1 /2(u)   
N 

(-1)  J 
-N-1 /2(u) 

and amplitude distortion is given by 

A - 
ao 

N+1 u [Tt  [2 
271  -N-1 /2(u) 

+ J 2 
N+1 /2( 

The loss 
for m 

1/ 

(16) 

(1 7) 
L = -20 log A db tends to the Gaussian 

10u2 



There are two methods of defining delay which 

are in co m mon use, phase delay tph = 

de 2 
, and group delay t = -3--  .  In the region of aw 

nearly constant delay, they are approxi mately 
equal.  For the chosen transfer function (14) 

as derived from (11): 

0 t  = - = t (1 - 7.1) 
ph  w  o 

and 

= d0  dc 
t    
g  dw  0 

= t 
1   

2 
2 C  (J2 u   27.1  -N-1/2(u) +J N+1/2(11 

(18) 

(19) 

where to is the nominal or zero-frequencY 
delay.  Expression (19) is useful for quanti-
tative purposes, but a more vivid impression 
of the delay characteristic is obtained by ex-
panding the distortion ter m in (19) in a 
McLaurin series, which certainly converges 

in the vicinity of u = 0: 
u2N+2 u2N 

t = t [1  -2—  + 
o g  a  (2N-1)a20 

o 

AN-2)   u2N+4 

(2N-1) 2 (2N-3) a2o 

(20) 

The absence of the ter ms in u2, u4 

u2N-1 indicates that the first N-1 derivatives 
of t are zero at u = 0.  This explains why the 

delay network synthesized on the basis of (11) 
has been characterized as "maxi mally flat" 18-19, 
in analogy to the usage of this ter m in insertion 
loss design2° . The delay is closely equal to 
its D. C. value to up to a certain upper fre-
quency which is a function of N, and then it de-
clines steadily and smoothly as the frequency 
increases to infinity. 

With equations (14) to (19)  representing 
a co mplete description of the pertinent charac-
teristics in compact for m and in ter ms of 
tabulated functions, it is hardly a chore to 
evaluate the loss and delay distortion versus 
frequency for a given N and to, or to establish 
the required value of N for specified attenua-
tion or delay distortion versus a given delay-
bandwidth product.  The phase-angle, group 
delay, and loss characteristics of T9(ju) are 

drawn in Figure 1.  This particular value of 
N has been chosen for illustration because the 
circuit realization and response for T9(ju) are 

described in Part III of the paper. 

4.  The Impulse Response Corresponding 

to TN(p). 

The transfer function ray be written as 

= e r(p) = e '12P  \fe +N6P 
TN(p) 

YIP  Y3P3• e   ',15P5(21)  

where the exponent r(p) is expanded in a 
McLaurin series.  This is per missible since 

TN(p) is a low-pass transfer function and 

analytic in the vicinity of the origin and up to the 
boundary set by the radius of convergence. 
Since for real frequencies p = ju the odd powers 
in the exponent of (21) deter mine the phase 
angle (-6) [see (15)] , 

d0 t = a-w- = to [-N I + 3y3u2 - 5y5u4 . . .]  (22) 

must agree with (20).  Therefore: yi = -1, and 

=  =  2N-1 
= 0.  Let f(tito)  be 

N3  15  ‘i 7  • • •   
the impulse response corresponding to TN(p)  

and expand the exponential underneath the 
integral sign in the Laplace-transfor m equation, 
where to has been inserted explicitly on the 

right-hand side of (23): 

co 
TN(p) • eP = f  f(t/t0) e-P(t-t o) dt/to 

co 

= E 
k=o 

If 

f(t/to) 
(t-to)k dt/to 

• e-N1P = TN(p) • eP 
T N(p) 

2  4  6 

= e N g  Ne  + NO 

2N+1  2N+3 

• '2N+1 P  )r2N+3 P 
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= e rc(p) 

(-131k/k!  (23) 

is also expanded in a power series about p = 0,  

TN(p) • eP = 1 + r 1/2 rzc(p) c(p) 

+ 1/3: rc(p) 3 . . . ., and set equal to (23 ), it 
follows that the first N odd moments of the im-
pulse response with respect to the mean t = to 
are zero, i.e., 



by (11) and (12), then 

Z J/Pr = 
r=1  r=1 

00 

I f (t/to) (t-to) 2m-1 dt = 0 for m = 1, 2, . .N. 

Consequently, the impulse response is sy m met-
rical about t = to to the extent that the 3rd, 5th, 
7th . . And (2N-1)st central mo ments vanish 

(the 1st central mo ment is zero by definition). 
Perfect sym metry is approached as N---> co, 
since all odd central mo ments tend to zero as 
N —sco. 

An independent check is available for the 
above state ments.  If the roots of QN(p) are 

N(p) _ I (p - Pr), then 
rr. , 

introduced, Q 

- 2  
k=1 

N 

=In ao - E  ,6-1 (/) - Pr) 

r=1 

After each ter m in (p -pr) is expanded in a 

McLaurin series, it follows that: 

(h/Pr)k 
_ 1 

Yk 

(24) 

circle for N > 1. 

since ao = al: E (f 

r=1 

_IN+1\ . 
(g) since aN-1   2 l• 

and n Pr = (-1) N 

r=1 

if .is the real zero of Q (p)  , then (-1) 

= P1 > P3 >P5 - oo. 

(c)  QN(p) has no real zero when  N is even  

(d) QN(p)  and QN+1( ) have no root in co m mon 

(e)  all roots of QN(p) lie outside the unit 

1/ Pr = -1 

przi _1). (N+21) , 

r=1 

ao = (-1) N 1- 3. 5. 7. .. (2N-1) 

The roots of QN(p) have been tabulated in re fer-

ence 19 for N from 1 to 9 and an approxi mation 
of the impulse response has been described 

there, which tends to a Gaussian curve for large N. (25) 

r=1 

Burchnall 21 has shown that when QN(p) is given 

(1/pr)2m-1  = 0, 

= 2, 3, 4 .. . . . N. 

This is a welco me corroboration that the 3rd, 
5th, 7th . . . and (2N-1)st central moments are 
equal to zero.  Further more, QN(p)  is a unique 

solution, except for a constant multiplier, if 
the maxi mally flat delay property in accordance 
with (26) is postulated. 

An exact description of the impulse re-
sponse would require a knowledge of all the 
roots of QN(p) , which can only be acquired by 

solving for the roots of an N'th degree poly-
nomial for each specific value of N.  However, 
a certain amount of general infor mation about 
the nature of the roots is available 21 : 

(a) all the roots of QN(p) are si mple 

(b) QN(p) has only one real zero when N is odd; 

The calculated impulse response corres-
ponding to T9(p) is plotted in Figure 2. 

5.  A Class of Transfer Functions for "Maxi-
mally Flat" Delay Networks. 

Although Part II of this paper is concerned 
(26)  with the realization of TN(p)  exclusively, it is 

worthwhile to mention that a whole class of 
realizable transfer functions can be deduced 

im mediately fro m TN(p)' each me mber of 

which furnishes maxi mally flat delay.  This 
class is given by: 

QN(o) 
SM, N(p) = 

110 

QM(-xP)  , < m< N 

The total zero-frequency delay equals (1+x)1 0, 

where "x" is chosen so as to equalize the use-
ful frequency range of Qm( _xp)  and of  

SM N(P) appears to have a sma ller  total  delay  
,   

in general than Tm+N(p) , but its rate of trans: 

mission loss is lower in co mparison.  As M 
approaches N, "x" approaches "1" and the loss 
bandwidth continues to increase.  Finally, 
M = N corresponds to an all-pass network with 
a zero-frequency delay of 2t0. The only me m-
ber of this class which is a mini mu m-phase 

transfer function is So, N(p) = TN(p) . All others 



possess zeros in the right half of the p-plane.  I.  Network Synthesis on a Quasi-Reactive 

The loss and delay characteristics of 

SM, N(p) can be obtained by co mbining 

L = 20 log (Am  - AN ), 

tph = 

d  d e M 
t = to [1+x (—du-7  + 

to [l+x - (e m  + eN )]. and 

with (16) and (17). 

If the realization of SM, N(p) is atte mpted 

by the method of Part II, it is necessary first 
to multiply numerator and denominator by a 
Hurwitz polyno mial which makes the over-all 
numerator an even function of the frequency 
variable used in the LC develop ment.  If this 
variable is "p" (i.e. , d = 0), then the multiplier 

and the class of modified transfer  
is Q M(x13) 
functions is given by: 

QN(o) M(x P) , l< M<N. 
M, N(p)  Crm--(7  M(- ))  QN(p)  M(xp) 

Part II: The Ladder Network Realization of  

TN(p) 

In Part I a rather convincing case has been 
made with regard to the suitability of TN(p) as 

the transfer function of a low-pass lumped-
parameter delay network.  Also fairly si mple 
expressions have been set up in ter ms of tabu-
lated functions to guide the choice of N in 
meeting given require ments regarding delay, 
bandwidth, and distortion.  It is now necessary 
to find a suitable configuration of specific re-
sistances, inductances, and capacitances, 
which actually possesses TN(p) as its transfer 

function.  It is particularly desired that the net 
work be unbalanced and that coils with only low 
Q's be required in its construction.  Since the 
source of the signal is likely to be a vacuum 
tube, i. e. , a high-i mpedance (constant-current) 
generator, the emphasis will be placed on reali-
zing TN(p) as a transfer impedance, so that 

TN(p) will equal the ratio of output voltage to 

input current of the resulting network.  The 
method of designing a network so that TN(p) is 

represented by the ratio of output voltage to in-
put voltage is quite analogous and is useful when 
dealing with a low-i mpedance (constant-voltage) 

generator. 

13asis. 

The choice of a constant as the numerator 
in the transfer function (11) opens the way to an 
unco mplicated method of synthesis as well as 
to a very attractive network configuration.  The 
key to the dominating position occupied by a 
constant in the numerator is the fact that it 
makes the network realizable as a ladder struc-
ture and that the numerator retains its evenness 
in the frequency variable under the transfor ma-

tion p = s-d 22 , where "s" is an auxiliary fre-
quency variable and "d" a constant.  The combi-
nation of these two properties sufficiently makes 
it possible to develop the network on a quasi-
reactive basis in the auxiliary "s" domain by 
the straightforward Cauer process 23 , but to 
arrive at a final network which has a unifor m 
loss component attached to each reactance. 
The loss components may be proportioned so as 
to reduce the required Q's of the coils to rather 
low values at the expense of a fixed trans mis-
sion loss.  It goes without saying that the suc-
cessful restriction of the actual synthesis 
process to the 2-ele ment LC case is rather 
attractive as co mpared to a general RLC 
method of synthesis. 

The transfer impedance of a two-ter minal-

pair, finite, linear, bilateral network, ter minated 
by a nor malized load resistance of 1 ohm, is 
easily derived fro m the equivalent T-section 

(Figure 3) as: 

V2  z12 
Z  = 
tr  r-1  22 

Let "d" be chosen such that the shift of the real-
frequency axis to the left, implied in the trans-
lation p = s-d, does not carry it past any of the 
roots of QN(p) , and let the transfor mation 

p = s-d be carried out in (11) obtaining: 

ao   ao   

T N(s) =  = G * 
N(s)  N(s) + HN(s)  

ao   

* r E as 
r=0 

(27 

(28) 

Here GN(s) and HN(s) represent the even and 

odd parts, respectively, of QN(8) . Since the 

numerator is even in "5", (28) may be realized 
within a real multiplier as the transfer imped-
ance of a low-pass, reactive network as follows. 
Let the constant in the numerator be changed to 
* ao , in order to make the D. C. value (s=o) of 

(28) equal to "1" as required for the transfer 
impedance of a low-pass reactive network when 



ideal transfor mers are excluded.  After re-
arranging the ter ms, so that 

HN(s) 

Ztr - 

GN(s) 

1 + 

HN(s) 

(29) 

*a. (j = 1, 2, . . N) of the continued fraction 

must be non-zero and positive.  If zero or nega-
tive ter ms should appear, it would indicate that 
"d" has been chosen too large or, much more 
likely, that not enough significant figures have 
been retained in calculating the ar's and in the 

subsequent computations, which may happen 
when N is quite large.  It follows im mediately 

that the circuit diagra m of z* 22 is a ladder net-the following identifications are prominent in 

view of (27):  work (Figure 4) with inductances of values a2k  

a 

zl 2 - 
HN(s) 

*  GN(s)  
z22  - 

HN(s) 

GN(s) 
Surely, z  = 

22 
HN(s)  * 

function inas much as QN(s) 

nomial by hypothesis (see Part I, section 1). 

in the series ar ms and capacitances of values 

a2k-1 in the shunt ar ms (k = 1, 2, . . . )11  (30)  . The 

computations of the component values may be 

(31) 

is a driving-point reactance 

ao 
z*  - Further more, 
12 

HN(s) 

is a Hurwitz poly-

is an odd function 

*  N(s)   of "s", its poles are also pol es  of z22 - 
H * 
N(s) 

and the numerator is of lower degree than the 

denominator.  Therefore, the Ztr of (29) is 

realizable by a reactive network. 

1.1  The Ladder Develop ment 

Synthesis by means of Cauer's straight-
forward develop ment of a reactive ladder net-
work23  is particularly applicable, since the 
structure of the numerator is so si mple.  This 
method does not require finding the roots of the 

N'th degree equation Q ()  = 0 and it leads to a 
Ns 

network which requires only N reactances for 
an N'th degree transfer function (11), which is 
the smallest possible number 24 . The principal 
step required by this method is the expansion of 

the single reactance function z22 
G * 

- N(s)  
in a continued fraction in "s ", pro -

HN(s) 
ceeding as explained in connection with (2) and 

re me mbering that* (s) = 222 when N is even and 
1 

* (s)  -  when N is odd.  All the coefficients 

222 

checked by E 2k-1  = -7- and  ff ai! a*  1 al 

a0 k=1 a0 

A degree-reducing, com mon factor of GN(s) 

and HN(s) would have to be an even polynomial 

in "s", which would possess roots on the real-
frequency axis Re[s]= 0 or in the right half of 

the s-plane.  But such a factor must be ruled out, 

since it would also be contained in QN(s) = GN(s) 

+ HN(s) and thereby violate the condition that 

QN(s) must be a Hurwitz polynomial.  The ladder 

develop ment of Figure 4 actually corresponds to 
(31) and not just to some sub- multiple thereof. 

If a pair of input ter minals is put across C1, 

for N odd or even, then z12 has no finite zeros 

of trans mission, since none of the network ar ms 
is resonant at a finite, non-zero frequency; fur-

* 
ther more, z22 can have at most a pole at s = co 

in addition to the poles of z12 , which occurs when 

N is even and is due to the numerator being higher 
in degree by "1" than the denominator.  Therefore. 

a* 

z* 2 - as required by (30).  All that re mai ns  
1 

HN(s) 

to be done is to connect a 1-oh m.,load resistance 
across the z*2 -terminals (output ter minals), in 

2 
order to complete the network realization of Z* 
of (29).  tr 

Nothing has been said so far about zii , be-

cause it does not affect the transfer impedance 
at all.  It will be shown, however, in section 9, 
that the input impedance Z.  in Figure 5 is finite 

for all real frequencies.  Since this means that 
the residue condition applicable to LC networks 25  
is automatically fulfilled with the equal sign in 

* 
this synthesis procedure, z11  is uniquely deter-
mined. 
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1.2 Final Network  

To re move the effect of the initial fre -

quenc y transfor mation p = s-d, the network 

ar ms s • Llk and s • C2k-1  must 

be replaced by Lzk (p+d) and Czk _i(p+d), res-

pectively; i.e., a resistor d • Lzk  must be 

placed in series with the inductance Lzk  and a 

resistor  1 must be shunted across the 

where k = 1, 2, 3, ...,  (for 
d•C 2k-1 

capacitor Czk _i. 

N even) or  (for N odd).  By (11), (28), and N+1 

(29), the resulting network of Figure 5 has the 

transfer impedance 

ao 
Z  = 
tr  ao  N(p)' 

(32) 

which equals TN(p) except for a constant multi-

plier.  The price which has to be paid for the 
insertion of the resistive components is the 

a* 

fixed loss corresponding to k =-a-.--° , which may 

be calculated from ao = QN(p)ip = -d . For 

small values of "d" (d < <1), the loss is so me-

what less than 20 log .F'a- db.  Finally, the 

nor malizations are re moved by multiplying all 
all C2k _i 's by to/RL , a-,.d all 

L 2k 's  by  to. R L' 
R's by RL , if a no minal delay to (in seconds) and 

a load impedance level RL (in oh ms) are desired. 

The new impedance level introduces a factor RL 

in (32), i.e., 

Ztr = (ao RL /a o) TN(p)• f Q has its conven-

tional meaning, then Q = a at w o = —1 for all net-
work t ar ms and varies linearly with frequency. 

Z.  Illustrative Exa mple: The Realization of 

T 9(P) . 

converted to a direct frequency scale corres -

ponding to to = 1.25 milliseconds by multiplying 

each value of "u" by 128 cps. 

First, the ar's of (12) have to be calcu-

lated for N = 9.  This may be done with the 
help of factorial tables 26 , or by a direct 
method after writing out the ter ms and cancel-
ling com mon factors in numerator and denomi-
nator.  The polynomial QN(p) may also be 

obtained by recursion [ see (9) ]: 

Qk(p)  = (2k-1)Qk _1(p)  132l ak_2(py 

with Q ..1  = 1, Q0 = 1; but this method is not 

efficient for large N's.  One obtains for  

Q9(p) = >   arpr = p9 + 45p8 + 990p 7 + I 3,  860p6 

r=0 

The effect of increasing an even N by "1" 
is to add a capacitor across the output ter minals 
without changing the number of coils in the net-
work.  One will usually, therefore, prefer an 
odd N in order to maxi mize the delay-bandwidth 
product for a given nu mber of coils, usually 
bulkier and more expensive than capacitors.  
Let N = 9, which possesses a delay bandwidth 
product suitable for an application the writer 
had to deal with, and let to = 1.25  m illiseconds,  
RL = 4000 oh ms.  The loss (with respect to D.C.) 

and delay properties of T9(ju) are shown in 

Figure 1, the "u" scale of which may be 

9 

(33) 

+ 1 35, 1 35p 5 + 945, 945p4 + 4, 729,725p 3 

+ 16,216,200p2 + 34, 459, 425p 

(34) 
+ 34, 459, 425. 

Secondly, a value of "d" is chosen on the basis 
of the coils to be used or of the fixed loss that 
can be tolerated.  The upper limit on "d", im-
posed by the condition of physical realizabilitY , 
is not likely to be a hinderance in practice , 
since it is 1.5 for N = 2 and higher for larger 
N's; e.g., dmax  = 6.29 for N = 9.  The loss, 

of course, increases as "d" grows larger.  A 
preli minary analysis indicates that for to = 1.25  
milliseconds and RL = 4000 oh ms, which were 

required values for the particular application, 
the maxi mum required induLtance will be about 
1.5 henry.  If a toroidal molybdenu m-per malloy 
dust core of 0.8 inches outside dia meter is 

decided upon, the mini mum Q among the  coils  
equals 4 at fo = 128 cps (f0 =  T10. 010  = 128 cps). 

Therefore, the value of "d" may be fixed at 
0.25, which corresponds to a fixed los s of  

2.2 db for N = 9. 
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Substituting p = s-0. 25 in (34), the ar's 

may be obtained by means of synthetic division. 
The large number of significant figures is due to 
machine calculation  and not indicative of re-
quired accuracy.  Expanding the ratio of the odd 

to the ev en part 

*  = (s9 + 902. 2.5s 7 + 115, 605.4928 5 

+3,864,041.03s 3 +27,181,586.98) 4-

(42. 75s 8 + 12204. 93758 6 + 789,490.7758 4 

+13,003,312.962 +27,181,586.9) 

(s) 



in a continued fraction, introducing the loss 
components, and re moving the nor malizations, 
the ne twork of Figure 6 is obtained.  It may 
be worth noticing that the spread in the values 
of the ele ments is not too large and that a gen-
erator impedance higher than 29,200 oh ms can 

be accom modated without affecting the exact 
transfer characteristic. 

The ladder configuration makes it pos-
sible to dispense with stringent tolerances for 
the network co mponents, as required for the 
conventional bridged-T image-para meter delay 
networks.  Even so, the measured amplitude 
and phase response are indistinguishable from 
the calculated curves of Figure 1.  The time-
domain behavior can be judged by Figure 2 and 
the oscillogra ms of Figure 7.  For each square-
wave input of Figure 7A, the response of the 
maximally flat delay network of Figure 6 is 
shown in Figure 7B, and that of a bridged-T 
delay network* (Figure 8) of comparable delay 
and linear phase-shift bandwidth is shown in 
Figure 7C.  The superior square-wave response 
of the maxi mally flat delay network is rather 
pronounced.  The more than 12:1 reduction in 
weight and volu me achieved by means of the 
present design may be of considerable interest 
in view of today's prevalent need for miniaturi-
zation:  the total weight of the coils is only 
2 ounces for the maxi mally flat delay network 
of Figure 6, but it exceeds 1-1/2 pounds for 
the bridged-T delay network of Figure 8 (coil 
Q's are about 30 at 128 cps), with a si milar 
ratio for the relative volumes. 

A comparison may also be made with a 4-
section constant-k filter delay network, which 
has the sa me general configuration as the net-
work of Figure 6.  Its t would differ from to 

by one percent at somewhat less than u = 1. 3, 
assuming even infinite Q's for the coils.  The 
same error occurs for the maxi mally flat delay 
network of Figure 6 not until u = 6.08 and even 
its loss is not down by 3 db from the D. C. value 
until "u" reaches 3.38.  The only debit that can 
be charged against the maxi mally flat delay net-
work, in co mpeting with the constant-k filter, 
involves cascade-connection, which is discussed 
further in section number 3.  Incidentally, the 
coils and capacitors of the constant-k filter are 
much larger for the same RL and to, being 5 

henry for the coil and 0.31 id for the capacitors 
per section. 

These comparisons are a measure of the 
improve ments achieved by transfer-function 
synthesis as compared to classical design of a 
network with a si milar configuration. 

*Designed by J. E. Taber of the Hughes Re-
search and Develop ment Laboratories. 

3.  Cascading of Delay Networks of the  

Type of Figure 6. 

There are applications which require 
several equal or unequal incre ments of delay 
rather than a single fixed value.  When the 
over-all fixed trans mission loss is not exces-
sive, the question arises how maxi mally flat 
delay networks, designed on the transfer 
impedance basis, can be cascaded without 
having to insert isolating amplifiers.  All pre-
requisites for cascade-connection are fulfilled 
if the input impedanc e Zto  is equal to a constant 

resistance, preferably RL , independent of fre-

quency.  This is not the case for the synthesis 
procedure of section nu mber 2, which controls 
z12 and z22 but does not shape z11' at the ex-

pense of additional ele ments, in order to main-
tain a constant imput-i mpedance level.  This 
method of synthesis does, however, produce an 
input impedance which is finite along the whole 
real-frequency axis and thereby paves the way 
for transfor ming the network into a "constant-
resistance" filter. 

If the trans mission matrix for the network 
of Figure 5 is given by 

(V I\  / X ,  7V2 \ 

/  ,  \I2 

then 

X +   Z.  - 
in —  

C + D 

(35) 

(36) 

For a ladder network, the ele ments of the trans-
mission matrix are entire rational functions of 
the impedances of the series ar ms and of the ad-
mittances of the shunt ar ms.  Since these are 
L (2k •(p+d) and C-4K-1  • p+d) in Figure 5, X, B, 
and D are all polynomials in "p".  Inas much as 

V 
2 1  

Z tr  — 
1  C + D 

(37) 

in the present notation, the deno,minator of (36) 
cannot differ from the Hurwitz polynomial 
QN(p) by more than a constant.  It follows con-

clusively that Zto  is finite along the whole real-

frequency axis, including p = 0 an d p = co.  This 
being the case, a driving-point impedance Zn 

can be developed such that Zto  + Ztco equals a 

constant for all real frequencies.  A network 
ar m connected in series with the input ter minals 
does not alter the transfer impedance Ztr  of a 

network.  Therefore, z n may be connec ted in 



such a manner, in order to establish a fixed 
input-i mpedance level and enable cascading of 

the desired number of these networks, designed 
for equal or different amounts of delay. 

While this method of input-i mpedance 
compensation is exact, it wcruld appear to be 
rather wasteful in ele ment for practical pur-
poses.  The number of ele ments needed to 

construct Zo would equal the number used in 

the original network of Figure 6.  No general 
approximate solution has been atte mpted, but 
a rather serviceable approxi mate co mpensating 
impedance has been worked out readily for the 
network realization of T9(p) (Figure 6).  The 

added series ar m, shown in Figure 9, and con-
sisting only of a few ele ments, is sufficient for 
good compensation over the major portion of 
the pass-band.  Several of the networks of 
Figure 9 have been operated in cascade with 
complete success, undistorted and properly de-
layed outputs having been taken from each 
junction point of two of these networks and at 

the ter mination. 

It should be realized that the cascading of 
maximally flat delay networks increases the 
rate of trans mission loss, since the loss curve 
per network is bell-shaped rather than roughly 

square.  More precisely, a total of N reac-
tances distributed equally among "n" networks, to 
each of degree —n and contributing a delay  

has a 3 db bandwidth of 

3 db  \I(2N - n) in2  , 

but a network designed directly on the N'th 
degree basis has a 3 db bandwidth of 

3 db q(2N - 1),en2  , 

(38) 

(39) 

which is nV2N-1  2N-n times larger than (38 ). It 

stands to reason that cascading nor mally would 
only be used when the additional tap-points are 
required.  Otherwise, the network should be 
synthesized on the basis of the full N, since in 
this manner a greater useful delay -bandwidth 
product is obtained at the expense of more 

lengthy calculations. 
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A TRANSISTOR ANALOG  

R.D. Lohman 
RCA Laboratories Division 

Princeton, N.J. 

Abstract 

One approach to transistor 
circuit design is through the use of an 
equivalent circuit.  The performance of 
the transistor under conditions where the 
equivalent circuit is valid may be pre-
dicted once the parameters of the equiva-
lent circuit are known.  However, at 
frequencies well within the useful oper-
ating range of junction transistors, the 
reactive parameters in the equivalent cir-
cuit become important and computation is 
very tedious.  The same may be said of 
computations predicting the effect of 
variations in the equivalent circuit 
parameters. 

The usefulness of the equivalent 
circuit concept may be extended by con-
structing a transistor analog.  The analog 
employs a pentode vacuum tube as the active 
element of the equivalent circuit and 
variable resistances and capacitances as 
the passive elements.  By adjusting the 
control voltages on the tube and choosing 
the proper values for the passive elements, 
the analog may be made to perform exactly 
like a transistor except for a transform-
ation in impedance level and frequency 
scale. 

There are certain advantages to 
be found in studying transistors by mak-
ing measurements on the analog: 

1.  Circuit performance of 
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realizable transistors may be evaluated 
before the transistors are actually avail-
able. 

2.  The effeet of varying the 
parameters of the equivalent circuit may 
be quickly determined and the information 
thus obtained may be used adv4ntageously 
by device people. 

3.  Measuring equipment may be 
much simplified and stray capacities 
ignored if the analog is designed to 
operate at frequencies lower than those 
at which the transistor will operate. 

The analog described in this 
paper is based on a modified equivalent 
circuit of a grounded emitter transistor 
developed by L.J. Giacoletto.  The im-
pedance level of the analog is 10 times 
that of the transistor in order that the 
relatively large (h0,000 µ mhos at 1 ma. 

emitter current) mutual conductance of the 
transistor be represented by a single 
pentode tube.  In addition, all capacities 
of the analog are 10 times those of the 
transistor so that data may be derived 
from the analog at freqiencies lower by a 
factor of 100 than those at which the 
transistor will operate. 

Measurements made on the analog 
have shown good agreement with those made 
on transistors. 



Eugene W. Sard 
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Summary  

The analogy between junction-transistor triodes 
and vacuum-tube triodes is sufficiently close that 
conventional vacuum-tube switching circuits such 

as multivibrators can be transistorized simply by 
changing the values of the circuit constants and 
replacing the vacuum tube with a junction transis-
tor.  The associated circuits will be at lower 
impedances and will operate at lower voltages, but 
the currents will remain of the same magnitude. 
Because of the alpha cutoff frequency, a transis-
torized switching circuit operates from dc to hun-
dreds of kilocycles a second.  Such measured char-
acteristics of multivibrators as d-c potentials, 
gate widths, and repetition periods are in good 
agreement with theoretical values. 

I. Introduction  

Most switching circuits that have been 
designed with transistors have used point-contact 

types and are not very similar to switching cir-
cuits designed with vacuum-tube triodesl. However, 
the analogy between junction-transistor triodes 
and vacuum-tube triodes is sufficiently close that 
many conventional vacuum-tube switching circuits 
(multivibrators and flip-flops in particular) can 
be transistorized by changing only the values of 
the circuit constants and not their configuration. 
The connections to the plate, grid, and cathode of 
the vacuum tube can be replaced by connections to 
the collector, base, and emitter, respectively, of 
the junction transistor.  As alpha (the current 
gain from emitter to collector) approaches unity, 
this replacement becomes a better one, since col-
lector current then approaches emitter current in 
value, corresponding to the equality of plate and 

cathode currents in the negatively biased vacuum-
tube triode.  Furthermore, if the transistors are 
n-p-n types, the power supply and waveform polar-
ities of the vacuum-tube circuit are maintained in 

the transistorized version; for p-n-p types, the 

polarities are reversed. 

Two junction-transistor circuits analogous 

to the familiar one-shot cathode-coupled multivi-
brator and the Eccles-Jordan flip-flop are 
described.  Also described is a less conventional 
free-running multivibrator using junction-
transistor triodes.  This circuit has a square-
wave output, whose repetition rate is controllable 

by a single RC time constant. 

II. One-Shot Multivibrator 

General  

Figure 1 is a generalized schematic diagram 
of a one-shot emitter-coupled multivibrator using 
n-p-n junction transistors.  It has been drawn to 
emphasize its similarity in configuration to the 

GATE OUTPUT 

FIGURE I ONE-SHOT EMITTER-COUPLED MULTIVIBRATOR 
USING N-P-N JUNCTION TRANSISTORS 

familiar one-shot cathode-coupled vacuum-tube cir-
cuit.  Operation is quite similar to that of the 
vacuum-tube version.  In the quiescent condition, 
transistor T2 is on in the saturation region by 
the positive return of its base resistor (Rb).  At 
the same time, the biasing network for transis-
tor T1, consisting of resistors R1 and R2, cuts 
off T1 by maintaining its base sufficiently nega-
tive with respect to the common emitter potential, 

which is determined by the conduction of T2 . Cor-
responding to the vacuum-tube case, the circuit 
may be triggered (as shown in Figure 1) by a nega-

tive pulse on the collector of T1 coupled through 
an isolating crystal dim's.  After the circuit is 
triggered, a rapid regeneration takes place until 

T2 is turned off and T1 is turned on.  T2 is held 
off until capacitor C Ras discharged sufficiently 
to bring the base of T2 back approximately to the 

common emitter potential (now determined by the 
conduction of TO.  When this point is reached, 
regeneration takes place once more, and the cir-
cuit is restored to its initial condition, thus 

terminating a gate. 

Gate Width 

An approximate expression for gate width (T) 

may be derived as follows.  Initially, since T2 is 
on in the saturation region, the collector, base, 
and emitter of T2 are all at about the same poten-

tial, 

Eo - 
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ReEcc 

R  + 
e RL2  Rb 

RL2 Rb 
(1) 

(This condition is in contrast with the vacuum-
tube case, in which a tube at zero bias still has 
appreciable plate-to-cathode voltage drop.)  After 
triggering, when T1 is turned on, its collector 



drops in potential by 

vcl 
RL1Rb alR2cc E  E - E--  cc  o  

----' R_  + Rip  Re(R1 + R2 ) Ll  Rb 

provided T1 is in its active region, al is its 
current gain (assumed constant), the impedances R1 
and R2 are sufficiently low to maintain the base-
to-ground potential of T1 at R2Ecc  (R1 + R2 ) and 
the base-to-emitter voltage drop in Ti is neg-
lected.  This same drop, Alicl  (shown in Figure 2), 
appears on the base of T2 . WEen the exponential 

T 

DYE CONSTANT IT I 

GATE WIDTH CT). T LOG  E,  
[c " -( c - A., 1 

o 

TIN  Of  ENO OF 
INPUT  GATE 
TPOGGEN 

FIGURE 2  BASE - TO-GROUND VOLTAGE OF T2 
ONE - SHOT MULTIVIBRATOR 

waveform on the base of T2 (which is heading for 
Ecc  with the time constant  T = C [RIA  + Rh] ) 
passes through the new ccmmon emitter potential 
(R2Ecc / [H1 + R2] ), the gate is terminated. 
Therefore the gate width is 

T = T log 
E  + cl - Eo cc 

R1Ecc  

R1 + R2 

C(RL, + Rb ) log 

R2 
1 + 

R1 

1 + R (  + 
e R 

;----CRb log 

Rb >> 

1 + 

1 + 

R2 

4;1 
+  (R2) 

1 R1 

R1   ( R2) (RL1) 

Re  R1  Re 
R 

RL1' RL2 ; al  1 

RL1) 

• 

(2) 

(3) 
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Choice of Base Resistor Rb  

There is a maximum permissible value of Rb 
to ensure initial operation of T2 in its saturated 
region.  Larger values of Rb shirt the operating 
point of T2 to its active region.  Such operation 
is undesirable, because, for rapid recovery after 
the gate, capacitor C should discharge rapidly 
through the relatively low base-to-emitter imped-
ance of T2 when it is in the saturated region. 
This maximum value of Rb can be related to the 
other circuit constants. 

Assume that T2 is in its active region and 
make use of the relations for its collector cur-

rent (1 n) and emitter current (Ie2) derived by 
R. F. Shea- for single-battery operation. 

CO 

Ic2 - 

(,   Re)  a2Ecc  
+ —  + 

Rb  Rb  

Re 
1 - cz2 Rb 

Ic2 - I 
co Ie2 = 

a2 

(5) 

(6) 

where 'Co is the collector current of T2 for zero 
emitter current, and 02 is the current gain of Tp. 

The maximum value of Rb is the value that 
just causes the collector-to-base voltage (Vc2 ) to 
drop to zero; therefore 

Vc2 = Ecc - Ic2 RL2 - Ie2 Re = 0  (7) 

If the values of Ic2 and Ie2 from equations 5 
and 6 are substituted into equation 7, the maximum 
value of Rb is found to be 

RL2 (a 2Ecc  I R Co   
(R b)max - (1  a jE  - I (R  + R-  ) 

2 cc  co  e  L2 

a2131,2  
Ze 

1 - C12 ' 'Co  << 

(1 - )Ecc  

Re + RL2  

Thus large values of Rb are permissible for high 
values of 02 or 'Co.  However, the value of 'Co 
must be small to prevent the gate width (T) from 
being reduced from the value given in equation 3. 
This is the case since negative emitter-to-base 

bias in T2, while reducing the emitter current to 
a small value in a good transistor, does not 
reduce the current flowing in the collector-base 
circuit much below the value of I .  Thus, in 
addition to the desired charging of capacitor C 

through the long time constant (T) there will be 
an undesired charging by Ico . Since Ico  varies 
with different transistors and temperatures, it is 
not a good practice to make the gate width a func-
tion of Ico . 

Values of Rb much smaller than (Rb) „, may 
be undesirable for at least two reasons. 



1.  Longer recovery time in terms of gate width 
will result because of the relatively smal-
ler ratio of time constants for charging of 
capacitor C during the gate and after the 

gate. 

2.  Slower rise time of the collector waveform 
of T2 will result because of increased 
minority-carrier storage in a more heavily 

saturated T2. 

Experimental Circuit  

An experimental circuit was constructed with 
the following values of constants (1% tolerance 

resistor values): 

RLl  3300 ohms 

RL2  = 2200 ohms 

Rb  33,000 ohms 

Re . 2200 ohms 

R1 = 3300 ohms 

R2 = 2200 ohms 

E  = 15 volts 
cc 
C = 0.1 µf 

(measured 
0.106 'If) 

value 

For the transistors used (Texas Instruments 
Type 201), a > 0.95 and 'co < 10 vamp at room 
temperature.  From equation 9, (R Omax  is equal to 
42,000 ohms; thus, a value of 33,C00 ohms is per-
missible.  The theoretical value of gate width T 
from equation 3 is 1800 µsec and from equation 4 
is 2100 µsec.  Measurements made with 14 different 
transistors in the circuit gave a gate width of 
about 1460 .sec + 10%.  The discrepancy of about 
20% between the measured value and the theoretical 
value of gate width from equation 3 may be attrib-
utable to the following factors. 

1.  The jump (AVcl ) was about 15% less than the 
theoretical value--chiefly because the value 
of al used in equation 2 should be an aver-
age value, since a is not completely inde-
pendent of collector current and voltage. 

2.  The several-tenths-of-a-volt potential dif-
ference between base and emitter of T1 when 

Ti is turned on were neglected in equa-

tions 2 and 3. 

Equation 3 states that gate width T should 
be independent of collector supply voltage Eoc . 
For a pair of average transistors, the variation 
with Ecc that was found experimentally is shown 

in Table 1. 

ECC 

Table 1 

in volts  T in µsec 

5 
10 
15 
20 

1270 
1470 
1550 
1600 

With C = 0.005 if (measured value 0.0046 µf) 
instead of 0.1 if, substantially the same frac-
tional agreement was found as that above with 
regard to a comparison of theoretical and measured 

gate widths.  (The theoretical value of gate width 

from equation 3 is 80 µsec.) 

III.  Flip-Flop  

General  

Figure 3 shows a symmetrical flip-flop using 
p-n-p junction transistors.  It has been drawn to 
emphasize its similarity in configuration to the 

FIGURE 3. SYMMETRICAL FLIP-FLOP USING 
P-N-P JUNCTION TRANSISTORS 

familiar Eccles-Jordan flip-flop vacuum-tube cir-
cuit.  Operation is quite similar to that in the 
vacuum-tube version.  There are two stable 
states--T1 on and T2 off, and vice versa.  Trig-
gering (to be discussed later) from one state to 
the other is possible because of the cross-
coupling capacitors (C1) and the emitter bypass 

capacitor (Ce). 

D-C Analysis  

If several simplifying assumptions are made, 

a d-c analysis, useful from an engineering stand-
point, can be made as follows.  Assume identical 
ideal junction transistors--that is, when tran-
sistors are turned on in their active region, 
a = 1 (therefore, base current = 0) and base-to-
emitter voltage = O.  When transistors are turned 

off, all currents are equal to O.  Denote the 
current in the "on" transistor by 10, the collec-
tor swing between "on" and "off" states by Vo, 
the base-to-emitter bias on the "off" transistor 
by Vb, and the collector-to-emitter voltage of the 
"on" transistor by V.  The following equations 

can then be written: 

R2Ecc   

I - 
o  Re(RL + R1 + R2 ) 

(10) 
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IoRL(R1 + R2 ) 
V  - 
o  RL + R1 + R2 

RV  

V  b  - R1 + R2 

(R1 + R2 )Ecc 

V -  IoRe  Vo c  RL + R1 + R2 

Simultaneous solution of equations 10 through 13 
gives the following expressions for the resis-
tances, R,, Re, 13,, and R2 as functions of Eee , 
Io, Vo, lc, and  (this analysis applies equally 
well or better to the vacuum-tube flip-flop, pro-
vided the "on" tube does not draw grid current): 

R (V  V cc  o  b) 
RL - I 0 (v0 + v c) 

V + V 
o  c  

Re - 
Vo  ) 

I (--- - 1 
o Vb 

(14) 

(15) 

Ecc (Vo - Vb )2 

R1 - I FE (V  - V.) - V (V  + Ve)1  (16) 
OLCC  0  D  0 0 

VbEee (Vo - Vb ) 

R2 -Ie[Eee (Vo - Vb ) - Ve(Ve +  (17) 

Experimental Circuit  

A practical circuit, based on equations 14 
through 17 was designed as follows.  Values of 

Ecc = 6 v (-6 v ac tually,since p-n-p transistors 
were used), 10 = 1.2 ma, Vo = 3 v, Vb  . 1 v, and 
V, = 0 v were chosen.  Note that, since the tran-
sistors are not ideal, a greater-than-zero value 
of V, is expected to ensure operation of the "on" 
transistor in the active region.  From equa-
tions 14 through 17, 

RL = 3,330 

Re = 1,250 

R1 = 6'670 

R2 = 3'33o 

ohms 

ohms 

ohms 

ohms 

The nearest 5% tolerance RNA values of 

RL = 3,300 

Re = 1,200 

R1 ' = 6 800 

R2 = 3'300 

ohms 

ohms 

ohms 

ohms 

were actually used.  From equations 10 through 13, 
the corresponding theoretical values for Io, Vo, 
Vb , and Ve are 1.23 ma, 3.06 v, 1.00 v, and 
-0.02 v respectively.  Measurements on five RCA 

type 2N34 and five each of Radio Receptor types 
RR 14H and RR 3411 p-n-p junction transistors gave 
values of I0 (emitter current actually) = 1.0 
to 1.04 ma, Vo = 2.4 to 2.7 v, Vb = 0.5 to 0.6 v 
and lie = o.6 to 0.9 v.  The measured values of 
alpha for these fifteen transistors varied from 
about 0.95 to 0.98 at the manufacturer's rated 
operating points.  Best agreement of measured and 
theoretical values was obtained with the higher-
alpha units.  All fifteen transistors had low 'co 
and emitter characteristics with a sharp knee 
within 0.1 v base-to-emitter potential.  Thus, 
the 0.5 to 0.6 v value of Vb actually measured was 
more than enough to cut off the transistors. 

Binary-Counter Operation 

Figure 4 shows a triggering circuit (similar 
to that used with vacuum tubes) for operating the 
flip-flop as a binary counter.  The crystal diode 

TRIGGER 

INPUT 

TO RASE T, 

TO BASE Tz 

TO EOVVON E V • • 

FIGURE 4 BINARY-COUNTER TRIGGERING CIRCUIT FOR FLIP-FLOP 

connected to the base of the "off" transistor has 
a greater reverse bias than the crystal diode con-
nected to the base of the "on" transistor.  Thus 
the positive input trigger is routed to the "on" 
transistor and starts the regenerative action that 
ends in the other stable state of the flip-flop. 
The following trigger is similarly routed tc the 
new "on" transibtor and changes the flip-flop back 
to its original state, and so-on, resulting in a 
binary-counter action.  This description of trig-
gering assumes that the proper values of capac-
itors C1 and Ce (in Figure 3) have been chosen. 
Smaller values of these capacitors can be used 
when transistors with higher alpha cutoff frequen-
cies* are used.  Too-large values slow up the 
operation of the flip-flop.  For the transistors 
used, which had alpha cutoff frequencies from 0.4 
to 0.9 Mc, values of C1 and Ce equal to 0.0025 pf 
gave satisfactory triggering.  The flip-flop con-
nected as a binary counter operated at trigger 
repetition rates up to about 100 kc.  Three iden-
tical flip-flop stages, in which the collector 
waveform of T2 of the first stage was connected to 
the input of the second stage and so on, were suc-
cessfully cascaded to make a scale of 8. 

* Alpha cutoff frequency is defined as the fre-
quency at which the magnitude of alpha is 3 db 
less than its low-frequency value. 
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IV.  Free-Running  Multivibrator 

General 

Figure 5 shows a free-running emitter-
coupled multivibrator using n-p-n junction tran-
sistors.  It is intended for application as an 

Ecc  (POSITIVE) 

FIGURE 5 MuLTiviBRATOR SQUARE-WAVE GENERATOR 
USING N-P-N JUNCTION TRANSISTORS 

approximate square-wave generator, whose repetition 
rate can be adjusted by adjusting the value of the 
single capacitor Cl. Undoubtedly, the process of 
transistorizing described in Sections II and III 

could here be reversed to obtain an equivalent 
free-running cathode-coupled multivibrator using 

vacuum tubes. 

The operation can be explained by referring 

to Figure 6, which shows the base-to-ground wave-
form of T2 . Neglecting base-to-emitter potential 

(R 3+RoE IR4 

E2 
E, 

FIGuRE6  BASE-TO-GROuND VOLTAGE OF T2, 

SQUARE- WAVE GENERATOR 

differences when a transistor is turned on in its 
active region (the intended region of operation 
for this circuit), it is seen that changes of state 
of the multivibrator take place when the base-to-
ground potential of T2 reaches a value of El (T2 
off and T1 on), or a value of El(R3 + R4)/R4 (T1 
off and T2 on).  Capacitor C2 is a small peaking 
capacitor and does not affect this reasoning. 
Through proper choicq of the circuit constants, 

the "off" periods of T1 and T2 can each be made 
equal to one time constant of the exponential 
waveform on the base of T2.  This choice, in turn, 
should lead to minimum fKactional time jitter of 
the output "square wave" ). These time constants 
are approximately equal to C1(11 + R,), neglecting 
the effects of collector output impeaance of Ti 
and base input impedance of T2.  Thus, if the 
above conditions are met, the theoretical repeti-
tion period of the output will be approximately 

2C l(R1  R5).  

Circuit-Constant Relationships  

The relations necessary among the circuit 
constants to obtain the desired operation can be 
derived as follows.  From Figure 6, two equations 
are obtained: 

E2 = 

E1(R3 + R4) 
E1 + 

14 

E1 + cl 

where 
of T1, 

Av 

2 
(18) 

E2 = E(E2 - El)  (19) 

E . 2.718 and the jump in collector voltage 

a c El)  c  RiR5 

1 R4  R1 + R5 

(20) 

if 01 is the current gain of T1 (assumed constant) 
and the base input impedance of T2 is negligible. 
Solution of equations 18, 19, and 20 leads to 
relations for E2 , 111, and 111115/(R1 + R5) as func-

tions of El, R4, and AVci: 

cl 
E2 = E1 + 

1 + E 

2R4 pvci 
R3 = E1(1 + E ) 

R1R5  R4 Pvcl 

R1 + R5 - alEi 
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TO see whether there is enough middle-
frequency gain to ensure regeneration when both T1 

and T2 are turned on, consider that the loop is 
opened at the base of T2 and an input signal el is 
injected there.  The ratio of e2, the resultant 
output signal at the collector of Tl, to el can be 
calculated approximately as follows.  Neglecting 
R2 , T2 is simply a grounded collector stage (with 
approximately unity voltage gain to its emitter) 
feeding a grounded base stage Ti, having a source 

impedance of B3 and a load impedance of 
RiR5/(R1 + R5).  Thus the open-loop middle-

frequency gain is: 

e2   a1R1R5  + E 
= 

e1  R3(R1 + R5) -  2 

(24) 



making use of equations 22 and 23.  Thus, for the 
desired circuit, e2/e1 = 1.86, which is greater 
than unity as required for regeneration. 

Experimental Circuit 

An experimental circuit, based on values of 
El = 7.5 v, R4 = 5,600 ohms, AVel  = 7.5 v, and 
al = 0.95 for Type 201 transistors, used circuit 
constants (1% tolerance resistor values) with the 
following values (selected using equations 21 
through 23): 

R3 = 3,000 ohms 

RI = 5 = 12,000 ohms 

R2  2,200 ohms 

E2  9.5 v 

E  =20 v 
cc 

The values chosen for Ecc  and R2 ensure operation 
of T1 and T2 in their active regions when they are 
turned on.  For convenience, the voltages El and 
E2 were derived from a low-impedance bleeder con-

nected between icc and ground.  Bleeder resistance 
values of 2,400 ohms, 470 ohms, and 1,800 ohms 
(reading from Ecc  to ground) were selected; they 
gave open-circuit values of El = 7.7 v and 
E2 = 9.7 v. 

First, a value of C1 = 1.0 µf (measured 
value = 1.1 µf) for low-frequency operation was 
chosen (C2 = 0).  The corresponding theoretical 
repetition period of the output is 2C1(R1 + R5), 
equal to 0.053 sec.  Measurements made with four-
teen different transistors gave an output period 
of 0.033 sec + 11% and a duty cycle of 0.54 + 8%. 
When the impedance of the bleeder supplying the 
voltages El and E2 was reduced by a factor of 5, 
the ratio of measured to theoretical repetition 
periods was increased from the above value of 62% 
to a value of 72% without change in duty cycle. 

Theoretically, repetition period and duty 
cycle of the output should be independent of sup-
ply voltage Ecc . Table 2 shows the measured per-
formance for an average pair of transistors when 
E  is varied. cc 

E  in volts 
cc 

5 
10 
15 
20 
25 

Table 2 

Repetition Period 
in seconds  Duty Cycle 

0.017 
0.027 
0.031 
0.033 
0.034 

0.53 
0.54 
0.55 
0.56 
0.55 

Next, a value of C1 = 0.001 µf (measured 
value = 0.00104 µf) for higher-frequency operation 
was chosen.  The value of C2 for best shape of the 
output without affecting its period was determined 
experimentally to be about 500 µµf.  (C2 performs 
a function here corresponding to that of a small 
capacitor bypassing the cathode resistor of a 

vacuum tube to improve its high-frequency 
response.)  The corresponding theoretical repeti-
tion period of the output is 50 µsec.  Measure-

ments made with the same fourteen transistors gave 
an output period of 40 µsec + 20% and a duty cycle 
of 0.58 + 7%. In this case Tcompared with 
C1 = 1.0 µf), the low alpha cutoff frequency of 
some of the transistors* lengthened the rise and 
fall times and thus caused the average ratio of 
measured to theoretical periods of the output to 
be raised while increasing the variation of meas-
ured period. 

The reasons cited under the one-shot multi-
vibrator to explain discrepancies between theo-
retical and measured performance are also appli-
cable here. 

V.  Conclusions 

It has been demonstrated that some vacuum-
tube triode-switching circuits of the multivi-
brator type can be transistorized with junction 
transistors without changing the circuit config-
uration.  In the experimental transistor circuits 
cited, measured periods were about 70 to 80% of 
those calculated from the theory.  Repeatability 
of results with different transistors was about 
+10% of the center value. 

The method of transistorization demonstrated 
is believed to be applicable to a great variety of 
vacuum-tube triode circuits of both switching and 
linear types. 
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A SYNTHESIS PROCEDURE FOR LINEAR 
TRANSISTOR CIRCUITS 

J. R. Burnett 
Purdue University 
Lafayette, Indiana 

_Sulnn_a a 

The design of transistor circuits is hindered 
by the loading effects demonstrated by transistors 
which is not usually present in vacuum tube cir-
cuits.  A pure synthesis procedure takes into 
account these loadings.  It is shown that a com-
plete transistor can be removed at a time during 
a passive synthesis procedure, thus making 
possible an active synthesis procedure for tran-
sistors.  The technique involves finding the 
relationship between the impedance parameters 
of a partitioned network and the original network. 
An example is shown to illustrate the technique. 

Introduction  

The primary purpose of looking into the 
synthesis of transistor circuits is to produce 
four terminal networks having prescribed fre-

quency characteristics with gain.  Secondary 
purposes of such a synthesis technique are to con-

trol impedance levels, element values, and even 
produce the frequency effects of RLC passive 
circuitry using only l C elements and transistors. 
Synthesis is needed since transistors are not 
amenable to the building block concept which has 
characterized the use of vacuum tubes in producing 
networks having prescribed frequency characteris-
tics with gain.  The disqualifying factor for 
transistors is that none of their admittance 
parameters are negligible, whereas vacuum tubes 
often have zero input admittance and zero trans-
fer admittance from the output to the input ter-
minals.  This causes the loading effects of 

transistors. 

The procedure described here makes full use 
of the existing passive network synthesis tech-
niques and introduces a method of removing a 
transistor at a time from a ladder development. 

Transistor Removal Equations  

Linear transistors are characterized by four 
parameters which can be the impedance or admit-
tance ones.  Four are required because transistors 
are active networks, and none of these four can 
be neglected.  The transistor removal equations 
are based upon the geometry in Fig. 1.  The tran,-  z21a = 
sistor par ameters used here are based upon 

equations (1) and (2). 

z12, z21, and z22 can be partitioned into two 
networks, Na and Nb, which when connected as 
shown will produce the same overall impedance 
parameters as does N.  Each of the networks Na 
and Nb are also characterized by sets of impe-
dance parameters with the appropriate subscripts. 
The parameters of network N may be found using 

the parameters of Na and Nb. 1 

zlla(z1l ez22a )-z12 az2 la  

zllb  z22a 
Zii - 

z22 

z22b(z1l ez22a )-z12 bz2 lb  

zllb  z22a 

z12az12b  
z12  , 

-11b4-2 22a 

z2laz2lb  
z21  z 

-11 ez22a 

In a synthesis procedure, the parameters of 
N would be known or assumed quantities, the para-
meters of Na or Nb would be those of a transistor, 
and the other set of Na or Nb would be the para-
meters of the network connected to the transistor. 
Equations (3), (4), (5), and (6) may be solved 

for the parameters of Na or Nb. 

z22a 

El = /1'11  
(1) 

E2 11212 + I2z22 

It is postulated that the network N which is 
characterized by the impedance parameters z11, 

(2) 
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z11z22b- A. 

z22b-z 22 

z22z1lb-8 b 

z22b z22 

z12z2lb 

z12a 
z22b-z 22 

z21z12b 

z22b-z 22 

z11z22a- Aa 
zllb = 

zlla 111 

_11_1112_4 2-L 
z22b -z 

ilia  11 



z _  z12 z2la 
12b 

711a-z 11 

z2lb -
z21z12a 

zlla -z ll 

(13) 

(14) 

Equations (7), (8), (9), and (10) yield the 
necessary relationships if the network N is to be 
realized by a passive network Na followed by an 
active network Nb; equations (11), (12), (13) and 
(14) yield the necessary relationships if N is to 
be realized by an active network Na followed by a 
passive network Nb.  These are not sufficient 
relationships that the passive network will be 
realizable itself.  This matter is left to the 
ingenuity of the synthesizer in the selection of 
suitable transistors. 

These equations or the geometry shown in Fig. 
1 do not indicate that only one transistor can be 
removed to create a network N having a prescribed 
frequency characteristic with gain.  Once the 
network Na or Nb is removed in the form of a 
transistor, the parameters of the Nb or Na can 
be further subdivided with due regard to realiza-
bility conditions.  Ladder developments of four 
terminal networks are then possible as is the 
situation with passive network synthesis. 

Example of the Synthesis Procedure 

As an example to illustrate a few of the 
points concerned with this procedure, let the 
following open circuit transfer function be 
realized as a transistorized amplifier. 

H(s) - K 
(s+5) (s+0.1) 

An open circuit transfer function may be associ-
ated with the relationship 

H(s) - 212-
z11 

by the removal equations and forming a ladder 
development of the passive parts which also 
realize the zero of the transfer impedance. 

Realization 

A 125 ohm resistor is first removed in 
series from z11 before a transistor is removed. 
This series resistor will reduce the gain but 
does provide for source resistance. 

z11 = 125  + 125s2+698s+74.4 -12  (18) 
5+z 11 s+4.59s+0.4C5 

A transistor is next removed.  The particular 
choice of transistor depends upon the z11.  The 
value of zilb which must load this transistor 
is obtained by use of equation (11).  Equation 
(11) can be rearranged to be as follows: 

[ 

_ 1  -1+g ilt 4 

22t 

1   

rllt 
1 

1  i 1 _  z 
11 

As a necessary condition  for  zilb  to be realiz-
able the coefficients of the paynam ials formin. - 
zilb  must be,all positive.  Considering the 
numbers in z11 and equation  (17) an d hav ing  
available data of several trans istor  parameters,  
a suitable choice can be ma de. In thi s example  

Z i l b  g (1 9) 

5 0 %6  t.-1 ) S(618  4 st). 0A.4  9" . 4° 

s t/  
( 1-  m “,) * S(4.5' - c2111) . (0 4,36 - 2_1.2t) (20) 

Clearly gilt must be larger than 1/125 mho and 
(15)  rllt larger than 201 ohms.  A large value of 

g22t is desirable to maintain a low impedance 
level of zip,.  An X22 grounded base which meets 
these specifications has the following para-
meters: 

(16)  rllt = 1770 ohms  r21 = 1737 ohms  

The zeros of zli may be associated with the poles 
of H(s), and the zeros of z12  taken as the zeros 
of H(s).  There remains to select suitable poles 
of z11 . 

The selection of these poles is also con-
cerned with the impedance level of the Nb net-
work if Na is a transistor and with the realiza-
bility of the Nb network.  The poles in this 
example are selected such that 

'11 = 250  (54-0.1As+5) 
(s40.09)(s+4.5) 

(17) 

The selection of the multiplicative factor 250 
is somewhat arbitrary, but large values quickly 
lead to unrealizable Nb.  The synthesis 
proceed upon the basis of removing transistors 
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ohms  1 r22t = 6C4K  /gilt =118 ohms 

574K ohms  1/p  ohms r12t  —22t  41500 o = 

Using the appropriate parameter values in 
equation (20), there results 

0.246 s2+5.93s+1   
zllb=256 W  2.56s2+11.5s+1 

A shunt resistor must be removed from 
to enable gperating currents to reach the 
collector.  4 This resistance should not be very 
large or else excessive power supply voltages 
will be required.  In this example the resistance 
in shunt is 25,600 ohms minimum and is reasonable 
for a 0.5 ma operating point.  The size of this 
resistance is governed by the l/ g22, and the 

(21) 

zllb 



cl.oseness of the constant terms in the original 
z11 equation. The relative value of these constant 
terms is under the control of the designer through 
the selection of the poles of zil and its multi-
plicative factor.  The maximum resistance seen 
looking into the 1,1' terminals of a transistor 
is the r11, and this results if the load is an 
open circuit.  The minimum resistance seen look-
ing into the 1,1' terminals is 1/g 11, and this 
results if the load is a short circuit.  Conse-
quently, for the impedance level oT the zilb to 
be small, the impedance level of zu should be 

about I /gilt* 

The shunt 25,600 ohm resistor is removed, 
followed by the removal of a series capacitor 
to realize the zero of z12.  The resulting 
impedance function is given by 

1 + 0.0478s  
zllb=253°°  1 + 0.414s 

(22) 

At this point it is well to consider the 
characteristics of an impedance function which 
when placed in equation (11) can produce a 
realizable function.  First and foremost, if 
transistors are used having positive parameters, 
the impedance function must have the same powers 
of s present in both the numerator and denomi-
nator.  This restriction is evident in equation 
(20).  If all these terms are not present, then 
some of the resultant coefficients will be nega-
tive.  Transistors having negative parameters may 
be deliberately used to overcame this difficulty. 
This restriction is a reflection of the fact 
that a transistor represents a resistance to 
ground viewed from either set of terminals, and 
if it is to be removed fr om an impedance func-
tion, that impedance function must have a 

resistance to ground. 

If another transistor is to be removed, it 
must also have a shunt resistance for furnishing 
bias current.  If all the shunt resistance is 
removed from equation (22), then the resulting 
function will not yield a realizable loading 
impedance for the second transistor.  Only part 
of it can be removed.  If 50,600 ohms are re-
moved in shunt, the resultant impedance function 

is 

zlib =50600 1+0.(J4785 
1+0.78s 

Again, using equation (19) 

Ap4101.,— oVt) 4504001,t— I) 
S(0.11  M1111-\ (I- I...2_10_5. 0 

)   / 

(23) 

(24) 

For this transistor, gllt must be larger than 
3.59X1075  mhos and r11+  must be larger than 
50,600 ohms.  These values suggest a grounded 
collector transistor.  An ideal transformer 
could be removed at this point to lower the 
impedance level such that a grounded base tran-
sistor could be removed.  If a TA 153 is opera-
ted grounded collector, its parameters are: 

rllt = 800,336 ohms 

r22t = 18,056 ohms 

r12t = °°K o hms 

r21t= 18K ohms 

1/glit =2720 ohms 

lAnt=61.3 ohms 

With these parameter values used in equation 

(24), there results 

zilc  = 1150  1+0.00628s 
1+0.83s 

(25) 

The impedance function zuc admits of removal of 
a shunt resistance for bias purposes.  The 
remainder of this impedance function may then 
be removed as a series resistance and finally a 
shunt capacitance. Figure 2 illustrates the com-
plete circuit and the various impedances. 

The TA153 operated as a grounded collector 
stage has a gain of slightly less than unity. 
This stage does serve to illustrate its use as an 
impedance transformer since the zero frequency 
resistance of zilb is 50,600 ohms and the zero 
frequency resistance of zlic is 1150 ohms.  These 
stages allow a reduction in impedance level with-
out appreciable, loss in gain.  Once the imp edance 
level is low enough, a grounded base circuit may 

be used to produce gain. 

Experimental Verification 

The analytic solution of the circuit in 

Fig. 2 yields 
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z11 250 ( 40 09) s+4 5) 

5.0 X 104s   
Z12  (3+0.09)(s+4.5) 

=  200 

ET  (s+0.1)(s+5) 

(26) 

(27) 

(28) 

Figure 3 is an experimental gain frequency curve 
of this amplifier.  The frequency has been denor-

malized to facilitate testing.  The break fre-
quencies are 114 and 5710 cycles per second.  The 
largest error is about 1/2 of a decibel.  Dis-
crepancies can be explained by element tolerances 
and frequency characteristics of the transistors 

which have been neglected. 

Pole Zero Configurations  

Equation (19) might be interpreted as comp-
puting the pole zero locations of a network to be 
placed in tandem with a transistor such that the 
loading effects of the transistor shift these 
poles and zerqs to where the specifications de-
mand they be.'  The pole zero configuration of 

the specifications, z11, are shown in Fig. 4. 
The selection of the poles is almost arbitrary, 
but they were chosen close to the zeros to 



produce two polynomials defining the impedance 
function without a large spread in coefficient 
values between corresponding powers of the numera-
tor and denominator.  The poles in this example 
were also chosen to produce an RC driving point 
impedance.  The poles and zeros of the loading 
impedance for the first transistor are also 
shown in Fig. 4.  Figure 4 may be interpreted 
as a root locus plot.  The form of equation (19) 
suggests this concept.  With the minus signs, 
the poles and zeros move in opposite directions 
to those encountered in servomechanisms.  The 
gain factors are the gilt  and 1/ru t for the 
zeros and poles respectively.  The root locus of 
the effects of the second transistor can be 
shown similarly.  This is illustrated in Fig. 5. 
Transistors having certain negative parameters 
may be used to cause the root locus plots to go 
in opposite directions.  The example shown here 
has caused the poles to move to the right and the 
zeros to move to the left.  With the opposite 
motion, RC networks can be transformed into RL 
networks, and vice versa. 

Other Uses of Equations  

The equations in the series (11), (12), (13), 
and (14) which were not used have little bearing 
upon this example.  Equations (13) and (14) de-
termine the transfer impedances of the network 
Nb. Equation (12) determines the z22  of Nb. The 
importance of these equations is that they show 
the poles of the impedance parameters include at 
least those in the transfer impedances.  This is 
the justification of realizing a four terminal 
network by means of a ladder development of one 
of the driving point impedances. 

With the specifications of a required tran-
sistor amplifier, the impedance parameters of the 
network may be determined by any of the methods 
used in passive network theory.  As an example, 
if an amplifier is required which is terminated 

Z.  222 
Na 
z22. 

Fig. 1 - Block diagram of the partitioning. 

in a resistance, the transfer function may be 
considered to be yi2 divided by y22  plus the 
terminatinP resistance.  The y22 thus obtained 
can then be developed in a ladder network in a 
manner similar to that shown in the numerical 
example. 

Conclusion 

A major difficulty associated with this 
procedure is the transistors.  The parameters 
vary considerably with operating point and the 
characteristics of the network are likely to be 
sensitive to these parameter changes.  Also, it 
is necessary to measure the parameters of the 
specific transistors contemplated for these 
circuits as the tolerances between transistors 
of the same type number are much too great. 
Effective transistors having parameters not 
available in single transistors can often be 
obtained by the connection of two or more 
transistors.  In spite of these difficulties, 
the synthesis procedure has yielded a logical 
approach to the realization of transistorized 
amplifiers. 

The material in this paper was carried out 
as part of contract No. D.A. 36-039 so-15544 
between the Signal Corps and Purdue Research 
Founchtion. 
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Fig. 2 - Synthesized amplifier. 
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NETWORK PARTITIONING TECHNIQUES APPLIED 
TO THE SYNTHESIS OF TRANSISTOR AMPLIFIERS 

H. Markarian 
School of Electrical Engineering 

Purdue University 
Lafayette, Indiana 

Surnrlarx 

Two methods for applying network partition-
ing techniques to the synthesis of transistor 
amplifiers are described.  The syntheses of a 
differentiating and a Butterworth amplifier serve 
to illustrate and to bring out some of the advan-
tages of these methods.  In the case of the 
differentiating amplifier a passive network 
realizing a given transfer function is synthe-
sized first.  This is then partitioned, and each 
part resynthesized using transistors and passive 
elements.  In the second example the partitioning 
is achieved by mathematical manipulation; ani 
through a proper choice of transistor connections 
complex poles of the transfer function are real-
ized without using inductors. 

Introduction  

When a network Na with short circuit para-
meters Yl2a and y22a and a second network Nb 
with open circuit parameters zi2b and zilb are 
connected in tandem as indicated in Fig. 1, the 
overall open circuit voltage transfer ratio is 
given by the following relation: 

where 

1El   I2=0 

K -
b  zllb  • 

(- Yl2a) Kb 
1 

Y22a  z llb 

z1.2b 

(1) 

(2) 

This is merely an extension of the relation given 
by the Thevenin's Theorem and can be easily de-
rived by taking the two-terminal pair network Nb 
to be the load of Na. The convention concerning 
the positive direction of current at the terminals 
of a two-terminal pair network is responsible for 
the negative sign associated with Yl2a in (1). 

Application of PartitioninR 

The usefulness of the partitioning formula, 
as (1) may be so called, lies in the fact that it 
relates the overall voltage transfer ratio of a 
network to the indicated parameters of its two 
constituent two-terminal pair sections.  For a 
given overall voltage transfer function it is 
thus possible to compile by the use of this rela-
tion a list of network pairs satisfying the 
specification.  The most basic application of 
partitioning to the synthesis of transistor ampli-
fiers consists of finding in such a list a network 
pair, one member of which can be identified as a 
trausistor.  The companion member in the pair can 

then be realized using passive elements and put 
in tandem with the transistor to give the speci-
fied open circuit voltage transfer ratio within 
a multiplicative constant.  Depending on whether 
the transistor takes the place of Na or Nb, this 
procedure can be described as the removal of a 
transistor by partitioning starting from the send-
ing or the receiving ends respectively.  While the 
use of a list of acceptable network pairs helps to 
illustrate, its compilation is in practice un-
necessary.  With a knowledge of the parameters of 
the transis tor to be used and some idea of the 
desired topology of the final network the designr 
can arrive at a satisfactory network pair after 
only few trials. 

The merits of partitioning as a design tool 
become apparent when the transfer functions to be 
realized are complicated or when the amplifier is 

to have more than one transistor.  This is ob-
vious, for example, in the case of an amplifier 
with two transistors.  Partitioning in such 
instances makes things easier by providing 
immediate access to the interstage coupling net-
work. 

Even though partitioning is generally 
carried out mathematically on the given open . 
circuit voltage transfer function, it is found 
advantageous to follow a somewhat different 
course for its present application.  The latter 
procedure involves the following steps. 

1. A number of passive networks satisfying 
the given open circuit voltage transfer 
function are synthesized. 

2.  By inspection the one that looks the 
most favorable is chosen. 

3.  The chosen network is partitioned into 
Na and Nb.  Parameters Yl2a, Y22a, zllb 
and zia  are determined. 

4.  Na and Nb are resynthesized according to 
these parameters using transistors and 
passive elements. 

An example that illustrates this procedure 
follows.  In a second example, partitioning is 
done mathematically at the outset. 

First Example  

Let it be required to synthesize a differen-
tiating transistor amplifier that realizes the 
following open circuit voltage transfer function: 
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logy  depends on the choice of (4).  Reverting 

E2 As  momentarily to the idea of a list of acceptable 

El - (s+2)(s+4)  •  (3)  network pairs, it is possible to think  of  (4)  as  
some kind of an independent variable which the 

ultiplying the numerator and denominator  of  
contents of the list are a function  of.  Thus,  if  

(3) bY  after deciding upon a network pair the  transistor  
am plifier does not turn out to be entirel y satis-
factory from practical considerations, it is 

(4)  necessary to try a different passive network pair 
corresponding to a different value of the inde-

gives  pendent variable (4).  This may be accomplished 
by just changing the pole location, or it may 
require the introduction of additional factors 
in the numerator and denominator of (4).  The 

C s3 latter artifice amounts to the introduction  of  
El (5)  redundant elements in the network, which may be 

C(s 3  required to provide otherwise lacking biasing 

Considering that 

1 

As 

21  z12 

7-1  12=0  zll 

Y12 

Y22 

the admittance functions specifying the passive 

network are 

(6) 

yi2 
As 

c( s+3) 

(5+2)(5+4) 
_ Y22  c(s+ 3) 

(7) 

(8) 

paths. 

To proceed with the synthesis, reference is 
made to Fig. 3, which gives not only the final 
result but also serves as a legend for the nota-
tion used in the calculations that follow.  The 
section taken up first for transistorization is 
Nb, although it could just as well have been Na. 

Recalling that 

zllb = 7 44757- / 

a shunt capacitor of 1/C farads is removed.  This 

leaves to be realized 

z' - -22-
llb  8  • 

(14) 

For this section a grounded emitter connected 
junction type transistor, J #2, is chosen with 

.  the following open circuit parameters: 

Figure 2 shows a passive network that realizes  r11  = 431.8  SI 

(8) and (9).  Same experience at this point will 
help to see that it is possible starting at the  r21 = 31.8  

dotted line to proceed forward and backward 
removing two transistors, one on each side.  r12 = -719.3 K 

Therefore, this passive network can be considered  r22  = 20.7  K  .  (15)  

work for the amplifier design.  The  following  
to be satisfactory enough to serve as the frame-

parameters are determined for the partitioned  If  a load  of  10004n.is taken, substitution into 
network:  (46) gives 

1/3 s =1486 Si. .  (16) 
Yl2a -  C(s+3)  (10)  zllb 

- 

This is in parallel with the 1000 Iv resistor 
1/3 s (11)  providing the bias path to the input of the 

Y22a  c(s 3)  transistor.  Now, invoking (14) 

zllb = z12b = 8/3- (12)  zl,  lb = _2g_  1000 x 1486  8  1000 + 1486  (17) 

(12) 

(9) 

The correctness of (10), (11) and (12) can be 
verified by substituting them into (1), which 

gives 

E2 

El - 

1/3 s 

(s+2)(s+4) 
(13) 

It is to be pointed out that the impedance 
level of the final network as well as its topo-

131 

Therefore, 

c= 1595  •  (18 ) 

The synthesis of Wb is thus completed.  The value 
of C that has been established governs the syn-
thesis of Na. Substituting this value into (11) 

gives 



Y22a 3X1595 (s+3) (19) 

The removal of a series capacitor of a magnitude 

of   1  9 X 1595  F constitutes the first step, and 

leaves to be realized 

1   1r 
Y22a  3 X 1595  • 

The transistor chosen for Na, J #1, is of the 
junction type with its emitter grounded, and has 
the following open circuit parameters: 

ril  =  428.7 SI-

r21 =  27.7  IL 

r12 = - 840  K 

r22 =  10.2 K 

(20) 

(21) 

Making the source impedance equal to 600 ohms and 
substituting this value with (21) into (47) gives 
after inversion 

1  
Y22a -  32800 

As this value is lower than what is required in 
(20), it is necessary to hang a resistor, R, 
across the output of the transistor J #1.  The 
value of this is 

Y22a  Y22a 
- 5600  IL 

The open circuit system function of the ampli-
fier to be synthesized is 

E2 

El 1 12 .0 
A 

s3+2s 2+2s+1 

Multiplying the numerator and denominator by 

gives 

1 
C(s+0.5)(s+1.05) 

A 

L(s+0.5)(s+1.05) 

s3+252+25+1 

C(s+0.5)(s+1.05) 

where the denominator now is 

(27) 

(28) 

(29) 

s3+2s2+2s+1  D(s) -  (30) 
C(s+0.5)(s+1.05) 

This is first expanded in a partial fraction and 
then its terms regrouped. 

D(s) = -3d(s + 

= (+0.05 

0.45 + 0.0957 + 0.6818   ) 
s+1.05  s+0.5 

+ 0.0957  ) + lt 40+ 0.6818  ) 
s+1.05  C •  s+0.5 

1(5+0.05. 2 _+2. 2_64) +0.4  s+2.205  
(23)  s+1.05  s+0.5  ) 

The synthesis of the differentiating transistor 
amplifier is completed; only the calculation of 
its gain remains.  The simplest way of doing this 
is to determine y1.2a and zi2b actually realized 
and to substitute these tog(Aher with Y22a and  
zub into (1).  These are computed to be 

and 

Yl2a  40.4(s+3) 

356000   
z12b  (s + 2.667) 

2 

El  
882 s 

(s+2)Cs+4) 

(24) 

(25) 

(26 ) 

Second Example 

The synthesis of a dutterworth amplifier 
will be carried out using only resistors and 
capacitors.  To do this, use is made of a 
quality of grounded emitter stages that exhibit 
a RL impedance at one end when a RC network is 
connected at the other end.  Similarly, a RL 
network is transformed into a RC network.  Using 
(46) and (47) it is very easy to prove this. 

(31) 

The expanded D(s) is now substituted back into 
(29), obtaining 

-2 
_ 
Li 

C(s+0.5)(s+1.05) 
s+2.964\+ 0.4 
s+1.05)  C (  \ s 2.205 s+0.5 ) 

Comparing this with (1), the following term 
associations can be made. 

-A1 

(s+1.05) 

Y22a = 7 / s'°.°5 s+2.964  ) 
s+1.05 

A2 

'<t)  s+0.5 

1  _ 0.4 ( s+2.2C5) 

zllb  '  s+° *5 

(32) 

(33) 

(34) 

All the information needed for the synthesis of 
Na and Nb is contained in (33) and (34).  Even 
though not essential, it is helpful at this point 
to synthesize (33) and (34) into a passive net-



work.  Reference to Fig. 4 showing the synthe-
sized network clearly reveals the course to be 

followed. 

Starting at the dotted line and proceeding 
right, a shunt resistor of 25C ohms magnitude is 

removed leaving 

_  C  s+0.5 
llb — 77  s +2.394 ). 

(35) 

To the left of the dotted line a shunt capaci-

tor of 1/C farads is removed leaving 

_ 0.05 
I22a 

( s+2.964 
s+1.05 

(36) 

These are both shown in Fig. 5.  The syntheses 
of Na and Nb have now progressed to points where 
the removal of a transistor from each is in 

order. 

The transistor chosen for Na, J #3, is of 
the junction type and is operated with its emit-
ter grounded through a resistor of 200 ohms. 
The purpose of the resistor is to improve the 
stauiiity of the circuit.  The short circuit 

parameters of this stage are: 

gll = 58.4 X 10-6  

g21 = -3.92 X 10- iS 

g12 = 4.15 X 10-3  

-6 
g22 = 14.5 X 10 

The transistor in Nb, J #4, is also operated 
with its emitter grounded through a resistor of 
200 ohms, and is aF.ain of the jinction type.  The 
open circuit parameters of this stage are: 

r11 = 422.4  .c-

r21 = 218.4  .11-

r12 =-552  K  $1 

r22 =  8 K 

To remove the transistor J #3 from y 2a , 
and (37) are substituted into (52).  The 
tance remaining after the removal of the 

sistor simplifies to 

y  =58. 4X1Cr61 22a  0-2  C 

iS  (37) 

14.5C-50,000 s+ 

(38) 

(36) 
admit-
tram-

000_307.2C 

5.20-148,000 

64.6C-360 000  C-865 000 
zllb=123 4  152 - C s -4- 3 5 - 0.5C  

This is physically realizable within the range 

730 ‘. C  5570 

The ranges of the constant multiplier G for 
Y22a and zlib respectively happen to be partially 
overlapping.  Had this not been the case it would 
have been necessary to try different transistors 

or go back and change the partitioning. 

Choosing a value of C common to both ranges, 

= 3450,  (43) 

and substituting this into (39) and (41) gives 

(39) 
which is physically realizable within the range, 

485  3450  •  (40) 

On the other hind, the transistor J #4 can be 
removed from zilb  by substituting (35) and (38) 
into (50), the remaining impedance simplifying to 

and 

586 
Y22a = 

10 

s + 

I I 

211b = 5115 + 8 

1 
1790 

1 

s + 
10  62900 

1 

(42) 

(414) 

•  (45) 

This completes the synthesis of three pole Butter-
worth amplifier using resistors, capacitors and 
two transistors.  The gain A in (27) is calculated 

to be 1550. 

Conclusion 

Partitioning has been described and two 
examples given illustrating its application to 
the design of transistor amplifiers.  The repre-
sentation has not aimed at comprehensiveness, its 
aim being to point at some of the possibilities 
of the method.  The fact that Cc and the variation 
of ck with frequency have been neglected should 
not be taken to demerit partitioning.  It can just 
as effectively be used to provide compensation or 
to synthesize networks utilizing the transistor 
characteristics to realize specified system func-

tions. 
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Following is a list of formulas referred  to  
in the text.  The order in which Na and Nb are to 
be taken together with the conventional positive 
directions of voltages and currents are indicated 

in Fig. 1. 
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zll = zlla 
212a zz- ' 

ia  

z22a 4- 211b 

(46) 



Z22 = z22b 
z22a  zllb 

z12b z2lb 

z12 _  z12a 112b  

z22a  zllb 

z21 
z2la z2lb 

zllb = -z 22a 

z12b = z12 
zlla  zll 

z22a 4 Z1lb 

Zi2a Zaia 

Zila — Zil 

z2la 

Y12b Y2lb   
Y 22a  „  Yllb 

J22b - Y22 

Fig. 1 

6 0 0 A  J-1  1EZ1I L_ 

•-- N/V\P— K 

1 E 2 

3C  V9 C 
..—VV\ì 

5600n.  1/G 
_-> 

YZ.  2a11220 zi  lb 

(47) 

(48) 

(49) 

(50) 

Y2lb   

Y12a Y12  Y22b - Y22  
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Abstract 

Based upon the work of Shockley and Early 
on junction transistors, a new equivalent 
oircuit consisting essentially of two trans-
mission lines is presented.  One line is used 
in the emitter oircuit to represent Shockley's 
forward diffusion prooess of minority carriers 
in the base region and the other line used in 
the collector circuit represents the Early effect 
which feeds the collector signal back to the 

emitter oircuit. 

Approximate equivalent circuits for grounded 
base and for grounded emitter connootions are 
also derived from this new circuit and are oom-
pared to conventionally established equivalent 
oircuits.  Thus a unified view is established. 

Introduotion 

An equivalent circuit is useful to analyze 

the function of a device beoause (a) it allows 
a clearer insight into the operation of the 
device, and (b) it offers en analytical solution 
by well leveloped circuit theory.  The first 
equivalent circuit for junction transistors was 

introduced by Shockley, et alii, for low 
frequency operationi. Essentially, it consists 
of an equivalent current generator, known as the 
a generator, which responds to a signal current 
in the emitter (input) oirouit and transfers this 

signal current into the collector (output) 
circuit.  Since the impedance of the output 
circuit is very high and the input impedance is 
very low, the junction transistor will yield 
power gain as an amplifier.  This type of operation 

is known as a grounded base application. 

If the signal frequency is increased, the 
transit time of transferring charge oarriers 
from the emitter to the collector in the base 
region beoomes increasingly appreciable.  The 
charge transfer effioiency will drop, thus the 
transfer current of the transistor will decrease. 

This oharge transfer process takes piece by 
diffusion, and is analogous to the ohargo flow 
on a transmission line.  Therefore, equivalent 
circuits using a transmission line have been 
suggested.  Yet, there is no equivalent circuit 
that gives a lucid analog to the established 
theory of the junction transistor.  This paper 
attempts to fill this gap.  The basic design 
theory for junction transistors has been publited 
recently by Early%  This paper will use some of 

his results. 

A "Two Transmission Line" Circuit 

A new equivalent oircuit for a one 
dimensional junction transistor is shown in 
Figure 1.  The essential part of this circuit 
consists of two transmission lines shown by 
solid lines.  One of the lines, connected 
primarily in the emitter oircuit of the transistor 
and coupled unilaterally to the collector circuit, 
represents Shookley's forward diffusion process 
of the minority carriers in the base region1,2 . 
The other line, connected essentially in the 
collector circuit and coupled unilaterally 
back to the emitter circuit, represents the feed-
back effeot due to space charge layer widening 
discovered by Early4. Other behaviors of the 
transistors are represented by lumped circuit 
elements shown 1.)y the dotted lines.  Among them, 
CTe and CT0 are the emitter and collector barrier 
capacit ances respectively.  G(‘ is a lumped 
conduotanoe representing an equivalent leakage 
in the emitter barrier due to imperfect injeotion 
efficiency of the emitrer.  Similarly Gc; is a 
conductance representing the leakage (e.g. due 
to the surface)  between the collector and the 
base of a practical transistor.  Between the 
internal base and the outer base terminal of the 
transistor is a lumped base resist ance r6'. 
Under normal oonditions, Ge'  and CTe can generally 
be neglected and CT0, G0', and ria' may not remain 
constant over wide frequenoy ranges.  More exact 
representation of these parameters in an equivalent 

oircuit is beyond the scope of this paper. 

Diffusion Process  

A one dimensional pnp junction transistor is 
schematically shown in Figure 2(a).  Under a 
normal bias condition, the emitter injects holes 
into the base region.  The excess hole density 
in the base region near the emitter end will 
cause diffusion of the holes toward the collector 

end.  Holes diffused will be collected by the 
colleotor, since the latter is properly biaad 
to receive holes.  A small fraction of the holes 
will disappear during diffusion in the base 
region due to reoombination.  The diffusion and 

recombination processes oan be desoribed 
analytically by the continuity equation192  for a 

one dimensional case as follows: 
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(1) 
at 

where p' is the excess hole density of the n-type 
base region (whioh is equal to the differenoe 
between the hole density p and the thermal 
equilibrium hole density pn); r is the mean life-
time of holes; and D is the diffusion constant of 



holes in the n region. 

The boundary condition for p' at the emitter 
end ( 0) depends upon the injection level of 
the emitter.  At the other end (x.W0 ), because 
the electric field intensity in the collector-
base barrier is high, any hole in that region 
will be accelerated toward the oolleotor with 
high speed, and there will be no appreciable 
hole density in that region.  Thus the boundary 
condition for p' at x..W0 may be taken as zero. 
The solution of (1) with a normal d.c. bias 
condition will show a space distribution of p' 
such as the one shown in Figure 2(b).  Because 
of this sloping charaoteristio, there is a hole 
density gradient in the x direction, and the 
diffusion of the holes in the forward direction 
takes place.  The diffusion ourrent Ip is related 
to the hole density gradient by: 

' ip - qD ap 
ax (2) 

Physioal Analogy 

These relations are analogous to the flow of 
charges in a transmission line.  In fact, the 
differential equation to describe an RC trans-

mission line has exactly the same form as (1). 
Transmission line theory5 gives the charge 
density on the line as 

aQ  L Q + 1 a2Q 
o  ro 

ax2 (3) 

where Q is the linear charge density of the line 
(i.e. charge per unit length), r is the series 
resistance per unit length of the line, o and g 
are the shunt capacitance and conductance per 
unit length of the line.  By comparing (1) and 
(3), one obtains a complete analogy between the 
diffuaion and reoombination processes in the base 
region of the transistor and the RC transmission 
line as listed in Table 1. 

The analogy shown in Table 1 sugrests that 
the forward diffusion process of holes in the 
base region of the junction transistor can be 
represented by one RC transmission line (a) with 
the receiving end short circuited, but (b) with 
an output impedanJe corresponding to an open 
oirouit.  A short circuit transmission line 
followed by an equivalent current generator is, 
therefore, used for the forward transmission 
process as shown by the Shookley line in Figure 

Effect of Space Charge Layer Widening  

As Early pointed out4, a variation of 
collector voltage Vo will cause a variation of 
the collector-base barrier thickness xm. This 
in turn will cause a variation of the base width 
Wo. The variation of the base width will 
correspond to a short oirouit position at the 
receiving end of the Shockley line, shifted back 
and forth according to the variation of Vo. For 
a fixed input voltage on the line, this movement 
of the short oirouit point will call for an in-
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orease or decrease of the input ourrent and 

thus a signal current corresponding to the 
variation of output voltage will appear at the 
input end.  The dynamic oharaoteristios of this 
feedback process is described by the same trans-
mission line equation (Eq. (3)) in the oase of a 
line and by the same continuity equation (Eq. (1)) 
in the case of a transistor.  Therefore, this 
type of feedbaok process in the transistor due 
to the spaoe charge layer widening can be repseent-
ed by another RC transmission line Nhioh is 
coupled unilaterally from the oolleotor side back 
to the emitter circuit as shown by the Early line 
in Figure 1.  It will be shown later that the 
two lines are of the same length and the same 
propagation oonstlnt but different impedance 
levels. 

Experimental Verification 

Measured results of the forward ourrent 
amplification faotor a over a wide frequency 
range of junction transistors has verified the 
Shookley line in the equivalent circuit. 
Measured results of alrly effeot and variation 

of oolleotor capaoitance over wide ranges of 
frequenoies and emitter bias ourrents oan be 
explained by the Early line.  These experimental 
results have been published elsewhere. 

Analytical Proof  

Following, Shookley's diffusion theory and 
inoluding the space charge layer widening effeot, 
Early has obtained a set of theoretical expreesiore 
for the short circuit admittanoe of the above one 
dimensional junction transistors 3. A slight 
alternative version of them including only the 
principal part of the transistor (called the 
elementary transistor) may be written as follows: 

Yee m 

Yce = - 

Yee = 

Yec 

qL9.11.±.1Leit _2 
TEt cothCA VET coth 119 (14j4vr) 1 

qI e 1+ wr 1.-
kT coth W  L csc q2(144roz) (4) 

—LQ (AIL )( 14,1,4,W coth 21204  
L  aVo L 
I  aw 7:cra—v-.3)(i+iga). esch4 Th:c+iww 

where, Yee ' Yoe, Yoof and yeo  are the four 
elements of the short circuit admittance matrix 
[y] of the elementary transistor.  The intrinsic, 

ourrent amplification faotor as of the oolleotor 
junction is assumed equal to unity. 

In order to prove that the new equivalent_ 
oirouit in Figure 1 is a oorreot representation 
of such an elementary transistor, it is now 
only necessary to show that a set of short 
oirouit admittance matrix (called CT) ) of the 
solid line oirouit in Figure 1 is equal to the 
[y] matrix of Equation (4). 

Applying transmission line theory, one oan 
immediately find the elements of the 0'1 matrix 
as follows: 



-  _11 .  . 1 _   
vi vi zi 

Y  i 2 1 
21  v 1  v1  ZI 

Y  12  '  coth 02 
22  v2 Ti  Z2 

Y12  
v2  v2 -2 

Where ZI = (zI/y1) 1/2 and Z2 (e,/y,) 1/2 are the 

oharaoteristio impedances of the Shoacley, and 
Early lines r meotively, 01 •11(y1z1)1/2 and 
0 = 1 (yoz2)1/6 are the overall propagation 
2  2 4 funotions of the two lines.  As, 

1 

circuit witn two appropriate RC filters, one 

obtains an approximate equivalent  circuit  for  
ooth 01 grounded base application.  This circuit may be 

drawn in "T" form as shown in Figure 3. 

In Figure 3, the distributed parameters of 

each line have been essentially lumped into a 
series resistance, a shunt capacitance and a 
shunt oonduotanoe.  Besides, the latter shunt 
elements can be combined with Ci%, CT0, Ge' and 
Go' to give Ce, Co, Go, and Go as shown. 

osoh 02  Again, the (Lie current generator in a 
conventional T circuit is of general interest. 
Ne can easily prove that the equivalent ourrent 
generator i2  shown in this T circuit is equal 

to the former as follows: 

osoh 01 

(5) 

Y1  = gl  JwC 1 

Y2  = g2  111c2  

Z 

1  rl 

s r2 

one obtains: 

Z 2 

= 
4[1.2g  lf iwa  21 

1+jat  gl 

 (r2/g7)-10.-- 

(14y0c2/g2 K 

(6) 

(7) 

The coefficients of the CY] matrix do conform to 
those of the (y) matrix.  By identifying the 
corresponding terms, the relations in Table 2 

are obtained. 

Both lines are of the RC type with the 
same equivalent length with an equal propagation 

function, but with different charaoteristio 
impedanoes.  The forward current amplification 
factor a of the transistor, which is particularly 
of general interest, equals the product of the 
injection effioienoy rand the transfer ratio j . 
Since only the latter is of concern here, one 

can find from Figure 1 

W 
j6 r Y21  = -1 ? = - sech 0  - eech --o (14.juit)71  (8) 

Y11  i1 

Evidently je has also been correotly represented 
in this new circuit. 

Ppproximate EquiYaleflt, Circuit for Grounded Base 

Conneotion  

Replacing the two lines in the new equivaleat 

2  1+jw RiCe 

(Lo 

1+jw RIC° 41 14-jw Ries 
ie  (9) 

where R1C0 •  reCe  lAz7A) and when veil ' 0. 

The current generator  in the emitter 

cirouit is an Early feedbaok generator.  It may 
be converted into an equivalent voltage generator 
14112 if so desired.  Ce and Co may be identified 

as the total emitter and oolleotor barrier 
capacitance.  Ge 'and Go may be taken as the 
total equivalent barrier leakage conductance. 
R1 corresponds to the theoretical low frequency 

emitter resistance re, while R2 is a similar 
equivalent resistance in the oolleotor circuit 
due to the Early effect.  These parameters are 

related to the physical constants of the 
transistor and to the circuit parameters of the 
oonventional equivalent T circuit as shown in 
Table 2.  Moreover, these parameters will have 
further significance in the grounded emitter 

circuit described below. 

A roximate E uivalent Circuit for Grounded 

Emitter Connection 

The T circuit is a basic: equi valent circuit 

for junotion transistors.  Although it is most 
conveniently used for grounded base application, 
it can be %mod for grounded emitter application 
too.  A it circuit in a ladder structure oan be 
obtained which offers not only a simpler analysis 
in grounded emitter applicatio ns but also leads 
to some physioal interpretations.  This ladder 
circuit which has been known elsewhere is shown 

in Figure 4(a). 

In Figure 4(a), all the elements have been 

expressed in terms nf those parameters of the 
original T circuit.  The form of this oirouit 
suggests that grounded emitter junction 
transistors are analogous to vacuum tubes at 
high frequencies.  Acoordingly, a block diagram 

interpretation of this circuit is given in 

Figure 4(b). 

This diagram illustrates that functionally 

the grounded emitter junotion transistor operates 
as a system of three parts:  a low pass RC filter, 
a wide band amplifier and an RC feedbaok network. 
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A "two transm ssion line" equivalent circuit 

for junction transistors. 
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Fig. 2(a) 
Schematic diagram of a p-n-p transistor. 

Fig. 2(h) 
(Excess) hole density distribution along the 
base width under normal bias condition. 

1140 

•2 

vi '2 

Fig. 3 
An approximate equivalent circuit for 

grounded base applications. 

Fig. 4(a) 
A ladder equivalent circuit for grounded 

emitter applications. 

Fig. b(b) 
A block diagram interpretation of the 
grounded emitter junction transistor. 
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